(B
TEXAS INSTRUMENTS
Improving Man'’s Effectiveness Through Electronics
i —/)
(7 il
Model 990 Computer
Tl Pascal User’'s Manual

MANUAL NO. 946290-9701

ORIGINAL ISSUE 1 MAY 1978

REVISED 15 JANUARY 1979

e)

Digital Systems Division

© Texas Instruments Incorporated 1978, 1979
A1l Rights Reserved

The information and/or drawings set forth in this document and all rights in and
to inventions disclosed herein and patents which might be granted thereon disclos-
ing or employing the materials, methods, techniques or apparatus described herein
are the exclusive property of Texas Instruments Incorporated.

INSERT LATEST CHANGED PAGES DESTROY SUPERSEDED PAGES

LIST OF EFFECTIVE PAGES

Note: The portion of the text affected by the changes is

indicated by a vertical bar in the outer margins of

the page.
Model 990 Computer TI Pascal User’s Manual (946290-9701)
@riginaldlsSueta e Gl SeiMc Sl e 1 May 1978
ReyiSedbdr s e s i s S e 15 January 1979 (ECN 004356)

Total number of pages in this publication is 394 consisting of the following:

P'i\cc’s.E CH;\CY;I.GE P&();E CHr:\oNf;E PNAcc’sfz CHb?g.G‘E
Cayers shat v n 0 B-leaiBe6iases tiey s e 0
EftectivelRasesiiaii iis S 0 AppendixiGIivETEaEE 0
HixiyEteis s s e 0 G- lei@60a i x Pl 0
Tl G S s 0 AppendixeDiD iy 0
Delii A g N e 0 D=1 280 el n v 0
Bala 36U e e e 0 AppendixiBiDIva e 0
C ARSI e R e 0 Baliai Bl e g o 0
Sl ESEOD e e Y 0 Appenidix BEDiva =i 0
G:15216-3 6 e by 0 ek e ke e 0
Teleg9 e i i 0 AppendixGDive. 0 0
8al A8 D4 W i 0 GUESG M e e 0
91 -9 L0 G ks 0 Appendix HDiv 0
HOG=El Q=195 % st st e v 0 Hele I BE6 e st O el el 0
ldelialM=6 e feai ot S0 0 AppendixalRDivass e 0
1210 WD AG T e 0 a8 ey e i e 0
13-l 36 i v e 0 Alphabetical Index Div. . . .0
1 R i e 0 Index-1 - Index-14. 0
531628 20D I 0 [UsEis IRESphnsc it i 0
Appendixs AsDive i 0 BusinessiReply e 0
AR ccARE e R R e 0 CoyerBlanks s s o, 0
‘AppendixdBDivens i e 0 Goyersiiie v oo e i 0

(e}
@ 946290-9701

PREFACE

This manual describes the TI Pascal programming language as it is implemented on the Model 990

Computer. This manual is intended to show a programmer familiar with another language how to
use TI Pascal (TIP). It also serves as a reference to which a programmer may refer to resolve

- questions about the language. It is not meant to be adequate to serve as a tutorial for those

unfamiliar with programming.

Throughout the manual TI Pascal is compared to the version of Pascal described in Pascal User
Manual and Report, K. Jensen and N. Wirth, Springer-Verlag, 1975.

The manual is organized into fifteen sections and nine appendixes including:

I

I

II

v

- VI

VII

¢ VIII
-
i o
.

T IX

Introduction — Provides an overview of the language, lists the extensions and
modifications specific for TI Pascal, and compares the language to FORTRAN and to
PL/L

Overview — Provides an overview of language elements and of the program and data
structure of Pascal. The concept of scope is introduced, and an example program is
presented and described.

Notation and Vocabulary — Describes the notation used in the manual, including BNF
productions and syntax diagrams. Defines the language elements.

The Assignment Statement — Describes the assignment statement and the expression
used in the assignment statement.

Enumeration Types and Related Statements — Describes the enumeration types
INTEGER, LONGINT, and BOOLEAN. Also describes machine-dependent enume-
rations types CHAR, REAL, FIXED, - and DECIMAL. Describes the user-defined
enumeration types, scalar and subrange. Describes the ASSERT, Compound, IF,
WHILE, REPEAT, CASE, and FOR statements.

Structured Data Types — Describes the structured data types and the statements related
to these types. Describes the ARRAY, RECORD, SET, and FILE types, and the pro-
cedures used to manipulate these types. Describes the WITH statement and the
POINTER type. Also discusses type compatibility and type transfer.

Jump Statements — Describes the ESCAPE statement and the GOTO statement, the two
jump statements of the language.

The Program and Its Routines — Describes the TI Pascal program structure in detail, and
the declarations required. Describes the LABEL, CONSTANT, TYPE, VARIABLE,
COMMON, ACCCESS, PROCEDURE, and FUNCTION declarations. Describes the

methods of parameter reference provided, and describes the scope and extent of variables
and routines.

Compiler Options — Describes the options available in the compiler and the option
comment that specifies an option. '

Formatting Source Code — Describes source code preparation and the source formatter
utility, NESTER.

iii Digital Systems Division

o
{@ 946290-9701

XI The TIP Compiler — Describes SILTI, SILT2, and CODEGEN, the three phases of the
TIP compiler, and describes the handling of errors in source code by the compiler.

XI1 Separate Compilation — Describes the problems of separately compiling one or more
modules of a program, and the configuration processor, a utility that assists in separate
compilation. Also describes the split program utility and the split object utility, which also
relate to separate compilation.

XIII Reverse Assembler — Describes the reverse assembler RASS and its output.

X1v Linking and Executing Pascal Tasks — Describes the options for linking Pascal
tasks. Describes the debug commands provided for Pascal tasks. Also
describes the types of runtime errors and the abnormal termination dumps
provided.

XV Computer Dependent Source Code Preparation Techniques — Describes routines that a
user program may call for direct CRU I/O and operating system interface.
Also describes guidelines for preparing source code for each linking option.

A TIP Standard Routines — Describes the standard procedures and functions included with
TIP software.

B Example Programs — Describes four example programs.

C System Dependent Information for DX10 Release 3 — Describes the implementation of
Pascal files and device 1/O provided by DX10.

D TIP Syntax — Summarizes the BNF productions and syntax diagrams from the entire
manual.

E Error Messages — Lists the compiler and runtime error messages, the error

codes, and the error messages provided by the Pascal debug commands.

F Assembly Language Routines — Describes the interface required for routines
written in assembly language, including task termination routines.

G ASCII Character Set — Lists the characters of the ASCII character set with the hexa-
decimal and decimal values corresponding to each character.

H Overlays in TIP Programs — Describes the overlay structure available to the user for
TIP programs, and how to use it.

I Type Conversions — Describes the implied conversions between types and the
methods of performing type conversions, implied and explicit.

iv Digital Systems Division

{
&<w o

ar

4%

o]
@ 946290-9701

The following documents contain additional information related to TI Pascal:

Title

Model 990 Computer TMS 9900 Microprocéssor
Assembly Language Programmer’s Guide

Model 990 Computer DX10 Operating System Release 3
Reference Manual, Vols. 1-6

Model 990 Computer Link Editor Reference Manual

Model 990 Computer TX990 Operating System
Programmer’s Guide (Release 2)

Model 990/10 Computer RX990 Operating System
Programmer’s Guide

Part Number
943441-9701
946250-9701, 9702,
9703, 9704, 9705,
9706
949617-9701

9462599701

2250065-9701

The following book describes the Pascal language and is referenced in this manual:

Pascal User Manual and Report, K. Jensen and N. Wirth, Springer-Verlag, 1975

v/vi

Digital Systems Division

946290-9701

Paragraph

1.1
1.2
13
14
1.5

2.1
22
2.2.1
222
223
23
24
2.5

3.1
3.2
3.2.1
322
323
33

4.1
4.2

5.1
5.2
53
54
5.5
5.6
5.6.1
5.6.2
5.6.3
5.7

TABLE OF CONTENTS

Title
SECTION I. INTRODUCTION

Texas Instruments Pascal e e
Extension and ModificationstoPascal.o i i e e
Comparisons with FORTRAN i i i e e
Comparisons With PL/L.o i i et i
OrganizationoftheManual. i e

Program SEIUCLUIE ittt ittt it ettt
Data TYPeS. & o vttt et e et e
SIMPIE TYPES « o v v vttt et ettt et e
StruCtUrEd TYPeS. « & v v vt et ittt et it i e et e
Storage Requirementsttt tinti it e
DEClaratioNS . & o . vttt e e e e e e e e e e
Fog 77354 13 1113
Example Program i e e

SECTION III. NOTATION AND VOCABULARY

Syntax Notation it i it i i i e i e
BasicSyntax Elements0ttt i i e e e
Identifiers e e e e
Numberscovuion... O

SECTION IV. THE ASSIGNMENT STATEMENT

Assignment Statement e e e e e e
Operators and EXpressionsttt ittt e e

SECTION V. ENUMERATION TYPES AND RELATED STATEMENTS

Enumeration Typesttt e e e e e
INTEGER and LONGINT Types oo v ittt it it ittt ittt i et
31010] 0 N\ % o=
The ASSERT Statementttt ittt ittt ettt ee s
The Compound Statementttt it
Conditional and Repetitive Statements i i i

The IF Statement u i ittt ittt ittt et it ettt ettt et e

The WHILE Statementttt it i it et

The REPEAT Statement.ttt ittt it ittt et e
Machine Dependent and User-Defined Enumeration Types

..........................

Page

vii Digital Systems Division

946290-9701
TABLE OF CONTENTS (Continued)
Paragraph Title Page
-5.7.1 CHAR TyPe . o o ittt e e e e e e e e e e e e e e e 5-7
5.7.2 SCALAR TP . . .ot 5-8
573 SUBRANGE Type. . . ot i ittt it e et e e e e e e e e et 59
5.8 CASE and FOR Statements.ottt ittt ittt et e it e et et 5-10
58.1 The CASE Statementttt ittt et ettt ettt et e e 5-10
582 The FOR Statement. ittt ittt ettt e 5-11
59 EXPIeSSIONS e e e 5-13
5.10 L N I 1 o 5-15
5.11 F XD TyPe .« o ittt ittt it et et e e e e e e e e e 5-19
5.12 DECIMAL Type « o ittt e et e et ettt et ettt e e et e e 5-21
SECTION VI. STRUCTURED DATA TYPES
6.1 Array TYPe .o o e e e e e e 6-1
6.1.1 Array Procedures. e e e 6-3
6.1.2 Static and Dynamic ArTayso ittt it ittt e e et e e e e 64
6.2 Record TYPe . .t it i i i i i e e e e e e e e e e 64
6.2.1 RECOTAS. . . vttt e e e e e e e e e 64
6.2.2 B o U e e 6-7
6.3 WITH Statement ittt it ittt ettt enaneenenenannnns 6-8
6.4 R0 A 74 T 6-10
6.5 8 0 1T o= 6-12
6.5.1 Sequential Files.t e e 6-14
6.5.2 TeXtAleS . . ot e e e e e 6-16
6.5.3 Formatted I/O with Textfiles. ottt i et et et et et e ee 6-20
6.54 ENCODE and DECODE ittt et e e et et e ee e 6-23
6.5.5 Random Files. i i e e e e e 6-23
6.5.6 Alternate FOrmso e e e e e 6-24
6.6 POInter TYPE . . ottt et e e e e e e 6-25
6.6.1 Static and Dynamically Allocated Variables 6-26
6.7 PACKED Data TyPes. . v vttt e et e et e ettt e e et e et et et 6-29
6.7.1 Packed ArTays. i e 6-29
6.7.2 PackedRecords. ittt it i e e e e 6-30
6.7.3 Internal Representation of Typeso i ittt i i 6-30
6.7.4 The SIZE FUunction oottt ittt et et ettt e et e et e et e ee e 6-33
6.8 Type Compatibility e e 6-33
6.9 Type Transfer.o ottt e e 6-34
SECTION VII. JUMP STATEMENTS
7.1 The ESCAPE Statementttt ettt et et ettt et 7-1
7.2 The GOTO Statementttt ettt et e ettt ettt e e e e e eee 7-2
SECTION VIII. THE PROGRAM AND ITS ROUTINES
8.1 The TIP Program. it e e e et e et e e e e 8-1
8.2 DeClarationS e e e e e e e e e e e e 8-2
8.2.1 Label Declarationottt e e e e 8-2
822 Constant Declaration e e 8-2

viii Digital Systems Division

$

4 =

)

946290-9701

Paragraph

823
8.24
8.2.5
8.2.6
8.2.7
83
84
8.5
8.5.1
8.5.2
853
854
8.6
8.7
88
89

9.1

9.2

9.3

9.3.1
932
9.3.3
934
9.3.5
94

94.1
94.2
9.4.3
944
9.5

9.5.1
9.5.2
9.5.3
9.54
9.5.5
9.5.6
9.5.7
9.5.8
9.59
9.6

9.6.1
9.6.2
9.6.3
9.6.4
9.6.5

TABLE OF CONTENTS (Continued)

{

Title Page

Type Declaration. ittt it e e e 82
Variable Declarationt iitie ittt it ittt 84
Common Declaration.ttt it ittt et i e 84
Access Declaration. e e e e 84
Routine Declarations ittt i i i i e e e e e e 84
713 12 T3 4L 8-7
Procedure and Function Calls ittt 8-8
Parameters. e e 8-10
Rules for Parameters ittt ittt et e e e 8-13
Dynamic Array and Set Parameters. it i e 8-14
Procedure and Function Parameters i iinnnnnon. 8-15
Procedures and Functions without Parameterst 8-15
Block StIUCHUTE. ot e e e e 8-16
Scopeand Extent e e 8-17
Side Effectso vt e 8-21
Common and Access Declarations. it e 8-22

SECTION IX. COMPILER OPTIONS

L€ 1 1 9-1
The Option Commentttt ittt ettt e e ettt 9-1
Listing Control Options ittt it i it ettt e e 9-3
List Optionot e e e e e 9-3
Widelist Option.ttt e e e e e e 93
Map Optiono e e e 9-3
Page Option i e e 94
Warnings Option i i e e 94
Object Code OPtionsottt ittt ittt e ettt e 94
Object Option. it i i e 94
Nullbody Option. i e 94
Traceback Option e 9-6
Asserts Option e e e 9-6
Runtime Check Options i ettt e 9-6
CKINDEX Option. . . .ottt it e e et e e et e et e ettt 9-6
CKOVER Optionttt ittt ettt e e et e e et e e et 9-6
CKPREC Option. . . .ottt e e e e e et e e e e 9-6
CKPTR Option.ttt e e e e e e e e 9-6
CKSET Optionottt e e e e e e e 9-6
CKSUB Option . . o vttt ettt e et e e et e et e et e 9-6
CKTAG Option. . .. oottt e e e e e e e e e e e 9-7
PROBER Option.ttt e e e e e e e ii 9.7
PROBES Optionottt it e ettt et e e e e e 9-7
Miscellaneous OPtionsttt et e e 99
T2C0L OPtion . . .ttt e e e e e, 99
FORINDEX Option. i ittt ittt et e e et e et e e 99
GLOBALS Option.ot it it s et et e e e 99
ROUND Optionot i it e e e e et e e e e 99
UNSAFEOPT Option.ottt e ittt et e et ettt e i 99

ix Digital Systems Division

946290-9701

TABLE OF CONTENTS (Continued)

Paragraph Title ' Page

SECTION X. FORMATTING SOURCE CODE

10.1 General . . o v ot e e e e e 10-1
10.2 L0 V- S 10-1
10.3 SOUICE FOIMatter . . o o i ittt e ittt et et e e e e e 10-1
10.3.1 Nester FUNCHONS. . . . o ot ittt it et et et e et it ettt e e 10-1
103.2 Nester Option COMMENT. . « . ¢« v v v v vttt e e iae et e e e e neee e 10-6
10.3.3 Interactive MOde . . . o v vt et e et et e e e e e e 10-8
1034 Nester COMMANdS . - -« v vttt eeeieee e I 10-8
10.3.5 ExXecUting NeSter. . . o o oot ittt it e e e 109
10.3.6 Nester Error Messages.o v v vt ittt i it e eiae e teee e 10-10
10.3.7 Nester EXAMPIe. . . . oot v ettt it et 10-10

11.1 GENETal . . . v\ e et e e e J 11-1
11.2 Lo 0 5 A R 11-1
113 [1 5 /2 T 11-1
114 CODEGEN. . . ottt e e e e et e e e e e 11-1
115 Executingthe Compilerttt 11-1
11.6 Error Handling.ottt e e 112

12.1 Gemeral . . ot e e e e e e e e 12-1
12.2 Requirements for Separate Compilation. i 12-1
123 The Configuration Processor« oot v vt ittt e 12-3
12.3.1 Functional Description of CONFIG o i 12-3
12.3.2 Format of Source Moduleso i ittt it i s 12-5
1233 Process Configuration.o RN 12-5
1234 Compilation . . . oottt 129
1235 Source LiSting. . . o v vt et e 12-16
12.3.6 1T T I I 12-19
12.3.7 Modifying a Process Configurationo i 12-28
12.3.8 LADIATIES « & o v et e e e e et e et e e e 12-31
12.39 Text BAIting. . . . oo vt ettt e 12-36
12.3.10 Required Files oo i 12-38
12.3.11 ExecutingCONFIG i e e 12-38
124 Split Program Utilityot 1242
12.4.1 Split Program Command.ottt 1242
1242 Input Exampleottt 1243
1243 Libraryand Files.o o ottt 1243
1244 EXECULION &« o o v v e e e e et et et et e e et e e e et et e e e e 1243
12.5 Split Object Utility oot i i 12-44

X Digital Systems Division

]

A

946290-9701

Paragraph

13.1
13.2
13.3
134

14.1
14.2
14.2.1
14.2.2
1423
1424
14.2.5
142.6
1427
142.8
1429
143
143.1
14322
14.3.3
1434
14.3.5
14.3.6
143.7
1438
1439
14.3.10
14.3.11
14.3.12
143.13
14.3.14
14.3.15
144
14.4.1
1442
14.5
14.6
14.6.1
14.6.2
14.7
14.7.1
14.7.2
14.7.3

TABLE OF CONTENTS (Continued)

Title ' Page

SECTION XIII. REVERSE ASSEMBLER

€73 15 1 13-1
Required Filesttt ittt et it i e e e 13-1
Executing the Reverse Assembler. it 13-1
Example Listing e i e 13-1

SECTION XIV. LINKING AND EXECUTING PASCAL TASKS

€T3 4T3 - 14-1
TIP Runtime Options.ot i ittt it i it it it it it ettt e e 14-1
Execution Under DX10 ittt ittt ittt et e 14-2
LUNO I O . . ottt e e e e e e e et e e e 142
Multitask Capability Under DX10. i i i 142
Execution Under TX990. it ittt it e e e 14.3
Multitask Capability Under TX990. ot i it 14-3
Execution Under RX990 it et ettt e 14-3
Minimal Runtime Capability i i i e e 14-3
Stand-Alone Execution.ttt e e e 144
Shared Procedure Capability i e 144
Linkingand Executing i i e e e e 144
Linking for DX10 Execution Using SCI Synonyms uuuunettnnenennn. 144
Executing Under DX10 Using SCISynonymsttt ittt ineeennnnn. 14-6
Linking for DX10 Execution Using LUNOs0ttt eenenen.. 147
Executing Under DXI0O Using LUNOS. ittt it i eeeenn.. 14-8
Linking for TX990 Execution it e e e ee e 149
Executing Under TX990. S 149
Linking Multiple Tasks for TX990 Executioncuttiin iy 14-10
Executing Tasks Linked with TX990. i i, 14-12
Linking for RX990 Executionttt i e e 14-13
Executing Under RX990. i e e e 14-13
Linking Minimal Runtime i i e 14-14
Executing Minimal Runtime i, 14-15
Linking for Stand-Alone Execution. 14-15
Stand-Alone Execution. i e 14-15
Linking for Shared Procedures. ittt 14-16
Pascal Task Execution Considerations.t iiuneennnn.. 14-18
Synonym Table Overflow i i e 14-19
Condition Code. i it i e e 14-19
Compiling, Linking, and Executing with a Batch Stream. 14-19
Debug Mode. e e e 14-19
Pascal Debug Commands. it e e 1421
Debugging Under TX090 ittt i e ettt e 14-30
Runtime Errors. e e 14-31
Runtime Checks it e e 14-31
O EIIOrS & o oot e e e e e 1431
Memory Space Errors.o ittt i e e e e e e 14-32

xi Digital Systems Division

946290-9701
TABLE OF CONTENTS (Continued)

. Paragraph Title Page
1474 Error Termination . . v o v v ettt ittt et ettt i et e 14-32
1475 Use of the Abnormal Termination Dump. oottt 14-37
14.7.6 Unformatted Abnormal TerminationDump o it 1441
14.7.7 TX990 Abnormal Termination Dumpot i ittt i i 1441

SECTION XV. COMPUTER-DEPENDENT SOURCE CODE PREPARATION TECHNIQUES
15.1 L0731 7= <) T 15-1
15.2 Direct CRUTI/O ROUINES . . o o vt oe v e et e teiiiieeee e 15-1
15.2.1 Procedure SLDCR . . .o ottt e e e 15-2
15.2.2 Procedure $SBO . . o o it 152
15.2.3 Procedure $SBZ . . o it e e e e e 152
1524 Procedure SSTCR . . o vttt ittt ittt e e e 152
15.2.5 JRTTeTe o) T A > 7R I 15-3
153 Operating System Interface Routines it 15-3
15.3.1 021 T 15-3
1532 Identification FUNCLIONS v v v vt ittt it it it i e e e cnaeenans 158
153.3 Time and Date Procedures. . . . o v v v e et e e e me e e 159
15.34 Task Control ProcedurIes. . . . v v v vttt it e it it e i te et 15-10
153.5 Message Handling Procedures.ottt 15-12
153.6 System Common Access Procedures it 15-13
15.3.7 Semaphore Procedureso oo vn ettt 15-14
153.8 ProcedUre SV & o o it ettt e e e e 15-16
154 Dummy Main ROULINE oo vt et e 15-16
15.5 Program Considerations for LUNOT/Ot 15-18
15.6 Program Considerations for Multiple Tasks.oovivininnn 15-19
15.7 Program Considerations for Stand-Alone Tasks ovovieiennn e 15-20
15.8 Program Considerations for Minimal Runtime Code.o 15-21
APPENDIXES
Appendix Title Page
A TIP Standard ROULINES o v vttt e e e e et iae e iee e oo ianea s A-l
B Example PrOgrams. oo vt ittt e e e B-1
C System Dependent Information for DX1O Release 3coovvvnneneeeennn C-1
D TIP SYMIAK. © v v v v v eeee e e eeaa e et m o D-1
E ErrorMessagesovueennn L E-1
F Assembly Language ROULINES. vhiiit e F-1
G ASCII Character Set. . v v v v e ittt ettt te i s e e e e e G-1
H Overlaysin TIPPIOGIams oo vt vt H-1
1 Type CONVETSIONS . . o v vt v ee s s et et e e es o et st e e I-1

xii Digital Systems Division

946290-9701

LIST OF ILLUSTRATIONS
Figure Title ' Page
2-1 TIP Example Program ittt ittt i e 24
31 Syntax Diagram Symbols e e e e e et 32
541 Syntax Diagrams for EXpressions0ttt ia it i e e 5-16
8-1 Syntax Diagrams of BlocK. i e e i e e, 8-3
82 Syntax Diagram for Routine Declarationttt inenennnn. 8-5
8-3 Syntax Diagram for Statement. S e e e 89
84 Access to Variables in Program Structure. it i e e 8-19
8-5 Access to Routines in Program Structure i e e 8-20
9-1 A Source Listing with WIDELIST and MAP Options Enabled 9-5
9-2 Execution Time Displays for PROBER and PROBES Options 9-7
9-3 Compiler Source Listing — PROBER and PROBES Options Enabled 9-8
10-1 NESTER Statement Example 0.ttt ieennnnannn. 10-6
10-2 NESTER Example. oottt ittt ettt ittt eenannan 10-11
111 Source Listing Example, Default Options. 11-3
112 TIP Compiler SYSMSG File Displayttt i 114
11-3 Source Listing Containing Errors i e e e 11-6
12-1 Flow of Separate Compilation UsingCONFIG, 124
12-2 Contents of OUTPUT File, Initial CONFIG Run, Full Compilation. 12-11
12-3 Source Listing, Full Compilation Example, 12-12
124 Contents of OUTPUT File, Deferred Processing, Full Compilation 12-13
12-5 Contents of QUTPUT File, Initial Run, Partial Compilation 12-14
12-6 Source Listing, Partial Compilation Example 12-15
12-7 Contents of OUTPUT File, Deferred Processing, Partial Compilation. 12-17
128 Contents of OUTPUT File for LIST Operation0iuiiuiiinnnnnn... 12-20
129 Contents of OUTPUT File for LISTDOC Operationcouvuuunmnene... 1224
12-10 Batch Stream for Separate Compilation. 1241
12-11 Example of Input to SPLITPGM i, 1245
13-1 RASS Listing Example. i e 133
14-1 Batch Stream for Compiling, Linking, and Executinga TIPProgram 14-20
142 Abnormal Termination Dump Example. 14.33
14-3 Linking Map of Example Program. 14-39
144 Unformatted Abnormal Termination Dump Listing 1442
14-5 TX990 Abnormal Termination Dump Listing 0uueenn.... 1444
15-1 Semaphore Example e 15-15

xiii Digital Systems Division

946290-9701

LIST OF TABLES N
Table Title Page
9-1 TIP Compiler Optionsttt e e 9-2 °
10-1 NESTER Optionsottt e e e e e e e 104
10-2 NESTEREITOrs e 10-10
111 Files Required by the Compiler Taskso, 11-5
12-1 System Flags 12-25
122 Files Required for CONFIG. i 12-38
14-1 TIP Runtime Libraries 142
14-2 Nonsharable Runtime Library Routines. 14-18 -
15-1 Device Type Codesttt ittt 15-8
-
-]
.
L]
xiv

Digital Systems Division

(I@ 946290-9701

1

SECTION 1

INTRODUCTION

1.1 TEXAS INSTRUMENTS PASCAL
The programming language TI Pascal (TIP) has been designed to facilitate the construction of
reliable, transportable systems and scientific programs. It is a relatively easy language to learn and to
use. However, a basic assumption in the design of the language is that readability is as important as
writeability. Many programs undergo modifications during their lifetime and the ease of
modification is dependent on the ability of a programmer (frequently not the original author) to read
and understand the program. Other considerations in the design of the language look forward to the
development of more sophisticated techniques for verifying the correctness of programs. In some
instances these considerations have resulted in restrictions or omission of features which
programmers might otherwise find useful. For this reason it is possible that some other languages
m which have “special-purpose” features may be better suited for some applications (such as complex
string-processing or pattern-matching).

TI Pascal does have excellent bit-manipulation capabilities, and is ideally suited for a wide variety of
applications ranging from areas of system programming to the scientific and engineering programs
traditionally written in FORTRAN. The TI Pascal compiler is itself written in TI Pascal. At present,
other successful projects at T1 using the lanugage include a text editor, a library management system,
and numerous utility programs such as an object code compress utility, and a track mapper. In
addition, favorable benchmarks have been obtained against FORTRAN-coded routines for a
T realtime navigation system. This manual describes the language as it is implemented on the Model
m 990 Computer. It is intended for new users of TIP.

1.2 EXTENSIONS AND MODIFICATIONS TO PASCAL

TI Pascal offers a number of enhancements to and modifications of the Pascal language as described
in Pascal User Manual and Report, K. Jensen and N. Wirth, Springer-Verlag, 1975.

The following are the enhancements provided by TIP:

® Random access files (paragraph 6.5.5).

e Common variables having global extent and scope as specified by ACCESS declarations
{paragraph 8.9).

@ Dynamic bounds for arrays and sets (paragraph 8.5.2).

: ® Multiprecision integer variables (paragraph 5.2).
" ® Multiprecision real variables (paragraph 5.10).
: e FIXED data type (paragraph 5.11).
. e DECIMAL data type (paragraph 5.12).
@ ESCAPE statement for exit from structured statements (paragraph 7.1).
M"\ e Explicit type override operator (paragraph 6.9).

e ASSERT statement (paragraph 5.4).

11 Digital Systems Division

o
@ 946290-9701

e External procedures and functions using FORTRAN linkage (paragraph 8.2.7.2).
® Standard Model 990 Computer dependent procedures and functions.
® Additional type-checking for procedure and function parameters.
© Underscore (_) and dollar sign ($) in identifiers (paragraph 3.2.1).
e Constant expressions (paragraph 5.9).
e FOR statement with IN generator (paragraph 5.8.2).
® Function LOCATION (paragraph 6.6).
® Dynamic array and set parameters (paragraph 8.5.2).
® Empty parameter lists for procedures and functions (paragraph 8.5.4).
¢ CLOSE procedure (paragraph 6.5).
o SIZE function (paragraph 6.7.4).
e HALT procedure (paragraph A.3).
e MESSAGE procedure (paragraph A.3).
e Hexadecimal constants (paragraph 3.2.2).
¢ ENCODE and DECODE procedures (paragraph 6.5.4).
® More reliable form of WITH statement (paragraph 6.3).
¢ OTHERWISE clause and subrange case labels with CASE statement (paragraph 5.8.1).
o Formatted READ operation (paragraph 6.5.3).
e DATE procedure (paragraph A.3).
e TIME procedure (paragraph A.3).
The modifications to Pascal are:
e Restriction of side effects of user-defined functions (paragraph 8.8).
e Restricted use of GOTO statement (paragraph 7.2).
® Local scope of FOR statement control variable (paragraph 5.8.2).
e Altered precedence for Boolean operators (paragraph 4.2).
e More flexible I/O functions and procedures (paragraph 6.5).
® Pre-defined symbol MAXINT is not supported.
e RESET procedure required for textfile INPUT (paragraph 6.5.2).

1-2 Digital Systems Division

{@ 946290-9701

(@ﬁ e REWRITE procedure permitted for textfile OUTPUT (paragraph 6.5.2).

e WRITE procedure replaces PUT (paragraph 6.5).
e READ procedure replaces GET (paragraph 6.5).

a e Types of parameters of routines that are passed as parameters must be declared
(paragraph 8.5.3).

The Pascal programmer may refer to the paragraphs that describe the extensions and modifications
s without studying the entire manual in detail. The user who is not familiar with Pascal may study the
entire document to familiarize himself with the language.

1.3 COMPARISONS WITH FORTRAN
TI Pascal has a well-thought-out collection of control structures and allows statements to be
composed from other statements in very general ways. As a result, TIP provides many improved
capabilities for organizing the flow of control of a program. In contrast, although it has forms such
~ as
IF(X.GT.MAX) MAX = X,

FORTRAN allows only very limited composition of statements. The component of the IF statement
cannot be another IF statement, or a DO statement, for example. TIP allows the component of a
structured statement such as an IF statement to be any statement, for example a compound
statement (for performing a sequence of operations), a FOR statement (for looping), or another IF
statement. In addition, other statements such as the WHILE, REPEAT, and CASE statements
(which have no close counterparts in FORTRAN) can be used very effectively to produce well-
m structured, readable programs. The need for GOTO statements is greatly minimized in TIP.

Certain statements which are generally considered to be unreliable, such as the arithmetic IF,
computed GOTO, and EQUIVALENCE statement, have been omitted from TIP.

Many implementations of FORTRAN do not have a strong type checking feature. The same
variable may often be used in completely different contexts, for example, as a character and then as
an integer, with no error messages or warnings given by the compiler.

On the other hand, a type is associated with each TIP variable, and when the source program is
~ compiled, all assignments, expressions, and parameters are checked for type compatibility. In
' addition to real and integer, TIP includes character and Boolean types and also has more general

structured types such as records and sets as well as arrays.

There is no conversion from real to integer in TIP except by explicit use of procedures TRUNC and
ROUND. In particular, it is not legal to assign a real value to an integer variable. In some instances,
there are implicit conversions in TIP, such as from integer or longint type to real, fixed, or decimal
2 type.

. Modular decomposition of a program is accomplished by routines in TIP. A TIP routine is either a
, procedure or a function which corresponds to a subroutine or function respectively in FORTRAN.
> In FORTRAN, variables are shared among subprograms by parameter passing or by means of

COMMON declarations. TIP has call-by-value and call-by-reference for passing parameters, while
most versions of FORTRAN have only call-by-reference. COMMON declarations in TIP differ
from those in FORTRAN. In addition, routines may be nested, that is, a routine may itself contain
declarations of other routines. The scope rules of TIP specify how variables and other objects

(M"‘ declared at a higher level (such as a program) may be directly accessible at lower levels (such as
routines declared within the main program).

1-3 Digital Systems Division

[e] -
@ 946290-9701

Storage for most variables is allocated from the stack at runtime in TIP. At any moment, only the
routines which are currently invoked have stack space allocated. When control returns from a
routine, the stack space or stack frame used by that routine is made available for use by other
routines. The result is that very efficient use is made of the available memory.

Since each invocation of a routine is allocated a separate area in the stack for its variables, TIP code
is naturally reentrant. When a TIP routine is interrupted and reexecuted, a new stack frame is
allocated and new copies of the local (noncommon) variables are created. If the original execution is
resumed, all local variables are restored to the same values as when the routine was interrupted by
restoring a pointer to the original stack frame.

Because a TIP routine is able to directly access data structures and routines declared at a higher level
(as long as the routine is within the scope of these declarations), separate compilation of routines
requires that the appropriate local declarations be provided for the separately compiled routine. The
configuration processor simplifies the process of separate compilation.

Access to externally compiled FORTRAN routines is straightforward. A TIP program can call a
FORTRAN routine with a simple external declaration.

Other differences between TIP and FORTRAN are summarized below:

® TIP functions may not have side effects, so that when a function is invoked, it may not
change the values of any variables except those local to the function.

® FORTRAN imposes restrictions on the allowable forms which may be used for array
subscripts. In TIP a subscript may be a general expression.

¢ There is nothing corresponding to a Statement Function in TIP.

® There are no FORMAT statements (although formatted 1/0 is supported) and there is
nothing corresponding to the FORTRAN IMPLIED DO in TIP.

® The control variable in a TIP FOR statement may be incremented (or decremented in the
case of DOWNTO) only by one. The loop will not be executed at all if the initial value is
greater than the final value (or less than the final value in the case of DOWNTO). The
control variable may not be altered within the FOR statement.

® There is no exponentiation operator (**) in TIP.

® Some versions of FORTRAN have a multiple assignment capability (X =Y = Z), but this
does not exist in TIP.

. In FORTRAN, explicit declarations of variables are optlonal In TIP they are mandatory,
that is, each variable must be explicitly declared before it is used (except FOR control
variables, synonyms in WITH statements, and escape labels).

® FORTRAN compilers ignore most blanks in the source program. Blanks are significant in
TIP, however, and are required in some contexts. For example, keywords and identifiers
must be separated, so that
X = YANDZ > 5§

is incorrect if the intended expression is

X=YANDZ>S5

14 Digital Systems Division

(@\

Y

[

R

{@Q 946290-9701

Statements may be placed anywhere in columns 1-72 of the source records (or optionally
records of any length may be used). There is no continuation column, comment column,
or label field as in FORTRAN. Statements may be extended across record boundaries, but
the end of each record is a separator, so that strings (written within quotes), identifiers, or
keywords may not extend from one record to the next.

In FORTRAN, it is permissible to end several DO loops on the same statement. In Pascal
a compound statement (surrounded by a BEGIN - END pair) forms the unit to be
repeated in a FOR statement. In this case, as well as in all other uses of BEGIN - END,
each BEGIN must have its own END. There is no CONTINUE statement in TIP.

The COMPLEX type is not standard in TIP, although it can easily be simulated by means
of a user defined type.

Column one of output files is not used for carriage control as it is in FORTRAN.
WRITELN and PAGE procedures are used to control spacing.

In FORTRAN, arrays are stored in column-major order while in TIP they are stored in
row-major order.

In FORTRAN, a read executed after the last record in the file has been read causes end-of-
file to become true. In TI Pascal, end-of-file becomes true when the last element in the file
is read.

FORTRAN logical variables correspond to Pascal Boolean variables.

1.4 COMPARISONS WITH PL/I
In comparison with PL/I, Pascal offers the following advantages:

®

e

The full language can be processed by implementations on small computer systems.
Pascal more easily produces well-optimized code.

Pascal provides better control structures.

Pascal has fewer default conditions and fewer implicit conversions.

Data types must be explicit in Pascal and conversion and transfer of types must also be
explicit.

Pascal is simple and avoids unnecessary alternative functions.

There are efficient implementations of Pascal.

1.5 ORGANIZATION OF THE MANUAL

Following an overview of the language, the manual describes the language in detail. Programmers
who are familiar with Pascal may only concern themselves primarily with the enhancements and
modifications to the language. Others will need to study the language portion of the manual
thoroughly.

1-5- Digital Systems Division

(o]
@ 946290-9701

Section IX describes the compiler options, and should be studied by all programmers. The remaining
sections describe the Model 990 Computer implementation of Pascal and the utilities available for

program development. These utilities are:
Source code formatter

Configuration processor (for separate
compilation of program modules)

Source code splitter
Object file splitter

Reverse assembler

NESTER

CONFIG

SPLITPGM
SPLITOBJ
RASS

Digital Systems Division

@ 946290-9701

SECTION 11

OVERVIEW

2.1 PROGRAM STRUCTURE
Pascal is a programming language that promotes structured programming using a top down

approach. One of the most distinctive features of the language and the resulting program is the
structure. The overall structure is the program.

A program in TI Pascal has a heading which gives the program a name and lists its parameters, if

any, followed by the declarations and statements of the program, which are called a block. If the

heading includes program parameters, the values for these parameters are passed to the program

when it is executed. The block consists essentially of two parts: declarations, which serve to define

the structure of the data upon which the program operates, and statements, which specify the
™ structure of the operations which the program performs upon its data.

The secondary structure within the program is the routine, which may be either a procedure or a
function. Like the program, each routine consists of a heading and a block. The block contains the
declarations of the routine, followed by the statements of the routine. The headings of all routines

called in the statements of the main program must appear at the end of the declarations of the
program.

The declarations of each routine may include the headings of other routines. All routines called ina
(@W\ statement of a routine must be declared.

Normally a routine is declared within the routine that calls it. When a routine is called by more than

one routine, or by the main program and one or more routines, it must be declared at a point that
makes it available to all routines that call it.

The structure of a Pascal program implies a scope for data and routines declared in any block of
the structure. The scope of a routine or of a data declaration consists of the blocks within which the
routine may be called or the data may be accessed. In general, the scope of a routine or of data
includes the block in which the routine or data is declared, all routines declared in the same block,
. and all routines declared in these routines. The scope of data is related to the extent of the data. The
extent is the time during program execution during which the data may be accessed, and is, in

general, the duration of execution of the scope of the data. The scope and extent are described fully
in paragraph 8.7.

Routines in T1 Pascal may be overlays, and the program may be structured as a root phase and a

? series of overlays. Refer to Appendix H for further information.

4

T 2.2 DATA TYPES

5 Another distinctive feature of Pascal is the structuring of data. All data items must be declared to be
= of a specific type. Pascal supports standard types and a means of declaring user defined types.

The basic concept underlying the data structures is that of a data type. Every variable occurring in a
TIP program is associated with one and only one type. This type specifies how the value of the
variable is represented at the machine level as a sequence of binary digits. For example, there is a
representation for the data type REAL, the type INTEGER, the type CHAR (character), etc.

Digital Systems Division

(‘r\,@p 946290-9701

One advantage of the type concept in TIP is that it allows complex programs to be written more
easily and with greater reliability since the details of data representation are handled by the compiler.
The programmer rarely needs to know these details, unless packed data structures are being used.
The effects of the packing algorithm are described in terms of the size of the individual data types in
paragraph 6.7. Another significant reason for having types is that they divide the data objects into
categories so that the compiler is able to check that consistent use of the data is being made in the
program. For example, it is considered inconsistent to perform arithmetic operations on character
data, so an attempt to add 1 to the letter ‘A’ is illegal and will result in a compile-time error.

2.2.1 SIMPLE TYPES. Simple types form the fundamental elements of data for a Pascal program.
They are the basic units from which the more complex data structures (discussed briefly in the next
paragraph) are composed. A simple type is either one of the standard types INTEGER, LONGINT,
BOOLEAN, CHAR, REAL, FIXED, or DECIMAL, or is defined by the programmer (scalar or
subrange). .

2.2.1.1 Enumeration Types. An enumeration type is characterized by the set of its distinct values,
upon which a linear ordering is defined. For example, the type INTEGER consists of the set of
integer values . . ., -2, -1, 0, 1, 2, . .. On the Model 990 computer, integer values are stored in two
bytes, and the range of values is -32,768 through +32,767. The type CHAR consists of the character
set available on the machine and includes ‘A’,‘B’, . . .,*Z’, 0", . . ., ‘9’, as well as various other symbols
and nonprinting control characters. The enumeration types consist of INTEGER, LONGINT,
BOOLEAN, and CHAR, which are standard types, and scalar and subrange types, which are user
defined. All enumeration types have a first value and a last value. They are ordered so that any value
other than the first has a predecessor and any value other than the last has a successor. Also,
comparing two enumeration values by means of the relational operators to determine their relative
ordering is valid.

Enumeration types are used for counting purposes, for example, to index into an array or to control
the number of iterations of a FOR statement.

The basic operators for variables of enumeration types are assignment (:= -- see paragraph 4.2 for
the assignment statement) and the relational operators described below:

< less than

= equal

> greater than

<= less than or equal
<> not equal

>= greater than or equal

The standard functions applying to enumeration types are:

SUCC (X) the successor of X
PRED (X) the predecessor of X
ORD (X) the ordinal value of X (applies to all enumeration types except INTEGER

and LONGINT)

An attempt to take the successor of the largest value or the predecessor of the smallest value of an
enumeration type results in a runtime error, if the subrange check (a compiler option) is turned on.
Otherwise, the value which is returned is an undefined element of the enumeration.

(22 Digital Systems Division

s Y

@ 946290-9701

2.2.2 STRUCTURED TYPES. A structured type is composed from other types which are called

(@m\ components. The declaration of a structured type specifies the type(s) of its components and the
structuring method by which they are composed. The structuring methods which are available in TIP
are the ARRAY, the FILE, the RECORD and the SET. In addition, there is the structured type
PGINTER, which is used to reference elements of a given type indirectly.

® 2.2.3 STORAGE REQUIREMENTS. When using a high-level language such as TIP, the
programmer is usually not concerned with the amount of storage (in terms of bits or words) which is
used by the simple types. In general, each simple type uses the least amount of storage that is
conveniently accessible on the machine. This means that a type such as Boolean uses an entire word
in the Model 990 Computer. However, for those applications for which it is necessary to manipulate
bits or conserve storage, TIP allows some data structures to be packed so that several components of
the structure may occupy one word. Referencing a component of the packed stucture then allows
that portion of the word to be accessed directly. Packing may be used to economize storage
requirements, but this may result in a loss of efficiency of access. The structured types which may be
packed are ARRAY, RECORD, and SET.

~ 2.3 DECLARATIONS
‘ The declarations of the program consist of the parts listed below. Each part is optional, but any
declarations which are used must appear in the order listed. The exact syntax for each declaration is

given in paragraph 8.2, but a brief description of its purpose is given after each declaration here.
Examples appear throughout the manual.

Label declaration (for integer-labels referenced by GOTOs)

Constant declaration (synonyms for number, character, Boolean, and string
(«m\ constants)

Type declaration (associates an identifier with a type specification)

Variable declaration (declares variables and specifies their type)

Common declaration (declares variables which do not follow the normal scope and

extent rules)
Access declaration (declares access to common and optionally, nonlocal variables)

Routine declaration (defines procedures or functions)

2.4 STATEMENTS

Statements describe the actions which a computer program performs on its data. Statements may
contain other statements as components, in which case they are structured; otherwise they are
simple. Simple statements include the assignment statement, PROCEDURE statement, ESCAPE
3 statement, ASSERT statement, and GOTO statement. Most of the structured statements are used to
g control the sequence of execution of other statements, that is, they are used to form loops and
R conditional branches. The different forms which the loops, branches and transfers can take are
* collectively called the control structures of the language. The control structures of TI Pascal produce
} programs which are reliable and very readable. The structured statements are the compound
—= statement, the conditional statements IF and CASE, the repetitive statements WHILE, REPEAT,
and FOR, and the WITH statement, which is used with records.

Digital Systems Division

@ 946290-9701

2.5 EXAMPLE PROGRAM

Figure 2-1 shows an example TIP program. Notice that the lines of the program contain both upper
and lower case letters. Users who write the source code for their program with a 911 VDT (or other
device having both upper and lower case letters) may use upper and lower case letters
interchangeably. This sometimes promotes the readability of the program.

The program consists of the program heading, the declarations, and the statements. The declarations
of the example program consist of a constant declaration and two variable declarations. The
program heading must be first, followed by those declarations that are applicable, in the proper
order. Note that no label, type, common, access, or routine declarations are included in this example.
Each declaration is separated from the following declaration by a semicolon; the last declaration is
separated from the first statement by a semicolon.

The statements of the program are structured into a single compound statement. Within the
compound statement (from the first appearance of the reserved word BEGIN to the last appearance
of the reserved word END) the component statements are separated by semicolons. One of the
component statements is a structured statement, specifically a FOR statement, one of the repetitive
statements. Within the FOR statement is another compound statement, the component statements
of which are separated by semicolons. The reserved word END that terminates the top level
compound statement is followed by a period (.), which terminates the program.

Program INFLATION;
(* Find the factor by which the dollar is devalued after
N years for N =1, 2, . . ., 10. Use annual inflation
rates of 7, 8, and 10 percent *)
Const N = 10;
Var YEAR ¢ Integer;
Rl, R2, R3: Real;
Begin
Writeln(' YEAR 7 PERCENT 8 PERCENT 10 PERCENT');
Rl :=1.0; R2 :=1.0; R3 :=1.0; .
For YEAR :=1 To N Do

Begin
R1 := R1*1.07;
R2 := R2*1.08;
R3 := R3*1.10;
Writeln(YEAR, R1, R2, R3)
End
End.

Figure 2-1. TIP Example Program

2-4 Digital Systems Division

@ 946290-9701

SECTION III
NOTATION AND VOCABULARY

3.1 SYNTAX NOTATION
The syntax of a programming language describes the form which a legal program in that language
may take. In a language such as TI Pascal, the syntax may be expressed very concisely by either

syntax diagrams or by the more traditional Backus-Naur Form or BNF (sometimes called Backus-
Normal form).

In BNF, each element of the language is defined by means of an equation-like rule called a
production. The entity being defined is written to the left of the symbol ::= and the definition is
written to the right of that symbol. The definition may be expressed in terms of language elements
which are defined by additional productions. The following symbols are used in writing definitions:

= for writing productions, means “is defined to be”,
<> for enclosing nonterminal symbols, i.e., entities which are defined by a production,
[1 for enclosing entities which are optional,
{ } for enclosing entities which may be repeated zero or more times,
(@ | for representing alternation, e.g., A | B | C means A or B or C.
NOTE

Both brackets ([]) and braces ({ }) are used in TIP as terminal
symbols. When used in BNF productions to specify terminal symbols,
the brackets and braces are enclosed in quotation marks.

For example, an identifier may be defined as:

<identifier> ::= <letter> {<id character>}
<id character> ::= <letter> | <digit> | _
<letter>== A |B|C|D|...|Z]|S$
<digit>==1[2[3|4|5|6|7|8]9]0|

In this manual the language syntax is specified by BNF productions. The BNF productions are
supplemented by syntax diagrams ‘to illustrate the syntax of TIP declarations and statements.

<

A syntax diagram is a directed graph with a single input edge and a single output edge. The graph
represents a syntax rule. Any possible path from the input edge to the output edge corresponds to an
application of the syntax rule. A syntax diagram, in contrast with a BNF production, does not reflect
the precedence of operators. The symbols that appear in syntax diagrams are shown in figure 3-1. An
example of a syntax diagram representing the syntax of an identifier also is'shown in figure 3-1.

> G
il

Digital Systems Division

@ 946290-9701

4 LETTER |

REEis

a!
o/

REPRESENTS RESERVED WORD BEGIN

Identifier:
—3{ LETTER
LETTER
(A) 138374

REPRESENTS A SEMICOLON

REPRESENTS NON-TERMINAL SYMBOL LETTER OR 4

Figure 3-1. Syntax Diagram Symbols

3.2 BASIC SYNTAX ELEMENTS

The TIP character set consists of the letters A-Z, the digits O-9,> and the special characters

+_*/“_,;;=’<>()[]{}#F@?_$

Lowercase letters may be used with the 911 VDT and other devices that have both upper and
lowercase letters; however, the TIP compiler translates these letters to uppercase. This means that
the reserved word BEGIN can also be entered as Begin or as begin. It also means that identifiers
MYPROG, Myprog, and myprog are not unique; the compiler processes any one of them as if it

were MYPROG.

Using these characters, certain special symbols are formed which have a fixed meaning in the
language. Some of these special symbols are used for operators and delimiters:

+ - == < <=

>

()Y C)YeE®H ..., "7 # @27

NOTE

To delimit array indices and sets, (. .) may be substituted for [J; to
delimit comments, (* *) may be substituted for { }; and to identify
pointers, @ may be substituted for 1.

3-2 Digital Systems Division

-

@ 946290-9701

Other special symbols are reserved words.

ACCESS ELSE LABEL REAL
AND END LONGINT RECORD
ARRAY ESCAPE MOD REPEAT
ASSERT FALSE NIL SET
BEGIN FILE NOT TEXT
BOOLEAN FIXED OF THEN
CASE FOR OR TO
CHAR FUNCTION OTHERWISE TRUE
COMMON GOTO OUTPUT TYPE
CONST IF PACKED UNTIL
DECIMAL IN PROCEDURE VAR
DIV INPUT PROGRAM WHILE
DO INTEGER RANDOM WITH
DOWNTO

Reserved words have a fixed meaning and may not be used as identifiers since they may not be
redefined in a TIP program.

3.2.1 IDENTIFIERS. Identifiers are used as names denoting constants, variables, types,
procedures, functions, programs, and escape labels. In TIP identifiers consist of a letter or $,
followed by any combination of letters, digits, $, or _. A maximum length is imposed by the
restriction that identifiers may not cross record boundaries and hence may not be more than 72
characters long. All characters in an identifier are significant, except in the case of program, routine,
and common names which are limited to 6 characters by the link editor on the TI 990. These names
should be unique in the first 6 characters. The syntax for identifiers is:

<identifier> = <letter>{<letter>|<digit>| _}
Examples:

Legal identifiers Illegal identifiers

X VAR (RESERVED WORD)
$ARRAY -MAXVAL (CAN'T START WITH _)
VERY_LONG_IDENTIFIER ARRAY-BOUND (CAN'T CONTAIN -)

VALUE_3 3RDVAL (CAN'T START WITH 3)
SQRT FIRST NUM (CANT CONTAIN BLANK)
NOTE

Some identifiers are standard in TIP, that is, they have a predefined
meaning, but they may still be redefined by the programmer in which
case the standard meaning is no longer available. For example, if
SQRT is declared as a variable, then the standard SQRT function is
no longer available. A list of standard routines is given in an
appendix. Also, since routines from the runtime library for TIP
always include a § in their name, conflicts with these names may be
avoided by not using $ in identifiers.

3-3 Digital Systems Division

@ 9462909701

3.2.2 NUMBERS. Unsigned integer numbers are written as a string of decimal digits. The string
may be preceded by a # sign to indicate hexadecimal notation and/or followed by L to indicate
LONGINT. If the # sign is used to indicate hexadecimal then the number contains hexadecimal
digits. The default precision for integer numbers is the precision that can be obtained with 16 bits
(two bytes). The range of values is -32,768 through +32,767. Type LONGINT is available for

extended precision. Values are stored in four bytes, providing a range of values from -2,147,483,648
through +2,147,483,647.

The following table shows the values represented by the 16 hexadecimal digits:

Hexadecimal digit Decimal equivalent

D
)

same
10
11
12
13
14
15

THmgOw >

Hexadecimal integer constants are processed by the compiler as positive integers. They may consist
of up to eight hexadecimal digits; values greater than 7FFF,s are converted to type LONGINT. In
this conversion, the positive sign is extended; e.g., FACE;s becomes 0000FACE¢. If this value is
placed in an INTEGER type variable by means of an assignment statement, the LONGINT constant
is converted to INTEGER type by truncation; e.g., 0000FACE;s becomes FACE¢. If the integer
variable is again converted to LONGINT (implicitly or explicitly), the most significant bit is
considered to be the sign bit and is extended. For example, FACE;s becomes FFFFFACE,s. The
positive hexadecimal integer constant is no longer positive.

Real constants are written according to the following syntax:
<real constant> ::= [<sign>] <digits> . <digits>
| [<sign>] <digits> [. <digits>] E <scale factor>
| [<sign>] <digits> [. <digits>] Q <scale factor>
<scale factor> 1= <digits> | <sign> <digits>
<sign> = + | —
<digits> = <digit>{<digit>}
The syntax diagram is as follows:

Real constant:

’_.‘ : ’—l E +
l l DIGITS - A

DIGITS

DIGITS

v

3-4 Digital Systems Division

Vew M

&

‘wi e b

@ 946290-9701

Note that a decimal point must be surrounded on both sides by digits. A decimal number written as
nnn.nnnEmm or nnn.nnnQmm

represents the number nnn.nnn times 10 to the power mm. E represents the default precision while Q
specifies that the constant is to be of the maximum precision available within 32 bits.

The precision of a real constant is determined by the number of decimal digits specified. When seven
or fewer digits are entered, the constant has the default precision. When eight or more digits are
entered, the constant has the maximum precision. When the constant is supplied in the E format and
eight or more digits are entered, the constant has the maximum precision.

Examples:
Integer numbers Real numbers
126 12.69
#25A 713E6
#AFL 5.2E4
0006 999.2E+3
237605L 3.14159268Q0

Illegal numbers

00159 — Decimal point not surrounded by digits.

75.E2 — Decimal point not surrounded by digits.

2.0E10.0 — Real exponent not allowed.

#56A6.3 — Hexadecimal notation not allowed with decimal point.

In addition to real and integer types, FIXED and DECIMAL representations are also available.
They are described in paragraphs 5.11 and 5.12.

3.2.3 STRINGS. A sequence of characters enclosed by apostrophes is called a string constant.
String constants are represented internally as packed arrays of characters, as described in paragraph
6.7.1. A string constant cannot be longer than 70 characters. Any character may be represented ina
string by a # followed by its 2-digit hexadecimal character code. This enables unprintable control
characters to be included in strings. Within a string, ’ is represented by *’and # is represented by ##.

Examples:

‘THIS IS A STRING’
‘CARRIAGE RETURN #0D’
‘ISN”T THIS RIGHT?
‘STEP ##10°

3.3 SEPARATORS

At least one separator must occur between any two constants, identifiers, reserved words, or special
symbols. No separator may occur within these elements, except that spaces may occur within strings.
Separators are spaces, ends of lines, comments, or remarks. For example, in

WHILE X <10
a space separates WHILE and X. It is not equivalent to write:

WHILEX<10

3-5 Digital Systems Division

(o] .
q@ 946290-9701

A comment is any sequence of characters beginning with { or (* and ending with *) or } , except that
{ or (* does not begin a comment within a string. A remark is any sequence of characters beginning
with a ” and extending to the end of the logical source record, except that ” within a string does not
begin a remark. Comments and remarks serve to document a program and may be replaced by
blanks without affecting execution of the program (with the exception of compiler options, which
also take the form of comments. See Section IX for compiler options).

3-6 Digital Systems Division

@ 946290-9701

\

SECTION 1V

THE ASSIGNMENT STATEMENT

4.1 ASSIGNMENT STATEMENT
An assignment statement specifies that the value of an expression is to be calculated and the result
assigned to a variable. The form of an assignment statement is:

<variable> := <expression>
The syntax diagram is as follows:

Assignment statement :

~ _Ol VARIABLE

The type of <expression> must be compatible with that of <variable>>, which means that their types
must be the same, with several exceptions. One exception is that it is permissible for <variable> tc
be of type REAL and <expression> to be of type INTEGER or LONGINT. Any conversions which
are desired may be specified explicitly by a call to the appropriate function. Complete rules on type
compatibility are given in paragraph 6.8. There is also the restriction that <variable> must not be of
type FILE.

EXPRESSION p—-—%

Another use of the assignment statement is within the body of a function where the value computed
is assigned to the identifier which denotes the function. In this case the type of <expression™> must be
compatible with the result type of the function. Functions are described in Section VIII.

There is a compiler option to check that values assigned to subrange variables (see paragraph 5.7.3)
are within the proper bounds. '

Examples:

™ =A+2
MAXVALUE = SQRT(I+J) - A*SIN(X)
P1@.NAME := ‘PASCAL’ (* POINTER, RECORD, AND STRING*)
HUE = [RED, SUCC(YELLOW)] (* HUE IS OF TYPE SET *)
FLAG := A > MAX (* FLAG IS OF TYPE BOOLEAN #*)

The expression on the righthand-side of the assignment statement specifies a computation which
yields a value for the expression. Expressions consist of variables, constants, function designators,
and operators such as +, * <=, etc.

Q‘;)a

({ at

4-1 Digital Systems Division

@ 946290-9701

4.2 OPERATORS AND EXPRESSIONS

The two operands operated upon by an operator must have data types that are compatible
(paragraph 6.8) and appropriate to the operator. In order to evaluate an expression, it is necessary to
know the meaning of each operator and its precedence, which specifies the order in which the
operators will be applied. The operators are:

Group 1: Multiplying operators:

* Multiplication; set intersection
/ real division
DIV integer division (divide and truncate)

MOD modulus, A MOD X = A — ((A DIV X) * X)
Group 2: Adding operators:

+ addition; unary plus; set union
- subtraction; unary minus; set difference

Group 3: Relational operators:

= equal

<> not equal

< less than, proper set inclusion

> greater than, proper set inclusion
<= less than or equal, set inclusion
>= greater than or equal, set inclusion
IN set membership

Logical operators:

Group 4: NOT Negation
Group 5: AND Conjunction
Group 6: OR Disjunction

When used on strings, the relational operators denote alphabetical ordering according to the
collating sequence of the ASCII set of characters. The ASCII character set is listed in Appendix G.

The list of operators is in order of precedence, with groups of higher precedence listed first. In an
expression, operators of highest precedence are evaluated first, and within each group, the operators
have equal precedence and are evaluated from left to right within the expression. Parentheses may be
used to explicitly specify the order of evaluation.

Examples:
Expression Value
2+3*5 17
1S DIV 4 * 4 12
NOT (5 + 5 >= 20) TRUE
6 + 6 DIV 3 8

3J3<50R2>=6AND 1 >2 TRUE

The syntax for expressions is given in detail in paragraph 5.9.

4-2 Digital Systems Division

4

%@ 946290-9701

ENUMERATION TYPES AND RELATED STATEMENTS

1

SECTION V

5.1 ENUMERATION TYPES

Enumeration types were mentioned briefly in the overview of Section II. Enumeration types are
characterized by an ordered sequence of values. The functions which apply to enumeration types are
SUCC (successor), PRED (predecessor), and ORD (ordinal value). ORD applies to all enumeration
types except INTEGER and LONGINT. Also, the relational operators <, >, =, <=, >=, and <>
apply to operands of enumeration type. Runtime checks are available to detect the error of taking

the successor of the largest value of an enumeration or the predecessor of the smallest value of an
enumeration.

5.2 INTEGER AND LONGINT TYPES
™ A value of type INTEGER is an element of a finite set of whole numbers. The range of integer values
is determined by the word size of the machine. On the Model 990 Computer the range is -32,768

through +32,767. The type LONGINT provides for extended precision integers; the range of values
is -2,147,483,648 through +2,147,483,647.

A nonsuffixed integer constant is of type INTEGER if its value lies within the subrange defined by
the predefined type INTEGER, or LONGINT if its value lies outside the subrange defined by
INTEGER but within the subrange defined by LONGINT. If an integer constant is suffixed with an
L, it is of type LONGINT.

The following operators are defined for INTEGER or LONGINT operands and yield an INTEGER
or LONGINT resulit:

+ unary plus or add
- negate or subtract
* multiply
DIV integer divide (divide and truncate)
MOD modulus (A MOD X = A - ((A DIV X) * X))
™ The standard functions applying to arguments of type INTEGER and LONGINT are:
Function Value Result Type
ABS(X) Absolute value of X. INTEGER
N SQR(X) X squared. INTEGER
CHR(X) The character with the CHAR
B ordinal value of X.
ODD(X) TRUE if X is odd, BOOLEAN
: FALSE Otherwise.
. LOCATION See paragraph 6.6 on INTEGER
< pointers.

5-1 Digital Systems Division

{ié,’} 946290-9701

The standard functions which permit conversion of arguments of type INTEGER or LONGINT are:

Function Value Result Type
FLOAT(X,P) Real value with precision P. REAL
FIX(P,Q,X) Fixed point value with FIXED-POINT
precision (P,Q)

DEC(P,Q.X) Decimal value with precision DECIMAL
(P,Q)

The standard functions which permit conversion between INTEGER and LONGINT are:

Function Value Result Type
LINT(X) X of type INTEGER LONGINT

converted to LONGINT
TRUNC(X) X of type LONGINT INTEGER

converted to INTEGER

The arithmetic relational operators apply to INTEGER or LONGINT operands and yield a Boolean
result.

5.3 BOOLEAN TYPE
A value of type BOOLEAN is one of the logical truth values denoted by the reserved words TRUE
and FALSE.

Operators defined for Boolean operands which yield Boolean values are:

NOT logical negation
AND logical conjunction
OR logical disjunction

Since the type BOOLEAN is defined so that FALSE < TRUE, each of the possible Boolean
operations can be defined using the Boolean operators listed above and the relational operators. For
example, if P and Q are Boolean values:

P <= Q expresses implication (P implies Q)
P = Q expresses equivalence
P <> Q expresses exclusive OR

Because of the precedence rules, expressions involving Boolean and relational operators may have to
be parenthesized in order to obtain the desired result. For example, to express the relationship
between A and the logical conjunction of B and C:

A = (B AND O)

5.4 THE ASSERT STATEMENT
ASSERT statements allow the user to specify by a Boolean expression a condition which should
exist at a given point in a program. The form is:

ASSERT <expression>

5-2 Digital Systems Division

4

@ 946290-9701

o~ The <expression>> must be of type Boolean and must not contain the call of an external function.
Each time flow of control passes through the ASSERT statement, the expression is evaluated, if
ASSERTs are enabled (by a compiler option). If the expression is true, processing continues
normally. If the expression is false, a runtime error occurs.

Examples:

ASSERT X = 0
ASSERT MAX >= L
ASSERT FNC(X)

Assert statements are an aid to program testing. They may be included at any point in a program
where it is desired to test at runtime a condition or relation which should be true. When the ASSERT
statement is disabled by a compiler option, the ASSERT may still serve as a useful comment.

5.5 THE COMPOUND STATEMENT

A compound statement is written by enclosing a sequence of statements between the keywords
BEGIN and END. The compound statement specifies that the component statements are to be
executed one by one in the order in which they are written, but that the entire sequence is to be
treated as a single statement. The syntax is:

BEGIN <statement> {; <statement>} END

The syntax diagram is as follows:

Compound statement: O
~
BEGIN STATEMENT END

The semicolon (;) is used as a statement separator, that is, it appears between statements, and need
not appear after the end of the last statement.

~ Example:
BEGIN
SWAP = X;
=Y;
= SWAP
END

Note that no semicolon is needed after the statement Y := SWAP. The presence of a semicolon here
would imply the existence of a statement between the semicolon and the END. This is an example of
_ the empty statement which occurs wherever the syntax of TIP requires a statement but no statement
appears. In this case, the empty statement does no harm since its presence has no effect. Other
F examples of the empty statement (paragraph 5.6.1) may alter the intended meaning of the program.

5-3 Digital Systems Division

@ 946290-9701

As an illustration of the empty statement, the compound statement

BEGIN
<statement]>;
<statement2>;

2statementn>;
END

is interpreted as

BEGIN
<statement1>;
<statement2>;

Zstatementn>;
<empty>
END

5.6 CONDITIONAL AND REPETITIVE STATEMENTS

A conditional statement contains an expression and one or more component statements. At run
time, the value of the expression determines which, if any, of the component statements is executed.
The two types of conditional statement are the IF statement and the CASE statement. (See
paragraph 5.8.1 for the CASE statement.)

A repetitive statement specifies the repeated execution of its component statements. If the number of
repetitions is known before the loop is entered, a FOR statement may be used, and if the number of
repetitions is determined after the loop is entered, a WHILE or REPEAT statement should be used.
5.6.1 THE IF STATEMENT. The syntax of the IF statement is:

IF <expression> THEN <statement1>
[ELSE <statement2>]

The syntax diagram is as follows:

IF statement: ‘
‘@4 EXPRESSION —’GHED—d STATEMENT b@LS%—@ STATEMENT

The <expression> must be of type Boolean. If the value of <expression> is true, then
<statement 1> is executed. If <expression> is false and the optional ELSE clause is included, then
<statement2> is executed. '

Examples:

IF A >= 0 AND A <= | THEN X := SIN(A)
IF X <Y THEN MAX = Y ELSE MAX = X

5-4 Digital Systems Division

{@ 946290-9701

Mm\ Since there is no keyword that terminates the IF statement, the preceding syntax is ambiguous
‘ relative to ELSE clauses in nested IF statements. For example, in the statement

IF <conditionl> THEN
IF <condition2> THEN <statementl>
ELSE <statement2>

the “ELSE <statement2>” can be interpreted as belonging to either IF statement. This ambiguity is
resolved by always associating an ELSE clause with the most recent unmatched THEN preceding it.
The preceding example then is interpreted as:

IF <conditionl> THEN
BEGIN
IF <condition2> THEN <statement1>
ELSE <statement2>
END

™ Note that there is never a semicolon preceding the ELSE. The statement

IFX>0THEN N: =N+ 1I;
ELSEN =0

contains a syntax error, since the semicolon would separate the initial part of the IF statement from a
statement beginning with the reserved word ELSE, which is not possible in TIP.

Misplaced semicolons in some positions may not result in a syntax error, as the following example

/m shows:

IF CONDITION THEN;
N=+1

The IF statement is terminated by the semicolon, so that an empty statement is implied between
THEN and N := N + 1. The assignment statement N := N + 1 is executed regardless of the value of
CONDITION.

It is important to realize that the component statements of IF statements may be any statements.
™ Frequently an entire sequence of statements is to be executed if the condition is not TRUE, in which

case the compound statement is used to group the sequence into a single statement, as the following
example shows:

IF X > 0 THEN C2 := SQRT(X)

s ELSE BEGIN
Cl = 0;
x C2 := SQRT(-X)
END

W

A compound statement may also be used following the keyword THEN.

(€ W

The following examples illustrates a common misuse of the IF statement:

IF X>0 THEN POS := TRUE ELSE POS := FALSE

55 Digital Systems Division

(@ 946290-9701

This statement is needlessly Complex. The same result is more clearly accomplished by the simple

assignment:

POS = X>0

5.6.2 THE WHILE STATEMENT. The WHILE statement consists of a Boolean expression and a
component statement. The component statement is executed repeatedly as long as the Boolean

expression is TRUE. The syntax is:

WHILE <expre$sion> DO <statement>

The syntax diagram is as follows:

WHILE statement:

WHILE EXPRESSION STATEMENT

The <expression> must be of type Boolean. It is evaluated before <statement> is executed, so if
<expression> is initially FALSE, then <statement> is not executed at all.

Examples:

WHILE A > 0 DO A := A - FACTOR

WHILE ABS(TERM) > LIM DO

BEGIN
SINH := SINH + TERM;
N =N+ 2;

TERM := TERM * SQR(X) / (N * (N-1))

END

The BEGIN - END pair delimits a sequence of statements to form a single compound statement

which the syntax requires.

5.6.3 THE REPEAT STATEMENT. The REPEAT statement provides another contr‘ol structure
for looping. It should: be used when at least one execution of the component statements is always to
be performed. (The WHILE statement allows for the possibility of no execution of the component

statement.) The syntax is:

REPEAT <statement> { ; <statement> } UNTIL <expression>

The syntax diagram is as follows:

REPEAT statement:

H STATEMENT

»{ REPEAT

.GNT.._};.

EXPRESSION p——1p

Digital Systems Division

@ 946290-9701

, The <expression™> must be of type Boolean, and there may be a list of statements between the
(,ﬂm REPEAT and UNTIL. At runtime, the component statements are executed and then <expression>
is evaluated. If it is FALSE, these actions are repeated. When the value of <expression>> becomes

TRUE, the looping is terminated.

Example:

I:=0; SUM = 0;

REPEAT
I=1+1;
“ SUM = SUM + SQR(I)
UNTIL I := 10

5.7 MACHINE DEPENDENT AND USER-DEFINED ENUMERATION TYPES
The enumeration types CHAR, scalar, and subrange are discussed in this section. The values of type
CHAR are machine dependent, and scalar and subrange types are user-defined.

~ 5.7.1 CHAR TYPE. A value of type CHAR is an element of the character set used on the machine
on which the program is executing. Each character is represented by its ordinal value which is the
internal representation of the character on the machine. The standard function ORD may be used to
determine the ordinal value of the character constant which represents a given character. For
example, ORD(‘A’) is 65 in ASCII (Appendix G).

The following are properties of the character set:

® The upper case Roman alphabet ‘A’ . . ‘Z’ is in the character set and is in order, i.c.,
W\ ORD(‘A’) < ORD(‘B’) < . . .< ORD(‘2).

© The digits ‘0° . . ‘9’ are in the character set, are in order, and are contiguous, i.e., SUCC(‘0’)
= ‘I, SUCC(‘I") = 2°, . . ., SUCC(8) = 9.

@ The blank character is in the character set.

Character values are written as a single character surrounded by apostrophes. (Paragraphs 6.1 and
6.7 discuss packed arrays of characters, which are used to represent strings of characters.)

™ There are two characters which require special treatment to be represented in strings: the apostrophe

‘ and the number sign (#). Each of these characters is represented by two consecutive characters. Also,
recall from paragraph 3.2.3 that a character may be represented by a # sign, followed by its two-digit
hexadecimal character code.

‘A’ 639 9 ‘##, 6+’ G#OA,

2 Since ORD(CH) is the number which is the internal representation for the character CH and since
‘ CHR(I).is the character whose internal representation is the number 1, it is easy to see that within the
. proper subrange, ORD and CHR are inverse functions. Suppose CH is of type CHAR and I is of
: type INTEGER. Then:

v

CHR(ORD(CH)) = CH
ORD(CHR(])) = I

5-7 Digital Systems Division

@ 946290-9701

Also, the following relations are true:

SUCC(CH) = CHR(SUCC(ORD(CH)))
= CHR(ORD(CH)+1)

PRED(CH) = CHR(PRED(ORD(CH)))
= CHR(ORD(CH)-1)

5.7.2 SCALAR TYPE. A scalar type is a programmer-defined data type. The values of a scalar type

are elements of a set of identifiers specified by the programmer. Each identifier defines a value of the
type, and the order in which they are written defines the order of the type.

<scalar type>:= (<identifier> {,<identiﬁer> })
Examples:
TYPE PRIMARY = (RED, YELLOW, BLUE);
DAY = (MON, TUE, WED, THUR, FRI, SAT, SUN);
IODEVICE = (STO01, ST02, LP01, CROl, DS01, DS02, DS03);

The standard function ORD returns the ordinal number of a scalar value. The ordinal number of the
first identifier is zero.

Scalar values are used primarily to improve the readability of a program. For example, instead of
using digits 0-6 to represent the days of the week, the definition of DAY above allows the identifiers
MON, TUE, . . ., SUN to be used as values.
Examples:
Using the scalar type definitions given above,

ORD(MON) = 0

ORD(YELLOW) = 1

ORD(LPOI) = 2
Also, the standard type BOOLEAN is predefined by

| TYPE BOOLEAN = (FALSE, TRUE)

This defines the standard identifiers FALSE and TRUE and specifies that FALSE < TRUE.
Each identifier that appears as a value in a scalar type declaration may not be used for any other

purpose within that scope. (See Section VIII for a discussion of scope.) For example, the type
declaration :

TYPE COLOR = (RED, YELLOW, BLUE);
SHADE = (VIOLET, RED, PURPLE);

is illegal because the type of RED is ambiguous.

5-8 Digital Systems Division

-

| SN

)

it e

@ 946290-9701

5.7.3 SUBRANGE TYPE. A type may be defined as a subrange of any previously defined
enumeration type by specifying the least and largest values in the subrange. Thus a subrange type
defines an interval over an existing enumeration type, which is called its associated enumeration type
or base type. The syntax for declaring a subrange type is:

<type identifier> = <manifest constant> . . <manifest constant>

A manifest constant is a value which can be computed at compile time and is either an enumeration
constant or an integer constant expression.

<manifest constant> ::= <enumeration constant>
| <integer constant expression>>

< enumeration constant> ::= <scalar identifier> | <character constant>
| <Boolean constant> | [<sign>] <integer constant>

Integer constant expressions are described in detail in paragraph 5.9.

Examples:

TYPE DEC =0 .. N-1;
WORKDAY = MON . . FRI;
DISK = DS0I . . DS03;
DIGIT = ‘0’ . .9

The first constant (the lower bound) must be less than or equal to the second (the upper bound).

A subrange type may be used wherever the associated base type is allowed. Thus an operator defined
for operands of a certain type may also be used with operands of subranges of that type. The result
type of the operator will remain unchanged. For example, given that N is of the subrange type I . .
10, N + 25 is a legal expression whose value is of type INTEGER. In the same manner, associated
base types determine the validity of assignment statements. For example, given the declaration

VAR X :1..10;
Y:0..30;
Z:20..30

The assignments

X = Z;
Z =Y,
Y = Z7;

are all legal statements because the associated base types are all INTEGER. Of course some of the
above assignment statements imply an “out of range” assignment for certain variable values. The
compiler has an option available which may be turned on to check at runtime for illegal assignment

to a variable of subrange type. If the value to be assigned is outside the subrange and the option is
enabled, a runtime error occurs.

Digital Systems Division

@ 946290-9701

5.8 CASE AND FOR STATEMENTS
The enumeration types which have been discussed in the previous sections have important
applications in the CASE and FOR statements, which are discussed next. While the IF statement
uses a Boolean expression to select between two statements, the CASE statement uses an expression
of any enumeration type to select from an arbitrarily large group of alternative statements. The FOR
statement uses a control variable of any enumeration type to determine the number of iterations or
repetitions of a loop. Using scalar types in these statements is very helpful in documentation, since

descriptive identifiers help explain the purpose of the program.

5.8.1 THE CASE STATEMENT. The CASE statement contains an expression and a list of
statements, each one being preceded by a list of constants. The expression is called the selector and
its value at runtime determines which if any of the component statements is executed. The syntax of

the CASE statement is:

<case statement> ;=

CASE <expression> OF
<case element> {; <case element>}

[OTHERWISE <statement> { ;<statement>>|]

END

<case element> ::= <case label list> : <statement> | <empty>
<case label list> ::= <case label> { , <case label>}

<case label> ::= <manifest constant>
| <manifest constant> . .<manifest constant>

The syntax diagrams are as follows:

CASE statement:

CASE EXPRESSION L—o@

CASE element:

CASE
ELEMENT

O

Y

MANIFEST
b CONSTANT

STATEMENT —>

MANIFEST MANIFEST
—® CONSTANT CONSTANT
5-10

Digital Systems Division

[P

YR 4

L

a0

@ 946290-9701

The <expression> is called the selector and must be of enumeration type. At runtime, the selector
expression is evaluated, and the component statement labeled with the value of the selector is
executed. If no such label appears within the CASE statement, the component statement or

statements after the keyword OTHERWISE are executed, and if no OTHERWISE clause exists, a
runtime error occurs. '

The subrange form
<manifest constant> . . <manifest constant>
may be used as an abbreviation to specify all of the values greater than or equal to the first

enumeration constant and less than or equal to the second enumeration constant. The first

enumeration constant must be less than or equal to the second. Any value may be in at most one
CASE label.

Examples:

CASE NUM OF

1,3,5 X=X+ 1
6..10,20 : X = X * 10;
15 X =XDIVY
END
CASE CH OF
‘0> .. ‘9% N := ORD(CH) - ORD(‘0";
‘A’ . 'F* N := ORD(CH)-ORD(‘A’) + 10

OTHERWISE WRITELN(ILLEGAL HEX DIGIT’); N := -1
END

5.8.2 THE FOR STATEMENT. The FOR statement specifies that its component statement is to be

executed repeatedly for a sequence of values which are assigned to the control variable of the FOR
statement. The syntax is:

<for statement> ::== FOR <control variable> <generator> DO <statement>>

<generator> ::= IN <set expression>

| : = <initial value> TO < final value>
| = <initial value> DOWNTO <final value>
The syntax diagram is as follows:

FOR statement:

'(FOR}’ IDENTIFIER b@—b Eprsl’:Es-glorq Y @ STATEMENT [—®
EXPRESSION U TEXPRESSION)

DOWN TO

Digital Systems Division

@ 946290-9701

The <initial value> and <final value> may be any expression of an enumeration type.
Sets are discussed in paragraph 6.4.
Examples:

FOR J := -5 TO Z MOD 10 DO
S:= S + SQR(J)

(*ASSUME TYPE D = (MON, TUE, WED, THUR, FRI, SAT, SUN) *)
FOR DAY := MON TO FRI DO
BEGIN READ(HRS); PAY := PAY + HRS*RATE END

FOR K IN ERRORSET DO
WRITELN(M[K])

The <generator>> expression is evaluated once, when the loop is entered. Changing any of the values
in the generator (either the set expression or the initial and final values) within the FOR statement
does not affect the number of times the component statement is executed. The control variable is
assigned the <initial value> when the FOR statement is entered, and is incremented (decremented in
the case of DOWNTO) after each repetition of the component statement. The last repetition of the
component statement is when the control variable is equal to the <final value>. If the initial value is
greater than the final value in the case of TO (or less than, in the case of DOWNTO), then the
component statement is not executed at all. In the case of a set generator, the values are taken in the
order of the underlying base type of the set.

Example:

N = 10;
FORJ =1TONDON: =N+ 1

This loop is repeated 10 times and the value of N is 20 when the loop terminates.

Example:

VAR X: SET OF A..Z;

BEGIN

FOR M IN X DO
A [M] = 0

The FOR statement is equivalent to the following FOR statement:
FOR M:= A TO Z DO

IF M IN X THEN
A [M]:= 0

5-12 Digital Systems Division

@ 946290-9701

o~ The control variable is an implicitly declared variable, that is, it is declared by its appearance in the

-' FOR statement. If the control variable does appear in the declaration part of the program, the two
identifiers are distinct and a compiler warning is given if the proper option is enabled. (This is an
enhancement to standard Pascal.)

Example:

R PROGRAM FOREXAMPLE;
VAR I, N, X : INTEGER;
BEGIN

READ(N);

FORI:=1TO N DO
BEGIN READ(X);
WRITE(X)
END:
WRITELN
END.

The control variable I of the FOR statement in this example is distinct from the variable 1 from the
VAR declaration. Any occurrence of 1 within the FOR statement is a reference to the control
variable. The control variable I is not accessible outside the body of the FOR statement.

Furthermore, it is not legal to change the value of the control variable within a FOR statement,
either by an assignment statement or by passing it as a variable parameter to a procedure (see Section
VIII). An attempt to do so will result in an error.

(m 5.9 EXPRESSIONS

<factor> ::= <unsigned constant> | <variable>
| <function identifier> [([<expression > {, <expression>}])]
| (<expression>) | <set>

<unsigned constant> ::= <constant identifier> | <real constant>
| <integer constant> | <string constant> | <character constant>
| <Boolean constant> | <scalar identifier> | NIL
| <fixed point constant> | <decimal constant>

<set> = “["<element list>“]"

<element list> ::= <element> {, <element>} | <empty>

<element> ::= <expression> | <expression>. .<expression>

A e

<term> ::= <factor> | <term> <multiplying operator> <factor>

<multiplying operator> ::= * | / | DIV | MOD

pos

N <simple expression> ;= <term> | <adding operator> <term>
. | <simple expression> <adding operator> <term>

<adding operator> ;= + | -

< <Boolean primary> ::= <simple expression>
‘ | <Boolean primary> <relational operator> <simple expression>

5-13 Digital Systems Division

@ 946290-9701

<relational operator> 1= = | <> | < | <= | > | >= | IN

<Boolean factor> ::= <Boolean primary> | NOT <Boolean primary>

<Boolean term> ::= <Boolean factor>
| <Boolean term> AND <Boolean factor>

<expression> ::= <Boolean term> | <expression> OR <Boolean term>

Figure 5-1 contains syntax diagrams for these expressions.

Examples:

Factors:

Terms:

Simple Expressions:

Boolean Term:

Expressions:

5
I

SIN(X)

[RED, GREEN]

X *Y

I DIV J
XY

VAL MOD 6

X+Y
-Z
B + SQRT(B*B-4*A*C)

NOT BOOL
X=3AND Y >=2
1

7.2

=30RY<>2
P >=Q
RED IN HUES
(X+Y) DIVM

-

An expression may contain both real and integer values. In such mixed mode expressions, the rule is
that if either operand of a binary operator is real, then the result of the operation is real. (The
operator / never produces an integer result.) The operators MOD and DIV require that both

operands be INTEGER.

Mixed Mode Expressions:

(* assume VAR X : REAL; J : INTEGER *)

J*15.8
X<=]

Illegal expressions:

Should be A*(-5)
-(-T)

5-14

Digital Systems Division

%@ 946290-9701

m Several features of expressions should be noted: first, the syntax of TI Pascal, by itself, permits some
" forms of expressions which have no reasonable interpretation and hence are semantically illegal. For
example,
NOT 5 * 2
s is a syntactically correct Boolean factor and therefore an expression, but NOT makes sense only

when applied to a Boolean value, so this will result in an error at compile time.

Another point has to do with the way in which Boolean expressions are evaluated. There is a
frequent need for Boolean expressions such as

I <= N AND A[l] < X

which is intended to be TRUE if 1 is less than or equal to N and the Ith value of array A is not equal
to X, and FALSE otherwise. The problem is that if I is greater than N and A has upper bound N, the
above expression is illegal because A[I] is undefined for I > N. This problem is solved in TIP by
™ means of what is called short-circuit evaluation of Boolean expressions. In a Boolean expression of
the form
X AND Y

if X is FALSE then Y is not evaluated and the value of the entire expression is FALSE. In a Boolean
expression of the form

XORY

. if X is TRUE, then Y is not evaluated and the value of the entire expression is TRUE. (This is an
— enhancement to standard Pascal.)

Constant expressions may be evaluated at compile time and may, except where statement labels and
more restricted integer constant expressions (see next paragraph) are required, occur anywhere that
a constant may appear. Constant expressions are the same as expressions except that they may not
contain variables or function designators.

Integer constant expressions are defined in the same way with the exception that they do not have the
operator ‘/’. They may be used in the specification of array, set, and subrange bounds. All operands
of an integer constant expression must be of type INTEGER or LONGINT or a subrange thereof.

5.10 REAL TYPE

The type REAL may be used to represent real values with 6-7 decimal digits of precision. The range
of absolute values which can be represented is about 1.0E-78 to 1.0E75. The default precision may be
overridden by specifying the desired precision in decimal digits. This is done by enclosing the
precision in parentheses after the symbol REAL. The maximum precision supported is 16 decimal
digits. For example,

A Y

REAL(12)

will cause the compiler to allocate enough space for values of type REAL(12) so that 12 decimal
digits of precision may be obtained.

g &

The following operators accept operands of type REAL (of any precision) and yield a real value
(with precision equal to the maximum precision of the operands):

* multiply
(" / divide
+ unary plus or add

negate or subtract

5-15 Digital Systems Division

946290-9701

The syntax diagrams are as follows:

Factor:]

UNSIGNED .
CONSTANT >

VARIABLE

FUNCTION m]

IDENTIFIER U EXPRESSION)

A :
N

_@__—.M
N\
—9@7 EXPRESSION ‘:@——O EXPRESSION 3@—’

Unsigned constant:

49! CONSTANT IDENTIFIER

Ll
{ REAL CONSTANT —
INTEGER CONSTANT
@
¢
CHARACTER
. Y
4 DECIMAL CONSTANT s 2
&
S
Q':
FIXED POINT CONSTANT >
ES
f
A
BOOLEAN CONSTANT
» SCALAR IDENTIFIER &
(A)138375 (1:2)

Figure 5-1. Syntax Diagrams for Expressions (Sheet 1 of 2)

5-16 Digital Systems Division

"5

< bk

LA i

946290-9701

Term:
${ FACTOR >
FACTOR
Simple expression:
LA. TERM P
TERM
Boolean primary:
SIMPLE
—P» EXPRESSION
SIMPLE
EXPRESSION
Boolean factor:
2 BOOLEAN 5
J PRIMARY hdl

Lo

Boolean term:

BOOLEAN

» FACTOR

Expression:

B800L.EAN

BOOLEAN
TERM

(A)138375(2/2)

Figure 5-1. Syntax Diagrams for Expressions (Sheet 2 of 2)

FACTOR -
BOOLEAN
-

5-17

Digital Systems Division

{_@’? 946290-9701

The assignment operator may be used to assign a REAL value to a REAL variable. Also, the
relational operators are defined for REAL operands just as for enumeration operands (see
paragraph 2.2.1.1).

Standard functions accepting a REAL argument and yielding a REAL result with precision the same
as that of the argument:

ABS(X) absolute value
SQR(X) X squared

Standard functions with REAL or INTEGER argument in which the REAL result has the same
precision as that of the argument:

SIN(X) Trignometric sine of X in radians

COS(X) Trigonometric cosine of X in radians

ARCTAN(X) Trigonometric inverse tangent in radians

LN(X) Natural logarithm if X > 0; otherwise a runtime error occurs.
EXP(X) Exponential function -- 2.718281828 to the power X.
SQRT(X) Square root if X >= 0; otherwise a runtime error occurs.

Standard functions with a REAL argument yielding INTEGER results are:

TRUNC(X) The result is the whole part of X, i.e., the fractional part of X is discarded.
ROUND(X) The result is X rounded to the nearest integer, i.e., TRUNC(X + 0.5) if X >=0
or TRUNC(X - 0.5) if X < 0.

Similar standard functions, LTRUNC and LROUND, yield a result of type LONGINT.
The standard functions which permit conversion of arguments of type REAL are:

DEC(P,Q,X) The result is the decimal value with precision (P,Q) (paragraph 5.12)
corresponding to the REAL X.

FLOAT(X,P) The result is the real value with precision P corresponding to the REAL X.

FIX(P,Q,X) The result is the fixed-point value with precision (P,Q) (paragraph 5.11)
corresponding to the REAL X.

The syntax for real numbers is given in paragraph 3.2.2. Scientific notation is allowed with real
constants in which case the letter E or Q is used to specify a power of 10 scale factor. The letter E
denotes the predefined default precision (32 bits) while the letter Q specifies the maximum precision
available (64 bits).

Examples:

SE-3
3.14159268Q0

5-18 Digital Systems Division

@ 946290-9701

~ 5.11 FIXED TYPE

! FIXED types allow fractional values to be represented without using the generality of the real type
representation. A value of type FIXED is a scaled binary number. Its precision consists of two parts:
P and Q. P specifies the total number of binary digits which includes the fractional digits (but does
not include the sign bit); Q is the scale factor which specifies the binary point alignment, i.e., the
position of the binary point relative to the rightmost binary digit of the binary number. Precision is
stated by two decimal integers P and Q, separated by a comma and enclosed in parentheses. P must
be unsigned but Q may be signed. A positive value for Q indicates the number of binary digits
following the binary point; a negative value indicates the number of imaginary zero binary digits
following the number and preceding the binary point.

The maximum precision supported on the Model 990 Computer is 31 bits.
Fixed point constants have the following syntax:
<fixed-point constant> ::= <digits>. <digits> F |
<digits> F | <binary digits>. <binary digits> B |
o~ <binary digits> B

The following operators are defined for fixed point operands of (possibly) different precisions and
yield a fixed point value whose precision depends on the operator.

+ unary plus or add
negate or subtract

* multiply
/ divide
v The assignment operator may be used to assign a fixed point value to a fixed point variable, and a

range check option is available to determine loss of most significant digits at runtime.

Whenever an expression of type FIXED is assigned to a fixed point variable, the declared precision
of the variable is maintained. The assigned item is aligned on the binary point. Leading zeros are
inserted if the assigned item contains fewer integer digits than declared; trailing zeros are inserted if it
contains fewer fractional digits. An error occurs (if the range check option is enabled) if the assigned
item contains too many integer digits; truncation on the right occurs, with rounding, if it contains
too many fractional digits.

The relational operators (<, =, >, <=, <, >=) are defined for fixed point operands and yield a
Boolean value.

’Jv

b

W oae ik

5-19 Digital Systems Division

%@ 9462909701

Standard functions accepting a fixed point argument and yielding a real result are:

ABS(X)
SQR(X)
SIN(X)
COS(X)
ARCTAN(X)
LN(X)
EXP(X)
SQRT(X)

The standard functions which permit conversion of arguments of type FIXED are:

TRUNC(X) The result is X truncated to the nearest INTEGER.

ROUND(X) The result is X rounded to the nearest INTEGER.

FLOAT(X,P) The result is the real value with precision P corresponding to the fixed
point X.

DEC(P,Q,X) The result is the decimal value with precision (P,Q) corresponding to

the fixed point X.

FIX(P,Q,X) The result is the fixed point value with precision (P,Q) corresponding
to the fixed point X.

Examples:

VAR X: FIXED(, 4);
Y: FIXED(S, -2)

X = 1.011B; Y = 1100100B

5-20 Digital Systems Division

@ 946290-9701

™~ 5.12 DECIMAL TYPE ‘
0 DECIMAL types are suitable for applications requiring that operations be performed using decimal
arithmetic. A decimal type represents a value of the standard type DECIMAL. The syntax is:

<decimal constant> ::= <digits>. <digits> D | <digits> D

DECIMAL types allow fractional decimal values to be represented without converting them to real
type representation. A value of type DECIMAL is a scaled decimal number. Its precision consists of
two parts; P and Q. P specifies the total number of decimal digits which includes the fractional digits;
Q is the scale factor which specifies the decimal point alignment, i.e., the position of the decimal
point relative to the rightmost digit of the decimal number. Precision is stated by two decimal

integers P and Q, separated by a comma and enclosed in parentheses. P must be unsigned but Q may
be signed.

The maximum precision is 15 decimal digits on the Model 990 Computer.

The following operators are defined for decimal operands of (possibly) different precisions and yield
o~ a decimal value whose precision depends on the operator.

+ unary plus or add
- negate or subtract
* multiply

| divide

The assignment operator may be used to assign a decimal value to a decimal variable, and a range
check option is available to determine loss of most significant digits at runtime.

Whenever an expression of type DECIMAL is assigned to a decimal variable, the declared precision
of the variable is maintained. The assigned item is aligned on the decimal point. Leading zeros are
inserted if the assigned item contains fewer integer digits than declared; trailing zeros are inserted if it
contains fewer fractional digits. An error occurs if the assigned item contains too many digits and the
range check option is enabled; truncation on the right occurs if it contains too many fractional digits.
An option may be enabled to cause rounding in addition to truncation.

The relational operators (<, =, >, <=, <>, >=) are defined for decimal operands and yield a
Boolean value.

Standard functions accepting a decimal argument and yielding a real result are:
ABS(X)
SQR(X)

& wa

SIN(X)
COS(X)

W b

ARCTAN(X)
LN(X)
EXP(X)

SQRT(X)

5-21 Digital Systems Division

@ 946290-9701

The standard functions which permit conversion of arguments of type DECIMAL are:

TRUNC(X) The result is X truncated to the nearest INTEGER.

ROUND(X) The result is X rounded to the nearest INTEGER.

FLOAT(X,P) The result is the real value with precision P corresponding to the
decimal X.

DEC(P,Q,X) The result is the decimal value with precision (P,Q) corresponding to

the decimal X.

FIX(P,Q,X) The result is the fixed-point value with precision (P,Q) corresponding
to the decimal X.

The following examples show the equivalent COBOL representation for several DECIMAL types:

TIP COBOL MAXIMUM VALUE SMALLEST INCREMENT
DECIMAL (4,0) PICTURE S9(4) 9,999. 1.
DECIMAL (8,2) PICTURE S9(6)V99 999,999.99 .01
DECIMAL (5,-3) PICTURE S9(5)P(3) 99,999,000. 1000
DECIMAL (4,-6) PICTURE SVPP9999 0.009999 .000001

5-22 Digital Systems Division

@ 946290-9701

SECTION VI
STRUCTURED DATA TYPES
6.1 ARRAY TYPE
An array consists of a fixed number of components which are all of the same type, called the
component type. Components of the array are designated by specifying their relative positions in the

array, using expressions of the index type. An ARRAY type has the following syntax:

<array type> =
ARRAY “[” <index type> { <index type>}“]” OF <component type>

<index type> = <static index type> | <dynamic index type>
~ <static index type> ::= <enumeration type> | <type identifier>
<dynamic index type> ::= <manifest constant> . . <dynamic upper bound>

<dynamic upper bound> ::= <entire variable>
| UB(<dynamic array variable>[, <manifest constant>])

<entire variable> ::= <lidentifier>
P The syntax diagrams are as follows:

Array type:

MANIFEST BYNAMIC
CONSTANT i @ UERER

£

S ENUMERATION

O

Dynamic upper bound:

$ IDENTIFIER >

%
MANIFEST
) @ ; ‘ IDENTIFIER $®_. CONSTANT

Digital Systems Division

%@ 946290-9701

The <component type> may be any type, simple or structured, except that it may not be FILE. In
particular, <component type>> may itself be an ARRAY type. The number of <index types> in the
declaration determines the dimension of the array. There is no limit to the number of dimensions
which an array may have. Each <index type> must be an enumeration type: INTEGER,
LONGINT, BOOLEAN, CHAR, subrange, or scalar.

Examples of one-dimensional arrays:

(* RECALL TYPE WORKDAY = MON. . FRI *)
LATEDAYS = ARRAY[WORKDAY] OF BOOLEAN; (*LENGTH 5%)
LIST = ARRAY[‘0’ . . ‘9] OF LATEDAYS; (*LENGTH 10%)
TRANSLATE = ARRAY[CHAR] OF CHAR (*LENGTH 256*)

TWO DIMENSIONAL ARRAY:
TYPE TABLE = ARRAY[0. . 10, -50. . 50] OF INTEGER;

Arrays with two or more dimensions are called multidimensional arrays. These may be described in
terms of one-dimensional arrays because the type

Al = ARRAY[T1, T2, . . ., Tn] OF <type>
is equivalent to
Al = ARRAY|[TI1] OF ARRAY[T2] OF . .. OF ARRAY[Tn] OF <type>
Another way of expressing exactly the same type is:
TYPE An = ARRAY[Tn] OF <type>;

A2 = ARRAY[T2] OF A3;
Al = ARRAY[TI] OF A2

(Note that the order of these declarations is important.)

For another example, consider the following equivalent definitions of the type PAGES:
TYPE PAGES = ARRAYJ[1. . 66, 1. .80] OF CHAR
TYPE PAGES = ARRAY[1. . 66] OF ARRAY[1. .80] OF CHAR

TYPE LINE = ARRAY[1. . 80] OF CHAR;
PAGES = ARRAY[1. . 66] OF LINE

Therefore, even if PAGES is declared as a two-dimensional array of characters, it can be treated as a
one-dimensional array of LINEs, where each LINE is a one-dimensional array of characters.

A particular element of a one-dimensional array is denoted by writing the array identifier followed
by a bracketed expression of a type compatible with the index:

<identifier> [<expression>]

6-2 - Digital Systems Division

1Y

bt

ot &

14

%@ 946290-9701

The expression is called an index or a subscript. If the index type is a subrange, the value of the
expression must fall within this subrange. A compiler option is available which may be used to
generate runtime checks for array indices out of bounds.

Just as there are several equivalent ways to declare a multidimensional array, there are several

equivalent ways to access components of a multidimensional array. Given the array PAGES
declared above:

PAGES[14] denotes the 14th line of the array, i.e., the one-dimensional array
of characters which is the 14th component of PAGES.
PAGES[§, 21] denotes the 21st character of the 5th line.
PAGES[5][21] also denotes the 21st character of the 5th line.
Operators:

The basic operator between array operands of compatible type is assignment (:=). (See paragraph
6.7 for packed arrays and additional operators which apply to packed arrays of characters.) For
example, given any of the declaration of PAGES above and the declaration

VAR CARD : ARRAY[1. . 80] OF CHAR

the following are legal:

PAGES[12, 8] := ‘M,
PAGES[36] :== CARD;

The standard function which applies to an array argument is:

UB(A, D) the result is the upper bound of the Dth dimension of the array A.
UB(A) the same as UB(A, 1).

D must be an integer constant.

For example, UB(PAGES, 2) = 80, and UB(PAGES) = 66. The type of the result is the same as the
Dth index type. Dimensions are numbered left to right, starting with 1. As another example,
UB(LATEDAYS) = FRI (recall the first example in this section).

6.1.1 ARRAY PROCEDURES. Standard procedures for arrays (see paragraph 6.7 for a discussion
of packed arrays):

PACK(A, 1, Z) means FOR J := U TO V DO
Z[J 1= A[J-U+HI]

UNPACK(Z, A,I) means FOR J := U TO V DO
A[JUH 1:=2[]]

where

A is a variable of type ARRAY[M. .N] OF TI,
Z is a variable of type PACKED ARRAY [U. .V] OF T2,
T1 and T2 are compatible types, and (N-M) >= (V-U)

Digital Systems Division

[¢]
4‘—@? 946290-9701

UNPACK allows a packed array to be unpacked so its components may be efficiently accessed.
PACK allows an unpacked array to be packed.

6.1.2 STATIC AND DYNAMIC ARRAYS. The number of components in an array is fixed, and in
each of the previous examples this number has been fixed at compile time. Arrays of this sort are said
to be static. It is also possible to fix the number of components at runtime in TIP, and arrays of this
sort are called dynamic. Arrays are specified to be dynamic by means of dynamic index types. The
number of components of a dynamic array is determined upon entry to the block (program or
routine) containing the array type declaration. (See Section VIII for a discussion of routines.) For
multidimensional arrays, if at least one index type is a dynamic index type, then the array is dynamic.
Only the upper bound of a dynamic index type may be specified at runtime. The lower bound must
be a manifest constant, which is fixed at compile-time. The upper bound may be an entire variable
(not a component of an array or record and not a referenced variable), or the upper bound may be
specified by means of the UB function applied to an argument which is an array variable. An entire
variable appearing as dynamic upper bound must be either a nonlocal variable or a formal procedure
parameter. (Also, see paragraph 8.5.2 for an example of dynamic array parameters.)

Examples of Dynamic Arrays:
TYPE VEC = ARRAY[1. . N] OF INTEGER;
TABLE = ARRAY[0. . UB(VEC)] OF REAL
BOOK = ARRAY[I. . N, 1. . 54, 1. .60] OF CHAR
6.2 RECORD TYPE
The record type declaration defines a record. In TI Pascal, a record may have a fixed part, a fixed

part and a variant part, or a variant part alone.

6.2.1 RECORDS. A record consists of a number of components of possibly different type called
fields. Each field must be given a distinct name, called the field identifier, which is used to reference
the individual component, and a type must be specified for each field. A field maybe in the fixed part
of the record variable, or it may be in the variant part. The variant part of a record is a list of
alternative forms which the field may take. A record may have a fixed part, a variant part, or both,
but the variant part must be last if it appears.
Syntax:

<record type> ::= RECORD <field list> END

<field list> = <fixed part> | <fixed part> ; <variant part> | <variant part>

<fixed part> ::= <record section> {; <record section>}

<record section> ::= [<field identifier> {, <field identifier> }: <type>j

<variant part> ;= CASE <tag field> <type identifier> OF <variant> {; <variant>f

<variant> ;= [<case label list> : (<field list>)]

<case label list> = <case label> { <case label>}

<case label> ::= <manifest constant> | <manifest constant>. .<manifest constant>

<tag field> ::= [<identifier> :]

Digital Systems Division

~

e

[et

id

by

946290-9701

PN The syntax diagrams are as follows:

%ECORD)—D FIELD LIST END

Record type:

Field list:

FIXED PART @ VARIANT PART

4

Fixed part:

v

M\
U

y IDENTIFIER =O—’ TYPE

- O

Variant part: .

-
d —DC CASE) IDENTIFIER A’O TYPE IDENTIFIER —’@ VARIANT —>
Variant:
-
5 MANIFEST MANIFEST FIELD & >
CONSTANT :O_’ CONSTANT @—D@—D LIST —D@—J
P

Digital Systems Division

@ 946290-9701

The type of a field may not be a dynamic array, dynamic set, or file. The assignment operator (:=)
applies to operands which are compatible records. (Type compatibility is discussed in paragraph
6.8.) No other operator applies to records.

Examples:

TYPE COMPLEX = RECORD RE, IM : REAL END;
DATA = RECORD
MONTH : (JAN, FEB, MAR, APR, MAY, JUN,
JUL, AUG, SEP, OCT, NOV, DEC);
DAY 1., 31
YEAR : INTEGER
END

A component of a record is referenced by the record identifier followed by a period followed by the
appropriate field identifier:

<record variable>.<field identifier>
Examples:

VAR X, Y, Z : COMPLEX:
START, FINISH : DATE;

START.DAY := 11;
START.MONTH := APR;

Multiplication of complex numbers:

Z.RE :
Z.IM :

X.RE * Y.RE - X.IM * Y.IM;
X.RE * Y.IM + X.IM * Y.RE;

The assignment statement
Y =X
is equivalent to

Y.RE :
Y.IM :

X.RE;
X.IM

An array of records could be defined as:
VAR CPLX : ARRAY[1. . N] OF COMPLEX
Typical assignments might be:

CPLX[I] = Z;
CPLX[I].RE := Z.RE

6-6

Digital Systems Division

Y

9

T ¥

@ 946290-9701

~ A record containing an array could be defined as:
VAR REC : RECORD
KEY : 1. . 3;
CODE : ARRAY[I. . 3] OF CHAR
END:
Usage:

) RECKEY = N;
z REC.CODE[N] := ‘X7,

REC.CODE[REC.KEY] = ‘T

6.2.2 VARIANTS. In some situations it is convenient to have a record type which allows individual
records to have some differences in their structure. For example, an employee record for college
graduates might contain certain information which is not needed in records for noncollege
graduates. The variant part of a TI Pascal record provides this capability with a form similar to a

™ CASE statement in which a selector or tag field can be used to indicate the variant which is currently
used.

Example:

TYPE ED = (HS, COLLEGE);,
VAR EMPLOYEE : RECORD
NAME : STRING;
ID : INTEGER;
ﬁm\ STATUS : (EXEMPT, NONEXEMPT);,
CASE EDUCATION : ED OF
HS : (SPECIALTY : ARRAY[I. . 20] OF CHAR;
GPA : REAL);
COLLEGE : (CODE : INTEGER;
DEGREE : (BS, MS, PHD, NONE);
AVE : REAL)
END

This record contains four fixed fields : NAME, ID, STATUS, and EDUCATION, and a variant part

™ of either the two fields SPECIALTY and GPA or the three fields CODE, DEGREE, and AVE. The
EDUCATION field is the tag field. Note that both variants have a real field representing the grade
point average (GPA and AVE). Different names must be used for these, since all field identifiers
must be distinct at a given level. Actually, since this field is common to all variants, it should be
moved to the fixed part of the record.

L4

The tag field need not be included, so that the field identifier EDUCATION and the colon that
follows could be omitted in the previous example. However, the type of the tag must be specified.
Also, each case label must be a unique nonnegative enumeration constant or integer constant
expression of the same type as the tag field, and the case labels must be disjoint.

Y

v

-~

The tag type specification merely determines the type which is used to label the variants. Which
variant is selected is actually determined by the field identifier which is used, which explains why the

tag field may be omitted and why all field identifiers at a given level, even in the variant part, must be
distinct.

e

6-7 Digital Systems Division

@ 946290-9701

A compiler option is available, however, to check at runtime that the value of the tag field, if present,
corresponds with the variant which is selected.

Example:
EMPLOYEE.ID
EMPLOYEE.EDUCATION
EMPLOYEE.GPA
EMPLOYEE.DEGREE
6.3 WITH STATEMENT
Repeated references to components of the same record can be considerably simplified by using the
WITH statement. The record is specified at the beginning of the WITH statement, and within the

scope of the WITH statement the record’s component can be denoted by the field identifiers alone,
with the record identifier omitted. The syntax is:

<with statement> ::= WITH <with variable list> DO <statement>
<with variable list> ::= <with variable> {, <with variable>}

<with variable> ::= <record variable> | <identifier> = <record variable>

WITH statement:

WITH #${ IDENTIFIER —b@ ®| VARIABLE =@——0 STATEMENT

Example:

(* ASSUME VAR STARTDATE : DATE *)

WITH STARTDATE DO
BEGIN MONTH := MAY;
DAY = 16;
YEAR := 1977
END

This has the same effect as:

STARTDATE.MONTH := MAY;
STARTDATE.DAY := 16;
STARTDATE.YEAR := 1977

Another example is:

(* ASSUME VAR MEMBER : ARRAY[I. . 80] OF EMPLOYEE *)
(* EMPLOYEE DEFINED AS BEFORE *)
WITH MEMBER [I] DO . . .

6-8 Digital Systems Division

"

{@2 946290-9701

f@ﬁ\ Nested WITH statements may be abbreviated as

WITH RI1, R2, . . ., Rn DO <statement>
which is equivalent to

B WITH R1 DO
WITH R2 DO

" WITH Rn DO <statement>

The normal scope rules (described in detail in paragraph 8.7) apply, so that a WITH variable may be
redefined in nested WITH statements. The innermost definition is the one which applies.

Example:
(* ASSUME STARTDATE, ENDATE : DATE *)
~ WITH STARTDATE, ENDATE DO
MONTH := MAY
assigns MAY to ENDATE.MONTH.

Another form of the WITH statement allows synonyms to be defined for the record variables, as
illustrated by the following example:

(* ASSUME VAR A : ARRAY[Il. . 5] OF DATE, I =1, J = 2, K = 3%)

~ WITH X = A[l], C = A[J], A[K] DO

BEGIN
C:=X; (* COPY RECORD A[1] TO A[2] *)
I:= 2
K:=25;
X.YEAR := 1975; (* ASSIGN 1975 TO A[l]. YEAR *)
MONTH := JUN (* ASSIGN JUN TO A[3]. MONTH *)

END '

~ Record variables are bound prior to execution of the qualified statement, so that in the above

example, X always denotes record A[1] within the WITH statement, since I had the value 1 when the

WITH statement was executed. Assigning 2 to I within the WITH statement does not affect the
denotation of X.

The identifiers X and C are implicitly declared and their scope is the WITH statement in which they
appear. This means that any identifier X or C which exists outside the WITH statement is not

T

; accessible inside the WITH statement. An exception to this is identifiers which denote fields of
record types. For example, if the record A[I] above had a field denoted by X, then within the WITH

. statement X. X would denote this field.

E Besides being a convenient shorthand notation, WITH statements allow the compiler to do a certain

amount of optimization when several components of a record are accessed.

_ Digital Systems Division

@ 946290-9701

6.4 SET TYPE '
A SET type is used to define variables whose values are sets. A SET type specifies a base type, and a
value of the SET type is then any subset of values from the base type. The syntax for the SET type is:

<set type> .= SET OF <base type>

<base type> ::= <static base type> | <dynamic base type>

< static base type> ::= <enumeration type> | <type identifier>
<dynamic base type> ::= <manifest constant>. .<dynamic bound>

<dynamic bound> ::= <entire variable>
| UB(<dynamic set variable>)

<entire variable> ::= <identifier>
The syntax diagrams are as follows:

Set type:

B @ OF ${ ENUMERATION TYPE >

DYNAMIC BOUND

MANIFEST CONSTANT

Dynamic Bound:

—21 IDENTIFIER >

The base type is any enumeration type. Each SET type includes the set of no elements, called the
empty set. The lower bound X of the base type must have an ordinal greater than or equal to 0, and
the largest element Y must have an ordinal less than 1023. For sets of integers, only values from 0 to
1023 are allowed.

Examples:

TYPE BYTE = SET OF 0. . 7;
CHARSET = SET OF CHAR;
COLOR = SET OF PRIMARY;
ERRORSET = SET OF (OVERFLOW, BUSY, EOFILE)

6-10 Digital Systems Division

P e v

4

oL

A

N4

(o]
{_@p 946290-9701

Set values are represented by set constructors, which are a list of set elements (i.e., of expressions of
some base type) separated by commas and enclosed by the set brackets [and]. The empty set can be
denoted by []. Subranges may be used in constructing set values. For example, [M. . N] denotes the
set of values from M to N, and if N > M, this is the empty set.

The standard function accepting an argument of type SET is UB(S), which gives the largest value in
the base type of the set S. The type of the result is the same as the base type of S.

The following operators apply between operands that are compatible sets (or set and set member in
the case of IN):

+ set union (inclusive OR) set of elements present in either A or B
- set difference set of elements in A and not in B
* set intersection (AND) set of elements in both A and B
= set inclusion (contained in) all elements of A are present in B
= set inclusion (contains) all elements of B are present in A
< proper set inclusion all elements of A are present in B but not all
elements of B are present in A
> proper set inclusion all elements of B are present in A but not all
elements of A are present in B
= set equality A and B contain the same elements
<> set inequality A and B contain different elements
IN set membership
;= assignment

The relationships shown in the right column apply when A is the operand that precedes the operator
and B is the operand that follows the operator.

A set is represented internally by a bit string or characteristic vector in which each element of the
base type is associated with one bit. Elements that are in the set correspond to ones in the bit string.

Examples:

[1,3,21+1[2 6 3]1=1Il, 2 3, 6]
[1,3,2]1*[2, 6, 3] =[2 3]
[1,3,2]-[2, 6, 3] = [1]
[1, 2,31 <=l, 2, 3] — TRUE
[1, 2, 31 <[I, 2, 3] — FALSE
[1,2] <TII, 2, 3] — TRUE
TYPE DAYS = (MON, TUE, WED, THUR, FRI, SAT, SUN);
VAR DAY : DAYS;
WEEK, WORK, WEEKEND : SET OF DAYS;

WORK = [MON. .FRI J;
WEEKEND := [SAT, SUN];

WEEK : = WORK + [SAT, SUN J;
WEEKEND := WEEK - WORK;

IF WORK * [TUE] =[] THEN. . ..
IF DAY IN WEEKEND THEN
IF WORK <= WEEK THEN

6-11

Digital Systems Division

o
@ 946290-9701

Given appropriate declarations for ERR, CURRENTERRS, FATALERRS:

IF ERR IN FATALERRS THEN WRITELN(‘ FATAL ERROR);
CURRENTERRS := CURRENTERRS + [ERR];
IF CURRENTERRS <= FATALERRS THEN

WRITELN(* ALL ACTIVE ERROR CONDITIONS ARE FATAL);
IF CURRENTERRS >= FATALERRS THEN

WRITELN(* EVERY FATAL ERROR CONDITION IS ACTIVE’) .

A set may be defined by a static base type, in which case the number of elements is determined at
compile times, or the set may be defined by a dynamic base type, in which case the number of
elements is determined upon entry to the block containing the set type declaration. Just as for
dynamic arrays, the lower bound of a dynamic set is fixed. It must be a manifest constant, that is, an
enumeration constant or an integer constant expression which can be evaluated at compile time. The
upper bound may be a variable or it may be the UB function applied to an argument which is a
dynamic set variable.

Examples:

TYPE SETA = SET OF 0. . N;
SETB = SET OF 128. . UB(SETA)

6.5 FILE TYPE

A FILE type specifies a structure consisting of a sequence of components which are all of the same
type, and may be either sequential or random. In addition, a textfile is a special kind of sequential file
of type CHAR which is divided into lines by end of line markers. (A file of type FILE OF CHAR is
not substructured into lines, and hence is not equivalent to a textfile.) The number of components,
called the length of the file, is not fixed and may grow to any size, limited only by the storage medium
with which the file is associated.

On the Model 990 Computer, files are written to the disk. The I/O procedures and functions create
files automatically using default values when they do not already exist. Alternatively, the user may

create files using DX10 File Management commands prior to executing a TIP program. When
parameters other than the defaults are required, the user must create the files.

The syntax of FILE type is:
<file type> ::== [RANDOM] FILE OF <type> | TEXT

4‘ TEXT }

The syntax diagram is as follows:

File type:

TYPE

6-12 Digital Systems Division

o
é@ 946290-9701

; The component type may not be a pointer or file type or contain pointers or files. Any other type is
r legal as a component of a file.

The characteristic feature of a sequential file is that its components are accessible only by progressing
sequentially through the file. ‘

The prefix RANDOM specifies a random file in which components are accessible by their
component number, which is defined by the natural ordering of the sequence of components. The
first component is number zero.

¥ Examples:

1

TYPE INFILE FILE OF INTEGER;

OUTFIL = RANDOM FILE OF LONGINT;
MSG = TEXT;

The predefined textfiles INPUT and OUTPUT represent the standard 1/O media of a computer
installation (such as the terminal keyboard and line printer).

Files are accessed by means of READ procedure statements, and are written to by means of WRITE
procedure statements. In addition, READLN and WRITELN statements apply to textfiles. Before
writing to a file, it is necessary to execute a REWRITE statement which erases any previous
components of the file and opens it for writing. (A REWRITE is done automatically on the standard
textfile OUTPUT.)

{'ﬁM Before values may be read from a file, it is necessary to execute a RESET statement which positions
to the beginning of the file and opens it for reading. READ returns the next value from the file. For a
sequential file, reading may proceed until the last component is read. Then the sequential file is in the
end-of-file state which is indicated by the standard Boolean function EOF returning a value TRUE
when applied to the file identifier. For RANDOM files, EOF is true when a nonexistent component
is read. '

Sequential files may be opened for reading or writing but not both simultaneously. A RANDOM file
is simultaneously opened for reading or writing by either a REWRITE or EXTEND.

1/O errors may cause program termination (the default) or be handled by the program; which action
to take is set by the routine IOTERM. The status of the last I/ O operation on a specified file may be
determined by the function STATUS.

A file may be associated at execution time with a particular operating system file or device by the
5 procedures SETNAME and SETMEMBER. These routines may only be called when a file is in an
9 inactive (closed) state. A file is placed in the closed state by the routine CLOSE. By default, a file is
placed in the closed state when control returns to another block from the block in which the file is

declared. Once a file is closed, it may be reopened by the procedure EXTEND, RESET, or
REWRITE.

The following procedures and functions may be applied to any file F:

EXTEND(F) For a sequential file or a textfile, open F for output and position
it to write the first component. The first component is written as -
~ the successor of the last component of the last logical file of the
file. For a random file, open F for both input and output.

613 Digital Systems Division

o
‘.‘_@‘} 946290-9701

RESET(F)

REWRITE(F)

CLOSE(F)

SETNAME(F,NAME)

SETMEMBER
(F,LIBNAME,MEMBER)

SETLUNO (F,LUNO)
STATUS(F)

IOTERM(F,OVAL,NVAL)

EOF(F)

Open the file F for input and position to read its first
component. For a sequential file, if the file is not empty, EOF(F)
becomes FALSE; otherwise it becomes TRUE.

For a sequential file, make the file empty and open it for output.
EOF(F) becomes true. For a random file, make the file empty
and open it for both input and output.

Place the file F in a closed state; if F is a sequential file that is
open for output, write an end-of-file before closing.

Associate file F with the external file specified by NAME which
is of type PACKED ARRAY[I. . 8] OF CHAR. NAME may
not be the textfile OUTPUT.

Associate the file F with the MEMBER of library LIBNAME,
both of which are of type PACKED ARRAYT(I. . 8] of CHAR.

LIBNAME is a library synonym and may not be the textfile
OUTPUT.

Associate file F with logical unit number LUNO.

Returns a value of type INTEGER that indicates the status of
the last I/ O operation on file F. If the operation was successful,
0 is returned; otherwise the result is an integer value that
indicates the reason for the operation’s failure. These values are
listed in paragraph 14.3.

Save the old value of the I/ O error flag associated with the file F
in OVAL and set the I/O error flag to the new value, NVAL.
OVAL and NVAL are of type BOOLEAN, and OVAL must be
a variable. If the I/O error flag is TRUE, the occurrence of an
I/O error will cause program termination; otherwise control
returns as normal and the function STATUS must be used to
determine the kind of error which has been encountered.

For a sequential or textfile F, the result is TRUE if the file is not
open for input or is in the end-of-file or end-of-medium state.
For a random file F, the result is TRUE if the last read

attempted to access a nonexistent record. Otherwise, the result is
FALSE.

6.5.1 SEQUENTIAL FILES. In the following, let F be a sequential file, and V denote a variable
compatible with the component type of F. The file F may contain components of any type except
FILE, POINTER, or ARRAY and RECORD whose component types contain a FILE or

POINTER type.

READ(F,V)

Assign the next component of the file F to the variable V. (The
variables may be components of a PACKED array or record
structure with an effect the same as that of an assignment
statement.) If F is positioned at the end-of-file mark, nothing is
read, the positioning of F is not altered, and an error exception
occurs. (To skip past an end-of-file mark, SKIPFILES must be
called.)

6-14

Digital Systems Division

o~ B

o
(ol—@'} 946290-9701

/mm WRITE(F,E) Write the expression E as the next component of the file F.
NOTE

When reading or writing, it is possible to list more than one
parameter in the READ or WRITE statement. The forms for reading
or writing multiple values in one statement (along with other
abbreviations) are explained in paragraph 6.5.6. These forms are
easily understood if the basic read and write operations with one
parameter are studied first.

WRITEEOF(F) Write an end-of-file mark on the file F which is open for writing.

SKIPFILES(F,NFILE) Skip the number, NFILE, of file marks on the file F which is
open for input. If NFILE, of type INTEGER, is negative, the
skip is in the “backward” direction; if NFILE is zero, the file is
positioned to the beginning of the current logical file; if NFILE

~ is positive, the skip is in the forward direction. The file is
positioned at the start of a logical file. An attempt to position to
a nonexistent file will cause an error. If EOF is TRUE following
a skip, then end-of-medium has been reached.

A file position is associated with each sequential file which is RESET and divides the file into a part
which has already been read and a part which remains to be read. The position is indicated by means
of a diagram in which each rectangle represents a component value:

a

The symbol 1 is used to mark the current position, in the file. The end of the file is indicated by the
symbol eof.

Examples:
Given the declarations

VAR 1 : INTEGER;
F : FILE OF INTEGER;

The file F may be at the position:

bl 12 95 - B
41 37
) 18 _EOF
7y
. READ(F, I) results in
e&
> 12 95 41 37 8 Teor |
1 EOF
y —_—

At this point, I has the value 37 and EOF(F) is FALSE. Another READ(F, 1) yields:

- "
‘_EO—F;—J

12 95 41 37 18

6-15 Digital Systems Division

(0]
@ 946290-9701

Now I has the value 18 and EOF(F) is TRUE. An attempt to READ F at this point will result in an

error. f"%\

Example:

CONST N = 100;
TYPE REC = RECORD
NAME : PACKED ARRAYJI. . 10] OF CHAR;
SSAN : INTEGER
END;
VAR R : REC;
LIST : FILE OF REC;

BEGIN
REWRITE(LIST);
RESET(INPUT); ™
FOR I := | TO N DO
BEGIN
L (* BUILD RECORD R FROM INPUT DATA *)
WRITE(LIST, R)
END:
 RESET(LIST); (* REWIND LIST %)
WHILE NOT EOF(LIST) DO
BEGIN
READ(LIST, R) ™

END
END.

6.5.2 TEXTFILES. Input and output on many devices, including card punches and readers, line
printers, CRT terminals, etc., is in the form of characters. The physical properties of these devices
naturally divide files of characters into lines. A file of characters which is divided logically into lines
by end-of-line markers is called a textfile.

In the Model 990 computer there is no explicit end-of-line character. The last nonblank character
(within the logical record length specified when the file was created) is the last character by
implication, and the blank following that character is the end-of-line character.

Values are written to a textfile a line at a time. It may be helpful to imagine that a line buffer
temporarily stores the character representations of values specified by WRITE statements. A
WRITELN statement causes the current line buffer to be added to the textfile and the line buffer to
be cleared. On input, a READLN obtains the next line from the file and moves it to the line buffer.
The line buffer is intended to help conceptualize I/O on textfiles and does not necessarily reflect the
implementation.

N

"

Y e @

An implementation may delete some of the trailing blanks on a line, but never all if the line is blank.
When the last character of a line is read the standard function EOLN yields the value TRUE.

Reading the next character (i.e., the end-of-line marker) causes EOLN to yield the value FALSE and -
a blank to be read.

6-16 Digital Systems Division

{«W"\

@ 946290-9701

Let F be a textfile and X be of type CHAR, INTEGER, LONGINT, BOOLEAN, REAL, FIXED,
DECIMAL, or string. The default field widths for printing values of each of these types is given in an
appendix. The procedures for unformatted reading and writing of the textfile F are as follows:

WRITE(F,X) When F is a textfile, WRITE does not add the value of X
directly to F. Instead, the value is written to a line buffer.
Multiple WRITE statements may add values to the line buffer,
and the line buffer is not written to F until a WRITELN is
executed.

READ(F,X) Returns the next value in the textfile F. If EOLN(F) is TRUE
and X is of type CHAR, a blank is read, which need not
correspond to an actual character from the file but rather
represents an “end-of-line” value. If a READ is performed and
EOLN is TRUE, a READLN is performed to move the next line
into the line buffer, and EOLN(F) becomes FALSE. (The
variable X may be a component of a packed structure with the
read having the same effect as that of an assignment statement.)

RESET(F) A textfile must be reset just as any other file, before it may be
read. RESET opens the file, positions to the beginning of the
file, and executes a READLN. RESET may not be applied to
the standard file OUTPUT.

REWRITE(F) A REWRITE must be executed on textfiles before a WRITE
may be performed. The only exception is that by default a
REWRITE is performed on the file OUTPUT. REWRITE may
not be applied to the standard file INPUT.

WRITELN(F) Output the current contents of the line buffer, followed by an
end-of-line, to the textfile F. Then clear the line buffer.

READLN(F) Move the next line of the textfile F into the line buffer. If there
are no more lines in F, EOF(F) becomes TRUE. If EOF(F) is
already TRUE, an error occurs.

EOLN(F) TRUE when the last character on the current line of textfile F
has been read.

COLUMN(F) Provides the column index (based at 1) at which the next
character on a textfile will be read or written.

PAGE(F) Causes a skip to the top of a new page when the textfile F is
printed.

Example:

VAR CH : CHAR;

6-17 Digital Systems Division

@ 946290-9701

Suppose the INPUT file consists of the three lines

L G e ———E - —— e —— — — —
)Y K

Then RESET (INPUT) yields

L e M J
)7

At this point, EOLN(INPUT) and EOF(OUTPUT) are both FALSE.

READ(INPUT, CH) yields

N
wle ‘

£C
f e D 4

A
27 1

{C

4§ [—S—
£C
)7

—_—— e e — ——

EOLN | EOF |
(¢
L4 ————d e ———

The first character has been assigned to CH. Successive READ statements eventually result in the
file position being at the end of the first line:

1 1 17"~ ~-—-- a

. EOLN :

(e L 1 g e e J

27 A

el e g o = o e —

)) "l
.. EOLN |

A C

27 —————-d

{ L -——
1 1 1 - -~ ~-"-- N ':
- EOLN | EOF |
i S U U e e - — Jd
1)

6-18 Digital Systems Division

oo

~ 8

&

@ 946290-9701

Now EOLN(INPUT) is TRUE and EOF(INPUT) is still FALSE. READ(INPUT, CH) results in
CH = ’’, EOLN(INPUT) = FALSE, EOF(INPUT) = FALSE and the file position is:

—f{ C

)

L
27

From this position, if a READLN(INPUT) is executed, the position would be at the beginning of the

next line.

Successive READs will yield:

s

at which point EOLN(INPUT) is TRUE and EOF(INPUT) is FALSE.

Another READ(INPUT, CH) results in

—————— hn]

EOLN !
______ J
------ =

EOLN :
—————— 4
_____ T-—---

EOLN | EOF |
______ L |

7'y

6-19

Digital Systems Division

[¢]
@ 946290-9701

and now CH =, EOLN(INPUT) = FALSE, and EOF(INPUT) = TRUE. Note that when the end
of a textfile is reached, first EOLN is TRUE, and then the next READ makes EOLN FALSE and
EOF TRUE. If a textfile originates from a card deck, each end-of-line corresponds to the end of a
card, and if it originates from the keyboard of a remote terminal, end of line occurs when a line of
text is transmitted, for example, when the RETURN key is depressed. Trailing blanks on a line may
be suppressed, so the last character before the end of line is always nonblank.

NOTE

TI PASCAL does not assume that column one of a file is for printer
carriage control, as is done in some languages such as Fortran.

6.5.3 FORMATTED I/0 WITH TEXTFILES. It is frequently convenient to be able to read or
write data types other than characters to or from a textfile. For example, numerical values are
frequently entered from a device such as a card reader which must be associated with a textfile. The
types which may be read from or written to a textfile are CHAR, INTEGER, LONGINT,
BOOLEAN, REAL, DECIMAL, FIXED, or string. For each of the types other than CHAR, an
implicit data conversion to or from CHAR is performed. In a READ procedure statement of the
form

READ(F,Q)
if the file F is a textfile then the read-parameter Q may have the following forms:

\% (unformatted)
V:W (formatted)

V is a variable to be assigned the value read and must be one of the following allowable types :
CHAR, INTEGER, LONGINT, BOOLEAN, REAL, FIXED, DECIMAL, or string. The value to
be read may not be split across two logical records.

W is the field width, which must be an integer expression greater than zero. If W is less than zero, the
effect is the same as for an unformatted read. V will be read from the next W columns starting with
the current file component. The next file component to be read starts with the character immediately
following the field. The value to be read may occur anywhere within the specified field. In a
formatted read, if EOLN is initially TRUE or the end-of-line mark is reached before W columns
have been read, the value accumulated thus far is read. A formatted read never skips past the end-of-
line mark. The progression past an end-of-line mark requires an explicit READLN or an
unformatted read (which can read an end-of-line mark as a blank).

e If Visof type INTEGER or LONGINT, then the value to be read may be a hexadecimal
number. Then either the hexadecimal number is prefixed by a “#” character in the textfile,
or the read-parameters have the form:

V HEX
V: W HEX

e If Visa variable of type CHAR, then V is assigned the next component (a character) if no
field width is specified. If a field width is specified, the first nonblank character is read and
the remaining characters are ignored. If the entire field is blank spaces, the character read
is a blank.

6-20 Digital Systems Division

I

e

[e]
@ 946290-9701

e If Vis a variable of type INTEGER (or subrange thereof), LONGINT, or REAL, then
f@m READ(H,V) implies reading from H a sequence of characters which form an integer or
real constant, respectively, according to the syntax of the language and the assignment of
that constant to V. Preceding blanks and end-of-line markers are skipped. In a formatted
read, if the field is blank, the value read is zero. ‘

‘ e If Vis a variable of type BOOLEAN, then the character T or F is read, or the standard
identifier TRUE or FALSE is read.

e If Visa variable of type FIXED or DECIMAL, then READ(H,V) implies reading from H
a sequence of characters which form a fixed-point or decimal constant (respectively)
according to the syntax of the language except that the sequence need not end in an F or
D. If the fixed-point constant is in binary form, then the sequence must end witha B. Ina
formatted read, if the field is blank, the value read is zero.

e If Vis a variable of type string with length L, then the next L characters are read. In a
formatted read, if W>L then the rightmost L characters are read; if W<L then the string is
~ padded on the right with blanks.

In a WRITE procedure statement of the form
WRITE(F,P)

where F is a textfile, the write-parameter P may have the following forms:
E (unformatted)

(@h\ E:M (formatted)

E:M:N (formatted fixed point)

E is the expression that represents the value to be written, and is of any of the types that may be read
from a textfile, that is, CHAR, INTEGER, LONGINT, BOOLEAN, REAL, FIXED, DECIMAL,
or string. The value to be written is never split across two logical output records. If the value’s length

is greater than the output logical record length, an error occurs. The default values for an
unformatted write are:

Type Field Width

INTEGER 10

LONGINT 15

REAL(X) 15, for 0<X<8
> 25, for 8<=X<N
5 FIXED 15
> DECIMAL 20

BOOLEAN ‘ 10
? CHAR 1
% Hexadecimal 10
° String Length of string

M is an integer expression which is the minimum field width. If M is omitted, an implementation
defined default value is assumed according to the type of E. In general, the value E is written with M-
o~ characters. If the value E requires less than M characters for its representation, then an adequate

6-21 Digital Systems Division

o
4@ 946290-9701

number of preceding blanks is written such that exactly M characters are written. If M is less than
the number of characters required to represent E, then necessary additional space is allocated.

Example:

The specification of N is optional. If N is specified, E must be of type REAL, FIXED, or
DECIMAL, and the value of E is written in a fixed point representation with N digits after
the decimal point. If N is omitted, and E is of type REAL, its value is written in a floating
point representation which consists of a coefficient and scale factor. For real, fixed point,
and decimal write-parameters of the form E:M, no more precision is ever printed than the
value contains.

If V is of type INTEGER or LONGINT then the value may be written as a string of
hexadecimal digits (not preceded by the character “#”). The write parameters then have the
form:

E HEX
E:M HEX

If the number of nonzero hexadecimal digits in E is less than or equal to M, E is written
with (possible) leading zeros. The maximum number of hexadecimal digits (including
leading zeros) that can be written is defined by the implementation of INTEGER and
LONGINT.

If the value of E is of type FIXED, then it may be written as a binary number. In this case,
the write-parameters are of the form

E BIN

E:M BIN

E:M:N BIN
If the value of E is of type BOOLEAN, then the standard identifier TRUE or FALSE is
written, preceded by an appropriate number of blanks as specified by M. If M<5, the

character T or F is written instead.

If the value of E is a packed array of characters, then the string E is written.

Given the declarations

VAR CH : CHAR;

X : INTEGER
F 1 # 2 7
4
Executing READ(F,X) results in
-2
F I # 2 7 H
-—— .

6-22 Digital Systems Division

o]
@ 946290-9701

- 6.5.4 ENCODE AND DECODE. The procedures ENCODE and DECODE are processed just like
m the textfile procedures WRITE and READ respectively, except a memory array is used instead of a
file.

ENCODE(S,N,STAT,P) P is a write-parameter of the form given in paragraph 6.5.3. The
character representations of E’s value is placed into S, of type
v string, starting at the Nth component of S. N may be a constant
or variable of type INTEGER. If N is a variable, it is
automatically incremented by the number of characters
transferred. The status of the operation is returned in the
variable STAT which is of type INTEGER. The value returned
is the same as that for the function STATUS. If (N-I) plus the
number of characters to be transferred is not a valid index into
the string, an error is indicated in the STAT variable, nothing is
transferred and N is not updated.

DECODE(S,N,STAT,Q) Let Q be a read-parameter of the form given in paragraph 6.5.3.
™ The characters starting at the Nth component in the string S are
converted to the internal representation of V and this value is
assigned to V. V may be a component of a packed structure. N
may be a constant or variable of type INTEGER. If N is a
variable, it is automatically incremented by the number of
characters transferred. The status of the operation is returned in
the variable STAT which is of type INTEGER. If Q is formatted
and (N-1) plus the number of characters to be transferred is not
a valid index into the string, an error is indicated in the STAT
o~ variable, nothing is transferred, and N is not updated. If Q is
unformatted, the last character of the string terminates the value
to be transferred.

6.5.5 RANDOM FILES. The READ and WRITE procedures for random files are the same as for

sequential files except they include an argument that specifies the logical position of the file element
to be accessed.

The EOF function can be used to determine if a nonexistent record has been referenced. Note that if
record N has been written, then records 0. . .N exist, even though values may not have been written

~ to some of them. RESET opens a random file for input, either EXTEND or REWRITE opens a
random file for both input and output, and REWRITE causes the file to be erased.

In the following, let F be a random file, and let V denote a variable compatible with the component

type of F and of any type except FILE, POINTER, or ARRAY and RECORD whose component
types contain a FILE or POINTER type.

3 READ(F,RECNUM,V) Assign the component with logical position RECNUM to the

variable V. RECNUM must be an expression of type INTEGER

whose value is greater than or equal to zero. It is not

automatically incremented after the READ operation. (The

N variable V may be a component of a PACKED array or record
structure with the read having the same effect as that of an
assignment statement.) An error occurs if the component does
not exist or the value of RECNUM is less than zero.

6-23 Digital Systems Division

@ 946290-9701

WRITE(F,RECNUM,V) Write the variable V as the component with logical position
RECNUM. RECNUM must be an expression of type
INTEGER whose value is greater than or equal to zero, and is
not automatically incremented after the WRITE operation. An

error occurs if the value of RECNUM is less than zero.

6.5.6 ALTERNATE FORMS. Certain nonstandard or abbreviated forms of the procedure
statements for file manipulation are also allowed. These forms are shown in the lefthand column and

the equivalent standard form is shown on the right.

EOF EOF(INPUT)
EOLN EOLN(INPUT)
READ(F,V1,V2, . . ., Vn) BEGIN
READ(F, VI);
READ(F. V2);
READ(F, Vn)
END
READ(VI, V2, . . ., Vn) READ(INPUT, VI, . . ., Vn)
READLN(F, V1, V2, . . ., Vn) BEGIN
READ(F, V1, . . ., Vn);
READLN(F)
END
READLN(VL, V2, . . ., Vn) READLN(INPUT, VI, . . ., Vn)
READLN READLN(INPUT)
WRITE(F, P1, P2, . . ., Pn) BEGIN
WRITE(F, Pl);
WRITE(F, P2);
WRITE(F, Pn)
END
WRITE(PI, P2, . . ., Pn) WRITE(OUTPUT, Pl, . . ., Pn)
WRITELN(F, PI, . . ., Pn) BEGIN
WRITE(F, PI, . . ., Pn);
WRITELN(F)
END
WRITELN(PI, . . ., Pn) WRITELN(OUTPUT, PI, .. ., Pn)
WRITELN WRITELN(OUTPUT)
PAGE PAGE(OUTPUT)

6-24 Digital Systems Division

o
(@ 946290-9701

If N is a constant:

' ENCODE(S,N,STAT,PIL, . . ., PN) BEGIN
ENCODE(S,N,STAT,P1);
ENCODE(S,N+L(El), STAT, P2);
ENCODE(S,N+L(E1)+L(E2)+. . +L(EN-1),STAT,PN)
END
where L(Ei) is the length of the string representation of Ei. If N is a variable, replace the second
s parameter in all of the above procedure calls by N.
If N is a constant:
DECODE(S,N,STAT,QIL, . . ., QN) BEGIN
DECODE(S,N,STAT,Ql);
DECODE(S,N+L(V1),STAT,Q2);
™~ DECODE(S.N+L(VI)+L(V2)+. . .+L(VN-1),STAT,QN)
END
where L(Vl) is the number of characters converted for Vi. If N is a variable, replace the second
parameter in all of the above procedure calls by N.
If F is a random file:
g READ(F,RECNUM,VI1,V2, . . . VN) BEGIN
(READ(F,RECNUM,V1);
READ(F,RECNUM+1,V2);
READ(F,RECNUM+N-1,VN)
END
WRITE(F,RECNUM,P1,P2, . . . PN) BEGIN ,
WRITE(F,RECNUM,PI);
WRITE(F,RECNUM+1,P2);
o WRITE(F,RECNUM+N-1,PN)
END
After each call, RECNUM has not been incremented.
1 6.6 POINTER TYPE
» Variables may be referenced indirectly by means of a pointer, which may be thought of as the address
of the variable pointed to by the pointer variable. A pointer type consists of an unbounded set of
¢ values pointing to elements of a given type. Pointer variables are most often used in conjunction with
% records to create data structures such as linked lists or trees. The syntax of a pointer type is:
<pointer type> ::= @<type identifier>

6-25 Digital Systems Division

o
4@ 946290-9701

The type of <type identifier> is said to be bound to the pointer type, and may not be a file. A pointer
variable can point only to variables of the type to which it is bound. The predefined constant NIL is
an element of every pointer type and points to no element at all.

A pointer type is a structured type. The component of a pointer variable is denoted by the pointer
variable followed by the symbol ‘@’. The syntax is:

<referenced variable> ::= <pointer variable>@

If the value of P is NIL, an attempt to reference P@ will use the representation of NIL as if it were a
valid pointer. The result of this is an error when the program is executed. A compiler option is
available to check at runtime for a reference to a NIL pointer.

Example:

TYPE PTYPE = @REC;
REC = RECORD
KEY : INTEGER;
WEIGHT : REAL
END;
VAR P : PTYPE;

P Pe

KEY

WEIGHT

The declaration of PTYPE is an example of a forward type declaration, since it precedes the
declaration of REC. Forward type declarations are permitted only with pointer types.

The operators applying to pointer operands with compatible types are:

= assignment

= equal (The result is TRUE if the operands point to the same “address”)
<> not equal

The standard function LOCATION may be used to obtain a result of type INTEGER which is the
address of the variable V denoted by its argument. LOCATION may also be used to obtain the entry

point of a routine. It may not be used on an argument which is a component of a packed structure or
a file variable.

6.6.1 STATIC AND DYNAMICALLY ALLOCATED VARIABLES. Declared variables are
referenced by the identifier by which they are declared, so pointers to these so-called static variables
are of little use. On the other hand, it is possible to create variables without the use of declarations.
These dynamically allocated variables are not associated with an identifier, so they must be
referenced by means of a pointer. Dynamically allocated variables are created at execution time by
the standard procedure NEW, and may be deallocated by the standard procedure DISPOSE.

6-26

Digital Systems Division

i

‘¢

o
@ 9462909701

NEW(P) Creates a new variable of the same type as the component type
of the pointer variable P. The address of this new variable is
assigned to P. (If the component type of P is a record type with
variants, then enough space is allocated to accommodate the
largest variant.)

NEW(P,TI,. . ., Tn) This form is valid when the component type of P is a record type
with variants nested to a depth greater than or equal to n. T1
through Tn are compile time constants which specify the value
of the first n tag fields in the order of their declaration. The
effect is to allocate storage for a new variable of the record type
with tag field values T1, . . ., Tn, and assign the pointer to this
new record to the pointer variable denoted by P. The actual
values of the tag fields in the new component are not initialized.

When the second form of NEW is used to generate a variant that requires less storage to be allocated
than the “largest” variant, errors may arise if an object with larger storage requirements is assigned
into that variant. For example, if the record definition is

TYPE REC = RECORD
KEY : INTEGER;
CASE T : BOOLEAN OF
TRUE : (X : ARRAY[L. . 5] OF INTEGER);
FALSE : (Y : ARRAY[IL. . 10] OF INTEGER)
END;
RECPOINT = @REC;

If the procedure NEW had been used to create a new component
NEW(RECPOINT, TRUE)

then RECPOINT would point to a record with enough space allocated for the variant X with array
of length 5. In this case, if the tag field T is assigned the value FALSE, it is possible to assign to the
variant Y, and the program may then produce incorrect results.

The procedure NEW obtains storage from what is called the heap to allocate space for the variable
which it creates. Variables which have been allocated dynamically from this heap may be deallocated
at runtime by the standard procedure DISPOSE.

DISPOSE(P) Makes the space pointed to by P available for reuse. P must
point to a dynamic variable, i.e., one allocated by NEW. If the
value of P is NIL, an error occurs. After the storage is
deallocated, P is set to NIL.

Another form of DISPOSE may be used which corresponds to the second form of NEW.

DISPOSE(P, T1, T2, . . ., Tn) The same rules apply to T1 . .. Tn as in NEW. These values
should agree with the values specified when the component was
created by NEW (but don’t have to since always exactly as much
space is deallocated as was allocated by NEW. In other words, a
check is not made to see that the value of T1 ... Tn agree with
the variant actually deallocated.)

6-27 Digital Systems Division

o
(@ 946290-9701

Example:

A linked list of records may be created very easily by defining a record which contains one field
which is a pointer to the next record. This is illustrated by the following diagram:
FIRST —» j _J_'
NEXT NEXT NEXT j
The form of the record definition for this linked list is:
TYPE PT = @LISTELEMENT;
LISTELEMENT = RECORD
KEY : INTEGER,; -~
NEXT : PT :
END;
VAR FIRST, POINT, PN : PT;
FIRST is a pointer to the head of the linked list, and POINT is used to access elements of the list.
Note that a “forward declaration” is allowed here.
The list may be created as follows:
NEW(POINT); ™
FIRST := POINT;
WHILE NOT EOF DO
BEGIN
(* BUILD COMPONENTS OF THE RECORD *)
NEW(PN);
POINT@.NEXT := PN;
POINT := PN;
END; -
POINT@.NEXT := NIL
Suppose the list is to be searched for an element with a KEY field value of M. This will be done by
letting the variable POINT point in turn to each element of the list until the proper element is found
(if it exists), as shown in the following example:
POINT := FIRST; ¢
WHILE POINT <> NIL AND POINT@.KEY <> M DO :
POINT := POINT@.NEXT
Note that this example would be more complicated if short circuit evaluation were not available. :
=~

6-28 Digital Systems Division

@ 946290-9701

~ 6.7 PACKED DATA TYPES.

The symbol PACKED may be prefixed to the structured type definition of arrays, records, or sets. If
a data structure is declared to be packed, the compiler utilizes the packing algorithm described here
to obtain a representation for the data in which, if possible, several components of the structure are
stored in one word. While packing may economize the storage requirements of a data structure, it
also may cause a loss in efficiency of access of its components.

The prefix PACKED does not distribute to the components of a type. Note also that a packed type is
not compatible with an unpacked but otherwise compatible type. A direct component of a structured
type is the component at the first level of decomposition of the structured type. A direct component
of a packed structured type may not be passed by reference to a routine (see Section VIII for
routines).

6.7.1 PACKED ARRAYS. Let T1 . .. Tn be index types and T a type. Then for a static array,
PACKED ARRAY[TI, ... Tn]OF T
~ is equivalent to
PACKED ARRAY[TI] OF . .. OF PACKED ARRAY[Tn] OF T
which is not equivalent to

ARRAY[T1] OF PACKED ARRAY[T2] OF . . . OF PACKED ARRAY[Tn] OF T

since it may not occupy the same amount of storage. For a dynamic array, only the last dimension
/W\ may be packed, i.e.,

PACKED ARRAY[TI. . . Tn] OF T
is equivalent to
ARRAY[T1] OF . . . OF PACKED ARRAY[Tn]
Strings consisting of N>=1 characters are defined via the type
™ PACKED ARRAY[T1] OF CHAR

where T1 must be of the form “1. . N”. If Tl is a static index type, the string’s length is fixed at
compile time; if T1 is a dynamic index type, the string’s length is fixed at runtime. The length of the
string can be determined by using the standard array function UB. A string constant is of such a type,
with length equal to the number of characters. Routines can readily be defined to extract substrings,
do pattern matching, or perform any other desired operation on strings. The basic operators for
variables of string type are assignment (:=) and the relational operators, (<, =, >, <=, <>, >=).

N

»

o+

m

6-29 Digital Systems Division

[e]
@ 946290-9701

6.7.2 PACKED RECORDS. A packed record allows the programmer to define the storage
allocation of a record type in which the exact position and size of each variable field may be specified
subject to the size algorithm (paragraph 6.7.3).

Fields are allocated in the order specified. The size algorithm may not produce the tightest packing if
a field’s size is an integral number of words plus a fraction of a word. To achieve the tightest packing,
it is the programmer’s responsibility to handle this special case by spiitting the logical field into two
or more physical fields and write routines to pack and unpack a value before using and storing it.

6.7.3 INTERNAL REPRESENTATION OF TYPES. The size algorithm, given below, specifies in
terms of bits and words the internal representation for the value of a type. These specifications are
given so that machine dependent records and machine code routines can be sensibly defined, and so
that the effect of a type transfer (paragraph 6.9) can be predicted.

If a type occurs in a packed structure, then exactly as much storage as specified by the size algorithm
should be allocated to it. The size algorithm allocates either a portion of a word or an integral
number of words. That is, if a type requires more than one word, then it always uses an integral
number of words and not an integral number of words plus a fraction of a word. Consequently, gaps

of unused bits may occur. If the type does not occur in a packed structure, the size becomes a lower

bound, the actual size being selected to facilitate efficient access to the type on the underlying
machine.

The size associated with each type is defined as follows:
e CHAR: ASCII - 8 bits.
e INTEGER: 16 bits.
e LONGINT: 32 bits

. Boolean: 1 bit

e Scalar: Let N be the ordinal of the largest member of the enumeration, and define NR(N)
to be the least value of I such that N < 2**I. Then the scalar type requires NR(N) bits.

Example:
TYPE WEEK = (MO, TU, WD, TH, FR, SA, SU)
Then N = ORD(SU) = 6

3 is the least value of I such that 6 < 2', so the size of the type WEEK is 3 bits.

6-30 Digital Systems Division

[e]
@ 946290-9701

e Subrange: Let L and U be the lower and upper bounds of the subrange. Then if L >=0 the
M size is the same as for a scalar type which has the ordinal of the largest member of its
enumeration equal to U. If L< 0, the size is Max(NR(-L-1), NR(ABS(U))) + 1.

Examples:
. TYPE Tl = TU. . FR
The size is 3 bits, since NR(FR) = 3.
3 TYPET2 = -8..3
The size is Max(NR(7), NR(3)) + 1 = Max(3,2) + 1 = 4.
e Real: The size of a type REAL (n) is 32 bits when n < 7 and 64 bits when n = 8.

e Pointer: The size of a pointer is 16 bits.

Array: If the array is not packed, each element occupies one or more consecutive words.
Let S be the size of an element, that is, the size of the component type. If the array has E
elements, then the size of the array is E*S.

If the array is packed and the minimum size of an element is greater than a word, then the
space, S, allocated for each element is the minimum number of words which will contain
it. If the array has E elements, the size of the array is E*S.

If the array is packed and the minimum size, S, of an element is less than a word, as many
ﬁﬁ\ elements as possible are packed per word (D) with a possible number of bits left unused at
‘ the end of the word. The data will occupy a nonintegral number of words W+F, where W

is the whole number of words, E/D, and F is the fraction of a word (E MOD D) * S. The

remaining bits of the portion of the word are unused. That is, the array occupies an
integral number of words; either the exact number of words required for the elements of
the array, or the whole number of words required (W) plus the word that contains the

fraction of a word (F). An array may occupy a single word or a portion of a word (W =1,
F=0,orW=0,F=1).

o~ Example:
(* assume 16-bit words *)
A = PACKED ARRAY [I1.. 10] OF 0. . 31

. The subrange type 0. . 31 requires 5 bits. A requires three whole words (with one bit
% unused in each word) and 5 bits of a fourth word.

X = PACKED ARRAY]I. . 5] OF T

% where T requires 20 bits. Then X requires 10 full words.

6-31 Digital Systems Division

(0]
@ 946290-9701

® Record: The size associated with a record type is the number of consecutive words and bits
needed to contain the fields in the fixed part plus the largest field list in the variant part.
Fields are allocated in the order of declaration.

If a record is not packed, a field occupies one or more words as required by the size of its
associated type. If the record is packed and the preceding field occupies less than a full
word, a field is allocated within the remainder of the word allocated to the preceding field
provided it fits. If the preceding field occupies more than one word (even though there may
be unused bits in the second or subsequent word of the field), or if there are not enough
unused bits, the field is left justified at the beginning of the next available word, and the
previous field is right justified in the previous word. If the size of the record is greater than
a word, then the last field of every variant is right justified.

Field lists within the variant part are overlaid upon one another.
Example:

(* ASSUME 16-BIT WORDS *)
TYPE R = PACKED RECORD
A : PACKED ARRAY [I. . 10] OF 0. . 31;
(* NOTE SIZE 0. . 31 = 5 ¥)
J:0.. 7
K : 0. . #FFF;
L : INTEGER
END

Al1) Al2] , A (3]

Al4] Als] ‘ Als6]

Al7] Al8] ‘ Al9]

Note the unused bits: | in each of the first three words, 11 in the fourth word, and 1 in the
fifth word.

e Set: The size of a set type depends on the size of its base type. If the base type of a set has
an upper bound with ordinal N, then a packed set requires at least N+1 bits; otherwise it
occupies the least number of bits that is greater than or equal to N+1 which can be
efficiently accessed on the machine. The maximum set size is 128 bytes (1024 elements).

e Fixed: A variable of type FIXED occupies one byte per 8 bits of precision.

e Decimal: A variable of type DECIMAL occupies one byte for each two digits. A sign,
which counts as a digit, is included. '

6-32 Digital Systems Division

@ 946290-9701

6.7.4 THE SIZE FUNCTION. The standard function SIZE applies to any type. SIZE(T) yields a
result of type INTEGER which is the number of bytes required to represent type T.

The following forms of the call to function SIZE are valid:

SIZE(T)
SIZE(T,T1,. . .,Tn)
SIZE(V)

SIZE(V,T1,. . .,Tn)

The first argument is either a type (T), a type identifier (T), or a variable (V). For all types except
REAL(P), DECIMAL (P,Q), and FIXED (P,Q), T is the type. For REAL (P), DECIMAL (P,Q),
and FIXED (P,Q), T is the type identifier of an item of any of these types. A variable (V) may be any
type. When T is a record type or V is a variable of record type, T1 through Tn are tag fields of
variants in the record. The number of tag fields specified must be less than or equal to the number of
variants in the record. T1 through Tn must represent a complete initial sequence of tag fields and
must be compile time constants.

6.8 TYPE COMPATIBILITY

Two types T1 and T2 are distinct if they are explicitly or implicitly declared in different parts of the
program. Types T1 and T2 are compatible if T1 may be used in the context of T2 with the exception
of VAR parameter transmission (see paragraph 8.5). If the type definition involves a dynamic type,
e.g., arrays or sets with expression or “?” bounds, runtime checks may have to be made for type
compatibility. The rules that apply are the same as for nondynamic types which can be checked for
compatibility at compile time. It should be noted that a “?” bound matches any subrange’s upper
bound.

One type T1 is compatible with type T2 if:

¢ Both types are subranges of a single enumeration type within the scope in which the
compatibility check occurs, or

@ Both are string types of the same length, or

® Both are set types whose base types Bl and B2 are semantically identical (i.e., K is an
element of BI if and only if K is an element of B2). The empty set is compatible with any
set. Set expressions will be typed if possible from the context established by set variables;
otherwise they are typed as either the full scalar type, type CHAR, or type 0. . 1023, or

®© Tl is of type INTEGER or LONGINT, or a subrange thereof, and T2 is of type REAL,
FIXED, or DECIMAL, or

© TI is of type INTEGER and T2 is of type LONGINT, or
© Both are file types of compatible element types, or

® Both are array types of compatible index types with identical bounds and of semantically
identical component types with the following exception: the component types may both be
subranges of the type INTEGER, both may be subranges of the type LONGINT, or both
may be subranges of any other enumerations type, or

6-33 Digital Systems Division

%@ 946290-9701

® Both are record types with corresponding fields of semantically identical component types
with the following exception: the component types may both be subranges of the type 'm”\

INTEGER, both may be subranges of the type LONGINT, or both may be subranges of
any other enumeration type, or

e Both are pointer types which either point to nondistinct structured types or to compatible
nonstructured types, or

e Both are of type REAL, or both are of type FIXED, or both are of type DECIMAL, but
with different precision.

Structured types have the further restriction that both are either packed or unpacked. Even if two
structured types are not compatible, their components may be compatible. With reference to the first

item of the preceding list, if either subrange occurs in a packed structure, then they must have the
same bounds.

The only implicit type conversions are:

e INTEGER to LONGINT ™

e LONGINT to INTEGER

e INTEGER to REAL

e LONGINT to REAL

o REAL of one precision to REAL of another precision

e FIXED of one precision to FIXED of another precision

e DECIMAL of one precision to DECIMAL of another precision
Type conversion, both implicit and explicit, is described in Appendix 1.

6.9 TYPE TRANSFER o ' '
Type transfer is a means of temporarily changing the type of an existing variable. The syntax 1s:

<type transferred variable> ™
= <variable> :: <type identifier>

The syntax diagram is as follows:

Type-transferred variable:

—] VARIABLE TYPE IDENTIFIER p———b

A type-transferred variable may be used wherever a variable is allowed. Regardless of its original .
type, the type-transferred variable is accessed according to the type indicated.

6-34 Digital Systems Division

[o]
@ 946290-9701

Example:

TYPE BYTE = 0. #FF;
RECTYPE = PACKED RECORD
MSBYTE,LSBYTE : BYTE
END;

VAR V : ARRAY[0. . 9] OF INTEGER;
R: RECTYPE;

» Valid type transfers:

R.MSBYTE = V[0] :BYTE;
V[1] :BYTE := R.LSBYTE;
READ(R:INTEGER)

~ No value conversion is performed; the only effect is to change the apparent type of the variable. The
’ variable must not be declared to be a procedure, function, or constant. In addition, a variable which
is a component of a packed structure may only be transferred to a type representable within the
boundaries of that component. The type transfer applies only in the variable in which it is stated,
other appearances of the variable must use the type transfer format if a different type is required.

Example:

TYPE PT = @SCB
VAR FIRST : PT

FIRST:INTEGER := FIRST::INTEGER + 40
Example:
The type transfer

R.MSBYTE:: INTEGER

~ is illegal since the size of the type INTEGER is larger than the 8 bits required to represent the
- component R MSBYTE.

The fundamental use of type transfer is to overlay a type template on a data structure so that

components of the structure may be treated as if they were of any desired type. It requires a precise

understanding of the compiler’s representation of the data type on the machine to make use of type
- transfer, and because of this it should be used with caution and only when necessary.

6-35/6-36 Digital Systems Division

E A

[

{—@p 946290-9701

-

SECTION VII
JUMP STATEMENTS
7.1 THE ESCAPE STATEMENT .
The ESCAPE statement is a structured jump statement. It is used to terminate execution of the
current statement, routine or program. The syntax is:
ESCAPE <identifier>

The syntax diagram is as follows:

ESCAPE statement:

ESCAPE & IDENTIFIER p———————

The <identifier> must be one of the following:

1. An escape label
2. A routine identifier
. 3. A program identifier

An escape label is an identifier which is prefixed to a structured statement. It is separated from the
statement by a colon. The escape label is implicitly declared by its use within the program. The
structured statement is a unit of scope, so the escape label may not be used as a variable, constant,
program, or routine identifier within the labeled structured statement. (See paragraph 8.7 for a
discussion of scope.)

An ESCAPE statement may appear only within the statement labeled with the escape label or within
~ the scope of the routine named by the routine identifier. When an ESCAPE from a statement is
executed, further processing continues at the statement following the structured statement labeled by
the escape label. When an ESCAPE from a routine is executed, control returns from the most
recently entered activation of the routine. ESCAPE <program identifier™> terminates the program.

* Example:
b
y LOOP : FOR1:=1TO N DO
BEGIN
» IF EOF THEN ESCAPE LOOP;
* READ A[l};
- S =S + A[I]
END

71 Digital Systems Division

{_@P 946290-9701

A statement prefixed by an escape label may contain any number of ESCAPE statements that

reference this label. The escape label and all of its associated ESCAPE statements must appear in the ”@\
same routine body (it is illegal to escape across routine boundaries). Also, routines cannot escape

from brothers. That is, if routines C and D are defined at the same level (see paragraph 8.6), it is not

possible to have ESCAPE C as a statement in D. Escape labels are implicitly declared, do not have to

be unique, and may be reused within a block.

7.2 THE GOTO STATEMENT
The GOTO statement transfers execution to the statement having the named label. The syntax is:

GOTO <statement label> .
The syntax diagram is as follows:

GOTO statement:
: (} STATEMENT
GOTO 4.‘ ?.ABEL -—_-_b

The <statement label™ must be an unsigned integer and must be in a LABEL declaration, as
discussed in paragraph 8.2. If the label is not declared or does not appear as a statement label in the
program, a syntax error occurs.

Example:

PROGRAM LAB;

LABEL 100;

VAR X: REAL;

BEGIN

100 : 1T:=1+1;

IF A[I] <> X THEN GOTO 100

GOTO statements should be used as seldom as possible, since the use of other control structures such
as WHILE and CASE can result in clearer code, especially if the program is well designed. In -
addition, any procedure, function, or program with label declarations will not have its <body> part 8
optimized by the TIP compiler. v
It is not legal to jump into or out of a procedure or function. And, it is not legal to jump into a FOR S
or WITH statement. At most one statement label can mark a given statement. If a statement label 4

and an escape label both are used on a structured statement, the statement label must be first. For
example,

100 : LOOP : FOR N =1 TO 64 DO . . .

7-2 Digital Systems Division

o
@ 946290-9701

SECTION VIII
THE PROGRAM AND ITS ROUTINES

8.1 THE TIP PROGRAM
The TIP program consists of the program heading, the declarations, and a compound statement that
includes the statements of the program. The syntax of a program is as follows:

<program> ::= <program heading> <block>.

<program heading> ::= PROGRAM <program identifier>;

<program identifier> ::= <identifier>

The syntax diagram is as follows:

Program:

PROGRAM) IDENTIFIER —O—U BL.OCK _.O__,,

The declarations and statements of the program are referred to as the block. The syntax of the block
is as follows:

<block> ::= <declarations> <compound statement>
<declarations> ::= [<label declaration part>] [<constant declaration part>]
[<type declaration part>] [<variable declaration part>]
[<common variable declaration part>]
[<access declaration part>]

[<procedure and function declaration part>]

8-1 Digital Systems Division

o
@ 946290-9701

The syntax diagrams are shown in figure 8-1. The label, constant, type, variable, common, access,
procedure, and function declarations are defined in subsequent paragraphs. A procedure or function
declaration either includes or references a block that contains the declarations and compound
statement for the procedure or function. The syntax of the block is the same whether it constitutes a
program or a procedure or function at any level.

8.2 DECLARATIONS

The seven types of declarations used in the blocks of programs, functions, and procedures are
described in the following paragraphs. The declarations may be omitted, but, when included, must
be in the sequence in which they appear in the BNF production for declarations. Each identifier used
in the program must be declared (either in the block in which it is used or in a block at a higher level
that encloses the block in which it is used) or it must be standard in the language. (Some identifier
declarations are implicit: FOR control variables, variables used as abbreviations in WITH
statements, and ESCAPE labels. These identifiers do not require explicit declaration.)

8.2.1 LABEL DECLARATION. The syntax of the LABEL declaration is as follows:
LABEL <statement label> { <statement label>} ;

A label on a statement must be declared in the label declaration part of the program. The label is an
unsigned integer, and only one statement in the statement part may be prefixed with a given label. A
GOTO statement may then be used to transfer control to the labeled statement.

8.2.2 CONSTANT DECLARATION. The syntax of the constant declaration is as follows:

CONST <identifier> = <constant expression>
{; <identifier> = <constant expression>};

In the subsequent text of the program, the identifier may be used as a synonym for the constant. The
value associated with the constant identifier may not be changed during program execution.
Constant expressions may involve only numbers, previously defined constant identifiers, operators,
and strings.

Examples:

CONST MAX = 128;
HEAD = ‘INITIAL VALUE’;
VAL = MAX*2 - [;

8.2.3 TYPE DECLARATION. Identifiers may be used to denote a type by means of type
declarations with the syntax:

TYPE <identifier> = <type> {; <identifier> = <type>};
The identifiers may be used to denote the types within the scope of the declaration.
Examples:

TYPE REC = RECORD
NAME : PACKED ARRAY[I. . 20] OF CHAR;
ADDRESS : ADDREC
END;
VEC = ARRAY[I. . 10] OF REC;

8-2 Digital Systems Division

PIRE S

£ 946290-9701

Block:

STATEMENT
—#| LABEL rq LABELN

(D
N

IDENTIFIER - CONSTANT Y
—04 TYPE } IDENTIFIER TYPE —a@—
IDENTIFIER TYPE H

()
"

IDENTIFIER

TYPE —@-—

Q

5 5 °015|0| ¢

-u{ ACCESS ; COMMON IDENTIFIER

I{ ROUTINE DECLARATION

4 BEGIN STATEMENT END
(B) 138375 ()

Figure 8-1. Syntax Diagrams of Block

O

v

8-3 Digital Systems Division

o
%@ 946290-9701

Type declarations are a convenient means of declaring a user-defined type. A type declaration alone ‘
does not reserve memory for any variables of the specified type; a variable declaration described in ﬂ\
the next paragraph is required also. The type may be defined in the variable declaration, as in the

third example in that paragraph. Use of the type declaration promotes readability of the program; it

saves work where several variables of the same type are declared; and it is required for a static array

that is passed to a routine as a parameter.

8.2.4 VARIABLE DECLARATION. Variables must be declared before they are used in the
program or routine. (Implicitly declared variables such as FOR control variables and WITH
variables do not require declaration.) The syntax of a variable declaration is as follows:

VAR <identifier> {, <identifier>} : <type>
{ ;<identifier>{ s <identifier>} : <type>};

The declaration specifies a type which is associated with each variable. The type may be specified by
means of a standard type (X, Y, and Z in the example below), a previously declared type identifier (A
below), or by defining the type directly in the VAR declaration (X below).

Example: ™
VAR X, Y, X : INTEGER;
A : VEC;
X : ARRAY][I. . 64] OF REAL;
8.2.5 COMMON DECLARATION. The syntax of a COMMON declaration is as follows:
COMMON <identifier> {, <identifier>}: <type> Py
{:<identifier> {, <identifier>}: <type>}; ™
The COMMON declaration declares the variables, specifies their type, and indicates that the
variables are to be common as described in paragraph 8.9.
8.2.6 ACCESS DECLARATION. The syntax of the ACCESS declaration is as follows:
ACCESS <identifier>{ , <identifier>};
where each identifier must also appear in a COMMON declaration whose scope includes the -~
ACCESS declaration. An option is available which will restrict access to all nonlocal variables to
those which have an ACCESS declaration. Access rules are described in paragraph 8.9.
8.2.7 ROUTINE DECLARATIONS. Declarations of procedures and functions are called routine
declarations. The syntax for routine declarations is as follows: *
q
<procedure declaration> ::= <procedure heading> <block> v
| <procedure heading> FORWARD)
| <procedure heading> EXTERNAL <linkage> *
<function declaration> ::= <function heading> <block> -

| <function heading> FORWARD
| <function heading> EXTERNAL <linkage>

8-4 Digital Systems Division

@ b

gv @

"

4‘_@2 946290-9701

<procedure heading> ::= PROCEDURE <identifier>; |
PROCEDURE <identifier> <parameter list>;

<function heading> ::=
FUNCTION <identifier>[<parameter list>] : <result type>;

<result type> ::= <type identifier>

<linkage> ::= PASCAL | FORTRAN | REENTRANT FORTRAN | <empty>

The syntax diagram for routine declarations is shown in figure 8-2. The parameter list portion of the

. heading is described in a subsequent paragraph. Each routine declaration contains either a block, a
reference to a block included at a subsequent point in the same program (FORWARD), or reference
to a block not included in the program (EXTERNAL).

Routine Declaration:

1

PROCEDUR%—O‘ IDENTIFIER PARL'_‘I“g!f_TER

‘ PARAMETER | TveE .
FUNCTION IDENTIFIER Nk —-0@—0 e EE ER :O—

iy

v

BLOCK

REENTRANT
FORTRAN

(A) 138376

Figure 8-2. Syntax Diagram for Routine Declaration

8-5 Digital Systems Division

o
@ 946290-9701

8.2.7.1 Forward Declaration. A routine declaration which refers to a body included elsewhere in the
same program is called a forward declaration. This may be done for convenience, to allow the
program modules to be managed by utility CONFIG. However, a routine declaration must precede a

call to the routine. This requirement makes a forward declaration necessary when procedures A and
R call each other. This is called indirect or mutual recursion.

Example:

PROGRAM MAIN;
PROCEDURE A(X, Y : REAL) ; FORWARD;

PROCEDURE R (L : INTEGER);
VAR S, T : REAL;
BEGIN (*'R *)
A, T);
END (* R *);
PROCEDURE A;
VAR K : INTEGER:
BEGIN (* A *)
R(K),
END (* A *);
BEGIN (* MAIN *)
END (* MAIN *).
In the forward declaration the name of the procedure and its parameters are specified. The
parameters are omitted from the later declaration that includes the block of the procedure. The
heading of this declaration consists of the procedure name only. Similarly, the parameters and result
type are included in the forward declaration of a function. The heading of the function declaration
that includes the block consists of the function name only.
Example:
FUNCTION F(X : REAL) : REAL; FORWARD;
PROCEDURE P(M : REAL);
BEGIN (* P *)
X = F(A)
END (* P *);
FUNCTION F;
BEGIN (* F *)

P(T)
END (* F *).

8-6 Digital Systems Division

o
@ 946290-9701

8.2.7.2 External Declaration. EXTERNAL declarations are used when a TI PASCAL program calls

!@M a routine which has been externally defined. The routine may be written in Pascal or any other
language including assembly language. The <linkage> specifies which linkage is used. If <linkage>
is <empty>, ‘PASCAL’ is assumed.

<linkage> ::= PASCAL | FORTRAN | REENTRANT FORTRAN | <empty>
Example:
PROCEDURE SKIPBLANKS(VAR F : TEXT) ; EXTERNAL PASCAL;
When parameters are passed to external FORTRAN routines, the following rules apply:
e Arrays (other than strings), records, and dynamic arrays are always passed by reference.
® VAR parameters are passed by reference.

~ ® Value parameters which are strings (packed arrays of type CHAR having a lower bound of
1) and all other types are also passed by reference, but a copy is made and the copy is
passed by reference.

® Procedures or functions may not be passed as parameters.

There is no provision in FORTRAN for passing parameters by value; all parameters are passed by
reference. The reference is to the location of the parameter in the case of arrays (other than strings)
and records. The reference is to the location of a copy in all other cases.

(‘@'\ When Pascal linkage is specified or implied, the external routine must have been compiled at the
same static nesting level as that of the EXTERNAL declaration. For example, if the EXTERNAL
declaration is one of the declarations of the main program (the routine is global), the external routine
must have been declared as a global routine within the environment in which it was compiled.

The parameter list of an EXTERNAL definition must be identical to that of the external routine.
Furthermore, the declarations of data structures accessed by the external routine must be identical to
those in the program in which the external routine was compiled, and the declaration sections in
which these data structures are declared must be identical. For example, when a global routine
~ accesses an array declared in the main program, the declaration of the array in the main program
‘ that calls the routine as an external routine must be identical to that of the main program in which
the routine was compiled, and the other declarations for the main programs must be identical, also.

Assembly language routines may be written using any of these linkages and the routine may be
declared EXTERNAL with the appropriate linkage specification. Appendix F contains additional

- information about assembly language routines.
[
* 8.3 STATEMENTS
The statement portion of the block consists of a compound statement that includes the statements of
* the block as component statements. The syntax of a TIP statement is as follows:
+

W

<statement> ::= [<statement labe>:] <simple statement> |

[<statement label>:] [<escape label>:] <structured statement>

8-7 Digital Systems Division

(o]
@ 946290-9701

<simple statement> ::= <empty statement> | <assignment statement> |
<procedure statement> | <escape statement> | <goto statement> |
<assert statement>

<structured statement > ::= <compound statement> |

<conditional statement> | <repetitive statement> | <with statement>
<conditional statement> ::= <if statement> | <case statement>

<repetitive statement> ::=<for statement> | <while statement> |

<repeat statement>
<empty statement> ;= <empty>

<escape label> ::= <identifier>

<statement label> ::= <integer constant>
The syntax diagram is shown in figure 8-3.
8.4 PROCEDURE AND FUNCTION CALLS
A procedure or function may be called within the statement portion of the block within which it is
declared, or in the statement portion of a block within the scope of the block within which it is
declared. A call to a procedure is in the form of a procedure statement. The procedure statement
syntax is as follows:

<procedure statement> ::= <procedure identifier>

[([<actual parameter>{, <actual parameter>}])]
<procedure identifier> ::= <identifier>
<actual parameter> ::= <expression> | <variable> |

<procedure identifier> | <function identifier>

A function call may be used in any statement in which an expression is valid. The syntax is as
follows:

<function identifier>{([<actual parameter>{, <actual parameter>}])]
<function identifier> ::= <identifier>
The function returns a result of the type specified in the function heading. This result becomes the

value of the function call in the statement in which the call occurs. The actual parameter syntax is the
same in the function call as in the procedure call.

8-8 Digital Systems Division

Ny oy,

F 4

B P

946290-9701

Statement:
y >
‘ INTEGER
—® CONSTANT
&
] ASSIGNMENT >
STATEMENT
PROCEDURE
’I STATEMENT —
ESCAPE
—®| STATEMENT
GOTO
—5 STATEMENT [—
ASSERT
STATEMENT Ag
——B IDENTIFIER —@@——T
¢
COMPOUND
B STATEMENT g
B IF STATEMENT
>
CASE STATEMENT &
P! FOR STATEMENT [—
WHILE
8] SsTATEMENT —&
REPEAT
—®»! STATEMENT [P
WITH
STATEMENT +
(A)138377

Figure 8-3. Syntax

Diagram for Statement

89

Digital Systems Division

@ 946290-9701

8.5 PARAMETERS
The heading of a routine (paragraph 8.2.7) specifies the formal parameters for the routine. These m\
formal parameters, also called dummy parameters do not denote a value until the routine is called.
At that time the actual parameters are substituted for the formal parameters. This mechanism for
passing parameters between programs and routines identifies the parameters to be passed, and
should be used to the exclusion of other methods of transferring data betweer: programs and
routines. Parameters of functions are sometimes calied arguments, and may not be used to return a
result to the calling program or routine.

Parameters may be substituted by value or by reference as follows:

e Value Substitution — When the routine heading does not specify a type of substitution,
value substitution, or call by value, is performed. The actual parameter is evaluated and its
value is substituted for the formal parameter. This prevents the called routine from
changing the value of the actual parameter in the calling program or routine.

® Variable Substitution — When the routine heading specifies variable substitution (call by
reference) for a parameter, the address of the actual parameter is substituted for the formal \
parameter, and the address is used to access the actual parameter indirectly. Any ™
assignment of a value to an actual parameter by a statement in the routine alters the value
of the actual parameter in the calling program or routine. Reserved word VAR precedes
the specification of the formal parameter to specify variable substitution.

Examples:

PROGRAM SAMPLE;
VAR A, V : INTEGER;

PROCEDURE ABSI(X : INTEGER; VAR Y : INTEGER);

BEGIN
IF X < 0 THEN X = -X;
Y =X

END;

BEGIN (* SAMPLE *)
A:=-5V =0
ABSI(A, V), |
WRITELN(A, V) ™
END (* SAMPLE *).

Since X is a value parameter, the value of A is not changed within procedure ABS1. Y, however, isa
variable parameter, so the assignment to Y in ABS1 changes the value of V in the main program. The
values printed are -5 and 5. \

Value parameter transmission offers the security of preventing inadvertent changes to program
values by a routine. It also may be an efficient way to pass simple variables as parameters. However,
since this method involves copying values, it may be inefficient to pass data structures such as large
arrays by value.

The only way a function can return values is by assigning a value to the identifier which denotes the
function. This result type must be an enumeration, REAL, FIXED, DECIMAL, or pointer type.

8-10 Digital Systems Division

4@ 946290-9701

~ The syntax for the parameters of a routine declaration are as follows:

<parameter list> ::= ([<anyparameter> { ; <anyparameter>}])

<anyparameter> ::= <parameter>> |
PROCEDURE <identifier> [([[VAR] <type specnflcat10n>
. { [VAR] <type spe01f1cat10n>}])] |
FUNCTION <specification> [([[VAR] <type specification>
{;[VAR] <type specification>}])]:<type specification>

<parameter> ::= [VAR] <identifier> {,<identifier>}: <partype>

<partype> ::= <type specification> | <dynamic parameter type>
<dynamic parameter type> ::=
[PACKED] ARRAY “["<parameter index> {, <parameter index>}“]”
OF <type specification> | [PACKED] SET OF
“["<dynamic parameter index type>“]”

M <parameter index> ::= <subrange type> | <type identifier>
| <dynamic parameter index type>

<dynamic parameter index type> ::= <manifest constant>. . ?

<type specification> ::= INTEGER | LONGINT | CHAR | BOOLEAN
| REAL[(<integer constant>)] | FIXED(<integer constant>),
[<sign>] <integer constant>)
| DECIMAL(<integer constant>, [<sign>>] <integer constant>)

W‘"\ | <type identifier>

8-11 Digital Systems Division

946290-9701

The syntax diagrams are as follows:

Parameter list:

(e

@

PARAMETER 4
PROCEDURE ®] IDENTIFIER

(O Lol

€

TYPE SPEC,

(e
N

FUNCTION D

IDENTIFIZR
(@ TYPE SPEC.) Lo@—o TYPE SPEC, }— N
w
|
2
2
a
\
8-12 Digital Systems Division

946290-9701

52

Parameter:

__ | IDENTIFIER O DYNAMIC PARAMETER TYPE

Dynamic parameter type:

PACKED —»{ARRAY R [E':Qﬁm-s TYPE SPEC

v

O__ TYPE SPEC,

v

Parameter index:

——1 MANIFEST CONSTANT]| WANIFEST CONSTANT

TYPE
—i[IDENTIFIER —OA
LulMAmFEST CONSTANT _.@__.@ ¢ —

8.5.1 RULES FOR PARAMETERS. The following rules apply to parameters:

The number of formal and actual parameters must be the same.

A formal value parameter must be compatible with the type of the corresponding actual
parameter, as described in paragraph 6.8. For example, if a formal parameter is an array

of integers with index 1. . 10, the actual parameter must be an array of integers (or
subrange of integers) with index 1. . 10.

8-13 Digital Systems Division

o .. .
4@ 9462909701

e For variable parameters, the type of the actual parameter must be identical to that of its
corresponding formal parameter, with the following exceptions:

- The actual parameter may be of a type which is a subrange of the type of the
corresponding formal parameter, or vice versa.

- If the formal parameter is a dynamic array or set parameter, the actual parameter
must be an array or set, respectively, packed or unpacked as the formal parameter,
with bounds equal to those specified in the declaration of the formal parameter and
not set by ?, and with component type identical to that of the formal parameter.

® For value parameters, the corresponding actual parameter may be any expression of the
same type as the parameter.

e For variable parameters the actual must be a variable and may not be a component of a
packed structure.

e File parameters must be passed as variable parameters.

8.5.2 DYNAMIC ARRAY AND SET PARAMETERS. In order to write routines which accept
arguments which are arrays of arbitrary dimension or sets of arbitrary size, it is necessary to use
dynamic parameter types. A dynamic parameter type is an array or set with a lower bound which is
fixed at compile time (a manifest constant) and an upper bound which is determined at runtime and
denoted by a question mark. The subrange expression is of the form:

<manifest constant>. .?

and can be used to specify either an index type of an array or the size of a set as a formal parameter.
This subrange matches any index type with the same lower bound. The standard function UB may
then be used to determine at runtime the value of the upper bound of the array or set which is passed
as an actual parameter.

A multidimensional array may have dynamic upper bounds for one or more dimensions.

The actual parameter corresponding to a dynamic parameter type formal parameter must meet the
requirements outlined in the preceding paragraph.

Example:

FUNCTION MAX(VECTOR : ARRAY [I. . 7] OF INTEGER) : INTEGER;
VAR HOLDMAX : INTEGER;
BEGIN
HOLDMAX := VECTOR[I];
FOR 1 := 2 TO UB(VECTOR) DO
(* HERE HOLDMAX = MAX OF THE IST I-1 ELEMENTS OF VECTOR *)
IF HOLDMAX < VECTOR[I]
THEN HOLDMAX := VECTOR(I];
MAX := HOLDMAX
END; (* MAX *)

8-14 Digital Systems Division

[0

@ 946290-9701

8.5.3 PROCEDURE AND FUNCTION PARAMETERS. In addition to passing variables as
parameters, it is possible to pass procedures or functions as parameters. In the case of a procedure
parameter, the actual procedure must have the same number of parameters as the formal parameter
declares, and the parameters must be of compatible types. In the case of a function parameter, the
result type must be compatible, and the number and types of parameters must agree. The specific
procedure or function in the call is performed whenever the routine calls the procedure or function
declared as a formal parameter.

Example:

PROCEDURE FINDMIN(FUNCTION F(INTEGER):REAL; VAR MIN:INTEGER),
VAR K : INTEGER;
BEGIN K == 1;
FOR I : =2 TO 10 DO
IF F(I) < F(K) THEN K := I,
MIN =K
END;

Procedure FINDMIN has one parameter which is a function having a single integer type argument
and a real result and has a second parameter which it sets to the integer value between 1 and 10 for
which the function is minimum. An example of a call to FINDMIN is as follows:

FINDMIN (RCPR,X)

Assuming that RCPR is a function that returns the reciprocal of an integer as a real number, integer
variable X would be set to 10 when the call is executed. Another example is as follows:

FINDMIN (SQRIX)

Assuming that SQRI returns the square of an integer in real number format, integer variable X
would be set to 1 when the call is executed.

8.5.4 PROCEDURES AND FUNCTIONS WITHOUT PARAMETERS. A procedure may have
no parameters in which case the form of the heading is either

PROCEDURE <identifier>;
or
PROCEDURE <identifier>();
and the call is a statement of the form
<identifier>

or

<identifier> ()

8-15 Digital Systems Division

%@ 946290-9701

Similarly, if a function has no parameters it may be declared with heading of either of the forms

FUNCTION <identifier> : <type identifier>;
or
FUNCTION <identifier> () : <type identifier>;
and the function may be called by either of the forms

<identifier>

or

<identifier> ()

8.6 BLOCK STRUCTURE

A Pascal program consists of a program block that contains the declarations and statements of the
main program. Among the declarations of a program there may be routine declarations. The main
program block includes the headings of any routines declared but excludes the blocks (declarations
and statements) of these routines. Similarly, the block of each routine may contain declarations of
other routines. The blocks of these routines are not considered to be part of the block in which they

are declared. This nesting of routines within the main program and within routines forms a block
structure.

Blocks are associated with a level of nesting. The main program is at level 1. Those routines declared
in the main program are at level 2. Routines declared in level 2 routines are at level 3, etc. The
following example illustrates a possible structure of routine declarations:

PROGRAM A
PROCEDURE B
PROCEDURE C
PROCEDURE D
PROCEDURE E
PROCEDURE F
PROCEDURE G

Procedures B and E are declared in program A, procedures C and D are declared in procedure B,
procedure F is declared in E, and G is declared in F. One way of depicting this structure is by means
of a declaration tree, which is illustrated by the following figure:

(A)

(F)

| | &
© (D)

8-16 Digital Systems Division

el 2

o

¥

o
{\@bp 949613-9701

In the example, program A is at level 1, routines B and E are at level 2, routines C, D, and F are at
level 3, and routine G is at level 4.

8.7 SCOPE AND EXTENT
The block structure determines the scope of identifiers that denote constants, variables, and routipes.
The scope of an identifier consists of the portion of the total block structure in which that identifier

can be accessed (e.g., a variable may be assigned a value, a variable or constant may be used in a
computation, or a routine may be called).

The variables that are declared in the main program block are global variables and apply throughout
the entire program. Similarly, the routines and all other declarations of the main program block have
a global scope. Declarations in other blocks of the block structure have a limited scope. Referring to
the declaration tree example in the preceding paragraph, the scope of declarations in routine B
includes routines B, C, and D, the portion of the tree declared in routine B. Similarly, the scope of
declarations in routine E includes routines F and G. The declarations in routines C, D, and G declare
local identifiers; i.e., these identifiers apply only to the routines in which they are declared.

As previously stated, a routine can call any routine previously declared in the block in which that
routine is declared or in any enclosing block. This allows a routine to call itself, a recursive call.

An identifier must have a unique meaning within the block in which it is declared. However, a
nonlocal identifier may be redefined in a routine at a lower level. Within the scope of the original
declaration, exclusive of the scope of the redefinition, the original declaration applies. Referring to
the declaration tree example, an identifier declared in program A could be redefined in routine F.
The scope of the declaration in routine F would be routines F and G. The scope of the declaration in
program A would include the main program block, and routines B, C, D, and E.

Example:

PROGRAM MAIN;
VAR X : REAL;
PROCEDURE P;
VAR X : INTEGER;
BEGIN (* P *)
X =10
END (* P *);

BEGIN (* MAIN *)
END (* MAIN *).

Within procedure P, the identifier X denotes the local integer variable, and the global real variable X
is not accessible by the name X.

Note that this name precedence rule applies to constant, type, variable, and routine identifiers and to
identifiers used as scalar constants. Also, it is possible to redefine any of the standard identifiers
which denote objects such as the procedure READ, although this is not recommended since it is
likely to result in a program which is difficult to understand.

The blocks of a TIP program are not the only units of scope. Other units of scope include record
declarations, FOR statements, WITH statements, and structured statements. The record declaration
is the unit of scope for the field identifiers in the record. A FOR statement is the unit of scope for the
control variable. The WITH statement is the unit of scope for the with variables. The structured
statement is the unit of scope for the escape label. Redefinition of an identifier within either of these
units of scope is applicable only in the unit of scope within which it is redefined.

8-17

Digital Systems Division

{_@; 946290-9701

The scope of a routine relates both to identifiers and to calls to routines, and there are subtle
differences. Figure 8-4 shows a program structure consisting of a program block MAIN, and routine
blocks RA, RB, RC, RD, RE, and RF. The MAIN block includes declarations of variables a, b, and
c, and of routines RA and RB. The routine RA block includes declarations of variables a and f, and
of routine RC. The routine RB block includes declarations of variables c, d, and e, and of routines
RD and RE. The routine block RC includes a single declaration, that of variable g. The routine
block RD includes declarations of variables f, g, and h. The routine block RE includes declarations
of variables a and e and of routine RF. The routine block RF includes declarations of variables e and
h.

A routine has access to variables declared in the routine and to variables declared in the block in
which the routine is declared. At successively higher levels the routine has access to variables
declared in the same block as any ancestor of the routine. Variables having the same identifier as
those declared at higher levels redefine the identifier for the level at which they are declared and for
lower levels. These rules result in the accessability defined for each block in figure 8-4.

Figure 8-5 shows another program structure consisting of a program block MAIN, and routine
blocks RA, RB, RC, RD, RE, RF, RG, and RH. The program block includes declarations of
routines RA, RB, and RC. The routine RA block includes the declaration of routine RD. The
routine RB block includes declarations of routines RE and RF. The routine RC block includes the
declaration of routine RG, which declares routine RH.

A routine can call any other routine declared in the block in which it is declared. A routine may not
call a routine that has not been declared previously. However, appropriate FORW ARD declarations
of routines allow a routine to call any other routine declared in the same block. At successively
higher levels, a routine may call routines declared in the same block as any ancestor of the routine,
when appropriate FORWARD declarations are included. These rules result in the availability of
routines shown in figure 8-5.

The scope and extent of identifiers is related to the allocation of space for the data for routines. This
space is obtained from a region of memory called the stack. The space used for the parameters, local
variables, and temporary values of a single routine is called a stack frame. When execution of the
routine is completed, the stack frame is deallocated and that space is available to be used by other
routines.

Using the example program SAMPLE in paragraph 8.5, the stack allocation at the point at which
procedure ABS1 has been called is as follows:

STACK
A -5 STACK FRAME FOR PROGRAM SAMPLE
Vv 0
X -5

STACK FRAME FOR PROCEDURE ABSI1
Y POINTER TO V

8-18 Digital Systems Division

»

a @y

= &

' 9462909701

MAIN A
B
c
RA A
F
RC G
VARIABLES THAT MAY BE ACCESSED:
A OF ROUTINE RA, B oF MAIN PROGRAM, C OF MAIN PROGRAM,
F OF ROUTINE RA, G OF ROUTINE RC
VARIABLES THAT MAY BE ACCESSED:
A OF ROUTINE RA, B oF MAIN PROGRAM, € OF MAIN PROGRAM,
F OF ROUTINE RA
RB c
D
E
RD rF
G
H
VARIABLES THAT MAY BE ACCESSED:
A oF MAIN PROGRAM, B OF MAIN PROGRAM, C OF ROGUTINE RB,
D OF ROUTINE RB, E OF ROUTINE RB, F OF ROUTINE RD,
| G OF ROUTINE RD, H OF ROUTINE RD
RE [A
E
RF E
H
VARIABLES THAT MAY BE ACCESSED.
A OF ROUTINE RE, B oF MAIN PROGRAM, C OF ROUTINE RB,
D OF ROUTINE RB, E OF ROUTINE RF, H OF ROUTINE RF
VARIABLES THAT MAY BE ACCESSED.
A OF ROUTINE RE, B oF MAIN PROGRAM, C OF ROUTINE RB,
D OF ROUTINE RB, E OF ROUTINE RE
VARIABLES THAT MAY BE ACCESSED:
A oF MAIN PROGRAM, B oF MAIN PROGRAM, C OF ROUTINE RB,
D OF ROUTINE RB, E OF ROUTINE RB
VARIABLES THAT MAY BE ACCESSED:
A oF MAIN PROGRAM, B OF MAIN PROGRAM, C OF MAIN PROGRAM
(A) 138378

Figure 8-4. Access to Variables in Program Structure

8-19 Digital Systems Division

946290-9701

MAIN [
RA[
RD
CAN CALL ROUTINES RD AND RA; iIF FORWARD DECLARATION 1S USED,
CAN CALL ROUTINES RB AND RC.
CAN CALL ROUTINES RA AND RD; iIF FORWARD DECLARATION IS USED,
CAN CALL ROUTINES RB AND RC.
rRB[
RE[—
CAN CALL ROUTINES RE, RB, AND RA; IF FORWARD DECLARATION IS
| USED, CAN CALL ROUTINES RC AND RF.
RF[
CAN CALL ROUTINES RF, RE, RB, AND RA; IF FORWARD DECLARATION
1S USED, CAN CALL ROUTINE RC.
CAN CALL ROUTINES RB, RE, RF, AND RA; IF FORWARD DECLARATION
1S USED, CAN CALL ROUTINE RC.
RC[
RG
RH
CAN CALL ROUTINES RH, RG, RC, RB, AND RA.
CAN CALL ROUTINES RG, RH, RC, RB, AND RA.
| CAN CALL ROUTINES RC, RG, RB, AND RA,
| _CAN CALL ROUTINES RC, RB, AND RA.
(A) 138379

Figure 8-5. Access to Routines in Program Structure

The value of A has been copied into X, and Y, has been set to a pointer to V so that a reference to Y
is actually an indirect access to V.

When a routine which is currently active is re-activated, new instances of all local variables that are
not common variables and parameters are allocated. The execution of the current activation of the

routine always references these currenlty allocated variables. (This technique makes all procedures
and functions reentrant).

The method of space allocation results in the identifiers having an extent, i.e., a period of time during
which they are accessible. The extent of all statically defined quantities is the duration of execution
of the unit of scope in which they are declared. The extent of dynamically allocated variables is the
duration of program execution between the call of NEW which creates the variable and the call of

DISPOSE which frees the space allocated to them. When DISPOSE is not called, the extent
continues to program termination.

8-20

Digital Systems Division

4 &

6 Bg

@ 946290-9701

8.8 SIDE EFFECTS

W A function returns a value through the identifier of the function. When a function changes the value
of a variable other than the local variables of the function, that change is called a side effect. TIP
prevents side effects by restricting assignments, procedure and function calls, and the use of nonlocal

variables in user defined functions. The variable (left-hand side) of an assignment statement may not
be any of the following:

A nonlocal variable.
A variable parameter of the function.
A COMMON variable.

A pointer variable followed by @.

User defined functions may not contain:

‘W\ (]

P23
[]

f:“é

Procedure statements that call user-defined procedures or the standard procedure READ.
Calls to externally defined functions.

Procedures or externally defined functions as parameters.

A WITH statement that contains a record variable followed by @.

Calls to NEW or DISPOSE that have parameters that are not either local variables or
value parameters.

The array into which data is packed by a PACK procedure call must be a local variable or
a value parameter.

The array into which data is placed by an UNPACK procedure call must be a local
variable or a value parameter.

The string into which data is placed by an ENCODE procedure call must be a local
variable or a value parameter.

The variable into which data is placed by a DECODE procedure call must be a local
variable or a value parameter.

The nonfile parameters of a READ procedure and the OVAL parameter of an IOTERM
procedure must be local variables or value parameters.

Procedures RESET, REWRITE, EXTEND, WRITEEOF, SKIPFILES, CLOSE,
SETNAME, SETMEMBER, and IOTERM may be used only with parameters of file type
that are local variables.

These restrictions may make it necessary to use a procedure for some purposes for which a function

might otherwise be used. However, this inconvenience is more than made up for by the reliability
which is gained from preventing side-effects.

8-21

Digital Systems Division

[e]
{@ 946290-9701

8.9 COMMON AND ACCESS DECLARATIONS

COMMON and ACCESS declarations are used to declare variables which may be shared with other
routines falling within the scope of the COMMON declaration, or with externally compiled routines.
One characteristic of COMMON variables is that they are not allocated on the stack, and hence are
not deallocated when execution of the routine where they are declared terminates. This makes it
possible to save the value of “local” variables from one activation of a routine to the next. Another
characteristic of COMMON variables is that their extent consists of the execution time of the entire
program. The syntax of a COMMON declaration is:

COMMON <identifier> {, <identifier>} : <type>
{; <identifier> {, <identifier>} : <type>} ;

An identifier may appear in only one COMMON declaration. The identifier is both the variable
name used internally to the program and also the external name by which the implementation makes
the COMMON variable available externally. Since the linkage editor recognizes only six characters,
COMMON identifiers should be limited to this size.

In order for a COMMON variable to be accessible within a routine, the routine must contain an
ACCESS declaration for the COMMON variable. A routine that contains a COMMON declaration
must include an ACCESS declaration if it accesses a common variable. The normal scope rules do
not apply to ACCESS declarations. Even if a routine falls within the scope of an ACCESS
declaration at a higher level, the COMMON variables are not accessible within the routine unless an
explicit ACCESS declaration appears in the routine. Each ACCESS declaration must fall within the
scope of the COMMON declaration of the identifier for which ACCESS is declared.

The syntax of an ACCESS declaration is
ACCESS <identifier> { , <identifier>};

There is a compiler option that allows access only to those global variables that are specified in
ACCESS declarations. When this option applies, variables named in ACCESS declarations are not
necessarily common variables.

COMMON declarations accomplish the following purposes:
e Provide more restricted access than normal declarations.
. Enable variables to be shared with external routines such as FORTRAN routines.

e Provide an extent for variables greater than the duration of execution of the routine in
which they are declared.

Example:

PROCEDURE P
COMMON X : INTEGER
PROCEDURE Q
VAR Y : INTEGER
PROCEDURE R
ACCESS X
PROCEDURE S

8-22 Digital Systems Division

@ 946290-9701

The COMMON variable X is accessible only within the body of routine R since no other procedure
has an ACCESS declaration.

The next example illustrates the correspondence between a FORTRAN named common block and a
TIP common variable. *

FORTRAN:
COMMON /TAB/ I, X, M(5)

TI PASCAL:
COMMON TAB : RECORD
I : INTEGER;
X : REAL;
M : ARRAYJIL. . 5] OF INTEGER
END

In FORTRAN, the single external name TAB is associated with the block of variables I, X, and M.
Since each individual common variable in TIP corresponds to a common block, this example uses a
record with three fields to achieve the same effect as the FORTRAN declaration.

8-23/8-24 Digital Systems Division

"""""

4 ey A
o

0, ‘=g
)

o
{@ 946290-9701

SECTION IX
COMPILER OPTIONS

9.1 GENERAL
The TIP compiler supports a set of options that control the format and content of the listing, options
that control the content of the object file, options that control runtime checks, and miscellaneous
" options. Options may be enabled or disabled by being named in option comments. Certain options
may" be named in option comments that affect the entire program; certain other options may be
named in an option comment at the start of a routine only; but most options may be named in an
option comment at any point in a program at which any comment would be allowed. This provides a
high degree of flexibility in the control of options.

9.2 THE OPTION COMMENT
~ The comment that controls the enabling or disabling of an option is enclosed within braces (f }). A
: dollar sign immediately following the left brace (or the alternate character pair (*) identifies the
comment as an option comment. The syntax for an option comment is as follows:

<option comment>::= “{ ”$ <option> ,<option> “} ?
<option> ::= [NO] <option identifier>
|[RESUME] <option identifier>

The syntax diagram is as follows:

| O
. e

The option identifier is the name of an option; one of the option names listed in table 9-1. Each
option ha}s a value of TRUE or FALSE, independent of the value of any other option. The default
< value which each option has at the beginning of the program is shown in table 9-1. The presence of

(@ T Option comment:

M an option name in an option comment sets the value of the option to TRUE, unless the keyword NO
N or RESUME precedes the option name. When the keyword NO precedes the option name, the value

of the option is set to FALSE. When the keyword RESUME precedes the option name, the value of
4 ghe option is set to the value the option name had upon entry to the routine (if the option comment is
5 in a routine) or upon entry to the program.

9-1 Digital Systems Division

946290-9701

Table 9-1. TIP Compiler Options

Option Name Default Value Level
72COL TRUE Statement
ASSERTS TRUE Statement
CKINDEX FALSE Statement
CKOVER FALSE Statement
CKPTR FALSE Statement
CKPREC FALSE Statement
CKSET FALSE Statement
CKSUB FALSE Statement
CKTAG FALSE Statement
FORINDEX FALSE Statement
GLOBALS FALSE Routine
LIST TRUE Statement
MAP FALSE Routine
NULLBODY FALSE Routine
OBJECT TRUE Routine
PAGE FALSE (Note 1) Statement
PROBER FALSE Routine
PROBES FALSE Routine
ROUND TRUE Statement
STANDARD FALSE ' Program
TRACEBACK TRUE Routine
UNSAFEOPT FALSE Routine
WARNINGS TRUE Statement
WIDELIST FALSE Program

Note: 1. PAGE has a default value of FALSE and is set to FALSE before the
beginning of each source line.

If a comment and an option comment are required, the comment must be entered as if the option
comment were not there; it may not be embedded within the option comment.

Example:
{SLIST} {THIS TURNS ON THE LISTING OPTION}

When one or more spaces separate the left brace ({) or left parenthesis and asterisk ((*, the alternate

characters) from the dollar sign, the result is a comment, not an option comment. The following
example has no effect on the list option:

{ SLIST}

Option comments are effective within the scope of the routine within which they occur (if they occur
within a routine). When a routine is entered (during compilation), the values of options are stored.
Upon exit from the routine, the stored values are restored. Thus, with the exception of the PAGE
option, the value of an option changed by an option comment remains the value of that option until
another option comment containing the option name is processed, or until exit from the routine. The
PAGE option is set FALSE at the beginning of each source line.

9-2 Digital Systems Division

4

. Cs e

o
{@ 946290-9701

Table 9-1 also lists the level of each option. The WIDELIST option and the STANDARD option are
ﬂm\ program level options that can be changed only by entering the option comment to change them
ahead of the program heading. The scope of the program begins at the program identifier (following
the keyword PROGRAM in the program heading and ends at the period that terminates the
program. The program level options must be changed prior to the beginning of this scope.

- Routine level options may be changed prior to the program heading, following the semicolon that
terminates the program heading or the routine heading, or immediately after the BEGIN keyword
that begins the compound statement of the routine. The scope of a routine begins in the routine
heading following the routine identifier and before the parameter list. The scope of a routine ends at

. the semicolon following the END keyword that terminates the compound statement of the routine.
The following are the routine level options:

GLOBALS MAP NULLBODY
OBJECT PROBER PROBES
TRACEBACK UNSAFEOPT

~ The remaining options are statement level options that can be changed by a comment statement at

any point in the program.

When a comment statement names an.option at a level which cannot be changed at that point, the
option remains unaltered and a warning or error message is issued.

9.3 LISTING CONTROL OPTIONS
Listing control options affect the format and/or content of the compiler listing. The options are
described in the following paragraphs.

M"’\ ’ 9.3.1 LIST CPTION. The LIST option enables or disables the source listing. When the value of the
option is TRUE (default) the compiler writes the listing of the source program. When the value of the
option is FALSE, the compiler lists only the lines that contain errors, and the error messages. The
LIST option is a statement level option.

9.3.2 WIDELIST OPTION. The WIDELIST option enables or disables the wide format of the
source listing. When the value of the option is TRUE the compiler writes a source line number at the
beginning of each source line, and a statement number at the beginning (following the source line
number) of each statement within the compound statement of each program or routine block. When

~ the value of the option is FALSE (default), source line and statement numbers are omitted. Figure
9-1 shows a source listing with the WIDELIST option enabled. The WIDELIST option is a program
level option. '

Thg WIDELIST option does not control the actual width of the lines of the source listing. The
logical record length for the OUTPUT file determines the width of the lines. When the logical record
length is 80, the first 72 characters of the source are listed. When the logical record length is 88 or

8 greater the entire source line is printed.

9.3.3 MAP OPTION. The MAP option enables or disables the inclusion of a map of identifiers in
s the source listing. When the value of the option is TRUE the compiler includes a map of variables
% and commons for each routine and for the main program at the end of each routine and at the end of

¢

the program. When the value is FALSE (default), the map is omitted. Figure 9-1 shows a source
listing with the MAP option enabled. The MAP option is a routine level option.

9-3 Digital Systems Division

(o]
{@ 946290-9701

As shown in figure 9-1, the map of identifiers lists the first eight characters of the variable name and
the kind of identifier. The following kinds are displayed: ™

e PARAMETER
e VARIABLE

e FIELD

e COMMON

The next column shows the size of the data item in bits or bytes. Alternatively, the column shows a
level and displacement in the case of a dynamic array. The level and displacement are the level and
displacement of the variable that contains the size of the dynamic array.

The third column shows the displacement of the item in the stack frame for the routine. In the case of
variables and parameters, the displacement is a hexadecimal value. In the case of a field, the
displacement is in bytes and bits from the displacement of the record that includes the field.

The fourth column may contain either DIRECT, INDIRECT, or PACKED. DIRECT identifies

variables and value parameters. INDIRECT identifies reference parameters. PACKED identifies
fields of packed records. .

The fifth column applies only to packed fields and shows the order of the packing of the fields by
identifying the bit positions of the field with Xs.

9.3.4 PAGE OPTION. The PAGE option provides a means of forcing a new page in the listing.
When the value of the option is TRUE, the compiler performs a new page operation and writes the ™
next line at the top of the new page. The compiler also sets the PAGE option to the FALSE value.
When the value of the option is FALSE (default) the compiler does not perform a new page
operation unless the current page has been filled. The PAGE option is a statement level option.

9.3.5 WARNINGS OPTION. The WARNINGS option enables or disables the listing of warning
messages by the compiler. When the value of the option is TRUE (default) the compiler includes
warning messages with the source lines of the listing. When the value of the option is FALSE, the
compiler omits warning messages in the listing. The WARNINGS option is a statement level option.

9.4 OBJECT CODE OPTIONS ™

Object code options affect the content of the object code file. The options are described in the
following paragraphs.

9.4.1 OBJECT OPTION. The OBJECT option enables or disables writing of the object code file for
one or more blocks of the program. When the value of the option is TRUE (default), the compiler
writes the object code. When the value of the option is FALSE, the compiler does not write object
code. The OBJECT option is a routine level option.

9.4.2. NULLBODY OPTION. The NULLBODY option enables or disables writing of the object
code corresponding to the compound statement of a routine or program and its component
statements. When the value of the option is TRUE, the compiler does not write a module. When the
value of the option is FALSE (default), the compiler writes object code. The NULLBODY option
should not be set to TRUE in a user program. It is used in separate compilation under control of the
configuration processor (Section XII). The NULLBODY option is a routine level option.

9-4 Digital Systems Division

946290-9701

DXFECL

L.4.X 78,270

(b WITELIST, MAF#)

0N B

FROGRAM DIGIOS

TI 990 PASCAL COMFILER

TYFPE CHRIUF = ARRAY(.l..4&.) OF CHARS

VAR RUIFF : CHRIIFs
T, NUM ¢ INTEGER:

11/704/72 13154325

FROCENURE CCHAR (ELUFF: CHRUFS VAR NUUM: INTEGFRS Tt INTEGER) 5

BEGIN (# CICHAR #)
NUli: =03
FOIR := | TO T [0

IF BUFF (.07

P, IR]

ENDs

MAF OF IDENTIFIERS FOR CCHAR

INENTTFIER NAME KIND SI7E
(BYTES, RITS) DISFILACEMENT

BLUFF
NLIM
I

1z
14
15
1é
17
=

1%

“O7 AND BUFF (. J,) <="
NUM: =NLIM# LO+ORDCBUFF (L0)) =0ORTCO)

STACK

FICTLRE
(FACEED FIELDS ONLY)

LEVEL(DISFL) (RYTE,RIT)
FARAMFTER (L2, 0) #OOZ2 DIRECT
FARAMETER (2,0) #0034 INDIRECT
FARAMETER (Z,0) #OO34A DIRECT

FROCEDURE CINT (NUM: INTEGER) 3
VAR 1 ¢ INTEGER:
BEGIN (3 CINT #)

Ta=NUIM DIV 103

2 IF I O THEN CINT(I)3
4 WRITE (CHRONUM MO 1O + DRD(-O
S ENDs

MAF OF IDENTIFIFRS FOR CINT

INENTIFTIFR NAME

N

EIND SIZE

)))

STACHK

(RYTES, BITS) DISPLACEMENT

FICTIHRE
(FACKED FIELDS ANLY)

LEVEL(DISPL) (RYTE,RIT)
FARAMETER (&, 0) #0023 DIRECT
VARTARLE (2, 0) #002A DIRECT

BESIN (# DIGIO #)

RESET(INPUT) 3
I:=I+13

READ (BUFF(.I.))3

I:= T+13
ENDs (% INFHT CHARS #)
T &= I-13

CCHAR (BUFF, NUIM, 1) 3
NLIM: =NLIM+255

CINT ONLIM) 5

K WRITEL N3

14 END.

MAF OF IDENTIFIERS FOR NIGIO

IDENTIFIER NAME KIND S1ZE
(BYTES, BITS) DISFLACEMENT

LEVEL (DISFL)

RBLIFF VARIARI.E (12,0)
I VARIARILE (2,0)
NLIM YARIARLE (2,0)

MAXTIMUM NUMBER OF IDENTIFIERS LISED = 14
0O WORDE

INSTRUCTIOMS = A% (LESS

WRITELN(“ENTER 1 T0 5 DIGITS')3

WHILE NOT EOLN M) REGIN (# INFUT CHARS #)

STACK

(RYTE,RIT)

CCHAR LLITERALS = i& CODE = 100
INSETRIWCTIONS = 24 (LESS O WORNE OF DEAD
CINT LLITERALS = 16 CODE = 20
INSTRUCTIONS = A0 (LESS O WORDES QF DEAD
DIGIO LITERALS = Sé& CODE = 238

PICTURE
(PACKED FIELDS ONLY)

DIRECT
DOIRECT
NIRECT

1 COOE REMOVED)

DATA = S
CORE REMOVED)
naATA = 44
CODE REMOVED)
DATA = 144

Figure 9-1. A Source Listing with WIDELIST and MAP Options Enabled

9-5

Digital Systems Division

@ 946290-9701

9.4.3 TRACEBACK OPTION. The TRACEBACK option enables and disables the writing of
traceback data in the object code. When the value of the option is TRUE (default), the compiler
includes the routine name and its static nesting level with the object code for use when tracing the
events involved in an error that causes termination of execution of the program. When the value of
the option is FALSE, the compiler omits this data which reduces the length of each module by 6
words. The TRACEBACK option is a routine level option.

9.4.4 ASSERTS OPTION. The ASSERTS option enables or disables the insertion of object code
corresponding to ASSERT statements into object files. When the value of the option is TRUE
(default) the compiler supplies code to implement any ASSERT statements in the program. When
the value of the option is FALSE the compiler ignores ASSERT statements. The ASSERTS option
is a statement level option.

9.5 RUNTIME CHECK OPTIONS
Runtime check options control the insertion of code in object files to enable checks of program
execution at runtime. The options are described in the following paragraphs.

9.5.1 CKINDEX OPTION. The CKINDEX option enables or disables checking of indexes of
arrays. When the value of the option is TRUE, the object code includes code that checks that array
indexes are within the specified range at execution time. When the value of the option is FALSE
(default), array indexes are not checked at runtime. The CKINDEX option is a statement level
option.

9.5.2 CKOVER OPTION. The CKOVER option enables or disables checking for overflow when
evaluating INTEGER, LONGINT, DECIMAL, and FIXED type expressions. When the value of
the option is TRUE, the object code includes code that checks for overflow at execution time. When
the value of the option is FALSE (default), overflow is not checked at runtime. The CKOVER
option is a statement level option.

9.5.3 CKPREC OPTION. The CKPREC option enables or disables checking for loss of most
significant precision during conversion of DECIMAL and FIXED types. When the value of the
option is TRUE, the object code includes code that checks for loss of the most significant digit
during conversion at execution time. When the value of the option is FALSE (default), the results of
conversion are not checked at runtime. The CKPREC option is a statement level option.

9.5.4 CKPTR OPTION. The CKPTR option enables or disables checking for NIL values of
variables of pointer type at execution time. When the value of the option is TRUE, the object code
includes code that checks for a pointer value of NIL when a pointer is used to access data at
execution time. When the value of the option is FALSE (default), no check of pointer values is made
at runtime. The CKPTR option is a statement level option.

9.5.5 CKSET OPTION. The CKSET option enables or disables checking of set element
expressions. When the value of the option is TRUE, the object code includes code that checks that a
set element is within the range of the base type at execution time. When the value of the option is
FALSE (default), no check of set elements is made at runtime. The CKSET option is a statement
level option.

9.5.6 CKSUB OPTION. The CKSUB option enables or disables the checking of subrange
assignments and results of PRED and SUCC functions. When the value of the option is TRUE, the
object code includes code that checks that values are within bounds following assignments or
execution of the PRED or SUCC function at execution time. When the value of the option is
FALSE (default), no check of assignments or results of these functions are made at runtime. The -
CKSUB option is a statement level option.

9-6 Digital Systems Division

LN

o
@ 946290-9701

9.5.7 CKTAG OPTION. The CKTAG option enables or disables the checking of the tag fields of
(ﬁm’\ * record variants. When the value of the option is TRUE, the object code includes code that checks
‘ that references to variant parts are consistent with the values of their tag fields at execution time.
When the value of the optlon is FALSE, no checks on variant part references and tag fields are
made. The CKTAG option is a statement level option.

. 9.5.8 PROBER OPTION. The PROBER option enables or disables a summary of the number of
executions of each routine and of the main block of the program. When the value of the option is
TRUE, the object code includes calls to the performance probe handler at entry and exit of each
routine at execution time. When the value of the option is FALSE (default), the program does not
. call the performance probe handler. The PROBER option is a routine level option.

When the PROBER option is set to TRUE for one or more routines or for the entire program, the
linked object must include library members PRBSINIT, PRBSTERM, and PRBSPERF. Refer to
linking information for the appropriate operating system in an appendix.

The performance probe handler maintains a count of the number of executions of each routine and
of the main program (when option PROBER is TRUE throughout the scope of the program). At the

o completion of execution of the program, the performance probe handler writes a display to textfile
OUTPUT as shown in figure 9-2. The display lists the number of executions of each routine and of
the main program.

9.5.9 PROBES OPTION. The PROBES option enables or disables a summary of usage of the
paths of each control structure. When the value of the option is TRUE, the object code includes a
call to the completeness probe handler at each path of a CASE, FOR, IF, REPEAT, and WHILE
statement. When the value of the option is FALSE (default), the program does not call the
completeness probe handler. The PROBES option is a routine level option.

When the PROBES option is set to TRUE for one or more routines or for the entire program, the
compiler writes a probes table for each routine in the source listing. Figure 9-3 shows a source listing
for which the PROBES option is true. The probes table includes a line for each call to the
completeness probe handler, showing a probe number, the source line number to which the probe
applies, and the probe type. The probe type identifies the control structure and the path to which the
probe applies. Note that an ELSE path is identified for each IF statement whether or not the ELSE
clause appears in the IF statement. This path is taken when the expression of the IF statement is not

true.
~ FERFORMANELE FROEE DATA
ROUTINE NAME NUMBER 0OF EXECUTIONS
CICHAR 1
CINT 5
DIEI0 1
8 COMPLETENEGSS FRORE DATA
ROUTINE NAME #FROBES ZACTIVATED INACTIVE FROEBES
]
: CCHAR 4 75 2
CINT = 100
DIGIN 2 100

TOTAL NUMBER 0OF PROBES = &
TOTAL NUMBER OF ACTIVATED FROBES = 7
r %Z OF PROBES ACTIVATED = &7

Figure 9-2. Execution Time Displays for PROBER and PROBES Options

9-7 Digital Systems Division

946290-9701

TI FASCAL COMFILER 1.3 DATE = 73. 25 TIME = 17:¢

(#% FROBER,FROBEZ #)
FROGRAM DIIGIOS
TYFE CHERUF = ARRAY (.1..4.) OF CHARS
VAR BLUFF : CHELUF3S
I,NUM : INTEGERS
FROCEDURE CCHAR(RUFF: CHRUF3 VAR NUM: INTEGERS I: INTEGER) 3
BEGIN (% CCHAR #)
NLIM:= O3
FOR J:= 1 TO I DO
IF BUFF(.J.)>x=-0" AND BUFF(..J.)<="2" THEN
NUM: =NUM# 1 O+0RO(BUFF (. J.))=0OROC70O7)
ENIDs (# CCHAR)
FRORES FOR CCHAR
FROBE NUMBER LINE NLUMEBER FROBE EIND

1 = FOR LOOP
2 4 IF THEN
= & IF ELSE
4 & FOR END
FPROCEDURE CINT (NUM: INTEGER) S
VarR 1 : INTEGERS

BEGIN (% CINT #)
t=NUM DIV 103
IF I <> O THEN CINT(I):
WRITE (CHRONUM MOD 10 + ORDOC07)))
END3 (% CINT #)
FPROBESZ FOR CINT
FROBE NUMEER LINE NUMEER FROBE EIND
1 2 IF THEN
2 4 IF ELZE
BEGIN (# DIGID #)
WRITELNC(ENTER 1 TO S DIGITS)
RESET(INFLT)
It= 13
WHILE NOT EOLN [BEGIN (# INFUT CHARZ #)
READ(RIUFF(.I1.))3
Te=I+13
ENDs (# INPUT CHARS #)
Is=1-13%
ZCHAR (BUFF . NLIM, 1) 3
NLIM: =NLIM+253
CINT(NLM) 3
WRITELN
ENDI. (% DIGIO 3#)
FRORES FOR DIGIO
FROEBE NUMBER LINE NUMBER FROBE K IND
1 b WHILE LOoF
2 WHILE END

o

[uxj

MAXIMUIM NUMBER OF IDENTIFIERS WSED = 13

n
FS
»

INSTRUCTIONS = 52 (LEZS O WIRDES OF DEAD CODE REMOVELR)
CCHAR LITERALS = 24 CODE = 174 DATA = Sa

INSTRUCTIONS = oE (LEsS O WORDS OF DEAD COLDE REMOVEDR)
CINT LITERALS = =0 CODE = 144 DATA = 44

INSTRUCTIONS = 74 (LE=Z 0O WORDE OF DEAD CODE REMOVELR)
ODIGIO LITERALS = QO CODE = 294 DATA = 144

Figure 9-3. Compiler Source Listing - PROBER and PROBES Options Enabled

9-8 Digital Systems Division

(o]
4@ 946290-9701

When the PROBES option is set to TRUE for one or more routines or for the entire program, the
m) linked object must include library members PRBSINIT, PRBSTERM, and PRB§COMP. Refer to
linking information for the appropriate operating system in an appendix.

The completeness probe handler monitors the execution of the program, making note of each path

of a CASE, FOR, IF, REPEAT, and WHILE statement that is taken within those routines for
R which PROBES is TRUE. When execution of the program completes, the completeness probe

handler writes a display to textfile OUTPUT as shown in figure 9-2. The display lists the number of

probes, the percentage of usage of the probes, and the probe numbers of inactive (unused) paths for

each routine and for the main program. The display also shows the total number of probes, the
R number activated (paths taken), and the percentage of usage of the probes.

9.6 MISCELLANEOUS OPTIONS

Miscellaneous options include the remaining options that are not readily categorized. The options
are described in the following paragraphs.

9.6.1 72COL OPTION. The 72COL option enables or disables the 72 character limit for source
~ program lines. When the value of the option is TRUE (default), only the first 72 characters of the
‘ source line are scanned by the compiler. When the value of the option is FALSE, all characters of

the source line are scanned by the compiler. The 72COL option is a statement level option.

9.6.2 FORINDEX OPTION. The FORINDEX option enables or disables the issuing of warning
messages when names of FOR control variables are identical to names of other accessible variables.
When the value of the option is TRUE the compiler issues a warning message if the name of a FOR
control variable is identical to the name of an accessible variable. When the value of the option is

FALSE (default), the names of FOR control variables are not checked. The FORINDEX option is a
statement level option.

9.6.3 GLOBALS OPTION. The GLOBALS option enables or disables a limitation of the use of
global variables. When the value of the option is TRUE only global variables that are named in an
ACCESS declaration are accessible within a routine. When the value of the option is FALSE
(default), the rules of scope of variables alone determine the accessibility of global variables other
than COMMON variables. The GLOBALS option is a routine level option.

9.6.4 ROUND OPTION. The ROUND option enables or disables the rounding of results of type
DECIMAL. When the value of the option is TRUE (default), results of type DECIMAL are
~ rounded to the nearest value of the specified precision. When the value of the option is FALSE,

results of type DECIMAL are truncated to the specified precision. The ROUND option is a
statement level option.

9.6.5 UNSAFEOPT OPTION. The UNSAFEOPT option enables or disables optimization that
may only be performed correctly if all variables are disjoint (variables accessible by only one variable

» name). The UNSAFEOPT option allows the compiler to retain more than one variable in the
registers at a time, which results in a significant reduction in the size of the object code for some
» programs. The UNSAFEOPT should not be specified for a program in which a variable is accessed
by more than one name. This can occur when a routine has two parameters called by reference and
® the call specifies the same variable for both parameters. This can also occur from the use of the
3 LOCATION function to access a variable.

When the value of the option is TRUE, the optimization is enabled. When the value of the option is
FALSE (default), the optimization is disabled. The UNSAFEOPT option is a routine level option.

' 9-9/9-10 Digital Systems Division

n

L= S Y

uw

o 2

¢

o
%@ 946290-9701

SECTION X

FORMATTING SOURCE CODE

10.1 GENERAL
This section includes guidelines to follow when coding a source program, describes NESTER, a
utility that assists in preparation of source code, and includes instructions for operating NESTER.

10.2 CODING :

Typically, the Model 990 Computer TIP source program is written on a disk file using the Text
Editor. The input device is usually the Model 911 VDT, which supports the complete character set
of TIP shown in paragraph 3.2. The characters for each line of code may be entered starting at any
character position, but must not extend beyond character position 72 if 72COL option is true.

As described in paragraph 3.2, there are alternate character combinations and an alternate character
defined to use when the complete TIP character set is not available. The user may use the alternate
characters when the source code has to be transportable to an environment that does not support the
complete character set.

The user may use either upper or lower case letters in the declarations and statements of the source
program. The TIP compiler translates lower case letters to upper case letters before processing the
code, and therefore sees an identifier entered in lower case letters as identical to the same identifier
entered in upper case letters.

10.3 SOURCE FORMATTER

The source formatter (NESTER) restructures a source module to provide indentation consistent
with the logical structure. As described in paragraph 8.6, a Pascal program is precisely structured.
The format of source lines allows indentations of the source lines that can show the program
structure more effectively. However, entry of the source lines in accordance with the structure can be
tedious, particularly with a VDT. NESTER accepts source code lines however they may be indented,
or without indentation, and indents the source lines in accordance with the logical structure of the
program.

In addition, NESTER inserts a sequence number in character positions 73 through 80 of each line.
The sequence numbers begin at zero and are incremented by 10.

10.3.1 NESTER FUNCTIONS. NESTER uses five parameters in establishing the source program
format that corresponds to the logical organization of the program. These parameters and their
default values, along with four other options, are listed in table 10-1. Two of these parameters,
DTAB and CCOL, apply to the declarations of the program. The rules that apply to each of the
declarations are:

e The PROGRAM declaration begins in the leftmost character position (column 1).

Example:

PROGRAM RANDOM;

- 10-1 Digital Systems Division

(o)
%@ 946290-9701

The LABEL declaration begins in the leftmost character position (column 1) and the label
numbers follow on the same line.

Example:
LABEL 10,20,30;
The CONST declaration begins in the leftmost character position (column 1) and

constants are tabulated into columns separated by the value of the Constant Column
parameter CCOL. '

Example:
CONST A = 2 B =3;
C=4, D =35§;
E = 6; F=7,

The TYPE declaration begins in the leftmost character position (column 1). The first type
declaration follows on the same line.

Example:
TYPE A = ARRAY (.0..10.) OF INTEGER;

Any subsequent type declarations are indented by the value of the Declaration Tab
parameter DTAB.

Example:

TYPE A = ARRAY (.0..10.) OF INTEGER;
B = (C,D,E);

In a record declaration, the first field identifier follows the declaration; subsequent field
identifiers are indented by the value of DTAB on a new line.

Example:

TYPE A = ARRAY (.0..10.) OF INTEGER;

B = (C,D,E);
REC = RECORD A:INTEGER;

B:REAL;

CASE C:BOOLEAN OF

FALSE: (D:INTEGER;
E: INTEGER);
END;

10-2 Digital Systems Division

&

[

o &

@ 9462909701

When the component type of an array is a structured type, the structured type is indented
by the value of DTAB on a new line.

Example:

TYPE A = ARRAY (.0..10.) OF INTEGER;
B = (C,D,E),
REC = RECORD A:INTEGER;
B:REAL;
CASE C:BOOLEAN OF
FALSE: (D:INTEGER;
E: INTEGER);
END:
MATRIX = ARRAY (.0..9.) OF
ARRAY (.0.9.) OF
ARRAY (.0..2.)) OF INTEGER;

The VAR declaration begins in the leftmost character position (column 1). The first
variable declaration follows on the same line. Subsequent variable declarations are
indented by the value of DTAB and each starts a new line.

Example:
VAR ARY : A;
LJK,L:INTEGER;
R:REC;

The COMMON declaration begins in the leftmost character position (column 1). The first
common declaration follows on the same line. Subsequent variable declarations are
indented by the value of DTAB and each starts a new line.

Example:

COMMON R:BOOLEAN;
I: INTEGER;
X: REAL;
M: ARRAY 1..5 OF INTEGER;

The ACCESS declaration begins in the leftmost character position (column 1). The
common variables follow on the same line.

Example:
ACCESS COM1,COM2;

The routine declarations begin with the keyword PROCEDURE or FUNCTION in the
leftmost character position (column 1). The parameter list follows on the same line.

Example:

PROCEDURE A(B,C:INTEGER);

10-3 Digital Systems Division

946290-9701

Option
Keyword

DTAB
CCOL
STAB
SCOL
SLIM

ADJT

FILL

CONV

WIDE

Table 10-1. NESTER Options

Meaning
Declaration tab value
Constant column increment
Statement tab value
Statement column increment
Statement column limit
Adjust comments to right margin
Allows concatenation of source lines in
accorance with options in effect. When
FALSE, items on a new line of input are

placed on a new line in the output.

Convert characters in source statements to
those of a transportable character set.

Accept 80-column source statements.

Default

20

30

TRUE

TRUE

FALSE

FALSE

In addition to the rules for the declarations, there is a rule with respect to the breaking of a line in the
declaration section. A line starts with the declaration keyword or an identifier and is usually
separated from the next line with a semicolon (and the end-of-line indication appropriate to the
input device). When NESTER breaks a line, the continuation on the succeeding line is indented by

the value of DTAB.

Two other parameters, STAB and SCOL, apply speciﬁcally to the statement portions of the
program, i.e., the compound statements that contain the statements that specify the processing of the

program. The rules that apply to the statement portions are as follows:

e The BEGIN and END statements of the compound statement that contains the statements

of the block begin in the leftmost character position (column 1).

® The component statements within the compound statement are indented by the value of

STAB.

® Simple statements (assignment, PROCEDURE, ESCAPE, GOTO, and ASSERT) are
placed on one line, tabulated into columns separated by the value of SCOL.

® A statement is placed on a new line if it is too long to fit on the current line.

® When a statement is too long for a single line, the continuation line is indented by the

value of STAB.

° Structured statements other than compound statements (IF, CASE, FOR, WHILE,
REPEAT, and WITH) always begin on a new line.

e Component statements within a structured statement are indented by the value of STAB.

10-4

Digital Systems Division

946290-9701

e Keywords BEGIN and END do not cause indentation and normally do not begin a new
line.

e Statement labels and escape labels start in character posmon two and may force the
labeled statement to start a new line.

e The ELSE portion of an IF statement starts a new line and is positioned at the same
character position as the matching IF.

e The UNTIL portion of a REPEAT statement starts a new line and is positioned at the
same character position as the matching REPEAT.

o Each CASE label is indented by the value of STAB.

e Each CASE alternative statement (following keyword OTHERWISE) is indented by the
value of STAB beyond the character position at which the keyword OTHERWISE begins.

Option ADJT enables or disables the adjustment of comments. When the value of ADJT is true,
(default) comments that are less than 70 character in length are right justified on the line on which
they are entered. Comments that are more than 69 characters in length are positioned to begin in
character position one. Comments that cross line boundaries are not moved. When the value of
ADIJT is false, comments are not moved.

The column limit value SLIM applies to both declarations and statements that are arranged in
columns. Specifically, these are constants and simple statements. No constant or statement is started
beyond the column limit. For example, the default value of 30 allows only two columns of constants
in a CONST declaration, and only as many simple statements as can be placed on a line without
starting a statement beyond character position 30.

The FILL option enables or disables the concatenation of characters from two or more lines on one
line. When the value of the option is true (default), constants in a CONST declaration may be
arranged in columns and simple statements may be concatenated on one line using the value of the
CCOL and SCOL options, respectively. When the value of the option is false, constants and simple
statements remain on the line on which they are entered.

The CONV option converts the characters in source statements that are not transportable to
characters that are more generally available. Specifically, lower case letters are converted to upper
case characters, brackets ([]) are replaced with equivalent character combinations ((. and .)), and
braces ({ }) are replaced with character combinations ((* and *)).

The WIDE option accepts 80-column source statements and reformats the source code to 72-column
output. When the input source statement contains a string constant longer than 72 characters,
NESTER issues an error message.

Figure 10-1 shows the effect of the default options on the statement portion of a routine.

10-5 Digital Systems Division

{?@; 946290-9701

BEGIN I:=Js
IF I»K THEN
- WITH R DO BEGIN
‘B:=1,03 Ce=FALSE: Ds=K:
E:=Js END
ELSE
CASE R.B OF
FALSE: FOR I:=1 TO 10 DO ARY(.I.):=I:
OTHERWISE BEGIN 1:=0:
REPEAT ARY(.l.):=01 l:=I+1:
UNTIL I>=10:
END:
ENO

(» BEGINNING OF B800DY =)
(» I[F »)
(2 WITH =)

(* WITH END =)
(x ELSE =)
(x CASE =)

(x CASE END *)

END; (=« END OF BODY #)

- Figure 10-1. NESTER Statement Example

103.2 NESTER OPTION COMMENT. The values of the NESTER options are changed by
entering option comments. The value supplied in an option comment continues to apply until
another value is supplied in a subsequent option comment. The option comments become a part of

the source program and are processed by the compiler as comments; i.e., they have no effect on
compiler options. The syntax of an option comment is as follows:

<option comment> ::= “{ »&<option>{,<option>]“ }”

<option> ::= <integer-valued option>(integer constant) |
<Boolean-valued option><plus or minus>

<integer-valued option> ::= DTAB|STAB|CCOL|SCOL|SLIM

<Boolean-valued option> ::= ADJT|FILL|CONV|WIDE
<plus or minus> ;= +|-

10-6 Digital Systems Division

R S

@ 946290-9701

A~ The syntax diagram is as follows:

Option comment:

DTAB

STAB

0

0

-—@_{N TEGER CONSTANT —Q@—q—@__’

SCOL

SLIM.

s

~ No blanks are allowed in the option comment. The option names may be entered in any sequence.

- Examples:

f &DTAB(Z),STAB(S),FILL-,SLIM(72)}
{ &DTAB(4),CCOL(20),STAB(2),SCOL(!),SLIM(30),ADJT+,FILL+ }

& The first example changes the value of DTAB to 2 and the value of STAB to 5. It sets the value of the
FILL option to false, and changes the value of SLIM to 72. This value of SLIM allows maximum
packing of constants on a single line, and the maximum packing of simple statements on a single line.
However, by setting FILL to false, the packing allowed by the value of SLIM would not occur.

The second example restores the option values to the default values.

10-7 Digital Systems Division

@ 946290-9701

10.3.3 INTERACTIVE MODE. In the preceding description it was assumed that NESTER
reformats a single source program in each execution. This mode of using NESTER is called the
batch mode. NESTER may be used in an interactive mode in which the user specifies more than one
source file (program) to be reformatted, and separate files into which the resulting source modules
are to be written. The interactive mode also allows the user to specify global options that apply to all
source files except as overridden by option comments within the source code.

NESTER uses five files as follows:

OUTPUT Commands executed, and error messages
SYSMSG System messages
INPUT Input commands

NESTSRC Source module to be reformatted
NESTOUT Reformatted source module

In the batch mode, NESTER requires that the NESTSRC and NESTOUT files be specified. The
INPUT file should be empty or should contain information other than valid NESTER commands
(to be described in a subsequent paragraph). When the input file is specified as a VDT, an empty file
results if the ENTER key (Model 911 VDT) is pressed instead of entering data when NESTER
requests input from the user.

For the interactive mode, NESTSRC and NESTOUT must be pathnames of libraries, or must be
omitted. The library member names of source files and of nested output files, or synonyms of the
pathnames of source and nested source files are supplied in commands.

10.3.4 NESTER COMMANDS. NESTER commands specify library member names or file
synonyms for source files and nested output files to be processed by NESTER, and global options
for the run. NESTER commands are input from the INPUT file. The syntax for the NEST command
is as follows:

<nest command>::= *NEST<source><destination™;
<source>::= [<library synonym>] (<member>) | <file synonym>
<destination>::=[<library synonym>] (<member>) | <file synonym>

When the library synonym for the source is omitted, the library synonym entered as NESTSRC is
used by default. When the library synonym for the destination is omitted and a library synonym for
the source was entered, the library synonym for the source is also used for the destination. When
neither the library synonym for the source nor the library synonym for the destination is entered, the
library synonym entered as NESTOUT is used by default. When the operands of the command are
not file synonyms, library synonyms, or names of members of libraries named as NESTSRC or
NESTOUT, NESTER terminates with a normal completion message without writing nested output
files. A *NEST command is entered for each source file to be reformatted.

The syntax for the *OPTIONS command is as follows:

<option command>::= *OPTIONS <option> { ,<option>} ;
The option is of the same form specified for the option comment in paragraph 10.3.2. Options
specified in option commands are global; they may be overridden by local options specified in option

comments within the source file. A global option continues to apply until a new value for the option’
is supplied in a subsequent option command.

10-8 Digital Systems Division

o
q[@ 946290-9701

(@‘h\ 10.3.5 EXECUTING NESTER. TIP software includes an SCI procedure XNESTER for executing
the source formatter, NESTER. Enter XNESTER at any time DX10 requests a command. DX10
requests the following information:

SOURCE

NESTED SOURCE

° COMMANDS
COMMAND LISTINGS

MESSAGES

MODE

The first five items require access names of devices or files, as follows:

® SOURCE — The access name of a file (batch mode) or of a library (interactive mode) that
contains source code to be formatted.

¢ NESTED SOURCE — The access name of a file (batch mode) or of a library (interactive
~ mode) for the formatted source code.

o COMMANDS — The access name of a device or file for input commands. (Leave blank
for batch mode.)

¢ COMMAND LISTING — The access name of a device for listing commands and errors
(should be ME when commands are entered at terminal).

e MESSAGES — The access name of a device or file for system messages.

- The MODE item is eithe;' FOREGROUND or BACKGROUND. When NESTER is executed in the
background mode, the terminal is available for entry of other commands or for foreground
execution of another program. The foreground mode is the default mode. When NESTER is

executed in the foreground mode, the terminal may not be used by any program other than
NESTER until NESTER terminates execution.

NESTER uses five files as follows:

OUTPUT Commands executed, and error messages
~ SYSMSG System messages
' INPUT Input commands
NESTSRC Source module to be reformatted
NESTOUT Reformatted source module

In the batch mode, NESTER requires that the NESTSRC and NESTOUT files be specified. The

INPUT file should be empty or should contain information other than valid NESTER commands
B (described in paragraph 10.3.4). When the input file is specified as a VDT, an empty file results if the
ENTER key (Model 911 VDT) is pressed instead of entering data when NESTER requests input
from the user.

. @

A For the interactive mode, NESTSRC and NESTOUT must be pathnames of libraries, or must be
b omitted. The library member names of source files and of nested output files, or synonyms of the
pathnames of source and nested source files, are supplied in commands.

10-9 Digital Systems Division

946290-9701

10.3.6 NESTER ERROR MESSAGES. NESTER checks the statements in the source file for

simple syntax errors and prints error numbers when errors are found. The nested source code .\
resulting from nesting source statements that contain these errors is usually incorrectly nested. For

this reason, even though it is allowed to specify the same file or member for both source file and
nested output file, it should not be done. If the file contains errors, the source is replaced by

incorrectly nested source code.

The error messages corresponding to the error numbers are listed in table 10-2. Most of the error

numbers agree with the error number of the corresponding error used by the compiler, and with-

those of standard Pascal.

10.3.7 NESTER EXAMPLE. Figure 10-2 shows the contents of the nested output file written by
NESTER using default option values.

Number

Table 10-2. NESTER Errors

Message

Identifier expected.
) expected.

: expected.

Illegal symbol.
Of expected.

(expected.

Error in type.

[expected.

] expected.

End expected.

; expected.
Integer expected.
= expected.
Begin expected.
Error in constant.
= expected.
Then expected.
Until expected.
Do expected.
To/downto expected.
Error in factor.
Number expected.

Error in real constant; digit expected.

String constant too long or crosses a
card boundary.
Too many errors on this source line.

10-10

Digital Systems Division

946290-9701

PROGRAM LAHELS; 000010
(Recemercccnnrcnccocnerecnccncenrercencccncereree e arercccaccncncacsace=()00020
PROGPAM LARELS: 000030
PURPOSE ¢ THIS PRNGRAM READS AN ADDPESS LABEL AND PRINTS MULTIPLE 000040
COPIES OF THAT LAREL. Vo
FILES USED : IMFUUT <« FOR USER=SUPPLIEND PARAMETERS AMD THE LABEL 000060
CPTFIL = USED FOR PRUYPTING INPUT 000070
OUTPUT = MULTIPLE CNPIES OF THE LABEL 000080
PROCEDURES CALLENP ¢ INTERACT, READANDPPRINT 000090
L L R bt T T N I AL L RN
VAR CRTFIL ¢ TEXT (x1JSED TO PROMPT INPUTx) 000110
CHARSPERLINF : INTEGER: (*NUUMRER OF CHARACTERS PER LINE#) 000120
LINFSPERLAKFL : TNTEGER: (*KUMBER NF LINES PFR LABEL%®) 000130
COPYCOUNT : IMTFGER: (*NUMRER NF COPIES TO PRINTw) 000140
PROCEDURE INTEKACT: 000150
(*meeccremcmccccccnccmccacncnccrncrcacancecccene e e ccccccccesccccnc=es(00160
PROCEDUPE INTFPRPACT: 000170
PURPOSE : INTFRACT PRNMPTS THE ISER, REQUFSTING CERTAIN INPUTS, 000180
QUTPUTS : CHARSPEPLINE = NUMBER OF CHARACTERS PER LINF 000190
LINESPERLAREL = NUMBER OF LINES PFR LABEL 000200
COPYCNUNT = NUMBER OF LABELS T0 PRINT 000210
L D R L L L R L L e L P T W Y\ F-F 1)
BEGIN (*INTERACT*) 000230
_ REWRITE(CRTFIL) 000240
WRITELNC CRTFTIL, “HOA MANY CHARACTERS PER LINEZ®) 000250
RESFTCINPUT); READ(CHARSPERLINE): 000260
WRITELNC CRTFIL, “HOa MANY LINES PER LAKEL?’) 000270
READLN: KFAD(LINESPERLABEL): 000280
ARITELNC CRTFIL, “HON MANY LARELS?’): 000290
READLN: READ(COPYCOUNT)3 WRITELN(CRTFIL, “NN#& INPUT THE LABEL’): 000300
END: : (*INTERACT*) 000310
PROCEDURE READANDPRINT;: 000320
(teceecrcccccccnenecerarenccccscannnaraceccrecae e e ecccecnrnnaccccs=e=(((330
PROCEDURE RFADAMDPRINT: 000340
PURPOSE : REANDANDPRINT REANS A LABEL AND PRINTS MULTIPLE COPLES OF IT.000350
PROCEDURES CALLED ¢ GETLINE, PRINTLABEL 000360
S L R L L L AL k5L
TYPE 000380
LINE = PACKED ARRAY (.1..CHARSPFRLINE,) OF CHAR;: 000390
VAR 000400
LABELIMAGE : ARRAY (.1..LINESPERLAREL.) COF LINE: 000410
PROCEDURE GFTLINE(VAR THISLINE ¢ LINE): 000420
(fecmececemcmccncncerccncnencrcecnccnnccnrnncccse e mecemcnnnerenconsse===()00430
PROCEDURE GETLIME: 000440
PURPOSE : GETLINE READS A SINGLF LINE OF & LAREL., 000450
INPUTS ¢ CHARSPERLINE =« NUMBFR OF CHARACTERS PER LIJNE 000460
QUTPUTS ¢ THISLINF = THE LINE THAT WAS RFEAD, 000470
L R e et T Y P N LI L. 1))
VAR CH ¢ TINTEGER: 000490
BEGIN (xGETLINE*) 000500
READLN; CH 2= 1 000510
WHILE CH <= CHARSPERLINF AND NOT EGLNCIMNPUT) DO BEGTN 000520
READP(THISLINE(.CH,)): CH = CH + 1: 000530
END: (xFILL IM RPEST OF LIME AITH RLAKKS*) 000540

Figure 10-2. NESTER Example (Sheet 1 of 2)

10-11 Digital Systems Division

946290-9701

FOR J := CKH TG CHARSPFRLINE CD THISLINEC(,J.) 2= ° “. 00055%
END: (*GETLINE®) 000560
PROCEDURE PRIMTLAREL: 0008570
(fomemece- mrerceaw Tomcavanes Troscscceccascs cecmctecsreronoroansnnseca===)010580

PROCEDURE PPINTLABEL: 000590

PURPOSE : PRINTLAREL PRINTS ONE. COPY 0OF THE LASFL, 000600

INPUTS ¢ LINESPERLABEL = NUMRER OF LINFS PER LABEL 000610

CHARSPERLINE = MUMKFR OF CHARBCTERS PFR LINF 000620

LABFELTMAGE = THE LAREL T kBE PRINTED 000630
cErserccmerretreero s o - coescerne=e e reesccr e e et e e cenrenecncccnne=k) (00640
BEGIN (*PRINTLABEL®) 0n0650
FOR L = 1 TG LINFESPERLAREL DN BEGIN 0np66n
FOR Ch = 1 10 CHARSPFRLINE DN WRITEF(LABELIMAGF(,L,)(.CH,)): 000670
WRITELN: FNDs 000680
END: (xPRINTLABEL*) 000690
BEGIN . (*READANDPRINT®) 0no0700

FOR L 2= 1 TU LINESPERLABFL DO GETLINE(LORELIMAGF(,L.,)) 000710

FOR K := 1 10 CNPYCOUMNT DO PKINTLABEL: 000720
END: (*READANDPRINT®) 000730
BEGIN (*LARELS*) 000740

INTERACT: REANANDPRTWNT: 0Nn07s0
END. .

(*xLABELS«*) 000760

Figure 10-2. NESTER Example (Sheet 2 of 2)

10-12 Digital Systems Division

@ 946290-9701

SECTION XI
THE PASCAL COMPILER

11.1 GENERAL

The Pascal compiler consists of three separate tasks: SILT1, the first of two phases of the Source to

Intermediate Language Translator; SILT2, the second phase; and CODEGEN, the final phase of
» compilation, which translates the intermediate language into object code. Table 11-1 lists the files

used by the three tasks. The following descriptions of the tasks refer to the files.

11.2 SILT1

SILTI parses the source statements and translates them into an intermediate representation that is

used as input to SILT2. SILTI reads the source program from file INPUT and writes the

intermediate (token) representation on file TOKENS. SILT1 detects syntax errors and writes
~ information about any errors detected on file ERRFILE to be included in the listing written by
' SILT2. SILTI also writes the first eight characters of the name of each routine on file SYSMSG for

display.

11.3 SILT2
SILT2 transforms the intermediate representation on file TOKENS into an intermediate language,
which it writes on file CILFIL as input to CODEGEN. SILT2 also writes a descriptor file,
DESCFIL, for input to CODEGEN. SILT2 detects semantic errors in the source program, and
writes a source listing. Any errors written to ERRFILE by SILT1 are combined with any errors
. detected by SILT2 and the source code from file INPUT in writing the listing on file OUTPUT.
W\ SILT2 writes the first eight characters of the name of each routine on file SYSMSG (similar to
SILTI1) and writes an error message when any errors have been detected by either SILT1 or SILT2.

11.4 CODEGEN

CODEGEN transforms the intermediate language on CILFIL into object code using the descriptors

on DESCFIL, and writes the object code to a sequential file, OBJECT. CODEGEN

writes to an internal temporary file TEMPFIL from which it retrieves the data when required.

CODEGEN completes the listing on file OUTPUT by writing the number of instructions, the

amount of dead code removed, and storage requirements for each module (main program and each
~ routine). CODEGEN also writes the first eight characters of each module name on file SYSMSG as
‘ do SILTI and SILT2.

Several figures throughout the manual show source listing examples. Figure 11-1 is an example of a
source listing using the default options of the compiler. Figure 11-2 is an example of the display of
SYSMSG written during a compilation.

, 11.5 EXECUTING THE COMPILER. A System Command Interpreter (SCI) procedure, XTIP, is
M used to execute the compiler. The user enters the procedure name XTIP at any time DX10 requests a
command. DX10 requests the following information:

% SOURCE
. OBJECT
LISTING

MESSAGES

MEMI

; MEM2
fw\ MEM3
MODE

Digital Systems Division

o
@ 946290-9701

The first four items require access names of devices or files, as follows:

© SOURCE — The access name of the TIP source file.

®¢ - OBJECT — The access name of a file to which object code is written.

® LISTING — The access name of a device or file for the source listing.

e MESSAGES — The access name of a device or file for system messages.

The next three items request memory space for stack and heap for the compiler. Each item is an
ordered pair; the first entry is a number of bytes for stack and is followed by a comma; the second is a

number of bytes for heap. The number of bytes in each case specifies multiples of 1024 (K) bytes. The
memory space items are as follows:

¢ MEMI — Stack and heap required for SILTI. Default is 6,10.
~® MEM2 — Stack and heap required for SILT2. Default is 13,4.
@ MEM3 — Stack and heap required for CODEGEN. Default is 10,8.

The last item is the execution mode, FOREGROUND or BACKGROUND. When the compiler is
executed in the background mode, the terminal is available for entry of other commands or for
foreground execution of another program. The default mode is the background mode. When the
compiler is executed in the foreground mode, the terminal may not be used by any program other
than the compiler until the compiler terminates execution.

When either SILT1 or SILT2 detects an error, the message file written by SILT2 contains a message

indicating that errors have been detected, and CODEGEN does not execute. The listing shows the
errors.

Each phase of the compiler sets a condition code, assigning the code as the value of synonym $$CC.
The code is zero for normal termination and a nonzero value for abnormal termination. Specnﬁcally,
values of $$CC following execution of the compiler have the following significance:

0000 No errors or warnings

4000,6 Warnings issued

6000, Nonfatal errors detected

8000, Fatal errors detected

C000,s Abnormal termination - compiler terminated with runtime error

Condition code synonym $$CC may be tested in a batch stream to alter the execution of the batch
stream when an error is detected. The value placed in $$CC is only valid following the execution of
the compiler (prior to execution of DX10 utilities that set $$CC). Its value may be stored in another
synonym by setting that synonym to the value of @$$CC with an .SYN SCI primitive. An attempt to
determine the value of $3CC by executing an LS command always shows the value of $$CC as zero
because the LS command utility sets $$CC to zero.

11.6 ERROR HANDLING

Syntax errors are detected by SILTI, and semantic errors are detected by SILT2. At the time that
SILT2 writes the listing, all error checking has been performed and ERRFILE contains information
with respect to errors detected by SILTI. SILT2 includes error messages in the listing when
appropriate and writes an indication that errors have been detected on file SYSMSG.

11-2 Digital Systems Division

946290-9701

TI FAZCAL COMFILER 1.3

FROGRAM TRIANGLES
VAR X.Y.Z *INTEGER:
TRI tBODLEANS
AREA. S REALS
FEGIN (% TRIANGLE)
WRITELNC S %
TRIANGLET
SESET CINPUT) 3
REFEAT
READCY.Y. 703
TRI ! =TRUES
TRIT & =X>0 AN
TRI*=Y0 AN
TRI*=Z72:0 AMDO TRIS
IF NOT TRI THEN
CWRITELM{X.Ys 7,
ElL&E BEGIN G (% SINES
TRIf=Y+YRZ AND TR
TRIS
TR

TR
TR

TRI:=Y+Z>X AND
IF NOT TRI O THERN
WRTITELN(X:YsZ, 7

ELEE BEGIN (3 =
Hi=0 L, S (XY AT 8
AFREAL =Z0RT (58 (5-
WETTELN(XS Y, Z, 7
ERDy (o SIDES Ok

{(#=IDES
O AND Y =
TRIANGLE).

FNT s
LINTTL ¥ o=
FND

(4

MAXTMUM NUMBER OF IDENTIFIERS

INSTRUCT TONE =
TRIANGLE

(LR
LITERALE =

Figure 11-1. Source Listing Example, Default Options

OATE =

-, \j
]

10

Y 27

AREAT)y

M)

FORITIVE #)

N)
IDED Ok)
X)#CE=Y) (5200

YEZ 7, AREA)
W)

FOZTITIVE)
O ANT Z = 0

USED = 7

TIME

14514233

O WORDE OF DEAD CODE REMOVED)

130 CODE =

2RO

DATA =

1464

The compiler categorizes errors as warnings, nonfatal errors, and fatal errors. A warning is a syntax
error that SILT corrected, or an irregularity that may or may not actually be an error. A nonfatal
error is an error that does not necessarily prevent CODEGEN from writing an object module or
modules for the program. A fatal error is one that causes SILT2 to produce incorrect intermediate
language; if CODEGEN executes, the resulting object module will issue a runtime error when it is

executed.

11-3

Digital Systems Division

{@ 946290-9701

=ZILTL EXECUTION BESIME

INTERRCT

BETLIMNE

FRIMTLAE

FERDAMDF

LREELZ

MORMAL TERMIMATION

ETACE UZED = 41e4 HEARF LUZED = 21320

ZILT2 ERECUTION EBEESIME
INTERRCT

GETLINE

FEIMTLARE

RERDIAMDF

LREELE

MO ERRORE IM FROGREAM

MOFEMAL TERMIMATION

ETACE UEZED = 11978 HERF WUEED

il
=
[ax]
=]
IT

CODEGEM EXECUTION BEGIME
INTERACT

GETL INE

PRINTLAE

REFADAMNDF

LABELS

MORMAL TERMINATION

STACK UZED = 10154 HEAF UIED

il

1513

iTa
—
DEN

Figure 11-2. TIP Compiler SYSMSG File Display

SILT2 attempts to list an error number on the line immediately following the line that contained the
error. However, since certain errors such as “semicolon expected” may not be detected until the first
symbol on the next line has been scanned, there are a few cases for which the error is indicated one
line too late. There are other cases in which the compiler is not able to identify the actual error;
subsequent code appears to be in error because of an error in preceding code. Syntax errors are
shown in the form !n in which n is the error number. The exclamation point is positioned as closely
as possible beneath the symbol in error. Semantic errors are shown in the form **** ERROR # n
***¥ at the beginning of the line following the line on which the error occurs. The message cannot be
positioned below the symbol because SILT2 processes an intermediate representation rather than the
source code. When errors are detected, SILT2 writes additional error information at the end of the
source listing. The information includes the numbers of errors in each category and a table of error
numbers and corresponding error messages for each number that is printed in the listing. Most of the
error numbers used by the TIP compiler have the same significance as the same numbers when used
by Pascal as defined in Pascal User Manual and Report, K. Jensen and N. Wirth, Springer-Verlag,
1975.

11-4 Digital Systems Division

946290-9701

Tabie 11-1. Files Required by the Compiler Tasks

Task File Name 1/0 File Usage
SILTI INPUT I TIP Source Program -
OUTPUT 0] Used as dump file in case of abnormal termination
SYSMSG (o) Messages
* TOKENS (o) Parse tokens (input to SILT2)
* ERRFILE (0} Syntax errors (input to SILT2)
SILT2 INPUT I TIP Source Program
OUTPUT (0] Source listing with error messages, if any.
SYSMSG 0] Messages-
* TOKENS I Parse tokens
* ERRFILE I Syntax errors
* CILFIL (0] Common Intermediate Language (input to CODEGEN)
* DESCFIL 0] Module descriptor file (input to CODEGEN)
CODEGEN OBJECT (0] Object file
OUTPUT (0] Final listing information
SYSMSG (o) Messages
* CILFIL I Common Intermediate Language
* DESCFIL I Module descriptor file

* TEMPFIL I/0 Internal temporary file

*Files marked with an asterisk are internal temporary files.

Figure 11-3 shows a source listing of code that contains two errors. Notice that the error summary
states that there are four nonfatal errors, and none of either other category. The messages
corresponding to the error numbers that appear in the listing are printed at the bottom of the listing.
The 25th line from the top contains the first error. The number 51 shown on the following line
corresponds to the message := expected. Immediately above the exclamation point that precedes the
number is an equal sign; the colon was omitted from the assignment statement. Three error numbers
are shown following the last line of the program. The corresponding messages indicate that a
statement, an END keyword, and a period have been omitted. Obviously the END. on the preceding
line has not been recognized by the compiler. The actual error is on the second line containing the
comment INPUT CHARS. An at sign (@) was entered in place of an asterisk with the parenthesis to
close the comment. As a result of this error, the compiler considered the remainder of the program
(through the *) at the right end of the last line) to be comment. The compiler was unable to find the
normal termination of the program.

The TIP error messages are listed in Appendix E.

11-5 Digital Systems Division

946290-9701

TT FASCAL COMPILER 1.3 DATE
FROGRAM DIGIOS
TYFE CHBUF = ARRAY (.1..4&.) OF
VAR BLFF : CHBUFS

I, NLM i INTEGERS
FROCEDNRE CCHAR(BUFF @ CHELF s VAR

BEGIN (# CCHAR ®)
NLIMe = O3
FOR Ji= 1 TO I DO

IF BUFF (.J.)>="0" AND

BUFF (.,) =757

= 7. 31 TIME = 11: 4:324
CHAR:

NUM: INTEGER: I8 INTEGER) 5

THERN

NLIM: =NUM# 1 0+0RDOCRUFF (o)) =0ORDC0O7)

ENLDS (# CCHAR)
FROZCEDIIRE CINT (NUM: INTEGER) S
VAR 1 P INTEGERS
BEGIN (% CINT)
Ta=NIM DIV 103
IF T <> O THEN
WRITE (ZHR({NLH
ENDS (& CINT #)
BEGIN (3 DIGIO %)
WRITELN("ENTER 1 TO 5
RESET(INFILIT) 3
Ie= 13
WHILE NOT EOJLN DO BEGIN
READ(BUFF{.I1.)73
I=I+13
51
END: (% INFUT CHARS @)
Ie=1-13
CCHAR(BUFF MM, 1) s
NUM: =NLIM+253
CINT(NLM) 3
WRITELN
=N {3 DISI0 %)

CINTCI) S
MO

ODIGITS

243, 13,23

MAXIMUM NUMBER OF IDENTIFIER:
NLUMBER OF ERRORS
12 E JENDY EXFECTELD
23 E <" EXFECTED
4=z E STATEMENT EXFECTED
51 E Ta=" EXFECTED

-~ FATAL = O

10 + OROCCA

NONFATAL =

0)

T

(# IWNFUT CHARS #)

EED = 13

4 WARNINGS = O

Figure 11-3. Source Listing Containing Errors

11-6

Digital Systems Division

s iy b

o

@ 946290-9701

SECTION XII
SEPARATE COMPILATION

12.1 GENERAL

Development of a large program is significantly less expensive when modules of the program can be
recompiled for correction or for change without recompiling the entire program. In a block-
structured language such as TIP separate compilation is more difficult than in assembly language or
high level languages that are not structured. The scope rules of TIP and the capability of passing
parameters either by value or by reference make this true. To separately compile a TIP routine all
global declarations must be included in the source code so that the environment identical to that in
which the routine executes is provided. Global declarations in this context include the declaration
sections of all routines within which the routine is nested. The process of manually merging the
declaration section is tedious and error-prone.

~ 12.2 REQUIREMENTS FOR SEPARATE COMPILATION
The TIP compiler produces a separate object module for each program and for each routine of the
program. Two object modules result from compiling the following code:

PROGRAM A;
VAR X,Y,Z : INTEGER;
PROCEDURE B(W:INTEGER); FORWARD;
PROCEDURE B;
BEGIN (* B *)
~ W:=Y
END (* B *);
BEGIN (* A ¥)
B (X)
END (* A *).

The two object modules are concatenated in a single file by the compiler; they could be separated

(using the text editor, for example) and stored as separate library members. They could be

reconcatenated before link editing, or could be specified to the link editor by specific INCLUDE
o~ commands in the control file.

When the main program module A needs to be recompiled, a new module for A can be compiled and
the new module linked with the existing module for B. To recompile a new module for A, simply
omit the code for procedure B, and compile the following:

’ PROGRAM A;

% VAR X,Y,Z : INTEGER;

PROCEDURE B(W : INTEGER); FORWARD;
BEGIN (* A *)

B(X)

END (* A *).

w

&8

Since procedure B is omitted, the forward declaration of procedure B must be included so that the
call to procedure B in program A will result in the correct linkage.

121 Digital Systems Division

{_@2 9462909701

To recompile routine B correctly, the compiler must have the declarations of the main program as
well as those of routine B. The source code is as follows:

PROGRAM A;
VAR X,Y,Z : INTEGER;
PROCEDURE B(W : INTEGER); FORWARD;
PROCEDURE B;
BEGIN (* A *) .
W =Y
END (* B *);
BEGIN (*$NO OBJECT*) A i
END (* A *).

The NO OBJECT option suppresses the production of an object module for A, and only the object
module for B is produced. This module may be linked with the existing module for A to obtain a new
version of the entire program.

The NO OBJECT option is required because even the BEGIN END keywords alone for module A
would have produced an object module. It would have been necessary to delete this module in order
to properly link the existing A module with the new B module.

A different approach to the problem of separately compiling a module of a program is to store
individual source modules in a library. The source code in the example could be separated as follows:

PROGRAM A;
VAR X,Y,Z : INTEGER;)
PROCEDURE B(W : INTEGER); FORWARD;
BEGIN (* A *)

B(X)
END (* A *).

PROCEDURE B;
BEGIN (* B ¥)
W =Y

END (* B *);

The first of the two source modules shown may be used without alteration to recompile module A.
Combination of the two with appropriate text editing is required to recompile module B. .

The requirements of separate compilation of a program having more routines or nested routines to
two or more levels are somewhat more complex. The preceding example provides a general idea of
what must be done. Specifically the declarations of all routines within which the routine to be
separately compiled is nested, and the declarations of the main program must be included. On the
other hand, only the statement section of the routine being separately compiled is included. The
preparation of source code for separate compilation of a routine can be done manually using

utilities. However, the TIP software includes the Configuration Processor (CONFIG) to perform
these operations. :

12-2 Digital Systems Division

-

o °

[}

{@ 946290-9701

12.3 THE CONFIGURATION PROCESSOR ‘
The Configuration Processor supports separate compilation of TIP modules by performing the
following functions:

e Maintaining a library of source modules to be combined as required for separate
compilation of each module of a program.

e Preparing a source program for each separate compilation.-

e Maintaining a library of object modules of a program, from which appropriate object
modules are linked.

12.3.1 FUNCTIONAL DESCRIPTION OF CONFIG. The functions of CONFIG are shown in
figure 12-1, a flowchart of the separate compilation operation. The following description assumes

that user source libraries have been prepared that include the source modules required for the

separate compilation. These libraries could have been produced by a text editor; i.e., the user could

have written the source code as separate modules in a source library. Alternatively, the library could

have been created from a source program by a source program splitting utility (SPLITPGM)

described in a subsequent paragraph.

The separate compilation using CONFIG consists of the following steps:

¢ The user executes CONFIG, directing its actions with user commands. In response to
these commands, CONFIG communicates with the user source libraries and prepares the
desired TI Pascal program. CONFIG also writes a process configuration as specified in the
user commands, which describes the hierarchical structure of the program. In addition,
CONFIG writes a file of deferred commands for a subsequent execution of CONFIG, and
a command listing file that contains the commands and a copy of the process
configuration.

o The TIP Compiler processes Tl Pascal program written by CONFIG. The compiler
produces a separate object module for each routine being compiled, and a source listing.

¢ CONFIG executes again, using the commands in the deferred command file written
during the previous run of CONFIG. The object modules written by the compiler are
concatenated on a file; CONFIG separates the modules, writing them as members of the
user object libraries. Optionally, CONFIG may collect a full set of object modules to be
supplied to the Linkage Editor. '

o The Linkage Editor links the object modules with modules from the TIP object library to
form a load module (linked object module) and writes the link edit map listing.

12-3 Digital Systems Division

946290-9701

USER |
COMMANDS f

MASTER or LIBRARY

USER
SOURCE)
LIBRARIES
OUTPUT l /
| commanD @ —
LISTING CONFIG 1
COMPFILE Z
PROCESS
CONFIGURATIOP/

/Tl PASCAL/
PROGRAM

~T1P COMPILE%

OBJECT

OBJECT
MODU LE(S)

|

CONFIG

g
OBJLIB or ALTOBJ
OBJECT ¢ f——
[MgnggErs)] { uSER oBJECT

, \ LIBRARIES /

e 4

LINK EDIT /. LINKAGE [&—
MAP [8

EDITOR G-

LOAD
MODULE

(A) 138380

Figure 12-1. Flow of Separate Compilation Using CONFIG

124 Digital Systems Division

P

o8

L4

@ 946290-9701

12.3.2 FORMAT OF SOURCE MODULES. Source modules for input to CONFIG must be
separated and stored as members of user source libraries. They must conform to the following rules:

® A source module consists of one program, procedure, or function in which all contained
procedures and functions have been replaced by forward declarations.

e Each procedure and function must be declared in a forward declaration to ensure that
each calling sequence is correctly defined.

e Keyword BEGIN of the compound statement that contains the statements of the program,
procedure, or function is in character positions 1 through 5. The component statements
must be indented.

e Keyword END of the compound statement that contains the statements of the program,

procedure, or function is in character positions 1, 2, and 3. The component statements
must be indented.

e Compiler option NULLBODY should not be specified in any of the source modules.
¢ Character position 1 should never contain an asterisk (*).

e Character position 1 should never contain a minus sign (-) unless character position 2 also
contains a minus sign.

e A comment in the declaration section that begins in character position 1 must be closed by
a brace (}) in character position 72 or an asterisk and parenthesis (*)) in character
positions 71 and 72 of the same or a succeeding line.

CONFIG recognizes one or more comments in the declaration section of a module preceding the
TYPE or VAR declaration as the documentation section of the module. Comments in this section
must begin in character position 1 and close in character position 72 of the same or a succeeding line,
and may be listed separately from the source code. The LISTDOC command that specifies the
modules for which the documentation section is to be listed is described in a subsequent paragraph.

Utility NESTER may be used to comply with indentation requirements (third and fourth rules), and

utility SPLITPGM may be used to divide a source program into source modules in accordance with
the first rule.

12.3.3 PROCESS CONFIGURATION. CONFIG must determine the structure of the program:
i.e., the name of the main program, the names of the routines, and the name of the routine within
which each routine is declared (or the main program name for global routines). The primary data
structure that contains this information is called the process configuration; it is written, maintained,

and used by CONFIG. User commands specify the structure and contents of the process
configuration.

In some BNF productions for configuration processor commands, angle brackets (<>) are used as
terminal symbols. When an angle bracket in a BNF production is a terminal symbol, it is enclosed in
quotation marks (“ 7).

12-5 Digital Systems Division

@ 9462909701

The process configuration is structured as a tree with each node representing a source module of the
program. The root node of the process represents the main program module. Consider the following
program structure:

LABELS
INTERACT READANDPRINT

GETLINE PRINTLABEL

The process configuration is represented in tabular form as follows:

PROCESS NAME SOURCE LOCATION OBJECT LOCATION FLAGS SET
LABELS < LIBRARY ,LABELS>
INTERACT < LIBRARY ,INTERACT >
READADNP < LIBRARY ,READANDP >
GETLINE < LIBRARY ,GETLINE>
PRINTLAB < LIBRARY ,PRINTLAB>

The example process configuration corresponds to the commands in the example in paragraph
12.3.3.4. The source locations listed are the locations at which CONFIG accesses the source modules.
The library name is the default value (paragraph 12.3.8) because no DEFAULT SOURCE command
(paragraph 12.3.8.6) has been entered. No object locations are listed because no DEFAULT
OBJECT command (paragraph 12.3.8.7) has been entered. No flags (paragraph 12.3.6) are listed
because the initial states of the flags have not been altered.
The commands used to define process corfigurations are:

e *BUILD PROCESS

e *ADD

o *CAT PROCESS

12.3.3.1 BUILD PROCESS Command. The BUILD PROCESS command initializes a
- configuration process as the current configuration process. The syntax of the command is as follows:

<build process command> ::= *BUILD PROCESS [<location>]

<location> == “<’[<library>,] <member>*“>"
The syntax diagram is as follows:

Build process command:

A@@.‘_g LIBRARY P MEMBER

12-6 Digital Systems Division

/+BUILD
»{PROCESS

™

4@ 946290-9701

The location parameter is optional. It may be omitted when the location is specified in the CAT

W\ PROCESS command. The location consists of a library synonym and a member name. The library
synonym may be omitted; the default source library (LIBRARY, unless it has been altered by a
DEFAULT SOURCE command) is used.

12.3.3.2 ADD Command. The ADD command specifies the name of the root node for a process

B configuration and, optionally, a location at which the source module for the node is cataloged. An
alternate form of the command specifies the name and location of one or more nodes as sons of a
specified node. The syntax of the command is as follows:

= <add command> ::= *ADD <name>[<location>][:<name> [<location>]
{,<name>[<location>] }]

The syntax diagram is as follows:

Add command:

-oG\DD)__g NAME LOCATION 1 : NAME »] LOCATION l Yy

- The first ADD command following a BUILD PROCESS command has only one name, that of the
root node of a process configuration. The location parameter is the location as defined for the
BUILD PROCESS command (paragraph 12.3.3.1) and is optional. When no location is entered, the
node name is used as the member of the default source library. Subsequent ADD commands require
that the first name parameter is the name of a previously defined node. The location, if entered, is
ignored. Name parameters to the right of the colon (:) define additional nodes that are sons of the
node named in the first name parameter. The location, if entered, specifies a library and member or a
member of the default source library for the module. If no location is entered, the node name is used
as the member name of the default source library (LIBRARY, unless it has been altered by a
~ DEFAULT SOURCE command).

\

12.3.3.3 . CAT PROCESS Command. The CAT PROCESS command causes the current process to
be stored at the specified location. The syntax for the command is as follows:

W

The syntax diagram is as follows:

o

Cat process command:

———DCCAT PROCESS) 1L LOCATION —l-—v

12-7 Digital Systems Division

@ 946290-9701

The location is the location as defined for the BUILD PROCESS command (paragraph 12.3.3.1).
When a location has been previously specified for the current process configuration (in a BUILD
PROCESS or USE PROCESS command), the location may be omitted. When a location is
specified, the location in the CAT PROCESS command applies, replacing any previous location.

12.3.3.4 Process Configuration Command Example. The following is an example of a set of
commands to define a process configuration. The commands in the example define the process
configuration described in paragraph 12.3.3:

*BUILD PROCESS

*ADD LABELS

*ADD LABELS : INTERACT

*ADD LABELS : READANDP

*ADD READANDP: GETLINE

*ADD READANDP: PRINTLAB

*CAT PROCESS <LIBRARY,PROCESS>

The BUILD PROCESS command initializes a process configuration and the first ADD command
defines the root node of the structure as the main program, LABELS. The next two ADD
commands define two sons of the root node, INTERACT and READANDP. The last two ADD
commands define two sons of node READANDP, GETLINE and PRINTLAB. The CAT
PROCESS command specifies that the process is cataloged as member PROCESS of a library the
pathname of which is the value of synonym LIBRARY. Since the BUILD PROCESS command did

not specify a location for the process configuration, the CAT PROCESS command requires a
location parameter.

Figure 12-3 shows the source code for the program structure used in the process configuration
example.

12.3.3.5 USE PROCESS Command. The USE PROCESS command specifies an existing process
configuration as the current process configuration. The syntax of the command is as follows:

<use process command> ::= *USE PROCESS <location>
The syntax diagram is as follows:

Use process command:

__{USE PROCESS)——u LOCATION >

The location is the location as defined for the BUILD PROCESS command (paragraph 12.3.3.1).

The location must be specified, and must be the location of a cataloged process configuration. The
process configuration becomes the current process configuration for the remainder of the run. Either
a USE PROCESS command or a BUILD PROCESS command must define a current process
configuration before any command that operates on a process configuration is entered.

12-8 Digital Systems Division

2y

o g

-

4@ 9462909701

12.3.4 COMPILATION. The principal use of CONFIG is in compiling a program or in separately
/WN compiling one or more object modules of a program. As shown in figure 12-1, compilation consists
' of an execution of CONFIG that produces a source module that includes the necessary source library
members from which the required module or modules may be compiled, and a file of deferred
commands for a subsequent run of CONFIG. The compiler executes, using the source module
written by CONFIG, and provides an object file containing the desired module or modules. A second
i execution of CONFIG uses the deferred command file to control the separation of the object file into
an object module library and/or writing an object file for direct input to the linkage editor.

The user commands for compilation include a BUILD PROCESS command, ADD commands, and

« CAT PROCESS command to define a process configuration, or a USE PROCESS command to
specify a previously built process configuration. A COMPILE command to specify the object
modules to be compiled is also required. The deferred command file includes a USE PROCESS
command, a SPLIT OBJECT command, and an EXIT command. The additional commands used in
compilation are described in the following paragraphs.

The USE PROCESS command placed in the deferred command file differs from that entered by the
e user. The CAT PROCESS command does not store the entire process configuration; the USE
‘ PROCESS command previously described would not access all the information required for

separating the object modules and/ or writing the object file. The USE PROCESS command placed
in the deferred commands file is in the following format:

*USE PROCESS #

The pound sign (#) indicates that the external representation of the process configuration follows the
USE PROCESS command in the deferred commands file. This is the mechanism by which CONFIG

(ﬂm passes the entire process configuration to the succeeding run of CONFIG that separates object
o modules.

12.3.4.1 COMPILE Command. The COMPILE command causes CONFIG to prepare a source

module for compilation and specifies the module or modules to be compiled. The syntax for the
command is as follows:

<compile command> ::= *[NO] COMPILE ALL | *[NO] COMPILE <name>[ALL]
{ ,<<name> [ALL]}

~ The syntax diagram is as follows:

Compile command:

o G

—Olete « -

NAME @

e &

The optional keyword NO allows the user to inhibit compilation of the module or modules named in
the command. When the keyword ALL is entered following the keyword COMPILE with no name
parameter, the command controls compilation of the entire program. The name parameter is the

129 Digital Systems Division

{@ 946290-9701

name of the node corresponding to a module to be compiled. When the keyword ALL follows a
name parameter, the command controls compilation of the module corresponding to the named
node, and the modules for all its descendants. Additional name parameters each optionally followed
by keyword ALL may be entered.

The following guidelines apply to selection of modules for recompilation:

e When a statement within the compound statement of a program or routine is changed,
recompile the module that contains the program or routine.

e When a declaration of a program is changed (global declaration), recompile the entire
program.

e When a declaration of a routine is changed, recompile the module that contains the
declaration, and the modules of all nodes that are descendants of the node that contains
the declaration.

The COMPILE command controls preparation of the source module for the compilation, including
either the declarations of a program or routine, both the declarations and the statements, or neither.
When the entire program is to be compiled, the source module contains both the declarations and
statements of all routines and of the program. When a module is to be compiled, the source module
contains the declarations of the program and routines that correspond to all nodes that are ancestors
of the module and the declarations and statements of the module to be compiled. When the module
and all its descendants are to be compiled, the declarations of modules that are ancestors of the
module are included with the declarations and statements of the module itself and of all modules that
are descendants.

12.3.4.2 SPLIT OBJECT Command. The SPLIT OBJECT command is placed in the deferred
command file when a COMPILE command is included in the INPUT file. The command should not
be entered by the user. The format of the command is:

*SPLIT OBJECT

The SPLIT OBJECT command causes CONFIG to catalog each object module of the object file
written by the compiler as a member of a library. The library synonym and/ or member name may be
specified in a USE OBJECT command or a DEFAULT OBJECT command. Otherwise the default

object library is used with the node name as the member name. The default object library is
ALTOBJ.

12.3.4.3 EXIT Command. The EXIT command is placed in the deferred command file following all
other commands placed in the file. The format of the command is:

*EXIT

When CONFIG reads the EXIT command in the INPUT file it terminates processing. The user may
enter the command to abort execution of CONFIG. No files are saved.

12.3.4.4 Compilation Examples. The following commands in the INPUT file cause CONFIG to
provide a source file that contains all source modules for a program and a deferred command file to
catalog all object modules in the object file written by the compiler:

*USE PROCESS <LIBRARY, PROCES>
*COMPILE ALL

12-10 Digital Systems Division

<

by

»

o &

{@ 9462909701

In this example, the process configuration has previously been built and cataloged at location
<LIBRARY,PROCES>. If a BUILD PROCESS command, a set of ADD commands, and a CAT
PROCESS command were included instead of the USE PROCESS command, a new process
configuration would be built and cataloged. The COMPILE command applies to the program that
corresponds to the current process configuration, whether the process configuration was built in a
previous run of CONFIG or was built in the same run.

Figure 12-2 shows the contents of file OUTPUT following the initial run of CONFIG. The
commands are listed first, followed by a tabular representation of the process configuration. The
flags set in the process configuration are the result of the COMPILE command as described in a
subsequent paragraph. The pathnames corresponding to the files used are listed next, followed by
the pathnames assigned to the library synonyms defined by CONFIG.

Figure 12-3 shows the source listing of the compiler run. Notice that CONFIG has inserted some
comment lines, but that otherwise the program is identical to the NESTER output (Figure 10-2) of
the same source program.

Figure 12-4 shows the contents of file OUTPUT for the deferred processing run of CONFIG. The
deferred commands are listed and the object modules are also listed. The node name, and location is
shown for each module, followed by the termination record of the module.

A partial compilation of two modules of the same program is performed using the following
commands:

*USE PROCESS <LIBRARY, PROCES>
*COMPILE PRINTLAB, INTERACT

CONFIGURATIM!, PRCCESSNR T8, 17 14323
*USF PROCFSS <L T~RARY, PRNCES>
*COMPTLE ALL

PROCESS NAME SUURCE LOCATION NRJECT LGCATTION FLAGS SET

LARFLS <_TRARARY ,LARELS > 01
INTERACT <LTERARY ,INTERACT> 01
READANDP CLTARARY ,READANOP> 01
GETLINE <LT3R42Y ,GETLINE > 01 !
PRIMTIL AR <LIRRARY ,PRIMTILAR> 01
INPUT Si1nhe
CRTFIL S{0N9Q
OUTPUT NS0, HLAS . EX8R CF

LI T R T I | 1]

COMPFIIF LCNw2FT)0
CPTEMP LCPTFNDAQ
ORJECT JURJFCTCA
MASTEP = D02 LASEYL™MP SPC
LIBRAPY = PSG2,CF8,.FXa4p 5B
UBJLIF = NS .GASEXLAP YRY
ALTNBJ = DSO7,GLS EXAYP R

Figure 12-2. Contents of OUTPUT File, Initial CONFIG Run, Full Compilation

12-11 Digital Systems Division

946290-9701

TI PASCAL COMPILER 1,3 DAYTE = 78, 17 TIME = 14225321
(*+ LARFLS
+ INTFRACT
’ READANMDP
+ GETLINE
' FRINTLAR
woe x)
PROGRAM LABFLS: 000010
(*'°"""°-""""°°'""-°-"-"“°°°---'-=---=‘-'-'-'-°------------°--000020
PROGRANM LAFELS: 000030
PURPOSE ¢ IHIS PROGRAM READS AN ANDRESS LAJFL AND PRINTS MULTIPLE 000040
CNPIES NF THAT LABEL, 000050
FILES USED : IMPU'T = FOR USER=SUPPLTED PARAMETERS AND THE LABEL 000060
CRTFIL = 'ISED FOR PROMPTING IMPUT 000070
GHTPYT = MULTIPLE COPIES NF THE LABFL 000080
PROCFODURFS CALLED s INTERACT, READANDPRINT : 000090
cmceccecceememmeceoeceseessmcesSe-escssesscemcesm="esccecesscesaseaccee=%)(000100
VAR CRTFIL ¢ TEYT 3 (xUSEC TO PROMPT INPUT®) 000110
CHARSPERLINF ¢ INTEGER:; (xNUMRER OF CHARACTERS PER LINE=) 000120
LINFSPEPLARFL ¢ IMTEGER: (xNIIMBER 0OF LINFS PER LABEL~®) 000130
COPYCOUNT ¢ 1IMTEGERS (*NIIMBER OF COPIES T3 PRIMNTx) 000140
PROCEDURE INTFRACT: FORWARDY A 000150
PROCENURE READAMIPRINT: FORWARD: 000160
(*+ *)
PROCEDURE INTFRACT: . 000010
(*-------------—---------°----------------------'-*-'-'------------~---°000020
PROCEPURE TNTFRACT: 000030
PURPOSE ¢ INTERACT PRNOVPTS THE USER., REAUESTING CERTAIN INPUTS, 000040
OUTPUTS : CHARSPERLINE = NUMBER OF CHARACTERS PER LINE 0000S0
LINESPERLAGEL = NUMRER DF LTNES FER LAREL 000060
COPYCOUNT « NUMBER OF LABELS TGO PRINT 000070
--.----------_--------.--"--------------.------------.---.--.---------*)000050
BEGIN (*TNTERACTx) 000090
REWRITEC(CRTFTL) 000100
WRITELNO CRTFTIL, “HOwm MANY CHARACTERPS PER LINE?®) 000110
RESET(INPUTY:s RFAD(CHARSPERLIME) 000120
WRITELNC CFTFTL, “HDwx MANY | INES PER LABEL?®)3 000130
REANLN: REAN(LTNFSPERLABFL)3 000140
ARITELH(OwTFIL, “HON MANY LARELS?): 000150
READLN: READ(COPYCOUNT)3 WRTITELN(CRTFIL, *NOwW INPUT THE LABEL’): 000160
END s) (*xINTERACT®) 000170
(*, *)
PROCEDURE RFADAMEPRTINT: 000010
(¥memmaccecmcmesesmsmmcses-ess-smesmmes-SssesesesSersSescscssceocscsmes==000020
PROCEDNUPE READANDPRINT; ' 000030
PURPOSE : READAMDPRINT READS A LABEL ANP PRINTS MULTIPLE COPIES OF IT,.000040
PROCEDURES CALLFD : GETLINE, PRTNTLABEL © 000050
feeceecoieemmmereeesmmemseseesscssmssmesmse-esestscetecmeccccssccecce==x)(000060
TYPE 000070
LTWF = PAfkFi) ARRAY (.1..CHARSPFRLINE.) OF CHAR: 000080
VAR 000090
LARFLIMAGE ¢ ARPAY (.1..LTNESPERLAREL,) OF LINE:. 000100
PROCENUPE GFTLIME(VAR THISLINLE ¢ LIME); FORWARD: 000110

Figure 12-3. Source Listing, Full Compilation Example (Sheet 1 of 2)

12-12 Digital Systems Division

@ &

&

946290-9701

PROCEDURE PRINTLABREL: FORWARD: ' 000120
(*+ . *)
PROCEDNURE GFTLINE(xVAR THISLINE : LINE%): 000010
(Aemecccceccccacccccceccecececrcccccanrseccrcncee"ctaceccrananncccccse==e((0020
PROCEDURE GETLINE(VAR THISLINFE ¢ LINE): 000030
PURPOSE : GETLINE RFADS A SINGLE LINE OF A LAREL. 000040
INPUTS : CHARSPERLINE = NUMBFR OF CHARACTERS PER LINE 0000S0
OQUTPUTS ¢ THISLINE « THE LINE THAT WAS READ, 000060

LAl A e L D L L L L e L L LR L L D i i A

VAR CH ¢ INTEGER: 000080

BEGIN (*GETLINE®) 000090
READLN: CH := 1 000100
AHILE CH <= CHARSPERLINE AND NOT FOLNCINPUT) DU BEGIN 000110

READ(THISLTNE(.CH,)): CH 2= CH ¢+ 1 000120
END: (*FILL IN REST OF LINE WITH BLANKS%) 000130
FOR J := CH TN CHARSPERLINE DO THISLINEC(.J.) :5 ° ‘¢ 000140

END: (*GETLINE®) 000150

(x, %)

PROCEDURE PRINTLAREL: 000010

(Aecmrcenmcnrcrccannccecrecencrrmecccncneccnccnce e e arcecocnscarerana==()(00020
PROCEDURE PRINTLABEL: 000030
PURPQSE : PRINTLAREL PRINTS ONE COPY OF THE LASBFEL, 000040
INPUTS ¢ LIMFSPERLABFEL = WUMRER OF LINFS PER LABEL 000050

CHARSPERLINF « NUMBER OF CHARACTERS PER LINE 000060
LABFLIMAGFE = THE LAREL TO BE PRINTED 000070

LI LR e L D L e eI A L L LI L L L R L LR SR 10}

BEGIN (*PRINTLABEL*) 000090
FOR L := 1 T0O LINESPERLABFEL DO REGIN 000100

FOR CH 2= 1 TO CHARSPFERLINE D0 WRYTE(LABELIMAGE(,L.)(.CH,)): 000110
WRITELNs FEND; 000120

END: (*PRINTLABEL*) 000130

(%= *)

BEGIN (*READANDPRINT®) 000130
FOR L := t TO LTNESPERLABEL DO GETLINF(LABELIMAGE(.L.)): 000140
FOR K = 1 TO COPYCOUNT DO PRINTLABEL: 000150

END: (*READANDPRINT=®) 000160

(%= ’ *)

BEGIN (*LARELS¥) 000170
INTERACT: READAMDPRTNT: 000180-

END. (*_ABELS*) 000190

MAXTMUM NUMRER OF IDENTIFIERS USED = 1§

INSTRUCTIOMNS = 69 (LESS 0 WORDS OF DEAD CODE REMOVED)

INTERACT LITFRALS = 130 CODE = 308 DATA = 40

INSTRUCTINNS = 34 (LESS 0 WORDS OF DEAD CONDE REMOVED)
GETLINE LITERRALS = 20 CODE = 128 DATA = S0

INSTRUCTIONKS = 33 (LESS 0 NORpS OF DFAD CODE REMOVED)
PRINTLAR LITERALS = 14 CODE = 116 DATA = 46

INSTRUCTIONS = 58 (LESS 0 ~0RDS OF DEAD CODE REMOVED)
READAMDP LITERALS = 28 CODE = 190 DATA = S

INSTRUCTINKNS = 33 (LESS 0 WOPDS OF DFAD CONE REMOVED)
LABFLS LITFRALS = 42 CODE = 134 DATA = 166

'

Figure 12-3. Source Listing, Full Compilation Example (Sheet 2 of 2)

CONFIGURATIN' PROCESSAR 78, 17
xUSE PROCFSS
*SPLIT OBJECT

14331244

INTERACT = <ALTNWT ,THTERACT>: INTERACT 78, 17 14293112 TIPSCL
GETLINE = <ALTOBJ ,GETLTNE »>: GETLINE 78, 17 14:29:30 TIPSCL
PRINTLAS = <AL |N3T ,PXINTLAR>: PRINTLAG T&, 17 14:29:57 TIPSCL
READANDP = <ALTNYJ ,READAYDP>: READANDF 78, 17 14:30:48 TIPSCL
LQBELS = <ALTOBJ SLARELS > LARELS 78, 17 14:31: S TIPSCL
*EXTT

Figure 12-4. Contents of OUTPUT File, Deferred Processing, Full Compilation

12-i3 . Digital Systems Division

o
@ 946290-9701

The COMPILE command for this example specifies compiling modules INTERACT and
PRINTLAB. The source module for the compilation requires the declarations of those modules that
are ancestors of these modules; specifically, the declarations of modules LABELS and
READANDPRINT. The source module also must include both the declarations and statements of
modules PRINTLAB and INTERACT.

Figure 12-5 shows the contents of file OUTPUT for the initial CONFIG run. As in the full
compilation example, the file contains the commands and a tabular representation of the process
configuration. The flags set in the process configuration (described in a subsequent paragraph)
correspond to the portions of modules that are to be combined in the source file that CONFIG
builds. The pathnames are identical to those in the preceding example.

Figure 12-6 shows the source listing of the compiler run. The declaration portion of module
LABELS is first, including the forward declarations of routines INTERACT and
READANDPRINT. Next is module INTERACT, followed by the declaration portion of module
READANDPRINT. Forward declarations of routines GETLINE and PRINTLABEL are included,
even though no portion of module GETLINE is included in the partial compilation. Module
PRINTLABEL is next, followed by the statement portions of routine READANDPRINT and
program LABELS. To inhibit the compiler from writing modules READANDP and LABELS, the
statement portions of these modules supplied by CONFIG consist of BEGIN keywords followed by
NULLBODY option comments and END keywords.

CONFIGURATINN PRUCESSNP 78, t7 15: 6:18
*USF PROCFSS < I~P.RY, PRNCES>
*COMPTLF PRINTLASR, THTeRACT

PROCESS NANMF S(H<CE LOCATION NRJECT LOCATION FLAGS SET
LABELS : <. T4RARY ,LARELS > 0
INTERACT <LT3RARY , INTERACT> 01
- READANDP <LTU=RARY ,READANDP> 0
GETLIME ‘¢ T4RARY ,GETLINE >.
PRINTLAR <LTHRARY ,PRINTLAB> 01
INPUT = ST1N9
CRIFIL = 871009
QUTPUT = NSN2.GASLEXEMP ,CF1
COMPFILF = COMPFTQQ
CPTEMP = ,CPIF~P(Q -
OBJECT = JURJFCTN9
MASTER = 0S02,GAS.EXAMP SRC
LIBRARY = DS02.GAS.EXA"P,.SRC
0BJLIBR = DSC2,.GAS.EXLMP ,08)
ALTOBJ = NSO2 303, EXAMP JRJ

Figure 12-5. Contents of OUTPUT File, Initial Run, Partial Compilation

12-14 Digital Systems Division

946290-9701

fwm\ TI PASCAL CON#PILER 1.3 DATE = 78, 17 TIME = 18: 7:33
(*+
+ IMTERACT
+ PRIMTLAR
- *)
» PROGRAM LABFLS: . 000010
(fewecercrasrracceccerrcerceronrsecenceceoeerrrer e e erecsenwnecacenee==()()(0()20
PROGRAM LAFELS: 000030
PURPQOSE THIS PRNGRAM REANDS AN ANCRESS LABEL AMD PRINTS MULTIPLE 000040
' COPTES NF THAT LAREL, , 000050
s FILES U!SED : IMPUT = FOR USER=SUPPLIED PARAMETERS AND THE LABEL 200060
CRIFIL = 1SED FOR PROMPTING INPUT 000070
QUTPUT = MULTIPLE CNPIES OF THE LABEL nnooao
PROCEDURES CALLED : INTERACT, REAGANDPRINT 000090
ecscerecscracccrarcrareee e~ Ceccercrrs e r e T e e T et e et rensenvnvenne==k) (00100
VAR CRTFIL : TEX1 (xUUSED TO PROMPT INPUTx) 000110
CHARSPERLTINE : INTEGER: (*NUMRER OF CHARACTFRS PER LINE%) 000120
LINESPERLARFL : IMTEGER: («NUMBER NF LINES PER LABEL*) 000130
Mm COPYCHUNT ¢ INTEGER: («NUMRER OF CPPIES TO PRINT®) 000140
' PROCENURE INTERACT: FNRWARD: 000150
PROCENURE REARANUDPRINT: FNRNARD: - 000160
(*+ *x)
PROCEDURE INTFERACT: 000010
(kewememermmcrrcrmer e e cemerec e e e ncrrrercece s e e orcneccnacscenan=e=)0)020
PROCEDURE IMTFRACT: 000030
PURPOSE ¢ INTERACT PRIMPTS ThFE UUSER, REAUFSTING CERTAIN INPUTS, 000040
QUTPUTS ¢ CHARSPERLINE - NUMBFR OF CHAKACTERS rFFR LINKE 000050
LTHFSPERLAGBEL = NUMBER OF LINFS FER LAS3FEL 000060
COPYCNIINT = NIJ#BER OF LASELS TO PRINI 0nonvo
~ cscmcccac- m————— cmeeme- ~esemcssmecnccceccececcceterececaccccncnecsaeaekx) 000080
BEGIN (*xINTERACT*) 000090
RENRITE(CRTFTL) 000100
WPITELNC CRTFTL, “HOw ™MANY CHARACTERS PFR LINMEZ2®) 000110
RESETCINPLI): RFAD(CHARSPERLINF) 000120
WRPITELNC CKRTFIL, ‘HOR MAnY LINES PER LAREL?C) 000130
READLM: RFAD(LTMFSPERLAREL) i 000140
WRITELNC CRTFIL, “H0W MAGY LARELS??) 000150
READLNM: REAQ(COPYCOQUNT)¢ WRTITEWLN(CRTFTL, “NON INPUT THE LABEL®): 000160
END: (*INTERACT=*) 000170
(%, %)
PROCEDURE REANAMDPRTNT; 000010
Wm‘ (kewmecocrecccanncevecas R L T cemeTt et st nerc e ccncennne=()0002()
PROCEDURE READPANDPRINT: 000030
PURPOSE : REAPANGPRINT READS A LABEL AND PRINTS MULTIPLE COPIES QOF IT.000040
PROCENURES CALLED : GETLINE, PRINTLABEL 000050
CeeccorarrsteneTerveawee e ------'---'----—----------°°"-’"‘-"'-‘--”""--*)000060
TYPE 000070
4 LINE = PACKED ARRAY (.1..CHARSPERLIME.) COF ChHAR: 000080
VAR _ 000090
2 LABELIMAGF = £RRAY (,1,,LINFSPERLABFL,) OF LINE: 000100
PROCEDURE GFTLINE(VAR THISLINE : LINE): FORWARD: 000110
PROCENURE PRINTLAREL: FORWARD:) 000120
@

Figure 12-6. Source Listing, Partial Compilation Example (Sheet 1 of 2)

12-15 Digital Systems Division

946290-9701

(*+ *)
PROCECURE FPINTLAREL: 000010
(kececcvmcancnan croecceercomane cececeno - -
Rl R S 000
PRUCENURE PPIMTLAREL 8080%8
PURPOSE ¢ PRIMTLAREL PRINTS OME COPY NF THE LASBFL, 000040
INPUIS @ LINFSPERLAREL = NUYMARER OF LINES PER LAGEL 000050
CHARSPEPLTNF = NUMBER (F CHARACTERS PER LINF 000060
LASFLT#AGE "= THE LASEL TGO RF PRINTED 000070
---------p--.----u.--e--aa-vu---qco ----- ---—--_n----------o-u----e----*)00()080
BEGIN (xPRINTLABEL) 000090
FOR L = 1 T0 LINESPERLASBEL D0 BEGIN 000100
FOR CH = 1 TO CHARSPFERLIME DO WRITE(LABFLTYAGE (L) (.CH,)) 000110
WRPITELiis END: o 000120
%TD’ v - (*PRINTLABEL*) 000130
BEGIN (*NULIRNODY x)
END (* READALDRP %)
(x= x)

BEGTN (ANULLRODY *)
END (% LARELS %),

MAXTMUM NUMRER OF INENTTFTERS USED = 14 .

INSTRUCTINNS = 69 (LESS 0 AORDS OF UDEAD CONE WREMQAVED)
INTERACT LTT1FRALS = 130 CuPE = 3CA DATA = 40

INSTRUCTIONS = 33 (LESS N WORDS OF DEAD CQONE REMOVED)
PRINTLAR LTTFRALS = 124 CODE = 116 0DaTa = 46

Figure 12-6. Source Listing, Partial Compilation Example (Sheet 2 of 2)

Figure 12-7 shows the contents of file OUTPUT for the deferred processing. The same deferred
commands are used as for full compilation and the object modules written by the compiler are listed.
The newly compiled modules for the specified routines INTERACT and PRINTLABEL) replace
the previously compiled modules as members of library ALTOBJ.

12.3.5 SOURCE LISTING. CONFIG supports the listing of the source modules of source libraries
specified in a process configuration. Two commands are provided. The LIST command specifies
listing of one or more complete source modules. The LISTDOC command lists the documentation
section of one or more source modules.

The documentation section of a source module consists of one or more comments at the beginning
of the declaration section, preceding the TYPE declaration, if any, or the VAR declaration. The
brace ({) or parenthesis and asterisk ((*) that begin the comment must be in character position 1
or character positions 1 and 2 respectively. The closing brace (}) or asterisk and parenthesis (*))
must be in character position 72 or character positions 71 and 72 of the same or of a subsequent
line. The declaration section may consist of a multiline comment as in the example or of a group
of comments.

The listings are written after all commands in the INPUT file have been processed and show the
effect, if any, of any of these commands on the listing.

12.3.5.1 LIST Command. The LIST command causes CONFIG to list one or more source modules
specified in the current process configuration. The syntax for the command is as follows:

<list command> ::= *[NO] LIST ALL | *[NO] LIST <name>{ALL] { ,<name>[ALL]}

12-16 Digital Systems Division

<«

r’e

{—@} 946290-9701

CONFIGURATINN PPICESSOR T8, 17 15:10:28
*USE PROCESS
*xSPLIT NrJECT

INTERACT = <ALTNRJ ,TNTERACT>: INTERACT 78, 17 16: 9:17 TIPSCL
PRINTLAR = <ALTOnJ ,PRINTLAR>: PRINTLAR 78, 17 152 9:51 TIPSCL
*EXTTY

Figure 12-7. Contents of OUTPUT File, Deferred Processing, Partial Compilation

The syntax diagram is as follows:

List command:

(O

ALL

HE O
The name parameter is the name of a node in the current process configuration. The source module
corresponding to each named node is listed. When the keyword ALL is entered alone, all source

modules of the program are listed. When the keyword ALL is entered following a name parameter,
the command lists the specified module and all descendants.

12.3.5.2 LISTDOC Command. The LISTDOC command causes CONFIG to list the
documentation section of one or more source modules specified in the current process configuration.
The syntax for the command is as follows:

<listdoc command> ::= *[NO] LISTDOC ALL|*[NO] LISTDOC
<name>[ALL] ,<name>[ALL]

The syntax diagram is as follows:

Listdoc command:

ALL

> LISTDOC

r'. NAME

O

12-17 Digital Systems Division

o
@ 946290-9701

The name parameter is the name of a node in the current process conflguratlon The documentation
section of the source module corrcspondmg to each named node is listed. When the keyword ALL is
entered alone, the documentation sections of all source modules of the program are listed. When the
keyword ALL is entered following a name parameter, the command lists the documentation sections
of the specified module and all descendants.

12.3.5.3 LISTORDER Command. The LISTORDER command specifies the listing order for the
LIST and LISTDOC commands. The syntax of the command is as follows:

<listorder command> ::= *LISTORDER ALPHA | *LISTORDER PROCESS
The syntax diagram is as follows:

Listorder command:

.GLlSTORD ER).'—y

PROCESS

R

The keyword ALPHA specifies alphabetic order by node name for source modules listed by a LIST
command or documentation sections of source modules listed by a LISTDOC command. The
keyword PROCESS specifies listing the source modules in the order in which they appear in the
process configuration.

The LIST and LISTDOC commands list source modules in the order in which they appear in the
process configuration, unless a LISTORDER command has specified alphabetic order. The

alphabetic order lists modules in alphabetic order by node name, and applies to all LIST and
LISTDOC commands.

Example:
*LISTORDER ALPHA

The example command specifies listing source modules and documentation sectlons of source
modules in alphabetic order by node name.

12-18 Digital Systems Division

e

i«

@ 946290-9701

Mm 12.3.5.4 Listing Examples. Figure 12-8 lists the contents of the OUTPUT file for a listing example.

. The commands shown are a USE PROCESS command that accesses a previously cataloged process
configuration as the current process configuration and a LIST command that lists the entire
program. The tabular representation of the process configuration. is essentially the same as for the
preceding examples. The flag section shows that a different flag isset for each node. The flag section
is described in a subsequent paragraph.

The source modules are listed in the order in which they are listed in the process configuration.
Notice that each module contains only the declarations and statements of the program or routine.
None of the modules could be compiled alone; the LABELS module would fail because it contains

8 two forward declarations of routines, but does not contain the code for the routines. The other
modules would fail because they do not start with a PROGRAM heading and do not end with a
period (.). The modules form a source library from which CONFIG can write a source module to
compile any one or more of the modules of the program.

Figure 12-9 lists the contents of the OUTPUT file for an example of listing the documentation
sections of a program. The commands shown are a USE PROCESS command that accesses a

™ previously cataloged process configuration and a LISTDOC command that lists the entire program.
The tabular representation of the program shows a different flag set for each node. The flag section is
described in a subsequent paragraph.

The documentation section of a source module consists of one or more comments at the beginning of

the declaration section, preceding the TYPE declaration, if any, or the VAR declaration. The brace

({) or parenthesis and asterisk ((*) that begin the comment must be in character position 1 or

character positions 1 and 2 respectively. The closing brace (}) or asterisk and parenthesis (*)) must

be in character position 72 or character positions 71 and 72 of the same or of a subsequent line. The

. documentation section may consist of a multiline comment as in the example or of a group of
W\ comments. :

12.3.6 FLAGS. The process configuration contains a set of flags for each node that control the
processing of the node. Each flag is either on or off. Flags are turned on or off by commands. When
all commands have been processed, the states of all flags resulting from processing the commands is
passed to the deferred processing run of CONFIG in the external representation of the process
configuration that follows the USE PROCESS # command in the deferred command file.

There are two categories of flags: system flags and user flags. System flags are predefined and are set

~ to an initial state when a process configuration is built or accessed. The states of system flags are not
stored when the process configuration is stored. The system flags, their significance, and their initial
states are listed in table 12-1. User flags are described in a subsequent paragraph.

The COMPILE command (paragraph 12.3.4.1) turns the DECLARATION flag on for each module

- for which the declarations are required in the source file being written. The command turns on both

5 the DECLARATION and BODY flags for modules being compiled. Similarly, the NO COMPILE
commands turn off the DECLARATION and BODY flags appropriately.

12-19 Digital Systems Division

© 946290-9701

CONFIGURATION PRUCESSOR 78, 17 13:41:27
*USE PRNCFSS <LIsPARY, PRNCES> -~
xLIST LABELS ALL

PROCESS NAME SOURCE LOCATICON OBJECT LOCATION FLAGS SET
LABFLS <L13RARY ,LARELS » 2 x
INTERACT <LIBRARY ,INTERACT> 2
READAMDP <L1BRARY ,READANDP> 2
GETLIME <LIBRARY ,GETLTNE > 2
PRINTLAR <_IBRARY ,PRINTLAR> 2
INPUT = TIPULISCR.GAS.EXAMP CONFIGI
CRTFIL = ST10
OUTPUT = TIPDISC2.GAS.EXAMP CONFIGOD2
COMPFILE = DuMY
CPTEMP = ,CPTEmMF1O
0BJECT = DuMY
MASTER = NPS02.GAS,EXAMP SRC ™
LIBRAPY = NS02,GAS.EXAMP,SRC
0BJLIE = DS02.GAS.EXAMP uBJ
ALTOBJ = [S02.GAS.EXAMP,0OBJ
CONFIGURATION PRCCESSOR 78, 17 13:41:38
LABELS = DS02.GAS.EX6MP,_ SRC(LABFLS) .
PROGRAM LABELS: : 000010
(Fomeoerecencnccnnnn recmmomemcmccosceressroncmes e eccmsesnnenmccceeee==(00020 ﬂm%
PROGRAM LARELS: 000030
PURPOSE 1H1S PROGRAM READS An ADDRESS LABFL AND PRINMTS MULTIPLE 000040
COFPTES NF THAT LABEL. 0000S0
FILES USFD ¢ IMPUT - FOR USER=SUPPLTEN PARAMETERS AMD THE LABEL 000060
CRTFIL = USED FOR PROMPTING INPYUT 000070
CUTPUT = MULTIPLE COPIES OF THE LASFL 000080
PROCFDURES CALLED ¢ INTERACT, QEADANDPRINT : 000090
ecesesceececemeeemcsceeeesemeesesmTsem-csssssscsesTececctemccascececeee=x)000100
VAR CRTFIL & TEXT (xUSED TO PROMPT INPUT#) 000110
CHARSPEPLTNE @ INTEGER: (*NUMRER OF CHARACTFRS PER LINE%) 000120
LINFSPEPLABFL ¢ INTEGER: (*#N1MRER NF LTINES PFR LABELw) 000130 ”m\
COPYCOUNMT ¢ INTEGER: (*NUMBER 0OF CNPIES TO PRINT*) 000140
PROCENURE INTERACT:; FORWARD: 000150
PRUCEDURE RFADANDPRINT: FORWARD: 000160
BEGIN : (*LCABELS*®) 000170
INTERACT; READANDPRINT: 0001860
END. (xLABELS*) 000190
: : 4
> - Figure 12-8. Contents of OUTPUT File for LIST Operation (Sheet 1 of 3) i
]
™

12-20 Digital Systems Divi_sion

s

g wé

9462909701

CONFIGURATINN FRNCESSOK 78. 17 13:41:45
INTERACT = PSO02.GAS.EXAMP SRC(IMNTERACT)

PROCEDURE INTFRACT: 000010
(Yeeocencmanrencecrmcccncccnecerrrrrcrmccnwcrncne~ere " ceacenevcarceacan()((020
PRQCEDURE IMIFKACT: 0noo30
PURPQSE : INTEFACT PROMPTS THE 1ISFR, RENUESTING CFRTAIN INPUTS, Q00040
OUTPUTS ¢ CHARSPERLINE = MNUMBER GF CHARACTERS PER LINF 000050
LTNFSPERLAREL = WUMRER NF LTNES PER LAREL 000060
COFYCOUNT w KIIMREP OF LARELS TO PRINT 000070
D L L LR R e L e P LR LT L B Y T
BEGIN : (*INTERACT®) 000090
REWRITE(CRTFTL) 000100
WRITELN(C CRTFIL, “HO¢& MANY CHARACTERS PER LINE?Z®) 000110,
RESET(IMPLITY: EFAD(CHARSPERLINF) 000120
WRITELNC CRTETL, “H0: MAMY LIMES PER LAREL??) 000130
REANLN: wEAD(LTUFESPERLABEL) 000140
WRITELNC CRTIFTL, “HOW “ANY LARELS?®) 000150
READLM: RFAD(CORYCNUNT s WRITFLN(CRTFIL, “wNw INPUT THE LABEL’): 000160
END: . .

(*xINTERACTx*) 000170

CONFIGURATION PROCESSOR 78, 17 13:41:50
READANDP = DS02,GAS.EXAMP ,SRC(KEANANMDP)

"PROCEDURE RFADANDPRINT: 000010
(*-------------w-.----------------------—------------------c--------.---o00020
PROCEDURE READANDPRINT 000030
PURPUSE : RFANDAMDPRINT READS A LAREL AND PRINTS MULTIPLE COPIES OF 1T.000040
PROCEDURES CALLFD ¢ GFTLIME, PRINTLABEL 000050
U L e T T P L P L L X X --—---------*)000060
TYPE 000070
LT4E = PACKFi) ARKAY (.1..CHARSPERLINE,) 0OF CHER: 0090080

VAR 000090
LABSELI#AGFE ¢ ARRAY (,1,.LTNESPERLARFL,) OF LINE: 000100
PROCENURE GFTLIME(VAR THISLINE : LLINME)s FORWARD: 000110
PROUCEDURE PRI'ITLAREL:s FORNARD: 000120
BEGIN (*READANDPRINTx®) 000130
FOR L := 1 TO LTNESPERLASEL DN GETLINE(LABRELIMAGE(,L,)): 000140
FAOR K 2= 1 TG CHOAPYCOUNT D0 PRTINTLABEL: 000150
END: (*PEADANDPRINT*) 000160

Figure 12-8. Contents of OUTPUT File for LIST Operation (Sheet 2 of 3)

12-21 Digital Systems Division

946290-9701

CONFIGURATION PRUCESSOR 78, 17
GETLINE = DSN2.GAS.EXAMP_SRC(GFTLIMNE)

PROCEDURE GFTLIME(#VAR THISLINE : LINE=®):

13:41252

aro010

(*-------- --------- ------—-------nu-a---v--w-—--'-----------------------000020

PROCEDPUPE GFTLIMF (VAR THISLINE = LINE):

PURPOSE : GETLIME READS A SIWNGLE LIMNE OF A LAREL.
INPUTS ¢ CHFARSPERLTNF « MUMRER OF CHARACTERS PFR LINE
OUTFUTS ¢ THISLTIKNE = THE LINE THAT WAS READ,

000030
000040
000050
000060

P T L I T L T T X) --u----o------------------------------.O--U-*) 000070

VAR CH ¢ INTERER:
BEGIN (*GETLINE®)
READLN: CH = 1
WHILE CH <= (CHAPSPERLINE AND NOT FOLNCINFIN) NO BEGIN
READ(THISLTNE(L.CH,)) CH = (H + 13

END: (xFILL IN REST OF LINE nwITH RLANKS®)
FOR J := CH TN CRARSPERLINE DN THISLIME(.J.) 3= ° “3
END: (*GETLINES)
CONFIGURATINN PROCESSOK Te, 17

PRINTLAR = PSN2_ 5AS.EXAMP SRC(PRINTLAR)

PROCEDNURE. FRINMTLALREL

060080
000090
000100
000110
000120
000130
000140
0001S0

13:41:54

000010

(*-o----------,-a--'-------- ----- v-cn-n-------e---------------------.¢-.000020

PROCENUPRE PRIMTLAREL:

PURFOSE : PPIMILAREL PRINTS ONE COPY OF THE LABFL,

INPUTS ¢ LIMFSPERLAKEL = NUMRER OF LTLFS PFR LABFL
CHAPSFEPLINE « NUMHER GF CHARACTERS PER LINE

000030
nooo4ge
000050
0n00e6n
000070

oco090
000100
000110

LARELIMAGF = THF LAREL TO BF PRINTED
cecemmecemmma—cccean eceeeececcccescmesesmesemmecesemsmemmeemmceacace=)000080
BFEGTIN (xPRINTLABEL)
FOR L 2= 1 T0 LINESPERLAGEL LD BEGIN
FOR CH = 1 TO CHARSPERLINE DO WRITE(LABFLIMAGE(,L,)(.CH,))¢

_END: “ (xPRINTLABEL*)

Figure 12-8. Contents of OUTPUT File for LIST Operation (Sheet 3 of 3)

000120
000130

12-22 Digital Systems Division

 'Re

o b

@

(o]
{—@} 946290-9701

5@ The LIST command turns on the LIST flag for modules to be listed, and the NO LIST command
turns the LIST flag OFF for the specified module or modules. Similarly, the LISTDOC command
turns on the LISTDOC flag and the NO LISTDOC command turns the LISTDOC flag OFF.

The use of the CHANGED flag which is set by the EDIT command is described in a subsequent
paragraph. The NEST flag may not be set or cleared by the user.

The COLLECT flag is turned on and off by the Flag command described in paragraph 12.3.6.2.
When the flag is turned on, the module corresponding to the node for which the COLLECT flag is
turned on is written to the OBJECT file during the deferred processing run. The COLLECT flag
implements optional output to a file to be specified in an INCLUDE command in the link edit
control file, making it unnecessary for the linkage editor to search the library for the module.

When the COLLECT flag is set for any node of the process configuration, CONFIG places the
following command in the deferred command file following the *SPLIT OBJECT command:

*COLLECT OBJECT

The command is executed during the deferred processing run at the point at which the command is
- read. When the location of the object module has not been specified by a USE OBJECT command or
by a preceding collect operation, CONFIG searches the library specified by ALTOBJ for the
module. When the module is not on the ALTOBJ library, CONFIG next searches the library
specified by OBJLIB. ‘ :

The SPLIT flag is turned on and off by the Flag command described in paragraph 12.3.6.2. The flag
is initially on, causing all modules to be cataloged as members of the specified object library. A
/W‘\ module for which the SPLIT flag is not set is not cataloged during the deferred processing run.

The CHECK flag is turned on and off by the Flag command described in paragraph 12.3.6.2. The
flag is initially on, causing the check of the IDT of the module to be made on all modules. When the
CHECK flag is on, the IDT of the module is compared to the name of the node; processing is
terminated and an error message is written when the name and IDT are not identical. The IDT of the
module is not checked when the CHECK flag for the node has been turned off.

The user may define up to 21 user flags using the SETFLAG command. User flags are turned on and
7~ off by the flag command. The states of user flags are stored when the process configuration is stored.
' The conditional flag command described in a subsequent paragraph may be used to test user flags

and set system flags.

i

&

oo

12-23 Digital Systems Division

9462909701

CONFIGURALTION PRCCESSNK 78. 117 13:42:58
*USF PWOCFSS <LTnkAaPy, PROCES>
*LISTRGC LAFELS 4LL

PROCESS mAMF SOURCE LOCATICN | GEJECT LQCATIUN FLAGS SET

LABELS <LTARARPY ,LARELS > 3
INTFRACT <L Ta®ARY ,TnTERACT> 3
RFEADANDP <LTERARY ,READANDPS> 3

GETLIME <L InPARY ,GETLINF > 3
PEINTI 4P <LTRRARY ,PRINTLAR> 3

INPUT = TIPOISCR2.GAS.EXAMP CNNFIGT2

CRTFIL = ST1¢ .

QUTPUT = TIPDISC2.6BS.EXAMP , COMFIGUS

COMPFTILF = puVy

CPTEMP = LCPTEMPLO

ORJFCT = Pymy

MASTEFR = PS02,GAS.EXAMP ,SFC

LIRRAFY = [SC2,LAS.EXAVMP,SRC

ORJLIR = N302,GLS.EXAVMP 0ORY

ALTNBJ S [8M2.GESEXAMP,UR]

LABFLS = DSNP.GAS.EXAMP SRC(LARELS)

(ﬁo------—---------cs--s------n-—-c--—cuu----u---"--a---owcoua~------¢o9¢0nooa()

PROGRAM | ARELS: v : 000030
PURPNSE THIS PrOGRAM READS Ar ADDPESS LABEL AND PRINTS MULTIPLE 000040
COPTES NF THAT LAREL, 000050
FILES YSED : IMPUT = FOR UJSFR=SIIPPLTIEN PARAMETERS AMD THE LABEL 000060
CRTFIL = SED FNR PRCMPTING INPUT ... 000070
OHTPUT = MULTTFLE COPIES OF THE LABFL 000080
PROCFDIURFS CALLED * TNTERACT, READANPRPRINT » 000090

i R e L et L I L L T T p ey WY ¥\ R X1

INTFRACT = NSN2, GAS.EXAMP,SRC(INTERACT)

(tu-_-----------unq——o-c--c------wc--c-—-——e--ocﬁ--u-------o------------(joooao

PRACENURE [NTERACT: ‘ v 000030
PURPOSE : THTFRACT PROMPTS THF iJSEk, REIJESTING CFRTATN INPUTS, 000040
ONTPUTS ¢ CHARSPERLTIWE = “jMHER (F CHAFACTERS PER LINE 000050
LTHESPERLAREL = wmIIMAER 0OF LLINES PFRF LASEL ..000060
COPYCNUNT = JMBER OF LARFLS TO PRINT o 000070

u--------O------.-----------0-’--------------’-0--°-----°-ﬂ---------ﬁ-*)000080

READAMNDP = NSNZ,LAS.EXAYP ,SRC(RFADANDP)

(*'------"--"—"""’""'""""'"‘"‘""'°‘°"“""'"""-"-"-"""-“"“’"""000020

PROCEFNURE KFADANDPLTRT: 000030
PURPOSE ¢ RELDAMDPRINT FEADS 8 LASQEL AND PETRTS MULTIPLE CGPIES OF TT.000040
PROCEDUPES CALLED ¢ GETLINF, PRINTLAKFL 000050

--g--------n-------——o--v--u-.u---n-aa----o-o---"----------------—--.-*)000060

Figure 12-9. Contents of OUTPUT File for LISTDOC Operation (Sheet 1 of 2)

12-24 Digital Systems Division

Y

K

1

e fop

RO

p e

946290-9701

GETLINE = DPSN2.GAS.EXA*P SRC(GETLINF)

(Revomcorecenccnccccce= e eemceccasccrce et s r et e e T et et et cncacancacase=e=()){)0)20

PROCENURE GFETLINE(VAR THISLTNF ¢ LINE): 000030
PURPOSE : GFTLIMNE RFADS A SINGLE LINE OF A LAREL. 000040
INPUTS ¢ CHARSPERLINF = MUMHER GF CHARACTERS PFR LINE 000050
QUTPUTS ¢ THISLTNE - THF LINE THAT wAS READ, 000060

L T R R o R R . .----.---n*)000070

PRINTLAR = NS07,GAS,EXAMP ,SRC(PRINTLAR)

(ﬁ-----------c.------c--------------------------"----------------.-.----000020

PRQCENURE PRIMIIL AREL ;. 000030
PURPOSE : PRINTLAREL PRINTS UNE CNPY NF THE LASEL, 000040
INPUTS ¢ LIMESPERLAREL - NUMRER OF LIMES PFR LABEL 0000S0
CHARSPERLTNE = NIUMBER OF CHARACTERS PER LINE 000060 -
LABELTMAGE -« THE LABEL TO BE PRINTED 0069070

o-u---------------------------------.------cu--------o----n----------n*) 000080

Figure 12-9. Contents of OUTPUT File for LISTDOC Operation (Sheet 2 of 2) '

Table 12-1. System Flags

Flag Flag Initial
Number Name Description Value
0 DECLARATION Set when declarations of this module are required OFF

in source file.
1 BODY ' Set when statements of this module are required OFF

in source file.
2 LIST Set when the source module is to be listed. OFF
3 LISTDOC Set when the documentation section of this module OFF

is to be listed.

4 CHANGED Set when contents of a source module are changed OFF
by an edit operation.

5 NEST Not currently used.

6 SPLIT Set when the object module is to be written as a ON

member of library OBJLIB or ALTOBJ.

7 COLLECT Set when the object module is to be written on the OFF
OBJECT file.

8 CHECK Set when the IDT of the module is to be compared ON
to the name of the node.

12-25 Digital Systems Division

o
@ 946290-9701

12.3.6.1 SETFLAG Command. The SETFLAG command defines or deletes the definition of a user
flag. The syntax of the commands is as follows:

<setflag command> ::= * SETFLAG <flagname>[<flag-description>]

The syntax diagram is as follows:

Setflag command:

M *SETFLAG) : FLAGNAME

The flagname consists of one to eight characters and may not be a CONFIG keyword. The flag
description is a string of up to 64 characters that describes the flag. The flag description begins with
the first nonblank character following the flagname and extends to the first asterisk (*), normally the
asterisk that begins the next command. The flag description may contain blanks, and serves as a

. comment to identify the flag. When the flag description is omitted, the definition of that flag is
deleted, and the flag is turned off in all nodes in the program.

FLAG-
DESCRIPTION

.4

12.3.6.2 Flag Command. The Fiég command turns certain system flags and all user flags on or off.
The syntax for the command is as follows: :

<flag command> ::= *[NO]<flagname>ALL | *[NO] <ﬂagname><name>[ALL]
{,.<name>{ALL]} ‘

<flagname> ::= SPLIT|COLLECT]| CHECKI<u§er flagname>

The syntax diagram is as follows:

Flag command:

ALl

FLAGNAME }—p

NAME AL

When the optional keyword NO is entered the flag is turned off. Otherwide the flag is turned on.
When the keyword ALL immediately follows the flagname, the flag is turned on or off in all nodes of
the current process configuration. The name parameter specifies a node in which the flag is turned on
or off. When the name parameter is followed by the optional keyword ALL, the FLAG is turned on
or off in the named node and all its descendants.

12-26 Digital Systems Division

iy

{@ 946290-9701

12.3.6.3 Conditional Flag Command. The Conditional Flag command tests a specified flag and
f turns another specified flag on or off according to the result. The syntax of the command is as
‘ follows:

<conditional flag command>::= * IF [NOJflagnamel >THEN[NOJflagname2>

) <flagnamel> ::= COMPILE|LIST|LISTDOC|CHANGED|SPLIT|COLLECT|CHECK |<user
flagname>

<flagname2> ::= COMPILE|LIST|LISTDOC|SPLIT|COLLECT|CHECK |<user flagname>
The syntax diagram is as follows:

Conditional flag command:

™ —4@—' @ FLAGNAMET1 —DGHEI\D— NO FLAGNAME2 [—&

The flagnamel parameter specifies a flag to be tested in all nodes of the current process
configuration. The optional keyword NO preceding filenamel specifies the state tested for; when NO
is entered the flag is tested for the off state; when NO is omitted the flag is tested for the on state. In
each node for which the test is successful flagname2 is turned on when optional keyword NO is
omitted, or off when NO is entered.

/M Notice that COMPILE is allowed as a flagname in the conditional flag command even though it is

" not the name of a flag. When COMPILE is entered as flagnamel the BODY flag is tested. When
COMPILE is entered as flagname2, the BODY flag is turned on or off as specified. When the BODY
flag is turned on, the DECLARATION flag is turned on also.

12.3.6.4 Flag Examples. The Flag commands allow the user to control the processing of the
program by setting or resetting the system flags. The following is an example of a Flag command:

*COLLECT INTERACT

- The command turns on the COLLECT flag for module INTERACT, and causes CONFIG to
include the following in the deferred command file following the *SPLIT OBJECT command:

*COLLECT OBJECT
» The deferred processing run of CONFIG writes the module for INTERACT (and any others for

a which the COLLECT flag is on) to the OBJECT file. The OBJECT file can be specified in an
INCLUDE command to the linkage editor.

p

Another example of a Flag command is:

v
= *NO SPLIT ALL
This command turns off the SPLIT flags for all modules. The deferred processing run of CONFIG
does not catalog the object modules. Unless the COLLECT flag is set for one or more modules the
~ use of this example is of doubtful value.

12-27 Digital Systems Division

o
4@ 946290-9701

The Conditional Flag command allows the user to selectively turn on or off the system flags. The
following is an example of a Conditional Flag command:

*IF CHANGED THEN COMPILE

As described in a subsequent paragraph, the CHANGED flag is turned on by the EDIT command
when the module is edited. The command in the example turns on the BODY flag also for those
modules. It also turns on the DECLARATION flag when it is off.

User ﬂags may be defined to support an overlay structure allowing the user to specify appropriate

processing for overlays. The following are examples of the use of the SETFLAG command to deﬁne
user flags:

*SETFLAG OVRLAY! OVERLAY | MODULE
*SETFLAG OVRLAY2 OVERLAY 2 MODULE

Flag commands turn on the flags in the appropriate modules:

*OVRLAY! READIN ALL
*OVRLAY2 PRINT ALL

The result of these commands is that user flag OVRLAY]1 is turned on in module READIN and its
descendants and user flag OVRLAY?2 is turned on in module PRINT and its descendants. The

command in the following example would cause CONFIG to collect overlay 2 modules in file
OBJECT:

*IF OVRLAY2 THEN COLLECT

12.3.7 MODIFYING A PROCESS CONFIGURATION. The examples in this section show the
building of a process configuration and using it for additional processing. However, the user may
modify the current process configuration in several ways. ADD commands (paragraph 12.3.3.2) may
be used to add modules to the program structure defined in the process configuration. DELETE
commands may be used to delete nodes, and MOVE commands may be used to modify the structure
by moving nodes to other points in the structure. The DISPLAY command may be used to display
the process configuration. Object locations may be specified for nodes with USE OBJECT
commands, and source locations may be specified or changed with USE commands. Default libraries

for source and object modules ~may be changed with DEFAULT SOURCE and DEFAULT
OBJECT commands.

12.3.7.1 DELETE Command. The DELETE command deletes a module and its descendants, if any,
from the current process configuration. The syntax of the command is as follows:

<delete command> ::= * DELETE<name>

The syntax diagram is as follows:

h‘ *DELETE 'L 4! NAME - &

Delete command:

12-28 Digital Systems Division

4@ 946290-9701

The name parameter is the name of the node to be deleted. When the named node has descendants,
{."‘ the descendants are deleted also.

Example:
* DELETE READANDP

The example command deletes node READANDP, and its descendants, GETLINE and
PRINTLAB. It could be followed by one or more ADD commands to change the names of these
nodes of the process configuration.

12.3.7.2 MOVE Command. The MOVE command moves a module and all of its descendants to
become a son of another module. The syntax of the command is as follows:

<move command> ::= *MOVE<namel>TO<name2>
The syntax diagram is as follows:

Move Command:

*MOVE NAME1 _’.—. NAME2 B

The namel parameter is the name of a node to be moved. The name2 parameter is the name of

another node in the structure. Name2 may not be a descendant of namel. The node specified as

namel and all its descendants, if any, are moved. The node specified as namel becomes a son of the
(W node specified as name2. The MOVE commands implies changes in the declarations of routines
" within the source code.

Example:

*MOVE GETLINE TO LABELS
The example command moves node GETLINE (a son of READANDP) to become a son of
LABELS. The forward declaration of GETLINE in the declaration portion of READANDP would

~ have to be moved to the declaration portion of LABELS in order to compile any module correctly.

12.3.7.3 DISPLAY Command. The DISPLAY command displays the tabular representation of all
or part of the current process configuration on file CRTFILE. The syntax is as follows:

<display command> ::= *DISPLAY[<name>]ALL
] The syntax diagram is as follows:

Display command:

-
*DISPLAY ——» NAME ALL —>

12-29 Digital Systems Division

946290-9701

When the optional name parameter is omitted, the entire current process configuration is displayed.
When the name parameter is included, the name is the name of a node, and the portion of the process
configuration that lists the named node and its descendants is displayed.

The DISPLAY command allows the user to display the process configuration to note the effect of
the commands that have been processed.

Example:
*DISPLAY READANDP ALL

The resulting display of the current process configuration includes nodes READANDP, GETLINE,
and PRINTLAB. - ' -

The format of the display is similar to that written to file OUTPUT, shown in figure 12-9. The names
of the nodes are displayed, indented to show the program structure. The source and object locations
are displayed, and the numbers of system flags that are not in their initial states are displayed. The
initial states of flags 6 and 8 (SPLIT and CHECK) are on; the initial states of the other system flags
are off. Except for flags 6 and 8 the display of the flag number indicates that it is on. An asterisk (*) is

displayed with number 6 and 8 because the display of either of these numbers means that the flag is
off. ,

12.3.7.4 USE OBJECT Command. The USE OBJECT command specifies a location for the object
module of a specified node. The syntax of the command is as follows:

<use object command> ::= *USE OBJECT<name><location>
The syntax diagram is as follows:

Use ebject command:

———DGUSE OBJECT>——0 NAME —] LOCATION |} >

The name parameter is the name of the node to which the object location applies. The location
parameter is in the format defined in paragraph 12.3.3.1 for the BUILD PROCESS command.
When the library is not specified in the location parameter, the location for the object module
remains unspecified.

Example:
*USE OBJECT INTERACT <OBJLI, INTERACT>

The example specifies that the object module for node INTERACT is to be cataloged as member
INTERACT of the library whose synonym is OBJLI.

When a USE OBJECT command specifies a member name or a library synonym and member name
for the object module for a node, CONFIG writes the module to the library member when it
performs the deferred processing. Otherwise CONFIG writes the module to the default object library
using the node name as the member name. The representation of the process configuration does not

contain an object location unless a USE OBJECT or DEFAULT OBJECT command has been

entered.

12-30 Digital Systems Division

o
@ 946290-9701

W”“’\ 12.3.7.5 USE Command. The USE command specifies a location for the source module for a
« specified node. The syntax of the command is as follows:

<use command> ::= *USE <name> <location>
The syntax diagram is as follows:

Use command:

. .

The name parameter is the name of the node to which the source location applies. The location
parameter is in the format defined in paragraph 12.3.3.1 for the BUILD PROCESS command.

™ Example:
*USE GETLINE <SLIBIL,INPLIN>

The example specifies that the source module for node GETLINE is to be cataloged as member
INPLIN of the library whose synonym is SLIBI.

Either a USE command or an ADD command may be used to specify a source library synonym and
member name for a source module. The USE command may be used to assign a different library
W synonym and/or member name.

12.3.8 LIBRARIES. The following library synonyms are initially defined in CONFIG:
e MASTER Intended for source modules of tested (fully developed) programs.

e OBJLIB Intended for object modules corresponding to source modules in
MASTER.

e LIBRARY Intended for source modules of programs under development.

e ALTOBIJ Intended for object modules corresponding to source modules in
LIBRARY.

The default source library synonym LIBRARY is the logical default because it is intended for
programs under development. Similarly, the default object library synonym ALTOBJ is appropriate
because it is intended for object modules corresponding to the source modules in LIBRARY. Either
default value may be changed using the DEFAULT SOURCE or DEFAULT OBJECT commands
(paragraphs 12.3.29 and 12.3.30).

i CONFIG maintains a library table in the process configuration. The first four entries in the table are
the initially defined library synonyms MASTER, LIBRARY, OBJLIB, and ALTOBJ. When a
library synonym is entered in any of the commands that may include a library synonym parameter,
the synonym is added to the library table (unless it already appears in the table). The commands are
BUILD PROCESS, CAT PROCESS, USE PROCESS, ADD, USE, USE OBJECT, DEFAULT-
SOURCE, DEFAULT OBJECT, SETLIB and EDIT.

12-31 Digital Systems Division

(o]
@ 9462909701

Other synonyms may be substituted for the initially defined library synonyms. The MASTER

command specifies a library synonym to replace MASTER. Similarly, the LIBRARY, OBJLIB, and
ALTOBJ commands specify library synonyms to replace LIBRARY OBJLIB, and ALTOBJ,
respectively.

A library is identified to CONFIG using a library synonym, a synonym the value of which is the
pathname of a library file. A synonym should be assigned using the appropriate operating system
command prior to executing CONFIG. Alternatively, a synonym may be assigned by a SETLIB
command.

12.3.8.1 MASTER Command. The MASTER command specifies a library synonym to replace the
initially defined library synonym MASTER. The syntax of the command is as follows:

<master command> ::= *MASTER <libname>
The syntax diagram is as follows:

Master command:

The libname parameter is a library synonym that replaces synonym MASTER as the first entry"in
the library table. When the MASTER command is used, it should precede the ADD commands that
define the nodes of the process configuration. o
Example:

*MASTER SRCLIB1

The example command replaces MASTER as the library synonym in the first entry of the library
table with SRCLIBI.

12.3.8.2 LIBRARY Command. The LIBRARY command specifies a library synonym to replace the
initially defined library synonym LIBRARY. The syntax of the command is as follows:

<library command> ::= *LIBRARY <libname>
The syntax diagram is as follows:

Library command:

The libname parameter is a library synonym that replaces synonym LIBRARY as the second entry in
the library table. When the LIBRARY command is used, it should precede the ADD commands that
define the nodes of the process configuration.

b‘ *MASTER 'L —$! LIBNAME >

P{ *LIBRARY ’L 1 LIBNAME - >

12-32 Digital Systems Division

iy

Yo gz

@ 946290-9701

Example:

*LIBRARY SRCLIB2

The example command replaces LIBRARY as the library synonym in the second entry of the library
table with SRCLIB2.

12.3.8.3 OBJLIB Command. The OBJLIB command specifies a library synonym to replace the
initially defined library synonym OBJLIB. The syntax of the command is as follows:

<objlib command> ::= *OBJLIB <libname>
The syntax diagram is as follows:

Objlib command:

*OBJLIB : i LIBNAME >
~ | (J

The libname parameter is a library synonym that replaces synonym OBJLIB as the third entry in the
library table. When the OBJLIB command is used, it should precede the ADD commands that
define the nodes of the process configuration.

Example:
*OBJLIB OBJLIBI

The example command replaces OBJLIB as the library synonym in the third entry of the library
table with OBJLIBI.

12.3.8.4 ALTOBJ Command. The ALTOBJ command specifies a library synonym to replace the
initially defined library synonym ALTOBJ. The syntax of the command is as follows:

<altobj command> ::= *ALTOBJ <libname>
o~ The syntax diagram is as follows:

Altobj command:

D< *ALTOBJ } 4| LIBNAME —>
B

The libname parameter is a library synonym that replaces synonym ALTOBJ as the fourth entry in
® the library table. When the ALTOBJ command is used, it should precede the ADD commands that
> define the nodes of the process configuration.

12-33 Digital Systems Division

o]
%} 946290-9701

Example: ™
*ALTOBJ OBJLIB2 |

The example command replaces ALTOBJ as the library synonym in the fourth entry of the library
table with OBJLIB2.

12.3.8.5 SETLIB Command. The SETLIB command defines a library synonym and .assigns a value
to the synonym. The syntax of the command is as follows:

<setlib command> ::= *SETLIB <libname><value>
The syntax diagram is as follows:

Setlib command:

*SETLIB LIBNAME % vawE >

The libname parameter is a library synonym that meets the requlrements for a TIP identifier
(paragraph 3.2.1). However, only the first eight characters are used by CONFIG. The value is the
pathname of the library file to which the synonym applies. :

Example:
*SETLIB SRCLIB3 DSC2.PASCAL.SOURCE.GARY

The example command adds library synonym SRCLIB3 to the library table (unless it is in the table
already) and accesses the operating system to ass1gn the value DSC2.PASCAL.SOURCE.GARY to
synonym SRCLIB3. ,

The SETLIB command should be used with caution to prevent defining too many synonyms for the
library file pathname. Depending on the operating system, the synonym may have to be redefined to
the operating system when the process configuration is accessed by a future run of CONFIG.

@\\
12.3.8.6 DEFAULT SOURCE Command. The DEFAULT SOURCE command specifies the
library synonym for the default source library. The synonym applies to modules defined by
subsequent ADD commands. The syntax of the command is as follows:
<default source command> ::= *DEFAULT SOURCE <libname> | .
v
The syntax diagram is as follows: -

Default source command:

-3
—D€DEFAU LT SOURCEJ\ -L LIBNAME >

12-34 Digital Systems Division

[o]
@ 946290-9701

T4 The libname parameter is the synonym having the pathname of the library as its value. Synonym

“ MASTER is the initially defined alternate source library synonym; however any library synonym
may be used. The DEFAULT SOURCE command does not alter the stored process configuration; it
only applies to the current run. ‘

Example:
*DEFAULT SOURCE SLIBI

The example command specifies library synonym SLIBI as the default source library. Source
locations that do not explicitly include a library synonym use SLIBI1 as the library synonym until the
default value is changed by another DEFAULT SOURCE command. The default source library
synonym is LIBRARY until the first DEFAULT SOURCE command is entered.

12.3.8.7 DEFAULT OBJECT Command. The DEFAULT OBJECT command specifies the library
synonym for the default object library. The syntax of the command is as follows:

~ <default object command> ::= *DEFAULT OBJECT <libname> |
*DEFAULT OBJECT NONE

The syntax diagram is as follows:

Default object command:

*
DEFAULT o LiBNAME >
OBJECT

The libname parameter is the synonym having the pathname of the library as its value. Synonym
OBJLIB is the initially defined alternate object library synonym; however, any library synonym may
be used. :

When keyword NONE is entered instead of a libname parameter, the initial default is restored. The
DEFAULT OBJECT command does not alter the stored process configuration; it only applies to the
current run.

Prior to the entry of a DEFAULT OBJECT command, and subsequent to the entry of a DEFAULT
. OBJECT NONE command, no object locations are shown in the representation of the process

configuration on the OUTPUT file, and ALTOBJ is the default object library on which object
< modules are stored. ‘

Example:

*DEFAULT OBJECT OBIJLI

The example command specifies library synonym OBJL1 as the default object library. Object
locations that do not explicitly include a library synonym use OBJLI as the library synonym until -
the default value is changed by another DEFAULT OBJECT command.

12-35 Digital Systems Division

o
@ 946290-9701

12.3.9 TEXT EDITING. CONFIG provides a line-oriented text editing capability for editing source
modules, whether or not these modules apply to a node or nodes of the current process
configuration. The EDIT command specifies the source module to be edited and copies the file with
specified alterations to another location. Insert commands insert one or more source lines at a
specified point and Replace commands replace specified source lines with one or more source lines.

12.3.9.1 EDIT Command. The EDIT command specifies a source module to be edited and copies
the file with specified alterations to another location. The EDIT command for a source module that

is specified as a node of the current process turns on the CHANGED flag for that node The syntax
for the command is as follows:

<edit command> ::= *EDIT [<name>][<location>] TO <location2>
The syntax diagram is as follows:

Edit command;

—® NAME ‘g LOCATION1

LOCATION2 [—®

DL LOCATION1 LOCATION2 |[—¥

The name parameter is the node name corresponding to the source module to be edited. The location
parameters are in the format defined in paragraph 12.3.3.1 for the BUILD PROCESS command.
The source module at locationl is edited and the result is copied and cataloged at location2.

When the name paraméter is used, the source module associated with the named node of the current
process configuration is edited and the CHANGED flag for the node is turned on. The location for
the source module of the node is changed to location2.

When the name parameter is omitted, the source module at locationl is edited. The source module
may or may not be associated with the current process confxguratlon, however the CHANGED flag
is not set in either case.

Example:

*EDIT INTERACT TO <LIBRARY,NEWMOD>
This command specifies that the Insert and Replace commands that follow apply to the source
module corresponding to node INTERACT. The edited module is cataloged as member NEWMOD
of the library corresponding to library synonym LIBRARY and becomes the source module for node
INTERACT. The source location for node INTERACT becomes LIBRARY, NEWMOD and the
CHANGED flag is set for the node.

*EDIT <LIBRARY, ORIG> TO <SRCLIBI, NEWMOD>

12-36 Digital Systems Division

[e]
@ 946290-9701

ﬁm This command specifies editing the source module at location <LIBRARY, ORIG> and cataloging

the resulting module at location <SRCLIBI, NEWMOD>. The source module at location

LIBRARY, ORIG may or may not be a node of a process configuration; the flags of process
configuration nodes are not altered by this command.

12.3.9.2 INSERT Command. The Insert command specifies inserting one or more source lines in the
source module identified in the preceding EDIT command. The lines to be inserted follow the
command and the command parameter specifies the line in the source module after which the lines
are inserted. The syntax of the command is as follows:
N <insert command> ::= <line>

The syntax diagram is as follows:

Insert command:

~ _O ,l:_._.

The line parameter is' the line number of the line of the source module following which the
subsequent lines are inserted. More than one Insert command may be supplied for editing a source
module; these may be interspersed with Replace commands described in the next paragraph. These
commands must be ordered by line number, in ascending numerical order.

(@k\ Example:

- 40

Insert the lines that follow this command in the source module after line 40.

12.3.9.3 REPLACE Command. The Replace command specifies replacing one or more source lines
in the source module identified in the preceding EDIT command. The lines that replace the source
module lines follow the command, and the command parameters specify the lines to be replaced. The
syntax of the command is as follows:

<replace command> ::= <linel>,<line2>
The syntax diagram is as follows:

Replace command:

& Y

- The linel and line2 parameters are the line numbers of lines in the source module. The range of
source lines starting with linel and extending through line2 are replaced by the lines that follow the
Replace command. The number of replacing lines may be larger, smaller, or equal to the number of
replaced lines. More than one Replace command may be entered for editing a source module; these
may be interspersed with Insert commands previously described. These commands must be ordered
@ by line number, in ascending numerical order.

£

-4
o~

12-37 Digital Systems Division

o
@ 946290-9701

Example:

-50, 70

Replace lines 50, 60, and 70 with the lines that follow this command.

12.3.10 REQUIRED FILES. CONFIG requires seven files, listed in table 12-2. When the files are
not specified, CONFIG uses the default names. The default names consist of the file names (or the
first six characters of file names longer than six characters) with the digits of the station number
concatenated at the right. For example, the default name for the file supplled to the compiler is
COMPFIO8 when CONFIG is executed at terminal STOS.

Name

INPUT

OUTPUT

SYSMSG

COMPFILE

CRTFILE

CPTEMP

OBJECT

Table 12-2. Files Required for CONFIG

1/0

I’,

©c O O

I/O0

1/0

Description

Contains CONFIG commands.

Contains CONFIG listings.
Contains system messages.

Contains source code selected By CONFIG for
compilation.

Contains input commands and error messages.
Contains deferred processing commands.

Contains object file from CODEGEN and object file
written by CONFIG.

12.3.11 EXECUTING CONFIG. The Configuration Processor may be executed using either of two
SCI procedures: XCONFIG and XCONFIGI. Procedure XCONFIG requests access names for all
files; procedure XCONFIGI assigns the user’s terminal for three of the files, for interactive entry of
commands. Either procedure name may be entered at any time DX10 requests a command. When
XCONFIG is entered, DX10 requests the following information: :

COMMANDS
CRT FILE
LISTING
MESSAGES
MODE
SOURCE
OBJECT
MEMORY

All but two of the items require access names of devices or files. The file names referred to are listed

in table 12-2. The items are as follows:

© COMMANDS — The access name of a file (file name INPUT) that contains CONFIG
commands or of a device at which commands are to be entered.

12-38 Digital Systems Division

vt

(o]
q_r@p 946290-9701

W""\ e CRT FILE — The access name of a device (file name CRTFILE) to display commands
' and error messages.

e LISTING — Access name of a device or file (file name OUTPUT) for listing.

e MESSAGES — Access name of a device or file (file name SYSMSG) for system messages.
e SOURCE — Access name of a file (file name COMPFILE) for source file output.
e OBIJECT — Access name of a file (file name OBJECT) for object file.

The response to the MODE item is BATCH, FOREGROUND, or BACKGROUND, specifying the
mode of execution. The background and foreground modes are as defined for the compiler,
paragraph 11.5. The batch mode is described in a subsequent paragraph. The MEMORY item
requires an ordered pair specifying stack and memory requirements as for the compiler.

When XCONFIGI is entered, DX10 requests the following information:

LISTING
SOURCE
OBJECT
MEMORY

Items COMMAND, CRT FILE, and MESSAGES are assigned to ME, the synonym for the user’s

terminal. The MODE item is not requested; FOREGROUND is supplied by the system. Other items

are identical to those for the XCONFIG procedure. The two procedures may be used
/ﬁm interchangeably; when the command file, display file, and system message file would be assigned to
: the user’s terminal, use XCONFIGI; otherwise, use XCONFIG.

The distinction between the run of CONFIG that prepares the source file for compilation and the run
of CONFIG that splits the object file and catalogs the object modules is the command file. When the
command file is the deferred processing command file written by a previous run of CONFIG (or a
command file that contains those commands), the deferred processing is performed. Otherwise, the
initial processing is performed.

The condition code $$CC is set by CONFIG to indicate the termination status as follows:

0000 — Normal termination.
40006 — Warning conditions detected.
. 6000;s — Errors detected.
s C000;,6 — Abnormal termination.
NOTE
H
,; Refer to paragraph 11.5 for further information on $$CC.
Procedure XTIP does not execute CODEGEN when the SILT phases detect errors. When compiling
a program that consists of many modules that are to be cataloged as a library by CONFIG, and.
CODEGEN is executed, the result may be that several of the resulting modules are error free, and
W’\ would not need to be recompiled. Procedures XSILT and XCODE may be executed instead of
procedure XTIP to execute CODEGEN unconditionally. These procedures may be used with
CONFIG.

12-39 Digital Systems Division

@ 946290-9701

When XSILT is entered, DX10 requests the following items:

SOURCE
LISTING
MESSAGES
MEMI
MEM2
MODE

The first three items require access names of devices or files, as follows:
e SOURCE — The access name of the TIP source file.
e LISTING — The access name of a device or file for the source listing.
e MESSAGES — The access name of a device or file for system messages.

The next two items require ordered pairs specifying stack and memory requirements for the two
phases of SILT. The default values are 6,10 for SILTI and 13,4 for SILT2. The MODE is either
FOREGROUND or BACKGROUND, as defined for the compiler, paragraph 11.5.

When XCODE is entered, DX10 requests the following items:

OBJECT
LISTING
MESSAGES
MEM
MODE

The first three items require access names of devices or files; OBJECT is the access name of a file to
which object code is written. The access names entered for the other two in the XSILT command
apply in the XCODE command also. The MEM item is an ordered pair to specify stack and heap for

CODEGEN; the default is 10,8. The MODE item should agree with that entered for XSILT, either
FOREGROUND or BACKGROUND.

CONFIG may be executed using a batch stream and may usually be executed more easily in a batch
stream. Figure 12-10 shows a sample batch stream to execute CONFIG, SILT! and SILT2, and the
deferred processing run of CONFIG. When executing this batch stream, the user should enter a
WAIT command immediately following the XB command; the CONFIG commands are entered
interactively at this point. Press the ENTER key at the terminal following the last command to
terminate entry of commands and continue execution. The batch stream creates the required files on
a user directory; enter the actual pathname of the directory in the first .SYN command.

Notice that the synonym LIBRARY is assigned to the pathname of the user directory with .SRC
concatenated at the right. This will work only if the source modules being supplied as input to
CONFIG have been cataloged as members of a library having that pathname or if the locations in
the process configuration do not use the default library synonym, LIBRARY. The location
parameters of the BUILD PROCESS, ADD, and CAT PROCESS commands may be used to
specify pathnames other than those supplied in the batch stream, as required. Alternatively, file
names may be modified to be compatible with the batch stream.

12-40 Digital Systems Division

%@ 946290-9701

BATCH

o~ * SALM"PLE HATCH STREAM TQ PFRFORM A CONFIG / COMPILF / CONFIG
* QEQUE;\ICEO
x
* DELFTE TIP "SECRET" SYNNNYMS TO HFLEASE SPACE
* 1M THF SYNQMYM TARLE.

R *

PsSYM

* \
* ASSIGN LIRRARY SYMONYMS,

‘ *

«SYN UsSE® Nhatever vour user directofy s

«SYN MASTER = USER.SRC
«SYN LIBRARY = USER,SRC
«SYN OBRJLIR = USER,OBJ
.SYk ELTOBJ = USER,03J

FXECUTE CNONFIGURATIOGN PROCESSOR INTERACTIVELY
TOH STAGE THE TIP SOURCE FOR COMPILATION,

* ¥ * ¥

XCONFIGI LTISTING = USEP.CF1

b

* EXECLUTE THE COMPILER,
*
XSTLT LISTING = USER.CM1, MESSAGES = IJSFR_CM2
XCODE
*
o * EXECUTE THE CONFIGURATION PPOCESSNK TN SPLIT
' * THE OBJRCT MORULES.
*
YCONFIG LISTING = USER.CF?, YESSAGES = USFR_,CF?3
*
* BUILD A SINGLE LISTING FILE.
x .
CC INPUT = (JUSER,CF1,lJSER,CM1,uSER CM2,USER,CF2,USER.CF3),
0JTPuT = USFR,.LIST,
RgPLAGCF = YES
- * .
x DFLFTF TevPORARY FILES (IF DPESIRED),
*
DF PATHNAME = JSER,CF1
DF PATHMAME = YSER,CM1
® DF PATHNAME = USEZ.CY?
& DF PATHMAME = USER,CF?
* DF PATHMANME = JSER,CF3
ERATCH
3
A,
" Figure 12-10. Batch Stream for Separate Compilation

12-41 Digital Systems Division

@ 946290-9701

12.4 SPLIT PROGRAM UTILITY

The split program utility SPLITPGM divides a TIP source program into modules and catalogs these
modules as members of a library file. SPLITPGM also writes an input command file for CONFIG
which contains the commands required to build the process configuration corresponding to the
original source program structure.

A program should meet the requirements for submission to CONFIG (paragraph 12.3.2) because the
normal use of the library provided by SPLITPGM is as input to CONFIG. Specifically, SPLITPGM
requires the forward declarations and the indentations that CONFIG also requires. The required
indentations may most easily be provided by submitting the source code to NESTER prior to
executing SPLITPGM.

Adding the forward declarations to the output of NESTER may be done using the text editor. The
listing of the output of NESTER in figure 10-2 includes the following procedure declaration on line
420:
PROCEDURE GETLINE (VAR THISLINE : LINE);
This becomes a forward declaration when the keyword FORWARD is added, as follows:
PROCEDURE GETLINE (VAR THISLINE : LINE); FORWARD;
The declarations and statements for the procedure require a heading that does not include the
parameter list. This may be added as a comment to promote documentation of the program, as
follows:
PROCEDURE GETLINE; (*VAR THISLINE : LINE¥*)
Adding forward declarations for functions is similar. The keyword FORWARD follows the
parameter list and the function result type. The routine heading includes only the function name, not

the parameter list and function type.

12.4.1 SPLIT PROGRAM COMMAND. The Split Program Command specifies the node name
for a source module at the beginning of each module. The syntax of the command is as follows:

<split program command> ::= “& <name> | (*& <name>|“{ ” & <name>
The syntax diagram is as follows:

Split program command:

1242 Digital Systems Division

S o

@ 946290-9701

The name parameter is the name that SPLITPGM supplies in the command file as the node name.

m\ Unless the CHECK flag for each node is turned off, CONFIG checks that the node name is identical
to the IDT of the source module. Therefore the name parameter in the command should be the IDT
of the module. All name parameters for the modules of a program should be unique in the first six
characters because SPLITPGM uses the names as the names of members of LIBRARY. The split
program command for a module must precede the heading (PROGRAM, PROCEDURE, or
FUNCTION heading) of the module and any comments or option comments that precede the
heading.

Example:
“& GETLINE

This command should be inserted between the forward declaration and the heading of procedure
GETLINE.

12.4.2 INPUT EXAMPLE. The result of changing procedure headings to forward declarati_ons and
~ adding procedure headings and split program commands in the example program is shown in figure
' 12-10.

12.4.3 LIBRARY AND FILES. SPLITPGM catalogs the souce modules defined by the split
program commands as members of a library file identified by library synonym LIBRARY. The user
must assign the pathname of the desired library to synonym LIBRARY.

The files used by SPLITPGM are:
INPUT I Contains TIP program to be split.
OUTPUT O Contains CONFIG commands to build process configuration.

SYSMSG O Contains system messages.

12.4.4 EXECUTION. The XPT procedure may be used for executing the split program utility
SPLITPGM. Enter XPT when DX10 requests a command and enter the following information in
response to the requests of XPT:

- PROGRAM FILE: .TIP.PROGRAM
TASK NAME OR ID: SPLITPGM
INPUT: <input source file>
OUTPUT: <output file>
MESSAGES: ME
MODE: FOREGROUND

& MEMORY: 2,2

The input source file is the access name of the file to be split. It consists of the source file with
R commands inserted at the proper places (paragraph 12.4). The output file is the access name for the
LY

file to which SPLITPGM writes CONFIG commands to build the process configuration for the
- program to be split. The modules are cataloged as members of the library the pathname of which has
been assigned to synonym LIBRARY.

12-43 Digital Systems Division

@ 946290-9701

SPLITPGM divides the source program into modules as defined by the commands and the BEGIN
and END keywords that are the limits of the statement portions of the modules. The contents of the
resulting module may be listed by submitting a *LIST ALL command to the conﬁguratlon

processor. Figure 12-8 shows the contents of each source module of the example program shown in
figure 12-11.

The following batch stream executes SPLITPGM and CONFIG to build the process configuration
fot the program being split:

BATCH

.SYN LIBRARY = “<pathname>"

XPT PF=“TIP.PROGRAM”, T=“SPLITPGM”, I=“<input source file>",
O=“<output file>", MEM=%22"

XCONFIG COMMANDS=“<output file>", LISTING=*<listing file>"
EBATCH

The pathname is the pathname of the directory of the library to which the source library is to be
written. The listing file is the access name of a device or file for the CONFIG listing. The input source
file and the output file are as defined previously.

12.5 SPLIT OBJECT UTILITY

The split object utility SPLIT divides the object modules in an object file into members of an object
library. This function is performed automatically by CONFIG when the object file is input to the
deferred processing run of CONFIG. SPLIT may be executed to perform the same function on an
object file written by CODEGEN and not submitted to a deferred processing run of CONFIG.

The library synonym that SPLIT uses for the object library is OBJLIB.

SPLIT uses the following files:

OBJECT I Contains object file to be split.
OUTPUT O Contains error messages.
SYSMSG O Contains system messages.

TIP software includes an SCI procedure, XSPLIT, for executing the split object program, SPLIT.
Enter XSPLIT at any time DX10 requests a command. DX10 requests the following information:

OBJECT FILE
OBJECT DIRECTORY
ERROR LISTING
MESSAGES
MODE
Three of the items require access names of devices or files, as follows:
e OBIJECT FILE — The access name of the object file as written by the compiler.
e ERROR LISTING — The access name of the device or file for the error listing.

e MESSAGES — The access name of the device or file for the system messages.

12-44 Digital Systems Division

946290-9701

" SLABFLS
PROGRAN LARF(L S 000010
(keemrcrncacncrncna~ e mmeerre e e rccr e e e T e et et rn e ecccceca=e=()00020
PRNGF LM LARKELS® ' 000030
PURPOSF THiS PROGPAM PEADS Ay ADUDRESS LADBFEL AND PRINTS MULTIPLE 000040
COFTES OF THAT LAREL. 000050
FILES NSF[r ¢ INPU] = FQOR I!SFrk=SIIPPI_TED PARAMETERS AaND THE LABEL 000060
CRTIFIL = LUSFD FOF FROMPETING IMPUT 000070
UHTPUT = MULTIPLE COPTES OF THF LABEL 000080
PROCFIDIKFS CaLLFN ¢ TWTERACT, REALAKRDPRINT 000090
B L L L L R et crecrer e s e rmr e e e e et e cancnce=nencee=kx) (000100
VAR CRTFIL = TEXT (xUSEL TQ PROMPT INPUT®) 000110
CHARSPEKLTHF ¢+ INTEGER; (+HWUMBRER NF CHARACTERS PER LINEx) 000120
LYNFSPEFLAREL : 1MNTEGEKR: (*MUMRER CF LTHNES PER LABEL®) 0c0130
COPYCNUIAT ¢ INTEGER: (*xn!!MBER OF COPIES TO PRINTH) 0n0140
PROCEDURE INTERACT: FOKWARD:
"&INTERACT
PROUCEDURE IMTFRECT: 000150
(*evocccerercrncrnccncnan- mremrceccccer e r e e e e r e e et et e necererremcensaa(00]60
PROCENURE IMIEFACT: 000170
PURPOSE ¢ TNIFRACT PROMPIS THF USFR, RENMUFSTING CFRTAIN INPUTS. 006180
QUTPUTS ¢ CHAPSPERLIWNE = MUMKEFR (iF CHARACTERS PFk LINF . 000190
. LTKFSPERI_AXFL « wNUMRER OF LINFS PER LABFL 000200
CNEYCNUNT = NUMRER OF LABELS TQ PRINT 000210
meeracemrmcrrancmn- memsemceeeccc e r e re e s s e r e e e T e e e cacnscnmca=anneak) ()00220
BEGIN (*INTERACT%) 000230
REWRPITE(CRTFIL)@ 000240
WRITELiNC CPTFIL, ‘hNw MARY CHARACTERS PFR LINE?C) 0noeso
RESETC(INMPIETY: KFAD(CHARSPERLIMF)3 000260
WRITFIANC CRTFTL, “KOwx MARY LIMES PER LAREL?Y) 0nn270
READLNMe wFAD(LTNESFFRLAWFL) 000280
WRITELMN(CRYFTL, “HOV [MANY LARELS??) 000290
REANLNs RFADC CRPYCOUNT)2 WRITELMN(CRTIFIL, °nC# INPUT THE LABELY): 000300
END: (xINTERACT¥) ono310
PROCEDUPRE RFANAMDPRTINT: FORWARD: 000320
" SREADAMDPRINT
PROCEDN!IRE KFEADANGPRTINT: 000320
(keecmocacrcncrccccneccccrcnmanccccacerrrecmersre e et cmancancenceneccae=(00330
PROCENIIFE KFANAMDPRINT: i 000340
PURPNSE ¢ FFLNAMDPKTIAT READS A LAREL ALD PRINTS MULTIPLF COPIES OF IT.0Nn0350
PROCENUPES CalLLFD ¢ GFTLINE, PRINTLABFL 000360
LAl L LI LI Sl bl L Al bl A L L A A bl D L DL L et aretncercacrescrecme=x)()N03T70
TYPE 0onro3so0
LINFE = PACKFD ARRAY (,1.,.CRARSKEFLIME,) GF CHAK: 000390
VAR 000400
LABFLIMAGF : ARPAY (.1, ,LINFSFERLAREL.) CF LINE: 0no410
PRUCEFURE GFTLINE(VAR THISLINE ¢ LIME): FORWAPRD: 000420
"&GETLIME
PROCENURF GFTLINECAVAR THISLIME @ LINEx): 000420
(dwmemccee crecccrcncrcncn~ AL LT L T et B R L LRI T KX
PRUCEDPURE GFTLINE(VAR THISLINF ¢ LINE): 000440
PURPOSE : GFTLI'E ~EADNS & STWGLE LINE UF A LARE|. 0004850
INPUTS ¢ (HARSPERLINF « NUMBEF (GF CHAXACTERS PER LINF 0004s0
OUTPUTS ¢ THISLTEF = THE LIMNE THAT «&S READ, 000470

Figure 12-11. Example of Input to SPLITPGM (Sheet 1 of 2)

12-45

Digital Systems Division

946290-9701

L R R X ey e ermCoc - w- errecmew emecooronmew ---nl-----u----------.-*)000“80

VAR Ch ¢ TUTEGFFR: 000490
BEGIN (*GETLINE®) 000500
READLMe CH 3z 1 0N00%10
WHILE CH <= (HAPSPEPLTINF AND MOT FOLWCINFUTY PRI BEGTM 000520
RFAD(THISLIMF(LCH.Y)3 CH 2= CH + 1 000530
ENMD: (xFILL 14 “EST OF LINE WITH RLANKS*) 00ys4an
FOR J = CH 10 CHARSPEFLIME [0 THISLINE(.J,) = ° “. 000550
END: (*GETLINEx®) 000560
PROCEDURE PPIMNTILLEEL: FNRWAPD: 0nNos70
"SPRINTL ASE]
PROCEDURE FFIMNTLASEL H00UST0
(Armececemrcarcrcncrancns S ST esCcsccracscnceree e e e rcaceerrrcecane=ea=(10580
PROCEDPUPE FRINTLAREL: 000590
PURPQOSE ¢ PFIMTLAPEL PRTINTS UNMNE CORPY OF THE LASFL, 000600
INPUTS ¢ LTRFSFERPLAEFL = WUMRER NF LINES PFk LABFL 0re610
CHARSPERLTINF = MUMKER (JF CHARACTERPS FPER LINF 000620
LARFLINMAGE = THE LAREL TU BF PRINTED 000630
ererereca wrcrmreeccawe Terccenccee-- Cressacrrmer T oo Comvccemcrenccww=x) 00640
BEGIW (*PRINTLABEL®) 000650
FOR L = 1 Tr. LINFSPERLABEL DN REGIN 000660
FOR CH 2= 1 TN CHAKRSPFRLIMNE DO “RITF(LABLELI4AGF(,L.)(.CH.))¢ 000670
WRTITELR s FuiDe 000680
END: (xPRTNTLABEL=*) 000690
BEGIN (*READANDPRINT*) 000700
FOR L ¢= 1 TG LINESPERPLABEL DO GETLIIE(LGEFLIMAGE(.L,)) 900710
FOR K 1= 1 TG CRPYCNUMT 00 PRTLTLAKFL: 000720
. END: (*READANDPRINT*) 300730
BEGTN (x_ARELS*) 0nNo740
INTFRACT: FEALDALDPRINT 0no7s80
END, (*L ARELS*) 000760

Figure 12-11. Example of Input to SPLITPGM (Sheet 2 of 2)

The OBJECT DIRECTORY is the pathname of the directory for the object library. The MODE
item is either FOREGROUND or BACKGROUND, as described for the compiler, paragraph 11.5.

12-46 Digital Systems Division

-

@ 9462909701

SECTION XIII
REVERSE ASSEMBLER

13.1 GENERAL

The reverse assembler (RASS) provides a Model 990 Computer Assembly Language source program
that corresponds to an object module written by the TIP compiler. The output of RASS may be
directly assembled. Submitting an object module to RASS to obtain the assembly language source
code allows the user to perform manual optimization when appropriate. The assembly language
source code allows debugging at the machine language level.

13.2 REQUIRED FILES
RASS requires the following files:

OBJECT 1 Contains the object file to be processed.
OUTPUT O Contains the assembly language listing.
SYSMSG O Contains system messages.

13.3 EXECUTING THE REVERSE ASSEMBLER
TIP software includes an SCI procedure XRASS for executing the reverse assembler, RASS. Enter
XRASS at any time DX10 requests a command. DX10 requests the following information:

OBJECT
LISTING
MESSAGES
MODE
MEMORY

The first three items require access names of devices or files, as follows:
o OBJECT — The access name of the object file (input).

o LISTING — The access name of the device or file for the listing (both errors and assembly
language source).

e MESSAGES — The access name of the device or file for the system messages.

The MODE may be either FOREGROUND or BACKGROUND, as described for the compiler
(paragraph 11.5). The MEMORY item is an ordered pair specifying stack and heap for the execution
of RASS.

13.4 EXAMPLE LISTING

Figure 13-1 is an example of the assembly listing produced by RASS. The program listed consists of
three modules. The listing for each module begins with the IDT directive that contains the module
name. This is followed by a comment line that provides a heading for the columns at the right.

F_ollowing the heading are the PSEG directive, the data directives, the DEF directive, and the REF"
directives. The location counter value is shown for each data word and the contents also are shown,

13-1 Digital Systems Division

%@ 946290-9701

both in hexadecimal. When the data word represents a relocatable address, the hexadecimal value is
followed by a plus sign (+). The representation of the word as a pair of ASCII characters is shown at
the end of each line. Each unprintable character is shown as a period (.).

Following the directives, another comment provides a heading for the instructions that follow. For
each instruction the listing shows the location counter value and the value of the word or words of
the machine language instruction in hexadecimal format. The file that contains the listing
(OUTPUT) may be used as a source code file for the assembler. The values that appear at the right
end of most lines are treated as comments by the assembler.

RASS is specifically designed to process the object files written by CODEGEN and has limited
application for processing other object code files. It recognizes only the object output tag characters
and operation codes supplied by CODEGEN. The directives are supplied in accordance with TIP
format, since object code seldom contains enough information to explicitly identify the directives.
When processing object code that contains a tag character or operation code that RASS does not
recognize, an error termination occurs. Even if the object code does not contain unrecognizable data,
only those words that RASS correctly interprets as instructions will be correctly listed.

The first eight bytes of each module contain the module name (program, procedure, or function
name). The next two bytes contain the nesting level: 1 for the main program, 2 for procedures and
routines declared in the main program, etc. The TIP source program corresponding to the example
in figure 13-1 is shown in figure 9-1. It consists of main program DIGIO that declares procedures
CCHAR and CINT. Therefore the three modules in figure 13-1 are CCHAR and CINT at level 2 and
mainprogram DIGIO at level 1.

Careful comparison of the source code in figures 9-1 and 13-1 shows how the TIP compiler
implements Pascal statements in assembly language. Manual optimization of the assembly language
source code may be performed by omitting any redundant source lines and reassembling the object
module.

13-2 Digital Systems Division

946290-9701

k-3

nooOd NATA

noooA DATA
nooor DATA

CCHAR EQL

SLA

MY
MOV
LOO&E EQ
TNC
UMF
L.O072 EQL
B
END
o7
#*
PSEG
nooon TNATA
NATA
NATA
DATA

“CCHAR

4343
»4541

=00
Q0320
FOORY
LOO72
noooo
CCHAR
ENT$E
RET$3

%

RENT%S

>O02A

0034 (RY).RS
#RS

Ré&, 0001

£3
Ré, @FQ022(RY)
LOO72

Ré&- RS

RS, 1

RS, 0026
R9.RS

#RS, @DO00OA
LOOLE

R&,RS

RS, 1

RS, #0024
R%.RS

#RS, @DO0OOC
L.OOGE

30024 (R?) RS
R3, 20007

#RS, R2

R&,RS

RS, 1

RS> 20024
R?.RS

#RS, R4

R4, >FFDO
@:>0034(R?),RS
R4, #RS

%

Ré&

LOOZ2S

%

CRET®S

“CINT <

4349
>4ES4
2020
2020

@>00246(RP), RHOOIZ(RY)

L.C

QOO0
Q002
Q004
0004
QOO
000A
QOO
O00E
Q0010

LC

0012
0016
ool1e
001C
0O01E

0022 -

Q02e
Q02
O0ZE
OO30
Q032
00326
003e
002C
O0ZE
Q040
0042
0046
0048
004c
O04F
0052
0056
0052
Q0O5SA
QOSC
QO&O
QO&2
00&4
00468
00&C

QOQOLE
QO70

0072

LC

Q000
0002
0004
Q004

HEX

424z
4341
B220
20720
0002
0030
[alnicid
QO73+
QOO0+

WORD(S)

QLAD
Q03A
169
0405
0204
CA&L?

SA4L
1522
[B ¥
0Al1S
QZ25
AL4w
2815
1113
Ci4é
0ALS
0