i' ‘r e

f)
TEXAS INSTRUMENTS
Improving Man’s Effectiveness Through Electronics
—)
-
B)
Model 990 Computer
TMS 9900 Microprocessor
Assembly Language Programmer’s Guide
MANUAL NO. 943441-9701
ORIGINAL ISSUE 1 JUNE 1974
REVISED 15 OCTOBER 1978
=

Digital Systems Division

(:) Texas Instruments Incorporated 1978
A1l Rights Reserved

The information and/or drawings set forth in this document and all rights in and
to inventions disclosed herein and patents which might be granted thereon disclos-
ing or employing the materials, methods, techniques or apparatus described herein
are the exclusive property of Texas Instruments Incorporated.

INSERT LATEST CHANGED PAGES DESTROY SUPERSEDED PAGES

LIST OF EFFECTIVE PAGES

Note: The portion of the text affected by the changes is

indicated by a vertical bar in the outer margins of
the page.

Model 990 Computer TMS9900 Microprocessor Assembly Language
Programmer’s Guide (943441-9701)

Original Issue e 1 June 1974
Revised e 15 October 1978 (ECN 446281)

Total number of pages in this publication is 366 consisting of the following:

o ROCE ST CROTE e ot
Cover 0 Appendix BDiv 0 Appendix IDiv......... 0
Effective Pages 0 B1-B14 0 F1-12 ... 0. o oL L. 0
fi-xii.. ... L, 0 Appendix CDiv 0 Appendix J Div. 0
L S 0 Cl1-C4............. 0 J1-J-8. L. 0
2-1-2-18. 0 AppendixDDiv 0 Appendix KDiv 0
3-1-3-120. 0 D1-D4............. 0 Kl1-K16............ 0
4-1-420............. 0 Appendix EDiv 0 Appendix LDiv 0
S-1-52. L. 0 E1-E4 0 L1-L8............. 0
6-1-6-14............. 0 Appendix FDiv 0 Alphabetical Index Div. . . .0
7-1-730. 0 F1-F4 0 Index-1 - Index-8.0
81-84.............. 0 Appendix G Div 0 User’s Response 0
9-1-98.............. 0 G1-G2............. 0 BusinessReply 0
10-1-1024........... 0 Appendix HDiv 0 CoverBlank 0
Appendix ADiv 0 H1-H6............. 0 Cover 0

o
{—%\@? 943441-9701

This manual describes the assembly language for the Model 990 Computer and the TMS 9900
microprocessor as implemented by PX9ASM, a one-pass assembler that executes under the Proto-
typing System PX990; by TXMIRA, a two-pass assembler that executes under TX990; by SDSMAC,
a two-pass assembler that executes under Disc Executive DX10; and by the Cross Assembler, a two-
pass assembler that is part of the Cross Support System. Except for a few differences that are
expressed in Appendix L, the TMS 9940 microcomputer uses the same assembly language as the
TMS 9900 microprocessor. However, the assembly language for the TMS 9940 microcomputer can
be implemented only by the TXMIRA and the SDSMAC assemblers.

PREFACE

This manual describes:
® Source statement formats and elements
® Addressing modes
® Assembler directives and pseudo-instructions
® Assembly instructions
® Macro language, supported by SDSMAC
® Assembler output
Appendixes contain:
® The character set
e Instruction tables
® Directive tables
® A macro language summary
® CRU and TILINE examples
® TMS 9940 programming considerations.

This manual assumes that the reader is familiar with the computer architecture and I/O capabilities
as described in the 990 Computer Family Systems Handbook.

The following documents contain additional information related to the assembly language:

Title Part Number
990 Computer Family Systems Handbook 945250-9701
Model 990 Computer Prototyping System 945255-9701

Operation Guide

iii
Texas Instruments Incorporated

943441-9701

Title Part Number
Model 990 Computer DX10 Operating System 946250-9704
Documentation, Volume 4 — Development
Operation
Model 990 Computer DX10 Operating System 9462509703
Documentation, Volume 3 — Application
Programming Guide
Model 990 Computer TX990 Operating 946259-9701
System Programmer’s Guide (Release 2)
Model 990 Computer Cross Support System 945252-9701
User’s Guide
Model 990 Computer TMS 9900 Microprocessor 945420-9701
Cross Support System Installation and Operation
Model 990 Computer Terminal Executive Development 946258-9701
System (TXDS) Programmer’s Guide
DX10 Operating System Production Operation 946250-9702
Guide
TMS 9940 16-Bit Microcomputer Data Manual *

* Available from:
Texas Instruments Incorporated
Microprocessor Marketing
Mail Station 653
P. O. Box 1443
Houston, Texas 77001

v Texas Instruments Incorporated

943441-9701

TABLE OF CONTENTS
Paragraph Title Page

SECTION 1. INTRODUCTION

Assembly Language Definition 1-1
1.2 Assembly Language Applicationo 1-1

SECTION II. GENERAL PROGRAMMING INFORMATION

2.1 Byte Organization L. L L. 2-1
2.2 Word Organization Lo o 2-1
2.3 Transfer Vectors L L L. L Lo 2-2
2.4 Status Register L L e e 22
24.1 Logical Greater Thano oo 24
242 Arithmetic Greater Than 24
243 Equal oL e e e e e e 2-4
2.4.4 Carry . . L L Lo e e e e e e e e e e e 24
2.4.5 Overflow L L e e e e e e e 2-4
2.4.6 Odd Parityo e e 2-5
2.4.7 Extended Operation L. Lo 2-5
24.8 Status Bit Summaryo 0oL Lo oL e e 2-5
2.5 Memory Organization L. Lo 2-5
2.6 Privileged Mode L e .2-10
2.7 Source Statement Format L. L. 2-10
2.7.1 Character Set L L e e e e e 2-11
2.7.2 Label Field L e e e 2-11
2.73 Operation Field Lo 2-11
2.74 Operand Fieldo 2-13
2.7.5 Comment Fieldo 2-13
2.8 Expressions oL L. L L L e e e e e e e 2-13
2.8.1 Well-Defined Expressions L. L0000 2-14
2.8.2 Arithmetic Operatorso e e e e 2-14
2.9 Constants L. L L e e e e e e e 2-15
29.1 Decimal Integer Constants L. Lo Lo o o 2-15
29.2 Hexadecimal Integer Constants 2-15
293 Character Constants oLl L e e e e e 2-15
29.4 Assembly-Time Constants 2-15
2.10 Symbols L L e e e e e e e e 2-15
2.11 Predefined Symbols L L L L L e 2-16
2.12 Terms Lo L e e e e 2-16
2.13 Character Strings L Lo e e e e 2-17

31 General L. L e e e e e e e e e 3-1
3.2 Addressing Modes L L L L L L e e e e 3-1
3.2.1 Workspace Register Addressing, 32
322 Workspace Register Indirect Addressing 32
3.23 Symbolic Memory Addressing L0 32
324 Indexed Memory Addressing L. oo 32
3.2.5 “Workspace Register Indirect Autoincrement Addressing 33

v Texas Instruments /ncorpo}'afed

943441-9701

TABLE OF CONTENTS (Continued)

Paragraph Title) Page
33 Program Counter Relative Addressing 33
34 CRU Bit Addressing e e e e 33
35 Immediate Addressing L. Lo Lo e e 34
3.6 Addressing Summary L L Lo L L Lo e e e e e e e e e 34
3.7 Addressing Formats e e e e e 3-6
3.7.1 Format I - Two Address Instructions 3-6
3.7.2 Format II - Jump Instructions 3-7
3.7.3 Format II - Bit I/O Instructions s e e e e e e e e e e e e 37
3.74 Format III - Logical Instructions 3-8
3.7.5 Format IV - CRU Instructions 3-8
3.7.6 Format V - Register Shift Instructions 39
3.7.7 Format VI - Single Address Instructions 3-10
3.7.8 Format VII - Control Instructions 3-10
3.79 Format VIII - Immediate Instructions 3-11
3.7.10 Format IX - Extended Operation Instruction 3-12
3.7.11 Format IX - Multiply and Divide Instruction 3-12
3.7.12 Format X - Memory Map File Instruction 3-13
3.8 Instruction Descriptions Lo Lo oo 3-13
39 Arithmetic Instructions L ..o 3-15
3.10 Add Words A . . L L L L L e e e e e e 3-15
3.11 Add Bytes AB L L e e 3-16
3.12 Add Immediate Al Lo e e e e 3-17
3.13 Subtract Words S L L Lo Lo e e e 3-18
3.14 Subtract Bytes SB. e e e e e e e e e e e 3-19
3.15 Multiply MPY e e 3-20
3.16 Divide DIV e e 321
3.17 Increment INC L e e 3-23
3.18 Increment By Two INCT 3-24
3.19 Decrement DECo Lo e e 3-25
3.20 Decrement By Two DECT v v v v .. 3-26
3.21 Absolute Value ABS L L L L 327
3.22 Negate NEG e e e e 3-28
3.23 Jump and Branch Instructions oL oL oL oL 3-29
3.24 Branch B e e e 3-30
3.25 Branch and Link BLo 3-31
3.26 Branch and Load Workspace Pointer BLWP 3-32
3.27 Return with Workspace Pointer RTWP 333
3.28 Unconditional Jump JMPo 3-34
3.29 Jump If Logical High JHo o 3-35
3.30 Jump If Logical Low JL L. e 3-36
3.31 Jump If High Or Equal JHE o o oo, 3-37
3.32 Jump If Low Or Equal JLEo oo 3-38
3.33 Jump If Greater Than JGT e e e e 3-39
3.34 Jump If Less Than JLT o 3-40
335 Jump If Equal JEQo e e e 3-41
3.36 Jump If Not Equal JNE L s 342
3.37 Jump On Carry JOC e e e e e e e e e e e 3443
3.38 Jump If No Carry JNC e e e e e e e e 3-44
3.39 Jump If No Overflow JNO o o o o o oo 3-45

vi ‘ Texas Instruments Incorporated

943441-9701

TABLE OF CONTENTS (Continued)

Paragraph Title Page
3.40 Jump If Odd Parity JOPo 3-46
341 Execute X oL L oL e e e 3-47
342 Compare Instructions L. oL .o e e e e e e e e 3-48
343 Compare Words C L Lo e e e e e e e 3-48
3.44 Compare Bytes CB L.l 3-49
3.45 Compare Immediate CI oL Lo 3-50
3.46 Compare Ones Corresponding COC 3-51
347 Compare Zeros Corresponding CZC oo 3-52
3.48 Control and CRU Instructionso 3-53
3.49 Reset RSET o oo e e e e 3-53
3.50 Idle IDLE oo e e e e e e e e e e e e 3-54
3.51 Clock Off CKOF o s i e e e e 3.55
3.52 Clock On CKON o o oo st e e e 3-56
3.53 Load or Restart Execution LREX 3-57
3.54 Set CRUBitto LogicOne SBOo 3-58
3.55 Set CRUBitto Logic ZeroSBZo 3-59
3.56 Test Bit TB o . . .o e e e 3-60
3.57 Load CRU LDCR o e 3-61
3.58 Store CRU STCR o . o 0 o o e e e e e 3-62
3.59 Load and Move Instructionso L oo Lo oL 3-63
3.60 Load Immediate LIo 3-63
3.61 Load Interrupt Mask Immediate LIMI 364
3.62 Load Wotkspace Pointer Immediate LWPI 3-65
3.63 Load Memory Map File LMF 3-66
3.64 Move Word MOV L e e e e e e e 3-68
3.65 Move Byte MOVB e e e e e e e e 3-69
3.66 Swap Bytes SWPB Lo e e e e e e e e 3-70
3.67 Store Status STST oL e e e e e 3-71
3.68 Store Workspace Pointer STWP00 0oL oo 3-72
3.69 Logical Instructions00 0L 0oL e e 372
3.70 AND Immediate ANDI e e e e e e e e e e e 3.73
3.71 OR Immediate ORIo 374
3.72 Exclusive OR XOR o o o Ll e 3475
3.73 Invert INV oL e e 3-76
3.74 Clear CLR o . o o o it et e e e e e e e e e e 377
3.75 SettoOne SETO e e e e e e e e 378
3.76 Set Ones Corresponding SOC oo 3-79
3.77 Set Ones Corresponding, Byte SOCB 3-80
3.78 Set Zeros Corresponding SZC Lo oo 3-81
3.79 Set Zeros Corresponding, Byte SZCB L. .o 3-82
3.80 Workspace Register Shift Instructions00 0oL 3-84
3.81 Shift Right Arithmetic SRAo 3-84
3.82 Shift Left Arithmetic SLA Lo 3-85
3.83 Shift Right Logical SRLo 3-86
3.84 Shift Right Circular SRC e e 3-87
3.85 Extended Operation XOP Lo 3-88
3.86 Long Distance Addressing Instructions oL oL 3-89
3.87 Long Distance Source LDS o Lo 3-89
3.88 Long Distance Destination LDD o000 390

vii Texas Instruments Incorporated

943441-9701

Paragraph

3:89
3.89.1
3.89.2
3.89.3
3.894
3.89.5
3.89.6
3.89.7
3.89.8
3.89.9
3.89.10

4.1
42
42.1
422
423
424
425
426
427
4238
429
4.2.10
4.2.11
4.2.12
43
43.1
432
433
434
435
43.6
4.4
44.1
442
443
444
45
45.1
452
453
4.5.4
46
46.1
46.2

TABLE OF CONTENTS (Continued)

Title Page

Programming Examples 0 ..o 0o 391
ABS Instruction L L. Lo e e e e e e e e 392
Shifting Instructions [393
Incrementing and Decrementingo 395
Subroutines L L L L L L e e e e e e e e e e 3-98
Interrupts L L e e e e e e e 3-103
Extended Operations 3-107
Special Control Instructions 3-110
CRU Input/Output e e e e e e 3-113
TILINE Input/Output e e e e e e e e e e e e e e 3-117
Re-Entrant Programming L. 3-117

SECTION IV. ASSEMBLER DIRECTIVES

Introduction oL L L L Lo e e e e e e e 4-1
Directives that Affect the Location Counter 4-1
Absolute Origin AORG i it i i e e 4-2
Relocatable Origin RORG 4-2
Dummy Origin DORG e 43
Block Starting with Symbol BSS Lo 4-5
Block Ending with Symbol BES 4-5
Word Boundary EVEN o 4-5
Data Segment DSEG 4-6
Data Segment End DEND, 4-7
Common Segment CSEG e e 4-7
Common Segment End CEND, 49
Program Segment PSEGo 49
Program Segment ENDPEND. oo 4-10
Directives that Affect the Assembler Qutput 4-11
Output Options o o e e e e e e e e e e 4-11
Program Identifier IDT, 4-11
Page Title TITL i i i i i i e e e e e e e e e 4-12
List Source LIST o o i i i e e e e e e e e e 4-13
No Source List UNL o i i i i i i i i e e e 4-13
Page Eject PAGE e e 4-13
Directives that Initialize Constants 4-14
Initialize Byte BYTE e e e e 4-14
Initialize Word DATA e e e e 4-14
Initialize Text TEXT o o i i i e e e e 4-15
Define Assembly-Time Constant EQU 4-15
Directives that Provide Linkage Between Programs 4-16
External Definition DEF 4-16
External Reference REF, 4-17
Secondary Extemal Reference SREF 4-17
Force Load LOAD« i i i vttt e e e 4-18
Miscellaneous Directives L L ..o e e e e 4-19
Define Extended Operation DXOP 4-19
Program End ENDo e e e 4-19

viii Texas Instruments Incorporated

943441-9701

TABLE OF CONTENTS (Continued)
Paragraph Title Page

SECTION V. PSEUDO-INSTRUCTIONS

5.1 L 1 ¢ | 5-1
52 No Operation NOP i it e ettt e et et ettt 5-1
53 ReturnRT.............. e e 5-1
SECTION VI. ASSEMBLERS
6.1 General e e e e e e e s 6-1
6.2 Prototyping System Assembler. e 6-1
6.2.1 Terminal Executive Development System Assembler 6-1
6.3 Cross Assembler e e e e e 6-1
64 Program Development System Assembler. i 6-2
64.1 Uses of Parenthesis in Expressions, i 6-3
64.2 Right Shift Operator et e e 6-3
64.3 Logical Operatorsin EXpressionsttt ittt it 64
6.4.4 Relational Operatorsin Expressions i, 6-4
6.4.5 OULPUL OPtionS. . & v vt et it ettt e ettt e et e e e e e e e 6-5
6.4.6 Workspace Pointer. e e 6-6
6.4.7 Copy Source File.ottt et e e e e e 6-6
648 Conditional Assembly Directivesttt 6-7
649 Define Operation.ottt it i et i e 6-10
6.4.10 Transfer Vector. Lo e e e e e e e 6-10
6.4.11 Set Maximum Macro Nesting Level i 6-11
6.4.12 Symbolic Addressing Techniques i 6-12

SECTION VII. MACRO LANGUAGE

7.1 General e e e e e e e e 7-1
7.2 Processing Of Macros . . . v v v it ittt ittt e e e e e e e e e 7-1
7.3 Macro Translator Interface withthe Assembler oL 7-2
7.4 1% 03 (00 51 1 2 7-2
7.5 Macro Languaget e e e e 7-3
7.5.1 1 7-3
7.5.2 I 31T 7-3
7.5.3 Constants and Operators. ot ittt ittt it it e et 7-3
754 Varableso e e e e e e 7-3
755 Model Statements ottt e i e e e e 77
7.5.6 Symbol Attribute Component Keywords. i i 7-8
7.5.7 Parameter Attribute Keywords. e 79
7.5.8 /=3 {1 79
7.59 EMACRO. . .t e e e e e e e 79
7.5.10 SV AR . L e e e e 7-13
7.5.11 BASG L e e e 7-13
7.5.12 SN AME. . .. e e e e e 7-15
7.5.13 BGOTO. . o e e e e e 7-15
7.5.14) 27 € P 7-15
7.5.15 BCALL . oL e e e e 7-16
7.5.16 Y 2 7-16
7.5.17 8] 2 I e 7-17

ix Digital Systems Division

943441-9701

TABLE OF CONTENTS (Continued)

Paragraph Title Page
7.5.18 SENDIF . .t e e e e e e e 7-17
7.5.19 SEN D . .o e e e e e e e e e 7-17
7.6 Assembler Directives to Support Macro Libraries. oo 7-18
7.6.1 LIBOUT DIreCtiVe . & v v vttt e e et e e e et et e et e e et et eeeaeeae e 7-18
7.6.2 LIBIN DITeCHVE . . o ot ittt et e it et ettt ettt e et it enee i e 7-18
763 Macro Library Management. i ittt i it ittt et e 7-19
7.7 Macro EXamplesot e e e e e e e et e 7-20
7.7.1 Macro GOSUB i e e e e e e e e e e e 7-20
7.72 Macro EXIT . . . ottt it e e e e e e e e e e e e e e 7-20
7.73 Macro DD . . . e e e e e e e 7-22
7.7.4 Macro UNIQUE it e e e ettt e et et ettt eesaenn 7-23
7.7.5 Macro GENCMTottt e et e ettt i et 7-24
7.7.6 Macro LOADo e e e e e e e e e 7-24
7.7.7 Macro TABLEottt e e e e e et 7-25
7.7.8 Macro LISTS . .t e e e e e e e e e 7-26

SECTION VIII. RELOCATABILITY AND PROGRAM LINKING

8.1 INtrodUCHION. . . . ittt it et e e e e e e e e 8-1
8.2 Relocation Capability.ttt i i e e e e e e e e 8-1
8.2.1 Relocatability of Source Statement Elements 8-1
83 Program LinKing i it e e e e e e e e, 8-2
8.3.1 External Reference Directives oo i ittt ittt et et et ettt e e 8-2
8.3.2 External Definition Directive. it ittt ittt it et ettt ettt 82
84 Program Identifier Directive i e 8-3
8.5 Linking Program Modules i e e 8-3

SECTION IX. OPERATION OF THE MACRO ASSEMBLER

9.1 General e e e e e e e e e e e 9-1
9.2 Operating the Macro Assembler e e e e e e e e e e e 9-1
9.2.1 Completion Messages v oo vttt ittt ettt e 94
9.2.2 Operating the Assembler in Batch Mode. e e e 94

SECTION X. ASSEMBLER OUTPUT

10.1 INtrodUCtion. . . . ittt e e e e e e 10-1
10.2 Source Listing. . . .o v ot it it i e e e e e 10-1
10.3 Error Messages . o o v vt ittt ettt e e et e e e e e e e e 10-3
10.3.1 PXOASM Error Codes. . . o o v vt ittt ettt e e et et et et et e e e e 10-3
1032 Cross ASSembler v it e e e e e e e e 10-5
10.3.3 SDSMAC Error Messages. . . o v o v v ittt ettt et e e et ee e ittt et 10-5
10.3.4 SDSMAC Warning Messages. « .« ¢ o v v v v vt et eeeeeee e on e eneneeenenenses 10-5
10.3.5 TXMIRA Error Messages. - . . . oottt ittt et et e e et e e et eae e -.10-13
104 Cross Reference Listingo ov v i ittt it ittt ettt e eeeaeeeenn 10-15
10.5 Object Code . . oottt et et i it e e e e e e e 10-15
10.5.1 Object Code Formatottt ittt ettt et 10-16
10.5.2 Machine Language Formatttt 10-20
105.3 Symbol Tableot e e e e e e e e 10-20
1054 Object Code Listing.ottt i e et e e et e 10-20
10.5.5 Procedures for Changing Object Codet tit ettt iee e, 10-22

X Digital Systems Division

[¢]

/]

943441-9701
APPENDIXES
Appendix Title Page
A Character Set oo it e e e e e A-1
B Instruction Tables e e e e B-1
C Program Organization. e C-1
D Hexadecimal Instruction Table. e D-1
E Alphabetical Instruction Table. e E-1
F Assembler Directive Table. F-1
G Macro Language Table e G-1
H CRU Interface EXample ottt e e e e e e e H-1
I TILINE Interface Example e I-1
J Example Program e e e e e J-1
K Numerical Tables.o e e e e K-1
L TMS 9940 Programming Considerations.ottt ittt e e e e L-1
LIST OF ILLUSTRATIONS
Figure Title Page
2-1 Memory Byte L L L e, 2-1
2-2 Memory Word L L Lo 2-1
2-3 Typical Memory Map for Model 990 Computer/TMS 9900 Microprocessor 2-3
24 Status Register, Model 990 Computer TMS 9900 24
2-5 Status Register, Model 990/10 with Map Option 2-4
2-6 Model 990 Computer Workspace 2-8
2-7 Address Development, Model 990/10 Map Option 2-9
2-8 Source Statement Formats 2-12
3-1 Common Workspace Subroutine Example 3-99
32 PC Contents after BL Instruction Execution 3-99
33 Context Switch Subroutine Example 3-100
34 After Execution of BLWP Instruction 3-101
3-5 After Return Using the RTWP Instruction 3-102
3-6 Interrupt Processing Example Lo oo 3-108
3-7 Memory Contents after Interrupt 3-108
3-8 Extend Operation Example 3-110
39 Extended Operation Example after Context Switch 3-111
3-10 Re-entrant Procedure for Process Control 3-118

xi Texas Instruments Incorporated

/]

943441-9701

LIST OF ILLUSTRATIONS (Continued)

Figure Title Page
-1 Macro Assembler Block Diagram 0oL 00000 oo 7-1
9-1 Macro Assembly Stream L L L L Lo e e 9-5
9-2 Macro Assembly Stream for Cards 9-6
10-1 Cross Reference Listing Format 10-15
10-2 Object Code Example Lo e e e e 10-16
10-3 External Reference Example '10-19
104 Machine Instruction Formatso oL, 10-21
10-5 Object Code Listing Format 0. . 10-22
LIST OF TABLES
Table Title Page
2-1 Status Bits Affected by Instructions L. ... 2-6
3-1 Addressing Modes L Lo 0oL L L e e e e e e 3-1
32 Instruction Addressing L . L L. e e e e e e e 3-5
33 Status Bits Tested by Instructions 3-29
34 Interrupt Vector Addresses L. Lo e e e e e 3-104
3-5 Interrupt Mask L L L Lo e e e e e 3-105
3-6 Error Interrupt Logic CRU Bit Assignments 3-107
3-7 XOP Vectors v v v v i e e e e e e e e e e e e e e e e e 3-109
7-1 Variable Qualifiers L. Lo e e e e e 7-5
7-2 Variable Qualifiers for Symbol Components 7-7
7-3 Symbol Attribute Keywordso e 7-8
7-4 Parameter Attribute Keywordso 7-9
9-1 Abnormal Completion Messagest e e e e e e 9-2
9-2 Completion Messages Ll i e e e e e e e e e e e e 94
10-1 Error Codes e e e e e e e e e e e 104
10-2 Cross Assembler Error Messageso e e e 10-7
10-3 SDSMAC Listing Errorso 109
104 TXMIRA Fatal Errors o e e e 10-14
10-5 TXMIRA Nonfatal Errors o v v i vt ot e e e e e e e e 10-14
10-6 Symbol Attributes L. L Lo L L e e e 10-15
10-7 990 Object Tags o v e e e e e e e e e e e e e 10-17
xii Texas Instruments Incorporated

943441-9701

SECTION I
INTRODUCTION

1.1 ASSEMBLY LANGUAGE DEFINITION

An assembly language is a computer-oriented language for writing programs. It consists of
mnemonic instructions and assembler directives. In assembly instructions, the user assigns symbolic
addresses to memory locations and specifies instructions by means of symbolic operation codes
called mnemonic operation codes. The user specifies instruction operands by means of symbolic
addresses, numbers, and expressions consisting of symbolic addresses and numbers. Assem-
bler directives control the process of making a machine language program from the assembly
language program, place data in the program, and assign symbols to values to be used in the
program. Assembler directives that place data in memory locations allow the user to assign
symbolic addresses to those locations.

An assembly language is computer-oriented in that the mnemonic operation codes correspond
directly with machine instructions. The chief advantage an assembly language offers over machine
language is that the symbols of assembly language are easier to use and easier to remember than
the zeros and ones of machine language. Other advantages are the use of expressions as operands
and the use of decimal numbers in expressions and as operands.

1.2 ASSEMBLY LANGUAGE APPLICATION

An assembly language program, called a source program, must be processed by an assembler to
obtain a machine language program that can be executed by the computer. Processing of a
source program is called assembling, because it consists of assembling the binary values that
correspond to the mnemonic operation code with the binary address information to form the
machine language instruction.

To illustrate the place of assembly language in the development of progréms, consider the
following steps in program development:

1. Define the problem.
2. Flowchart the solution to the problem.

3. Code the solution by writing assembly language statements (machine instructions and
assembler directives) that correspond to the steps of the flowchart.

4. Prepare the source program by writing the statements on the medium appropriate to
the installation; i.e., keypunch the statements if a card reader is to be used as input to
the assembler, etc.

5. Execute the assembler to assemble the machine language object code corresponding to
the source program.

6. Debug the resulting object code by loading and executing the object code and by making
corrections indicated by the results of executing the object code.

7. Repeat steps 5 and 6 until no further correction is required.

1-1 Texas /nstruments Incorporated

[¢]
(@ 943441-9701

The use of assembly language in program development relieves the programmer of the tedious
task of writing machine language instructions and keeping track of binary machine addresses
within the program.

1-2 Texas [nstruments Incorporated

[o]
J\@p 434419701

SECTION II

GENERAL PROGRAMMING INFORMATION

2.1 BYTE ORGANIZATION

Memory for the Model 990 Computer/TMS 9900 Microprocessor is addressed using byte
addresses. A byte consists of eight bits of memory, as shown in figure 2-1. The bits may
represent the states of eight independent two-valued quantities, or the configuration of a
character in a code used for input, output, or data transmission. The bits also may represent a
number which is interpreted either as a signed number in the range of -128 through +127 or as
an unsigned number in the range of O through 255. The 990 computers and TMS 9900 micro-
processor implements signed numbers in 2’s complement form.

The most significant bit (MSB) is designated bit 0, and the least significant bit (LSB) is
designated bit 7. A byte instruction may address any byte in memory.

2.2 WORD ORGANIZATION

A word in the memory for the Model 990 Computer/TMS 9900 Microprocessor consists of 16
bits, a byte at an even address and the following byte at an odd address. As shown in figure 2-2,
the most significant bit of a memory word is designated bit 0, and the least significant bit is
designated bit 15. A word may contain a computer instruction in machine language, a memory
address, the bit configurations of two characters, or a number. When a word contains a number,
the number may be interpreted as a signed number in the range of -32,768 through +32,767, or
as an unsigned number in the range of O through 65,535. (Signed numbers are implemented in
2’s complement form.)

Word boundaries are assigned to even-numbered addresses in memory. The even address byte
contains bits 0 through 7 of the word, and the odd address byte contains bits 8 through 15.
When word instructions address an odd byte, the word operand is the memory word consisting
of the addressed byte and the preceding even-numbered byte. This is the memory word that
would be accessed by the odd address minus one. For example, a memory address of 1023
used as a word address would access the same word as memory address 1022,.

NOTE

All instructions must begin on word boundaries. Instructions are
1, 2, or 3 words long.

(MSB) (LsSB)
T T T 1 ™
0o 1 2 3 4 5 6 7

Figure 2-1. Memory Byte

(MsSB) (LsB),
I T L L l 1 I 1 1] R 1 | 1]

(o] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(WORD BOUNDARY)

Figure 2-2. Memory Word

2-1 Texas Instruments Incorporated

[e]

2.3 TRANSFER VECTORS

A transfer vector is a pair of memory addresses in two consecutive words of memory. The first
word contains the address of a 16-word area of memory, called a workspace. The second word
contains the address of a subroutine entry point. The Model 990 Computer/TMS 9900 Micro-
processor uses a transfer vector in a type of transfer of control called a context switch. A
context switch places the contents of the first word of a transfer vector in the Workspace
Pointer (WP) register, making the workspace addressed by that word the active workspace. The
16 words of the active workspace become workspace registers O through 15, which are available
for use as general purpose registers, address registers, or index registers. A context switch places
the contents of the second word of a transfer vector in the Program Counter (PC), causing the
instruction at that address to be executed next.

A context switch transfers control to an interrupt subroutine whenever an interrupt occurs. The
transfer vectors for interrupt levels O through 15 are located in memory locations 0000,

through 003E,4, as shown in figure 2-3. The address of the first byte of the vector for an interrupt
level is the product of the level number times four.

The Model 990 Computer/TMS 9900 Microprocessor supports extended operations implemented
by subroutines. These extended operations are effectively additional instructions that may
perform user-defined functions. Up to 16 extended operations may be implemented. An
extended operation machine instruction results in a context switch to the specified extended
operation subroutine. The transfer vectors for extended operations O through 15 are located in
memory locations 0040,s through O07E,; as shown in figure 2-3. The address of the first byte
of the vector for an extended operation is the hexadecimal sum of the product of the extended
operation number times four, plus 40,.

In the Model 990/10 Computer, an extended operation may be implemented with user-supplied
hardware. When a hardware module is connected for an extended operation, no context switch
occurs for that operation, and the hardware performs the operation. Program execution con-
tinues when the operation has completed.

A context switch using the transfer vector at memory location FFFC,4 transfers control to a
subroutine to load or restart the computer. Execution of an LREX instruction or activation of a
switch on the control panel initiates the context switch.

A context switch to a user subroutine is performed by the BLWP instruction. The transfer vector
is placed at a user defined location in memory.

2.4 STATUS REGISTER

The configuration of the Status Register of the Model 990 Computer and the TMS 9900
Microprocessor is shown in figure 2-4. The configuration of the Status Register of the Model
990/10 Computer with map option is shown in figure 2-5. Bits O through 6 and 12 through 15
are identical, and are the bits that are set and reset by the machine instructions. These bits have
the following meanings:

® L>, bit 0 - Logical greater than
® A>, bit 1 - Arithmetic greater than
® EQ, bit 2 - Equal

® (, bit 3 - Carry

22 Texas Instruments Incorporated

943441-9701

MEMORY
AREA ADDRESS
DEFINITION (HEXADECIMAL.
0000 LEVEL 0 INTERRUPT
TRANSFER VECTOR
INTERRUPTS
VELS 0 THROUGH 7
0004 LEVEL 1 INTERRUPT
(MODEL 990/4) 0 TRANSFER VECTOR
0008
LEVELS 0 THROUGH 15 JL
(MODEL 990/10) £ p
~ M
0o03c LEVEL 15 INTERRUPT
TRANSFER VECTOR
0040 XOP 0 TRANSFER VECTOR
0044 XOP 1 TRANSFER VECTOR
oo4s | A
EXTENDED OPERATIONS ~ ~
0 THROUGH 15
oo7cC XOP 15 TRANSFER VECTOR
GENERAL MEMORY FOR ooso
EXECUTIVE , PROGRAMS ,
AND DATA
GENERAL .J
A MEMORY ~
~ AREA
F7FE
F800
TILINE PERIPHERAL
CONTROL. SPACE
(MODEL 990/10) "L
~ TILINE RS
T
FBFE
PROM FCoo
(MODEL 990/4,990/10) A PROGRAMMER PANEL 4L
N AND LOADER >
FFFA
LOAD OR RESTART FFFC
FUNCTION crrE RESTART TRANSFER VECTOR

(A)132200

Figure 2-3. Typical Memory Map for Model 990 Computer/TMS 9900 Microprocessor

® OV, bit 4 - Overflow

® OP, bit 5 - Odd parity

® X, bit 6 - Extended operation
® Bits 12-15 - Interrupt mask

Two of the reserved bits in the Model 990/4 Status Register are defined for the Status Register of
the Model 990/10. Bit 7, the PR bit, is set to one to inhibit execution of the privileged instructions.
When execution of a privileged instruction is attempted with the PR bit set to one, an illegal
instruction error occurs. Bit 7 must be set to zero-to execute these instructions. An additional
bit, bit 8, the Map File (MF) bit, specifies the memory map file for the memory mapping op-
tion. The memory mapping option provides access to memory addresses outside of the range

23 Texas Instruments-incorporated

943441-9701

8 9 10 11 12 13 14 15

7
777V 7Y 7V 7 T 1
L>|A>|EQ| c|OV|OP| X RESERVED INTERRUPT
DN, MASK

Figure 2-4. Status Register, Model 990 Computer TMS 9900

o 1 2 3 4 5 6 7 8 9 1011 12 13 14 15

T T 1
L>|a>|ea| c Jov|or| x |PR MF/ INTERRUPT
/ MASK

Figure 2-5. Status Register, Model 990/10 With Map Option

of addresses (32K words) of the address portions of instructions. When bit 8 is set to O, the six
mapping registers for map O are active. When bit 8 is set to I, the six mapping registers for
map 1 are active.

2.4.1 LOGICAL GREATER THAN. The logical greater than bit of the Status Register contains
the result of a comparison of words or bytes as unsigned binary numbers. In this comparison,
the most significant bits of words being compared represent 215, and the most significant bits of
bytes being compared represent 27 .

2.4.2 ARITHMETIC GREATER THAN. The arithmetic greater than bit of the Status Register
contains the result of a comparison of words or bytes as two’s complement numbers. In this
comparison, the most significant bits of words or bytes being compared represent the sign of the
number, zero for positive, or one for negative. For positive numbers, the remaining bits represent
the binary value. For negative numbers, the remaining bits represent the two’s complement of
the binary value.

2.4.3 EQUAL. The equal bit of the Status Register is set when the words or bytes being
compared are equal. Whether the comparison is that of unsigned binary numbers or two’s
complement numbers the significance of equality is the same.

2.4.4 CARRY. The carry bit of the Status Register is set by a carry out of the most significant
bit of a word or byte (sign bit) during arithmetic operations. The carry bit is used by the shift
operations to store the last bit shifted out of the workspace register being shifted.

2.4.5 OVERFLOW. The overflow bit of the Status Register is set when the result of an
arithmetic operation is too large or too small to be correctly represented in two’s complement
representation. In addition operations, the overflow bit is set when the most significant bits of
the operands are equal and the most significant bit of the result is not equal to the most
significant bit of the destination operand. In subtraction operations, the overflow bit is set when
the most significant bits of the operands are not equal, and the most significant bit of the result
is not equal to the most significant bit of the destination operand. For a divide operation, the

2-4 Texas Instruments Incorporated

[e]
{@ 943441-9701

overflow bit is set when the most significant sixteen bits of the dividend are greater than or
equal to the divisor. For an arithmetic left shift, the overflow bit is set if the most significant bit
of the workspace register being shifted changes value. For the absolute value and negate
instructions, the overflow bit is set when the source operand is the maximum negative value,
8000, 4.

2.4.6 ODD PARITY. The odd parity bit of the Status Register is set in byte operations when
the parity of the result is odd, and is reset when the parity is even. The parity of a byte is odd
when the number of bits having values of one is odd; when the number of bits having values of
one is even, the parity of the byte is even. The odd parity bit is equal to the least significant bit
of the sum of the bits in the byte.

2.4.7 EXTENDED OPERATION. The extended operation bit of the Status Register is set to
one when a software implemented extended operation is initiated. An extended operation is
initiated by a context switch using the transfer vector for the specified extended operation. After
the WP and PC have been set to the values in the transfer vector, the extended operation bit is
set.

2.4.8 STATUS BIT SUMMARY. Table 2-1 lists the instructions of the Model 990 Computer/
TMS 9900 Microprocessor instruction set and the status bits affected by each instruction. The
effectivity column contains A to indicate applicability to all Model 990 Computers and the
TMS 9900 Microprocessor. The column contains C to indicate applicability to all Model 990
Computers but not to the TMS 9900 Microprocessor. The column contains M to indicate
applicability only to Model 990/10 Computers with mapping option. The interrupt mask is ex-
plained in a subsequent paragraph.

2.5 MEMORY ORGANIZATION

Figure 2-3 shows a generalized memory map applicable to Model 990 Computer/TMS 9900
Microprocessor memories. The area of low-order memory from address O through 7F ;¢ is used
for interrupt and extended operation transfer vectors as previously described. Addresses reserved
for transfer vectors that are not used (interrupt levels 8 through 15 in Model 990/4 computers)
may be used for instructions and/or data. Since many memory configurations are available as
options, the programmer should ascertain the memory configuration for his system.

The area of memory from address 80,¢ through address F7FE 4 is available for workspaces, instruc-
tions, and data. Many users of Model 990 Computers will place an executive (PX990, TX990 or
DX10) in a portion of this area. The remainder of this area (as supplied) is available for
workspaces, instructions, and data for user programs. TMS 9900 users, and Model 990 Computer
users who do not use PX990, or TX990 or DX10 may use the entire area (as supplied).

Various types and sizes of memory are available for the TMS 9900 Microprocessor and the Model
990/4 Computer. Addressing is not necessarily continuous. Addresses may be assigned according
to the needs of an application, omitting addresses as appropriate.

In the Model 990/10 Computer, addresses F800,, through FBFE,s are reserved for TILINE
communication with peripheral devices. These addresses may be assigned to registers in control-
lers for direct memory access devices. Input/Output from or to these devices is performed using
any instruction that may be used to access memory. For 1/O, the address in the instruction must
be the TILINE address assigned to the appropriate register. An example of TILINE interface is
shown in Appendix I.

2.5 Texas Instruments Incorporated

943441-9701

5 T T e A (Y (RO SR S
m__________________
>
© X 1 X X L
O Lo
m__XXX_____________
p~_XXX_____________
D__XXX_____________
E
E A <0 << < <9< 9 <9<< << << < < < <
£
g 2
=g [52] =
> 2 > g v O Qo = 43} m O~ & O @ O L o
2 §5E2Ez2z8CgZad582228%
MM
&
<
MX
@ T T e e e e R T R
2
mP
R = R T T T T T A T R B R B
S
L O X X X X L ==
&
[T T e e e e B R T R R Y R R R
o
BOX X X X X L X X X L M K
DXXXXX___XXX_____XX
DXXXXX___XXX_____XX
b
H < < < < < < < < < < < 00 < < < < <
9
' = o Z =
e) a W O O ¢ LV L LW O
M M — SRR
mAAAMWBu&chmmamQDD
=
2-6 Texas Instruments Incorporated

Pp&/D10d109U/ S{UBWNISU[SDXE [

Table 2-1. Status Bits Affected by Instructions (Continued)

Mnemonic Eff. I> A> EQ C oV orP X Mnemonic Eff. > A> EQ C oV OoP X
LDCR A X X X - - 1 - SBZ A U
LDD M - - - - - = = SETO A P
LDS M - - - = = - = SLA A X X X X X - -
LI A X X X - - - - SoC A X X X - - - =
LIMI A e SOCB A X X X - - X -
LMF M - - - - - - = SRA A X X X X - - -
LREX C - - - - = = = SRC A X X X X - - -
LWPI A e SRL A X X X X - - -
MOV A X X X - - - - STCR A X X X - - 1 -
MOVB A X X X - - X - STST A e —
MPY A - - - = = = = STWP A - - - - - -
NEG A X X X X X - - SWPB A N
ORI A X X X - - - - SZC A X X X - - - -
RSET C - - - - - - = SZCB A X X X - - X -
RTWP A X X X X X X X TB A - - X - - - =
S A X X X X X - - X A 2 2 2 2 2 2 2
SB A X X X X X X - XOP A 2 2 2 2 2 2 2
SBO A - - - = = = = XOR A X X X - - - -

Notes: 1. When an LDCR or STCR instruction transfers eight bits or less, the OP bit is set or reset as in byte instructions. Otherwise
these instructions do not affect the OP bit.

2. The X instruction does not affect any status bit; the instruction executed by the X instruction sets status bits normally
for that instruction. When an XOP instruction is implemented by software, the XOP bit is set, and the subroutine sets
status bits normally.

10L6°1vvEY6

/]

943441-9701

In the Model 990 Computers supplied with the optional front panel/loader ROM, addresses
FC00,6 through FFFB,s are reserved for the Programmed Read Only Memory (PROM) which
contains the programmer panel program and a loader program. When the programmer panel is not
connected, the program transfers control to the loader program. Control passes to the programmer
panel program by a context switch using the transfer vector at address FFFC,.

Any 16-word area of memory may be assigned as a workspace, and becomes the active
workspace when the address of the first word of the area is placed in the WP register. Figure 2-6
shows a workspace, with those registers that have assigned functions identified in the figure.

Memory for the Model 990/10 Computer may contain more than 32K words, but the address
format addresses only 32K words directly. The mapping option is used to address memory locations
outside of the 32K word addressing cdpability. The mapping hardware has three 11-bit limit
registers and three 16-bit bias registers for each of the three map files. The mapped address is a
20-bit address, the sum of the 16-bit processor address and the contents of a bias register extended
to the right with five zeros. The least significant bit (which selects bytes) is ignored. The limit
registers contain the one’s complement of the limits, and determine which bias register is used.
When the 11 most significant bits of the 16-bit address are less than or equal to limit 1, bias
register 1 is used. When the same value is greater than limit 1 and less than or equal to limit 2, bias
register 2 is used. When the same value is greater than limit 2 and less than or equal to limit 3, bias
register 3 is used. When the same value is greater than limit 3, a mapping error interrupt occurs
and memory is not accessed.

MEMORY
WP REGISTER (HE;\(ID\gEEISNSIAL)

———-—-—Dosoo ggb‘;"_’r WR 0
0502 WR 1
0504 WR 2
0506 WR 3
0508 WR 4
050A WR 5
050C WR 6
050E WR 7
0510 WR 8
0512 WR 9
0514 WR 10
oste | EEFECTIVE ADORESS (OF) | we 11
0518 CRU BASE ADDRESS WR 12
051A WP REGISTER CONTENTS WR 13
051C PC CONTENTS WR 14
O051E ST REGISTER CONTENTS WR 15

(A)132201

Figure 2-6. Model 990 Computer Workspace

2-8

Texas Instruments Incorporated

943441-9701

When power is applied, the status register clears, selecting map file O and the limit and bias registers
are set to zero. The limits (one’s complement of limit register contents) are FFFF,4. This results in
all addresses using bias register 1, which contains zero. The result is that all addresses are mapped
into the same addresses. Map file 1 consists of three limit registers and three bias registers, and is in-
tended for application programs. Map file 2 similarly consists of three limit registers and three
bias registers, and is used to map one specified address outside of the current map. The LMF in-
struction loads map files O and 1.

For example, figure 2-7 shows a map file and the comparison of processor addresses to limits.
Figure 2-7 also shows the addition of a bias register to a processor address. The contents of the map
file are chosen in this example so that processor addresses 0000, through 10FF,¢s map to addresses
000000,, through 0010FF,, processor addresses 1100,, through AOFF,, map to addresses
0322E0,, through 03B2DF,, and processor addresses A100,¢ through F7FF;s map to addresses
04A100,¢ through 04F7FF;¢. Processor addresses greater than F7FF 4 result in error interrupts.
This requires that limit register L1 contains 11101111000,, the one’s complement of the 11 most
significant bits of 10FF,,. Similarly, limit register L2 contains 01011111000, (one’s complement
of 11 most significant bits of AOFF,) and limit register L3 contains 00001000000, (one’s com-
plement of the 11 most significant bits of F7FF,4). Bias register Bl contains 0000, bias register
B2 contains 188F,4, and bias register B3 contains 2000, .

MAP FILE
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

L1 t{1f{1]o]l1j1f1]1flo]ololx]x|x]|x]Xx
B1 olofolo]lolo|o]l]o]j]ofo|lo]J]o}jo]o|ofoO
L2 oltfjol1|[t1|1 |11]olofjolx]|x]x]|x]|X
B2 olojo|l1]l1|ofolof1]ofolo]l1]1]1]1
L3 olo|lojo]1]lofofofofjolofXxX]|X]|X|X|X
B3 olo|l1lo|lo]loflofjfolo]l]o]l]o|lo]o}lojo}oO
COMPARISON RESULT
o 1 2 3 4 7 10 11 12 13 14 15
PROCESSOR
ADDRESS IOI OI OI 1| OI
]] [] 1
1] [] 1
|

O =~ Ofun

T LT L[]

ol---

5 [TeT-[]

l 1 I 1]q GREATER THAN

[o] i 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PROCESSOR

ADDRESS ol olol1lololol sl s sl o]]1] 1]n
R

+ 0 1 2 3 4 5 6 7 8 9 1011 1213 1415 | 1 |

i |

B2 IoloTo|1|1|o|o|o[11oroTol1|1||l1ll Loy
1 | | 1

Voot Voo T

T T R A R R A R

= [T T] [D | [| | [| : | !

|] 1 1]] [] 1] [} | 1 [1 1 [} ' 1 i

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

@ Lol [[e[e[[[

(A)132202

Figure 2-7. Address Development Model 990/10 Map Option

2.9 Texas Instruments Incorporated

(o]
@@ 943441-9701

2.6 PRIVILEGED MODE

The Model 990/10 Computer has a privileged mode in which any instruction of the instruction
set may be executed. When the computer is not in the privileged mode, and execution of a
privileged instruction is attempted, the instruction is not executed and an error interrupt occurs.
The privileged instructions perform operating system functions not appropriate in user
programs. The specific instructions are identified in a subsequent section. The computer is placed
in the privileged mode and the map file set to map file O when power is applied, when an interrupt
occurs, and when an XOP instruction is executed.

2.7 SOURCE STATEMENT FORMAT

An assembly language source program consists of source statements which may contain assembler
directives, machine instructions, pseudo-instructions, or comments. Each source statement is a
source record as defined for the source medium; i.e., an 80-column card for punched card input,
or a line of characters terminated by a carriage return for input from the keyboard of a terminal,
such as the Model 733 ASR Data Terminal or a CRT Display Terminal.

The following conventions apply in the syntax definitions for machine instructions and assembler
directives: '

® [tems in capital letters, and special characters, must be entered as shown.
® Items within angle brackets (< >) are defined by the user.

® [Items in lower case letters are classes (generic names) of items.

® Items within brackets ([]) are optional.

® Items within braces (_{ }) are alternative items; one must be entered.

® All ellipsis (...) indicates that the preceding item may be repeated.

® The symbol b represents a blank or space.

The syntax for source statements other than comment statements is defined as follows:
[<label>1® ... opcodeb . .. [<operand>] [,<operand>] ...b...[<comment>]

This syntax definition means that a source statement may have a label, which is defined by the
user. One or more blanks separate the label from the opcode. Mnemonic operation codes,
assembler directives codes, and user-defined operation codes are all included in the generic term
opcode, and any of these may be entered. One or more blanks separate the opcode from the
operand, when an operand is required. Additional operands, when required, are separated by
commas. One or more blanks separate the operand or operands from the comment field.

Comment statements consist of a single field starting with an asterisk (*) in the first character
position followed by any ASCII character including a blank in each succeeding character
position. Comment statements are listed in the source portion of the assembly listing and have
no other effect on the assembly.)

The maximum length of source records is 60 characters. However, only the first 52 characters
will be printed on the Model 733 ASR Data terminal. The last source statement of a source
program is followed by the end-of-record statement for the source medium, i.e., for punched
cards, a card having a slash (/) punched in column 1 and an asterisk (*) punched in column 2.

2-10 Texas Instruments Incorporated

o
%@? 943441-9701

Figure 2-8 shows source statements written on a coding form illustrating alternative methods of
entering statements. The first four statements illustrate the alignment of the label, opcode,
operands, and comments to begin in the same column in each statement. This method promotes
readability, but may be time-consuming on some input devices, particularly data terminals. The
last four statements show the use of horizontal tab characters represented by ¥ to separate the
fields. On the Model 733 ASR Data Terminal, the tab character is entered by holding the CTRL
key while pressing the I key. PX9ASM does not implement this use of }Tl

2.7.1 CHARACTER SET. The assemblers for the Model 990 Computers and the TMS 9900
Microprocessor recognize ASCII characters as follows:

® The alphabet (capital letters only) and space character

® The numerals

® Twenty-two special characters

® Five characters defined for this language, that are undefined as ASCII characters
® The null character

® The tab character

Appendix A contains tables that list all 66 characters and show the ASCII and Hollerith codes
for each.

2.7.2 LABEL FIELD. The label field begins in character position one of the source record and
extends to the first blank. The label field contains a symbol containing up to six characters the
first of which must be alphabetic. Additional characters may be any alphanumeric characters. A
label is optional for machine instructions and for many assembler directives. When the label is
omitted, the first character position must contain a blank. A source statement consisting of only a
label field is a valid statement; it has the effect of assigning the current location to the label. This is
usually equivalent to placing the label in the label field of the following machine instruction or as-
sembler directive. However, when a statement consisting of a label only follows a TEXT or BYTE
directive and is followed by a DATA directive or a machine instruction, the label will not have the
value of a label in the following statement unless the TEXT or BYTE directive left the location
counter on an even (word) location. An EVEN directive following the TEXT or BYTE directive
prevents this problem.

2.7.3 OPERATION FIELD. The operation (opcode) field begins following the blank that ter-
minates the label field, or in the first non-blank character position after the first character
position when the label is omitted. The operation field is terminated by one or more blanks, and

may not extend past character position 60 of the source record. The operation field contains an
opcode, one of the following:

® Mnemonic operation code of a machine instruction
® Assembler directive operation code

® Symbol assigned to an extended operation by a DXOP directive

Pseudo-instruction operation code

211 Texas Instruments Incorporated

(4 84

P8/DI0I02U) SIUSWNIISU) SDX3

LABEL OPER OPERAND COMMENTS
1 6 8 " 13 17 21 25]26 30 35 40 45 50 55 60
* Iclon{vlEn(T{T]0|N]A s|o[u[R]c[e] [s[T]A[T]EIMIEN]TT TFTOTRTMTATT
S|T|AR]T LI 3], [>]2]5 L{o[a[p] [w| [rR] |3
A 5,3 Alp[p| [w[rR[5| [T]o] WR[3
RIT RIE[T[U[RIN] [T]o] [c]alLiL]t|N]c] [P[R]o]G[R]A{M
[Iplalclk]efp] [s|ofulr|c|e| [s|{T|{A|T[E[M]EIN]T] [Flo{R[M[A]T] [uls|i|n]a] [T]A[B]S
siTAR[TIFILT|F[3],[>]2]5(F|L{o[A[D] W] [R] (3
wialals|, [3]#[alo]o] Wr(s| {7]o] [W[R]3
ARTIFIFREF VRN | clalL{L|rin]a] [P[R]ola [R]A[M
e Pe—— camcE Pace
(A)132203 A

Figure 2-8. Source Statement Formats

10L6°T¥VEV6

943441-9701

2.7.4 OPERAND FIELD. The operand field begins following the blank that terminates the
operation field, and may not extend past character position 60 of the source record. The
operand field may contain one or more expressions, terms, or constants, according to the
requirements of the opcode. The operand field is terminated by one or more blanks.

2.7.5 COMMENT FIELD. The comment field begins following the blank that terminates the
operand field, and may extend to the end of the source record if required. The comment field
may contain any ASCII character, including blank. The contents of the comment field are listed
in the source portion of the assembly listing and have no other effect on the assembly.

2.8 EXPRESSIONS

Expressions are used in the operand fields of assembler directives and machine instructions. An
expression is a constant or symbol, or a series of constants, a series of symbols, or a series of
constants and symbols separated by arithmetic operators. Each constant or symbol may be
preceded by a minus sign (unary minus). An expression may contain no embeded blanks, or
symbols that are defined as extended operations. Symbols that are defined as external references
may not be operands of arithmetic operations. For PX9ASM, only one symbol in an expression
may be subsequently defined in the program, and that symbol must not be part of an operand in
a multiplication or division operation within the expression. For the Cross Assembler, TXMIRA,
and SDSMAC, an expression may contain more than one symbol that is not previously defined.
When these symbols are absolute, they may also be operands of multiplication or division opera-
tions within an expression. In all assemblers, an expression that contains a relocatable symbol or
relocatable constant immediately following a multiplication or division operator is an illegal ex-
pression. Also, when the result of evaluating an expression up to a multiplication or division
operator is relocatable, the expression is illegal. An expression in which the number of relocatable
symbols or constants added to the expression exceeds the number of relocatable symbols or con-
stants subtracted from the expression by more than one is an illegal expression.

If NA = Number of relocatable values added and
NS = Number of relocatable values subtracted and

Then if

0 The expression is absolute
NA - NS =< 1 The expression is relocatable
Other than 0 or 1, the expression is illegal

An expression containing relocatable symbols or constants of several different relocation types
(see Section VIII) is absolute if it is absolute with respect to all relocation types. If it is relocatable
with respect to one relocation type and absolute with respect to all other relocation types, then the
expression is relocatable. For example, the expression

RED + BLUE - GREEN + 2

is program-relocatable if BLUE is a program-relocatable symbol and the symbols RED and GREEN
are both data-relocatable. If the symbols RED, BLUE, and GREEN were program-relocatable,
data-relocatable, and common-relocatable, respectively, the expression would be invalid. TXMIRA
and PX9ASM only support program-relocatable symbol.

In TXMIRA, if the current value of an expression is relocatable with respect to one relocation type,

a symbol of another relocation type may not be included until the value of the expression becomes
absolute. For example, the expression

BLUE - GREEN - RED

2-13 Texas Instruments Incorporated

o
@ 943441-9701

would be valid if BLUE and GREEN are of the same relocation type but would be invalid other-
wise.

The following are examples of valid expressiohs:

BLUE+1 The sum of the value of symbol BLUE plus 1.

GREEN+4 The result of subtracting 4 from the value of symbol GREEN.
2*16+RED The sum of the value of symbol RED plus the product of 2 times 16.
440/2-RED The result of dividing 440 by 2 and subtracting the value of symbol

RED from the quotient. RED must be absolute.

2.8.1 WELL-DEFINED EXPRESSIONS. Some assembler directives require well-defined expres-
sions in the operand fields. For an expression to be well-defined, any symbols or assembly-time
constants in the expression must have been previously defined. Also, the evaluation of a
well-defined expression must be absolute, and a well-defined expression may not contain a
character constant.

2.8.2 ARITHMETIC OPERATORS. The arithmetic operators in expressions are as follows:
e +for addition
® - for subtraction
® * for multiplication
® /for signed division

® //for logical right shift (SDSMAC only)

In evaluating an expression, the assembler first negates any constant or symbol preceded by a
unary minus, then performs the arithmetic operations from left to right. The assembler does not
assign precedence to any operation other than unary minus. All operations are integer operations.
The assembler truncates the fraction in division.

For example, the expression 4+5*2 would be evaluated 18, not 14, and the expression 7+1/2
would be evaluated 4, not 7.

The logical right shift operator (//) allows a logical division by a power of two.

Examples:

>8000//1 = >4000 >AAAB//1 =>5555
>FFFF//0 = >FFFF >FFFF//16 = >0000

SDSMAC checks for overflow conditions when arithmetic operations are performed at assembly
time and gives a warning message whenever an overflow occurs, or when the sign of the result is
not as expected in respect to the operands and the operation performed. Examples where a VALUE
TRUNCATED message is given are:

>4000%2 >T7FFF+1 -1*>8000
>8000%2 >8000-1 -2*>8001

2-14 Texas Instruments Incorporated

[e]
{_‘—@; 943441-9701

2.9 CONSTANTS
Constants are used in expressions. The assemblers recognize four types of constants: decimal
integer constants, hexadecimal integer constants, character constants, and assembly-time constants.

2.9.1 DECIMAL INTEGER CONSTANTS. A decimal integer constant is written as a string of
numerals. The range of values of decimal integers is -32,768 to +65,535. Positive decimal integer
constants greater than 32,767 are considered negative when interpreted as two’s complement
values. Operands of arithmetic instructions other than multiply and divide are interpreted as two’s
complement numbers, and all comparisons compare numbers both as signed and unsigned values.

The following are valid decimal constants:

1000 Constant, equal to 1000 or 3E8,,.
-32768 Constant, equal to -32768 or 8000 .
25 Constant, equal to 25, or 19 ;4.

2.9.2 HEXADECIMAL INTEGER CONSTANTS. A hexadecimal integer constant is written as a
string of up to four hexadecimal numerals preceded by a greater than (>) sign. Hexadecimal
numerals include the decimal values O through 9 and the letters A through F.

The following are valid hexadecimal constants:

>78 Constant, equal to 120, or 78,¢.
>F Constant, equal to 15, or Fy¢.
>37AC Constant, equal to 14252 or 37AC .

2.9.3 CHARACTER CONSTANTS. A character constant is written as a string of one or two
characters enclosed in single quotes. For each single quote required within a character constant,
two consecutive single quotes are required to represent the quote. The characters are represented
internally as eight-bit ASCII characters, with the leading bit set to zero. A character constant
consisting only of two single quotes (no character) is valid, and is assigned the value 0000, 4.

The following are valid character constants:

‘AB’ Represented internally as 41424.
‘C Represented internally as 0043,¢.
‘N’ Represented internally as 004E¢.
“D’ Represented internally as 2744 .

2.9.4 ASSEMBLY-TIME CONSTANTS. An assembly-time constant is written as an expression in
the operand field of an EQU directive, described in a subsequent paragraph. When using TXMIRA
or PX9ASM, any symbol in the expression must have been previously defined. The value of the
label is determined at assembly time, and is considered to be absolute or relocatable according to
the relocatability of the expression, not according to the relocatability of the location counter value.

2.10 SYMBOLS

Symbols are used in the label field, the operator field, and the operand field. A symbol is a
string of alphanumeric characters, (A through Z and O through 9), the first of which must be an
alphabetic character (A through Z), and none of which may be a blank. When more than six
characters are used in a symbol, the assembler prints all the characters, but accepts only the first
six characters for processing. User-defined symbols are valid only during the assembly in which
they are defined. '

2-15 ' Texas Instruments Incorporated

o
{_@] 943441-9701

Symbols used in the label field become symbolic addresses. They are associated with locations in
the program, and must not be used in the label field of other statements. Mnemonic operation
codes and assembler directive names are valid user-defined symbols when placed in the label field.

NOTE

When using SDSMAC, the ‘7 and ‘$° characters are considered
alphabetic.
The DXOP directive defines a symbol to be used in the operator field. Any symbol that is used in

the operand field must be placed in the label field of a statement, or in the operand field of a REF
directive except for a symbol in the operand field of a DXOP directive or a predefined

symbol.

2.11 PREDEFINED SYMBOLS

The predefined symbols are the dollar sign character ($) and the workspace register symbols.
The dollar sign character is used to represent the current location within the program. The
workspace register symbols are as follows:

Symbol Value Symbol Value Symbol Value Symbol Value
RO 0 R4 4 R8 8 R12 12
R1 1 RS 5 R9 9 R13 13
R2 2 R6 6 R10 10 R14 14
R3 3 R7 7 R11 11 R15 15

NOTE
The workspace register symbols (RO, R1...) are normally unde-
fined in PX9ASM and TXMIRA. However, they can be optionally
defined.

The following are examples of valid symbols:

START Assigned the value of the location at which it appears
in the label field.

Al Assigned the value of the location at which it appears
in the label field.

OPERATION OPERAT is assigned the value of the location at which
it appears in the label field.

$ Represents the current location.

2.12 TERMS

Terms are used in the operand fields of machine instructions and an assembler directive. A term
is a decimal or hexadecimal constant, an absolute assembly-time constant, or label having an

absolute value.

216 Texas Instruments Incorporated

o
(_r@? 943441-9701

The following are examples of valid terms:

12 The value is 12, or Cy¢.

>C The value is 12, or Cy.

WR2 Valid if WR2 is defined having an absolute value.
R3 Predefined as a value of 3.

If START were a relocatable symbol, the following statement would not be valid as a term:

WR2 EQU START+4 WR2 would be a relocatable value 4 greater than the
value of START. Not valid as a term, but valid as

a symbol.

2.13 CHARACTER STRINGS
Several assembler directives require character strings in the operand field. A character string is

written as a string of characters enclosed in single quotes. For each single quote in a character
string, two consecutive single quotes are required to represent the required single quote. The
maximum length of the string is defined for each directive that requires a character string. The
characters are represented internally as eight-bit ASCII characters, with the leading bits set to
zeros. Appendix A gives a complete list of valid characters within character strings.

The following are valid character strings:

‘SAMPLE PROGRAM’ Defines a 14-character string
consisting of:
SAMPLEBPROGRAM.

‘PLAN “C” Defines an 8-character string
consisting of:
PLANB®C".

Defines a 37-character string
consisting of the expression
enclosed in single quotes.

‘OPERATOR MESSAGE * PRESS START SWITCH’

2-17/2-18 Texas Instruments Incorporated

943441-9701

SECTION III

ASSEMBLY INSTRUCTIONS

3.1 GENERAL

This section describes the mnemonic instructions of the assembly language for the PX9ASM,
TXMIRA and SDSMAC assemblers, and for the Cross Assember. Detailed assembly instruction
descriptions follow descriptions of the addressing modes used in the assembly language and the

addressing formats of the assembly instructions. The section also includes examples of programming
the various instructions.

3.2 ADDRESSING MODES

One of five addressing modes may be used in the instructions that specify a general address for
the source or destination operand. Table 3-1 lists these modes and shows how each is used in the
assembly language. Each of the modes is described in a subsequent paragraph.

Table 3-1. Addressing Modes

T field value

Addressing Mode (Note 1) Example Note
Workspace Register 0 5

Workspace Register 1 *7

Indirect

Symbolic Memory 2 @LABEL 2,3
Indexed Memory 2 @LABEL(5) 2,4
Workspace Register 3 *T7+

Indirect Autoincrement
Notes:

1. The T field is described in the addressing format descriptions.

2. The instruction requires an additional word for each T field
value of 2. This word contains a memory address.

3. The S or D field is set to zero by the assembler.

4. Workspace register 0 cannot be used for indexing.

3-1 Texas Instruments Incorporated

[e]
{%\[7@ 943441-9701

3.2.1 WORKSPACE REGISTER ADDRESSING. Workspace register addressing specifies a work-
space register that contains the operand. A workspace register address is written as a term having
a value of O through 15.

The following examples show the coding of instructions that have two workspace register
addresses each:

MOV R4,R8 Copy the contents of workspace register 4 into
workspace register 8.

COC RI15,R10 Compare the bits of workspace register 10 that
correspond to the one bits in workspace register
15 to one.

3.2.2 WORKSPACE REGISTER INDIRECT ADDRESSING. Workspace register indirect addres-
sing specifies a workspace register that contains the address of the operand. An indirect workspace
register address is written as a term preceded by an asterisk (*). The following example shows
coding of instructions having workspace register indirect addresses.

A *R7,*R2 Add the contents of the word at the address in
workspace register 7 to the contents of the word
at the address in workspace register 2, and place
the sum in the word at the address in workspace
register 2. :

MOV *R7,R0 Copy the contents of the address in workspace
register 7 into workspace register 0.

3.2.3 SYMBOLIC MEMORY ADDRESSING. Symbolic memory addressing specifies the memory
address that contains the operand. A symbolic memory address is written as an expression preceded
by an at sign (@). The following are coding examples of instructions having symbolic memory

addresses:
S @TABLE1,@LIST4 Subtract the contents of the word at location TABLE1

from the contents of the word at location LIST4, and
place the remainder in the word at location LIST4.

C RO,@STORE Compare the contents of workspace register 0 with
the contents of the word at location STORE.
MOV @12,@>7C Copy the word at address 000C, ¢ into location 007C, .
NOTE

When using SDSMAC, symbols previously defined as having
relocatable values or values greater than 15 need not have the ‘@.

3.2.4 INDEXED MEMORY ADDRESSING. Indexed memory addressing specifies the memory
address that contains the operand. The address is the sum of the contents of a workspace register
and a symbolic address. An indexed memory address is written as an expression preceded by an at

Texas /nstruments Incorporated

[e]
%@ 943441-9701

sign _and followed by a term enclosed in parentheses. The workspace register specified by the term
within the parentheses is the index register. Workspace register O may not be specified as an index
register. the following are examples of coding of instructions having indexed memory addresses:

A @2(R7),R6 Add the contents of the word at the address computed
by adding the contents of workspace register 7 and
2 to the contents of workspace register 6, and place
the sum in workspace register 6.

MOV R7,@LIST4-6(R5) Copy the contents of workspace register 7 into a
word of memory. The address of the word of memory
is the sum of the contents of workspace register 5
and the value of symbol LIST4 minus 6.

3.2.5 WORKSPACE REGISTER INDIRECT AUTO-INCREMENT ADDRESSING. Workspace
register indirect auto-increment addressing specifies a workspace register that contains the address
of the operand. After the address is obtained from the workspace register, the workspace register
is incremented by 1 for a byte instruction or by 2 for a word instruction. The workspace register
increment is one for byte operations and two for word operations. A workspace register auto-
increment address is written as a term preceded by an asterisk and followed by a plus sign (+).
The following are coding examples of instructions having workspace register indirect auto-increment

addresses:

S *R3+,R2 Subtract the contents of the word at the address in
workspace register 3 from the contents of workspace
register 2, place the result in workspace register
2, and increment the address in workspace register
3 by two.

C RS5,*Ré6+ Compare the contents of workspace register 5 with

the contents of the word at the address in workspace
register 6, and increment the address in workspace
register 6 by two.

3.3 PROGRAM COUNTER RELATIVE ADDRESSING

Program counter relative addressing is used by the jump instructions. A program counter relative
address is written as an expression that corresponds to an address at a word boundary. The
assembler evaluates the expression and subtracts the sum of the current location plus two.
One-half of the difference is the value that is placed in the object code. This value must be in
the range of -128 through +127. When the instruction is in relocatable code (that is, when the
location counter is relocatable), the relocation type of the evaluated expression must match the
relocation type of the current location counter. When the instruction is in absolute code, the
expression must be absolute. The following example shows a program counter relative address:

JMP THERE Jumps unconditionally to location THERE.

3.4 CRU BIT ADDRESSING

The CRU bit instructions use a well-defined expression that represents a displacement from the
CRU base address (bits 3 through 14 of workspace register 12). The displacement, in the range
of -128 through +127, is added algebraically to the base address in workspace register 12. The
following are examples of CRU bit instructions having CRU bit addresses:

SBO 8 Sets CRU bit to one at the CRU address 8 greater
than the CRU base address. If workspace register
12 contained 0020,,, CRU bit 24 would be set
by this instruction. (24 = (20,4 /2) + 8)

33 Texas Instruments Incorporated

o
@@ 9434419701

SBZ DTR Sets CRU bit to zero. Assuming that DTR has the
.value 10, and workspace register 12 contains 0040, ,
the instruction sets bit 42 to zero. (42 = (40,4/2) + 10)

3.5 IMMEDIATE ADDRESSING

Immediate instructions use the contents of the word following the instruction word as an
operand of the instruction. The immediate value is an expression, and the value of the expression
is placed in the word following the instruction by the assembler. Those immediate instructions
‘that require two operands have a workspace register address preceding the immediate value. The
following are examples of coding immediate instructions:

LIMI 5 Places 5 in the interrupt mask, enabling interrupt
levels O through 5.
LI R5,>1000 Places 1000, ¢ into workspace register 5.
NOTE

When using SDSMAC, an @ sign may proceed an immediate
operand.

3.6 ADDRESSING SUMMARY

Table 3-2 shows the addressing required for each instruction of the Model 990/TMS 9900
instruction set. The first column lists the instruction mnemonics, and the second column lists the
effectivity of the instruction. This column contains A for those instructions that apply to.the
Model 990/TMS 9900, and C for those instructions that apply to the Model 990 but not to the
TMS 9900. The column contains M for those instructions that apply only to the Model 990
Computers with mapping option. The third and fourth columns specify the required address,
as follows:

® G - General address:
Workspace register address
Indirect workspace register address
Symbolic memory address
Indexed memory address
Indirect workspace register auto-increment address
® WR - Workspace register address
® PC - Program counter relative address
® CRU - CRU bit address

] I - Immediate value

* - The address into which the result is placed, when two operands are required.

3.4 Texas Instruments Incorporated

943441-9701

Table 3-2. Instruction Addressing

First Second First Second

Mnemonic Eff. Operand Operand Mnemonic Eff. Operand Operand

A A G G* LDCR A G Note 1

AB A G G* LDD M G —

ABS A G — LDS M G —

Al A WR* I LI A WR* I

ANDI A WR* I LIMI A I —

B A G — LMF M WR* Note 2

BL A G — LREX C — —

BLWP A G — LWPI A I —

C A G G MOV A G G*

CB A G G MOVB A G G*

CI A WR I MPY A G WR*

CKOF C - — NEG A G —

CKON C - — ORI A WR* I

CLR A G — RSET C — —

CcOoC A G WR RTWP A - -

CZC A G WR S A G G*

DEC A G - SB A G G*

DECT A G — SBO A CRU —

DIV A G . WR* SBZ A CRU —

IDLE C — — SETO A G -

INC A G — SLA A WR* Note 3

INCT A G — SOC A G G*

INV A G — SOCB A G G*

JEQ A PC — SRA A WR* Note 3

JGT A PC —. SRC A WR* Note 3

JH A PC — SRL A WR* Note 3

JHE A PC — STCR A G* Note 1

JL A PC - STST A WR —

JLE A PC — STWP A WR _

JLT A PC — SWPB A G _

JMP A PC - SZC A G G*

INC A PC - SZCB A G G*

JNE A PC — TB A CRU _

JNO A PC — X A G _

Joc A PC — Xop A G Note 4

JOp A PC — XOR A G WR*
Notes:

1. The second operand is the number of bits to be transferred, 0-15, 0 = 16 bits.
2. The second operand specifies a memory map file, O or 1.

3. The second operand is the shift count, 0 - 15. 0 means count is in bits 12 - 15 of workspace
register 0. When count = 0 and bits 12 - 15 of workspace register 0 = 0, count is 16.

4. Second operand specifies the extended operation, 0 - 15. Disposition of result may or may
not be in the first operand address, determined by the user.

3-5 Texas Instruments Incorporated

o
Q]@ 943441-9701

3.7 ADDRESSING FORMATS '
The required addressing previously described relates to the ten addressing formats of the Model
990 Computer/TMS 9900 Microprocessor. These formats are shown and described in the follow-

ing paragraphs.

3.7.1 FORMAT I - TWO ADDRESS INSTRUCTIONS. The operand field of Format I instruc-
tions contains two general addresses separated by a comma. The first address is the source
address; the second is the destination address. The following mnemonic operation codes use

Format I.
A MOV SOC
AB MOVB SOCB
C S SZC
CB SB SZCB

The following example shows a source statement for a Format I instruction:

SUM A @LABELI1,*R7 Adds the contents of the word at location LABELL1 to
the contents of the word at the address in workspace
register 7, and places the sum in the word at the
address in workspace register 7. SUM is the location
in which the instruction is placed.

The assembler assembles Format I instructions as follows:

o t 2 3 4 5 6 7 8 9 10 1112 13 14 15
L T 1 1 T T T 1

OP CODE | B| Ty D Ts s

The bit fields are:

® Op Code - Three bits that define the machine operation.

® B - Byte indicator, 1 for byte instructions, 0 for word instructions.

® T, - Addressing mode (table 3;1) for destination.

® D - Destination workspace register.

® T, - Addressing mode (table 3-1) for source.

® S - Source workspace register.
When T, or T, is equal to 10,, the instruction occupies two words of memory, and the second
word contains a memory address used with S or D, respectively, in developing the effective
address. When both T, and T, are equal to 10,, the instruction occupies three words of

memory. The second word contains the memory address for the source operand, and the third
word contains the memory address for the destination operand.

36 Texas Instruments Incorporated

[e]
% 943441-9701

3.7.2 FORMAT II - JUMP INSTRUCTIONS. Format II instructions use program counter relative
addresses which are coded as expressions that correspond to instruction locations on word
boundaries. The following mnemonic operation codes are Format II jump instructions:

JEQ JLE JNE
JGT JLT INO
JH JMP JOC
JHE INC JOP
JL

The following is an example of a source statement for a Format II jump instruction:

NOW JMP @BEGIN Jumps unconditionally to the instruction at location
BEGIN. The address of location BEGIN must not be
greater than the address of location NOW by more
than 127 words, nor less than the address of location
NOW by more than 128 words.

The assemblers assemble Format II instructions as follows:

0O 1 2 3 4 5 6 7 8 9 10 1112 13 14 15
T T T T T 1 T T T T T]
OP CODE DISPLACEMENT

The bit fields are:
® Op Code - Eight bits that define the machine operation.
® Displacement - Signed displacement value.

The signed displacement value is shifted one bit position to the left and added to the contents of
the PC after the PC has been incremented to the address of the following instruction. In other
words, it is a displacement in words from the sum of the instruction address plus two.

3.7.3 FORMAT II - BIT I/O INSTRUCTIONS. The operand field of Format II CRU bit I/O
instructions contains a well-defined expression. It is a CRU bit address, relative to the contents
-of workspace register 12. The following mnemonic operation codes are Format II CRU bit I/O
instructions:

SBO SBZ TB
The following example shows a source statement for a Format II CRU bit I/O instruction:

SBO 5 Sets a CRU bit to one. If workspace register 12 contains
10,4, CRU bit 13 is set by this instruction.

37 Texas Instruments Incorporated

[e]
J@} 943441-9701

The format assembled for Format II instructions is shown and described in the preceding
paragraph. For CRU bit instructions the signed displacement is shifted one bit position to the
left and added to the contents of workspace register 12. In other words, it is a displacement in
bits from the contents of bits 3 through 14 of workspace register 12.

3.7.4 FORMAT III - LOGICAL INSTRUCTIONS. The operand field of Format III instructions
contains a general address followed by a comma and a workspace register address. The general
address is the source address, and the workspace register address is the destination address. The
following mnemonic operation codes use Format III:

CoC CzZC XOR

The following example shows a source statement for a Format III instruction:

COMP XOR @LABELS8(R3),RS Perform an exclusive OR operation of the contents
: of a memory word and the contents of workspace
register 5, and place the result in workspace
register 5. The address of the memory word is
the sum of the contents of workspace register 3
and the value of symbol LABELS.

The assemblers assemble Format III instructions as follows:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
I LI T I T LI} LB LI
OP CODE D Ts S

The bit fields are:
® Op Code - Six bits that define the machine operation.
® D - Destination workspace register.
® T, - Addressing mode (table 3-1) for source.
® S - Source workspace register.

When T, is equal to 10,, the instruction occupies two words of memory. The second word
contains the memory address for the source operand.

3.7.5 FORMAT IV - CRU INSTRUCTIONS. The operand field of Format IV instructions
contains a general address followed by a comma and a well defined expression. The general address
is the memory address from which or into which bits will be transferred. The CRU address for the
transfer is the contents of bits 3 through 14 of workspace register 12. The term is the number of
bits to be transferred, a value of 0 through 15 (a O value transfers 16 bits). For 8 or fewer bits the
effective address is a byte address. For 9 or more bits the effective address is a word address. The
following mnemonic operation codes use Format IV:

LDCR - STCR

3.8 Texas Instruments Incorporated

o
{@ 43441.9701

The following example shows a source statement for a Format IV instruction:

LDCR *R6+,8 Place 8 bits from the byte of memory at the address
in workspace register 6 into eight consecutive CRU

lines at the CRU base address in workspace register
12.

The assemblers assemble Format IV instructions as follows:

0 1t 2 3 4 5 6 7 8 9 10 1112 13 14 15
T T T | I T T 1
OP CODE c Ts s

The bit fields are:
® Op Code - Six bits that define the machine operation.
® C - Four bits that contain the bit count.
® T, - Addressing mode (table 3-1) for source.
® S - Source workspace register.

When T, is equal to 10,, the instruction occupies two words of memory. The second word
contains the memory address for the source operand.

3.7.6 FORMAT V - REGISTER SHIFT INSTRUCTIONS. The operand field of Format V
instructions contains a workspace register address followed by a comma and a well defined
expression. The contents of the workspace register are shifted a number of bit positions specified by
the term. When the term equals zero, the shift count must be placed in bits 12-15 of workspace
register 0. The following mnemonic operation codes use Format V:

SLA SRC SRL SRA
The following example shows a source statement for a Format V instruction:
SLA R64 Shift contents of workspace register 6 to the
left 4 bit positions, replacing the vacated bits
with zero.

The assemblers assemble Format V instructions as follows:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
| | l ! | 1 l ! I L
OP CODE c w

The bit fields are:
® Op Code - Eight bits that define the machine operation.
® C - Four bits that contain the shift count.

® W - Workspace register to be shifted.

3.9 Texas Instruments Incorporated

o
@ 9434419701

3.7.7 FORMAT VI - SINGLE ADDRESS INSTRUCTIONS. The operand field of Format VI
instructions contains a general address. The following mnemonic operation codes use Format VI:

ABS CLR INCT NEG
B DEC INV SETO
BL DECT LDD SWPB
BLWP INC LDS X

The following example shows a source statement for a Format VI instruction:

CNT INC R7 Adds one to the contents of workspace register 7,
and places the sum in workspace register 7. CNT is
the location into which the instruction is placed.

The assemblers assemble Format VI instructions as follows:

0 1t 2 3 4 5 6 7 8 9 10 1112 1314 15
1 1T T T T T 711 T T T 1
OP CODE Ts s

The bit fields are:
® Op Code - Ten bits that define the machine operation.
® T, - Addressing mode (table 3-1) for source.
® S - Source workspace register.

When T, is equal to 10,, the instruction occupies two words of memory. The second word
contains the memory address for the source operand.

3.7.8 FORMAT VII - CONTROL INSTRUCTIONS. Format VII 1nstruct10ns require no operand
field. The following operation codes use Format VII:

CKOF IDLE RSET
CKON LREX RTWP
The following example shows a source statement for a Format VII instruction:

RTWP Returns control to the calling program, and restores
the context of the calling program by placing the
contents of workspace registers 13, 14, and 15 into
the WP register, the PC, and the ST register.

The assemblers assemble Format VII instructions as follows:

(o] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T T T T T ™1 1T

OP CODE ojoi}jo of o

3-10 Texas Instruments Incorporated

[e]
{@ 9434419701

The Op Code field contains eleven bits that define the machine operation. The five least
significant bits are zeros.

3.7.9 FORMAT VIII - IMMEDIATE INSTRUCTIONS. The operand field of Format VIII
instructions contains a workspace register address followed by a comma and an expression. The

workspace register is the destination address, and the expression is the immediate operand. The
following mnemonic operation codes use Format VIII:

Al CI ORI

ANDI LI
There are two additional Format VIII instructions that require only an expression in the operand
field. The expression is the immediate operand. The destination is implied in the name of the
instruction. The following mnemonic operation codes use this modified Format VIII:

LIMI LWPI
Another modification of Format VIII requires only a workspace register address in the operand
field. The workspace register address is the destination. The source is implied in the name of the
instruction. The following mnemonic operation codes use this modified Format VIII:

STST STWP

The following are examples of source statement for Format VIII instructions:

ANDI 4,>000F Perform an AND operation on the contents
of workspace register 4 and immediate operand
000F ¢ .

LWPI WRK1 Place the address defined for the symbol WRK

into the WP register.

STWP R4 Place the contents of the WP register into
workspace register 4.

The assemblers assemble Format VIII instructions as follows:

(o] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
! { Ll I T 1 I I I 1 I Al 1

OP CODE ol o w

The bit fields are:

® Op Code - Eleven bits that define the machine operation.
® W - Workspace register operand.

A zero bit separates the two fields. The instructions that have no workspace register operand
place zeros in the W field. The instructions that have immediate operands place the operands in
the word following the word that contains the Op Code; i.e., these instructions occupy two
words each.

3-11 Texas Instruments Incorporated

o
% 943441-9701

3.7.10 FORMAT IX - EXTENDED OPERATION INSTRUCTION. The operand field of a
Format IX Extended Operation instruction contains a general address and a well defined expression.
The general address is the address of the operand for the extended operation. The term specifies the
extended operation to be performed and must be in the range of 0 to 15. The mnemonic operation

code is XOP.
The following example shows a source statement for a Format IX Extended Operation
instruction:

XOP @LABEL(R4),12 Perform extended operation 12 using the address

computed by adding the value of symbol LABEL
to the contents of workspace register 4.

The assemblers assemble Format IX instructions as follows:

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T T T T | I T 1 1
OP CODE D Ts s

The bit fields are:
® Op Code - Six bits that define the machine operation.
® D - Four bits that define the extended operation.
® T, - Addressing mode (table 3-1) for source.
® S - Source workspace register.

When T, is equal to 10,, the instruction occupies two words of memory. The second word
contains the memory address for the source operand.

3.7.11 FORMAT IX - MULTIPLY AND DIVIDE INSTRUCTIONS. The operand field of
Format IX Multiply and Divide instructions contains a general address followed by a comma and
a workspace register address. The general address is the address of the multiplier or divisor, and
the workspace register address is the address of the workspace register that contains the
multiplicand or dividend. The workspace register address is also the address of the first of two
workspace registers to contain the result. The mnemonic operation codes are MPY and DIV.

The following example shows a source statement for a Format IX Multiply instruction:

MPY @ACC,R9 Multiply the contents of workspace register
9 by the contents of the word at location
.ACC, and place the product in workspace
registers 9 and 10, with the 16 least
significant bits of the product in workspace
register 10.

The assembler assembles Multiply and Divide instructions similarly to the format shown in the
preceding paragraph, except that the D field contains the workspace register operand.

3-12 Texas [nstruments Incorporated

o
(_r@@ 9434419701

3.7.12 FORMAT X - MEMORY MAP FILE INSTRUCTION. This format applies only to the
Model 990 Computer with map option. The operand field of a Format X Memory Map File in-
struction contains a workspace register address followed by a comma and a well defined expression
~which evaluates to either a 0 or a 1. The workspace register address specifies a workspace register
that contains the address of a six-word area of memory that contains the map file data. The term
specifies the map file into which the data is to be loaded. The mnemonic operation code is LMF.

The following example shows a source statement for a Format X Memory Map File instruction:
LMF R4,0 Load memory map file 0 with the six-word
area of memory at the address in workspace

register 4.

The assembler assembles a Format X instruction as follows:

o {t 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T T vV 7 "1 1 1 T L

OP CODE M w

The bit fields are:
® Op Code - Eleven bits that define the machine operation.
® M - A single bit that specifies a memory map file, O or 1.
® W - Workspace register operand.
3.8 INSTRUCTION DESCRIPTIONS
The instruction descriptions in the following paragraphs are divided into the following functional
categories:
® Arithmetic Instructions
® Branch Instructions
® Compare Instructions
® Control and CRU Instructions
® Load and Move Instructions
® Logical Instructions
® Shift Instructions

® Extended Operation Instruction

® Long Distance Addressing Instructions

3-13 Texas Instruments Incorporated

o
Y,@f’) 9434419701

The syntax definition for each instruction is shown, using the conventions described in a
previous paragraph. The generic names used in these definitions are: ,

® ga - General address of source operand

® ga,; - General address of destination operand

® wa - Workspace register address

® iop - Immediate operand

® way, - Destination workspace register address

® disp - Displacement of CRU lines from the CRU base register
® exp - Expression that represents an instruction location.

® cnt - Count of bits for CRU transfer‘

® m - Memory map file

® scnt - Shift count

® op - Number (0-15) of extended operation

Source statements that contain machine instructions use the label field, the operation field, the
operand field, and the comment field. Use of the label field is optional for machine instructions.
When the label field is used, the label is assigned the address of the machine instruction. The
assembler advances the location to a word boundary (even address) before assembling a machine
instruction. The operation (opcode) field contains the mnemonic operation code of the
instruction. The contents of the operand field is defined for each instruction. The use of the
comment field is optional. When the comment field is used, it may contain any ASCII character,
including blank, and has no effect on the assembly process other than to be printed in the
listing.

A description of the operation of the instruction follows the syntax definition. The status bits
affected by the instruction are listed. In the execution results, the following conventions are
used:

e () Indicates “the contents of”’

® —Indicates “replaces”

e |lIndicates the absolute value

The generic names used in the syntax definitions are also used in the execution results.

Application notes are included, referring to a fuller explanation in the programming examples
paragraphs as appropriate.

The Op Code given for each instruction is a four hexadecimal digit number corresponding to an
instruction word in which the address fields contain zeros. Next is the addressing mode. The
instruction formats show the machine language form of the instruction, and use the terminology
previously defined for the addressing formats. :

3-14 Texas Instruments Incorporated

o
{—@@ 9434419701

3.9 ARITHMETIC INSTRUCTIONS
The arithmetic instructions are described in the following paragraphs. The instructions are:

Instruction Mnemonic Paragraph
Add Words A 3.10
Add Bytes AB 3.11
Absolute Value ABS 3.21
Add Immediate Al 3.12
Decrement DEC 3.19
Decrement by Two DECT 3.20
Divide DIV 3.16
Increment INC 3.17
Increment by Two INCT 3.18
Multiply MPY 3.15
Negate NEG 3.22
Subtract Words S 3.13
Subtract Bytes SB 3.14

3.10 ADD WORDS A
Op Code: A000

Addressing mode: Format I

Format:

o 1 2 3,4 5 6 738 9 10 11]12 13 14 15
T LA B T T 1 1
tJol1]o] T4 D s s

Syntax definition:

[<label>]b ... Ab...<ga ><gay >b...[<comment>]
Example:

LABEL A @ADDRI(R2),@ADDR2(R3)

Definition: Add a copy of the source operand (word) to the destination operand (word) and
replace the destination operand with the sum. The AU compares the sum to zero and sets/resets

3-15 Texas Instruments Incorporated

[e]
@ 943441-9701

the status bits to indicate the result of the comparison. When there is a carry out of bit zero, the
carry status bit sets. When there is an overflow (the sum cannot be represented as a 16-bit, two’s
complement value), the overflow status bit sets.

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, and overflow.

(0] 1 2 3 4 5 6 7 8 9 tO0 11 12 13 14 15

T
w>{a>|eal ¢ lov]or / INTERRUPT
x |Pr |MF /7/// TERRL

A A AAA

Execution results: (gay) + (gaq) > (gaq)

Application notes: A is used to add signed integer words. For example, if the address labeled
TABLE contains 3124, and workspace register 5 contains 8,¢, then the instruction

A S5,@TABLE

results in the contents of TABLE changing to 312C,4 and the contents of workspace register 5
not changing. The logical and arithmetic greater than status bits set and the equal, carry, and
overflow status bits reset.

3.11 ADD BYTES AB
Op Code: BO0O

Addressing mode: Format I
Format:

{8 9 10 11§12 13 14 15
| T T 1
1ol 11| T D Ts s

Syntax definition:
[abel>]b ... ABb ... <ga,><ga;>b ... [<comment>]
Example:

LABEL AB 3,2

Definition: Add a copy of the source operand (byte) to the destination operand (byte), and
replace the destination operand with the sum. When the destination operand is addressed in the
workspace register mode, only the leftmost byte (bits 0-7) of the addressed workspace register is
used. The AU compares the sum to zero and sets/resets the status bits to indicate the
results of the comparison. When there is a carry out of the most significant bit of the byte, the
carry status bit sets. When there is an overflow (the sum cannot be represented within a byte as
an 8-bit two’s complement value), the overflow status bit sets. The odd parity bit sets when the
bits in the sum (destination operand) establish odd parity and resets when the bits in the sum
establish even parity.

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, overflow and odd
parity.

3-16 Texas Instruments Incorporated

o
@ 943441-9701

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1,]
> A>ea| ¢ |ov]|opP| x |PR |MF ///l// 'NﬁzggPT

A A A A A

Execution results: (gay) + (gagq) ~ (gaq)

Application notes: AB is used to add signed integer bytes. For example, 'if the contents of
workspace register 3 is 7400,¢, the contents of memory location 2122,, is F318,4, and the
contents of workspace 2 is 2123,¢, then the instruction

AB 3,%2+

changes the contents of memory location 2122 ,s to F38C 4 and the contents of workspgce
register 2 to 2124,,, while the contents of workspace register 3 remain gnchanged. The logical
greater than, overflow, and odd parity status bits set, while the arithmetic greater than, equal,

and carry status bits reset.

3.12 ADD IMMEDIATE Al
Op Code: 0220

Addressing mode: Format VIII

Format:

[0) 1 2 314 5 6 7 8 9 10 11312 13 14 15
L T I
ojofo ojojo 1 ojo}o 1 o] w

Syntax definition:

[<label>]b ... Alb ... <wa><iop>b ... [<comment>]

Example:

LABEL AI 2,7 ADD 7 TO THE CONTENTS OF WSR2

Definition: Add a copy of the immediate operand, the contents of the word following the
instruction word in memory, to the contents of the workspace register specified in the W field
and replace the contents of the workspace register with the results. The AU compares the sum to
zero and sets/resets the status bits to indicate the result of the comparison. When there is a carry
out of bit zero, the carry status bit sets. When there is an overflow (the result cannot be
represented within a word as a two’s complement value), the overflow status bit sets.

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, and overflow.

0 1 2 3 4 5 6 7 8 9 10 11 121314 15

T LI 1
L>IA>lEQ| C jov |oP| X |PR MF7 INTERRUPT
MASK

AAAANA

3-17 Texas Instruments Incorporated

(e}
%@ 943441-9701

Execution results: (wa) + iop - (wa)

Application notes: Use the Al instruction to add an immediate value to the contents of a
workspace register. For example, if workspace register 6 contains a zero, then the instruction

Al 6,>C

changes the contents of workspace register 6 to 000C;¢. The logical greater than and arithmetic
greater than status bits set while the equal, carry, and overflow status bits reset.

3.13 SUBTRACT WORDS S
Op Code: 6000
Addressing mode: Format I

Format:

8 9 10 11,12 13 14 15

T J I 1 1
Ts S

(o]

-

-

o
gl
O =

Syntax definition:

[<label>]v ...Sb...<ga>,<ga;>b ... [<comment>]

Example:

LABEL S 2,3 SUBTRACT THE CONTENTS OF WR2 FROM THE CONTENTS
OF WR3

Definition: Subtract a copy of the source operand from the destination operand and place the
difference in the destination operand. The AU compares the difference to zero and sets/resets
the status bits to indicate the result of the comparison. When there is a carry out of bit zero, the
carry status bit sets. When there is an overflow (the difference cannot be represented within a
word as a two’s complement value), the overflow status bit sets. The source operand remains
unchanged.

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, and overflow.

10 11 12 13 1415

9
f 1 1 1
L>lA>lEQ| c | ovlor| x |PR|MF / 'Nﬁfgy""'

AA AAA

3-18 Texas Instruments Incorporated

[e]
{l@ 943441-9701

Execution results: (gay) - (gag) ~> (gaq)
Application notes: Use the S instruction to subtract signed integer values. For example, if
memory location OLDVAL contains a value of 1225, and memory location NEWVAL contains
a value of 8223,¢, then the instruction

S @OLDVAL,@NEWVAL

results in the contents of NEWVAL changing to 6FFE,,. The logical greater than, arithmetic
greater than, carry, and overflow status bits set while the equal status bit resets.

3.14 SUBTRACT BYTES SB

Op Code: 7000
Addressing mode: Format I

Format:

18 9 10 11312 13 14 15
I v ! I | r 1T T
D S

Syntax definitions:

[<abel>]b ...SBb...<ga,><ga,>b ... [<comment>]

Example:

LABEL SB 2,3 SUBTRACT THE LEFTMOST BYTE OF WSR2 FROM THE
LEFTMOST BYTE OF WSR3

Definition: Subtract a copy of the source operand (byte) from the destination operand (byte)
and replace the destination operand byte with the difference. When the destination operand byte
is addressed in the workspace register mode, only the leftmost byte (bits 0-7) in the workspace
register is used. The AU compares the result byte to zero and sets/resets the status bits
accordingly. When there is a carry out of the most significant bit of the byte, the carry status bit
sets. When there is an overflow (the difference cannot be represented as an 8-bit, two’s
complement value in a byte), the overflow status bit sets. If the result byte establishes odd
parity (an odd number of logic one bits in the byte), the odd parity status bit sets.

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, overflow, and odd
parity.

o1 .2 3 4 5 6 7 8 9 10 11 12 13 14 15

7 1 1
L> INTERRUPT
A>lea|c |ov|or]| X |PR |MF //,///A Hy v

AAAAAA

3-19 Texas Instruments Incorporated

[e]
(_‘—@@ 943441-9701

Execution results: (gay) - (ga,) > (ga4)

Application notes: Use the SB instruction to subtract signed integer bytes. For example, if
workspace register 6 contains the value 121C,;4, memory location 121C;4 contains the value
2331,¢, and workspace register 1 contains the value 1344,,, then the instruction

SB *6+,1
results in the contents of workspace register 6 changing to 121D;¢ and the contents of

workspace register 1 changing to F044,¢. The logical greater than status bit sets while the other
status bits affected by this instruction reset.

3.15 MULTIPLY MPY
Op Code: 3800
Addressing mode: Format IX

Format:

8 9 10 11412 13 14 15
| I T T T
D TS s

Syntax definition:
[<label>]b ... MPYb ... <ga,><way>b ... [<comment>]
Example:

LABEL MPY @ADDR, 3 MULTIPLY (WSR3) BY (ADDR). THE RESULT IS
RIGHT JUSTIFIED IN THE 32-BITS OF WSR3, WSR4.

Definition: Multiply the first word in the destination operand (a consecutive 2-word area in
workspace) by a copy of the source operand and replace the 2-word destination operand with the

the result. The multiplication operation may be graphically represented as follows:

Destination operand workspace registers

WORKSPACE REGISTER (n) WORKSPACE REGISTER (n+1)
(o] 15}]0 15

E—MULTIPLICAND————l
> PRODUCT

X

Source operand
SOURCE OPERAND
ADDRESSABLE MEMORY

(o] 15

‘1——— MULTIPLIER ———————#

3-20 Texas Instruments Incorporated

o
{@’P 943441-9701

The first word of the destination operand shown above is addressed by the contents of the D
field. This word contains the multiplicand (unsigned magnitude value of 16 bits) right-justified
in the workspace register (represented by workspace n above). The 16-bit, unsigned multiplier
is located in the source operand. When the multiplication operation is complete, the product
appears, right-justified in the entire 2-word area addressed by the D field as a 32-bit unsigned
magnitude value. The maximum value of either input operand is FFFF,¢ and the maximum value
of the unsigned product is (168 - 2(16*) + 1) or FFFEQ001 .

If the destination operand is specified as workspace register 15, the first word of the destination
operand is workspace register 15 and the second word of the destination operand is the memory
word immediately following the workspace memory area.

Status bits affected: None

0>1 2 3 4 5 6 7 8 9 10 t1 12 13 14 15

[/ T 1 T
L>|A>|eQ| c |ov |oP| X | PR|MF //,//'/A 'NLEA'\QSR&JPT

Execution results: (gay) * (way). The product (32-bit magnitude) is placed in way and way + 1,
with the most significant half in wag.

Application notes: Use the MPY instruction to perform a magnitude multiplication. For example,
if workspace register 5 contains 001216, workspace register 6 contains 1B3116, and memory
location NEW contains 000516, then the instruction

MPY @NEW,S

changes the contents of workspace register 5 to 000016 and workspace register 6 to 005A 16.
The source operand is unchanged. The status register is not affected by this instruction.

3.16 DIVIDE DIV
Op Code: 3C00
Addressing mode: Format IX

Format:

8 9 101112 13 14 15
1 1 1 I 1 j 1
D Ts S

Syntax definition:
[<label>]b ...DIVb ... <ga,><way>b ... [<comment>]
Example:

LABEL DIV @ADDR(2),3 DIVIDE (WSR3, WSR4) BY (ADDR+(WSR2)) AND
STORE THE INTEGER RESULT IN WSR3 WITH THE
REMAINDER IN WSR4.

3-21 Texas /nstruments [ncorporated

943441-9701

Definition: Divide the destination operand (a consecutive 2-word area of workspace) by a copy
of the source opérand (one word), using integer rules, and place the quotient in the first of the
2-word destination operand area and place the remainder in the second word of that same area.
This division is graphically represented as follows:

Destination operand workspace registers

WORKSPACE REGISTER (n) WORKSPACE REGISTER (n+1)
0 15}o 15
[&————————— RESULTING o} E N
UOTTENT i RESULTING REMAINDER ————
DIVIDEND

Source operand
ADDRESSABLE MEMORY

(0] 15

L DIVISOR ——————n

The first of the destination operand workspace registers, shown above, is addressed by the
contents of the D field. The dividend is located right-justified in this 2-word area. When the
division is complete, the quotient (result) is placed in the first workspace register of the
destination operand (represented by n above) and the remainder is placed in the second word of
the destination operand (represented by n+1 above).

When the source operand is greater than the first word of the destination operand, normal
division occurs. If the source operand is less than or equal to the first word of the destination
operand, normal division will result in a quotient that cannot be represented in a 16-bit word. In
this case, the AU sets the overflow status bit, leaves the destination operand unchanged, and
aborts the division operation.

If the destination operand is specified as workspace register 15, the first word of the destination
operand is workspace register 15 and the second word of the destination operand is the word in
memory immediately following the workspace area.

Status bits affected: Overflow

(0] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 1
L>|A>EQ|C {OV |OP| X |PR |[MF / INTERRUPT
A MASK

Execution results: The contents of way and wiq + 1 (32-bit magnitude) are divided by the
contents of ga; and the quotient is placed in way. The remainder is placed in way + 1.

3-22 Texas Instruments Incorporated

[e]
@ 943441-9701

Application notes: Use the DIV instruction to perform a magnitude division. For example, if
workspace register 2 contains a zero and workspace register 3 contains 000C, ¢, and the contents
of LOC is 0005,,, then the instruction

DIV @LOC,2

results in a 0002, in workspace register 2 and a 0002,, in workspace register 3. The overflow
status bit resets. If workspace register 2 contained the value 0005, 4, the magnitude contained in
the destination operand would equal 327,692 and division by the value 5 would result in a
quotient of 65,538, which cannot be represented in a 16-bit word. This attempted division
would set the overflow status bit and the AU would abort the operation.

3.17 INCREMENT INC
Op Code: 0580

Addressing mode: Format VI
Format:

[0) 1 2 3144 5 6 7 8 9 10 11112 13 14 15
! LR L
oOjojojojlo}1 ol]1 1 0 Ts S

Syntax definition:

[<label>]b ...INCb ...<ga,>b ... [<comment>]

Example:

LABEL INC @ADDR(2)+ INCREMENT THE CONTENTS OF THE EFFECTIVE
LOCATION.

Definition: Add one to the source operand and replace the source operand with the result. The
AU compares the sum to zero and sets/resets the status bits to indicate the result of the
comparison. When there is a carry out of bit zero, the carry status bit sets. When there is an
overflow (the sum cannot be represented in a 16-bit, two’s complement value), the overflow
status bit sets.

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, and overflow.

10 11 12 13 14 15

9

/ | 17 T
> INTERRUPT
L>|A>lea|c |ov |or| x |PR |MF A B

AAAAA

3-23 Texas Instruments Incorporated

o
%@ 9434419701

Execution results: (gag) + 1 > (gay)
Application notes: Use the INC instruction to count and index byte arrays, add a value of one
to an addressable memory location, or set flags. For example, if COUNT contains a zero, the
instruction

INC @COUNT
places a 0001, in COUNT and sets the logical greater than and arithmetic greater than status

bits, while the equal, carry, and overflow status bits reset. Refer to a subsequent paragraph for
additional application notes.

3.18 INCREMENT BY TWO INCT

Op Code: 05CO
Addressing mode: Format VI

Format:

o 1 2 3,4 5 6 7 8 9 10 11,12 13 14 15

1 LA
olojojojo]tjoft]r|1] s
Syntax definition:
[<abel>]b ...INCTb ...<ga,>b ... [<comment>]
Example:
LABEL INCT 3 ADD 2 TO THE CONTENTS OF WSR3

Definition: Add a value of two to the source operand and replace the source operand with the
sum. The AU compares the sum to zero and sets/resets the status bits to indicate the result of
the comparison. When there is a carry out of bit zero, the carry status bit sets. When there is an
overflow, (the sum cannot be represented in a 16-bit word as a two’s complement value), the
overflow status bit sets.

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, and overflow.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

| ! 1 I
L>|a>|{ea| c lov |or| x |PrR MFW / INTERRUPT

AAAAA

Execution results: (gay) + 2 > (ga,)

3-24 Texas Instruments Incorporated

[e]
@ 943441-9701

Use the INCT instruction to count and index word arrays, and add the value of two to an
addressable memory location. For example, if workspace register 5 contains the address
(210044) of the fifteenth word of an array, the instruction

INCT 5
changes workspace register 5 to 2102,¢, which points to the sixteenth word of the array. The

logical greater than and arithmetic greater than status bits are set while the equal, carry, and
overflow status bits are reset. Refer to a subsequent paragraph for additional application notes.

3.19 DECREMENT DEC
Op Code: 0600

Addressing mode: Format VI
Format:

0 1 2 3,4 5 6 7,8 9 10 11,12 13 14 15
LB 1 r 7

Syntax definition:
[<label>]b ...DECb ...<ga,>b ... [<comments>]

Example:

LABEL DEC 2 SUBTRACT 1 FROM THE CONTENTS OF WSR2

Definition: Subtract a value of one from the source operand and replace the source operand with
the result. The AU compares the result to zero and sets/resets the status bits to indicate the
result of the comparison. When there is a carry out of bit zero, the carry status bit sets. When
there is an overflow (the difference cannot be represented in a word as a two’s complement
value), the overflow status bit sets.

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, and overflow.

o) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

L
L>|A>|EQ| ¢ |ov [oP| X [PR [MF INTERRUPT
A MASK

AAAAA

3-25 Texas Instruments Incorporated

[e]
(.I_%\pr 943441-9701

Execution results: (gag) - 1 - (gag)

Application notes: Use the DEC instruction to subtract a value of one from any addressable
operand. The DEC instruction is also useful in counting and indexing byte arrays. For example,
if COUNT contains a value of 1,4, then

DEC @COUNT
results in a value of zero in location COUNT and sets the equal and carry status bits while resetting
the logical greater than, arithmetic greater than, and overflow status bits. The carry bit is always

set except on transition from zero to minus one. Refer to a subsequent paragraph for additional
application notes.

3.20 DECREMENT BY TWO DECT
Op Code: 0640

Addressing mode: Format VI

Format:

0t 2 3,4 5 6 718 9 10 11,12 13 14 15
L 1 LI
ololo]JofJo]1]1]o]lo} 1] T s
Syntax definition:
[<label>]® ... DECTb ... <ga,>b ... [<comment>]
Example:
LABEL DECT @ADDR SUBTRACT 2 FROM THE CONTENTS OF ADDR

Definition: Subtract two from the source operand and replace the source operand with the
result. The AU compares the result to zero and sets/resets the status bits to indicate the result of
the comparison. When there is a carry out of bit zero, the carry status bit sets. When there is an

overflow (the result cannot be represented in a word as a two’s complement value), the overflow
status bit sets.

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, and overflow.

o 1 2 3 4 5 6 7 8 9 10 11 1213 1415

| {
L>|A>|EQl c |ov|oOP] X |PR MF/ INTERRUPT
/ MASK

AAAAA

3-26 Texas Instruments Incorporated

o
@ 943441-9701

Execution results: (gay) - 2 > (ga,)
Application notes: The DECT instruction is useful in counting and indexing word arrays. Also,
use the DECT instruction to subtract a value of two from any addressable operand. For example,
if workspace register PRT (PRT equals 3) contains a value of 2C10,4, then the instruction

DECT PRT
changes the contents of workspace register 3 to 2COE,¢. The logical greater than, arithmetic

greater than and carry status bits set while the equal and overflow status bits reset. Refer to a
subsequent paragraph for additional application notes.

3.21 ABSOLUTE VALUE ABS
Op Code: 0740
Addressing mode: Format VI

Format:

(o] 1 2 3, 4 5 6 7,8 9 10 11,12 13 14 15
T Bl I I

ojojojojof1 1 1 (o} 1 Ts S

Syntax definition:

[<label>]® ... ABSb ... <ga,>b ... [<comment>]

Example:

LABEL ABS *2 REPLACE THE CONTENTS OF THE INDIRECT
ADDRESS OF WSR2 WITH ITS ABSOLUTE VALUE

Definition: Compute the absolute value of the source operand and replace the source operand
with the result. The absolute value is the two’s complement of the source operand when the sign
bit (bit zero) is equal to one. When the sign bit is equal to zero, the source operand is
unchanged. The AU compares the original source operand to zero and sets/resets the status bits
to indicate the results of the comparison.

Status bits affected: Logical greater than, arithmetic greater than, equal, and overflow.

10 11 12 13 14 15

9
777 T T 71
L>A>|EQ]| C |OV]| OP| X |PR |MF / lNIAE:SRI»?PT

A AA A

3-27 Texas Instruments Incorporated

o]
@ 9434419701

Execution results: |(gay)l ~> (gag)

Application notes: Use the ABS instruction to take the absolute value of an operand. For
example, if the third word in array LIST contains the value FF3C,s and workspace register
seven contains the value 4,4, then the instruction ‘

ABS @LIST(7)

changes the contents of the third word in array LIST to 00C4,¢. The logical greater than status
bit sets while the arithmetic greater than and equal status bits reset. The overflow bit is set if the
operand is 8000,¢ ; otherwise, it is reset. Refer to a subsequent paragraph for additional application
notes.

Multiple CPU Systems. Several 990/10 CPUs can be connected together to create a multiple CPU
systems. In these systems, the CPUs must share a common memory. Simultaneous access attempts
to memory by more than one CPU can result in a loss of data. To prevent this conflict, software
“memory busy” flags in memory can be used. When a program desires access to memory, it must
first check the flag to determine if any other program is actively using memory. If memory is not
busy, the program sets the busy flag to lock out other programs and begins its memory transfers.
When the program is finished with memory, it clears the busy flag to allow access to other programs.

However, the busy flag system is not fool proof. If two CPUs check the status of the busy flag in
successive memory cycles, each CPU proceeds as if it has exclusive access to memory. This con-
flict occurs because the first CPU does not set the flag until after the second CPU reads it. All
instructions in the 990 instruction set, except one, allow this problem to occur since they release
memory which executing the instruction (i.e., while checking the state of the busy flag). However,
the ABS instruction maintains control over memory even during execution of the instruction after
the flag has been fetched from memory. This feature prevents other programs from accessing
memory until the first program has evaluated the flag and has had a chance to change it. Therefore,
use the ABS instruction to examine memory busy flags in all memory-sharing applications.

3.22 NEGATE NEG
Op Code: 0500

Addressing mode: Format VI

Format:

O 1 2 3)4 5 6 718 9 10 11412 13 14 15
T T T 1
olojlofolol1fofl1]o]o] = s
Syntax definition:
[label>]b ... NEGbH ...<ga,>b ... [<comment>]
Example:
LABEL NEG 2 REPLACE CONTENTS OF WSR2 WITH ITS
ADDITIVE INVERSE

3-28 Texas Instruments Incorporated

943441-9701

Definition: Replace the source operand with the two’s complement of the source operand. The
AU determines the two’s complement value by inverting all bits of the source operand and
adding one to the resulting word. The AU then compares the result to zero and sets/resets the
status bits to indicate the result of the comparison.

Status bits affected: Logical greater than, arithmetic greater than, equal, and overflow.

Execution results: - (gag) - (ga,)

Application notes: Use the NEG instruction to make the contents of an addressable memory

location its additive inverse. For example, if workspace register 5 contains the value A342,,,
then the instruction

NEG 5

changes the contents of workspace register 5 to SCBE;4. The logical greater than and arithmetic
greater than status bits set while the equal status bit resets. The overflow bit is set if the operand is
8000,4 ; otherwise, it resets.

3.23 JUMP AND BRANCH INSTRUCTIONS '
Branch instructions transfer control either unconditionally, or conditionally according to the

state of one or more status bits of the status register. Table 3-3 lists the conditional branch (jump)
instructions and shows the status bit or bits tested.

Table 3-3. Status Bits Tested by Instructions

Mnemonic L> A> EQ cC 0oV opP Jump if:
JH X - X - - - IL>=1and EQ=0
JL X - X - - - L>=0and EQ=0
JHE X — X - = — L>=10rEQ=1
JLE* X — X - = - L>=00rEQ=1
JGT — X — — - - A>=1
T - X X - - - A>=0and EQ=0
JEQ — — X — - - EQ=1
INE ~ - X - - - EQ=0
Joc - - - X - - C=1
N - - - X - - c=0
INO - - - - X - oV =0
JOP — - - - - X OP=1

* JLE is a logical comparison of jump if low or equal, not the
arithmetic comparison.

For all jump instructions, a displacement of zero results in execution of the next instruction in

sequence. A displacement of -1 results in execution of the same instruction (a single-instruction
loop).

329 Texas Instruments Incorporated

943441-9701

The instructions are:

3.24 BRANCH
Op Code: 0440

Instruction

Branch

Branch and Link
Branch and Load WP
Jump if Equal

Jump if Greater Than
Jump if High or Equal
Jump if Logical High
Jump if Logical Low
Jump if Low or Equal
Jump if Less Than
Unconditional Jump
Jump if No Carry
Jump if Not Equal
Jump if No Overflow
Jump if Odd Parity
Jump On Carry
Return WP

Execute

Addressing mode: Format VI

Format:

Mnemonic

B
BL

BLWP

JEQ
IGT
JHE
JH

JL

JLE
JLT
IMP
INC
INE
INO
JOP
JoC

RTWP

8

9

10 11

Paragraph

324
3.25
3.26
3.35
3.33
3.31
3.29
3.30
332
334
3.28
3.38
3.36
3.39
3.40
3.37
3.27
341

12 13 14 15

Ts

U

T
s

Syntax definition:

[label>]b ...Bb...<ga >b ... [<comment>]

Example:

LABEL B @THERE

TRANSFER CONTROL TO LOCATION THERE

peﬁnitign.' Replace the PC contents with the source address and transfer control to the
instruction at that location.

3-30

1 exas Instruments Incorporated

o]

Status bits affected: None

(0] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1, LI
L>|A>|EQ| c |ov |OP| X |PR MF/ INTERRUPT
MASK

Execution results: ga, —~ (PC)

Application notes: Use the B instruction to transfer control to another section of code.to change
the linear flow of the program. For example, if the contents of workspace register 3 is 21CC, ¢

then the instruction
B *3

causes the word at location 21CC,s to be used as the next instruction, because this value
replaces the contents of the PC when this instruction is executed.

3.25 BRANCH AND LINK BL
Op Code: 0680

Addressing mode: Format VI

Format:
0O 1 2 3;4 5 6 7,8 9 10 1111213 14 15
T | S
ofojololo]1]1]o}l1]o] = s
Syntax definition:
[<label>]b ...BLb ...<ga,>b ... [<comment>]
Example:
LABEL BL @SUBR CALL SUBR AS A COMMON WS SUBROUTINE"

Definition: Place the source address in the program counter, place the address of the instruction
following the BL instruction (in memory) in workspace register 11, and transfer control to the
new PC contents.

Status bits affected: None

(0] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LI i
L>|A>|EQ| c | oV|OP| X |PR MFT///A 'N-‘IZAEARSRI?PT

331 Texas Instruments Incorporated

o
%@ 943441-9701

Execution results: gag ~ (PC);
(old PC) - (Workspace register 11)

Application notes: Use the BL instruction when return linkage is required. For example, if the
instruction

BL @TRAN
occurs at memory location (PC count) 04BC,¢, then this instruction has the effect of placing

memory location TRAN in the PC and placing the value 04C0,, in workspace register 11. Refer
to a subsequent paragraph for additional application notes.

3.26 BRANCH AND LOAD WORKSPACE POINTER BLWP
Op Code: 0400

Addressing mode: Format VI

Format:

0O 1 2 3,4 5 6 7,8 9 10 11412 13 14 15
0000010000T; ';r
Syntax definition:
[<label>]b ... BLWPb ...<ga,>b ... [<comment>]
Example:
LABEL BLWP @VECT BRANCH TO SUBROUTINE AT ADDRESS

(@VECT+2) AND EXECUTE CONTEXT SWITCH

Definition: Place the source operand in the WP and the word immediately following the source
operand in the PC. Place the previous contents of the WP in the new workspace register 13,
place the previous contents of the PC (address of the instruction following BLWP) in the new
workspace register 14, and place the contents of the ST register in the new workspace register
15. When all store operations are complete, the AU transfers control to the new PC.

Status bits affected: None

o 1 2 3 4 5 6 7 8 9 1011 12 13 14 15

T | I
jL>]a>leal c |ov]or| x |PR MF’V INTERRUPT
/ MASK

3-32 7exas Instruments Incorporated

o
j:@p 943441-9701

Execution results: (gag) > (WP)
(ga, +2) > (PC)
(old WP) - (Workspace register 13)
(old PC) - (Workspace register 14)
(ST) = (Workspace register 15)

Application notes: Use the BLWP instruction for linkage to subroutines, program modules, or
other programs that do not necessarily share the calling program workspace. Refer to a
subsequent paragraph for a detailed explanation and example.

3.27 RETURN WITH WORKSPACE POINTER RTWP
Op Code: 0380

Addressing mode: Format VII

Format:

6 1 -2 3)4 5 6 7,8 9 101112 13 14 15

ojojo of o] o 111 1j]ojojo}jo ojojo

Syntax definition:
[<label>]b ... RTWPbh ... [<comment>]

Example.

LABEL RTWP RETURN FROM SUBROUTINE CALLED BY BLWP

Definition: Replace the contents of the WP register with the contents of the current workspace
register 13. Replace the contents of the PC with the contents of the current workspace register
14. Replace the contents of the ST register with the contents of the current workspace register

15. The effect of this instruction is to restore the execution environment that existed prior to an
interrupt, a BLWP instruction, or an XOP instruction.

Model 990/10 Computer: In the Model 990/10 Computer with the Privileged Mode bit (bit 7)
of the ST register set to 1, only bits O through 5 of workspace register 15 are placed in bits 0
through 5 of the ST register. When bit 7 of the ST register is set to 0, the instruction places bits
0-8 and 12-15 of workspace register 15 into bits 0-8 and 12-15 of the ST register.

Model 990/4 Computer: In the Model 990/4 Computer, bits 0-7 and 12-15 of workspace register
15 are placed in bits 0-7 and 12-15 of the ST register.

Status bits affected: Restores all status bits to the value contained in workspace register 15.
0o 1t 2 3 4 5 6 7 8 9 10 11 12 1314 15

/ 1 1)
L> / INTERRUPT
A>| EQl c |ovior| x |PR|MF ////A L.

A A AAAAAAA AAA A

3-33 Texas /nstruments Incorporated

o
{—@fp 9434419701

Execution results: (Workspace register 13) > (WP)
(Workspace register 14) - (PC)
(Workspace register 15) - (ST)

Application notes: Use the RTWP instruction to restore the execution environment after the

completion of execution of an interrupt, a BLWP instruction, or an XOP instruction. Refer to a
subsequent paragraph for additional information.

3.28 UNCONDITIONAL JUMP JMP
Op Code: 1000
Addressing mode: Format II

Format:

(o] 1 2 3 4 5 6 7 8 9 10 11,412 13 14 15
T 1 1 1 LI

ojojojt1rjojojog}o DISPLACEMENT

Syntax definition:
[<label>]b ...JMPb ... <exp>b ... [<comment>]
Example:

LABEL JMP NXTLBL JUMP TO NXTLBL

Definition: Add the signed displacement in the instruction word to the PC and replace the PC
with the sum.

Status bits affected: None

0 1 2 3 4 5 6 7 8 9 10 111213 14 15
/Y /] INTERRUPT
L>A>Ea|c |ov|or|x |PR|MF A ERRU

Execution results: (PC) + Displacement - (PC)

The PC is incremented to the address of the next instruction prior to execution of an
instruction. The execution results of jump instructions refer to the PC contents after the
contents have been incremented to address the next instruction in sequence. The displacement
(in words) is shifted to the left one bit position to orient the word displacement to the word
address, and added to the PC contents.

3-34 Texas Instruments Incorporated

.

o
{@@ 043441.970

Application notes: Use the JMP instruction to transfer control to another section of the program
module.

3.29 JUMP IF LOGICAL HIGH JH
Op Code: 1B00
Addressing mode: Format II

Format:

o 1 2 314 5 6 7 8 9 10 11312 13 14 15
T T r 17T vr
o} o oj111y1o0 1 1 DISPLACEMENT

Syntax definition:
[<label>]b ...JHb ... <exp>b ... [<comment>]
Example:

LABEL JH CONT IF L> AND NOT EQ SKIP TO CONT

Definition: When the equal status bit is reset and the logical greater than status bit is set, add
the signed displacement in the instruction word to the contents of the PC and replace the PC
with the sum.

Status bits tested:

(o} 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

/ 1 T 1
L>A>lEQ| c |ov|oP| x |PR MF/ INTERRUPT
A MASK

A A

Jump if: L>=1and EQ=0
Status bits affected: None

(o] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

| 1 LI
L>|A>|EQ| C |OV|OP| X | PR{MF INTERRUPT
MASK

3-35 Texas Instruments Incorporated

[e]
ﬁ_‘@p 943441-9701

Execution results: If logical greater than bit is equal to 1 and equal bit is equal to O:
(PC) + Displacement —> (PC).

If logical greater than bit is equal to 0 or equal bit is equal to 1: (PC) > (PC).

Refer to explanation of execution in paragraph 3.28.

Application notes: Use the JH instruction to transfer control when the equal status bit is reset
and the logical status bit is set.

3.30 JUMP IF LOGICAL LOW

Op Code: 1A00

Addressing mode: Format II

JL

Format:
o 1 2 3 5 6 7,8 9 10 11,12 13 14 15
v 1t rF 1 17
olo] o ol 1] o DISPLACEMENT

Syntax definition:
[<[abel>]b ... JLb

Example:

R <exp>to ... [<comment>]

LABEL JL PREVLB

IF L> AND EQ ARE LOW, JUMP TO PREVLB

Definition: When the equal and logical greater than status bits are reset, add the signed
displacement in the instruction word to the PC contents and replace the PC with the sum.

Status bits tested:

o 1 2 4 5 6 7 8 9 10 11 12 13 14 15
/ T] I
INTERRUPT
L>|A>| EQ ov|opr| x |PR MF/| FERRY
A A
Jump if: L1>=0and EQ=0
Status bits affected: None
o 1 2 4 5 6 7 8 9 10 11 12 13 14 15
/7 /) nj-r 'R l!'T
> ERRU
> A>{EQ ov |op| x PR|MF ///// TERRL
3-36 Texas Instruments Incorporated

(o}
{f@) 943441-9701

Execution results: If logical greater than bit and equal bit are equal to 0: (PC) + Displacement ~
(PO).

If logical greater than bit is equal to 1 or equal bit is equal to 1: (PC) - (PC).
Refer to explanation of execution in paragraph 3.28.

Application notes: Use the JL instruction to transfer control when the equal and logical greater
than status bits are reset.

3.31 JUMP IF HIGH OR EQUAL JHE
Op Code: 1400

Addressing mode: -Format II

Format:

o 1 2 3344 5 6 718 9 10 11,12 13 14 15
I ! ! I | | 1
0} 0 O 1 (0] 1 o} o DISPLACEMENT

Syntax definition:
[<label>]b ... JHEb ... <exp>b ... [<comment>]
Example:
LABEL JHE LABEL LOOP HERE UNTIL EQ AND L> ARE RESET

Definition: When the equal status bit or the logical greater than status bit is set, add the signed
displacement in the instruction word to the PC and replace the contents of the PC with the sum.

Status bits tested:

0 1 2 3 4 5 6 7 8 9 to 11 12 13 14 15

T 1
L>|A>| E Cc |oVv’ R / INTERRUPT
Q op| x |Pr |MF /// TERRU

A A

Jump if: L>=1or EQ=1

Status bits affected: None

(o) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I 1 1
MF INTERRUPT
MASK

L>A>|EQ| C |OV|OP| X | PR

3-37 Texas Instruments Incorporated

o
ir@’p 943441-9701

Execution results: 1f logical greater than bit is equal to 1 or equal bit is equal to 1: (PC) +
Displacement - (PC).

If logical greater than bit and equal bit are equal to 0: (PC) - (PC).
Refer to explanation of execution in paragraph 3.28.

Application notes: Use the JHE instruction to transfer control when either the logical greater
than or equal status bit is set.

3.32 JUMP IF LOW OR EQUAL JLE
Op Code: 1200
Addressing mode: Format II

Format:

(0] 1 2 314 5 6 7,8 9 101 1,12 13 14 15
I T 1 1 1 1
ojojojt1jo (o] 1 [} DISPLACEMENT

Syntax definition:
[<label>]b ...JLEb ... <exp>b ... [<comment>]
Example:

LABEL JLE THERE JUMP TO THERE WHEN EQ=1 or L>=0

Definition: When the equal status bit is set or the logical greater than status bit is reset, add the
signed displacement in the instruction word to the contents of the PC and replace the PC with
the sum.

NOTE
JLE is not jump if less than or equal.

Status bits tested:

0 1 2 3 4 5 6 7 8 9 10 11 12 1314 15

‘ 77T T
L> A>lEQl ¢ |o / INTERRUPT
v|op| x |PR |MF ///// TERRL

A A

Jump if: 1>=0o0or EQ=1

3-38 Texas Instruments Incorporated

o
{_@? 943441-9701

Status bits affected: None

() 1 2 3 4 5 6 7 8 9 10 11 1213 14 15

| IR
L>A>lEQ | Cc |ov |oP| X |PR MF/ INTERRUPT
MASK

Execution results: If logical greater than bit is equal to 0 or equal bit is equal to 1: (PC) +
Displacement - (PC).

If logical greater than bit is equal to 1 and equal bit is equal to 0: (PC) » (PC).
Refer to explanation of execution in paragraph 3.28.

Application notes: Use the JLE instruction to transfer control when the equal status bit is set or
the logical greater than status bit is reset.

3.33 JUMP IF GREATER THAN JGT
Op Code: 1500
Addressing mode: Format II

Format:

[¢] 1 2 314 5 6 7 8 9 10 11412 13 14 15
o 1 LI | 1 f
(O3 IO T O I o1 (0] 1 DISPLACEMENT

Syntax definition:
[<label>]b ...JGTb ... <exp>b ... [<comment>]
Example:

LABEL JGT THERE JUMP TO THERE IF A>=1

Definition: When the arithmetic greater than status bit is set, add the signed displacement in the

instruction word to the PC and place the sum in the PC. Transfer control to the new PC
location.

Status bits tested:

(o) 1 2 3 4 5 6 7 8 9 10 11 1213 14 15

T T, | T
L>|A>lEQ| € lov |oP] X |PR MF7 INTERRUPT
MASK

Jump if: A>=1

3-39 Texas /nstruments Incorporated

[e]
(_'—@5} 943441-9701

Status bit affected: None

o 1 2 3 4 5 6 7 8 9 10 11 12 1314 15

| LI I
Vi

Execution results: If arithmetic greater than bit is equal to 1: (PC) + Displacement - (PC).

If arithmetic greater than bit is equal to 0: (PC) - (PC).
Refer to explanation of execution in paragraph 3.28.

Application notes: Transfers control if the arithmetic greater than status bit is set.
3.34 JUMP IF LESS THAN JLT

Op Code: 1100
Addressing mode: Format II

Format:

o 1 2 314 5 6 7,8 9 10 11,12 13 14 15

AL
ojofoj1jojojofr1 DISPLACEMENT

Syntax definition:
[<label>]b ...JLTb ... <<exp>b ...[<comment>]
Example:

LABEL JLT THERE JUMP TO THERE IF A>=0 AND EQ=0

Definition: When the equal and arithmetic greater than status bits are reset, add the signed
displacement in the instruction word to the PC and replace the PC contents with the sum.

Status bits tested.:

10 11 12 13 1415

9
/ 1 | !
INTERRUPT
L>IA>IEQ| C | OV|OP| X |PR|MF / MASK

A A

Jumpif: A>=0and EQ=0

340 Texas Instruments Incorporated

[e]
{“{\ﬁ‘f) 943441-9701

Status bits affected: None

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

/ | | |
INTERRUPT
L>/A>|eal c |ov]or| x |PrR MF//I///// R

Execution results: If arithmetic greater than bit and equal bit are equal to 0: (PC) + Displace-
ment - (PC).

If arithmetic greater than bit is equal to 1 or equal bit is equal to 1: (PC) - (PC).
Refer to explanation of execution in paragraph 3.28.

Application notes: Use the JLT instruction to transfer control when the equal and arithmetic
greater than status bits are reset.

3.35 JUMP IF EQUAL JEQ
Op Code: 1300
Addressing mode: Format II

Format:

0 1 2 3 4 5 6 7 8 9 10 1112 13 14 15
T T 1 T T 1
ololofl1]oflof 1|1 DISPLACEMENT

Syntax definition:

[<label>]b ...JEQb ... <exp>b ... [<comment>]
Example:
LABEL JEQ LOC JUMP TO LOC IF EQ=1

Definition: When the equal status bit is set, transfer control by adding the signed displacement in
the instruction word to the program counter and then place the sum in the PC to transfer
control.

Status bits tested.:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

/ 1) 1 1
L>|A>EQ| ¢ |ov]oP| x |PR MF/ INTERRUPT
/ MASK

Jump if: EQ-=1

341 Texas Instruments Incorporated

[e]
i@ 943441-9701

Status bits affected: None

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

y | L
INTERRUPT
L>|A>|EQ] c |oVv |OoP| X | PR|MF // MASK

Execution results: 1f equal bit is equal to 1: (PC) + Displacement -~ (PC).

If equal bit is equal to 0: (PC) - (PC).
Refer to explanation of execution in paragraph 3.28.

Application notes: Use the JEQ instruction to transfer control when the equal status bit is set
and to test CRU bits.

3.36 JUMP IF NOT EQUAL JNE
Op Code: 1600
Addressing mode: Format II

Format:

0 1 2 314 5 6 7;8 9 10 11}12 13 14 15
L I L | LR
o} o oj1jo}1 110 DISPLACEMENT

Syntax definition:
[<label>]b ... JNEb ...<exp>b ... [<comment>]
Example:

LABEL JNE LOC2 JUMP TO LOC2 IF EQ=0

Definition: When the equal status bit is reset, add the signed displacement in the instruction
word to the PC and replace the PC with the sum.

Status bits tested:

(o] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

| ! LI |
L>|A>|EQ| C |OV|OP| X | PR|MF INTERRUPT
MASK

Jump if: EQ=0

3-42 Texas /nstruments Incorporated

o
J-_%\lfp 9434419701

Status bits affected: None

o] 1 2 3 4 5 6 7 8 10 11 12 13 14 15

9
/ | | | T
L>|A>|EQ|C {OoV |OP| X |PR |MF INTERRUPT
/ MASK

Execution results: If equal bit is equal to 0: (PC) + Displacement ~ (PC).

If equal bit is equal to 1: (PC) » (PC).
Refer to explanation of execution in paragraph 3.28.

Application notes: Use the JNE instruction to transfer control when the equal status bit is reset.
The JNE instruction is also useful in testing CRU bits.

3.37 JUMP ON CARRY JOC
Op Code: 1800
Addressing mode: Format II

Format:

[0) 1 2 314 5 6 7;]8 9 10 11)12 13 14 15
rr T 7 1T T
o| o o]1 1 0} o} o DISPLACEMENT

Syntax definition:
[<label>1b ...JOCb ... <exp>b ... [<comment>]
Example:

LABEL JOC PROCED IF C=1 SKIP TO PROCED

Definition: When the carry status bit is set, add the signed displacement in the instruction word
to the PC and replace the PC with the sum.

Status bits tested:

0] 1 2 3 4 5 6 7 8 9 10 11 12 1314 15

/ /// T 1 T
INTERRUPT
A MASK

L>lA>| EQ|C |OV|OP| X |PR|M

T

Jump if: C=1

343 Texas Instruments Incorporated

o
{_@2 9434419701

Status bits affected: None

(0] 1 2 3 4 5 6 7 8 10 11 12 13 14 15
LA
INTERRUPT

L>|A>|EQ|C |OV |OP| X |PR MF / MASK

Execution results: If carry bit is equal to 1: (PC) + Displacement - (PC).

If carry bit is equal to 0: (PC) - (PC).

Refer to explanation of execution in paragraph 3.28.

Application notes: Use the JOC instruction to transfer control when the carry status bit is set.
3.38 JUMP IF NO CARRY IJNC

Op Code: 1700

Addressing mode: Format II

Format:

0 1 2 314 5 6 7 8 9 10 11,412 13 14 15

, T T T 11
(o] (o] (o] 1 (o] 1 1 1 DISPLACEMENT

Syntax definition:
[<label>]b ... INCbh ... <<exp>b ... [<comment>]
Example:

LABEL JNC NONE JUMP TO NONE IF C=0

Definition: When the carry status bit is reset, add the signed displacement in the instruction
word to the PC and replace the PC with the sum.

Status bits tested:

o 1 2 3 4 5 6 7 8 111213 14 15
L>|A>lEQ|c |ov]or|x |PR MF/M'NTERRUPT

Jumpif: C=0

3-44 Texas Instruments Incorporated

o
@ 943441-9701

Status bits affected: None

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

/ ! 1 I
INTERRUPT
L>A>|EQ| C |[OV |OP| X |PR MFW/ MASK

Execution results: 1f carry bit is equal to 0: (PC) + Displacement - (PC).

If carry bit is equal to 1: (PC) - (PC).
Refer to explanation of execution in paragraph 3.28.

Application notes: Use the JNC instruction to transfer control when the carry status bit is reset.

3.39 JUMP IF NO OVERFLOW JNO
Op Code: 1900
Addressing mode: Format II

Format:

0O 1 2 3}14 5 6 7|18 9 10 11,12 13 14 15
1 T 1 1 17
olojol1}l1|ofol1 DISPLACEMENT

Syntax definition:

[<label>]b...JNOb ... <exp>b ... [<comment>]

Example:
LABEL JNO NORML JUMP TO NORML IF OV=0

Definition: When the overflow status bit is reset, add the signed displacement in the instruction
word to the PC and replace the PC with the sum.

Status bits tested:

[o] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

| | | |
L>|A>|EQ| C |OV|OP| X | PR|MF INTERRUPT
MASK

Jump if: OV=0

345 Texas /nstruments Incorporated

[e]
@ 943441-9701

Status bits affected: None

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LI
L>]A>|EQ| C |OoV |OP| X | PR |[MF INTERRUPT
’ MASK

Execution results: If overflow bit is equal to 0: (PC) + Displacement - (PC).

If overflow bit is equal to 1: (PC) - (PC).

Refer to explanation of execution in paragraph 3.28.

Application notes: Use the JNO instruction to transfer control when the overflow status bit is reset.
JNO normally transfers control during arithmetic sequences where addition, subtraction, incre-
menting, and decrementing may cause an overflow condition. JNO may also be used following an
SLA (Shift Left Arithmetic) operation. If, during the SLA execution, the sign of the workspace
register being shifted changes (+ to -, - to +), the overflow status bit sets. This feature permits
transfer, after a sign change, to error correction routines or to another functional code sequence.

3.40 JUMP IF ODD PARITY JOP
Op Code: 1C00

Addressing mode: Format II
Format:

o 1 2 3314 5 6 7,8 9 10 11112 13 14 15

1 T 1 1177
ololJo]J]1]l1]1}]olo DISPLACEMENT

Syntax definition:
[<label>]b ...JOPb ... <exp>b ... [<comment>]
Example:

LABEL JOP THERE JUMP TO THERE IF OP=1

Definition: When the odd parity status bit is set, add the signed displacement in the instruction
‘word to the PC and replace the PC with the sum.

Status bits tested.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

/ ¥ l hj
L>{A>EQ| ¢ lov]|or]| x |PR MF/ INTERRUPT
/ MASK

A

Jump if: OP=1

346 Texas Instruments Incorporated

943441-9701

Status bits affected: None

o 1 2 3 4 5 6 7 8 9 10 11 1213 14 15

7 T 1
INTERRUPT
L>|a>|eal c |ov|opr| x |PR [MF //7/ ITERR

Execution results: If odd parity bit is equal to 1: (PC) + Displacement - (PC).

If odd parity bit is equal to 0: (PC) » (PC).
Refer to explanation of execution in paragraph 3.28.

Application notes: Use the JOP instruction to transfer control when there is odd parity.
Odd parity indicates that there is an odd number of logic one bits in the byte tested. JOP
transfers control if the byte tested contains an odd number (sum) of logic one bits. This
instruction may be used in data transmissions where the parity of the transmitted byte is
used to ensure the validity of the received character at the point of reception.

3.41 EXECUTE X
Op Code: 0480

Addressing mode: Format VI

Format:

o 1 2 3,4 5 6 78 9 10 11,12 13 14 15
! I I I
o]0 ojojop1 ojo}1 (o] Ts S

Syntax definition:
[<label>]b ... Xb ...<ga,>b ... [<comment>]

Example.

LABEL X 2 EXECUTE THE CONTENTS OF WSR2

Definition: Execute the source operand as an instruction. When the source operand is not a
single word instruction, the word or words following the execute instruction are used with the
source operand as a 2-word or 3-word instruction. The source operand, when executed as an
instruction, may affect the contents of the status register. The PC increments by either one, two,
or three words depending upon the source operand. If the executed instruction is a branch, the
branch is taken. If the executed instruction is a jump and if the conditions for a jump (i.e. the

status test indicates a jump) are satisfied, then the jump is taken relative to the location of the
X instruction.

347 Texas Instruments Incorporated

[e]
@ 943441-9701

Status bits affected: None, but substituted instruction affects status bits normally.

(o] 1 2 3 4 5 6 7 8 9 1011 12 13 14 15
| I | LR
L>|A>|EQ| C |oVv|OP| X |PR |MF INTERRUPT
MASK

Execution results: An instruction at ga, is executed instead of the X instruction.

Application notes: Use the X instruction to execute the source operand as an instruction. This is
primarily useful when the instruction to be executed is dependent upon a variable factor. Refer
to a subsequent paragraph for additional application notes.

3.42 COMPARE INSTRUCTIONS

Compare instructions have no effect other than the setting or resetting of appropriate status bits
in the status register. The compare instructions perform both arithmetic and logical comparisons.
The arithmetic comparison is of the two operands as two’s complement values and the logical
comparison is of the two operands as unsigned magnitude values. The instructions are:

Instruction Mnemonic Paragraph
Compare Words C 3.43
Compare Bytes CB 344
Compare Immediate CI 345
Compare Ones Corresponding cocC 3.46
Compare Zeros Corresponding CzZC 3.47

3.43 COMPARE WORDS C
Op Code: 8000

Addressing mode: Format I

Format:

;8 9 10 11,12 13 14 15
T LI T LI
D

L s

Syntax definition:
[<label>]b ... Cb ... <ga,><ga;>b ... [<comment>]

Example:

LABEL C 2,3 COMPARE THE CONTENTS OF WSR2 AND WSR3

348 Texas Instruments /ncorporated

o :
_‘:@ 9434419701

Definition: Compare the source operand (word) with the destination operand (word) and
set/reset the status bits to indicate the results of the comparison. The arithmetic and equal
comparisons compare the operand as signed, two’s complement values. The logical comparison
compares the two operands as unsigned, 16-bit magnitude values.

Status bits affected: Logical greater than, arithmetic greater than, and equal.

(0] 1 2 3 4 5 6 7 8 9 10 11 1213 14 15

[/ L
L>A>|E ov|oP| X | PR / INTERRUPT
ate MF ///// MASK

AA A

Execution results: (gay) : (gay)

Application notes: C compares the two operands as signed, two’s complement values and as
unsigned integers. Some examples are:

Source Destination Logical Arithmetic Equal
FFFF 0000 1 0 0
7FFF 0000 1 1 0
8000 0000 1 0 0
8000 7FFF 1 0 0
7FFF 7FFF 0 0 1
7FFF 8000 0 1 0

3.44 COMPARE BYTES CB
Op Code: 9000
Addressing mode: Format I

Format:

1 8 9 10 11§12 13 14 15
1 LIl L 1 1 1 1
D Ts S

Syntax definition:

[<label>]b ...CBb ... <ga,><gay;>b ... [<comment>]

Example:

LABEL CB 2,3 COMPARE THE LEFTMOST BYTES OF WSR2 AND
WSR3

349 7exas Instruments Incorporated

o
@ 943441-9701

Definition: Compare the source operand (byte) with the destination operand (byte) and set/reset
the status bits according to the result of the comparison. CB uses the same comparison basis as
does C. If the source operand contains an odd number of logic one bits, the odd parity status bit

sets. The operands remain unchanged. If either operand is addressed in the workspace register mode,
the byte addressed is the most significant byte.

Status bits affected: Logical greater than, arithmetic greater than, equal, and odd parity.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

\ 7 1 T
INTERRUPT
L>A>|EQ| C |ov|oP| X |PR |MF //,//,/A MASK

AAA A

Execution results: (gay) : (gaq)

Application notes: CB compares the two operands as signed, two’s complement values or as
unsigned integers. Some examples are:

Source Destination Logical Arithmetic Equal 0dd Parity
FF 00 1 0 0 0
7F 00 1 1 0 1
80 00 1 0 0 1
80 7F 1 0 0 1
7F 7F 0 0 1 1
7F 80 0 1 0 1

3.45 COMPARE IMMEDIATE CI
Op Code: 0280
Addressing mode: Format VIII

Format:

0O 1 2 3,4 5 6 7,8 9 10 11412 13 14 15
LIRS
ofolojoJojo]1jo]l1]o]lo]o w
Syntax definition:
[<abel>]b ...CIb ... <wa><iop>b ... [<comment>]
Example:
LABEL CI 3,7 COMPARE CONTENTS OF WSR3 TO 7

3-50 Texas Instruments Incorporated

[o]
@p 434419701

Definition: Compare the contents of the specified workspace register with the word in memory
immediately following the instruction. Set/reset the status bits according to the comparison. CI
makes the same type of comparison as does C.

Status bits affected: Logical greater than, arithmetic greater than, and equal.
Execution results: (wa) : iop

Application notes: Use the CI instruction to compare the workspace register to an immediate
operand. For example, if the contents of workspace register 9 is 2183 ,¢, then the instruction

CI 9,>F330

results in the arithmetic greater than status bit set and the logical greater than and equal status
bits reset.

3.46 COMPARE ONES CORRESPONDING COC
Op Code: 2000
Addressing mode: Format III

Format:

18 9 10 11312 13 14 15
| ! U LI
[¢] (o) 1 oj o} o D Ts S

Syntax definition:
[abel>]b ... COCH ... <ga,><way>b ... [<comment>]
Example:

LABEL - COC @MASK, 2 DOES (WSR2) SATISFY MASK?
Definition: When the bits in the destination operand workspace register that correspond to the

logic one bits in the source operand are equal to logic one, set the equal status bit. The source
and destination operands are unchanged.

Status bit affected: Equal
(o} 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LI
L>]|A>|EQ| C |OV {OP| X |PR |[MF INTERRUPT
A MASK

Execution results: Equal bit set if all bits of (wa,) that correspond to the bits of (ga,) that are
equal to 1 are also equal to 1.

3-51 Texas /nstruments Incorporated

o
ﬁj_—@i; 943441-9701

Application notes: Use the COC instruction to test single/multiple bits within a word in a
workspace register. For example, if TESTBI contains the word C102,, and workspace register 8
contains the value E306;¢, then the instruction

cocC @TESTBI,S
results in setting the equal status bit. If workspace register 8 were to contain E301,4, the equal

status bit would reset. Use this instruction to determine if a workspace register has Is in the bit
positions indicated by 1s in a mask.

3.47 COMPARE ZEROS CORRESPONDING CZC
Op Code: 2400

Addressing mode: Format III

Format:

18 9 10 11]12 13 14 15
I 1 T 1 LENDR
o}]o 1 o}l o 1 D Ts S

Syntax definition:
[[abel>]b ...CZCh .. .<ga ><was;>b ... [<comment>]
Example:

LABEL CZC @MASK,?2 DOES (WSR2) SATISFY THE MASK?

Definition: When the bits in the destination operand workspace register that correspond to the
one bits in the source operand are all equal to a logic zero, set the equal status bit. The source
and destination operands are unchanged.

Status bit affected: Equal

o 1 2 3 4 5 6 7 8 9 10 11 1213 1415

LR
L>|A>|EQ]l c |ov]|oOP| X |PR MF/ INTERRUPT
/ MASK

Execution results: Equal bit set if all bits of (way) that correspond to the bits of (ga,) that are
equal to 1 are equal to 0.

3-52 Texas Instruments Incorporated

o
@ 9434419701

Application notes: Use the CZC instruction to test single/multiple bits within a word in a
workspace register. For example, if the memory location labeled TESTBI contains the value
C102,¢, and workspace register 8 contains 2301,¢, then the instruction

CzC @TESTBI, 8

results in the equal status bit reset. If workspace register 8 contained the value 22014, then the
equal status bit would set. Use this instruction to determine if a workspace register has Os in the
positions indicated by Os in a mask.

3.48 CONTROL AND CRU INSTRUCTIONS

Control instructions affect the operation of the Arithmetic Unit (AU) and the associated
portions of the computer or microprocessor. CRU instructions affect the modules connected to
the Communications Register Unit. The instructions are:

Instruction Mnemonic Paragraph
Clock Off CKOF 3.51
Clock On CKON 3.52
Load CRU LDCR 3.57
Idle IDLE 3.50
Load or Restart Execution LREX 3.53
Reset RSET 3.49
Set CRU Bit to Logic One SBO 3.54
Set CRU Bit to Logic Zero SBZ 3.55
Store CRU STCR 3.58
Test Bit TB 3.56

3.49 RESET RSET
Op Code: 0360

Addressing mode: Format VII

Format:

0 1 2 314 5 6 7,8 9 101112 13 14 15

(o] (o] ojot oo 1 1j]o}1 1jojojojojo

Syntax definition:
[<label>]®b ... RSETbH ... [<comment>]
Example.

LABEL RSET START OVER

3-53 7Texas Instruments Incorporated

[e]
%@ 943441-9701

Definition: The RSET instruction clears the interrupt mask, which disables all except level O
interrupts. It also resets all directly connected input/output devices and those CRU devices that
provide for reset in the interface with the CRU. RSET also resets all pending interrupts and
turns the clock off.

TMS 9900 Microprocessor: Provides a signal that an RSET instruction is identified, but performs
no processing. User may implement hardware to perform desired processing when the signal is
present.

Model 990/10 Computer. When Privileged Mode bit (bit 7 of ST register) is set to 0, instruction

executes normally. When Privileged Mode bit is set to 1, an error interrupt occurs when execution
of an RSET instruction is attempted.

Status bits affected: None

(o] 1 2 3 4 S5 6 7 8 9 10 11 1213 14 15

7 T T 1
L>|A>|E INTERRUPT
Q| c |ov|or| X |PR |MF /ﬂ/// Y

Execution results: Clears the interrupt mask, resets directly connected I/O devices, resets the
CRU devices that provide for reset in the interface with the CRU, resets pending interrupts, and
turns the clock off.

Application notes: Use the reset instruction to reset the interrupt mask to zero, turn off the
clock, and (depending on the device and interface) clear any pending interrupt and reset
interface electronics.

3.50 IDLE IDLE
Op Code: 0340

Addressing mode: Format VII

Format:

O 1t 2 3;4 5 6 7 8 9 10 1111213 14 15

ojojojojojoj1 1 ojt1jojojojo}jo}o

Syntax definition:
[<label>]1® ...IDLEb ... [<comment>]
Example.

LABEL IDLE WAIT FOR INTERRUPT

3-54 Texas Instruments Incorporated

o
@ 943441-9701

Definition: Place the computer in the idle state. Note that the PC is incremented prior to the
execution of this instruction and the contents of the PC point to the instruction word in
memory immediately following the IDLE instruction. The computer will remain in the IDLE
state until an interrupt, RESTART, or LOAD occurs.

TMS 9900 Microprocessor: Provides a signal that an IDLE instruction is being executed, and
places the microprocessor in the idle mode. User may implement hardware to perform additional
processing when the signal is present.

Model 990/10 Computer. When Privileged Mode bit (bit 7 of ST register) is set to 0, instruction
executes normally. When Privileged Mode bit is set to 1, an error interrupt occurs when execution
of an IDLE instruction is attempted.

Status bits affected: None

Execution results: Places the computer in the idle mode, suspending program execution until an
interrupt occurs.

Application notes: Use the IDLE instruction to place the computer in the idle state. This
instruction is useful in timing delays using the clock or in waiting for interrupt signals.

3.51 CLOCK OFF CKOF
Op Code: 03CO

Addressing mode: Format VII

Format:

o 1 2 3,4 5 6 7 8 9 10 11412 13 14 15

oOjojojojojoyj1 1 1 1 ojojojojojo

Syntax definition:
[<label>]b ...CKOFb . .. [<comment>]
Example:
STOCK CKOF STOP THE CLOCK

Definition: Stop the line frequency clock (120 Hz). No status bits are changed and the clock
interrupt will not occur as long as the clock is off.

TMS 9900 Microprocessor: Provides a signal that a CKOF instruction is identified, but performs
no processing. User may implement hardware to perform desired processing when signal is
present.

355 Texas Instruments Incorporated

o
(I@ 943441-9701

Model 990/10 Computer: When Privileged Mode bit (bit 7 of ST register) is set to 0, instruction
executes normally. When Privileged Mode bit is set to 1, an error interrupt occurs when execution
of a CKOF instruction is attempted.

990/4 Microcomputer: If a clock interrupt occurs during the execution of a CKOF instruction, the
interrupt can be vectored incorrectly through level 15 instead of through the level to which it is
connected. To avoid this situation, mask the clock interrupt before executing a CKOF instruction.
The following sequence performs that function.

LIMI 0 Mask all interrupts
CKOF Clock off
LIMI n Reset interrupt mask to desired level,n.
This sequence is not required if CKOF is used in the service routine for a clock interrupt because
the clock interrupt causes the interrupt mask to be set to one level below the level of the clock
interrupt.
Status bits affected: None
Execution results: Line frequency clock disabled, and the clock interrupt cleared.
Application notes: Clock applications are described in paragraph 3.89.7.2.
3.52 CLOCK ON CKON
Op Code: 03A0

Addressing mode: Format VII

Format:

o 1 2 3,4 5 6 7,8 9 10 11312 13 14 15

0Ojojojojojo}1 1 1jo0]1 ojojojojo

Syntax definition:

[<label>]b ...CKONb ... [<comment>]

Example:

STRTC CKON START THE CLOCK

Definition: Enable the line frequency clock. If interrupt level five is enabled, an interrupt will
occur every 8.33 ms after the initial interrupt, which may occur from lus to 8.33 ms after the
clock is turned on. Interrupt five may be enabled/disabled by the interrupt mask as necessary.

TMS 9900 Microprocessor: Provides a signal that a CKON instruction is identified, but performs

no processing. User may implement hardware to perform desired processing when signal is
present.

3-56 Texas Instruments Incorporated

(o}
(I@ 943441-9701

Model 990/10 Computer: When Privileged Mode bit (bit 7 of ST register) is set to 0, instruction
executes normally. When Privileged Mode bit is set to 1, an error interrupt occurs when execution
of a CKON instruction is attempted.

Status bits affected: None

(o] 1 2 3 4 5 6 7 8 9 10 11 12 1314 15

7 T 1 T
>l A E o / INTERRUPT

Execution results: Line frequency clock enabled.

Application notes: Clock applications are described in paragraph 3.89.7.2.

3.53 LOAD OR RESTART EXECUTION LREX
Op Code: 03EO

Addressing mode: Format VII

Format:

o 1 2 3}J]4 5 6 7|8 9 10 1112 13 14 15

oOjojojojojoj}1 1 1 1 1fjojojojojo

Syntax definition:
[<label>]b ...LREXb ... [<comment>]

Example:

LABEL LREX START ALL OVER

Definition: Place the contents of location FFFC,, into the WP register and the contents of
location FFFE,4 into the PC. Store the previous contents of the WP register, the PC, and the ST

register into workspace registers 13, 14, and 15, respectively. Set the interrupt mask to O,
disabling all interrupt levels except level O.

TMS 9900 Microprocessor: Provides a signal that an LREX instruction is identified, but performs

no processing. User may implement hardware to perform desired processing when signal is
present.

Model 990/10 Computer: The LREX instruction sets the Privileged Mode bit (bit 7) of the ST
register to 0 in addition to performing the context switch. When the Privileged Mode bit is set
to O prior to execution of an LREX instruction, the instruction executes normally. When the
Privileged Mode bit is set to 1 and execution of an LREX instruction is attempted, an error

interrupt occurs. When the map option is included, the LREX instruction also sets the Map File
bit (bit 8) of the ST register to O.

3-57 Texas Instruments Incorporated

o
%@ 9434419701

Status bits affected: Map File, Privilege, Interrupt Mask

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

e

A A AAAA

L>|A>|EQ| c |ov |OP| X |PR

Execution results: (location FFFC,¢) = (WP)
(location FFFE,;¢) ~ (PC)
(old WP) - (Workspace register 13)
(old PC) -~ (Workspace register 14)
(old ST) - (Workspace register 15)
0 = (Interrupt Mask)

0 — (Map File) Status Register
0 = (Privilege)

Application notes: Use the LREX instruction to perform a context switch using the transfer
vector at location FFFC,s. Typically, the transfer vector transfers control to the front panel
routine in Read Only Memory (ROM). Additional application information is included in a
subsequent paragraph.

3.54 SET CRU BIT TO LOGIC ONE SBO

Op Code: 1D00

Addressing mode: Format II

Format:
0O 1 2 334 5 6 7;8 9 10 11,12 13 14 15
T T T T T
ojoJol1l1l1fol1 DISPLACEMENT
Syntax definition:
[<label>]® ...SBOb ... <disp>b ... [<comment>]
Example:
LABEL SBO 7 SET BIT 7 ON CRU TO ONE

Definition: Set the digital output bit to a logic one on the CRU at the address derived from this
instruction. The derived address is the sum of the user supplied signed displacement and the
contents of workspace register 12, bits 3 through 14. The execution of this instruction does not
affect the status register or the contents of workspace register 12.

Model 990/10 Computer: When the Privileged Mode bit (bit 7) of the ST register is set to 0, the
SBO instruction executes normally. When bit 7 is set to 1 and the effective CRU address is equal
to or greater than EO0O,¢, an error interrupt occurs and the instruction is not executed.

3-58 Texas Instruments Incorporated

o
@ 943441-9701

Status bits affected: None

0 1 2 3 4 S 6 7 8 9 10 11 12 13 14 15
777777 weetmaie
L>A>EQ| C OV|OP | X |PR |MF / MASK

Execution results: CRU bit addressed by the sum of the contents of workspace register 12 +
displacement is set to 1.

Application notes: Use the SBO instruction to set a CRU bit to a logic one. Refer to a subsequent
paragraph for additional application notes.

3.55 SET CRU BIT TO LOGIC ZERO SBZ

Op Code: 1EQ0

Addressing mode: Format II

Format:

0o 1 2 314 5 6 7 8 9 10 113412 13 14 15
LI LI | LI
oj o} o 1 1 1 1 [¢] DISPLACEMENT

Syntax definition:
[<label>]b ...SBZb ... <disp>b ... [<comment>]
Example:

LABEL SBZ 7 SET BIT 7 ON CRU TO ZERO

Definition: Set the digital output bit to a logic zero on the CRU at the address derived from this
instruction. The derived address is the sum of the user supplied signed displacement and the
contents of workspace register 12, bits 3 through 14. The execution of this instruction does not
affect the status register or the contents of workspace register 12.

Model 990/10 Computer: When the Privileged Mode bit (bit 7) of the ST register is set to 0, the
SBZ instruction executes normally. When bit 7 is set to 1 and the effective CRU address is equal to
or greater than E0O,4, an error interrupt occurs and the instruction is not executed.

Status bits affected: None

(o] 1 2 3 4 5 6 7 8 9 to0 11 12 1314 15

| I
L>|A>| EQ| c Jov|oP| X |PR MF'/ INTERRUPT
/ MASK

Execution results: CRU bit addressed by the sum of the contents of workspace register 12 (bits
3-14) + displacement is set to O.

3-59 Texas Instruments Incorporated

o
q‘r@f? 943441-9701

Application notes: Use the SBZ instruction to set a CRU bit to a logic zero. Refer to a
subsequent paragraph for additional application notes.

3.56 TEST BIT TB
Op Code: 1F00

Addressing mode: Format II

Format:

o 1 2 3344 5 6 7,8 9 10 11,12 13 14 15
LI LR R
oOjojo]i1 1 1 1 1 DISPLACEMENT

Syntax definition:
[<label>]b ... TBb ... <disp>b ... [<comment>]
Example:

CHECK TB 7 READ BIT 7 ON CRU AND SET EQUAL STATUS
BIT WITH THE VALUE READ

Definition: Read the digital input bit on the CRU at the address specified by the sum of the
user supplied signed displacement and the contents of workspace register 12, bits 3 through 14
and set the equal status bit to the logic value read. The digital input bit and the contents of
workspace register 12 are unchanged.

Model 990/10 Computer: When the Privileged Mode bit (bit 7) of the ST register is set to 0, the
TB instruction executes normally. When bit 7 is set to 1 and the effective CRU address is equal to
or greater than E00,4, an error interrupt occurs and the instruction is not executed.

Status bit affected: Equal

o] 1 2 3 4 5 6 7 8 9 1011 12 13 14 15

/1 L
L>A>]EQ| c |ov]|oP| X |PR MF/ INTERRUPT
MASK

A

Execution results: Equal bit is set to the value of the CRU bit addressed by the sum of the contents
of workspace register 12 (bits 3-12) + displacement.

Application notes: TB CRU line logic level test transfers the logic level from the indicated CRU line
to the equal status bit without modification. If the CRU line tested is set to a logic one, the equal
status bit sets to a logic one and if the line is zero, sets to a zero. JEQ will then transfer control
when the CRU line is a logic one and will not transfer control when the line is a logic zero. In
addition, JNE will transfer control under the exact opposite conditions.

3-60 Texas Instruments Incorporated

(o]
%@; 943441-9701

3.57 LOAD CRU LDCR
Op Code: 3000

Addressing mode: Format 1V

Format:

18 9 10 11312 13 14 15
LI | ! L I T
c Ts s

Syntax definition:

[abel>]b ...LDCRb ... <ga><cnt>b ... [<comment>]

Example:

WRITE LDCR @BUFF, 15 SEND 15 BITS FROM BUFF TO CRU

Definition: Transfer the number of bits specified in the C field from the source operand to the
CRU. The transfer begins with the least significant bit of the source operand. The CRU address
is contained in bits 3 through 14 of workspace register 12. When the C field contains zero, the
number of bits transferred is 16. If the number of bits to be transferred is from one to eight, the
source operand address is a byte address. If the number of bits to be transferred is from 9 to 16,
the source operand address is a word address. If the source operand address is odd, the address
is truncated to an even address prior to data transfer. When the number of bits transferred is a
byte or less, the source operand is compared to zero and the status bits are set/reset, according
to the results of the comparison. The odd parity status bit sets when the bits in a byte (or less)
to be transferred establish odd parity.

Model 990/10 Computer: When the Privileged Mode bit (bit 7) of the ST register is set to 0, the
LDCR instruction executes normally. When bit 7 is set to 1 and the effective CRU address is equal
to or greater than E00,4, an error interrupt occurs and the instruction is not executed.

Status bits affected: Logical greater than, arithmetic greater than, and equal. When C is less than
9, odd parity is also set or reset. Status is set according to the full word or byte, not just the trans-
ferred bits.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

/ r 1 1
L>|A>|EQ| c |ov|oP| X | PR MFW lNLE:sR}lEJPT

AAA A

Execution results: Number of bits specified by C are transferred from memory at address gag to
consecutive CRU lines beginning at the address in workspace register 12.

Application notes: Use the LDCR instruction to transfer a specific number of bits from memory
to the CRU at the address contained in bits 3 through 14 of workspace register .12. Refer to a
subsequent paragraph for a detailed example and explanation of the LDCR instruction.

3-61 Texas Instruments Incorporated

(o]
@ 943441-9701

3.58 STORE CRU STCR
Op Code: 3400

Addressing mode: Format IV

Format:
0O 1 2 3,4 5 6 7;8 9 10 11)12 13 14 15
1 ! T | N B
olol1]1lo]1 c Ts s
Syntax definition:
[<label>]b ... STCRb ... <ga,><cnt>b ... [<comment>]
Example:
READ STCR @BUF,9 READ 9 BITS FROM CRU AND STORE AT

LOCATION BUF

Definition: Transfer the number of bits specified in the C field from the CRU to the source
operand. The transfer begins from the CRU address specified in bits 3 through 14 of workspace
register 12 to the least significant bit of the source operand and fills the source operand toward
the most significant bit. When the C field contains a zero, the number of bits to transfer is 16. If
the number of bits to transfer is from one to eight, the source operand address is a byte address.
Any bit in the memory byte not filled by the transfer is reset to a zero. When the number of
bits to transfer is from 9 to 16, the source operand address is a word address. If the source
operand address is odd, the address is truncated to an even address prior to data transfer. If the
transfer does not fill the entire memory word, unfilled bits are reset to zero. When the number
of bits to transfer is a byte or less, the bits transferred are compared to zero and the status bits
set/reset to indicate the results of the comparison. Also, when the bits to be transferred are a
byte or less, the odd parity bit sets when the bits establish odd parity.

Model 990/10 Computer: When the Privileged Mode bit (bit 7) of the ST register is set to 0, the
STCR instruction executes normally. When bit 7 is set to 1 and the effective CRU address is equal
to or greater than E00Q,¢, an error interrupt occurs and the instruction is not executed.

Status bits affected: Logical greater than, arithmetic greater than, and equal. When C is less than
9, odd parity is also set or reset. Status is set according to the full word or byte, not just those
bits transferred.

(o) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T T T 1
L>JA>]EQJC |OV|OP| X |PR MF7 INTERRUPT
A MASK

AAA A

Exepu{ion results: Number of bits specified by C are transferred from consecutive CRU lines
beginning at the address in workspace register 12 to memory at address ga,.

3-62 Texas Instruments Incorporated

943441-9701

Application notes: Use the STCR instruction to transfer a specified number of CRU bits from
the CRU to memory location supplied by the user as the source operand. Note that the CRU
base address must be in workspace register 12 prior to the execution of this instruction. Refer to
a subsequent paragraph for a detailed explanation and examples of the use of the STCR
instruction,

3.59 LOAD AND MOVE INSTRUCTIONS

Load and move instructions permit the user to establish the execution environment and the
execution results. These instructions manipulate data between memory locations and between
hardware registers and memory locations. The instructions are:

Instruction Mnemonic Paragraph
Load Immediate LI 3.60
Load Interrupt Mask Immediate LIMI 3.61
Load Memory Map File LMF 3.63
Load Workspace Pointer Immediate LWPI 3.62
Move Words MOV 3.64
Move Bytes MOVB 3.65
Store Status STST 3.67
Store Workspace Pointer STWP 3.68
Swap Bytes SWPB 3.66

3.60 LOAD IMMEDIATE LI
Op Code: 0200

Addressing mode: Format VIII

Format:
0O 1 2 3,4 5 6 78 9 101112 13 14 15
LR
olojo]Jojojo}lt1tlojolojo]o w
Syntax definition:
[Tabel>]b ... LIb...<wa><iop>b ... [<comment>]
Example:
GETIT LI 3,>17 LOAD WSR3 WITH 17HEX=23

Definition: Place the immediate operand (the word of memory immediately following the instruc-
tion) in the user specified workspace register (W field). The immediate operand is not affected by
the execution of this instruction. The immediate operand is compared to O and the L>, A>, and
EQ status bits are set or reset according to the result of the comparison.

3-63 Texas Instruments Incorporated

o
@ 943441-9701

Status bits affected: Logical greater than, arithmetic greater than, and equal.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T T T 1
L>(a>ea | c |ovfopP | x PRlMF ////// INTERRIPT
Vi

A A A

Execution results: iop —~ (wa)

Application notes: Use the LI instruction to place an immediate operand in a specified
workspace register. This is useful for initializing a workspace register as a loop counter. For
example, the instruction

L1 7,5

initializes workspace register 7 with the value 0005;,. L> and A> are set while EQ is reset in this
example.

3.61 LOAD INTERRUPT MASK IMMEDIATE LIMI
Op Code: 0300

Addressing mode: Format VIII

Format:

0 1 2 314 5 6 7 8 9 10 11,312 13 14 15

0Ojojojojojoy}1 110 o) 0 0Jjojojoyjo

Syntax definition:

[<label>]b ... LIMIb ... <<op>b ... [<comment>]

Example:
LABEL LIMI 3 MASK LEVEL 3 AND BELOW

Definition: Place the low order four bits (bits 12-15) of the contents of the immediate operand (the
next word after the instruction) in the interrupt mask of the status register. The remaining bits of
the status register (O through 11) are not affected.

Model 990/10 Computer: When Privileged Mode bit (bit 7 of ST register) is set to 0, instruction
executes normally. When Privileged Mode bit is set to 1, an error interrupt occurs when execution
of an LIMI instruction is attempted and the interrupt mask is not loaded.

3-64 Texas Instruments Incorporated

o
@ 9434419701

Status bits affected: Interrupt Mask

0 1 2 3 4 5 6 7 8 9 10 11 1213 14 15

r 1 1
L>A>|EQ| Cc {ov]|oP| X | PR MF/ INTERRUPT
/ MASK

AAAA

Execution results: Places the four least significant bits of iop into the interrupt mask, the four
least significant bits of the ST register.

Application notes: Use the LIMI instruction to initialize the interrupt mask for a particular level
of interrupt to be accepted. For example, the instruction

LIMI 3

sets the interrupt mask to level three and enables interrupts at level 0, 1, 2, and 3.

3.62 LOAD WORKSPACE POINTER IMMEDIATE LWPI
Op Code: 02EO0

Addressing mode: Format VIII

Format:

o 1 2 314 5 6 7 8 9 toO 11]12 13 14 15

ojojojojojoj}1 ol 1 1 1] o] ojojojo

Syntax definition:
[<label>]b ...LWPIb ... <<op>b ... [<comment>]

Example:
NEWWP LWPI 02F2 02F2=NEWWP

peﬁniz‘ion: Replace the contents of the WP with the immediate operand. The immediate operand
is the word of memory immediately following the LWPI instruction.

Status bits affected: None

(o] 1 2 3 4 5 6 7 8 9 10 12 13 14 15
L>A>|EQ]| c | ov|OP| X |PR MF////A lNTEARst'PT

Execution results: iop -~ (WP)

3-65 Texas Instruments Incorporated

o
{_@EP 943441-9701

Application notes: Use the LWPI instruction to initialize or change the WP register to alter the
workspace environment of the program module. The user should use either a BLWP or a LWPI
instruction prior to the use of any workspace register in a program module.

3.63 LOAD MEMORY MAP FILE LMF
Op Code: 0320

Addressing mode: Format IX

Format:

(o] 1 2 33 4 S 6 7 8 9 10 11,12 13 14 15
| S S
ojojl ojJojojoli1]l1iofol1|m w

This instruction is only available on the Model 990/10 Computer with map option.
Syntax definition:
[<[abel>]b...LMFb ... <<wa><m>b ... [<comment>]

Example:

NMAP LMF 3,1 LOAD MAP FILE 1

Definition: Place the contents of a six-word area of memory at the address in the workspace
register specified by wa into the memory map file designated by m.

Status bits affected: None
01 2 3 4 5 6 7 8 9 1011 12 13 14 15

/] e

Execution results: When Privileged Mode bit (bit 7 of ST register) is set to 0: the contents of a
six-word area at address in wa are placed in map file m.

L>|A>|EQ| C |OV]|OP| X |PR |M

T

3-66 Texas /nstruments Incorporated

[e]
%@ 943441-9701

When Privileged Mode bit is set to 1, an error interrupt occurs.

Application notes: Use the LMF instruction to load either map file O or 1 (map file 2 is loaded
by the long distance instructions). The map file is a set of six registers that maps the 32K word
addresses of the AU into the desired addresses of memory having a larger capacity. The six-
word area contains the following:

WORDOO 10 11 15
L1 X X X X X
1 B1
2 L2 X X X X X
3 B2
4 L3 X X X X X
5 B3
(A)132204

Words O, 2, and 4 contain values that are placed in limit registers L1, L2, and L3

To determine values to be placed in the limit registers, the following considerations apply:

® The 11 most significant bits of each memory word are placed in the 11-bit limit
registers.

® The 5 least significant bits may be any value. (They are ignored.)
® The one’s complement of the limit is placed in the memory word, and in the map file.

The values in words 1, 3, and 5 are the 16 most significant bits of the bias register values, and
are placed in registers B1, B2, and B3.

To determine the values to be placed in the six-word memory area, consider the following:
® All addresses from O through limit 1 are contiguous in memory.
® All addresses greater than limit 1, up through limit 2 are contiguous in memory.
® All addresses greater than limit 2, up through limit 3 are contiguous in memory.
® All addresses greater than limit 3 are protected addresses.

® Place the one’s complements of the limit values in words O, 2, and 4.

° Place the 16 most significant bits of the bias address for the lowest group in the second
word.

® Place the 16 most significant bits of the bias address for the next group in the fourth
word.

® Place the 16 most significant bits of the bias address for the highest group in the sixth
word.

3-67 Texas Instruments Incorporated

o
(_r@@ 943441-9701

3.64 MOVE WORD MOV
Op Code: C000
Addressing mode: Format I

Format:

|8 9 10 11}12 13 14 15
L T T T 1
1] 1] oflo] Ty D Ts s

Syntax definition:
[<label>]b ... MOVb ... <ga ><ga;>b ... [<comment>]
Example:

GET MOV @WORD,?2 GET A COPY OF WORD INTO WSR2

Definition: Replace the destination operand with a copy of the source operand. The AU
compares the resulting destination operand to zero and sets/resets the status bits according to the
comparison.

Status bits affected: Logical greater than, arithmetic greater than, and equal.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

777 77 T 1
L>la> c |o P INTERRUPT
EQ v |oP| x R[MF ///// TERRL

A A A

Execution results: (gag) > (gaq)

Application notes: MOV is used to move 16-bit words as follows:
Memory-to-memory (non register)
Load register (memory-to-register)
Register-to-register

Register-to-memory

3-68 Texas Instruments Incorporated

[e]
@ 943441-9701

MOV may also be used to compare a memory location to zero by the use of

MOV 7,7
JNE TEST

which would move register 7 to itself and compare the contents of register 7 to zero. If the
contents are not equal to zero, the equal status bit is reset and control transfers to TEST.
Another use of MOV, for example, is if workspace register 9 contains 3416,¢ and location
ONES contains FFFF,¢, then

MOV @ONES,9
changes the contents of workspace register 9 to FFFF ¢, while the contents of location ONES is

not changed. For this example, the logical greater than status bit sets and the arithmetic greater
than and equal status bits reset.

3.65 MOVE BYTE MOVB
Op Code: D000

Addressing mode: Format 1

Format:

0 t 2 3;4 5 6 7;8 9 10 11j12 13 14 15
T | B T T 1
1|1 o 1] Ty D Ts S

Syntax definition:

[<label>]b ... MOVBb ... <ga,><ga;>b ... [<comment>]

Example:

NEXT MOVB 2, @BUFF (3) STORE CHARACTER IN EFFECTIVE BUFFER
ADDRESS

Definition: Replace the destination operand (byte) with a copy of the source operand (byte). If
either operand is addressed in the workspace register mode, the byte addressed is the most sig-
nificant byte of the word (bits 0-7) and the least significant byte (bits 8-15) is not affected by
this instruction. The AU compares the destination operand to zero and sets/resets the status bits
to indicate the result of the comparison. The odd parity bit sets when the bits in the destination
operand establish odd parity.

3-69 Texas Instruments Incorporated

o
@ 943441-9701

Status bits affected: Logical greater than, arithmetic greater than, equal, and odd parity.

o] 1 2 3 4 5 6 7 8 9 1011 12 1314 15

I T 1 1
L>|A>lEQ|C |ov]|oP| X |PR MF7 INTERRUPT
/ MASK

AAA A

Execution results: (gag) —>(gay)

Application notes: MOVB is used to move bytes in the same combinations as the MOV instruction
moves words. For example, if memory location 1C14,4 contains a value of 2016, and TEMP is
located at 1C15,¢, and if workspace register 3 contains 542B,¢, then the instruction

MOVB @TEMP,3

Changes the contents of workspace register 3 to 162B;¢. The logical greater than, arithmetic
greater than, and odd parity status bits set while the equal status bit resets.

3.66 SWAP BYTES SWPB

Op Code: 06CO
Addressing mode: Format VI

Format:

0O 1 2 334 5 6 718 9 10 11312 13 14 15
T T T 7T
olofloflolofjt1t|1]o] 1] 1] T s

Syntax definition:
[<label>]b...SWPBb...<ga,>b ... [<comment>]
Example:

SWITCH SWPB 3 BYTE REVERSE WSR3

Defini{im?: Replace the most significant byte (bits 0-7) of the source operand with a copy of the
least significant byte (bits 8-15) of the source operand and replace the least significant byte with
a copy of the most significant byte.

3-70 Texas Instruments Incorporated

o
@ 943441-9701

Status bits affected: None

(o] 1 2 3 4 5 6 7 8 9 10 11 12 1314 15

/ 1 1 T
L> A>| EQ|c |ov]or| x |PR MFW 'NLE.ARSLJPT

Execution results: Exchanges left and right bytes of word (ga,).

Application notes: Use the SWPB instruction to interchange bytes of an operand prior to
executing various byte instructions. For example, if workspace register O contains 2144,, and
memory location 2144, contains the value F312;¢, then the instruction

SWPB *0+

Changes the contents of workspace register 0 to 2146, and the contents of memory location
2144, to 12F3,4. The status register remains unchanged.

3.67 STORE STATUS STST
Op Code: 02CO0

Addressing mode: Format VIII
Format:

o 1 2 3/]4 5 6 7,8 9 10 11312 13 14 15
r 1T T
w

Syntax definition:
[<label>]b ... STSTh ...<<wa>b ... [<comment>]
Example:

LABEL STST 7 STORE STATUS IN WSR7

Definition: Store the status register contents in the specified workspace register.

Status bits affected: None

0o 1 2 3 4 5 6 7 8 9 10 111213 14 15
/ v/ INTERRUPT
L>A>Ea|c |ov|or|x |Pr|MF / SRR

Execution results: (ST) - (wa)

3-71 Texas Instruments Incorporated

o
{_@P 9434419701

Application notes: Use the STST instruction to store the ST register contents when applicable.

3.68 STORE WORKSPACE POINTER STWP
Op Code: 02A0

Addressing mode: Format VIII

Format:

0 1 2 314 5 6 7;8 9 10 11§12 13 14 15
| ! I

ojo oOjojojoj1jo} 1j10}1 (o] w

Syntax definition:
[<label>]b ... STWPb...<wa>b ... [<comment>]
Example:
LABEL STWP 6 STORE WKSP POINTER IN WSR6
Definition: Place a copy of the workspace pointer contents in the specified workspace register.

Status bits affected: None

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Wi

L>A>(EQ| C [OV|OP}| X |PR |M

7

Execution results: (WP) — (wa)

Application notes: Use the STWP instruction to store the contents of the WP register as
applicable.

3.69 LOGICAL INSTRUCTIONS . '
The set of logical instructions permits the user to perform various logical operations on memory

locations and/or workspace registers. The instructions are:

Instruction Mnemonic Paragraph
AND Immediate ANDI 3.70
Clear CLR 3.74
Invert INV 3.73
OR Immediate ORI 3.71

3-72 Texas /nstruments Incorporated

o
{@fp 9434419701

Instruction : Mnemonic Paragraph
Set to One SETO 3.75
Set Ones Corresponding (OR) SOC 3.76
Set Ones Corresponding, Byte (OR) SOCB 3.77
Set Zeros Corresponding SzZC 3.78
Set Zeros Correspanding, Byte SZCB 3.79
Exclusive OR XOR 3.72

3.70 AND IMMEDIATE ANDI
Op Code: 0240

Addressing mode: Format VIII

Format:

o 1 2 314 5 6 78 9 10111112 13 14 15
L
oo 0Ojojojoj1jojo 1 o} o w

Syntax definition:

[<label>]b ... ANDIb . .. <wa><iop>b ... [<comment>]

Example:
LABEL ANDI 3,>FFF0 SET LOWER 4 BITS OF WSR3 TO ZERO

Definition: Perform a bit-by-bit AND operation of the 16 bits in the immediate operand and the
corresponding bits of the workspace register. The immediate operand is the word in memory
immediately following the instruction word. Place the result in the workspace register. The AU
compares the result to zero and sets/resets the status bits according to the results of the comparison.

Status bits affected: Logical greater than, arithmetic greater than, and equal.

(o] 1 2 3 4 5 6 7 8 9 10 11 1213 14 15

LI
L>A>|EQ | ¢ |ov |oP| X |PR MFW INTERRUPT
MASK

AAA

Execution results: (wa) AND iop - (wa)

3-73 Texas Instruments Incorporated

[e]
@ 943441-9701

Application notes: Use the ANDI instruction to perform a logical AND with an immediate
operand and a workspace register. Each bit of the 16-bit word of both operands follows the

truth table

Immediate Workspace AND
Operand Bit Register Bit Result
0 0 0
0 1 0
1 0 0
1 1 1

For example, if workspace register 0 contains D2AB, ¢, the instruction

ANDI 0,>6D03

results in workspace register O changing to 4003 ,¢. This AND operation on a bit-by-bit basis is

0110110100000011 (Immediate operand)
1101001010101011 (Workspace register 0)
0100000000000011 (Workspace register O result)

For this example, the logical greater than and arithmetic greater than status bits set while the
equal status bit resets. ANDI is also useful for masking out bits of a workspace register.

3.71 OR IMMEDIATE ORI
Op Code: 0260

Addressing mode: Format VIII

Format:
0O 1 2 314 5 6 7] 8 9 10 11(12 13 14 15
LRI
olo]J]ololojo]l1folol1l1]o0 w
Syntax definition:
[<abel>]b...O0RIb...<<wa><iop>b ... [<comment>]
Example:
LABEL ORI 3,>F000 SET HIGH ORDER 4 BITS OF WSR3 TO ONES

Definition: Perform an OR operation of the 16-bit immediate operand and the corresponding
bits of the workspace register. The immediate operand is the memory word immediately following
the ORI instruction. Place the result in the workspace register. The AU compares the result to
zero and sets/resets the status bits to indicate the result of the comparison.

3-74 Texas Instruments Incorporated

943441-9701

Status bits affected: Logical greater than, arithmetic greater than, and equal.

(o] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

L>|A>lE fo) M INTERRUPT
Qj C V]|OP|] X |PR F////A MASK

A A A

Execution results: (wa) OR iop - (wa)

Application notes: Use the ORI instruction to perform a logical OR with the immediate operand
and a specified workspace register. Each bit of the 16-bit word of both operands is OR’d using
the truth table

Immediate Workspace OR
Operand Register Result
0 0 0
1 0 1
0 1 1
1 1 1

For example, if workspace register 5 contains D2AB, ¢, then the instruction
ORI 5,>6D03
results in workspace register 5 changing to FFAB,¢ . This OR operation on a bit-by-bit basis is

0110110100000011 (Immediate operand)
1101001010101011 (Workspace register 5)

1111111110101011 (Workspace register 5 result)

For this example, the logical greater than status bit sets, and the arithmetic greater than and
equal status bits reset.

3.72 EXCLUSIVE OR XOR
Op Code: 2800

Addressing mode: Format III

Format:

18 9 10 11]12 13 14 15
T | 1 T T 170
D Ts S

3-75 Texas /nstruments Incorporated

o
{@ 9434419701

Syntax definition:

[<label>]b ... XORb ... <ga,><wa;>b ... [<comment>]

Example:

LABEL XOR @WORD, 3 EXCLUSIVE OR THE CONTENTS OF WORD
AND WSB

Definition: Perform a bit-by-bit exclusive OR of the source and destination operands, and replace
the destination operand with the result. This exclusive OR is accomplished by setting the bits in
the resultant destination operand to a logic one when the corresponding bits of the two operands
are not equal. The bits in the resultant destination operand are reset to zero when the
corresponding bits of the two operands are equal. The AU compares the resultant destination
operand to zero and sets/resets the status bits to indicate the result of the comparison.

Status bits affected: Logical greater than, arithmetic greater than, and equal.
(o] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

| I I I 1
L>|A>|EQ| C |OV|OP| X | PR|MF INTERRUPT
MASK

Execution results: (gay) XOR (way) - (way)

(i.e. [(gay) AND NOT (wa,)] OR [(wa,) AND NOT (ga;)] > (wa,)

Application notes: Use the XOR instruction to perform an exclusive OR on two word operands.
For example, if workspace register 2 contains D2AA ;s and location CHANGE contains the value
6D03, ¢, then the instruction

XOR @CHANGE,2

results in the contents of workspace register 2 changing to BFA9,,. Location CHANGE remains
6D03,4. This is shown as

0110110100000011 (Source operand)
1101001010101010 (Destination operand)

1011111110101001 (Destination operand result)

For this example, the logical greater than status bit sets while the arithmetic greater than and
equal status bits reset.

3.73 INVERT INV
Op Code: 0540

Addressing mode: Format VI

3-76 Texas Instruments Incorporated

[¢]
{@ 9434419701

Format:

o 1 2 3,4 5 6 7,8 9 10 11312 13 14 15
T f LI |
ojojojojojpi1joj}1t o]1 Ts S

Syntax definition:

[<label>1b ...INVb...<ga>b ... [<comment>]

Example:

COMPL INV @BUFF(2) REPLACE BUFFER WORD WITH ONEs COMPLEMENT
OF DATA

Definition: Replace the source operand with the one’s complement of the source operand. The
one’s complement is equivalent to changing each zero in the source operand to a logic one and
each logic one in the source operand to a logic zero. The AU compares the result to zero and
sets/resets the status bits to indicate the result of the comparison.

Status bits affected: Logical greater than, arithmetic greater than, and equal.

o] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T 1 I
L>|A>|EQ| c |ov]|OP| X |PR MF/ INTERRUPT
/ MASK

AAA

Execution results: The one’s complement of (ga,) is placed in (gay).

Application notes: INV changes each logic zero in the source operand to-a logic one and each
logic one to a logic zero. For example, if workspace register 11 contains A54B,¢, then the

instruction

INV 11

changes the contents of workspace register 11 to 5AB4,¢. The logical greater than and
arithmetic greater than status bits set and the equal status bit resets.

3.74 CLEAR CLR
Op Code: 04CO

Addressing mode: Format VI

3-77 Texas Instruments Incorporated

o
@ 943441-9701

Format:

o 1 2 3]4 5 6 738 9 10 1112 13 14 15
v T
ololojojo}j1jojoj1t 1 Ts S

Syntax definition:

[<label>]b ...CLRb ... <ga >b ... [<comment>]

Example:
PRELM CLR @BUFF(2) CLEAR EFFECTIVE BUFFER ADDRESS

Definition: Replace the source operand with a full, 16-bit word of zeros.

Status bits affected: None

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T, 1 |
L>(A>lEQ | C oV |OP| X |PR MF/////// INIAE.SQ#PT

Execution results: 0 — (ga,)

Application notes: Use the CLR instruction to set a full, 16-bit, memory addressable word to
zero. For example, if workspace register 11 contains the value 2001, then the instruction

CLR *>B

results in the contents of memory location 2000,¢ being set to 0. Workspace register 11 and the
status register are unchanged.

3.75 SET TO ONE SETO
Op Code: 0700

Addressing mode: Format VI
Format:

O 1 2 34 5 6 7;8 9 10 11412 13 14 15
T T 1 1
ojolojJo]lol1l1l1]lo]lo]| T s

3-78 Texas Instruments Incorporated

(o}
%’_@; 943441-9701

Syntax definition:

[<label>]b ... SETOb». .. <gas>b ... [<comment>]

Example:

LABEL SETO 3 SET WSR3 TO -1
Definition: Replace the source operand with a 16-bit word logic one value.
Status bits affected: None

(0] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T e

L>A>|EQ | C |oV|OP| X | PR

Execution results: FFFF,6 — (gay)

Application notes: Use the SETO instruction to initialize an addressable memory to a -1 value.
For example, the instruction

SETO 3

initializes workspace register 3 to a value of FFFF,,. The contents of the status register is
unchanged. This is a useful means of setting flag words.

3.76 SET ONES CORRESPONDING SOC
Op Code: EO00

Addressing mode: Format I
Format:

;1 8 9 10 11312 13 14 15
T LI 1 LB
D

Syntax definition:

[<label>]b ... SOCh ... <ga, >,<gay;>b ...[<comment>]

Example:

LABEL SOC 3,2 OR WSR3 INTO WSR2

3-79 Texas Instruments Incorporated

[e]
@ 943441-9701

Definition: Set to a logic one the bits in the destination operand that correspond to any logic
one bit in the source operand. Leave unchanged the bits in the destination operand that are in
the same bit positions as the logic zero bits in the source operand. The changed destination
operand replaces the original destination operand. This operation is an OR of the two operands.
The AU compares the result to zero and sets/resets the status bits to indicate the result of the
comparison.

Status bits affected: Logical greater than, arithmetic greater than, and equal.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

//l | 1 |
INTERRUPT
L>A>EQ| ¢ |ov|oP| x |PR |MF / MACK

A AA

Execution results: Bits of (gay) corresponding to bits of (ga,) equal to 1 are set to 1.

Application notes: Use the SOC instruction to OR the 16-bit contents of two operands. For
example, if workspace register 3 contains FF00,4 and location NEW contains AAAA4 , then the
instruction

SOC 3,@NEW

changes the contents of location NEW to FFAA, while the contents of work space register 3 is
unchanged. This is shown as

1111111100000000 (Source operand)
1010101010101010 (Destination operand)

1111111110101010 (Destination operand result)

For this example, the logical greater than status bit sets and the arithmetic greater than and
equal status bits reset.

3.77 SET ONES CORRESPONDING, BYTE SOCB
Op Code: F000

Addressing mode: Format I

Format:

0O 1 2 3;4 5 6 7,8 9 10 11,12 13 14 15
T | T T T 1
1111 1y D TS s

Syntax definition:

[<label>]b ...SOCBb ... <ga,>,<ga;>b ... [<comment>]

Example:

LABEL SOCB 3,@DET OR WSR3 INTO BYTE AT LOCATION DET

3-80 Texas Instruments Incorporated

943441-9701

Definition: Set to a logic one the bits in the destination operand byte that correspond to any
logic one in the source operand byte. Leave unchanged the bits in the destination operand that
are in the same bit positions as the logic zero bits in the source operand byte. The changed
destination operand byte replaces the original destination operand byte. This operation is an OR
of the two operand bytes. The AU compares the resulting destination operand byte to zero and
sets/resets the status bits to indicate the results of the comparison. The odd parity status bit sets
when the bits in the resulting byte establish odd parity.

Status bits affected: Logical greater than, arithmetic greater than, equal, and odd parity.

o 1t 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T 1 1
L>A>lEQ| c |ov [oP| X |PR MFW/ INIAEESR#PT

AAA A

Execution results: Bits of (gay) corresponding to bits of (ga,) equal to 1 are set to 1.

(i-e. (gay) OR (gay) > (gay))

Application notes: Use the SOCB instruction to OR two byte operands. For example, if
workspace register 5 contains the value FO13;4 and workspace register 8 contains the value
AA24,¢ , then the instruction

SOCB 5,8

changes the contents of workspace register 8 to FA24,,, while the contents of workspace
register 5 is unchanged. This is shown as

1111000000010011 (Source operand)

1010101000100100 (Destination operand)

1111101000100100 (Destination operand result)
(Unchanged)

For this example, the logical greater than status bit sets while the arithmetic greater than, equal,
and odd parity status bits reset.

3.78 SET ZEROS CORRESPONDING SZC

Op Code: 4000
Addressing mode: Format I

Format:

o 1 2 314 5 6 738 9 10 1111213 14 15
T T v I T I LI

ol1lo]o]| Ty D Ts s

3-81 Texas Instruments Incorporated

o
@ 943441-9701

Syntax definition:

[<label>]b ... SZCb ... <ga,><ga;>b ... [<comment>]

Example:
LABEL SZC @MASK,?2 RESET BITS OF WSR2 INDICATED BY MASK

Definition: Set to a logic zero the bits in the destination operand that correspond to the bit
positions equal to a logic one in the source operand. This operation is effectively an AND
operation of the one’s complement of the source operand and the destination operand. The AU
compares the resulting destination operand to zero and sets/resets the status bits to indicate the
results of the comparison.

Status bits affected: Logical greater than, arithmetic greater than, and equal.

0 1 2 3 4 5 6 7 8 9 10 11 1213 14 15

7 77 T T
L>|A>|EQ| C Jov |OP| X |PR MF7 INTERRUPT
MASK

A A A

Execution results: Bits of (gay) corresponding to bits of (ga,) equal to 1 are set to O.
(i.e. [NOT (ga,) AND (ga,)] = (ga,))
Application notes: Use the SZC instruction to turn off flag bits or AND the contents of the

one’s complement of the source operand and the destination operand. For example, if workspace
register 5 contains 6D03,4 and workspace register 3 contains D2AA ¢ , then the instruction

SzC 5,3

changes the contents of workspace register 3 to 92A8,, while the contents of workspace register
S remain unchanged. This is shown as

0110110100000011 (Source operand)
1101001010101010 (Destination operand)
1001001010101000 (Destination operand result)

For this example, the logical greater than status bit sets while the arithmetic greater than and
equal status bits reset.

3.79 SET ZEROS CORRESPONDING, BYTE SZCB
Op Code: 5000

Addressing mode: Format I

3-82 Texas /nstruments Incorporated

o
{@ 943441-9701

Format:

o 1 2 3 4 S 6 718 9 10 11312 13 14 15
T T T Y 1T T

ol 1] o]l 1| W™ D Ts s

Syntax definition:

[<label>]b ... SZCBb ... <ga,>,<ga;>b ... [<comment>]

Example:

LABEL SZCB @MASK, @CHAR RESET BITS OF CHAR INDICATED BY MASK

Definition: Set to a logic zero the bits in the destination operand byte that correspond to the bit
positions equal to a logic one in the source operand byte. This operation is effectively an AND
operation of the one’s complement of the source operand byte and the destination operand byte.
The AU compares the resulting destination operation byte to zero and sets/resets the status bits
to indicate the result of the comparison. The odd parity status bit sets when the bits in the
resulting destination operand byte establish odd parity. When the destination operand is
addressed in the workspace register mode, the least significant byte (bits 8-15) is unchanged.

Status bits affected: Logical greater than, arithmetic greater than, equal, and odd parity.
(o] 1 2 3 4 5 6 7 8 10 11 12 13 1415

9
7 T
INTERRUPT
L>la>(ea|c | ov|or| x [Pr|MF / /] "Rk
A AA A

Execution results: Bits of (gay) corresponding to bits of (gas) equal to 1 are set to 0.

(i.e. [NOT (ga,) AND (ga;)] = (g24))

Application notes: The SZCB instruction is used for the same applications as SZC except bytes
are used instead of words. For example, if location BITS contains the value FO18,4, and location
TESTVA contains the value AA24,¢, then

SZCB @BITS,@TESTVA

changes the contents of TESTVA to 0A24,, while BITS remains unchanged. This is shown as

1111000000011000 (Source operand)
1010101000100100 (Destination operand)

0000101000100100 (Destination operand result)
(Unchanged)

3-83 Texas Instruments Incorporated

o
{_@; 943441-9701

.For this example, the logical greater than and arithmetic greater than status bits set while the
equal and odd parity status bits reset.

3.80 WORKSPACE REGISTER SHIFT INSTRUCTIONS
Workspace register shift instructions permit the shifting of the contents of a specified workspace
register from one to sixteen bits. The shifting instructions are:

Instruction

Shift Right Arithmetic
Shift Right Logical
Shift Left Arithmetic
Shift Right Circular

Mnemonic

SRA
SRL
SLA
SRC

Paragraph

3.81
3.83
3.82
3.84

For each of these instructions, if the shift count in the instruction is zero, the shift count is
taken from workspace register 0, bits 12 through 15.If the four bits of workspace register O are
equal to zero, the shift count is 16 bit positions. The value of the last bit shifted out of the
workspace register is placed in the carry bit of the ST register. The result is compared to zero
and the results of the comparison are shown in the logical greater than, arithmetic greater than,
and equal bits (bits O through 2) in the ST register. If a shift count greater than 15 is supplied,
the assembler fills in the four-bit field with the least significant four bits of the shift count.
SDSMAC gives a warning message when this occurs.

3.81 SHIFT RIGHT ARITHMETIC SRA

Op Code: 0800
Addressing mode: Format V

Format

718

9 10 11

12 13 14 15

e
-

1 LI
w

Syntax definition:

[<label>]b ... SRAb ... <<wa><scnt>b ... [<comment>]

Example:

LABEL SRA 2,3

SHIFT WSR2 RIGHT THREE BIT LOCATIONS

Definition: Shift the contents of the specified workspace register to the right for the specified
number of bit positions, filling vacated bit positions with the sign bit.

Status bits affected: Logical greater than, arithmetic greater than, equal, and carry.

0O 1t 2 3 4 5 6 7 8 9 10 11 1213 14 15
y | T

L>A>|EQ| Cc {ov]|oP| X | PRIM INTERRUPT
F A MASK

AAAA

3-84

Texas /nstruments Incorporated

o
%,—'IS\QPP 9434419701

Execution results: Shift the bits of (wa) to the right, extending the sign bit to fill vacated bit
positions. When SCNT is greater than 0, shift the number of bit positions specified by
SCNT. If SCNT is equal to O, shift the number of bit positions contained in the four least
significant bits of workspace register 0. When SCNT and the four least significant blts of
workspace register O both contain 0, shift 16 bit positions.

Application notes: An example of an arithmetic right shift is: If workspace register 5 contains
the value 8224 ¢ , and workspace register O contains the value F326,¢ , then the instruction

SRA 5,0

changes the contents of workspace register 5 to FEO08,c. The logical greater than and carry
status bits set while the arithmetic greater than and equal status bits reset. Additional examples

are shown in a subsequent paragraph.

3.82 SHIFT LEFT ARITHMETIC SLA
Op Code: 0AQ00

Addressing mode: Format V

Format:

o 1 2 3,4 5 6 7,8 9 10 11 12 13 14 15
L LI
(o] cjlojJo]J1jo]1 (o] Cc w

Syntax definition:

[<label>]b ... SLAb ... <wa>,<scnt>b ... [<comment>]
Example:

LABEL SLA 2,1 SHIFT WSR2 LEFT ONE BIT LOCATION

Definition: Shift the contents of the specified workspace register to the left for the specified
number of bit positions while filling the vacated bit positions with logic zero values. Note that
the overflow status bit sets when the sign of the word changes during the shifting operation.

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, and overflow.

(o] 1 2 3 4 5 6 7 8 9 10 11 1213 14 15

| L
L>A>]EQ| C |OoV |OP| X |PR|MF 77//// INTERRUPT
MASK

AAAAA

3-85 Texas Instruments Incorporated

o
{—@fp 9434419701

Execution results: Shift the bits of (wa) to the left, filling the vacated bit positions with zeros.
When SCNT is greater than 0, shift the number of bit positions specified by SCNT. If SCNT is
equal to 0, shift the number of bit positions contained in the four least significant bits of
workspace register 0. When SCNT and the four least significant bits of workspace register 0 both
contain 0, shift 16 bit positions.

Application notes: An example of an arithmetic left shift is: If workspace register 10 contains
the value 13574 , then the instruction

SLA 10,5

changes the contents of workspace register 10 to 6AEQ;s . The logical greater than, arithmetic
greater than, and overflow status bits set while the equal and carry status bits reset. Refer to a
subsequent paragraph for additional examples.

3.83 SHIFT RIGHT LOGICAL SRL
Op Code: 0900

Addressing mode: Format V

Format:

o 1 2 314 5 6 7 8 9 10 1112 13 14 15
ot LI
ojojojoj1jojoy}1 (o4 w

Syntax definition:
[<label>]b ... SRLb ... <wa><scnt>b . .. [<comment>]
Example:

LABEL SRL 3,7 SHIFT WSR3 RIGHT SEVEN BIT LOCATIONS

Definition: Shift the contents of the specified workspace register to the right for the specified
number of bits while filling the vacated bit positions with logic zero values.

Status bits affected: Logical greater than, arithmetic greater than, equal, and carry.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 | I |
L>|a>|ea | c lovior| x |Pr MF/ //2'/ N RRIPT
/

A AAA

Execution results: Shift the bits of (wa) to the right, filling the vacated bit positions with zeros.
When SCNT is greater than 0, shift the number of bit positions specified by SCNT. If SCNT is
equal to 0, shift the number of bit positions contained in the four least significant bits of
workspace register 0. When SCNT and the four least significant bits of workspace register O
both contain 0, shift 16 bit positions.

3-86 Texas Instruments Incorporated

o
{[@’p 943441-9701

Application notes: An example of a logical right shift is: If workspace register zero contains the
value FFEF ¢ , then the instruction

SRL 0,3

Changes the contents of workspace register O to 1FFD;q . The logical greater than, arithmetic
greater than and carry status bits set while the equal status bit resets. Additional examples are
shown in a subsequent paragraph.

3.84 SHIFT RIGHT CIRCULAR SRC
Op Code: 0B0OO

Addressing mode: Format V

Format:

o 1 2 314 5 6 7 8 9 10 11412 13 14 15
LEN | I 1 LA
ojojo 0 1 o] 1 1 c w

Syntax definition:
[<label>]b ... SRCbh ... <wa><scnt>b ... [<comment>]
Example:

LABEL SRC 7,16-3 SHIFT CIRC WSR7 3 BIT LOCATIONS LEFT

Definition: Shift the specified workspace register to the right for the specified number of bit
positions while filling vacated bit positions with the bit shifted out of position 15.

Status bits affected: Logical greater than, arithmetic greater than, equal, and carry.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

77 /7 1 1

L>A>lEQ]| c |ov]|oP| X | PR INTERRUPT
Q v |oP MF / TERRL

Execution results: Shift the bits of (wa) to the right, filling the vacated bit positions with the bits
shifted out at the right. When SCNT is greater than 0, shift the number of bit positions specified
by SCNT. If SCNT is equal to 0, shift the number of bit positions contained in the four least
significant bits of workspace register 0. When SCNT and the four least significant bits of work-
space register O both contain 0, shift 16 bit positions.

3-87 Texas Instruments Incorporated

o .
%‘_@Fp 943441-9701

Application notes: An example of a circular right shift is: If workspace register 2 contains the
value FFEF ¢ , then the instruction

SRC 2,7
changes the contents of workspace register 2 to DFFF 4. The logical greater than and carry status
bits set while the arithmetic greater than and equal status bits reset. Shift left circular is not imple-

mented since SRC can perform the same function: SLC x,n = SRC x,16-n. Refer to a subsequent
paragraph for additional application notes.

3.85 EXTENDED OPERATION XOP
Op Code: 2C00

Addressing mode: Format IX

Format:

o 1 2 34 5 6 7,8 9 10 11412 13 14 15
| L) ! T | T 71
ojoj 1o} 1}]1 D Ts S

Syntax definition:

[<label>]b ... XOPb ... <ga,><op>b....[<comment>]

Example:

LABEL XOP @BUFF(4),12 DO XOP12 ON WORD OF BUFFER SPECIFIED
BY WSR4

Definition: The op field specifies the extended operation transfer vector in memory. The two
memory words at that location contain the WP contents and PC contents for the software
implemented XOP instruction subroutine. The memory location for these two words is derived
by multiplying the op field contents by four and adding the product to 0040,,. Note that the
two memory words at this location must contain the necessary WP and PC values prior to the
XOP instruction execution for software implemented instructions.

The effective address of the source operand is placed in workspace register 11 of the XOP
workspace. The WP contents are placed in workspace register 13 of the XOP workspace. The PC
contents are placed in workspace register 14 of the XOP workspace. The ST contents are placed
in workspace register 15 of the XOP workspace. The ST contents are placed in workspace
register 15 of the XOP workspace. Control is transferred to the new PC address and the software
implemented XOP is executed. (XOP execution of software implemented XOP instruction is
similar to an interrupt trap execution.)

3-88 Texas Instruments Incorporated

o
(’@ 943441-9701

Model 990/10 Computer: An extended operation may be alternatively implemented by
user-supplied hardware. When hardware is connected for the specified operation no context
switch occurs, and the hardware performs the operation. When a Model 990/10 Computer
performs a software-implemented extended operation, the Privileged Mode bit is set to 0. When
the map option is included, the Map File bit is set to O also.

Status bits affected: Extended operation

(o] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

7 T 1T
INTERRUPT
L>A>l EQ| c |OV|OP| X |PR MF///// MASK

A A A

Execution results: ga_—> (workspace register 11)
(0040, + (0p)*4) ~ (WP)
(00424 + (op)*4) - (PC)
(WP) - (workspace register 13)
(PC) —» (workspace register 14)
(ST) > (workspace register 15)
0~ ST8
0—ST7 } 990/10
1~ ST6

Application notes: Refer to a subsequent paragraph for a detailed example of the execution of a
software implemented XOP instruction.

3.86 LONG DISTANCE ADDRESSING INSTRUCTIONS
The long distance addressing instructions are available in the Model 990/10 Computer with the

map option. These instructions enable accesses outside of the current memory map for a single
address. The instructions are:

Instruction Mnemonic Paragraph
Long Distance Source LDS 3.87
Long Distance Destination LDD 3.88

3.87 LONG DISTANCE SOURCE LDS
Op Code: 0780
Addressing mode: Format VI

Format:

o 1 2 3,4 5 6 7,8 9 10 11,12 13 14 15

1 | LI
ojojojo]jo}1 1 1 110 Ts S

3-89 Texas Instruments Incorporated

o
%@ 9434419701

Syntax definition:

[<label>]b ...LDSb ...<ga,>b ... [<comment>]

Example:

LABEL LDS @SIXWD PREPARE TO USE LONG DISTANCE SOURCE

Definition: Place the contents of a six-word area of memory into map file 2, and use map file 2
in developing the source address of the next instruction. The instruction places the contents of
the six-word memory area at the effective address of the source operand in map file 2 in all
cases; the map file is not used when the source address of the following instruction i.s a
workspace register address, or when the following instruction is a B, BL, or BLWP instruction.
The instruction inhibits all interrupts until the following instruction is executed.

Status bits affected: None.

(o] 1 2 3 4 5 6 7 8 9 10 11 1213 14 15

/ I LI
INTERRUPT
w>{a>|ea| ¢ |ov|or| x |Pr|MF / TERRL

Execution results: When Privileged Mode bit (bit 7 of ST register) is set to 0: The contents of a
six-word area at address ga, are placed in map file 2, and the source address of the following
instruction is mapped with map file 2. (If T of the following instruction is equal to 0, or if
following instruction is B, BL, or BLWP instruction, new map is not used.)

When Privileged Mode bit is set to 1: Error interrupt.

Application notes: Use the LDS instruction in the Privileged Mode to access an address outside
of the current map. The contents of the six-word area are placed in the L1, L2, L3, B1, B2, and
B3 registers of map file 2 as shown in paragraph 3.63. The address to which the map file applies
is the source address of the next instruction. Placing an LDS instruction prior to an instruction
that has no destination operand, or an instruction having a workspace register address for the
destination operand does not result in an access outside of the current map.

3.88 LONG DISTANCE DESTINATION LDD

Op Code: 07CO

Addressing mode: Format VI
Format:
0O 1t 2 3,4 5 6 7,8 9 10 11,12 13 14 15

{ 1 1 |
0Opojojojo}1 1 1 1 1 Ts S

3-90 Texas /nstruments Incorporated

943441-9701

Syntax definition:

[<label>]b ...LDDb ...<ga,>b ... [<comment>]

Example:
LABEL LDD @SIXWD PREPARE TO STORE LONG DISTANCE

Definition: Place the contents of a six-word area of memory into map file 2, and use map file 2
in developing the destination address of the next instruction. The instruction places the contents
of the six-word memory area at the effective address of the source operand in map file 2 in all
cases; the map file is not used when the following instruction has no destination operand, or
when the destination address has a workspace register address. The instruction inhibits all
interrupts until the following instruction is executed.

Status bits affected: None.

(0] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T 1
L>(A>| ea| c|ov]|or| x |PrR MF/ INTERRUPT
/i MASK

Execution results: When Privileged Mode bit (bit 7 of ST register) is set to 0: the contents of a
six-word area at address gag are placed in map file 2, and the destination address of the following
instruction is mapped with map file 2. (If T4 of the following instruction is equal to O, or if the
destination address is a workspace register address, the new map is not used.)

When Privileged Mode bit is set to 1: Error interrupt.

Application notes: Use the LDD instruction in the Privileged Mode to access an address outside
of the current map. The contents of the six-word area are placed in the L1, L2, L3, B1, B2, and
B3 registers of map file 2 as shown in paragraph 3.63. The address to which the map file applies
is the destination address of the next instruction. Placing an LDD instruction prior to an
instruction that has no destination operand, or an instruction having a workspace register address
for the destination operand does not result in an access outside of the current map.

3.89 PROGRAMMING EXAMPLES

The remaining paragraphs of this section describe programming examples that supplement the appli-
cation notes in the instruction descriptions. Programming examples are only included for those
instructions for which the application notes require additional explanation.

391 Texas Instruments Incorporated

943441-9701

3.89.1 ABS INSTRUCTION. Since the ABS instruction compares the operand to zero prior to any
modification of the operand, the ABS instruction may be used to test a switch, The following
example program illustrates this use of the instruction. A word of memory at location SWITCH
is used to indicate whether or not a subroutine at location SUBR is being executed. Subroutine
SUBR is used: by several programs, but only one may use it at a time. When the subroutine is in
use, location SWITCH contains one, and other programs may not transfer control to location
SUBR. When control returns from the subroutine, location SWITCH is set to -1, making subroutine
SUBR available again.

The first instruction would be used in the initialization portion, to make the subroutine available
initially. The four instructions at location TEST would be included in each program that calls
the subroutine. These instructions branch to location CALL when location SWITCH contains -1,
setting location SWITCH to +1 after testing its value. Any attempt to access the subroutine before
its completion results in the program entering a delay mode, retesting following each delay interval.

A BL instruction at location CALL transfers control to the subroutine, and stores the address of
the SETO instruction in workspace register 11. When the subroutine returns control, the SETO
instruction sets location SWITCH to -1, so that the next time any calling program tests the location,
a transfer to the subroutine occurs. The code is as follows.

SETO @SWITCH INITIALIZES SWITCH NEGATIVE!
TEST ABS @SWITCH TEST SWITCH?

JLT CALL IF NEGATIVE, TRANSFER3

XOP @IMDLY,15 IF NOT, WAIT®

IMP TEST TEST AGAIN
CALL BL @SUBR USE SUBROUTINE

SETO @SWITCH RESET SWITCHS
SUBR SUBROUTINE ENTRY

B *11 SUBROUTINE RETURN
SWITCH DATA 0 STORAGE AREA FOR SWITCH
TIMDLY DATA >200,10 TIME DELAY SUPERVISOR

CALL BLOCK
NOTE

1. Set SWITCH to all ones, making it negative.

2. If SWITCH negative, set to positive value to prevent
subsequent entry.

3. If value in SWITCH was negative, the JLT instruction
transfers control.

4. Supervisor call pointing to data block defining time delay request.
Used to wait for a time period before retesting SWITCH. While in

3.92 Texas Instruments Incorporated

[e]
@ 9434419701

a time delay, other programs can be executed, thus leaving SUBR
available for use. Time Delay Supervisor calls are supported by the
DX10 and TX990 Operating Systems. Reference either the DX10
Operating System Programmer’s Guide or the TX990 Operating
System Programmer’s Guide.

5. Upon return, reset SWITCH to negative value to permit future use.

3.89.2 SHIFTING INSTRUCTIONS. There are 4 shifting instructions available with the Model
990 Computer that permit the user to shift the contents of a specified workspace register from
one to sixteen consecutive bit positions.

The four shifting instructions are:
® Shift Left Arithmetic (SLA)
® Shift Right Arithmetic (SRA)
o Shift Right Circular (SRC)
® Shift Right Logical (SRL).

3.89.2.1 Shift Left Arithmetic. This shifting instruction shifts the indicated workspace register a
specified number of bits to the left. For example, the instruction

SLA 5,1

would shift the contents of register five one bit to the left. The carry status bit contains the value
shifted out of bit position zero and the jump instructions JOC and JNC permit the user to test the
shifted bit. The overflow status bit sets when the sign of the contents of the register being shifted
changes during the shift operation. If register five contained

0100111100000111
before the above instruction, the results of the instruction execution would be
1001111000001110

and the.carry status bit would contain a zero and the overflow status bit would set because the con-
tents changed from positive to negative (bit zero equal to zero changed to equal to one). If this shift
sign change is important, the user could insert a JNO instruction to test the overflow condition. If
there is no overflow, control transfers to the normal program sequence. Otherwise, the next instruc-
tion is then executed.

It is possible to construct double-length shifts with the SLA instruction, which could shift two or
more words in a workspace. The following code will shift two consecutive workspace registers.

® Assumptions:
1. The contents of workspace registers 1 and 2 are shifted one bit position.
2. Additional code could be included to execute the code once for each bit shift re-
quired, when shifts of more than one bit position are required. The additional code

must include a means of testing that the desired number of shifts are performed.

3. Additional code tests for overflow from workspace register 1, to branch to an error
routine at location ERR when overflow occurs.

3-93 Texas Instruments Incorporated

(e}
{@ 943441-9701

® Code:

SLA 1,1 SHIFT W1 ONE BIT

JoC ERR

SLA 2,1 SHIFT W2 ONE BIT

INC EXIT TRANSFER IF NO CARRY

INC 1 TRANSFER BIT FROM W2 to W1
EXIT INC 1 CONTINUE WITH PROGRAM
ERR NOP

3.89.2.2 Shift Right Arithmetic. This shifting instruction shifts the contents of a workspace
register right a specified number of bits and extends the sign bit (bit zero) at the logic level that
existed prior to the shift. The carry status bit contains the last bit shifted out of bit 15 of the
workspace register. For example, the instruction

SRA 53

would shift the contents of workspace register five three bits to the right. If workspace register
five contained

1100000011110000

prior to the shift, the results of this instruction would be
1111100000011110

and the carry status bit would contain a logic zero for the last shifted bit.

3.89.2.3 Shift Right Circular. The SRC instruction shifts the contents of a workspace register a
specified number of bits to the right and transfers the bits shifted off the right end of the
workspace into the left end of the workspace register. The carry status bit contains the last bit
shifted out of bit 15 of the workspace register. For example, the instruction

SRC 6,5

would shift the contents of register six, five bits to the right and transfer the five bits shifted off
the right end to the first five bits of workspace register six. For this example, if workspace register
six contained

1100110011110101
before this instruction was executed, workspace register six would contain
1010111001100111

and the carry status bit would contain a logic one from the last bit shifted in workspace register
SiX.

3-94 Texas Instruments Incorporated

[e]
@ 943441-9701

3.89.2.4 Shift Right Logical. The SRL instruction shifts the contents of a special workspace
register to the right for a specified number of bits and fills the vacated bit positions on the left end
of the workspace with zeros. The carry status bit contains the last bit shifted out of bit 15 of the
workspace register. For example, the instruction.

SRL 5,8

would shift the contents of workspace register five eight bits to the right and would fill the first
eight bits of the word with zeros. If the workspace register contained

1000100011111000
prior to the SRL instruction, the contents of workspace register five would be
0000000010001000

and the carry status bit would contain a logic one for the last bit shifted off the right end of
workspace register five.

3.89.3 INCREMENTING AND DECREMENTING. There are two decrement and two increment
instructions that may be used for various types of control when passing through a loop, indexing
through an array, or operating within a group of instructions.

The four incrementing and decrementing instructions available for use with the 990 Computer
are:

® Decrement (DEC)

° Decrement By Two (DECT)
® Increment (INC)

® Increment By Two (INCT).

The increment and decrement instructions are useful for indexing byte arrays and for counting
byte operations. The increment and decrement by two instructions are useful for indexing word
arrays and for counting word operations. The following paragraphs provide some examples of
these operations.

3.89.3.1 Increment Instruction Example. Since the INC instruction is useful in byte operations,
an example problem searches a character array for a character with odd parity. The last character
contains zero to terminate the search. Begin the search at the lowest address of the array and
maintain an index in a workspace register. The character array for this example is called Al (also
the relocatable address of the array). The code for a solution to this problem is:

SETO 1 SET COUNTER INDEX TO -1
SEARCH INC 1 INCREMENT INDEX

MOVB @A1(1),2 GET CHARACTER

JOP ODDP JUMP IF FOUND

JNE SEARCH CONTINUE SEARCH IF NOT ZERO

ODDP

3.95 Texas /nstruments Incorporated

o]
J\@? 5434419701

3.89.3.2 Decrement Instruction Example. To illustrate the use of a DEC instruction in a byte
array, this example problem inverts a byte array and places the results in another array of the
same size. This example inverts a 26-character array called Al and places the results in array A2.
The contents of Al are defined with a data TEXT statement to be as follows:

Al TEXT ‘ABCDEFGHIJKLMNOPQRSTUVWXYZ’
Array A2 is defined with the BSS statement as follows:

A2 BSS 26

The sample code for the solution is:

LI 5,26 COUNTER AND INDEX FOR Al
LI 4,A2 ADDRESS OF A2
INVRT MOVB @A1(5),*4+ INVERT ARRAY!
DEC 5 REDUCE COUNTER
JGT INVRT CONTINUE IF NOT COMPLETE
NOTE

1. @AI1(5) addresses elements of array Al in descending order as
workspace register five is decremented. *4+ addresses array
A2 in ascending order as workspace register four is
incremented.

Array A2 would contain the following as a result of executing this sequence of code:

A2 ZYXWVUTSRQPONMLKIJIHGFEDCBA

Even though the result of this sequence of code is trivial, the example use of the MOVB
instruction, with indexing by workspace register five, and the result incrementally placed into A2
with the auto-increment function can be useful in other applications.

The JGT instruction used to terminate the loop allows workspace register 5 to serve both as a
counter and as an index register.

A special quality of the DEC instruction allows the programmer to simulate a jump greater than or
equal to zero instruction. Since DEC always sets the carry status bit except when changing from
zero to minus one, it can be used in conjunction with a JOC instruction to form a JGE loop. The
example below performs the same function as the preceding example:

Al TEXT ‘ABCDEFGHIJKLMNOPQRSTUVWXYZ’

A2 BSS 26
LI 5,25 COUNTER AND INDEX FOR Alf
LI 4,A2 ADDRESS OF A2

INVRT MOVB @AI1(5),*4+ INVERT ARRAY
DEC 5 REDUCE COUNTER

JOC INVRT CONTINUE IF NOT COMPLETE

3-96 Texas Instruments Incorporated

(o]
{@ 0434419701

TNOTE

Since the use of JOC makes the loop execute when the counter is
zero, the counter is initialized to 25 rather than 26 as in the preced-
ing example.

3.89.3.3 Decrement By Two Instruction Example. To illustrate the use of a DECT instruction
in processing word arrays, the example problem adds the elements of a word array to the
elements of another word array and places the results in the second array. The contents of the
two arrays are initialized as follows:

Al DATA 500,300,800,1000,1200,498,650,3,27,0
A2 DATA 36,192,517,29,315,807,290,40,130,1320

The sample code that adds the two arrays is as follows:

LI 4,20 INITIALIZE COUNTER!
SUMS A @A1-2(4),@A2-2(4) ADD ARRAYS?
DECT 4 DECREMENT COUNTER BY TWO
JGT SUMS REPEAT ADDITION
NOTE

Addressing of the two arrays through the use of the @ sign is
indexed by the counter, which is decremented after each
addition.

The contents of the A2 array after the addition process is as follows:

A2 536,492,1317,1029,1515,1305,940,43,157,1320

There is another method by which this addition process may be accomplished. This method is
shown in the following code:

LI 4,10 INITIALIZE COUNTER!
LI 5,A1-2 LOAD ADDRESS OF A12
LI 6,A2-2 LOAD ADDRESS OF A22
SUMS A *5+,%6+ ADD ARRAYS3
DEC 4 DECREMENT COUNTER
JGT SUMS REPEAT ADDITION#*
NOTE

1. Counter preset to 10 (the number of elements in the array).

2. This address will be incremented each time an addition takes
place. The increment is via the auto-increment function (+).

3. The * indicates that the contents of the register is to be used
as an address and the + indicates that it will be automatically
incremented by two each time the instruction is executed.

397 Texas Instruments Incorporated

o
%@ 943441-9701

4. Workspace register four will only be greater than zero for ten
executions of the DEC instruction and control will be
transferred to SUMS nine times after the initial execution.

The contents of array A2 are the same for this method as for the first.

3.89.4 SUBROUTINES. There are two types of subroutine linkage available with the Model 990
Computer. One type uses the same set of workspace registers that the calling routine uses, and is
called a common workspace subroutine. The BL instruction stores the contents of the program
counter and transfers control to the subroutine. Another type is called a context switch
subroutine. The BLWP instruction stores the contents of the WP register, the program counter,
and the status register. The instruction makes the subroutine workspace active and transfers
control to the subroutine.

3.89.4.1 Common Workspace Subroutine Example. Figure 3-1 shows an example of memory .
contents prior to a BL call to a subroutine. The contents of workspace register 11 is not
important to the main routine. When the BL instruction is executed, the CPU stores the contents
of the PC in workspace register 11 of the main routine and transfers control to the instruction
located at the address indicated by the operand of the BL instruction. This type of subroutine
uses the main program workspace. Figure 3-2 shows the memory contents after the call to the
subroutine with the BL instruction.

When the instruction at location 11304¢ is executed (BL @RAD), the present contents of the
PC, which point to the next instruction, are saved in workspace register 11. WR11 would then
contain an address of 1134, . The PC is then loaded with the address of label RAD, which is
address 2220, . This example subroutine returns to the main program with a branch to the
address in WR11 (B *11).

3.89.4.2 Context Switch Subroutine Example. Figure 3-3 shows the example memory contents
prior to the call to the subroutine. The contents of workspace registers 13, 14, and 15 are not
significant. When the BLWP instruction is executed at location 0300, there is a context switch
from the main program to the subroutine. The context switch then places the main program PC,
WP, and ST register contents in workspace registers 13, 14, and 15 of the subroutine. This saves
the environment of the main program for return. The operand of the BLWP instruction specifies
that the address vector for the context switch is in workspace registers 5 and 6. The address in
workspace register 5 is placed in the WP register and the address in workspace register 6 is placed
in the PC.

After the instruction at location 0300 is executed, the memory contents are shown in figure 3-4.
This illustration shows the subroutine in control, with the WP pointing to the subroutine
workspace and the PC pointing to the first instruction of the subroutine. The contents of the
status register are not reset prior to the execution of the first instruction of the subroutine, so
the status indicated will actually be the status of the main program execution. A subroutine may
then execute in accordance with the status of the main program.

This example subroutine contains a RTWP return from the subroutine. The results of executing
the RTWP instruction are shown in figure 3-5. Control is transferred to the main program at the
instruction following the BLWP to the subroutine. The status register is restored from workspace
register 15 and the workspace pointer points to the workspace of the main program.

3-98 Texas Instruments Incorporated

943441-9701

MEMORY MEMORY
ADDRESS
HARDWARE (#0100 MAIN PROGRAM WORKSPACE (WRO)
REGISTERS |
3 :U ceee :L’
WP 0100 - - T ol i
(WR11)
:" soee N
PC 1134 -0 - o
' 1020 4 MAIN PROGRAM ,«L
R
or [EXECUTION I a0 BL @RAD
STATUS lemi13a A, JNE FIX
ﬁhl :
: T
2220 RADess
SUBROUTINE AREA
o

L.
d

(A)128615A

Figure 3-1. Common Workspace Subroutine Example

MEMORY MEMORY
ADDRESS
HARDWARE #0100 (WRO)
REGISTER |
~N A
WP 0100 —— Y% e ~
1134 (WR11)
n" e o o
PC 2220 - - - W °
| 1020 2L MAIN PROGRAM
, 4
‘ EXECUTION | 1130 BL_@RAD
ST | 1134 JNE FIX
STATUS ’ ~,
|

—0

L o= 2220 RAD

SUBROUTINE AREA

B *11

~loavavala—atoa

M RGaIale

(A)128616A

Figure 3-2. PC Contents after BL Instruction Execution

3.99 Texas Instruments Incorporated

[e]
%@ 943441-9701

MEMORY

MEMORY
ADDRESS ? ?
|-.Oloo (WRO)
|
' :" oo o 0 2;
|
| 0220 (WRS5)
|
! 0700 (WRS)
|
l :: o0 o0 ::
: 0220 (WR0)S
|
| ~ cees -
HARDWARE |
REGISTERS _: WR1D)S
WP o100 - WR14)S
(WR15)S
pc | 0302 - -
r- —: nf; ® 0o o0 ATJ
| ozeo,L MAIN PROGRAM AREA '_L
ST EXECUTING | :
)
STATUS I 0300 BLWP 5
Lgwo302 :
L] B
L]
(WRn) =WORKSPACE REGISTER '}' . W“v
OF MAIN PROGRAM
START
(WRn)S = WORKSPACE REGISTER 0700 |)
OF SUBROUTINE SUBROUTINE AREA A
L] ’!u

RTWP

A

(A)132205

Figure 3-3. Context Switch Subroutine Example

When the calling program’s workspace contains data for the subroutine, this data may be
obtained by using the indexed memory address mode indexed by workspace register 13. The
address used is equal to two times the number of the workspace register that contains the
desired data. The following instruction is an example:

MOV @10(13),R10

3.89.4.3 Passing Data to Subroutines. When a subroutine is entered with a context switch (BLWP)
data may be passed using either the contents of workspace register 13 or 14 of the subroutine
workspace. Workspace register 13 contains the memory address of the calling program’s workspace.
The calling program’s workspace may contain data to be passed to the subroutine. Workspace
register 14 contains the memory address of the next memory location following the BLWP in-
struction. This location and following locations may contain data to be passed to the subroutine.

3-100 Texas Instruments Incorporated

o]
{@b} 943441-9701

MEMORY
MEMOR
ADDRESS ? Y
0100 (WRO0)
~ coce q:
0220 (WR5)
0700 (WRS6)
~N ~N
Lo 2 ﬂv
40220 (WRO0)S
|
~ ~
HARDWARE : ~ coee A
REGISTERS |
| 0100 (WR13)S
WP 0220 - — —
0302 (WR14)S
EXECUTING STATUS (WR15)sS
PC 0700 —— — 5 ~

MAIN PROGRAM AREA
(]

I WV
| oze0q,
|
o7 EXECUTING | :
STATUS | 0300 BLWP 5
|)
|
|
' T

e

SUBROUTINE AREA
L]

(]
RTWP

(A)128618A e

I-—>o7oo’l‘ START o6 oo

b T
149

Figure 34. After Execution of BLWP Instruction

The contents of workspace register 5 of the calling progfam’s workspace (bytes 10 and 11
relative to the workspace address) are placed in workspace register 10 of the subroutine
workspace. This method of data access by subroutines is appropriate for re-entrant procedures.

The following example shows passing of data to a subroutine by placing the data following the
BLWP instruction:

BLWP @SUB SUBROUTINE CALL
DATA \%! DATA
DATA V2 DATA
DATA V3 DATA

JEQ ERROR RETURN FROM SUBROUTINE, TEST
. FOR ERROR (Subroutine sets the
EQUAL status bit to one for error.)

3-101 Texas Instruments Incorporated

(o]
{—@-‘p 943441-9701

MEMORY
MEMORY
ADDRESS ? é
r 80100 (WRO)
I Pa ~
' "5 [XX N ,.:
l 0220 (WR5)
HARDWARE I
REGISTERS | 0700 (WRS6)
WP 0100 t"“" ~ ceee Y
N 0200 (WR0)S
N
— - A
PC 0302 ‘K -l \\ AB eeee 2:
~ |\ N
I~ - 0100 (WR13)S
or [EXECUTING] | ~
—
I T~
| EXECUTING STATUS (WR15)S
~ ~
' ”5 XY} ﬁ:
|
0263. MAIN PROGRAM AREA ~
| A o AY)
I r’ . =~
[]
[]
' 0300 BLWP 5
0302 : |
la ° v
(2} . N
0700 S;TART e oo
LA o la
AV SUBROUTINE AREA ~
[)
[
[)
RTWP

Figure 3-5. After Return Using the RTWP Instruction

(A)132206
SUB DATA
SUBWS BSS
SUBPRG MOV
MOV
MOV
RTWP

SUBWS,SUBPRG

32

*14+,1
*14+2
*14+3

ENTRY POINT FOR SUB
AND SUB WRKSPCE

FETCH V1 PLACED IN WRI1
FETCH V2 PLACED IN WR2
FETCH V3 PLACED IN WR3

RETURN FROM SUBROUTINE

3-102

Texas Instruments Incorporated

o]
(_'_@E; 943441-9701

The three MOV instructions retrieve the variables from the main program module and place them
in workspace registers one, two, and three of the subroutine.

When the BLWP instruction is executed, the main program module status is stored in workspace
register 15 of the subroutine. If the subroutine returns with a RTWP instruction, this status is
placed in the status register after the RTWP instruction is executed. The subroutine may alter
the status register .contents prior to executing the RTWP instruction. The calling program can
then test the appropriate bit of the status word, the equal bit in this example, with jump
instructions.

A BL instruction can also be used to pass parameters to a subroutine. When using this instruction,
the originating PC value is placed in workspace register 11. Therefore, the subroutine must fetch the
parameters relative to the contents of workspace register 11 rather than the contents of workspace
register 14 as in the BLWP example. The following example demonstrates parameter passing with
a BL instruction:

BL @SUBR BRANCH TO SUBROUTINE

DATA PARMI1,PARM2 PASSED PARAMETERS STORED IN NEXT TWO
MEMORY WORDS

JEQ ERROR TEST FOR ERROR (Subroutine sets the Equal
status bit to one for error)

SUBR EQU $

MOV *R11+,R0O GET VALUE OF FIRST PARAMETER AND PUT
IN WRO
MOV *R11+,R1 GET VALUE OF SECOND PARAMETER AND PUT

IN WRI1 (R11 is incremented past the locations of
the two data words and now indicates the address of
the next instruction in main program)

B *11

3.89.5 INTERRUPTS. Either eight (990/4, TMS 9900) or sixteen (990/10) priority vectored in-
terrupt levels are implemented in the Model 990 Computer. The contents of the interrupt mask
in the status register define the interrupt level. Low-order memory, address as O through 3F, is
reserved for transfer vectors used by the interrupts (table 3-4). When an interrupt request at an
enabled level occurs, the contents of the transfer vector corresponding to the level are used to enter
a subroutine to serve the interrupt.

The reserved memory locations are shown on the memory map (figure 2-3). Two memory words
are reserved for each interrupt level. The first of the two words for a given level contains an
address that is placed in the WP when the interrupt is requested and enabled. The second contains
the entry point of the interrupt subroutine for that level; its contents are placed in the PC. If an
executive is in use, it places the transfer vectors for pre-defined interrupts and for devices supported
by the executive in the reserved memory locations. The user need not be concerned with transfer
vectors for interrupts except for programs that do not execute under an executive or for external
devices not supported by the executive. Similarly, the executive includes interrupt subroutines
for pre-defined interrupts and for supported devices. The user must supply interrupt subroutines
when the executive is not used and for devices that are not supported by the executive.

3-103 Texas Instruments Incorporated

943441-9701

Memory Address

0000
0002
0004
0006
0008
000A
000C
000E
0010
0012
0014

0016
0018
001A
001C

001E
0020
0022
0024
0026
0028
002A
002C
002E
0030
0032
0034
0036
0038
003A
003C

003E

Interrupt Vector

“ A R W WD NN == O O

N O N »n

O O 0 00 2

O e S T e e e T
“wv A PpA W W N = = O O

15

Table 3-4. Interrupt Vector Addresses
Vector Contents

WP address for interrupt O
PC address for interrupt O
WP address for interrupt 1
PC address for interrupt 1
WP address for interrupt 2
PC address for interrupt 2
WP address for interrupt 3
PC address for interrupt 3
WP address for interrupt 4
PC address for interrupt 4
WP address for interrupt 5

PC address for interrupt 5
WP address for interrupt 6
PC address for interrupt 6
WP address for interrupt 7

PC address for interrupt 7
WP address for interrupt 8
PC address for interrupt 8
WP address for interrupt 9
PC address for interrupt 9
WP address for interrupt 10
PC address for interrupt 10
WP address for interrupt 11
PC address for interrupt 11
WP address for interrupt 12
PC address for interrupt 12
WP address for interrupt 13
PC address for interrupt 13
WP address for interrupt 14
PC address for interrupt 14
WP address for interrupt 15

PC address for interrupt 15

Typical Assignment

Power On
Power Failing
Error

External Device
External Device

External Device or
Line Frequency Clock

External Device

External Device or Line
Frequency Clock (990/4)

External Device
External Device
External Device
External Device
External Device
Externél Devicg
External Device

External Device o
Frequency Clock (990/ 10)

3.89.5.1 General Interrupt Structure. The interrupt levels, numbered O through 15, determine -
the interrupt priority. Level O has the highest priority and level 15 the lowest. The contents of
the interrupt mask, bits 12 through 15 of the ST register, determine the enabled interrupt levels.
Table 3-5 shows the interrupt levels enabled by the contents of the interrupt mask. Note that
level O cannot be disabled since the level contained in the mask is always enabled.

3-104

Texas /nstruments Incorporated

943441-9701

Table 3-5. Interrupt Mask

Status Register Mask Set
By Interrupt

Bits 12-15 Interrupt Levels Enabled Level
0 0 0,1

1 0,1 2

2 0,1,2 3

3 0,1,2,3 4

4 0,1,2,3,4 5

5 0,1,2,3,4,5 6

6 0,1,2,3,4,5,6 7

7 0,1,2,3,4,5,6,7 8

8 0,1,2,3,4,5,6,7,8 9

9 0,1,2,3,4,5,6,7,8,9 10

A 0,1,2,3,4,5,6,7,8,9,10 11

B 0,1,2,3,4,5,6,7,8,9,10, 11 12

C 0,1,2,3,4,5,6,7,8,9,10,11, 12 13

D 0,1,2,3,4,5,6,7,8,9,10,11, 12,13 14

E 0,1,2,3,4,5,6,7,8,9,10,11, 12,13, 14 15

F 0,1,2,3,4,5,6,7,8,9,10,11, 12,13, 14,15 -

3.89.5.2 Interrupt Sequence. The level of the highest priority pending interrupt request is
continually compared with the interrupt mask contents. When the level of the pending request is
equal to or less than the mask contents (equal or higher priority) the interrupt is taken after the
currently executing instruction has completed.

The workspace defined for the interrupt subroutine becomes active and the entry point is placed
in the program counter. The CPU also stores the previous contents of the WP register in the new
workspace register 13, the previous contents of the program counter in the new workspace
register 14, and the contents of the ST register in the new workspace register 15. This preserves
the program environment existing when the interrupt is taken. No additional interrupt is taken
until the first instruction of the interrupt subroutine is completed. Thereafter, interrupts of
higher priority can interrupt processing of the current interrupt.

After storing the ST register contents, the CPU subtracts one from the level of the interrupt
taken and places the result in the interrupt mask, disabling the current interrupt level, and
leaving only higher priority levels enabled. Should a higher priority level interrupt be taken, and
the original interrupt request remain active when the return from the higher priority level
interrupt subroutine occurs, the original interrupt remains disabled and is not taken again.
Control returns to the interrupt subroutine at the point at which the higher priority interrupt
occurred.

3-105 Texas Instruments Incorporated

o
q_r@p 943441-9701

3.89.5.3 Pre-Defined Interrupts. Level O is pre-defined as the power on interrupt in the TMS 9900
Microprocessor and all Model 990 Computers. The other pre-defined levels vary in the Model 990
Computers. Refer to the Model 990 Computer Hardware Reference Manual for the levels that are
pre-detined in each model. The total number of levels is 8 in the 990/4 Computer and is 16 in the
Model 990/10 or TMS 9900 Microprocessor. The available interrupt levels that are not pre-defined
are available for assignment to devices on the CRU, or on the CRU and the TILINE in the case of
the Model 990/10. Several interrupt lines may be combined at one level. Any interrupt request
must remain active until the interrupt is taken, and must be reset before the interrupt subroutine
is completed.

3.89.5.4 CPU Error Interrupt. A CPU error interrupt is defined as an interrupt level two. On the
990/4 Computer, two errors cause a CPU error interrupt: a memory parity error or a memory
protection violation. Either an SBO or SBZ instruction to bit 12 of the Programmer’s panel base
address clears a memory parity error interrupt. The base address is selected by placing a 1FEQ,4
in register 12.

If the optional write-protect hardware is installed, a CPU interrupt may be caused by a write-
protect violation as well as a memory parity error. To determine which condition caused the
interrupt, the bit at CRU base address 1FAO,4 can be sensed. If the bit is zero, a parity error
has occurred and can be cleared as previously described. If it is a one, a write-protect error has
occurred. This error is cleared by setting any of the sixteen bits at CRU base address 1FAQ,¢4 to
a one.

On the 990/10 Computer, any one of five conditions can cause a CPU error interrupt. Table 3-6
contains a list of these conditions. To isolate the cause of the error, read the CRU Error Register.
The CRU register is addressed by placing a 1FCO,¢ in register 12. An individual error is cleared by
addressing the appropriate CRU bits as listed in table 3-6. The memory mapping error is cleared by
addressing bit 4 at the CRU base address 1FAQ,q,, the CRU base address used to control the
mapping hardware. Either the SBZ or SBO instruction is used to clear the interrupts. To allow
software compatability, the memory parity error interrupt in the 990/10 can also be cleared in
the manner described for the 990/4.

3.89.5.5 Interrupt Processing Example. Refer to figure 3-6 for the following discussion. Prior to
the example interrupt (eight for this example), the PC contains 1022 for the executing program,
the WP contains 780 for the executing program workspace, and the ST register contains the
executing program status. At this point, the example external interrupt, number eight, occurs
and there is a context switch from the executing program to the interrupt subroutine. The two
words of memory required for external interrupt eight are found in memory locations 0020 and
0022. Figure 3-6 shows that these two words of memory contain 0270 and 0290, respectively,
for the WP and PC that are to be used by the interrupt subroutine.

At the point of interrupt, the CPU transfers the present WP, PC, and ST register contents to the
interrupt routine workspace in workspace registers 13, 14 and 15, respectively. Once these are
stored, the CPU transfers the interrupt subroutine WP and PC into the WP and PC registers.

When these actions are completed, the contents of memory and the registers are as shown in
figure 3-7.

After the completion of the interrupt subroutine, the CPU restores the executing program WP,
PC, and ST registers. Completion of the interrupt subroutine occurs when the RTWP instruction
in the interrupt subroutine is executed.

3-106 Texas Instruments Incorporated

943441-9701

3.89.6 EXTENDED OPERATIONS. Extended operation instructions permit the extension of the
existing instruction set to include additional instructions. In the TMS 9900 Microprocessor and
the Model 990/4 Computer, these additional instructions are implemented by software routines.
In the Model 990/10 Computer, the instructions may be implemented by user-supplied hardware
or software routines. Interface between a user program and the standard TI executives is imple-
mented as XOP 15.

Memory locations 0040, through 007E ;4 are used for XOP vectors for software implemented
XOPs. Vector contents are user supplied WP and PC addresses for the XOP routine workspace
and starting address. Table 3-7 contains the addresses and contents of the 16 XOP vectors. Note

e that these vectors must be supplied and loaded prior to the XOP instruction execution.

» Table 3-6. Error Interrupt Logic CRU Bit Assignments

R Input Bit Output Bit Error Condition

;E 11 Memory Mapping Error
12 12 Error from TILINE memory (parity/error correcting)
’ 13 13 Illegal Operation

14 14 Privileged instruction fetch with privileged mode off
15 15 TILINE timeout

When the program module contains an XOP instruction that is software implemented, the AU
locates the XOP WP and PC words in the XOP reserved memory locations and loads the WP and
PC. When the WP and PC are loaded, the AU transfers control to the XOP instruction set through
a context switch. When the context switch is complete, the XOP workspace contains the calling
routine return data in WRs 13, 14, and 15.

The XOP instruction passes one operand to the XOP (input to the XOP routine in
. workspace register 11 of the XOP workspace). At the completion of the software XOP, the XOP

routine should return to the calling routine with an RTWP instruction that will restore the
: execution environment of the calling routine to that in existence at the call to the XOP.

An example of a software implemented XOP, shown in figure 3-8, causes XOP number two to be
executed on the data stored at the address contained in workspace register 1 of the calling
program module. Prior to the execution of the XOP, the PC contains the address of the XOP *1,
2 instruction and the WP contains the address of the calling program workspace. At this point,
{ the PC increments by two, to 922, and the XOP is executed. This execution is a context switch
in which the XOP routine gains control of the execution sequence. Note that workspace register 1
of the calling program module contains the data address for the operand that is passed to the XOP
routine. '

After the context switch is complete and the XOP subroutine is in control (figure 3-9), the PC
contains the starting address of the XOP subroutine and the WP contains the address of the XOP
subroutine workspace. Workspace register 11 of the XOP subroutine contains the effective
address of the data to be used as an operand. Workspace registers 13, 14, and 15 contain the
return control information, which is used to return control to the main program module when
the XOP subroutine completes execution.

3-107 Texas Instruments Incorporated

943441-9701

MEMORY MEMORY
ADDRESS é
0020 0270
0022 0290
:; eeo e ::
HARDWARE
REGISTERS
0270 INTERRUPT SUBROUTINE
WP 0780 .‘
I WORKSPACE
: 0290 INTERRUPT SUBROUTINE '
PC 1024 E
}-ll :S Yy} ’,V *
| | ol
| Lemo780
| EXECUTING PROGRAM
sT | ExecuTInG sTaTUs || WORKSPACE
|
|
: 0800 EXECUTING PROGRAM
|
|
1 1022 INC 1
l_gw 1024
NOTE IERET AT, A
THE IN
TAKEN UNTIL THE INSTRUCTION AT EXECUTING PROGRAM
ADDRESS 1022 HAS COMPLETED, DATA
~, Yo
P
(A)132207
Figure 3-6. Interrupt Processing Example
MEMORY MEMORY
ADDRESS
0020 0270
0022 7 0290
Z)
7
i / AL
\/ L] L] L] []
A / Y
HARDWARE 7 /
0270 WRO
REGISTERS :' INTERRUPT ()
L SUBROUTINE
270 /A A
wp | o y A A
WORKSPACE
0780 (WR13)
pc | o290 -
| 1024 (WR14)
' EXECUTING STATUS)
ST | INTERRUPT STATUS | G (WR15)
| ﬁ: e o o o :LF;
NOTE: INTERRUPT MASK = 0110 :
le»0290 INTERRUPT SUBROUTINE
M
L]
L]
RTWP
(A)128621A e

Figure 3-7. Memory Contents After Interrupt

3-108 Texas Instruments Incorporated

943441-9701

Memory Address

0040
0042
0044
0046
0048
004 A
004C
004E
0050
0052
0054
0056
0058
00SA
005C
005SE
0060
0062
0064
0066
0068
006A
006C
006E
0070
0072
0074
0076
0078
007A
007C
007E

Table 3-7. XOP Vectors

XOP Number

—_— = O O

O O 00 00 N N O O \»i i B A W W NN

L e e e e e e e T S S S
LN B R WWND N = = O O

Vector Contents

WP address for XOP workspace
PC address for XOP routine
WP address for XOP workspace
PC address for XOP routine
WP address for XOP workspace
PC address for XOP routine
WP address for XOP workspace
PC address for XOP routine
WP address for XOP workspace
PC address for XOP routine
WP address for XOP workspace
PC address for XOP routine
WP address for XOP workspace
PC address for XOP routine
WP address for XOP workspace
PC address for XOP routine
WP address for XOP workspace
PC address for XOP routine
WP address for XOP workspace
PC address for XOP routine
WP address for XOP workspace
PC address for XOP routine
WP address for XOP workspace
PC address for XOP routine
WP address for XOP workspace
PC address for XOP routine
WP address for XOP workspace
PC address for XOP routine
WP address for XOP workspace
PC address for XOP routine
WP address for XOP workspace
PC address for XOP routine

Texas Instruments Incorporated

943441-9701

MEMORY

ADDRESS MEMORY
0048 0220
004A 0240
XOP 3-15
N Y
HARDWARE
REGISTERS
0220 XOP WORKSPACE
WP 0700 —-l
0240 XOP SUBROUTINE
| ~N ~
"/
PC 0922 | "r N
! |
PROBLEM PROGRAM
0700
] l. WORKSPACE (WR0)
ST XXIY) '
0750
|
I A i
| ¥ *
|
| PROBLEM PROGRAM
| 0750 DATA
| 0800 PROBLEM PROGRAM
I 0920 XOP *1,2
L-—ogzz
(A)132208

Figure 3-8. Extended Operation Example

3.89.7 SPECIAL CONTROL INSTRUCTIONS. There are five special control instructions that
permit the programmer to control the state of the execution process of the 990 Computer.

These instructions are:

Instruction Mnemonic
Load or Restart Execution LREX
Clock On and Clock Off CKON/CKOF
Reset RSET
Execute X
Idle IDLE
- CAUTION

In Model 990/4 Computers, executing any of these instructions
except Execute in a program executing under an executive may

3-110 Texas Instruments Incorporated

943441-9701

MEMORY

(o]
ADDRESS MEMORY

0048 | 0220
004A 0240
ba ~
~ AF
HARDWARE r—--ozzo XOP WORKSPACE
" REGISTERS |
| 0750 (WR11)
WP I 0220 I,l
(WR12)
0700 (WR13)
PC [0240 I-I
0922 (WR14)
EXECUTION STATUS (WR15)

[————

o[]

-+ e 0240 XqP SUBROUTINE 2
.

.
RTWP

“e»0700 | CALLING PROGRAM WORKSPACE

L.O750 CALLING PROGRAM DATA

0800 { CALLING PROGRAM

0920 | XOP *1,2
L= 0922 RETURN FROM XOP)

(A)128623B

Figure 3-9. Extended Operation Example after Context Switch ,

drastically interfere with the executive’s operation. Executives
running in a Model 990/10 Computer allow program execution
only in a nonpriviledged mode. Attempting to execute these instruc-
tions in a nonprivileged mode generates a error/interrupt.

In the TMS 9900 Microprocessor, only the Execute instruction applications apply. The other
instructions perform no processing in the microprocessor, but may be implemented in the users
hardware to perform any desired functions.

3.89.7.1 LREX Applications. The LREX instruction may be used to activate any desired
function by placing a transfer vector for that function in addresses FFFC,s and FFFE¢ and
placing a subroutine and workspace to perform that function in the locations specified in the
transfer vector. Typically, these locations are ROM locations, and the LREX instruction activates
a programmer’s panel and loader function. Other functions could be performed either by using
different ROM’s in these locations, or by using RAM in these locations and loading the desired
data into the locations.

The LREX instruction is not implemented in the TMS 9900 Microprocessor, and is a Privileged
Mode instruction in the Model 990/10 Computer.

3.89.7.2 CKON/CKOF Applications. These two instructions are used to turn on and turn off
the clock, respectively. Through the use of these two instructions, the programmer may use the
clock for timing operations. As an example, the clock may be used to time-out I/O procedures
by turning the clock on, counting the clock interrupts until the desired time is passed, and turning
the clock off. This is possible only if the interrupt level for the real time clock has previously
been enabled. :

3-111 Texas Instruments Incorporated

o
@ 943441-9701

The clock interrupt is normally attached to level 5, or optionally at level 7 on the 990/4 Computer
or level 15 on the 990/10 Computer. The interrupt is normally cleared in the Clock Interrupt Ser-
vice Routine with a CKOF/CKON instruction sequence.

The RSET instruction also clears an interrupt.

When a program executes under an executive, the executive uses the clock for timing various
executive and user program functions. Executing either a CKON or a CKOF instruction interferes
with normal operation of the executive. I/O timeout is part of the support provided by the
executive, and is not a user function. Refer to the user’s guide for the appropriate executive for
methods of timing user program functions supported by that executive. -

The CKON and CKOF instructions are not implemented on the TMS 9900 Microprocessor, and-
are Privileged Mode instructions in the Model 990/10 Computer with map option.

3.89.7.3 RSET Applications. RSET is primarily used to initialize the state of the computer and has
the effect of clearing any pending interrupts. This instruction is useful at the start of a program to
clear the state in existence so that the new application will not be adversely affected by the prev1ous
state of the computer.

When a program executes under an executive, the executive processes internal interrupts and
external interrupts for supported devices. Execution of an RSET instruction interferes with
normal operation of the executive. Refer to the user’s guide for the appropriate executive for
permissable changes in the enabled interrupt level.

The RSET instruction is not implemented in the TMS 9900 Microprocessor, and is a Privileged
Mode instruction in the Model 990/10 with map option.

3.89.7.4 X Applications. The execute instruction may be used to execute an instruction that is
not in sequence without transferring control to the desired instruction. One useful application is
to execute one of a table of instructions, selecting the desired instruction by using an index into
the table of instructions. The computed value of the index determines which 1nstruct10n is
executed.

A table of shift instructions is an example of the use of the X instruction. Place the following
instructions at location TBLE:

TBLE SLA R6,3 SHIFT WORKSPACE REGISTER 6
SLA R7,3 SHIFT WORKSPACE REGISTER 7

SLA RS 3 SHIFT WORKSPACE REGISTER 8
TABEND EQU $

A character is placed in the most significant byte of workspace register 5 to select the workspace
register to be shifted to the left 3 bit positions. ASCII characters A, B, and C specify shifting
workspace registers 6, 7, and 8, respectively. Other characters are ignored. The following code
performs the selection of the shift desired:

SRL R5,8 MOVE TO LOWER BYTE
Al RS, A’ SUBTRACT TABLE BIAS
JLT NOSHFT ILLEGAL
SLA R5,1 MAKE IT A WORD INDEX
CI R5, TABEND - TBLE
JGT NOSHFT ILLEGAL
X @TBLE(RS)

NOSHFT EQU $

3-112 Texas Instruments Incorporated

e

o .
@2 943441-9701

When using the X instruction, if the substituted instruction contains a T, field or a T4 field that
results in a two word instruction, the computer accesses the word following the X instruction as
the second word, not the word following the substituted instruction. When the substituted
instruction is a jump instruction with a displacement, the displacement must be computed from
the X instruction, not from the substituted instruction.

3.89.8 CRU INPUT/OUTPUT. The communications register unit (CRU) performs single and
multiple bit programmed input/output in the Model 990 Computer. All input consists of reading
CRU line logic levels into memory and output consists of setting CRU output lines to bit values
from a word or byte of memory. The CRU provides a maximum of 4096 input and output lines
that may be individually selected by a 12-bit address. The 12-bit address is located in bits 3
through 14 of workspace register 12 and is the base address for all CRU communications.

When a program executes under an executive, I/O to supported devices is provided through the
use of I/O supervisor calls. For these CRU devices, it is not necessary to use the instructions
described in the following paragraphs. Refer to the appropriate user’s guide for information on
the use of the I/O supervisor call to the desired device under that executive.

3.89.8.1 CRU I/O Instructions. There are five instructions for communications with CRU lines.
They are:

L SBO - Set CRU Bit To One. This instruction sets a CRU output line to a logic one. If the
device on the CRU line is a data module, SBO results in zero volts at the data module
terminal corresponding to the addressed bit.

® SBZ - Set CRU Bit To Zero. This instruction sets a CRU output line to a logic zero. If the
device on the CRU line is a data module, SBZ results in a float (no signal applied) at
the data module terminal corresponding to the addressed bit.

L TB - Test CRU Bit. This instruction reads the digital input bit and sets the equal status bit
(bit 2) to the value of the digital input bit.

NOTE

The CRU address of the SBO, SBZ, and TB instructions is
determined as follows:

Bits 3-14 of workspace register 12 equal the CRU base
address
+

The user supplied displacement in the instruction with
sign bit extended

Effective CRU address

® LDCR - Load Communications Register. This instruction transfers the number of bits
(1-16) specified by the C field of the instruction onto the CRU from the source operand.
When less than nine bits are specified, the source operand address is a byte address.
When more than eight bits are specified, the source operand is a word address. The CRU
address is the address of the first CRU digital output affected. The CRU address is de-
termined by the contents of workspace register 12, bits 3 through 14.

3-113 Texas Instruments Incorporated

o
%‘_@; 943441-9701

® STCR - Store Communications Register. This instruction transfers the number of bits
specified by the C field of the instruction from the CRU to the source operand. When
less than nine bits are specified, the source operand address is a byte address. When
there are nine or more bits specified, the source operand address is a word address. The
CRU address is determined by workspace register 12, bits 3 through 14.

3.89.8.2 SBO Example. Assume that a control device that turns on a motor when the computer
sets a one on CRU line 10F,4, and that workspace register 12 contains 0200,4, making the base
address in bits 3 through 14 equal to 100,¢. The following instruction sets CRU line 10F,¢ to one:

SBO 15

If a data module were connected as the CRU device, the instruction would place zero volts on
output line 15 of the module without affecting other lines.

3.89.8.3 SBZ Example. Assume that a control device that shuts off a valve when the computer
sets a zero on a CRU line is connected to CRU line 2, and that workspace register 12 contains
zero. The following instructions sets CRU line 2 to zero:

SBZ 2

If a data module were connected as the CRU device, output line 2 of that module would float at
a voltage determined by the characteristics of the control device. No other CRU line would be
affected by the instruction.

3.89.8.4 TB Example. Assume that workspace register 12 contains 0140,,, making the base
address in bits 3 through 14 equal to AO,¢. The following instructions would test the input on
CRU line A4,s and execute the instructions beginning at location RUN when the CRU line is
set to one. When the CRU line is set to zero, execute the instructions beginning at location

WAIT:
TB 4 TEST CRU LINE 4
JEQ RUN IF ON, GO TO RUN
WAIT . IF OFF, CONTINUE
RUN

The TB instruction sets the logic level of the Equal bit of the ST register to the level on line 4
of the CRU device.

3.89.8.5 LDCR Example. Assume that a 913 CRT Display Terminal is connected to the CRU
and that the base address in workspace register 12 is set to CRU line 48,5. The following
instructions display a character in an even address at location TOM on the screen of the CRT.
Output CRU lines 40,4 through 47,, must be set to the bit configuration of the character, which
requires that the base address in bits 3 through 14 of workspace register 12 be modified. The
instructions are:

Al R12,16 MODIFY BASE ADDRESS BY 8
LDCR @TOM,8 TRANSFER CHARACTER
Al R12,16 RESTORE BASE ADDRESS

3-114 Texas Instruments Incorporated

o
%@ 943441-9701

The operand required in the first instruction is -16 because the least significant bit of workspace
register 12 is not included in the base address. The base address must be decremented by 8, so
16 must be subtracted. The following diagram shows the transfer of data, which places the
character in the proper register of the CRT controller. The Write Data Strobe line, CRU output
line 48,4, must be set to actually display the character.

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

MEMORY CRU LINES
ADDRESS| ¢ ¢ 1 1 0 1 0 0 X X X X X X X Xl 3¢
TOM]
& | O 40
| © 41
& 1 42
L] 0 43
. 1 44
) 1 45
| o 46
& 0 47
X = NOT USED
(A)132209 Jb—"~ 48

If the LDCR instruction were changed as follows:
LDCR @TOM,9
there would be a transfer of 9 bits beginning with the least significant bit of address TOM to

nine CRU lines, 40,¢ through 48,¢. Setting bit 48, to either a value of O or 1 causes the
character to be displayed on the screen. The following diagram shows the data transfer:

O t 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CRU LINES
MEMORY
ADDR_F()SSXXXXXXXIO!O!O‘I - . 3F

1 40

1 41

1 1
L =
e

L—__’ 1 42

-
:.
-
-
-
-

(o] 43

1 44

) 45

1 46

0 47
1 48

X=NOT USED

(A)132210 49

3-115 Texas Instruments Incorporated

943441-9701

3.89.8.6 STCR Example. The last Al instruction of the LDCR example in the preceding
paragraph left the base address in workspace register 12 set for a keyboard input operation. The
following instruction places the seven bits of the keyboard character into the seven least
significant bits of the byte at the address in workspace register 2:

STCR *R2,7 READ CHARACTER

The STCR instruction stores the bits as shown in the following diagram:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T T T T T T T T T T T T CRU LINES
[oiolroloxxxxxxxx"'\N
[} o a8
1 49
o 4A
| ° |
1 4B
1 ac
—
o 4D
1 4E
X NOT USED BIT 0'IS SET TO ZERO P N
(A)132211

If the STCR instruction were changed to:
STCR *R12,0

sixteen bits would be transferred from the CRU lines specified by workspace register 12 to the
address that is specified by the contents of workspace register 2. The transfer of data is shown in
the following diagram:

0O 1 2 3 4 5 6 7 8 9 10 1112 13 14 15

T T T rrr T
1t 1 1+ 1. 0 0 0 1t 1T 1 0 0 0 1 1 1

CRU LINES

48

49

4A

48

4c

4D

4E

4F

e fe [[

50

(<]

51

o

52

53

54

55

56

57

(A)132212

(L1

L 58

The keyboard character is placed in the least significant byte.

3-116 Texas Instruments Incorporated

[e]
@ 943441-9701

3.89.9 TILINE INPUT/OUTPUT. (990/10 ONLY). The set of machine instructions that com-
municate with the memory may be used to communicate with devices connected to the TILINE,
as illustrated in appendix I. To communicate with the TILINE device, these instructions must be
coded with the TILINE addresses for the device. The hardware supplies the five most significant
bits, each having the value of one, to convert the upper 1024 memory byte addresses to TILINE
addresses. The actual TILINE addresses for a device and the significance of data transferred to
these addresses are device dependent.

The Disc Executive DX10 supports I/O to the available disc units. The user programs that execute
under DXIO use the I/O supervisor call to perform I/O to the disc. Refer to the user’s guide for the
appropriate executive for a description of the 1/O supervisor call and for a list of supported devices.

3.89.10 RE-ENTRANT PROGRAMMING. Re-entrant programming is a technique that allows
the same program code to be used for several different applications while maintaining the integrity
of the data used with each application. The common program code and its associated constants
are stored in one area in memory. Each function that uses that code is then assigned a unique
workspace and data area so that as it executes the common code, its variable data is developed
without affecting the variable data associated with any of the other functions that use the program.
With this arrangement one function can execute the common code routine and be interrupted in
the middle of the routine by another function that also uses the same routine. The second function
then uses the routine for its purpose and returns control to the first function so that it can
proceed from the point of interruption without returning to the start of the routine. Re-entrant
programming of this type lends itself well to servicing similar peripheral devices that interface
with the computer at different priority levels. The following characteristics apply to a re-entrant
procedure:

® The procedure does not contain data except data common to all tasks.

® The pfocedure does not alter the contents of any word in the procedure whether that
word contains data or an instruction.

® Data that is unique to one or more tasks is in the data division for the task and is
either in a workspace or is indirectly addressed.

A very important application of a re-entrant procedure is one that controls a process using
several sets of identical control devices through identical sets of CRU lines. Each task using the
re-entrant procedure addresses a unique set of control devices that controls a set of equipment to
perform the same process concurrently. The workspace for each task contains the CRU base
address in workspace register 12 for the set of control devices for the task. The procedure
addresses a control device by a displacement from the base address. For each task, the base address
in workspace register 12 of its workspace controls the proper device. Figure 3-10 shows a procedure
common to sixteen tasks, each of which uses an identical set of CRU lines at different CRU base
addresses.

3-117 Texas /nstruments Incorporated

943441-9701

MEMORY

TASK A —T 8

WR12 200 \ CRU

100
DATA EQUIPMENT
FOR TASK A

TASK B — 8

118
SHARED /
PROCEDURE EQUIPMENT

WR12 230 FOR TASK B

DATA

Iy 200

EQUIPMENT
FOR TASK F

TASK F —

WR12 400

DATA

(A)132213A

Figure 3-10. Re-entrant Procedure for Process Control

The following is an example of re-entrant code. The following assumptions apply:

® Workspace register 14 contains the address of a word that contains the size of a buffer,
in bytes.

® Workspace register 9 contains the start address of that buffer.

® Label NOTFND is the location that contains the first instruction of a routine that is to
be executed if the buffer does not contain a carriage return character.

® Label FOUND is the location of the first instruction of a routine that is to be
executed when the buffer contains a carriage return.

3-118 Texas Instruments Incorporated

o
{@ 943441-9701

The re-entrant code is as follows:

ENTER MOV *14,3 GET BUFFER SIZE

MOV 9,8 GET START ADDRESS

A 3,8 POINT TO END OF BUFFER
LOOK C 9,8 CHECK FOR END

JH NOTFND BRANCH AT END

CB *9+,@CARRET CHECK CHARACTER

JNE LOOK BRANCH WHEN NOT FOUND
FOUND CHARACTER FOUND

CARRET BYTE >D

The code is re-entrant because it is not altered during execution of the code. Also, when
execution resumes following an interruption, the workspace for the code again becomes active,
and contains the correct values for resuming the execution as if execution had not be
interrupted.

Another possible version of the same code is as follows:

ENTER MOV *14,@ADDLOC
MOV 9,8
Al 8,5-§

ADDLOC EQU §-2

LOOK C 9,8
JH NOTFND
CB *9+,@CARRET
JNE LOOK

FOUND

CARRET BYTE >D

The code performs the same function by storing the buffer length in the word that contains the
immediate operand of an Al instruction. As long as only one task using this code is active, there
would be no problem. However, if one task is interrupted after storing a value in ADDLOC and
before executing the Al instruction, and another task executes the code, the size of the buffer
for the first task is lost. The code is not re-entrant because it alters data within itself.

3-119/3-120 Texas Instruments Incorporated

[e]
@ 943441-9701

SECTION IV
ASSEMBLER DIRECTIVES

4.1 INTRODUCTION
Assembler directives and machine instructions in source programs supply data to be included in
the program and control of the assembly process. The Model 990 Computer Assemblers support
a number of directives in the following categories:

4.2 DIRECTIVES THAT AFFECT THE LOCATION COUNTER

Directives that affect the Location Counter

Directives that affect the assembler output

Directives that initialize constants

Directives that provide linkage between programs

Miscellaneous directives.

As an assembler reads the source statements of a program, a component of the assembler called
the location counter advances to correspond to the memory locations assigned to the resulting
object code. The first nine of the assembler directives listed below initialize the location counter
and define the value as relocatable, absolute, or dummy. The last three directives advance the
location counter to provide a block or an area of memory for the object code to follow. The word
boundary directive also ensures a word boundary (even address). The directives are:

Absolute Origin
Relocatable Origin
Dummy Origin

Data Segment

Data Segment End
Common Segment
Common Segment End
Program Segment

Program Segment End
Block Starting With Symbol
Block Ending With Symbol

Word Boundary

Texas Instruments Incorporated

o
@@ 9434419701

® Data Segment

NOTE

The following are not supported by the PX9ASM.

® Data Segment End

® Common Segment

® Common Segment End

® Program Segment

® Program Segment End
4.2.1 ABSOLUTE ORIGIN AORG
Syntax definition:

[<label>]b ... AORGbH ... <<wd-exp>b ... [<comment>]
AORG places a value in the location counter and defines the succeeding locations as absolute.
Use of the label field is optional. When a label is used, it is assigned the value that the directive
places in the location counter. The operation field contains AORG. The operand field contains a
well-defined expression (wd-exp). The assembler places the value of the well-defined expression

in the location counter. Use of the comment field is optional. When no AORG directive is
entered, no absolute addresses are included in the object program.

The following example shows an AORG directive:
AORG >1000+X

Symbol X must be absolute and must have been previously defined. If X has a value of 6, the
location counter is set to 1006, by this directive. Had a label been included, the label would
have been assigned the value 1006, .

4.2.2 RELOCATABLE ORIGIN RORG

Syntax definition:
[<label>] b...RORG b. . .[<exp>] b. . .[<comment>]

RORG places a value in the location counter; if encountered in absolute code, it also defines suc-
ceeding locations as program-relocatable. When a label is used, it is assigned the value that the
directive places into the location counter. The operation field contains RORG, and the operand
field is optional. The comment field may be used only when the operand field is used.

Texas Instruments Incorporated

o
@ 943441-9701

When the operand field is not used, the length of the program segment, data segment, or specific
common segment of a program replaces the value of the location counter. For a given relocation
type X, the length of the X-relocatable segment at any time during an assembly is either of the
following values:

® The maximum value the location counter has ever attained as a result of the assembly of
any preceding block of X-relocatable code.

° Zero, if no X-relocatable code has been previously assembled.

Clearly, since the location counter begins at zero, the length of a segment and the “next available”
address within that segment are identical.

If the RORG directive appears in absolute- or program-relocatable code and the operand field is
not used, the location counter value is replaced by the current length of the program segment of
that program. If the directive appears in data-relocatable code without an operand, the location
counter value is replaced by the length of the data segment. Likewise, in common-relocatable code,
the RORG directive without an operand causes the length of the appropriate common segment to
be loaded into the location counter.

When the operand field is used, the operand must be an absolute or relocatable expression (exp)
that contains only previously defined symbols. If the directive is encountered in absolute code, a
relocatable operand must be program-relocatable; in relocatable code, the relocation type of the
operand must match that of the current location counter. When it appears in absolute code, the
RORG directive changes the location counter to program-relocatable and replaces its value with
the operand value. In relocatable code, the operand value replaces the current location counter
value, and the relocation type of the location counter remains unchanged.

The following example shows an RORG directive:
RORG $-20 OVERLAY TEN WORDS

The $ symbol refers to the location following the preceding relocatable location of the program.
This has the effect of backing up the location counter ten words. The instructions and directives
following the RORG directive replace the ten previously assembled words of relocatable code,
permitting correcting of the program without removing source records. Had a label been
included, the label would have been assigned the value placed in the location counter.

An example of a.-RORG directive with no operand field is as follows:

SEG2 RORG
The_ .location counter contents depend upon preceding source statements. Assume that after
defining data for a program, which occupied 44,4 bytes, an AORG directive initiated an absolute
block of code. The absolute block is followed by the RORG directive in the above example. This
places 0044, in the location counter and defines the location counter as relocatable. Symbol

SEG?2 is a relocatable value, 0044;,. The RORG directive in the above example would have no
effect except at the end of an absolute block or a dummy block, described in the next paragraph.

4.2.3 DUMMY ORIGIN DORG
Syntax definition:

[<label>]b ... DORGH . .. <exp>b ... [<comment>]

43 Texas Instruments Incorporated

[e]
% 943441-9701

DORG places a value in the location counter and defines the succeeding locations as a dummy
block or section. When assembling a dummy section, the assembler does not generate object
code, but operates normally in all other respects. The result is that the symbols that describe the
layout of the dummy section are available to the assembler during assembly of the remainder of
the program. The label is assigned the value that the directive places in the location counter. The
operation field contains DORG. The operand field contains an expression (exp), which may be
either absolute or relocatable. Any symbol in the expression must have been previously defined.
When the operand is absolute, the location counter contents are absolute; when the operand is
relocatable, the location counter contents are relocatable.

The following example shows a DORG directive:

DORG O

The effect of this directive is to cause the assembler to assign values relative to the start of the
dummy section to the labels within the dummy section. It is assumed that the code
corresponding to the dummy section is assembled in another program module.

The example directive would be appropriate in the executable portion (procedure division) of a
disc-resident task that is common to more than one task, and which executes under the disc
executive. The dummy section of the procedure should contain the directives of the data division,
and the executable portion of the module (following a RORG directive) should use the labels of
the dummy section as indexed addresses. In this manner, the data is available to the procedure
regardless of the memory area into which the data is loaded.

The DORG directive may also be used with data-relocatable or common-relocatable operands to
specify dummy data or common segments. The following example illustrates this usage:

CSEG ‘COMI”’

DORG § “$” HAS A COMMON-RELOCATABLE VALUE

LABI DATA $

MASK DATA >F000

CEND
SZC @MASK,@LABI(R3)
In the example, no object code is generated to initialize the common segment, COM1, but all

common-relocatable labels describing the structure of the common block (including LABI and
MASK) are available for use throughout the program.

44 Texas Instruments Incorporated

(o]
{@? 9434419701

4.2.4 BLOCK STARTING WITH SYMBOL BSS
Syntax definition:
[<label>]b ...BSSb ... <wd-exp>b ... [<comment>]

BSS advances the location counter by the value of the well-defined expression (wd-exp) in
the operand field. Use of the label field is optional. When a label is used, it is assigned the
value of the location of the first byte in the block. The operation field contains BSS. The
operand field contains a well-defined expression that represents the number of bytes to be added
to the location counter. The comment field is optional.

The following example shows a BSS directive:
BUFF1 BSS 80 CARD INPUT BUFFER
This directive reserves an 80-byte buffer at location BUFF1.

4.2.5 BLOCK ENDING WITH SYMBOL BES
Syntax definition:
[<label>1b ...BESb ... <wd-exp>b ... [<comment>]

BES advances the location counter according to the value in the operand field, and assigns the
new location counter value to the symbol in the label field, when there is a symbol in the label
field. Use of the label field is optional. The label is assigned the value of the location following
the block when the label is entered. The operation field contains BES. The operand field contains
a well-defined expression that represents the number of bytes to be added to the location counter.
The comment field is optional.

The following example shows a BES directive:

BUFF2 BES >10

The directive reserves a 16-byte buffer. Had the location counter contained 100,, when the
assembler processed this directive, BUFF2 would have been assigned the value 110;4.

4.2.6 WORD BOUNDARY EVEN
Syntax definition:
[<label>]b ... EVENDb ... [<comment>]

EVEN places the location counter on the next word boundary (even) byte address. When the
location counter is already on'a word boundary, the location counter is not altered. Use of the
label field is optional. When a label is used, the value in the location counter before processing
the directive is assigned to the label. The operation field contains EVEN. The operand field is
not used, and the comment field is optional.

The following example shows an EVEN directive:

WRF1 EVEN WORKSPACE REGISTER FILE ONE

45 Texas Instruments Incorporated

[e]
e@ 943441-9701

The directive assigns the location counter address to label WRF1, and assures that the location
counter contains a word boundary address. Use of an EVEN directive preceding or following a
machine instruction or a DATA directive is redundant. The assembler advances the location
counter to an even address when it processes a machine instruction or a DATA directive.

4.2.7 DATA SEGMENT DSEG
Syntax definition:

[<label>] b...DSEG b. . .[<comment>]

NOTE
This directive does not apply to the PX9ASM assembler.

DSEG places a value in the location counter and defines succeeding locations as data-relocatable.
Use of the label field is optional. When a label is used, it is assigned the data-relocatable value that
the directive places in the location counter. The operation field contains DSEG. The operand field
is not used, and the comment field is optional. Either of the following values is placed in the loca-
tion counter:

® The maximum value the location counter has ever attained as a result of the assembly
of any preceding block of data-relocatable code

® Zero,if no data-relocatable code has been previously assembled.

The DSEG directive defines the beginning of a block of data-relocatable code. The block is normally
terminated with a DEND directive (see paragraph 4.2.8). If several such blocks appear throughout
the program, they together comprise the data segment of the program. The entire data segment may
be relocated independently of the program segment at link edit time and therefore provides a
convenient means of separating modifiable data from executable code.

In addition to the DEND directive, the following directives will properly terminate the definition
of a block of data-relocatable code: PSEG, CSEG, AORG, and END. The PSEG directive, like
DEND, indicates that succeeding locations are program-relocatable. The CSEG and AORG directives
effectively terminate the data segment by beginning a common segment or absolute segment,
respectively. The END directive terminates the data segment as well as the program.

The following example illustrates the use of both the DSEG and the DEND directives.

RAM DSEG START OF DATA AREA

<Data-relocatable code>

ERAM DEND
LRAM EQU ERAM-RAM

The block of code between the DSEG and DEND directives is data-relocatable. RAM is the sym-

bolic address of the first word of this block; ERAM is the data-relocatable byte address of the
location following the code block. The value of the symbol LRAM is the length in bytes of the
block.

4-6 Texas Instruments Incorporated

[e]
@ 943441-9701

4.2.8 DATA SEGMENT END DEND
Syntax definition:
[<label>] b....DEND b. . .[<comment>
NOTE
This directive does not apply to the PX9ASM assembler.

DEND terminates the definition of a block of data-relocatable code by placing a value in the loca-
tion counter and defining succeeding locations as program-relocatable. Use of the label field is
optional. When a label is used, it is assigned the value of the location counter prior to modification.
The operation field contains DEND. The operand field is not used, and the comment field is

optional. Either of the following values is placed in the location counter as a result of this directive:

® The maximum value the location counter has ever attained as a result of the assembly
of any preceding block of program-relocatable code.

® Zero, if no program-relocatable code has been previously assembled.
If encountered in common-relocatable or program-relocatable code, this directive functions as

a CEND or PEND (and a warning message is issued); like CEND and PEND, it is invalid when used
in absolute code. The following example illustrates the use of both DSEG and DEND directive.

RAM DSEG START OF DATA AREA
<Data-relocatable code>

ERAM i)END

LRAM EQU ERAM-RAM
429 COMMON SEGMENT CSEG
Syntax description:

[<label>] b...CSEGb. . .[‘<string>’] b. . .[<comment>]

NOTE
This directive does not apply to the PX9ASM assembler.

CSEG places a value in the location counter and defines succeeding locations as common-relocatable
(i.e., relocatable with respect to a common segment). Use of the label field is optional. When a
label is used, it is assigned the value that the directive places in the location counter. The operation

field contains CSEG, and the operand field is optional. The comment field may be used only when
the operand field is used.

4-7 Texas Instruments Incorporated

[e]
%@ 943441-9701

If the operand field is not used, the CSEG directive defines the beginning of (or continuation of)
the “blank common” segment of the program. When the operand field is used, it must contain a
character string of up to six characters, enclosed in quotes. (If the string is longer than six char-
acters, the assembler prints a truncation error message and retains the first six characters of the
string.) If this string has not previously appeared as the operand of a CSEG directive, the assembler
associates a new relocation type with the operand, sets the location counter to zero, and defines
succeeding locations as relocatable with respect to the new relocatable type. When the operand
string has been previously used in a CSEG, the succeeding code represents a continuation of that
particular common segment associated with the operand. The location counter is restored to the
maximum value it previously attained during the assembly of any portion of the particular common
segment.

The following directives will properly terminate the definition of a block of common-relocatable
code: CEND, PSEG, DSEG, AORG, and END. The block is normally terminated with a CEND
directive (see paragraph 4.2.10). The PSEG directive, like CEND, indicates that succeeding locations
are program-relocatable. The DSEG and AORG directives effectively terminate the common seg-
ment by beginning a data segment or absolute segment. The END directive terminates the common
segment as well as the program.

The CSEG directive permits the construction and definition of independently relocatable seg-
ments of data which several programs may access or reference at execution time. The segments
are the assembly language counterparts of FORTRAN blank COMMON and labeled COMMON,
and in fact permit assembly language programs to communicate with FORTRAN programs which
use COMMON. Information placed in the object code by the assembler permits the linkage editor
to relocate all common segments independently and to make appropriate adjustments to all ad-
dresses which reference locations within common segments. Locations within a particular common
segment may be referenced by several different programs if each contains a CSEG directive with
the same operand or no operand._

The following example illustrates the use of both the CSEG and the CEND directives:
COMI1A CSEG ‘ONE’

<Common-relocatable code, type ‘ONE’ >

CEND
COM2A CSEG ‘TWO’

<Common-relocatable code, type ‘TWO’>

COM2B CEND
COMI1C CSEG ‘ONE’

<Common-relocatable code, type ‘ONE’ >

COMIB CEND

4-8 Texas /nstruments Incorporated

[e]
@ 943441-9701

COM1L DATA COMI1B-COMI1A LENGTH OF SEGMENT ‘ONE’
COM2L DATA COM2B-COM2A LENGTH OF SEGMENT ‘TWO’

The three blocks of code between the CSEG and. CEND directives are common-relocatable. The
first and third blocks are relocatable with respect to one common relocation type; the second is
relocatable with respect to another. The first and third blocks comprise the common segment
‘ONE’, and the value of the symbol COMI1L is the length in bytes of this segment. The symbol
COM?2A is the symbolic address of the first word of common segment ‘TWO’; COM2B is -the
common-relocatable (type ‘TWO’) byte address of the location following segment. (Note that
the symbols COM2B and COMIC are of different relocation types and possibly different values.)
The value of the symbol COM2L is the length in bytes of common segment ‘TWO’.

4.2.10 COMMON SEGMENT END CEND
Syntax definition:
[<label>] b...CEND b. . .[<comment>]
NOTE

This directive does not apply to the PX9ASM assembler.

CEND terminates the definition of a block of common-relocatable code by placing a value in the
location counter and defining succeeding locations as program-relocatable. Use of the label field is
optional. When a label is used, it is assigned the value of the location counter prior to modification.
The operation field contains CEND. The operand field is not used, and the comment field is
optional. Either of the following values is placed in the location counter as a result of this directive:

® The maximum value the location counter has ever attained as a result of the assembly
of any preceding block of program-relocatable code.

® Zero, if no program-relocatable code has been previously assembled.
If encountered in common- or program-relocatable code, this directive functions as a DEND or
PEND (and a warning message is issued); like DEND and PEND, it is invalid when used in absolute
code. See paragraph 4.2.9 for an example of the use of the CEND directive.
4.2.11 PROGRAM SEGMENT PSEG
Syntax definition:

[<label>] b.. .PSEG b. . .[<comment>]

NOTE
This directive does not apply to the PX9ASM assembler.

PSEG places a value in the location counter and defines succeeding locations as program-relocatable.
When a label is used, it is assigned the value that the directive places in the location counter. The
operation field contains PSEG. The operand field is not used and the comment field is optional.
Either of the following values is placed in the location counter:

® The maximum value the location counter has Zever attained as a result of the assembly of
any preceding block of program-relocatable code.

® Zero, if no program-relocatable code has been previously assembled.

4-9 Texas Instruments Incorporated

o
@ 943441-9701

'ljhe PSEG directive is provided as the program-segment counterpart to the DSEG and CSEG direc-
tives. Together, the three directives provide a consistent method of defining the various types of
relocatable segments. The following sequences of directives are functionally identical:

DSEG DSEG

<i)ata-relocatable code> <i)ata-relocatable code>
DEND .

CSEG ' CSEG

<éommon-relocatable code> <éommon—relocatable code>
CEND | .

PSEG PSEG

<Program-relocatable code> <i’rogram-relocatable code>
PEND

END END

4.2.12 PROGRAM SEGMENT END PEND
Syntax definition:
[<label>] b...PEND b. . .[<comment>]
NOTE

This directive does not apply to the PX9ASM assembler.

The PEND directive is provided as the program-segment counterpart to the DEND and CEND direc-
tives. Like those directives, it places a value in the location counter and defines succeeding locations
as program-relocatable (however, since PEND properly appears only in program-relocatable code,
the relocation type of succeeding locations remains unchanged.) Use of the label field is optional.
When a label is used, it is assigned the value of the location counter prior to modification. The
operation field contains PEND. The operand field is not used, and the comment field is optional.
The value placed in the location counter by this directive is simply the maximum value ever attained
by the location counter as a result of the assembly of all preceding program-relocatable code.
If encountered in data- or common relocatable code, this directive functions as a DEND or CEND
(and a warning message is issued), like DEND and CEND, it is invalid when used in absolute code.
See paragraph 4.2.11 for an example of the use of the PEND directive.

4-10 Texas Instruments Incorporated

o
{@5} 943441-9701

4.3 DIRECTIVES THAT AFFECT THE ASSEMBLER OUTPUT
This category includes the directive that specifies optional output for the Cross Assembler and
the directive that supplies a program identifier in the object code. In addition four directives
affect the source listing. The directives in this category are:

® OQutput Options

® Program Identifier

® Page Title

® List Source

® No Source List

® Page Eject
4.3.1 OUTPUT OPTIONS. This directive does not apply to the PX9ASM or TXMIRA assembler.
Syntax definition:

b...OPTION®D ... <keyword>[,<keyword>] -. .. b ... [<comment>]
OPTION specifies output and list options to the assembler. No label is entered with the OPTION
directive. The operation field contains OPTION. The operand field contains one or more
keywords to specify the desired options. The comment field is optional.
The keywords supported by the Cross Assembler and SDSMAC, and their meanings are as follows:

° XREF - Print a cross reference listing at the end of the source and object listing.

° OBJ - Print a hexadecimal listing of the object code at the end of the source and object
listing or the cross reference listing (not supported by SDSMAC).

° SYMT - Output a symbol table in the object code that contains all symbols in the program.

Additional keywords are supported by SDSMAC, as described in Section VI.
The following example shows an OPTION directive:
OPTION XREF,SYMT

The directive in the example specifies the printing of a cross reference listing and the output of a
symbol table with the object code.

4.3.2 PROGRAM IDENTIFIER IDT

Syntax definition:

[<label>]1b...IDTh... ‘string>b ... [<comment>]

4-11 Texas Instruments Incorporated

&

IDT assigns a name to the program. An IDT directive must precede any machine instruction or
assembler directive that results in object code. Use of the label field is optional. When a label is
used, the current value of the location counter is assigned to the label. The operation field
contains IDT. The operand field contains the program name (string), a character string of up to
eight characters. When a character string of more than eight characters is entered, the assembler
prints a truncation error message, and retains the first eight characters as the program name. The
comment field is optional.

The following example shows an IDT directive:

IDT ‘CONVERT’

The directive assigns the name CONVERT to the program to be assembled. The program name is
printed in the source listing as the operand of the IDT directive, but does not appear in the page
heading of the source listing. The program name is placed in the object code, but serves no
purpose during the assembly.

NOTE

Although SDSMAC will accept lower case letters and special
characters within the quotes, ROM loaders, etc., will not. Therefore
only upper case letters and numerals are recommended.

4.3.3 PAGETITLE TITL
Syntax definition:

[<Label>]b...TITLb. .. ‘<string>b [<comment>]

TITL supplies a title to be printed in the heading of each page of the source listing. When a title
is desired in the heading of the first page of the source listing, a TITL directive must be the first
source statement submitted to the assembler. This directive is not printed in the source listing.
Use of the label field is optional. When a label is used, the current value of the location
counter is assigned to the label. The operation field contains TITL. The operand field contains
the title (string), a character string of up to 50 characters. When more than 50 characters are
entered, the assembler retains the first 50 characters as the title, and prints a truncation error
message. The comment field is optional; the assembler does not print the comment, but does
increment the line counter.

The following example shows a TITL directive:

TITL “**REPORT GENERATOR**

This directive causes the title **REPORT GENERATOR** to be printed in the page headings of
the source listing. When a TITL directive is the first source statement in a program, the title is
printed on all pages until another TITL directive is processed. Otherwise, the title is printed on
the next page after the directive is processed, and on subsequent pages until another TITL
directive is processed.

NOTE
The maximum source record length is 60 characters. If a full 50-

character title is desired, the operand field must be started at or
before column 11 of the source record.

4-12 Texas Instruments Incorporated

o
{@; 943441-9701

4.3.4 LIST SOURCE LIST
Syntax definition:
[<label>]b ... LISTbH ... [<comment>]

LIST restores printing of the source listing. This directive is required only when a No Source List
directive is in effect, to cause thé assembler to resume listing. This directive is not printed in the
source listing, but the line counter increments. Use of the label field is optional. When a label is
used, the current value of the location counter is assigned to the label. The operation field contains
LIST. The operand field is not used. Use of the comment field is optional, but the assembler does
not print the comment.

The following example shows a LIST directive:
LIST
The directive causes the source listing to be resumed with the next source statement.
4.3.5 NO SOURCE LIST UNL
Syntax definition:
[<label>]® ... UNLb. .. [<comment>]

UNL inhibits printing of the source listing. The UNL directive is not printed in the source listing,
but the line counter increments. Use of the label field is optional. When a label is used, the current
value of the location counter is assigned to the label. The operation field contains UNL. The oper-
and field is n<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>