
TEXAsINSTRUMENTS O

Improving Man's Effectiveness Through Electronics

Model 990 Computer
Prototyping System

Operation Guide

MANUAL NO. 945255-9701
ORIGINAL ISSUE 1 MAY 1976

Digital Systems Division

© Texas Instruments Incorporated 1976
All Rights ReServed

The information and/or drawings set forth in this document and all rights in and
to inventions disclosed herein and patents which might be granted thereon disclos­
ing or employing the materials, methods, techniques or apparatus described herein

" are the exclusive property of " Texas Instruments Incorporated.

No disclosure of the information or drawings shall be made to any other person or
organization without the pri~r consent of Texas Instruments Incorporated.

INSERT LATEST CHANGED PAGES DESTROY SUPERSEDED PAGES

LIST Of EFfECTIVE PAGES Note: The portion of the text affected by the changes is
indicated by a vertical bar in the outer margins of
the page,

Model 990 Computer Proto typing System Operation Guide (945255-9701)

Original Issue. 1 May 1976

Total number of pages in this publication is 254 consisting of the following:

PAGE CHANGE PAGE CHANGE PAGE CHANGE
NO. NO. NO. NO. NO. NO.

Cover 0 A-I - A-2 ." 0
Eff. Pages 0 B-l - B-8 0
iii-x. 0 C-l - C-8 0
1-1 - 1-14 0 D-l - D-12 0
2-1 - 2-14 0 E-l - E-2 0
3-1 - 3-74 0 F-1 - F-2 0
4-1 - 4-24 0 G-! - G-4 0
5-1 - 5-6 0 Alphabetical Index Div . 0
6·1 - 6-8 0 Index-l - Index-8 . 0
7-1 - 7-36 0 User's Response. 0
8-1 - 8-4 0 Business Reply 0
9·1 - 9-4 0 Cover Blank 0
10-1 - 10-24 0 Cover . 0
11-1 - 11-6 . 0

~.-------~ 945255-9701

PREFACE

This manual describes the 990 Proto typing System and gives instructions for installing and
operating it on the Model 990/4 Computer. It provides detailed descriptions of the individual
modules that comprise the system software and includes techniques for using them.

This publication is intended for users of the 990 Proto typing System package: users who are
developing applications programs for the 990/4 Computer, the 990/10 Computer, and the
TMS9900 Microprocessor, and users who generate and test read-only memory (ROM) resident
programs for use with the TMS9900 Microprocessor.

The information in this manual is divided into the following sections:

i. General Description - Briefly describes the 990 Prototyping System Software, the
modules. in the system, and the hardware components that support it.

II. System· Installation and Operation - Gives the sources of information on unpacking,
installing and operating the supporting hardware, with appropriate references. Step-by­
step procedures for installing the software, loading the software modules, and operating
the modules are included. Interrupts and single instruction execution are explained.

III. Debug Monitor - Describes the I/O operations, loading methods, debugging modes,
and operator commands of the debug monitoT. Debugging techniques are discussed at
length. The commands are explained and detailed descriptions of each of the com­
mands are included. Detailed descriptions of the supervisor calls follow.

IV. Text Editor - Presents detailed loading, initialization and editing procedures for the
text editor. This section includes descriptions of each of the text editor commands.
Explanations of printed messages and a source program example are also included.

V. One-Pass Assembler - Gives a general description of the assembler and details the
. procedures for loading and operating it. The operation discussion covers input/output

and printed messages. Directives and pseudo-instructions are briefly discussed, error
messages are explained, and an example of printed output is included.

VI. Object Code Formats - Explains the two object code formats: standard 990 object
code and compressed absolute format object code.

VII. PROM Programmer - Describes the functions and capabilities of the PROM Pro­
grammer software module, the data configurations that it handles, and the procedure
for programming PROMs. the section includes detailed descriptions of PROM Pro­
gramrrier commands and gives examples of the use of commands. Example programs
are included.

VIII. BNPF Dump Module - Explains how to use the BNPF Dump overlay module. Presents
a detailed description of the data format and the commands.

IX. HIGH/LOW Dump Module - Explains how to use the HIGH/LOW Dump overlay.
Presents a detailed description of the data format and the commands.

iii Digital Systems Division

~.o. _____ _ ~ ~52S5-9701

X. System Operation and Debugging Example - Presents a complete example that illus­
trates assembly, loading, debugging and editing. An explanation of each phase of the
example program is included.

XI. PROM Programming Examples - Presents examples of procedures for programming
PROMs.

The appendixes cover compatibility of the Prototyping System with the DXIO operating system,
an explanation of the stand-alone programming procedure, the character set used in the assembly
language and in data terminal input/output, a summary of commands and directives, and a list of
error messages. The appendixes also include an explanation of memory and PROM mapping
parameters and tables of information related to PROM programming.

The following publications contain additional information needed to use the 990 Prototyping
System.

Title

Model 990/4 Computer System Hardware
Reference Manual

Model 990 Computer TMS9900 Microprocessor
Assembly Language Programmer~s Guide

Model 990 Computer Model 733 ASR/KSR Data
Terminal Installation and Operation

Model 990 Computer PROM Programming Module
Installation and Operation

Model 990 Computer Programming Card

iv

Manual Number

945251-9701

943441-9701

945259-9701

945258-9701

943440-9701

Digital Systems Division .

~-----,---~---

Paragraph

1.1
1.2
1.2.1
1.2.2
1.3
1.4
1.4.1
1.4.2
1.4.3
1.4.4
1.4.5
1.5

2.1
2.2
2.3
2.4
2.5
2.5.1
2.5.2
2.5.3
2.6
2.7
2.8
2.9
2.9.1

,2.9.2
'2.9.3
2.10
2.10.1 "
2.l0.2
2.11
2.11.1
2.11.2

" 2.l1.3

3.1
3.2
3.2.1
3.2.2
3.3
-3.3.1

TABLE OF CONTENTS

Tide

SECTION L GENERAL DESCRIPTION

Introduction
Purpose and Capabilities of the System

Prototyping System Software Description
Hardware Configuration Required for System Software

System Part Numbers
Software Modules

General
Debug Monitor (PX9MTP)
Monitor Overlay Functions
User Area System Programs
Programmer Panel and 733 ASR ROM Loader Firmware

Prototyping Process

SECTION II. SYSTEM INSTALLATION AND OPERATION

Introduction
Unpacking and Installation of Hardware
Hardware Operation
Prototyping System Software Cassette Generation
Using the 733 ASR ROM Loader

Loading Standard 990 Object Modules
Loading Compressed Abs()lute Fortnat Object Modules'
Loading the Monitor

Operating the Monitor
Entering CO.mmands on the Terminal Keyboard
Input/Output and Logical Unit Assignments
Loading and Executing Programs ,

Loading
User Program Interface with System Software
Executing a User Program

Interrupts and Single Instruction Execution
Interrupts
Single Instruction Execution

Write Protect
Setting a Write Protect Region
Protect Violation Flag
Protecting the Monitor . . .

. ~.

. ~ .'

.~. a

SECTION III. rDEBUGMONITOR

Introduction
General Description

Input/Output Operations
Methods for Loading Programs

Debug Functions
Debugging Modes

v

.;

.~ ,

Page

1-1
1-1
1-1
1-2
1"5
1-5
1-6
1-8

.1-10

.1-12

.1-12

.1-13

2-1
2-1
2-3

,2-3
2-5
2-5
2-7
2-7
2-8
2-8
2-8
2-8
2-9
2-9

.' 2-q

.2-10

.2-10

.2-10

.2-11

.2-11

.2.11

.2-13

3-1
3-1
3-3
3-3
3-3
3-4

Digital Systems, Division

~------
Paragraph

3.3.2
3.3.3
3.4
3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6
3.4.7
3.4.8
3.4.9
3.4.10
3.4.11
3.4.12
3.4.13
3.4.14
3.4.15
3.4.16
3.4.17
3.4.18
3.4.19
3.4.20
3.4.21
3.4.22
3.4.23
3.4.24
3.4.25
3.4.26
3.4.27
3.4.28
3.4.29
3.4.30
3.4.31
3.4.32
3.5
3.5.1
3.5.2
3.5.3
3.6
3.6.1
3.6;2
3.6.3

TABLE OF CONTENTS (Continued)

Comparison of Debugging Modes
Summary

Keyboard Commands .
General
Assign LUND (AL)
Load Program (LP)
Load Overlay (OY)
Load PROM Programmer (PL)
Link and Load Program (LL)
Dump in Absolute Format (DP)

Title

Load Program in Compressed Absolute Format with Upfront Loader (LV)
Load Program in Compressed Absolute Format (LA)
Execute User Program Directly (EX)
Execute User Program under SIB or Trace (RV)
Modify Memory (MM)
Inspect Memory (1M)
Modify Registers (MR)
Inspect Registers (IR)
Modify Workspace Registers (MW)
Inspect Workspace Registers (IW)
Modify CRU Register (MC) .
Inspect CRU Input Lines (IC)
Set Snapshot (SS) . .
Inspect Snapshot (IS)
Clear Snapshot (CS) .
Set Breakpoint (SB) .
Clear Breakpoint (CB)
Set Trace Defmition (ST)
Set Trace Region (SR) .
Clear Trace Region (CR)
Find Byte (FB)
Find Word (FW)
Hexadecimal Arithmetic (HA)
Set Write Protect Region (SP)
Clear Write Protect Region (CP)

Supervisor Calls .. .
Introduction
I/O Supervisor Calls
Non-I/O Supervisor Calls

Debugging Techniques
General Debugging Techniques
Specific Debugging Techniques
Patching

Page

3-4
3-5
3-5
3-5

.3-10 .

.3-11

.3-12

.3-13

.3-14

.3-26

.3-28

.3-29

.3-30

.3-31

.3-33

.3-33

.3-34

.3-35

.3-36

.3-36

.3-37

.3-39

.3-40

.3-41

.3-43

.3-44

.3-45

.3-46

.3-50

.3-53

.3-54

.3-56

.3-57

.3-58

.3-59

.3-59

.3-59

.3-60

.3-63

.3-66

.3-66

.3-68

.3-70

vi Digital Systems Divis/on .

~---"--------
Paragraph

4.1
4.2
4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.4
4.4.1
4.4.2
4.4.3
4.4.4
4.4.5
4.4.6
4.5
4.5.1
4.5.2
4.5.3
4.5.4
4.5.5
4.5.6
4.6
4.6.1
4.6.2
4.7
4.7.1
4.7.2
4.8

5.2
5.2
5.3
5.4
5.4.1
5.4.2
5.5
5.5.1
5.5.2
5.6
5.7
5.7.1
5.7.2

TABLE OF CONTENTS (Continued)

Title

SECTION IV. TEXT EDITOR

Introduction
General Description
Loading and Initialization Procedures for the Text Editor

Loading
Starting Execution . .
Initialization Messages
Final Message

Text Editing Procedures
Copying from One Tape Cassette to Another
Movement of Pointer
Moving Lines to or From Buffer .
Handling of File Data Formats
Combining Source or Object Files
Creating New Programs

Commands
General
Setup Commands
Pointer Commands
Edit Commands .
Print Commands .
Output Commands

Messages
Error Messages
Warning Messages

Source Program Editing Example
Description of Program .
Explanation of Example

Editing Object Code

SECTION V. ONE-PASS ASSEMBLER

Introduction
General Description
Loading Procedure for the Assembler
Assembler Operation

Input and Output
PX9ASM Operation Messages

Directives and Pseudo-Instructions
Assembler Directives
Pseudo-Instructions

Error Messages
Printed Output

Source Listing
Object Code

vii

Page

4.1
4-1
4-2
4-2
4-2
4-2
4-3
4-3
4-3
4-3
4-4
4-4
4-5
4-5
4-7
4-7
4-8
4-9

.4-10

.4-13

.4-14

.4-15

.4-15

.4-16

.4-17

.4-17

.4-17

.4-20

5-1
5-1
5-1
5-2
5-2
5-2
5-3
5-3
5-3
5-3
5-4
5-5
5-6

Digital Systems Division

~-'---------
Paxagraph

6.1
6.2
6.3
6.4
6.4.1
6.4.2

7.1
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.3
7.4
7.4.1
7.4.2
7.4.3
7.4.4
7.4.5
7.5
7.5.1
7.5.2
7.5.3
7.6
7.6.1
7.6.2
7.6.3
7.7
7.7.1
7.7.2
7.7.3
7.7.4
7.7.5
7.7.6
7.7.7

8.1
8.2
8.3
8.3.1
8.3.2

TABLE OF CONTENTS (Continued)

Title

SECTION VI. OBJECT CODE FORMATS

Introduction
Standard 990 Object Code
Procedure for Changing Standard 990 Object Code
Compressed Absolute Format Object Code

Basic Tag Format
Extended Tag Formats

SECTION VII. PROM PROGRAMMER

Introduction
General Description

Functions and Capabilities
Standard Control Information Cassette
Programming Standard Versus Nonstandard Data Configurations
PROM Programmer Functions . . .

PROM Programmer Loading Procedure
PROM Programming Process

Bit String Width
Memory and PROM/ROM Bounds
PROM/ROM Characteristics . . .
Mapping Parameters
Examples Using One, Two, and Three-level Looping

Commands
PROM Programmer Standard (PS)
PROM Programmer (PP)
PROM Programmer Sub commands

Programming Considerations
Standardizing Nonstandard Memory and PROM Configurations
Programming EPROMs
Creating PROMs for Memory Addresses not in Hardware Configuration

Programming Examples
Example 1
Example 2
Example 3
Example 4
Example 5
Example 6
Example 7

SECTION VIII. BNPF DUMP MODULE

Functions and Operation
BNPF Format
BNPF Dump Commands

Perform BNPF Operation (DB)
DB Subcommands

viii

Page

6-1
6-1
6-4
6-5
6-6
6-6

7-1
7-1
7-1
7-2
7-2
7-3
7-3
7-3
7-4
7-4
7-4
7-4
7-6
7-9
7-9

.7-10

.7-10

.7-23

.7-23

.7-23

.7-25

.7-25

.7-25

.7-27

.7-27

.7-29

.7-31

.7-32

.7-33

8-1
8-1
8-1
8-1
8-2

Digital Systems Division

~------~-------------------
Paragraph

9.1
9.2
9.3
9.3.1
9.3.2

10.1
10.2
10.3
lOA
10.5
10.6

ILl
11.2
11.3

Appendix

A

B

C

D

E

F

G

Figure

546,1-1
1-2
1-3
1-4

2-1
2-2
2-3

TABLE OF CONTENTS (Continued)

Title

SECTION IX. HIGH/LOW DUMP MODULE

Functions and Operation
HIGH/LOW Format
HIGH/LOW Dump Commands

Perform HIGH/LOW Operation (HL)
HL Subcommands

Page

9-1
9-1
9-2
9-2
9-2

SECTION X. SYSTEM OPERATION AND DEBUGGING EXAMPLE

Introducation
Assembling Modules with PX9ASM
Loading Modules with PX9LAL
Debugging the Program
Editing with PX9EDT
Reassembling, Relinking and Loading Modules and Executing the Program

SECTION XI. PROM PROGRAMMING EXAMPLES

Introduction
Example 1
Example 2

APPENDIXES

Compatibility with DXI0

Standalone Programming

Character Set

Commmand and Directive Summary

Error Messages

Memory and PROM Mapping

Additional User Tables . . .

Title

LIST OF ILLUSTRA nONS

Title

990 Prototyping System Hardware Block Diagram
Hardware Memory Configuration
Trap Addresses
990 Prototyping System Software Memory Configuration

Cabling Diagram, 990 Prototyping System
Controls and Indicators Used in Loading Procedures
CRU Output Data Format

ix

.10-1

.10-1

.10-9
10-11
10-15
10-16

.11-1

.11-1

.11-3

Page

· A-I

· B-1

· C-l

· D-I

E-l

F-I

· G·l

Page

1·2
1·3
1-4
1·9

2-2
2·6

.2·12

Digital Systems Division

~---~" ------

Figure

3-1
3-2

6-1
6-2
6-3
6-4

7-1
7-2
7-3
7-4
7-5
7-6
7-7

Table

-1
1-2

3-1
3-2

5-1

6-1

TABLE OF CONTENTS (Continued)

Title

Trace Region Procedure of Lower Region Number
Using Both Trace and SIE

Object Code Example
External Reference Example
Basic Tag Format
Extended Tag Formats ..

Transfer of Data from Memory into PROM
Mapping Example 1
Mapping Example 2
Mapping Example 3
Mapping Example 4
Mapping Example 5
Mapping Example 7

LIST OF TABLES

Title

Prototyping System Part Numbers
Part Numbers of Hardware Required in 990 Prototyping System

Monitor Keyboard Commands
List of Supervisor Calls

PX9 ASM Error Codes

Object Output Tags Supplied by Assemblers

x

Page

.3-69

.3-70

6-1
6-4
6-6
6-7

7-5
.7-26
.7-28
.7-28
.7-30
.7-32
.7-35

Page

1-6
1-7

3-2
.3-60

5-4

6-2

Digita/Systems Division,

~-------~ 945255-9701

SECTION I

GENERAL DESCRIPTION

1.1 INTRODUCTION
This section presents an overview of the 990 Prototyping System hardware and software. The
first portion of the section describes the purpose and capabilities of the system software. The
equipment in the hardware configuration that supports the system software is identified and
briefly discussed. The following paragraphs identify the sources of information required to install
and operate the hardware, present the memory requirements and configurations for the 990/4
computer, and list the part numbers for the 990 Prototyping System hardware and software
components.

The remainder of the section describes the modules that comprise the system software. These
/ modules include the debug monitor, monitor overlay functions, text editor, one-pass assembler,
, / programmer panel and 733 ASR ROM loader firmware, PROM programmer, BNPF Dump

Module, and HIGH/LOW Dump Module. Memory requirements and loaders are also discussed,
and the proto typing process is described.

1.2 PURPOSE AND CAPABILITIES OF THE SYSTEM
The 990 Proto typing System Software provides interactive generation and development of
applications programs for all members of the 990 Computer Family. It operates on the Model
990/4 Computer. The Prototyping System Software package supports up to 28K words of
memory.

With this system, the user can develop capabilities previously reserved for electromechanical
devices, discrete logic or conventional integrated circuits.

In addition to applications program development, it is particularly suited to generation and
testing of firmware (software resident in read-only memory) programs for use with the TMS9900
microprocessor.

1.2.1 PROTOTYPING SYSTEM SOFTWARE DESCRIPTION. The purpose of the Prototyping
System Software is to provide the capability to generate, edit, assemble, load and debug user
programs for software applications and firmware generation. In addition to the debug functions,
the Debug Monitor provides supervisor calls to perform input/output (I/O) operations on the 733
ASR Data Terminal and utility routines such as decimal ASCII to binary, hexadecimal ASCII to
binary, binary to decimal ASCII, and binary to hexadecimal ASCII conversion routines. Overlays
to the Debug Monitor provide a program trace package, a linking loader, and the capability to
dump a program in memory to tape in a compressed absolute format and load it back into
memory. In addition, overlays provide a PROM programmer package and BNPF and HIGH/LOW
dump programs. The BNPF and HIGH/LOW dump programs provide the capability to create
cassette tapes in BNPF or HIGH/LOW format (formats that encode sequences of bits) for
proto typing applications. The BNPF overlay also provides the capability to load BNPF format
tapes back into memory.

The system software package is available in object format on a read-only magnetic tape cassette
and in source format on punched cards; however, the system source must be assembled and
linked using a 990/ I 0 Program Development System. The system software provides source and
object compatibility with other 990 systems.

1-1 Digital Systems Division

)175\ ______ _ ~ 945255-9701

1.2.2 HARDWARE CONFIGURATION REQUIRED FOR SYSTEM SOFTWARE. The Proto­
typing System Software requires the following hardware configuration:

• Computer - the 990/4 microcomputer. The computer has access to dynamic random
access memory (RAM) and on-board read-only memory (ROM) as described in para­
graph 1. 2. 2.1. A chassis, power supply and packaging is available with the computer.

• 733 ASR Data Terminal

• Programmer Panel

• PROM Programming Module (optional)

A simplified block diagram of the hardware configuration is shown in figure 1-1.

1.2.2.1 Model 990/4 Computer. The Model 990/4 Computer consists of the 990/4 micro­
computer on a single printed circuit card, one or more memory expansion cards, and a chassis
and power supply. The 990/4 microcomputer circuit card contains the CPU, 4K words of
on-board dynamic random access memory, and up to lK of ROM or static RAM.

Detailed information on the Model 990/4 Computer may be found in the Model 990/4 Computer
System Hardware Reference Manual, Manual No. 945251-9701.

990/4
COMPUTER

(NOTE 1)

9900
BUS

MEMORY
EXPANSION

(NOTE 2)

(B)133277

PROGRAMMER
PANEL

733 ASR
DATA TERM INAL

~----------~------------------~ __ ----":CRU BUS

NOTES

1. WITH 4096 WORDS OF DYNAMIC RAM. AND 512 WORDS
OF ROM. (THE SELF-TEST FEATURE IS STANDARD.)

2. WITH 4096 WORDS OF DYNAMIC RAM. EXPANDABLE TO
20K WORDS FOR A SYSTEM TOTAL OF 24K WORDS.
MEMORY WRITE PROTECT AND MEMORY PARITY FEATURE
ARE INCLUDED.

Figure 1-1. 990 Prototyping System Hardware Block Diagram

1-2 Digital Systems Division

·~ ____ 9_4_52_5_5_-9_7_01 __ ___

Central Processing Unit. The 990/4 CPU has the following characteristics:

• Eight interrupts (up to seven external and a power-up trap)

• Real-time clock

• Communications Register Unit (CRU) interface for I/O

• Direct Memory Access (DMA) interface for extended memory, which can be used for
processor-independent I/O (when a user-designed controller is implemented)

• Self-test routine

• Fault indicator

Memory. The minimum memory required for the Prototyping System Software is 4096 words of
on-board dynamic RAM, 512 words of on-board ROM for the 733 ASR loader and the self-test
feature, and 4096 words of dynamic RAM on a memory expansion circuit card. The expansion
card may be expanded to 20K words, giving a total of 24K words of dynamic RAM in the
Prototyping System configuration. The 512 words of ROM are divided into 256 words of
firmware for the 733 ASR ROM loader (both tape cassette and cards) and programmer panel and
256 words for the CPU/memory self-test routines. The card loader is included for compatibility
with the 990/1 0 Computer. ROM or static RAM may be expanded by an additional 512 words.

An additional EPROM memory expansion card is available. This card may contain from 1 K to
8K memory words in 1 K increments.

o

,

EOOO

F800

FAOO

FCOO

FEOO

FFFE

(A)133370

DYNAMIC RAM

(990/4 CONTAINS 4K WORDS
ON CPU BOA'RD.)

UNAVAILABLE AREA

ADDRESS LOCATIONS
28K TO 31 K

256 WORDS OF RAM OR ROM
EXPANSION

256 WORDS OF RAM OR ROM
EXPANSION

256 WORDS OF ROM

256 WORDS OF ROM

Figure 1-2, Hardware Memory Configuration

1-3

f

,

Digital Systems Division

~----'------~ 945255-9701

Memory write protect is required in the 990 Prototyping System, and is implemented on the
990/4 memory expansion circuit card. A memory parity feature (which provides parity error
detection logic and an interrupt signal to the CPU) is standard in the 990 Prototyping System.

The hardware memory configuration is shown in figure 1-2. The numbers at the left are byte
addresses.

Chassis. The computer chassis is available in two configurations, one that holds 6 full-size cards
and one that holds 13 full-size cards. In addition, a table-top chassis mounting option is available
with the 6-s10t chassis. The power supply is located in the computer chassis.

1.2.2.2 Interrupt, XOP and Trap Vectors. This discussion covers the different types of vectors
and explains the power-up trap.

Vectors. Located in 990/4 memory are dedicated locations reserved for interrupt, XOP and trap
vectors. The interrupt and XOP vectors are available for the exclusive use of user programs,
except that one XOP may be used for executing supervisor calls. A vector is a two-word pair
providing the program counter and workspace for the service routine that handles an interrupt or
XOP.

Power-Up Trap_ The power-up interrupt traps through a vector at address zero or address
FFFC 16 , depending on a jumper wire implemented on the 990/4 CPU board. This allows more
flexible memory allocation for dedicated systems that do not have an operator panel. The 990
PrototypingSystem powers up through trap address FFFC 16'

Trap addresses are illustrated in figure 1-3.

1.2.2.3 733 ASR Data Terminal. The 733 ASR Data Terminal provides the communication link
between the user and the computer system. It is an automatic send-receive terminal, allowing
either automatic or manual entry of data and output of data under keyboard or remote control.

The major components of the terminal are the following:

• Keyboard

• Thermal printer

• Two magnetic tape cassette units

CPU ADDRESS SPACE {64K BYTES X 8 BITS
32K WORDS X 16 BITS

0000

003E

0040

INTERRUPT TRAP ADDRESSES

007E

0080

XOP TRAP ADDRESSES

,FFF~ J. . ------------------------------~ CPU ADDRESSES REPRESENTED AS 4
HEX DIGITS (LSB ADDRESSES BYTE)

(A) 133068

Figure 1-3. Trap Addresses

1-4

NOTE: LOCATIONS FFFC THROUGH
FFFF ARE THE VECTOR FOR
THE POWER-UP TRAP
THROUGH FFFC.

Digital Systems Division

~------------~ 945255-9701

For more efficient use of the hardware resources, the Prototyping System Software debug
monitor recognizes the keyboard and printer as the input and output portions of one I/O device.
It also recognizes tape cassette unit 1 and tape cassette unit 2 as distinct I/O devices.

The assembler recognizes the keyboard and printer as separate devices. The keyboard and printer
are functionally distinct, and either cassette may function as the record cassette or playback
cassette.

The tape cassettes function as a terminal-based data storage system, providing a convenient
method for loading software modules, storing data temporarily, and recording data permanently
on a compact, easy-to-handle storage medium. File data may be read from cassette to the
computer, or computer output may be stored on cassettes. The user may write data to either
cassette. When one unit is in the record mode, the other is in playback mode.

1.2.2.4 Programmer Panel. The Programmer Panel gives the user full control of the CPU by
entering control information from the panel instead of the data terminal keyboard. Memory may
be examined and modified directly from the panel. This capability is useful in applications
requiring software troubleshooting.

1.2.2.5 PROM Programming Module. The Programmable Read-Only Memory (PROM) Pro­
gramming Module, which is optional, enables the user to program his own PROMs. The module
chassis includes front panel keylock and indicators, device sockets with a programming adaptor,
and a power supply. (A programming adaptor is a plug-in module that provides the control
functions for a specific PROM device type.) Plug-in adaptors are available for both PROM and
erasable programmable read-only memory (EPROM) devices.

The PROM programming module operates as a CRU device. Software prograrns have direct
control over the PROM address, data, timing and control signals which allow the module to
supply the voltages and interconnections needed to program several types of PROMs, both
bipolar and MOS.

1.3 SYSTEM PART NUMBERS
The hardware and software system part numbers are listed in table 1-1. The individual hardware
components of the 990 Prototyping System and their part numbers are listed in table 1-2.
Memory sizes listed are the minimum required; memory components with larger capacities may
be substituted for those listed.

1.4 SOFTWARE MODULES
The standard software includes these modules:

• Debug Monitor (PX9MTP) - This monitor supports the tape cassette data medium
only. Instruction trace, which allows the user to monitor and analyze an executing
program, the linking loader (PX9LAL), Absolute Dump/Absolute Load, BNPF Memory
Dump, HIGH/LOW Memory Dump, and the PROM Programmer are routines that are
overlays and may be loaded into the monitor transient area when they are to be used.

• One-Pass Assembler (PX9ASM)

• Text Editor (PX9EDT)

• Upfront Loader (PX9UFL) - This loader is placed on the system software cassette
tape immediately in front of PX9MTP, PX9EDT and PX9ASM. The upfront loader
precedes a file of compressed absolute format code and reduces the loading time.

1-5 Digital Systems Division

J2 .. h\ 0
______ _ .~ 945255-9701

Table 1-1 Prototyping System Part Numbers

Item

990 Prototyping System with 733 ASR Data
Terminal (packages include both
hardware and software)

8K Memory Words

12K Memory Words

16K Memory Words

20K Memory Words

24K Memory Words

990 Prototyping System without 733 ASR
Data Terminal (packages include both
hardware and software)

8K Memory Words

12K Memory Words

16K Memory Words

20K Memory Words

24K Memory Words

Prototyping System Software

Object on Tape Cassette

Source on Card Deck

Standard Control Information
Cassette

TI Part Number

945202-0001

945202-0002

945202-0003

945202-0004

945202-0005

945202-0006

945202-0007

945202-0008

945202-0009

945202-0010

943380-0001

943380-0012

943350-0001

In addition, firmware programs are located on the ROM modules for the programmer panel and
733 ASR ROM loader.

1.4.1 GENERAL. The following paragraphs discuss the capabilities and requirements of the
Prototyping System Software.

1.4.1.1 Memory Requirements. The Prototyping System expects these minimum amounts of
RAM and ROM:

• 4K words of user dynamic RAM

• 4K words of system dynamic RAM

• 256 words of system static RAM

• 256 words of system ROM containing the programmer panel and 733 ASR ROM
loader firmware.

1-6 Digital Systems Division

~-------~ 945255-9701

Table 1-2. Part Numbers of Hardware Required in
990 Prototyping System

Description

Module 990/4 Computer Central Processing Unit

990/4 CPU with 4K 16-bit words of dynamic RAM

Dynamic RAM Parity Feature

733 ASR ROM Loader (Proto typing) (includes
self-test feature)

Static RAM Device Kit

Memory Expansion Module (one must be selected)

4K words with write protect

8K words with write protect

12K words with write protect

16K words with write protect

20K words with write protect

Memory Parity Feature (must match memory expansion
module size)

4K words

8K words

12K words

16K words

20K words

EPROM Memory

EPROM Memory Module (optional)

EPROM Device Kit (optional)

6-S10t Chassis with Programmer Panel, 20-ampere power
supply

733 ASR Data Terminal Kit

PROM Programming Kit (optional)

Tabletop

Rack Mount

PROM programming accessory equipment

PROM Programming Adapter (optional)

EPROM Programming Adapter (optional)

EPROM Erase Kit (optional)

1-7

Part Number

944910-0002

945120-0006

945121-0005

945122-0001

944935-0006

944935-0007

944935-0008

944935-0009

944935-0010

945120-0001

945120-0002

945120-0003

945120-0004

945120-0005

945170-0001

945123-0004

944960-000 I

945161-0001

944924-0001

944924-0002

945135-0001

945165-0001

945160-0001

Digital Systems Division

~-------~ 945255-9701

A diagram of the memory configuration is shown in figure 1-4. The numbers at the left are byte
addresses and are given for the minimum memory configuration of 4K words of user and 4K
words of system memory.

1.4.1.2 System Software Loaders. Loading of programs or program modules is accomplished
with one or more of the four available loaders provided in the system software:

• Standard 990 object loader. Loads a program in standard 990 object code. The loader
resides in a 256-word ROM. One of the standard loader's functions is used to load
overlays into the monitor transient area.

• Compressed absolute format loader. Loads a program that has been stored in compressed
absolute format. The loader is an overlay that must be resident in the monitor transient
area.

• Upfront loader (PX9UFLJ. Loads a program in compressed absolute format code. The
loader must be located immediately in front of the beginning of the compressed absolute
format code. The 733 ASR ROM (standard) loader loads the upfront loader, which in
tum loads the compressed absolute format code.

• Relocating linking loader (PX9LALJ. PX9LAL which must be resident in the monitor
transient area, loads program modules in object code, modifies memory addresses in
the modules, and links the modules. The program code may specify absolute memory
locations or specify relocatable memory locations that allow the entire. program
module to be placed in any sufficiently large available memory area.

These loaders handle either conventional object code or object code in compressed absolute
format. The compressed absolute format code allows faster loading than with standard 990
object code. Object code formats are described in detail in Section VI.

1.4.2 DEBUG MONITOR (PX9MTP). PX9MTP, the control program and system executive for
the software system, occupies 4K words of memory.

1.4.2.1 Overview. PX9MTP is a modular program that consists of five major divisions:

• I/O executive

• Keyboard command processor

• Supervisor call interface

• Keyboard commands

• Debug commands

• System control commands

• Transient area

1-8 Digital Systems Division .

~~-------------------~ 945255-9701

0000

0080

2000
(SEE

NOTE)

4000
. (SEE
NOTE)

EOOO

F800

FAOO

FCOO

FFFE

(/\)133371

II

--

- -

--~

INTERRUPT AND XOP
VECTORS 64 WORDS

AREA AVAILABLE
FOR USER
PROGRAMS

RESIDENT PORTION
OF MONITOR 3250
WORDS (APPROX.)

TRANSIENT AREA FOR
OVERLAYS 850 WORDS
(APPROX.)

ADDITIONAL MEMORY
AREA

__ UNAVAILABLE ADDRESS
SPACE

DEBUG
MONITOR
4K WORDS

__ PROGRAMMER PANEL WORKSPACE
256 WORDS

____ RAM OR ROM EXPANSION
256 WORDS

____ PROGRAMMER PANEL SOFTWARE.
ROM LOADERS. AND SELF-TEST
ROUTINE 511 WORDS

NOTE

USER AREA
4K WORDS

MEMORY
EXPANSION
4K WORDS
(EXPANDABLE
TO 24K
WORDS)

~------------------~
---RESTART VECTOR DIAGRAM SHOWS MINIMUM

CONFIGURATION--4K WORDS
OF USER AND 4K WORDS OF
SYSTEM MEMORY.

Figure 1-4. 990 Proto typing System Software Memory Configuration

1-9 Digital Systems Division

~ _____ 94_S_2_SS_-_97_0_1 ________________ ~~ ________ ~ ________________ ~ __

PX9MTPcontrois user programs and supports the one-pass assembler (PX9ASM) and the text
editor (PX9EDT). The debug monitor provides all of the necessary facilities for the following
functions:

• Debugging

• Linking

• Loading

• I/O support for user programs.

• Program save and restore

The monitor occupies 4096 words in memory, of which about 3250 words are permanently
resident and about 850 words are assigned to an atea for overlay modules that may be loaded into
memory from cassette when needed. (Refer to Section II for debug monitor loading procedures.)

1.4.2.2 . I/O Supervisor Calls. The I/O executive decodes and processes 733 ASR I!Osupervisor
calls from other PX9MTP modules and from user programs. Upward compatibility is maintained
because the I/O service request is format compatible with TX990 and DXIO supervisor calls.
PX9MTP provides file and record level I/O performed independently of the device type to which
the I/O is directed.

1.4.2.3 Non-I/O Supervisor Calls. In addition to I/O supervisor calls, the monitor processes such
non-I/O calls as user program termination and data format conversion. The formats involved in
the conversion routines are binary data and decimal and hexadecimal ASCII character codes.
Supervisor calls make use of a block of memory which contains a code forthe operation to be
performed and parameters associated with the operation.

1.4.2.4 User Interaction with Monitor. PX9MTP interacts with the user through the 733 ASR
keyboard and printer to receive and decode commands, and to activate the various command
processors. Examples of the capabilities offered are:

• LP - Load a program.

• AL- Assign a logical unit number (LUNO) to a specified device.

• EX - Execute a program.

• OV - Overlay the monitor transient area with different cassette-resident commands.
(Once they are loaded, transient commands are handled exactly like resident com­
mands).

• PL - Load the PROM Programmer software module.

1.4.3 MONITOR OVERLAY FUNCTIONS. In order to limit the memory area occupied by the
debug monitor to a size of 4K words, some of the monitor functions are handled as overlays.
Overlay-resident commands are extensions of the memory-resident monitor that allow the less
frequently used commands to reside on cassette tape. These functions are overlays:

• Link and load

• Absolute dump/absolute load

1-10 Digital Systems Division

~-------~ 945255-9701

• Instruction trace

• PROM Programmer

• BNPF format dump

• HIGH/LOW format dump

Overlays are loaded in the transient area of the debug monitor's memory space. Since the PROM
programmer is too large to fit in the transient area, part of it is loaded into the highest­
numbered address locations of user memory. The overlay-resident commands are used exactly
like normal commands once the overlay is loaded into the transient area. Attempts to invoke
commands which are not resident will generate error messages.

1.4.3.1 Linking Loader. The linking loader, PX9LAL, loads program modules into memory,
links the modules as required, and returns control to the monitor after all modules have been
loaded. The loaded program modules are object modules produced by one of these assemblers:

• One-Pass Assembler (PX9ASM)

• SDSMAC, the macro-assembler in the 990/10 Program Development System.

• Cross Assembler, which allows the user to assemble code for the 990 Family of
computers on an IBM System 360/370 or on certain international timesharing services.

1.4.3.2 Absolute Dump/Absolute Load. The Absolute Dump/Absolute Load overlay routine
provides two functions: it saves a program or data space in memory by writing that program or
data onto 733 ASR cassette tape in compressed absolute data format, and it loads object code
that has been stored in compressed absolute data format. The saved memory data sequence is
stored in compressed absolute data format, and can be reloaded using either the absolute loader
or the upfront loader, both invoked by monitor keyboard commands. The absolute dump can
also be used to save an entire memory data sequence complete with the current debug
parameters in the data sequence. The memory data sequence can then be reloaded from the start
and the debugging continued as if it were never interrupted.

1.4.3.3 Instruction Trace. The instruction trace feature allows the user to monitor the contents
of internal data sequences and analyze the ongoing progress of an executing program. The user
can specify breakpoints and snapshots for interpreting the progress of his program.

1.4.3.4 PROM Programmer. The PROM Programmer software package provides flexible control
of the PROM programming process through the use of PX9MTP operator commands. The PROM
programmer commands inform the control software of memory bounds, PROM characteristics,
and mapping parameters. Additional operator commands allow the use of standardized control
information for frequently used programming functions. With PROM programmer commands, the
user is able to program PROMs and verify the contents of a PROM or ROM circuit.

The PROM programmer requires that the debugged software routine to be transferred to a
PROM be resident in memory. The software module selects data from memory and transfers it
with other interface data to the PROM Programming Module. The hardware module stores the
received data in the PROM as directed by the command.

1-11 Digital Systems Division

~---~--~ ~ 945255-9701

Two requirements must be met in order. to program PROMs:

1. A programming adapter must exist for the chosen device type.

2. The data to be programmed must be loaded into 990/4 memory.

1.4.3.5 BNPF Dump Program. The BNPF Dump software package creates an output fIle on
magnetic tape cassette in a standard BN"PF format that can be used to manufacture ROMs. The
software package can also read the BNPF format cassette, recreating the memory . data sequence ..
used to generate the BNPF cassette tape. The BNPF Dump module requires that the program to
be converted into BNPF format be resident in memory.

1.4.3.6 HIGH/LOW Dump Program. The HIGH/LOW Dump software package creates an output
fIle on magnetic tape cassette in TI 256 X 4 HIGH/LOW fomlat that can be used to
manufacture ROMs. The HIGH/LOW Dump module requires that the program to be converted
into HIGH/LOW format be resident in memory.

1.4.4 USER AREA SYSTEM PROGRAMS. The user area system programs are the packaged
system programs that run in the user area of memory. These programs are the Text Editor
(PX9EDT) and the One-Pass Assembler (PX9ASM);

1.4.4.1 Text Editor (PX9EDT). PX9EDT is an interactive text editor that runs as a user
program invoked, by PX9MTP. PX9EDT edits existing source code or creates and saves new
source· code. It reads an exist~ng program from magnetic tape cassette to a: memory buffer for
editing and then outputs it to a second cassette.

The text editor processes three different claSses of commands:

• . Setup commands

• Edit operation commands

• Output commands

Since the object module format for the 990 Family consists of ASCII strings acceptable to the
text editor, PX9EDT may also be used to edit object modules.

1.4.4.2 One-Pass Assembler (PX9ASM). PX9ASM is a one-pass assembler that runs as a user
program invoked by PX9MTP. PX9ASM accepts source code input from cassette and produces an
object program on cassette, a listing and an error summary. The object code produced may
contain either relocatable or absolute origin code. It may also contain references to external
symbols in other modules and derme external symbols. A collection of object modules may then
be linked and loaded' into memory by. the linking loader (PX9LAL).

1.4.S PROGRAMMER PANEL AND 733 ASR ROM LOADER FIRMWARE. The programmer
panel and ROM loader firmware executes from ROM situated in the last 256 words of- the

. memory address space and serves as the system loader. It also gives the operator an elementary
level of control over executing programs by means of the programmer panel when the debug
monitor (PX9MTP) is not resident. .

The ROM firmware handles level 0 interrupts, including power up, HALT and SIB interrupts,
and may enter PX9MTP or retain control in the programmer p~nel firmWare depending on the
cause of the interrupt.

1-12 Digital Systems Division.

~-------~ 945255-9701

1.5 PROTOTYPING PROCESS
The Prototyping System provides an efficient mechanism to the TMS9900 microprocessor user
for generating and testing stand-alone programs, and for transferring those programs into PROM
or ROM devices.

Development of a set of control sequences with the Prototyping System typically evolves
through the following steps:

1. Program development. Source programs on cassette tapes may be created using the
PX9EDT text editor and assembled with the PX9ASM assembler. The assembler
generates object code on magnetic tape cassette. Programs may also be developed using
the 990/10 Program Development System or the Cross Support System.

2. Prototype debug. The program is loaded into the Prototyping System memory and is
run and debugged under actual operating conditions. Any problems found are then
corrected either (1) in the memory version of the program or (2) by updating the
source or object and repeating the development procedure from step 1.

3. PROM programming. The tested program is programmed into a PROM using the PROM
Programmer software package and the PROM Programming Module. The created PROM
is then used in the system in which it will operate for further checking. If other
problems occur, a new PROM can be created by repeating the procedure from step 2.

4. PROM documentation. The contents of the verified PROM are then dumped to a
cassette in BNPF or HIGH/LOW format.

5. ROM manufacture. The PROM documentation is used to mass produce copies of the
control sequence in ROM circuits.

6. System production. The ROM circuits are mated with the microprocessor or micro­
computer (as applicable) for the final control system.

1-13/1-14 Digital Systems Division.

~'{j~o _________________ __ ~ 945255-9701

SECTION II

SYSTEM INSTALLATION AND OPERATION

2.1 INTRODUCTION
This section presents the hardware and software installation information and operating
instructions. The first portion discusses the hardware and includes the following topics:

• Unpacking and installation of hardware

• Hardware operation

This portion includes cabling diagrams of the hardware system and gives references to other
manuals in which the unpacking, installation and operating instructions can be found.

The remainder of this section contains detailed instructions for loading and executing the
software modules and user programs. The following topics are covered:

• 990 Prototyping System Software cassette generation

• Using the 733 ASR ROM loader

• Operating the monitor

• Entering commands on the terminal keyboard

• Input/output and logical unit assignments

• Loading and executing programs.

• Interrupts and single instruction execution

• Memory write protect

2.2 UNPACKING AND INSTALLATION OF HARDWARE
Unpack and install the 990/4 Computer as described in the Model 990/4 Computer System
Hardware Reference Manual, Manual No. 945251-9701.

Unpack and install the 733 ASR Data Terminal as described in the Model 990 Computer Model
733 ASR/KSR Data Terminal Installation and Operation, Manual No. 945259-9701.

Install the interface module for the data terminal and interconnect the computer and data
terminal as described in the Model 990 Computer Model 733 ASR/ KSR Data Terminallnstalla­
tion and Operation, Manual No. 945259-9701.

A system cabling diagram is shown in figure 2-1.

If the system includes the optional PROM Programming Module, unpack and install it as
described in the Model 990 Computer PROM Programming Module Installation and Operation,
Manual No. 945258-9701. Interconnect the computer and programming module as described in
that manual.

2-1 Digital Systems Division

Jd7s\ ______ _ ~ 945255-9701

PROM
PROGRAMM ING

MODULE
(OPTIONAL)

: PART NO. 944996-0001

AU
BOARD

PROGRAMM ING ADAPTOR
PART NO. 946761-0001
(TTL) OR 946761-0002

(EPROM)

RIBBON INTERFACE

I
I

PROGRAMM ING
ADAPTOR

(OPTIONAL)

CABLE PART NO. __ _
945019-0001 --..

733 ASR
DATA

TERM INAL

E :--... -
INTERFAC

CABL
PART NO
959372

000 3

MEMORY
BOARD

MEMORY
BOARD

PROM
PROGRAMM ING

INTERFACE
MODULE

(OPTIONAL)

I
r

I PART NO.

DATA
TERMINAL
INTERFACE

MODULE

I.;
I

r

I I !
I L--l I r --- J 944925-000 t

,PART NO.
,945075-0001

L _____ ...,
I
J

SLOT
1

I
I
I
I

I
I
I
I

I
I
I
I

SLOT SLOT SLOT
6Pl 2 3

6-SLOT COMPUTER
CHASSIS

r--­
I
I

SLOT
6P2

: PART NO. 944960-0001

I
LEGEND I

I
____ CABLE INTERCONNECTION -----..1-----.....
____ BOARD-TO-CHASS IS OR

PHYSICAL INTER­
CONNECTION

(A)133372

990/4 COMPUTER

PART NO. 944910-0002

Figure 2-1. Cabling Diagram, 990 Prototyping System

2-2

I ___ ...J

Digital Systems Division

~--~----~ 945255-9701

2.3 HARDWARE OPERATION
The programmer panel controls and indicators are described in detail in the Model 990/4
Computer System Hardware Reference Manual, Manual No. 945251~9701.

The 733 ASR data terminal's controls and indicators and operation of the terminal are described
in detail in the Model 990 Computer Model 733 ASR/KSR Data Terminal Installation and
Operation, Manual No. 945259-9701.

The user should be aware of the following points regarding use of the system software with the
data terminal:

• The Prototyping System Software requires that tapes be written in line tape format
rather than continuous tape format. In line format, the tape buffer is written to tape
when a carriage return is encountered. To place the 733 ASR in line format, set the
TAPE FORMAT switch to the LINE position.

• A tape should always be rewound completely:

• After a cassette tape is installed in a tape transport.

• After every initialization of power.

• Before removing a cassette tape from a tape transport.

• Before switching off the power to the· data terminal.

The PROM Programming Module is a software-controlled module that provides an interface
between the 990/4 . microcomputer and an external chassis containing power supplies and
interchan,geable circuitry on an adaptor to program specific types of PROM devices. This module
operates as a CRU device.

Detailed information about the PROM Programming module can be found in the Model 990
Computer PROM Programming Module Installation and Operation, Manual No 945258-9701.

Software initiates the programming cycle and determines the duty cycle. Software has direct
control over the PROM address and the data to be programmed; it has limited control over the
width of the pulse used to program the PROMs. The data address and pulse width information
are placed into input registers.

Each PROM or family of PROMs has different requirements because of its programming
characteristics. The adaptor, a type of interface card, handles these differences. It provides any
buffering of the address and data. lines and regulates the dc voltages present in the external
chassis that are used for control and programming.

2.4 PROTOTYPING SYSTEM SOFTWARE CASSETTE GENERATION
The Prototyping System Software cassette tape consists of 15 fIles and is a complete object tape
for the Prototyping System. The fIles on this tape are (in order):

1. Text - Description of tape and copying instructions

2. PX9UFL - Up front loader

3. PX9MTP - Monitor (root segment)

2-3 Digital Systems Division .

~ _____ 9_4_5_2_55_-9_7_0_1 ____________________________________ ~ ________ ____

4. PX9MTP - Linking loader overlay

5. PX9MTP - Instruction trace overlay

6. PX9MTP - Absolute dump/absolute load overlay

7. PX9MTP - PROM programmer, part 1

8. PX9MTP - PROM programmer, part 2

9. PX9MTP - BNPF dump overlay

10. PXMTP - HIGH/LOW dump overlay

11. PX9UFL - Upfront loader

12. PX9EDT - Text editor

13. PX9UFL - Upfront loader

14. PX9ASM - One-pass assembler

IS. PX9MTP - Monitor (relocatable root segments)

In addition, the system includes the Standard Control Information Cassette.

The user should copy each of the object files to a separate cassette for convenience in using the
system. This can be done by copying the master cassette in local mode using the 733 ASR Data
Terminal. The upfront loader and the file following it should be copied to the same cassette.
PROMPG Part land Part 2 should also be copied on one cassette. The following procedure may
be used:

I. Do not rewind this cassette after printing the text of the first file. If the cassette was
listed using local mode and continuous start, it will be correctly positioned.

2. Check that the RECORD switch in the bottom row of switches on the upperunit is in
the LOCAL position and that the PRINTER switch is in the OFF position. (The
PLAYBACK switch should already be set to LOCAL.) The TAPE FORMAT switch
should be set to LINE.

3. Insert a cassette in the second drive and ready it.

4. Set the Record Control ON/OFF switch to the ON position.

5. Press the CONT START switch in the Playback Control switch area. The next file
should be copied to the record cassette.

6. If the file just copied is the upfront loader or the PROM programmer part I, repeat
step 5 to copy the next file onto the same cassette.

7. Set the Record Control ON/OFF switch to the OFF position. Rewind and remove the
record cassette. Set the record enable (write) tab to the record disable position, and
label the cassette with the appropriate file name.

2-4 Digital Systems Division

\

4P 945255-9701
--

8. Repeat steps 3-7 for each of the object files.

9. Rewind and remove the master cassette and store it in a safe place.

Additional information may be found in the Model 990 Computer Model 733 ASR/KSR Data
Terminal Installation and Operation, Manual No. 945259-9701.

File number 3 on the Prototyping System software master cassette is the PX9MTP monitor in
compressed absolute data format. This module must be loaded using the up front loader.
(PX9EDT and PX9ASM must also be loaded with the up front loader.) The monitor will be
loaded in locations 200016 to 4000 16 • This will place the monitor in the upper 4K words of an
8K word system. If the user has another system configuration, he may wish to load the monitor
at a different location. To do this, file 15, the relocatable monitor, must be loaded. By placing a
D tag character in the code, followed by a four-digit hexadecimal bias address and end of record,
the bias for the relocatable monitor may be speCified when the file is being copied from the
master cassette.

Example:

D8000F

First record of monitor.

The monitor will be loaded in locations 8000 16 to AOOO I6 • This D tag record may be created in
local mode or by using PX9EDT.

Using the monitor residing at location 200016 , an absolute code module of the relocated
monitor may be created:

1. Load the absolute code monitor which resides at 2000 16 •

2. Using this monitor or the programmer panel LOAD switch, load the relocatable
monitor at the desired bias.

3. Halt and reset the monitor at 200016 •

4. Load the Absolute Dump/Absolute Load overlay.

5. Copy the upfront loader to the beginning of a tape in LOCAL mode.

6. Dump the relocated monitor to the tape with an entry point equal to the bias.

2.5 USING THE 733 ASR ROM LOADER
The following paragraphs present a procedure for loading software modules with the 733 ASR
ROM loader, describe loading of PX9MTP with the ROM loader, and give some information on
loading under PX9MTP control.

2.5.1 LOADING STANDARD 990 OBJECT MODULES. Programs or modules in standard 990
object format may be loaded with the 733 ASR ROM loader by using the following procedure.
Refer to figure 2-2; the numbers in parentheses are keyed to the figure.

1. Place the computer in halt mode by pressing the HALT/SIE switch (19) on the
programmer panel.

2-5 Digital Systems Dlvlslo

~-------~ 945255-9701

--16

(A)133076

o POWER

o FAULT

o IDLE

RUN

2 3 4 5 6 7 8 9 10

STOP

CONT BLOCK CHAR
START FWD FWD CHARACTER PRINT ON

1 1 ~~
C ••••••••)

Rev OFF

t 5 14 13· 12

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 • 5 6 7 8 9 10 11 12 13
"

15

D CJ 0 0 0 0 0 0 0 0 0 0 D D 0 D

HAL.T '"S"iE"" RUN RESET LOAD WP PC ST MA WP PC ST MA MOD MAl MOE CLR

ODDO DODD DDOD
DISPLAY ENTER

19 18 17

Figure 2-2. Controls and Indicators Used in Loading Procedures

2-6 Digital Systems Division

~ 945255-9701

2. Place the 733 ASR data terminal on line. (The deviCe function switches (12 through

15) must be set to the LINE position.)

3. Load and ready the cassette containing the program to be run in either transport drive.

4. Set the TAPE FORMAT switch (11) to LINE.

S. Place the selected cassette in playback mode by setting the PLAYBACK/RECORD
switch (6) in the middle of the top row of the data terminal's upper switch panel to
the PLAYBACK position for that cassette. The PLAYBACK and RECORD indiCator
lamps (2, 3, 8 and 9) indiCate the mode of each cassette drive.

6. Press the RESET and LOAD switches (18 and 17) on the programmer panel to initiate
the load. The Playback Control ON indiCator lamp (5) on the data terminal's upper
switch panel lights to indicate that data is being transferred.

7. When the load is completed, the loader will transfer control directly to the program if
the program contained an entry vector. (An entry vector is a special tag generated by
the assembler indicating the starting location for the program. The tag is generated if
the user includes the starting address for his program in the END statement.) If there
is no entry vector or if an error occurs during loading, the loader returns control to
the programmer panel.

8. The cassette should be rewound by pressing the REWIND side of the REWIND/STOP
switch (1 or 10) on the upper switch panel of the data terminal and removed to
prevent accidental reuse. The tape is finished rewinding when the END indiCator lamp
(4 or 7) lights.

2.5.2 . LOADING COMPRESSED ABSOLUTE FORMAT OBJECT MODULES. Compressed
absolute format code may be loaded using the 733 ASR ROM loader by including the upfront
loader in front of the compressed absolute format code module. Refer to the Load with Upfront
Loader (LU) command in Section III for a further description of the upfront loader .

. To load with the up front loader, follow the procedures described· in paragraph 2.5.1. The
upfront loader is loaded at the ROM loader default bias address, AO 16'

After the up front loader is memory resident, control is passed to it and the compressed absolute
load initiated. Once the absolute format module is loaded, control is passed to it if an entry

. point has been found. If there is no entry point or there is a load error, control is returned to
the programmer panel.

If the user wishes to perform a bootstrap load with the up front loader, but would like the
up front loader at a different point, he may add to the up front loader object module a D tag
(load bias) character as the first record.

2.5.3 LOADING THE MONITOR; To load the monitor, mount the cassette containing the
up front loader and PX9MTP and load it in the manner described in paragraph 2.5.1. A period (.)
is printed to indiCate that the monitor is loaded and ready to accept commands.

2-7 Digital Systems Division .

~-~-~-------~ 945255-9701

2.6 OPERATING THE MONITOR
When the monitor is loaded by the 733 ASR ROM loader, it will be located at locations 2000 16 ,

to 400016 with the entry point at 2000 16 (assuming an SKconfiguration). If a program remains
in the execution mode because of an error or is aborted by a programmer panel halt, the
monitor will need to be restarted to reenter the command processor mode. To restart the
monitor, proceed as follows:

1. Half the system by pushing .the programmer panel HALT/SIE switch. The RUN
indicator lamp is extinguished when in halt mode.

2. Clear the data indicator lamps by pressing the CLR switch.

3. Enter 2000 16 . on the data indicator lamps.

4. Press the ENTER PC switch.

5. Press the RESET switch.

6. Press the RUN switch.

At this point, the monitor should respond with a period (.). If the monitor does not respond,
repeat steps 1 through 6. If further attempts to restart fail, the monitor may have been
destroyed and a reload is necessary.

2.7 ENTERING COMMANDS ON mE TERMINAL· KEYBOARD
Commands are entered as a two-character command name and a string of parameters. The
command name and each parameter are separated by one or more spaces or a comma. A carriage
return will end the record and signal the end of input to the monitor. The RUB OUT key on the
keyboard may be used to delete all characters from the present character position to the
begmning of the current parameter. CRTL H will delete one character (back to the beginning of
the current parameter).

Some keys, such as TAB (CTRL I), the space bar, backspace (CTRL H), ESC and RUB OUT, are
interpreted differently depending upon which command processing routine is executing. The
special interpretations of these and others are explained in the routines, or programs in which
they occur.

The monitor recognizes a number of special control characters which conform to the standard
990 file and data format. Appendix C shows the valid control characters and their functions for
keyboard, printer, and cassette I/O as defined in the 990 standard file and data formats.

2.S INPUT/OUTPUT AND LOGICAL UNIT ASSIGNMENTS
When a program is written, the input and output is device independent and is simply input from
or output to a logical unit number. At run time, the user must enter the Assign LUNO (AL)
command to assign each LUNO to a physical device if the system default logical unit assignments
(described in Section III) are not being used. When the program is run, the monitor takes care of
all the device-dependent characteristics required.

2.9 LOADING AND EXECUTING PROGRAMS
The following paragraphs present procedures for loading programs and discuss the user's interface
with the software.

2-8 Digital Systems Division

~~-------------------'-"f!:.(945255-9701

2.9.1 LOADING. PX9MTP loads programs using two different object code formats, compressed
absolute and standard 990 object format. Any of five commands - LP, OV, PL, LU or LA, all
described in Section III - may be used to load programs. The operator interface with PX9MTP
is similar for all five types of loads:

1. Place the cassette containing the program or overlay to be loaded on an available
cassette transport drive.

2. Set the four switches in the bottom row of the data terminal's upper switch panel (12,
13, 14 and 15, figure 2-2) to the LINE position.

3. Enter the appropriate monitor keyboard command for the type of load being per­
formed followed by the LUNO which has been assigned to the cassette containing the
program to be loaded. If no LUNO is entered with the command, the system assumes
a default of LUNO 7. If the AL command has not been used to redefine the two
cassettes, the system defaults LUNO 7 to CSI (the left cassette drive) and LUNO 8 to
CS2 (the right drive).

4. When the load completes, the system will accept further commands. If an entry vector
was specified within the load module, the PC for the user's program is recorded within
PX9MTP and may be displayed with the Inspect Registers OR) command and observed
on the programmer panel data indicator lamps. For monitor-controlled I/O, the
playback and record modes need not be set since the monitor handles this function.

The standard 990 object code format and the compressed absolute format are described in
Section VI.

2.9.2 USER PROGRAM INTERFACE WITH SYSTEM SOFTWARE. Monitor commands are
used to load or execute programs in the user area of memory. User programs, the text editor
(PX9EDT) and assembler (PX9ASM) are loaded into user memory and executed in free running
mode with monitor control or in free running mode. Before executing in either mode, the entry
point for programs in the user area must be set in the user's PC. The Inspect Registers OR)
command may be used to determine the starting PC value, and the Modify Registers (MR)
command may be used to change it.

User programs may communicate with the resident software system by means of the Extended
Operation (XOP) instruction. This is also true of two user area system programs: PX9 ASM and
PX9EDT.

XOP 15 is used to call PX9MTP to perform I/O and data conversion services as defined in
Section III. This XOP vector is initialized by the monitor whenever a Load Program (LP), Load
Program in Compressed Absolute Format (LA), Load Overlay (OV), or Load Program in
Compressed Absolute Format with Upfront Loader (LU) command is issued. The user program
may overlay this vector and supply its own service routine.

2.9.3 EXECUTING A USER PROGRAM. A program may be executed by issuing either an RU
or EX command. If the RU command is used, the monitor will control the execution and
various run-time debug aids may be utilized. The monitor executes programs using either the SIE
feature (see paragraph 2.10) or an interpretive trace (see Section III). A program may be halted
and control returned to the command processor at any time by pressing the ESC key on the
data terminal keyboard. If an EX command is issued, the program will be executed without
monitor control. The program may be halted only by pressing the programmer panel HALT
switch and restarting the monitor.

2-9 Digital Systems Division

~ ____ 9_4_S_2S_S~-9_7_0_1~ __ __

After a program has been executed in· either mode, control may be returned to the monitor
command processor by an End of Programmer supervisor call (Section III) or .by branching to
the beginning of the monitor.

2;10 INTERRUPTS AND SINGLE INSTRUCTION EXECUTION
The following paragraphs discuss the interrupt scheme and the role of interrupts in single
instruction execution, which is a debugging aid. Single instruction execution is briefly explained.

2.10.1 INTERRUPTS. The 990/4 Computer supports eight levels of interrupts. -Any device
which is capable of interrupting the 990 is assigned (in the hardware) to an interrupt level. The
990 compares the level of any interrupt with a program-determined value called a mask. If the
interrupt is at a higher level (lower numeric value) than the mask, the interrupt is allowed;
otherwise, the interrupt is not permitted. For more detailed information about interrupts, refer
to the Model 990/4 Computer System Hardware Reference Manual. Manual No. 945251-9701.

TIle highest level' (level 0) is used to indicate that power has just been applied to the 990, either
initially or following a power failure, and/or that a special interrupt for the programmer panel is
active. The level 0 interrupt differs from the other interrupts because it cannot be masked by the
program.

The level 0 interrupt is generated whenever one or more of these conditions occurs:

• Monitor-initiated single instruction execution (SlE).

• The operator presses the HALT /SlE pushbutton on the programmer panel.

• A program executes an LREX (Load ROM and Execute) assembly language machine
instruction.

• A power-up condition occurs.

The level 0 interrupt trap vector must be connected by jumper cable to location FFFC 16 -

2.10.2 SINGLE INSTRUCTION EXECUTION. It is often convenient for debugging purposes to
execute a program one instruction at a time. This feature is provided on the programmer panel
and also by PX9MTP. The hardware supports this feature in the following manner:

1. The programmer panel or PX9MTP initiates execution of a single user program
instruction.

2. In the process of executing the user program instruction, three distinct actions occur.
First, the programmer panel orPX9MTP causes an RTWP (Return with Workspace
Pointer) assembly language machine instruction to be executed_ This returns control to
the process or to the user.

3. Second, the user program instruction is executed.

4. In the third action, the 990 Computer generates a level o interrupt which transfers
control back to the programmer panel. If the SlE was initiated by PX9MTP,the
programmer panel will transfer control back to PX9MTP.

2-10 Digital Systems Division .

~----------~ 945255-9701

This sequence of actions is repeated for each user program instruction, except under certain
conditions. The user must be aware of these exceptions:

• If the instruction was a BLWP (Branch and Load Workspace Pointer) or XOP
(Extended Operation), the processor executes an additional instruction before any
interrupts occur. (This feature is necessary to support reentrant subroutines using
BLWP or XOP instructions for linkage.)

• If there is a lower level interrupt pending, that interrupt is honored instead of the next
"user instruction". Therefore, when the programmer panel regains control, the return
PC points into the interrupt subroutine rather than the original user program.

2.11 WRITE PROTECT
The 990 Prototyping System is equipped with a write protect feature which permits or prohibits
writing to a selected area of memory. The write protect logic basically consists of a seven-bit
Upper and Lower Bound register and a Protect/Permit control bit (figure 2-3). The loading of
this register and control bit may be accomplished with the Set Write Protect Region (SP) and
Clear Write Protect Region (CP) commands (Section III), or by normal CRU communications.

2.11.1 SETfING A WRITE PROTECT REGION. To set a write protect region, the lower and
upper bounds must be output to CRU base address IFA016 • The most significant bit (bit 0) is
the Protect/Permit bit. Bit 0, when set to 1, indicates write permit, and, when set to 0, indicates
write protect. To specify the protect region, memory is divided into 256-word blocks. The lower
and upper bounds are each seven bits long and serve as an index into the memory addresses to
specify which contiguous 256-word block of memory is to be protected. For example, the lower
bound of the protect region equal to 2000 16 would be represented in the Protect register as
1016 , The memory block beginning at location 2000 16 is the sixteenth 256-word (5l2-byte)
memory block. A bound is calculated by dividing the starting address of the memory block by
200 16 (512 10), In this example, 2000 16 divided by 200 16 is equal to 10 16 , The upper bound is
not included in the protect region. When outputting to the CRU Protect register to specify the
protect bounds, a Load CRU (LDCR) instruction with a count of 16 must be used to set all 16
bits because the Protect register works like a shift register. To protect the memory range 2000 16

to 4000 16 , the lower bound is set equal to 1016 , the upper bound is set equal to 20 16 , and the
Protect bit is set to O. Therefore, the Protect register is set to 1020 16 by outputting these fields
to the CRU in the format specified in figure 2-3.

2.11.2 PROTECT VIOLATION FLAG. When an attempt is made to write into a memory
location within the protected region, the Protect Violation flag is set to FFFF 16' This flag,
which is 0 normally, can be sensed by reading any of the 16 CRU bits at base lFA0 16 ' If this
protected region is within the TMS9900 on-board RAM, the write will not be inhibited. ~f this
protect region is on the expansion memory card, the write will be inhibited. Attempts to write
are flagged with an error message.

The Protect Violation flag may be cleared in two different ways:

1. I/O RESET (RSET) --:- This machine instruction clears the violation flag and sets bit 0
of the Protect register to 1 (not protected).

2. Output a 1 to any or all of the 16 bits of the Protect register.

2-11 Digital Systems Division .

~.------:----~ 945255-9701

(A)133373

0 1 7 8 9 15

H LB ~ UB

NOT
USED

BIT FIELDS

P PROTECT /PERM IT BIT
O-PROTECT
I-PERMIT

LB LOWER BOUND

UB UPPER BOUND

NOTES

THE CRU OUTPUT DATA FORMAT IS THE. SAME AS THE
FORMAT OF DATA IN MEMORY BEFORE IN LDCR
INSTRUCTION IS EXECUTED.

BITS 1 AND 9 ARE TI-fF.: MOST SIGNIFICANT BITS. AND BITS
7 AND 1 5' ARE THE LEAST SIGN I FIC.l\NT B ITS OF THE LB
AND UB FIELDS.

Figure 2-3. CRU Output Data Format

When running under monitor control with an RU command, the Protect Violation flag is
checked after each user instruction is executed. The monitor also checks for a write protect error
when control is returned to the command string processor. This enables the user to detect
violation errors incurred during monitor commands such as Modify Memory (MM) and the
program loading commands (LP, OV, PL, LL, LV and LA). The monitor prints the error message

MX07

if a write protect violation occurs. The violation· flag is cleared, the protect register restored and
the user program haIted .

. The Protect Violation flag is not checked when executing a user program with the EX command.

When the Protect Violation flag is set, another signal is generated which may be wired to an
interrupt level. If the user chooses to do this, an interrupt routine must be provided by the user.

If the program is being executed with the EX command and the interrupt has not been wired in,
there is no automatic checking for a protect violation after each instruction.

When the monitor is restarted, the Protect register and Protect Violation flag are initialized. An
I/O Reset is performed which clears the Protect Violation flag and sets the Protect register to
FFFF 16 _

2-12 Digital Systems Division

~-------~ 945255-9701

2.11.3 PROTECTING THE MONITOR. In debugging a user program, the monitor is often
destroyed by an incorrect instruction. This may be avoided in most cases by write-protecting the
monitor.

The monitor has been constructed so that all of the data areas occur near the end of the
monitor. The first 140016 bytes of the monitor may be included within the protect region.

2-13/2-14 Digital Systems Division .

r~. o. _____ ~ __________ _ ~ 945255-9701

SECTION III

DEBUG MONITOR

3.1 INTRODUCTION
This section discusses the purpose and capabilities of the debug monitor (PX9MTP), explains
how to debug under monitor control, and gives detailed descriptions of the monitor keyboard
commands available to the user. The following topics are covered:

. .

• A general description of the monitor, includiilg its functions and capabilities. Com­
munication with the monitor. Debugging features. Input/output operations and logical
device assignments. Methods for loading programs using PX9MTP, and the different
types of loads.

• Debug functions provided by the monitor. Capabilities provided by the different types
of debug commands. User-specified parameters that serve as interpretation aids. The
two debugging modes: single instruction execution and instruction trace. A comparison
of the merits and limitations of the debugging modes.

• Discussion of the use of monitor keyboard commands. The three types of commands:
system control, debug, and PROM/ROM process control commands. Mnemonic codes
and command parameters. The conditions under which commands may be entered.
Processing of commands by the monitor. Error messages. Notational conventions used
in the command syntax definitions.

• Descriptions of the commands, including a brief explanation of their purpose, their
syntax and parameters, how they function,' error messages, application notes if appli­
cable, and examples of how the commands are used. The monitor keyboard commands
are listed in table 3-1.

• Supervisor calls. Their purpose. The differences between I/O and non-I/O supervisor
calls .. Supervisor call formats and examples.

• Debugging techniques. An explanation of preventive, exposure and remedial techniques.
General techniques for any debugging situation. Specific techniques for debugging
under PX9MTP, including how to plan a debugging session, use of breakpoints, and
time-saving and simulation techniques. Patching assembly language code into an
existing program.

3.2 GENERAL DESCRIPTION
PX9MTP is a' memory-resident system executive that responds interactively to' user input from
the 733 ASR data terminal keyboard, provides extensive program debug features, and provides a
supervisor call interface to user programs.

The operator communicates with the monitor by entering commands through the keyboard of
the 733 ASR data . terminal. These commands may assign logical unit numbers (LUNOs) to
devices for I/O operations, and instruct the system to load and execute specific programs. These
supported programs may interface with the monitor through supervisor calls (paragraph 3.5).

3-1 Digital Systems Division ,

~ 945255-9701

Table 3-1. Monitor Keyboard Commands

Mnemonic Description Paragraph

AL Assign LUNO 3.4.2
LP Load Program 3.4.3
OV Load Overlay 3.4.4
PL Load PROM Programmer 3.4.5
LL Link and Load Program 3.4.6
DP Dump in Absolute Format 3.4.7
LV Load Program in Compressed Absolute Format

with Upfront Loader 3.4.8
LA Load Program in Compressed Absolute

Format 3A.9
EX Execute User Program Directly 3.4.10
RU Execute User Program under SIE or Trace 3.4.11
MM Modify Memory 3.4.12
1M Inspect Memory 3.4.13
MR Modify Registers 3.4.14
IR Inspect Registers 3.4.15
MW Modify Workspace Registers 3.4.16
IW Inspect Workspace Registers 3.4.17
MC Modify CRU Register 3.4.18
IC Inspect CRU Input Lines 3.4.19
SS Set Snapshot 3.4.20
IS Inspect Snapshot 3.4.21
CS Clear Snapshot 3.4.22
SB Set Breakpoint 3.4.23
CB Clear Breakpoint 3.4.24
ST Set Trace Definition 3.4.25
SR Set Trace Region 3.4.26
CR Clear Trace Region 3.4.27
FB Find Byte 3.4.28
FW Find Word· 3.4.29
HA Hexadecimal Arithmetic 3.4.30
SP Set Write Protect Region 3.4.31
CP Clear Write Protect Region 3.4.32

Supervisor call communication with the monitor is accomplished with extended operation 15
(XOP 15) and a parameter block giving the specific details of the request. A supervisor call can
be used to request system functions such as:

• Convert decimal numbers in ASCII format to binary values, and binary values to ASCII
format decimal numbers.

• Convert hexadecimal numbers in ASCII fomiat to binary values, and binary values to
ASCII format hexadecimal numbers.

• Provide I/O operations that are compatible with those for the DXIO operating system.

• Terminate the current program.

3-2 Digital Systems Division

~~-------------------~ 945255-9701

PX9MTP also provides debugging aids for stand-alone programs. The program debug functions of
the monitor: .

• Give the user interactive control over his programs.

• Are independent of the user program.

• Are compatible (where possible) with the corresponding software features of the
990/ I 0 Program Development System.

3.2.1 INPUT/OUTPUT OPERATIONS. PX9MTP I/O operations provided by the supervisor calls
are device independent, as described in Section II. The 733 ASR data terminal appears to the
monitor as three separate logical devices - cassette unit 1, cassette unit 2, and the printer­
keyboard, as described in Section I. The Assign LUNO (AL) monitor keyboard command is used
to assign logical unit numbers. The monitor supports the following I/O operations to the 733
ASR data terminal: open file, read ASCII data, write ASCII data, and write end-of-file.

3.2.2 METHODS FOR LOADING PROGRAMS. PX9MTP supports three distinct methods for
loading programs into memory: a relocating loader, a relocating and linking loader, and a
compressed absolute format loader. The two relocating load operations called by the Load
Program (LP) and Link and Load Program (LL) commands handle programs in object format
produced by any of the 990 assemblers. Relocation allows a program to be loaded into any
available memory area to make efficient use of memory space.

The linking process in the LL command integrates object modules that have been assembled
separately into a single, contiguous program. This type of load operation accepts one or more
object modules of a program and loads them into memory at addresses specified in the program
modules.

The third type of loading operation uses a condensed data format, generated by the Dump in
Absolute Format (DP) command, that can be loaded much faster than the equivalent object
module format of the program. When a program has been completely debugged and is to be
stored for future use, it can be copied to cassette using the DP command to create the
condensed data format. Then, by calling the Load Program in Compressed Absolute Format (LA)
command, the program will be loaded into the same memory area that it was stored in when
originally dumped. This condensed data format module may also be loaded with the Load
Program in Compressed Absolute Format with Upfront Loader (LU) command. Refer to
paragraphs 3.4.3 through 3.4.9 for detailed command descriptions.

3.3 DEBUG FUNCTIONS
The Program Debug function of the monitor allows the user to test, validate, and remove errors
from a program under development. Debugging is accomplished by entering commands for
various debug functions from the terminal keyboard. The commands are decoded and processed
by the monitor. The debug facilities operate entirely from programs and data stored within the
4096-word memory area reserved for PX9MTP.

The available debug commands may be classified into the following groups.

• Set commands. These commands allow the user to define up to four of each of the
following aids: program counter breakpoints, formatted snapshots, trace regions, and
trace formats. \

3-3 Digital Systems Division

~
o

945255-9701

--
• Clear commands. These commands allow the user to negate the effect of a previous set

command.

• Inspect command. These commands allow the tiser to display the contents of AU
registers, workspace registers, memory regions, and CRU lines. These commands are
also used to force snapshots.

• Modify commands. These commands allow the user to examine and 'optionally modify
memory, workspace registers, AU registers, and CRU lines (by inspecting the, input and
modifying the output).

• Miscellaneous commands. These commands include functions such as word and byte'
memory searches, and hexadecimal arithmetic with automatic decimal conversion .

. In debugging a program, the user may print out data' on the terminal for examination, modify
data, specify program elements (parameters whose values are determined by the user) for
interpreting the progress of his program, set and clear these elements, search for specific bit
pattern:s in 'bytes and words, and perform arithmetic calCulations with hexadecimal numbers.
These actions may be performed on memory, registers, and CRU input.and output lines. They
may also be performed on the specifiable program elements: breakpoints, snapshots, and trace
regions. They are defined as follows:

• Breakpoint - A point during the execution of a program at which control is returned to
the debug monitor to allow the user to examine the progress of his program or
enter any of the debug commands ..

• Snapshot - A printed display of the contents of contiguous workspace registers plus
the contents of an area in memory as defmed by the operator. A snapshot may be
printed automatically at a breakpoint. .

• Trace region -An area of the program about which information concerning the
execution of an instruction is output on the printer. This information may be printed
following the execution of each instruct~on, following each branch, or following each
change in the contents of a data word. '

3.3.1 . DEBUGGING MODES. When debugging with the 'monitor, the user may use either the
single instruction execution (SIE) mode or the instruction trace mode by issuing the Execute
User Program under SIE or Trace (RU) command. In these modes, after each instruction is
executed, the monitor checks 'whether a breakpoint has been reached. If a breakpoint has not
been reached or the run count is not depleted, the monitor continues executing instructions in
the same manner.

When running in SIE mode, the monitor uses the hardware-controlled SIE feature described in
Section II to execute each user instruction.

When in the instruction trace' mode, the user's program is executed by a software interpreter
which decodes the user's instructions and then executes the instructions. This allows the system
to check and display detailed information on the execution of an instruction. The software·
interpreter is contained in the instruction trace overlay which must be loaded before the
instruction trace feature can be used.

Digital Systems Division ,

~ _____ 94_5_2_5_5-_9_70_1 __ ~ __ __

The instruction trace feature allows the user to monitor the contents of internal data sequences,
alter these data sequences, and analyze the ongoing progress of an executing program. The user
can also specify breakpoints and snapshots for interpreting the progress of his program.

Under instruction trace, all extended operations (XOPs) and interrupts are executed directly by
the hardware, not under control of the software.

3.3.2 COMPARISON OF DEBUGGING MODES. SIB is considerably faster than instruction
trace. In SIB mode, interrupts and XOPsare executed one instruction at a time under control of
the software. XOPs and interrupts under instruction trace, on the other hand, are executed
directly by the hardware. SIB is always memory resident, while instruction trace is contained in
a separate overlay.

If speed, XOPs, interrupts, or loading the overlay is not a primary consideration, it is suggested
that instruction trace be used as the normal mode of execution. If no trace printout is desired, a
null trace may be set. (Refer to the description of the Set Trace Definition (ST) command,
p~agraph 3.4.25.)

3.3.3 SUMMARY. The program debug facilities of PX9MTP are easily used by novice pro­
grammers, yet have the power needed by the sophisticated programmer to fully test his
programs. The novice needs to learn only four types of operations (Set, Clear, Inspect and
Modify) to be applied to any of several debug or machine resources (memory, breakpoints, etc.).
An experienced user will learn to associate snapshots and trace formats (by number) with
specific breakpoints and trace regions, respectively. Trace formats and snapshots are predefmed
for the novice but may be modified if desired.

3.4 KEYBOARD COMMANDS
The following paragraphs present background information on the keyboard commands. They
describe the components of a command, their significance, and their general characteristics. The
individual commands are then described in detail.

3.4.1 GENERAL. As an aid to the use and understanding of the commands, the different types
of commands are discussed, and command codes and parameters are explained. These paragraphs
also describe entry of commands on the terminal keyboard, explain how commands are pro-
cessed, and list error messages that may be returned by the system. .

3.4.1.1 Types of Commands. The keyboard commands may be classified into three types:
system control commands, debug commands, and PROM/ROM process control commands.
System control commands include those needed to get the program loaded and running or to
initiate a program dump. The debug commands are those entered by the user during execution
of a program under development. PROM/ROM process control commands are those needed to
program PROMs and produce cassettes for manufacturing ROMs. The commands may also be
classified according to the way they are handled by the monitor. Some of the commands are
memory-resident; ~he others reside on tape cassette and are loaded into the transient area of
memory from cassette when they are needed. These cassette-resident commands are the overlay
commands, and include those le~s frequently used.

3.4.1.2 System Control Command Codes. System Control Commands are identified by two­
letter mnemonic codes, and may be followed by one or more parameters. This group of
commands includes the following:

• Assign LUNO (AL)

• Load Program (LP)

3-5 Digital Systems Division

. ~ 945255-9701

• Load Overlay (OV)

• Link and Load Program (LL)

., Dump in Absolute Fonnat (DP)

• Load Program in Compressed Absolute Fonnat with Upfront Loader (LU)

. • Load Program in Compressed Absolute Fonnat (LA)

• Load PROM Programmer (PL)

• Execute User Program Directly (EX)

• Execute User Prpgram under SIB orTrace (RU)

The individual system control commands are described in paragraphs 3.4.2 through 3.4.11.

3.4.1.3 Debug Command Codes. Debug comtnandsare identified by a two~letter mnemonic
. code. The first letter represents .the operation perfonned, and the second letter represents the
program debug or machine ,element on which the command operates. The operation perfonned
may be one of the following:

First Letter
of Command

I

M

S

C

F

H

Operation

The Inspect operation displays on the printer whatever data or debug element is .
requested, in the specified size or amount.

The Modify operation displays a requested quantity , such as .the contents and the
register number of a workspace register, and accepts an input which may change 'the
value. This operation automatically increments and displays the next item of the ele·
ment being modified. The Modify commands operate on memory, workspace registers,
machine registers, and the CRU.

The Set operation is used in commands to define program debug elements such as
.breakpoints, snapshots and traces.

The Clear operation is used to clear or reinitialize breakpoints, snapsJlOts, and trace
regions.

The Find operation searches for bit patterns in bytes or words. The patterns are char·
acterized by mask and value. If tlie specified bits in the mask are the same as the
corresponding bits in the value. a pattern match exists.

The Hexadecimal operation calculates. the sum and. difference of two hexadecimal
numbers, and prints the results in both hexadecimal and decimal format.

3-6 Digital Systems Division

J2~ ______ _ ~ 945255-9701

The second letter of a debug command represents the element on which an operation is
performed, and may be one of the following:

Second Letter
of Command

M

w

R

C

B

S

T

p

Element

The Memory element represents any RAM or ROM in the hardware system configura­
tion. If nonexistent memory is specified, an undefined bit pattern is returned.

The Workspace element represents the user program's current workspace registers,
registers 0 through 15. In a Find Word command, W represents word.

The Registers element represents the user's program counter register, workspace pointer
register and status register.

In a Set Trace Region (SR) or Clear Trace Region (CR) command, R represents
region. A region is a memory area where there will occur a trace of statements exe­
cuted when running under Instruction Trace. Associated with each region is its index
(a number from 0 to 3), trace type, mode of execution (single step or continuous
run), and, optionally, variables to be traced.

The CRU element represents the Communications Register Unit of the 990 Computer.
The data on the CRU input lines and the input line numbers may be displayed, and
the data on the CRU output lines may be modified.

The Breakpoint element represents the four program counter (PC) breakpoints. Asso­
ciated with each breakpoint is its index (a number from 0 to 3), a program counter
value, a reference counter (optional) and a snapshot index (optional). The user's pro­
gram counter, workspace pointer and status register are automatically printed along
with the breakpoint index number. If a snapshot was associated with the breakpoint
at definition time, then the snapshot indicated by the snapshot index is also printed.
Breakpoints are detected before instruction execution.

In a Find Byte (FB) command, B represents byte.

The Snapshot element represents a four-element vector of program displays. Each dis­
play is characterized by a range of workspace registers and a range of memory. When­
ever a snapshot is invoked, the register and memory ranges are dumped to the
printer.

The Trace element is a four-element vector of trace types. Associated with each ele­
ment is an index and a string of characters indicating the type of trace. The Set Trace
Definition (ST) command modifies an existing trace type of the same index. When the
monitor is loaded, each element is assigned a default trace type. (For example, type 1
is PIWSEADEA: program counter, instruction and format, workspace pointer changes,
source and destination, effective addresses and their contents after execution.) The ST
command is available only if the Instruction Trace overlay is in memory.

The Protect element represents a write-protected region of memory.

The individual debug commands are described in paragraph 3.4.12 through 3.4.32.

3-7 Digital Systems Division .

~_· ___ 9_4_5_2_55_-_97_0_1 __________________ ~ ____________________________ __

The individual debug commands are described in paragraph 3.4.12 through 3.4.32.

3.4.1.4 PROM/ROM Process Control Command Codes. PROM/ROM Process Control commands
are identified by two-letter mnemonic codes and may be followed by one or more parameters.
This group of commands include:

• PROM· Programmer Standard (PS)

• PROM Programmer (PP)

• Perform BNPF Operation(DB)

• Perform HIGH/LOW Operation (HL)·

The individual process control commands are described in Section VII,· VIII and IX.

3.4.1.5 Command Parameters. A keyboard command mnemonic code may be followed by one
or more parameters. The list of parameters is separated from the command code by one or more
blanks or a comma.

The parameters in the list are delimited by commas or by strings of one or more blanks. Each
parameter may be a hexadecimal number of one to four hexadecimal digits or a string of
alphanumeric characters.

3.4.1.6 Entry of Commands. Keyboard commands may be entered whenever the software
system is in command mode. In this mode, a period (.) is printed as the first character on a new
line. Depending on the command executed, the software system mayor may not return to
command mode. The monitor requests another command by printing another period (.) at the
beginning of a line. No program executing under the monitor uses a period in this manner to
request user input.

3.4.1.7 Command String Processor. The command string processor parses command input
strings, given command definition tables. It validates parameter values and converts those
representing hexadecimal numbers to binary. It also indicates the existence and position of all
null parameters.

The command string processor can parse up to eight parameters. It passes control to the
appropriate command processor ·after it has recognized a syntactically correct command.

3.4.1.8 Processing of Commands. It is helpful to the user to understand how the commands are
executed. The command processor handles commands in the following ways.

• A command string is aborted and data is cleared from the buffers on any error.

• The command is checked against a predefined list of acceptable commands.

• The command and any parameters are validated immediately after the appropriate
terminator is processed for that parameter (or command). If an error is detected, the
entire input is discarded.

3-8 Digital Systems Division .

~ 945255-9701

• Use of the backspace (CTRL H) on the terminal keyboard deletes single characters
from the current parameter or command mnemonic only. Once a parameter has been
validated, it may not be changed.

• Use of the delete (RUB OUT) key on the terminal keyboard removes only the current
parameter, not the entire command.

The following application notes apply to the use of commands:

• The user must realize that the command input is being checked as it is being entered.
This helps prevent entering a long command with an error. Make sure that a parameter
is correct before entering the terminator for it.

• The user may abort the current command by pressing the escape (ESC) key on the
terminal keyboard.

3.4.1.9 Error Messages. Following is a list of errors the user may encounter when entering
keyboard commands and the meanings of the error codes.

Error Code Meaning

MPOO Invalid parameter entered, invalid hexadecimal number entered, or maximum
parameter list length exceeded.

MSOI

MX03

Invalid command. The first two characters do not match any known command.

Overlay resident command not in memory. The command must be loaded into
the transient area before it can be executed.

A complete list of the error codes appears in Appendix E.

3.4.1.1ONotaflonal Conventions. The notational conventions used in the syntax definitions of
the keyboard commands are as follows:

< > Item to be supplied by the user. The term shown within
angle brackets is a generic term.

[] Optional item - may be included or left out, at the.
user's discretion. Items not enclosed in brackets are
required.

{} Choice to be made from two or more items, one of which
must be included.

Items in capital letters in the syntax definition are entered into the command statement exactly
as shown.

The fields in the command (the command mnemonic and the parameters) are separated by either
commas or strings of one or more blanks. This choice is shown symbolically as:

3-9 Digital Systems Division .

~-------~ 945255-9701

When one or more parameters are omitted, two or more field separators may occur in sequence.
The user must be sure that he includes the correct number of separators in a sequence; he should
be aware of how they are interpreted by the computer. Two strings of blanks run together will
be read as a single long string of blanks. A comma preceded or followed by a blank will be read
as two separators in sequence. It is suggested, therefore, that commas (without preceding or
following blanks) be used to set off omitted parameters.

In the examples of command statements, user-supplied data is underlined to distinguish it from
data printed by the monitor. The carriage returns that terminate command statements are not
shown in the examples.

3.4.2 ASSIGN LUNO (AL). The Assign LUNO command is used to establish the I/O devices
that will perform I/O under PX9MTP.

Syntax definition:

AL {b . ..} <luno> {b . ..} <device>

The command is terminated by a carriage return.

Parameters:

luno Logical unit number - number associated with the I/O device.

device Character string which is the name of a devIce.

The acceptable device names are as follows:

LOG 733 data terminal keyboard and printer.

DUM Dummy device. Input from 'DUM returns an end-of-file; output
to DUM is discarded.

CSI Left cassette drive on the 733 data terminal.

CS2 Right cassette drive on the 733 data terminal.

Default LUND assignments: If the AL command is not entered, a set of default values is used
for the PX9MTP LUNO assignments. These default LUNO assignments are:

LUNO
(Hexadecimal)

o
1-5
6
7
8
9-F

3-10

Device

LOG (cannot be changed)
DUM
LOG
CSI
CS2
DUM

Digital Systems Division

~-------~ 945255-9701

Although the AL command may be omitted and default assignments used for PX9MTP LUNOs,
neither parameter may be omitted if the AL command is used.

Error message:

MX02 Missing required parameter, invalid device name, or invalid
LUNO. Re~nter the command.

Application note: The AL command may be needed when using the assembler, text editor,
standard loader, linking relocating loader, upfront loader, absolute loader, and absolute dump
facilities. The user should refer to the documentation for the appropriate software component to
determine the LUNOs used by that component.

Examples:

.AL 2 CS1

.AL,1,OUM

The first example assigns LUNO 2 to cassette CSl. The second example assigns LUNO I to the
dummy device. Both statements are terminated by a carriage return.

3.4.3 LOAD PROGRAM (LP). The Load Program command initiates a program load with the
standard loader.

Syntax definition:

LP [{i . ..} [<Juno>] [{i . ..} <bias>]]

The command is terminated by a carriage return.

Parameters.:'

luno Logical unit number of the input device.

bias Base address of the relocatableobject code.

Parameter default values:

If the logical unit number is not specified, a value of 7 is used. Unless reassigned by an Assign
LUNO (AL) command, LUNO 7 is assigned to cassette CSI.

If the bias address is not specified, a value of A0 16 is used. The bias may be overridden by the
appearance of a D tag character in the object code.

Description: The 990 standard object code loader resides as a firmware program in a 256-word
ROM. When the software system is under control of PX9MTP, a program is loaded by a call to
the ROM loader. After the program is loaded, the program entry point, if it exists, is placed in
the user PC; then control is returned to the monitor. The user may- execute or debug his
program by issuing an EX or RU command to the monitor.

3-11 Digital Systems Division ,

~-------~ 945255-9701

Error messages:

LDOO

LDOI

Examples:

Invalid tag or I/O error. Re-enter the command. If the error
persists, the tape may be bad or not readied.

Invalid LUNO. Re-enter the command.

.LP 7,1000

.LP

. LP" 1000

The first example has the load LUNO and bias address supplied. The second example loads from
a default LUNO of 7 at a bias address of AO I6 . The third example loads from a default LUNO
of 7 at the bias address supplied (l 000 16)'

3.4.4 LOAD OVER LA Y (OV). The Load Overlay command is used to load an overlay into the
monitor transient area.

Syntax definition:

OV [{b . .J <luno>]

The command is tenninated by a carriage return.

Parameter:

luno Logical unit number of the input device.

Parameter default value: If the logical unit number is not specified, a value of 7, the logical unit
number nonnally assigned to tape cassette CSI, is used.

Description. The monitor has an 850 word transient area reserved for overlays. Overlays consist
of one or more command service routines. The following commands are overlays: .

Overlay
Module

2

3

3

4

4

5

6

Function

Dump in Absolute Format

Load Program in Compressed Absolute Format

Link and Load Program

Set Trace Definition

Set Trace Region

PROM Programmer Standard

PROM Programmer

Perform BNPF Operation

Perform HIGH/LOW Operation

3-12

Command
Mnemonic

DP

LA

LL

ST

SR

PS

PP

DB

HL

Digital Systems Division .

~------
Overlay modules 1, 3, and 4 contain two commands each. The commands resident in the overlay
are printed when the overlay is loaded. Overlay module 4, which is a special overlay (see the
description of the PL command in paragraph 3.4.5), must be loaded with the PL command.

The standard loader is called to load the overlay. If a checksum, tag or I/O error occurs during
loading, control is returned to the monitor and the error message LDOO printed. After the service
routine is loaded, the command is activated. All commands residing in the transient area prior to
the overlay are disabled. If an attempt is made to execute a command that normally resides in
the overlay but is not presently there, an error message of MX03 is printed.

Error messages:

LDOO

LDOI

Example:

.ov 8
!5P""
LA

Invalid checksum, tag or I/O error occurred
during loading.

Invalid load LUNO.

The overlay containing the DP and LA commands is loaded from the device assigned to LUNO
8.

3.4.5 LOAD PROM PROGRAMMER (PL). The Load PROM Programmer command is used to
load the PROM Programmer software module into memory.

Syntax definition:

PL { t,' ... } [<Iuno>[{ 0' ... } <bias>]]

Parameters:

luno

bias

Logical unit number of the cassette drive on which the
PROM Programmer (PROMPG)is mounted.

Load addresses for the extended PROMPG program.

Parameter default values:

If luno is not specified, a value of 7 (cassette CS I) is used.

If bias is not specified, the supplied value is IC8016 (the address immediately following the end of
user memory minus 380 16 to cover the length of the extended PROMPG program).

3-B Digital Systems Division

~~----------------~--~ 945255-9701

Description: PROMPG consists of an overlay module and a memory extension module. The over­
lay module is loaded into the monitor transient area, and the memory extension module is loaded
into the highest numbered address locations of user memory.

When the PL command is issued, the overlay will be loaded and the following printed:

PP
PS

The memory extension will then be loaded into user memory at the specified bias address.

If the user attempts to enter a command before the memory extension module has been loaded,
error message LDOO will be printed. This may occur even though the overlay module load has
been indicated by a printout.

Error messages:

LDOO

LDOI

Examples:

.PL 8
PP
PS

Invalid tag or I/O error. Reenter the command. If the
error persists, the tape may be bad or not
readied.

Invalid LUNa. Reenter the command.

The PROM programmer module is loaded from the device assigned to LUNa 8. After the overlay
resident module is loaded, PP and PS are printed. The memory extension module is then loaded
into the top of user memory.

3.4.6 LINK AND LOAD PROGRAM (LL). The Link and Load Program (LL) command starts
up the relocating linking loader, PX9LAL. PX9LAL must be loaded into the transient area with
the OV command before executing the LL command.

Syntax definition:

LL

The command is terminated by a carriage return.

3-14 Digital Systems Division

)17.7\ ______ _ ~ 934255-9701

Description: PX9LAL loads program modules into the memory of the Model 990 Computer and
performs address modification for relocatable code. PX9LAL also performs the linking defined in
the program modules and prints a load map. After all modules have been loaded, control returns
to the monitor. Details of PX9LAL operation are contained in the next paragraph.

Example:

.LL

After the user has entered the command, a series of questions is printed. The answers provide
the information needed to complete the linking and loading. .

3.4.6.1 Description of PX9LAL Operation. PX9LAL loads the first object module supplied.
Subsequent object modules will be loaded only if the first six characters of the Program
Identifier (lDT) assembler directive character string of the module match an unsatisfied external
reference included in a previously loaded module. This makes it necessary for the user to
identify the modules desired since modules not referenced are not loaded. This also allows the
user to maintain a library of program modules on cassette. .

A program identifier (lDT) assembler directive allows a program name of up to eight characters,
but PX9LAL recognizes and prints only the first six. Therefore, the first six characters of all IDT
program names must be unique. .

End-ol-Module and End-ofFile Records. A module is terminated by an end-of-module separator
record, which is denoted by a colon as the firSt character of the record. The end-of-module
record is generated by the assembler when an "END" statement is encountered. The end-of-me
record is generated by the assembler when an end-of-me record is encountered by the assembler
on the source input. This enables the user to batch-assemble source and batch-load object
modules. The loader will, continue loading modules from one cassette until an end-of-file record
is encountered.

PX9LAL Symbol Table. The symbol table is built in the user area. The length of the symbol
table is determined by the number of symbols externally defined or referenced in the program
loaded by PX9LAL. Ten bytes of memory are required for 'a symbol table entry for each
symbol. PX9LAL builds the symbol table toward the low-order addresses in memory, beginning
at the top of user memory.

User Program Load Addresses. PX9LAL loads user programs into the user memory address space.
The user program may not be loaded. in a memory area with a higher address than the current
lowest address of the symbol table. If the user attempts this, an error message will be printed.

As described in Section VI, the object code may contain a load point preceded by a tag
character of D. The tag character and the associated load point must precede the other tag
characters and fields of the program module. PX9LAL loads the relocatable code of the module
beginning at the specified load point unless the load point is an odd addreSS (not on a word
boundary). In that case, PX9LAL loads the relocatable code beginning at the word\boundary
preceding the address. When no load point is specified for the first module loaded, PX9LAL
loads the relocatable code beginning at a default address (A0 16). When no load point is specified
for a subsequent module, PX9LAL loads the relocatable code beginning at the first word
boundary following the last byte of the preceding module.

3-15 Digital Systems Division .

~-------~ 945255-9701

Loading of Program Modules. PX9LAL loads a program module by placing the data of the
module in the proper addresses. The object program may contain both absolute and relocatable
code. PX9LAL places data at absolute addresses supplied in the object program, and modifies
relocatable addresses to obtain actual memory addresses into which it places the associated data.
Absolute data is placed in memory directly, but relocatable' data is modified and placed in
memory. Relocation and the modifications required for relocation are described in a subsequent
paragraph .

. As PX9LAL loads a module, it processes the data in the module that specifies the linking to be
performed. This data consists of symbols from the operand fields of DEF statements, and
symbols from the operand fields of REF statements. PX9LAL maintains a list of symbols and
the corresponding memory addresses to perform the required linking, and to define required
modules. L.nking is described in a subsequent paragraph.

After the user enters uE" in response to the "LOAD/END?" message, PX9LAL prints a list of
symbols that represent any unresolved references and the entry point for the program. The user
may either prepare a module for loading to resolve the references and request PX9LAL to load
it, or return to the monitor.

~Relocation. The relocation provided by PX9LAL allows the relocatable segments of program
modules to be'loaded into available memory sequentially.

WitlUn relocatable segments of a program module, all addresses are relative to the start of the
first relocatable segment of the program module. PX9LAL computes the corresponding memory
address by adding' the memory' address of the load point of th~' program module to the
relocatable addresses.. '

Data within the program module that represents a relocatable address or is derived from a
relocatable 'address (by evalUating an expression, for example) is relocatable even though it may
appear at an absolute address. PX9LAL modifies this data by adding the memory address of the
load point of the program module to the data.

B'y modifying addresses and data as previously described, PX9LAL makes the necessary adjust­
ments for executing the program properly from any area of memory. This modification precedes,
and is independent of, any required linking. .

Linking. The purpose of linking is to integrate two or more program modules as they are loaded,
resulting in a program in memory which the computer can execute properly, i.e., any address
required by more than one module must be placed in all locations that reference the address.

The object code of each module contains the symbols defined in the module for use in other
modules: A value is associated with each symbol. .

The object code of each module also contains any symbols required in the module but defined
in another module. Associated, with each symbol is an address of a location into which the value
associated with the symbol must be placed. When the value is required in more than one location
in the module, these locations are chained together with each location containing the address of
the next location, and the last location in the chain containing zero. As supplied by the
assembler, the addresses in the chain may be either absolute or relocatable.

To link the modules, PX9LAL processes the chain associated with each external symbol by
placing the corresponding address in each location in the chain until it has placed the address in
the location that contains zero, the end of the chain.

3-16 Digital Systems Division ,

J175_~ ____ _ ~ 945255-9701

The object code of a module may also contain a symbol similar to an external reference, but
different in two respects. The symbol is the first six characters of the IDT character string of
one of the program modules to be linked, and a zero value is associated with the symbol. The
symbol is used by PX9LAL to identify a required module. The zero inhibits any attempt to
perform linking. When more than one program module is to be loaded, the first module must
contain at least one reference of this type and may contain one for each module of the load.

Printed Output. The printed output of PX9LAL is a full or partial load map. This map shows
the name and load point of each module that is loaded. The full map also includes the symbols
and the corresponding memory addresses of any external definitions in the module. Both types
of maps contain only names of modules that have been loaded because they were referenced.

3.4.6.2 Operational Messages. When PX9LAL is started by the LL command, a series of
messages requesting user responses are given. The messages are the following.

LD PT?

Load Point. The user should input the hexadecimal memory location of the load point
for the object module. If a carriage return is entered, the default value of 0 will be
assumed.

LD BI?

Load Bias. The user should input the hexadecimal value of the load bias for the object
module or modules to be loaded. If a carriage return is entered, the default value
OOA0 16 will be assumed.

The load point and load bias specified above are used in determining how the code is
relocated and the memory address where the code will actually be loaded. Code
assembled with an absolute origin (AORG) directive will be loaded at the absolute
address determined by the directive plus the load point.

MEMLOC = ABS ADDR + LD PT

Code assembled with a relocatable origin (RORG) directive will be loaded at the
relocatable address determined by the directive plus the load bias plus the load point.

MEMLOC = REL ADDR + LD BI + LD PT

Note that the relocation is performed on the code using the load bias only. Specifying
a load bias is equivalent to placing a D tag with that bias before the module being
loaded. The load point is only used to determine the actual memory location where
the code will be loaded.

Object code loaded with a load point not equal to the default 0 is not executable. This
feature has been included in the linking loader for special Prototyping System
applications.

3-17 Digital Systems Division

Jd7s\. o. __ -:--------'----~ ~45255-9701

F/P LIST?

Full or Partial List. The user enters a· character to specify the type of memory map
desired. When the user enters an "F", PX9LAL prints a full memory map. When the
user enters a "P", or any other character, PX9LAL prints a partial memory map. A
partial memory map lists the IDT name and load point of each module that is loaded.
Multiply-defined references are shown by one or more "Ms" following the load point
of the module in which the multiple definition occurs. The partial map does not
identify the multiple definitions, but does indicate the number of multiple definitions
in each module.

A full memory map lists lOT name and load point of each module that is loaded like
the partial memory map. The full memory map also includes the symbols and the
corresponding memory addresses or any external definitions in the module. Names of
modules that are not referenced do not appear in either type of map. Multiply-defined
references are each identified by an "M" at the end of the external definition line.

LOAD/END?

Load or End. To load a program module or modl.Jles, the user should position the
cassette to the desired object module and enter an "L" which may be followed by the
hexadecimal logical unit number of. the input device. (See Section II and paragraph
3.4.2.) If no number is input, a default LUNO of 7 will be assumed. If a number is
input it must be between hexadecimal 0 and F inclusive and of the form "L<O>'; with
no embedded blanks. .

Example: LOAD/END? L8

When the load option is selected, PX9LAL loads all the object modules on the
positioned cassette until an end-of-file is encountered. Unless a fatal error is encoun­
tered while loading, PX9LAL will repeat the previous message after the modules have
been loaded. At that point, the user may position to another module on cassette to be
loaded.

When all modules required for the program have been loaded, the user should enter an
HE" to end the load process.

When the user enters an "E", PX9LAL prints any undefined symbols and the following
message to identify the entry point of the loaded program.

ENTRY = XXXX

If no entry point was specified, the program assumes a default of OOA0 16 •

The follQwing question is then asked.

TERM/CONT?

Terminate or Continue. The user should enter "T" to terminate the load process or
"c" to continue. If terminate is selected, control returns to the monitor. At that point
the program counter register has been set to the entry printed previously and the user
may enter the "EX" or "RU" command to execute or debug his program.

3-18 Digital Systems Division

~-------~ 945255-9701

The user may select the continue option in order to load more program modules,
possibly to satisfy undefmed references. If continue is selected the "LOAD/END"
question will be asked again.

3.4.6.3 Error Messages. PX9LAL prints an error message when it detects an error. One message
is for a command processor error. There are four fatal errors that terminate execution of
PX9LAL following the printing of the error message. There are four other error messages that
serve as warnings. PX9LAL continues the load operation following the printing of these
messages.

Command Processor Error. This message is:

MX03 PX9LAL Not Loaded in Transient Area

PX9MTR prints this message when it determines that PX9LAL is not resident in the monitor
transient area. Load the overlay and reenter the command.

Fatal Errors. The first inessage is:

**LLOI ** Illegal Load Sequence

In a module, PX9LAL will accept no other field except a field having a tag character of D ahead
of a field that is preceded by a tag character of O. PX9LAL will not accept a field preceded by
tag character D after it has read a field preceded by the tag character O. When PX9LAL reads a
field . of the object code out of sequence, it prints this message. PX9LAL then terminates and
restarts. The user may recover from the error by correcting the sequence of the object code and
reloading the program.

The second message is:

LL02 Invalid Load Code

PX9LAL prints this message when it reads an invalid character as the tag character. Valid tag
characters processed by PX9LAL are the hexadecimal digits 0 through D and P, G,and H. Tag
characters G and H are symbol table tags in the 990/10 Disc System Software, but PX9LAL
ignores them.

When this error occurs, the PX9LAL module (but not the entire link sequence) terminates and
restarts. The user may recover from the error by correcting the object code and reloading· the
program. The error in the object code may be an error in entering the tag character. It may also
be a legitimate tag character used incorrectly, causing PX9LAL to consider a character in a label
or a character string as a tag character.

The third message is:

LL03 Missing End Statement

PX9LAL prints this message when a second tag character 0 is followed by a nonblank IDT
character string in the same object module (no end-of-module record between the two). An
object module may contain more than one field with a tag c.haracter of 0, but the IDT character
string associated with a subsequent 0 tag must be blank.

3-19 Digital Systems Division ,

~-~----------~ 945255-9701

When this error occurs, PX9LAL terminates and restarts. The user may recover from the error by
correcting the object code and' reloading the program. The obvious correction is the insertion of
an end-of-module record preceding the second field that has a tag character of O. However, when
the error results from improper concatenation of object code files or omission of one or more
object records, additional co~ction may be required. '

The fourth message is:

LL04 Load Address Error

PX9LAL prints this message when a load a'ddress is out of the user area or would cause PX9LAL
to load data over the symbol table.

If this error occurs, PX9LAL terminates and restarts. The user may recover from this error by
changing the load bias if the bias is greater than the default. PX9LAL loads programs in the user
area of memory and builds a symbol table at the top of user memory directly below PX9MTP.
The symbol table contains the IDT character string of the first module loaded, and each symbol
is used in an external reference or definition. Ten bytes of memory are required for each entry
in the table.

Nonfatal E"ors. The first message is:

LL05 Previous Load Module Error

PX9LAL-prints this warning message when the first six characters of the IDT name of the ,_
current module match the first six characters of the IDT name of a previously loaded module or
match a previously loaded externally defined symbol: .PX9LAL then skips over records to the
end of the module and _ positions the tape to the beginning of the next module. The message
LOAD/END is then printed. The. user should identify the module to which the message applies.
When the module is required instead of the previously loaded module, either remove the first
module, or place the required module ahead of the other module in the load sequence, and
reload. When both modules are required, change the IDT character string of either module, and
reload. When the first six 'characters of the' IDT character string are identical to a symbol
externally defmed in a module of the program, change either the symbol or the IDT character
string and reload. When the module is not required, the mesage may be ignored;

The second message is:

LL06 Checksum Error~Retry

Each record of an object module contains a checksum. The checksum is the 2's complement
of the sum of the binary values corresponding to the ASCII representations of the characters in
the record, including the checksum tag character, and is expressed as four hexadecimal digits.
PX9LALcomputes a checksum of the record it has read and compares the result with the
checksum from the record. When the checksums are not equal, PX9LAL prints this message.

The user may position the object module tape for reading the record again by taking the
playback cassette off-line and backspacing the tape one record. (To backspace the tape one
record, set thePLA YBACK switch to LOCAL, and press the REV side of the BLOCK
FWD/REV switch in the PLAYBACK CONTROL area of the upper switch panel.) If the user
does not change the position of the tape, the checksum -error will be ignored. To continue the
loading process, the user must enter a- carriage return on the keyboard. .

3-20 Digital Systems Division .

~~-------------------~ 945255-9701

A checksum error which represents an inaccurate reading of the object code should not be
ignored. The record should be reread at least once in the attempt to read it correctly. However,
a checksum error may be the result of altering the contents of an object record without
removing the checksum field. This type of checksum error may be ignored.

The third message is:

M Multiply-Defined Symbol

PX9LAL prints an "M" for each multiply-defined external definition encountered when pro­
cessing a module. When a full memory map is being printed, the "M" is printed on the external
definition line. When a partial memory map is being printed, an "M" for each multiply-defmed
symbol in the module follows the module name and load point.

When the second definition is required in the program instead of the first, change the load
sequence to load the program module that contains the desired definition first and reload. When
both definitions are required in the program, change one of the symbols and reload. This may
also require changing corresponding references to avoid other errors. When the symbol of the
defmition contains the first six characters of the IDT character string of a previously loaded
program module, change the symbol and corresponding references or the IDT character string
and its reference, and reload. When the definition is not required in the program, ignore the
message.

The fourth message is:

UNDEFINED Undefmed Symbols

When all modules have been processed, and the user enters "E" to the "LOAD/END" option,
PX9LAL scans the symbol table to find any symbols that are not defined. If any undefined
symbols are found, this message followed by a list of undefmed symbols is printed.

An intentionally undefmed external reference (dummy reference) that is included in one of the
modules of a program pennits a type of load-time patching. If external references have been
inadvertently omitted, a program module may be generated that uses the deliberately undefmed
reference as the IDT character string, and consists of absolute external definitions to satisfy
program requirements. PX9LAL loads this module, and the program is ready for execution. If
the deliberately undefmed reference is the only undefined reference, the program may be
executed properly with the reference remaining undefmed. This technique is intended for use
during program development.

3.4.6.4 Examples of Load Map Printouts. The following five examples show load map printouts
of load operations with and without linking.

3-21 Digital Systems Division

Jd75\ ______ _ ~ 945255-9701

Example 1:

~~
LL
.!:.b.

LD PT?
LD SF 10')
F"P LIST? .E.

LOAD··END7 1.

:\REF 01 ;).)
• PI" IN TC t)196
• 13ETCt-tR 01.:-t4
• TERM i)1 0:::3

PARSEM C12I14
• PARSE 031';
• DEFPR -)470
• OPtfDPR (1474
• OPERPR 0472
• :STMT 1)466

Cr{PM 04D6
• cn'p OSlE

PRTBM 056:3
• PP.TB 056:3

C.S·r'Mt1)6B6
• o:::s··m 06B6
.• I·s·m ·)718
• N:'<:TLOC ')72A
• END:S','M lE:3A
• FSTs'm 072C

:S'l'MRFM lE46
• :S','MREF lE46
• OVFL lE7C

S· ... ~l.DFfol lE'3C
• :S','MDEF lE9C

LOAD··END? E
ENTRY 0: 0100

TERM···cmn'· 1.

Example 1 shows a full load map printout of a link and load of seven modules. The default load
point of 0 is taken and a load bias of 010016 is entered. The module names are XREF,
PARSEM, CTYPM, PRTBM, CSYMM, SYMRFM, and SYMDFM. The address following XREF
shows that the module XREF is loaded at address 10016 , The addresses following each of the
other module names specify the hexadecimal addresses where each module is loaded. The symbol
names preceded by asterisks are the external definitions supplied by the module, and the
absolute addresses corresponding to the defined labels are also printed. The external definitions
PRINTC, GETCHR, and TERM are defined in the module XREF. PRINTC is at address 019616 ,

GETCHR is at address 0IA4'6, and TERM is at address 01C8'6'

All of the files are on one cassette with an end-of-file after the last module SYMDFM. Therefore,
all the modules were loaded, and the LOAD/END question was then printed. Since all modules
had been loaded, an "E" was entered to end the load process. The entry point of 0100 16 was
then printed.

3-22 Digital Systems Division .

~~-------------------~ 945255-9701

Example 2:

! I • .!:::.!:::..

LD PT" 1)

LD .3 I? 10,)
F·P LISF P

LOAD·Et·W? L

:-:REF 1)1 00
PAR:~EM 02B4
CT/PN 04D6
PPTB~l ,)56:3
C::'''~lrl 06=:':,
::"'plRFI'l 1 E46
S','t1DFM 1 E'~C

LOAD Etl!l? £.
EtHR'r':: I) 1 ,j J

TERM/COHE 1.

Example 2 shows a partial load map printout of a link and load of the same seven modules
loaded in example 1.

Example 3:
; ,

• !::.!::.

LII pr-;'
LD BF
F·P LEE F

IOPTE::
LDAD···'Er-lD? 1_:3

IDP2

lOP3

IOP4

lOP5

IOP6

IDP?

IDP:3

IDF"~

•
•
•
•
• •
•
•
• •
..
•
•
•
•
•

O')A')

lODe
t'lABELL lODe
10F6
E~iDF IL 10F6
1106
LEADER 1106
1126
ENDF 1164
EI'iDL 116:3
PCHCP1 1154
PU~iCH 1126
117:3
CJHCH~: 11 :32
CtHRni 11 :3A
CDI'IPET 11 ?:3
l1'~E
REDPtH 11'~E
l1AC
PRINT l1Ae
PRTIT 11.B4
11DCt
KE',' lIDO
1202
READ 12 1)1::

PEDHI 122A

3-23 Digital Systems Division .

4P 945255-9701

IIJP1.) 124:3
• Puntt 1248

IIJP11 1270;;
• 8CREEN 1276

IIJP12 1292
• TABCHt< 1294

IIJP13 12C6
• CONTRL 12C6

IIJP14 12EC
• FORM 12EC

ICP15 1322
• FORI'! 1322 M
• LFCR 1322
.. LFCR2 132b

IOP16 1358
• CttTCHI(136b M
.. CNTRTI'I 1366 M
• COI'ITRL 1366 M
• FORM 1366 M
.. 11'1 135'3
• LFCR 130;;6 1"

• PRTIT 13':'6 11-
.. PUTII'I 1366 M
• 8CREEI'I 1366 1'1

IOP17 1368
• OUTP 1368
.. TABCHK 1368 11-

lOP1S 13SC
• FLAG 138C
• OUT 138E
• OUTP 138E 1'1
• REDII'I 13B8 M
• TABCHt< 138E M

IOP19 13CS
• STATUS 13C8

IIJP20 '13CE
• LOAD 13D4
• REWNDI 13:00
• REWI'ID2 13CE

IOP21 13F4
• BACK 13F4

IOP22 140C
• ULOADI 140E
• ULOAD2 140C

IIJP23 1414
.RECRD1 1416
• RECRD2 1414

lOP24 1426
• REWIND 1426

IOP25 1450
.. RDC 1450

IIJP26 140;;6
• STATA:S 1466

IIJP27 147A
• DELA'(147A .. DELA'(1 147E·

LOAD..-EI'ID? E
EI'ITRY = 1 ODS

TERI't COl'lT? 1..

3-24 Digital Systems Division ,

fl17.5\ _______ _ "*' 945255-9701

Example 3 shows a full load map printout of a link and load of 28 modules. The default load
point and load bias values of 0 and A0 16 respectively are taken. The first module IOPTES is on
one cassette and the other 27 modules are on a second cassette. The "L" response to the first
LOAD/END question specifies a load from the tape mounted in the drive assigned to LUNO 7.
After the first module is loaded and the end of file encountered, the LOAD/END question is
asked again. The response "L8" specifies a load from the tape mounted in the drive assigned to
LUNO 8. The Ms printed after the absolute addresses of the external definitions indicate that
these references are multiply defined. When a reference is multiply defined, the first encountered
definition is used. The response "E" to the final LOAD/END question ends the load process.
The entry point of IOD8 16 is then printed.

Example 4:

.LL

LD PT?
LD BI?
F.,·P LI:H? £.

LOAD··END? .h

lIJPTE:S (I,)Ftl)

LOAD.···END, E
ur·mEF

BACK
Cq~fRET
ENDFIL
Hi
lOP 1 (I
IOPll
IOP12
lOP 1:3
IOP14
IOP15
IDF'16 .
IOP17
I OF' 1:3
lOP 1'3
IIJP2
IOP20
IOP21
IOP22
IOP2:3
rOP24
IOP25
IOP26
IDP2?
IOP:3
IOP4
IOP5
lOPIS
IOP7
I1JP:3
IOP'3
I OP9·3 (I
~:E''''
I_EADER
MABELL
OUT
OUTP
PRINT
PUNCH
READ

3-25 Digital Systems Division .

:~~ __ 9_4S_2_S_S-_9_70_1_. ____ ~ ____ ~ ____ ~ __ ~ ________________________ __

RECRDI .
RECRD2
REDPNT
REIJ.ltml
REIJ.INII2
;;;TATUS
ULOADl
ULOffD;::

EIiTR'j'= . 10.D:3

Example 4 shows a full load map printout of a load of the first modl,lleused in example 3. The
"E" response to the second LOAD/END question terminates the load process. Any. undefined
references are then printed. These undefined references are external references specified in the
module IOPTES, To continue loading to satisfy the undefined references, a "c" could be entered
when the "TERM/CO NT" question is asked. The user could then continue the load- process.

Example 5:

.1:1.

LD PT·? 10.)0
LD .BI?
F··-P LIST? .E.

IDP':;"~O ClOffO
• I'1ABELL ,)I)AO

LOffD.·'END?E
ENTR'y' = OOA')

TERM'-CONT? .I.

Example 5 shows a full load map printout of a load of one module. The load point specified is
100016 and the default load bias of A0 16 is selected. The printout specifies that the load point
of I0P990 is A0 16 and the symbol MABELL is at location A0 16 • These are the addresses at
which this program will execute and all relocation is done with this bias. However, the
reloeatable cpde is actually loaded starting at 1 OAO I6 , the sum of the load point and the load
bias.

·3.4.7 DUMP IN ABSOLUTE FORMAT (DP). The Dump in Absolute Format (DP) command is
used to dump an area of memory to cassettt: tape in compressed absolute data format. This
command must be loaded into the transient area, with the OV command before it can be
executed.

Syntax definition:

DP {i . ..} <start addr> tb . ..} <end addr> [{i . ..} [<entry pOint>]

[~.J <program name>] [{t, . ..} P 1]

3-26 Digital Systems Division

~------------­~ ~45255-9701

MS05 Required parameter not entered. Reenter the command with
the parameter.

MXOI Unrecoverable I/O error.

Examples:

.DP 1000,1030,1004,DUMPIT

.. DP 1000,1040

In the first example, the bytes from location 100016 up to and including 1030 16 are dumped.
The entry point is 100416 , and the name of the program is DUMPIT. In the second example, no
name or entry point was specified when the memory area was dumped. In both examples,
because P is not specified, the end-of-module tag and the end-of~fi1e marker will be written.

3.4.8 LOAD PROGRAM IN COMPRESSED ABSOLUTE FORMAT WITH VPFRONT LOADER
(LU). The Load Program in Compressed Absolute Format with Vpfront Loader (LV) command
initiates a load of absolute code.

Syntax definition:

The command is tenninated by a carriage retum~

Parameters:

luno Logical unit number of the input device.

bias Base address of the relocatable upfront loader.

Parameter default values:

If the logical unit number is not specified, a value of 7, nonnally assigned to tape cassette CS 1,
is used.

If the bias address is not specified, the upfront loaderis loaded at a location I BO l6 bytes below
the beginning of the monitor.

Description: Compressed absolute format code may be loaded by including a short loader (called
an upfront loader) at the beginning of the code.

The upfront loader is IBO l6 bytes of relocatable code, in standard 990 object code module
format, placed in front of a load module of compressed absolute format code in order to reduce
the loading time. Executing the LV command causes the upfront loader to be loaded by the 733
ASR ROM loader. After the upfront loader is memory resident, control is passed to it and the
compressed absolute load initiated. When the user program is loaded, the program entry point is
placed in the user's PC register and control is returned to the command string processor. The
user must be careful to put the upfront loader at a position in the user memory where it will
not be overlayed by the program being loaded.

3-28 Digital Systems Division

J,M ____ ~-~ ,~ 945255-9701

Error message:

LOOO Load error.

LOOI Invalid LUNO.

Examples:

.LU

.W7/1BAO

.LUII 1 BAO

The ftrst and third examples load froin a default LUNO of 7. The ftrst example loads the
upfront loader at a default bias address IB0 16 bytes below the beginning of the monitor. The
second example has the load LUNO and bias address supplied. The third example has the load
bias supplied.

3.4.9 LOAO PROGRAM IN COMPRESSED ABSOLUTE FORMAT (LA). The Load Program in
Compressed Absolute Format command loads object code that has been stored in a compressed

, absolute format by the Oump in Absolute Format (OP) command. The LA command must be
loaded into the transient area with the OV command before it can be executed.

Syntax definition:

LA [{;, . ..} <tuno>]

The command is terminated by a carriage return.

Parameter:

luno Logical unit number of the input device.

Parameter default value: If the logical unit number is not specifted,a value of, 7, normally
assigned to tape cassette CS I, is used.

Description: To execute the LA command, the absolute loader must be resident in the transient
area. If it is not there, it must be loaded as an overlay by using the Load Overlay (OV)
command.

If the load is successful, the module name is printed if it was defmed and the entry point
address is placed into the user's PC register. Control is returned to the monitor after a successful
load or if an error occurs. Refer to Section VI for a description of compressed absolute object
code format.

Error messages:

LOOO Load error.

LOOI Invalid LUNO.

MX03 Command not resident in transient area. Load the overlay
,and reenter the command.

3-29 "i/~Digital Systems Division ,

Jd1s\.O ______ _ ~ 945255-9701

Examples:

.LA 8
DUMPIT

.LA

In the first example, the module on LUNO 8, which was created using a Dump in Absolute
Format (DP) command, is loaded. (The program name DUMPIT was assigned to the module.)
The module is loaded and the program name printed. The entry point is put in the user's
program counter register; this address will be displayed in the programmer panel data indicator
lamps.

The module loaded in the second example is input from default LUNO 7 and did not have a
name associated with it when it was created with the DP command.

3.4.10 EXECUTE USER PROGRAM DIRECTLY (EX). The Execute User Program Directly
command is used to start a user program. (The one-pass assembler and the text editor are loaded
as user programs.)

Syntax definition:

EX

The command is terminated by a carriage return.

Description: The program is executed directly by the 990 computer without using the SIE or
trace features. Execution is started with the PC, WP and ST that would be displayed if an
Inspect Registers (IR) command were executed.

Application notes: In order to regain control from an executing user program, the user must
intervene at the programmer panel. The monitor may be restarted by transferring control to its
starting memory location (the first word of the monitor memory area).

The processor registers (the WP, PC and ST registers), the contents of which may be displayed
by entering the Inspect Registers (IR) command, are not updated when a program is executed
with the EX command.

A user program may return control to the monitor by using the end-of-program supervisor call.

If the user runs a stand-alone program, for example using the CRU to perform I/O, he must
inspect the processor registers from the programmer panel.

3-30 . Digital Systems Division

J175\ ______ _ ~ 945255-9701

Example:

.IR
PC=046C WP=OOOO ST=OOOO
.EX
ASM/TERM? A

ASM/TERM? I

.lR
PC=046C WP=OOOO ST=OOOO

The EX command begins execution with the PC, WP and ST registers equal to the values
obtained when the Inspect Registers (lR) command is invoked. A program run under EX does
not change the contents of these registers. The second IR command shows that the contents
remain the same.

3.4.11 EXECUTE USER PROGRAM UNDER SIE OR TRACE (RU). The Execute User Pro­
gram under SIE or Trace command provides controlled execution of the user's program.

Syntax· definition:

RU [{i . ..} <instruction count>]

The command is tenninated by a carriage return.

Parameter:

instruction count Maximum number of instructions to be executed
before returning to command mode. A value of
o indicates that no instruction limit applies.

Parameter default value: The value of the instruction count at the last entry into command
mode is used as the default value. If the previous RU command has exhausted the instruction
count, the default is 0, implying no instruction limit. The system is initially loaded with a
default value of O.

Description: Instructions in the user's program are executed one at a time using either the
hardware SIE feature or the software trace interpreter. The user may specify one of these two
modes of operation with the Set Trace Region (SR) command (paragraph 3.4.26).

Before the monitor executes a user instruction, it checks whether the instruction is within a
defined trace region. If the instruction is within a trace region, the trace interpreter is called and
the instruction traced. If the instruction is not within a trace region, the instruction is executed
using Single Instruction Execution (SIE. described in paragraph 3.3.1). In both cases, the user's
WP, PC, and ST registers are updated after each instruction executed. The monitor checks
whether a breakpoint has been reached and if so, prints out the user's registers and snapshot, if
defined. If a snapshot is assigned to a breakpoint, the monitor continues execution after the
breakpoint has been reached, without operator intervention. If no snapshot was specified, the
monitor returns control to the command processor. (Refer to the descriptions of the SB and SS
commands in paragraph 3.4.20 and 3.4.23.) If the run count, number of instructions to be

3-31 Digital Systems Division

~.o ______ _ ~ 945255-9701

executed, is depleted, the monitor returns control to the command processor. Otherwise the
monitor continues execution of the user program.

Error message:

MX04 Attempt to execute in trace mode when the instruction trace
overlay is not loaded.

Application notes: Be sure that the processor registers, are properly set before beginning
execution. The contents of the registers may be inspected with the Inspect Registers OR)
command and modified as needed with the Modify Registers (MR) command. The initial PC is
set by the loader when a user program that specifies an entry point is loaded. The starting
memory location of a program is specified in the END statement of the program; a label that
appears within the program for this purpose is referenced in the END statement. If two or more
user programs are competing for specification of the starting location, the last one loaded takes
precedence.

The user may regain control of the program which is executing under SIE or instruction trace by
pressing the escape (ESC) key on the terminal keyboard. If the user's program is using monitor
I/O support,pressing the' ESC key may cause an escape character to be returned to the program
rather than to the monitor; the user should be aware that the escape character may be handled
in these two different ways since the results of program operation maybe affected.

Interrupts are processed as they occur by the user program using the SIE mode of execution.
When running under the trace mode, interrupts and extended operations (XOPs) are executed.
directly.

When running under SIE, an IDLE assembly language machine instruction is handled like an NOP
instruction. The SIE level 0 interrupt causes the computer to continue execution.

The user must be aware of how the 733 ASR operates when he decides to enable interrupts
since interrupts can occur when character keys are pressed. PX9MTP is not interrupt driven;
therefore, significant problems may result. It is recommended that the interrupt mask be set if
possible so that the 733 ASR cannot interrupt.

The overhead when executing under SIE is approximately 100 instructions for each user
instruction. Using trace, the overhead is approximately 170 instructions for each user instruction.

It is often convenient to use the trace mode of execution when no information is being printed
(by setting a null trace type). This is similar to executing using the SIE processor except that
interrupts run at full processing speed. A variable trace can also be used to detect modification
of particular memory locations. (Variable trace is explained in paragraph 3.4.26.) .

Examples:

.RU

.RU 5

In the first example, the maximum number of instructions to be executed before returning to
command mode is the value used at the last entry into command mode, or is 0 initially or if the
previous RU command has exhausted the instruction count. The second example specifies an
instruction count of 5., .

3-32 Digital Systems Division

~~------------------~ 945255-9701

3.4.12 MODIFY MEMORY (MM). The Modify Memory command displays the address and
contents of a memory word and accepts a new hexadecimal data value from the user.

Syntax definition:

MM [{b.J <memory address>]

The command is terminated by a carriage return.

Parameter:

memory address Address of memory to be modified.

Parameter default value: If the memory address is not specified, a value of 0 is used.

Description: If the user inputs a new value, the memory location is modified to match the input
value. If the user terminates his input with a blank lspace), the 11ext location value is printed and
the process repeated. If the user tenninates his input with a carriage return or comma, the
command processing terminates.

Error message:

DPOO An invalid hexadecimal value was input.

Application note: The MM command is useful for setting up desired conditions in order to check
out a routine. It is also convenient for creating patches and for examining memory one word at
a time.

Example:

.MM 1000
1000=FFFF 1
1002=FFFF 3'
l004=FFFF
1006=FF FF 8

These command statements place the value 1 in location 1000, 3 in location 100~. and 8 in
location 1006. The user may enter a space (blank) if he does not want to modify a location but
wants to go on to the next location. A carriage return terminates the command at any time.

3.4.13 INSPECT MEMORY (1M). The Inspect Memory command is used to display in hexa­
decimal fonnat the contents of one or more consecutive memory locations.

Syntax definition:

1M [{h.J <starting mem addr> [{b .. .l <ending mem addr~]

The command is tenninated by a carriage return.

Digital Systems Division

~-------~ 945255-9701

Parameters:

starting mem addr

ending mem addr

Parameter default values:

Hexadecimal value representing the memory
address of the first memory word displayed.

Hexadecimal value representing the memory
address of the last memory word displayed.

If neither parameter is specified, all memory is dumped.

If the ending address is not specified, only one word is displayed.

An odd address' is changed to the preceding word address before the a4dressed byte is displayed.

Description: Memory is displayed in groups of Jour . words, two groups per line. The address of
the first word on the line is printed at the left. The display maybe terminateQ at any time by

. pressing the ESC key on the terminal keyboard. . .

DP13 The ending address specified is less than the
starting address specified.

Examples:

.IM 1000,1004
1000=1002 COEO 023E

.IM 1006
1006=1004

3.4.14 MODIFY REGISTERS (MR). The Modify Registers command displays the contents of
the user's internal registers - workspace pointer (WP) , program counter (PC), and status (ST)
registers - and allows the user to modify them.

Syntax definitions:

MR

The command is terminated by a carriage return.

Description: The register name and current contents are printed and an input is accepted from
the user. If the user inputs a valid hexadecimal number, the contents of the registers are
changed. If the user enters a space, the processor prints the name and contents of the next
register. If the user enters a carriage return, the command terminates.

3-34 Digital Systems Division

r~ _________________ __ ~ 945255-9701

Error message:

DPOO An invalid hexadecimal number was input, or the
number input was greater than FFFF 16.

Application notes.' Modification of the Workspace Pointer (WP) register causes the registers that
would be displayed by the Inspect Workspace Registers (IW) command to change. The Modify
Registers command is used to establish the initial environment for a program executed with the
Execute User Program Directly (EX) or the Execute User Program under SIE or Trace (RU)
command.

Examples:

.MR

PC=2000 244
WP=OOOO A6
ST=OOOO

.MR

PC=0244
WP=OOA6 A2
ST=OOOO 2-

.MR

PC=0244 246

The first example changes the value in the PC register to 244 16 and the value in the WP register
to A6 16 . The second example changes the WP register value to A2 16 and the ST register value
to 2 16 , The third example changes the PC register value to 246 16 ,

As in the second example, the user may press the space bar on the terminal keyboard if he does
not wish to modify a particular register. As in the third example, he may press the RETURN
key on the terminal keybo,ard after entering a new PC register value to terminate the command.

3.4.15 INSPECT REGISTERS OR). The Inspect Registers command displays the contents of
the user's registers- the program counter (PC), workspace pointer (WP), and status (ST)
registers for the current user program.

Syntax definition:

IR

The command is terminated by a carriage return.

Application note: The displayed register values are those values which are loaded into the
processor in response to an EX or RU command.

3-35 Digital Systems Division

~-------~ 945255·9701

Example:

.IR _
PC=0246 WP=OOOO ST=OOOO

3.4.16 MODIFY WORKSPACE REGISTERS (MW). The Modify Workspace Registers command
. is used to display and change the contents of one or more of the user's workspace registers.

Syntax definition:

MW Hi .. J <Starting workspace reg>]

The command is terminated by a carriage return.

Parameter:

starting workspace reg The first workspace register to be
displayed. (Hexadecimal value.)

Parameter default value:

If the starting workspace register is not specified, a value of 0 is used.

Description: The names and current contents of the workspace registers are displayed. The
command processor accepts the user's input, which may be a new value for the register contents
and a terminator. If a new value is input, the current contents of the specified register is
changed. If the terminator is a blank, the next register is printed for modification.' If the
tenniriator is a carriage return or comma, the command processing terminates. The command
processing terminates automatically after processing workspace register 15 (F 16)'

Application note: The user is cautioned to be sure that the workspace' pointer actually.points to
the intended workspace. The Modify Workspace Registers command displays the registers within
the current workspace (the workspace defined by displaying the WP in an IR command).

Example:

.MW4
R4=OOOO 7
R5=00OO 89
R6=00OO -
R7=OOOO 1000

This example changes the contents of workspace registers R4, R5 and R7 to 716 , 89 16 and
100016 , respectively. A carriage return was entered after changing the contents of R7.

3.4.17 INSPECT WORKSPACE REGISTERS (lW). The Inspect Workspace Registers command
is used to display the contents of a sequence of the user's workspace registers.

3-:36 Digital Systems Division ,

J2rJ5\ ______ _ ~ 945255-9701

Syntax definition:

IW [k . ..l [<starting workspace reg>] [k..l <ending workspace reg>]]

The command is terminated by a carriage return.

Parameters:

starting workspace reg First workspace register to be displayed.
Hexadecimal number.

ending workspace reg Last workspace register to be displayed.
Hexadecimal number.

Parameter default values:

If the starting workspace register is not specified, a value of 0 is used.

If the ending workspace register is not specified, the value used is the starting workspace register.

If neither parameter is specified, all 16 registers are displayed.

Description: The set of workspace registers displayed are those pointed to by the WP that would
be displayed if an IR command were executed. Workspace registers are displayed with the
register number preceding the register contents.

Error message:

DP13 Either the starting workspace register number is
greater than the ending workspace register number,
or a workspace register number greater than F 16

was requested.

Examples:

.IW
RO=OOOO R1=OOOO R2=0026 R3=OOOO R4=OOOO R5=2032 R6=OOOO R7=OOOO
R8=OOOO R9=OOOO RA=OOOO RB=OOOO RC=OOOO RD=3798 RE=2008 RF=0002

If no workspace register or range is specified, all 16 registers are printed .

. IW 2,8
R2=OOOO R3=OOOO R4=OOOO R5=OOOO R6=OOOO R7=OOOO R8=OOOO

.IW 2
R2=OOOO

3.4.18 MODIFY CRU REGISTER (MC). The Modify CRU Register command reads and dis­
plays the data on CRU input lines, and sets data on CRU output lines.

3-37 Digital Systems Division

~--~--~-~ 945255-9701

Syntax definition:

MC [{i . ..} [<CRU address>] [{b . ..} <CRU width>]]
The command is terminated by a carriage return.

Parameters:

CRU address

CRU width

The CRU word address. A value from 0 to I FFF 16'

The number of bits to be changed in each CRU
word (hexadecimal). A value from I to 1016 ,

A value of 0 is interpreted as 1016 ,

Parameter default values:

If the CRU word address is not specified, a value of 0 is used.

If the CRU width is not specified, a value of 10 16 is used.

Description: When the CRU bit width is less than 16 bits, the data value is displayed right
justified in a four-digit hexadecimal value. The user's data may be input as a four-digit value; the
rightmost bits, where the bit width is given by the CRU width parameter, are used to modify the
CRU value. Enter a new value to change the value, a space to continue on to the next value, and
a carriage return to terminate data modification.

The addresses are displayed as they would be used in workspace register 12 (the CRU base
address), which is the actual CRU bit address times 2. Also, data is displayed and entered
directly as the STCR/LDCR instruction receives/sends it.

If the CRU word address is greater than 1 FFF 16, the command is ignored.

Error message:

DPl2 CRU bit width parameter too small (negative) or too
large (greater than F 16)' Invalid bit string width.

Application note: The Modify CRU Register command may be used to change the data being
sent to an external device during the debugging of a new interface.

Examples:

.MC 10008
1000=00 F F 0080
1010=ooFF 0040

.MC 1000
1000= F F F F 1000

3-38 Digital Systems Division

~S\ ______ ---:.-~ 945255-9701

In the first example, only the eight bits to be modified are displayed. After the data is entered, a
space causes the next eight CRU bits to be displayed. The address of the next eight bits is equal
to the previous address plus 1016 (two times eight bits). In the second example, since the CRU
bit width is not specified, a value of 10 16 is used.

3.4.19 INSPECT CRU INPUT LINES (IC). The Inspect CRU Input Lines command is used to
display in -hexadecimal format the contents of one or more consecutive CRU locations.

Syntax definition:

IC [{b . ..} [<CRU lower limit>] lkJ <CRU upper limit>J]

The command is terminated by a carriage return.

Parameters:

CRU lower limit CRU address that begins the display. The
address must be in the range of 0 to
I FFF 16'

CRU upper limit CRU address that ends the display. The
address must be in the range 0 to
IFFF I6•

Parameter default values:

If the CRU lower limit is not specified, a value of 0 is used.

If the CRU upper limit is not specified and the CRU lower limit is specified, the default value is
the CRU lower limit. Sixteen bits are displayed.

If neither parameter is specified, the entire CRU is displayed.

Description: Data is displayed in groups of four words, two groups per line. The address of the
first word on the line is printed on the left. The display may be terminated at any time by-
pressing the ESC key on the terminal keyboard. -

The address displayed is the actual CRU bit address times two.

Error message:

DPl3 The highest CRU address specified in less than the
lowest CRU address specified~ or the highest CRU
address specified is greater than the highest CRU
address permitted (l FFF 16)'

Digital Systems Divis/on

~--------~-~ 94S2SS-970l

Examples:

.IC 1000 1060
l000=FFFF FFFF FFFF FFFF

.IC 100
0100=6080

In the first example, the CRU bits at addresses 100016 through 106016 , in 20 16 increments, are
displayed. Since the -CRU addresses are twice the actual bit addresses, the address of the next
1016 CRU bits would be a 2016 address increment. In the second example, the 16 CRU bits at
location 10016 are displayed.

3.4.20 SET SNAPSHOT (SS). The Set Snapshot command is used to define a set of registers
and memory locations to be displayed as a single unit.

Syntax definition:

SS {b . ..} [<snapshot no.>] [{b . .J [<starting reg no.>] [{b . .J [<ending reg no.>]

_ [{b;.J rstarting memory addr>] [{b . .J <ending memory addr>]]]]

The command is terminated by a carriage return.

Parameters:

snapshot no. ~ Index number of snapshot to be defmed.
The index is a number in the range 0-3.
,

starting-reg no. First workspace register to be displayed ..

ending-reg no. Last workspace register to be displayed.

·starting memory addr First memory word address to be displayed.

ending memory addr Last memory word address to be displayed.

Parameter default values:

If the snapshot number is not specified, a value of 0 is used.

If the starting workspace register number is not specified, a value of 0 is used.

If the ending workspace register number is not specified, the value used is the starting register
number if the starting register number is specified. Otherwise, the value is 0 16 ,

If the starting memory address is not specified, a value of 0 is used.

3-40 Digital Systems Division .

Jd7s\. ,0 ______ _ ~ 945255-9701

If the ending memory address is not specified, the value used is the starting memory address if
the starting memory address is specified. Otherwise, it is 0 16,

Description: Snapshots may be invoked with the Inspect Snapshot (IS) command or when a
breakpoint which references a snapshot is encountered.

Error messages:

DP03

DP04

DP13

A parameter is greater than the required maximum value.
Reenter the command.

Snapshot is already defined. Reenter the command.

The ending parameter (register or memory address) is
less than the beginning parameter.

Application notes: Snapshots are convenient for defming a frequently used display during a debug
session. If certain registers or memory data areas are frequently modified, they are likely choices
for snapshots.

Since a snapshot may be attached to a PC breakpoint to dump some data and continue
execution, a trace can be constructed which will be activated only when some specified event
occurs. A dump may be produced and execution will continue without operator intervention.

Snapshots are useful for extended traces when the user wants to leave the computer running
with breakpoints established. This would allow the computer to take an automatic dump when
an exceptional condition is encountered and then continue execution.

Examples:

.55 1,2,5,1000,1002

.550,0,F

In the first example, the snapshot associated with index 1 displays workspace registers 2 through
5 and memory locations 100016 through 1002 16 , In the second example, the snapshot asso­
ciated with index 0 displays workspace registers 0 through F 16 and memory address 0 (the
default), Refer to the IS command examples in paragraph 3.4.21 for the corresponding
commands. .

3.4.21 INSPECT SNAPSHOT (IS). The Inspect Snapshot command is used to display'sequences
of workspace registers and memory addresses. .

Syntax definition:

IS [{i . ..} [<starting snapshot no.>] [{b . ..} <ending snapshot no.>]]

The command is terminated by a carriage return.

3-41 Digital Systems Division.

~ ____ 9_4_S2_S_S_~_7_01 __ ___

Parameters:

starting snapshot no.

ending snapshot no.

Parameter default values:

Index number (number of the snapshot in
sequence) of the first snapshot to be
displayed. A number from 0 to 3.

Index number of the last snapshot to be
displayed. A number from 0 to 3.

If neither the starting snapshot number nor the ending snapshot number is specified, all
snapshots are displayed.

If the starting snapshot number but not the endmg snapshot number is specified, the named
snapshot is displayed.

If the ending snapshot number but not the starting snapshot number is specified, the snapshots
from 0 through the specified snapshot are displayed.

Description: Snapshots are defined with the Set Snapshot command. Attempts to display
undefined snapshots are ignored.

DP13 Either the ending snapshot number is greater than

Examples:

.IS
SNAPO

the starting snapshot number, or a snapshot number
greater than the permitted maximum was input. Re­
enter the command with the correct snapshot numbers.

RO=OOOO Rl=OOOO R2=0000 R3=OOOO R4=0007 R5=OO89 R6=0000 R7=OOOO
R8=0000 R9=0000 RA=OOOO RB=OOOO RC=OOOO RD=OOOO RE=OOOO RF=OOOO
0000=0000
SNAPl
R2=0000 R3=0000 R4=0007 R5=0089
1000=0001 0003

.IS 1,3
SNAPl
R2=OOOO R3=0000 R4=0007 R5=0089
1000=0001 0003

.IS 3

3-42 Digital Systems Division

~'{]~o _________________ __ ~ 945255-9701

The snapshots in these examples were set in the examples of the Set Snapshot command
(paragraph 3.4.20). In the last example. if a snapshot is not set, the monitor will return control
without printing anything.

3.4.22 CLEAR SNAPSHOT (CS). The Clear Snapshot command is used to disable previou~ly
specified snapshots.

Syntax definition.

cs [kJ [<starting snapshot>] [{b . ..} <ending snapshot>]]

The command is terminated by a carriage return.

Parameters:

starting snapshot

ending snapshot

Parameter default values:

The first snapshot to be cleared. A
number from 0 to 3.

The last snapshot to be cleared. A
number from 0 to 3.

If no parameters are specified. all snapshots are cleared.

If only the first parameter is given. only the specified snapshot will be deared.

If only the second parameter is given. snapshot 0 through the specit1ed ending snapshot will be
cleared.

Description: If an attempt is made to clear a snapshot that has not been set, the command is
ignored.

Error message:

DP13

Examples:

.CS 0,2

.CS 2

A snapshot index greater than the maximum possible
index number {3) was specit1ed. or the ending snap­
shot index was less than the starting snapshot index
number.

In the first example, all snapshots except index number 3 are cleared. In the second example,
only snapshot ~ is cleared.

3043' Digital Systems Division

~-------~ 945255-9701

3.4.23 SET BREAKPOINT (SB). The Set Breakpoint command is used to define a breakpoint
which causes the processor to stop or interrupt execution of a user program at a specified
instruction.

Syntax definition:

SB {b . ..} <bkpt no.> {b . ..} <memory addr> [{b.J [<ref cnt>]

[{b . ..} ~napshot no.>J J

The command is terminated by a carriage return.

Parameters:

bkpt no.

memoryaddr

ref cnt

snapshot no.

Parameter default values:

Breakpoint index number. The number may be
0, 1, 2 or 3. Required parameter.

Address of an instruction on which the break­
point is to be set. Required parameter.

The pass number (hexadecimal) on which a
breakpoint is to be taken. For example,
a reference count of 3 means to break
on the third reference to the memory
address for an instruction fetch.

Index number of a previously defined snapshot
which is to be displayed when the break-
point is taken.

If the reference count (pass number) is not specified, a value of 1 is used. If the user enters a
value of 0, it is equivalent to a reference count of FFFF 16'

If the snapshot number is not specified, a snapshot is not printed.

Use of breakpoints: The breakpoint is one of the key elements in program debugging because it
enables the user to specify conditions under which he wants to receive control. Breakpoints are
particularly useful when the user wants to intercept control after an unexpected control transfer
occurs from a conditional branch. By setting a breakpoint on the unexpected or error path out
of a conditional branch, the program may be allowed to execute without interruption unless
some error condition occurs.

When a breakpoint is encountered, the contents of the processor registers are displayed. (The
contents are the values that would be displayed if an IR command were to be invoked.) The
breakpoint index number is also displayed to aid in determining which breakpoint was
encountered.

If an attempt is made to set a breakpoint on an address outside the allowed range, the command
is ignored.

3-44 Digital Systems Division .

~-------~ 945255-9701

DP20 Breakpoint specification error. Required index number
may be invalid or missing, or the PC value (memory
address) may have been omitted.

-
Application notes: The PC value for a breakpoint must point to the first word of a multiword
instruction.

A breakpoint occurs before the execution of the instruction to which it points.

If a snapshot is associated with a breakpoint, execution of the user program resumes after the
snapshot is printed. If no snapshot is associated with the breakpoint, execution terminates and
?:XJMIP. accepts another command.

If more than one breakpoint is associated with a specific location, only the first (lowest
numbered) will be found.

If (1) the execution is under the control of the Execute User Program under SIE or Trace (RU)
command with an instruction count, (2) a breakpoint occurs, and (3) a new count is not
specified on the next RU command, then, when execution is resumed, counting is continued as
if no breakpoint was encountered:

Breakpoints are not active when the user code is executed with the EX command.

An error is not reported when a Set Breakpoint (SB) command redefmes an already defined
;' breakpoint~ The specified breakpoint is modified to take on the new definition.

When an instruction has been fetched from a breakpoint location a number of times equal to the
contents of the reference counter, the breakpoint is activated.

Examples:

.580,1000,1,2

.58 1,1000,1,0

.582,1004

The first two examples set a breakpoint at address 1000 on the frrst reference to that address for
an instruction fetch. The frrst example sets breakpoint index number 0 with snapshot index
number 2 to be displayed, and the second example sets breakpoint index number 1 with
snapshot indexnurnber 0 to be displayed. The third example specifies breakpoint index number
2 to be taken at memory location 100416 , No snapshot is printed, and execution of the user
program terminates after the breakpoint is encountered.

'3.4.24 CLEAR BREAKPOINT (CB). The Clear Breakpoint command is used to disable
previously specified breakpoints.

Syntax definition:

CB [k.J [<starting breakPOint>] [{i, .. J <ending breakPOint>]]

3-45. Digital Systems Division ,

J~ ______ _ ~ 945255-9701

The command is terminated by a carriage return.

Parameters:

starting breakpoint The first breakpoint to be cleared. A
number from 0 to 3.

ending breakpoint The last breakpoint to be cleared. A
number from 0 to 3.

Parameter default values:

If no parameters are specified, all breakpoints are cleared.

If only the first parameter is given, only the specified breakpoint will be cleared.

If only the second parameter is given, breakpoints 0 through the specified ending breakpoint will
be cleared.

Description: If an attempt is made to clear a breakpoint that has not been set, the command is
ignored.

Error message:

DP13 A breakpoint index greater than the maximum possible
index number (3) was specified, or the ending break­
point index was less than the starting breakpoint

Examples:

.CB 1,3

.CB

index number.

The first example clears all breakpoints except number O. The second example clears all
breakpoints.

3.4.25 SET TRACE DEFINITION (ST). The Set Trace Definition command defines parameters
that determine what information about instruction trace regions will be printed. This command
is implemented as a service routine on the instruction trace overlay module.

Syntax definition:

ST {b.J <format index> {i,.J <char string>

The command is terminated by a carriage return.

3-46 Digital Systems Division .

~~-------------------~ 945255-9701

Parameters:

format index

char string

Trace format index number; a number
from 0 to 3.

Character string describing the options
to be printed. The string contains from
1 to 27 characters.

Parameter default values: There are no default values. Both parameters are required.

Character string symbols: The character string symbol definitions and the associated trace
printouts are as follows:

Character Trace Output

P XXXX

I F-rnI

M ST=XXXX

w WP=XXXX

T BT=XXXX

C C=XXXX

N (null)

x X-XXXX

S

E SE=XXXX

B SB=XXXX

A SA=XXXX

R SR=XXXX

Description

Program counter. The program counter is printed for every instruction exe­
cuted. The program counter value is printed if anything else is printed even if
"P" was not specified (example 1).

Instruction and format. (Instruction formats are described in the Model 990
Computer TMS9900 Microprocessor Assembly Language Programmer's Guide,
Manual No. 943441-9701.) The instruction and its format are printed for each
instruction executed (example 2).

Status mask. The contents of the status mask which is placed in the user sta­
tus register is printed after each instruction executed (example 2).

Workspace pointer changes. When the user's workspace changes, the new
workspace is printed.

Targets for branch or jump instruction. Whenever a branch or jump occurs,
the target address of the branch/jump is printed.

CRU address. When one of the instructions that references the CRU (LDeR.
STCR, TB, SBO, SBZ) is executed, the address of the first bit referenced is
printed. For example, for TB 2, the address is base (=R12) + 2.

Null trace. No printout occurs. If any other characters occur in the string. the
null trace is overridden.

XOP level. When an XOP instruction is executed, the XOP level is printed.

Source. Refers to the source register. It is followed by an E, B, A or R.

Source effective address. This address is the memory location that the source
field addresses. It is printed for every instruction (example 2) that has a
source operand.

Contents of source effective address before execution. The contents of the
source effective address before execution are printed for every instruction
(example 2) with a source operand.

Contents of source effective address after execution. The contents of the
source effective address are printed after each instruction with a source
operand is executed (example 2).

Contents of source workspace register after execution for Ts = 3 (indirect
addressing with autoincrement). (Ts is the source addressing mode field in an
assembly language machine instruction.) The contents of the source register
is printed if an autoincrement is specified.

3-41: Digital Systems Divls/ol

~ _____ 94_5_2_55_-_97_0_1 __ ___

Character Trace Output

D

E

B

A

R

DE=XXXX

DB=XXXX

DA=XXXX

DR=XXXX

Description

Destination. Refers to the destination. It is followed by an E, B, A or R.

Destination effective address. This address is the memory address that the
destination field addresses. The destination effective address is only printed
for Format 1, 3, and 9 assembly language machine instructions. All other
instruction format types do not have a destination field (example 2).

Contents of destination effective address before statement executed. This is
printed whenever a destination field exists (example 2).

Contents of destination effective address after execution. This is printed
whenever a destination field exists (example 2).

Contents of destination workspace register after execution for Td = 3 (in­
direct addressing with autoincrement). (Td is the destination addressing mode
field in an assembly language machine instruction.) The contents of the
destination register is printed if an autoincrement is specified.

Description: The character string is scanned for proper syntax. If the string conforms to the
syntax, a trace print control template is built and placed in the trace format table.

The character string in the ST command allows the user to select only those portions of the
trace output that he needs. For tutorial purposes, an extensive trace output could be requested,
while minimal traces such as a PC or variable trace are also easily selected. Each character in the
character string represents a desired portion of the trace.

If any trace option other than PC is printed, PC is also printed.

A variable trace (paragraph 3.4.26) is implemented by specifying the desired variable.

The character string is scanned from left to right. The characters E, B, A and R are modified by
the most recent occurrence of S or D. If E, B, A or R is encountered before an occurrence of S
or D, or if an invalid character is encountered, the scan is aborted and an invalid syntax message
is issued. A character string consisting entirely of S or D is also an invalid syntax.

All four trace format table elements have initial values as follows when the debug monitor
overlay containing the ST command is loaded:

Index Number

o
1

2

3

Equivalent Character String

P

PIWSEADEA

T

PIMWTCXSEBARDEBAR (all trace output options)

3-48 Digital Systems Division

~-------~ 945255-9701

E"or messages:

DP23 Syntax error in trace format character string.
Reenter the command.

DP26 Invalid trace format index number. Reenter
the command.

Examples of typical character strings: Some examples of typical character strings are presented
here. To invoke a PC trace, the character string is

P

If a branch trace is desired, the character string is

T

The character string for a trace that includes PC, instruction and format, workspace pointer
changes, and source and destination effective addresses is

PIWSEDE

To specify all options, the character string is the same as the string equivalent to default trace
format index number 3 (above).

Example 1: Trace format I in the following example is defmed as a program counter trace. The
program counter is the only option printed .

. ST 1,P

.SR 1,0,2000,1 ,N

.MR

PC=198C 46C
.RU
046C
0470
0474
1A92
1A96
198C
198E
1992
1994
1996

Example 2: This example shows the trace format index number 1 set to a full trace .

. ST 1,PIMWTCXSEBARDEBAR

.SR 1 ,24C,260,1 ,S

.MR

3-49 Digital Systems Division

~ 945255-9701

PC=0250 24C
.RU
024C 8-02EO ST=OOOO SE=00A6 SB=024C SA=024C
0250 6-04EO ST=OOOO SE=01FC SB=0054 SA=OOOO
0254 6-04EO ST=OOOO SE=01B4 SB=C259 SA=OOoo
0258 6-04EO ST=OOOO SE=01B8 SB=C060 SA=OOOO
025C 6-0720 ST=OOOO SE=01BA SB=01E6 SA=FFFF
0260 l-C820 ST=COOO SE=021E SB=109A SA=109A OE=0002

OB=1850 OA=109A

3.4.26 SET TRACE REGION (SR). The Set Trace Region command defines a trace region. This
command must be loaded into the transient area with the OV command· before it can be
executed.

Syntax definition:

SR· {b . ..} <region index> {i . .,} <lower mem addr> {f, . ..} <upper mem addr>

{b .. J <format index> [kj ~tep region>] [{b.J <vI> [{b.J <v2>

[kJ <v3>]]]]

The command is terminated by a carriage return.

Parameters:

region index

lower mem addr

upper mem addr

format index

step region

vl,v2,v3

Trace region index number; a number from
o to 3.

First memory address in the trace region;
a hexadecimal number in the range 0 to
FFFE.

Last memory address in the trace region;
a hexadecimal number in the range 0 to
FFFE.

Trace format index number; a number from
o to 3.

If this field contains S, an instruction
step region is specified. If it contains
N, the field specifies no instruction step.
Any other character specifies no instruc­
tion step.

Addresses of variables to be traced while
in the designated region. Up to three vari­
ables may be specified. The range of values
for each variable is 0 to FFFE 16' In the
printed trace data, only changes are shown.

3-50 Digital Systems Division

~~-------------------~ 945255·9701

Parameter default values:

The first four parameters in the syntax definitions are required.

If the step region parameter is not specified, a value of N is used.

If none of the parameters vI, v2, and v3 are specified, no variables will be traced in the
designated region.

Description: The specified regions of memory are designated as the program area to be executed
under control of the interpretive trace.

The trace region index number determines which trace type will be executed as defined by the
Set Trace Definition (ST) command. If two overlapping regions have been defined, the region
with the lowest index has precedence and the trace type defined in that region is executed. (See
example 1.)

The trace format index number indicates the trace type vector assigned to the trace region. When
the trace overlay is loaded, each of the four trace type vectors, indices 0 through 3, is assigned
an initial value. These vectors may be modified by the Set Trace Definition (ST) command.
Trace types may vary from a null trace to a full trace.

The function of the instruction step region is to control the execution of the user program. If
the instruction step region is set by entering an S parameter on the terminal keyboard, only one
instruction at a time will be executed and traced. To execute another instruction, the user must
press the space bar.

If variables have been specified to be traced, only changes will be printed. The format of the
output is:

AAAA = DDDD

Where AAAA is the address of the variable and DDDD is the new value of the variable. These
are hexadecimal values.

Error messages:

DP13

DPlO

DP26

The specified last memory address was less than the
first memory address. Reenter the command.

Invalid trace region index number. Reenter the command.

Invalid.trace format index number. Reenter the command.

Example 1: This example shows the setting of two different trace regions, one a PC trace and
the other a full trace. The region with the lower index is executed when the two regions overlap.
In this manner, the user can get a general trace until he reaches a critical section of the program
where he wants everything traced.

3-51 Digital Systems Divislo

~-------~ 945255-9701

.ST 1,PIMWTCXSEBAROEBAR

.ST 2,P

.SR 2,0,20oo,2,N

.SR 1 ,24C,260, 1 ,S

.MR

PC=0250 ~ 246
.RU
0246
024A
024C 8-02EO ST=OOOO SE=00A6
0250 6-04EO ST=OOoo SE=Ol FC
0254 6-04EO ST=OOOO SE=Ol B4
0258 6-04EO ST=OOOO SE=Ol B8
025C 6-0720 ST=OOOO SE=Ol BA
0260 l-C820 ST=COOO SE=021 E

0266
026A
0270
0274
0278
027A
027E

OB=1850 OA=109A

SB=024C
SB=0054
SB=C259
SB==C060
SB=01E6
SB=109A

SA=024C
SA=OOOO
SA=OOOO
SA=OOOO
SA=FFFF
SA=109A OE=0002

Outside the critical region, a continuous run is desired. Inside the critical region, there is a single
instruction step. The operator must press the carriage return or space bar on the terminal
keyboard after each statement executed.

Example 2: The trace region is set from 0 to 2000 16 , with the trace format index number equal
to 3. (Trace type 3 defaults to a full trace.) The snapshot prints workspace registers I through 4
and memory locations 100016 to 100416 , A breakpoint is set at 047416 with snapshot 1
associated. A Modify Registers (MR) command sets the program 'counter to 046C16 , and
execution is begun by issuing an Execute User Program under SIE or Trace (RU) command .

. SR 1,0,2000,3,N

.SS 1,1,4,1000,1004

.SB 1,474,,1

.MR

PC=198C 46C
.RU .
046C 8-02EO ST=2000 WP=044C SE=1968
0470 1-C2AO ST=COOO SE=00A6 SB=lA92

OB=OOOO OA=lA92
BKPT#l
PC=0474 WP=044C ST=CooO
SNAPl
R1=11CO R2=0000 R3=0000 R4=0000
1000=1008 C145 1305
0474 6-045A ST=COOO BT=lA92 SE=lA92
lA92 1-C2AO ST=2000 SE=00A8 SB=OOOO

OB=l A92 OA=OOOO

3-52

SB=0900 SA=0900
SA=l A92 OE=0460

SB=C2AO SA=C2AO
SA=OOOO OE=0460

Digital Systems Division

~--~----~ 945255~9701

lA96 6-0420 ST=2000 WP=1968 BT=198C SE=1988 SB=1968
SA=1968

198C 6-04C3 ST=2000 SE=196E SB=FFFF SA=OOOO
198E 1

Following is a listing of the portion of the program executed in this example with all references
resolved:

Memory Object
Source Location Code

046C 02EO LWPI MAINW
046E 044C
0470 C240 MOY @ENTRY,RlO
0472 OOA6
0474 045A B ·RIO

lA92
lA94
lA96
lA98

C2AO
OOA8
0420
1988

INIT MOY @KBLUNO,RlO

BLWP @OPEN

1988
198A
198C

1968
198C
O4C3

OPEN DATA IOWKS
DATA OPEN 1

OPEN! CLR R3

This is a typical example using snapshots, breakpoints and an instruction trace. Since a snapshot
is associated with the breakpoint, the snapshot is printed and execution continued. An exit from
the RU command is made by pressing the ESC key on the terminal keyboard.

3.4.27 CLEAR TRACE REGION (CR). The Clear Trace Region instruction is used to disable
previously specified trace regions.

Syntax definition:

CR [{i, . ..l [<starting trace region>] [{i, . .,} <ending trace region>]]

The command is terminated by a carriage return.

Parameters:

starting trace region The first trace region to be cleared.
A number from 0 to 3.

ending trace region The last trace region to be cleared.
A number from 0 to 3.

Digital Systems Division .

Jd75\ ___ ~ __ _ ~ 945255-9701

Parameter default values:

If no parameters are specified, all trace regions are cleared.·

If only the first parameter is given, only the specified trace region will be cleared.

If only the second parameter is given, trace regions 0 through the specified ending trace region
will be cleared.

Error message:

OPl3 A trace region index greater than the maximum possible
index number (3) was specified, or the ending region
index was less than the starting region index number.

Examples:

.CR 1,3

.CR

In the first example, all but region 0 are cleared. In the second example, all regions are cleared.

3.4.28 FIND BYTE (FB). The Find Byte command is used to scan an area of memory for a
particular byte value.

Syntax definition:

FB {~ . .J [<start mem addr>] {~ . .J [<ending mem addr>] kJ
<desired value> [k . ..l <maSk>]

The command is terminated by a carriage return.

Parameters:

start mem addr

ending mem addr

desired value

mask

Memory address at which search
begins.

Memory address at which search
is terminated.

Hexadecimal value for which the
search is made. This value is
required.

Hexadecimal value to be ANOed
with each byte before comparing
it with the desired value.

3-54 Digital Systems Division

JdlS\ ______ _ ~ 945255-9701

Parameter default values:

If the starting memory address is not specified, a value of 0 is used.

If the ending memory address is not specified, a value of FFFF 16 is used.

If the mask parameter is not specified, a value of FF 16 is used.

Description: Each byte in the memory search range is ANDed with the mask and compared to
the desired value. The memory location and contents are printed out whenever a match is found.
After each match, the user must enter a space on the tenninal keyboard to continue the search.
If he enters a carriage return, the command tenninates.

Error messages:

DP13 The ending address is less than the starting
address. Reenter the command.

MS05 A required parameter, the desired value, is
missing. Reenter the command.

MX06 The beginning address is an invalid memory
address. Reenter the command.

Application notes: No check is made to ensure that the mask does not exclude a bit required by
the desired value, thereby making a match impossible. If the monitor is being searched, results
may not appear to be correct since the monitor is changing during the search process.

Examples:

.FB 0,20oo,0,OF
0000=0000
0000=0000
0002=0000
0002=0000
0004=0000
0004=0000
0006=0000
0006=0000
0008=0000

.FB 0,20oo,06,OF
0300=0456
0644=0556

In the first example, the high order four bits of each byte are masked so that any byte with a 0
in the low order four bits will be located. The address of the leftmost byte of each word is
printed so that if both bytes of a word are printed, an address location will be printed twice.
For example, if bytes 0004 and 0005 are printed, the address 0004 will appear twice in the
listing.

3-5'5 Digital Systems Division

~-------~ 945255-9701

In the second example, the high order four bits of each byte are masked so that any byte with a
6 in the low order four bits will be located.

3.4.29 FIND WORD (FW). The Find Word command is used to scan an area of memory for a
particular word value.

Syntax definition:

FW {i, . ..} [<start mem addr>] {i, . ..} [<ending mem addr>] {t, . .J
<desired value> [{t,o ..1 <mask>]

The command is terminated by a carriage return.

Parameters:

start mem addr

ending memory addr

desired value

mask

Parameter default values:

Memory address at which search begins.

Memory address at which search is
terminated.

Hexadecimal value for which the search
is made. This value is required.

Hexadecimal value to be ANDed with each
word before comparing it with desired
value.

If the starting memory address is not specified, a value of 0 is used.

If the ending memory address is not specified, a value of FFFF 16 is used.

If the mask parameter is not specified, a value of FFFF 16 is used.

Description: Each word in the memory search range is ANDed with the mask and compared to
the desired value. The memory location and contents are printed out whenever a match is found.
After each match, the user must enter a space on the terminal keyboard to continue the search.
If he enters a carriage return, the command terminates.

Error messages:

DP13

MPOO

MS05

The ending address is less than the starting
address. Reenter the command.

The beginning address is an invalid memory
address. Reenter the command.

A required parameter, the desired value, is
missing. Reenter the command.

3-56 Digital Systems Division

J175\ _______ _ ~ 945255-9701

Application notes: No check is made to ensure that the mask does not exclude a bit required by
the desired value, thereby making a match impossible. If the monitor is being searched, results
may not appear to be correct since the monitor is changing during the search process.

Examples:

.FW 0,2999,456,
0300=0456
.FW 0,2000,56,00FF
0300=0456
0644=0556

In the second example, the monitor searches for words with a 56 in the low order byte. By
pressing the space bar on the terminal keyboard, the user can cause the monitor to continue
searching for another occurrence of the data word.

3.4.30 HEXADECIMAL ARITHMETIC (HA). The Hexadecimal Arithmetic command calculates
the sum and difference of two hexadecimal numbers. The 2's complement hexadecimal value and
the signed decimal value are printed.

Syntax definition:

HA [{i . ..} [<value>] [{i . .J <value>]]

The command is terminated by a carriage return.

Parameters:

value Hexadecimal number value.

Parameter default values:

If the value parameter is not specified, a default value of 0 is used.

Application note: No overflow checks are made; therefore, two positive numbers may have a
negative sum. All results are represented in 16 bits.

Examples:

.HA 103A BA2
SUM=1 BDC +07132 DIFF=0498 +01176

.HA 89 89
SUM=0112 +00274 DIFF=OOOO +00000

Digital Systems Division

~ ____ 9_4_5_25_5_-9_7_0_1 ____ ~ __ __

.HA 8030 EFOO
SuM=6F30 +28464 DIFF=9130 -28368

. HA E Faa 8030
SUM=6F30 +28464 DIFF=6EDO +28368

The calculated difference between the specified number values is the first value minus the second
value.

3.4.31 SET WRITE PROTECT REGION (SP). The Set Write Protect Region command sets the
write protect region to the address specified in the command.

Syntax definition:

SP {o' ... } <lower mem addr> {o' ... } <upper mem addr>

The command is terminated by a carriage· return.

Parameters:

lower mem addr Lower boundary memory address of the protected
region. Required parameter. Hexadecimal
number.

upper mem addr Upper boundary memory address of the protected
region. Required parameter. Hexadecimal
number.

Description: This command sets the write protect region from the lower to the upper memory
bound addresses. If the memory addresses entered are not on 256-word boundaries, the bounds
will be set at the next lower 256-word boundary. The lower bound is included within the
protect region but the upper bound is not.

The SP command overrides any previously defined protect region.

When the upper and lower bounds are sent to the CRU, the Protect Violation flag is cleared if it
has been set.

Error message:

MS05

Examples:

Parameter specification error. Either a required parameter
is missing, or the lower bound is greater than or equal
to the upper bound.

.SP 1000,2000

3-58 Digital Systems Division

~~-------------------~ 945255-9701

This command protects a region in memory from 1000 16 to 1 FFF 16 .

. SP 1000,1 Faa

This command protects a region from 1000 16 to lDFF I6 • The address IF00 16 is not a
256-word boundary; therefore, the upper bound is set at the next lower 256-word boundary,
I EOO.

3.4.32 CLEAR WRITE PROTECT REGION (CP). The Clear Write Protect Region command
clears the protect register and removes protection from the write-protected region.

Syntax definition:

CP

The command is terminated by a carriage return.

Description: The CP command clears the Protect register and sets the Protect/Permit bit to
Permit. The Protect Violation flag is cleared if it has been set.

Example:

.cP

This command clears a write-protected region set previously with an SP command.

3.5 SUPERVISOR CALLS
Supervisor calls are used to:

• Request all monitor I/O operations.

• Perform frequently used services in the form of monitor routines.

3.5.1 INTRODUCTION. The following paragraphs explain invocation of a supervisor call, coding
of supervisor calls, types of supervisor calls, and data block formats.

A supervisor call is made with an XOP assembly language machine instruction, using an extended
operation code of 15. The XOP instruction specifies an address pointing to a multiple byte block
containing the supervisor call and any necessary arguments.

3-59 Digital Systems Division

~-------~ 945255-9701

The individual supervisor calls and their operation codes are listed in table 3-2.

Table 3-2. List of Supervisor Calls

Supervisor Call

I/O - Open

I/O - Read ASCII

I/O - Write ASCII

I/O - Write End of File

End of Program

Binary to Decimal ASCII

Decimal ASCII to Binary

Binary to Hexadecimal ASCII

Hexadecimal ASCII to Binary

Supervisor Call
Code (Hexadecimal)

0

0

0

0

4,

A

B

C

D

I/O Physical Record
Block Operation Code

(Hexadecimal)

o
9

B

D

3.5.2 I/O SUPERVISOR CALLS. The data block for an I/O supervisor call consists of the
following two blocks (contiguous on a full-word boundary):

• A two-byte block that specifies a zero for an I/O call in the first byte and has the
second byte set to O.

• A seven-word control block, called a Physical Record Block (PRB). This control block
specifies the type of I/O operation to be performed and the input and output
parameters.

The format of the physical record block is as follows:

o

The parameters are:

i/o op

luno

sys flags

1ST BYTE 7 8 2ND BYTE

<i/o op> <luno>

<sys flags> <user flags>

<buffer addr>

.<buffe r length>

<char count>

The I/O operation requested

The logical unit to which I/O is to be
performed.

15 '

Flags indicating the status of a completed
I/O operation:

3-60 Digital Systems Division

"'.

~-------~ 945255-9701

user flags

buffer addr

buffer length

char count

Bit 0 - reserved.

Bit I - unrecoverable I/O error.

Bit 2 - end of file was encountered.
(The character count indicates
whether any data was transferred.)

Flags indicating additional processing
requirements. Bit 3 is the character
I/O flag. Character I/O applies only
to the logging device (data terminal)
and is ignored in cassette I/O. One
character at a time will be read to
or printed on the logging device. If
the character I/O bit is set, any RUB
OUT or backspace character encountered
in a read from the logging device will
be placed in the uset's buffer.

The absolute memory address of the start
of an I/O buffer.

The maximum number of characters which
may be input.

The number of characters actually
input or output.

An I/O supervisor call may be coded in assembly language as follows:

XOP @IOC, 15

IOC BYTE 0,0
PRB BYTE 9,7 Read from LUNO 7

DATA a System flags/user flags
DATA BUFADR Buffer address
DATA 80 Buffer length
DATA a Character count

'3.5.2.1 Open. The open supervisor call forces a playback/record initialization (to allow a change
of mode if the mode is incorrect) of a tape ca~ette.

Supervisor call code: 0

I/O operation code: 0

Calling parameters:

luno Logical unit number of the drive on which the tape cassette is mounted.

3-61 Digital Systems Division .

~-------~ 945255-9701

Result: The Open supervisor call is ignored except by the tape cassette, for which it forces a
playback/record initialization. When a LUNO outside the range 0 to F 16 is specified, the
command is ignored.

3.5.2.2 Read ASCII. The Read ASCII supervisor call reads ASCII data from an input device.

Supervisor call code: 0

I/O operation code: 9

Calling parameters:

luno

buffer addr

buffer length

char count

Logical unit number of a device from which
data is to be read.

Absolute memory address of the first byte
of an input buffer.

Maximum length of the input buffer.

The number of characters actually transferred.
This value is returned by the supeIVisor.

Result: Data is read from the specified device until either the buffer length is satisfied or a
terminating event such as a carriage return occurs. A read from a dummy device will cause the
end-of-file flag to be set.

Errors: An unrecoverable I/O error is returned if:

• An I/O error occurs.

• The output cassette is not ready.

3.5.2.3 Write ASCII. The Write ASCII supeIVisor call writes ASCII data to an output device.

Supervisor call code: 0

I/O operation code: B

Calling parameters:

luno

buffer addr

buffer length

char count

Logical unit number of a device to which
data can be written.

Absolu te memory address of the first byte
of an output buffer.

Unused.

The number of characters to be transferred.

Result: Data is written to the specified device until the character count is satisfied. If the
character count is greater than 80 when writing to a cassette, only the first 80 characters are
written to cassette.

3-62 Digital Systems Division

~-------~ 945255-9701

Errors: An unrecoverable I/O error is returned if:

• An I/O error occurs.

• The output cassette is not ready.

3.5.2.4 Write End of File. The Write End of File supervisor call writes an end-of-file record to a
tape cassette.

Supervisor call code: 0

I/O operation code: D

Calling parameter:

luno Logical unit number of the drive on which the tape cassette is mounted.

Result: This supervisor call causes an end-of-fJ.le record to be written to the specified cassette.
This call is ignored by other devices.

Error: An unrecoverable I/O error is returned if an I/O error occurs or if the output cassette is
not ready.

3.5.3 NON-I/O SUPERVISOR CALLS. The data block for a non-I/O supervisor call is a
parameter block containing two to eight bytes. It has the following format:

The parameters are:

op

error code

sign

value

1ST BYTE 2ND BYTE

<op> o:s <error code>
00

o

2 <s~n~OR PART
-<value~!,> ZO

~-' ... ,'j

4 ,to <value> S-'
r

6 3,J

Operation code

Code which is set to one if an error is
encountered

Algebraic sign associated with it parameter
value - plus (+), minus (-), ASCII zero
or blank

Parameter value

3-63

I

,-

-
,.

USED FOR
DATA CONVERSION
ONLY

Digital Systems Division

Jd7. 0.5\ ______ _ ~ 945255-9701

An example of assembly language coding for a non-I/O supervisor call block (decimal ASCII to
binary) follows:

DAB BYTE
DATA
DATA
DATA

>B,O
>2020
>2031
>3233

Op code.
Value parameter is right justified
with leading ASCII blanks.

3.5.3.1 End of Program. The End of Program supervisor call terminates the calling program. The
parameter block contains two bytes.

Supervisor call code: 4

Calling argument: 4 (in byte 0)

Result: . The calling program terminates. Control returns to PX9MTP.

3.5.3.2 Binary to Decimal ASCII. The Binary to Decimal ASCII supervisor call converts binary
data to decimal ASCII character code. The parameter block contains eight bytes.

Supervisor call code: A

Calling arguments:

1ST BYTE 2ND BYTE

o A

2 <sign>
-

4 <converted values>
r- -

6

Workspace register 0 contains the value to be converted. The sign parameter is set to minus if
the value is less than 0 and to a blank if the value is greater than O. The converted values
parameter is the decimal ASCII equivalent of the binary value.

Result: The binary value in workspace register 0 is converted to a sigried decimal number (right
justified with leading zeros) in the supervisor call parameter block.

3.5.3.3 Decimal ASCII to Binary. The Decimal ASCII to Binary supervisor call converts decimal
ASCII character code to binary data. The parameter block contains eight bytes.

Supervisor call code: B

3-64 Digital Systems Division .

J17.5\ ______ _ ~ 945255-9701

Calling arguments:

1ST BYTE 2ND BYTE

o B <error code>

2 <sign>
-

4

- <value> -
6

The sign parameter may be plus, minus, ASCII zero or a blank. The value parameter is a decimal
ASCII value between -32,768 and +32,767, inclusive. The value parameter must be right justified
with leading ASCII zeros or blanks. The result is returned in the caller's workspace register O.

Result: The decimal ASCII value in the supervisor call block is converted to a 2's complement
value in the caller's workspace register O.

Error code: The error code is set to one if there is an invalid character or if the resultant value is
outside the range -32,768 to +32,767.

3.5.3.4 Binary to Hexadecimal ASCII. The Binary to Hexadecimal ASCII supervisor call con­
verts binary data to hexadecimal ASCII character code. The parameter block contains six bytes.

Supervisor call code: C

Calling arguments:

1 ST BYTE 2ND BYTE

o c I
2

- <value>· -
4

Workspace register 0 contains the value to be converted. The value parameter is the converted
hexadecimal ASCII value. ,
Result: The value in workspace register 0 is 'converted to the corresponding ASCII representation
in the supervisor call block.

3.5.3.5 Hexadecimal ASCII to Binary. The Hexadecimal ASCII to Binary supervisor call con­
verts hexadecimal ASCII character code to binary data. The parameter block contains six bytes.

Supervisor call code: D

3-65 Digital Systems Division

Jd7.s\ ______ _ ~ 945255-9701

Calling arguments:

1ST BYTE 2ND BYTE

o D I <error code>

2

- . <value> -
4

The value parameter is four hexadecimal ASCII characters. The result is returned in the caller's
workspace register O.

Result: The four-character hexadecimal value in the supervisor call block is converted to binary
in the caller's workspace register O.

Error code: The error code is set to one if any character is an invalid hexadecimal digit.

3.6 DEBUGGING TECHNIQUES
Debugging techniques may be divided into three basic categories:

1. Prel'entil'e techniques - those which may be used to decrease the number of errors.
Most of these techniques emphasize simplicity. Code should be simple and straight­
forward enough to make it obvious that the program works.

2. Exposure techniques - those which may be used to make the operation of a program
easier to follow during the debugging process.

3. Remedial techniques - those used when a bug occurs in the user's program. Typically,
most programmers' efforts are expended on these techniques.

Programming effort devoted to avoiding errors or making them apparent is important. Debugging
and maintenance represent the majority of the cost in software development and support. The
following paragraphs briefly discuss debugging in general and the specifics of debugging under
PX9MTP.

3.6.1 GENERAL DEBUGGING TECHNIQUES. Several debug techniques will be helpful to the
programmer in any debugging situation. These paragraphs offer some suggestions about debugging
a program under development.

3.6.1.1 Debug Code in the Source Program. Include debug code in the source program. The user
should keep the testing process in mind from the moment he starts to create a program. When
referencing or changing data, the programmer should consider how to tell if the change is correct
when reconstructing the results of a run. This often involves being aware of what intermediate
results of a computation are lost.

For example, if the value of a variable 0 is calculated by the statement

D=A+B

and the program later encounters the statement

D=C+D

3-66 Digital Systems Division

Jd7S\ ______ _ ~ 945255-9701

the second statement will cause a new value 0 to replace the previously calculated value. The
calculated sum A + B will therefore be lost. If, on the other hand, the program contains the
statement

E=A+B

and, later in the program, the statement

D=C+E

the value of E will be preserved when 0 is calculated by the second statement. The programmer
can examine the memory location containing the value of E to determine the calculated sum A +
B.

After a computation is completed, reconstruction of the results of a program run involves
distinguishing which decision paths have been taken through the program's code and determining
what variables are relevant in calculating the results of a computation.

When the source code is written, it is often simple to store intermediate results in extra memory
to record those results, branch paths, or the number of passes through loops. Such statements
can be nagged with a character string (e.g., **DEBUG**) in the comment field. When the source
code is ready for production, PX9EDT can be used to locate and remove the code that stores
intermediate results.

3.6.1.2 Checking the Program. Once a program has been successfully assembled, a thorough
check of the program can often tum up errors which are hard to detect when the program is
executing. In addition to making sure that the program is a correct implementation of the
algorithm, it is often worthwhile to read through the program looking for specific errors:

• Register errors. Using the wrong register; referencing a register not in the current
workspace; using a register as an immediate value (e .g., AI R I ,R2 instead 0 fAR I , R2
or AI Rl,2); using byte-level operations or data where the data is in the wrong half of
the register; or using byte-level data with the other half of the register containing
incorrect data which affects the computation.

• Variable names. Misspelling of variable names such as TO and TO; or using a single
variable to contain different quantities.

• Initialization errors. Referencing values which may not have been properly initialized.
This often occurs when a program is re-executed.

• Buffer initialization. Omitting an instruction to clear an input buffer between input
operations when variable length records are read into a common fixed-length buffer.

• Branch conditions and loop terminations. Using the wrong branch instruction (espe-·
cially JH, JL, JGT, JLE, JLT, JHE, or JOC with subtracts); or executing a loop one
time too many or one time too few.

• Inconsistent techniques. Using conventions or debug elements which are inconsistent
with the coding practice for the module.

3-67 Digital Systems Divisiol

~-----~~ ~ 945255-9701

•

•

Module interfaces. Using variables or parameters which were not correctly set up for an
interface; using registers or variables within a subroutine which have values that are not
to be changed within the calling routine.

Boundary conditions. Checking that the full range of the possible input data to a
computation is correctly processed by the algorithm.

3.6.1.3 Execution Tree. In debugging or testing a program, it is often convenient to visualize
the possible paths through the program as a tree with each node of the tree representing a
conditional branch. Exhaustive testing of a program would then require testing each possible
path through the program under all inputs which follow that path. While it is impossible to test
all paths of a typical program, examination· of the various paths (or small sets of paths) may
reveal errors in the original logic.

3.6.Z SPECIFIC DEBUGGING TECHNIQUES. The following paragraphs describe techniques
directed specifically to debugging under the PX9MTP monitor.

3.6.2.1 Planning the Debugging Session. Know the status of the debugging effort at all times. AB
the user interacts with the program through the console, he should be careful to record any
changes made to the program and to be aware of the state of the program when examining it. In
a debugging session, the llser should have a clear idea of what he wants to accomplish and how
he intends to accomplish it. Decisions made in the process of debugging should be carefully
thought out.

3.6.2.2 Use of Breakpoints. There are three ways of stopping or interrupting the execution of a
user's program which is being debugged at a specific location in the program:

1. Set an instruction count on the RUN command.

2. Execute with the single step option under instruction trace.

3. Set appropriate breakpoints.

Breakpoints stoop execution at specific points in the user programratlier than at arbitrary points
controlled by the instruction count. The user may easily determine in advance and check the
results of a computation without concerning himself about the state of the program.

When using breakpoints, be sure that the program will actually reach the desired breakpoint. This
may involye putting additional breakpoints on the other paths from conditional branches.

Breakpoints are particularly useful when forcing some condition within a program which is not
easily created from its parameters, for example, a CRU input. As an illustration of such a
condition, an input value is to be read from a pressure transducer in an on-line process control
environment. However, if the program is being debugged, a physically connected transducer is
usually impractical and the values must be entered by the programmer. Breakpoints may be set
prior to the start of a code sequence. When the breakpoint is taken, the user may set or modify
the existing conditions in order to cause specific paths to be taken (as if a specific input had
been received from the transducer).

The breakpoint reference count can be used· to see that a loop is repeated the correct number of
times. By setting the reference count equal to the number of iterations through the loop and
setting another breakpoint outside the loop, the user may check that the loop is exhausted on
the correct iteration. Breakpoints with attached snapshots with dump debug data or key variables
yield a good trace aimed at checking the specific progress of a computation. _ -

3-68 Digital Systems Division .

~----------~ 945255-9701

3.6.2.3 Excluding Loops from Instruction Traces. When tracing a program with printout, it is
sometimes desirable to exclude printing of small loops which are very frequently executed or
which run for many iterations. (See figure 3-1.) These may be excluded by carefully choosing
trace regions, which are areas where an instruction trace is to be run within a program. In
determining which trace region is applicable (and thus what trace type to use), the system will
find the first (lowest numbered) region containing the user's PC. By selecting a high numbered
trace (3) for the main trace control and then setting regions within that large region with lower
numbered traces which do not print, the user may prevent a large quantity of output where it is
not wanted.

An alternate mechanism is to allow the small loops to be executed by SIE and the remaining
prQgram traced. (See figure 3-2.) This can be done by setting trace regions to cover all of the
program except the small loops or frequently executed parts. Such a mechanism works well
unless the user is using XOPs (other than XOP 15 for PX9MTP I/O) or interrupts which are
processed differently by SIE and instruction trace.

If the user is performing I/O by means of supervisor calls (XOP 15) to PX9MTP, this XOP is
executed directly (without SIE or instruction trace). If XOP 15 is not used for program I/O,
it is not executed directly under SIE.

USER PROGRAM

PGM~

A:

JMP A

a:

(A)133102

TRACE REGION
DEFINITION

TRACE
REGION 3

} TRACE
REGION 2 }

}

CONTROLLING
TRACE REGION

, REGION 3

REGION 2

REGION 3

Figure 3-1. Trace Region'Precedence of Lower Region Number

3-69 Digital Systems Division .

~--------~ 945255-9701

USER PROGRAM

PGM:

A:

JMP A

B:

(A)133103

}

TRACE REGION
DEFINITION

TRACE
REGION 1

NO TRACE
REGION

TRACE
REGION 2

Figure 3-2. Using Both Trace and SIE

}

MODE OF
EXECUTION

TRACE

SIE

TRACE

3.6.2.4 Simulating an Interrupt. A BLWP instruction may be used to control an interrupt
routine which is being checked out. This can be handled with the following code sequence:

Instruction Operand

LIMI INTLVL

BLWP @INTLVL*4

JMP $

Generated Code

0300

0420
4*i

IOFF

The LIMI sets the interrupt status to the correct level. The BLWP transfers control through the
interrupt vector. The quantity i is the value to which INTLVL is equated.

3.6.3 PATCHING. Patching (attaching portions of code to existing program code) should be
avoided if possible.

During a debug session, it is generally necessary to make patches to object code; however, it is
advisable never to leave patches in a completed program (or create ROM firmware from a
program with patches). An object program for which there is no corresponding source program is
inconvenient and troublesome.

The following paragraphs cover patching techniques. The examples show how to patch a
two-address instruction; this instruction is used:

MOV *Rl,*R2+

3-70 Digital Systems Division

J1n.5\ ______ _ ~ 945255-9701

Because of the number of items to be considered, patching a two-address instruction is one of
the more difficult operations. There are two ways to approach it: building a bit image and the
additive method.

3.6.3.1 Patching by Building a Bit Image. In building a bit image, the user merely fills in each
field in the 16-bit word on a bit-by-bit basis. When all fields are complete, the value is converted
to hexadecimal for the patch contents.

Example:

Patch the following assembly language instruction:

MOV *R1,*R2+

by building a bit image.

The MOV instruction has this format:

o TS 5 I
Determine the bits that occupy each field. Starting with the op code field, the hexadecimal
op code for a MOV instruction is COOO. The first three bits of this op code are 1102 ;

transfer these bits into the op code field.

The Byte Indicator (B) field specifies whether or not the instruction is a byte instruction.
The MOV instruction is a word instruction; therefore, this field is set to O. (The B field is
always 0 for a MOV instruction.) Another way of specifying the same information would be
to use the MOV or MOVB instruction (as appropriate) and a four-bit op code.

The D field specifies the destination workspace register. The destination address is *R2+,
which indicates workspace register 2 and the workspace register indirect autoincrement
addressing mode. The addressing mode for the destination, 11 2 , is placed in the T d field.
Transfer the binary value of the register number, 00102 , into the D field.

Use a similar procedure for the source address, which is *Rl. In this case, workspace
register 1 is specified and the addressing mode is workspace register indirect. Therefore,
transfer 01 2 into the Ts field and 0001 2 into the S field.

The instruction field contents will now be:

110 10 1 " I 0010 01 0001 I
Now read these 16 bits as a four-digit hexadecimal number.

I 1 100 1 100 1001 0001 I
C C 9

The resulting hexadecimal number is the desired value. The patch value is CC91.

3-71 Digital Systems Division .

~-------~ 945255-9701

3.6.3.2 Patching by the Additive Method. The second approach to the patching problem is the
additive method. With a little practice, the patch described in the first approach can be created a
little faster by treating each of the fields as a hexadecimal number and adding the results to
produce the patch.

Example:

Patch the same assembly language instruction as in the bit image example:

MOV *R1,*R2+

by using the additive method. This method involves adding hexadecimal values correspond­
ing to each field to the instruction's op code to get the patch value.

The programmer can think of a bit field value as being placed into the instruction word,
right justified, and shifted left the number of bits necessary to move it to the appropriate
field. This shift is equivalent to binary multiplication, so the bit field value times an
appropriate multiplier will give a value to be added to similarly obtained values for other bit
fields to yield a sum representing the contents of the instruction word.

Recall that the values for the addressing modes and workspace registers in the previous
examples were:

Destination mode (T d)3
Destination register (D) 2
Source mode (T s) I
Source register (S) 1

In calculating the patch value by the additive m~thod, these values are used ..

The first number in the calculation is the hexadecimal op code for the MOV instruction,
COOO. The B field is always 0 in the MOV instruction; it can be considered part of the
instruction op· code and ignored' in the calculation.

The second number to be added is the value of the destination mode. The code for the
address mode is shifted left ten bits, equivalent to multiplication by 40016 . The code is
316 ; therefore, the value to be added is

3 16 * 40016 = OC00 16

The third number is the destination register value. To create the value to be added, the
register number, 2 16 , is shifted left six bits, equivalent to multiplication by40i6. The value
is

2 16 * 40 16 = 0080 16 .

Calculation of the fourth value involves a code of 116 for the source mode and a four-bit
shift (multiplication by 1016). The ,value is

116 * 1016 = 0010 16

Finally, the source register number, 116 , is unshifted. The value to be added is 0001 16 .

3-72 Digital Systems Division .'

~-------~ 945255-9701

To calculate the required sum, the values are added:

Op code of MOV instruction coaa
Destination mode OCOO
Destination register 0080
Source mode 0010
Source register 000 I
Patch value CC91

The sum, CC91 16 , is the object code to be patched. The patch value is the same as the
value obtained in the previous example.

When the same instruction format is used repeatedly, the multiplication constants - 40016 ,

40 16 and 10 16 - do not change and become simple to handle with practice.

3.6.3.3 Symbolic Versus Indexed Addressing. The address mode for both symbolic (actual
memory address) and register indexed addressing is the same (mode 102), The type of addressing
is determined by the register field. A register field of zero is symbolic; therefore, no RO indexing
exists. In constructing a patch with a specific address, process it exactly as if it were a register
indexed with a register of zerOJ R.efer to the Model 990 Computer TMS9900 Microprocessor
Assembly Language Programmer's Guide, Manual No. 943441-9701, for further information
about symbolic and indexed memory addressing.

3.6.3.4 Branch Distance Calculations for Jump Instructions. The signed displacement in an
Unconditional Jump (JMP) instruction is a two's complement eight-bit number which represents
the number of words to skip forward or backward from the current PC (the PC points to the
instruction following the jump instruction).

To calculate the displacement for a jump instruction, evaluate

1/2 (target location-(instruction address+2».

If the target address is less than the instruction address, add 1000016 to the target address and
perform the subtraction. Note that a forward branch must generate a positive displacement and a
backward branch must generate a negative displacement to be in range.

Example 1:

Patch Io'cation l7A16 with a jump to location IFE I6 •

The source address is equal to the instruction address +2, which is 17 A+2 = 17C.

The target location minus the source address is lFE - l7C = 82. Continuing,

1/2 (target location - source address) = 41

The displacement, 41, is positive. The patch value is therefore 1041 16 , where lOis the
hexadecimal op code for the JMP instruction and 41 is the displacement value.

Example 2:

Patch Location IFE16 with a jump to location 17A16 •

3-73 Digital Systems Division .

~ _____ 9_45_2_5_5-_9_70_1 ____________________________ ~ __________________ __

The source address is equal to the instruction address+2, which is 1 FE 16 +216 = 20016 , The
sum of the target location plus 10000 16 , minus the source address, is 1017A16 -20016 =
FF7 A16 . Continuing

1 /2 (target location - source address) = 7FBD = BD (dropping the first two digits)

The displacement, BD, is negative. The patch value is therefore IOBD 16 , where 10 is the
hexadecimal op code for the JMP instruction and BD16 is the displacement value, negative
in this case.

Note that the 7F is generated from the addition of 2 16 (10000 16) and may be discarded. If
the high order eight bits of the destination are not equal to 7F, the branch distance is too
great to reach with a JMP instruction.

3.6.3.5 Spin and NOP. It is sometimes convenient to patch a spin (branch to itself) into a
location to intercept control in unexpected situations (the alternate path of a conditional jump,
for example). That instruction is a JMP to itself and is a value of I OFF 16' (The corresponding.
assembly language code is JMP $.)

Unwanted instructions can be replaced with a no-operation (NOP) which is a JMP to the next
instruction. The value for an NOP is 1000 16 ,

3.6.3.6 Out-of-Line Patches. It is often necessary to patch more instructions into a program
than there is room, requiring an out-of-line patch. The simplest mechanism is to use a symbolic
address branch instruction to a specific location where the patch is placed. After the patch, use a
branch instruction back to the original code.

Example:

0460
(loc A)4-- A

B ~ 0460
L (loc B)

Be careful to see that code which is overlayed is mQved to the patch area, that it is not a PC
relative jump, and that the return pointer comes to the beginning of an instruction.

3-74 Digital Systems Division

J}h\ ______ _ ~ 945255-9701

SECTION IV

TEXT EDITOR

4.1 INTRODUCTION
The first part of this section is a general description of PX9EDT, giving its purpose, its functions,
and a brief explanation of how data is edited. The loading procedure for the module is
presented, followed by a discussion of how to start execution and assign LUNOs. The initialiZa­
tion messages, user's responses to those messages, and the final message are listed and described.

Specific editing procedures are presented, including procedures for copying from one cassette to
another, using editor commands to move the text editor's line pointer, moving text to or from
the buffer, and handling file data formats with special terminal keyboard characters. Procedures
for coding source or object files and writing a new source program on cassette tape are also
described.

The paragraphs that describe text editor commands explain the classes of commands, command
operands, and notational conventions used in the command syntax. Detailed descriptions and
examples of each of the text editor commands are included.

The error and warning messages, with discussions of user's responses to the messages, are
presented. An example of source program editing and a discussion of object code editing
conclude this section.

4.2 GENERAL DESCRIPTION
The Text Editor (PX9EDT) is an interactive program for editing source and object programs. The
following paragraphs provide a brief general description of the program, list and describe the
Text Editor commands, and explain the messages printed by the program.

PX9EDT /executes in a Model 990/4 microcomputer or 990/10 minicomputer configured for the
990-733 ASR System Software or 990 Prototyping System. This configuration includes the
Model 990/4 microcomputer with 8K or more of memory and a Model 733 ASR Electronic Data
Terminal. The Debug Monitor, PX9MTP, must be resident since PX9EDT is loaded by PX9MTP
and calls PX9MTP routines for input/output and conversion routines.

PX9EDT may be used to generate source or object data or to edit existing source or object data.
PX9EDT provides 18 commands with which the user specifies the desired edit functions. These
commands provide the user with the capability to change, add, move, and remove source or
object records, and to locate and modify a character string in a group of records.

Data to be edited is read from a cassette tape into an area of memory called the buffer. The
data is edited while it is in the memory buffer by using PX9EDT commands. Individual lines of
data are identified by a pointer, which may be positioned by PX9EDT commands. The pointer
refers to a buffer line number. The edited data is written from the memory buffer to a cassette
tape.

The user specifies the buffer size by responding to an initialization message that asks for the
number of 4K-word blocks to be assigned to the buffer.

4-1 Digital Systems Division

J2n,.5\ ___________ _ ~ 945255-9701

In an 8K system with 4K user memory, PX9EDT contains 3870 bytes of edit buffer space. Lines
are placed in the buffer with one character per byte followed by a carriage return, and preceded
by a six-byte header. Therefore, a buffer of lines with an average length of 40 bytes, including
header and carriage return, would contain approximately 100 lines. Using tabs when inputting
source lines causes a tab to be placed in the buffer instead of multiple spaces.

4.3 LOADING AND INITIALIZATION PROCEDURES FOR THE TEXT EDITOR
The following paragraphs describe the loading procedure and the messages output during
initialization and termination.

4.3.1 LOADING. PX9EDT is loaded by means of the PX9MTP Load Program in Compressed
Absolute Format with Up front Loader (LU) command. Mount and position the cassette contain­
ing the PX9EDT object code and enter this command on the terminal keyboard:

LU

The LU command assumes that the cassette is mounted in the cassette drive assigned to logical
unit number 7. Be sure that logical unit number 7 has not been reassigned to another device.
Other acceptable load program commands are the following:

LU,7 Load program with upfront loader from LUNO 7

LU,8 Load program with upfront loader from LUNO 8

4.3.2 STARTING EXECUTION. The user then uses the PX9MTP Execute User Program
Directly (EX) command to begin execution of PX9EDT. PX9EDT accepts input from logical unit
number 7 and writes its output to logical unit number 8. To use other than system defaults, the
PX9MTP Assign LUNO (AL) command should be used before the EX command is ent.ered.
(Refer to the discussion of logical unit numbers in Section II and the discussion of the AL
command in Section III.)

4.3.3 INITIALIZATION MESSAGES. When PX9EDT is started, it prints a series of messages
requesting user responses. The first two messages are printed the first, time PX9EDT is executed
after being loaded. In subsequent executions and restarting PX9EDT, the first two messages will
be deleted.

This message identifies the program name and release information:

PX9EDT PART # REV DATE

The following message asks for a count of memory blocks:

ADD 4K MEM BLOCKS CONFIGURED?

The user should input the number of 4K user memory blocks that are configured in his system
in addition to the 4K required by PX9EDT. This additional memory will expand PX9EDT's edit
buffer space. For example, if the user's system contains 8K of user memory in addition to the
4K required by the monitor, the response should be "1". If the user's system contains 4K of
user memory, the response should be "0" or a carriage return.

If the configuration includes more than 4K words of user memory area, PX9MTP will be
relocated as described in the system software cassette generation procedure in Section II.

4-2 Digital Systems Division

Jd1s\ ______ _ '~ 945255-9701

The following message notifies the user that the system is ready for mounting of tape cassettes:

POSITION TAPES, ENTER CR

The user should mount his cassettes and position them to the correct files, and then enter a
carriage return. PX9EDT accepts input from logical unit number 7 and writes its output to
logical unit number 8.

A question mark (?) will be printed and the user can enter text editor commands from the
keyboard.

4.3.4 FINAL MESSAGE. When the output file has been written in response to a Q or E
command, PX9EDT prints the following message:

END EDIT

PX9EDT then restarts and prints the initial position tapes message.

4.4 TEXT EDITING PROCEDURES
The following paragraphs describe some specific procedures for common text editing tasks. These
tasks include copying a tape cassette, moving the PX9EDT buffer pointer, moving lines of text
into and out of the buffer, manipulating file data formats, and creating new programs.

4.4.1 COPYING FROM ONE TAPE CASSETTE TO ANOTHER. To copy a cassette with the
text editor, the user loads and starts up PX9EDT. When the message

POSITION TAPES, ENTER CR

is printed, mount and ready the cassette tape to be copied (input) in the cassette drive assigned
to LUNO 7 (usually CSI) and mount and ready a scratch cassette (output) in the cassette drive
assigned to LUNO 8 (usually CS2).

When a "?" is printed, the user enters the quit command.

?Q

The input tape is copied to the output tape until an end of file is encountered. The following
messages are, printed.

END EDIT

TERM/CONT?

If the input cassette tape contains more than one file to be copied, the user should enter a "c"
to restart PX9EDTand restart the procedure. The position tapes message is printed. The tapes
are positioned to begin copyin'g the next file. Continue until all files are copied. Enter a "T" to
terminate the procedure.

4.4.2 MOVEMENT OF POINTER. The pointer commands are used to move the pointer to any
line in the buffer of PX9EDT. Initially, the pointer is at line 1. The Down (D) command may be
used to move the pointer down a specified number of lines. Moving the pointer with the Down
command to an empty line causes PX9EDT to read source lines or object records from the input
fIle to fill the empty lines, including the line specified in the Down command. When the Down
command causes more data to be read from the input file, the pointer is left at the bottom of
the buffer after execution of the Down command.

4-3 Digital Systems Division .

~.o _____ ~_ ~ 945255-9701

The Up (U) command is used to move the pointer up a specified number of lines. The Top (T)
command moves the pointer to the top (first line) of the buffer. The Bottom (B) command
moves the pointer to the bottom (last line) of the buffer.

The pointer commands permit the user to move the pointer as desired for effective use of
commands that identify lines by specifying the displacement from the pointer.

4.4.3 MOVING LINES TO OR FROM BUFFER. PX9EDT allows the user to edit data in a
buffer and identifies lines of data in the buffer with line numbers or with a pointer.

Source lines or object records are placed in the buffer for editing by PX9EDT by reading lines
from the input file or by entering lines at the keyboard. The Down (D) command is used to read
lines from the input file and move them to the buffer. The Insert (1) and Change (C) commands
are used to enter lines from the keyboard. When data is read from the input file, PX9EDT
assigns a line number to each line or record. The line number mayor may not be printed, but it
is not written on the output file. When lines of data are moved in the buffer, each line retains its
line number. When lines are removed from the buffer, the line numbers are not reassigned. No
line numbers are assigned to lines of data that are entered at the keyboard.

After data has been edited, the buffer may contain lines without line numbers, and the lines in
the buffer are not necessarily in line number sequence. When a line has a line number, the line
may be specified by line number. Any line may be specified by a displacement from the pointer.

Only data in the buffer may be edited; therefore, it may be necessary to move data from the
buffer to the output file to leave more space in the buffer so that additional line~ may be read
from the input file or entered from the keyboard.

The Keep (K) command writes a specified number of lines from the buffer to the output file.
The number of lines specified by the Keep command is written from the top of the buffer
regardless of the location of the pointer line. If a number is not specified, all lines in the buffer
are written to the output file. This makes these lines unavailable for further editing in this
session.

The Quit (Q) command writes lines from the buffer and input file followed by an end-of-file
record, and terminates PX9EDT. The Quit command may write lines from the buffer and input
file, or from the buffer only. Quit should be used as the final command in an edit session so
that an end of file will be written to the output file.

4.4.4 HANDLING OF FILE DATA FORMATS. The following special characters are recognized
by the text editor I/O routines. A backspace character (CTRL H) backspaces one character
position. A RUB OUT character deletes the current input line. A tab (CTRL I) echoes as one
space upon character input, but moves to the nearest tab stop when the line is printed. Tab
stops are defined at character positions 8, 13, 31, and 33. An escape (ESC) entered from the
keyboard during cassette or print output causes the current I/O operation and the command to
be aborted. Control returns to the command handler, and another command may be entered
when a "?" is printed.

All other characters from keyboard input, printer output, and cassette read and write are
handled as specified in Appendix C.

4-4 Digital Systems Division .

St?nS\ ______ _ ~ 945255-9701

4.4.5 COMBINING SOURCE OR OBJECT FILES. PX9EDT may be used to combine source
files or object files. These files may be on one or more cassette tapes. When the editor is started,
the initial messages are printed:

PX9EDT PART # REV DATE
ADD MEM BLOCKS CONFIGURED?

POSITION TAPES, ENTER CR

The user mounts the tapes and enters a carriage return on the terminal keyboard. The prompt
character (?) is displayed. The user enters the D command to read records from the input tape.
The K command is then used to write the records in the buffer to the output tape.

?D150
?K150

Subsequent D and K commands are entered until the end of file is reached and the entire file
has been transferred to the output tape.

?D150
?K150
?D150

END OF FILE
?K15Q

The user then enters the E command to end the edit process without writing an end of file to
the output file.

?E

The terminate or continue question is then asked. The user responds with a C for continue.

TERMINATE/CONTINUE ?C

The initial tape positioning message is printed. The user repositions the file or replaces the
original input file with the next one to be copied and repeats the above procedure until all mes
have been transferred. When all the records of the last file have been transferred, the user enters
the Q command instead of the E command.

?Q
END EDIT

. The Q command writes an end of file to the output me and terminates the edit process. The
terminate or continue question is printed. Respond with a "T" to terminate.

4.4.6 CREATING NEW PROGRAMS. The following paragraphs describe the use of PX9EDT to
enter a new source program on tape. The Insert (I) command is used to input new source
statements. Any of the commands may be used to correct any errors made in entering the
statements. Because statements entered with the Insert command have no line numbers, the
pointer-relative specification is the only available means of specifying a line in a command. The
following text describes an example of writing a source program using PX9EDT.

4-5 Digital Systems Divisiol

~.-------~ 945255-9701

The initial message aild the fIrst command, with associated entries, are as follows:

POSITION TAPES, ENTER CR
?IO

W1
START

BSS
RSET
LWPI
CLE

32

W1 .
RO

The I comman4 with an operand of zero causes PX9EDT to place the lines that follow at the
. top of the buffer. The buffer pointer is not moved as lines are entered and remains ahead of the

fIrst line entered. In the above example, an error was made in the operation fIeld of the fourth
line, so the user entered ail additional carriage return to terminate the command, permitting
entry of another command to correct the error.

The next part of the example program is:

?K3
?P1

CLE RO

The K command cuases PX9EDT to write the fIrst three lines on the output medium. The PI
command causes PX9EDT to print the pointer line to verify that the pointer is at the line that
contains the error. An alternative to using the Keep c;ommand to write the correct portion of the
program is to use a Down command to position the pointer for correction of the error, leaving
the fIrst three lines in the buffer. ~

The next command and the associated entries are as follows:

?C
CLR RO

11 INC RO
JNO J1

D1 DEC RO
JNE D1
JMP 11
END START

The C command deletes the error line and accepts seven lines of source code. The example source
program is now complete, with three lines written on the output medium, and seven lines in the
buffer.

The next command and the resulting printing are as follows:

?F10F'J1"11'
LAST LINE
0001.FOUND

The Ftt~mmand scans the contents of the buffer, replacing the fIrst appearance in each line of
string J1 with string II. The command attempts to scan 10 lines, and prints the message LAST
LINE because there are only seven . lines in the buffer. The V and P options (paragraph 4.504.5)
could have been used. This is an alternate method of correcting an error in a source program
entered from the keyboard using PX9EDT.

4-6 Digital Systems Division.

~-------~ 945255-9701

The next command and the resulting printing are as follows:

?P10
CLR RO

11 INC RO
JNO 11

01 DEC RO
JNE 01
JMP 11
END START

LAST LINE

The P command causesPX9EDT to print the contents of the buffer and the last line message.
This command allows the user to check the program carefully before writing the output file.

The last command and the final message are as follows:

?OO
END EDIT

The Q command causes PX9EDT to write the buffer contents on the output medium following
the records previously written by the Keep command. An end-of-file record is written following
the last record. The 0 specifies that no input records are to be read.

When it is desired to put more than one source module in a file, each module should be
terminated with an END statement. The Quit command should be entered in order to output the
buffer and write an end of file after all source files have been entered. When the assembler reads
the END statement of a module, an end-of-module record is written to the object file. The
assembler continues assembling the source modules on the input cassette until an end of file is
encountered. The assembler then writes an end of file on the output object tape.

4.5 COMMANDS
The 18 commands of PX9EDT include setup commands, pointer commands, edit commands,
print commands, and output commands.

4.5.1 GENERAL. The four setup commands initialize the edit operation. The group includes
commands to enable or inhibit printing of line numbers, to set the right margin for printing, and
to set left and right limits for the Find command.

PX9EDT edits data in a buffer and identifies lines of data in the buffer with a pointer. Four
pointer commands permit the user to position the pointer by moving the pointer down, up, to
the top of the buffer, or to the bottom of the buffer. The command that moves the pointer
down may also read data from the input file.

The five edit commands of PX9EDT allow the user to change, insert, move, or remove lines of
code, and to search for a character string in a set of lines of code. PX9EDT counts the lines in
which the string is found and optionally substitutes another character string, verifies substitution
of the character string, or prints the line in which the string is found.

Two print commands print lines of code on the printer. One command prints the first and last
lines of code in the buffer. The other command prints one or more lines as specified in the
command. .

4-1 Digital Systems Division

~.o ____ ---:---__ ~ 945255-9701

PX9EDT provides two output commands to write data on the output file. One command
outputs a specified number of lines, or all lines of data from the buffer. The other outputs a
specified -number of lines, or all lines of data from the buffer, or from the buffer and the input
file, and writes an end-of-file record following the last line. . '

One other command allows the user to terminate the edit process without outputting any lines
or writing an end of file. . .' .

Commands are entered at the keyboard in response to the printing of a question mark (?).

The command language is free-form, in that one or more spaces may be inserted between
characters and operands of the commands. Each command is terminated by entering a carriage
return.

4.5.1.1 Operands. The operands of the PX9EDT commands specify numbers of lines, line
numbers, or displacements from the pointer. The edit commands and one of the print commands
may specify a group of lines by first and last line number, or by a number of lines relative to
the pointer.

The procedure for moving lines to or from the buffer is described in paragraph 4.4.3.

4.5.1.2 Conventions. The following' symbols and conventions are used in defining the syntax of
PX9EDT commands:

• Angle brackets « » enclose items supplied by the user.

• Brackets ([]) enclose optional items.

• Braces(t }) enclose items between which a choice must be made; one, but only one, of
the items must be included. . '

• Items in capital letters and punctuation marks must be entered as shown.

The syntax definitions and examples shown in this manual do not show spaces between the
characters of the two-character commands, between the command and operands, or between
operands. Spaces may be entered at these points if desired. All operands are decimal numbers.

4.5.2 SETUP COMMANDS. The setup commands may be entered' immediately following the
initial message to initialize limits for the Find command and the right margin for printing, and to

. enable or inhibit printing of line numbers. These commands may also be entered at any time
during the edit to change any of these parameters. When neither of these commands is entered,
line numbers are printed, the right margin for lines of print is column. 72, and columns 1
through 72 are scanned by the Find command. The setup commands are described in the
following paragraphs.

4.5.2.1 Line Numbers (SL). The Line Numbers command causes PX9EDT to resume printing
line numbers to the left of each statement or record. The syntax for the SL command is as
follows:

SL

The SL command is used to restore printing of line numbers after line number printing has been
. inhibited by execution of an SN command.

4-8· Digital Systems Division

~-------~ 945255-9701

4.5.2.2 No Line Numbers (SN). The No Line Numbers command causes PX9EDT to omit
printing of line numbers except in the message resulting from the L command. The syntax for
the SN command is as follows:

SN

The SN command may be entered initially or at any time during the edit operation. Omitting
the line numbers when editing object code may be desirable to permit printing the entire record.

4.5.2.3 Print Margin (SP). The Print Margin command specifies the right margin for printing,
except for the message resulting from the L command. The syntax for the SP command is as
follows:

SP<S>

The right margin for printing is column s. The default value for the right margin is column 72.
The margin input must be a va1ue between 10 and 80, inclusive. If line numbers are being
printed, the line numbers are included in the margin column. The line numbers use six columns,
so that if the right margin is comumn 72, only 66 characters plus 6 line numbers and blanks for
spacing are printed. The following example shows an SP command that specifies column 60 as
the right margin for priIiting:

?SP60

4.5.2.4 Find'Margin (SM). The Find Margin (SM) command specifies left and right limits for the
Find command. The syntax for the SM command is as follows:

SM<S>,<t>

The Find command scans from colunin s to column t. The SMcommand may be entered to
limit the Find command to a desired field. The default value for the scan limits is froin column
I to column 72. The following example shows an SM command that limits the scan of
subsequent Find commands to columns 8 through 25:

?SM8,25

4.5;3 POINTER COMMANDS. The pointer commands may be used to move the pointer to any
line in the buffer of PX9EDT. Initially, the pointer is at line 1. Moving the pointer with' the
Down command to any empty line causes PX9EDT to read source lines or object records from
the input file to fill the empty lines, including the line specified in the Down command. Other
commands move the poi~ter up a specified number of lines, or to the top of the buffer, or down
to the bottom of the buffer. The pointer commands permit the user to move the pointer as
desired for effective use of commands that identify lines by specifying a displacement from the
pointer. The pointer commands are described in the following paragraphs.

4.5.3.1 Down (D). The Down command causes PX9EDT to move the pointer down a specified
number of lines. When the specified move is to a line ,number greater than the contents of the
buffer, PX9EDT adds lines to the buffer and reads records from the inpu(file to fill these lines.
The syntax for the D command is as follows: '

D[<n>J

4-9 Digital Systems Division

J17.5\ __ -,----_________ _ ~ 945255-9701

The pointer is moved down n lines. The range of n is I to 9999, and the default value when n is
omitted is 1. The D command may be entered to read in lines from the input file or to move
the pointer to a line farther down in the buffer. Initially, or when the pointer is at the bottom
of the buffer, PX9EDT reads n lines from the input file. When the pointer is m lines above the
bottom of the buffer and n is greater than m, PX9EDT reads n - m lines from the input file. In
each of these ca~~s, the pointer is at the bottom of the buffer after execution of the D
command. However, when the pointer is m lines above the bottom of the buffer and m is greater
than or equal to n, no lines are read, and the pointer is m - n lines above the bottom of the
buffer after execution of the command. The following example shows a D command to move
the. pointer down 30 lines:

?030

4.5.3.2 Up (U). The Up command causes PX9EDT to move the pointer up a specified number
of lines. The syntax for the U command is as follows:

u[<n>]

The pointer is moved up n lines. The range of n is 1 to 9999, and the default value whenn is
omitted is 1. The U command may be entered to move the pointer up to a specific line in the
buffer. The following example shows a U command to move the pointer up 6 lines:

?U6

4.5.3.3 Top (T). The Top command causes PX9EDT to move the pointer to'the top line in the
buffer. The syntax for the T command is as follows:

T

4.5.3.4 Bottom (B). The Bottom command causes PX9EDT to move the pointer to the bottom
line in the buffer. The syntax for the B command is as follows:

B

4.5.4 EDIT COMMANDS. The edit commands add, remove, rearrange, or scan lines of source or
object code. These commands act upon a set of the lines in the buffer, specified by line number
or by a displacement from the pointer. The edit commands are described in the following
paragraphs.

4.5.4.1 Change (C). The Change command deletes a specified set of lines and permits input of
one or more lines to replace the deleted lines. The syntax for the C command is as follows:

l<s>-<t> }
C [+][-<0>]

~<n>

Line s through line t are deleted, or n lines with respe.ct to the pointer are deleted. The values of·
sand t can be equal. Enter as many replacement lines as required. Follow each line with a
carriage return; follow the last line with two carriage returns. When n is preceded by a minus
sign, n line preceding the pointer line are deleted, but the pointer line is not deleted. When n is
unsigned or ls--preceded by a plus sign, n lines beginning with the pointer line are deleted. When
---------.

Digital Systems Division .

~-------~ 945255-9701

no operand is entered, the pointer line is deleted. When the pointer line is deleted, the pointer is
moved to the top line of the buffer. The following example shows a C command to change lines
5 through 7, replacing them with four lines:

1C5-7
LOD MOV

AI
CI
JLT

1,4
4,1
4,WA+60
SUM

The following example shows a C command to change the pointer line and the two lines that
follow the pointer, replacing them with two lines:

1C3
LOD MOV 1,4

CI 4,WA+60

4.5.4.2 Insert (I). The Insert command permits input of one or more lines following the pointer
or a specified line. The syntax for the I command is as follows:

I[<k>]

Enter as many lines as required. Follow each line with a carriage return; follow the last line with
two carriage returns. When k is in the range of 1 to 9999, insert lines following line k. When k is
0, insert lines ahead of the top line in the buffer. When k is omitted, insert lines following the
pointer line. The following example shows the use of the I command to insert two lines
following line 10:

1110
CKON
DEC 7

4.5.4.3 Move (M). The Move command moves a specified block of lines to a specified location
and deletes the lines at the previous location. The block is specified by first and last line
numbers, or by a number of lines preceding or following the pointer. The location is specified as
a line number, or as the pointer. The syntax for the M command is as follows:

',-

Line s through line t are moved, or n lines with respect to the pointer are moved. When n is
preceded by a minus, sign, n lines preceding the pointer line, but not the pointer line. are moved.
When n is unsigned or preceded by a plus sign, n lines beginning with the pointer line are moved.
The specified lines are placed following line r when r is greater than zero. When r is zero,the
specified lines are placed ahead of the top line in the buffer. When r is omitted, the lines are
placed following the pointer line. Numbered lines moved by the Move command retain their

, original line numbers, if any. When the pointer line is moved, the pointer moves with it. When s
r and t are specified, r must be less than s or greater than t. When n is specified, r may not be

omitted. The following example shows an M command to move lines 6 through 8 to follow line
25:

?M6-8,25

, 4-11 Digital Systems Division ,

~,o _______ -~ 945255-9701

The command in the following examples meves four lines beginning with the pointer line to .
follow line 30:,

?M4,30

4.5.4.4 Remove (R). The Remove command removes a block of lines. The block is specified by
first and last' line numbers, or by a number of lines preceding or following the pointer. The
syntax for the R command is as follows:

{<s>-<t> } . R {+][<n>]
-<n>

Line s through t are removed, or n lines with respect to the pointer are removed. When n is
preceded by a minus sign, n lines preceding the pointer line, but not the pointer line, are
removed. When n is unsigned or preceded by a plus sign, n lines-beginning with the pointer line
are removed. When no operand is entered, the pointer line is removed. When the pointer line is
removed, the pointer is moved to the top line of the buffer. The following example shows an R
command to remove line 12:

?R12-12

The command, in the following example removes the three lines precedbtg the pointer line:

?R-3

4.5.4.5 Find (F). The Find command scans a block of lines for a specified character string.
Optionally, the command may replace the string with' or without printing the resulting line, or
may print the line and permit the user to specify whether or not to substitute the string. In all
cases, the command prints the count of matching lines found. The block is specified by first and
last line numbers, or by a number of lines preceding or following the pointer. The syntax for the
F command is as follows: '

I <s>-<t>l' ILl ~'[P] I
F ~;n>. IF <dl><Stringl><dl> t <d2>[<String2>]<d2>[V] [P]

Line s through line t are scanned, or n lines are scanned. When n is preceded by' a minus sign, n
lines preceding the pointer line, but not the pointer line, are scanned. When n is unsigned or
preceded by a plus sign, n lines beginning with the pointer line are scanned.

When an F is, entered foUowing the lines to be scanned, the columns specified in an SM
command are scanned. (Columns I through 72 are, the default for SM.) When an L is entered,
the command performs a label scan, beginning at the left limit and extending to the first space.

The character string used in the scan is designated string I , and is enclosed by identical
characters, each represented by dt. The character represented by dl maybe any character that
does not appear in stringl. '

When no other parameter is entered, the commanQ scans the specified lines and prints the
number of lines in which a match of stringl was found. When P is entered' following dl,the
command prints each line in which a match of stringi was found, and also prints the number of

'lines following the last line found. '

4-12 Digital Systems Division

~ ____ 9_4_52_5_5-_9_70_1 __ _

Character string, string2, enclosed by identical characters, each represented by d2, is the
replacing string. String2 may be omitted, or may be longer or shorter than stringl. When the
replacement is made, the characters of string2, if any, replace the characters of string I and the
length of the resulting line is adjusted as necessary. Character d2 may be any character that does
not appear in string2, V, or P.

When no other parameter is entered following string2, the specified lines are scanned and string2
replaces the first appearance of stringl or label stringl each time a match is found. The
command prints the number of lines in which the replacement was made after scanning the last
line.

Either V or P, or both may be entered following string2. The verify operation, specified by V,
prints the line in which the match is found, and prints the question YIN? on the next line. The
user must enter Y or N followed by a carriage return to continue the operation. When the user
enters Y the replacement is made. When the user enters N the replacement is not made. The scan
continues in either case.

The print operation is specified by P. After the replacement is made, the resulting statement is
printed, and the scan continues._/

When the specified lines have been scanned, PX9EDT prints the number of lines in which a
match was found.

The general rule of PX9EDT which allows spaces between characters or operands does not apply
to string I and string2. Any spaces between the characters represented by dl are considered part
of stringl, and any spaces between the characters represented by d2 are considered part of
string2.

The following example shows an F command to replace the first appearance in each line of the
string EVEN with the string EVEN in lines 34 through 48 and print the resulting lines:

?F34-48F*EUEN*$EVEN$P

The command in the following example verifies the replacement of label PI with string PUNt in
each of nine lines beginning with the pointer line:

?F9L'P1"PUN1 'V

NOTE

If a tab character is included between fields of the data being
scanned by the F command, the tab character should be used in
the comparison character string instead of blanks.

4.5.5 PRINT COMMANDS. The print commands cause PX9EDT to print the first and last lines
in the buffer, or to print one or more specified lines. The print commands are described in the
following paragraphs.

4.5.5.1 Limits (L). The Limits command causes PX9EDT to print the first and last lines in the
buffer, including the line number, if any, with the right margin at column 72. The SN and SP
commands do not affect the operation of the L command. The syntax for the L command is as
follows:

L

4-13 Digital Systems Division .

J17~ ______ _ ~ 945255-9701

The L command is used to identify the top and bottom lines of the buffer.

4.5.5.2 Print (P). The Print command causes PX9EDT to print a block of lines. The block of
lines is specified by first and last line numbers, or by a number of lines preceding or following
the pointer. The SL and SN commands, when entered, control printing of line numbers, and the
SP command, when entered, sets the right margin of the print lines. When these commands are
not entered, line numbers are printed and the right margin is column 72. The syntax of the P
command is as follows:

I <s>-<t> }
P [+][<n>].

-<n>

Line s through line t are printed, or n lines are printed. When n is preceded by a minus sign, n
lines preceding the pointer line, but not the pointer line, are printed. When n is unsigned or
preceded by a plus sign, n lines beginning with the pointer line are printed. When no operand is
entered, the pointer line is printed. The following example shows a P command to print lines 8
through 10:

?P8-10

The command in the following example prints the pointer line and the next three lines:

?P4

The user may terminate the Print command at any time by entering an ESC character at the
keyboard. PX9EDT then prints a question mark and awaits input of another command.

4.5.6 OUTPUT COMMANDS. PX9EDT provides two commands to write source or object code
and one command to end execution of PX9EDT. The Keep command writes the entire buffer or
specified lines from the buffer. The Quit command writes specified lines from the buffer, the
entire buffer, or the buffer contents and the remainder of the input file, and writes an end-of-file
record on the output file. The output commands are described in the following paragraphs.

4.5.6.1 Keep (K). The keep command writes a specified number of lines from the buffer on the
output device. The syntax of the K command is as follows:

K[<n>l

The first n lines of the buffer, or all lines in the buffer when n is omitted, are written on the
output device. When the pointer line is written, the pointer is moved to the top line remaining in
the buffer. The K command is entered to write lines no longer required in the buffer in order to
have space in the buffer for additional lines. The following example shows a K command to
write the top 15 lines of the buffer:

?K15

4.5 .. 6.2 Quit (Q). The Quit command writes lines from the buffer and input file followed by an
end-of-file record. The syntax of the Q command is as follows:

Q[<S>]

4-14 Digital Systems Division .

~-------~ 945255-9701

The lines of the input file up to and including line s are written. When line s is in the buffer,
lines are written from the buffer only. When line s is not in the buffer, PX9EDT writes the lines
in the buffer, reads the additional lines from the input file, and writes these lines. When s is
zero, only the lines in the buffer are written. When s is omitted, the lines in the buffer and the
remainder of the input file are written. The Q command is entered to write the output file, or
the remainder of the output file, including the end-of-file record.

If the output tape is not mounted, the message

ROY TAPE-TYPE CR

is printed. The user should ready the output cassette and enter a carriage return. The command
then proceeds.

4.5.6.3 End (E). The End command stops execution of PX9EDT without writing any more lines
to the output file and asks the user whether he wants to continue or terminate execution. An
end-of-file is not written. The syntax of the E command is as follows:

E

The End command is often used to generate stacked modules without ends-of-file between them.
In this case, the End command can be used following appropriate Keep commands to write the
output file.

4.6 MESSAGES
PX9EDT prints error messages and warning messages. The messages are described in the following
paragraphs.

4.6.1 ERROR MESSAGES. The two error messages printed by PX9EDT indicate errors in the
entry of commands. When the operator portion of a command is incorrect, PX9EDT prints the
following message:

INVALID OPERATOR

When an operand is not entered correctly or is beyond the range of values for that operand,
PX9EDT prints the following message:

INVALID OPERAND

To recover from either error, the user enters the command correctly, or enters another
command.

When an output command, either K or Q, is entered and no output cassette is mounted, the
following message -is printed:

ROY TAPE-TYPE CR

The user should ready the output cassette and type a carriage return on the terminal keyboard.
The .command entered then proceeds.

.4-'-5 Digital Systems Division .

~-------~ 945255-9701

4.6.2 WARNING MESSAGES. When any command that operates on data in the buffer is
entered before data has been placed in the buffer from the input file or from the keyboard
(either initially or after writing the entire buffer contents), PX9EDT prints the following
message:

BUFFER EMPTY

To recover, the user should enter a D command, or an I command and data.

When a D, I, or C command attempts to put more data into the buffer than the buffer can
contain, PX9EDT prints the following message:

BUFFER FULL!

The user must enter a K command to write data from the buffer before entering or reading any
more data.

When a D command attempts to read more records from the input file than the file contains,
PX9EDT prints the following message:

END OF FILE

PX9EDT will not make any further attempt to read the input file until the program restarts.

When the negative displacement from the pointer line in a C, M, R, F, or P command is greater
than the number of lines in the buffer ahead of the pointer line, PX9EDT prints the following
message:

OFF THE TOP

After printing the message, PX9EDT executes the command beginning with the top line of the
buffer.

When the positive displacement from the pointer line in a C, M, R, F, or P command is greater
than the number of lines in the buffer following the pointer line plus one, the command
executes normally until it has processed the last line in the buffer. PX9EDT then prints the
following message:

LAST LINE

PX9EDT prints a question mark and waits for another command.

When the first line in a C, M, R, F, or P command, or the line number in an I command, or the
destination line number in an M command is not in the buffer, PX9EDT prints the following
message:

LINE NOT FOUND

PX9EDT does not execute the command, but prints a question mark and waits for another
command.

4-16 Digital Systems Division

~-------~ 945255-9701

4.7 SOURCE PROGRAM EDITING EXAMPLE
The capabilities of PX9EDT to edit source programs include adding, moving, and removing
statements, and replacing a character string in statements. The edited program may include
portions of a number of source programs. The purpose of editing is either to combine portions
of source programs or to correct or modify a source program. The following paragraphs describe
an example of editing a source program and considerations for editing source programs.

4.7.1 DESCRIPTION OF PROGRAM. The source program used as an example is a set of three
program modules to be combined into one module. Some changes not related to combining the
modules are also made. The source statements for all three modules have been placed in a single
file containing 117 records.

The default values for print margin and F command limits are used, and line numbers are
printed. No setup command is required.

4.7.2 EXPLANATION OF EXAMPLE. The initialization messages and the first command are as
follows:

PX9EDT PART # REV DATE
ADD4K MEM BLOCKS CONFIGURED?

POSITION TAPES, ENTE R CR

?D117

The D command moves the pointer down 117 lines, and PX9EDT reads in the source file 'to fill
the buffer as dermed by the D command. A smaller value could have been used to read part of
the file, followed by a subsequent D comn'land to read the remainder. Had a lirger value been
entered, PX9EDT would have read the 117 records of the fIle and printed the end-of-flle
message. PX9EDT prints the prompt character (1) and awaits another command.

The next command and the resulting printing are as follows:

?L
0001 TITL 'EDITING EXAMPLE'
0117 END

The L command verifies the buffer contents by printing the first and last lines in the buffer. Had
the SN and SP commands been entered, they would not have affected the printing of the limits
resulting from the L command. .

The next command is as follows:

?T

The T command moves the pointer to the top of the buffer (line 1) from line 117 where the
first command had placed the pointer. Moving the pointer to the top of the buffer permits using
pointer-relative commands for the area at the top of the buffer.

4-17 Digital Systems Division .

~--~----~ 945255-9701

The following commands move line 46 to a position after line 116 and remove line 117.

?M46-46,116
?Rl17-117

The following command is entered.

?M81-87,l15

This M command moves lines 81-87 to a position following line 115. This causes the line
numbers in the buffer to be out of sequence.

The following commands prepare for verifying the move operation.

?8
?Pl

0046 END START

The B command places the pointer on the last line of the buffer, and the P command prints the
pointer line to verify that it is on the proper line.

The next command and the resulting printing is as follows:

?P-13
0111
0112
0113
0114
0115
0081
0082
0083
0084
0085
0086
0087
0116

UP2 MOV *R10,*R10
JNE UPl
BL @ATTOP
MOV *DUMNXT,TMLOC
JMP UP3

* ROUTINE COMMON TO UP AND DOWN
UDCOM1 MOV RTN,R5

BL @SCANOP
INC UDCNT
MOV UDCNT,UDCNT
JEQ EXIT
B *R5

*

The P command prints the 13 lines preceding the pointer line, and the result shows that lines
81-87 have been placed after line 115: The result also shows the effect of the previous move and
remove commands.

The next command and associated entries are as follows:

?177 .
* TITLE = MSGOUT - MESSAGE OUTPUT
MSGOUT MOV *Rl1+,Rl0

MOV @MCOUNT(Rl0),Rl0
BLWP @PRINT
B *R11

4-18 Digital Systems Division .

~'-------~ 945255-9701

The I command inserts five lines following line 77. The number of lines inserted is the number
of lines entered with the command, and may be one or any. number of lines. After the carriage
return that terminates the last line, enter an additional carriage return to terminate the
command.

The next command and the resulting printing are as fo~ows;

?P11-18
0011

0018

JMP EXIT
* TITLE = MSGOUT - MESSAGE OUTPUT
MSGOUT MOV *R11+,Rl0

MOV "'~MCOUNT(Rl0),Rl0
BLWP (QIPRINT
B *R11

EOFEXT BL @MSGOUT

The P command prints lines 77 through 78, which includes the five unnumbered lines inserted
by the previous command. The result shows that the lines have been inserted correctly.

The· next command and the resulting interaction are as follows:

?F 1-46F'EXIT"EXTDWN'VP
0011 JMP EXIT
YIN? Y
0011 JMP EXTDWN
0011 JMP EXIT
YIN? Y
0011 JMP EXTDWN
0080 EXIT RTWP
YIN? Y
0080 EXTDWN RTWP
0086 JEQ EXIT
YIN? N
0004 FOUND

The F command fmds the first appearance in a line of the string EXIT in lines I through 46.
(Remember that line 46 is now the last line, i.e., after line 116.) The entire buffer is scanned
because the top line in the buffer is line I and the bottom line is line 46. Line numbers greater
than 46 between lines I and 46 are also scanned. The replacing string is used only when the user
enters a Y following the printing of the line found. In the example shown, the replacement was
not made in line 86 because the user entered an N following the printing of this line. lines 71,
77 and 80 were. replaced because the user entered a Y following the printing of these lines. The

. count of lines found is printed after all lines have been scanned. The F command may be used
to s.can only a portion of the buffer, from one line up to the entire buffer, and replace from one
character to the entire statement. .

The next three commands are as follows:

?Rl5-15
?R11-17
?R19-19

Digital Systems Division .

~-------~ 945255-9701

Each R command removes the specified line from the buffer. Three commands that remove one
line each are necessary because the lines to be removed are not consecutive. A single R command
may remove one or more consecutive lines.

The next command and the resulting printing are as follows:

?P14-20
0014
0016
0018
0020

DUMNXT
LlNAD
LlNPTR
CLLOC

EQU
EQU
EQU
EQU

o
2
4
6

The P command prints lines 14 through 20. The result shows that the lines specified in the
remove command were removed.

The next command is as follows:

?U2

The U command positions the pointer to the second line preceding the pointer line. The pointer
could have been moved any number of lines up to the top of the buffer.

The next two commands, the resulting printing of the first command, and the entry associated
with the second are as follows:

?P68-68

0068
?C68-68

A

A @MAXLlN,UDCNT

@MINLlN,UDCNT

The P command prints line number 68 to verify that line 68 is the desired line. The C command
changes line 68 to the line entered with the command. One or more consecutive lines may be
deleted by a C command, and any number of lines including zero lines may be added. The
number of lines added does not have to be equal to the number of lines deleted. The added lines
have no line numbers.

The last command and the final message are as follows:

?QO
END EDIT

The Q command writes the contents of the buffer and end-of-file record and terminates the
PX9EDT run. Omitting the operand following the Q causes the command to write the buffer
contents and copy the remainder of the source file. An operand other than zero causes all lines
up to and including the specified line to be written. The line may be in the buffer, or in the
portion of the input file remaining to be read.

4.8 EDITING OBJECT CODE
The capabilities of PX9EDT to edit object programs include adding, moving, and removing
records, and replacing a character string in records. These capabilities allow the user to combine
object code, correct object code, and add object code at a machine instruction level. In editing

Digital Systems Division

~, ------~ ~S2SS-9701

object code, it is necessary to thoroughly understand the object code format and the significance
of tag characters, described in the Model 990 Computer TMS9900 Microprocessor Assembly
Language Programmer's Guide, and summarized in Section V of this manual. Records may be
inserted into an object program at any point except that the records lhat conpiin the 3 or 4 tag
character, the 5 or 6 tag character, and the 1 or 2 tag character must follow all other records in
the object fIle. Further, the record that contains the D tag character, if any, must precede the
record that contains the first 0 tag character. Each record must end with tag character F. When
the contents of a record are altered, the 7 tag character and associated field must be removed.
When the length of relocatable code is increased, the contents of the hexadecimal field associated
with the final 0 tag character must be changed. The following paragraph describes an example of
editing an object program.

In the example, the purpose of the edit is to add a record to specify a load point, to change
instructions that use workspace register 1 to use workspace register 7 instead, to change an
instruction, and to add an instruction.

The initialization message and the first command are as follows:

POSITION TAPES, ENTER CR

?SN

The SN command is a setup command that inhibits printing of line numbers. When line numbers
are printed, printing of an object record may be truncated because of the length of the print
line.

The next command and the associated entry are as follows:

?IO
D1000F

The I command with an operand of 0 inserts the associated line' at the top of the buffer. The
line will be the first record in the edited object fIle, and contains load point of 100016 , specified
with a D tag character.

The next command and the resultLllg printing are as follows:

?D10

END OF FILE

The D command causes PX9EDT to rea'd/ih the object file to be edited. The lile contains six
records, so the operand used causes PX9EDT to attempt to read past the end-of-fIle record. This
inhibits further reading of any input fIle in this run of PX9EDT. If more than one fIle is to be
combined in an edit operation, avoid an operand in a D command that will cause PX9EDT to
attempt to read more records than the fIle contains.

The next command and the resulting printing are as follows:

?L

D1000F
0006 200CEOO10C 7FCABF

Digital Systems Division .

~-------~ 945255-9701

The L command causes PX9EDT to print the limits. The top line in the buffer is the line
entered with the I command, and has no line number. The bottom line is the last line of the
object file, line 6.

The next command and the resulting interaction are as follows:

?Fl-6F'B0002"BOOOE'VP

OOOOO::;AMPROG '30040(:0 OOOA0020BC 06DB 00 02':00 !)42C 0020AO 024B031B(:0 02A7F2 BF

000 OO::;AMPROG '~O 04 oK 1):) OOAO 02 OBC06!tBCI OOE':O 0042CO 02 ')A 0024:3(::31 B(: 002A7F21':oF
R002:3B 0241:S0 t)o ilBCB41 Bt) .)02B 03:3')AO OCAC 0052CO OA23 02EI)C·) 0:32.8 ')2 OOBOFOF7F 1 DEF

· /~l?·l

A0028B0241B 00 00:8(::841B 00 OEBO:3:3 OR OOCACO ;)52C OOA2Bi);~E OC 00:32B020 OB OF OF7F IDEF
001)2 FOUND

The F command scans for the character string B0002 with the verify and print options. The
replacement string, BOOOE, changes the memory address of workspace register 1 to that of
workspace register 7 in two instructions. Verification and printing provides control and documen­
tation of the changes.

The next command and the resulting interaction are as follows:

?F1-6F'7F151"'VP

AO OD6BCOAOCO OCRB 04C:3:8C 16 OC (li)CCBC1A OC OODOBC IF2B 02:37B:3AO OA OOECBD2217F151 F
'j'/N?Y

AOOD6B(: DAO(: DO(:AB04C:3BC 160C 0 OCCBC 1 AOCO OD OBCl F2B!J2:37B:3Ft OOAO OECB 0221 F
0001 FOUtlD

The F command scans for the character string 7F151, which is a checksum tag character and
associated field. The replacement character string is a null string, and the result is to remove the
checksum from a record which was changed by an edit command not ~hown here.

The next command and the associated entry are as follows:

?I
AOOECB0227AOOFOB06C7A010AB04CTF
A010CB10FFF

The I command inserts the associated two lines following the line on which the pointer had been
positioned by an edit command not shown. The first line will cause the loader to overlay three
words of the original file, which is another way of changing object code. The second line is an
added instruction which will increase the size of the program module.

Digital Systems Division

~-------~ 945255-9701

The next three commands, the resulting printing of the second, and the associated entry of the
third are as follows:

?D3

?Pl

200CE0010C 7FCABF
?C

200CE0010E F

The D command moves the poi."1ter line down three lines, and the P command causes PX9EDT
to print the pointer line to verify the pointer position. The C command cha..'1ges the pointer line
to modify the number of words of relocatable code in the program. If this is not done, and
another module is loaded following this module without specifying a load address for the
subsequent moduie, the subsequent module will overlay the instruction that was added. The
pointer line is also changed to delete the checksum.

The last command and the final messages are as follows:

700

END EDIT

The Q command causes PX9EDT to write the contents of the buffer, followed by an end-of-fiie
record, on the output medium.

4~23/4-24 . Digital Systems Division .

~-------~ 945255-9701

SECTION V

ONE-PASS ASSEMBLER

5.1 INTRODUCTION
This section describes the purpose of the one-pass assembler and how the assembler functions. It
also presents some recommendations for using the assembler. Paragraphs on the loading pro­
cedure and operation of the assembler follow. The operation discussion includes the input/output
requirements and the operational messages printed. The next part of this section contains a brief
discussion of assembler directives and pseudo-instructions and includes references to other
publications. Error messages, descriptions of the errors with remedial action required, an explana­
tion of the printed source listing output, and a brief discussion of the object code comprise the
remainder of the section.

5.2 GENERAL DESCRIPTION
The One-Pass Assembler (PX9ASM) executes in a Model 990/4 or 990/10 Computer configured
for the 990-733 ASR System Software or the 990 Prototyping System. The Debug Monitor,
PX9MTP, must be resident since PX9ASM is loaded by PX9MTP and calls PX9MTP routines for
input/output and conversion operations. PX9ASM assembles object code for the TMS9900
microprocessor, the 990/4 microcomputer and the 990/10 minicomputer.

A one-pass assembler reads the source statements of a program once only. The assembler
maintains a location counter as it reads the statements, and assigns a location counter value to a
label (symbol in the label field). The assembler builds a symbol table using these symbols and
the assigned values. The assembler also evaluates the expression in the operand field using the
values in the symbol table for any symbols in the expression. Then the assembler assembles the
appropriate object code according to the operation codes and the values of the operands.

PX9 ASM supports the assembly language as described in the Model 990 Computer TMS9900
Microprocessor Assembly Language Programmer's Guide, Manual No. 943441-9701. It is recom­
mended that the user read this manual before trying to write any assembly language programs.
Because PX9 ASM is a one-pass assembler, there is a restriction which allows only one forward
reference in an expression.

PX9ASM provides a listing of the source and object code and generates the machine language
object code on cassette tape.

5.3 LOADING PROCEDURE FOR THE ASSEMBLER
PX9ASM should be loaded by means of the PX9MTP Load Program in Compressed Absolute
Format with Upfront Loader (LV) command. Mount and position the cassette containing the
PX9ASM object code and enter this command:

LU

The LU command with no parameters assumes that the cassette will be mounted in the cassette
drive assigned to logical unit number 7. Be sure that logical unit number 7 has not been

5-1 Digital Systems Division .

~-------~ 945255-9701

reassigned to another device. Examples of other acceptable load program commands are the
following:

LU,7 Load program from LUNO 7.

LU 8 Load program from LUNO 8.

The user then enters the Execute User Program Directly (EX) command to begin execution of
PX9ASM.

5.4 ASSEMBLER OPERATION
The following paragraphs discuss input/output and use of the assembler.

5.4.1 INPUT AND OUTPUT. PX9ASM accepts tapes containing Model 990 Computer/TMS9900
Microprocessor Assembly Language source statements as input. The source tapes may be gener­
ated with the Text Editor (PX9EDT). PX9ASM assembles the source lines generating an output
listing of the assembled source and object code and a cassette tape object file which may be
loaded by the relocating linking loader (LL commjmd of PX9MTP). If no linking is necessary,
the LP command may be used to load the object.

PX9ASM accepts input source from logical unit number 7, outputs the listing to logical unit
number 6, and outputs the loadable object to logical unit number 8. Under PX9MTP, the
following default logical unit number assignments have been made.

Logical Unit Number

6

7

8

Device

LOG

CSt

CS2

If other assignments are required, the Assign LUNO (AL) command of PX9MTP should be used.
For example, to assemble a source tape with no printed listing, the user should assign LUNO 6
to DUM, the dummy device. The error messages will continue to be· printed.

5.4.2 PX9ASM OPERATIONAL MESSAGES. When PX9ASM is started, it prints a series of
messages requesting user responses. The first two messages are printed the first time PX9 ASM is
executed after being loaded. In subsequent executions and when restarting PX9ASM, the first
two messages will not be printed.

The first of these messages is as follows:

PX9ASM PART # REV DATE

This message identifies the program name and release information.

The second message is:

ADD 4K MEM BLOCKS CONFIGURED?

5-2 Digital Systems Division .

~-~-----~ 945255-9701

The user should input the number of 4K user memory blocks which are configured in his system
in addition to the 4K required by PX9ASM and the 4K required by PX9MTP. The maximum
number that can be specified is 5. This additional memory will expand PX9ASM's symbol table
size. For example, if the user's system contains 8K of user memory space in addition to the 4K
required by PX9MTP, the response should be "I". If the user's system contains 4K of user
memory space, the response should be "0" or a carriage return only.

The third message is:

PREDEFINED REGISTERS?

The user should enter "N" for no predefmed registers, or "Y" or a carriage return if registers RO
through RI5 are to be predefmed in the symbol table.

An additional message is the following:

ASM/TERM?

The user should type "A" to assemble and "T" to terminate and return control to the monitor.
For the assemble option response,· the user should mount cassettes and position them to the
correct files before responding to the message.

5.5 DIRECTIVES AND PSEUDO-INSTRUCTIONS
The following paragraphs briefly describe the assembler directives and pseudo-instructions, ex­
plaining how they are used and identifying the publication in which detailed information about
them may be found.

5.5.1 ASSEMBLER DIRECTIVES. Assembler directives are used with machine instructions in
source programs to supply data to be included in the program and to control the assembly
process. The PX9ASM assembler supports the 19 directives listed in Appendix D. The syntax
definitions and detailed descriptions of these directives are in the Model 990 Computer TMS9900
Microprocessor Assembly Language Programmer's Guide, Manual No. 943441-9701. .

5.5.2 PSEUDO-INSTRUCTIONS. A pseudo-instruction is a convenient way to code an operation
that is actually performed by a machine instruction with a specific operand. The Model 990
Computer Assembly Language includes two pseudo-instructions: No Operation and Return. The
syntax definitions and detailed descriptions of these pseudo-instructions are in the Model 990
Computer TMS9900 Microprocessor Assembly Language Programmer's Guide, Manual No.
943441-9701. The pseudo-instructions are summarized in Appendix D.

5.6 ERROR MESSAGES
PX9ASM prints the following error message when it detects an error:

** ER R N - 'STMT XXXX LAST ERR - STMT YYYY

N is an error code as shown in table 5-1. XXXXis the statement number of the source line in
which the error was detected. YYYY is the statement number of the source line in which the

. preceding error, if any, was detected.

Error messages for undefined symbols are printed at the end of the assembly. When a statement
allows a forward reference, the reference is not undefined until PX9 ASM recognizes an END
statement without having recognized a statement defining the symbol. Error messages may be
printed at any point, from the lines immediately following the statement in error to lines

. following the END statement.

5-3 Digital Systems Division .

}}h\ __ -----~ 945255-9701

Table Sol. PX9ASM Error Codes

Code Description

2 Syntax error. The statement corresponding to the error location contains a syntax error.

3 Illegal external reference. The statement corresponding to the error location contains an external ref­
erence (and an arithmetic operator) in an expression or an external reference to be placed in a field
smaller than 16 bits.

4 Truncation error. The statement corresponding to the error location contains a number that is too
large or a character string that is too long. The number may be the result of evaluating an expression.
Relocatability of a term or expression may be in error.

5 Multiply defined symbol. A symbol in the statement corresponding to the error location has been
previously referenced or defmed.

6 Unrecognizable operator. Contents of the operator field of the statement corresponding to the error
location is not a mnemonic operation code, a directive, or a name defined as an extended operation.

7 Illegal forward reference. A symbol in the statement corresponding to the error location that should
have been previously defined is not previously defined.

8 Illegal term. A term has an illegal value less than zero or greater than 15.

The assembler can accommodate a minimum of 135 symbols in a 4K memory allocation with no
predefined registers and 125 symbols in a 4K memory allocation with predefined registers RO
through R15. When the assembler is unable to continue because the area of memory available for
symbols and forward references has been filled, the assembler prints the following message:

** ABORT **

The user may divide the program into two or more modules and assemble them separately.
Alternatively, the user may shorten the symbols in the program and reassemble. Since shorter
symbols use less space in the symbol table, a symbol table of a given size may contain more,
shorter symbols.

Following the last statement of error message, the assembler prints undefined symbols, if there
are any, one symbol per line. The undefined symbol may correspond to one of several error
codes, or may be a symbol in a DEF directive that does not appear in the label field of a
statement.

At the end of the listing is an error summary, as follows:

NNNN ERRORS
LAST ERR . STMT XXXX

NNNN is the count of errors in the assembly. The second line identifies the last error detected in
the assembly. The second lines of the error messages link the error messages so Jhat the user may
begin at the error summary message and readily locate all error messages. In an error-free
assembly, the final message is:

0000 ERRORS

5.7 PRINTED OUTPUT
The following paragraphs discuss the source listing and the object code.

5-4 Digital Systems Division .

J17S\ ______ _ ~ 945255-9701

5.7.1 SOURCE LISTING. The source listings show the source statements and the resulting
object code. A typical listing is shown in the example programs in Section VII.

Each page of the source listing has a title line at the top of the page if a title was supplied by a
TITL directive. A page number is printed to the right of the title area. The printer skips a line
below the title line, and prints a line for each source statement listed. The line for each source
statement contains a source statement number, a location counter value, object code assembled,
and the source statement as entered. When a source statement results in more than one word of
object code, the assembler prints the location counter value and object code on a separate line
following the source statement for each additional word of object code. The source listing lines
for a machine instruction source statement are shown in the following example:

0018 0156 C820
0158 0128'
015A 0003

MOV @INIT+3,@3

The source statement number, 0018 in the example, is a four-digit decimal number. Source
records are numbered in the order in which they are entered, whether they are listed or not. The
TITL, LIST, UNL, and PAGE directives are not listed, and source records between a UNL
directive and a LIST directive are not listed. The difference between source record numbers
printed indicates how many source records are not listed.

The next field on a line of the listing contains the location counter value, a hexadecimal value.
In the example, 0156 is the location counter value. Not all directives affect the location counter,
and those that do not affect the location counter leave this field blank. Specifically, of the
directives that the assembler lists, the IDT, REF, DEF, DXOP, EQU, and END directives leave
the location counter field blank.

The third field contains the hexadecimal representation of the object code placed in the location
by the Assembler, C820 in the example. The apostrophe following the third field of the second
line in the example indicates that the contents, OI2B, is relocatable. All machine instructions and
the BYTE, DATA, and TEXT directives use this field for object code. The EQU directiye places
the value corresponding to the label in the object code field.

In listings printed by PX9ASM, the third field may contain two or four hyphens (-) instead of
hexadecimal digits. This occurs when a forward reference determines the values of these digits.

Later, when the forward reference is defined, the assembler prints an additional line in the listing
following the statement that defines the forward reference. This line contains the location being
resolved, two asterisks (**), and the contents. An error-free listing will include such a line for
each location previously printed with hyphens as the contents. The listings printed by the other
assemblers do not contain this type of information because all references are either resolved or
identified as undefined before the listings are printed.

The fourth field contains the first 60 characters of source statement as supplied to the assembler.
Spacing in this field is determined by the spacing in the source statement. The four fields of
source statements will be aligned in the listing only when they are aligned in the same character
positions in the source statements or when tab characters are used .

.
The machine instruction used in the example specifies the symbolic memory addressing mode for
both operands. This causes the instruction to occupy three words of memory and three lines of
the listing. The object code corresponds to the operands in the order in which they appear in the
source statement.

5-5 Digital Systems Division .

~.5\ ______ _ ~ 945255-9701

5.7.2 OBJECT CODE. The assembler produces standard 990 object code that may be linked to
other object code modules or programs and loaded into the Model 990 computer, or may be
loaded into the computer directly. Standard 990 object code consists of records containing up to
71 ASCII characters each. The format, described in the next section, permits correction using a
keyboard device. Reassembly to correct errors is not always necessary. The object code format is
discussed in Section VI.

5-6 Digital Systems Division

~-------~ 945255-9701

6.1 INTRODUCTION

SECTION VI

OBJECT CODE FORMATS

This section describes the two object code formats: standard 990 object code and compressed
absolute format object code. The discussion of standard 990 object code covers primarily tag
characters. A procedure for changing standard 990 object code is also included. Illustrations of
the basic and extended tag formats for compressed absolute format object code are presented.

6.2 STANDARD 990 OBJECT CODE
Standard 990 object code consists of a string of hexadecimal digits, each representing four bits,
as shown in figure 6-1.

The object record consists of a number of tag characters, each followed by one or two fields as
defined in table 6-1. The first character of a record is the first tag character, which tells the
loader which field or pair of fields follows the tag. The next tag character follows the end of the
field or pair of fields associated with the preceding tag character. When the assembler has no
more data for the record, the assembler writes the tag character 7 followed by the checksum
field, and the tag character F, which requires no fields. The assembler then fills the rest of the
record with blanks, and begins a new record with the appropriate tag character.

Tag character 0 is followed by two fields. The first field contains the number of bytes of
relocatable code, and the second field contains the program identifier assigned to the program by
an IDT directive. When no IDT directive is entered, the field contains blanks. The loader uses the
program identifier to identify the program, and the number of bytes of relocatable code to
determine the load bias for the next module or program. PX9ASM is unable to determine the
value for the first field until the entire module has been assembled, so PX9ASM places a tag
character 0 followed by a zero field and the program identifier at the beginning of the object
code file. At the end of the file, PX9 ASM places another tag character zero followed by the
number of bytes of relocatable code and eight blanks. .

OOOOOSA~PRCG 90040COOOOA0020BC06DB000290042C0020A0024BC81BC002A7F219F
A0028B0241BOOOOBCB4110002B0380AOOCACOO~2COOA2E02EOt003210?OOEOFOF7F1DEF
AOOD6BCOAOCOOCAB04C31C160COOCCBCIAOCOODOIC072B0281B3AOOAUOECB02217Fl~lF
AOOEEB0900B06CIAOOEABI102AOOF2B0543BI1F8B2C20C0032BCI0IBOB44BE0447F18EF
AOI00BDD66Bn003B0282COOA2BI1EDB03407F832F
200(:EOOI0C 7FCABF .. .

(A)132255

Figure 6-1. Object Code Example

6-1. Digital Systems Division

~ 945255-9701

Table 6-1. Object Output Tags Supplied by Assemblers

Tag Hexadecimal Field
Second Field Meaning

Character (Four Characters)

0 Length of all relo- 8-character program Program start
catable code identifier

Entry address None Absol~ entry
address

2 Entry address None Relocatable entry
address

3 Location of last 6-character symbol External reference
appearance of last used in relo-
symbol eatable code

4 Location of last 6-character symbol External reference
appearance of last used in absolute
symbol code

5 Location 6-character symbol Relocatable external
definition

6 Location 6-charactersymbol Absolute external
definition

7 Checksum for None Checksum
current record

9 Load address None Absolute load
address

A Load address None Relocatable load
address

B Data None Absolute data

C Data None Relocatable data

D Load bias value* None Load point specifier

F None None End-of-record

G Location 6-character symbol Relocatable symbol
definition

H Location 6-character symbol Absolute symbol
definition

*Not supplied by assembler.

Tag characters I and 2 are used with entry addresses. Tag character I is used when the entry
address is absolute. Tag character 2 is used when the entry address is relocatable. The hexa­
decimal field contains the entry address. One of these tags may appear at the end of the object
code file. The associated field is used by the loader to determine the entry point at which
execution starts when the loading is complete.

6-2 Digital Systems Division

~-------~ 945255-9701

Tag characters 3 and 4 are used for external references. Tag character 3 is used when the last
appearance of the symbol in the second field is in relocatable code. Tag character 4 is used when
the last appearance of the symbol is absolute code. The hexadecimal field contains the location
of the last appearance. The symbol in the second field is the external reference. Both fields are
used by the linking loader to provide the desired linking to the external reference.

For each external reference in a program, there is a tag character in the object code, with a
location, or an absolute zero, and the symbol that is referenced. When the object code field
contains absolute zero, no location in the program requires the address that corresponds to the
reference (an IDT character string, for example). Otherwise, the address corresponding to the
reference will be placed in the location specified in the object code by the linking loader. The
location specified in the object code similarly contains absolute zero or another location. When it
contains absolute zero, no further linking is required. When it contains a location, the address
corresponding to the reference will be placed in that address by the linking loader. The location
of each appearance of a reference in a program contains either an absolute zero or another
location into which the linking loader will place the referenced address.

Figure 6-2 illustrates the chain of the external reference EXTR. The object code contains the
following tag and fields:

4COOEEXTR

At location COOE, the address COO A points to the preceding appearance of the reference. The
chain includes both absolute and relocatable addresses and consists of absolute address COOE,
COOA, C006, and C002, relocatable addresses 029E, 029A, and 0298, absolute addresses BOOE,
BOOA, B006, and B002, and relocatable addresses 0290 and 028E. Each location points to the
preceding appearance, except for location 028E, which contains zero. The zero identifies location
028E as the first appearance of EXTR, the end of the chain.

Tag characters 5 and 6 are used for external definitions. Tag character 5 is used when the
location is relocatable. Tag character 6 is used when the location is absolute. Botfi fields are used
by the linking loader to provide the desired linking to the external definition. The second field
contains the symbol of the external definition.

Tag character 7 precedes the checksum, which is an error detection word. The checksum is
formed as the record is being written. It is the 2's complement of the sum of the 8-bit ASCII
values of the characters of the record from the first tag of the record through the checksum tag,
7.

Tag characters 9 and A are used with load addresses for data that follows. Tag character 9 is
used when the load address is absolute. Tag character A is used when the load address is
relocatable. The hexadecimal field contains the address at which the following data word is to be
loaded. A load address is required for a data word that is to be placed in memory at some
address other than the next address. The load address is used by the loader.

Tag characters Band C are used with data words. Tag character B is used when the data is
absolute; an instruction word or a word that contains text characters or absolute constants, for
example. Tag character C is used for a word that contains a relocatable address. The hexadecimal
field contains the data word. The loader places the data word in the memory location specified
in the preceding load address field, or in the memory location that follows the preceding data
word.

Tag character F indicates the end of record. It may be followed by blanks.

6-3 Digital Systems Division .

~ 945255-9701

(~22'? * 1)2:30 * DEMONSTRATE EXTERNAL REFERENCE LIN.<INC,
("2~31 -II-

1"1-7--:;'-" .. _ REF EXTR
')233 ')28(~ RORG
02-:::4 1)28(: C820 MOV (tEXTR,t.!EXTR

(128E 0000
1)29() 028E"

(-2'35 ()2 t?2 28EO XOR I!EXTR, -3
1)294 0290---

i)2'~;,::, B(II) (I AORe; :>aooo
1):2:-:;:7 B()OO 322') LDCR I!EXTR,8

80(12 0294-'-
1)2'3::: 80(14 (142') 8LWP ~EXTR

BOO,~ 13002
i:"2'~:~ BOOS 0223 AI 3, EXTR

800A a006
1)241) 80(1(: 3SAO MPY I!EXTR,2

B(IOE BOOA
(1241 (1296 RORO
1)242 1)296 CS2i) MOV I!EXTR,t.!EXTR

(I 2 ,?,/8 800E
029A 0298-'

1)243 1)29(: 28EO XOR I!EXTR,3
1)2'~E n"':',Q'" ,"

(i244 0)0(1 AORO :>(:(1(1(1
1)24'5 COOO 3220 LDCR I!EXTR,8

0:)1)2 (129E-'
i).24c· CO()4 1:142(1 8LWP t.!EXTR

0:11)6 C002
0247 CO(18 1)223 AI 3, EXTR

cor)A C006
;)248 (:OOC 3SAO MPY (tEXTR,2

COO£ COOA
(A)132256

Figure 6-2. External Reference Example

Tag characters G and H are used when the symbol table option is specified with other 990
assemblers. Tag character G is used when the location or value of the symbol is relocatable, and
tag character H is used when the location or value of the symbol is absolute. The first field
contains the location or value of the symbol, and the second field contains the symbol to which
the_ location is assigned.

The last record of an object code file has a colon (:) in the first character position of the record,
followed by blanks. This record is referred to as an end-of-module separator record.

6.3 PROCEDURES FOR CHANGING STANDARD 990 OBJECT CODE
To correct object code without reassembling a. program, change_ the object code by changing or
adding one or more records. One additional tag character is recognized by the loader to permit
specifying a load point. The additional tag character, D, may be used in object records changed
or added manually.

6-4 Digital Systems Division ."

~-------~ 945255-9701

Tag character D is followed by a load bias (offset) value. The loader uses this value instead of
the load bias computed by the loader itself. The loader adds the load bias to all relocatable entry
addresses, external references, external definitions, load addresses, and data. The effect of the D
tag character is to specify the area of memory into which the loader loads the program. The tag
character D and the associated field must be placed ahead of the object code generated by the
assembler.

Correction of object code may require only changing a character or a word in an object code
record. The user may duplicate the record up to the character or word in error, replace the
incorrect data with the correct data, and duplicate the remainder of the record up to the 7 tag
character. Because the changes the user has made will cause a checksum error when the
checksum is verified as the record is loaded, the user must change the 7 tag character to F.

When more extensive changes are required, the user may write an additional object code record
or records. Begin each record with a tag character 9 or A followed by an absolute load address
or a relocatable load address, respectively. This may be an address into which an existing object
code record places a different value. The new value on the new record will override the other
value when the new record follows the other record in the loading sequence. Follow the load
address with a tag character B or C and an absolute data word or a relocatable data word,
respectively. Additional oata words preceded by appropriate tag characters may follow. When
additional data is to be placed at a nonsequential address, write another load address tag
character followed by the load address and data words preceded by tag characters. When the
record is full, or all changes have been written, write tag character F to end the record.

When additional memory locations are loaded as a result of changes, the user must change the
hexadecimal field following the tag character 0 that contains the number of bytes of relocatable
code. For example, when the object file written by the assembler contained 100016 bytes of
relocatable code, and the user has added 8 bytes in a new object record, additional memory
locations will be loaded. The user must find the a tag character in the object code file and
change the value following the tag character from 1000 to 1008; he must also change the 7 tag
character to F in that record.

When added record~ place corrected data in locations previously loaded, the added records must
follow the incorrect records. The loader processes the records as they are read from the object
medium, and the last record that affects a given memory location determines the contents of
that location at execution time.

The object code records that contain the external definition fields, the external reference fields,
the entry adtlress field, and the final program start field must follow all other object records. An
additional field or record may be added to include reference to a program identifier. The tag
character is 4, and the hexadecimal field contains zeros. The second field contains the first six
characters of the IDT character string. External definitions may be added using tag character 5
or 6 followed by the relocatable or absolute address, respectively. The second field contains the
defined symbol, filled to the right with blanks when the symbol contains less than six characters.

6.4 COMPRESSED ABSOLUTE FORMAT OBJECT CODE
Absolute format object code provides the user with a compact object code which can be loaded
more rapidly than standard 990 code.

6-5 Digital Systems Division .

~-------~ 945255-9701

6.4.1 BASIC TAG FORMAT. The basic format is a three-character string which maps to a tag
and two bytes of data. The formats and tag definitions are shown in figure 6-3.

6.4.2 EXTENDED TAG FORMATS. Extended tags (figure 6-4) are used to extend the available
data types. An extended tag consists of one or two (the number is tag dependent) bytes which
may identify subsequent data. An extended tag with two characters has a six-bit count as the
second byte.

ASCII
CHARACTER

EEE

(A)133108

TAG

100

101

1 10

1 1 1

P

ASCII
CHARACTER

(A) THREE-CHARACTER STRING

DATA BYTE

(B) CHARACTERS AFTER MAPPING

MEANIN~

ABSOLUTE DATA WORD (16 BITS)

ABSOLUTE DATA BYTE (8 BITS)

ABSOLUTE LOAD ADDRESS

EXTENDED TAG

BIT FIELDS

PARITY BIT

BIT ALWAYS SET TO ONE

ASCII
CHARACTER

DATA BYTE

THE NUMBERS 0-15 REPRESENT DATA BIT POSITIONS

Figure 6·3. Basic Tag Format

6-6 Digital Systems Division

~~------------------~ 945255-9701

(A)133109

TAG

TAG
(X 1 X 2 X 3 X 4)

0000

0001

001 1

0101

01 10

P

X 1 X 2 X 3 X 4

C,C2C3C4C5C6

LENGTH
(CHARACTERS)

2

2

COUNT

MEANING

END OF MODULE

PROGRAM NAME (NOTE 1)

ABSOLUTE ENTRY ADDRESS (NOTE 2)

CHECKSU,M (NOTE 2)

ABSOLUTE DATA REPEAT COUNT
(NOTES 2.3)

BIT FIELDS

PARITY BIT

BIT ALWAYS SET TO ONE

TAG

COUNT-NUMBER OF BYTES OF DATA

NOTES

1. FOLLOWED BY CHARACTERS OF NAME. BYTE 2 IS THE NUMBER OF
CHARACTERS IN THE NAME. UP TO A MAXIMUM OF 17.

2. FOLLOWED BY ABSOLUTE DATA TAG AND 16 BITS OF DATA IN THE
BASIC FORMAT.

3. WHEN THE SEQUENCE OF IDENTICAL INORDS IS ENCOUNTERED DURING
THE DUMP. A REPEAT COUNT IS COMPUTED SO THAT THE DATA NEED
NOT BE REPEATED. BYTE 2 IS THE NUMBER OF IDENTICAL WORDS.

Figure 6-4. Extended Tag Formats

6-7/6-8 Digital Systems Division

~-------~ 945255-9701

7.1 INTRODUCTION

SECTION VII

PROM PROGRAMMER

This section describes the PROM Programmer software module and includes the following
information:

• General description, including the functions and capabilities of the module, the role of
the Standard Control Information Cassette in PROM programming, and an explanation
of standard and nonstandard data configurations.

• Loading procedure.

• Detailed discussion of the PROM programming process, covering data formats, PROM
and ROM characteristics, mapping parameters, and examples of different levels of
looping.

• Detailed descriptions of the PROM Programmer commands.

• Methods for performing some specific programming tasks, such as standardizing
nonstandard memory and PROM configurations, and programming EPROMs.

• . Programming examples.

7.2 GENERAL· DESCRIPTION
The PROM Programmer software module (PROMPG) controls the PROM Programming Module
used with the 990 Computer Family. It provides flexible user control of the programming
process as well as standardized programming options. PROMPG operates on a prototyping system
containing a 990/4 Computer, 733 ASR Data Terminal, and a PROM Programming Module. This
software package is an overlay that is loaded into the PX9MTP transient area of memory and
extends into the high address locations of user memory~

7.2.1 FUNCTIONS AND CAPABILITIES. PROMPG has a set of commands that perform the
following functions:

• Describe standard data configuration in memory and PROM.

• Describe nonstandard data configurations in memory and PROM.

• Provide-information for the PROM Programming Module.

With PROMPG, the user can: .

• Program data from memory into a PROM.

• Store data from a PROM or ROM into memory.

7-1 Digital Systems Division .

~5\ ______ _ ~ 945255-9701

• Display data from memory.

• Display data from ROM or PROM.

• Compare data in memory and PROM or ROM.

The software package includes a Standard Control Information Cassette that:

• Contains control information for standard data configurations in memory and PROM.

• Supports all PROMs which are supported by hardware programming adaptor cards.

The software package allows the user to replace or add control information to the Standard
Control Information Cassette.

7.2.2 STANDARD CONTROL INFORMATION CASSETTE. The Standard Control Information
Cassette contains the control information for the most commonly used memory and PROM data
configurations. Included in these is information necessary to program all PROMs which are
supported by hardware programming adaptor cards.

Each record on the Standard Control Information Cassette contains a memory or PROM
designator, a label, the bit string width, and mapping parameters. Records. containing PROM
control information also contain PROM characteristics. Appendix G contains a table of all the
standard configurations on the Standard Control Information Cassette and two other tables
which contain additional information about the supported configurations.

7.2.3 PROGRAMMING STANDARD VERSUS NONSTANDARD DATA CONFIGURATIONS.
The control information needed to transfer data between memory and PROM may be supplied in
one of two ways:

• By reading the information from the Standard Control Information Cassette.

• By specifying the information through the PROM programmer keyboard commands.

Standard data configurations are those configurations which are defined on the Standard Control
Information Cassette. Nonstandard data configurations are those which are not defined on the
Standard Control Information Cassette.

To program standard data configurations, the necessary control information is read from the
Standard Control Information Cassette using the PROM Programmer Standard (PS) command.
When programming nonstandard data configurations, the necessary control information may be
input using the Define Memory Data Configuration Mapping Parameters (MI), Define ROM/
PROM Data Configuration Mapping Parameters (RI), Define String Width (SW), and Define
PROM/ROM Characteristics (Re) subcommands.

Once the control information is specified by one of the above methods, the memory and PROM
bounds may be set with the Define Memory Bounds (MB) and Define PROM/ROM Bounds (RB)
sub commands. The appropriate actions may be specified with the Set Toggles (TS) subcommand
and the programming cycle initiated with the Go (GO) subcommand.

7-2 Digital Systems Division .

~-------~ 945255-9701

7.2.4 PROM PROGRAMMER FUNCTIONS. The PROM Programmer software package allows
the user to perform one or more of the following functions simultaneously:

• Perform one of three data transfers:

(1) Program PROMs.

(2) Read PROM or ROM data into memory.

(3) Store nonstandard memory and PROM control information on the Standard
Control Information Cassette.

• Display data from memory.

• Display data from PROM or ROM.

• Compare data in memory and PROM or ROM.

The functions to be performed during the programming cycle may be specified with the TS
subcommand before the programming cycle is initiated.

7.3 PROM PROGRAMMER LOADING PROCEDURE
The Program, PROMPG, consists of an overlay module and an extension which is loaded into the
top of user memory. PROMPG is loaded by means of the Load PROM Programmer (PL)
command, which is described in detail in Section III.

Mount and position the cassette containing the PROMPG object code and enter this command
on the terminal keyboard:

PL {o' ... } [<luno> [{ 0' ... } <bias>]]

where luno is the logical unit number of the cassette drive on which PROMPG is mounted and
bias is the load address for the extension. The default LUNO value is 7. If the bias is not given,
the PX9MTP loader loads the extension into the top of user memory at default bias lC8016 •

When the PL command is issued, the overlay will be loaded and the following printed:

PP
PS

The memory extension will then be loaded into user memory at the specified bias address.

7.4 PROM PROGRAMMING PROCESS
"The PROM programming process allows the user to transfer data from memory to a PROM or
vice versa and to display or compare memory and PROM/ROM data. To accomplish these tasks,
certain control information must be specified. The information includes memory and PROM/
ROM bounds, bit string width, PROM/ROM characteristics, and mapping parameters. The control
information may be specified using the PROM programmer keyboard commands and/or by
reading in the information from the Standard Control Information Cassette.

Digital Systems Division "

Jd75\ ______ _ ~ 945255-9701

7.4.1 BIT STRING WIDTH. Bit strings are the basic unit of data moved between the 990
memory and the PROM. The bit string width specifies the number of bits to be transferred
during a programming cycle. The width may be from one to eight bits.

7.4.2 MEMORY AND PROM/ROM BOUNDS. The memory bounds specify the memory
locations which contain the data to be transferred to or from PROM. The PROM/ROM bounds
define the lower and upper bounds. PROM/ROM addresses are numbered by words; the word
size is determined by the PROM/ROM word width.

7.4.3 PROM/ROM CHARACTERISTICS. Each PROM/ROM has a different set of characteristics
which must be specified to transfer data to and from the PROM/ROM. The characteristics
include word width, output conditions, pulse width, number of retries, duty cycle, and pro­
grammable bit width.

• The word width refers to the number of bits per word in the PROM/ROM physical
organization. For example, the SN74S287 PROM (256 X 4) has a word width of four
bits.

• The output conditions specify whether high or low level logic outputs are to be
programmed. The value is 0 if low and I if high. Some PROMs are initialized to ones
and must be programmed with zeros (low level logic).

• The pulse width is entered as an index value which is used by the hardware to produce
the corresponding pulse width in milliseconds to be used in programming PROMs.

• The number of retries refers to the number of times PROM programming is to be
retried using the specified pulse width if a programming failure occurs.

• The programming cycle includes the programming time and a delay time. The duty
cycle is the percentage of the total time that the programming pulse is on. The typical
duty cycle varies between 16 percent and 50 percent.

• The programmable bit width specifies the number of bits that can be physically
programmed simultaneously. The programmable bit width cannot be greater than the
bit string width.

CAUTION

Errors may be introduced if the programmable bit width is too large
for certain PROMs. For example, TTL PROMs require a pro­
grammable bit width of one. (Bit widths are listed in Appendix G.)

7.4.4 MAPPING PARAMETERS. The memory and PROM/ROM mapping parameters are used by
the software to determine the addresses of the bit strings to be used in the programming cycle. In
specifying mapping parameters, the PROM/ROM or memory words within the defined bounds are

. considered to be a continuous string of bits. Mapping is needed so that portions of 16-bit memory
words may be programmed into PROMs with smaller word widths. The mapping parameters include
bit increments, number of iterations, and initial bit displacements for each of three loop levels.

• The initial bit displacement is used to determine the starting bit address of the bit string
to be transferred between PROM/ROM and memory.

7-4 Digital Systems Division .

~-------~ 945255-9701

•

•

The bit increments are used to determine the successive bit addresses of the bit strings to
be transferred between PROM/ROM and memory.

The number of iterations is the number of bit strings to be transferred between PROM/
ROM and memory.

The number of bits in each bit string transferred between PROM/ROM and memory is defined by the
bit string width.

Three levels of mapping are allowed where each level contains an initial bit dispiacement, a bit
increment and an iteration count.

Level 1 is used to define the mapping pattern. Level 2 is used to repeat the pattern generated by the
level 1 parameters. Level 3 is used to repeat the total pattern generated by levels I and 2.

Bit increments and bit displacements on level 2 and 3 are used to determine the initial addresses of the
bit strings defined by level one. The number of iterations on levels 2 and 3 are used to determine the
number of times to repeat the bit string pattern. This three-level looping scheme is analogous to
FORTRAN nested DO loops with level one defining the innermost DO loop and level three the
outermost DO loop.

The following is an example of the mapping parameters required to transfer memory into PROM using
SN74S287 PROM devices which are 256 X 4 (256 PROM words of 4 bits each). Refer to figure 7-1.

BIT
DISPLACEMENT

MEMORY \

ADDRESS~ ~~0 ______ ~~4 ______ ~_8 ______ ~C ______ -,

o

FF

(A)133374

0000

-I
I I I

I I
I I
I I

........... ""'-___ J

II

I
I I
I I

I . I
III

Figure 7-1. Transfer of Data from Memory into PROM

7-5

MEMORY

IV
I

I
I I

SN74S287
256 X 4
PROMS

Digital Systems Division

J2n.7\. ______ _ '-i:Y 945255-9701

The PROM/ROM bounds are set to 0 and FF 16, giving a string of 256 X 4 = 1024 bits. The memory
bounds are set to 0 and IFF 16, giving a memory string of256 X 16 = 4096 bits. The bit string width is
set to 4, which is equal to the PROM word width. The PROM/ROM mapping parameters are the
following:

Initial bit displacement
Bit increment
Number of iterations

=0
=4
= 10016

The initial bit displacement is 0 so that the string will be transferred to the PROM starting at bit 0 of the
PROM word. The bit increment is 4 so that each string of 4 bits will be stored consecutively in the
PROM. The number of iterations is 100 16 (256 10) so that 256 bit strings of 4 bits each will be
transferred.

The memory mapping parameters for PROM I are the following:

Initial bit displacement
Bit increment
Number of iterations

=0
= 1016

= 100 16

The initial bit displacement selects the bit string starting at bit 0 of the memory word. The bit
increment is 10 16 (161()) so that each successive bit string will begin at bit 0 of each l6-bit memory
word. The number of iterations is 10016 (256 10) so that 256 memory bit strings of 4 bits each will be
transferred.

Initial bit displacements of 4 16 , 8 16 , and C16 are used to transfer the remaining bits of the memory
words to PROMs II, III, and IV, respectively. These bit displacements will select the 4 bit strings
beginning at bits 416 , 816 , and C16 of each 16-bit memory word. .

The mapping parameters in this example define the level one looping. Level two and three looping are
not used in this example since the pattern defined by the level one looping is not repeated.

7.4.5 EXAMPLES USING ONE, TWO, AND THREE-LEVEL LOOPING. The following examples
take the user through the PROM programming process step by step using various levels of looping.

7.4.5.1 One-Level Looping. An address is determined in the following manner. Starting with the
beginning memory/PROM/ROM· address (indicated by the MB or RB subcommand, paragraph 7.5.3.1
or 7.5.3.2), the initial bit displacement for loop level 1 is added to that address. The resulting bit
address is the beginning address of the first bit string. To get each consecutive bit string beginning
address, the number of bits indicated by the bit increment value for loop level 1 is added to the previous
address. This process continues until the number of addresses determined has reached the maximum
value for loop level 1.

As an example, assume a user wishes to select the first four bits of each word of a 256-word block of
data in memory. The parameters needed would be:

Loop level
Bit increment (1)
Number of iterations (1)
Initial bit displacement (I)
Bit string width

= I
= 16 (10 16)

= 256 (100 16)

=0
=4

7-6 Digital Systems Division

Jd75\ ______ _ ~ 945255-9701

Assume the beginning memory address is 0000 16 , Since the displacement is 0, the first bit string begins
at bit 0 and consists of the first four bits at byte O. The beginning address of the second bit string is
determined by adding the bit increment 1016 to the previous beginning address of O. The second
four-bit string addressed begins at memory location 0002 16 , The bit increment of 1016 is repeatedly
added to the previous address until 100 16 four-bit strings have been selected from the memory block.
The last bit string will be the first four bits at address 01FE 16 •

In another example, a user may wish to select four bit strings, each four bits wide, from one word of
memory. The parameters needed would be:

Loop level = I
Bit increment (I) = 4
Number of iterations (1) = 4
Initial bit displacement (1) = 0
Bit string width = 4

Assume the beginning memory address is 0100 16 , Since the displacement is 0, the first bit string will be
the first bits of memory address 0100 16 , By adding the bit increment of four, the second bit string is
determined to be the second four bits of memory address 0100 16 , The third and fourth bit strings are
determined similarly.

Consider what would happen if the user decided to select similar strings from 32 words of memory
memory beginning with address 010016 , By changing the number of iterations to 128 (4 X 32) and
beginning with address 0100 16 , consecutive four bits of each word could be selected. The parameters
needed would be:

Loop level
Bit increment
Number of iterations
Initial bit displacements
Bit string width

= 1
=4
= 128(8016)

=0
=4

By incrementing four bits at a time and selecting four 4-bit strings from each word for 32 words, the
128 four-bit strings can be addressed.

7.4.5.2 Two-Level Looping. The programming sequence in the last example can also be done by
two-level looping, a concept which involves using the parameters ofloop level 2 to determine a number
of beginning addresses. Each address determined by loop level 2 is used as a beginning address for loop
level 1.

In the last exam pIe the parameters would now be:

Loop level
Bit increment (1)
Number of iterations (1)
Initial bit displacement (1)
Bit string width

Loop Level
Bit increment (2)
Number of iterations (2)
Initial bit displacement (2)
Bit string width

=1
=4
=4
=0
=4

=2
. = 16 (1016)

= 32 (2016)

=0
=4

7-7 Digital Systems Division .

~-------~ 945255-9701

Assume that the beginning memory word is ati6cation 0100 16 • The displacement in loop level 2 is 0;
therefore, the first beginning address to be used by loop level 1 is 0100 16 • Since loop level 1 has a
displacement of 0, the first bit string has a beginning address of bit 0 of address 0100 16 • Proceeding by
adding the bit increment of 4 to each bit address, the next three bit strings can be selected. Loop level 1
has now been completed. Going back to loop level 2 and the previous beginning address in memory (bit
o of address 0100 16), add the bit incremeht of 10 16 to that address. The new beginning address in
memory is bit 0 of address 0102 16 , which is now used by loop level! to select the next four bits strings.
When those strings have been selected, loop level 2 then determines the third beginning address in
memory by adding the bit increment 1016 to the previous address of bit 0 of address 0102 16 . Selecting
a new beginning address and using that address to increment through loop levell, loop level 2
continues until 20 16 beginning addresses have been selected and loop level 1 has been processed 2016

times.

7.4.5.3 Three-Level Looping. Loop level 3 can be used for reiterative programming. Assume the user
wishes to program a 256 by 4 PROM using the same memory data configuration as in the previous
example. Since the previous example only selects 128 four-bit strings, the first 128 words and the last
128 words of the PROM could be programmed with the same data from memory.

The PROM data configuration is standard and the control information can be read from the Standard
Control Information Cassette. The memory data configuration would have the following parameters:

Loop level
Bit increments (I)
Number of iterations (1)
Initial bit displacement (1)
Bit string width

Loop level
Bit increment (2)
Number of iterations (2)
Initial bit displacement (2)
Bit string width

Loop level
Bit increment (3)
Number of iterations (3)
Initial bit displacement (3)
Bit string width

= I
=4
=4
=0
=4

=2
= 1016

= 20 16

=0
=4

=3
=0
=2
=0
=4

Assuming the beginning memory address is 0100 16 , the loop level 3 displacement 0 is added to that
address to get the beginning address for loop level 2. The increment described for two-level looping
now is performed. When the incrementing is complete (128 bit strings of four bits have been selected),
loop level 3 then determines the next beginning address for loop level 2. Since the bit increment for
loop level 3 is 0, the second beginning address is the same as the first one. Therefore the two-level
looping increments through the same memory configuration and selects the same 128 bit strings to
program the second 128 four-bit words of the PROM.

The standard PROM control information for a 256 by 4 PROM includes the parameters:

Loop level
Bit increment (I)
Number of iterations (1)
Initial bit displacement (1)
Bit string width

= 1
=4
=256(10016)

=0
=4

7-8 Digital Systems Division .

~-------~ 945255-9701

Since the PROM is four bits wide, each increment of four bits gets a new bit string address which also is
a new PROM word address. Therefore, as bit strings are selected from memory, they are programmed
into consecutive words of PROM for 256 words.

7.5 COMMANDS
The following paragraphs contain detailed descriptions of the PROM Programmer commands. The
following symbols and conventions are used in defining the syntax of the commands:

• Angle brackets « » enclose items supplied by the user.

• Brackets ([]) enclose optional items.

• An ellipsis (...) indicates that the preceding item may be repeated.

• Braces ({ }) enclose two or more items of which one must be chosen.

7.5.1 PROM PROGRAMMER STANDARD (PS). The PROM Programmer Standard command
searches the Standard Control Infonnation Cassette for the specified records which contain the
memory and/or PROM control infonnation.

Syntax definition:

PS {t,' ... } <char string 1> [to' ... } <char string 2>]

l.

Parameters:

char string 1

char string 2

Name of first record of control infonnation for a standard PROM
or memory configuration. Required parameter.

Name of second record of control infonnation for a standard PROM
or memory configuration.

Parameter default value:

Iichar string 2 is not specified, it is omitted.

Description: This command is used to input the control infonnation for the standard memory and
PROM data configurations. The user may specify a search of the tape for both memory and PROM
control infonnation to be used in the programming process or may specify a search for only memory or
PROM control infonnation. If only one data configuration, either memory or PROM, is specified, any
control infonnation previously defined for the other typt; of data configuration remains unchanged.

When all character strings given in the command have been matched to a record on the Standard
Control Infonnation Cassette, control is returned to the monitor. The user need not rewind the
cassette if the next record of infonnation to be read from the cassette when the user inputs the
command again is positioned further along the cassette from the last record which was read.

The Standard Control Infonnation Cassette must be positioned on the cassette drive assigned to logical
unit number 7. Records are read from the cassette, and if a record with a name matching either
character string is found, the record is stored for use by the program. The search is continued from that

7-9 Digital Systems Division

)217.5\ ______ _ ~ 945255-9701

point for the other character string if the string is specified in the command. If a record with a matching
name is found, the record is stored for use by the program.

The Standard Control Information Cassette and its contents are explained in paragraph 7.2.2 and
AppendixG.

Error messages:

PPO I Required parameter missing.

PP03 Bit string widths of memory and PROM configurations do not
match.

PP04 Specified record not found on Standard Control Information Cassette.

Application note: If the two character strings specify control information for data configurations both
in ROM or both in memory, the control information of the second configuration encountered on the
cassette overrides the first.

Example:

.PS,MS287-0,S287

This command causes the Standard Control Information Cassette to be searched for records containing
the control information for memory configuration MS287-0 and PROM configuration S287.

7.5.2 PROM PROGRAMMER (PP). The PROM Programmer command is followed by PROM
Programmer sub commands and allows the operator to control the PROM programming process.

Syntax definition:

PP {b' ... } <subcommand>

The command is terminated by a carriage return. The command is followed by a subcommand and the
appropriate parameters. Refer to the descriptions of the individual subcommands for the syntax
definitions.

Parameter:

subcommand Subcommand used with the PP command.

Description: The PROM programming functions are explained in the descriptions of the individual
sub commands.

7.5.3 PROM PROGRAMMER SUBCOMMANDS. The following paragraphs contain detailed
descriptions of the PROM Programmer subcommands.

7.5 .3.1 Define Memory Bounds (MB). The Define Memory Bounds subcommand informs the control
software of the lower and upper bounds of the memory data to be used in the programming process.

7-10 Digital Systems Division

~-------~ 945255-9701

Syntax definition:

PP {t>' ... } MB {t>' ... } <lower bound> {t>' ... } <upper bound>

Parameters:

lower bound

upper bound

Byte address of the fIrst byte of the block of
memory which contains the memory data
confIguration. Required parameter. Hexadecimal
number.

Byte address of the last byte of the block of
memory which contains the memory data
confIguration. Required parameter. Hexadecimal
number.

Description: This command defmes the lower and upper bounds of the block of memory which
contains the memory data confIguration. Any hit string to be transferred must be contained entirely in
this specified region. An attempt to reference a bit string out of these memory bounds during a
programming cycle will cause an error. The lower bound is used as a starting address for the data
confIguration. When the PROM programmer is loaded, the lower and upper bounds default to 0 and
FFF 16 respectively.

Error messages:

PPO 1 Required parameter missing.

PP04 Invalid address. The upper bound is less than
the lower bound.

Example:

.PP,MB,500,5FF

This command informs the software that the lower bound of the memory data confIguration is 50016

and the upper bound of the memory data configuration is 5FF 16 •

7.5.3.2 Define PROM/ROM Bounds (RB). The Defme PROM/ROM Bounds command informs the
control software of the lower and upper ROM or PROM bounds to be used;

Syntax definition:

RB { t>' ... } <lower bound> { t>' ... } <upper bound>

7-11 Digital Systems Division .

~-------~ 945255-9701

Parameters:

lower bound

upper bound

Word address of the first physical PROM/ROM word
of the block of PROM/ROM words which contains
the PROM/ROM data configuration. Required
parameter. Hexadecimal number. Initially,
the parameter value is O.

Word address of the last physical PROM/ROM word
of the block of PROM/ROM words which contains
the PROM/ROM data configuration. Required
parameter. Hexadecimal number. Initia,1ly,
the parameter value is FFF 16'

Description: This command defines the lower and upper bounds of the block of PROM/ROM words
which contains the PROM/ROM data configuration. Any bit string referenced must be contained
entirely within this specified region. An attempt to reference a bit string out of these bounds
during a programming cycle will cause an error.

When the PROM Programmer is loaded, the default values of the lower and upper bounds are 0 and
FFF 16 respectively. If only standard PROM/ROM configurations, which always begin at address 0,
are being used, the RB subcommand is not needed. The programming cycle will stop when the
region defined by the mapping parameters has been satisfied.

Error Messages:

PPO 1 Required parameter missing.

PP04 Invalid address. The upper bound is less than
the lower bound.

Example:

.PP,RB,10,20

This command informs the software that the lower bound of the PROM/ROM data configuration
is 1016 and the upper bound of the PROM/ROM data configuration is 20 16 ,

7.5.3.3 Set CRU Interface Base Address (CS). The Set CRU Interface Base Address command
informs the control software of the CRU base address for the PROM Programming Module.

Syntax definition:

PP {t; ... } CS {t,' ... } <base addr>

Parameter:

base addr The parameter value indicates the CRU base address for
the chassis slot in which the PROM programming
module interface card is inserted. Required
parameter.

7-12 Digital Systems Division .

~-------~ 945255-9701

Description: When the PROM Programmer is loaded, the base address parameter value is 02016 ,

which is the CRU base address for the chassis slot most frequently used to hold the PROM
programming module interface card. After the CS subcommand is used, the software recognizes
the given CRU address until a different address is entered with the CS subcommand. There can
be no interaction with the PROM programming module unless the control software is informed
by default or by the CS subcommand of the correct CRU base address.

Error messages:

PPO I Required parameter missing.

PP02 Base address is greater than I FFE 16 •

Example:

.PP,CS,OEO

This command informs the control software that the CRU base address of the PROM pro­
gramming module is OEO I6 •

7.5.3.4 Set Toggles (TS). The Set Toggles subcommand sets numeric parameters that inform the
control software of the actions to be taken. These numeric parameters are known as toggles. The
selected actions are not actually initiated until the PP, GO command is entered.

Syntax definition:

PP {tJ' ... } TS [{tJ' ... } [<mem diSP1 [{tJ', .. } [<prom diSP1[{tJ' ... } [<transfer>]

[{tJ' ... } <compare>]]]]

Parameters:

mem disp

prom disp

transfer

Value that specifies whether memory bit strings an'd
addresses are to be displayed. The value is 0
if no memory strings are to be displayed and
is I if memory bit strings and addresses are
to be displayed.

Value that specifies whether PROM or ROM bit strings
and addresses are to be displayed. The value
is 0 if no ROM or PROM strings are to be
displayed and is I if ROM or PROM bit
strings and addresses are to be displayed.

Value thafspecifies the data transfer option:

o No data transfer between memory and ROM or PROM.

I PROM is to be programmed from memory datil configuration.

7-13 Digital Systems Division .

,~----'-----------~ ~4S2SS;'9701

compare

2 Memory is to be loaded from ROM' or PROM.

3 Nonstandard control information is to be stored on the
Standard Control Information Cassette. (Refer to
paragraph 7.6.1)

Value that specifies whether ROM or PROM bit strings are
to be compared to bit strings in the memory data configuration.
The value is 0 if no comparison is to be made and I if a
comparison is to be made. The strings specified by mapping
parameters and bit string width are compared. If .a comparison
fails, the unmatched bit strings and their addresses are to be
displayed.

Parameter default values:

If ,a toggle parameter is not specified, the value specified by a previous TS subcommand or the
default value when the PROM Programmer overlay was loaded is used. The default values set up
when the PROM Programmer is loaded are the following:

(No display) ,
(No display)

mem disp
prom disp
transfer
compare

=0
=0
= 1
= I

(PROM is to be programmed from memory)
(Compare bit strings in memory to PROM or ROM)

Description: The toggle parameters specify the action to be taken when the GO subcommand is
entered. If the memory display toggle is set, the memory region specified by the ,memory
bounds, bit string width, and the mapping parameters lsdisphlyedin the following forinat.

Mxxxx.yy=zz

where

xxxx = memory byte address

yy :: displacement of startofbiLstring within memory byte (0 ...;;. yy ...;; 7)

zz = right justified bit string (displayed in hexadecimal)

A maximum of four entries may be displayed per line.

If the PROM display toggle is set, the PROM or ROM region specified by the PROM/ROM
bounds, bit string width, and the mapping parailleters is displayed in the following format.

Raaaa.bb=cc

where

aaaa = PROM/ROM word address

bb = displacement of start of bit string within PROM/ROM word

cc = right justified bit string (displayed as hexadecimal)

A maximum of four entries may be displayed per line.

7-14 Digital Systems Division

~-------~ 945255-9701

The transfer toggle specifies the type of data transfer to be performed during the programming
cycle. The user may specify programming PROM from memory, loading memory from PROM or
ROM, or saving control information for a memory or PROM data configuration on the Standard
Control Information Cassette. (Refer to paragraph 7.6.1 for further explanation of this process.)
The user may specify no data transfer if only a memory and PROM or ROM comparison or
display are desired. If the transfer toggle is set to I or 2, data transfer occurs in the memory or
PROM/ROM region specified by the memory bounds, bit string width, and mapping parameters.

If the compare toggle is set, the memory and PROM or ROM regions specified by the memory
and PROM/ROM bounds, bit string width, and mapping parameters are compared. Any compare
errors found are displayed in the following format.

>Mxxxx.yy=zz Raaaa.bb=cc

The fields for memory and PROM or ROM are the same as defined for the display toggles. One
entry of compared data preceded by a greater than character is displayed per line. The greater
than character alerts the user to the compare error. Each entry contains the memory and PROM
or ROM contents which failed to compare.

The user may terminate any display by pressing the escape (ESC) key. Control of the program
returns to the monitor. Also, if the transfer toggle is set to 3 to Save control information on the
Standard Control Information Cassette and the user decides not to ~ave the information, the user
may reply to the PROM Programmer questions

MEM ID?

or

ROM ID?

with an ESC character. (Refer to paragraph 7.6.1.) The ESC character causes an exist.

Examples:

.PP,TS, 1, 0, 0, 0

.PP,130
MOOOO.OO-OO M0002.00=OO M0004.00-00 M0006.0~=04
MOOOS.OO-Ot MOOOA.OO-OO MOOOC.OO=OO MOOOE.OO=OO

In this example, the memory display toggle is set. When the programming cycle is initiated, the
memory region is displayed. The mapping parameters for this region are defined with an initial
displacement of 2, bit increment of 10 16 , and number of iterations set to 8 16 • The bit string
width is set to 4. This example shows that each memory byte address displayed contains the bit
string (shown to the right of the equal sign) in bits 2, 3, 4 and 5 of the memory byte. Memory
location 6 contains the following bit string: xxO IOOxx.

PP,T:S, 0, t, 0, 0
.PP, 130
ROOOO.OO-OF
R0004.00-0F
ROOO:3.00-0F
ROOOC.OO-OC

R0001.00-0F R0002.00=OF ROOO:3.00=OF
R0005.00-0F R0006.00-0F ROOO? OO=OF
R0009.00=OO ROOOA.00=01 ROOOB.OO=Ol
ROOOD.00=0:3 ROOOE.00=0:3 ROOOF. 00=00

7-15 Digital Systems Division ,

~-----,------
----In this example, the PROM display toggle is set. When the programming cycle is initiated, the

PROM/ROM region defined by the mapping parameters is displayed. The mapping parameters are
defined with initial displacement set to 0, bit increment set to 4, and number of iterations set to
1016 , The bit string width is set to 4 .

. PP,TS,O,O,l,l
• PP';::;O
>i10000.00=0:3
:> 11 0 (108 • 00= 04
>i'1000A.00=02
>i10022.00=0;:
>110042.00=05

1":0000.00=01
1":0004.00=00
1":0005.00=00
1":0011.00=08
1":0021. 00=04

In this example, the transfer toggle is set to program PROM from memory and the compare·
toggle is also set. When the programming cycle is initiated, one bit string at a time will be
transferred from memory to PROM until the mapping parameters have been satisfied. After each
string is transferred, the value is read back from PROM and compared to the memory bit string.
In this example, some compare errors were found during the cycle and the corresponding
memory and PROM contents were displayed.

pp , rs:, I), I), 2, 1
.PP,(;O

In this example, the transfer toggle is set to load memory from PROM or ROM and to compare
memory to the PROM or ROM. No compare errors were found in this example.

7.5.3.5 Go (GO). The Go subcommand initiates the programming cycle specified by the Set
Toggles (TS) subcommand.

Syntax definition:

PP {t; ... } GO

Description: When the GO subcommand is entered, the memory and PROM/ROM control
information is checked, and the programming cycle defined by the toggles is initiated. The
PROM programmer software initiates no transfer of data until this subcommand is entered.

Error messages:

MXOI

PP02

PP03

Tape I/O error, or unrecoverable I/O error.

Mapping parameters specified a bit string out of the
defined memory or PROM/ROM bounds. An example
is an attempt to program 512 words of a PROM
with the PROM boundaries indicated as 100 16

through IFF 16 (256 words).

The bit string width parameters for memory and PROM or
ROM do not match, or the total number of bit strings in
the PROM/ROM and memory data configuration defined
by mapping parameters do not match. An example is an
attempt to map a PROM data configuration containing
256 bit strings from a memory data configuration 512
bit strings.

7-16 Digital Systems Division

~-------~ 945255-9701

PP05 Hardware error.

PP06 PROM programming module is not on line.

Example:

.PP,GO

This command initiates the programming cycle.

7.5.3.6 Define Memory Data Configuration Mapping Parameters (MI). The Define Memory Data
Configuration Mapping Parameters subcommand defines the control information needed to deter­
mine the addresses of the bit strings in the memory data configuration to be used in the pro­
gramming cycle.

Syntax definition:

Parameters:

level n

imn

mmn

dmn

Memory mapping level indicator. Its value is I,
2, or 3. Required parameter.

Bit increment used to determine the successive bit
addresses of the bit strings to be used in the
programming cycle for the level specified by the
level n parameter. Hexadecimal number.

The number of bit strings to be used in the
programming cycle for the level specified
by the level n parameter. Hexadecimal
number.

Initial bit displacement used to determine the starting
bit address of the first bit string to be used in the
programming cycle for the level specified by the level
n parameter. Hexadecimal number.

Parameter default values:

If imn is not specified, a value of 0 is used.

If mmn is not specified, a value of I is used.

If dmn is not specified, a value of 0 is used.

Description: This subcommand is used to specify the memory mapping parameters for a data
configuration not defined on the Standard Control Information Cassette or to modify the
mapping parameters of a configuration input from the Standard Cassette. The memory data con­
figuration mapping parameters are explained in detail in paragraph 7.4.4 and Appendix F. The
command parameters imn, mmn and dmn correspond to IMn, MMn and DMn in the computa­
tions in Appendix F.

7-17 Digital Systems Division.

~-------~ 945255-9701

If a two- or three-level data configuration mapping has been specified and the user wishes to
specify a data configuration using only level one mapping, the looping parameters for levels two
and three must be reset to the default values. If three-level mapping has been previously specified
and level two mapping will be used, the looping parameters for level three must be reset to the
default values. This can be accomplished by typing the MI subcommand and level, leaving off
any of the looping parameters. The following commands:

.PP,MI,2

.PP,MI,3

reset the looping parameters for levels two and three and allow the user to proceed with level
one programming.

Error message:

PP02 Parameter value outsid~ the permissible range.

Examples:

.PP,MI,1,10,100,4

.PP,MI,2,O,2

The first example defines the mapping parameters as follows:

Loop level
Bit increment
Maximum iteration count
Bit displacement

= 1
= 1016 = 16 10

= 10016 = 256 10

=4

The second example defines the mapping parameters as follows:

Loop level
Bit increment
Maximum iteration count
Bit displacement

=2
=0
=2
= 0 (default)

7.5.3.7 Define PROM/ROM Data Configuration Mapping Parameters (RI). The Define PROM/
ROM Data Configuration Mapping Parameters subcommand defines the control information
needed to determine the addresses of the bit strings in, the PROM/ROM data configuration to be
used in the programming cycle.

Syntax definition:

PP {o' ... } RI {o' ... } <Ieveln> [{o' ... } [yrn>][{o' ... } [<mm>] [{o' ... } <drn>]]]

Parameters:

level n PROM/ROM data configuration mapping level indicator.
Its value is 1, 2 or 3. Required parameter.

7-18 Digital Systems Division

~-------~ 945255-9701

im Bit increment used to determine the successive bit
addresses of the bit strings to be used in the
programming cycle for the level specified by
level n. Hexadecimal number.

mm Number of bit strings to be used in the programming
cycle for the level specified by level n. Hexadecimal
number.

dm Initial bit displacement used to determine the starting
bit address of the first bit string used in the
programming cycle for the level specified by level n.
Hexadecimal number.

Parameter default values:

If im is not specified, a value of 0 is used.

If mm is not specified, a value of I is used.

If dm is not specified, a value of 0 is used.

Description: This subcommand is used to specify the PROM or ROM mapping parameters for a
data configuration not defined on the Standard Control Information Cassette or to modify the
mapping parameters of a configuration input from the Standard Cassette. The PROM/ROM data
configuration mapping parameters are explained in paragraph 7.4.4 and Appendix F. The
command parameters im, mm and dm correspond to IRn, MRn and DRn in the computations in
Appendix F.

If two- or three-level data configuration mapping has been used and the user wishes to specify
another data configuration using only level one mapping, the looping parameters for levels two
and three must be reset to the default values. If three-level mapping has been used and the user
is going to specify two-level mapping, the looping parameters for level three must be reset to the
default values. This can be accomplished by entering the RI subcommand and specifying the
level, but omitting the looping parameters. The following command:

.PP,RI,3

resets the looping parameters for level three to allow the user to proceed with level two and one
mapping.

Error message:

PP02 Parameter value is outside the permissible range.

Examples:

.PP,RI,1,4,lOO

.PP,RI,3,1,4,3

7-19 Digital Systems Division .

~----------~ 945255-9701

The first example defines the ROM/PROM characteristics as follows:

Loop level
Bit increment
Maximum iteration count
Bit displacement

= I
=4
= 100 16 = 256 10

= 0 (default)

The second example defines the ROM/PROM characteristics as follows:

Loop level = 3
Bit increment = I
Maximum iteration count = 4
Bit displacement = 3

7.5.3.8 Define PROM/ROM Characteristics (RC). The Define PROM/ROM Characteristics sub­
command defines the physical hardware characteristics needed to transfer data to the
PROM/ROM.

Syntax definition:

PP {t,' ... } RC {h' ... } <width> {h' ... } <high or low> {h' ... } <pwl> [{h' ... }

[<retries>] [{h' ... } [<duty CYcle>] [{h' ... } <pgmable bitS>]]]

Parameters:

width Number of bits per word in the PROM/ROM physical
organization. Required parameter. Hexadecimal
number.

high or low Value that specifies whether high or low
logic level output conditions are to be
programmed. The value is 0 if low and is
1 if high. Required parameter.

pwl Normal pulse width to be used for programming. The
pulse width is entered as an index value between 1
and 6 obtained from a table in Appendix G. Required
parameter.

retries Number of times programming is to be retried using
the normal pulse width if a programming failure
occurs. Hexadecimal number.

Duty cycle Duty cycle to be maintained while programming a
PROM. Hexadecimal number. The value is the
percentage of the total time (programming time
plus delay time) that the programming pulse is
on. The normal duty cycle varies between 16%
and 50%. For example, a value of 2016 is a
duty cycle of 32%.

pgmable bits Number of bits that can be physically programmed
simultaneously.

7-20 Digital Systems Division .

~-------~ 945255-9701

Parameter default values:

If the retries parameter is not specified, a value of ° is used.

If duty is not specified, a value of 19 16 (25%) is used.

If the pgmable bits parameter is not specified, a value of I is used.

Description: This subcommand is used to define the physical characteristics needed to transfer
data to the PROM during the programming cycle. This subcommand may be used when a stan­
dard PROM data configuration is not desired or the PROM being used is not supported on the
Standard Control Information Cassette. The PROM characteristics are explained in detail in
paragraph 7.4.3.

The pulse width is entered as an integer number from 1 to 6. This number is then mapped into a
0.5 millisecond to 16.0 millisecond pulse according to the table of pulse widths in Appendix G.
This appendix also contains a table of the range of pulse widths allowed for the supported
PROMs.

The HIGH/LOW parameter specifies whether a PROM is to be programmed with Is or Os. For
example, the S287 PROM is initially all Is and must be programmed with Os. The programmable
bits parameter specifies the number of bits in the bit string to be physically transferred into the
PROM at a time. In most cases, with the exception of the erasable programmable read-only
memory (EPROM), only one bit should be programmed at a time. As the number of bits is
increased, the reliability of the programming process decreases.

When programming EPROMs, the entire bit string is programmed at once. For a description of
the EPROM programming process, see paragraph 7.6.2.

The retries parameter specifies the number of times to repeat the programming process if, after
programming the number of bits specified by the programmable bits parameter, a programming
failure occurs. The same bits will be reprogrammed until the correct data is transferred or the
retry count is depleted. When programming EPROMs, the retry parameter should always be °
because of the special process involved in EPROM programming (paragraph 7.6.2).

The duty cycle determines the percentage of time that the programmable pulse (which causes the
actual transfer of data to the PROM) is on with respect to total cycle time (which includes a
delay time). Appendix G contains a table of the range of duty cycles allowed for the supported
PROMs.

Error messages:

PPOI Required parameter missing.

PP02 Parameter value outside permissible range.

Examples:

.PP,RC,4, 1,3,2, 10, 1

.PP,RC,8,0,4

7-21 Digital Systems Division

~-------~ 945255-9701

The first example defines the ROM/PROM characteristics as follows:

ROM/PROM word width == 4 bits
High logic level output conditions (program Is)
Pulse width = 3
Number of retries = 2
Duty cycle = 10 16 = 16 percent
Program 1 bit at a time

The second example defines the ROM/PROM characteristics as follows:

ROM/PROM word width = 8 bits
Low logic level output conditions (program Os)
Pulse width = 4
Number of retries = 0 (default)
Duty cycle = 25 percent (default)
Program 1 bit at a time (default)

7.5.3.9 Define String Width (SW). The Define String Width command informs the control soft­
ware of the width of the bit strings to be transferred between PROM/ROM and memory,
displayed, or compared to other bit strings.

Syntax definition:

PP {t,' ... } SW {b' ... } <width>

Parameter:

<width> The number of bits per bit string. A number in
the range 1 to 8. Required parameter.

Description: This subcommand sets the memory and PROM/ROM bit string width.

Error messages:

PPO 1 Required parameter missing.

PP02 String width outside the permissible range.

Example:

.PP,SW,1

This command defines the width of the string to be 1.

7-22 Digital Systems Division .

~ ____ 9_4_S_2S_S_-9_7_0_1 __ __

7.6 PROGRAMMING CONSIDERATIONS
The following paragraphs discuss the methods for performing some specific programming tasks of
which the user should be aware. The tasks include:

• Standardizing nonstandard memory and PROM configurations.

• Programming erasable programmable read-only memory (EPROM)

• Creating PROMs for memory addresses not in the hardware configuration

7.6.1 STANDARDIZING NONSTANDARD MEMORY AND PROM CONFIGURATIONS. After
setting the direction toggle in the TS command to 3 and before typing the GO subcommand, the
user should mount the Standard Control Information Cassette on the device assigned to logical
unit number 7 and a scratch cassette on the device assigned to logical unit number 8.

This toggle is processed after all other toggles. For example, if the toggle to display memory is
also set, the complete memory data configuration is displayed before the PROM programmer
begins the standardization process.

When the GO subcommand is typed, PROMPG responds with:

MEM ID?

and waits for the user's reply. The user enters a name (Character string of 1 to 12 characters)
followed by a carriage return to identify the control information for the present memory data
configuration. Entering only a carriage return indicates that the user does not wish to retain the
present memory configuration's control information on cassette. PROMPG now responds with:

ROM ID?

and awaits the user's reply. The user's reply is a name identifying the control information for the
present PROM/ROM data configuration. Again, the user may indicate with only a carriage return
his desire not to retain the present ROM configuration's control information on cassette.
PROMGP copies the information from the current Standard Control Information Cassette to the
scratch cassette until it encounters control information with an identifying name which matches
either the PROM/ROM or memory ID name. If a match is found, the new control information is
written on the scratch cassette. If a match of either the memory or PROM/ROM ID name has
been found before an end-of-file is encountered on the Standard Control Information Cassette,
the new control information is added to the end of the scratch cassette, Which now becomes the
updated Standard Control Information Cassette.

7.6.2 PROGRAMMING EPROMs. Since EPROMs are metal oxide semiconductor (MOS) devices,
they must be programmed in a different manner than TTL PROM devices. EPROMs are charge
storage devices which must be programmed by repetitively transferring charge to the EPROM
bits. This repetition may be accomplished by looping through the programming process defined
by the data configurations. The number of required repetitions to transfer sufficient change to
each bit or bit string is defined by the following formula.

100 ms = pulse width X repetitions

Therefore, using a pulse width of 0.5 ms, 200 repetitions must be used to successfully program
the EPROM.

7-23 Digital Systems Division .

~-------~ 945255-9701

There must be a delay after each attempt to program a bit string before trying to program the
same bit string again. This delay is necessary to allow the charge to diffuse into the EPROM
device without a buildup of excess charge on the surface.

Because of the required delay, each bit string of the EPROM should be attempted once before
repeating the programming cycle. To ensure this delay, the number of retries for programming
each bit string (defined in the RC subcommand) must be set to zero. Each bit of the EPROM
will not appear to have the correct value (0 or 1) until sufficient charge has been transferred to
it.

In the early stages of programming, the bits may not have acquired sufficient charge to have the
correct value. This will appear as a programming failure if the number of retries is set to a
nonzero value, and the bit string will be programmed again without the required delay time. For
the same reason, the compare toggle (defined by the TS subcommand) should not be set during
the programming cycle, since compare errors will be found in the early stages of programming an
EPROM.

Since the programming cycle for an EPROM repeats many times, the display toggles (defined by
the TS subcommand) should not be set during the programming cycle since the memory or
PROM data will be printed for each repetition.

Therefore to program, compare, and display, the process must be done in two steps. First the
toggles must be set to program. After completion of programmi..'1g the EPROM, the toggles may
be set to compare and/or display. The number of repetitions defined must be changed to one
before the second step to compare and/or display.

The following example shows how to program a 1024 X 8 EPROM from a 1024 word block of
memory. The following commands define the memory and PROM data configurations, bit string
width, PROM characteristics, memory bounds, and toggles, and initiate the programming process.

PP,MI,1,10,400,O
PP,RI,1,8,400,O
PP,M 1,2,O,C8,O
PP,RI,2,O,C8,O
PP,SW,8
PP,RC,8,O,1,O,32,8
PP,MB,O,3FF
PP, TS,O,O, 1,0
PP,GO

The level 2 mapping defines the repetition count to be C8 16 = 200. The toggles are set to program
memory to PROM.

To perform the compare to check for programming failures, the following commands are needed.

PP,MI,2
PP,RI,2
PP,TS,O,O,O,1
PP,GO

The RI and MI subcommands define the repetition count to the default value of 1. The toggles
are set to compare memory to PROM.

7-24 Digital Systems Division .

~~-------------------~ 945255-9701

7 .6.3 CREATING PROMs FOR MEMORY ADDRESSES NOT IN HARDWARE CONFIGU­
RATION. By specifying a load point for the linking loader different from the default, PROMs
may be generated to be used in memory addresses for which memory is not configured in the
current system or cannot be loaded with the linking loader.

An example is to generate a PROM to be used at location FE00 16 . Since the ROM for the
programmer panel and loader is at location FE00 16 , object code cannot be loaded there. The
linking loader provides the capability to load programs with a specified load point and load bias.
This allows the user to load programs at a location in memory different from the location at
which they will execute, FE00 16 in this case.

The load point and load bias specified by the user are used in determining how the code is
relocated and the memory address where the code will actually be loaded. Code assembled with
an absolute origin (AORG) directive is loaded at the absolute address determined by the directive
plus the load point.

MEMLOC = ABS ADDR + LDPT

In this example, if the object code to be programmed into PROM is assembled with an absolute
origin of FE00 16 but the user wants to load it at location 200 16 , he should enter a load point
of 400 16 ,

The load bias entered is not used since the object code is absolute.

Code assembled with a relocatable origin (RORG) directive is loaded at the relocatable address
determined by the directive plus the load bias plus the load point.

MEMLOC = REL ADDR + LDBI + LDPT

In this example, if the object code to be programmed into PROM is assembled with a relocatable
origin of 0, and the user wants it to be executable at location FEOOi6 but wants to load it at
location 200 16 , he should enter a load point of 400 16 and a load bias of FE00 16 •

200 16 = 0 + FE00 16 + 400 16

Note however, that object code loaded with a load point other than the default 0 is not
executable.

7.7 PROGRAMMING EXAMPLES
The following paragraphs present examples of command sequences used to program PROMs with
the PROM programmer and examples of command sequences for using the additional PROM
programmer capabilities. Additional programming examples are presented in Section XI.

7.7.1 EXAMPLE 1. Generate a 256 X 16 memory with PROMs by programming a 256 word
block of memory, located at 7 AO 16, into four 256 x 4 PROM devices. Refer to figure 7-2.

7-25 Digital Systems Division

~5\ ______ _ ~ _945255-9701

BIT
DISPLACEMENT

MEMORY \

ADDRESS ~~~O ______ ~_4 ______ -r8 ______ ~C ______ --,

7AO
7A2

MEMORY

II III

(A)133375

Figure 7-2. Mapping Example 1

Mount the Standard Control Infonnation Cassette on LUNa 7.

Command Commentary

. PL Load PROM programmer software .

.PS,MS287-0,S287 Standard configuration MS287-0, S287.
(Memory configuration initial bit displacement
equals 0.)

.PP,MB,7AO,99F Memory bounds 7AO-99F (PROM bounds
default to 0 and FFF 16) .

. PP,GO Program PROM I. The toggles were defaulted
to program PROM and compare when PROM
programmer was loaded by PL.

Change the PROM.

.PS,MS287-4

. PP,GO

Change the PROM.

Load standard memory configuration MS287-4
with initial bit displacement equal to 4. PROM/ROM
configuration does not change.

Program PROM II .

IV PROMS

7-26 Digital Systems Division

~~-------------------'-i!!:I 945255-9701

.PP,MS287-8

. PP,GO

Change the PROM.

.PS,MS287-C

. PP,GO

Load standard memory configuration MS287-8
with initial bit displacement equal to 8.

Program PROM III .

Load standard memory configuration MS287-C
with initial bit displacement equal to
C 16 .

Program PROM IV .

7.7.2 EXAMPLE 2. Program a 32 by 8 PROM from a 16 word block of memory beginning at
memory address 40 16 ,

Assume that the CRU base address is lAO I6 •

Position the Standard Control Information Cassette. Refer to figure 7-3 .

. PS,S288,MS288A Standard Control Information for ROM/PROM
configuration S288. Standard Control Information
for memory configuration MS288A. This
configuration has an initial displacement
of ° with a bit increment of 8 bits, and
a bit string width of 8 .

. PP,MB,40,5F Beginning memory address 40 16 , Ending
memory address SF 16'

.PP,CS,1AO CRU ROM interface base address lAO I6 •

. PP,TS,O,O, 1, 1 Set toggle to program PROM and compare .

. PP,GO

7.7.3 EXAMPLE 3. Load the most significant bytes of a 256 word block of memory beginning
at memory address ° from a 256 by 8 PROM.

Assume that the CRU base address is 120 16 , Refer to figure 7-4.

7-27 Digital Systems Division

~-----------~ 945255-9701

BIT
DISPLACEMENT

MEMORY \
ADDRESS ~~O

8

40 P--------P------__ I
I ,
I
I MEMORY

(A)133376

(A)133377

I
I

5E I

" V
/

0 t
t I I I I, 2

I: " I , I, I I I
I I I I

PROM

II I , I II
I II " I I

1E I I I II II
1F

Figure 7-3. Mapping Example 2

0
1
2

FF

BIT
DISPLACEMENT

I I I, I
I I I I, I
I : I' , II

: I I : ' II
I 'I I I I
I I I I
: I I I II I

PROM

MEMORY \

ADORES S ~ ~rO ____ :..... __ ,..,....,.,"T':""''''
o
2
4

1FE

Figure 7-4. Mapping Example 3

7-28

MEMORY

Digital Systems Division .

~---------.--~ 945255-9701

Position the Standard Control Information Cassette.

.PS,MS471-0,S471

. PP,MB,0,1 FF

. PP,CS,120

. PP ,TS,0,0,2,0

.PP,GO

Standard Control Information for PROM/ROM
configuration S471. Standard Control Information
for memory configuration MS471. This
configuration has initial displacement equal
to 0, bit increment equal to 1016 ,
and a bit string width of 8 .

Beginning memory address 0. Ending
memory address 1 FF .

CRU ROM interface base address 12016 .

Load memory from PROM

7.7.4 EXAMPLE 4. This example is in several parts.

a. Program a 512 by 8 EPROM from a 256 word block of memory beginning at memory
address 8016 .

Assume CRU base address 12016 (unchanged from previous setting).

Position the Standard Control Information Cassette. Refer to figure 7-5 .

. PS,ME2704A,E2704 Standard Control Information for memory
configuration ME2704A. Standard Control
Information for PROM/ROM configuration
E2704 .

. PP,MB,80,27F Beginning memory address 8016.
Ending memory address 27F16 .

. PP,TS,O,O,l,O Program PROM from memory data
configuration. (See the note below.)

.PP,GO'

7-29 Digital Systems Division .

~------------~ 945255-9701

BIT
DISPLACEMENT

MEMORY \
ADDRESS ~ "-.. 0 8

80
82

27E
I
I

MEMORY

\~------~v~------~/

PROM

(A)133378

Figure 7-5. Mapping Example 4

b. Compare PROM in a. to memory configuration used to program the PROM .

. PP,MI,2

. PP,RI,2

.PP,TS,0,0,0,1

. PP,GO

Clear second level looping .

Compare PROM and memory .

c. Display PROM programmed in a .

. PP, TS,O, 1,0,0

. PP,GO

Display PROM .

NOTE

Because of the nature of programming the EPROM, the EPROM
should be compared to memory only after the programming cycle
has ended by resetting the toggles and initiating the compare as in
b. and the comparison of the PROM to the memory configuration
used to program the PROM. (Refer to paragraph 7.6.2.)

7-30 Digital Systems Division

~t7s\ ______ _ ~ 945255-9701

7.7.5 EXAMPLE 5. Generate a 1024 X 8 memory with PROMs from a 1024 word memory
block. Data is loaded in memory from location 200 16 through location 9FE 16 in even-numbered
bytes. Refer to figure 7-6.

Assume that this programming sequence is not standard.

Command Commentary

. PP,MI, 1, 10,400 Level one memory mapping .

• Increment 4 bits

• 1024 times

.PP,R I, 1 ,4,400 Level one PROM mapping.

• Increment 4 bits

• 1024 times

.PP,SW,4 Program 4 bits at a time .

. PP,MB,200,9FE Beginning memory address = 200 16 •

Ending memory address = 9FE 16 •

. PP,RB,0,3FF Beginning ROM address = O.
Ending memory address = 3FF 16 •

. PP, RC,4, 1,1,8,14,1 ROM Characteristics.

• ROM word width of 4 bits

• Program high-logic-level outputs

• Normal pulse width "1 ", 8 retries

• 20% duty cycle

• Program 1 bit at a time

.PP,GO Program PROM set I.

Change the PROMs .

. PP,MI,1,10,400,4 Change initial displacement to 4 bits

. PP,GO Program PROM set II .

7-31 Digital Systems Division .

~-----------~ 945255-9701

BIT
DISPLACEMENT

MEMORY \

ADDRESS ~~~0~ ____ ~ ______ -r.8~rrT777C7/~~?1

(A)133379

200
202

9FC
9FEL-______ ~ ______ ~~~~~~~~

o
1
2

3FC
3FE '--'"'"""'1.......1

I
I
I II .1
I
I .

PROMS

Figure 7-6. Mapping Example 5

MEMORY

7.7.6 EXAMPLE 6. Save the control information in example 5. (Refer to paragraph 7.4.5.)

Mount the Standard Control Information Cassette on the device assigned to LUNO 7. Mount the
scratch cassette on the device assigned to LUNO 8 .

. PP,M 1,1,10,400,0

PP,TS,0,0,3,0

. PP,GO

MEM ID? MOB4

ROM ID? ROB4

Change displacement back to O.

Set toggle to save information ..

Program replies with
MEM ID?

Program replies with
ROM ID?

ROM identifier. Tape I/O occurs.

Example 2 may now be run replacing

.PP,MI,l,10,400

and

7-32 Digital Systems Division .

~-------~ 945255-9701

.PP.RI,1,4,400

and

.PP,SW,4

and

.PP,RC,4,l,l ,8, 14, 1

with

.PS,MOB4,ROB4

7.7.7 EXAMPLE 7. Twenty-four 4-bit fields are arranged in 16-bit words as shown in the illus­
tration. These 24 fields are to be programmed repetitively in the first 384 four-bit words of a
512 X 4 PROM with characteristics similar to a TI SN74S287 (two 287s with a programming
adaptor card to make them appear as a 512 X 4 device). Refer to figure 7-7.

Assume that this programming sequence is not standard ..

Command

.PP,MI,1,6,3

.PP,MI,2,10,8

.PP,MI,3,0,10

,
.PP,RI, 1,4, 180

.PP,SW,4

Commentary

Level one memory mapping (go across
word).

• Increment 6 bits

• 3 times

Level two memory mapping (step from
word to word).

• Increment 16 bits

• 8 times

Level three memory mapping (provide
repetitions of memory data configuration).

• Increment Obits

• 16 times

Level one ROM mapping

• Increment 4 bits

• 384 (= 16·X 8 X 3) times

Program four bits at a time.

7-33 Digital Systems Division .

.• ~ __ 94_S_2_S_S-..;..97_0_1,--_______________ .-;...~ ________ _

.PP,MB,2AO,2AE Beginning memory address. "

Ending memory address.

. PP,RB,O,17F Beginning ROM address .

Ending ROM address .

. PP,RC,4,O, 1,8, 1 ROM characteristics.

• ROM word width 4 bits

• Program low-logie-level outputs

.". Normal pulse width "1", 8 retries

• [)uty cycle 25% (default)

• Physically program one bit. at a time .

. PP,GO

'"
I

7-34 Digital Systems Division

~-~---------:-----~ 945255-9701

BIT
DISPLACEMENT

MEMORY \

ADDRESS ~~~O~--------rr~~~--~---r.r7~r---~---'
2AO

6 C

3

(A)133380

2A2

2AE

o

17

18

I

;

4

7

10

13

16

19

22

1

2

• • •
24

1

2

• • •
24

• • •

r
~ REPETITION 1

~

> REPETITION 2

REPETITION 16

1 7F r ... ____ 2_4 __ _

Figu~ 7-7. Mapping Example 7

7-35/7-36

6

9

12 MEMORY

15

18

21

24

Digital Systems Divis/of,

~-------~ 945255-9701

SECTION VIII

BNPF DUMP MODULE

8.1 FUNCTIONS AND OPERATION
The BNPF Dump (DMBNPF) overlay, when resident in the monitor transient area, allows the user
to produce a BNPF-formatted cassette tape, check that the correct format has been produced, and
load the BNPF-formatted load module from cassette into memory. These functions may be initiated
by the DB monitor keyboard command.

Instmctions for loading the BNPF Dump overlay module into memory are included in the
discussion of system software cassette generation in Section II and the OV command in Section III.

8.2. BNPF FORMAT
The standard format of the DMBNPF output has the following appearance:

decimal byte address 'I) B ,xxxx ... xxxx, F ... B ,XXXX}XXX, F

I I
first 8-bit byte sixth 8-bit byte
of P's and N's of P's and N's

The decimal byte address is th-eaddress of the first byte of information contained on the line. It
contains no leading zeros and must begin in column 1. Each record contains at most six bytes. The
Nand P characters represent the bit values 0 and 1 respectively.

8.3 BNPF DUMP COMMANDS
The commands used by the BNPF Dump software module are described in detail in the following
paragraphs.

8.3.1 PERFORM BNPF OPERATION (DB). The Perform BNPF Operation command, along with a
subcommand, causes a BNPF dump, load or data comparison to occur.

Syntax definition:

DB {'I)' ... } <Subcommand>

Parameter:

subcommand Command which specifies a dump, load, or data
comparison. If it specifies a dump, additional
parameters are required (paragraph 8.3.2.1).

Error message:

MPOO Invalid. subcommand

8-1 Digital Systems Division .

~. 0._.....,......-.-___ _ ~ ~4S2SS~9701

8.3.2 DB SUBCOMMANDS. The DB command is uSed with a D, C or L subcommand; These
subco~mands are described in the following paragraphs .

. 8.3.2.1 Dump Memory to Cassett~ in BNPF Format (D). The Dump Memory to Cas~ette in BNPF
Format subcommand causes each byte within the specified memory range to be converted to BNPF
format and stored on tape. '

Syntax definition:

Parameters:

start addr

end add'r

<start addr> . { t)' ... }

Address of first byte to be dumped.
Required parameter. Hexadecimal
number.

Address of last byte to be dumped.
Required parameter. Hexadecimal .
number.

<end addr>

Description: ,The memory range is specified by the starting and ending addresses. BNPF format, the
format in which dat~ is stored on tape, is described in paragraph 8.2. This command dumps to the
device assigned to LUNO 7. .

Error messages:

DP03

MSOS

MXOI

Dump is larger than 8192 (200016) bytes
Starting address is greater than the
ending address;

Required parameter missing.

Unrecoverable I/O error. (Output cassette
may not be ready.)

Example: The following example dumps memory locations 500 16 to 50F 16 to cassette in BNPF
format: .

DB D,51)1).51)F.

The contents of memory, when printed using the 1M command, appear as follow~:

1M 51)0 50t="
0500= I) 0 (I 0 1111 2222 :33:3:3, > 4444 ~~~~, 1'::.666 7777

8-2 ,Digital Systems Division

Jd75\ ______ _ ~ 945255-9701

After the memory words have been stored on cassette, they appear as follows:

1280 BNNNNNNNN~ BNNNNNNNNF BNNNPNNNP~ BNNN~NNNPF BNNPNNNPNF BNNPNNNPNF
1286 BNNPPNNPPF BNNPPNNPPF BNPNNNPNNf BN~NNNPNNF BNPNPNPNPF ~NPNPNPNPF
1292 BNPPNNPPNF BNPPNNPPNF BNPPPNPPPF BN~~PNPPPF
$

A dollar sign ($) in the first character of a record denotes the end of the dump. The memory
addresses printed are decimal numbers.

8.3.2.2 Compare BNPF Format on Cassette to Memory (C). The Compare BNPF Format on
Cassette to Memory subcommand can be used to verify that the correct data was written on cassette
tape by the D subcommand (paragraph 8.3.2.1).

Syntax definition:

Description: After a memory block is dumped to tape, reposition the cassette assigned to LUNO
7 to the first record and enter the DB command and C subcommand. Each BNPF-formatted byte is
reconverted to hexadecimal and compared to the byte in memory. If the comparison fails, each
byte from the cassette and the corresponding byte from memory are displayed with the
hexadecimal address. Control is returned to the command string processor without printing if no
comparison errors occur.

Error message:

MXOI Unrecoverable I/O error

Example:

DE: C
BE(; ADDf<:=O::.OO
Er·iD ADD"'= 05IJF

The contents of the tape is compared to memory. The beginning and ending addresses are printed.
Because no compare errors have been detected, nothing else is printed.

DB C
BEl::' H.[I[lt':= 05 0 0
[0502=1100 M0502=0000 T0503=1100 MIJ~IJ~=~FOO
T0506=3300 M0506=OOOO T0507=3300 MU~lJi=~FOO

T050H=5500 M050A=0000 T050B=5500 MU~U~=~~OO
T050E=7700 M050E=0000 T050F=7700 MIJ~IJ~=~FOO
HiD AfoDR= U5 (IF

8-3 Digital Systems Division .

~-----~-~ 945255-9701

In this example, a number of compare errors have been detected, The memory and tape byte values
are displayed, left justified in the field. Pressing the ESC key on the terminal keyboard terminates
printing of compare errors.

8.3.2.3 Load BNPF-Formatted Data Module into Memory (L). The Load BNPF-Formatted Data
Module into Memory subcommand reads a BNPF-fomlatted data module from the device assigned
to LUNO 7, converts the data to hexadecimal, and stores the data in the memory addresses corre­
sponding to those on the cassette ..

Syntax definition:

Error message:

MXOI Unrecoverable I/O error

Example:

.DB,L

8-4 Digital Systems Division

~-------~ 945255-9701

SECTION IX

HIGH/LOW DUMP MODULE

9.1 FUNCTIONS AND OPERATION
l'he-!IIGH/LOW Dump (DMHL) overlay, when resident in the monitor transient area, allows the
-user to-produce a TI 256"by 4 HIGH/LOW-formatted cassette tape and check that the correct for­
mat has been produced. Because DMHL is an overlay, it must be loaded into the transient area be­
fore being used.

A program function is initiated by a monitor keyboard command which sets memory bounds and
lets the user specify the option -desired: either to produce the tape or to perform a data comparison

" to check the tape.

.\

Instructions for loading the HIGH/LOW Dump overlay module into memory are included in the
discussion of system software cassette" generation in Section II and the OV ·command in Section
III.

9.2 HIGH/LOW FORMAT
The standard format of the DMHL output has the following appearance:

xxx - xxx t;t; yyyy t; yyyy t; ... t; yyyy
.....-- ----- ----- " -----/ \ \

beginning ending Inst 4-bit second 4-bit eighth 4-bit
decimal decimal word of H's word of H's word of H's
address address and L's and L's and L's
(3 digits) (3 digits)

The ftrst seven characters of a record must contain the ftrst and last address of the eight data sets
described in th~ remaining columns. As an example, the ftrst record must contain 000 through 007.
The addresses must be three-digit right justifted zero-filled integers separated by a hyphen (minus
sign). The last record must contain 248-255. All 32 records must contain eight consecutive address
groups so that the dump starts with 000 and ends with 255.

Each record contains eight 4-bit words of Hs and Ls. The Hand L characters represent the bit
values 1 and 0 respectively. An example follows:

000 00;;- LLLL LLLH LLHL LLHH LHLL LHLH LHHL LHHH
008~015 HLLL HLLH HLHL HLHH HHLL HHLH HHHL HHHH
016-023 LLLL LLLH LLHL LLLL LLLL LLLL LLLL LLLL
024-031" LLLL LLLL LL~L LLLL LLLL LLLL LLLL LLLL

9-1 Digital Systems Division .

~_' ____ 94_S_2_S_S-_9_70_1 __ __

9.3 HIGH/LOW DUMP COMMANDS
The commands used by the HIGH/LOW Dump software module are described in detail in the
following para.sraphs. .

9.3,1 PERFORM HIGH/LOW OPERATION (HL). The Perform HIGH/LOW Operation command,
along with a sub90mmand, causes a HIGH/LOW dump or data comparison t%ccur.

Syntax definition:

HL {t:>' ... } <subcommand>

Parameter:

subcommand Command which specifies a dump, or data comparison.

Error message:

MPOO

The subcommands are described in paragraph
9.3.2.

Invalid subcommand

9.3.2 HL SUBCOMMANDS. The HL command is used with a D or C subcommand. These sub­
commands are described in the following paragraphs.

9.3.2.1 Dump in HIGH/LOW Format (D). The ,Dump in HIGH/LOW Format subcommand con­
verts four bits of each word ofa selected 256-word memory block to HIGH/LOW format and
writes the converted format to tape. _

Syntax definition:

b... b ... HL {' } D·{' } <start addr> {b' ... } <end addr> [{ b' . .. } <bit>]

Parameters:

start addr

end addr

bit

Address of the first word in the me1)1ory block.
Required parameter. Hexadecimal number.

Address of the last word in the memory block.
Required parameter. Hexadecimal number.

Starting bit of four-bit string in each word. The
number of the bit position.

Parameter default vallj,es:

If the bit parameter is not specified, it is set to O.

Description: DMHL writes to the device assigned to LUNa 7. If a block of less than 256 (100 16)

words is specified, the HL command fills out the 256 words on tape with 4-bit words of Hs. To·
check whether the correct information was recorded on cassette, reposition the cassette and enter
the HL command with the Compare (C) subcommand (paragraph 9.3.2.2).

9-2 Digital Systems Division

~-------~ 945255-9701

Error Messages:

DP03

MPOO

MS05

MXOI

Example:

Dump was greater than 256 words. Starting address
is greater than the ending address.

Illegal parameter value. Address was not on word
boundary. D parameter missing. Bit parameter
value is greater than C1i; .

Required parameter (other than subcommand) missing.

Unrecoverable I/O error or output cassette not ready.

HL D 5006FE

The cassette has the fIrst four bits of each word, with the bit parameter equal to its default value 0,
of a 256-word block beginning at 50016 converted to HIGH/LOW format.

HL D 500 5208

The cassette has four bits beginning at bit 8 of each word of a 16-word block beginning at 50016

converted to HIGH/LOW fonnat. The cassette is fIlled with records of Hs until a 256-word format
has been created.

9.3,.2.2 Compare HIGH/LOW Format on Cassette to Memory (C). This subcommand is used to
verify that the correct data was written on tape by the D subcommand.

Syntax definition:

Parameters:

start addr

end addr

bit

C <start addr> {t; ... } <end addr> [{b' ... } <bit>]

Address of fIrst word in memory block.
Required parameter. Hexadecimal '
number.

Address of last word in memory block.
Required parameter. Hexadecimal
number.

Starting bit of four-bit string in each word.
The number of the bit position. Hexadecimal
number.

Parameter default value: If the bit parameter is not specifIed, it is set to O.

Description: Each four-bit string on cassette is compared to four bits of binary data in each word of
the designated memory block. If the comparison fails, the addresses and the cassette and memory
data values are printed.

9-3 Digital Systems Division ,

~--------------~ 945255-9701

Error messages:

DP03

MPOO

MS05

MXOI

Examples:

Block larger than 256 words.

Illegal parameter value. Address was not on word
boundary. Bit parameter value is greater than
C16 . C parameter missing.

Required parameter missing.

Unrecoverable I/O error.

HL C ::.uO 6ft::.

The contents of the cassette are compared to the first four bits of each word from 500 16 to 6FE16 •

No compare errors are detected.

HL C 500 6FE
M0502.000u=0000 r0001.0000=1000 MU50b.UOUO=0000 T0003.0000=3000
M050A.0000=0000 T0005.0000=5000 MU50E.UUUO=OOOO T0001.0000=7000
M0512.0000=0000 r0009.0000=9000 M051b.UUUU=0000 1000B.0000=BOOO
M051R.0000=0000 1000D.0000=DOOO MU51E.uuuO=0000 TOOUF.OOOO=FOOO

In this example, a number of compare errors are found, The relative address of the word on tape,
its contents, and the memory address and its contents are displayed. Only the four bits of the
memory word that are being compared are displayed. The bits are left justified in the content
display.

9-4 Digital Systems Division

J2~ ______ _ ~ 945255-9701

SECTION X

SYSTEM OPERATION AND DEBUGGING EXAMPLE

10.1 INTRODUCTION
A complete example of system operation and debugging is presented in this section. The example
includes assembly of program modules, the loading sequence, debugging, editing, reassembly of
the edited module, relinking and loading of all modules, and execution of the final version of the
program.

It is assumed that the user has read the manual and has been introduced to these functions.
Included with each step in this example is a brief explanation of procedure, a listing of the
actual procedure followed, and a reference to the section in the manual where more information
can be found.

This program creates a concordance of all the symbols used in a program. The user may specify
labels, operators, and/or operands to be included in the concordance printout. To run the
program, follow these steps:

1. Mount and ready the source tape in cassette drive 1 (the left-hand drive).

2. Execute the program using the EX command or using the RU command for debugging.

In the concordance program, an error is included in the print routine (PRTBM) so that the user
may be exposed to the process involved in creating and debugging a working program. The steps
in the process are:

1. Assemble the source programs and create object modules using PX9ASM.

2. Link and load the object modules into user memory using PX9LAL.

3. Using the monitor, debug the program.

4. Using PX9EDT, edit the source module which contains the error.

5. Reassemble the source module.

6. Link and load all the modules into memory again.

7. Execute the final program to see that the error has been corrected and the program
executes correctly.

10.2 ASSEMBLING MODULES WITH PX9ASM
The first part of the program is the assembly of modules using PX9ASM. For a description of
how to use the assembler, refer to Section V. The assembler must first be loaded using the LU
command (Section III). The source modules require the predefined register definitions; therefore,
in answer to the question:

PREDEFINED REGISTERS?

Enter "Y".

10-1 Digital Systems Division

J2h\ _____________________ _ ~ 945255-9701

Assembly listings of the routines other than PRTB (IDT 'PRTBM') used in the concordance
program are not shown, but are printed when the programs are assembled. The routines not
shown are DRIVER, PARSE, CTYP, CSYM, SYMREF, and SYMDEF .

. LU :3
C=', . .'
.~

P;"':'jA:SM 9453'j3.. 15t'lAR(,6
ADD 4K MEM BLOCKS CONFIGURED? ~
PREDEFINED REG1STERS? ~

A::M"'TER~l? £!.

10-2 Digital Systems Division

~ ____ 9_4_S_2_SS_-9_7_0_1 __ __

0001
000;:
0004
00 O~,
(1)06
0007
0008
000':::'
0010
0011
0012
001·3
0014
O(t1~'

0016
0(117
0018
001':::'
0020
0021
0022
002:3
0024
0025
0026
0027
0028
0029

0002
0008
OON'I
0002
0004
on!)6
0(108
0008

•
•
•
• •
•
•
•
•
•
•
•
•

•
•
·S:"'S',,,,
SI"IIEF
·SMF"EF
PEFVAL
:~ Y:S·FLG
E:FADP
BFLTH
(COUNT

PAGE 0001

PPTE WILL PEAD THE S~MBOL TABLE ONE SYMBOL
AT AT! ME Atm PP I NT THE 'O'r'M"BOL NfH"1E·
THE :STATEMENT NI.lM"BEP \.IHEPE THE SYMBOL
I,IK; DEFINErI. AtlIl THE US·T OF STATEMENT
NU~EEPS WHEPE THE SYMBOL \.lAS PEFEPENCED.

CALLIN6 SE(lUEI"CE:
tID INPUT PAP"'S

IIEF PPTE:
P'EF FST::.YM

m<op 'S~\lC" 15

EO!) 2
EPU ,-,

,~

EOU ··A
EOU 2
EOU 4
EOU Eo
EOU ~?

EOU 10

·10-3

PPB FLAGS

Digital Systems Division

4P 945255-9701

F'PII'tT SYf'lPOL TFtF:LE

00:31 •
00'32 •
00:3:3 ..
0034 0000'" F'PTB EOU
I) 1):::;5 0(100) e18Ie MOV
0(1'::'1:::, OOOc: C ==~2 I) MOV

0004 0(, (i il
0006

00:;::1 •
00:;.8 (I (I 1)8 ", PFTBl'!l E(IU
00'3:' (I I) ro:~, 1:3-- ,JEO
0040 0(' OFt 06Ft fl BL

OOO(
0041 O(lOE COAO I'mv

0010
1)042 0012 C 042 MOV
0043 0014 0221 FtI

0016 0(102
0044 0018 0200 L!

001Ft
0045 00lC CC31 MOV
0046 001E CC:31 MOV
0047 (t 0':' (I C[:31 N[l1,I

0048 •
004'~ 0(122 C06E' MOv

0024 (0 I) (18
00'50 (l02E, OC:81 Cl

0028 FFFF
(1051 (102Ft 1:3-- JEO
0052 O(!2C (281 MO"'"
005:3 (1)2E 020'9 LI

(1)30
0(154 00::::2 (16Ft f. BL

(I (1':::4
(1055 •
(I (15':, (I rr:;E," PFTB02 EI;1U

(102Ft··l?(I')
00"57 00:36 C OFt 0 t" 0 '.1

003S
OO~I::: 003A C162 MOl}

003C OOrtFt
I)05'~ 003£ 02(i'~: LI

004fl
1)060 (,(,4,~' 0204 LI

0044 (I(i(l{

0061 (1(146" PPTBr":; EOu
0062 0046 C145 t10V
001:::,:;:; 0048 1~:-- .-'EO
0064 •
0065 004Ft C2A'5 Mm·

004C (l (I Oi~

(1066 004E C243 MOV
0067 0050 06Afl BL

005;:::

$
P1 1, ~6
;,IF'STS'y'M, ii'N:>,;r::::','M

$
PpTE'>"T
;;'BLN~U.

;i.ltl:" TS\'M· P2

PC', Pl
j;' 1 ' :~:M:~ YM

RO.OuTBUF

.j::' 1 + •• p fl+
·1"1+,."'0+
.P1 ·p(I+

;jo:~MItEF • 1"2:' . ~n

Pl,"FFFF

PPTB02
~·1·~1 I)

P'9.DVTE:UF+8

;;'COtN

$

;;om: TS ""1'1. PE'

,,':~MFEF '.:';'2) ,,~~.

F:~:. (1IITFUF+1.;:

1"4. 7

'f,

P':-,P5
PF'TB05

;;IF'EFVAl. I·R~) ,PI0

j;' 'c' • ~"::'
;,IC O~iV

10-4

SAVE PETUP!';
FO!NTEF TO FIFST SYMFOL E~T~Y

•• PPINT A S MlmL
IF I'OttE
SET OUTBUF TO fLA~~S

MOVE SYMBOL TO BUFFEP

MOVE SYMBOL DEF TO OUTFUF

, I FIT E>< IS r:

CONVEPT BIN TO DECIMFtL

PF'OCESS PEFEPENCES

7 PEFEFENCES PEP LINE

IF END OF REF CHAIN

OUTPUT PEF TO LINE

Digital Systems Division

4P 945255-9701

PRINT SYMBOL TAF:LE PAGE 000:3

(1(1158 054 022:3 Al P:3. E: I'IE:>:.T LINE" pmITTON
0(151':. 0008

006';:' 0058 0604 !tEe P4 IF LIhf FULL ANTi MOPE PEF::: PEI'I
0070 (105t=1 15-- , .. ":;:;T PPTp,(l4
00<'1 (105C c~s-s r10V .10''5 •• 17<'5
0072 005E 13-- JEO PPTB(l4
0(17:3 •
0074 0060 OE-AI) PL ;~PPI'lTLN PPIhT CUPPEI"T LIhE

0062
0075 0064 1)6ftO F:L ;ilF.ltWLN RESET LINE POIhTEJ"''S

0066
0076 0068 0203 LI P3. DUTBliF+ 1 E.

006A
0077 006C 0204 LI P4.7

006E (1007
0078 •
0079 0070" PRTB04 EQU ii

005A •• 150A
005E •• 1308

0080 Oll70 C155 MOV .P5.R5 CHF'+II'I TO hE)<;T PEF
0081 0072 10E9 ,-'MP PPTBf.l3
0082 •
0083 0(174" PRTIrO':, EOIJ ii

0048 •• 1315
0084 0(174 06AfI BL ;'PPNTLN PRINT LAST LINE

0076
0085 •
00B6 0078' PPTB06 EQU $
0087 0078 COA(I MOV OiINXTSYM,P2 CHAIN TO NEI,'T SyMBOL

007A
0088 007C (812 MDV .P2. ;ilN:XTS YM

007E
0089 0080 10(:3 .IMP PRTBOl
0090 •
0091 0082 0456 PRTB:x'T B ·P6 RETUPN

OOOS •• 133C
0092 •

10-5 Digital Systems Division .

~-------~ 945255-9701

PPINT SYMBOL TA~LE

00-:'4
00-:0-:'
OO-='';
00":17
OOCo8

•
•
•
• •

PAt:;E 0'-1f)4

BLAN. LINE PU~FE~

RE6ISTEPS USED - ~O.Pt.~2

OOCo'':' OO:?-4' BLN.LN H)ll J..
O(lOC •• I)(I:~:4"

010G O~84 0202
l)n:~6 OOc':='

01 fq (108::; 0;-:' (I]

008A 2020
1)1 ('2 008(0200

010::::
0104
010'":.
(t 1 ('':'
0107
0108
010':-
0110
0111

0112

011 :3
0114

0115
011t,
~t11 7'
0118

011';:'

0120
(1121

0122

012'?'
0124
0125
0126
0127
012&
i)!c'?
01.30
ft 1 ::: 1
01.32
t) 1 J,j

(I08E
00':'0

ilf/Q" ((01
fl(l':'L~' il'::,02
(I f":'4 I'SFr.
OO':<~ 04~F,

(11,98 .'
(IOIS.=. •• (. (0':':=: ",
(t(t7;:, •• I)",;:.~ "
1)0';:'8 (leO fl
Oft,:..=;

OO';:'C "
(11.":'(':'81 f.
OOQE
(10Ft 0 1;:,--
O(;Ft2 0600
(lOA4 10FB

OftAE. '
o riA (1 •• 16"'2
(tONt: (IE' f/!
(lOA:':,
(lOA':' ,: (If I 1
O(.AI' (:::01)
OilHE
t)1)BO 2FEf'
(lOB2
I) (IP4 045I'

(I"'F~,
ft (1':'4 •• t) (1ft, '

LI

LI Pl. ",

LI PO·OUTBl'F

BLht (11 EGIU '1
M[]V j;-1 •• PI)'"
DEC P';:' L,

.11-;' !.LN~OI

PT
•
• ~TPIP TPAILING fLAN~S ~~~ PP!NT OUTPUT LINE
•
PP~1TLN EOCI 'f,

FPl

P~'2

•
••
•
•
•
•
•
•
•
(ON'"

Ll PO.nUT!{UF+7":' LAST JUFFEP PO~ITIO~

Eflt' $
CF .P (t. ;jI P.LAN~

JtiE P~'2
[lEe PO ASSUME AT LEAST DhE C~AF IN EU
JMP PPI
EflU $

LI Pl.DI.ITBUF-1

- P!.I;'(I
MD'" ~fl. ,"'"T((OUTP~T CHA~ (OUNT

:·'./C ;jt,.ITPj;-B PPINT LINE

r;T

PE6I:TEPS U~ED - FO.Pt.P2
CALLING SEOUE"rE:

PI0 - VALl~ TO FE CDNVEP'ED
PQ - POINTEP TO PUFFEP FOP PE:ULT

10-6 Digital Systems Division

~-------~ 945255-9701

PRINT SYMPOl TRBLE

0134
013'5

0136
01:37
0138

0139

014(1
0141
0142

014:3
0144

014'5
0146

0147

0148
0140;.
01'50
0151

01'52
01'53

(lO'52.·0nBt,-
(lOF6 C Oat71
(I OF::::' (le,'OO
OOBR 1):3E8
OOB((t4(1
OOBE 3(4('
OOCO DE.:.t
00C2
00(4 (1200
OOCE. (1064
00C8 il4C1
OileR 3(40
(If·ee DE61
OOCE
OOD(I (.4C 1

OOIlc' flc'o n
00114 (I(!(lA

o (1!l6 :3(40
00Ii8 DEE. 1
OCI[IA
OODC [IE62
OODE
O(,EO ClA'5!!

00E2 30
00('2.·00E2"
00CE •• 00E2'
OODP •• 00E2"
O(IDE •• OOE2'
OOEC OPO[I
OOEE

•
•
CLIST

MOV P1 Ch P2
l I PI). 10(1)

ClF.' PI
[IIV PO. P1
MOVB ~ClIST(P1) •• Po;.+

LI PO~ 1(10

elP PI
I!IV PO.F·1
MOVB :ilClI:5T (I~1) •• p~+

eLF.' PI
LI PO.11)

IIIV PO.Pt
MOVE ;i'Cl. I'S T {PI) •• P9+

MOVB :ilCL 1ST {P2) •• P9+

PT

TE><"T " (11234'56789"

'[lATA >OAOIt
OUTBlIF BSS' 80

PAGE 0005

USE PEPEATED ItIVIDE
AtiD lOOt<: UP ('1I0T IErn Itt TRIILE

PEMRINDEP IS LAST DIGIT

CONVEPT BI~ TO DEC

CP.LF

01'54

00 lA •• ')('EE ,
0030··00F6'
0040 •• 00FE"
006A •• OOFE"
008E •• 00EE'
009A •• 013D'
OOR8.·00ED'
013E 0000
0140 OBOO
0142 0000
0144 OOEC"
0146 00'50
00:82 •• 013E"
0148 0(100
OOAE •• (I146"

\.ITPPII DAlA 0,)FOO.O.OIJTBUF-2.80 OUTPUl PRB

01'5'5 MTCC IIATA 0

0156 •
01'57 014A 20 :8LR~I(BYlE" ",0

01411 00
O(l9E •• 014R'

01'58 014C 0000 NXTSY" DATA (I

0006 •• 014("
0010 •• 014C'
0038 •• 014("

DUTPllT CHAP COll~T

10-7 Digital Systems Division ,

~.-------~ 945255-9701

PPINT SYMBOL TABLE

015':'

OO,Ft++')14(.. '
(t07E++'-'14C"

~II) (I (I EPF!DPS

10-8 Digital Systems Division

Jd7s\ ______ _ ~ 945255-9701

10.3 LOADING MODULES WITHPX9Ll\1
The second part oCihe~~prog~am i~th~-loading of modules. Using PX9LAL, link and load the
object modules into memory. (Refer to the software loading procedures in Section II.) Before
PX9LAL can be used, it must be loaded into the monitor transient area using the OV command
(Section III). When PX9LAL asks for

LD PT?
LD BI?

enter a carriage return after each to specify the default values of 0 and A0 16 , respectively. In
answer to

F/P LIST?

enter either F (full) or P (partial). The object modules may be loaded from either cassette drive.
When PX9LAL prints

LOAD/END?

enter either L or L 7 to load from cassette I or L8 to load from cassette 2.

When all of the modules have been loaded, the program entry point is printed. This value is
placed in the user's PC register.

10-9 Digital Systems Division .

~ ____ 9_4_5_25_5_-9_7_0_1 ______ ~ __________________________________ ~ __ __

0 1-.1

LL

.~

Lft·PT'
Lrl 1:1"
I-'P U:T 7 F

':";PEF I) (IH (,

• PJ; I I'iT(I) 1'::';·
• ,;;ETCHF ft144
• TEP'" ('16::

PAJ;:'::;EM 02':,4
.' PAF'SE (I.~E:6
• DEFPF' 0410
• OPNDPP 0414
• OPEF'PF' 04 12
• :;? TMT 04 (lIS

LOFtD"'EN[I" II

CTYP'" 1)476
• CTYP t)41lE

LOA[I.··· EN[!" L

PRTB'" (1508
• PPTB 0508

LOAD.·' Eti[1'7 k].

CS'y',.,,,, 065.::
• CSY", 01'0,':.2
• IS'i'" 06B4
• t1:>:'TlOC 06CE,
• Etirr: '('" 1 I,[,E,
• FS:TS\'''' 0;:'(8

SY"'RF'" 1 [IE.::
• :''''''''PEF trlE2
• O~JFl lE18

LOA I" EN[I''' 1.§

'~:''''''''[lF''' t E::::8
• ,c . ..,.'MI'EF lE'38

lOFt[I/END;:' ""
ENTP.Y = (lOAn

TEP.,.,.···cmn·' T

10-10 Digital Systems Division

~-------~ 945255-9701

10.4 J)~BU9:GING THE PROGRAM
The third part of the program is the debugging. Execute the program using the EX command
(Section III). Use the source module named SYMDEF as the input to the concordance program.
(This is the shortest source module.)

The source tape may be positioned to the beginning of SYMDEF by setting the PLAYBACK
switch on the data terminal to the LOCAL position and the PRINTER switch to the OFF
position. By pressing the CONT START switch in the Playback Control area on the data
terminal upper switch panel, the tape will be read to an end-of-file marker and positioned at the
beginning of the next file. Repeat this process until the tape is correctly positioned to SYMDEF.
Set the PLAYBACK and PRINTER switches to the LINE position.

Follow the debugging procedure outlined in the computer printout in this paragraph. The
debugging in this example occurs in PRTBM. For descriptions of the individual monitor
keyboard commands, refer to Section III.

[I"ItJUNT S,oURCEFDP.SSMDEF Dtl (A';'::ETTE· J)PIVE. E>::ECIJTE FFDi;:iPFtM.]

If
F'C=OOAO IoIF=(lOOO -:1=0(10(,

.~
CPD:·:S'PEFEPH!CE - DEC ? 1 • 1 ~7'5
PPDCES:lABEU'" ~
FP.DCESS: DPEl'lfjTDF<- n I"ISTPIJC TI orE) -7 'l'
P C-CE!;S ·DPEPANDS--;: Y

•• •• •• (PO-:-S PEFEPE CE •• •• -:--':;'1) •• ..- ••

":VI'I!!OL LEF PEFS
Al O(l~9

till (i~3t
-~.BL 002B
tGSiM (1027 (t02E1
DEF 0(12 (t
FEN!, 00:32
I 'cOl.; (11)22 0024
ZIDT 0(102
MDv 0('2.5 01)2'; (11):30
..1Pfj~E 0(11':-
Pll CII}25
zP:3 (1(126 0(1;:'0

R4 0(IE5 (10-;<]

.P~ 01)26 0029 I) (0'3 (I
:"'EF onE 7
FSMDE (1)22 1)(l2~

SYMIt 1)024 . 1)0 (11 O{t,~:(,

V2'rMI' (1002
frIlL 0001

[IHGDRRECT OUTPUT. HiSPE'::::r OUTPUT BUR=ER BEFORE E;1C:14 RECOP.:DI,.IP. ITTEN. SET
.BREAh:PlJItH Hi PRT3I" iH lrCTPU'::rIDti BEF3RE: ~.IJPEP'·!r::.3RCFtl:"L TO :,JRlrE RECORt).]

"'10-11 Digital Systems Divis/on _

~-------~ 945255-9701

[T'J FIrm THE ;iE::'1JLUTl:: ,iD)r.'E:.:: OF THE DE:·li;oED HCTRUCTID!h AD) iiiE 1'llJDULE ,-OiiD
,=-!]I;H ·.Ii:. ::PE:::IFIE:I I:i :_iJ'1.D i"IiP' TO THE RELATIVE ADDPE:::: \IITHHi THE "liJ::ULE.]

• .I::!A 508 A8
!UM=05BO +(11456 DIFF=04~G +01120
.SB 1~5BO
.MP

PC=OOAO
IJP=OOOO
S.T=OOOO £..

[pEPOSITlmi TAPE ro: MDEF.J

E!.L
eROS:S PEFEREN(E - r'Ee '31. 197~
PRDCESS LABELS? ~
PROCESS OPERATORS 'INSTRUCTIONS)? y
FRDCESS OPERANDS? ~

•• •• •• CF'OS'S "'F.FEPEt-ICE •• •• 'OtCoO •• •• ••

:S:'r'MFOL liEF REFS
BI(PT;;1
FC=05BO WP=OI6A ST=D002

[LOOl<' AT OUTPUT BUFFEP.J

tiA 508 EFt
:UM-05F2 +01522 DIFF=041E +01054
. 1M 5F2 E,'::2
05F2=0806 4149
(1602=:;' 1):3 0 :32:3'Ot
0':,12=2 O~' (I c: (12 (I
0622=202(1 ' 2020
06.32=202 C·

2020
2020
2020
2(21)

2020
2020
2020
2020

:> 20,?fl
'>202 e
"'~'O20

>2020

;e: 1)20 2020 2 o.E' (I
2020 2020 202(1
21)E'O 20~'O 2020
c'020 202(1 202(1

Digital Systems Division .

~-------~ 945255-9701

[F IP'ST HID CHAPAC TEF"~ OF F:UFFEP W' .. 'AL TIl. PO HHEF' TEl ~ ','t'1.E:OL THf:LE
nEEDS TO F:E HiCPEMHHED E',' HID. JWEF'T THE ~TMT At Fl.2 AFTE~

,Hn 44. SIHCE THERE t.: tiD Rom1 TO Ir<EPT ThI c TI"o !oIOPTI IWHI.II~T!Ot·~.
I..IE MU:T MAKE t=< FATCH TO A Ut'1U::ED PORT t ON OF I'1Et'1OF''''. nE RT THE
Hl::TPUCTIDN:S ':'nq 45 I.JHICH I,IE ~11.J:T O"iEF-LA'!' I.lITH A E:FAH H. AtiD:Tt1T
THAT I!.IE AF'E HE ERr H1j:;·,. AND 1::RAtiCH f:AO' TO THE ,:ODE l,iE Ht'1E FR'Ot1.]

[TO DO THE PATCH HT : TMT 45:

I.'.!HEF'E PATCH

AI F.l,2
LI PO,DUTj::I_,F
B ~STMT_46 WHEF'E STMT_46

THE CODE FOP THE FATCHES IS :

(146 I)

IF 00

02;:::1
('002
0200
05F2
0460
0'520]

MM 5lC
0'51 (=02 (I (.
051~=I)"5F2
• MM 1FOO
IFOO;mO
1 F(t2= (I 0 I) (.
1F 04= (, (I (I (.
IF06=1 E 1:3
IF 08=4F'5'::,
IFOA=4E4C

04,.1}

!£..Q.Q.

IF (1 C,

'50::=:+ 1:::::

10-13 Digital Systems Division

Jd75\ ___ ---,--__ _ ~ 945255-9701

[E;',' Er'ITEF HII", THE PI.' ':mH'IAt'[I • THE FPOGF>=t~l I,d ILL coriT rtiUE E:<ECI.;THiG
FFO~i THE EFEAfF[J!riT, THE PECOH' I"PH THE EPPOP Hi IT I.!ILl :FE PPItHED
At'iI' THE t'lE:T FEt:,uPfI f:UIlT, THE PF'O\3FAt'l I,IILL HALT HT THE f:PEAfPOHiT
f.EFOFE PF!liTIIV:; THE t<E,T PECOFI', I,IE (Ht'l IN:PECT THE E:UF'FEP T[1
DETEP~lltiE IF OUP' PATCH 101.=< COFF'EeT,]

• IM5Fc: 6::2
05F2=422~ ~020 2020 2020 2 02 l! 2 020 2 Oe I) .:: 02 (I
(It- ~)c'='=; O·~ n ':~:~:, 1 2 (Ie: fI c: 1)2 (I ":. 2 (12 (I 2 02 I) c' 0-2 I) c: fie: I)
1);:·lc:=20EIJ cil2f1 2020 c:(!c.'o 2 02 (, -' (,2 (I L. (/2 (i C. 02 (I ..
1"'1;:'22=;:: 0":" (I c: (·2 II :~~ (IC' (I 2 fi.~: r ':-~: OE' I) i: (If~' I)

"
f,:~: (I c.' 0;:;: Ii

(1'::··::2=2 (12 (!

~HE BUFFEP AFPEAPS COPPECT, PEMOVE ,THE BPEArpOINT AND PPINT THE
PE:sr OF THE~','Mf:Ol TAElE.]

C E'.1 •
-:Pi:!
E,-
E:l
C::'c'M
fiEF
Et~D

EOU
IDT
~10V
PAGE
1"11
P':;:
F'4
F-:o
PEF'
SMIIEF 0('22
::"""'WEF, OOC'4
:SYMIIFI'I
TIll

I) (,;:: 1
(I fl2'::::
0027 002::::
0020
0(1:.2
O(I~::2 (iI)24

00('2
0025 0(126 0030
001'?
0025
00c'6 (1)30
o (lc:5 0031
OOC:t; (I 1',2'? 0030
002'7
o ('c:':;'
0001 002(1
o (iI)2

fino!

i}iOl).! THAT I".IE HA'·/E ItETEPt'1 I
EDITDP AND INSEPT THE MI
THAT EVEPYTHING I~ COPPE

~ THAT THE PATCH IS CD~PE(T. PELOAD THE
Hit;; :TFtTEMEtH. FE-A::SH1E'lE. AtUi '·/EP I F'I'
.J

10-14 Digital Systems Division

~-------~ 945255·9701

10.5 EDITING WITH PX9EDT
The fourth part of the program is editing using PX9EDT. For a description of how to use the
text editor, refer to Section IV. The text editor must be loaded using the LU command (Section
III) .

. LU a

. E::

P>:'=,EDT '?4':.3'?4.. lSI'lAR'':'
ADD ,;j.k 1'1Hl BLOCh: COr-lt= IGUP.ED7 1.

PO~ITIDH TAPE:, E~TER CR

-7 pc:. (I
"P-l~

0035 PPTB
0(.:36

EOU "t
folD· .. • P 1 t • F.'6 SFI',IE F.:ETlIPI'!

0037 MOV iFSTSY~.~~XT~YM POINTEP TO FIPST SY~~Ol E~TPY

1)(1'38 •
(t(.:;:,:;. PPTf,Ol EOl.;
004(' JE("I
0041 BL
004~ MOV
(If.l4:, MOV
0(144 • AI
0{14":. LI
0046 ,"OV

1:
PPTB?;T
;ifBUIl'Lfi
,i1tl:< T ;.YM. R2
F?2,1"1

Pl. '::..M:~·YI'1
po.m.tTBuF
.F.'l+ •• P(t+

0047 MOV 1+ •• P(I+
0(.48 MOV 1+· .P(I+
O(t4'=' •
-"(,44-44

•• PRII"IT A SVl'1fiOL
IF [,ONE
.:E T OUTBIJF TO t:LAI'I'" S
~OVE SYMFOL fO ~UFFEP

F.'EMUVED TO CPEATt EPROP

FI I r;o 1 • S 11:5 'M C OPF E(TEIl EF'POP

?P42-4E.
0042
0('4'::

(t ('4'5
0(;4':,

ENIIEI'IT

MDV ... tt--:;TSYM.P2
MOV P 2 ,I.' 1
AI Pl.:SM$ '~
LI P(I.DUTf,UF
MOV .Pl+· .Pfj+

TEPMII'IFIl E/(ONT 1 "'U£':'T -

COPPECTED f.H'OP

19-15 Digital Systems Division

m _____ ----'--~ ~ 945255-9701

10.6 REASSEMBLING. RELINKING AND LOADING MODULES AND EXECUTING THE
PROGRAM
The fifth part of the program is reassembly of the edited module. The sixth part of the program
is the relinking and loading of all modules. The seventh 'Part of the program is execution of the
final version of the program. '

PX9ASM 945393 •• 15MAR76
AIr!! ~ l'IEMB'-OCI<.,::;:::O~iF I GUI':EII;' J
PREDEFINE!: REI3ISTERS;-' 1.

IDr "PRTBW

PAI:;E 0001

0001
0002
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
001'~
0020
0021
0022
002:3
0024
0025
0026
0027
0028
002'3
00:30

• • • • •
• •
• • • •

PRTB lA/ILL READ THES· MBOL .TABLE ONE SYMBOL
AT A TIME AND PRINT THE :SYMBOL NAME,

0002
0008
OOOA
0002
0004
0006
001):3
00011

'. •
•
•
:SMSYM
:S:MDEF
S:MREF
REF'v'AL'
S'r"SFLI:;
BFADR
BFLTH
CCOUNT

THE STATEMENT NUM.BER InHERE THE :S'y'MBOL
InAS DEFINED, AND THE LIST OF :HATEMENT
NUMBERS: I.oJHERE THE SYMBOL, J,JASREFERENCED.

CALLING SEOUENCE:
NO INPUT PARMS

DEF PRTB
REF FSn'y'M

D::<OP :S'v'C, 15

EllU .2
EQU :3
EQIJ .>A
EQU =-...
H!U 4 PRB FLAG'S:
EQU IS
EllU :3
EllU 10

10-16 Digital Systems Division '

~ 945255-9701

PRINT SYMBOL TABLE PA(5E 0002

0032 +
00:33 +
0034 +
00:35 0000'" PRTB EG!U 'f;
0036 0000 Cl8B MOV R1t, R~ S:AVE RETURN
0037 0002 C:320 MOV ,vFSTS:'r'M, ,jlN::<TS'r'M POINTER TO FIRST S:'r'MBOL E~HR'r'

0004 0000
OOOE.

0038 +
00:3'3 0008" PRTB 01 EG:!U $ ++PRINT A S'y'MEOL
0040 0008 1:3-- JEGl PRTB::<T IF IIO~iE
0041 OOOA 06AO BL ;jlBLNI<Ui S:ET OUTBUF TO BLANI<S

OOOC
0042 OOOE COAO MOV ,jI~i :":rs:'r' M, R2 MOVE S:'y'MBOL TO BUFFER

0010
0043 0012 C042 . MO' R2,Rl
0044 0014 0221 AI Rl,SMSYM

0016 0002
0045 0018 0200 LI RO,OUTBUF

001A
004~ 001C CC31 MOV +R1+,+RO+
0047 001E CC:31 MOV +R1+,+RO+
004:3 0020 CC31 MOV +R1+,+RO+
004'3 +
0050 0022 C062 NOV ;j.lSMIIEF (R2) ,R 1 MO'·.,'E S:YMBDL liEF TO OUTBUF

0024 000:3
0051 0026 0281 CI Rl,>FFFF (IF IT E:": ISTS

002:3 FFFF
0052 002A 13-- JEO PRTB02
005:3 002C C2:31 MOV Rl,R10
0054 002E 020'3 LI R9.0UTBUF+8 CONVERT BIN TO I1ECIMAL

0(1:30
0055 00:32 06AO BL ;j.lCONV

0034
0056 +
0057 0036" PRTB02 EG!U 'f; PROCESS REFERENCES

002A++1305
005:3 0036 COAO MOV ;j.lN><TS'r'M, R2

00:3:3
005'3 003A (:162 t'10V ,ilSNREF (R2) , R5

003(: OOOA
0060 003E 0203 LI P3, OUTBUF+ lE,

0040
0061 0042 0204 LI R4,7 7 REFERENCES PER lIHE

0044 000('
0062 0046'" PRTB03 EG!U $
006:3 0046 (:145 NOV R5.f<:5 IF Et·m OF REF CHAIN
0064 0048 13-- JEO PRTB05
0065 +
0066 004A C2A5 MOV ,j.lREFVAL (R5) , PI 0 OUTPUT f<:EF TO LI !'iE

004(: 0002
0067 004E (:24:3 NOV R3,R9
0068 0050 06AO BL ;j.lCONV

0052
..

10-17 Digital Systems Division .

J2n5\. ~ ____ _ ~ ~5255-9701

PRINT SYMBOL TABLE PAGE 000:::

006'? 0('54 022 ;: AI ~~3~ a NEXT LINE POSITION
0056 000:3

007'0 005::: 0604 DEC R4
007'1 005A 15-- JGT PRTB04

IF LIN~ FULL AND MORE REFS REM

00('2 005!:: C555 1'10'",' ·.R5 •• R5
007';: 1)05E 1 :::-- JEO PfHB04
007'4 •
00'7'5 0060 o.:,FtO BL)'PRtnL~i PR INT CURRENT LINE

00';:,2
00;;:'';:, 0064 O~,AO E:L ·)'BU·WLN RESET LINE POINTERS

00';:,6
0077 006:3 i),:: 0;: LI R3.0UTBUF+l';:,

006A
007:3 006C 0204 LI ~~4. ?

006E ono?
007"? •
00:::0 (i070 ,,' Pf"TB04 EOU $

O(l'5A •• 150A.
005E •• 130:::

01):31 007'0 (:155 MO'.l .R5.R5 CHAIN TO NEXT REF
00:32 00('2 10E'? JMP PRTBO:::
00:3'3 •
00:34 0074 .' F'RTB05 EGtlJ $

004:3 •• 1315
00:35 007'4 06AO BL .)'PRt'iTL~i PRINT LAST LINE

0076
00:36 '. 00:37' 007:3 ... PRTB06 EOU '£
00:3::: 007:3 COAO MO'.," ')'t"i><T ';;','M. R2 CHAIN TO NEXT SYMBOL

007A
00:3'? 007C (::312 r'10'",' ·f'~2. ,i'~i :x: T S 'r' M

007'E
OO'?O 00:::0 10e3 -'rIP PRTBOl
00'?1 •
00'?2 00:::;:: 0456, F'RTB:x:r B .R6 RETURN

000:3 •• 133C
00'?3 •

10-18 Digital Systems Division

J1lS_-,----____ _ ~ 945255-9701

PRINT SYMBOL TABLE

•
•
•
•
•

F'AGE 0004

BLANK L HiE BUFFER

REGISTERS USED - RO~R1~R2

00'35
00'30::.
00'37
00'3:3
00'3'3
0100 0084' BLNKLN EQU $

00 oe •• 0084"
006", .•• 00:34 '

0101 00:34 0202
00:36 002:3

0102 00:::::::: 0201
00:3A 2020

010:3 008C 0200
00:3E

00':;'0 "
00'30 ceOl
')0'32 0602
00'34 15FD
00'36 045B

BLNt<Ol

• •
•

LI R2.40

LI ~'1 •
,

LI RO.OUTBUF

EOU 'I
f10V Rl,.RO+
DEC R2
JGT Bunco 1
RT

:TRIP TRAILING BLAN~::S AND PRINT OUTPUT LINE

0104
0105
0106
0107
010:3
010'3
011 I)
0111
0112 0098' PRNTLN EOU $

00",·2 •• 009:3 ,,'

0120 00A6 0201

0121 OOAA 6001
0122 OOA(: C:300

OOAE
0123 (lOBO 2FEO

00B2
0124 OOB4 045B
0125
0126
0127
012:3
0129
0130
0131
0132

•
•• • •
•
•
• •

0133 •
0134 OOB6' CONV

0034 •• 00B6'

LI PO~ OUTBUF+7'?

EGlU '£
CB .RO. ,i'BLANK

J~iE Pf'~2

DEC RO ASSUME AT LEAST ONE CHAI<~ Hi BU
Jf1P PRl
E@J t

LI Rl.0UTBUF-3

'S: f':l. R (I
MO'·/ R (I • ,i' I,.;IT CC OUTPUT CHAR COU~1T

S:I,,JC ,)iI..JTPRB PRun LHlE

PT

CDt-i',o'ERT BINARY TO DECIMAL

REGISTERS USED - RO~Rl,R2
CALL HIG S:EIJ.UENCE:

R 1 I) - "iALUE TO BE CONVERTED
f':'? - POINTER TO BUFFER FOl<: RESULT

10-19 Digital Systems Division ,

J2n5\ ___ ----, __ _ ~ 945255-9701

PRINTS:YMBOL TABLE

01:35
0136

01:37
013::;
o 1 :3'~

0140

0141
0142
0143

0144
0145

0146
0147

0148

014'3
0150
0151
0152

0153
0154

0155

0156

0157
015::;

015~

(l052 •• 00B6'"
(lOB6 C08A
(lOB8 02(10
ClOBA 03E:3
OOBe 04C1
OOBE 3C40
OOCO DE61
00C2
(lOe4 0200
00C6 0064
OOC::; 04Cl
(lOCA 3(:40
OOGe IIE61
OOGE
OODO 04C1
00D2 0200
00D4 (lOOA
(lOD6 :::C4(1
ClOD::; DE61
(lOIIA
OODe DE62
OODE
OOEO 045B

(lOE2 3(1
00C2 •• 00E2'
00CE •• 00E2'­
OODA •• 00E2'
00DE •• 00E2'"
OOEe OAOD
OOEE
001A·.00EE'
OO'30 •• 00F6"
OOAO·.OOFE'-
006A •• OOFE'
008E •• 00EE'
00'3A •• 013II"
OOA::; •• OOEB'"
013E 0000
0140 OIeOO
0142 OOO(~

0144 OI)EC"
0146 0050
00Ie2 •• 01 3E'
0148 0000
OOAE •• 1}148'

014A 20
014Ie 00
00'3E -1}14A"
014(: 1)00(1
1)006 •• 014(:"
0010 •• 014(:'
OO:3:3 •• 01C"

• •

MO'.,.' R1 0, R2
LI RI),1000

CLR RI
D I',,. R 0, R 1
MOVB iGLIST(Rl),.R9+

LI RI),100

CLF: Rl
DI',,. F:O,Rl
MOVB iCLIST(R1)~.R9+

CLR Rl
LI RO,10

DI',,. RO,R1
MOVE iCLIST(R1),.R'3+

F:T

CLIST TEXT '012345678'3'

IIATA >OAOII
OUTBUF BSS :::: (I

F'RGE 0005

US:E REPEATED DIVIDE
AND LOOk UP QUOTIENT IN TABLE

REMAINDER IS LAST DIGIT

CONVERT BIN TO DEC

CR,LF

I,.)TPRB IIATA I), >BOO, IhOUTEUF-2, 80 DUTPUTPRB

I,JTce DATA 0 OUTPUT CHAR COUNT

•
BLAN~: BYTE " ."!II .J

10-20 Digital Systems Division

~-------~ 945255-9701

PRINT SYMBOL TABLE

0160

007A++014C'·
007E++014C/

0000 ERRORS

PAI3E 0006

END

10-21 Digital Systems Division

~.------~ ~ 945255-9701

. .b.h

LD PF
LD BF
F··P U:;P ..E.

LOflII END·;:- !::§.

>~PEF (lOAf.'
~OflD/END·' !::§.

PAPS:E'" 02!54
LDFtD/END·~' L7

C T't'PI'I 0476
LOFlII/END? L 7

PRTB'" 0508
LOFlIvEriIl? b.2

CS;YI'II'I fl6S6
LOAD/END"' .b.

LDAD/END·' ~

SYI'IRFI'I t riElS
LOAD/ENI!-;:- !:&

SYI'IIIFI'I 1'E3C
LOAD/END? E

ENTRY = OOFtO

TEP.I'V('DNT7 ~

10-22 Digital Systems Division

Jd75\ ______ _ ~ 945255-9701

·lE
PC=OOAO WP=OOOO ST=OOOO
.£1
CROSS REFEREhCE - DEC 31.1975
PROCESS L~BELS? y

PROCESS OPEPATOPS(lhSTPUCTIONS)?
PROCESS OPERANDS? Y

'"(' -

•• •• •• CF;D:~:S REFEREt-+CE •• •• 990 •• •• ••

·~'lMB[jL [IEF ~:EF:<::
AI 0029
B 00:31
BL 002S
CSYM 0027 0028
DEF (102 ft
END 0(1.;;2
EQIJ 002-2 0[124
lIlT 0002
MOV 002~, DO;::€.
Pf!I;E 0019
PIt 01)25
P3 0026 OO:~O
R4 0025 00:31
'"9 0026 002':;- 0030
REF 0027
S:MDEF 0022 00;:'9
S','MDEF 0024 (1001 (t 02 (I
:S:'r'MDFM 0002
TITL 0001

10-23/10-24 Digital Systems Division .

~.o ______ _ ~ 945255-9701

SECTION XI

PROM PROGRAMMING EXAMPLES

11.1 INTRODUCTION
This section contains two examples of PROM programming processes. The first example shows
how to program a user generated program into PROMs. It assumes that the user has already
assembled his source program to create an object me on cassette tape. The example shows how
the object file is loaded into memory and the steps required to program the PROMs using
control information for the memory and PROM data configurations obtained from the Standard
Control Information Cassette.

The second example shows how to use a PROM created in the first example to program another
PROM with the same data. The data from the first PROM is transferred into memory, the
memory and PROM data configurations are set up using the PROM programmer keyboard
commands, and the data is then programmed into the PROM.

11.2 EXAMPLE 1
The first step is to load the object file into memory. This may be done with the Load Program
(LP) command since the object me is in standard 990 object format and does not need to be
linked. The PROM Programmer Standard (PS) command is then used to define the control
information for the memory and PROM data configurations. The PROM to be programmed is an
SN74S287 PROM which consists of 256 words of 4 bits each. In this example, the memory
configuration will be set up to program from the first 4 bits of each memory word in a 256
word block. The memory and PROM bounds are defined with the MB and RB sub commands.

t • LP,:3, 0 .
• PS, M:S287:" 0; :~;2:37
.PP,MB,I),lFF
.pp,RB,I),FF

The LP command loads the object code to be programmed into the PROM beginning at memory
location O. The PS command defines the standard control information for programming a 256 X
4 (SN74S287) PROM with the first four bits of each of 256 words of memory. The MB and RB
sub commands specify a transfer of data into PROM word addresses O-FF 16 from memory
addresses 0 through IFF 16' The memory data may be displayed to see what will be programmed
into the PROM .

• PP,TS, b 0, O. 0
.PP,GD
MOO 00.00= 00 t·10002.00=01 t-1 00 04. I) 0= 00 t10006.00=06
M0008. 00= 01 MOOOA.OO=Ol M I) 0 (Ie. I) 0= I) (I t'1I)OOE.O(I=OO
MOOl 0.00=00 ~10012. 00=00 M0014.00=01 M0016 .• 00=0.1
M0018.00=0(: M001R.OO:;03 HOOle.OO=(O N001E. 00=00
M0020.00=00 t10022.00=00 1'10024.00=00 M0026.00=01
M002:3.00=00 t1002R.00=01 M002C.00=00 !'1002E.00=01
t100:30.00=00 t10 0:32. 00=01 M00:34. 00= 00 MOO:36.00=01
MOO:3:3.00=01 ~1O 1):3A. 00=01 t10 O:3C • 00= 0 0 MOO:3E.00=01
M 0 04 O. 00= 01 t10 042. 00=02 M0044. (1)=01 t10046.00=00
M004:3.00=00 ~1004H. 00=00 MOO4C.OI)=01 t1004E.00=00
M 0050. 00= 00 M0052.00=01 1'10054.00=01 t10056.00=01
MOO5:3.00=01) M005A.00=01 MOOSC.OO=OC t'1005E.00=0(:
M0060.00=OC M0062.00=OC MOO64.00=0(: MOO66.00=0(:

11-1 Digital Systems Division .

~~------------------~ 945255-9701

The toggle is set to display memory with the TS subcommand, and the display is printed when
the GO subcommand is entered.

Once the user verifies the data in memory, it is ready to be programmed into PROM. The toggles
to program PROM and compare memory and PROM are set with the TS subcommand. The
PROM should be inserted in the PROM Programming Module. The programming process is
initiated when the GO subcommand is entered .

• pp, TS , 0, 0, 1 , 1
.PP,GD

The compare is successful, the PROM programming returns to the monitor, and the prompt
character (.) is displayed while waiting for the next command. If any compare errors are found,
they will be printed before the PROM programmer returns to the monitor.

The following printout shows a programming process in which compare errors were found .

• pp.r>O,O.l.l
• pp~ (:;0
>r·lr'Cion.Of'=(11
·,·t'lOOt (I. OO=~4
>r'l('Ol(.OO=('(I
",. t'H' «4 :' . ("I (1= f.'5
·,.t·jf"04i:',.00=;::5

J;' (: (. (i I.'. f! O=~J::
,":000:::::. O(!=~';:'
P(lOOE. (1('=75
POf!,~l. 0('=1::'
P 00:::'::. (I (!=I=J::

The user may display the PROM after it has been programmed to see what was programmed into
PROM and compare it to the memory data display. To display PROM the toggle is .set with the
TS subcommand .

• PP,TS,0,1,0,0
.PP,13D
ROO 00.00= 00
R0004.00=01
ROO 0:3. 00= 0 0
ROOO(;' 00= OC
RO(l1(1.00=O(l
R0014.00=00
R 0 (I 1 :3. (I 0= 00
ROO 1 C. 00= (I 1
R 0 02 O. 00= 0 1
R0024.00=00
R 002:3.00= 00
R002C.00=00

ROOO!. 00=01
RI)005.00'=01
ROOO'3.00=00
ROOOD.1)0=03
RI)O 11 • I) 0= 0 I)
R0015.00=Ol
RO 01 '3. 00=01
R001D.OO=01
R0021.00=02
R0025.00=00
R002'3.00=01
ROO,::D.00=01

ROO 02 • 0 0= 0 0
R (I 0 06. 0 0= 0 I)
R (I I) OA. (I 0= 01
ROO OE. 0 0= 0:3
RO(l12.00=00
R0016.00=00
ROO 1 A. 0 0= 00
R001E. 00=00
R0022.00=01
R0026.00=01
R 0 I) 2A • 0 0= 0 1
R 002E. 00= OC

R0003.00=06
ROOO? 00=00
ROOOB.OO=01
ROOOF.OO=OO
ROO 13. 0 0= 01
R0017.00=Ol
ROOlB.OO=Ol
R001F.00=01
R0023.00=00
R0027.00=00
R002B.00=01
RO 02F. OO=OC

To program the second four bits of each memory word into a PROM, a new PROM is inserted
and the following command is entered to get the needed control information for the memory
configuration from the Standard Control Information Cassette. The PROM control information
does not need to be changed as long as an SN74S287 PROM is being programmed .

• PS. MS2:37-4

11-2 Digital Systems Division

~ _____ 94_5_2_5_5-_97_0_1 __ __

Display the memory data configuration .

• PP. TS:, 1,0, I), 0
.PP,GD
MOO 00.1)4= 02
f"1000;3.04=06
11 (I (11 t). 04= 0 t)
M001:3.04=1)0
t10020.04=02
~1002:3. 04=06
1'100:30.04=06
1'100:38. 04= OF
~1 0 04 O. 04= 0:3
t1 0 (148. 04= 05
1'10050.04=00

t10002.04=OF
MOOOA.04=OD
1'10012.04=04
t1001A.04=02
1"1(1);::2.04=00
t1002A.04:06
1'100:32.04=0:3
t1003A.04=06
1'10042.04=08
t1004A.04=OA
1'10052.04=00

M0004.04=02
t1 OOOC; 04= 04
~1 00 14.04= OF
t'1 00 1C. 04= 02
110024.04=06
t1002C.04=04
t'1 00:34.04= 06
t'100:3C.04=06
t10044.04=00
M004C.04=07
r10054. 04=00

M0006.04=07
MOOOE.04=02
110016.04=(.:3
t1001E.04=00
t10026.04=06
M 002E • 04= 011
110036. 04=0:3
1'1 OO:3E. 04= OF
1'10046.04= 04
1'1004E.04=04
t1 0056. 04= 00

The output displays the bit string beginning at bit four of each word of memor!

.PP.T:';;,O,I),l,l

.PP,GD

The toggles are set to program the PROM and compare. No compare error display indicates the
PROM has been programmed with the data displayed from memory.

The third four bits of each word of memory can be programmed into a PROM u~ing the
following commands to get the control information for memory from cassette and set toggles to
program PROMs and compare. A new PROM should be inserted before each programming
process is initiated .

• PS!I M:S:I~:37-~3
.PP, T.:;;, I), I), 1,1
.PP,GO

j

•
A similar set of commands can be used- to program the fourth four bits of each word of
memory .

• PS!I t1:S287-C
. pp, TS, I), I), 1 , 1
.Pp,GO

11.3 EXAMPLE 2
This example loads the memory data from the first PROM programmed in the previous example,
and uses this data to program another PROM. The first step is to define the memory and PROM
data configurations to be used in the transfer from PROM to memory and then from memory to
PROM. The keyboard commands are used· for tutorial purposes in this example to set up the
data configurations instead of using the control information on the Standard Control Infor­
mation Cassette. The keyboard subcommands needed to define the same information found on
the Standard Control Information Cassette are MI, RI, SW, and RC. The memory and PROM
bounds are defined with the MB and RB subcommands.

• pp, 1'1 I , 1 , 1 I), 1 (I I), I)

• PP,R I. 1 .4, 1 I) I), I)

• pp, RC • 4, 1),2, I), 1·3, 1
.PP,MB,I),lFF
.PP,RB.O,FF

11-3 Digital Systems Division .

~-~-----~ 945255-9701

The MI, SW, and RC subcommands set up the control information for an SN74S287 PROM and
for the first 4 bits of each word of a 256 word block of memory. The MB and RB
sub commands specify a transfer of data between PROM word addresses 0 through FF 16 and
memory addresses 0 through 1 FF 16'

The MI subcommand defines the memory data configuration ,as follows:

Loop level
Bit increment
Number of iterations
Initial bit displacement

= I
= lO16

= lO016

=0

TheRI subcommand defines the PROM data configuration as follows:

Loop level
Bit increment
Number of iterations
Initial bit displacement

= I
=4
= 10016

=0

The SW command defines the bit string width for memory and PROM to be 4.

The RC subcommand defines the following PROM characteristics:

High/low level output
Pulse width
Number of retries
Duty cycle
Programmable bits

=0
=2
=0
= 1916

= I

The user should insert the PROM containing the data configuration to be transferred to memory
in the PROM programming module. The PROM data may be displayed by setting the toggles to
display PROM with the TS subcommand. The display is printed when the GO subcommand is
entered .

• PP, rs, 0, l, 0, 0
.PP,t:;1l
~oooo. 00= 00
R0004.00=0:3
R0008.00=OF
R OOOC. 00= 01=
ROOl O. 00= OF
ROOl4.00=OF
ROOlB.OO=OF
ROOlC.OO=OF
R0020.00=OF
R0024.00=OF
R0028.00=OF
R002C.00=OF

R0001.00=00
ROO 05 • 0 0= 06
R0009.00=OF
ROOOD.OO=OF
ROOll.OO=OF
R0015.00=OF
RO 01'3. OO=OF
ROOlD.OO=OF
R0021.00=OF
R0025.00=OF
R0029.00=OF
R002D.OO=OF

R0002.00=00
R0006.00=03
ROOOA.OO=OF
ROOOE.OO=OF
RO.Ol2.00=OF
R0016.00=OF
ROOIA.OO=OI=
ROOIE.OO=OF
R0022.00=OF
R0026. OO=OF
R002A.00=OF
R002E.00=OF

11-4

ROO 03. 0 0= OE
ROO 07 • 0 0= 07
ROO 011. 0 0= OF
ROOOF.OO=OF
R0013.00=OF
ROOt7.00=OF
ROOlB.OO=OF
ROOIF.OO=OF
R 1)02:3.00= OF
R0027.00=OF
ROI)2B.00=OF
ROI)2F.00=OF

Digital Systems Division .

~-------~ 945255-9701

The user may transfer the PROM data into memory and verify the transfer by setting the toggles
to transfer PROM to memory and compare with the TS subcommand .

. PP,TS;,Q,O,2,1

.PP,GD

When the GO subcommand is entered, the PROM data is transferred to memory and each bit
string is compared after it is loaded to verify that the correct data is transferred to memory.

When the data is in memory and is correct, it may be programmed into PROM by setting the
toggles to program PROM and compare with the TS subcommand. The new PROM to be
programmed should be inserted in the PROM programming module and the programming process
initiated with the GO subcommand .

• PP,Ts:,Q,(I,l,l
.PP,GD

11-5/11-6 Digital Systems Division .

~.o ______ _ .~ 945255-9701

APPENDIX A

COMPATIBILITY WITH DXI0

A program developed for the Prototyping System may be run under DXIO if several conventions
are followed:

1. The first three words of the program should be:

DATA WP Workspace

DATA START Entry point

DATA END-ACTION Address of point to branch to on an
unrecoverable error

2. The program must be terminated with an end-of-program supervisor call.

3. An open supervisor call should be issued before a read or write to a file-oriented
device.

4. All interrupts are handled by the DXIO operating system.

5. Absolute code, created by an AORG instruction, is loaded with the same load bias as
relocatable code. Code at AORG 0 and RORG 0 are both loaded at the first location
of the user's address space.

A more extensive explanation of these points can be found in the Model 990 Computer DXIO
Operating System Programmer's Guide, Manual No. 945257-9701.

A-l/A-2 Digital Systems Division .

~-------~ 945255-9701

APPENDIX B

STAND-ALONE PROGRAMMING

To run a stand-alone program on the 990, the user must provide initialization procedures for the
computer. Generally, these are the initialization of a workspace, the status register, and possibly
the interrupt vectors.

The simplest case, shown in figure B-1, can be used for a program that will run without
interrupts. Note that a power-up (level 0) interrupt may still occur and will not be handled. The
first two instructions set the initial status and workspace pointer. The END statement causes the
assembler to pass information to the loader about the starting location (STRT) of the program.

Figure B-2 is an example which initializes some interrupt vectors. and supports five levels of
interrupts. A routine, provided for the real time clock, counts the number of seconds since
power-up. Note that if the routine is reused without reloading the program, the initialization
should include resetting the seconds and individual clock interval counters in the workspace for
the real time clock interrupt. Also note that the interrupt processor for memory errors resets the
interrupt by communicating through the CRU.

Bl Digital Systems Division .

t::I:I
N

o ca' ;: -(I)
l

~
o
~.

rn'
0"
:;)

LABEL

1 6

*
*
*
*
*
*
S T R T

*
*
*

*
*
*
W K S P

*
*
*

PROGRAM

(A)133104

TEXASIN~TRUMENTS
INCORPORATED

MODEL 99O/TMS 9900 ASSEMBL YLANGUAGE CODING FORM

·OPER OPERAND COMMENTS

8 II 13 20 25 31 35 40 45 50

~ A C H I N E I N I T I A LI Z A T I fiN FflR A S I M P L E

1S T A N D - A L 9 N E P R 9G RAM W I T H 9' U T I N IE R R U P T S

P R flC E D U R E S E C T I fI N

E Q U $ P R fiG RAM fiR I G I N
I M I fI P R l0 H I BIT ALL I N T E R R U P T S
W P I W K S P SET I N I T I A L W,t'J R K S.P ACE

< U S E R P R , G R AM>

I D L E END ,t'J F PR ~ G R AM

D A TA S E C T liN

~ S S 3 2 R E S E R V E M E M,t'J R Y F S R WS ~ K

<u S E R D A T A >

END S T R T SET P R ,t'J G R AM E N° TRY P,t'J I N T

PROGRAMMED BY CHARGE PAGE

~'-

Figure B-1. Assembly Language Programming Example No.1

55 60

SP ACE

01

~
\0
.j:o..
u.
N .u.
u.
~
-.J o -

~
I

W

o
~.

;: -en
~

~
o --.:: 0·
o·
::3

LABEL OPER

I 6 8 II

*
* M A C H

* P R o G

*
*
* D E F I

*
R 0 E Q U
R: 1 E Q U
R2 E Q U
R 1 2 E Q U
C R M E M R E Q U
M E M E R R E Q U

PROGRAM

(A)133105 (1/5)

TEXAS INSTRUMENTS
INCORPORATED

MODEL 990/TMS 9900 ASSEMBLY LANGUAGE CODING FORM

OPERAND COMMENTS

13 20 25 31 35 40 45 50 55

I N E I N I T I A L I Z A T I o N F 0 R A S I M P L E S T A N D - A L o N E
RAM W I T H 6 L E V E L S o F I N T E R R U P T S

N I T I o N S

0 R E G I S T E R N A M E S
1

,.
2

1 2

> 1 F C 0 C R U M E M ERR B A S E A D D R E S S
1 2 BIT 1 2 I S M E M 0 R Y E R R 0 R BIT

..

PROGRAMMED 8'1' CHARGE PAGE

-'-

Figure B-2. Assembly Language Programming Example No.2 (Sheet 1 of S)

60

OF

~
\0
~
VI
N
VI
VI

\0
~
o -

t;,;
J:..

o
cO·
~. -C/)

~
CD
~
o
~.
C;;.
o·
::s

LABEL OPER

1 6 8 II

AI~ R G

*
D A T A
D A T A

*
D A T A
DA T A

*
D A T A
DA T A

*
D A T A
D A T A

*
D A T A
D A T A

*
D A T A
D A T A

*
*
*

Rf) R G

*
* P R 11& C E

* PROGRAM

(A)133105 (2/5)

TEXAS INSTRUMENTS
INCORPORATED

MODEL 990ITMS 9900 ASSEMBLY LANGUAGE CODING FORM

OPERAND COMMENTS

13 20 25 31 35 40 45 50 55

0 A B
S _

L U T E L ~ C 0
L E VEL 0 I N T E R R U P T - P ~ W E R U P
L V L 0 W P
L V L 0 P C
L E VEL 1 I N T E R R U P T -
L V L 1 W P
L V L 1 P C
L E VEL 2 I N T E R R U P T - M E M ~ R Y E R R 0 R
M E M E W P
M E M E
L E VEL 3 I N T E R R U P T -
L V L 3 W P
L V L 3 P C
L E VEL 4 I N T E R R U P T -
L V L 4 W P
L V L 4 P C
L E VEL 5 I N T E R R U P T - R E A L T I M E C L ~ C K

R T C W P
R T C

0 SET R E L0 C A T A B L E ,0 R I G I N

D U R E S E C T I 1& N

PROGRAMMED BY CHARGE PAGE

-~~ --------_._._---- ----- ---------------------- --------------

Figure B-2. Assembly Language Programming Example No.2 (Sheet 2 of 5)

60

OF

~
1.0
~
VI
N
VI
VI ..c
.....J o -

t:d
V.

I::)

10'
;::;:
!!!.
('I)

~
Q)

~
I::)
~.

C;;
O·
::J

TEXAS INSTRUMENTS
INCORPORATED

MODEL 99O/TMS 9900 ASSEMBLY LANGUAGE CODING FORM

LABEL OPER OPERAND COMMENTS

1 6 8 II 13 ZO Z5 31 35 40 45 50

S T R T E Q U $

L l' M I 0 P R • H I B I T I N T E R R U P T S

L W P I W K S P SET I N I T I A L W. R K S P A C E
R S E T C L EAR ALL o E V 1 C E S A N 0

* ANY P E N 0 I N G I N T E R R U P T S
C K 6 N T U R N • N R E A L T I M E C L • C K
L I M I 5 E N A B L E I N T E R R U P T S

*
* < U S E R P R • G R A M>

*
L I M I 0 END 6 F P R • G RAM
R S E T
I 0 L E

*
* I N T E R R U P T S E R V I C E . R • U T I N E S

*
L V L 0 P C E Q U $

L V L 1 P C E Q U $

L V L 3 P C E Q U $
L V L 4 P C E Q U $

J M P $ U S E R P R • V I 0 E 0' S E R V ICE R ~ U T I N E

*
* M E M • R Y E R R • R S E R V ICE R • U T I N E

*
M E M E E Q U $

L I R 1 2 • C R M E M R C R U B A S E F • R M E M ERR
PROGRAM PROGRAMMED BY CHARGE PAGE

(A)133105 (3/5)

Figure B-2. Assembly Language Programming Example No.2 (Sheet 3 of 5)

55 60

OF

~
IC
~
VI
N
VI
VI
..0
......;a
o -

= 0..

t:)
a·
;: -(I)
l e
~
~
OJ"
g

.. LABEL OPER

1 6 8 II

S B Z

J M P

*
* R E A L

*
*
RTC E Q U

DEC
J 6 T
INC
L I

R T C X I T E Q U
C K

_ F

C K o N
RT W P

*
* o A T A

*
W K S P B S S
L V L 0 W P E Q U
L V L 1 W P E Q U
ME M E W P E Q U
L V L 3 W P E .Q U
L V L 4 W P E Q U

B S S

PROGRAM

(A)133105 (4/5)

TEXAS INSTRUMENTS
INCO~PORATED

MODEL 99O/TMS 9900 ASSEMBLY LANGUAGE CODING FORM

OPERAND. COMMENTS

13 20 25 31 35 40 45 50

M E M E R ~ C L E A ~ M E M. R Y E R
R _

R
$, U S E R I S S E R V ICE R • U T I N E

- T I M E C L • C K S E R V ICE R. U T I N E

K E E P C • U N T • F N U M 8 E R • F S E C • NOS S I N C E P •
$
R 1 C • U N T o • W N T I C K S T I L L
R T C X I T I F N • .:r A F U LL S E

C _
N 0

R 0
C _

U N T S E C • N D
R 1 • 1 20 R E SET T I C K I S F 0 R N E X T
$

C L EAR CL o C K I N T E R R U P T
R E - E N A B L E C L • C K ..

END
_ F

I N T E R R U P T

S E C T
I _

N

3 2 P R .6 RAM W 0 R K S P ACE
$
$
$
$

$

3 2 W. R K S P ACE F _ R I N T E R R U P

PROGRAMMED BY CHARGE PAGE

Figure 8-2. Assembly Language Programming Example No.2 (Sheet 4 of 5) .

55

W E R

S E C •

S E
C _

T S

60

U P

N 0

N 0

OF.

~
\Q
~
VI
N
VI
VI
..0
.....:J o -

~
~ -~
00

o
~.

~ -en
~
CD
~
o
~
0-
:::s

TEXAS INSTRUMENTS
INCORPORATED

MODEL 990/TMS 9900 ASSEMBLY LANGUAGE CODING FORM

LABEL OPER OPERAND COMMENTS

I 6 S II 13 20 25 31 35 40 45 50

*
* ~ ~ R K S P ACE F 0 R R E A L - T I M E C L ~ C K I N T E R R U P T

*
R T C W P P A T A 0 # S E C ~ N D S (w P REG =

P A T A 1 2 0 # T I C K S T ., N E X T S E C •

* (w P REG =
-

~ S S 2 8 .
*
* < U S E R D A T A >

*
N D S T R T

PROGRAM PROGRAMMEO BY CHARGE

--------~

(A)133105 (5/5)

Figure B-2. Assembly Language Programming Example No.2 (Sheet S of S)

55

R 0)
N D

R 1)

PAGE

60

OF

~
\C
~
VI
N
VI
VI

>C
--l o -

~------:----~~ ~ 945255-9701

APPENDIX C

CHARACfER SET

C.l ASSEMBLY LANGUAGE CHARACfERS
The Model 990 Assembly Language uses the ASCII characters listed in table Col. The table
includes the ASCII code for each character, represented as a hexadecimal value and as a decimal
value. The table also shows the corresponding Hollerith code. In addition to the characters listed
in table C-I, Model 990 Assembly Language defines six characters that are undefined in ASCII.
Table C-2 lists these characters, hexadecimal and decimal representations, corresponding Hollerith
codes, and the corresponding character on the Model 29 keypunch.

HexadedmaI
Value

20
21
22
23
24
25
26
27
28
29
2A

.28
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
38
3C
3D

Table C-l. Owacter Set

Decimal
Value

32
33
34
35
36
37
38
39
40

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

61

C-l

Space

..

S
%
&

(
)

*
+

Hollerith
Code

Blink
11-8-2
8-7
8·3
11-8·3
0-8-4
12
8·5
12·8·5.
11-8·5
11·8-4
12~8-6

0-8·3
11

12-8·3
/ 0·1
o 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7

8 8
9 9

8·2
11-8·6

< 12·8-4
= 8-6

Digital Systems Division .

~ 945255-9701

TableC-l. Character Set (Continued)

Hexadecimal Decimal Holerith
Value Value Character Code

3E 62 > 0-8-6
3F 63 ? 0-8-7
40 64 (al 84
41 65 A 12-1
42 66 B 12-2 ..
43 67 C 12-3
44 68 D 12-4
45 69 E 12-5
46 70 F 12-6
47 71 G 12·7
48 72 H 12-8

49 73 I 12-9
4A 74 J ll-I

4B 75 K 11·2
4C 76 L 11·3
4D 77 M 114
4E 78 N 11·5
4F 79 0 11-6
50 80 P il-7
51 81 Q 11-8

52 82 R 11-9
53 83 S 0-2
54 84 T 0·3
55 85 U 0-4

56 86 V 0-5
57 87 W 0-6
58 88 X 0-7
59 89 y 0-8

SA 90 Z 0-9

Table C-2. Additional Characters

Hexadecimal Decimal HoUerith

Value Value Character Code Keypunch Character

5B 91 12·2·8 ¢

5C 92 \ , 0-8-2 0-8-2

5D 93 1 12· 7·8 I (vertical bar)

5E 94 II II· 7·8 ..., (logical NOT)

SF 95 0·5·8 - (underscore)

00 00 Null

09 09 Tab

C-2 Digital Systems Division

Jd75\ ______ _ ~ 945255-9701

C.2 DATA TERMINAL CHARACTERS
The remainder of this appendix presents a detailed summary of the characters recognized by the
733 ASR Data Terminal in accordance with 990 file and record specifications. These include the
data and control characters recognized by the terminal keyboard, printer, cassette receiving input
data, and cassette sending output data. In each case, the ways in which the control characters
function are described.

The character sets for each I/O function are diagrammed in figure C-l to show the character
corresponding to each ASCII code value and its function.

The ASCII control characters are shown in table C-3.

C.2.1 733 ASR TERMINAL KEYBOARD INPUT. Refer to figure C-l.

Peripheral device: 733 ASR terminal keyboard.

Physical organization: Character, record, file.

Record and file ending characters:

End of record: CR

End of file: DC3.

Character set: As shown. Except as indicated, all characters are automatically echoed as
themselves.

Control character functions:

1. BS echoes as LF ,BS and deletes the last character entered in the user's buffer (CTRL
H).

2. DEL echoes as LF,CR and deletes the current input record.

3. HT causes a single space to be echoed. HT is placed in the user's buffer.

4. DC3 received as the first character of a record indicates end of file and terminates the
input record. DC3 is not placed in the user's buffer.

5. CR echoes as CR and is not placed in the user's buffer. CR terminates the input
record.

6. LF echoes as LF and is not placed in the user's buffer.

7. Characters in the range 20 16 to 7E16 are echoed and placed in the user's buffer.

8. The most significant bit in each character is set to zero in the user's buffer.

9. ESC aborts current output and returns a write error to the user's program.

10. All other characters are ignored.

C-3 Digital Systems Division .

~----~-~ ~ 945255-9701

ASCII CHARACTER SET

BITS b l b2 ba (COLUMN NO.)

BITS b4tlS b6 b7
(ROW NO.)

000 001 010 01 f 100 101 110
(0) (I) (2) (3) (4) (5) (6)

0000 (0) V;'~LZ tL.~L~ SP 0 @ P
,

E2· '/
0001 (I) ~'_~~

'/Jf)H '/ ~..oC0 '7/ '/
! 1 A Q a

0010 (2) ~.,STX~ t:%oc{'i " 2 B R b /-y '/ /-77
0011 (3) ~7~X~ DC3 ~ 3 C S C

0100 (4) ~J:o-0 1-' '/ t/Pg4% $ 4 D T d

0101 (5) t%.EN~ 7/"'/ V.NAK~ 7/' % 5 E U e

0110 (6) ~J4K% ~~v3~ Be 6 F V f

0111 (7) BEL ETB
,

7 G W 9

1000 (B) 'BS ~<;f-'~ (, B H X h

1001(9) HT ~ii~) 9 I Y i

1010 (10) LF ~}uj2 * : J z j

1011 (11) ~~T~ ESC + : K [k

1100(12) FF r/ff0 < L \ I ,
1101'(13) CR t//G~~ '- = M J ITI

1110 (t 4) ~~/h V'S/,/. > N 1\ n

1111 (15) ~jYh ~j0 / ? 0 - 0

CHARACTERS, IN BOXES ENCLOSED IN HEAVY LINES HAVE THE FUNCTIONS INDICATED'
BELOW. CHARACTERS IN SHADED BOXES ARE IGNORED.

CONTROL
CHARACTER

BEL

as,

HT

LF

FF

CR

DC3

ETB,

ESC

DEL

CONTROL CHARACTER FUNCTIONS

KEYBOARD
INPUT

X

X

X

X

X

X - CHARACTERS WITH SPECIAL 'FUNCTIONS.

I - IHPU"r OR OUTPUT AS IS.

OTHER CtfARACTERS ARE ,IGNORED.

(A)133111

Figure C-l. 733 ASR Terminal Character Set

111
(7)

p

q

r

S

t

u

v

w

x

y

Z

{
I
I

l
,....

bEL:

C-4 Digital Systems Divlslon ,

~-------~ 945255-9701

Table C-3. ASCII Control Characters

Control Character Description

ACK Acknowledge
BEL Bell
BS Backspace
CAN Cancel
CR Carriage return
DCI = X-ON Device control I
DC2 = TAPE Device control 2
DC3 = X-OFF Device control 3
DC4 = TAPE Device control 4 (stop)
DEL * = RUB OUT Delete
DLE Data link escape
EM End of medium
ENQ = WRU Inquiry
EOT End of transmission
ESC Escape
ETB End of transmission block
ETX End of text
FF Form feed
FS File separator
GS Group separator
HT Horizontal tabulation
LF Line feed
NAK Negative acknowledge
NUL Null
RS Record separator
SI Shift in
SO Shift out
SOH Start of heading
STX Start of text
SUB Substitute
SYN Synchronous idle
US Unit separator
VT Vertical tabulation

*Not strictly a control character

C.2.2 733 ASR TERMINAL PRINTER. Refer to figure C-l.

Peripheral device: }33 ASR terminal printer.

Physical organization: Record, file.

Record and file ending characters:

End of record: Depletion of character count.

End of file: Not applicable.

C-5 Digital Systems Division.

~----~--~ 945255-9701

Character set: As shown.

Control character functions:

1. HT prints as a space.

2. FF prints as eight LFs.

3. CR prints as CR.

4. LF prints as LF.

5. Characters in the range 2016 to 7E 16 are printed as is.

6. BEL is output as BEL.

7. BS is output as BS.

8. All other characters are ignored.

C.2.3 733 ASR TERMINAL CASSETTE INPUT. Refer to figure C-1.

Peripheral device: 733 ASR terminal cassette input (ASCII,- direct).

Physical organization: Record, file.

Record and file ending characters:

End of record: CR.

End of file: DC3.

Character set: As shown.

Control character functions:

1. HT and FF as well as characters in the range 20 16 to 7E 16 are stored in the user's
buffer.

2. ETB is translated to CR and stored in the user's buffer.

3. CRindicates end of record. CR is not placed in the user's buffer.

4. DC3 received as the first valid character ofa record indicates end of file. When DC3 is
read, the block is restarted by performing a block forward. End of. file status is
returned after completion of the block. DC3 is riot placed in the user's buffer.

5. BEL and BS are input unchanged.

6. The sequences LF, DEL or DEL at the beginning of a record are ignored if present.
The first character following such a sequence is considered the first valid character in
the record.

C-6 Digital Systems Division

~-------~ 945255-9701

7. In direct mode, the contents of a physical block on tape are transferred to the user's
buffer without conversion. Parity bits are reset.

C.2.4 733 ASR TERMINAL CASSETTE OUTPUT. Refer to figure C-I.

Peripheral device: 733 ASR terminal cassette output (ASCII, direct).

Physical organization: Record, file.

Record and file ending characters:

End of record: Depletion of character count (83 characters maximum).

End of file: DC3.

Character set: As shown.

Control character functions:

I. HT, FF and characters in the range 2016 to 7E16 are output as is.

2. CR in the user's buffer is translated to ETB and output.

3. End of block character sequence is CR, LF, DC4, DEL. These characters are auto­
matically output to control the cassette and are not user data characters.

4. BEL and BS are output unchanged.

5. End of file character sequence is DC3, CR, DC4, DEL.

6. DC3 is allowed wjithin a record for compatibility with sta~d-alone software. It may not
be written, however, as the first data character in the record.

C-7/C-8 Digital Systems Division .

~-------~ 945255-9701

APPENDIX D

COMMAND AND DIRECfIVE SUMMARY

D.1 GENERAL
This appendix contains summaries of the commands, directives and pseudo-instructions available
to the system user. They include the following:

• Monitor keyboard commands

• Text editor commands

• Assembler directives

• Assembler pseudo-instructions

The assembly language machine instructions are summarized in the Model 990 Computer·
TMS9900 Microprocessor Assembly Language Programmer's Guide, Manual No. 943441-9701.

D.2 MONITOR KEYBOARD COMMANDS
Table D-l lists the monitor keyboard commands with a brief description of the purpose of each
command, the syntax, and a paragraph reference to a detailed discussion of the command. The
syntax is presented in abbreviated form. The separator between parameters - a blank or comma
- is not shown, and the user must remember that distinct separators must be included to
indicate the position of omitted parameters.

IThe_p~rameters used in table 0-1 are explained in the follo'Ying list:

bias

bit quant

char string

CRU addr

CRU end addr

CRU start addr

device

end addr

ending index no.

ending reg

Base memory address for relocatable code

Number of bits to be changed

Character string describing trace options

CRU word address

Ending CRU address

Starting CRU address

Name of I/O device ~ LOG, DUM, CSl
or CS2

Ending memory address

Index number of ending element (breakpoint,
snapshot, or trace region)

Register number of ending workspace register

D-1 Digital Systems Division .

Jd7s\ ___ --------~ 945255-9701

entry point

format index

index no.

instr count

luno

mask value

mem addr

p

program name

ref cnt

search value

. snapshot no.

start addr

starting index no.

starting reg

step control

value

var

Entry point of program

Trace format index number

Index number of breakpoint, snapshot, or
trace region

Maximum number of instructions to be
executed

Logical unit number of I/O device

Hexadecimal number value to be ANDed
with another value

Memory address

Indicator specifying that end-of-module
tag character and end-of-file marker will
not be written on tape

Name of program - alphanumeric character
string

Reference count - pass number on which a
breakpoint is taken

Hexadecimal word or byte for which a
search is made

Number of a previously defined snapshot

Starting memory address

Index number of starting element (break­
point, snapshot, or trace region)

Register number of starting workspace
register

Indicator that specifies single instruc­
tion execution or continuous execution

Hexadecimal number value

Variable address to be traced

For all optional parameters, default values are provided.

D-2 Digital Systems Division

Table 0-1. Monitor Keyboard Commands ~
Mnemonic

Description and Function Name Syntax Paragraph \0
~
VI
N

AL Assign LUNO. Assigns the LUNO to the specified device for subse· AL <luno> <device>
VI

3.4.2 VI
I

quent I/O. \0
-....:J

CB Clear Breakpoint. Specifies a series of breakpoints to be disabled. CB
0

[<starting index no.>] [<ending index no.>] '3.4.24 -
CP Clear Write Protect Region. Clears the protect register and removes CP ,3.4.32

protection from the write·protected region.

CR Clear Trace Region. Disables the specified regions. Execution of code CR [<starting index no.>] [<ending index no.>] 3.4.27
within the region is with the hardware SIE instead of the software
interpreter.

CS Clear Snapshot. Disables the display of the specified snapshots. CS [<starting index no>] [<ending index no>] 3.4.22

DP Dump in Absolute Format. Dumps specified memory to LUNO 7 in DP <start addr> <end addr> [<entry point>] 3.4.7
absolute format. [<program name>] [P]

0
EX Execute User Program Directly. Transfers control directly to the user's EX 3.4.10

I program with PC, WP and ST registers as displayed by the IR command. w
FB Find Byte. Scans memory under mask to find occurrences of the spec- FB [<Start addr>] [<end addr>] 3.4.28

ified value. <Search value> [<mask value>]

FW Find Word. Scans memory under mask to find occurrences of the spec- FW [<Start addr>] [<end addr>] 3.4.29
ified value. <Search value> [<mask value>]

HA Hexadecimal Arithmetic. Displays sum and difference of two hexa- HA [<value>] [<value>] 3.4.30
decimal numbers. The display is in both hexadecimal and decimal, as
a 2's complement number. Arithmetic is modulo 216 •

IC Inspect CRU Input Lines. Displays the specified range of the CRU IC [<CRU start addr>] [<CRU end addr>] 3.4.19
input lines on the printer.

0 1M Inspect Memory. Dumps the specified memory range to the printer. 1M [<start addr>] [<end addr>] 3.4.13 -. !Q IR Inspect Registers. Displays the current contents of the user's PC, WP IR 3.4.15 -. -Q) and ST registers on the printer. -CI)
IS Inspect Snapshot. Dumps the registers and memory range associated IS [<starting index no>] [<ending index no.>] 3.4.21 ~

Cit with the specified snapshot to the data terminal. If the snapshot has not

~ been defined, no action is taken.
0 IW Inspect Workspace Registers. Displays the specified workspace registers IW [<starting reg>] [<ending reg>] 3.4.17 -.
'" (ii' on the printer. The workspace is that given in the WP register by the IR
o· command. ::s

o
J:,..

0'
cO'
::;:
II) -
~ -(1)

3
CI)

0
~.

c;;' o·
::l

Mnemonic
Name

LA

LL

LP

LU

MC

MM

MR

MW

ov

PL

RU

SB

Table D-l. Monitor Keyboard Commands (Continued)

Description and Function

Load Program in Compressed Absolute Format. Loads the memory data
sequence dumped in compressed absolute format. Requires the Absolute
Dump/Absolute Load overby.

Link and Load Program. Links user program modules and loads them
into memory. Requires Link and Load overlay.

Load Program. Loads program from specified device into memory and
performs any necessary relocation.

Load Program in Compressed Absolute Format with Upfront Loader.
Loads the absolute memory image with the upfront loader.

Modify CRU Register. Displays the contents of the specified CRU input
lines and accepts data to ch:mge the corresponding output lines. All data
is right-justified in a 16-bit field.

Modify Memory. Displays the contents of the specified memory location
and accepts an input to change it.

Modify Registers. Displays the contents of the user's PC, WP and ST reg­
isters and accepts an input value to change each register.

Modify Workspace Registers. Displays the specified register of the work­
space displayed in the IR command and accepts an input value to be used
to change it.

Load Overlay. (1) Disables commands currently in transient area.
(2) Loads overlay into transient area. (3) Enables new commands of
overlay in the transient area.

Load PROM Programmer. Loads PROM Programmer software module into
memory.

Execute User Program under SIE or Trace. Requires the Instruction
Trace overlay for trace.

Set Breakpoint. Sets a software breakpoint at the specified location for
use with the RU command. Breakpoints occur before instruction
execution.

Syntax

LA [<luno>]

LL

LP [<luno>] [<bias>]

LU [<luno>] [<bias>]

MC [<CRU addr>] [<bit quant>]

MM [<IDem addr>]

MR

MW [<starting reg>]

OV [<luno>]

PL <luno> <bias>

RU [<instr count>]

SB <index no.> <IDem addr>
[<ref cnt>] [<snapshot no.>]

Paragraph

3.4.9

3.4.6

3.4.3

3.4.8

3.4.18

3.4.12

3.4.14

3.4.16

3.4.4

3.4.5

3.4.11

3.4.23

~
\0
~
VI
N
Ut
Ut
~
---l
o -

o
I

VI

t::J
cQ"
::;:
CD -
~
CD
:3 o
t::J
~"

en"
0"
::3

Mnemonic
Name

SP

SR

SS

ST

Table 0-1. Monitor Keyboard Commands (Continued)

Description and Function

Set Write Protect Region. Sets the write protected region to the specified
address bounds. ,. .

Set Trace Region. Defines a memory region to. be executed with the soft­
ware interpreter under the RU command. Requires the Instruction Trace
overlay.

Set Snapshot. Defines a display of registers and memory which may be
displayed in response to a breakpoint or an IS command.

Set Trace Definition. Specifies items to be displayed by the trace inter­
preter. Requires the Instruction Trace overlay.

Syntax

SP <Start addr> <end addr>

SR <index no> <Start addr> <end addr>
<format index> [<Step control>]
[<var>] [<var>] [<var>]

SS <index no> [<starting reg>]
[<ending reg>] [<start addr>]
[<end addr>]

ST <format indeX> <Char string>

Paragraph

3.4.31

3.4.26

3.4.20

3.4.25

c&
\0
~
VI
N
VI
VI
-:0
........
o -

~ ____ 9_4_S2_S_S_-9_70_1 ______ ~ __ ~ __________________________ ~ ______ _

The following symbols and conventions are used in defining the syntax of the monitor keyboard
commands:

• Angle brackets « » enclose items supplied by the user.

• Brackets ([J) enclose optional items.

D.3 TEXT EDITOR COMMANDS
The text editor commands are summarized in table D-2. The syntax of each command and a
paragraph reference to a detailed discussion of the command are shown.

The following symbols and conventions are used in defining the syntax of text editor commands:

• Angle brackets « » enclose items supplied by the user.

• Brackets ([]) enclose optional items.

• Braces ({ }) enclose two or more items of which one must be chosen.

• Items in capital letters and punctuation marks must be entered as shown.

The syntax definitions and examples do not show spaces between the characters of the
two-character commands, between the command and operands, or between operands. Spaces may
be entered at these points if desired.

D.4 ASSEMBLER DIRECTIVES
The assembler directives for the Model 990 Assembly Language are listed in table D-3. All
directives may include a comment field following the operand field. Those directives that do not
require an operand field may have a comment field following the operator field. Those directives
that have optional operand fields (RORG and END) may have comment fields only when they
have operand· fields.

The following symbols and conventions are used in defining the syntax of assembler directives:

• Angle brackets « » enclose items supplied by the user.

• Brackets ([]) enclose optional items.

• An ellipsis (. ..) indicates that the preceding item may be repeated.

• Braces C{ }) enclose two or more items of which one must be chosen.

The following words are used in defining the items used in assembler directives:

• symbol - a symbol

• label - a symbol used in the label field

• string - a character string of a length defined for each directive

• expr - an expression

• wd expr - well-defined expression

D-6 Digital Systems Division

o
~

o
ca' ;: -(I)
~
CD
~
o <' c;;.
o·
:l

Name

SL

SN
SP

8M

D

U

T

B·

C

I

M

R

F

L

P

K

Q

E

Table D·2. Text Editor Commands

Use

To restore printing of line numbers

To omit line numbers from command printouts

To set right margin for command printouts

To set left and right limits for scan of F command

To move pointer down, and read additional lines
when required

To move pointer up

To move pointer to top of buffer

To move pointer to bottom of buffer

To delete lines and enter lines at that point in buffer

To insert lines in buffer

To move a block of lines to a specified pOint in
buffer

To remove a block of lines from the buffer

To scan a block of lines from the buffer to locate
lines having a specified character string

To identify the first and last lines in the buffer

To print specified lines from the buffer

To write lines from the buffer on the output device

To write, or complete; the output me

To terminate execution without completing the out­
put me.

SL

SN
SP<S>

8M <S>, <t>

D [<n>]

U [<n>]

T

B

(
<:s>-<t> }

C [+] [<0>]
-<n>

r [<k>]

l<s>-<t>, [<r>J]
M [+] <O>,<r>

-<O>,<r>

I <S>-<t> i
R [+] [<0>]

-<rl>

Syntax

I <s>-<t>]I L} j [PI }
F _~~> F

J
<dl><StringlXdl> <d2>[<string2>]<d2>[V] [Pl.

L

l<s>-<t> }
P !~<O>]

K [<n>]

Q [<S>]

E

Paragraph

4.5.2.1

4.5.2.2

4.5.2.3

4.5.2.4

4.5.3.1

4.5.3.2

4.5.3.3

4.5.3.4

4.5.4.1

4.5.4.2

4.5.4.3

4.5.4.4

4.5.4.5

4.5.5.1

4.5.5.2

4.5.6.1

4.5.6.2

4.5.6.3

~
\0
".
Vl
N
Vl
Vl

I
\0

" 0 -

~ 945255-9701

Directive

Page Title

Program Identifier

External Definition

External Reference

Absolute Origin

Relocatable Origin

Dummy Origin

Block Starting
with Symbol

Block Ending
with Symbol

Initialize Word

Initialize Text

Define Extended
Operation

Define Assembly-
Time Constant

Word Boundary

No Source List

List Source

Page Eject

Initialize Byte

Program End

__. term - a term

I.

3.

4.
c:
oJ.

Table D-3. ,Assembler Directives

Force Word
Syntax Boundary Note

[<label>] TITL <string> NA

[<label>] IDT <string> NA

[<label>] DEF <SymboC>[,<SymboC>] ... NA

[<label>] REF <Symboc>[,<Symbol>] ... NA

[<labeC>] AORG <wd expr> No

[<label>] RORG «expr>] No 1, 3
[<IabeC>J OORG <wd expr> No
[<label>] BSS <wd expr> No

[<label>] BES <wd expr> No

[<labeC>] DATA <expr>[,<expr>] ... Yes

[<label>] TEXT [-] <string> No 2
[<label>] DXOP <symboC>,<term> NA

<label> EQU <expr> NA 3

[<label>] EVEN Yes

[<;iabel>] UNL NA

[<label>] LIST NA

[<labeC>] PAGE NA

[<label>] BYTE <wd expr> [,<wd expr>] ... No

[<labeC>] END [<Symbol>] NA 4

NOTES

The expression must be relocatable.

The minus sign causes the assembler to negate the rightmost character.

Symbols in expressions must have been previously def1l\ed.

Symbol must have been previously defmed.

Keywords are XREF, OBj, SYMT, NOLlST, and TEXT.

• operation - mnemonic operation code, macro name, or previously defined operation or
extended operation

OS ASSEMBLER PSEUDO-INSTRUCTIONS .
Model· 990 Assembly Language pseudo-instructions are listed in table D-4. The pseudo­
instructions, which have no operand fields, have optional comment fields. The symbols and
conventions are the same as in the assembler directive syntax.

0-8 Digital Systems Division .

~-------~ 945255-9701

Table 04. Assembler Pseudo-Instructions

Pseudo-Instruction

No Operation

Return

Syntax

[<!abeJ» NOP

[<IabeJ>] RT

0.6 PROGRAMMER AND MEMORY DUMP COMMANDS

Hexadecimal
Operation Code

1000

045B

Table D-5 lists the PROM programmer and memory dump commands and subcommands with a
brief description of the purpose of each command or subcommand, the syntax, and a paragraph
reference to a detailed discussion of the command or subcommand. The syntax is presented in
abbreviated form. The separator between parameters - a blank or comma - is not shown, and
the user must remember that distinct separators must be included to indicate the position of
omitted parameters.

The parameters used in table D-5 are explained in the following list:

base addr

bit

char string I

char string 2

. compare

dmn

drn

duty cycle

end addr

high or low

CRU base address for the PROM
programming module interface card
chassis slot

Bit position of the starting bit of
a memory or PROM/ROM bit string

"Name of first record of PROM or
memory control information

Name of second record of PROM or
memory control information

Value that specifies whether a bit
string comparison is to be
made

Initial bit displacement that determines the
starting address in a memory data
configuration

Initial bit displacement that determines the
starting address in a PROM/ROM
data configuration

Percentage of the time that the
programming pulse is on when programming
a PROM

Address of the last word in the
memory block, or the address of
the last byte to be dumped

Value that specifies either high or
low logic level output conditions

0-9 Digital Systems Division .

~---------~-~-~ 945255-9701

imn

irn

level n

lower bound

mem disp

mmn

mrn

pgmable bits

prom disp

pwl

retries

start addr

subcommand

transfer

upper bound

width

Bit increment that detennines bit string
addresses in a memory data
configuration

Bit increment that' detennines bit string
addresses in a PROM/ROM data
configuration

Memory or PROM/ROM mapping level

Address of the first byte or
word in a memory or PROM/ROM
block

Value that specifies whether memory
bit strings and addresses are
to be displayed

Number of bit strings used in the
programming cycle in a, memory
data configuration

Number of bit strings ,used in the
programming cycle in a PROM/ROM
data configuration

Number of bits that can b~
programmed simultaneously

Value that specifies whether PROM or ROM
bit strings and addresses are
to be displayed

Pulse width used for PROM programming

Number of times programming is to
be retried

Address of the first word in the
memo!'} block, or the address
of the first byte to be
dumped

Subcommand that follows a command

Value that specifies the data
transfer option

Address of the last byte or
word in a memory or PROM/ROM
block

Number of bits per word, or
number of bits per bit
string

D-I0

-

Digital Systems Division .

~
Table D-S. PROM Programmer and Memory Dump Commands and Subcommands

Mnemonic
\0

Name Description and Function Syntax Paragraph ~
Ul
N
Ul

C Compare BNPF Format on Cassette to Memory. Verifies that the DB C 8.3.2.2 Ul

~ correct data has been written on tape. '-I

<start addr> <end addr> [<bit>]
0

C Compare HIGH/LOW Format on Cassette to Memory. Verifies that HL C 9.3.2.2 -
the correct data has been written on tape.

CS Set CRU Interface Base Address. Defines the PROM Programmer PP CS <base addr> 7.5.3.3
Module CRU base address.

D Dump Memory to Cassette in BNPF Format. Converts memory data DB D <Start addr> <end addr> 8.3.2.1
to BNPF format and writes it to tape.

D Dump in HIGH/LOW Format. Converts memory data to HIGH/LOW HL D <Start addr> <end addr> [<bit>] 9.3.2.1
format and writes it to tape.

DB Perform BNPF Operation. Causes a BNPF dump, load or data DB <Subcommand> 8.3.1

t;j
comparison.

I GO Go. Initiates the programming cycle. PP GO 7.5.3.5 -- HL Perform HIGH/LOW Operation. Causes a HIGH/LOW dump or data HL <Subcommand> 9.3.1
comparison.

L Load BNPF-Formatted Data Module in Memory. Reads a BNPF-formatted DB L 8.3.2.3
data module, converts the data to hexadecimal, and stores the data in
memory.

MB Define Memory Bounds. Specifies the lower and upper address bounds PP MB <lower bound> <upper bound> 7.5.3.1
of programming data in memory.

MI Define Memory Data Configuration Mapping Parameters. Defines the PP MI <level n> [<imn>] [<mmn>] 7.5.3.6
control information used to determine the addresses of bit strings. [<dmn>]

0 PP PROM Programmer. Controls the PROM programming process. PP <Subcommand> 7.5.2
C§:

PS PROM Programmer Standard. Searches the Standard Control Information PS <Char string 1> [<char string 2>] 7.5.1 -Q) - Cassette for the specified records. C/)

~ RB Define PROM/ROM Bounds. Specifies the lower and upper address PP RB <lower bound> <upper bound> 7.5 .3.2
CD bounds of programming data in ROM ot PROM.
~
0 RC Define PROM/ROM Characteristics. Define physical hardware PP RC <width> <high or low> <pwl> 7.5 .3.8 -. characteristics needed for data transfer • [<retries>] [<duty cycle>] ... -

C4 [<pgmable bits>] o·
:::s

t:1
I -N

I:)

10'
;: -(I)
~

~
I:) ;::.
in'
O·
~

Table D·S. PROM Programmer and Memory Dump Commands and Subcommands (Continued)

Mnemonic
Name Description and Function

RI Define PROM/ROM Data Configuration Mapping Parameters. Defines
control information needed to determine the addresses of bit strings.

SW Define String Width. Define the bit string widths.

TS Set Toggles. Sets numeric parameters that specify actions to be taken.

Syntax

PP Rl <level n> [<irn>] [<nun>]
[<drn>]

PP SW <width>

PP TS [<mem disp>] [<prom disp>]
[<transfer>] [<compare>]

Paragraph

7.5.3.7

7.5.3.9

7.5.3.4

~
\0
.f,lo.
Ul
N
Ul
Ul

..:0
'-l
o -

m ______ _ ~ 945255-9701

MXOl

MX02

MX03

MX04

MX06

MSOI

MS05

MPOO

DPOO

DP03

DP04

DPIO

DPl2

DPl3

DP20

DP23

DP26

LDOO

LDOI

LLOI

LL02

LL03

Unrecoverable I/O error

APPENDIX E

ERROR MESSAGES

Invalid parameter in Assign LUNO command

Command not resident in the transient area

Attempt to execute in trace mode when trace not resident

Invalid memory address or instruction

Invalid command

Required parameter missing

Parameter specification error

Invalid hexadecimal number input

Parameter value is greater than the allowed maximum

Snapshot is already defmed

Invalid trace region index

CRU bit width parameter invalid

Invalid range of registers or memory addresses

Breakpoint specification error

,Syntax error in trace format character string

Invalid trace format index number

Invalid tag or I/O error

Invalid load LUNO

Invalid load sequence

Invalid load code

Missing end statement

E-l Digital Systems Division ,

~~-------------------~ 945255-9701

LL04

LLOS

LL06

PPOI

PP02

PP03

PP04

PPOS

PP06

Load address error

Previous load module error .

Checksum error - retry

Required parameter missing

Value out of range

Values required to match do not match

Bad address or record not found

Hardware malfunction

PROM Programming Module off-line

E-2 Digital Systems Division .

~-------~ 945255-9701

APPENDIXF

MEMORY AND PROM MAPPING

Bit strings are fetched from and stored into the 990 memory and PROM under control of
memory and PROM mapping parameters. These parameters are used to evaluate a mathematical
expression w~ch determines the beginning bit address of a bit string.

The mapping parameters are:

IMl ,1M2 ,1M3
IR 1 ,IR2 ,IR3

The increment values associated with
each term of the polynomial (in
bits)

MMl ,MM2 ,MM3 The maximum multiplier for the
MRl ,MR2 ,MR3 increment for each term of the

polynomial

DMl ,DM2 ,DM3 The initial displacement associated
DR! ,DR2 ,DR3 with each term of the polynomial

(in bits)

BMA,BCA

RWW

Beginning memory (byte) address and beginning chip (physical word) address

PROM/ROM physical word width

Note that the condition
3
IIMM·=
. 1 1 1=

3
IIMRi must be met, namely
i=I

that the algorithm will map an identical number of bit strings in memory as it will in
PROM/ROM.

3 3
Let n = IIMMi -1 == IIMRi -1.

i=1

Let K = 0,1,2 ... ,n

Then compute

i=1

CM l = k modulo MMI

CM2 = int (M~l)

CM3= int (MMl~ MM2)

Then beginning memory bit address of string

3
BMBA = 8 . BMA + L (DMi + CMi . IMi)

i= 1

F-l

CRl = k modulo MRl

CR2 = int (M\.l)

.. K
CR = mt (MR!· MR2)

Digital Systems Division

~~------------------~ 945255-9701

and beginning PROM/ROM bit address of string

3
BRBA = RWW . BCA + ~ (DRi + CRi . 1Ri)

i=l

This algorithm may be expressed in FORTRAN in two different ways. The first encodes the
algori thm directly.

C
C
C

IMPLICIT INTEGER (A-Z)

N = MM 1 * MM2 * MM3

GENERATE ALL BEGINNING BIT ADDRESSES

DO 10 KK = I,N

K = KK-l

CMI = MOD (K,MMl)

CM2 = K/MMl

CM3 = K/MMI * MM2)

BMBA = 8 * BMA + DMI + CMl * IMl + DM2 + CM2 * 1M2 + DM3 + CM3
* 1M3

10 CONTINUE

The second method utilizes nested DO-loops to avoid the calculations of CM 1, CM2, and CM3.

IMPLICIT INTEGER (A-Z)

C
C GENERATE ALL BEGINNING BIT ADDRESSES
C

DO 30 I = l, MM3

CM3 = 1-1

DO 20 J = 1, MM2

CM2 = J - 1

DO 10 L-l,MMl

CMl=L-l

BMBA = 8 * BMA + DM 1 + CM 1 * 1M 1 + DM2 + CM2 * 1M2 + DM3
+CM3 * 1M3

10 CONTINUE

20 CONTINUE

30 CONTINUE

A similar mechanism would generate all beginning ROM bit addresses.

F-2 Digital Systems Division .

J}l~ ______ _ ~ 945255-9701

APPENDIX G

ADDITIONAL USER TABLES

Additional information related to PROM programming is presented in tables G-I through G-5.

Number

2

3

4

5

6

Table G-l. Pulse Widths

Multiplier Pulse Width (ms)

2 0.5

4 1.0

8 2.0

16 4.0

32 8.0

64 16.0

The number (x) is used as an exponent to get the multiplier, which is 2x. Hardware uses the
multiplier to produce the corresponding pulse width.

Table G-2. Minimum, Standard and Maximum Pulse Widths
and Duty Cycles

Pulse Width (ms) Duty Cycle

TTL

PROM Types

188A, 8188, 8288,
8287, 8387, 8470,
8471, 8472, 8473

EPROMs

2704,2708

Minimum I

0.1

Note: TTL PROM types have the prefix 8N74.

Standard I Maximum Minimum I Standard I Maximum

2 20 25% 35%

0.1 50% 50%

G-1 Digital Systems Division

~ 945255-9701

Table G-3. Memory Configurations

Configuration in
PROM Bit String Length Initial Consecutive Strings
Type Width (Words) Bit Across (A) or Down (D) Memory

MS287-O 4 256 0 D

MS287-4 4 256 4 D

MS287-8 4 256 8 D

MS287-C 4 256 C D

MS287A 4 64 0 A

MS288-O 8 32 0 D

MS288-8 8 32 8 D

MS288A 8 16 0 A

MS471-O 8 256 0 D
MS471-8 8 256 8 D
MS471A 8 128 0 A

MS472-O 8 512 0 D

MS472-8 8 512 8 D

MS472A 8 256 0 A

ME2704-O 8 512 0 D

ME2704-8 8 512 8 D

ME2704A 8 256 0 A

ME2708-0 8 1024 0 D

ME2708-8 8 1024 8 D

ME2708A 8 512 0 A

Note: TTL PROM types have the prefix SN74.

Table G-4. PROM Configurations

PROM DDn ... 'l.A1 ___ ~
.I. .n.Ulfl "uru Length

Type Width (Words)

S288 8 32

S287 4 256

S471 8 256

S472 8 512

E2704 8 512

E2708 8 1024

Note: TTL PROM types have the prefix SN74.

G-2 Digital Systems Division

~
w
---0

I
.j:o.

0
C§: -!!!..
C/)

~ -(I)

:3
CI)

0 <.
en· o·
:l

Table G-S. Standard Control Information Cassette Data Configurations

Mapping Parameters PROM Characteristics

Increments Displacements Maxima
Memory PROM Bit (Hexadecimal) (Hexadecimal) (Hexadecimal) PROM Program Pulse Retries Duty

(M) or Type String Word O's or Width Cycle
ROM (R) Width LlIL2IL3 Lli L21 L3 LlTL21L3 Width 1 's (Hexadecimal)

M MS288-O 8 10 0 0 0 0 0 20 0 0
M MS288-8 8 10 0 0 8 0 0 20 0 0
M MS288A 8 8 0 0 0 0 0 20 0 0
R S288 8 8 0 0 0 0 0 20 0 0 8 2 0 19
M MS287-O 4 10 0 0 0 0 0 100 0 0
M MS2874 4 10 0 0 4 0 0 100 0 0
M MS287·8 4 10 0 0 8 0 0 100 0 0
M MS287-C 4 10 0 0 C 0 0 100 0 0
M MS287A 4 4 0 0 0 0 0 100 0 0
R S287 4 4 0 0 0 0 0 100 0 0 4 0 2 0 19
M MS471-O 8 10 0 0 0 0 0 100 0 0
M MS471·8 8 10 0 0 8 0 0 100 0 0
M MS471A 8 8 0 0 0 0 0 100 0 a
R S471 8 8 a 0 a 0 0 100 0 0 8 2 0 19
M MS472-0 8 10 a 0 0 0 0 200 0 a
M MS472-8 8 10 a 0 8 0 0 200 0 a
M MS472A 8 8 0 0 0 0 0 200 0 0
R S472 8 8 0 0 0 0 a 200 0 0 8 2 0 19
M ME2704-0 8 10 0 0 0 0 0 200 C8 0
M ME2704-8 8 10 0 0 8 0 0 200 C8 0
M ME2704A 8 8 0 0 0 0 0 200 C8 0
R E2704 8 8 a a 0 0 a 200 C8 a 8 0 0 32
M ME2708-0 8 10 0 0 0 a 0 400 C8 0
M ME2708-8 8 10 a a 8 a a 400 C8 0
M ME2708A 8 8 a 0 0 0 0 400 C8 0
R E2708 8 8 0 0 0 0 0 400 C8 0 8 0 0 32

Notes: The prefix SN74 is omitted from TTL PROM types. L1, L2 and L3 represent Levell, Level 2 and Level 3.

Programmable
String
Width

8

8

I

~
\C
~
VI
N
VI
VI
-.c
-...j

o -

~-------~ 945255-9701

ALPHABETICAL INDEX

Digital Systems Divis/on

~~-------------------~ 945255-9701

ALPHABETICAL INDEX

INTRODUCTION

The following index lists key words and concepts from the subject material of the manual
together with the area(s) in the manual that supply major coverage of the listed concept. The
numbers along the right side of the listing reference the following manual areas:

• Sections - References to Sections of the manual appear as "Section x" with the symbol
x representing any numeric quantity.

• Appendixes - References to Appendixes of the manual appear as "Appendix y" with the
symbol y representing any capital letter.

• Paragraphs - References to paragraphs of the manual appear as a series of alphanumeric
or numeric characters punctuated with decimal points. Only the first character of the
string may be a letter; all subsequent characters are numbers. The first character refers
to the section or appendix of the manual in which the paragraph is found.

• Tables - References to tables in the manual are represented by the capital letter T
followed immediately by another alphanumeric character (representing the section or
appendix of the manual containing the table). The second character is followed by a
dash (-) and a number:

Tx-yy

• Figures - References to figures in the manual are represented by the capital letter F
followed immediately by another alphanumeric character (representing the section or
appendix of the manual containing the figure). The second character is followed by a
dash (-) and a number:

Fx-yy

• Other entries in the Index - References to other entries in the index are preceded by
the word "See" followed by the referenced entry.

Index-l Digital Systems Division

~-------~ 945255-9701

Absolute Dump1.4.3.2
Absolute Dump/Absolute Load1.4.3.2
Absolute Format, Compressed3.4.8, 3.4.9
Absolute Format Object Code, Compressed .. 6.4
Absolute Load .1.4.3.2
Adaptor, Programming .1.2.2.5
Additive Method .3.6.3.2
Addressing Mode:

Indexed Memory .
Symbolic Memory

AL Command
Assembler, One-Pass - See PX9ASM

.3.6.3.3

.3.6.3.3
· 3.4.2

Assembler Directive 5.5.1, D.4, TD-3
Assembler, One-Pass1.4.4.2

, Assembler Pseudo-Instructions ... D.5, TD-4
Assembly Language:

Character Set
Programming, Example of

Assign· LUNO· Command

B Command

.C.1, TC~l, TC-2
· FB-l, FB-2

· 3.4.2

Basic Tag Format
Binary to Decimal ASCII Supervisor

. 4.5.3.4
· 6.4.1

Call3.5.3.2
Binary to Hexadecimal ASCII Supervisor

Call
Bit Image
Bit Strings ;
BNPF Dump· Commands
BNPF Dump Module
BNPF Format .
Bottom Command
Breakpoint . .

.3.5.3.4

.3.6.3.1
· 7.4.1.

· •. 8.3
.1.4.3.5, 8.1
· ... ' 8.2
· . .4.5.3.4
.3.3, 3.6.2.2

C Command
C Subcommand
Calls, Supervisor

· .. 4.5.4.1
. 8.3.2.2, 9.3.2.2

.3.5, T3-2
Capabilities: . .

. PROM Programmer
Prototyping System .

Cassette Generation, System
Software Tape

Cassette, Standard Control
Information

Cassette, copying from 'one tape
to another ..

CB Command
Change Command ..
Character Set:

7;2.1
1.2

. 2.4

2.4, 7.2.2

.,. 4.4.1
· .3.4.24
· .4.504,1

Assembly language ..
733 ASR Data Terminal .

. C.1, TC-1, TC-2

Characters, Object Record Tag .
Characters, Special, Used by PX9EDT
Chassis, Computer
Clear Breakpoint Command
Clear Snapshot Command .
Clear Trace Region Command
Clear Write Protect Region Command
Combining Source or Object Files . .

C.2, FC-l
· . 6.2
· 4.4.4
.1.2.2.1
.3.4.24
.3.4.22
. 3.4.27
.3.4.32
· 4.4.5

Index~2

Command:
AL ..
Assign LUNa
B ...
Bottom .. .
.C
CB
Change
Clear Breakpoint
Clear Snapshot .
Clear Trace Region .. .
Clear Write Protect Region
CP
CR
CS
D
DB .
Down
DP
Dump in Absolute Format
End
EX
Execute User Program Directly .
Execute User Program Under SIB

or Trace
F
FB
Find
Find Byte .
Find Margin
Find Word.
FW
HA
Hexadecimal Arithmetic
HL .
I
IC
Insert
Inspect Memory·'
Inspect Registers
Inspect Snapsh,ot
Inspect Workspace Registers
IR
IS .
IW .
K
Keep
L ..
LA .
Urnits ..
Line Numbers ...
Link and Load Program
LL o·

Load Overlay
Load Program . .
Load Program in Compressed

Absolute Format
Load Program in Compressed

Absolute Format with
Upfront Loader

· 3.4.2
· 3.4.2
.4.5.3.4
.4.5.3.4
.4.5.4.1
.3.4.24
.4.5.4.1
.3.4.24
.3.4.22
; 3.4.27
.3.4.32
.3.4.32
.3.4.27
.3.4.22
.4.5.3.1
· 8.3.1
.4.5.3.1
· 3.4.7
· 3.4.7
.4.5.6.3
.3.4.10
.3.4.10

.3.4.11

.4.5.4.5

.3.4.28

.4.5.4.5

.3.4.28

.4.5.2.4·

.3.4.29

.3.4.29.

.3.4.30

.3.4.30
· 9.3.1
.4.5.4.2
.3.4.19
.4.5.4.2
.3.4.13
.3.4.15
.3.4.21
.3.4.17
.3.4.15
.3.4.21
.3.4.17
.4.5.6.1
.4.5.6.1
.4.5.5.l
· 3.4.9
.4.5.5.1
.4.5.2.1

3.4.6
3.4.6
3.4.4
3.4.3

3.4.9

3.4.8

Digital Systems Division ..

~-------~ 945255-9701

Command (Cont.):
Load PROM Programmer
LP
LU
M
MC
MM
Modify CRU Register
Modify Memory
Modify Registers
Modify Workspace Registers
Move
MR
MW
No line Numbers
OV
P
Parameters
Perform BNPF Operation ..
Perform HIGH/LOW Operation
PL
PP
Print
Print Margin . . .
PROM Programmer
PROM Programmer Standard
PS
Q
Quit
R
Remove
RU ..
SB
Set Breakpoint
Set Snapshot . . .
Set Trace Definition
Set Trace Region . . .
Set Write Protect Region
SL
SM
SN
SP
SR
SS
ST
T.
Top
U
Up

Command String Processor
Commands:

BNPFDump .. .
Debug

. Entry of
HIGH/LOW Dump
Keyboard, Types of .
Notational Conventions

for Keyboard
Processing of . . • . .
PROM Programmer
PROM/ROM Process Control
PX9EDT
PX9MTP Keyboard
System Control
Text Editor

'.

· 3.4.5
· 3.4.3
· 3.4.8
.4.5.4.3

· ... 3.4.18
3.4.12, 3.4.1.3

.3.4.18

.3.4.12

.3.4.14

.3.4.16

.4.5.4.3

.3.4.14

.3.4.16

.4.5.2.2
· 3.4.4
.4.5.5.2
.3.4.1.5
· 83.1
· 9.3.1
· 3.4.5
· 7.5.2
.4.5.5.2
.4.5.2.3
· 7.5.2
· 7.5.1
· 7.5.1
.4.5.6.2
.4.5.6.2
. 4.5.4.4
.4.5.4.4
.3.4.11
.3.4.23
.3.4.23
.3.4.20
.3.4.25
.3.4.26
.3.4.31
.4.5.2.1
.4.5.2.4

· ... 4.5.2.2
3.4.31, 4.5.2.3

.3.4.26

.3.4.20

.3.4.25

.4.5.3.3

.4.5.3.3

.4.5.3.2

.4.5.3.2

.3.4.1.7

· . 8.3
.3.4.1.3
.3.4.1.6
· . 9.3
.3.4.1.1

· 3.4.1.10
.3.4.1.8

· .. 7.5
· .3.4.1.4

· 4.5
3.4, D.2, TD-l
· . . .3.4.1.2
· . D.3, TD-2

Index-3

Commands, Entry of, on Terminal Keyboard .. 2.7
Compare BNPF Format on Cassette to .

Memory Subcommand 8.3.2.2
Compare HIGH/LOW Format on Cassette to

Memory Subcommand 9.3.2.2
Compatibility of 990-733 ASR System

Software with DXlO Appendix A
Component Part Numbers TI-2
Compressed Absolute Format3.4.8, 3.4.9
Compressed Absolute Format Loader .. .1.4.1.2
Compressed Absolute Format Object Code .. 6.4
Compressed Absolute Format Object Modules,

Loading . 2.5.2
Computer:

Chassis
CPU
General Description
Memory

Computer - Also See Hardware
Copying from One Tape Cassette

to Another .. .
CPCommand
CPU, Computer .. .
CR Command
Creating New Programs
CS Command ..
CS Subcommand

.1.2.2.1

.1.2.2.1

.1.2.2.1

.1.2.2.1

· 4.4.1
.3.4.32
.1.2.2.1
.3.4.27
· 4.4.6
.3.4.22
.7.5.3.3

D Command ..
D Subcommand . .
Data Configurations:

.4.5.3.1

. 8.3.2.1, 9.3.2.1

Nonstandard . .
Standard ..

Data Terminal, 733 ASR
Data Terminal - Also See Hardware
Data Terminal Character Set,

733 ASR
DB Command
DB Subcommands
Debug Commands
Debug Functions, PX9MTP .
Debug Monitor - See PX9MTP
Debugging:

Example, System .
Modes

Debugging Techniques:
General
Specific

Decimal ASCII to Binary Supervisor·
Call

Define Memory Bounds Subcommand
Define Memory Data Configuration

· 7.2.3
· 7.2.3
.1.2.2.3

C.2, FC-l
· 8.3.1
· 8.3.2
.3.4.1.3

. 3.3

.10.1
.3.3.1, 3.3.2

· 3.6.1
· 3.6.2

.3.5.3.3

.7.5.3.1

Mapping Parameters Subcommand . .7.5.3.6
DefIDe PROM/ROM Bounds Subcommand .7.5.3.2
DefIDe PROM/ROM Characteristics

Subcommand 7.5.3.8
DefmePROM/ROM Data Configuration Mapping

Parameters Subcommand 7.5.3.7
DefIDe String Width Subcommand 7.5.3.9
Directives, PX9ASM 5.5.1, D.4, TD-3
Down Command4.5.3.1
DP Command 3.4.7
Dump, Absolute1.4.3.2
Dump in Absolute Format Command . 3.4.7
Dump in HIGH/LOW Format Subcommand 9.3.2.1

Digital Systems Division .

~~---~--~----------~ 945255-9701

Dump, Memory
Dump Memory to Cassette in BNPF

Format Subcommand
Dump Module:

BNPF
HIGH/LOW

DXIO, Compatibility of 990-733 ASR
System Software with .

· 3.4.7

.8.3.2.1

.!.4.3.5,8.1

.1.4.3.6, 9.1

Appendix A

Editing Example, PX9EDT . . . 4.7
Editing Procedures, Text 4.4
Editor, Text, Commands . D.3, TD-2
End Command4.5.6.3
End of Program Supervisor Call .3.5.3.1
End-of-File Record3.4.6.1
End-of-Module Record3.4.6.1
Entry of Commands3.4.1.6
Entry of Commands on Terminal Keyboard . 2.7
EPROMs, Programming of 7.6.2
Error Messages .3.4.1.9, Appendix E

PX9ASM .. 5.6
PX9EDT . 4.6.1
PX9LAL .3.4.6.3

EX Command .3.4.1 0
Examples:

Assembly Language Programming

Load Map Printouts
PROM Programming
System Debugging
System Operation. .

· FB-l,
FB-2

.3.4.6.4
.7.7,11.1

· .10.1

Execute User Program Directly Command
Execute User Program Under SIE or

· .10.1
.3.4.10

Trace Command
Execution of Program
Execution of User Program
Extended Tag Format

F Command
FB Command
Files, Combining Source or Object
Find Byte Command
Find Command . . .
Find Margin Command
Find Word Command
Firmware:

Programmer Panel
733 ASR ROM Loader

Flag, Protect Violation
Format:

Basic Tag
BNPF
Compressed Absolute
Extended Tag
HIGH/LOW
Object Code, Compressed Absolute

Formats, Object Code
Functions of PROM Programmer
FW Command

General Debugging Techniques
GO Subcommand.

.3.4.11
3.4.10,3.4.11

· 2.9.3
· 6.4.2

.4.5.4.5

.3.4.28
· 4.4.5
.3.4.28
.4.5.4.5
.4.5.2.4
.3.4.29

· 1.4.5
· 1.4.5
.2.11.2

· 6.4.1
· . 8.2

.3.4.8,3.4.9
6.4.2

· ... 9.2
· ... 6.4
· ... 6.1
.7.2.1, 7.2.4

.3.4.29

· 3.6.1
. 7.5.3.5

Index-4

HA Command
Hardware Configuration, PX9EDT
Hardware:

Installation of .
Operation of
Prototyping System
Unpacking of

Hexadecimal Arithmetic Command
Hexadecimal ASCII to Binary

Supervisor Call
HIGH/LOW Dump Commands
HIGH/LOW Dump Module
HIGH/LOW Format
HL Command
HL Subcommands

I Command
I/O

PX9ASM
PX9MTP .
Supervisor Calls

IC Command ..
Indexed Memory Addressing Mode
Initialization Procedure, PX9EDT
Input/Output - See I/O
Insert Command
Inspect CRU Input Lines Command
Inspect Memory Command
Inspect Registers Command
Inspect Snapshot Command

.3.4.30
4.2

2.2
2.3

1.2.2
· 2.2

.3.4.30

.3.5.3.5
· . 9.3

.1.4.3.6, 9.1
· 9.2

· 9.3.1
· 9.3.2

.4.5.4.2
· 2.8

· 5.4.1
..3.2.1
· 3.5.2
.3.4.19
.3.6.3.3

.4.3.2,4.3.3

.4.5.4.2

.3.4.19

.3.4.13

.3.4.15

Inspect Workspace Registers Command
.3.4.21
.3.4.17
· . 2.2 Installation of Hardware

Instruction Execution, Single
Instruction:

Jump
Trace

Instruction Traces, Loops in
Interrupt, Power-Up
Interrupt Routine
Interrupt Vectors
Interrupts
IR Command
IS Command· ..
IW Command ..

Jump Instruction

K Command
Keep Command .
Keyboard Commands:

Notational Conventions for
PX9MTP
Types of

· 2.10.2, 3.3.1

· . . .3.6.3.4
· 1.4.3.3, 3.3.1

.3.6.2.3

.1.2.2.2

.3.6.2.4

.1.2.2.2

.2.10.1

.3.4.15

.3.4.21

.3.4.17

.3.6.3.4

.4.5.6.1

.4.5.6.1

. 3.4.1.10
3.4, D.2, TD-I

.3.4.1.1
· 2.7 Keyboard Entry of Commands on Terminal

L Command
L Subcommand
LA Command
Limits Command
Line Numbers Command
Link and Load Program Command
Linking

.4.5.5.1

.8.3.2.3

. 3.4.9

.4.5.5.1

.4.5.2.1

. 3.4.6

.3.4.6.1

Digital Systems Division

J175\ ______ _ ~ 945255-9701

Linking Loader, Relocating -- See PX9LAL
Linking of Programs 3.4.6

. 3.4.6

.1.4.3.2
LL Command
Load, Absolute
Load BNPF-Formatted Data Module

into Memory Subcommand
Load Map Printouts, Examples of .
Load Overlay Command
Load Program Command
Load Program in Compressed Absolute

Format Command
Load Program in Compressed Absolute

Format with Upfront
Loader Command

Load PROM Programmer Command
Loader:

Compressed Absolute Format
Relocating Linking
Standard 990 Object

.8.3.2.3

.3.4.6.4
3.4.4
3.4.3

3.4.9

3.4.8
3.4.5

.1.4.1.2

.1.4.1.2

.1.4.1.2
Upfront1.4.1.2, 3.4.8

Loading:
Compressed Absolute Format

Object Modules
Methods, Program

· .. 2.5.2
· .. 3.2.2·

Overlays
Programs

· . . 3.4.4
.1.4.1.2,3.4.3, 3.4.6,

Programs, with PX9MTP
PROM Programmer . .
PX9MTP
Standard 990 Object Modules
733 ASR ROM Loader

Loading Procedure:
PX9ASM
PX9EDT

Logical Unit Number Assignments
Looping Levels
Loops in Instruction Traces
LP Command
LU Command
LUNas

M Command
Mapping:

Memory .
Parameters
PROM .

MB Subcommand
MC Command
Memory, Computer
Memory Dump
Memory Dump Commands
Memory Mapping
Memory Requirements for Software
Messages:

3.4.8, 3.4.9
2.9.1
· 7.3
2.5.3
2.5.1

2.5

· 5.3
· 4.3
· 2.8
7.4.5

.3.6.2.3
3.4.3

. 3.4.8

. 3.4.2

.4.5.4.3

Appendix F
· .. 7.4.4
Appendix F
.. 7.5.3.1
. .3.4.18

· . .1.2.2.1
· .. 3.4.7
· D.6, TD-5
Appendix F
· . .1.4.1 .1

Error
PX9ASM
PX9 ASM Error
PX9EDT

.3.4.1.9, Appendix E
. . . 5.4.2, 5.6
...... 5.6
.4.3.3,4.3.4,4.6

PX9EDT Error
Methods, Program Loading
MI Subcommand
MM Command

· ... 4.6.1
· ... 3.2.2
· ... 7.5.3.6
3.4.12, 3.4.13

Index-5

Modes Debugging
Modify CRU Register Command
Modify Memory Command . .
Modify Registers Command
Modify Workspace Registers Command
Modules, Software
Monitor, Debug - See PX9MTP
Monitor Keyboard Commands
Monitor, Operation of
Move Command
MR Command
MW Command

No Line Numbers Command
Non-I/O Supervisor Calls . .
Nonstandard Configurations,

Standardizing
Nonstandard Data Configurations
Nap
Notational Conventions for

Keyboard Commands

Object Code:
Compressed Absolute Format
Formats ..
PX9ASM
PX9EDT
Standard 990

Object or Source Files, Combining
Object Modules, Loading:

Compressed Absolute Format
Standard 990

Object Record Tag Characters
One-Pass Assembler

.3.3.1, 3.3.2
.3.4.18
.3.4.12
.3.4.14
.3.4.16
· . 1.4

D.2, TD-l
· . 2.6
.4.5.4.3
.3.4.14
.3.4.16

.4.5.2.2
3.5.3

· 7.6.1
· 7.2.3
.3.6.3.5

. 3.4.1.10

· 6.4
· 6.1
5.7.2
· 4.8

6.2,6.3
4.4.5

2.5.2
2.5.1
· 6.2

.1.4.4.2
One-Pass Assembler - Also See PX9 ASM
Open Supervisor Call .3.5.2.1

.10.1 Operation, System, Example
Operation of:

Hardware
Monitor
PX9ASM

Output, Printed, PX9ASM
OV Command
Overlays
Overlays, Loading of

P Command
Parameters:

Command
Mapping .

Part Numbers:
Component
System

Patching
Perform BNPF Operation Command . .
Perform HIGH/LOW Operation Command
PL Command ...
Pointer, PX9EDT .
Power-Up Interrupt
PP Command ...
Print Command . .
Print Margin Command
Printed Output, PX9ASM

2.3
· 2.6
· 5.4
· 5.7
3.4.4
1.4.3
3.4.4

.4.5.5.2

.3.4.1.5
7.4.4

.Tl-2

.Tl-l
3.6.3
8.3.1
9.3.1
3.4.5

4.2,4.4.2
.1.2.2.2
. 7.5.2
.4.5.5.2
.4.5.2.3
.. 5.7

Digital Systems Division

~-----'-------~ 945255-9701

Printouts, Examples of Load Map
Processing of Commands .
Processor, Cominand String
Program:

Execution of. . .
Loading Methods .
Loading of
User, Execution of

Programmer Commands
Programmer Panel
Programmer Panel Firmware
Programming Adaptor
Programming, Assembly Language,

Example of
Programming Examples, PROM
Programming Module, PROM
Programming of:

EPROMs
PROMs

Programming, Stand-Alone
Programs, Creating New
Programs in User Area
Programs:

.3.4.6.4

.3.4.1.8

.3.4.1.7

3.4.10,3.4.11
. .. 3.2.2
-.3.4.8, 3.4.9

· . 2.9.3
D.6, TD-5

.1.2.2.4
· .1.4.5
· .1 :2.2.5

. FB-l, FB-2
.7.7,11.1

.1.2.2.5

· . 7.6.2
· .. 7.4

Appendix B
4.4.6
2.9.2

linking of 3.4.6
Loading of . 1.4.1.2, 3.4.3, 3.4.6
Loading with PX9MTP . . . 2.9.1

PROM Mapping . . Appendix F
PROM Programmer .1.4.3.4, 7.1

Capabilities of . . . 7.2.1
Commands . 7.5, 7.5.2
Functions of . . .7.2.1, 7.2.4
Loading -. 7.3 -

PROM Programmer Standard Command .. 7.5.1
PROM Programmer Subcommands 7.5.3
PROM Progranuning Examples7.7, 11.1
PROM Programming Module1.2.2.5
PROM Programming Module - Also See Hardware
PROM/ROM Process Control Commands .3.4.1.4
PROMS, Programming of - . . 7.4
Protect Violation Flag . 2.11.2
Prototyping Process . 1.5
Prototyping System:

Capabilities of
Hardware .. .
Purpose of .. .
Software

PS Command
Pseudo-Instructions, PX9 ASM
Purpose of Prototyping System
PX9ASM

Directives
Error Messages ~ .
I/O
Loading Procedure
Messages ..
Object Code . . .
Operation
Printed Output . .
Pseudo-Instructions
Source Code . ..

. 1.2
1.2".2
. 1.2
1.2.1

· 7.5.1
5.5.2, D.S, TD-4
· 1.2
· 5.1
5.5.1, D.4, TD~3

· .. 5.6
· . 5.4.1
· . . 5.3
5.4.2, 5.6

5.7.2
· .. 5.4
· .. 5.7

5.5~2, D.S, TD-4
· - 5.7.1

Index-6

PX9EDT1.4.4.1,4.1
Commands . 4.5
Editing Example ; . . . 4.7
Error Messages 4.6.1
Hardware Configuration; 4.2
Initialization Procedure .4.3.2,4.3.3
Loading Procedure 4.3
Messages . .4.3.3, 4.3.4, 4,6
Object Code 4.8
Pointer 4.2, 4.4.2
Source Program 4.7
Special Characters Used by 4.4.4

PX9LAL " 1.4.1.2, 1.4.3.1,3.4.6
PX9LAL Error Messages . .3.4.6.3
PX9MTP 3.1, 1.4.2

Debug Functions 3.3
I/O 3.2.1
Keyboard Commands 3.4, D.2, TOol
Loading 2.5.3
Loading Programs with . 2.9.1
User Interaction with .1.42.4

PX9UFL1.4.1.2

Q Command
Quit Command

R Command .
RB Subcommand
RC Command
Read ASCII Supervisor Call
Record:

.4.5.6.2

.4.5.6.2

.4.5.4.4

.7.5.3.2

.7.5.3.8

.3;5.2.2

End-of-file3 .4.6.1
End-of-module3.4.6.1

Region Trace3.3, 3.6.2.3
Relocating Linking Loader . . .1.4.1.2
Relocating linking Loader - See PX9LAL
Relocation3.4.6.1
Remove Command " .4.5.4.4
R1 Subcommand ;7.5.3.7
ROM Loader, 733 ASR:

Firmware
Loading with

Routine, Interrupt
RU Command

SB Command.. .
Set Breakpoint Command ..
Set CRU Interface Base Address

Subcommand
Set Snapshot Command
Set Toggles Subcommand
Set Trace Definition Command
Set Trace Region Command
Set Write Protect Region Command
SIE
Single Instruction Execution
SL Command.
SM Command
SN Command
Snapshot ...

· 1.4.5
· . 2.5
.3.6.2.4
.3.4.11-

.3.4.23

.3.4.23

.7.5.3.3

.3.4.20

.7.5.3,4

.3.4.25

.3.4.26

.3.4.31
. 2.10.2,3.3.1
. 2.10.2, 3.3.1

.4.5.2.1

.4.5.2.4

.4.5.2.2
· . 3.3

- Digital Systems Division.

~-------~ 945255-9701

Software:
Memory Requirements for
Modules
Prototyping System . . .

Source Code, PX9 ASM . .
Source or Object Files, Combining
Source Program, PX9EDT
SP Command
Special Characters Used by PX9EDT
Specific Debugging Techniques
Spin
SR Command
SS Command
ST Command
Stand"Alone Programming .
Standard Control Information

Cassette
Standard Data Configurations
Standard 990 Object Code .

.1.4.1.1
. 1.4
1.2.1

· 5.7.1
· 4.4.5

..... 4.7
3.4.31,4.5.2.3

· 4.4.4
· 3.6.2
.3.6.3.5
.3.4.26
.3.4.20

... 3.4.25
Appendix B

Standard 990 Object Loader
Standard 990 Object Modules, Loading
Standardizing Nonstandard Configurations
Subcommand:

2.4,7.2.2
· 7.2.3
6.2,6.3
.1.4.1.2
· 2.5.1
· 7.6.1

C 8.3.2.2, 9.3.2.2
Compare BNPF Format on Cassette

to Memory8.3.2.2
Compare HIGH/LOW Format on

Cassette to Memory9.3.2.2
CS ' 7.5.3.3
D 8.3.2.1,9.3.2.1
Defme Memory Bounds7.5.3.1
Defme Memory Data Configuration

Mapping Parameters ... 7.5.3.6
Defme PROM/ROM

Characteristics
Define PROM/ROM Bounds .. .
Derme PROM/ROM Data Configuration

Mapping Parameters
Defme String Width
Dump in HIGH/LOW Format
Dump Memory to Cassette in

BNPF Format
GO
L
Load BNPF-Formatted Data Module

into Memory
MB
MI
RB
RC
RI
Set CRU Interface Base

Address .
Set Toggles
SW
TS

Subcommand Groups:
DB
HL
PROM Programmer

.7.5.3.8

.7.5.3.2

.7.5.3.7

.7.5.3.9

.9.3.2.1

.8.3.2.1

.7.53.5

.8.3.2.3

.8.3.2.3

.7.5.3.1

. 7.53.6

.7.5.3.2

.7.5.3.8

.7.53.7

.7.5.3.3

.7.5.3.4

.7.5.3.9

.7.5.3.4

83.2
9.3.2
7.5.3

Supervisor Call:
Binary to Decimal ASCII .3.5.3.2
Binary to Hexadecimal ASCII .3.5.3.4
Decimal ASCII to Binary .3.5.3.3
End of Program3.5.3.1
Hexadecimal ASCII to Binary .3.5.3.5
Open3.5.2.1
Read ASCII . . .3.5.2.2
Write ASCII . . .3.5.2.3
Write End of File3.5.2.4

Supervisor Calls .. 1.4.2.2, 1.4.2.3, 3.5, T3-2
I/O 3.5.2
Non-I/O 3.5.3

SW Subcommand7.5.3.9
Symbolic Memory Addressing Mode .3.6.3.3
System Control Commands .3.4.1.2
System Debugging Example . .10.1
System Operation Example . . .10.1
System Part Numbers .Tt-l
System Software Tape Cassette

Generation . . 2.4

T Command
Tables
Tag Characters, Object Record
Tag Format:

Basic
Extended

Tape Cassette Generation,
System Software

Tape Cassette, Copying from One
to Another

Terminal, Data - Also See Hardware

... 4.5.3.3
Appendix G

· 6.2

6.4.1
6.4.2

· 2.4

4.4.1

Terminal, Data1.2.2.3
C.2, FC-l

· 2.7
... 4.4

Character Set
Keyboard, Entry of Commands on

Text Editing Procedures
Text Editor - Also See PX9EDT
Text Editor Commands
Top Command ..
Trace, Instruction '. . .
Trace Region
Trap Vectors
TS Subcommand . .
Types of Keyboard Commands

U Command
Unpacking of Hardware
Up Command
Upfront Loader
User Area, Programs in ..
User Interaction with PX9MTP
User Program, Execution of

Vectors

Write ASCII Supervisor Call .
Write End of File Supervisor Call
Write Protect

XOP Vectors _

D.3, T~2
.... 4.5.3.3
.1.4.3.3, 3.3.1

.3.3, 3.6.2.3
.1.2.2.2
.7.5.3.4
.3.4.1.1

.4.5.3.2
· . 2.2

... .4.5.3.2

.1.4.1.2, 3.4.8
· 2.9.2
.1.4.2.4
· 2.9.3

.1.2.2.2

.3.5.2.3

.3.5.2.4
· .2.11

.1.2.2.2

, Index-7 Digital Systems Division ,

J.~ 0

____ ~--~ 945255-9701

733 ASR Data Terminal
733 ASR Data Terminal Character Set
733 ASR ROM Loader:

Firmware
Loading with

990 Object Code, Standard

. .1.2.2.3
C.2, FC-I

. 1.4.5

.. 2.5
6.2,6.3

Index-8

990 Prototyping System
- See Prototyping System

990-733 ASR System Software,
Compatibility with DXIO

990/4 Computer
Appendix A
. ..1.2.2.1

Digital Systems Division

)

I
I
I
I
I
I
I
I
I
I
I
I
I

~I
~I
"" ~I
....J

~I
;:J ul

I
I
I
I
I
I
I
I
I
I
I

USER'S RESPONSE SHEET

Manual Title: Mode1990 Computer Prototyping System Operation

Guide (945255-9701)

Manual Date:...;1:....::.;.;M;.;;:aLy...;;1;.;..9..:..7..::;.6 __________ _ Date of This Letter: ______ _

User's Name: ______________ _ Telephone: _________ _

Company: _______________ __ Office/Department: ______ _

Street Address: ____________________________ _

City/State/Zip Code: _________________________ _

Please list any discrepancy found in this manual by page, paragraph, figure, or table number in
the following space. If there are any other suggestions that you wish to make, feel free to
include them. Thank you.

Location in Manual Comment/Suggestion

NO POSTAGE NECESSARY IF MAILED IN U.S.A.
FOLD ON TWO LINES (LOCATED ON REVERSE SIDE), TAPE AND MAIL

FOLD
- -------- -- -- - -- -- -- - - -- -- -- -- -- -- ---

BUSINESS REPLY MAl L
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY

TEXAS INSTRUMENTS INCORPORATED
DIGITAL SYSTEMS DIVISION

P.O. BOX 2909 . AUSTIN, TEXAS 78769

ATTN: TECHNICAL PUBLICATIONS
MS 2146

FOLD

FIRST CLASS

PERMIT NO. 7284

DALLAS, TEXAS

" 'I,

" '.

.. ~ TEXAS INSTRUMENTS
INCORPORATED
DIGITAL SYSTEMS DIVISION

POST OFFICE SOX 2909 AUSTIN. TEXAS 78769

