
.1

TEXAS INSTRUMENTS

Improving Man's Effectiveness Through Electronics

Model 990 Computer
TMS- 9900 Microprocessor

Assembly Language Programmer's Guide

MANUAL NO. 943441-9701
ORIGINAL ISSUE 1 JUNE 1974

REVISED 15 OCTOBER 1978

Digital Systems Division

© Texas InstrlJllents Incorporated 1978
All Rfghts Reserved

The fnfonnatfon and/or drawings set forth in this doclJllent and all rights in and
to inventions disclosed herein and patents which might be granted thereon disclos­
ing or employing the materials, methods, techniques or apparatus described herein
are the exclusive property of Texas Instruments Incorporated.

INSERT LATEST CHANGED PAGES DESTROY SUPERSEDED PAGES

LIST OF £F FECTIVE PAGES Note: The portion of the text affected by the changes is
indicated by a vertical bar in the outer margins of
the page.

Model 990 Computer TMS9900 Microprocessor Assembly Language
Programmer's Guide (943441-9701)

Original Issue .. 1 June 1974
Revised 15 October 1978 (ECN 446281)

Total number of pages in this publication is 366 consisting of the following:

PAGE
NO.

CHANGE~
NO.

Cover 0
Effective Pages 0
iii - xii 0
1-1 - 1-2 0
2-1-2-18 0
3-1-3-120 0
4-1 - 4-20 0
5-1 - 5-2 _ 0
6-1 - 6-14 0
7-1 - 7-30 0
8-1 - 84 0
9-1 - 9-8 0
10-1 - 10-24 0
Appendix A Div _ 0
A-I -A4 0

PAGE
NO.

CHANGE
NO.

Appendix B Div 0
B-1 - B-14 0
Appendix C Div 0
C-l - C4 .. ,•..... 0
Appendix D Div 0
D-l -D4 ..•.......... 0
Appendix E Div 0
E-l - E4 0
Appendix F Div 0
F-l - F4 0
Appendix G Div 0
G-l - G-2 0
Appendix H Div 0
H-l - H-6 0

PAGE
NO.

CHANGE
NO.

Appendix I Div 0
1-1 - 1-2 0
Appendix J Div 0
J-l - J-8 0
Appendix K Div 0
K-l -K-16 0
Appendix L Div 0
L-l - L-8 0
Alphabetical Index Div 0
Index-l - Index-8 ,0
User's Response 0
Business Reply 0
Cover Blank 0
Cover 0

J}n)\ ______ _ ~ 943441-9701

PREFACE

This manual describes the assembly language for the Model 990 Computer and the TMS 9900
microprocessor as implemented by PX9ASM, a one-pass assembler that executes under the Proto­
typing System PX990; by TXMIRA, a two-pass assembler that executes under TX990; by SDSMAC,
a two-pass assembler that executes under Disc Executive DXI 0; and by the Cross Assembler, a two­
pass assembler that is part of the Cross Support System. Except for a few differences that are
expressed in Appendix L, the TMS 9940 microcomputer uses the same assembly language as the
TMS 9900 microprocessor. However, the assembly language for the TMS 9940 microcomputer can
be implemented only by the TXMIRA and the SDSMAC assemblers.

This manual describes:

• Source statement formats and elements

• Addressing modes

• Assembler directives and pseudo-instructions

• Assembly instructions

• Macro language, supported by SDSMAC

• Assembler output

Appendixes contain:

• The character set

• Instruction tables

• Directive tables

• A macro language summary

• CRU and TILINE examples

• TMS 9940 programming considerations.

This manual assumes that the reader is familiar with the computer architecture and I/O capabilities
as described in the 990 Computer Family Systems Handbook.

The following documents contain additional information related to the assembly language:

Title

990 Computer Family Systems Handbook

Model 990 Computer Pro to typing System
Operation Guide

iii

Part Number

945250-9701

945255-9701

Texas Instruments Incorporated

~-------~ 943441-9701

Title

Model 990 Computer DXIO Operating System
Documentation, Volume 4 - Development
Operation

Model 990 Computer DXIO Operating System
Documentation, Volume 3 - Application
Programming Guide

Model 990 Computer TX990 Operating
System Programmer's Guide (Release 2)

Model 990 Computer Cross Support System
User's Guide

Model 990 Computer TMS 9900 Microprocessor
Cross Support System Installation and Operation

Model 990 Computer Terminal Executive Development
System (TXDS) Programmer's Guide

DXIO Operating System Production Operation
Guide

TMS 9940 16-Bit Microcomputer Data Manual

* Available from:
Texas Instruments Incorporated
Microprocessor Marketing
Mail Station 653
P. O. Box 1443
Houston, Texas 77001

iv

Part Number

946250-9704

946250-9703

946259-9701

945252-9701

945420-9701

946258-9701

946250-9702

*

Texas Instruments Incorporated

~~-------------------~ 943441-9701

Paragraph

1.1
1.2

2.1
2.2
2.3
2.4
2.4.1
2.4.2
2.4.3
2.4.4
2.4.5
2.4.6
2.4.7
2.4.8
2.5
2.6
2.7
2.7.1
2.7.2
2.7.3
2.7.4
2.7.5
2.8
2.8.1
2.8.2
2.9
2.9.1
2.9.2
2.9.3
2.9.4
2.10
2.11
2.12
2.13

3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5

TABLE OF CONTENTS

Title

SECTION I. INTRODUCTION

Assembly Language Definition .
Assembly Language Application

Page

1-1
1-1

SECTION II. GENERAL PROGRAMMING INFORMATION

Byte Organization 2-1
Word Organization 2-1
Transfer Vectors 2-2
Status Register 2-2

Logical Greater Than 24
Arithmetic Greater Than 24
Equal 24
Carry 24
Overflow 2-4
Odd Parity 2-5
Extended Operation 2-5
Status Bit Summary 2-5

Memory Organization 2-5
Privileged Mode .2-10
Source Statement Format .2-10

Character Set .2-11
Label Field .2-11
Operation Field .2-11
Operand Field .2-13
Comment Field .2-13

Expressions .2-13
Well-Defined Expressions .2-14
Arithmetic Operators .2-14

Constants .2-15
Decimal Integer Constants .2-15
Hexadecimal Integer Constants .2-15
Character Constants .2-15
Assembly-Time Constants .2-15

Symbols .2-15
Predefined Symbols .2-16
Terms .2-16
Character Strings .2-17

SECTION III. ASSEMBLY INSTRUCTIONS

General 3-1
Addressing Modes 3-1

Workspace Register Addressing 3-2
Workspace Register Indirect Addressing 3-2
Symbolic Memory Addressing 3-2
Indexed Memory Addressing 3-2
Workspace Register Indirect Autoincrement Addressing 3-3

v Texas Instruments Incorporated

~~-------------------~ 943441-9701

Paragraph

3.3
3.4
3.5
3.6
3.7
3.7.1
3.7.2
3.7.3
3.7.4
3.7.5
3.7.6
3.7.7
3.7.8
3.7.9
3.7.10
3.7.11
3.7.12
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33
3.34
3.35
3.36
3.37
3.38
3.39

TABLE OF CONTENTS (Continued)

Program Counter Relative Addressing
CRU Bit Addressing
Immediate Addressing
Addressing Summary .
Addressing Formats

Format I - Two Address Instructions
Format II - Jump Instructions .
Format II - Bit I/O Instructions
Format III - Logical Instructions
Format IV - CRU Instructions .

Title

Format V - Register Shift Instructions
Format VI - Single Address Instructions
Format VII - Control Instructions
Format VIII - Immediate Instructions
Format IX - Extended Operation Instructiqn
Format IX - Multiply and Divide Instruction
Format X - Memory Map File Instruction

Instruction Descriptions
Arithmetic Instructions
Add Words A
Add Bytes AB
Add Immediate AI
Subtract Words S
Subtract Bytes SB
Multiply MPY
Divide DN
Increment INC
Increment By Two INCT
Decrement DEC
Decrement By Two DECT
Absolute Value ABS
Negate NEG
Jump and Branch Instructions
Branch B
Branch and Unk BL
Branch and Load Workspace Pointer BLWP
Return with Workspace Pointer RTWP
Unconditional Jump JMP
Jump If Logical High JH . .
Jump If Logical Low JL . .
Jump If High Or Equal JHE
Jump If Low Or Equal JLE
Jump If Greater Than JGT
Jump If Less Than JLT
Jump If Equal JEQ . .
Jump If Not Equal JNE
Jump On Carry JOC
Jump If No Carry JNC
Jump If No Overflow JNO

vi

Page

3-3
3-3
3-4
3-4
3-6
3-6
3-7
3-7
3-8
3-8
3-9

.3-10

.3-10

.3-11

.3-12

.3-12

.3-13

.3-13

.3-15

.3-15

.3-16

.3-17

.3-18

.3-19

.3-20

.3-21

.3-23

.3-24

.3-25

.3-26

.3-27

.3-28

.3-29

.3-30

.3-31

.3-32

.3-33

.3-34

.3-35

.3-36

.3-37

.3-38

.3-39

.3-40

.3-41

.3-42

.3-43

.3-44

.3-45

Texas Instruments Incorporated

}}rls\ ______ _ ~ 943441-9701

Paragraph

3.40
3.41
3.42
3.43
3.44
3.45
3.46
3.47
3.48
3.49
3.50
3.51
3.52
3.53
3.54
3.55
3.56
3.57
3.58
3.59
3.60
3.61
3.62
3.63
3.64
3.65
3.66
3.67
3.68
3.69
3.70
3.71
3.72
3.73
3.74
3.75
3.76
3.77
3.78
3.79
3.80
3.81
3.82
3.83
3.84
3.85
3.86
3.87
3.88

TABLE OF CONTENTS (Continued)

Jump If Odd Parity JOP
Execute X
Compare Instructions
Compare Words C .
Compare Bytes CB
Compare Immediate CI
Compare Ones Corresponding COC
Compare Zeros Corresponding CZC
Control and CRU Instructions
Reset RSET
Idle IDLE
Clock Off CKOF
Clock On CKON
Load or Restart Execution LREX
Set CRU Bit to Logic One SBO
Set CRU Bit to Logic Zero SBZ
Test Bit TB
Load CRU LDCR
Store CRU STCR
Load and Move Instructions
Load Immediate LI . . .

Title

Load Interrupt Mask Immediate LIMI
Load Wcxkspace Pointer Immediate LWPI
Load Memory Map File LMF
Move Word MOV
Move Byte MOVB
Swap Bytes SWPB
Store Status STST
Store Workspace Pointer STWP
Logical Instructions
AND Immediate ANDI
OR Immediate ORI
Exclusive OR XOR
Invert INV .. .
Clear CLR
Set to One SETO .
Set Ones Corresponding SOC
Set Ones Corresponding, Byte SOCB
Set Zeros Corresponding SZC
Set Zeros Corresponding, Byte SZCB
Workspace Register Shift Instructions
Shift Right Arithmetic SRA
Shift Left Arithmetic SLA
Shift Right Logical SRL .
Shift Right Circular SRC .
Extended Operation XOP
Long Distance Addressing Instructions
Long Distance Source LDS . .
Long -Distance Destination LDD

vii

Page

.3-46

.3-47

.3-48

.3-48

.3-49

.3-50

.3-51

.3-52

.3-53

.3-53

.3-54

.3-55

.3-56

.3-57

.3-58

.3-59

.3-60

.3-61

.3-62

.3-63

.3-63

.3-64

.3-65

.3-66

.3-68

.3-69

.3-70

.3-71

.3-72

.3-72

.3-73

.3-74

.3-75

.3-76

.3-77

.3-78

.3-79

.3-80

.3-81

.3-82

.3-84

.3-84

.3-85

.3-86

.3-87

.3-88

.3-89

.3-89

.3-90

Texas Instruments Incorporated

~-------------------~ 943441-9701

Paragraph

3;89
3.89.1
3.89.2
3.89.3
3.89.4
3.89.5
3.89.6
3.89.7
3.89.8
3.89.9
3.89.10

4.1
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.2.8
4.2.9
4.2.10
4.2.11
4.2.12
4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.4
4.4.1
4.4.2
4.4.3
4.4.4
4.5
4.5.1
4.5.2
4.5.3
4.5.4
4.6
4.6.1
4.6.2

TABLE OF CONTENTS (Continued)

Programming Examples
ABS Instruction . .
Shifting Instructions
Incrementing and Decrementing
Subroutines
Interrupts
Extended Operations . . .
Special Control Instructions
CRU Input/Output
TILINE Input/Output
Re-Entrant Programming

Title

SECTION IV. ASSEMBLER DIRECTIVES

Introduction
Directives that Affect the Location Counter

Absolute Origin AORG
Relocatable Origin RORG
Dummy Origin DORG
Block Starting with Symbol BSS
Block Ending with Symbol BES
Word Boundary EVEN
Data Segment DSEG
Data Segment End DEND
Common Segment CSEG
Common Segment End CEND
Program Segment PSEG
Program Segment END PEND.

Directives that Affect the Assembler Output
Output Options
Program Identifier IDT
Page Title TITL
List Source LIST
No Source List UNL
Page Eject PAGE

Directives that Initialize Constants
Initialize Byte BYTE
Initialize Word DATA
Initialize Text TEXT
Define Assembly-Time Constant EQU

Directives that Provide Linkage Between Programs
External Definition DEF
External Reference REF
Secondary Extemal Reference SREF
Force Load LOAD

Miscellaneous Directives
Define Extended Operation DXOP
Program End END

viii

Page

.3-91

.3-92

.3-93

.3-95

.3-98
3-103
3-107
3-110
3-113
3-117

. 3-117

4-1
4-1
4-2
4-2
4-3
4-5
4-5
4-5
4-6
4-7
4-7
4-9
4-9

04-10
A-II
A-II
04-11
04-12
04-13
04-13
04-13
04-14
04-14
04-14
04-15
04-15
04-16
04-16
04-17
04-17
04-18
.4-19
.4-19
04-19

Texas Instruments Incorporated

~~-------------------~ 943441-9701

TABLE OF CONTENTS (Continued)

Paragraph Title Page

SECTION V. PSEUDO-INSTRUCTIONS

5.1 General .. 5-1
5.2 No Operation NOP .. 5-1
5.3 Return RT .. 5-1

6.1
6.2
6.2.1
6.3
6.4
6.4.1
6.4.2
6.4.3
6.4.4
6.4.5
6.4.6
6.4.7
6.4.8
6.4.9
6.4.10
6.4.11
6.4.12

7.1
7.2
7.3
7.4
7.5
7.5.1
7.5.2
7.5.3
7.5.4
7.5.5
7.5.6
7.5.7
7.5.8
7.5.9
7.5.lO
7.5.11
7.5.12
7.5.13
7.5.14
7.5.15
7.5.16
7.5.17

SECTION VI. ASSEMBLERS

General .. 6-1
Prototyping System Assembler. 6-1

Terminal Executive Development System Assembler 6-1
Cross Assembler . 6-1
Program Development System Assembler 6-2

Uses of Parenthesis in Expressions . 6-3
Right Shift Operator . 6-3
Logical Operators in Expressions . 64
Relational Operators in Expressions . 64
Output Options ... 6-5
Workspace Pointer ... 6-6
Copy Source File .. 6-6
Conditional Assembly Directives ... 6-7
Define Operation. 6-10
Transfer Vector. 6-10
Set Maximum Macro Nesting Level .. 6-11
Symbolic Addressing Techniques ... 6-12

SECTION VII. MACRO LANGUAGE

General . 7-1
Processing of Macros . 7-1
Macro Translator Interface with the Assembler 7-2
Macro Library .. 7-2
Macro Language . 7-3

Labels _ ... 7-3
Strings. 7-3
Constants and Operators. 7-3
Variables ... 7-3
Model Statements ... 7-7
Symbol Attribute Component Keywords 7-8
Parameter Attribute Keywords ... 7-9
Verbs ... 7-9
$MACRO " '" 7-9
$VAR ... 7-13
$ASG ... 7-13
$NAME .. 7-15
$GOTO .. 7-15
$EXIT ... 7-15
$CALL .. 7-16
$IF ... 7-16
$ELSE .. 7-17

ix Digital Systems Division

~~-------------------~ 943441-9701

Paragraph

7.5.18
7.5.19
7.6
7.6.1
7.6.2
7.6.3
7.7
7.7.1
7.7.2
7.7.3
7.7.4
7.7.5
7.7.6
7.7.7
7.7.8

TABLE OF CONTENTS (Continued)

Title Page

$ENDIF ... 7-17
$END ... 7-17

Assembler Directives to Support Macro Libraries 7-18
LIBOUT Directive ... 7-18
LIBIN Directive .. 7-18
Macro Library Management. .. 7-19

Macro Examples .. 7-20
Macro GOSUB ... 7-20
Macro EXIT ... 7-20
Macro ID ... 7-22
Macro UNIQUE .. 7-23
Macro GENCMT .. 7-24
Macro LOAD .. 7-24
Macro TABLE ... 7-25
Macro LISTS .. 7-26

SECTION VIII. RELOCAT ABILITY AND PROGRAM LINKING

8.1 Introduction ... 8-1
8.2 Relocation Capability ... 8-1
8.2.1 Relocatability of Source Statement Elements 8-1
8.3 Program Linking .. 8-2
8.3.1 External Reference Directives ... 8-2
8.3.2 External Definition Directive .. 8-2
8.4 Program Identifier Directive .. 8-3
8.5 Linking Program Modules , 8-3

SECTION IX. OPERATION OF THE MACRO ASSEMBLER

9.1 General. 9-1
9.2 Operating the Macro Assembler ' 9-1
9.2.1 Completion Messages ... 9-4
9.2.2 Operating the Assembler in Batch Mode 9-4

10.1
10.2
10.3
10.3.1
10.3.2
10.3.3
10.3.4
10.3.5
10.4
10.5
10.5 .1
10.5 .2
10.5 .3
10.5.4
10.5.5

SECTION X. ASSEMBLER OUTPUT

Introduction .. .1 0-1
Source Listing.1 0-1
Error Messages1 0-3

PX9ASM Error Codes .. .10-3
Cross Assembler1 0-5
SDSMAC Error Messages .. .10-5
SDSMAC Warning Messages .. .1 0-5
TXMIRA Error Messages .. 10-13

Cross Reference Listing 10-15
Object Code .. 10-15

Object Code Format .. 10-16
Machine Language Format .. 10-20
Symbol Table ... 10-20
Object Code Listing. 10-20
Procedures for Changing Object Code 10-22

x Digital Systems Division

~-------------------~ 943441-9701

Appendix

A

B

C

D

E

F

G

H

I

J

K

L

Figure

2-1
2-2
2-3
24
2-5
2-6
2-7
2-8

3-1
3-2
3-3
34
3-5
3-6
3-7
3-8
3-9
3-10

APPENDIXES

Title Page

Character Set _ A-I

Instruction Tables. B-1

Program Organization ... _ C-1

Hexadecimal Instruction Table .. D-1

Alphabetical Instruction Table .. E-1

Assembler Directive Table ... F-1

Macro Language Table . G-1

CRU Interface Example .. H-1

TILINE Interface Example .. .I-I

Example Program .. _J-1

Numerical Tables _ K-l

TMS 9940 Programming Considerations L-1

LIST OF ILLUSTRATIONS

Title

Memory Byte .
Memory Word .
Typical Memory Map for Model 990 Computer/TMS 9900 Microprocessor
Status Register, Model 990 Computer TMS 9900
Status Register, Model 990/10 with Map Option .
Model 990 Computer Workspace
Address Development, Model 990/10 Map Option
Source Statement Formats

Common Workspace Subroutine Example .
PC Contents after BL Instruction Execution
Context Switch Subroutine Example . .
After Execution of BLWP Instruction
After Return Using the RTWP Instruction
Interrupt Processing Example
Memory Contents after Interrupt
Extend Operation Example
Extended Operation Example after Context Switch
Re-entrant Procedure for Process Control

Page

2-1
2-1
2-3
24
2-4
2-8
2-9

.2-12

.3-99

.3-99
3-100
3-101
3-102
3-108
3-108
3-110
3-111
3-118

xi Texas Instruments Incorporated

~~-------------------~ 943441-9701

Figure

7-1

9-1
9-2

10-1
10-2
10-3
10-4
10-5

Table

2-1

3-1
3-2
3-3
3-4
3-5
3-6
3-7

7-1
7-2
7-3
7-4

9-1
9-2

10-1
10-2
10-3
10-4
10-5
10-6
10-7

LIST OF ILLUSTRATIONS (Continued)

Macro Assembler Block Diagram

Macro Assembly Stream
Macro Assembly Stream for Cards

Cross Reference Listing Format
Object Code Example
External Reference Example
Machine Instruction Formats
Object Code Listing Format .

Title

LIST OF TABLES

Status Bits Affected by Instructions

Addressing Modes
Instruction Addressing
Status Bits Tested by Instructions
Interrupt Vector Addresses
Interrupt Mask

Title

Error Interrupt Logic CRU Bit Assignments
XOP Vectors _............

Variable Qualifiers
Variable Qualifiers for Symbol Components
Symbol Attribute Keywords . .
Parameter Attribute Keywords .

Abnormal Completion Messages
Completion Messages

Error Codes
Cross Assembler Error Messages
SDSMAC Listing Errors .
TXMIRA Fatal Errors
TXMIRA Nonfatal Errors
Symbol Attributes
990 Object Tags

xii

Page

7-1

9-5
9-6

10-15
10-16
10-19
10-21
10-22

Page

2-6

3-1
3-5

3-29
3-104
3-105
3-107
3-109

7-5
7-7
7-8
7-9

9-2
9-4

.104

.10-7

.10-9
10-14
10-14
10-15
10-17

Texas Instruments Incorporated

flr1s\ ______ _ ~ 943441-9701

SECTION I

INTRODUCTION

1.1 ASSEMBLY LANGUAGE DEFINITION
An assembly language is a computer-oriented language for writing programs. It consists of
mnemonic instructions and assembler directives. In assembly instructions, the user assigns symbolic
addresses to memory locations and specifies instructions by means of symbolic operation codes
called mnemonic operation codes. The user specifies instruction operands by means of symbolic
addresses, numbers, and expressions consisting of symbolic addresses and numbers. Assem­
bler directives control the process of making a machine language program from the assembly
language program, place data in the program, and assign symbols to values to be used in the
program. Assembler directives that place data in memory locations allow the user to assign
symbolic addresses to those locations.

An assembly language is computer-oriented in that the mnemonic operation codes correspond
directly with machine instructions. The chief advantage an assembly language offers over machine
language is that the symbols of assembly language are easier to use and easier to remember than
the zeros and ones of machine language. Other advantages are the use of expressions as operands
and the use of decimal numbers in expressions and as operands.

1.2 ASSEMBLY LANGUAGE APPLICATION
An assembly language program, called a source program, must be processed by an assembler to
obtain a machine language program that can be executed by the computer. Processing of a
source program is called assembling, because it consists of assembling the binary values that
correspond to the mnemonic operation code with the binary address information to form the
machine language instruction.

To illustrate the place of assembly language in the development of programs, consider the
following steps in program development:

1. Define the problem.

2. Flowchart the solution to the problem.

3. Code the solution by writing assembly language statements (machine instructions and
assembler directives) that correspond to the steps of the flowchart.

4. Prepare the source program by writing the statements on the medium appropriate to
the installation; i.e., keypunch the statements if a card reader is to be used as input to
the assembler, etc.

5. Execute the assembler to assemble the machine language object code corresponding to
the source program.

6. Debug the resulting object code by loading and executing the object code and by making
corrections indicated by the results of executing the object code.

7. Repeat steps 5 and 6 until no further correction is required.

1-1 Texas Instruments Incorporated

~~-------------------~ 943441-9701

The use of assembly language in program development relieves the programmer of the tedious
task of writing machine language instructions and keeping track of binary machine addresses
within the program.

1-2 Texas Instruments Incorporated

J17,5\ ______ _ ~ 943441-9701

SECTION II

GENERAL PROGRAMMING INFORMATION

2.1 BYTE ORGANIZATION
Memory for the Model 990 Computer/TMS 9900 Microprocessor is addressed using byte
addresses. A byte consists of eight bits of memory, as shown in figure 2-1. The bits may
represent the states of eight independent two-valued quantities, or the configuration of a
character in a code used for input, output, or data transmission. The bits also may represent a
number which is interpreted either as a signed number in the range of -128 through +127 or as
an unsigned number in the range of 0 through 255. The 990 computers and TMS 9900 micro­
processor implements signed numbers in 2's complement form.

The most significant bit (MSB) is designated bit 0, and the least significant bit (LSB) is
designated bit 7. A byte instruction may address any byte in memory.

2.2 WORD ORGANIZATION
A word in the memory for the Model 990 Computer/TMS 9900 Microprocessor consists of 16
bits, a byte at an even address and the following byte at an odd address. As shown in figure 2-2,
the most significant bit of a memory word is designated bit 0, and the least significant bit is
designated bit 15. A word may contain a computer instruction in machine language, a memory
address, the bit configurations of two characters, or a number. When a word contains a number,
the number may be interpreted as a signed number in the range of -32,768 through +32,767, or
as an unsigned number in the range of 0 through 65,535. (Signed numbers are implemented in
2's complement form.)

Word boundaries are assigned to even-numbered addresses in memory. The even address byte
contains bits 0 through 7 of the word, and the odd address byte contains bits 8 through 15.
When word instructions address an odd byte, the word operand is the memory word consisting
of the addressed byte and the preceding even-numbered byte. This is the memory word that
would be accessed by the odd address minus one. For example, a memory address of 1023 16

used as a word address would access the same word as memory address 102216 ,

NOTE

All instructions must begin on word boundaries. Instructions are
I, 2, or 3 words long.

(MSB) (L.SB)

Figure 2-1. Memory Byte

(MSB) (L.SB)'.

2 3 4 5 6 7 8 9 10 11 12 13 14 151

(WORD BOUNDARY)

Figure 2-2. Memory Word

2-1 Texas Instruments Incorporated

~-~-----~ 943441-9701

2.3 TRANSFER VECTORS
A transfer vector is a pair of memory addresses in two consecutive words of memory. The first
word contains the address of a l6-word area of memory, called a workspace. The second word
contains the address of a subroutine entry point. The Model 990 Computer/TMS 9900 Micro­
processor uses a transfer vector in a type of transfer of control called a context switch. A
context switch places the contents of the first word of a transfer vector in the Workspace
Pointer (WP) register, making the workspace addressed by that word tbe active workspace. The
16 words of the active workspace become workspace registers 0 through 15, which are available
for use as general purpose registers, address registers, or index registers. A context switch places
the contents of the second word of a transfer vector in the Program Counter (PC), causing the
instruction at that address to be executed next. .

A context switch transfers control to an interrupt subroutine whenever an interrupt occurs. The
transfer vectors for interrupt levels 0 through 15 are located in memory locations 0000 16

through 003E16 , as shown in figure 2-3. The address of the first byte of the vector for an interrupt
level is the product of the level number times four.

The Model 990 Computer/TMS 9900 Microprocessor supports extended operations implemented
by subroutines. These extended operations are effectively additional instructions that may
perform user-defmed functions. Up to 16 extended operations may be implemented. An
extended operation machine instruction results in a context switch to the specified extended
operation subroutine. The transfer vectors for extended operations 0 through 15 are located in
memory locations 004016 through 007E16 as shown in figure 2-3. The address of the first byte
of the vector for an extended operation is the hexadecimal sum of the product of the extended
operation number times four, plus 4016 •

In the Model 990/10 Computer, an extended operation may be implemented with user-supplied
hardware. When a hardware module is connected for an extended operation, no context switch
occurs for that operation, and the hardware performs the operation. Program execution con­
tinues when the operation has completed.

A context switch using the transfer vector at memory location FFFC 16 transfers control to a
subroutine to load or restart the computer. Execution of an LREX instruction or activation of a
switch on the control panel initiates the context switch.

A context switch to a user subroutine is performed by the BL WP instruction. The transfer vector
is placed at a user defined location in memory.

2.4 STATUS REGISTER
The configuration of the Status Register of the Model 990 Computer and the TMS 9900
Microprocessor is shown in figure 2-4. The configuration of the Status Register of the Model

. 990/1 () Computer with map option is shown in figure 2-5. Bits 0 through 6 and 12 through 15
are identical, and are the bits that are set and reset by the machine instructions. These bits have
the following meanings:

• L>, bit 0 - Logical greater than

• A>, bit 1 - Arithmetic greater than

• EQ, bit 2 - Equal

• C, bit 3 - Carry

2-2 . Texas Instruments Incorporated

~~.-------------------~ 943441-9701

AREA
DEFINITION

INTERRUPTS
LEVELS 0 THROUGH 7
(MODEL 990/4)

LEVELS 0 THROUGH 15
(MODEL 990/1 0)

EXTENDED OPERATIONS
o THROUGH 15

GENERAL MEMORY FOR
EXECUTIVE, PROGRAMS.
AND DATA

TILINE PERIPHERAL
CONTROL SPACE
(MODEL 990/10)

PROM
(MODEL 990/4.990/10)

LOAD OR RESTART
FUNCTION

(A) 13 2200

MEMORY
ADDRESS

(HEXADECIMAL)

0000

0004

0008

003C

0040

0044

0048

007C

0080

F7FE

F800

FBFE

FCOO

FFFA

FFFC

FFFE

::~

=--

.,.,

.~

.

LEVEL 0 INTERRUPT
TRANSFER VECTOR

LEVEL 1 INTERRUPT
TRANSFER VECTOR

LEVEL 15 INTERRUPT
TRANSFER VECTOR

XOP 0 TRANSFER VECTOR

XOP 1 TRANSFER VECTOR

~ ...

XOP 15 TRANSFER VECTOR

GENERAL
MEMORY

AREA

TILINE
~

PROGRAMMER PANEL "-AND LOADER

RESTART TRANSFER VECTOR

Figure 2-3. Typical Memory Map for Model 990 Computer/TMS 9900 Microprocessor

• OV, bit 4 - Overflow

• OP, bit 5 - Odd parity

• X, bit 6 - Extended operation

• Bits 12-15 - Interrupt mask

Two of the reserved bits in the Model 990/4 Status Register are defined for the Status Register of
the Model 990/10. Bit 7, the PR bit, is set to one to inhibit execution of the privileged instructions.
When execution of a privileged instruction is attempted with the PR bit set to one, an illegal
instruction error occurs. Bit 7 must be set to zero-to execute these instructions. An additional
bit, bit 8, the Map File (MF) bit, specifies the memory map file for the memory mapping op­
tion. The memory mapping option provides access to memory addresses outside of the range

2-3 Texas Insfrumenfs1ncorporafed

~~-------------------~ 943441-9701

Figure 2-4. Status Register, Model 990 Computer TMS 9900

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

IL>IA>IEQI C \oviopi x IPR /MFtI)'IlA INllfA~~T

Figure 2-5. Status Register, Model' 990/10 With Map Option

of addresses (32K words) of the address portions of instructions. When bit 8 is set to 0, the six
mapping registers for map ° are active. When bit 8 is set to I, the six mapping registers for
map I are active.

2.4.1 LOGICAL GREATER THAN. The logical greater than bit of the Status Register contains
the result of a comparison of words or bytes as unsigned binary numbers. In this comparison,
the most significant bits of words being compared represent 2 15 , and the most significant bits of
bytes being compared represent 27.

2.4.2 ARITHMETIC GREATER THAN. The arithmetic greater than bit of the Status Register
contains the result of a comparison of words or bytes as two's complement numbers. In this
comparison, the most significant bits of words or bytes being compared represent the sign of the
number, zero for positive, or one for negative. For positive numbers, the remaining bits represent
the binary value. For negative numbers, the remaining bits represent the two's complement of
the binary value.

2.4.3 EQUAL. The equal bit of the Status Register is set when the words or bytes being
compared are equal. Whether the comparison is that of unsigned binary numbers or two's
complement numbers the significance of equality is the same.

2.4.4 CARRY. The carry bit of the Status Register is set by a carry out of the most significant
bit of a word or byte (sign bit) during arithmetic operations. The carry bit is used by the shift
operations to store the last bit shifted out of the workspace register being shifted.

2.4.5 OVERFLOW. The overflow bit of the Status Register is set when the result of an
arithmetic operation is too large or too small to be correctly represented in two's complement
representation. In addition operations, the overflow bit is set when the most significant bits of
the operands are equal and the most significant bit of the result is not equal to the most
significant bit of the destination operand. In subtraction operations, the overflow bit is set when
the most significant bits of the operands are not equal, and the most significant bit of the result
is not equal to the most significant bit of the destination operand. For a divide operation, the

2-4 Texas Instruments Incorporated

~~-------~ 943441-9701

overflow bit is set when the most significant sixteen bits of the dividend are greater than or
equal to the divisor. For an arithmetic left shift, the overflow bit is set if the most significant bit
of the workspace register being shifted changes value. For the absolute value and negate
instructions, the overflow bit is set when the source operand is the maximum n.egative value,
800016 •

2.4.6 ODD PARITY. The odd parity bit of the Status Register is set in byte operations when
the parity of the result is odd, and is reset when the parity is even. The parity of a byte is odd
when the number of bits having values of one is odd; when the number of bits having values of
one is even, the parity of the byte is even. The odd parity bit is equal to the least significant bit
of the sum of the bits in the byte.

2.4.7 EXTENDED OPERATION. The extended operation bit of the Status Register is set to
one when a software implemented extended operation is initiated. An extended operation is
initiated by a context switch using the transfer vector for the specified extended operation. After
the WP and PC have been set to the values in the transfer vector, the extended operation bit is
set.

2.4.8 STATUS BIT SUMMARY. Table 2-1 lists the instructions of the Model 990 Computer/
TMS 9900 Microprocessor instruction set and the status bits affected by each instruction. The
effectivity column contains A to indicate applicability to all Model 990 Computers and the
TMS 9900 Microprocessor. The column contains C to indicate applicability to all Model 990
Computers but not to the TMS 9900 Microprocessor. The column contains M to indicate
applicability only to Model 990/1 0 Computers with mapping option. The interrupt mask is ex­
plained in a subsequent paragraph.

2.S MEMORY ORGANIZATION
Figure 2-3 shows a generalized memory map applicable to Model 990 Computer/TMS 9900
Microprocessor memories. The area of low-order memory from address 0 through 7F 1 6 is used
for interrupt and extended operation transfer vectors as previously described. Addresses reserved
for transfer vectors that are not used (interrupt levels 8 through 15 in Model 990/4 computers)
may be used for instructions and/or data. Since many memory configurations are available as
options, the programmer should ascertain the memory configuration for his system.

The area of memory from address 8016 through address F7FE16 is available for workspaces, instruc­
tions, and data. Many users of Model 990 Computers will place an executive (PX990, TX990 or
DXlO) in a portion of this area. The remainder of this area (as supplied) is available for
workspaces, instructions, and data for user programs. TMS 9900 users, and Model 990 Computer
users who do not use PX990, or TX990 or DX1 0 may use the entire area (as supplied).

Various types and sizes of memory are available for the TMS 9900 Microprocessor and the Model
990/4 Computer. Addressing is not necessarily continuous. Addresses may be assigned according
to the needs of an application, omitting addresses as appropriate.

In the Model 990/10 Computer, addresses F800 1 6 through FBFE16 are reserved for TILINE
communication with peripheral devices. These addresses may be assigned to registers in control­
lers for direct memory access devices. Input/Output from or to these devices is performed using
any instruction that may be used to access memory. For I/O, the address in the instruction must
be the TILINE address assigned to the appropriate register. An example of TILINE interface is
shown in Appendix I.

2-5 Texas Instruments Incorporated

Table 2-1. Status Bits Affected by Instructions ~
Mnemonic Eff. L> A> EQ C OV OP X Mnemonic Eff. L> A> EQ C OV OP X

\0
~

A A X X X X X DIV A X w
~
~

AB A X X X X X X IDLE C -, \0

ABS A X X X X X INC A X X X X X
-...)
0

AI A X X X X X INCT A X X X X X

ANDI A X X X INV A X X X

B A JEQ A

BL A JGT A

BLWP A JH A

C A X X X JHE A

CB A X X X X JL A

N CI A X X X JLE A 0-.
CKOF C JLT A

CKON C JMP A

CLR A JNC A

COC A X JNE A

CZC A X JNO A

;;t DEC A X X X X X JOC A
),c

~ DECT A X X X X X JOP A
~
~
~
::i
~
(;t

~
~
~
~ q;-
Cl

Table 2-1. Status Bits Affected by Instructions (Continued) ~
Mnemonic Eff. D A> EQ C OV OP X Mnemonic Eff. L> A> EQ C OV OP X

\I;)

LDCR A X X
~

X SBZ A w
~
~

LDD M SETO A -I \I;)

LDS M SLA A X X X X X
-..J
0

LI A X X X SOC A X X X

LIMI A SOCB A X X X X

LMF M SRA A X X X X

LREX C SRC A X X X X

LWPI A SRL A X X X X

MOV A X X X STCR A X X X

MOVB A X X X X STST A
N MPY A STWP A I

-..J

NEG A X X X X X SWPB A

ORI A X X X SZC A X X X

RSET C SZCB A X X X X

RTWP A X X X X X X X TB A X

S A X X X X X X A 2 2 2 2 2 2 2

~ SB A X X X X X X XOP A 2 2 2 2 2 2 2
loc

~ SBO A XOR A X X X
::;-
(I)

~
Notes: 1. When an LDCR or STCR instruction transfers eight bits or less, the OP bit is set or reset as in byte instructions. Otherwise §

~ these instructions do not affect the OP bit.
e;;- 2. The X instruction does not affect any status bit; the instruction executed by the X instruction sets status bits normally ::;-

for that instruction. When an XOP instruction is implemented by software, the XOP bit is set, and the subroutine sets C')

~ status bits normally.

~
Q

<it
Q..

Jd75\ ______ _ ~ 943441-9701

In the Model 990 Computers supplied with the optional front panel/loader ROM, addresses
FC00 16 through FFFB16 are reserved for the Programmed Read Only Memory (PROM) which
contains the programmer panel program and a loader program. When the programmer panel is not
connected, the program transfers control to the loader program. Control passes to the programmer
panel program by a context switch using the transfer vector at address FFFC16 .

Any 16-word area of memory may be assigned as a workspace, and becomes the active
workspace when the address of the first word of the area is placed in the WP register. Figure 2-6
shows a workspace, with those registers that have assigned functions identified in the figure.

Memory for the Model 990/10 Computer may contain more than 32K words, but the address
format addresses only 32K words directly. The mapping option is used to address memory locations
outside of the 32K word addressing capability. The mapping hardware has three II-bit limit
registers and three I6-bit bias registers for each of the three map files. The mapped address is a
20-bit address, the sum of the I6-bit processor address and the contents of a bias register extended
to the right with five zeros. The least significant bit (which selects bytes) is ignored. The limit
registers contain the one's complement of the limits, and determine which bias register is used.
When the 11 most significant bits of the I6-bit address are less than or equal to limit 1, bias
register I is used. When the same value is greater than limit I and less than or equal to limit 2, bias
register 2 is used. When the same value is greater than limit 2 and less than or equal to limit 3, bias
register 3 is used. When the same value is greater than limit 3, a mapping error interrupt occurs
and memory is not accessed.

MEMORY
ADDRESS

WP REGISTER (HEXADECIMAL)

10 5 0 01-----.... ~0500

(A)132201

0502

0504

0506

0508

050A

050C

050E

0510

0512

0514

0516

0518

051A

051C

051E

l SHIFT
COUNT WR 0

WR 1

WR 2

WR 3

WR 4

WR 5

WR 6

WR 7

WR 8

WR 9

WR 10

EFFECTIVE ADDRESS (XOP)
PC CONTENTS {BL.S WR 1 1

CRU BASE ADDRESS WR 12

WP REGISTER CONTENTS WR 13

PC CONTENTS WR 14

ST REGISTER CONTENTS WR 15

Figure 2-6. Model 990 Computer Workspace

2-8
Texas Instruments Incorporated

~-~-----~ 943441-9701

When power is applied, the status register clears, selecting map file 0 and the limit and bias registers
are set to zero. The limits (one's complement of limit register contents) are FFFF 16' This results in
all addresses using bias register 1, which contains zero. The result is that all addresses are mapped
into the same addresses. Map file 1 consists of three limit registers and three bias registers, and is in­
tended for application programs. Map file 2 similarly consists of three limit registers and three
bias registers, and is used to map one specified address outside of the current map. The LMF in­
struction loads map files 0 and 1.

For example, figure 2-7 shows a map file and the comparison of processor addresses to limits.
Figure 2-7 also shows the addition of a bias register to a processor address. The contents of the map
file are chosen in this example so that processor addresses 000016 through 1 OFF 16 map to addresses
00000016 through 0010FF 16 , processor addresses 110016 through AOFF 16 map to addresses
0322E016 through 03B2DF 16, and processor addresses AI00 16 through F7FF 16 map to addresses
04A10016 through 04F7FF 16' Processor addresses greater than F7FF 16 result in error interrupts.
This requires that limit register L1 contains 111011110002 , the one's complement of the 11 most
significant bits of 1 OFF 16' Similarly, limit register L2 contains 01011111 0002 (one's complement
of 11 most significant bits of AOFF 16) and limit register L3 contains 000010000002 (one's com­
plement of the 11 most significant bits of F7FF 16)' Bias register B 1 contains 000016 , bias register
B2 contains 188F 16, and bias register B3 contains 2000 16 ,

Ll

81

L2

82

L3

83

PROCESSOR
ADDRESS

Ll

PROCESSOR
ADDRESS

+

82

MEMORY
ADDRESS

(Al132202

MAP FILE

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 , 1 0 1 1 1 1 0 0 0 x x x x x

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 1 1 1 1 0 0 0 x x x x x

0 0 0 1 1 0 0 0 1 0 0 0 1 1 1 1

0 0 0 0 1 0 0 0 0 0 0 x x x x x

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

COMPARISON RESULT

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1010101'1010101'1'1'1'1'1'1'1'1'1
t I , , I I I I • I I
I I I I I I I I I , I
I I I I I I I I I • I

I 0 I 0 I 0 I 1 I 0 I 0 I 0 I 0 I 1 I 1 I 1 1 GREATER THAN

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1010101'1010101'1'1'1'1'1'1'1'1'1

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1010101'1 '1010101 '1010101 '1'1'1'1

I I
I I
I I
I I

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 I 18 9

I 0 I 0 I 0 I 1 I 1 I 0 I 0 I 1 I 0 I 0 I 0 I I I I I I I 1 I 0 I I I 1 I, I I I

Figure 2-7. Address Development Model 990/10 Map Option

2-9 Texas Instruments Incorporated

~-------~ 943441-9701

2.6 PRIVILEGED MODE
The Model 990/10 Computer has a privileged mode in which any instruction of the instruction
set may be executed. When the computer is not in the privileged mode, and execution of a
privileged instruction is attempted, the instruction is not executed and an error interrupt occurs.
The privileged instructions perform operating system functions not appropriate in user
programs. The specific instructions are identified in a subsequent section. The computer is placed
in the privileged mode and the map file set to map file 0 when power is applied, when an interrupt
occurs, and when an XOP instruction is executed.

2.7 SOURCE STATEMENT FORMAT
.An assembly language source program consists of source statements which may contain assembler
directives, machine instructions, pseudo-instructions, or comments. Each source statement is a
source record as defined for the source medium; i.e., an 80-column card for punched card input,
or a line of characters terminated by a carriage return for input from the keyboard of a terminal,
such as the Model 733 ASR Data Terminal or a CRT Display Terminal.

The following conventions apply in the syntax definitions for machine instructions and assembler
directives:

• Items in capital letters, and special characters, must be entered as shown.

• Items within angle brackets « » are defined by the user.

• Items in lower case letters are classes (generic names) of items.

• Items within brackets ([]) are optional.

• Items within braces ({}) are alternative items; one must be entered.

• All ellipsis (...) indicates that the preceding item may be repeated.

• The symbol fi represents a blank or space.

The syntax for source statements other than comment statements is defined as follows:

[<label>] 'b ... opcode'b ... [<operand>] [,<operand>] ... 'b ... [<comment>]

This syntax definition means that a source statement may have a label, which is defined by the
user. One or more blanks separate the label from the opcode. Mnemonic operation codes,
assembler directives codes, and user-defined operation codes are all included in the generic term
opcode, and any of these may be entered. One or more blanks separate the opcode from the
operand, when an operand is required. Additional operands, when required, are separated by
commas. One or more blanks separate the operand or operands from the comment field.

Comment statements consist of a single field starting with an asterisk (*) in the first character
position followed by any ASCII character including a blank in each succeeding character
position. Comment statements are listed in the source portion of the assembly listing and have
no other effect on the assembly. .

The maximum length of source records is 60 characters. However, only the first 52 characters
will be printed on the Model 733 ASR Data terminal. The last source statement of a source
program is followed by the end-of-record statement for the source medium, i.e., for punched
cards, a card having a slash (/) punched in column I and an asterisk (*) punched in column 2.

2-10 Texas Instruments Incorporated

)2175\ ______ _ ~ 943441-9701

Figure 2-8 shows source statements written on a coding form illustrating alternative methods of
entering statements. The first four statements illustrate the alignment of the label, opcode,
operands, and comments to begin in the same column in each statement. This method promotes
readability, but may be time-consuming on some input devices, particularly data terminals. The
last four statements show the use of horizontal tab characters represented by ¥ to separate the
fields. On the Model 733 ASR Data Terminal, the tab character is entered by holding the CTRL
key while pressing the I key. PX9 ASM does not implement this use of ~ .

2.7.1 CHARACTER SET. The assemblers for the Model 990 Computers and the TMS 9900
Microprocessor recognize ASCII characters as follows:

• The alphabet (capital letters only) and space character

• The numerals

• Twenty-two special characters

• Five characters defined for this language, that are undefined as ASCII characters

• The null character

• The tab character

Appendix A contains tables that list all 66 characters and show the ASCII and Hollerith codes
for each.

2.7.2 LABEL FIELD. The label field begins in character position one of the source record and
extends to the first blank. The label field contains a symbol containing up to six characters the
first of which must be alphabetic. Additional characters may be any alphanumeric characters. A
label is optional for machine instructions and for many assembler directives. When the label is
omitted, the first character position must contain a blank. A source statement consisting of only a
label field is a valid statement; it has the effect of assigning the current location to the label. This is
usually equivalent to placing the label in the label field of the following machine instruction or as­
sembler directive. However, when a statement consisting of a label only follows a TEXT or BYTE
directive and is followed by a DATA directive or a machine instruction, the label will not have the
value of a label in the following statement unless the TEXT or BYTE directive left the location
counter on an even (word) location. An EVEN directive following the TEXT or BYTE directive
prevents this problem.

2.7.3 OPERATION FIELD. The operation (opcode) field begins following the blank that ter­
minates the label field, or in the first non-blank character position after the first character
position when the label is omitted. The operation field is terminated by one or more blanks, and
may not extend past character position 60 of the source record. The operation field contains an
opcode, one of the following:

• Mnemonic operation code of a machine instruction

• Assembler directive operation code

• Symbol assigned to an extended operation by a DXOP directive

• Pseudo-instruction operation code

2-11 Texas Instruments Incorporated

~ -N

~
~

~
S­
~
~
~
~
Cit
S-
C\

~
~
~
~
~

LABEL
1 6

* C 0 N V

S T ART

* P A C K

S T A R T ~

~ A ~ 5 , 3

~ R T ~ ~ R

PROGRAM

(A) 132203 A

OPER OPERAND
8 " 13 11 21 25 26 30 35

E N T I o N A L S 0 U R C E S T A T E M E N T F 0 R M A T

L I 3 , > 2 5 L 0 A D W R 3

A 5 , 3 ADD W R 5 TO WR3

R T R E T U R N T 0 C A L L

E D S 0 U R C E S T A T E M E N T F 0 R M A T U S I N G

L I ~ 3 , > 2 5 ~ L o A D W R 3

~A D D HR5 TO WR3

E T URN T 0 C A L L I N G P R o G RAM

PROGRAMMED BY

-- ----- - - -- ---.----~-.- ------------

Figure 2-8. Source Statement Formats

COMMENTS

"" 45 50

I N G P R o G RAM

T A B S

CHARGE

------------- ----

55

PAGE Of'

- -

60

i

~
v;;;
~
W
~
~ -1

\0
-.J o -

I2r7S\ ______ _ ~ 943441-9701

2.7.4 OPERAND FIELD. The operand field begins following the blank that terminates the
operation field, and may not extend past character position 60 of the source record. The
operand field may contain one or more expressions, terms, or constants, according to the
requirements of the opcode. The operand field is terminated by one or more blanks.

2.7.5 COMMENT FIELD. The comment field begins following the blank that terminates the
operand field, and may extend to the end of the source record if required. The comment field
may contain any ASCII character, including blank. The contents of the comment field are listed
in the source portion of the assembly listing and have no other effect on the assembly.

2.8 EXPRESSIONS
Expressions are used in the operand fields of assembler directives and machine instructions. An
expression is a constant or symbol, or a series of constants, a series of symbols, or a series of
constants and symbols separated by arithmetic operators. Each constant or symbol may be
preceded by a minus sign (unary minus). An expression may contain no embeded blanks, or
symbols that are defined as extended operations. Symbols that are defined as external references
may not be operands of arithmetic operations. For PX9ASM, only one symbol in an expression
may be subsequently defined in the program, and that symbol must not be part of an operand in
a multiplication or division operation within the expression. For the Cross Assembler, TXMIRA,
and SDSMAC, an expression may contain more than one symbol that is not previously defined.
When these symbols are absolute, they may also be operands of multiplication or division opera­
tions within an expression. In all assemblers, an expression that contains a relocatable symbol or
relocatable constant immediately following a multiplication or division operator is an illegal ex­
pression. Also, when the result of evaluating an expression up to a multiplication or division
operator is relocatable, the expression is illegal. An expression in which the number of relocatable
symbols or constants added to the expression exceeds the number of relocatable symbols or con­
stants subtracted from the expression by more than one is an illegal expression.

If NA = Number of relocatable values added and
NS = Number of relocatable values subtracted and

Then if

{
0 The expression is absolute

NA - NS = 1 The expression is relocatable .
Other than 0 or I, the expression is illegal

An expression containing relocatable symbols or constants of several different relocation types
(see Section VIII) is absolute if it is absolute with respect to all relocation types. If it is relocatable
with respect to one relocation type and absolute with respect to all other relocation types, then the
expression is relocatable. For example, the expression

RED + BLUE - GREEN + 2

is program-relocatable if BLUE is a program-relocatable Symbol and the symbols RED and GREEN
are both data-relocatable. If the symbols RED, BLUE, and GREEN were program-relocatable,
data-relocatable, and common-relocatable, respectively, the expression would be invalid. TXMIRA
and PX9ASM only support program-relocatable symbol.

In TXMIRA, if the current value of an expression is relocatable with respect to one relocation type,
a symbol of another relocation type may not be included until the value of the expression becomes
absolute. For example, the expression

BLUE - GREEN - RED

2-13 Texas Instruments Incorporated

Jd7. 05\ ______ _ ~ 943441-9701

would be valid if BLUE and GREEN are of the same relocation type but would be invalid other­
wise.

The following are examples of valid expressions:
BLUE+ I The sum of the value of symbol BLUE plus 1.

GREEN-4

2*16+RED

440/2-RED

The result of subtracting 4 from the value of symbol GREEN.

The sum of the value of symbol RED plus the product of 2 times 16.

The result of dividing 440 by 2 and subtracting the value of symbol
RED from the quotient. RED must be absolute.

2.8.1 WELL-DEFINED EXPRESSIONS. Some assembler directives require well-defined expres­
sions in the operand fields. For an expression to be well-defined, any symbols or assembly-time
constants in the expression must have been previously defined. Also, the evaluation of a
well-defined expression must be absolute, and a well-defined expression may not contain a
character constant.

2.8.2 ARITHMETIC OPERATORS. The arithmetic operators in expressions are as follows:

• + for addition

• - for subtraction

• * for multiplication

• / for signed division

• / / for logical right shift (SDSMAC only)

In evaluating an expression, the assembler first negates any constant or symbol preceded by a
unary minus, then performs the arithmetic operations from left to right. The assembler does not
assign precedence to any operation other than unary minus. All operations are integer operations.
The assembler truncates the fraction in division.

For example, the expression 4+5*2 would be evaluated 18, not 14, and the expression 7+1/2
would be evaluated 4, not 7.

The logical right shift operator (/ /) allows a logical division by a power of two.

Examples:

>80001/1 = >4000
>FFFF //0 = >FFFF

>AAAB//l = >5555
>FFFF //16 = >0000

SDSMAC checks for overflow conditions when arithmetic operations are performed at assembly
time and gives a warning message whenever an overflow occurs, or when the sign of the result is
not as expected in respect to the operands and the operation performed. Examples where a VALUE
TRUNCATED message is given are:

>4000*2
>8000*2

>7FFF+l
>8000-1

2-14

-1 *>8000
-2*>8001

Texas Instruments Incorporated

fl'{j~O _________________ _
~ 943441-9701

2.9 CONSTANTS
Constants are used in expressions. The assemblers recognize four types of constants: decimal
integer constants, hexadecimal integer constants, character constants, and assembly-time constants.

2.9.1 DECIMAL INTEGER CONSTANTS. A decimal integer constant is written as a string of
numerals. The range of values of decimal integers is -32,768 to +65,535. Positive decimal integer
constants greater than 32,767 are considered negative when interpreted as two's complement
values. Operands of arithmetic instructions other than multiply and divide are interpreted as two's
complement numbers, and all comparisons compare numbers both as signed and unsigned values.

The following are valid decimal constants:

WOO

-32768

25

Constant, equal to 1000 or 3E8 16 .

Constant, equal to -32768 or 8000 16 .

Constant, equal to 25, or 19 16 .

2.9.2 HEXADECIMAL INTEGER CONSTANTS. A hexadecimal integer constant is written as a
string of up to four hexadecimal numerals preceded by a greater than (» sign. Hexadecimal
numerals include the decimal values 0 through 9 and the letters A through F.

The following are valid hexadecimal constants:

>78

>F

>37AC

Constant, equal to 120, or 78 16 .

Constant, equal to 15, or F 16.

Constant, equal to 14252 or 37AC16 .

2.9.3 CHARACTER CONSTANTS. A character constant is written as a string of one or two
characters enclosed in single quotes. For each single quote required within a character constant,
two consecutive single quotes are required to represent the quote. The characters are represented
internally as eight-bit ASCII characters, with the leading bit set to zero. A character constant
consisting only of two single quotes (no character) is valid, and is assigned the value 000016 .

The following are valid character constants:
'AB' Represented internally as 4142 16 •

'C'

'N'

Represented internally as 0043 16 .

Represented internally as 004E16 ·

'''0' Represented internally as 274416 .

2.9.4 ASSEMBLY-TIME CONSTANTS. An assembly-time constant is written as an expression in
the operand field of an EQU directive, described in a subsequent paragraph. When using TXMIRA
or PX9ASM, any symbol in the expression must have been previously defined. The value of the
label is determined at assembly time, and is considered to be absolute or relocatable according to
the relocatability of the expression, not according to the relocatability of the location counter value.

2.10 SYMBOLS
Symbols are used in the label field, the operator field, and the operand field. A symbol is a
string of alphanumeric characters, (A through Z and 0 through 9), the first of which must be an
alphabetic character (A through Z), and none of which may be a blank. When more than six
characters are used in a symbol, the assembler prints all the characters, but accepts only the first
six characters for processing. User-defined symbols are valid only during the assembly in which
they are defined.

2-15 Texas Instruments Incorporated

~------~ ~ 943441-9701

Symbols used in the label field become symbolic addresses. They are associated with locations in
the program, and must not be used in the label field of other statements. Mnemonic operation
codes and assembler directive names are valid user-defined symbols when placed in the label field.

NOTE

When using SDSMAC, the ';' and '$' characters are considered
alphabetic.

The DXOP directive defines a symbol to be used in the operator field. Any symbol that is used in
the operand field must be placed in the label field of a statement, or in the operand field of a REF
directive except for a symbol in the operand field of a DXOP directive or a predefined
symbol.

2.11 PREDEFINED SYMBOLS
The predefined symbols are the dollar sign character ($) and the workspace register symbols.
the dollar sign character is used to represent the current location within the program. The
workspace register symbols are as follows:

Symbol

RO
Rl
R2
R3

Value Symbol Value Symbol Value Symbol

0 R4 4 R8 8 R12
1 R5 5 R9 9 R13
2 R6 6 RIO 10 R14
3 R7 7 Rll 11 R15

NOTE

The workspace register symbols (RO, RI ...) are normally unde­
fined in PX9ASM and TXMIRA. However, they can be optionally
defined.

The following are examples of valid symbols:

START

Al

OPERATION

$

2.12 TERMS

Assigned the value of the location at which it appears
in the label field.

Assigned the value of the location at which it appears
in the label field.

OPERAT is assigned the value of the location at which
it appears in the label field.

Represents the current location.

Value

12
13
14
15

Terms are used in the operand fields of machine instructions and an assembler directive. A term
is a decimal or hexadecimal constant, an absolute assembly-time constant, or label having an
absolute value.

2-16
Texas Instruments Incorporated

~-~-----~ 943441-9701

The following are examples of valid terms:

12 The value is 12, or C16 .

>C The value is 12, or C16 •

WR2 Valid if WR2 is defined having an absolute value.

R3 Predefined as a value of 3.

If START were a relocatable symbol, the following statement would not be valid as a term:

WR2 EQU START+4 WR2 would be a relocatable value 4 greater than the
value of START. Not valid as a term, but valid as
a symbol.

2.13 CHARACTER STRINGS
Several assembler directives require character strings in the operand field. A character string is
written as a string of characters enclosed in single quotes. For each single quote in a character
string, two consecutive single quotes are required to represent the required single quote. The
maximum length of the string is defined for each directive that requires a character string. The
characters are represented internally as eight-bit ASCII characters, with the leading bits set to
zeros. Appendix A gives a complete list of valid characters within character strings.

The following are valid character strings:

'SAMPLE PROGRAM'

'PLAN "c'"

'OPERATOR MESSAGE * PRESS START SWITCH'

2-17/2-18

Defines a 14-character string
consisting of:
SAM P L E h PRO G RAM.

Defines an 8-character string
consisting of:
PLANb'C'.

Defines a 37-character string
consisting of the expression
enclosed in single quotes.

Texas Instruments Incorporated

~-------~ 943441-9701

SECTION III

ASSEMBLY INSTRUCTIONS

3.1 GENERAL
This section describes the mnemonic instructions of the assembly language for the PX9ASM,
TXMIRA and SDSMAC assemblers, and for the Cross Assember. Detailed assembly instruction
descriptions follow descriptions of the addressing modes used in the assembly language and the
addressing formats of the assembly instructions. The section also includes examples of programming
the various instructions.

3.2 ADDRESSING MODES
One of five addressing modes may be used in the instructions that specify a general address for
the source or destination operand. Table 3-1 lists these modes and shows how each is used in the
assembly language. Each of the modes is described in a subsequent paragraph.

Table 3-1. Addressing Modes

Addressing Mode

Workspace Register

Workspace Register
Indirect

Symbolic Memory

Indexed Memory

Workspace Register
Indirect Autoincrement

Notes:

T field value
(Note 1)

o

2

2

3

Example

5

*7

@LABEL

@LABEL(S)

*7+

1. The T field is described in the addressing format descriptions.

2. The instruction requires an additional word for each T field
value of 2. This word contains a memory address.

3. The S or D field is set to zero by the assembler.

4. Workspace register 0 cannot be used for indexing.

Note

2,3

2,4

3-1 Texas Instruments Incorporated

~~-------------------~ 943441-9701

3.2.1 WORKSPACE REGISTER ADDRESSING. Workspace register addressing specifies a work­
space register that contains the operand. A workspace register address is written as a term having
a value of 0 through 15.

The following examples show the coding of instructions that have two workspace register
addresses each:

MOV R4,RS

COC RlS,RIO

Copy the contents of workspace register 4 into
workspace register S.

Compare the bits of workspace register 10 that
correspond to the one bits in workspace register
15 toone.

3.2.2 WORKSPACE REGISTER INDIRECT ADDRESSING. Workspace register indirect addres­
sing specifies a workspace register that contains the address of the operand. An indirect workspace
register address is written as a term preceded by an asterisk (*). The following example shows
coding of instructions having workspace register indirect addresses.

A *R7,*R2

MOV *R7,RO

Add the contents of the word at the address in
workspace register 7 to the contents of the word
at the address in workspace register 2, and place
the sum in the word at the address in workspace
register 2.

Copy the contents of the address in workspace
register 7 into workspace register O.

3.2.3 SYMBOLIC MEMORY ADDRESSING. Symbolic memory addressing specifies the memory
address that contains the operand. A symbolic memory address is written as an expression preceded
by an at sign (@). The following are coding examples of instructions having symbolic memory
addresses:

S @TABLEl,@LIST4

C RO,@STORE

MOV @12,@>7C

Subtract the contents of the word at location TABLE 1
from the contents of the word at location LIST4, and
place the remainder in the word at location LIST4.

Compare the contents of workspace register 0 with
the contents of the word at location STORE.

Copy the word at address OOOC 16 into location 007C16 •

NOTE

When using SDSMAC, symbols previously defined as having
relocatable values or values greater than 15 need not have the '@'.

3.2.4 INDEXED MEMORY ADDRESSING. Indexed memory addressing specifies the memory
address that contains the operand. The address is the sum of the contents of a workspace register
and a symbolic address. An indexed memory address is written as an expression preceded by an at

3-2 Texas Instruments Incorporated

Jd7.5\ ______ _ ~ 943441-9701

sign and followed by a term enclosed in parentheses. The workspace register specified by the term
within the parentheses is the index register. Workspace register 0 may not be specified as an index
register. the following are examples of coding of instructions having indexed memory addresses:

A @2(R7),R6 Add the contents of the word at the address computed
by adding the contents of workspace register 7 and
2 to the contents of workspace register 6, and place
the sum in workspace register 6.

MOV R7,@LIST4-6(R5) Copy the contents of workspace register 7 into a
word of memory. The address of the word of memory
is the sum of the contents of workspace register 5
and the value of symbol LIST4 minus 6.

3.2.5 WORKSPACE REGISTER INDIRECT AUTO-INCREMENT ADDRESSING. Workspace
register indirect auto-increment addressing specifies a workspace register that contains the address
of the operand. After the address is obtained from the workspace register, the workspace register
is incremented by 1 for a byte instruction or by 2 for a word instruction. The workspace register
increment is one for byte operations and two for word operations. A workspace register auto­
increment address is written as a term preceded by an asterisk and followed by a plus sign (+).
The following are coding examples of instructions having workspace register indirect auto-increment
addresses:

S *R3+,R2

C R5,*R6+

Subtract the contents of the word at the address in
workspace register 3 from the contents of workspace
register 2, place the result in workspace register
2, and increment the address in workspace register
3 by two.

Compare the contents of workspace register 5 with
the contents of the word at the address in workspace
register 6, and increment the address in workspace
register 6 by two.

3.3 PROGRAM COUNTER RELATIVE ADDRESSING
Program counter relative addressing is used by the jump instructions. A program counter relative
address is written as an expression that corresponds to an address at a word boundary. The
assembler evaluates the expression and subtracts the sum of the current location plus two.
One-half of the difference is the value that is placed in the object code. This value must be in
the range of -128 through + 127. When the instruction is in relocatable code (that is, when the
location counter is relocatable), the relocation type of the evaluated expression must match the
relocation type of the current location counter. When the instruction is in absolute code, the
expression must be absolute. The following example shows a program counter relative address:

JMP THERE Jumps unconditionally to location THERE.

3.4 CRU BIT ADDRESSING
The CRU bit instructions use a well-defined expression that represents a displacement from the
CRU base address (bits 3 through 14 of workspace register 12). The displacement, in the range
of -128 through + 127, is added algebraically to the base address in workspace register 12. The
following are examples of CRU bit instructions having CRU bit addresses:

SBO 8 Sets CRU bit to one at the CRU address 8 greater
than the CRU base address. If workspace register
12 contained 002016 , CRU bit 24 would be set
by this instruction. (24 = (2016 /2) + 8)

3-3 Texas Instruments Incorporated

~-------~ 943441-9701

SBZ DTR Sets CRU bit to zero. Assuming that DTR has the
. value lO, and workspace register 12 contains 004016 ,

the instruction sets bit 42 to zero. (42 = (40 16 /2) + 10)

3.5 IMMEDIATE ADDRESSING
Immediate instructions use the contents of the word following the instruction word as an
operand of the instruction. The immediate value is an expression, and the value of the expression
is placed in the word following the instruction by the assembler. Those immediate instructions
that require two operands have a workspace register address preceding the immediate value. The
following are examples of coding immediate instructions:

LIMI 5 Places 5 in the interrupt mask, enabling interrupt
levels 0 through 5.

LI R5,>1000 Places 100016 into workspace register 5.

NOTE

When using SDSMAC, an @ sign may proceed an immediate
operand.

3.6 ADDRESSING SUMMARY
Table 3-2 shows the addressing required for each instruction of the Model 990/TMS 9900
instruction set. The first column lists the instruction mnemonics, and the second column lists the
effectivity of the instruction. This column contains A for those instructions that apply to the
Model 990/TMS 9900, and C for those instructions that apply to the Model 990 but not to the
TMS 9900. The column contains M for those instructions that apply only to the Model 990
Computers with mapping option. The third and fourth columns specify the required address,
as follows:

• G - General address:

Workspace register address

Indirect workspace register address

Symbolic memory address

Indexed memory address

Indirect workspace register auto-increment address

• WR - Workspace register address

• PC - Program counter relative address

• CRU - CRU bit address

• I - Immediate value

• * - The address into which the result is placed, when two operands are required.

3-4
Texas Instruments Incorporated

~ 943441-9701

Table 3-2. Instruction Addressing

First Second First Second
Mnemonic Eff. Operand Operand Mnemonic Eff. Operand Operand

A A G G* LDCR A G Note 1
AB A G G* LDD M G
ABS A G LDS M G
AI A WR* I LI A WR*
ANDI A WR* I LIM I A I
B A G LMF M WR* Note 2
BL A G LREX C
BLWP A G LWPI A I
C A G G MOV A G G*
CB A G G MOVB A G G*
CI A WR MPY A G WR*
CKOF C NEG A G
CKON C ORI A WR*
CLR A G RSET C
COC A G WR RTWP A
CZC A G WR S A G G*
DEC A G SB A G G*
DECT A G SBO A CRU
DIV A G WR* SBZ A CRU
IDLE C SETO A G
INC A G SLA A WR* Note 3
INCT A G SOC A G G*
INV A G SOCB A G G*
JEQ A PC SRA A WR* Note 3
JGT A PC SRC A WR* Note 3
JH A PC SRL A WR* Note 3
JHE A PC STCR A G* Note 1
JL A PC STST A WR
JLE A PC STWP A WR
JLT A PC SWPB A G
lMP A PC SZC A G G*
JNC A PC SZCB A G G*
JNE A PC TB A CRU
JNO A PC X A G
JOC A PC XOP A G Note 4
JOP A PC XOR A G WR*

Notes:

1. The second operand is the number of bits to be transferred, 0-15, 0 = 16 bits.

2. The second operand specifies a memory map file, 0 or 1.

3. The second operand is the jhift cQunt, 0 - 15. 0 means count is in bits 12 - 15 of workspace
register O. When count = 0 and bits 12 - 15 of workspace register 0 = 0, count is 16.

4. Second operand specifies the extended operation, 0 - 15. Disposition of result mayor may
not be in the first operand address, determined by the user.

3-5 Texas Instruments Incorporated

~~-------------------~ 943441-9701

3.7 ADDRESSING FORMATS
The required addressing previously described relates to the ten addressing formats of the Model
990 Computer/TMS 9900 Microprocessor. These formats are shown and described in the follow­
ing paragraphs.

3.7.1 FORMAT 1- TWO ADDRESS INSTRUCTIONS. The operand field of Format I instruc­
tions contains two general addresses separated by a comma. The first address is the source
address; the second is the destination address. The following mnemonic operation codes use
Format I.

A MOV soc

AB MOVB SOCB

C S SZC

CB SB SZCB

The following example shows a source statement for a Format I instruction:

SUM A @LABELl,*R7 Adds the contents of the word at location LABELl to
the contents of the word at the address in workspace
register 7, and places the sum in the word at the
address in workspace register 7. SUM is the location
in which the instruction is placed.

The assembler assembles Format I instructions as follows:

o 2 3 4 5 6 Iii
OP CODE

The bit fields are:

7
I

D

8 9 10 1112 13 14 15

I Ts ~ I

• Op Code - Three bits that define the machine operation.

• B - Byte indicator, 1 for byte instructions, 0 for word instructions.

• T d - Addressing mode (table 3-1) for destination.

• D - Destination workspace register.

• Ts - Addressing mode (table 3-1) for source.

• S - Source workspace register.

When Ts or Td is equal to 102 , the instruction occupies two words of memory, and the second
word contains a memory address used with S or D, respectively, in developing the effective
address. When both Ts and Td are equal to 102 , the instruction occupies three words of
memory. The second word contains the memory address for the source operand, and the third
word contains the memory address for the destination operand.

3-6 Texas Instruments Incorporated

~-~-----~ 943441-9701

3.7.2 FORMAT II - JUMP INSTRUCTIONS. Format II instructions use program counter relative
addresses which are coded as expressions that correspond to instruction locations on word
boundaries. The following mnemonic operation codes are Format II jump instructions:

JEQ

JGT

JR

JRE

JL

JLE

JLT

JMP

JNC

JNE

JNO

JOC

JOP

The following is an example of a source statement for a Format II jump instruction:

NOW JMP @BEGIN Jumps unconditionally to the instruction at location
BEGIN. The address of location BEGIN must not be
greater than the address of location NOW by more
than 127 words, nor less than the address of location
NOW by more than 128 words.

The assemblers assemble Format II instructions as follows:

o 2 3 4 5 6 7 8 9 10 11 12 13-14 15
iii iii I
OP CODE DISPLACEMENT

The bit fields are:

• Op Code - Eight bits that define the machine operation.

• Displacement - Signed displacement value.

The signed displacement value is shifted one bit position to the left and added to the contents of
the PC after the PC has been incremented to the address of the following instruction. In other
words, it is a displacement in words from the sum of the instruction address plus two.

3.7.3 FORMAT II - BIT I/O INSTRUCTIONS. The operand field of Format II CRU bit I/O
instructions contains a well-defined expression. It is a CRU bit address, relative to the contents
·of workspace register 12. The following mnemonic operation codes are Format II CRU bit I/O
instructions:

SBO SBZ TB

The following example shows a source statement for a Format II CRU bit I/O instruction:

SBO 5 Sets a CRU bit to one. If workspace register 12 contains
1016 , CRU bit 13 is set by this instruction.

3-7 Texas Instruments Incorporated

~ ____ 94_3_4_41_-9_7_0_1 __ _

The format assembled for Format II instructions is shown and described in the preceding
paragraph. For CRU bit instructions the signed displacement is shifted one bit position to the
left and added to the contents of workspace register 12. In other words, it is a displacement in
bits from the contents of bits 3 through 14 of workspace register 12.

3.7.4 FORMAT III - LOGICAL I~STRUCTIONS. The operand field of Format III instructions
contains a general address followed by a comma and a workspace register address. The general
address is the source address, and the workspace register address is the destination address. The
following mnemonic operation codes use Format III:

COC CZC XOR

The following example shows a source statement for a Format III instruction:

COMP XOR @LABEL8(R3),RS Perform an exclusive OR operation of the contents
of a memory word and the contents of workspace
register 5, and place the result in workspace
register S. The address of the memory word is
the sum of the contents of workspace register 3
and the value of symbol LABEL8.

The assemblers assemble Format III instructions as follows:

o 2 3 4 5 6 7 8 9 10 11 1213 14 15
I I

OP CODE D Ts s

The bit fields are:

• Op Code - Six bits that define the machine operation.

• D - Destination workspace register.

• Ts - Addressing mode (table 3-1) for source.

• S - Source workspace register.

When Ts is equal to 102 , the instruction occupies two words of memory. The second word
contains the memory address for the source operand.

3.7.5 FORMAT IV - CRU INSTRUCTIONS. The operand field of Format IV instructions
contains a general address followed by a comma and a well defined expression. The general address
is the memory address from which or into which bits will be transferred. The CRU address for the
transfer is the contents of bits 3 through 14 of workspace register 12. The term is the number of
bits to be transferred, a value of 0 through 15 (a 0 value transfers 16 bits). For 8 or fewer bits the
effective address is a byte address. For 9 or more bits the effective address is a word address. The
following mnemonic operation codes use Format IV:

LDCR STCR

3-8 Texas Instruments Incorporated

~~------------------~ 943441-9701

The following example shows a source statement for a Format IV instruction:

LDCR *R6+,8 Place 8 bits from the byte of memory at the address
in workspace register 6 into eight consecutive CRU
lines at the CRU base address in workspace register
12.

The assemblers assemble Format IV instructions as follows:

o 234 5 6 7 8 9 1 0 1 1 1 2 1 3 .14 1 5
I

OP CODE C TS 5

The bit fields are:

• Op Code - Six bits that define the machine operation.

• C - Four bits that contain the bit count.

• Ts - Addressing mode (table 3-1) for source.

• S - Source workspace register.

When Ts is equal to 102 , the instruction occupies two words of memory. The second word
contains the memory address for the source operand.

3.7.6 FORMAT V - REGISTER SHIFT INSTRUCTIONS. The operand field of Format V
instructions contains a workspace register address followed by a comma and a well defined
expression. The contents of the workspace register are shifted a number of bit positions specified by
the term. When the term equals zero, the shift count must be placed in bits 12-15 of workspace
register O. The following mnemonic operation codes use Format V:

SLA SRC SRL SRA

The following example shows a source statement for a Format V instruction:

SLA R6,4 Shift contents of workspace register 6 to the
left 4 bit positions, replacing the vacated bits
with zero.

The assemblers assemble Format V instructions as follows:

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15
I

OP CODE C w

The bit fields are:

• Op Code - Eight bits that define the machine operation.

• C - Four bits that contain the shift count.

• W - Workspace register to be shifted.

3-9 Texas Instruments Incorporated

A~ _________________ __ ~ 943441-9701

3.7.7 FORJ\1AT VI - SINGLE ADDRESS INSTRUCTIONS. The operand field of Format VI
instructions contains a general address. The following mnemonic operation codes use Format VI:

ABS CLR INCT NEG

B DEC INV SETO

BL DECT LDD SWPB

BLWP INC LDS x
The following example shows a source statement for a Format VI instruction:

CNT INC R7 Adds one to the contents of workspace register 7,
and places the sum in workspace register 7. CNT is
the location into which the instruction is placed.

The assemblers assemble Format VI instructions as follows:

o 2 3 4 5 ~ 7 8 9 10 1112 1314 15
I I

OP CODE s

The bit fields are:

• Op Code - Ten bits that define the machine operation.

• Ts - Addressing mode (table 3-1) for source.

• S - Source workspace register.

When Ts is equal to 102 , the instruction occupies two words of memory. The second word
contains the memory address for the source operand.

3.7.8 FORMAT VII - CONTROL INSTRUCTIONS. Format VII instructions require no operand
field. The following operation codes use Format VII:

CKOF IDLE RSET

CKON LREX RTWP

The following example shows a source statement for a Format VII instruction:

RTWP Returns control to the calling program, and restores
the context of the calling program by placing the
contents of workspace registers 13, 14, and 15 into
the WP register, the PC, and the ST register.

The assemblers assemble Format VII instructions as follows:

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

i
OP CODE

3-10 Texas Instruments Incorporated

n~ _________________ __ ~ 943441-9701

The Op Code field contains eleven bits that define the machine operation. The five least
significant bits are zeros.

3.7.9 FORMAT VIII - IMMEDIATE INSTRUCTIONS. The operand field of Format VIII
instructions contains a workspace register address followed by a comma and an expression. The
workspace register is the destination address, and the expression is the immediate operand. The
following mnemonic operation codes use Format VIII:

AI CI ORI

ANDI LI

There are two additional Format VIII instructions that require only an expression in the operand
field. The expression is the immediate operand. The destination is implied in the name of the
instruction. The following mnemonic operation codes use this modified Format VIII:

LIMI LWPI

Another modification of Format VIn requires only a workspace register address in the operand
field. The workspace register address is the destination. The source is implied in the name of the
instruction. The following mnemonic operation codes use this modified Format VIII:

STST STWP

The following are examples of source statement for Format VIII instructions:

ANDI 4,>OOOF

LWPI WRKI

STWP R4

Perform an AND operation on the contents
of workspace register 4 and immediate operand
OOOF16 •

Place the address defined for the symbol WRK I
into the WP register.

Place the contents of the WP register into
workspace register 4.

The assemblers assemble Format VIII instructions as follows:

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OP CODE 0 I 0 I W

The bit fields are:

• Op Code - Eleven bits that define the machine operation.

• W - Workspace register operand.

A zero bit separates the two fields. The instructions that have no workspace register operand
place zeros in the W field. The instructions that have immediate operands place the operands in
the word following the word that contains the Op Code; i.e., these instructions occupy two
words each.

3-11 Texas Instruments Incorporated

~.'{]~o _________________ __
~ 943441-9701

3.7.10 FORMAT IX - EXTENDED OPERATION INSTRUCTION. The operand field of a
Format IX Extended Operation instruction contains a general address and a well defined expression.
The general address is the address of the operand for the extended operation. The term specifies the
extended operation to be performed and must be in the range of ° to 15. The mnemonic operation
code is XOP.

The following example shows a source statement for a Format IX Extended Operation
instruction:

XOP @LABEL(R4), 12 Perform extended operation 12 using the address
computed by adding the value of symbol LABEL
to the contents of workspace register 4.

The assemblers assemble Format IX instructions as follows:

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

~p ~ODE 0 : I T! I I ~ I

The bit fields are:

• Op Code - Six bits that define the machine operation.

• D - Four bits that define the extended operation.

• Ts - Addressing mode (table 3-1) for source.

• S - Source workspace register.

When Ts is equal to 102 , the instruction occupies two words of memory. The second word
contains the memory address for the source operand.

3.7.11 FORMAT IX - MULTIPLY AND DIVIDE INSTRUCTIONS. The operand field of
Format IX Multiply and Divide instructions contains a general address followed by a comma and
a workspace register address. The general address is the address of the multiplier or divisor, and
the workspace register address is the address of the workspace register that contains the
multiplicand or dividend. The workspace register address is also the address of the first of two
workspace registers to contain the result. The mnemonic operation codes are MPY and DIV.

The following example shows a source statement for a Format IX Multiply instruction:

MPY @ACC,R9 Multiply the contents of workspace register
9 by the contents of the word at location

.ACC, and place the product in workspace
registers 9 and 10, with the 16 least
significant bits of the product in workspace
register 10.

The assembler assembles Multiply and Divide instructions similarly to the format shown in the
preceding paragraph, except that the D field contains the workspace register operand.

3-12 Texas Instruments Incorporated

~-------~ 943441-9701

3.7.12 FORMAT X - MEMORY MAP FILE INSTRUCTION. This format applies only to the
Model 990 Computer with map option. The operand field of a Format X Memory Map File in­
struction contains a workspace register address followed by a comma and a well defined expression
which evaluates to either a 0 or a 1. The workspace register address specifies a workspace register
that contains the address of a six-word area of memory that contains the map file data. The term
specifies the map file into which the data is to be loaded. The mnemonic operation code is LMF.

The following example shows a source statement for a Format X Memory Map File instruction:

LMF R4,0 Load memory map file 0 with the six-word
area of memory at the address in workspace
register 4.

The assembler assembles a Format X instruction as follows:

o 2.34567 B 9 10 " 12. 13 14 15

OP CODE

The bit fields are:

• Op Code - Eleven bits that defme the machine operation.

• M - A single bit that specifies a memory map file, 0 or 1.

• W - Workspace register operand.

3.8 INSTRUCTION DESCRIPTIONS
The instruction descriptions in the following paragraphs are divided into the following functional
categories:

• Arithmetic Instructions

• Branch Instructions

• Compare Instructions

• Control and CRU Instructions

• Load and Move Instructions

• Logical Instructions

• Shift Instructions

• Extended Operation Instruction

• Long Distance Addressing Instructions

3-13 Texas Instruments Incorporated

~~-------------------~ 943441-9701

The syntax definition for each instruction is shown, using the conventions described in a
previous paragraph. The generic names used in these definitions are:

• gas - General address of source operand

• gad - General address of destination operand

• wa - Workspace register address

• iop - Immediate operand

• wad - Destination workspace register address

• disp - Displacement of CRU lines from the CRU base register

• exp - Expression that represents an instruction location.

• cnt - Count of bits for CRU transfer

• m - Memory map file

• scnt - Shift count

• op - Number (0-15) of extended operation

Source statements that contain machine instructions use the label field, the operation field, the
operand field, and the comment field. Use of the label field is optional for machine instructions.
When the label field is used, the label is assigned the address of the machine instruction. The
assembler advances the location to a word boundary (even address) before assembling a machine
instruction. The operation (opcode) field contains the mnemonic operation code of the
instruction. The contents of the operand field is defined for each instruction. The use of the
comment field is optional. When the comment field is used, it may contain any ASCII character,
including blank, and has no effect on the assembly process other than to be printed in the
listing.

A description of the operation of the instruction follows the syntax definition. The status bits
affected by the instruction are listed. In the execution results, the following conventions are
used:

• () Indicates "the contents of'

• -+ Indicates "replaces"

• II Indicates the absolute value

The generic names used in the syntax definitions are also used in the execution results.

Application notes are included, referring to a fuller explanation in the programming examples
paragraphs as appropriate.

The Op Code given for each instruction is a four hexadecimal digit number corresponding to an
instruction word in which the address fields contain zeros. Next is the addressing mode. The
instruction formats show the machine language form of the instruction, and use the terminology
previously defined for the addressing formats.

3-14 Texas Instruments Incorporated

j}J.5l ______ _ ~ 943441-9701

3.9 ARITHMETIC INSTRUCTIONS
The arithmetic instructions are described in the following paragraphs. The instructions are:

Instruction Mnemonic

Add Words A

Add Bytes AB

Absolute Value ABS

Add Immediate AI

Decrement DEC

Decrement by Two DECT

Divide DIV

Increment INC

Increment by Two INCT

Multiply MPY

Negate NEG

Subtract Words S

Subtract Bytes SB

3.10 ADD WORDS A

Op Code: AOOO

Addressing mode: Format I

Format:

6

Syntax definition:

[<label>]b ... Ab ... <gas>,<gad >b ... [<comment>]

Example:

LABEL A @ADDRl(R2),@ADDR2(R3)

Paragraph

3.10

3.l1

3.21

3.12

3.19

3.20

3.16

3.17

3.18

3.15

3.22

3.13

3.14

Definition: Add a copy of the source operand (word) to the destination operand (word) and
replace the destination operand with the sum. The AU compares the sum to zero and sets/resets

3-15 Texas Instruments Incorporated

~-~~~~----'--~ 943441-9701

the status bits to indicate the result of the comparison. When there is a carry out of bit zero, the
carry status bit sets. When there is an overflow (the sum cannot be represented as a 16-bit, two's
complement value), the overflow status bit sets.

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, and overflow.

o 2 3 4 5 6 7 8 9 to 11 12 13 14 15

I I I
INTERRUPT

MASK ••••••
Execution results: (gas) + (gad) ~ (gad)

Application notes: A is used to add signed integer words. For example, if the address labeled
TABLE contains 3124 16 and workspace register 5 contains 816 , then the instruction

A 5,@TABLE

results in the contents of TABLE changing to 312C 16 and the contents of workspace register 5
not changing. The logical and arithmetic greater than status bits set and the equal, carry, and
overflow status bits reset.

3.11 ADD BYTES AB

Op Code: BOOO

Addressing mode: Format I

Format:

o
I 2 '14 S

Syntax definition:

6 7 18 9 10 "112 13 14 IS

D i I ~s i ~I. I
[<Iabe1>]b ... ABb ... <gas>,<gad>b ... [<comment>]

Example:

LABEL AB 3,2

Definition: Add a copy of the source operand (byte) to the destination operand (byte), and
replace the destination operand with the sum. When the destination operand is addressed in the
workspace register mode, only the leftmost byte (bits 0-7) of the addressed workspace register is
used. The AU compares the sum to zero and sets/resets the status bits to indicate the
results of the comparison. When there is a carry out of the most significant bit of the byte, the
carry status bit sets. When there is an overflow (the sum cannot be represented within a byte as
an 8-bit two's complement value), the overflow status bit sets. The odd parity bit sets when the
bits in the sum (destination operand) establish odd parity and resets when the bits in the sum
establish even parity.

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, overflow and odd
parity.

3-16 Texas Instruments Incorporated

~175\ ______ _ ~ 943441-9701

o 2 3 4 5 6 7 B 9 10 11 12 13 14 15

Execution results: (gas) + (gad) -+ (gad)

I i I
INTERRUPT

MASK

Application notes: AB is used to add signed integer bytes. For example, if the contents of
workspace register 3 is 7400 16 , the contents of memory location 2122 16 is F3l8 16 , and the
con tents of workspace 2 is 2123 16 , then the instruction

AB 3,*2+

changes the contents of memory location 2122 16 to F38C 16 and the contents of workspace
register 2 to 2124 16 , while the contents of workspace register 3 remain unchanged. The logical
greater than, overflow, and odd parity status bits set, while the arithmetic greater than, equal,
and carry status bits reset.

3.12 ADD IMMEDIATE AI

Op Code: 0220

Addressing mode: Format VIII

Format:

Syntax definition:

B 910 "1'2'3'4'5
0101'10. I v1 I I

[<label>] b ... Alb ... <wa>,<iop>b ... [<comment>]

Example:

LABEL AI 2, 7 ADD 7 TO THE CONTENTS OF WSR2

Definition: Add a copy of the immediate operand, the contents of the word following the
instruction word in memory, to the contents of the workspace register specified in the W field
and replace the contents of the workspace register with the results. The AU compares the sum to
zero and sets/resets the status bits to indicate the result of the comparison. When there is a carry
out of bit zero, the carry status bit sets. When there is an overflow (the result cannot be
represented within a word as a two's complement value), the overflow status bit sets.

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, and overflow.

3-17 Texas Instruments Incorporated

~. ------------~ 943441-9701

Execution results: (wa) + iop --7 (wa)

Application notes: Use the AI instruction to add an immediate value to the contents of a
workspace register. For example, if workspace register 6 contains a zero, then the instruction

AI 6,>C

changes the contents of workspace register 6 to 000C16 • The logical greater than and arithmetic
greater than status bits set while the equal, carry, and overflow status bits reset.

3.13 SUBTRACT WORDS S

Op Code: 6000

Addressing mode: Format I

Format:

o
9 10 "112 13 14 15 o I 2 314 5

6 7 I 8

Syntax definition:

[<label>]b ... Sb ... <gas>,<gad>b ... [<comment>]

Example:

LABEL S 2, 3 SUBTRACT THE CONTENTS OF WR2 FROM THE CONTENTS
OFWR3

Definition: Subtract a copy of the source operand from the destination operand and place the
difference in the destination operand. The AU compares the difference to zero and sets/resets
the status bits to indicate the result of the comparison. When there is a carry out of bit zero, the
carry status bit sets. When there is an overflow (the difference cannot be represented within a
word as a two's complement value), the overflow status bit sets. The source operand remains
unchanged.

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, and overflow.

o 2 3 4 5 6 7 8 9 10 11 12 13 1415

L> A> EQ C OV OP X PR M F

3-18 Texas Instruments Incorporated

~-------~ 943441-9701

Application notes: Use the S instruction to subtract signed integer values. For example, if
memory location OLDVAL contains a value of 1225 16 and memory location NEWVAL contains
a value of 8223 16 , then the instruction

S @OLDVAL,@NEWVAL

results in the contents of NEWV AL changing to 6FFEI6 • The logical greater than, arithmetic
greater than, carry, and overflow status bits set while the equal status bit resets.

3.14 SUBTRACT BYTES SB

Op Code: 7000

Addressing mode: Format I

Format:

Syntax definitions:

[<label>] b ... SBb ... <gas>,<gad >b ... [<comment>]

Example:

LABEL SB 2, 3 SUBTRACT THE LEFTMOST BYTE OF WSR2 FROM THE
LEFTMOST BYTE OF WSR3

Definition: Subtract a copy of the source operand (byte) from the destination operand (byte)
and replace the destination operand byte with the difference. When the destination operand byte
is addressed in the workspace register mode, only the leftmost byte (bits 0-7) in the workspace
register is used. The AU compares the result byte to zero and sets/resets the status bits
accordingly. When there is a carry out of the most significant bit of the byte, the carry status bit
sets. When there is an overflow (the difference cannot be represented as an 8-bit, two's
complement value in a byte), the overflow status bit sets. If the result byte establishes odd
parity (an odd number of logic one bits in the byte), the odd parity status bit sets.

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, overflow, and odd
parity.

01.23456789101112131415

3-19 Texas Instruments Incorporated

)175\ ______ _ ~ 943441-9701

Execution results: (gad) - (gas) -)- (gad)

Application notes: Use the SB instruction to subtract signed integer bytes. For example, if
workspace register 6 contains the value l21C16 , memory location l2lC16 contains the value
2331 16 , and workspace register 1 contains the value 1344 16 , then the instruction

SB *6+,1

results in the contents of workspace register 6 changing to 121 D 16 and the contents of
workspace register 1 changing to F044 16 • The logical greater than status bit sets while the other
status bits affected by this instruction reset.

3.15 MULTIPLY MPY

Op Code: 3800

Addressing mode: Format IX

Format:

o 6 '18
D

9 10 "112 13 14 IS

I I ~ i! i I
Syntax definition:

[<J.abel>]b ... MPYb ... <gas>,<wad>b ... [<comment>]

Example:

LABEL MPY @ADDR, 3 MULTIPLY (WSR3) BY (ADDR). THE RESULT IS
RIGHT JUSTIFIED IN THE 32-BITS OF WSR3, WSR4.

Definition: Multiply the first word in the destination operand (a consecutive 2-word area in
workspace) by a copy of the source operand and replace the 2-word destination operand with the
the result. The multiplication operation may be graphically represented as follows:

Destination operand workspace registers

WORKSPACE REGISTER (n) WORKSPACE REGISTER (n+1)

r:t-----......;MUL T IPLICANDI----.-I.I I
~t__---~--------------------PRODUCT-----------------------~~

Source operand
SOURCE OPERAND

ADDRESSABLE MEMORY

MULTIPLIER ~I

3-20 Texas Instruments Incorporated

~-------~ 943441-9701

The first word of the destination operand shown above is addressed by the contents of the D
field. This word contains the multiplicand (unsigned magnitude value of 16 bits) right-justified
in the workspace register (represented by workspace n above). The l6-bit, unsigned multiplier
is located in the source operand. When the multiplication operation is complete, the product
appears, right-justified in the entire 2-word area addressed by the' D field as a 32-bit unsigned
magnitude value. The maximum value of either input operand is FFFF 16 and the maximum value
of the unsigned product is (168 - 2(164) + 1) or FFFEOOO 116,

If the destination operand is specified as workspace register 15, the first word of the destination
operand is workspace register 15 and the second word of the destination operand is the memory
word immediately following the workspace memory area.

Status bits affected: None

o 2 3 4 5 6 7 8 9 10 11 12 1314 15

Execution results: (gas) • (wad)' The product (32-bit magnitude) is placed in wad and wad + 1,
with the most significant half in wad'

Application notes: Use the MPY instruction to perform a magnitude multiplication. For example,
if workspace register 5 contains 001216, workspace register 6 contains 1 B3116, and memory
location NEW contains 000516, then the instruction

MPY @NEW,5

changes the contents of workspace register 5 to 000016 and workspace register 6 to 005A 16.
The source operand is unchanged. The status register is not affected by this instruction.

3.16 DIVIDE DIV

Op Code: 3COO

Addressing mode: Format IX

Format:

Syntax definition:

• 10 ",12 13 14 15

[<label>]b ... DIVb ... <gas>,<wad>b ... [<comment>]

Example:

LABEL DIV @ADDR(2),3 DIVIDE (WSR3, WSR4) BY (ADDR+(WSR2)) AND
STORE THE INTEGER RESULT IN WSR3 WITH THE
REMAINDER IN WSR4.

3-21 Texas Instruments Incorporated

J17S\ ______ _ ~ 943441-9701

Definition: Divide the destination operand (a consecutive 2-word area of workspace) by a copy
of the source operand (one word), using integer rules, and place the quotient in the first of the
2-word destination operand area and place the remainder in the second word of that same area.
This division is graphically represented as follows:

Destination operand workspace registers

WORKSPACE REGISTER (n) WORKSPACE REGISTER (n+l)

~t------ RESUL TING -----itl~.--- RESULTING REMAINDER ---:..ll
_ QUOTIENT DIVIDEND--------________________ ~

Source operand
ADDRESSABLE MEMORY

.~t---___ DI VISOR

The first of the destination operand workspace registers, shown above, is addressed by the
contents of the D field. The dividend is located right-justified in this 2-word area. When the
division is complete, the quotient (result) is placed in the first workspace register of the
destination operand (represented by n above) and the remainder is placed in the second word of
the destination operand (represented by n+l above).

When the source operand is greater than the first word of the destination operand, normal
division occurs. If the source operand is less than or equal to the first word of the destination
operand, normal division will result in a quotient that cannot be represented in a 16-bit word. In
this case, the AU sets the overflow status bit, leaves the destination operand unchanged, and
aborts the division operation.

If the destination operand is specified as workspace register 15, the first word of the destination
operand is workspace register 15 and the second word of the destination operand is. the word in
memory immediately following the workspace area.

Status bits affected: Overflow

o 2 3 4 5 6 7 8 9 1 0 I 1 1.2 1 3 I 4 1 5

IL>\A>! EQ! C lov lop! X IpR IMFW IM1 IN'1E:h pIT I
&

Execution results: The contents of wad and w~d + 1 (32-bit magnitude) are divided by the
contents of gas and the quotient is placed in wad' The remainder is placed in wad + 1.

3-22 Texas Instruments Incorporated

~-------"ij/ 943441-9701

Application notes: Use the DIV instruction to perform a magnitude division. For example, if
workspace register 2 contains a zero and workspace register 3 contains OOOC 16 , and the contents
of LOC is 0005 16 , then the instruction

DIV @LOC,2

results in a 0002 16 in workspace register 2 and a 0002 16 in workspace register 3. The overflow
status bit resets. If workspace register 2 contained the value 0005 16 , the magnitude contained in
the destination operand would equal 327,692 and division by the value 5 would result in a
quotient of 65,538, which cannot be represented in a l6-bit word. This attempted division
would set the overflow status bit and the AU would abort the operation.

3.17 INCREMENT INC

Op Code: 0580

Addressing mode: Format VI

Format:

Syntax definition:

[<label>] b ... INCb ... <gas>b ... [<comment>]

Example:

LABEL INC @ADDR(2)+ INCREMENT THE CONTENTS OF THE EFFECTIVE
LOCATION.

Definition: Add one to the source operand and replace the source operand with the result. The
AU compares the sum to zero and sets/resets the status bits to indicate the result of the
comparison. When there is a carry out of bit zero, the carry status bit sets. When there is an
overflow (the sum cannot be represented in a 16-bit, two's complement value), the overflow
status bit sets.

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, and overflow.

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3-23 Texas Instruments Incorporated

;}flS\ ______ _ ~ 943441-9701

Execution results: (gas) + 1 -7 (gas)

Application notes: Use the INC instruction to count and index byte arrays, add a value of one
to an addressable memory location, or set flags. For example, if COUNT contains a zero, the
instruction

INC @COUNT

places a 0001 16 in COUNT and sets the logical greater than and arithmetic greater than status
bits, while the equal, carry, and overflow status bits reset. Refer to a subsequent paragraph for
additional application notes.

3.18 INCREMENT BY TWO INCT

Op Code: 05CO

Addressing mode: Format VI

Format:

Syntax definition:

[<1abel>]b ... INCTh ... <gas>!) ... [<comment>]

Example:

LABEL INCT 3 ADD 2 TO THE CONTENTS OF WSR3

Definition: Add a value of two to the source operand and replace the source operand with the
sum. The AU compares the sum to zero and sets/resets the status bits to indicate the result of
the comparison. When there is a carry out of bit zero, the carry status bit sets. When there is an
overflow, (the sum cannot be represented in a l6-bit word as a two's complement value), the
overflow status bit sets.

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, and overflow.

o 2345678

Execution results: (gas) + 2 -7 (gas)

9. 10 1 1 12 13 14 15

iii
INTERRUPT

MASK

3-24 Texas Instruments Incorporated

~-------~ 943441-9701

Use the INCT instruction to count and index word arrays, and add the value of two to an
addressable memory location. For example, if workspace register 5 contains the address
(2100 16) of the fifteenth word of an array, the instruction

INCT 5

changes workspace register 5 to 2102 16 , which points to the sixteenth word of the array. The
logical greater than and arithmetic greater than status bits are set while the equal, carry, and
overflow status bits are reset. Refer to a subsequent paragraph for additional application notes.

3.19 DECREMENT DEC

Op Code: 0600

Addressing mode: Format VI

Format:

o 2 3

1
4 5 6 ,

o 10 : 0 I I I I I 0 I
Syntax definition:

8 9 10 "112 1314 15 I I Iii j I o 0 Ts S

[<J.abel>]b ... DECb ... <gas>b ... [<comments>]

Example:

LABEL DEC 2 SUBTRACT I FROM THE CONTENTS OF WSR2

Definition: Subtract a value of one from the source operand and replace the source operand with
the result. The AU compares the result to zero and sets/resets the status bits to indicate the
result of the comparison. When there is a carry out of bit zero, the carry status bit sets. When
there is an overflow (the difference cannot be represented in a word as a two's complement
value), the overflow status bit sets.

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, and overflow.

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3-25

INTERRUPT
MASK

Texas Instruments Incorporated

~~-----~------------~ 943441-9701

Application notes: Use the DEC instruction to subtract a value of one from any addressable
operand. The DEC instruction is also useful in counting and indexing by te arrays. For example,
if COUNT contains a value of 116 , then

DEC @COUNT

results in a value of zero in location COUNT and sets the equal and carry status bits while resetting
the logical greater than, arithmetic greater than, and overflow status bits. The carry bit is always
set except on transition from zero to minus one. Refer to a subsequent paragraph for additional
application notes.

3.20 DECREMENT BY TWO DECT

Op Code: 0640

Addressing mode: Format VI

Format:

o 1 2 314 5 6

1 0 1 0 1 01 0 0 1 1 1

Syntax definition:

718 9 10 "112 13 14 IS I I Iii I I o 0 1 Ts S

[<label>]b ... DECTh ... <gas>b ... [<comment>]

Example:

LABEL DECT @ADDR SUBTRACT 2 FROM THE CONTENTS OF ADDR

Definition: Subtract two from the source operand and replace the source operand with the
result. The AU compares the result to zero and sets/resets the status bits to indicate the result of
the comparison. When there is a carry out of bit zero, the carry status bit sets. When there is an
overflow (the result cannot be represented in a word as a two's complement value), the overflow
status bit sets.

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, and overflow.

o 2 3 4 5 6 7 8 9 10 11 1213 1415

•••••
INTERRUPT ·1

MASK .

3-26 Texos Instruments Incorporated

n~ _________________ __ ~ 943441-9701

Execu tion results: (gas) - 2 -+ (gas)

Application notes: The DECT instruction is useful in counting and indexing word arrays. Also,
use the DECT instruction to subtract a value of two from any addressable operand. For example,
if workspace register PRT (PRT equals 3) contains a value of 2Cl0 16 , then the instruction

DECT PRT

changes the contents of workspace register 3 to 2COE16 • The logical greater than, arithmetic
greater than and carry status bits set while the equal and overflow status bits reset. Refer to a
subsequent paragraph for additional application notes.

3.21 ABSOLUTE VALUE ABS

Op Code: 0740

Addressing mode: Format VI

Format:

Syntax definition:

[<label>]b ... ABSb ... <gas>b ... [<comment>]

Example:

LABEL ABS *2 REPLACE THE CONTENTS OF THE INDIRECT
ADDRESS OF WSR2 WITH ITS ABSOLUTE VALUE

Definition: Compute the absolute value of the source operand and replace the source operand
with the result. The absolute value is the two's complement of the source operand when the sign
bit (bit zero) is equal to one. When the sign bit is equal to zero, the source operand is
unchanged. The AU compares the original source operand to zero and sets/resets the status bits
to indicate the results of the comparison.

Status bits affected: Logical greater than, arithmetic greater than, equal, and overflow.

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

••••

3-27

INTERRUPT
MASK

Texas Instruments Incorporated

~.5\ ______ _ ~ 943441-9701

Execution results: l(gas)1 -+ (gas)

Application notes: Use the ABS instruction to take the absolute value of an operand. For
example, if the third word in array LIST contains the value FF3C 16 and workspace register
seven contains the value 416 , then the instruction

ABS @LIST(7)

changes the contents of the third word in array LIST to 00C4 16 • The logical greater than status
bit sets while the arithmetic greater than and equal status bits reset. The overflow bit is set if the
operand is 8000 16 ; otherwise, it is reset. Refer to a subsequent paragraph for additional application
notes.

Multiple CPU Systems: Several 990/10 CPUs can be connected together to create a multiple CPU
systems. In these systems, the CPUs must share a common memory. Simultaneous access attempts
to memory by more than one CPU can result in a loss of data. To prevent this conflict, software
"memory busy" flags in memory can be used. When a program desires access to memory, it must
first check the flag to determine if any other program is actively using memory. If memory is not
busy, the program sets the busy flag to lock out other programs and begins its memory transfers.
When the program is finished with memory, it clears the busy flag to allow access to other programs.

However, the busy flag system is not fool proof. If two CPUs check the status of the busy flag in
successive memory cycles, each CPU proceeds as if it has exclusive access to memory. This con­
flict occurs because the first CPU does not set the flag until after the second CPU reads it. All
instructions in the 990 instruction set, except one, allow this problem to occur since they release
memory which executing the instruction (i.e., while checking the state of the busy flag). However,
the ABS instruction maintains control over memory even during execution of the instruction after
the flag has been fetched from memory. This feature prevents other programs from accessing
memory until the first program has evaluated the flag and has had a chance to change it. Therefore,
use the ABS instruction to examine memory busy flags in all memory-sharing applications.

3.22 NEGATE NEG

Op Code: 0500

Addressing mode: Format VI

Format:

o t 2

Syntax definition:

8 9'0 "112'3'415 I f I I I I I o 0 T, 5

[<label>] b ... NEGb ... <gas>b ... [<comment>]

Example:

LABEL NEG 2 REPLACE CONTENTS OF WSR2 WITH ITS
ADDITIVE INVERSE

3-28 Texas Instruments Incorporated

~-----..:..---~ 943441-9701

Definition: Replace the source operand with the two's complement of the source operand. The
AU determines the two's complement value by inverting all bits of the source operand and
adding one to the resulting word. The AU then compares the result to zero and sets/resets the
status bits to indicate the result of the comparison.

Status bits affected: Logical greater than, arithmetic greater than, equal, and overflow.

Execution results: - (gas) ~ (gas)

Application notes: Use the NEG instruction to make the contents of an addressable memory
location its additive inverse. For example, if workspace register 5 contains the value A342 16 ,

then the instruction

NEG 5

changes the contents of workspace register 5 to 5CBE16 . The logical greater than and arithmetic
greater than status bits set while the equal status bit resets. The overflow bit is set if the operand is
800016 ; otherwise, it resets.

3.23 JUMP AND BRANCH INSTRUCTIONS
Branch instructions transfer control either unconditionally, or conditionally according to the
state of one or more status bits of the status register. Table 3-3 lists the conditional branch Uump)
instructions and shows the status bit or bits tested.

Table 3-3. Status Bits Tested by Instructions

Mnemonic I> A> EQ C ov OP Jump if:

JH X X I>= 1 and EQ = 0

JL X X L>= 0 and EQ = 0

JHE X X I>= 1 or EQ = 1

JLE* X X L>=O or EQ= 1

JGT X A>=l

JLT X X A>= 0 and EQ = 0

JEQ X EQ = 1

JNE X EQ = 0

JOC X C = 1

JNC X C=O

JNO X OV = 0

JOP X OP = 1

* JLE isa logical comparison of jump if low or equal, not the
arithmetic comparison.

For all jump instructions, a displacement of zero results in execution of the next instruction in
sequence. A displacement of -1 results in execution of the same instruction (a single-instruction
loop).

3-29
Texas Instruments Incorporated

~~-------------------~ 943441-9701

The instructions are:

3.24 BRANCH B

Op Code: 0440

Instruction

Branch
Branch and Link
Branch and Load WP
Jump if Equal
Jump if Greater Than
Jump if High or Equal
Jump if Logical High
Jump if Logical Low
Jump if Low or Equal
Jump if Less Than
Unconditional Jump
Jump if No Carry
Jump if Not Equal
Jump if No Overflow
Jump if Odd Parity
Jump On Carry
Return WP
Execute

Addressing mode: Format VI

Format:

Syntax definition:

Mnemonic

B
BL
BLWP
JEQ
JGT
JHE
JH
JL
JLE
JLT
JMP
JNC
JNE
JNO
JOP
JOC
RTWP
X

[<label>] b ... Bb ... <gas>b ... [<comment>]

Example:

Paragraph

3.24
3.25
3.26
3.35
3.33
3.31
3.29
3.30
3.32
3.34
3.28
3.38
3.36
3.39
3.40
3.37
3.27
3.41

LABEl: B @THERE TRANSFER CONTROL TO LOCATION THERE

Definition: Replace the PC contents with the source address and transfer control to the
instruction at that location.

3-30 I exas Instruments Incorporated

J2~ ______ _ ~ 943441-9701

Status bits affected: None

Execution results: gag ~ (PC)

iii
INTERRUPT

MASK

Application notes: Use the B instruction to transfer control to another section of code to change
the linear flow of the program. For example, if the contents of workspace register 3 is 21 CC 16

then the instruction

B *3

causes the word at location 21 CC 16 to be used as the next instruction, because this value
replaces the contents of the PC when this instruction is executed.

3.25 BRANCH AND LINK BL

Op Code: 0680

Addressing mode: Format VI

Format:

o 1 Z 314 5 6 7 8 910 "lIZ 13 1415 I I i I I i I
lOTs ~

Syntax definition:

[<Iabel>]b ... BLb ... <ga~>b ... [<comment>]

Example:

LABEL BL @SUBR CALL SUBR AS A COMMON WS SUBROUTINE·

Definition: Place the source address in the program counter, place the address of the instruction
following the BL instruction (in memory) in workspace register 11, and transfer control to the
new PC contents.

Status bits affected: None

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3-31

I I i
INTERRUPT

MASK

Texas Instruments Incorporated

~~-------~ 943441-9701

Execution results: gas -+ (PC);

(old PC) -+ (Workspace register 11)

Application notes: Use the BL instruction when return linkage is required. For example, if the
instruction

BL @TRAN

occurs at memory location (PC count) 04BC 16, then this instruction has the effect of placing
memory location TRAN in the PC and placing the value 04CO 1 6 in workspace register 11. Refer
to a subsequent paragraph for additional application notes.

3.26 BRANCH AND LOAD WORKSPACE POINTER BLWP

Op Code: 0400

Addressing mode: Format VI

Format:

Syntax definition:

[<Ia bel>] b ... B L WPb ... <gas >b . . . [<comment>]

Example:

LABEL BLWP @VECT BRANCH TO SUBROUTINE AT ADDRESS
(@VECT+2) AND EXECUTE CONTEXT SWITCH

Definition: Place the source operand in the WP and the word immediately following the source
operand in the PC. Place the previous contents of the WP in the new workspace register 13,
place the previous contents of the PC (address of the instruction following BLWP) in the new
workspace register 14, and place the contents of the ST register in the new workspace register
15. When all store operations are complete, the AU transfers control to the new PC.

Status bits affected: None

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

IL>IA>IEQI C \oviopi x IPR IMFVl!1lJ IN\f:~JT

3-32 Texas Instruments Incorporated

~-~-----~ 943441-9701

Execution results: (gas) -* (WP)
(gas + 2) -* (PC)
(old WP) -* (Workspace register 13)
(old PC) -* (Workspace register 14)
(ST) -* (Workspace register 15)

Application notes: Use the BLWP instruction for linkage to subroutines, program modules, or
other programs that do not necessarily share the calling program workspace. Refer to a
subsequent paragraph for a detailed explanation and example.

3.27 RETURN WITH WORKSPACE POINTER RTWP

Op Code: 0380

Addressing mode: Format VII

Format:

o I 2 ',. 5 6 7

1
• 9 10" 112 13 ,.,5

101010100101 '1"10101001010101

Syntax definition:

[<label>]b ... RTWPb ... [<comment>]

Example:

LABEL RTWP RETURN FROM SUBROUTINE CALLED BY BLWP

Definition: Replace the contents of the WP register with the contents of the current workspace
register 13. Replace the contents of the PC with the contents of the current workspace register
14. Replace the contents of the ST register with the contents of the current workspace register
15. The effect of this instruction is to restore the execution environment that existed prior to an
interrupt, a BLWP instruction, or an XOP instruction.

Model 990/10 Computer: In the Model 990/10 Computer with the Privileged Mode bit (bit 7)
of the ST register set to 1, only bits 0 through 5 of workspace register 15 are placed in bits 0
through 5 of the ST register. When bit 7 of the ST register is set to 0, the instruction places bits
0-8 and 12-15 of workspace register 15 into bits 0-8 and 12-15 of the ST register.

Model 990/4 Computer: In the Model 990/4 Computer, bits 0-7 and 12-15 of workspace register
15 are placed in bits 0-7 and 12-15 of the ST register.

Status bits affected: Restores all status bits to the value contained in workspace register 15.
o 2 3 4 5 6 7 8 9 101112131415

••
3-33 Texas Instruments Incorporated

J17.5\-----'-____ _ ~ ~3441-9701

Execution results: (Workspace register 13) -+ (WP)
(Workspace register 14) -+ (PC)
(Workspace register 15) -+ (ST)

Application notes: Use the RTWP instruction to restore the execution environment after the
completion of execution of an interrupt, a BLWP instruction, or an XOP instruction. Refer to a
subsequent paragraph for additional information.

3.28 UNCONDITIONAL JUMP JMP

Op Code: 1000

Addressing mode: Format II

Format:

o 231456718 9 10 11 ,'2 13 14 15

; i I I I I
OISPLACEMENT

Syntax definition:

[<label>]b ... JMPb ... <exp>b ... [<comment>]

Example:

LABEL JMP NXTLBL JUMP TO NXTLBL

Definition: Add the signed displacement in the instruction word to the PC and replace the PC
with the sum.

Status bits affected: None

o 2 3 4 5 6 7

Execution results: (PC) + Displacement -+ (PC)

8 9 10 111213 14 15

I I I
INTERRUPT

MASK

The PC is incremented to the address of the next instruction prior to execution of an
instruction. The execution results of jump instructions refer to the PC contents after the
contents have been incremented to address the next instruction in sequence. The displacement
(in words) is shifted to the left one bit position to orient the word displacement to the word
address, and added to the PC contents.

3-34 Texas Instruments Incorporated

~~-------------------~ 943441-9701

Application notes: Use the JMP instruction to transfer control to another section of the program
module.

3.29 JUMP IF LOGICAL HIGH JH

Op Code: 1 BOO

Addressing mode: Format II

Format:

01231'
567 18

DISPLACEMENT

9 10 II ~ 12 13

~ I 1 til

Syntax definition:

[<label>] b ... JHb ... <exp>b ... [<comment>]

Example:

LABEL JH CONT IF L> AND NOT EQ SKIP TO CONT

Definition: When the equal status bit is reset and the logical greater than status bit is set, :1dd
the signed displacement in the instruction word to the contents of the PC and replace the PC
with the sum.

Status bits tested:

o 2 3 4 5 6 7 8 9 10 11 12 1314 15

• •
Jump if" L> = land EQ = a

Status bits affected: None

I j I
INTERRUPT

MASK

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3-35

INTERRUPT
MASK

Texas Instruments Incorporated

J175_~ ____ _ ~ 943441-9701

Execution results: If logical greater than bit is equal to I and equal bit is equal to 0:
(PC) + Displacement --.... (PC).

If logical greater thal'l bit is equal to 0 or equal bit is equal to I: (PC) -+ (PC).

Refer to explanation of execution in paragraph 3.28.

Application notes: Use the JH instruction to transfer control when the equal status bit is reset
and the logical status bit is set.

3.30 JUMP IF LOGICAL LOW JL

Op Code: I AOO

Addressing mode: Format II

Format:

o I 2 3

1
4 S 67 •

Syntax definition:

9.'0 "r2 13 14 IS t, ii' I
DISPLACEMENT

[<Iabel>lb ... JLb ... <exp>to ... [<comment>]

Example:

LABEL JL PREVLB IF L> AND EQ ARE LOW, JUMP TO PREVLB

Definition: When the equal and logical greater than status bits are reset, add the signed
displacement in the instruction word to the PC contents and replace the PC with the sum.

Status bits tested:

o 2 3 4 5 6 7 8 9 10 11 12 1314 15

L> A> EQ C OV OP X PR

Jump if" L> =·0 and EQ = 0

Status bits affected: None

o 2 3 4 5 6 7 8 9 10 11 12.13 14 15

3-36

I I I
INTERRUPT

MASK

Texas Instruments Incorporated

~~-------------------~ 943441-9701

Execution results: If logical greater than bit and equal bit are equal to 0: (PC) + Displacement -+

(PC).

If logical greater than bit is equal to I or equal bit is equal to 1: (PC) -+ (PC).

Refer to explanation of execution in paragraph 3.28.

Application notes: Use the JL instruction to transfer control when the equal and logical greater
than status bits are reset.

3.31 JUMP IF HIGH OR EQUAL JHE

Op Code: 1400

Addressing mode: Format II

Format:

9 10 II 112 13 14 15

DISPLACEMENT ~ I I I I I

Syntax definition:

[<label>]!) ... JHE!) '" <exp>1J ... [<comment>]

Example:

LABEL JHE LABEL LOOP HERE UNTIL EQ AND L> ARE RESET

Definition: When the equal status bit or the logical greater than status bit is set, add the signed
displacement in the instruction word to the PC and replace the contents of the PC with the sum.

Status bits tested:

o 2. 3 4 5 6 7 B 9 10 11 12 1314 15

• A .

Jump if' L> = I or EQ = I

Status bits affected: None

iii
INTERRUPT

MASK

o 2 3 4 5 6 7 B 9 10 11 1213 14 15

3-37 Texas Instruments Incorporated

~~-------------------~ 943441-9701

Execution results: If logical greater than bit is equal to I or equal bit is equal to 1: (PC) +
Displacement -->- (PC).

If logical greater than bit and equal bit are equal to 0: (PC) -->- (PC).

Refer to explanation of execution in paragraph 3.28.

Application notes: Use the JHE instruction to transfer control when either the logical greater
than or equal status bit is set.

3.32 JUMP IF LOW OR EQUAL JLE

Op Code: 1 200

Addressing mode: Format II

Format:

01 2314567

olSPLACEMENT

. 9 10 "!12 13 14 15
i ~ iii I I

Syntax definition:

[<Iabel>]b ... JLEb ... <exp>'b ... [<comment>]

Example:

LABEL JLE THERE JUMP TO THERE WHEN EQ= I or L>=O

Definition: When the equal status bit is set or the logical greater than status bit is reset, add the
signed displacement in the instruction word to the contents of the PC and replace the PC with
the sum.

NOTE

JLE is not jump if less than or equal.

Status bits tested:

o 2 3 4 5 6 7 8 9 10 11 12 1314 15

Jump it- L> = 0 or EQ = 1

3-38

i I. I
IN1'ERRUPT

MASK

Texas Instruments Incorporated

)2rJ5\ ______ _ ~ 943441-9701

Status bits affected: None

o 1 2 3 4 5 6 7 8 9 10 11 1213 14 15

IL>IA>IEQ I C lov lopi X IPRIMFWIE1I~~}~JT I
Execution results: If logical greater than bit is equal to 0 or equal bit is equal to 1: (PC) +
Displacement --* (PC).

If logical greater than bit is equal to 1 and equal bit is equal to 0: (PC) --* (PC).

Refer to explanation of execution in paragraph 3.28.

Application notes: Use the JLE instruction to transfer control when the equal status bit is set or
the logical greater than status bit is reset.

3.33 JUMP IF GREATER THAN JGT

Op Code: 1500

Addressing mode: Format II

Format:

0 1 2 3 4 5 6 7 8 9 10 11~ 12 13 14 15
I I I I I I I

0 0 0 1 0 1 0 1 DISPLACEMENT

Syntax definition:

[<Iabel>]b ... JGTb ... <exp>b ... [<comment>]

Example:

LABEL JGT THERE JUMP TO THERE IF A>= 1

Definition: When the arithmetic greater than status bit is set, add the signed displacement in the
instruction word to the PC and place the sum in the PC. Transfer control to the new PC
location.

Status bits tested:

o 2 3 4 5 6 7 8 9 10 11 121314 15

IL>1 A>I EQ I C lov lopi x I PR I MFWlJ IN~J::~~T
•

Jump if" A> = 1

3-39 Texas Instruments Incorporated

~-------~ 943441-9701

Status bit affected: None

o 1 2 3 4 5 6 7 8 9 10 11 12 1314 15

HA+Q Ie lov lop I X IpR IMFr{r;IA 1N1Ei~~JT I
Execution results: If arithmetic greater than bit is equal to I: (PC) + Displacement ~ (PC).

If arithmetic greater than bit is equal to 0: (PC) ~ (PC).

Refer to explanation of execution in paragraph 3.28.

Application notes: Transfers control if the arithmetic greater than status bit is set.

3.34 JUMP IF LESS THAN JLT

Op Code: 1100

Addressing mode: Format II

Format:

B 9 10 "!.'2 13 '4.'5
iii I I I I

DISPLACEMENT .

Syntax definition:

[<1abel>lb ... JLTb ... <exp>t> ... [<comment>]

Example:

LABEL JLT THERE JUMP TO THERE IF A>=O AND EQ=O

Definition: When the equal and arithmetic greater than status bits are reset, add the signed
displacement in the instruction word to the PC and replace the PC contents with the sum.

Status bits tested:

o 2 3 4 5 6 7 8 9 10 11 12 13 1415

Jump if: A> = 0 and EQ = 0

3-40

i i
INTERRUPT

MASK

Texas Instruments Incorporated

~'{]~o _________________ __
~ 943441-9701

Status bits affected: None

o 1 2 3 4 5 6 7 8 9 10 11 1213 14 15

I I I
INTERRUPT

MASK

Execution results: If arithmetic greater than bit and equal bit are equal to 0: (PC) + Displace­
ment -+ (PC).

If arithmetic greater than bit is equal to 1 or equal bit is equal to 1: (PC) -+ (PC).

Refer to explanation of execution in paragraph 3.28.

Application notes: Use the JLT instruction to transfer control when the equal and arithmetic
greater than status bits are reset.

3.35 JUMP IF EQUAL JEQ

Op Code: 1300

Addressing mode: Format II

Format:

Syntax definition:

[<label>]b ... JEQb ... <exp>b ... [<comment>]

Example:

LABEL JEQ LOC JUMP TO LOC IF EQ= 1

Definition: When the equal status bit is set, transfer control by adding the signed displacement in
the instruction word to the program counter and then place the sum in the PC to transfer
control.

Status bits tested:

Jump if: EQ = 1

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3-41

iii
INTERRUPT

MASK

Texas Instruments Incorporated

))75\ ______ _ ~ 943441-9701

Status bits affected: None

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

IL>IA>IEQI C IOV lop I x I PRIMFW/ /h1 INI1X:~JT I

Execution results: If equal bit is equal to 1: (PC) + Displacement -+ (PC).

If equal bit is equal to 0: (PC) -+ (PC).

Refer to explanation of execution in paragraph 3.28.

Application notes: Use the JEQ instruction to transfer control when the equal status bit is set
and to test CRU bits.

3.36 JUMP IF NOT EQUAL JNE

Op Code: 1600

Addressing mode: Format II

Format:

Syntax definition:

[<label>] b ... JNEb ... <exp>b ... [<comment>]

Example:

LABEL JNE LOC2 JUMP TO LOC2 IF EQ=O

Definition: When the equal status bit is reset, add the signed displacement in the instruction
word to the PC and replace the PC with the sum.

Status bits tested:

Jump if' EQ = 0

o 2 3 4 5 6 7 8 9 1 01.1 1 2 1 3 1 4 1 5

3-42

I INTERRUPT MASK

Texas Instruments Incorporated

12rJ5\ ______ _ ~ 943441-9701

Status bits affected: None

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

IL>IA>I EQI c IOV lop I X IPR IMFWlffi1INI1E:~~~T I
Execution results: If equal bit is equal to 0: (PC) + Displacement ~ (PC).

If equal bit is equal to I: (PC) ~ (PC).

Refer to explanation of execution in paragraph 3.28.

Application notes: Use the JNE instruction to transfer control when the equal status bit is reset.
The JNE instruction is also useful in testing CRU bits.

3.37 JUMP ON CARRY JOC

Op Code: I 800

Addressing mode: Format II

Format:

9 10 "1'2 13 14 15

j I I I I I DISPLACEMENT

Syntax definition:

[<1abel>lb ... JOCb ... <exp>o ... [<comment>]

Example:

LABEL JOC PROCED IF C=I SKIP TO PROCED

Definition: When the carry status bit is set, add the signed displacement in the instruction word
to the PC and replace the PC with the sum.

Status bits tested:

Jump if: C = I

o 2 3 4 5 6 7 8 9 10 11 12 1314 15

3-43

INTERRUPT MASK

Texas Instruments Incorporated

~-------~ 943441-9701

Status bits affected: None

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

IL>IA>IEQ I C IOV lop I X IPR IMFWlIZ1I~1J}~~T I

Execution results: If carry bit is equal to I: (PC) + Displacement -+ (PC).

If carry bit is equal to 0: (PC) -+ (PC).

Refer to explanation of execution in paragraph 3.28.

Application notes: Use the JOC instruction to transfer control when the carry status bit is set.

3.38 JUMP IF NO CARRY JNC

Op Code: 1700

Addressing mode: Format II

Format:

I I i I I I I DISPLACEMENT

Syntax definition:

[<label>]b ... JNCb ... <exp>b ... [<comment>]

Example:

LABEL JNC NONE JUMP TO NONE IF C=O

Definition: When the carry status bit is reset, add the signed displacement in the instruction
word to the PC and replace the PC with the sum.

Status bits tested:

Jump if" C = 0

o 2 3 4 5 6 7 8 9 10 111213 14 15

3-44

I I I INTERRUPT MASK

Texas Insfrumenfslncorporated

~-~-----~ 943441-9701

Status bits affected: None

o 1 2 3 4 5 6 7 8 9 10 11 12 1314 15

IL>IA>IEQI C 10V IOpl X IPR IMFWM 1~~i~JT I

Execution results: If carry bit is equal to 0: (PC) + Displacement -+ (PC).

If carry bit is equal to 1: (PC) -+ (PC).

Refer to explanation of execution in paragraph 3.28.

Application notes:. Use the JNC instruction to transfer control when the carry status bit is reset.

3.39 JUMP IF NO OVERFLOW JNO

Op Code: 1900

Addressing mode: Format II

Format:

o I 2 314 5.71"

Syntax definition:

i I Iii I
DISPLACEMENT

[<label>] b ... JNOb ... <exp>t> ... [<comment>]

Example:

LABEL JNO NORML JUMP TO NORML IF OV=O

Definition: When the overflow status bit is reset, add the signed displacement in the instruction
word to the PC and replace the PC with the sum.

Status bits tested:

Jump if" ov = 0

o 2 3 4 5 6 7 8 9 1 Q .1.1 1 2 1 3 1 4 1 5

345

INTERRUPT MASK

Texas Instruments Incorporated

~~-------------------~ 943441-9701

Status bits affected: None

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

IL>IA>IEQI C IOV IOpl X IPR IMFVI1!11I~1J:~~T
Execution results: If overflow bit is equal to 0: (PC) + Displacement --+ (PC).

If overflow bit is equal to I: (PC) --+ (PC).

Refer to explanation of execution in paragraph 3.28.

Application notes: Use the JNO instruction to transfer control when the overflow status bit is reset.
JNO normally transfers control during arithmetic sequences where addition, subtraction, incre­
menting, and decrementing may cause an overflow condition. JNO may also be used following an
SLA (Shift Left Arithmetic) operation. If, during the SLA execution, the sign of the workspace
register being shifted changes (+ to -, - to +), the overflow status bit sets. This feature permits
transfer, after a sign change, to error correction routines or to another functional code sequence.

3.40 JUMP IF ODD PARITY JOP

Op Code: I COO

Addressing mode: Format II

Format:

o I 2 314 5 6 7 B • 10 II ~ 12 13 14 15
I r r r , J DISPLACEMENT

Syntax definition:

[<label>] b ... JOPb ... <exp>b ... [<comment>]

Example:

LABEL JOP THERE JUMP TO THERE IF OP=1

Definition: When the odd parity status bit is set, add the signed displacement in the instruction
word to the PC and replace the PC with the sum.

Status bits tested:

Jump if" OP = 1

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3-46

iii I INTERRUPT MASK

Texas Instruments Incorporated

~-------~ 943441-9701

Status bits affected: None

o 1 2 3 4 5 6 7 8 9 10 11 1213 1415

IL>IA>IEQI clavI OPI x IPR IMFtI///A INJ~~~U~T I
Execution results: If odd parity bit is equal to I: (PC) + Displacement """* (PC).

If odd parity bit is equal to 0: (PC) """* (PC).

Refer to explanation of execution in paragraph 3.28.

Application notes: Use the JOP instruction to transfer control when there is odd parity.
Odd parity indicates that there is an odd number of logic one bits in the byte tested. JOP
transfers control if the byte tested contains an odd number (sum) of logic one bits. This
instruction may be used in data transmissions where the parity of the transmitted byte is
used to ensure the validity of the received character at the point of reception.

3.41 EXECUTE X

Op Code: 0480

Addressing mode: Format VI

Format:

Syntax definition:

[<label>] b ... Xb ... <gas >b . . . [<comment>]

Example:

LABEL X 2 EXECUTE THE CONTENTS OF WSR2

Definition: Execute the source operand as an instruction. When the source operand is not a
single word instruction, the word or words following the execute instruction are used with the
source operand as a 2-word or 3-word instruction. The source operand, when executed as an
instruction, may affect the contents of the status register. The PC increments by either one, two,
or three words depending upon the source operand. If the executed instruction is a branch, the
branch is taken. If the executed instruction is a jump and if the conditions for a jump (i.e. the
status test indicates a jump) are satisfied, then the jump is taken relative to the location of the
X instruction.

3-47
Texas Instruments Incorporated

Jd7. 0)\ ______ _ ~ 943441-9701

Status bits affected: None, but substituted instruction affects status bits normally.

o I 2 3 4 5 6 7 8 9 10 II 12 13 14 15

IL>IA>IEQIC IOV\OpIX IPRIMFV!I!A 'N\~Ei~~T I
Execution results: An instruction at gas is executed instead of the X instruction.

Application notes: Use the X instruction to execute the source operand as an instruction. This is
primarily useful when the instruction to be executed is dependent upon a variable factor. Refer
to a subsequent paragraph for additional application notes.

3.42 COMPARE INSTRUCTIONS
Compare instructions have no effect other than the setting or resetting of appropriate status bits
in the status register. The compare instructions perform both arithmetic and logical comparisons.
The arithmetic comparison is of the two operands as two's complement values and the logical
comparison is of the two operands as unsigned magnitude values. The instructions are:

Instruction

Compare Words
Compare Bytes
Compare Immediate
Compare Ones Corresponding
Compare Zeros Corresponding

3.43 COMPARE WORDS C

Op Code: 8000

Addressing mode: Format I

Format:

o 6

I I
Syntax definition:

Mnemonic Paragraph

C 3.43
CB 3.44
CI 3.45
COC 3.46
CZC 3.47

7 1 891011

1
'2131415

o I I T:- . I ~ I I

[<Iabel>]b ... CO ... <gas>,<gad>b ... [<comment>]

Example:

LABEL C 2,3 COMPARE THE CONTENTS OF WSR2 AND WSR3

3-48 Texas Instruments Incorporated

~-------------------~ 943441-9701

Definition: Compare the source operand (word) with the destination operand (word) and
set/reset the status bits to indicate the results of the comparison. The arithmetic and equal
comparisons compare the operand as signed, two's complement values. The logical comparison
compares the two operands as unsigned, 16-bit magnitude values.

Status bits affected: Logical greater than, arithmetic greater than, and equal.

o 2 3 4 5 6 7 8 9 10 11 1213 14 15

Execution results: (gas) : (gad)

I i I
INTERRUPT

MASK

Application notes: C compares the two operands as signed, two's complement values and as
unsigned integers. Some examples are:

Source Destination

FFFF 0000
7FFF 0000
8000 0000
8000 7FFF
7FFF 7FFF
7FFF 8000

3.44 COMPARE BYTES CB

Op Code: 9000

Addressing mode: Format I

Format:

o

I I
Syntax definition:

5 6

Logical

a
a

Arithmetic

a
1
a
a
a

Equal

a
a
a
a
1
a

[<label>] b ... CBb ... <gas>,<gad>b ... [<comment>]

Example:

LABEL CB 2,3 COMPARE THE LEFTMOST BYTES OF WSR2 AND
WSR3

3-49 Texas Instruments Incorporated

~~-------------------~ 943441-9701

Definition: Compare the source operand (byte) with the destination operand (byte) and set/reset
the status bits according to the result of the comparison. CB uses the same comparison basis as
does C. If the source operand contains an odd number of logic one bits, the odd parity status bit
sets. The operands remain unchanged. If either operand is addressed in the workspace register mode,
the byte addressed is the most significant byte.

Status bits affected: Logical greater than, arithmetic greater than, equal, and odd parity.

o 1 2 3 4 5 6 7 8 9 10 11 1213 14 15

Execution results: (gas) : (gad)

I I I
INTERRUPT

MASK

Application notes: CB compares the two operands as signed, two's complement values or as
unsigned integers. Some examples are:

Source Destination

FF 00
7F 00
80 00
80 7F
7F 7F
7F 80

3.45 COMPARE IMMEDIATE CI

Op Code: 0280

Addressing mode: Format VIII

Format:

Logical

1
o
o

o I 2 314 5 6 7

Syntax definition:

Arithmetic

0

0
0
0

[<label>lb ... CIb ... <wa>,<iop>b ... [<comment>]

Example:

Equal Odd Parity

0 0
0
0
0
1
0

LABEL CI 3,7 COMPARE CONTENTS OF WSR3 TO 7

3-50 Texas Instruments Incorporated

Jd7.5\ ______ _ ~ 943441-9701

Definition: Compare the contents of the specified workspace register with the word in memory
immediately following the instruction. Set/reset the status bits according to the comparison. CI
makes the same type of comparison as does C.

Status bits affected: Logical greater than, arithmetic greater than, and equal.

Execution results: (wa) : iop

Application notes: Use the CI instruction to compare the workspace register to an immediate
operand. For example, if the contents of workspace register 9 is 2183 16 , then the instruction

CI 9,>F330

results in the arithmetic greater than status bit set and the logical greater than and equal status
bits reset.

3.46 COMPARE ONES CORRESPONDING coe
Op Code: 2000

Addressing mode: Format III

Format:

o 6 7 I 8

o

910111'2131415

i I T~ I! i I

Syntax definition:

[<tabel>]b ... COCb ... <gag>,<wad>b ... [<comment>]

Example:

LABEL COC @MASK, 2 DOES (WSR2) SATISFY MASK?

Definition: When the bits in the destination operand workspace register that correspond to the
logic one bits in the source operand are equal to logic one, set the equal status bit. The source
and destination operands are unchanged.

Status bit affected: Equal

o 2 3 4 .5 6 7 8 9 10 11 12 13 14 15

INTERRUPT
MASK

Execution results: Equal bit set if all bits of (wad) that correspond to the bits of (gag) that are
equal to 1 are also equal to 1.

3-51 Texas Instruments Incorporated

Jd7S\ ______ _ ~ 943441-9701

Application notes: Use the COC instruction to test single/multiple bits within a word in a
workspace register. For example, if TESTBI contains the word CI02 16 and workspace register 8
contains the value E306 16, then the instruction

COC @TESTBI,8

results in setting the equal status bit. If workspace register 8 were to contain E301 16 , the equal
status bit would reset. Use this instruction to determine if a workspace register has Is in the bit
positions indicated by 1 s in a mask.

3.47 COMPARE ZEROS CORRESPONDING CZC

Op Code: 2400

Addressing mode: Format III

Format:

910 "112 1314 15

I I ~s i! i I

Syntax definition:

[<J.abel>]b ... CZCb ... <gas>,<wad>b ... [<comment>]

Example:

LABEL CZC @MASK, 2 DOES (WSR2) SATISFY THE MASK?

Definition: When the bits in the destination operand workspace register that correspond to the
one bits in the source operand are all equal to a logic zero, set the equal status bit. The source
and destination operands are unchanged.

Status bit affected: Equal

o 2 3 4 5 6 7 8 9 10 11 12 13 1415

INTERRUPT
MASK

Execution results: Equal bit set if all bits of (wad) that correspond to the bits of (gas) that are
equal to 1 are equal to O.

3-52 Texas Instruments Incorporated

J2r7)\ ______ _ ~ 943441-9701

Application notes: Use the CZC instruction to test single/multiple bits within a word in a
workspace register. For example, if the memory location labeled TESTBI contains the value
Cl 0216 , and workspace register 8 contains 2301 16 , then the instruction

CZC @TESTBI, 8

results in the equal status bit reset. If workspace register 8 contained the value 2201 16 , then the
equal status bit would set. Use this instruction to determine if a workspace register has Os in the
positions indicated by Os in a mask.

3.48 CONTROL AND CRU INSTRUCTIONS
Control instructions affect the operation of the Arithmetic Unit (AU) and the associated
portions of the computer or microprocessor. CRU instructions affect the modules connected to
the Communications Register Unit. The instructions are:

Instruction

Clock Off
Clock On
Load CRU
Idle
Load or Restart Execution
Reset
Set CRU Bit to Logic One
Set CRU Bit to Logic Zero

Store CRU
Test Bit

3.49 RESET RSET

Op Code: 0360

Addressing mode: Format VII

Format:

Syntax definition:

[<I.abel>lO ... RSETh ... [<comment>]

Example:

Mnemonic

CKOF
CKON
LDCR
IDLE
LREX
RSET
SBO
SBZ
STCR
TB

LABEL RSET START OVER

3-53

Paragraph

3.51
3.52
3.57
3.50
3.53
3.49
3.54
3.55
3.58
3.56

Texas Instruments Incorporated

~--~----~ 943441-9701

Definition: The RSET instruction clears the interrupt mask, which disables all except level 0
interrupts. It also resets all directly connected input/output devices and those CRU devices that
provide for reset in the interface with the CRU. RSET also resets all pending interrupts and
turns the clock off.

TMS 9900 Microprocessor: Provides a signal that an RSET instruction is identified, but performs
no processing. User may implement hardware to perform desired processing when the signal is
present.

Model 990/10 Computer: When Privileged Mode bit (bit 7 of ST register) is set to 0, instruction
executes normally. When Privileged Mode bit is set to I, an error interrupt occurs when execution
of an RSET instruction is attempted.

Status bits affected: None

o 1 2 3 4 5 6 7 B 9 10 11 1213 14 15

IL>IA>IEQ I C lov \ opi X \PR IMFWh1IN~:hp~ I
Execution results: Clears the interrupt mask, resets directly connected I/O devices, resets the
CRU devices that provide for reset in the interface with the CRU, resets pending interrupts, and
turns the clock off.

Application notes: Use the reset instruction to reset the interrupt mask to zero, turn off the
clock, and (depending on the device and interface) clear any pending interrupt and reset
interface electronics.

3.50 IDLE IDLE

Op Code: 0340

Addressing mode: Format VII

Format:

Syntax definition:

[<label>] b ... IDLEb ... [<comment>]

Example:

LABEL IDLE WAIT FOR INTERRUPT

3-54

15

o

Texas Instruments Incorporated

~-------~ 943441-9701

Definition: Place the computer in the idle state. Note that the PC is incremented prior to the
execution of this instruction and the contents of the PC point to the instruction word in
memory immediately following the IDLE instruction. The computer will remain in the IDLE
state until an interrupt, RESTART, or LOAD occurs.

TMS 9900 Microprocessor: Provides a signal that an IDLE instruction is being executed, and
places the microprocessor in the idle mode. User may implement hardware to perform additional
processing when the signal is present.

Model 990/10 Computer: When Privileged Mode bit (bit '7 of ST register) is set to 0, instruction
executes normally. When Privileged Mode bit is set to I, an error interrupt occurs when execution
of an IDLE instruction is attempted.

Status bits affected: None

Execution results: Places the computer in the idle mode, suspending program execution until an
interrupt occurs.

Application notes: Use the IDLE instruction to place the computer in the idle state. This
instruction is useful in timing delays using the clock or in waiting for interrupt signals.

3.51 CLOCK OFF CKOF

Op Code: 03CO

Addressing mode: Format VII

Format:

o • 2 '14 5 • 718 "0 "112 13

1 0 (0 1 0 1 0 0 10 11 11 1 11 I 0 I 0 0 I 0 I 0 I 01

Syntax definition:

[<Iabel>]b ... CKOFb ... [<comment>]

Example:

STOCK CKOF STOP THE CLOCK

Definition: Stop the line frequency clock (120 Hz). No status bits are changed and the clock
interrupt will not occur as long as the clock is off.

TMS 9900 Microprocessor: Provides a signal that a CKOF instruction is identified, but performs
no processing. User may implement hardware to perform desired processing when signal is
present.

3-55
Texas Instruments Incorporated

~ ____ 9_4_34_4_1_-9_7_0_1 __ __

Model 990/10 Computer: When Privileged Mode bit (bit 7 of ST re.gister) is set to 0, instruction
executes normally. When Privileged Mode bit is set to 1, an error interrupt occurs when execution
of a CKOF instruction is attempted.

990/4 Microcomputer: If a clock interrupt occurs during the execution of a CKOF instruction, the
interrupt can be vectored incorrectly through level 15 instead of through the level to which it is
connected. To avoid this situation, mask the clock interrupt before executing a CKOF instruction.
The following sequence performs that function.

LIMI
CKOF
LIM I

o Mask all interrupts
Clock off

n Reset interrupt mask to desired level,n.

This sequence is not required if CKOF is used in the service routine for a clock interrupt because
the clock interrupt causes the interrupt mask to be set to one level below the level of the clock
interrupt.

Status bits affected: None

Execution results: Line frequency clock disabled, and the clock interrupt cleared.

Application notes: Clock applications are described in paragraph 3.89.7.2.

3.52 CLOCK ON CKON

Op Code: 03AO

Addressing mode: Format VII

Format:

o
I 2 'I' 5 • 7

Syntax definition:

[<label>]t) ... CKONb ... [<comment>]

Example:

STRTC CKON START THE CLOCK

Definition: Enable the line frequency clock. If interrupt level five is enabled, an interrupt will
occur every 8.33 ms after the initial interrupt, which may occur from IMS to 8.33 ms after the
clock is turned on. Interrupt five may be enabled/disabled by the interrupt mask as necessary.

TMS 9900 Microprocessor: Provides a signal that a CKON instruction is identified, but performs
no processing. User may implement hardware to perform desired processing when signal is
present.

3-56 Texas Instruments Incorporated

J2n5"\ __ ~ ____ _ ~ ~3441-9701

Model 990/10 Computer: When Privileged Mode bit (bit 7 of ST register) is set to 0, instruction
executes normally. When Privileged Mode bit is set to 1, an error interrupt occurs when execution
of a CKON instruction is attempted.

Status bits affected: None

o 2 3 4 5 6 7 8 9 101112131415

Execution results: Line frequency clock enabled.

INTERRUPT
MASK

Application notes: Clock applications are described in paragraph 3.89.7.2.

3.53 LOAD OR RESTART EXECUTION LREX

Op Code: 03EO

Addressing mode: Format VII

Format:

0 1 2 3 4 5 6 7 8 9 10 1 1 12 13 14 15

0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0

Syntax definition:

[<label>]b ... LREXb ... [<comment>]

Example:

LABEL LREX START ALL OVER

Definition: Place the contents of location FFFC 16 into the WP register and the contents of
location FFFE 16 into the PC. Store the previous contents of the WP register, the PC, and the ST
register into workspace registers 13, 14, and 15, respectively. Set the interrupt mask to 0,
disabling all interrupt levels except level O.

TMS 9900 Microprocessor: Provides a signal that an LREX instruction is identified, but performs
no processing. User may implement hardware to perform desired processing when signal is
present.

Model 990/10 Computer: The LREX instruction sets the Privileged Mode bit (bit 7) of the ST
register to 0 in addition to performing the context switch. When the Privileged Mode bit is set
to 0 prior to execution of an LREX instruction, the instruction executes normally. When the
Privileged Mode bit is set to 1 and execution of an LREX instruction is attempted, an error
interrupt occurs. When the map option is included, the LREX instruction also sets the Map File
bit (bit 8) of the ST register to O.

3-57 Texas Instruments Incorporated

~-------~ 943441-9701

Status bits affected: Map File, Privilege, Interrupt Mask

o 1 2 3 4 5 6 7 8 9 10 11 1213 14 15

IL>IA>IEQ I C lov lopi X IPR IMFV/ IM1IN1J::~P~ I
•• • •••

Execution results: (location FFFCI6) ~ (WP)
(location FFFEI 6) ~ (PC)
(old WP) ~ (Workspace register 13)
(old PC) ~ (Workspace register 14)
(old ST) -+ (Workspace register 15)
o -+ (Interrupt Mask) }
0-+ (Map File) Status Register
o -+ (Privilege)

Application notes: Use the LREX instruction to perform a context switch using the transfer
vector at location FFFC 16' Typically, the transfer vector transfers control to the front panel
routine in Read Only Memory (ROM). Additional application information is included in a
subsequent paragraph.

3.54 SET CRU BIT TO LOGIC ONE SBO

Op Code: 1 DOO

Addressing mode: Format II

Format:

o , 2 314 5 6 71 8 9 10 "1'2 13 14 15

iii iii I DISPLACEMENT

Syntax definition:

[<label>] b ... SBOb ... <disp>b ... [<comment>]

Example:

LABEL SBO 7 SET BIT 7 ON CRU TO ONE

Definition: Set the digital output bit to a logic one on the CRU at the address derived from this
instruCtion. The derived address is the sum of the user supplied signed displacement and the
contents of workspace register 12, bits 3 through 14. The execution of this instruction does not
affect the status register or the contents of workspace register 12.

Model 990/10 Computer: When the Privileged Mode bit (bit 7) of the ST register is set to 0, the
SBO instruction executes normally. When bit 7 is set to 1 and the effective CRU address is equal
to or greater than E00 16 , an error interrupt occurs and the instruction is not executed.

3-58 Texas Instruments Incorporated

~~-------------------~ 943441-9701

Status bits affected: None

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Execution results: CRU bit addressed by the sum of the contents of workspace register 12 +
displacement is set to 1.

Application notes: Use the SBO instruction to set a CRU bit to a logic one. Refer to a subsequent
paragraph for additional application notes.

3.55 SET CRU BIT TO LOGIC ZERO SBZ

Op Code: I EOO

Addressing mode: Format II

Format:
8 910 "1'2'3'415

I I I I I I I
DISPLACEMENT

Syntax definition:

[<label>] b ... SBZb ... <disp>b ... [<comment> 1

Example:

LABEL SBZ 7 SET BIT 7 ON CRU TO ZERO

Definition: Set the digital output bit to a logic zero on the CRU at the address derived from this
instruction. The derived address is the sum of the user supplied signed displacement and the
contents of workspace register 12, bits 3 through 14. The execution of this instruction does not
affect the status register or the contents of workspace register 12.

Model 990/10 Computer: When the Privileged Mode bit (bit 7) of the ST register is set to 0, the
SBZ instruction executes normally. When bit 7 is set to 1 and the effective CRU address is equal to
or greater than EOO I6 , an error interrupt occurs and the instruction is not executed.

Status bits' affected: None

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

iii
INTERRUPT

MASK

Execution results: CR U bit addressed by the sum of the contents of workspace register 12 (bits
3-14) + displacement is set to O.

3-59 Texas Instruments Incorporated

~ ____ 9_4_34_4_1_-9_7_01 __ ___

Application notes: Use the SBZ instruction to set a CRU bit to a logic zero. Refer to a
subsequent paragraph for additional application notes.

3.56 TEST BIT TB

Op Code: 1 FOO

Addressing mode: Format II

Format:
o

Syntax definition:

, I I i I I I
DISPLACEMENT

[<label>]b ... TBb ... <disp>b '" [<comment>]

Example:

CHECK TB 7 READ BIT 7 ON CRU AND SET EQUAL STATUS
BIT WITH THE VALUE READ

Definition: Read the digital input bit on the CRU at the address specified by the sum of the
user supplied signed displacement and the contents of workspace register 12, bits 3 through 14
and set the equal status bit to the logic value read. The digital input bit and the contents of
workspace register 12 are unchanged.

Model 990/10 Computer: When the Privileged Mode bit (bit 7) of the ST register is set to 0, the
TB instruction executes normally. When bit 7 is set to 1 and the effective CRU address is equal to
or greater than EOO I6 , an error interrupt occurs and the instruction is not executed.

Status bit affected: Equal

o 2 3 4 5 6 7 8 9 10 11 12 1314 15

INTERRUPT
MASK

Execution results: Equal bit is set to the value of the CRU bit addressed by the sum of the contents
of workspace register 12 (bits 3-12) + displacement.

Application notes: TB CRU line logic level test transfers the logic level from the indicated CRU line
to the equal status bit without modification. If the CRU line tested is set to a logic one, the equal
status bit sets to a logic one and if the line is zero, sets to a zero. JEQ will then transfer control
when the CRU line is a logic one and will not transfer control when the line is a logic zero. In
addition, JNE will transfer control under the exact opposite conditions.

3-60 Texas Instruments Incorporated

J175\ ______ _ ~ 943441·9701

3.57 LOAD CRU LDCR

Op Code: 3000

Addressing mode: Format IV

Format:

o
, 2 '14 5

6 7 I 8

c

Syntax definition:

[<label>]b ... LDCRb ... <gas>,<cnt>b ... [<comment>]

Example:

WRITE LDCR @BUFF, 15 SEND 15 BITS FROM BUFF TO CRU

Definition: Transfer the number of bits specified in the C field from the source operand to the
CRU. The transfer begins with the least significant bit of the source operand. The CRU address
is contained in bits 3 through 14 of workspace register 12. When the C field contains zero, the
number of bits transferred is 16. If the number of bits to be transferred is from one to eight, the
source operand address is a byte address. If the number of bits to be transferred is from 9 to 16,
the source operand address is a word address. If the source operand address is odd, the address
is truncated to an even address prior to data transfer. When the number of bits transferred is a
byte or less, the source operand is compared to zero and the status bits are set/reset, according
to the results of the comparison. The odd parity status bit sets when the bits in a byte (or less)
to be transferred establish odd parity.

Model 990/10 Computer: When the Privileged Mode bit (bit 7) of the ST register is set to 0, the
LDCR instruction executes normally. When bit 7 is set to 1 and the effective CRU address is equal
to or greater than E0016 , an error interrupt occurs and the instruction is not executed.

Status bits affected: Logical greater than, arithmetic greater than, and equal. When C is less than
9, odd parity is also set or reset. Status is set according to the full word or byte, not just the trans­
ferred bits.

o 2 3 4 5 6 7 8 9 10 11 12 1314 15

L> A> EQ C OV OP X PR M F

Execution results: Number of bits specified by C are transferred from memory at address gas to
consecutive CRU lines beginning at the address in workspace register 12.

Application notes: Use the LDCR instruction to transfer a specific number of bits from memory
to the CRU at the address contained in bits 3 through 14 of workspace register 12. Refer to a
subsequent paragraph for a detailed example and explanation of the LDCR instruction.

Texas Instruments Incorporated

~~---~--------------~ 943441-9701

3.58 STORE CRU STCR
Op Code: 3400

Addressing mode: Format IV

Format:

o I 2314 • 6 7 I 8
i

C

910 "112 1314 "

i I ;5 '~"

Syntax definition:

[<label>] b ... STCRb ... <gas>,<cnt>b ... [<comment>]

Example:

READ STCR @BUF, 9 READ 9 BITS FROM CRU AND STORE AT
LOCATION BUF

Definition: Transfer the number of bits specified in the C field from the CRU to the source
operand. The transfer begins from the CRU address specified in bits 3 through 14 of workspace
register 12 to the least significant bit of the source operand and fills the source operand toward
the most significant bit. When the C field contains a zero, the number of bits to transfer is 16. If
the number of bits to transfer is from one to eight, the source operand address is a byte address.
Any bit in the memory byte not filled by the transfer is reset to a zero. When the number of
bits to transfer is from 9 to 16, the source operand address is a word address. If the source
operand address is odd, the address is truncated to an even address prior to data transfer. If the
transfer does not fill the entire memory word, unfilled bits are reset to zero. When the number
of bits to transfer is a byte or less, the bits transferred are compared to zero and the status bits
set/reset to indicate the results of the comparison. Also, when the bits to be transferred are a
byte or less, the odd parity bit sets when the bits establish odd parity.

Model 990/10 Computer: When the Privileged Mode bit (bit 7) of the ST register is set to 0, the
STCR instruction executes normally. When bit 7 is set to 1 and the effective CRU address is equal
to or greater than E00 16 , an error interrupt occurs and the instruction is not executed.

Status bits affected: Logical greater than, arithmetic greater than, and equal. When C is less than
9, odd parity is also set or reset. Status is set according to the full word or byte, not just those
bits transferred.

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

,
INTERRUPT

MASK

Execution results: Number of bits specified by C are transferred from consecutive CRU lines
beginning at the address in workspace register 12 to memory at address gas'

3-62 Texas Instruments Incorporated

~-------~ 943441-9701

Application notes: Use the STCR instruction to transfer a specified number of CRU bits from
the CRU to memory location supplied by the user as the source operand. Note that the CRU
base address must be in workspace register 12 prior to the execution of this instruction. Refer to
a subsequent paragraph for a detailed explanation and examples of the use of the STCR
instruction.

3.59 LOAD AND MOVE INSTRUCTIONS

Load and move instructions permit the user to establish the execution environment and the
execution results. These instructions manipulate data between memory locations and between
hardware registers and memory locations. The instructions are:

Instruction

Load Immediate

Load Interrupt Mask Immediate

Load Memory Map File

Load Workspace Pointer Immediate

Move Words

Move Bytes

Store Status

Store Workspace Pointer

Swap Bytes

3.60 LOAD IMMEDIATE LI

Op Code: 0200

Addressing mode: Format VIII

Format:
o

2 314 • 6 718

Syntax definition:

Mnemonic

LI

LIM I

LMF

LWPI

MOY

MOYB

STST

STWP

SWPB

9 10 1 1

[<label>]b ... LIb ... <wa>,<iop>b ... [<comment>]

Example:

Paragraph

3.60

3.61

3.63

3.62

3.64

3.65

3.67

3.68

3.66

112 13 141.

I ~ I I

GETIT LI 3,>17 LOAD WSR3 WITH 17HEX=23

Definition: Place the immediate operand (the word of memory immediately following the instruc­
tion) in the user specified workspace register (W field). The immediate operand is not affected by
the execution of this instruction. The immediate operand is compared to 0 and the L>, A>, and
EQ status bits are set or reset according to the result of the comparison.

3-63 Texas Instruments Incorporated

J2r7.7\ ______ _ ~ 943441-9701

Status bits affected: Logical greater than, arithmetic greater than, and equal.

o 2 3 4 5

Execution results: iop ~ (wa)

6 7 8 9 10 11 12 13 14 15

iii
INTERRUPT

MASK

Application notes: Use the LI instruction to place an immediate operand in a specified
workspace register. This is useful for initializing a workspace register as a loop counter. For
example, the instruction

LI 7,5

initializes workspace register 7 with the value 0005 16 , L> and A> are set while EQ is reset in this
example.

3.61 LOAD INTERRUPT MASK IMMEDIATE LIMI

Op Code: 0300

Addressing mode: Format VIII

Format:

Syntax definition:

[<Iabel>]b ... LIMIb ... <iop>b ... [<comment>]

Example:

LABEL LIMI 3 MASK LEVEL 3 AND BELOW

Definition: Place the low order four bits (bits 12-15) of the contents of the immediate operand (the
next word after the instruction) in the interrupt mask of the status register. The remaining bits of
the status register (0 through 11) are not affected.

Model 990110 Computer: When Privileged Mode bit (bit 7 of ST register) is set to 0, instruction
executes normally. When Privileged Mode bit is set to 1, an error interrupt occurs when execution
of an LIMI instruction is attempted and the interrupt mask is not loaded.

3-64 Texas Instrvments Incorporated

~-------~ 943441-9701

Status bits affected: Interrupt Mask

o 2 3 4 5 6 7 8 9 10 11 1213 14 15

ILjA>IEQ Ie lovlop I x I PRIMFWff/;1I~1E~~~T I
••••

Execution results: Places the four least significant bits of iop into the interrupt mask, the four
least significant bits of the ST register.

Application notes: Use the LlMI instruction to initialize the interrupt mask for a particular level
of interrupt to be accepted. For example, the instruction

LIMI 3

sets the interrupt mask to level three and enables interrupts at level 0, I, 2, and 3.

3.62 LOAD WORKSPACE POINTER IMMEDIATE LWPI

Op Code: 02EO

Addressing mode: Format VIII

Format:

Syntax definition:

[<Iabel>]b ... LWPIb ... <iop>b ... [<comment>]

Example:

NEWWP LWPI 02F2 02F2=NEWWP

Definition: Replace the contents of the WP with the immediate operand. The immediate operand
is the word of memory immediately following the LWPI instruction.

Status bits affected: None

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Execution results: iop ~ (WP)

3-65

I I i INTERRUPT MASK

Texas Instruments Incorporated

~-------~ 943441-9701

Application notes: Use the L WPI instruction to initialize or change the WP register to alter the
workspace environment of the program module. The user should use either a BLWP or a LWPI
instruction prior to the use of any workspace register in a program module.

3.63 LOAD MEMORY MAP FILE LMF

Op Code: 0320

Addressing mode: Format IX

Format:

o , 2 ',4 5 6 7 8

This instruction is only available on the Model 990/10 Computer with map option.

Syn tax definition:

[<label>]b ... LMFb ... <wa>,<m>b ... [<comment>]

Example:

NMAP LMF 3,1 LOAD MAP FILE 1

Definition: Place the contents of a six-word area of memory at the address in the workspace
register specified by wa into the memory map file designated by m.

Status bits affected: None

o I 2 3 4 5 6 7 8 9 10 II 12 13 14 15

IL>IA>IEQI C loviopi x IPR IMFVl!lA INI1E:~~T I
Execution results: When Privileged Mode bit (bit 7 of ST register) is set to 0: the contents of a
six-word area at address in wa are placed in map file m.

3-66 Texas Instruments Incorporated

~-------~ 943441-9701

When Privileged Mode bit is set to 1, an error interrupt occurs.

Application notes: Use the LMF instruction to load either map file 0 or I (map file 2 is loaded
by the long distance instructions). The map file is a set of six registers that maps the 32K word
addresses of the AU into the desired addresses of memory having a larger capacity. The six­
word area contains the following:

o 10 1 1 15
WORD 0

L1 I x x x x X

81

2 L2 Ix x x x X

3 82

4 L3 Ix x x x X

5 83

(A) 132204

Words 0, 2, and 4 contain values that are placed in limit registers L1, L2, and L3

To determine values to be placed in the limit registers, the following considerations apply:

• The 11 most significant bits of each memory word are placed in the II-bit limit
registers.

• The 5 least significant bits may be any value. (They are ignored.)

• The one's complement of the limit is placed in the memory word, and in the map file.

The values in words 1, 3, and 5 are the 16 most significant bits of the bias register values, and
are placed in registers Bl, B2, and B3.

To determine the values to be placed in the six-word memory area, consider the following:

• All addresses from 0 through limit I are contiguous in memory.

• All addresses greater than limit 1, up through limit 2 are contiguous in memory.

• All addresses greater than limit 2, up through limit 3 are contiguous in memory.

• All addresses greater than limit 3 are protected addresses.

• Place the one's complements of the limit values in words 0, 2, and 4.

• Place the 16 most significant bits of the bias address for the lowest group in the second
word.

• Place the 16 most significant bits of the bias address for the next group in the fourth
word.

• Place the 16 most significant bits of the bias address for the highest group in the sixth
word.

3-67 Texas Instruments Incorporated

~ -.-~-----­~ ~3441-9701

3.64 MOVE WORD MOV

Op Code: coon

Addressing mode: Format I

Format:

o
1 2 '145 6

Syntax definition:

[<lahel>]b ... MOVb ... <gas>,<gad>b ... [<comment>]

Example:

GET MOV @WORD, 2 GET A COPY OF WORD INTO WSR2

Definition: Replace the destination operand with a copy of the source operand. The AU
compares the resulting destination operand to zero and sets/resets the status bits according to the
comparison.

Status bits affected: Logical greater than, arithmetic greater than, and equal.

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Execution results: (gas) -+ (gad)

Application notes: MOV is used to move l6-bit words as follows:

Memory-to-memory (non register)

Load register (memory-to-register)

Register-to-register

Register-to-memory

3-68

iii
INTERRUPT

MASK

Texas Instruments Incorporated

~-------~ 943441-9701

MOV may also be used to compare a memory location to zero by the use of

MOV 7,7
JNE TEST

which would move register 7 to itself and compare the contents of register 7 to zero. If the
contents are not equal to zero, the equal status bit is reset and control transfers to TEST.
Another use of MOV, for example, is if workspace register 9 contains 3416 16 and location
ONES contains FFFF 16 , then

MOV @ONES,9

changes the contents of workspace register 9 to FFFF 16, while the contents of location ONES is
not changed. For this example, the logical greater than status bit sets and the arithmetic greater
than and equal status bits reset.

3.65 MOVE BYTE MOVB

Op Code: DOOO

Addressing mode: Format I

Format:

6

Syntax definition:

[<Iabel>]b ... MOVBb ... <gas>,<gad>b ... [<comment>]

Example:

NEXT MOVB 2, @BUFF (3) STORE CHARACTER IN EFFECTIVE BUFFER
ADDRESS

Definition: Replace the destination operand (byte) with a copy of the source operand (byte). If
either operand is addressed in the workspace register mode, the byte. addressed is the most sig­
nificant byte of the word (bits 0-7) and the least significant byte (bits 8-15) is not affected by
this instruction. The AU compares the destination operand to zero and sets/resets the status bits
to indicate the result of the comparison. The odd parity bit sets when the bits in the destination
operand establish odd parity.

3-69 Texas Instruments Incorporated

~~-------------------~ 943441-9701

Status bits affected: Logical greater than, arithmetic greater than, equal, and odd parity.

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Execution results: (gas) ~(gad)

I I i
INTERRUPT

MASK

Application notes: MOVB is used to move bytes in the same combinations as the MOV instruction
moves words. For example, if memory location lC1416 contains a value of 201616 and TEMP is
located at 1 C 15 16 , and if workspace register 3 contains 542B 16, then the instruction

MOVB @TEMP,3

Changes the contents of workspace register 3 to 162B 16 . The logical greater than, arithmetic
greater than, and odd parity status bits set while the equal status bit resets.

3.66 SWAP BYTES SWPB

Op Code: 06CO

Addressing mode: Format VI

Format:

Syntax definition:

[<1abel>]b ... SWPBb ... <gas>o ... [<comment>]

Example:

SWITCH SWPB 3 BYTE REVERSE WSR3

Definition: Replace the most significant byte (bits 0-7) of the source operand with a copy of the
least significant byte (bits 8-15) of the source operand and replace the least significant byte with
a copy of the most significant byte.

3-70 Texas Instruments Incorporated

~-------~ 943441-9701

Status bits affected: None

o 2 3 4 5 6 7 8 9 101112131415

Execution results: Exchanges left and right bytes of word (gas)-

INTERRUPT
M-ASK

Application notes: Use the SWPB instruction to interchange bytes of an operand prior to
executing various byte instructions. For example, if workspace register 0 contains 2144 16 and
memory location 214416 contains the value F31216 , then the instruction

SWPB *0+

Changes the contents of workspace register 0 to 2146 16 and the contents of memory location
214416 to 12F316 • The status register remains unchanged.

3.67 STORE STATUS STST

Op Code: 02CO

Addressing mode: Format VIII

Format:

Syntax definition:

[<labe1>]b ... STSTb ... <wa>b ... [<comment>]

Example:

LABEL STST 7 STORE STATUS IN WSR7

Definition: Store the status register contents in the specified workspace register.

Status bits affected: None

o 2 3 4 5 6 7 8 9 10 111213 14 15

Execution results: (ST) -+ (wa)

3-71

iii
INTERRUPT

MASK

Texas Instruments Incorporated

~-------~ 943441-9701

Application notes: Use the STST instruction to store the ST register contents when applicable.

3.68 STORE WORKSPACE POINTER STWP

Op Code: 02AO

Addressing mode: Format VIn

Format:

Syntax definition:

[<label>] 0 ... STWPO ... <wa>o ... [<comment>]

Example:

LABEL STWP 6 STORE WKSP POINTER IN WSR6

Definition: Place a copy of the workspace pointer contents in the specified workspace register.

Status bits affected: None

o 2 3 4 5 6 7 8 9 10 11 12 1314 15

Execution results: (WP) ~ (wa)

iii I INTERRUPT
MASK

Application notes: Use the STWP instruction to store the contents of the WP register as
applicable.

3.69 LOGICAL INSTRUCTIONS
The set of logical instructions permits the user to perform various logical operations on memory
locations and/or workspace registers. The instructions are:

Instruction

AND Immediate

Clear

Invert

OR Immediate

3-72

Mnemonic

AND!

CLR

INY

ORI

Paragraph

3.70

3.74

3.73

3.71

Texas Instruments Incorporated

J}n5\ ______ _ ~ 943441-9701

Instruction

Set to One

Set Ones Corresponding (OR)

Set Ones Corresponding, Byte (OR)

Set Zeros Corresponding

Set Zeros Corresponding, Byte

Exclusive OR

3.70 AND IMMEDIATE ANDI
Op Code: 0240

Addressing mode: Format VIII

Format:

Syntax definition:

Mnemonic

SETO

SOC

SOCB

SZC

SZCB

XOR

[<label>] b ... ANDIb ... <wa>,<iop>b ... [<comment>]

Example:

Paragraph

3.75

3.76

3.77

3.78

3.79

3.72

LABEL ANDI 3, >FFFO SET LOWER 4 BITS OF WSR3 TO ZERO

Definition: Perform a bit-by-bit AND operation of the 16 bits in the immediate operand and the
corresponding bits of the workspace register. The immediate operand is the word in memory
immediately following the instruction word. Place the result in the workspace register. The AU
compares the result to zero and sets/resets the status bits according to the results of the comparison.

Status bits affected: Logical greater than, arithmetic greater than, and equal.

o 2 3 4 5 6 7 8 9 10 11 1213 14 15

Execution results: (wa) AND iop -+ (wa)

3-73

i I I
INTERRUPT

MASK

Texas Instruments Incorporated

~~-------------------~ 943441-9701

Application notes: Use the ANDI instruction to perform a logical AND with an immediate
operand and a workspace register. Each bit of the 16-bit word of both operands follows the
truth table

Immediate Workspace AND
Operand Bit Register Bit Result

0 0 0

0 1 0

0 0

For example, if workspace register 0 contains D2ABI6 , the instruction

ANDI 0,>6D03

results in workspace register 0 changing to 4003 16. This AND operation on a bit-by-bit basis is

0110110100000011

1101001010101011

0100000000000011

(Immediate operand)

(Workspace register 0)

(Workspace register 0 result)

For this example, the logical greater than and arithmetic greater than status bits set while the
equal status bit resets. ANDI is also useful for masking out bits of a workspace register.

3.71 OR IMMEDIATE ORI

Op Code: 0260

Addressing mode: Format VIII

Format:

Syntax definition:

[<1abel>]b ... ORIb ... <wa>,<iop>b ... [<comment>]

Example:

LABEL ORI 3, >FOOO SET HIGH ORDER 4 BITS OF WSR3 TO ONES

Definition: Perform an OR operation of the 16-bit immediate operand and the corresponding
bits of the workspace register. The immediate operand is the memory word immediately following
the ORI instruction. Place the result in the workspace register. The AU compares the result to
zero and sets/resets the status bits to indicate the result of the comparison.

3-74 Texas Instruments Incorporated

~----------'---~ 943441-9701

Status bits affected: Logical greater than, arithmetic greater than, and equal.

Execution results: (wa) OR iop -+ (wa)

Application notes: Use the ORI instruction to perform a logical OR with the immediate operand
and a specified workspace register. Each bit of the l6-bit word of both operands is OR'd using
the truth table

Immediate Workspace OR
Operand Register Result

0 0 0

1 0

0

1 1

For example, if workspace register 5 contains D2ABI6 , then the instruction

ORI 5,>6D03

results in workspace register 5 changing to FF ABI6 • This OR operation on a bit-by-bit basis is

o 1 101 101 000 000 1

1 101 001 0 1 0 1 0 1 0 1

1 1 111 1 1 1 101 0 1 011

(Immediate operand)

(Workspace register 5)

(Workspace register 5 result)

For this example, the logical greater than status bit sets, and the arithmetic greater than and
equal status bits reset.

3.72 EXCLUSIVE OR XOR

Op Code: 2800

Addressing mode: Format III

Format:

9 .0 "112

3-75 Texas Instruments Incorporated

J2rJS\ ______ _ ~ 943441-9701

Syntax definition:

[<label>]b ... XORb ... <gas>,<wad>b ... [<comment>]

Example:

LABEL XOR @WORD, 3 EXCLUSIVE OR THE CONTENTS OF WORD
ANDWSB

Definition: Perform a bit-by-bit exclusive OR of the source and destination operands, and replace
the destination operand with the result. This exclusive OR is accomplished by setting the bits in
the resultant destination operand to a logic one when the corresponding bits of the two operands
are not equal. The bits in the resultant destination operand are reset to zero when the
corresponding bits of the two operands are equal. The AU compares the resultant destination
operand to zero and sets/resets the status bits to indicate the result of the comparison.

Status bits affected: Logical greater than, arithmetic greater than, and equal.

o 2 3 4 5 6 7 8 9 1 0 .1.1 1 2 1 3 1 4 1 5

INTERRUPT
MASK

Execution results: (gas) XOR (wad) ~ (wad)

(i.e. [(gad) AND NOT (wad)] OR [(wad) AND NOT (gad)] -+ (wad)

Application notes: Use the XOR instruction to perform an exclusive OR on two word operands.
For example, if workspace register 2 contains D2AA 16 and location CHANGE contains the value
6D0316 , then the instruction

XOR @CHANGE,2

results in the contents of workspace register 2 changing to BF A9 16. Location CHANGE remains
6D0316 • This is shown as

o 1 101 101 0 0 0 0 001

000 1 0 1 0 1 010 0

101 1 1 1 1 1 101 0 1 001

(Source operand)

(Destination operand)

(Destination operand result)

For this example, the logical greater than status bit sets while the arithmetic greater than and
equal status bits reset.

3.73 INVERT INV

Op Code: 0540

Addressing mode: Format VI

3-76 Texas Instruments Incorporated

~-------~ 943441-9701

Format:

Syntax definition:

[<label>}b ... INVb ... <gas>b ... [<comment>]

Example:

COMPL INV @BUFF(2) REPLACE BUFFER WORD WITH ONEs COMPLEMENT
OF DATA

Definition: Replace the source operand with the one's complement of the source operand. The
one's complement is equivalent to changing each zero in the source operand to a logic one and
each logic one in the source operand to a logic zero. The AU compares the result to zero and
sets/resets the status bits to indicate the result of the comparison.

Status bits affected: Logical greater than, arithmetic greater than, and equal.

o 2 3 4 5 6 7· 8 9 10 1 1 1 2 1 3 1 4 1 5

•••
iii

INTERRUPT
MASK

Execution results: The one's complement of (gas) is placed in (gas).

Application notes: INV changes each logic zero in the source operand toa logic one and each
logic one to a logic zero. For example, if workspace register 11 contains A54B 16 , then the
instruction

INV 11

changes the contents of workspace register 11 to 5AB4 16 • The logical greater than and
arithmetic greater than status bits set and the equal status bit resets.

3.74 CLEAR CLR

Op Code: 04CO

Addressing mode: Format VI

3-77 Texas Instruments Incorporated

~~-------------------~ 943441-9701

Format:

8 9 '0 "1'2.3.415 I I I I I I I 1 1 Ts 5

Syntax definition:

[<Iabel>lb ... CLRb ... <gas>b ... [<comment>]

Example:

PRELM CLR @BUFF(2) CLEAR EFFECTIVE BUFFER ADDRESS

Definition: Replace the source operand with a full, 16-bit word of zeros.

Status bits affected: None

o 2 3 4 5 6 7 8 9 10 11 12 1314 15

Execution results: 0 ~ (gas)

Application notes: Use the CLR instruction to set a full, 16-bit, memory addressable word to
zero. For example, if workspace register 11 contains the value 2001 16 , then the instruction

CLR *>B

results in the contents of memory location 2000 16 being set to O. Workspace register 11 and the
status register are unchanged.

3.75 SET TO ONE SETO

Op Code: 0700

Addressing mode: Format VI

Format:

o
1 2 314 5 6 718 9 • 0 "1.2 '3 14 .5

o I 0 I o. 0 I· I· I· . 0 H ~, . I ! I I

3-78 Texas Instruments Incorporated

~h\ ______ _ ~ 943441-9701

Syntax definition:

[<label>] I'> ... SETaI'> ... <ga >1'> ... [<comment>] . s

Example:

LABEL SETa 3 SET WSR3 TO-1

Definition: Replace the source operand with a 16-bit word logic one value.

Status bits affected: None

o 2 3 4 5 6 7 8 9 10 11 12.13 14 15

Execution results: FFFF 16 ~ (gas)

I i I
INTERRUPT

MASK

Application notes: Use the SETa instruction to initialize an addressable memory to a -1 value.
For example, the instruction

SETa 3

initializes workspace register 3 to a value of FFFF 16. The contents of the status register IS

unchanged. This is a useful means of setting flag words.

3.76 SET ONES CORRESPONDING SOC

Op Code: EOOO

Addressing mode: Format I

Format:

5 6

Syntax definition:

[<labe1>]b ... SOCb ... <gas>,<gad>b ... [<comment>]

Example:

LABEL SOC 3,2 OR WSR3 INTO WSR2

3-79 Texas Instruments Incorporated

~-------~ 943441-9701

Definition: Set to a logic one the bits in the destination operand that correspond to any logic
one bit in the source operand. Leave unchanged the bits in the destination operand that are in
the same bit positions as the logic zero bits in the source operand. The changed destination
operand replaces the original destination operand. This operation is an OR of the two operands.
The AU compares the result to zero and sets/resets the status bits to indicate the result of the
comparison.

Status bits affected: Logical greater than, arithmetic greater than, and equal.

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

IL>IA>IEQI c IOVIOpl x IpRIMFV1!lA 'NI1EA~JT I
•••

Execution results: Bits of (gad) corresponding to bits of (gas) equal to I are set to 1.

Application notes: Use the SOC instruction to OR the 16-bit contents of two operands. For
example, if workspace register 3 contains FF0016 and location NEW contains AAAA16 , then the
ins.truction

SOC 3,@NEW

changes the contents of location NEW to FF AA16 while the contents of work space register 3 is
unchanged. This is shown as

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 (Source operand)

o 1 0 1 0 0 1 0 1 0 1 0 1 0 (Destination operand)

1 1 1 1 1 1 1 1 1 0 1 0 1 010 (Destination operand result)

For this example, the logical greater than status bit sets and the arithmetic greater than and
equal status bits reset.

3.77 SET ONES CORRESPONDING, BYTE SOCB

Op Code: FOOO

Addressing mode: Format I

Format:

o

Syntax definition:

[<J.abel>]b ... SOCBb ... <gas>,<gad>b ... [<comment>]

Example:

LABEL SOCB 3,@DET OR WSR3 INTO BYTE AT LOCATION DET

3-80 Texas Instruments Incorporated

Jd7.5\ _~ _____ _ ~ ~3441-9701

Definition: Set to a logic one the bits in the destination operand byte that correspond to any
logic one in the source operand byte. Leave unchanged the bits in the destination operand that
are in the same bit positions as the logic zero bits in the source operand byte. The changed
destination operand byte replaces the original destination operand byte. This operation is an OR
of the two operand bytes. The AU compares the resulting destination operand byte to zero and
sets/resets the status bits to indicate the results of the comparison. The odd parity status bit sets
when the bits in the resulting byte establish odd parity.

Status bits affected: Logical greater than, arithmetic greater than, equal, and odd parity.

o 2 3 4 5 6 7 8 9 10. 11 12 13 14 15

L> A> EQ C OV

Execution results: Bits of (gas) corresponding to bits of (gas) equal to I are set to 1.

(i.e. (gad) OR (gas) -+ (gad))

Application notes: Use the SOCB instruction to OR two byte operands. For example, if
workspace register 5 contains the value FOl316 and workspace register 8 contains the value
AA2416 ' then the instruction

SOCB 5,8

changes the contents of workspace register 8 to FA2416 , while the contents of workspace
register 5 is unchanged. This is shown as

1 1 1 1 0 0 0 0 0 0 0 1 00 1 1

1010101 000 1 001 0 0

1 1 I 1 101 000 1 001 0 0

(Unchanged)

(Source operand)

(Destination operand)

(Destination operand result)

For this example, the logical greater than status bit sets while the arithmetic greater than, equal,
and odd parity status bits reset.

3.78 SET ZEROS CORRESPONDING SZC

Op Code: 4000

Addressing mode: Format I

Format:

° 6 7 I e

D

9 10."11213 IA t5

i I T: I ~ i I

3-81 Texas Instruments Incorporated

~-------~ 943441-9701

Syntax definition:

[<label>] b ... SZCb ... <gas>,<gad >b ... [<comment>]

Example:

LABEL SZC @MASK, 2 RESET BITS OF WSR2 INDICATED BY MASK

Definition: Set to a logic zero the bits in the destination operand that correspond to the bit
positions equal to a logic one in the source operand. This operation is effectively an AND
operation of the one's complement of the source operand and the destination operand. The AU
compares the resulting destination operand to zero and sets/resets the status bits to indicate the
results of the comparison.

Status bits affected: Logical greater than, arithmetic greater than, and equal.

o 2 3 4 5 6 7 8 9 10 11 121314 15

•••
I

INTERRUPT
MASK

Execution results: Bits of (gad) corresponding to bits of (gas) equal to 1 are set to O.

(i.e. [NOT (gas) AND (gad)] -+ (gad))

Application notes: Use the SZC instruction to turn off flag bits or AND the contents of the
one's complement of the source operand and the destination operand. For example, if workspace
register 5 contains 6D03 16 and workspace register 3 contains D2AA16 ' then the instruction

SZC 5,3

changes the contents of workspace register 3· to 92A816 while the contents of workspace register
5 remain unchanged. This is shown as

o 1 101 101 0 0 0 000 1 1

11000 001 0 1 010

100 1 001 0 1 0 1 0 1 000

(Source operand)

(Destination operand)

(Destination operand result)

For this example, the logical greater than status bit sets while the arithmetic greater than and
equal status bits reset.

3.79 SET ZEROS CORRESPONDING, BYTE SZCB

Op Code: 5000

Addressing mode: Format I

3-82 Texas Instruments Incorporated

Jd7.5\ ______ _ ~ 943441-9701

Format:

Syntax definition:

[<label>]b ... SZCBb ... <gas>,<gad>b ... [<comment>]

Example:

LABEL SZCB @MASK, @CHAR RESET BITS OF CHAR INDICATED BY MASK

Definition: Set to a logic zero the bits in the destination operand byte that correspond to the bit
positions equal to a logic one in the source operand byte. This operation is effectively an AND
operation of the one's complement of the source operand byte and the destination operand byte.
The AU compares the resulting destination operation byte to zero and sets/resets the status bits
to indicate the result of the comparison. The odd parity status bit sets when the bits in the
resulting destination operand byte establish odd parity. When the destination operand is
addressed in the workspace register mode, the least significant byte (bits 8-15) is unchanged.

Status bits affected: Logical greater than, arithmetic greater than, equal, and odd parity.

o 2 3 4 5 6 7 8 9 10 11 12 13 1415

L> A> EQ C OV OP X PR

Execution results: Bits of (gad) corresponding to bits of (gas) equal to 1 are set to O.

(i.e. [NOT (gas) AND (gad)] -+ (gad))

Application notes: The SZCB instruction is used for the same applications as SZC except bytes
are used instead of words. For example, if location BITS contains the value F018 16 , and location
TESTVA contains the value AA24 16 , then

SZCB @BITS,@TESTVA

changes the contents of TESTV A to OA2416 while BITS remains unchanged. This is shown as

1 000 0 0 0 0 1 100 0

001 0 000 1 001 0 0

000 0 0 000 1 001 0 0

(Unchanged)

(Source operand)

(Destination operand)

(Destination operand result)

3-83 Texas Instruments Incorporated

~-------~ 943441-9701

For this example, the logical greater than and arithmetic greater than status bits set while the
equal and odd parity status bits reset.

3.80 WORKSPACE REGISTER SHIFT INSTRUCTIONS
Workspace register shift instructions permit the shifting of the contents of a specified workspace
register from one to sixteen bits. The shifting instructions are:

Instruction Mnemonic Paragraph

Shift Right Arithmetic SRA 3.81

Shift Right Logical SRL 3.83

Shift Left Arithmetic SLA 3.82

Shift Right Circular SRC 3.84

For each of these instructions, if the shift count in the instruction is zero, the shift count is
taken from workspace register 0, bits 12 through l5.If the four bits of workspace register 0 are
equal to zero, the shift count is 16 bit positions. The value of the last bit shifted out of the
workspace register is placed in the carry bit of the ST register. The result is compared to zero
and the results of the comparison are shown in the logical greater than, arithmetic greater than,
and equal bits (bits 0 through 2) in the ST register. If a shift count greater than 15 is supplied,
the assembler fills in the four-bit field with the least significant four bits of the shift count.
SDSMAC gives a warning message when this occurs.

3.81 SHIFT RIGHT ARITHMETIC SRA
Op Code: 0800

Addressing mode: Format V

Format

Syntax definition:

910 "112 1314 1.
I b i i ~ i I

[<label>] 0 ... SRAo ... <wa>,<scnt>o ... [<comment>]

Example:

LABEL SRA 2, 3 SHIFT WSR2 RIGHT THREE BIT LOCATIONS

Definition: Shift the contents of the specified workspace register to the right for the specified
number of bit positions, filling vacated bit positions with the sign bit.

Status bits affected: Logical greater than, arithmetic greater than, equal, and carry.

3-84 Texas Instruments Incorporated

~~-------------------~ 943441-9701

Execution results: Shift the bits of (wa) to the right, extending the sign bit to fill vacated bit
positions. When SCNT is greater than 0, shift the number of bit positions specified by
SCNT. If SCNT is equal to 0, shift the number of bit positions contained in the four least
significant bits of workspace register O. When SCNT and the four least significant bits of
workspace register 0 both contain 0, shift 16 bit positions.

Application notes: An example of an arithmetic right shift is: If workspace register 5 contains
the value 822416 , and workspace register 0 contains the value F32616 ' then the instruction

SRA 5,0

changes the contents of workspace register 5 to FE0816 . The logical greater than and carry
status bits set while the arithmetic greater than and equal status bits reset. Additional examples
are shown in a subsequent paragraph.

3.82 SHIFT LEFT ARITHMETIC SLA

Op Code: OAOO

Addressing mode: Format V

Format:

Syntax definition:

91011112 t3 14 IS

~ I . I ~ I I

[<Iabel>]b ... SLAb ... <wa>,<scnt>b ... [<comment>]

Example:

LABEL SLA 2,1 SHIFT WSR2 LEFT ONE BIT LOCATION

Definition: Shift the contents of the specified workspace register to the left for the specified
number of bit positions while filling the vacated bit positions with logic zero values. Note that
the overflow status bit sets when the sign of the word changes during the shifting operation.

Status bits affected: Logical greater than, arithmetic greater than, etjual, carry, and overflow.

o 2 3 4 S 6 7 8 9 10 11 1213 14 1S

.•• A.

3-85

i I I
INTERRUPT

MASK

Texas Instruments Incorporated

~-------~ 943441-9701

Execution results: Shift the bits of (wa) to the left, filling the vacated bit positions with zeros.
When SCNT is greater than 0, shift the number of bit positions specified by SCNT. If SCNT is
equal to 0, shift the number of bit positions contained in the four least significant bits of
workspace register 0. When SCNT and the four least significant bits of workspace register ° both
contain 0, shift 16 bit positions.

Application notes: An example of an arithmetic left shift is: If workspace register 10 contains
the value 135716 , then the instruction

SLA 10,5

changes the contents of workspace register 1 ° to 6AE016 • The logical greater than, arithmetic
greater than, and overflow status bits set while the equal and carry status bits reset. Refer to a
subsequent paragraph for additional examples.

3.83 SHIFT RIGHT LOGICAL SRL

Op Code: 0900

Addressing mode: Format V

Format:

8 9 10 "1'2'3 14 15

I ~ I . I ! I I

Syntax definition:

[<label>]b ... SRLb ... <wa>,<scnt>b ... [<comment>]

Example:

LABEL SRL 3, 7 SHIFT WSR3 RIGHT SEVEN BIT LOCATIONS

Definition: Shift the contents of the specified workspace register to the right for the specified
number of bits while filling the vacated bit positions with logic zero values.

Status bits affected: Logical greater than, arithmetic greater than, equal, and carry.

Execution results: Shift the bits of (wa) to the right, filling the vacated bit positions with zeros.
When SCNT is greater than 0, shift the number of bit positions specified by SCNT. If SCNT is
equal to 0, shift the number of bit positions contained in the four least significant bits of
workspace register 0. When SCNT and the four least significant bits of workspace register °
both contain 0, shift 16 bit positions.

3-86 Texas Instruments Incorporated

~-------~ 943441-9701

Application notes: An example of a logical right shift is: If workspace register zero contains the
value FFEF16 , then the instruction

SRL 0,3

Changes the contents of workspace register 0 to 1 FFD16 . The logical greater than, arithmetic
greater than and carry status bits set while the equal status bit resets. Additional examples are
shown in a subsequent paragraph.

3.84 SIDFT RIGHT CIRCULAR SRC

Op Code: OBOO

Addressing mode: Format V

Format:

01 2314567,8 • 10 "112 13 .. "

~ i f ~ i I

Syntax definition:

[<Iabel>]t) ... SRCb ... <wa>,<Scnt>b ... [<comment>]

Example:

LABEL SRC 7, 16-3 SHIFT CIRC WSR 7 3 BIT LOCA nONS LEFT

Definition: Shift the specified workspace register to the right for the specified number of bit
positions while filling vacated bit positions with the bit shifted out of position 15.

Status bits affected: Logical greater than, arithmetic greater than, equal, and carry.

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Execution results: Shift the bits of (wa) to the right, filling the vacated bit positions with the bits
shifted out at the right. When SCNT is greater than 0, shift the number of bit positions specified
by SCNT. If SCNT is equal to 0, shift the number of bit positions contained in the four least
significant bits of workspace register O. When SCNT and the four least significant bits of work­
space register 0 both contain 0, shift 16 bit positions.

3-87 Texas Instruments Incorporated

A7.5\ ______ _ ~ 943441-9701

Application notes: An example of a circular right shift is: If workspace register 2 contains the
value FFEF 16 , then the instruction

SRC 2,7

changes the contents of workspace register 2 to DFFF 16' The logical greater than and carry status
bits set while the arithmetic greater than and equal status bits reset. Shift left circular is not imple­
mented since SRC can perform the same function: SLC x,n = SRC x,16-n. Refer to a subsequent
paragraph for additional application notes.

3.85 EXTENDED OPERATION XOP

Op Code: 2COO

Addressing mode: Format IX

Format:

o
• 10 "112 13 14 15

Syntax definition:

[<label>]b ... XOPb ... <gas>,<op>b [<comment>]

Example:

LABEL XOP @BUFF(4), 12 DO XOP12 ON WORD OF BUFFER SPECIFIED
BYWSR4

Definition: The op field specifies the extended operation transfer vector in memory. The two
memory words at that location contain the WP contents and PC contents for the software
implemented XOP instruction subroutine. The memory location for these two words is derived
by multiplying the op field contents by four and adding the product to 0040 16 , Note that the
two memory words at this location must contain the necessary WP and PC values prior to the
XOP instruction execution for software implemented instructions.

The effective address of the source operand is placed in workspace register 11 of the XOP
workspace. The WP contents are placed in workspace register 13 of the XOP workspace. The PC
contents are placed in workspace register 14 of the XOP workspace. The ST contents are placed
in workspace register 15 of the XOP workspace. The ST contents are placed in workspace
register 15 of the XOP workspace. Control is transferred to the new PC addre&s and the software
implemented XOP is executed. (XOP execution of software implemented XOP instruction is
similar to an interrupt trap execution.)

3-88 Texas Instruments Incorporated

~-------~ 943441-9701

Model 990/ 10 Computer: An extended operation may be alternatively implemented by
user-supplied hardware. When hardware is connected for the specified operation no context
switch occurs, and the hardware performs the operation. When a Model 990/10 Computer
performs a software-implemented extended operation, the Privileged Mode bit is set to O. When
the map option is included, the Map File bit is set to 0 also.

Status bits affected: Extended operation

Execution results: ga -+ (workspace register 11)
(OD40 16 + (op)*4) -+ (WP)
(0042 16 + (op)*4) -+ (PC)
(WP) -+ (workspace register 13)
(PC) -+ (workspace register 14)
(ST) ~ (workspace register 15)
0-+ ST8 }
0-+ ST7 990/10
1 -+ ST6

Application notes: Refer to a subsequent paragraph for a detailed example of the execution of a
software implemented XOP instruction.

3.86 LONG DISTANCE ADDRESSING INSTRUCTIONS
The long distance addressing instructions are available in the Model 990/ I 0 Computer with the
map option. These instructions enable accesses outside of the current memory map for a single
address. The instructions are:

Instruction

Long Distance Source

Long Distance Destination

3.87 LONG DISTANCE SOURCE LDS

Op Code: 0780

Addressing mode: Format VI

-
Format:

Mnemonic

3-89

LDS

LDD

Paragraph

3.87

3.88

Texas Instruments Incorporated

J2n.f\ _ :.:....:..:....~ ____ _ ~~3441-9701

Syntax definition:

[<label>lb ... LDSb ... <gas>b ... [<comment>]

Example:

LABEL LDS @SIXWD PREPARE TO USE LONG DISTANCE SOURCE

Definition: Place the contents of a six-word area of memory into map file 2, and use map file 2
in developing the source address of the next instruction. The instruction places the contents of
the six-word memory area at the effective address of the source operand in map file 2 in all
cases; the map file is not used when the source address of the following instr~ction i.s a
workspace register address, or when the following instruction is a B, BL, or BLWP InstructIOn.
The instruction inhibits all interrupts until the following instruction is executed.

Status bits affected: None.

o 1 2 3 4 5 6 7 8 9 10 11 1213 14 15

IL>IA>IEQ Ie IOV lopi x IPRIMFWlm I~~J~~~T I
Execution results: When Privileged Mode bit (bit 7 of ST register) is set to 0: The contents of a
six-word area at address gas are placed in map file 2, and the source address of the following
instruction is mapped with map file 2. (If Ts of the following instruction is equal to 0, or if
following instruction is B, BL, or BLWP instruction, new map is not used.)

When Privileged Mode bit is set to I: Error interrupt.

Application notes: Use the LDS instruction in the Privileged Mode to access an address outside
of the current map. The contents of the six-word area are placed in the Ll, L2, L3, B I, B2, and
B3 registers of map file 2 as shown in paragraph 3.63. The address to which the map file applies
is the source address of the next instruction. Placing an LDS instruction prior to an instruction
that has no destination operand, or an instruction having a workspace register address for the
destination operand does not result in an access outside of the current map.

3.88 LONG DISTANCE DESTINATION LDD

Op Code: 07 CO

Addressing mode: Format VI

Format:

8 9 10 "1'2 13 14 IS I I I Iii I 1 1 Ts 5

3-90 Texas Instruments Incorporated

12175\ ______ _ ~ 943441-9701

Syntax definition:

[<Ia bel>] b ... LD Db ... <gas >b . . . [<commen t>]

Example:

LABEL LDD @SIXWD PREPARE TO STORE LONG DISTANCE

Definition: Place the contents of a six-word area of memory into map file 2, and use map file 2
in developing the destination address of the next instruction. The instruction places the contents
of the six-word memory area at the effective address of the source operand in map file 2 in all
cases; the map file is not used when the following instruction has no destination operand, or
when the destination address has a workspace register address. The instruction inhibits all
interrupts until the following instruction is executed.

Status bits affected: None.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I++QI +vH x HMFWI~ ,J~;:~~T I
Execution results: When Privileged Mode bit (bit 7 of ST register) is set to 0: the contents of a
six-word area at address gas are placed in map file 2, and the destination address of the following
instruction is mapped with map file 2. (If T d of the following instruction is equal to 0, or if the
destination address is a workspace register address, the new map is not used.)

When Privileged Mode bit is set to l: Error interrupt.

Application notes: Use the LDD instruction in the Privileged Mode to access an address outside
of the current map. The contents of the six-word area are placed in the L1, L2, L3, B l, B2, and
B3 registers of map file 2 as shown in paragraph 3.63. The address to which the map file applies
is the destination address of the next instruction. Placing an LDD instruction prior to an
instruction that has no destination operand, or an instruction having a workspace register address
for the destination operand does not result in an access outside of the current map.

3.89 PROGRAMMING EXAMPLES
The remaining paragraphs of this section describe programming examples that supplement the appli­
cation notes in the instruction descriptions. Programming examples are only included for those
instructions for which the application notes require additional explanation.

3-91 Texas Instruments Incorporated

J2t1.s\ ______ _ ~ 943441-9701

3.89.1 ABS INSTRUCTION. Since the ABS instruction compares the operand to zero prior to any
modification of the operand, the ABS instruction may be used to test a switch. The following
example program illustrates this use of the instruction. A word of memory at location SWITCH
is used to indicate whether or not a subroutine at location SUBR is being executed. Subroutine
SUBR is used by several programs, but only one may use it at a time. When the subroutine is in
use, location SWITCH contains one, and other programs may not transfer control to location
SUBR. When control returns from the subroutine, location SWITCH is set to -1, making subroutine
SUBR available again.

The first instruction would be used in the initialization portion, to make the subroutine available
initially. The four instructions at location TEST would be included in each program that calls
the subroutine. These instructions branch to location CALL when location SWITCH contains -1,
setting location SWITCH to + 1 after testing its value. Any attempt to access the subroutine before
its completion results in the program entering a delay mode, retesting following each delay interval.

A BL instruction at location CALL transfers control to the subroutine, and stores the address of
the SETO instruction in workspace register 11. When the subroutine returns control, the SETO
instruction sets location SWITCH to -1, so that the next time any calling program tests the location,
a transfer to the subroutine occurs. The code is as follows.

TEST

CALL

SUBR

SWITCH

TIMDLY

SETO

ABS
JLT
XOP
JMP

BL
SETO

@SWITCH

@SWITCH
CALL
@TMDLY,15
TEST

@SUBR
@SWITCH

INITIALIZES SWITCH NEGATIVE!

TEST SWITCH2
IF NEGATIVE, TRANSFER3
IF NOT, WAIT'
TEST AGAIN

USE SUBROUTINE
RESET SWITCH5

SUBROUTINE ENTRY

B *11
DATA 0

DATA >200,10

SUBROUTINE RETURN
STORAGE AREA FOR SWITCH

TIME DELAY SUPERVISOR
CALL BLOCK

NOTE

1. Set SWITCH to all ones, making it negative.

2. If SWITCH negative, set to positive value to prevent
subsequent entry.

3. If value in SWITCH was negative, the JLT instruction
transfers control.

4. Supervisor call pointing to data block defining time delay request.
Used to wait for a time period before retesting SWITCH. While in

3-92 Texas Instruments Incorporated

~-------~ 943441-9701

a time delay, other programs can be executed, thus leaving SUBR
available for use. Time Delay Supervisor calls are supported by the
DXIO and TX990 Operating Systems. Reference either the DX 10
Operating System Programmer's Guide or the TX990 Operating
System Programmer's Guide.

5. Upon return, reset SWITCH to negative value to perrriit future use.

3.89.2 SIDFTING INSTRUCTIONS. There are 4 shifting instructions available with the Model
990 Computer that permit the user to shift the contents of a specified workspace register from
one to sixteen consecutive bit positions.

The four shifting instructions are:

• Shift Left Arithmetic (SLA)

• Shift Right Arithmetic (SRA)

• Shift Right Circular (SRC)

• Shift Right Logical (SRL).

3.89.2.1 Shift Left Arithmetic. This shifting instruction shifts the indicated workspace register a
specified number of bits to the left. For example, the instruction

SLA 5,1

would shift the contents of register five one bit to the left. The carry status bit contains the value
shifted out of bit position zero and the jump instructions JOC and JNC permit the user to test the
shifted bit. The overflow status bit sets when the sign of the contents of the register being shifted
changes during the shift operation. If register five contained

0100111100000111

before the above instruction, the results of the instruction execution would be

1001111000001110

and the carry status bit would contain a zero and the overflow status bit would set because the con­
tents changed from positive to negative (bit zero equal to zero changed to equal to one). If this shift
sign change is important, the user could" insert a JNO instruction to test the overflow condition. If
there is no overflow, control transfers to the normal program sequence. Otherwise, the next instruc­
tion is then executed.

It is possible to construct double-length shifts with the SLA instruction, which could shift two or
more words in a workspace. The following code will shift two consecutive workspace registers.

• Assumptions:

1. The contents of workspace registers 1 and 2 are shifted one bit position.

2. Additional code could be included to execute the code once for each bit shift re­
quired, when shifts of more than one bit position are required. The additional code
must include a means of testing that the desired number of shifts are performed.

3. Additional code tests for overflow from workspace register 1, to branch to an error
routine at location ERR when overflow occurs.

3-93 Texas Instruments Incorporated

943441-9701 ~ ---

EXIT

• Code:

SLA
JOC
SLA
JNC
INC

INC

ERR NOP

1,1
ERR
2,1
EXIT
I

I

SHIFT WI ONE BIT

SHIFT W2 ONE BIT
TRANSFER IF NO CARRY
TRANSFER BIT FROM W2 to WI

CONTINUE WITH PROGRAM

3.89.2.2 Shift RiJilit Arithmetic. This shifting instruction shifts the contents of a workspace
register right a specified number of bits and extends the sign bit (bit zero) at the logic level that
existed prior to the shift. The carry status bit contains the last bit shifted out of bit 15 of the
workspace register. For example, the instruction

SRA 5,3

would shift the contents of workspace register five three bits to the right. If workspace register
five contained

1100000011110000

prior to the shift, the results of this instruction would be

11il100000011110

and the carry status bit would contain a logic zero for the last shifted bit.

3.89.2.3 Shift Right Circular. The SRC instruction shifts the contents of a workspace register a
specified number of bits to the right and transfers the bits shifted off the right end of the
workspace into the left end of the workspace register. The carry status bit contains the last bit
shifted out of bit 15 of the workspace register. For example, the instruction

SRC 6,5

would shift the contents of register six, five bits to the right and transfer the five bits shifted off
the right end to the first five bits of workspace register six. For this example, if workspace register
six contained

1100110011110101

before this instruction was executed, workspace register six would contain

1010111001100111

and the carry status bit would contain a logic one from the last bit shifted in workspace register
six.

3-94 Texos Instruments Incorporoted

~-------~ 943441-9701

3.89.2.4 Shift Right Logical. The SRL instruction shifts the contents of a special workspace
register to the right for a specified number of bits and fills the vacated bit positions on the left end
of the workspace with zeros. The carry status bit contains the last bit shifted out of bit 15 of the
workspace register. For example, the instruction.

SRL 5,8

would shift the contents of workspace register five eight bits to the right and would fill the first
eight bits of the word with zeros. If the workspace register contained

1000100011111000

prior to the SRL instruction, the contents of workspace register five would be

0000000010001000

and the carry status bit would contain a logic one for the last bit shifted off the right end of
workspace register five.

3.89.3 INCREMENTING AND DECREMENTING. There are two decrement and two increment
instructions that may be used for various types of control when passing through a loop, indexing
through an array, or operating within a group of instructions.

The four incrementing and decrementing instructions available for use with the 990 Computer
are:

• Decrement (DEC)

• Decrement By Two (DECT)

• Increment (INC)

• Increment By Two (INCT).

The increment and decrement instructions are useful for indexing byte arrays and for counting
byte operations. The increment and decrement by two instructions are useful for indexing word
arrays and for counting word operations. The following paragraphs provide some examples of
these operations.

3.89.3.1 Increment Instruction Example. Since the INC instruction is useful in byte operations,
an example problem searches a character array for a character with odd parity. The last character
contains zero to terminate the search. Begin the search at the lowest address of the array and
maintain an index in a workspace register. The character array for this example is called Al (also
the relocatable address of the array). The code for a solution to this problem is:

SETO
SEARCH INC

ODDP

MOVB
JOP
JNE

1
1
@Al(l),2
ODDP
SEARCH

SET COUNTER INDEX TO-l
INCREMENT INDEX
GET CHARACTER
JUMP IF FOUND
CONTINUE SEARCH IF NOT ZERO

3-95
Texas Instruments Incorporated

~~-------------------~ 943441-9701

3.89.3.2 Decrement Instruction Example. To illustrate the use of a DEC instruction in a byte
array, this example problem inverts a byte array and places the results in another array of the
same size. This example inverts a 26-character array called Al and places the results in array A2.
The contents of Al are defined with a data TEXT statement to be as follows:

Al TEXT 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

Array A2 is defined with the BSS statement as follows:

A2 BSS 26

The sample code for the solution is:

INVRT

LI
LI
MOVB
DEC
JGT

5,26
4,A2
@Al(5),*4+
5
INVRT

COUNTER AND INDEX FOR Al
ADDRESS OF A2
INVERT ARRA yl
REDUCE COUNTER
CONTINUE IF NOT COMPLETE

NOTE

1. @Al(5) addresses elements of array Al in descending order as
workspace register five is decremented. *4+ addresses array
A2 in ascending order as workspace register four is
incremented.

Array A2 would contain the following as a result of executing this sequence of code:

A2 ZYXWVUTSRQPONMLKJIHGFEDCBA

Even though the result of this sequence of code is trivial, the example use of the MOVB
instruction, with indexing by workspace register five, and the result incrementally placed into A2
with the auto-increment function can be useful in other applications.

The JGT instruction used to terminate the loop allows workspace :r.:egister 5 to serve both as a
counter and as an index register.

A special quality of the DEC instruction allows the programmer to simulate a jump greater than or
equal to zero instruction. Since DEC always sets the carry status bit except when changing from
zero to minus one, it can be used in conjunction with a JOC instruction to form a JGE loop. The
example below performs the same function as the preceding example:

Al TEXT
A2 BSS

LI
LI

INVRT MOVB
DEC
JOC

'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
26
5,25
4,A2
@Al(5),*4+
5
INVRT

COUNTER AND INDEX FOR Al t
ADDRESS OF A2
INVERT ARRAY
REDUCE COUNTER
CONTINUE IF NOT COMPLETE

3-96 Texas Instruments Incorporated

~-------~ 943441-9701

tNOTE

Since the use of JOC makes the loop execute when the counter is
zero, the counter is initialized to 25 rather than 26 as in the preced­
ing example.

3.89.3.3 Decrement By Two Instruction Example. To illustrate the use of a DECT instruction
in processing word arrays, the example problem adds the elements of a word array to the
elements of another word array and places the results in the second array. The contents of the
two arrays are initialized as follows:

Al
A2

DATA
DATA

500,300,800,1000,1200,498,650,3,27,0
36,192,517,29,315,807,290,40,130,1320

The sample code that adds the two arrays is as follows:

SUMS
LI
A
DECT
JGT

4,20
@Al-2(4),@A2-2(4)
4
SUMS

NOTE

INITIALIZE COUNTER 1

ADD ARRAYS2
DECREMENT COUNTER BY TWO
REPEAT ADDITION

Addressing of the two arrays through the use of the @ sign is
indexed by the counter, which is decremented after each
addition.

The contents of the A2 array after the addition process is as follows:

A2 536,492,1317,1029,1515,1305,940,43,157,1320

There is another method by which this addition process may be accomplished. This method is
shown in the following code:

LI 4,10 INITIALIZE COUNTER 1

LI 5,Al-2 LOAD ADDRESS OF A12
LI 6,A2-2 LOAD ADDRESS OF A22

SUMS A *5+,*6+ ADD ARRAYS3
DEC 4 DECREMENT COUNTER
JGT SUMS REPEAT ADDITION4

NOTE

1. Counter preset to 10 (the number of elements in the array).

2. This address will be incremented each time an addition takes
place. The increment is via the auto-increment function (+).

3. The * indicates that the contents of the register is to be used
as an address and the + indicates that it will be automatically
incremented by two each time the instruction is executed.

3-97 Texas Instruments Incorporated

Jd75\ ______ _ ~ 943441-9701

4. Workspace register four will only be greater than zero for ten
executions of the DEC instruction and control will be
transferred to SUMS nine times after the initial execution.

The contents of array A2 are the same for this method as for the first.

3.89.4 SUBROUTINES. There are two types of subroutine linkage available with the Model 990
Computer. One type uses the same set of workspace registers that the calling routine uses, and is
called a common workspace subroutine. The BL instruction stores the contents of the program
counter and transfers control to the subroutine. Another type is called a context switch
subroutine. The BLWP instruction stores the contents of the WP register, the program counter,
and the status register. The instruction makes the subroutine workspace active and transfers
control to the subroutine.

3.89.4.1 Common Workspace Subroutine Example. Figure 3-1 shows an example of memory
contents prior to a BL call to a subroutine. The contents of workspace register 11 is not
important to the main routine. When the BL instruction is executed, the CPU stores the contents
of the PC in workspace register 11 of the main routine and transfers control to the instruction
located at the address indicated by the operand of the BL instruction. This type of subroutine
uses the main program workspace. Figure 3-2 shows the memory contents after the call to the
subroutine with the BL instruction.

When the instruction at location 113016 is executed (BL @RAD), the present contents of the
PC, which point to the next instruction, are saved in workspace register 11. WRII would then
contain an address of 113416 . The PC is then loaded with the address of label RAD, which is
address 222016 . This example subroutine returns to the main program with a branch to the
address in WRII (B *11).

3.89.4.2 Context Switch Subroutine Example. Figure 3-3 shows the example memory contents
prior to the call to the subroutine. The contents of workspace registers 13, 14, and 15 are not
significant. When the BLWP instruction is executed at location 0300, there is a context switch
from the main program to the subroutine. The context switch then places the main program PC,
WP, and ST register contents in workspace registers 13, 14, and 15 of the subroutine. This saves
the environment of the main program for return. The operand of the BLWP instruction specifies
that the address vector for the context switch is in workspace registers 5 and 6. The address in
workspace register 5 is placed in the WP register and the address in workspace register 6 is placed
in the PC.

After the instruction at location 0300 is executed, the memory contents are shown in figure 3-4.
This illustration shows the subroutine in control, with the WP pointing to the subroutine
workspace and the PC pointing to the first instruction of the subroutine. The contents of the
status register are not reset prior to the execution of the first instruction of the subroutine, so
the status .indicated will actually be the status of the main program execution. A subroutine may
then execute in accordance with the status of the main program.

This example subroutine contains a RTWP return from the subroutine. The results of executing
the RTWP . instruction are shown in figure 3-5. Control is transferred to the main program at the
instruction following the BLWP to the subroutine. The status register is restored from workspace
register 15 and the workspace pointer points to the workspace of the main program.

3-98 Texas Instruments Incorporated

~~-------------------~ 943441-9701

HARDWARE

REGISTERS

MEMORY
MEMORY

ADDRESS C C

r-----------------------~
~0100

I
MAIN PROGRAM WORKSPACE (WRO)

WP __ 0_'0_0 ____ 1- - --J
.... ~~

~ ___ ----Il(WRl1l i
PC 1134

ST

(A}128615A

EXECUTION

STATUS

2220

MAIN PROGRAM

BL @RAD
JNE FIX

• • •
RAD •••

SUBROUTINE AREA

B

• • • •
* II

Figure 3-1. Common Workspace Subroutine Example

HARDWARE

REGISTER

WP 0100

;;~~ II-______ M_E_M_O_R_Y _____ --ItwROl

~ __ J ~ 1
-------~ J; 1134 1 (WR 11)

PC r---2-22-0----~ - - -, r · · · · t
ST

EXECUTION

STATUS

(A)128616A

: :~::I :~I::::GRAM I
I 1134 JNE FIX

l_2220~ RAD I
SUBROUTINE AREA r B '11 1

Figure 3-2. PC Contents after BL Instruction Execution

3-99 Texas Instruments Incorporated

J2r7~ /.~-=-=---____ _ ~ ~3441-9701

MEMORY MEMORY

ADDRESS } ~

r-o lOO ~"'--------------t;{, (WRO)

PC 0302

ST
EXECUTING

STATUS

~ ___ -J

(WRn)=WORKSPACE REGISTER

OF MAIN PROGRAM

(WRn)S = WORKSPACE REGISTER

OF SUBROUTINE

(A)t 32205

"101 0 0 0 0 ,. ~

0220 (WRS)

0700 (WR6)

0220 1 ... : ______ 0

_

0

_

0

_

0

_____ -;'1 (WRO)S

";' •••• "!J

,.~

••••

MAIN PROGRAM AREA

BLWP 5

START
o
o

SUBROUTINE AREA
o
o
o

RTWP

"..,

(WR13)S

(WR14)S

(WR1S)S

Figure 3-3. Context Switch Subroutine Example

When the calling program's workspace contains data for the subroutine, this data may be
obtained by using the indexed memory address mode indexed by workspace register 13. The
address used is equal to two times the number of the workspace register that contains the
desired data. The following instruction is an example:

MOV @IO(l3),RIO

3.89.4.3 Passing Data to Subroutines. When a subroutine is entered with a context switch (BLWP)
data may be passed using either the contents of workspace register 13 or 14 of the subroutine
workspace. Workspace register 13 contains the memory address of the calling program's workspace.
The calling program's workspace may contain data to be passed to the subroutine. Workspace
register 14 contains the memory address of the next memory location following the BLWP in­
struction. This location and following locations may contain data to be passed to the subroutine.

3-100
Texas Instruments Incorporated

~~-------------------~ 943441-9701

HARDWARE

REGISTERS

MEMORY i MEMORY
ADDRESS ~

0100 .. ---------------1 (WRO)

, I-' • • • • "I-'

0220 (WR5)

0700 (WR6)

'v ~~

:_0220 11----------------11 (WRO)S

'~ •••• "~ I
I
I

WP ~_0_2_20 ____ _'r - - ~
0100 (WRI3)S

0302 (WRI4)S

PC 0700 ~---,
~---------' I

~V

ST
EXECUTING

STATUS

(A) 1 28618A

I
I
I
I
I
I
I
I

L-'0700

T

EXECUTING STATUS

••••

MAIN PROGRAM AREA
•
•

BLWP 5
•
•
•
•

START
• ••••

SUBROUTINE AREA
• •

RTWP

(WR 15)5

"'1"

Figure 34. After Execution of BLWP Instruction

The contents of workspace register 5 of the calling program's workspace (bytes 10 and 11
relative to the workspace address) are placed in workspace register 10 of the subroutine
workspace. This method of data access by subroutines is appropriate for re-entrant procedures.

The following example shows passing of data to a subroutine by placing the data following the
BLWP instruction:

BLWP
DATA
DATA
DATA
JEQ

@SUB
VI
V2
V3
ERROR

3-101

SUBROUTINE CALL
DATA
DATA
DATA
RETURN FROM SUBROUTINE, TEST
FOR ERROR (Subroutine sets the
EQUAL status bit to one for error.)

Texas Instruments Incorporated

J2n5\ ______ _____ ~ 943441-9701

MEMORY MEMORY

AOORESS,t ~.
: -.01 0l ... _____________ -I;lCWRO)

I
I

'IJ ••••

0220

'~
(WRS)

HARDWARE

REGISTERS

I
I 0700 (WR6)

~ __ r--.J WP _ 0100 ~ ~ ~ •••• ~ ~

PC

ST

(A)132206

SUB

SUBWS
SUBPRG

........ 02
........

"--'-1 0302 I~ ,
L-____ ~ 'l '

I ,
EXECUTING L I

~ ___ ST_A_T_U_S __ ~r__ _I_

00

~

.........

.......

I --
I

(WRO)S

~ •••• ~ ~
0100 (WRI3)S

0302 (WRI4)S

EXECUTING STATUS (WRIS)S

i o~;t~------------~
I 030J

,. u "u ••••

MAIN PROGRAM AREA
•

4,030Q

071
I

•
•
•

BLWP 5
•
•
•
•

START ••••
• •

SUBROUTINE AREA
• • • •

RTWP

Figure 3-5. After Return Using the RTWP Instruction

DATA

BSS
MOV
MOV
MOV

SUBWS,SUBPRG

32
*14+,1
*14+,2
*14+,3

ENTRY POINT FOR SUB
AND SUB WRKSPCE

FETCH VI PLACED IN WRI
FETCH V2 PLACED IN WR2
FETCH V3 PLACED IN WR3

RTWP RETURN FROM SUBROUTINE

3-102 Texas Instruments Incorporated

J175\ ______ _ ~ 943441-9701

The three MOV instructions retrieve the variables from the main program module and place them
in workspace registers one, two, and three of the subroutine.

When the BLWP instruction is executed, the main program module status is stored in workspace
register 15 of the subroutine. If the subroutine returns with a RTWP instruction, this status is
placed in the status register after the RTWP instruction is executed. The subroutine may alter
the status register .contents prior to executing the RTWP instruction. The calling program can
then test the appropriate bit of the status word, the equal bit in this example, with jump
instructions.

A BL instruction can also be used to pass parameters to a subroutine. When using this instruction,
the originating PC value is placed in workspace register 11. Therefore, the subroutine must fetch the
parameters relative to the contents of workspace register 11 rather than the contents of workspace
register 14 as in the BLWP example. The following example demonstrates parameter passing with
a BL instruction:

BL
DATA

JEQ

SUBR EQU
MOV

MOV

@SUBR
PARMl,PARM2

ERROR

$
*Rl1+,RO

*Rll+,Rl

B * 11

BRANCH TO SUBROUTINE
PASSED PARAMETERS STORED IN NEXT TWO
MEMORY WORDS
TEST FOR ERROR (Subroutine sets the Equal
status bit to one for error)

GET VALUE OF FIRST PARAMETER AND PUT
IN WRO
GET VALUE OF SECOND PARAMETER AND PUT
IN WRI (Rll is incremented past the locations of
the two data words and now indicates the address of
the next instruction in main program)

3.89.5 INTERRUPTS. Either eight (990/4, TMS 9900) or sixteen (990/1 0) priority vectored in­
terrupt levels are implemented in the Model 990 Computer. The contents of the interrupt mask
in the status register define the interrupt level. Low-order memory, address as 0 through 3F, is
reserved for transfer vectors used by the interrupts (table 3-4). When an interrupt request at an
enabled level occurs, the contents of the transfer vector corresponding to the level are used to enter
a subroutine to serve the interrupt.

The reserved memory locations are shown on the memory map (figure 2-3). Two memory words
are reserved for each interrupt level. The first of the two words for a given level contains an
address that is placed in the WP when the interrupt is requested and enabled. The second contains
the entry point of the interrupt subroutine for that level; its contents are placed in the PC. If an
executive is in use, it places the transfer vectors for pre-defined interrupts and for devices supported
by the executive in the reserved memory locations. The user need not be concerned with transfer
vectors for interrupts except for programs that do not execute under an executive or for external
devices not supported by the executive. Similarly, the executive includes interrupt subroutines
for pre-defined interrupts and for supported devices. The user must supply interrupt subroutines
when the executive is not used and for devices that are not supported by the executive.

3-103 Texas Instruments Incorporated

~ 943441-9701

Table 3-4. Interrupt Vector Addresses

Memory Address Interrupt Vector Vector Contents Typical Assignment

0000 0 WP address for interrupt 0 Power On

0002 0 PC address for interrupt 0

0004 WP address for interrupt 1 Power Failing

0006 1 PC address for interrupt 1

0008 2 WP address for interrupt 2 Error

OOOA 2 PC address for interrupt 2

OOOC 3 WP address for interrupt 3 External Device

OOOE 3 PC address for interrupt 3

0010 4 WP address for interrupt 4 External Device

0012 4 PC address for interrupt 4

0014 5 WP address for interrupt 5 External Device or
Line Frequency Clock

0016 5 PC address for interrupt 5

0018 6 WP address for interrupt 6 External Device

001A 6 PC address for interrupt 6

001C 7 WP address for interrupt 7 External Device or Line
Frequency Clock (990/4)

001E 7 PC address for interrupt 7

0020 8 WP address for interrupt 8 External Device

0022 8 PC address for interrupt 8

0024 9 WP address for interrupt 9 External Device

0026 9 PC address for interrupt 9

0028 10 WP address for interrupt 10 External Device

002A 10 PC address for interrupt 10

002C 11 WP address for interrupt 11 External Device

002E 11 PC address for interrupt 11

0030 12 WP address for interrupt 12 External Device

0032 12 PC address for interrupt 12

0034 13 WP address for interrupt 13 External Device

0036 13 PC address for interrupt 13

0038 14 WP address for interrupt 14 External Device

003A 14 PC address for interrupt 14

003C 15 WP address for interrupt 15 External Device or Line
Frequency Clock (990/10)

003E 15 PC address for interrupt 15

3.89.5.1 General Interrupt Structure. The interrupt levels, numbered 0 through 15, determine'
the interrupt priority. Level 0 has the highest priority and level 15 the lowest. The contents of
the interrupt mask, bits 12 through 15 of the ST register, determine the enabled interrupt levels.
Table 3-5 shows the interrupt levels enabled by the contents of the interrupt mask. Note that
level 0 cannot be disabled since the level contained in the mask is always enabled.

3-104 Texas Instruments Incorporated

~-------~ 943441-9701

Status Register

Bits 12-15

°
1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

° 0,1

0,1,2

0,1,2,3

Table 3-5. Interrupt Mask

Interrupt Levels Enabled

0,1,2,3,4

0,1,2,3,4,5

0,1,2,3,4,5,6

0,1,2,3,4,5,6,7

0,1,2,3,4,5,6,7,8

0,1,2,3,4,5,6,7,8,9

0,1,2,3,4,5,6,7,8,9,10

0,1,2,3,4,5,6,7,8,9,10,11

0,1,2,3,4,5,6,7,8,9,10,11,12

0,1,2,3,4,5,6,7,8,9,10,11,12,13

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

Mask Set
By Interrupt

Level

0,1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

3.89.5.2 Interrupt Sequence. The level of the highest priority pending interrupt request is
continually compared with the interrupt mask contents. When the level of the pending request is
equal to or less than the mask contents (equal or higher priority) the interrupt is taken after the
currently executing instruction has completed.

The workspace defined for the interrupt subroutine becomes active and the entry point is placed
in the program counter. The CPU also stores the previous contents of the WP register in the new
workspace register 13, the previous contents of the program counter in the new workspace
register 14, and the contents of the ST register in the new workspace register 15. This preserves
the program environment existing when the interrupt is taken. No additional interrupt is taken
until the first instruction of the interrupt subroutine is completed. Thereafter, interrupts of
higher priority can interrupt processing of the current interrupt.

After storing the ST register contents, the CPU subtracts one from the level of the interrupt
taken and places the result in the interrupt mask, disabling the current interrupt level, and
leaving only higher priority levels enabled. Should a higher priority level interrupt be taken, and
the original interrupt request remain active when the return from the higher priority level
interrupt subroutine occurs, the original interrupt remains disabled and is not taken again.
Control returns to the interrupt subroutine at the point at which the higher priority interrupt
occurred.

3-105 Texas Instruments Incorporated

~------~ ~ 943441-9701

3.89.5.3 Pre-Defined Interrupts. Level 0 is pre-defined as the power on interrupt in the TMS 9900
Microprocessor and all Model 990 Computers. The other pre-defined levels vary in the Model 990
Computers. Refer to the Model 990 Computer Hardware Reference Manual for the levels that are
pre-defined in each model. The total number of levels is 8 in the 990/4 Computer and is 16 in the
Model 990/10 or TMS 9900 Microprocessor. The available interrupt levels that are not pre-defined
are available for assignment to devices on the CRU, or on the CRU and the TILINE in the case of
the Model 990/10. Several interrupt lines may be combined at one level. Any interrupt request
must remain active until the interrupt is taken, and must be reset before the interrupt subroutine
is completed.

3.89.5.4 CPU Error Interrupt. A CPU error interrupt is defined as an interrupt level two. On the
990/4 Computer, two errors cause a CPU error interrupt: a memory parity error or a memory
protection violation. Either an SBO or SBZ instruction to bit 12 of the Programmer's panel base
address clears a memory parity error interrupt. The base address is selected by placing a I FE0 16

in register 12.

If the optional write-protect hardware is installed, a CPU interrupt may be caused by a write­
protect violation as well as a memory parity error. To determine which condition caused the
interrupt, the bit at CRU base address IF A0 16 can be sensed. If the bit is zero, a parity error
has occurred and can be cleared as previously described. If it is a one, a write-protect error has
occurred. This error is cleared by setting any of the sixteen bits at CRU base address IFA016 to
a one.

On the 990/10 Computer, anyone of five conditions can cause a CPU error interrupt. Table 3-6
contains a list of these conditions. To isolate the cause of the error, read the CRU Error Register.
The CRU register is addressed by placing a 1 FCO 16 in register 12. An individual error is cleared by
addressing the appropriate CRU bits as listed in table 3-6. The memory mapping error is cleared by
addressing bit 4 at the CRU base address IFAO I6 , the CRU base address used to control the
mapping hardware. Either the SBZ or SBO instruction is used to clear the interrupts. To allow
software compatability, the memory parity error interrupt in the 990/10 can also be cleared in
the manner described for the 990/4.

3.89.5.5 Interrupt Processing Example. Refer to figure 3-6 for the following discussion. Prior to
the example interrupt (eight for this example), the PC contains 1022 for the executing program,
the WP contains 780 for the executing program workspace, and the ST register contains the
executing program status. At this point, the example external interrupt, number eight, occurs
and there is a context switch from the executing program to the interrupt subroutine. The two
words of memory required for external interrupt eight are found in memory locations 0020 and
0022. Figure 3-6 shows that these two words of memory contain 0270 and 0290, respectively,
for the WP and PC that are to be used by the interrupt subroutine.

At the point of interrupt, the CPU transfers the present WP, PC, and ST register contents to the
interrupt routine workspace in workspace registers 13, 14 and IS, respectively. Once these are
stored, the CPU transfers the interrupt subroutine WP and PC into the WP and PC registers.

When these actions are completed, the contents of memory and the registers are as shown in
figure 3-7.

After the completion of the interrupt subroutine, the CPU restores the executing program WP,
PC, and ST registers. Completion of the interrupt subroutine occurs when the RTWP instruction
in the interrupt subroutine is executed.

3-106 Texas Instruments Incorporated

~-------~ 943441-9701

3.89.6 EXTENDED OPERATIONS. Extended operation instructions permit the extension of the
existing instruction set to include additional instructions. In the TMS 9900 Microprocessor and
the Model 990/4 Computer, these additional instructions are implemented by software routines.
In the Model 990/10 Computer, the instructions may be implemented by user-supplied hardware
or software routines. Interface between a user program and the standard TI executives is imple­
mented as XOP 15.

Memory locations 004016 through 007E 16 are used for XOP vectors for software implemented
XOPs. Vector contents are user supplied WP and PC addresses for the XOP routine workspace
and starting address. Table 3-7 contains the addresses and contents of the 16 XOP vectors. Note

.~; that these vectors must be supplied and loaded prior to the XOP instruction execution.

Input Bit

11

12

13

14

15

Table 3-6. Error Interrupt Logic CRU Bit Assignments

Output Bit

12

13

14

15

Error Condition

Memory Mapping Error

Error from TILINE memory (parity/error correcting)

Illegal Operation

Privileged instruction fetch with privileged mode off

TILINE timeout

When the program module contains an XOP instruction that is software implemented, the AU
locates the XOP WP and PC words in the XOP reserved memory locations and loads the WP and
PC. When the WP and PC are loaded, the AU transfers control to the XOP instruction set through
a context switch. When· the context switch is complete, the XOP workspace contains the calling
routine return datain WRs 13,14, and 15.

The XOP instruction passes one operand to the XOP (input to the XOP routine in
workspace register 11 of the XOP workspace). At the completion of the software XOP, the XOP
routine should return to the calling routine with an RTWP instruction that will restore the
execution environment of the calling routine to that in existence at the call to the XOP.

An example of a software implemented XOP, shown in figure 3-8, causes XOP number two to be
executed on the data stored at the address contained in workspace register 1 of the calling
program module. Prior to the execution of the XOP, the PC contains the address of the XOP * 1,
2 instruction and the WP contains the address of the calling program workspace. At this point,
the PC increments by two, to 922, and the XOP is executed. This execution is a context switch
in which the XOP routine gains control of the execution sequence. Note that workspace register I
of the calling program module contains the data address for the operand that is passed to the XOP
routine.

After the context switch is complete and the XOP subroutine is in control (figure 3-9), the PC
contains the starting address of the XOP subroutine and the WP con.tains the address of the XOP
subroutine workspace. Workspace register 11 of the XOP subroutine contains the effective
address of the data to be used as an operand. Workspace registers 13, 14, and 15 contain the
return control information, which is used to return control to the main program module when
the XOP subroutine completes execution.

3-107
Texas Instruments Incorporated

~ ____ 94_3_4_4_1-_97_0_1 ________________________________ ~ __________ ~~
MEMORY

ACDRESS
MEMORY)

~-- - _ ~ ___l

0020

0022

HARDWARE

REGISTERS

WP

'PC

ST

~ 0270
0780

'--------~ , I
,..... _______ I 0290

1024 hi
'----------'d

I ~0780 ,....------.lll EXECUTING STATUS .

I
I' 0800

I
I

~~

~~

I 1022

~I024
NOTE: INTERRUPT MASK -1111
THE INTERRUPT WILL NOT BE
TAKEN UNTIL THE INSTRUCTION AT
ADDRESS 1022 HAS COMPLETED.

0270

0290

.... ~~

INTERRUPT SUBROUTINE

WORKSPACE

INTERRUPT SUBROUTINE

.... ~~
EXECUTING PROGRAM

WORKSPACE

EXECUTING PROGRAM

INC 1

EXECUTING PROGRAM

DATA

~~ ~~ 1;,. ____________

(A)I32207

HARDWARE

R~GISTERS

Figure 3·6. Interrupt Proce'ssing Example

MEMORY

ACDRESS

0020

0022

)

/

-;.// /
~ / ;'

/

MEMORY

0270

0290

• • •

/~270 /
INTERRUPT

, I /

..... 0_27 0 ______ '~t..J / / WP ~~
SUBROUTINE

WORKSPACE

~O_~_O ______ ~~ PC
0780

1024

•

I
I
I
I
I

EXECUTING STATUS
ST INTERRUPT STATUS

NOTE: INTERRUPT MASK =0110 I I

~~

.0290

(A)128621A ~

• • • •

INTERRUPT SUIIROUTINE · • · · RTWP

Figure 3·7. Memory Contents After Interrupt

>

~~

(WRO)

:.~

(WRI3)

(WRI4)

(WRI5)

';.~

~

3-108 Texas Instruments Incorporated

~ 943441-9701

Table 3-7. XOP Vectors

Memory Address XOPNumber Vector Contents

0040 0 WP address for XOP workspace

0042 0 PC address for XOP routine

0044 1 WP address for XOP workspace

0046 1 PC add(ess for XOP routine

0048 2 WP address for XOP workspace

004A 2 PC address for XOP routine

004C 3 WP address for XOP workspace

004E 3 PC address for XOP routine

0050 4 WP address for XOP workspace

0052 4 PC address for XOP routine

0054 5 WP address for XOP workspace

0056 5 PC address for XOP routine

0058 6 WP address for XOP workspace

005A 6 PC address for XOP routine

005C 7 WP address for XOP workspace

005E 7 PC address for XOP routine

0060 8 WP address for XOP workspace

0062 8 PC address for XOP routine

0064 9 WP address for XOP workspace

0066 9 PC address for XOP routine

0068 10 WP address for XOP workspace

006A 10 PC address for XOP routine

006C 11 WP address for XOP workspace

006E 11 PC address for XOP routine

0070 12 WP address for XOP workspace

0072 12 PC address for XOP routine

0074 13 WP address for XOP workspace

0076 13 PC address for XOP routine

0078 14 WP address for XOP workspace

007A 14 PC address for XOP routine

007C 15 WP address for XOP workspace

007E 15 PC address for XOP routine

3-109 Texas Instruments Incorporated

~~-~---------------~ 943441-9701

HARDWARE

REGISTERS

WP

PC

ST

(A)132208

0700

0922

•••••

MEMORY

ADDRESS

0048

004A

h
0220

0240

I

h I I
I
~0700

0750

0800

I _ 0920
~0922

I

~~

~~

~~

Figure 3-8. Extended Operation Example

MEMORY
I

0220

0240

XOP 3-15

~~

XOP WORKSPACE

XOP SUBROUTINE

~ ~

PROBLEM PROGRAM

WORKSPACE (WRO)

0750

~ ~

PROBLEM PROGRAM
DATA

PROBLEM PROGRAM

XOP *1.2

)

3.89.7 SPECIAL CONTROL INSTRUCTIONS. There are five special control instructions that
permit the programmer to control the state of the execution process of the 990 Computer.
These instructions are:

Instruction

Load or Restart Execution

Clock On and Clock Off

Reset

Execute

Idle

CAUTION

Mnemonic

LREX

CKON/CKOF

RSET

X

IDLE

In Model 990/4 Computers, executing any of these instructions
except Execute in a program executing under an executive may

3-110 Texas Instruments Incorporated

~-------~ 943441-9701

MEMORY

ADDRESS

0048

004A

:~

HARDWARE

REGISTERS
,-.0220

I
I

WP~I ______ 02_20 ____ ~~

pc~I ______ 02_40 ____ ~h
.---

I
I

ST \..1 ____________ -1

I
I

.0240

~0700

~750

0800

0920

~0922
(A)'28623B C

MEMORY .}

0220

0240

:~

XOP WORKSPACE

0750 (WR")

(WR'2)

0700 (WR'3)

0922 (WR'4)

EXECUT'ON STATUS (WR'5)

XOP SUBROUTINE 2

RTWP

CALLING PROGRAM WORKSPACE

CALL,NG PROGRAM DATA

CALLING PROGRAM

XOP *1,2
RETURN FROM XOP

C

Figure 3-9. Extended Operation Example after Context Switch.

drastically interfere with the executive's operation. Executives
running in a Model 990/ I 0 Computer allow program execution
only in a nonpriviledged mode. Attempting to execute these instruc­
tions in a nonprivileged mode generates a error/interrupt.

'In the TMS 9900 Microprocessor, only the Execute instruction applications apply. The other
instructions perform no processing in the microprocessor, but may be implemented in the users
hardware to perform any desired functions.

3.89.7.1 LREX Applications. The LREX instruction may be used to activate any desired
function by placing a transfer vector for that function in addresses FFFC16 and FFFE16 and
placing a subroutine and workspace to perform that function in the locations specified in the
transfer vector. Typically, these locations are ROM locations, and the LREX instruction activates
a programmer's panel and loader function. Other functions could be performed either by using
different ROM's in these locations, or by using RAM in these locations and loading the desired
data into the locations.

The LREX instruction is not implemented in the TMS 9900 Microprocessor, and is a Privileged
Mode instruction in the Model 990/ I 0 Computer.

3.89.7.2 CKON/CKOF Applications. These two instructions are used to turn on and turn off
the clock, respectively. Through the use of these two instructions, the programmer may use the
clock for timing operations. As an example, the clock may be used to time-out I/O procedures
by turning the clock on, counting the clock interrupts until the desired time is passed, and turning
the clock off. This is possible only if the interrupt level for the real time clock has previously

(

been enabled.

3-111 Texas Instruments Incorporated

~~---------~--------~ 943441-9701

The clock interrupt is normally attached to level 5, or optionally at level 7 on the 990/4 Computer
or level 15 on the 990/1 0 Computer. The interrupt is normally cleared in the Clock Interrupt Ser­
vice Routine with a CKOF /CKON instruction sequence.

The RSET instruction also clears an interrupt.

When a program executes under an executive, the executive uses the clock for timing various
executive and user program functions. Executing either a CKON or a CKOF instruction interferes
with normal operation of the executive. I/O timeout is part of the support provided by the
executive, and is not a user function. Refer to the user's guide for the appropriate executive for
methods of timing user program functions supported by that executive.

The CKON and CKOF instructions are not implemented on the TMS 9900 Microprocessor, and·
are Privileged Mode instructions in the Model 990/10 Computer with map option.

3.89.7.3 RSET Applications. RSET is primarily used to initialize the state of the computer and has
the effect of clearing any pending interrupts. This instruction is useful at the start of a program to
clear the state in existence so that the new application will not be adversely affected by the previous
state of the computer.

When a program executes under an executive, the executive processes internal interrupts and
external interrupts for supported devices. Execution of an RSET instruction interferes with
normal operation of the executive. Refer to the user's guide for the appropriate executive for
permissable changes in the enabled interrupt level.

The RSET instruction is not implemented in the TMS 9900 Microprocessor, and is a Privileged
Mode instruction in the Model 990/10 with map option.

3.89.7.4 X Applications. The execute instruction may be used to execute an instruction that is
not in sequence without transferring control to the desired instruction. One useful application is
to execute one of a table of instructions, selecting the desired instruction by using an index into
the table of instructions. The computed value of the index determines which instruction is
executed.

A table of shift instructions is an example of the use of the X instruction. Place the following
instructions at location TBLE:

TBLE SLA
SLA
SLA

TABEND EQU

R6,3
R7,3
R8,3
$

SHIFT WORKSPACE REGISTER 6
SHIFT WORKSPACE REGISTER 7
SHIFT WORKSPACE REGISTER 8

A character is placed in the most significant byte of workspace register 5 to select the workspace
register to be. shifted to the left 3 bit positions. ASCII characters A, B, and C specify shifting
workspace registers 6, 7, and 8, respectively. Other characters are ignored. The following code
performs the selection of the shift desired:

SRL
AI
JLT
SLA
CI
JGT
X

NOSHFT EQU

R5,8 MOVE TO LOWER BYTE
R5, _, A' SUBTRACT TABLE BIAS
NOSHFT ILLEGAL
R5,1 MAKE IT A WORD INDEX
R5, TAB END - TBLE
NOSHFT ILLEGAL
@TBLE(R5)
$

3-112 Texas Instruments Incorporated

Jd75\ ______ _ ~ 943441-9701

When using the X instruction, if the substituted instruction contains a Ts field or a T d field that
results in a two word instruction, the computer accesses the word following the X instruction as
the second word, not the word following the substituted instruction. When the substituted
instruction is a jump instruction with a displacement, the displacement must be computed from
the X instruction, not from the substituted instruction.

3.89.8 CRU INPUT/OUTPUT. The communications register unit (CRU) performs single and
multiple bit programmed input/output in the Model 990 Computer. All input consists of reading
CRU line logic levels into memory and output consists of setting CRU output lines to bit values
from a word or byte of memory. The CRU provides a maximum of 4096 input and output lines
that may be individually selected by a 12-bit address. The 12-bit address is located in bits 3
through 14 of workspace register 12 and is the base address for all CRU communications.

When a program executes under an executive, I/O to supported devices is provided through the
use of I/O supervisor calls. For these CRU devices, it is not necessary to use the instructions
described in the following paragraphs. Refer to the appropriate user's guide for information on
the use of the I/O supervisor call to the desired device under that executive.

3.89.8.1 CRU I/O Instructions. There are five instructions for communications with CRU lines.
They are:

• SBO - Set CRU Bit To One. This instruction sets a CRU output line to a logic one. If the
device on the CRU line is a data module, SBO results in zero volts at the data module
terminal corresponding to the addressed bit.

• SBZ - Set CRU Bit To Zero. This instruction sets a CRU output line to a logic zero. If the
device on the CRU line is a data module, SBZ results in a float (no signal applied) at
the data module terminal corresponding to the addressed bit.

• TB - Test CRU Bit. This instruction reads the digital input bit and sets the equal status bit
(bit 2) to the value of the digital input bit.

NOTE

The CRU address of the SBO, SBZ, and TB instructions is
determined as follows:

Bits 3-14 of workspace register 12 equal the CRU base
address

+
The user supplied displacement in the instruction with
sign bit extended

=
Effective CRU address

• LDCR - Load Communications Register. This instruction transfers the number of bits
(1-16) specified by the C field of the instruction onto the CRU from the source operand.
When less than nine bits are specified, the source operand address is a byte address.
When more than eight bits are specified, the source operand is a word address. The CRU
address is the address of the first CRU digital output affected. The CRU address is de­
termined by the contents of workspace register 12, bits 3 through 14.

3-113 Texas Instruments Incorporated

~ 943441-9701
--

• STCR - Store Communications Register. This instruction transfers the number of bits
specified by the C field of the instruction from the CRU to the source operand. When
less than nine bits are specified, the source operand address is a byte address. When
there are nine or more bits specified, the source operand address is a word address. The
CRU address is determined by workspace register 12, bits 3 through 14.

3.89.8.2 SBO Example. Assume that a control device that turns on a motor when the computer
sets a one on CRU line lOF 16, and that workspace register 12 contains 0200 16 , making the base
address in bits 3 through 14 equal to 10016 , The following instruction sets CRU line 1 OF 16 to one:

SBO 15

If a data module were connected as the CRU device, the instruction would place zero volts on
output line 15 of the module without affecting other lines.

3.89.8.3 SBZ Example. Assume that a control device that shuts off a valve when the computer
sets a zero on a CRU line is connected to CRU line 2, and that workspace register 12 contains
zero. The following instructions sets CRU line 2 to zero:

SBZ 2

If a data module were connected as the CRU device, output line 2 of that module would float at
a voltage determined by the characteristics of the control device. No other CRU line would be
affected by the instruction.

3.89.8.4 TB Example. Assume that workspace register 12 contains 014016 , making the base
address in bits 3 through 14 equal to AO 16. The following instructions would test the input on
CRU line A4 16 and execute the instructions beginning at location RUN when the CRU line is
set to one. When the CRU line is set to zero, execute the instructions beginning at location
WAIT:

WAIT

RUN

TB
JEQ

4
RUN

TEST CRU LINE 4
IF ON, GO TO RUN
IF OFF, CONTINUE

The TB instruction sets the logic level of the Equal bit of the ST register to the level on line 4
of the CRU device.

3.89.8.5 LDCR Example. Assume that a 913 CRT Display Terminal is connected to the CRU
and that the base address in workspace register 12 is set to CRU line 48 16 , The following
instructions display a character in an even address at location TOM on the screen of the CRT.
Output CRU lines 4016 through 47 16 must be set to the bit configuration of the character, which
requires that the base address in bits 3 through 14 of workspace register 12 be modified. The
instructions are:

AI
LDCR
AI

RI2,-16
@TOM,8
R12,16

MODIFY BASE ADDRESS BY 8
TRANSFER CHARACTER
RESTORE BASE ADDRESS

3-114 Texas Instruments Incorporated

~-------~ 943441-9701

The operand required in the first instruction is -16 because the least significant bit of workspace
register 12 is not included in the base address. The base address must be decremented by 8, so
16 must be subtracted. The following diagram shows the transfer of data, which places the
character in the proper register of the CRT controller. The Write Data Strobe line, CRU output
line 4816 , must be set to actually display the character.

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

MEMORY
ADDRESS

TOM
I 0

(A)132209

(' 1 1 0 1 0

x = NOT USED

0 x x

I

If the LDCR instruction were changed as follows:

LDCR @TOM,9

x x x x x xl

-----..
-..
---.. -
-

CRU LINES

3F

0 40

0 41

42

0 43

44

45

0 46

0 47

48

there would be a transfer of 9 bits beginning with the least significant bit of address TOM to
nine CRU lines, 40 16 through 48 16 , Setting bit 48 16 to either a value of 0 or 1 causes the
character to be displayed on the screen. The following diagram shows the data transfer:

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

MEMORY
ADDRESS

TOM
r x x x x x x X 1 0 1 0 1 0 1 1 1 I CRU LINES

3F

I - 1 40 ..
-- 41

-- 42

-- 0 43

--- 44

---- 0 45

-- 46

-- 0 47

-OT -X .. N USED 1 48

(A)132210
49

3-115 Texas Instruments Incorporated

~--...--------~ 943441-9701

3.89.8.6 STCR Example. The last AI instruction of the LDCR example in the preceding
paragraph left the .base address in workspace register 12 set for a keyboard input operation. The
following instruction places the seven bits of the keyboard character into the seven least
significant bits of the byte at the address in workspace register 2:

STCR *R2,7 READ CHARACTER

The STCR instruction stores the bits as shown in the following diagram:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 1415

10 1 0 1 1 0 1 0 X X X X X X X x I '-.. CRU LINES

-
~ ~ a ~ f '- 0

-
1

48

49

-
~

4A

1 4B
~

~ 4C

0 40
~

1 4E
f--

X NOT USED BIT 0 IS SET TO ZERO """--. ... 4F

(A)132211

Tf the STCR instruction were changed to:

STCR *RI2,O

sixteen bits would be transferred from the CRU lines specified by workspace register 12 to the
address that is specified by the contents of workspace register 2. The transfer of data is shown in
the following diagram:

6 7 8 9 10 11 12

1 1

CRU LINES

48

49

4A

0 4B

0 4C

0 40

4E

4F

50

0 51

0 52

0 53

54

55

56

57

(A)132212 5B

The keyboard character is placed in the least significant byte.

3-116 Texas Instruments Incorporated

~--------...; ~ 943441-9701

3.89.9 TILINE INPUT/OUTPUT. (990/10 ONLY). The set of machine instructions that com­
municate with the memory may be used to communicate with devices connected to the TILINE ,
as illustrated in appendix I. To communicate with the TILINE device, these instructions must be
coded with the TILINE addresses for the device. The hardware supplies the five most significant
bits, each having the value of one, to convert the upper 1024 memory byte addresses to TILINE
addresses. The actual TILINE addresses for a device and the significance of data transferred to
these addresses are device dependent.

The Disc Executive DX10 supports I/O to the available disc units. The user programs that execute
under DX10 use the I/O supervisor call to perform I/O to the disc. Refer to the user's guide for the
appropriate executive for a description of the I/O supervisor call and for a list of supported devices.

3.89.10 RE-ENTRANT PROGRAMMING. Re-entrant programming is a technique that allows
the same program code to be used for several different applications while maintaining the integrity
of the data used with each application. The common program code and its associated constants
are stored in one area in memory. Each function that uses that code is then assigned a unique
workspace and data area so that as it executes the common code, its variable data is developed
without affecting the variable data associated with any of the other functions that use the program.
With this arrangement one function can execute the common code routine and be interrupted in
the middle of the routine by another function that also uses the same routine. The second function
then uses the routine for its purpose and returns control to the first function so that it can
proceed from the point of interruption without returning to the start of the routine. Re-entrant
programming of this type lends itself well to ~ervicing similar peripheral devices that interface
with the computer at different priority levels. The following characteristks apply to are-entrant
procedure:

• The procedure does not contain data except data common to all tasks.

• The procedure does not alter the contents of any word in. the procedure whether that
word contains data or an instruction.

• Data that is unique to one or more tasks is in the data division for the task and is
either in a workspace or is indirectly addressed.

A very important application of a re-entrant procedure is one that controls a process using
several sets of identical control devices through identical sets of CRU lines. Each task using the
re-entrant procedure addresses a unique set of control devices that controls a set of equipment to
perform the same process concurrently. The workspace for each task contains the CRU base
address in workspace register 12 for the set of control devices for the task. The procedure
addresses a control device by a displacement from the base. address. For each task, the base address
in workspace register 12 of its workspace controls the proper device. Figure 3-10 shows a procedure
common to sixteen tasks, each of Which uses an identical set of CRU lines at different CRU base
addresses.

3-117 Texas Instruments Incorporated

~--------~ 943441-9701

SHARED
PROCEDURE

D

(A)t 322·t 3A

MEMORY

TASK A --
WRt2 200

DATA tOO

--
TASK B --

~'t8

WR12 230

DATA

~

...

TASK F -
WR12 400

DATA

--

Figure 3~ 10. Re-entrant Procedure for Process Control

CRU

-"'"

..

-

The following is an example of re-entrant code. The following assumptions apply:

EQUIPMENT
FOR TASK A

EQUIPMENT
FOR TASK B

EQUIPMENT
FOR TASK F

• Workspace register 14 contains the address of a word that contains the size of a buffer,
in bytes.

• Workspace register 9 contains the start address of that buffer.

• Label NOTFND is the location that contains the fIrst instruction of a routine that is to
be executed if the buffer does not contain a carriage return character.

• Label FOUND is the location of the fIrst instruction of a routine that is to be
executed when the buffer contains a carriage return.

3-118 Texas Instruments Incorporated

~-------~ 943441-9701

The re-entrant code is as follows:

ENTER MOV *14,3 GET BUFFER SIZE
MOV 9,8 GET START ADDRESS
A 3,8 POINT TO END OF BUFFER

LOOK C 9,8 CHECK FOR END
JH NOTFND BRANCH AT END
CB *9+ ,@CARRET CHECK CHARACTER
JNE LOOK BRANCH WHEN NOT FOUND

FOUND CHARACTER FOUND

CARRET BYTE >D

The code is re-entrant because it is not altered during execution of the code. Also, when
execution ~esumes following an interruption, the workspace for the code again becomes active,
and contams the correct values for resuming the execution as if execution had not be
interrupted.

Another possible version of the same code is as follows:

ENTER MOV *14,@ADDLOC
MOV 9,8
AI 8,$-$

ADDLOC EQU $-2
LOOK C 9,8

JH NOTFND
CB *9+,@CARRET
JNE LOOK

FOUND

CARRET BYTE >D

The code performs the same function by storing the buffer length in the word that contains the
immediate operand of an AI instruction. As long as only one task using this code is active, there
would be no problem. However, if one task is interrupted after storing a value in ADDLOC and
before executing the AI instruction, and another task executes the code, the size of the buffer
for the first task is lost. The code is not re-entrant because it alters data within itself.

3-119/3-120 Texas Instruments Incorporated

~.o ______ _ ~ 943441-9701

SECTION IV

ASSEMBLER DIRECTIVES

4.1 INTRODUCTION
Assembler directives and machine instructions in source programs supply data to be included in
the program and control of the assembly process. The Model 990 Computer Assemblers support
a number of directives in the following categories:

• Directives that affect the Location Counter

• Directives that affect the assembler output

• Directives that initialize constants

• Directives that provide linkage between programs

• Miscellaneous directives.

4.2 DIRECTIVES THAT AFFECT THE LOCATION COUNTER
As an assembler reads the source statements of a program, a component of the assembler called
the location counter advances to correspond to the memory locations assigned to the resulting
object code. The first nine of the assembler directives listed below initialize the location counter
and define the value as relocatable, absolute, or dummy. The last three directives advance the
location counter to provide a block or an area of memory for the object code to follow. The word
boundary directive also ensures a word boundary (even address). The directives are:

• Absolute Origin

• Relocatable Origin

• Dummy Origin

• Data Segment

• Data Segment End

• Common Segment

• Common Segment End

• Program Segment

• Program Segment End

• Block Starting With Symbol

• Block Ending With Symbol

• Word Boundary

4-1 Texas Instruments Incorporated

Jd75\ ______ _ ~ 943441-9701

NOTE

The following are not supported by the PX9 ASM.

• Data Segment

• Data Segment End

• Common Segment

• Common Segment End

• Program Segment

• Program Segment End

4.2.1 ABSOLUTE ORIGIN AORG

Syntax definition:

[<label>]b ... AORGb ... <wd-exp>b ... [<comment>]

AORG places a value in the location counter and defines the succeeding locations as absolute.
Use of the label field is optional. When a label is used, it is assigned the value that the directive
places in the location counter. The operation field contains AORG. The operand field contains a
well-defined expression (wd-exp). The assembler places the value of the well-defined expression
in the location counter. Use of the comment field is optional. When no AORG directive is
entered, no absolute addresses are included in the object program.

The following example shows an AORG directive:

AORG >IOOO+X

Symbol X must be absolute and must have been previously defined. If X has a value of 6, the
location counter is set to 1006 16 by this directive. Had a label been included, the label would
have been assigned the value 100616 •

4.2.2 RELOCATABLE ORIGIN RORG

Syntax definition:

[<labeI>] b ... RORG b ... [<exp>] b ... [<comment>]

RORG places a value in the location counter; if encountered in absolute code, it also defines suc­
ceeding locations as program-relocatable. When a label is used, it is assigned the value that the
directive places into the location counter. The operation field contains RORG, and the operand
field is optional. The comment field may be used only when the operand field is used.

4-2 Texas Instruments Incorporated

~-------~ 943441-9701

When the operand field is not used, the length of the program segment, data segment, or specific
common segment of a program replaces the value of the location counter. For a given relocation
type X, the length of the X-relocatable segment at any time during an assembly is either of the
following values:

• The maximum value the location counter has ever attained as a result of the assembly of
any preceding block of X-relocatable code.

• Zero, if no X-relocatable code has been previously assembled.

Clearly, since the location counter begins at zero, the length of a segment and the "next available"
address within that segment are identical.

If the RORG directive appears in absolute- or program-relocatable code and the operand field is
not used, the location counter value is replaced by the current length of the program segment of
that program. If the directive appears in data-relocatable code without an operand, the location
counter value is replaced by the length of the data segment. Likewise, in common-relocatable code,
the RORG directive without an operand causes the length of the appropriate common segment to
be loaded into the location counter.

When the operand field is used, the operand must be an absolute or relocatable expression (exp)
that contains only previously defined symbols. If the directive is encountered in absolute code, a
relocatable operand must be program-relocatable; in relocatable code, the relocation type of the
operand must match that of the current location counter. When it appears in absolute code, the
RORG directive changes the location counter to program-relocatable and replaces its value with
the operand value. In relocatable code, the operand value replaces the current location counter
value, and the relocation type of the location counter remains unchanged.

The following example shows an RORG directive:

RORG $-20 OVERLAY TEN WORDS

The $ symbol refers to the location following the preceding relocatable location of the program.
This has the effect of backing up the location counter ten words. The instructions and directives
following the RORG directive replace the ten previously assembled words of relocatable· code,
permitting correcting of the program without removing source records. Had a label been
included, the label would have been assigned the value placed in the location counter.

An example of a.RORG directive with no operand field is as follows:

SEG2 RORG

The location counter contents depend upon preceding source statements. Assume that after
defining data for a program, which occupied 4416 bytes, an AORG directive initiated an absolute
block of code. The absolute block is followed by the RORG directive in the above example. This
places 004416 in the location counter and defines the location counter as relocatable. Symbol
SEG2 is a relocatable value, 004416 • The RORG directive in the above example would have no
effect except at the end of an absolute block or a dummy block, described in the next paragraph.

4.2.3 DUMMY ORIGIN DORG

Syntax definition:

[<label>] t> ... DORGb ... <exp>b ... [<comment>]

4-3 Texas Instruments Incorporated

~-------~ 943441-9701

DORG places a value in the location counter and defines the succeeding locations as a dummy
block or section. When assembling a dummy section, the assembler does not generate object
code, but operates normally in all other respects. The result is that the symbols that describe the
layout of the dummy section are available to the assembler during assembly of the remainder of
the program. The label is assigned the value that the directive places in the location counter. The
operation field contains DORG. The operand field contains an expression (exp), which may be
either absolute or relocatable. Any symbol in the expression must have been previously defined.
When the operand is absolute, the location counter contents are absolute; when the operand is
relocatable, the location counter contents are relocatable.

The following example shows a DORG directive:

DORG 0

The effect of this directive is to cause the assembler to assign values relative to the start of the
dummy section to the labels within the dummy section. It is assumed that the code
corresponding to the dummy section is assembled in another program module.

The example directive would be appropriate in the executable portion (procedure division) of a
disc-resident task that is common to more than one task, and which executes under the disc
executive. The dummy section of the procedure should contain the directives of the data division,
and the executable portion of the module (following a RORG directive) should use the labels of
the dummy section as indexed addresses. In this manner, the data is available to the procedure
regardless of the memory area into which the data is loaded.

The DORG directive may also be used with data-relocatable or common-relocatable operands to
specify dummy data or common segments. The following example illustrates this usage:

CSEG 'COM I '

DORG $ "$" HAS A COMMON-RELOCATABLE VALUE

LABI DATA $

MASK DATA >FOOO

CEND

SZC @MASK,@LABI(R3)

In the example, no object code is generated to initialize the common segment, COM I, but all
common-relocatable labels describing the structure of the common block (including LABI and
MASK) are available for use throughout the program.

4-4 Texas Instruments Incorporated

Jd7.5\ ______ _ ~ 943441-9701

4.2.4 BLOCK STARTING WITH SYMBOL BSS

Syntax definition:

[<1abel>]b ... BSSb ... <wd-exp>b ... [<comment>]

BSS advances the location counter by the value of the well-defined expression (wd-exp) in
the operand field. Use of the label field is optional. When a label is used, it is assigned the
value of the location of the first byte in the block. The operation field contains BSS. The
operand field contains a well-defined expression that represents the number of bytes to be added
to the location counter. The comment field is optional.

The following example shows a BSS directive:

BUFFI BSS 80 CARD INPUT BUFFER

This directive reserves an 80-byte buffer at location BUFFI.

4.2.5 BLOCK ENDING WITH SYMBOL BES

Syntax definition:

[<label>] b ... BESb ... <wd-exp>b ... [<comment>]

BES advances the location counter according to the value in the operand field, and assigns the
new location counter value to the symbol in the label field, when there is a symbol in the label
field. Use of the label field is optional. The label is assigned the value of the location following
the block when the label is entered. The operation field contains BES. The operand field contains
a well-defined expression that represents the number of bytes to be added to the location counter.
The comment field is optional.

The following example shows a BES directive:

BUFF2 BES >10

The directive reserves a l6-byte buffer. Had the location counter contained 100 16 when the
assembler processed this directive, BUFF2 would have been assigned the value 11016 .

4.2.6 WORD BOUNDARY EVEN

Syntax definition:

[<label>]b ... EVENb ... [<comment>]

EVEN places the location counter on the next word boundary (even) byte address. When the
location counter is already on a word boundary, the location counter is not altered. Use of the
label field is optional. When a label is used, the value in the location counter before processing
the directive is assigned to the label. The operation field contains EVEN. The operand field is
not used, and the comment field is optional.

The following example shows an EVEN directive:

WRFI EVEN WORKSPACE REGISTER FILE ONE

4-5
Texas Instruments Incorporated

)2175\ ______ _ ~ 943441-9701

The directive assigns the location counter address to label WRF 1, and assures that the location
counter contains a word boundary address. Use of an EVEN directive preceding or following a
machine instruction or a DATA directive is redundant. The assembler advances the location
counter to an even address when it processes a machine instruction or a DATA directive.

4.2.7 DATA SEGMENT DSEG

Syntax definition:

[<label>] b DSEG b ... [<comment>]

NOTE

This directive does not apply to the PX9ASM assembler.

DSEG places a value in the location counter and defines succeeding locations as data-relocatable.
Use of the label field is optional. When a label is used, it is assigned the data-relocatable value that
the directive places in the location counter. The operation field contains DSEG. The operand field
is not used, and the comment field is optional. Either of the following values is placed in the loca­
tion counter:

• The maximum value the location counter has ever attained as a result of the assembly
of any preceding block of data-relocatable code

• Zero, if no data-relocatable code has been previously assembled.

The DSEG directive defines the beginning of a block of data-relocatable code. The block is normally
terminated with a DEND directive (see paragraph 4.2.8). If several such blocks appear throughout
the program, they together comprise the data segment of the program. The entire data segment may
be relocated independently of the program segment at link edit time and therefore provides a
<;;onvenient means of separating modifiable data from executable code.

In addition to the DEND directive, the following directives will properly terminate the definition
of a block of data-relocatable code: PSEG, CSEG, AORG, and END. The PSEG directive, like
DEND, indicates that succeeding locations are program-relocatable. The CSEG and AORG directives
effectively terminate the data segment by beginning a common segment or absolute segment,
respectively. The END directive terminates the data segment as well as the program.

The following example illustrates the use of both the DSEG and the DEND directives.

RAM DSEG START OF DATA AREA

<Data-relocatable code>

ERAMDEND

LRAM EQU ERAM-RAM

The block of code between the DSEG and DEND directives is data-relocatable. RAM is the sym­
bolic address of the first word of this block; ERAM is the data-relocatable byte address of the
location following the code block. The value of the symbol LRAM is the length in bytes of the
block.

4-6 Texas Instruments Incorporated

J2t15\ ______ _ ~ 943441-9701

4.2.8 DATA SEGMENT END DEND

Syntax definition:

[<label>] b DEND b ... [<comment>

NOTE

This directive does not apply to the PX9ASM assembler.

DEND terminates the definition of a block of data-relocatable code by placing a value in the loca­
tion counter and defining succeeding locations as program-relocatable. Use of the label field is
optional. When a label is used, it is assigned the value of the location counter prior to modification.
The operation field contains DEND. The operand field is not used, and the comment field is
optional. Either of the following values is placed in the location counter as a result of this directive:

• The maximum value the location counter has ever attained as a result of the assembly
of any preceding block of program-relocatable code.

• Zero, if no program-relocatable code has been previously assembled.

If encountered in common-relocatable or program-relocatable code, this directive functions as
a CEND or PEND (and a warning message is issued); like CEND and PEND, it is invalid when used
in absolute code. The following example illustrates the use of both DSEG and DEND directive.

RAM DSEG START OF DATA AREA

<Data-relocatable code>

ERAM DEND

LRAM EQU ERAM-RAM

4.2.9 COMMON SEGMENT CSEG

Syntax description:

[<label>] b ... CSEGb ... ['<string>'] b ... [<comment>]

NOTE

This directive does not apply to the PX9ASM assembler.

CSEG places a value in the location counter and defines succeeding locations as cOl11mon-relocatable
(i.e., relocatable with respect to a common segment). Use of the label field is optional. When a
label is used, it is assigned the value that the directive places in the location counter. The operation
field contains CSEG, and the operand field is optional. The comment field may be used only when
the operand field is used.

4-7 Texas Instruments Incorporated

J17S\ _____ _ '-ij/ ~3441-9701

If the operand field is not used, the CSEG directive defines the beginning of (or continuation of)
the "blank common" segment of the program. When the operand field is used, it must contain a
character string of up to six characters, enclosed in quotes. (If the string is longer than six char­
acters, the assembler prints a truncation error message and retains the first six characters of the
string.) If this string has not previously appeared as the operand of a CSEG directive, the assembler
associates a new relocation type with the operand, sets the location counter to zero, and defines
succeeding locations as relocatable with respect to the new relocatable type. When the operand
string has been previously used in a CSEG, the succeeding code represents a continuation of that
particular common segment associated with the operand. The location counter is restored to the
maximum value it previously attained during the assembly of any portion of the particular common
segment.

The following directives will properly terminate the definition of a block of common-relocatable
code: CEND, PSEG, DSEG, AORG, and END. The block is normally terminated with a CEND
directive (see paragraph 4.2.l0). The PSEG directive, like CEND, indicates that succeeding locations
are program-relocatable. The DSEG and AORG directives effectively terminate the common seg­
ment by beginning a data segment or absolute segment. The END directive terminates the common
segment as well as the program.

The CSEG directive permits the construction and definition of independently relocatable seg­
ments of data which several programs may access or reference at execution time. The segments
are the assembly language counterparts of FORTRAN blank COMMON and labeled COMMON,
and in fact permit assembly language programs to communicate with FORTRAN programs which
use COMMON. Information placed in the object code by the assembler permits the linkage editor
to relocate all common segments independently and to make appropriate adjustments to all ad­
dresses which reference locations within common segments. Locations within a particular common
segment may be referenced by several different programs if each contains a CSEG directive with
the same operand or no operand ..

The following example illustrates the use of both the CSEG and the CEND directives:

COMIA CSEG 'ONE'

<Common-relocatable code, type 'ONE' >

CEND
COM2A CSEG 'TWO'

<Common-relocatable code, type 'TWO'>

COM2B CEND
COM I C CSEG 'ONE'

<Common-relocatable code, type 'ONE' >

COMIB CEND

4-8 Texas Instruments Incorporated

~. 0 _~~ ____ _ ~ ------2,43441-9701

COMIL DATA COMIB - COMIA
COM2L DATA COM2B- COM2A

LENGTH OF SEGMENT 'ONE'
LENGTH OF SEGMENT 'TWO'

The three blocks of code between the CSEG and. CEND directives are common-relocatable. The
first and third blocks are relocatable with respect to one common relocation type; the second is
relocatable with respect to another. The first and third blocks comprise the common segment
'ONE', and the value of the symbol COMIL is the length in bytes of this segment. The symbol
COM2A is the symbolic address of the first word of common segment 'TWO'; COM2B is the
common-relocatable (type 'TWO') byte address of the location following segment. (Note that
the symbols COM2B and COMIC are of different relocation types and possibly different values.)
The value of the symbol COM2L is the length in bytes of common segment 'TWO'.

4.2.1 0 COMMON SEGMENT END CEND

Syntax definition:

[<labeI>] b ... CEND b ... [<comment>]

NOTE

This directive does not apply to the PX9ASM assembler.

CEND terminates the definition of a block of common-relocatable code by placing a value in the
location counter and defining succeeding locations as program-relocatable. Use of the label field is
optional. When a label is used, it is assigned the value of the location counter prior to modification.
The operation field contains CEND. The operand field is not used, and the comment field is
optional. Either of the following values is placed in the location counter as a result of this directive:

• The maximum value the location counter has ever attained as a result of the assembly
of any preceding block of program-relocatable code.

• Zero, if no program-relocatable code has been previously assembled.

If encountered in common- or program-relocatable code, this directive functions as a DEND or
PEND (and a warning message is issued); like DEND and PEND, it is invalid when used in absolute
code. See paragraph 4.2.9 for an example of the use of the CEND directive.

4.2.11 PROGRAM SEGMENT PSEG

Syntax definition:

[<label>] b ... PSEG b ... [<comment>]

NOTE

This directive does not apply to the PX9ASM assembler.

PSEG places a value in the location counter and defines succeeding locations as program-relocatable.
When a label is used, it is assigned the value that the directive places in the location counter. The
operation field contains PSEG. The operand field is not used and the comment field is optional.
Either of the following values is placed in the location counter:

• The maximum value the location counter has ever attained as a result of the assembly of
any preceding block of program-relocatable code.

• Zero, if no program-relocatable code has been previously assembled.

4-9 Texas Instruments Incorporated

~ ____ 9_4_3_44_1_-9_7_0_1 __ __

The PSEG directive is provided as the program-segment counterpart to the DSEG and-CSEG direc­
tives. Together, the three directives provide a consistent method of defining the various types of
relocatable segments. The following sequences of directives are functionally identical:

DSEG

<Data-relocatable code>

DEND
CSEG

<Common-relocatable code>

CEND
PSEG

<Program-relocatable code>

PEND

END

4.2.12 PROGRAM SEGMENT END

Syntax definition:

DSEG

<Data-relocatable code>

CSEG

<Common-relocatable code>

PSEG

<Program-relocatable 'code>

END

PEND

[<1abeI>] '0 .•• PEND '0 •.• [<comment>]

NOTE

This directive does not apply to the PX9ASM assembler.

The PEND directive is provided as the program-segment counterpart to the DEND and CEND direc­
tives. Ljke those directives, it places a value in the location counter and defmes succeeding locations
as program-relocatable (however, since PEND properly appears only in program-relocatable code,
the relocation type of succeeding locations remains unchanged.) Use of the label field is optional.
When a label is used, it is assigned the value of the location counter prior to modification. The
operation field contains PEND. The operand field is not used, and the comment field is optional.
The value placed in the location counter by this directive is simply the maximum valu~ eVer attained
by the location cOUl'iter as a result of the assembly of all preceding program-relocatable code.
If encountered in data- or common relocatable code, this directive functions as a DEND 9r CEND
(and a warning message is issued), like DEND and CEND, it is invalid when used in absolute code.
See paragraph 4.2.11 for an example of the use of the PEND directive. .

4-10 Ttlxos InsfrulTltlnfs!nCorporoftld

~~-------------------~ 943441-9701

4.3 DIRECTIVES THAT AFFECT THE ASSEMBLER OUTPUT
This category includes the directive that specifies optional output for the Cross Assembler and
the directive that supplies a program identifier in the object code. In addition four directives
affect the source listing. The directives in this category are:

• Output Options

• Program Identifier

• Page Title

• List Source

• No Source List

• Page Eject

4.3.1 OUTPUT OPTIONS. This directive does not apply to the PX9ASM or TXMIRA assembler.

Syntax definition:

b ... OPTIONb ... <keyword>[,<keyword>] ... b ... [<comment>]

OPTION specifies output and list options to the assembler. No label is entered with the OPTION
directive. The operation field contains OPTION. The operand field contains one or more
keywords to specify the desired options. The comment field is optional.

The keywords supported by the Cross Assembler and SDSMAC, and their meanings are as follows:

• XREF - Print a cross reference listing at the end of the source and object listing.

• OBJ - Print a hexadecimal listing of the object code at the end of the source and object
listing or the cross reference listing (not supported by SDSMAC).

• SYMT - Output a symbol table in the object code that contains all symbols in the program.

Additional keywords are supported by SDSMAC, as described in Section VI.

The following example shows an OPTION directive:

OPTION XREF,SYMT

The directive in the example specifies the printing of a cross reference listing and the output of a
symbol table with the object code.

4.3.2 PROGRAM IDENTIFIER IDT

Syntax definition:

[<label>] b ... IDTb ... '<string>'b ... [<comment>]

4-11 Texas Instruments Incorporated

4P------
lOT assigns a name to the program. An lOT directive must precede any machine instruction or
assembler directive that results in object code. Use of the label field is optional. When a label is
used, the current value of the location counter is assigned to the label. The operation field
contains lOT. The operand field contains the program name (string), a character string of up to
eight characters. When a character string of more than eight characters is entered, the assembler
prints a truncation error message, and retains the first eight characters as the program name. The
comment field is optional.

The following example shows an lOT directive:

lOT 'CONVERT'

The directive assigns the name CONVERT to the program to be assembled. The program name is
printed in the source listing as the operand of the lOT directive, but does not appear in the page
heading of the source listing. The program name is placed in the object code, but serves no
purpose during the assembly.

NOTE

Although SOSMAC will accept lower case letters and special
characters within the quotes, ROM loaders, etc., will not. Therefore
only upper case letters and numerals are recommended.

4.3.3 PAGE TITLE TITL

Syntax definition:

[<label>] 'b ... TITL'b ... '<string>''b [<comment>]

TITL supplies a title to be printed in the heading of each page of the source listing. When a title
is desired in the heading of the first page of the source listing, a TITL directive must be the first
source statement submitted to the assembler. This directive is not printed in the source listing.
Use of the label field is optional. When a label is used, the current value of the location
counter is assigned to the label. The operation field contains TITL. The operand field contains
the title (string), a character string of up to 50 characters. When more than 50 characters are
entered, the assembler retains the first 50 characters as the title, and prints a truncation error
message. The comment field is optional; the assembler does not print the comment, but does
increment the line counter.

The following example shows a TITL directive:

TITL '**REPORT GENERATOR**'

This directive causes the title **REPORT GENERATOR ** to be printed in the page headings of
the source listing. When a TITL directive is the first source statement in a program, the title is
printed on all pages until another TITL directive is processed. Otherwise, the title is printed on
the next page after the directive is processed, and on subsequent pages until another TITL
directive is processed.

NOTE

The maximum source record length is 60 characters. If a full 50-
ch:uader title is desired, the operand field must be started at or
before column 11 of the source record.

4-12 Texas Instruments Incorporated

~-------~ 943441-9701

4.3.4 LIST SOURCE LIST

Syntax definition:

[<label>]\) ... LISTh ... [<comment>]

LIST restores printing of the source listing. This directive is required only when a No Source List
directive is in effect, to cause the assembler to resume listing. This directive is not printed in the
source listing, but the line counter increments. Use of the label field is optional. When a label is
used, the current value of the location counter is assigned to the label. The operation field contains
LIST. The operand field is not used. Use of the comment field is optional, but the assembler does
not print the comment.

The following example shows a LIST directive:

LIST

The directive causes the source listing to be resumed with the next source statement.

4.3.5 NO SOURCE LIST UNL

Syntax definition:

[<J.abel>]b UNLb ... [<comment>]

UNL inhibits printing of the source listing. The UNL directive is not printed in the source listing,
but the line counter increments, Use of the label field is optional. When a label is used, the current
value of the location counter is assigned to the label. The operation field contains UNL. The oper­
and field is not used. Use of the comment field is optional, but the assembler does not print the
comment.

The following example shows a UNL directive:

UNL

The directive inhibits printing of the source listing. Use of the UNL directive to inhibit printing
reduces assembly time and the size of the source listing.

4.3.6 PAGE EJECT PAGE

Syntax definition:

[<IabeI>]b ... PAGEb ... [<comment>]

PAGE causes the assembler to continue the source program listing on a new page. The PAGE
directive is not printed in the source listing, but the line counter increments. Use of the label
field is optional. When a label is used, the current value of the location counter is assigned to
the label. The operation field contains PAGE. The operand field is not used. Use of the comment
field is optional, but the assembler does not print the comment.

The following example shows a PAGE directive:

PAGE

The directive causes the assembler to begin a new page of the source listing. The next source state­
ment is the first statement listed on the new page. Use of the page directive to begin new pages of
the source listing at the logical divisions of the program improves documentation of the program.

4-13- Texas Instruments Incorporated

~-------~ 943441-9701

4.4 DIRECTIVES THAT INITIALIZE CONSTANTS
This category includes directives that place values in successive bytes or words of the object
code, and a directive that places characters of text in the object code to be displayed or printed.
It also includes a directive that initializes a constant for use during the assembly process. The
directives are:

• Initialize Byte

• Initialize Word

• Initialize Text

• Define Assembly-Time Constant

4.4.1 INITIALIZE BYTE BYTE

Syntax definition:

[<Iabel>]b ... BYTEb ... <exp>[,<exp>] ... b ... [<comment>]

BYTE places one or more values in one or more successive bytes of memory. Use of the label
field is optional. When a label is used, the location at which the assembler places the first byte is
assigned to the label. The operation field contains BYTE. The operand field contains one or
more expressions separated by commas. The expressions must contain no external references.
The assembler evaluates each expression and places the value in a byte as an eight-bit two's comple­
ment number. When truncation is required, the assembler prints a truncation error message and
places the rightmost portion of the value in the byte. The comment field is optional.

The following example shows a BYTE directive:

KONS BYTE >F+I -1 'D'-'=' a 'AB'-'AA' " , '.

The directive initializes five bytes, starting with a byte at location KONS. The contents of the
resulting bytes is 00010000, 11111111, 00000 111, 00000000, and 0000000 1.

4.4.2 INITIALIZE WORD DATA

Synta~ definition:

[<Iabel>]b ... DATAb ... <exp>[,<exp>] ... b ... [<comment>]

DATA places one or more values in one or more successive words of memory. The assembler
advances the location counter to a word boundary (even) address. Use of the label field is
optional. When a label is used, the location at which the assembler places the first word is
assigned to the label. The operation field contains DATA. The operand field contains. one or
more expressions separated by commas. The assembler evaluates each expression and places the
value in a word as a sixteen-bit two's complement number. The comment field is optional.

The following example shows a DATA directive:

KONSI DATA 3200,1 +'AB',-'AF',>F4AO,'A'

4-14 Texas Instruments Incorporated

JdJ.f\ ______ _ ~ 943441-9701

The directive initializes five words, starting with a word at location KONSl. The contents of the
resulting words are OC8016 , 4143 16 , BEBA16 , F4A016 , and 0041 16 • Had the location counter
contents been 010F16 prior to processing this directive, the value assigned to KONSI would be
011016 •

4.4.3 INITIALIZE TEXT TEXT

Syntax definition:

[<label>] b ... TEXTb .. [-] '<string>'b ... [<comment>]

TEXT places one or more characters in successive bytes of memory. The assembler negates the
last character of the string when the string is preceded by a minus (-) sign (unary minus). Use of
the label field is optional. When a label is used, the location at which the assembler places the
first character is assigned to the label. The operation field contains TEXT. The operand field
contains a character string of up to 52 characters, which may be preceded by a unary minus
sign. The comment field is optional.

The following example shows a TEXT directive:

MSG 1 TEXT 'EXAMPLE' MESSAGE HEADING

The directive places the eight-bit ASCII representations of the characters in successive bytes.
When the location counter is on an even address·, the result, in hexadecimal representation, is
4558, 414D, 504C, and 45XX. XX represents the contents of the rightmost byte of the fourth
word, which are determined by the next source statement. The label MSG 1 is assigned the value
of the first byte address in which 45 is placed. Another example, showing the use of a unary
minus, is as follows:

MSG2 TEXT -'NUMBER'

When the location counter is on an even address, the result, in hexadecimal representation, is
4E55, 4D42, and 45AE. The label MSG2 is assigned the value of the byte address in which 4E is
placed.

NOTE

PX9 ASM prints only the first character in a text string.

4.4.4 DEFINE ASSEMBLY-TIME CONSTANT EQU

Syntax definition:

<label>b ... EQUb ... <exp>b ... [<comment>]

NOTE

<exp> may not be a REF'd symbol. TXMIRA does not allow
forward references in the <exp>.

4-15 Texas Instruments Incorporated

~-------~ 943441-9701

EQU assigns a' value to a symbol. The label field contains the symbol. The operation field
contains EQU. The operand field contains an expression in which all symbols have been
previously defined. Use of the comment field is optional.

The following example shows an EQU directive:

SUM EQU 5 WORKSPACE REGISTER 5

The directive assigns an absolute value to the symbol SUM, making SUM available to use as a
workspace register address. Another example of an EQU directive is:

TIME EQU HOURS

The directive assigns the value of previously defined symbol HOURS to symbol TIME. When
HOURS appears in the label field of a machine instruction in a relocatable block of the program,
the value is a relocatable value. The two symbols may be used interchangeably. SYMBOLS in the
operand field need not have been previously defined when using SDSMAC.

4.5 DIRECTIVES THAT PROVIDE LINKAGE BETWEEN PROGRAMS
This category consists of two directives that enable program modules to be assembled separately
and integrated into an executable program. One directive places one or more symbols defined in
the module into the object code, making them available for linking. The other directive places
symbols used in the module but defined in another module into the object code, allowing them
to be linked. The directives are:

• External Definition

• External Reference

• Secondary Reference

• Force Load

4.5.1 EXTERNAL DEFINITION DEF

Syntax definition:

[<label>]b ... DEFb ... <symbol>[,<symbol>] ... b ... [<comment>]

DEF makes one or more symbols available to other programs for reference. The use of the label
field is optional. When a label is used, the current value of the location counter is assigned to the
label. The operation field contains DEF. The operand field contains one or more symbols,
separated by commas, to be defined in the program being assembled. The comment field is
optional.

The following example shows a DEF directive:

DEF ENTER,ANS

The directive causes the assembler to include symbols ENTER and ANS in the object code so
that these symbols are available to other programs. When the DEF directive does not precede the

4-16 Texas Instruments Incorporated

~-------~ 943441-9701

source statements that contain the symbols, the assembler identifies the symbols as multiply
defined symbols.

4.5.2 EXTERNAL REFERENCE REF

Syntax definition:

[<label>]b ... REFb ... <symbol>L<symbol>] ... b ... [<comment>]

REF provides access to one or more symbols defined in other programs. The use of the label field is
optional. When a label is used, the current value of the location counter is assigned to the label.
The operation field contains REF. The operand field contains one or more symbols, separated by
commas, to be used in the operand field of a subsequent source statement. The comment field is
optional.

The following example shows a REF directive:

REF ARG I ,ARG2

The directive causes the assembler to include symbols ARG I and ARG2 in the object code so that
the corresponding addresses may be obtained from other programs. The Prototyping System Assem­
bler, PX9ASM, requires that a REF directive precede the first use of a REF'd symbol.

If a sumbol is listed in the REF statement then a corresponding symbol must also be present in a
DEF statement in another source module. If a one-to-one matching of symbols does not occur then
an error occurs at Link Edit time. The system will generate a summary list of all "unresolved
references" .

NOTE

If a symbol in the operand field of an REF directive is the first
operand of a DATA directive, the assembler places the value of
the symbol at location 0 of the routine. If that routine is loaded
at absolute location 0, the symbol will not be linked correctly.
Use of the symbol at other locations will be correctly linked.

4.5.3 SECONDARY EXTERNAL REFERENCE SREF

Syntax definition:

[<label>]'b ... SREF ... <symbol>,[<Symbol>] ... 'b ... [<comment>]

SREF provides access to one or more symbols defined in other programs. The use of the label field
is optional. When a label is used, the current value of the location counter is assigned to the label.
The operation field contains SREF. The operand field contains one or more symbols, separated by
commas, to be used in the operand field of a subsequent source statement. The comment field is
optional.

The following example shows a REF directive:

SREF ARGI,ARG2

The directive causes the Link Editor to include symbols ARG I and ARG2 in the object code so that
the corresponding addresses may be obtained from other programs.

SREF unlike REF does not require a symbol to have a corresponding symbol listed in a DEF state­
ment of another source module .. But the symbol will be an unresolved reference.

4-17 Texas Instruments Incorporated

~-------~ 943441-9701

NOTE

SREF is supported by SDSMAC and TXMIRA only.

4.5.4 FORCE LOAD LOAD

Syntax definition:

[<J.abel>]t> ... LOADt> ... <Symbol> [,<symbol>] ... t> ... [<comment>]

The LOAD directive is like a REF, but the symbol does not need to be used in the module con­
taining the LOAD. The symbol used in the LOAD must be DEFed in some other module. LOADs
are used with SREFs. If a one-to-one matching of LOAD-SREF pairs and DEF symbols does not
occur, then unresolved references will occur during link editing.

The following example shows the use of the SREF and the LOAD directives:

A1 A2 A3

LOAD C, D LOAD C LOAD E, F

I I
B

SREF C, D, E, F

DATA C
DATA D
DATA E
DATA F

C I D E F

DEF C DEF D DEF E DEF F

Modules Al uses a branch table in module B to get one of the modules C, D, E, or F. Module Al
knows which of the modules C, D, E, and F it will need. Module B has SREF for C, D, E, and F.
Module C has a DEF for C. Module D has a DEF for D. Module E has a DEF for E. Module F has
a DEF for F. Module Al has a LOAD for one or more of modules C, D, E, and F as needed.

The LOAD and SREF directives permit module B to be written to handle the most involved case
and still be linked together without unneeded modules, since Al only has LOAD directives for
the modules it needs.

When a link edit is performed, automatic symbol resolution will pull in the modules appearing in
a LOAD directive. (See Section 2.5.1 of the Model 990 Computer Link Editor Reference Manual,
part number 949617-9701 for more details on automatic symbol resolution.)

4-18
Texas Instruments Incorporated

~~-------------------~ 943441-9701

If the link control file included Al and A2, modules C and D would be pulled in, while modules E
and F would not be pulled in. If the link control file included A3, modules E and F would be pulled
in, while modules C and D would not be pulled in. If the link control file included A2, module C
would be pulled in, while modules D, E, and F would not be pulled in.

4.6 MISCELLANEOUS DIRECTIVES
This category includes a directive that defines a symbol for an extended operation, and a directive
that terminates a source program. The directives are:

• Define Extended Operation

• Program End

4.6.1 DEFINE EXTENDED OPERATION DXOP

Syntax definition:

[<label>] b ... DXOPb ... <symbol>,<term>b ... [<comment>]

DXOP assigns a symbol to be used in the operator field to specify an extended operation. The
use of the label field is optional. When a label is used, the current value in the location counter
is assigned to the label. The operation field contains DXOP. The operand field contains a symbol
followed by a comma and a term. The symbol assigned to an extended operation must not be
used in the label or operand field of any other statement. The assembler assigns the symbol to
an extended operation specified by the term, which must have a value in the range of 0 to 15.
The comment field is optional.

The following example shows a DXOP directive:

DXOP DADD,13

The directive defines DADD as extended operation 13. When the assembler recognizes the
symbol DADD in the operator field, it assembles an XOP instruction that specifies extended
operation 13. The following example shows the use of the symbol DADD in a source statement:

DADD @LABELl(4)

The assembler places the operand field contents in the Ts and S fields of an XOP instruction,
and places 13 in the D field.

4.6.2 PROGRAM END END

Syntax definition:

[<label>]b ... ENDb ... [<symbol>]b ... [<comment>]

END terminates the assembly. The last source statement of a program is the END directive.
When any source statements follow the END directive, they are ignored. Use of the label field is
optional. When a label is used, the current value in the location counter is assigned to the
symbol. The operation field contains END. Use of the operand field is optional. When the
operand field is used, it contains a program relocatable or absolute symbol that specifies the entry
point of the program. When the operand field is not used, no entry point is placed in the object
code. The comment field may be used only when the operand field is used.

4-19 Texas Instruments Incorporated

A1. 0.5\ ______ _ ~ 943441-9701

The following example shows an END directive:

END START

The directive causes the assembler to terminate the assembly of this program. The assembler also
places the value of START in the object code as an entry point.

When a program executes in a stand-alone mode, and is loaded by the ROM loader, it must
supply an entry point to the loader. When no operand is included in the END directive, and that
program is loaded by the ROM loader, the loader transfers control to the entry point of the
loader, and attempts to load another object program.

l
,.

4-20 Texas Instruments Incorporated

~~------------------~ 943441-9701

SECTION V

PSEUDO-INSTRUCTIONS

5.1 GENERAL
A pseudo-instruction is a convenient way to code an operation that is actually performed by a
machine instruction with a specific operand. The Model 990 Computer Assembly Language
includes two pseudo-instructions. The pseudo-instructions are:

• No Operation

• Return

5.2 NO OPERATION NOP

Syntax definition:

[<label>]b ... NOPb ... [<comment>]

NOP places a machine instruction in the object code which has no effect on execution of the
program other than execution time. Use of the label field is optional. When the label field is
used, the label is assigned the location of the instruction. The operation field contains NOP. The
operand field is not used. Use of the comment field is optional.

Enter the NOP pseudo-instruction as shown in the following example:

MOD NOP

Location MOD contains a NOP pseudo-instruction when the program is loaded. Another
instruction may be placed in location MOD during execution to implement a program option.
The assembler supplies the same object code as if the source statement had contained the
following:

MOD JMP $+2

5.3 RETURN RT

Syntax definition:

[<label>]b ... RTh ... [<comment>]

RT places a machine instruction in the object code to return control to a calling routine from a
subroutine. Use of the label field is optional. When the label field is used, the label is assigned
the location of the instruction. The operation field contains RT. The operand field is not used.
Use of the comment field is optional.

Enter the RT pseudo-instruction as shown in the following example:

RT

5-1 Texas Instruments Incorporated

~ ____ 9_4_34_4_1_-9_70_1 __ _

The assembler supplies the same object code as if the source statement had contained the
following:

B *11

When control is transferred to a subroutine by execution of a BL instruction, the link to the
calling routine is stored in workspace register 11. An RT pseudo-instruction returns control to
the instruction following the BL instruction in the calling routine.

5-2 Texas Instruments Incorporated

~~-------------------~ 943441-9701

SECTION VI

ASSEMBLERS

6.1 GENERAL
Four assemblers process the Model 990 Computer Assembly Language. These four assemblers
are described in this section. In addition, this section describes the extended capabilities of the
Program Development System Assembler SDSMAC.

6.2 PROTOTYPING SYSTEM ASSEMBLER
The Prototyping System Assembler PX9ASM is a one-pass assembler that executes in a
Model 990 Computer under the PX990 Executive, and is a part of the Prototyping System and
the 733 ASR Program Development System. PX9ASM assembles object code for the TMS 9900
Microprocessor and the Model 990 Computer.

A one-pass assembler reads the source statements of a program one time only. The assembler
maintains a location counter as it reads the statements, and assigns a location counter value to a
label (symbol in the label field). The assembler builds a symbol table using these symbols and
the assigned values. The assembler also evaluates the expression in the operand field using the
values in the symbol table for any symbols in the expression. Then the assembler assembles the
appropriate object code according to the operation codes and the values of the operands.
Because the source statements are read only once, there must be limitations on the use of a
symbol in operand fields prior to the statement that has the symbol in the label field (forward
reference).

PX9 ASM supports the assembly language as previously described. The limitations on the use of
forward references in PX9 ASM are included in the description of expressions in a preceding
paragraph. PX9 ASM provides a listing of the source and object code, and the machine language
object code.

6.2.1 TERMINAL EXECUTIVE DEVELOPMENT SYSTEM ASSEMBLER. The terminal execu­
tive development system assembler TXMIRA is a two-pass assembler that executes in a Model 990
computer as part of the terminal executive development system, running under the TX990 execu­
tive.

TXMIRA reads the source statements of a program twice. On the first pass, the assembler maintains
a location counter and builds a symbol table. For the second pass, the source statements are read in
again after rewinding the input file. During the second pass, the assembler generates the object code
using the source statements and the symbol table data developed during the first pass.

The TXMIRA assembler supports the assembly language as previously described. Because it is a two­
pass assembler, the restrictions on forward references are relaxed. The TXMIRA assembler option­
ally produces a list of the source and object code, and the symbol table, and predefines registers.

6.3 CROSS ASSEMBLER
The Cross Assembler is a two-pass cross assembler that assembles object code for the TMS 9900
Microprocessor and Model 990 Computers. The Cross Assembler executes on an IBM System
3XO, and is available on several nationwide timesharing services.

6-1 Texas Instruments Incorporated

Jd7s\ ______ _ ~ 943441-9701

A two-pass assembler reads the source statements of a program two times. The first time (first
pass), the assembler maintains the location counter and builds a symbol table similar to those in
a one-pass assembler. The two-pass assembler also copies the source statements for reading during
the second pass, but does not assemble any object code. During the second pass, the assembler
reads the copy of the source statements, and assembles the object code using the operation codes
and the symbol table completed during the first pass.

The Cross Assembler also supports the assembly language as previously described. The restrictions
on forward references are not as great for PX9ASM, because it is a two-pass assembler. These restric­
tions are included in the descriptions of expressions in a preceding paragraph. The Cross Assembler
produces a listing of the source and object code, and the machine language object code. Optionally,
the Cross Assembler prints a Cross Reference listing of the symbols in the program, and a listing of
the object code. Also, optionally, the Cross Assembler includes the symbols used in the program
and their values with the object code.

Finally, the Cross Assembler supports additional directives which permit the programmer to distin­
guish between program segment, data segment, and common segments. Program segment is the
relocatable code normally generated by all three assemblers. Data segment is relocatable code which
normally includes only modifiable storage. Common segments correspond to the blank common
and labeled common blocks of a FORTRAN program.

6.4 PROGRAM DEVELOPMENT SYSTEM ASSEMBLER
The Program Development System Assembler SDSMAC is a two-pass assembler that assembles
object code for the Model 990 Computer and the TMS 9900 Microprocessor. SDSMAC executes
on a Model 990 Computer under the DXlO Disc Executive and is a part of the Program Develop­
ment System.

The only restrictions on forward references are instances in :which the value of the symbol affects
the location counter.

SDSMAC supplies the additional capability of Macro-instructions or MACROs. A macro is a user­
defined set of assembly language source statements. Macro definitions assign a name to the macro
and define the source statements of the macro. The macro name may then be used in the, operation
field of a source statement of the program to cause the assembler to insert the pre-defined source
statements and assemble them along with the other source statements of the program. The macro
capability of SDSMAC' allows the user to:

• Define macros to specify frequently used sequences of source code.

• Define macros for problem-oriented sequences of instructions to provide a means of
programming that may be more meaningful to users who are not computer-oriented.

Macros are defined in a macro language consisting of eleven verbs described' in Section VII. In
addition to the macro language SDSMAC supports a number of extended capabilities described in
subsequent paragraphs of this section.

SDSMAC supports the assembly language as described previously, and produces the source and
object code listing and machine language object code that the other assemblers produce. The
output options (cross reference listing, object code listing, and symbol table output) of the Cross
Assembler are also available with SDSMAC. In addition, the user may suppress all printed output
of SDSMAC or request SDSMAC to only produce a copy of the expanded source program.

6-2 Texas Instruments Incorporated

~-------~ 943441-9701

In addition to the macro capability, SDSMAC supports the following capabilities beyond those of
PX9ASM, TXMIRA and the Cross Assembler:

• Use of parentheses in expressions

• An additional arithmetic operator (,I/,) to perform right shifts

• Logical operators in expressions

• Relational operators in expressions

• Six additional output options

• Workspace pointer directive

• Copy source file directive

• Conditional Assembly Directives

• Define operation directive

• Transfer vector pseudo-instruction

• Define maximum macro level
The capabilities, and the use of symbolic addresses with SDSMAC are described in the following
paragraphs.

6.4.1 USE OF PARENTHESES IN EXPRESSIONS. SDSMAC supports the use of parentheses in
expressions to alter the order of evaluation of the expression. Nesting of pairs of parentheses within
expressions is also supported. When parentheses are used, the portion of the expression within the
innermost parentheses is evaluated first. Then the portion of the expression within the next-inner­
most pair is evaluated. When evaluation of the portions of the expression within all parentheses has
been completed, the evaluation is completed from left to right. Evaluation of portions of an
expression within parentheses at the same nesting level may be considered to be simultaneous.

For example, the use of parentheses in the expression LABl + ((4+3)*7) would result in the
addition of 4 and 3. The result, 7, would be multiplied by 7, giving 49. The complete evaluation
would be the value of LAB 1 plus 49. Without parentheses, 4 would have been added to the value of
LABl, and 3 would have been added to the sum. The sum of the second addition would have been
multiplied by 7 if LABl had an absolute value. If LABl had a relocatable value, the expression
would have been illegal without the parentheses.

6.4.2 RIGHT SHIFT OPERATOR. In addition to the standard arithmetic operators used in
expressions (add, subtract, multiply, divide), SDSMAC supports the operator II (double slash)
to perform right shifts. The operator is used in the expression as follows:

<operand> I I <Shift count>

The operand may be an immediate value, a previously defined symbol, or a forward referenced
symbol. The expression can not be relocatable. The precedence of this operator follows the normal
left-to-right precedence unless the expression is modified by parentheses.

6-3
Texas Instruments Incorporated

~.o ______ _
~ 943441-9701

6.4.3 LOGICAL OPERATORS IN EXPRESSIONS. SDSMAC supports logical operations in
expressions, which are the bit-by bit logical operations between the values of the symbols and/or
constants. The logical operators are as follows:

• & for AND

• && for exclusive OR

• ++ for OR

• # for NOT (logical complement)

The order of evaluation of expressions that contain logical operators is similar to that of
expressions that contain only arithmetic operators. Like the unary minus, the logical complement
takes precedence over other operations regardless of position, except as altered by parentheses.

The following are examples of expressions that contain logical operators:

BLUE&&255

GREEN++15

REDÿ

REDÿ++(BLUE&255)

Specifies the result of an exclusive OR
operation between the bits of the
value of symbol BLUE and the bits of
constant value 255.

Specifies the result of an OR
operation between the bits of the
value of symbol GREEN and the
bits of constant value 15.

Specifies the result of an AND
operation between the bits of the
value of symbol RED and the
inversion of the bits of
constant value 255.

AND the value of BLUE
with the constant 255. AND
the value of RED with the l's
complement of 255. OR the
two AND results to get the
value of the expression.

6.4.4 RELATIONAL OPERATORS IN EXPRESSIONS. SDSMAC supports six relational
operators that represent the relationship between the two constants and/or symbols, the result of
comparing .the constants and/or symbols. When the rehi'tionship corresponding to the operator
exists (is true), the value of the combination is 1. When the relationship corresponding to the
operator does not exist (is not true), the value of the combination is O. The result may be used
as an arithmetic value or as a logical value. The relational operators are as follows:

• = for equal

• < for less than

• > for greater than

6-4 Texas Instruments Incorporated

~ 943441-9701 ---
• <= for less than or equal

• >= for greater than or equal

• #= for not equal.

NOTE

The greater than character (» is also used to identify hexadecimal
constants. The context determines the meaning of the greater than
character in each statement.

The following are examples of expressions that contain relational operators:

BLUE#=GREEN

WHITE<BLACK

RED*(G REEN=O)

BLUE>=RED

Compares the value of symbol BLUE
to the value of symbol GREEN.
When the values are not equal,
the combination has a value of
one. When the values are equal,
the combination has a value of
zero.

Compares the value of symbol
WHITE to the value of symbol
BLACK. When the value of WHITE
is less than the value of BLACK, the
combination has a value of one.
Otherwise, the value of the com­
bination is zero.

Compares the value of symbol GREEN
to zero. When GREEN equals zero, the
value of symbol RED is multiplied
by I, and the value of the
expression is that of symbol
RED. When GREEN is not equal to
zero, the multiplier is zero, and
the value of the expression is zero.

Compares the value of symbol BLUE
to the value of symbol RED. When
BLUE is greater than or equal to
RED, the combination is equal
to one. When BLUE is less than
RED, the combination is equal
to zero.

6.4.5 OUTPUT OPTIONS. SDSMAC supports six options in addition to those listed in the
description of the OPTION directive. The additional options are specified by entering keywords in
an OPTION directive. The additional keywords and their meanings are as follows:

• NOLIST - Suppress printing of any listing. Overrides other directives and keywords.

• TUNLST - Limit the listing for text directives to a single line.

6-5 Texas Instruments Incorporated

943441-9701 ~ --

• DUNLST - Limit the listing for data directives to a single line.

• BUNLST - Limit the listing for byte directives to a single line.

• MUNLST - Limit the listing for a macro expansion to a single line.

• FUNL - Overrides unlist directives.

6.4.6 WORKSPACE POINTER. Only SDSMAC supports this directive. WPNT

Syntax definition:

[<label>] 0 ... WPNTh ... <label>o ... [<comment>]

WPNT defines the current workspace to the assembler. WPNT generates no object code. The user
must provide a machine instruction to actually place the value in the workspace register. The
symbol in the label field, when used, must represent a word (even) address and must have been
previously defined. The operation field contains WPNT. The operand field contains the label
assigned to the workspace. The comment field is optional.

The following example shows a WPNT directive:

WPNT WORK

The directive in the example is appropriate when the workspace at location WORK is the active
workspace. The assembler stores the value of label WORK as the current workspace address, and
from this information identifies symbolic addresses as workspace registers when the symbolic
addresses have values greater than WORK by 15 or less. The assembler also recognizes WORK or
a label equal to WORK as workspace register O. Symbolic addresses having values outside this
range are considered to be symbolic memory addresses.

6.4.7 COpy SOURCE FILE. Only SDSMAC supports this directive. COPY

Syntax definition:

[<label>]o ... COPYo ... <file name>o ... [<comment>]

COPY changes the source input for the assembler. Use of the label field is optional. The
operation field contains COPY. The operand field contains a file name from which the source
statements are to be read. The file name may be:

• An access name recognized by DXIO operating system.

• A synonym form of an access name.

The comment field is optional.

The following example shows a COPY directive:

COPY .SFILE

6-6 Texas Instruments Incorporated

~-------~ 943441-9701

The directive in the example causes the assembler to take its source statements from a file
SFILE. At the end-of-file of SFILE, the assembler resumes taking source statements from the file
or device from which it was taking source statements when the COpy directive was processed. A
COpy directive may be placed in a file being copied, which results in nested copying of files.

6.4.8 CONDITIONAL ASSEMBLY DIRECTIVES. Only SDSMAC supports these directives.

Syntax definition:

[<label>] b .. ASMIFb .. <wd-exp> b ... [<comment>]

Assembly language statements

b. .. ASMELSb .. [<comment>]

Assembly language statements

b. .. ASMENDb .. [<comment>]

Three directives, ASMIF, ASMELS and ASMEND, furnish conditional assembly capability in
SDSMAC. The three function as IF-THEN-ELSE brackets for blocks of assembly language
statements. When the expression in the operand field of an ASMIF evaluates to a non-zero (or true)
value, the block of statements enclosed by either ASMIF-ASMEND or ASMIF - ASMELS is
assembled. If the block is terminated by ASMELS, the block enclosed by ASMELS - ASMEND is
not assembled. When the expression on an ASMIF evaluates to zero (or false), the block of state­
ments immediately following ASMIF is not assembled. If an alternate ASMELS block occurs, it
is assembled. Statements not assembled are treated as comments. The ASMIF expression must be
well defined when it is encountered.

WARNING

ASMIF, ASMELS and ASMEND may not appear as macro model
statements. ASMIF - ASMELS - ASMEND constructs may be nested.

The following example shows the use of conditional assembly.

6-7 Texas Instruments Incorporated

~-------~ 943441-9701

SDSMAC 94?0?5 :+:E

1Z.1(1~):1

la(1t;::1~:~

I;:KI03:
t;::11~104

(10~~15

,:11~11~1 t;
(1~.3('f?

~~11;:~ I) ::::
~~10(~19

(11~1~tl)

(1 1Z.1:1. 1
J;:~tl1~~
(1(11~i:

f1~)14

~)(11!'.:i

1~11~1:1.6

C1~j1?

I)Oj.:::::

:+:

:+:

*
:+:

THIS IS AN EXAMPLE OF A USE OF CONDITIONAL ASSEMBLY
TO INCLUDE VARIOUS LEVELS OF DEBUG INFORMATIO~

:+: A SYMBOL IS DEFINED WHICH INDICATES THIS LEVEL
* 0 - NO DEBUG
:+: 5 - ENTRY IEXIT SHORT DUMPS
:+: 10- THE ABOVE. OUTER LOOP SHORT DUMPS. ENTRY/EXIr
* LONG DUMPS
* 15- ALL THE ABOVE & INNER LOOP SHORT DUMPS
:+:

000C DEBUG EQU 12
:+: A VALUE OF 12 FOR DEBUG WILL GIVE THE FIRST 3 LEVELS
* OF DEBUG INFORMATION

REF SRTDMP,LNGDMP
* PROGRAM ENTRY POINT

DEF' Et·Hf":'T'

(1('12(1
O~:'I~~:l

ASMIF DEBUG IF DEBUG=O, SKIP THIS BLOCK*
'ASMIF DEBUG>5 :+:

I;:~ 0 ;;:: ;~: ~~~~1 ~~1 (~ (16 A~) BL LNGDMP ENTRY POINT SHORT DUMP *

,7:IIZ.l;;:3
(K124
1~10;;::!'.:i

00,;!6 ASI"'lEND

ASt'lELS
BL Sf":TDt'lP

ASt'lEND
ENTRY POINT LONG DUMP *

*
*

*:+:******:+:***:+:
(Kl;;;:? 1)(:'I1:::r4 C::U:::B MO'·... f":l:1... R6 (SAVE RETURN ADDRESS)
(1 I);;;:: S :+:

(1(:1;'::9
tl,::1:~:f1

o (::Cj ..

:f: <CODE)
:+:
:+: OUTEf": LOOP
LABEL1..

0033 0006 0205 LI R5.)100
I;:jf1!j::;: ~):1.(:10

1)034 :+: INNER LOOP
0035 000A LABEL2
0036 000A 0204 LI R4.6

. ,)I2C·?
BCG::;:: * <CODE)
l;:il)3:9 *
0~:i4t;:i A::::;I""I I F [)EBUG:>:::::1..!'.:i
(:l(14J.

1211~14;'::
BL Sf":TDt"IP

A::::;~lEND
(1(14:]: ()Cj0E ;:'16(14
.':lIj44 t::~O:H~ :1.5FC

:+:

DEC R4
.JGT L..A8EL2

OCj4!":"i
(1 IZ14t; :+: (CODE:>
004? :+:
0(14::::
J;:il~149 0(1:t;~: ~)6A~)

(1(1:1..4 ~jfl(lf1

A:-:;t'l I F DEBUG>:::::H.l
E:L SVr[:'~lp

0050 AS MEND
0051 0016 0605 DEC R5
0052 0018 15F6 JGT LABELl
0053 *
0054 :+: (CODE>
0055 :+:

0056 :+: EXIT POINT

6-8

INNER LOOP SHORT DUMP

OUTER LOOP SHORT DUMP

Texas Instruments Incorporated

~~-------------------~ 943441-9701

SDSMAC 947075 :+:E

0(157
(1~)~i::::

(1(159 ~X11A ~:::16AO

('t01C ~')(1(12"

~:::1~)6~:::1

(H:161
~)~.362

(:t(16:3:
~X164 ~::h)lE 1~1456

ASt'1 I F OEBUG
A::::; "'1 I F DEBUG)5

ElL UlCl[:·t'1P

ASt'1ENl>
ASt'1Ell['
EI :+:F.:6
END

BL SI?TDt'1P

6-9

IF DEElUG=O, SKIP THIS BLOCK:+:

E}:: I T LONG [:oIJt'1P
:+:
:+:

E)< I T SHORT [:'Ut'1P
:+:
:+:
:+:

:+:**:+:**
(F.:ETUF.:N THF.:OUGH SAVED REGISTEF.:

Texas Instruments Incorporated

~ ____ 9_4_34_4_1_-9_7~0_1 __ ___

6.4.9 DEFINE OPERATION. Only SDSMAC supports this directive. DFOP DFOP

Syntax definition:

[<label>] b ... DFOPb ... <symbol>,< operation>b ... [<comment>]

DFOP defines a synonym for an operation. Use of the label field is optional. The operation field
contains DFOP. The operand field contains a symbol which is the synonym for an operation,
and the operation, which may be the mnemonic operation code of a machine instruction, a
macro name, or the symbol of a previous DFOP or DXOP directive, The comment field is
optional.

The following example shows a DFOP directive:

DFOP LD,MOV
,

The directive in the example defines LD for a synonym for the MOV machine instruction. The
LD symbol might be more meaningful where the source is a symbolic memory location and the
destination is a workspace register. The machine code for the MOV instruction is assembled
whenever either symbol appears in the operation field of a source statement. A single symbol
may appear in more than one DFOP directive in the same assembly, and an operation symbol
may appear in the label field of a DFOP directive. When an operation symbol appears as the
defined symbol of a DFOP direCtive, the corresponding operation is not available unless it had
appeared in the operand field of a previous DFOP directive. The effect of a group of DFOP
directives is shown in the following example:

DFOP
DFOP

DFOP
DFOP

DFOP

HOLD, LWPI
LWPI,SOMMAC

SAVE,HOLD
HOLD,BLWP

LWPI;SAVE

HOLD DEFINED TO BE LWPI
LWPI REDEFINED AS MACRO SOMMAC

SAVE DEFINED AS HOLD (LWPI)
HOLD REDEFINED AS BLWP

LWPI RESTORED

The first pair of DFOP directives substitutes macro SOMMAC for the LWPI machine instruction,
which may be specified by the symbol HOLD. The second pair of DFOP directives changes the
symbol by which the L WPI machine instruction is specified to SAVE, and the symbol by which
the BLWP instruction is specified to HOLD. The last DFOP directive restores the symbol LWPI
to the LWPI machine instruction.

6.4.10 TRANSFER VECTOR. Only SDSMAC supports this pseudo-instruction. XVEC

Syntax definition:

<label>b ... XVECb ... <wp address>[,<Subr address>]b ... [<comment>]

6-10 Texas Instruments Incorporated

~-------~ 943441-9701

The XVEC pseudo-instruction is a means of coding the transfer vector for a subroutine.
XVEC places a set of assembler directives in the source code to provide a transfer vector
for a BL WP instruction. XVEC also provides a WPNT directive to define the newly active
workspace to the assembler. The label field contains the label of the resulting transfer vector.
The operation field contains XVEC. The operand field contains the label (wp address) of the
workspace that becomes active when the BLWP instruction is executed. Optionally, the wp
address may be followed by a comma and the label (subr address) of the first instruction to be
executed in the subroutine. When the second operand is omitted, the assembler assumes that the
first instruction to be executed follows the transfer vector. The use of the comment field is
optional.

Enter the XVEC pseudo-instruction as shown in the following example:

SUBRA XVEC WKSPA,ENTRYA

Transfer of control to a subroutine at location ENTRY A with a workspace at location WKSPA
becoming the active workspace is coded as follows:

BLWP SUBRA

The resulting object code and assembler processing is the same as would result from the
following directives:

SUBRA DATA
DATA
WPNT

WKSPA
ENTRY A
WKSPA

Alternatively, the XVEC pseudo-instruction may be entered as follows:

SUBRA XVEC WKSPA

In this case, the executable code of the subroutine must immediately follow the XVEC
pseudo-instruction. The resulting object code and assembler processing is the same as would
result from the following directives:

SUBRA DATA
DATA
WPNT

WKSPA
$+2
WKSPA

NOTE

No executable code that requires a different active workspace than
that of the subroutine may be entered between the XVEC pseudo­
instruction and the subroutine entry address.

6.4.11 SET MAXIMUM MACRO NESTING LEVEL. Only SDSMAC supports this directive.

Syntax definition:

[<label>] b ... SETMNLb ... <exp>b ... [<comment>]

The SETMNL directive allows the programmer to change the maximum macro nesting stack level
as required. SDSMAC maintains a count of the number of levels of macro nesting and declares an

6-11 Texas Instruments Incorporated

Jd75\ ______ _ ~ '943441-9701

error if this count exceeds the maximum number allowed. The default maximum is sixteen. The
SETMNL directive may be used to set the allowed maximum to greater or less than sixteen.

6.4.12 SYMBOLIC ADDRESSING TECHNIQUES. SDSMAC processes symbolic memory
addresses differently than the other assemblers so that the user may:

• Use the symbolic memory address of a workspace register to address the workspace
register.

• Omit the @ character to identify a symbolic memory address.

When SDSMAC processes a symbol as an operand of a machine instruction, it compares the value
of the symbol to the address of the current workspace. When the value is equal to the workspace
address, or is greater by 15 or less, the symbol represents a workspace and SDSMAC assembles a
workspace register address. Otherwise SDSMAC assembles a symbolic memory address. A WPNT
directive or an L WPI instruction supplies the address of the current workspace to the assembler.

Without this capability, two symbols are frequently assigned to the same address. The following
example illustrates this type of coding:

SUM
QUAN

WSI
QUANT
FIVE

SUBl

ENTI

EQU 0
EQU 1

DATA 0
DATA 0
DATA 5

ASSIGN SUM FOR WORKSPACE REGISTER 0
ASSIGN QUAN FOR WORKSPACE REGISTER 1

WORKSPACE REGISTER 0
WORKSPACE REGISTER 1
WORKSPACE REGISTER 2

MOV @FIVE,@QUANT INITIALIZE QUANTITY
BLWP @SUBI BRANCH TO SUBROUTINE

DATA
DATA
A

WSI
ENTI
QUAN,SUM

TRANSFER VECTOR
FOR SUBROUTINE
ADD QUAN TO SUM

The two initial EQU directives assign meaningful labels to be used as workspace register addresses in
the subroutine. The labels of the DATA statements are required to access the same memory
locations in the main program, when another workspace is active. The following code would
produce the same object code when assembled on SDSMAC:

SUM
QUAN
FIVE

DATA
DATA
DATA

MOV
BLWP

o
o
5

FIVE,QUAN
SUBl

WORKSPACE REGISTER 0
WORKSPACE REGISTER 1
WORKSPACE REGISTER 2

INITIALIZE QUANTITY
BRANCH TO SUBROUTINE

6-12 Texas Instruments Incorporated

~~------------------~ 943441-9701

SUBI
ENTI

XVEC
A

SUM
QUAN,SUM

TRANSFER VECTOR FOR SUBROUTINE
ADD QUAN TO SUM

The MOV instruction in the main program results in symbolic memory addresses for both operands.
The BLWP instruction uses transfer vector SUBI, provided by the XVEC directive labelled SUBI.
The XVEC directive also provides a WPNT directive that identifies SUM as the address of the
current workspace. The A instruction uses the symbol QUAN (as used in the MOV instruction) but
results in a workspace register aduress, because QUAN is now workspace register 1.

SDSMAC is compatible with the other assemblers, however, because the code of the first example
would be correctly assembled on SDSMAC.

In assemblers other than SDSMAC, a @ character is required, to denote the "indexed" mode of
addressing where the instruction is defined as having a generalized address as an operand. When
using SDSMAC, the @ character is considered redundant if

- all symbols in the expression have been previously defined and the resulting values of
the expression is greater than 15, or

- another @ character prefaces the expression.

The following notations for the MOV instruction in the previous example would generate the same
object and result in an error-free assembly:

MOV @FIVE, @QUAN

MOV FIVE, QUAN

MOV @@FIVE, @@QUAN

NOTE

When the @ is omitted from a symbolic expression, the symbol must
be defined before its use. If the symbol is not first defined, a register
reference is assumed. If later the symbol is defined as a memory re­
ference, an 'OPERAND CONFLICT PASSI/PASS2' error is gen­
erated.

6-13/6-14 Texas Instruments Incorporated

~-------~ 943441-9701

SECTION VII

MACRO LANGUAGE

7.1 GENERAL
The SDSMAC assembler supports a macro defining language used in programs. A macro definition is
a set of source statements (machine instructions and assembler directives) specified by a macro call
in a source program. When the assembler processes a macro call it substitutes the predefined source
statements of the macro definition for the macro call source statement, and assembles the sub­
stituted statements as if they had been included in the source program. MACRO definitions may
be placed in a MACRO library for use in a subsequent assembly. This section describes the macro
language, the verbs used to define macros, and the MACRO library directives.

7.2 PROCESSING OF MACROS
Figure 7-1 illustrates the data paths between the basic assembler, the macro translator (consisting of
the Statement Classify, Macro Define, and Macro Expander modules) and the Macro library. The
Statement Classify module processes all source statements to detect macro language statements and
macro calls, and ignoring non-macro language statements. A special macro language statement,
$MACRO, identifies the beginning of a macro definition, and $END identifies the end of a macro
definition. Statements that occur between these two statements constitute a macro definition, and
are passed to the Macro Define module. The module writes them in the Macro library in an encoded
form. The Macro Define module also supplies to the Statement Classify module the macro name.

MACRO ENCODED
EXPANDER ~----,- MACRO

-.....
•• I

I
I

STATEMENT MACRO
CLASSIFY - DEFINE

PRIMARY
INPUT

(SOURCE
PROGRAM) .,

ASSEMBLER

(A)132254

Figure 7-1. Macro Assembler Block Diagram

7-1 Texas Instruments Incorporated

~5\ ______ _ ~ 943441-9701

The Statement classify module recognizes a macro call by the macro name in the operation field.
The statement classify module then passes the name to the macro expander module. The macro
expander module assesses the desired macro definition. The macro call is expanded as specified in
the macro definitions. The source statement that results from this expansion is used as input by the
Statement Classify module.

During the expansion of a macro call, a macro language statement may call another macro, or a
resulting source statement may be a macro call. A nesting of Macro's calls can occur in the
expansion of one Macro call. The macro processor suspends processing of the current macro,
processes the new macro, then resumes processing the original macro at the point of interruption.
The macro translator allows a macro to be a recursive.

7.3 MACRO TRANSLATOR INTERFACE WITH THE ASSEMBLER
Expansion of a macro call may be varied according to the contents of the assembler symbol table
(AST) and may result in alteration of the contents of the AST. The AST contains an entry for each
symbol identified in the source program. The entry in the AST is divided into a number of
components. The value of the symbol is stored as the value component (is a binary value used in
computations). The segment component contains the location counter segment number of the
symbol, and the attributes of this symbol are stored in the attribute component as a group of bits
each of which represents an attribute of the symbol. The string component is null unless the macro
translator places a string of characters in it. The length component contains the number of
characters in the string component. An eight-bit user attribute field allows special attributes to be
defined for a symbol. In this section, the symbol table entry components are referred to as symbol
components.

Using keywords, a macro definition may access any component of any symbol in the AST. Symbols
that are operands of the macro call may be used in the definition without any further declarations.
Other symbols used in the Macro definitions must be explicitly declared before use.

A set of macro language statements beginning with a $MACRO statement and ending with a $END
statement is a macro definition. The $MACRO statement includes a macro name that is used as the
operation field. Macro definitions may appear anywhere in a program prior to macro calls that
activate the definitions and may be unique to a program or shared by many programs.

The LIBIN directive makes it easy to incorporate a library of previously encoded macro definitions
in every program. These definitions become a part of the source program but they are used only
when a macro is called in the source program.

A macro definition need only be as sophisticated as its application requires. The macro definition
simply redefine an instruction, supply one or more fixed operands for commonly used instructions,
contain one or more calls for other macros, or call itself recursively. The statements in a macro
definition may access AST symbol components to specify processing of a macro or alter the con­
tents of the AST. To prevent the assembler from getting into an infinite loop, the maximum nesting
level for macros is sixteen. Ho.wever, the SETMNL directive may be used to change the established
maximum as required.
7.4 MACRO LIBRARY
A MACRO library is a DXIO directory and each member file of the directory contains a MACRO
definition. Two assembler directives, LIBIN and LIBOUT, identify MACRO libraries for input and
output, respectively. In addition, a system MACRO library may be input via the assembler input
parameters.

The purpose of a MACRO library is to reduce execution time and memory o~e:~ead associated
with using MACROs. Execution time is reduced by encoding the MACRO deflmtlOns only once

7-2 Texas Instruments Incorporated

~-------~ 943441-9701

and making them available for subsequent assembler runs. Memory requirements are reduced since
MACRO definitions not under expansion reside only in the directory on disc.

7.5 MACRO LANGUAGE ELEMENTS
The elements of the macro language are labels, strings, constant operators, variables, variable quali­
fiers, keywords, and verbs. A macro definition consists of statements containing macro language
verbs and model statements. A model statement can be constructed from some of the elements
and results in an assembly language source statement. The elements of the macro language and
model statements are explained fully in the following sections.

7.5.1 LABELS. A macro language label consists of one or two characters. The first must be an
alphabetic character (A ... Z) optionally followed by an alphanumeric character (A ... Z, 0 ... 9). Macro
language labels are used to determine the sequence of processing of statements in a macro definition
when the statements are not to be processed in order and have no significance in the actual
assembly language. The following are examples of valid macro language labels:

L1 MA C

7.5.2 STRINGS. The literal strings of the macro language consist of one or more characters
enclosed in single quotes, and are identical to the character strings used in the assembly language.

An example is 'ONE'.

Another example is 'b' (a blank).

7.5.3 CONSTANTS AND OPERATORS~Constants for the macro language are defined the same as
constants for the assembly language. The arithmetic operators of the assembly languageapplys also
to the macro language. The logical operators and the relational operators of SDSMAC also apply to
the macro language.

The macro language pennits concatenation of macro variable components with literal strings,
characters of model statements and other macro variables. Concatenation is indicated by writing
character strings in juxtaposition with string mode references to MACRO variables.

7.5 .4 VARIABLES. A macro definition may include variables, which are represented in the same
manner as symbols in the assembler symbol table, with the restriction that they may be a maximum
of two characters in length.

VA P4 SC F2 A Z

NOTE

Macro variables are strictly local; they are available only to the macro
which defines them. Access to symbols in the AST is through the
symbol components.

7.5.4.1 Parameters. A parameter is a variable that is an operand of the expanded macro call and is
declared in the $MACRO statement at the beginning of the macro definition. The sequence of
parameters in the operand field of the $MACRO statement corresponds to the sequence of operands
in the operand field of the macro instruction.

7-3 Digital Systems Division

~ ______ 9_4_34_4_1_-9_7_0_1 __ __

7.5.4.2 Macro Symbol T(lble. The macro translator maintains a macro symbol table (MST) similar
to the symbol table of the assembler, and each entry consists of the string, value, length, and
attributes of a variable or parameter. The Macro Expander module places parameters in the MST as
it processes a macro call, and places variables in the MST as it processes the macro language state­
ments that declare variables.

The string component contains a character string assigned to the macro variable or parameter by the
macro expander. The value component contains the binary equivalent of the string component if
the string component is an integer. The value component can also contain the value of the symbol if
the string component is a symbol in the AST.

The length component contains the number of characters in the string component. The attribute
co~ponents of the MST is similar to the attribute component of the AST entry in that it is a bit
vector, the bits of which correspond to the attributes of the variable or parameter.

The Macro Expander comprehends the addressing modes of the assembler language. The value
components contains a binary value which can be interpreted if the operand is a valid integer
expression of arty assembler addressing mode.

For example, the statement:

ADD $MACRO AU, AD

identifies a macro, ADD, having parameters AU and AD.

A macro call to activate that macro definition could be coded as follows:

ADD NUM, *3

The MST would now contain parameters AU and AD, and string component of parameter AU
would be 'NUM'. The value component would be the value of the symbol NUM, and the attribute
component would indicate that the parameter is supplied in a macro call. The length component
would be 3. The string component of parameter AD would be '*3'. The value component would be
3 expressed as a binary number, and the length component would be 2. The attribute component
would indicate that the parameter is an indirect workspace register address appearing in the macro
call.

Another macro call for the same macro could be coded as follows:

ADD V AL(S), SUM

The components of the parameters AU and AD would now correspond to the operands of this
instruction. The string compon~nt of parameter AU would be 'VALeS)'. The value component
would be S (the index register number), and the length component would be 6. The attribute
component would indicate that parameter AU is an indexed memory address appearing in the
macro call instruction.

The string component of parameter AD would be 'SUM', and the value component would be the
value of SUM. The length component would be 3, and the attribute component would indicate that
parameter AD appears in the macro call.

7-4 Texas Instruments Incorporated

Jd75\ ______ _ ~ 943441-9701

Each component of a macro variable may be accessed individually. Reference to a variable is made
in either binary mode or string mode. In the binary mode, the referenced macro variable component
is treated as a signed sixteen-bit integer. Binary mode access is made by writing the variable name
and component. Thus, the binary mode value of the length component of AD would be the sixteen
bit integer, 3. A reference to the string component of a macro variable in binary mode is, by defini­
tion, the sixteen-bit integer value of the ASCII representation of the first two characters of the
string. The binary mode value of the string component of AD is > 5255, which is the ASCII repre­
sentation for 'SU'.

String mode access of macro variable components is signified by enclosing the variable in colon
characters (:); for example, :AD:.

NOTE

Colons are always used in pairs to enclose a variable name.

The string mode value of a component, other than the string component, is the decimal character
string whose value is the binary value of the component. In the previous example, the string mode
value of the length component of AD would be the character string '3'. If the value of SUM were
> 28, then the string mode value of the value component of AD would be the character string '40',
which is the decimal equivalent of> 28. Since the string component of a macro variable is a string,
the string mode value of a string component is the entire string.

7.5.4.3 Variable Qualifiers. The components of a parameter or variable may be specified, using the
specific names as shown in table 7-l. The variable name is followed by a period (.) and the single
letter qualifier. The following examples show qualified variables:

AU.S

AU.A

AU.V

AU.L

String component of variable AU.
In the first example of the macro call for a macro 'ADD', AU.S equals the binary
equivalent for 'NU', or > 4E55. If a colon (:) has indicated the string mode, the
string component is 'NUM' (:AU.S: = 'NUM').

Attribute component of variable AU.
This component may be accessed by use of logical operators and keywords.

Value component of variable AU.
In the first example of the macro call for a macro 'ADD', this would be the value
of the symbol 'NUM' in the AST.

Length component of variable AU.
In the first example fo the macro call for a macro 'ADD', AU.L = 3.

Qualifier

S

A

V
L

Table 7-1. Variable Qualifiers

Meaning

The string component of the variable

The attribute component of the variable.

The value component of the variable.

The length component of the variable

7-5 Texas Instruments Incorporated

~~-------------------~ 943441-9701

Except in an $ASG statement (described in a subsequent paragraph), an unqualified variable means
the string component of the variable. In the two following examples, the concatenated strings are
equivalent:

:CT.S: 'b WAY Variable CT qualified.

:CT: 'b WAY Variable CT unqualified.

When the string component of a variable is a symbol in the AST, the additional qualifiers of
table 7-2 may be used to access the symbol components of that symbol. The symbol components of
the parameters of macro instructions and the symbol value of an AST symbol are accessible directly.
To access the other components of a symbol which has not been passed as a parameter in the macro
definition, the symbol must be assigned as a string component of a macro variable and the symbol
component qualifiers of table 7-2 applied to that variable. The following are examples of qualified
variables that specify symbolcomponets of string components of variables:

B.SS String component of symbol that is the string component of variable B. This is null
unless a macro instruction has caused a string to be associated with by using a $ASG
statement.

G2.SV Value component of the symbol that is the string component of variable G2. If G2.S
has been defined as 'MASK', a statement MASK EQU> FF has been encountered in
the assembly language source when G2.SV = > FF. In string mode, :G2.SV: = '255'.

NO.SA Attribute component of the symbol that is the string component of variable NO.
This component may be accessed by use of logical operators and keywords, as
described later.

V2.SL Length component.of the symbol that is the string component of macro variable V2.
If a string has been assigned to the symbol which is V2.S, then V2.SL is the length
of that string.

NV.SU User attribute component of symbol that is the string component of variable NV.
This component is zero except when a macro instruction has been issued to set bits
in the component with a $ASG macro verb. This component is 8 bits long and may
be used as desired.

LM.SG Segment component of symbol that is the string component of variable LM.

Concatenation is especially useful when a previously defined string is augmented with additional
characters. The string 'ONE' could be represented by a qualified variable such as CT.S. In that
case, concatenation expressed as follows:

:CT.S: ''bWAY'

would provide the same result as writing

'ONE 'bWAY'

If the qualified variable CT.S represented 'TWO', the result of the concatenation in the example
would be 'TWO WAY'. Strings and qualified variables may be concatenated as required and the
variable need not be first. Components of variables _ that are represented by a binary value (e.g.,

7-6 Texas Instruments Incorporated

Jd7)\ ______ _ ~ 943441-9701

CT.V and CT.L) are converted to their ASCII decimal equivalent before concatenation.

For example:

:CT.S:'bWAYb' :CT.L:

is expanded as

ONE WAY 3

since the length component of the variable CT is three.

Table 7-2. Variable Qualifiers for Symbol Components

Qualifier

SS

SV

SA

SL

SU

SG

Meaning

String component of a symbol that is the
string component of a variable.

Value component of a symbol that is the
string component of a variable.

Attribute component of a symbol that is
the string component of a variable.

Length component of a symbol that is the
string component of a variable.

User attribute component of a symbol that
is the strin~ component of a variable.

Segment component of a symbol that is
the string component of a variable.

7.5.5 MODEL STATEMENTS. As mentioned earlier, a macro definition consists of statements
that contain macro language verbs, and model statements. A model statement always results in an
assembly language source statement and may consist only of an assembly language statement, or
portions of an assembly language statement combined with string mode qualified variable
components using the colon operator (:). In any case, the resulting source statement must be a legal
assembler language statement or errors will result. The following examples show model statements:

MOVB R6,R7

:P7.S:bbbSOCbbb:P2.S;,R8bbb:V4.S:

This model statement is itself an assembly language
source statement that contains a machine instruc­
tion.

This model statement begins with the string com­
ponent of variable P7. Three blanks, SOC, and three
more blanks are concatenated to the string. The
string component of variahle P2 is concatenated to
the result, to which, R8 and three blanks are conca­
tenated. A final concatenation places the string com­
ponent of variable V4 in the model statement. The
result is an assembly language machine instruction
having th((label and comment fields and part of the
operand field supplied as string components.

7-7 Texas Instruments Incorporated

~~.-------------------~ 943441-9701

:MS.S: This model statement is the string component of
variable MS. Preceeding statements in the macro
definition must place a valid assembly language
source statement in the string component to pre­
vent assembly errors.

CAUTION

Conditional assembly directives may not appear as operations in a
model statement. Comments supplied in model statement may not
contain periods C.), since SDSMAC scans comments in the same way
as model statements and improper use of punctuation may cause
syntax errors.

7.5.6 SYMBOL ATTRIBUTE COMPONENT KEYWORDS. The macro language recognizes key­
words to specify the attributes of assembler symbols and macro parameters. Each keyword
represents a bit position within a word that contains all attributes of the symbol or parameter. A
keyword may be used with a logical operator and the attribute component ot test or set a specific
attribute of a symbol or parameter.

The keywords listed in table 7-3 may be used with a logical operator and the symbol attribute com­
ponents (,SA) to test or set the corresponding attribute component in both the AST or MST. The
following example shows an expression that uses a symbol attribute component keyword:

P5.SA&$STR This is the result of an AND operation between the
attribute component of the symbol that is the string
component of variable P5 and a bit vector correspon­
ding to keyword$STR. The expression has a nonzero
value when the contents of the string component of
P5 is not null; otherwise, the expression has a value of
O.

Another example shows an expression that uses a symbol attribute keyword:

CT.SA++$REL

Keyword

$REL

$REF

$DEF

$STR

$VAL

$MAC

$UNDF

This is the result of an OR operation between the
attribute component of the symbol in the string
component of variable CT and the bit correspond­
ing to keyword $REL. The value of the expression
is that of the attribute component showing the sym­
bol as relocatable.

Table 7-3. Symbol Attribute Keywords

Meaning

Symbol is relocatable.

Symbol is an operand of an REF directive.

Symbol is an operand of a DEF directive.

Symbol has been assigned a component string.

Symbol has been assigned a value.

Symbol is defined as a macro name.

Symbol is not defined.

7-8 Digital Systems Division

J2tJS\ ______ _ ~ 943441-9701

7.5.7 PARAMETER ATTRIBUTE KEYWORDS. The keywords listed in table 7-4 may be used
with a logical operator and the macro symbol attribute component to test or set the corresponding
attribute in the MST attribute component. These attribute keywords may be used to test or set
attributes of both parameters and variables in the MST. The following examples show expressions
that use parameter attribute component keywords:

P6.A&$PCALL

RA.A++$PSYM

Keyword

$PCALL

$POPL

$PNDX

$PIND

$PATO

$PSYM

This is the result of an AND operation between the
attribute component of variable P6 and the bit vec­
tor corresponding to keyword $PCALL. The
expression has a nonzero value when variable P6 is
a parameter supplied in a macro call. Otherwise
the value of the expression is zero.

This is the result of an OR operation between the
attribute component of variable RA and the bit
vector corresponding to keyword $PSYM. The
value of the expression is that of the parameter
attribute component showing the parameter as a
symbolic memory address.

Table 7-4. Parameter Attribute Keywords

Meaning

Parameter appears as a macro-instruction operand.

Parameter is an operand list. The value component contains
the number of operands in the list.

Parameter is an indexed memory address. The value
component contains the index register number.

Parameter is an indirect workspace register address.

Parameter is an indirect autoincrement address.

Parameter is a symbolic memory address.

7.5.8 VERBS. The macro language supports eleven verbs that are used in macro language state­
ments. Any statement in a macro definition that does not contain a macro language verb in the
operation field is processed as a model statement. The verbs and the statements named after all
verbs are described in the following paragraphs.

7.5.9 $MACRO.

Syntax definition:

<macro name>'b ... $MACROt:> ... [<parm>] [,<parm>] ... t:> ... [<comment>]

7-9 Texas Instruments Incorporated

Jd7s\ ______ _ ~ 943441-9701

The $MACRO statement must be the first statement of a macro definition, assigns a name to the
macro and declares the parameters for the macro. The macro name consists of from one to six
alphanumeric characters, the first of which must be alphabetic. Each < parm > is a parameter for
the definition, as previously described in paragraph 7.5.4.1. The operand field may contain as many
parameters as the size of the field allows, and inust contain all parameters used in the macro defini­
tion.

The macro definition is used in the expansion of macro calls that have the macro name as an oper­
ation code. The syntax for a call is as follows:

[{ <operand> 1] [{ <operand> }]
[<J.abeJ>] t> ... <macro name>t>. . . . ' .' .. t> ... [<comment>]

<operand lIst> <operand lIst>

When the label field contains a label, the label is assigned to the location of the first object or
dummy object code of the expanded macro instruction. The macro name specifies the macro defini­
tion to be used. Each operand may be any expression or address type recognized by the assembler
or a character string enclosed in quotes. Alternatively, an operand list may be used. An operand
list is a group of operands enclosed in parentheses and separated by commas (when two or more
operands are in the list) and is processed as a set after removal of the outer parentheses during
macro expansion.

Operands (or operand lists) may be nested in parentheses in the macro call for use within macro
definitions.

For example:

ONE $MACRO PI, P2

specifies 2 parameters.

A call such as

ONE PARI, PAR2

will result in

'PARI' being associated with PI and 'PAR2' being associated with P2.

However, a call such as

ONE PARI, (PAR2I, PAR22)

will result in

'PARI' being associated with PI and 'PAR2I, PAR22' being associated with P2.

7-10 Texas Instruments Incorporated

J2~ ______ _ ~ 943441-9701

Now if :P2: or :P2.S: is used as an operand in a model statement, it has the effect of being two
operands (i.e., matching two parameters in the macro definition).

Processing of each macro call in a source program causes the Macro Expander to associate the
first parameter in the $MACRO statement with the first operand or operand list on the macro
call line and the second parameter with the second operand or operand list, etc. Each parameter
receiving a value has the $PCALL attribute set. When the macro definition has more parameters
specified than the number of operands in the macro call, the $PCALL attribute is not set for the
excess parameters. The $PCALL attribute is also not set if an operand is null, Le., the call line
has two adjacent commas or an operand list of zero operands. Expansion of the macro can be con­
ditioned on the number of operands by testing this attribute, $PCALL.

For example, a macro definition containing
AMAC $MACRO PI, P2, P3

when called by

AMAC ABl, AB2

sets $PCALL in parameters PI and P2 but not for P3.

Similarly,

AMAC XY I "XY3

causes $PCALL to be set for PI and P3 but not for P2.

When the macro instruction has more operands than the number of parameters in the $MACRO
statement, the excess operands are combined with the operand or operand list corresponding to the
last parameter to form an operand list (or a longer operand list). For example, with the macro state­
ment shown, the operands of the two macro calls in the following code would be assigned to the
parameters in the same way:

ONE

TWO

EQU

EQU

9
43

THREE EQU 86

FIX $MACRO PI,P2 MACRO FIX

FIX ONE,TWO,THREE MACRO-INSTRUCTION

FIX ONE ,(TWO ,THREE) MACRO-INSTRUCTION

7-11
Texas Instruments Incorporated

J2r7S\ ______ _ ~ 943441-9701

Parameter assignments:

P1.S

P1.A

P1.L

P1.V

= ONE

= $PCALL

= 3

= 9

P2.S

P2.A

P2.L

P2.V

= TWO,THREE

= $PCALL,$POPL

= 9

= 2 (number of operands in the list)

Another example of a parameter assignment in a macro statement is as follows:

A
B
C
D
E
F
G
H
I
PARM

EQU
EQU
DATA
DATA
EQU
EQU
EQU
EQU
EQU
$MACRO

PARM

Parameter assignments:

P1.S = A

P1.A = $PCALL

P1.L =
P1.V = 7

P3.S = B

P3.A = $PCALL

P3.L = 1

P3.V = 15

PS.S = C

PS.A = $PCALL

PS.L = 1

PS.V = 0

P7.S = (E) (F)

7
15
17
63
95
47
58
101
119
PI ,P2,P3,P4,PS ,P6,P7 ,P8,P9

A"B,O,C,(D),(E)(F),(G,(H,I)), *R7+

P2.S = (no string)

P2.A = (zeroes)

P2.L = 0

P2.V = 0

P4.S = (no string)

P4.A = $POPL

P4.L = 0

P4.V = 0

P6.S = D

P6.A = $PCALL,$POPL

P6.L = 1

P6.V =

P8.S = G,(H,I)

P7.A = $PCALL,$PNDX PS.A = $PCALL,$POPL

P7.L = 6 P8.L = 7

P7.V = 47 P8.V = 2

7-12 Texas Instruments Incorporated

Jd75\ ______ _ ~ 943441-9701

P9.S

P9.A

P9.L

P9.V

7.5.10 $VAR.

=
=
=
=

Syntax definition:

*R7+

$PCALL, $P A TO

4
7

lJ ... $VARlJ ... <var>L<var>] ... lJ ... [<comment>]

The $VAR statement declares the variables for a macro definition. The $VAR statement is required
only if the macro definition contains one or more variables other than parameters. More than one
$VAR statement may be included and each $VAR statement may declare more than one variable.
Each <var> in the operand is a variable as previously described.

The following is an example of a $VAR statement:

$VAR A,CT,V3 THREE VARIABLES FOR A MACRO

The example declares variables A, CT, and V3. A, CT, and V3 must not have been declared as
parameters. The $VAR statement does not assign values to any components of the variables.
$V AR statements may appear anywhere in the macro definition to which they apply, except
that each variable must be declared before the first statement that uses the variable. It is logical
to place $VAR statements immediately following the $MACRO statement.

7.5.11 $ASG

Syntax definition:

{<expreSSion>}
o ... $ASGo oIOo var 0 ... [<comment>]

<stnng>

The $ASG statement assigns values to the components of a variable. Variables that are not param­
eters have no values for components until values are assigned using $ASG statements. Components
previously assigned to parameters or to variables by $ASG statements may be assigned new values
with $ASG statements.

The expression operand may be any expression valid to the assembler, and may contain binary
mode variable references and the keywords in tables 7-3 and 7-4.

NOTE

The binary mode value of a string component or symbol string
component used in an expression is the binary value of the first
two characters of the string.

Thus, if GP.S has the string 'LAST', the value used for GP.S in an expression is the <string> hexa­
decimal number >4C41 which is the ASCII representation for LA.

7-13 Texas Instruments Incorporated

~------
A string may be one or more characters enclosed in single quotes or the concatenation of a literal
with the string mode value of a qualified variable. The <V AR> may be either an unqualified
variable or a qualified variable.

When the operands are both unqualified variables, all components are transfered to target variables.
When the source variable is qualified or is a quoted string and the destination variable is unqualified,
an error results. When the destination variable is qualified, only the specified component receives
the corresponding component of the expression or string, with the exception that when a string is
assigned to the string component of a variable or symbol, the length component of that variable or
symbol is set to the number of characters in the assigned string. If the attribute component of the
target variable is to be changed, only those attributes which can be tested using keywords are
changed. Other attributes maintained by SDSMAC mayor may not be changed, as appropriate.

NOTE

A qualified variable that specifies the length component is illegal
as the target in a $ASG statement. Also, a qualified variable that
specifies the attribute component or the value component of a
macro variable which was declared to be a macro language label
(for the purpose of a $GOTO) is illegal as the target in a $ASG
statement.

The following examples show the use of the $ASG statement:

$ASG P3 TO V3

$ASG :P3.S:'ES' TO P3.S

$ASG CT.A++$PSYM TO CT.A

Assign all the components of variable P3 to vari­
able V3.

Concatenate string 'ES' to the string component of
variable P3, and set the string component to the
result. Also set the length component to a new
value, 2 greater than the previous value.

Set the bit in the attribute component of variable
CT to indicate the symbolic address attribute.

Variables P3, V3, and CT must have previously declared, either as parameters in a $MACRO state­
ment or as variables in a $V AR statement.

The $ASG statement may be used to modify symbol components, as shown in the following
examples. Assume that P3.V = 6 and P3.S = SUB.

$ASG 'TEN' TO G.S

$ASG P3.V TO G.SV

Assigns 'TEN' as the string component of van able G.
When 'TEN' is a label in the AST, this statement
allows the use of symbol component qualifiers to
modify the components of symbol TEN.

Sets the value component of the symbol in the string
component of variable G to the value component of
variable P3. In this case, the value component of TEN
is set to 6.

7-14 Digital Systems Division

j}h\ ______ _ ~ 943441-9701

$ASG 'A':P3.S: 's' TO G.SS

7.5.12 $NAME.

Syntax definition:

<Iabel>lJ ... $NAME'o ... [<comment>]

Concatenates string 'A', the string component ofvar­
iable P3 and string S and places the result in the string
component of the symbol in the string component of
variable G. Also sets the length component of the
same symbol. Thus, the string component of TEN is
ASUB5 and length component is 5.

The $NAME statement associates a macro language label with a macro language statement. When
a label is required for branching within a macro definition it must be provided by a $NAME state­
ment. The $NAME statement performs no processing in the expansion of a macro instruction.

The following example shows a $NAME statement:

AB $NAME BRANCH TO THIS POINT A $GOTO statement with AB as an operand
branches to this point.

$ASG P3 TO V3 Expansion of the macro instruction continues
with the $ASG statement.

7.5.13 $GOTO.

Syntax definition:

lJ ... $GOTOlJ ... <Iabel>lJ ... [<comment>]

The $GOTO statement branches within a macro definition, either to a $NAME statement or to an
$END statement. The label is a macro language label of either type of statement.

The following example shows a $GOTO statement:

$GOTOAB

7.5.14 $EXIT.

Syntax definition:

Branch to a $NAME statement having the label AB and execute the
following statement, or to an $END statement having the label AB.

lJ ... $EXITlJ ... [<comment>]

The $EXIT statement terminates processing of the macro expansion. The $EXIT statement has the
same effect as a $GOTO statement with the label of the $END statement as the operand.

7-15 Texas Instruments Incorporated

~~-------------------~ 943441-9701

7.5.15 $CALL.

Syntax definition:

lJ ... $CALLlJ ... <macro name>lJ ... [<comment>]

The $CALL statement initiates processing of the macro definition named in the operand field. The
operands passed to the macro being expanded are mapped to the parameters of the macro specified
in the $CALL statement. When the Macro Expander executes a $END statement or a $EXIT state­
ment in the called macro, processing returns to the statement following the $CALL statement in
the calling macro.

The following is an example of a $CALL statement:

$CALLCONV Activates the macro definition CONY. The parameters of the calling
macro are passed as the operands of the macro CONY.

7.5.16 $IF.

Syntax definition:

lJ ... $IFlJ ... <expression>lJ ... [<comment>]

The $IF statement provides conditional processing in a macro definition. An $IF statement is
followed by a block of macro language statements terminated by an $ELSE statement or an
$ENDIF statement. When the $ELSE statement is used, the $ELSE statement is followed by
another block of macro language statements terminated by an $ENDIF statement. When the ex­
pression in the $IF statement has a nonzero value, the block of statements following the $IF
statement is processed. When the expression in the $IF statement has a zero value, the block of
statements following the $IF statement is skipped. When the $ELSE statement is used, and the
expression in the $IF statement has a nonzero value, the block of statements following the $ELSE
statement and terminated by the $ENDIF statement is skipped. Thus, the condition of the $IF
statement may determine whether or not a block of statements is processed, or which of two
blocks of statements is processed. Furthermore, a block may consist of zero or more statements.

The expression may be any expression as defined for the $ASG statement and may include quali­
fied variables and keywords. The expression defines the condition for the $IF statement.

NOTE

The expression is always performed in binary mode. Specifically,
the relational operators (<, >, =, #=, etc.) operate only on the binary
mode value of the macro variable. This has the effect that compari­
sons of two character strings may be done only on the initial two
character positions.

7-16
Texas Instruments Incorporated

J2t1s\ ______ _ ~ 943441-9701

The following examples show conditional processing in macro definition:

$IF KY.SV

BLOCK A

$ELSE

BLOCK B

$ENDIF
$IF T .A&$PCALL=O

BLOCK A

$ENDIF

$IF T.L=5

BLOCK A

$ENDIF

7.5.17 $ELSE

Syntax definition:

b ... $ELSEb [<comment>]

Process the statements of Block A when the value compo­
nent of the symbol in the string component of variable KY
contains a nonzero value. Process the statements of Block B
when the component contains zero. After processing either
block of statements, continue processing at the statement
following the $ENDIF statement.

Process the statements of Block A when the attribute
component of parameter T indicates that parameter T
was not supplied in the macro instruction. If param­
eter T was supplied, do not process the statements of
Block A. Continue processing at the statement fol­
lowing the $ENDIF statements in either case.
Process the statement of Block A when the length
component of variable T is equal to 5. If the length
component of variable is not equal to 5, do not
process the statements of Block A. Continue pro­
cessing at the statement following the $ENDIF
statement.

The $ELSE statement begins an alternate block to be processed if the pro ceding $IF expression was
false.

7.5.18 $ENDIF

Syntax definition:

b ... $ENDIFb ... [<comment>]

The $ENDIF statement terminates conditional processing initiated by an $IF statement in a macro
definition. Examples of $ENDIF statements and their use are shown in a preceding paragraph.

7.5.19 $END

Syntax definition:

[<label>] b ... $ENDb ... <macro name>b ... [<comment>]

The $END statement marks the end of the group of statements of the macro definition named in
the operand. When executed, the $END statement terminates the processing of the macro defini­
tion. The label may be used in a $GOTO statement to terminate processing of the macro definition.

7-17 Texas Instruments Incorporated

~-------~ 943441-9701

The following is an example of an $END statement:

$END FIX Terminates the definition of macro FIX

7.6 ASSEMBLER DIRECTIVES TO SUPPORT MACRO LIBRARIES
Two directives have been added to support the use of libraries of macros in SDSMAC. These two
directives are LIBOUT, which is used to build or add to a library of macro definitions, and LIBIN,
which is used to "recall" a previously built macro library.

7.6.1 LIBOUT DIRECTIVE.

Format:

o ... LIBOUTo ... <LIBRARY-ACCESS-NAME>

The LIB OUT directive declares a MACRO library where MACRO definitions are written during an
assembly. The library must have been previously created by a CFDIR (create file directory) utility
command. MACRO definitions appearing in the assembler input stream following a LIBOUT
directive are written to the specified library upon successful translation. MACRO definitions
appearing prior to the first LIBOUT directive remain in memory and are not written to any library.
Multiple LIBOUT directives may appear in a single assembly. Each successive output library super­
cedes its predecessor so that only one output library is in effect at a time, the same library specified
on multiple LIBOUT directives. Furthermore, a library may be used for both input and output
simultaneously. MACRO definitions are written to the library using the replace option which will
redefine any MACRO with the same library name. Hence, a macro library may be maintained
(updated) without difficulty.

In addition to MACRO definitions, a sub-directory of the MACRO library with the name DDFX
contains the result of DXOP and DFOP directives and MACRO names which redefine an assembly
language instruction, directive, or peudo-instruction appearing within the span of the current
LIBOUT directive.

The MACRO definitions, DXOPs and DFOPs are written to the library completely replacing any
prior definitions of the symbols on that MACRO library. For example, if a MACRO library con­
tained a MACRO definition for the symbol 'LOCK' and a subsequent assembly encounters a
'DFOP LOCK, ABS' statement while a LIBOUT directive to that library is in effect, the MACRO
library will result in containing information that 'LOCK' is another name for the instruction 'ABS'.
The MACRO definition which existed on the library previously will have been deleted.

7.6.2 LIBIN DIRECTIVE.

Format:

o ... LIBINo ... <LIBRARY-ACCESS-NAME>

The LIBIN directive declares a MACRO library to be used in the current assembly. The library
must have been previously created and must contain only MACRO definitions and DFOP and

7-18 Texas Instruments Incorporated

~~-------------------~ 943441-9701

DXOP directives previously encoded during another assembly (by use of the LIBOUT directive).
Multiple LIBIN directives may appear in a single assembly. When the LIB IN directive is encountered
the library directory is examined for any redefinition of assembler instructions and their existence
flagged. No further use is made of the MACRO library until an undefined operation is encountered.
At that time, the MACRO library is searched for a possible MACRO definition of the operation.
In the case of multiple MACRO libraries, the search order is inverse to the order of presentation,
i.e., the last MACRO library is searched first. The system MACRO library specified in the SCI XMA
command is always searched last.

7.6.3 MACRO LIBRARY MANAGEMENT. The MACRO library may be listed, added to, deleted
from, and replicated using a combination of utility commands provided by the operating system
and the MACRO assembler LIBIN and LIBOUT directives.

To list or replicate a MACRO library, use the utility commands provided by the operating system.

To add to an existing MACRO library or change an existing MACRO definition, DFOP, or DXOP,
use only the LIBOUT directive provided by the MACRO assembler. Do not use utility commands
for copying files to copy a MACRO definition to another MACRO library.

To delete MACRO definitions, DFOPs, and DXOPs, use the utility commands provided by the
operating system to delete files. In the following examples assume that a MACRO library with
the name

. SYSTEM. MACROS

is present.

a. If the result of the DFOP

DFOPT, TEXT

is to be deleted, then use the delete file utility command to delete the file:

· SYSTEM. MACROS. DDFX. T

b. If the result of the DXOP

DXOP SVC,15

is to be deleted, use the delete file utility command to delete the following file in the
same manner as above:

· SYSTEM. MACROS. DDFX. SVC

c. If a MACRO definition for 'CALL' is to be deleted, use the delete file utility command
to delete the following file:

· SYSTEM. MACROS. CALL

d. If a MACRO definition is to be deleted which redefines an assembly language instruc­
tion, directive, or pseudo-instruction, then two files must be deleted. If the MACRO
name were 'TEXT' then delete:

· SYSTEM. MACROS. TEXT
.SYSTEM.MACROS.DDFX.TEXT

7-19 Texas Instruments Incorporated

~~-------------------~ 943441-9701

If only one of these is deleted either an "invalid opcode" assembly error will result or
the intended macro will not have been used.

7.7 MACRO EXAMPLES
Macros may simply substitute a machine instruction for a macro instruction, or they may include
conditional processing, access the assembler symbol table, and employ recursion. Several examples
of macro definitions are described in the following paragraphs.

7.7.1 MACRO GOSUB. Macro GOSUB is an example of a macro that substitutes a machine
instruction for the macro instruction. The macro definition consists of three macro language state­
ments, one of which is a model statement, as follows:

GOSUB $MACRO

BL

$END

AS

:AD.S:

GOSUB

Defines macro GOSUB and declares a param­
eter, AD.

A model statement that results in a BL in­
struction with the string component of the
parameter as operand.

Terminates macro GOSUB.

The syntax of the macro instruction for the GOSUB macro is defined as follows:

[<label>] h ... GOSUBh ... <address>h ... [<comment>]

When a label is used, it is effectively the label of the resulting BL machine instruction. The address
may be any address form that is valid for a BL instruction. When a comment is used, it applies
to the macro instruction. For example, the following macro instruction is valid for the GOSUB
macro:

GOSUB @SUBR

The statement in the example results in a machine instruction to branch and link to a subroutine
at location SUBR, as follows:

BL @SUBR

Another example shows the macro instruction that could be used if the subroutine address were
in workspace register B and had a label.

NEXIT GOSUB *RB

The resulting instruction would be:

NEXIT BL *RB

7.7.2 MACRO EXIT. Macro EXIT is an example of a macro that supplies an assembler directive
the first time the macro is executed, and a machine instruction each successive time. The macro
requires an EQU directive to be placed in the source program prior to calling the macro, and the
definition consists of nine macro language statements, including two model statements. The defini­
tion is as follows:

7-20 Texas Instruments Incorporated

~-----------~ 943441-9701

EXIT

TERM

Fl

$MACRO

$VAR

$ASG

XOP

$IF

BYTE

$ASG

$ENDIF

$END

EQU

L

'Fl' TO L.S

@TERM,15

L.SV

16

o TO L.SV

1

Defines macro EXIT with no parameters.

Defines variable L.

Assign Fl to the string component of variable
L to allow access to symbol Fl in assembler
symbol table.

Model statement - places an XOP machine
instruction in source program.

If the value component of symbol F 1 is a
nonzero value, perform the next two state­
ments and terminate the macro. Otherwise,
terminate the macro.

Model statement - places a byte directive
referenced by the XOP instruction following
the XOP instruction.

Set the value component of symbol F 1 to
zero. Any further calls to macro EXIT will
omit the preceding model statement and its
statement.

Defines the end of conditional processing.

End of macro definition.

Defines F 1 with a value of 1. This is not part
of the macro definition, but is a source state­
ment. It must precede the first macro call
for macro EXIT, and may precede the
definition.

The syntax of the macro instruction for the EXIT macro is defined as follows:

[<label>] b ... EXIT

When a labfe is used it is effectively the label of the XOP machine instruction resulting from macro.
The first time the macro is called, the following source statements are placed in program:

TERM

XOP

BYTE

@TERM,15

16

Subsequent calls for the macro result in the following:

XOP @TERM,15

7-21 Texas Instruments Incorporated

~~-~~-------------~ 943441-9701

7.7.3 MACRO ID. Macro ID is an example of a macro having a default value. The macro supplies
two DATA directives to the source program. The macro consists of nine macro language statements,
four of which are model statements. The definition is as follows:

ID

START

$MACRO

DATA

$IF

DATA

$ELSE

DATA

$ENDIF

$END

WS,PC

:WS.S:

PC.A&$PCALL

:PC.S:,15

START,15

Defines ID with parameters WS and pc.

Model statement - places a DATA directive
with the string of the first parameter as the
operand in the source program.

Tests for presence of parameter PC.

Model statement - places a DATA directive
in the source program. The first operand is
the string of the second parameter, and the
second operand is 15. This statement is pro­
cessed if the second parameter is present.

Start of alternate portion of definition.

Model statement - places a DATA directive
in the source program. The first operand is
label START, and the second operand is 15.
This statement is processed if the second
parameter is omitted.

Model statement - places a label START in
the source program. This statement is pro­
cessed if the second parameter is omitted.

End of conditional processing.

End of macro.

This macro could be used to place a three-word vector at the beginning of a program. The first
word could be the workspace address, the second, the entry point, and the third, the value IS to
be placed in the SR register. The first operand of the macro instruction would be the workspace
address, and the second operand would be the entry point. When the executable .code immediately
follows the vector, and the entry point is the first word of executable code, the second param­
eter may be omitted. The syntax definition of the macro instruction for macro ID is as follows:

<Iabel>b .. .IDb ... <address>L<address>] b ... [<comment>]\

The label becomes the label of the three-word vector, and the addresses may be expressions or
symbols.

The following is an example of a macro instruction for macro ID:

PROGI ID WORKI,BEGIN

The resulting source code would be:

PROGI DATA WORK I

DATA BEGIN, I 5

7-22 Texas Instruments Incorporated

)2175\ ______ _ ~ 943441-9701

When the entry point immediately follows the macro instruction, the macro instruction could be
coded as follows:

PROG2 ID WORK2

This would result in the following source code:

PROG DATA WORK2

DATA START,15

START

This form of the macro instruction imposes two restrictions on the source program. The source
program may not use the label START and may not call macro ID more than once. The user may
prevent problems with labels supplied in macros by reserving certain characters for use in macro­
generated labels. A macro definition may maintain a count of the number of times it is called, and
use this count in each label generated by the macro.

7.7.4 MACRO UNIQUE

0001
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024

*0001
0025

0026

0000
0000
0002

*0001 0004
0027

*0001 0004
0028 0004
0029

NO ERRORS

*
*
*
*
LABEL

*

*
*

*
*

*
*
*

IDT 'UNIQUE'
THIS EXAMPLE DEMONSTRATES A METHOD FOR CREATING UNIQUE
LABELS USING THE MACRO LANGUAGE. EACH CALL OF THE MACRO
GENERATES A UNIQUE LABEL OF THE FORM 'U"xxx' WHERE'xxx'
IS A NUMBER
$MACRO
DECLARE A VARIABLE TO USE IN THE MACRO
$VARL
ASSIGN THE CHARACTER STRING OF A SYMBOL THAT WILL HOLD

A COUNTER V ALUE AND THE LAST LABEL GENERATED
$ASG 'U;;;;;' TO L.S
INCREMENT THE SYMBOL VALUE OF 'U ;;;;;' TO OBTAIN THE

LABEL VALUE
$ASG L. SV+ 1 TO L.SV
CREATE THE LABEL AND SAVE IN THE SYMBOL STRING COMPONENT
GENERATE THE LABEL IN THE NEXT LABEL FIELD. NOTE,THAT

MODEL STATEMENT STARTS IN COLUMN 1
U;;: L.SV:

$END

*
* NOW GENERATE SOME LABELS

*
LABEL

U;;l
0000 DATA 0,1
0001

U;;2

U;;3
0004

LABEL

LABEL

DATA 4
END

7-23 Texas Instruments Incorporated

J2h\. ______ _ ~ 943441-9701

7.7.5 MACRO GENCMT. Macro GENCMT is an example showing how to implement both
those comments which appear in the macro definition only, and those comments which appear in
the expansion of the macro. When this macro is called, the statement in line six generates a
comment.

0001
0002
0003
0004
0005
0006
0007
0008

*0001
0009

0010
*0001
0011

*0001
0012
0013

0000
0002

0004

7.7.6 MACRO LOAD.

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029

0000
0001

0004

001E

IDT 'GENCMT'
GENCMT $MACRO

$VARV
*THIS IS A MACRO DEFINITION COMMENT

$ASG '*' TO V.S
:V.S: THIS IS A MACRO EXPANSION COMMENT

$END
GENCMT

*THIS IS A MACRO EXPANSION COMMENT
DATA 0,1

GENCMT
*THIS IS A MACRO EXPANSION COMMENT

GENCMT
*THIS IS A MACRO EXPANSION COMMENT
LABEL DATA 4

END

IDT'LOAD'
*
* GENERALIZED LOAD IMMEDIATE MACRO
*
* THIS MACRO DEMONSTRATES USE OF THE MACRO
* SYMBOL ATTRIBUTES $PSYM, $PNDX, $PATO, $PIND.

*
* OPERANDS: D (DESTINATION) MAY BE REGISTER,
* INDIRECT, SYMBOLIC,
* OR AUTO-INC.
* V (VALUE) SHOULD BE LITERAL VALUE.

*
*
* IF THE FIRST OPERAND IS NOT A REGISTER, IT
* WILL BE MOVED INTO THE SCRATCH REGISTER
* BEFORE PERFORMING THE LOAD. THE SCRATCH
* REGISTER IS ASSUMED TO BE RO.
*
*
* THIS SYMBOL DEFINITION OR'S TOGETHER ALL
* ADDRESSING MODES BUT 'REGISTER'.
*
COMPLX EQU $PATO++$PSYM++$PNDX++$PIND

*
* THIS MACRO WILL MASK OUT THE REGULAR 'LI'
* INSTRUCTION, SO THE 'DFOP' FOR 'LI' IS
* USED TO DEFINE A SYNONYM FOR THE 'LI'
* INSTRUCTION.
*

7-24 Texas Instruments Incorporated

J175\ ______ _ ~ 943441-9701

0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040

*0001

*0002
0041

*0001

0042
*0001

*0002

0043
*0001

*0002

0044
0045
0046
0047
0048
0049
0050

*0001

0000 0000

0002 0200
0004 0019
0006 C540

0008 020C
OOOA 0004

OOOC 0200
OOOE 0010
0010 CB40
0012 OOOC

0014 0200
0016 006F
0018 C800
001A 0000'

OOIC 0200
OOIE 006F

LI

LOC

*

DFOP LI$,LI
$MACRO D,V
$IF D.A&COMPLX

LI$ RO,:V:
MOV RO,:D:

$ELSE
LI$:D:,:V:

$ENDIF
$END
DATA 0
LI *R5,25

LI$ RO,25

MOV RO,*R5
LI R12,4

LI$ R12,4

LI 12(R13),16
LI$ RO,16

MOV RO,12(R13)

LI @LOC,111
LI$ RO,111

MOV RO,@LOC

* NOTE THAT THE FOLLOWING CASE DOES NOT
* GENERATE THE DESIRED CODE. TO CORRECTLY
* DETECT MEMORY LOCATION REFERENCES, LABELS
* SHOULD HAVE '@' SIGNS PRECEEDING THEM.
*

LI LOC,111
LI$ LOC,111

********* REGISTER REQUIRED
0051 END

0001 ERRORS, LAST ERROR AT 0050

7.7.7 MACRO TABLE.

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
OOtI

IDT 'TABLE'

*
* THIS MACRO DEMONSTRATES RECURSIVE PROCESSING
*
* WHEN MORE OPERANDS ARE PASSED TO A MACRO
* THAN WERE INCLUDED IN THE DEFINITION, ALL THE
* SURPLUS OPERANDS ARE ASSIGNED (WITH THE
* COMMAS BETWEEN THEM) TO THE LAST PARAMETER.
* THIS IS A USEFUL FEATURE WHEN RECURSIVE PRO-
* CESSING IS NEEDED.
*

·7-25 Texas Instruments Incorporated

~ 943441-9701

0012 * THE EXPECTED OPERAND FOR THE 'OR' MACRO IS A
0013 * LIST OF BIT PATTERNS 16 BITS IN WIDTH. THIS
0014 * MACRO USES RECURSION TO 'OR' THE BITS
0015 * TOGETHER. 'TEMP' IS A SYMBOL USED BY THE
0016 * MACRO.
0017 *
0018 0000 TEMP EQU 0
0019 OR $MACRO A,B
0020 $VART
0021 $ASG 'TEMP' TO T.S
0022 $ASG A.V++T.SV TO T.SV
0023 $IF B.A&$PCALL
0024 OR :B.S:
0025 $ELSE
0026 DATA :T.SV:
0027 $ASG 0 TO T.SV
0028 $ENDIF
0029 $END
0030 OR >100

*0001 0000 0100 DATA 256
0031 OR 1,2,4,8

*0001 OR 2,4,8
*0001 OR4,8
*0001 OR8
*0001 0002 OOOF DATA 15
0032 OR 1, 1, 2, 4, 8

*0001 OR 1,2,4,8
*0001 OR 2, 4,8
*0001 OR4,8
*0001 OR8
*0001 0004 OOOF DATA 15
0033 OR >11, >1100

*0001 OR >1100
*0001 0006 1111 DATA 4369
0034 END

NO ERRORS

7.7.8 MACRO LISTS.

0001 IDT'LISTS'
0002 *
0003 * THE PREORD AND ENDORD MACROS DEMONSTRATE
0004 * RECURSION AND LIST PROCESSING.
0005 *
0006 *
0007 * INPUTS: A PARENTHESIZED EXPRESSION OF
0008 * THE FOLLOWING FORM:
0009 *
0010 * A,OP,C
0011 *

7-26 Texas Instruments Incorporated

J2t1s\ ______ _ ~ 943441-9701

0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
003'7
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064

*
*
*
*
*
*
*
*

A= PARENTHESIZED EXPRESSION
OP= OPERATION

(MULTIPLICATION IS REPRESENTED
AS A NULL PARAMETER, SIMILAR
TO ITS REPRESENTATION IN
ALGEBRAIC EXPRESSIONS)

B= PARENTHESIZED EXPRESSION

* OUTPUTS: UNPARENTHESIZED EXPRESSION IN
* PREORDER (PREORD), OR ENDORDER
* (ENDORD).

* PREORDER MACRO DEFINITION
*
PREORD $MACRO A,OP,B

$VARCVARIABLE TO HOLD'*'FOR COMMENTS.
*
* PRINT THE OPERATION
*

:C: :OP:
*

$ASG '*' TO C.S
$IF OP.A&$PCALL=O

$ASG '*' TO OP.S
$ENDIF

* PRINT THE FIRST OPERAND
*

:C: :A:

*

$IF A.A&$POPL
PREORD :A:

$ELSE

$ENDIF

* PRINT THE SECOND OPERAND
*

:C: :B:

$IF B.A&$POPL
PREORD :B:

$ELSE

$ENDIF
$END

****************i~i****~****
* ENDORDER MACRO DEFINITION
*
ENDORD $MACRO A,OP,B

*

$VARCVARIABLE TOHOLD'*'FOR COMMENTS.
$ASG ,*, TO C.S

* PRINT THE FIRST OPERAND
*

$IF A.A&$POPL
ENDORD :A:

$ELSE

7-27 Texas Instruments Incorporated

4P 943441-9701

0065 :C::A:
0066 $ENDIF
0067 *
0068 * PRINT THE SECOND OPERAND
0069 *
0070 $IF B.A&$POPL
0071 ENDORD :B:
0072 $ELSE
0073 :C: :B:
0074 $ENDIF
0075 *
0076 * PRINT THE OPERATION
0077 *
0078 $IF OP.A&$PCALL=O THEN
0079 $ASG '*' TO OP.S
0080 $ENDIF
0081 :C: :OP:
0082 $END
0083 *
0084 * SAMPLE MACRO CALLS
0085 *
0086 PREORD A, /, B

*0001 * /
*0002 *A
*0003 *B

0087 ENDORD A, /, B
*0001 *A
*0002 *B
*0003 * /

0088 PREORD (A, +, B) , , (6, /, (2, -, B»
*0001 * *
*0002 PREORD A, +, B
*0001 *+
*0002 *A
*0003 *B
*0003 PREORD 6, /, (2, -, B)
*0001 * /
*0002 *6
*0003 PREORD 2, -, B
*0001 *
*0002 *2
*0003 *B
0089 ENDORD (A, +, B), , (6, /, (2, -, B»

*0001 ENDORD A, +, B
*0001 *A
*0002 *B
*0003 *+
*0002 ENDORD 6, /, (2, -, B)
*0001 *6
*0002 ENDORD 2, -, B
*0001 *2
*0002 *B
*0003 *

7-28 Texas Instruments Incorporated

~ 943441-9701

*0003 * /
*0003 * *
0090 PREORD «X, +, Y), /, (X, -, Y)), -, (1, /, Z)

*0001 *
*0002 PREORD (X, +, Y), /, (X, -, Y)
*0001 * /
*0002 PREORD X, +, Y
*0001 *+
*0002 *X
*0003 *y
*0003 PREORD X, -, Y
*0001 *
*0002 *X
*0003 *y
*0003 PREORD 1, /, Z
*0001 * /
*0002 * 1
*0003 *Z
0091 ENDORD ((X, +, Y), /, (X, -, Y)), -, (1, /, Z)

*0001 ENDORD (X, +, Y), /, (X, -, Y)
*0001 ENDORD X, +, Y
*0001 *X
*0002 *y
*0003 *+
*0002 ENDORD X, -, Y
*0001 *X
*0002 *y
*0003 *
*0003 * /
*0002 ENDORD 1, /, Z
*0001 * 1
*0002 *Z
*0003 * /
*0003 *

THE FOLLOWING SYMBOLS ARE UNDEFINED

A
B
X
Y
Z

NO ERRORS

7-29/7-30 Texas Instruments Incorporated

~.------"iY ~441-9701

SECTION VIII

RELOCATABILITY AND PROGRAM LINKING

8.1 INTRODUCTION
The assemblers for the Model 990 Computers and the TMS 9900 Microprocessor supply both
absolute and relocatable object code that may be linked as required to form executable programs
from separately assembled modules. This section contains guidelines to assist the user in taking
full advantage of these capabilities.

8.2 RELOCATION CAPABILITY
Relocatable code includes information that allows a loader to place the code in any available area of
memory. This allows the most efficient use of available memory, and is required for disk-resident
programs executed under DXIO. Absolute code must be loaded into a specified area of memory.
Absolute code is appropriate for code that must be placed in dedicated areas of memory, and may
be used for memory-resident programs executing under operating systems.

Object code generated by an assembly is a representation of machine language instructions, ad­
dresses, and data comprising the assembled program. The code may include absolute segments
and program-relocatable segments. If SDSMAC, the Cross Assembler or TXMIRA is used, the code
may include a data-relocatable segment and numerous common-relocatable segments. In assembly
language source programs, symbolic references to locations within a relocatable segment are called
relocatable addresses. These addresses are represented in the object code as displacements from the
beginning of a specified segment. A program-relocatable address, for example, is a displacement into
the program segment. At load time, all program-relocatable addresses are adjusted by a value
equal to the load address. SDSMAC, the Cross Assembler, and TXMIRA support additional types of
relocatability-data relocatability and common-relocatability. Data-relocatable addresses are re­
presented by a displacement into the data segment. There may be several types of common­
relocatable addresses in the same program, since distinct common segments may be relocated
independently of each other. A subsequent section of this manual describes the representation of
these relocatable addresses in the object code.

8.2.1 RELOCATABILITY OF SOURCE STATEMENT ELEMENTS. Elements of source state­
ments are expressions, constants, symbols, and terms. Terms are absolute in all cases; the other
elements may be either absolute or relocatable.

The relocatability of an expression is a function of the relocatability of the symbols and constants
that make up the expression. An expression is relocatable when the number of relocatable symbols
or constants added to the expression is one greater than the number of relocatable symbols or
constants subtracted from the expression. (All other valid expressions are absolute.) When the first
symbol or constant is unsigned, it is considered to be added to the expression. When a unary minus
follows an addition operator in an expression, the effective operation is subtraction. When a unary
minus follows a subtraction operator, the effective operation is addition. For example, when all
symbols in the following expressions are relocatable, the expressions are relocatable:

LABEL+I

LABEL+TABLE+-INC

-LABEL+TABLE+INC

8-1 Texas Instruments Incorporated

~ ____ 94_3_4_4_1-_9_70_1 __ ___

Decimal, hexadecimal, and character constants are absolute. Assembly-time constants defined by
absolute expressions are absolute, and. assembly-time constants defined by relocatable expressions
are relocatable.

Any symbol that appears in the label field of a source statement other than an EQU directive is
absolute when the statement is in an absolute block of the program. Any symbol that appears in
the label field of a source statement other than an EQU directive is relocatable when the
statement is in a relocatable block of the program.

The relocatability of expressions having logical and relational operators (SDSMAC only) follows
similar rules to those for expressions containing only arithmetic operators. The result of a logical
operation between a relocatable constant or symbol and an absolute constant or symbol is
relocatable. A logical operation between two relocatable elements of an expression is invalid.
Relational operators result in an absolute value, 0 or 1. The relation is the assembly-time relation
and ignores the effect of relocation on relocatable values.

To summarize, a location is either absolute or relocatable. The location may contain either
absolute or relocatable values. The example program in Appendix J includes absolute locations
with relocatable contents and relocatable locations with absolute contents.

8.3 PROGRAM LINKING
Since the assembler includes directives that generate the information required to link program
modules, it is not necessary to assemble an entire program in the same assembly. A long program
may be divided into separately assembled modules to avoid a long assembly or to reduce the
symbol table size. Also, modules common to several programs may be combined as required. A
linking loader links the programs as it loads them, so that the loaded program functions as if it
has been assembled in a single assembly. Alternatively, program modules may be linked by the
Link Editor to form a linked object module that may be stored on a library and/or loaded as
required. The following paragraphs define the linking information that must be included in a
program module.

8.3.1 EXTERNAL REFERENCE DIRECTIVES. Each symbol from another program module must
be placed in the operand field of an REF or SREF directive in the program module that requires the
symbol. When the modules are to be linked by the linking loader, the IDT character string of each
program module that defines one or more of these symbols must also be placed in the operand field
of an REF directive within one of the program modules being linked. The first module may contain
an REF directive that contains the IDT character strings of all modules to be linked. When the
modules are to be linked by the Link Editor, IDT character strings need not be placed in REF
directive operand fields.

8.3.2 EXTERNAL DEFINITION DIRECTIVE. Each symbol defined in a program module and re­
quired by one or more other program modules must be placed in the operand field of a DEF
directive.

8-2 Texas Instruments Incorporated

~S\ ______ ~ ~ 943441-9701

8.4 PROGRAM IDENTIFIER DIRECTIVE
Program modules that are to be linked by the Link Editor should include an lOT directive. The
module names in the character strings of the lOT directives should be unique.

Program modules that are to be linked by the linking loader must meet the following
requiremen ts:

• Subsequent program modules after the first module must include an IDT directive.

• The first six characters of the IDT character string must be unique with respect to the
other lOT character strings submitted to the loader during the loading operation.

8.5 LINKING PROGRAM MODULES
The linking loader builds a list of symbols from REF directives as it loads the program modules.
The loader matches symbols from DEF directives to the symbols in the reference list. The loader
also matches the first six characters of IDT character strings with symbols in the reference list.

When object code for several program modules is on the same cassette, and "a program that
requires only some of these modules is being loaded, the loader ignores those program modules
whose IDT character strings do not appear in the reference list of the loader. This allows
program modules from several cassettes to be loaded without requiring the user to locate the
required modules on the cassettes. However, it requires that all referencing modules precede the
modules they reference in the sequence in which the loader loads the modules.

The Link Editor matches symbols from REF directives and symbols from DEF directives in a
similar manner within a program phase. The Editor follows linking commands to determine the
modules to be linked, and does not match lOT character strings with REF directive operands.
Refer to Sections 4.5.3 and 4.5.4 for linking commands generatable from the assembler.

8-3/8-4 Texas Instruments Incorporated

)217s\ ______ _ ~ 943441-9701

SECTION IX

OPERATION OF THE MACRO ASSEMBLER

9.1 GENERAL
The 990 Macro Assembler executes under the DXI0 operating system. The Macro Assembler has
the following features:

• Assembles the 72 instructions of the instruction set for the Model 990/ I 0 with map
option.

• Supports 31 assembler directives, 11 in addition to those supported by other assemblers.

• Supports three pseudo-instructions, one in addition to those supported by other
assemblers.

• Supports use of parentheses in expressions.

• Supports logical operators in expressions.

• Supports relational operators in expressions.

• Supports a logical division operator.

• Supports additional output options.

• Supports a powerful macro language.

The Macro Assembler is defined in detail in Section VII of this document.

9.2 OPERATING THE MACRO ASSEMBLER
The Macro Assembler is executed by the DXIO System Command Interpreter (SCI) and may run
in either of two modes:

1. Background

2. Batch Background.

To execute the Macro Assembler in background mode, enter the SCI command XMA.

The XMA command prompts for the following parameters:

SOURCE ACCESS NAME: <access name>
OBJECT ACCESS NAME: <access name>

LIST ACCESS NAME: <access name>
ERROR ACCESS NAME: <access name>

OPTIONS: <keyword list>
MACRO LIBRARY PATHNAME: <directory access name>

9-1
Texas Instruments Incorporated

)175\ ______ _ ~ 943441-9701

SOURCE ACCESS NAME specifies the input file or device containing the assembly language code
to be assembled. No default is allowed for this parameter.

OBJECT ACCESS NAME specifies the output file or device to which the object code is to be
written. If this parameter is null, no object output is produced. This is useful for preliminary
assemblies to check for errors; since the assembler produces no output, it operates faster.

LIST ACCESS NAME specifies the file or device to which the assembly listing is to be written.
If DUMY is entered, no assembly listing is produced.

ERROR ACCESS NAME specifies the output file to which assembly errors are written. This file
may be viewed by entering the SFC (Show File) SCI command. If the ERROR ACCESS NAME is
null, or if it is the same as the listing file, then errors will be displayed on the terminal by the SBS
(Show Background Status) SCI command. If the device DUMY is specified, no error listing is
produced.

The error file contains a complete list of any source records which caused assembly errors along
with the errors. If a condition is sensed which prevents the assembler from continuing, a message is
written to the error file as to what has occurred. Then the user must enter the SBS (Show Back­
ground Status) SCI command to view the error messages output by the assembler. Table 9-1 con­
tains a list of these abnormal completion messages and possible causes.

Table 9-1. Abnormal Completion Messages

Message

I/O Errors

SOURCE FILE I/O ERROR, CODE = XXXX
OBJECT FILE I/O ERROR, CODE = XXXX
LIST FILE I/O ERROR, CODE = XXXX
TEMP FILE I/O ERROR, CODE = XXXX

Assembler Bugs

ATTEMPT TO POP EMPTY STACK - SDSMAC BUG
DIRECTIVE EXPECTED - SDSMAC BUG
UNEXPECTED END OF PARSE - SDSMAC BUG
ERROR MAPPING PARSE - SDSMAC BUG
INVALID OPERATION ENCOUNTERED - SDSMAC
NO OP CODE - SDSMAC BUG
INVALID LISTING ERROR ENCOUNTERED
SYMBOL TABLE ERROR
MACRO EXPANSION ERROR
BUG - INVALID SDSLIB COMMAND ID
UNKNOWN ERROR PASSED, CODE = XXXX
END ACTION TAKEN BY MACRO ASSEMBLER

9-2

Cause and Recovery

The codes are defined in the
DX10 Operating System
Production Operations Guide,
Manual Number 945250-9702.

Call a Texas Instruments
representative.

Texas Instruments Incorporated

~-------~ 943441-9701

OPTIONS specifies any (or all) of the following options:

XREF- prints a cross reference listing at the end of the listing file.

SYMT - includes a symbol table with the output object code. This option must be spec­
ified to allow fully symbolic debugging.

TUNLIST - Text statement unlist.

BUNLST - Byte statement unlist.

DUNLST - Data statement unlist.

MUNLST - Macro expansion unlist.

FUNL- Overrides unlist directives.

TEXT, BYTE, and DATA statements and Macro usage often expand to pro­
duce multiple lines of code. If these options are selected, the statements appear
in the listing but the expansion does not. For example, the source statement
TEXT 'ABCDEF' produces the listing:

NOLIST-

41 TEXT 'ABCDEF'
42
43
44
45
46

With the TUNLST option specified, only the line

41 TEXT 'ABCDEF'

is produced in the listing.

Suppresses all listing output, except to the error file.

Any of the Option Key words may be abbreviated; for example, any of the following may be used
for the TUNLST option:

T
TU
TUN
TUNL
TUNLS
TUNLST

To select more than one option, enter a list of keywords separated by commas. The keywords may
appear in any order. To select all the options one could enter the line:

OPTIONS: X,S,T,B,D,M

The options specified for this parameter are in addition to any options specified by "OPTION"
directives in the source.

MACRO LIBRARY PATHNAME specifies a directory containing macro definitions for this
assembly. This pathname specification is equivalent to specifying the same pathname in a LIBIN
directive, except that this pathname becomes the system macro library and is retained through the

9-3 Texas Instruments Incorporated

~~-------------------~ 943441-9701

stacked assemblies. This pathname is printed on the cover sheet of the first module only. If this
parameter is not specified, no macro library is used.

9.2.1 COMPLETION MESSAGES. A completion message is displayed on the terminal at the first
available time after the macro assembler has terminated. Table 9-2 contains these messages.

Table 9-2. Completion Messages

Message

MEMORY REQUIRED EXCEEDS SYSTEM CAPACITY

Possible Causes and Recovery

a) Program is too large - break into several
assembly, modules, take out some of the
macros or use the LIBIN capability,
decrease the number of symbol definitions.

b) A macro containing an infinite loop or
infinite recursion is being expanded -
check all macros.

c) The assembler itself is in a loop infinitely
allocating memory - call a TI representa­
tive.

MACRO ASSEMBLY COMPLETE,XXXX ERRORS,YYYY WARNINGS

ERROR FILE ERROR

TCAERROR

ABNORMAL COMPLETION

UNABLE TO LOAD OVERLAY

The error access name specified when using the
XMA command can not be accessed. Verify that
the me can be created and is not currently open
for another program. If a null input was entered
for this parameter, then there is an SCI problem.

The assembly was unable to access the param­
eters specified in the XMA command. There is
an SCI problem.

A condition was sensed which caused the
assembler to abort. Display the error me to get
more information and use table 9-1 to under­
stand its contents.

Macro assembler has been denied access to its
overlay me. Check that global luno SlO is
assigned to a program file.

9.2.2 OPERATING THE ASSEMBLER IN BATCH MODE. Operating the Macro Assembler in
batch mode requires two steps:

1. Prepare the batch command stream.

2. Execute Batch using the XB command.

The Batch command stream for macro assembly is pictured in figure 9-1.

9-4 Texas Instruments Incorporated

~~-------------------~ 943441-9701

. DATA .MYFILE
lOT XXXX
XXXX
XXX X
XXXX
END
.EOO
XMA S=.MYFILE, L=LPOI
Q

Figure 9-1. Macro Assembly Stream

Any sequential media (cards, cassette, magnetic tape, or sequential file) may be used for the batch
stream.

The parameters for records in a Macro Assembly batch stream are the following:

1. .DATA record. This record has the form:

.DATA <file name>

The file name must be the name of the sequential file to which the input source is to be
copied.

2. .EOD record. This record has the form:

.EOD

No parameters are required. This card signifies the end of data to be copied.

NOTE

If the source file already exists, or is to come from a source other
than the batch stream then the sequence:

.DATA
<Source>
.EOD

should be omitted from the batch stream.

3. XMA record. This record, in addition to specifying macro assembly, also supplies the
parameters required by the Macro Assembler. Parameters are supplied in the following
format:

<keyword or keyword abbreviation> = value.

For example, to specify a source file :MYFILE, the following characters may be used:

SOURCE = .MYFILE

9-5 Texas Instruments Incorporated

J2rJ5\ ______ _ ~ 943441-9701

Keywords may be abbreviated. Any unambiguous intial segment is acceptable. For
example:

S = MYDISC.MYFILE

means the same thing as:

SOURCE = MYDISC.MYFILE

But a = MYDISC.MYFILEO is not acceptable since 0 could mean OBJECT ACCESS
NAME or OPTIONS.

When a keyword takes a list as input, the list should be enclosed in parenthesis:

OPTIONS = (X,T,U)

Each keyword string must be separated from other keyword strings by a comma. For
example, the following record assembles a source file named .SOURCE, producing an
object file .OBJECT, a listing file .LIST, and reporting errors to .ERR; the options
selected are cross reference (XREF) and symbol table (SYMT); no macro library is to
be used:

XMA S = .SOURCE, OB = .OBJECT, L = .LIST, E = .ERR, OP = (X,S)

The only required parameters are SOURCE and LISTING. Other parameters may take
defaults as indicated in the paragraph on background processing except that the batch
listing file replaces the terminal local file as a default output file.

When a card reader is used, use Macro Assembly Stream as shown in figure 9-2.

To execute in batch mode enter the SCI command XB. XB requires two parameters.

INPUT ACCESS NAME: <sequential device or sequential file name>

LISTING ACCESS NAME: <file or device name>

The INPUT ACCESS NAME specifies the batch stream source. The LISTING ACCESS NAME
specifies a listing file or device.

Batch mode operation of SCI is defined in detail in the DXIO Operating System Production
Operation Guide, manual number 946250-9702.

Q

·SOURCE CARD

XMA S=CROI

Figure 9-2. Macro Assembly Stream for Cards

Texas Instruments Incorporated

~-------~ 943441-9701

When the macro assembler is executed in batch mode, the condition codes returned by the
assembler may be checked. The synonym $$CC contains this condition code. The values returned
are as follows:

a - no errors
4xxx- assembly errors. The least significant three digits contain the error count.
COOO - the assembly aborted. .

For more information about condition codes, see DX 10 Operating System Release 3 Reference
Manual, Volume V.

9-7/9-8 Texas Instruments Incorporated

~-------~ 943441-9701

SECTION X

ASSEMBLER OUTPUT

10.1 INTRODUCTION
All assemblers from Model 990 Computer and TMS 9900 Microprocessor print source listings.
Optionally, the Cross Assembler and SDSMAC print a cross-reference listing and include a symbol
table in the object file. Optionally, TXMIRA produces a sorted symbol table list with a facility for
cross-reference. Cross assembler prints an object listing. All assemblers produce an object file.
Optionally, the Cross Assembler prints an object file listing.

10.2 SOURCE LISTING
The source listings show the source statements and the resulting object code. The formats of the
listings printed by all the assemblers are similar. A typical listing is shown with the example pro­
gram in Appendix J.

SDSMAC produces a cover sheet as the first output in the listing. This cover page contains a table
which provides a record of the files and devices used during the assembly process. An example of
this output is as follows:

SDSMAC 3.2.078.274 11 :26:51 MONDAY, OCT 17, 1977.

ACCESS NAMES TABLE

SOURCE ACCESS NAME =
OBJECT ACCESS NAME =
LISTING ACCESS NAME =
ERROR ACCESS NAME =
OPTIONS =

.SUSAN.SRC.TESTI

MACRO LIBRARY PATHNAME =

.SUSAN.LIST.TESTI

XR, SY, TU, MU
.SDSMAC.MACRODEF

LINE KEY NAME

0001 LI .SDSMAC.MACRODEF
= >. SDSMAC.MACRODEF

0001 LO MACROS
= >.SDSMAC.MACRODEF

0002 A DSC.SYSTEM.TABLES.DOR
= >DSOI. SYSTEM.TABLES.DOR

0003 LI .SDSMAC.MACRODEF
= >.SDSMAC.MACRODEF

The output has two sections:

• A listing of the parameters that were passed to the assembler via SCI.

• A list of access names encountered during the first pass of the assembly.

PAGE 0001

10-1 Texas Instruments Incorporated

~-------------------
In the first section, any parameters which had no value are left blank. The fields in the second

. section are labeled as follows:

LINE - This field contains the record number in which the access name was encountered.

KEY - This field contains one of the following:

LI - indicating a LIBIN usage,

LO - indicating a LIBOUT usage,

one character - indicating a copy file to be given this character as a key.

NAME - This field contains two access names. The first name is an image of the name on
the source record. The second name, appearing 'after the =>, is the result of synonym
substitution on the first name.

Each page of the source listing has a title line at .the top of the page. Any title supplied by a
TITL directive is printed on this line, and a page number is printed to the right of the title area.
The printer skips a line below the title line, and prints a line for each source statement listed.
The line for each source statement contains a source statement number, a location counter value,
object code assembled, and the source statement as entered. When a source statement results in
more than one word of object code, the assembler prints the location counter value and object
code on a separate line following the source statement for each additional word of object code.
The source listing lines for a machine instruction source statement are shown in the following
example:

0018 0156
0158
015A

C820
012B'
0003

MOY @INIT+3,@3

The source statement number, 0018 in the example, is a four-digit decimal number. Source
records are numbered in the order in which they are entered, whether they are listed or not. The
TITL, LIST, UNL, and PAGE directives are not listed, and source records between a UNL
directive and a LIST directive are not listed. The difference between source record numbers
printed indicates how many source records are not listed.

The next field on a line of the listing contains the location counter value, a hexadecimal value.
In the example, 0156 is the location counter value. No all directives affect the location counter,
and those that do not affect the location counter leave this field blank. Specifically, of the
directives that the assembler lists, the IDT, REF, DEF, DXOP, EQU, SREF, LOAD, and END
directives leave the location counter field blank.

The third field normally contains a single blank. However, SDSMAC places a dash in this field when
warning errors are detected.

The fourth field contains the hexadecimal representation of the object code placed in the location
by the Assembler, C820 in the example. The apostrophe following the fourth field of the second
line in the example indicates that the contents, 012B, is program-relocatable. A quote (") in this
location would indicate that the location is data-relocatable, while a plus (+) would indicate that
the label INIT is relocatable with respect to a common segment. All machine instructions and the
BYTE, DATA, and TEXT directives use this field for object code. The EQU directive places the
value corresponding to the label in the object code field.

10-2
Texas Instruments Incorporated

~~-------------------~ 943441-9701

In listings printed by PX9ASM, the fourth field may contain two or four hyphens (-) instead of
hexadecimal digits. This occurs when a forward reference determines the values of these digits.

Later, when the forward reference is defined, the assembler prints an additional line- in the listing
following the statement that defines the forward reference. This line contains the location being
resolved, two asterisks (**), and the contents. An error-free listing will include such a line for
each location previously printed with hyphens as the contents. The listings printed by the other
assemblers do not contain this type of information because all references are either resolved or
identified as undefined before the listings are printed.

The fifth field contains the first 60 characters of source statement as supplied to the assembler.
Spacing in this field is determined by the spacing in the source statement. The four fields of source
statements will be aligned in the listing only when they are aligned in the same character positions
in the source statements or when tab characters are used.

The machine instruction used in the example specifies the symbolic memory addressing mode for
both operands. This causes the instruction to occupy three words of memory, and three lines of
the listing. The object code corresponds to the operands in the order in which they appear in the
source statement.

10.3 ERROR MESSAGES
The error codes and messages placed in the source listing by the various assemblers are described
in the following paragraphs.

10.3.1 PX9ASM ERROR CODES. PX9ASM prints the following error message on the next lines
of the listing when it detects an error:

* *ERR N - STMT XXXX LAST ERR - STMT XXXX

N is an error code as shown in table 10-1. XXXX is a decimal statement number. The first state­
ment number identifies the current error; the second statement number identifies the preceding
error.

Error message for undefined symbols are printed at the end of the assembly. When a statement
allows a forward reference, the reference is not undefined until PX9ASM recognizes an END
statement without having recognized a statement defining the symbol. Error messages may be
printed at any point, from the lines immediately following the statement in error to lines follow­
ing the END statement.

The assembler can accommodate a minimum of 150 symbols in a 4K memory allocation. When
the assembler is unable to continue because the area of memory available for symbols and forward
references has been filled, the assembler prints the following message:

** ABORT **

The user may -divide the program into two or more modules and assemble them separately.
Considerations for properly linking these modules are described in Section VIII. Alternatively, ~he
user may shorten the symbols in the program and reassemble. Since shorter symbols use less space
in the symbol table, a symbol table of a given size may contain more shorter symbols.

Following the last statement or error message, the assembler prints undefined symbols, if there
are any, one symbol per line. The undefined symbol may correspond to one of several error codes,
or may be a symbol in a DEF directive that does not appear in the label field of a statement:

UNDEF
LOC

YYYYYY

SYMBL
XXXX

10-3 Texas Instruments Incorporated

~-------~ 943441-9701

Code

1

2

3

4

5

6

7

8

Table 10-1. PX9ASM Error Codes

Description

Undefined symbol. A symbol in the operand field of the statement
corresponding to the error location does not appear in the label
field of a source statement, or in the operand field of a REF
directive.

Syntax error. The statement corresponding to the error location
contains a syntax error.

illegal external reference. The statement corresponding to the error
location contains an external reference (and an arithmetic
operator) in an expression or an external reference to be placed in
a field smaller than 16 bits.

Truncation error. The statement corresponding to the error
location contains a number that is too large or a character string
that is too long. The number may be the result of evaluating
an expression. Relocatability of a term or expression may be in
error.

Multiply defined symbol. A symbol in the statement corresponding
to the error location has been previously referenced or defined.

Unrecognizable operator. Contents of the operator field of the
statement corresponding to the error location is not a mnemonic
operation code, a directive, or a name defmed as an extended
operiltion.

Illegal forward reference. A symbol in the statement corresponding
to the error location that should have been previously defined is
not previously defmed.

Illegal term. A term has an illegal value "less than zero or greater
than }5.

XXXX is the hexadecimal address of the location that referenced an undefined symbol; YYYYYY
is the symbol name of an undefined symbol.

At the end of the listing is an error summary, as follows:

NNNNERRORS

LAST ERROR - STMT XXXX

NNNN is the count of errors in the assembly. The second line identifies the last error detected in
the assembly. The second lines of the error messages link the error messages so that the user may
begin at the error summary message and readily locate all error messages. In an error-free assembly,
the final message is:

0000 ERRORS ENCOUNTERED

10-4 Texas Instruments Incorporated

Jd7S\ ______ _ ~ 943441-9701

10.3.2 CROSS ASSEMBLER. The Cross Assembler prints the following error message on
successive lines of the listing when they detect errors:

NN *** error description ***

LAST ERROR ON STATEMENT XXXX

NN is the error code, and the error description is the brief description shown in table lO-2. The
second line identifies the statement in which the previous error was detected.

At the end of the listing is an error summary, as follows:

NNNN ERRORS

LAST ERROR ON STATEMENT XXXX

NNNN is the count of errors in the assembly. The second line identifies the last error detected in
the assembly. The second lines of the error messages link the error messages so that the user may
begin at the error summary message and readily locate all error messages. In an error-free assembly,
the final message is:

NO ERRORS IN THIS ASSEMBLY

10.3.3 SDSMAC ERROR MESSAGES. SDSMAC prints the following error message on successive
lines of the listing when a error is detected:

*** error description

LAST ERROR ON STATEMENT XXXX

The error description is the brief description shown in table lO-3. The second line identifies the
statement in which the previous error was detected.

At the end of the listing is an error summary, as follows:

NNNN ERRORS,LAST ERROR ON STATEMENT XXXX, YYYY WARNINGS

NNNN is the count of errors in the assembly. XXXX identifies the last error detected in the
assembly. YYYY is the count of the warnings in the assembly. The second lines of the error
messages link the error messages so that the user may begin at the error summary message and
readily locate all error messages. In an error-free assembly, the final message is:

NO ERRORS, NO WARNINGS OR NO ERRORS, XXXX WARNINGS

10.3.4 SDSMAC WARNING MESSAGES. Several errors detected by SDSMAC (such as arith­
metic overflow while evaluating expressions) are considered to be only warning errors. The pro­
grammer should examine the code generated when warning messages occur, since the results mayor
may not be the code expected. Warning error messages are wirtten only to the error file and not
included in the listing. However, a dash is placed in column eleven of the listing where the warning
error occurred. Warning messages do not include an indication of a previous warning or error.

10-5 Texas Instruments Incorporated

~-~~------~------~ 943441-9701

The following program listing and error me demonstrate the output of error messages and warnings.

WARNING

The dash in column 11 is the only warning indication printed in .the
program listing. If the error me is assigned to a dummy deVIce,
corresponding warning messages will be lost.

0001 !DT ... WARN "
0002 *
0003 * THE NEXT LINE WILL GENERATE BOTH WARNING
0004 * AND ERROR MESSAGES
0005 *
0006 0000-0004" MXLINK XVEC WPOO. PC

0002 7BC4
********* UNDEFINED
0007 0000
0008 0000 1234
0009 0002
0010 *
0011 0004 WPOO

*

SYMBOL
CSEG "AB
DATA ::>1234
CEND

BSS 32

"

0012
0013
0014 * THE NEXT LINE WILL GENERTE MULTIPLE WARNING MESSAGES

* 0015 0024-0002
0026 1000
0028 0008

"GOGETT DATA ::>8001*2.::>7000*7.::>8001*8

* 0016
0017
0018
0019
0020
0021

*
*

THE NEXT LINE WILL GENERATE A SINGLE WARNING MESSAGE

002A- DEND
*
*
* 0022 THE NEXT LINE WILL GENERATE A SINGLE ERROR MESSAGE

0023 002A 1000 .JMP @WPOO
********* DISPLACEMENT TOO BIG

LAST ERROR AT 0006
0024 0000" END MXLINI<

THE FOLLOWING SYMBOLS ARE UNDEFINED

PC
0002 ERRORS. LAST ERROR AT 0023. 0007 WARNINGS
0006 0000-0004'" MXLINK XVEC WPOO.PC

0002 7BC4
********* WORKSPACE ADDRESS NOT PREVIOUSLY DEFINED
********* UNDEFINED SYMBOL
0015 0024-0002 "GOGETT DATA :>8001*2.::>7000*7.:>8001*8

0026 1000
0028 0008

********* VALUE TRUNCATED
********* VALUE TRUNCATED
********* VALUE TRUNCATED
********* SYMBOL TRUNCATED
********* INVALID CHARACTER IN SYMBOL- BLANK USED
0019 002A- DEND
********* " PEND'" ASSUMED
0023 002A 1000 .JMP @WPOO
********* DISPLACEMENT TOO BIG

THE FOLLOWING SYMBOLS ARE UNDEFINED
PC

0002 ERRORS. LAST ERROR AT 0023. 0007 WARNINGS

10-6 Texas Instruments Incorporared

~~-------------------~ 943441-9701

Table 10-2. Cross Assembler Error Messages

Error Messages

A MAXIMUM OF 64 COMMON BLOCKS ARE ALLOWED

ASSEMBLER ERROR 01

ASSEMBLER ERROR 02

COMMON BLOCK NAME IS MULTIPLY DEFINED

CROSS REFERENCE TABLE FULL

DIVIDING BY ZERO

EXCESSIVE NUMBER OF OPERANDS

INCORRECT PAIRING OF PARENTHESES

INCORRECT USE OF EXTERNAL REFERENCE

INCORRECT USE OF RELOCATABLE SYMBOLS

INVALID IDT NAME

INVALID LABEL

INVALID OPCODE

INVALID OPERAND IN COLUMN XX-

10-7

Explanation or Possible Cause

Indicates an internal assembler error. Contact
a TI representative.

Same as above.

The symbol appears as the name of more than one
distinct common block.

Too many operands were found.

Verify that there is a ')' for every 'C.

A REF'D or DEF'D symbol is not permitted in
this context i.e., an expression cannot contain
a REF'D symbol.

May indicate invalid use of a relocatable symbol
in arithmetic.

The symbol used on the 'IDT' card is not
permitted as an 'IDT' name.

The label may contain invalid characters or be
too long.

The second field of the source record contained
an entry that is not a defined instruction,
directive, pseudo-op, or DXOP.

This message precedes the next seven errors. It
identifies the card column containing the symbol
in question.

Texas Instruments Incorporated

J17~ ______ _ ~ 943441-9701

Table 10-2. Cross Assembler Error Messages (Continued)

Error Messages

LABEL PREVIOUSLY DEFINED

LABEL TRUNCATED

MISSING OPERAND

OPERATOR STACK OVERFLOW

REGISTER 0 IS INVALID INDEX REGISTER

RELOCATABLE TABLE FULL

SYMBOL TABLE FULL

SYMBOL TRUNCATED

SYNTAX ERROR IN EXPRESSION

UNDEFINED SYMBOL

VALUE TRUNCATED

;iO-8

Explanation or Possible Cause

The symbol appears more than once in the label
field of the source.

The maximum length of a label is six characters.

On instructions having a fixed number of
operands, too few appeared before encountering
a blank. On instructions having a variable number
of operands, a comma may have been encountered
with no operand following it.

The expression was too large in terms of operators.

There are too many symbols for this assembly.
Break up the program if possible.

The maximum length for a symbol is six
characters.

a) Unbalanced parentheses.

b) illegal symbols or operators.

c) Invalid operations on relocatable symbols.

a) A symbol is used which did not appear in
the label field of a source record.

b) The use requires definition in the first pass
and is undefined when the assembler first
encounters it.

The result of expression evaluation was too large.

Texas Instruments Incorporated

J}~ ______ _ ~ 943441-9701

Table 10-3. SDSMAC Listing Errors

Error Message

$MACRO invalid within macro definition.

Absolute value required.

Blank missing.

'CEND' assumed.

Close en missing.

Comma missing.

Conditional assembly nesting error.

'DEND' assumed.

Directory open error.

Directory read error.

Directory required.

Directory write error.

Displacement too big.

'DSEG' assumed.

Possible Causes

a) The $END verb belonging to the previous macro
was missing.

b) A $MACRO verb was unintentionally included.

A warning (Note 1).

An if-then-else construct is in error. Conditions which
could cause this are:

a) Missing ASMEND'S
b) Surplus ASMELS'S
c) Surplus ASMEND'S

A warning.

Check that any synonyms are valid and that no other
processor is currently writing to the MACRO library.

An I/O error was encountered while trying to read a
MACRO library Directory. Verify that no other pro­
cessor is currently writing to that MACRO library.

The access name specified is not an existing directory.
Verify that all synonyms are correct and that the MACRO
library does indeed exist; it can not be auto-created.

Verify that no other processor is currently writing to
that MACRO library.

An instruction requiring an operand with a fixed upper
limit was encountered which overflowed this limit.
An example is the 'JMP' instruction, whose single operand
must evaluate to within >7F words distance from the
current program counter.

This is a warning that the following two statements
have the same result:

10-9

CSEG '$DATA'
DSEG

Texas Instruments Incorporated

J2nS\ ________ _ ~ 943441-9701

Table 10-3. SDSMAC Listing Errors (Continued)

Error Message

Duplicate definition.

Error expanding call.

Error on copy open.

Expression syntax error.

Indirect (*) missing.

Invalid $ASe variable.

Invalid character in symbol - blank used.

Invalid CRU or shift value.

Invalid directive in absolute code.

Invalid expression.

Invalid macro variable.

Invalid model statement.

Invalid opcode.

Possible Cause

a) The symbol appears more than once in the label
field of the source.

b) The symbol appears as an operand of a REF state­
ment as well as in the label field of the source.

c) An attempt was made to define a macro variable or
macro language label which was previously defined
in the macro.

The symbol in the operand field of the $CALL statement
is not a defined Macro.

The access name specified as the operand of copy
directive can not be opened. Check that the synonyms
are correct and that the me is not currently being
written to by another processor.

a) Unbalanced parentheses.
b) Invalid operations on relocatable symbols.

a) An attempt was made to change the length com­
ponent of a variable.

b) An attempt was made to change the attribute com­
ponent or the value component of a macro variable
which was declared as a macro language variable.

A warning (Note 1). The legal characters to be used in
symbols under SDSMAC are A-Z, 0-9, ';', and '$'.

A warning (Note 1).

The directives PEND, DEND, CEND have no meaning
in absolute code.

May indicate invalid use of a relocatable symbol in
arithmetic.

The target variable specified on a $ASe or $eOTO
verb is not a valid target variable.

A macro symbol in a model statement must be followed
with either a colon operator (:) or end-of-record.

The second field of the source record contained an
entry that is not a defined instruction, directive,
pseudo-op, DXOP, DFOP, or Macro name.

10-10 Texas Instruments Incorporated

~~------------------~ 943441-9701

Table 10~3. SDSMAC Listing Errors (Continued)

Error Message

Invalid option.

Invalid relocation type.

Invalid use of conditional assembly.

Invalid $ASG expression.

Invalid $ASG variable.

Invalid $IF expression.

Label required.

Macro defInition discarded due to errors.

Macro expansion error.

MACRO library read error.

MACRO library write error.

Macro symbol truncated.

Possible Cause

A warning (Note 1). The only legal options are:

XREF
SYMT
NO LIST
MUNLST"
TUNLST
BUNLST
DUNLST
FUNL

(or suitable abbreviation).

Only PSEG relocatable or absolute symbols are allowed
as the operand of an 'END' statement.

A conditional assembly directive may not appear as a
model statement.

The expression is not present.

The target variable is not present or is not a symbol.

The expression either is not present or does not evaluate
to an integer value.

$NAME statements must begin with a label of maximum
length 2. $MACRO statements must begin with a label
of maximum length 6.

An error was detected during the assembly of the macro
defInition. Use of the macro name in succeeding lines
will cause error messages.

Indicates an internal assembler error. Contact a TI
representative.

A 'LiBIN' was in effect and the statement was a Macro
in a specifIed MACRO Library, but an I/O error was
encountered when reading it.

The current 'LiBOUT' library could not be used at
completion of a Macro defInition. Check that the Macro
is not currently being written by another processor.

A warning (Note 1). The maximum length for a macro
symbol is two characters. The following are legal macro
symbols: A, A.S, B2.SV.

The following are illegal macro symbols: CNT, CNT.A,
PM2.SL.

10-11 Texas Instruments Incorporated

)}~-------~ 943441-9701

Table 10-3. SDSMAC Listing Errors (Continued)

Error Message

Max macro nesting stack depth overflow.

Memory exceeded.

Model statement truncated.

Operand conilict PASSI/PASS2.

Operand missing.

'PEND' assumed.

REF'D symbol in expression.

Register reqUired.

String required.

String truncated.

Possible Cause

a) A macro calls itself recursively more than the allowed
maximum number of times.

b) More levels of macro calling have been used than
the allowed maximum.

The program counter overflowed the value >FFFF.

A warning (Note 1). When expanded, the model statement
exceeded 80 characters in length.

The assembler defaults currently undefined symbols
to register uses in the first pass if that symbol is used
in an ambiguous way. If during the second pass it is
discovered that the symbol was not a register use, this
error will result. An example is:

BL SUB

SUB EQU $

If this has been coded as follows, no ambiguity would
have existed due to the explicit "@" sign:

BL @SUB

SUB EQU $

On instructions having a fixed number of operands,
too few appeared before encountering a blank. On
instructions having a variable number of operands, such
as 'DATA', a comma may have been encountered with
no operand following it. An expression extending beyond
the 60th column could cause this problem.

A warning.

Due to the object code format of the 990 computer,
REF'D symbols may not appear within an expression.

A warning (Note 1). Check the syntax for the directive
in question to determine the maximum length for the
string.

10-12 Texas Instruments Incorporated

~~-~~--------------~ 943441-9701

Table 10-3. SDSMAC Listing Errors (Continued)

Error Message

Symbol truncated.

Symbol required.

Symbol used in both REF and DEF.

Syntax error.

'TO' missing.

Undefmed macro variable.

Undefmed symbol.

Valid op code required.

Value truncated.

Workspace address not previously defined.

$IF - $ELSE - $ENDIF construct
in error.

$MACRO invalid within Macro definition.

Possible Cause

A warning (Note 1). The maximum length for a symbol is
six characters.

This is a conflicting, duplicate definition.

'TO' is a required part of the syntax for the $ASG Macro
verb.

The target variable specified on a $ASG or $GOTO verb
is undefined.

a) A symbol is used which did not appear in the label
field of a source record.

b) The use requires defmition in the first pass and is
undefmed when the assembler first encounters it.

The defming symbol (Le., the second operand) is not a
valid instruction or directive.

A warning (Note 1). Overflow is checked after every
operation in an arithmetic expression. This may result
in several truncations in one expression.

The operand field must have been previously defined.
Note that the WPNT directive (or implied WPNT) is
ignored. Any previous WPNT is also ignored from this
point on.

Possible errors are:

a) Surplus $ELSEs
b) Surplus $ENDIFs
c) MiSSing $ENDIFs.

NOTE 1

Warnings are defined by a dash (-) in column 11 of the assembled program
listing.

10.3.5 TXMIRA ERROR MESSAGES. The TXMIRA assembler processes fatal errors and non­
fatal errors. The fatal errors cause the run to abort with the appropriate error message printed on
the LOG. The error messages are shown in table lO-4.

The nonfatal errors are shown in table lO-5 and do not cause the run to abort. An error message is
printed following the statement containing the error. The format of the printout is as follows:

10-13 Texas Instruments Incorporated

~~-------------------~ 943441-9701

*****SYNTAX ERROR - ReD nnnn

where nnnn is the source record number

If there are any undefined symbols in an assembly, the undefined symbols are listed at the end of
the run under the following heading: '

THE FOLLOWING SYMBOLS ARE UNDEFINED:

NOTE: If listing is not selected, than all error messages go to default listing device.

Table 10-4. TXMIRA Fatal Errors

SYMBOL TABLE OVERFLOW

CANT GET COMMON

CANT GET MEMORY

nn* - ILLEGAL PATHNAME

nn* - I/O ERROR - [~LJ LISTING
OBJECT

SOURCE

NO END CARD FOUND

*nn is a system returned error code.

Table 10-5. TXMIRA Nonfatal Errors

***** SYNTAX ERROR - RCD nnnnt

***** ILLEGAL EXTERNAL REF. RCD nnnnt

***** VALUE TRUNCATION - RCD nnnnt

***** MULTIPLY DEFINED SYM. - RCD nnnnt

***** INVALID OPERATOR - RCD nnnnt

***** ILLEGAL FORWARD REF. - RCD nnnnt

***** ILLEGAL TERM - RCD nnnnt

***** ILLEGAL REGISTER - RCD nnnnt

***** SYMBOL TRUNCATION - RCD nnnnt

***** UNDEFINED SYMBOL - RCD nnnnt

***** COMMON TABLE OVERFLOW - RCD nnnnt

***** PEND ASSUMED - RCD nnnnt

***** PEND ASSUMED - RCD nnnnt

***** CEND ASSUMED - RCD nnnnt

tnnnn is the source record in which the error was
detected.

10-14 Digital Systems Division

Jd7.f\ ______ _ ~ 943441-9701

10.4 CROSS REFERENCE LISTING
The Cross Assembler and SDSMAC each print an optional cross reference listing following the
source listing. The format of the listing is shown in figure 10-1. In the left column, the assembler
prints each symbol defined or referenced in the assembly. In the second column, the attributes of
the symbol are indicated as a list of single characters. The characters that appear in the second
column, and their meanings, are listed in table 10-6. The third column contains a four-digit hexade­
cimal number, the value assigned to the symbol. The number of the statement that defines the
symbol appears in the fourth column, unless the symbol is undefined. For undefined symbols, the
fourth column contains UNDF. The right column contains a list of the numbers of statements that
reference the symbol, or the words NOT REFERENCED, as applicable. For SDSMAC these fields
are left blank if the symbol is undefined or never used.

10.5

LABEL
ADDT
ADSR
GT

Character

A

R

D

X

U

0

M

S

L

OBJECT CODE

CROSS REFERENCE

VALUE
01A8'
01AO'
0006

DEFN
325
316
997

REFERENCES
314
342 343 348
NOT REFERENCED

Figure 10-1. Cross Reference Listing Format

Table 10-6. Symbol Attributes

Meaning

Absolute

External Reference (REF)

External Definition (DEF)

Extended Operation (XOP)

Undefined

Defined Operation (DFOP)

Macro name

Secondary Reference (SREF)

Force Load (LOAD)

Cross
Assembler

X

X

X

X

X

X

Applicability

SDSMAC

X

X

X

X

X

X

X

X

349

TXMIRA

X

X

X

X

X

The assemblers produce object code that may be linked to other object code modules or programs
and loaded into the Model 990 computer, or may be loaded into the computer directly. References
to the "loader" apply to a link editor, linking loader, or loader depending on the assembler being
used. Object code consists of records containing up to 71 ASCII characters each. The format,
described in the next paragraph, permits correction using a keyboard device. Re-assembly to correct
errors is unnecessary. An example of output code is shown in figure 10-2.

10-15 Texas Instruments Incorporated

~~-------------------~ 943441-9701

10.5.1 OBJECT CODE FORMAT. The object record consists of a number of tag characters, each
followed by one to three fields as defined in table 10-7. The first character of a record is the first
tag character, which tells the loader which field or fields follows the tag. The next tag character
follows the end of the field or fields associated with the preceding tag character. When the
assembler has no more data for the record, the assembler writes the tag character 7 followed by the
check sum field, and the tag character F, which requires no fields. The assembler then fills the rest
of the record with blanks and a sequence number, and begins a new record with the appropriate tag
character.

OOOOOSAMPROG 90040COOOOA0020BC06DB000290042C0020A0024BC81BC002A7F219F
A0028B0241BOOOOBCB41B0002B0380AOOCAC0052COOA2B02EOC0032B0200BOFOF7FIDEF
AOOD6BCOAOCOOCAB04C3BC160COOCCBCIAOCOODOBC072B0281B3AOOAn~ECB02217F151F
AOOEEB0900B06C1AOOEABll02AOOF2B0543Bl1F8B2C20C0032BC10IBOB44BE0447F18EF
AOI00BDD66B0003B0282COOA2BllEDB03407F832F
200CE0010C 7FCABF

(A)132255

Figure 10-2. Object Code Example

Tag character 0 is foll.owed by h~o fields. Field 1 contains the number of bytes of program­
r~loca~ab1e code, and fIeld 2 con tams the program identifier assigned to the program by an IDT
dIrectIve. When no IDT directive is entered, the field contains blanks. The loader uses the program
identifier to identify the program, and the number of bytes of program-relocatable code to deter­
mine the load bias for the next module or program. SDSMAC, TXMIRA, and the Cross Assembler
place a single tag character 0 at the beginning of each program. PX9ASM is unable to determine
the value for Field I until the entire module has been assembled, so PX9ASM places a tag character
o followed by a zero field and the program identifier at the beginning of the object code file. At
the end of the file, PX9ASM places another tag character zero followed· by the number of bytes
of relocatable code and eight blanks.

The tag character M, used only when data or common segments are defined in the program
(SDSMAC or TXMIRA), is followed by three fields. Field I contains the length, in bytes, of data­
or common-relocatable code, Field 2 contains the data or common segment identifier, and Field 3
contains a "common number". The identifier is a six-character field containing the name $DATAb
for data segments and $BLANK for blank common segments. If a named common segment appears
in the program, an M tag will appear in the object code with an identifier field corresponding to
the operand in the defining CSEG directive(s). Field 3 of the M tag consists of a four-character
hexadecimal number defining a unique common number to be used by other tags which reference
or initialize data of that particular segment. For data segments, this common number is always
zero. For common segments (including blank common), the common numbers are assigned in
increasing order beginning at 1 and ending with the number of different common segments. The
maximum number of common segments that a program may contain is 125.

Tag characters 1 and 2 are used with entry addresses. Tag character I is used when the entry address
is absolute. Tag character 2 is used when the entry address is relocatable. Field I contains the entry
address in hexadecimal. One of these tags may appear at the end of the object code file. The assoc­
iated field is used by the loader to determine the entry point at which execution starts when the
loading is complete.

Tag characters 3, 4 and X are used for external references. Tag character 3 is used when the last
appearance of the symbol in Field 2 of the tag is in program-re10catab1e code. Tag character 4 is
used when the last appearance of the symbol is in absolute code. The X tag is used when the last

10-16 Texas Instruments Incorporated

Jd7~ ______ _ ~ 943441-9701

appearance of the symbol in Field 2 is in data- or common-relocatable code (SDSMAC or
TXMIRA). Field 3 of the X tag gives the common numbers. Field I of the tag characters contains
the location of the last appearance of the symbol. The symbol in Field 2 is the external reference.
Both fields are used by the linking loader to provide the desired linking to the external reference.

For each external reference in a program, there is a tag character in the object code with a location
or an absolute zero, and the symbol that is referenced. When Field 1 of the tag character contains
absolute zero, no location in the program requires the address that corresponds to the reference.
When Field 1 of the tag character contains a location, the address corresponding to the reference
is placed by the loader in the location specified and the location's previous value is used to point
to the next location or, if it contains absolute zero, to discontinue linking.

Table 10-7.990 Object Tags

Tag

a

2

3

4

5

6

Field 1

PSEG Length

Absolute Address

P-R Address

P-R Address of Chain

Absolute Address of Chain

P-R Address

Absolute Value

7 Value

8 Any Value

9 Absolute Address

A P-R Address

B Absolute Value

C P-R Address

D Absolute Address

F Unused

G

H

I

J

M

M

M

N

P

P-R Address

Absolute Value

P-RAddress

D-R/C-R Address

DSEG Length

Blank Common Length

CSEG Length

C-R Address

C-R Address

S D-R Address

T

U

V

D-R Address

0000

P-R Address of Chain

Field 2

Program ID (8)

Symbol (6)

Symbol (6)

Symbol (6)

Symbol (6)

Symbol (6)

Symbol (6)

Program ID (8)

Symbol (6)

$ Data

$ Blank

Common Name (6)

Common Name #

Symbol (6)

Symbol (6)

10-17

Field 3 Note

2

2

6

6

5

5

*

**

3

3

4

4

7

7

Common # 7

0000

0001

Common #

4

3

3

4

8

9

Texas Instruments Incorporated

J2nS\ ______ _ ~ 943441-9701

Table 10-7.990 Object Tags (Continued)

Tag

X

W

Note:

1
2
3
4
5
6
7

Field 1

D-R/C-R Address of Chain

D-R/C-R Address

Module Definition
Entry Point Definition
Load Address
Data
External Definitions
External References
Symbol Definitions

Field 2 Field 3 Note

6

Symbol (6) Common # 5

8 Force External Link
9 Secondary External Reference
* Checksum
** Ignore Checksum
*** Load Bias
**** End of Record

Note: PXQASM or TXMIRA supports only tags 0 through F.

Figure 10-3 illustrates the chain of the external reference EXTR. The object code contains the
following tag and fields:

4COOEEXTR

At location COOE, the address COOA points to the preceding appearance of the reference. The chain
includes both absolute and relocatable addresses and consists of absolute addresses COOE, COOA,
C006, and C002, relocatable addresses 029E, 029A, and 0298, absolute addresses BOOE, BOOA,
B006, and B002, and relocatable addresses 0290 and 028E. Each location points to the preceding
appearance, except for location 028E, which contains zero. The zero identifies location 028E as
the first appearance of EXTR, the end of the chain.

10-18 Texas Instruments Incorporated

~ ____ 94_3_4_41_-_97_0_1 __ ___

()22';) * 02:;:C) * DEMONSTRATE EXTERNAL REFERENCE LINKING
i)Z:31 * i)2:32 f':EF EXTR
OZ:33 ")2::::C~ RORG
OZ':;:4 i)2:::C: C::=:2() MOV @EXTR,@EXTR

<)2::::E 0000
1)2'::)0 02:::E ,.'

(i 2:::: 5 02':'2 28EO X Of': @EXTRJ3
i)Z':!4 i)2t~'() 0"

...... -.,-. , E!i)(;(\ I_I":':' . .:: (:;r AOf':G > Bi)(H)

i):2::~~7 BOOO ::::22l) LDCF: @EXTF':, :::
E: (\t') 2 (\294 ,.'

023:;:: B(H)4 1:1420 BLWF' @EXTF':
E:()i)/~, E!()()2

i) 2:3 1;-1 E:OO:;:: ()22:::: AI 3,EXTR
BO(JA BOO6

024 1:1 B<)(iC :3::::A() MF'Y @EXTR,2
BOOE E:()~)A

(;::;::4 1 (12':'6 RORG
1)242 i)2':')I;' (::=:2i) MOV @EXTR,@EXTR

i)2''iJ :=: B(JOE
()21~'A i)2~):::'"

(1243 029C 2:=:E(l x OF': @EXTR, ~3

i)2';'E ('l"-:;"':' 1'10 __ .' H ,.'

":i2·~4 CI)I)(1 AORG :>COf)l)
0245 CC\(li) :322/) LDCF': @EXTR,:;::

C:i).') 2 02'?'E'"
l)24t';, (:0(14 ')42 /) BLWF' @EXTR

(:(11)(:, (:OOZ
0247 COO:::: 1)22~: AI .-. .;.., EXTR

COOA (:006
1)24:;:: C()OC :;:E:A() MF'Y @EXTR,2

COOE COOA
(A)132256

Figure 10-3. External Reference Example

Tag characters 5, 6, and Ware used for external definitions. Tag character 5 is used when the
location is program-relocatable. Tag character 6 is used when the location is absolute. Tag character
W is used when the location is data- or common-relocatable (SDSMAC or TXMIRA). The fields
are used by the loader to provide the desired linking to the external definition. Field 2 contains
the symbol of the external definition. Field 3 of tag character W contains the common number.

Tag character 7 precedes the checksum, which is an error detection word. The checksum is formed
as the record is being written. It is the two's complement of the sum of the 8-bit ASCII values of
the characters of therecord from the first tag of the record through the checksum tag, 7.

Tag characers 9, A, S, and P are used with load addresses for data that follows. Tag character 9 is
used when the load address is absolute. Tag character A is used when the load address is program·
relocatable. Tag character S is used when the load address is data-relocatable; and tag character P
is used when the load address is common-relocatable (SDSMAC or TXMIRA). Field I contains the

10·19 Texas Instruments Incorporated

~~-------------------~ 943441-9701

address at which the following data word is to be loaded. A load address is required for a data word
that is to be placed in memory at some address other than the next address. The load address is
used by the loader. Field 2 of tag character P contains the common number.

Tag characters B, C, T, and N are used with data words. Tag character B is used when the data is
absolute, e.g., an instruction word or a word that contains text characters or absolute constants.
Tag character C is used for a word that contains a program-relocatable address. Tag character T
is used for a word that contains a data-relocatable address and tag character N is used for a word
that contains a common-relocatable address (SDSMAC or TXMIRA). Field I contains the data
word. The loader places the data word in the memory location specified in the preceding load
address field or in the memory location that follows the preceding data word. Field 2 of tag char­
acter N contains the common number.

Tag characters G, H, and J are used when the symbol table option is specified with SDSMAC or
the Cross Assembler. Tag character G is used when the location or value of the symbol is program­
relocatable, and tag character H is used when the location or value of the symbol is absolute. Tag
character J is used when the location or value of the symbol is data- or common-relocatable
(SDSMAC and TXMIRA). Field 1 contains the location or value of the symbol, and Field 2 contains
the symbol to which the location is assigned. Field 3 of tag character J contains the common
number.

Tag character U is generated by the LOAD directive. The symbol specified is treated as if it were the
value specified in an INCLUDE command to the loader. Field 1 contains zeros. Field 2 contains the
symbol for which the loader will search for a definition. Refer to the LOAD directive for further
information.

Tag character V specifies a program-relocatable address for a secondary external reference. Field 1
contains the location of the last appearance of the symbol. Field 2 contains the symbol.

Tag character 8 is used to ignore the checksum. Field 1 contains the checksum to be ignored.

Tag character D is used to specify a load bias. Field 1 contains the absolute address which will be
used by the loader to relocate the symbols when loaded. The link editor does not accept the D
tag. Tag character D is described in detail in a subsequent paragraph.

Tag character F indicates the end of record. It may be followed by blanks.

The last record of an object module has a colon (:) in the first character position of the record,
followed by blanks or a time and data identifying stamp.

10.5.2 MACHINE LANGUAGE FORMAT. Some of the data words preceded by tag character B
represent machine instructions. Comparing the source listing with the object code fields identifies
the data words that represent machine instructions. Figure 10-4 shows the manner in which the
bits of the machine instructions relate to the operands in the source statements for each format
of machine instructions.

10.5.3 SYMBOL TABLE. When the SYMT option is specified (SDSMAC and Cross Assembler
only), the symbol table is included in the object code file. One entry, using tag character G or H
as appropriate, is supplied for each symbol defined in the assembly.

10.5.4 OBJECT CODE LISTING. When the OBJ option is specified (Cross Assembler), the
assembler prints the object code following the source code listing. When the cross reference listing
is also specified, the object listing follows the cross reference listing. The object code shown in
figure 10-2 is shown in the object code listing format in figure 10-5. Notice that blanks have been
inserted for clarity, and a sequence number included at the right.

10-20 Texas Instruments Incorporatea

~-------~ 943441-9701

FORMAT o 2 3 4 5 6 7 B 9 10 11 12 13 14 15

B D
1 1 X

1 0 X 0 TS S

0 1 X

III ,IX 0 0 1 X X X

IV 0 0 1 1 0 X NUM I
VI 0 0 0 0 0 1 X X X X

II 0 0 0 1 X X X X II DISP

V 0 0 0 0 1 0 X X I COUNT II R.EG I
VIII 0 0 0 0 0 0 1 0 X X X 0 I REG I
VII 0 0 0 0 0 0 1 1 X X X 0 0 0 0 0

x
(A)132257

0 0 0 0 0 0 1 , 0 0 1 GJ I REG I

x

W/B

T
o

o
T

S

S

NUM

DISP

REG

COUNT

M

IS A BIT OF THE OPERATION CODE THAT IS EITHER 0 OR 1 ACCORDING TO THE

SPECIFIC +NSTRUCTION IN THE FORMAT

IS A BIT OF THE OPERATION CODE THAT IS 0 IN INSTRUCTIONS THAT OPERATE ON

WORDS, AND' IN INSTRUCTIONS THAT OPERATE ON BYTES

IS A PAIR OF BITS THAT SPECIFY THE ADDRESSING MODE OF THE DESTINATION

OPERAND, AS FOLLOWS

00 '" WORKSPACE REGISTER ADDRESSING

01 WORKSPACE REGISTER INDIRECT ADDRESSING

10 = SYMBOLIC MEMORY ADDRESSING WHEN 0 = 0

10 = INDEXED MEMORY ADDRESSING WHEN 0 F 0

11 '" WORKSPACE REGISTER IND IRECT AUTOINCREMENT ADDRESSING

IS THE WORKSPACE REGISTER FOR THE DESTINATION OPERAND

IS A PAIR OF BITS THAT SPECIFY THE ADDRESSING MODE OF THE SOURCE OPERAND

AS SHOWN FOR T
D

IS THE WORKSPACE REGISTER FOR THE SOURCE OPERAND

IS THE NUMBER OF BITS TO BE TRANSFERRED

IS A TWO S COMPLEMENT NUMBER THAT REPRESENTS A DISPLACEMENT

IS A WORKSPACE REGISTER ADDRESS

IS A SHIFT COUNT

IS A MAP REGISTER FILE NUM BER (0 OR 1)

Figure 10-4. Machine Instruction Formats

10-21 Texas Instruments Incorporated

Jd7S\ ______ _ ~ 943441-9701

OBJECT FILE LISTING
o OOOOSAMPROG 9 0040 C 0000 A 0020 B C060 B 01)02 9 0042 C 0020 A 0024 B C81B C 002A 7 F219 F 0001 A 0028 B 0241 B 0000 B CB41 B 0002 B 0380 A OOCA C 0052 C 00A2 B 02EO C 0032 B 0200 B OFOF 7 FlOE F 0002 A 0006 B COAO C OOCA B 04C3 B C160 C OOCC B C1AO C 0000 B C072 B 0281 B 3AOO A OOEC B 0221 7 F151 F 0003 A OOEE B 0900 B 06Cl A OOEA B 1102 A 00F2 B 0453 B 11 F8 B 2C20 C 0032 B Cl0l B OB44 B E044 7 F18E F 0004 A 0100 B 0066 B 0003 B 0282 C 00A2 B 11 ED B 0340 7 F832 F 2 OOCE o OlOC 7 FCAB F 0005

0006

Figure 10-5. Object Code Listing Fonnat

10.5.5 PROCEDURES FOR CHANGING OBJECT CODE. To correct the object code without
reassembling a program, change the object code by changing or adding one or more records. One
additional tag character is recognized by the loader to permit specifying a load point. The additional
tag character, D, may be used in object records changed or added manually.

Tag character D is followed by a load bias (offset) value. The loader uses this value instead of
the load bias computed by the loader itself. The loader adds the load bias to all relocatable entry
addresses, external references, external definitions, load addresses, and data. The effect of the D
tag character is to specify the area of memory into which the loader loads the program. The tag
character D and the associated field must be placed ahead of the object code generated by the
assembler.

Correction of the object code may require only changing a character or a word in an object code
record. The user may duplicate the record up to the character or word in error, replace the incorrect
data with the correct data, and duplicate the remainder of the record up to the 7 tag character.
Because the changes the user has made will cause a checksum error when the checksum is verified
as the record is loaded, the user must change the 7 tag character to 8.

When more extensive changes are required, the user may write an additional object code record
or records. Begin each record with a tag character 9, A, S, or P. followed by an absolute load address
or a relocatable load address. This may be an address into which an existing object code record
places a different value. The new value on the new record will override the other value when the
new record follows the other record in the loading sequence. Follow the load address with a tag
character B, C, T s' or N and an absolute data word or a relocatable data word. Additional data
words preceded by appropriate tag characters may follow. When additional data is to be placed
at a non-sequential address, write another load address tag character followed by the load address
and data words preceded by tag characters. When the record is full, or all changes have been written,
write tag character F to end the record.

When additional memory locations are loaded as a result of changes, the user must change Field 1
of tag character 0 which contains the number of bytes of relocatable code. For example, when the
object file written by the assembler contained 100016 bytes of relocatable code, and the user has
added 8 bytes in a new object record, additional memory locations will be loaded. The user must
find the 0 tag character in the object code file and change the value following the tag character
from 1000 to 1008; he must also change the 7 tag character to 8 in that record.

When added records place corrected data in locations previously loaded, the added records must
follow the incorrect records. The loader processes the records as they are read from the object
medium, and the last record that affects a given memory location determines the contents of
that location at execution time.

10-22 Texas Instruments Incorporoted

;}nS\ ______ _ ~ 943441-9701

The object code records that contain the external definition fields, the external reference fields,
the entry address field, and the final program start field must follow all other object records. An
additional field or record may be added to include reference to a program identifier. The tag
character is 4, and the hexadecimal field contains zeros. The second field contains the first six
characters of the IDT character string. External definitions may be added using tag character 5
or 6 followed by the relocatable or absolute address, respectively. The second field contains the
defined symbol, filled to the right with blanks when the symbol contains less than six characters.

10-23/10-24 Texas Instruments Incorporated

~~-------------------~ 943441-9701

APPENDIX A

CHARACTER SET

Texas Instruments Incorporated

~~-------------------~ 943441-9701

APPENDIX A

CHARACTER SET

All of the 990 assemblers recognize the ASCII characters listed in table A-I. The table includes
both the ASCII code for each character, represented as a hexadecimal value and as a decimal value,
and the corresponding Hollerith code. The assemblers also recognize the five special characters
shown in table A-2. The Macro Assembler, SDSMAC, will accept the characters shown in table A-3
if they occur within quoted strings or in comment fields.

The device service routine for the card reader accepts (and stores in the calling program's buffer)
all the characters shown in tables A-I, A-2, and A-3, as well as the special characters shown in
table A-4. Although not accepted by the 990 assemblers, other programs may recognize the
characters shown in table A-4 and perform appropriate action.

Hexadecimal
Value

20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C

Table A-I. Character Set

Decimal
Value

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A-I

Character

Space

Hollerith
Code

Blank

12-8-7
8-7

8-3
$ 11-8·3
% 0-8-4
& 12

(

)

*
+

o

2

3

4

5

6

7

8

9

<

8-5
12-8-5
11-8-5
11-8-4
12-8-6
0-8-3
11

12-8-3
0-1
o

2

3

4

5

6

7

8

9

8-2
11-8-6
12-8-4

Texas Instruments Incorporated

~ 943441-9701

Table A-I. Character Set (Continued)

Hexadecimal Decimal Hollerith

Value Value Character Code

3D 61 8-6
3E 62 > 0-8-6
3F 63 ? 0-8-7
40 64 @ 8-4

41 65 A 12-1

42 66 B 12-2

43 67 C 12-3

44 68 D 12-4

45 69 E 12-5

46 70 F 12-6

47 71 G 12-7

48 72 H 12-8

49 73 I 12-9

4A 74 J 11-1

4B 75 K 11-2

4C 76 L 11-3

4D 77 M 11-4

4E 78 N 11-5

4F 79 0 11-6

50 80 P 11-7

51 81 Q 11-8

52 82 R 11-9

53 83 S 0-2

54 84 T 0-3

55 85 U 0-4

56 86 V 0-5

57 87 W 0-6

58 88 X 0-7

59 89 Y 0-8

5A 90 Z 0-9

Table A-2. Additional Special Characters

Hexadecimal Decimal Hollerith Model 29
Value Value Character Code Keypunch Character

5B 91 [12-2-8 ¢

5C 92 \ 0-2-8 0-2-8
5D 93] 11-2-8
5E 94 A 11-7-8 I (logical NOT)
5F 95 0-5-8 - (underscore)

A-2 Texas Instruments Incorporated

~ 943441-9701

Table A-3. Additional Special Characters Recognized by SDSMAC

Hexadecimal Decimal Hollerith
Value Value Character Code

60 96 \ 8-1
61 97 a 12-0-1
62 98 b 12-0-2
63 99 c 12-0-3
64 100 d 12-04
65 101 e 12-0-5
66 102 f 12-0-6
67 103 g 12-0-7
68 104 h 12-0-8
69 105 12-0-9
6A 106 j 12-11-1
6B 107 k 12-11-2
6C 108 I 12-11-3
6D 109 m 12-11-4
6E 110 n 12-11-5
6F 111 0 12-11-6
70 112 p 12-11-7
71 113 q 12-11-8
72 114 r 12-11-9
73 115 s 11-0-2
74 116 t 11-0-3
75 117 u 11-04
76 118 v 11-0-5
77 119 w 11-0-6
78 120 x 11-0-7
79 121 y 11-0-8
7A 122 z 11-0-9
7B 123 { 12-0
7C 124 I 12-11
7D 125 } 11-0
7E 126 11-0-1

Table A-4. Additional Characters Recognized by the Card Reader Device Service Routine

Hexadecimal Decimal Hollerith
Value Value Character Code

00 0 NUL 12-0-9-8-1
01 1 SOH 12-9-1
02 2 STX 12-9-2
03 3 ETX 12-9-3
04 4 EaT 9-7
05 5 ENQ 0-9-8-5
06 6 ACK 0-9-8-6
07 7 BEL 0-9-8-7
08 8 BS 11-9-6
09 9 HT 12-9-5
OA 10 LF 0-9-5

A-3 Texas Instruments Incorporated

Jd7S\ ______ _ ~ 943441-9701

Table A-4. Additional Characters Recognized by the Card Reader Device Service Routine (Continued)

Hexadecimal Decimal Hollerith
Value Value Character Code

OB 11 VT 12-9-8-3
OC 12 FF 12-9-84
OD 13 CR 12-9-8-5
OE 14 SO 12-9-8-6
OF 15 SI 12-9-8-7
10 16 DLE 12-11-9-8-1
11 17 DC1 11-9-1
12 18 DC2 11-9-2
13 19 DC3 11-9-3
14 20 DC4 9-84
15 21 NAK 9-8-5
16 22 SYN 9-2
17 23 ETB 0-9-6
18 24 CAN 11-9-8
19 25 EM 11-9-8-1
lA 26 SUB 9-8-7
IB 27 ESC 0-9-7
IC 28 FS 11-9-84
ID 29 GS 11-9-8-5
IE 30 RS 11-9-8-6
IF 31 US 11-9-8-7
7F 127 DEL 12-9-7

A-4 Texas Instruments Incorporated

~~-------------------'-V 943441-9701

APPENDIX B

INSTRUCTION TABLES

Texas Instruments Incorporated

~~-------------------~ 943441-9701

APPENDIX B

INSTRUCTION TABLES

The source formats for the machine instructions are summarized in eight tables. Refer to
Section III for descriptions of the machine instructions. Arithmetic instructions are listed in
table B-1, and branch instructions are listed in table B-2. Table B-3 lists compare instructions and
table B-4 lists control and CRU instructions. Load and move instructions are listed in table B-5,
and logical instructions are listed in table B-6. Workspace register shift instructions are listed in
table B-7, and the extended operation instruction is listed in table B-8. Long distance addressing
instructions are listed in table B-9.

The pseudo-instructions are listed in table B-IO.

The following symbols are used in tables B-1 through B-10.

G, G 1, G2 - A general address in one of the five modes described in Section III.

R - A workspace register address.

S - A symbolic memory address (a label or an expression that contains a label or $)

E - An expression, with the additional limitation that the expression must not contain a
symbol that is not previously defined.

I - An immediate value, which is an expression.

T - A term.

M - Memory map file, 0 or 1.

(,) - The contents of the address within parentheses.

-7 - "replaces"

: - "is compared to"

The following example shows the use of the symbols in the source format column:

XOR G,R

The source format entry means that the mnemonic operation code XOR requires a general
address and a workspace register address separated by a comma. In the effect column, the
symbols are used as in the following example:

(G) XOR (R) -7 (R)

This means that the result of an exclusive OR of the contents of the general address with the
contents of the workspace register replaces the contents of the workspace register. In the status
bits test column, the symbols are used as in the following example:

(R) : 0

B-1 Texas Instruments Incorporated

~~-------------------~ 943441-9701

This means that the result placed in the workspace register is compared to zero and the status
bits contain the result of this comparison.

B-2 Texas Instruments Incorporated

~ 943441-9701

Table B-t. Arithmetic Instructions

Status Bits Status Bits Format
Instruction Format Effect Opcode Affected Test Number

Add words A GI, G2 (GI)+(G2)-+(G2) AOOO 0-4 (G2) :0 I

Add bytes AB Gl, G2 (G 1)+(G2)-+(G2) BOOO 0-5 (G2) :0 I

Absolute value ABSG Absolute (G)~(G) 0740 0- 2, 4 Note 1 VI

Add immediate AI R, I (R)+I~(R) 0220 0-4 (R) :0 VIII

Decrement DEC G (G)-I~(G) 0600 0-4 (G) :0 VI

Decrement by 2 DECTG (G)-2~(G) 0640 0-4 (G) :0 VI

Divide DIV G,R Note 2 3COO 4 Note 3 IX

Increment INC G (G)+I~(G) 0580 0-4 (G) :0 VI

Increment by 2 INCT G (G)+2~(G) 05CO 0-4 (G) :0 VI

Multiply MPY G,R Note 4 3800 None IX

Negate NEGG -(G)-+(G) 0500 0- 2, 4 (G) :0 VI

Subtract S GI, G2 (G2)-(G I) ~G2) 6000 0-4 (G2) :0 I

Subtract Bytes SB GI, G2 (G2)-(G I) ~(G2) 7000 0-5 (G2) :0 I

NOTES:

I. The original value of G is compared to zero.

2. The contents of register R and the next consecutive register (32-bit magnitude) are divided by G (16-bit mag­
nitude). The quotient (16-bit magnitude) is placed in R and the remainder is placed R+l. If R=15, the remainder
is placed in the location immediately following the workspace.

3. If the divisor is less than or equal to the left half of the dividend, the divide instruction is aborted and overflow
status bit (bit 4) is set.

4. (G) is multiplied by (R). The result (32-bit magnitude) is placed in Rand R+ 1. R contains the most significant
half of the result. If R=15, the least significant half of the result if placed in the location immediately following
the workspace.

B-3
Texas Instruments Incorporated

~ 943441-9701

Table B-2. Branch Instructions

Instruction Fonnat Effect ~ecessary Status

Branch BG G -+ (PC) Unconditional

Branch and Link BLG G -+ (PC) Unconditional
(PC) -+ (Rll)

Branch and Link WP BLWP G ~ote 1 Unconditional

Jump If Equal JEQ S S -+ (PC) Bit 2 = 1

Jump If High or Equal JHES S -+ (PC) Bit 0 or Bit 2 = 1

Jump If Greater Than JGT S S -+ (PC) Bit 1 = 1

Jump If Logical High JHS S -+ (PC) Bit 0 = 1 and
Bit 2 = 0

Jump If Logical Low JL S S -+ (PC) Bit 0 = 0 and
Bit 2 = 0

Jump If Less or Equal JLE S S -+ (PC) Bit 1 = 0 and
Bit 2 = 1

Jump If Less Than JLT S S -+ (PC) Bit 1 = 0 and
Bit 2 = 0

Unconditional Jump JMP S S -+ (PC) Unconditional

Jump If No Carry JNC S S -+ (PC) Bit 3 = 0

Jump If Not Equal JNE S S -+ (PC) Bit 2 = 0

Jump If No Overflow JNO S S -+ (PC) Bit 4 = 0

Jump If Odd Parity JOPS S -+ (PC) Bit 5 = 1

Jump On Carry JOCS S -+ (PC) Bit 3 = 1

Return WP RTWP Note 2 Unconditional

Execute XG Note 3 Unconditional

NOTES:

l. BLWP is explained in detail in paragraph 8.2. It can be summarized as follows:

(G) -+ (WP) (old PC) -+ (RI4)
(G + 2) -+ (PC) (ST) -+ (RI5)
(original WP) -+ (RI3)

2. RTWP is explained in detail in paragraph 8.2. It can be summarized as follows:

(R13) -+ (WP)
(RI4) -+ (PC)
(RI5) -+ (ST)

Fonnat
Opcode ~umber

0440 VI

0680 VI

0400 VI

1300 II

1400 II

1500 II

IBOO II

lAOO II

1200 II

1100 II

1000 II

1700 II

1600 II

1900 II

lCOO II

1800 II

0380 VII

0480 VI

3. An instruction at address G is executed as if it were located in memory where the Execute instruction
resides. Observe that if the instruction executed is not a single word instruction, the word following the
Execute instruction is used (i.e., if symbolic memory addressing or indexed addressing is required, the
symbol value must be in the word following the Execute instruction). The Execute instruction does not
affect-the status bits but the instruction executed will set the status bits appropriately.

B-4
Texas Instruments Incorporated

fl~ _________________ __ ~ 943441-9701

Table B-3. Compare Instructions

Instruction Format Opcode
Status Bits
Affected

Status Bits
Test

Format
Number

Compare Words C Gl, G2

Compare Bytes CB Gl, G2

Compare Immediate CI R, I

Compare Ones COC G, R
Corresponding

Compare Zeros CZC G, R
Corresponding

NOTES:

8000

9000

0280

2000

2400

0-2

0-2, 5

0-2

2

2

(G 1) :(G2)

(Gl) :(G2)

(R) :1

Note 1

Note 2

General: Compare instructions have no effect other than setting status bits. Note that the two's complement
representation negative numbers are logically greater than positive numbers, and that negative num­
bers of small magnitude are logically greater than negative numbers of larger magnitude.

1. The bits in the destination operand that correspond to bits equal to one in the source operand are com­
pared to one. If the corresponding bits are equal to one, status bit 2 is set to 1. Otherwise the status bit
is set to O.

2. The bits in the destination operand that correspond to bits equal to one in the source operand are com­
pared to zero. If the corresponding bits are equal to zero, status bit 2 is set to 1. Otherwise the status bit
is set to O.

VIlI

III

III

B-5
Texas Instruments Incorporated

~-------~ 943441-9701

Table B-4. Control and CRU Instructions

Status Bits Status Bits Format
Instruction Format Effect Opcode Affected Test Number

Clock Off (Note 12) CKOF Note 1 03CO None VII

Clock On (Note 12) CKON Note 2 03AO None VII

Load Communication LDCRG, T Note 3 3000 0- 2, 5 (G) :0 N
Register

Idle (Note 12) IDLE Note 4 0340 None VII

Load ROM and Execute LREX Note 6 03EO None VII
(Note 12)

Reset I/O (Note 12) RSET Note 5 0360 0-5 Note 7 VII

Set Bit to One SBO E Note 8 moo None II

Set Bit to Zero SBZ E Note 9 lEOO None II

Store Communication STCR G, T Note 10 3400 0- 2, 5 (G) :0 N
Register

Test Bit TB E IFOO 2 Note 11 II

NOTES:

1. Disables 120 Hz clock.

2. Enables 120 Hz clock. If interrupt level 5 is enabled, an interrupt occurs every 8.33 ms. Interrupt address
is 14 16 .

3. Transfers consecutive data bits from the byte address specified by G to the CRU. The number of bits to be
transferred is specified by T. The CRU address is the contents of Rl2 of the current workspace. The least
significant bit of the byte address specified by G is placed in the CRU bit addressed by R12. See illustration,
Memory CRU Transfer (Note 9).

4. Places the computer in the idle state. An interrupt or start signal causes the computer to resume execution
at the instruction following the IDLE instruction.

5. Disables all interrupts. Resets all directly connected I/O devices.

6. Places contents of FFFC 16 into WP register, and contents of FFFE 16 into PC.

7. Sets bits 0 - 5 to zero.

8. Sets CRU bit at address in R12 + E to one.

9. Sets CRU bit at address in R12 + E to zero.

B-6
Texas Instruments Incorporated

~n.f\ ______ _ ~ 943441-9701

Table B-4. Control and CRU Instructions (Continued)

NOTES

10. Transfers consecutive data bits from the CRU to the byte address specified by G. The number of bits transferred
is specified by T. The CRU address is the contents of RI2 of the current workspace. The CRU bit addressed by
R12 is placed in the least significant bit of the byte addressed by G. See Memory - CRU Transfer illustration.

11. Tests CRU bit at address in R12 + E. Set status bit 2 to the value of the CRU bit.

12. Does not apply to TMS 9900.

CRU

... 1-----_. .. 0

(A)128444

Memory - CRU Transfer

B-7
Texas Instruments Incorporated

~ 943441-970 t

Table B-S. Load and Move Instructions

Status Bits Status Bits Format
Instruction Format Effect Opcode Affected Test Format

Load Immediate LI R, I 1-* (R) 0200 0·2 1:0 VIII

Load Interrupt Mask L IMI I Note 1 0300 None VIII

Load Memory Map File LMF R,M Notes 4, 5 0320 None X

Load Workspace Pointer LWPI I 1-* (WP) 02EO None VIII

Move Words MOV GI, G2 (GI) -* (G2) COOO 0-2 (G2) :0 I

Move Bytes MOVB GI, G2 (GI) -* (G2) DOOO o - 2, 5 (G2) :0

Store Status STST R (ST) -* (R) 02CO None VIII

Store WP STWP R (WP) -* (R) 02AO None VIII

Swap Bytes SWPB G Note 3 06CO None VI

NOTES:

1. Places the least-significant 4 bits of the immediate value I in the interrupt mask.

2. Loads the 256 words of the ROM program into the first 256 words of memory. Places the contents of the
memory pair at address 0 into WP and PC and starts execution.

3. Interchanges bits 0 - 7 with bits 8 - 15 of word at address specified by G.

4. Place the contents of a six-word area at the address in R into memory map file M.

5. 990/10 with mapping only.

B-8
Texas Instruments Incorporated

~-------~ 943441-9701

Table B-6. Logical Instructions

Status Bits
Instruction Format Effect Opcode Affected

AND Immediate ANDI R, I (R) AND I -+ (R) 0240 0-2

Clear CLRG 0-+ (G) 04CO None

Invert Bits INV G Note 1 0540 0-2

OR Immediate OR! R, I (R) OR I -+ (R) 0260 0-2

Set to Ones SETO G >FFFF -+ (G) 0700 None

Set Ones Corresponding SOC Gl, G2 Note 2 EOOO 0-2

Set Ones Corresponding SOCB Gl, G2 Note 2 FOOO 0- 2,5
Bytes

Set Zeros Corresponding SZC Gl, G2 Note 3 4000 0-2

Set Zeros Corresponding SZCB Gl, G2 Note 3 5000 0- 2,5
Bytes

Exclusive OR XORG, R (G) XOR (R) -+ (R) 2800 0-2

NOTES:

l. Places one's complement of contents oflocation G in location G.

2. Sets bits to one in G2 that correspond to bits equal to one in G 1. (G 1) OR (G2) -+ (G2).

1 1 1 1
100 0

1 1 1 1

1 0 0 0 0 0 0 0 0 GI
o 1 0 0 1 0 0 G2

1 1 0 1 0 1 0 1 0 G2 (result)

Status Bits
Test

(R) :0

(G) :0

(R) :0

(G2) :0

(G2) :0

(G2) :0

(G2) :0

(R) :0

3. Sets bits to zero in G2 that correspond to bits equal to one in G 1. (INV (G 1» AND (G2) -+ (G2).

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 GI
1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 G2

o 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 G2 (result)

Format
Number

VIII

VI

VI

VIII

VI

I

III

B-9 Texas Instruments Incorporated

)}~-------~ 943441~9701

Table B-7. Workspace Register Shift Instructions

Value Placed in Vacated Bit Position on Format
Instruction Format Each Shift Opcode Number

Shift Right Arithmetic SRA R, C Original value of leftmost bit 0800 V

Shift Right Logical SRL R, C Logical zero 0900 V

Shift Left Arithmetic SLA R, C Logical zero (Note 1) OAOO V

Shift Right Circular SRC R, C Rightmost bit moves to leftmost bit OBOO V

NOTES:

General: If C is zero, the 4 least-significant bits of RO contain the shift value. If the 4 least-significant bits of RO
equal 0, shift 16 positions. Otherwise shift C positions. The value of the last bit shifted out of the register
is placed in status bit 3. The shifted value is compared to zero-setting status bits 0 - 2.

1. If the sign of the value in R changes during shift, sets status bit 4.

B-IO Texas Instruments Incorporated

~~-------------------~ 943441-9701

Table B-S. Extended Operation Instruction

Instruction Fonnat Effect Opcode

Extended Operation XOP G, T Note 1 2eaa

NOTES:

1. T specifies the extended operation, a -15, to be executed.

Status Bits
Affected

6

Status Bits
Test

Note 2

Fonnat
Number

IX

2. Sets status bit 6 to one when extended operation is software implemented, and to zero when extended operation
is hardware implemented.

B-ll Texas Instruments Incorporated

~~-------------~----~ 943441-9701

Table B-9. Long Distance Addressing Instructions (990/10 with mapping only)

Instruction Format Effect

Long Distance Source LDS G Note 1

Long Distance LDD G Note 2

NOTES:

Opcode

0780

07CO

Status Bits
Affected

None

None

Status Bits
Test

Format
Number

VI

VI

1. Places the contents of a six-word area of memory at G into memory map file 2, to use for source address of
following instruction.

2. Places the contents of a six-word area of memory at G into memory map file 2, to use for destination address
of following instruction.

B-12 Texas Instruments Incorporated

~-------~ 943441-9701

Instruction

NOP

RT

XVEC

Table B-IO. Pseudo-Instructions

Equivalent
Instruction

JMP$+2

B *11

DATA,DATA, WPNT

Note: 1. Applies to SDSMAC only.

B-13/B-14

Opcode

1000

045B

N.A.
(Note 1)

Texas Instruments Incorporated

~~-------------------~ 943441-9701

APPENDIX C

PROGRAM ORGANIZATION

Texas Instruments Incorporated

~~-------------------~ 943441-9701

APPENDIX C

PROGRAM ORGANIZATION

C.1 PROGRAM AREAS
There are three types of areas in a program for the Model 990 Computer. These are the
procedure, the workspace, and the data areas. The procedure area contains the computer
instructions. The workspace area contains program linkage, high activity data, and addresses. As
many workspaces as convenient may be allocated fOr a program. Data areas may be allocated as
required.

The three previously described hardware registers - WP, PC, and ST - control program execution.
The workspace pointer contains the address of the first word of a 16-word area of memory
called the workspace. Note that the program workspace may be changed by changing the
contents of the WP register. The PC contains the address of the next instruction to execute. The
status register contains condition bits set by instructions already performed and the interrupt
level mask. These three registers then, completely control and define the context of a program.

The general environment of the 990 Computer is shown in figure C-l. This arrangement of
workspace, procedure, and data is the simplest approach to 990 programming. However, though
many application programs may be written in this manner, a more segregated approach, with
possibly several workspaces, data areas, and connected simple procedures, would provide
increased flexibility and applicability.

Most of the programs execute in the environment provided by a resident executive. The areas
may be combined in a single task, or the workspace and data areas may be combined in the data
division of the task. The procedure area becomes the procedure division of the task in that case.
Some of the available executives support writing a procedure division to be used with several
data divisions to form tasks that perform the same functions on several sets of data. Refer to the
user's guide of the appropriate executive for information about the environment it provides for
user programs.

C.2 PROCEDURE
A procedure is the main body of a program and contains computer instructions. It is the action
part of a program. Procedures could be coded to solve an equation, run a motor, determine
status ofa process, or condition a set of data that is to be processed by another procedure.
Procedures in the Model 990 Computer may have workspaces and data as an integral part of the
coding or may use workspaces and data passed from another procedure.

C.3 WORKSPACE
The Model 990 Computer uses workspaces that may be anywhere in memory and that consist of
sixteen consecutive memory words. A context switch due to an interrupt, an XOP instruction, or
a BLWP instruction changes the active workspace. A return from the subroutine provided for
either of these context switches using an RTWP instruction restores the original workspace.
Execution of an LWPI instruction makes a specified workspace active without changing the PC
contents. When the data division is separate from the procedure division, any workspace that
contains data that is unique to the task represented by the data division should be a part of the
data division.

C-1 Texas Instruments Incorporated

~~-------~----------~ 943441-9701

HARDWARE REGISTERS

MEMORY

ADDRESS

WP ____ 0_'0_0 ___ ~ - - - ... 0100

0102

PC 0220 0104

ST 11111111 11111
~~

011C

011E

"\.I

MEMORY

(INSTRUCTION IN EXECUTION)

(NEXT INSTRUCTION)

~

MEMORY

USE

WRO

WRI

WR2

~~

WR14

WRI5'

".J

INSTRUCTIONS

PROGRAM

11 21t-------------....
(A)128614

Figure C-1. Model 990 Computer Programming Environment

C.4 DATA
Data for a procedure may appear in many forms. In assembly language, there are three directives
available to the programmer to initialize data within a program module. These directives are:

• DATA - Initializes one or more consecutive words of memory to specific values that
are input on this statement.

• BYTE - Initializes one or more consecutive bytes of memory as does the DATA
statement, except that bytes are initialized.

• TEXT - Initializes a textual string of characters in consecutive bytes of memory. The
characters are represented in USASCn code.

C-2 . Texas /nstr~ments Incorporated

)2175\ ______ _ ~ 943441-9701

Also, data input from the data terminal or device attached to the CRU or TILINE is available to
procedures in the 990 Computer.

The available executives for the Model 990 Computer support the user programs by executing
supervisor calls to perform input and output operations, data conversions, and other functions.
The user provides data in required formats for supervisor call blocks that define the supervisor
call, and for other data blocks as appropriate. The assembler directives described previously may
be used to provide this data. Details of the data requirements for interface with an executive are
described in the user's guide for the executive.

C-3jC-4 Texas Instruments Incorporated

)217.5\ ______ _ ~ 943441-9701

APPENDIX D

HEXADECIMAL INSTRUCTION TABLE

Texas Instruments Incorporated

4P 943441-9701

APPENDIX D

HEXADECIMAL INSTRUCTION TABLE

Hexadecimal Mnemonic
Operation Operation

Code Code Name Format Paragraph

0200 LI Load Immediate VIII 3.60

0220 AI Add Immediate VIII 3.12

0240 ANDI AND Immediate VIII 3.70

0260 ORI OR Immediate VIII 3.71

0280 CI Compare Immediate VIII 3.45

02AO STWP Store Workspace Pointer VIII 3.68

02CO STST Store Status VIII 3.67

02EO LWPI Load Workspace Pointer VIII 3.62
Immediate

0300 LIMI Load Interrupt Mask VIII 3.61
Immediate

0320 LMF (Note 1) Load Memory Map File X 3.63

0340 IDLE (Note 2) Computer Idle VII 3.50

0360 RSET (Note 2) Computer Reset VII 3.49

0380 RTWP Return From Interrupt VII 3.27
Subroutine

03AO CKON (Note 2) Clock On VII 3.52

03CO CKOF (Note 2) Clock Off VII 3.51

03EO LREX (Note 2) Load ROM and Execute VII 3.53

0400 BLWP Branch And Load Workspace VI 3.26
Pointer

0440 B Branch VI 3.24

0480 X Execute VI 3.41

04CO CLR Clear Operand VI 3.74

0500 NEG Negate VI 3.22

0540 INV Invert VI 3.73

0580 INC Increment By One VI 3.17

05CO INCT Increment By Two VI 3.18

0600 DEC Decremen t By One VI 3.14

0640 DECT Decrement By Two VI 3.20

0680 BL Branch and Link VI 3.25

06CO SWPB Swap Bytes VI 3.66

0700 SETO Set Ones VI 3.75

Notes 1. 990/10 with mapping only.
2. Does not apply to TMS 9900

D-l
Texas Instruments Incorporated

~ 943441-9701

HEXADECIMAL INSTRUCTION TABLE (Continued)

Hexadecimal Mnemonic
Operation Operation

Code Code Name Format Paragraph

0740 ABS Absolute Value VI 3.21

0780 LDS (Note 1) Long Distance Source VI 3.87

07CO LDD (Note 1) Long Distance Destination VI 3.88

0800 SRA Shift Right Arithmetic V 3.81

0900 SRL Shift Right Logical V 3.83

OAOO SLA Shift Left Arithmetic V 3.82

OBOO SRC Shift Right Circular V 3.84

1000 JMP Jump Unconditional II 3.28

1100 JLT Jump Less Than II 3.34

1200 JLE Jump Low Or Equal II 3.32

1300 JEQ Jump Equal II 3.35

1400 JHE Jump High Or Equal II 3.31

1500 JGT Jump Greater Than II 3.33

1600 JNE Jump Not Equal II 3.36

1700 JNC Jump No Carry II 3.38

1800 JOG Jump On Carry II 3.37

1900 JNO Jump No Overflow II 3.39

1AOO JL Jump Low II 3.30

lBOO JH Jump High II 3.29

1COO JOP Jump Odd Parity II 3.40

moo SBO Set Bit To One II 3.54

1EOO SBZ Set Bit To Zero II 3.55

1FOO TB Test Bit II 3.56

2000 COC Compare Ones Corresponding III 3.46

2400 CZC Compare Zeros Corresponding III 3.47

2800 XOR Exclusive OR III 3.72

2COO XOP Extended Operation IX 3.85

3000 LDCR Load Communication IV 3.57
Register

3400 STCR Store Communication IV 3.58
Register

3800 MPY Multiply IX 3.15

3COO DIV Divide IX 3.16

Note 1. 990/10 with mapping only.

D-2
Texas Instruments Incorporated

4P 943441-9701

HEXADECIMAL INSTRUCTION TABLE (Continued)

Hexadecimal Mnemonic
Operation Operation

Code Code Name Format Paragraph

4000 SZC Set Zeros Corresponding, I 3.78
Word

5000 SZCB Set Zeros Corresponding, I 3.79
Byte

6000 S Subtract Word I 3.13

7000 SB Subtract Byte I 3.14

8000 C Compare Words I 3.43

9000 CB Compare Bytes I 3.44

AOOO A Add Words I 3.10

BOOO AB Add Bytes I 3.l1

COOO MOV Move Word I 3.64

DOOO MOVB Move Byte I 3.65

EOOO SOC Set Ones Corresponding, I 3.76
Word

FOOO SOCB Set Ones Corresponding, 3.77
Byte

0-3/0-4
Texas Instruments Incorporated

~-------~ 943441-9701

APPENDIX E

ALPHABETICAL INSTRUCTION TABLE

Texos Instruments Incorporoted

~ 943441-9701

APPENDIX E

ALPHABETICAL INSTRUCTION TABLE

Mnemonic Hexadecimal
Operation Operation Name Format Paragraph

Code Code

A AOOO Add Words 3.10

AB BOOO Add Bytes 3.11

ABS 0740 Absolute Value VI 3.21

AI 0220 Add Immediate VIII 3.12

ANDI 0240 AND Immediate VIII 3.70

B 0440 Branch VI 3.24

BL 0680 Branch and Link VI 3.25

BLWP 0400 Branch and Load Workspace VI 3.26
Pointer

C 8000 Compare Words 3.43

CB 9000 Compare Bytes 3.44

CI 0280 Compare Immediate VIII 3.45

CKOF (Note 2) 03CO Clock Ofr VII 3.51

CKON (Note 2) 03AO Clock On VII 3.52

CLR 04CO Clear Operand VI 3.74

COC 2000 Compare One.s Corresponding III 3.46

CZC 2400 Compare Zeros Corresponding III 3.47

DEC 0600 Decremen t By One VI 3.19

DECT 0640 Decrement By Two VI 3.20

DIV 3COO Divide IX 3.16

IDLE (Note 2) 0340 Computer Idle VII 3.50

INC 0580 Increment By One VI 3.17

INCT 05CO Increment By Two VI 3.18

INV 0540 Invert VI 3.23

JEQ 1300 Jump Equal II 3.35

JGT 1500 Jump Greater Than II 3.33

JH 1 BOO Jump High II 3.29

JHE 1400 Jump High Or Equal II 3.31

JL IAOO Jump Low II 3.30

JLE 1200 Jump Low Or Equal II 3.32

JLT 1100 Jump Less Than II 3.34

JMP 1000 Jump Unconditional II 3.28

Notes 1. 990/10 with mapping only.
2. Does not apply to TMS 9900.

E-l Texas Instruments Incorporated

~ 943441-9701

ALPHABETICAL INSTRUCTION Table (Continued)

Mnemonic Hexadecimal
Operation Operation Name

Code Code

JNC 1700 Jump No Carry

JNE 1600 Jump Not Equal

JNO 1900 Jump No Overflow

JOC 1800 Jump On Carry

JOP lCOO lump Odd Parity

LDCR 3000 Load Communication Register

LDD (Note I) 07CO Long Distance Destination

LDS (Note I) 0780 Long Distance Source

LI 0200 Load Immediate

LIMI 0300 Load Interrupt Mask
Immediate

LMF (Note I) 0320 Load Memory Map File

LREX (Note 2) 03EO Load or Restart Execution

LWPI 02EO Load Workspace Pointer
Immediate

MOV COOO Move Word

MOVB 0000 Move Byte

MPY 3800 Multiply

NEG 0500 Negate

ORI 0260 OR Immediate

RSET (Note 2) 0360 Computer Reset

RTWP 0380 Return From Interrupt
Subroutine

S 6000 Subtract Word

SB 7000 Subtrad Byte

SBO 1000 Set Bit To One

SBZ)EaO Set Bit To Zero

SETO 0700 Set Ones

SLA OAOO Shift Left Arithmetic

SOC EOOO Set Ones Corresponding.
Word

SO(,B FOOO Set Ones Corresponding.
Byte

Notes 1. 990{10 with mapping option only.
2. Does not apply to TMS Q900.

E-2

Format Paragraph

II 3.38

II 3.36

II 3.39

II 3.37

II 3.40

IV 3.57

VI 3.88

VI 3.87

VIII 3.60

VIII 3.61

X 3.63

VII 3.53

VIII 3.62

3.64

3.65

IX 3.15

VI 3.2:!

VIII 3.71

VII 3.49

VII 3.27

3.13

3.14

II 3.54

II 3.55

VI 3.75

V 3.82

I 3.76

3.77

Texas Instruments Incorporated

4P 943441-9701

ALPHABETICAL INSTRUCTION TABLE (Continued)

Mnemonic Hexadecimal
Operation Operation Name Format Paragraph

Code Code

SRA 0800 Shift Right Arithmetic V 3.81

SRC OBOO Shift Right Circular V 3.84

SRL 0900 Shift Right Logical V 3.83

STCR 3400 Store Communication Register IV 3.58

STST 02CO Store Status VIII 3.67

STWP 02AO Store Workspace Pointer VIII 3.68

SWPB 06CO Swap Bytes VI 3.66

SZC 4000 Set Zeros Corresponding, Word 3.78

SZCB 5000 Set Zeros Corresponding, Byte 3.79

TB IFOO Test Bit II 3.56

X 0480 Execute VI 3.41

XOP 2COO Extended Operation IX 3.85

XOR 2800 Exclusive OR III 3.72

E-3/E-4 Texas Instruments Incorporated

~ ____ 9_4_3_44_1_-9_7_0_1 __ ___

APPENDIX F

ASSEMBLER DIRECTIVE TABLE

Texas Instruments Incorporated

~-------~ 943441-9701

APPENDIX F

ASSEMBLER DIRECTIVE TABLE

The assembler directives for the Model 990 Assembly Language are listed in table F-l. All
directives may include a comment field following the operand field. Those directives that do not
require an operand field may have a comment field following the operator field. Those directives
that have optional operand fields (RORG and END) may have comment fields only when they
have operand fields.

The following symbols and conventions are used in defining the syntax of assembler directives:

• Angle brackets t< » enclose items supplied by the user

• Brackets ([]) enclose optional items

• An ellipsis (...) indicates that the preceding item may be repeated

• Braces ({ }) enclose two or more items of which one must be chosen.

The following words are used in defining the items used in assembler directives:

• symbol -

• label - a symbol used in the label field

• string - a character string of a length defined for each directive

• expr - an expression

• wd expr - well-defined expression

• term

• operation - mnemonic operation code, macro name, or previously defined operation or
extended operation

F-1 Texas Instruments Incorporated

4P 943441-9701

Table F-l. Assembler Directives

Force Word
Directive Syntax Boundary Note Applicability

Output Options OPTION <keyword>[,<keyword>] ... NA 5 Cross & SDSMAC

Page Title [<label>] TITL <string> NA All
Program Identifier [<label>] IDT <string> NA All

Copy Source File [<label>] COPY <fIle name> NA SDSMAC

External Definition [<label>] DEF <Symbol>[,<symbol>] ... NA All

External Reference [<label>] REF <symbol> [,<Symbol>] ... NA All
Secondary Reference [<label>] SREF <symbol> [,<Symbol>] ... NA SDSMAC, TXMIRA

Force Load [<label>] LOAD<Symbol>[,<Symbol>] ... NA SDSMAC, TXMIRA

Absolute Origin [<label>] AORG <wd expr> No All
Relocatable Origin [<label>] RORG [<expr>] No 3 All
Dummy Origin [<label>] DORG <expr> No All

Workspace Pointer [<label>] WPNT <lqbel> NA SDSMAC

Block Starting [<label>] BSS <wd expr> No All
with Symbol
Block Ending [<label>] BES <wd expr> No All

with Symbol
Initialize Word [<label>] DATA <expr>[, <expr>] ... Yes All
Initialize Text [<label>] TEXT [-] <string> No 2 All

Define Extended [<label>] DXOP <symbol>, <term> NA All

Operation
Define Operation [<label>] DFOP <Symbol>, <operation> NA SDSMAC

Define Assembly- <label> EQU <expr> NA 3 All
Time Constant
Word Boundary [<label>] EVEN Yes All

No Source List [<label>] UNL NA All

List Source [<label>] LIST NA All

Page Eject [<label>] PAGE NA All

Initialize Byte [<label>] BYTE <wd expr>[,<wd expr>] ... No All

Program End [<label>] END [<symbol>] NA 4 All
Program Segment [<label>] PSEG Yes Cross & SDSMAC,

TXMIRA
Program Segment End [<label>] PEND Yes Cross & SDSMAC,

TXMIRA

Data Segment [<label>] DSEG Yes Cross & SDSMAC,
TXMIRA

Data Segment End [<label>] DEND Yes Cross & SDSMAC,
TXMIRA

Common Segment [<label>] CSEG [<string>] Yes .. Cross & SDSMAC,
TXMIRA

Common Segment [<label>] CEND Yes Cross & SDSMAC,
TXMIRA

END [<label>] END [Symbol] NA 4 All
Assemble if [<label>] ASMIF <expr> NA 3 SDSMAC

Assemble else [<label>] ASMELS NA SDSMAC

Assemble end [<label>] ASMEND NA SDSMAC

Change 1 F-2 Texas Instruments Incorporated

J2n.5\ __ .:....:....:.:.=-=---___ _ "i:Y ~4441-9701

NOTES

1. The expression must be relocatable.

2. The minus sign causes the assembler to negate the rightmost character.

3. Symbols in expressions must have been previously defined.

4. Symbol must have been previously defined.

5. Keywords are XREF, OBJ, SYMT, NOLIST, TUNLST, DUNLST,
BUNLST, and MUNLST.

F-3/F-4 Texas Instruments Incorporated

~ ____ 9_4_34_4_1_-9_7_0_1 __ __

APPENDIX G

MACRO LANGUAGE TABLE

Texas Instruments Incorporated

~~-------------------~ 943441-9701

APPENDIX G

MACRO LANGUAGE TABLE

The syntax of the statements that contain the Macro Language verbs is shown in the following
table.

Statement

Macro

Variable

Assign

Name

Go to

Exit

Call

If

Else

End if

End

Syntax

<macro name>b ... $MACROb ... [<parm>] ... b ... [<comment>]

b ... $VARb ... <var>[,<var>] ... b ... [<comment>]

{<expression> }
b ... $ASGb. . . bTOb <var>b ...

<string>
[<comment>]

<label>b ... $NAMEb ... [<comment>]

b ... $GOTOb ... <label>b ... [<comment>]

b ... $EXITb ... [<comment>]

b ... $CALLb ... <macro name>b ... [<comment> 1
b ... $IFb ... <expression>b ... [<comment>]

b ... $ELSEb ... [<comment>]

b ... $ENDIFb ... [<commen t>]

<label>b ... $ENDb ... <macro name>b ... [<comment>]

MACRO Variable Components

Qualifier

S
A

V
L

Symbol Components

Qualifier

SS
SV
SA
SL
SU
SG

Meaning

The string component of the variable.
The attribute component of the variable.
The value component of the variable.
The length component of the variable.

Meaning

String component of a symbol that is the string component of a variable.
Value component of a symbol that is the string component of a variable.
Attribute component of a symbol that is the string component of a variable.
Length component of a symbol that is the string component of a variable.
User attribute component of symbol that is the string component of a variable.

Segment component of symbol that is the string component of a variable.

G-l/G-2 Texas Instruments Incorporated

~~-------------------~ 943441-9701

APPENDIX H

CRU INTERFACE EXAMPLE

Texas Instruments Incorporated

~~-------------------~ 943441-9701

APPENDIX H

CRU INTERFACE EXAMPLE

H.l GENERAL
This appendix contains an example of programming for a CRU device to aid the user in
programming any CRU device which the executive does not support. A medium-speed line
printer having the characteristics listed in table H-l is used as an example device, although this
device is supported by the executives.

Table H-I. Medium-Speed Line Printer Characteristics

Function

Print line length

Paper width

Character format

Printer speed

Printer input buffer

Buffer data rate

Description

80 characters maximum

Variable, up to 9-1/2 inches, sprocket fed

5x7 dot matrix, 10 characters per inch (horiz)
6 lines per inch (vertical)

60 lines per minute for 80 character lines or
150 lines per minute for 20 character lines

80 characters

75,000 characters per second (8-bit characters
supplied in parallel) maximum

H.2 SOFTWARE INTERFACE REQUIREMENTS
The control characters recognized by the line printer, and the control and response signals for
the printer are listed in table H-2. An arbitrary CRU signal arrangement shown in figure H-I has
been selected for this example.

H.2.1 ASSEMBLY LANGUAGE INSTRUCTIONS
The available assembly language instructions that may be used to cause data transfers between
the CRU and the printer are:

• SBO - Set Bit to Logic One

• SBZ - Set Bit to Logic Zero

• LDCR - Load Communications Register

• TB - Test Bit

The instructions are described and examples of their use are shown in Section III.

H-l Texas Instruments Incorporated

~~-------------------~ 943441-9701

Table H-2. Printer Control and Response Signals

Signal Definition Hexadecimal Value

Control Characters

LF Line Feed OA16

CR Carriage Return OD16

TOF Top of Form OC 16

PS Printer Strobe 11 16

PP Printer Prime FF16

PD Printer De-select 13 16

Discrete Signals

PL Paper Low -+--

PSD Printer Selected -+--

PF Printer Fault -

BSY Printer Busy -

1M Interrupt Mask -

IR Interrupt Reset -

ACK Acknowledge -

* - Signal from printer
- Signal to printer

0.2.2 SOFTWARE ROUTINES REQUIRED
To properly operate the medium-speed line printer, software routines must provide initialization,
character transfer, and end-of-data reporting. The following paragraphs define these operations
and provide specific programming examples.

0.2.2.1 INITIALIZATION. Initialization should occur when power is applied to the system. A
generalized approach to initialization with specific printer initialization follows:

AORG
DATA
DATA

o
PWRONW
PWRONP

0-2

INITIALIZE POWER ON
INTERRUPT VECTOR

OTHER VECTORS

Texas Instruments Incorporated

~nS\ ______ _ ~ 943441-9701

CRU BITS

0 ,
2

3

4

5

6

7

B

9

'0 , ,
12

13

14

15

(A)12B706

RORG
PWRONP EQU

PRBASE EQU
PRIME EQU
STROBE EQU
MASK EQU
INT EQU
BUSY EQU

*

CRU OUTPUTS PRINTER OUTPUTS (CRU INPUTS)

BUSY DATA BIT 0 (LSB)

DATA BIT 1 FAULT

DATA BIT 2 SELECTED

DATA BIT 3 NOT USED

DATA BIT 4 NOT USED

DATA BIT 5 NOT USED

DATA BIT 6 NOT USED

DATA BIT 7 (MSB) NOT USED

STROBE NOT USED

PRIME NOT USED

NOT USED NOT USED

NOT USED NOT USED

NOT USED NOT USED

NOT USED

INTERRUPT MASK

INTERRUPT RESET

NOT USED

NOT USED

ACKNOWLEDGE -

Figure H-I. CRU Bit Assignments

REMAINDER OF PROGRAM RELOCATABLE
$ POWER ON INITIALIZATION

OTHER INITIALIZA TIONS

>120 CONNECTED TO MODULE SELECT 9
9 RESET PRINTER
8 TAKE DATA
14 INTERRUPT MASK
15 INTERRUPT RESET
0 PRINTER BUSY

* PRINTER INITIALIZATION

*
LI 12,PRBASE LOAD CRU BASE ADDRESS
SBZ PRIME SET PRIME TO ZERO
SBZ STROBE SET STROBE TO ZERO
SBZ MASK MASK INTERRUPTS

H.2.2.2 CHARACTER TRANSFER. Character transfer can be accomplished as follows by the
use of a subroutine call. The assumptions for the subroutine are:

Texas Instruments Incorporated

VI 943441-9701 ~
o

--
• Workspace register 8 (WR8) contains the address of the data to be printed.

• Workspace register 9 (WR9) is used for temporary storage.

• Workspace register 10 (WR 10) contains the number of characters to transfer.

• Workspace register 12 (WR12) contains the CRU base address.

The following subroutine is one method of transferring characters to the printer:

PRINTR EQU
*
* SET UP INTERRUPTS
*

*

SBZ
LIMI
SBO

$

INT
15
MASK

PRINT SUBROUTINE

RESET INTERRUPT
ENABLE LEVEL 15
ENABLE INTERRUPTS

* TEST FOR PRINTER BUSY, PRINT IF NOT
* BUSY, WAIT FOR ANY INTERRUPT IF BUSY
* AND RETRY TEST
*
TSTBSY TB BUSY TEST BUSY BIT

JEQ PRINT IF NOT BUSY
IDLE WAIT IF BUSY
JMP TSTBSY RETRY TEST

* CHARACTER PRINT SUBROUTINE
*
PRINT EQU $ START

MOVB *8+,9 WR9 CONTAINS PRINT CHAR
INV 9 INVERT BITS (FALSE DATA)
LDCR 9,8 OUTPUT TO PRINTER
SBO STROBE PULSE STROBE LINE
SBZ STROBE ABOUT 1.5 MICROSECONDS
DEC 10 DECREMENT CHARACTER COUNT
JEQ EXIT EXIT IF COMPLETE
JMP TSTBSY GO FOR NEXT CHARACTER

*
* EXIT CODE
*
EXIT SBZ MASK MASK INTERRUPT

RTWP RETURN TO CALLER

H.2.2.3 END-OF-DATA REPORTING. End-of-data reporting in the example subroutine is the
exit code, which is executed when the character count in WR 10 reaches zero. The code masks
the interrupt and returns control to the calling routine.

H.2.2.4 INTERRUPT ROUTINE. In the character transfer subroutine, the CPU enters an idle
state when the printer is busy. The occurrence of any enabled interrupt signal causes the CPU to
resume processing. The printer is assumed to be connected at interrupt level 15, and all levels are

H-4 Texas Instruments Incorporated

~~---~--------------~ 943441-9701

enabled following execution of the LIMI 15 instruction. The following interrupt routine resets
the printer interrupt and returns control to the instruction following the interrupted instruction,
the JMP TSTBSY instruction, in this case:

PRIWP

PRIPC

AORG
DATA
DATA

RORG
DATA
RORG
EQU
SBZ
RTWP

H.2.3 PROGRAMMING NOTES

>3C
PRIWP
PRIPC

$-24
PRBASE
$+6
$
INT

INTERRUPT LEVEL IS VECTOR
WORKSPACE ADDRESS
PROGRAM ADDRESS

SET WORKSPACE ADDRESS RELATIVE TO
CRU BASE ADDRESS
RESERVE REMAINDER OF WORKSPACE
INTERRUPT ROUTINE
RESET INTERRUPT

A specific device to be programmed might require more sophisticated routines. These are
intended to show possible ways of programming input and output for a CRU device. Error tests
may be included to transfer control to error recovery routines when errors are detected. Error
recovery routines may simply indicate the occurrence of an error or may correct or overcome
the error.

H-S/H-6 Texas Instruments Incorporated

~~-------------------~ 943441-9701

APPENDIX I

TILINE INTERFACE EXAMPLE

Texas Instruments Incorporated

~~-------------------~ 943441-9701

APPENDIX I

TILINE INTERFACE EXAMPLE

1.1 INTRODUCTION
This appendix contains an example of programming for a TILINE device to aid the user in
programming any TILINE device which the executive does not support. Figure I-I shows a
typical TILINE device, a disc controller, which is used for this example. Actual input/output for
the disc is provided by the executive. This example is only intended to illustrate the principles
involved in TILINE input/output programming.

AU

r------
I

INTERRUPT
SIGNAL

---,
I

DISC I
CONTROLLER

I
I ___ .J

I

I UNIT
o

UNIT UNIT
1 2

UNIT
3

,. ______________ --JA~ ________________ ~
I

o

1
'\

CONTROL REGISTERS

7 8

DISC STATUS

COMMAND FORMAT

SECTOR SURFACE

CYLINDER ADDRESS

WORD COUNT

MEMORY ADDRESS

EXT. MA SELECTION

CONTROLLER STATUS

BUSY jACTIVATE

TYPICAL CORRESPONDING ADDRESS
15 TILINE ADDRESS USED BY PROGRAM

FFCOO

FFCOl

FFC02

FFC03

FFC04

FFC05

FFC06

FFC07

F800

F802

F804

F806

F808

F80A

F80C

F80E

Figure 1-1. TILINE Device Controller Example

1-1 Texas Instruments Incorporated

Jd75\ ______ _ ~ 943441-9701

1.2 PERIPHERAL CONTROLLER APPLICATION
Controllers for peripheral devices connected to the TILINE have a master interface for
transferring data to and from memory. They also have a slave interface for receiving command
information from the AU and for sending status information to the AU. A simplified block
diagram for a disc controller is shown in figure 1-1. Typical use of control registers accessed by
the slave interface is also shown in figure I-I. It is assumed that address F800 16 is assigned to
the controller. This corresponds to TILINE address FFC0016 • A program would operate the disc
controller by moving the appropriate parameters into the control registers and setting the activate
bit as follows:

PARAMS DATA >Ol7F COMMAND,FORMAT
DATA >0000 SECTOR, SURFACE
DATA 0 CYLINDER ADDRESS
DATA >1000 WORD COUNT
DATA BUFF MEMORY ADDRESS
DATA >0201 EXT. MA, SELECTION

*
* TEST FOR DISC CONTROLLER BUSY
*

LI 7,>7FFF WR 7 = BUSY TEST MASK
COC @>F80E,7 TEST FOR BUSY
JNE BUSY IF NOT

*
* TRANSFER DISC PARAMETER LIST FROM MEMORY TO
* DISC CONTROLLER
*

FILL

LI
LI
MOV
CI
JNE
INV
SOC

8,PARAMS
9,>F802
*8+,*9+
9,>F80E
FILL
7
7,*9

WR8 = PARAMETER LIST ADDRESS
WR9 = DISC CONTROLLER ADDRESS
MOVE LIST WORD TO CONTROLLER
STOP WHEN WR9 = CONT. STATUS ADDR.

WR7 = >8000
SET ACTIVATE BIT

The disc controller performs the action requested in the command register. During the time the
controller is active, the busy flag is on. When the operation is complete the busy flag is turned
off and an interrupt signal is generated. The interrupt can be connected to an external interrupt
input line, as determined by the system designer.

1-2 Texas Instruments Incorporated

fl~ _________________ __ ~ 943441-9701

APPENDIX J

EXAMPLE PROGRAM

Texas Instruments Incorporated

~~-------------------~ 943441-9701

APPENDIX J

EXAMPLE PROGRAM

J.l CREATING A SOURCE PROGRAM
Once the source statements have been written, they must be prepared for input to the assembler
using a medium that the computer is able to read. The' statements may be keypunched on
punched cards or written on a cassette using the 733 ASR Data Terminal in the off-line mode.
The 733 ASR Data Terminal may also be used with the Terminal Source Editor (PX9EDT) to
write source statements on a cassette.

The Terminal Source Editor executes under the Prototyping System Executive, PX990. Refer to
the Prototyping System Operation Guide for information on loading and executing PX990,
and on activating PX9EDT. When PX9EDT is ready to receive commands, perform the following
steps:

l. Enter the following command:

I 0

The Terminal should perform a line feed and carriage return to all entry of source
statements.

2. Enter each source statement, terminating the statement with a carriage return. Entering
a tab character (CTRL I) following each field of the statement aligns the fields of the
statements for better readability.

3. When the source program is long enough to fill the buffer of PX9EDT, enter a Keep
command to write some or all of the statements onto the cassette, leaving room in the
buffer for more statements. A Keep command to write the first 50 statements in the
buffer is entered as follows:

K 50

4. When the entire source program has been entered, enter the following command to
write the buffer contents on the cassette and terminate PX9EDT:

QO

J.2 ASSEMBLING A SOURCE PROGRAM
Once the source program is in machine-readable form, assembly of the code is the next step. The
procedure for assembling a program depends upon the assembler to be used and on the operating
system under which the assembler executes. The generalized procedure is as follows:

1. When the operating system is not in execution, load, initialize, and start execution
of the operating system.

2. Place the source program in the appropriate device and place the device in ready.
Assign the devices and files required using Job Control Language statements or
Operator Communication statements or commands.

J-l Texas Instruments Incorporated

3. Place the device on which the listing is to be printed in ready.

4. Execute the assembler. The assembler should read the source program, print the listing,
and write the object code on the output medium.

The one-pass assembler (PX9ASM) executes under PX990. It requires a source input device, an
object output device, and a printing device. Refer to the Prototyping System Operation Guide
for information about loading the executive, assigning the devices, and loading and executing
PX9ASM.

The multi-pass assembler (SDSMAC) executes under DXIO. It requires a source input device, a
printing device, a scratch file on disc, and an object file on disc. Refer to the DX 10 Operating
System Programmer's Guide for information about loading and executing DX 10, assigning the
devices, and loading and executing SDSMAC.

The Cross Assembler executes on the user's computer, a System/370 for example. The assembler
requires a device or data set for intermediate storage, a device or data set for source input, a
device or data set for object output, and a device or data set for listings. Refer to the
documentation of the system on which the cross assembler executes for information about
assigning data sets or devices and executing the cross assembler.

J.3 EXAMPLE PROGRAM
The source program shown in figure J-l is an example of a source program written on coding
forms from which the source programs are prepared. Figure J-2 shows the listing produced by
the one-pass assembler. The message printed as the program is executed is shown in figure J-3.
The program executes on a 990 with a 733 ASR and it assumes that the CRU base address for
the 733 ASR is 000 16 ,

J-2 Texas Instruments Incorporated

....
I

W

~
loc

~
~
<II
~
§
~
Cit
~
~
~
~
~
Cl.

LABEL OPER

I 6 B II

T I T L

* T H I S P R o G

D T R E Q U

W R Q E Q U

R T S E Q U

A S RID E Q U
D S R E Q U

*

H E L L 0

L W P I

L I M I

L I

L I
S B 0

L 0 o P S B 0

PROGRAM

(A)128625 (1/4)

TEXAS INSTRUMENTS
INCORPORATED

MODEL 990/TMS 9900 ASSEMBLY LANGUAGE CODING FORM

OPERAND COMMENTS

13 20 25 31 35 40 45

I H E L L 0 P R o G R A M I

RAM P R I N T S I H E L L 0 I I o N THE T E L E P R I N T E

9 D A T A T E R M I N A L R E A D Y .

11 W R I T E R E Q U E S T .

1 0 R E Q U EST T 0 S E N D .

1 0 A S R 7 3 3 /33 I D .
1 4 D A T A SET R E A D Y

R E G S I N I T I A L I Z E W 0 R K S P ACE P 0

0 D I S A B L E I N T E R R U P T S

1 2 , 0 I N I T I A L I Z E C R U B A S E .

2 , T A B L E L 0 A D T A B L E A D D R E S S .
D T R
R T S

PROGRAMMED BY CHARGE

Figure J-1. Example Program (Sheet 1 of 4)

50

R .

I N T E R .

PAGE

55 60

OF

~
\0
~
w
~
~ -I \0
-....I
o -

.....

.1:..

~
)c

~
~
CI)

~
§
~
Cit
~ a
~
~
~

LABEL OPER

1 6 8 II

M f/J V B

J L T

B L

J M P

L A S T

B L

I 0 L E

*

* o U T P U T R £l

P U T C

T B

J E Q

PROGRAM

(A)128625 (2/4)

TEXAS INSTRUMENTS
I NCOR POR A"t E D

MODEL 990/TMS 9900 ASSEMBLY LANGUAGE CODING FORM

OPERAND COMMENTS

13 20 25 31 35 40 45

* 2 + , 8 GET A C H A R A C T E R .

L A S T L A S T C H A R A C T E R ?

@ P UTe NO, PUT I T o U T

L 0 o P

@ P UTe PUT I T o U T .
S T o P .

U T I N E .
~ ~ . ~c--

~ ~ _. -

A S RID C H E C K A S R I 0 .

o U T G 0 F 0 R T T y •

PROGRAMMED BY CHARGE

Figure J-l. Example Program (Sheet 2 of 4)

50 55

PAGE OF

60

~
~
w
~
~
I

'" -....)
o

....
I

Ul

~
)c

~
S-
CI)

~
§
~
Cit
S­
~
~
~
~
~

LABEL OPER

1 6 8 " 13

M 0 V

B L

S B Z

B L

B L

B L

S B ~

B

*

~ U T

~ N L I N E ~ B

P N E

D C R

PROGRAM

(A)128625 (3/4)

TEXAS INSTRUMENTS
INCORPORATED

MODEL 990/TMS 9900 ASSEMBLY LANGUAGE CODING FORM

OPERAND COMMENTS

20 25 31 35 40 45

1 1 , 5 S A V E R E T U!R N .

@ ~ U T S E N D C H A R A C T E R .

R T S T I M I N G F ~ R A S R 7 33.

@ ~ U T

@ ~ U T

@ ~ U T

R T S

* 5 R E T U R N T ~ C A L L E R •

D S R A S R 10 N L I N E ?

~ N L I N E W A I T U N TIL I T IS.

8, , 8 ~ U T P U T C H A R A C T E R .

PROGRAMMED BY CHARGE

Figure J-1. Example Program (Sheet 3 of 4)

50 55 60

PAGE OF

:

•

I

!

I

I

~
\()

""" w
""" """ -I \()
-..]
o -

.....
b-

~
)c

~
~
CI)

~
§
~
Cit
~ a
~

i

LABEL OPER

I 6 8 II

W A I T T B

J N E

S B fJ

B

*

* M E S S AGE T A

T A B L E

T E X T

B Y T E

E V E N

R E G S B S S

END

PROGRAM

(A)128625 (4/4)

TEXAS INSTRUMENTS
INCORPORATED

MODEL 990/TMS 9900 ASSEMBLY LANGUAGE CODING FORM

OPERAND COMMENTS

13 20 25 31 35 40 45

W R Q W A I T fJ N IT.

W A I T

W R Q

* 1 1 R E T U R N T fJ C A L L E R .

B L E .

I H E L L fJ I

I ! I + > 8 0 SET P A R I T Y B I T .

3 2 W fJ R K S P ACE A R EA.

H E L L fJ

PROGRAMMED BY CHARGE

Figure J-1. Example Program (Sheet 4 of 4)

50 55

PAGE OF

60

~
~
w
~
~ -I \0
-...l o -

J2r1s\ ______ _ ~ 943441-9701

0001
0002
000:3
0004
0005
OOOE.
0007
000::::
0009

0010

0011

001;::'

001:3
0014
OOt!:.
001E.
0017

001::::
0019

0000
000;::'
0004
0006
000::::
OOOA
oooe
OOOE
0010
001;::'
0014
0016
ClOl:=:
Cl01A
001C:

0009
OOOB
OOOA
OOOA
OOOE

02EO

0::;::00
0000
020C
0000
0;::'02

lD09
lDOA
D;::':3i::'
11--
Clt.,A 0

10FA

0016++110:3
0020 001E 06AO

0020
0021 OO;::'E' 0340
00;::';::'
002:3
00;::'4
00;::'5

001A++00;::'4'"
00;::' 0++ n 0;::'4 .. '

00E'6 0024 lFOA
0027 00E'6 13--
002:=: OOE':=: C14B
00;::'9

00::':0
00:31

0032

00:3::::

00:34
00:35
00:36
00:37

002A 06AO
002C
OO;::'E lEOA
0030 06AO
0032
00::::4 06AO
00:36
00:3:::: 06AO
003A
00:3C lDOA
003E 0455

00;::'6++ 13 OC
002C++0 040 .. '
0032++ 0 04 0 .. '
00::':6++ I) 040 "
(I 0:3A++ 0 04 0 "

+THIS
DTF.:
h.IPO
F<:TS
A:SPID
DSP
+
HELLO

LOOP

+

PPOGPAt'1 PPINTS "'HELLO!" ON THE TELEPPItHER.
EOU 9 DATA TEPt'lINAL PEADY.
EOU 11 WPITE PEQUEST.
EQU 10 PEOUEST TO SEND.
EQU 10 ASP73:3,':33 ID.
EQU 14 DATA SET PEAD','.

LI.,.IPI PEGS INITIALIZE WOPKSPACE POINTEP.

L HII 0 DISABLE INTEPRUPTS.

12 ~ 0 INITIALIZE CPU BASE. LI

LI 2~TABLE LOAD TABLE ADDPESS.

:~:BO DTP
SBO f:;'T:S
t'IO',lB +2+ ~ ::::
JL T LAS:T
BL ;i1PUTC

.Jt'IP LOOP

BL ;j)FUTC

IIILE

GET A CHAPACTEP.
LAST CHARACTER'!"
t'm~ PUT IT OUT.

PUT IT OUT.

STOP.

+OUTPUT POUTINE.
+
PUTC

+
OUT

TB
JEQ
t'lOV
BL

SBZ
BL

BL.

F:L

:~:BO

B

A:~RID
OUT
11,5
;i10UT

f:;'TS
;j)OUT

;j)OUT

;j)OUT

PTS
+5

C:HEC~ .. A:SP ID.
GO FOR T1')'.
SA'",tE. PETUPt·i.
SE~m CHARACTER.

T I t'l I t'H3 FOR ASR7::':::::.

PETUPN TO CALLER.

Figure J-2. Assembly Listing of Example Program (Sheet 1 of 2)

J-7 Texas Instruments Incorporated

~~-------------------~ 943441-9701

o O:~:::::
0039
on40
0041
004;::'
0043
0044
004'5
0046
0047

004::::
0049
o Or:; (I

00'51

(lO'5c'

0040
0042
0044
0046
004::::
004A
004C

1 FOE
1 t.FE
3i=:0:::::
lFOB
lE.FE
1 DOB
04'5B

000E++(l04E'"
004E 4:=:
005::=: Ai

00'54
0002++ 0 054 ,,'

(1000 EPF'OF':';:

A:~:t·I.,"TEPt·,.7' T

(.1\) 132259

+

TB
Jt'iE
LDCF.·
TB
.jt'iE
:~:BO

B

D:';:P
:t:-;::'

IIJF.'O
:f:-2
II.lF·O
+ 11

+t'IE:~::=;:At';E TABLE.
TABLE

TE;:',:T ,,' HELLO ",

A:';:F' miL I t'iE'7'
i,d A ITT ILL I T I:=;: •
OUTPUT CHAF'ACTEF'.
IdAIT mi IT.

RETURN TO CALLER.

BYTE "'! ,"+>:::::0 :';:ET PAF'ITY BIT.
El·/Hi

F'Eb:::': B:';::';: 32 WOF'kSPACE AF'EA.

Hm HELLO

Figure J-2. Assembly Listing of Example Program (Sheet 2 of 2)

HELLO!

Figure J-3. Example Program Message

J-8 Texas Instruments Incorporated

~~-------------------~ 943441-9701

APPENDIX K

NUMERICAL TABLES

Texas Instruments Incorporated

)217.5\ ______ _ ~ 943441-9701

o

1

2

3

4

5

6

7

8

9

A

B

e

D

E

F

1

2

3

4

5

6

7

8

9

A

B

e

D

E

F

123

02 03 04

03 04 05

04 05 06

05 06 07

06 07 08

07 08 09

08 09 OA

09 OA OB

OA OB oe

OB DC OD

oe OD OE

OD OE OF

OE OF 10

OF 10 11

10 11 12

2 3

04 06

06 09

08 DC

OA OF

DC 12

OE 15

10 18

12 IB

14 IE

16 21

18 24

lA 27

Ie 2A

IE 2D

Table K-l. Hexadecimal Arithmetic

4 5 6

05 06 07

06 07 08

07 08 09

08 09 OA

09 OA OB

OA OB oe

OB oe OD

oe OD OE

OD OE OF

OE OF 10

OF 10 11

10 11 12

11 12 13

12 13 14

13 14 15

ADDITION TABLE

7 8 9

08 09 OA

09 OA OB

OA OB oe

OB oe OD

oe OD OE

OD OE OF

OE OF 10

OF 10 11

10 11 12

11 12 13

12 13 14

13 14 15

14 15 16

15 16 17

16 17 18

MULTIPLICATION TABLE

4 5 6

08 OA OC

OC OF 12

10 14 18

14 19 IE

18 IE 24

Ie 23 2A

20 28 30

24 2D 36

28 32 3C

2C 37 42

30 3C 48

34 41 4E

38 46 54

3C 4B SA

7 8 9

OE 10 12

15 18 IB

1C 20 24

23 28 2D

2A 30 36

31 38 3F

38 40 48

3F 48 51

46 50 SA

4D 58 63

54 60 6C

5B 68 75

62 70 7E

69 78 87

K-l

ABC

OB oe OD

OC OD OE

OD OE OF

OE OF 10

OF 10 11

10 11 12

11 12 13

12 13 14

13 14 15

14 15 16

15 16 17

16 17 18

17 18 19

18 19 lA

19 lA 1B

ABC

14 16 18

IE 21 24

28 2C 30

32 37 3C

3C 42 48

46 4D 54

50 58 60

SA 63 6C

64 6E 78

6E 79 84

78 84 90

82 8F 9C

8C 9A A8

96 AS B4

D E F

OE OF 10

OF 10 11

10 11 12

11 12 13

12 13 14

13 14 15

14 15 16

15 16 17

16 17 18

17 18 19

18 19 lA

19 lA 1B

lA IB lC

IB lC 1D

Ie 1D IE

D E F

lA lC IE

27 2A 2D

34 38 3C

41 46 4B

4E 54 SA

5B 62 69

68 70 78

75 7E 87

82 8C 96

8F 9A A5

9C A8 B4

A9 B6 C3

B6 C4 D2

C3 D2 El

Texas Instruments Incorporated

~~-------------------~ 943441-9701

3

23

163

DEO

8AC7

Table K-2. Table of Powers of 1610

16n

1

16

256

4 096

65 536

1 048 576

16 777 216

268 435 456

4 294 967 296

68 719 476 736

1 099 511 627 776

17 592 186 044 416

281 474 976 710 656

4 503 599 627 370 496

72 057 594 037 927 936

1 152 921 504 606 846 976

n

o
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0.10000 00000 00000 ·00000 x 10

0.62500 00000 00000 00000 x 10- 1

0.39062 50000 00000 00000 x 10- 2

0.24414 06250 00000 00000 x 10- 3

0.15258 78906 25000 00000 x 10-4

0.95367 43164 06250 00000 x 10-6

0.59604 64477 53906 25000 x 10-7

0.37252 90298 46191 40625 x 10-8

0.23283 06436 53869 62891 x 10--9

0.14551 91522 83668 51807 x 10-10

0.90949 47017 72928 23792 x 10- 12

0.56843 41886 08080 14870 x 10-13

0.35527 13678 80050 09294 x 10-14

0.22204 46049 25031 30808 x 10-15

0.13877 78780 78144 56755 x 10-16

0.86736 17379 88403 54721 x 10-18

Table K-3. Table of Powers ofl016

2

17
E8

918

5AF3

8D7E

86F2

4578

B6B3

2304

1

F

98

5F5
3B9A

540B

4876
D4A5

4E72

107A

A4C6

6FC1

5D8A

A764

89E8

IOn

1

A

64

3E8

2710

86AO

4240

9680

Eloo
CAOO

E400

E800

1000

AOOO

4000

8000

0000

0000

0000

0000

n

o
1

2

3

4

5

6

7

8

9

10

11
H1

13

14

15

16

17

18

19

K-2

1.0000

0.1999

0.28F5

0.4189

0.68DB

0.A7C5

0.10C6

0.lAD7

0.2AF3

0.44B8

0.6DF3

O.AFEB

0.1197

0.IC25

0.2D09

0.480E

0.734A

0.B877

0.1272

0.lD83

0000

9999

C28F

374B

8BAC

AC47

F7AO

F29A

lDC4
2FAO

7F67

FFOB
9981

C268

370D

BE7B

CA5F

AA32

5DDl

C94F

0000 0000

9999 999A

5C28 F5C3 x 16-1

C6A7 EF9E x 16-2

710C B296 x 16-3

IB47 8423 x 16-4

B5ED 8D37 x 16-4

BCAF 4858 x 16-5

6118 73BF x 16-6

9B5A 52CC x 16-7

5EF6 EADF x 16-8

CB24 AAFF x 16-9

2DEA 1119 x 16-9

4976 81C2 x 16-10

4257 3604 x 16-11

9D58 566D x 16-12

6226 FOAE x 16-13

36A4 B449 x 16-14

D243 ABA1 x 16-14

B6D2 AC35 x 16-15

Texas Instruments Incorporated

~ 943441-9701

Table K-4. Table of Powers of Two

2n n 2-n

1 0 1.0
2 1 0.5
4 2 0.25
8 3 0.125

16 4 0.062 5
32 5 0.031 25
64 6 0.015 625

128 7 0.007 812 5

256 8 0.003 906 25
512 9 0.001 953 125

1 024 10 0.000 976 562 5
2 048 11 0.000 488 281 25

4 096 12 0.000 244 140 625
8 192 13 0.000 122 070 312 5

16 384 14 0.000 061 035 156 25
32 768 15 0.000 030 517 578 125

65 536 16 0.000 015 258 789 062 5
131 072 17 0.000 007 629 394 531 25
262 144 18 0.000 003 814 697 265 625
524 288 19 0.000 001 907 348 632 812 5

1 048 576 20 0.000 000 953 674 316 406 25
2 097 152 21 0.000 000 476 837 158 203 125
4 194 304 22 0.000 000 238 418 579 101 562 5
8 388 608 23 0.000 000 119 209 289 550 781 25

16 777 216 24 0.000 000 059 604 644 775 390 625
33 554 432 25 0.000 000 029 802 322 387 695 312 5
67 108 864 26 0.000 000 014 901 161 193 847 656 25

134 217 728 27 0.000 000 007 450 580 596 923 828 125

268 435 456 28 0.000 000 003 725 290 298 461 914 062 5
536 870 912 29 0.000 000 001 862 645 149 230 957 031 25

1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625
2 147 483 648 31 0.000 000 000 465 661 287 307 _ 739 257 812 5

K-3 Texas Instruments Incorporated

~~---~--------------~ 943441-9701

Table K-S. Hexadecimal-Decimal Integer
Conversion Table

The table appearing on the following pages provides a means for direct conversion of decimal integers in the
range of 0 to 4095 and for hexadecimal integers in the range of 0 to FFF. .

To convert numbers above those ranges, add table values to the fIgures below:

Hexadecimal Decimal Hexadecimal Decimal

01000 4096 20000 131072
02000 8192 30000 196608
03000 12288 40000 262144
04000 16384 50000 327680
05000 20480 60000 393216
06000 24576 70000 458752
07000 28672 80000 524288
08000 32768 90000 589824
09000 36864 AOOOO 655360
OAOOO 40960 BOOOO 720896
OB 000 45056 CO 000 786432
OCOOO 49152 DO 000 851968
ODOOO 53248 EO 000 917504
OE 000 57344 FOOOO 983040
OF 000 61440 100000 1048576
10000 65536 200000 2097152
11 000 69632 300000 3145728
12000 73728 400000 4194304
13000 77 824 500000 5242880
14000 81920 600000 6291456
15000 86016 700000 7340032
16000 90112 800000 8388608
17000 94208 900000 9437184
18000 98304 AOOOOO 10485760
19000 102400 BOO 000 11 534336
lAOOO 106496 COO 000 12582912
1B 000 110592 DOO 000 13 631488
1C 000 114688 EOO 000 14680064
10000 118784 FOO 000 15728640
1E 000 122880 1000000 16777 216
1FOOO 126976 2000000 33554432

K-4 Texas Instruments Incorporated

~-------~ 943441-9701

000
010
020
030

040
050
060
070

080
090
OAO
OBO

oeo
ODO
OEO
OFO.

100
110
120
130

140
150
160
170

180
190
lAO
1BO

leo
1DO
lEO
1FO

200
210
220
230

240
250
260
270

280
290
2AO
2BO

2eo
2DO
2EO
2FO

Table K-S. Hexadecimal-Decimal Integer Conversion Table (Cont.)

o 1 2 3

0000 0001 0002 0003
0016 0017 0018 0019
0032 0033 0034 0035
0048 0049 0050 0051

0064 0065 0066 0067
0080 0081 0082 0083
0096 0097 0098 0099
0112 0113 0114 0115

0128 0129 0130 0131
0144 0145 0146 0147
0160 0161 0162 0163
0176 0177 0178 0179

0192 0193 0194 0195
0208 0209 0210 0211
0224 0225 0226 0227
0240 0241 0242 0243

0256 0257 0258 0259
0272 0273 0274 0275
0288 0289 0290 0291
0304 0305 0306 0307

0320 0321 0322 0323
0336 0337 0338 0339
0352 0353 0354 0355
0368 0369 0370 0371

0384 0385 0386 0387
0400 0401 0402 0403
0416 0417 0418 0419
0432 0433 0434· 0435

0448 0449 0450 0451
0464 0465 0466 0467
0480 0481 0482 0483
0496 0497 0498 0499

0512 0513 0514 0515
0528 0529 0530 0531
0544 0545 0546 0547
0560 0561 0562 0563

0576 0577 0578 0579
0592 0593 0594 0595
0608 0609 0610 0611
0624 0625 0626 0627

0640 0641 0642 0643
0656 0657 0658 0659
0672 0673 0674 0675
0688 0689 0690 0691

0704 0705 0706 0707
0720 0721 0722 0723
0736 0737 0738 0739
0752 0753 0754 0755

4 5 6 7

0004 0005 0006 0007
0020 0021 0022 0023
0036 0037 0038 0039
0052 0053 0054 0055

0068 0069 0070 0071
0084 0085 0086 0087
0100 0101 0102 0103
0116 0117 0118 0119

0132 0133 0134 0135
0148 0149 0150 0151
0164 0165 0166 0167
0180 0181 0182 0183

0196 0197 0198 0199
0212 0213 0214 0215
0228 0229 0230 0231
0244 0245 0246 0247

0260 0261 0262 0263
0276 0277 0278 0279
0292 0293 0294 0295
0308 0309 0310 0311

0324 0325 0326 0327
0340 0341 0342 0343
0356 0357 0358 0359
0372 0373 0374 0375

0388 0389 0390 0391
0404 0405 0406 0407
0420 0421 042,2 0423
0436 0437 0438 0439

0452 0453 0454 0455
0468 0469 0470 0471
0484 0485 0486 0487
0500 0501 0502 0503

0516 0517 0518 0519
0532 0533 0534 0535
0548 0549 0550 0551
0564 0565 0566 0567

0580 0581 0582 0583
0596 0597 0598 0599
0612 0613 0614 0615
0628 0629 0630 0631

0644 0645 0646 0647
0660 0661 0662 0663
0676 0677 0678 0679
0692 0693 0694 0695

0708 0709 0710 0711
0724 0725 0726 0727
0740 0741 0742 0743
0756 0757 0758 0759

K-S

8 9 A B

0008 0009 0010 0011
0024 0025 0026 0027
0040 0041 0042 0043
0056 0057 0058 0059

0072 0073 0074 0075
0088 0089 0090 0091
0104 0105 0106 0107
0120 0121 0122 0123

0136 0137 0138 0139
0152 0153 0154 0155
0168 0169 0170 0171
0184 0185 0186 0187

0200 0201 0202 0203
0216 0217 0218 0219
0232 0233 0234 0235
0248 0249 0250 0251

0264 0265 0266 0267
0280 0281 0282 0283
0296 0297 0298 0299
0312 0313 0314 0315

0328 0329 0330 0331
0344 0345 0346 0347
0360 0361 0362 0363
0376 0377 0378 0379

0392 0393 0394 0395
0408 0409 0410 0411
0424 0425 0426 0427
0440 0441 0442 0443

0456 0457 0458 0459
0472 0473 0474 0475
0488 0489 0490 0491
0504 0505 0506 0507

0529 0521 0522 0523
0536 0537 0538 0539
0552 0553 0554 0555
0568 0569 0570 0571

0584 0585 0586 0587
0600 0601 0602 0603
0616 0617 0618 0619
0632 0633 0634 0635

0648 0649 0650 0651
0664 0665 0666 0667
0680 0681 0682 0683
0696 0697 0698 0699

0712 0713 0714 0715
0728 0729 0730 0731
0744 0745 0746 0747
0760 0761 0762 0763

c D E F

0012 0013 0014 0015
0028 0029 0030 0031
0044 0045 0046 0047
0060 0061 0062 0063

00760077 0078 0079
0092 0093 0094 0095
0108 0109 0110 0111
0124 0125 0126 0127

0140 0141 0142 0143
0156 0157 0158 0159
0172 0173 0174 0175
0188 0189 0190 0191

0204 0205 0206 0207
0220 0221 0222 0223
0236 0237 0238 0239
0252 0253 0254 0255

0268 0269 0270 0271
0284 0285 0286 0287
0300 0301 0302 0303
0316 0317 0318 0319

0332 0333 0334 0335
0348 0349 0350 0351
0364 0365 0366 0367
0380 0381 0382 0383

0396 0397 0398 0399
0412 0413 0414 0415
0428 0429 0430 0431
0444 0445 0446 0447

0460 0461 0462 0463
0476 0477 0478 0479
0492 0493 0494 0495
0508 0509 0510 0511

0524 0525 0526 0527
0540 0541 0542 0543
0556 0557 0558 0559
0572 0573 0574 0575

0588 0589 0590 0591
0604 0605 0606 0607
0620 0621 0622 0623
0636 0637 0638 0639

0652 0653 0654 0655
0668 0669 0670 0671
0684 0685 0686 0687
0700 0701 0702 0703

0716 0717 0718 0719
0732 0733 0734 0735
0748 0749 0750 0751
0764 0765 0766 0767

Texas Instruments Incorporated

)175\ ______ _ ~ 943441-970'

300
310
320
330

340
350
360
370

380
390
3AO
3BO

3CO
3DO
3EO
3FO

400
410
420
430

440
450
460
470

480
490
4AO
4BO

4CO
4DO
4EO
4FO

500
510
520
530

540
550
560
570

580
590
5AO
3BO

5CO
5DO
5EO
5FO

Table K-S. Hexadecimal-Decimal Integer Conversion Table (Cont.)

o 1 2 3

0768 0769 0770 0771
0784 0785 0786 0787
0800 0801 0802 0803
0816 0817 0818 0819

0832 0833 0834 0835
0848 0849 0850 0851
0864 0865 0866 0867
0880 0881 0882 0883

0896 0897 0898 0899
0912 0913 0914 0915
0928 0929 0930 0931
0944 0945 0946 0947

0960 0961 0962 0963
0976 0977 0978 0979
0992 0993 0994 0995
1008 1009 1010 1011

1024 1025 0126 0127
1040 1041 1042 1043
1056 1057 1058 1059
1072 1073 1074 1075

1088 1089 1090 1091
1104 1105 1109 1107
1120 1121 1122 1123
1136 1137 1138 1139

1152 1153 1154 1155
1168 1169 1170 1171
1184 1185 1186 1187
1200 1201 1202 1203

1216 1217 1218 1219
1232 1233 1234 1235
1248 1249 1250 1251
1264 1265 1266 1267

1280 1281 1282 1283
1296 1297 1298 1299
1312 1313 1314 1315
1328 1329 1330 1331

1344 1345 1346 1347
1360 1361 1362 1363
1376 1377 1378 1379
1392 1393 1394 1395

1408 1409 1410 1411
1324 1425 1426 1427
1440 1441 1442 1443
1456 1457 1458 1459

1472 1473 1474 1475
1488 1489 1490 1491
1504 1505 1506 1507
1520 1521 1522 1523

4 5 6 7

0772 0773 0774 0775
0788 0789 0790 0791
0804 0805 0806 0807
0820 0821 0822 0823

0836 0837 0838 0839
0852 0853 0854 0855
0868 0869 0870 0871
0884 0885 0886 0887

0900 0901 0902 0903
0916 0917 0918 0919
0932 0933 0934 0935
0948 0949 0950 0951

0964 0965 0966 0967
0980 0981 0982 0983
0996 0997 0998 0999
1012 1013 1014 1015

1028 1029 1030 1031
1044 1045 1046 1047
1060 1061 1062 1063
1076 1077 1078 1079

1092 1093 1094 1095
1108 1109 1110 1111
1124 1125 1126 1127
1140 1141 1142 1r43

1156 1157 1158 1159
1172 1173 1174 1175
1188 .1189 1190 1191
1204 1205 1206 1207

1220 1221 1222 1223
1236 1237 1238 1239
1252 1253 1254 1255
1268 1269 1270 1271

1284 1285 1286 1287
1399 1301 1302 1303
1316 1317 1318 1319
1332 1333 1334 1335

1348 1349 1350 1351
1364 1365 1366 1367
1380 1381 1382 1383
1396 1397 1398 1399

1412 1413 1414 1415
1428 1429 1430 1431
1444 1445 1446 1447
1460 1461 1462 1463

1476 1477 1478 1479
1492 1493 1494 1495
1508 1509 1510 1511
1524 1515 1526 1527

K-6

8 9 A B

0776 0777 0778 0779
0792 0793 0794 0795
0808 0809 0810 0811
0824 0825 0826 0827

0840 0841 0842 0843
0856 0857 0858 0859
0872 0873 0874 0875
0888 0889 0890 0891

0904 0905 0906 0907
0920 0921 0922 0923
0936 0937 0938 0939
0952 0953 0954 0955

0968 0969 0970 0971
0984 0985 0986 0987
1000 1001 1002 1003
1016 1017 1018 1019

1032 1033 1034 1035
1048 1049 1050 1051
1064 1065 1066 1067
1080 1081 1082 1083

1096 1097 1098 1099
1112 1113 1114 1115
1128 1129 1130 1131
1144 1145 1146 1147

1160 1161 1162 1163
1176 1177 1178 1179
1192 1193 1194 1195
1208 1209 1210 1211

1224 1225 1226 1227
1240 1241 1242 1243
1256 1257 1258 1259
1272 1273 1274 1275

1288 1289 1290 1291
1304 1305 1306 1307
1329 1321 1322 1323
1336 1337 1338 1339

1352 1353 1354 1355
1368 1369 1370 1371
1384 1385 1386 1387
1400 1401 1402 1403

1416 1417 1418 1419
1432 1433 1434 1435
1448 1449 1450 1451
1464 1465 1466 1467

1480 1481 1482 1483
1496 1497 1498 1499
1512 1513 1514 1515
1528 1529 1530 1531

C D E F

0780 0781 0782 0783
0796 0797 0798 0799
0812 0813 0814 0815
0828 0829 0830 0831

0844 0845 0846 0847
0860 0861 0862 0863
0876 0877 0878 0879
0892 0893 0894 0895

0908 0909 0910 0911
0924 0925 0926 0927
0940 0941 0942 0943
0956 0957 0958 0959

0972 0973 0974 0975
0988 0989 0990 0991
1004 1005 1006 1007
1020 1021 1022 1023

1036 1037 1038 1039
1052 1053 1054 1055
1068 1069 1070 1071
1084 1085 1086 1087

1100 1101 1102 1103
1116 1117 1118 1119
1132 1133 1134 1135
1148 1149 1150 1151

1164 1165 1166 1167
1180 1181 1182 1183
1196 1197 1198 1199
1212 1213 1214 1215

1228 1229 1230 1231
1244 1245 1246 1247
1260 1261 1262 1263
1276 1277 1278 1279

1291 1293 1294 1295
1308 1309 1310 1311
1324 1325 1326 1327
1340 1341 1342 1343

1356 1367 1358 1359
1372 1373 1374 1375
1388 1389 1390 1391
1404 1405 1406 1407

1429 1421 1422 1423
1436 1437 1438 1439
1452 1453 1454 1455
1468 1469 1470 1471

1484 1485 1486 1487
1500 1501 1502 1503
1516 1517 1518 1519
1532 1533 1534 1535

Texas Instruments Incorporated

~-------~ 943441-9701

600
610
620
630

640
650
660
670

680
690
6AO
6BO

6CO
6DO
6EO
6FO

700
710
720
730

740
750
760
770

780
790
7AO
7BO

7CO
7DO
7EO
7FO

800
810
820
830

840
850
860
870

880
890
8AO
8BO

8CO
8DO
8EO
8FO

Table-K-S. Hexadecimal-Decimal Integer Conversion Table (Cont.)

o 1 2 3

1536 1537 1538 1539
1552 1553 1554 1555
1568 1569 1570 1571
1584 1585 1586 1587

1600 1601 1602 1603
1616 1617 1618 1619
1632 1633 1634 1635
1648 1649 1650 1651

1664 1665 1666 1667
1680 1681 1682 1683
1696 1697 1698 1699
1712 1713 1714 1715

1728 1729 1730 1731
1744 1745 1746 1747
1760 1761 1762 1763
1776 1777 1778 1779

1792 1793 1794 1795
1808 1809 1810 1811
1824 1825 1826 1827
1840 1841 1842 1843

1856 1857 1858 1859
1872 1873 1874 1875
1888 1889 1890 1891
1904 1905 1906 1907

1920 1921 1922 1923
1936 1937 1938 1939
1952 1953 1954 1955
1968 1969 1970 1971

1984 1985 1986 1987
2000 2001 2002 2003
2016 2017 2018 2019
2032 2033 2034 2035

2048 2049 2050 2051
2064 2065 2066 2067
2080 2081 2082 2083
2096 2097 2098 2099

2112 2113 2114 2115
2128 2129 2130 2131
2144 2145 2146 2147
2160 2161 2162 2163

2176 2177 2178 2179
2192 2193 2194 2195
2208 2209 2210 2211
2224 2225 2226 2227

2240 2241 2242 2243
2256 2257 2258 2259
2272 2273 2274 2275
2288 2289 2290 2291

4 5 6 7

1540 1541 1542 1543
1556 1557 1558 1559
1572 1573 1574 1575
1588 1589 1590 1591

1604 1605 1606 1607
1620 1621 1622 1623
1636 1637 1638 1639
1652 i653 1654 1655

1668 1669 1670 1671
1684 1685 1686 1687
1700 1701 1702 1703
1716 1717 1718 1719

1732 1733 1734 1735
1748 1749 1750 1751
1764 1765 1766 1767
1780 1781 1782 1783

1796 1797 1798 1799
1812 1813 1814 1815
1818 1829 1830 1831
1844 1845 1846 1847

1860 1861 1862 1863
1876 1877 1878 1ff79
1892 1893 1~94 1895
1908 1909 1910 1911

1924 1925 1926 1927
1940 1941 1942 1943
1956 1957 1958 1959
1972 1973 1974 1975

1988 1989 1990 1991
2004 2005 2006 2007
2020 2021 20222023
2036 2037 2038 2039

2052 2053 2054 2055
2068 2069 2070 2071
2084 2085 2086 2087
2100 2101 2102 2103

2116 2117 2118 2119
2132 2133 2134 2135
2148 2149 2150 2151
2164 2165 2166 2167

2180 2181 2182 2183
2196 2197 2198 2199
2212 2213 2214 2215
2228 2229 2230 2231

2244 2245 2246 2247
2260 2261 2262 2263
2276 2277 2278 2279
2292 2293 2294 2295

K-7

8 9 A B

1544 1545 1546 1547
1560 1561 1562 1563
1576 1577 1578 1579
1592 1592 1594 1595

1608 1609 1610 1611
1624 1625 1626 1627
1640 1641 1642 1643
1656 1657 1658 1659

1672 1673 1674 1675
1688 1689 1690 1691
1704 1705 1706 1707
1720 1721 1722 17231

1736 1737 1738 1739
1752 1753 1754 1755
1768 1769 1770 1771
1784 1785 1786 1787

1800 1801 8102 1803
1816 1817 1818 1819
1832 1833 1834 1835
1848 1849 1850 1851

1864 1865 1866 1867
1880 1881 1882 1883
1896 1897 1898 1899
1912 1913 1914 1915

1928 1929 1930 1931
1944 1945 1946 1947
1960 1961 1962 1963
1976 1977 1978 1979

1992 1993 1994 1995
2008 2009 2010 2011
2024 2025 2026 2027
2040 2041 2042 2043

2056 2057 2058 2059
2072 2073 2074 2075
2088 2089 2090 2091
2104 2105 2106 2107

2120 2121 2122 2123
2136 2137 2138 2139
2152 2153 2154 2155
2168 2169 2170 2171

2184 2185 2186 2187
2200 2201 2202 2203
2216 2217 2218 2219
2232 2233 2234 2235

2248 2249 2250 2251
2264 2265 2266 2267
2280 2281 2282 2283
2296 2297 2298 2299

c D E F

1548 1549 1550 1551
1564 1565 1566 1567
1580 1581 1582 1583
1596 1597 1598' 1599

1612 1613 1614 1615
1628 1629 1630 1631
1644 1645 1646 1647
1660 1661 1662 1663

1676 1677 1678 1679
1692 1693 1694 1695
1708 1709 1710 1711
1724 1725 1726 1727

1740 1741 1742 1743
1756 1757 1758 1759
1772 1773 1774 1775
1788 1789 1790 1791

1804 1805 1806 1807
1820 1821 1822 1823
1836 1837 1838 1839
1852 1853 1854 1855

1868 1869 1870 1871
1884 1885 1886 1887
1900 1909 1902 1903
1916 1917 1918 1919

1932 1933 1934 1935
1948 1949 1950 1951
1964 1965 1966 1967
1980 1981 1982 1983

1996 1997 1998 1999
2012 2013 2014 2015
2028 2029 2030 2031
2044 2045 2046 2047

2060 2061 2062 2063
2076 2077 2078 2079
2092 2093 2094 2095
2108 2109 2110 2111

2124 2125 2126 2127
2140 2141 2142 2143
2156 2157 2158 2159
2172 2173 2174 2175

2188 2189 2190 2191
2204 2205 2206 2207
2220 2221 2222 2223
2236 2237 2238 2239

2252 2253 2254 2255
2268 2269 2270 2271
2284 2285 2286 2287
2300 2301 2302 2303

Texas Instruments Incorporated

~ __ ~94~3~4~41~'~9~7~O~1 __ _

900
910
920
930

940
950
960
970

980
990
9AO
9BO

9CO
9DO
9EO
9FO

AOO
A10
A20
A30

A40
A50
A60
A70

A80
A90
AAO
ABO

ACO
ADO
AEO
AFO

BOO
BI0
B20
B30

B40
B50
B60
B70

B80
B90
BAO
BBO

BCO
BOO
BEO
BFO

Table K-S Hexadecimal-Decimal Integer Conversion Table (Cont.)

o 1 2 3

2304 2305 2306 2307
2320 2321 2322 2323
2336 2337 2338 2339
2352 2353 2354 2355

2368 2369 2370 2371
2384 2385 2386 2387
2400 2401 2402 2403
2416 2417 2418 2419

2432 2433 2434 24351
2448 2449 2450 2451
2464 2465 2466 2467
2480 2481 2482 2483

2496 2497 2498 2499
2512 2513 2514 2515
2528 2529 2530 2531
2544 2545 2546 2547

2560 2561 2562 2563
2576 2577 2578 2579
2592 2593 2594 2595
2608 2609 2610 2611

2624 2625 2626 2627
2640 2641 2642 2643
2656 2657 2658 2659
2672 2673 2674 2675

2688 2689 2690 2691
2704 2705 2706 2707
2720 2721 2722 2723
2736 2737 2738 2739

2752 2753 2754 2755
2768 2769 2770 2771
2784 2785 2786 2787
2800 2801 2802 2803

2816 2817 2818 2819
2832 2833 2834 2835
2848 2849 2850 2851
2864 2865 2866 2867

2880 2881 2882 2883
2896 2897 2898 2899
2912 2913 2914 2915
2928 2929 2930 2931

2944 2945 2946 2947
2960 2961 2962 2963
2976 2977 2978 2979
2992 2993 2994 2995

3008 3009 3010 3011
3024 3025 3026 3027
3040 3041 3042 3043
3056 3057 3058 3059

4 5 6 7

2308 2309 2310 2311
2324 2325 2326 2327
2340 2341 2342 2343
2356 2357 235a 2359

2372 2373 2374 2375
2388 2389 2390 2391
2404 2405 2406 2407
2420 2421 2422 2423

2436 2437 2438 2439
2452 2453 2454 2455
2468 2469 2479 2471
2484 2485 2486 2487

2500 2501 2502 2503
-2516 2517 2518 2519
2532 2533 2534 2535
2548 2549 2550 2551

2564 2565 2566 2567
2580 2581 2582 2583
2596 2597 2598 2599
2612 2613 2614 2615

2628 2629 2630 2631
1644 2645 2646 2647
2660 2661 2662 2663
2676 2677 2678 2679

2692 2693 2694 2695
2708 2709 2710 2711
2724 2725 2726 2727
2740 2741 2742 2743

2756 2757 2758 2759
2772 2773 2774 2775
2788 2789 2790 2791
2804 2805 2806 2807

2820 2821 2822 1823
2836 2837 2838 2839
2852 2853 2854 2855
2868 2869 2870 2871

2884 2885 2886 2887
2900 2901 2902 2903
2916 2917 2918 2919
2932 2933 2934 2935

2948 2949 2950 2951
2964 2965 2966 2967
2980 2981 2982 2983
2996 2997 2998 2999

3012 3013 3014 3015
3028 3029 3030 3031
3044 3045 3046 3047
3060 3061 3062 3063

K-S

8 9 A B

2312 2313 2314 2315
2328 2329 2330 2331
2344 2345 2346 2347
2360 2361 2362 2363

2376 2377 2378 2379
2392 2393 2394 2395
2408 2409 2410 2411
2424 2425 2426 2427

2440 2441 244~ 2443
2456 2457 2458 2459
2472 2473 2474 2475
2488 2489 2490 2491

2504 2505 2506 2507
2520 2521 2522 2523
2536 2537 2538 2539
2552 2553 2554 2555

2568 2569 257& 2571
2584 2585 2586 2587
2600 2601 2602 2603
2626 2617 2618 2619

2632 2633 2634 2635
2648 2649 26502651
2664 2665 2666 2667
2680 2681 2682 2683

2696 2697 2698 2699
2712 2713 2714 2715
2728 2729 2730 2731
2744 2745 2746 2747

2760 2761 2762 2763
2776 2777 2778 2779
2792 2793 2794 2795
2808 2809 2810 2811

2824 2825 2826 2827
2840 2841 2842 2843
2856 2857 2858 2859
2872 2873 2874 2875

2888 2889 2890 2891
2904 2905 2906 2907
2920 2921 2922 2923
2936 2937 2938 2939

2952 2953 2954 2955
2968 2969 2970 2971
2984 2985 2986 2987
3000 3001 3002 3003

3016 3017 3018 3019
3032 3033 3034 3035
3048 3049 3050 3051
3064 3065 3066 3067

C D E F

2316 2317 2318 2319
2332 2333 2334 2335
2348 2349 2350 2351
2364 2365 2366 2367

2380 2381 2382 2383
3496 2397 2398 2399
2412 2413 2414 2415
2428 2429 2430 2431

2444 2445 2446 2447
2460 2461 2462 2463
2476 2477'2478 2479
2492 2493 2494 2495

2508 2509 2510 2511
2524 2525 2526 2527
2540 2541 2542 2543
2556 2557 255S 2559

2572 2573 2574 2575
2588 2589 2590 2591
2604 2605 2606 2607
2620 2621 2622 2623

2636 2637 2638 2639
2652 2653 2654 2655
2668 2669 2670 2671
2684 2685 2686 2687

2700 2701 2702 2703
2716 2717 2718 2719
2732 2733 2734 2735
2748 2749 2750 2751

2764 2765 2766 2767
2780 2781 2782 2783
2796 2797 2798 2799
2812 2813 2814 2815

2828 2829 2830 2831
2844 2845 2846 2847
2860 2861 2862 2863
2876 2877 2878 2879

2892 2893 2894 2895
2908 2909 2910 2911
2924 2925 2926 2927
2940 2941 2942 2943

2956 2957 2958 2959
2972 2973 2974 2975
2988 2989 2990 2991
3004 3005 3006 3007

3020 3021 3022 3023
3036 3037 3038 3039
3052 3053 3054 3055
3068 3069 3070 3071

Texas Instruments Incorporated

Jd7~ ______ _ ~ 943441-9701

COO
C10
C20
C30

C40
eso
C60
C70

C80
C90
CAO
CBO

CCO
CDO
CEO
CFO

DOO
DIO
D20
D30

040
D50
D60
D70

D80
D90
DAO
DBO

DCO
DOO
DEO
DFO

EOO
EI0
E20
E30

E40
E50
E60
E70

E80
E90
EAO
EBO

Table K-5. Hexadecimal-Decimal Integer Conversion Table (Cont.)

o 1 2 3

3072 3073 3074 3075
30883089 3090 3091
3104 3105 3106 3107
3120 3121 3122 3123

3136 3137 3138 3139
3152 3153 3154 3155
3168 3169 3170 3171
3184 3185 3186 3187

3200 3201 3202 3203
3216 3217 3218 3219
3232 3233 3234 3235
3248 3249 3250 3251

3264 3265 3266 3267
3280 3281 3282 3283
3296 3297 3298 3299
3312 3313 3314 3315

3328 3329 3330 3331
3344 3345 3346 3347
3360 3361 3362 3363
3376 3377 3378 3379

3392 3393 3394 3395
3408 3409 3410 3411
3424 3425 3426 3427
3440 3441 3442 3443

3456 3457 3458 3459
3472 3473 3474 3475
3488 3489 3490 3491
3504 3505 3506 3507

3520 3521 3522 3523
3536 3537 3538 3539
3552 3553 3554 3555
3568 3569 3570 3571

3584 3585 3586 3587
3600 3601 3602 3603
3616 3617 3618 3619
3632 3633 3634 3635

3648 3649 3650 3651
3664 3665 3666 3667
3680 3681 3682 3683
3696 3697 3698 3699

37123713 3714 3715
3728 3729 3730 3731
3744 3745 3746 3747
3760 3761 3762 3763

4 5 6 7

3076 3077 30783079
3092 3093 3094 3095
31083109 31103111
3124 3125 3126 3127

3140 3141 3142 3143
3156 .3157 3158 3159
3172 3173 3174 3175
31883189 3190 3191

3204 3205 3206 3207
3220 3221 3222 3223
3236 3237 3238 3239
3252 3253 3254 3255

3268 3269 3270 3271
3284 3285 3286 3287
3300 3301 3302 3303
33163317 3318 3319

3332 3333 3334 3335
3348 3349 3350 3351
3364 3365 3366 3367
3380 3381 3382 3383

3396 3397 3398 3399
3412 3413 3414 3415
3428 3429 3430 3431
3444 3445 3446 3447

3460 3461 3462 3463
3476 3477 3478 3479
3492 3493 3494 3495
3508 3509 3510 3511

3524 3525 3526 3527
3540 3541 3542 3543
3556 3557 3558 3559
3572 3573 3574 3575

3588 3589 3590 3591
3604 3605 3606 3607
3620 3621 3622 3623
3636 3637 3638 3639

3652 3653 3654 3655
3668 3669 3670 3671
3684 3685 3686 3687
3700 3701 3702 3703

3716 3717 3718 3719
3732 3733 3734 3735
3748 3749 3750 3751
3764 3765 3766 3767

K-9

8 9 A B

30st> 3081 3082 3083
3096 3097 3098 3099
3112 3113 3114 3115
3128 3129 3130 3131

3144 3145 3146 3147
3160 3161 3162 3163
3176 3177 3178 3179
3192 3193 3194 3195

3208 3209 3210 3211
3224 3225 3226 3227
3240 3241 3242 3243
3256 3257 3258 3259

3272 3273 3274 3275
3288 3289 3290 3291
3304 3305 3306 3307
3320 3321 3322 3323

3336 3337 3338 3339
3352 3353 3354 3355
3368 3369 3370 3371
3384 3385 3386 3387

3400 3401 3402 3403
3416 3417 3418 3419
3432 3433 3434 3435
3448 3449 3450 3451

3464 3465 3466 3467
3480 3481 3482 3483
3496 3497 3498 3499
3512 3513 3514 3515

3528 3529 3530 3531
3544 3545 3546 3547
3560 3561 3562 3563
3576 3577 3578 3579

3592 3593 3594 3595
3608 3609 3610 3611
3624 3625 3626 3627
3640 3641 3642 3643

3656 3657 3658 3659
3672 3673 3674 3675
3688 3689 3690 3691
3704 3705 3706 3707

3720 3721 3722 3723
3736 3737 3738 3739
3752 3753 3754 3755
3768 3769 3770 3771

C D E F

3084 3085 3086 3087
3100 3101 3102 3103
3116 3117 3118 3119
3132 3133 3134 3135

3148 3149 3150 3151
3164 3165 3166 3167
3180 3181 3182 3183
3196 3197 3198 3199

3212 3213 3214 3215
3228 3229 3230 3231
3244 3245 3246 3247
3260 3261 3262 3263

3276 3277 3278 3279
3292 3293 3294 3295
3308 3309 3310 3311
3324 3325 3326 3327

3340 3341 3342 3343
3356 3357 3358 3359
3372 3373 3374 3375
3388 3389 3390 3391

3404 3405 3406 3407
3420 3421 3422 3423
3436 3437 3438 3439
3452 3453 3454 3455

34683469 34703471
3484 3485 3486 3487
3500 3501 3502 3503
35163517 3518 3519

3532 3533 3534 3535
3548 3549 3550 3551
3564 3565 3566 3567
3580 3581 3582 3583

3596 3597 3598 3599
3612 3613 3614 3615
3628 3629 3630 3631
3644 3645 3646 3647

3660 3661 3662 3663
3676 3677 3678 3679
3692 3693 3694 3695
3708 3709 3710 3711

3724 3725 3726 3727
3740 3741 3742 3743
3756 3757 3758 3759
3772 3773 3774 3775

Texas Instruments Incorporated

~~-~~--~-------------~ 943441-9701

ECO
EDO
EEO
EFO

FOO
FlO
F20
F.'30

F40
F50
F60
F70

F80
F90
FAO
FBO

FCO
FDO
FEO
FFO

Table K-5. Hexadecimal-Decimal Integer Conversion Table (Cont.)

o 1 2 3

3776 3777 3778 3779
3792 3793 3794 3795
3808 3809 3810 3811
3824 3825 3826 3827

3840 3841 3842 3843
3856 3857 3858 3859
3872 3873 3874 3875
3888 3889 3890 3891

3904 3905 3906 3907
3920 3921 3922 3923
3936 3937 3938 3939
3952 3953 3954 3955

3968 3969 3970 3971
3984 3985 3986 3987
4000 4001 4002 4003
4016401740184019

4032 4033 4034 4035
4048 4049 4050 4051
4064 4065 4066 4067
4080 4081 4082 4083

4 5 6 7

3780 3781 3782 3783
3796 3797 3798 3799
38123813 3814 3815
3828 3829 3830 3831

3844 3845 3846 3847
3860 3861 3862 3863
3876 3877 3878 3879
3892 3893 3894 3895

3908 3909 3910 3911
3924 3925 3926 3927
3940 3941 3942 3943
3956 3957 3958 3959

3972 3973 3974 3975
3988 3989 3990 3991
4004 4005 4006 4007
4020 4021 4022 4023

4036403740384039
4052 4053 4054 4055
4068 4069 4070 4071
4084 4085 4086 4087

K-10

8 9 A B

3784 3785 3786 3787
3800 3801 3802 3803
3816 3817 3818 3819
3832 3833 3834 3835

3848 3849 3850 3851
3864 3865 3866 3867
3880 3881 3882 3883
3896 3897 3898 3899

3912 3913 3914 3915
3928 3929 3930 3931
3944 3945 3946 3947
3960 3961 3962 3963

3976 3977 3978 3979
3992 3993 3994 3995
4008 4009 4010 4011
4024 4025 4026 4027

4040 4041 4042 4043
4056 4057 4058 4059
4072 4073 4074 4075
4088 4089 4090 4091

C D E F

3788 3789 3790 3791
3804 3805 3806 3807
3820 3821 3822 3823
3836 3837 3838 3839

3852 3853 3854 3855
3868 3869 3870 3871
3884 3885 3886 3887
3900 3901 3902 3903

3916 3917 3918 3919
3932 3933 3934 3935
3948 3949 3950 3951
3964 3965 3966 3967

3980 3981 3982 3983
3996 3997 3998 3999
4012 4013 4014 4015
4028 4029 4030 4031

4044 4045 4046 4047
4060 4061 4062 4063
4076 4077 4078 4079
4092 4093 4094 4095

Texas Instruments Incorporated

4P 943441-9701

Table K-6. Hexadecimal-Decimal Fraction Conversion Table

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal

.00 00 00 00 .00000 00000 .40 00 00 00 .25000 00000 .80 00 00 00 .50000 00000 .CO 00 00 00 .75000 00000

.01 00 00 00 .00390 62500 .41 00 00 00 .25390 62500 .81 0000 00 .50390 62500 .Cl 00 00 00 .75390 62500

.02 00 00 00 .00781 25000 .42 00 00 00 .25781 25000 .82 0000 00 .50781 25000 .C2 00 00 00 .75781 25000

.03 00 00 00 .01171 87500 .43 0000 00 .26171 87500 .83 0000 00 .51171 87500 .C3 00 00 00 .7617,1 87500

.04 00 00 00 .01562 50000 .44 00 00 00 .26562 50000 .84 0000 00 .51562 50000 .C4 00 00 00 .76562 50000

.05 00 00 00 .01953 12500 .45 00 00 00 .26953 12500 .85 00 00 00 .51953 12500 .C5 00 00 00 .76953 12500

.06 00 00 00 .02343 75000 .46 00 00 00 .27343 75000 .86 00 00 00 .52343 75000 .C6 00 00 00 .77343 75000

.07 00 00 00 .02734 37500 .47 0000 00 .27734 37500 .87 0000 00 .52734 37500 .C7 00 00 00 .77734 37500

.08 00 00 00 .03125 00000 .48 0000 00 .28125 00000 .88 00 00 00 .53125 00000 .C8 00 00 00 .78125 00000

.09 00 00 00 .03515 62500 .49 00 00 00 .28515 62500 .89 00 00 00 .53515 62500 .C9 00 00 00 .78515 62500

.OA 00 00 00 .03906 25000 .4A 0000 00 .28906 25000 .8A 00 00 00 .53906 25000 .CA 000000 .78906 25000

.OB 0000 00 .04296 87500 .4B 0000 00 .29296 87500 .8B 00 00 00 .54296 87500 .CB 00 00 00 .79296 87500

.OC 0000 00 .04687 50000 .4C 0000 00 .29687 50000 .8C 00 00 00 .54687 50000 .CC 000000 .79687 50000

.OD 00 00 00 .05078 12500 .4D 00 00 00 .30078 12500 .8D 00 00 00 .55078 12500 .CD 000000 .80078 12500

.OE 00 00 00 .05468 75000 .4E 00 00 00 .30468 75000 .8E 00 00 00 .55468 75000 .CE 000000 .80468 75000

.OF 00 00 00 .05859 37500 .4F 00 00 00 .30859 37500 .8F 00 00 00 .55859 37500 .CF 000000 .80859 37500

.10 00 00 00 .06250 00000 .50 00 00 00 .31250 00000 .90 00 00 00 .56250 00000 .DO 00 00 00 .81250 00000

.11 00 00 00 .06640 62500 .51 00 00 00 .31640 62500 .91 00 00 00 .56640 62500 .D1 00 00 00 .81640 62500

.12 00 00 00 .07031 25000 .52 00 00 00 .32031 25000 .92 00 00 00 .57031 25000 .D200 00 00 .82031 25000

.13 00 00 00 .07421 87500 .53 00 00 00 .32421 87500 .93 0000 00 .57421 87500 .D3 00 00 00 .82421 87500

.14 00 00 00 .07812 50000 .54 00 00 00 .32812 50000 .94 00 00 00 .57812 50000 .D4 00 00 00 .82812 50000

.15 00 00 00 .08203 12500 .55 00 0000 .33203 12500 .95 00 00 00 .58203 12500 .D5 00 00 00 .83203 12500

.16 00 00 00 .08593 75000 .56 00 00 00 .33593 75000 .96 00 00 00 .58593 75000 .D6 00 00 00 .83593 75000

.17 00 00 00 .08984 37500 .57 00 00 00 .33984 37500 .97 00 00 00 .58984 37500 .D7 00 00 00 .83984 37500

.18 00 00 00 .09375 00000 .58 00 00 00 .34375 00000 .98 00 00 00 .59375 00000 .D8 00 00 00 .84375 00000

.19 00 00 00 .09765 62500 .59 00 00 00 .34765 62500 .99 0000 00 .59765 62500 .D9 000000 .84765 62500

.IA 00 00 00 .10156 25000· .5A 00 00 00 .35156 25000 .9A 00 00 00 .60156 25000 .DAOO 00 00 .85156 25000

.1B 00 00 00 .10546 87500 .5B 00 00 00 .35546 87500 .98 0000 00 .60546 87500 .DB 000000 .85546 87500

.1C 00 00 00 .10937 50000 .5C 00 00 00 .35937 50000 .9C 00 00 00 .60937 50000 .DC 000000 .85937 50000

.lD 00 00 00 .11328 12500 .5D 00 00 00 .36328 12500 .9D 00 00 00 .61328 12500 .DDOO 00 00 .86328 12500

.1E 000000 .11718 75000 .5E 00 00 00 .36718 75000 .9E 00 00 00 .61718 75000 .DE 000000 .86718 75000

.1F 00 00 00 .12109 37500 .5F 00 00 00 .37109 37500 .9F 00 0000 .62109 37500 .DF 00 00 00 .87109 37500

.20 000000 .12500 00000 .60 00 00 00 .37500 00000 .AO 0000 00 .62500 00000 .EO 00 00 00 .87500 00000

.21 00 00 00 .12890 62500 .61 00 00 00 .37890 62500 .Al 0000 00 .62890 62500 .El 00 00 00 .87890 62500

.22 00 00 00 .13281 25000 .62 00 00 00 .38281 25000 .A2 0000 00 .63281 25000 .E2 0000 00 .88281 25000

.23 00 00 00 .13671 87500 .63 00 00 00 .38671 !l7500 .A3 00 00 00 .63671 87500 .E3 00 00 00 .88671 87500

.24 00 00 00 .14062 50000 .64 00 00 00 .39062 50000 .A4 00 00 00 .64062 50000 .E4 00 00 00 .89062 50000

.25 00 00 00 .14453 12500 .65 00 00 00 .39453 12500 .A5 00 00 00 .64453 12500 .E5 00 00 ·00 .89453 12500

.26 00 00 00 .14843 75000 .66 00 00 00 .39843 75000 .A6 00 00 00 .64843 75000 .E6 00 00 00 .89843 75000

.27 00 00 00 .15234 37500 .67 00 00 00 .40234 37500 .A7 00 00 00 .65234 37500 .E7 00 00 00 .90234 37500

.28 00 00 00 .15625 00000 .68 00 00 00 .40625 00000 .A8 0000 00 .65625 00000 .E8 00 00 00 .90625 00000

.29 00 00 00 .16015 62500 .69 00 00 00 .41015 62500 .A9 00 00 00 .66015 62500 .E9 00 00 00 .91015 62500

.2A 00 00 00 .16406 25000 .6A 0000 00 .41406 25000 .AA 00 00 00 .66406 25000 .EA 000000 .91406 25000

.2B 00 00 00 .16796 87500 .6B 00 00 00 .41796 87500 .AB 0000 00 .66796 87500 .EB 00 00 00 .91796 87500

.2C 00 00 00 .17187 50000 .6C 0000 00 .42187 50000 .AC 00 00 00 .67187 5000G .EC 000000 .92187 50000

.2D 00 00 00 .17578 12500 .6D 00 00 00 .42578 12500 .AD 00 00 00 .67578 12500 .ED 000000 .92578 12500

.2E 00 00 00 .17968 75000 .6E 00 00 00 .42968 75000 .AE 00 00 00 .67968 75000 .EE 000000 .92968 75000

.2F 00 00 00 .18359 37500 .6F 00 00 00 .43359 37500 .AF 00 00 00 .68359 37500 .EF 000000 .93359 37500

.30 00 00 00 .18750 00000 .70 00 00 00 .43750 00000 .BO 00 00 00 .68750 00000 .FO 00 00 00 .93750 00000

. 31 00 00 00 .19140 62500 .71 . 00 00 00 .44140 62500 .B1 00 00 00 .69140 62500 .Fl 00 00 00 .94140 62500

.32 00 00 00 .19531 25000 .72 0000 00 .44531 25000 .B2 00 00 00 .69531 25000 .F2 00 00 00 .94531 25000

.33 000000 .19921 87500 .73 00 00 00 .44921 87500 .B3 00 00 00 .69921 87500 .F3 00 00 00 .94921 87500

.34 00 00 00 .20312 50000 .74 00 00 00 .45312 50000 .B4 00 00 00 .70312 50000 .F4 00 00 00 .95312 50000

.35 00 00 00 .20703 12500 .75 00 00 00 .45703 12500 .B5 00 00 00 .70703 12500 .F5 00 00 00 .95703 12500

.36 000000 .21093 75000 .76 0000 00 .46093 75000 .B6 00 00 00 .71093 75000 .F6 00 00 00 .96093 75000

.37 00 00 00 .21484 37500 .77 00 00 00 .46484 37500 .B7 00 00 00 .7148437500 .F7 00 0000 .96484 37500

.38 00 00 00 .21875 00000 .78 00 00 00 .46875 00000 .B8 00 00 00 .71875 00000 .F8 0000 00 .96875 00000

.39 00 00 00 .22265 62500 .79 00 00 00 .4 7265 62500 .B9 00 00 00 .72265 62500 .F9 00 00 00 .97265 62500

.3A 00 00 00 .22656 25000 .7A 00 00 00 .47656 25000 .BA 00 00 00 .72656 25000 .FA 000000 .97656 25000

.3B 00 00 00 .23046 87500 .7B 00 00 00 .48046 87500 .BB 0000 00 .73046 87500 .FB 000000 .98046 87500

.3C 00 00 00 .23437 50000 .7C 00 00 00 .48437 50000 .BC 00 00 00 .73437 50000 .FC 000000 .98437 50000

.3D 00 00 00 .23828 12500 .7D 0000 00 .48828 12500 .BD 00 00 00 .73828 12500 .FD 000000 .98828 12500

.3E 00 00 00 .24218 75000 .7E 00 00 00 .49218 75000 .BE 000000 .74218 75000 .FE 000000 .99218 75000

.3F 00 00 00 .24609 37500 .7F 00 00 00 .49609 37500 .BF 00 00 00 .74609 37500 .FF 000000 .99609 37500

K-ll Texas Instruments Incorporated

~ 943441-9701

Table K-6. Hexadecimal-Decimal Fraction Conversion Table (Cont.)

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal

.00 00 0000 .00000 00000 .0040 00 00 .00097 65625 .0080 00 00 .00195 31250 .00 CO 00 00 .00292 96875

.00 01 0000 .00001 52587 .0041 00 00 .00099 18212 .00 81 00 00 .00196 83837 .00 C1 00 00 .00294 49462

.0002 0000 .00003 05175 .0042 0000 .00100 70800 .0082 0000 .00198 36425 .00 C2 00 00 .00296 02050

.0003 0000 .00004 57763 .0043 0000 .00102 23388 .00 83 00 00 .00199 89013 .00 C3 00 00 .00297 54638

.0004 0000 .00006 10351 .0044 00 00 .00103 75976 .0084 00 00 .00201 41601 .00 C4 00 00 .00299 07226

.0005 00 00 .00007 62939 .0045 0000 .00105 28564 .0085 00 00 .00202 94189 .00 C5 00 00 .00300 59814

.00 06 0000 .00009 15527 .0046 0000 .00106 81152 .00 86 0000 .00204 46777 .00 C6 00 00 .00302 12402

.0007 00 00 .00010 68115 .0047 0000 .00108 33740 .0087 0000 .00205 99365 .00 C7 0000 .00303 64990

.0008 0000 .00012 20703 .0048 0000 .00109 86328 .0088 0000 .0020751953 .00 C8 00 00 .00305 17578

.00 09 00 00 .00013 73291 .0049 00 00 .00111 38916 .0089 0000 .00209 04541 .00 C9 00 00 .00306 70166

.OOOA 0000 .00015 25878 .004A 00 00 .00112 91503 .008A 0000 .00210 57128 .00 CA 00 00 .00308 22753

.OOOB 0000 .00016 78466 .004B 0000 .00114 44091 .008B 0000 .00212 09716 .00 CB 00 00 .00309 75341

.OOOC 00 00 .00018 31054 .004C 0000 .00115 96679 .008C 00 00 .00213 62304 .00 CC 0000 .00311 27929

.OOOD 00 00 .00019 83642 .004D 0000 .00117 49267 .00 8D 00 00 .00215 14892 .00 CD 00 00 .00312 80517

.OOOE 0000 .00021 36230 .004E 00 00 .00119 01855 .008E 0000 .00216 67480 .00 CE 0000 .00314 33105

.00 OF 0000 .00022 88818 .004F 00 00 .00120 54443 .008F 0000 .00218 20068 .00 CF 00 00 .00315 85693

.00 10 0000 .00024 41406 .0050 0000 .00122 07031 .0090 0000 .00219 72656 .00 DO 00 00 .00317 38281

.00 11 00 00 .00025 93994 .00 51 00 00 .00123 59619 .00 91 00 00 .00221 25244 .00 D1 00 00 .00318 90869

.00 12 0000 .00027 46582 .0052 0000 .00125 12207 .0092 00 00 .00222 71832 .00 D2 00 00 .00320 43457

.00 13 0000 .00028 99169 .00 53 0000 .00126 64794 .0093 0000 .00224 30419 .00 D3 0000 .00321 96044

.00 14 00 00 .0003051757 .0054 00 00 .00128 17382 .0094 0000 .00225 83007 .00 D4 00 00 .00323 48632

.00 15 0000 .00032 04345 .0055 00 00 .00129 69970 .0095 0000 .00227 35595 .00 D5 00 00 .00325 01220

.00 16 0000 .00033 56933 .0056 0000 .00131 22558 .0096 00 00 .00228 88183 .00 D6 00 00 .00326 53808

.00 17 0000 .00035 09521 .0057 00 00 .00132 75146 .0097 00 00 .00230 40771 .00 D7 0000 .00328 06396

.00 18 00 00 .00036 62109 .0058 00 00 .00134 27734 .0098 0000 .00231 93359 .00 D8 00 00 .00329 58984

.00 19 00 00 .00038 14697 .0059 00 00 .00135 80322 .0099 0000 .00233 45947 .00 D9 0000 .00331 11572

.00 lA 0000 .00039 67285 .00 SA 00 00 .00137 32910 .009A 00 00 .00234 98535 .00 DA 0000 .00332 64160

.00 1B 0000 .00041 19873 .005B 00 00 .00138 85498 .009B 00 00 .00236 51123 .00 DB 0000 .00334 16748

.00 lC 0000 .00042 72460 .005C 00 00 .00140 38085 .009C 0000 .00238 03710 .00 DC 0000 .00335 69335

.00 1D 00 00 .00044 25048 .005D 00 00 .00141 90673 .009D 00 00 .00239 56298 .00 DD 0000 .00337 21923

.00 IE 00 00 .00045 77636 .005E 00 00 .00143 43261 .009E 0000 .00241 08886 .00 DE 0000 .00338 74511

.00 IF 0000 .00047 30224 .00 SF 0000 .00144 95849 .009F 00 00 .00242 61474 .00 DF 0000 .00340 27099

.0020 0000 .00048 82812 .0060 0000 .00146 48437 .00 AO 00 00 .00244 14062 .00 EO 00 00 .00341 79687

.00 21 00 00 .00050 35400 .0061 00 00 .00148 01025 .00 Al 00 00 .00245 66650 .00 E1 00 00 .00343 32275

.00 22 00 00 .00051 87988 .0062 00 00 .00149 53613 .00 A2 00 00 .00247 19238 .00 E2 0000 .00344 84863

.00 23 0000 .00053 40576 .0063 00 00 .00151 06201 .00 A3 0000 .00248 71826 .00 E3 0000 .00346 37451

.00 24 00 00 .00054 93164 .0064 00 00 .00152 58789 .00 A4 0000 .00250 24414 .00 E4 0000 .00347 90039

.00 25 00 00 .00056 45751 .0065 00 00 .00154 11376 .00 A5 0000 .00251 77001 .00 E5 0000 .003~9 42626

.00 26 00 00 .00057 98339 .0066 00 00 .00155 63964 .00 A6 0000 .00253 29589 .00 E6 00 00 .00350 95214

.00 27 00 00 .00059 50927 .0067 00 00 .00157 16552 .00 A7 00 00 .00254 82177 .00 E7 0000 .00352 47802

.00 28 0000 .00061 03515 .0068 0000 .00158 69140 .00 A8 00 00 .00256 34765 .00 E8 00 00 .00354 00390

.00 29 0000 .00062 56103 .0069 0000 .00160 21728 .00 A9 00 00 .00257 87353 .00 E9 00 00 .00355 52978

.00 2A 00 00 .00064 08691 .006A 00 00 .00161 74316 .00 AA 0000 .00259 39941 .00 EA 00 00 .00357 05566

.002B 00 00 .00065 61279 .006B 0000 .00163 26904 .00 AB 0000 .00260 92529 .00 EB 0000 .00358 58154

.00 2C 0000 .00067 13867 .006C 00 00 .00164 79492 .00 AC 0000 .00262 45117 .00 EC 00 00 .00360 10742

.002D 0000 .00068 66455 .006D 00 00 .00166 32080 .00 AD 00 00 .00263 97705 .00 ED 00 00 .00361 63330

.002E 00 00 .00070 19042 .006E 00 00 .00167 84667 .00 AE 0000 .00265 50292 .00 EE 00 00 .00363 15917

.00 2F 00 00 .00071 71630 .006F 0000 .00169 37255 .00 AF 00 00 .00267 02880 .00 EF 00 00 .00364 68505

.00 30 00 00 .00073 24218 .00 70 00 00 .00170 89843 .00 BO 00 00 .00268 55468 .00 FO 0000 .00366 21093

.00 31 00 00 .00074 76806 .00 71 0000 .00172 42421 .00 B1 0000 .00270 08056 .00 F1 00 00 .00367 73681

.00 32 00 00 .00076 29394 .0072 00 00 .00173 95019 .00 B2 00 00 .00271 60644 .00 F2 00 00 .00369 26269

.00 33 00 00 .00077 81982 .00 73 00 00 .00175 47607 .00 B3 00 00 .00273 13232 .00 F3 00 00 .00370 78857

.00 34 00 00 .00079 34570 .0074 00 00 .00177 00195 .00 B4 00 00 .00274 65820 .00 F4 00 00 .00372 31445

.00 35 0000 .00080 87158 .0075 0000 .00178 52783 .00 B5 00 00 .00276 18408 .00 F5 00 00 .00373 84033

.00 36 0000 .00082 39746 .0076 0000 .00180 05371 .00 B6 00 00 .00277 70996 .00 F6 0000 .00375 36621

.00 37 0000 .00083 92333 .0077 00 00 .00181 57958 .00 B7 0000 .00279 23583 .00 F7 0000 .00376 89208

.00 38 00 00 .00085 44921 .0078 00 00 .00183 10546 .00 B8 00 00 . 00280 76171 .00 F8 0000 .00378 41796 .

.00 39 0000 .00086 97509 .00 79 0000 .00184 63134 . .00 B9 00 00 .00282 28759 .00 F9 00 00 .00379 94384

.003A 0000 .00088 50097 .007A 0000 .00186 15722 .00 BA 00 00 .00283 81347 .00 FA 0000 .00381 46972

.00 38 00 00 .00090 02685 .007B 00 00 .00187 68310 .00 BB 0000 ~00285 33935 .00 FB 0000 .00382 99560

.00 3C 00 00 .00091 55273 .007C 0000 .00189 20898 .00 BC 00 00 .00286 86523 .00 FC 00 00 .00384 52148

.00 3D 00 00 .00093 07861 .007D 0000 .00190 73486 .00 BD 00 00 .00288 39111 .00 FD 00 00 .00386 04 736

.003E 00 00 .00094 60449 .007E 0000 .00192 26074 .00 BE 0000 .00289 91699 .00 FE 00 00 .00387 57324

.00 3F 0000 .00096 13037 .007F 00 00 .00193 78662 .00 BF 00 00 .00291 44287 .00 FF 00 00 .00389 09912

K-12 Texas Instruments Incorporated

~ 943441-9701

Table K-6. Hexadecimal-Decimal Fraction Conversion Table (Cont.)

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal

.00 00 00 00 .00000 00000 .00 00 40 00 .00000 38146 .00 00 80 00 .00000 76293 .00 00 CO 00 .00001 14440

.00 00 01 00 .00000 00596 .00 00 41 00 .00000 38743 .00 00 81 00 .00000 76889 .00 00 C1 00 .00001 15036

.00 00 02 00 .00000 01192 .00 00 42 00 .00000 39339 .00 00 82 00 .00000 77486 .00 00 C2 00 .00001 15633

.00 00 03 00 .00000 01788 .00 0043 00 .00000 39935 .00 00 83 00 .00000 78082 .0000 C3 00 .0000'1 16229

.00 00 04 00 .00000 02384 .00 00 44 00 .00000 40531 .00 00 84 00 .00000 78678 .00 00 C4 00 .00001 16825

.00 00 05 00 .00000 02980 .00 0045 00 .00000 41127 .00 00 85 00 .00000 79274 .00 00 C500 .00001 17421

.00 00 06 00 .00000 03576 .000046 00 .00000 41723 .00 00 86 00 .00000 79870 .00 00 C6 00 .00001 18017

.00 00 07 00 .00000 04172 .00 00 47 00 .00000 42319 .00 00 87 00 .00000 80466 .00 00 C7 00 .00001 18613

.000008 00 .00000 04768 .00 0048 00 .00000 42915 .00 00 88 00 .00000 81062 .00 00 C8 00 .00001 19209

.000009 00 .00000 05364 ,00 00 49 00 .00000 43511 .00 00 89 00 .00000 81658 .00 DO C9 00 .00001 19805

.OOOOOA 00 .00000 05960 .00 00 4A 00 .00000 44107 .00 00 8A 00 .00000 82254 .00 00 CA 00 .00001 20401

.00 00 OB 00 .00000 06556 .00 00 4B 00 .00000 44703 .00 00 8B 00 .00000 82850 .00 00 CB 00 .00001 20997

.00 00 OC 00 .00000 07152 .00 00 4C 00 .00000 45299 .00 00 8C 00 .00000 83446 .0000 CC GO .00001 21593

.0000 aD 00 .00000 07748 .00004D 00 .00000 45895 .00 00 8D 00 .00000 84042 .00 00 CD 00 .00001 22189

.00 00 OE 00 .00000 08344 .00 00 4E 00 .00000 46491 .00 00 8E 00 .00000 84638 .00 00 CE 00 .00001 22785

.00 00 OF 00 .00000 08940 .00 00 4F 00 .00000 47087 .00 00 8F 00 .00000 85234 .00 OC CF 00 .00001 23381

.00 00 10 00 .00000 09536 .00 00 50 00 .00000 47683 .00 00 90 00 .00000 85830 .0000 DO 00 .00001 23977

.00 00 11 00 .00000 10132 .00 00 51 00 .00000 48279 .00 00 91 00 .00000 86426 .00 00 D1 00 .00001 24573

.00 00 12 00 .00000 10728 .0000 52 00 .00000 48875 .00 00 92 00 .00000 87022 .00 00 D2 00 .00001 25169

.00 00 13 00 . 00000 113 24 .00 00 53 00 .00000 49471 .00 00 93 00 .00000 87618 .00 00 D3 00 .00001 25765

.00 00 14 00 .00000 11920 .00 00 54 00 .00000 50067 .00 00 94 00 .00000 88214 .0000 D4 00 .00001 26361

.00 00 15 00 .00000 12516 .00 00 55 00 .00000 50663 .00 00 95 00 .00000 88810 .00 00 D5 00 .00001 26957

.00 00 16 00 .00000 13113 .00 00 56 00 .00000 51259 .00 00 96 00 .00000 89406 .00 00 D600 .00001 27553

.00 00 17 00 .00000 13709 .00 00 57 00 .00000 51856 .00 00 97 00 .00000 90003 .00 00 D700 .00001 28149

.00 00 18 00 .00000 14305 .00 00 58 00 .00000 52452 .00 00 98 00 .00000 90599 .00 00 D8 00 .00001 28746

.00 00 19 00 .00000 14901 .00 00 59 00 .00000 53048 .00 00 99 00 .00000 91195 .00 00 D900 .00001 29342

.00 00 1A 00 .00000 15497 .00 00 5A 00 .00000 53644 .00 00 9A 00 .00000 91791 .00 00 DAOO .00001 29938

.0000 1B 00 .00000 16093 .00 00 5B 00 .00000 54240 .00 00 9B 00 .00000 92387 .00 00 DBOO .00001 30534

.00 00 IC 00 .00000 16689 .00 00 5C 00 .00000 54836 .00 00 9C 00 .00000 92983 .00 00 DCOO .00001 31130

.0000 1D 00 .00000 17285 .00 00 5D 00 .00000 55432 .00009D 00 .00000 93579 .0000 DDOO .00001 31726

.00 00 IE 00 .00000 17881 .00 00 5E 00 .00000 56028 .00 00 9E 00 .0000094175 .0000 DEOO .00001 32322

.00 00 IF 00 .00000 18477 .00 00 SF 00 .00000 56624 .00 00 9F 00 .00000 94771 .00 00 DFOO .00001 32918

.00 00 20 00 .00000 19073 .00 0060 00 .00000 57220 .00 00 AO 00 .00000 95367 .00 00 EO 00 .00001 33514

.00 00 21 00 .00000 19669 .00 00 61 00 .00000 57816 .00 00 Al 00 .00000 95963 .00 00 E1 00 .00001 34110

.00 00 22 00 .00000 20265 .00 00 62 00 .00000 58412 .0000 A2 00 .00000 96559 .00 00 E2 00 .00001 34706

.00 00 23 00 .00000 20861 .00 00 63 00 .00000 59008 .00 00 A3 00 .00000 97155 .00 00 £3 00 .00001 35302

.000024 00 .00000 21457 .00 00 64 00 .00000 59604 .0000 A4 00 .00000 97751 .00 00 E4 00 .00001 35898

.00 00 25 00 .00000 22053 .00 00 65 00 .00000 60200 .00 00 A5 00 .00000 98347 .00 00 E5 00 .00001 36494

.00 00 26 00 .00000 22649 .00 00 66 00 .00000 60796 .0000 A6 .00 .00000 98943 .0000 E6 00 .00001 37090

.00 00 27 00 .00000 23245 .00 00 67 00 .00000 61392 .00 00 A7 00 .00000 99539 .00 00 £7 00 .00001 37686

.00 00 28 00 .00000 23841 .00 00 68 00 .00000 61988 .0000 A8 00 .00001 00135 .00 00 E8 00 .00001 38282

.00 00 29 00 .00000 24437 .00 00 69 00 .00000 62584 .0000 A9 00 .00001 00731 .00 00 E9 00 .00001 38878

.00 00 2A 00 .00000 25033 .00 00 6A 00 .00000 63180 .0000 AA 00 .00001 01327 .00 00 EAOO .00001 39474

.00 00 2B 00 .00000 25629 .00006B 00 .00000 63776 .0000 AB 00 .00001 01923 .0000 EB 00 .00001 40070

.0000 2C 00 .00000 26226 .00 00 6C 00 .00000 64373 .0000 AC 00 .00001 02519 .00 00 EC 00 .0000 I 40666

.00 00 2D 00 .00000 26822 .00 00 6D 00 .00000 64969 .0000 AD 00 .00001 03116 .00 00 EDOO .00001 41263

.0000 2E 00 .00000 27418 .00006E 00 .00000 65565 .00 00 AE 00 .00001 03712 .00 00 EE 00 .00001 41859

.00002F 00 .00000 28014 .00 00 6F 00 .00000 61661 .00 00 AF 00 .00001 04308 .00 00 EF 00 .00001 42455

.00 00 30 00 .00000 28610 .000070 00 .00000 66757 .00 00 BO 00 .00001 04904 .00 00 Fa 00 .00001 43051

.00 00 31 00 .00000 29206 .00 00 71 00 .00000 67353 .00 00 B1 00 .00001 05500 .00 00 F1 00 .0000 1 43647

.00 00 32 00 .00000 29802 .00 00 72 00 .00000 67949 .00 00 B2 00 .00001 06096 .00 00 F2 00 .00001 44243

.00 00 33 00 .00000 30398 .00 00 73 00 .00000 68545 .00 00 B3 00 .00001 06692 .00 00 F3 00 .00001 44839

.00 00 34 00 .00000 30994 .00 00 74 00 .00000 69141 .00 00 B4 00 .00001 07228 .00 00 F400 .00001 45435

.00 00 35 00 .00000 31590 .00 00 75 00 .00000 69737 .00 00 B5 00 .00001 07884 .00 00 F5 00 .00001 46031

.00 00 36 00 .00000 32186 .00 00 76 00 .00000 70333 .00 00 B6 00 .00001 08480 .00 00 F6 00 .00001 46627

.00 00 37 00 .00000 32782 .00 00 77 00 .00000 70929 .00 00 B7 00 .00001 09076 .00 00 F7 00 .00001 47223

.00 00 38 00 .00000 33378 .00 00 78 OQ .00000 71525 .0000 B8 00 .00001 09672 .00 00 F8 00 .00001 47819

.00 00 39 00 .00000 33974 .000079 00 .00000 75121 .0000 B9 00 .00001 10268 .00 00 F9 00 .00001 48415

.00003A 00 .00000 34570 .00 00 7A 00 .00000 72 717 .0000 BA 00 .00001 10864 .00 00 FAOO .00001 49011

.00003B 00 .00000 35166 .00007B 00 .00000 73313 .0000 BB 00 .00001 11460 .0000 FB 00 .00001 49607

.00003C 00 .00000 35762 .00007C 00 .00000 73909 .0000 BC 00 .00001 12056 .00 00 FC 00 .00001 50203

.0000 3D 00 .00000 36358 .00 00 7D 00 .00000 74505 .0000 BD 00 .00001 12652 .00 00 ED 00 .00001 50799

.00003E 00 .. 00000 36954 .00 00 7E 00 .00000 75101 .0000 BE 00 .00001 13248 .00 00 FE 00 .00001 51395

.00 00 3F 00 ,00000 37550 .00 00 7F 00 .00000 75697 .0000 BF 00 .00001 13844 .00 00 FF 00 .00001 51991

K-13 Texas Instruments Incorporated

~ 943441-9701

Table K-6. Hexadecimal-Decimal Fraction Conversion Table (Cont.)

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal

.00 00 00 00 .00000 00000 .00 00 00 40 .00000 00149 .00 00 00 80 ;00000 00298 .000000 CO .00000 00447

.000000 01 .00000 00002 .00 0000 41 .00000 00151 .00 0000 81 .00000 00300 .00 00 00 C1 .00000 00449

.00 00 00 02 .00000 00004 .00 0000 42 .00000 00153 .00 0000 82 .00000 00302 .000000 C2 .00000 00451

.00 00 00 03 .00000 00006 .00 00 00 43 .00000 00155 .00 00 00 83 .00000 00·305 .000000 C3 .00000 00454

.00 00 00 04 .00000 00009 .00 00 00 44 .00000 00158 .00 00 00 84 .00000 00307 .0000 00 C4 .00000 00456

.00 00 00 05 .00000 00011 .00 00 00 45 .00000 00160 .00 00 00 85 .00000 00309 .00 00 00 C5 .00000 00458

.00 00 00 06 .00000 00013 .00 0000 46 .00000 00162 .00 00 00 86 .00000 00311 .00 00 00 C6 .00000 00461

.00 00 00 07 .00000 00016 .00 00 00 47 .00000 00165 .00 00 00 87 .00000 00314 .00 00 00 C7 .00000 00463

.00 00 00 08 .00000 00018 .00 00 00 48 .00000 00167 .00 00 00 88 .00000 00316 .000000 C8 .00000 00465

.00 00 00 09 .00000 00020 .00 0000 49 .00000 00169 .00 00 00 89 .00000 00318 .00 00 00 C9 .00000 00467

.00 0000 OA .00000 00023 .00 0000 4A .0000000172 .000000 8A .00000 00321 .000000 CA .00000 00470

.00 00 00 DB .00000 00025 .00 0000 4B .00000 00174 .00 00 00 8B .00000 00323 .000000 CB .00000 00472

.00 0000 DC .00000 00027 .00 00 00 4C .00000 00176 .000000 8e .00000 00325 .00 00 00 CC .00000 00474

.00 00 00 aD .00000 00030 .00 0000 4D .00000 00179 .00 00 00 8D .00000 00328 .000000 CD .00000 00477

.00 0000 DE .00000 00032 .00 0000 4E .00000 00181 .00 0000 8E .00000 00330 .000000 CE .00000 004 79

.00 00 00 OF .00000 00034 .000000 4F .00000 00183 .00 00 00 8F .00000 00332 .000000 CF .00000 00481

.00 0000 10 .00000 00037 .00 0000 50 .00000 00186 .00 00 00 90 .00000 00335 .000000 DO .00000 00484

.00 0000 11 .00000 00039 .000000 51 .00000 00188 .00 00 00 91 .00000 00337 .00 00 00 D1 .00000 00486

.00 00 00 12 .00000 00041 .00 0000 52 .00001) 00190 .00 00 00 92 .00000 00339 .0000 00 D2 .00000 00488

.00 00 00 13 .00000 00044 .00 00 00 53 .00000 00193 .00 00 00 93 .00000 00342 .000000 D3 .00000 00491

.00 00 00 14 .00000 00046 .00 00 00 54 .00000 00195 .0000 00 94 .00000 00344 .000000 D4 . . 00000 00493

.00 00 00 15 .00000 00048 .000000 55 .00000 00197 .00 00 00 95 .00000 00346 .000000 D5 .00000 00495

.00 0000 16 .00000 00051 .00 0000 56 .00000 00200 .00 00 00 96 .00000 00349 .0000 00 D6 .00000 00498

.000000 17 .00000 00053 .00 00 00 57 .00000 00202 .0000 00 97 .00000 00351 .0000 00 D7 .00000 00500

.000000 18 .00000 00055 .00 00 00 58 .00000 00204 .000000 98 .00000 00353 .000000 D8 .00000 00502

.000000 19 .00000 00058 .0000 00 59 .00000 00207 .000000 99 .00000 00356 .000000 D9 .00000 00505

.00 00 00 lA .00000 00060 .00 00 00 SA .00000 00209 .000000 9A .00000 00358 .000000 DA .00000 00507

.00 00 00 IB .00000 0006'2 .00 00 00 5B .00000 00211 .00 00 00 9B .00000 00360 .000000 DB .00000 00509

.000000 lC .00000 00065 .00 0000 5C .00000 00214 .000000 9C .00600 00363 .000000 DC .00000 00512

.000000 1D .00000 00067 .00 0000 5D .00000 00216 .000000 9D .00000 00365 .000000 DD .00000 00514

.00 00 00 IE .00000 00069 .000000 5E .00000 00218 .00 0000 9E .00000 00367 .000000 DE .00000 00516

.00 00 00 IF .00000 00072 .000000 SF .00000 00221 .00 0000 9F .00000 00370 .000000 DF .00000 00519

.000000 20 .00000 00074 .000000 60 .00000 00223 .00 00 00 AD .00000 00372 .000000 EO .00000 00521

.000000 21 .00000 00076 .00 00 00 61 .00000 00225 .00 00 00 Al .00000 00374 .00 0000 E1 .00000 00523

.000000 22 .00000 00079 .0000 00 62 .00000 00228 .00 0000 A2 .00000 00377 .000000 E2 .00000 00526

.000000 23 .00000 00081 .00 00 00 63 .00000 00230 .00 00 00 A3 .00000 00379 .0000 00 E3 .00000 00528

.00 00 00 24 .00000 00083 .000000 64 .00000 00232 .000000 A4 .00000 00381 .00 0000 E4 .00000 00530

.0000 00 25 .00000 00086 .000000 65 .00000 00235 .000000 AS .00000 00384 .000000 E5 .00000 00533

.000000 26 .00000 00088 .00 00 00 66 .00000 00237 .00 00 00 A6 .00000 00386 .000000 E6 .00000 00535

.000000 27 .00000 00090 .00 00 00 67 .00000 00239 .00 00 00 A7 .00000 00388 .000000 E7 .00000 00537

.00 00 00 28 .00000 00093 .00 00 00 68 .00000 00242 .000000 A8 .00000 00391 .000000 E8 .00000 00540

.000000 29 .00000 00095 .00 00 00 69 .00000 00244 .000000 A9 .00000 00393 .000000 E9 .00000 00542

.00 0000 2A .00000 00097 .000000 6A .00000 00246 .000000 AA .00000 00395 .00 0000 EA .00000 00544

.00 0000 2B .00000 00100 .000000 6B .00000 00249 .000000 AB .00000 00398 .000000 EB .00000 00547

.00 00 00 2C .00000 00102 .000000 6C .00000 00251 .000000 AC .00000 00400 .000000 EC .00000 00549

.000000 2D .00000 00104 .000000 6D .00000 00253 .000000 AD .00000 00402 .00 0000 ED .00000 00551

.00 00 00 2E .00000 00107 .000000 6E .00000 00256 .000000 AE .00000 00405 .000000 EE .00000 00554

.000000 2F .00000 00109 .000000 6F .00000 00258 .000000 AF .00000 00407 .000000 EF .ooooe 00556

.000000 30 .00000 00111 .000000 70 .00000 00260 .00 00 00 BO .00000 00409 .000000 FO .00000 00558

.000000 31 .00000 00114 .000000 71 .00000 00263 .00 00 00 B1 .00000 00412 .000000 F1 .00000 00561

.000000 32 .00000 00116 .000000 72 .00000 00265 .00 00 00 B2 .00000 00414 .0000 00 F2 .00000 00563

.000000 33 .00000 00118 .00 0000 73 .00000 00267 .00 00 00 B3 .00000 00416 .000000 F3 .00000 00565

.000000 34 .00000 00121 .000000 74 .00000 00270 .000000 B4 .00000 00419 .000000 F4 .00000 00568

.000000 35 .00000 00123 .000000 75 .00000 00272 .000000 B5 .00000 00421 .000000 F5 .00000 00570

.000000 36 .00000 00125 .000000 76 .00000 00274 .000000 B6 .00000 00423 .000000 F6 .00000 00572

.000000 37 .00000 00128 .000000 77 .00000 00277 .00 00 00 B7 .00000 00426 .000000 F7 .0000000575

.000000 38 .00000 00130 .000000 78 .00000 00279 .000000 B8 .00000 00428 .000000 F8 .00000 00577

.00 00 '00 39 .00000 00132 .000000 79 .00000 00281 .000000 B9 .00000 00430 .0000 00 F9 .00000 00579

.000000 3A .00000 00135 .000000 7A .00000 00284 .000000 BA .00000 00433 .00 00 00 FA .00000 00582

.000000 3B .00000 00137 .00 00 00 7B .00000 00286 .00 00 O~ BB .00000 00435 .000000 FB .00000 00584

.000000 3C .00000 00 139 .000000 7C .00000 00288 .000000 BC .00000 00437 .0000 00 FC .00000 00586

.000000 3D .00000 00142 .000000 7D .00000 00291 .00 00 00 BD .00000 00440 .00 0000 FD .00000 00589

.00 0000 3E .00000 00144 .000000 7E .00000 00293 .000000 BE .00000 00442 .00 00 00 FE .00000 00591

.00 00 00 3F .00000 00146 .000000 7F .00000 00295 .00 00 00 BF .00000 00444 .000000 FF .00000 00593

K-14 Texas Instruments Incorporated

4P 943441-9701 '

Table K-7. Common Mathematical Constants

Constant Decimal Value Hexadecimal Value

'tr 3.14159 26535 89793 3.243F 6A89

'tr-1 0.31830 98861 83790 0.517C CIB7

·.Ji 1.77245 38509 05516 1.C5BF 891C

In'tr 1.14472 98858 49400 1.250D 048F

e 2.71828 18284 59045 2.B7E1 5163
e-1 0.36787 94411 71442 0.5E2D 58D9

..Je 1.64872 12707 00128 1.A612 98E2

loglOe 0.43429 44819 03252 0.6F2D EC55

log2e 1.44269 50408 88963 1.7154 7653

'Y 0.57721 56649 01533 0.93C4 67E4

In'Y -0.54953 93129 81645 -0.8CAE 9BC1

.J2 1.41421 35623 73095 1.6A09 E668

In2 0.69314 71805 59945 0.B172 17F8

log102 0.30102 99956 63981 0.4D10 4D42

.JfO 3.16227 76601 68379 3.298B 075C

In 10 2.30258 40929 94046 2.4D76 3777

K-15/K-16 Texas Instruments Inca.eporated

~-------~ 943441-9701

APPENDIXL

TMS 9940 PROGRAMMING CONSIDERATIONS

Texas Instruments Incorporated

)2175\ ______ _ ~ 943441-9701

APPENDIXL

TMS 9940 PROGRAMMING CONSIDERATIONS

L.1 TMS 9940 DESCRIPTION
The TMS 9940 is a single chip, l6-bit microcomputer containing a CPU, memory (RAM and
EPROM/ROM), and extensive I/O. The instruction set of the TMS 9940 is a subset of the TMS
9900 microprocessor instruction set except for three additional instructions, two instructions

which facilitate manipulation of binary coded decimal (BCD) data (DCA and DCS), and a single
word load interrupt mask (LIIM) instruction. Compatibility with the TMS 9900 instruction set
enhances the TMS 9940 microcomputer to equivalent capabilities of minicomputers. Program and
data memory is implemented on the microcomputer chip consisting of 128 bytes of RAM and 2048
bytes of EPROM/ROM. The TMS 9940 implements four levels of interrupts including an internal
decrementer which can be programmed as a timer or an event counter. Extra features of the TMS
9940 include program definable input/output pin configuration and a multiprocessor system
interface. All members of the TMS 9900 family of peripheral circuits are compatible with the
TMS 9940.

The following paragraphs describe the memory organization particular to the TMS 9940, the
machine registers, and the additional instructions implemented by the TMS 9940 microcomputer.
The extra features of the TMS 9940 are programmed using this instruction set. Refer to the
TMS 9940 1 f-Bit Microcomputer Data Manual for description and details of the extra features
mentioned above.

L.2 TMS 9940 MEMORY MAP
The TMS 9940 memory map is shown in figure L-l. The 2K X 8 EPROM/ROM is assigned
memory addresses 000016 through 07FF 16, and the 128 X 8 RAM is assigned memory addresses
8300 16 through 837F 16'

The first eight words in the EPROM/ROM (addresses 0000 16 through OOOF 16) are used for the
interrupt vectors (only four interrupts are defined), and 24 words (addresses 0050 16 through
007F 16) are used for the extended operation (XOP) instruction trap vectors (only XOP 4 through
XOP 15 are defined). The remaining memory is available for programs, data, and workspace
registers. If desired, any of the special areas may also be used as general EPROM/ROM memory.

L.3 TMS 9940 MACHINE REGISTERS
The machine registers (program counter, workspace pointer, and status register) are identical
to the TMS 9900 microprocessor with the following exceptions:

The workspace register files may not be overlapping as the workspace register pointer (WP) is
only 11 bits wide. During instruction execution, the processor addresses any register in the work­
space by concatenating the II-bit WP value (most significant) with the specified register number
(least significant) to form a memory address, and initiates a memory request for the word. Thus
workspace register files always begin on a 32 bytes memory address boundary as illustrated in
figure L-l.

The status register of the TMS 9940 microcomputer does not implement the extended operation
bit (ST 6) and status bit 7 is implemented as a digit carry bit used by the added DCA and DCS
instructions. Since there are only four interrupt levels, only the least two significant bits of the
status registers are needed for the interrupt mask. Table L-l defines how each status bit is defined
for all TMS 9940 instructions. Notice that the DCA and DCS instructions effect the carry, overflow,
and digit carry status bits; the digit carry status bit is also effected by the add, subtract, increment,
and decrement instructions.

L-l Texas Instruments Incorporated

~~-------------------~ 943441-9701

,

0000

0001

0002

0003

0004

0005

0006

0007

0008

0009

OOOA

0008

DOOC

0000

DaDE

OOOF

0050

0051

0052

0053

007C

007D

007E

007F

0080

07FF

8300

831F

8320

833F

8340

8355

8360

837F

(8) 138757

.

....

.

} WP

PC

WP

PC

} WP

} PC

} WP

} PC

iI"

~

}
}

.?,

WP

PC

}
INTERRUPT 1
VECTOR

}
DECREMENTER
VECTOR

}
INTERRUPT 2
VECTOR

}
XOP4
VECTOR

} "'" VECTOR

} AAOG'~
MEM()RY

} WP = 8300

} WP = 8320

} IVP = 8340

} IVP = B360

Figure L-l. TMS 9940 Memory Map

L-2

EPROM/ROM
(204B BYTES)

RAM ADDRESS SPACE
(128 BYTES)

Texas Instruments Incorporated

~~-------------------~ 943441-9701

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

STO ST2 ST3 ST4 ST5 ~NOT ST7
ST14 ST15

STI NOT USED (=0) INTERRUPT
L> A> '" C 0 P SED DC MASK

Table L-l. Effect of TMS 9940 on Status Register

BIT NAME INSTRUCTION CONDITION TO SET BIT TO 1

STO LOGICAL C,CB If MSB(SA) = 1 and MSB(DA) = 0 or if
GREATER MSB(SA) = MSB(DA) and MSB of (DA) - (SA) = 1
THAN

CI If MSB(W) = 1 and MSB of lOP = 0, or if MSB(W) =
MSB of OP and MSB of {lOP - (W)} = 1

ABS If (SA) -=1= 0
All Others If result -=1= 0

STl ARITHMETIC C,CB If MSB(SA) = 0 and MSB(DA) = 1, or if MSB(SA) =

GREATER MSB(DA) and MSB of (DA) - (SA) = 1
THAN CI If MSB(W) = 0 and MSB of lOP = 1, or if MSB(W) =

MSB of OP and MSB of IOP-(W) = 1
ABS If MSB(SA) = 0 and (SA) -=1= 0
All Others If MSB of result = 0 and result -=1= 0

ST2 EQUAL C,CB If (SA) = (DA)

CI If(W) = lOP
COC If (SA) and (DA) = 0
CZC If (SA) and (DA) = 0
TB IfCRUIN = 1
ABS If (SA) = 0
All Others If result = 0

ST3 CARRY A,AB,ABS,AI,DEC,
DECT,INC,INCT, If CARRY OUT = 1
NEG,S,SB
DCA If most significant digit was BCD corrected
DCS If most significant digit was not BCD corrected
SLA,SRA,SRC ,SRL If last bit shifted out = 1

ST4 OVERFLOW A,AB If MSB(SA) = MSB(DA) and MSB of result -=l=MSB(DA)
AI If MSB(W) = MSB of lOP & MSB of result -=1= MSB(W)

S,SB If MSB(SA) -=1= MSB(DA) and MSB of result -=1= MSB(DA)
DEC,DECT If MSB(SA) = 1 and MSB of result = 0
INC,INCT If MSB(SA) = 0 and MSB of result = 1

SAL If MSB changes during shift
DlV If MSB(SA) = 0 and MSB(DA) = 1, or if MSB(SA) =

MSB(DA) and MSB of (DA) - (SA) = 0

ABS,NEG If (SA) = 8000 16

ST5 PARITY CBMOVB If (SA) has odd number of 1 's
LDCR,STCR If 1 ';';;C ';';;8 and (SA) has odd number of l's

AB,SB,SOCB,SZCB, If result has odd number of 1 's

DCA,DCS

L-3 Texas Instruments Incorporated

~ ____ 9_43_4_4_1_~_70_1 ____________________________ ~ __________________ ___

BIT

ST7

Table L-l. Effect ofTMS 9940 on Status Register (Continued)

NAME

DIGIT
CARRY

INSTRUCTION

A,ABS,AI,DEC,
DECT,INC,INCT
NEG,S
AB,DCA,DCS,SB

CONDITION TO SET BIT TO 1

If carry out of least significant BCD Digit of most
significant byte = 1

If carry out of least significant BCD Digit = 1

STl4·STl5 INTERRUPT
MASK

LIIM
LIMI
RTWP

If corresponding bit of S is 1
If corresponding bit ofIOPis 1
If correspc;mding bit of WR 15 is 1

L.4 TMS 9940 INSTRUCTION SET
The instruction set of the TMS 9940 microcomputer is identica,l to that of the TMS 9900 with
the following exceptions:

• Instructions deleted:

RSET
LREX
CKON
CKOF

• Instructions added:

LIIM
DCA
DCS

Each additional instruction is described in the following paragraphs in the same syntax
conventions used throughout the Assembly Language Programmer's Guide.

NOTE

The additional instructions of the TMS 9940 are implemented using
instruction operation codes 2COO 16 through 2CFF 16 which cor­
respond to the TMS 9900 instructions XOP 0 through XOP 4. In
the TMS 9940, instructions XOP o through XOP 4 may not be used.

L.4.1 LOAD INTERRUPT MASK LIIM.

Syntax definition:

[<label>] b ... LIIMb ... <iop>b ... [<comment>]

Example:

LABEL LIIM I MASK LEVEL 2 AND 3

L-4 Texas Instruments Incorporated

~ ____ 9_4_3_44_1_~_7_0_1 __ __

Definition: Place the low order two bits (bits 14 and 15) of the instruction in the least significant
two bits of the status register. The remaining bits of the status register (bits 0 through 13) are not
affected.

Status bits affected: Interrupt mask.

° 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ST14 ST15
STO ST1 ST2 ST3 ST4 ST5

UNOT ST7 NOT USED (0=0) INTERRUPT
L> A> '" C 0 P SED DC MASK

• •
Execution results: The two least significant bits of the instruction code are placed into the
interrupt mask, the two least significant bits of the ST register.

Application notes: Use the LIIM instruction to initialize the interrupt mask for a particular level
of interrupt to be accepted. For example, the instruction

LIIM 2

sets the interrupt mask to level 2 and enables interrupts at levels 0, 1, and 2.

Op Code: 2C80

Addressing mode: Format VIII

Format:

o I 2 '14 5 • 7 8 9 10 ''1'2'' 14 15

~
INTERRUPT MASK

L.4.2. DECIMAL CORRECT ADDmON DCA.

Syntax de/intion:

[<label>] b ... DCAb ... <gas>'I> ... [<comment>]

Example:

LABEL DCA @RESULT DECIMAL CORRECT FOR BCD ADDITION

Definition: The byte specified by the source operand is corrected to form two BCD digits as
shown in table L-2. The result is then compared to zero and the status register set to indicate the
result of the comparison. The carry bit is set if the most significant digit was BCD corrected.
If the result has an odd number of ones, the parity bit is set. The digit carry bit is set if carry
out of least significant BCD digit was a one.

L-S Texas Instruments Incorporated

Jd75\ .. ______ _ ~ 943441-9701

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, parity, and digit
carry.

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

STO STI ST2 ST3 ST4 ST5 NOT ST7 STl4 ST15
NOT USED (=0) INTERRUPT

L> A> = C 0 P USED DC MASK

• • • • • •
Execution results: See table L-2.

Application notes: Use the DCA instruction to aid in BCD addition. For example, if the high
order bytes of RO and Rlcontain BCD (RO=0400, Rl=0900), then the code to perform a BCD
add with the result in RI is:

AB RO,Rl

DCA Rl

Opcode: 2COO

ADD BYTE
(INTERMEDIATE RESULT IN Rl IS NOW ODOO)
DECIMAL CORRECT FOR BCD ADDITION
(RESULT IN Rl IS 1300)

Addressing mode: Format VI

Format: I: I: ,: ,: 1 ~ ,~ ,: ,: I: ,: I
10 11 12 13 14 15

i

1
i i i

Ts S

Table L-2. Function of DCA Instruction (Assume the Specified Byte
Contains Two BCD Digits, X and Y)

0 7

I x y I
MSB LSB

Byte Before Execution Byte After DCA

Status Bits BCD Digits Status Bits

C DC X Y C DC X

0 0 X<10 Y<10 0 0 X
0 1 X<lO Y<10 0 0 X
0 0 X<9 ~10 0 1 X+l
1 0 X<10 Y<10 1 0 X+6
1 1 X<10 Y<10 1 0 X+6
1 0 X<10 ~10 1 1 X+7
0 0 ~1O Y<10 0 X+6
0 1 ~1O Y<lO 1 0 X+6
0 0 ~ ~10 1 X+7

BCD Digits

Y

Y
Y+6
Y+6
Y
Y+6
Y+6
Y
Y+6
Y+6

L-6 Texas Instruments Incorporated

J17.5\ ______ _ ~ 943441-9701

L.4.3 DECIMAL CORRECT SUBTRACTION DCS.

Syntax defintion:

[<label>] b ... DCSb ... <gas>b ... [<comment>]

Example:

LABEL DCS @RESULT DECIMAL CORRECT FOR BCD SUBTRACTION

Definition: The byte specified by the source operand is corrected to form two BCD digits as
shown in table L-2. The result is then compared to zero and the status register set to indicate the
result of the comparison. The carry bit is set if the most significant digit was not BCD corrected.
If the result has an odd number of ones, the parity bit is set. The digit carry bit is set if carry out
of least significant BCD digit was a one.

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, parity, and digit
carry.

o 2 3 4 5 6 7 8 9 10 11 1 2. 13 14 15

ST14 ST15
STO STl ST2 ST3 ST4 ST5 NOT ST7 NOT USED (~O) INTERRUPT
L> A> = C 0 P USED DC MASK

& & & & & &

Execution results: See table L-3.

Application notes: Use the DCS instruction to aid in BCD subtraction. For example, if the high
order bytes of RO and RI contain BCD (RO=0400, RI=1300), then the code to perform a BCD
subtract with the result in R I is:

SB RO,RI

DCS RI

Op Code: 2C40

SUBTRACT BYTE
(INTERMEDIATE RESULT IN R 1 IS NOW OFOO)
DECIMAL CORRECT FOR BCD SUBTRACTION
(RESULT IN RI IS 0900)

Addressing mode: Format VI

Format:

o

: 121 : 141 ~ I : I ' I : I ~ I ';:'
12 13 14 15

I I 5 I

L-7 Texas Instruments Incorporated

J17S\ ______ _ ~ 943441-9701

C

0
0
1
1

Table L-3. Function of DCS Instruction (Assume the Specified
Byte Contains Two BCD Digits)

0 7

I x y I
MSB LSB

Byte Before Execution Byte After DCS

Status Bits BCD Digits Status Bits BCD Digits

DC X Y C DC X Y

0 X Y 0 X+lO Y+I0
1 X Y 0 0 X+lO Y
0 X Y 1 1 X Y+lO

X Y 1 0 X Y

L-8 Texas Instruments Incorporated

)217)\ ______ _ ~ 943441-9701

ALPHABETICAL INDEX

Texas Instruments Incorporated

~-------------------
ALPHABETICAL INDEX

INTRODUCTION

The following index lists key words and concepts from the subject material of the manual
together with the area(s) in the manual that supply major coverage of the listed concept. The
numbers along the right side of the listing reference the following manual areas:

• Sections - References to Sections of the manual appear as "Section x" with the symbol
x representing any numeric quantity.

• Appendixes - References to Appendixes of the manual appear as "Appendix y" with the
symbol y representing any capital letter.

• Paragraphs - References to paragraphs of the manual appear as a series of alphanumeric
or numeric characters punctuated with decimal points. Only the first character of the
string may be a letter; all subsequent characters are numbers. The first character refers
to the section or appendix of the manual in which the paragraph is found.

• Tables _. References to tables in the manual are represented by the capital letter T
followed immediately by another alphanumeric character (representing the section or
appendix of the manual containing the table). The second character is followed by a
dash (-) and a number:

Tx-yy

• Figures - References to figures in the manual are represented by the capital letter F
followed immediately by another alphanumeric character (representing the section or
appendix of the manual containing the figure). The second character is followed by a
dash (-) and a number:

Fx-yy

• Other entries in the Index - References to other entries in the index are preceded by
the word "See" followed by the referenced entry.

Index-l Texas Instruments Incorporated

J17S\ ______ _ ~ 943441-9701

A3.10
AB3.11
ABS 3.21,3.89.1
Absolute Value3.21
Add Bytes .3.11
Add Immediate3.12
Add Words3.10
Address Development F2·7
Addressing:

Autoincrement 3.2.3
Formats 3.7
Indirect. 3.2.2
Instruction T3-2
Modes 3.2, T3·1
Register 3.2.1
Summary 3.6
Techniques, Symbolic 6.4.10

AI3.12
Alphabetical Instruction Table Appendix E
AND Immediate3.70
ANDI3.70
AORG 4.2.1
Arithmetic:

Greater Than 2.4.2
Instructions 3.9
Operators 2.8.2
Shift Right. 3.89.2.2

ASMELS 6.4.7
ASMEND 6.4.7
ASMIF 6.4.7
Assembler 6.1

Block, Macro F7·1
Cross 6.3
Directive Table Appendix F
Directive to Support Macro

Libraries 7.6
Macro, Operating the 9.2
Macro Translator Interface with. 7.3
Output Directives 4.3
SDSMAC 6.4

Assembly Language:
Application . 1.2
Definition . 1.1

Assembly Directives, Conditional 6.4.7
Assembly·Time Constants 2.9.4
Attribute Component Keywords, Symbol 7.5.6
Attribute Keyword:

Parameter 7.5.7
Symbol. T7·3
Parameter . T7-4

Attribute, Symbol T9·5
Autoincrement Addressing 3.2.3

B3.24
Batch Mode 9.2.2
BES 4.2.5
Bit Summary, Status 2.4.8
Bit, Test3.56
Bits, Table Status T2·1
BL 3.25
Block:

Ending Symbol 4.2.5
Macro Assembler. F7·1
Starting Symbol 4.2.4

BLWP3.26
Boundary, Word 4.2.6
Branch3 .24
Branch and Link3 .25
Branch and Load Pointer3 .26
BSS 4.2.4
BUNLST 6.4.4,9.2
BYTE 4.4.1
Byte 4.4.1

Compare 3.44
Initialize . 4.4.1
Move :3.65
Organization 2.1
Set Ones Corresponding3.77
Swap3.66

C3.48
-Capability, Relocation 8.2
Carry 2.4.4

Jump On3.37
Jump if Not3.38

CB 3.44
CD3.43
CEND 4.2.10
Change Object Code 10.5.5
Character Constants 2.9.3
Character Set 2.7.1, Appendix A
Character String 2.13
CI.3.45
Circular Shift Right 3.84,3.89.2.3
CKOF3.51
CKON3.52
CKON/CKOF 3.89.7.2
Clear. 3.74
Clock:

Off3.51
On 3.52

CLR3.74
COC3.46
Codes SDSMAC, Error T9·2
Comment Field 2.7.5
Comment Segment 4.2.9
Common Segment End 4.2.10
Common:

Workspace Subroutines 3.89.4.1
Workspace Subroutine Example F3·1

Compare:
Bytes3.44
Immediate3.45
Instructions3.42
Ones3.46
Words 3.43
Zeros3.47

Completion Messages. e •• 9.2.1
Computer Workspace F2·6
Conditional Assembly Directives 6.4.8
Constants 2.9
Constants and Operators 7.5.3
Constants Initialize 4.4
Context Switch Subroutine3.89.4.2, F3·3,

F34, F3·5
Control and CRU Instructions 3.48
Controls, Special 3.89.7
COPY 6.4.7

Index-2 Texas Instruments Incorporated

~~-------------------~ 943441-9701

Counter Directives, Location 4.2
Cross Assembler 6.3,10.3.2
Cross Assembler Error Messages T10-2
Cross Reference Listing 10.4,FlO-1
CRU:

Bit Addressing . 3.4
Control and3 .48
I/O Instructions 3.89.8.1
Input/Output 3.89.8
Interface Example. Appendix H
Load 3.57
Store3.58

CSEG 4.2.9
CZC3.47

DATA 4.4.2
Data Segment 4.2.7
Data Segment End 4.2.8
Data to Subroutine, Passing 3.89.4.3
DCA Appendix L
DCS Appendix L
DEC3.19
Decimal Correct:

Addition Appendix L
Subtraction Appendix L

Decimal Integers Constants 2.9.1
Decrement3.19

By Two3.20,3.89.3.3
Instruction 3.89.3.2

Decrementing,lncrementing and 3.89.3
DECT3.20
DEF 4.5.1
Denne:

Assembly-Time Constant 4.4.4
Extended Operation 4.6.1
Operation 6.5.9

Dennition Directive, External 8.3.2
DEND 4.2.8
Description,lnstruction. 3.8
Development,Address F2-7
Directive:

External,Dennition 4.5.1
LIBIN 7.6.2
LIBOUT 7.6.1

Directive Table,Assembler Appendix F
Directives to Support Macro Libraries,

Assembler . 7.6
Distance Addressing,Long.3 .86
DIV3.16
Divide3.16
DORG 4.2.3
DSEG , 4.2.7
DUNLST 6.4.4,9.2
DXOP 4.6.1

Eject,Page 4.3.6
END 4.6.2

Common Segment. 4.2.10
Program 4.6.2

Segment 4.2.12
Ending With Symbol, Block 4.2.5
Extended Operation F3-8

EQU 4.4.4
Equal 2.4.3
Error:

Codes T10-2
Messages ,10-3

Cross Assembler 10.3.2
SDSMAC 10.3.3
TXMIRA 10.3.4

Error Interrupt Logic CRU
Bit Assignments T3-6

Error TXMIRA:
Fatal. TlO-4
Nonfatal T1 0-5

EVEN 4.2.6
Example:

Common Workspace Subroutine F3-1
Context Switch Subroutine. F3-3
Extend Operation F3-8,F3-9
External Reference F 1 0-3
Interrupt Processing F3-6
Object Code FI0-2
Program Appendix J

Examples,Macro 7.7
Exclusive OR3.72
Execute 3.41
EXIT Macro 7.7.2
Expressions 2.8

Parentheses in 6.4.1
Extended Operation 2.4.7,3.85

3.89.6 ,F3-8 ,F3-9
Denne 4.6.1

External:
Definition Directive 8.3.2
Definitions 4.5.1
Reference 4.5.2, F9-3
Reference Directive 8.3.1

Fatal Errors TXMIRA T10-4
Format:

Cross Reference Listing F 1 0-1
Formats,Addressing 3.7
I. Instruction 3.7.1
II. Instruction 3.7.2,3.7.3
III. Instruction 3.7.4
IV. Instruction 3.7.5
V. Instruction 3.7.6
VI. Instruction 3.7.7
VII. Instruction 3.7.8
VIII. Instruction 3.7.9
IX. Instruction3.7.10,3.7.11
X. Instruction 3.7.12
Machine Instruction. F 1 0-5
Object Code Listing FlO-6
Source Statements F2-8

FUNL 6.4.5,9.2

GENCMT, Macro 7.7.5
General Interrupt Structure 3.89.5.1
GOSUB, Macro 7.7.I

Hexadecimal :
Integers Constants 2.9.2
Instruction Table Appendix D

Index-3 Texas Instruments Incorporated

)2175\ ______ _ ~ 943441-9701

I/O Instructions, CRU 3.89.8.1 JHE3.31
ID,Macro ','" 7.7.3 JL3.30
Identifier Directive, Program 8.4 JLE 3.32
Identifier, Program 4.3.2 JLT3.34
Idle3.54 JMP3.28
IDLE 3.50 JNC3.38
IDT 4.3.2 JNE3.36
Immediate: JNO3.39

Addressing. 3.5
Compare3.45

JOC3.37
JOP 3.40

Load3.60 Jump and Branch Instructions 3.23
INC3.17 Jump if:
Increment3.17 Equal3.35

By Two3.18 Greater3.33
Instruction 3.89.3.1 High or Equal3.32

Incrementing and Decrementing 3.89.3
INCT3.18

Less3.34
Low or Equal3.32

Indexed Memory Addressing3.24 Not Equal3.36
Indirect Addressing 3.2.2
Initialize:

Odd Parity3.40
Jump if Logical:

Byte 4.4.1 High3.29
Constants 4.4 Low3.30
Text 4.4.3 Jump if Not:
Word 4.4.2 Carry3.38

Input/Output, CRU 3.89.8 Overflow3.39
Instruction: Jump on Carry3.37

Addressing T3-2
Arithmetic. 3.9 Keyword:
Compare3.42
Control and CRU ,3.48

Parameter Attribute 7.5.7
Symbol Attribute Component 7.5.6

Decrement 3.89.3.2
Description 3.8 Label Field 2.7.2
Jump and Branch3.23
Load and Move3.59

Label . 7.5.1
Language:

Logical3 .69
Long Distance Addressing3 .86
Pseudo Section V
Table, Hexadecimal Appendix D
Table Appendix B
TMS 9940 Appendix L
Workspace Register Shift3.80

Instructions, Special Control:
CKON/CKOF 3.89.7.2
LREX 3.89.7.1

Macro 7.5
Language Format, Machine 9.5.2
Language Table, Macro '. . . Appendix G
LDCR 3.57

Example 3.89.8.5
LDD3.88
LDS3.87
Left Arithmetic Shift 3.82,3.89.2.1
LI.3.60
LIBIN Directive 7.6.2

RESET 3.89.7.3 LIBOUT Directive 7.6.1
X 3.89.7.4 Library, Macro . 7.4

Interface Example:
CRU Appendix H
TILINE Appendix I

Interrupt 3.89.5
Mask T3-5

Library Management, Macro 7.6.3
LIIM Appendix L
LIM!.3.61
Link, Branch and3.25
Linkage Between Program Directive 4.5

Mask Immediate, Load3.61
Predefined 3.89.5.3

Linking Program . 8.3
Modules 8.5

Processing 3.89.5.4, F3-6, F3-7
Sequence 3.89.5.2
Structure, General 3.89.5.1
Vector Addresses T34

LIST 4.3.4
Listing:

Object Code 9.5.4, F9-6
Source 9.2

INV3.73 LMF3.63
Invert3.73 Load and Move Instructions 3.59

JEQ ,3.35
JGT3.33
JH3.29

Index-4 Texas Instruments Incorporated

fln5\ ______ _ ~ 943441-9701

Load:
CRU3.57
Immediate3.60
Interrupt Mask Appendix L
Interrupt Mask Immediate3.61
Memory Map File3 .63
Or Restart Execution3.53
Workspace Pointer Immediate3.62

LOAD 4.5.4
Location Counter Directives 4.2
Logical:

Greater Than 2.4.1
Instructions 3.69
Operators 6.4.3
Shift Right. 3.83,3.89.2.4

Long Distance Addressing Instructions3 .86
LREX 3.53,3.89.7.1
LWPI3.62

Machine Instruction Formats FlO-4
Machine Language Format 10.5.2
Machine Registers, TMS 9940 Appendix L
Macro:

Assembler Block Diagram F7-l
Examples 7.7
EXIT 7.7.2
GENCMT 7.7.5
GOSUB 7.7.1
ID 7.7.3
Language Elements 7.1, 7.5, 7.6
Language Table. Appendix G
Library 7.4, 7.5
Library Management 7.6.3
LISTS 7.7.8
LOAD 7.7.6
Processing . 7.2
Symbol Table 7.5.4.2
TABLE 7.7.7
Translator Interface with Assembler 7.3
Unique 7.7.4
Verb:

$ASG 7.5.11
$CALL 7.5.15
$ELSE 7.5.17
$END 7.5.19
$ENDIF . 7.5.18
$EXIT 7.5.14
$GOTO 7.5.13
$IF 7.5.16
$MACRO 7.5.9
$NAME 7.5.12
$VAR 7.5.10

Mask, Interrupt. T3-5
Memory:

Byte F2-l
Map F2-3
TMS 9940 Appendix L
Word F2-2

Memory Map File, Load 3.63
Memory Organization 2.5
Message Completion 9.2.1
Message, Error10.3
Mode, Privileged 2.6
Model Statements 7.5.5

Modes, Addressing 3.2, T3-1
MOV3.64
MOVB3.65
Move:

Byte3.65
Word 3.64

MPY 3.15
Multiply3.15
MUNLST 6.4.4, 9.2

NEG3.22
Negate3.22
No Operation 5.2
NOLIST 4.3.5
NOP 5.2
Numerical Tables. Appendix K

OBJ 4.3.1
Object Code 10.5, F10-2

Change . 10.5.5
Example FlO-2
Listing. 10.5.4
Listing Format FlO-5

Odd Parity 2.4.6
Off, Clock3 .51
On, Clock3.52
One:

Set CRU Bit to Logic3.54
Set to "3.75

Ones Corresponding:
Byte, Set3.77
Compare3.46
Set3.76

Operand Field 2.7.4
Operation:

Extend ". F3-8
Extended 3.85,3.89.6, F3-9
Field 2.7.3
No 5.2

Operators:
Constants and 7.5.3

OPTION 4.3.1
OR, Exclusive3.72
OR Immediate3.71
Organization, Program Appendix C

Word F2-1
ORI3.71
Output Directives, Assembler. 4.3
Output Options4.3.1, 6.4.5
Overflow 2.4.5

PAGE 4.3.6
Page Eject ... ',' 4.3.6
Page Title 4.3.3
Parameter . 7.5.4.1

Attribute Keywords 7.5.7, T7-4
Parentheses in Expression " 6.4.1
Passing Data to Subroutine 3.89.4.3
PC Contents after BL Instruction. F3-2
PEND 4.2.12
Pointer, Workspace 6.4.5
Predefined Interrupts 3;89.5.3
Predefined Symbols 2.11
Privileged Mode 2.6

Index-S Texas Instruments Incorporated

~~-~----------------~ 943441-9701

Procedure Appendix C Sequence, Interrupts 3.89.5.2
Processing: Set, Character. Appendix A

Interrupts 3.89.5.4, F3-6, F3-7 Set CRU Bit to Logic:
Macros 7.2 One3.45

Program: Zero3.55
End 4.6.2 Set:
Example Appendix J Byte3.77
Identifier 4.3.2 Ones Corresponding3.76
Identifier Directive 8.4 Maximum Macro Nesting Level 6.4.11
Linking : 8.3 to One _3.75
Modules, linking 8.5
Organization ... -............... Appendix C
Segment 4.2.11
Segment End 4.2.12

Programming Examples3.89
Prototyping System Assembler. 6.2
PSEG 4.2.11

Zeros Corresponding3.78
Zeros Corresponding Byte3.79

SETO3.75
SETMNL 6.4.11
Shift 3.89.2

Left Arithmetic 3.82,3.89.2.1
Right Arithmetic 3.81, 3.89.2.2

Pseudo-instructions . 5.1 Right Circular. 3.84,3.89.2.3
PX9ASM Error Codes10.2 Right Logical 3.83,3.89.2.4

SLA3.82
Qualifiers, Variable 7.5.4.3, T7-1, T7-2 SOC3.76

SOCB3.77
RationalOperators 6.4.4
Reentrant Programming3.89.10, F3-10
REF 4.5.2

Source:
List. 4.3.4
listing1 0.2

Reference listing, Cross F10-1
Reference Directives, External 8.3.1

Statement Format 2.7, F2-8
Special Controls 3.89.7

Reference, External 4.5.2, FlO-3
Register:

SRA 3.81
SRC3.84

Addressing 3.2.1 SREF 4.5.3
Indirect 3.2.5 SRL3.83
Shift, Workspace3.80 Starting with Symbol, Block 4.2.4
Status F24, F2-5 Statement Format, Source 2.7, F2-8

TMS 9940 Appendix L Statements:
Relocatable Origin 4.2.2,4.2.3 Model 7.5.5
Relocation Capability 8.2 Status:
Reset 3.49,3.89.7.3 Bit Summary 2.4.8
Restart, Load or3.53 Bits, Table T2-1
Return 5.3 Bits Tested T3-3

with Pointer 3.27 Register. 2.4, F24, F2-5
Right: TMS 9940 Appendix L

Arithmetic, Shift. 3.81,6.4.2 Store3.67
Circular, Shift.3 .84 STCR3.58
Logical, Shift3.83 Example 3.89.86
Shift Operator 6.4.2 Store:

RORG 4.2.2 CRU3.58
RSET 3.49,3.89.7.3 Status3.67
RT 5.3 Workspace Pointer3.68
RTWP3.27 Strings 7.5.2

Character 2.13
S3.13 STST 3.67
SB3.14 STWP 3.68
SBO3.54 Subroutine 3~9.4

Example 3.89.8.2 Context:
SBZ3.55 Example . F3-3

Example 3.89.8.3 Switch F34, F3-5
SDSMAC 6.4 Subtract Bytes3.14

Error Messages 10.3.3 Subtract Words3.13
Output 10.2 Support Macro libraries 7.7
Warning Messages 10.3.4 Support Tags PX9ASM, TXMIRA. T9-6

Segment: Swap Bytes3.66
Common 4.2.9 Switch Subroutine Example,
End, Data 4.2.8 Context. 3.89.4.2, F3-3
End, Program 4.2.12 SWPB3.66
Program 4.2.11

Index-6 Texas Instruments Incorporated

~~-------------------~ 943441-9701

Symbol 2.10
Attribute Component Keywords 7.5.6,

T7-3

$END 7.5.19
$ENDIF 7.5.18
$EXIT 7.5.14

Attributes T10-6 $GOTO 7.5.13
Keyword 7.6.6
Macro 10.5.3

$IF 7.5.16
$MACRO 7.5.9

Table, Macro 7.5.4.2
Symbolic Addressing Techniques 6.4.12

$NAME 7.5.12
$VAR 7.5.10

Symbolic Memory Addressing 3.2.3
SYMT 4.3.1 Warning Messages, SDSMAC 10.3.4
System Assembler, Proto typing 6.2 Well-defined Expressions 2.8.1
SZC3.78 Word:
SZCB3.79 Boundary 4.2.6

Compare3.43
Table Status Bits T2-1 Initialize 4.4.2
Tables: Move3.64

Instruction Appendix B Organization 2.2, F2-1
Numerical Appendix K Parameter Attribute Key 7.5.7

Tags PX9ASM, TXMIRA, Support T10-7
TB3.56

Symbol Attribute Key T7-3
Workspace Appendix C

Example 3.89.8.4
Terms 2.12

Computer . F2-6
Pointer 6.4.6

Test Bit3.56 Pointer Immediate, Load3.62
Tested, Status Bits T3-3 .Pointer, Store. 3.68
Testing and Jump 3.89.1 Register Shift Instructions3 .80
TEXT 4.4.3 Subroutines, Common 3.89.4.1, F3-1
TILINE Input/Output 3.89.9 TMS 9940 Appendix L
TILINE Interface Example Appendix I WPNT 6.4.5
TITL 4.3.3
TMS 9940 Appendix L X 3.41,3.89.7.4
Transfer Vector. 2.3,6.4.10 XOP3.85
Translator Interface with Assembler, Vectors T3-6

Macro 7.3 XOR3.72
TUNLST 6.4.4,9.2 XREF 4.3.1
Two:

Decrement by 3.20,3.89.3.3
TXMlRA 6.2.1

Error Messages 10.3.5

Zero, Set CRU Bit to Logic3.55
Zeros, Compare3.47
Zeros Corresponding, Set3.78

Byte3.79
Unconditional Jump3.28
Unique 7.7.4
UNL 4.3.5

$ASG 7.5.l1
$CALL 7.5.15
$ELSE 7.5.17
$END 7.5.19

Value, Absolute3.21 $ENDIF 7.5.18
Variable Qualifiers 7.5.4.3, T7-1, T7-2 $EXIT 7.5.14
Vector Address, Interrupt T3-4
Vectors:

$GOTO 7.5.13
$IF 7.5.16

Transfer. 2.3,6.4.9
XOP T3-6

$MACRO 7.5.9
$NAME 7.5.12

Verbs 7.5.8 $VAR 7.5.10
$ASG 7.5.11
$CALL 7.5.15
$ELSE 7.5.17

Index-7/Index-8 Texas Instruments Incorporated

USER'S RESPONSE SHEET

Manual Title: Model 990 Computer TMS 9900 Microprocessor Assembly

Language Programmer's Guide (943441-9701)

Manual Date: 15 October 1978 Date of This Letter: ______ _

User's Name: ______________ _ Telephone: _________ _

Company: _______________ _ Office/Department: ______ _

Street Address: ____________________________ _

City/State/Zip Code: _________________________ _

Please list any discrepancy found in this manual by page, paragraph, figure, or table number in
the following space. If there are any other suggestions that you wish to make, feel free to
include them. Thank you.

Location in Manual Comment/Suggestion

NO POSTAGE NECESSARY IF MAILED IN U.S.A.
FOLD ON TWO LINES (LOCATED ON REVERSE SIDE), TAPE AND MAIL

FOLD

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY

TEXAS INSTRUMENTS INCORPORATED
DIGITAL SYSTEMS DIVISION

P.O. BOX 2909 • AUSTIN, TEXAS 78769

ATTN: TECHNICAL PUBLICATIONS
MS 2146

FOLD

FIRST CLASS

PERMIT NO. 7284

DALLAS, TEXAS

~ TEXAS INSTRUMENTS
INCORPORATED
DIGITAL SYSTEMS DIVISION

•".._ __ • ____ " "" ••• __ ••• __ _.t ____ _

