DNOS Jj;

Tl Pascal
Programmer’s Guide

TEXAS INSTRUMENTS

© 1981, 1984, Texas Instruments Incorporated. All Rights Reserved
Printed in U.S.A.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or

by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
permission of Texas Instruments Incorporated.

MANUAL REVISION HISTORY

DNOS Tl Pascal Programmer’s Guide (2270517-9701)

Originallssue i i, 1 August 1981
Revision. ... January 1984

The total number of pages in this publication is 356.

The computers, as well as the programs that Tl has created to use with them, are tools that
can help people better manage the information used in their business; but tools—including
Tl computers—cannot replace sound judgment nor make the manager’s business
decisions.

Consequently, Tl cannot warrant that its systems are suitable for any specific customer
application. The manager must rely on judgment of what is best for his or her business.

DNOS Software Manuals

This diagram shows the manuals supporting DNOS, arranged according to user type. Refer to the block identified by your user
group and all blocks above that set to determine which manuals are most beneficial to your needs.

1026-L1S0.22

AllDNOS Users:
DNOS Concepts and Facllities DNOS System Command DNOS Messages and DNOS Master Index to
2270501-9701 Interpreter (SCI) Reference Manual Codes Reference Manual Operating System Manuals
2270503-8701 2270506-9701 2270500-9701
DNOS Operations Guide DNOS Text Editor DNOS Reference Handbook
2270502-9701 Reference Manual 2270505-9701
2270504-8701
High-Level Assembly Productivity Communications Systems
Language Users: Language Users: Tools Users: Software Users: Programmers:
COBOL Reference Manual 990/99000 Assembly DNOS Sort/iMerge DNOS DNCS/ISNA DNOS System Generation
2270518-9701 Language Reference User's Guide User's Guide Reference Manual
Manual 2272060-9701 2302663-9701 2270511-9701
DNOS COBOL 2270509-9701
Programmer's Guide DNOS TIFORM DNOS DNCS DNOS Systems
2270516-9701 DNOS Assembly Reference Manual Operations Guide Programmer’s Guide
Language 2276573-9701 2302662-9701 2270510-9701
DNOS Pertormance Programmer’s Guide
Package Documentation 2270508-9701 DNOS Query-990 DNOS DNCS 814A DNOS Online Diagnostics
2272109-9701 User's Guide User's Guide and System Log Analysis
DNOS Link Editor 2276554-9701 2302664-9701 Tasks User's Guide
Tl Pascal Reference Manual Reference Manual 22705329701
2270519-9701 22705229701 DNOS Data Base DNOS 3270 interactive
Management System Communications Software ROM Loader User's Guide
DNOS Tl Pascal DNOS Supervisor Cali Programmer's Guide (ICS) User's Guide 2270534-9701
Programmer's Guide (SVC) Reference 2272058-9701 2302670-9701
2270517-9701 Manual
2270507-9701 DNOS Data Base DNOS 3780/2780
FORTRAN-78 Relerence Administrator User's Emulator User’s Guide
Manual Guide 2270520-9701
2268681-9701 2272059-9701
DNOS DNCS System
DNOS FORTRAN-78 Data Dictionary Generation Reference
Programmer’'s Guide User's Guide Manual
2268680-9701 2276582-9701 2302648-9701
MATHSTAT-78 DNOS TIPE
Programmer’s Reference Reference Manual 3",‘,23.2 ::‘.(.:,s T):'aznssm
Manual 2308786-9701 . i
(RFT)User's Guide
2268687-9701 2302640-9701
FORTRAN-78 ISA 2N°s~ T“:sE id
B xercise Guide
Exiomaions Manual Security 2308787 8701 Sohayetom ety Source
Managers: DNOS COBOL Program User's Guide Code Users:
TiI BASIC Relerence Manual Generator User's Guide 2302676-9701
2308769-9701 DNOS Security 22343759701 DNOS System

RPG il Programmer’s
Guide
939524-9701

Manager's Guide
2308954.9701

Design Document
22705129701

DNOS SCI and Utilities
Design Document
2270513-9701

DNOS Software Manuals Summary

Concepts and Facilities
Presents an overview of DNOS with topics grouped by operating system functions. All new users (or
evaluators) of DNOS should read this manual.

DNOS Operations Guide
Explains fundamental operations for a DNOS system. Includes detailed instructions on how to use each

device supported by DNOS. ,

System Command Interpreter (SCl) Reference Manual
Describes how to use SCI in both interactive and batch jobs. Describes command procedures and gives
a detailed presentation of all SCl commands in aiphabetical order for easy reference.

Text Editor Reference Manual
Explains how to use the Text Editor on DNOS and describes each of the editing commands.

Messages and Codes Reference Manual
Lists the error messages, informative messages, and error codes reported by DNOS.

DNOS Reference Handbook
Provides a summary of commonly used information for quick reference.

Master Index to Operating System Manuals
Contains a composite index to topics in the DNOS operating system manuais.

Programmer’s Guides and Reference Manuals for Languages
Contain information about the languages supported by DNOS. Each programmer's guide covers oper-
ating system information relevant to the use of that language on DNQOS. Each reference manual covers
details of the language itself, including language syntax and programming considerations.

Performance Package Documentation
Describes the enhanced capabilities that the DNOS Performance Package provides on the Model 890/12
Computer and Business System 800.

Link Editor Reference Manual
Describes how to use the Link Editor on DNOS to combine separately generated object modules to
form a single linked output.

Supervisor Call (SVC) Reference Manual
Presents detailed information about each DNOS supervisor call and DNOS services.

DNOS System Generation Reference Manual
Explains how to generate a DNOS system for your particular configuration and environment.

User’s Guides for Productivity Tools
Describe the features, functions. and use of each.productivity too! supported by DNOS.

User's Guides for Communications Software N

Describe the features. functions. and use of the communications software availabie for execution
under DNOS.

Systems Programmer’s Guide
Discusses the DNOS subsystems and how to modify the system for specific application environments.

Online Diagnostics and System Log Analysis Tasks User’s Guide
Explains how to execute the online diagnostic tasks and the system log analysis task and how to inter-
pret the results.

ROM Loader User’'s Guide
Expiains how to load the operating system using the ROM loader and describes the error conditions.

DNOS Design Documents
Contain design information about the DNOS system. SCI. and the utilities.

DNOS Security Manager’s Guide
Describes the file access security features available with DNOS.

iv 2270517-9701

Preface

This manual contains information about Tl Pascal (TIP), which executes on the Texas Instruments Business
Systems Computers. This information supports the experienced programmer in developing TIP applica-
tion programs intended for execution under the DNOS operating system. For additional descriptions of
TIP, refer to the T/ Pascal Reference Manual.

This manual contains the following sections and appendixes:

Section

1

10

1

2270517-9701

Introduction — Gives a brief overview of DNOS and introduces the steps involved in developing
a TIP program. Explains notations that describe commands appearing throughout this manual.

DNOS Concepts and Environment — Describes DNOS features related to program development.

Building a Tl Pascal Program — Discusses how to build a TIP brogram, beginning with direc-
tory and file development, and discusses how to use the Text Editor.

Nester Utility — Contains information about the Nester utility, which formats source code in a
consistent block structure.

TIP Compiler — Discusses in detail the TIP compiler execution and options.

Separate Compilation — Examines separate compilation of TIP program modules. This section
describes the configuration processor, the Split Program utility, and the Split Object utility, ail
of which assist in separate compilation. The discussions include options and commands for
each process.

Link Editing and Execution — Describes options for link editing TIP tasks, executmg TIP tasks,
and TIP run-time options.

Internal Structures — Discusses stack and heap requirements and internai data structures.
Debugging — Describes the SCI debug capabilities and commands and the TIP debug
commands. Also describes the types of run-time errors and abnormal termination dumps

provided.

Run-Time Library Routines — Describes the routines that a user program can call for direct
communications register unit (CRU) 1/0 and operating system interface.

Assembly Language Routines — Describes the interface required for routines written in assembiy
language, including task termination routines.

Preface

12 Interfacing to Productivity Tools — Examines the requirements for interfacing to
TIFORM, DBMS-990, Query-990, Sort/Merge.

13 Reverse Assembler (RASS) Utility — Describes the reverse assembler and its output.
Appendix

A Keycap Cross-Reference — Charts the corresponding key on available terminals for each generic
keyname, and illustrates each terminal’s keyboard.

B TIP Compiler Error Messages and Codes — Lists TIP compiler error messages and codes.

C Run-Time Error Messages and Codes — Describes the types of TIP run-time errors, and lists TIP
run-time error messages and codes.

D Estimating Run-Time Sizes — Discusses the run-time size needed for various program features.

In addition to the DNOS manuals shown on the frontispiece, the following documents contain additional
information related to TIP:

Title Part Number
TI Pascal Reference Manual 2270519-9701
T! Pascal Configuration Processor Tutorial 2250098-9701
DNOS Tl Pascal Object Installation 2276550-9701
TIFORM Reference Manual 2234391-9701
Guide to the Tl Pascal Run-Time Support System 2250035-9701*

* Design Document. Available only with the purchase of Tl Pascal Run-Time Source.

vi 2270517-9701

Contents

Paragraph

-t —h ol
WN =

1.4.1
142
143
1.43.1
1.4.3.2
1.4.4
1.5
1.5.1
1.5.2
1.6

2.1

2.2
2.21
222
23
2.3.1
23.2
2.3.3
2.3.3.1
2.3.3.2
234
2341
2342
2343
2344

2270517-9701

Title Page

1 — introduction

General e e e e e e e e 1-1
DNOS OVerVIeW i e e e e e e e 1-1
A TIP Program Development Overview ciiiiiinenan.. 1-2
Command Format and Notation i, 1-2
Command Name............................. e e 1-3
Command Prompts e e e e et 1-3
Type of Response Expectedttt iiiiiinii i 1-3
Initial Values i e i e 13
Default Values ittt ittt it et et e e 1-3
Notation Symbols i i i e i e e 14
Syntax NOotation ittt it i it e i e 14
Backus-Naur Form (BNF) i e 1-5
Syntax diagrams i e e e 1-5
Character Set i e e e e e 1-6

2 — DNOS Concepts and Environment

IPOdUCHION e e e e, 241
JOb STUCHUrE e e 2-1
Interactive JObS e e 2-1
BatCh JODS e e 21
USING SCl .. .o 22
SCI DesCHiptiON it e e e 2-2
Entry of SCl Commands in VDT Modeciivnin... 2-2
Examples of Using SCI i it 2-2
The Show Background Status (SBS)Command 2-3
The List Directory (LD) Command, 2-3
Batch Use of SCl 24
Batch Stream Format 2-4
Batch Command Fomatttt e e e 24
Interactive Execution of Batch StreamsandBatchJobs 26
Entering Programs From Sequential Devices 2-6

vii

Contents

Paragraph

2.4
2.41
24.2
243
25

2.6
2.6.1
2.6.2
2.7
271
2.7.2
2.7.3
2.7.4
2.8

2.9
291
2.9.1.1
29.1.2
2.9.2
2.9.21
29.2.2
29.2.3
29.2.4
2.9.25
2.9.3
2.9.4
2.9.5
2.10
2.1
2.11.1
2.11.2
2.11.2.1
2.11.22
2.113

3.1
3.2
3.2.1
3.2.2
3.2.2.1
3222
323
3.2.4
3.25

viii

Title Page
Directory and File Structure. i e 2.7
Establishing Volume Names i 2-7
Establicshing Directories ittt 2-7
Establishing Files i i i i i e 28
Pathnames and Access Names. ittt ittt 29
Synonyms and Logical Names i 2-10
Y ONYIMS . .ottt i e e e e 2-10
Logical Names ittt i e e e e e 2-10
File TYPOS . . .ottt it e e 2-10
Sequential Filesc.. ittt 2-11
Relative Record Files i i 2-11
Key Indexed Files.t e et et e e 21
Concatenated and MultifileSets i 212
Flle S CUNY . o .ottt e e e e 2-14
MO Facilitios i i i i i e et et e e e 2-15
HO MBthOds ittt ittt i it it et 2-15
Resource-Specific /O i e 2-15
Resource-independent /O i, 2-15
Interprocess Communication (IPC) e e e 2-15
PO USES ... i i i e e ~..2-16
IPC Channels ittt 2-16
Channel SCoPe e 2-16
System-Level IPC Functions. i, 2-16
Program-Level IPC Functions. iiiiiinann.. 2-17
File O .. e e 2-17
Device 1/0 P 217
SpPoOliNg e e 2-17
SOgMOMES e 2-18
Message Facilitios. i 2-18
ErmOr MESSagES . ..o ittt s 218
Oniine Expanded Ermror Message Documentation 219
Show Expanded Message (SEMYCommandt i 2-19
The 2 ROSPONSE ottt it e ettt et e 2-20
Status Messages e e e e e 2-20

3 — Building a Tl Pascal Program

GBNerAl 31
Directory and File Preparation. 0. 3-1
Required Files i e e 3-1
Alternate Directory Structures 3-2
Directories Organized by Programs coiiin... 33
Directories Organized by File Type 3-3
Creating the Directories and Files 3-3
Building a Program Using the Text Editor 34
Example of Usingthe Text Editor 34
2270517-9701

Paragraph

4.1
4.2
43
44
4.5

5.1

5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6
5.2.7
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.3.6
5.3.7
5.3.8
5.3.9
5.3.10
5.3.10.1
5.3.10.2
5.3.10.3
5.3.10.4
5.3.10.5
5.3.10.6
5.3.10.7
5.4

5.5
5.5.1
5.5.2
5.5.3
5.5.4
5.5.4.1
5.5.4.2
6.5.5
5.6

2270517-9701

Contents

Title Page

4 — Nester Utility

[T 1T - 1 [41
Nester FUNCHONS ittt ittt it ittt inieinnenenns 4-1
Nester Option Comment ittt iiiiiiranaaannen, 4-8
Executing Nester ittt it 4-10
Nester Error MesSagesttt ittt it 411

LT (- -1 [5-1
Compiler Execution Overviewttt iiiiiiiiinii i 5-1
Default Pathnamesttt ittt ei et 5-1

L (=T oL Lo Lo T PP 5-2

£ 1T P 5-2

L 1 I 1 5-4
51— 1 5-4
CODEGENttt ittt ettt ettt it e e et 54
CroSs-REfOreNCe i ittt e et e e 5-4
Compiler SCl Commandscuuiiniiiiniiieiiiiniineirarnennnenanas 5-4
@ 1 [=P 5-5
D 1 [/ TP 5-5
b€ | 5-6
D0 | 5-6
D= =P 5-7
D2 PP 5-7
XALX it e e e e e 5-7
PODELETE i e et e 5-8
POOYN L ot e e e e et 5-8
OptioNS PrOMPt i i e i e e e 5-8
Mode of EXBCULION 0.ttt ittt 5-8
Lines Per Pageottt 5-8
PNt Width e SR 5-8
Cross-ReferenCe i e et e e 5-8
Disabling Source Preprocessingoiiriiiiiiiiiiinnnan.. 5-8
Controlling Preprocessor Output i .. 5-8
Compiler Options inthe Procedure 5-9
Error Handling i i i i e e e 5-9
Compiler Listingoo it i e 5-10
Preprocessor SUMMANYttt ittt it 5-10
Source Listing Generated by SILT2Phase. ciiiat. 5-11
Optimization SUMMANYt ettt 5-16
CODEGEN SUMMAIYottt et ettt et eaenaenenens 5-16
Object LiStingot e e 5-16
Example CODEGEN Summaryciiititiiininennnnnenennn- 5-16
Cross-Reference e e e 5-18
Message File Description it i e 5-18
ix

Contents

Paragraph

5.7

6.1

6.2

6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.4.1
6.3.4.2
6.3.4.3
6.3.4.4
6.3.4.5
6.3.5
6.3.5.1
6.3.5.2
6.3.5.3
6.3.5.4
6.3.6
6.3.6.1
6.3.6.2
6.3.6.3
6.3.6.4
6.3.7
6.3.7.1
6.3.7.2
6.3.7.3
6.3.7.4
6.3.8
6.3.8.1
6.3.8.2
6.3.8.3
6.3.8.4
6.3.8.5
6.3.9
6.3.9.1
6.3.9.2
6.3.9.3
6.3.9.4
6.3.9.5
6.3.9.6
6.3.9.7
6.3.10
6.3.10.1
6.3.10.2

X

Compiler Memory USagettt 5-19

6 — Separate Compilation

GONEIAl . . oot e e e e e 61
Requirements for Separate Compilation i i i 6-1
The Configuration ProCEeSSOr i et et et 6-3
Functional Description of CONFIG i, 6-3
Format of Source Modules i e 6-6
Configuration Processor Commandscitiiietreninnnrneennn. 6-6
Process Configuration e 6-7
BUILD PROCESS Commandttt iiiinnaannenn 6-8
ADD Command i e 6-8
CATPROCESS Command.ttt ae e 6-9
Process Configuration Command Example, 6-9
USE PROCESS Command.oiiuiuniiieienntneaanaeaannn. 6-10
Compilation e e e 6-10
COMPILE Command.cii ittt ittt ittt ettt anaanenans 6-10
SPLITOBJECT Commandttt iananenenenn. 6-11
EXIT Command it i e e e 6-12
Compilation Examples i e e 6-12
Source Listing e e e 6-20
LIST Command i et e 6-20
LISTDOC Commandco ittt ittt ittt ettt eaianaeennn 6-21
LISTORDER Command ittt itemieaaaaaanenns 6-21
Listing Examples e e 6-22
Flags . ..o e 6-27
SETFLAG Command e e e e ettt a e e 6-29
Flag Commandttt it 6-30
Conditional FlagCommandttt iiiiiiiiininninnan.. 6-30
Flag Examples. i i s 6-31
Modifying a Process Configuration it 6-32
DELETE Commandoi ittt ittt ettt ettt 6-32
MOVE Commandiuitit ittt eateine i iaenans 6-33
DISPLAY Commandttt ttn et neaenans 6-33
USE OBJECT Commandttt inat e 6-34
USE Commandottt ettt it 6-34
I =4 - T O 6-35
MASTER Commandttt 6-36
LIBRARY Command ittt 6-36
OBULIB Commandttt it ettt 6-37
ALTOBY Commandottt e e 6-37
SETLIB Commandttt ettt ettt 6-37
DEFAULT SOURCE Commanditiitintritainaenenaenn. 6-38
DEFAULT OBJECT Commandottt ea e 6-39
Toxt EAitingt 6-39
EDITCommand................ AP 6-40
Insert ComMMaANd ittt e 6-41

2270517-9701

Paragraph

6.3.10.3
6.3.11
6.3.12
6.4
6.4.1
6.4.2
6.4.3
6.4.4
6.5

74
7.2
7.2.1
722
723
724
725
73
7.3.1
7.3.2
7.3.3
734
7.3.5
7.3.6
737
7.3.8
7.3.9
7.3.9.1
7.39.2
7.39.3
7.4
7.41
7.4.2
7.43
744
7.45
7.5
751
752
753
75.4
7.5.5
7.5.6
757
7.5.8
7.6

2270517-8701

Contents

Title Page

Replace Commandcct ittt it e 6-41
Required Files i it i e e et c e 6-42
Executing CONFIG i ittt ittt 6-43
Split Program Utility i i i i i i 6-46
Split Program Commandi ittt ittt 6-46
INpUt Example i e e et et e e 6-47
Library and Files i i i i i e e e e 6-47
EXOCULION et 6-48
Split Object Utility. e e e e e e e e 6-51

7 — Link Editing and Execution

L= 1= - T PN 7-1
Introductionto Link Editing i e 7-1
The Link Control Fileottt innnnannnn 7-2
Linkinga Single Task Only it iiinnnnn, 7-2
Executingthe Link Editor i i, 7-3
Installing Procedures and Tasks iiiiiiiininininenennnnnns 74
The Execute Pascal Task (XPT)Commandcoiivunnn.. 7-4
Linking for Shared Proceduresc.cuiiiiinienennnnnnnnnnnn. 7-6
Linking a Single Procedure anda Single Task 77
Linking a Single Procedure and Muitiple Tasks 7-8
The ALLOCATE Commandcitniurinennnenernenenenannnnenns 7-8
Sharing Two Procedures and Multiple Tasks e, 79
Selectingthe Shared Modules i i, 7-10
Sharing Run-Time Only i i 7-12
The MAIN Module. i i i i et e it eeaens 7-12
The DUMMY Commandc.oiitiiiiin ittt ittt en i 7-13
Program Considerations for Multiple Tasks 7-13
COMMON Data BIOCKSttt i et e et e e 7-13
Pointer-Type Variables ittt 7-13
Referencing Global Variables 7-14

TIP Run-Time Optionsttt i et e e iiaeeans 7-14
Execution Under DNOS i ittt 7-15
LUNO O . i e i e e e e e 7-15
Muiltitask Capability Under DNOS 7-15
Minimal Run-Time Capability i 7-15
Stand-Alone Execution e 7-16
Linking and Executing for DNOS i, 7-16
Linking for DNOS Execution Using SCl Synonyms 7-16
Executing Under DNOS Using SCI Synonyms 7-18
Linking for DNOS Execution Using LUNOs 7-18
Executing Under DNOS Using LUNOs i, 7-19
Program Considerations for LUNO /O Under DNOS 7-20
Linking Minimal Run Time Under DNOS 7-21
Executing Minimal Run Time Under DNOS 7-23
The Dummy MainRoutine 7-24
Linking for Stand-Alone Execution i, 7-24
Xi

Contents

Paragraph

7.6.1
7.6.2
7.7

7.8

7.8.1
7.8.2
7.8.3
7.8.4
7.8.5

8.1

8.2
8.2.1
8.2.2
8.3
8.3.1
8.3.2
8.3.2.1
8.3.2.2
8.3.3
8.3.4
8.3.5
8.3.6
8.3.7

9.1

9.2
9.2.1
9.2.2
9.2.3
9.2.4
9.2.5
9.2.6
9.3
9.3.1
9.3.1.1
9.3.1.2
9.3.1.3
9.3.14
9.3.1.5
9.3.1.6
9.3.2
9.3.2.1

xii

Title Page

Link Control File for Stand-Alone Tasks i . 7-26
Stand-Alone EXECULIONottt ittt 7-26
Compiling, Linking, and Executing With a Batch Stream 7-26
Overlays in TIP Programsoitiiuiinrnernnnaeeennaneoinananenns 7-28
(7= = - NS P 7-28
Overlay SITUCIUI®ottt 7-28
Procedure OVLY S it i i e it i e e s 7-30
Link Control File for Overlays iiiiiiiiiiiiinn e, 7-32
Installing a Program With Overlays oot 7-33

8 — Internal Structures

(7= 1= £~ [N 8-1
Stack and Heap Descriptionttt 8-1
Scope and EXtent e 8-1
Estimating Stack and Heap Requirementst 8-1
DAt StUCIUIBS oottt tie e et eensneacnssneacnsnasasasnassaeesnens 8-2
The StacK Framecovitititieie et ienerasn e ianeenenaanannensens 8-2
The Heap SUCIUIEttt iiinne e eenmes 8-3
The Heap Control BIOCKcoiiiiiiiiiiiiiiiiiiiiiiiiiiiiiae e, 8-3
The Heap ReGIONi ittt ittt ae s 84
The Process RECOIdci ittt ittt ittt i aaaaeenanns 8-5
The File DESCHPIOro e ettt it e aiae e aeia e 8-6
The Supervisor Call (SVC)ciiiiiiiii i 8-7
O SVC BIOCK ... it it iiii it ittt e inenaetanasannasasnenaseenen 87
Data Structures Used inDebugging i, 8-10

9 — Debugging

13110 Vo 19 Lo ¢ o1 1 PSR P 9-1
Run-TimeErrors e e e e 9-1
RUN-TIME ChOCKS . . . oo ittt ettt ee it n e 9-2
Memory SPace EffOrs.iiiin ittt 9-2
Error Tormination ititi i iiire e ie it iitaatanaasan e 9-3
Using the Abnormal Termination Dumpo, 9-4
Unformatted Abnormal Termination Dump oot 9-9
Debugging Heap Efrorsooiiiiiiiinentiiin it 9-13
Debug COMMANSttt 9-15
Basic SCIDebug Commandscoouniiimrnnrinineenneeneeeenaeens 9-16
Execute Debug (XD) oot e e 9-16
Quit Debug (QD) 9-16
Halt Task (HT).ot e e 9-17
Resume Task (RT)ittiiti it e ittt 9-17
List Memory (LM) i 9-18
Modify Memory (MM) i i 9-18
Pascal Debug Commandsc.coiiiiiiiiirini i, 9-19
Assign Breakpoint — Pascal (ABP) il 9-20

Contents

Paragraph Title Page
9.3.2.2 Delete Breakpoint — Pascal (DBP) i, 9-21
9.3.2.3 Delete and Proceed from Breakpoint — Pascal (DPBP) 9-21
9.3.24 Proceed from Breakpoint — Pascal (PBP) 9.22
9.3.2.5 List Breakpoints — Pascal (LBP) i 9-23
9.3.2.6 Show Pascal Stack (SPS).ci it i i i et e 9-23
9.3.2.7 List Pascal Stack (LPS)ciii ittt e i 9-26
9.3.3 Using Debug Commandst ittt 9-27
9.4 Run-Time Library Routines i, 9-32

10 — Run-Time Library Routines

10.1 GONBIAl . ..o i e e e e e e 10-1
10.2 Direct CRU /O RoUtiNgSttt i et et e et et 10-1
10.2.1 Procedure SLDCR i e 10-2
10.2.2 Procedure $SBO........... e e e e e e e e e 10-2
10.2.3 Procedure BSBZ e e 10-2
10.2.4 Procedure SSTCR i e e et et e e 10-2
10.2.5 FUNCHON ST B ittt i i et e it ettt e et 10-3
10.3 System Command Interpreter (SCI) Interface Routines. et e 10-3
10.3.1 Procedure FINDSSYN i e e et et e e 10-3
10.3.2 Procedure STORESSYN i it e e e et 104
10.3.3 Procedure POUC i e e 10-6
10.3.4 Procedure RETERM ittt i et e e e 10-7
10.3.5 Procedure POPARM i e e e 10-7
10.4 Key Indexed File (KIF) Handling o iiiiiiiin, 10-8
10.4.1 Procadure KEYSFILEt ittt ittt 10-8
10.4.2 KEYSFILE Declarationsciiiitiiintninieninetatnnnaennnns 10-8
10.4.3 KEYSFILE Command Codesccitiitiitiininntnnanenaennenan 10-8
10.4.4 Status Codes Retumed tothe Program i, 10-14
10.4.5 ACCESS OPtiONS i e e e e e 10-16
10.4.6 RESHHCHONS i e e e e e e 10-16
104.7 Example Program Using KEYSFILE i, 10-16
10.4.8 Linking KEYSFILE i ittt 10-17
10.4.9 KEYSFILE SOUMCOottt e ettt et e e e i 10-18
10.5 VDT /O Procedures.ttt ittt ettt 10-18
10.5.1 Procedure Descriptions e 10-18
10.5.2 Procedure Declarationsciiiiriiiir ittt 10-21
10.5.3 Linking Proceduresttt i 10-21
10.5.4 VDT O SOUICE .. it it et et et ettt et et 10-21
10.6 Additional /O RoUtings it i i e e e e 10-21
10.6.1 Procedure SETSACNM i i e e ettt e 10-21
10.6.2 Procedure SETLUNO i it i e et e e e 10-23
10.6.3 Function DEVSTYPE e e e e et e e 10-23
10.6.4 Procedure FILESFLAGS i e i 10-25
10.6.5 FUNCHON SCBBA 10-25
10.7 Overlay Loader — Procedure OVLYS it 10-26
10.8 Identification FUNCIONS ittt i 10-27
10.8.1 Function TASKID e 10-27

2270517-9701 xiil

Contents

Paragraph

10.8.2
10.9
10.9.1
10.9.2
10.9.3
10.10
10.10.1
10.10.2
10.10.3
10.11
10.11.1
10.11.2
10.11.3
10.12
10.12.1
10.12.2
10.13
10.14
10.15
10.15.1
10.156.2

111
11.2
113
114
11.441
11.4.2
11.43
11.5
11.5.1
11.5.2
11.6
11.6.1
11.6.2
11.7
11.7.1
11.7.2
11.7.3

12.1
12.1.1
12.1.1.1

xiv

Titte Page
Function STATIONIDt e e 10-27
Time and Date Proceduresc. ittt 10-27
Procedure ITIME i it it et e et e 10-28
Procedure IDATE i e e e e e, 10-28
Procedure DELAY i e e e 10-29
Task Control Proceduresttt ittt et eeaaieennanans 10-29
Procedure BID e e e 10-29
Procedure SUSPEND it e it e 10-30
Procedure ACTIVATE i i e et et e et 10-30
Message-Handling Procedures it 10-31
Procedure PUTMS G it it e ettt e e 10-31
Procedure GETMS G ittt ittt e e i 10-31
Procedure PRGMS G it it it it e e e 10-32
System Common Access Proceduresc it 10-32
Procedure SYSCOM. i e e e 10-32
Procedure RLSCOM i et e e e 10-33
Procedure INITEBLOCK i i it ittt et eeaeaenann 10-33
ProcedUIE SVo e e e 10-33
Semaphore Proceduresouutiiinraneirenianaanaaaneeaeenannnnns 10-34
- Procedure RESETSEMAPHORE ..ottt et c e, 10-35
Procedure TESTANDSETo i e ettt 10-35

11 — Assembly Language Routines

GONEIAl i e e e et et 11-1
Static Nesting Level i i e 11-1
Routine Categoriesttt it it et 11-2
The Stack Frame andthe Routine it iniannnenn 11-2
B o o T- o T 11-3
SysStem StOraget i e i e e 11-3
- - 11-5
The Routine Module i i it e e e 11-7
Access to Variables e e e 118
Callinga Routine ittt 11-10
Alternative MethOods i e e e 11-11
Reverse ASSembIer i e 11-11
Assembly Language Extractor i 11-11
User Termination ROUtiNGS ittt iiiannannns 11-11
Standard Termination Routinesttt 11-11
LUNO 1/O Termination Routines ittt ininnnnnnnn 11-12
Minimal Run-Time Termination Routines 11-12

12 — Interfacing to Productivity Tools

GONOIAl . . . oo e e 12-1

TP ORM . . .o 12-1

TIFORM INerface oot e e e e e e e e e e 12-1
2270517-9701

Paragraph

12.1.1.2
1212
12.1.2.1
12.1.2.2
12.1.3
12.1.4
12.1.5
12.1.5.1
12.1.5.2

13.1
13.2
13.3
13.4

Appendix

o0 o >

2270517-9701

Contents

Title Page

Linking TIP and TIFORM i e 124
Data Base Management System (DBMS-990) 12-5
Call Techniques to DBMS-990ottt 12-5
Linking TIP and DBMS-990 ittt it ia e 12-11
QUBNY-990 i e et e et e 12-12
Linking TIP and Query-990ttt iintianaenanns 12-15
LT T g = (o T A 12-16
TIP and Sort/Merge Example. ittt 12-16
Linking TIP and Sort/Mergettt 12-21

13 — Reverse Assembler (RASS) Utility Details

GeNeral e e et 131
Required Files P 131
EXeCUtiNg RASSo i et 13-1
Example Listing i e e 13-2
Appendixes
Title Page
Keycap Cross-Referencecoiniiiiii i, A-1
TIP Compiler Error Messages and Codescoiiiiiiiiinnnny B-1
Run-Time Error Messages and Codesi i, C-1
Estimating Run-Times Sizesouitiiiiiiii ittt D-1
Index
xv

Contents

lllustrations
Figure Title Page
141 Syntax Diagram Symbol 16
21 Directoryand File Structure e 28
31 Example PROGRAM: DIGIO oot e et et 36
4-1 Source Codeas INputtoNester.ttt e 46
4.2 Nested Source Code, Output FromNester.ttt i, 4.7
51 Preprocessor Listingt e 510
52 Source ListingWIth EmTOrs o i e e 512
53 Source Listing With NO EfTors (2Sheets)couviiiiiiit i 5-13
54 Source Listing Using WIDELISTand PRINTWIDTH =120 5-15
55 Sample Object Listing i 5-17
56 Message File it i e e e e 5-19
6-1 Flow of Separate Compilation Using CONFIG 6-5
6-2 Contents of File QUTPUT, Initial CONFIG Run, Full Compilation 6-13
6-3 Source Listing, Full Compilation Example (2 Sheets) 6-14
6-4 Contents of File OUTPUT, Deferred Processing, Full Compilation 6-16
6-5 Contents of File OUTPUT, Initial Run, PartialCompilation 6-17
6-6 Source Listing, Partial Compilation Example 2 Sheets) 6-18
67 Contents of OUTPUT, Deferred Processing, Partial Compilation 6-20
6-8 Contents of File OUTPUT for LIST Command (3Sheets)....................... 6-23
6-9 Contents of File OUTPUT for LISTDOC Command (2 Sheets)................... 6-26
6-10 Batch Stream for Separate Compilation ..ol 6-45
611 Example of Input to SPLITPGM (2Sheets) 649
741 Linking a Single Task Onlyt 7-2
7-2 Three Program Segmentsciiiin e iennrraenenaecnnenaeenns. 7-6
73 Muitiple Executions of the Same Taskcooviiiiiiiiiin e, 7-6
74 Muitiple Procedures Shared by Multiple Tasks 7-7
7-5 Linking One Replicatable Task and a Shared Procedure 7-7
7-6 Linking a Single Procedure, Muitiple Tasks 0 7-8
7-7 Linking Two Procedures, Multiple Tasksot 7-9
78 Sharing Reentrant Run-TimeRoutineso, 713
79 Batch Stream to Compile, Link, and Executea TIPProgram 7-27
81 ThEe StaCK FramIE . ..ottt ittt et e e e 82
82 The Heap SIIUCHUNE i ittt e 84
83 The ProCeSS RECOM ...\ttt et et e e et e e e e 85
84 B Lo L= =T 1 o 86
85 DO SV O BIOCK . . . ot ettt ettt et e et e e e e e 88
91 Abnomal Termination Dump(2Sheets) 95
92 Link Map of Example Program(2Sheets)coo i 97
93 Unformatted Abnormal Termination Dump(3Sheets).o i 910
94 Example HEap RegioNn e 314
95 Show Pascal Stack (SPS) Display oot e 924
xvi 2270517-9701

Contents

Figure Title Page
1041 Example Program Using Procedure KEYSFILE, 10-17
10-2 Semaphore EXamMpPIeot e 10-36
1141 Stack Frame StrUCIUIEottt e ettt anaaa e 112
11-2 Assembly Language Routine Example 116
11-3 Structure of a Standard Category Routineatleveln..................ooiiiiiit. 117
121 Interfacing TIPand TIFORM (2Sheets)co it iiiii e 123
122 Linking TIPand TIFORMo e 124
123 Interfacing TIP and DBMS-990(BSheets)coovimriniiiiiiiiiin 126
124 Linking TIPand DBMS-990ottt 12-12
125 Interfacing TIP and Query-990(3Sheets) 12-13
126 Linking TIPand QUEry-990o ittt 12-16
12-7 TIP Interfacing With Sort/Merge to Input and Output Files From Disk 1277
12-8 TIP Interfacing With Sort/Merge to Input and Output Files From
Calling Task (3Sheets)ttt 12-19
12-9 Linking TIPand Sort/Merge i 12-22
13-1 RASS Listing Example e 13-2
Tables
Table Title Page
1-1 Command Prompt Notation i 14
3-1 Files Required for Program Development oot 3-2
4-1 Nester Optionsttt i it i i 4-3
4-2 L =L = (ot S T 4-12
5-1 Files Required by the Compiler Tasks, 5-2
6-1 SyStemM Flagsoiiiiiiiiiii 6-29
6-2 Files Required for CONFIG ot 6-42
71 Run-Time Routines Not Sharable Between SCland LUNOTasks 7-12
7-2 TIPRUN-TIME LIDranest i i et it e e e 7-14
9-1 Miscellaneous Run-Time Routinesc. .ttt iiiiiininnennennn 9-33
10-1 KEYSFILE Command Codescuiiiinininerarnenenanentnneaennn 10-9
10-2 Parameters Used in KEYSFILECommands 10-13
10-3 KEYSFILE Status Codesciiiitetiii et 10-15
104 Device TyPe CodBSc.iiin ittt e 10-24
12-1 TIP Entry Points to TIFORM Routines, 12-2
2270517-9701 xvii/xviii

Introduction

Introduction

1.1 GENERAL
This section provides an overview of the Texas Instruments DNOS operating system and the process of
program development using the Tl Pascal (TIP) programming language. During the preparation of this
manual, some assumptions have been made for the sake of a clear presentation. You, the user, are assumed
to have a running DNOS system with the System Command Interpreter (SCI), a video display terminal
(VDT) in VDT mode, and a valid user ID and passcode. The terminal mode is typically set by a system
manager at the installation. In VDT mode, all command prompts appear on the VDT screen at once; in
TTY (teletype) mode, only one command prompt appears at a time. Usually, the system manager assigns
your user 1D and passcode, which are used to log onto the system.
1.2 DNOS OVERVIEW
DNOS is a general-purpose, multitasking operating system that operates with the Ti 890/10, 990/10A,
and 990/12 minicomputers. It is a versatile, disk-based operating system that supports a wide range of
commercial and industrial applications. As a multiterminal system, DNOS can support several users, each
of whom appear to have exclusive control of the system. DNOS includes the following features and
capabilities:

e High-level language support (including TIP and COBOL)

s Job-level and task-level operations to facilitate the use of system resources

. Foreground, background, and batch processing

s A text editor

. An optional accounting function to collect and store resource utilization data

. A macro assembler

e A file management package that supports key indexed, sequential, and relative record files

e Qutput data spooling

U Interprocess (task-to-task) communication (IPC)

. Productivity tools for data base management, video display forms design, Query, and Sort/Merge
operations

2270517-9701 1-1

Introduction

To operate the system, you can use a terminal to enter commands that are interpreted by SCI, or you can
interact directly with application programs. As a result of the wide range of support functions, together with
the available hardware, DNOS is well suited for both large-scale and smail-scale applications. The DNOS
Concepts and Facilities Manual (see the Preface) contains a more detailed overview of DNOS.

1.3 A TIP PROGRAM DEVELOPMENT OVERVIEW

TIP programs are usually entered into the computer via the interactive Text Editor. The program is calied
source code at this point, and the file created with the Text Editor is the program source file. (Programs
prepared on external media, such as punched cards, may be read into the computer if the necessary
peripheral devices are available.) At your option, a source file may be run through the Nester utility to
improve the program's readability and to do a rapid check of the syntax. The Nester output is the source
code indented on a standard format, emphasizing the inherent biock structure of TIP. Either the original
(text edited) source file or the nested source file serves as input to the TIP compiler.

The TIP compiler consists of six separate tasks, or stages. Together, these tasks detect syntax errors
and semantic errors in the source code, translate the source code to object code, perform optimization
functions, write the object code to an object file, and write a source code listing with errors to a listing
file. When a program has been compiled without errors, the object file (output from the compiler) becomes
the input file for the Link Editor.

The Link Editor ties program segments together with a TIP run-time library of standard procedures,
producing linked object code. The linked object code may be output as an executable program and automat-
ically installed on a program file.

The next step is to execute the program and debug it. Although good design and initial coding can minimize
the time spent debugging, this is often the most time consuming phase of program development. If errors
occur in the program, use the tools in the system Debugger to identify them. Correct the program at the
source code level, and then compile and link it again to produce a working program.

1.4 COMMAND FORMAT AND NOTATION

This manual uses a standard format and notation to describe system commands. The notation reflects
the conventions used in the DNOS System Command Interpreter (SCI) Reference Manual. Each command
description shows the command keyword (usually an abbreviation of the command function) and the full
command name along with any associated command messages or prompts. The following paragraphs
explain these components.

1-2 2270517-9701

Introduction

1.4.1 Command Name

The command keyword represents the full command name. For example, Show Date and Time is a
command name, and the command keyword is SDT. You enter SDT and press Return to execute the
Show Date and Time command. The system responds by displaying the following:

SHOW DATE AND TIME
13:48:30 WEDNESDAY, JANUARY 25, 1984.:

Since this command includes no command prompts, the command executes without further user interaction.

1.4.2 Command Prompts

Upon entry of a command, the system displays the full name of the command and any associated command
prompts. The prompts provide you with information and request responses from you to complete the ex-
ecution of the command. Respond to the prompts as required. For example, when you enter the Show
File (SF) command, the cursor appears after the FILE PATHNAME prompt. The system waits for you to
enter a file pathname, such as .MYFILE. (A pathname is a character string that indicates a path to a resource
such as a file, channel, or device.) Following your response to the first prompt of a command, press the
Return key. The cursor moves to the field following the next prompt (if one exists) and awaits your response.
After responding to the last prompt, press the Return key to activate the command. To cancel the com-
mand at any time, press the Command key.

1.4.3 Type of Response Expected

For each command prompt, a response of a given type is expected. In the remainder of this manual, the
expected response type is shown after each command prompt. For example, in the SF command, the
expected response type for the first (and only) prompt is a pathname:

{1 SsF
SHOW FILE
FILE PATHNAME: pathname

1.4.3.1 Initial Values. To help you respond to the prompts, the system sometimes displays an initial
value automatically after a prompt or provides a default value. An initial vaiue is a value that the system
automatically displays as a response to some command prompts. You can accept an initial value by pressing
the Return key, erase the initial value by pressing the Erase Field or Skip key, or replace the initial value
by entering a different value. .

The initial values for some prompts are fixed. For these prompts, the same initial value always appears.
In other cases, the system saves a value entered with a command and displays it as an initial value for
a later entry of the same command or for the entry of a related command. Some variable initial values
are also saved from one terminal session to another.

1.4.3.2 Default Values. A defauit value is a value that the system automatically supplies as the response
to a prompt when you do not enter a value. Often, the system provides defauit values to speed up the
entry of responses to command prompts. This is especially true for optional user responses. To use the
defauit value for a command prompt (where a defauit value exists), press the Return key without entering
any other data. Such an entry is cailed a null entry.

2270517-9701 ’ 1-3

Introduction

1.4.4 Notation Symbois

Notation symbols, as shown in Table 1-1, enclose certain prompt responses in the command descriptions
to help explain how the response is to be entered.

Table 1-1. Command Prompt Notation

Notation Meaning
Uppercase Enter the response as listed.
Lowercase Enter a response of this type.

No marks The response is required.

[1 The response is optional.

{} The response must be exactly one of the enclosed items or must
be a type of one of the enclosed items (choices are separated
by a slash).

item. . .item More than one item of this type may be entered in response to
the prompt. ltems should be separated by commas.

@ Synonyms or logical names are allowed as responses (synonyms

()

and logical names are described in Section 2).

Represents the initial value. if (*) is shown, the value may be
supplied from a synonym set by a previously used command. If
a list is supplied in a form other than interactively (batch mode
or a command calling a command), the list must be enclosed in
parentheses.

1.5 SYNTAX NOTATION

The syntax of a programming language describes the form that a legal program in that language can take.
in TIP, the syntax can be expressed concisely by either syntax diagrams or by the more traditional Backus-
Naur Form (BNF), sometimes called Backus-Normal form.

14

2270517-9701

Introduction

1.5.1 Backus-Naur Form (BNF)

In BNF, each element of the language is defined by means of an equation-like rule called a production.
The entity being defined is written to the left of the symbol :: = and the definition is written to the right
of that symbol. The definition can be expressed in terms of language elements defined by additional
. productions. The following symbols are used in writing definitions:

Symbol Purpose
t= Writes productioﬁs; means “is defined to be”
< > Encloses nonterminal symboils (i.e., entities defined by a
production)
[] Encloses optional entities

| Represents alternatives (e.g., A | B | C means A or B or C)

NOTE

Both brackets ([]) and braces ({ }) are used in TIP as terminal symbols.
When used in BNF productions to specify terminal symbols, the brackets
and braces are enclosed in quotation marks.

An identifier may be defined as follows:

<identifier> 1= <letter> { <id character> }

<id character> = <letter> | <digit> | __(underscore)
<letter> := A|B|C|D]|...|Z]|$

<digit> = 1|2|3|4|5|6|7|8|9]|0

In this manual BNF productions specify the language syntax. Syntax diagrams supplement the BNF
productions to illustrate the syntax of TIP declarations and statements.

1.5.2 Syntax Diagrams

A syntax diagram is a directed graph with a singie input edge and a single output edge. The graph represents
a syntax rule. Any possible path from the input edge to the output edge corresponds to an application
of the syntax rule. Figure 1-1 shows the symbols that appear in syntax diagrams and provides an example
of a syntax diagram for an identifier.

2270517-9701 1-5

Introduction

Identifier:
———i[:EEEEEE: — LETTER
=+
/
REPRESENTS RESERVED WORD BEGIN
@ REPRESENTS A SEMICOLON
LETTER REPRESENTS NON-TERMINAL SYMBOL LETTER OR §

2277725
Figure 1-1. Syntax Diagram Symbols

1.6 CHARACTER SET

The TIP character set consists of the letters A through Z, the digits 0 through 9, and the following special
characters:

+=1" =t <>()[1{}#h@7 8

Lowercase letters.can be used on VDT's and other devices that have both uppercase and lowercase letters.
However, the TIP compiler translates these letters to uppercase. Consequently, the reserved word BEGIN
can be entered as BEGIN, Begin, or begin. Also, identifiers MYPROG, Myprog, and myprog are not unique.
The compiler processes any one of them as if it were MYPROG.

1-6 2270517-9701

Introduction

The characters are used to form symbols that have a fixed meaning in the language. Some of these special
symbols are used for operators and delimiters:

+ -2 =<>< <=>= >0, 4@ ?

NOTE
To delimit array indices and sets, (..) may be substituted for []. To delimit

comments, (**) may be substituted for {}. To identify pointers, @ may be
substituted for A.

2270517-9701 1-711-8

2

DNOS Concepts and Environment

2.1 INTRODUCTION

This section provides an overview of DNOS and describes some important system capabilities. Aithough
some of these capabilities are not used in program developaent, they are included to familiarize you with
the major system features and concepts. This section includes references to other documentation for more
detailed discussion of some topics.

2.2 JOB STRUCTURE

DNOS uses a structure of jobs and tasks to perform the functions of a multitasking operating system. This
job structure facilitates effective resource usage and subsystem isolation.

A job is a collection of cooperating tasks (programs) initiated by command procedures or from within an
executing program. When you log on at a terminal, an interactive job begins. This job is associated with
the terminal that started it. When you initiate a batch job, that job is not associated with any particular terminal.

At each terminal, it is possible to have one foreground task and one background task concurrently active
in the interactive job. Any number of jobs can be created as batch jobs.

2.2.1 Interactive Jobs

An interactive job can include tasks operating in the foreground, in the background, or both. A foreground
task can accept data or commands from the terminal as the task operates. However, a background task,
although initiated from the terminal, executes without interaction with the terminal until the task is finished.
Consequently, you can start a task (for example, updating a data base) in background mode and perform
other activities (such as data collection) in foreground mode while the background task is active. When
complete, the background task returns a message to the terminal, indicating completion.

Commands entered from interactive terminals are entered in foreground mode. The operating system
responds by displaying the appropriate command prompts. Enter the required information. The task now
begins execution. While the task executes in foreground, SCI is suspended to avoid interference. User
interaction now occurs directly with the foreground task. The DNOS System Command Interpreter {(SCI)
Reference Manual describes the commands used to initiate tasks in all modes.

2.2.2 Batch Jobs

Batch jobs use SCI to process batch commands. In the batch mode, SCI accepts commands from any
sequentially oriented device (typically a disk file of commands) but not from a terminal. Commands sub-
mitted in a batch command stream must include all parameters required for the operation. Also, the
commands included must be suitable for execution in the background mode. Commands that initiate opera-
tions requiring user interaction (for example, text editing and debugging commands) are not permitted.

2270517-9701 2-1

DNOS Concepts and Environment

2.3 USING SCI

The following paragraphs discuss the use of SCI. The DNOS System Command Interpreter (SCI) Reference
Manual contains complete descriptions of SC! commands, pius procedures for creating new commands
and menus.

2.3.1 SCI Description

SCl! is the interface between you and the operating system, system utilities, the software development
programs, and application programs. Application programs can interface with you through user-defined
SC! commands and menus.

You can use SCl to activate programs and to pass parameters to the programs during execution. SCI also
allows you to build and maintain tables of variables, called synonyms and logical names, and their values.
SCI allows application programs to access these variables for use in the programs.

To execute an application program via SCI, you can use predefined execution commands such as Execute
Task (XT), Execute Fortran Task (XFT), Execute COBOL Task (XCT), and Execute Pascal Task (XPT) or
you can write your own SC! command to initiate a program. You can add user-defined commands to the
system library, or you can group them in a separate command library. The .USE primitive (described in
the DNOS Systems Programmer’s Guide allows you to specify which command library SCI should use.

You can enter SC! commands from interactive terminals or in batch command streams. In respanse to
commands entered interactively, SC! displays command prompts associated with the command.

When all required prompts have been properly answered, SCI interprets the responses and initiates the
requested operation.

2.3.2 Entry of SCl Commands in VDT Mode

To enter an SCI command in VDT mode, type the characters (in uppercase letters) of the command and
press the Return key. If you set the lowercase option with the .OPTION primitive, you can use either upper
or lowercase characters. Upon entry of a command, SCI displays the full name of the command entered
and all the field prompts associated with the command. Field prompts provide information and request
parameters to complete command execution. For example, the following field prompt requests that you
identify an output pathname:

OUTPUT PATHNAME :

2.3.3 Examples of Using SCI
The following paragraphs contain examples of specific uses of SC! commands. Consult the DNOS System
Command Interpreter (SCI) Reference Manual for a complete discussion of the SCI commands.

2-2 2270517-9701

DNQS Concepts and Environment

2.3.3.1 The Show Background Status (SBS) Command. Use the SBS command to view the status of
a program that is currently executing in background mode and that was initiated from your terminal. Since
this command has no associated prompts, the command executes immediately after you enter SBS and
press the Return key. A message indicating the state of the background activity appears, as follows:

L1 ss.s
SHOW BACKGROUND STATUS

I STATUS-1217 TASK IS ACTIVE

2.3.3.2 The List Directory (LD) Command. Use the List Directory command to list the names of ali
files and subdirectories in a directory. The display for this command is as follows:

Ciuo

LIST DIRECTORY
PATHNAME: pathnamed
LISTING ACCESS NAME: [pathnameal

In response to the prompt PATHNAME, enter the pathname of the directory whose file names and sub-
directory names will be listed. The @ indicates that the pathname can be specified by a synonym.

In response to LISTING ACCESS NAME, enter the pathname of the device or file to which the listing should
be written. The brackets (] indicate that the response is optional. The default value is the terminal at which
the command is entered. A null response (pressing Retumn while the cursor is in a blank field) causes the
default value to be accepted. In the following case, the directory SYS2.DP0080 is listed to the terminal from
which the command was executed.

2270517-9701 2-3

DNQOS Concepts and Environment

(SR
LISTDIRECTORY

PATHNAME: SYS2.DPQ080
LISTING ACCESS NAME:

DIRECTORY LISTING OF: SYS2. DP0080

MAX # OF ENTRIES: 101 # OF ENTRIES AVAILABLE: 78

DIRECTORY ALIAS OF ENTRIES LAST UPDATE CREATION

ML * S 05/30/80 13:44:48 03/17/80 12:51:06

TIP * 11 05/07/80 12:02:20 02/11/80 16:44:21
FILE ALIAS OF RECORDS LAST UPDATE FMT TYPE BLK PROTECT
BATCH * 24 06/03/80 08:16:56 BS N SEQ YES
cosoL * 3550 05/30/80 14:06:46 NBS N SEQ YES
DATA * 17 05/07/80 15:31:57 BS N SEQ YES

16:21:50 TUESDAY, JUN 03, 1980.

2.3.4 Batch Use of SCI

To use SCl in a batch mode through batch streams, use the Execute Batch (XB) command; or through
a batch job using the Execute Batch Job (XBJ) command. The XB command starts a background task
that is associated with your terminal. XBJ starts a new job, not associated with a terminal.

The following paragraphs discuss the characteristics of batch SCI and the differences in format between
batch commands and commands entered interactively.

2.3.4.1 Batch Stream Format. The first and last commands of a batch stream should be the BATCH
and EBATCH commands, respectively. The BATCH command initiates the batch SCI environment. EBATCH
indicates that the batch stream contains no more commands to be processed by SCl.
Upon normal completion of the batch stream executing in background mode, the following message appears:
BATCH SCI HAS COMPLETED
2.3.4.2 Batch Command Format. When supplying SCI commands in batch stream format, include the
following information for each command:
. The characters of the command

. All required prompts associated with the command

. The parameter values (responses) for the command prompts

2-4 2270517-9701

DNQS Concepts and Environment

The following demonstrates the Execute Link Editor (XLE) command in both interactive and batch form.
(Refer to the DNOS Link Editor Reference Manual for a complete description of the XLE command.)

Interactive Format. When you enter XLE interactively, the following prompts appear:

[] XLE

EXECUTE LINK EDITOR
CONTROL ACCESS NAME: pathnamed (*)

LINKED QUTPUT ACCESS NAME: [pathnamedl (*)
LISTING ACCESS NAME: [pathnameal (*)
PRINT WIDTH (CHARS): [integerl 80

PAGE LENGTH: 59

To execute the command, respond to the CONTROL ACCESS NAME prompt by specifying the pathname of
the file or device from which the control stream is to be read. Then, either specify values or accept the
default values for the remaining prompts. If the control stream is contained in directory .M, file . CONTROL,
the linked output is to be written to directory .M, file .OBJECT, the link editor listing is to be written to direc-
tory .M, file .LIST and an 80 character line is acceptable, respond as follows:

(] XLE

EXECUTE LINK EDITOR
CONTROL ACCESS NAME: .M.CONTROL
LINKED OUTPUT ACCESS NAME: .M.OBJECT
LISTING ACCESS NAME: .M.LIST
PRINT WIDTH (CHARS): 80
PAGE LENGTH: 59

Batch Format. To execute this command in a batch stream, include the characters of the command, all

required and any optional prompts that are specified, and the responses to those prompts. The following
batch command is equivalent to the interactive version shown previously:

XLE CONTROL=.M.CONTROL, LINKED OUTPUT=.M.0BJECT, LISTING=.M.LIST

Notice that the default value for the PRINT WIDTH (CHARS) and PAGE LENGTH prompts are accepted by
omitting them from the batch command. Also, you can use abbreviated versions of the specified command
prompts. The abbreviation must be sufficient to uniquely identify the prompt. Often, only the first character
of acommand prompt need be entered. For example, the following is equivalent to the previous example:

XLE C=.M.CONTROL, LO=.M.0BJECT, LIST=.M.LIST

2270517-9701 2-5

DNOS Concepts and Environment

A batch stream consists of one command or a series of commands in this format when preceded by the
BATCH commang and followed by the EBATCH command. The file containing the batch command stream
is the input file for the XB and XBJ commands. Consult the DNOS System Command Interpreter (SCI) Refer-
ence Manual for more information on batch command construction and batch capabilities.

2.3.4.3 Interactive Execution of Batch Streams and Batch Jobs. Use the XB command to execute
batch streams as background activities from an interactive job. After you enter the XB command and the
batch stream begins execution, you can continue to execute SCI commands in foreground mode. After the
batch stream completes, the completion message appears the next time you press the Command key. To
monitor batch stream execution, you can enter the Show Background Status (SBS) command from time to
time or use the WAIT command. Also, you can use the Show File (SF) command to view the listing file for
the batch stream during the run.

An example of the XB command is as follows:

{1 x8

EXECUTE BATCH
INPUT ACCESS NAME: pathnamed
LISTING ACCESS NAME: pathnamed

The INPUT ACCESS NAME is the pathname from which DNOS should read the batch command stream.
The LISTING ACCESS NAME is the pathname of the device or file to which DNOS should write the results
of the batch stream execution. This device or file must not be used by any command in the batch command
stream.

The XBJ command allows you to execute a batch SC! job independent of a terminal. Consequently, you can
continue to execute SCI commands in foreground or background mode. The DNOS System Command
Interpreter (SCI) Reference Manual contains a description of the XBJ command. The XBJ command is very
similar to the XB command if you start the batch job at your local site with your own user ID.

2.3.4.4 Entering Programs From Sequential Devices. You can use any sequential file of program
source code for input to the compilers or assembler. If necessary, copy source code that has been key
punched on a card deck to a sequential disk file. Program source code, entered by the Text Editor or Copy
Concatenate (CC) command, can be read from devices. An example using the CC command to copy the
source code from cards to a disk file is as follows:

glcc

COPY/CONCATENATE
INPUT ACCESS NAME(S): CRO1
QUTPUT ACCESS NAME: .USER.SOURCE
REPLACE?: NO
MAXIMUM RECORD LENGTH:

2-6 2270517-9701

DNOS Concepts and Environment

2.4 DIRECTORY AND FILE STRUCTURE

DNOS file management allows you to build, organize, and access directories and files. A file consists of
a named collection of data. The data in the file can be generated by you (for example, source code or
documentation) or by the system (for example, object code or listing files). A directory is a relative record
file that contains the information necessary to locate other files and describes the characteristics of those
files. It does not contain user data.

2.4.1 Establishing Volume Names
Volume names are alphanumeric character strings of as many as eight characters that identify the disk
on which a file is found. The first character of a volume name must be an alphabetic character. For example,

VOL1 could be the volume name of a disk.

The Initialize Disk Surface (IDS) command prepares the disk surface for initialization by the Initialize New
Volume (INV) command. The IDS command must be performed prior to the first INV command. It is not
necessary to perform another IDS before any further initializations of the disk.

The INV command assigns volume names to disks. Once a volume is initialized by an INV command, all
access to files on that volume must include the volume name in the pathname or access name, unless
the volume is the system disk, or unless a device is specified.

One disk drive on each system (usually DS01) is designated to hold the system disk. The system disk contains
all required operating system components, including the loader program, system program files, and
temporary system files. The system disk is the default volume when no volume name is specified. For
example, .PROOF designates a file named PROOF on the system disk.

2.4.2 Establishing Directories

Each disk volume has a file directory named VCATALOG, where DNOS maintains a volume table of contents.
The files described in VCATALOG are data files or directory files (Figure 2-1).

2270517-9701 2-7

DNQS Concepts and Environment

VCATALOG
DIRECTORY

LEVEL 1=> USER USER SYSTEM SYSTEM
FILES DIRECTORIES FILES OIRECTORIES

USER USER
FILES DIRECTORIES

l

LEVEL 2->

- USER USER
LEVEL 3 FILES DIRECTORIES

LEVEL N=>

2277726

Figure 2-1. Directory and File Structure

DNOS directories contain the names of and pointers to other files. Directories do not contain user data.
Typically, related files are contained in a directory. Directories can also contain subdirectories. Both direc-
tories and subdirectories are created by the Create Directory File (CFDIR) command. A subdirectory can
be created under a directory only after the directory has been created. For example, subdirectory
VOL1.SOURCE.PROGRAMA can not be created unless directory VOL1.SOURCE already exists.

it is convenient to group related files into a single directory. For example, all source files for a program

might be in a directory named VOL1.SOURCE.PROGRAMA. All listings generated from assembly or

compilation of source modules for this program might be in a directory named VOL1.LISTING.PROGRAMA.
b

Do not assign file names that might be confused with DNOS system file names. Most system file or direc-
tory names begin with S$.

2.4.3 Establishing Files
After initializing a disk volume and creating directories and subdirectories, you can create files that are
accessible either under the volume or under a directory or subdirectory. The following commands are
available to create files:

e Create Key Indexed File (CFKEY)

e Create Relative Record File (CFREL)

e Create Sequential File (CFSEQ)

2-8 2270517-9701

DNOS Concepts and Environment

e Create Program File (CFPRO)
. Create Image File (CFIMG)
e Create File (CF)

The CF command requires the subsequent selection of a file type. These commands are described in
detail in the DNOS System Command Interpreter (SC!) Reference Manual.

2.5 PATHNAMES AND ACCESS NAMES

A file on a disk volume is referenced by its pathname. A pathname is a concatenation of the volume name,
names of the directory levels leading to the file (excluding VCATALOG), and the file name itself. Each
component of a pathname cannot exceed eight characters in length. A complete pathname must not exceed
48 characters, including the periods used to separate directories, subdirectories, and files. The components
of the pathname are separated by periods, as in the following examples:

VOL1.AGENCY.RECORDS
MYDIRECT.MYDIRCTA.MYFILE
VOLTWO.DEB
EMPLOYO1.USRA.PAYROLL
EMPLOYO1.USRB.CATALOGX.PAYROLL
An access name may be a device name, volume name or file pathname. For device names, you must use

certain default names (except for special devices). Example device names include ST02 for terminal number
2, LPO1 for line printer number 1, and DSO03 for disk number 3.

You can reference a volume on which a file resides through either the device name or the volume name.
Omitting the volume name and beginning the pathname with a period indicates that the file is on the system
disk. Samples of valid names for devices and files are as follows:

File Identifier Meaning
DSo1 Device name
DS02.MYCAT.MYFILE Device name, directory name, file name
.MYCAT.MYFILE System disk, directory name, file name
VOLID.MYCAT.MYFILE Volume name, directory name, file name

When you use DNOS in a network of DNOS systems, you can access files and devices at any site in
the network by using a site name and a colon as the first part of the access name. For instance, to use
LPO2 at a site named Dallas, you can specify DALLAS:LP02. To access the file DS02.SSNEWS at a site
named Dallas, you can specify DALLAS:DS02.S$NEWS. The 48 character limit for file names includes
the site name if you specify one.

2270517-9701 2-9

DNOS Concepts and Environment

2.6 SYNONYMS AND LOGICAL NAMES

DNOS supports use of synonyms and logical names for I/O resources. Synonyms are used to abbreviate
long text strings. Logical names are used to abbreviate resource names, define resource access, and pass
parameters associated with the resource (devices, files, or channels).

2.6.1 Synonyms

DNOS supports use of synonyms for I/O resources. Synonyms are abbreviations of one or more characters
in length that are commonly used in place of long pathnames or portions of pathnames. These synonyms
are always available to foreground tasks. Background tasks receive a copy of the foreground synonyms
when the background task is initiated. At terminals requiring log-on, user-defined synonyms are associated
with that user’s ID and are available whenever the user logs on at any terminal. Use the Assign Synonym
(AS) and Modify Synonym (MS) commands to define synonyms and to modify defined synonyms.
When you enter a synonym in response to an SCl command prompt, the synonym is replaced by the actual
text string.

When an SCI command is executed in foreground mode, you can use a synonym only as the first or only
component of a pathname (device name or file name). For example, if A is a synonym for directory
VOL1.SOURCE and B is a synonym for PROGRAMA in that directory, A.PROGRAMA is an acceptable
file name. However, VOL1.SOURCE.B or A.B is not acceptable. Refer to the DNOS System Command Inter-
preter (SCI) Reference Manual for use of synonyms in batch streams in the background mode.
2.6.2 Logical Names
A logical name is a user-specified, alphanumeric string of up to eight characters. Programs use logical
names to access /O resources. An /O resource can be a device, an IPC channel, a file, or a set of concate-
nated files. You have the option of assigning a LUNO to a logical name that maps to an access name.
(A LUNO is alogical unit number that represents a file or device; see paragraph 2.8.4.)
Since each logical name is associated with a set of parameters (the set assigned to the corresponding
I/0 resource), logical names provide a means of passing the parameters assigned to a given resource.
Use the Assign Logical Name (ALN) command to specify values for these parameters. The DNOS System
Command Interpreter (SCI) Reference Manual contains a detailed description of this command.
Some examples of the types of parameters associated with logical names are as follows:

. File characteristics

] Access privileges

. Spooler information

. File creation

e Auto-generate pathname

e Job temporary files

2.7 FILE TYPES

DNOS supports the following file types: sequential, relative record, and key indexed.

2-10 2270517-9701

DNOS Concepts and Environment

- 2.71 Sequential Files

Sequential files are variable-record-length files whose records are always read, written, and accessed serially
(that is, record 0 must be accessed first, record 1 must be accessed next, and so on). Some examples
of using sequential files are as follows:

e As an input file for card images. If a logical record length of 80 is specified, the sequential
file can be treated as a card reader by the program reading the file.

e As an output file. In this function, the file can resemble the line printer.
e As a location for listing files from DNOS processors.

2.7.2 Relative Record Files

Relative record files are also called random access files. Unlike sequential files, relative record files may
be accessed in any order. Each record has a unique record number, which you specify to access that
individual record. The operating system increments the caller’s record number after each read or write
so that sequential access is permitted. One end-of-file (EOF) record is maintained wherever it was last
specified by a program. The range of record numbers is from O to one less than the number of records
in the file. The maximum number of records in a relative record file is 2 to the 24th power. The records
are fixed in length, and the length must be specified during file creation.

Relative record files are useful when each record in the file is already associated with a unique value ranging
from O to n. For example, in an inventory file, the item number can be specified as the record number.
Consequently, information about item number i can be obtained by accessing record number i.

Special types of relative record files available in DNOS are directory, program, and image files. These files
provide special interface mechanisms that are used primarily for memory images, memory swapping, and
diagnostic dumps.

. Directory Files — Contain names of and pointers to other files
. Program Files — Contain program images and an intemal directory of the images

. Image Files — Special-purpose files used primarily by the operating system for memory images,
memory swapping, and diagnostic dumps

2.7.3 Key Indexed Files :
A key indexed file (KIF) allows random access to its records via a key. The key is a character string of
up to 100 characters, located in a fixed position within each file record. From 1 to 14 individual keys may
be specified. For example, the records in an employee file might be accessed by keys that indicate the
employee’s ID, name, and social security number.

Keys can overlap one another, with certain restrictions, within the record. Aithough the keys can be struc-
tured anywhere within a record, they must appear in the same relative position in all records in the file.
One key must be specified as the primary key. The other keys are secondary keys. The primary key must
be present in all records, but secondary keys are optional.

2270517-9701 2-11

DNQOS Concepts and Environment

In addition to supporting random access, KiFs include the following characteristics:
. Records can be accessed sequentially in the sort order of any key.

. At file creation, any key can be designated as allowing duplicates. This means that two or more
records in the file can have the same value for this key.

e At file creation, any key except the primary key can be designed as being modifiable. This means
that when a record is being rewritten, the key value may change. Aiso, a secondary key value that
is missing in the record can be added later on a rewrite.

. Keys can overlap.

. Records can be of variable length and can change in size on a rewrite.

. Searching on partial keys is allowed.

o Records.are automatically blank suppressed.

. Record-level locking is supported.

¢ The size of the file can increase.

. File integrity is maintained through pre-image logging of modified blocks. Before a record is
modified on disk, it is copied to a backup area in the file overhead area. Consequently, system
failures cause the loss of only the last I/O operation.

. Records of odd or zero length are not allowed.

2.7.4 Concatenated and Multifile Sets

Sequential and relative record files can be logically concatenated by setting the values of a logical name to
the pathnames of a set of files. Logical concatenation allows access to the set of files, in sequence, without
physically concatenating the files. (When required, physical concatenation can be performed by the Copy/
Concatenate SCI command.) A multifile set is a set of key indexed files, the pathnames of which are the
values of a logical name. The files in the set are associated in a nonreversible manner. individual compo-
nents of concatenated and multifile sets can be on separate disks.

Several restrictions apply to the concatenation of files. The files must be the same type and may not be
special use files such as directories, program files, key indexed files, or image files. Relative record files

to be concatenated must have the same logical record size. A concatenation can not contain both blocked
and unblocked records, and any LUNO assigned to a file must be released before concatenating the file.

2-12 2270517-9701

DNQS Concepts and Environment

The following special rules apply to combining key indexed files in a multifile set:

. At the first definition of the multifile set, all but the first file must be empty.

None of the files can be a member of an existing multifile set.
e All of the files must have the same physical record size.

* The files must have the same key definitions. In subsequent definitions of these sets, the same
files must be associated in the same order, and none of the original set can be omitted. One
empty file can be added at the end (but not at any other position).

. You cannot use key indexed file operations to individually access key indexed files of a muitifile
set. You can access these files only by using operations that examine physical record or abso-
lute disk addresses.

The muitifile set of key indexed files permits a larger key indexed file than one disk can store. When a key
indexed file can no longer expand because there is insufficient space on the disk, you can create a new file
on another disk. By using a logical name, the two files can be used as one. The second file is used as an
extension of the first. For example, assume that the first file contains 5000 physical records. When physical
record 5001 is required, the first physical record of the second file, record 0, is used.

Only a few of the file utility operations of the I/O operations SVC apply to concatenated and muitivolume
sets. They are as follows:

Code Operation
91 Assign LUNO
93 Release LUNO
99 Verify Pathname

The Assign Logical Name (ALN) SCI command associates files collectively with a logical name. Actual logi-
cal concatenation or creation of a multifile set occurs when a LUNO is assigned to the logical name. A con-
catenated file can be accessed only for the duration of the logical name. You must specify the files in the
concatenation order desired. Files can be specified by pathname, synonym, logical name, or a logical name
and pathname combination. However, all forms must resolve to valid pathnames. All files in the concatena-
tion or multifile set must be precreated and online when the logical name is used.

The last file in a concatenation set can be expandable. All other files become nonexpandable until the logi-
cal name is released or the job terminates.

When a single end-of-file mark appears at the end-of-medium, the end-of-file is masked. This allows con-
catenated files to be accessed logically as a single file without the hindrance of intermediate end-of-file
marks being retumed. Note that any intermediate end-of-file mark not at the end-of-medium is always
returned. If two end-of-file marks are encountered at the end-of-medium, a single end-of-file is returned.

Several users can access the same concatenated or multifile set if the access priviledges permit. Two con-
catenated files are identical when they consist of the same pathnames in the same order. To maintain file
integrity, an error is retumed if any of the precreated files of a concatenated file are being accessed indepen-
dently. A concatenated file is deleted by deleting the individual files.

2270517-9701 2-13

DNQOS Concepts and Environment

2.8 FILE SECURITY

In a DNOS system that has been generated with the file security option, there are two factors that affect
how you can access a file. These factors are the access groups to which you belong and the access rights
for those groups for any particular file you wish to use. The DNOS Security Manager’s Guide describes
how to set up a secure environment. In most cases, your security manager will determine what access
groups exist in your environment and will assign you to one or more access groups. The security manager
or some other access group leader may also be responsible for determining which files have what access
rights for particular groups.

The commands for creating access groups and allowing various groups to access particular files can be
available to you or they can be restricted to the security manager or some select group of users. The
access rights to the command procedures, in addition to their privilege level, determine who can use which
commands.

While using the commands, if you have file security, you will need the appropriate access to files you
manipulate with the commands. The access rights availabie are read, write, delete, execute, and control.

In general, the read access right is needed for a file accessed by a command if that command shows
data in the file or examines the file for input. For example, the Show File (SF) command requires that
you have read access to the file being shown. If you do not have read access, you will receive an error
message from SF. : .

The write access right is needed for a file accessed by a command that modifies or updates a file. For
example, the Append File (AF) command requires access to the file used for OUTPUT PATHNAME. AF also
requires read access to the files used as INPUT ACCESS NAME(S).

If you issue a command that deletes a file, you must have the delete access right to that file. Delete File
(DF), for example, requires that you have delete access to the file(s) specified for PATHNAME(S). Since
the text editor replaces an existing file with a new one, you need delete access to the file specified for
FILE ACCESS NAME if you are replacing that file when using the Execute Text Editor (XE) and Quit Editor
(QE) commands.

A command that executes a task from a program file requires that you have the execute access right for that
program file. The Execute Task (XT) command, for example, requires that you have execute access to the file
specified for PROGRAM FILE OR LUNO.

The control access right is required for any command that changes the access rights to a file. If you want
to use the Modify Security Access Rights (MSAR) command, for example, you must have the control access
rights to the file specified for FILE NAME.

The DNOS SC! Reference Manual describes the security commands. It also points out unexpected security
implications for various SCl commands.

2-14 2270517-9701

DNOS Concepts and Environment

2.9 1/0 FACILITIES

I/0 resource management in DNOS allows a program to request resources dynamically during execution.
When a resource is requested but is not available, the program or the user is notified immediately. The
request for resources is not queued and the program is not suspended. This allows the program to either
abort or retry the request, thereby avoiding a deadlock situation.

1/0 resources are allocated to programs according to access privileges that the program requests when
issuing an open operation. If the requested privilege is compatible with previously granted requests, the
open completes without error. The program is then guaranteed the type of access requested (exclusive,
exclusive write, shared, or read only).

2.9.1 /0 Methods
DNOS supports I/0 operations to various types of devices, files, and IPC channels, all of which are re-
ferred to as |1/0 resources. DNOS also supports communication between programs using IPC channels.

Two methods of I/0 are available: resource-specific and resource-independent. Resource-specific I1/0 uses
special features of one particular device or file. Resource-independent I/O allows the user to specify 1/0
for any of several devices without concern for special features. Both types of I/O allow a program to interact
with predefined devices, files, and channels. The interaction occurs through the use of LUNOs.

29.1.1 Resource-Specific /0. Resource-specific /O operations assume device, channel, or file pecu-
liarities. For example, activating the graphic capability on a VDT is a resource-specific 1/O operation. Other
such operations include the following:

. Extended VDT operations

e Create/delete files and other file-specific /O utility operations

. Direct disk 1/O

. Random access operations to key indexed and relative record files

. IPC master-siave channel owner operations
2.9.1.2 Resource-Independent I/0. When resource-independent /O is used, application programs do
not distinguish between devices, files, and channels. Also, a program can read and write data records inde-
pendently of the type of device or file used. Examples of such types of operations include read, write, for-

ward space, and write EOF. All devices, files (including KIF), and channels support resource-independent
access.

2.9.2 Interprocess Communication

Interprocess communication (IPC) enables two or more tasks to exchange information via communication
channels. IPC channels are created by the Create IPC Channel (CIC) command or the Create IPC Chan-
nel 1/0 SVC. In each channel, one task must be designated as the owner of the channel. The channel
owner task controls use of the channel. Requestor tasks (slaves) have less flexibility and fewer privileges.

2270517-9701 2-15

DNOS Concepts and Environment

2.9.2.1 IPCUses. IPCis used for four primary reasons:
. Synchronization — Tasks may synchronize activities by passing messages via IPC.
J Queue serving — A channel owner may serve a queue of requests from other tasks.

. Interception — Channel owner tasks receive requests from queues, interpret or modify the infor-
mation, and pass the changed data to another task or device.

° Messages — Any variety of uses determined by the programs involved.

29.2.2 [IPC Channels. An IPC channel is a logical path used for communications between two tasks.
Two types of IPC channels are available in DNOS: masterislave channels and symmetric channels. For a
master/slave channel, the owner of the channel (the master) interprets and/or executes messages trans-
mitted on the channel by requesters (slaves). Special commands must be used by the owner to appro-
priately read and write the messages. For a symmetric channel, the owner and requesten(s) issue simple
Read and Write commands. These commands must match each other. The Read command of one task is
processed as soon as the other task issues a Write command and vice versa.

2.9.2.3 Channel Scope. The scope of a channel govems access to various jobs and tasks. The scope
is determined by the channel type: global, job-local, or task-local.

e Global Channel — Not replicated (only one exists in the whole system) and accessible by any
task in the system. The channel must first be used by the owner task. The owner task cannot be
automatically bid (made ready for execution) by an AL command. Multiple tasks can concurrently
use a global channel that permits shared access.

¢ Job-Local Channel — Replicated once for each job and accessible by any task in the job. The
channel can be shared and the owner task may be automatically bid by an AL command.

. Task-Local Channel — Replicated once for each requestor task (many per job) in any job. The
channel cannot be shared, and the owner must be automatically bid by an AL command from a
requester task.

29.24 System-Level IPC Functions. SCl commands are available to perform the following system-
level IPC functions:

. Create IPC Channel (CIC)
. Delete IPC Channel (DIC)
. Assign LUNO (AL)

* Release LUNO(RL)

. Show Channel Status (SCS)

2-16 2270517-9701

DNOS Concepts and Environment

2.9.2.5 Program-Level IPC Functions. All program-level access to |PC occurs through the use of
SVCs. Operations used by a master/siave channel owner are special I/O SVCs; operations used by reques-
ters and by symmetric channel owners are standard I/O SVCs. In general, owner tasks get information from
the channels and return an owner-determined response. However, requester tasks use IPC SVCs in a trans-
parent manner; the effect of each call depends on the owner task. Refer to the DNOS Supervisor Call (SVC)
Reference Manual for more details about channel operations.

293 File /O

DNOS provides disk file 1/O suppert for application and system programs. Disk file I/0 is performed through
the same SVC mechanism used to perform |/O to devices. Assembly language programs must directly
incorporate the SVC mechanism to perform I/O. TIP programs can use either the provided file-handling
routines or execute SVCs directly via procedure SVC$.

2.9.4 Device 1/0

A device may be specified by either a device name or by a logical name. All standard DNOS 1/O is per-
formed to LUNOs rather than to physical resources. A LUNO, specified in an 1/O operation, is a hexadecimal
number that represents a file, channel, or device. DNOS maintains a list of LUNOs that indicate corres-
ponding physical devices. LUNOs can be assigned by the AL command, or by use of an Assign LUNO
SVC, and can have one of three scopes as follows:

e Global LUNOs are defined (and are available) for all tasks and jobs.

e Job-local LUNOs are defined (and are available) for all tasks in a job.

o Task-ocal LUNOs are defined only for the task that assigns them.
2.9.5 Spooling
The spooling of data can occur during job execution as output is generated by one or more tasks. Spooling
is the process of receiving data destined for a particuiar device (or type of device) and writing that data
to a temporary file (or files). The spooler subsystem schedules the printing of job-local and permanent
files among available printing devices. You can implement spooling in two ways, either by the PF command,
or by sending output to a logical name.
If you use the PF command, specify the following options:

. Banner Sheet — A cover sheset containing the job name, user iD, time, and date.

e Forms — A particular form for printing devices.

. Device Class Type — Any of a class of devices (class name definition). For example, yc:: can

specify any line printer, or any printer that prints uppercase/lowercase, without naming a specific

printer.

. Format Selection — Either ANSI control characters (blank, 0, 1, or + in column one) or ASCII
control characters.

. Multiple Copies — Multiple copies for a file or files.

° Priority — Files for printing based on an assigned priority.

2270517-9701 2-17

DNQOS Concepts and Environment

To use a logical name, you must assign a spooler logical name, using the ALN command, and specify
the options (which are the same as those for the PF command.) You can use the logical name in programs
and utility commands, such as SCI, in either batch or interactive mode.

As an example, let’s assume you have assigned the logical name OUT and specified the following options:
e LP0O2
e Standard format
¢ Two copies

Each time you send a file or listing to OUT, the spooler schedules two copies of OUT to print on LP02
in standard format. You can design strategies according to your specific needs.

2.10 SEGMENTS

A task in DNOS consists of various program sections, each of which has certain features (attributes). The
attributes of some sections may be different from others. A program section is called a segment. A task
in DNOS can consist of up to three segments. The number of segments in a task depends in part on the
attributes that can be assigned to the various sections of the program. In general, if all sections of a program
have the same attributes, only one segment is needed; if a division of the program is made into sections
with differing attributes, muitiple segments may be needed.

You build the program, specify appropriate division of the program to the Link Editor, and install the segments
on a program file. The actual movement of segments into memory during execution varies, depending on
whether or not the program explicitly requests certain segments. In most cases, DNOS handles segment
changes without user action required.

To install a task, specify an initial set of segments (up to three) and the desired mode of access to those
segments. To execute a task from an executing program, load the initial segment set (if necessary) and
grant the desired access. Use the appropriate SCl command to execute a task from SCI.

2.11 MESSAGE FACILITIES

The DNOS Messages and Codes Reference Manual describes all system codes and messages in detail
and should be consulted if the system displays only the error code. For systems that have the full message
displayed, the paragraphs that follow discuss the components of termination messages and two methods
of showing expanded error messages. Later sections discuss the use of condition codes and messages
in application programs. The DNOS Systems Programmer’s Guide gives instructions for creating and mod-
ifying messages.

2.11.1 Error Messages

When an error occurs, SCI displays the message on the bottom line of the terminal screen and inhibits
further operation untit you acknowledge the message by pressing the Command key or the Return key.
Errors may be generated within SCI during SCI command execution or by any utility activated by an
SC! command.

2-18 2270517-9701

DNQS Concepts and Environment

The error messages consist of three parts: the error source indicator, a unique identifier, and the message.
The error source indicators are as follows:

Indicator Meaning

Informative message

|

w Warning message

U User error message

S System error message

H Hardware error
us User or system error
UH User or hardware error
SH System or hardware error

UHS User, hardware, or system

The unique identifier is a code containing the category of the message (such as SVC, Pascal, or utility).
This code may be followed by an identifier for a specific message within that category.

For example, if you attempt to access a nonexistent file, the following error message appears:

U SVC-0315 filename DOES NOT EXIST (SF;5)

where:
filename is the name of the file you tried to access.

If you need additional information about an error, use online expanded error messages or refer to the DNOS
Messages and Codes Reference Manual.

2.11.2 Online Expanded Error Message Documentation
If your system supports expanded message information online, both the Show Expanded Message (SEM)
command and the ? response to the error messages are available.

2.11.2.1 Show Expanded Message (SEM) Command. Use the SEM command to display an
expanded description of a termination code. Enter SEM to activate the procedure. You are prompted to
specify the type of error (such as SVC or SCI) and the message identifier. These appear in the second field of
the termination message. An example of the SEM command display is as follows:

SHOW EXPANDED MESSAGE
MESSAGE CATEGORY: SVC
MESSAGE ID: 0315

2270517-9701 2-19

DNOS Concepts and Environment

The following information appears on the terminal:

Explanation
The specified fileor channel does not exist.

Action

If the file or channel pathname is specified as intended,

create the fileor channel and retry the operation.

Otherwise, retry the operation specifying the intended pathname.

2.11.2.2 The ? Response. !f you enter a question mark (?) immediately after receiving an error mes-
sage, SCI uses the error category and message ID to display the expanded description of the error. SCI dis-
plays the original message and the same information as the SEM command.

2.11.3 Status Messages

Several SClI commands display status messages to inform you of the actions being taken during command
execution. These messages appear on the bottom line of the terminal screen. Acknowiedge the message by
pressing the Command key or Retum key so that operation can continue. Expanded status messages can
be obtained in the same way as error messages.

2-20 2270517-9701

3

Building a Tl Pascal Program

3.1 GENERAL

This section begins a step-by-step examination of TIP program development. Topics discussed include
how to prepare the necessary directories and files and how to enter the program source code. The discus-
sions reflect the assumption that the program source code will be entered via the Text Editor.

3.2 DIRECTORY AND FILE PREPARATION

During the development of a program, many different files are used. Some are permanent files that should
be organized logically. Since persons other than the original programmer usually maintain the programs,
the files should be organized in a way that facilitates finding and maintaining all related files.

3.2.1 Required Files
Table 3-1 shows the required files for developing and executing programs. Optional procedures may require
additional files. These files are discussed within the context of each procedure.

2270517-9701 3-1

Building a T! Pascal Program

Table 3-1 Files Required for Program Development

File

How and Where Used

Source file

Nested source file

Obiject file

Compiler listing file

Link control file

Link Editor listing
(link map file)

Program file

Contains program source code, output from the Text
Editor, input to the Nester (optional), and input to the TIP
compiler if nested source is not used.

This file is recommended but not required. it contains
program source code formatted to emphasize TIP block
structure and is output from the Nester utility. It may be
input to the TIP compiler.

Contains program object code, output from the TIP
compiler, and input to the Link Editor.

Contains the program source listing with any errors
detected by the TIP compiler, and additional information
from the TIP compiler.

Contains instructions for the Link Editor, such as the
object file to be used for input, run-time or user libraries
to be linked, external routines to be linked, and the pro-
gram file to be output.

Contains the listing of the link map output from the Link
Editor.

The executable program file; contains linked object code
output from the Link Editor. -

3.2.2 Alternate Directory Structures

Each programmer or installation can decide how best to organize the files shown in Table 3-1. When a
team of programmers is involved, a convention might be established.

Two possible methods of organization for the files are organization according to the related programs and
organization according to file types. These two alternatives are illustrated in the following paragraphs and
are only two of many possible structures.

3-2

2270517-9701

Building a Tl Pascal Program

3.2.2.1 Directories Organized by Programs. The basis for this method of organization is that all
necessary files for a program are located in a single directory. This is illustrated by the following:

VOLUME.PROG1.SOURCE
VOLUME.PROG1.0BJECT
VOLUME.PROG1.LISTING
VOLUME.PROG1.LCONTROL
VOLUME.PROG1.LINKMAP

VOLUME.PROG1.PROGRAM1

VOLUME.PROG2.SOURCE
VOLUME.PROG2.0BJECT
VOLUME.PROG2.LISTING
VOLUME.PROG2.LCONTROL
VOLUME.PROG2.LINKMAP

VOLUME.PROG2.PROGRAM2

The directory name reflects the program to which all the files are related. All files for PROGRAM?1 are con-
tained in directory PROG1. Files for PROGRAM2 are in directory PROG2.

3.2.2.2 Directories Organized by File Type.

In the following case, a directory is created for each file

type. Using this structure, all source files are in one directory, object files are in another, and so on.

VOLUME.SOURCE.PROG1
VOLUME.OBJECT.PROG1
VOLUME.LISTING.PROG1
VOLUME.CONTROL.PROG1
VOLUME.LINKMAP.PROG1

VOLUME.PROGRAM.PROG1

VOLUME.SOURCE.PROG2
VOLUME.OBJECT.PROG2
VOLUME.LISTING.PROG2
VOLUME.CONTROL.PROG2
VOLUME.LINKMAP.PROG2

VOLUME.PROGRAM.PROG2

In this structure, the source files for both PROG1 and PROG2 are in the same directory, VOLUME.SOURCE.
The same is true for all files of a given type.

3.2.3 Creating the Directories and Files

To create a directory or subdirectory, use the Create Directory File (CFDIR) command. Specufy the direc-
tory pathname and the maximum number of entries (files or subdirectories) the directory is to contain. You
may specify the default physical record size, or accept the default value established either during system
generation or when the volume in use was initialized. The default physical record size is set to optimize
file management and is usually the recommended size. However, if you intend to transport files from DNOS
to another system, characteristics of the target system may dictate a physical record size other than the
default.

2270517-9701 3-3

Building a Tl Pascal Program

To create the directory VOLUME.PROG1, which will contain all files used in developing PROGRAM1, enter
CFDIR. The following display appears:

C1 CFDIR
CREATE DIRECTORY FILE
PATHNAME: pathnamea
MAX ENTRIES: integer
DEFAULT PHYSICAL RECORD SIZE: [integer]

Assuming the name of the volume is VOLUME, the pathname is VOLUME.PROG?1. Since a minimum of
six files are required in the example, specify 12 as the maximum number of entries. Accept the system
(or volume) default physical record size by pressing Return.

Files that are output from a utility (such as the Text Editor or compiler) need not be created prior to executing
the utility. The pathnames must be specified, but the files are created automatically by the utility if they
do not already exist. Directories are not automatically created. For exampie, the object file pathname is
specified when the compiler is initiated. The directory must exist at that time, but the compiler automatic-
ally creates the file if the file does not already exist. The link control file is not a utility output file; conse-
quently, it must be created (usually via the Text Editor) prior to executing the Link Editor.

A pathname may include several levels of directories, each created by the CFDIR command. However,
all file names in a given directory must be unique.

3.2.4 Building a Program Using the Text Editor

A TIP program is usually created on VDT’s using the Text Editor. File editing with a VDT occurs on page
basis. A page is any 24 lines that appear on the VDT screen at one time. You can edit any record displayed
on the screen by positioning the cursor within the line containing the record. You can insert records between
lines and can insert or delete them in any order. Also, you can insert, delete, or modify characters within
a line. To adjust the portion of the file being displayed, use the Show Line (SL) SCI command and the
F1, F2, Previous Line, and Next Line keys. For further information about the Text Editor, refer to the DNOS
Text Editor Reference Manual.

3.2.5 Example of Using the Text Editor

After you are properly logged-on and the necessary directories have been created, you are ready to enter
the program. To activate the Text Editor, use the Initiate Text Editor (XE) SCI command. To do so, enter
XE and press Return. The following display appears:

[1 XxE
EXECUTE TEXT EDITOR
FILE ACCESS NAME: filenamea (¥*)

Because there is no input file to be edited at this time, fill the field with spaces and press Return. (When
responding to command prompts, press the Skip key once to blank the field from the cursor position to
the end of the field. The cursor then moves to the beginning of the next field.)

34 2270517-9701

Building a T! Pascal Program

The end-of-file (EOF) record, the only record in the file at this time, is displayed in the home position (the
upper left corner):

*EQOF

The Execute Text Editor with Scaling (XES) command is equivalent to the XE command with the addition
of a scale on line 24. The scale, which represents column numbers, is useful when entering programs
or data according to a structured format.

The Text Editor is initially in compose mode. When in compose mode, you can move the cursor to the
beginning of a new blank line by pressing Return. This allows new lines to be added as the file is being
built. By pressing Return now, the first line is created. When the Uppercase Lock key is pressed, letters
are entered as capitals. The Uppercase Lock key affects only the letter keys.

To set tab stops within the Text Editor, use the Modify Tabs (MT) command. First, enter the command mode
by pressing the Command key. The SCI prompt |] appears on line 24, indicating readiness to accept a
command. Enter MT and press Return. The following dispiay appears:

L1 M7
MODIFY TABS
TAB COLUMNS: (column,...,column)

Enter the column numbers where tab stops are to be set, separating column numbers with commas. Press
the Return key. The Text Editor file reappears with the cursor in the same position as before the MT command
was entered. Move the cursor forward from tab stop to tab stop by using the Next Field key. Move the
cursor backward by using the Previous Field key.

For entering or editing TIP source, use the Modify Right Margin (MRM) command to set the right margin
at column 72. This allows the Nester utility to insert sequence numbers in columns 73 through 80. To change
the margin, first press the Command key. Then, enter MRM and press Return. The following display appears:

€1 MRM
MODIFY RIGHT MARGIN
RIGHT MARGIN POSITION: (80)

Enter 72 as the right margin position and press Return. The Text Editor file reappears with the cursor in
the same position as before the MRM command was entered.

2270517-9701 3-5

Builaing a Tl Pascal Program

Use the procedures given in this section to enter the program shown in Figure 3-1.

(*$MAP ,NO OPTIMIZE ,WIDELIST,CKINDEX,CKSUB*)
PROGRAMDIGIO;

TYPE CHBUF = ARRAY (.1..6.) OF CHAR;

VAR BUFF : CHBUF;

I, NUM :INTEGER;

PROCEDURE CCHAR (BUFF:CHBUF; VAR NUM: INTEGER; I:INTEGER);
BEGIN (* CCHAR *)

NUM:=0;

FORJ:=1T01D0
IFBUFF(.J.)>='0' AND BUFF(.J.) <=9’

THEN NUM:= NUM*10+0RD(BUFF(.J.))=0RD('0")
END;

PROCEDURE CINT (NUM:INTEGER);
VAR 1 :INTEGER;

BEGIN (% CINT =)
I:=NUMDIV10;

IF I<>0THENCINT(I);

WRITE (CHR(NUM MOD 10 + ORD('0")))
END;

BEGIN (* DIGIO *)
WRITELNCENTER1 TOSDIGITS);
RESET(INPUT);

I:=1I+1;

WHILE NOT EOLN DO BEGIN (* INPUT CHARS *)
READ (BUFF(.I1.));

I1:=1+1;

END; (* INPUT CHARS *)
I:=1-1;

CCHAR(BUFF,NUM,I);
NUM:=NUM+25;

CINT(NUM);

WRITELN;

END.

Figure 3-1 Example Program: DIGIO

For new programs, it is recommended that you turn on the compiler options MAP, WIDELIST, and the check
options (CKINDEX, CKSUB, etc.) during the debugging phase of program development. (Compiter options
are described in the 7/ Pascal Reference Manual.) The MAP option provides variable locations that are
needed for interpreting memory dumps. The WIDELIST option provides line numbers, which are referenced
by some of the run-time error messages. The check options provide additional run-time error checking
that can help you locate mistakes in the program. When you have checked out the program, recompile
it with the check options turned off to reduce the size of the object code.

3-6 ' 2270517-9701

Building a Tl Pascal Program

After entering the program source, use the F2 key to roll the file back to the beginning of the file. Review
the source code for errors. To edit the file, press the F7 key to switch the Text Editor to edit mode. Pressing
Return in edit mode moves the cursor to the beginning of the next line without creating a new blank line.
(In either edit or compose mode, a blank line can be inserted above the cursor by pressing the Initialize
Input key.)

When the file has been entered and edited, use the Quit Edit (QE) command to terminate the Text Editor.
Press the Command key to enter the command mode, enter QE, and press Return. The following display
appears:

1 Qe
QUITEDIT -
ABORT?: {YES/NO} (NO)

The reply to the ABORT? prompt determines if the data entered is to be retained (NO response) or dis-
carded (YES response). Since the source code is to be retained, press Return to accept the default value
(NO). The following display appears:

QUITEDIT
OUTPUT FILE ACCESS NAME: pathnamed (%)
REPLACE?: <{YES/NO} (NO)
MOD LIST ACCESSNAME: [pathnameal

Enter the pathname of the output file (for exampie VOLUME.PROG1.SOURCE). Since this is a new file
being created, press Return to accept the defauit value (NO) to the REPLACE? prompt. When the edited
output file is to replace a file of the same name, the response to the REPLACE? prompt is YES. Skip through
the last prompt by pressing Return. (See the DNOS Text Editor Reference Manual for a discussion of the
MOD LIST ACCESS NAME.) The Text Editor output file is written, and the main menu appears. if at another
time the file VOLUME.PROG1.SOURCE is to be edited, enter that pathname as the input file access name
for the Text Editor.

2270517-9701 ©3-713-8

4

Nester Utility

4.1 GENERAL
This section includes guidelines to assist in coding a source program and describes the Nester utility. Nester

provides a standardized block format for source code, performs rapid syntax checking, and heips format
source code for input to the configuration processor (Section 6).

Typically, the TIP source prograrh is written on a disk file using the Text Editor as described in Section

3. For a program with 80-column records, Nester may be used with the WIDE option to convert from
80-column to 72-column format.

4.2 NESTER FUNCTIONS
Nester uses five parameters in establishing the source program format that corresponds to the logical
organization of the program. Table 4-1 lists these parameters and their default values, along with four other
options. Two of these parameters, DTAB and CCOL, apply to the declarations of the program. The rules
that apply to each of the declarations are as follows:
e The PROGRAM declaration begins in the leftmost character position (column 1). Example:
PROGRAM DIGIO;

¢ The LABEL declaration -begins in the leftmost character position (column 1), and the label
numbers follow on the same line. Example:

LABEL 10,20,30;

e The CONST declaration begins in the leftmost character position (column 1), and constants are
tabulated into columns separated by the value of the Constant Column parameter CCOL.

Example:
CONST A = 2; B = 3;
C = 4; D = 5;
E = 6; F =7

e The TYPE declaration begins in the leftmost character position (column 1). The first type declara-
tion follows on the same line. Example:

TYPE A = ARRAY(.0..10.) OF INTEGER,;

2270517-9701 4-1

A Nester Utility

. Any subsequent type declarations are indented by the value of the Declaration Tab parameter
DTAB. Example:

TYPE A = ARRAY(.0..10.) OF INTEGER;
B = (C,D,E);

. In a record declaration, the first field identifier follows the declaration; subsequent field iden-
tifiers are indented on a new line by the value of DTAB. Example:

TYPE A = ARRAY(.0..10.) OF INTEGER,;
B = (C.D,E);
REC = RECORD A:INTEGER;
B:REAL;
CASE C:BOOLEAN OF
FALSE:(D:INTEGER;
E:INTEGER);
END;

e When the component type of an array is a structured type, the structured type is indented on
a new line by the value of DTAB. Example:

TYPE A = ARRAY(.0..10.) OF INTEGER;
B = (C,D,E);
REC = RECORD A:INTEGER;
B:REAL,;
CASE C:BOOLEAN OF
FALSE:(D:INTEGER;
E:INTEGER);
END;
MATRIX = ARRAY(.0..9.) OF
ARRAY(.0..9.) OF
ARRAY(.0..2.) OF INTEGER;

e The VAR declaration begins in the leftmost character position (column 1). The first variable
declaration follows on the same line. Subsequent variable declarations are indented by the value
of DTAB, and each starts on a new line. Example:

VAR ARY : A;
1,J,K,LIINTEGER;
R:REC;

e The COMMON declaration begins in the leftmost character position (column 1). The common
variabies follow on the same line. Example:

COMMON R:BOOLEAN;
:INTEGER;
X:REAL;
M:ARRAY(.1..5.) OF INTEGER,;

4-2 2270517-9701

Nester Utility

e The ACCESS declaration begins in the leftmost character position (column 1). The common
variables follow on the same line. Example:

ACCESS COM1,COM2;

e The routine declarations begin with the keyword PROCEDURE or FUNCTION in the leftmost
character position (column 1). The parameter list follows on the same line. Example:

PROCEDURE A(B,C:INTEGER),

Table 4-1. Nester Options

Option
Keyword Meaning Defauit
DTAB Declaration tab value. 4
ccol Constant column increment. 20
STAB Statement tab value. 2
SCOL Statement column increment. 1
SLIM Statement column limit. 30
ADJT Adjust comments to right margin. TRUE
FiLL Allows concatenation of source lines in accordance with options TRUE
in effect. When FALSE, items on a new line of input are placed
on a new line in the output.
CONV Convert characters in source statements to those of a trans- FALSE
portable character set.
WIDE Accept 80-column source statements. FALSE
NUMB

Place line numbers in columns 73 - 80 when TRUE.
»

TRUE

In addition to the rules for the declarations, another rule applies to breaking lines in the declaration section.
A line starts with the declaration keyword or an identifier and is usually separated from the next line by
a semicolon (and the end-of-line indication appropriate to the input device). When Nester breaks a line,
the continuation on the succeeding line is indented by the value of DTAB.

2270517-9701

4-3

Nester Utility

Two other parameters, STAB and SCOL, apply specifically to the statement portions of the program, that
is, the compound statements that contain the statements that specify the processing of the program. The
rules that apply to the statement portions are as follows:

. The BEGIN and END statements of the compound statement that contains the statements of
the block begin in the leftmost character position (column 1).

] The component statements within the compound statement are indented by the value of STAB.
e A statement is placed on a new line if it is too long to fit on the current line.

e When a statement is too long for a single line, the continuation line is indented by the value
of STAB.

e Structured statements other than compound statements (IF, CASE, FOR, WHILE, REPEAT,
and WITH) always begin on a new line.

e Component statements within a structured statement are indented by the value of STAB.
e Keywords BEGIN and END do not cause indentation and normally do not begin a new line.

] Statement labels and escape labels start in character position two and may force the labeled
statement to start on a new line.

* The ELSE portion of an IF statement starts a new line and is positioned at the same character
position as the corresponding IF.

* The UNTIL portion of a REPEAT statement starts a new line and is positioned at the same
character position as the corresponding REPEAT.

e Each CASE label is indented by the value of STAB.

e Each CASE alternative statement (following keyword OTHERWISE) is indented by the value
of STAB beyond the character position at which the keyword OTHERWISE begins.

Option ADJT enables or disables the adjustment of comments. When the value of ADJT is true (default),
comments that are less than 70 characters long are right justified on the line on which they are entered.
Comments that are more than 69 characters long are positioned to begin in character position one.
Comments that cross line boundaries are not moved. When the value of ADJT is false, comments are
not moved.

The column limit value SLIM applies to both declarations and statements that are arranged in columns.
Specifically, these are constants and simple statements. No constant or statement starts beyond the column
limit. For example, the default value of 30 allows only two columns of constants in a CONST declaration
and only as many simple statements as can be placed on a line without starting a statement beyond
character position 30.

4-4 2270517-9701

Nester Uti/ity.

The FILL option enables or disables the concatenation of characters from two or more lines to one line.
When the value of the option is true (default), constants in a CONST declaration may be arranged in columns
and simple statements may be concatenated on one line, using the value of the CCOL and SCOL options,
respectively. When the value of the option is false, constants and simple statements remain on the line
on which they are entered.

The CONYV option converts the characters in source statements that are not transportable to characters
that are more generally available. Specifically, lowercase letters are converted to uppercase letters, brackets
‘I’ and ““]"") are replaced with the equivalent character combinations (**(.”” and **.)”"), and braces (*‘{"’
and “}"") are replaced with the equivalent character combinations (‘‘(*'' and **)").

The WIDE option accepts 80-column source statements and reformats the source code to 72-column output.
When the input source statement contains a string constant longer than 72 characters, Nester issues an
error message.

The NUMB option places line numbers in columns 73 through 80 when true (default). Setting NUMB to
false suppresses line numbers, which speeds printing.

Figure 4-1 and Figure 4-2 show the effect of Nester on example program DIGIO (from Section 3), using
the default options.

2270517-9701 4-5

Nester Utility

(*$MAP _ NO OPTIMIZE ,WIDELIST,CKINDEX,CKSUB%*)
PROGRAM DIGIO;

TYPE CHBUF = ARRAY(.1..6.) OF CHAR;

VAR BUFF : CHBUF;

I,NUM :INTEGER;

PROCEDURE CCHAR (BUFF:CHBUF; VAR NUM: INTEGER; I:INTEGER);
BEGIN (* CCHAR *)

NUM:=0;

FORJ:=1TOIDO

IFBUFF(.J.)>='0' AND BUFF(.J.)<='9

THEN NUM:= NUM*10+0RD (BUFF(.J.))=-ORD('Q')

END;

PROCEDURE CINT (NUM:INTEGER);
VAR I ¢t INTEGER;

BEGIN (* CINT *)

I:=NUMDIV10;

IF I <> 0 THEN CINT(D);

WRITE (CHR(NUM MOD 10 + ORD('0")))
END;

BEGIN (* DIGIO »)

WRITELNCENTER1 TOS DIGITS);

RESET(INPUT);

I:=1+41;

WHILE NOT EOLN DO BEGIN (* INPUT CHARS *)

READ (BUFF(.I1.));

I:=1+41;

END; (* INPUT CHARS *)
:=1-1;

CCHAR(BUFF ,NUM,I);

NUM:=NUM+25;

CINT(NUM) ;

WRITELN;

END.

Figure 4-1. Source Code as Input to Nester

4-6 2270517-9701

(*$MAP,NO OPTIMIZE, WIDELIST,CKINDEX,CKSUB*)
PROGRAM DIGIO;
TYPE
CHBUF = ARRAY(.1..6.) OF CHAR;
VAR BUFF : CHBUF;
I,NUM : INTEGER;
PROCEDURE CCHAR (BUFF:CHBUF;VAR NUM: INTEGER; I: INTEGER);
BEGIN
NUM:=0;
FORJ:=1TOIDO
IFBUFF(.J.)>="0' AND BUFF(.J.)<=9" THEN
NUM:=NUM*10+0RD (BUFF(.J.))=-0RD (0"
END;

PROCEDURE CINT (NUM:INTEGER);
VAR I :INTEGER;
BEGIN
I:=NUMDIV10;
IF I<>0THENCINT(D)
WRITE (CHR(NUM MOD 10 + ORD('0")))
END;

BEGIN
WRITELNCENTER1 TOSDIGITS);
RESETC(INPUT);
I:=141;

(* CCHAR *)

(* CINT *)

(*DIGIO *)

WHILE NOT EOLN DO BEGIN (* INPUT CHARS *)

READ (BUFF(.I1.));
I:=1+1;

END; (* INPUT CHARS *)

1:=1-1;
CCHAR(BUFF,NUM,I);
NUM:=NUM+25;
CINTI(NUM) ;
WRITELN;

END.

Figure 4-2. Nested Source Code, Output From Nester

2270517-9701

Nester Utility

00000010
00000020
00000030
00000040
00000050
00000060
00000070
00000080
00000090
00000100
00000110
00000120
00000130
00000140
00000150
00000160
00000170
00000180
00000190
00000200
00000210
00000220
00000230
00000240
00000250
00000260
00000270
00000280
00000290
00000300
00000310
00000320
00000330
00000340
00000350
00000360

4-7

Nester Utility

4.3 NESTER OPTION COMMENT

The values of the Nester options are changed by entering option comments. The value supplied in an

option comment continues to apply until another value is supplied in a subsequent option comment. The

option comments become a part of the source program and are processed by the compiler as comments.

That is, they have no effect on compiler options. The syntax of an option comment is as follows:
<option comment> ::= “{"&<option> [,<option>]"}"

<option> ::= <integer-valued option> (integer constant)
| <Boolean-valued option> <plus or minus>

<integer-valued option> ::= DTAB|STAB|CCOL|SCOL|SLIM
< Boolean-valued option> ::= ADJT|FILL|CONV|WIDE|NUMB

<plusorminus> = + | -

4-8 2270517-9701

Nester Utility

The syntax diagram is as follows:

Option comment:

DTAB

ccoL —D@-’ INTEGER CONSTANT —.@—.—.@—5

SCOL

SLIM

FILL

O
-O-

©
BR0U6O0E

2279934

No blanks are allowed in the option comment. The option names may be entered in any sequence.

EXAMPLES
{&DTAB(2),STAB(5),FILL - ,SLIM(72)}

{&DTAB(4),CCOL(20),STAB(2),SCOL(1),SLIM(30),ADJT + ,FILL + }

The first example changes the value of DTAB to 2 and the value of STAB to 5. It sets the value of the
FILL option to false, and changes the value of SLIM to 72. This value for SLIM allows maximum packing
of constants on a single line and maximum packing of simple statements on a single line. However, as
a result of setting FILL to false, the maximum packing allowed by setting the value of SLIM to 72 does
not occur.

2270517-9701 4-9

Nester Utility

The second example restores the option values to the default values.

4.4 EXECUTING NESTER

TIP software includes an SCI procedure XNESTER for executing the source formatter, Nester. Enter
XNESTER any time the system is ready for a command. The following command prompts appear:

[] XNESTER
EXECUTE PASCAL SRC PROGRAM NESTER <VERSION X.X.X YYDDD>

SOURCE: pathnamed
NESTED SQURCE: pathnamed
NESTER OPTIONS: [option,...,option] (SLIM (0))
ERROR LISTING: pathnamea (ME)

MESSAGES: [pathnameal (ME)
MODE: {FOREGROUND/BACKGROUND} (FOREGROUND)

The prompts for NESTER are as follows:
e SOURCE — The access name of a file that contains source code to be formatted
e NESTED SOURCE — The access name of a file for the formatted source code
e NESTER OPTIONS — The NESTER options to be in effect (see Table 4-1). The option list follows
the same syntax as for <options> described in paragraph 4.3, with the exception that the option
list should not be enclosed in braces.
e ERROR LISTING — The access name of a device for listing syntax errors
e MESSAGES — The access name of a device or file for system messages
The mode can be either foreground or background. When Nester is executing in the background mode,
the terminal is available for entry of other commands or for foreground execution of another program.
When Nester is executed in the foreground mode (defauit), the terminal may not be used by any program

other than Nester until Nester terminates execution. Nester displays the following termination message:

EXECUTION OF SOURCE PROGRAM NESTER IS COMPLETE:

4-10 2270517-9701

Nester uses four files, as follows:

File Name
OUTPUT
SYSMSG
NESTSRC

NESTOUT

4.5 NESTER ERROR MESSAGES

Contents
Commands executed and error messages
System messages
Source module to be reformatted

Reformatted source module

Nester Utility

Nester checks the statements in the source file for simple syntax errors and prints error numbers when
errors are found. The nested source code that results from nesting source statements that contain these
errors is usually incorrectly nested. For this reason, the source file and the nested source file cannot be

the same.

Table 4-2 lists the Nester error messages and corresponding error numbers. Generally, the Nester error
numbers correspond to those for comparabie compiler errors. .

2270517-9701

4-11

Nester Utility

Table 4-2. Nester Errors

Number Message
2 Identifier expected
4) expected
5 . expected
6 Illegal symbol
8 OF expected
9 (expected
10 Error in type
1 [expected
12] expected
13 END expected
14 ; expected
15 Integer expected
16 = expected
17 BEGIN expected
50 Error in constant
51 ;= @xpected
52 THEN expected
83 UNTIL expected
54 DO expected
§5 TO/DOWNTO expected
58 Error in factor
106 Number expected
201 Error in REAL constant; digit expected
202 String constant too long or crosses a source line boundary
255 Too many errors on this source line

4-12

2270517-9701

S

TIP Compiler

5.1 GENERAL
The TIP compiler consists of six separate tasks:

e PREPROC — Preprocesses the source file to provide conditional compilation and copy file
processing

e SILT1 — Source-to-intermediate-language-transiator

e SILT2 — Source-to-intermediate-language-translator

e TYOPT — Performs optimization on the intermediate language

e CODEGEN — Translates the intermediate language into object code
e PSCLXREF — Provides a cross-reference listing of the TIP source

This section describes the following: default pathnames for files used by TIP tasks, the compiler's general
flow of execution and the files used during a compilation, the source management directives supported by
the processor task, the system procedures needed to invoke the compiler, the compiler listing, and the
compiler message file contents.

5.2 COMPILER EXECUTION OVERVIEW

This overview begins with a discussion of the default pathnames for files used by TIP tasks, then describes
the compiler’'s flow of execution and the files used by each compiler task (Table 5-1).

5.2.1 Defauit Pathnames

Default pathnames are assigned for input, output, object, and message files when you do not specify
pathnames for these files. The defauit pathnames are derived from the logical files names INPUT, OUTPUT,
OBJECT, and SYSMSG. The system appends the numeric characters of the initiating station’s ID to the
logical file name. If, for example, you are executing the TIP compiler from ST04 and do not specify
pathnames for the object or listing files, the default pathnames would be .OBJECT04 and .OUTPU7T04,
respectively. If you do not specify a message file, its default pathname is .SYSMSG04. Some procedures
will accept a defauit input file, such as .INPUT04, but the file must exist and contain the desired data
for the procedure to execute properly. The default pathnames begin with a period, indicating that they
reside on the system disk.

2270517-9701 ' 5-1

TIP Compiler

When the compiler is executed from a batch stream or batch job the name of a temporary directory is
prefixed to the default pathname. Synonym $TIP is automatically assigned to this directory. For batch
streams initiated by the Execute Batch (XB) command, the temporary directory is .T$STxx where xx is
the station number of the initiating terminal. For batch jobs initiated by the Execute Batch Job (XBJ)
command, the directory is .T$Jn where n is the job number (from one to five decimal digits long). In both
cases, the temporary directory is automatically deleted when the batch stream ends. To place the files
elsewhere, assign synonym $TIP to a directory you have created. However, you must delete the files yourself
when finished with them.

5.2.2 Preprocessor

The first task of the TIP compiler is the preprocessor task, PREPROC. At your option, this task implements
conditional compilation and copy statements. It has one input and two output files. The file INPUT contains
the user source file to be compiled. PREPROC creates the listing file OUTPUT and the file PREOUT,
which is the source file after it has been preprocessed. It also writes information to the SYSMSG file.

5.2.3 SILT1

SILT1 parses the source statements and translates them into an intermediate (token) representation that
is used as input to SILT2. SILT1 reads the source program from file PREOUT and writes the intermediate
representation on file TOKENS. SILT1 detects syntax errors and writes information about detected errors
on file ERRFILE to be included in the listing written by SILT2. The character strings for each identifier
are written to IDFILE, and the listing page header information is written to LISTFILE. SILT1 aiso writes
the first eight characters of the name of each routine on file SYSMSG for dispiay. .

Table 5-1. Flles Required by the Compiler Tasks

Task File Name /0 Contents
PREPROC INPUT | TIP source program
PREOUT o Preprocessed source
SYSMSG o] Messages
SILT1 PREOUT | Preprocessed source
OUTPUT O Used as dump file
SYSMSG 0] Messages
*TOKENS (o] Parse tokens (input to SILT2)
*ERRFILE (o] Syntax errors (input to SILT2)
*IDFILE o Identifiers (input to SILT2)
*LISTFILE o Page header information
SILT2 PREOUT | Preprocessed source
OUTPUT (o] Source listing with errors

5-2 2270517-9701

TIP Compiler

Table 5-1. Files Required by the Compiler Tasks (Continued)
Task File Name 110 Contents
SYSMSG o Messages
*TOKENS | Parse tokens
*ERRFILE I Syntax errors
*CILFIL (0] Common intemmediate language
*DESCFIL o Module descriptor file
*IDFILE | Identifiers
*LISTFILE /10 Page header information
*TEMPFILE 7o Probe Information
T9OPT OUTPUT Optimization information
SYSMSG Messages
*CILFIL 1 Common intermediate language
*DESCFIL | Module descriptor file
*LISTFILE 110 Page header information
*CILSFIL o Common intermediate language
*DESCFIL (o) Module descriptor file
CODEGEN OBJECT o Object file
OUTPUT &) CODEGEN summary information
SYSMSG (0] Messages
*CILFiL 1 Common intermediate language
*DESCFIL | Module descriptor file
*TMPFIL T[e] intermediate Object
*LISTFILE | Page header information

2270517-9701

5-3

TIP Compiler

Tabie 5-1. Files Required by the Compiler Tasks (Continued)

Task File Name 170 Contents
PSCLXREF PREOUT | Preprocessed source
OUTPUT (o] Cross-reference listing
SYSMSG (o] Messages
Note:

* This is an internal temporary file.

5.2.4 SILT2

SILT2 transforms the intermediate representation on file TOKENS into an intermediate language written
on file CILFIL as input to TOOPT. SILT2 also writes a descriptor file, DESCFIL, for input to T9OPT. SILT2
detects semantic errors in the source program and writes a source listing. Errors that SILT1 writes to
ERRFILE are combined with errors detected by SILT2 and are then written to file OUTPUT. Also written
to file OUTPUT are the source code from file PREOUT, the listing page header information from file
LISTFILE, and the variable map that uses the character strings of file IDFILE. SILT2 writes the first eight
characters of the name of each routine on file SYSMSG and writes an error message when any errors
have been detected by either SILT1 or SILT2.

5.2.5 T9OPT

T9OPT performs optimization functions on CILFIL, using the descriptions on DESCFIL. Optimization
information and listing page header information from LISTFILE is written on file OUTPUT. The first eight
characters of each module name are written on file SYSMSG.

5.2.6 CODEGEN

CODEGEN transforms the intermediate ianguage on CILFIL into object code, using the descriptors on
DESCEFIL, and writes the object code to a sequential file, OBJECT. CODEGEN writes to an internal temp-
orary file, TMPFIL, from which it retrieves the data when required. CODEGEN completes the listing on
file QUTPUT by writing statistical information, such as the number of instructions generated and the storage
requirements for each module. CODEGEN alsc writes the first eight characters of each module name
on file SYSMSG.

5.2.7 Cross-Reference

PSCLXREF scans the PREOUT source file and produces a cross-reference listing, which is written to file
OUTPUT. It also writes information to file SYSMSG.

5.3 COMPILER SC! COMMANDS

The following paragraphs describe the six commands that invoke phases of the TIP compiler: XTIP, XTIPL,

XSILT, XCODE, XPP, XPX, and XALX. These command procedures prompt for certain file pathnames,
some of which can be assigned by the system.

5-4 ’ 2270517-9701

TIP Compiler

5.3.1 XTIP

The Execute T! Pascal Compiler (XTIP) command executes the entire compilation process. XTIP executes
all six phases (with XREF optional) in the following order: PREPROC, SILT1, SILT2, T9OPT, CODEGEN,
and PSCLXREF. The prompts are as follows:

£1 XTIP
EXECUTE TI PASCAL COMPILER <VERSION: X.X.X YYDDD>

SOURCE: pathnamed (*)
OBJECT: [pathnameal] (*)
LISTING: Cpathnameal (*)
MESSAGES: L[pathnameal] (*)
OPTIONS: [option,...,option]
MEM1: [integer,integer] (6,4) (SILT1 phase)
MEM2: [integer,integer] (13,4) (SILTZ2 phase)
MEM3: [integer,integer] (10,4) (CODEGEN phase)

The MEM prompts specify the number of 1024-byte memory blocks to be allocated to the stack and heap
for each compiler phase. The sum of the two numbers must not exceed 35 for MEM1, 21 for MEM2, and
20 for MEMS3. XTIP displays the following termination message, along with a notice of any errors or warnings:

TIP COMPILATION COMPLETE:

5.3.2 XTIPL

The Execute Ti Pascal Compile and Link (XTIPL) command executes the entire compilation process, like
the XTIP command. It then builds a link control file to perform a simple task-only link edit, and executes
the Link Editor. (Section 7 contains a discussion on link editing a TIP program.) The prompts for the XTIPL
command are as follows:

01 XTIPL
EXECUTE TI PASCAL COMPILE AND LINK <VERSION: X.X.X YYDDD>

SOURCE: pathnamed (*)
OBYECT: C[pathnamedl (%)
LISTING: C[pathnameal] (*)
MESSAGES: L[pathnamedl (%)
OPTIONS: CLoption,...,optionl
PROGRAM FILE: pathnamea (*)
TASK NAME: character(s) (%)
LINK LISTING: pathnamed (*)

2270517-9701 5-5

TIP Compiler

Provided that the compiler terminates normally, XTIPL then executes the Link Editor using the following
link control file:

FORMAT IMAGE, REPLACE

LIBRARY .TIP.OBJ

TASK <specified task name>
INCLUDE (MAIN)

INCLUDE <specifiedobject file>
END

The linked outpuf'is installed on the specified program file, replacing an identically-named task if it exists.
The TIP run-time library .TIP.OBJ applies to tasks using SCI for I/O access, so this link control file is not
appropriate for tasks that use LUNO 1/0.

5.3.3 XSILT

The Execute TIP Syntax Checker (XSILT) command executes all parts of the compiler except code genera-
tion. It is primarily used for syntax checking. The prompts for XSILT are the same as those for XTIP except
for OBJECT and MEMS3:

L] XSILT
EXECUTE TIP SYNTAX CHECKER <VERSION: X.X.X YYDDD>
SOURCE: pathnamed (*)
LISTING: L[pathnameal (=)
MESSAGES: [pathnamedl] (*)
OPTIONS: [option,...,optionl]
MEM1: [integer,integer] (6,4) (SILT1 phase)
MEM2: [integer,integer] (13,4) (SILT2 phase)

5.3.4 XCODE
The Execute Tl 990 CODEGEN (XCODE) command executes only the CODEGEN phase of the TIP
compiler. It is normally used in conjunction with XSILT. The prompts are as follows:

£l XCODE
EXECUTE TI 990 CODEGEN <VERSION: X.X.X YYDDD>

OBJECT: C[pathnameal (=)
LISTING: [pathnameal (*)
MESSAGES: [pathnameal (*)
MEMORY: C[integer,integer] (10,4)
MODE(B,F,D): {FOREGROUND/BACKGROUND/DEBUG} (BACKGROUND)

5-6 ’ 2270517-9701

TIP Compiler

5.3.5 XPP
The Execute Pascal Preprocessor (XPP) command executes only the preprocessor phase of the TIP com-
piler. The prompts are as follows:

(1 Xep
EXECUTE PASCAL PREPROCESSOR <VERSION: X.X.X YYDDD>

INPUT: pathnamead (*)
OUTPUT: [pathnameal (=)
LISTING: [pathnameal
MESSAGES: [pathnameal] (%)
OPTIONS: [option,...,optionl

5.3.6 XPX
The Execute Pascal Cross-Reference (XPX) command executes only the cross-reference phase of the TIP
compiler. The prompts are as follows:

[1 xpX
EXECUTE PASCAL CROSS-REFERENCE <VERSION: X.X.X YYDDD>

INPUT: (pathnameadl (%)
OUTPUT: [pathnamedl (»)
MESSAGES: [pathnameal (»)
NUMBER OF LINES/PAGES: integer (60)
MODE(F,B): {FOREGROUND/BACKGROUND} (FOREGROUND)

~

5.3.7 XALX

TIP routines compiled with the LISTOBJ option produce an assembly language listing of the code gener-
ated by the compiler (refer to paragraph 5.5.4). The assembly language extractor (XALX) is a utility which
extracts assembly code appearing in a compiler listing and changes it into a valid format for input to the
macro assembier. The XALX command displays the following prompts:

[IXALX
EXECUTE TIP ASSEMBLY LANGUAGE EXTRACTOR <VERSION:X.X.X YYDD>
INPUT LISTING ACCESS NAME: pathnamed (*)
OUTPUT SOURCE ACCESS NAME: [(pathnamea]l (%) ACCESS NAME
MESSAGES: (pathnamedl (=)
MODE(F,B): {FOREGROUND/BACKGROUND} (FOREGROUND)

Specify a compiler listing file in response to INPUT LISTING ACCESS NAME. Specify a sequential file to the
prompt OUTPUT SOURCE ACCESS NAME to receive the resulting assembly language source file.

2270517-9701 5-7

TIP Compiler

5.3.8 PSDELETE
PSDELETE is an SCI command that deletes TIP temporary files.

(] PSDELETE
DELETE TIP TEMPORARY FILES <VERSION: X.X.X YYDDD>
STATION: station number (x)

5.3.9 PSSYN
P$SYN is an SCI command that deletes TIP synonyms, helping to alleviate or prevent synonym tabie
overflow.

5.3.10 Options Prompt

This discussion of the OPTIONS prompt applies to the XTIP, XTIPL, XSILT, and XPP commands. The prompt
OPTIONS is used to indicate execution mode, form of preprocessor output, number of lines per page, print
width of a compiler line, whether to perform a cross-reference, and whether to include certain compiler
options. Within the field, separate options with commas. In a batch stream, enclose the option list in double

quotation marks (“option,option,...”).

5.3.10.1 Mode of Execution. To indicate the compiler’s mode of execution, enter FOREGROUND or
BACKGROUND. F and B are sufficient abbreviations. The default mode is background. Entering ME for
the MESSAGES prompt causes foreground execution regardiess of this option.

§.3.10.2 Lines Per Page. To specify the number of lines per page of a listing, enter the phrase NUMBER
OF LINES/PAGE or its abbreviation, NUM, followed by an equal sign and an integer. For example, NUM =80
specifies that 80 lines per page be generated. The default is 60.

5.3.10.3 Print Width. To specify the print width, enter the phrase PRINT WIDTH or its abbreviation,
PW, followed by an equal sign and an integer. For example, PW = 132 creates a file with a logical record
length of 132 bytes. The default is 80.

5.3.10.4 Cross-Reference. To specify cross-reference, enter the word XREFERENCE or its abbrevia-
tion, X. The default is no cross-reference.

5.3.10.5 Disabling Source Preprocessing. To disable the preprocessing of the source by the
preprocessor task, enter the phrase NO PREPROCESSOR or its abbreviation, NOPR. This option allows
slightly faster compilation when no source management directives are used.

NOTE

If the preprocessing of source is disabled, the following options are not
available.

5.3.10.6 Controlling Preprocessor Output. The form of preprocessor output (input to SILT1) is
controlied by the phrase SUPPRESS PREPROCESSOR LINES. Normally, preprocessor commands and
code in the faise clause of a ?IF source management directive do not appear in the preprocessor output.
(See theT! Pascal Reference Manual for details on source management directives.) To cause these lines
to appear on the compiler listing, enter the option phrase SUPPRESS PREPROCESSOR LINES =NO
or its abbreviation, SUP =N. This option is not available if NO PREPROCESSOR has been specified.

5-8 2270517-9701

TIP Compiler

5.3.10.7 Compiler Options in the Procedure. The following compiler options can be specified either
in the source code (as described in the T/ Pascal Reference Manual) or in response to the OPTIONS prompt
uniess NO PREPROCESSOR is also specified:

NO ASSERTS FORINDEX NO LIST

NO WIDELIST NO WARNINGS SIDEFFECTS
NO GLOBALOPT MAP NO MAP

NO OPTIMIZE PROBER PROBES

NO TRACEBACK UNSAFEOPT WIDELIST
GLOBALOPT SPEEDOPT LOCALS
CKINDEX CKOVER CKPREC
CKSET CKsuB CKTAG
CKPTR 990/12 LISTOBJ

These compiler options are inserted into the source as the first line of the source file. The total number of
characters that can be inserted into the source file is 46. The compiler options can be abbreviated according
to the rules for abbreviating SCI parameters. (Generally, the abbreviation must contain enough characters to
identify the option uniquely; refer to the DNOS System Command Interpreter (SCI) Reference Manual.)
For instance. NOA is a sufficient abbreviation for NO ASSERTS. The 46-character limit applies to the
unabbreviated form of the compiler options, which must be separated by commas.

The foliowing options list specifies cross-reference, 80 lines to a page, displayed preprocessor commands,
foreground execution, and TIP compiler options WIDELIST, UNSAFEOPT, and SIDEFFECTS. You can
specify the options in any order.

OPTIONS: X,NUM = 80,WIDE,SUP = NO,F,UNSAFEOPT,SIDEFFECTS

5.4 ERROR HANDLING

Each task of the compiler sets a condition code, assigning the code as the value of synonym $$CC. The
code is zero for normal termination and a nonzero value for abnormal termination. Specifically, values
of $$CC following execution of the compiler have the following significance:

Value Meaning

> 0000 N No errors or warnings

>4000 Warnings issued

> 6000 Nonfatal errors detected

> 8000 Fatal errors detected

>C000 Abnormal termination — compiler

terminated with run-time error

NOTE

The angle bracket, >, preceding a number indicates a hexadecimal value.

2270517-9701 5-9

TIP Compiler

Condition code synonym $$CC may be tested in a batch stream to alter the execution of the batch stream
when an error is detected. The value placed in $$CC is valid only after the execution of the compiler (prior
to execution of DNOS utilities that set $8CC). Its value may be stored in another synonym by setting
that synonym to the value of @ $3CC with an .SYN SCI primitive. An attempt to determine the value of
$$CC by executing a List Synonyms (LS) command always shows the value of $$CC as zero because
the LS command sets $$CC to zero.

The compiler categorizes errors as warnings, nonfatal errors, and fatal errors. A warning is an irregularity
that may or may not be an error. A nonfatal error is a syntax error that SILT corrects; it does not prevent
CODEGEN from writing an object module or modules for the program. A fatal error is one that causes
SILT?2 to produce incorrect intermediate language; if CODEGEN executes, the resulting object module
issues a run-time error when it is executed.

Appendix B lists and identifies the TIP error messages.

An abnormal termination occurs when a run time or internal error prevents the task from processing
completely. Examples include an invalid file pathname or an insufficient amount of memory specified.
These errors are reported in the MESSAGES file and on the user’s terminal or batch stream listing. Appendix
B lists the run-time error messages.

5.5 COMPILER LISTING

The TIP compiler listing is divided into five parts: preprocessor summary, source listing with errors,
optimization summary with symbol map, CODEGEN summary, and cross-reference.

5.5.1 Preprocessor Summary
The preprocessor summary consists of echoed procedure parameters, the copy command’s pathnames,
and preprocessor error messages. Figure 5-1 shows a sample preprocessor summary:

PREPROC 1.8.0 83.357 PASCAL PREPROCESSOR
SOURCE = .SQURCE.IN1

OBJECT = .0BJECTO4

LISTING = .SOURCE.LIST

MESSAGE = .SOURCE.MSG

MEM1 = 6,10

MEM2 = 13,4

MEM3 = 10,8

PRINT WIDTH = 80

NUMBER OF LINES/PAGE = 60

OPTIONS = (*SWIDELIST,MAPx*)
SUPPRESS PREPROCESSOR LINES = YES

LINE NUMBER COPY FILE PATHNAME
3 .SOURCE.COPY1
3 .SOURCE.COPY2
3 .SOURCE.COPY3
6 .SOURCE.IF1

Figure 5-1. Preprocessor Listing

5-10 2270517-9701

TIP Compiler

5.5.2 Source Listing Generated by SILT2 Phase
The source listing with errors is the section of the listing controlled by the LIST option. For more informa-
tion on the LIST option, see the T/ Pascal Reference Manual. .

SILT2 attempts to list an error number on the line immediately following the line that contained the error.
However, some errors, such as semicolon expected, may not be detected until the first symbol on the
next line has been scanned; these errors are indicated one line too late. (Error number 14 in Figure 5-2
indicates that a semicolon is expected after the keyword END on line 12). In other cases, the compiler
is not able to identify the actual error; as a result, subsequent code appears to be in error because of
an error in the preceding code. Syntax errors are shown in the form !n, where n is the error number. The
exclamation point is positioned as closely as possible beneath the symbol in error. Semantic errors are
shown in the form **** ERROR #n **** at the beginning of the line following the line on which the error
occurs. The message cannot be positioned below the symbol because SILT2 processes an intermediate
representation rather than the source code. When errors are detected, SILT2 writes additional error infor-
mation at the end of the source listing. The information includes the numbers of errors in each category
and a table of error numbers and corresponding error messages for each number printed in the listing.

The compilation errors are chained together by lines of the following form:
LAST ERROR AT LINE nnnn ON PAGE nnn
By starting at the end of the listing and tracing backwards, you can quickly locate every compilation error.

Figure 5-2 and Figure 5-3 present a portion of a source listing that shows error chaining and a line, line
1, inserted by the preprocessor. Figure 5-2 shows a partial source listing with errors. Figure 5-3 is an error-
free source listing.

If you specify a print width equal to or greater than 120 characters and set the WIDELIST option to TRUE,
the SILT2 listing includes an additional column to the right of the source line as shown in Figure 5-4. This
column indicates the nesting level of statements, as well as the duration of routines and FOR, WHILE,
REPEAT, CASE, THEN, and ELSE statements.

The nesting level of each statement is indicated by the number following the line number added by the
NESTER utility. The routine name appears on the source line with the BEGIN and END statements for
the routine. The statement keyword appears on the source line that begins the statement, and the first
character of the keyword appears on each subsequent line until the statement is terminated. The keyword
pair BEGIN/END marks the duration of statements except that REPEATYUNTIL and CASE/END delimit
REPEAT and CASE statements, respectively.

in Figure 5-4, the body of routine ENTERHASH begins at sequence number 270 and ends on line 500.
The keyword WHILE appears on line 320, and the character W appears on each subsequent line down
to the END statement on line 430, which terminates the WHILE statement. The characters WTFOR on
line 380 indicate the beginning of a FOR statement within a THEN clause within the WHILE statement.
in this example, the nesting level is affected by the WHILE, THEN and ELSE statements.

2270517-9701 5-11

TIP Compiler

DXPSCL 1.8.0 83.357 TI 990 PASCAL COMPILER 01/07/84 11:01:06
DIGIO PAGE 1
1 (*$SMAP,NO OPTIMIZE,WIDELIST*)
2 PROGRAM DIGIO;
3 TYPE CHBUF = ARRAY(.1..6.) OF CHAR;
4 VAR BUFF : CHBUF;
5 I,NUM :INTEGER;
6 PROCEDURE CCHAR (BUFF:CHBUF;VAR NUM:INTEGER;I:INTEGER);
7 BEGIN (* CCHAR =)
8 2 NUM:=0;
9 3 FOR J =1 TO0 I DO
d ke k 151
10 4 IF BUFF(.J.)>='0' AND BUFF(.J.)<='9"
1 S THEN NUM:= NUM*10+0RD(BUFF(.J.))-0RDC('0")
12 6 END
13 7
14 PROCEDURE CINT (NUM:INTEGER);
o & K 114

LAST ERROR AT LINE 9 ON PAGE 1

MAP OF IDENTIFIERS FOR CCHAR

IDENTIFIER NAME KIND SIZE STACK PICTURE
(BYTES,BITS) DISPLACEMENT (PACKED FIELDS ONLY)
LEVEL(DISPL) (BYTE,BIT)

BUFF PARAMETER (12,0) #0028 DIRECT
NUM PARAMETER (2,0) #0034 INDIRECT
I PARAMETER (2,0) #0036 DIRECT

15 VAR I :INTEGER;

16 BEGIN (* CINT *)

17 2 I:= NUM DIV 10;

18 3 IF I <> 0 THEN CINT(I);

19 4 WRITE (CHR(NUM MOD 10 + ORD('0')))

20 END;

NUMBER OF ERRORS = 2
LAST ERROR AT LINE 14 ON PAGE 1

14 E ';' EXPECTED
51 E ‘':=' EXPECTED

Figure 5-2. Source Listing With Errors

5-12 2270517-9701

TIP Compiler

DXPSCL 1.8.0 83/357 TI 990 PASCAL COMPILER 01/07/84 11:03:14
DIGIO PAGE 1
(*x$990,GLOBALOPT ,MAP*) "PREPROC 83.357
2 (*$990,MAP,NO OPTIMIZE ,WIDELIST#*)
3 PROGRAM DIGIO;
4 TYPE CHBUF = ARRAY(.1..6.) OF CHAR;
5 VAR BUFF : CHBUF;
6 I,NUM :INTEGER;
7 PROCEDURE CCHAR (BUFF:CHBUF;VAR NUM: INTEGER; I: INTEGER);
8 BEGIN (* CCHAR *)
9 2 NUM: =0;
10 3 FORJ:=1TOIDO
* 11 4 IFBUFF(.J.)>=0 AND BUFF(.J.) <='¢
12 5 THEN NUM: = NUM*10+ORD(BUFF(.J.))=0RD (0"
13 END;

MAP OF IDENTIFIERS FOR CCHAR

IDENTIFIER NAME KIND SIZE STACK PICTURE

BUFF
NUM
I

14
15
16
17
18 2
19 3
20 4
21

(BYTES,BITS) DISPLACEMENT (PACKED FIELDS ONLY)
LEVEL(DISPL) (BYTE,BIT)

PARAMETER 12,0 #0028 DIRECT
PARAMETER 2,0 #0034 INDIRECT
PARAMETER 2,0 #0036 DIRECT

PROCEDURE CINT (NUM: INTEGER);
VAR I :INTEGER;

BEGIN (* CINT *)

I: =NUMDIV10;

IFI<>0THEN CINT(I);

WRITE (CHR(NUM MOD 10 + ORD('0)))
END;

MAP OF IDENTIFIERS FOR CINT

IDENTIFIER NAME KIND SIZE STACK PICTURE

NUM

2270517-9701

(BYTES,BITS) ODISPLACEMENT (PACKED FIELDS ONLY)
LEVEL(DISPL) (BYTE,BIT)

PARAMETER 2,0 #0028 DIRECT
VARIABLE 2,0) #002A DIRECT

Figure 5-3. Source Listing With No Errors (Sheet 1 of 2)

5-13

TIP Compiler

22

23 BEGIN (* DIGIO *)

24 2 WRITELNCENTER1TOSDIGITSY;
25 3 RESET(INPUT);

26 4 l:=1+1;

27 5 WHILE NOT EOLN DO BEGIN

28 6 READ (BUFF(.I.));

29 7 1:=141;

30 8 END; (* INPUT CHARS *)

3 9 I1:=1-1;

32 10 CCHAR(BUFF,NUM,I1);
33 11 NUM: = NUM+25;

34 12 CINT(NUM);

35 13 WRITELN;

36 END.

MAP OF IDENTIFIERS FORDIGIO

IDENTIFIER NAME KIND SIZE
(BYTES,BITS)
LEVEL(DISPL)

BUFF VARIABLE 12,0

I VARIABLE 2,00

NUM VARIABLE 2,0

37

MAXIMUM NUMBER OF IDENTIFIERS USED =14

(* INPUT CHARS =)

STACK PICTURE
DISPLACEMENT (PACKED FIELDS ONLY)
(BYTE,BIT)
#0080 DIRECT
#008C DIRECT
#008E DIRECT

DXPSCL 1.8.0 83.357 OPTIMIZATION SUMMARY

"CCHAR " -- 3800 HEAP BYTES REQUIRED TO OPTIMIZE AT LEVEL 0

"CINT " -- 3800 HEAP BYTES REQUIRED TO OPTIMIZE AT LEVEL 0

"DIGIO " -- 3800 HEAP BYTES REQUIRED TO OPTIMIZE AT LEVEL 0

S .

INSTRUCTIONS = 33

CCHAR LITERALS =18 (CODE = 100 DATA= 58

INSTRUCTIONS = 21

CINT LITERALS =14 CODE = 78 DATA T IAA

INSTRUCTIONS = 60

DIGIO LITERALS = 56 C(ODE = 238 DATA= 144

Figure 5-3. Source Listing With No Errors (Sheet 2 of 2)

5-14 2270517-9701

PREPROC 1.8.0 83,357 PASCAL PREPROCESSOR 01/07/84 11:46:27
SOURCE = PAEBB3. GRAY. TEMP. ENTERH

OBJECT = DS01.0BJECT1!

LISTING = PAESES.GRAY.LIST.Y

MESSAGE = PAESB3.GRAY.LIST. SYSMSG

MENL = 6.4

MEM2 = 13,4

MEM3 =

PRINT WIDTH = 132

MPMBER OF LINES/PAGE = 60
OPTIONS = (#4990, HIDELIST#)
SUPPRESS PREPROCESSOR LINES = YES

DXPSCL 1.8.0 83,357 TI 990 PASCAL CONPILER 01/07/84 11:46:52
SILTY PAGE 1
1 (#5990, NIDELIST#) "PREPROC 83.357
2 e
3 1 o+ ENTERHAS
4 - #)
s 1
6 1"(C) COPYRIGHT, TEXAS INSTRUMENTS INCORPORATED, 1977. ALL
7 i*RIGHTS RESERVED. PROPERTY OF TEXARS INSTRUMENTS INCORPOR-
8 I°ATED. RESTRICTED RIGHTS - USE, DUPLICATION OR DISCLOSURE
9 {"SUBJECT TO RESTRICTIONS SET FORTH IN TI’S PROGRAM LICENSE
10 {"AGREEMENT AND ASSOCIATED DOCUMENTATION.
) S
12 ! (5 NO MAP, WIDELIST #) (#% NO TRACEBACK. NO ASSERTS)
13 1*COPY COPYFILE
14 IPROGRAM SILTI:
- I (#8 NO LIST #)
DXPSCL 1.8.0 83,357 TI 990 PASCAL COWPILER 01/07/94 11:46:52
ENTERMASH PAGE 2
39 ! ($ LIST, PAGE)}
{PROCEIURE ENTERHASH(VAR IDREC:NAMPTR: HASH:S HASHTABRNG) 3
VAR CURSOR:NAPTR:
t FOUND : BOOLEANS
i FRONT:NAPTR}
i 1: STRRMGS
1BEGIN

BEEEREEERLELLURELBRBLLEREEENRES

k-1

H (FIRST CHECX IF ID IS IN HASM TABLE AT THIS LEVEL ALREADY)
¢ CURSOR := HASHTABCHASH]: FRONT := CURSOR:

! FOUND := FALSE:

! SEARCH
i WHILE CURSOR O NIL DO BEGIN

! IF CURSORS.NVE < FIRSTNAM THEN ESCAPE SEARCHS

- W

.. os

CHECX ¢
HITH A = CURSOR®, B = IDRECR DO
10 IF A. IDSTRINGR{0) = B.IDSTRINGR{0] THEN BEGIN
1 (STRING LENGTHS ARE EQUAL)
121 FOR I := 1 TO ORD(B. IDSTRING&{0]) DO
13! IF A.IDSTRINGR(I] O B.IDSTRINGR{I] THEN ESCAPE CHECX:
14 FOUND := TRUE: END:
15! IF FOUND THEN ESCAPE SEARCH:
16! CURSOR := CURSORE.LNK:
170 ENGi
18! IF FOUND THEN BEGIN
19/ ERROR(101); IDREC := CURSOR:

O WO~ A

(IDENTIFIER DECLARED TWICE)

20! o0
211 ELSE BEGIN (LINK NEW IDREC INTO HASH TRBLE CHAIN)
22; IDRECR.LNK := FRONT: HASHTABLHASH] := IDREC:
23 o
1END:
H &
'BEGIN ($NULLBODY }
BN,

MAXIMUN NUMBER OF [DENTIFIERS USED = 215

DXPSCL

"ENTERHAS"

1.2.0 23.3%57 OPTIMIZATION SUMMARY

SILT1

BEGIN SILT1
END SILTL

-~ &000 HEAP BYTES REGUIRED TO OPTIMIZE AT LEVEL 1

Figure 5-4. Source Listing Using WIDELIST and PRINT WIDTH =120

2270517-9701

TIP Compiler

5-15

TIP Compiler

5.5.3 Optimization Summary

An optimization summary occurs for each program, function, or procedure that occurs in the source. Each
optimization summary consists of two parts. The first part is a collection of error or informative comments.
Comments beginning with > > > > are informative. Comments beginning with //// indicate a compiler
error, and ***” indicates a user error detected by the optimizer.

The second part of an optimization summary is a few lines indicating the number of bytes of heap required
to optimize a module.

5.5.4 CODEGEN Summary

The fourth part of a TIP listing is the section that CODEGEN generates. This part also has a summary
for each program, function, or procedure in the source. Each summary consists of two parts. The first
part is the object listing controlled by the compiler option LISTOBJ. The second part lists the number of
bytes of literals, instructions, and stack space the module requires.

5.5.4.1 Object Listing. The object listing is an assembly language listing of the object code produced
by the compiler. (Section 11 describes the structure of assembly modules generated by TIP.) Since LISTOBJ
is a statement level option, it may be turned on and off inside a module. If LISTOBJ is specified anywhere
within a module, the entire literals section is listed as well as the code for the statements affected.

Line numbers appear as a separate comment line filling columns 12 through 45 in the following format:

Note that these line numbers correspond to the statement line number within the body of a routine. The
compiler option WIDELIST enables the inclusion of line numbers in the compiler listing. The second column
of numbers contains the statement line numbers.

Because of compiler optimizations, a one-to-one correspondence may not occur between source line
numbers and those appearing in the object listing. Also, code for some source lines may appear out of
sequence.

5.5.4.2 Example CODEGEN Summary. Figure 5-5 shows an object listing for a procedure called
SAMPLE. The assembly language opcode field begins in column 16; the label field starts in column 12.
The label LIT$ is always listed as the first label in the module; it is used to reference constants that have
been placed in the literals area. The first column of hexadecimal digits in the listing specifies an offset
from the beginning of the module. The second column of 4 digits is the hex representation of the instruc-
tion or data. Note that externally defined symbols do not have a data value since this value is not known
at compile time.

5-16 2270517-9701

DXPSCL 1.8.0 83.357 TI 990 PASCAL COMPILER 01/15/84 11:01:06
SAMPLE PAGE 2
IDT 'SAMPLE’ 01/15/83 11:01:06
*
* DXPSCL 1.8.083.357
*
PSEG
LITS
0000 53 TEXT 'SAMPLE’ TRACEBACK TEXT STRING
0008 0002 DATA 2 STATIC NESTING LEVEL
000A 0001 DATA 1
000C 002F’ DATA LOO2E EPILOGUE DISPLACEMENT
000E 0000 DATALITS LITERALS AREA
o
DEF SAMPLE
REF ENTSS
REF RETSS
*
SAMPLE
0010 06A0 BL QENTSS
0014 002E DATA >002E
* LINE 2 ===--
0016 C1A9 MOV 340(R9),R6
0028
001A 0226 Al R6,7
0007
001E CA4S MOV R6,342(R9)
002A
* LINE 3 ===~
0022 C1E9 MOV 344(R9) ,R7
002c¢
0026 1603 JNE LOO2E
* LINE 4 =-==--
0028 CA60 MOV aLITS+>000A,a842(R9)
oooa’
002A
LO0RE
* LINE 4 ===-~
002E 0460 B QRETSS
0032

INSTRUCTIONS = 8

SAMPLE LITERALS = 16 CODE = 34 DATA =46

2270517-9701

Figure 5-5. Sample Obiject Listing

TIP Compiler

5-17

TIP Compiler

5.5.5 Cross-Reference

The final part of the listing is the optional cross-reference. The cross-reference listing is for the entire source
module. Each symbol is listed in alphabetical order, but only the first 10 characters of a symbol are listed.
The line numbers at which the symbol can be found appear to the right of the symbol. These numbers
match those generated by the WIDELIST option in the leftmost column of the source listing. The plus
sign (+) after a line number indicates that the symbol appears more than once on that line. A sample
cross-reference listing is as follows:

PASCAL CROSS-REFERENCE UTILITY

| 4 6 7
J 3 7 8+
SAMPLE 2

3 IDENTIFIERS 8 OCCURRENCES

5.6 MESSAGE FILE DESCRIPTION

The message file indicates the amount of stack and heap used for each of the compiler tasks. The message
file for a TIP compilation has six sections. The first section shows the execution of the preprocessor and
contains any error messages that the preprocessor generates. The next four subsections list the name of
the program, procedure, or function after the module is processed. The second section shows the execution
of SILT1. The third section shows the execution of SILT2. If compilation errors are detected, an error mes-
sage will appear before the name of the module that contains the errors. The fourth section shows the exe-
cution of the optimizer. The fifth section shows the execution of the code generator. The final section
shows the execution of the cross-reference task. Figure 56 provides a sample message file.

5-18 2270517-9701

PREPROCE EXECUTION BEGINS
NORMAL TERMINATION
STACK USED = 4548 HEAP USED = 612

SILT1 EXECUTION BEGINS

SAMPLE

NORMAL TERMINATION

STACK USED = 4054 HEAP USED = 1968

SILT2 EXECUTION BEGINS

NONFATAL ERRORS IN RUNTIME

SAMPLE

NONFATAL ERRORS IN PROGRAM

NORMAL TERMINATION

STACK USED = 10196 HEAP USED = 1666

T9OPT EXECUTION BEGINS

SAMPLE

NORMAL TERMINATION

STACK USED = 3648 HEAP USED = 2472

CODEGEN EXECUTION BEGINS
SAMPLE

NORMAL TERMINATION

STACK USED = 8592 HEAP USED = 892

PSCLXREF EXECUTION BEGINS

NORMAL TERMINATION
STACK USED = 14272 HEAP USED = 294

Figure 5-6. Message File

5.7 COMPILER MEMORY USAGE

TIP Compiler

SILT1 and SILT2 stack sizes depend on the maximum nesting level of syntactic constructs. (It is a recur-
sive descent parser.) This includes the nesting of statements and routines, but is not affected by the
complexity of expressions since they are parsed in a special way. If SILT needs more than the default
amount of stack, it is usually because the program has an unusual depth of routine nesting. (Note: the

stacks include a number of fixed-sized tables, so the size is not proportional to the nesting.)

The SILT1 heap is mostly filled with identifier information. Each identifier uses space equal to the number
of characters in the name, plus 11 or 12 bytes of attribute information and overhead. The maximum amount
of heap used depends on the maximum number of identifiers whose extent includes any particular point

in the program.

2270517-9701

5-19

TIP Compiler

The SILT2 heap contains mostly type information. Each non-identical type uses from 6 to 18 bytes. For
example, the Pascal declaration:

VAR X: ARRAY[1..100] OF INTEGER,;

creates two new unique types: the subrange 1..100 and the array type. Thus, SILT2 heap space can be
conserved by using named types for any types which appear more than once. Here also, the space used
depends on the number of types with overiapping extents.

The optimizer uses a fixed amount of stack space. The optimizer uses the heap to hold all of the code
for a single routine, so the heap space is directly proportional to the size of the largest routine body.

The CODEGEN stack is mostly fixed-size tables. What little variation in stack usage there is depends mostly
on the complexity of expressions since recursive code is used to traverse expression trees. Note that use
of the check options adds a lot of hidden complexity.

The CODEGEN heap is used to hold a linked list representing the label and jump structure of a single
routine. Thus the heap usage is roughly proportional to the size of the largest routine body. Note that
T9OPT and CODEGEN only work on one routine at a time, so things like routine nesting and amount
of global declarations are not relevant.

SILT allows a maximum number of 1023 identifiers active at one time. This number includes 55 pre-defined
identifiers but does not include constant and enumeration value names. The message ‘“‘MAXIMUM
NUMBER OF IDENTIFIERS USED = " on the listing can be checked to see if the limit is being
approached. The number shown on the listing does not include the pre-defined identifiers, so it is limited
to 968.

5-20 2270517-9701

6

Separate Compilation

6.1 GENERAL

Development of a large program is significantly less expensive when modules of the program can be changed
and recompiled without recompiling the entire program. In a block-structured language such as TIP, separate
compilation is more difficult than in assembly language or high-level languages that are not structured.
The difficulty results from the scope rules of TIP and the capability of passing parameters either by value
or by reference. To separately compile a TIP routine, all global declarations must be included in the source
code so that the environment is identical to that in which the routine executes. In this context, global deciara-
tions include the declaration sections of all routines within which the routine is nested. The process of
manually merging the declaration sections is tedious and error-prone.

This section describes the TIP software that separately compiles TIP program modules. Consuit the T/
Pascal Configuration Processor Tutorial for step-by-step instructions on how to use the configuration processor.
This section and the tutorial contain complementary information and should be used together.

6.2 REQUIREMENTS FOR SEPARATE COMPILATION

The TIP compiler produces a separate object module for each program and for each routine of the program.
Two object modules result from compiling the following code:

PROGRAMA;
VAR X,Y,Z:INTEGER;
PROCEDURE B(W:INTEGER) ; FORWARD;
PROCEDURE B;
BEGIN (*Bx*)
W:=Y
END (*B*)
BEGIN (*Ax*)
B(X)
END (*A%),

The compiler concatenates the two object modules in a single file. Alternatively, the two modules can
be separated (using the Text Editor, for example) and stored as separate library members. Also, they can
be concatenated before link editing, or can be specified to the Link Editor by using an INCLUDE command
in the control file.

2270517-9701 6-1

Separate Compilation

When the main program module A needs to be recompiled, a new module for A can be compited and
the new module linked with the existing module for B. To recompile a new module for A, simply omit the
code for procedure B and compile the following:

PROGRAM A;
VAR X,Y,Z:INTEGER;
PROCEDURE B(W: INTEGER) ; FORWARD;
BEGIN (*A%)

B(X)
END (*A%) .

Since procedure B is omitted, the forward declaration of procedure B must be included so that the call
to procedure B in program A results in the correct linkage.

To correctly recompile routine B, the compiler must have the declarations of the main program as well
as those of routine B. The source code is as follows:

PROGRAM A;
VAR X,Y,Z:INTEGER;
PROCEDURE B(W:INTEGER) ; FORWARD;
PROCEDURE B;
BEGIN (*xAx)
W:=Y
END (*B*);
BEGIN (*$SNO OBJECT*)
END (*A*),

The NO OBJECT option suppresses the production of an object module for A, and only the object module
for B is produced. This module can be linked with the existing module for A to obtain a new version of

the entire program.

The NO OBJECT option is required since, without it, the presence of the BEGIN and END keywords for
module A would produce an object module. If the object module for A were created, it would be necessary
to delete it in order to properly link the existing module A with the new module B.

6-2 2270517-9701

Separate Compilation

A different approach to the problem of separately compiling a program module is to store individual source
modules in a library. The source code in the example can be separated as follows:

PROGRAM A;
VAR X,Y,Z:INTEGER;
PROCEDURE B(W:INTEGER) ; FORWARD;
BEGIN (*Ax)
B(X)
END (*A%) .

PROCEDURE B;
BEGIN (*Bx*)
W:=Y
END (#B*); «

The first of the two source modules shown can be used without alteration to recompile moduie A. The
two must be combined by appropriate text editing to recompile module B.

The process of separately compiling a program with more than two routines or with routines nested to two
or more levels is rather complex. The declarations of the main program must be included, along with the
declarations of all routines in which the routine to be separately compiled is nested. On the other hand, only
the statement section of the routine being separately compiled is included. Although source code can be
manually prepared for separate compilation of a routine, TIP software includes the configuration processor
(CONFIG) to perform these operations.

6.3 THE CONFIGURATION PROCESSOR

The configuration processor supports separate compilation of TIP modules by performing the following
functions:

U Maintaining a library of program source modules to be combined as needed to separately compile
each module of a program

] Preparing a source program for each separate compilation

e Maintaining a library of object modules of a program, from which appropriate object modules
are linked

6.3.1 Functional Description of CONFIG

Figure 6-1, a flowchart of the separate compilation operation, illustrates the functions of CONFIG. The
following description assumes that your source libraries include source modules, as required for separate
compilation. You can write the source code as separate modules in a source library, or you can create
the library from a source program by using the source Split Program utility (SPLITPGM).

2270517-9701 6-3

Separate Compilation

To perform separate compilation using CONFIG, first execute CONFIG using the command XCONFIG
(for background execution), or XCONFIGI (for interactive execution). In response to your commands,
CONFIG communicates with your source libraries and prepares the desired TIP program. CONFIG also
writes a process configuration as specified in your commands; this configuration describes the hierarchical
structure of the program. Next, CONFIG writes a file of deferred commands for a subsequent execution
of CONFIG and a command listing file that contains the commands and a copy of the process configuration.

The TIP compiler processes TIP source written by CONFIG. The compiler produces a separate object
module for each routine being compiled, as well as a source listing. CONFIG then executes again, using
the commands in the deferred command file (written during the previous run of CONFIG). The object
moduies written by the compiler are concatenated on a single file; CONFIG separates the modules, writing
them as members of your object libraries. Optionally, CONFIG can coilect a full set of object modules
to be supplied to the Link Editor. The Link Editor links the object modules with modules from the TIP object
library to form a load module (linked object module) and writes the link edit map listing.

6-4 2270517-9701

OUTPUT

COMMAND
LISTING

SOURCE
LISTING

OUTPUT

COMMAND
LISTING

LINK EDIT
MA|

!

2277728

Figure 6-1.

" 2270517-9701

INPUT

USER
COMMANDS

Separate Compilation

MASTER or LIBRARY

USER

CONFIG

SOURCE
LIBRARIES

COMPFILE

/ TiI PASCAL
PROGRAM

TIP COMPILEj

OBJECT ¢

OBJECT
/ MODU LE(S)j

CPTEMP

INPUT

DEFERRED
COMMANDS

CONFIG

OBJECT

OBJECT
[MODULE(S) /

PROCESS
CONFIGURATIO

OBJLIB or ALTOBJ

USER OBJECT
LIBRARIES

LINKAGE
EDITOR

TIP OBJECT

LOAD

[]

LIBRARY

Flow of Separate Compilation Using CONFIG

6-5

Separate Compilation

6.3.2 Format of Source Modules
Source modules for input to CONFIG must be separated and stored as members of your source libraries.
They must conform to the following rules:

. A source module consists of one program, procedure, or function in which all contained
procedures and functions have been replaced by forward declarations.

U Each procedure and function must be declared in a forward declaration to ensure that each
calling sequence is correctly defined.

] Keyword BEGIN of the compound statement that contains the statements of the program,
procedure, or function is in character positions 1 through 5. The component statements must
be indented.

e Keyword END of the compound statement that contains the statements of the program,
procedure, or function is in character positions 1 through 3. The component statements must
be indented. -

e Compiler option NULLBODY must not be specified in any of the source modules.
e Character position 1 must not contain an asterisk (*).

e Character position 1 must not contain a minus sign (—) unless character position 2 also contains
a minus sign.

e Within the declaration section, a comment that begins in character position 1 must be closed
by a brace (}) in character position 72 or by an asterisk and parenthesis (*)) in character positions
71 and 72 of the same or a succeeding line.

CONFIG recognizes one or more comments in the declaration section of a module preceding the TYPE
or VAR declaration as the documentation section of the module. Comments in this section must begin
in character position 1 and close in character position 72 of the same or a succeeding line; aiso these
comments can be listed separately from the source code.

The Nester utility can be used to comply with indentation requirements (third and fourth rules). SPLITPGM
can be used to divide a source program into source modules in accordance with the first rule.

6.3.3 Configuration Processor Commands :

The operation of the configuration processor is controlled by commands entered on file INPUT. Each
command begins with an asterisk (*). The commands are free format, meaning that they can appear in
any column, can extend over more than one line, or several commands can appear on a single line. The
command file is terminated by an end-of-file (EOF). When entering commands interactively from a VDT,
EOF is signaled by pressing the Enter key.

In some BNF productions for configuration processor commands, angle brackets (< >) are used as terminal

symbols. When an angle bracket in a BNF production is a terminal symbol, it is enclosed in quotation
marks (**). .

6-6 . 2270517-9701

Separate Compilation

Many of the commands include a <location>, which is defined as follows:
<location> = ‘<" [<library>,] <member> *>"
The location consists of a library synonym and a member name.

6.3.4 Process Configuration

CONFIG determines the structure of the program. The structure includes the name of the main program,
the names of the routines, and the name of the routine within which each routine is declared (or the main
program name for global routines). The primary data structure that contains this information is called the
process configuration. CONFIG writes, maintains, and uses this structure. Via user commands, you specify
the structure and contents of the process configuration.

The process configuration is structured like a tree, with each node representing a source module of the
program. The root node represents the main program module. The following is an example:

LABELS
/ \
INTERACT READANDPRINT
/ \

GETLINE PRINTLABEL

The process configuration is represented in tabular form, as follows:

PROCESS NAME SOURCE LOCATION OBJECT LOCATION FLAGS SET
LABELS <LIBRARY ,LABELS>
INTERACT <LIBRARY ,INTERACT >
READANDP <LIBRARY ,READANDP >
GETLINE <LIBRARY ,GETLINE>
PRINTLAB <LIBRARY ,PRINTLAB >

All of the routines are descendents of the main program. Routines INTERACT and READANDP are sons
of LABELS; routines GETLINE and PRINTLAB are sons of READANDP. }f another routine were nested
in PRINTLAB, it would be the son of PRINTLAB and a descendent of READANDP.

The example process configuration corresponds to the commands in the example in paragraph 6.3.4.4.
The source locations listed are the locations at which CONFIG accesses the source modules. The library
name is the default value (paragraph 6.3.9) because no DEFAULT SOURCE command (paragraph 6.3.9.6)
has been entered. No object locations are listed because no DEFAULT OBJECT command (paragraph
6.3.9.7) has been entered. No flags (paragraph 6.3.7) are listed because the initial states of the flags have
not been altered.
The following commands define process configurations:

. *BUILD PROCESS

e *ADD

e *CAT PROCESS

2270517-9701) 6-7

Separate Compilation

6.3.4.1 BUILD PROCESS Command. The BUILD PROCESS command initializes a configuration
process as the current configuration process. The syntax of the command is as follows:

< build process command> ::= *BUILD PROCESS| <location>]
<location> ::= “<” [<library>,] <member> ‘“>"
The syntax diagram is as follows:

BUILD PROCESS Command:

*BUILD
PROCESS —${ LIBRARY L_»{ MEMBER

The location parameter is optional. It may be omitted when the location is specified in the CAT PROCESS
command. The location consists of a library synonym and a member name. The library synonym may
be omitted in which case the default source library (LIBRARY, unless it has been altered by a DEFAULT
SOURCE command) is used.

6.3.4.2 ADD Command. The ADD command specifies the name of the root node for a process
configuration and, optionally, a location at which the source module for the node is cataloged. An alter-
nate form of the command specifies the name and location of one or more nodes as sons of a specified
node. The syntax of the command is as follows:

<add command> ::= *ADD<name> [<location>][: <name>[<location>]
{, <name>[<location>]}]

The syntax diagram is as follows:

ADD Command:

—(ADD)—. NAME 4 LOCATION l NAME p{ LOCATION l —>

6-8 2270517-9701

Separate Compilation

The first ADD command following a BUILD PROCESS command has only one name, that of the root node
of a process configuration. The location parameter is the location as defined for the BUILD PROCESS
command and is optional. When no location is entered, the node name is used as the member of the
default source library. Subsequent ADD commands require that the first name parameter be the name
of a previously defined node. The location, if entered, is ignored. Name parameters to the right of the
colon () define additional nodes that are sons of the node named in the first name parameter. The location,
if entered, specifies a library and member or a member of the default source library for the module. If
no location is entered, the node name is used as the member name of the default source library (LIBRARY,
unless it has been altered by a DEFAULT SOURCE command).

6.3.4.3 CAT PROCESS Command. The CAT PROCESS command causes the current process to be
stored at the specified location. The syntax of the command is as follows:

<cat process command> ::= *CAT PROCESS [<location>]
The syntax diagram is as follows:

CAT PROCESS Command:

._——;CCAT PROCESS}——Oi LOCATION l —_

The location is the location as defined for the BUILD PROCESS command. When a location has been
previously specified for the current process configuration (in a BUILD PROCESS or USE PROCESS
command), the location may be omitted. When a location is specified, the location in the CAT PROCESS
command applies, replacing any previous location.

6.3.4.4 Process Configuration Command Example. The following is an example of a set of commands
that define the process configuration described in paragraph 6.3.3:

*8UILD PROCESS

*ADD LABELS

*ADD LABELS: INTERACT

*ADD LABELS: READANDP

*ADD READANDP: GETLINE

*ADD READANDP: PRINTLAB

*CAT PROCESS < LIBRARY,PROCESS >

The BUILD PROCESS command initializes a process configuration, and the first ADD command defines
the root node of the structure as the main program, LABELS. The next two ADD commands define
INTERACT and READANDP as sons of the root node LABELS. The last two ADD commands define
GETLINE and PRINTLAB as sons of READANDP. The CAT PROCESS command specifies that the process
is cataloged as member PROCESS of a library with a pathname that is the value of synonym LIBRARY.
Since the BUILD PROCESS command and did not specify a location for the process configuration, the
CAT PROCESS command requires a location parameter.

Figure 6-3 shows the source code for the program structure used in the process configuration example.

2270517-9701 . 6-9

Separate Compilation

6.3.4.5 USE PROCESS Command. The USE PROCESS command specifies an existing process
configuration as the current process configuration. The syntax of the command is as follows:

< use process command> 1= *USE PROCESS <location>
The syntax diagram is as follows:

USE PROCESS Command:

——((use PRocsss)__.Eno—u_:—-——p

The location is the location as defined for the BUILD PROCESS command. The location must be specified
and must be the location of a cataloged process configuration. The process configuration becomes the
current process configuration for the remainder of the run. Either a USE PROCESS command or a BUILD
PROCESS command must define a current process configuration before any command that operates on
a process configuration is entered.

6.3.5 Compilation

The principal use of CONFIG is to compile a program or to separately compile one or more object modules
of a program. As Figure 6-1 shows, compilation begins with an execution of CONFIG that produces a
source module and a file of deferred commands for a subsequent pass of CONFIG. The source module
includes the necessary source library members from which the required module(s) may be compiled. The
compiler executes, using the source module written by CONFIG, and provides an object file containing
the desired module(s). A second execution of CONFIG, using the deferred command file, separates the
object file into an object module library and/or writes an object file for direct input to the Link Editor.

The user commands for compilation may define a process configuration or specify a previous configura-
tion. A BUILD PROCESS command, ADD commands, and a CAT PROCESS command define a process
configuration. A USE PROCESS command specifies a previously built process configuration. A COMPILE
command is required to specify the source modules to be compiled.

The deferred command file includes a USE PROCESS# command, a SPLIT OBJECT command, and an
EXIT command. The USE PROCESS# command in the beginning of the deferred command file is different
from the USE PROCESS user command. in the deferred command file, the USE PROCESS# command
is followed by an external representation of the process configuration, placed there by CONFIG. This
mechanism is the one by which CONFIG passes the entire process configuration to the succeeding run
of CONFIG. Consequently, the second run of CONFIG produces object modules that correspond to the
source modules from the first CONFIG run.

6.3.5.1 COMPILE Command. The COMPILE command causes CONFIG to prepare a source module
for compilation and specifies the module(s) to be compiled. The syntax for the command is as follows:

< compile command> ::= *[NO] COMPILE ALL
| *[INO] COMPILE <name>[ALL] {, <name>[ALL]}

6-10 : 2270517-9701

Separate Compilation

The syntax diagram is as follows:

COMPILE Command:
ALL
—OLeE € -
NAME vw

The optional keyword NO allows you to inhibit compilation of the module(s) named in the command. When
the keyword ALL follows the keyword COMPILE with no name parameter, the entire program is compiled.
The name parameter is the name of the module to be compiled. When the keyword ALL follows a name
parameter, the named module and all its descendents are compiled. Additional name parameters may
be entered, and each may be followed by the keyword ALL.

Use the following guidelines when selecting modules for recompilation: -

e When a statement within the compound statement of a program or routine is changed, recom-
pile the module that contains the program or routine.

e When a giobal declaration of a program is changed, recompile the entire program.

e When a declaration of a routine is changed, recompile the module that contains the declaration
and all moduies that are its descendents.

6.3.5.2 SPLIT OBJECT Command. The SPLIT OBJECT command is placed in the deferred command
file when a COMPILE command is included in the file INPUT. You should not enter the SPLIT OBJECT
command. The format of the command is as follows:

*SPLIT OBJECT

The SPLIT OBJECT command causes CONFIG to catalog each module of the object file written by the
compiler as a member of a library. The library synonym and/or member name may be specified in a USE
OBJECT command or a DEFAULT OBJECT command. Otherwise, the default object library is used with
the node name as the member name. The default object library is ALTOBJ.

The SPLIT command used on individual modules means that if the COMPILE flag is on, then the object

file will include object code for the specified module (or modules), and it should be split. NO SPLIT has
the same effect as NO COMPILE.

2270517-9701 ' 6-11

Separate Compilation

6.3.5.3 EXIT Command. The EXIT command is the last command placed in the deferred command
file. The format of the command is as follows:

*EXIT

When CONFIG reads the EXIT command in the file INPUT, it terminates processing. You can enter the
command to abort execution of CONFIG. No files are saved.

6.3.5.4 Compilation Examples. The following commands in the file INPUT cause CONFIG to provide
a source file that contains all source modules for a program, as well as a deferred command file to catalog
all object modules in the object file written by the compiler:

*USE PROCESS <LIBRARY,PROCES>

*COMPILE ALL

in this example, the process configuration has been built previously and cataloged at location
<LIBRARY,PROCES >. If the file INPUT includes a BUILD PROCESS command, a set of ADD commands,
and a CAT PROCESS command instead of the USE PROCESS command, a new process configuration
is built and cataloged. The COMPILE command applies to the program that corresponds to the current
process configuration, whether the process configuration was built in a previous run of CONFIG or in the
same run.

Figure 6-2 shows the contents of file OUTPUT following the initial run of CONFIG. The commands are
listed first, followed by a tabular representation of the process configuration. The flags set in the process
configuration are set by the COMPILE command. The pathnames corresponding to the files are listed
next, followed by the pathnames assigned to the library synonyms defined by CONFIG.

Figure 6-3 shows the source listing of the compiler run. Notice that CONFIG has inserted some comment
lines. Otherwise, the program is identical to the Nester output of the same source program.

Figure 6~4 shows the contents of file OUTPUT for the deferred processing run of CONFIG. The deferred

commands are listed, as are the object modules. The node name and location are shown for each module,
followed by the termination record of the module.

6-12 2270517-9701

Separate Compilation

DXPSCLCP 1.8.0 83.357 TI 990 CONFIGURATION PROCESSOR 12/28/83 11:16:57
*UUSE PROCESS <LIBRARY, PROCESS>
*COMPILE ALL

PROCESS NAME SOURCE LOCATION OBJECT LOCATION FLAGS SET
LABELS <LIBRARY ,LABELS > 01
INTERACT <LIBRARY ,INTERACT> 01
READANDP <LIBRARY ,READANDP> 01
GETLINE <LIBRARY ,GETLINE > 01
PRINTLAB <LIBRARY ,PRINTLAB> 01
INPUT =ST16
CRTFIL =ST16 b
QUTPUT = .OUTPUT16
COMPFILE = .COMPFI16
CPTEMP = .CPTEMP16
OBJECT = .0BJECT16
MASTER = ,MASTER16
LIBRARY =SYS2.DP0020.SRCLIB
0BJLIB = .0BJLIB16
ALTOBJ = ,ALTOBJ16

Figure 6-2. Contents of File OUTPUT, Initial CONFIG Run, Full Compilation

2270517-9701 6-13

Separate Compilation

(*x+ LABELS
+ INTERACT
, READANDP
+ GETLINE
, PRINTLAB
- *)
PROGRAM LABELS; 0000010
(G e eI e D D D S LD D e e DL L P L e L e 0000020
PROGRAM LABELS: 0000030
PURPOSE : THIS PROGRAM READS AN ADDRESS LABEL AND PRINTS MULTIPLE 0000040
COPIES OF THAT LABEL. 0000050
FILES USED: INPUT - FOR USER-SUPPLIED PARAMETERS AND THE LABEL 0000060
CPTFIL - USED FOR PROMPTING INPUT 0000070
OUTPUT - MULTIPLE COPIES OF THE LABEL 0000080
PROCEDURES CALLED : INTERACT, READANDPRINT 0600090
-- *) 0000100
VAR CRTFIL : TEXT ; (*USED TO PROMPT INPUT*) 0000110
CHARSPERLINE : INTEGER; (*NUMBER OF CHARACTERS PER LINE~*) 0000120
LINESPERLABEL : INTEGER; (*NUMBER OF LINES PER LABEL*) 0000130
COPYCOUNT : INTEGER; (*NUMBER OF COPIES TO PRINT*) 0000140
PROCEDURE INTERACT,; FORWARD; 0000150
PROCEDURE READANDPRINT; FORWARD; 0000160
(*+ *)
PROCEDURE INTERACT; 0000010
(%= -——- e e e e e e e e e e E e e e e m e c e s s e e —————— 0000020
PROCEDURE INTERACT; 0000030
PURPOSE : INTERACT PROMPTS THE USER, REQUESTING CERTAIN INPUTS. 0000040
QUTPUTS : CHARASPERLINE - NUMBER OF CHARACTERS PER LINE 0000050
LINESPERLABEL - NUMBER OF LINES PER LABEL 0000060
COPYCOUNT - NUMBER OF LABELS TO PRINT 0000070
----------------------------------- - se=——e=e--—------=-x) 0000080
BEGIN (*INTERACT=*) 0000090
REWRITEC CRTFIL); 0000100
WRITELNC CRTFIL, 'HOW MANY CHARACTERS PER LINE?'); 0000110
RESET(INPUT) ; READ(CHARSPERLINE); 0000120
WRITELNCCRTFIL, 'HOWMANY LINES PER LABEL?); 0000130
READLN; READ(LINESPERLABEL); 0000140
WRITELNC CRTFIL, 'HOW MANY LABELS?); 0000150
READLN; READ(COPYCOUNT); WRITELN(CRTFIL, 'NOW INPUT THE LABEL); 0000160
END; (*INTERACT*) 0000170
(*, *)
PROCEDURE READANDPRINT; 0000010
L el it D e E E R P P 0000020
PROCEDURE READANDPRINT; 0000030
PURPOSE : READANDPRINT READS A LABEL AND PRINTS MULTIPLE COPIES OF IT. 0000040
PROCEDURES CALLED : GETLINE, PRINTLABEL 0000050
-- *) 0000060

Figure 6-3. Source Listing, Full Compilation Example (Sheet 1 of 2)

6-14 2270517-9701

Separate Compiiation

TYPE 0000070
LINE = PACKED ARRAY (.1..CHARSPERLINE.) OF CHAR; 0000080
VAR 0000090
LABELIMAGE : ARRAY (.1..LINESPERLABEL.) OF LINE; 0000100

PROCEDURE GETLINE (VAR THISLINE : LINE); FORWARD; 0000110

PROCEDURE PRINTLABEL; FORWARD; 0000120

(*x+ *)

PROCEDURE GETLINE (*VAR THISLINE : LINE*); 0000010

(fmmmmm———ecem—— e e e e emmmmmmmmmmemee e S —eeees——mm————————o—ocoo- 0000020
PROCEDURE GETLINE; 0000030
PURPOSE : GETLINE READS A SINGLE LINE OF A LABEL. 0000040
INPUTS : CHARSPERLINE - NUMBER OF CHARACTERS PER LINE 0000050
OQUTPUTS : THISLINE - THE LINE THAT WAS READ. 0000060

-- *) 0000070

VAR CH : INTEGER; 0000080

BEGIN (*GETLINE+*) 0000090
READLN; CH:=1; 0000100
WHILE CH <= CHARSPERLINE AND NOT EOLN(INPUT) DO BEGIN 0000110

READC THISLINE(.CH.) }; CH:=CH+1; 0000120
END; (*FILL INREST OF LINE WITHBLANKS*) 0000130
FOR J := CH TO CHARSPERLINE DO THISLINE(.J.) :=''; 0000140

END; (*GETLINE*) 0000150

(*, *)

PROCEDURE PRINTLABEL; ’ . 0000010

(h==m B e 0000020
PROCEDURE PRINTLABEL; 0000030
PURPOSE : PRINTLABEL PRINTS ONE COPY OF THE LABEL. 0000040
INPUTS : LINESPERLABEL - NUMBER OF LINES PER LABEL 0000050

CHARSPERLINE ~ NUMBER OF CHARACTERS PER LINE 0000060
LABELIMAGE - THE LABEL TO BE PRINTED 0000070

-—- —— --%) 0000080

BEGIN (*PRINTLABEL*) 0000090
FORL :=1 TO LINESPERLABEL DO BEGIN 0000100

FORCH :=1 TO CHARSPERLINE DO WRITE(LABELIMAGE(.L.)(.CH.)); 0000110
WRITELN; END; 0000120

END; (*PRINTLABEL*) 0000130

(*x= *)

BEGIN (*READANDPRINT*) 0000130
FORL :=1TOLINSPERLABEL DO GETLINE (LABELIMAGE(.L.)); 0000140
FORK :=1 TO COPYCOUNT DO PRINTLABEL; 0000150

END; (*READANDPRINT#*) 0000160

(%~ *)

BEGIN (*LABELS*) 0000170
INTERACT; READANDPRINT; 0000180

END. (*LABELS*) 0000190

Figure 6-3. Source Listing, Full Compilation Example (Sheet 2 of 2)

2270517-9701 6-15

Separate Compiiation

DXPSCLCP 1.8.0 83.357 TI 990 CONFIGURATION PROCESSOR 12/28/83 12:10:10
*USE PROCESS #
*SPLIT OBJECT -

INTERACT 12/28/83 12:13:02 DXPSCL

INTERACT = <ALTOBJ ,INTERACT >:

GETLINE =<ALTOBJ ,GETLINE >: GETLINE 12/28/83 12:13:14 DXPSCL
PRINTLAB = <ALTOBJ ,PRINTLAB >: PRINTLAB 12/28/83 12:13:24 DXPSCL
READANDP = <ALTO0BJ ,READANDP >: READANDP 12/28/83 12:13:38 DXPSCL
LABELS =<ALTOBJ ,LABELS >: LABELS 12/28/83 12:13:52 DXPSCL

*EXIT

Figure 6-4. Contents of File OUTPUT, Deferred Processing, Full Compilation

A partial compilation of two modules of the same program is performed by using commands such as the
following: '

*USE PROCESS <LIBRARY,PROCES >
*COMPILE PRINTLAB,INTERACT

The COMPILE command for this example specifies compiling modules INTERACT and PRINTLAB. The
source module for the compilation requires the declarations for routines LABELS and READANDPRINT,
the ancestors of INTERACT and PRINTLABEL. The source module also must include both the declara-
tions and statements of routines INTERACT and PRINTLABEL.

Figure 6-5 shows the contents of file OUTPUT for the initial CONFIG run. As in the full compilation example,
the file contains the commands and a tabular representation of the process configuration. The flags set
in the process configuration correspond to the portions of modules that are to be combined in the source
file that CONFIG builds. The pathnames are identical to those in the preceding example.

Figure 6-6 shows the source listing of the compiler run. The declaration portion of module LABELS is
first, including the forward declarations of routines INTERACT and READANDPRINT. Next is module
INTERACT, followed by the declaration portion of module READANDPRINT. Forward declarations of
routines GETLINE and PRINTLABEL are included, even though no portion of module GETLINE is included
in the partial compilation. Module PRINTLABEL is next, followed by the statement portions of routine
READANDPRINT and program LABELS. To inhibit the compiler from writing modules READANDP and
LABELS, the statement portions of these modules supplied by CONFIG consist of BEGIN keywords followed
by NULLBODY option comments and END keywords.

6-16 2270517-9701

DXPSCLCP 1.8.0 83.357 TI990 CONFIGURATIONPROCESSOR

*USE PROCESS <LIBRARY, PROCESS>
*COMPILE PRINTLAB, INTERACT

PROCESS NAME SOURCE LOCATION
LABELS <LIBRARY ,LABELS >
INTERACT <LIBRARY ,INTERACT>
READANDP <LIBRARY ,READANDP>
GETLINE <LIBRARY ,GETLINE >
PRINTLAB <LIBRARY ,PRINTLAB>
INPUT =ST16
CRTFIL =S8T16
OUTPUT =SYS2.DP0020.LIST
COMPFILE = .COMPFI16
CPTEMP = .CPTEMP16
0BJECT = .0BJECT16
MASTER .MASTER16

LIBRARY SYS2.DP0020.SRCLIB
0BJLIB =SYS2.DP0020.SRCLIB
ALTOBJ =SYS2.DP0020.SRCLIB

0BJECT LOCATION

12/28/83

Separate Compilation

13:28:37

FLAGS SET

- - -

Figure 6-5. Contents of File OUTPUT, Initial Run, Partial Compilation

2270517-9701

6-17

Separate Compilation

(*+
+ INTERACT
rd
+ PRINTLAB
- *)
PROGRAM LABELS;
(Rmmmr e e e m e e e cc e c e r e cccc mcc e —— . ————————————— -

PROGRAM LABELS:

PURPOSE : THIS PROGRAM READS AN ADDRESS LABEL AND PRINTS MULTIPLE
COPIES OF THAT LABEL. :

FILES USED: INPUT - FORUSER-SUPPLIED PARAMETERS AND THE LABEL
CPTFIL = USED FOR PROMPTING INPUT
OUTPUT - MULTIPLE COPIES OF THE LABEL

PROCEDURES CALLED : INTERACT, READANDPRINT

VAR CRTFIL : TEXT ; (*USED TO PROMPT INPUT*)
CHARSPERLINE : INTEGER; (*NUMBER OF CHARACTERS PER LINE*)
LINESPERLABEL : INTEGER; (*NUMBER OF LINES PER LABEL*)
COPYCOUNT : INTEGER; (*NUMBER OF COPIES TO PRINT»*)

PROCEDURE INTERACT,; FORWARD;
PROCEDURE READANDPRINT; FORWARD;
(*+

PROCEDURE INTERACT;

PROCEDURE INTERACT;

PURPOSE : INTERACT PROMPTS THE USER, REQUESTING CERTAIN INPUTS.

OUTPUTS : CHARASPERLINE - NUMBER OF CHARACTERS PER LINE
LINESPERLABEL - NUMBER OF LINES PER LABEL
COPYCOUNT ~ NUMBER OF LABELS TO PRINT

BEGIN (*INTERACT*)

REWRITE(CRTFIL);

WRITELNC CRTFIL, °'HOW MANY CHARACTERS PER LINE?');

RESET(INPUT); READ(CHARSPERLINE);

WRITELN(CRTFIL, 'HOW MANY LINES PER LABEL?');

READLN; READ(LINESPERLABEL);

WRITELNC CRTFIL, 'HOW MANY LABELS?');

READLN; READ(COPYCOUNT); WRITELN(CRTFIL, 'NOW INPUT THE LABEL');

END; (*INTERACT*)

Figure 6-6. Source Listing, Partial Compilation Example (Sheet 1 of 2)

6-18

0000010
-- 0000020
0000030
0000040
0000050
0000060
0000070
0000080
00ooa90
*) 0000100
0000110
0000120
0000130
0000140
0000150
0000160
*)
ooooo10
-- 0000020
0ooo030
0000040
0000050
00c0060
0000070
*) 0000080
0000090
0000100
0000110
0000120
0000130
0000140
0000150
0000160
0000170

2270517-9701

Separate Compilation

(x, *)
PROCEDURE READANDPRINT; 0000010
(K= e e e e e e m s oSS SSSSSmsSsSsSssee 0000020
PROCEDURE READANDPRINT; 0000030
PURPOSE : READANDPRINT READS A LABEL AND PRINTS MULTIPLE COPIES OF IT. 0000040
PROCEDURES CALLED : GETLINE, PRINTLABEL 0000050
------------- ———— - - cemmmmmmmeeeccec—ecemmeame———————=%) 0000060
TYPE 0000070
LINE = PACKED ARRAY (.1..CHARSPERLINE.) OF CHAR; 0000080
VAR 0000090
LABELIMAGE : ARRAY (.1..LINESPERLABEL.) OF LINE; 0000100
PROCEDURE GETLINE(VAR THISLINE : INTEGER); FORWARD; 0000110
PROCEDURE PRINTLABEL; FORWARD; 0000120
(*+ *)
PROCEDURE PRINTLABEL; 0000010
(* -- 0000020
PROCEDURE PRINTLABEL; 0000030
PURPOSE : PRINTLABEL PRINTS ONE COPY OF THE LABEL. 0000040
INPUTS : LINESPERLABEL - NUMBER OF LINES PER LABEL 0000050
CHARSPERLINE - NUMBER OF CHARACTERS PER LINE 0000060
LABELIMAGE - THE LABEL TO BE PRINTED 0000070
=) 0000080
BEGIN) (*PRINTLABEL%*) 0000090
FORL :=1 TO LINESPERLABEL DO BEGIN . 0000100
FORCH :=1 TO CHARSPERLINE DO WRITE(LABELIMAGE(.L.) (.CH.)); 0000110
WRITELN; END; 0000120
END; (*PRINTLABEL~*) 0000130
(= *x)

BEGIN (*SNULLBODY *)

END (* READANDP *);
(%= *)

BEGIN (*SNULLBODY *)
END (* LABELS *).

Figure 6-6. Source Llisting, Partial Compilation Example (Sheet 2 of 2)

Figure 6-7 shows the contents of file OUTPUT for the deferred processing. The same deferred commands
are used as for full compilation, and the object modules that the compiler writes are listed. The newly
compiled modules for the specified routines (INTERACT and PRINTLABEL) replace the previously compiled
modules as members of library ALTOBJ. .

2270517-9701 6-19

Separate Compilation

DXPSCLCP 1.8.0 83.357 TI990 CONFIGURATION PROCESSOR 12/28/83 13:48:36
*USE PROCESS #
*SPLIT OBJECT

INTERACT = <ALTOBJ ,INTERACT>: INTERACT 12/28/83 15:02:22 DXPSCL
PRINTLAB = <ALTOBJ ,PRINTLAB>: PRINTLAB 12/28/83 15:02:26 DXPSCL
*EXIT

Figure 6-7. Contents of OUTPUT, Deferred Processing, Partial Completion

6.3.6 Source Listing
Using the following commands, CONFIG provides a listing of the source library modules specified in a
process configuration:

] LIST — Specifies listing of one or more complete source modules

e LISTDOC — Lists the documentation section of one or more source modules

e LISTORDER — Specifies the listing order for the LIST and LISTDOC commands
The documentation section of a source module consists of one or more comments at the beginning of
the declaration section, preceding the TYPE or VAR declaration(s). The brace ({) or parenthesis and asterisk
((*) that begin the comment must be in character position 1 or character position 1 and 2, respectively.
The closing brace (}) or asterisk and parenthesis (*)) must be in character position 72 or character positions
71 and 72 of the same or of a subsequent line. The declaration section may consist of a muitiline comment
or of a group of comments.
The listings are written after all commands in the file INPUT have been processed.

6.3.6.1 LIST Command. The LIST command causes CONFIG to list one or more source modules
specified in the current process configuration. The syntax for the command is as follows:

(<list command> ::= *[NO] LIST ALL|*[NO] LIST <name>[ALL]{,<name>[ALL]})
The syntax diagram is as follows:

LIST Command:

ALL

OO Chy |

NAME ALL

O

6-20 2270517-9701

Separate Compilation

The name parameter is the name of a node in the current process configuration. The source module corres-
ponding to each named node is listed. When the keyword ALL is entered alone, all source modules of
the program are listed. When the keyword ALL is entered following a name parameter, the command lists
the specified module and all descendents.

6.3.6.2 LISTDOC Command. The LISTDOC command causes CONFIG to list the documentation
section of one or more source modules specified in the current process configuration. The syntax for the
command is as follows:

<listdoc command> ::= *[NO] LISTDOC ALL
| *[NO] LISTDOC <name>[ALL] ,<name>[ALL]

The syntax diagram is as follows:

LISTDOC Command:

—O— @ LISTDOC

M=
O

The name parameter is the name of a node in the current process configuration. The documentation section
of the source module corresponding to each named node is listed. When the keyword ALL is entered alone,
the documentation sections of all source modules of the program are listed. When the keyword ALL is
entered following a name parameter, the command lists the documentation sections of the specified module
and all descendents.

6.3.6.3 LISTORDER Command. The LISTORDER command specifies the listing order for the LIST
and LISTDOC commands. The syntax of the command is as follows:

<listorder command> ::= *LISTORDER ALPHA | *LISTORDER PROCESS

LLISTORDER}—. >
L

‘ PROCESS]

2270517-9701 ' 6-21

The syntax diagram is as follows:

LISTORDER Command:

Separate Compiiation

The keyword ALPHA causes the source modules and/or documentation sections to be listed in alphabetical
order by node name. The keyword PROCESS specifies listing the source modules in the order in which
they appear in the process configuration. The following is an example:

*LISTORDER ALPHA

The example command specifies listing source modules and documentation sections of source modules
in alphabetic order by node name. The LISTORDER command applies to all LIST and LISTDOC commands.

6.3.6.4 Listing Examples. Figure 6-8 lists the contents of the file OUTPUT for a listing example. The
commands shown are a USE PROCESS command that specifies a previously cataloged process
configuration, and a LIST command that lists the entire program. The tabular representation of the process
configuration is the same as for the preceding examples.

6-22 2270517-9701

Separate Compilation

DXPSCLCP 1.8.0 83.357 TI 990 CONFIGURATION PROCESSOR 12/28/8314:00:59
*USE PROCESS <LIBRARY, PROCES>
*LIST LABELS ALL

PROCESS NAME SOURCE LOCATION 0BJECT LOCATION FLAGS SET
LABELS <LIBRARY ,LABELS> 2
INTERACT <LIBRARY ,INTERACT> 2
READANDP <LIBRARY ,READANDP> 2
GETLINE <LIBRARY ,GETLINE > 2
PRINTLAB <LIBRARY ,PRINTLAB> 2
INPUT =8T16
CRTFIL =8T16
QUTPUT =S5YS2.0P0020.LIST
COMPFILE = .COMPFI16
CPTEMP = .,CPTEMP16
OBJECT = ,0BJECT16
MASTER = .MASTER16
LIBRARY =35YS2.DP0020.SRCLIB
0BJLIB =SYS2.DP0020.0BJLIB
ALTOBJ = 8YS2.0P0020.0BJLIB
CONFIGURATION PROCESSOR 12/28/83) 14:01:18
LABELS = §YS2.DP0020.SRCLIB(LABELS)
PROGRAM LABELS; 0000010
(x 0000020
PROGRAM LABELS: 0000030
PURPOSE : THIS PROGRAM READS AN ADDRESS LABEL AND PRINTS MULTIPLE 0000040
COPIES OF THAT LABEL. 0000050
FILES USED: INPUT - FOR USER-SUPPLIED PARAMETERS AND THE LABEL 0000060
CPTFIL - USED FOR PROMPTING INPUT 0000070
OUTPUT - MULTIPLE COPIES OF THE LABEL 0000080
PROCEDURES CALLED : INTERACT, READANDPRINT 0000090
- *) 0000100
VAR CRTFIL : TEXT ; (*USED TO PROMPT INPUT*) 0000110
CHARSPERLINE : INTEGER; (*NUMBER OF CHARACTERS PER LINE*) 0000120
LINESPERLABEL : INTEGER; (*NUMBER OF LINES PER LABEL*) 0000130
COPYCOUNT : INTEGER; (*NUMBER OF COPIES TO PRINT#*) = 0000140
PROCEDURE INTERACT; FORWARD; 0000150
PROCEDURE READANDPRINT; FORWARD; 0000160
BEGIN (*LABELS*) 0000170
INTERACT; READANDPRINT; 0000180
END. (*LABELS*) 0000190

Figure 6-8. Contents of File OUTPUT for LIST Command (Sheet 1.of 3)

2270517-9701 6-23

Separate Compilation

CONFIGURATION PROCESSOR 12/28/83 14:01:18
INTERACT = SYS2.DP0020.SRCLIBCINTERACT)
PROCEDURE INTERACT; 0000010
(e e e e e - 0000020
PROCEDURE INTERACT; 0000030
PURPOSE : INTERACT PROMPTS THE USER, REQUESTING CERTAIN INPUTS. 0000040
OUTPUTS : CHARASPERLINE - NUMBER OF CHARACTERS PER LINE 0000050
LINESPERLABEL -~ NUMBER OF LINES PER LABEL 0000060
COPYCOUNT - NUMBER OF LABELS TO PRINT 0000070
I it it bt =) 0000080
BEGIN (*INTERACT*) 0000090
REWRITE(CRTFIL); 00oo100
WRITELNC CRTFIL, 'HOW MANY CHARACTERS PER LINE?'); 0000110
RESET(INPUT); READ(CHARSPERLINE); 0000120
WRITELN(CRTFIL, 'HOW MANY LINES PER LABEL?'); 0000130
READLN; READ(LINESPERLABEL); 0000140
WRITELNC CRTFIL, 'HOW MANY LABELS?'); 0000150
READLN; READ(COPYCOUNT); WRITELN(CRTFIL, 'NOW INPUT THE LABEL'); 0000160
END; (*INTERACT*) 0000170
CONFIGURATION PROCESSOR 12/28/83 14:01:18
READANDP = SYS2.0P0020.SRCLIB(READANDP)
PROCEDURE READANDPRINT; 0000010
(» - 0000020
PROCEDURE READANDPRINT; 0000030
PURPOSE : READANDPRINT READS A LABEL AND PRINTS MULTIPLE COPIES OF IT. 0000040
PROCEDURES CALLED : GETLINE, PRINTLABEL 0000050
------ *) 0000060
TYPE 0000070
LINE = PACKED ARRAY (.1..CHARSPERLINE.) OF CHAR; 0000080
VAR 0000090
LABELIMAGE : ARRAY (.1..LINESPERLABEL.) OF LINE; 0000100
PROCEDURE GETLINE; FORWARD; 0000110
PROCEDURE PRINTLABEL; FORWARD; 0000120
BEGIN (*READANDPRINT*) 0000130
FORL :=1 TO LINSPERLABEL DO GETLINE(LABELIMAGE(.L.)); 0000140
FORK :=1 TO COPYCOUNT DO PRINTLABEL; 0000150
END; (*READANDPRINT*) 0000160

Figure 6-8. Contents of File OUTPUT for LIST Command (Sheet 2 of 3)

6-24 2270517-9701

Separate Compilation

CONFIGURATION PROCESSOR 12/28/83 14:01:19
GETLINE = SYS2.0P0020.SRCLIB(GETLINE)
PROCEDURE GETLINE (*VAR THISLINE : LINE*); 0000010
€ ittt ittt 0000020
PROCEDURE GETLINE; 0000030
PURPOSE : GETLINE READS A SINGLE LINE OF A LABEL. 0000040
INPUTS : CHARSPERLINE NUMBER OF CHARACTERS PER LINE 0000050
OUTPUTS : THISLINE - THE LINE THAT WAS READ. 0000060
-———- - - ,memeceem e e ———— =) 0000070
VAR CH : INTEGER; 0000080
BEGIN (*GETLINE*) 0000090
READLN; CH := 1; 0000100
WHILE CH <= CHARSPERLINE AND NOT EOLN(CINPUT) DO BEGIN 0000110
READ(THISLINE(.CH.)); CH := CH + 1; 0000120
END; (*FILL IN REST OF LINE WITH BLANKS*) 0000130
FOR J := CH TO CHARSPERLINE DO THISLINE(.J.) :='"; 0000140
END; (*GETLINE*) 0000150
CONFIGURATION PROCESSOR12/28/83 14:01:19
PRINTLAB = SYS2.DP0020.SRCLIB(PRINTLAB) PROCEDURE PRINTLABEL; 0000010
(* 0000020
PROCEDURE PRINTLABEL; 0000030
PURPOSE : PRINTLABEL PRINTS ONE COPY OF THE LABEL. 0000040
INPUTS : LINESPERLABEL - NUMBER OF LINES PER LABEL 0000050
CHARSPERLINE - NUMBER OF CHARACTERS PER LINE 0000060
LABELIMAGE - THE LABEL TO BE PRINTED) 0000070
*) 0000080
BEGIN (*PRINTLABEL*) 0000090
FORL :=1 TOLINESPERLABEL DO BEGIN 0000100
FOR CH :=1 TO CHARSPERLINE DO WRITE(LABELIMAGE(.L.)(.CH.)); 0000110
WRITELN; END; 0000120
END; (*PRINTLABEL~*) 0000130

Figure 6-8. Contents of File OUTPUT for LIST Command (Sheet 3 of 3)

The source modules are listed in the order in which they appear in the process configuration. Notice that
each module contains only the declarations and statements of the applicable program or routine. Only
the module LABELS could be compiled alone. The other modules would fail because they do not start
with a PROGRAM heading and do not end with a period (.). The modules form a source library from which
CONFIG can write a source module to compile one or more of the modules of the program.

Figure 6-9 lists the contents of the file OUTPUT for an example of listing the documentation sections of

a program. The commands shown are a USE PROCESS command, specifying a previously cataloged
process configuration, and a LISTDOC command that lists the entire program.

2270517-9701 6-25

Separate Compilation

DXPSCLCP 1.8.0 83.357 TI 990 CONFIGURATION PROCESSOR 12/28/8314:05:21

*USE PROCESS <LIBRARY, PROCESS>
*LIST LABELS ALL

PROCESS NAME SOURCE LOCATION OBJECT LOCATION FLAGS SET

LABELS <LIBRARY ,LABELS 3
INTERACT <LIBRARY ,INTERACT> 3
READANDP <LIBRARY ,READANDP> 3

GETLINE <LIBRARY ,GETLINE > 3
PRINTLAB <LIBRARY ,PRINTLAB> 3

INPUT =8T16

CRTFIL =8T16

QUTPUT =SYS2.DP0020.LIST

COMPFILE = .COMPFI16

CPTEMP = .CPTEMP16

OBJECT = .0BJECT16

MASTER = .MASTER16

LIBRARY =$§YS2.DP0020.SRCLIB

0BJLIB = 8SYS2.0P0020.0BJLIB

ALTOBJ =S§YS2.0P0020.08JL1B

LABELS =SYS2.DP0020.SRCLIB(LABELS)

(> - 0000020
PROGRAM LABELS: 0000030
PURPOSEC: THIS PROGRAM READS AN ADDRESS LABEL AND PRINTS MULTIPLE 0000040

COPIES OF THAT LABEL. 0000050
FILES USED: INPUT -~ FOR USER-SUPPLIED PARAMETERS AND THE LABEL 0000060
CPTFIL = USED FOR PROMPTING INPUT 0000070
OUTPUT - MULTIPLE COPIES OF THE LABEL 0000080
PROCEDURES CALLED : INTERACT, READANDPRINT 0000090

- ---==%) 0000100

INTERACT = SYS2.D0P0020.SRCLIBC(INTERACT)

(x 0000020
PROCEDURE INTERACT; 0000030
PURPOSE : INTERACT PROMPTS THE USER, REQUESTING CERTAIN IMPUTS. 0000040
OUTPUTS : CHARASPERLINE - NUMBER OF CHARACTERS PER LINE 0000050

LINEPERLABEL = NUMBER OF LINES PER LABEL 0000060
COPYCOUNT - NUMBER OF LABELS TO PRINT 0000070
- e iieieli ittt *) 0000080

Figure 6-9. Contents of File OUTPUT for LISTDOC Command (Sheet 1 of 2)

6-26

2270517-9701

Separate Compilation

READANDP = SYS2.DP0020.SRCLIB(READANDP)

(kmmmm e — e e e e e oSS S SSmSSSSoSSmSmETEeT T 0000020
PROCEDURE READANDPRINT; 0000030
PURPOSE : READANDPRINT READS A LABEL AND PRINTS MULTIPLE COPIES OF IT. 0000040
PROCEDURES CALLED : GETLINE, PRINTLABEL0O00OOS50

-- *) 0000060

GETLINE = SY$S2.DP0020.SRCLIB{GETLINE)

(* Bttt i 0000020
PROCEDURE GETLINE; 0000030
PURPOSE : GETLINE READS A SINGLE LINE OF A LABEL. 0000040
INPUTS : CHARSPERLINE - NUMBER OF CHARACTERS PER LINE 0000050
OUTPUTS : THISLINE - THE LINE THAT WAS READ. 0000060

——eemmme—————— - --%) 0000070

PRINTLAB = $YS2.DP0020.SRCLIB(PRINTLAB)

(> --0000020
PROCEDURE PRINTLABEL; 0000030
PURPOSE : PRINTLABEL PRINTS ONE COPY OF THE LABEL. 0000040
INPUTS : LINESPERLABEL - NUMBER OF LINES PER LABEL 0000050

CHARSPERLINE - NUMBER OF CHARACTERS PER LINE 0000060
LABELIMAGE - THE LABEL TO BE PRINTED 0000070
------ *) 0000080

Figure 6-9. Contents of File OUTPUT for LISTDOC Command (Sheet 2 of 2)

The documentation section of a source module consists of one or more comments at the beginning of
the declaration section, preceding the TYPE declaration, if any, or the VAR declaration. The brace ({)
or the parenthesis and asterisk ((*) that begin the comment must be in character position 1 or character
positions 1 and 2, respectively. The closing brace (}) or asterisk and parenthesis (*)) must be iri character
position 72 or positions 71 and 72 of the same line or a subsequent line. The documentation section may
consist of a multiline comment (as in the example) or of a group of comments.

6.3.7 Fiags

For each node, the process configuration contains a set of flags that control the processing of the node.
Each flag is either on or off. Flags are turned on and off by commands. When all commands have been
processed, the states of all flags are passed to the external representation of the process configuration
that follows the USE PROCESS# command in the deferred command file.

The two categories of flags are system flags and user flags. System flags are predefined and are set to
an initial state when a process configuration is built or accessed. The states of system flags are not stored
when the process configuration is stored. Table 6-1 lists the system flags, their significance, and their
initial states. User flags are described in a subsequent paragraph.

2270517-9701 6-27

Separate Compilation

The COMPILE command turns on the DECLARATION flag for each module for which the declarations
are required in the source file being written. The command turns on both the DECLARATION and BODY
flags for modules being compiled. The NO COMPILE command turns off the DECLARATION and
BODY flags.

The LIST command turns on the LIST flag for modules to be listed, and the NO LIST command turns
the LIST flag off for the specified module(s). Similarly, the LISTDOC command turns on the LISTDOC
flag and the NO LISTDOC command turns the LISTDOC flag off.

The use of the CHANGED flag, set by the EDIT command, is described in a subsequent paragraph. The
NEST flag may not be set or cleared by you.

The COLLECT flag is turned on and off by the Flag command (described in paragraph 6.3.7.2). When
the flag is turned on for a node, that node is written to the file OBJECT during the deferred processing
run. The COLLECT flag implements optional output to a file to be specified in an INCLUDE command
in the link edit control file; as a result, the Link Editor need not search the library for the module.

When the COLLECT flag is set for any node of the process configuration, CONFIG places the *COLLECT
OBJECT command in the deferred file following the *SPLIT OBJECT command.

The *COLLECT OBJECT command is executed during the deferred processing run when the command
is read. When a USE OBJECT command or a preceding collect operation has not specified the location
of the object module, CONFIG searches the library specified by ALTOBJ for the module. When the module
is not on the ALTOBJ library, CONFIG next searches the library specified by OBJLIB.

The SPLIT flag is turned on and off by the Flag command. The flag is initially on, causing all modules
to be cataloged as members of the specified object library. A module for which the SPLIT flag is not set
is not cataloged during the deferred processing run.

The CHECK flag is turned on and off by the Flag command. The flag is initially on, causing CONFIG to
check the IDT (the module identifier) on all object modules. When the CHECK flag is on, the IDT of the
module is compared to the name of the node. Processing is terminated and an error message is written
when the name and IDT are not identical. The IDT of the module is not checked when the CHECK flag
for the node has been turned off.

You may define up to 21 user flags by using the SETFLAG command. User flags are turned on and off

by the Flag command. The states of user flags are stored when the process configuration is stored. Use
the Conditional Flag command to test user flags and set system flags.

6-28 2270517-9701

Table 6-1. System Flags

Separate Compilation

Initial
Number Name Description Value
0 DECLARATION Set when declarations of this module are required in OFF
the source file
1 BODY Set when statements of this module are required in the OFF
source file
2 LIST Set when the source module is to be listed OFF
3 LISTDOC Set when the documentation section of this module is OFF
to be listed
4 CHANGED Set when the contents of a source module are changed OFF
by an edit operation
5 NEST Not currently used
6 SPLIT Set when the object module is to be written as a ON
member of library OBJLIB or ALTOBJ
7 COLLECT Set when the object module is to be written on the OFF
OBJECT file
8 CHECK Set when the IDT of the module is to be compared to ON

the name of the node

6.3.7.1 SETFLAG Command. The SETFLAG command defines or deletes the definition of a user flag.
The syntax of the command is as follows:

< setflag command > : = *SETFLAG < flagname > [< flag-description >]

The syntax diagram is as follows:

SETFLAG Command:

2270517-9701

*SETFLAG

FLAG—
FLAGNAME DESCRIPTION

6-29

Separate Compilation

The parameter flagname consists of one to eight characters and may not be a CONFIG keyword. The
flag description is a string of up to 64 characters that describes the flag. The flag description begins with
the first nonblank character foilowing the flagname parameter and extends to the first asterisk (*), nor-
mally the asterisk that begins the next command. The flag description may contain blanks and serves
as a comment to identify the flag. When the flag description is omitted, the definition of that flag is deleted
and the flag is turned off in all nodes in the program.

6.3.7.2 Flag Command. The Flag command tumns certain system flags and all user flags on and off.
The syntax for the command is as follows:

<flag command> ::= *[NO} <flagname>ALL
| *[NO} <flagname> <name> [ALL] {,<name> [ALL|®

<flagname>::= SPLIT | COLLECT | CHECK | <user flagname>
The syntax diagram is as follows:

Flag Command:

ALl

—o@-— @ FLAGNAME |—p4 C
=L@

The flag is turned off when the optional keyword NO is entered. Otherwise, the flag is turned on. When
the keyword ALL immediately follows the flagname parameter, the flag is turned on or off in all nodes
of the current process configuration. The name parameter specifies a node in which the flag is turned
on or off. When the name parameter is followed by the optionai keyword ALL, the FLAG is turned on or
off in the named node and in all of its descendents.

6.3.7.3 Conditional Flag Command. The Conditional Flag command tests a specified flag and turns
another specified flag on or off according to the resuit. The syntax of the command is as foilows:

< conditional flag command> :: = *IF [NO] <flagname1>
THEN [NO] <flagname2>

<flagname1> :: = COMPILE | LIST | LISTDOC | CHANGED | SPLIT
| COLLECT | CHECK | <user flagname >

<flagname2> ::= COMPILE |LIST | LISTDOC | SPLIT | COLLECT
| CHECK | <user flagname >

6-30 2270517-9701

Separate Compilation

The syntax diagram is as follows:

Conditional Flag Command:

—D@-—J @ FLAGNAME1 —ﬁHEb}dl—i FLAGNAME2 [—¥

The flagname1 parameter specifies a flag to be tested in all nodes of the current process configuration.
The optional keyword NO preceding filename1 specifies the state. When NO is entered, the flag is tested
for the off state. Otherwise, the flag is tested for the on state. In each node for which the test is successful,
flagname2 is turned on if the optional keyword NO is omitted or off if NO is entered.

Notice that COMPILE is allowed as a flagname parameter in the Conditional Flag command, even though
COMPILE is not the name of a flag. When COMPILE is entered as flagname1, the BODY flag is tested.
When COMPILE is entered as flagname2, the BODY fiag is turned on or off as specified. When the BODY
flag is turned on, the DECLARATION flag is also turned on.

6.3.7.4 Flag Exampies. The Flag commands allow you to control program processing by setting or
resetting the system flags. The following is an example of a FLAG command:

*COLLECT INTERACT

The command turns on the COLLECT flag for module INTERACT and causes CONFIG to include the
*COLLECT OBJECT in the deferred command file following the *SPLIT OBJECT command.

The deferred processing run of CONFIG writes the module for INTERACT (and any others for which the
COLLECT flag is on) to the OBJECT file. The OBJECT file can be specified in an INCLUDE command
to the Link Editor.

Another example of a Flag command is as follows:

*NO SPLIT ALL
This command turns off the SPLIT flags for all modules. The deferred processing run of CONFIG does
not catalog the object modules. Uniess the COLLECT flag is set for one or more modules, the use of this

exampie is of little value.

The Conditional Flag command allows you to turn the system flags on and off selectively. The following
is an example of a Conditional Flag command:

*IF CHANGED THEN COMPILE

The EDIT command turns on the CHANGED flag when the module is edited. The command in the example
also turns on the DECLARATION and BODY flags for those modules if they are off.

2270517-9701 6-31

Separate Compilation

User flags may be defined to support an overlay structure, allowing you to specify processing for overlays.
The following are examples of the use of the SETFLAG command to define user flags:

*SETFLAG OVRLAY1 OVERLAY 1 MODULE
*SETFLAG OVRLAY2 OVERLAY 2 MODULE

FLAG commands turn on the flags in the specified modules:

*OVRLAY1 READIN ALL
*OVRLAY2 PRINT ALL

As a result of these commands, user flag OVRLAY1 is turned on in module READIN and in its descendents
and user flag OVRLAY2 is tumed on in module PRINT and in its descendents. The.command in the following
example causes CONFIG to collect overlay 2 modules in file OBJECT:

*IF OVRLAY2 THEN COLLECT

6.3.8 Modifying a Process Configuration

The examples in this section show how to build a process configuration and use it for additional process-
ing. However, you can modify the current process configuration in several ways. Using ADD commands
you can add modules to the program structure defined in the process configuration. You can use DELETE
commands to delete nodes and MOVE commands to modify the structure by moving nodes to other points.
Using the DISPLAY command, you can display the process configuration. You can use the USE OBJECT
command to specify object locations for nodes and USE commands to specify or change source loca-
tions. Use the DEFAULT SOURCE and DEFAULT OBJECT commands to change defauit libraries for source
and object moduies.

6.3.8.1 DELETE Command. The DELETE command deletes a module and its descendents, if any,
from the current process configuration. The syntax of the command is as follows:

<delete command> ::= *DELETE <name>

The syntax diagram is as follows:

D(*DELETE ,L NAME >

The name parameter is the name of the node to be deleted. When the named node has descendents,
the descendents are also deieted. The following is an example:

DELETE Command:

*DELETE READANDP
The example command deletes node READANDP and its descendants, GETLINE and PRINTLAB. It can

be followed by one or more ADD commands to change the names of these nodes of the process
configuration.

6-32 2270517-9701

Separate Compilation

6.3.8.2 MOVE Command. The MOVE command moves a module and all of its descendents to become
a son of another module. The syntax of the command is as follows:

<move command> ::= *MOVE <name1> TO <name2>
The syntax diagram is as follows:

MOVE Command:

*MOVE NAME1 P@ #] NAME2 >

The name1 parameter is the name of a node to be moved. The name2 parameter is the name of another
node in the structure. The parameter name2 cannot be a descendent of name1. The node specified as
name1 and all its descendents, if any, are moved. The node specified as name1 becomes a son of the
node specified as name2. The MOVE command implies changes in the declarations of routines within
the source code. An example is as follows:

*MOVE GETLINE TO LABELS
The example command moves node GETLINE (a son of READANDP) to become a son of LABELS. Text
edit the files to move the forward declaration of GETLINE in the declaration portion of READANDP to
the declaration portion of LABELS to compile any module correctly.

6.3.8.3 DISPLAY Command. The DISPLAY command displays the tabular representation of all or part
of the current process configuration on file CRTFILE. The syntax is as follows:

<display command> ::= *DISPLAY [<name>] ALL
The syntax diagram is as follows:

DISPLAY Command:

*DISPLAY —-OE ALL >

When the optional name parameter is omitted, the entire current process configuration appears on the
screen. When the name parameter is included, the name is the name of a node, and the portion of the
process configuration that lists the named node and its descendents appears on the screen.

The DISPLAY command allows you to display the process configuration, noting the effects of the commands
that have been processed. The following is an example:

*DISPLAY READANDP ALL

2270517-9701 6-33

Separate Compilation

The resulting display of the current process configuration includes nodes READANDP, GETLINE, and
PRINTLAB.

The format of the display is similar to that written to file OUTPUT (Figure 6-9). The names of the nodes
are displayed, indented to show the program structure. The source and object locations are displayed,
as are the numbers of system flags that are not in their initial states. The initial states of flags 6 and 8
(SPLIT and CHECK) are on; the initial states of the other system flags are off. Except for flags 6 and 8,
the display of the flag number indicates that it is on. An asterisk (*) appears with numbers 6 and 8 because
the display of either of these numbers means that the flag is off.

6.3.8.4 USE OBJECT Command. The USE OBJECT command specifies a location for the object
module of a specified node. The syntax of the command is as follows:

< use object command> ::= *USE OBJECT <name> <location>
The syntax diagram is as follows:

USE OBJECT Command:

.——@SE OBJECT}——. NAME p——9] LOCATION ——————e——

The name parameter is the name of the node to which the object location applies. The location parameter
syntax is as follows:

<location> 1= “<“[<library>,|]<member>">"

When the library is not specified in the location parameter, the location for the object module remains
unspecified. The following is an example:

*USE OBJECT INTERACT <OBJL1,INTERACT >

The example specifies that the object module for node INTERACT is to be cataloged as member INTERACT
of the library whose synonym is OBJL1.

When a USE OBJECT command specifies a member name or a library synonym and a member name,
CONFIG writes the object module to the object library member when it performs the deferrea processing.
Otherwise, CONFIG writes the module to the defauit object library, using the noge name as the member
name. The representation of the process configuration does not contain an object location unless a USE
OBJECT or DEFAULT OBJECT command has been entered.

6.3.8.5 USE Command. The USE command specifies a location for the source module for a specified
node. The syntax of the command is as follows:

<use command> = *USE <name> <location>

6-34 2270517-9701

Separate Compilation

The syntax diagram is as follows:

USE Command:

The name parameter is the name of the node to which the source location applies. The location parameter
syntax is as follows:

<location> 1= “<“[<library>,]<member>"'>"
The following is an example:
*USE GETLINE <SLIB1,INPLIN>

The example specifies that the source module for node GETLINE is to be cataloged as member INPLIN
of the library whose synonym is SLIB1.

You can use either a USE command or an ADD command to specify a source library synonym and member
name for a source module. To assign a different library synonym or member name, use the USE command.

6.3.9 Libraries
The following library synonyms are initially defined in CONFIG:

* MASTER — Intended for source modules of tested (fully developed) programs

s OBJLIB — Intended for object modules corresponding to source modules in MASTER
. LIBRARY — Intended for source modules of programs under development

e ALTOBJ — Intended for object modules corresponding to source modules in LIBRARY

The defauit source library synonym LIBRARY is the logical defauit because it is intended for programs
under development. Similarly, the default object library synonym ALTOBJ is appropriate because it is
intended for object modules corresponding to the source modules in LIBRARY. To change either default
value use the DEFAULT SOURCE or DEFAULT OBJECT commands.

CONFIG maintains a library table in the process configuration. The first four entries in the table are the
initially defined library synonyms MASTER, LIBRARY, OBJLIB, and ALTOBJ. When a library synonym
is entered in any of the commands that may include a library synonym parameter, the synonym is added
to the library table (unless it already appears in the table). The commands are BUILD PROCESS, CAT
PROCESS, USE PROCESS, ACD, USE, USE OBJECT, SEFAULT SOURCE, DEFAULT OBJECT, and
EDIT.

Other synonyms may be substituted for the initially defined library synonyms. The MASTER command

specifies a library synonym to replace MASTER. Similarly, the LIBRARY, OBJLIB, and ALTOBJ commands
specify library synonyms to replace LIBRARY, OBJLIB, and ALTOBJ, respectively.

2270517-9701 6-35

Separate Compilation

A library is identified to CONFIG using a library synonym, the value of which is the pathname of a library
file. Assign a synonym by using the Assign Synonym (AS) SCI command prior to executing CONFIG. Alter-
nately, you can assign a synonym by using a SETLIB command.

6.3.9.1 MASTER Command. The MASTER command specifies a library synonym to replace the initially
defined library synonym MASTER. The syntax of the command is as follows:

<master command> ::= *MASTER <libname>

The syntax diagram is as follows:

D{ *MASTER ’L LIBNAME >

The libname parameter is a library synonym that replaces synonym MASTER as the first entry in the library
table. When the MASTER command is used, it should precede the ADD commands that define the nodes
of the process configuration. The following is an example:

MASTER Command:

*MASTER SRCLIB1
In this example, SRCLIB1 replaces MASTER as the library synonym in the first entry of the library table.

6.3.9.2 LIBRARY Command. The LIBRARY command specifies a library synonym to replace the initially
defined library synonym LIBRARY. The syntax of the command is as foilows:

<library command> ::= *LIBRARY <libname>

The syntax diagram is as follows:

F< *LIBRARY ’L ——$] LIBNAME -»>

The libname parameter is a library synonym that replaces synonym LIBRARY as the second entry in the
library table. When the LIBRARY command is used, it should precede the ADD commands that define
the nodes of the process configuration. The foilowing is an example:

LIBRARY Command:

*LIBRARY SRCLIB2

In this example, SRCLIB2 replaces LIBRARY as the library synonym in the second entry of the library table.

6-36 2270517-9701

Separate Compilation

6.3.9.3 OBJLIB Command. The OBJLIB command specifies a library synonym to replace the initially
defined library synonym OBJLIB. The syntax of the command is as follows:

< objlib command> ::= *OBJLIB <libname>

The syntax diagram is as follows:

" *OBJLIB ‘r hl LIBNAME >

The libname parameter is a library synonym that replaces synonym OBJLIB as the third entry in the library
table. When the OBJLIB command is used, it should precede the ADD commands that define the nodes
of the process configuration. The following is an example:

OBJLIB Command:

*OBJLIB OBJLIB1
In this example, OBJLIB1 replaces OBJLIB as the library synonym in the third entry of the library table.

6.3.9.4 ALTOBJ Command. The ALTOBJ command specifies a library synonym to replace the initially
defined library synonym ALTOBAJ. The syntax of the command is as follows:

< altobj command> ::= "ALTOBJ <libname>
The syntax diagram is as follows:

ALTOBJ Command:

’{ *ALTOBJ } il LIBNAME —>

The libname pathname is a library synonym that replaces synonym ALTOBJ as the fourth entry in the
library table. When the ALTOBJ command is used, it should precede the ADD commands that define the
nodes of the process configuration. The following is an example:

*ALTOBJ OBJLIB2
in this example, OBJLIB2 replaces ALTOBJ as the library synonym in the fourth entry of the library table.

6.3.9.5 SETLIB Command. The SETLIB command assigns a value to a synonym. The syntax of the
command is as follows:

< setlib command> ::= *SETLIB <libname> <value>

2270517-9701 6-37

Separate Compilation

The syntax diagram is as foilows:

SETLIB Command:

*SETLIB LIBNAME ¥ vawe /™™

The iibname parameter is a library synonym that meets the requirements for a TIP identifier. A TIP identifier
includes a maximum of 72 alphanumeric, dollar sign ($), or underscore (__) characters, beginning with
a letter or $. However, CONFIG uses only the first eight characters. Thie value is the pathname of the
library file to which the synonym applies. The following is an example:

*SETLIB SRCLIB3 DS02.PASCAL.SOURCE.GARY

This example command accesses the operating system to assign the value DS02.PASCAL.SOURCE.GARY
to SRCLIB3.

Use the SETLIB command with caution to avoid defining too many synonyms for the library file pathname.
6.3.9.6 DEFAULT SOURCE Command. The DEFAULT SOURCE command specifies the .library
synonym for the defauit source library. The synonym applies to modules defined by subsequent ADD
commands. The syntax of the command is as follows:

<defauit source command> ::= *DEFAULT SOURCE <libname>

The syntax diagram is as follows:

DEFAULT SOURCE Command:

——————’GEFAU LT sounca ‘l LIBNAME >

The libname parameter is the synonym that has the pathname of the library as its value. Synonym MASTER
is the initially defined alternate source library synonym; however any library synonym is acceptabie. The
DEFAULT SOURCE command does not alter the stored process configuration; it applies only to the current
run. The following is an example:

*DEFAULT SOURCE SLIB1

The example command specifies library synonym SLIB1 as the defauit source library. Source locations
that do not explicitly include a library synonym use SLIB1 as the library synonym until the default vaiue
is changed by another DEFAULT SOURCE command. The default source library synonym is LIBRARY
until the first DEFAULT SOURCE command is entered.

6-38 2270517-9701

Separate Compilation

6.3.9.7 DEFAULT OBJECT Command. The DEFAULT OBJECT command specifies the library
synonym for the default object library. The syntax of the command is as follows:

< default object command> ::= *DEFAULT OBJECT <libname>
| *DEFAULT OBJECT NONE

The syntax diagram is as follows:

DEFAULT OBJECT Command:
*DEFAULT S LIBNAME >
OBJECT

The libname parameter is the synonym that has the pathname of the library as its value. Synonym OBJLIB
is the initially defined alternate object library synonym; however, any library synonym is acceptable.

Entering keyword NONE instead of a libname parameter restores the initial default. The DEFAULT OBJECT
command does not alter the stored process configuration; it applies only to the current run.

Prior to the entry of a DEFAULT OBJECT command and subsequent to the entry of a DEFAULT OBJECT
NONE command, no object locations appear in the representation of the process configuration on the
OUTPUT file; also, ALTOBJ is the default object library on which object modules are stored. The following
is an example:

*DEFAULT OBJECT OBJL1

The example command specifies library synonym OBJL1 as the defauit object library. Object locations
that do not explicitly include a library synonym use OBJL1 as the library synonym until another DEFAULT
OBJECT command changes the defauit value.

6.3.10 Text Editing :

CONFIG provides a line-oriented text editing capability for editing source modules. The modules need
not apply to a node or nodes of the current process configuration. The EDIT command specifies the source
module to be edited and copies the file, with specified alterations, to another location. The Insert command
inserts one or more source lines at a specified point. The Replace command replaces a specified source
line (or lines) with one or more source lines.

2270517-9701 ’ 6-39

Separate Compilation

6.3.10.1 EDIT Command. When the EDIT command specifies a source module that is a node of the
current process, the CHANGED flag is turned on for that node. The syntax for the command is as follows:

<edit command> ::= "EDIT [<name>][<location1>] TO <location2>
The syntax diagram is as follows:

EDIT Command:

NAME # LOCATION! LOCATION2 |9
.
'[LOCATION1 LOCATION2 [P

The name parameter is the node name corresponding to the source module to be edited. The syntax for
the location parameters is as follows:

<location> 1= “<*[<library>,]<member>'>"
The source module at location1 is edited, and the result is copied and cataloged at location2.

When the name parameter is used, the source module associated with the named node of the current
process configuration is edited and the CHANGED flag for the node is turned on. The location for the
source module of the node is changed to location2.

When the name parameter is omitted, the source module at location1 is edited. The source module may
or may not be associated with the current process configuration; however, the CHANGED flag is not set
in either case.

\

The following is an example:
*EDIT INTERACT TO <LIBRARY,NEWMOD>

This command specifies that the Insert and Replace commands that follow apply to the source module
corresponding to node INTERACT. The edited module is cataloged as member NEWMOD of the library
corresponding to library synonym LIBRARY. This moduie becomes the source module for node INTERACT.
The source location or node INTERACT becomes LIBRARY ,NEWMOD and the CHANGED flag is set for
the node. The following is an exampie:

*EDIT <LIBRARY,ORIG> TO <SRCLIB1,NEWMOD >

6-40 2270517-9701

Separate Compiiation

This example command specifies editing the source module at location <LIBRARY,ORIG > and catalog-
ing the resulting module at location <SRCLIB1,NEWMOD >. The source module at location LIBRARY,
ORIG may or may not be a node of a process configuration; this command does not alter the flags of
process configuration nodes.

6.3.10.2 Insert Command. The Insert command inserts one or more source lines in the source module
identified in the preceding EDIT command. The lines to be inserted follow the command, and the command
parameter specifies the line in the source module after which the new lines are to be inserted. The syntax
of the command is as follows:

<insert command> := -<line>

The syntax diagram is as follows:

The line parameter is the line number of the source module line after which the new lines are inserted.
More than one Insert command may be supplied for editing a source module; these may be interspersed
with Replace commands. These commands must be ordered by line number, in ascending numerical order.
The following is an example:

Insert Command:

-40
Insert the lines that follow this command after line 40 of the source module.
6.3.10.3 Repiace Command. The Replace command replaces one or more source lines in the sourc