TEXAS INSTRUMENTS

Improving Man'’s Effectiveness Through Electronics

<\

t)
(3
Model 990 Computer
Prototyping System
Operation Guide
MANUAL NO. 945255-9701
ORIGINAL ISSUE 1 MAY 1976
-)

Digital Systems Division

e i D \SS o

(© Texas Instruments Incorporated 1976

A1l Rights Reserved

The information and/or drawings set forth in this document and all rights in and

to inventions disclosed herein and patents which might be granted thereon disclos-

ing or employing the materials, methods, techniques or apparatus described herein
" are the exclusive property of Texas Instruments Incorporated.

No disclosure of the information or drawings shall be made to any other person or
organization without the prior consent of Texas Instruments Incorporated.

[LIST OF EFFECTIVE PAGES

INSERT LATEST CHANGED PAGES DESTROY SUPERSEDED PAGES

11-1-1160

PAGE CHANGE
NO ., NO.
Cover 0
Eff. Pages 0
fi—x. 0
1-1—-1-14 0
2-1-2-14 0
3-1-3-74 0
4-1-424 0
5-1-56 0
6-1-6-8 0
7-1-736 0
81-84 0
9-1-94 0
10-1 —10-24 0~

OriginalIssue

PAGE

NO.

A1 —-A2

B1-B8

C1-C8

D-1 — D-12

E1-E2

F1-F2
G1-G4

Alphabetical Index Div . .

Index-1 — Index-8 . .
User’s Response . . .
Business Reply . . .
Cover Blank

Cover

Note:

The portion of the text affected by the changes is
indicated by a vertical bar in the outer margins of
the page.

Model 990 Computer Prototyping System Operation Guide (945255-9701)

1 May 1976

Total number of pages in this publication is 254 consisting of the following:

CHANGE PAGE CHANGE
NO. NO, NO,
. 0
. 0
. 0
.0
.. 0
.. 0
0
0
. 0
. 0
. 0
.0
. 0

e]
@ 9452559701

This manual describes the 990 Prototyping System and gives instructions for installing and
operating it on the Model 990/4 Computer. It provides detailed descriptions of the individual
modules that comprise the system software and includes techniques for using them.

PREFACE

This publication is intended for users of the 990 Prototyping System package: users who are
developing applications programs for the 990/4 Computer, the 990/10 Computer, and the
TMS9900 Microprocessor, and users who generate and test read-only memory (ROM) resident
programs for use with the TMS9900 Microprocessor.

The information in this manual is divided into the following sections:

i. General Description — Briefly describes the 990 Prototyping System Software, the
modules in the system, and the hardware components that support it.

II. System Installation and Operation — Gives the sources of information on unpacking,
installing and operating the supporting hardware, with appropriate references. Step-by-
step procedures for installing the software, loading the software modules, and operating
the modules are included. Interrupts and single instruction execution are explained.

III.. Debug Monitor — Describes the I/O operations, loading methods, debugging modes,
and operator commands of the debug monitor. Debugging techniques are discussed at
length. The commands are explained and detailed descriptions of each of the com-
mands are included. Detailed descriptions of the supervisor calls follow.

IV. Text Editor — Presents detailed loading, initialization and editing procedures for the
text editor. This section includes descriptions of each of the text editor commands.
Explanations of printed messages and a source program example are also included.

V. One-Pass Assembler — Gives a general description of the assembler and ‘details the
procedures for loading and operating it. The operation discussion covers input/output
and printed messages. Directives and pseudo-instructions are briefly discussed, error
messages are explained, and an example of printed output is included.

VI. Object Code Formats — Explains the two object code formats: standard 990 object
code and compressed absolute format object code.

VII. PROM Programmer — Describes the functions and capabilities of the PROM Pro-
grammer software module, the data configurations that it handles, and the procedure
for programming PROMs. The section includes detailed descriptions of PROM Pro-
grammer commands and gives examples of the use of commands. Example programs
are included.

VIII. BNPF Dump Module — Explains how to use the BNPF Dump overlay module. Presents
a detailed description of the data format and the commands.

IX. HIGH/LOW Dump Module — Explains how to use the HIGH/LOW Dump overlay.
Presents a detailed description of the data format and the commands.

iii Digital Systems Division

945255-9701

X. System Operation and Debugging Example — Presents a complete example that illus-
trates assembly, loading, debugging and editing. An explanation of each phase of the

example program is included.

XI. PROM Programming Examples — Presents examples of procedures for programming

PROMs.

The appendixes cover compatibility of the Prototyping System with the DX10 operating system,
an explanation of the stand-alone programming procedure, the character set used in the assembly
language and in data terminal input/output, a summary of commands and directives, and a list of
error messages. The appendixes also include an explanation of memory and PROM mapping

parameters and tables of information related to PROM programming.

The following publications contain additional information needed to use the 990 Prototyping

System. '
Title

Model 990/4 Computer System Hardware
Reference Manual

Model 990 Computer TMS9900 Microprocessor
Assembly Language Programmer’s Guide

Model 990 Computer Model 733 ASR/KSR Data
Terminal Installation and Operation

Model 990 Computer PROM Programming Module
Installation and Operation

Model 990 Computer Programming Card

Manual Number

945251-9701

‘9434419701

9452599701

9452589701

9434409701

iv

Digital Systems Division

TABLE OF CONTENTS

Paragraph Title

Page
SECTION [. GENERAL DESCRIPTION
1.1 Introduction L L L L L L L e e e e e e e e e e e e 1-1
1.2 Purpose and Capabilities of the System e e e e e e 1-1
1.2.1 Prototyping System Software Description 1-1
1.2.2 Hardware Configuration Required for System Software 1-2
1.3 System Part Numbers Lo 1-5
14 Software Modules L L oL 1-5
1.4.1 General L L Lo e e e e e e e e 1-6
1.4.2 Debug Monitor (PXOMTP)o 1-8
14.3 Monitor Overlay Functions 1-10
1.44 User Area System Programs L0 1-12
1.4.5 Programmer Panel and 733 ASR ROM Loader Firmware 1-12
1.5 Prototyping Process L L Lo oo o e e 1-13
SECTION II. SYSTEM INSTALLATION AND OPERATION
2.1 Introduction oL L L L L L L L L L el e e e e 2-1
2.2 Unpacking and Installation of Hardware 2-1
2.3 Hardware Operation i e e e e 23
2.4 Prototyping System Software Cassette Generation < 2-3
2.5 Using the 733 ASR ROM Loader " o v o v v v o v o 2-5
2.5.1 Loading Standard 990 Object Modules 25
2.5.2 Loading Compressed Absolute Format Object Modules 2-7
2.5.3 Loading the Monitor R 2-7
2.6 Operating the Monitor0 L.l e s 2-8
2.7 Entering Commands on the Terminal Keyboard v e e . .28
2.8 Input/Output and Logical Unit Assignments e e e e e 2-8
2.9 Loading and Executing Programs ., L0000 L. 2-8
2.9.1 Loadingo e e e e e e e e e 2-9
29.2 User Program Interface with System Software L P .29
293 Executing a User Program e e e e e e e e e e e e 2-9
2.10 Interrupts and Single Instruction Execution oL o000 2-10
2.10.1 ~ Interruptso Lo L 2-10
2.10.2 Single Instruction Execution L 0L o0 L. 2-10
2.11 © Write Protect L. e e e e e e e e 2-11
2.11.1 Setting a Write Protect Region ¢ 0 oL oL 0oL 2-11
2.11.2 Protect Violation Flag e L T O 2.11
2.113 Protecting the Monitor L L L Lo L i e e e 2-13
_ SECTION III. .DEBUG MONITOR

3.1 Introduction L. S 3-1
3.2 General Description 0 0L oL 0oL s e 3-1
321 Input/Output Qperations L. ... oo 33
3.2.2 Methods for Loading Programso 33
3.3 Debug Functions Lo Lo 33
3.3.1 Debugging Modes L L L e e e 34

v , Digital Systems Division

TABLE OF CONTENTS (Continued)

Paragraph ’ Title. Page
33.2 Comparison of Debugging Modes e e e e e e e e e e e e e e e e 34
333 Summary oL L e 35
34 Keyboard Commands00t e e e e e e e e 35
34.1 General e e e e e e e e e e e e 35
34.2 Assign LUNO (AL) = 0 i i ettt e e e e e e e e e e e 3-10°
343 Load Program (LP) e e e 3-11
344 Load Overlay (OV) - 0 o i e it bt e e e e e e e e e 3-12
34.5 Load PROM Programmer (PL) e e e e e e e e e e e e e 3-13
34.6 Link and Load Program (LL)« v i v v v v v v v v o 3-14
347 Dump in Absolute Format (DP) 3-26
348 Load Program in Compressed Absolute Format with Upfront Loader (LU) 3-28
349 Load Program in Compressed Absolute Format (LA) 3-29
34.10 Execute User Program Directly (EX) v 3-30
34.11 Execute User Program under SIE or Trace (RU) 3-31
34.12 Modify Memory (MM) L e e e e e e e e e e e e e e 3-33
34.13 Inspect Memory (IM) e e e e e e e e e e e e e e 3-33
34.14 Modify Registers (MR) 334
34.15 Inspect Registers (IR) 0 i e e e e e e e e e e 3-35
34.16 Modify Workspace Registers (MW) L. o000 3-36
34.17 Inspect Workspace Registers IW) o000, 3-36
3418 Modify CRU Register (MC) v v v v v v v e e o e L0337
34.19 Inspect CRU Input Lines (IC) e e e e .. 2339
3.4.20 Set Smapshot (SS) e e e e e e e e e e340
3.4.21 Inspect Snapshot (IS) e e e e e e e e e .. .341
34.22 Clear Snapshot (CS) e e e e e e e e e e e e e e e e e 343
3.4.23 Set Breakpoint (SB)ol e o Ce e e .. 344
©3.4.24 Clear Breakpoint (CB) & o v v v vt it e e e e e e e e 345
3.4.25 Set Trace Definition (ST) e 3-46
3.4.26 Set Trace Region (SR) v oL e 3-50
34.27 Clear Trace Region (CR) P 3-53
34.28 FindByte (FB) 0 . . i i it it e e e e 3-54
34.29 FindWord (FW) e et e e e e e e 3-56
3.4.30 Hexadecimal Arithmetic (HA) e e e e e e 3-57
3431 Set Write Protect Region (SP) S 3-58
3432 v Clear Write Protect Region (CP)« v v v i v v i.35
35 Supervisor Calls N e e e e e e e 3-59
3.5.1 Introduction e e e e e e e e e e e e e e 3-59
352 I/O Supervisor Calls e e e e e e e e e e e e e e e 3-60
353 Non-I/O Supervisor Calls S P 3-63
3.6 Debugging Techniques e 3-66
3.6.1 General Debugging Techniques e e e e e e e e e e e e e e e 3-66
3.6:2 Specific Debugging Techniques e 3-68
363 Patching e e e e e e S e e e ey e e e .. .3-70

vi ‘ Digital Systems Division

TABLE OF CONTENTS (Continued)
Paragraph Title Page

SECTION IV. TEXT EDITOR

4.1 Introduction oL L. L L L Lo 4-1
42 General Description L0 L.l e e 4-1
43 Loading and Initialization Procedures for the Text Editor 4-2
43.1 Loading L L L Lo e e e e e e e e e e 4-2
432 Starting Execution L0 0L Lo 4-2
433 Initialization Messages L L L L. .. e e 4-2
434 Final Message e e e 4-3
44 Text Editing Procedures L. 4-3
44.1 Copying from One Tape Cassette to Another 4-3
442 Movement of Pointero 4-3
443 Moving Lines to or From Buffer 4-4
444 Handling of File Data Formats 4-4
445 Combining Source or Object Files 4-5
4.4.6 ~ Creating New Programs N 4.5
45 Commands L e e e e e s 4-7
45.1 General L L L L e e e s 4-7
4.5.2 Setup Commands L L. oL e e e e 4-8
4.53 Pointer Commands L L. 49
454 Edit Commands L L. Lo e e e 4-10
455 Print Commands L. Lo 4-13
45.6 Output Commands e e e e e 4-14
4.6 Messages e e e e e e e e e e e e e e e e e e 4-15
4.6.1 Error Messages S 4-15
4.6.2 Warning Messages L . L L Lo e e e e e e e 4-16
4.7 Source Program Editing Example L0 .. 4-17
4.7.1 Description of Program e 4-17
4.7.2 Explanation of Example, 4-17
48 Editing Object Code L L. 4-20

5.2 Introduction L L L L L L . 5-1
5.2 General Description L. L Lo 5-1
53 Loading Procedure for the Assembler 5-1
5.4 Assembler Operation e e e e e e e e e e e e e e e e e 5-2
54.1 Inputand Qutput s 5-2
542 PX9ASM Operation Messages u e e e e 52
5.5 Directives and Pseudo-Instructions L. 5-3
5.5.1 Assembler Directives L L L. L. .. .53
5.5.2 Pseudo-Instructions L L. L e 53
5.6 Error Messages L L L L e e e e 53
5.7 Printed Output L L. e e e 54
5.7.1 Source Listing e 5-5
5.7.2 Object Code L e e e 5-6

vii Digital Systems Division

TABLE OF CONTENTS (Continued)
Paragraph ' Title ’ Page

SECTION VI. OBJECT CODE FORMATS

6.1 Introduction oo oL L0000l e e e el e e e 6-1
6.2 Standard 990 Object Code R 6-1
6.3 Procedure for Changing Standard 990 Object Code P 64
64 - Compressed Absolute Format Object Code O R el e e .. .65
6.4.1 Basic Tag Format Lo o e e e e e e e e e 6-6
6.4.2 Extended Tag Formats v v v e e e e 6-6

SECTION VII. PROM PROGRAMMER

7.1 Introduction. oL L oL Lo L L L e e e s s e e 7-1
7.2 General Description L L0 L Lo oL e s e e e 7-1
7.2.1 Functions and Capabilities Lo o 7-1
7.2.2 , Standard Control Information Cassette L. L0 oL 72
7.2.3 Programming Standard Versus Nonstandard Data. Conﬁguratlons 7-2
7.2.4 PROM Programmer Functionso L oo oL 7-3
7.3 PROM Programmer Loading Procedure e e 7-3
7.4 PROM Programming Process v o v v w v v v v13
74.1 Bit String Widtho L Lo e e 74 -
742 Memory and PROM/ROM Bounds v oo oo 7-4
74.3 PROM/ROM Characteristics v v v v v v v v e s e e f e e e 7-4
7.4.4 Mapping Parameters L. R 74
7.4.5 Examples Using One, Two, and Three-level Loopmg 7-6
7.5 Commands Ll e e e e e e e e e e e e e e e e s e 79
7.5.1 PROM Programmer Standard (PS) 7-9
7.5.2 PROM Programmer (PP) 0o C e 7-10
7.5.3 PROM Programmer Subcommands oL Lo L0 7-10
7.6 Programming Considerations-. B 723
7.6.1 Standardizing Nonstandard Memory and PROM Configurations 7-23
7.6.2 Programming EPROMs« Lo oo e e e e e 7-23
7.6.3 Creating PROMs for Memory Addresses not in Hardware Configuration 7-25
7.7 Programming Examples L. 0oL oo oL e e e e 7-25
7.7.1 Example 1 o e e e e e e e e e e e e e e 7-25
7.7.2 Example 2 L. L L L e e e e e e e e e e, 727
773 Example 3 L Lo e o e e e e e 7-27
7.7.4 Example 4 L L e e e e e e e e 7-29
7.7.5 Example 5 e e e e e T e e e e i e 7-31
7.7.6 Example 6 L L L e e e e e e e e e e e 7-32
7.1.7 Example 7 L. e el e e e e e e e e e e 7-33
SECTION VIII. BNPF DUMP MODULE
8.1 Functions and Operation o e e e e e e e e e e 8-1
8.2 BNPF Format T 8-1
8.3 BNPF Dump Commands : 0 v v v vt e e e e e e e 8-1
8.3.1 Perform BNPF Operation (DB) B 8-1
- 832 DB Subcommands i e e e e e e e e e e e e e 8-2

viii Digital Systems Division

J o

Paragraph

9.1
9.2

.93

9.3.1
93.2

10.1
10.2
10.3
104
10.5
10.6

11.1
11.2
113

Appendix

Q m m g 0O w

Figure

546,1-1
12
13
14

2-1

2-3

TABLE OF CONTENTS (Continued)
Title Page

SECTION IX. HIGH/LOW DUMP MODULE

Functions and Operation 9-1
HIGH/LOW Format 9-1
HIGH/LOW Dump Commands 9-2
Perform HIGH/LOW Operation (HL) 9-2
HL Subcommands L. 9-2
SECTION X. SYSTEM OPERATION AND DEBUGGING EXAMPLE
Introducation L L 0L L0l 10-1
Assembling Modules with PXOASM 10-1
Loading Modules with PX9LAL 109
Debugging the Program, 10-11
Editing with PXOEDT 10-15
Reassembling, Relinking and Loading Modules and Executing the Program 10-16
SECTION XI. PROM PROGRAMMING EXAMPLES
Introduction L L0 oL 11-1
Example 1 L, 11-1
Example 2o oL s 11-3
APPENDIXES
Title Page
Compatibility with DX10 e e A-1
Standalone Programming L. 0L Lo B-1
Character Set L L o C-1
Commmand and Directive Summaryo D-1
Error Messages L L Lo oo e e e e e e e E-1
Memory and PROM Mapping F-1
Additional User Tables G-1
LIST OF ILLUSTRATIONS
Title Page
990 Prototyping System Hardware Block Diagram 1-2
Hardware Memory Configuration 1-3
Trap Addresses L L L L L, 14 -
990 Prototyping System Software Memory Configuration 1-9
Cabling Diagram, 990 Prototyping System 2-2
Controls and Indicators Used in Loading Procedures 2-6
CRU Output Data Format 2-12

ix Digital Systems Division

TABLE OF CONTENTS (Continued)

Figure _ Title) Page
31 L Trace Region Procedure of Lower Region Number R . . .3-69
32 Using Both Traceand SIE- e . .. L3470
6-1 Object Code Example, 6-1
6-2 External Reference Exampleo e 6-4
6-3 Basic Tag Formato e e 6-6
6-4 Extended Tag Formats e e e e 6-7
7-1 Transfer of Data from Memory into PROM 7-5
72 Mapping Example 1 Lo e e . 7-26
- 73 Mapping Example 2 0L Lo o e e e e 7-28
74 Mapping Example 3 e e e e e e e ... 728
7-5 Mapping Example 4 L L Lo oL e e e e 7-30
7-6 Mapping Example 5 e e 7-32

7-7 Mapping Example 7 L L L o e e e e e e e 7-35

LIST OF TABLES

Table : Title ' Page

-1 Prototyping System Part Numbers Lo .. 1-6
1-2- Part Numbers of Hardware Required in 990 Prototyping System 1-7
3-1 Monitor Keyboard Commands L 000 v e e e e e 32
32 List of Supervisor Calls o . . . e e e e e e 3-60
5-1 PX9ASM Error Codes e e 5-4
6-1 Object Output Tags Supplied by Assemblers62

X Digital Systems Division

[e]
@ 945255-9701

SECTION I

GENERAL DESCRIPTION

1.1 INTRODUCTION

This section presents an overview of the 990 Prototyping System hardware and software. The
first portion of the section describes the purpose and capabilities of the system software. The
equipment in the hardware configuration that supports the system software is identified and
briefly discussed. The following paragraphs identify the sources of informaticn required to install
and operate the hardware, present the memory requirements and configurations for the 990/4
computer, and list the part numbers for the 990 Prototyping System hardware and software
components.

The remainder of the section describes the modules that comprise the system software. These
. modules include the debug monitor, monitor overlay functions, text editor, one-pass assembler,
A programmer panel and 733 ASR ROM loader firmware, PROM programmer, BNPF Dump
Module, and HIGH/LOW Dump Module. Memory requirements and loaders are also discussed,
and the prototyping process is described.

1.2 PURPOSE AND CAPABILITIES OF THE SYSTEM

The 990 Prototyping System Software provides interactive generation and development of
applications programs for all members of the 990 Computer Family. It operates on the Model
990/4 Computer. The Prototyping System Software package supports up to 28K words of
memory.

With this system, the user can develop capabilities previously reserved for electromechanical
devices, discrete logic or conventional integrated circuits.

In addition to applications program development, it is particularly suited to generation and
testing of firmware (software resident in read-only memory) programs for use with the TMS9900
microprocessor. ‘

1.2.1 PROTOTYPING SYSTEM SOFTWARE DESCRIPTION. The purpose of the Prototyping
System Software is to provide the capability to generate, edit, assemble, load and debug user
programs for software applications and firmware generation. In addition to the debug functions,
the Debug Monitor provides supervisor calls to perform input/output (I/O) operations on the 733
ASR Data Terminal and utility routines such as decimal ASCII to binary, hexadecimal ASCII to
binary, binary to decimal ASCII, and binary to hexadecimal ASCII conversion routines. Overlays
to the Debug Monitor provide a program trace package, a linking loader, and the capability to
dump a program in memory to tape in a compressed absolute format and load it back into
memory. In addition, overlays provide a PROM programmer package and BNPF and HIGH/LOW
dump programs. The BNPF and HIGH/LOW dump programs provide the capability to create
cassette tapes in BNPF or HIGH/LOW format (formats that encode sequences of bits) for
prototyping applications. The BNPF overlay also provides the capability to load BNPF format
tapes back into memory.

The system software package is available in object format on a read-only magnetic tape cassette
and in source format on punched cards; however, the system source must be assembled and
linked using a 990/10 Program Development System. The system software provides source and
object compatibility with other 990 systems.

1-1 Digital Systems Division

[o]
@ 945255-9701

1.2.2 HARDWARE CONFIGURATION REQUIRED FOR SYSTEM SOFTWARE. The Proto-
typing System Software requires the following hardware configuration:

Computer — the 990/4 microcomputer. The computer has access to dynamic random
access memory (RAM) and on-board read-only memory (ROM) as described in para-
graph 1.2.2.1. A chassis, power supply and packaging is available with the computer.

733 ASR Data Terminal

Programmer Panel

PROM Programming Module (optional)

A simplified block diagram of the hardware configuration is shown in figure 1-1.

1.2.2.1 Model 990/4 Computer. The Model 990/4 Computer consists of the 990/4 micro-
computer on a single printed circuit card, one or more memory expansion cards, and a chassis
and power supply. The 990/4 microcomputer circuit card contains the CPU, 4K words of
on-board dynamic random access memory, and up to 1K of ROM or static RAM.

Detailed information on the Model 990/4 Computef may be found in the Model 990/4 Computer
System Hardware Reference Manual, Manual No. 945251-9701.

PROGRAMMER 733 ASR
PANEL DATA TERMINAL

990/4
COMPUTER
(NOTE 1)

-8 CRU BUS

9900
BUS

NOTES

1. WITH 4096 WORDS OF DYNAMIC RAM, AND 512 WORDS
OF ROM . (THE SELF-TEST FEATURE IS STANDARD,)

2. WITH 4096 WORDS OF DYNAMIC RAM , EXPANDABLE TO

MEMORY
EXPANSION
(NOTE 2)

20K WORDS FOR A SYSTEM TOTAL OF 24K WORDS,
MEMORY WRITE PROTECT AND MEMORY PARITY FEATURE
ARE INCLUDED.

(B)133277

- Figure 1-1. 990 Prototyping System Hardware Block Diagram

1-2 Digital Systems Division

) o
4‘—%\[]@ 945255-9701

Central Processing Unit. The 990/4 CPU has the following characteristics:

® Eight interrupts (up to seven external and a power-up trap)

® Real-time clock

® Communications Register Unit (CRU) interface for I/O

® Direct Memory Access (DMA) interface for extended memory, which can be used for
processor-independent I/O (when a user-designed controller is implemented)

® Self-test routine

® Fault indicator

Memory. The minimum memory required for the Prototyping System Software is 4096 words of
on-board dynamic RAM, 512 words of on-board ROM for the 733 ASR loader and the self-test
feature, and 4096 words of dynamic RAM on a memory expansion circuit card. The expansion
card may be expanded to 20K words, giving a total of 24K words of dynamic RAM in the
Prototyping System configuration. The 512 words of ROM are divided into 256 words of
firmware for the 733 ASR ROM loader (both tape cassette and cards) and programmer panel and
256 words for the CPU/memory self-test routines. The card loader is included for compatibility
with the 990/10 Computer. ROM or static RAM may be expanded by an additional 512 words.

An additional EPROM memory expansion card is available. This card may contain from 1K to
8K memory words in 1K increments.

EOOO

F800

FAQOO

FCOoO0

FEOO

FFFE

(A)133370

DYNAMIC RAM

(990/4 CONTAINS 4K WORDS
ON CPU BOARD.)

UNAVAILABLE AREA

ADDRESS LOCATIONS
28K TO 31K

256 WORDS OF RAM OR ROM
EXPANSION

256 WORDS OF RAM OR ROM
EXPANSION

256 WORDS OF ROM

256 WORDS OF ROM

Figure 1-2. Hardware Memory Configuration

1-3

Digital Systems Division

945255-9701

Memory write protect is required in the 990 Prototyping System, and is implemented on the
990/4 memory expansion circuit card. A memory parity feature (which provides parity error
detection logic and an interrupt signal to the CPU) is standard in the 990 Prototyping System.

The hardware memory configuration is shown in figure 1-2. The numbers at the left are byte
addresses.

Chassis. The computer chassis is available in two configurations, one that holds 6 full-size cards
and one that holds 13 full-size cards. In addition, a table-top chassis mounting option is available
with the 6-slot chassis. The power supply is located in the computer chassis.

1.2.2.2 Interrupt, XOP and Trap Vectors. This discussion covers the different types of vectors
and explains the power-up trap.

Vectors. Located in 990/4 memory are dedicated locations reserved for interrupt, XOP and trap
vectors. The interrupt and XOP vectors are available for the exclusive use of user programs,
except that one XOP may be used for executing supervisor calls. A vector is a two-word pair
providing the program counter and workspace for the service routine that handles an interrupt or
XOP.

Power-Up Trap. The power-up interrupt traps through a vector at address zero or address
FFFC;4, depending on a jumper wire implemented on the 990/4 CPU board. This allows more
flexible memory allocation for dedicated systems that do not have an operator panel. The 990
Prototyping System powers up through trap address FFFC,,.
Trap addresses are illustrated in figure 1-3.
1.2.2.3 733 ASR Data Terminal. The 733 ASR Data Terminal provides the communication link
between the user and the computer system. It is an automatic send-receive terminal, allowing
either automatic or manual entry of data and output of data under keyboard or remote control.
The major components of the terminal are the following:

® Keyboard

® Thermal printer

® Two magnetic tape cassette units

CPU ADDRESS SPACE | 64K BYTES X 8 BITS
32K WORDS X 16 BITS

0000
INTERRUPT TRAP ADDR
003E RESSES
0040
007E XOP TRAP ADDRESSES :
NOTE: LOCATIONS FFFC THROUGH

0080 FFFF_ARE THE VECTOR FOR

|, THE POWER-UP TRAP

- I THROUGH FFFC,
FFFE I T
e !

CPU ADDRESSES REPRESENTED AS 4
HEX DIGITS (LSB ADDRESSES BYTE)

(A)133068

Figure 1-3. Trap Addresses

1-4 Digital Systems Division

[o]
@ 945255-9701

For more efficient use of the hardware resources, the Prototyping System Software debug
monitor recognizes the keyboard and printer as the input and output portions of one I/O device.
It also recognizes tape cassette unit 1 and tape cassette unit 2 as distinct I/O devices.

The assembler recognizes the keyboard and printer as separate devices. The keyboard and printer
are functionally distinct, and either cassette may function as the record cassette or playback
cassette.

The tape cassettes function as a terminal-based data storage system, providing a convenient
method for loading software modules, storing data temporarily, and recording data permanently
on a compact, easy-to-handle storage medium. File data may be read fromn cassette to the
computer, or computer output may be stored on cassettes. The user may write data to either
cassette. When one unit is in the record mode, the other is in playback mode.

1.2.2.4 Programmer Panel. The Programmer Panel gives the user full control of the CPU by
entering control information from the panel instead of the data terminal keyboard. Memory may
be examined and modified directly from the panel. This capability is useful in applications
requiring software troubleshooting.

1.2.2.5 PROM Programming Module. The Programmable Read-Only Memory (PROM) Pro-
gramming Module, which is optional, enables the user to program his own PROMs. The module
chassis includes front panel keylock and indicators, device sockets with a programming adaptor,
and a power supply. (A programming adaptor is a plug-in module that provides the control
functions for a specific PROM device type.) Plug-in adaptors are available for both PROM and
erasable programmable read-only memory (EPROM) devices.

control over the PROM address, data, timing and control signals which allow the module to
supply the voltages and interconnections needed to program several types of PROMs, both
bipolar and MOS.

1.3 SYSTEM PART NUMBERS

The hardware and software system part numbers are listed in table 1-1. The individual hardware
components of the 990 Prototyping System and their part numbers are listed in table 1-2.
Memory sizes listed are the minimum required; memory components with larger capacities may
be substituted for those listed.

1.4 SOFTWARE MODULES
The standard software includes these modules:

® Debug Monitor (PX9MTP) — This monitor supports the tape cassette data medium
only. Instruction trace, which allows the user to monitor and analyze an executing
program, the linking loader (PX9LAL), Absolute Dump/Absolute Load, BNPF Memory
Dump, HIGH/LOW Memory Dump, and the PROM Programmer are routines that are
overlays and may be loaded into the monitor transient area when they are to be used.

® One-Pass Assembler (PX9ASM)
® Text Editor (PX9EDT)
® Upfront Loader (PX9UFL) — This loader is placed on the system software cassette

tape immediately in front of PX9MTP, PX9EDT and PX9ASM. The upfront loader
precedes a file of compressed absolute format code and reduces the loading time.

I-5 Digital Systems Division

945255-9701

Table 1-1 Prototyping System Part Numbers

Item

990 Prototyping System with 733 ASR Data
Terminal (packages include both
hardware and software)

8K Memory Words
12K Memory Words
16K Memory Words
20K Memory Words
24K Memory Words

990 Prototyping System without 733 ASR
Data Terminal (packages include both
hardware and software)

8K Memory Words
12K Memory Words
16K Memory Words
20K Memory Words
24K Memory Words

Prototyping System Software

Object on Tape Cassette
Source on Card Deck

Standard Control Information
Cassette

945202-0001
945202-0002
945202-0003
945202-0004
945202-0005

945202-0006
945202-0007
945202-0008
945202-0009
945202-0010

943380-0001
943380-0012
943350-0001

TI Part Number

In addition, firmware programs are located on the ROM modules for the programmer panel and

733 ASR ROM loader.

1.4.1 GENERAL. The following paragraphs discuss the capabilities and requirements of the

Prototyping System Software.

1.4.1.1 Memory Requirements. The Prototyping System expects these minimum amounts of

RAM and ROM:
® 4K words of user dynamic RAM
® 4K words of system dynamic RAM

® 256 words of system static RAM

® 256 words of system ROM containing the programmer panel and 733 ASR ROM

loader firmware.

1-6

Digital Systems Division

945255-9701

Table 1-2. Part Numbers of Hardware Required in
990 Prototyping System

Description

Module 990/4 Computer Central Processing Unit
990/4 CPU with 4K 16-bit words of dynamic RAM
Dynamic RAM Parity Feature

733 ASR ROM Loader (Prototyping) (includes
self-test feature)

Static RAM Device Kit

Memory Expansion Module (one must be selected)
4K words with write protect
8K words with write protect
12K words with write protect
16K words with write protect
20K words with write protect
Memory Parity Feature (must match memory expansion
module size)
4K words
8K words
12K words
16K words
20K words

EPROM Memory
EPROM Memory Module (optional)
EPROM Device Kit (optional)
6-Slot Chassis with Programmer Panel, 20-ampere power
supply
733 ASR Data Terminal Kit

PROM Programming Kit (optional)
Tabletop
Rack Mount

PROM programming accessory equipment
PROM Programming Adapter (optional)
EPROM Programming Adapter (optional)
EPROM Erase Kit (optional)

Part Number

944910-0002
945120-0006
945121-0005

945122-0001

944935-0006
944935-0007
944935-0008
944935-0009
944935-0010

945120-0001
945120-0002
945120-0003
945120-0004
945120-0005

945170-0001
945123-0004

944960-0001

945161-0001

944924-0001
944924-0002

945135-0001
945165-0001
945160-0001

1-7

Digital Systems Division

o]
{—@2 945255-9701

A diagram of the memory configuration is shown in figure 1-4. The numbers at the left are byte
addresses and are given for the minimum memory configuration of 4K words of user and 4K
words of system memory.

1.4.1.2 System Software Loaders. Loading of programs or program modules is accomplished
with one or more of the four available loaders provided in the system software:

® Standard 990 object loader. Loads a program in standard 990 object code. The loader
resides in a 256-word ROM. One of the standard loader’s functions is used to load
overlays into the monitor transient area.

e (Compressed absolute format loader. Loads a program that hés been stored in compressed
absolute format. The loader is an overlay that must be resident in the monitor transient
area.

® Upfront loader (PX9UFL). Loads a program in compressed absolute format code. The
loader must be located immediately in front of the beginning of the compressed absolute

format code. The 733 ASR ROM (standard) loader loads the upfront loader, which in
turn loads the compressed absolute format code.

® Relocating linking loader (PX9LAL). PX9LAL which must be resident in the monitor
transient area, loads program modules in object code, modifies memory addresses in
the modules, and links the modules. The program code may specify absolute memory
locations or specify relocatable memory locations that allow the entlre program
module to be placed in any sufficiently large available memory area.
These loaders handle either conventional object code or object code in compressed absolute
format. The compressed absolute format code allows faster loading than with standard 990
object code. Object code formats are described in detail in Section VI.

1.4.2 DEBUG MONITOR (PX9MTP). PX9MTP, the control program and system executive for
the software system, occupies 4K words of memory.

1.4.2.1 Overview. PX9MTP is a modular program that consists of five major divisions:
® I/O executive
® Keyboard command processor
® Supervisor call interface
® Keybc)ard commands
® Debug commands
® System control commands

® Transient area

1-8 Digital Systems Division

945255-9701

~
0000
INTERRUPT AND XOP
— VECTORS 64 WORDS
0080
> USER AREA
4K WORDS
AREA AVAILABLE
T———— FOR USER
PROGRAMS
2000 N / W
SEE
NOTE) RESIDENT PORTION
—————— OF MONITOR 3250
WORDS (APPROX.)
> DEBUG
MONITOR
4K WORDS
——— _ TRANSIENT AREA FOR
OVERLAYS 850 WORDS MEMORY
4000 (APPROX .) EXPANSION
(SEE ‘ (EXPANDABLE
NOTE) (ro 24K
WORDS)
\
ADDITIONAL MEMORY
» AREA
,
IJ A/
e
E000
———— __UNAVAILABLE ADDRESS
SPACE
F800
——___ PROGRAMMER PANEL WORKSPACE
256 WORDS
FAOO
—————_RAM OR ROM EXPANSION
256 WORDS
FC00
——___ PROGRAMMER PANEL SOFTWARE ,
ROM LOADERS, AND SELF—TEST
ROUTINE 511 WORDS
FFFE Cl— NOTE
RESTART VECTOR DIAGRAM SHOWS MINIMUM
CONFIGURATION—— 4K WORDS
OF USER AND 4K WORDS OF
SYSTEM MEMORY,
(A)133371

Figure 1-4. 990 Prototyping System Software Memory Configuration

1-9 Digital Systems Division

Ke)
@ 945255-9701

PX9MTP controls use’r programs and supports the dne-pass assembler (PX§ASM) and the text
editor (PX9EDT). The debug monitor provides all of the necessary facilities for the following

functions:
® Debugging
L] Linking
® Loading

° I/0 suppbrt for user programs.’
® Program save and restore

The monitor occupies 4096 words in memory, of which about 3250 words are permanently
resident and about 850 words are assigned to an area for overlay modules that may be loaded into
memory from cassette when needed. (Refer to Section II for debug monitor loading procedures.)

1.4.2.2 I/O Supervisor Calls. The I/O executive decodes and processes 733 ASR I/O supervisor
calls from other PX9MTP modules and from user programs. Upward compatibility is maintained
because the I/O service request is format compatible with TX990 and DX10 supervisor calls.
PXOMTP provides file and record level I/O performed independently of the device type to which
the 1/0O is directed.

1.4.2.3 Non-I/O Supervisor Calls. In addition to I/O supervisor calls, the monitor processes such
non-I/O calls as user program termination and data format conversion. The formats involved in
the conversion routines are binary data and decimal and hexadecimal ASCII character codes.
Supervisor calls make use of a block of memory which contains a code for the operation to be
performed and parameters associated with the operation.

1.4.2.4 User Interaction with Monitor. PX9MTP interacts with the user through the 733 ASR
keyboard and printer to receive and decode commands, and to activate the various command
processors. Examples of the capabilities offered are:

® [P — Load a program.

® AL — Assign a logical unit number (LUNO) to a specified device.

® EX — Execute a program.

‘e OV — Overlay the monitor transient area with different cassette-resident commands.
(Once they are loaded, transient commands are handled exactly like resident com-
mands).

® PL — Load the PROM Programmer software module.
1.4.3 MONITOR OVERLAY FUNCTIONS. In order to limit the memory area occupied by the
debug monitor to a size of 4K words, some of the monitor functions are handled as overlays.
Overlay-resident commands are extensions of the memory-resident monitor that allow the less
frequently used commands to reside on cassette tape. These functions are overlays:

® Link and load

® Absolute dump/absolute load

1-10 Digital Systems Division

(o)
{@? 945255-9701

® Instruction travce

@ PROM Programmer

e BNPF format dump

] HIGH/LOW format dump

Overlays are loaded in the transient area of the debug monitor’s memory space. Since the PROM
programmer is too large to fit in the transient area, part of it is loaded into the highest-
numbered address iocations of user memory. The overlay-resident commands are used exactly
like normal commands once the overlay is loaded into the transient area. Attempts to invoke
commands which are not resident will generate error messages.

1.4.3.1 Linking Loader. The linking loader, PX9LAL, loads program modules into memory,
links the modules as required, and returns control to the monitor after all modules have been
loaded. The loaded program modules are object modules produced by one of these assemblers:

® One-Pass Assembler (PX9ASM)
® SDSMAC, the macro-assembler in the 990/10 Program Development System.

® Cross Assembler, which allows the user to assemble code for the 990 Family of
computers on an IBM System 360/370 or on certain international timesharing services.

1.4.3.2 Absolute Dump/Absolute Load. The Absolute Dump/Absolute Load overlay routine
provides two functions: it saves a program or data space in memory by writing that program or
data onto 733 ASR cassette tape in compressed absolute data format, and it loads object code
that has been stored in compressed absolute data format. The saved memory data sequence is
stored in compressed absolute data format, and can be reloaded using either the absolute loader
or the upfront loader, both invoked by monitor keyboard commands. The absolute dump can
also be used to save an entire memory data sequence complete with the current debug
parameters in the data sequence. The memory data sequence can then be relocaded from the start
and the debugging continued as if it were never interrupted.

1.4.3.3 Instruction Trace. The instruction trace feature allows the user to monitor the contents
of internal data sequences and analyze the ongoing progress of an executing program. The user
can specify breakpoints and snapshots for interpreting the progress of his program.

1.4.3.4 PROM Programmer. The PROM Programmer software package provides flexible control
of the PROM programming process through the use of PX9MTP operator commands. The PROM
programmer commands inform the control software of memory bounds, PROM characteristics,
and mapping parameters. Additional operator commands allow the use of standardized control
information for frequently used programming functions. With PROM programmer commands, the
user is able to program PROMs and verify the contents of a PROM or ROM circuit.

The PROM programmer requires that the debugged software routine to be transferred to a
PROM be resident in memory. The software module selects data from memory and transfers it
with other interface data to the PROM Programming Module. The hardware module stores the
received data in the PROM as directed by the command.

.1t Digital Systems Division

o
{@ 945255-9701

Two requirements must be met in order to program PROMs:

1. A programming adapter must exist for the chosen device type.
2. The data to be programmed must be loaded into>990/4 memory.

1.4.3.5 BNPF Dump Program. The BNPF Dump software package creates an output file on
magnetic tape cassette in a standard BNPF format that can be used to manufacture ROMs. The
software package can also read the BNPF format cassette, recreating the memory data sequence
used to generate the BNPF cassette tape. The BNPF Dump module requires that the program to
be converted into BNPF format be resident in memory.

1.4.3.6 HIGH/LOW Dump Program. The HIGH/LOW Dump software package creates an output
file on magnetic tape cassette in TI 256 X 4 HIGH/LOW format that can be used to
manufacture ROMs. The HIGH/LOW Dump module requires that the program to be converted
into HIGH/LOW format be resident in memory.

1.4.4 USER AREA SYSTEM PROGRAMS. The user area system programs are the packaged
system programs that run in the user area of memory. These programs are the Text Editor
(PX9EDT) and the One-Pass Assembler (PX9ASM).

1.44.1 Text Editor (PX9EDT). PX9EDT is an interactive text editor that runs as a user
program invoked by PX9MTP. PX9EDT edits existing source code or creates and saves new
source code. It reads an existing program from magnetic tape cassette to a memory buffer for
editing and then outputs it to a second cassette.

The text editor processes three different classes of commands:
® Setup commands
® Edit operation commands
® Output commands

Since the object module format for the 990 Family consists of ASCII strings acceptable to the
text editor, PX9EDT may also be used to edit object modules.

1.4.4.2 One-Pass Assembler (PX9ASM). PX9ASM is a one-pass assembler that runs as a user
program invoked by PX9OMTP. PX9ASM accepts source code input from cassette and produces an
object program on cassette, a listing and an error summary. The object code produced may
contain either relocatable or absolute origin code. It may also contain references to external
symbols in other modules and define external symbols. A collection of object modules may then
be linked and loaded into memory by the linking loader (PX9LAL).

1.4.5 PROGRAMMER PANEL AND 733 ASR ROM LOADER FIRMWARE. The programmer
panel and ROM loader firmware executes from ROM situated in the last 256 words of- the
memory address space and serves as the system loader. it also gives the operator an elementary

level of control over executing programs by means of the programmer panel when the debug
monitor (PX9MTP) is not resident.

The ROM firmware handles level O interrupts, including pbwer up, HALT and‘SIE interrupts,
and may enter PX9MTP or retain control in the programmer panel firmware depending on the
cause of the interrupt.

112 - Digital Systems Division .

(o]
i‘_@} 945255-9701

1.5 PROTOTYPING PROCESS
The Prototyping System provides an efficient mechanism to the TMS9900 microprocessor user

for generating and testing stand-alone programs, and for transferring those programs into PROM
or ROM devices.

Development of a set of control sequences with the Prototyping System typically evolves
through the following steps:

1. Program development. Source programs on cassette tapes may be created using the
PX9EDT text editor and assembled with the PX9ASM assembler. The assembler
generates object code on magnetic tape cassette. Programs may also be developed using
the 990/10 Program Development System or the Cross Support System.

2. Prototype debug. The program is loaded into the Prototyping System memory and is
run and debugged under actual operating conditions. Any problems found are then
corrected either (1) in the memory version of the program or (2) by updating the
source or object and repeating the development procedure from step 1.

3. PROM programming. The tested program is programmed into a PROM using the PROM
Programmer software package and the PROM Programming Module. The created PROM
is then used in the system in which it will operate for further checking. If other
problems occur, a new PROM can be created by repeating the procedure from step 2.

4. PROM documentation. The contents of the verifitd PROM are then dumped to a
cassette in BNPF or HIGH/LOW format.

S. ROM manufacture. The PROM documentation is used to mass produce copies of the
control sequence in ROM circuits.

6. System production. The ROM circuits are mated with the microprocessor or micro-
computer (as applicable) for the final control system.

1-13/1-14 Digital Systems Division

o
i‘—@p 9452559701

SECTION 11
SYSTEM INSTALLATION AND OPERATION
2.1 INTRODUCTION
This section presents the hardware and software installation information and operating
instructions. The first portion discusses the hardware and includes the following topics:
® Unpacking and installation of hardware

® Hardware operation

This portion includes cabling diagrams of the hardware system and gives references to other
manuals in which the unpacking, installation and operating instructions can be found.

The remainder of this section contains detailed instructions for loading and executing the
software modules and user programs. The following topics are covered:

® 990 Prototyping System Software cassette generation

® Using the 733 ASR ROM loader

® Operating the monitor

® Entering commands on the terminal keyboard

® Input/output and logical unit assignments

® Loading and executing programs.

@ Interrupts and single instruction execution

® Memory write protect
2.2 UNPACKING AND INSTALLATION OF HARDWARE
Unpack and install the 990/4 Computer as described in the Model 990/4 Computer System
Hardware Reference Manual, Manual No. 945251-9701.

Unpack and install the 733 ASR Data Terminal as described in the Model 990 Computer Model
733 ASR/KSR Data Terminal Installation and Operation, Manual No. 945259-9701.

Install the interface module for the data terminal énd interconnect the computer and data
terminal as described in the Model 990 Computer Model 733 ASR/KSR Data Terminal Installa-
tion and Operation, Manual No. 945259-9701.

A system cabling diagram is shown in figure 2-1.

If the system includes the optional PROM Programming Module, unpack and install it as
described in the Model 990 Computer PROM Programming Module Installation and Operation,
Manual No. 945258-9701. Interconnect the computer and programming module as described in
that manual. '

2-1 Digital Systems Divisior

945255-9701

PROM
PROGRAMM ING

MODULE
(OPTIONAL)

PART NO. 944996—0001

l
|
I
|

PROGRAMM ING ADAPTOR
PART NO, 946761—0001 PROGRAMM ING
(TTL) OR 946761-0002 ~~— g ADAPTOR 733 PSR
(EPROM) (OPTIONAL.) AT
TERMINAL
RIBBON INTERFACE INTERFACE
CABLE .PART NO, CABLE
545019-0001 ~——@m| PART NO.
959372~
0003
PROM DATA
AU MEMORY MEMORY PROGRAMM ING TERM INAL
BOARD BOARD BOARD INTERFACE INTERFACE
MODULE MODULE
(OPTIONAL)
1 | 1 |
| | | | PART NO. |PART NO,
L] 944925-0001 945075-0001
| _— | _- I
L [| |
|
-—— === 1 | | ————-— |
I ' l I |
I |] 1 I
sLoT sLOT SLOT SLOT SLOT
1 2 3 6P1 6P2
6—SLOT COMPUTER
CHASSIS
: PART NO. 944960—0001
|
LEGEND |
]
CABLE INTERCONNECTION
— = — —= BOARD—TO—CHASSIS OR 990/4 COMPUTER

PHYSICAL INTER—
CONNECTION

PART NO, 944910—-0002

(A)133372

Figure 2-1. Cabling Diagram, 990 Prototyping System

2-2 'Digitayl Systems Division

o
{@} 945255-9701

2.3 HARDWARE OPERATION

The programmer panel controls and indicators are described in detail in the Model 990/4
Computer System Hardware Reference Manual, Manual No. 945251-9701.

The 733 ASR data terminal’s controls and indicators and operation of the terminal are described

in detail in the Model 990 Computer Model 733 ASR/KSR Data Terminal Installation and
Operation, Manual No. 945259-9701.

The user should be aware of the following points regarding use of the system software with the
data terminal:

® The Prototyping System Software requires that tapes be written in line tape format
rather than continuous tape format. In line format, the tape buffer is written to tape
when a carriage return is encountered. To place the 733 ASR in line format, set the
TAPE FORMAT switch to the LINE position.

® A tape should always be rewound completely:
® After a cassette tape is installed in a tape transport.
® After every initialization of power.

® Before removing a cassette tape from a tape transport.

® Before switching off the power to the data terminal.

The PROM Programming Module is a software-controlled module that provides an interface
between the 990/4 microcomputer and an external chassis containing power supplies and

interchangeable circuitry on an adaptor to program specific types of PROM devices. This module
operates as a CRU device. '

Detailed information about the PROM Programming module can be found in the Model 990
Computer PROM Programming Module Installation and Operation, Manual No 945258-9701.

Software initiates the programming cycle and determines the duty cycle. Software has direct
control over the PROM address and the data to be programmed; it has limited control over the

width of the pulse used to program the PROMs. The data address and pulse width information
are placed into input registers.

Each PROM or family of PROMs has different requirements because of its programming
characteristics. The adaptor, a type of interface card, handles these differences. It provides any
buffering of the address and data lines and regulates the dc voltages present in the external
chassis that are used for control and programming.

2.4 PROTOTYPING SYSTEM SOFTWARE CASSETTE GENERATION
The Prototyping System Software cassette tape consists of 15 files and is a complete object tape
for the Prototyping System. The files on this tape are (in order):

1. Text — Description of tape and copying instructions

2. PX9UFL — Upfront loader

3. PX9MTP — Monitor (root segment)

2-3 Digital Systems Division

o
@ 9452559701

4. PX9MTP — Linking loader overlay
S. PX9MTP — Instruction trace overlay
6. PX9MTP — Absolute dump/absolute load overlay
7. PX9MTP — PROM programmer, part 1
8. PX9MTP — PROM programmer, part 2
9. PXQMTP — BNPF dump overlay
10. PXMTP — HIGH/LOW dump overlay
11. PX9UFL — Upfront loader
12. PX9EDT — Text editor
13. PX9UFL — Upfront loader
14. PX9ASM — One-pass assembler
15. PX9OMTP — Monitof (relocatable rqot segments)
In addition, the system includes the Standard Control 1nformation Cassette.
The user should copy each of the object files to a separate cassette for convenience in using the
system. This can be done by copying the master cassette in local mode using the 733 ASR Data
Terminal. The upfront loader and the file following it should be copied to the same cassette.
PROMPG Part 1 .and Part 2 should also be copied on one cassette. The following procedure may

be used:

1. Do not rewind this cassette after printing the text of the first file. If the cassette was
listed using local mode and continuous start, it will be correctly positioned.

2. Check that the RECORD switch in the bottom row of switches on the upper unit is in
the LOCAL position and that the PRINTER switch is in the OFF position. (The
PLAYBACK switch should already be set to LOCAL.) The TAPE FORMAT switch
should be set to LINE.

3. Insert a cassette in the second drive and ready it.
4. Set the Record Control ON/OFF switch to the ON position.

5. Press the CONT START switch in the Playback Control switch area. The next file
should be copied to the record cassette.

6. If the file just copied is the upfront loader or the PROM programmer part 1, repeat
~step S to copy the next file onto the same cassette.

7. Set the Record Control ON/OFF switch to the OFF position. Rewind and remove the
record cassette. Set the record enable (write) tab to the record disable position, and
label the cassette with the appropriate file name.

24 Digital Systems Division

(o]
@ 945255-9701

8. Repeat steps 3-7 for each of the object files.
9. Rewind and remove the master cassette and store it in a safe place.

Additional information may be found in the Model 990 Computer Model 733 ASR/KSR Data
Terminal Installation and Operation, Manual No. 945259-9701.

File number 3 on the Prototyping System software master cassette is the PX9MTP monitor in
compressed absolute data format. This module must be loaded using the upfront loader.
(PX9EDT and PX9ASM must also be loaded with the upfront loader.) The monitor will be
loaded in locations 2000,, to 4000,,. This will place the monitor in the upper 4K words of an
8K word system. If the user has another system configuration, he may wish to load the monitor
at a different location. To do this, file 15, the relocatable monitor, must be loaded. By placing a
D tag character in the code, followed by a four-digit hexadecimal bias address and end of record,

the bias for the relocatable monitor may be specified when the file is being copied from the
master cassette.

Example:
D8000F
First record of monitor.

The monitor will be loaded in locations 8000, to A000,,. This D tag record may be created in
local mode or by using PX9EDT.

Using the monitor residing at location 2000,,, an absolute code module of the relocated
monitor may be created:

1. Load the absolute code monitor which resides at 2000,.

2. Using this monitor or the programmer panel LOAD switch, load the relocatable
monitor at the desired bias.

3. Halt and reset the monitor at 2000,,.
4. Load the Absolute Dump/Absolute Load overlay.
5. Copy the upfront loader to the beginning of a tape in LOCAL mode.

6. Dump the relocated monitor to the tape with an entry point equal to the bias.

2.5 USING THE 733 ASR ROM LOADER

The following paragraphs present a procedure for loading software modules with the 733 ASR
ROM loader, describe loading of PXOMTP with the ROM loader, and give some information on
loading under PX9MTP control.

2.5.1 LOADING STANDARD 990 OBJECT MODULES. Programs or modules in standard 990
object format may be loaded with the 733 ASR ROM loader by using the following procedure.
Refer to figure 2-2; the numbers in parentheses are keyed to the figure.

1. Place the computer in halt mode by pressing the HALT/SIE switch (19) on the
programmer panel.

2-5 Digital Systems Divisio

945255-9701

PLAYBACK CONTROL RECORD CONTROL O
CONT BLOCK CHAR
START FWD FWD ol CHARACTER PRINT ON

m
2
]
o
3
200 E

O POWER

Oraver O|0|0|0O O|0|0]|0O] |O|0|0|0] |0|0|0|0
QoLe

" Sladla) [Habd Bhby Bakk

16
Lock
Pg;vFER ® UNLOCK H—SA:-?T RUN RESET LOAD wP PC ST MA WP PC ST MA MDD MAI MDE CLR
a oo oooo 4aOoOooaqd
- ’ DISPLAY ENTER
TEXAS INSTRUMENTS 990
[l
19 i8 17
(A)133076

Figure 2-2. Controls and Indicators Used in Loading Procedures

2-6 Digital Systems Division

o
{@ 945255-9701

2. Place the 733 ASR data terminal on line. (The device function switches (12 through
15) must be set to the LINE position.)

3. Load and ready the cassette containing the program to be run in either transport drive.

4. Set the TAPE FORMAT switch (11) to LINE.

5. Place the selected cassette in playback mode by setting the PLAYBACK/RECORD
switch (6) in the middle of the top row of the data terminal’s upper switch panel to
the PLAYBACK position for that cassette. The PLAYBACK and RECORD indicator
lamps (2, 3, 8 and 9) indicate the mode of each cassette drive.

6. Press the RESET and LOAD switches (18 and 17) on the programmer panel to initiate
the load. The Playback Control ON indicator lamp (5) on the data terminal’s upper
switch panel lights to indicate that data is being transferred.

7. When the load is completed, the loader will transfer control directly to the program if
the program contained an entry vector. (An entry vector is a special tag generated by
the assembler indicating the starting location for the program. The tag is generated if
the user includes the starting address for his program in the END statement.) If there
is no entry vector or if an error occurs during loading, the loader returns control to
the programmer panel.

8. The cassette should be rewound by pressing the REWIND side of the REWIND/STOP
switch (1 or 10) on the upper switch panel of the data terminal and removed to

prevent accidental reuse. The tape is finished rewinding when the END indicator lamp
(4 or 7) lights.

2.5.2 LOADING COMPRESSED ABSOLUTE FORMAT OBJECT MODULES. Compressed
absolute format code may be loaded using the 733 ASR ROM loader by including the upfront
loader in front of the compressed absolute format code module. Refer to the Load with Upfront
Loader (LU) command in Section III for a further description of the upfront loader.

To load with the upfront loader, follow the procedures described.in paragraph 2.5.1. The
upfront loader is loaded at the ROM loader default bias address, AQ .

After the upfront loader is memory resident, control is passed to it and the compressed absolute
load initiated. Once the absolute format module is loaded, control is passed to it if an entry
point has been found. If there is no entry point or there is a load error, control is returned to
the programmer panel.

If the user wishes to perform a bootstrap load with the upfront loader, but would like the
upfront loader at a different point, he may add to the upfront loader object module a D tag
(load bias) character as the first record.

2.5.3 LOADING THE MONITOR. To load the monitor, mount the cassette containing the
upfront loader and PX9MTP and load it in the manner described in paragraph 2.5.1. A period (.)
is printed to indicate that the monitor is loaded and ready to accept commands.

2-7 Digital Systems Division

o
{@@ 945255-9701

2.6 OPERATING THE MONITOR

When the monitor is loaded by the 733 ASR ROM loader, it will be located at locations 2000,
to 4000, with the entry point at 2000, (assuming an 8K configuration). If a program remains
in the execution mode because of an error or is aborted by a programmer panel halt, the
monitor will need to be restarted to reenter the command processor mode. To restart the
monitor, proceed as follows:

1. Halt the system by pushing the programmer panel HALT/SIE switch. The RUN
indicator lamp is extinguished when in halt mode.

2. Clear the data indicator lamps by pressing ‘the CLR switch.
3. Enter 2000,, on the data indicator lamps.

4. Press the ENTER PC switch.

5. Press the RESET switch.

6. Press the RUN switch.

At this point, the monitor should respond with a period (.). If the monitor does not respond,
repeat steps 1 through 6. If further attempts to restart fail, the monltor may have been
destroyed and a reload is necessary.

2.7 ENTERING COMMANDS ON THE TERMINAL KEYBOARD

Commands are entered as a two-character command name and a string of parameters. The

command name and each parameter are separated by one or more spaces or a comma. A carriage

return will end the record and signal the end of input to the monitor. The RUB OUT key on the

keyboard may be used to delete all characters from the present character position to the

beginning of the current parameter. CRTL H will delete one character (back to the beginning of
- the current parameter). :

Some keys, such as TAB (CTRL I), the space bar, backspace (CTRL H), ESC and RUB OUT, are
interpreted differently depending upon which command processing routine is executing. The
special interpretations of these and others are explained in the routines, or programs in which
they occur.

The monitor recognizes a number of special control characters which conform to the standard
990 file and data format. Appendix C shows the valid control characters and their functions for
keyboard, printer, and cassette I/O as defined in the 990 standard file and data formats.

2.8 INPUT/OUTPUT AND LOGICAL UNIT ASSIGNMENTS

When a program is written, the input and output is device independent and is simply input from
or output to a logical unit number. At run time, the user must enter the Assign LUNO (AL)
command to assign each LUNO to a physical device if the system default logical unit assignments
(described in Section III) are not being used. When the program is run, the monitor takes care of
all the device-dependent characteristics required.

2.9 LOADING AND EXECUTING PROGRAMS

The following paragraphs present procedures for loading programs and discuss the user’s interface
with the software.

2-8 Digital Systems Division

.
(_r@? 945255-9701

2.9.1 LOADING. PX9MTP loads programs using two different object code formats, compressed
absolute and standard 990 object format. Any of five commands — LP, OV, PL, LU or LA, all

described in Section III — may be used to load programs. The operator interface with PX9MTP
is similar for all five types of loads:

1. Place the cassette containing the program or overlay to be loaded on an available
cassette transport drive.

2. Set the four switches in the bottom row of the data terminal’s upper switch panel (12,
13, 14 and 15, figure 2-2) to the LINE position.

3. Enter the appropriate monitor keyboard command for the type of load being per-
formed followed by the LUNO which has been assigned to the cassette containing the
program to be loaded. If no LUNO is entered with the command, the system assumes
a default of LUNO 7. If the AL command has not been used to redefine the two

cassettes, the system defaults LUNO 7 to CS1 (the left cassette drive) and LUNO 8 to
CS2 (the right drive).

4. When the load completes, the system will accept further commands. If an entry vector
was specified within the load module, the PC for the user’s program is recorded within
PX9MTP and may be displayed with the Inspect Registers (IR) command and observed
on the programmer panel data indicator lamps. For monitor-controlled I/O, the
playback and record modes need not be set since the monitor handles this function.

The standard 990 object code format and the compressed absolute format are described in
Section VL

2.9.2 USER PROGRAM INTERFACE WITH SYSTEM SOFTWARE. Monitor commands are
used to load or execute programs in the user area of memory. User programs, the text editor
(PX9EDT) and assembler (PX9ASM) are loaded into user memory and executed in free running
mode with monitor control or in free running mode. Before executing in either mode, the entry
point for programs in the user area must be set in the user’s PC. The Inspect Registers (IR)
command may be used to determine the starting PC value, and the Modify Registers (MR)
command may be used to change it.

User programs may communicate with the resident software system by means of the Extended

Operation (XOP) instruction. This is also true of two user area system programs: PX9ASM and
PX9EDT.

XOP 15 is used to call PXO9MTP to perform I/O and data conversion services as defined in
Section III. This XOP vector is initialized by the monitor whenever a Load Program (LP), Load
Program in Compressed Absolute Format (LA), Load Overlay (OV), or Load Program in
Compressed Absolute Format with Upfront Loader (LU) command is issued. The user program
may overlay this vector and supply its own service routine.

2.9.3 EXECUTING A USER PROGRAM. A program may be executed by issuing either an RU
or EX command. If the RU command is used, the monitor will control the execution and
various run-time debug aids may be utilized. The monitor executes programs using either the SIE
feature (see paragraph 2.10) or an interpretive trace (see Section III). A program may be halted
and control returned to the command processor at any time by pressing the ESC key on the
data terminal keyboard. If an EX command is issued, the program will be executed without

monitor control. The program may be halted only by pressing the programmer panel HALT
switch and restarting the monitor.

29 Digital Systems Division

[o]
q‘l—@? 945255-9701

After a program has been executed in either mode, control may be returned to the monitor
command processor by an End of Programmer supervisor call (Section III) or by branching to
the beginning of the monitor.

2.10 INTERRUPTS AND SINGLE INSTRUCTION EXECUTION
The following paragraphs discuss the interrupt scheme and the role of interrupts in single
instruction execution, which is a debugging aid. Single instruction execution is briefly explained.

2.10.1 INTERRUPTS. The 990/4 Computer supports eight levels of interrupts. Any device
which is capable of interrupting the 990 is assigned (in the hardware) to an interrupt level. The
990 compares the level of any interrupt with a program-determined value cailed a mask. If the
interrupt is at a higher level (lower numeric value) than' the mask, the interrupt is allowed;
otherwise, the interrupt is not permitted. For more detailed information about interrupts, refer
to the Model 990/4 Computer System Hardware Reference Manual, Manual No. 945251-9701.

The highest level (level 0) is used to indicate that power has just been applied to the 990, either
initially or following a power failure, and/or that a special interrupt for the programmer panel is
active. The level O interrupt differs from the other interrupts because it cannot be masked by the
program.

The level O interrupt is generated whenever one or more of these conditions occurs:
® Monitor-initiated single instruction execution (SIE).
® The operator presses the HALT/SIE pushbutton on the programmer panel.

® A program executes an LREX (Load ROM and Execute) assembly language machine
instruction. '

® A power-up condition occurs.
The level O interrupt trap vector must be connected by jumper cable to location FFFC,,.

2.10.2 SINGLE INSTRUCTION EXECUTION. It is often convenient for debugging purposes to
execute a program one instruction at a time. This feature is provided on the programmer panel
and also by PX9MTP. The hardware supports this feature in the following manner:

1. The programmer panel or PX9MTP initiates execution of a single user program
instruction.

2. In the process of executing the user program instruction, three distinct actions occur.
First, the programmer panel or PXOMTP causes an RTWP (Return with Workspace
Pointer) assembly language machine instruction to be executed. This returns control to
the process or to the user.

3. Second, the user progfam instruction is executed.
4. In the third action, the 990 Computer generates a level O interrupt which transfers

control back to the programmer panel. If the SIE was initiated by PX9MTP, the
programmer panel will transfer control back to PX9MTP.

2-10 Digital Systems Division

o
@ 945255-9701

This sequence of actions is repeated for each user program instruction, except under certain
conditions. The user must be aware of these exceptions:

° If the instruction was a BLWP (Branch and Load Workspace Pointer) or XOP
(Extended Operation), the processor executes an additional instruction before any
interrupts occur. (This feature is necessary to support reentrant subroutines using
BLWP or XOP instructions for linkage.)

® If there is a lower level interrupt pending, that interrupt is honored instead of the next
“user instruction”. Therefore, when the programmer panel regains control, the return
PC points into the interrupt subroutine rather than the original user program.

2.11 WRITE PROTECT

The 990 Prototyping System is equipped with a write protect feature which permits or prohibits
writing to a selected area of memory. The write protect logic basically consists of a seven-bit
Upper and Lower Bound register and a Protect/Permit control bit (figure 2-3). The loading of
this register and control bit may be accomplished with the Set Write Protect Region (SP) and
Clear Write Protect Region (CP) commands (Section III), or by normal CRU communications.

2.11.1 SETTING A WRITE PROTECT REGION. To set a write protect region, the lower and
upper bounds must be output to CRU base address 1FAQO,¢,. The most significant bit (bit 0) is
the Protect/Permit bit. Bit 0, when set to 1, indicates write permit, and, when set to 0, indicates
write protect. To specify the protect region, memory is divided into 256-word blocks. The lower
and upper bounds are each seven bits long and serve as an index into the memory addresses to
specify which contiguous 256-word block of memory is to be protected. For example, the lower
bound of the protect region equal to 2000,, would be represented in the Protect register as
10,c,. The memory block beginning at location 2000, is the sixteenth 256-word (512-byte)
memory block. A bound is calculated by dividing the starting address of the memory block by
200, (51240). In this example, 2000, divided by 200,, is equal to 10,,. The upper bound is
not included in the protect region. When outputting to the CRU Protect register to specify the
protect bounds, a Load CRU (LDCR) instruction with a count of 16 must be used to set all 16
bits because the Protect register works like a shift register. To protect the memory range 2000,
to 4000,¢, the lower bound is set equal to 10,4, the upper bound is set equal to 20,4, and the
Protect bit is set to 0. Therefore, the Protect register is set to 1020, by outputting these fields
to the CRU in the format specified in figure 2-3.

2.11.2 PROTECT VIOLATION FLAG. When an attempt is made to write into a memory
location within the protected region, the Protect Violation flag is set to FFFF,¢. This flag,
which is 0 normally, can be sensed by reading any of the 16 CRU bits at base 1FAQ,4- If this
protected region is within the TMS9900 on-board RAM, the write will not be inhibited. if this
protect region is on the expansion memory card, the write will be inhibited. Attempts to write
are flagged with an error message.

The Protect Violation flag may be cleared in two different ways:

1. I/O RESET (RSET) — This machine instruction clears the violation flag and sets bit 0
of the Protect register to 1 (not protected).

2. Output a 1 to any or all of the 16 bits of the Protect register.

2-11 Digital Systems Division

9452559701

0 1 7 8 9 15
P LB Y us
7
NOT
USED
BIT FIELDS
P PROTECT/PERMIT BIT-
0—PROTECT
1-PERMIT

LB LOWER BOUND
us UPPER BOUND

NOTES

THE CRU OUTPUT DATA FORMAT IS THE SAME AS THE
FORMAT OF DATA IN MEMORY BEFORE IN LDCR
lNSTRUCTION IS EXECUTED,

BITQ 1 AND 9 ARE THE MOST SIGNIFICANT BITS, AND BITS ;
7 AND 15 ARE THE LEAST SlGNlFlCANT BITS OF THE LB
AND UB FIELDS. .

(A)133373 .
Figure 2-3. CRU Output Data Format

When runnmg under monitor control with an RU command, the Protect Violation ﬂag is
checked after each user instruction is executed. The monitor also checks for a write protect error
when control is returned to the command string processor. This enables the user to detect
violation errors incurred during monitor commands such as Modify Memory (MM) and the
program loadmg commands (LP, OV, PL, LL, LU and LA). The monitor prints the error message

- MX07

-

if a write protect violation occurs. The violation’ ﬂag is cleared the: protect register restored and
the user program halted.

.. The Protect Violation flag is not checked ‘wherr executing a user program with the EX command.

When - the Protect Violation flag is set, another signal is generated which may be wired to an
interrupt level. If the user chooses to do this, an interrupt routine must be provided by the user.

If the program is being executed with the EX command and the interrupt has not been w1red in,
there is no automatic checkrng for a protect violation after each instruction.

When the monitor is restarted, the Protect register and Protect Violation flag are initialized. An

I/O Reset is performed which clears the Protect Violation flag and sets the Protect register to
FFFF (- ,

2-12 Digital Systems Division

o
%@ 945255-9701

2.11.3 PROTECTING THE MONITOR. In debugging a user program, the monitor is often
destroyed by an incorrect instruction. This may be avoided in most cases by write-protecting the
monitor.

The monitor has been constructed so that all of the data areas occur near the end of the
monitor. The first 1400, bytes of the monitor may be included within the protect region.

2-13/2-14 Digital Systems Division

[o]
({_@} 945255-9701

SECTION III

DEBUG MONITOR

3.1 INTRODUCTION

This section discusses the purpose and capabilities of the debug monitor (PX9MTP), explains
how to debug under monitor control, and gives detailed descriptions of the monitor keyboard
commands available to the user. The following topics are covered:

® A general description of the monitor, including its functions and capabilities. Com-
munication with the monitor. Debugging features. Input/output operations and logical
device assignments. Methods for loading programs using PX9MTP, and the different
types of loads.

® Debug functions provided by the monitor. Capabilities provided by the different types
of debug commands. User-specified parameters that serve as interpretation aids. The
two debugging modes: single instruction execution and instruction trace. A comparison
of the merits and limitations of the debugging modes.

® Discussion of the use of monitor keyboard commands. The three types of commands:
system control, debug, and PROM/ROM process control commands. Mnemonic codes
and command parameters. The conditions under which commands may be entered.
Processmg of commands by the monitor. Error messages Notational conventions used
in the command syntax definitions.

® Descriptions of the commands, including a brief explanation of their purpose, their
syntax and parameters, how they function, error messages, application notes if appli-
cable, and examples of how the commands are used. The monitor keyboard commands
are listed in table 3-1.

® Supervisor calls. Their purpose. The differences between I/Q and non-I/O supervisor
calls. Supervisor call formats and examples.

® Debugging techniques. An explanation of preventive, exposure and remedial techniques.
General techniques for any debugging situation. Specific techniques for debugging
under PXOMTP, including how to plan a debugging session, use of breakpoints, and
time-saving and simulation techniques. Patching assembly language code into an
existing program. '

3.2 GENERAL DESCRIPTION o

PX9MTP is a memory-resident system executive that responds interactively to user input from
the 733 ASR data terminal keyboard, provides extensive program debug features, and provides a
supervisor call interface to user programs.

The operator communicates with the monitor by entering commands through the keyboard of
the 733 ASR data terminal. These commands may assign logical unit numbers (LUNOs) to
devices for I/O operations, and instruct the system to load and execute specific programs. These
supported programs may interface with the monitor through supervisor calls (paragraph 3.5).

3-1 Digital Systems Division

945255-9701

Mnemonic

AL
LP
oV
PL
LL
DP

‘LU

LA

. EX
RU
MM
M
MR
IR
MW
W
MC
IC
SS
IS
cs
SB
CB
ST
SR
~CR
FB
FW
HA
SP
CP

Table 3-1. Monitor’ Keyboard Commands
Description

Assign LUNO
Load Program

Load Overlay

Load PROM Programmer

Link and Load Program

Dump in Absolute Format :

Load Program in Compressed Absolute Format
" with Upfront Loader

Load Program in Compressed Absolute

Format

Execute User Program Directly

Execute User Program under SIE or Trace

Modify Memory '

Inspect Memory

Modify Registers

Inspect Registers

Modify Workspace Registers

Inspect Workspace Registers

Modify CRU Register

Inspect CRU Input Lines

Set Snapshot '

Inspect Snapshot

Clear Snapshot

Set Breakpoint

Clear Breakpoint .

Set Trace Definition

Set Trace Region

Clear Trace Region

Find Byte

Find Word

Hexadecimal Arithmetic

Set Write Protect Region

Clear Write Protect Region

Paragraph

342
343
344
34.5
346
34.7

348

349
34.10

- 34.11

3.4.12
3.4.13
34.14
34.15
34.16
34.17
3.4.18
3.4.19
3.4.20
3421
3422

© 3423

3424
3425
3426
3427
3428
3429
3.4.30
3431

34.32

Supervisor call communication with the monitor is accomplished with extended operation 15
(XOP 15) and a parameter block giving the specific details of the request. A supervisor call can
be used to request system functions such as:

Convert decimal numbers in ASCII format to bmary values, and binary values to ASCII
format decimal numbers

Convert hexadecimal numbers in ASCII format to binary values, and binary values to
ASCII format hexadecimal numbers.

Provide I/O operations that are compatiblé with those for the DX10 operating system.

Terminate the current program.

32

Digital Systems Division

(o]
@ 945255-9701

PX9MTP also provides debugging aids for stand-alone programs. The program debug functions of
the monitor:

® Give the user interactive control over his programs.

® Are independent of the user program.

® Are compatible (where possible) with the corresponding software features of the
990/10 Program Development System.

3.2.1 INPUT/OUTPUT OPERATIONS. PX9MTP I/O operations provided by the supervisor calls
are device independent, as described in Section II. The 733 ASR data terminal appears to the
monitor as three separate logical devices — cassette unit 1, cassette unit 2, and the printer-
keyboard, as described in Section I. The Assign LUNO (AL) monitor keyboard command is used
to assign logical unit numbers. The monitor supports the following I/O operations to the 733
ASR data terminal: open file, read ASCII data, write ASCII data, and write end-of-file.

3.2.2 METHODS FOR LOADING PROGRAMS. PXOMTP supports three distinct methods for
loading programs into memory: a relocating loader, a relocating and linking loader, and a
compressed absolute format loader. The two relocating load operations called by the Load
Program (LP) and Link and Load Program (LL) commands handle programs in object format
produced by any of the 990 assemblers. Relocation allows a program to be loaded into any
available memory area to make efficient use of memory space.

The linking process in the LL command integrates object modules that have been assembled
separately into a single, contiguous program. This type of load operation accepts one or more

object modules of a program and loads them into memory at addresses specified in the program
modules.

The third type of loading operation uses a condensed data format, generated by the Dump in
Absolute Format (DP) command, that can be loaded much faster than the equivalent object
module format of the program. When a program has been completely debugged and is to be
stored for future use, it can be copied to cassette using the DP command to create the
condensed data format. Then, by calling the Load Program in Compressed Absolute Format (LA)
command, the program will be loaded into the same memory area that it was stored in when
originally dumped. This condensed data format module may also be loaded with the Load
Program in Compressed Absolute Format with Upfront Loader (LU) command. Refer to
paragraphs 3.4.3 through 3.4.9 for detailed command descriptions.

3.3 DEBUG FUNCTIONS

The Program Debug function of the monitor allows the user to test, validate, and remove errors
from a program under development. Debugging is accomplished by entering commands for
various debug functions from the terminal keyboard. The commands are decoded and processed
by the monitor. The debug facilities operate entirely from programs and data stored within the
4096-word memory area reserved for PXOMTP.

The available debug commands may be classified into the following groups.
e Set commands. These commands allow the user to define up to four of each of the

following aids: program counter breakpoints, formatted snapshots, trace regions, and
trace formats. \

33 Digital Systems Division

o]
@ 945255-9701

® (lear commands. These commands allow the user to negate the effect of a previous set
command.

° Inspect command, These commands allow the user to display the contents of AU
registers, workspace registers, memory reglons and CRU lmes These commands are -
also used to force snapshots.

® Modify commands. These commands allow the user to examine and optionally modify
memory, workspace registers, AU registers, and CRU lines (by mspectmg the input and
modlfymg the output)

® Miscellaneous commands. These commands include functions such as word and byte
memory searches, and hexadecimal arithmetic with automatic decimatl conversion.

In debugging a program, the user may print out data on the terminal for examination, modify
data, specify program elements (parameters whose values are determined by the user) for
interpreting the progress of his program, set and clear these elements, search for specific bit
patterns ‘in ‘bytes and words, and perform arithmetic calculations with hexadecimal numbers.
These actions may be performed on memory, registers, and CRU input and output lines. They
may also be performed on the specifiable program elements: breakpoints, snapshots, and trace
regions. They are defined as follows:

® Breakpoint — A point during the execution of a program at which control is returned to
the debug monitor to allow the user to examine the progress of his program or
enter any of the debug commands..

® Snapshot — A printed display of the contents of contiguous workspace registers plus
the contents of an area in memory as defined by the operator. A snapshot may be
printed automatically at a breakpoint.

® Trace region — An area of the program about which information concerning the
execution of an instruction is output on the printer. This information may be printed
following the execution of each instruction, following each branch, or following each
change in the contents of a data word.

3.3.1 DEBUGGING MODES. When debugging with the ‘monitor, the user may use either the
single instruction execution (SIE) mode or the instruction trace mode by issuing the Execute
User Program under SIE or Trace (RU) command. In these modes, after each instruction is
executed, the monitor checks ‘whether a breakpoint has been reached. If a breakpoint has not
been reached or the run count is not depleted, the monitor continues executing instructions-in
the same manner.

When running in SIE mode, the monitor uses the hardware-controlled SIE feature described in
Section II to execute each user instruction.

When in the instruction trace mode, the user’s program is executed by a software interpreter
which decodes the user’s instructions and then executes the instructions. This allows the system
to check and display detailed information on the execution of an instruction. The software-
interpreter is contained in the instruction trace overlay which must be loaded before the
instruction trace feature can be used.

34 Digital Systems Division

[o]
%@ 945255-9701

The instruction trace feature allows the user to monitor the contents of internal data sequences,
alter these data sequences, and analyze the ongoing progress of an executing program. The user
can also specify breakpoints and snapshots for interpreting the progress of his program.

Under instruction trace, all extended operations (XOPs) and interrupts are executed directly by
the hardware, not under control of the software.

3.3.2 COMPARISON OF DEBUGGING MODES. SIE is considerably faster than instruction
trace. In SIE mode, interrupts and XOPs are executed one instruction at a time under control of
the software. XOPs and interrupts under instruction trace, on the other hand, are executed
directly by the hardware. SIE is always memory resident, while instruction trace is contained in
a separate overlay.

If speed, XOPs, interrupts, or loading the overlay is not a primary consideration, it is suggested
that instruction trace be used as the normal mode of execution. If no trace printout is desired, a
null trace may be set. (Refer to the description of the Set Trace Definition (ST) command,
paragraph 3.4.25.)

3.3.3 SUMMARY. The program debug facilities of PXOMTP are easily used by novice pro-
grammers, yet have the power needed by the sophisticated programmer to fully test his
programs. The novice needs to learn only four types of operations (Set, Clear, Inspect and
Modify) to be applied to any of several debug or machine resources (memory, breakpoints, etc.).
An experienced user will learn to associate snapshots and trace formats (by number) with
specific breakpoints and trace regions, respectively. Trace formats and snapshots are predefined
for the novice but may be modified if desired.

3.4 KEYBOARD COMMANDS

The following paragraphs present background information on the keyboard commands. They
describe the components of a command, their significance, and their general characteristics. The
individual commands are then described in detail.

3.4.1 GENERAL. As an aid to the use and understanding of the commands, the different types
of commands are discussed, and command codes and parameters are explained. These paragraphs
also describe entry of commands on the terminal keyboard, explain how commands are pro-
cessed, and list error messages that may be returned by the system.

3.4.1.1 Types of Commands. The keyboard commands may be classified into three types:
system control commands, debug commands, and PROM/ROM process control commands.
System control commands include those needed to get the program loaded and running or to
initiate a program dump. The debug commands are those entered by the user during execution
of a program under development. PROM/ROM process control commands are those needed to
program PROMSs and produce cassettes for manufacturing ROMs. The commands may also be
classified according to the way they are handled by the monitor. Some of the commands are
memory-resident; the others reside on tape cassette and are loaded into the transient area of
memory from cassette when they are needed. These cassette-resident commands are the overlay
commands, and include those less frequently used.

3.4.1.2 System Control Command Codes. System Control Commands are identified by two-
letter mnemonic codes, and may be followed by one or more parameters. This group of
commands includes the following:

® Assign LUNO (AL)

® Load Program (LP)

3-5 Digital Systems Division

945255-9701

Load Overlay (OV)

Link and Load Program (LL)

Dump in Absolute Format (DP)

Load Program in Compressed Absolute Format with Upfront Loader (LU)

Load Program in Compressed Absolute Format (LA)

Load PROM Programmer (PL)

Execute User Program Directly (EX)

Execute User Program under SIE or Trace (RU)

The individual system control commands are described in paragraphs 3.4.2 through 3.4.11.

3.4.1.3 Debug Command Codes. Debug commands are identified by a two-letter mnemonic
code. The first letter represents the operation performed, and the second letter represents the
program debug or machine element on which the command operates. The operation performed
may be one of the following:

First Letter .
of Command

I

M

Operation

The Inspect operation displays on the printer whatever data or debug element is
requested, in the specified size or amount. '

The Modify operation displays a requested quantity, such as the contents and the
register number of a workspace register, and accepts an input which may change the
value. This operation automatically increments and displays the next item of the ele-
ment being modified. The Modify commands operate on memory, workspace registers,
machine registers, and the CRU.

The Set operation is used in commands to define program debug elements such as

‘breakpoints, snapshots and traces.

The Clear operation is used to clear or reinitialize breakpoints, snapshots, and trace
regions.

The Find operation searches for bit patterns in bytes or words. The patterns are char-
acterized by mask and value. If the specified bits in the mask are the same as the
corresponding bits in the value, a pattern match exists. .

The Hexadecimal operation calculates the sum and difference of two hexadecimal
numbers, and prints the results in both hexadecimal and decimal format.

3-6 Digital Systems Division

945255-9701

The second letter of a debug command represents the element on which an operation is
performed, and may be one of the following: :

Second Letter Element
of Command
M The Memory element represents any RAM or ROM in the hardwaré system configura-
tion. If nonexistent memory is specified, an undefined bit pattern is returned.

w The Workspace element represents the user program’s current workspace registers,
registers O through 15. In a Find Word command, W represents word.

R The Registers element represents the user’s program counter register, workspace pointer
register and status register.

In a Set Trace Region (SR) or Clear Trace Region (CR) command, R represents
region. A region is a memory area where there will occur a trace of statements exe-
cuted when running under Instruction Trace. Associated with each region is its index
(a number from 0 to 3), trace type, mode of execution (single step or continuous
run), and, optionally, variables to be traced.

C The CRU element represents the Communications Register Unit of the 990 Computer.
The data on the CRU input lines and the input line numbers may be displayed, and
the data on the CRU output lines may be modified.

B The Breakpoint element represents the four program counter (PC) breakpoints. Asso-
ciated with each breakpoint is its index (a number from O to 3), a program counter
value, a reference counter (optional) and a snapshot index (optional). The user’s pro-
gram counter, workspace pointer and status register are automatically printed along
with the breakpoint index number. If a snapshot was associated with the breakpoint
at definition time, then the snapshot indicated by the snapshot index is also printed.
Breakpoints are detected before instruction execution.

In a Find Byte (FB) command, B represents byte.

S The Snapshot element represents a four-element vector of program displays. Each dis-
play is characterized by a range of workspace registers and a range of memory. When-
ever a snapshot is invoked, the register and memory ranges are dumped to the
printer.

T The Trace element is a four-element vector of trace types. Associated with each ele-
ment is an index and a string of characters indicating the type of trace. The Set Trace
Definition (ST) command modifies an existing trace type of the same index. When the
monitor is loaded, each element is assigned a default trace type. (For example, type 1
is PIWSEADEA: program counter, instruction and format, workspace pointer changes,
source and destination, effective addresses and their contents after execution.) The ST
command is available only if the Instruction Trace overlay is in memory.

P The Protect element represents a write-protected region of memory.

The individual debug commands are described in paragraph 3.4.12 through 3.4.32.

3-7 Digital Systems Division

945255-9701

The individual debug commands are described in paragraph 3.4.12 through 3.4.32.

3.4.1.4 PROM/ROM Process Control Command Codes. PROM/ROM Process Control commands
are identified by two-letter mnemonic codes and may be followed by one or more parameters
This group of commands include:

® PROM Programmer Standard (PS)
® PROM Programmer (PP)
® Perform BNPF Operation (DB)
® Perform HIGH/LOW Operation (HL)
The individual process control commands»are described in Section VII, VIII and IX.

3.4.1.5 Command Parameters. A keyboard command mnemonic code may be followed by one
or more parameters. The list of parameters is separated from the command code by one or more
blanks or a comma.

The parameters in the list are delimited by commas or by strings of one or more blanks. Each
parameter may be a hexadecimal number of one to four hexadecimal digits or a string of -
alphanumeric characters.

3.4.1.6 Entry of Commands. Keyboard commands may be entered whenever the software
system is in command mode. In this mode, a period (.) is printed as the first character on a new
line. Depending on the command executed, the software system may or may not return to
command mode. The monitor requests another command by . printing another period (.) at the
beginning of a line. No program executing under the monitor uses a period in this manner to
request user input. '

3.4.1.7 Command String Processor. The command string processor parses command input
strings, given command definition tables. It validates parameter values and converts those
representing hexadecimal numbers to binary. It also indicates the existence and position of all
null parameters.

The command string processor can parse up to eight parameters. It passes control to the
appropriate command processor after it has recognized a syntactically correct command.

3.4.1.8 Processing of Commands. It is helpful to the user to understand how the commands are
executed. The command processor handles commands in the following ways.

® A command string is aborted and data is cleared from the buffers on any error.
® The command is checked against a predefined list of acceptable commands.
® The command and any parameters are validated immediately after the appropriate

terminator is processed for that parameter (or command). If an error is detected, the
entire input is discarded.

3-8 Digital Systems Division

945255-9701

e Use of the backspace (CTRL H) on the terminal keyboard deletes single characters
from the current parameter or command mnemonic only. Once a parameter has been
validated, it may not be changed.

® Use of the delete (RUB OUT) key on the terminal keyboard removes only the current
parameter, not the entire command.

The following application notes apply to the use of commands:
® The user must realize that the command input is being checked as it is being entered.
This helps prevent entering a long command with an error. Make sure that a parameter

is correct before entering the terminator for it.

® The user may abort the current command by pressing the escape (ESC) key on the
terminal keyboard.

3.4.1.9 Error Messages. Following is a list of errors the user may encounter when entering
keyboard commands and the meanings of the error codes.

Error Code Meaning
MPOO Invalid parameter entered, invalid hexadecimal number entered, or maximum
parameter list length exceeded.
MSO01 Invalid command. The first two characters do not match any known command.
MX03 Overlay resident command not in memory. The command must be loaded into

the transient area before it can be executed.

A complete list of the error codes appears in Appendix E.

3.4.1.10 Notational Conventions. The notational conventions used in the syntax definitions of

the keyboard commands are as follows:

<> Item to be supplied by the user. The term shown within
angle brackets is a generic term.

[1 Optional item — may be included or left out, at the
user’s discretion. Items not enclosed in brackets are
required.

{ } Choice to be made from two or more items, one of which
: must be included.

Items in capltal letters in the syntax definition are entered into the command statement exactly
as shown.

The fields in the command (the command mnemonic and the parameters) are separated by either
commas or strings of one or more blanks. This choice is shown symbolically as:

£

39 Digital Systems Division

(o]
@ 945255-9701

When one or more parameters are omitted, two or more field separators may occur in sequence.
The user must be sure that he includes the correct number of separators in a sequence; he should
be aware of how they are interpreted by the computer. Two strings of blanks run together will
be read as a single long string of blanks. A comma preceded or followed by a blank will be read
as two separators in sequence. It is suggested, therefore, that commas (without preceding or
following blanks) be used to set off omitted parameters.

In the examples of command statements, user-supplied data is underlined to distinguish it from
data printed by the monitor. The carriage returns that terminate command statements are not
shown in the examples.

3.4.2 ASSIGN LUNO (AL). The Assign LUNO command is used to establish the I/O devices
that will perform I/O under PX9MTP.

Syntax definition:

AL {t; } <luno> {,6’ } <device>
The command is terminated by a carriage return.
Parameters:

luno Logical unit number — number associated with the I/O device.

device Character string which is the name of a device.

The acceptable device names are as follows:
LOG 733 data terminal keyboard and printer.

DUM Dummy device. Input from DUM returns an end-of-file; output
to DUM is discarded.

CS1 Left cassefte drive on the 733 data terminal.
CS2 Right cassette drive on the 733 data terminal.

Default LUNO assignments: If the AL command is not entered, a set of default values is used
for the PXO9MTP LUNO assignments. These default LUNO assignments are:

LUNO

(Hexadecimal) Device
0 LOG (cannot be changed)
1-5 DUM
6 LOG
7 CS1
8 CS2
9-F DUM

3-10 Digital Systems Division

o
{_@) 945255-9701

Although the AL command may be omitted and default as31gnments used for PX9MTP LUNOs,
nelther parameter may be omitted if the AL command is used. :

Error message:

MX02 Missing required parametér, invalid device name, or invalid
LUNO. Re-enter the command.

Application note: The AL command may be needed when using the assembler, text editor,
standard loader, linking relocating loader, upfront loader, absolute loader, and absolute dump
facilities. The user should refer to the documentation for the appropriate software component to
determine the LUNOs used by that component.

Examples.

.AL 2 CS1
.AL,1,DUM

The first example assigns LUNO 2 to cassette CS1. The second example assigns LUNO 1 to the
dummy device. Both statements are terminated by a carriage return.

3.43 LOAD PROGRAM (LP). The Load Program command initiates a program load with the
standard loader.

Syntax definition:

w [} [] [} <ve]]

The command is terminated by a carriage return.

Parameters:
luno Logical unit number of the input device.
bias Base address of the relocatable object code.

Parameter default values:

If the logical unit number is not specified, a value of 7 is used. Unless reassigned by an Assign
LUNO (AL) command, LUNO 7 is assigned to cassette CS1.

If the bias address is not specified, a value of A0, is used. The bias may be overridden by the
appearance of a D tag character in the object code.

Description: The 990 standard object code loader resides as a firmware program in a 256-word
ROM. When the software system is under control of PX9MTP, a program is loaded by a call to
the ROM loader. After the program is loaded, the program entry point, if it exists, is placed in
the user PC; then control is returned to the monitor. The user may- execute or debug his
program by issuing an EX or RU command to the monitor.

3-11 Digital Systems Division

(¢}
@ 945255-9701

Error messages:

LDO00 Invalid tag or I/O error. Re-enter the command. If the error
persists, the tape may be bad or not readied.

LDO1 Invalid LUNO. Re-enter the command.
Examples:

.LP 7,1000

LP

.LP,,1000 7
The first example has the load LUNO and bias address supplied. The second example loads from
a default LUNO of 7 at a bias address of AQ,,. The third example loads from a default. LUNO
of 7 at the bias address supplied (1000).

3.4.4 LOAD OVERLAY (OV). The Load Overlay command is used to load an overlay into the
monitor trans1ent area.

Syntax definition:

ov [fy <]

The command is terminéted by a carriage return.
Parameter:
luno Logical unit number of the input device.

Parameter default value: If the logical unit number is not specified, a value of 7, the logical unit
number normally assigned to tape cassette CS1, is used.

Descrzptzon The monitor has an 850 word transient area reserved for overlays. Overlays consist
of one or more command service routines. The following commands are overlays:

Command

1(\)42::32 Function Mnemonic

1 Dump in Absolute Format DP

1 Load Program in Compressed Absolute Format LA
-2 Link and Load Program LL

3 Set Trace Definition ST

3 Set Trace Region ‘ SR

4 PROM Programmer Standard o PS

4 PROM Programmer 4 PP

5 Perform BNPF Operation : DB

6 Perform HIGH/LOW Operation : HL

3-12 . Digital Systems Dii/ision

@
Overlay modules 1, 3, and 4 contain two commands each. The commands resident in the overlay

are printed when the overlay is loaded. Overlay module 4, which is a special overlay (see the
description of the PL. command in paragraph 3.4.5), must be lcaded with the PL command.

The standard loader is called to load the overlay. If a checksum, tag or I/Q error occurs during
loading, control is returned to the monitor and the error message LDOO printed. After the service
routine is loaded, the command is activated. All commands residing in the transient area prior to
the overlay are disabled. If an attempt is made to execute a command that normally resides in
the overlay but is not presently there, an error message of MX03 is printed.

Error messages:

LDO0O Invalid checksum, tag or I/O error occurred
during loading.

LDO1 Invalid load LUNO.
Example:
.0v 8

DP
LA

The overlay containing the DP and LA commands is loaded from the device assigned to LUNO
8.

3.4.5 LOAD PROM PROGRAMMER (PL). The Load PROM Programmer command is used to
load the PROM Programmer software module into memory.

Syntax definition:

PL{b’m} [<luno>‘[{b"__} <bias>]]

Parameters:
luno Logical unit number of the cassette drive on which the
PROM Programmer (PROMPG) is mounted.
bias Load addresses for the extended PROMPG program.

Parameter default values:
If luno is not specified, a value .of 7 (cassette CS1) is used.

If bias is not specified, the supplied value is 1C80,, (the address immediately following the end of
user memory minus 380,4 to cover the length of the extended PROMPG program).

3-13 Digital Systems Division

[e] ‘ .
| %@ 945255-9701

Description: PROMPG consists of an overlay module and a memory extension module. The over-
lay module is loaded into the monitor transient area, and the memory extension module is loaded
into the hlghest numbered address locations of user memory.

When the PL command is 1ssued the overlay will be loaded and the followmg prmted

PP
PS

The memory extension will then be loaded into user memory at the specified bias address.
If the user attémpts to enter a command before the memory extension module has been loaded

error message LDOO will be printed. This may occur even though the overlay module load has
been indicated by a pnntout

Error messages:

LDO00 Invalid tag or 1/0 error. Reenter the command. If the
error persists, the tape may be bad or not
readied.

LDO1 Invalid LUNO. Reenter the command.
Examples:

PL8
PP
PS

“The PROM programmer module is loaded from the device assigned to LUNO 8. After the overlay
resident module is loaded, PP and PS are printed. The memory extension module is then loaded
into the top of user memory.

34.6 LINK AND LOAD PROGRAM (LL). The Link and Load Program (LL) command starts
up the relocating linking loader, PX9LAL. PX9LAL must be loaded into the transient area with
the OV command before executing the LL command.
Syntax deﬁnition:

LL

The command is terminated by a carriage return.

3-14 ' Digital Systems Division

o]
{@} 934255.9701

Description: PX9LAL loads program modules into the memory of the Model 990 Computer and
performs address modification for refocatable code. PX9LAL also performs the linking defined in
the program modules and prints a load map. After all modules have been loaded, control returns
to the monitor. Details of PX9LAL operation are contained in the next paragraph.

Example:
LL

After the user has entered the command, a series of questions is printed. The answers provide
~ the information needed to complete the linking and loading.

3.4.6.1 Description of PX9LAL Operation. PX9LAL loads the first object module supplied.
Subsequent object modules will be loaded only if the first six characters of the Program
Identifier (IDT) assembler directive character string of the module match an unsatisfied external
reference included in a previously loaded module. This makes it necessary for the user to
identify the modules desired since modules not referenced are not loaded. Th1s also allows the
user to maintain a library of program modules on cassette.

A program identifier (IDT) assembler directive allows a program name of up to eight characters,
but PX9LAL recognizes and prints only the first six. Therefore, the ﬁrst six characters of all IDT
program names must be unique.

End—of Module and End-of-File Records.. ‘A module is terminated by an end-of-module separator
record, which is denoted by a colon as the first character of the record. The end-of-module
record is generated by the assembler when an “END” statement is encountered. The end-of-file
record is generated by the assembler when an end-of-file record is encountered by the assembler
on the source input. This enables the user to batch-assemble source and batch-load object
modules. The loader will continue loading modules from one cassette until an end-of- fﬂe record
is encountered. .

PX9LAL Symbol Table. The symbol table is built in the user area. The length of the symbol
table is determined by the number of symbols externally defined or referenced in the program
loaded by PX9LAL. Ten bytes of memory are required for ‘a symbol table entry for each
symbol. PX9LAL builds the symbol table toward the low-order addresses in memory, beginning
at the top of user memory.

User Program Load Addresses. PX9LAL loads user programs into the user memory‘ address space.
The user program may not be loaded in a memory area with a higher address than the current
lowest address of the symbal table. If the user attempts this, an error message will be printed.

As described in Section VI, the object code may contain a load point preceded by a tag
character of D. The tag character and the associated load point must precede the other tag
characters and fields of the program module. PX9LAL loads the relocatable code of the module
beginning at the specified load point unless the load point is an odd address (not on a word
boundary). In that case, PX9LAL loads the relocatable code beginning at the word boundary
preceding the address. When no load point is specified for the first module loaded, PXSLAL
loads the relocatable code beginning at a default address (AO,,). When no load point is specified
for a subsequent module, PX9LAL loads the relocatable code beginning at the first word
boundary following the last byte of the preceding module.

3-15 Digital Systems Division

[e]
@ 945255-9701

Loading of Program Modules. PX9LAL loads a program module by placing the data of the
module in the proper addresses. The object program may contain both absolute and relocatable
code. PX9LAL places data at absolute addresses supplied in the object program, and modifies
relocatable addresses to obtain actual memory addresses into which it places the associated data.
Absolute data is placed in memory directly, but relocatable data is modified and placed in
memory. Relocation and the modifications required for relocation are described in a subsequent
paragraph.

As PX9LAL loads a module, it processes the data in the module that specifies the linking to be
performed. This data consists of symbols from the operand fields of DEF statements, and
symbols from the operand fields of REF statements. PX9LAL maintains a list of symbols and
the correspondmg memory addresses to perform the required linking, and to define requlred
modules. Linking is described in a subsequent paragraph.

After the user enters “E” in response to the “LOAD/END?” message, PX9LAL prints a list of
symbols that represent any unresolved references and the entry point for the program. The user

" may either prepare a module for loading to resolve the references and request PX9LAL to load
it, or return to the monitor.

Relocation. The relocation pfovided by PX9LAL allows the relocatable segments of program
modules to be loaded into available memory sequentially.

Within relocatable segments of a program module, all addresses are relative to the start of the
first relocatable segment of the program module. PX9LAL computes the corresponding memory
address by adding the memory address of the load point of the program module to the
relocatable addresses..

‘Data within the program module that represents a relocatable address or is derived from a
relocatable address (by evaluating an expression, for example) is relocatable even though it may
appear at an absolute address. PX9LAL modifies this data by adding the memory address of the
load point of the program module to the data.

By modifying addresses and data as previously described, PX9LAL makes the necessary adjust-
ments for executing the program properly from any area of memory. This modification precedes,
and is independent of, any required linking.

Linking. The purpose of linking is to integrate two or more program modules as they are loaded,
resulting in a program in memory which the computer can execute properly, i.e., any address
required by more than one module must be placed in all locations that reference the address.

The object code of each module contains the symbols defined in the module for use in other
modules. A value is associated with each symbol

The object code of each module also contains any symbols required in the module but defined
in another module. Associated- with each symbol is an address of a location into which the value
associated with the symbol must be placed. When the value is required in more than one location
in the module, these locations are chained together with each location containing the address of
the next location, and the last location in the chain containing zero. As supplied by the
assembler, the addresses in the chain may be either absolute or relocatable.

To link the modules, PX9LAL processes the chain associated with each external symbol by
placing the corresponding address in each location in the chain until it has placed the address in
the location that contains zero, the end of the chain.

3-16 Digital Systems Division

(o]
{@? 945255-9701

The object code of a module may also contain a symbol similar to an external reference, but
different in two respects. The symbol is the first six characters of the IDT character string of
one of the program modules to be linked, and a zero value is associated with the symbol. The
symbol is used by PX9LAL to identify a required module. The zero inhibits any attempt to
perform linking. When more than one program module is to be loaded, the first module must
contain at least one reference of this type and may contain one for each module of the load.

Printed Output. The printed output of PX9LAL is a full or partial load map. This map shows
the name and load point of each module that is loaded. The full map alsc includes the symbols
and the corresponding memory addresses of any external definitions in the module. Both types
of maps contain only names of modules that have been loaded because they were referenced.

3.4.6.2 Operational Messages. When PX9LAL is started by the LL command, a series of
messages requesting user responses are given. The messages are the following.

LD PT?

Load Point. The user should input the hexadecimal memory location of the load point
for the object module. If a carriage return is entered, the default value of 0 will be
assumed.

LD BI?

Load Bias. The user should input the hexadecimal value of the load bias for the object
module or modules to be loaded. If a carriage return is entered, the default value
00AOQ,, will be assumed.

The load point and load bias specified above are used in determining how the code is
relocated and the memory address where the code will actually be loaded. Code
assembled with an absolute origin (AORG) directive will be loaded at the absolute
address determined by the directive plus the load point.

MEMLOC = ABS ADDR + LD PT

Code assembled with a relocatable origin (RORG) directive will be loaded at the
relocatable address determined by the directive plus the load bias plus the load point.

MEMLOC = REL ADDR + LD BI + LD PT

Note that the relocation is performed on the code using the load bias only. Specifying
a load bias is equivalent to placing a D tag with that bias before the module being
loaded. The load point is only used to determine the actual memory location where
the code will be loaded.

Object code loaded with a load point not equal to the default O is not executable. This
feature has been included in the linking loader for special Prototyping System
applications.

3-17 Digital Systems Division

[e) .
{@? 945255-9701

F/P LIST?

Full or Partial List. The user enters a character to specify the type of memory map
desired. When the user enters an “F”’, PX9LAL prints a full memory map. When the
user enters a “P”, or any other character, PX9LAL prints a partial memory map. A
partial memory map lists the IDT name and load point of each module that is loaded.
Multiply-defined references are shown by one or more “Ms” following the load point
of the module in which the multiple definition occurs. The partial map does not
identify the multiple definitions, but does indicate the number of multiple definitions
in each module. : '

A full memory map lists IDT name and load point of each module that is loaded like
the partial memory map. The full memory map also includes the symbols and the
corresponding memory addresses of any external definitions in the module. Names of
modules that are not referenced do not appear in either type of map. Multiply-defined
references are each identified by an “M” at the end of the external definition line.

LOAD/END?

Load or End. To load a program module or modules, the user should position the
cassette to the desired object module and enter an “L” which may be followed by the
hexadecimal logical unit number of the input device. (See Section II and paragraph
3.4.2.) If no number is input, a default LUNO of 7 will be assumed. If a number is
input it must be between hexadecimal 0 and F inclusive and of the form “L<n>"’ with
no embedded blanks.

Example: LOAD/END? L8

When the ioad option is selected, PX9LAL loads all the object modules on the
positioned cassette until an end-of-file is encountered. Unless a fatal error is encoun-
tered while loading, PX9LAL will repeat the previous message after the modules have

been loaded. At that point, the user may position to another module on cassette to be
loaded.

When all modules required for the program have been loaded, the user should enter an
“E” to end the load process.

When the user enters an “E”, PX9LAL prints any undefined symbols and the following
message to identify the entry point of the loaded program.

ENTRY = XXXX
If no entry point was specified, the program assumes a default of 00AQ,,.
T}he fo]iqwing question is then asked. ’
TERM/CONT?
Terminate or Continue. The user should enter ““T” to terminate the load process or
“C” to continue. If terminate is selected, control returns to the monitor. At that point

~ the program counter register has been set to the entry printed previously and the user
may enter the “EX” or “RU” command to execute or debug his program.

3-18 Digital Systems Division

[o]
(@ 9452559701

The user may select the continue option in order to load more program modules,
possibly to satisfy undefined references. If continue is selected the “LOAD/END”
question will be asked again.

3.4.6.3 Error Messages. PX9LAL prints an error message when it detects an error. One message
is for a command processor error. There are four fatal errors that terminate execution of
PX9LAL following the printing of the error message. There are four other error messages that
serve as warnings. PX9LAL continues the load operation following the printing of these
messages.

Commaﬁd Processor Error. This message is:
MX03 PX9LAL Not Loaded in Transient Area

PX9MTR prints this message when it determines that PX9LAL is not resident in the monitor
transient area. Load the overlay and reenter the command.

Fatal Errors. The first message is:
LLO1 Illegal Load Sequence

In a module, PX9LAL will accept no other field except a field having a tag character of D ahead
of a field that is preceded by a tag character of 0. PX9LAL will not accept a field preceded by
tag character D after it has read a field preceded by the tag character 0. When PX9LAL reads a
field of the object code out of sequence, it prints this message. PX9LAL then terminates and
restarts. The user may recover from the error by correcting the sequence of the object code and
reloading the program.

The second message is:
LO2 Invalid Load Code

PX9LAL prints this message when it reads an invalid character as the tag character. Valid tag
characters processed by PX9LAL are the hexadecimal digits O through D and F, G, and H. Tag
characters G and H are symbol table tags in the 990/10 Disc System Software, but PX9LAL
ignores them. '

When this error occurs, the PX9LAL module (but not the entire link sequence) terminates and
restarts. The user may recover from the error by correcting the object code and reloading the
program. The error in the object code may be an error in entering the tag character. It may also
be a legitimate tag character used incorrectly, causing PX9LAL to consider a character in a label
or a character string as a tag character.

The third message is:
*X]T03** Missing End Statement -

PX9LAL prints this message when a second tag character O is followed by a nonblank IDT
character string in the same object module (no end-of-module record between the two). An
object module may contain more than one field with a tag character of O, but the IDT character
string associated with a subsequent O tag must be blank.

3-19 Digital Systems Division

o
{@ 945255-9701

When this error occurs, PX9LAL terminates and restarts. The user may recover from the error by
correcting the object code and reloading the program. The obvious correction is the insertion of
an end-of-module record preceding the second field that has a tag character of 0. However, when
the error results from improper concatenation of object code files or omission of one or more
object records, additional correction may be required.

The fourth message is:
LLO4 Load Address Error

PX9LAL prints this message when a load address is out of the user area or would cause PX9LAL
to load data over the symbol table.

If this error occurs, PX9LAL terminates and restarts. The user may recover from this error by
changing the load bias if the bias is greater than the default. PX9LAL loads programs in the user
area of memory and builds a symbol table at the top of user memory directly below PX9MTP.
The symbol table contains the IDT character string of the first module loaded, and each symbol
is used in an external reference or definition. Ten bytes of memory are requlred for each entry
in the table.

Nonfatal Errors. The first message is:
LOS5 Previous Load Module Error

PX9LAL prints this warning message when the first six characters of the IDT name of the .
current module match the first six characters of the IDT name of a previously loaded module or
match a previously loaded externally defined symbol. PX9LAL then skips over records to the
end of the module and positions the tape to the beginning of the next module. The message
LOAD/END is then printed. The user should identify the module to which the message applies.
When the module is required instead of the previously loaded module, either remove the first
module, or place the required module ahead of the other module in the load sequence, and
reload. When both modules are required, change the IDT character string of either module, and
reload. When the first six characters of the IDT character string are identical to a symbol
externally defined in a module of the program, change either the symbol or the IDT character
string and reload. When the module is not required, the mesage may be ignored. .

The second message is:
LLO6 Checksum Error—Retry

Each record of an object module contains a checksum. The checksum is the 2’s complement
of the sum of the binary values corresponding to the ASCII representations of the characters in
the record, including the checksum tag character, and is expressed as four hexadecimal digits.
PX9LAL computes a checksum of the record it has read and compares the result with the
checksum from the record. When the checksums are not equal, PX9LAL prints this message.

The user may position the object module tape for reading the record again by taking the
playback cassette off-line and backspacing the tape one record. (To backspace the tape one
record, set the PLAYBACK switch to LOCAL, and press the REV side of the BLOCK
FWD/REV switch in the PLAYBACK CONTROL area of the upper switch panel.) If the user
does not change the position of the tape, the checksum -error will be ignored. To continue the
loading process, the user must enter a carriage return on the keyboard.

3-20 : Digital Systems Division

o
%ji’@ 945255-9701

A checksum error which represents an inaccurate reading of the object code should not be
ignored. The record should be reread at least once in the attempt to read it correctly. However,
a checksum error may be the result of altering the contents of an object record without
removing the checksum field. This type of checksum error may be ignored.

The third message is:
M Multiply-Defined Symbol

PX9LAL prints an “M” for each multiply-defined external definition encountered when pro-
cessing a module. When a full memory map is being printed, the “M” is printed on the external
definition line. When a partial memory map is being printed, an “M” for each multiply-defined
symbol in the module follows the module name and load point.

When the second definition is required in the program instead of the first, change the load
sequence to load the program module that contains the desired definition first and reload. When
both definitions are required in the program, change one of the symbols and reload. This may
also require changing corresponding references to avoid other errors. When the symbol of the
definition contains the first six characters of the IDT character string of a previously loaded
program module, change the symbol and corresponding references or the IDT character string
and its reference, and reload. When the definition is not required in the program, ignore the
message.

The fourth message is:
UNDEFINED Undefined Symbols

When all modules have been processed, and the user enters “E” to the “LOAD/END” option,
PX9LAL scans the symbol table to find any symbols that are not defined. If any undefined
symbols are found, this message followed by a list of undefined symbols is printed.

An intentionally undefined external reference (dummy reference) that is included in one of the
modules of a program permits a type of load-time patching. If external references have been
inadvertently omitted, a program module may be generated that uses the deliberately undefined
reference as the IDT character string, and consists of absolute external definitions to satisfy
program requirements. PX9LAL loads this module, and the program is ready for execution. If
the deliberately undefined reference is the only undefined reference, the program may be
executed properly with the reference remaining undefined. This technique is intended for use
during program development.

3.4.6.4 Examples of Load Map Printouts. The following five examples show load map printouts
of load operations with and without linking.

3-21 Digital Systems Division

o
(I@ 945255-9701

Example 1:

-0v 3

LL

-LL

LD PT?

LD BI7 193
F<P LIST? F

LOAD-END? L

<REF 0109

o PRINTC 0195
SETCHR O1A4
TERM 2123
PARIEM 02B4

L 2

e PRRSE 0315
+ DEFPR 3470
o OPNDPR 0474
o OPERPR 0472
o STMT 0455
CTYPM 04D5
s CTVYP OSIE
PRTBM 0553
s PRTB 3353
CIVMM 0586
e SN 05B5
e I3vM 718
» NATLOC 972R
+ ENDZ'M 1E3R
s FST3TM 0720

SYMRFM 1E45
IVMREF 1E45
avFL 1ETC
TYMDFM 1E3C .
* SVMDEF 1E9C
LORD“END? E
ENTRY = 0100

* e

TERM.-COMTY T

Example 1 shows a full load map printout of a link and load of seven modules. The default load
point of O is taken and a load bias of 0100,, is entered. The module names are XREF,
PARSEM, CTYPM, PRTBM, CSYMM, SYMRFM, and SYMDFM. The address following XREF
shows that the module XREF is loaded at address 100,,. The addresses following each of the
other module names specify the hexadecimal addresses where each module is loaded. The symbol
names preceded by asterisks are the external definitions supplied by the module, and the
absolute addresses corresponding to the defined labels are also printed. The external definitions
PRINTC, GETCHR, and TERM are defined in the module XREF. PRINTC is at address 0196,4,
GETCHR is at address 01A4,,, and TERM is at address 01C8 .

All of the files are on one cassette with an end-of-file after the last module SYMDFM. Therefore,
all the modules were loaded, and the LOAD/END question was then printed. Since all modules

had been loaded, an “E” was entered to end the load process. The entry point of 0100, was
then printed.

3-22 Digital Systems Division

945255-9701

Example 2:

il

o FPTY O

-—

217 109

P LISTT P

mra

WORDCEHDY L
~REF 0140
FRFZEM 02B4
ZTYPM IR 3118
FRTBM a5e:3
CETMM 0 B
ZTMRFM LE4S
TVMDFM 1E3C
LOAD-EMDY E
ENTRY = 0139

TERM-COHTT T

Example 2 shows a partial load map printout of a link and load of the same seven modules
loaded in example 1.

Example 3:

i
& e b

LD PTT
LD BIT
FoP LIZTY £

LOADEMDT L
IOFTES 03RA0
LOATEMDT L3

IOFP330 - 10D
* MABELL L0DC

Igrz 10Fs

+ EMDFIL 10F5
1ar3 110

+ LERADER 1105
I0F4 1125

* EMIF 11ng

e EMDL 113

* PCHCRL 1154

+ PUMCH 1125
10P5 1173

+ CHTCHE 1132

* CHTRTH 113A

s COMPET 1173
I0Fs 113E

* REDPHT 113E
1orv 11AC

+ FPRIMNT 11AC
* PRTIT 1154

IOFs3 11D0

* EEY 11090
1oF3 1202

+ REARD a2

taaz
¢ REDIN 122A

323 Digital Systems Division

945255-9701

I0P10
10P11
10P12
10P13
10P14
I0P15

I0OP1s

10P17

10P13

10P19
10P20

10P21
1oP22

1opP23

10P24
10P25
1apras
1oP27?

L 20 28 2 AR J L 2R L 2R 2K 2% 2K 2R 2R 2K X 4 L 2K 2K J

¢

* e e

*
4

LOAD.-END? E

ENTRY = 1

TERM/CONT? T

D3
T

1243
PUTIN
12?s
SCREEN
1232
TABCHK,
1205
COMTRL
12EC
FORM
1322
FORM
LFCR
LFCR2
1353
CNTZHK
CNTRTN
CONTRL
FORM
IN
LFCR
PRTIT
PUTIN
SCREEN
1353
guTP
TRBCHK
1330C
FLAS
ouT
ouTP
REDIN
TRBCHK
13C3
STATUS

"13CE

LORD
REWMD1
RELIND2
13F4
BRACK
1400
ULOARD1
ULOARD2
1414
RECRD1
RECRD2
1428
REWIND
14350
RDC
1455
STATRS
147R
DELRY
DELA'Y1

1450
1458

147R

147E .

M

3-24

Digital Systems Division

[o]
{@ 945255-9701

Example 3 shows a full load map printout of a link and load of 28 modules. The default load
point and load bias values of 0 and AQ,, respectively are taken. The first module IOPTES is on
one cassette and the other 27 modules are on a second cassette. The “L” response to the first
LOAD/END question specifies a load from the tape mounted in the drive assigned to LUNO 7.
After the first module is loaded and the end of file encountered, the LOAD/END question is
asked again. The response ‘“L8” specifies a load from the tape mounted in the drive assigned to
LUNO 8. The Ms printed after the absolute addresses of the external definitions indicate that
these references are multiply defined. When a reference is multiply defined, the first encountered
definition is used. The response “E” to the final LOAD/END question ends the load process.
The entry point of 10D8,¢ is then printed.

Example 4:
kb

LD PT?
LD BI?
F-F LIST? E

LOARD-ENDT L
IOPTEZ 03R0

LORD-ENDT E

JHDEF
BRCK
COMRET
EMDFIL
I
IOFP1O
I0P11
1I0FPiz
I0P1L3
I0F14
10F15
IOF1s .
10P1LT
I0FPL3
I0P1L3
1orP2
10P20
1orP21
1gra2
10P23
1a0rP24
10P25
10P2e
igrPav
10P3
10P4
10PS
10P%
10FP7 -
10P3
1grP?2
10P3340
kEY
LERTER
MRBELL
our
guTP
FRINT
FUNCH
READ

3-25 _ Digital Systems Division

[e]
{—@? 945255-9701

RECZFDIL .
RECRTZ
REDFPHT
REWNMDL
REWNDZ
STATLE
JLORDL
uegRbz
EHTRY = 10D3

TERM -COMT™ T

Example 4 shows a full load map printout of a load of the first module used in example 3. The
“E” response to the second LOAD/END question terminates the load process. Any undefined
references are then printed. These undefined references are external references specified in the
module TOPTES. To continue loading to satisfy the undefined references, a “C” could be entered
when the “TERM/CONT” question is asked. The user could then continue the load process.

Example 5:

L

LD PTT Ld20

LD BIT

FoP LISTY E

LOARD-EMDT I
IOFP330 J0RAD

+ MAZELL

LOAD.'ENDT E

ENTRY = 00RQ

QOR0

TERM-CONTT T

Example 5 shows a full load map printout of a load of one module. The load point specified is
1000, and the default load bias of AQ,, is selected. The printout specifies that the load point
of IOP990 is A0, and the symbol MABELL is at location AQO,,. These are the addresses at
which this program will execute and all relocation is done with this bias. However, the
relocatable code is actually loaded starting at 10A0,,, the sum of the load point and the load

bias.

3.4.7 DUMP IN ABSOLUTE FORMAT (DP). The Dump in Absolute Format (DP) command is
used to dump an area of memory to cassette tape in compressed absolute data format. This
command must be loaded into the transient area. with the OV command before it can be

executed.

Syntax definition:

DP {é] <start addr> {,b

) <] . 1]

} <end addr> [{t’) } [<entry point>]

3-26

Digital Systems Division

o
%@@ 945255-9701

The command is terminated by a carriage return.

Parameters:

start addr Memory address of the first byte to be dumped; a
hexadecimal number in the range O through FFFF.

end addr Memory address of the last byte to be dumped; a
hexadecimal number in the range O through FFFF.

entry point Entry point of the program when it is reloaded; a
hexadecimal number in the range O through FFFF.

program name The name of the program; 1 to 15 alphanumeric
characters.

P If P is entered, the end-of-module tag and the end-

of-file marker will not be written on tape.

Parameter default values:

The first two parameters, the starting memory address and the ending memory address, are
required.

If entry point is not specified, no entry point value is supplied.

If program name is not specified, no program name is supplied.

If P is not specified, the end-of-module tag and the end-of-file marker will be written.
Description: The Dump in Absolute Format command allows the user to store on fape any
sections of memory he wishes to save. This is very useful when patches have been made to the
object code during a debug session. By dumping the code to tape, these patches need not be

recreated when the debugging is resumed.

Storing a program in absolute format is also useful for loading purposes. Whether loaded by the
LA command or with the upfront loader and the LU command, the load is considerably faster
than with the standard object code loader. ‘ -

The output is directed to the device assigned to LUNO 7, normally tape cassette CS1. The
LUNO assignment may be changed with the Assign LUNO (AL) command.

The partial dump option is useful for dumping noncontiguous portions of memory. The last
module dumped must not be a partial dump or an error will occur when loading.

Error messages:
DP13 Low memory address greater than high memory address.

MPOO Parameter specification error. Reenter the command with
the correct parameter.

3-27 Digital Systems Division

o .
@ 945255-9701

MSO5 Required parameter not entered. Reenter the command with
the parameter.

MXO01 Unrecoverable I/O error.

Examples:

.DP_1000,1030,1004,DUMPIT
~.DP_1000,1040

In the first example, the bytes from location 1000,; up to and inciuding 1030, are dumped.
The entry point is 1004, and the name of the program is DUMPIT. In the second example, no
name or entry point was specified when the memory area was dumped. In both examples,
because P is not specified, the end-of-module tag and the end-of-file marker will be written.

3.4.8 LOAD PROGRAM IN COMPRESSED ABSOLUTE FORMAT WITH UPFRONT LOADER
(LU). The Load Program in Compressed Absolute Format with Upfront Loader (LU) command
initiates a load of absolute code.

Syntax definition:

o} fowe] [} <]

The commangd is terminated by a carriage return.
Parameters:

luno Logical unit number of the input device.

bias Base address of the relocatable upfront loader.
Pérameter default values: |

If the logical unit number is not specified, a value of 7, normally assigned to tape cassette CS1,
is used.

If the bias address is not specified, the upfront loader is loaded at a location 1BO,, bytes below
the beginning of the monitor.

Description: Compressed absolute format code may be loaded by including a short loader (called'
an upfront loader) at the beginning of the code.

The upfront loader is 1B0,, bytes of relocatable code, in standard 990 object code module
format, placed in front of a load module of compressed absolute format code in order to reduce
the loading time. Executing the LU command causes the upfront loader to be loaded by the 733
ASR ROM loader. After the upfront loader is memory resident, control is passed to it and the
compressed absolute load initiated. When the user program is loaded, the program entry point is
placed in the user’s PC register and control is returned to the command string processor. The
user must be careful to put the upfront loader at a position in the user memory where it will
not be overlayed by the program being loaded.

3-28 Digital Systems Division

o]
i‘—@? . 945255-9701

Error message:
LDO0O Load error.
LDO1 Invalid LUNO.
Examples:

LU
LU 7,1BAO
.LU,,1BAO

The first and third examples load from a default LUNO of 7. The first example loads the
upfront loader at a default bias address 1B0,, bytes below the beginning of the monitor. The
second example has the load LUNO and bias address supplied. The third example has the load
bias supplied.

3.4.9 LOAD PROGRAM IN COMPRESSED ABSOLUTE FOCRMAT (LA). The Load Program in
Compressed Absolute Format command loads object code that has been stored in a compressed
absolute format by the Dump in Absolute Format (DP) command. The LA command must be
loaded into the transient area with the OV command before it can be executed.

Syntax definition:

[l) <onec]

The command is terminated by a carriage return.
Parameter:
luno Logical unit number of the input device.

Parameter default value: If the logical unit number is not specified, a value of 7, normally
assigned to tape cassette CS1, is used.

Description: To execute the LA command, the absolute loader must be resident in the transient
area. If it is not there, it must be loaded as an overlay by using the Load Overlay (OV)
command. ,
If the load is successful, the module name is printed if it was defined and the entry point
address is placed into the user’s PC register. Control is returned to the monitor after a successful
load or if an error occurs. Refer to Section VI for a description of compressed absolute object
code format. ,
Error messages: :

LDO0 Load error.

LDO01 Invalid LUNO. !

MX03 Command not resident in transient area. Load the overlay
.and reenter the command.

3-29 - « Digital Systems Division

[e]
e‘—@'ﬁ) 945255-9701

Examples:

.LA 8
DUMPIT

LA

In the first example, the module on LUNO 8, which was created using a Dump in Absolute
Format (DP) command, is loaded. (The program name DUMPIT was assigned to the module.)
The module is loaded and the program name printed. The entry point is put in the user’s
program counter register; this address will be displayed in the programmer panel data indicator
lamps.

The module loaded in the second example is input from default LUNO 7 and did not have a
name associated with it when it was created with the DP command.

3.4.10 EXECUTE USER PROGRAM DIRECTLY (EX). The Execute User Program Directly
command is used to start a user program. (The one-pass assembler and the text editor are loaded
as user programs.)

Syntax definition:

EX
The command is terminated by a carriage return.
Description: The program is executed directly by the 990 computer without using the SIE or
trace features. Execution is started with the PC, WP and ST that would be displayed if an
Inspect Registers (IR) command were executed.
Application notes: In order to regain control from an executing user program, the user must
intervene at the programmer panel. The monitor may be restarted by transferring control to its
starting memory location (the first word of the monitor memory area).
The processor registers (the WP, PC and ST registers), the contents of which may be displayed
by entering the Inspect Registers (IR) command, are not updated when a program is executed
with the EX command.

A user program may return control to the monitor by using the end-of-program supervisor call.

If the user runs a stand-alone program, for example using the CRU to perform I/O, he must
inspect the processor registers from the programmer panel.

3-30- Digital Systems Division

@ 9452559701

Example:

IR

PC=046C WP=0000 ST=0000
EX

ASM/TERM? A

ASM/TERM? T

AR
PC=046C WP=0000 ST=0000

The EX command begins execution with the PC, WP and ST registers equal to the values
obtained when the Inspect Registers (IR) command is invoked. A program run under EX does
not change the contents of these registers. The second IR command shows that the contents
remain the same.

3.4.11 EXECUTE USER PROGRAM UNDER SIE OR TRACE (RU). The Execute User Pro-
gram under SIE or Trace command provides controlled execution of the user’s program.

Syntax definition:
RU [{f; } <instruction count>]

The command is terminated by a carriage return.
Parameter:

instruction count Maximum number of instructions to be executed
before returning to command mode. A value of
0 indicates that no instruction limit applies.

Parameter default value: The value of the instruction count at the last entry into command
mode is used as the default value. If the previous RU command has exhausted the instruction
count, the default is 0, implying no instruction limit. The system is initially loaded with a
default value of 0.

Description: Instructions in the user’s program are executed one at a time using either the
hardware SIE feature or the software trace interpreter. The user may specify one of these two
modes of operation with the Set Trace Region (SR) command (paragraph 3.4.26).

Before the monitor executes a user instruction, it checks whether the instruction is within a
defined trace region. If the instruction is within a trace region, the trace interpreter is called and
the instruction traced. If the instruction is not within a trace region, the instruction is executed
using Single Instruction Execution (SIE, described in paragraph 3.3.1). In both cases, the user’s
WP, PC, and ST registers are updated after each instruction executed. The monitor checks
whether a breakpoint has been reached and if so, prints out the user’s registers and snapshot, if
defined. If a snapshot is assigned to a breakpoint, the monitor continues execution after the
breakpoint has been reached, without operator intervention. If no snapshot was specified, the
monitor returns control to the command processor. (Refer to the descriptions of the SB and SS
commands in paragraph 3.4.20 and 3.4.23.) If the run count, number of instructions to be

3-31 Digital Systems Division

o
@ 9452559701

eXecuted, is depleted, the monitor returns control to the command processor. Otherwise the
monitor continues execution of the user program.

Error message:

MXO04 Attempt to execute in trace mode when the mstructmn trace
overlay is not loaded.

Application notes: Be sure that the processor registers are properly set before beginning
execution. The contents of the registers may be inspected with the Inspect Registers (IR)
command and modified as needed with the Modify Registers: (MR) command. The initial PC is
set by the loader when a user program that specifies an entry point is loaded. The starting
memory location of a program is specified in the END ‘statement of the program; a label that
appears within the program for this purpose is referenced in the END statement. If two or more
user programs are competing for specification of the starting location, the last one loaded takes
precedence. :

The user may regain control of the program which is executing under SIE or instruction trace by
pressing the escape (ESC) key on the terminal keyboard. If the user’s program is using monitor
I/O support, pressing the ESC key may cause an escape character to be returned to the program
rather than to the monitor; the user should be aware that the escape character may be handled
in these two different ways since the results of program operation may be affected.

Interrupts are processed as they occur by the user program using the SIE mode of execution.
When running under the trace mode, mterrupts and extended operations (XOPs) are executed
directly.

When running under SIE, an IDLE assembly language machine instruction is handled like an NOP
instruction. The SIE level O interrupt causes the computer to continue execution.

" The user must be aware of how the 733 ASR operates when he decides to enable interrupts
since interrupts can occur when character keys are pressed. PXOMTP is not interrupt driven;
therefore, significant problems may result. It is recommended that the interrupt mask ‘be set if
possible so that the 733 ASR cannot interrupt.

The overhead when executing under SIE is approximately 100 instructions for each user
instruction. Using trace, the overhead is approximately 170 instructions for each user instruction.

It is often convenient to use the trace mode of execution when no information is being printed

(by setting a null trace type). This is similar to executing using the SIE processor except that

interrupts run at full processing speed. A variable trace can also be used to detect modification
- of particular memory locations. (Variable trace is explained in paragraph 3.4.26.) :

Examples:

RU
.RU S ,

In the first example, the- maximum number of instructions to be executed before returning to
command mode is the value used at the last entry into command mode, or is O initially or if the
previous RU command has exhausted the instruction count. The second example specifies an
instruction count of §..

332 Digital Systems Division

o
%@? 945255-9701

3.4.12 MODIFY MEMORY (MM). The Modify Memory command displays the address and
contents of a memory word and accepts a new hexadecimal data value from the user.

Syntax definition:

MM [{% } <memory address>]

- The command is terminated by a carriage return.

Parameter:
memory address Address of memory to be modified.

Parameter default value: 1f the memory address is not specified, a value of 0 is used.
Descriprion: If the user inputs a new value, the memory location is modified to match the input
value. If the user terminates his input with a blank (space), the next location value is printed and
the process repeated. If the user terminates his input with a carriage returm or comma, the
command processing terminates.
Error message:

DP0O An invalid hexadecimal value was input.

Application nore: The MM command is useful for setting up desired conditions in order to check
out a routine. It is also convenient for creating patches and for examining memory one word at
a time.

Example:

.MM 1000
1000=FFFF 1
1002=FFFF 3
1004=FFFF
1006=FFFF 8

These command statements place the value 1 in location 1000, 3 in location 1002, and 8 in
location 1006. The user may enter a space (blank) if he does not want to modity a location but
wants to go on to the next location. A carriage return terminates the command at any time.

3.4.13 INSPECT MEMORY (IM). The Inspect Memory command is used to display in hexa-
decimal format the contents of one or more consecutive memory locations.

Syntax definition:

IM [{b’ } <starting mem addr> [{t; } <ending mem addr>]]

The command is terminated by a carriage return.

3-33 Digital Systems Division

o
%@ 945255-9701

Parameters:

starting mem addr Hexadecimal value representing the memory
address of the first memory word displayed.

ending mem addr Hexadecimal value representing the memory
address of the last memory word displayed.

Parameter default values:

If neither parameter is specified, all memory is dumped.

If the ending address is not specified, only one word is displayed.

An odd address is changed to the preceding word address before the addressed byte is displayed.
Description: Memory is displayed in groups of four words, two groups per line. The address of
the first word on the line is printed at the left. The display may be terminated at any time by
pressing the ESC key on the terminal keyboard. '

Error message,

DP13 The ending address specified is less than the
starting address specified.

Examples:

.IM 1000,1004
1000=1002 COEO 023E

.IM 1006 '
1006=1004 '

3.4.14 MODIFY REGISTERS (MR). The Modify Registers command displays the contents of
the user’s internal registers — workspace pointer (WP), program counter (PC), and status (ST)
registers — and allows the user to modify them.

Syntax definitions:
MR
The command is terminated by a carriage return.
Description: The register name and current contents are printed and an input is accepted from
the user. If the user inputs a valid hexadecimal number, the contents of the registers are

changed. If the user enters a space, the processor prints the name and contents of the next
register. If the user enters a carriage return, the command terminates.

3-34 Digital Systems Division

e}
\j‘—%\[_]@ 945255-9701

Error message:

DPOO An invalid hexadecimal number was input, or the
number input was greater than FFFF .

Application notes: Modification of the Workspace Pointer (WP) register causes the registers that
would be displayed by the Inspect Workspace Registers (IW) command to change. The Modify
Registers command is used to establish the initial environment for a program executed with the
Execute User Program Directly (EX) or the Execute User Program under SIE or Trace (RU)
command.

Examples:
MR

PC=2000 244
WP=0000 A6

ST=0000

MR

PC=0244
WP=00A6 A2
ST=0000 2
-MR

PC=0244 246

The first example changes the value in the PC register to 244, and the value in the WP register
to A6,,. The second example changes the WP register value to A2, and the ST register value
to 2,4. The third example changes the PC register value to 246 .

As in the second example, the user may press the space bar on the terminal keyboard if he does
not wish to modify a particular register. As in the third example, he may press the RETURN
key on the terminal keyboard after entering a new PC register value to terminate the command.

3.4.15 INSPECT REGISTERS (IR). The Inspect Registers command displays the contents of
the user’s registers - the program counter (PC), workspace pointer (WP), and status (ST)
registers - for the current user program.
- Syntax definition:
IR

The command is terminated by a carriage return.

Application note: The displayed register values are those values which are loaded into the
processor in response to an EX or RU command.

3-35 Digital Systems Division

{—@}2 945255-9701

Example:

AR : o
PC=0246 WP=0000 ST=0000

3.4.16 MODIFY WORKSPACE REGISTERS (MW). The Modify Workspace Revgisters command
- is used to display and change the contents of one or more of the user’s workspace registers.

Syntax definition:

MW [{l’; } <starting workspace reg>]

The command is terminated by a carriage return.
Parameter:

starting workspace reg The first workspace register to be
displayed. (Hexadecimal value.)

Parameter default value:
If the starting workspace register is not specified, a value of O is used.

Description: The names and current contents of the workspace registers are displayed. The
command processor accepts the user’s input, which may be a new value for the register contents
and a terminator. If a new value is input, the current contents of the specified register is
changed. If the terminator is a blank, the next register is printed for modification. If the
terminator is a carriage return or comma, the command processing terminates. The command
processing terminates automatically after processing workspace register 15 (F). ‘

Application note: The user is cautioned to be sure that the workspace' pointer actually points to
the intended workspace. The Modify Workspace Registers command displays the registers within
the current workspace (the workspace defined by displaying the WP in an IR command).

Example:

MW 4
R4=0000 7
R5=0000 89
R6=0000
R7=0000 1000

This example changes the contents of workspace registers R4, R5 and R7 to 7,,, 89, and
1000,,, respectively. A carriage return was entered after changing the contents of R7.

3.4.17 INSPECT WORKSPACE REGISTERS (IW). The Inspect'Workspace Registers command
is used to display the contents of a sequence of the user’s workspace registers.

3-36 Digital Systems Division

o]
@@ 945255-9701

Syntax definition:
W [[% } [<starting workspace reg>] [{6 } <ending workspace reg>]]

The command is terminated by a carriage return.

Parameters:

starting workspace reg First workspace register to be displayed.
Hexadecimal number.

ending workspace reg Last workspace register to be displayed.
Hexadecimal number.

Parameter default values:

If the starting workspace register is not specified, a value of O is used.

If the ending workspace register is not specified, the value used is the starting workspace register.
If neither parameter is specified, all 16 registers are displayed.

Description: The set of workspace registers displayed are those pointed to by the WP that would
be displayed if an IR command were executed. Workspace registers are displayed with the
register number preceding the register contents.

Error message:

DP13 Either the starting workspace register number is
greater than the ending workspace register number,
or a workspace register number greater than F ¢
was requested.

Examples:

JW
RO=0000 R1=0000 R2=0026 R3=0000 R4=0000 R5=2032 R6=0000 R7=0000
R8=0000 R9=0000 RA=0000 RB=0000 RC=0000 RD=3798 RE=2008 RF=0002

If no workspace register or range is specified, all 16 registers are printed.

w28
R2=0000 R3=0000 R4=0000 R5=0000 R6=0000 R7=0000 R8=0000

JW 2
R2=0000

3.4.18 MODIFY CRU REGISTER (MC). The Modify CRU Register command reads and dis-
plays the data on CRU input lines, and sets data on CRU output lines.

3-37 Digital Systems Division

o
é‘_@; 9452559701

Syntax definition:

el oy][} <crv wiaus]]

The command is terminated by a carriage return.

Parameters:
CRU address The CRU word address. A value from O to 1FFF .

CRU width The number of bits td be changed in each CRU
word (hexadecimal). A value from 1 to 10.
A value of O is interpreted as 10,4.

Parameter default values:
If the CRU word address is not specified, a value of O is used.
If the CRU width is not specified, a value of 10,4 is used.

Description: When the CRU bit width is less than 16 bits, the data value is displayed right
justified in a four-digit hexadecimal value. The user’s data may be input as a four-digit value; the
rightmost bits, where the bit width is given by the CRU width parameter, are used to modify the
CRU value. Enter a new value to change the value, a space to continue on to the next value, and
a carriage return to terminate data modification.

The addresses are displayed as they would be used in workspace register 12 (the CRU base
address), which is the actual CRU bit address times 2. Also, data is displayed and entered
directly as the STCR/LDCR instruction receives/sends it.

If the CRU word address is greater than 1FFF ¢, the command is ignored.
Error message:

DP12 CRU bit width parameter too small (negative) or too
large (greater than F,¢). Invalid bit string width.

Application note: The Modify CRU Register command may be used to change the data being
sent to an external device during the debugging of a new interface.

Examples:

.MC 1000 8 -
1000=00FF 0080
1010=00FF 0040

.MC 1000
1000=FFFF 1000

3-38 Digital Systems Division

o
%@ 945255-9701

In the first example, only the eight bits to be modified are displayed. After the data is entered, a
space causes the next eight CRU bits to be displayed. The address of the next eight bits is equal

to the previous address plus 10,4 (two times eight bits). In the second example, since the CRU
bit width is not specified, a value of 10, is used.

3.4.19 INSPECT CRU INPUT LINES (IC). The Inspect CRU Input Lines command is used to
display in hexadecimal format the contents of one or more consecutive CRU locations.

Syntax definition:

IC [{% } [<CRU lower limit>] [{b’ } <CRU upper limit>]]

The command is terminated by a carriage return.

Parameters:

CRU lower limit CRU address that begins the display. The

address must be in the range of 0 to
1FFF .

CRU upper limit CRU address that ends the display. The
address must be in the range 0 to
1FFF .
Parameter default values:

If the CRU lower limit is not specified, a value of O is used.

If the CRU upper limit is not specified and the CRU lower limit is specified, the default value is
the CRU lower limit. Sixteen bits are displayed.

If neither parameter is specified, the entire CRU is displayed.

Description: Data is displayed in groups of four words, two groups per line. The address of the
first word on the line is printed on the left. The display may be terminated at any time by
pressing the ESC key on the terminal keyboard.

The address displayed is the actual CRU bit address times two.

Error message:

DP13 The highest CRU address specified in less than the
lowest CRU address specified, or the highest CRU
address specified is greater than the highest CRU
address permitted (1FFF¢).

3-3¢9 Digital Systems Division

o
{@ 945255-9701

Examples:
.IC 1000 1060
1000=FFFF FFFF FFFF FFFF

JC 1
0100

8

608D

In the first example, the CRU bits at addresses 1000,, through 1060,, in 20,¢ increments, are
displayed. Since the CRU addresses are twice the actual bit addresses, the address of the next
10,6 CRU bits would be a 20,, address increment. In the second example, the 16 CRU bits at
location 100, are displayed.

3.420 SET SNAPSHOT (SS). The Set Snapshot command is used to define a set of registers
and memory locations to be displayed as a single unit.

Syntax definition.

SS {t; } [<snapshot no.] [{t; } [<starting reg no.] [{f’, }[<ending reg no.>]

[{’f; } [<starting memory addr>] [{é] <ending memory addr>]]]]

The command is terminated by a carriage return.

Parameters:
snapshot no. . Index number of snapshot to be defined.
The index is a number in the range 0-3.
starting-reg no. First workspace register to be displayed. -
ending reg no. Last workspace register to be displayed.

starting memory addr First memory word address to be displayed.
ending memory addr Last memory word address to be displayed.
Parameter default values:
If the snapshot number is not specified, a value of 0 is used.
If the starting workspace register number is not specified, a value of O is used.

If the ending workspace register number is not specified, the value used is the starting register
number if the starting register number is specified. Otherwise, the value is 0.

If the starting memory address is not specified, a value of 0 is used.

3-40 Digital Systems Division

[e]
{l‘@; 945255-9701

If the ending memory address is not specified, the value used is the starting memory address if
the starting memory address is specified. Otherwise, it is 0,¢.

Description: Snapshots may be invoked with the Inspect Snapshot (IS) command or when a
breakpoint which references a snapshot is encountered.

Error messages:

DPO3 A parameter is greater than the required maximum value.
Reenter the command.

DP04 Snapshot is already defined. Reenter the command.

DP13 The ending parameter (register or memory address) is
less than the beginning parameter.

Application notes: Snapshots are convenient for defining a frequently used display during a debug
session. If certain registers or memory data areas are frequently modified, they are likely choices
for snapshots.

Since a snapshot may be attached to a PC breakpoint to dump some data and continue
execution, a trace can be constructed which will be activated only when some specified event
occurs. A dump may be produced and execution will continue without operator intervention.

Snapshots are useful for extended traces when the user wants to leave the computer running
with breakpoints established. This would allow the computer to take an automatic dump when
an exceptional condition is encountered and then continue execution.

Examples:

.SS 1,2,5,1000,1002

.SS 0,0,F
In the first example, the snapshot associated with index 1 displays workspace registers 2 through
5 and memory locations 1000, through 1002,,. In the second example, the snapshot asso-
ciated with index O displays workspace registers 0 through F,¢ and memory address O (the

default). Refer to the IS command examples in paragraph 3.4.21 for the corresponding
commands.

3.4.21 INSPECT SNAPSHOT (IS). The Inspect Snapshot command is used to display’sequences
of workspace registers and memory addresses. ’

Syntax definition:

- IS [{1:,} [<starting snapshot no.>] [{,f; } <ending snapshot no.>]]

The command is terminated by a carriage return.

341 Digital Systems Division

o
%@ 945255-9701

- Parameters:
starting snapshot no. Index number (number of the snapshot in
sequence) of the first snapshot to be
displayed. A number from O to 3.
ending snapshot no. Index number of the last snapshot to be

displayed. A number from 0 to 3.
Parameter default values:

If neither the starting snapshot number nor the ending snapshot number is specified, all
snapshots are displayed.

If the starting snapshot number but not the ending snapshot number is specified, the named
snapshot is displayed.

If the ending snapshot number but not the starting snapshot number is specified, the snapshots
from O through the specified snapshot are displayed.

Description: Snapshots are defined with the Set Snapshot command. Attempts to display
undefined snapshots are ignored.

Error message.

DP13 Either the ending snapshot number is greater than
the starting snapshot number, or a snapshot number
greater than the permitted maximum was input. Re-
enter the command with the correct snapshot numbers.

Examples:

IS

SNAPO

R0O=0000 R1=0000 R2=0000 R3=0000 R4=0007 R5=0089 R6=0000 R7=0000
R8=0000 R9=0000 RA=0000 RB=0000 RC=0000 RD=0000 RE=0000 RF=0000
0000=0000

SNAP1

R2=0000 R3=0000 R4=0007 R5=0089

1000=0001 0003

1S 1,3

SNAP1 -
R2=0000 R3=0000 R4=0007 R5=0089
1000=0001 0003

JS 3

342 Digital Systems Division

(o]
%j@@ 945255-9701

The snapshots in these examples were set in the examples of the Set Snapshot command
(paragraph 3.4.20). In the last example, if a snapshot is not set, the monitor will return control
without printing anything.

3.4.22 CLEAR SNAPSHOT (CS). The Clear Snapshot command is used to disable previously
specified snapshots.

Syntax definition:

CS [{g } [<starting SnﬂPShOt>] [{b] <ending snapshot>]]

The command is terminated by a carriage return.

Parameters:
starting snapshot The first snapshot to be cleared. A
number from 0 to 3.
ending snapshot The last snapshot to be cleared. A

number from O to 3.
Parameter default values:
If no parameters are specified. all snapshots are cleared.
If only the first parameter is given. only the specified snapshot will be cleared.

If only the second parameter is given. snapshot O through the specified ending snapshot will be
cleared.

Description: If an attempt is made to clear a snapshot that has not been set, the command is
ignored.

Error message:

DPi13 A snapshot index greater than the maximum possible
index number (3) was specified. or the ending snap-
shot index was less than the starting snapshot index
number.

Examples:

.CS 0,2

.CS 2

In the first example, all snapshots except index number 3 are cleared. In the second example,
only snapshot 2 is cleared.

343 Digital Systems Division

[o]
{@; 945255-9701

3.4.23 SET BREAKPOINT (SB). The Set Breakpoint command is used to define a breakpoint
which causes the processor to stop or interrupt execution of a user program at a specified
instruction. , .

Syntax definition:

SB {f,;} <bkpt no.> {,E) }<memory addr> [{% } [<ref cnt>]

[{t’,,,_} <snapshot no.>]]

The command is terminated by a carriage returh.

Parameters.:

bkpt no.. ~ Breakpoint index number. The number may be
0, 1, 2 or 3. Required parameter.

memory addr Address of an instruction on which the break-
point is to be set. Required parameter.

ref cnt The pass number (hexadecimal) on which a
breakpoint is to be taken. For example,
a reference count of 3 means to break
on the third reference to the memory
address for an instruction fetch.

snapshot no. - Index number of a previously defined snapshot

which is to be displayed when the break-
point is taken.

Parameter default values:

If the reference count (pass number) is not specified, a value of 1 is used. If the user enters a
value of 0, it is equivalent to a reference count of FFFF .

If the snapshot number is not specified, a snapshot is not printed.

Use of breakpoints: The breakpoint is one of the key elements in program debugging because it
enables the user to specify conditions under which he wants to receive control. Breakpoints are
particularly useful when the user wants to intercept control after an unexpected control transfer
occurs from a conditional branch. By setting a breakpoint on the unexpected or error path out
of a conditional branch, the program may be allowed to execute without interruption unless
some error condition occurs.

When a breakpoint is encountered, the contents of the processor registers are displayed. (The
contents are the values that would be displayed if an IR command were to be invoked.) The
breakpoint index number is also displayed to aid in determining which breakpoint was
encountered.

If an attempt is made to set a breakpoint on an address outside the allowed range, the command
is ignored.

344 ” Digital Systems Division

o
{@ 9452559701

Error message:

DP20 Breakpoint specification error. Required index number
may be invalid or missing, or the PC value (memory
address) may have been omitted.

Application notes: The PC value for a breakpoint must point to the first word of a multiword
instruction.

A breakpoint occurs before the execution of the instruction to which it points.

If a snapshot is associated with a breakpoint, execution of the user program resumes after the
snapshot is printed. If no snapshot is associated with the breakpoint, execution terminates and
PX9MTP. accepts another command.

If more than one breakpoint is associated with a specific location, only the first (lowest
numbered) will be found.

If (1) the execution is under the control of the Execute User Program under SIE or Trace (RU)
command with an instruction count, (2) a breakpoint occurs, and (3) a new count is not
specified on the next RU command, then, when execution is resumed, counting is continued as
if no breakpoint was encountered.

Breakpoints are not active when the user code is executed with the EX command.

An error is not reported when a Set Breakpoint (SB) command redefines an already defined
v breakpoint. The specified breakpoint is modified to take on the new definition.

When an instruction has been fetched from a breakpoint location a number of times equal to the
contents of the reference counter, the breakpoint is activated.

Examples:

.SB 0,1000,1,2

SB 1,1000,1,0

.SB 2,1004
The first two examples set a breakpoint at address 1000 on the first reference to that address for
an instruction fetch. The first example sets breakpoint index number 0 with snapshot index
number 2 to be displayed, and the second example sets breakpoint index number 1 with
snapshot index number 0 to be displayed. The third example specifies breakpoint index number
2 to be taken at memory location 1004,,. No snapshot is printed, and execution of the user

program terminates after the breakpoint is encountered.

3.4.24 CLEAR BREAKPOINT (CB). The Clear Breakpoint command is used to disable
previously specified breakpoints.

Syntax definition:

CB [{T; } [<starting breakpoint>] [{% } <ending breakpoint>]]

3-45. Digital Systems Division

o
{@] 945255-9701

The command is terminated by a carriage return.

Parameters:

starting breakpoint The first breakpoint to be cleared. A
number from 0 to 3.

ending breakpoint The last breakpoint to be cleared. A
number from 0 to 3.

Parameter default values:
If no parameters are specified, all breakpoints are cleared.
If only the first parameter is given, only the specified breakpoint will be cleared.

If only the second parameter is given, breakpoints O through the specified ending breakpoint will
be cleared.

Description: If an attempt is made to clear a breakpoint that has not been set, the command is
ignored.

Error message:

DP13 A breakpoint index greater than the maximum possible
index number (3) was specified, or the ending break-
point index was less than the starting breakpoint
index number.

Examples:
.CB 13

.CB

The first example clears all breakpoints except number 0. The second example clears all
breakpoints. '

3.4.25 SET TRACE DEFINITION (ST). The Set Trace Definition command defines parameters
that determine what information about instruction trace regions will be printed. This command
is implemented as a service routine on the instruction trace overlay module.

-Syntax definition:

ST {t; } <format index> {1’5 } <char string>

The command is terminated by a carriage return.

346 Digital Systems Division

945255-9701

Parameters:

format index Trace format index number; a number
from 0 to 3.

char string Character string describing the options
to be printed. The string contains from
i to 27 characters.

Parameter default values: There are no default values. Both parameters are required.

Character string symbols: The character string symbol definitions and the associated trace
printouts are as follows:

Character Trace Output Description

P XXXX Program counter. The program counter is printed for every instruction exe-
cuted. The program counter value is printed if anything else is printed even if
“P” was not specified (example 1).

I F-IIII Instruction and format. (Instruction formats are described in the Model 990
Computer TMS9900 Microprocessor Assembly Language Programmer’s Guide,
Manual No. 943441-9701.) The instruction and its format are printed for each
instruction executed (example 2).

M ST=XXXX Status mask. The contents of the status mask which is placed in the user sta-
tus register is printed after each instruction executed (example 2).

w WP=XXXX Workspace pointer changes. When the user’s workspace changes, the new
workspace is printed. '

T BT=XXXX Targets for branch or jump instruction. Whenever a branch or jump occurs,
the target address of the branch/jump is printed.

C C=XXXX CRU address. When one of the instructions that references the CRU (LDCR,

. STCR, TB, SBO, SBZ) is executed, the address of the first bit referenced is
printed. For example, for TB 2, the address is base (=R12) + 2.

N (null) Null trace. No printout occurs. If any other characters occur in the string, the
null trace is overridden.

X X-XXXX XOP level. When an XOP instruction is executed, the XOP level is printed.

S Source. Refers to the source register. It is followed by an E, B, A or R.

E SE=XXXX Source effective address. This address is the memory location that the source

field addresses. It is printed for every instruction (example 2) that has a
source operand.

B SB=XXXX Contents of source effective address before execution. The contents of the
source effective address before execution are printed for every instruction
(example 2) with a source operand.

A SA=XXXX Contents of source effective address after execution. The contents of the
source effective address are printed after each instruction with a source
operand is executed (example 2).

R SR=XXXX Contents of source workspace register after execution for T, = 3 (indirect
addressing with autoincrement). (T is the source addressing mode field in an
assembly language machine instruction.) The contents of the source register
is printed if an autoincrement is specified.

34%r Digital Systems Divisioi

(o]
{@ 945255-9701

Character Trace Output Description
D Destination. Refers to the destination. It is followed by an E, B, A or R.
E DE=XXXX Destination effective address. This address is the memory address that the

destination field addresses. The destination effective address is only printed
for Format 1, 3, and 9 assembly language machine instructions. All other
instruction format types do not have a destination field (example 2).

B DB=XXXX Contents of destination effective address before statement executed. This is
printed whenever a destination field exists (example 2).

A DA=XXXX Contents of destination effective address after execution. This is printed
whenever a destination field exists (example 2).

R DR=XXXX Contents of destination workspace register after execution for Ty = 3 (in-
: direct addressing with autoincrement). (Ty is the destination addressing mode
field in an assembly language machine instruction.) The contents of the
destination register is printed if an autoincrement is specified.

Description: The character string is scanned for proper syntax. If the string conforms to the
syntax, a trace print control template is built and placed in the trace format table.

The character string in the ST command allows the user to select only those portions of the
trace output that he needs. For tutorial purposes, an extensive trace output could be requested,
while minimal traces such as a PC or variable trace are also easily selected. Each character in the
character string represents a desired portion of the trace. '

If any trace option other than PC is printed, PC is alsc printed.

A variable trace (paragraph 3.4.26) is implemented by specifying the desired variable.

The character string is scanned from left to right. The characters E, B, A and R are modified by
the most recent occurrence of S or D. If E, B, A or R is encountered before an occurrence of S
or D, or if an invalid character is encountered, the scan is aborted and an invalid syntax message

is issued. A character string consisting entirely of S or D is also an invalid syntax.

All four trace format table elements have initial values as follows when the debug monitor
overlay containing the ST command is loaded:

Index Number Equivalent Character String
0 P
1 PIWSEADEA
2 T
3

PIMWTCXSEBARDEBAR (all trace output options)

3-48 Digital Systems Division

(e}
@ 945255-9701

Error messages.:

DP23 Syntax error in trace format character string.
' Reenter the command.

DP26 Invalid trace format index number. Reenter
the command.

Examples of typical character strings: Some examples of typical character strings are presented
here. To invoke a PC trace, the character string is

P
If a branch trace is desired, the character string is
T

The character string for a trace that includes PC, instruction and format, workspace pointer
changes, and source and destination effective addresses is

PIWSEDE

To specify all options, the character string is the same as the string equivalent to default trace
format index number 3 (above).

Example 1: Trace formati 1 in the following example is defined as a program counter trace. The
program counter is the only option printed.

ST 1,P
SR 1,0,2000,1,N
MR

PC=198C 46C

1994
1996

Example 2: This example shows the trace format index number 1 set to a full trace.

ST 1,PIMWTCXSEBARDEBAR
.SR 1,24C,260,1,S
MR

3-49 Digital Systems Division

[o]
%@ 9452559701

PC=0250 24C

-RU

024C
0250
0254
0258
025C
0260

8-02E0

6-04E0
6-04E0
6-04E0
6-0720
1-C820

ST=0000 SE=00A6 SB=024C SA=024C

ST=0000 SE=01FC SB=0054 SA=0000

ST=0000 SE=01B4 SB=C259 SA=0000

ST=0000 SE=01B8 SB=C060 SA=0000

ST=0000 SE=01BA SB=01E6 SA=FFFF

ST=C000 SE=021E SB=109A SA=109A DE=00D2

DB=1850 DA=109A

3.4.26 SET TRACE REGION (SR). The Set Trace Region command defines a trace region. This
command must be loaded into the transient area with the OV command before it can be

executed.

Syntax definition.

SR {t’) }<region index> {’

b

} <lower mem addr> {’ } <upper mem addr>

b... b..

.} <tomatnder> [} sep egons] [l Jv>[fy } <>

) <=])]

The command is terminated by a carriage return.

Parameters:

region index

lower mem addr

upper mem addr

format index

step region

vl, v2,v3

Trace region index number; a number from
0 to 3.

First memory address in the trace region;
a hexadecimal number in the range 0 to
FFFE.

Last memory address in the trace region;
a hexadecimal number in the range 0 to
FFFE.

Trace format index number; a number from
0 to 3.

If this field contains S, an instruction
step region is specified. If it contains

N, the field specifies no instruction step.
Any other character specifies no instruc-
tion step.

Addresses of variables to be traced while
in the designated region. Up to three vari-
ables may be specified. The range of values
for each variable is O to FFFE . In the
printed trace data, only changes are shown.

3-50 Digital Systems Division

o]
Y@ 945255-9701

Parameter default values:
The first four parameters in the syntax definitions are required.
If the step region parameter is not specified, a value of N is used.

If none of the parameters vl, v2, and v3 are specified, no variables will be traced in the
designated region.

Description: The specified regions of memory are designated as the program area to be executed
under control of the interpretive trace. \

The trace region index number determines which trace type will be executed as defined by the
Set Trace Definition (ST) command. If two overlapping regions have been defined, the region
with the lowest index has precedence and the trace type defined in that region is executed. (See
example 1.)

The trace format index number indicates the trace type vector assigned to the trace region. When
the trace overlay is loaded, each of the four trace type vectors, indices O through 3, is assigned
an initial value. These vectors may be modified by the Set Trace Definition (ST) command.
Trace types may vary from a null trace to a full trace.

The function of the instruction step region is to control the execution of the user program. If
the instruction step region is set by entering an S parameter on the terminal keyboard, only one
instruction at a time will be executed and traced. To execute another instruction, the user must
press the space bar.

If variables have been specified to be traced, only changes will be printed. The format of the
output is:

AAAA =DDDD

Where AAAA is the address of the variable and DDDD is the new value of the variable. These
are hexadecimal values.

Error messages:

DP13 The specified last memory address was less than the
first memory address. Reenter the command.

DP10 Invalid trace region index number. Reenter the command.

DP26 Invalid trace format index number. Reenter the command.
Example 1: This example shows the setting of two different trace regions, one a PC trace and
the other a full trace. The region with the lower index is executed when the two regions overlap.

In this manner, the user can get a general trace until he reaches a critical section of the program
where he wants everything traced.

3-51 Digital Systems Divisio

[e]
@ 945255-9701

.ST 1,PIMWTCXSEBARDEBAR
ST 2,P

SR 2,0,2000,2,N

.SR 1,24C,260,1,S

MR

PC=0250 - 246

.RU

0246

024A

024C 8-02E0 ST=0000 SE=00A6 SB=024C SA=024C

0250 6-04E0 ST=0000 SE=01FC SB=0054 SA=0000

0254 6-04EQ ST=0000 SE=01B4 SB=C259 SA=0000

0258 6-04E0 ST=0000 SE=01B8 SB=C060 SA=0000

025C 6-0720 ST=0000 SE=01BA SB=01E6 SA=FFFF

0260 1-C820 ST=CO00 SE=021E SB=109A SA=109A DE=00D2
DB=1850 DA=109A

0266

026A

0270

0274

0278

027A

027E

Outside the critical region, a continuous run is desired. Inside the critical region, there is a single
instruction step. The operator must press the carriage return or space bar on the terminal
keyboard after each statement executed.

Example 2: The trace region is set from O to 2000,4, with the trace format index number equal
to 3. (Trace type 3 defaults to a full trace.) The snapshot prints workspace registers 1 through 4
and memory locations 1000, to 1004,,. A breakpoint is set at 0474,, with snapshot 1
associated. A Modify Registers (MR) command sets the program counter to 046C,,, and
execution is begun by issuing an Execute User Program under SIE or Trace (RU) command.

.SR 1,0,2000,3,N

.SS 1,1,4,1000,1004
.SB 1,474,1
MR

PC=198C 46C

.RU '

046C 8-02E0 ST=2000 WP=044C SE=1968 SB=0900 SA=0900

0470 1-C2A0 ST=C000 SE=00A6 SB=1A92 SA=1A92 DE=0460
DB=0000 DA=1A92

BKPT#1

PC=0474 WP=044C ST=C000

SNAP1

R1=11C0 R2=0000 R3=0000 R4=0000

1000=10D8 C145 1305

0474 6-045A ST=CO00 BT=1A92 SE=1A92 SB=C2A0 SA=C2A0

1A92 1-C2A0 ST=2000 SE=00A8 SB=0000 SA=0000 DE=0460
DB=1A92 DA=0000

3-52 Digital Systems Division

o
@ 9452559701

1A96 6-0420 ST=2000 WP=1968 BT=198C SE=1988 SB=1968

SA=1968

198C 6-04C3 ST=2000

198E 1

SE=196E

SB=FFFF SA=0000

Following is a listing of the portlon of the program executed in this example with all references

resolved:

Memory
Location

046C
046E
0470
0472
0474

1A92
1A94
1A96
1A98

1988
198A
198C

Object

Code

02EO0
044C
C240
00A6
045A

C2A0
00AS8
0420
1988

1968
198C
04C3

INIT

OPEN

OPEN1

Source

LWPI MAINW
MOV @ENTRY,RI0

B *R10

MOV @KBLUNO,R10

BLWP @OPEN

DATA IOWKS
DATA OPEN1
CLR R3

This is a typical example using snapshots; breakpoints and an instruction trace. Since a snapshot
is associated with the breakpoint, the snapshot is printed and execution continued. An exit from
the RU command is made by pressing the ESC key on the terminal keyboard.

3.4.27 CLEAR TRACE REGION (CR). The Clear Trace Region instruction is used to disable
previously speclﬁed trace regions.

Syntax definition:

CR [{é } [Qtarting trace region>] [{’b _} <ending trace region>]]

The command is terminated by a carriage return.

Parameters.

starting trace region

ending trace region

The first trace region to be cleared
A number from 0 to 3.

The last trace region to be cleared.
A number from 0 to 3.

333

Digital Systems Division

(o]
@ 945255-9701

Parameter default values:
If no parameters are specified, all trace regions are cleared.
If only the first parameter is given, only the specified trace region will be cleared.

If only the second parameter is given, trace regions O through the specified ending trace region
will be cleared.

Error message:
DP13 A trace region index greater than the maximum possible
index number (3) was specified, or the ending region
index was less than the starting region index number.
Examples:
.CR13
CR
In the first example, all but region O are cleared. In the second example, all regions are cleared.

3.4.28 FIND BYTE (FB). The Find Byte command is used to scan an area of memory for a
particular byte value. :

Syntax definition:

} [<start mem addr>] {% } [<ending mem addr>] {r; | }

<desired value> [{{) } <mask>]

FB {;

The command is terminated by a carriage return.

Parameters:

start mem addr Memory address at which search
begins.

ending mem addr Memory address at which search
is terminated.

desired value Hexadecimal value for which the
search is made. This value is
required.

mask Hexadecimal value to be ANDed

with each byte before comparing
it with the desired value.

3-54 Digital Systems Division

o
%@ 945255-9701

Parameter default values:
If the starting memory address is not specified, a value of O is used.
If the ending memory address is not specified, a value of FFFF,, is used.

If the mask parameter is not specified, a value of FF,¢ is used.

Description: Each byte in the memory search range is ANDed with the mask and compared to
the desired value. The memory location and contents are printed out whenever a match is found.
After each match, the user must enter a space on the terminal keyboard to continue the search.
If he enters a carriage return, the command terminates.

Error messages:

DP13 The ending address is less than the starting
address. Reenter the command.

MSO05 A required parameter, the desired value, is
missing. Reenter the command.

MXO06 The beginning address is an invalid memory
address. Reenter the command.

Application notes: No check is made to ensure that the mask does not exclude a bit required by
the desired value, thereby making a match impossible. If the monitor is being searched, results
may not appear to be correct since the monitor is changing during the search process.

Examples:

.FB 0,2000,0,0F
0000=0000
0000=0000
0002=0000
0002=0000
0004=0000
0004=0000
0006=0000
0006=0000
0008=0000

.FB 0,2000,06,0F
0300=0456
0644-=0556

In the first example, the high order four bits of each byte are masked so that any byte with a 0
in the low order four bits will be located. The address of the leftmost byte of each word is
printed so that if both bytes of a word are printed, an address location will be printed twice.

For example, if bytes 0004 and 0005 are printed, the address 0004 will appear twice in the
listing. ,

3-55 Digital Systems Division

[o]
i‘—@} 945255-9701

In the second example, the high order four bits of each byte are masked so that any byte with a
6 in the low order four bits will be located.

3.4.29 FIND WORD (FW). The Find Word command is used to scan an area of memory for a
particular word value.

Syntax definition:

FwW {;b } [<start mem addr>] {”b } [<ending mem addr>] {% }

<desired value> [{% } <mask>]

The command is terminated by a carriage return.
Parameters:
start mem addr Memory address at which search begins.

ending memory addr Memory address at which search is
terminated.

desired value Hexadecimal value for which the search
is made. This value is required.

mask Hexadecimal value to be ANDed with each
word before comparing it with desired
value.
Parameter default values:
If the starting memory address is not specified, a value of O is used.
If the ending memory address is not specified, a value of FFFF,¢ is used.
If the mask parameter is not specified, a value of FFFF ¢ is used.
Description: Each word in the memory search range is ANDed with the mask and compared to
the desired value. The memory location and contents are printed out whenever a match is found.
After each match, the user must enter a space on the terminal keyboard to continue the search.

If he enters a carriage return, the command terminates.

Error messages:

DP13 The ending address is less than the starting
address. Reenter the command.

MPOO - The beginning address is an invalid memory
address. Reenter the command.

MSO05 A required parameter, the desired value, is
missing. Reenter the command.

3-56 Digital Systems Division

o]
i‘—@;p 945255-9701

Application notes: No check is made to ensure that the mask does not exclude a bit required by
the desired value, thereby making a match impossible. If the monitor is being searched, results
may not appear to be correct since the monitor is changing during the search process.

Examples:
.FW 0,2999 456,
0300=0456
.FW 0,2000,56,00FF
0300=0456

0644=0556

In the second example, the monitor searches for words with a 56 in the low order byte. By
pressing the space bar on the terminal keyboard, the user can cause the monitor to continue
searching for another occurrence of the data word.

3.4.30 HEXADECIMAL ARITHMETIC (HA). The Hexadecimal Arithmetic command calculates
the sum and difference of two hexadecimal numbers. The 2’s complement hexadecimal value and
the signed decimal value are printed.

Syntax definition:

HA [{%} [<value] [{%} <value>]]

The command is terminated by a carriage return.
Parameters:
value Hexadecimal number value.
Parameter default values:
If the value parameter is not specified, a default value of O is used.

Application note: No overflow checks are made; therefore, two positive numbers may have a
negative sum. All results are represented in 16 bits.

Examples:
.HA 103A BA2
SUM=1BDC +07132 DIFF=0498 +01176

.HA 89 89 :
SUM=0112 +00274 DIFF=0000 +00000

357 Digital Systems Division

[o]
@ 9452559701

.HA 8030 EFQ0
SUM=6F30 +28464 DIFF=9130 -28368

.HA EF00 8030
SUM=6F30 +28464 DIFF=6EDO +28368

The calculated difference between the specified number values is the first value minus the second
value. o

3.4.31 SET WRITE PROTECT REGION (SP). The .Set Write Protect Region éommahd sets the
write protect region to the address specified in the command.

Syntax deﬁnition:

SP {b’. : } <lower mem addr> {b,. N } <upper mem addr>

The command is terminated by a carriage return.
Parameters:

lower mem addr Lower boundary memory address of the protected
region. Required parameter. Hexadecimal :
number.

upper mem addr Upper boundary memory address of the protected
region. Required parameter. Hexadecimal
number.

Description: This command sets the write protect region from the lower to the ubper memory
bound addresses. If the memory addresses entered are not on 256-word boundaries, the bounds
will be set at the next lower 256-word boundary. The lower bound is included within the
protect region but the upper bound is not.

The SP command overrides any previously defined protect region.

When the upper and lower bounds are sent to the CRU, the Protect Violation flag is cleared if it
has been set.

Error message:
MSO05 Parameter specification error. Either a required parameter
is missing, or the lower bound is greater than or equal
to the upper bound.

Examples:

.SP 1000,2000

3-58 Digital Systems Division

o
%7? 945255-9701

This command protects a region in memory from 1000,, to 1FFF,,.

.SP 1000,1F00
This command protects a region from 1000, to 1DFF,,. The address 1F00,, is not a
256-word boundary; therefore, the upper bound is set at the next lower 256-word boundary,
1EQO.

3.4.32 CLEAR WRITE PROTECT REGION (CP). The Clear Write Protect Region command
clears the protect register and removes protection from the write-protected region.

Syntax definition:
cP
The command is terminated by a carriage return.

Description: The CP command clears the Protect register and sets the Protect/Permit bit to
Permit. The Protect Violation flag is cleared if it has been set.

Example:
.CP
This command clears a write-protected region set previously with an SP command.

3.5 SUPERVISOR CALLS
Supervisor calls are used to:

® Request all monitor I/O operations.
® Perform frequently used services in the form of monitor routines.

3.5.1 INTRODUCTION. The following paragraphs explain invocation of a supervisor call, coding
of supervisor calls, types of supervisor calls, and data block formats.

A supervisor call is made with an XOP assembly language machine instruction, using an extended
operation code of 15. The XOP instruction specifies an address pointing to a multiple byte block
containing the supervisor call and any necessary arguments.

3-59 Digital Systems Division

o
@ 945255-9701

The individual supervisor calls and their operation codes are listed in table 3-2.
Table 3-2. List of Supervisor Calls

I/0 Physical Record

Supervisor Call Coﬁ‘;”(‘;{";':;’;e‘é:ﬂal) Bloc(l;l g;;r:ct:;:;l)Code
I/0 — Open 0 0
I/O — Read ASCII 0 9
I/0 — Write ASCII 0 B
I/O — Write End of File 0 D
End of Program 4, -

Binary to Decimal ASCII
Decimal ASCII to Binary
Binary to Hexadecimal ASCII
Hexadecimal ASCII to Binary

T O w >
|

3.5.2 1/0 SUPERVISOR CALLS. The data block for an I/O supervisor call consists of the
following two blocks (contiguous on a full-word boundary):

© A two-byte block that specifies a zero for an I/O call in the first byte and has the
second byte set to 0.

® A seven-word control block, called a Physical Record Block (PRB). This control block
specifies the type of I/O operation to be performed and the input and output
parameters.

The format of the physical record block is as follows:

) 1ST BYTE 78 2ND BYTE 15
<i/o op> <luno>
<sys flags> <user flags>

<buffer addr>

<buffer length>

<char count>

The parameters are:

i/o op The I/O operation requested

luno The logical unit to which I/O is to be
performed.

sys flags Flags indicating the status of a completed

I/O operation:

~

3-60 Digital Systems Division
AN

o
@ 945255-9701

Bit 0 — reserved.
Bit 1 — unrecoverable 1/O error.

Bit 2 — end of file was encountered.
(The character count indicates
whether any data was transferred.)

user flags Flags indicating additional processing
requirements. Bit 3 is the character
I/O flag. Character I/O applies only
to the logging device (data terminal)
and is ignored in cassette I/O. One
character at a time will be read to
or printed on the logging device. If
the character I/O bit is set, any RUB
OUT or backspace character encountered
in a read from the logging device will
be placed in the user’s buffer.

buffer addr The absolute memory address of the start
of an I/O buffer.

buffer length The maximum number of characters which
may be input.

char count The number of characters actually
: input or output.

An I/O supervisor call may be coded in assembly language as follows:

Xop @IoC, 15

Ioc BYTE 0,0

PRB BYTE 9,7 Read from LUNO 7
DATA O System flags/user flags
DATA BUFADR Buffer address
DATA 80 Buffer length
DATA O Character count

3.5.2.1 Opén. The open supervisor call forces a playback/record initialization (to allow a change
of mode if the mode is incorrect) of a tape cassette.

Supervisor call code: 0
I/0 operation code: 0
Calling parameters:

luno Logical unit number of the drive on which the tape cassette is mounted.

3-61 Digital Systems Division

o
%@ 945255-9701

Result: The Open supervisor call is ignored except by the tape cassette, for which it forces a
playback/record initialization. When a LUNO outside the range 0 to F,, is specified, the
command is ignored.

3.5.2.2 Read ASCIIL. The Read ASCII supervisor call reads ASCII data from an input device.
Supervisor call code: 0
I/0 operation code: 9

Calling parameters:

luno Logical unit number of a device from which
data is to be read.

buffer addr Absolute m.emory address of the first byte
of an input buffer. .

buffer length Maximum length of the input buffer.

char count The number of characters actually transferred.
This value is returned by the supervisor.

Result: Data is read from the specified device until either the buffer length is satisfied or a
terminating event such as a carriage return occurs. A read from a dummy device will cause the
end-of-file flag to be set.
- Errors: An unrecoverable I/O error is returned if:

® An I/O error occurs.

® The output cassette is not ready.
3.5.2.3 Write ASCII. The Write ASCII supervisor call writes ASCII data to an output device.
Supervisor call code: 0
1/0 operation code: B

Calling parameters:

luno Logical unit number of a device to which
data-can be written.

buffer addr Absolute memory address of the first byte
of an output buffer.

buffer length Unused.
char count The number of characters to be transferred.
Result: Data is written to the specified device until the character count is satisfied. If the

.character count is greater than 80 when writing to a cassette, only the first 80 characters are
written to cassette. ‘

3-62 Digital Systems Division

o
@ 945255-9701

Errors: An unrecoverable 1/O error is returned if:
® An I/O error occurs.
e The output cassette is not ready.

3.5.2.4 Write End of File. The Write End of File supervisor call writes an end-of-file record to a
tape cassette.

Supervisor call code: 0
1/0 operation code: D
Calling parameter:

luno Logical unit number of the drive on which the tape cassette is mounted.

Result: This supervisor call causes an end-of-file record to be written to the specified cassette.
This call is ignored by other devices.

Error: An unrecoverable I/O error is returned if an I/O error occurs or if the output cassette is
not ready.

3.5.3 NON-I/O SUPERVISOR CALLS. The data block for a non-I/O supervisor call is a
parameter block containing two to eight bytes. It has the following format:

1ST BYTE 2ND BYTE
0 <op> ,.. . <error code>
oz o0 S
N <s8ign>oR PART
F <value> 20
) - USED FOR
4 - <value> B DATA CONVERSION
) ONLY
v o2
6 B e SN
P
The parameters are:
op Operation code
error code Code which is set to one if an error is
encountered '
sign Algebraic sign associated with a parameter
value — plus (+), minus (-), ASCII zero
or blank
value Parameter value

3-63 ' Digital Systems Division

[e]
@ 945255-9701

An example of assembly language coding for a non-I/O supervisor call block (decimal ASCII to
binary) follows:

DAB BYTE >B,0 Op code.
DATA >2020 Value parameter is right justified
DATA >2031 with leading ASCII blanks.
DATA >3233

3.5. 3 1 End of Program. The End of Program supervisor call terminates the calling program. The
parameter block contains two bytes.

Supervisor call code: 4
Calling argument: 4 (in byte 0)

Result: The calling program terminates. Control returns to PX9MTP.

3.5.3.2 Binary to Decimal ASCII. The Binary to Decimal ASCII supervisor call converts binary
data to decimal ASCII character code. The parameter block contains eight bytes.

Supervisor call code: A

Calling arguments:

iST BYTE 2ND BYTE
o A |
2 <éign> v
a <convertedv values>
6

Workspace register 0 contains the value to be converted. The sign parameter is set to minus if
the value is less than O and to a blank if the value is greater than 0. The converted values
parameter is the decimal ASCII equivalent of the binary value. -

Result: The binary value in workspace register 0 is converted to a signed decimal number (right
justified with leading zeros) in the supervisor call parameter block.

3.5.3.3 Decimal ASCII to Binary. The Decimal ASCII to Binary supervisor call converts decimal
ASCII character code to binary data. The parameter block contains eight bytes.

Supervisor call code: B

3-64 Digital Systems Division

o
%@ 945255-9701

Calling arguments:

1ST BYTE 2ND BYTE
o B <error code>
2 <sign>
—
4
— <value> -
6

The sign parameter may be plus, minus, ASCII zero or a blank. The value parameter is a decimal
ASCII value between -32,768 and +32,767, inclusive. The value parameter must be right justified
with leading ASCII zeros or blanks. The result is returned in the caller’s workspace register 0.

Result: The decimal ASCII value in the supervisor call block is converted to a 2’s complement
value in the caller’s workspace register O.

Error code: The error code is set to one if there is an invalid character or if the resultant value is
outside the range -32,768 to +32,767.

3.5.3.4 Binary to Hexadecimal ASCII. The Binary to Hexadecimal ASCII supervisor call con-
verts binary data to hexadecimal ASCII character code. The parameter block contains six bytes.

Supervisor call code: C

Calling arguments:

1ST BYTE 2ND BYTE
) c
2
— <value> —
4

Workspace register O contains the value to be converted. The value parameter is the converted
hexadecimal ASCII value.

A .
Result: The value in workspace register 0 is ‘converted to the corresponding ASCII representation
in the supervisor call block. '

3.5.3.5 Hexadecimal ASCII to Binary. The Hexadecimal ASCII to Binary supervisor call con-
verts hexadecimal ASCII character code to binary data. The parameter block contains six bytes.

Supervisor call code: D

3-65 Digital Systems Division

o
%@ 945255-9701

Calling arguments:

1ST BYTE 2ND BYTE
o D <error code>
2
- .<value>. ~
4

The value parameter is four hexadecimal ASCII characters. The result is returned 1n the caller’s
workspace register 0.

Result: The four-character hexadecimal value in the supervisor call block is converted to binary
in the caller’s workspace register 0.

Error code: The error code is set to one if any character is an invalid hexadecimal digit.

3.6 DEBUGGING TECHNIQUES
Debugging techniques may be divided into three basic categories:

1. Preventive techniques — those which may be used to decrease the number of errors.
Most of these techniques emphasize simplicity. Code should be simple and straight-
forward enough to make it obvious that the program works.

2. E\poszue techniques — those which may be used to make the operation of a program
easier to follow during the debugging process.

3. Remedial techniques — those used when a bug occurs in the user’s program. Typically,
most programmers’ efforts are expended on these techniques.

Programming effort devoted to avoiding errors or making them apparent is important. Debugging
and maintenance represent the majority of the cost in software development and support. The

following paragraphs briefly discuss debugging in general and the specifics of debugging under
PX9MTP.

3.6.1 GENERAL DEBUGGING TECHNIQUES. Several debug techniques will be helpful to the

programmer in any debugging situation. These paragraphs offer some suggestions about debugging
a program under development.

3.6.1.1 Debug Code in the Source Program. Include debug code in the source program. The user
should keep the testing process in mind from the moment he starts to create a program. When
referencing or changing data, the programmer should consider how to tell if the change is correct
when reconstructing the results of a run. This often involves being aware of what intermediate
results of a computation are lost.

For example, if the value of a variable D is calculated by the statement
D=A+B
‘and the program later encounters the statement

D=C+D

3-66 Digital Systems Division

o
‘@ 945255-9701

the second statement will cause a new value D to replace the previously calculated value. The
calculated sum A + B will therefore be lost. If, on the other hand, the program contains the
statement

E=A+B
and, later in the program, the statement
D=C+E

the value of E will be preserved when D is calculated by the second statement. The programmer

can examine the memory location containing the value of E to determine the calculated sum A +
B.

After a computation is completed, reconstruction of the results of a program run involves
distinguishing which decision paths have been taken through the program’s code and determining
what variables are relevant in calculating the results of a computation.

When the source code is written, it is often simple to store intermediate results in extra memory
to record those results, branch paths, or the number of passes through loops. Such statements
can be flagged with a character string (e.g., **DEBUG**) in the comment field. When the source
code is ready for production, PX9EDT can be used to locate and remove the code that stores
intermediate results.

3.6.1.2 Checking the Program. Once a program has been successfully assembled, a thorough
check of the program can often turn up errors which are hard to detect when the program is
executing. In addition to making sure that the program is a correct implementation of the
algorithm, it is often worthwhile to read through the program looking for specific errors:

® Register errors. Using the wrong register; referencing a register not in the current
workspace; using a register as an immediate value (e.g., AI R1,R2 instead of A R1,R2
or Al R1,2); using byte-level operations or data where the data is in the wrong half of
the register; or using byte-level data with the other half of the register containing
incorrect data which affects the computation.

° Variable names. Misspelling of variable names such as TO and TO; or using a single
variable to contain different quantities.

® [nitialization errors. Referencing values which may not have been properly initialized.
This often occurs when a program is re-executed.

® Buffer initialization. Omitting an instruction to clear an input buffer between input
operations when variable length records are read into a common fixed-length buffer.

® Branch conditions and loop terminations. Using the wrong branch instruction (espe-
cially JH, JL, JGT, JLE, JLT, JHE, or JOC with subtracts); or executing a loop one
time too many or one time too few. i

® [nconsistent techniques. Using conventions or debug elements which are inconsistent
with the coding practice for the module.

3-67 Digital Systems Divisior

o
%:@ 945255-9701

® Module interfaces. Using variables or parameters which were not correctly set up for an
interface; using registers or variables within a subroutine which have values that are not
to be changed within the calling routine.

® Boundary conditions. Checking that the full range of the possible input data to a
computation is correctly processed by the algorithm.

3.6.1.3 Execution Tree. In debugging or testing a program, it is often convenient to visualize
the possible paths through the program as a tree with each node of the tree representing a
conditional branch. Exhaustive testing of a program would then require testing each possible
path through the program under all inputs which follow that path. While it is impossible to test
all paths of a typical program, examination of the various paths (or small sets of paths) may
reveal errors in the original logic. .

3.6.2 SPECIFIC DEBUGGING TECHNIQUES. The following paragraphs describe techniques
directed specifically to debugging under the PX9MTP monitor.

3.6.2.1 Planning the Debugging Session. Know the status of the debugging effort at all times. As
the user interacts with the program through the console, he should be careful to record any
changes made to the program and to be aware of the state of the program when examining it. In
a debugging session, the user should have a clear idea of what he wants to accomplish and how
he intends to accomplish it. Decisions made in the process of debugging should be carefully
thought out.

3.6.2.2 Use of Breakpoints. There are three ways of stopping or interrupting the execution of a
user’s program which is being debugged at a specific location in the program:

1. Set an instruction count on the RUN command.
2. Execute with the single step option under instruction trace.
3. Set appropriate breakpoints.

Breakpoints stop execution at specific points in the user program rather than at arbitrary points
controlled by the instruction count. The user may easily determine in advance and check the
results of a computation without concerning himself about the state of the program.

When using breakpoints, be sure that the program will actually reach the desired breakpoint. This
may involve putting additional breakpoints on the other paths from conditional branches.

Breakpoints are particularly useful when forcing some condition within a program which is not
easily created from its parameters, for example, a CRU input. As an illustration of such a
condition, an input value is to be read from a pressure transducer in an on-line process control
environment. However, if the program is being debugged, a physically connected transducer is
usually impractical and the values must be entered by the programmer. Breakpoints may be set
prior to the start of a code sequence. When the breakpoint is taken, the user may set or modify
the existing conditions in order to cause specific paths to be taken (as if a spec1ﬁc input had
been received from the transducer).

The breakpoint reference count can be used to see that a loop is repeated the correct number of
times. By setting the reference count equal to the number of iterations through the loop and
setting another breakpoint outside the loop, the user may check that the loop is exhausted on
the correct iteration. Breakpoints with attached snapshots with dump debug data or key variables
yield a good trace aimed at checking the specific progress of a computation.

3-68 Digital Systems Division

[e]
;'@ 945255-9701

3.6.2.3 Excluding Loops from Instruction Traces. When tracing a program with printout, it is
sometimes desirable to exclude printing of small loops which are very frequently executed or
which run for many iterations. (See figure 3-1.) These may be excluded by carefully choosing
trace regions, which are areas where an instruction trace is to be run within a program. In
determining which trace region is applicable (and thus what trace type to use), the system will
find the first (lowest numbered) region containing the user’s PC. By selecting a high numbered
trace (3) for the main trace control and then setting regions within that large region with lower
numbered traces which do not print, the user may prevent a large quantity of output where it is
not wanted.

An alternate mechanism is to allow the small loops to be executed by SIE and the remaining
program traced. (See figure 3-2.) This can be done by setting trace regions to cover all of the
program except the small loops or frequently executed parts. Such a mechanism works well
unless the user is using XOPs (other than XOP 15 for PX9MTP 1/O) or interrupts which are
processed differently by SIE and instruction trace.

If the user is performing I/O by means of supervisor calls (XOP 15) to PX9MTP, this XOP is
executed directly (without SIE or instruction trace). If XOP 15 is not used for program I/O,
it is not executed directly under SIE.

'USER PROGRAM TRACE REGION CONTROLLING
DEFINITION TRACE REGION
PGM: ———-— 3 \
-——= TRACE -
L At 3 S REGION 3
T /
At S
TRACE
MP A REGION 2 REGION 2
B: -
o— REGION 3
_—)
(A)133102

Figure 3-1. Trace Region Precedence of Lower Region Number

369 Digital Systems Division

o
ij;\if? 945255-9701

USER PROGRAM TRACE REGION MODE OF
DEFINITION EXECUTION
PGM: ———-) \
TRACE
—_— > REGION 1 > TRACE
- y /
A — h N\
——— NO TRACE
B REGION E SIE
JMP A y)
B — \ 3
> TRACE B TRACE
— REGION 2
= / : /
(A)133103

Figure 3-2. Using Both Trace and SIE

3.6.2.4 Simulating an Interrupt. A BLWP instruction may be used to control an interrupt
routine which is being checked out. This can be handled with the following code sequence:

Instruction Operand Generated Code
LIMI INTLVL 0300
i
BLWP @INTLVL*4 - 0420
4%
IMP $ 10FF

The LIMI sets the interrupt status to the correct level. The BLWP transfers control through the
interrupt vector. The quantity i is the value to which INTLVL is equated.

3.6.3 PATCHING. Patching (attaching portions of code to existing program code) should be
avoided if possible.

During a debug session, it is generally necessary to make patches to object code; however, it is
advisable never to leave patches in a completed program (or create ROM firmware from a

program with patches). An object program for which there is no corresponding source program is
inconvenient and troublesome.

The following paragraphs cover patching techniques. The examples show how to patch a
two-address instruction; this instruction is used:

MOV *R1,*R2+

3-70 Digital Systems Division

o]
i’_@p 945255-9701

Because of the number of items to be considered, patching a two-address instruction is one of
the more difficult operations. There are two ways to approach it: building a bit image and the
additive method.
3.6.3.1 Patching by Building a Bit Image. In building a bit image, the user merely fills in each
field in the 16-bit word on a bit-by-bit basis. When all fields are complete, the value is converted
to hexadecimal for the patch contents.
Example:

Patch the following assembly language instruction:

MOV *R1,*R2+
by building a bit image.

The MOV instruction has this format:

oP
cooe |B| T

L1 | 11 1 1 Ll

D Ts S

Determine the bits that occupy each field. Starting with the op code field, the hexadecimal
op code for a MOV instruction is C000. The first three bits of this op code are 110,;
transfer these bits into the op code field.

The Byte Indicator (B) field specifies whether or not the instruction is a byte instruction.
The MOV instruction is a word instruction; therefore, this field is set to 0. (The B field is
always O for a MOV instruction.) Another way of specifying the same information would be
to use the MOV or MOVB instruction (as appropriate) and a four-bit op code.

The D field specifies the destination workspace register. The destination address is *R2+,
which indicates workspace register 2 and the workspace register indirect autoincrement
addressing mode. The addressing mode for the destination, 11,, is placed in the T, field.
Transfer the binary value of the register number, 0010,, into the D field.

Use a similar procedure for the source address, which is *R1. In this case, workspace
register 1 is specified and the addressing mode is workspace register indirect. Therefore,
transfer 01, into the T, field and 0001, into the S field.

The instruction field contents will now be:

110 (o] 11 0010 01 0001

Now read these 16 bits as a four-digit hexadecimal number.

1100 1100 1001 0001

c c 9 1
The resulting hexadecimal number is the desired value. The patch value is CC91.

31 Digital Systems Division

o
e"@? 945255-9701

3.6..3:2 Patching b)" the Additive Method. The second approach to the patching problem is the
additive method. With a little practice, the patch described in the first approach can be created a

little faster by treating each of the fields as a hexadecimal number and adding the results to
produce the patch. '

Example:

Patch the same assembly language instruction as in the bit image example:

MOV *R1,*R2+

!)y using the additive method. This method involves adding hexadecimal values correspond-
ing to each field to the instruction’s op code to get the patch value.

The programmer can think of a bit field value as being placed into the instruction word,
right justified, and shifted left the number of bits necessary to move it to the appropriate
field. This shift is equivalent to binary multiplication, so the bit field value times an
appropriate multiplier will give a value to be added to similarly obtained values for other bit
fields to yield a sum representing the contents of the instruction word.

Recall that the values for the addressing modes and workspace registers in they previous
examples were:

Destination mode (Ty) 3
Destination register (D) 2
Source mode (T) 1
Source register (S) 1

In calculating the patch value by the additive method, these values are used.
The first number in the calculation is the hexadecimal op code for the MOV instruction,
C000. The B field is always O in the MOV instruction; it can be considered part of the
instruction op code and ignored in the calculation. .
The second number to be added is the value of the destination mode. The code for the
address mode is shifted left ten bits, equivalent to multiplication by 400,,. The code is
3,6; therefore, the value to be added is

3,6 * 400, = 0C00,¢
The third number is the destination register value. To create the value to be added, the
register number, 2,4, is shifted left six bits, equivalent to multiplication by 40,¢. The value
is

2,6 * 40,6 = 0080, -

Calculation of the fourth value involves a code of 1, for the source mode and a four-bit
shift (multiplication by 10,¢). The value is

1,6 * 10, = 0010,

Finally, the source register number, 1,4, is unshifted. The value to be added is 0001 ;6.

3-72 Digital Systems Division

o
@ 945255-9701

To calculate the required sum, the values are added:

Op code of MOV instruction C000

Destination mode 0C00
Destination register 0080
Source mode 0010
Source register 0001
Patch value CC91

The sum, CC91,,, is the object code to be patched. The patch value is the same as the
value obtained in the previous example.

When the same instruction format is used repeatedly, the multiplication constants — 400,
40,, and 10,4, — do not change and become simple to handle with practice.

 3.6.3.3 Symbolic Versus Indexed Addressing. The address mode for both symbolic (actual

memory address) and register indexed addressing is the same (mode 10,). The type of addressing
is determined by the register field. A register field of zero is symbolic; therefore, no RO indexing
exists. In constructing a patch with a specific address, process it exactly as if it were a register
indexed with a register of zero. Refer to the Model 990 Computer TMS9900 Microprocessor
Assembly Language Programmer’s Guide, Manual No. 943441-9701, for further information
about symbolic and indexed memory addressing.
3.6.3.4 Branch Distance Calculations for Jump Instructions. The signed displacement in an
Unconditional Jump (JMP) instruction is a two’s complement eight-bit number which represents
the number of words to skip forward or backward from the current PC (the PC pomts to the
instruction following the jump instruction).
To calculate the displacement for a jump instruction, evaluate

1/2 (target location-(instruction address+2)).
If the target address is less than the instruction address, add 10000,¢ to the target address and
perform the subtraction. Note that a forward branch must generate a positive displacement and a
backward branch must generate a negative displacement to be in range.
Example 1:

Patch location 17A,¢ with a jump to location 1FE .

The source address is equal to the instruction address +2, which is 17A+2 = 17C.

The target location minus the source address is 1FE - 17C = 82. Continuing,

1/2 (target location - source address) = 41

, The displacement, 41, is positive. The patch value is therefore 1041,,, where 10 is the
. hexadecimal op code for the JMP instruction and 41 is the displacement value.

Example 2:

Patch Location 1FE;4 with a jump to location 17A,.

3-73 Digital Systems Division

o :
%‘@p 945255-9701

The source address is equal to the instruction address+2, which is 1FE(+2,, = 200,,. The
sum of the target location plus 10000,,, minus the source address is 1017A16'20016 =
FF7A,¢. Continuing

1/2 (target location - source address) = 7FBD = BD (dropping the first two digits)

The displacement, BD, is negative. The patch value is therefore 10BD,s, where 10 is the
hexadecimal op code for the JMP instruction and BD,4 is the displacement value, negative
in this case.

Note that the 7F is generated from the addition of 2,, (10000,,) and may be discarded. If
the high order eight bits of the destination are not equal to 7F, the branch distance is too
great to reach with a JMP instruction.

3.6.3.5 Spin and NOP. It is sometimes convenient to patch a spin (branch to itself) into a
location to intercept control in unexpected situations (the alternate path of a conditional jump,
for example). That instruction is a JMP to itself and is a value of 10FF,,. (The corresponding -
assembly language code is JMP §.)

Unwanted instructions can be replaced with a no-operation (NOP) which is a JMP to the next
instruction. The value for an NOP is 1000,,.

3.6.3.6 Out-of-Line Patches. It is often necessary to patch more instructions into a program
than there is room, requiring an out-of-line patch. The simplest mechanism is to use a symbolic
address branch instruction to a specific location where the patch is placed. After the patch, use a
branch instruction back to the original code.

Example:

0460
(loc A)g@—A ----

B ---- ——--
—-—- 0460
(loc B)

Be careful to see that code which is overlayed is moved to the patch area, that it is not a PC
relative jump, and that the return pointer comes to the beginning of an instruction.

3-74 Digital Systems Division

[e]
%@ 945255-9701

SECTION 1V
TEXT EDITOR

4.1 INTRODUCTION

The first part of this section is a general description of PX9EDT, giving its purpose, its functions,
and a brief explanation of how data is edited. The loading procedure for the module is
presented, followed by a discussion of how to start execution and assign LUNOs. The initializa-
tion messages, user’s responses to those messages, and the final message are listed and described.

Specific editing procedures are presented, including procedures for copying from one cassette to
another, using editor commands to move the text editor’s line pointer, moving text to or from
the buffer, and handling file data formats with special terminal keyboard characters. Procedures

for coding source or object files and writing a new source program on cassette tape are also
described.

The paragraphs that describe text editor commands explain the classes of commands, command
operands, and notational conventions used in the command syntax. Detailed descriptions and
examples of each of the text editor commands are included.

The error and warning messages, with discussions of user’s responses to the messages, are
presented. An example of source program editing and a discussion of object code editing
conclude this section.

4.2 GENERAL DESCRIPTION

The Text Editor (PX9EDT) is an interactive program for editing source and object programs. The
following paragraphs provide a brief general description of the program, list and describe the
Text Editor commands, and explain the messages printed by the program.

PX9EDT ‘executes in a Model 990/4 microcomputer or 990/10 minicomputer configured for the
990-733 ASR System Software or 990 Prototyping System. This configuration includes the
Model 990/4 microcomputer with 8K or more of memory and a Model 733 ASR Electronic Data
Terminal. The Debug Monitor, PX9MTP, must be resident since PX9EDT is loaded by PX9MTP
and calls PX9MTP routines for input/output and conversion routines.

PX9EDT may be used to generate source or object data or to edit existing source or object data.
PX9EDT provides 18 commands with which the user specifies the desired edit functions. These
commands provide the user with the capability to change, add, move, and remove source or
object records, and to locate and modify a character string in a group of records.

Data to be edited is read from a cassette tape into an area of memory called the buffer. The
data is edited while it is in the memory buffer by using PX9EDT commands. Individual lines of
data are identified by a pointer, which may be positioned by PX9EDT commands. The pointer
refers to a buffer line number. The edited data is written from the memory buffer to a cassette
tape.

The user specifies the buffer size by responding to an initialization message that asks for the
number of 4K-word blocks to be assigned to the buffer.

41 | Digital Systems Division

o
% 945255-9701

In an 8K system with 4K user memory, PX9EDT contains 3870 bytes of edit buffer space. Lines
are placed in the buffer with one character per byte followed by a carriage return, and preceded
by a six-byte header. Therefore, a buffer of lines with an average length of 40 bytes, including
header and carriage return, would contain approximately 100 lines. Using tabs when inputting
source lines causes a tab to be placed in the buffer instead of multiple spaces.

4.3 LOADING AND INITIALIZATION PROCEDURES FOR THE TEXT EDITOR
The following paragraphs describe the loading procedure and the messages output during
initialization and termination.

4.3.1 LOADING. PX9EDT is loaded by means of the PXO9MTP Load Program in Compressed
Absolute Format with Upfront Loader (LU) command. Mount and position the cassette contain-
ing the PX9EDT object code and enter this command on the terminal keyboard:

LU

The LU command assumes that the cassette is mounted in the cassette drive assigned to logical
unit number 7. Be sure that logical unit number 7 has not been reassigned to another device.
Other acceptable load program commands are the following:

LU,7 Load program with upfront loader from LUNO 7
LU,8 Load program with upfront loader from LUNO 8

4.3.2 STARTING EXECUTION. The user then uses the PX9MTP Execute User Program
Directly (EX) command to begin execution of PX9EDT. PX9EDT accepts input from logical unit
number 7 and writes its output to logical unit number 8. To use other than system defaults, the
PX9MTP Assign LUNO (AL) command should be used before the EX command is entered.
(Refer to the discussion of logical unit numbers in Section II and the discussion of the AL
command in Section III.) '

4.3.3 INITIALIZATION MESSAGES. When PX9EDT is started, it prints a series of messages
requesting user responses. The first two messages are printed the first time PX9EDT is executed
after being loaded. In subsequent executions and restarting PX9EDT, the first two messages will
be deleted.

This message identifies the program name and release information:
PX9EDT PART # REV DATE

The following message asks for a count of memory blocks:
ADD 4K MEM BLOCKS CONFIGURED?

The user should input the number of 4K user memory blocks that are configured in his system
in addition to the 4K required by PX9EDT. This additional memory will expand PX9EDT’s edit
buffer space. For example, if the user’s system contains 8K of user memory in addition to the
4K required by the monitor, the response should be “1”. If the user’s system contains 4K of
user memory, the response should be “0”’ or a carriage return.

If the configuration includes more than 4K words of user memory area, PX9MTP will be
relocated as described in the system software cassette generation procedure in Section II.

4-2 Digital Systems Division

[o]
T@ 945255-9701

The following message notifies the user that the system is ready for mounting of tape cassettes:
POSITION TAPES, ENTER CR

The user should mount his cassettes and position them to the correct files, and then enter a
carriage return. PX9EDT accepts input from logical unit number 7 and writes its output to
logical unit number 8.

A question mark (?) will be printed and the user can enter text editor commands from the
keyboard.

434 FINAL MESSAGE. When the output file has been written in response to a Q or E
command, PX9EDT prints the following message:

END EDIT
PX9EDT then restarts and prints the initial position tapes message.

44 TEXT EDITING PROCEDURES

The following paragraphs describe some specific procedures for common text editing tasks. These
tasks include copying a tape cassette, moving the PX9EDT buffer pointer, moving lines of text
into and out of the buffer, manipulating file data formats, and creating new programs.

44.1 COPYING FROM ONE TAPE CASSETTE TO ANOTHER. To copy a cassette with the
text editor, the user loads and starts up PX9EDT. When the message

POSITION TAPES, ENTER CR

is printed, mount and ready the cassette tape to be copied (input) in the cassette drive assigned
to LUNO 7 (usually CS1) and mount and ready a scratch cassette (output) in the cassette drive
assigned to LUNO 8 (usually CS2).

When a “?” is printed, the user enters the quit command.
7Q

The inout tape is copied to the output tape until an end of file is encountered. The following -
messages are printed.

END EDIT
TERM/CONT?

If the input cassette tape contains more than one file to be copied, the user should enter a “C”
to restart PX9EDT and restart the procedure. The position tapes message is printed. The tapes
are positioned to begin copying the next file. Continue until all files are copied. Enter a “T” to
terminate the procedure.

4.4.2 MOVEMENT OF POINTER. The pointer commands are used to move the pointer to any
line in the buffer of PX9EDT. Initially, the pointer is at line 1. The Down (D) command may be
used to move the pointer down a specified number of lines. Moving the pointer with the Down
command to an empty line causes PX9EDT to read source lines or object records from the input
file to fill the empty lines, including the line specified in the Down command. When the Down
command causes more data to be read from the input file, the pointer is left at the bottom of
the buffer after execution of the Down command.

4-3 Digital Systems Division

[e]
@ 945255-9701

The Up (U) command is used to move the pointer up a specified number of lines. The Top (T)
command moves the pointer to the top (first line) of the buffer. The Bottom (B) command
moves the pointer to the bottom (last line) of the buffer.

The pointer commands permit the user to move the pointer as desired for effective use of
commands that identify hnes by specifying the displacement from the pointer.

443 MOVING LINES TO OR FROM BUFFER. PX9EDT allows the user to edit data in a
- buffer-and identifies lines of data in the buffer with line numbers or with a pointer.

Source lines or object records are placed in the buffer for editing by PX9EDT by reading lines
from the input file or by entering lines at the keyboard. The Down (D) command is used to read
lines from the input file and move them to the buffer. The Insert (I) and Change (C) commands
are used to enter lines from the keyboard. When data is read from the input file, PX9EDT
assigns a line number to each line or record. The line number may or may not be printed, but it
is not written on the output file. When lines of data are moved in the buffer, each line retains its
line number. When lines are removed from the buffer, the line numbers are not reassigned. No
line numbers are assigned to lines of data that are entered at the keyboard.

After data has been edited, the buffer may contain lines without line numbers, and the lines in
the buffer are not necessarily in line number sequence. When a line has a line number, the line
may be specified by line number. Any line may be specified by a displacement from the pointer.

Only data in the buffer may be edited; therefore, it may be necessary to move data from the
buffer to the output file to leave more space in the buffer so that additional lines may be read
from the input file or entered from the keyboard.

The Keep (K) command writes a specified number of lines from the buffer to the output file.
The number of lines specified by the Keep command is written from the top of the buffer
regardless of the location of the pointer line. If a number is not specified, all lines in the buffer
are written to the output file. This makes these lines unavailable for further editing in this
session.

The Quit (Q) command writes lines from the buffer and input file followed by an end-of-file
record, and terminates PX9EDT. The Quit command may write lines from the buffer and input
file, or from the buffer only. Quit should be used as the final command in an edit session so
that an end of file will be written to the output file.

4.44 HANDLING OF FILE DATA FORMATS. The following special characters are recognized
by the text editor I/O routines. A backspace character (CTRL H) backspaces one character
position. A RUB OUT character deletes the current input line. A tab (CTRL I) echoes as one
space upon character input, but moves to the nearest tab stop when the line is printed. Tab
stops are defined at character positions 8, 13, 31, and 33. An escape (ESC) entered from the
keyboard during cassette or print output causes the current I/O operation and the command to
be aborted. Control returns- to the command handler, and another command may be entered
when a ““?” is printed.

All other characters from keyboard input, printer output, and cassette read and write are
handled as specified in Appendix C.

44 Digital Systems Division

[¢]
% 945255-9701

4.4.5 COMBINING SOURCE OR OBJECT FILES. PX9EDT may be used to combine source
files or object files. These files may be on one or more cassette tapes. When the editor is started,
the initial messages are printed:

PX9EDT PART # REV DATE
ADD MEM BLOCKS CONFIGURED?

POSITION TAPES, ENTER CR

The user mounts the tapes and enters a carriage return on the terminal keyboard. The prompt
character (?) is displayed. The user enters the D command to read records from the input tape.
The K command is then used to write the records in the buffer to the output tape.

?D150
?K150

Subsequent D and K commands are entered until the end of file is reached and the entire file
has been transferred to the output tape.

?D150
?K150
?D150

END OF FILE
?K150

The user then enters the E command to end the edit process without writing an end of file to
the output file. ' :

’E

The terminate or continue question is then asked. The user responds with a C for continue.
TERMINATE/CONTINUE ?2C

The initial tape positioning message is printed. The user repositions the file or replaces the
original input file with the next one to be copied and repeats the above procedure until all files
have been transferred. When all the records of the last file have been transferred, the user enters
the Q command instead of the E command.

?7Q
END EDIT

‘The Q command writes an end of file to the output file and terminates the edit process. The
terminate or continue question is printed. Respond with a “T” to terminate.

4.4.6 CREATING NEW PROGRAMS. The following paragraphs describe the use of PX9EDT to
enter a new source program on tape. The Insert (I) command is used to input new source
statements. Any of the commands may be used to correct any errors made in entering the
statements. Because statements entered with the Insert command have no line numbers, the
pointer-relative specification is the only available means of specifying a line in a command. The
following text describes an example of writing a source program using PX9EDT.

45 Digital Systems Divisiot

o
{@ : 945255-9701

The initial message and the first command, with associated entries, are as follows:

POSITION TAPES, ENTER CR

210
w1 BSS 32
START RSET
LWPI W1
CLE RO

The I command with an operand of zero causes PX9EDT to place the lines that follow at the
top of the buffer. The buffer pointer is not moved as lines are entered and remains ahead of the
first line entered. In the above example, an error was made in the operation field of the fourth
line, so the user entered an additional carriage return to terminate the command, permitting
entry of another command to correct the error.

The next part of the example program is:

?K3
?P1
CLE RO

The K command cuases PX9EDT to write the first three lines on the output medium. The Pl
command causes PX9EDT to print the pointer line to verify that the pointer is at the line that
contains the error. An alternative to using the Keep command to write the correct portion of the
program is to use a Down command to position the pointer for correction of the error, leaving
the first three lines in the buffer. - ’

The next command and the associated entries are as follows:

?C
CLR RO

" INC RO
JNO U1

D1 DEC RO
JNE D1
JMP 11
END START

The C command deletes the error line and accepts seven lines of source code. The example source
program is now complete, with three lines written on the output medium, and seven lines in the
buffer.

The next command and the resulting printing are as follows:

?F10FJ4111”
LAST LINE
0001 FOUND

The F‘command scans the contents of the buffer, replacing the first appearance in each line of
string J1 with string [1. The command attempts to scan 10 lines, and prints the message LAST
LINE because there are only seven lines in the buffer. The V and P options (paragraph 4.5.4.5)
could have been used. This is an alternate method of correcting an error in a source program
entered from the keyboard using PX9EDT.

4-6 Digital Systems Division

o
%@ 945255-9701

The next command and the resulting printing are as follows:

?P10

CLR RO

" INC RO
JNO H

D1 DEC RO
JNE D1
JMP 11
END START

LAST LINE

The P command causes PX9EDT to print the contents of the buffer and the last line message.
This command allows the user to check the program carefully before writing the output file.

The last command and the final message are as follows:

?7Q0
END EDIT

The Q command causes PX9EDT to write the buffer contents on the output medium following
the records previously written by the Keep command. An end-of-file record is written following
the last record. The O specifies that no input records are to be read.

When it is desired to put more than one source module in a file, each module should be
terminated with an END statement. The Quit command should be entered in order to output the
buffer and write an end of file after all source files have been entered. When the assembler reads
the END statement of a module, an end-of-module record is written to the object file. The
assembler continues assembling the source modules on the input cassette until an end of file is
encountered. The assembler then writes an end of file on the output object tape.

4.5 COMMANDS
The 18 commands of PX9EDT include setup commands pointer commands, edit commands,
‘print commands, and output commands.

4.5.1 GENERAL. The four setup commands initialize the edit operation. The group includes
commands to enable or inhibit printing of line numbers, to set the right margin for printing, and
to set left and right limits for the Find command.

PX9EDT edits data in a buffer and identifies lines of data in the buffer with a pointer. Four
pointer commands permit the user to position the pointer by moving the pointer down, up, to
the top of the buffer, or to the bottom of the buffer. The command that moves the pointer
down may also read data from the input file.

The five edit commands of PX9EDT allow the user to change, insert, move, or remove lines of
code, and to search for a character string in a set of lines of code. PX9EDT counts the lines in
which the string is found and optionally substitutes another character string, verifies substitution
of the character string, or prints the line in which the string is found.

Two print commands print lines df code on the printer. One command prints the first and last
lines of code in the buffer. The other command prints one or more lines as specified in the
command.

4-7 Digital Systems Division

o
{@ 945255-9701

PX9EDT provides two output commands to write data on the output file. One command
outputs a specified number of lines, or all lines of data from the buffer. The other outputs a
specified number of lines, or all lines of data from the buffer, or from the buffer and the input
file, and writes an end-of-file record following the last line.

One other command allows the user to terminate the edit process w1thout outputtmg any hnes
or writing an end of file.

Commands are entered at the keyboard in response to the printing of a question mark (?).

The command language is free-form, in that one or more spaces may be inserted between
characters and operands of the commands. Each command is terminated by entering a carriage
retum

4.5.1.1 Operands. The operands of the PX9EDT commands specify numbers of lmes line
numbers, or displacements from the pointer. The edit commands and one of the print commands
may specify a group of lines by first and last line number, or by a number of lines relative to
the pointer.

The procedure for moving lines to or from the buffer is described in paragraph 4.4.3.

4.5.1.2 Conventions. The following symbols and conventions are used in defining the syntax of
PX9EDT commands:

® Angle brackets (< >) enclose items supplied by the user.
® Brackets ([1) enclose optional items.

® Braces «({ }) enclose items between which a choice must be made; one, but only one, of
the items must be included.

® Items in capital letters and punctuation marks must be entered as shown.

The syntax definitions and examples shown in this manual do not show spaces between the
characters of the two-character commands, between the command and operands, or between
operands. Spaces may be entered at these points if desired. All operands are decimal numbers.

4.5.2 SETUP COMMANDS. The setup commands may be entered immediately following the
initial message to initialize limits for the Find command and the right margin for printing, and to
enable or inhibit printing of line numbers. These commands may also be entered at any time
during the edit to change any of these parameters. When neither of these commands is entered,
line numbers are printed, the right margin for lines of print is column 72, and columns 1
through 72 are scanned by the Find command. The setup commands are described in the
following paragraphs.

4.5.2.1 Line Numbers (SL). The Line Numbers command causes PX9EDT to resume printing
line numbers to the left of each statement or record. The syntax for the SL command is as
follows:)

SL

The SL command is used to restore printing of line numbers after line number printing has been
.inhibited by execution of an SN command.

4-8- Digital Systems Division

o
@ 945255-9701

4.5.2.2 No Line Numbers (SN). The No Line Numbers command causes PX9EDT to omit
printing of line numbers except in the message resulting from the L command. The syntax for
the SN command is as follows:

SN

The SN command may be entered initially or at any time during the edit operaﬁon. Omitting
the line numbers when editing object code may be desirable to permit printing the entire record.

4.5.2.3 Print Margin (SP). The Print Margin command specifies the right margin for printmg,
except for the message resultmg from the L command. The syntax for the SP command is as
follows: ,

SP<s>

The right margin for printing is column s. The default value for the right margin is column 72.
The margin input must be a value between 10 and 80, inclusive. If line numbers are being
printed, the line numbers are included in the margin column. The line numbers use six columns,
so that if the right margin is comumn 72, only 66 characters plus 6 line numbers and blanks for
spacing are printed. The following example shows an SP command that specifies column 60 as
the right margin for printing:

?SP60

'4.5.2.4 Find Margin (SM). The Find Margin (SM) command specifies left and right limits for the
Find command. The syntax for the SM command is as follows:

SM<s>,<t>

The Find command scans from column s to column t. The SM command may be entered to
limit the Find command to a desired field. The default value for the scan limits is from column
1 to column 72. The following example shows an SM command that limits the scan of
subsequent Find commands to columns 8 through 25:

?7SM8,25

4.5.3 POINTER COMMANDS. The pointer commands may be used to move the pointer to any
line in the buffer of PX9EDT. Initially, the pointer is at line 1. Moving the pointer with the
Down command to any empty line causes PX9EDT to read source lines or object records from
the input file to fill the empty lines, including the line specified in the Down command. Other
commands move the pointer up a specified number of lines, or to the top of the buffer, or down
to the bottom of the buffer. The pointer commands permit the user to move the pointer as
desired for effective use of commands that identify lines by specifying a displacement from the
pointer. The pointer commands are described in the following paragraphs.

4.5.3.1 Down (D). The Down command causes PX9EDT to move the pointer down a specified
number of lines. When the specified move is to a line number greater than the contents of the
buffer, PX9EDT adds lines to the buffer and reads records from the input file to fill these lines.
The syntax for the D command is as follows: '

D[<n>]

49 Digital Systems Division

[o]
%@ 9452559701

The pointer is moved down n lines. The range of n is 1 to 9999, and the default value when n is
omitted is 1. The D oommand'may be entered to read in lines from the input file or to move
the pointer to a line farther down in the buffer. Initially, or when the pointer is at the bottom
of the buffer, PX9EDT reads n lines from the input file. When the pointer is m lines above the
bottom of the buffer and n is greater than m, PX9EDT reads n — m lines from the input file. In
each of these cases, the pointer is at the bottom of the buffer after execution of the D
command. However, when the pointer is m lines above the bottom of the buffer and m is greater
than or equal to n, no lines are read, and the pointer is m — n lines above the bottom of the
buffer after execution of the command. The following example shows a D command to move
the pointer down 30 lines:

?D30

4532 Up (U). The Up command causes PX9EDT to move the pointer up a specified number
of lines. The syntax for the U command is as follows:

ul[<n>]

The pointer is moved up n lines. The range of n is 1 to 9999, and the default value when n is
omitted is 1. The U command may be entered to move the pointer up to a specific line in the
buffer. The following example shows a U command to move the pointer up 6 lines:

?U6

4.5.3.3 Top (T). The Top command causes PX9EDT to move the pointer to'the top line in the
buffer. The syntax for the T command is as follows:

T

4.5.3.4 Bottom (B). The Bottom command causes PX9EDT to move the pointer to the bottom
line in the buffer. The syntax for the B command is as follows:

B

454 EDIT COMMANDS. The edit commands add, remove, rearrange, or scan lines of source or
object code. These commands act upon a set of the lines in the buffer, specified by line number
or by a displacement from the pointer. The edit commands are described in the following
paragraphs.

4.54.1 Change (C). The Change command deletes a specified set of lines and permits input of
one or more lines to replace the deleted lines. The syntax for the C command is as follows:

<s>-<t>
C ([+]1[<n>]
<n>

Line s through line t are deleted, or n lines with respect to the pointer are deleted. The values of
s and t can be equal. Enter as many replacement lines as required. Follow each line with a
carriage return; follow the last line with two carriage returns. When n is preceded by a minus
sign, n line preceding the pointer line are deleted, but the pointer line is not deleted. When n is
u&sigped or is preceded by a plus sign, n lines beginning with the pointer line are deleted. When

4-10 Digital Systems Division

(o]
@ 945255-9701

no operand is entered, the pointer line is deleted. When the pointer line is deleted, the pointer is
moved to the top line of the buffer. The following example shows a C command to change lines
5 through 7, replacing them with four lines:

?C5-7
LOD Mov 14
Al 4,1
Cl 4, WA+60
JLT SUM

The following example shows a C command to change the pointer line and the two lines that
follow the pointer, replacing them with two lines:

?7C3
LOD MoV 14
Cl 4,WA+60

4.54.2 Insert (I). The Insert command permits input of one or more lines following the pointer
or a specified line. The syntax for the I command is as follows:

I[<k>]

Enter as many lines as required. Follow each line with a carriage return; follow the last line with
two carriage returns. When k is in the range of 1 to 9999, insert lines following line k. When k is
0, insert lines ahead of the top line in the buffer. When k is omitted, insert lines following the
pointer line. The following example shows the use of the I command to insert two lines
following line 10:

7110
CKON
DEC 7

4.54.3 Move (M). The Move command moves a specified block of lines to a specified location
and deletes the lines at the previous location. The block is specified by first and last line
numbers, or by a number of lines preceding or following the pointer. The location is specified as
a line number, or as the pointer. The syntax for ihe M command is as follows:

<s><t>,[<r>]
M ([+]<n><>
-<n>,<r>

Line s through line t are moved, or n lines with respect to the pointer are moved. When n is
preceded by a minus sign, n lines preceding the pointer line, but not the pointer line, are moved.
When n is unsigned or preceded by a plus sign, n lines beginning with the pointer line are moved.
The specified lines are placed following line r when r is greater than zero. When r is zero, the
specified lines are placed ahead of the top line in the buffer. When r is omitted, the lines are
placed following the pointer line. Numbered lines moved by the Move command retain their
original line numbers, if any. When the pointer line is moved, the pointer moves with it. When s
and t are specified, r must be less than s or greater than t. When n is specified, r may not be

omitted. The following example shows an M command to move lines 6 through 8 to follow line
25:

7M6-8,25

4-11 Digital Systems Division

. | _,
{@p 945255-9701

The command in the following examples meoves four lines beginning with the pointer line to -
follow line 30:

IM4,30

4544 Remove (R). The Remove command removes a block of lines. The block is epeciﬁed by
first and last line numbers, or by a number of hnes precedmg or following the pointer. The
syntax for the R command is as follows:

<<t
R [+][<n>]
<n>

Line s through t are removed, or n lines with respect to the pointer are removed. When n is
preceded by a minus sign, n lines preceding the pointer line, but not the pointer line, are
removed. When n is unsigned or preceded by a plus sign, n lines beginning with the pointer line
are removed. When ho operand is entered, the pointer line is removed. When the pointer line is
removed, the pointer is moved to the top line of the buffer. The followmg example shows an R
command to remove line 12:

?R12-12
The command in the following example removes the three lines preceding the pointer line:
?R-3

4.54.5 Find (F). The Find command scans a block of lines for a specified character string.
Optionally, the command may replace the string with or without printing the resulting line, or

- may print the line and permit the user to specify whether or not to substitute the string. In all
cases, the command prints the count of matching lines found. The block is specified by first-and
last line numbers, or by a number of lines precedmg or following the pointer. The syntax for the
F command is as follows:

{l;};v {F} <AI><strngl ><d1>) <4o>[<string2>]<d2>[V] [P]

Line s through line t are scanned, or n lines are scanned. When n is preceded by a minus sign, n
lines preceding the pointer line, but not the pointer line, are scanned. When n is unsigned or
preceded by a plus sign, n lines beginning with the pointer line are scanned.

When an F is entered following the lines to be scanned, the columns specified in an SM
command are scanned. (Columns 1 through 72 are the default for SM.) When an L is entered,
the command performs a label scan, beginning at the left limit and extending to the first space.

The character string used in the scan is designated stringl, and is enclosed by identical
characters, each represented by d1. The character represented by d1 may be any character that
does not appear in stringl.

When no other parameter is entered, the command scans the specified lines and prints the
number of lines in which a match of stringl was found. When P is entered following d1, the
command prints each line in which a match of stringl was found, and also prints the number of
‘lines following the last line found.

4-12 Digital Systems Division

o
{@? 945255-9701

Character string, string2, enclosed by identical characters, each represented by d2, is the
replacing string. String2 may be omitted, or may be longer or shorter than stringl. When the
replacement is made, the characters of string2, if any, replace the characters of stringl and the
length of the resulting line is adjusted as necessary. Character d2 may be any character that does
not appear in string2, V, or P.

When no other parameter is entered following string2, the specified lines are scanned and string2
replaces the first appearance of stringl or label stringl each time a match is found. The
command prints the number of lines in which the replacement was made after scanning the last
line.

Either V or P, or both may be entered following string2. The verify operation, specified by V,
prints the line in which the match is found, and prints the question Y/N? on the next line. The
user must enter Y or N followed by a carriage return to continue the operation. When the user
enters Y the replacement is made. When the user enters N the replacement is not made. The scan
continues in either case.

The print operation is specified by P. After the replacement is made, the resulting statement is
printed, and the scan continues. -

When the specified lines have been scanned, PX9EDT prints the number of lines in which a
match was found.

The general rule of PX9EDT which allows spaces between characters or operands does not apply
to stringl and string2. Any spaces between the characters represented by d1 are considered part
of stringl, and any spaces between the characters represented by d2 are considered part of
string?2.

The following example shows an F command to replace the first appearance in each line of the
string EUEN with the string EVEN in lines 34 through 48 and print the resulting lines:

?F34-48F *EUEN*SEVENSP

The command in the following example verifies the replacement of label P1 with string PUNI in
each of nine lines beginning with the pointer line:

?FOL'P1""PUN1T'V
NOTE

If a tab character is included between fields of the data being
scanned by the F command, the tab character should be used in
the comparison character string instead of blanks.

4.5.5 PRINT COMMANDS. The print commands cause PX9EDT to print the first and last lines

in the buffer, or to print one or more specified lines. The print commands are described in the
following paragraphs.

4.5.5.1 Limits (L). The Limits command causes PX9EDT to print the first and last lines in the
buffer, including the line number, if any, with the right margin at column 72. The SN and SP
commands do not affect the operation of the L command. The syntax for the L command is as
follows:

L

4-13 Digital Systems Division

(o]
(@ 945255-9701

The L command is used to identify the top and bottom lines of the buffer.

4.5.5.2 Print (P). The Print command causes PX9EDT to print a block of lines. The block of
lines is specified by first and last line numbers, or by a number of lines preceding or following
the pointer. The SL and SN commands, when entered, control printing of line numbers, and the
SP command, when entered, sets the right margin of the print lines. When these commands are
not entered, line numbers are printed and the right margin is column 72. The syntax of the P
command is as follows:

<><t>
P {[+]1[<n>]}
<n>

Line s through line t are printed, or n lines are printed. When n is preceded by a minus sign, n
lines preceding the pointer line, but not the pointer line, are printed. When n is unsigned or
preceded by a plus sign, n lines beginning with the pointer line are printed. When no operand is
entered, the pointer line is printed. The following example shows a P command to print lines 8
through 10:

?P8-10
The command in the following example prints the pointer line and the next three lines:
?P4

The user may terminate the Print command at any time by entering an- ESC character at the
keyboard. PX9EDT then prints a question mark and awaits input of another command.

4.5.6 OUTPUT COMMANDS. PX9EDT provides two commands to write source or object code
and one command to end execution of PX9EDT. The Keep command writes the entire buffer or
specified lines from the buffer. The Quit command writes specified lines from the buffer, the
entire buffer, or the buffer contents and the remainder of the input file, and writes an end-of-file
record on the output file. The output commands are described in the following paragraphs.

4.5.6.1 Keep (K). The keep command writes a specified number of lines from the buffer on the
output device. The syntax of the K command is as follows:

K[<n>]

The first n lines of the buffer, or all lines in the buffer when n is omitted, are written on the
output device. When the pointer line is written, the pointer is moved to the top line remaining in
the buffer. The K command is entered to write lines no longer required in the buffer in order to
have space in the buffer for additional lines. The following example shows a K command to
write the top 15 lines of the buffer:

?K15

4.5.6.2 Quit (Q). The Quit command writes lines from the buffer and input file followed by an
end-of-file record. The syntax of the Q command is as follows:

Ql<s>]

4-14 Digital Systems Division

(o]
@ 945255-9701

The lines of the input file up to and including line s are written. When line s is in the buffer,
lines are written from the buffer only. When line s is not in the buffer, PX9EDT writes the lines
in the buffer, reads the additional lines from the input file, and writes these lines. When s is
zero, only the lines in the buffer are written. When s is omitted, the lines in the buffer and the
remainder of the input file are written. The Q command is entered to write the output file, or
the remainder of the output file, including the end-of-file record.

If the output tape is not mounted, the message

RDY TAPE-TYPE CR

is printed. The user should ready the output cassette and enter a carriage return. The command
then proceeds. v

4.5.6.3 End (E). The End command stops execution of PX9EDT without writing any more lines
to the output file and asks the user whether he wants to continue or terminate execution. An
end-of-file is not written. The syntax of the E command is as follows:

E

The End command is often used to generate stacked modules without ends-of-file between them.
In this case, the End command can be used following appropriate Keep commands to write the
output file.

4.6 MESSAGES
PX9EDT prints error messages and warning messages. The messages are described in the following
paragraphs.

4.6.1 ERROR MESSAGES. The two error messages printed by PX9EDT indicate errors in the
entry of commands. When the operator portion of a command is incorrect, PX9EDT prints the
following message:

INVALID OPERATOR

When an operand is not entered correctly or is beyond the range of values for that operand,
PX9EDT prints the following message:

INVALID OPERAND

To recover from either error, the user enters the command correctly, or enters another
command.

When an output command, either K or Q, is entered and no output cassette is mounted, the
following message is printed:

RDY TAPE-TYPE CR

The user should ready the output cassette and type a carriage return on the terminal keyboard.
The command entered then proceeds.

-4-15 Digital Systems Division

(o) rd
{_@:P 945255-9701

4.6.2 WARNING MESSAGES. When any command that operates on data in the buffer is
entered before data has been placed in the buffer from the input file or from the keyboard

(either initially or after writing the entire buffer contents), PX9EDT prints the following
message:

BUFFER EMPTY
To recover, the user should enter a D command, or an I command and data.

When a D, I, or C command attempts to put more data into the buffer than the buffer can
contain, PX9EDT prints the following message:

BUFFER FULL!

The user must enter a K command to write data from the buffer before entering or reading any
more data.

When a D command attempts to read more records from the input file than the file contains,
PX9EDT prints the following message:

END OF FILE
PX9EDT will not make any further attempt to read the input file until the program restarts.

When the negative displacement from the pointer line in a C, M, R, F, or P command is greater
than the number of lines in the buffer ahead of the pointer line, PX9EDT prints the following
message:

- OFF THE TOP

After printing the message, PX9EDT executes the command beginning with the top line of the
buffer.

When the positive displacement from the pointer line in a C, M, R, F, or P command is greater
than the number of lines in the buffer following the pointer line plus one, the command
executes normally until it has processed the last line in the buffer. PX9EDT then prints the
following message:

LAST LINE
PX9EDT prints a question mark and waits for another command.
When the first line in a C, M, R, F, or P command, or the line number in an I command, or the
destination line number in an M command is not in the buffer, PX9EDT prints the following
message:

LINE NOT FOUND

PX9EDT does not execute the command, but prints a question mark and waits for another
command.

4-16 Digital Systems Division

[e]
%@ 945255-9701

4.7 SOURCE PROGRAM EDITING EXAMPLE

The capabilities of PX9EDT to edit source programs include adding, moving, and removing
statements, and replacing a character string in statements. The edited program may include
portions of a number of source programs. The purpose of editing is either to combine portions
of source programs or to correct or modify a source program. The following paragraphs describe
an example of editing a source program and considerations for editing source programs.

4.7.1 DESCRIPTION OF PROGRAM. The source program used as an example is a set of three
program modules to be combined into one module. Some changes not related to combining the
modules are also made. The source statements for all three modules have been placed in a single
file containing 117 records.

The default values for print margin and F command limits are used, and line numbers are
printed. No setup command is required.

4.7.2 EXPLANATION OF EXAMPLE. The initialization messages and the first command are as
follows: '

PX9EDT PART # REV DATE
ADD4K MEM BLOCKS CONFIGURED?

POSITION TAPES, ENTER CR
D117
The D command moves the pointer down 117 lines, and PX9EDT reads in the source file to fill
the buffer as defined by the D command. A smaller value could have been used to read part of
the file, followed by a subsequent D command to read the remainder. Had a larger value been
entered, PX9EDT would have read the 117 records of the file and printed the end-of-file
message. PX9EDT prints the prompt character (?) and awaits another command.

The next command and the resulting printing are as follows:

7L
0001 TITL ‘EDITING EXAMPLE’
0117 END

The L command verifies the buffer contents by printing the first and last lines in the buffer. Had
the SN and SP commands been entered, they would not have affected the printing of the limits
resulting from the L command. '

The next command is as follows:
T
The T command moves the pointer to the top of the buffer (line 1) from line 117 where the

first command had placed the pointer. Moving the pointer to the top of the buffer permits using
pointer-relative commands for the area at the top of the buffer.

4-17 Digital Systems Division

o
%@ 945255-9701

The following commands move line 46 to a position after line 116 and remove line 117.

?M46-46,116
?R117-117

The following command is entered.
?M81-87,115

This M command moves lines 81-87 to a position following line 115. This causes the line
numbers in the buffer to be out of sequence.

The following commands prepare for verifying the move operation.
?B
?P1
0046 END START

The B command places the pointer on the last line of the buffer, and the P command prints the
pointer line to verify that it is on the proper line.

The next command and the resulting printing is as follows:

?P-13 '
o111 upP2 MOV *R10,*R10
0112 JNE UP1
0113 BL @ATTOP
0114 MOV *DUMNXT, TMLOC
0115 JMP UP3

0081 * ROUTINE COMMON TO UP AND DOWN
0082 UDCOM1 MOV RTN,R5

0083 BL @SCANOP
0084 INC UDCNT

0085 MOV UDCNT,UDCNT
0086 JEQ EXIT

0087 B *R5

o116 *

The P command prints the 13 lines preceding the pointer line, and the result shows that lines
81-87 have been placed after line 115. The result also shows the effect of the previous move and
remove commands.

The next command and associated entries are as follows:

77 :
* TITLE = MSGOUT - MESSAGE OUTPUT
MSGOUT MOV *R11+,R10
MoV @MCOUNT(R10),R10
BLWP @PRINT
B *R11

4-18 - Digital Systems Division

[e]
%‘—;@? 945255-9701

The I command inserts five lines following line 77. The number of lines inserted is the number
of lines entered with the command, and may be one or any number of lines. After the carriage

return that terminates the last line, enter an additional carriage return to terminate the
command.

The next command and the resulting printing are as follows:

P77-78 |
0077 JMP EXIT
* TITLE = MSGOUT - MESSAGE OUTPUT
MSGOUT MOV. *R11+R10
. MOV~ _@MCOUNT(R10),R10
BLWP @PRINT
B *R11
0078 EOFEXT BL @MSGOUT

The P command prints lines 77 through 78, which includes the five unnumbered lines inserted
by the previous command. The result shows that the lines have been inserted correctly.

The next command and the resulting interaction are as follows:

?F1-46F'EXIT"EXTDWN'VP

0071 JMP EXIT
Y/N? Y

0071 JMP EXTDWN
0077 JMP EXIT
Y/N? Y

0077 JMP EXTDWN
0080 EXIT RTWP

Y/N? Y

0080 EXTDWN RTWP

0086 JEQ EXIT
Y/N? N

0004 FOUND

The F command finds the first appearance in a line of the string EXIT in lines 1 through 46.
(Remember that line 46 is now the last line, i.e., after line 116.) The entire buffer is scanned
because the top line in the buffer is line 1 and the bottom line is line 46. Line numbers greater
than 46 between lines 1 and 46 are also scanned. The replacing string is used only when the user
enters a Y following the printing of the line found. In the example shown, the replacement was
not made in line 86 because the user entered an N following the printing of this line. Lines 71,
77 and 80 were replaced because the user entered a Y following the printing of these lines. The
count of lines found is printed after all lines have been scanned. The F command may be used
to scan only a portion of the buffer, from one line up to the entire buffer, and replace from one
character to the entire statement.

The next three commands are as follows:
?R156-15

?R17-17
?R19-19

4-19 Digital Systems Division

(o]
@ 9452559701

Each R command removes the specified line from the buffer. Three commands that remove one
line each are necessary because the lines to be removed are not consecutive. A single R command
may remove one or more consecutive lines.

The next command and the resulting printing are as follows:

?P14-20
0014 DUMNXT EQU 0
0016 LINAD EQU 2
0018 LINPTR EQU 4
0020 CLLOC EQU 6

The P command prints lines 14 through 20. The result shows that the lines specified in the
remove command were removed.

The next command is as follows:

U2

The U command positions the pointer to the second line preceding the pointer line. The pointer
could have been moved any number of lines up to the top of the buffer.

The next two commands, the resulting printing of the first command, and the entry associated
with the second are as follows:

?P68-68

0068 A @MAXLIN,UDCNT
7C68-68

A @MINLIN,UDCNT

The P command prints line number 68 to verify that line 68 is the desired line. The C command
changes line 68 to the line entered with the command. One or more consecutive lines may be
deleted by a C command, and any number of lines including zero lines may be added. The
number of lines added does not have to be equal to the number of lines deleted. The added lines
have no line numbers.

The last command and the final message are as follows:

?Q0
END EDIT

The Q command writes the contents of the buffer and end-of-file record and terminates the
PX9EDT run. Omitting the operand following the Q causes the command to write the buffer
contents and copy the remainder of the source file. An operand other than zero causes all lines
up to and including the specified line to be written. The line may be in the buffer, or in the
portion of the input file remaining to be read.

4.8 EDITING OBJECT CODE

The capabilities of PX9EDT to edit object programs include adding, moving, and removing
records, and replacing a character string in records. These capabilities allow the user to combine
object code, correct object code, and add object code at a machine instruction level. In editing

4-20 Digital Systems Division

o]
%@ 945255-9701

object code, it is necessary to thoroughly understand the object code format and the significance
of tag characters, described in the Model 990 Computer TMS9900 Microprocessor Assembly
Language Programmer’s Guide, and summarized in Section V of this manual. Records may be
inserted into an object program at any point except that the records that contain the 3 or 4 tag
character, the 5 or 6 tag character, and the 1 or 2 tag character must follow all other records in
the object file. Further, the record that contains the D tag character, if any, must precede the
record that contains the first O tag character. Each record must end with tag character F. When
the contents of a record are altered, the 7 tag character and associated field must be removed.
When the length of relocatable code is increased, the contents of the hexadecimal field associated
with the final O tag character must be changed. The following paragraph describes an example of
editing an object program.

In the example, the purpose of the edit is tc add a record to specify a load point, to change
instructions that use workspace register 1 to use workspace register 7 instead, to change an
instruction, and to add an instruction.

The initialization message and the first command are as follows:
POSITION TAPES, ENTER CR
?SN

The SN command is a setup command that ir};libits printing of line numbers. When line numbers
are printed, printing of an object record may be truncated because of the length of the print
line.

The next command and the associated entry are as follows:

?10
D1000F

The I command with an operand of O inserts the associated line at the top of the buffer. The
line will be the first record in the edited object file, and contains load point of 1000,,, specified
with a D tag character.

The next command and the resulting printing are as follows:
D10
END OF FILE

The D command causes PX9EDT to reaa m the object file to be edited. The file contains six
records, so the operand used causes PX9EDT to attempt to read past the end-of-file record. This
inhibits further reading of any input file in this run of PX9EDT. If more than one file is to be
combined in an edit operation, avoid an operand in a D command that will cause PX9EDT to
attempt to read more records than the file contains.

The next command and the resulting printing are as follows:

L

D1000F ,
0006 200CEC010C 7FCABF

421 Digital Systems Division

945255-9701

The L command causes PX9EDT to print the limits. The top line in the buffer is the line
entered with the I command, and has no line number. The bottom line is the last line of the
object file, line 6.

The next command and the resulting interaction are as follows:
?F1-6F " BODO2" "BOOOE "YP

000003RAMPROS 30040C0000R0020BC 0ADEODIZI0 0425 0020R0I24BCZ1IBCOO2ATFZ13F
ToNTY

O0000ZAMPROG 2004 0C0300R002OBCOSDEINOEIANAS AN IA0024BC 31 BCOC2ATF 2L IF

AD023B0241BOODIBCEA1BOID2BOIZIA0ICAC 0052CO0AZEIZEICIO32B 92 J0BOFOFTF1DEF
YT

RO023B0S41BO0OOBCE41BONOEBOIZORNOCACINSSC O0R2ZBIZEQC 00 32B020 0B OF OF PF 1DEF
0002 FOUND

The F command scans for the character string B0O002 with the verify and print options. The
replacement string, BOOOE, changes the memory address of workspace register 1 to that of
workspace register 7 in two instructions. Verification and printing provides control and documen-
tation of the changes.

The next command and the resulting interaction are as follows:
TF1-5F "FF151° 7 "WP

ROODSBCOROCD OCAB 04 C3BC 15 0C DICCBC 1A OC 00DOBE IF 2R 0237 B3AD 0A 00EC B2 17F151F
TANTY

RO0DSBCORDIC DOCABO4C3BCIS0CO0CCEBCIAICOIDOBCIF2BI237TB2A0IR0DECBOZ2LIF
0001 FOUMD

The F command scans for the character string 7F151, which is a checksum tag character and
associated field. The replacement character string is a null string, and the result is to remove the
checksum from a record which was changed by an edit command not shown here.

The next command and the associated entry are as follows:

?l

AOOECB0227A00F0B06C7A010ABO4CTF
AO10CB10FFF

The I command inserts the associated two lines following the line on which the pointer had been
positioned by an edit command not shown. The first line will cause the loader to overlay three
words of the original file, which is another way of changing object code. The second line is an
added instruction which will increase the size of the program module.

4-22 Digital Systems Division

(o]
4@ 945255-9701

The next three commands, the resulting printing of the second, and the associated entry of the
third are as follows:

?D3
?P1
200CE0010C 7FCABF

?C
200CEO010E F

The D command moves the pointer line down three lines, and the P command causes PX9EDT
to print the pointer line to verify the pointer position. The C command changes the pointer line
to modify the number of words of relocatable code in the program. If this is not done, and
another module is loaded following this module without specifying a load address for the
subsequent module, the subsequent module will overlay the instruction that was added. The
pointer line is also changed to delete the checksum.

The last command and the final messages are as follows:
7Q0
END EDIT

The Q command causes PX9EDT to write the contents of the buffer, followed by an end-of-file
record, on the output medium.

4-23/4-24 Digital Systems Division

o .
%@ 945255-9701

SECTION V
ONE-PASS ASSEMBLER

5.1 INTRODUCTION

This section describes the purpose of the one-pass assembler and how the assembler functions. It
also presents some recommendations for using the assembler. Paragraphs on the loading pro-
cedure and operation of the assembler follow. The operation discussion includes the input/output
requirements and the operational messages printed. The next part of this section contains a brief
discussion of assembler directives and pseudo-instructions and includes references to other
publications. Error messages, descriptions of the errors with remedial action required, an explana-
tion of the printed source listing output, and a brief discussion of the object code comprise the
remainder of the section.

5.2 GENERAL DESCRIPTION

The One-Pass Assembler (PX9ASM) executes in a Model 990/4 or 990/10 Computer configured
for the 990-733 ASR System Software or the 990 Prototyping System. The Debug Monitor,
PX9MTP, must be resident since PX9ASM is loaded by PX9IMTP and calls PX9MTP routines for
input/output and conversion operations. PX9ASM assembles object code for the TMS9900
microprocessor, the 990/4 microcomputer and the 990/10 minicomputer.

A one-pass assembler reads the source statements of a program once only. The assembler
maintains a location counter as it reads the statements, and assigns a location counter value to a
label (symbol in the label field). The assembler builds a symbol table using these symbols and
the assigned values. The assembler also evaluates the expression in the operand field using the
values in the symbol table for any symbols in the expression. Then the assembler assembles the
appropriate object code according to the operation codes and the values of the operands.

PX9ASM supports the assembly language as described in the Model 990 Computer TMS9900
Microprocessor Assembly Language Programmer’s Guide, Manual No. 943441-9701. It is recom-
mended that the user read this manual before trying to write any assembly language programs.
Because PX9ASM is a one-pass assembler, there is a restriction which allows only one forward
reference in an expression. ‘

PX9ASM provides a listing of the source and object code and generates the machine language
object code on cassette tape.

5.3 LOADING PROCEDURE FOR THE ASSEMBLER

PX9ASM should be loaded by means of the PXO9MTP Load Program in Compressed Absolute
Format with Upfront Loader (LU) command. Mount and position the cassette containing the
PX9ASM object code and enter this command:

LU

The LU command with no parameters assumes that the cassette will be mounted in the cassette
drive assigned to logical unit number 7. Be sure that logical unit number 7 has not been

5-1 Digital Systems Division

[e]
@ 945255-9701

reassigned to another device. Examples of other acceptable load program commands are the
following:

LU,7 Load program from LUNO 7.
LU 8 Load program from LUNO 8.

The user then enters the Execute User Program Directly (EX) command to begin execution of
PX9ASM.

54 ASSEMBLER OPERATION
The following paragraphs discuss input/output and use of the assembler.

54.1 INPUT AND OUTPUT. PX9ASM accepts tapes containing Model 990 Computer/TMS9900
Microprocessor Assembly Language source statements as input. The source tapes may be gener-
ated with the Text Editor (PX9EDT). PX9ASM assembles the source lines generating an output
listing of the assembled source and object code and a cassette tape object file which may be
loaded by the relocating linking loader (LL command of PX9MTP). If no linking is necessary,
the LP command may be used to load the object.

PX9ASM accepts input source from logical unit number 7, outputs the listing to logical unit
number 6, and outputs the loadable object to logical unit number 8. Under PX9MTP, the
following default logical unit number assignments have been made.

Logical Unit Number Device
LOG
CS1
8 CS2

If other assignments are required, the Assign LUNO (AL) command of PX9MTP should be used.
For example, to assemble a source tape with no printed listing, the user should assign LUNO 6
to DUM, the dummy device. The error messages will continue to be. printed.

5.4.2 PX9ASM OPERATIONAL MESSAGES. When PX9ASM is started, it prints a series of
messages requesting user responses. The first two messages are printed the first time PX9ASM is
executed after being loaded. In subsequent executions and when restarting PX9ASM, the first
two messages will not be printed.
The first of these messages is as follows:

PX9ASM PART # REV DATE
This message identifies the program name and release information.

The second message is:

ADD 4K MEM BLOCKS CONFIGURED?

5-2 Digital Systems Division

[e]
%‘_@? 9452559701

The user should input the number of 4K user memory blocks which are configured in his system
in addition to the 4K required by PX9ASM and the 4K required by PX9MTP. The maximum
number that can be specified is 5. This additional memory will expand PX9ASM’s symbol table
size. For example, if the user’s system contains 8K of user memory space in addition to the 4K
required by PX9MTP, the response should be “1”. If the user’s system contains 4K of user
memory space, the response should be “0” or a carriage return only.

The third message is:

PREDEFINED REGISTERS?

The user should enter “N”’ for no predefined registers, or “Y” or a carriage return if registers RO
through R15 are to be predefined in the symbol table.

An additional message is the following:
ASM/TERM?

The user should type “A” to assemble and “T” to terminate and return control to the monitor.
For the assemble option response, the user should mount cassettes and position them to the
correct files before responding to the message.

5.5 DIRECTIVES AND PSEUDO-INSTRUCTIONS

The following paragraphs briefly describe the assembler directives and pseudo-instructions, ex-

plaining how they are used and identifying the publication in which detailed information about
- them may be found.

5.5.1 ASSEMBLER DIRECTIVES. Assembler directives are used with machine instructions in
source programs to supply data to be included in the program and to control the assembly
process. The PX9ASM assembler supports the 19 directives listed in Appendix D. The syntax
definitions and detailed descriptions of these directives are in the Model 990 Computer TMS9900
Microprocessor Assembly Language Programmer’s Guide, Manual No. 943441-9701.

5.5.2 PSEUDO-INSTRUCTIONS. A pseudo-instruction is a convenient way to code an operation
that is actually performed by a machine instruction with a specific operand. The Model 990
Computer Assembly Language includes two pseudo-instructions: No Operation and Return. The
syntax definitions and detailed descriptions of these pseudo-instructions are in the Model 990
Computer TMS9900 Microprocessor Assembly Language Programmer’s Guide, Manual No.
943441-9701. The pseudo-instructions are summarized in Appendix D.

5.6 ERROR MESSAGES
PX9ASM prints the following error message when it detects an error:

- ** ERR N - STMT XXXX LAST ERR - STMT YYYY

N is an error code as shown in table 5-1. XXXX is the statement number of the source line in
which the error was detected. YYYY is the statement number of the source line in which the
preceding error, if any, was detected.

Error messages for undefined symbols are printed at the end of the assembly. When a statement
allows a forward reference, the reference is not undefined until PX9ASM recognizes an END
statement without having recognized a statement defining the symbol. Error messages may be
printed at any point, from the lines immediately following the statement in error to lines
_following the END statement.

53 Digital Systems Division

945255-9701

Table 5-1. PX9ASM Error Codes
Code Description

Syntax error. The statement corresponding to the error location contains a syntax error.

lllegal extemal reference. The statement corresponding to the error location contains an external ref-
erence {and an arithmetic operator) in an expression or an external reference to be placed in a field
smaller than 16 bits.

4 Truncation error. The statement corresponding to the error location contains a number that is too
large or a character string that is too long. The number may be the result of evaluating an expression.
Relocatability of a term or expression may be in error.

5 ‘ Multiply defined symbol. A symbol in the statement corresponding to the error location has been
"~ previously referenced or defined.

6 Unrecognizable operator. Contents of the operator field of the statement corresponding to the error
location is not a mnemonic operation code, a directive, or a name defined as an extended operation.

7 Illegal forward reference. A symbol in the statement corresponding to the error location that should
have been previously defined is not previously defined.

8 Illegal term. A term has an illegal value less than zero or greater than 15.

The assembler can accommodate a minimum of 135 symbols in a 4K memory allocation with no
predefined registers and 125 symbols in a 4K memory allocation with predefined registers RO
through R15. When the assembler is unable to continue because the area of memory available for
symbols and forward references has been filled, the assembler prints the following message:

** ABORT **

The user may divide the program into two or more modules and assemble them separately.
Alternatively, the user may shorten the symbols in the program and reassemble. Since shorter
symbols use less space in the symbol table, a symbol table of a given size may contain more,
shorter symbols.

Following the last statement of error message, the assembler prints undefined symbols, if there
are any, one symbol per line. The undefined symbol may correspond to one of several error

codes, or may be a symbol in a DEF directive that does not appear in the label field of a
statement.

At the end of the listing is an error summary, as follows:

NNNN ERRORS
LAST ERR - STMT XXXX

NNNN is the count of errors in the assembly. The second line identifies the last error detected in
the assembly. The second lines of the error messages link the error messages so that the user may
begin at the error summary message and readily locate all error messages. In an error-free
assembly, the final message is:

0000 ERRORS

5.7 PRINTED OUTPUT
The following paragraphs discuss the source listing and the object code.

5-4 Digital Systems Division

o
%@ 945255-9701

5.7.1 SOURCE LISTING. The source listings show the source statements and the resulting
object code. A typical listing is shown in the example programs in Section VII.

Each page of the source listing has a title line at the top of the page if a title was supplied by a
TITL directive. A page number is printed to the right of the title area. The printer skips a line
below the title line, and prints a line for each source statement listed. The line for each source
statement contains a source statement number, a location counter value, object code assembled,
and the source statement as entered. When a source statement results in more than one word of
object code, the assembler prints the location counter value and object code on a separate line
following the source statement for each additional word of object code. The source listing lines
for a machine instruction source statement are shown in the following example:

0018 0156 (€820 MOV @INIT+3,@3
0158 012B’
015A 0003

The source statement number, 0018 in the example, is a four-digit decimal number. Source
records are numbered in the order in which they are entered, whether they are listed or not. The
TITL, LIST, UNL, and PAGE directives are not listed, and source records between a UNL
directive and a LIST directive are not listed. The difference between source record numbers
printed indicates how many source records are not listed.

The next field on a line of the listing contains the location counter value, a hexadecimal value.
In the example, 0156 is the location counter value. Not all directives affect the location counter,
and those that do not affect the location counter leave this field blank. Specifically, of the
directives that the assembler lists, the IDT, REF, DEF, DXOP, EQU, and END directives leave
the location counter field blank.

The third field contains the hexadecimal representation of the object code placed in the location
by the Assembler, C820 in the example. The apostrophe following the third field of the second
line in the example indicates that the contents, 012B, is relocatable. All machine instructions and
the BYTE, DATA, and TEXT directives use this field for object code. The EQU directiye places
the value corresponding to the label in the object code field.

In listings printed by PX9ASM, the third field may contain two or four hyphens (-) instead of
hexadecimal digits. This occurs when a forward reference determines the values of these digits.

Later, when the forward reference is defined, the assembler prints an additional line in the listing
following the statement that defines the forward reference. This line contains the location being
resolved, two asterisks (**), and the contents. An error-free listing will include such a line for
each location previously printed with hyphens as the contents. The listings printed by the other
assemblers do not contain this type of information because all references are either resolved or
identified as undefined before the listings are printed.

The fourth field contains the first 60 characters of source statement as supplied to the assembler.
Spacing in this field is determined by the spacing in the source statement. The four fields of
source statements will be aligned in the listing only when they are aligned in the same character
positions in the source statements or when tab characters are used.

The machine instruction used in the example specifies the symbolic memory addressing mode for
both operands. This causes the instruction to occupy three words of memory and three lines of
the listing. The object code corresponds to the operands in the order in which they appear in the
source statement.

55 Digital Systems Division

[o]
“I%\@ 945255-9701

5.7.2 OBJECT CODE. The assembler produces standard 990 object code that may be linked to
other object code modules or programs and loaded into the Model 990 computer, or may be
loaded into the computer directly. Standard 990 object code consists of records containing up to
71 ASCII characters each. The format, described in the next section, permits correction using a
keyboard device. Reassembly to correct errors is not always necessary. The object code format is
discussed in Section VI.

5-6 Digital Systems Division

[o]
{_@j 945255-9701

SECTION VI
OBJECT CODE FORMATS

6.1 INTRODUCTION

This section describes the two object code formats: standard 990 object code and compressed
absolute format object code. The discussion of standard 990 object code covers primarily tag
characters. A procedure for changing standard 990 object code is also included. Illustrations of
the basic and extended tag formats for compressed absolute format object code are presented.

6.2 STANDARD 990 OBJECT CODE
Standard 990 object code consists of a string of hexadecimal digits, each representing four bits,
as shown in figure 6-1.

The object record consists of a number of tag characters, each followed by one or two fields as
defined in table 6-1. The first character of a record is the first tag character, which tells the
loader which field or pair of fields follows the tag. The next tag character follows the end of the
field or pair of fields associated with the preceding tag character. When the assembler has no
more data for the record, the assembler writes the tag character 7 followed by the checksum
field, and the tag character F, which requires no fields. The assembler then fills the rest of the
record with blanks, and begins a new record with the appropriate tag character.

Tag character 0 is followed by two fields. The first field contains the number of bytes of
relocatable code, and the second field contains the program identifier assigned to the program by
an IDT directive. When no IDT directive is entered, the field contains blanks. The loader uses the
program identifier to identify the program, and the number of bytes of relocatable code to
determine the load bias for the next module or program. PX9ASM is unable to determine the
value for the first field until the entire module has been assembled, so PX9ASM places a tag
character 0 followed by a zero field and the program identifier at the beginning of the object
code file. At the end of the file, PX9ASM places another tag character zero followed by the
number of bytes of relocatable code and eight blanks.

OOOOO&RHP?DG 9004000000900203CObDBDHO;Q00425002030ﬁE4BC8IBLUUER?FEIHF
A0023B0241B0000RCB41R0002BO320RVOCACO0S2CO0R2EO2ENC 0032B0C00ROF OF 7F 1 DEF
RDDDBBCOROCOOC&BO4C?BCléOCOOCCBC1ﬁ0COODOBCO?28028133300%005030::1’qulF
ﬁOOEEBOQOOBOSClﬂOOEﬁBt102900F230*43Bl1F832C20000325010180344BE044/FIBEF
R0100BDD66B0003B0282C00R2B1 1EDBO3407F832F -

200CE0010C 7FCRABF

(A)132255

Figure 6-1. Object Code Example

6-1 Digital Systems Division

9452559701

Table 6-1. Object Output Tags Supplied by Assemblers

Tag Hexadecimal Field . .
Character (Four Characters) Second Field Meaning
0 Length of all relo- 8-character program Program start
catable code identifier
1 Entry address None Absolpge entry
address
2 Entry address None Relocatable entry
address
3 Location of last 6-character symbol External reference
appearance of last used in relo-
symbol catable code
4 Location of last 6-character symbol External reference
appearance of last used in absolute
symbol code
5 Location 6-character symbol Relocatable external
definition
6 Location 6-character symbol Absolute external
definition
7 Checksum for None Checksum
current record
9 Load address None Absolute load
address
A Load address None Relocatable load
address
B Data None Absolute data
C Data None Relocatable data
D Load bias value* None Load point specifier
F None None End-of-record
G Location 6-character symbol Relocatable symbol
‘ ' definition
H Location 6-character symbol Absolute symbol

definition

*Not supplied by assembler.

Tag characters 1 and 2 are used with entry addresses. Tag character 1 is used when the entry
address is absolute. Tag character 2 is used when the entry address is relocatable. The hexa-
decimal field contains the entry address. One of these tags may appear at the end of the object
code file. The associated field is used by the loader to determine the entry point at which
execution starts when the loading is complete.

6-2 Digital Systems Division

[o]
{@;p 945255-9701

Tag characters 3 and 4 are used for external references. Tag character 3 is used when the last
appearance of the symbol in the second field is in relocatable code. Tag character 4 is used when
the last appearance of the symbol is absolute code. The hexadecimal field contains the location
of the last appearance. The symbol in the second field is the external reference. Both fields are
used by the linking loader to provide the desired linking to the external reference.

For each external reference in a program, there is a tag character in the object code, with a
location, or an absolute zero, and the symbol that is referenced. When the object code field
contains absolute zero, no location in the program requires the address that corresponds to the
reference (an IDT character string, for example). Otherwise, the address corresponding to the
reference will be placed in the location specified in the object code by the linking loader. The
location specified in the object code similarly contains absolute zero or another location. When it
contains absolute zero, no further linking is required. When it contains a location, the address
corresponding to the reference will be placed in that address by the linking loader. The location
of each appearance of a reference in a program contains either an absolute zero or another
location inte which the linking loader will place the referenced address.

Figure 6-2 illustrates the chain of the external reference EXTR. The object code contains the
following tag and fields:

4COOEEXTR

At location COQE, the address COOA points to the preceding appearance of the reference. The
chain includes both absolute and relocatable addresses and consists of absolute address COOE,
CO0A, C006, and C002, relocatable addresses 029E, 029A, and 0298, absolute addresses BOOE,
BOOA, B006, and B002, and relocatable addresses 0290 and 028E. Each location points to the
preceding appearance, except for location 028E, which contains zero. The zero identifies location
028E as the first appearance of EXTR, the end of the chain.

Tag characters 5 and 6 are used for external definitions. Tag character 5 is used when the
location is relocatable. Tag character 6 is used when the location is absolute. BotE fields are used
by the linking loader to provide the desired linking to the external definition. The second field
contains the symbol of the external definition.

Tag character 7 precedes the checksum, which is an error detection word. The checksum is
formed as the record is being written. It is the 2’s complement of the sum of the 8-bit ASCII

values of the characters of the record from the first tag of the record through the checksum tag,
7. '

Tag characters 9 and A are used with load addresses for data that follows. Tag character 9 is
used when the load address is absolute. Tag character A is used when the load address is
relocatable. The hexadecimal field contains the address at which the following data word is to be
loaded. A load address is required for a data word that is to be placed in memory at some
address other than the next address. The load address is used by the loader.

Tag characters B and C are used with data words. Tag character B is used when the data is
absolute; an instruction word or a word that contains text characters or absolute constants, for
example. Tag character C is used for a word that contains a relocatable address. The hexadecimal
field contains the data word. The loader places the data word in the memory location specified
in the preceding load address field, or in the memory location that follows the preceding data
word.

Tag character F indicates the end of record. It may be followed by blanks.

63 Digital Systems Division

(o]
(_r@; 945255-9701

* DEMONSTRATE EXTERNAL REFERENCE LINKEING
%
REF EXTR
RORG
cezo MOV REXTF, @EXTR
QOO0
Nz 0Z8E”
DS QX9 ZREQ XOR REXTR, 3
DZNG NZR07
OZ3E BOOD AORG =RBOO0O
G227 BOOQO 3ZZO0 LOCR @EXTR, &
BOOZ 0294
azIe BOO4 D420 ELWF @EXTFR
BOOAs BOOZ
OZTe RBOOS NZZ2 Al 3, EXTR
BOOA BOQOA
DZa40 RBOOD 3IBA0 MFY REXTR,Z
EBOOE BOOR
0Z41 RORG
0zZ4z Cazd MOV REXTR, @EXTR
BOOE
028"
nzZ42 Z2EQ XOR REXTR, 3
NIVE QZ9%° '
Z44 CO00 AORG 2000
DZ4T OO0 3220 LDCR REXTR, &
o0z QZFE”
D244 COO4 NJ42z0 ELWF REXTR
ZO0E& 2O0Z
NZ47 COOZ OZ23 Al = EXTR
CO0A CO06
QZ4s COOoC IBRO MFY @EXTR, Z
ZONE CO0NA
(A)132256

Figure 6-2. External Reference Example

Tag characters G and H are used when the symbol table option is specified with other 990
assemblers. Tag character G is used when the location or value of the symbol is relocatable, and
tag character H is used when the location or value of the symbol is absolute. The first field
contains the location or value of the symbol, and the second field contains the symbol to which
the location is assigned.

The last record of an object code file has a colon (:) in the first character position of the record,
followed by blanks. This record is referred to as an end-of-module separator record.

6.3 PROCEDURES FOR CHANGING STANDARD 990 OBJECT CODE

To correct object code without reassembling a program, change the object code by changing or
adding one or more records. One additional tag character is recognized by the loader to permit
specifying a load point. The additional tag character, D, may be used in object records changed
or added manually.

6-4 Digital Systems Division

o
%‘—@? 945255-9701

Tag character D is followed by a load bias (offset) value. The loader uses this value instead of
the load bias computed by the loader itself. The loader adds the load bias to all relocatable entry
addresses, external references, external definitions, load addresses, and data. The effect of the D
tag character is to specify the area of memory into which the loader loads the program. The tag
character D and the associated field must be placed ahead of the object code generated by the
assembler.

Correction of object code may require only changing a character or a word in an object code
record. The user may duplicate the record up to the character or word in error, replace the
incorrect data with the correct data, and duplicate the remainder of the record up to the 7 tag
character. Because the changes the user has made will cause a checksum error when the
checksum is verified as the record is loaded, the user must change the 7 tag character to F.

When more extensive changes are required, the user may write an additional object code record
or records. Begin each record with a tag character 9 or A followed by an absolute load address
or a relocatable load address, respectively. This may be an address into which an existing object
code record places a different value. The new value on the new record will override the other
value when the new record follows the other record in the loading sequence. Follow the load
address with a tag character B or C and an absolute data word or a relocatable data word,
respectively. Additional data words preceded by appropriate tag characters may follow. When
additional data is to be placed at a nonsequential address, write another load address tag
character followed by the load address and data words preceded by tag characters. When the
record is full, or all changes have been written, write tag character F to end the record.

When additional memory locations are loaded as a result of changes, the user must change the
hexadecimal field following the tag character 0 that contains the number of bytes of relocatable
code. For example, when the object file written by the assembler contained 1000,, bytes of
relocatable code, and the user has added 8 bytes in a new object record, additional memory
locations will be loaded. The user must find the O tag character in the object code file and
change the value following the tag character from 1000 to 1008; he must also change the 7 tag
character to F in that record.

When added records place corrected data in locations previously loaded, the added records must
follow the incorrect records. The loader processes the records as they are read from the object
medium, and the last record that affects a glven memory location determines the contents of
that location at execution time.

The object code records that contain the external definition fields, the external reference fields,
the entry address field, and the final program start field must follow all other object records. An
additional field or record may be added to include reference to a program identifier. The tag
character is 4, and the hexadecimal field contains zeros. The second field contains the first six
characters of the IDT character string. External definitions may be added using tag character 5
or 6 followed by the relocatable or absolute address, respectively. The second field contains the
defined symbol, filled to the right with blanks when the symbol contains less than six characters.

" 6.4 COMPRESSED ABSOLUTE FORMAT OBJECT CODE
Absolute format object code provides the user with a compact object code which can be loaded
more rapidly than standard 990 code.

6-5 Digital Systems Division

945255-9701

6.4.1 BASIC TAG FORMAT. The basic format is a three-character string which maps to a tag
and two bytes of data. The formats and tag definitions are shown in figure 6-3.

6.4.2 EXTENDED TAG FORMATS. Extended tags (figure 6-4) are used to extend the available
data types. An extended tag consists of one or two (the number is tag dependent) bytes which
may identify subsequent data. An extended tag with two characters has a six-bit count as the
second byte.

P)(1 X5 X3 (o] 1 213 Pl 1 415 6| 71 819 Pl 1 j10]11]12}]13] 14|15
ASCII ASCll ASCIlI
CHARACTER CHARACTER CHARACTER

(A) THREE-CHARACTER STRING

X1 | X2] X3 ol 1 2 3|4 5|6} .7 8l9J10j11}12]13} 1415

TAG DATA BYTE DATA BYTE

(B) CHARACTERS AFTER MAPPING

TAG
(X’ 2X3) MEANING"
100 ABSOLUTE DATA WORD (16 BITS)
101 ABSOLUTE DATA BYTE (8 BITS)
110 ABSOLUTE LOAD ADDRESS
111 EXTENDED TAG
BIT FIELDS
P PARITY BIT

1 BIT ALWAYS SET TO ONE

THE NUMBERS 0—15 REPRESENT DATA BIT POSITIONS

(A)133108

Figure 6-3. Basic Tag Format

6-6 Digital Systems Division

9452559701

Pl Ix |Ix_ |Ix |x Pl1]lclclc|lc]c]lc
117273174 1] 2| 3| T4 5] "6
TAG COUNT

TAG LENGTH

(X1X2X3X) (CHARACTERS) MEANING
0000 1 END OF MODULE
0001 2 PROGRAM NAME (NOTE 1)
0011 1 ABSOLUTE ENTRY ADDRESS (NOTE 2)
0101 1 CHECKSUM (NOTE 2)
0110 2 ABSOLUTE DATA REPEAT COUNT

(NOTES 2,3)

BIT FIELDS
P PARITY BIT
I BIT ALWAYS SET TO ONE
X XXX, TAG
C{C2C3C4C5Cq COUNT—-NUMBER OF BYTES OF DATA

NOTES
1. FOLLOWED BY CHARACTERS OF NAME, BYTE 2 IS THE NUMBER OF
CHARACTERS IN THE NAME, UP TO A MAXIMUM OF 17,

2. FOLLOWED BY ABSOLUTE DATA TAG AND 16 BITS OF DATA IN THE
BASIC FORMAT,

3. WHEN THE SEQUENCE OF IDENTICAL WORDS IS ENCOUNTERED DURING
THE DUMP, A REPEAT COUNT IS COMPUTED SO THAT THE DATA NEED
NOT BE REPEATED., BYTE 2 IS THE NUMBER OF IDENTICAL WORDS.

(A)133109

Figure 6-4. Extended Tag Formats

6-7/6-8 Digital Systems Division

o
(@ 945255-9701

SECTION VII
PROM PROGRAMMER

7.1 INTRODUCTION
This section describes the PROM Programmer software module and includes the following
information:

® General description, including the functions and capabilities of the module, the role of
the Standard Control Information Cassette in PROM programming, and an explanation
* of standard and nonstandard data configurations.

® Loading procedure.

® Detailed discussion of the PROM programming process, covering data formats, PROM
and ROM characteristics, mapping parameters, and examples of different levels of
looping.

® . Detailed descriptions of the PROM Programmer commands.

® Methods for performing some specific programming tasks, such as standardizing
nonstandard memory and PROM configurations, and programming EPROMs.

® Programming examples.

7.2 GENERAL DESCRIPTION

The PROM Programmer software module (PROMPG) controls the PROM Programming Module
used with the 990 Computer Family. It provides flexible user control of the programming
process as well as standardized programming options. PROMPG operates on a prototyping system
containing a 990/4 Computer, 733 ASR Data Terminal, and a PROM Programming Module. This
software package is an overlay that is loaded into the PX9MTP transient area of memory and
extends into the high address locations of user memory.

7.2.1 FUNCTIONS AND CAPABILITIES. PROMPG has a set of commands that perform the
following functions:

® Describe standard data configuration in memory and PROM. T
® Describe nohstandard data cbnfigurations in memory and PROM.
~ ® Provide-information for the PROM Programming Module.
With PROMPG, the user can:
® Program data from memory into a PROM.

® Store data from a PROM or ROM into memory.

71 Digital Systems Division

o
@ 9452559701

® Display data from memory.
® Display data from ROM or PROM. .
® Compare data in memory and PROM or ROM.
The software package includes a Standard Control Information Cassette that:
® Contains control information for standard data configurations in memory and PROM.
® Supports all PROMs which are supported by hardware programming adaptor cards.

The software package allows the user to replace or add control information to the Standard
Control Information Cassette.

7.2.2 STANDARD CONTROL INFORMATION CASSETTE. The Standard Control Information
Cassette contains the control information for the most commonly used memory and PROM data
configurations. Included in these is information necessary to program all PROMs which are
supported by hardware programming adaptor cards.

Each record on the Standard Control Information Cassette contains a memory or PROM
designator, a label, the bit string width, and mapping parameters. Records containing PROM
control information also contain PROM characteristics. Appendix G contains a table of all the
standard configurations on the Standard Control Information Cassette and two other tables
which contain additional information about the supported configurations.

7.2.3 PROGRAMMING STANDARD VERSUS NONSTANDARD DATA CONFIGURATIONS.

The control information needed to transfer data between memory and PROM may be supphed in
one of two ways:

° By reading the informatibn from the Standard Control Information Cassette.
® By specifying the information through the PROM programmer keyboard commands.

Standard data configurations are those configurations which are defined on the Standard Control
Information Cassette. Nonstandard data configurations are those which are not defined on the
Standard Control Information Cassette.

To program standard data configurations, the necessary control information is read from the
Standard Control Information Cassette using the PROM Programmer Standard (PS) command.
When programming nonstandard data configurations, the necessary control information may be
input using the Define Memory Data Configuration Mapping Parameters (MI), Define ROM/
PROM Data Configuration Mapping Parameters (RI), Define String Width (SW) and Define
PROM/ROM Characteristics (RC) subcommands.

Once the control information is specified by one of the above methods, the memory and PROM
bounds may be set with the Define Memory Bounds (MB) and Define PROM/ROM Bounds (RB)
subcommands. The appropriate actions may be specified with the Set Toggles (TS) subcommand
and the programming cycle initiated with the Go (GO) subcommand.

7-2 Digital Systems Division

(o]
%@ 945255-9701

7.2.4 PROM PROGRAMMER FUNCTIONS. The PROM Programmer software package allows
the user to perform one or more of the following functions simultaneously:

® Perform one of three data transfers:
(1) Program PROMs.
(2) Read PROM or ROM data into memory.

(3) Store nonstandard memory and PROM control information on the Standard
Control Information Cassette.

® Display data from memory.
® Display data from PROM or ROM.
® Compare data in memory and PROM or ROM.

The functions to be performed during the programming cycle may be specified with the TS
subcommand before the programming cycle is initiated.

7.3 PROM PROGRAMMER LOADING PROCEDURE

The Program, PROMPG, consists of an overlay module and an extension which is loaded into the
top of user memory. PROMPG is loaded by means of the Load PROM Programmer (PL)
command, which is described in detail in Section III.

Mount and position the cassette containing the PROMPG object code and enter this command
on the terminal keyboard:

PL {b} [<luno> [{b} <bias>]]

where luno is the logical unit number of the cassette drive on which PROMPG is mounted and
bias is the load address for the extension. The default LUNO value is 7. If the bias is not given,
the PX9MTP loader loads the extension into the top of user memory at default bias 1C80,, .

When the PL command is issued, the overlay will be loaded and the following printed:

PP
PS

The memory extension will then be loaded into user memory at the specified bias address.

7.4 PROM PROGRAMMING PROCESS N

‘The PROM programming process allows the user to transfer data from memory to a- PROM or
vice versa and to display or compare memory and PROM/ROM data. To accomplish these tasks,
certain control information must be specified. The information includes memory and PROM/
ROM bounds, bit string width, PROM/ROM characteristics, and mapping parameters. The control
information may be specified using the PROM programmer keyboard commands and/or by
reading in the information from the Standard Control Information Cassette.

@

- 7-3 Digital Systems Division

[e]
@ 945255-9701

7.4.1 BIT STRING WIDTH. Bit strings are the basic unit of data moved between the 990
memory and the PROM. The bit string width specifies the number of bits to be transferred
during a programming cycle. The width may be from one to eight bits.

7.4.2 MEMORY AND PROM/ROM BOUNDS. The memory bounds specify the memory
locations which contain the data to be transferred to or from PROM. The PROM/ROM bounds
define the lower and upper bounds. PROM/ROM addresses are numbered by words; the word
size is determined by the PROM/ROM word width.

7.4.3 PROM/ROM CHARACTERISTICS. Each PROM/ROM has a different set of characteristics
which must be specified to transfer data to and from the PROM/ROM. The characteristics
include word width, output conditions, pulse width, number of retries, duty cycle, and pro-
grammable bit width.

® The word width refers to the number of bits per word in the PROM/ROM physical
organization. For example, the SN74S5287 PROM (256 X 4) has a word width of four
bits.

® The output conditions specify whether high or low level logic outputs are to be
programmed. The value is O if low and 1 if high. Some PROMs are initialized to ones
and must be programmed with zeros (low level logic).

® The pulse width is entered as an index value which is used by the hardware to produce
the corresponding pulse width in milliseconds to be used in programming PROMs.

® The number of retries refers to the number of times PROM programming is to be
retried using the specified pulse width if a programming failure occurs.

® The programming cycle includes the programming time and a delay time. The duty
cycle is the percentage of the total time that the programming pulse is on. The typical
duty cycle varies between 16 percent and 50 percent.

® The programmable bit width specifies the number of bits that can be physically
programmed simultaneously. The programmable bit width cannot be greater than the
bit string width.

CAUTION

Errors may be introduced if the programmable bit width is too large
for certain PROMs. For example, TTL PROMs require a pro-
grammable bit width of one. (Bit widths are listed in Appendix G.)

7.4.4 MAPPING PARAMETERS. The memory and PROM/ROM mapping parameters are used by
the software to determine the addresses of the bit strings to be used in the programming cycle. In
specifying mapping parameters, the PROM/ROM or memory words within the defined bounds are
considered to be a continuous string of bits. Mapping is needed so that portions of 16-bit memory
words may be programmed into PROMs with smaller word widths. The mapping parameters include
bit increments, number of iterations, and initial bit displacements:for each of three loop levels.

® The initial bit displacement is used to determiﬁe the starting bit address of the bit string
to be transferred between PROM/ROM and memory.

74 Digital Systems Division

o
@ 945255-9701

® The bit increments are used to determine the successive bit addresses of the bit strings to
be transferred between PROM/ROM and memory.

® The number of iterations is the number of bit strings to be transferred between PROM/
ROM and memory.

The number of bits in each bit string transferred between PROM/ROM and memory is defined by the
bit string width.

Three levels of mapping are allowed where each level contains an initial bit dispiacement, a bit
increment and an iteration count.

Level 1 is used to define the mapping pattern. Level 2 is used to repeat the pattern generated by the
level 1 parameters. Level 3 is used to repeat the total pattern generated by levels 1 and 2.

Bit increments and bit displacements on level 2 and 3 are used to determine the initial addresses of the
bit strings defined by level one. The number of iterations on levels 2 and 3 are used to determine the
number of times to repeat the bit string pattern. This three-level looping scheme is analogous to
FORTRAN nested DO loops with level one defining the innermost DO loop and level three the
outermost DO loop.

The following is an example of the mapping parameters required to transfer memory into PROM using
SN74S287 PROM devices which are 256 X 4 (256 PROM words of 4 bits each). Refer to figure 7-1.

BIT
DISPLACEMENT
MEMORY
ADDRESS
\\‘~>\‘..o a 8 c
0000 1 : |
|
I ! !
: : | MEMORY
I | 1
1FE ! l !
° | 1 1
OI' 1} r i
L]'|| lI| L
b R P o
A 1|
T o b | SN745287
1 1 11 v 256 X 4
Vo L ' : | : 0 PROMS
v o o b
| ' 1]
FFI:: 1 1 Jll [

"(A)133374

Figure 7-1. Transfer of Data from Memory into PROM

75 Digital Systems Division

(o]
@@ 945255-9701

The PROM/ROM bounds are set to 0 and FF,4, giving a string of 256 X 4 = 1024 bits. The memory
bounds are set to 0 and 1FF,¢, giving a memory string of 256 X 16=4096 bits. The bit string width is

set to 4, which is equal to the PROM word width. The PROM/ROM mapping parameters are the
following:

Initial bit displacement =0
Bit increment =4
Number of iterations =1

The initial bit displacement is 0 so that the string will be transferred to the PROM starting at bit 0 of the
PROM word. The bit increment is 4 so that each string of 4 bits will be stored consecutively in the
PROM. The number of iterations is 100, (256,,) so that 256 bit strings of 4 bits each will be
transferred.

The memory mapping parameters for PROM I are the following:

Initial bit displacement =0
Bit increment =104
Number of iterations =100,¢

The initial bit displacement selects the bit string starting at bit 0 of the memory word. The bit
increment is 10,4 (16,,) so that each successive bit string will begin at bit 0 of each 16-bit memory

word. The number of iterations is 100,4 (256,¢) so that 256 memory bit strings of 4 bits each will be
transferred.

Initial bit displacements of 4,4, 8,4, and C,;¢ are used to transfer the remaining bits of the memory
words to PROMs II, III, and IV, respectively. These bit displacements will select the 4 bit strings
beginning at bits 4,4, 8,6, and C,¢ of each 16-bit memory word.

The mapping parameters in this example define the level one looping. Level two and three looping are
not used in this example since the pattern defined by the level one looping is not repeated.

7.4.5 EXAMPLES USING ONE, TWO, AND THREE-LEVEL LOOPING. The following examples
take the user through the PROM programming process step by step using various levels of looping.

7.4.5.1 One-Level Looping. An address is determined in the following manner. Starting with the
beginning memory/PROM/ROM address (indicated by the MB or RB subcommand, paragraph 7.5.3.1
or 7.5.3.2), the initial bit displacement for loop level 1 is added to that address. The resulting bit
address is the beginning address of the first bit string. To get each consecutive bit string beginning
address, the number of bits indicated by the bit increment value for loop level 1 is added to the previous
address. This process continues until the number of addresses determined has reached the maximum
value for loop level 1.

As an example, assume a user wishes to select the first four bits of each word of a 256-word block of
datain memory. The parameters needed would be:

Looplevel - =1
Bit increment (1) =16(10,¢)
Number of iterations (1) =256 (100,¢)
Initial bit displacement (1) =0
Bit string width =4

7-6

Digital Systems Division

(o]
{@(‘; 945255-9701

Assume the beginning memory address is 0000,,. Since the displacement is O, the first bit string begins
at bit 0 and consists of the first four bits at byte 0. The beginning address of the second bit string is
determined by adding the bit increment 10,, to the previous beginning address of 0. The second
four-bit string addressed begins at memory location 0002,,. The bit increment of 10, is repeatedly
added to the previous address until 100,, four-bit strings have been selected from the memory block.
The last bit string will be the first four bits at address 01FE 4.

In another example, a user may wish to select four bit strings, each four bits wide, from one word of
memory. The parameters needed would be:

Loop level =1
Bit increment (1) =4
Number of iterations (1) =4
Initial bit displacement (1) =0
Bit string width =4

Assume the beginning memory addressis 0100,,. Since the displacement is 0, the first bit string will be
the first bits of memory address 0100,,. By adding the bit increment of four, the second bit string is
determined to be the second four bits of memory address 0100,¢. The third and fourth bit strings are
determined similarly.

Consider what would happen if the user decided to select similar strings from 32 words of memory
memory beginning with address 0100,,. By changing the number of iterations to 128 (4 X 32) and
beginning with address 0100,¢, consecutive four bits of each word could be selected. The parameters
needed would be:

Loop level

=1
Bit increment =4
Number of iterations =128 (804¢)
Initial bit displacements =0
Bit string width =4

By incrementing four bits at a time and selecting four 4-bit strings from each word for 32 words, the
128 four-bit strings can be addressed.

7.4.5.2 Two-Level Looping. The programming sequence in the last example can also be done by
two-level looping, a concept which involves using the parameters of loop level 2 to determine a number

of beginning addresses. Each address determined by loop level 2 is used as a beginning address for loop
level 1.

In the last example the parameters would now be:

Loop level =1
Bit increment (1) =4
Number of iterations (1) =4
Initial bit displacement (1) =0
Bit string width =4
Loop Level =2
Bit increment (2) .=16(104)
Number of iterations (2) =32(2046)
Initial bit displacement (2) =0
Bit string width =4

7-7 Digital Systems Division

(o]
@ 945255-9701

Assume that the beginning memory word is at location 0100,,. The displacement in looplevel 2 is O;
therefore, the first beginning address to be used by loop level 1 is 0100,4. Since loop level 1 has a
displacement of 0, the first bit string has a beginning address of bit 0 of address 0100,,. Proceeding by
adding the bit increment of 4 to each bit address, the next three bit strings can be selected. Loop level 1
has now been completed. Going back to loop level 2 and the previous beginning address in memory (bit
0 of address 0100,4), add the bit increment of 10,4 to that address. The new beginning address in
memory is bit 0 of address 0102,,, which is now used by loop level 1 to select the next four bits strings.
When those strings have been selected, loop level 2 then determines the third beginning address in
memory by adding the bit increment 10,4 to the previous address of bit 0 of address 0102,4. Selecting
a new beginning address and using that address to increment through loop level 1, loop level 2
continues until 20,4 beginning addresses have been selected and loop level 1 has been processed 20, ¢
times.

7.4.5.3 Three-Level Looping. Loop level 3 can be used for reiterative programming. Assume the user
wishes to program a 256 by 4 PROM using the same memory data configuration as in the previous
example. Since the previous example only selects 128 four-bit strings, the first 128 words and the last
128 words of the PROM could be programmed with the same data from memory.

The PROM data configuration is standard and the control information can be read from the Standard
Control Information Cassette. The memory data configuration would have the following parameters:

Loop level

Bit increments (1)
Number of iterations (1)
Initial bit displacement (1)
Bit string width

W nunn
RO PH—

Loop level =2
Bit increment (2)

Number of iterations (2)
Initial bit displacement (2)
Bit string width

i n
N =
oo
> o

]
H» O

Loop level

Bit increment (3)

Number of iterations (3)
Initial bit displacement (3)
Bit string width

o uwn
PONDOW

Assuming the beginning memory address is 0100,¢, the loop level 3 displacement 0 is added to that
address to get the beginning address for loop level 2. The increment described for two-level looping
now is performed. When the incrementing is complete (128 bit strings of four bits have been selected),
loop level 3 then determines the next beginning address for loop level 2. Since the bit increment for
loop level 3 is 0, the second beginning address is the same as the first one. Therefore the two-level
looping increments through the same memory configuration and selects the same 128 bit strings to
program the second 128 four-bit words of the PROM.

The standard PROM control information for a 256 by 4 PROM includes the parameters:

Loop level =1
Bit increment (1) =4
Number of iterations (1) =256(100,4)
Initial bit displacement (1) =0
Bit string width =4
7-8

Digital Systems Division

[e]
{@\@? 945255-9701

Since the PROM is four bits wide, each increment of four bits gets a new bit string address which also is
a new PROM word address. Therefore, as bit strings are selected from memory, they are programmed
into consecutive words of PROM for 256 words.

7.5 COMMANDS
The following paragraphs contain detailed descriptions of the PROM Programmer commands. The
following symbols and conventions are used in defining the syntax of the commands:

® Angle brackets (<>) enclose items supplied by the user.

® Brackets ([]) enclose optional items.

® Ancellipsis (...)indicates that the preceding item may be repeated.

° Braces ({ }) enclose two or more items of which one must be chosen.
7.5.1 PROM PROGRAMMER STANDARD (PS). The PROM Programmer Standard command
searches the Standard Control Information Cassette for the specified records which contain the
memory and/or PROM control information.
Syntax definition:

PS {b’. _ } <char string 1> [{b’. _ } <char string 2>]
Lo
Parameters:

char string 1 Name of first record of control information for a standard PROM
or memory configuration. Required parameter.
charstring 2 Name of second record of control information for a standard PROM

or memory configuration.
Parameter default value:
If char string 2 is not specified, it is omitted.

Description: This command is used to input the control information for the standard memory and
PROM data configurations. The user may specify a search of the tape for both memory and PROM
control information to be used in the programming process or may specify a search for only memory or
PROM control information. If only one data configuration, either memory or PROM, is specified, any
control information previously defined for the other type of data configuration remains unchanged.

When all character strings given in the command have been matched to a record on the Standard
Control Information Cassette, control is returned to the monitor. The user need not rewind the
cassette if the next record of information to be read from the cassette when the user inputs the
command again is positioned further along the cassette from the last record which was read.

The Standard Control Information Cassette must be positioned on the cassette drive assigned to logical
unit number 7. Records are read from the cassette, and if a record with a name matching either
character string is found, the record is stored for use by the program. The search is continued from that

79 Digital Systems Division

(o]
@ 945255-9701

point for the other character string if the string is specified in the command. If arecord with a matching
name is found, the record is stored for use by the program.

The Standard Control Information Cassette and its contents are explained in paragraph 7.2.2 and
Appendix G.

Error messages:
PPO1 Required parameter missing.

PP0O3 Bit string widths of memory and PROM configurations do not
match.

PP04 Specified record not found on Standard Control Information Cassette.
Application note: If the two character strings specify control information for data configurations both
in ROM or both in memory, the control information of the second configuration encountered on the
cassette overrides the first.
Example:

.PS,MS287-0,5287

This command causes the Standard Control Information Cassette to be searched for records containing
the control information for memory configuration MS287-0 and PROM configuration S287.

7.5.2 PROM PROGRAMMER (PP). The PROM Programmer command is followed by PROM
Programmer subcommands and allows the operator to control the PROM programming process.

Syntax definition:

PP {b’.) } <subcommand>
The command is terminated by a carriage return. The command is followed by a subcommand and the
appropriate parameters. Refer to the descriptions of the individual subcommands for the syntax
definitions.
Parameter:

subcommand Subcommand used with the PP command.

Description. The PROM programming functions are explained in the descriptions of the md1v1dual
subcommands.

7.5.3 PROM PROGRAMMER SUBCOMMANDS. The followmg paragraphs contaln detalled
descriptions of the PROM Programmer subcommands. .

7.5.3.1 Define Memory Bounds (MB). The Define Memory Bounds subcommand informs the control
software of the lower and upper bounds of the memory data to be used in the programming process.

7-10 Digital Systems Division

[o]
{[@? 9452559701

Syntax definition:

PP {’6,. _ } MB {b’. _ } <lower bound> {’6’. . } <upper bound>

Parameters:

lower bound Byte address of the first byte of the block of
memory which contains the memory data
configuration. Required parameter. Hexadecimal
number.

upper bound Byte address of the last byte of the block of
memory which contains the memory data
configuration. Required parameter. Hexadecimal
number.

Description: This command defines the lower and upper bounds of the block of memory which
contains the memory data configuration. Any bit string to be transferred must be contained entirely in
this specified region. An attempt to reference a bit string out of these memory bounds during a
programming cycle will cause an error. The lower bound is used as a starting address for the data
configuration. When the PROM programmer is loaded, the lower and upper bounds default to 0 and
FFF,, respectively.

Error messages:

PPO1 Required parameter missing.

PP04 Invalid address. The upper bound is less than
the lower bound.

Example:
.PP,MB,500,5FF

This command informs the software that the lower bound of the memory data configuration is 500,
and the upper bound of the memory data configuration is 5FF .

7.5.3.2 Define PROM/ROM Bounds (RB). The Define PROM/ROM Bounds command informs the
control software of the lower and upper ROM or PROM bounds to be used.

Syntax definition:

PP {b,.) } RB [b’.) } <lower bound> {b,. _ } <upper bound>

7-11 Digital Systems Division

[o]
@ 945255-9701

Parameters:

lower bound Word address of the first physical PROM/ROM word
of the block of PROM/ROM words which contains
the PROM/ROM data configuration. Required
parameter. Hexadecimal number. Initially,
the parameter value is 0.

upper bound Word address of the last physical PROM/ROM word
of the block of PROM/ROM words which contains
the PROM/ROM data configuration. Required
parameter. Hexadecimal number. Initially,
the parameter value is FFF ;4.

Description: This command defines the lower and upper bounds of the block of PROM/ROM words
which contains the PROM/ROM data configuration. Any bit string referenced must be contained
entirely within this specified region. An attempt to reference a bit string out of these bounds
during a programming cycle will cause an error.

When the PROM Programmer is loaded, the default values of the lower and upper bounds are 0 and
FFF ;¢ respectively. If only standard PROM/ROM configurations, which always begin at address 0,
are being used, the RB subcommand is not needed. The programming cycle will stop when the
region defined by the mapping parameters has been satisfied.

Error Messages:

PPO1 Required parameter missing.

PP0O4 Invalid address. The upper bound is less than
the lower bound.

Example:
.PP,RB,10,20

This command informs the software that the lower bound of the PROM/ROM data configuration
is 10,¢ and the upper bound of the PROM/ROM data configuration is 20,,.

7.5.3.3 Set CRU Interface Base Address (CS). The Set CRU Interface Base Address command
informs the control software of the CRU base address for the PROM Programming Module.

Syntax definition:

PP {b’.) } CS {’6’.) } <base addr>

Parameter:

base addr The parameter value indicates the CRU base address for
the chassis slot in which the PROM programming
module interface card is inserted. Required
parameter.

7-12 Digital Systems Division

o]
%@ 945255-9701

Description: When the PROM Programmer is loaded, the base address parameter value is 020,
which is the CRU base address for the chassis slot most frequently used to hold the PROM
programming module interface card. After the CS subcommand is used, the software recognizes
the given CRU address until a different address is entered with the CS subcommand. There can
be no interaction with the PROM programming module unless the control software is informed
by default or by the CS subcommand of the correct CRU base address.

Error messages:

PPO1 Required parameter missing.

PP02 Base address is greater than 1FFE .
Example:

.PP,CS,0EO

This command informs the control software that the CRU base address of the PROM pro-
gramming module is OEQ,,.

7.5.3.4 Set Toggles (TS).. The Set Toggles subcommand sets numeric parameters that inform the
control software of the actions to be taken. These numeric parameters are known as toggles. The
selected actions are not actually initiated until the PP, GO command is entered.

Syntax definition:

[[) foman .| [ems ..]
I} <]

Parameters:

mem disp Value that specifies whether memory bit strings and
addresses are to be displayed. The value is O
if no memory strings are to be displayed and
is 1 if memory bit strings and addresses are
to be displayed.

prom disp Value that specifies whether PROM or ROM bit strings
and addresses are to be displayed. The value
is 0 if no ROM or PROM strings are to be
displayed and is 1 if ROM or PROM bit
strings and addresses are to be displayed.

transfer Value that specifies the data transfer option:
0 No data transfer between memory and ROM or PROM,

1 PROM is to be programmed from memory data configuration.

7-13 Digital Systems Division

o]
{@? 945255-9701

2 Memow is to be loaded from ROM or PROM.

3 Nonstandard control information is to be stored on the
Standard Control Information Cassette. (Refer to
paragraph 7.6.1)

compare Value that specifies whether ROM or PROM bit strings are
to be compared to bit strings in the memory data configuration.
The value is 0 if no comparison is to be made and 1 if a
comparison is to be made. The strings specified by mapping
parameters and bit string width are compared. If a comparison
fails, the unmatched bit strings and their addresses are to be
displayed.

Parameter default values:

If a toggle parameter is not specified, the value specified by a previous TS subcommand or the
default value when the PROM Programmer overlay was loaded is used. The default values set up
when the PROM Programmer is loaded are the following:

mem disp =0 (No display)

prom disp =0 (No display) ,

transfer =1 (PROM is to be programmed from memory)
compare =1 (Compare bit strings in memory to PROM or ROM)

Description: The toggle parameters specify the action to be taken when the GO subcommand is
entered. If the memory display toggle is set, the memory region specified by the memory
bounds, bit string width, and the mapping parameters is displayed in the following format.
MxXXXx.yy=zz
where
XXXX = memory byte address
yy = displacement of start of bit string within memory byte (0 < yy < 7)
zz = right justified bit string (displayed in hexadecimal)

A maximum of four entries may be displayed per line.

If the PROM display toggle is set, the PROM or ROM regioﬁ specified by the PROM/ROM
bounds, bit string width, and the mapping parameters is displayed in the following format.

Raaaa.bb=cc
where |
aaaa = PROM/ROM word address
bb = displacement of start of bit string within PROM/ROM word
cc = right justified bit string (displayed as hexadecimal)

A maximum of four entries may be displayed per line.

7-14 Digital Systems Division

(o]
@ 945255-9701

The transfer toggle specifies the type of data transfer to be performed during the programming
cycle. The user may specify programming PROM from memory, loading memory from PROM or
ROM, or saving control information for a memory or PROM data configuration on the Standard
Control Information Cassette. (Refer to paragraph 7.6.1 for further explanation of this process.)
The user may specify no data transfer if only a memory and PROM or ROM comparison or
display are desired. If the transfer toggle is set to 1 or 2, data transfer occurs in the memory or
PROM/ROM region specified by the memory bounds, bit string width, and mapping parameters.

If the compare toggle is set, the memory and PROM or ROM regions specified by the memory
and PROM/ROM bounds, bit string width, and mapping parameters are compared. Any compare
errors found are displayed in the following format.

>Mxxxx.yy=zz Raaaa.bb=cc

The fields for memory and PROM or ROM are the same as defined for the display toggles. One
entry of compared data preceded by a greater than character is displayed per line. The greater
than character alerts the user to the compare error. Each entry contains the memory and PROM
or ROM contents which failed to compare.

The user may terminate any display by pressing the escape (ESC) key. Control of the program
returns to the monitor. Also, if the transfer toggle is set to 3 to save control information on the
Standard Control Information Cassette and the user decides not to save the information, the user
may reply to the PROM Programmer questions

MEM ID?
or
ROM ID?

with an ESC character. (Refer to paragraph 7.6.1.) The ESC character causes an exist.
Examples:

PPaTZs1a 000 01

PPsi30

MO000, 00=00 MO0O02, 00=00 MODO04.00=00 MOO005.00=04
MO0g3., 00=01 MONOR,. 00=00 MOOOCZ.00=00 MOOOE. DO=00D

In this example, the memory display toggle is set. When the programming cycle is initiated, the
memory region is displayed. The mapping parameters for this region are defined with an initial
displacement of 2, bit increment of 10,,, and number of iterations set to 8,,. The bit string
width is set to 4. This example shows that each memory byte address displayed contains the bit
string (shown to the right of the equal sign) in bits 2, 3, 4 and 5 of the memory byte. Memory
location 6 contains the following bit string: xx0100xx.

PPsTZs0s120s0

PR30

ROOOD. D0=0F ROOD1.00=0F RODDZ.00=0F RO003.00=0F
RO004, O0=0F RODOS.00=0F RO00S.00=0F RODO7.D0=0F
RIODS, DN=0F ROO0S.00=00 RODOAR.00=01 ROODB. 00=01
ROOOC, 00=0C ROOOD.00=03 ROODE.0VD=03 ROOOF.00=00

7-15 Digital Systems Division

[\% ° ,
/

In this example, the PROM display toggle is set. When the programming cycle is initiated, the

PROM/ROM region defined by the mapping parameters is displayed. The mapping parameters are

defined with initial displacement set to O, bit increment set to 4, and number of iterations set to
10,¢. The bit string width is set to 4.

AP TEsDsDslsl

FPeiz0

XM0000.00=03 RODO0.00=01
0003, 00=04 ROOO4, 00=00
HM000A. 00=02 RO005. 00=00
*M0022.00=02 ROOL1.00=03
*MO042.00=05 ROO21. 00=04

In this example, the transfer toggle is set to program PROM from memory and the compare
toggle is also set. When the programming cycle is initiated, one bit string at a time will be
transferred from memory to PROM until the mapping parameters have been satisfied. After each
string is transferred, the value is read back from PROM and compared to the memory bit string.
In this example, some compare errors were found during the cycle and the corresponding
memory and PROM contents were displayed.

FPsTZs 0a0s2s1
PPyR0

In this example, the transfer toggle is set to load memory from PROM or ROM and to compare
memory to the PROM or ROM. No compare errors were found in this example.

7.5.3.5 Go (GO). The Go subcommand initiates the programming cycle spec1f1ed by the Set
Toggles (TS) subcommand.

Syntax definition:
PP {b’...} GO

Description: When the GO subcommand is enteréd, the memory 'and PROM/ROM control
information is checked, and the programming cycle defined by the toggles is initiated. The
PROM programmer software initiates no transfer of data until this subcommand is entered.

Error messages:
MXO01 Tape I/O error, or unrecoverable 1/O error.

PPO2 Mapping parameters specified a bit string out of the
defined memory or PROM/ROM bounds. An example
is an attempt to program 512 words of a PROM
with the PROM boundaries indicated as 1004
through 1FF ¢ (256 words).

PP0O3 The bit string width parameters for memory and PROM or
ROM do not match, or the total number of bit strings in
the PROM/ROM and memory data configuration defined
by mapping parameters do not match. An example is an
attempt to map a PROM data configuration containing
256 bit strings from a memory data configuration 512
bit strings.

7-16 Digital Systems Division

(o]
@ 945255-9701

PPOS Hardware error.

PP06 PROM programming module is not on line.
Example:

.PP,GO
This command initiates the programming cycle.
7.5.3.6 Define Memory Data Configuration Mapping Parameters (MI). The Define Memory Data
Configuration Mapping Parameters subcommand defines the control information needed to deter-
mine the addresses of the bit strings in the memory data configuration to be used in the pro-

gramming cycle.

Syntax definition:

o e [o <]

Parameters:

level n Memory mapping level indicator. Its value is 1,
2, or 3. Required parameter.

imn Bit increment used to determine the successive bit
addresses of the bit strings to be used in the
programming cycle for the level specified by the
level n parameter. Hexadecimal number.

mmn The number of bit strings to be used in the
programming cycle for the level specified
by the level n parameter. Hexadecimal
number.

dmn Initial bit displacement used to determine the starting

bit address of the first bit string to be used in the
programming cycle for the level specified by the level
n parameter. Hexadecimal number.

Parameter default values:

If imn is not specified, a value of 0 is used.

If mmn is not specified, a value of 1 is used.

If dmn is not specified, a value of O is used.

Description: This subcommand is used to specify the memory mapping parameters for a data
configuration not defined on the Standard Control Information Cassette or to modify the
mapping parameters of a configuration input from the Standard Cassette. The memory data con-
figuration mapping parameters are explained in detail in paragraph 7.4.4 and Appendix F. The

command parameters imn, mmn and dmn correspond to IM,, MM, and DM,, in the computa-
tions in Appendix F.

7-17 Digital Systems Division

o
{@ 945255-9701

If a two- or three-level data configuration mapping has been specified and the user wishes to
specify a data configuration using only level one mapping, the looping parameters for levels two
and three must be reset to the default values. If three-level mapping has been previously specified
and level two mapping will be used, the looping parameters for level three must be reset to the
default values. This can be accomplished by typing the MI subcommand and level, leaving off
any of the looping parameters. The following commands:

.PP,MI,2
.PP,MI,3

reset the looping parameters for levels two and three and allow the user to proceed with level
one programming.

Error message:
PP0O2 Parameter value outside the permissible range.
Examples:

.PP,M(,1,10,100,4
.PP,M1,2,0,2

The first example defines the mapping parameters as follows:

Loop level

Bit increment

Maximum iteration count
Bit displacement

1

10,6 = 1644
100, = 2564
4

wwan

The second example defines the mapping parameters as follows:

Loop level

Bit increment

Maximum iteration count
Bit displacement

OO

(default)

7.5.3.7 Define PROM/ROM Data Configuration Mapping Parameters (RI). The Define PROM/
ROM Data Configuration Mapping Parameters subcommand defines the control information
needed to determine the addresses of the bit strings in the PROM/ROM data configuration to be
used in the programming cycle.

Syntax definition:

PPy) Ry] eveln> v} [fim>][{b’...}[<mm>][{b’...] <dm>]1]

Parameters:

level n PROM/ROM data configuration mapping level indicator.
Its value is 1, 2 or 3. Required parameter.

7-18 Digital Systems Division

(o]
@ 945255-9701

irn Bit increment used to determine the successive bit
addresses of the bit strings to be used in the
programming cycle for the level specified by
level n. Hexadecimal number.

mrn Number of bit strings to be used in the programming
cycle for the level specified by level n. Hexadecimal
number.

dm Initial bit displacement used to determine the starting

bit address of the first bit string used in the
programming cycle for the level specified by level n.
Hexadecimal number.

Parameter default values:

If irn is not specified, a value of 0 is used.

If mrn is not specified, a value of 1 is used.
If dm is not specified, a value of O is used.

Description: This subcommand is used to specify the PROM or ROM mapping parameters for a
data configuration not defined on the Standard Control Information Cassette or to modify the
mapping parameters of a configuration input from the Standard Cassette. The PROM/ROM data
configuration mapping parameters are explained in paragraph 7.4.4 and Appendix F. The

command parameters irn, mrn and drn correspond to IR, MR, and DR, in the computations in
Appendix F.

If two- or three-level data configuration mapping has been used and the user wishes to specify
another data configuration using only level one mapping, the looping parameters for levels two
and three must be reset to the default values. If three-level mapping has been used and the user
is going to specify two-level mapping, the looping parameters for level three must be reset to the
default values. This can be accomplished by entering the RI subcommand and specifying the
level, but omitting the looping parameters. The following command:

.PP,RI,3

resets the looping parameters for level three to allow the user to proceed with level two and one
mapping.

Error message:
PPO2 Parameter value is outside the permissible range.
Examplés:

.PP,R1,1,4,100
.PP,R1,3,1,4,3

7-19 Digital Systems Division

o
@ 945255-9701

The first example defines the ROM/PROM characteristics as follows:

Loop level =1

Bit increment =4

Maximum iteration count = 100,, = 256,,
Bit displacement = 0 (default)

The second example defines the ROM/PROM characteristics as follows:

Loop level

Bit increment

Maximum iteration count
Bit displacement

W h —-—w

7.5.3.8 Define PROM/ROM Characteristics (RC). The Define PROM/ROM Characteristics sﬁb-
command defines the physical hardware characteristics needed to transfer data to the
PROM/ROM.
Syntax definition:

PP {b’...} RC {b’...} <width> {b’...} <high or low> {b’...} <pwl> [{b}

[<retries>] [{b’_ . } [<duty cycle>] [{b’. . } <pgmable bits>]]]

Parameters:
width Number of bits per word in the PROM/ROM physical
organization. Required parameter. Hexadecimal
number.

high or low Value that specifies whether high or low
logic level output conditions are to be
programmed. The value is O if low and is
1 if high. Required parameter.

pwl Normal pulse width to be used for programming. The
pulse width is entered as an index value between 1
and 6 obtained from a table in Appendix G. Required
parameter.

retries Number of times programming is to be retried using
the normal pulse width if a programming failure
occurs. Hexadecimal number.

Duty cycle Duty cycle to be maintained while programming a
PROM. Hexadecimal number. The value is the
percentage of the total time (programming time
plus delay time) that the programming pulse is
on. The normal duty cycle varies between 16%
and 50%. For example, a value of 20,4 is a
duty cycle of 32%. '

pgmable bits Number of bits that can be physically programmed
simultaneously.

7-20 Digital Systems Division

o]
@ 9452559701

Parameter default values:

If the retries parameter is not specified, a value of O is used.

If duty is not specified, a value of 19,4 (25%) is used.

If the pgmable bits parameter is not specified, a value of 1 is used.

Description: This subcommand is used to define the physical characteristics needed to transfer
data to the PROM during the programming cycle. This subcommand may be used when a stan-
dard PROM data configuration is not desired or the PROM being used is not supported on the
Standard Control Information Cassette. The PROM characteristics are explained in detail in
paragraph 7.4.3.

The pulse width is entered as an integer number from 1 to 6. This number is then mapped into a
0.5 millisecond to 16.0 millisecond pulse according to the table of pulse widths in Appendix G.
This appendix also contains a table of the range of pulse widths allowed for the supported
PROMs.

The HIGH/LOW parameter specifies whether a PROM is to be programmed with 1s or Os. For
example, the S287 PROM is initially all 1s and must be programmed with Os. The programmable
bits parameter specifies the number of bits in the bit string to be physically transferred into the
PROM at a time. In most cases, with the exception of the erasable programmable read-only
memory (EPROM), only one bit should be programmed at a time. As the number of bits is
increased, the reliability of the programming process decreases.

When programming EPROMs, the entire bit string is programmed at once. For a description of
the EPROM programming process, see paragraph 7.6.2.

The retries parameter specifies the number of times to repeat the programming process if, after
programming the number of bits specified by the programmable bits parameter, a programming
failure occurs. The same bits will be reprogrammed until the correct data is transferred or the
retry count is depleted. When programming EPROMs, the retry parameter should always be O
because of the special process involved in EPROM programming (paragraph 7.6.2).

The duty cycle determines the percentage of time that the programmable pulse (which causes the
actual transfer of data to the PROM) is on with respect to total cycle time (which includes a
delay time). Appendix G contains a table of the range of duty cycles allowed for the supported
PROMs.
Error messages:

PPO1 Required parameter missing.

PP02 Parameter value outside permissible range.

Examples:

.PP,RC,4,1,3,2,10,1
.PP,RC,8,0,4

7-21 Digital Systems Division

o
%@ 945255-9701

The first example defines the ROM/PROM characteristics as follows:

ROM/PROM word width = 4 bits
High logic level output conditions (program 1s)

Pulse width =3
Number of retries =2
Duty cycle =10,¢ = 16 percent

Program 1 bit at a time
The second example defines the ROM/PROM characteristics as follows:

ROM/PROM word width = 8 bits
Low logic level output conditions (program 0s)

Pulse width =4
Number of retries = 0 (default)
Duty cycle = 25 percent (default)

Program 1 bit at a time (default)
7.5.3.9 Define String Width (SW). The Define String Width command informs the control soft-
ware of the width of the bit strings to be transferred between PROM/ROM and memory,
displayed, or compared to other bit strings.

Syntax definition:

PP {b} SW {b’_“} <width>

Parameter:

<width> The number of bits per bit string. A number in
the range 1 to 8. Required parameter.

Description: This subcommand sets the memory and PROM/ROM bit string width.
Error messages:

PPO1 Required parameter missing.

PP02 String width outside the permissible range.
Example:

.PP,SW,1

This command defines the width of the string to be 1.

7-22 Digital Systems Division

[o]
{—@? 945255-9701

7.6 PROGRAMMING CONSIDERATIONS
The following paragraphs discuss the methods for performing some specific programming tasks of
which the user should be aware. The tasks include:

® Standardizing nonstandard memory and PROM configurations.
® Programming erasable programmable read-only memory (EPROM)
@ Creating PROMs for memory addresses not in the hardware configuration

7.6.1 STANDARDIZING NONSTANDARD MEMORY AND PROM CONFIGURATIONS. After
setting the direction toggle in the TS command to 3 and before typing the GO subcommand, the
user should mount the Standard Control Information Cassette on the device assigned to logical
unit number 7 and a scratch cassette on the device assigned to logical unit number 8.

This toggle is processed after all other toggles. For example, if the toggle to display memory is

also set, the complete memory data configuration is displayed before the PROM programmer
begins the standardization process.

When the GO subcommand is typed, PROMPG responds with:

MEM ID?

and waits for the user’s reply. The user enters a name (Character string of 1 to 12 characters)
followed by a carriage return to identify the control information for the present memory data
configuration. Entering only a carriage return indicates that the user does not wish to retain the
present memory configuration’s control information on cassette. PROMPG now responds with:

ROM ID?

and awaits the user’s reply. The user’s reply is a name identifying the control information for the
present PROM/ROM data configuration. Again, the user may indicate with only a carriage return
his desire not to retain the present ROM configuration’s control information on cassette.
PROMGP copies the information from the current Standard Control Information Cassette to the
scratch cassette until it encounters control information with an identifying name which matches
either the PROM/ROM or memory ID name. If a match is found, the new control information is
written on the scratch cassette. If a match of either the memory or PROM/ROM ID name has
been found before an end-of-file is encountered on the Standard Control Information Cassette,
the new control information is added to the end of the scratch cassette, which now becomes the
updated Standard Control Information Cassette.

7.6.2 PROGRAMMING EPROMs. Since EPROMs are metal oxide semiconductor (MOS) devices,
they must be programmed in a different manner than TTL PROM devices. EPROMs are charge
storage devices which must be programmed by repetitively transferring charge to the EPROM
bits. This repetition may be accomplished by looping through the programming process defined
by the data configurations. The number of required repetitions to transfer sufficient change to
each bit or bit string is defined by the following formula.

100 ms = pulse width X repetitions

Therefore, using a pulse width of 0.5 ms, 200 repetitions must be used to successfully program
the EPROM.

7-23 Digital Systems Division

(o]
{_@Q 945255-9701

There must be a delay after each attempt to program a bit string before trying to program the
same bit string again. This delay is necessary to allow the charge to diffuse into the EPROM
device without a buildup of excess charge on the surface.

Because of the required delay, each bit string of the EPROM should be attempted once before
repeating the programming cycle. To ensure this delay, the number of retries for programming
each bit string (defined in the RC subcommand) must be set to zero. Each bit of the EPROM
will not appear to have the correct value (0 or 1) until sufficient charge has been transferred to
it.

In the early stages of programming, the bits may not have acquired sufficient charge to have the
correct value. This will appear as a programming failure if the number of retries is set to a
nonzero value, and the bit string will be programmed again without the required delay time. For
the same reason, the compare toggle (defined by the TS subcommand) should not be set during

the programming cycle, since compare errors will be found in the early stages of programming an
EPROM.

Since the programming cycle for an EPROM repeats many times, the display toggles (defined by
the TS subcommand) should not be set during the programming cycle since the memory or
PROM data will be printed for each repetition.

Therefore to program, compare, and display, the process must be done in two steps. First the
toggles must be set to program. After completion of programming the EPROM, the toggles may
be set to compare and/or display. The number of repetitions defined must be changed to one
before the second step to compare and/or display.

The following example shows how to program a 1024 X 8 EPROM from a 1024 word block of
memory. The following commands define the memory and PROM data configurations, bit string
width, PROM characteristics, memory bounds, and toggles, and initiate the programming process.

PP,MI,1,10,400,0
PP,R1,1,8,400,0
PP,M1,2,0,C8,0
PP,R1,2,0,C8,0
PP,SW,8
PP,RC,8,0,1,0,32,8
PP,MB,0,3FF
PP,TS,0,0,1,0
PP,GO

The level 2 mapping defines the repetition count to be C8,¢ = 200. The toggles are set to program
memory to PROM.

To perform the compare to check for programming failures, the following commands are needed.

PP,MI,2
PP,R1,2
PP,TS,0,0,0,1
PP,GO

The RI and MI subcommands define the repetition count to the default value of 1. The toggles
are set to compare memory to PROM.

7-24 Digital Systems Division

o]
%:@ 945255-9701

7.6.3 CREATING PROMs FOR MEMORY ADDRESSES NOT IN HARDWARE CONFIGU-
RATION. By specifying a load point for the linking loader different from the default, PROMs
may be generated to be used in memory addresses for which memory is not configured in the
current system or cannot be loaded with the linking loader.

An example is to generate a PROM to be used at location FE0O,;. Since the ROM for the
programmer panel and loader is at location FE0Q,,, object code cannot be loaded there. The
linking loader provides the capability to load programs with a specified load point and load bias.
This allows the user to load programs at a location in memory different from the location at
which they will execute, FEQOQ,¢ in this case.

The load point and load bias specified by the user are used in determining how the code is
relocated and the memory address where the code will actually be loaded. Code assembled with
an absolute origin (AORG) directive is loaded at the absolute address determined by the directive
plus the load point.

MEMLOC = ABS ADDR + LDPT

In this example, if the object code to be programmed into PROM is assembled with an absolute
origin of FE00Q,¢, but the user wants to load it at location 200,4, he should enter a load point
of 400,,.

200,, = FE0O,, + 400,
The load bias entered is not used since the object code is absolute.

Code assembled with a relocatable origin (RORG) directive is loaded at the relocatable address
determined by the directive plus the load bias plus the load point.

MEMLOC = REL ADDR + LDBI + LDPT

In this example, if the object code to be programmed into PROM is assembled with a relocatable
origin of 0, and the user wants it to be executable at location FE0O,;, but wants to load it at
location 200,¢, he should enter a load point of 400, and a load bias of FEOO,,.

200,, = 0 + FE00,, + 400,

Note however, that object code loaded with a load point other than the default 0 is not
executable.

7.7 PROGRAMMING EXAMPLES

The following paragraphs present examples of command sequences used to program PROMs with
the PROM programmer and examples of command sequences for using the additional PROM
programmer capabilities. Additional programming examples are presented in Section XI.

7.7.1 EXAMPLE 1. Generate a 256 X 16 memory with PROMs by programming a 256 word
block of memory, located at 7A0,4, into four 256 x 4 PROM devices. Refer to figure 7-2.

7-25 Digital Systems Division

(o]
%@ 9452559701

BIT
DISPLACEMENT
MEMORY
ADDRESS
0 4 8 c
A0 T T T
7A2 | | |
| | |
|
! | MEMORY
| ! !
90C I | |
99E |] |
0
1
2
1 1 i v PROMS
FF
(A)133375

Figure 7-2. Mapping Example 1
Mount the Standard Control Information Cassette on LUNO 7.
Command Commentary
.PL Load PROM programmer software.
.PS,MS287-0,5287 Standard configuration MS287-0, S287.

(Memory configuration initial bit displacement
equals 0.)

.PP,MB,7A0,99F Memory bounds 7A0-99F (PROM bounds
default to 0 and FFF,4).

.PP,GO Prdgram PROM 1. The toggles were defaulted
to program PROM and compare when PROM
programmer was loaded by PL.

Change the PROM.

.PS,MS287-4 Load standard memory configuration MS287-4
with initial bit displacement equal to 4. PROM/ROM
configuration does not change.

.PP,GO Program PROM II.

Change the PROM.

7-26 Digital Systems Division

(¢]
{@ 945255-9701

.PP,MS287-8

.PP,GO
Change the PROM.

.PS,MS287-C

.PP,GO

Load standard memory configuration MS287-8
with initial bit displacement equal to 8.

Program PROM III.

Load standard memory configuration MS287-C
with initial bit displacement equal to
Cis-

Program PROM 1V.

7.7.2 EXAMPLE 2. Program a 32 by 8 PROM from a 16 word block of memory beginning at

memory address 40 .

Assume that the CRU base address is 1A0.

Position the Standard Control Information Cassette. Refer to figure 7-3.

.PS,S288,MS288A

.PP,MB,40,5F

.PP,CS,1A0
.PP,TS,0,0,1,1

.PP,GO

Standard Control Information for ROM/PROM
configuration S288. Standard Control Information
for memory configuration MS288A. This
configuration has an initial displacement

of 0 with a bit increment of 8 bits, and

a bit string width of 8.

Beginning memory address 40,,. Ending
memory address 5F ¢.

CRU ROM interface base address 1A0.

Set toggle to program PROM and compare.

7.7.3 EXAMPLE 3. Load the most significant bytes of a 256 word block of memory beginning
at memory address O from a 256 by 8 PROM.

Assume that the CRU base address is 120,4. Refer to figure 7-4.

7-27 Digital Systems Division

945255-9701

BIT
DISPLACEMENT

MEMORY
ADDRESS
(o) 8

40 !
1
|
]
] MEMORY
I
I
s !
\ /
N
OfTTTTT I
N RN
AR
:::,II; PROM
b
'lllll!
TE b1t
(A)133376 1F Lilieg
Figure 7-3. Mapping Example 2
oOfTTITTT]
1l 1
2t
Lot 1] prom
th
AR
llll
rpp
N EERAREE
FFLIG 1L
BIT
DISPLACEMENT
MEMORY \
ADDRESS \
0 8
v
2 7
a /
(A)133377 1FE //

Figure 7-4. Mapping Example 3

MEMORY

7-28

Digital Systems Division

o
@ 945255-9701

Position the Standard Control Information Cassette.

.PS,MS471-0,5471 Standard Control Information for PROM/ROM
configuration S471. Standard Control Information
for memory configuration MS471. This
configuration has initial displacement equal
to 0, bit increment equal to 10,4,
and a bit string width of 8.

.PP,MB,0,1FF Beginning memory address 0. Ending
memory address 1FF.

.PP,CS,120 CRU ROM interface base address 120,,.

.PP,TS,0,0,2,0 Load memory from PROM

.PP,GO

7.7.4 EXAMPLE 4. This example is in several parts.

a. Program a 512 by 8 EPROM from a 256 word block of memory beginning at memory
address 80,,.

Assume CRU base address 120, (unchanged from previous setting).
Position the Standard Control Information Cassette. Refer to figure 7-5.
.PS,ME2704A,E2704 Standard Control Information for memory

configuration ME2704A. Standard Control
Information for PROM/ROM configuration

E2704.
.PP,MB,80,27F Beginning memory address 80,¢.
_ Ending memory address 27F 4.
.PP,TS,0,0,1,0 Program PROM from memory data

configuration. (See the note below.)

.PP,GO"

7-29 Digital Systems Division

945255-9701

BIT
DISPLACEMENT
MEMORY \
ADDRESS
0 8
80 :
82 |
| 5
| MEMORY
|
|
1
27E |
Nl /
—\/
0 lli]lil
11 i |
Pt
::|I'|' PROM
||||”|
(A)133378 TIHL
] TFFLLa Ll

Figure 7-5. Mapping Example 4

'b. Compare PROM in a. to memory configuration used to program the PROM. -

.PP,M{,2 Clear second level looping.
.PP,R1,2 ‘

.PP,TS,0,0,0,1 Compare PROM and memory.
PP,GO |

c¢. Display PROM programmed in a.
.PP,TS,0,1,0,0 Display PROM.
.PP,GO |

NOTE

Because of the nature of programming the EPROM, the EPROM
should be compared to memory only after the programming cycle
has ended by resetting the toggles and initiating the compare as in
b. and the comparison of the PROM to the memory configuration
used to program the PROM. (Refer to paragraph 7.6.2.)

7-30 Digital Systems Division

o
@ 945255-9701

7.7.5 EXAMPLE 5. Generate a 1024 X 8 memory with PROMs from a 1024 word meinory
block. Data is loaded in memory from location 200,, through location 9FE,¢ in even-numbered
bytes. Refer to figure 7-6.

Assume that this programming sequence is not standard.

Command

.PP,MI,1,10,400

.PP,R1,1,4,400

.PP,SW,4

.PP,MB,200,9FE

.PP,RB,0,3FF

Commentary
Level one memory m:;pping.
® Increment 4 bits
® 1024 times
Level one PROM mapping.
® Increment 4 bits
® 1024 times

Program 4 bits at a time.

Beginning memory address = 200,.
Ending memory address = 9FE,;.

Beginning ROM address = 0.
Ending memory address = 3FF,,.

.PP,RC,4,1,1,8,14,1 ROM Characteristics.

.PP,GO

Change the PROMs.

® ROM word width of 4 bits

® Program high-logic-level outputs

® Normal pulse width “1”°, 8 retries
® 20% duty cycle

® Program 1 bit af a time

Program PROM set I.

.PP,MI1,1,10,400,4 Change initial displacement to 4 bits

.PP,GO

Program PROM set II.

7-31

Digital Systems Division

BIT

o]
%—@} 945255-9701
DISPLACEMENT

MEMORY
ADDRESS \ o a

8 c
T v
299 , .%
‘ MEMORY
|
| /
- » /
oFE | 7
1
? 11 'T 1 | |
2 p | | o
I |
: [| 1 | PROMS
R P
. arc| | 1 | I I
(A)133379 3FE [| L1

Figure 7-6. Mapping Example §
7.7.6 EXAMPLE 6. Save the control information in example 5. (Refer to paragraph 7.4.5.)

Mount the Standard Control Information Cassette on the device assigned to LUNO 7. Mount the
scratch cassette on the device assigned to LUNO 8.

.PP,M1,1,10,400,0 Change displacement back to 0.

PP,TS,0,0,3,0 Set toggle to save information. .
.PP,GO

Program replies with
MEM ID?

MEM ID? MOB4

Program replies with
ROM ID?

ROM ID? ROB4

ROM identifier. Tape I/O occurs.
Example 2 may now be run replacing
.PP,MI1,1,10,400

and

7-32 Digital Systems Division

(o]
@ 945255-9701

.PP.RI1,1,4,400
and
.PP,SW,4
and
.PP,RC,4,1,1,8,14,1
with

.PS,MOB4,ROB4

7.7.7 EXAMPLE 7. Twenty-four 4-bit fields are arranged in 16-bit words as shown in the illus-
tration. These 24 fields are to be programmed repetitively in the first 384 four-bit words of a
512 X 4 PROM with characteristics similar to a TI SN74S287 (two 287s with a programming

adaptor card to make them appear as a 512 X 4 device). Refer to figure 7-7.

Assume that this programming sequence is not standard. .

Command

.PP,M1,1,6,3

.PP,M1,2,10,8

.PP,M1,3,0,10

.PP,RI,1,4,180

.PP,SW,4

Commentary

Level one memory mapping (go across
word).

® Increment 6 bits
® 3 times

Level two memory mapping (step from
word to word).

® Increment 16 bits
® 8 times

Level three memory mapping (provide

repetitions of memory data configuration).

o Increment O bits

® 16 times

Level one ROM mapping
° Iﬁcrement 4 bits
e 384 (=16 X 8 X 3) times

Program four bits at a time.

7-33

Digital Systems Division

[e]
@ 9452559701

.PP,MB,2A0,2AE
.PP,RB,0,17F

.PP,RC,4,0,1,8,1

.PP,GO

Beginning memory address. .

Ending memory address.

Beginning ROM address.

Ending ROM address.

ROM characteristics.

ROM word width 4 bits
Program low-logic-level outputs
Normal pulse width “1”, 8 retries

Duty cycle 25% (default)

Physically program one bit at a time.

7-34

Digital Systems Division

945255-9701

BIT

DISPLACEMENT

MEMORY

ADDRESS \
(0]

2A0 1 /e 2 v/ /0 3
R 77 /7,
7 g7 8 /A4 °
10 // /] 11 ///1 12 MEMORY
13 v// // 14 0/ 15
16 /) 7 V4 18
19 v/ 20 /2
2AE 22 VA 23 U 2
0 1 W
1 2
r~ . A .
° > REPETITION 1
- [] -
17 24
18 1 ﬁ
2
p e A
: g REPETITION 2
. ®
2F 24)
A~ -~
o
[)
o
1
2
A ® 4 REPETITION 16
o
L o . =<
(A)133380 17F 24

Figure 7-7. Mapping Example 7

7-35/7-36 Digital Systems Divisior

o]
Q‘__@; 945255-9701

SECTION VIillI
BNPF DUMP MODULE

8.1 FUNCTIONS AND OPERATION

The BNPF Dump (DMBNPF) overlay, when resident in the monitor transient area, allows the user
to produce a BNPF-formatted cassette tape, check that the correct format has been produced, and
load the BNPF-formatted load module from cassette into memory. These functions may be initiated
by the DB monitor keyboard command.

Instructions for loading the BNPF Dump overlay module into memory are included in the
discussion of system software cassette generation in Section II and the OV command in Section III.

8.2 , BNPF FORMAT
The standard format of the DMBNPF output has the following appearance:

decimal byte address b B xxxxxxxx F ... B xxxxxxxx F

first 8-bit byte sixth 8-bit byte
of P’s and N’s of P’s and N’s

The decimal byte address is the address of the first byte of information contained on the line. It
contains no leading zeros and must begin in column 1. Each record contains at most six bytes. The
N and P characters represent the bit values 0 and 1 respectively.

8.3 BNPF DUMP COMMANDS

The commands used by the BNPF Dump software module are described in detail in the following
paragraphs.

8.3.1 PERFORM BNPF OPERATION (DB). The Perform BNPF Operation command, along with a
subcommand, causes a BNPF dump, load or data comparison to occur.

Syntax definition:

DB {b’.) } <subcommand>

Parameter:

subcommand Command which specifies a dump, load, or data
o comparison. If it specifies a dump, additional
parameters are required (paragraph 8.3.2.1).

Error message:

MPOO Invalid subcommand

8-1 Digital Systems Division

(e}
%@ 9452559701

8.3.2 DB SUBCOMMANDS. The DB command is used with a D, C or L subcommand: These
subcommands are described in the following paragraphs.

8.3.2.1 Dump Memory to Cassette in BNPF Format (D). The Dump Memory to Cassette in BNPF
Format subcommand causes each byte w1thm the specified memory range to be converted to BNPF
format and stored on tape.

Syntax definition:
DB {b" ‘ } D {b’. _ } <start addr> {b’_ ‘] <end addr>
Parameters:
start addr Address of first byte to be dumped.
' Required parameter. Hexadecimal
number.
end addr Address of last byte to be dumperd.

Required parameter. Hexadecimal
number.

- Description: The memory range is specified by the starting and ending addresses. BNPF format, the
format in which data is stored on tape, is described in paragraph 8.2. This command dumps to the
device assigned to LUNO 7.

Error messages:
DPO3 Dump is larger than 8192 (2000,¢) bytes
Starting address is greater than the
ending address.

MSO05 Required parameter missing.

MXO01 Unrecoverable 1/O error. (Output cassette
may not be ready.)

Example The following example dumps memory locations 500, to 50F16 to cassette in BNPF
format: v

DE DsS00s50F
The contents of memory, when printed using the IM command, appear as follows:

IM S00 SOF
gsoo=o000 1111

.
N

TEEE raddd B0LL REEE FPTT

8-2 , Digital Systems Division

945255-9701

After the memory words have been stored on cassette, they appear as follows:

1220 BHANHMNMMFE EMHAMHMMNE BUNHEMNMPE ENMMEMERFE ENMEFMENENE EMNPNMNENF
1286 BHMFPPHNFPF BNMPENMPEF ENFPHMNFNNF BHEMMMENME ENFHPHPNFE BHPHPNPNPE
1292 BHFPMMFPPNF EMFRPMMPENF EMFPPMFFPF BNPHENFPPF

E

A dollar sign (8) in the first character of a record denotes the end of the dump. The memory
addresses printed are decimal numbers.

8.3.2.2 Compare BNPF Format on Cassette to Memory (C). The Compare BNPF Format on
Cassette to Memory subcommand can be used to verify that the correct data was written on cassette
tape by the D subcommand (paragraph 8.3.2.1).

Syntax definition:
DB {b’...} C

Description: After a memory block is dumped to tape, reposition the cassette assigned to LUNO
7 to the first record and enter the DB command and C subcommand. Each BNPF-formatted byte is
reconverted to hexadecimal and compared to the byte in memory. If the comparison fails, each
byte from the cassette and the corresponding byte from memory are displayed with the
hexadecimal address. Control is returned to the command string processor without printing if no
comparison errors Occur.

Error message:
MXO01 Unrecoverable I/O error

Example:

ne
BEG ADOR=0S0D0
EMD ADDR=0USOF

The contents of the tape is compared to memory. The beginning and ending addresses are printed.
Because no compare errors have been detected, nothing else is printed.

DB C

BEG RODE=0S00

TOSDE=1100 MOSOZ=0000 TOSO3=1100 MUSuEskE 00
TUsSq 10 MOSME=0000 TOS07 00 MusuF=EF 00
TOS0H= 0 MOSOH=0000 TOSOE MUSUESEE OO

TOSOE=7700 MOSOE=0000 TOSOF=FF00 MuSuF=rF 00
EMD ADDR=0S0F :

8-3 Digital Systems Division

o
{@@ 945255-9701

In this example, a number of compare errors have been detected, The memory and tape byte values
are displayed, left justified in the field. Pressing the ESC key on the terminal keyboard terminates
printing of compare errors.

8.3.2.3 Load BNPF-Formatted Data Module into Memory (L). The Load BNPF-Formatted Data
Module into Memory subcommand reads a BNPF-formatted data module from the device assigned
to LUNO 7, converts the data to hexadecimal, and stores the data in the memory addresses corre-
sponding to those on the cassette..

Syntax definition:
0B [y] L
Error message:
MXO01 Unrecoverable 1/O error

Example:

.DB,L

8-4 Digital Systems Division

[e]
%@ 945255-9701

SECTION IX

HIGH/LOW DUMP MODULE

9.1 FUNCTIONS AND OPERATION

The HIGH/LOW Dump (DMHL) overlay, when resident in the monitor transient area, allows the
user to produce a TI 256 by 4 HIGH/LOW-formatted cassette tape and check that the correct for-
mat has been produced. Because DMHL is an overlay, it must be loaded into the transient area be-

fore being used.

A program function is initiated by a monitor keyboard command which sets memory bounds and
lets the user specify the option desired: either to produce the tape or to perform a data comparison

--to check the tape.

Instructions for loading the HIGH/LOW Dump overlay module into memory are included in the
discussion of system software cassette generation in Section II and the OV ‘command in Section

III.
9.2 HIGH/LOW FORMAT

The standard format of the DMHL output has the following appearance:

“ XXX — XXX bb yyyy byyyy b...byyyy

/ \ \
beginning ending first 4-bit second 4-bit eighth 4-bit
decimal decimal word of H’s word of H’s word of H’s
address address and L’s and L’s and L’s

(3 digits) (3 digits)

The first seven characters of a record must contain the first and last address of the eight data sets
described in the remaining columns. As an example, the first record must contain 000 through 007.
The addresses must be three-digit right justified zero-filled integers separated by a hyphen (minus
sign). The last record must contain 248-255. All 32 records must contain eight consecutive address

groups so that the dump starts with 000 and ends with 255.

Each récord contains eight 4-bit words of Hs and Ls. The H and L characters represent the bit

values 1 and O respectively. An example follows:

000=007 LLLL LLLH LLHL LLHH LHLL LHLH LHHL LHHH
008-015 HLLL HLLH HLHL HLHH HHLL HHLH HHHL HHHMH
01e~-023 LLbbL LLLH LLHL Lbtb bbbt bbb bbbt bbbe
024-031 LLLL LLLL bbb Lbel LB LLLL bl bbbt

Digital Systems Division

[o]
%@ © " 945255-9701

9.3 HIGH/LOW DUMP COMMANDS
The commands used by the HIGH/LOW Dump software module are described in detall in the
following paragraphs

9.3.1 PERFORM HIGH/LOW OPERATION (HL). The Perform HIGH/LOW Operation command,
along with a subcommand, causes a HIGH/LOW dump or data comparison to occur..

Syntax definition:
HL {b,.) } <subcommand>

Parameter:

subcommand Command which specifies a dump, or data comparison.

The subcommands are described in paragraph f S
9.3.2.

Error message:
MPOO Invalid subcommand

9.3.2 HL SUBCOMMANDS. The HL command is used with a D or C subcommand. These sub-
commands are described in the following paragraphs.

9.3.2.1 Dump in HIGH/LOW Format (D). The-Dump in HIGH/LOW Format subcommand con-
verts four bits of each word of a selected 256-word memory block to HIGH/LOW format and
writes the converted format to tape. 7 -

Syntax definition:
HL {b’-..} D {b} <start addr> {b’__.} <end addr> [{b} <bit>]

Parameters:

start addr Address of the first word in the memory block.
Required parameter. Hexadecimal number.

end addr Address of the last word in the memory block.
Required parameter. Hexadecimal number.

bit Starting bit of four-bit string in each word. The
number of the bit position.

/

Parameter default values:
If the bit parameter is not specified, it is set to O.

Description: DMHL writes to the device assigned to LUNO 7. If a block of less than 256 (1004)
words is specified, the HL command fills out the 256 words on tape with 4-bit words of Hs. To"
check whether the correct information was recorded on cassette, reposition the cassette and enter
.the HL command with the Compare (C) subcommand (paragraph 9.3.2.2).

92 Digital Systems Division

o
@ 945255-9701

Error Messages.

DPO3 Dump was greater than 256 words. Starting address
is greater than the ending address.

MPOO Illegal parameter value. Address was not on word
boundary. D parameter missing. Bit parameter
value is greater than C,4 .
MSO05 Required parameter (other than subcommand) missing.
MXO01 Unrecoverable I/O error or output cassette not ready.
Example:

HL D 500 6FE

The cassette has the first four bits of each word, with the bit parameter equal to its default value 0,
of a 256-word block beginning at 500,4 converted to HIGH/LOW format.

HL D 500 520 8

The cassette has four bits beginning at bit 8 of each word of a 16-word block beginning at 500,
converted to HIGH/LOW format. The cassette is filled with records of Hs until a 256-word format
has been created.

9.3.2.2 Compare HIGH/LOW Format on Cassette to Memory (C). This subcommand is used to
verify that the correct data was written on tape by the D subcommand.

Syntax definition:

HL {b’...} C <start addr> {b’...] <end addr> [{b} <bit>]

Parameters:

start addr Address of first word in memory block.
Required parameter. Hexadecimal
number.

end addr Address of last word in memory block.
Required parameter. Hexadecimal
number.

bit Starting bit of four-bit string in each word.
The number of the bit position. Hexadecimal
number.

Parameter default value: If the bit parameter is not specified, it is set to 0.
Description: Each four-bit string on cassette is compared to four bits of binary data in each word of

the designated memory block. If the comparison fails, the addresses and the cassette and memory
data values are printed.

9-3 Digital Systems Division

945255-9701

Error messages:

DP03

MP0O

MSO05
MXO01
Examples:

HL ©

Block larger than 256 words.

Illegal parameter value. Address was not on word
boundary. Bit parameter value is greater than
C,6 - C parameter missing.

Required parameter missing.

Unrecoverable I/O error.

Sl eFe

The contents of the cassette are compared to the first four bits of each word from 500,¢ to 6FE .
No compare errors are detected.

HL T S00 &FE

MOSOS, 000u=0000 TOooot. 0000=1000 MOSOe, DOOO=00010
MOSOH. GO00=0000 TOOOS, o0oao=S00n MUSOE., ouD=0onn
MOSIS. 0000=0000 TOO09, 0U00=2000 PMOSIe, ouuo=0000
MOSIA. OOO0=0000 To0aD, nood=g00od MUSIE. sooo=s0inn

In this example, a number of compare errors are found, The relative address of the word on tape,
its contents, and the memory address and its contents are displayed. Only the four bits of the
memory word that are being compared are displayed. The bits are left justified in the content

display.

9-4

Digital Systems Division

(o]
{_@} 945255-9701

SYSTEM OPERATION AND DEBUGGING EXAMPLE

SECTION X

10.1 INTRODUCTION

A complete example of system operation and debugging is presented in this section. The example
includes assembly of program modules, the loading sequence, debugging, editing, reassembly of
the edited module, relinking and loading of all modules, and execution of the final version of the
program.

It is assumed that the user has read the manual and has been introduced to these functions.
Included with each step in this example is a brief explanation of procedure, a listing of the
actual procedure followed, and a reference to the section in the manual where more information
can be found.
This program creates a concordance of all the symbols used in a program. The user may specify
labels, operators, and/or operands to be included in the concordance printout. To run the
program, follow these steps:

1. Mount and ready the source tape in cassette drive 1 (the left-hand drive).

2. Execute the program using the EX command or using the RU command for debugging.
In the concordance program, an error is included in the print routine (PRTBM) so that the user
may be exposed to the process involved in creating and debugging a working program. The steps
in the process are:

1. Assemble the source programs and create object modules using PX9ASM.

2. Link and load the object modules into user memory using PX9LAL.

3. Using the monitor, debug the program.

4. Using PX9EDT, edit the source module which contains the error.

5. Reassemble the source module.

6. Link and load all the modules into memory again.

7. Execute the final program to see that the error has been corrected and the program
executes correctly.

10.2 ASSEMBLING MODULES WITH PX9ASM

The first part of the program is the assembly of modules using PX9ASM. For a description of
how to use the assembler, refer to Section V. The assembler must first be loaded using the LU
command (Section III). The source modules require the predefined register definitions; therefore,
in answer to the question:

PREDEFINED REGISTERS?

Enter “Y”.

10-1 Digital Systems Division

(o]
{_@:p 945255-9701

Assembly listings of the routines other than PRTB (IDT ‘PRTBM’) used in the concordance

program are not shown, but are printed when the programs are assembled. The routines not
shown are DRIVER, PARSE, CTYP, CSYM, SYMREF, and SYMDEF.

LYo

PAIAIM 345333 e [SMARTS
ADD <4k MEM BLOCKZ COMFIGUREDT 0O
PREDEF INED RESIZTERET 't

RIM-TERM? R

10-2 Digital Systems Division

945255-9701

AEM-TEFMT H

PARGE 0001

nong

nonz INT "FPTRM

000 *

nonsS - FFTE WILL FERD THE SYMPOL TRELE ONE ZYyMEOL
) . AT A TIME AND FRINT THE =YMBGL NRME.

T . THE ZTATEMENT MLMBER WHEFE THE =%MEOL

o0z i WA DEFINEDs AMD THE LIST OF ZTRTEMENT
k) . MUMEEPT WHEFE THE SYMBOL WRZ FEFEPENCED.
noto >

it - CRALLING ZEGLENCE:

note - MO INFUT PRFME

an1e .

0014 . FEGIZTERS DEITROYED — RisF1ePEaRIPaFSaRGFasF10
nnts *>

onte *»

noLv DEF FPFTE

noLs FEF FSTINM

NGl -

onzo DE0OP ZWC« 15

nngt .

DOnNg IMEYM EL
nons ZMDEF EcU
oA SMREF EGL A

o

annz FPEFYRL EDU 2

onod SYIFLG Eon 4 FFRE FLRAGE
anne BFRDP ERDL B

noos BPFLTH EQOL =

DODR CCOUNT B in

10-3 Digital Systems Division

945255-9701

FRINT

1]

G
nngq

nngz
nngs
nn4ga
nogs
H0gs
anav
nnNas
onas

nosn

00ss
onSe

00s7
noss
nnSss
LAY
UTILY!
e
D0ss
NoEg

n0esS

00Ke
ey

0ono0
nons
ninng
DDA

nons
DOOR
0o

nole
iR
nnic
N1E
00S

[=4
e
1y
c

DO B S]

(s]

nﬁ-v
uezd

DD ¥
nnsg

andn
DD 25

noid4R
D
N03E
A0S
sz

ZYMEOL TRELE

nonn-
C1sEk

CEsn
0N

0EHN
COFRD
Cnag
gl
nnons
nenn

COR0

Cleg
DonR
ne 0
nzog
0oy

O0aR -

RN

FPTERN1

PRTEDE

PRTENS

En
MOy
Moy

Eny
JER
EL

MO

MOYy
RI

LI

MO
MO
MmOy

Mo+

Cl
JEG

Mo
LI

BL

EB
1O
mo
LI

LI

8y
mMos
JED
MmO

Mo
EL

$
P11:F&
FETTTYMy SN T M

%
FRTE=T
FELMELM
ANETIVMPE

PE+P1
FleIMivm

F i« QUTELF
oR1+soF N+

o1 +yoF i+

s 1+ oF 0+
FIMIEF PSR
F1.:FFFF
FRTEGE
Fl.F11i
FSs DL TERLUF+#

PUONY

L 3

AMATEYM RE
AIMREF (P2 RS
FROHTPUF+15
Fas7

¥

FEWFS

PETENS
FREFYAL (RS FLD

PP
ACONY

FRSE NODE

SAYE PETLFEN

FIIINTEF TO FIFEZT I¥MBOL EMTRY

soFFINT A
IF DOME

Y MEGL

ZET OUTELF TO ELRAMKE

mG~E *vwMEOL TO EULFFEF

MOVE =“YMEROL DEF TO DUTERLF

“IF 1T EXIZTE

COMYERT EIM TO DECIMAL

FFOCEZE FEFEFENCES:

7 FEFEFENCEZ FEF LINE
IF EMD OF REF CHAIN

DUTFIYT FEF TO LIME

10-4

Digital Systems Division

945255-9701

FRIMT Z¥YMEDOL TRELE PRGE 0003

DEBE nesSa 02z Rl R MEXT LINE PDZITION
NOSeE NNoR

DNE3 anss pang TEC R4 IF LINE FULL AND MDFE FEFS PEM

wovFn NOSk 15-- AeT FRTEOS

0071 oNsSC 9SS "oy eFS.eRS

DUFE O0SE 13-- JED FRTEROG

one3 .

GUF4 0050 DERID BL FFFMTLH PRINT CLORFFENT LINE
s —---

anTs omsa OERD EL PELMKLN FEZET LINE FOINTER®
a0es —-—--

anvée 0Des 0203 LI e OUTRLE+1 5
00sH -

0077 0D0eC AZ204 LI Fa.7
NOsE 0007

0ovR *

Qo7 00707 PRTRO4A EQLI %
OOSAee150R
NOSEee1 308

0ogn 0¥ D155 MOY eRS.RS CHRIN TO NEXT FEF

0021 00ve 10ES AMP PRTENGR

oose *

0oR= 674" FRTEOS EOL %

. 00436012175

0034 0074 0sAn EL APENTLN PRINT LBST LIMNE
aove —----

00as .

00548 anvas PRTBOA EQL %

Qa7 0072 CORAN MOY INXTEYMs R CHRIN TO MEXT Z¥MBOL
QoFR —--—-

nog2 007C Cei2 MOV ePZ« PNXNTIYM
DO7PE —-——-

onas a0s0 10C2 MP PRTRO?

NG90 *

NO91 a0z 0458 PRTEXT K oFE FETURN
U00Ree 1330

anog ‘ L4

10-5

Digital Systems Division

945255-9701

FFRINT

nnSg
nooas
00
nasv
053

onss

n1on
n1nt
n1og

a0
nioa
n10s
01 ne
n1ov
010
010
0110
111

n11e

0113
114

0115
H11e
ni1v
nits

n11=

(BN
n1ct

niee

n1zz
a1as
n1es
n1ze
n1zv
n1ca
a1E
013n
"1z
13e

0133

TWMEOL TRELE

(N
N0o-eenn

nEm 2ncn
RN nenn

NNSE ——=—-
nosn
(D
e

15FD

N
T

N

D Ee U35 E
fInsE

NORCeenns
NDVEeeNas”
R i Nn
ONEE ————
o
QLN

0=

DHAE ———
DoRe 1E8--
DHRE DEDD
noRs - 10FE

. NNRE
ONRNes 1N

noRe nEnt
TUEES —_————
(=T it
DoAY =00
NINRE ——=—
WOED SFED
DOES ———-

uikEd D4SE

NNEE
N deen ke

e

L 2R 20 2B 2 J

BLHKLN

ELM 01

L J
FPMTLMN

FF1

ELAMY

REGIZTER:

Et

LI
LI
LI

By
MO
DEC
5T
FT

ITRIF TPRILING

Ern

L1

Ely
iZF

AMHE
LEC
IMF
EML

LI
MO~
PR N
FT

-OmM

FERI-TEFR:
CALL THI
FLO -
R

E

WERT BIMNRFY

L IMNE EUFFEF

¥,

FaedD

L
FO«DUTERLF
¥

FleoPi+

F
ELMb 21

%

FOSOUTEILF+TS

k3
*F 1+ JELFAMK

PRz

Fo

FP1

%
F1syOUTEUF-1

FleRn
Fihesta T

FMTFRE

1

ELAMKE AMD

FRSE nnng

LZED - FNeFleFS

LRST EUFFEF

FPINT OQUTFUT LIME

FOIITION

REIUME AT LERET OME CHRF IM EL

QUTFLT CHAR

FRINT LINE

TC IECIMRL.

LTED - FOsF1aFE
TERLENTE:

WALLIE TO RE
- FOINTEP TG PUFFEF FOP PEZLLT

COMNYEFTED

[MaIRIsR{

10-6

Digital Systems Division

945255-9701

FRINT ZYMEOL THELE PRAGE 0005
(iSzee ke
0134 00k TR Moy Ri0«.FE UZE FEPEATEDL DIVIDE
013% a0ks 0200 Ll Piie 1000 AMD LDOK UP OUDTIEMT IM TRELE
DORR GRES
0135 OORC 0401 CLRE F1
0127 OOBE ZC40 DIy FROF1
D132 000 DE#L MOYE SCLIZTYR1D « oG+
nCg --—-
139 GoCd oz on LI PO 100
NOCe G0Rd
N4 aocz a4l LR P
0141 OOCR 2040 DIV RPO.F1
H14g OonCC DEEL MOYE PCLIZTORL Y « PS4
nE —--—-
0143 0obn 0ac LR R
0144 OODE NS00 L1 Fos10
nang nonR
0145 nubs T4 DIY FOF1
0148 000 DEEL MOVE FCLIZTORLY «opSs
aNpER -
0147 00D [ERZ MOYE SCLISTVRE) » ¢F9+ FPEMRINDEF 15 LAY DIGIT
QODE ——--
0142 0OCEG 04SE FT
NHias .
(13 %=1} -
0151 NoE2 20 CLISY TEXT 01234967897 COMYERT EBIN 7O LEC
noCzeenng2”
NOCEese0ED "
HODReeNES "
DNDE*eDDED
0152 00EC OROD DRATAR > 0RND CReLF
0152 0O0EE OUTELF ESZ €0
OGUiReen0EE "
002Nee00Fs-
no4neeNFE-
OH0aHesN(FE -
DOZEseNNEE "
009Ree N1 2D
NOR3eeNNED

0154 013E NO00 WTPRE DRTA 0s>BO00.OUTBUF-2+20 OUTPUY PRE
0140 nEOD
014z Goo0
0144 O0EC”
0145 005N

NORZee013E”
0155 0142 0000 WTCC DRTR 0 OUTPLIT CHRF COUNT
D0REeei145
156 .
D157 0i4n 20 PBLANK EBYTE ~ “s 0
014E on
NOSEee 1 4R

0132 0140 0000 NXTSYM DRTAR O
00DEseNL AL -
001 Neeniadr -
0028eeniar

10-7 Digital Systems Division

945255-9701

FRINT Z¥MEOL THRELE FRCE ONne
NoTReen1 4y -
NN7Eesnt 4]~

n159 END

nonn EPROFE

10-8 Digital Systems Division

o
%@ 945255-9701

10.3 LOADING MODULES WITH PX9LAL
The second part of the program is the loading of modules. Using PX9LAL, link and load the
object modules into memory. (Refer to the software loading procedures in Section II.) Before

PX9LAL can be used, it must be loaded into the monitor transient area using the OV command
(Section III). When PX9LAL asks for

LD PT?
LD BI?

enter a carriage return after each to specify the default values of O and AO,,, respectively. In
answer to :

F/P LIST?

enter either F (full) or P (partial). The object modules may be loaded from either cassette drive.
When PX9LAL prints

LOAD/END?
enter either L or L7 to load from cassette 1 or L8 to load from cassette 2.

When all of the modules have been loaded, the program entry point is printed. This value is
placed in the user’s PC register. ‘

109 Digital Systems Division

9452559701

LD FT+
LD EIF
FoP LIITY E

LORD -EMD: L

“REF GIRG
* FRINTL
FETIHF
+ TEFM
LOAE-ENDT L

*

FREZEM N254
’ FAFZE
DEFFF
OFNTIFF
OFEFRFF
TTMT

R

LOAD-ENDT L3

CTYFM 47E
o LTYP
LORD-ENDT L.
FRTEM nsn
+ FFTE
LORD-END? L2

CEYMM

L 2R R IR A

LORD-END® LE

TYMRFM 1DEE
* IYMPEF
s OYFL
LOAT-END™ L&

ZWMOFM 1EZE
* ZYMDEF
LORD-ENDS E
ENTPY = 00Rn

TEFM-CONT? T

[T
n1dg
nHes

D En
g1 n
414
n41g
04 0n

14RE

Lo B> (05 S 1)
[~ - N0
DO DR e

=D

10-10

Digital Systems Division

. :
%@ 945255-9701

10.4 DEBUGGING THE PROGRAM

The third part of the program is the debugging. Execute the program using the EX command
(Section III). Use the source module named SYMDEF as the input to the concordance program.
(This is the shortest source module.)

The source tape may be positioned to the beginning of SYMDEF by setting the PLAYBACK
switch on the data terminal to the LOCAL position and the PRINTER switch to the OFF
position. By pressing the CONT START switch in the Playback Control area on the data
terminal upper switch panel, the tape will be read to an end-of-file marker and positioned at the
beginning of the next file. Repeat this process until the tape is correctly positioned to SYMDEF.
Set the PLAYBACK and PRINTER switches to the LINE position.

Follow the debugging procedure outlined in the computer printout in this paragraph. The
debugging in this example occurs in PRTBM. For descriptions of the individual monitor
keyboard commands, refer to Section III.

DMUHT “OURCE FOR ZYMDEF OW CRIZZETTE DRIVE. EXECLTE FFDGPRMJ

IF
FC=00RN WR=0000 2T=0000

P05 PEFEPENCE - DEC 3141975

~ LABELT™ X
FPOCESS OPEPATORT ¢ INSTRUCTIOMS® ¥
FFOCES: OPERANDIT

e +o oo (FD°Z FEFEFENCE e ¢e SG0 es oo oo

“YMEGL TEF FEFZ

=1 nnss

ME nazt

“RL nozgs

LEIYM nozv rzs

LEF g0

FENT npzz

ERL Coonage [P

2107 nanz . .
MOV ne2s OnEE]
JFAGE 0nrs

F11 ongs

zP3 vOEE

Fq 0nEsS

3 ‘ noze nesn
tREF ONET

FIMDE OnE2 Iz

IYMD D024 g one

WM nong

JTITL ool

[ﬂWCﬂRRECT QUTFUT. IHIPECT JQUTRUT BUSFER BEFIRE EHfH RECORD WRITTEN. ZET
ERERKCOINT I PRTIM AT IMITRUCTION SEFIRE UPERYIZIR CALL TO WRITE RECUHDJ

10-11 Digital Systems Division

945255-9701

iz

[?J FIMD THE ABZOUUTE AIDIREZZ OF THE DEZIRED IMIZTRUCTIONM:
1

~3IMT wARI IPECIFIED 1!

JHR_S08 RS

TUM=0SED +014%¢ LIFF=0450G +01120
LZE 1+SEO

MR

PC=0NRN
HWF=00010
ZT=0000 ‘g

[FEFOZITIGN TRPE TO Z*MDEF.)

Bl

CROSS PEFERPENCE — LDEC 3141575
FROCEZS LABELZY ¥

FROCEST OPERATOPS INITRPUCTIONZ»® %
FROCESZS OPERPRMDE? 4

*e oo oo I“FO=Z FEFEPENCE s e AL e o0

>

RO

TRz MIEOULE LORD

-JAD MAPY T THE RELATIVE ADIREZT WITHIM THE HGCULE.]

ZYMEOL DEF FEFZ
BKPT1

FC=0SE0 WF=016R ZT=

Dnnos

[Look AT DUTPUT EUFFEF.]

A S05 ER

UM=05Fz +01522 DIFF=041E

LIM SFE BZE

DSF2=02056 4145 2020
i cnzo

=]

cnEn gongn

coso
2N

+01 054

E0ED
goen
goen

cnen

=
=4
<
=
E.

Digital Systems Division

945255-9701

[}IPET TwO CHAFARCTEFS OF BUFFEF IMWALTD. FPOINTER TO IWMEOL TRELE
HEEDI 79 BE INCFEMENTED EY TO. THIEFT THE ITMT AL Fl.Z RFTEF
ETMT 44, SIHCE THERE I3 MO ROOM TO IMIERFT ThIT TwO WOFD IHITELCTION,
WE MUIT MAKE A FRTOCH TO A UMUIED FOFTION GOF MEMDFY. IMIEFT ThHE
IMITRUCTIONT c2TMT 45 WHICH WE MUIT OYERLAY WITH A BRFAMCH. AMD ZTMT
THAT WE AFE INIEPTIMGHs AWML EFANCH ERCE TO THE CODE HE CANME FPDM.]

[T0 DO THIZ PATCH AT ITMT 4as:
E #FRTCH WHEFE FATCH = IFQG
AT 1F00 IMZEFT:
RI Fle&
LI RO-DUTELF
E AITTHT _4e WHEFE STMT_48 = SNS+41S = SZ0
THE CODE FOF THE FRATCHED 17 @

n4ei
1F 00

- =
DR 11

T
s

P] -

ML Ao
I 0 3 Wt

De B £ WD (Y

X]
M
=
L

MM S10C
0S1C=02006 Q&0
NS1E=0SFZ 1FON
MMOLFEON
tFa0=00nnn 023l
fFag=000n 2
IFO3=0000 200
tFoe=1E12 SFS
1F02=4F5¢ . 450
1FOR=4c4C S20

10-13 Digital Systems Division

9452559701

[ET EMTEF Irts THE FI3 COMMARD « THE FROSFAM WILL COMTIMUE E-ECLTING

FFOM THE EFERFFD
HHD

THE ME. T FECCFD
FEFOFE FRINTIMG THE ME.T FECOFD.

THT.
ELITLT,

THE FECOFIY wITH THE EFFOF IN
THE FFOGFAM WILLL HALT AT THE EFERVFOINT
IMIFECT THE EUFFEF TO

WE AN

LETEFMIME [F OUS FATCH WRI CDFFEET.]

FL

ﬁ‘ i)
EkPT21

FC=0SED WRF=N1ER
. SFZ

o'

TT=Dg fig

cusn S

cncn =1 \
chEn S0nEn
Shch ShnE

[THE BUFFEF RFFERFI TOFFECT.
FEZT OF THE ZvMEOL TRELE.]

Fa
FEF
IMLEF
IYMDEF -
ZYMIFM
TITL

o=

arigy

ozl

nnea

noSe

0nE7

]
annt
anng
nnol

nasn

ranugn
Faugn
sensn

LSS0

FEMOYE

D0

0nnn

SNED 020
ZOEL EnEn
Znen

cnsh

THE EFERFFOIMT RAMD FFINT THE

IT WILL EE FRIMTED

DKMITHHT WE HAYE DETEFMIMED THRT THE FATCH IS COFFECT. FPELOAD THE

EDITOF AMD IMZEFT THE MIZIIMG ITRTEMEMT. RE-AIIEMELE. AND YERIFY
THRT EYERYTHIMI I3 EDPPECTJ
10-14

Digital Systems Division

9452559701

10.5 EDITING WITH PX9EDT
The fourth part of the program is editing using PX9EDT. For a description of how to use the

text editor, refer to Section IV. The text editor must be loaded using the LU command (Section
IID).

FAEDT 245354 e 1OMARTE
D 4k MEM EBLOCKT COMFIGUREDT 3

FOZITION THREIL. EMTER R

Emt %
MoY F1leFe IRYE FETLIFN
MOY AFZTEYMegMNETE '™ FOINTEFR TO FIRPZT IYMEDL EMTRY
E Eott % *oFRINT R ZYMROL
nogn JET FRTEAT IF DOHE
DTIE S EL PELHF LM ZET OUTELF TO ELAMEE
[T P MOY AMETIYMeRS MOYE =YMEOL TO BUFFEP
nnas MmOYw Rcoekd
T S 2 AT FlsaTMEIYM FEMOYED TO CFERTE EPROP
onas LI FOsQUTELF
e MYy eFi+of O+
gy MOY eF1+.eP D+
s B MOY eki1+.eR(14
TR S I
TLgd-d44
ATl F1a2MEYM CORFECTELD EFFOF
TELE -4
e MOV AMTIYMRE mMOwE ZWMEOL TO ELFFEF
DX MOw F2F1 .
Rl FleiMZy'M COFFECTED EFFOF
angs LI FO0OUTELF
NHaE MOy eF1+.oF0+
T

. END EDIT
TEFMINATE. CONTINLET

10-15 Digital Systems Division

945255-9701

:)(1)2(6)0 I}:EASSEMBLING, RELINKING AND LOADING MODULES AND EXECUTING THE
RAM

The fifth part of the program is reassembly of the edited module. The sixth part of the program
is the relinking and loading of all modules. The seventh part of the program is execution of the
final version of the program. ’

PAIATM 34533 ee [TMARTE
ADD 4k MEM BLOCKI ZOMFIGUREDT I
FREDEFINEL FESIITERIT 1

AIM-TERMT A
FASE 0001
0001
0002
0004 IDT “PRTEM-
0005 *
2005 . PRTE WILL RERD THE S¥MBOL TABELE OME SYMEOL
0007 . AT A TIME AND PRINT THE IvMBOL MAME,
0002 . THE STATEMENT NUMEER WHERE THE SYMBOL
0003 . WAT DEFINEDs AND THE LIST OF STATEMENT
7010 . NUMEBERZ WHERE THE SvMBOL WAS REFERENCED.
0011 .
0012 . CALLING SEQUENCE:
0013 . MO IMPUT PARMS
0014 .
0015 . REGIZTERT DESTROVED - ROsR1:R2:R3:R4sRSsREIRIR10
0015 .
0017 .
0013 DEF PRTE
0013 REF FIT3YM
o020 .
o021 DHOF 3¥Cs 15
o022 .
0023 pOOZ IMIYM EQU 2
0024 0003 IMDEF EQU 3
0025 DO0R SMREF ERQU A
0025 pO02 REFYAL EQU 2
0027 D004 IYIFLS EQU 4 PRE FLAGS
002 0005 BFADR EQU &
023 0003 BFLTH EoU 3
0030 000R CCOUNT EQU 10

10-16 | Digital Systems Division

945255-9701

PRINT =vYMBOL TRELE PR3E o002

o032 .

on33 *

0034 *

00395 00o00“ PRTR E! %

0035 0000 C13E MO Rl11lsRe ZAYE RETURN

Q037 0002 CR20 MOV SFITZVM INETIYM FOINTER TO FIREIT =V¥MEOL EMTRY
o004 0000
0008 ——--

oaz3 *

o033 000z PRTROL EOd & *oFRINT A =VvMBOL

no40 0002 13-- JER PRTBXT IF DOME

0041 000R 0BAD BL FBLNKLM ZET OUTEBUF TO EBLANKSE
aoogs —-——-

0042 000E COROD MOV INETIVMY RS MOYE =YMBOL TO BUFFER
oo1g -——-

0042 0012 Cog2 MOY R2sF1

o044 0014 0221 Al R1lsTMZTM
001s 0oo2

0045 0013 0200 LI RO,OUTBUF
00iR -——-

0045 0012 CC31 MOY eR1+seR0+

0047 OQ01E 0CC31 MOY eR1+,eR0+

0043 0020 (CC31 MOY eR1+seR0+

0043 *

0050 Q0022 Cos MOY PEMDEF (R2> +R1 MOYE =ZYMEBOL DEF TO OUTBUF
noz24 0003

0051 ao2e 0221 [§ R1:>FFFF CIF IT EXIZSTS
00223 FFFF

0052 o002R 13-- JEZ PRTEBO2

0033 002Cc C231 MdY RisRE10

NS4 002E o203 LI RIOUTBUF+2 COMYERT EBIN TO DECIMAL
0020 ———

0055 0032 05A0 BL FCONY
0034 —-——-

0055 * .

00357 00357 PRTBOZ EQ 3 PROZEZ= REFEREMCES
002Re+1305

0052 0035 CORO0 MOV INETIVYM. RS
0032 ——-—-

0053 003" 1C1e2 MOY FEIMREF cR22 + RS
003z 0008

0050 OQO3E 0203 LI RILOUTBUF+1s
0040 —-—-—-

0051 o042 0204 LI R4 7 7T REFERENCE= PER LINE
0044 0007

0052 00457 PRTEBOZ EQN 3

0053 0045 1145 ' MOY RS.RS IF EMD OF REF CHAIN

0054 0043 13-- JER PRTBOS

00ES *

0055 004 C2RS MOY SREFVYAL CRS»sR10 OUTPUT REF TO LINE
004z 0002

0057 O004E 1243 MOY R3sR3

a3 0050 08RO BL PCOMY

: o052 ----

10-17

Digital Systems Division

945255-9701 -

PRIMT Z¥MBOL THRELE

R

Q070
nov1
aars
D]
novy
00a7s

oose

J

s
=

=
=

=
00 00 0 00

STV (R

J

=
=

o
]

R
=

o I:?) o
DOCRESS s £

=

=
=
o

yul

L
=

]

=
AL

Do W’
=

oL o
N3 =

b

=
=
o
Lra)

ansSg4 Nz
nases oo
a0ss 0A0d

anzA 15--
onss oSss

nasE 1z--

AT
UK
nzo4
anar

DI

GOSRee 1507

DOSEee 2032
0070 2155

0are 10ED

T A
0042641315
naT4 SR
L e

. COOaTEs
auvTs ZOARN

NOFA ----
DavTC (e e
QIFE —-=—--
ansEn 1023

0032 0458

Qonseel 3307

Y11

.
FRTEO4

»

FRTEROS

.
PRTEOA

-. -
PRTBXT

*

LEC
J3T
MO
JEiR
EL
EL
LI

LI

En
Mo
Jme
ER
EL

Ed
MO
Mo

AMP

Q3!3

kg
FRTEO4

RS eRS

PRTEO4

PPRHMTLH

MFELMELH

F2ZOUTERUF+14

R4T

SRS RS
FRTEROZ

£]
PPRMTLHM

:; .
T E M

R

SRy AT M

PRTEOL

*RE

FRSE o000z

MEXT LIME POSITION

IF LIME. FULL AMD MORE REFT REM

FRINT CURREMT LIME

RETET LIME FOINTERS

CHRIM TO MEXT REF

FRINT LAIT LINE

CHAIN 7O NEXT

RETURMN

ZYMEBOL

10-18

Digital Systems Division

945255-9701

PRINT

0107
a1 02
0103
0110
01114
011z

0113

nii4
0115

01158
0117
ni1a
011

nizo

o1zt
nize

012z

0124
0125
a1ze
) oy
nzz
0129
0120
0131
n1zez
n133
0134

ZYMEOL TREBLE

T S
ao0OZee N4~
dlssee N34
aoz4 0202

anz2

n2o1
O02A 020
anac nzao0
N

aQ3a-°

0030 oot
a0z 0E02
0034 1SFD
0038 045ER

oz 200
a3y -——-

e

DOBC 310
OO —-—-
D00 16--
DOAZ 0500
00A4 10FE

DORE -
D0ADes 1502
P

Q0R2 ——-—--
00AR =00t
OORC 2200
O0RE —-——-
GoERD 2FEN
e —-——-
0o0Eeg 145E

1) -0
0034 ee00BS -

Aol R R R BN

L MELM

BLMK 01

.
PRENTLN

FR1

(i}

PR2

+ e
L 4

LR 2R 2R BN B I 3

cOoMy

ELANK LINE BUFFER
RESIZTERE UZED - ROsR1sR2

EQ B

LI FZs40

LI il

LI FO«OUTEUF
Exl %

MadY RlseR0+

DEZ R2
J5T BLMKO1

RET

EZTRIP TRAILIMNS BLAMKIT AMD PRINT OUTPUT LIME
Exid %

LI ROSOUTBUF+72 LAET BUFFER POZITIONM

EQ %
9] «R 0y JELAMK

AME PR2 .

DEC RO HZZUME AT LERET
JMFP PR1

EC) %

LI F1.OUTBLF-3

= F1sRO

OMHE- CHAR IM R

MOY R IWTEC QUTPUT CHAR COUNT
YD SWTPRE FRINT LINE
RT

CONYERT BINARY TO DECIMAL

RESIZTERE LZED - ROSR1R2
CRLLIMG SEQUENCE:
F10 - YALUE TO BE CONWERTED
F3 - POINTER TO BUFFER FOR REZULT

EL Ok

10-19

Digital Systems Division

945255-9701

PRINT TYMEOL TRELE

0135

0135
0137
0133
0133
0140
D141
0142
0143

0144
01435

0145
0147

0142
0143
0150

0151
sz

01532
0154

0135

0157
0153

01532

noSceen0ES"

M D L%

CLF
oI
MOvE
LI
CLE
nr.
MO E
ZLR
oIy
MOV E
Mov e

ET

CLIET TERT

OUTEIIF EZ=

ooes CO0O3A
Qo3 o200
ODOER O2ES
OORC 0421
DOBE 2240
0oz0 DESL
gz ----
aocg n200
aoze 0054
ooz 041C1
DOCH 3IC40
oocs DESL
DOCE ——--
oooo 0401
00DE 0200
onog4 000A
oope 2040
oonz DEAL
oooR —----
ooz DE&2
O0DE ----
Q0ED D45SE
OnE2 =0
DOCZeenNEZ”
QDZEeeDOEZ "
DODAesOODES - -
OODEeeOQEZ "
QOECZ 0ROD
DOEE .
O01A+eO0EE”
0030ee0OFE "
0040ee00FE”
sHee Q0FE 7
ONZEeeQ0OEE "

D3Ree 01207
DOR2eeDOEE

013 0000
o140 QBROD
M4z 0000
144 OQ0EC”
H4s 0050
J0B2ee D1 2E -
0142 Qo000
DOREeeDt43”
114A 20
014k, o
NIIESe L1947~
014 0000
UDTTE 2 Y3 ¥ Tald
Go10eeng Q"

0033ee 157

P 2

WTPRE DATA
WTCC - DATA
ELANK BYTE

MATZYM DATH

FARSE 0003

F1osR2
Fosio00 AMD LOOK
F1

FROsR1

FCLIZT Ry s oR3+

Fos100

F1

ROsEL
FCLIETCR1: s oR3+

F1
Fos10

RilsF1
FCLIET CR1y s oR3+

FCLIET RSy s R34+

> OROD CRsLF

=0

0 *BO0s 0y OUTEUF~2s 30 OUTPUT PRE

JZE REPEATED DIVIDE
WP JUOTIENT IM TRELE

FEMARIMDER IZ LATT DIGIT

COMYERT EIM TO DEC

0 _ OUTPUT CHAR COUMT

10-20

Digital Systems Division

9452559701

PRINT 3YMBOL TRBLE PRGE 0005
007Ree014"
007Eee 01427
0150 END

0000 ERRORSE
ASM-TERM? T

10-21 Digital Systems Division

945255-9701

AL

LD FT7

LD BI?

F-F LIZT? P
LOAD-END? L3

*REF

LORD-END7 L%

PAPSEM
LORD-END? LT

CTYPM
LORD-END7T Ly

PRTEM
LOAD-END? LS

CEYMM
LORD-END~ L

-—

LORD-END® L&

SYMRFM
LORDEND? L&

SYMDFM
LOAD-END? E
ENTRY = 00RO

TERM-CONTT T

OOR0

0254

narea

10-22

Digital Systems Division

945255-9701

-1E
PC=00R0 WP=0000 >T=0000

PEFERENCE - DEC 31.19%7S
X LREBELEY ¥

FROCEEZZ DOPEFATORE INITRLUCTIDMS)
FPOCESI OPERPNDZ® v

*e oo oo FOZZ FEFEPEMNE

TYMBGL DEF FEFS
AI : nnS9
13 o3t
EL nn2s
CSYM 0027 N2
LEF ‘ Nz
END anzz
EQU nnze niz4q
ILT DonE
mov 002s 0NEG
PASE - 0ol
F11 anEs
F3 n0zZe anzn
P4 - 0025 izt
(=] 00ZE nngs
FEF nozv
ZMDEF nnze noEa
IYMDEF 0024 oo 0021
SYMIFM nnnz
TITL onnt

-
5

"
—

*e 46 TS ee

-
0
-

ooz

>

*®

10-23/10-24

Digital Systems Division

[o]
@ 945255-9701

SECTION XI

PROM PROGRAMMING EXAMPLES

11.1 INTRODUCTION

This section contains two examples of PROM programming processes. The first example shows
how to program a user generated program into PROMs. It assumes that the user has already
assembled his source program to create an object file on cassette tape. The example shows how
the object file is loaded into memory and the steps required to program the PROMSs using
control information for the memory and PROM data configurations obtamed from the Standard
Control Information Cassette.

The second example shows how to use a PROM created in the first example to program another
PROM with the same data. The data from the first PROM is transferred into memory, the
memory and PROM data configurations are set up using the PROM programmer keyboard
commands, and the data is then programmed into the PROM. ’

11.2 EXAMPLE 1

The first step is to load the object file into memory. This may be done with the Load Program
(LP) command since the object file is in standard 990 object format and does not need to be
linked. The PROM Programmer Standard (PS) command is then used to define the control
information for the memory and PROM data configurations. The PROM to be programmed is an
SN74S287 PROM which consists of 256 words of 4 bits each. In this example, the memory
configuration will be set up to program from the first 4 bits of each memory word in a 256
word block. The memory and PROM bounds are defined with the MB and RB subcommands.

YLPs3s0 . .
LPEaM3237-0. 3237
.PPsMBsDs 1FF
PPIRBs OsFF

The LP command loads the object code to be programmed into the PROM beginning at memory
location 0. The PS command defines the standard control information for programming a 256 X
4 (SN74S287) PROM with the first four bits of each of 256 words of memory. The MB and RB
subcommands specify a transfer of data into PROM word addresses O-FF,, from memory
addresses O through 1FF,,. The memory data may be displayed to see what will be: programmed
into the PROM.

PPsTZe1s0-0s10

.PPsi30

MOOO00.00=00 MOO002.00=01 MOOD4,00=00 MOOOS. DO=05
MD0D03.00=01 MOO0OR. D0=01 MODOC. 00=00 MOOOE. 00=00
MOO10.00=00 MOO12.00=00 M™MOO014.00=01 MOD1s6, 00=01
MO013.00=0C MOQLA. 00=032. MOO1C.00=03 MOOLE. 00=00
MOo20.00=00 MOO022.00=00 MO024.00=00 MOO2E. 00=01
MO023.00=00 MOD2AR.00=01 MOD2C.00=00 MOD2E. 00=01
M0030.00=00 MOD32. 00=01 MOO0O34.00=00 MOQ35, 00=01
MON3R.00=01 MOO3[R. 00=01 MOOQ3C,00=00 MOO3E. 00=01
MO040.00=01 MOO042. 00=02 MOO044.00=01 MOO4S5, D0=00
MDD43. 00=00 HMOO4R”. 00=00 MOD4C.00=01 MOO4E. 00=00
MO0S0. 00=00 MOOS2.00=01 ™MO00S4.00=01 MOOSHE, D0=01
M0053.00=00 MOOSA. 00=01 MO0SC.00=0C HMOOSE. 00=0C
MOOS0. D0=0C MODS2. 00=0C pMO0s4, D0=0C MO0S5, J0=0C

11-1 | Digital Systems Division

945255-9701

The toggle is set to display memory with the TS subcommand, and the display is printed when
the GO subcommand is entered.

Once the user verifies the data in memory, it is ready to be programmed into PROM. The toggles
to program PROM and compare memory and PROM are set with the TS subcommand. The
PROM should be inserted in the PROM Programming Module. The programming process is
initiated when the GO subcommand is entered.

PPaTZa0s0s1s1
PR30

The compare is successful, the PROM programming returns to the monitor, and the prompt
character (.) is displayed while waiting for the next command. If any compare errors are found,
they will be printed before the PROM programmer returns to the monitor.

The following printout shows a programming process in which compare errors were found.

FRELTE
JEEG
SEOON, DO=01
MO0 0, no=F4
MO0, 0=00

sy elal

FOOGD, NO=FF
nn=Fa
L n=7s
L=y
=T Nn=FF

The user may display the PROM after it has been programmed to see what was programmed into
PROM and compare it to the memory data display. To display PROM the toggle is set with the
TS subcommand.

PPsTSs0Ds150s0
.PPs30

RO0OOO. DO=00
ROO04.00=01
ROOO3. 00=00
RO0OC. 00=0C
ROO10, 00O=00
ROO14. 00=00
RO0L3. 00=00
ROODIC. DO=01
rROO20.00=01
ROD24.00=00
ROD23.00=00
ROD2C.00=00

rROODL. 00=01
RODOS. 00=01
ROOO3. 00=00
ROOOD. 00=03
ROO1L. O0=00
ROD1S. 00=01
RODL3. 00=01
ROO1ID. OD=01
RO021. 00=02
ROD25. 00=00
RO, 00=01
ROOZD. 00=01

ROOD2.00=00
RODDE. OO=00
RODOAR.DO=01
ROOOE. DO=03
RODLI2, 00=00
ROO15.00=00
ROOIAR.DO0=00
ROCIE. D0=0D
ROO22.00=01
RO0O2&.00=01
ROD2ZAR.00=01
RODSE. OO=0C

RODO3. 00=05
ROOOT. 00=00
ROOOB. 00=01
ROOOF. 00=00
ROD13.00=01
RODL17. 00=01
ROO1B. D0=01
ROOIF. 00=01
ROO23. 00=00D
ROD27. 00=00
RDO2B. 00=01
ROD2F. 00=00C

To program the second four bits of each memory word into a PROM, a new PROM is inserted
and the following command is entered to get the needed control information for the memory
configuration from the Standard Control Information Cassette. The PROM control information
does not need to be changed as long as an SN74S287 PROM is being programmed.

PIaMI2a7-9

11-2

Digital Systems Division

945255-9701

Display the memory data configuration.

PPsTZa1:0:050

.PPs 30)

Mooo0, 04=02 MODD2. 04=0F HMODD4, D4=02 MOO0NA,. D4=07
MO0O3.04=06 MOOOR. 04=0D MODOC,04=04 MADOE. 04=02
MO0019.04=00 MOOD12. 04=04 MOO14,04=0F MOO15. D4=03
mnn13 04=00 MOO1IA. 04=02 HMO01C,04=02 MOOL1E. 04=00
MO0O20. D4=02 MOD22. 04=00 MIN24, 04=05 MOD25,. 04=0n
YUDhB 04=05 MONZA. 04=05 MOOZC. 4=04 MDO0O2E. 04=00
MOO30.04=06 MOO32. 04=02 HMOO34,04=05 MOD2S. 04=03
MO033. D4=0F MOO3A. J4=050 MOOG2C, 04=08 MOO3E. D4=0F
MOD4D, D4=03 MOO42. 04=03 MOD44, 04=00 MOO045. D4=04
MOO43, D4=05 MOO4A. 03=0" MOO4C, 04=07V MOOSE. Dd4=04
MOOS0. 04=00 MO0S2. 04=00 MOOS4, 04=00 HMOOSS, 04=00

. o . : N\
The output displays the bit string beginning at bit four of each word of memory.

PPy TZa D081t
.PP»3O

The toggles are set to program the PROM and compare. No compare error display indicates the
PROM has been programmed with the data displayed from memory.

The third four bits of each word of memory can be programmed into a PROM uding the
following commands to get the control information for memory from cassette and set toggles to
program PROMs and compare. A new PROM should be inserted before each programmmg
process is initiated. .

LP3aME227-2
PP TS 0200101
.FPP.30

|
L -
A similar set of commands can be used- to program the fourth four bits of each word of
memory. » :

P MIZET-C
PPy TEZs0Ds 05101
PP 30

11.3 EXAMPLE 2 :

This example loads the memory data from the first PROM programmed in the previous example,
and uses this data to program another PROM. The first step is to define the memory and PROM
data configurations to be used in the transfer from PROM to memory and then from memory to
PROM. The keyboard commands are used- for tutorial purposes in this example to set up the
data configurations instead of using the control information on the Standard Control Infor-
mation Cassette. The keyboard subcommands needed to define the same information found on
the Standard Control Information Cassette are MI, RI, SW, and RC. The memory and PROM
bounds are defined with the MB and RB subcommands.

PPsMIs1510:100:0
PPsRI»1245100,0
FFPsZus 4
LPPsRCads0s220:1351
.PP:sMBs s 1FF
.PPsREs OsFF

11-3 , Digital Systems Division

945255-9701

The MI, SW, and RC subcommands set up the control information for an SN74S287 PROM and
for the first 4 bits of each word of a 256 word block of memory. The MB and RB
subcommands specify a transfer of data between PROM word addresses O through FF,, and

Loop level
Bit increment

Number of iterations
Initial bit displacement

Loop level
Bit increment

Number of iterations

memory addresses O through 1FF,.

1

0

1
4

Initial bit displacement =0

High/low level output

Pulse width

Number of retries

Duty cycle

Programmable bits

——O0 N O

10,6
10046

100,

\O
o

The MI subcommand defines the memory data configuration .as follows:

The RI subcommand defines the PROM data configuration as follows:

The RC subcommand defines the following PROM characteristics:

The SW command defines the bit string width for memory and PROM to be 4.

The user should insert the PROM containing the data configuration to be transferred to memory
in the PROM programming module. The PROM data may be displayed by setting the toggles to
display PROM with the TS subcommand. The display is printed when the GO subcommand is

entered.

PPRaTSs 0519050

PPy 30

ROOD0.00=00
RODO4, 00=03
RO0D0Z. D0=0F
ROOOC, O0=0F
ROO1O. OO=0F
RO014. 00=0F
ROD13.00=0F
ROOIC. 00=0F
RO0O20. 00=0F
RO024. 00=0F
RO0O23. 00=0F
RO0O2C. 00=0F

ROOOL.D0=00
ROOOS.00=05
ROOO3.00=0F
RODDD. DO=0F
RONLL. 00=0F
ROOLS. 00=0F
ROO19.00=0F
ROOLD.OD=0F
ROO21.00=0F
ROO2S5. 00=0F
ROO23.00=0F
rROOZD. DO=0F

ROO02. 00=00
ROOOS, 00=03
RODOA. O0=0F
RODOE. D0=0F
ROO12. O0=0F
ROO1G. 00=0F
ROO1/. D0=0F
ROOL1E. 00=0F
ROD22. 00=0F
rROO25. 00=0F
ROD2H. 00=0F
ROO2E. 00=0F

RODD3, 00=0E
RODO7.00=07
ROCGOB. 00=10F
ROOOF. 00=0F
ROO13.00=0F
ROO17.00=0F
ROO1B. D0=0F
RODLIF. 00=0F
ROD23, 00=0F
ROO27.00=0F
ROD2B. 00=0F
ROO2F. D0=0F

114

Digital Systems Division

[o]
@ 945255-9701

The user may transfer the PROM data into memory and verify the transfer by setting the toggles
to transfer PROM to memory and compare with the TS subcommand.

LPPaTEsDs 00201
.PPs130

When the GO subcommand is entered, the PROM data is transferred to memory and each bit
string is compared after it is loaded to verify that the correct data is transferred to memory.

When the data is in memory and is correct, it may be programmed into PROM by setting the
toggles to program PROM and compare with the TS subcommand. The new PROM to be
programmed should be inserted in the PROM programming module and the programming process
initiated with the GO subcommand.

PPaTSs 0900101
PP.i30

11-5/11-6 Digital Systems Division

[o]
4@ 9452559701

APPENDIX A
COMPATIBILITY WITH DX10
A program developed for the Prototyping System may be run under DX10 if several conventions
are followed:
1. The first three words of’ the program should be:
DATA WP Workspace /
DATA START Entry point

DATA END-ACTION Address of point to branch to on an
unrecoverable error

2. The program must be terminated with an end-of-program supervisor call.

3. An open supervisor call should be issued before a read or write to a file-oriented
device.

4. All interrupts are handled by the DX10 operating system.

5. Absolute code, created by an AORG instruction, is loaded with the same load bias as
relocatable code. Code at AORG 0 and RORG O are both loaded at the first location
of the user’s address space. :

A more extensive explanation of these points can be found in the Model 990 Computer DX10
Operating System Programmer’s Guide, Manual No. 945257-9701.

A-1/A-2 Digital Systems Division

[o]
i@ 9452559701

APPENDIX B
STAND-ALONE PROGRAMMING

To run a stand-alone program on the 990, the user must provide initialization procedures for the
computer. Generally, these are the initialization of a workspace, the status register, and possibly
the interrupt vectors.

The simplest case, shown in figure B-1, can be used for a program that will run without
interrupts. Note that a power-up (level 0) interrupt may still occur and will not be handled. The
first two instructions set the initial status and workspace pointer. The END statement causes the
assembler to pass information to the loader about the starting location (STRT) of the program.

Figure B-2 is an example which initializes some interrupt vectors and supports five levels of
interrupts. A routine, provided for the real time clock, counts .the number of seconds since
power-up. Note that if the routine is reused without reloading the program, the initialization
should include resetting the seconds and individual clock interval counters in the workspace for
the real time clock interrupt. Also note that the interrupt processor for memory errors resets the
interrupt by communicating through the CRU.

B-1 ‘ Digital Systems Division

-4

" uoysialg sweisAs (eybia

TEXAS INSTRUMENTS

INCORPORATED
MODEL 990/TMS 9900 ASSEMBLY LANGUAGE CODING FORM

10L6°SSTSY6

LABEL OPER OPERAND COMMENTS
] .18 1] 13 20 25 31 35 40 45 50 55
*
* mialc T INE] [TIN[r{v[a{alcla{z|alr]t]oN] [Flo[RT Ta] [s{t[m]PL]E
* SiTalND]-[alLlg|n]e] [P[r|glc[r[A[M] Wir|riHig[ulT] [TN[T|E[RIR|UIP|T]S
* -
* plRIgIclE D [UIR]E] [s|E[c]T[1]0]N
*
s [T[R|T Elolu] [[s gle[r{aM] [oR]1]e]z]N
M| |p Rlg[t[s[r[r] [A[L[L] [t[N{T[E[R[R|U[P|T]s

wplr| Wiklslp 7| [T[N[T{T{1]AlL] wle[r]k]s]p]Alc]E
- .
* <{ulslER] [P[r]g|a[R[A]M|>
*

IDL[E EINjD| |g|F| [P|R|o|a|R|A[M
%
* plafrial Islelclr{rig|n
%
Wlk[s [P Blsls| | Bl2 RIE[sE[RIVIE] IM[EMIgRIY] [Fla[r] [w]g|r[k]s|P]alc
%
* <lulslER]| Ip|alT{Al>

END| | [S|TR|T slefr] [pIrlglc|R[a[M| [ENITIRIY] [Plo|T|N|T
PROGRAM PROGRAMMED BY CHARGE PAGE OF
(R)133104

Figure B-1. Assembly Language Programming Example No.1

€4

' uoysing sweysAs [eybia

TEXAS INSTRUMENTS

INCORPORATED
MODEL 990/TMS 9900 ASSEMBLY LANGUAGE CODING FORM

10L6°SSTSY6

LABEL OPER OPERAND COMMENTS
‘1 6 8 11} 13 20 25 131 35 40 45 50 55
*
* AlICHI[IINIE N I|AlL A oIN oIR| (A L s|T|AIN|D|-|A|L|@|N[E
* PIR|D|G|R W|1|T|H| 6| |LIE[VIE|L]S] |® IIN|T|E|R|R|U
*
£3
* DIEFIIINIT|T{I|PIN(S
%
R |0 ElqQfu 0 RIEIG[T[S|TI|E|R| [N|A[M|E|S
R ElqQu 1 !
RJ2 ElQu 2
R |2 ElQu 12
cRMEMR] [EjQlu >1|F|clo RIU| [M[E[m R BIAlS AlD|p[R[E(S|S
MEMIEIRIR| [ElQU 1 (2 B 1 I E (M@ E[R[R|® T
PROGRAM k PROGRAMMED BY CHARGE PAGE OF

(A)133105 (1/5)

Figure B-2. Assembly Language Programming Example No. 2 (Sheet 1 of 5)

" uoysjnig swejsAg [eybiqg

TEXAS INSTRUMENTS

INCORPORATED
MODEL 990/TMS 9900 ASSEMBLY LANGUAGE CODING FORM

LABEL OPER OPERAND COMMENTS
| 6 8] 13 20 25 3| 35 40 45 50 55
AlpIR|G| o AlB|s|@iL{u|T|E| [L|@|c| |0
* LIE|V|E[L| o] | TN TIE[R[R{UIP|T| [-| |P|@|W|E[R] |u[P
D|A[T|A| [L|v|L|o|w|P
D|A|T|A| |L|v|L|o|P|C
* LIE|VIE[L] [1] [T N[T|E[RIR]UP|T| |-
D|A|T|A| |L|v|L|1|w|P
D|A|T|A| |L{v|L[1]P|C
* LIe[v|E[L| [2] [N TIE[R[R{UIP|T| [-| [M|E|M|@|R[Y| |E|R|R[§|R
A[T|A| [M[E[M[E|W|P
D|A|T|A| [M|E|ME
* LIE[V{E[L] |3] | 1| N TIE[R[R[U[P|T| |-
A[TIA| [L|v|L|3]W[P
D|A|T|A| |L|v|L|3|P|C
* LIE[VIE[L] |4 |1 N TIE[RRIUP|T] |-
A[T|A| jL|v|L|4|w]P
D|A{T[A| [L|v[L|4|P|C
* LIE[v{E[L| |5 [T N TIE[RR{U[P|T| [-| [RIE[AL| [T/ I|ME| [c|L|®|c|K
D|A{T[A] |R|T|C|uW|P
DA|T|A| |R|T]|C
*
*
*
RIO[R[G| |0 S|E[T| [RIE[L{@|C|A|T|A[B|L|E| |@|R|I|G|I|N
*
* | PIR|®IC|E[D|UIR|E| |S|E[C|T| I|@[N
* |]
PROGRAM PROGRAMMED BY CHARGE PAGE OF

(A)133105 (2/5)

Figure B-2. Assembly Language Programming Example No. 2 (Sheet 2 of 5)

10L6-SSTSY6

' uoysIAIg sweisAs [eybia

TEXAS INSTRUMENTS

INCORPORATED
MODEL 990/TMS 9900 ASSEMBLY LANGUAGE CODING FORM

LABEL OPER OPERAND COMMENTS
1 6| |8 ul s 20 25 31 35 40 45 50 55
S TIR[T EIQU $
LITMII} |0 PIRI®|H|T|B|T|T| [I|N|T|E|RIRJU|P|T|S
LIWIPIT| W P SIE|T| |T[N|T|T|T]|A[L] [W|@|R|K|S|P|A|C|E
R{S [E (T CIL|EJA|{R] |AJL|L| |D|E|V|I|C|E|S| |A[N|D
* A[N|Y] |PIEIN|D|I|N|G] [I|N|T|E|R|RJU{P[T|S
C{K|@ N T{UIRIN|{ [@®(N]| [RIE|[A|L| |T[I[M]|E| |C|L{®|C|K
LIIMIT| |5 EIN|AIB|L|E| |I|N|T|E|R|R|U|P|T]S
<|U|S |E O|G|R|A|M|>
L|IM|I] |o EIN|D| [®|F] |P|R|®|G|R|AIM
RS [E [T
ITDIL |E
*
* INTIERR[UPIT| [S|E[R[V|T|C|E|" [R|®[U[T|I|N|E|S
*
LIVIL|O|P({C] [E(Q(U $
LIVILITIP|C] |EIQU $
LivIL|3{plc| [ElQju] | [$
Livitjalplc]| [EjQju] | [$
J[M|P $ UlS|E[R] [PIR[®|V|1|D[E[D} [S|E[R|VII|C|E| [R|@IU|T|I|N|E
*
* MIEM[®[R|Y RIR|O[R| [S|E[R[V{I|C|E| [RI®[U[T[T[N|E
*
MIEIMIE E|IQ (U $.
I R ,{C|R{M|E|M|R c|R|u| |B|A[S|E| |F|@|R] |M|E|M]| |E|R|R
PROGRAM PROGRAMMED BY CHARGE PAGE OF

(A)133105 (3/5)

Figure B-2. Assembly Language Programming Example No. 2 (Sheet 3 of 5)

10L6-SSTSY6

" uoysiaIg swesAs (eybia

TEXAS INSTRUMENTS

INCORPORATED
MODEL 990/TMS 9900 ASSEMBLY LANGUAGE CODING FORM

. LABEL OPER OPERAND : COMMENTS
I 6 8 I 13 20 25 31 35 40 45 50 55
s[B M E[M [R[R R [Me Mo rlY [e[rRR @R
J[M $ sle[r|'|s| Is|e[r|v{1|cle] [r]®|u[T]1]|NE
" :
* RIE[A[L]-TT]xImME] [c[c]oclkl [s|e|r|v]1]c|e]| |r|a|u|T|1|n]E
* 5
* k[e[e|p| [clolu[nT| [o|F] [nulmiB|E[rR] |#]F] [s|e|c|d|nip|s| |s|t|njc|e| [p|p|w|E|R] |u]P
RIT|C E|Q{U $
olefc| | [R[1 clolu[n(T| |o|{@|w|N| [T|1]C T1{L{L| |s|Elc|gin|D
alelt] | [Rlrlc|x[1]T 1[r| [n]o{x] [al [FlulL]e] [s[elc|gln
I|N|C R|O c|@|u|N|T| |S|E[C|®|N|D
L[t R[1],[1]2]o rRIE[S[E[T] [T]1[c[k[]s] Teo[R] [n[E[x|T| |s|E|c|d|n|D
RIT[C|x[T|T] [E[ou] [[$
clklo|F c|L|ela L{olc[k] [1[n][T[E[R[R[U]P|T
clkle|n -e[n[alB[L]E] [c|L|o]c]k
RIT|w|P eln[o| [o[F] [1|n]T]e[R[Rr[ulP]T
*
* o[alt]a] [s{e[c][T|1]o]n
*
wlk|s|p ls[s| | [3]2 p{R|o|a[R[A[M] [w[g[r[K[s|P|afc|E
Liviclolwlp] {efalul | s
civicrwle] [efofuf | [s
miemlelw]P] Iefalu] | s
Lvic]slwlp] [elalu] | [s
LiviLlalwlp| [elalu] | [$
Bls|s| | |32 wlo|r[k|s|p|alclel [Flo{r] |1[n|T|E[R{R|U|P|T]S
PROGRAM PROGRAMMED BY CHARGE PAGE OF

(A)133105 (4/5)

Figure B-2. Assembly Language Programming Example No. 2 (Sheet 4 of 5)

10L6-SSTSY6

8-d/L-4

' uoys|Alg swejsAs |eybig

TeEXAS INSTRUMENTS

INCORPORATED
MODEL 990/TMS 9900 ASSEMBLY LANGUAGE CODING FORM

LABEL CPER OPERAND) COMMENTS

| 6 8 1] 13 20 25 31 35 40 45 50 55

"

* WORIKIISIP E| [FI@[R| [RIE[A[L|{-{T|IM[E| [CIL{®|C|K| |I|N{T{E[R{R{U|P|T

%

RITIC|W|P DATIAl O #| ISIEIC|@INID|S (WiP| IR =| [R|0])
DATIAI N # T|C|K[S| |T|@] [N[EX|T E(C{$|N|D

% ((wiP| [R = [R]1])
B IS IS 2

*

* <IU|SER TIA]>

e
END S T

PROGRAM PROGRAMMED BY CHARGE PAGE OF

(A)133105 (5/5)

Figure B-2. Assembly Language Programming Example No. 2 (Sheet 5 of 5)

10L6°SSTSY6

[o]
{@) 945255-9701

APPENDIX C

C.1 ASSEMBLY LANGUAGE CHARACTERS
The Model 990 Assembly Language uses the ASCII characters listed in table C-1. The table
includes the ASCII code for each character, represented as a hexadecimal value and as a decimal
value. The table also shows the corresponding Hollerith code. In addition to the characters listed
in table C-1, Model 990 Assembly Language defines six characters that are undefined in ASCII.
Table C-2 lists these characters, hexadecimal and decimal representations, corresponding Hollerith

codes, and the corresponding character on the Model 29 keypunch.

CHARACTER SET

Table C-1. Character Set

Hexadecimal Decimal Hollerith
Value Value Character Code
20 32 Space Blank
21 33 v 1182
22 34 “ 8-7
23 35 # 83
24 36 $ 1183
25 37 % 0-84
26 38 & 12
27 39 8-5
28 40 (12-8-5.
29 41) 11-8-5
2A 42 * 11-84
2B 43 + 12-8-6
2C 44 , 0-8-3
2D 45 . 11
2E 46 . 12-8-3
2F 47 / 0-1
30 48 0 0
31 49 1 1
32 50 2 2
33 51 3 3
34 52 4 4
35 53 5 5
36 54 6 6
37 55 7 7
38 56 8 8
39 57 9 9
3A 58 : 82
3B 59 : 11-8-6
3C 60 < 12-84
3D 61 = 86

C-1

Digital Systems Division

9452559701

Table C-1. Character Set (Continued)

Hexadecimal Decimal Holerith
Value Value Character Code
3E 62 > 0-8-6
3F 63 ? 0-8-7
40 64 @ 84
41 65 A 12-1
42 i 66 B 12:2 -
43 © 67 C 123
44 68 D 124°
45 69 E 12-5
46 70 F 12-6
47 S G 12-7
48 72 H 12-8
49 _ 73 | 129
4A 74 J 11-1
4B 75 K 11-2
- 4C : 76 L 11-3
4D 77 M 114
4E 78 N 11-5
4F 79 0 11-6
50 80 P i1-7
51 81 Q 11-8
52 82 R 119
53 83 S 0-2
54 ' 84 T 0-3
55 85 U 0-4
56 86 \' 0-5
57 87 w 0-6
58 88 X 0-7
59 89 Y 0-8
SA 90 y 09
Table C-2. Additional Characters
Hexadecimal Decimal : Hollerith
Value Value Character Code - Keypunch Character
SB 91 [1228 ¢
5C 92 \ 0-8-2 0-8-2
5D 93] 12-7-8 | (vertical bar)
SE 94 A 11-7-8 71 (logical NOT)
5F 95 - 0-5-8 — (underscore)
00 00 Null
09 09 Tab

C-2 Digital Systems Division

o
(“—@@ 945255-9701

C.2 DATA TERMINAL CHARACTERS

The remainder of this appendix presents a detailed summary of the characters recognized by the
733 ASR Data Terminal in accordance with 990 file and record specifications. These include the
data and control characters recognized by the terminal keyboard, printer, cassette receiving input
data, and cassette sending output data. In each case, the ways in which the control characters
function are described.

The character sets for each I/O function are diagrammed in figure C-1 to show the character
corresponding to each ASCII code value and its function.

The ASCII control characters are shown in table C-3.
C.2.1 733 ASR TERMINAL KEYBOARD INPUT. Refer to figure C-1.
Peripheral device: 733 ASR terminal keyboard.
Physical organization: Character, record, file.
Record and file ending characters:
End of record: CR
End of file: DC3.

Character set: As shown. Except as indicated, all characters are automatically echoed as
themselves.

Control character functions:

1. BS echoes as LF,BS and deletes the last character entered in the user’s buffer (CTRL
H).

2. DEL echoes as LF,CR and deletes the current input record.
3. HT causes a single space to be echoed. HT is placed in the user’s buffer.

4. DC3 received as the first character of a record indicates end of file and terminates the
input record. DC3 is not placed in the user’s buffer.

5. CR echoes as CR and is not placed in the user’s buffer. CR terminates the input
record.

6. LF echoes as LF and is not placed in the user’s buffer.

7. Characters in the range 20, to 7E,, are echoed and pléced in the user’s buffer.
8. The most significant bit in each character is set to zero in the user’s buffer.

9. ESC aborts current output and returns a write error to the user’s program.

10. All other characters are ignored.

- C3 Digital Systems Division

9452559701

ASCIH CHARACTER SET

. BITS b,b,b, (COLUMN NO.)
BITS b,bsbgb,
(ROW NO.) 000 001 g10 oii 100 101 110 111
(0) (1) (2) (3) (4) (5) (6) (7)
77 777
0000 (0) ZNUL///IDLE A sP o @ P s P
4 /I/II / /J// ;
0001 (1) 4/59H A/ PS/ 1 A Q q
oo WA 7 | = | 5 |~ | v |
//,/,/ Vel
0011 (3) ETX DC3 S 3 [s c s
/////_/// 77
0100 (4) /EOT / ‘DC4 / $ 4 D T d t
0101 (5 VEna Y Gak”, % 5 E u
0110 (6) /ACK //iv}q/ & 6 F v f v
o111 (7) BEL L ETB ’ 7 G w g w
1000 (8 BS CAN/, 8 X X
(8 /;////é h
y
1001 (9) HT ;/E’n/n,// 9 1 Y i ‘
1 sus : i z
1010 (10) i L:' SN2 *7 J z
1011 (11) 4&7’ 7} Esc + : K [ko
£,] |
1100 (12) FF ;/.:'s/]// , < L \ '
= ~ N "
1101:(13) ’C’R Iciil g M] }
1110 (14) //5/07//55/1 . > N A n ~
Y 777 7 /7 , . 1 -
1111 (15) .//s///gs A / ? o _ o DEL :

CHARACTERS IN BOXES ENCLOSED IN HEAVY LINES HAVE THE FUNCTIONS INDICATED'
BELOW. CHARACTERS IN SHADED BOXES ARE IGNORED,

CONTROL CHARACTER FUNCTIONS

CONTROL KEYBOARD PRINTER CASSETTE CASSETTE
CHARACTER INPUT OUTPUT INPUT OUTPUT
BEL - X X X
BS X X b X
HT X X X X
LF X b X b
FF - x X x
CR - X - X
pc3 - - X X
ETB - - X X
ESC X - - -
DEL ' X T 1 i

X — CHARACTERS WITH SPECIAL FUNCTIONS,
1 — INPUT OR OQUTPUT AS IS.
OTHER CHARACTERS ARE IGNORED.

(A)133111

Figure C-1. 733 ASR Terminal Character Set

C4 . Digital Systems Division

[o]
{@? 945255-9701

Table C-3. ASCII Control Characters

Control Character

ACK
BEL
BS
CAN
CR
DC1 = X-ON
DC2 = TAPE
DC3 = X-OFF
DC4 = TAPE
DEL* = RUB OUT
DLE
EM
ENQ = WRU
EOT
ESC
ETB
ETX
FF
FS .
GS -
HT
LF
NAK.
NUL
RS
SI
SO
SOH
STX
SUB
* SYN
US
VT

Description

Acknowledge
Bell
Backspace
Cancel
Carriage return
Device control 1
Device control 2
Device control 3
Device control 4 (stop)
Delete
Data link escape
End of medium
Inquiry
End of transmission
Escape
End of transmission block
End of text ’
Form feed
File separator
Group separator
Horizontal tabulation
Line feed
Negative acknowledge
Null
Record separator
Shift in
Shift out

tart of heading
Start of text
Substitute
Synchronous idle
Unit separator
Vertical tabulation

*Not strictly a control character

C.2.2 733 ASR TERMINAL PRINTER. Refer to figure C-1.

Peripheral device: 733 ASR terminal printer.

Physical organization: Record, file.

Record and file ending characters:

End of record: Depletion of character count.

End of file: Not applicable.

CS5

Digital Systems Division

o
@ 945255-9701

Character set: As shown.
Control character functions:
1. HT prints as a space.
' 2. FF prints as eight LFs.
CR prints as CR.

& W

LF prints as LF.
5. Characters in the range 20,, to 7E, are printed as is.
6. BEL is”output as BEL. ‘
7. BS is output as BS.
8. Al other éharacters are ignored;
C.2.3 733 ASR TERMINAL CASSETTE INPUT. Refer to figure C-1.
Peripheral device: 733 ASR terminal cassette input (ASCII; direct).
Physical organization: Record, file.
Record and file ending characters:
vErnd of record: CR.
End of file: DC3.
Character set: As shown.
Control character functions:

1. HT and FF as well as characters in the range 20,4 to 7E,¢ are stored in the user’s
buffer.

2. ETBis translated to CR and stored in the user’s buffer.

3. CRindicates end of record. 'CR is not placed in the user’s buffér.

4. DC3 received as the first valid character of a record indicates end of file. When DC3 is
read, the block is restarted by performing a block forward. End of file status is
returned after completion of the block. DC3 is not placed in the user’s buffer.

5. BEL and BS are input unchanged.

6. The sequences LF, DEL or DEL at the beginning of a record are ignored if present.

The first character following such a sequence is considered the first valid character in
the record. :

c-6 Digital Systems Division

o
{@\@p 945255-9701

7. In direct mode, the contents of a physical block on tape are transferred to the user’s
buffer without conversion. Parity bits are reset.

C.2.4 733 ASR TERMINAL CASSETTE OUTPUT. Refer to figure C-1.
Peripheral device: 733 ASR terminal cassette output (ASCII, direct).
Physical organization: Record, file.
Record and file ending characters:
End of record: Depletion of character count (83 characters maximum).
End of file: DC3.
Character set: As shown;
Control character functions:
1. HT, FF and characters in the range 20,4, to 7E, are output as is.
2. CR in the user’s buffer is translated‘to ETB and output.

3. End of block character sequence is CR, LF, DC4, DEL. These characters are auto-
matically output to control the cassette and are not user data characters.

4. BEL and BS are output unchanged.
5. End of file character sequence is DC3, CR, DC4, DEL.

6. DC3 is allowed within a record for compatibility with stand-alone software. It may not
be written, however, as the first data character in the record.

C-7/C-8 Digital Systems Division

o]
{@ 945255-9701

D.1 GENERAL

APPENDIX D

COMMAND AND DIRECTIVE SUMMARY

This appendix contains summaries of the commands, directives and pseudo-instructions available
_ to the system user. They include the following:

® Monitor keyboard commands

® Text editor commands

e Assembler directives

® Assembler pseudo-instructions

The assembly language machine instructions are summarized in the Model 990 Computer
TMS9900 Microprocessor Assembly Language Programmer’s Guide, Manual No. 943441-9701.

D.2 MONITOR KEYBOARD COMMANDS ,
Table D-1 lists the monitor keyboard commands with a brief description of the purpose of each
command, the syntax, and a paragraph reference to a detailed discussion of the command. The
syntax is presented in abbreviated form. The separator between parameters — a blank or comma
— is not shown, and the user must remember that distinct separators must be included to
indicate the position of omitted parameters.

'The parameters used in table D-1 are explained in the following list:

5ias

bit quant

char string
CRU addr
CRU en;l addr
CRU start addr

~ device

end addr

ending index no.

‘ ending reg

Base memory address for relocatable code
Number'of bits to be changed

Character string describing trace options
CRU word address

Ending CRU address

Starting CRU address

Name of I/O device — LOG, DUM, CS1
or CS2

Ending memory address

Index number of ending element (breakpoint,
snapshot, or trace region)

Register number of ending workspace register

D-1

Digital Systems Division

: o
%@ 945255-9701

entry point
format index

index no.
instr count

luno

mask value
mem addr

P

 program name
ref cnt

search value |

“snapshot no.

start addr

starting index no.

starting reg

step control

value

var

Entry point of program
Trace format index number

Index number of breakpoint, snapshot, or
trace region

Maximum number of instructions to be
executed . '

Logical unit number of I/O device

Hexadecimal number value to be ANDed
with another ‘value

Memory address

Indicator specifying that end-of-module
tag character and end-of-file marker will

- not be written on tape

Name of program — alphanumeric character
string o : :

Reference count — pass number on which a
breakpoint is taken

Hexadecimal word or byte for which a
search is made :

Number of a previously defined snapshot
Starting memory address

Index number of starting element (break-
point, snapshot, or trace region)

Register number of starting workspace
register

Indicator that specifies single instruc-
tion execution or continuous execution

Hexadecimal number value

Variable address to be traced

For all optional parameters, default values are provided.

D-2 Digital Systems Division

€da

" uoisiag sweysAs [eybig

Mnemonic
Name

AL

CB
CP

CR
cs
DP
EX
FB
FW

HA

IC

M
IR

IS

Iw

Table D-1. Monitor Keyboard Commands

Description and Function

Assign LUNO. Assigns the LUNO to the specified device for subse-
quent I/0.

Clear Breakpoint. Specifies a series of breakpoints to be disabled.

Clear Write Protect Region. Clears the protect register and removes
protection from the write-protected region.

Clear Trace Region. Disables the specified regions. Execution of code
within the region is with the hardware SIE instead of the software
interpreter.

Clear Snapshot. Disables the display of the specified snapshots.

Dump in Absolute Format. Dumps specified memory to LUNO. 7 in
absolute format.

Execute User Program Directly. Transfers control directly to the user’s

program with PC, WP and ST registers as displayed by the IR command.

Find Byte. Scans memory under mask to find occurrences of the spec-
ified value.

Find Word. Scans memory under mask to find occurrences of the spec-
ified value.

Hexadecimal Arithmetic. Displays sum and difference of two hexa-
decimal numbers. The display is in both hexadecimal and decimal, as

a 2’s complement number. Arithmetic is modulo 2'¢.

Inspect CRU Input Lines. Displays the specified range of the CRU
input lines on the printer.

Inspect Memory. Dumps the specified memory range to the printer.

Inspect Registers. Displays the current contents of the user’s PC, WP
and ST registers on the printer.
Inspect Snapshot. Dumps the registers and memory range associated

with the specified snapshot to the data terminal. If the snapshot has not
been defined, no action is taken.

Inspect Workspace Registers. Displays the specified workspace registers
on the printer. The workspace is that given in the WP register by the IR
command.

AL

CB
CP

CR

CS

DP

EX

FB

FW

IC

M
IR

IS

Iw

Syntax
<luno> <device>

[<starting index no.>] [<ending index no.>]
[<starting index no>] [<ending index no.>]

[<starting index no>] [<ending index no>]

<start addr> <end addr> [<entry point>]
[<program name>] [P]

[<start addr>] [<end addr>]
<search value> [<mask value>]

[<start addr>] [<end addr>]
<search value> [<mask value>]

[<value>] [<value>]

[<CRU start addr>] [<CRU end addr>]

[<start addr>] [<end addr>]

[<starting index no>] [<ending-index no.>]

[<starting reg>] [<ending reg>]

Paragraph

342

3424
34.32

34.27

34.22
34.7

- 34.10

3428

34.29

3430

34.19

34.13
34.15

34.21

34.17

10L6-SSTSY6

-a

uosing sweisAs jeybig

Mnemonic
Name

LA

LL

LP

LU

MC

MM

MR

MW

ov

PL

RU

SB

Table D-1. Monitor Keyboard Commands (Continued)

Description and Function

Load Program in Compressed Absolute Format. Loads the memory data
sequence dumped in compressed absolute format. Requires the Absolute
Dump/Absolute Load overlay.

Link and Load Program. Links user progrém modules and loads them
into memory. Requires Link and Load overlay.

Load Program. Loads program from specified device into memory and
performs any necessary relocation.

Load Program in Compressed Absolute Format with Upfront Loader.
Loads the absolute memory image with the upfront loader.

Modify CRU Register. Displays the contents of the specified CRU input
lines and accepts data to change the corresponding output lines. All data
is right-justified in a 16-bit field.

Modify Memory. Displays the contents of the specified memory location
and accepts an input to change it.

Modify Registers. Displays the contents of the user’s PC, WP and ST reg-
isters and accepts an input value to change each register.

Modify Workspace Registers. Displays the specified register of the work-
space displayed in the IR command and accepts an input value to be used
to change it.

Load Overlay. (1) Disables commands currently in transient area.
(2) Loads overlay into transient area. (3) Enables new commands of
overlay in the transient area.

Load PROM Programmer. Loads PROM Programmer software module into
memory.

Execute User Program under SIE or Trace. Requires the Instruction
Trace overlay for trace.

Set Breakpoint. Sets a software breakpoint at the specified location for
use with the RU command. Breakpoints occur before instruction
execution.

Syntax

LA [<luno>]

LL
LP [<luno>] [<bias>]
LU [<luno>] [<bias>]

MC [<CRU addr>] [<bit quant>]

MM [<mem addr>]
MR

MW [<starting reg>]

OV [<luno>]

PL <luno> <bias>

RU [<instr count>]

SB <index no> <mem addr>
[<ref cnt>] [<snapshot no.>]

Paragraph

34.9

34.6
343
34.38

34.18

34.12

34.14

34.16

344

345

34.11

34.23

10L6-SSTSY6

uoysIng swejsAs |enbig

Mnemonic
Name

SP

SR

SS

ST

Table D-1. Monitor Keyboard Commands (Continued)

Description and Function

Set Write Protect Region. Sets the write protected region to the specified '
address bounds. "

Set Trace Region, Defines a memory region to be executed with the soft-
ware interpreter under the RU command. Requires the Instruction Trace
overlay.

Set Snapshot. Defines a display of registers and memory which may be
displayed in response to a breakpoint or an IS command.

Set Trace Definition. Specifies items to be displayed by the trace inter-
preter. Requires the Instruction Trace overlay.

SP

ST

Syntax

<start addr> <end addr>

<index no> <start addr> <end addr>
<format index> [<step control>]
[<var>] [<var>] [<var>]

<index no.> [<starting reg>]
[<ending reg>] [<start addr>]
[<end addr>]

<format index> <char string>

Paragraph

3431

3.4.26

34.20

34.25

10L6°SSTSY6

o]
QI_@@ 945255-9701

The following symbols and conventions are used in defining the syntax of the monitor keyboard
commands: '

® Angle brackets (< >) enclose items supplied by the user.

® Brackets ([1) enclose optional items.
D.3 TEXT EDITOR COMMANDS
The text editor commands are summarized in table D-2. The syntax of each command and a
paragraph reference to a detailed discussion of the command are shown.
The following symbols and conventions are used in defining the syntax of text.editor commands:

® Angle brackets (< >) enclose items supplied by the user.

® Brackets ([]) enclose optional items.

® Braces ({ }) enclose two or more items of which one must be chosen.

® Items in capital letters and punctuation marks must be entered as shown.
The syntax definitions and examples do not show spaces between the characters of the
two-character commands, between the command and operands, or between operands. Spaces may
be entered at these points if desired.
D.4 ASSEMBLER DIRECTIVES
The assembler directives for the Model 990 Assembly Language are listed in table D-3. All
directives may include a comment field following the operand field. Those directives that do not
require an operand field may have a comment field following the operator field. Those directives
that have optional operand fields (RORG and END) may have comment fields only when they
have operand fields. .
The following symbols and conventions are used in defining the syntax of assembler directives:

® Angle brackets (< >) enclose items supplied by the user.

® Brackets ([]) enclose optional items.

® An ellipsis (.. .) indicates that the preceding item may be repeated.

® Braces ({ }) enclose two or more items of which one must be chosen.
The following words are used in defining the items used in assembler directives:

® symbol - a symbol

@ label - a symbol used in the label field

® string - a character string of a length defined for each directive

® expr - an expression

® wd expr - well-defined expression

D-6 Digital Systems Division

uojsiA|g swejsAs |eybig

Name

SL
SN
SP

v}

O w -1

—

o Rw

Table D-2. Text Editor Commands

Use

To restore printing of line numbers

To omit line numbers from command printouts
To set right margin for command printouts

To set left and right limits for scan of F command

To move pointer down, and read additional lines
when required

To move pointer up
To move pointer to top of buffer
To move pointer to bottom of buffer

To delete lines and enter lines at that point in buffer

To insert lines in buffer

To move a block of lines to a specified point in
buffer

To remove a block of lines from the buffer

To scan a block of lines from the buffer to locate
lines having a specified character string

To identify the first and last lines in the buffer
To print specified lines from the buffer

To write lines from the buffer on the output device
To write, or complete, the output file

To terminate execution without completing the out-
put file.

SL
SN

SP <s>

SM <s>, <t>
D [<n>]

U [<n>]
T
B
<s><t>
Ci[+] [<n>]
<n>
I [<k>]
<>L>, [<r>]
M[]

[+] <n><>
<n> <>
{<s>—<t>
R{ [+] [<n>]}
| -<d>
{<s>-<t>] L
F{ [+]<n> [F
[-<n>

)
L

<><Lt>
P[[+] [<n>1]
<n>

K [<n>]

Q [<>]

E

Syntax

] <d1><string1 ><d1>

d2>{<string2>1<d2>{V] [P]

. Paragraph

4.5.2.1
4.5.2.2
4523
4524
4.5.3.1

453.2
4533
4534
454.1

4542
4543

4544

4545

4.5.5.1
4552

4.5.6.1
45.6.2
4563

10L6°SSTSY6

945255-9701

Table D-3. Assembler Directives

Force Word
Directive ‘Syntax Boundary Note
Page Title [<label>] TITL <string> NA
Program Identifier [<label>] IDT <string> NA
External Definition [<label>] DEF <symbol>[,<symbol>]. .. NA
External Reference [<label>] REF <symbol>[,<symbol>]. .. NA
Absolute Origin [Qabel>] AORG <wd expr> No
Relocatable Origin [<label>] RORG [<expr>] No 1,3
Dummy Origin [<label>] DORG <wd expr> No
Block Starting [<label>] BSS <wd expr> No
with Symbol
Block Ending [<label>] BES <wd expr> No
with Symbol
Initialize Word - [<label>] DATA <expr>[<expr>]. .. Yes
Initialize Text [<abel>] TEXT [-] <string> No 2
Define Extended [<label>] DXOP <symbol><term> NA
Operation
Define Assembly- <label> EQU <expr> NA 3
Time Constant ‘
Word Boundary [<label>] EVEN Yes
No Source List [<label>] UNL NA
List Source [<label>] LIST NA
Page Eject [<label>] PAGE NA
Initialize Byte [<label>] BYTE <wd expr> [,<wd expr>]... No
Program End [<labe>] END [<symbol>] NA 4

NOTES

The expression must be relocatable.

to

The minus sign causes the assembler to negate the rightmost character.
Symbols in expressions must have been previously defined.

Symbol must have been previously defined.

[T - V]

Keywoids are XREF, OBJ, SYMT, NOLIST, and TEXT.
e, term - a term

® operation - mnemonic operation code, macro name, or previously defined operation or
extended operation

D.5 ASSEMBLER PSEUDO-INSTRUCTIONS

Model 990 Assembly Language pseudo-instructions are listed in table D-4. The pseudo-
instructions, which have no operand fields, have optional comment fields. The symbols and
conventions are the same as in the assembler directive syntax.

D-8 Digital Systems Division

o]
@ 945255-9701

Table D-4. Assembler Pseudo-Instructions

: Hexadecimal
Pseudo-I 0
seudo-Instruction Syntax tion Code
No Operation [<label>] NOP 1000
Return [<label>] RT 045B

D.6 PROGRAMMER AND MEMORY DUMP COMMANDS

Table D-5 lists the PROM programmer and memory dump commands and subcommands with a
brief description of the purpose of each command or subcommand, the syntax, and a paragraph
reference to a detailed discussion of the command or subcommand. The syntax is presented in
abbreviated form. The separator between parameters — a blank or comma — is not shown, and
the user must remember that distinct separators must be included to indicate the position of
omitted parameters.

The parameters used in table D-5 are explained in the following list:

base addr CRU base address for the PROM
programming module interface card
chassis slot

bit Bit position of the starting bit of
a memory or PROM/ROM bit string

char string 1 Name of first record of PROM or
memory control information

char string 2 Name of second record of PROM or
memory control information

‘compare Value that specifies whether a bit
string comparison is to be
made
dmn Initial bit displacement that determines the
starting address in a memory data
configuration

dm Initial bit displacement that determines the
starting address in a PROM/ROM
data configuration

“duty cycle Percentage of the time that the
programming pulse is on when programming
a PROM

end addr Address of the last word in the

memory block, or the address of
the last byte to be dumped

high or low Value that specifies either high or
low logic level output conditions

D-9 Digital Systems Division

[o]
{@ 9452559701

imn

irn

level n

lower bound

mem disp

mrn

pgmable bits

prom disp

pwl

retries

start addr

subcommand

transfer

upper bound

width

Bit increment that determines bit string
addresses in a memory data
configuration

Bit increment that determines bit string
addresses in a PROM/ROM data
configuration

Memory or PROM/ROM mapping level

Address of the first byte or
word in a memory or PROM/ROM
block

Value that specifies whether memory
bit strings and addresses are
to be displayed

Number of bit strings used in the
programming cycle in a memory
data configuration

Number of bit strings used in the
programming cycle in a PROM/ROM
data configuration

Number of bits that can be
programmed simultaneously

Value that specifies whether PROM or ROM
bit strings and addresses are
to be displayed

Pulse width used for PROM programming

Number of times programming is to
be retried

Address of the first word in the

memory block, or the addrcss

of the first byte to be
dumped

Subcommand that follows a command

Value that specifies the data
transfer option

Address of the last byte or
word in a memory or PROM/ROM
block

Number of bits per word, or
number of bits per bit
string

D-10

Digital Systems Division

I-a

- uors|nig sweysAs [eybig

Mnemonic
Name

C

C

CS

DB

GO
HL

MB

MI

PP
PS

RB

RC

Table D-5. PROM Programmer and Memory Dump Commands and Subcommands

Description and Function

Compare BNPF Format on Cassette to Memory. Verifies that the
correct data has been written on tape.

Compare HIGH/LOW Format on Cassette to Memory. Verifies that
the correct data has been written on tape.

Set CRU Interface Base Address. Defines the PROM Programmer
Module CRU base address.

Dump Memory to Cassette in BNPF Format. Converts memory data
to BNPF format and writes it to tape.

Dump in HIGH/LOW Format. Converts memory data to HIGH/LOW
format and writes it to tape.

Perform BNPF Operation. Causes a BNPF dump, load or data
comparison.

Go. Initiates the programming cycle.

Perform HIGH/LOW Operation. Causes a HIGH/LOW dump or data
comparison.

Load BNPF-Formatted Data Module in Memory. Reads a BNPF-formatted
data module, converts the data to hexadecimal, and stores the data in
memory.

Define Memory Bounds. Specifies the lower and upper address bounds
of programming data in memory.

Define Memory‘Data Configuration Mapping Parameters. Defines the
control information used to determine the addresses of bit strings.

PROM Programmer. Controls the PROM programming process.

PROM Programmer Standard. Searches the Standard Control Information
Cassette for the specified records.

Define PROM/ROM Bounds. Specifies the lower and upper address
bounds of programming data in ROM or PROM.

Define PROM/ROM Characteristics. Define physical hardware
characteristics needed for data transfer.

DB

HL

PP

DB

HL

DB

PP
HL

DB

PP

PP

PP
PS

PP

PP

Syntax

C <start addr> <end addr> [<bit>]
CS <base addr>

D <start addr> <end addr>

D <start addr> <end addr> [<bit>]
<subcommand>

GO
<subcommand>

L

MB <lower bound> <upper bound>

MI <evel n> [<imn>] [<mmn>]
[<dmn>]

<subcommand>
<char string 1> [<char string 2>>]

RB <lower bound> <upper bound>

RC <width> <high or low> <pwl>
[<retries>] [<duty cycle>]
[<pgmable bits>]

Paragraph

8322
9322
7533
8321
9321
8.3.1

7.5.3.5
9.3.1

8.3.2.3

7.5.3.1

7.5.3.6

7.5.2
7.5.1

7.5.32

7.53.8

10L6°SSTSY6

cl-a

" uojsialg swelsAs reubiag

Mnemonic
Name

RI

SwW
TS

Table D-5. PROM Programmer and Memory Dump Commands and Subcommands (Continued)

Description and Function -

Define PROM/ROM Data Configuration Mapping Parameters. Defines
control information needed to determine the addresses of bit strings.

Define String Width. Define the bit string widths.

Set Toggles. Sets numeric parameters that specify actions to be taken.

Syntax

PP RI <leveln> [<im>] [<mm>]
[<dn>]

PP SW <width>

PP TS [<mem disp>] [<prom disp>]
[<transfer>] [<compare>]

Paragraph

7.5.3.7

7.5.39
7.5.34

10L6°SSTSY6

[e]
{—é@ 945255-9701

MXO01
MX02
MX03
MX04
MX06
MSO01
MS05
MP0O
DPO0O
DPO3
DP04

- DPIO
DP12
DP13
DP20
DP23
DP26
LD0O
LDO1
LLOI
LLO02
LLO3

APPENDIX E
ERROR MESSAGES

Unrecoverable I/O error
Invalid parameter in Assign LUNO command

Command not resident in the transient area

Attempt to execute in trace mode when trace not resident

Invalid memory address or instruction

Invalid comrﬁand

Required parameter missing

Parameter specification error

Invalid hexadecimal number input

Parameter value is greater than the allowed maximum
Snapshot is already defined

Invalid trace region index

CRU bit width parameter invalid

Invalid range of registers or memory addresses

Breakpoint specification error

.Syntax error in trace format character string

Invalid trace format index number
Invalid tag or I/O error

Invalid load LUNO

Invalid load sequeﬁce

Invalid load code

Missing end statement

Digital Systems Division

o
{@'; 9452559701

LL04
LLOS
LLO6
PPO1

PP02
PPO3

PP0O4
PPO5S

PP0O6

Load address error

Previous load module error

Checksum error - retry

Required parameter missing

Value out of range

Values required to match do not match
Bad address or record not found
Hardware malfunction

PROM Programming Module off-line

Digital Systems Division

(o]
{@:’} 9452559701

APPENDIX F
MEMORY AND PROM MAPPING
Bit strings are fetched from and stored into the 990 memory and PROM under control of
memory and PROM mapping parameters. These parameters are used to evaluate a mathematical

expression which determines the beginning bit address of a bit string.

The mapping parameters are:

M, ,IM, ,IM, The increment values associated with
IR, ,IR,,IR, each term of the polynomial (in
bits)

MM, ,MM, MM; The maximum multiplier for the
MR, ,MR, MR, increment for each term of the
polynomial

DM, ,DM,,DM; The initial displacement associated
DR, ,DR,,DR; with each term of the polynomial

(in bits)
BMA,BCA Beginning memory (byte) address and beginning chip (physical Word) address
RWW PROM/ROM physical word width
Note that the condition fﬂ}flMi= fII\I/IRi must be met, namely
i= i=

that the algorithm will map an identical number of bit strings in memory as it will in
PROM/ROM. :

3
Letn= IIMM;-1= [MR;-I.
=1 =1

LetK=0,1,2...,n

Then compute CM, = k modulo MM, CR, =k modulo MR,

K | K
CM, = int (g7) CR, =int (g)
cM K CR K

2= int Gy,) = int (R MR VR,

Then beginning memory bit address of string .

3 .
BMBA =8 - BMA + £ (DM, + CM; * IM;)
il

Digital Systems Division

[
{@? 945255-9701

and beginning PROM/ROM bit address of string
3
BRBA = RWW - BCA + X (DR; + CR; " IR))
i=1

This algorithm may be expressed in FORTRAN in two different ways. The first encodes the
algorithm directly.

IMPLICIT INTEGER (A-Z)
N = MM1 * MM2 * MM3

GENERATE ALL BEGINNING BIT ADDRESSES

ana

DO IO KK =1,N
K = KK-1
CMI = MOD (K,MM1)
CM2 = K/MM1 '
CM3 = K/MM1 * MM2)
BMBA = 8 * B;MA + DM1 + CMI1 * IM1 + DM2 + CM2 * IM2 + DM3 + CM3
IM3

10 CONTINUE

The second method utilizes nested DO-loops to avoid the calculations of CM1, CM2, and CM3.

IMPLICIT INTEGER (A-Z)

GENERATE ALL BEGINNING BIT ADDRESSES

okoNe

DO 30 I=1,MM3
CM3=1-1
DO 20 J=1,MM2
CM2=]-1
DO 10 L-1,MMI
CM1=L-1
BMBA = 8 * BMA + DM1 + CM1 * IM1 + DM2 + CM2 * IM2 + DM3
+ CM3 * IM3 '

10 CONTINUE
20 CONTINUE
30 CONTINUE

A similar mechanism would generate all beginning ROM bit addresses.

F-2 | Digital Systems Division

945255-9701

APPENDIX G

ADDITIONAL USER TABLES

Additional information related to PROM programming is presented in tables G-1 through G-5.

Table G-1. Pulse Widths
Number Multiplier Pulse Width (ms)
1 2 0.5
2 1.0
3 8 20
4 16 40
5 32 8.0
6 64 16.0

The number (x) is used as an exponent to get the multiplier, which is 2X. Hardware uses the

multiplier to produce the corresponding pulse

width.

Table G-2. Minimum, Standard and Maximum Pulse Widths

and Duty Cycles

Pulse Width (ms) Duty Cycle
PROM Types Minimum I Standard | Maximum Minimum Standard | Maximum

TTL 7

188A, S188, S288,

S287, S387, S470,

S471, S472, S473 1 2 20 S 25% 35%
EPROMs

2704, 2708 0.1 0.1 1 —— 50% 50%

Note: TTL PROM types have the prefix SN74.

Digital Systems Division

945255-9701

PROM
Type

MS287-0
MS2874
MS287-8
MS287-C
MS287A
MS288-0
MS288-8
MS288A
MS471-0
MS471-8
MS471A
MS4720
MS472-8
MS472A
ME2704-0
ME2704-8
ME2704A
ME2708-0
ME2708-8
ME2708A

Table G-3. Memory Configurations

Configuration in
Bit String Length Initial Consecutive Strings
Width (Words) Bit Across (A) or Down (D) Memory

256
256
256
256
64
32
32
16
256
256
128
512
512
256
512
512
256
1024
1024
512

0 00 00 00 00 00 00 0 0 00 0 00 0 0 0 A» H A A
© ® O O ® O O ® O O 0w O © 0 O O O ®© & O

Note: TTL PROM types have the prefix SN74.

Table G4. PROM Configurations

PROM PROM Word Length
Type Width (Words)
$288 8 32
S287 4 256
471 8 256
$472 8 512
E2704 8 512
E2708 8 1024

Note: TTL PROM types have the prefix SN74.

> 0O 0O > 00> ODO»UOU» OO » O oo

Digital Systems Division

¥-D/€-D

uoising swelsAs 1enbig

Table G-5. Standard Control Information Cassette Data Configurations

Mapping Parameters

PROM Characteristics

Increments Displacements Maxima
Memory | PROM Bit | (Hexadecimal) | (Hexadecimal) | (Hexadecimal) | PROM | Program | Pulse | Retries Duty Programmable
(M) or | Type String Word | 0’s or Width Cycle String
ROM (R) Width | L1|L2[L3 L1|L2|L3 L1|L2 (L3 Width I’s (Hexadecimal) Width
M MS288-0 8 10 0 O 0 0 O 20 0 O - - — - - —
M MS288-8 8 10 0 O 8 0 0 20 0 0 - — — - - -
M MS288A 8 8 0 0 0 0 O 20 0 O - - - - — —
R S288 8 . 8 0 0 0 0 O 20 0 0 8 1 2 0 19 1
M MS287-0 4 10 0 O 0 0 O 100 0 O - - - - - -
M MS287-4 4 10 0 O 4 0 O 100 0 O - - - - - -
M MS287-8 4 10 0 O 8 0 O 100 0 O -~ -~ - - - -
M MS287-C 4 10 0 O cC 0 0 100 0 O - -~ - - - -
M MS287A 4 4 0 O 0 0 O 100 0 O — - - - - -
R S287 4 4 0 O 0 0 O 100 0 O 4 0 2 0 19 1
M MS471-0 8 10 0 O 0 0 O 100 0 O - - - - - -
M MS471-8 8 10 0 O 8 0 O 100 0 O — - - - - -
M MS471A 8 8 0 O 0 0 O 100 0 O - ~ - - - -
R S471 8 8 0 0 0 0 O 100 0 O 8 i 2 0 19 1
M MS4720 8 10 0 O 0 0 O 200 0 O - - - - -
M MS472-8 8 10 0 O 8 0 O 200 0 O - - - - - —
M MS472A 8 8 0 0 0 0 O 200 0 O - — - - — -
R S472 8 8 0 O 0 0 0 200 0 O 8 1 2 0 19 1
M ME2704-0 8 10 0 O 0 0 O 200C8 0 - — - - - -
M ME2704-8 8 10 0 O 8 0 O 200C8 O - - - - - -
M ME2704A 8 8 0 O 0 0 O 200C8 O - - - - - -
R E2704 8 8 0 0 0 0 O 200C8 0O 8 0 1 0 32 8
M ME2708-0 8 10 0 O 0 0 O 400C8 O - — - - - —
M ME2708-8 8 10 0 O 8 0 O 400C8 O - - - - - -
M ME2708A 8 8 0 O 0 0 O 400C8 O - - - - - -
R E2708 8 8 0 O 0 0 O 400C8 O 8 0 1 0 32 8

Notes: The prefix SN74 is omitted from TTL PROM types. L1, L2 and L3 represent Level 1, Level 2 and Level 3.

10L6°SSTSY6

o]
%@ 945255-9701

ALPHABETICAL INDEX

Digital Systems Division

o
{@ 945255-9701

ALPHABETICAL INDEX

INTRODUCTION

The following index lists key words and concepts from the subject material of the manual
together with the area(s) in the manual that supply major coverage of the listed concept. The
numbers along the right side of the listing reference the following manual areas:

e Sections - References to Sections of the manual appear as “Section x> with the symbol
X representing any numeric quantity.

e Appendixes - References to Appendixes of the manual appear as “Appendix y” with the
symbol y representing any capital letter.

e Paragraphs - References to paragraphs of the manual appear as a series of alphanumeric
or numeric characters punctuated with decimal points. Only the first character of the
string may be a letter; all subsequent characters are numbers. The first character refers
to the section or appendix of the manual in which the paragraph is found.

e Tables - References to tables in the manual are represented by the capital letter T
followed immediately by another alphanumeric character (representing the section or
appendix of the manual containing the table). The second character is followed by a
dash (-) and a number:

Tx-yy
e Figures - References to figures in the manual are represented by the capital letter F
followed immediately by another alphanumeric character (representing the section or

appendix of the manual containing the figure). The second character is followed by a
dash (-) and a number:

Fx-yy

e Other entries in the Index - References to other entries in the index are preceded by
the word “See” followed by the referenced entry.

Index-1 Digital Systems Division

945255-9701

Absolute Dump 1432 Command:
Absolute Dump/Absolute Load 1432 N 342
Absolute Format, Compressed . . . 3 4 8,349 Assign LUNO 34.2
Absolute Format Object Code, Compressed . . 6.4 B . . . 4.53.4
Absolute Load 1.4.3.2 Bottom 4.5.3.4
Adaptor, Programming1.22.5 C . s 4.54.1
Additive Method 3.6.3.2 CB 34.24
Addressing Mode: Change 4.54.1
Indexed Memory 3.6.3.3 Clear Breakpoint 34.24
Symbolic Memory e-3633 Clear Snapshot 3.4.22
AL Command 342 Clear Trace Region 3.4.27
Assembler, One-Pass — See PX9ASM Clear Write Protect Region 3.4.32
Assembler Directive 5.5.1, D4, TD-3 CP 3.4.32
Assembler, One-Pass 1 4.4.2 CR e 34.27
- Assembler Pseudo-Instructions D.5, TD4 CS . . . s 34.22
Assembly Language: D ..o 4.5.3.1
Character Set C.1, TC-1, TC-2 DB 8.3.1
Programming, Example of FB-1, FB-2 Down 4.5.3.1
Assign LUNO Command ". 342 DP 00, 347
Dump in Absolute Format 34.7
BCommand 4534 End 4.5.6.3
Basic Tag Format 6.4.1 EXo 34.10
Binary to Decimal ASCII Supervisor Execute User Program Directly 34.10
Cal e e e 3.53.2 Execute User Program Under SIE
Binary to Hexadecimal ASCII Supervisor or Trace 34.11
Callo 3.534 F oo e 4.54.5
Bit Image 3.6.3.1 FB 34.28
Bit Strings L. L 74.1 Find 4545
BNPF Dump Commands 8.3 FindByte 34.28
BNPF Dump Module1435,8.1 Find Margin 4524
BNPF Format 82 FindWord 34.29
Bottom Command i e e e e .. 4534 FW o . oo 34.29
Breakpoint 33,3622 HA 00000 34.30
Hexadecimal Arithmetic 3.4.30
CCommand 4.54.1 B 9.3.1
C Subcommand 8.3.2.2,93.2.2 O .. 4542
Calls, Supervisor 3.5, T3-2 IC 34.19
Capabilities: Insert 4.54.2
PROM Programmer 72.1 Inspect Memory 34.13
Prototyping System 1.2 Inspect Registers34.15
Cassette Generation, System Inspect Snapshot 34.21
Software Tape 24 Inspect Workspace Registers 34.17
Cassette, Standard Control IR 34.15
Information 24,722 IS . . s 3.4.21
Cassette, copying from ‘one tape W . 34.17
toanother 44.1 K oo oo 4.5.6.1
CBCommand 34.24 Keep 0. 4.56.1
Change Command 4541 Lo 4.5.5.1
Character Set: 1 349
Assembly languageC.1, TC-1, TC-2 Limits 4.5.5.1
733 ASR Data Terminal C.2, FC-1 Line Numbers 4.5.2.1
Characters, Object Record Tag 6.2 Link and Load Program 34.6
Characters, Special, Used by PX9EDT . . . 444 LL 34.6
Chassis, Computer 1.2.21 Load Overlay 344
Clear Breakpoint Command 34.24 Load Program 343
Clear Snapshot Command . .". 34.22 Load Program in Compressed
Clear Trace Region Command 34.27 Absolute Format 349
Clear Write Protect Region Command . . .3.4.32 Load Program in Compressed
Combining Source or Object Files 44.5 Absolute Format with
Upfront Loader 348
Index-2 Digital Systems Division

945255-9701

Command (Cont.):

Commands, Entry of, on Terminal Keyboard. . 2.7

Load PROM Programmer 34.5 Compare BNPF Format on Cassette to
P 343 Memory Subcommand 8322
LU 34.8 Compare HIGH/LOW Format on Cassette to
M .. 4.54.3 Memory Subcommand . . 9.32.2
MC 3.4.18 Compatibility of 990-733 ASR System
MM 34.12,34.13 Software with DX10 : Appendix A
Modify CRU Register 34.18 Component Part Numbers T1-2
Modify Memory 34.12 Compressed Absolute Format3.4.8,349
Modify Registers 34.14 Compressed Absolute Format Loader . . .1.4.1.2
Modify Workspace Registers 3.4.16 Compressed Absolute Format Object Code 6.4
Move 4.543 Compressed Absolute Format Object Modules,
MR00, 34.14 Loading 2.5.2
MW . ..o 3.4.16 Computer:
No Line Numbers 4522 Chassis 1.2.2.1
oV 344 CPU 1.2.2.1
4.55.2 General Description1.2.2.1
Parameters 3.4.1.5 Memory 1.2.2.1
Perform BNPF Operation 83.1 Computer — Also See Hardware '
Perform HIGH/LOW Operation 9.3.1 Copying from One Tape Cassette
PL 34.5 to Another 44.1
7.52 CPCommand 34.32
Print 4.55.2 CPU, Computer 1.2.2.1
Print Margin 4523 CR Command 34.27
PROM Programmer 7.5.2 Creating New Programs 44.6
PROM Programmer Standard 7.5.1 CSCommand 34.22
PS 7.5.1 CS Subcommand 7.53.3
Q . . 4.5.6.2
Quit 4.5.6.2 DCommand 4.53.1
R . e 4.54.4 D Subcommand 8.3.2.1,9.3.2.1
Remove 4.54.4 Data Configurations:
RU0. ... 3.4.11 Nonstandard 7.2.3
SB 34.23 Standardo 7.2.3
Set Breakpoint 3.4.23 Data Terminal, 733 ASR1.223
Set Snapshot 3.4.20 Data Terminal — Also See Hardware
Set Trace Definition 3.4.25 Data Terminal Character Set,
Set Trace Region 3.4.26 733 ASR C.2, FC-1
Set Write Protect Region 34.31 DB Command 8.3.1
SL e e 4.5.2.1 DB Subcommands 8.3.2
SM oo 4524 Debug Commands 34.1.3
SN . . o 4.52.2 Debug Functions, PXOMTP 33
1 34.31,4.5.23 Debug Monitor — See PXOMTP
SR oo 3.4.26 Debugging:
SS .. 34.20 Example, System 10.1
ST e 34.25 Modes 3.3.1,33.2
Y 4.53.3 Debugging Techniques:
Top . . .« oo 4.53.3 General 36.1
Uu 00000, 4532 Specific 3.6.2
Up . . . o oo 4.53.2 Decimal ASCII to Binary Supervisor
Command String Processor G I 1 Call 3.53.3
Commands: Define Memory Bounds Subcommand 7.5.3.1
BNPFDump 8.3 Define Memory Data Configuration
Debug 34.1.3 Mapping Parameters Subcommand . . .7.5.3.6
Entryof 34.1.6 Define PROM/ROM Bounds Subcommand .7.5.3.2
HIGH/LOW Dump 9.3 Define PROM/ROM Characteristics
Keyboard, Typesof 3411 Subcommand - . .7.53.8
Notational Conventions Define PROM/ROM Data Conﬁguratlon Mappmg
for Keyboard 34.1.10 Parameters Subcommand . . . 7.5.3.7
Processingof 34.1.8 Define String Width Subcommand7.5.3.9
PROM Programmer 7.5 Directives, PX9ASM 5.5.1, D4, TD-3
PROM/ROM Process Control3.4.1.4 Down Command 4. 53.1
PX9EDT 4.5 DP Command 34.7
PXOMTP Keyboard 34, D.2, TD-1 Dump, Absolute 1432
System Control 34.1.2 Dump in Absolute Format Command . . . 34.7
Text Editor D.3, TD-2 Dump in HIGH/LOW Format Subcommand 9.3.2.1
Index-3

Digital Systems Division

945255-9701

Dump, Memory 34.7 HA Command 3.4.30
Dump Memory to Cassette in BNPF Hardware Configuration, PX9EDT 4.2
Format Subcommand83.2.1 Hardware:)
Dump Module: Installationof 2.2
BNPF 14.3.5,8.1 Operationof 2.3
HIGH/LOW 14.3.6,9.1 Prototyping System 1.2.2
DX10, Compatibility of 990-733 ASR Unpackingof 2.2
System Software with Appendix A Hexadecimal Arithmetic Command3.4.30
Hexadecimal ASCII to Binary
Editing Example, PX9EDT 4.7 Supervisor Call 3.53.5
Editing Procedures, Text 4.4 HIGH/LOW Dump Commands 9.3
Editor, Text, Commands D.3, TD-2 HIGH/LOW Dump Module1.4.3.6,9.1
End Command 4.56.3 HIGH/LOW Format 9.2
End of Program Supervisor Call .o.003.53l1 HL Command 9.3.1
End-of-File Record 3.4.6.1 HL Subcommands 93.2
End-of-Module Record 34.6.1
Entry of Commands 34.1.6 I Command 4.54.2
Entry of Commands on Terminal Keyboard . 2.7 IO 2.8
EPROMs, Programmingof 7.6.2 PX9ASM oL 54.1
Error Messages 34.1.9, Appendix E PXOMTP e e e e e s 23.2.1
PX9ASM oo 5.6 Supervisor Calls 3.5.2
PX9EDT 4.6.1 ICCommand 3.4.19
PX9LAL 34.6.3 Indexed Memory Addressing Mode3.6.3.3
EX Command 3.4.10 Initialization Procedure, PX9EDT 43.2,4.3.3
Examples: Input/Output — See I/O
Assembly Language Programming FB-l, Insert Command 4.54.2
FB-2 Inspect CRU Input Lines Command3.4.19
Load Map Printouts 34.64 Inspect Memory Command 3.4.13
PROM Programming 7.7, 11.1 Inspect Registers Command 34.15
System Debugging 10.1 Inspect Snapshot Command 34.21
System Operation 10.1 Inspect Workspace Registers Command . . .3.4.17
Execute User Program Directly Command .3.4.10 Installation of Hardware L. 022
Execute User Program Under SIE or Instruction Execution, Single 2.10.2,3.3.1
Trace Command 3.4.11 Instruction:
Execution of Program 34.10,3.4.11 Jump oL 3.634
Execution of User Program 293 Trace 1.4.3.3, 3.3.1
Extended Tag Format 64.2 Instruction Traces, Loops in . ..3.623
Interrupt, Power-Up 1.22.2
FCommand 4.54.5 Interrupt Routine 3.6.24
FB Command 3.4.28 Interrupt Vectors 1.2.2.2
Files, Combining Source or Object 44.5 Interrupts L L. 2.10.1
Find Byte Command 3.4.28 IRCommand 3.4.15
Find Command e e e e e 4.54.5 IS Command 3.4.21
Find Margin Command 4524 IWCommand 34.17
Find Word Command 34.29 ,
Firmware: Jump Instruction 3634
Programmer Panel 14.5
733 ASR ROM Loader 145 K Command I S
Flag, Protect Violation 2.11.2 Keep Command 4.5.6.1
Format: Keyboard Commands:
Basic Tag 6.4.1 Notational Conventions for 34.1.10
BNPF 000 8.2 PXOMTP 34, D.2, TD-1
Compressed Absolute 348,349 Typesof3 4.1.1
Extended Tag 6.4.2 Keyboard Entry of Commands on Terminal . 2.7
HIGH/LOW 9.2
Object Code, Compressed Absolute 6.4 L Command e 4.5.5.1
Formats, Object Code 6.1 L Subcommand 8.3.23
Functions of PROM Programmer . . .7.2.1,7.24 LA Command 349
FW Command 34.29 Limits Command 4.5.5.1
' Line Numbers Command- 4521
General Debugging Techniques 3.6.1 Link and Load Program Command . 34.6
GO-Subcommand 7.5.3.5 Linking 34.6.1
Index-4 Digital Systems Division

945255-9701

Linking Loader, Relocating — See PX9LAL Modes Debugging 3.3.1,33.2
Linking of Programs 34.6 Modify CRU Register Command 34.18
LL Command 34.6 Modify Memory Command 34.12
Load, Absolute 1432 Modify Registers Command 34.14
Load BNPF-Formatted Data Module Modify Workspace Registers Command . . .3.4.16
into Memory Subcommand8.3.2.3 Modules, Software 14
Load Map Printouts, Examples of . 3464 Monitor, Debug — See PXOMTP
Load Overlay Command 344 Monitor Keyboard Commands D.2, TD-1
Load Program Command 343 Monitor, Operation of 2.6
Load Program in Compressed Absolute Move Command 4.54.3
Format Command 349 MR Command 34.14
Load Program in Compressed Absolute MW Command 34.16
Format with Upfront
Loader Command 34.8 No Line Numbers Command 4.52.2
Load PROM Programmer Command 34.5 Non-I/O Supervisor Calls 353
Loader: Nonstandard Configurations,
Compressed Absolute Format .. 1412 Standardizing 7.6.1
Relocating Linking141.2 Nonstandard Data Configurations 723
Standard 990 Object Ce 1.4.1.2 NOP 3.6.3.5
Upfront 1.4.1 .2,34.8 Notational Conventions for
Loading: Keyboard Commands 34.1.10
Compressed Absolute Format
Object Modules 2.5.2 Object Code:
Methods, Program 322 Compressed Absolute Format 64
Overlays 344 Formats 6.1
Programs .14.1.2,34.3,34.6, PX9ASM 5.7.2
34.8,34.9 PX9EDT 4.8
Programs, with PXOMTP 29.1 Standard 990 6.2,6.3
PROM Programmer 7.3 Object or Source Files, Combining 44.5
PXOMTP 253 Object Modules, Loading:
Standard 990 Object Modules 2.5.1 Compressed Absolute Format 2.5.2
733 ASR ROM Loader 2.5 Standard 990 2.5.1
Loading Procedure: , Object Record Tag Characters 6.2
PX9ASM 53 One-Pass Assembler 1442
PX9EDT 43 One-Pass Assembler — Also See PX9ASM
Logical Unit Number Assignments 2.8 Open Supervisor Call 3521
Looping Levels 74.5 Operation, System, Example 10.1
Loops in Instruction Traces3.6.2.3 Operation of:
LPCommand 343 Hardware 2.3
LU Command 34.8 Monitor 2.6
LUNOs 34.2 PX9ASMo 54
; Output, Printed, PX9ASM 5.7
M Command 4543 OV Command 344
Mapping: Overlays 143
Memory Appendix F Overlays, Loadingof 344
Parameters 744
PROM Appendix F PCommand 4.55.2
MB Subcommand 7.53.1 Parameters:
MC Command 3.4.18 Command 34.1.5
Memory, Computer 1.2.2.1 Mapping 744
Memory Dump 34.7 Part Numbers:
Memory Dump Commands D.6, TD-5 Component T1-2
Memory Mapping Appendix F System T1-1
Memory Requirements for Software1.4.1.1 Patching 3.,6.3
Messages: Perform BNPF Operation Command . . 831
Error 3.4.1.9, Appendix E Perform HIGH/LOW Operation Command . 931
PX9ASM 542,56 PLCommand 345
PX9ASM Error 5.6 Pointer, PX9EDT 42,442
PX9EDT 433,434,456 Power-Up Interrupt1 22.2
PX9EDT Error 4.6.1 PPCommand 7.5.2
Methods, Program Loading 3.2.2 Print Command 4.5.5.2
MI Subcommand 7.5.3.6 Print Margin Command 4523
MM Command 34.12,3.4.13 Printed Output, PX9ASM 5.7
Index-5 Digital Systems Division

945255-9701

Printouts, Examples of Load Map 3.4.64 PXOEDT 1.44.1,4.1
Processing of Commands 34.1.8 Commands 4.5
Processor, Command String". . 34.1.7 Editing Example 4.7
Program: Error Messages 4.6.1

Execution of 34.10,34.11 Hardware Configuration 4.2

Loading Methods 3.2.2 Initialization Procedure4.3.2,433

Loadingof 34.8,34.9 Loading Procedure 4.3

User, Executionof 293 Messages 4.33,434,4.6
Programmer Commands D.6, TD-5 Cbject Code 4.8
Programmer Panel 1.2.24 Pointer 4.2,44.2
Programmer Panel Firmware 1.4.5 Source Program 4.7
Programming Adaptor . . . c.. 1228 Special Characters Used by 44.4
Programming, Assembly Language PX9LAL 14.1. 2 '1.43. l, 34.6

Exampleof FB-1, FB-2 PX9LAL Error Messages 3463
Programming Examples, PROM 7.7, 11.1 PXOMTP 3.1,14.2
Programming Module, PROM1.2.25 Debug Functions 33
Programming of: I e e e 3.2.1

EPROMs 7.6.2 Keyboard Commands 3.4, D.2, TD-1

PROMs 7.4 Loading 2.53
Programming, Stand-Alone Appendix B Loading Programs with 29.1
Programs, Creating New 4.4.6 User Interactionwith 1424
Progiams in User Area 29.2 PXOUFL 1.4.1.2
Programs:

Linkingof 34.6 QCommand 4.5.6.2

Loadingof 14.1.2,3.4.3,34.6 Quit Command 4.56.2

Loading with PXOMTP 29.1
PROM Mapping Appendix F RCommand 4.54.4
PROM Programmer1.434,7.1 RB Subcommand 7.53.2

Capabilities of 7.2.1 RC Command 7.53.8

Commands 7.5,7.5.2 Read ASCII Supervisor Call . 3522

Functionsof 721,724 Record:

Loading 7.3 . End-offile 3.4.6.1
PROM Programmer Standard Command 7.5.1 End-of-module 346.1
PROM Programmer Subcommands 7.5.3 Region Trace 3.3,3.6.23
PROM Programming Examples 7.7, 11.1 Relocating Linking Loader . . . 1.4.1.2
PROM Programming Module1.2.2.5 Relocating Linking Loader — See PX9LAL
PROM Programming Module — Also See Hardware Relocation 3.4.6.1
PROM/ROM Process Control Commands . .3.4.1.4 Remove Command 4544
PROMS, Programming of 74 RI Subcommand 7537
Protect Violation Flag 2.11.2 . ROM Loader, 733 ASR
Prototyping Process 1.5 Firmware 14.5
Prototyping System: Loading with 2.5

Capabilitiesof 1.2 Routine, Interrupt 3.6.24

Hardware 1.2.2 RU Command 34.11

Purposeof oL 1.2

Software 1.2.1 SBCommand3.4.23
PSCommand 7.5.1 Set Breakpoint Command 3.4.23
Pseudo-Instructions, PX9ASM . 5.5.2,D.5, TD-4 Set CRU Interface Base Address
Purpose of Prototyping System 1.2 Subcommand 7.533
PX9ASMo 5.1 Set Snapshot Command 34.20

Directives 5.5.1, D4, TD-3 Set Toggles Subcommand oo .. 7534

Error Messages 5.6 Set Trace Definition Command 3.4.25

IO 54.1 Set Trace Region Command 3.4.26

Loading Procedure 5.3 Set Write Protect Region Command3.4.31

Messages 54.2,5.6 SIE 2.10.2, 3.3.1

Object Code 5.7.2 Single Instruction Execution . 2.10.2, 3.3.1

Operation 54 SL Command 4.5.2.1

Printed Qutput 5.7 SM Command 4.52.4

Pseudo-Instructions 5.5.2, D.5, TD-4 SN Command 4.52.2

Source Code 5.7.1 Spapshot oL 33

Index-6 " Digital Systems Division -

945255-9701

Software: Supervisor Call:
Memory Requirements for14.1.1 Binary to Decimal ASCIT 3.53.2
Modules 1.4 Binary to Hexadecimal ASCII . . 3.53.4
Prototyping System 1.2.1 Decimal ASCII to Binary 3.533
Source Code, PXOASM 5.7.1 End of Program 3.53.1
Source or Object Files, Combining 44.5 Hexadecimal ASCII to Binary3.5.3.5
Source Program, PX9EDT 4.7 Open 3.5.2.1
SPCommand 34.31,4.523 Read ASCIT 3.52.2
Special Characters Used by PX9EDT 444 Write ASCIT 3.5.2.3
Specific Debugging Techniques 36.2 Write Endof File 3.524
Spin00 3.6.3.5 Supervisor Calls 14.2.2,14.23, 3.5, T3-2
SRCommand 34.26 IO 3.5.2
SSCommand 3.4.20 NonI/O 3.5.3
ST Command 34.25 SW Subcommand 7.5.3.9
Stand-Alone Programming Appendix B Symbolic Memory Addressing Mode3.6.3.3
Standard Control Information System Control Commands34.1.2
Cassette 24,722 System Debugging Example 10.1
Standard Data Configurations 723 System Operation Example 10.1
Standard 990 Object Code 6.2,6.3 System Part Numbers T1-1
Standard 990 Object Loader . . . 14.1.2 System Software Tape Cassette
Standard 990 Object Modules, Loadlng . 251 Generation 24
Standardizing Nonstandard Conﬁguratlons 7.6.1
Subcommand: TCommand 4.53.3
C. 8.3.2.2,9.3.2.2 Tables Appendix G
Compare BNPF Format on Cassette Tag Characters, Object Record 6.2
toMemory 8.3.2.2 Tag Format:
Compare HIGH/LOW Format on Basic, 6.4.1
Cassette to Memory 9322 Extended 64.2
CS e 7.53.3 Tape Cassette Generation,
D, 8.3.2.1,9.3.2.1 System Software 24
Define Memory Bounds . 7.5.3.1 Tape Cassette, Copying from One
Define Memory Data Conﬁguratlon to Another 44.1
Mapping Parameters 7.53.6 Terminal, Data — Also See Hardware
Define PROM/ROM Terminal, Data 1.2.2.3
Characteristics 7.53.8 Character Set C.2, FC-1
Define PROM/ROM Bounds . . . 7532 Keyboard, Entry of Commands on L 27
Define PROM/ROM Data Conﬁguratlon Text Editing Procedures 4.4
Mapping Parameters 7.53.7 Text Editor — Also See PX9EDT
Define String Width 7.5.3.9 Text Editor Commands D.3, TD-2
Dump in HIGH/LOW Format . . 9.3.2.1 TopCommand 4 53.3
Dump Memory to Cassette in Trace, Instruction *. 1.4.3.3, 3.3.1
BNPF Format 83.2.1 Trace Region 3.3,3.6.23
GO 7.53.5 Trap Vectors 1.2.2.2
L ..o e 8.3.23 TS Subcommand 7.534
Load BNPF-Formatted Data Module Types of Keyboard Commands 34.1.1
into Memory 8.3.2.3
MB 7.53.1 UCommand 4.53.2
ML o 7.53.6 Unpacking of Hardware 22
RB 7.53.2 UpCommand 4.53.2
RC 7.53.8 Upfront Loader 14.1.2,348
RI 00000, 7.53.7 User Area, Programsin 29.2
Set CRU Interface Base User Interaction with PXOMTP 1424
Address oL 7.5.3.3 User Program, Executionof 293
Set Toggles 7.534
SW ..o 7.5.3.9 Vectorso 1.222
T 7.534
Subcommand Groups Write ASCII Supervisor Cal 3.523
DB 0. 83.2 Write End of File Supervisor Call 3.524
HL 00000, 9.3.2 Write Protect 2.11
PROM Programmer 7.53
XOP Vectorso 1.2.2.2
Index-7 Digital Systems Division

(o]
{@ 945255-9701

733 ASR Data Terminal1.223 990 Prototyping System
733 ASR Data Terminal Character Set . C.2, FC-1 — See Prototyping System
733 ASR ROM Loader: 990-733 ASR System Software,
Firmware 14.5 Compatibility with DX10 Appendix A
Loading with 2.5 990/4 Computer 1.2.2.1
990 Object Code, Standard L. 6.2,63 . .

Index-8 Digital Systems Division

CUT ALONG LINE

USER’S RESPONSE SHEET

Manual Title: Model 990 Computer Prototyping System Operation

Guide (945255-9701)

Manual Date: 1 May 1976 Date of This Letter:
User’s Name: Telephone:
Company: Office/Department:

Street Address:

City/State/Zip Code:

Please list any discrepancy found in this manual by page, paragraph, figure, or table number in
the following space. If there are any other suggestions that you wish to make, feel free to
include them. Thank you.

Location in Manual Comment/Suggestion

NO POSTAGE NECESSARY IF MAILED IN U.S.A.
FOLD ON TWO LINES (LOCATED ON REVERSE SIDE), TAPE AND MAIL

FOLD

FIRST CLASS

PERMIT NO. 72843
DALLAS, TEXAS

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

'POSTAGE WILL BE PAID BY

TEXAS INSTRUMENTS INCORPORATED
DIGITAL SYSTEMS DIVISION

P.0. BOX 2909 - AUSTIN, TEXAS 78769

ATTN: TECHNICAL PUBLICATIONS
MS 2146

—— — — — —— ao—— —— " co—

FOLD

=

kL

. TEXAS INSTRUMENTS

INCORPORATED

DIGITAL SYSTEMS DIVISION .
POST OFFICE BOX 2909 AUSTIN, TEXAS 78769

e

