Pari-No. 939153-9701 *D
1 September 1982

@TEXAS INSTRUMENTS

© Texas Instruments Incorporated 1977, 1979, 1981, 1982
All Rights Reserved, Printed in U.S.A.
The information and/or drawings set forth in this document and all rights in and to inventions disclosed

herein and patents which might be granted thereon disclosing or empioying the materials, methods,
techniques or apparatus described herein, are the exclusive property of Texas Instruments Incorporated.

MANUAL REVISION HISTORY

DX10 Operating System Release 3.5 System Design Document (939153-9701)

ONGINATISSUG .« .o v et 15 December 1977
Revision. i e 15 December 1979
Revision.......... i e 15 April 1981
Revision. ..o e 1 October 1981
Revision........ ... i 1 September 1982

" The total number of pages in this publication is 350.

System Design Document Preface

Preface

The purpose of this manual is to familiarize the reader with the
flow of control between major parts of the DX10 operating system,
with the internal data structures used, and with the organization
of the system disk.

The manual is organized into the following sections and
appendixes:

Section

DR
1 DX10 Implementation Tutorial -- Describes the general
concepts used throughout DX10 and contrel paths
through major parts of DX10. :f - i

N B

p o I
iy

i

|

2 Organization and Structure of DX10 Source“”‘ i
Libraries -- Describes the organization _of 5 DX10
source disk, and includes a disk map. = E

3 System Loaders -- Describes the software necessary tb
start up a DX10 system, including the boot loader
disk loader, DX10 loader, and system restart task. :

4 Disk Organization -- Describes the physical and
logical format of a DX10 disk, as well as the internal
structure of all file types that are supported. :

i

{

5 System Files -- Describes some special flles, used by
DX10. : i

J

6 Data Structures -- Describes many of the -internal-data

structure built and maintained by DX10.

7 DX10 Data Base Modules =-- Describes the information
contained in the two data modules within DX10.

8 Common System Routines =-- Names and describes the
stacking and gqueueing routines wused by many of the
system routines.

9 DX10 Source Modules -- Contains . a tabularized
description of the most important modules in DX10.

939153-9701 iii

Preface System Design Document

*10 System Command Interpreter -- Describes the separate
functional parts of the system command interpreter
(SCI) and the flow of control between those parts.

Appendix

A System Crash Analysis -- Briefly describes the methods
for recovery from a system crash.

B Regenerating DX10, SCI, SDSMAC, and XLE from the
Source -- Contains information for regenerating the
elements of the operating system.

C Scheduler Structure and Operation -- Describes the
DX10 task scheduler, including it”s flow of control.

A Device States and LUNO Assignments -- A short note
describing LUNO assignments for devices in various
states.

E VDT Input Characters SVCs -- A discussion of SVCs >08
and >18.

F System Level Debugger -~ Discusses entry into tht

Debugger and the subcommands that you can use to debug
a program.

iv 939153-9701

System Design Document

This manual assumes that the you have
knowledge of the information contained in
manuals:

Title

DX10 Operating System Concepts
and Facilities (Volume I)

DX10 Operating System
Operations Guide (Volume II)

DX10 Operating System
Application Programming Guide (Volume IITI)

DX10 Operating System
Text Editor (Volume IV)

DX10 Operating System
Systems Programming Guide (Volume V)

DX10 Operating System

Preface

a detailed, working
the” following DX10

Part Numbe;

946250-9701
946250-9702
946250-9703~
946250-?794

946250-9705

Error Reporting and Recovery Manual (Volume VI) 946250-9706

939153-9701 v/vi

System Design Document

Contents
Paragraph Title Page
1 -- DX10 Implementation Tutorial
1.1 General ConcepPtS. « « « 4 o+ o o o o-9e o o o o s o 1=1
1.1.1 QUEUES « + o o o « o o o o o o s o o o o o o o =3
1.1.2 Queue Servers and Active Task Queues 1-3
1.1.3 Active Task QUEULS « ¢« « « o o « s o o o o o o« 1-4
1.1.4 A 32-Byte Block of Memory --Beets. 1-6
1.1.5 Calling ConventionsS. . « « « « o o o o o o o o =7
1.1.6 System Memory Mapping. . « + « « ¢« ¢ « ¢ ¢« o o 1=8
1.2 Flow of Control Through DX10. . . . + +« « « &« « o« 1-13
1.2.1 SVC Processing « « « o o o o o o o s o o o o o 1-13
1.2.2 Bidding a Task for Execution 1=15
1.2.3 Scheduling, Loading, and Rolling a Task. . . . 1-21
1.2.3.1 Scheduling. . ¢ &« &« & o o o o o o o o o o« o« 1=22
1.2.3.2 Loading And RoOl1ling . . + ¢« &« « o o o o o o 1=22
1.2.3.3 Memory Management . . .« « « o« « « » o+ « « o 1=26
1.2.4 Device I/O FIOW. « « « o o o o o o o o o o « o« 1=31
1.2.5 File Utility FlIOW. « « « « « o o o o o o o o o 1=34
1.2.5.1 Assigning and Releasing LUNOS 1=37
1.2.5.2 Creating and Deleting Files « . . . 1-41
1.2.6 File I/O FlOW. « « « o 4 o o o o o o o o o« o o« 1-41
1.2.6.1 Blocked File I/0. v v ¢ « o o o o o o o « o 1-44
1.2.6.2 Unblocked File I/0. ¢ ¢ ¢« &« « o o o o« o o« o 1=44
1.2.7 Task Termination ¢« ¢« ¢ ¢ ¢ o o & « o 1=37
1.2.7.1 End Task/End Program SVC. . « « &+ o o+ o o o 1=37
1.2.7.2 Suspend Awaiting Queue Input SVC. 1-38
1.2.7.3 Error Termination« « ¢« & « o ¢ « o o 1=38
1.2.7.4 Kill Task SVC & ¢ ¢ ¢ &+ o« o o o o o o o o o+ 1-38
2 -- Organization and Structure of DX10 Source Libraries
2.1 GENErAl ¢« « o o o o o o s o o & o s o s e o e 0 e 2=1
2.2 Top Level Directories . . . « ¢« ¢ ¢« ¢« ¢ o o« o« &+ o 2-1
3 -- System Loaders
3.1 General .« « ¢« o« o o o o o o o o s o o o e o o o 3=1
3.2 The Boot LOAder « « « « « o« o o« o o o o o o o o o 3=2
3.3 The Disk Program Image ILoader . . « +. « s o« o+ » o 3=3
3.4 The System Loader/Initializer« .« « . . . 3-4
3.5 The System Restart Task . . . « ¢« ¢« &« « « o o « o« 3=5

939153-9701 vii

Contents

Contents System Design Document

Paragraph Title Page
4 -- Disk Organization
4.1 Disk Format e e e 4 s o o o 4-1
4.2 Physical Organization of the DlSk e e e s s e o o 4=2
4.2.1 Volume Information 4-3
4.2.2 Allocation Bit Map . . « + &« « « « « « « « « . A4-8
4.3 File Structures . . . & ¢ ¢ ¢ &« v 4« ¢ 4 o« « o« « . 4=10
4.3.1 Relative Record Files. . . . +. v v & v &« o . . 4-10
4,3,1.1 Unblocked Relative Record Files 4-10
4.3.1.2 Blocked Relative Record Files 4-11
4.3.2 Sequential Files . . v & v 4 4 v 4 4 4 4 4 . . 4=12
4.3.3 Key Indexed Files. . . ¢ &+ v ¢ ¢ 4 o o o « « . 4-16
4,3.3.1 B=TICES &« & & v 4 4 4 4t 4 « o o« o o o o« o« « 4-16
4,3.3.2 Data Blocks e o e o s+ o o . . 4=20
4.3.4 Special Relative Record Flles. e e e o o e o o 4=22
4.3.4.1 Program FileS o « & v 4 ¢ ¢ ¢ o o o o o « o 4-22
4.3.4.2 Directory Files . . . ¢ ¢ ¢ v ¢« ¢ v o o« + . 4=34
4.3.4.3 Image Files . . ¢ ¢« 4 v ¢ v ¢ 4 o o o « o . 4-48

5 == System Files

5.1 General
5.2 System Program File
5.3 System Overlay File
5.4 Crash File.
5.5 Roll File

e o & @ o
e e o o o
e e o . o
e ¢ o o o
* e o o @
s & o e o

3
.
.
.
.

s e e o .
e o o o)
e o o o L]
e o o @ .
e o o o .
e o o e o
e & @ o .
o« o o . .

6 -- Data Structures

.1 General . ¢ & & ¢ 4 i 4 e e e e e e e e e e e e . B=1
.2 QUEBUES. « v v & 4 4 4 o ¢ o o o o o o o o o o o « 6=1
3 Physical Device Table . . v v v v ¢ 4 o o o o« o o 6=2
.3.1 PDT Expansion Block. . ¢« & &« v ¢ & o o o o « « 6=9
3.2 Disk PDT Extension (DPD) . « & & & o o« o « « . 6=10
.3.3 Teleprinter Device PDT Extension (DIB) 6-14
.3.4 Reyboard Status Block (KSB). v v v ¢ o o « . . 6=17
.3.4.1 Video Display Terminal Extension (VDT). . . 6-21
.3.4.2 Electronic Video Display Terminal

Extension (VDT940). . . . v v v ¢ ¢« v « « . 6=23
.3.4.3 KSR Extension (KSR) « . v v & ¢ v &« o« & » . 6=29
.3.4.4 820 Extension (T82) . . . + & & & ¢« « « . . 6=31
.3.4.5 Character Queue , . . e e e e s 4 4 e+ o . 6=32
.3.5 Line Printer Extension (LPD) © e 4 s+ 4 e+ o « . 6=-33
.3.6 Tape Extension (TPD) . +. ¢« ¢ v ¢« ¢ « &« &« o « . 6-34
.3.7 Floppy Diskette Extension (FPD). « « « 6-35
.3.8 Partial Bit Map (PBM). « v 6-3f

(o W W We We \ We) We) AANNANANG NN

viii 939153-9701

System Design Document Contents

Paragraph Title Page
6.4 File Control Block (FCB) e e o s e e o a2 s & o+ o 6=39
6.4.1 KIF Extension to the FCB +. + « + « + « +« « « o« 6-45
6.4.2 Queue Extension to the PCB . ¢« . ¢« ¢« « « « . . 6-46
6.4.3 Record Lock Tabl {(RLTY . + .+ e e e o o o 6=47
6.4.4 Program File Extenalon to the FCB. e+ ¢ o o o Hh=48
6.5 Logical Device Table (LDT) e « « « « « o« « o« « » o 6=50
6.6 Buffered Call BlocK . « v v « ¢ o « o« o & o o o « 6-52 °
6.7 Task Status BloCk (TSB} « « ¢ o o o o o « o« +« o « 5=53
6.8 Procedure Status Block (PSB). +. « « « &« « o« « o« o+ 6-61
6.9 Time Ordered List (TOL) . e+ « o & s o« o 6=63
6.10 System Log Parameter Blocks (SLPB) e « « o o » o« 6-65
6.10.1 Device Extension with Controller Image

(SLXKEY=0) e « « s+ o « 668
6.10.2 User Call Extension to SLPB (SLXKPY Yy . . . 6-69
6.10.3 Memory Error Extension to SLPB (SLXKEY = 2). . 6-69
6.10.4 Statistics Extension to SLPB (SLXKEY = 3). . . 6=70
6.10.5 Interrupt Extension to SLPB (SLXKEY = 4) . . . 6-70
6.10.6" Task Extension to SLPB (SLXKEY = 6). « « . . . 6=71
6.10.7 Cache Memory Extension to SLPB (SLXKEY = 8). . 6-71
6.10.8 SLPB Device Extension with PRB (SLXKEY = 9). . 6-72
6.10.9 Intertask Communications (ITC) Queue H6-73
6.11 System Overlay Table (OVT) . v ¢« o « o « o o o« « o 6=74
6.12 Memory Manadement Lists ¢« + ¢« ¢+ ¢« « « « . 6-78
6.13 Sequential File Backup Structure. « . . . 6-78
6.13.1 Backup Directory with NOMULTI Option Selected. 6-81
6.13.2 Backup Directory With MULTI Option Specified . 6-87
6.13.3 Physical Record Block (PRB). « « ¢« « « « « « . 6-89

7 -- DX10 Data Base Modules
7.1 General . . ¢ ¢ 4 ¢ 4 4 4 4 e s e o o s e s e & o 1=1
7.2 DSDATA. v v v o o o o o o o o o o o o o o s o o« o« 1=1
7.3 DXDATZ2. & & 4+ 4 o o o o o o o o o o o o o o o o o 71=2
8 -- Common System Routines

2.1 Stacking Routines . . . 4 &+ 4 ¢« ¢ ¢« o« « « o o« ¢« « 8-1
8.2 Queueing ROULINES v 4« &+ o « o & « o o« o o« o o- + B8-4
8.2.1 TMOUE & v ¢ « o o o o o o o o« o o o s o o & o B8-4
8.2.2 TMAQUE . & ¢ 4 4 4 o o o o o o o« o s o s o« o o« B=5
8.2.3 T™AQO . . e o o s e s o s e« s s a4 s e o s+ &« B=5
8.2.4 TMTSBQ ¢ &« ¢ o « « o o o o o o o o o « o o« o« « 8=5
8.2.5 TMDQUE . &« + ¢ ¢ « 4« o o o o o « o s s o o« &« o« B=5
8.2.6 TMSQRM . . . e s e o 4 4 e 4 e s s e s e o« « 8-5

939153-9701 ix

System Design Document

e & o o o ¢ o o

.

e e o ¢ o e o o

Bid

Contents
Paragraph Title

9 -- Description of DX10 Routines
9.1 General . . . & ¢ ¢ ¢ t e o s o e o o o o
9.2 SVC Processing. e e s e e
9.3 Bid Task Supervisor Call - Code >05 . . .
9.4 Task Manager. . « « o« « o o o o o o o o &
9.5 Memory Manager. . « « « « o o o o o o o &
9.6 Disk Manager. . . « « ¢« o « o o o o« o « &
9.7 Device I/O Processing .« . « v o« o o o + &
9.8 File Utility Routines
9.9 File Manager. . . + o« o o o« « o o o o o
9.9.1 Key Indexed Files. « « ¢« ¢ ¢ ¢ o « + &

10 -- System Command Interpreter
10.1 General e o e e o e o s e e o s
10.2 System Command Interpreter. e e e o 4 o
10.2.1 Structure of SCI . . ¢« v ¢« 4 ¢ « o« o« =
10.2.2 Overlay Strategy . « v ¢« ¢« « o o o o« &
10.2.3 Data Structures. ¢ ¢ ¢ + & . .
10.2.3.1 System Communication Area (SCa) . .
10.2.3.2 SCA ENtry « o « ¢ o ¢ ¢ o o o o o o
10.2.3.3 Text String . ¢ ¢« ¢« ¢ ¢ ¢« ¢ o o o
10.2.3.4 Terminal Communications Area (TCA).
10.2.3.5 Terminal Status Block (TSB)
10.2.3.6 Name Correspondence Table (NCT) . .
10.2.4 Interfaces . . . & v ¢« ¢ ¢ ¢ ¢ ¢ o o
10.2.4.1 Calling Sequence. . . . « « « o« . .
10.2.4.2 Terminal Local File
10.2.4.3 System Procedure Library.
10.2.4.4 Menu Files. o« o e
10.2.4.5 TCA Library File -- .S$TCALIB . .
10.2.4.6 Foreground TCA File -- .S$FGTCA .« .
10.2.4.7 Background TCA File -- .S$BGTCA . .
10.2.5 SVC Overhead Analysis.
10.2.5.1 .BID SVC Overhead for Foreground SCI990
10.2.5.2 .BID SVC Overhead In The Task Being
10.2.5.3 .OVLY SVC Overhead for SCI990 . .
10.2.5.4 .OVLY SVC Overhead in the Overlay .
10.2.5.5 Analysis. + ¢« ¢ ¢ 4 6 e e e s e o W
10.3 Background Resource Manager
10.3.1 Structure of BRM ¢ . . .
10.3.2 Calling Sequence
10.3.3 Background Communications Area (BCA) .

e & o e o o o o

e 8 & o o & o

Page

e & o o s o o o

10-1
10-1

10-].
10¢
10-

10-4
10-4
10-5
10-6
10-7
10-7
10-8
10-8
10-9
10-9
10-9
.10-10
.10-10
.10-10
.10-11
.10-11
.10-11
.10-12
.10-12
.10-12
.10-13
.10-13
.10-13
.10-14

& ¢ & e e ° o o o

* @ o ¢ o o o

939153-9701

System Design Document

Paragraph Title

10.4 Queued Task Bid Handler (QBID). . + « «
10.4.1 Structure Of OBID. . « « « ¢« o o« s o o
10.4.2 Data Structures . « « &+ ¢ ¢ o o o o .
10.4.2.1 System Communication Area (SCA) . .
10.4.2.2 Background Communication Area (BCA)
10.4.2.3 Task Queue Entry. « . & . &
10.4.3 Calling Sequence . . « « o o« o « o o
10.4.4 File€Se & ¢ o o o o o o o o o o o o o «
10.4.5 EBrror Codes. « + « + o« o o o o s o o »
10.5 Queued Output Handler (OQUEUE).« .
10.5.1 SErUCEUre. ¢« « ¢ o o o o o o o« o o o o
10.5.2 Data StruCtUreS. o« « o o o o o o o o
10.5.2.1 System Communication Area (SCA) . .
10.5.2.2 Background Communication Area (BCA)
10.5.2.3 Output Queue Entry. . . ¢ ¢ o « < =
10.5.2.4 File Environment Table.
10.5.3 Calling Sequence .« . « « « s o o o o
10.5.4 FileS.e ¢« ¢ ¢ ¢« o o o o o o o o o o o o
10.5.4.1 TCA File. o o ¢ o o o o o o o o o o
10.5.4.2 Listing File. . ¢+ ¢« « o & o o o o &
10.5.5 Brror CodesS. . « o o s o s o o s o o @

939153-9701 xi

® e ¢ o 0 e © e & o o o & o e o o o o

¢ e ¢ 8 0 & * & & o o & e o . e o o o

Contents

Page

.10-14
.10-14
.10-16
.10-16
.10-16
.10-16
.10-17
.10-17
.10-18
.10-18
.10-18
.10-21
.10-21
.10-21
.10-21
.10-22
.10-22
.10-23
.10-23
.10-23
.10-23

L3 ® ¢ o o 0 e o e e o & s o o . o e o @

Contents System Design Document

Appendixes

Appendix Title Page

System Crash Analysis e e e e o o« o o s+ o« « A-1
Regenerating DX10, SCI, SDSMAP

and (XLE From SOUFCE€ .+ « « + « « « o o o o« « « . B-1
Scheduler Structure and Operation C-1
Device States and LUNO Assignment D-1
VDT Character Input SVCS. « +« ¢« « « « 2 « « « « E-1
The System Level Debugger . . . + « ¢« & & « . . F=1

HEHOOQO W

xii 939153-9701

System Design Document

Figure

1 I
O JoyUd WM

|t

I I |
o

o bt b bt et et

!
=
=W N

=
1

[

(%]

|
= = O 00 ~J OV U LN

o

[

.b¢~hu>p-hu>f-buaﬁ-pnhm>n

1
b
Ulid»s W N

4-16
4-17

B |
NOYULE WM N
(== JVo 20 o]

AN NN > i
I

.Simplified Flow of Scheduler.

Illustrations

Title

DX10 Physical Organization. . .
DX10 Queue Structure. . . . « o
Active Task Queue e e e s e e s

Example System in Physical Memory

System Memory Mapping
System Map File 0 Schemes . . .
System Map File 1 Schemes . . .
SVC Processing Flow of Control.
Bidding a Task.
TSB Family Tree
TSB/PSB' Relationship. . .

Simplified Flow of Loader . .
Time-Ordered List
Find Memory Flow. « .
Logical Device Table Hierarchy.
Device I/0 Processing Flow. . .
File Utility Calling Processing
Logical Device Table Pointers .
FCB and LDT Tr€€. 4+« « « o« o o &
File I/OFlOW « &+ « ¢ o o o o o

® & o ¢ ¢ o o

) Volume Information Format (VIF)

Partial Bit Map . « « « « « + =«
Sequential File Format. .
Blank-Suppressed Record .
Key Indexed File B-Tree .
B-Tree Block. . . . « . .

Data Block. . . « . . .
Program File Format . .
Program File Record Zero
Program File Available Spa
Task Directory Block. . .
Procedure Directory Entry
Overlay Directory Entry .
Directory File Structure.
Computing Hash Key. .
Directory Overhead Record
File Descriptor Record. .
Alias Descriptor Record .
Key Descriptor Record .
Directory File Dump . .
Queue Anchor.
Physical Device Table .« . .
Physical Device Table Expans
Disk PDT Extension
Teleprinter Device Extension to
Keyboard Status Block

e L

0
]
3

e ¢ () ¢ o o ¢ s e o o o+ o o

e o Mo o o o ¢ Qs o o o o o

* o

io

e e o e o

.Hooo.

Video Display Terminal Extension to KS

939153-9701 xiii

» @
. e
»

e
. .

.
e o o o o i
. s & o 0
. e o o o
. e e o o

e e o o

¢ o o o

¢ ¢ o e & ° e O & 8 e o o
e & o e o & @ o & & s o o

e o & & @ & * e & o o &

e @ & o & @ o & o e+ s o

a & o & 6 o o o o o o o o

e o o o e & o o 0 » o

® o ¢ & o e o o o o+ o o

.
.
L]
.
3
.
.

.
.
.
.
.
3
.

e o o ¢ 8 o (o o o o o o
. . . L) . ® L] . L) L] L] . .
L] . L] L] (] . L] . . . -

o

.
e o o e o e & & & o o o o+ o+ o

« & 4 e 0 o & & & o o o o+ o+ o
- . . L] . L[] . L[] .] . - . . *
e & 6 & 0 & e © * & o s o o o

e o o o & o o 2 o
. e o ¢ o . . .
« o e 8 ¢ o o o o

Contents

Page

1-2

1-5

1-6

1-9
1-10
1-11
1-12
1-14
1-16
1-18
1-19
1-24
1-25
1-26
1-30
1-32
1-35
1-36
1-39

¢ ¢ o o 2 &

e e o o o 2 & &

e & @& o o s 0 & o s o o

. L] L[]]

1-43

o o o
* e o
Y

[
[adit R
= \O W

e o & o o o o o o o » o

* o & e 6 0 6 + s s e e o
-

[} LI T T | [|
N
[e0]

. .
L] L]
> >
[
= W
Ul O

6-18
=21

e o & & o & ¢ o o
N [
|
0

Contents System Design Document

Figure Title Page
6-8 Electronic Video Terminal Extension to KSB. . . . 6-23
6-9 KSR Extension to KSB. « & ©¢ v v « o & o o « « « . 6-29
6-10 820 Extension To KSB. &+ v v v v v & o « o o o« . . 6=31
6-11 Line Printer Extension. . . ¢« ¢« « ¢ 4 ¢ « o« & + . 6=33
6-12 Tape EXtension. . . & ¢ ¢ ¢« ¢ o o « « o « o o« o« o 6=34
6-13 Floppy Diskette PDT Extension 6=35
6-14 Partial Bit Map « « v &« ¢ « o o « o o« « o o« « « o 6=37
6-15 File Control Block (FCB). v « « « « « o o« o« « « « 6=39
6-16 FCB Extension for Key Indexed Files 6-45
6-17 Record Lock Table (RLT) &« v« 4 o o o o o« « « « « . 6-47
6-18 FCB Extension for Program Files 6-48
6-19 Logical Device Table (LDT)e « « « o ¢ o o o o &
6-20 Task Status Block (TSB) v« v v v v v o o o o o &
6-21 Procedure Status Block (PSB).e v v v o & o o «
6-22 TOL Overhead Beet . . ¢ ¢ ¢ v v v v ¢ o o o o &
6-23 System Log Parameter BlocK. . . &+ © & o o o« o &
6-24 SLPB Device Extension With Controller
6-25 User Call Extension to SLPB . v v ¢ & & o o o
6-26 Memory Error Extension to SLPB. . . +« « « o« «
6-27 Statistics Extension to the SIPB.
6-28 Interrupt Extension to the SILPB « « . .
6-29 Task Extension to the SLPB. ¢ ¢ ¢ o « .
6-30 Cache Memory Extension to the SLPB.
6-31 SLPB Device Extension with PRB. . . . ¢« & . . .
6-32 : Intertask Communication Queue (ITC) . « + o « =
6-33 Directory To Be Backed UP . + v v ¢ o o« o o « &
6-34 Control File. v v v 4 v v o o o o o o o o o o
6-35 Expanded Structure for a Program File
6-36 Structure Oof .SEQFILE +¢ v +v & & ¢ o o o« o o o
6-37 Back-up Directory Tape Format . . . « + o« « o .
6-38 Physical Record BlocK . « v v v v v 4 o o o o
10-1 SCI Flow of Control . . . v v v v v v 4 o o o
10-2 TCA LAayouUt. .+ & v v 4 4 4 o ¢ o o o o o o o o »
10-3 Terminal Status BlocKk « v ¢ v v v ¢ o o o o o
10-4 Name Correspondence Table « « « « o+ .

Xiv 939153-9701

System Design Document

<)
V1]
o
—
1]

|
H WO U e WN

o

HH W WWWWWOWWYWWOWWOWOWOoOUT SN
= X-N TR |

1~
Ny

10-3
10-4

[
o
1
ul

939153-9701

Tables
Title

Top Level Directories . .

Format Information for Supported DlSkS.

System Overlay Numbers. . . .
Task State Codes.
SVC Overhead Routines . . .
SVC ProcessSoOrsS. . « o« « o« =«
Task Management Routines. .
Memory Management Routines.
Buffer Management Routines. .
Disk Management Routines. . .
Device I/0 Processing Routines
Device Service Routines . . .
File Utility Routines
File I/0 Processors

.
.
.
.
.

e o o o o

Key Indexed File I/0 Processors

.BID SVC Overhead for SCI . .
Overhead in the Bid Task . .
.OVLY SVC Overhead for SCI. .
QOBID Subroutine Call Table. .
OQUEUE Subroutine Call Table.

xv/xvi

. . . . LI . .

e o o o &

. e & & o o o & & s o o

3

e & & ¢ o+ 4+ o o e o s o o

Contents

e o o o ¢+ o & o s & o e
e & & ¢ s e 6 2 e ¢ & e @

System Design Document DX10 Implementation Tutorial

Section 1

DX10 Implementation Tutorial

1.1 GENERAL CONCEPTS
The DX10 operating system is physically divided into two parts:
one is memory resident and the other is disk resident. Memory
resident DX10 includes:

* System tables and device buffers

* gystem overlay areas

* Task scheduler

* Task loader

* QOverlay loader

* System overlay loader

* XOP brocessors

* Most SVC processors

* Interrupt processors

* Some system tasks that may have overlays (such as the
disk manager or file manager)

These parts are 1linked together during system generation, and

loaded into memory when the system is loaded, forming the nucleus
of DX10.

Disk resident parts of DX10 include system overlays and some
system tasks. System overlays are loaded into the system overlay
areas reserved within the memory resident nucleus. System tasks
are loaded into available memory and are mapped in, (share memory
with the nucleus).

Figure 1-1 shows a simplified view of DX10 physical organization.

939153-9701 1-1

DX10 Implementation Tutorial System Design Document

INTERRUPT AND XOP TRAP VECTORS

SYSTEM TABLE AREA

> SYSTEM OVERLAY AREA

DX10 NUCLEUS

SYSTEM OVERLAYS

SYSTEM TASKS

AVAILABLE
MEMORY

2278109

Figure 1-1 DX10 Physical Organization

1-2 939153-9701

System Design Document DX10 Implementation Tutorial

The following paragraphs describe several important concepts used
in the DX10 operating system. These include:

* Queues

* Queue Servers

* Active Task Queue

* Beets (32-Byte Blocks of Memory)
* Calling Conventions

* System Memory Mapping

1.1.1 Queues

A queue is a first-in, first-out list of data to be processed.
In DX10, each gueue consists of a queue anchor located in the
memory-resident nucleus, and the gqueued blocks of data. Each
block is linked to the next block in the queue (see Figure 1-2).

1.1.2 Queue Servers and Active Task Queues

A queue server is a task that is dedicated to the processing of
the data blocks in its associated queue. For example, the Bid
Task SVC processor 1is a disk-resident task that is a queue
server. The queue entries are buffered supervisor call blocks.

A queue server operates in the following manner: when an entry
is placed in the queue, the queue server is activated (bid). The
queue server, operating as a task under DX10, dequeues an entry
from its gqueue and processes it. The queue server continues to
dequeue and process queue entries until the queue is empty, at
which time the queue server suspends itself by issuing a Suspend
Awaiting Queue Input SVC (code >24). When a new entry is placed
in the queue, the gqueue server is re-bid.

Nearly all of the functions of DX10 are performed by queue
serving routines. Many SVC processors such as I/0O SVCs, Install
Task, Kill Task, plus all of the disk-resident SVC processors are
queue servers.

939153-9701 1-3

DX10 Implementation Tutorial System Design Document

NOTE

Disk-resident gqueue servers are pseudo-memory
resident. When such a task terminates
awaiting queue input, its memory is not
released until it is required to 1load other
tasks. At that time, the memory is released
and the task must be reloaded the next time
it is bid.

1.1.3 Active Task Queue

The active task queue organizes the active tasks within the
system into priority order. This means that all tasks of the
same priority level are grouped in a list, and these lists are
then arranged so that the highest priority level list is at the
top of the queue. The top task on each priority list is the
oldest task on that list, and the bottom task is correspondingly
the youngest. Tasks are then executed in order from the oldest
task on the highest priority level, and ending with the youngest
task on the 1lowest 1level of priority. The scheduler alwavg
causes the top task on the active task queue to be in executio{i
Figure 1-3 shows how the active task queue can appear. A list i¥%
maintained on the queue for each priority level. Figure 1-3
shows a queue in which priority levels Rl through R38 are void,
level R39 has two tasks, R40 has one task, and level R41l has
three tasks. The remaining real time priorities are void with
level 1 having five tasks, level 2 having three tasks, and level
3 having 5 tasks.

1-4 939153-9701

System Design Document DX10 Implementation Tutorial

QUEUE ANCHOR QUEUE ENTRIES

NEWEST ENTRY

QUEUE LINK

OLDEST ENTRY

QUEUE LINK

QUEUE LINK

QUEUE LINK

2278110

Figure 1-2 DX10 Queue Structure

939153-9701 1-5

DX10 Implementation Tutorial System Design Document

R1 through R38 lists are void
Highest priority task T1/R39 { R39 list
T2/R39

T3/R40 R40 list

T4/R41 l
T5/R41 } R4l list
T6/R41

<--=- R42 through R127 lists void

T7/1 }

T8/1

T9/1 1 list
T10/1

T11/1

T12/2
T13/2 } 2 list
T14/2 |

T1S/3
T16/3
T17/3 3 list
T18/3
Lowest priority task T19/3

T1,T2 priority R39
T3 priority R40
T4,T5,T6 priority R41
T7,T78,T9,T10,T1ll priority 1
T12,713,T14 priority 2
T15,T716,T17,T18,T19 priority 3

Figure 1-3 Active Task Queue

l1.1.4 A 32-Byte Block of Memory--Beets

Under DX10 memory management, a beet is defined to be a 32-byte
block of memory. A beet address (boundary) is an absolute
address that can be evenly divided by 32. The concept of a beet
address is necessary to DX10 memory management in order to fit a
20-bit absolute (unmapped) memory address into a 16-bit word.
Memory is allocated by beets, and memory allocations begin on
beet boundaries.

1-6 939153-9701

System Design Document DX10 Implementation Tutorial

1.1.5 Calling Conventions

Within DX10, routines normally call each other using the
following sequence:

BL @SUBR
DATA ERROR
NORMAL EQU $

where SUBR is the entry label of the routine being called, ERROR
is an address within the calling routine to which the called
subroutine should return in case of an error, and NORMAL, the
next instruction, is the normal (non-error condition) return
point.

Since the call is made using a BL instruction, R1l points to the
word containing the error return address. The following sequence
is generally used by the called subroutine, when returning.

MOV @ERRCOD, RO Put any error code in RO.

JEQ RTNORM If no error, do normal return.
ERRET MOV *R11,R11 If error, return to address

RT contained in word following
RTNORM INCT RI11 the call. WNormal return

RT is to the second word

after the call.
Since the return sequence is often used in DX10, a special

routine, POPO, 1is provided to perform the return (see Section 8
on common system routines).

939153-9701 1-7

DX10 Implementation Tutorial System Design Document

1.1.6 System Memory Mapping

Using the memory mapping option available with 990 type hardware,
the DX10 operating system is divided into several different
mapping schemes using map files 0 and 1 (Figure 1-5). This is
necessary since the physical memory size of DX10 exceeds 64K
bytes. The mapping schemes link together segments of the memory
resident operating system (Figure 1-4) to perform different
tasks.

All mapping schemes include the DX10 data base, system table
area, and common system routines (called the system root) as the
first segment (memory mapping allows a program to be divided into
three segments which need not be in contiguous memory locations).
All schemes which use map file 0 have the I/0 common routines
(routines commonly used by device service routines) as the second
segment. The third segment of all map file 0 schemes is one of
the following:

* The task scheduler and SVC and XOP code
* A device service routine (DSR).

Figure 1-6 shows how the logical address space of map file &
schemes is arranged.

In one of the map file 1 schemes, file management and key indexed
file handling code are physically located in memory immediately
after the system root in the first segment. This map scheme
allows file management to map I/O buffers into its address space
using the two remaining map segments.

Other -map file 1 schemes include either a system task (memory
resident or disk resident) or system common as the second
segment. The third segment is available for use by the task.
Figure 1-7 shows possible arrangements of map file 1 schemes.

The link map of a generated system contains information on
exactly which DX10 modules are included in each mapped segment.

1-8 939153-9701

System Design Document NX10 Implementation Tutorial

o INT TRAPS
> A0 :
FIXED
DATA
> 1000 e — e —— —
SYSTEM
TABLE
AREA
> 9000 L o e o e e —]
SYSTEM
ROUTINES
> C000
FILE MGR
KIF
> EQ00
MEM RES
TASK
> F200
USER COM
> F800
1/0 COM
> 10000
SCH
SYSTEM SVC'S
USER SVC'S
> 12000
DISK DSR
> 12400
911 CRT DSR
> 12A00
LP DSR
> 12C00
MEMORY
RES
BUFF
> 13000 -
USER
MEMORY
> 20000

2283240

Figure 1-4 Example System in Physical Memory

939153-9701 1-9

0T-T

TOL6-EST6ES

[~1-X-1-]
= CO0O=
— ooon
— O00W
al-d=1-F 3
—~ OO0t
— O00m]
— OOON

16K

- O000O

- OO0V

= 000>

22K

~ OOoOm

24K 26K 28K 30K 32K
f—- MAXIMUM SIZE OF SYSTEM ROOT

o
2]
o

- 0000
=~ 000D
— 000

MAP FILE O

ROOT
7\

1/0
COMMON

1 SYSTEM TABLE AREA

SYSTEM

TME SHD

SVC CODE

COMM DSR

ROU-—

TINES S

S OTHER

—i
-

DSR'S
— S

l

l

7~

FILE MANGR , BLOCKING

DX DATA !

MAP FILE 1

ROUTINES

KIF ' BUFFERS

MEMORY
RESIDENT

SYSTEM
TASKS

COMMON

AREA

DISK RESIDENT

e > o aw we w— ew e o -

SYSTEM TASKS

2278111

Figure 1-5 Syst® ™

emory Mapping

TeTI03nL uotjejuswaTdwWI OTXd

juaunoog ubisag wsa3sAs

T0L6-EST6E6

I1-1

DATA BASE

fe - —— - — — — — — -

SYSTEM TABLE AREA

COMMON ROUTINES

1/0 COMMON ROUTINES

TASK SCHEDULER, XOP
ROUTINES, AND SOME
SVC PROCESSORS

2278112

ROOT

+

170 COMMON

f

THIRD
SEGMENT

1

DATA BASE

COMMON ROUTINES

1/0 COMMON ROUTINES

DEVICE SERVICE
ROUTINE

Figure 1-6 System Map File 0 Schemes

jusunsoQ ubtrsag wo3lsAs

TeTa0o3nL uorjlejuswaTdwl QIXdA

¢T-1

T0L6-EST6ED

ROOT ROOT ROOT

UNUSED
FILE MANAGEMENT

AND KEY INDEX FILES
SYSTEM SYSTEM
COMMON TASK

(ORIGIN=>C000)

(AVAILABLE)

(AVAILABLE) (AVAILABLE) ~ (AVAILABLE)

2278113

Figure 1-7 System Map File 1 Schemes

1eTI03NL uot3jejuBWSTdWI QTXd

jusumoog ubrissaQg wa3zsAs

System Design Document DX10 Implementation Tutorial

1.2 FLOW OF CONTROL THROUGH DX10

The flow of control through DX10 follows various paths, depending
on the action currently being performed. The remainder of this
section traces these control paths separately, following the
general order of events caused by the execution of a task. The
order begins with SVC processing and the task bid and ends with
task termination.

1.2.1 SVC Processing

Under DX10, SVCs are implemented as extended operation (XOP) 15,
When an SVC is issued, control is passed via the XOP trap vector
table to the SVC decoding routine, SVCINT, which is the XOP
processor for XOP 15. This routine determines which SVC is
desired (by decoding the SVC code in the call block), and passes
control to the SVC processor.

If the SVC processor is a queue server, control passes from
SVCINT to the SVC buffering routine, SVCBUF. This routine
buffers the call block into the system table area and queues the
buffered call block on the proper queue, thereby activating the
associated queue server task. The task that issued the SVC is
suspended.

If the SVC is for I/0 (code >00), the SVC goes through another
stage of decoding by the I/0 supervisor, DXIOS. This routine
buffers the user 1I/0 data block and supervisor call block into
the system table area, and determines whether the call is for
file management (disk file I/0), file utility, or device I/0.
File Management and File Utility calls are queued for the file
management task or file wutility task, respectively. Both are
queue servers. Device I/0 requests are handled by DXIOS and the
device service routine directly, if the device is not busy. If
the device is busy, the request is queued in the device queue for
later processing.

The return of control to the task that issued the SVC is
different for queue serving SVC processors and nonqueue serving
processors. non-queue servers simply return control to the
calling task via the system return point XOPRT1l, allowing the
calling task to resume execution. Queue servers do not
immediately return control to the calling task, but continue to
process queue entries. When an entry has been processed, it is
queued for the SVC cleanup routine, SVCCIN. SVCCLN unbuffers
each entry from the system table buffer into the calling task”’s
memory, releases the system table area, and reactivates the
calling task. Figure 1-8 shows the flow of control through the
DX10 modules involved in SVC processing.

939153-9701 1-13

DX10 Implementation Tutorial System Design Document

SvC
ISSUED

XOP
VECTOR TABLE
wP
PC
SVCINT
VO SvC QUEUE
NON QUEUE SERVING SVC
SERVING SVCS [
Ll l | | l l I DXICS SVC BUF
(BUFFERS (BUFFERS
REQUEST) REQUEST)
4
, EEEEEEER!
FILE 1/0 DEVICE 1/0 pUTILITY
SVC QUEUES
SVC PROCESSORS
FMT DEVICE FUTIL
QUEUE QUEUES QUEUE ! ’ I I I I I I
L
FILE DRIVER FILE CLEAN=UP
MANAGER UTILITY QUEUE
TASK
SVCCLN
UNBUFFER
EQUESTS)
- y 2 - J

h
RESUME TASK
EXECUTION

Figure 1-8 SVC Processing Flow of Control

2278114

1-14 939153-9701

System Design Document DX10 Implementation Tutorial

>

1.2.2 Bidding a Task for Execution
The DX10 operating system bids a task for execution by:
* Building the task status block (TSB),

* Queueing the TSB for processing by the bidder task,
TMSBID,

* And then queueing the TSB for the task loader.

This process is described further in the following paraqraphs,
and is shown in Figure 1-9.

939153-9701 1-15

DX10 Implementation Tutorial System Design Document

BID
REQUEST

TMBIDO
(BUILDS
TSB)

QUEUE TSB
FOR BIDDER
TASK

BID
QUEUE

81DDER
TASK
(T™M$BID)

QUEUE TSB
FOR TASK
LOADER

WAITING ON
MEMORY
QUEUE

2278115

Figure 1-9 Bidding a Task

1-16 939153-9701

System Design Document DX10 Implementation Tutorial

The first action taken by DX10 when bidding a task is to build a
TSB. A TSB is a block of overhead data maintained by the
operating system to describe each task currently running (either
executing, waiting for CPU time, or rolled-out). The TSB
contains pointers to other system overhead blocks associated with
a task. These blocks include the logical device tables (LDTs)
for each LUNO assigned by the task, procedure status blocks
(PSBs) for any attached procedures, as well as other information
describing the task to the operating system. See the section on
data structures for more detail on TSBs and PSBs. From the time
a task is bid until it terminates, the task is represented within
DX10 by its TSB; all actions taken by the system in order to
execute the task, such as roll-in, roll- out, and memory
allocation, reference the TSB.

To build a TSB, the system routine TMBIDO in module TMSROT calls
memory management to reserve a block of memory from the system
table area. TMBIDO then initializes some of the fields 1in the
TSB, generates a run-time ID for the task, and queues the TSB for
further processing by the bidder task TMS$BID.

The bidder task, TM$BID, is a memory resident queue server for
the bidder queue and the read/write queue. It performs the
following functions:

* Dequeues a TSB from its queue,
* Fills in priority and other fields

* Fills in pointers to various procedure status blocks
(PSBs) ,

* Queues the TSB on the waiting on memory (WOM) queue.

After dequeueing a TSB, TM$BID fills in several of the task’s
fields, including the priority field, using data from the program
file on which the task is installed. The bidder task also fills
in the "family tree" pointers in the TSB. These four pointers
link the newly bid task with other tasks, according to the
structure shown in Figure 1-10. Notice that all of the tasks
shown have pointers linking them in a relational manner to each
other. The parent task is the original task that issued the
Execute Task SVC to bid the current task. If the current task
was bid from a terminal through an SCI command, SCI is the parent
task. The brother tasks are other tasks that were bid by the
same parent task. The oldest son is the first task bid by the
current task. (This pointer is given a zero value when the task
is first bid.)

939153-9701 1-17

DX10 Implementation Tutorial System Design Document

Other pointers that are 1initialized by the bidder task am
pointers to the procedure status blocks (PSBs) for the procedures
associated with the current task. A PSB serves a similar
function for a procedure as a TSB does for a task. However the
PSB pointers are not as complex as those for the TSBs. (See
Section 6, Data Structures, for more details on PSBs). If a
procedure attached to the task being bid is not currently in
memory (that is, it does not have a PSB), the bidder task gets a
block of system table area and builds the PSB for the procedure;
the bidder task accesses the program file for necessary
information. Figure 1-11 shows how TSBs and PSBs are linked by
pointers under DX10. Note that PSBs may be linked with more than
one TSB, since a single procedure may be attached to more than
one task.

PARENT
TASK TSB -

YOUNGER OLDER
TSB OF
BROTHER BROTHER
Qa8 - BID TASK TSB
3
OLDEST
SON
TSB
2278116

Figure 1-10 TSB Family Tree

1-18 939153-9701

System Design Document DX10 Implementation Tutorial

PSB FOR
PROC 1

TSB

> PSB FOR
PROC 2

—nt

TS8

PSB FOR
» PROC 3

TSB

PSB FOR
PROC 4

2278117

Figure 1-11 TSB/PSB Relationship

939153-9701 1-19

DX10 Implementation Tutorial System Design Document

Finally, the bidder task queues the TSB on the waiting on memory"
(WOM) queue which 1is serviced by the task loader. The bidding
task (parent task), which had been suspended while TMS$BID
processed the Bid Task SVC, is reactivated.

The scheduler and operating system provide a means for tasks to
be bid from interrupt processors. The bid-task interrupt
processor : :

* Resets the interrupt,

* Rets the bid-task-in-progress flag of the associated
physical device table (PDT),

* Saves the ID of the task to be bid (the task to be bid
must reside in the system program file),

* Sets up the processor interrupt vector for handling
multiple interrupts before the first bid is complete,

* Sets the reenter me flag, and

* Returns via an RTWP instruction.

Every time the scheduler runs, (every 50 milliseconds), it scan
the the PDT list for reenter me flags, so that when the scheduler
executes, the interrupt processor is reentered and the scheduler-
inhibit flag (TMSEXT) is cleared.

When the processor 1is reentered, all 1lower interrupts are
disabled. The scheduler resets the reenter me flag before
reentering the DSR. The interrupt processor initializes the
registers required, and calls TMBIDO to bid the required task.
When TMBIDO returns to the interrupt processor, the processor
checks the returned error code. If the code is non-zero, then
the bid did not work, and any appropriate action may be taken;
when the error code is zero the bid worked, and the processor can
return to the system.

1-20 939153-9701

System Design Document DX10 Implementation Tutorial

To exit the processor because of an error or bid complete, the
bid-task-in-progress flag is reset and the interrupt entry vector
is set up for processing subsequent interrupts. Exit is made by
an RTWP instruction which returns to the scheduler for any
necessary scheduling. The following 1list contains register
definitions for a call to TMBIDO:

RO = Error Return ,
Rl = Installed ID/SVC flag

SVvC flag: 0 = SVC call

NOT 0 = Not an SVC call

R2 = Bid Parameter $#1
R3 = Bid Parameter #2
R4 = Station ID/Program File LUNO
R5-R9 = Not used
R10 = Stack Pointer (The Scheduler Stack

is used.)
R11l = Branch and Link Return Address
R12-R15 = Not used

The following list contains register definitions upon return from
TMBIDO:

RO = Error Return
Rl = Run ID/QUE - NO QUE flag (Bit 15)
Bit 15: 0 = Request not queued,
1 = Request queued
R2 = TSB address of bid task
R3-R15 = Not used

The following error codes can be returned from TMBIDO:

No error

Illegal station number on bid task
No runtime task IDs available

No system table area available
Illegal program file LUNO

Wi o
W uwnu

1.2.3 scheduling, Loading, and Rolling a Task

Once a task has been bid and a TSB has been built for it, that
task must be loaded into memory before it can be scheduled for
execution. The loading and executing of multiple tasks is
managed by the task scheduler in conjunction with the task loader
and memory management.

939153-9701 1-21

DX10 Implementation Tutorial System Design Document

1.2.3.1 Scheduling. Tasks running under DX10 assume a variety
of states, including: active, suspended, queued for a SVC
processor, and waiting for various types of I/O. TSBs of tasks
that are waiting for CPU time (active tasks), and are in memory,
are queued on the priority-ordered active queue. The task
scheduler always picks the highest priority task off the active
queue. Before actually giving the CPU to this task, the
scheduler first checks the queue of tasks waiting on memory.

The waiting on memory queue is a priority-ordered queue (highest
priority first) of the TSBs of tasks which are either rolled-out
or have just been bid, and are waiting to get memory in order to
execute. The scheduler determines if any task waiting on memory
is of higher or equal priority to the task it has chosen from the
active queue by searching the TSBs in the waiting on memory
queue. If a higher priority task is waiting, and the task loader
is not busy, the scheduler gives the next time slice to the
loader rather than the chosen task. If an equal priority task is
waiting for memory, and the chosen task has already had a minimum
number of time slices, the loader is likewise awarded the time
slice. Otherwise, the chosen task gets the time slice for CPU
access.

Figure 1-12 shows a simplified version of how the scheduleg
chooses a task to execute. The scheduler is described in mor(
detail in Appendix C. ¢

1.2.3.2 Loading And Rolling. The task loader is responsible for
loading tasks into memory and rolling them out. Tasks that are
to be loaded may be either rolled-out tasks or tasks that have
just been bid. The TSBs of all tasks to be loaded are on the
waiting on memory queue. The queue is sorted so that higher
priority tasks are processed first. For tasks of the same
priority, the queue is first-in, first-out.

Memor y management usually selects and rolls-out tasks, (see
paragraph 1.2.3.3). However, the task loader rolls-out tasks in
2 situations:

* fThe task has been selected by memory management to be
rolled-out, but has TILINE I/O in progress, or

* The task has issued a Get Memory SVC.

Since TILINE I/O accesses the task®s memory directly, the task
cannot be immediately rolled-out; therefore memory management
flags the TSB to indicate that it is being "quieted" (waiting for
the I/O to complete). The TSB remains on the active queue untijd
the I/0 is complete, at which time the scheduler queues the Tﬁ

: |
onto the quieted queue.

1-22 939153-9701

System Design Document DX10 Implementation Tutorial

The TSBs of tasks which issue Get Memory SVCs are immediately
queued on the guieted queue.

All tasks that are on the quieted queue are rolled-out by the
task loader.

The task loader is a dedicated server of the quieted queue; that
is, the task loader is automatically bid when an entry is made on
the quieted queue. The loader may also be scheduled to execute
when the task scheduler decides to try to roll a task into
memory, although the loader does not "serve" the waiting on
memory gueue. Figure 1-12 shows how the loader processes the two
gueues.

Wwhen the loader 1is executed, it first processes all of the
entries on the quieted queue, rolling them out of memory,
requeueing the TSBs onto the waiting on memory queue, and
releasing the now vacant memory used by the tasks. When the
quieted queue is empty, the loader checks to see if there is a
task waiting on memory, (a TSB on the waiting on memory queue) .
If not, the loader issues a Suspend Awaiting Queue Input SVC,
returning control to the scheduler.

If a task is waiting on memory, the loader checks for attached
procedures, and tries to allocate memory for them (the allocation
logic first checks to see if the procedure is already in memory).
If memory is found, the loader calls memory management to
allocate memory for the task segment. If no memory is available,
the load is left pending, and the loader checks to see 1f any
more entries have been made on the quieted queue. At the end of
the allocation phase, the loader checks to see if all of the
memory required is still allocated. This might not be true if
memory management has rolled out procedure 1 when allocating
memory for procedure 2.

If all of the memory is safely allocated, the loader loads the
task and procedures (unless they were already in memory) from
either the roll file (for roll-ins) or a program file (for
initial bids). 1If the loaded task is flagged as memory resident,
the loader assumes that it was part of the initial program load
(system boot) and puts the task in a terminated state.
Otherwise, the loader queues the task on active queue priority O,
slot 2 (head of the queue). This is done, regardless of the
task’s assigned priority, in order to insure that the task will
get a time slice before it could be rolled-out by a higher
priority task.

After the task has been loaded, or some error has interrupted the
load, the loader once again checks the quieted queue for entries.
If there are any, the loader starts all over at the top of the
cycle; otherwise, the loader suspends itself, returning control
to the scheduler.

939153-9701 1-23

DX10 Implementation Tutorial

2278118

P

START

GET A TASK
WITH MEMORY

FIND ONE

YES

System NDesign Document

YES

MARK LOADER
BUSY

SET UP LOADER
TO GET TIME
SLICE

REQUEUE
CHOSEN
TASK

REMOVE
FROM QUEUE

1S
WAITING
TASK'S
PRIORITY =

EXECUTE
TASK

1-24

Figure 1-12 Simplified Flow of Scheduler

939153-9701

System Design Document

START

ANY
TASKS TO BE
ROLLED

ouT

DEQUEUE
TASK 8B

ROLL=OUT TASK,|
QUEUE FOR
WAITING ON
MEMORY

DX10 Implementation Tutorial

GET MEMORY
FOR
PROCEDURE 2

iS
THERE A
TASK WAITING
ON

1S
THERE A
PROCEDURE

GET MEMORY
FOR
PROCEDURE 1

1S THERE
A SECOND
PROCEDURE

2278119

Figure 1-13

939153-9701

GET MEMORY
FOR TASK
SEGMENT

LOAD TASK
AND
ROCEDURES)

1S TASK
MEMORY
RESIDENT

STILL
HAVE ALL
THE MEMORY

ERROR
RELEASE ALL
MEMORY

QUEUE IT ON
ACTIVE QUEUE
0, SLOT 1

GIVE IT A
TERMINATED
STATE

1-25

SUSPEND SELF
(RETURNS TO

SCHEDULE)

Simplified Flow of Loader

DX10 Implementation Tutorial System Design Document

>

1.2.3.3 Memory Management. All memory is dynamically allocated
and deallocated by a collection of nucleus routines called memory
management, which organizes the available memory into four
separate groups:

* TPree system table area
* Allocated system table area
* Free user memory

* Allocated user memory

Free blocks of system table area are all linked on a single list,
headed by SAHEAD, an anchor contained in the DX10 data base
module (described in Section 7).

The allocated blocks of system table area are the various system
data structures, such as task status blocks, and are not all
linked on a single list since the data structures have different
linking arrangements.

Requests for system table area are serviced immediately by tl'g
table area allocating routine, MMS$GSA. Since nothing in th

system table area can be rolled (all system tables and device
buffers are essential), the request is filled from available area
only, and must immediately fail or succeed depending on how much
table area 1is free. The allocation routine does a first-fit,
linear search of the free table area list, starting at the 1list
header. 1If the search is unsuccessful, the routine scans the TSB
list, checking for disk resident queue servers which are
suspended awaiting queue input. If such a task is found, its
memory is deallocated, (requiring that the task be rebid when
needed again,) and the search for table area is restarted.

Free blocks of user memory are linked on a single list headed by
UAHEAD, another anchor in the data base module.

Allocated blocks of wuser memory, which may contain tasks,
procedures, or file blocking buffers, are linked together on a
time-ordered 1list (TOL). Whenever one of these blocks is
accessed, (that is, whenever the task executes, or the blocking
buffer is read or written to), that block is removed from its
current position on the TOL and relinked at the head of the 1list
when it is no longer being used. Thus, the list is ordered, the
first blocks on the list being the most recently used and the
last blocks being the least recently used. Figure 1-14 shows how
the time-ordered list is structured.

1-26 939153-9701

System Design Document DX10 Implementation Tutorial

>
NEWEST
BLOCK
—
——
‘—
—» -—
TOL HEADER
.
———
—p
L
OLDEST
BLOCK
2278120 »

Figure 1-14 Time-Ordered List

939153-9701 1-27

DX10 Implementation Tutorial System Design Document

Requests for user memory, such as for tasks and procedures, ar®
not always serviced immediately. " The find memory routine,
MMSFND, only processes one request at a time; further requests
are queued until they can be serviced. The Ffind memory routine
first searches the available memory list, wusing a first-fit
search. 1If a free block of adequate size is found, the starting
address of the block is returned to the requester. If no free
block is available, the TOL is scanned (by MMSSCN) for a rollable
block of memory.

The TOL scan is from oldest (least recently used) block to newest

(most recently used). Blocks are chosen for roll-out according
to the following rules:

1. Any buffer except the memory resident buffer; if the
requester is buffer management, then the memory
resident buffer may also be chosen.

2. Tasks with lower priority.

3. Higher priority tasks that have been suspended longer
than a time threshold (prevention of thrashing).

4. Equal priority tasks that have received a minimum
number of time slices since being loaded into memory.

5. Any pfocedure with no currently attached tasks in
memory.

6. Tasks that have TILINE I/O in progress may be flagged
for quieting, and subsequent roll-out, if the memory
requester is not buffer management.

7. Queue servers that are suspended awaiting queue input.

Tasks that may not be rolled-out are:

1. Tasks that have an alternate task (see Section 6, Data
Structures for a description of alternate tasks).

2. Tasks that are queued for the system overlay loader.

3. File utility task (FUTIL) when it is accessing a
directory.

1-28 939153-9701

System Design Document DX10 Implementation Tutorial

If the TOL scan is successful, the block chosen is rolled-out (if
it is a task or procedure), written to its file (if it is a
blocking buffer and has been modified), or simply released (if it
is a queue server’s memory or an unmodified buffer). The rolled
block of memory is released from the TOL and put back on the free
memory list. As blocks are added to the free memory list, they
are merged with any immediately preceding or following blocks to
reduce fragmentation. After a successful scan of the TOL, the
find memory routine again searches the free block 1list. If a
large enough block 1is still not available, the TOL is scanned
again for another rollable block. Figure 1-15 shows how user
memory is found.

939153-9701 1-29

DX10 Implementation Tutorial

MEMORY
REQUEST

SEARCH FREE
MEMORY LIST
(FIRST=FIT)

ENQUGH
FREE
MEMORY

SCAN TOL
FOR ROLLABLE
BLOCK

FIND ONE

System Design Document

YES

1S
REQUEST
FOR A
BUFFER

\ 4
RETURN
POINTER TO REQUEST TIME
FREE BLOCK FAILED DELAY

2278121

RELEASE
BLOCK TO
FREE MEMORY
LIST

" RETURN TO
REQUESTOR

Figure 1-15 Find Memory Flow

1-30

939153-9701

System Design Document DX10 Implementation Tutorial

1.2.4 Device I/0 Flow

An executing task performs I/O via an I/O SVC, and is directed to
a Logical Unit Number (LUNO). The I/0 SVC is decoded by the SVC
decoder, as described in paragraph 1.2.1, and control passes to
the I/0 supervisor, DXIOS. The I/O supervisor determines from
the I/0 opcode that the call is not for file wutility. it then
searches the logical device table tree for the logical device
table (LDT) corresponding to the LUNO to which the I/0 is being
directed.

An LDT 1is a system data structure that is created for each LUNO
assigned. The LDT describes the logical wunit, whether it |is
assigned to a file or a device (see Section 6, Data Structures,
for a detailed description of an LDT). All LDTs in 'the system
are linked in a hierarchy according to the type of LUNO which
they describe (Figure 1-16). LDT™s for task local LUNOs are
linked on a list of LDTs anchored in the TSB for the task. This
list is in turn 1linked to the terminal 1local 1IDTs for the
terminal with which the task is associated (if any), which are in
turn linked to a single list of LDTs for global LUNOs.

When the 1I/0 supervisor searches for the LDT of a LUNC, it
searches for the T.DT starting at the anchor in the calling task”s
TSB. The list is searched linearly through the task local IDTs,
then the terminal local 1IDTs (if any), and finally the global
LDTs, until an LDT for the desired LUNO is found. Note that this
causes task local LUNOs to mask global or terminal-local LUNOs.

Wwhen the I/O supervisor finds the LDT, it determines whether the
I/0 1is to a device or file. Device I/O call blocks are buffered
into the system table area. If there is a data buffer (such as
for read or write operations) and the I/O requested is non-TILINE
1/0, it 1is also buffered in the system table area. At this
point, the 1I/0 supervisor checks the physical device table
(described in Section 6) to see if the device is busy. If not,
control is immediately passed to the device service routine (DSR)
for the device. Otherwise, the buffered call block is placed on
the device queue. If the 1I/0 call is Initiate I/O and the
calling task has not exceeded a certain threshold number of
Initiate 1I/Os, control returns immediately to the calling task.
If the call is not Initiate I/O, the task is suspended until
completion of the I/0.

939153-9701 1-31

DX10 Implementation Tutorial

System Design Document

NO TASK-LOCAL LUNOS

2278122

Figure 1-16

1-32

KS8
TERMINAL~LOCAL LUNOS
Lo LoT » oT LT
TSB
TASK-LOCAL LUNOS
LDT LDT LDT—J—
TsB
TASK~LOCAL LUNOS
LoT L.Dﬂ——
KSB wT
FLEI
Il === TERMINAL-LOCAL LUNOS
L J w
:l LT wT T LDT
GLOBAL LUNOS
Tse LDT LDT LT LDT LDTj

Logical Device Table Hierarchy

939153-9701

System Design Document DX10 Implementation Tutorial

When processing an I/0 request, the I/0 supervisor checks the
calling task to determine whether it has dynamic priority or not.
If it does, the priority is updated according to the type of 1I/0
being done.

When the DSR finishes the 1I/0 operation, it calls an end-of-
record routine (ENDREC) which increments the end of record (EOR)
counter in the <calling task”s TSB and places the TSB on the
active queue. When the scheduler allots a time slice to the
task, it checks the EOR count in the TSB. TIf the count is non-
zero, the task is placed on the active queue, and the device
drive routine (known as the DDT) is called. Through DX10 release
3.4, DDT runs as a task. However, later releases implement DDT
as a module in the SVCs, schedulers map file 0 mapping scheme.

When the DDT routine is called, it scans the 1list of physical
device tables (PDTs) for a device that has completed data
transfer and therefcre needs end-of-record processing. (See
paragraph 6.3 for more information on PDTs.) When such a Jevice
is found, DDT processes the end-of-record; it unbuffers the call
block and data block (if any) into the calling task®s memory
(causing the task to be rolled-in first, if necessary), and
activates the task. After processing an EOR for a device, DDT
checks the device queue for queued I/0 requests. If a request
exists, DDT transfers control ¢to the DSR initial entry point.
When the DSR finishes, it returns to NDT. When the DSR returns,
or if the device queue is empty, DDT proceeds to the next PDT on
the list.

When DDT has checked all the PDTs, it branches to the scheduler’s
entry point. Figure 1-17 shows a simplified flow of the DX10
logic involved in processing a device I/0 SVC.

939153-9701 1-33

DX10 Implementation Tutorial System Design Document

1.2.5 File Utility Flow

The initial processing of a file utility SVC (opcode >00,
subopcodes >90 through >9C) is similar to that for device 1I/0.
The SVC 1is decoded by SVCINT, and control passes to the I/O
supervisor. The I/O supervisor determines from the "ninety"
subopcode that the call is for file utility. The I/O supervisor
preprocesses the file utility call by checking for 1illegal
opcodes, buffering the I/0 call block, and queueing the buffered
call block for the file wutility task. The calling task is
suspended with a state of "waiting on task driven SVC processor"
(state >14). The file utility task, FUTIL, is a queue server and
is automatically bid when an entry is placed on its input queue.

When the file utility task gets CPU time, it dequeues an entry
from its queue and processes that entry. File utility calls may
be made in the old librarian or DX10 2.2 "FUR" formats. The file
utility task converts such calls into DX10 3.0 file utility call
format and then processes them normally. Normal processing
(performed in module UCS) involves a table look-up of the correct
processor for the specified file wutility subopcode (range >90
through >9C), and the transfer of control to that processor.
When the processor finishes, it returns control to the Sffle
utility task.

FUS then queues the buffered call block for the SVC cleanup task,
SVCCLN, which wunbuffers the call block into the calling task’s
memory, and reactivates the task. Figure 1-18 shows the flow of
control for file utility SVCs.

1-34 939153-9701

System Design Document DX10 Implementation Tutorial

() (DOT)
1 0 5vC SCHEDULE

DECODE GET GET
1:0 svC NEXT PDT FIRST PDT

| A DXIOS

BUFFER

| CALL BLOCK l
CALL
28 SCHEDULER

l l PRODUCED
| YES l

UNBUFFER

DATA.

"o CALL DDT

ROUTINE

i BUFFER i
DATA
ANY

ENTRIES ON
QUEUE

DYNAMIC
PRIORITY

NOC

ADJUST

ENTER DSR

2278123

Figure 1-17 Device I/O Processing Flow

939153-9701 1-35

DX10 Implementation Tutorial System Design Document

CLEANUP
SVC ISSUED F;!ZEsngiltE’ITY TASK B1D
SVCINT
DECODE r
svC
ANY ANY
ENTRIES ON ENTRIES ON
YES QUEUE QUEUE YES
DX10S

BUFFER CALL
ELOCK QUEUE
FOR FUTIL,
SUS EN D
CALLING TASK

SELF SUSPEND
RETURN TO
SCHEDULE

TURN
SCHEDULE

1
'

¥
QUEUE
oL LIBRARIAN
DEQUEUE CONVERT TO
ENTRY NEW FUTIL
CALL , PROCESS
CALL
A
CALL. AN OLD
A
ALL 2 QUEUE CALL PROCESS CALL
FUR’CALL BLOCK FOR QUEUE AL
CLEANUP BLOCK FOR
TASK CLEANUP TASK
CONVERT TO
NEW FUTIL
CALL,PROCESS
CALL
)
¥
QUEUE CALL QUEUE
BLOCK FOR
CLEAN-UP
TASK
DEQUEUE

ENTRY,
UNBUFFER CALL
BLOCK,

ACTIVATE TASK

2278124

Figure 1-18 File Utility Calling Processing

1-36 939153-9701

System Design Document DX10 Implementation Tutorial

1.2.5.1 Assigning and Releasing LUNOs. Since the file utility
opcodes include Assign LUNO and Release LUNO, file wutility is
responsible for building 1logical device tables (LDTs) and
maintaining the LDT links. Whenever a LUNO is assigned, an LDT
must be built in the system table area, and its pointers defined.
Figqure 1-19 shows the different pointers which may be set in an
LDT.

All LDTs in memory are linked in a hierarchy according to the
type of ©LUNO they describe, (see the device I/O section). 1In
addition to this, all LDTs have a pointer to the PDT of the
device to which the LUNO is assigned. LDTs of LUNOs assigned to
files point to the disk PDT of the volume (drive) that contains
the file. All LDTs also have a pointer to the TSB of the task
opening the LUNO.

LDTs of LUNOs assigned to files also have two .additional
pointers. All of the LDTs of LUNOs assigned to the same file are
linked on a common list. Also, each file LDT has a pointer to
the file control block (FCB) of the file to which the LUNO is
assigned.

An FCB is a data structure maintained in the system table area
which is used to describe a file (see Section 6). For every file
that 1is currently being referenced, that is, having LUNOs
assigned to it, file utility maintains an FCB tree for all
pathname components (higher 1level directories) of the file”s
pathname.

For example, if a LUNO is assigned to

VOLUME4.USER05.SOURCE.DEBUG, an FCB for USER05, SOURCE, and DEBUG
will be in memory, linked together. The LDT for the LUNO
assigned to DEBUG points to the DEBUG FCB, and is also linked on
the 1list of LDTs for the file (see Figure 1-20). Note that the
FCB for the volume directory (VCATALOG), an assumed component of
every pathname, is always in memory when the volume is installed.
A pathname can have a maximum of 49 bytes, which is 1 byte for
the length of the pathname and 48 bytes for the pathname itself.

939153-9701 1-37

DX10 Implementation Tutorial System Design Document

When a LUNO is released, file utility searches the FCB/LDT tre{
for the LDT of the LUNO being released. The LDT is delinked from
the various lists it is on and released to the free system table
area list; any blocking buffers associated with the LDT are
released. If the LDT is linked to an FCB, file management checks
to see if any more LDTs are linked to the file. If not, the file
must not be used currently, and the FCB is delinked from the FCB
tree and released to the system table area. The search continues
up the FCB tree. As long as an FCB has no LDTs 1linked to it
(that 1is, no LUNOs assigned to the file), and has no descendant
FCBs (that is, if the FCB represents a directory file that is not
being accessed and has no cataloged files being accessed), it is
delinked from the FCB tree, and the release LUNO search continues
at the parent FCB.

1-38 939153-9701

System Design Document DX10 Implementation Tutorial

ON TO TERMINAL-LOCAL
AND GLOBAL LUNOS
| | I
TASK—-LOCAL
LUNO LIST .
LoT e LeT PDT
I 3
LDT
PDT LINK
LDT LINK
LUNOS ASSIGNED TSB OF OWNER
TO FiLE
FILE LINK
FCB POINTER
TASK—-LOCAL LUNOS
LUNO LIST ASSIGNED
TO FILE
TSB ccn
TASK-LOCAL
LUNO LIST
- LDT Ly NOT% ?__SiIEGNED
1
LDT
2278125

Figure 1-19 Logical Device Table Pointers

939153-9701 1-39

DX10 Implementation Tutorial

System Design Document

—» FcB FOR
VCATALOG
(NO SIBLINGS) | OF VOLUMEA
Tt
POINTER TO
PARENT
SIBLING
¢ —— = = ————
‘ FCB FCB OF FCB OF FILE
[USEROS SIBLING IN'vcaTALoG | L
= - —— — —¥ =
POINTER TO
L A | DESCENDANT L
SIBLING
FCB OF
I FcB SOURCE)
= > =
-— — — — e
‘ FCB OF FCB FCB OF]
[DEBUG FILE IN sourRce|]
= e - — — » =
a4 & A
LDT LIST
LT
lF!LE LINK
LDTS FOR LUUNOS ASSIGNED TO
VOLUMEA, USEROS . SOURCE . DEBUG
DT
FILE LINK
LoT
2278126 =

Figure 1-20 FCB and LDT Tree

1-40

939153-

9701

System Design Document DX10 Implementation Tutorial

1.2.5.2 Creating and Deleting Files. Creation of a file under

DX10 involves the following process:

1. The FCB tree of the directory under which the file is

to be created is built in memory. For example,

if the

file VOLUMEA.USER05.SOURCE.DEBUG is being created, an
FCB must be 1in memory for the VCATALOG, USER05, and
SOURCE directories. This structure is necessary in
order to access the directory VOLUMEA.USER05.SCURCE on

the disk. A pathname can have a maximum of 49

bytes,

which 1is 1 byte for the length of the pathname and 48

bytes for the pathname itself.

2. File utility searches the disk directory to see if the
file being created already exists. 1If so, an error is

returned; otherwise, processing continues.

3. A file descriptor record, which is a directory

entry

(see paragraph 4.3.4.2) for the file being created, is

built in memory, and inserted into the directory
disk.

Deletion of a file 1involves a process similar to
described above. The FCB tree must be built in order
the directory in which the file is cataloged (note that
tree may already be in memory). The file descriptor
the directory 1is released and made available.

on the

the one
to access
the FCB
record in
The FCB

-representing the deleted file is released if it is currently in

the system table area. 1In addition, the path up the

FCB tree

from the deleted file is searched for FCBs with no descendants
(directories which are no longer being accessed). Any such FCBs
are delinked from the FCB tree and released to the system table

area.

1.2.6 File I/0 Flow

The initial processing of a file I/0 SVC is also similar to that
for device 1I/0. The I/0 supervisor determines from the I/O

opcode that the call is for file management services.

It then

tests the I/0 request to see if a "fast transfer" is possible. A

request is eligible for "fast transfer" if the
conditions are met:

939153-9701 1-41

following

DX10 Implementation Tutorial System Design Document

* The file is not opened for unblocked I/0

* The I/0 is for a sequential or blocked relative record
file

* The operation is a read or write (not forced write)
* The file is nmot currently being accessed

* The record desired is already huffered in memory (that
is, it has recently been accessed and the buffer has not
yet been destroyed).

If all of the conditions are met, control is transferred to the
file management read or write routine, the desired I/0 is
performed directly between the file buffer in memory and the
calling task®s data buffer, and control returns to the calling
task. Thus, the I/O operation is performed by XOP level code,
and the calling task is not suspended. If the conditions are not
met, the call block is buffered into the system table area and
queued for file management. The file management request queue is
served by a number of replicas of the file management task,
FMSTSK. This number is specified during system generation. The
file I/O queuing routine searches a list of file management tasks
for a suspended task, and activates one if possible. -

It dequeug

FMSTSK is the main driver for file I/0 processing.

an entry from the queue, and checks to see if the file is already
being accessed by another FM$TSK. If so, it queues the request
on a queue of I/O requests for that file, and dequeues another
entry from the file management request queue. If not, FMS$TSK
checks the I/O opcode, and tranfers control to the correct
processor. If the file being used is a key indexed file, control
transfers to the key indexed file I/0 driver, RISBEG. When the
processor returns, FMSTSK unbuffers the <call block and key
indexed file currency information, if necessary, into the calling
task, and reactivates the task. It then checks for more queue
entries, first on the queue for the same file, and then on the
file management request queue. If more exist, it processes them.
When the queue is empty, FM$TSK suspends via SVC >24. Figure 1-
21 shows a flowchart of the top level of file I/0 processing.

Some of the subopcode processors, such as FMOPEN for open calls,
do no more than access the logical device table (LDT) assigned by
the calling task to the file. The read and write processors work
in conjunction with buffer management to transfer data between
the disk file and user buffer. The following paragraphs describe
the file buffering scheme used by DX10 file management.

1-42 939153-9701

System Design Document DX10 Implementation Tutorial

1 SVC ISSUED)
DXIOS

et My
I

BUFFER
REQUEST

TYPE OF

REQUEST DEVICE 1/0

FILE UTILITY

FILE 1/0

ELIGIBLE FOR
FAST TRANSFER

QUEUE ENTRY
FOR FMT

CASE OF | OPCODE
READ WRITE

UNBUFFER
CALL BLOCK

RELEASE
BUFFERED
CALL BLOCK

i
FMREAD * FMWRIT I

RETURN TO
CALLING TASK

L - -

2278127.

Figure 1-21 File I/O Flow

939153-9701 1-43

DX10 Implementation Tutorial System Design Document

1.2.6.1 Blocked File I/O. 1I/O operations to blocked files {any
type of file except unblocked relative record - see Section 4 for
a description of file types) are handled through a group of
routines called buffer management.

To access a specified logical record of a file, the file physical
record that contains the desired logical record is read into a
blocking buffer. These buffers are allocated from user memory,
and are linked onto the time ordered list when not being used.
The buffers are 1linked and delinked, read and written, created
and released by buffer management routines.

When file management receives an I/0 request for a particular
logical record of a file, it calls a buffer management routine to
get the buffer that contains the physical record which in turn
contains the desired logical record. If the specified physical
record is already in a buffer on the TOL, the buffer management
routine simply delinks the correct buffer and maps it into the
file management task; if not, the buffer management routine
Ccreates a new buffer, reads the specified physical record from
the file, and maps it into the file management task.

The file management processor also calls a buffer management
routine, BM$SMAP, to map the calling task”s data buffer into file
management. Having both buffers mapped in allows file managemen g
to avoid using long distance instructions when transferring dat

between the two buffers. ‘

After the file management processor has completed transferring
the specified logical record, it calls another buffer management
routine to release the file blocking buffer, which 1is relinked
onto the head of the TOL.

DX10 wuses blocking buffers to reduce the actual number of disk
accesses required to perform a given number of file I/0
operations. Since buffers are not immediately released, but
rather stay on the TOL until their memory is required by memory
management, a read or write request to a blocked file record may
be made to a buffer already in memory, rather than necessitating
a disk access.

1.2.6.2 Unblocked File 1/0. 1I/0 operations to unblocked files,
such as program, image, directory, and unblocked relative record
files) do not wuse intermediate blocking buffers. The file
management processor calls BMSMAP to map in the calling task’s
data buffer, and then calls the file management disk I/O routine,
FMSIO, to transfer the record directly between the disk and data
buffer.

1-44 939153-9701

System Design Document DX10 Implementation Tutorial

1.2.7 Task Termination
There are four ways for a task to terminate execution:
* 1Issue an End Task or End Program SVC

* TIssue a Suspend Awaiting Queue Input SVC (system tasks
only)

* Create an error and go into end action
* Be killed by another task issuing a Kill Task SVC

.

All terminated tasks, except tasks which are suspended awaiting
queue input, have their memory released and their TSBs queued for
the te;mination task, TM$DGN.

TMSDGN performs such general clean-up actions as:

* Closes LUNOs opened by the terminated task

* Releases task local LUNOs assigned by the terminated
task

* Delinks the TSB from its family tree structure
* Activates the parent task if specified

* Sends any error message to the system log

* Clears any breakpoints for the terminated task

* Releases the TSB, if the task is not memory resident.

939153-9701 1-45

DX10 Implementation Tutorial System Design Document

The following paragraphs describe what happens to a task §$
termination.

1.2.7.1 End Task/End Program SVC. The End Task and End Program
SVCs are both processed by a routine in the module TMS$SFUN. This
routine checks the TSB of the executing task (the task issuing
the SVC) for any outstanding I/O0. If any exists, it is aborted,
and the task is left on the active queue in order to allow the
device driver task to process the task”’s end-of-records. The
kill flag in the TSB is set, to notify the task scheduler that
the task has been terminated. :

When a task”s kill flag is set, and it has no outstanding 1/0,
either the scheduler or the end task/end program routine queues
the task”s TSB for processing by the termination task, TMSDGN.
If the task is not memory resident, its memory is released.

1.2.7.2 Suspend Awaiting Queue Input SvC. This SVC is also
processed by a routine in the TM$FUN module. This routine simply
enters a state >24 in the task”s TSB, and resets the task”’s PW
and WP register values to restart it. The task’s memory is not
immediately released, mor is its TSB queued for the termination
_task. Since the task is not processed by TMS$DGN, it should
release all task local LUNOs before issuing this SsvcC.

1.2.7.3 Error Termination. When a task causes an internal error
interrupt, such as an address out of range or a memory parity
error, it is forced to go into end action. If the task has no
end action, or when the end action terminates, the task”s memory
is released and its TSB is queued for the diagnostic task.

1.2.7.4 Kill Task SVC. When a task is killed, :it is forced into
end action, and then queued for the diagnostic task.

1-46 939153-9701

System Design Document DX10 Source Libraries

Section 2

Organization and Structure of DX10 Source Libraries

2.1 GENERAL

This section is a quide to searching a DX10 source disk for a
particular module. It contains a tabularized description of the
top level directories and their contents. A disk map of the DX10
Operating System source disk 1is contained in the Product
Documentation Package manual for the DX10 source (part number
2250958-0001) .

The DX10 source and object modules are cataloged under a
directory structure that is generally organized as follows:

* The level one directories (directories under VCATALOG)
break the DX10 code into specialized sections such as
task manager, disk-manager, GEN990, and the key indexed
file processor).

* Each level one directory generally contains two sub-
directories, OBJECT and SOURCE.

* The OBJECT and SOURCE directories contain the object
and source modules of DX10 routines associated with the
general function implied by the level one directory
name (for example, task management routines, and memory
management routines).

2.2 TOP LEVEL DIRECTORIES

Table 2-1 gives the names of the top 1level source directories
(cataloged directly under VCATALOG) and a brief description of
the contents of each one.

939153-9701 2-1

DX10 Source Libraries System Design Document

Directory Name

ANALZ

BATCH

BDLINK

CD

CONDASM

CvD

DCOPY
DEBUGR

DEVDSR

DSCBLD

DSCMGR

DXIO

DXLINK

DXMISC

DXUTIL

FILMGR

Table 2-1 Top Level Directories -- Part 1 of 3
Contents

The routines that make up the system crash
analyzing utility, ANALZ.

Several SCI batch command streams used to build a
DX10 system disk.

Link Editor control streams, link maps, and linked
object used by the disk build utility.

These routines make up the Copy Directory utility.

Constants and variables used for conditional
assemblies.

These routines make up the Copy and Verify Disk
utility.

These routines make up the Disk Copy utility.
The routines that make up the debugger.

The device service routines for all suppor tgq
devices.

The routines that make up the disk build utility.

The disk manager routines; the main driver is
DMS$STSK.

The DX10 I/O routines, excluding file management
and file utility. DXIOS is the main driver, that
is, it processes all code 00 SVCs.

Link Editor control streams, link maps, and linked
object of various parts of DX10.

Miscellaneous routines and modules within DX10,
including: D$DATA, DXDAT2, SVC processors, boot
loader.

DX10 2.X to 3.1 disk conversion utility routines.
File management routines; the main driver is

FMS$TSK. The routines for handling key indexed
files and program files are cataloged elsewhere,

2-2 939153-9701

System Design Document

DX10 Source Libraries

Table 2-1 Top Level Directories -- Part 2 of 3

Directory Name

FUTIL
GEN990
GENPLINK
IDS
KIFILE
LINKER

MACROS

MEMMGR
NOSHIP
PATCH

PGFILE

RELDOCS
SCI990

SCIDX7

SDSMAC

SYSTEM

939153-9701

Contents
File utility routines; the main driver is FUS.
Routines and data files that make up GEN990, the
system generation program; the main driver is
GEN.

Link Editor control stream, link maps and 1linked
object used by GEN990 to generate a system.

These routines make up the 1Initialize Disk
Surface utilities.

Key index file managing routines and overlays;
the main driver is KIS$BEG.

Batch streams, control file, and Link Editor

routines.

These Macros are used for often performed
functions including SVC call and OS linkage.
Macros are included in a module via a COPY
statement.

Memory management and buffer management routines.
Dummy debugger.

Patch files for sysgen and system program file.
Program file handling routines.

Release documentation for major (3.X) and minor

(3.X.X) DX10 releases.

Batch streams and control streams to generate
SCI, and SCI routines.

SCI modules for the DX7 operating system.

Batch streams and control streams to generate the
macro assembler, and the assembler routines.

Templates of system tables and data structures.

DX10 Source Libraries System Design Document

Table 2-1 Top Level Directories —-— Part 3 of 3

¥

Directory Name

SYSTSK

TEMPLATES

TI

TSKMGR

TXLINK

UTCOMN

UTDIRP

UTDXTX

UTGENR

UTLINK

UTSsvC

Contents
Various system tasks, including:' MVI,
install/unload wvolume (ISVOL, USVOL), initialize
disk (IDSC), diagnostic task (TMDGN).
Symbol equates and offset used by the system and
utility routines. Templates are included in a
module via the assembler COPY statement.
The assembly language test program.

Task management routines, including: scheduler,
loader, rolling routines, and so on.

Link editor control streams, 1link maps, and
object for the TX/DX file conversion routines.

Common routines used by various DX10 utilities.
Directory utility routines (for example, for copy
directory, delete directory, backup directory,
and restore directory).

DX/TX file conversion routines.

General utility routines, including DCOPY, SIS,
SsTS, CKS, IDT, MAD, SAD, and so on.

Link Editor control streams, link maps and object
for linking most of the utility routines.

More utility routines, including Map Disk.

2-4 939153-9701

System Design Document System Loaders

Section 3

System Loaders

3.1 GENERAL

The software for loading and initializing the DX10 operating
system includes: a program image 1loader on track 1 of all
initialized disks, a specialized loader for loading DX10 images
and initialization of various parts of the operating system, and
a system restart task which further initializes DX10 and which
bids any user specified restart task (GEN990 ID parameter).

In addition, the ROM bootstrap loader (multiwire - PN 945134-
0013; printed circuit - PN 945134-0014) which can load a program
from cards, cassette, magnetic tape, or disk, is used to load the
program image loader.

The normal sequence for loading a system image is:

1. Initiate the boot loader (by pressing the HALT, RESET,
and then LOAD buttons on the front panel). This is the
initial program load (IPL) procedure.

2. The boot loader loads the disk program image loader,
starting at location >AO0.

3. The disk program image loader determines where the end
of 1its address space (highest address) is, relocates
itself to the high end of memory, then reads in the
special system image loader, starting at location >A0.

4. The system image loader relocates itself to the high
end of memory, 1loads the DX10 image specified in the
disk volume information (track o, sector 0),
initializes system variables, bids the system restart
task, and transfers control to the operating system.

5. The system restart task, executing under control of the
operating system, performs more initialization of the
operating system and then bids the user specified
restart task, if one was specified when the loaded
system was generated.

939153-9701 3-1

System Loaders System Design Document

The fc low.ny pa.agra .. cescs . @ edach Lo.pe.zte leade. i
re. ' rt -ask in detail as well ~2s opticns in the 1loaading
sequciC. that may be useld.

3.2 THE BOOT LOADER

The bootstrap 1loader which 1is contained in ROM, is capable of
loading a program from either cards, cassette, magnetic tape, or
disk. The loader can be programmed to load from any of these
media by inserting values in the boot workspace (memory locations
>80 - >9F) via the front panel of the 990/10 computer.

Location >80 is used to specify the loading device, according to
the following rules:

* If the content of >80 is positive, load from the card
reader at the preferred location (CRU address >40).

* TIf the content is zero, load from a cassette at the
preferred location (CRU address 00).

* TIf the content is negative, load from the TILINE device
(magnetic tape or disk) at the address specified in
location >82.

If the 1loading device is a TILINE device, locations >82 and >8%
are used to specify the TILINE address and unit select,
respectively. The unit select value specifies which device on a
multiple-device controller is to be used. For magnetic tape
controllers, the following values should be used:

>8000 - unit O
>4000 - unit 1
>2000 - unit 2
>1000 - unit 3

For disk controllers, the following values should be used:

>0800 - unit 0
>0400 - unit 1
>0200 - unit 2
>0100 - unit 3

The default values, which are inserted into these locations by
pressing the HALT button on the front panel, cause the ROM loader
to load from disk unit 0 at TILINE address >F800. Note that when
loading from a disk, the ROM loader always 1loads the program
image loader from track 1l; however, when loading from cards,
cassette, or magnetic tape, it loads whatever program image is
read from the device.

3-2 939153-9701

System Design Document System Loaders

3.3 THE DISK PROGRAM IMAGE LOADER

The loader SYSLD, which resides on track 1 of every DX10 3.0
formatted disk, is capable of loading any standalone program from
an image file on disk into memory. After the program is loaded
by the boot loader at location >A0, it relocates itself to the
high end of its address space, (that is, the high end of 32K
words) . It then determines what program to load by using the
volume information in sector 0 of track 0 on the system disk {see
paragraph 4.2.1 for a description of the volume information).

The program to be loaded is chosen according to the following
rules:

l. If the diagnostic flag in the volume information is Y,
(that 1is, non zero), the diagnostic task, which can be
any standalone task, will be loaded, and the flag reset
to N (zero).

2. If no diagnostic is specified, the loader checks to see
if the file pathname of either a primary or a secondary
system loader is specified. 1If so, the 1image 1loader
loads whichever system loader is indicated by the flag
(0=load primary, l=load secondary, -1l=load secondary
and reset flag to zero).

3. If no system loader 1is specified, the image loader
loads the system image indicated by the image flag,
which is used in the same manner as the system loader
flag.

The program image loader normally loads a program image starting
at memory location >A0. This default load bias is stored in the
second word of the loader, and may easily be changed by a Modify
Absolute Disk (MAD) command. Note that, since the image 1loader
neither changes memory mapping nor uses long distance
instructions, it always loads in its own address space. When the
loader is booted by the ROM loader, it is always mapped into the
first 32K words of memory.

939153-9701 3-3

System Loaders System Design Document

3.4 THE SYSTEM LOADER/INITIALIZER

The DX10 system loader, module STARTR, is normally located on
file .SSLOADER. This program assumes it has been loaded starting
.at location >A0 by the program image loader, and relocates itself
to the high-order 8K bytes of physical memory. It then
determines the name of the operating system to be loaded from the
program file .SSIMAGES, by reading the volume information on
track 0, sector 0. The system select flag indicates which system
image is to be loaded (O=primary, l=secondary, -l=load secondary
and reset flag to zero).

After obtaining the name of the system to be loaded, the system
loader verifies that the system files in .VCATALOG are correct
for the version of DX10 being used, and then loads the system
from .S$IMAGES, starting at location >AO0.

After loading the system image, STARTR performs the following
initialization functions:

* TInitializes the map files for all of the system
segments.

* Renames the disk drives (if necessary) to make the
system disk DSO1.

* TInitializes memory beyond the end of the loaded system
to a constant pattern (>B0OOB).

* Initializes memory size parameters,

* Initializes the interrupt and XOP trap vectors in memory
locations >00 - >80.

* Creates file control blocks and 1logical device tables
for VCATALOG, the system program file, the system
overlay file, and the roll file.

* Enters the power up code of each device service routine
in the system.

* Loads memory resident procedures and bids memory
resident tasks.

* TInitializes free memory pointers.
* Bids the system restart task, SYSRST.

After initialization, the system loader releases control to the
task scheduler.

3-4 939153-9701

System Design Document System Loaders

3.5 THE SYSTEM RESTART TASK

When the operating system starts up, the first task scheduled for
execution is the system restart task, SYSRST. This task performs
initialization functions that are easier to do under a running
operating system than in the system loader. SYSRST verifies that
the .SSLOADER was for the correct version of DX10 and also bids
the user specified restart task if there is one (the user restart
task must be on the system program file, and is specified during
system generation).

The initialization functions performed by SYSRST are:
* Dpelete all temporary files on the system disk

* Assign global LUNO >10 to the language program file,
S$SDS

* Assign global LUNO 1 to the foreground TCA file, S$SFGTCA
* Assign global LUNO 2 to the background TCA file, SSBGTCA

* Assign global LUNO 3 to the master TCA library file,
S$TCALIB

* Enables the SCI bidding 1logic within the operating
. system

* Bids the system log command processor to start file
logging.

939153-9701 3-5/3-6

System Design Document Disk Organization

Section 4

Disk Organization and Data Structure

4.1 DISK FORMAT

Under DX10, all tracks on disks are initialized in one sector per
record format. Note that this record is a disk characteristic

and 1is not the same as the physical record size specified when
creating files.

DX10 disks are logically divided into allocatable disk units
(ADUs), as described in the DX1l0 Operating System Systems
Programming Guide. An ADU is defined to be an integral number of
sectors on the disk, the number of sectors per ADU varying
according to disk size (see Table 4-1). The number of ADUs must
be less than 65,536, (each ADU on the disk addressable by a 1l6-
bit word), and the sectors per ADU is 1 or a multiple of 3. ADUs

are numbered from zero, with the first ADU starting on track 0,
sector 0.

Table 4-1 Format Information for Supported Disks

No. of No. of Sectors/ Bytes/
Disk Type Sectors ADUs ADU ADU
DS10 16320 16320 1 288
DS25 77520 25840 3 864
DS31/Ds32 9744 9744 1 288
DS50 154850 51616 3 864
DS80 244915 40819 6 1536
DS200 588430 65381 9 2592
DS300 930677 62045 15 3840
CD1400/32
Removable 52544 52544 1 256
Fixed 52544 52544 1 256
CD1400/96
Removable 52544 52544 1 256
Fixed 262716 43786 6 1536
WD500/5 19200 19200 1 256
WwD800/18 72261 24087 3 768
WD800/43 168609 56203 3 768

939153-9701 4-1

Disk Organization Disk Organization

4.2 PHYSICAL ORGANIZATION OF THE DISK

To prepare the disk for use, surface analysis and initialization
of the disk must be performed. Surface analysis is performed by
using the IDS (Initialize Disk Surface) command. After execution
of this command, the disk state word in track zero, sector =zero
contains a value of two. Additionally, bad tracks (physical
imperfections) on the disk are indicated. Bach bad track is
indicated in pairs of words. The first word indicates the first
of any contiguous group of bad tracks, and the second word
indicates the number of contiguous tracks. 1Initialization of a
disk is performed by wusing the INV (Initialize WNew Volume)
command . When a disk is initialized, the disk state word in
track zero, sector zero contains a value of three, indicating
that the disk is now ready for use. Bad disk areas are indicated
by ADUs in pairs of words. The first word contains the ADU
address of the first of any contiguous group of bad ADUs. The
second word contains the address of the last ADU in the group.

All disks that have been initialized under DX10 have the
following physical layout:

* Track 0, sector 0 -- contains information about the disk
volume, such as the volume name and pointers, to the
volume directory (VCATALOG).

* Track 0, sector 1 -- contains a list of bad (in the
sense of physical imperfections) areas on the disk.
Each entry is two words: the first word is the address
of the first bad ADU; the second word is the address of
the last bad ADU. A zero word terminates the list.

* Track 0, sector 2+ -- the remainder of track 0 contains
disk allocation information, in the form of bit maps.

* Track 1, sector 0+ -- is reserved for the disk program

image loader described in Section 2.
* Track 1, penultimate sector -- a copy of track 0, sector
0.

* Track 1, last sector -- a copy of track 0, sector 1.

* The remaining tracks are available for file allocation.

4-2 939153-9701

System Design Document Disk Organization

The following paragraphs describe the track 0 information in
greater detail.

4.2.1 vVolume Information

The information contained in track 0, sector 0 of all disks
intialized under DX10 is called volume information. Figure 4-1
shows the format of the 140-byte block of information.

The following is a list of the volume information contained in
track 0, sector 0. Note that some fields have zero values when
the disk is initialized.

Hex.
Byte
B e o e o o o e s o S > T ——— " - . — T ——— —— - ———— — - T — - %*
>00
VOLUME NAME
e S e — e e ———————— +
>08 | NUMBER OF ADUs |
fommmm e m————————————— ettt +
>0A | BIT MAP START SECTOR | NUMBER OF BIT MAPS |
e e femm e —— +
>0C | TRACK 0 RECORD LENGTH |
o e e e e e e e 2 e o e e e e +
>0E | PROGRAM IMAGE LOADER TRACK |
T T ettt +
>10
RESERVED
e - ——————— - +
>16 | NUMBER OF BAD ADUS l
o e - ———————— +
>18 | PROGRAM IMAGE LOADER ENTRY POINT |
o ———————————— e == +
>1a | PROGRAM IMAGE LOADER LENGTH |
o — e —————————— e +
>1c | l
~ RESERVED -
I |
e et e +

Figure 4-1 Volume Information Format (VIF) -- Part 1 of 3

939153-9701 4-3

Disk Organization System Design Document

Hex.
Byte®
e bt DL R . +
>24 | PROGRAM IMAGE LOADER TRACK |
e e e e e +
>26 | l
~ RESERVED ~
| |
e e e e +
>2E | . |
- PRIMARY SYSTEM IMAGE FILE NAME ~
! !
>36 | |
~ SECONDARY SYSTEM IMAGE FILE NAME ~
I !
>3E | SYSTEM IMAGE SELECT FLAG |
e e e e e e e +
>40 | VCATALOG STARTING ADU |
e e e e e e +
>42 | VCATALOG PHYSICAL RECORD SIZE |
e e e e e +
>44 | ‘ SECTORS/ADU I
e e e e e e +
>46 CREATION DATE
e e e e ——————— +
>4a |]
- PRIMARY PROGRAM FILE NAME ~
| l
e e e e e e +
>52 | |
~ SECONDARY PROGRAM FILE NAME ~
; I
>5a | PROGRAM FILE SELECT FLAG |
e e e e e ————— +
>5C | |
= PRIMARY OVERLAY FILE NAME -
| I
e e e e e +

Figure 4-1 Volume Information Format (VIF) -- Part 2 of 3

4-4 939153-9701

System Design Document Disk Organization

Hex.
Byte .
e e —————— - +
>64 | l
- SECONDARY OVERLAY FILE NAME ~
| I
it S e b +
>6C | OVERLAY FILE SELECT FLAG i
e ————— +
>6E | |
~ PRIMARY SYSTEM LOADER FILE NAME ~
I |
o e e +
>76 | !
= SECONDARY SYSTEM LOADER FILE NAME ~
I |
e —————— +
>7E | SYSTEM LOADER SELECT FLAG |
e +
>80 | |
- DIAGNOSTIC FILE NAME ~
| I
o o e e 2 0 s e e 4 > o e S e
>88 | DIAGNOSTIC SELECT FLAG |
o B e +
>8a | DEFAULT PHYSICAL RECORD SIZE |
T ——— +
>8C | BAD ADU LIST STARTING SECTOR |
Fomm———— - ———————————— e +
>8E | TRACK 0 SECTORS/RECORD l
e ———— ————— e e +.
>90 | ' |
- WCS PRIMARY FILE ~
| l
B e e e T
>98
- WCS SECONDARY FILE -
; |
>A0 | WCS SELECT FLAG |
o e +
>A2 | VOLUME INFORMATION COPIED FLAG |
o e —————— +
>a4 | DISK STATE !
L ettt T ettt it D ettt DDl bt Ll +

Figure 4-1 Volume Information Format (VIF) -- Part 3 of 3

939153-9701 4-5

Disk Organization System Design Document

>0A

>0B

>0C

>0E

>10
>16

>18

>1Aa

>1C
>24

>26

>2E

>36

>3E

>40

>42

>44

Description
A 1-8 character volume name, blank filled to the right.

Total number of allocable disk units contained 1in the
volume. This field varies by disk type.

The number of the sector on track 0 in which the first
bit map resides.

Total number of bit maps.

The number of bytes per physical record, (that Iis,
sector) on track 0. This value is also disk dependent.

The number of the track that contains the disk program
image loader. This field is initialized to one.

Reserved.

Total number of bad ADUs on the disk.

Entry point address of the disk program image 1loader
(initialized to >A6, the entry point of the program code

when it is loaded at location >A0).

Total length, in bytes, of the disk program image
loader.

Reserved.

Second copy of the number of the track that contains the
disk program image loader (initialized to one).

Reserved.

The 1-8 character name of the primary system image file.
Zero at initialization.

Name of the secondary system image file. Zero at
initialization.

System select flag. Zero at initialization.

Number of the ADU in which the volume directory
(VCATALOG) begins.

Physical record size of the VCATALOG directory file
(initialized to >86 bytes).

Number of sectors per ADU (disk dependent).

4-6 939153-9701

System Design Document Disk Organization

>52
>5A
>5C
>64
>6C
>6E
>76
>7E
>80
>88
>8A

>8C

>8E

>90
>98
>a0
>A2

>A4

Description
Disk creation date.

Primary system program file name.

-Secondary system program file name.

System program file select flag.

Primary system‘overlay file name.

Secondary system overlay file name.

System overlay file select flag.

Primary system loader file name.

Secondary system loader file name.

System loader select file.

Diagnostic file name.

Diagnostic select flag.

Default physical record size for the disk (reserved).

Sector in track 0 in which the 1load ADU list begins
(equals 1 for DX10 disks).

Number of sectors per record on track 0 (always 1 for
DX10 disks).

Primary writable control storage (WCS) file name.
Secondary writable control storage (WCS) file name.
Writable control storage select flag.

Volume information copied flag.

*

939153-9701 4-7

Disk Organization System Design Document

4.2.2 Allocation Bit Map

To keep track of which areas on the disk are allocated and which
areas are free, the DX1l0 disk manager maintains a bit map of
allocated ADUs. The bit map is located on track 0 of each disk,
starting at sector 2 and continuing through as many sectors as
necessary. :

The bit map 1is divided into 128-word partial bit maps. Each
partial bit map is located in a separate sector on track 0. The
first word of each partial bit map contains the number of the ADU
that begins the largest block of free disk space located in that
part of the disk that is mapped by the partial bit map. Each bit
in the remaining 127 words represents an ADU. If the bit 1is

zero, the ADU is free; a one bit indicates that the ADU is
allocated (or bad).

Figure 4-2 shows a partial bit map. Note that, since each
partial bit map contains 127 16-bit words of information, it maps
2032 ADUs.

4-8 939153-9701

System Design Document

Disk Organization

RELATIVE ADU NO. OF LARGEST
AVAILABLE BLOCK

PARTIAL ALLOCATION BIT MAP

BIT = 1 MEANS
UNIT ALLOCATED

2278128

939153-9701

Figure 4-2 Partial Bit Map

Disk Organization System Design Document

4.3 FILE STRUCTURES

DX1C supports three file types: relative record files (block and
unblocked), sequential files, and key indexed files. All file
types are based on the unblocked relative record type, with extra
system overhead needed to implement sequential and key indexed
files. In adéition, there are three special usages of the
relative record file: program files, directory files, and image
files.

In the following discussion of file types and file structures, a
physical record of a file 1is the amount of data actually
transferred by the operating system during an I/O operation to
the file; a logical record of a file is the amount of information
the user desires to transfer in an I/O operation. The ratio of
the physical record size to the logical record size is called the
blocking factor.

4,3.1 Relative Record Files

a fixed 1length and each record can be randomly accessed by itf
unique record number. Relative record files may be unblocke
(logical record size equal to physical record size) or blocked
(logical record size less than physical record size).

A relative record file is a file in which all logical records a'rg"

4.3.1.1 Unbliocked Relative Record Files. Each logical record of
a file cf this type occupies one physical record of the file. A
odhysical record may be any integral multiple of contiguous
sectors. File accesses require reading or writing this many
sectors (reads and writes of multiple contiguous sectors can be
accomplished via one disk access). Records read from unblocked
relative reccrd files are transferred directly from the disk to
the user buffer, without intermediate system buffering. When you
specify a particular record of the file, the record number is
converted by file management to an absolute allocatable disk unit
aumber and a sector offset within the ADU. The absolute disk
address is then passed to the disk device service routine (DSR)
to perform the actual data transfer. The disk DSR converts the
ADU and relative sector to a physical track and sector disk
address to communicate with the disk controller hardware.

4-10 939153-9701

System Design Document Disk Organization

Long Unblocked Relative Record
Record Size > ADU Size

LONG UNBLOCKED RELATIVE RECORD,RECORD SI1ZE > ADU SIZE

RECORD
AL
/ \
ALL DATA ALL DATA ALL DATA
\ N\ — UNUSED
\" A \'4 N 7
ADU ADU \/
2278129 ADU
Unblocked Relative Record
Record Size < ADU Size
PHYSICAL
N\ UNBLOCKED RELATIVE RECORD
\
LOGICAL RECORD SI1ZE < ADU SIZE
/:/// - ALL DATA v 2
ALL DATA 2 ALL DATA 1/1:: ////’ &
RECORD 1 RECORD 2 RECORD 3 UNUSED
\ ’ /
\V4
2278130 ADU
Note that

each physical record must begin on a sector boundary
and that a physical record that starts in the middle of an ADU
may not span the ADU boundary.

4.3.1.2 Blocked Relative Record File. These files are the same
as unblocked except that multiple logical records may be stored
in each physical record. Logical records may not span physical
records. Records are transferred via intermediate blocking

buffers which are furnished from the general pool of user space
by buffer management.

939153-9701 4-11

Disk Organization System Design Document

Blocked Relative Record File

BLOCKED RELATIVE RECORD FILE

PHYSICAL RECORD 1 PHYSICAL RECORD 2
L L/
REC1 | REC2 | REC 3 | REC 4 & REC5 | REC6 | REC7 | REC 8 ,{f;:
4 LOGICAL RECORDS UNUSED 4 LOGICAL RECORDS UNUSED
L /
Vo
2278131 ADU

4.3.2 Sequential Files

Sequential files are blocked relative record files with variable
length logical records. Logical records may span physical record
boundaries regardless of ADU boundaries. When a logical record
spans a physical record boundary, it is broken into partial
records which are contained in separate blocks. The first word
of each physical record has two flags indicating whether the
first 1logical record 1is continued from the preceding physical
record and whether the last logical record is contained in the

following physical record. Set flag bits (bit = 1) have the
 following meaning:

Bit Meaning When Set

0 First logical record in this physical record is
continued from the preceding record.

1 Last 1logical record 1in this physical record
continues in the next record.

Bach logical record or partial record is preceded by a header
word and followed by a trailer word. The content of the header
and trailer is the number of bytes of user data between them. An

end-of-file is signified by a zero length record (zero header and
trailer).

A special condition exists when a record or last partial record
ends with only one or two words remaining in the physical block.
Since there is not room for another partial record’
(header/data/trailer), next record will begin in the
following block. The last word of the current block contains the
number in the last trailer plus the number of unused bytes (two
or four). Figure 4-3 shows how a sequential file is arranged.

>
i

12 939153-9701

System Design Document Disk Organization

Logical records of a sequential file may be blank-suppressed,
that 1is, the sequential file is created blank-suppressed. 1In
blank-suppressed files, all double blanks are removed. A blank-
suppressed logical record has the following format:

1. Header word

2. Byte containing a count of words with double blanks*

3. Byte containing a count of words with no double blanks*

4, Data characters*

5. Trailer word

* Ttems 2 through 4 above are repeated as necessary.

Figure 4-4 shows a blank-suppressed record.

939153-9701 4-13

Disk Organization System Design Document

PHYSICAL RECORD 0

BYTE
o |o Il l FLAGS
2) RECORD 0 HEADER
a
6 LOGICAL RECORD O DATA
8
A
c 8 RECORD 0 TRAILER
E E RECORD 1 HEADER
10
12
14
:g LOCICAL RECORD 1 DATA
1A
ic
1E E RECORD 1 TRAILER
20 8 RECORD 2 HEADER (PARTIAL)
22
24
LOGICAL RECORD 2 DATA
26
28
2A 8 RECORD 2 TRAILER (PARTIAL)
. PHYSICAL RECORD 1
1 | ol FLAGS
4|. RECORD 2 HEADER (PARTIAL)
LOGICAL RECORD 2 DATA
4 RECORD 2 TRAILER (PARTIAL)
A RECORD 3 HEADER
LOGICAL RECORD 3 DATA
A RECORD 3 TRAILER
A RECORD 4 HEADER
LOGICAL RECORD 4 DATA
A RECORD 4 TRAILER
[¢]
EOF
(]
2 THIS WORD POINTS BACK TO EOF HEADER
NEXT RECORD STARTS IN NEXT BLOCK
2278132

Figure 4-3 Sequential File Format

4-14 939153-9701

System Design Document

PHYSICAL RECORD

Disk Organization

L

TL

1E 0 WORDS OF BLANKS,1 WORD OF DATA

2 WORDS OF BLANKS .Byg WORDS OF DATA

1A16 WORDS OF BLANKS,0 WORDS OF DATA

RECORD HEADER
o l 1
*
2 | B
RECORD DATA THIS IS A B. S. RECORD
1A °
RECORD TRAILER TE

T

THIS RECORD REPRESENTS THE 80-CHARACTER RECORD BELOW

% THIS IS AB.S. RECORD
< 52 BLANKS>

2278133

Figure 4-4 Blank-Suppressed Record

939153-9701 4-15

Disk Organization System Design Document

4.3.3 Key Indexed Files

Key indexed files have variable length logical records that can
be accessed either randomly, by any one of up to 14 alphanumeric
keys, or sequentially, 1in the sort order of any key. On the
disk, a key indexed file with n keys is arranged as follows:

* The first 18n+3 physical records are the KIF log blocks.
Before modifying any record within the file, it is
written into a log block, to prevent data loss in case
of an error during the data transfer, such as in a power
failure. 1In the event of such an error, the 1logged
image is written back into the original file record,
when the file is next opened, and the file operation may
be retried.

* The next n physical records are the roots of the
balanced trees (B-trees) that are used to locate each
logical record within the file by key. There is a B-
tree for every defined key (up to 14 B-trees):
therefore, there are n B-tree roots.

* Following the B-tree root nodes- are physical records
that contain data as well as physical records that
contain other B-tree nodes.

The following paragraphs describe the structure of B-trees and
data records in detail.

4.,3.3.1 B-Trees. B-trees are made up of a root node, branch
nodes, and leaf nodes. Root nodes are just the first node of the
tree. Leaf nodes are the nodes that contain pointers to the data

records. Branch nodes are all the nodes between the root and:-
leaf nodes.

A B-tree, under DX10, is a multi—wa? (having multiple branches
per node), balanced tree; that is, all leaf nodes are at the same
level. DX10 B-trees may not exceed nine levels. Figure 4-5

shows a sample B-tree, in which the key wvalues are single
letters.

Each node of a B-tree occupies one physical record of a key
indexed file, and is called a B-tree block. FEach B-tree block
contains a few words of overhead and several pointer/key value
pairs. Figure 4-6 shows a B-tree block.

4-16 939153-9701

System Design Document Disk Organization

11 ml

N —
o s

%/M\\\\ /////////J : W%WMWWMW

Y

S) 008

vy

P08 (LEAF NODE

BN
OW/////A

g
~

oo%

Figure 4-5 Key Indexed File B-Tree

\
= ! I
= \\\\\\\.' x \ ” /
. N
Ly
WWH\\\\\\\\\\i - MMM

G

Ly

939153-9701 4-17

Disk Organization System Design Document

Hex.
Byte
R e e e e e e e e e e e e e e i e e e o e e L3
>00 BLOCK NUMBER
o e e e e e e +
>04 | , COMMAND NUMBER |
A e e e e —————— +
>06 | SPACE REMAINING |
A e e e +
>08 PREDECESSOR POINTER
OR FREE CHAIN LINK
o e e e e +
>0C l SUCCESSOR POINTER l
e -, e e T T — +
>10 | NUMBER OF ENTRIES | FLAGS |
T — o e e +
>12 |SEQUENTIAL INSERT POSITION| SEQUENTIAL INSERT COUNTERI
e e T e +-=+
>14 BLOCK NUMBER
POINTER
o e e e +
>18 | INDEX (LEAF LEVEL ONLY) |
o e e e e e e - +--+
>1A | ‘ |
- KEY VALUE =
I |
o e e e +
L L
| l
B e e e e i et e o e e e e s 0 ot et e o o o e S S 2 o o A B B o o e b e *
Figure 4-6 B-Tree Block
Hex.
Byte Description
>00 Physical record number of this B-tree block. This field
is maintained so that, should a system crash occur while
this file block is being modified, the logged image can
be restored to the correct file record
>04 The opcode of the file operation being performed. This

field is also maintained for logging purposes.

4-18 939153-9701

System Design Document NDisk Organization

>0C

>10

>11

>12

>13

>14

>1A

Description

The number of available bytes remaining to be wused in
this B-tree block.

If this block is currently being used as a B-tree node,
this field points to the preceding node on the same
level (zero if this is leftmost node). The address is a
physical record number. If this block is available for
use, this field points to the next available block (free
blocks are kept on a linked 1list).

If this block is a B-tree node, this field points to the
following node on the same level; otherwise, this field
is unused.

The number of pointer/key value pairs currently
contained in this block.

Flags. Bit 7 is set (byte 17 = 1) if this B-tree block
is a leaf.

This byte is zero when the block is initialized due to a
B-tree split,. When the first entry 1is made to the
block, this byte contains the number of entries in the
block that are greater than the new entry. (This
applies to sequential placement only; otherwise, byte
>14 is moved up here).

When the block is initialized due to a B-tree split,
this wvalue 1is the maximum entries that may be inserted
in the block plus one. For each subsequent entry to
this block, if the number of entries in the block that
are greater than the new entry equals the number in byte
>12, byte >13 is decremented by one. When this B-tree
block is about to split, if byte >13 is zero, the lower
90% of the entries are in one block and the upper 10% in
the other. Otherwise, the split is 50-50. (This
applies to sequential placement only; otherwise, byte
>15 is moved up here.)

These six bytes are the first pointer. If this is a
non-leaf mnode, the first four bytes contain the record
number of a branch or leaf node and the last two bytes
are meaningless. If this is a leaf node, the first four
bytes contain a record number of a data record and the
last two bytes contain the key ID of the logical record
within the data record.

The key value of the first pointer/key value pair.

939153-9701 4-19

Disk Organization System Design Document

The remainder of the B-tree block contains more pointer/key valu¥
pairs. These entries in a B-tree block are kept sorted in

increasing order of key value (smallest key value is first
entry).

If the block is mot a leaf entry, each pointer field points to a
subtree that contains all key values less than or equal to the
key value associated with the pointer. 1In fact, the highest key
value contained in the subtree is the key value associated with
the pointer (as shown in the sample B-tree).

Further information on general B-tree structure is available in
The Art of Computer Programming, Volume III by Donald Knuth.

4.3.3.2 Data Blocks. All of the data records (logical records)
of a key indexed file are contained in data blocks. A data block
is a physical record of the file and contains a few words of
overhead and several logical records, as shown in Figure 4-7.
The word following the last logical record has a zero value.

4-20 939153-9701

System Design Document Disk Organization
Hex.
Byte
K e o e e o e o i ot et s ot e o e e e e e e i et et e e %*
>00 BLOCK NUMBER
o e ————————— +
>04 | COMMAND NUMBER - |
C e e e e +
>06 | SPACE REMAINING |
o e e e e e e +
>08 | OVERFLOW BLOCK OR l
(FREE CHAIN POINTER |
o e e e e e e e ——————— +
>0C | HIGHEST KEY ID USED |
to—— —————— e e e e e ——————— +=—t
>0E | RECORD SIZE (1ST RECORD) | sEE
o e + NOTE
>10 | KEY ID | 1
e e e e e +--+
>12 | }
~ RECORD -
| !
fm—————— —— —————————— ——— ———
| RECORD SIZE (2ND RECORD) |
o e e e e ———————— +
l KEY ID |
o e e e —————— e +
! !
RECORD -
l |
et TS +
T s o e o e et o i e i < s i S S > . o P 2 P e e o D . . S e o A T St e D <o . o J
Figure 4-7 Data Block
Note 1 -- Four overhead bytes per logical record
939153-9701 4-21

Disk Organization System Design Document

Hex.

Byte Description

>00 Physical record number of this block. This field is
maintained so that, should a system crash occur while
this block is being modified, the logged image can be
restored to the correct file record.

>04 The opcode of the current command. This field 1is also
maintained for logging purposes.

>06 The number of bytes remaining in the physical record.

>08 This block is used to link the block on the free block
chain.

>0C The highest ID assigned to any logical record with the
block.

>0E Size, in bytes, of the first 1logical record including
this word.

>10 The ID assigned to the first logical record.

>12 First logical record.

Whenever a data record is to be inserted in a data block, it is
assigned an ID that is unique within the block. The data recora
is then inserted in the first available place in the block.

4.3.4 Special Relative Record Files

In addition to the three basic file types, three special uses of
the relative record file warrant description: program files,
directory files, and image files.

4,3.4,1 Program Files. Program files are unblocked relative
record files having a logical record size of one sector. The
smallest sector size allowed is 256 bytes. Figure 4-8 shows the
format of a program file. The sections of information describing
the contents of the program file (see Figure 4-8) will not always
start at the beginning of records or be in the same place for all
program files. The following set of equations define the record
number and the offset into the record of the beginning of the
sections of information. 1In the equations, R designates a record
and O designates the offset.

4-22 939153-9701

System Design Document Disk Organization

R1 =1
01 =0
((MAX # TASKS +2)/2) * >10) + Ol
R2 = RL 4 =——— e
>100
({MAX # TASKS +2)/2) * >10 + 0Ol
02 = remainder of —-——-e—emmmmm—e—
>100
(MAX # TASKS +1) * >10 + 02
R3 = R2 + ——-cmmmmmmm e
>100
(MAX # TASKS +1) * >10 + 02
03 = remainder of —-cmmcemmcmmcc——— e
>100
((MAX # PROCS +2)/2) * >10 + O3
R = R3 4 ————mmem et
>100
((MAX # PROCS +2)/2) * >10 + O3
04 = remainder of ~==—=—-m——mm———me——————— e
>100
(MAX # PROCS +1) * >10 + 04
R5 = R4 4+ —————mmmmrm e
>100
' (MAX # PROCS +1) * >10 + 04
05 = remainder of ==——=m—mmmm—m————————— e
>100
((MAX # OVLYS +2)/2) * >10 + 05
R6 = RS 4 = e
>100
((MAX # OVLYS +2)/2) * >10 + 05
06 = remainder of =—~—————memmmmmm————————

939153-9701 4-23

Disk Organization System Design Document

(MAX # OVLYS +1) * >10 + 06

R7 = R6 + ==
>100
(MAX # OVLYS +1) * >10 + 06
07 = remainder of ——————mmmmme
>100
‘ ((MAX # HOLES * 4) +2) + 07
‘R8 = R7 + == ——m e
>100
((MAX # HOLES * 4) +2) + 07
08 = remainder Of —=————m oo

If 08 is not equal to zero, then R8 = R8 + 1

R1,0l: Record number and offset for names of tasks.

R2,02: Record number and offset for task directory entries.
R3,03: Record number and offset for names of procedures.

R4,04: Record number and offset for procedures directory entries
R5,05: Record number and offset for names of overlays. -

R6,06: Record number and offset for overlay directory entries
R7,07: Record number and offset for unused space directory.

R8: Record number of first image record. .

The first record (record number 0) of a program file contains six
bit maps. These bit maps, in order of occurrence within record
0, are for memory resident tasks, memory resident procedures, all
tasks, all procedures, all non-replicatable tasks, and all
overlays.

4-24 939153-9701

System Design Document Disk Organization

e e el ,

0 l OVERHEAD RECORD l

S o o e T :
R0z | DIRECTORY ENTRIES FoR mAeks :
mon | e :
Resos | DIRECTORY ENTRIES FOR PROCEDURES '
o [T SITEmIE !
Resos | D IRECTORT ByInInG TOR OemLrge T i
R7:07 T -------- -—AVAILABEE-QPACE-EEST ------------- T
RS *T'"Eiiéé"565:1255_555'5;QEETEESEEBEEEE'Z'B\EEEEQE""I

Figure 4-8 Program File Format

When record zero is initialized, all the bits in the bit map are
zero except the first bit in the tasks, procedures, overlays, and
non-replicatable tasks bit maps (the bit maps occupying bytes
>54->D3). The first bit of these is a one, restricting user
tasks from allocating ID zero.

Each bit map is 16 words by 16 bits per word, and thus is able to
represent 256 IDs. A bit set to one indicates that the 1ID
corresponding to the bit position (0 through 255) is assigned to
a task, procedure, or overlay segment ‘that is installed 1in the

file. Figure 4-9 shows the format of record zero of a program
file.

939153-9701 4-25

Disk Organization System Design Document

Hex.
Byte
K e e o e e o o o 4 o o o8 e S o 8 " - o = = o ¥ A — o o o %*
>00 | 0000 I
e ettt +
>02 | |
~ RESERVED (=0) ~
I |
e et T T +
>10 | l
~ RESERVED (=0) ~
| I
e e e ————————————— +
>14 | |
~ BIT MAP FOR MEMORY =
~ RESIDENT TASKS -
I |
e T +
>34 | |
= BIT MAP FOR MEMORY =
I RESIDENT PROCEDURES l
e e e e e e e e +
>54 | l
- BIT MAP FOR ALL TASKS
| I
o e +
>74 | i
~ BIT MAP FOR ALL PROCEDURES ~
| I
o e e +
>94 | |
- BIT MAP FOR ALL NON-REPLICATABLE TASKS =
| |
e e e e +
>B4 | ‘ _ |
- BIT MAP FOR ALL OVERLAYS ~
I |
et T T ittt SR +
>D4 | MAXIMUM NO. OF TASKS | 02 |
et e e +

Figure 4-9 Program File Record Zero -- Part 1 of 2

4-26 939153-9701

System Design Document ' Disk Organization

Hex.
Byte
e e e Fmmm e +
>D6 | R2 |
R ettt e T fm e +
>p8 | MAXIMUM NO. OF PROCEDURES| 04 i
e e o ——_—_—— +
>DA | R4 |
it e et e P +
>DC | MAXIMUM NO. OF OVERLAYS | 06 |
o e B et L S LR e +
>DE | R6 [
e e T e e +
>E0 | MAX. NO. OF HOLES (TASKS, PROCEDURES, AND OVERLAYS) |
e e B L D e R P e e +
>E2 | 07 I
et +
>E4 | R7 |
it S S P +
>E6 |]
~ UNUSED (=0) ~
l |
R e e o o e e — — o Y . — —— — - — %*

Figure 4-9 Program File Record Zero =-- Part 2 of 2

At program file creation time, the maximum number of tasks,
procedures, and overlays contained in bytes >D4, >D8 and >DC of
record 0 are defined by the creator of the program file. The
maximum number of holes, which equals the sum of the above three
values, is used to calculate the number of bytes required in the
overhead records for the available space list. This list is
headed by a word that contains the number of entries in the 1list,
The rest of the list consists of 2-word entries that describe the
unallocated spaces (holes) in the image portion of the program
file. Each entry contains the starting record number and the
number of available records in each unused portion of the program
file. These spaces appear when an image is deleted. This space
is recorded to be used again if a new image is installed in the
program file that is the same size or smaller than the one that
was deleted. Adjacent images, when deleted, create only one
hole. Figure 4-10 shows the format of the available space list.

The available space list uses the entire record, not 256 bytes of
it as the other overhead records do. Therefore, 1if the 1list
spans records, an entry is split across two records. (The first
word of the entry is the last word of one record and the second
word of the entry 1is the first word of the next record). The
available space list is initialized at the same time record 0 is
initialized. 1Its values are as follows:

939153-9701 4-27

Disk Organization System Design Document

K e e e ——— e e %*

| 1 | FIRST WORD
et +

| R8 | SECOND WORD
o e +

| FFFF-R8 | THIRD WORD
K e e e e o o e o e e . it e e i o e > S > *

T e e ot e s e s b e o s e e S o o o . el i et o e D D P 2 S . S o o i P D o A 7 > e %

| NUMBER OF ENTRIES |

Fo e e +--+

| SECTOR NUMBER |

e e e e e + ENTRY 1
| SECTORS AVAILABLE |

o e e e E

1 : L

I |

o e e e e —————— +-—-+

I SECTOR NUMBER |

o e e + ENTRY n
| SECTORS AVAILABLE .

K e L

Figure 4-10 Program File Available Space List

The maximum number of records permitted in a program is FFFF.
Thus, the maximum number of image records permitted in a program
file is FFFF minus the number of overhead records. The actual
image of a task, procedure, or overlay must start on a record
boundary in the program file. If the segment has a relocation
bit map, it begins at the first word following the program
segment image.

The task, procedure, and overlay name blocks in the program file
contain the names of all tasks, procedures, and overlays
installed in the program file. A name is eight bytes long,
blank-filled to the right. The names are placed in the position
in the name block that corresponds to the ID assigned to that
segment. For example, if task GENTX is assigned ID 1, the name
ngTi is entered in bytes 8-15 (second position) of the task name
ock.

4-28 939153~-9701

System Design Document Disk Organization

The task, procedure, and overlay directory blocks in the program
file contain information about all segments installed 1in the
program file, as well as pointers to the segment images. Each
directory is 16 bytes long. The figures that follow show the
formats of the program file directory entries, with the field
description following their respective formats. Figure 4-11
shows the format of the task directory block (TDB).

Hex.
Byte
T e e o o o e e s o o = P D D D P S D P U P D D D = D = D D D Y A T P S b o e s D s > %
>00 | LENGTH OF TASK SEGMENT |
o e +
>02 | FLAGS |
o — - ————— e e e +
>04 | RECORD NUMBER |
e e e e e +
>06 | DATE INSTALLED |
e T +
>08 | LOAD ADDRESS I
e e +
>0 | OVERLAY LINK | PRIORITY l
o e e e T +
>0C | PROC 1 ID | PROC 2 ID |
tomme - - e ——— +
>0E | TASK LENGTH |
%* - - — 5 S — " D i T D YD P = = D = P P D A D S P S D D P b %
>10 *

Figure 4-11 Task Directory Block

939153-9701 4-29

Disk Organization System Design Document

Byte 4 Description

>00 Length of task segment in bytes. Length of task root
pPlus the length of the tasks longest overlay path.

>02 Flags, which mean the following when set:

Meaning When Set
Privileged
System
Memory resident
Delete protected
Replicatable
Procedure 1 is on the system program file
Procedure 2 is on the system program file
Directory entry in use
Overflow
Writable control store
10 Execute protected
11-15 Unused (set to zero)

w
[
(usd

\Dm\lO\U’lohu.INI—'OI

>04 Record number. Logical record number of the start of
the task image in the program file.

>06 Date installed. Date is in the format:
Bit Meaning When Set

. ' 0-6 Year (Displacement)
7-15 Julian date

>08 Load address. Relative starting address within a mapped
task segment. Must be on a beet boundary.

>0A Overlay link. The ID of the most recently installed
overlay associated with the task. Each overlay entry is
in turn 1linked to the next entrv so that tasks can be
associated with their overlays when status or delete
commands are executed. A value of 0 is wused to
terminate the list.

>0B Priority of the task.

>0C Procedure 1 ID.

>0D Procedure 2 ID.

>0E Length (in bytes) of the difference between the last
defined location and the first defined location of a
task. If a BSS is the last instruction in the task, its
length is not included in this value.

>10 *

4-30 939153-9701

System Design Document Disk Organization

Figure 4-12 shows the format of the Procedure Directory Entry.

Hex,
Byte
B e o e e o = = —— - — ———— — " — > W > > %*
>00 | LENGTH OF PROCEDURE SEGMENT |
e e e e e e e e — = +
>02 | FLAGS !
o m e e e e e +
>04 | RECORD NUMBER |
T T e D +
>06 | DATE INSTALLED |
e +
>08 | LOAD ADDRESS [
e e —————— +
>0A
UNUSED (=0)
T s i o o e e e e A 2 > D D P T o o B D T " " o T > "~ —— - %*
>10 *
Figure 4-12 Procedure Directory Entry
Hex.
Byte Description
>00 Length of procedure segment in bytes.
>02 Flags, which mean the following when set:
Bit Meaning When Set
0-1 Unused (set to 2zero)
2 Memory resident
3 Delete protected
4-6 Unused (set to zero)
7 Directory entry in use
8 Unused (set to zero)
9 Writable control store
10 Execute protected
11 Write protected
12-15 Unused (set to 2zero)
>04 . Record number. Logical record number of the start of

the procedure image in the program file.

939153-9701 4-31

Disk Organization System Design Document

Hex.
Byte Description
>06 Date installed. Date is in the format:
Bi Meaning When Set
0-6 Year (Displacement)
7-15 Julian date
>08 Load address. Relative starting address within a mapped
procedure segment. Must be on a beet boundary.
>0A Unused.
>10 *

Figure 4-13 shows the format of the Overlay Directory Entry.

Hex.
Byte
K e e e e e e e e e %
>00 | LENGTH OF OVERLAY SEGMENT |
o e +
>02 | FLAGS [
o e e e —————— +
>04 | RECORD NUMBER |
Fo e e e e e e e +
>06 | DATE INSTALLED |
e e e e e +
>08 | LOAD ADDRESS !
e e e ——————— Rl e —— +
>0A | OVERLAY LINK | TASK ID |
e o F e e +
>0C UNUSED (=0)
A e e e e e e e e e ¥*
>10 *

Figure 4-13 Overlay Directory Entry

4-32 939153-9701

System Design Document Disk Organization

>04

>06

>08

>0A
>0B
>0C-0F
>10

Description

Length of overlay segment in bytes.
Flags, which mean the following when set:
Bi Meaning When Set

0 Relocation bit map is present
1-2 Unused (set to zero)
3
4-6

Delete protected
Unused (set to zero)
7 Directory entry in use
8-15 Unused (set to zero)

Record number. Logical record number of the starting
address of the overlay image in the program file.

Date installed. Date is in the format:
Bit Meaning When Set

0-6 Year (Displacement)
7-15 Julian date

Load address. Relative starting address within a mapped
overlay segment. Must be on a beet boundary.

Overlay link to the next overlay.
Task ID of associated task.

Unused (set to zero).

*

939153-9701 4-33

Disk Organization System Design Document

4.3.4.2 Directory Files. Directory files are unblocked relative
record files and always have a record length of one sector.
Record 0 of the directory file contains an overhead record. The
remaining records in the file may contain one of the following
types of data blocks:

* File Descriptor Record (FDR) -- every file cataloged in
the directory is represented by an FDR, which describes
the file and its location on the disk.

* Alias Descriptor Record (ADR) -- every alias of a file
cataloged in the directory 1is represented by an ADR,
which gives the location of the file and points to the
FDR of the actual file.

* Key Descriptor Record (KDR) =-- each key indexed file
catalogued in the directory is represented by an FDR,
which in turn points to a KDR. The key descriptor
record describes all of the keys (1-14) that are defined
for the file. Note that the use of the KDR implies that
each key indexed file cataloged in a directory uses two
directory entries.

Figure 4-14 shows the general structure of a directory file.
Entries are made in the directory file by hashing the name of thg
file being entered. The hash algorithm results in a recoiL
number from one through n, where n is the last record in thé
directory file.

Figure 4-15 shows the hash algorithm. If the directory file
record is unused, an FDR for the file being inserted is placed in
that record. If the record is already used, a free record is
found by a linear search from the hashed record.

4-34 939153-9701

System Design Document Disk Organization

RECORD NO.

o OVERHEAD RECORD

1

L DIRECTORY ENTRIES

2278135

Figure 4-14 Directory File Structure

939153-9701 4-35

Disk Organization

‘ HASH >

KEY ~— 1

| —1

System Design Document

C —
NAME(1)

WHERE
N = NUMBER OF RECORDS IN
YES THE DIRECTORY LESS 1.
NO

KEY ~—
((KEY * C)MOD N)+1

I—1 + 1

F=9
NO

2278107 YES

‘ EXIT ’

Figure 4-15 Computing Hash Key

4-36 939153-9701

System Design Document Disk Organization

If the file being inserted is a key 1indexed file, another
directory record must be found to contain the key descriptor
record. This record is found by searching linearly from the file
descriptor record for the file. The key descriptor record is
inserted in the first available directory record following the
file descriptor record.

The different types of directory records are described in the
following paragraphs. '

The directory overhead record (record 0 of all directories)
contains:

* The maximum number of records (entries) in the
directory.

* The number of currently defined files.
* The number of available records (entries).
* The filename of the directory.

* The level number of the directory in the disk hierarchy
(VCATALOG) is level 0)

* The filename of the parent directory.
* . The default physical record length.

Figure 4-16 shows the format of a directory overhead record.

939153-9701 4-37

Disk Organization System Design Document

Hex.
Byte
R e e e e %*
>00 | DORNRC -- NUMBER OF RECORDS IN DIRECTORY l
Fmm e e +
>02 | DORNFL -- NUMBER OF FILES IN DIRECTORY |
P e e e e e +
>04 | DORNAR -- NUMBER OF AVAILABLE RECORDS |
Fo e e e +
>06 |DORTFC -- NUMBER OF TEMPORARY FILES CURRENTLY DEFINED |
e e e e e e +
>08 | |
- DORDNM -- FILE NAME OF THIS DIRECTORY ~
~ (8 ASCII CHARACTERS) ~
I |
P e o +
>10 | DORLVL -- LEVEL NUMBER OF DIRECTORY |
Fom e e e +
>12 | |
~ DORPNM ~-- FILE NAME OF PARENT ~
~ (8 ASCII CHARACTERS) : ~
>14 | I
o e ——————— +
>1A | DEFAULT PHYSICAL RECORD LENGTH |
o e e e e e ————— e +
>1c | |
- RESERVED
| |
K e e e e e e e e e %*
>40 *

Figure 4-16 Directory Overhead Record Format

4-38 939153-9701

System Design Document Disk Organization

Each file cataloged under the directory is represented by a file
descriptor record. Figure 4-17 shows an FDR.

>04

>0C

>10
>12
>14
>16
>18
>1A
>1C
>1E

>20

>24

>28

B e et o e e o e o o o o > o - o ———— = > 2 i o P D D o %*
| FDRHKC -- HASH KEY COUNT]
o e —————— - +
| FDRHKV -- HASH KEY |
S e R L P S P P e B P LD bt +
| |
~ FDRFNM -- FILE NAME -
I (8 CHARACTERS) I
o e — e — e e — e —————— - +
| : I
- FDRPSW -- PASSWORD (4 CHARACTERS) ~
~ * (NOT IMPLEMENTED) ~
I |
o e +
i FDRFLG -- FLAGS !
ettt s +
l FDRPRS -- PHYSICAL RECORD SIZE }
o e e e e e +
| FDRLRS -- LOGICAL RECORD SIZE |
o e e e e +
| FDRPAS -- PRIMARY ALLOCATION SIZE I
e e e e e e e o e = e e +
l FDRPAA -- PRIMARY ALLOCATION ADU |
e o e e e e +
| FDRSAS -- SECONDARY ALLOCATION SIZE |
o e e e o e — +
| FDRSAA -- OFFSET TO SECONDARY ALLOCATION TABLE l
o e e e e +
l FDRRFA -- RECORD NUMBER OF FIRST ALIAS l
e e —————— e — +
I FDREOM -- END OF MEDIUM LOGICAL RECORD NUMBER *
e e ———————— = —————— +
] FDRBKM -- END OF MEDIUM BLOCK NUMBER i
o —— e ——————— e = e e e e = +
| FDROFM -- END OF MEDIUM OFFSET |
b e o e o e o e e e +

Figure 4-17 File Descriptor Record -- Part 1 of 2

939153-9701 4-39

Disk Organization System Design Document

Hex.
Byte
e e e +--+
>2A FDRFBQ -- FREE BLOCK QUEUE HEAD l
o e e +
>2E | FDRBTR -- BLOCK NUMBER OF B-TREE ROOTS
o e e e + SEE
>30 | FDRSBB -- BLOCK NUMBER OF FIRST BUCKET | NOTE
Fo e e e + 1
>32 | FDRTNB -- TOTAL NUMBER OF BUCKETS l
o e ————————— +
>34 | FDRKDR -- RECORD NUMBER OF KEY DESCRIPTORS |
Frm e e ————————— e ————— +-—+
>36 | l
~ FDRUD -- RESERVED FOR LAST UPDATE DATE ~
| |
e e e e +
>3Cc | |
- FDRCD ~- RESERVED FOR CREATION DATE -
| |
e e ————— +
>42 | FDRAPB -- ADUS/BLOCK | FDRBPA -- BLOCKS/ADU |
e —————— e e ———————_——— +
>44 | FDRMRS -- MINIMUM RECORD SIZE |
Fo e e e +-—+
>46 | FDRSAT -- SIZE OF SECONDARY ALLOCATION l
e e e e —————— +
>48 | STARTING ADU OF ALLOCATION |
e e —————— e ————— +
! x
~ SEE
~ NOTE
| | 2
o e e e +
| SIZE OF SECONDARY ALLOCATION l
o e e e +
>84 | STARTING ADU OF ALLOCATION |
K e e e e et —————————— L S
>86 *

Figure 4-17 File Descriptor Record -- Part 2 of 2

NOTE 1 -- Used only for key indexed files.
NOTE 2 -- Secondary allocation table (up to 16 allocations).

4-40 939153-9701

System Design Document Disk Organization

>02

>04
>0C
>10

Field
Name

FDRHKC

FDRHKV

FDRFNM
FDRPSW

FDRFLG

939153-9701

Description

Hash Key Count. The number of file descriptor
records (which may or may not include this
one) that are present in the directory that
hashed to this record number.

Hash Key. The result of the hash algorithm
for the file name actually covered in this
record. The value might not be this record
number since the data may have arrived here
via the linear search used when the hashed
address is occupied.

File Name. Eight characters.
Password. A future feature.

Flags as follows:

cr

i
0-

w

Meaning When Set
File usage flags:
00 No special usage
01 Directory ’
10 Program File
11 1Image File

-

2-3 Data Format:
00 Binary
01 Blank suppressed

10 Reserved for ASCII & print form control

11 Reserved

4 Allocation type:
0 Bounded
1 Unbounded

5-6 File type:
N0 Reserved (for device)
01 Sequential
10 Relative record
11 Key indexed

7 Write protection flag:

0 Not write protected
1 Write protected

4-41

Disk Organization System Design Document

Hex. Field
Byte Name Description
Bit Meaning When Set
8 Delete protection flag:
0 Not delete protected
1 Delete protected
9 Temporary file flag:
0 Permanent flag
1 Temporary flag
10 Blocked file flag:
0 Blocked
1 Unblocked
11 Alias flag:
0 Not an alias
1 An alias file name
12 Force write flag:
0 Write buffers when memory is required
1 Write buffers when updated
13 Reserved for FCB changed flag (see 6.4)
14 KIF marked during partial logging
15 Reserved
>12 FDRPRS Physical record size in bytes. Must be an
even number.
>14 FDRLRS Logical record size in bytes. Must be an even
number if the file is unblocked.
>16 FDRPAS Primary allocation size in ADU.
>18 FDRPAA Primary allocation starting ADU number
(starting disk address).
>1a FDRSAS Secondary allocation size in ADU.
>1C FDRSAA Offset into this FDR of the secondary

allocation table, if any. No secondary
allocation table is denoted by 0. Secondary
allocations are present only for unbounded
files.

4-42 939153-9701

System Design Document Disk Organization

>20

>24

>28

>2A

>2E

>30
>32
>34

>36

Field
Name

FDRRFA

FDREOM

FDRBKM

FDROFM

FDRFBQ

FDRBTR

FDRSBB
FDRTNB

FDRKDR

FDRUD

939153-9701

Description

Record number with the directory of first
alias name. Files may be known by alias
names. The alias names are noted in the
directory 1in alias descriptor records. These
alias descriptor records are chained to the
actual FDR and each contains a pointer back to
the actual FDR.

The logical record number of the end of
medium. The end of medium is the end of the
last space allocated to the file.

The logical block number of the end of medium.
A logical block is the same as a physical
block.
The offset into the end of medium block of the
logical record following the end of medium
record.

Block number of the first block in a queue of
key indexed file free (unused) blocks. Each
block points to the next block in the queue (a
block is a physical record of the file). Only
used for key indexed files.

The block number for the B-tree root block of
the primary key. The block following this is
the KIF root block for key 2, and so on. This
field is also the total number of blocks that
can be used for logging.

The block number for the first KIF bucket.
The total number of buckets in the KIF file.

Record number of the directory file record
containing descriptions of the KIF keys.

Date of the last update to this £file. The
date is made up of three words. Word 1
contains the binary wvalue of the year. Word 2
contains a value that is two times the number
of days (counting from the beginning of the
calendar year); the least significant bit is
the most significant bit of word 3 of the
date. Word 3 contains the number of seconds
from the beginning of a day.

4-43

Disk Organization System Design Document

Hex. Field
Byte Name Description

>3C FDRCD Creation date of the file. The date is made
up of three words. Word 1 contains the binary
value of the year. Word 2 contains a value
that is two times the number of days (counting
from the beginning of the calendar year); the
least significant bit is the most significant
bit of word 3 of the date. Word 3 contains
the number of seconds from the beginning of a
day.

>42 FDRAPB The number of ADUs per physical record.
>43 FDRBPA The number of physical records per ADU.

>44 FDRMRS The minimum size that a key indexed file
logical record can be and still contain all of
the keys defined.

>46 FDRSAT The secondary allocation table, which contains
16 2-word entries. The first word of an entry
contains the size, in ADUs, of the secondary
allocation. The second word contains the
starting ADU of the allocation. The tablg
allows up to 16 files, and is only used if th
file was created expandable (unbounded). The

entry fields are filled in by file management
as the file is expanded.

>86 *

Files can be given other names, each name being a separate alias.
Each alias is hashed to find an entry in the directory just 1like
a file name, and an alias descriptor record (ADR) inserted in
that entry. The ADR points to the real file. TIt also points to
the next alias for the file. Figure 4-18 shows the format of an
ADR.

4-44 939153-9701

System Design Document Disk Organization

Hex.
Byte

W e e e s o st e ot e . = = 8 8 = =8 " o o i o = = . T . D 4o D T W P > < T e >
>00 | ADRHKC -- HASH KEY COUNT

e e e e e e s e o e e ot o e e o o e e e e
>02 | ADRHKV -- HASK KEY VALUE

+ ———
>04 |

- ADRFNM -- FILE NAME

!

..“. ___
>0C

- ADRPSW -- PASS CODE

l

+ ___
>10 | ADRFLG -- FLAGS

o et 0 e s e o o o o o e o o o o o o e S o e o
>12 | PHYSICAL RECORD SIZE

o e o o e e e
>14 | LOGICAL RECORD SIZE

G e e e e e e e e e s e e e e e e e e e e =
>16 | PRIMARY ALLOCATION SIZE

ST
>18 | PRIMARY ALLOCATION ADDRESS

e e e et i 20t e o e e e e e o o 8 T o e
>1Aa | SECONDARY ALLOCATION SIZE

o o s s o e D s e e o D o T D D D D 8 2 4 e S
>1Cc | SECONDARY ALLOCATION ADDRESS

G e e e e e e e e e e e e e e e e e o e e e ot e et e
>1E | ADRRNA -- RECORD NUMBER OF NEXT ALIAS

e e o 2 i e e 2 e o e o 0
>20 | ADRRAF -- RECORD NUMBER OF ACTUAL FILE

e e e e o e e e e e e o o e o e o e o i 8 o S o e o o e
>22 |

N UNUSED

|

K e e e e o i o o kb 8 o e o e 2 e o o o o e e
>86 *

Figure 4-18 Alias Descriptor Record

NOTE 1 -- Used to maintain ADR for compatibility.

939153-9701 4-45

SEE
NOTE

Disk Organization System Design Document

Hex. Field
Byte Name Description

>00 ADRHKC Hash Key Count. The hash key count is the
same as in the file descriptor record.

>02 ADRHKV Hash Key Value. The hash key value 1is the
same as in the file descriptor record.

>04 ADRFNM File Name. The file name given in this item
"is an alias name for the file. In other
words, it is a secondary name by which a
previously defined file will also be known.
The primary name for a file is supplied in the
file descriptor record; secondary names are
documented in alias descriptor records.

>0C ADRPSW Passcode. Space 1is provided for future
implementation of password codes.

>10 ADRFLG Flags. The flag values are the same as
provided in the file descriptor record. Note
that the flag for alias is set to a one in
this particular record.

>12->1D These fields are not used.

>1E ADRRNA Record WNumber of WNext Alias. This is 4§
pointer chaining forward to another alias
descriptor record for the same file, if any
exists. A value of zero 1is provided to
indicate the end of the chain; that is, m
more alias descriptor records exist for the
file.

>20 ADRRAF Record Number of Actual File. This 1is a
pointer to the directory file record
containing the file descriptor record for this
particular file.

>22->85 Unused. These bytes may contain non-zero
values, but they are not used.

>86 *

A key descriptor record (KDR) is used only for key indexed files.
It describes the keys (up to fourteen) used to access records in
the file. When a key indexed file is created and its keys are
defined, a file descriptor record is hashed into the directory.
File utility then performs a linear search for an unused
directory record, starting from the file descriptor record. The
KDR is placed in the first available directory record. Figure 4-
19 shows the format of a KDR.

4-46 939153-9701

System Design Document Disk Organization

>3C
>3E

>40

___ +
-3 l
___ +
NOT USED |
B et S P T e e ————— e e +
NUMBER OF KEYS |
-------------------------- et B2
FLAGS | CHARACTER COUNT OF KEY 1 | SEE
-------------------------- Fommmmmmm— e e e e e e e e+ NOTE
OFFSET TO KEY 1 | 1
i +-=-+
L
|
T et T T +
| FLAGS | CHARACTER COUNT OF KEY 14|
et B ettt +

Figure 4-19 Key Descriptor Record (KDR)

NOTE 1 -- For the primary key; repeat for each secondary key.

Hex.
Byt

;

>00

>02

>04
>06

Description

Hash Key Count. This is the same as described for the
file descriptor record.

Hash Rey = -3, This field is similar to that provided
with the file descriptor record. The value of -3 is
given to indicate that this record is a key descriptor
record and, therefore, is unavailable for use as a file
descriptor record.

Not used.

The number of unique keys defined for this key indexed
file. There are a maximum of 14 keys available for any
key indexed file. There must be at least one key, the
primary key. Keys 2-14, if any, are secondary keys.

939153-9701 4-47

Disk Organization System Design Document

Hex,
Byte Description
>08 Flags, as follows:
Bit Meaning When Set
0-2 Must be zero
3 File is using partial logging, primary
key only
4 File was created by a system using the
sequential placement scheme (primary key
only)
5 The key wvalue need not always be
present; that is, the key is modifiable.
(Applies to secondary keys only.)
6 Sequential commands are desired on this
key, for example: Read Next
7 Duplicates are allowed on this key
>09 The key length, in bytes (characters), of thl
. primary key.
>0A The starting byte number for the position of
the key within the key indexed file data
record. The prior three items (flags,
character count of key, and key offset) are
repeated for each secondary key.
>40 * '

Figure 4-20 shows a dump of the directory file .JB.DIR. The
directory contains a sequential file (.JB.DIR.SEQ), an image file
(.JB.DIR.IMAG), a program file (.JB.DIR.PROG), and a key indexed
file (.JF.DIR.KEY). The directory also contains an alias for the
key indexed file. The directory was created to have 11 entries,
in addition to record 0 which is the directory overhead record.

4.3.4.3 Image Files. 1Image files are nonexpandable, unblocked
relative record files that contain memory images of programs.
They are not organized in any format; that is, each sector of the
image file, starting with the first sector, is completely filled
with data. There are no overhead records or words. Image files
are designed so that a program image can be read into memory in a
single disk access.

4-48 939153-9701

System Design Document Disk Organization

FILE:.JB.DIR RECORD: 00000
0000 O000B 0004 000S 0000 4449 S220 2020 2020 e s+ e» e« DI R

0010 0002 4A42 2020 2020 2020 CL0O 2000 0000 .. <B es e s
SAME

Q083 0000 .o

FILE:.JB.DIR RECNRD:000001

[e1C -2 0002 0001 S24S S120 2020 2020 0004 es e SE @ .

0094 0000 1A00 0120 0028 ©GO01 O14E 0001 0000 ee ea s ol a0 se se oo

00A3 0000 0000 0000 0N00 Q000 Q000 G000 QU0 ce ws ae e ae e ss oo

00B4 0000 0000 0000 (000 O7BY 01D4 7E4% 07B? ve ee a0 ee s ss oI e

00C4 0104 7EA? Q103 0000 Q000 0000 0000 0000 ee ol 4o s ca e e s
SAME

OL0A GOO0 .o

FILE:.JB.DIR RECORD: 00002

o10C 0000 0001 494D 3147 2020 2020 0000 ee oo IM AG .

011A 0000 C420 0120 0120 0004 10465 0001 0000 ve o s s es e es aw

0128 0000 0000 0000 Q000 0000 0000 Q000 Q000 ce se se oo e sv we ea

013A 00O 0000 000O Q000 0757 01D4 7E3B Q7B? ee as so ss ea e e o

0144 01D4 7E3B 0103 000G 0000 0000 0000 Q000 e se se se s ee ss o
SAME- '

0190 0000 s

FILE:.JB.DIR RECORD:O00003

0192 0000 0C00 000D 0000 0000 0000 QGO0 es e 84 o5 os an e
3AME

021& Q000 .

FILE:.JB.DIR RECORD: 000004

0218 0000 0000 0000 0000 00QG 0000 0000 ee oo oo we sa ss es
SAME

029C 0000 .

FILE:.JB.DIR RECORD:(O0O0S

02%E 0000 0000 Q000 000G 000G U000 D0LO ee ws 86 s 32 s ae
SAME

0322 0000 .

FILE:..JB.DIR RECORD:O00004

0324 0000 0000 OON0 Q000 QOO0 0000 0000 es ee so se se ee e
SAME

03A8 0000 .o

FILE:.JB.DIR RECORD:0Q00GCO7

02AA 0001 0007 SO%2 4F47 2020 2020 0000 .« «» PR OG .

02BS 0000 SC20 0120 0120 301D 24A% 0001 000 ee s a4 o ae %0 ae eu

03C23 0000 0000 G04A 0000 CO4A 0000 Q00O VOO0 R T

03D8 0000 0000 0000 0000 07BY 01D4 7E73 07B% e o0 o8 as ss es se ee

03ES 01D4 7E77 0102 0000 0000 0000 Q000 QOGO ea se o5 e sa ss es ss
SAME

042 ©000 .

FILE:.JB.DIR RECORD:0O00002 :

0430 0000 000Q DQO0 0GO0 000G Q000 0000 e se as sa ss ee ee
SAME

04B4 Q000 .

FILE:.JB.DIR RECORDION000%

04B4& 0001 0009 4B4AS 5944 474C 4T20 0000 .s +¢« KEYF ILE ..

04C4 Q000 1E13 0000 000D 0000 000G 0000 D000 e 4o as se sa es es e

04D4 0000 000A 0000 Q000 00OO 0000 0N0C OOV te s es s ss se se ee
SAME

0T34 0000 .

FILE:.JB.DIR RECORD:OOC00A

0S53C 0001 000A 4B4S 5720 2020 2020 0000 . KEY .

0544 0000 1EN3 0120 0050 001B 242 0002 0000 .

OS%TaA 0009 0000 0000 0000 0000 Q00G 0000 QQ4E .

0S6A 0027 0029 002% COOB 0789 01D4 7ELD 07E? .

0%7a4 01D4 7EIC 0103 0009 0000 0000 Q000 Q000 .
SAME

QSCO 00O .e

FILE:.JB.DIR RECORD:GONOOB

osc2 0000 FFFD 00£4 0002 0104 0000 QCGS es se we se e e ws

QSDO 0004 0000 000 GO0 JOGT HVLRG 0NC) QNGO ee e
SAME

Ob4s 0000

S S

. ee sa oo =s N
) W% ee e aa 0 ee

se on ss e e o

2278136
Figure 4-20 Directory File Dump

939153-9701 4-49/4-50

System Design Document System Files

Section 5

System Files

5.1 GENERAL
This section describes the structure and purpose of various files
used by DX10. These special files are:

* GSystem program file

* gSystem overlay file

* Crash file

* Roll file

The files used by the System Command Interpreter are discussed in
the section on SCI.

5.2 SYSTEM PROGRAM FILE
The system program file has the same structure as a general
program file, as described 1in the section on disk data
structures. It is called the system program file because it
contains all of the disk resident system tasks and their
overlays, as well as many utility programs.
Queue-serving system tasks on the system program file include:

* SLMFOT -- System log message formatting and output task

* TMS$SBD -- Scheduled Bid Task SVC processor

* TMSDGN -- Termination task

* SVCKIL -- Kill TASK SVC processor

* PFSLIN -- Install Task, Procedure, and Overlay SVC
processor

* PFSLDE -- Delete Task, Procedure, and Overlay SVC
processor

* FUTIL -- File Utility SVC processor

939153-9701 5-1

System Files System Design Document

* PFSLMN -- Map Name to ID SVC processor

* PF$LAS -- Assign Space on Program File SVC processor

* 1INSTAL -- 1Install, Unload, Tnitialize Volume SvC
processort

5.3 SYSTEM OVERLAY FILE

The system overlay file is an unblocked relative record file used
to contain system overlays. Each overlay is placed in the record
that corresponds to the overlay number, and is in memory image
format. Each record is 800 bytes.

When a system overlay is requested, the record that corresponds
to the required overlay number is read directly into one of the
system overlay areas by the system overlay loader, thus incurring
very little overhead.

Table 5-1 shows what overlays are contained on the system overlay
file.

Table 5-1 System Overlay Numbers

Name Description

0 TMSOV1 TMS$SBID Error Recovery

1 OLNO0OS5 KIF Seq., Split in a B-Tree

2 OLNOO06 KIF Sedq., Insert a Record

3 OLNQQ7 KIF Seq., Rewrite a Record

4 OLNO0OA KIF Seq., Npen/Close Processor

5 OLNOOB KIF Seq., Delete a Record

6 OLNOOC KIF Seq., Delete a B-Tree Entry Overlay
7 FMOV10 File Management, Rewrite, Space

8 FMOV1l File Management, Write EOF, Rewind, Unlock
9 FMOV12 File Management

A FMOV13 File Management, Open Extend

B DMOVOD Disk Manager

c DMOVOE Disk Manager

D DMOVOF Disk Manager

E DMOV14 Disk Manager

F TMSRWO Task Manager

10 TM$BOV Task Manager

11 PLGERR KIF Seq., Error Recovery

12 OLNOO1 KIF Hash, B-Tree Split

13 OLN002 KIF Hash, Insert

14 OLNO0O3 KIF Hash, Rewrite

15 OLNO0O04 KIF Hash, Open Random and Close
16 OLNOQO8 KIF Delete Record Overlay

17 OLNOO09 KIF Delete B-Tree Overlay

5-2 939153-9701

System Design Document System Files

5.4 CRASH FILE

The system crash file, .SSCRASH, is an image file created large
enough to «contain a dump of all memory. When a system crash
occurs, the routine SCRASH displays the crash code on the front
panel 1lights and 1idles the CPU. If a dump is taken, SCRASH
writes all of memory to the file .SSCRASH. This file may later
be used as input by the crash analysis program, ANALZ.

5.5 ROLL FILE

The roll file is an expandable image file that is used to contain
rolled-out task and procedure images. It is created by the CSF
(Create System Files) command.

There is no single directory of roll file entries. Instead, a
linked 1list of the TSBs and PSBs of rolled tasks and procedures
is maintained. ®ach TSB and PSBE contains the starting record
number and number of roll file records used by that segment.
When the roll allocation routine, TMRDAL, searches for a block of
free roll file space, it runs down the list until it finds a hole
between segments, or space between the last rolled segment and
the end of the file, large enough to £ill the request for roll
space from the task loader. The roll file may be extended, if
necessary.

939153-9701 5-3/5~4

System Design Document . Data Structures

Section 6

Data Structures

6.1 GENERAL

Memory resident data structures within DX10 consist of many
tables, queues, and buffers. Most of the tables and buffers are
dynamically allocated from the system table area. Most of the
system queues are anchored in the DX10 data base modules, DDATA
and DXDAT2. The following paragraphs describe the important data
structures used by DX10.

6.2 QUEUES

The general structure of a DX10 queue is described in Section 1.
The queues are singly linked, first-in, first-out lists of dat

structures to be processed. A queue is established by a queug
anchor, which is usually a 10-byte block having a format as shown
in Figure 6-1. '

Hex.
Byte
K e e o o o e e o S —————— . > - —— - — ———————— e ——— *
>00 | QUENEW -- NEWEST ENTRY l
e e —————————————— +
>02 | QUEOLD -- OLDEST ENTRY |
o ——————————— +
>04 | QUETSB -- TSB OF SERVER TASK !
Fomm o e +
>06 | QUEFLG -- FLAGS | QUETID -- SERVER ID l
P e e ———————————— +
>08 | QUESTA -- TASK STATE | QUECNT -- NO. OF ENTRIES |
K e o o ot e et o s o e e e e e ——— e ————— *
>0A *

Figure 6-1 Queue Anchor

939153-9701 6-1

Data Structures System Design Document

Hex. Field

Byte Name Description

>00 QUENEW The address of the newest (last) entry on the
queue. Note that since this is only a one-
word address, it is implied that the queued
structures are mapped in with the queue
anchor. ,

>02 QUEOLD The address of the oldest (first) entry on the
queue.

>04 QUETSB The address of the task status block of the
queue serving task (see paragraph 6.7 on
TSBs). This field is zero if no queue server
exists for the queue, or if the gqueue server
is not loaded into memory.

>06 QUEFLG Flags, which when set mean:
Bit Meanin
0 Priority ordered queue (TSBs with high

priorities are at the front of the queue).

1 TSB queue (entries are TSBs).
2-7 Reserved.

>07 QUETID The installed ID of the Qqueue serving tai!
(zero if no server). Queue servers must b
installed on the system program file.

>08 - QUESTA The task state that is to be assigned to all
TSBs that are placed in this queue (=>FF if
none) .

>09 QUECNT The number of entries currently in the queue.

>0A *

Most queue anchors are located in the module named DXDAT2. See
Section 7 for further information about DXDAT2.

6.3 PHYSICAL DEVICE TABLE

A Physical Device Table (PDT) is a data structure that represents
a physical device to the operating system. In addition to
containing information describing the device, the PDT is used as
a workspace by the device service routine. Some of the uses of
the PDT are discussed in Volume V of the DX10 reference manuals.
A physical device table has the format shown in Figure 6-2.

6-2 939153-9701

System Design Document Data Structures

Hex. v
Byte
B e e e e o e e e e o o e e o o o %*
>00 | PDTINK -- FORWARD LINK TO NEXT PDT |
e m e ——————— +
>02 | PDTMAP -- POINTER TO DSR MAP FILE |
e e m———— e ————— e ——— +
>04 RO | PDTR0 -- DSR SCRATCH i
e e ——————— +
>06 Rl | PDTPRB -- PRB ADDRESS |
o m e mm———————— e +
>08 R2 | PDTDSF -- DEVICE STATUS FLAGS }
fomm e — e — e m e — e ————————— +
>0A R3 | PDTDTF -- DEVICE TYPE FLAGS |
o ——————— — +
>0C R4 | PDTDIB -- DEVICE INFO BLOCK ADDRESS |
e e — e —— e — e ————— +

>0E RS PDTRS

>10 R6 PDTR6

>12 R7 PDTR7

>14 RS PDTRS DSR SCRATCH
>16 R9 PDTRY

>18 RI10 PDTR10

>1A R11l PDTR11

e wa| eorcny ook on Tiive aaee ovms |
1 m3| eoTAls - SAvED We REGISTER :
N T
.22 m1S| PDIRIS -- SAVED ST REGISTER :
e T |

Figure 6-2 Physical Device Table (Part 1 of 2)

939153-9701 6-3

Data Structures

Hex.
Byte

>00

>02
>04

>06

>2E
>30
>32
>34
>36
>38

>42
>44
>46
>48

System Design Document

o e e e e +
! PDT$ -- PDT WORKSPACE ADDRESS |
e +
I PDTDSR -- DSR ADDRESS [
it o e +
| PDTERR -- ERROR CODE | PDTFLG -- FLAGS |
e e e T +

PDTNAM -- DEVICE NAME

Fo e e e +
| PDTSL1 -- CONTROLLER IMAGE FOR SYSTEM LOG 1 |
o e e e +
| PDTSL2 -- CONTROLLER IMAGE FOR SYSTEM LOG 2 |
P e e +
l PDTBUF -- NOT USED |
Fom e e ————e +
l PDTBLN -- BUFFER LENGTH |
o e e e e e ———————— e +
l PDTINT -- DSR INTERRUPT ADDRESS |
o e e e o +
PDTDVQ -- DEVICE QUEUE ANCHOR

|
o e e ——————— e +
[PDTM1 -- TIME OUT COUNT 1 |
Fom e ———— e +
l PDTM2 -- TIME OUT COUNT 2 |
o e e +
| PDTSRB -- SAVED PRB ADDRESS |
K e T T .
*

Figure 6-2 Physical Device Table (Part 2 of 2)

Field

Name Description

PDTINK Address of the next PDT and the PDT expansion
block for this PDT. All the PDTs are linked
in a single list that is located in the DSDATA
module.

PDTMAP Address of the DSR map file.

PDTRO This word begins the workspace to be used by
the device service routine initial entry
processor.

PDTPRB Address of buffered I/0O supervisor call bloc!

6-4 939153-9701

System Design Document Data Structures

Hex. Field
Byte Name
>08 PDTDSF
>09

$39153-5701

Description

Device status flags thét are set by the
system:

Bit Meaning When Set

o

Device is opened; that 1is, LUNOs are

assigned to the device.

Device is busy.

®ill 1/0 a2t this device is in progress.

Task doing I/0 at this device 1is being

killed.

Make this device available (unassigned)

at the end of this I/O operation.

5 Signals the task scheduler to reenter
the DSR. This flag can be used by a DSR
to wait for a device, by setting the
flag and then returning to the system.

6 Data transfer 1is complete, therefore
end-of-record processing needs to be
done for this device.

7 0 = ASCII. 1 = JISCII.

> w ™M~

Interrupt mask to be used by the DSR. This
field 1is the interrupt level assigned to the
device minus one, and is set at system
generation time.

Data

>0C

Structures

Field
Name

PDTDTF

PDTDIB

System Design Document

Description

Device type flags that are all set at system
generation time except for the system disk
flag that is set by the system loader.

Bit Meaning When Set

0 File oriented device (If the flag is
zero, the device is record oriented.)

1 Device uses the TILINE data bus.

2 The time-out logic should be enabled

for this device.

3 Device may only be used by privileged
tasks.

4 This is a terminal (keyboard device)
with a keyboard status block attached
to the PDT.

5 This is a communications device.

6 This is the system disk.

7 A PDT extension exists.

8-11 Not used.
12-15 Device type code, as follows:
0 -- Dummy

-- Teleprinter

-- Line Printer

-~ Cassette

-- Card Reader

-- Video Display Terminal
Disk and Diskette
-- Communications
-- Magnetic Tape and AMPL
== AMPL Emulator
-- AMPL Trace Module

HEOIAV & WN -
]
I

Pointer to the word after the PDT itself.
This may be the address of the keyboard status
block (KSB), disk PDT extension (DPD), tape
PDT extension (TPD) or 1line printer PDT
extension (LPD) depending upon the tvpe of
device.

6-6 939153-9701

System Design Document Data Structures

>24

>26
>28
>29

>2A

>2E

>32

>34

>36

Field
Name

PDTRS
through
PDTR11
PDTCRU
PDTR13
PDTR14
PDTR15

PDTS

PDTDSR
PDTERR

PDTFLG

PDTNAM
PDTSL1,

PDTSL2

PDTBUF

PDTBLN

PDTINT

939153-9701

Description

Scratch registers to be used by the DSR.

The CRU or TILINE address of the device.
These three words contain the saved context
(wp, PC

ST) to which the DSR returns control via a
RTWP.

Pointer to the beginning of the PDT workspace;
that is, byte 4 of the PDT.
A pointer to the beginning of the DSR.

Error code returned by the DSR.

Device flags as follows:

Bit Meaning When Set
"8 Use PRB in log message.

9 Receive mode for JISCII.
10 Transmit mode for JISCII.

11-12 Device state: online = 00, offline = 01,
diagnostic = 10.
14 Operation failed bit.

The 4-character device name.

For CRU devices, these words contain the
controller

image after an error. For TILINE devices,
these words contain a pointer to the
controller image after an error.

Not used.

Maximum length of a data buffer which may be
transferred by the device in an I/0 operation,
for example, 80 for a card reader. This is
only necessary for CRU devices.

The interrupt entry address of < the DSR and
reenter-me-address.

Data

Hex.
Byte

>38

>42

>44

>46

>48

Structures

Fielg
Name

PDTDVQ

PDTM1

PDTM2

PDTSRB

System Design Deccument

Description

The anchor for the queue of I/0 requests for
this device. The anchor has the same format
as the queue anchor described in paragraph
6.2,

The number of system time units in the time-
out count for the device.

The number of time units remaining in the
time-out count before the system assumes that
a device error has occurred, When the DSR
starts an I/O operation, it should move the
time-out count in bytes >42->43 to this word.
This word is then used by the scheduler as the
time-out counter. Each time a system time
unit has elapsed, the scheduler decrements the
time-out count and sets the time-out enable
flag (bytes >0A->0B). If the counter goes to
zero before a device interrupt occurs (and the
DSR resets the counter or the flag), the
system assumes that a device error has
occurred and reports it.

The address of the queued supervisor ca!,
block, plus two (offset to PRB; see the DX 3
Operating System Systems Programming Guide).

6-8 939153-9701

System Design Document Data Structures

All PDTs must be defined during system generation. The PDTs are
concatenated and inserted into the D$DATA module by GEN990.

Under DX10, PDTs for disks and terminals each have an extension
that is used mainly by the interrupt processing routine of the
DSR. The following paragraphs describe those extensions.

6.3.1 PDT Expansion Block

Every PDT has a 10-byte expansion block. The end of this block
is pointed to by the link to the next PDT (PDTINK). In the case
of the 1last ©PDT (DS0l) where the link is zero, PDTLST in ROOT
points to the expansion block. The format of the PDT expansion
block is shown in Figure 6-3.

Hex.
Byte
B e o e ot 0 > = > P = - = = - " - — - > > " D D WD b B - — %*
>0A | RESERVED -- SET TO ZERO !
T ———————————— +
>08 | PDTRED -- READ OPERATIONS COUNT |
et T +
>06 | PDTWRT -- WRITE OPERATIONS COUNT x
Fom e +
>04 l PDTOTH -- OTHER OPERATIONS COUNT |
e Fmm e +
>02 |PDTRTY ~- RETRIES COUNT| PDTLUN -- LUNOS COUNT |
X e o o o e o *
Figure 6-3 Physical Device Table Expansion Block
Hex. Field
Byte Name Description
>0A Reserved. 1Initialized to zero.
>08 PDTRED The number of read operations that have been
performed.
>06 PDTWRT The number of write operations that have been
performed.
>04 PDTOTH The number of other operations that have been
performed.
>02 PDTRTY The number of retries.
>01 PDTLUN The number of LUNOs assigned.

939153-9701 6-9

Data Structures System Design Document

6.3.2 Disk PDT Extension (DPD)

The extension that is appended to disk PDTs is 96 bytes long.
The format is shown in Figure 6-4.

Hex.
Byte
L Sy SR B L SRR * g
>48 |DPDPRB -- FILE MGMT PRB | DPDERR -- ERROR CODE |
e R - +
>4A | DPDPOP -- OP CODE | DPDLUN -- LUNO |
o ———————— Fm e ————— +
>4C | DPDSFG -- SYSTEM FLAGS | DPDUFG -- USER FLAGS |
R Fom e e +
>4E | DPDBUF -- BUFFER ADDRESS |
et + +-FILE
>50 | DPDRCL -- RECORD LENGTH MGMT
B St it e I/0
>52 | DPDCCT -- CHARACTER COUNT svC
e e e ——————— +
>54 | DPDADU -- ADU NUMBER l
o e e e e e +
>56 | DPDSCT -- SECTOR OFFSET |
Fmmmm——— - —————— e e +-+
>58 | : DPDWTK — WORDS/TRACK |
T e e —— e +
>5A |DPDSTK —- SECTORS/TRACK |DPDOHD -- OVERHEAD/REC. |
Fomm e ——————— o P ————e +
>5C | DPDCYL -- HEADS AND CYLINDERS |
o ———— T — +
>5E |DPDSRD -- SECTORS/RECORD|DPDRTK — RECORDS/TRACK |
e ——————— o ————————— +
>60 | DPDWRD -- WORDS/RECORDS |
e e e e ————————— e +
>62 l
DPDTIL -- TILINE IMAGE
l (DPDILF -- INTERLEAVING FACTOR) l
o e e e e e e ————————— +

Figure 6-4 Disk PDT Extension (Part 1 of 2)

6-10 939153-9701

System Design Document Data Structures

Hex.
Byte
o e +
>64 | DPDILF -- INTERLEAVING FACTOR |
o e e e e ———— +
>72 | |
T DPDIBF -- INITIALIZATION BUFFER T
e e et T L +
>78 | DPDFCB -- POINTER TO VCATALOG FCB |
e e +
>7a | |
T DPDVNM -- VOLUME NAME T
o e e +
>82 | DPDFMT -- FILE MANAGER TSB ADDRESS l
o e e —————— o +
>84 | DPDFMW -- FILE MANAGER TASK AREA ADDRESS |
o e e —————————————— +
>86 | DPDPBM -- DISK MANAGER BUFFER ADDRESS I
e ———— e e — e +
>88 | DPDMAD -- MAXIMUM NO. OF ADUs ON DISK |
o e e +
>8a | DPDSAD -- SECTORS/ADU |
Rt Rt T I +
>8C | DPDDRS -- DEFAULT PHYSICAL RECORD SIZE |
P e e e +
>8E | DPDECT -- ERROR COUNT |
o e o +
>90 | !
T DPDTFL -- TEMPORARY FILE NAME SEED T
e e e +
>98 | |
T DPDSLG -- TILINE IMAGE FOR SYSTEM LOG T
o e e +
>a8 | DPDFLG -- FLAGS WORD !
Fo e e ———— e +

Figure 56-4 Disk PDT Extension (Part 2 of 2)

939153-9701 6-11

Data Structures

>5B

>5C

>5E
>5F
>60
>62

>64
>72

>78

>7A

>82

>84

Eield
Name

DPDPRB
through
DPDSCT

DPDWTK

DPDSTK

DPDOHD

DPDCYL

DPDSRD
DPDRTK
DPDWRD

DPDTIL

DPDILF

DPDIBF

DPDFCB

DPDVNM

DPDFMT

DPDFMW

System Design Document

Description

These 16 bytes are a copy of the file I/0
supervisor call block.

Number of words per track on the disk.
Number of sectors per track.

Number of overhead bytes per physical record
(equal one sector).

Number of heads and cylinders as follows:

Bit Meaning
0-4 Number of heads on the disk.
5-15 Number of cylinders.

Number of sectors per disk record (=1).
Number of disk records per track.
Number of words per record.

An image of the eight TILINE controller
registers for the-disk.

Interleaving factor, integer number

The buffer used to hold information returned
by the Store Registers direct disk I/0 call.

A pointer to the file control block for the
disk volume directory (see paragraph 6.4).

The 8-character name of the volume that is
currently installed on the disk unit.

The address of the +task status block (see
paragraph 6.7) for the file management task
for this disk controller.

The address of the file management task work
area (see the section on D$DATA).

6-12 939153-9701

System Design Document Data Structures

>88
>8A
>8C

>8E

>90
>98

>A8

Field
Name

DPDPBM

DPDMAD
DPDSAD

DPDDRS

DPDECT

DPDTFL

DPDSLG

DPDFLG

939153-9701

Description

The address of the disk manager buffer for
this disk.

The maximum number of ADUs on this disk.
The number of sectors per ADU.

The default physical record size for this
disk, as defined to GEN990.

A count of the number of controller errors
returned. This count 1is reinitialized when
the system is booted.

The temporary file name last used.

A copy of the TILINE image used by the system
log.

Flags as‘follows:

Bit Meaning When Set
0 DPFRTY -- No retry desired.
1 DPFRAW -- Disk read after write.
2 DPFBRW -- Bit map read after write.

6-13

Data Structures System Design Document

6.3.3 Teleprinter Device PDT Extension (DIB)

The Device Information Block (DIB) is a data structure appended
to the PDT that contains information about the current status of
the device as well as information about how it was configured at

system generation time. Figure 6-5 shows the format of the TPD
extension.

Hex.
Byte
K e e e e e e %*
>00 | ACU CRU ADDRESS [
it T Ty +
>02 | ISR TYPE (COMM-1, TTY-5) |
o e e e ——— o +
>03 | LINE CONTROL TYPE (ALWAYS 0) |
o e e e ————— +
>04 | READ ASCII TIMEOUT |
P e e el +
>06 | WRITE TIMEQUT l
o e e e ————— +
>08 | READ DIRECT TIMEOUT 1 l
o e e e e o +
>10 | READ DIRECT TIMEOUT 2 |
e e e +
>12 | SYSGEN ACCESS FLAGS [
e e ey
>13 | STATE FLAGS l
o e e e e +
>14 | LINE FLAGS |
Fo e e e +
>15 | TEMPORARY ACCESS FLAGS l
o e e +
>16 | SPEED (ENCODED) |
o e e o +
>17 | END OF RECORD CHARACTER |
e e e e e +
>18 | END OF FILE CHARACTER |
Fo e e e +
>19 | LINE TURN AROUND CHARACTER |
o e e e e e +
>20 | PARITY ERROR SUBSTITUTE |
o e e e e +
>21 | CR DELAY INTERVAL I
Fom e e e e +

Figure 6-5 Teleprinter Device Extension to PDT (Part 1 of 2)

6-14 939153-9701

System Design Document Data 3tructures

Hex.
Byte
fmmm e e — e —— +
>22 | PARITY CHECK ROUTINE l
Fmm e e S L T +
>24 | PARITY SET ROUTINE |
e e et et +
>26 | MAXIMUM CHARACTERS BUFFERED IN FIFO }
e T et +
>28 | TERMINAL TYPE |
BT e TR e e +
>29 | LAST CHARACTER RECEIVED [
e e e e e +
>30 | SAVED EXTENDED FLAGS |
T e +
>32 | SAVED ERROR CODE FROM ISR |
ettt +
>33 | SPEED |
o e — +
>34 | ISR VECTOR TABLE POINTER |
e e e S S T R Rt +
>36 | TIMEOUT |
ettt S T S P +
>38 | NUMBER OF PARITY ERRORS]
o e e +
>40 | NUMBER OF LOST CHARACTERS l
TE o s s > o D D D D D D D D D WD D D D B P D D P D S P D P T P D . P G P D . W - - —— %*

Figure 6-5 Teleprinter Device Extension to PDT (Part 2 of 2)

Hex. Field o

Byte Name Description

>00 The CRU address of the ACU.

>02 , The Interrupt Service Routine type, which is
either communications (1) or teletype mode (5).

>03 The line control type, which is always O.

>04 The Read ASCII timeout.

>06 The Write timeout.

>08 . : The Read Direct timeout 1.

>10 The Read Direct timeout 2.

>12 The sysgen access flags.

939153-9701 6-15

Data Structures System Design Document

Byte Description

>13 The state flags as follows:

w
| nad

ay Ut W N O

t Meaning
Online
Connect in progress
Open :
DLE received
Half-duplex line belongs to remote
terminal .
Resend flag
-7 Unused

>14 Line flags as follows:

Meaning
Half-duplex modem
Switched line
Refuse call
Auto-disconnect enable
DLE/EOT for disconnect sequence
SCF ready/busy monitor
File transfer exclusive access
Half-duplex LTA enable

(2]
\IG\LN&NNHO,H-
r

>15 The temporary access flags as follows:

(v
-
cr

Meaning
No echo
Unused
Transmit parity enabled
Transmit parity type
00 Even
0dd
10 Mark
11 Space
5 Receive parity enabled
6-7 Receive parity type

um;—-cl

1
'S

01

>16 The speed (encoded).

>17 The end of record character.
>18 The end of file character.

>19 The line turnaround character.

>20 The parity error substitute character.

6-16 939153-9701

System Design Document Data Structures

Hex.

Byte Description

>21 The carriage return delay interval.

>22 The parity check routine pointer.

>24 The parity set routine pointer.

>26 The maximum characters buffered in FIFO.

>28 The terminal type.

>29 The last character received.

>30 The saved extended flags.

>32 The saved error code from interrupt
service routine.

>33 The speed (specified at system generation).

>34 The interrupt vector table pointer.

>36 | The timeout (specified at system generation).

>38 The number of parity errors.

>40 The number of lost characters.

6.3.4 Keyboard Status Block (KSB)

Each keyboard type device supported by DX10 has a KSB appended to
the PDT for the device. The KSB 1is generally used by .the
keyboard interrupt decoder of the device service routine.
Special keyboard devices that are supported by user-written DSRs
need not have a KSB unless the System Command Interpreter (SCI)
is to be bid at the terminal, in which case the KSB must be
present. Figure 6-6 shows the format of a KSB.

939153-9701 6-17

Data Structures System Design Document

Hex.
Byte
K e e e et e e o e o o o e o e e o e e m o %*
>00 RO | KSBLDT -- STATION LDT ADDRESS |
e e e e - +
>02 RI1 | KSBQOC -- QUEUE LENGTH |
P e e el +
>04 R2 | KSBQIP -- QUEUE INPUT POINTER |
o e e e e —————————— +
>06 R3 | KSBQOP -- QUEUE OUTPUT POINTER |
o e e e e e e e e +
>08 R4 | KSBQEP -- QUEUE END POINTER |
o e e ——————— o +
>0A RS | RESERVED |
et e it Tl L L e, +
>0C R6 | KSBFL -- KSB FLAG | KSBSN -- STATION NO. |
T - T +
>0E R7 KSBR7 -- SCRATCH |
___ +
>10 R8 |KSBTSB -~ TSB ADDRESS/VALIDATION TBL ADDRESS |
o e e e ———————————————— +
>12 R9 .
>14 RI10 KSBR9 -- SCRATCH
>16 R11l
e e e e e e e e e e +
>18 R12| KSBCRU -- CRU BASE l
o e e e e e e +
>1A RI13 KSBR13 -- SAVED WP
>1C Rl4 KSBR14 -- SAVED PC
>1E R15 KSBR15 -- SAVED ST
Fom e e e +
>20 | KSBLDO -- PDT ADDRESS |
b T TN —— +
>22 | KSBLD2 -- LUNO |KSBLD3 -- START I/0 CT|
. T - +
>24 | KSBLD4 -- LDT FLAGS |
S e e e e +
>26 | KSBLD6 —- LDT LINK |
e e e e +
>28 | KSBLD8 -- TSB ADDRESS l
o e e e +
>2A | KSBLCK —- LOCK COUNT |
B e e e e e e e e e e e e et e e e e s 2 2 0 e e *
>2C *

Figure 6-6 Keybhoard Status RBlock

6-18 939153-9701

System Design Document Data Structures

Hex. Field
Byte Name Description
>00 KSBLDT The offset into the KSB of the logical device
table (LDT) anchor for station (terminal)
local LUNOs.
>02 KSBQOC The number of characters currently in the
input character gqueue.
>04 KSBQIP A pointer to the next byte of the character
queue that 1is available to receive an input
character.
>06 KSBQOP A pointer to the oldest character in the input
character queue, that is, the next character
to be picked up by the DSR.
>08 KSBQEP A pointer to the word after the character
queue. That word contains the length of the
queue,
>0A RESERVED
>0C KSBFL Flags as follows:
Bit Meaning When Set
0 Character mode (no mapping).
1l Enable the command interpreter bid logic.
2 Reyboard is in record mode (always set).
3 Bid the command interpreter.
4 The command interpreter is active.
5 Halt I/0.
6 Abort I1/0.
>0D KSBSN Station (terminal) 1ID.
>0E KSBR7 Scratch register for use by the DSR.
>10 KSBTSB The address of the TSB of the task currently

using the terminal if the terminal 1is in
character mode. If a wvalidation table is
being used, this field contains the validation
table address.

939153-9701 6-19

Data

>18

>1A

>20

>2A

>2C

Structures

Fielg
Name

KSBRY,
KSBR10O,
KSBR11
KSBCRU

KSBR13

KSBLDO

KSBLCK

System Design Document

Description

Scratch registers for use by the DSR

The CRU address of the terminal. For VDTs,
this address is >10 more than in the PDT.

The saved context (WP, PC, ST) +to which the
DSR keyboard interrupt handling routine
returns control via a RTWP instruction.

These 10 bytes form a logical device table
(see paragraph 6.5 on LDTs) that serves as an
anchor for the terminal 1local 1IDT 1list, as

~described in Section 1. Flag bit 0 in byte

>24 is set to mark this LDT as an anchor.
This LDT assigns terminal local LUNO 0 to the
terminal itself.

The lock out count, which is a count of the

number of Read With Event Characters SVCs
issued for this terminal.

6-20 939153~9701

System Design Document Data Structures

§.3.4.1 video Display Terminal Extension (VDT). The VDT 1is an
extension to the KSB used by the 911 and 913 terminals. The
offsets are expressed from the beginning of the Physical Device
Table (PDT) to which the KSB has been appended. Figure 6-7 shows
the format of the VDT extension.

Hex.
Byte
B e e e et e e o o o o e B > P < " D " T o o o . T - > - %*
>2¢ | VDTEUF -- EXTENDED USER FLAGS l
ittt R e S T +
>2E | VDTFIL -- FILL CHAR | VDTEVT -- EVENT CHAR |
e T N T +
>30 | VDTPOS —-- CURRENT CURSOR POSITION |
T +
>32 | VDTDEF -- START OF FIELD |
N e +
>34 | VDTSCl -- SCRATCH - !
et e L e e e B Dl +
>36 | VDTSC2 -- SCRATCH |
gt T L S B T +
>38 | VDTSC3 -- SCRATCH |
e e m +
>3a | VDTJIN -- BIT 0 MASK |
e m e e ————————— +
>3C UNUSED
B e et e o e e e i i 0 B D B S B I A D X S U R D D D T T D D D - o o > T %*
>40 *

Figure 6-7 Video Display Terminal Extension to KSB

939153-9701 6-21

Data Structures

Hex.
Byte *

>2C
>2E
>2F

>30
>32
>34
>36
>38
>3A

>3C->3F
>40

Field
Name

VDTEUF

VDTFIL

VDTEVT

VDTPOS
VDTDEF
VDTSC1
VDTSC2
VDTSC3

VDTJIN

System Design Document

Description

The extended user flags to be used during the
current operation.

The fill character to be used during the
current operation,

The event character to be returned to the user
call block.

The current position of the cursor.

The beginning of the field.

Scratch field for use by the extension.
Scratch field for use by the extension.
Scratch field for use by the extension.

A mask that is used to set bit 0 of a
character to the appropriate value.

Not used.

6-22 939153-9701

System Design Document Data Structures

6.3.4.2 Electronic Video Terminal Extension (VDT940). The
VDT940 is an extension to the KSB used by 940 terminals. The
offsets are expressed from the beginning of the Physical Device
Table (PDT) to which the KSB has been appended. Figure 6-8 shows
the format of the VDT940 extension.

NOTE

The meaning and position of the flags are for
TI internal use only and may be moved,
changed, or deleted at any time.

The VDT940 has the following format:

Hex.
Byte
B e e e e o e e s e s o 2 e e 0 e o e o e e o 8 8 8 0 o oo %*
>2¢ | VDTEUF -- EXTENDED USER FLAGS |
o e e T T RS +
>2E | VDTFIL -- FILL CHAR | VDTEVT -- EVENT CHAR |
e e e +
>30 | VDTPOS -- CURRENT CURSOR POSITION |
Form e e ————————————— +
>32 | VDTDEF -- START OF FIELD |
e e e e ————————————— +
>34 | VDTRED -- READ DIRECT WORD |
e e +
>36 | VDTSCl -- FLAG WORD 1 l
Rt T T S ——— +
>38 | VDTSC2 -- FLAG WORD 2 l
o e e e +
>3a | VDTSC3 -- TEMP LINK SAVE LOCATION |
R T, e +
>3¢ | RESERVED |GENSPD -- TERMINAL SPEED]
e ————— e +
>3E | RESERVED |
o e e ————— +
>40 |VDTATT -- ATTRIBUTE SENT|VDTATB -- ATTRIBUTE REC |
e e o —————— +
>42 | VDTSC4 -- TEMP LINK SAVE LOCATION l
e e +
>44 | VDTCNT -- COUNT FOR VDTRED l
o e e e e —————— +
>46 | . VDTPTR -- POINTER TO PRINTER PDT I
o e e ————— e ¥

Figure 6-8 Electronic Video Terminal
Extension to KSB (Part 1 of 2)

939153-9701 6-23

Data Structures System Design Document

Hex.
Byte
o e +
>48]VDTSCS -- LINK REGISTER (CHANGING CHARACTER SETS)‘
an | VDTMFL -- FLAG WORD FOR MODE FLAGS i
»4c | | VDTEDL —- FLAG WORD FOR EVENT K=Y FLAGS |
>4E | | VDTSIZ -- NUMBER OF CHARACTER SCREEN MEMORY |
s | VDTFIS -- SAVE RO FOR FIFO 1
ss2 | VDTSC6 -- TEMPORARY STORAGE i
sa | T FIFOCT -- FIFO COUNT 1
se | FIFOIP -- FIFO INPUT POINTER i
s | FIFOOP -- FIFO OUTPUT POINTER - i
ssa | FIFoEP — FiF0 END POINTER i
s | FIFOBP -- BEGINNING OF FIFO]
e et +
Fo e e e +
o TIEOPT - FIFOLENGTR :

Figure 6-8 Electronic Video Terminal Extension to KSB (Part 2 of 2)

Hex. Field

Byte Name Description

>2C VDTEUF The extended user flags to be used during the
current operation.

>2E VDTFIL The fill character to be used during the.
current operation.

>2F VDTEVT The event character to be returned to the user
call block.

>30 VDTPOS The current position of the cursor.

6-24 939153-9701

System Design Document Data Structures

Hex.

Byte

>32
>34

>36

Field
Name

VDTDEF
VDTRED

VDTSC1

939153-9701

Description

The beginning of the field.

The buffer or address of the buffer for the
read to address based on the flag in VDTSCl
(see byte >36).

Flag word 1 as follows:

Bit Meaning
0 Found beginning of Read Information
1 Next start of header was requested
by the DSR
2 Read information goes into address
in VDTRED (set to 1); ctherwise
stored in VDTRED
3 Found first ESC in response
4 Found a right parenthesis in string
5 A second ESC was found in string
6 An aid character was found. Aid
characters are the SEND key and
the 24 function keys.
7 A change characterset was found
8 An attribute character was found
9 The cursor position was found
10 The requested read was finished
11 Indicates terminal is in insert mode
13 Indicates terminal is connected to
the computer
14 Indicates modem phone has rung
15 Instructs DSR to set re-enter me flag
6-25

Data

>3A
>3C

>3D

>3E

Structures

Field
Name

VDTSC2

VDTSC3

GENSPD

Flag word 2 as follows:

v
e
(a8

\DQ\IO\U‘IDWN}—‘OI

Meaning
Timed out device
Time out for response
Printer has control of line
Printer wants control of line
EVT has control of channel
EVT wants control of channel
Extended character is in SC1l
Extended character is in S8C2
Alternate character set is in terminal
Alternate character set is on input

System Design Document

Description

10 Alternate character set is on read
to address
set is in

11 Graphics
12 Graphics
13 Graphics
14 Terminal
15 A mode 3

Reserved

set is on

is set on

busy flag
table check is in progress

terminal
input
read to address

Link register save location

Terminal definition as follows:

Bit Meaning
0 Set if switched
3-7 Speed of terminal
Setting Speed

11110 110 baud
10101 300 baud
10001 600 baud
11111 1200 baud
11011 2400 baud
10111 4800 baud
10011 9600 baud

Reserved

6-26

939153-9701

System Design Document Data Structures

Hex. Field
Byte Name
>40 VDTATT
>41 VDTATB
>42 VvDTSC4
>44 VDTCNT
>46 VDTPTR
>48 VDTSC5S
>4A VDTMFL
Notes:

Description

Attribute sent to terminal as follows:

Bit Meaning

2 Double wide characters

3 Nondisplay

4 Blink display

5 Underline display character

6 Reverse image display character

7 High intensity display character
Attribute received from terminal bit

definition the same as VDTATT

Link register save 1location for outputting
characters

Counter for VDTRED

Pointer to attached printer, if present
Link register for saving character sets
Flag word for mode flags

Bit Meaning
0 Pass through flag
1* Terminate on receipt of ETX
2% Terminate on receipt of ESC
right parenthesis
3 Extended event characters
4 Extended display characters
5** Allow ESC and SOH through
write ASCII
6** Do not set attributes
7** 132-column mode 3 flag
8 Modified data to caller
9 Extended caller validation
10-15 Reserved

* Flag applies only if bit 0 of VDTMFL is on.
** Flag applies only if bit 3 or bit 4 of VDTMFL is on.

939153-9701

Dat

Hex Field
Byte Name
>4C VDTEDL
>4E VDTSIZ
>50 VDTFIS
552 VDTSC6
>54 FIFOCT
>56 FIFOIP
>58 _ FIFOOP
>5a FIFOEP
>5¢C FIFOBP

FIFOPT
NOTE

*

a Structures

System Design Document

Description

Flag word for event key flags as follows:

Bit** Meaning
0 Erase field
1 Right field
2 Cursor left out of field
3 Tab
4 Reserved
5 skip
6 Home
7 Return
8 Erase input
9 Reserved
10 Delete character
11 Insert character
12 Cursor right out of field
13 Enter
14 Left field
15 Reserved

Number of charactegs of screen memory
Save RO for FIFO

Temporary storage

FIFO count

FIFO input pointer

FIFO output pointer

FIFO end pointer

Beginning of FIFO

FIFO length (beginning address of FIFO and
length of FIFO set at system generation

Flag applies only if bit 0 of VDTMFL is on.
** Flag applies only if bit 3 or bit 4 of VDTMFL is on.

6-28 939153-9701

System Design Document Data Structures

6.3.4.3 KSR Extension (KSR). The KSR is an extension to the KXSB
used by Kkeyboard-type devices such as the 733. The offsets are
expressed from the beginning of the Physical Device Table (PDT)
to which the KSB has been appended. Figure 6-9 shows the format
of the KSR extension.

Hex.

Byte
T s e o . " . - - - - - — —— T ———
>2C | KSRABT -- ABORT ROUTINE ADDRESS i
v2m | Remomd - cARRINGE RETURN DELAY comvm |
g
g [T B ————— '
e T xenace - active pov aoommss T 1
v36 | rsmarl - rinst oumvms T AboRESS 1
va8 1 remars - ssoon oumomd pom ADDRESS I
O i 1
. sic | Remeie oo cmnmmAL Pings| memscr —- savep cmmm |
e | ronmmo - memmovr coomr T i
>40 . TT

Figure 6-9 KSR Extension to KSB

939153-9701 6-29

Data

>3D
>3E

>40

Structures

Field

Name

KSRABT
KSRCRD
KSRICD
KSRSSC
KSRACP
KSRQP1
KSRQP2
KSRXUF

KSRFLG

KSRSCH

RKSRTMO

%

The
The
The
The
The
The

The

System Design Document

Description

address of the abort routine.
carriage return delay count.
inter-character delay count.

status of the cassettes.

address of the active PDT for the 733.

address of the first queued PDT.

address of the second queued PDT.

Extended user flags.

General flags as follows:

it

o
[

W&NNHOI

Character saved for JISCII output.

Meaning When Set
Hang up condition.
Time out switch.

SCI is active during hang up.

A data carrier drop was detected.

Shift in/out for JISCII.

Direct character input requested.

Timeout count for hang condition.

939153-9701

System Design Document Data Structures

6.3.4.4 820 Extension (T82). T82 is an extension of the KSB for
the 820 terminal. The offsets are expressed from the beginning
of the Physical Device Table (PDT) to which the KSB has been
appended. Some fields must be compatible with the KSR because
they are used outside of the Device Service Routine (DSR).
Figure 6-10 shows the format of the 820 extension.

Hex.
Byte
T e e e e i i A . . . R D T P b D D i e P A P P R S S A S T — - — . ———— - %*
>2C | T82PRB -- SYSTEM FLAGS AND USER FLAGS |
et et e S E L S S P e T +
>2E |]
T82EXT -- EXTENDED PRB FLAGS ~
| I
o e +
>3C | T82FLG -- GENERAL FLAGS |
e T S S +-
>3E | T8§2TMO -- TIMEOUT COUNT l
T e e e e e e s e e o o e e o B ————— . — - - - - = T . - %*

>40 *

Figure 6-10 820 Extension to XSB

939153-9701 6-31

Data Structures

Hex. Field
Byte Name
>2C T82PRB
>2E T82EXT
>3C T82FLG
>3E T82TMO
>40 *
6.3.4.5

Character

System Design Document

Description

System and user flags to be wused during the
current operation.

Flags from the extended Physical Record Block
(PRB); 0 if not extended.

General flags as follows:

w

it Meaning When Set

Hang up condition.

Time out switch.

SCI is active during hang up.

A data carrier drop was detected.
Sshift in/out for JISCII.

Direct character input requested.

U'I-PUNI—"O|

The timeout count.

Queue. The character queue follows the FSB

and KSB extension for terminal devices. Currently, the charag
queue starts at >64 from the beginning of the KSB. However, atl

references

to the queue should be through the KSB pointers. The

length of the queue is set at sysgen time. The word following
the queue buffer is the length of the queue.

6-32 939153-9701

System Design Document

6.3.5

The

Line Printer Extension (LPD)

line

prin

(2239/2260, LP
Figure 6-11 shows the fcrmat.

Hex.
Byte
[JE
>00 |
fm———
>02 |
fm———
>04 |
o=
>06 |
fm———
>08 |
Fm———
>0 |
N R,
>0C |
|
L RN
>B6 *
Hex. Field
Byte Name
>00 LPDDMF
>02 LPDCC
>04 LPDOUT
>06 LPDIN
>08 LPDMXC

939153-9701

ter extension to the PDT is used for both fast
300/LP600) and slow (810/840) line printers.

- D P D =P - - — Y . P . v A D - ——— — —— o ——
- — > " - — — ——— - ——— " — - - —— . - — - " . —— —
-~ —— - = =D — D W T . — — N — - ————— — T - — - — -

- — - — - - — T — D D D P S . M S D S D T D T . D D D D D T TP CH U D G D O

. — —— - — ——— — ———— . ——————— — T — D D - —— A ————— —— -

LPDBUF -- CHARACTER BUFFER
(170 BYTES)

- — — - —— D D P =D D D A - A T D T Y D T D . S - — - - w — — — — ———

Figure 6-11 Line Printer Extension

Description

Describes the tvpe of line printer. A zero
denotes a fast printer and a 2 denotes a slow

printer.

The number of characters currently in
buffer.

A pointer to the next character to be output

(unless LPDCC = 0).

A pointer to the next free byte in which
character can be stored (unless TLPDCC
LPDMAX) .

The maximum number of characters that may be

stored in the buffer.

6-33

Data Structures

Data Structures System Design Document

Hex. Field

Byte Name Description

>0A LPDENR Used as a flag to cause end record processing.
>0C LPDBUF The 170-byte character buffer.

>B6 *

6.3.6 Tape Extension (TPD)

The tape extension to the PDT is similar to the disk extension.
Currently, the disk and tape are the only TILINE devices.
Certain fields 1in these extensions that are used outside the
Device Service Routine (DSR) must be in the same location.
Therefore, the tape extension must be the same size as the disk
extension. Figure 6-12 shows the format of the TPD.

Hex.
Byte
A e e e e e e o *
>10 | TPDSVS -- DEVICE STATUS l
o e e e e +
>12 | TPDMAJ -- MAJOR RETRIES COUNT |
e e e e e +
>14 | TPDMIN -- MINOR RETRIES COUNT l
o e e e e +
>16 | |
P e e e e +
>18 | |
o e e e e +
>1a | !
= TPDTIL -- CONTROLLER IMAGE =
| |
K e e e e e e e o %*
Figure 6-12 Tape Extension
Hex. Field
Byte Name Description
>10 TPDSVS The device status for a device characteristiecs
call.
>12 TPDMAJ A count of the number of major retries left.
>14 TPDMIN A count of the number of minor retries left.
>1A TPDTIL The controller image created to start an
operation.

6-34 939153-9701

System Design Document , Data Structures

6.3.7 Floppy Diskette Extension (FPD)

The floppy diskette PDT extension is used for CRU-type floppy
diskettes (FD800). TILINE floppvy diskettes (FD1000) wuse the
normal disk PDT extension. Figure 6-13 shows the format of an
FPD.

Hex.
Byte

T e e i e e o e o - — = - -t i t n rt = = e = %*
>00 | FPDBAS -- NOT USED |
502 | FeDDNO — DISK DRIVE NmMBER i
sos | FPDCMD -- CONTROLLER COMMAND i
,06 | | FPDLSC - CURRENT LOGICAL SECTOR NMBER |
s | FEDCTR - CORRENT TRACK POSTTTON |
0a | FPDIRK — REQUESTED TRACK POSITION . |
~0c | TPDSCT -— REQUESTED SECTOR POSITION i
508 | | FoDDBA —- DATA BUFFER ADDRESS i
>10 | FPDDBL - DATA BUFFER LENGTH i
512 | FRDDBR — REMATNING CHARACTER COUNT |
s34 | FeDvCT - SAvED VECTOR ENTRY POTNT |
>16 I""""""“';;55;5'11'5&;‘5525 """"""""" i
s18 Tt "

Figure 6-13 Floppy Diskette PDT Extension

939153-9701 6-35

Data Structures

>0E
>10
>12

>14

>16

>18

Field
Name

FPDBAS

FPDDNO
FPDCMD

FPDLSC
FPDCTK
FPDTRK

FPDSCT

FPDDBA
FPDDBL

FPDDBR
FPDVCT

FPDUSE

System Design Document

Description

Not used.

The disk drive number is contained in bits 4
and 5 of this word.

The command that is to be issued to the disk
controller.

The current logical sector number.
The current track position.
The requested track position.

The requested sector position within the
track.

The data buffer address.
The data buffer length.

The remaining character count for multi-sector
transfers.

The saved vector entry point within the devicg
service routine (DSR).

Used as a flag to indicate that this PDT has
control of the disk controller.

6-36 939153-9701

System Design Document Data Structures

6.4 PARTIAL BIT MAP (PBM)

DX10 wuses partial bit maps (PBMs) to find blocks of free ADUs on
a disk. The system scans a disk, bringing in each PBM one at a
time to check for the available ADUs represented in that PBM.
Figure 6-14 shows the format of a PBM as it appears in memory,
(not on the disk).

Hex.
Byte
B e et e o o o e o e o s o — T ————— 1 o "~ %*
>00 |PBMMAX - TOTAL # OF DPBMS|PBMNUM - # OF PBM IN MEM|
tmmm e - R o T T +
>02 | PBMFAU - FIRST AVAILABLE ADU ON THE DISK |
T e +
>04 | PBMLRC - LRC CHARACTER OF PBM IN MEMORY |
. e —————————————— +-+
>06 | PBMLCB - OFFSET OF LARGEST CONTIGUOUS BLOCK |
o e e + | AREA
>08 J STORED
+- ON
254 BYTES OF PBM ~ | DISK
o e e +-+
>106 | PBMBIG -- SIZE OF LARGEST BLOCK OF FREE ADUS |
o e +
>108 | PBMBGN -- # OF ADUS FREE AT BEGINNING OF PBM l
e e e e et v e e e e e 2 e e o e
>10A | PBMEND -- # OF ADUS FREE AT END OF PBM |
e — +
>10C | !
|
- PBMBIG, PBMBGN, AND PBMEND -
~ (REPEATED FOR EACH PBM ON THE DISK) ~
K e e e o e et e e o e e e o e e e e e o e S . o o o T o > o o o o J

Figure 6-14 Partial Bit Map

939153-9701 6-37

Data Structures

>02
>04

>06

>08

>106

>108

>10A

Field
Name

PBMMAX

PBMNUM

PBMFAU

PBMLRC

PBMLCB

PBMBIG

PBMBGN

PBMEND

System Design Document

Description
This is the total number of PBMs on the disk.

The number of the PBM currently in memory
(system table area.)

The first available ADU on the disk.

The longitudinal redundancy character (LRC)
for the PBM currently in memory.

The offset in ADUs to the largest contiguous
block of free ADUs, relative to the current
memory resident PBM.

Starting at this address in the PBM are 254
bytes that represent the actual bit map.

Size in ADUs of the largest contiquous block
of free ADUs for the corresponding PBM. Each
PBM repeats the 1last three fields of the
figure.

Number of free ADUs at the very beginning of
the corresponding PBM. Each PBM repeats t
last three fields of the figure.

Number of free ADUs at the very end of the

corresponding PBM. Each PBM repeats the last
three fields of the figure.

6-38 939153-9701

System Design Document Data Structures

6.5 FILE CONTROL BLOCK (FCB)

Within DX10, files are represented by, or accessed through, file
control blocks. As described in Section 1, whenever a file is
accessed, a tree structure of FCBs is built into memory. This
structure resembles the directory/file hierarchy on the disk.
FCBs are built in the system table area by the PFile Utility
Assign LUNO processor, and are basically a memory resident copy
of the file descriptor record (FDR) of the file. Figure 6-15.
shows the format of a file control block.

Hex.
Byte

B e e e e e o e e e e e ot e e e . P D o o . o e o o . e T o . 0 e ot %*

>00 | FCBLEN -- LENGTH OF FCB |
o e e +

>02 | FCBRNM -- RECORD NUMBER OF FDR l
o e +

>04 | |
~ FCBFNM -- FILE NAME ~

| |
e e ———— +

>0C |
FCBPSW -- PASSCODE |

o e e e +

>10 | FCBFLG -- FLAGS |
o S +

>12 | FCBCLA -- LUNOs COUNT | FCBCDF -- DESCEND. CNT |
et T Sy +

>14 | FCBAFD -- FCB ADDRESS OF FIRST DESCENDANT l
e e e e +

>16 | FCBALS -- FCB ADDRESS OF LAST SIBLING |
o e e +

>18 | FCBANS -- FCB ADDRESS OF NEXT SIBLING |
o e e +

>1a | FCBAPF -- FCB ADDRESS OF PARENT |
o e e ————— +

>1C | FCBPRS -- DPHYSICAL RECORD SIZE |
e +

>1E | FCBLRS -- LOGICAL RECORD SIZE |
e e e +

>20 | FCBPAS -- PRIMARY ALLOCATION SIZE IN ADU |
e +

>22 | FCBPAA -- PRIMARY ALLOCATION ADDRESS l
B e e e e e e e o e e e e e e e . o 8 e et e e 2 o e e oo %*

Figure 6-15 File Control Block (FCB) (Part 1 of 2)

939153-9701 6-39

Data Structures

>02

>04

>0C

System Design Document

Hex.
Byte
o e e e +
>24 | FCBSAS -- SECONDARY ALLOCATION SIZE |
o e e el +
>26 | FCBSAA -- ADDRESS OF SAT BLOCK |
el e R, +
>28 | FCBEOM -- END OF MEDIUM LOGICAL RECORD NUMBER |
o e e e e —————— +
>2C | FCBBKM -- END OF MEDIUM BLOCK NUMBER |
o e e e e +
>30 | FCBOFM -~ END OF MEDIUM OFFSET |
Fm e e e +
>32 | FCBLRL -- LOCKED RECORD LIST HEAD |
o e e e e +
>34 | FCBLLH -- LDT LIST HEAD |
e o Fe e ——————— +
>36 | FCBAPB -- UNITS/BLOCK | FCBBPA -- BLOCKS/UNIT |
T T - +
>38 | FCBPDT -- DISK PDT ADDRESS l
o e e e e e +
>3 | FCBEXT -- BLOCK COUNT FOR FILE EXTENSION |
B e T, e +
>3E |FCBXCT -- FILE EXT CNT | FCBMFG -- MODIFIED FLGS|
o e ——————— +
>40 | FCBRLA -- REQUEST LIST ANCHOR |
o e e e +

Figure 6-15

Field
Name

FCBLEN

FCBRNM

FCBFNM

FCBPSW

File Control Block (FCB) (Part 2 of 2)

Description

Length in bytes of the FCB and any extensions
(described 1later 1in this section). 1If there
are no extensions, the value of this field is
zero.

The number of the directory file record that
contains the file descriptor record for this
file.

File name (eight characters)

Passcode, reserved for future extension.

6-40 939153-9701

System Design Document

Hex. Field
Byte Name
>10 FCBFLG

939153-9701

Flags,

Data Structures

Description

which are the same as in a file
descriptor

record except for bits 12-13. The

flags have the following meanings:

Bit
U-I

Meaning

File usage flags:

00
01
10
11

No special usage
Directory
Program file
Image file

Data format:

00
01
10
11

Binary

Blank Suppressed

Reserved for ASCII & print forms control
Reserved

Allocation type:
0 Bounded
1 Unbounded

File type:

00
01
10
11

Reserved for device
Sequential

Relative record

Key indexed

Write protection flag:
0 Not write protected
1 Write protected

Delete protection:
0 Not delete protected
1 Delete protected (file cannot be deleted)

Temporary file flag:
0 Permanent file
1 Temporary file

6-41

Data

Hex.
Byte

>10

>12
>13

>14

>1l6

>1A
>1C

>1E
>20

>22
>24

Structures

Field
Name

FCBFLG

FCBCLA

FCBCDF

FCBAFD

FCBALS

FCBAPF

FCBPRS

FCBLRS

FCBPAS

FCBPAA

FCBSAS

System Design Document

Description

Flags, which are the same as in a file

Bit Meaning
10 Blocked file flag:
0 Blocked
1 Unblocked

11 Alias flag:
0 Not an alias
1 An alias file name

12-13 Most restrictive access applied to all
users of the file:
00 Exclusive write
01 Exclusive all
10 Shared
11 Read only

14-15 Reserved

Number of LUNOs assigned to the file.

Number of descendant FCBs in memory. Only
directory file may have descendants¥
Descendants are all files that are cataloged
under this directory and anv sub-directories.
Address of the FCB of the first descendant
(that 1is, the first file cataloged under this
directory that was accessed, and is still
being accessed).

Sibling pointers. All FCBs of files cataloged
under the same directory are laterally linked
by these pointers, as described in Section 1.

Address of the FCB of the directory under
which this file is cataloged. '

Size in bytes of a physical record of this
file.

Size in bytes of a logical record.

Size in allocable disk units of the primarvy
file allocation.

Starting ADU number of the primary allocation.

Size in ADUs of the secondary allocation.

6-42 939153-9701

System Design Document Data Structures

Hex. Field

Byte Name

>26 FCBSAA
>28 FCBEOM
>2C FCBBERM
>30 FCBOFM
>32 FCBLRL
>34 FCBLLH
>36 FCBAPB
>37 FCBPBA
>38 FCBPDT
>3A FCBEXT
>3E FCBXCT
>3F FCBMFG

939153-9701

Description

Address of the in-memory copy of the secondary
allocation table (SAT) for the file. The SAT
is an exact copy of the last 64 bytes of the
file descriptor record (FDR) and is located in
the system table area.

The number of the logical record immediately
following the 1last allocated logical record
(end of medium).

The physical record in which the file
allocation ends (end of medium).

The sector offset into the physical record
that marks the end of medium.

The head of a singly 1linked 1list of record
lock tables, which are also located in the
system table area, each of which points to a
locked record of the file.

Head of a linked list of all 1logical device

tables that represent LUNOs assigned to this-
file.

The number of ADUs per physical record.
The number of physical records per ADU.

The address of the PDT for the disk on which
this file is written.

Block count for file extension.
Number of secondary allocations.

Flags as follows:

Bit Meaning When Set
0 End of medium for this file has changed
1 Data has been written into the file
2 FCB is busy

6-43

Data

Hex

w
<
o
1]

>40

>42

>44

Structures

Field
Name

e

FCBRLA

FCBLST

System Design Document

Description

Pointer to the next buffered I/0 request for
this file (I/0 requests for the same file are
queued from the FCB until processed by file
management) .

Pointer to the last buffered I/O request on
the list for this file.

6-44 939153-9701

System Design Document Data Structures

6.5.1 KIF Extension to the FCB

When an FCB represents a key indexed file, an extension to the
FCB is used to contain additional information. Figure 6-16 shows
the format of a KIF extension.

o

TAe
Byte
K e *
>00 ‘ FCBTNB -- TOTAL NUMBER OF BUCKETS
o e e +
>04 | FCBCMD -- COMMAND NUMBER l
o e e e +
>06 | FCBCLB -- CURRENT LOG BLOCK NUMBER |
e e - +
>08 ! FCBFBQ -- FREE BLOCK QUEUE HEAD ‘
e e e +
>0C | FCBBTR -- B-TREE ROOTS BLOCK NUMBER I
o e e e +
>0E | FCBSBB -- BLOCK NUMBER OF FIRST BUCKET I
o e e e e ——————— e ¥
>10 | FCBMRS -- MINIMUM LOGICAL RECORD SIZE |
o e e e +
>12 | FCBKDB -- NUMBER OF KEYS |
e ———————— Fmm e +
>14 | FLAGS | CHARACTER COUNT OF KEY 1|
o e T T +
>16 | OFFSET TO KEY 1 |
o e +
>18 | !
I l
B e e e e e e e e e e e e e e 0 o e e o S S e S o o e o 2 o o o o %
>4C *

Figure 6-16 FCB Extension for Key Indexed Files

NOTE

Repeat bytes 14 through 17 for secondary
keys.

939153-9701 6-45

Data Structures System Design Document

Hex. Field

Byte Name Description

>00 FCBTNB Total number of buckets allocated in the file.

>04 FCBCMD The opcode of the current command (used for
logging).

>06 FCBCLB The physical record number of the currently
used log block (see the discussion on key
indexed files in Section 4).

>08 FCBFBQ The physical record number (block number) of
the first record in a linked list of available
records.

>0C FCBBTR The number of the first physical record
containing a B-tree root.

>0E FCBSBB The number of the first physical record
containing the first bucket.

>10 FCBMRS Minimum logical record size, in bytes, needed
to contain all defined keys.

>12 FCBKDB These fields are in-memory duplicates of byte
6-63 (>06->3F) of the disk resident k{
descriptor record.

>4C *

6.5.2 Queue Extension to the FCB

When the file represented by an FCB is a directory, a queue
anchor of the form shown in Figure 6-1 is appended to the FCB,
The queue anchored is a queue of TSBs of tasks waiting for access
to the directory file. The queue is implemented to prevent both
file management and file utility from updating the same directory
record concurrently; (for example, if one task was writing to a
file and another task was renaming the file at the same time).

6-46 939153-9701

System Design Document Data Structures

Hex. Field

Byte Name Description

>00 FCBQUE Address of the TSB of the newest task waiting
for access.

>02 TSB address of the oldest task waiting for
access.

>04 FCBLOK TSB address of the task currently accessing
the directory.

>06 FCBQFL Flags. Must have a value of >40.

>07 Task Id of server. Must be zero.

>08 FCBQST ‘Task state. Must be >1E.

>09 Count of items on queue.

6.5.3 Record Lock Table (RLT)

An RLT 1is a 1l0-byte block of system table area that points to a
file record that is locked. All locked records of a file are
represented by a linked 1list of RLTs, ordered by an ascending
disk address, which is headed by a word in the file control
block. Each time a record is locked, file management builds a
new RLT and links it on the list. Figure 6-17 shows the format
of a record lock table.

Hex.

Byte
B e e e e e et ettt o e e e o . . o o o o e 0 e o 2t o o e e e e e %*
>00 | RLTINK — TABLE LINK |
o e +
>02 | RLTLDT -- LDT ADDRESS I
o e +
>04 RLTBLK -- BLOCK NUMBER l
|
e e ee e +
>08 | RLTOFF -- OFFSET IN BLOCK |
R e e e e e e e e e e e e e e e e o = = o 2 e e e et 0 ot om o e %*

>0A *

Figure 6-17 Record Lock Table (RLT)

939153-9701 6-47

Data Structures

>04

>08->09

RLTBLK

RLTOFF

System Design Document

. Description

Link to the next RLT (0 = end of list).

Address of the 1logical device table that
represents the LUNO assigned by the task that
locked this record.

Number of the physical record of the file in
which the locked logical record is written.

The logical record within the above addressed
physical record that is locked.

6.5.4 Program File Extension to the FCB

When an FCB represents a program file, an extension to the FCB is
contain

format of the program file extension.

used to

additional information. Figure 6-18 shows the

| FCBMNT —- MAX No TASKS | PCBTO — DIR oFFeEr |
T"EEE%E':-H5E'BI&EEE-B'R?E{:%E}'&EBES’&E&QE%“"T
T'EEEI&E'I'{45:2'{15'5;555'T"'EEQEB'I'BE;'BEEEEE"T
T"EEEEE':‘E'RSEE'BEQEEEBEE'&%;?REEBEB'Q&GBEE"T
T‘EEQE&:B'Z'&Z\{;B_B‘E}E'T"EEEBS'I’BEEBEEEQE"T
o e e e T . +

| FCBOR -- OVERLAYS DIRECTORY ENTRY RECORD NUMBER |

%*

Figure 6-18 FCB Extension for Program Files

6-48 939153-9701

System Design Document Data Structures

>05
>06
>08
>09
>0A

>0C

Field
Name
FCBMNT
FCBTO
FCBTR

FCBMNP

FCBPO
FCBPR
FCBMNO
FCBOO

FCBOR

*

939153-9701

‘Description

Maximum number of task entries in the file.
Task directory entry offset.
Task directory entry record number.

Maximum number of procedure entries in the
file.

Procedure directory entry offset.

Procedure directory entry record number.
Maximum number of ovgrlay entries in the file.
Overlay directory entry offset.

Overlay directory entry record number.

6-49

Data Structures System Design Document

6.6 LOGICAL DEVICE TABLE (LDT)

Logical device tables are built in the system table area by the
file utility assign LUNO processor. Whenever a LUNO is assigned
to a file or device, an LDT is built to represent the logical
unit to the system. Figure 6-19 shows the format of an LDT.

Hex.
Byte
A e e e e e e *
>00 | LDTPDT -- PDT ADDRESS |
o e L +
>02 | LDTLUN -- LUNO | LDTIOC — START I/0 ONT|
Fom e o e T . +
>04 | LDTFLG -- FLAGS |
P el +
>06 | LDTLDT -- LDT LINK |
e e e e +
>08 | LDTTSB -- USER TSB ADDRESS |
e e e e e e . +
>0A | LDTFLL -- FILE LINK |
o e e e e e e +
>0C | LDTFCB -- FCB ADDRESS |
o e e +
>0E ‘ LDTLRN -- CURRENT LOGICAL RECORD NUMBER |
o e e e e e e e +
>12 l LDTBN -- CURRENT BLOCK NUMBER l
o e e e +
>16 | LDTOCB -- OFFSET IN CURRENT BLOCK |
o e e e e +
>18 | LDTBLK -- BUFFER BEET ADDRESS |
Fo e e e +
>1A |LDTORC--OUTSTANDING REQS| LDTNU -- NOT USED l
K e e e e *
>1c *

Figure 6-19 Logical Device Table (LDT)

NOTE
Bytes >00->09 are the same for file and

device LDTs. Bytes >10->1B are used only for
file LDTs.

6-50 ‘ 939153-9701

System Design Document Data Structures

Hex. Field
Byte Name Description
>00 LDTPDT Address of the PDT to which the LUNO is
assigned. For LUNOs assigned to files, this
is the PDT for the disk unit on which the file
is written.
>02 LDTLUN The LUNO which this LDT represents.
>03 LDTIOC The number of initiate I/0 operations
currently being performed at this LUNO.
>04 LDTFLG Flags as follows:
Bit Meaning When Set .
0 This LDT 1s used to anchor a list of LDTs
(such as in a KSB).
1-2 Access privileges:
00 Exclusive write
01 Exclusive all
10 Shared
11 Read only
3 The file to which the LUNO is assigned was
created by the Assign LUNO SVC.
4-5 Scope of LDT anchor
(that is, what kind of LUNO):
00 Task local
01 Station local
10 Global
11 Undefined
6 Deferred write error.
7 File is forced write. _
8 LUNO is a system LUNO (cannot be released).
9 LUNO assigned to a file.
10 LUNO is busy.
11 Event mode is locked in record mode.
12 Initiate I/0 is being performed.
13 Abort I/O is being performed.
14 Unblocked access.
15 Print flag.
>06 LDTLDT Link to the next LDT in the LDT inverted tree
structure described in Section 1.
>08 LDTTSB TSB address of the task that opened the LUNO.

939153-9701 6-51

Data Structures

>0C

>0E

>12

>16

>18

>1a

>1B

>1C

The

System Design Document

NOTE

remaining fields (bytes >0A through >1B)

are only defined for LDTs that represent

LUNOs

assigned to files. When a LUNO is

released, or the task that assigned the LUNO
terminates, the LDT is released by the file
utility Release LUNO routine.

Field
Name

LDTFLL

LDTFCB

LDTLRN

LDTBN

LDTOCB

LDTBLK

LDTORC

LDTNU

Description

Link to the next LDT representing a LUNO
assigned to the same file. All LDTs assigned
to the same file are 1linked together, and
anchored in the file control block.

Address of the file control block for the file
to which the LUNO is assigned.

The number of the logical record that is
currently being accessed.

The number of the physical record that
currently being accessed.

The offset into the physical record to the
current logical record.

The beet address of the buffer that contains
the 1last physical record transferred (read or
written) through this LUNO (zero if the buffer
has been released).

Number of outstanding requests for I/O to this
LUNO.

Not used.

6.7 BUFFERED CALL BLOCK

Whenever a supervisor call that is processed by a queue‘ serving

routine is issued,

area and queued for the SVC processing routine. The first four

the call block is buffered in the system table

words of the buffer contain the following system overhead.

6-52 939153-9701

System Design Document Data Structures

Hex. Field

Byte Name Description

>00 Link to the next entry in the queue.

>02 Address of the TSB of the task issuing the
svC.

>04 Address of the call block within the calling
task.

>06 Address of the LDT to which an I/0 operation

is directed (used only for 1I/0 SVCs).

The remainder of the buffer contains the call block and any
extension blocks or data buffers.

6.8 TASK STATUS BLOCK (TSB)

Tasks are represented within DX10 by a task status block (TSB).
TSBs are built in the system table area bv the bidding routines
TMBIDO and TMSBID. A TSB is released by the termination task,
TMDGN, when a task terminates, unless the task is a queue server.
TSBs of inactive queue servers are not released unless more
system table area is needed. Figure 6-20 shows the format of a
task status block.

Hex.
Byte
B e e e e e e e e e o s B e S i e e b D B o i i i i e J
>00 | TSBQL -- QUEUEING LINK l
o e +
>02 | TSBWP -- ACTIVE WP !
T it T +
>04 | TSBPC -- ACTIVE PC |
et e ——————— +
>06 | TSBST -- ACTIVE ST |
e i T T L +
>08 | TSBPRI -- PRIORITY | TSBSTA -- TASK STATE |
e T +
>0A | TSBFLG -- TASK FLAGS i
et T +
>0Cc | TSBEAC -- TRANSFER VECTOR ADDRESS 1
et Fmm e +
>0E | TSBID -- INSTALLED ID | TSBRID -- RUN ID |
B et T T +
>10 | TSBSMF -- SAVED MAP FILE ADDRESS |
et T T +
>12 | TSBINK -- FIXED TSB LINK I
o e +
FPigure 6-20 Task Status Block (TSB) -- Part 1 of 3

939153-9701 6-53

Data structures

>22
>24
>26
>28
>2A
>2C

>2E

>32
>34
>36
>38
>3A
>3C

>3E

System Design Document

R rSeRen —- xem avpmess T 1
[renTLE - ek piass won T i
T S i
T aenane - n1p paRAMBTER o) T i
T T remart - arromvaTe tes appmmss 1
| TSBCRR - 913,911 cHAR |19BT0c - TTLINE 1/o WT|
| emenL - pen AooRESS (R0 L T |
1T asmrns - pos AooRESs mee 3 T |
T Toenrcs - procaaM FiLe tom anommss i
1T serne - biacwostic mReom coos i
1T e o bingwosTIG W T i
1T remnes - pragmostie e T i
T T reeers o biagwosTIe sr T i
| TSBTDL —- mIME DELAY couNTER 1
| TSBTD2

e e e e e e +
| TSBML1 -- MAP LIMIT 1 l
T T T et - map Bas 1T 1
1T T s o ap mmin 2T i
T e wAp BtAS 2T 1
T T e o iz 3T i
T T e - map BRs 3T 1
o ————— B T T S, +
|SBPRR - FIXED PRIORITY| TSBMRG —- TASK REG NO_ |

Figure 6-20 Task Status Block (TSB) -- Part 2 of 3

6-54

939153-9701

System Design Document Data Structures

Hex.
Byte
T e e et +
>40 | TSBPAR -- PARENT TSB ADDRESS l
e i +
>42 | TSBSON -- OLDEST SON TSB ADDRESS l
Fo e e e e +
>44 | TSBBR1L -- OLDER SIBLING TSB ADDRESS i
o e e e e +
>46 | TSBBR2 -- YOUNGER SIBLING TSB ADDRESS |
T T S S S, +
>48 | TSBBLN -- BEET LENGTH OF PROGRAM l
o e e e e +
>4a | TSBTON -- OVERLAY NUMBER l
o e e +
>4Cc | TSBOAD -- ADDRESS OF OVERLAY AREA DES. |
e e T T +
>4E | TSBTO0 -- TIME TASK SUSPENDED |
ettt +
>50 | TSBT1 -- NUMBER OF TIME SLICES REMAINING |
e e +
>52 | TSBSCR -- SCRATCH FOR GETMEM]
o e e +
>54 | TSBRLL -- LINK TO NEXT ROLLED TASK {
o e +

>56 TSBRRN -- ROLL FILE STARTING PHYSICAL RECORD NO

>5a | | TSBRRL -- NMBER OF FOLL FILE RECORDS | 1
S TSBLDF -- LOCAL LDT LIST FLAGS I
»sE | | TSBLDA -- LOCAL LDT LIST ADDRESS i
»60 | | TSBEOR —- EOR COUNT | | TSBII? - 1/0 COUNT |
»62 | | TSBSER -- QUEUR ANCHOR ADDRESS |
>64 I""'"""EQEEQE':Eé?éé&?:%?ééﬁ&% """""" T
>66 *-_-—--—---__—-_‘--——----‘-‘—-_—_— ————————————————

Figure 6-20 Task Status Block (TSB) -- Part 3 of 3

939153-9701 6-55

Data Structures

Hex. Field
Byte Name
>00 TSBQL
>02 TSBWP,
TSBPC,
TSBST
>08 TSBPRI
>09 TSBSTA
>0A TSBFLG
>0C TSBEAC
>0E TSBIID
>0F TSBRID
>10 TSBSMF

System Design Document

Description

Link to the next TSB on the queue, when this
TSB is queued.

The saved context (workspace pointer, program
counter and status register wvalues) for the
task.

When the task is scheduled to execute, these
saved values are used to begin execution.

Task priority (0, 1, 2, 3, or >81, >82, >83,
>84, ..., >FF where >81 is real-time
priority 1 and >FF is real-time priority 127.

Task state as shown in Table 6-1.

First word of task flags. The flags are as
follows:

Bit Meaning When Set
0 System task (Hardware and
software privilege)
1 Privileged task (Software)
2 Memory resident task
3 Take end action on error
4 Roll out candidate
5 Rolled out
6 Abort/terminate task
7 Activate call outstanding
8 Reactivate bidding task at termination
9 Serially reusable task
10 Task quieting in progress
11 Initial bid
12 Leave task alone; do not abort
13 Task is under control of alternate
TSB
14 SCI flag for scanning TSB chain
15 Task is replicated image

Transfer vector address.
Installed task 1ID.
Runtime ID assigned by system.

Address in the TSB of the saved map file
register values (bytes >32->3D).

6-56 939153-9701

System Design Document Data Structures

>14

>16

>18

>1C

>1E

>1F

>20

>22

Field
Name

TSBILNK

TSBKSB

TSBFL2

TSBAR]

TSBALT

TSBCHR

TSBIOC

TSBPR1

TSBPR2

939153-9701

Link to the next TSB in the fixed 1list of
TSBs. All TSBs in the system table area are
linked onto this list when they are created.
The list may be searched to find a task with a
given runtime ID by the routine named TMTSCH
(for example, to kill the task).

Address of the KSB of the terminal with which
this task is associated (that is, the task was
bid from the terminal).

Task flags as follows:

w

it Meaning When Set

Task to bé suspended next time it
executes

Task is being controlled

SVC traps to be taken when specified
SVC switch: when 0, SVC traps are taken
Execution stopped by scheduler
Execution stopped by trapped SVC
Execution stopped by XOP 15,15
(breakpoint)

Dynamic priority management

Roll in progress

Task activated

10 Initiate followed by execute I/0

11 Extend time slice

12 End action available for task

11-15 Not used

O 0 ~J MW Ol

The two parameters that mav be passed to the
task by the Bid SVC, and accessed by the task
using the Get Bid Parameters SVC.

TSB address of the alternate task. The
alternate task is executed in place of this
task.

913/911 character.

Number of outstanding TILINE I/O operations.
Address of the procedure status block (see
paragraph 6.7.1) for attached procedure 1 (0
if none).

PSB address for procedure 2 (0 if none).

6-57

Data Structures

Hex. Field
Byte Name
>24 TSBFCB
>26 TSBERC
>28 TSBWPD,
TSBPCD,
TSBSTD
>2E TSBTD1
>32 TSBML1
>3E TSBPRF
>3F TSBMRG
>40 TSBPAR
>42 TSBSON
>44 TSBBR1
>46 TSBBR2
>48 TSBBLN
>4A TSBTON
>4C TSBOAD

System Design NDocument

Description

Address of the FCB that represents the program
file on which this task is installed.

Error code that describes the
caused the task to terminate
termination task).

error that
(used by

The context (WP, PC, and ST registers) of the
task at the time an error forced the task to
terminate or take end action (used by the
termination task). These values are returned
on a Get End Action Status SvcC.

Number of system time units remaining before
this task will be reactivated from its time
delayed state (32 bits.)

The map register values to be used
task executes.

when this

Map flags. Fixed priority of task.
The offset into the saved map file that marks

the 1limit register that maps the task segment
(that is, 0, 4, or 8).

TSB family tree pointers as described in
Section 1.
TSB family tree pointers as described in
Section 1.
TSB family tree pointers as described ' in
Section 1.
TSB family tree pointers as described in

Section 1.

Length of the entire program (task and
procedures) in beets (32-byte blocks).

The number of the system overlay in which this
task was last executing (used for system tasks
only).

The address of the overlay area in which the

above overlay was loaded (the overlay MUST be
reloaded in the same place).

939153-9701

System Design Document Data Structures

>52

>54

>56 .

>5A

>5C

>5E

>60

>6l

Field
Name

TSBTO

TSBT1

TSBSCR

TSBRLL

TSBRRN

TSBRRL

TSBLDF

TSBLDA

TSBEOR

TSBIIP

939153-9701

Number of time slices this task has been
suspended.

Numpber of time slices still allotted to this
task as the minimum number of time slices it
must receive before it can be forcibly rolled-
out by an equal priority task.

Scratch used by the Get Memory SVC processor
and the system overlay loader.

Link to the TSB or PSB that represents the
next rolled segment. The TSB or PSB of each
rolled task or procedure is linked onto a list
of rolled segments. The list is kept in order
by increasing the roll file record number;
that 1is, segments that were written at the
beginning of the roll file are at the
beginning of the 1list. This 1linked 1list
serves as a directory into the roll file, s3
that the various rolled segments can be
retrieved for roll-in. Further roll
information is kept in TSBs or PSBs.

Number of the physical record in the roll file
that begins the rolled image of the task
segment. At initial bid time, this is the
program file record number.

Number of roll file records occupied by the
rolled task image. During initial bid, this
is the length of the task in bytes.

Task local LDT list flags: bit 0 is the LDT
anchor.

Pointer to the first task local 1IDT, or the
station local LDT list anchor (if there are no
task local LDTs).

Number of I/0 end-of-records that need to be
processed for this task. If this field is
non-zero, the device driver routine (DDT) is
given the next time slice that would otherwise
have been awarded to this task.

The number of I/O operations outstanding for
this task.

Data Structures

Hex.
Byte

>62

>64
>66

Field
Name

TSBSER

TSBTSC

Active
Active
Active
Active

System Design Document

— e e .

The address of the anchor for the queue served
by this task (used only for queue servers).

The task sentry count.

Table 6-1 Task State Codes

o ey s ey e

task, priority level 0
task, priority level 1
task, priority level 2
task, priority level 3

Terminated task

Task in time delay

Suspended task

Currently executing task

Reserved

Task awaiting completion of I/0

Task awaiting assignment of device for I/0
Task awaiting disk file utility services
Reserved

Task awaiting file management services
Task awaiting overlay loader services
Task awaiting initial load

Reserved

Task awaiting disk management services
Task awaiting tape management services
Waiting on system overlay loader services
Waiting on task driven SVC processor

Task waiting on GETMEM request

Not used

Suspended for co-routine activation

Task waiting on termination task services
Task awaiting completion of any I/0
Waiting on MMS$FND door

Task eligible for rollout when requested I/0
is complete

Task activated while roll in progress
Suspended for initiate I/O threshold
Suspended for locked directory

Suspended for task management directory buffer
Task suspended for queue input

Dummy task state

6-60 939153-9701

System Design Document Data Structures

6.9 PROCEDURE STATUS BLOCK (PSB)

Each procedure being accessed by a task within DX10 is
represented by a procedure status block, Jjust as tasks are
represented by TSBs. When a task 1is bid, the bidder task,
TM$BID, checks to see if the task has any attached procedures.
If so, the bidder task scans the fixed list of PSBs anchored in
the D$DATA module to see if the procedures are already in memory.
If not, TMSBID builds a PSB for the procedures.

A PSB is built in the system table area and linked on the fixed
list of PSBs. Figure 6-21 shows the format of a PSB.

Hex.
Byte

K e, b e e %
>00 | PSBID -- PROCEDURE ID | PSBFLG -- FLAGS |
w02 | psmaoe — srocEoune ampmmss |
soa | PSBLEN —- PROCEDURE LENGTH i
T PSBINK — FIXED PSB LINK i
208 | pSBECB —- PROGRAM FILE FCB ADDRESS i
>0A |PSBATT —- NO. ACT. TASKS|PSBTIN-_NO. T4-MEM ThSRS|
20 | | PSBRIL -- LINK TO NEXT ROLLED SEaMmNT i
»0m | | PSBRNL - RELATIVE RECORD NOWBER I moTn |
s10 | esamvz - miisyerocmam iz |
>12 T """ PSBRRL -- NIMBER OF FOLL FILE RECORDS T
>14 » TTTTTTTTTTTTTTTTTTTTITTTTTTTTT

Figure 6-21 Procedure Status Block (PSB)

939153-9701 6-61

Data Structures System Design Document

Hex. Field
Byte Name Description
>00 PSBID ID assigned to the procedure when it was
installed on the program file.
>01 PSBFLG Flags as follows:
Bit © Meaning When Set
0 Memory resident procedure
1 This is the initial bid of the procedure
2 Procedure is rolled out
3 Procedure roll is in progress
4 Writable control storage XOP
5 PROC is write protected
6 PROC is execute protected
>02 PSBADD Address of the starting beet (32-byte block of
memory) of the procedure.
>04 PSBLEN Length of the procedure in beets.
>06 PSBINK Link to the next PSB in the fixed list of PSBs
(zero if at end of list).
>08 PSBFCB Address of the FCB for the program file on
which the procedure is installed.
>0A PSBATT Number of active tasks that share this
procedure.
>0B PSBTIM . Number of active tasks with memory {not
rolled) that share this procedure.
>0C PSBRLL Link to the next rolled segment (same as
described for TSBs).
>0E PSBRN1 Relative record number in roll.
>10 PSBRN?2 File/program file.
>12 PSBRRL Number of roll file records occupied by the
rolled procedure. During the initial bid,
this is the length of the procedure in bytes.
>14 *

A PSB may be released to the system table area by the memory
management routine named RELPSB. The PSB may only be released if
the procedure has zero attached active tasks, in which case both
the procedure memory and the PSB are released.

6-62 939153-9701

System Design Document Data Structures

6.10 TIME ORDERED LIST (TOL)

As described in Section 1, all allocated blocks of memory
(excluding the system table area) are linked on a doubly-linked,
circular, time ordered list. This is done in order to support
the 1least recently used algorithm used by DX10 memory management
to select blocks of memory for rollout.

Blocks of memory that may be on the TOL are: task memorvy,
procedure memory, and file management blocking (I/0) buffers
(maximum of 30 buffers on TOL). Whenever a block of memory is
accessed (that 1is, executed if it is a task; read or written if
it is a buffer), it is removed from its current position on the
TOL, and relinked at the beginning of the list when the access is
ended. An exception to this rule is procedure memory, which is
not removed from the TOL when procedures are used. Procedure
blocks, therefore, tend to go to the end of the list.

The overhead involved in maintaining the TOL consists of a TOL
header, located in the DSDATA module, and an overhead beet (32-
byte block) at the beginning of each allocated segment of memory.
The overhead beet is created by either the task loader (for tasks
and procedures) or buffer management (for blocking buffers).
Figure 6-22 shows the format of a TOL beet. Note that an
overhead beet 1is also used to maintain the linked list of free
memory blocks (see paragraph 6.11).

939153-9701 6-63

Data Structures

>04
>06

>18
>1A

>1C

>20

Field
Name

TOLLEN

TOLPTR

TOLFLK

TOLBLK

System Design Document

"""""" TOLPTR — POTNTER |
T T0LFLK — ForwARD LNk i
""""""" TOLBLK — BACK LINK |
""""" TOLTYP -- BLOCK TYPE |
__ +
NOT USED 'l:

|
__ +
BUFFLG -- FLAGS |

""""" EEEEEQ'ZZ’EE-E;EE'EEE&;{F"““‘""I

BUFBLK -—— PHYSICAL RECORD NUMBER l
(USED ONLY FOR BUFFERS)

Figure 6-22 TOL Overhead Beet

Description

Length, in beets, of the attached block of
memory including this overhead beet.

P01nter, which varies depending on how this
block is being used:

Task -- Pointer to TSB

Procedure -- Pointer to PSB

Buffer -- Pointer to LDT

Free block -- Pointer to next free block
Forward link to next oldest block.

Back link to next youngest block.

6

64 939153-9701

System Design Document Data Structures

Hex. Field
Byte Name Description
>08 TOLTYP Block type as follows:
1 = task
2 = procedure
3 = free block
0 = blocking buffer
-1 = 1list header
>0A Not used.
>18 BUFFLG Flags as follows:
Bit Meaning When Set
0 Buffer is busy
1 Write this block
2 This is the memory resident buffer
3 Release this buffer immediately
>1A BUFRLN Length of buffer (excluding overhead beet) in
bytes.
>1C BUFBLK Number of the file physical record that is
buffered in this buffer.
>20 *

6.1l1 SYSTEM LOG PARAMETER BLOCKS (SLPB)

Whenever a message is to be written to the system log, the
message information is queued to the system log message queue 1in
the form of a 12-byte system log parameter block (SLPB) plus
extensions. The SLPB is created by different routines depending
upon the source of the log message as follows:

Source Creation Routine

Device Errors SYSLQ, called by DDTEND, the end record
and statistic messages processor.

Task Errors SLPBQC, called by TMSDEN, the diagnostic
task.

User Messages SLSVC, the system log SVC processor.

Log Messages SLMFOT, the system log formatter.

Memory Errors Non-correctable errors in TMSINT;

correctable errors in TMSSHD.

239153-9701 6-65

Data Structures System Design Document

The SLPBs are queued for the system log formatting and output
task, SLMFOT, which formats each SLPB and writes the message to
the logging device and/or files. Figure 6-23 shows the format of
the SLPB.

Hex.
Byte
R et o o e o e %*
>00 | SLPB -- QUEUE LINK |
e e e e e e +
>02 | SLDAY -- JULIAN DAY |
e e +
>04 | SLHOUR -- HOUR | SLMIN -- MINUTE]
e e Bt +
>06 | SLFLAG -- SLB FLAGS | SLXKEY -- EXTENSION KEY|
et e T —— +
>08 | SLTYPE -- ERROR TYPE l
R e *
>0C *
Figure 6-23 System Log Parameter Block
Hex. Field
Byte Name Description
>00 SLPB Link to the next block on the queue.
>02 SLDAY Julian day.
>04 SLHOUR Hour.
>05 SLMIN Minute.
>06 SLFLAG Flags as follows:
Bit Meaning When Set
0 Subsequent messages have been lost

1-7 Not used

6-66 939153-9701

System Design Document Data Structures

Hex. Field
Byte Name- Description
>07 SLXKEY Extension key as follows:
0 Device extension with controller image
1 User call extension
2 Memory error extension
3 Statistics extension
4 Interrupt extension
6 Task extension
8 Cache memory extension
° Device extension with PRB
>08 SLTYPE Error type (task, DS01l, and so on.)
>0C *

Depending upon the source of the message, various extension
blocks are appended to the SLPB. The type of extension block to
be appended - is indicated by the extension key in the SLPB. The
format of each of the extension blocks is shown in the following
paragraphs.

939153-9701 6-57

Data Structures System Design Document

6.11.1 Device ﬁxtension with Controller Image (SLXKEY = 0)

Figure 6-24 shows the format of the SLPB Device Extension with
Controller Image.

Hex.
Byte

g S frmr ettt — e *
>0C | SLEC —- DX10 ERROR CODE| SLINID -- INSTALLED ID |
e S, T P, +
>0E | SLRNID -- RUNTIME ID | SLSTID -- STATION ID |
e e Fe e ———— +
>10 | SLLUNO -- LUNO | SLRTRY -- RETRIES |
i T R e T T —— +
>12 |SLSORF--S=SUCCESS F FAIL| NOT USED |
e T P e +
>14 |SLACNT-- # AFTER IMG WDS|SLBCNT--4 BEFORE IMG WDS|
e e R T T S +
>16 | |
~ AFTER IMAGE -
| |
e e e e ————————— e +
>26 | |
= BEFORE IMAGE -
: I |
B e e o e e e e e e e e e e e e e e e e 0 ot e et e e e e %

>3C *

Figure 6-24 SLPB Device Extension With Controller

6-68 939153-9701

System Design Document

6.11.2 User Call Extension to SLPB (SLXKEY =

Data Structures

1)
Figure 6-25 shows the format of the User Call Extension to the
SLPB.
Hex.
Byte
K e ——————— e e ———— *
>0C |SLMLEN -- MESSAGE LENGTH|USER MESSAGE BEGINS HERE|
T ------------------------ + (255 BYTES MAX.)
|
K e e e e e e ——_——_———— e e
Figure 6-25 User Call Extension to SLPB
6.11.3 Memory Error Extension to SLPB (SLXKEY = 2)
The Memory Error Extension applies to 16K RAMs only. Figure 6-26

shows the format of the Memory Error Extension to the SLPB.

Hex.
Byte
K o *
>0C SLBIT -- BIT IN ERROR SLROW -- ROW IN ERROR
(0-15, 6 ECC bits)
oo .
>0E SLCORR--CORRECTABLE SLBAS2-~CONTR BASE ADDR
ERROR? (Y=yes, N=no)
e gy gy O
>10 SLMEM2--AMOUNT OF MEMORY| SLTYP2 -- CONTROLLER
(Controller only) TYPE
et T S D e . +
>12 | SLADR2 -- TPCS ADDRESS OF CONTROLLER
R e e e e e e e e e e e ot e e e e e e e e
>14 *

939153-9701

Figure 6-26 Memory Error Extension to SLPB

6-69

Data Structures System Design Document

r

6.11.4 Statistics Extension to SLPB (SLXKEY = 3)

Figure 6-27 shows the format of the Statistics Extension to the
SLPB.

Hex.
Byte
B e e e e e e e e e e e e o e e o e o o . B 0 2 e e o et o e *
>0C i SLDEV3 -- DEVICE NAME
o e e +
>10 | SLREAD -- TOTAL READ OPERATIONS |
Fom e e e e e e —————————— +
>12 | SLWRT -- TOTAL WRITE OPERATIONS |
o e e +
>14 | SLTOT -- TOTAL OTHER OPERATIONS |
T s o ot ot e e i s e e e e o o o o i e e e 2 o i o " D o o o D D D o i o < o %*
>16 *

Figure 6-27 Statistics Extension to the SLPB

6.11.5 Interrupt Extension to SLPB (SLXKEY = 4)

Figure 6-28 shows the format of the Interrupt Extension to the
SLPB.

Hex,
Byte
e i e L P +
>0C |SLINT -- INTERRUPT LEVEL|SLCHAS -- CHASSIS OF INT|
e e - R e T +
>0E |SLPOS -- POS. IN CHASSIS]| RESERVED |
Y e T et T TP +
>10 SLDEV4 -- DEVICE NAME IF KNOWN
B e e e e e e e e et e et e o e e 2 e e e e e o L
>14 *

Figure 6-28 1Interrupt Extension to the SLPB

6-70 939153-9701

System Design Document Data Structures

6.11.6 Task Extension to SLPB (SLXKEY = 6)

Figure 6-29 shows the format of the Task Extension to the SLPB.

Hex.
Byte
K ————— e I *
>0C | SLEC -- DX10 ERROR CODE| SLINID -- INSTALLED ID |
Fo e e e +
>0E | SLRNID -- RUNTIME ID | SLSTID -- STATION ID |
Fmm e e e +
>10 | SLWP6 -- WP (WORKSPACE POINTER) l
o e +
>12 | SLPC6 -- PC (PROGRAM POUNTER) |
o e e e +
>14 | SLST6 -- ST (STATUS REGISTER) |
e e e e e e e e o e ot s o e e o o e o e e o . o8 e 2t i o 2 o o < o ot %*
>16 =*

Figure 6-29 Task Extension to the SLPB

6.11.7 Cache Memory Extension to SLPB (SLXKEY = 8)

Figure 6-30 shows the format of the Cache Memory Extension to the
SLPB.

Hex.
Byte
K ——— e ————————— *
>0C SLBANK -- CACHE BANK SLPARA -- ADDRESS PARITY
(A or B) IN BANK A (G or B)
T T o e ———————— e +
>0E SLPARB -- ADDRESS PARITY| SLBASS -- BASE ADDRESS
IN BANK B (G or B) OF CONTROLLER
o T SRR +
>10 SLMEM8 -- AMOUNT OF SLEVEN -- IS ERROR ON
CONTROLLER MEMORY EVEN COORDINATE? (Y/ N)
B i T T T S e +
>12 SLADR8 -- TPCS ADDRESS OF CONTROLLER
T e o o o o e e " " o o > > D P D > " B " > " o o " . o e o o e e e e e e e *
>la *

Figure 8-30 Cache Memory Extension to the SLPB

939153-9701 6-71

Data Structures System Design Document

6.11.8 SLPB Device Extension with PRB (SLXKEY = 9)

Figure 6-31 shows the format of the SLPB Device Extension with’
PRB.

Hex.
Byte
K e e e———— e e *
>0C | SLEC -- DX10 ERROR CODE| SLINID -- INSTALLED ID |
Fm e e R i +
>0E | SLRNID -- RUNTIME ID | SLSTID -— STATION ID |
R ,—— .- b e e +
>10 | SLLUNO —- LUNO | SLRTRY -- RETRIES |
o Fom +
>12 |SLSORF--S=SUCCESS F=FAIL| NOT USED |
o e Fm e +

v

]

>
—

SLPRB -- PRB THAT CAUSED THE
DSR TO REPORT THE ERROR
(12 Bytes)

>20 *

Figure 6-31 SLPB Device Extension with PRB

6-72 939153-9701

System Design Document Data Structures

6.12 INTERTASK COMMUNICATIONS (ITC) QUEUE

A task needing to communicate with other tasks uses the Intertask
Communications (ITC) queue. This allocated space in the system
‘table area holds up to 256 queue IDs, with each ID capable of
representing more than one message. Duplicate 1IDs can exist
since a task calling for a particular ID accesses the first ID of
the desired number in the queue. When a task accesses a messade,
it removes that message from the queue. Figure 6-32 shows the
format of the ITC queue.

Hex.
Byte
B e e o et 8 - 2 >t 0 >t o - - - - *
>00 | ITCLNK. -- ADDRESS OF NEXT ENTRY ON THE QUEUE |
e e +
>02 | ALWAYS ZERO | ITCQID--QUEUE IDENTIFIER|
Fom e T T R — +
>04 | ITCLEN -- LENGTH OF MESSAGE [
e +
>06 , i
- MESSAGE (S) ~
T e e o o e e o o o e e e e o e o S . e o e i e e S o " 7D " o > s o s *

Figure 6-32 1Intertask Communication Queue

939153-9701 6-73

Data Structures System Design Document

Hex. Field

Byte Name Description

>00 ITCLNK This is the address in the system table area
of the next ITC queue entry.

>02 Byte 2 is always zero.

>03 ITCQID This is the queue 1ID. Up to 256 1IDs are
possible.

>04 ITCLEN This is the length, in bytes, of the message
on the queue.

>06 MESSAGE (S) The message (or messages) begin at byte 6 of

the ITC queue entry.

6.13 SYSTEM OVERLAY TABLE (OVT)

The system overlay table (OVT) is a vector table that contains
the addresses of many system routine entry points, data
structures, 1lists, and queue anchors. It 1is used by disk
resident system tasks that are mot linked with the DX10 memory
resident code, but which must refer to and/or use informatigf
contained therein. The address of the vector table may :
obtained via a special SVC, Get System Pointer Table Address. By
using the table address as a base register value, a system task
can refer to any of the addresses within the table by name. A
template o¢f th overlay table, showing the 1labels defined,
follows.

h=-74 939153-9701

System Design Document Data Structures

v
* OVERLAY TABLE (ovT) *
Khkhkhdddkhhhhhhhhhhhhhhhhhhhhhhrhhdkhhhhdhhrhhkhdhdddhdddn®dkkkkk
0000 DORG

0000 0000 TSKLST DATA
0002 0000 uUPS DATA
0004 0000 PSBLST DATA
0006 0000 FIDMAP DATA
0008 0000 PFS$FCB DATA
000A 0000 ETSK DATA
000C 0000 BPT DATA
000E 0000 TSKSCH DATA
0010 0000 SYSPF DATA
0012 MMSRLM BSS

0016 FFFF FS$FLG DATA
0018 0000 FUTPDT DATA
001la 0000 PDTLST DATA
001C 0000 LDTLST DATA

START OF TSB”’S

ADDR SYSTEM TIME UNITS/SEC
START OF PSB”S

ADDR FIXED TASK ID BIT MAP .
ADDR SYSTEM PROGRAM FILE FCB PT
CURRENT EXECUTING TASK
BREAKPOINT TABLE

TASK SEARCH UTILITY

ADDR OF PATHNAME OF SYSTEM PROG
TSB CLEAN UP

FUTIL/UNLOAD LOCKOUT

FUTIL PDT CURRENTLY IN USE
START OF PDT’S

START OF LDT’S

[aen

001E TM$QRM BSS REM. SPEC. ENT. FROM SPEC. QUEU
0022 TMBIDO BSS BID TASK ROUTINE
0026 TMTREE BSS BUILD TREE LINKAGE

002A 0000 RSTRID DATA
002C 0000 RSTRSW DATA
002E 0000 SLDATA DATA
0030 MMSFND BSS
0034 BM$MPB BSS
0038 0000 TSKSTR DATA
003A 0000 SYSTAB DATA
003€ 0000 TABSIZ DATA
003E 0000 AQPTRS DATA
0040 0000 TDL DATA
0042 0000 KBTAB DATA
0044 SLPBQC BSS
0048 0000 SCIBMX DATA
004A 0000 SCIFMX DATA
004C 0000 MAPSHD DATA
004E 0000 YEAR DATA
0050 0000 UAHEAD DATA
0052 0000 SAHEAD DATA
0054 0000 KTSKWP DATA
0056 0000 KTSKPC DATA
0058 0000 CURMAP DATA
005A 0000 OADPTR DATA
005C 0000 OVLYQ DATA

USER RESTART ID

CRT “HELP” KEY DISABLE SWITCH
SYSTEM LOG DATA

ALLOCATE USER MEMORY ROUTINE
MAP BUFFER INTO ADDRESS SPACE
START OF NON~LINKED TSB”S
START OF SYSTEM TABLE

SIZE OF SYSTEM TABLE

PTR TO ACTIVE QUEUES

ADDR OF TIME DELAY LIST ANCHOR
PTR TO 913 STATUS BLOCKS
SYSTEM LOG QUEUEING ROUTINE
SCI BACRGROUND LIMIT

SCI FOREGROUND LIMIT
SCHEDULER MAP FILE POINTER
BLOCK OF CURRENT DATE AND TIME
ADDRESS OF MEM MGR HEADER
ADDRESS OF SYS AREA HEADER
SUBROUTINE TO KILL I/0 - WP
SUBROUTINE TO KILL I/O - PC
CURRENT MAP FILE POINTER
SYSTEM OVERLAY AREA

LOAD OVERLAY QUEUE

005E SOSLTO BSS LINK TO OVERLAY
0062 SO$BTO BSS BRANCH TO OVERLAY
0066 SOSRFO BSS RETURN FROM OVERLAY

006A 0000 ENDADD DATA
006C 0000 ENDLIM DATA
006E 0000 MEMSIZ DATA
0070 0000 BASADJ DATA
0072 0000 TMTOL DATA
0074 0000 DATA
0076 TM$SDOR BSS

LOAD ADR FOR FIRST USER TASK
LIMIT REG FOR ENDADD

SIZE OF MEMORY IN BEETS
ADJUSTMENT VALUE FOR BIAS REG
START OF TIME ORDER LIST

.J;OOOOOQ.&.-&.&QOOOOOOOOOO.{;OOOOOO.b.hooo.h-.h-’hoool O OOO0ODO0ODO0OODOOO

SERIAL ACCESS DOOR LOCKING

939153-9701 6-75

Data

007Aa
007E
0082
0084
0088
008C
0090
0094
0098
009C
00A0
00Aa4
00A8
00AC
00BO
00B4
00B8
00BC
00CO
00C4
00cCs
oocc
00DO
00D4

00D8-

oonC
00EO
00E4
00ES8
00EC
00F0
00F2
00F4
00Fé
00F8

00FC
0100
0104
0108
0locC
0110
0114
0118
011cC
0120
0124
0128
01l2a
012C
012E
0130
0132
0134

0000

0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000

Structures

TMSOPN
BMSFLS
TMSEXT
PUSH1
PUSH2
PUSH3
PUSH4
PUSH5
PUSH6
PUSH7
PUSHS
PUSH9
POPO
POP1
POP2
POP3
POP4
POPS5S
POP6
POP7
POP8
POP9
MMS$RUA
MMS$GSA
MMS$RSA
MM$GUA
SCRASH
TMQUE
TMDQUE
TMAQUE
QHEAD
STUNIT
FLG12
FLGWCS
RETRID
*
FMOPEN
FMCLOS
FMWRIT
WRTSEQ
CKWRIT
CKLOCK
MAPREC
UPDFDR
BM$MAP
BM$RD
BM$REL
UAHADD
ENDDXL
MEMSW
DIOPDT
TLDTSB

BIDTSB

BSS
BSS
DATA
BSS
BSS
BSS
BSS
BSS
BSS
BSS
BSS
BSS
BSS
BSS
BSS
BSS
BSS
BSS
BSS
BSS
BSS
BSS
BSS
BSS
BSS
BSS
BSS
BSS
BSS
BSS
DATA
DATA
DATA
DATA
BSS

BSS
BSS
BSS
BSS
BSS
BSS
BSS
BSS
BSS
BSS
BSS
DATA
DATA
DATA
DATA
DATA
DATA
DATA

$ O O OO i b b b b b B b B B B D BB RO

QOO OOOOC ik > b > >

6-76

System Design Document

SERIAL ACCESS DOOR UNLOCKING
BUFFER MGMT FLUSH ROUTINE
INFINITE EXTEND TIME SLICE
SAVE REG Rl

SAVE REGISTERS R1-R2

SAVE REGISTERS R1-R3

SAVE REGISTERS R1-R4

SAVE REGISTERS R1-R5

SAVE REGISTERS R1-R6

SAVE REGISTERS R1-R7

SAVE REGISTERS R1-R8

SAVE REGISTERS R1-R9

EXIT ROUTINE

RESTORE Rl

RESTORE REGISTERS R1-R2
RESTORE REGISTERS R1-R3
RESTORE REGISTERS R1-R4
RESTORE REGISTERS R1-R5
RESTORE REGISTERS R1-R6
RESTORE REGISTERS R1-R7
RESTORE REGISTERS R1-RS8
RESTORE REGISTERS R1-R9
RETURN USER AREA MEMORY

GET SYSTEM AREA

RETURN SYSTEM AREA

GET USER AREA

SYSTEM CRASH ROUTINE

GENERAL QUEUEING ROUTINE
GENERAL DEQUEUEING ROUTINE
QUEUE ON ACTIVE QUEUE

ADDR OF SVC QUEUES

CLOCK TICKS / SYSTEM TIME UNIT
MACHINE FLAG 0=/10,-1=/12 (VAL)
WCS FLAG 0=NO; l=YES - (VALUE)
RETURN RUN TIME ID

FMT FILE OPEN PROCESSOR
FMT FILE CLOSE PROCESSOR
FMT FILE WRITE PROCESSOR
SEQUENTIAL FILE WRITE
CHECK WRITE ACCESS

CHECK IF RECORD LOCKED
TRANSLATE BLOCK # TO ADU #
UPDATE FILE DESCRIPTOR RECORD
MAP IN TASK BUFFER
RETRIVE FILE BLOCK
RELEASE FILE BLOCK

BEET ADDRESS OF UAHEAD
LIMIT REG VALUE FOR DX-10
USER MEMORY SIZE SWITCH
ADDRESS OF DISC PDT

TSB FOR TASK LOADER

* * * RESERVED * * *
TSB FOR BID TASK

939153-9701

System Design Document Data Structures

Y136 0000 TOLBET DATA
J138 0000 OF$SFCB DATA
013A 0000 RFS$SFCB DATA
013C 0000 OF$SLDT DATA
013E 0000 PFlLDT DATA
0140 0000 PF2LDT DATA
0142 0000 PF3LDT DATA
0144 0000 RFSLDT DATA
0145 0000 SCRSHD DATA
0148 0000 SCRSTK DATA
014A 0000 SCR$SC DATA
014C 0000 SCRS$SDA DATA
014E 0000 TOLLNK DATA
0150 0000 RIDMAP DATA
0152 0000 CMEMSZ DATA
0154 0000 SCNPDT DATA
0156 0000 SYSPFN DATA
0158 0000 SCRS$SL DATA
015A 0000 Xy DATA
015C 0000 UNLPDT DATA
015E 0000 SCHDWS DATA
0160 0000 SLCSUS DATA
0162 0000 BMS$SIZ DATA
0164 0000 MMUMAX DATA

FIRST BEET TIME ORDERED

FCB ADDRESS OF OVERLAY

ROLL FILE FCB

OVERLAY FILE LDT

LDT FOR LUNO D

LDT FOR LUNO B

LDT FOR LUNO F

ROLL FILE LDT

HEAD ADR CRASH FILE
CYLINDER ADR CRASH

SECTOR ADR CRASH FILE
TILINE ADR CRASH FILE

TOL LINKAGE ROUTINE

ADR RUN TIME ID BIT MAP
MEMORY TO BE CRASH DUMPED
DSR POWER UP ROUTINES

NAME OF SYSTEM PROGRAM FILE
CRASH FILE UNIT SELECT

TRAP INITIALIZATION TABLE
UNLOAD PDT CURRENTLY IN USE
SCHEDULER WORKSPACE
SCHEDULER ENTRY POINT
LENGTH OF MEM RESIDENT BUFFER
MAXIMUM SIZE FREE USER AREA

0166 FMSRDM BSS READ MULTIPLE

016A BMSMP2 BSS CHECK MEMORY PROTECTION

J16E TM$INC BSS INCREMENT TMSEXT BLWP VECTOR
0172 TM$DEC BSS DECREMENT TM$EXT BLWP VECTOR
0176 TMSCLR BSS CLEAR TMSEXT BLWP VECTOR

017A 0000 SS$SPAT DATA
017C 0000 CTRYCD DATA
017E 0000 TMS$STO DATA
0180 0000 MM$PAK DATA
0182 0OVTSIZ EQU
0000 RORG

BEGINNING OF PATCH AREA

COUNTRY CODE

POINTER TO TMSTO

MEMORY PACK REQUEST FLAG (NOT A POIN

NOOOCO BB PR RROODODODOOODDODOOODODODOOOODODOODOOO

939153-9701 6-77

Data Structures System Design Document

6.14 MEMORY MANAGEMENT LISTS

In addition to the time ordered list (TOL), which is a list of
all allocated blocks of user memory (as opposed to system table
area), two free memory lists are maintained by memory management.

One is a list of free blocks of system table area and is headed
by the SAHEAD anchor in the DSDATA module. The list is singly
linked and ordered by increasing address of the free block. Each
free block contains the following overhead in the first four
bytes:

Bytes Descriggigg
0-1 Size of block in bytes
2-3 Link to the next block

When a block of system table area is allocated, the size of the
block is stored in the word immediately preceding the first word
of the allocated block (that is, negative offset).

The other list contains free user memory blocks, and is headed by
the UAHEAD anchor in the D$DATA module. The list is also singl!
linked and ordered by increasing address. Each block contains a

overhead beet as described in paragraph 6.8 on the Time Ordered
List (TOL).

6.15 SEQUENTIAL FILE BACKUP STRUCTURE

By using the Backup Directory command, a directory can be backed
up to a sequential file. The following are two examples of the
structures of the sequential files created by backing up the

directory of Figure 6-33 while using the control file of Figure
6_340

Figure 6-35 shows the expanded structure of the backup of a
program file. 1In Release 3.3, the block option was introduced.
The block option causes information to be blocked in physical
records of 9600 bytes (this may be altered in the Backup
Directory PROC). The records are packed by preceding each
logical record by a character count. An EOF (end of file) is
represented by a zero count. The first record (the label) is not
packed. The backup directory is still terminated by two physical
EOFs when blocking is selected. Also, the tape label is extended
from 7 words to 15 words.

6-78 939153-9701

System Design Document Data Structures

VCATALOG

GLEN ANNA

SRC oBJ LST SRC OBJ LST

O

® ® 0JO ©

©,

oBJ2

Figure 6-33 Directory To Be Backed Up

2278137

939153-9701 6-79

Data Structures

MOVE
EXCLUDE
MOIVE
EXCLUDE
MOVE
EXCLLLDE
MOVE
ENLi

System Design Document

«UT.GLEN. SRC, L SEQFILE

B

LT, GLEN. DB
E
LUT.GLENLLST
E

. UT. ANNA

Figure 6-34 Control

2278138

FOR S$PROGA 4

DATA S$PROGA

® N

Figure 6-35

File

INSTALL SVC FOR A

MODULE A

INSTALL SVC FOR B

MODULE B

6-80

Expanded Structure for a Program File

939153-9701

System Design Document Data Structures

6.15.1 Backup Directory with NOMULTI Option Selected

Figure 6-36 represents the format of a tape created by the Backup
Directory utility with the NOMULTI option specified. The
MULTI/NOMULTI option was available on Release 3.2 and earlier.
Later releases use the MULTI format exclusively. The only
difference between the two formats is a header used by the MULTI
format that begins every volume.

The first record written is the directory overhead record (DOR)
of the first directory. Following the DOR are the FDRs and data
records of the files under the directory. The end of the
directory is noted by an EOD marker. The EOD marker is a record
consisting of the following four bytes: EODb where b equals a
blank space.

939153-9701 6-81

Data Structures

2278139 (1/5)

Figure 6-36

System Design Document

DOR OF .UT.GLEN.SRC

FDR OF A

DATA OF A

ANARRARARETANNNNNNRY

FDR OF C

DATA OF C

NN EF AN

EOD MARKER

DOR OF .UT.GLEN.OBJ

FDR OF A

DATA OF A

NARRAMNETANIRRRNNY

FDR OF 0BJ2

FDR OF NEW

DATA OF NEW

Structure of .SEQFILE (Sheet 1 of 5)

6-82

939153-9701

System Design Document

NNV NEF ANNANNNN

2278139 (2/5)

Figure 6-36

939153-9701

FDR OF OLD

DATA OF OLD

EOD MARKER

FDR OF C

DATA OF C

MANNEFANNANNANN

EOD MARKER

DOR OF .UT.GLEN.LST

. FDR OF A

DATA OF A

[UNRARRRREZANNRANNNNY

ADR OF Al

ADR OF A2

Data 3tructures

Structure of .SEQFILE (Sheet 2 of 5)

6-83

Data Structures

2278139 (3/5)

Figure 6-36

System Design Document

FOR OF C

DATA OF C

ARRARMMREZARNINNRN

ADR OF Cl

EOD MARKER

DOR OF .UT.ANNA

FDR OF SRC

FDR OF X

DATA OF X

AARMARMREETARRRNAANY

FDR OF Y

DATA OF Y

AN EF ANNANNAN

FDR OF Z

Structure of .SEQFILE (Sheet 3 of 5)

6-84

939153-9701

System Design Document

2278139 (4/5)

Figure 6-36

939153-9701

DATA OF Z

MAANNNEE AN

EOD MARKER

FDR OF 0BJ

DFR OF X

DATA OF X

NN EF ANV

FDR OF Y

DATA OF Y

AN EF ANNANNAN

DFR OF Z

DATA OF Z

NN E0F ANNNNNN

EOD MARKER

FDR OF LST

Data Structures

Structure of .SEQFILE (Sheet 4 of 5)

6-85

Data Structures

2278139 (5/5)

System Design Document

FDR OF X

DATA OF X

MV EF AN

FDR OF Y

DATA OF Y

MM EF ANV

FDR OF Z

DATA OF Z

AAARRRRRNETARNIRNANY

EOD MARKER

EOD MARKER

ANMNER NN

ARRAARNNEZANNNRNY

Figure 6-36 Structure of .SEQFILE (Sheet 5 of 5)

6-86

939153-9701

System Design Document Data Structures

NOTE

An EOD marker is a record with EODb in the
first four bytes, where b equals a blank
space.

6.15.2 Backup Directory with MULTI Option Specified

The MULTI option is specified when a directory is being backed up
to magnetic tape and the directory spans more than one tape
volume.

If the MULTI option is specified, the first record written to the
sequential file 1is a header record (see tape 1, Figure 6-37).
The header record consists of the following words:

Word Contents

1-3 The ASCII characters **HDR¥*

4-7 Date and time as returned from SVC call
8 Tape volume number

9 Blocking factor

10-15 Reserved

After the header record, the file has the same structures as the
NOMULTI file.

When the end of tape 1is encountered by Backup Directory, the
record being written to tape is saved to be written to the next
tape. After the tape has been changed, a header record is
written to the new tape (see Tape 2, Figure 6-37). The header
record has the same format as the header record of the first
tape, except that the volume has been incremented by 1. The date
and time written will be the same as that of the first tape. The
record being written when the end of tape was encountered is then
written and the backup continues.

939153-9701 6-87

Data Structures

TAPE 1

TAPE 2

- 2278140

System Design Document

MULTI VOLUME HEADER
* % HDR *

DATE

voL 1

DOR OF ,UT.GLEN,SRC

FDR OF A

DOR OF .UT.ANNA

FDR OF SRC

FDR OF X

DATA OF X

4——— END OF TAPE

MULTI! VOLUME HEADER
X%HDR ,DATA ,vOL 2

CONTINUATION OF
DATA OF X

INARAARRNEEANNRNNN

FOR OF Y

DATA OF Z

AAMARARAREEANINNRNNY

EOD MARKER

EOD MARKER

< END OF DIRECTORY

IAAAAANEZZANMNNANN
’AARARARNEZANRRANNN

Figure 6-37 Back-up Directory Tape Format

6-88

939153-9701

System Design Document Data Structures

6.16 PHYSICAL RECORD BLOCK (PRB)

A Physical Record Block (PRB) resembles an I/0 SVC call block.
The difference between the two is that the PRB does not include
the first 2 bytes of the SVC call block (the 00 SVC code and the
SVC error code). Figure 6-38 shows the format of the PRB.

Hex.
Byte
Kt e e e Sy Uy Sy Sy *
>00 | PRBBOC -- SUB-OPCODE | PRBLUN -- LUNO l
o e et +
>02 |PRBSFL -- SYSTEM FLAGS | PRBUFL -- USER FLAGS |
Fomm e ———————— e +
>04 | PRBDBA -- DATA BUFFER ADDRESS]
Ty S +
>06 | PRBLRN -- LOGICAL RECORD LENGTH |
M Ay +
>08 | PRBCHT -- CHARACTER COUNT l
R ittt T +
>0A | PRBRPA -- REPLY BLOCK ADDRESS |
T N R B A R B +

Figure 6-38 Physical Record Block

939153-9701 6-89

Data

Hex:
Byte

>00
>01

>02

>03

>04

>06

>08

>0A

Structures

PRBDBA

PRBLRN

PRBCHT

PRBRPA

System Design Document

Description
This is the subopcode of the I/0 SVC code >00.

This is the logical unit number (LUNO)
assigned for the operation.

The system flags, set and reset by DX10, are
the diagnostic extension to the PRB.

The user flags can indicate many things. A
few examples are reply requested, variable
sector length, logical track addressing, and
I/0 by ADU number.

This is the data buffer address. (It must be
even.) :

This 1is the 1logical record length, which
specifies the number of characters that can be
stored in an input buffer.

The character count specifies the number of
characters to be output.

The reply block address is used for outpuﬂ

operations if the call block specifies a
reply.

5-90 939153-9701

System Design Document DX10 Data Base Modules

Section 7

DX10 Data Base Modules

7.1 GENERAL

Part of the memory resident DX10 kernel consists of the two DX10
data base modules, DND$SDATA and DXDAT2. The data base is split
into two modules in order to separate sysgen dependent data from
static data. Constant data is contained in DXDAT2. The DSDATA
module is built by GEN990, and contains all of the system
generation dependent data. The following paragraphs describe the
contents of the two data modules.

7.2 DSDATA

The DSDATA template is in file .DXMISC.SOURCE.D$SDATA on the
source disk. The first section of this module contains system
constants, list headers, 1list pointers, -and a table of user
defined SVCs. Examples of system constants include the time
slice wvalue and the size of the system table area. One example
of a list pointer is ETSK, a pointer to the task status block
(TSsB) of the currently executing task.

The next section of D$DATA contains TSBs for a file management
task (FMSTSK) for each disk drive and the task bidder (TMSBID).

A keyboard status block (KSB) table follows the TSBs. Each entry
in the table points to the KSB for the station whose 1ID
corresponds to the table index. The first table entry points to
the KSB for. STOl, the second to the KSB for ST02, and so on.

The next section of the D$SDATA module contains the physical
device table (PDT) for every device defined 1in the system,
including the KSBs for all terminals.

Following the PDTs are the global logical device tables (LDTs).
There 1is a global LUINO (represented by an LDT) assigned to every
disk drive, and one assigned to STOL.

The remainder of the DSDATA module contains system log data, the
system table area, the breakpoint table, the system overlay
areas, the interrupt and XOP trap initialization table (written
to locations >00->7F by the DX10 image loader), and the interrupt
decoding module,

939153-9701 7-1

DX10 Data Base Modules System Design Document

7.3 DXDAT2

The DXDAT2 source module is on the file named
.DXMISC.SOURCE.DXDAT2 on the source disk. The constant data base
module contains system SVC information, queue anchors for most
system queues, and TSBs for some link-in system tasks.

The first section of this module is a table of constants which
are often used by DX10 routines. The next section is a vector
table of SVC processor addresses, and 1is used by the svVC
interpreting code. Following the vector table is a table of the
lengths of all supervisor call blocks. This table is used by the
SVC interpreter, to find out how much call block needs to be
buffered before passing control to the SvVC processor.

The next section contains the anchors for most of the DX10
queues. Each anchor is of the form described in the data
structures section.
Following the queue anchors is the list of SVC definition blocks
which are wused by the SVC unbuffering task, SVCCLN, to decide
what information needs to be returned (unbuffered) to a task
which has issued an SVC processed by a queue server. The list is
terminated by a zero word.
The next section of DXDAT2 is a list of return field definitions 3
which is wused by SVCCLN to determine which fields within ‘
buffered supervisor call block need to be unbuffered into the
calling task. This list is also ended by a zero word.
The next section contains task status blocks for the following
linked-in system tasks:

* Task loader (TMSLDR)

* Overlay loader (TMS$SOVY)

* Disk manager (DM$TSK)

* SVC clean up task (SVCCLN)

* System overlay loader (SOVLDR).

The remainder of the DXDAT2 module contains the workspace used by
the scheduler to update the time and date.

7-2 939153-9701

System Design Document Commom System Routines

Section 8

Common System Routines

8.1 STACKING ROUTINES

Routines in DX10 wuse runtime stacks for ©passing parameters,
storing registers and return information, and loading registers.
In order to allow several routines that share a common workspace
to use the same stack, R1l0 is reserved in DX10 routines as a
pointer to the top of the stack (next available entry). Several
stack handling ‘routines, PUSHn and POPn, are used to store data
on, and retrieve data from a stack.

PUSHn is used to store registers R1-Rn on the stack, (where n is
less than or equal to 9). PUSH automatically increments the
stack pointer, R10, to point to the top of the stack. To call
PUSH, execute a BL to @PUSHn. For example:

BL @PUSH3 STORE R3, R2, Rl
or- .
BL @PUSHY STORE REGISTERS 9-1

PUSH stores the registers starting with the highest numbered
register (that is, a call to PUSH3 will store R3 first, then R2,
and finally Rl), and alwavs clear RO.

Before calling PUSH, a routine must store its return address
(usually the value of R1l, if the routine was called via a BL
instruction) on the stack. The example at the end of this
description shows the general DX10 convention for using PUSH.

POPn is used to load registers R1-Rn from the top n words of the
stack, and to return from a subroutine. Again, n is less than or
equal to 9. POPn automatically decrements the stack pointer,
R10, to point to the new top of the stack. Registers are loaded
starting with Rl. POP is entered by executing a B instruction to
POPn. ‘

939153-9701 8-1

Common System Routines System Design Document

POPO is a special entry point into POP, and is always executed at
the end of any call to POP. POPO loads R1ll with the top word of
the stack. This should contain the address of the word following
the instruction which branched to the routine now using POP. If
RO is zero (that is, the routine is not returning any errors),
control returns to the word following the address in R1l. If RO
is non~-zero (error condition) but the value of the word addressed
in R11l is zero (no error return address), control also returns to
the word following the address in R11l. If RO and the word
addressed by R1ll are both non-zero, control returns to the
address contained in the word pointed to by Rll.

A conventional call to a subroutine which uses PUSH and POP is:

BL @SUBR Call to subroutine
DATA ERROR Error return address
NORML EQU $ Normal return point

The following example shows such a subroutine call:

8-2 939153-9701

System Design Document i Commom System Routines

REF. PUSHS,POP5S
COPY .SYSTEM.TABLES.ORS
*

* OFFSETS FOR REGISTER STACK
%

OR1 EQU -2
OR2 EQU -4
OR3 EQU -6
OR4 EQU -8
OR5 EQU -10
OR6 EQU -12
OR7 EQU -14
OR8 EQU -16
OR9 EQU -18
STACK BSS 30%*2 CREATE A 30-WORD STACK
%*
WS BSS 16*2 CREATE A WORKSPACE
*
*PHIS IS THE MAIN PROGRAM
MAIN LI R10,STACK INITIALIZE STACK POINTER, R10
*
* *
* .
BL @SUBR CALL SUBROUTINE
DATA ERROR THIS IS THE ERROR RETURN ADDRESS
NORML EQU §$ THIS IS THE NORMAL RETURN
* .
* ®
* L]
RT RETURN TO THE CALLING PROGRAM

ERROR EQU $

*THIS IS THE SUBROUTINE

SUBR MOV R11l,*R10+ STORE RETURN ADDRESS ON STACK
BL @PUSHS5 STORE R1-R5, CLEAR RO
k3
*)
EXAMPL EQU $ NORMAL EXIT
MOV @RVAL,@OR2(R10) STORE RETURN VALUE IN STACKED R2
B @POP5 RESTORE R1-R5, RETURN TO MAIN
%*
SUBERR EQU $ ERROR EXIT
LI RO, ERRCOD PUT ERROR CODE IN RO :
B @POPS RESTORE R1-R5, TAKE ERROR RET IN MAIN
END :

939153-9701 8-3

Common System Routines System Design Document

Elements of a stack may be accessed without using PUUSH and POHE
by using offsets into the stack indexed by the stack pointery
R10, (as in EXAMPL above). The top word on the stack is at
address @-2(R10), the next word is at @-4(R10), and so on down
into the stack. Offsets for registers pushed onto a stack are
given in .SYSTEM.TABLES.ORS.

8.2 QUEUEING ROUTINES

There are six routines used within DX10 to add or delete entries
from the various data queues. The routines are memory resident,
and are located in the module TMSQUE. The routines are: TMAQUE,
TMAQO, TMQUE, TMDQUE, TMTSBQ, and TMSQRM. These routines may be
entered by memory resident system tasks by executing a BL to the
name of the routine. 1Input register and stack requirements are
given for each routine in the following paragraphs. Disk
resident system tasks may access all of the routines except TMAQO
via the system overlay table.

8.2.1 TMQUE

This is the general queueing routine. It places the specified
data structure (any type) on the specified queue. The address of
the structure to be queued is expected to be in R2. The addresf§
of the gueue anchor should be in Rl. TMQUE requires from 6 to
words of stack, according to the following conditions:

1. The queue has no dedicated server task--6 words.

2. The queue has a dedicated, memory resident server
task--12 words.

3. The queue has a dedicated, disk resident server
task--24 words.

When the data structure is placed on the queue, TMQUE checks two
conditions. If the queue has a dedicated server task, and the
task is terminated, TMQUE bids the task (calls TMBIDO). If the
queue server is in memory in state >24, it is activated directly.
If the queue is a TSB queue (entries are TSBs), then the TSB that
has just been queued 1is given the task state contained in the
queue anchor (see paragraph 6.2 on gqueues).

8-4 939153-9701

System Design Document Commom System Routines

8.2.2 TMAQUE

This routine puts the specified TSB on the active queue for that
task®s priority. TMAQUE uses six words of a stack. The routine
expects Rl to contain the address of the TSB to be queued. The
TSB flags are checked to see if the task has been allocated
memory. If it does not have memory, TMAQUE calls TMAQU to put
the task on the waiting on memory queue, TMWOM. 1If the task
already has memory, TMAQUE checks the TSB priority, and calls
TMQUE to put the task on the active gqueue for that priority,

8.2.3 TMAQO

This routine puts the specified TSB on the active queue at
position one for priority one tasks. The task loader and the
system overlay loader use TMAQO so that tasks which have just
been loaded will get a good chance of executing at 1least once
before being rolled.

TMAQO uses six words of stack. The routine expects Rl to contain
" the TSB address of the task to be queued.

8.2.4 TMTSBQ

This routine queues the specified TSB on the specified queue.
TMTSBQ is actually a second entry point to TMQUE, and is
therefore the same routine.

8.2.5 TMDQUE

This 1is the general dequeueing routine. It is used to remove an
entry from the head of the specified queue. The routine uses one
word of a stack. The address of the dequeued anchor should be in
R1l. TMDQUE will return the address of the dequeued data
structure in R1l2, or an error message in RO. The only error code
is 1, which means the queue is empty.

8.2.6 TMSQRM

This routine is wused to remove any specified entry from the
specified queue. It requires one word of stack. The address of
the queue anchor should be in R1l, and the address of the
structure to be removed from the queue should be in R2. TMSQRM
searches through the queue for an entry with the address
specified in R2. If no such entry is in the queue, an error code
of 1 is returned in RO. Otherwise, the structure is removed from
the queue.

939153-9701 8-5/8-6

System Design Document Description of DX10 Routines

Section 9

Description of DX10 Routines

9.1 GENERAL

This section breaks the major DX10 routines into functional
categories (such as task management, file management, and so on,)
and describes each routine briefly. Several tables in the
section show how you can find the routine source on a DX10 source
disk.

9.2 SVC PROCESSING

SVC processing includes individual SVC processing routines and
several overhead routines that are involved in decoding SVCs and
buffering and unbuffering supervisor call blocks. Tables 9-1 and
9-2 show the routines that process SVCs.

939153-9701 9-1

Description of DX10 Routines

System Design Document

Table 9-1 SVC Overhead Routines

Routine Source Module Pathname
SVCINT .DXMISC.SOURCE.SVCINT
SVCBUF .DXMISC.SOURCE.SVCBUF
SVCFND .DXMISC.SOIJRCE.SVCRBUF
SVUBUF .DXMISC.SOURCE,SVCBUF
SVCCLN .DXMISC.SOURCE.SVCCIN
MAPSWT .DXMISC.SOURCE .MAPSWT

Description
Interprets p.(0) 15 by
accessing the user”s call
block and SVC code. Looks up
the SVC processor address in
SCTAB (DXDAT3 module), and
SVC map file offset in SVCFLG
{DXDAT4 module), then
transfers control to that
address.

Buffers user call blocks for
SVCs processed by queue
serving tasks into the system
table area. Calls TMQUE to
gueue the buffered call
block, bids the queue server,
and calls SVCFND.

Looks up the S8SVC definition
block in the DXDAT4 table,
SVCDEF.

Buffers the user”s call block™
and any expansion blocks (as
defined in the definition
block retrieved by SVCFND)
into system table area.

Unbuffers the buffered call
block after a queue serving
svc processor terminates.
SVCCLN may have to cause the
task to be rolled in. The
task is reactivated after the
unbuffering, and the buffer
is released to the system
table area.

When the SVC does not reside
in the same map file as the
scheduler map file, this
module is called from SVCINT.
This routine loads the
appropriate map file for the
given SVC.

939153-9701

System Design Document Description of DX10 Routines

Table 9-2 SVC Processors -—- Part 1 of 2
XOP (X) Source
svC svC Queue (Q) Processor Module
Code Title Server Name Pathname
00 I/0 X DXIOS .DXIO.SOURCE.DXIOS
0l Wait for I/0 X WAITIO .DXIO.SOURCE.WAITIO
02 Time Delay X TDLY .TSKMGR.SOURCE.TMS$SFUN
03 Date and Time X DTTIM .TSKMGR.SOURCE.TMSFUN
04 End of Task Q ENDTSK .TSKMGR.SOURCE.TMSFUN
05 Bid Task Q TMSSBD .SYSTSK.SOURCE.TM$SBD
06 Unconditional Wait X UNCDWT . TSKMGR.SOURCE.TMS$FUN
07 Activate Suspended X ACTTSK .TSKMGR.SOURCE . TM$FUN
Task
09 Do Not Suspend X HOTSK .TSKMGR.SOURCE.TMSFUN
0a Convert Binary to X CBDA .DXMISC.SOURCE.CNVRSN
Decimal
0B Convert Decimal to X CDAB .DXMISC.SOURCE.CNVRSN
Binary
oc Convert Binary to X CBHA .DXMISC.SOURCE.CNVRSN
Hexadecimal
0D Convert Hexadecimal X CHAB .DXMISC.SOURCE.CNVRSN
to Binary ,
0E Activate Time Delay X ATDLYT . TSKMGR.SOURCE . TMSFUN
task
oF Abort I/0 (LUNO) X ABTIOX .DXIO.SOURCE.ABTIOX
10 Get Common Data X GETCOM .TSKMGR.SOURCE.TMSCMN
Address
11 Change Priority X CHGPRI . TSKMGR.SOURCE.TMSFUN
12 Get Memory Q MMSGTM .MEMMGR .SOURCE .MM$SVC
13 Release Memory X MMSRTM .MEMMGR .SOURCE.MMS$SVC
14 Load Overlay (o] TMSOVY .TSKMGR .SOURCE. TMSOVY
15 Disk File Utility Q FUTIL .FUTIL.SOURCE.FUS
16 End of Program Q ENDPGM .TSKMGR.SOURCE.TMSFUN
17 Get Parameters X GETPRM .TSKMGR.SOURCE.TMSFUN
1B Return Common Data X RETCOM . TSKMGR . SOURCE . TMSCMN
1c Put Data X PUTDAT . TSKMGR.SOURCE.TMSIQ
1D Get Data X GETDAT . TSKMGR.SOURCE.TMSIQ
1F Scheduled Bid Task Q TMS$SBD .SYSTSK.SOURCE.TMS$SBD
20 Install Disk Volume Q INSTAL .SYSTSK.SOURCE.INSTAL
21 System Log SVC Q SLSVC .SYSTSK.SOURCE.SYSLGY
22 Disk Manager Q DMSTSK .DSCMGR.SOURCE.DMSTSK
24 Suspend Awaiting X SUSPQI . TSKMGR.SOURCE.TMSROT
Queue Input
25 Install Task Q PFSLIN (SYSTEM TASK)
26 Install Procedure Q PFSLIN
27 Install Overlay Q PFSLIN
28 Delete Task Q PFSLDE (SYSTEM TASK)
29 Delete Procedure Q PFSLDE
2A Delete Overlay Q PFSLDE
2B Execute Task Q EXCTSK .TSKMGR.SOURCE .TMSFUN
2C Read/Write TSB X TSBRWT . TSKMGR.SOURCE.TSBRWT

939153-9701 9-3

Description of DX10 Routines System Design Document

Table 9-2 SVC Processors -- Part 2 of 2
XOP (X) Source
SvC svC Queue (Q) Processor ModuTe
Code Title Server Name Pathname
2D Read/Write Task Q TMS$SBID .TSKMGR.SOURCE.TMS$SBI D
. TSKMGR.SOQURCE.TMSRW O
« TSKMGR.SOURCE.TMSRW T
2E Self Identification X TMSSID .TSKMGR.SOURCE.TMSFU N
2F End Action Status X TMSEAS .TSKMGR.SOURCE.TMSEA S
30 Get Event Character X GTEVNT «DXIO.SOURCE.GETEVT
31 Map Program Name Q PFSLMN (SYSTEM TASK)
to ID
32 Get Overlay Table X GTOVYT « TSKMGR.SOURCE.TMSFU N
Address
33 Kill Task Q SVCKRIL «SYSTSK.SOURCE.SVCKI L
34 Unload Disk Volume Q INSTAL «SYSTSK.SOURCE.INSTA L
35 Poll Status of Task X TMSST .TSKMGR.SOURCE.TMSFU N
in Terminal Task Set
36 Wait on Multiple X WANYIO «DXMISC.SOIJRCE.WAITI O
Initiate I/Os
37 Assign Space on Q PFSLAS (SYSTEM TASK)
Program File
38 Initialize Disk Q INVOL .SYSTSK.SOURCE. INVOL
Volume
39 Get Event Character X GTEVTL .DIO.SOURCE.GETEVT
3B Initialize Date X SDTIM .TSKMGR,.SOURCE.TMSDT M
and Time
3E Reset End Action X RSTEAC .TSKMGR.SOURCE.TMSFU N
3F Retrieve System Data X .TSKMGR.SOURCE.TMSFU N

9.3 BID TASK SUPERVISOR CALL —-- CODE >05

The Bid Task supervisor call is included in DX10 3.4 and later
releases for compatibility with DX10 2.X releases. Because this
SVC may be deleted in later releases, you should avoid using the
Bid Task SvC. The System Design Document discusses it for
informative purposes only.

Use the Bid Task SVC only for tasks that have been installed on
the single system program file and that were designated as non-
replicatable. The operating system task TMSBD transmits the call
to an Execute Task (>2B) SVC. The task is bid with no associated
station, and the calling task is not suspended.

The call block for the Bid Task supervisor call is eight bytes in

length and must be aligned on a word boundary. The contents of
each byte in the supervisor call block are as follows:

9-4 939153-9701

System Design Document ' Description of DX10 Routines

Byte 0 Contains the code for the Bid Task supervisor call
and must be >05.

Byte 1 Used by the system to return an error code, if
necessary.

Byte 2 Contains the installed ID of the task to be executed
on the system program file.

Byte 3 Reserved.

4

Bytes 4-7 Used to pass user-specified parameters to the called
task. The called task must issue a Get Parameters
supervisor call to obtain the parameters.

The following example of a'Bid Task supervisor call specifies
that task >5E be loaded from the system program file. The ASCII

representation of the characters HELP are passed to the called
task.

EVEN FORCE ALIGNMENT ON A WORD BOUNDARY
BIDT BYTE >05 CODE FOR BID TASK
ERRC BYTE >00 SET BYTE ONE TO ZERO
ID BYTE >5E INSTALLED ID OF TASK TO BE EXECUTED
BYTE >00 RESERVED (SET TO ZERO)

PARMS TEXT “HELP” FOUR BYTES PASSED TO CALLED TASK

Within the procedure portion of the calling task, this statement
initiates the Bid Task supervisor call:

XOP BIDT,15

Error codes returned in byte 1 of the supervisor call block are
as follows:

Error Code Meaning
>04 Signifies successful completion. This code
is for compatablity with previous releases.
>FF The specified task is not on the system
program file, or the specified task is on
the system program file, but is

replicatable, or an error occurred when the
translated Execute Task SVC was performed.

Other A task state 1is returned. This 1is the
state of the called task if it is already
in execution. Or, if a currently running
task allocated the run ID corresponding to
the called task”s installed ID, that task’s
state is returned as an error code.

839153-9701 9-5

Description of DX10 Routines System Design Document

9.4 TASK MANAGER
The main routines involved in task management are the scheduler,
task loader, overlay loader, system overlay loader, and the task
managing SVCs. The task loader also works closely with memory
management routines, which the next paragraph discusses.
Table 9-3 shows the major task management routines.

Table 9-3 Task Management Routines —— Part 1 of 5

Routine Source Module Pathname Description

TM$SHD .TSKMGR.SOURCE. TM$SHD Task scheduler. Updates
time, date, and delavyed
tasks, bids SCI, and selects
the next task to execute.

TMSLDR .TSKMGR . SOURCE . TMSLDR Task loader. Uoads tasks and
procedures, rolls out quieted
tasks and tasks that issue
Get Memory SVCs.

TMSOVY .TSKMGR.SOURCE.TM$SOVY Overlay loader. and‘
overlays requested by tasks.
Requests are gueued for the
overlay loader, which loads
the overlay and calls TMAQUE
to put the task on an active
queue. TMSOVY calls file
management routines to read
the overlay from disk.

SOVLDR .DXMISC.SOURCE.SOVLDR System overlay loader.
Serves the queue SOVYQ. TSBs
of tasks that have called
system overlays are queued on
sSovYQ. SOVLDR loads the
correct overlay and
reactivates the task, calling
TMAQO.

SOSLTO .DXMISC.SOURCE.SOSCPR Link to system overlay. A
task or an overlay calls this
routine to 1link to a system
overlay. If the desired
overlay is in memory, the TSB
is altered to 1link in the
overlay; otherwise, the TSB
is queued for SOVLDR and thg
task is suspended.

9-6 939153-9701

System Design Document NDescription of DX10 Routines

Table 9-3 Task Management Routines -- Part 2 of 5
Routine Source Module Pathname Description
SO$BTO .DXMISC.SOURCE.SOSCPR Branch to system overlay. A

system overlay calls this

routine to branch to another
If the desired

Ve away s = ~LTia

overlay is already in memory
the calling task®s TSB is
modified; otherwise, the TSB
is queued for OVLDR and the
task is suspended.

SOSRFO .DXMISC.SOURCE.SOSCPR Relink from system overlay.
. A system overlay calls this
routine to relink back to the

last task or overlay that

performed a link to overlay.

If the relink is back to a

task, or back to an overlay

that is in memory, control is

transferred immediately. If

the relink is back to an

overlay no longer in memory,

the current task is suspended

and the TSB is Qqueued for

SOVLDR.

TM$SDOR . TSKMGR.SOURCE . TM$DOR Enforce access privileges to
door of a particular
structure. The door is

represented as a queue. If a
task is accessing a data
structure, the tdask wanting
access is queued and
suspended. Queued tasks will
be unsuspended and gain
access when the current
accessing task exits the door
via TMSOPN.

TMSOPN . TSKMGR . SOURCE . TMSOPN Opens the door to a
restricted access structure.
This routine is called by a
task to release access to the
door. The next task in the
queue is unsuspended and the
door marked open. :

939153-9701 9-7

Description of DX10 Routines

Routine Source Module Pathname
TM$SCLK . TSKMGR . SOURCE . TMSCLK
TRAPRT - TSKMGR . SOURCE . TM$RTN
XOPRT1 - TSKMGR . SOURCE . TM$RTN
XOPRT1A « TSKMGR . SOURCE . TM$RTN
SCHRET . TSKMGR . SOURCE . TMSRTN
SCHRETA -« TSKMGR . SOURCE . TMSRTN
XOPRT2, - TSKMGR.SOURCE . TMRTN
XOPRT3 - TSKMGR. SOURCE . TMRTN
9-8

'First

System Design Document

Table 9-3 Task Management Routines -- Part 3 of 5

Description

Clock interrupt handler.
Resets the timer interrupot,
updates the second counter,

clock unit counter and time
slice counter.

Return point from all
interrupt PDrocessors.
Returns control to the

interrupted task (if its time
slice has not expired), XOP,
or other interrupt processor.

return from XOP
processors. Returns control
to the executing task if its
time slice has not expired.
Otherwise, it saves the state
of the executing task and
recurns control to the
scheduler.

XOPRT1A is an alternate entr“
point to XOPRT1. Upon
entering XOPRT1lA, the current
map file (CURMAP) is force-
switched to the Scheduler map
file (CURMAP = MAPSHD). Then
the XOPRT1 entry point is
branched to. The alternate
entry point is required for a
user SVC exit.

Return to scheduler by force.
This routine is an alternate
entry point to SCHRET for
user 3VC exits. SCHRETA
branches to SCHRET.

Return points from XOP

processors that want the
calling task suspended. Task
execution is halted and
control returns to the

scheduler,

939153-9701

System Design Document

Description of DX10 Routines

Table 9-3 Task Management Routines -- Part 4 of 5

Routine Source Module Pathname
XOPRT2A, .TSKMGR.SOURCE.TMRTN
XOPRT3A .TSKMGR . SOURCE . TMRTN
TM$DPR .TSKMGR . SOURCE . TMSDPR
TOLLNEK .TSKMGR . SOURCE . TMS TOL
TOLDEL .TSKMGR . SOURCE . TM$ TOL
TOLTDL . TSKMGR .. SOURCE . TM$ TOL
TOLTLK .TSKMGR . SOURCE . TM$TOL
TOLTSG .TSKMGR.SOURCE.TM$TOL
.TSKMGR . SOURCE . TMALPR

TMALPR

939153-5701

— . . -

Alternate return points from
XOP processors that want the
calling task suspended. Task
execution is halted, the
program branches to XOPRT2 or
XOPRT3, which then transfers
control to the scheduler.
The alternate points ara
necessary in user sSvC
applications.

Dynamic task priority

. routine. The Device Driver

Task calls this routine to
adjust the priority of a task
installed with dynamic
priority according to the
type of I/0 it is performing.

Links a block of memory onto
the head of the time ordered
list (TOL).

Delinks the specified block
of memor y from the time
ordered list.

Delinks the task segment of
the specified task from the
TOL.

Links the task segment of the
specified task onto the head
of the TOL.

Calculates the beet address
at the start of the task
segment of the specified
task.

Allocates memory for a
procedure. The procedure can
be in memory already, on 2
program file, or on the roll
file. The task loader
(TMDR) calls this routine.

Description of DX10 Routines System Design Document

Table 9-3 Task Management Routines -- Part 5 of 5
Routine Source Module Pathname Description
TMIMAG «TSKMGR.SOURCE.T™IMAG Loads the program segment

from an image file. Toads
either a task or procedure
from a program file or the
roll file. TMLDTK and TMLDPR
call this routine.

TMLDPR «TSKMGR.SOURCE . TMLDPR Load a procedure from disk,
either from a program file or
the roll file. The task
loader (TMDR) calls this
routine.

TMLDTK .TSKMGR . SOURCE . TMLDTK Load a task segment from
disk, either from a program
file or the roll file,. The
task loader (TMDR) calls
this routine.

TMRDAL . TSKMGR.SOURCE . TMRDAL Allocates space in the roll

' file. The allocation
information is set up in th

TSB or PSB of the segmengT

being rolled. The TSB or PSE

is 1linked onto the roll

directory list. The task

loader (TMDR), and memory

management call this routine.

TMRDDL . TSKMGR .SOURCE . TMRDLL, Delinks the specified segment
from the roll directory list,
causing the space occupied by
the rolled segment to become
available.

RSET12 « TSKMGR.SOURCE.TMSINT Clears the Protection,
Overflow, and WCS flags in
the status register. This
must be called whenever
entering map 0 from an INT or
XOP.

9-10 939153-9701

System Design Document Description of DX10 Routines

9.5 MEMORY MANAGER

Memory management routines perform such functions as allocating
memory, releasing memory, and rolling out tasks, procedures and
buffers. A special connection of routines, called bhuffer
management, allocates, deallocates, reads, and writes file I/0
buffers. Table 9-4 shows the major memory management routines.
Table 9-5 shows the buffer management routines, which file
management usually calls.

Table 9-4 Memory Management Routines -- Part 1 of 2

Routine Source Module Pathname Description

MMSGSA ~ ,MEMMGR.SOURCE.MMS$MGR Get systenm table area.
Searches the free system area
list for a block of the
specified length and tries to
allocate it.

MMSRSA «MEMMGR.SOURCE . MM$SMGR Releases system table area.
Releases the specified block
of system area, and places it
on the free list. The block

is consolidated with
neighboring blocks if
possible.

MMSGUA -« MEMMGR . SOURCE .MMSMGR Gets user area. Searches the

free user memory (all memory
beyond DX10) 1list for a block
of the specified 1length and
tries to allocate it.

MMSRUA +«MEMMGR . SOURCE .MM $MGR Releases user area. Links
the specified block of user
memory onto the free list and
tries to consolidate it with
neighboring blocks.

MMS$GSO +MEMMGR . SOURCE .MMSMGR Gets system table area,
clears it to =zero. This
routine calls MM$GSA, then
clears the allocated block
(1f successful) to zero.

939153-9701 9-11

Description of DX10 Routines

System Design Document

Table 9-4 Memory Management Routines -- Part 2 of 2

Routine

Source Module Pathname

MMSFND

MMSSCN

MMSROL

MM$RLM

RELPSB

- MMSTSB

.MEMMGR . SOURCE .MMS$FND

.MEMMGR . SOURCE .MM$SCN

.MEMMGR . SOURCE .MM$SROL

.MEMMGR . SOURCE .MM$TSK

.MEMMGR . SOURCE .MM$TSK

.MEMMGR.SOURCE .MM$TSK

9-12

Description

Finds user memory. All
routines that need a block of
user memor y call this
routine. TMSDOR and TMSOPN
restrict entry to the routine
to serial access. MMSSCN
first checks free memory,
then scans the ™oL for
rollable blocks. 1€ a
rollable block is available,
MMSSCN rolls it.

Scans the TOL for a rollable
block. MMSFND calls this
routine to get a rollable
block of memory if there is
not a large enough block of
free memory. Rollable blocks
may be task, procedure or
Luffer memory.

segment to the roll fi
This routine rolls a block %o
disk, assuming that roll file
space is already allocated.
Calls BMSMAP and FMSWTM.

Roll a task or procedt.{e

Release task memory routine.
Delinks the task memory of
the specified task from the
TOL and releases it. 1€
there are attached
procedures, their attached
task counts are decremented.
If the count for a procedure
goes to zero, its memory and
PSB are released.

Releases the specified PSB
and procedure memotry.

Release TSB and memory of a
task suspended awaiting queue
input. This routine searches
the TSB list for a suspended
queue serving task. If it
finds one, it releases the
task”s memory and TSB.

939153-9701

System Design Document Description of DX10 Routines

Table 9-5 Buffer Management Routines -- Part 1 of 3
Routine Source Module Pathname Description
BMSRD .MEMGR.SOURCE.BMSRD Finds a particular file

blocking buffer (equal to the
file physical record) and
maps it into the calling task
(usually file management) .
T£ the buffer is in memory,
BMSRD delinks it from the TOL
and maps it in. Otherwise,
it allocates memory, reads
the correct file physical
-record, then maps it in.

BMSNEW .MEMMGR . SOURCE . BM$RD Same as BMSRD except that it
does not read file records.
BMSNEW is used to avoid
reading a sequential file
record when preparing to
write it.

BMSCLO .MEMMGR .SOURCE .BMS$CLO Closes files. This routine
writes all modified blocks of
the file for a given LUNO

- (LDT) that are still in
memory. The blocks remain on
the TOL until MMSFND needs
them.

BMSFLS .MEMMGR . SOURCE . BMSCLO Flushes blocks. Returns all
memory occupied by buffers
for the specified file.
Modified buffers are written
to the file before being
released. Memory resident
buffers are marked empty and
left on the TOL.

939153-9701 9-13

Description of DX10 Routines

System Design Document

Table 9-5 Buffer Management Routines -- Part 2 of 3

Routine

BM$SCH

BMSUPD

BMSMAP

BMSMPB

BMSRDM

BMSW

Source Module Pathname

.MEMMGR . SOURCE . BM$CLO

.MEMMGR.SOURCE .BMS$CLO

.MEMMGR . SOURCE . BMSMAP

.MEMMGR .SOURCE . BMSMAP

«.MEMMGR . SOURCE . BMSRDU

.MEMMGR.SOURCE .BMSW

9-14

‘Description

Searches for a particular
buffer on the TOL. The
search can be restricted by
the following buffer
criteria: modified ot
unmodified buffer with equal
LDT address, modified buffer
with equal IDT address, or
modified buffer with equal
FCB address.

Updates file. This routine
calls BMSSCH to find a buffer
on the TOL according to the
desired criteria. I1f the
buffer is modified, it is
written to the file.

Maps the specified number of
bytes from the specified
task”’s memor y into the
calling task.

Maps the specified number or
bytes from general memory
into the calling task. This
routine is given a beet
address that begins the area
to be mapped.

Reads and updates a buffer.
This routine calls BMSRD to
get the specified file
buffer. If the buffer has
been modified, it is written
to the file.

Writes a buffer. This
routine writes the specified
buffer, which is mapped into
the calling task, to the
specified physical record of
the file (the destination
address need not be the same
as the source file record
from which BMSW read the
buffer).

939153-9701

System Design Document

Table

Routine

Description of DX10 Routines

9-5 Buffer Management Routines -- Part 3 of 3

Source Module Pathname

BMSMPK

BMSIOR

BMSLNK

BMS$DEL

BMSREL

BMSRMD

BMSTRM

BMSWRN

939153-9701

.MEMMGR.SOURCE.BM$MAP

.MEMMGR .SOURCE .BMS$W

.MEMMGR.SOURCE.BMSW

.MEMMGR.SOURCE.BMSW

.MEMMGR . SOURCE . BMSREL

.MEMMGR.SOURCE.BMS$REL

.MEMMGR . SOURCE . BMSREL

.MEMMGR . SOURCE . BMSRDU

9-15

‘Description

Checks a mapped segment for
possible write protection
violation.

Sets up the I/0 call block to
write the specified buffer to
the specified record in the
file. After building the
call block, it calls FMSIO to
perform the 1/0.

Sets up the I/0 call block to
read the specified buffer
from the specified record on
the file. Calls FMSIO to
perform the I/0.

Links the specified buffer
onto the TOL.

Delinks the specified buffer
from the TOL.

Releases a buffer. to buffer
management. Unmaps a buffer
from the calling task and
links it onto the TOL. It
writes modified buffers ¢to
the file.

This routine is the same as
BMSREL, except it presets the
buffer”’s modified flag,
forcing a write to the file.

Trims a buffer from memory.
This routine releases the
specified buffer to user
memory. If the buffer has
been modified, it 1is first
written to the file.

Writes a buffer and renames
it. Calls BMSW to write the
specified buffer, then
modifies the buffer overhead
to make the buffer correspond
to the destination file
record.,

Description of DX10 Routines System Design Document

9.6 DISK MANAGER

The disk manager consists of a memory resident, queue-serving
task and several system overlays. The queue server is the main
driver. It decodes the buffered SVC opcode and links to the
correct processor (which is a system overlay) for that opcode.,
The disk management opcodes include:

* 0 -- deallocate a block

* 1 -- allocate all of the requested amount

* 2 -- allocate as much of the requested amount as
possible

* '3 —- allocate as much as possible at the address

requested or fail.

Table 9-6 shows the major routines included in disk management.

9-16 939153-9701

System Desi

gn Document

Description of DX10 Routines

Table 9-6 Disk Management Routines -- Part 1 of 2

Routine Source Module Pathname
DMSPC .DSCMGR .SOURCE .DMSTSK
DMALLC .DSCMGR.SOURCE.DMALLC
DMDALC . DSCMGR .SOURCE .DMDALC
ADJALC .DSCMGR.SOURCE.ADJALC
ALCSCN +DSCMGR.SOURCE .ALCSCN
CHGMAP .DSCMGR .SOURCE .CHGMAP

939153-9701

9-17

Description

Queue-serving main driver for
disk management.

Disk allocation main driver.
This routine processes all of
the allocation opcodes. It
converts the requested number
of file blocks {(physical
records) to a number of ADUs,
then attempts to allocate
according to the restrictions

~implied by the opcode.

Deallocates disk space. This
routine deallocates the
specified ADUs by resetting
the bits 1in the correct
partial bit maps.

Adjusts allocation count by
computing the number of ADUs
in a given block of
contiquous free ADUs for
allocating file physical
records of a given ADU size.

Scans allocation bit map.
This routine contains two bit
map scans. The first scans a
partial bit map for a
particular allocation
placement (allocation must
start at particular ADU) .
The second, a first-fit scan,
starts with the first partial
bit map and searches for a
large enough block of free
ADUs.

Changes the disk allocation
bit map by setting or
resetting bits in the disk
resident bit map to reflect
the newly completed
allocation or deallocation
operation. This routine is
the common exit path from
DMALLC and DMDALC.

Description of DX10 Routines

Routine

Table 9-6

Source Module Pathname

DMSTBL

EXTEND

MAPPBM

RDPBM

WRTPBM

SCNBIT

SETBIT

WCHPBM

+.DSCMGR .SOURCE .DMSTBL

.DSCMGR.SOURCE . EXTEND

.DSCMGR . SOURCE .MAPPBM

+DSCMGR.SOURCE . RDPBM

+.DSCMGR . SOURCE .WRTPBM

. DSCMGR.SOURCE.SCNBIT

.DSCMGR.SOURCE.SETBIT

+.DSCMGR . SOURCE .WCHPBM

9-18

System Design Document

Disk Management Routines -- Part 2 of 2

Description

Builds the disk management
table by scanning the partial
bit map currently buffered in
memory, and £filling in the
disk management table (DMT)
entries particular to that
bit map.

Extends an allocation across
partial bit map boundaries.

Maps a partial bit map by
reading or writing the
specified partial bit map
from or to the disk.

Read partial bit map. This
routine reads the specified
partial bit map from the
specified disk to the
specified buffer.

Writes the buffered partiﬁ:
bit map to the correct sector
on the specified disk.

Scans for a bit of the
opposite state. Scans in a
buffered partial bit map from
the specified bit position
until it €finds a bit of the
opposite state.

Sets bits to the given state.
This routine sets the
specified number of bits in a
bit map, starting at the
specified bit position, to
the specified state (0 or 1).

Calculates a partial bit map

number and bit position from
the specified ADU number.

939153-9701

System Design Document

9.7 DEVICE I/O PROCESSING

Description of DX10 Routines

In addition to the DX10 I/O supervisor, several other routines

process device

(DDT), the device
routines. Table
processing device

I/0 calls, such

service routines
9-7 shows the
I/0.

as the device driver routine
(DSRs), and several common
major routines involved in

9-7 Device I/0 Processing Routines

Table
Routine Source Module Pathname
DXIOS .DXIO.SOURCE.DXIOS
DDT .DXIO.SOURCE.DDT
T™OUT .DXI0.SOURCE.DSRTMX
FSTXFR .DXIO.SOURCE.FSXTXFR

939153-9701

9-19

Description

DX10 I/0 supervisor. DXIOS
processes SVC code 0. It
preprocesses calls for device
1/0, file 1/0, and file
utility services, hy
buffering the call block and
queueing it for the
appropriate Qqueue server or
DSR. 1t also processes all
I/0 to the DIMY device.

Device driver., The scheduler
calls: DDT to initiate device
I/0, start the DSRs, and
perform end-of~-record
processing (unbuffering data
to tasks performing device
1/0).

Device time out check. The
scheduler calls this routine
after a system time unit
elapses. It scans the PDT
list for a device with a
time-out error, or if the re-
enter-me flag in the PDT is
set. If the re-enter-me flag
is set, TMOUT passes control
to the DSR. 1If a device has
a time-out error, TMOUT
aborts the I/0.

Tests a file 1I/0 request,
.DXTO.SOURCE.FSTXFR, to see
if a "fast transfer" is
possible.

Description of DX10 Routines System Design Document

Table 9-8 shows the DSRs included with DX19. Note that G
source modules for all DSRs are cataloged under the 1libr% ,
.DEVDSR.SOURCE on the disk.

Table 9-8 Device Service Routines

Source Module

Routine Device Served Name
CAS733* Cassette units on a 733ASR. .CAS733
CRDSR 804 card reader. .CRDSR
DDIOSR Direct disk I1I/0. .DDIOSR
DSR911 911 VDT. .DSR911
DSR913 913 VDT. .DSRI913
DSRS940 940 EVT. .DSR940
DSR979 979 magnetic tape drive. .DSRY979
DSRKSR* 733 KSR and 743 KSR. .DSRKSR
FPYDSR FD800 diskette. .FPYDSR
LPDSR 306, 588, 810, 2230 and 2260 .LPDSR
line printers.
DSR820 820 keyboard device. .DSR820
DSRTPD Teleprinter devices .DSRTPD
.COMISR
.TTYISR
. TPDCOM

* Note: CAS733 and DSRKSR are linked to form DSR733 for
the 733 ASR.

The source module .DXIO.SOURCE.IOCOMX contains several routines
commonly used by DSRs. These are:

Routine Function

* BZYCHK Sees if the device is busy.

* SETWPS Sets up an interrupt mask and workspace.

* ENDRCD Activates the end-of-record routine
(part of DDT) .

* XFERM Puts the format (direct disk 1I/0O) data 1in
buffer.

* GTADDR Calculates a 20-bit absolute address from a
16-bit mapped address (used by DSRs for TILINE
devices.)

* MAPCHK Verifies that the specified address

is mapped into a user”s space.

9-20 939153-9701

System Design Document Description of DX10 Routines

Routine Function

* BUFCHK Verifies that a buffer is mapped into a single
base/limit register pair.

* BRCALL Branch table call.

* BRCALT Alternate branch table call.

* JMCALL Jump table call.

* JMCALT Alternate jump table call.

¥* SCNPDT Scans the PDT list, and enters the power-up
routine for each device.

* PUTEBF Puts a character in the event character
buffer)
(for keyboard DSRs).

* PUTCBF - Puts a character in the character queue
(for keyboard DSRs).

* GETC Gets a character from the event buffer ot
character queue (for keyboard DSRs).

* KEYFUN Recognizes HOLD, ABORT, or BID keys from a
keyboard.

* TILERR Moves the TILINE image to the system log

buffer in the PDT extension for TILINE devices
(used by disk and magnetic tape DSRs).

* ASCCHK Compares an ASCII character to a table of
characters and transfers control to the
address

associated with the matched character.

9.8 FILE UTILITY ROUTINES

DXIOS queues file utility SVCs for the file utility task, FUTIL
(task >0B on the system program file). FUTIL consists of a main
driver, FU$, and several routines to process the different file
utility opcodes. It also contains two conversion routines, LC$
and FC$, which convert the still supported librarian and FUR call
blocks to DX10 3.0 file utility call blocks.

Table 9-9 shows the major file utility routines that make up the

file wutility task, FUTIL. All wutility source modules are
cataloged under the library .FUTIL.SOURCE on the source disk.

939153-9701 9-21

Description of DX10 Routines System Design Document

Table 9-9 File Utility Routines -- Part 1 of 5

Routine Source Module Pathname Description
FUS FUS Drives and acts as queue
server for file utility
requests. Decodes file

utility opcode and branches
to the correct processor. If
the opcode is FUR or
librarian, bhranches to FC$ or
LCS$, respectively.

FCS$.FC$ Converts FUR call to a new
call block. Converts the
call, calls UC$ to execute
it, . calls CLEAN to unbuffer
the call, then returns to
FUS.

LCS .LCS Converts librarian calls to a
new call block. Converts the
call, processes it, «calls
CLEAN to unbuffer the call
‘block, then returns to FUS.

ucs FU$ Processes normal uti{ /
calls. Checks for bad
opcodes, looks up the correct
processor for the given

opcode (table is in FUS$
also), and branches to that
processor. The processor
returns to UCS, which returns
to the caller (either FUS,
LCS$, or FCS).

AAS .AAS Processes the add Alias
opcode. Adds an alias to an
existing file. The file must
have a LUNO previously
assigned to it. AAS$ returns
to the calling task (UCS).

ISADR .AAS Initializes alias descriptor
record. Initializes a
buffered ADR (see section on
disk data structures) and
then returns to AAS.

9-22 939153-8701

System Design Document Description of DX10 Routines

Table 9-9 File Utility Routines -— Part 2 of 5
Routine Source Module Pathname Description
ALS .ALS Processes the Assign LUNO

opcode. Assigns a LUNO to
either a file, a device, or a
temporary file. It also
builds the necessary FCB/LDT
tree in the system table

area.
CF$.CF$ Processes the Create File
‘ opcode. Creates a file,

including an ¥FDR on disk,
disk allocation for the file,
and an FCB in memory.

DP$.DP$ Processes the Delete Protect
opcode. Sets the delete
protect flag bit in both the
FCB and the FDR (on disk) for
the specified file.

RFS .RFS Processes the Rename File
opcode. Moves the existing
FDR to the destination
directory and releases the
0ld FDR directory entry. 1f
an existing file has the new
pathname, the renamed file
replaces it.

RLS .RLS Processes the Release LUNO
opcode. Sets up registers
using values from the

buffered call block, calls
RLSLUN to release the LUNO,
then returns to the calling

routine,

RLSLUN .RL$ Internal entry point to
release LUNO opcode
processor. RLSLUN calls

LDTSCH to find the LDT for
the specified LUNO. Delinks
the LDT from all chains, and
flushes (releases) any file
buffers associated with the
released LUNO. The LDT is
released to system table
area.

939153-9701 9-23

Description of DX10 Routines System Design NDocument

Table 9-9 File Utility Routines -- Part 3 of 5

Routine Source Module Pathname Description

SF$.SF$ Processes the Set For ced
Write Flag opcode. Sets the
forced write £flag in the
specified LDT to the
specified state.

UPS$S .UPS Processes the Unprotect File
opcode. Reads the FDR for
the specified file from its
parent directory, resets the
protection flags in the FDR
to zero, and rewrites the FDR
back to the directory.

VPS VPS Processes the Verify Pathname
opcode. Checks a pathname
for valid syntax, and then
tries to find the file. TIf
the file exists, VP$ returns
relevant information.

WP$ JHWPS$ Processes the Write Protect
opcode. Sets the writg
protect bit in the FDR ¢£
the specified file. *

DAS .DAS Processes the Delete Alias
opcode. Delinks the alias
descriptor record (ADR) for
the specified alias from the
alias list in the directory
file (see the section on disk
data structures).

DF$.DF$ Processes the Delete File
. opcode. Releases all primary
and secondary file
allocations on the disk, and
releases all directory
entries (FDRs and ADRs).

ALSPNC .ALS Assigns a LUNO to a pathname
component. Returns the FCB
address for the specified
pathname component. If no
FCB exists, ALSPNC builds one
and adds it to the FCB/LDT
tree.

9-24 939153-9701

System Design Document

Description of DX10 Routines

Table 9-9 File Utility Routines -- Part 4 of 5
Routine Source Module Pathname Description
TSFILE .ALS Assign a LUNO to a temporary

T$ADD .ALS$
GENLUN .AL$
DEVSCH .ALS
VOLSCH .AL$
AL$DEV " .ALS
ALSFIL .ALS
ALSPAR .ALS
BSFDR .CF$
FSINIT .CF$

939153-9701 9-25

file. Generates a unique
pathname for the temporary
file, then calls ALS to
assign the LUNO to it.

Adds a new FCB node to the
FCB/LDT tree.

Generates a unique LUNO.
Searches a given LDT list and
returns a LUNO not currently

.existing in the list.

Searches the PDT 1list for
device name. If it finds the
desired device, it returns
the PDT address.

Searches the volume tables
for a volume name. If the
specified volume is
installedqd, the routine
returns the PDT address of
the drive on which it is
installed.

Assigns a LUNO to a device.
Searches the PDT list for the
desired device and assigns a
LUNO to it.

Assigns LUNO to a file. Gets
the system table area and
builds an LDT for a LUNO to
assign to a file.

Assigns a LUNO to a parent.
Assigns LUNO >CA to the
parent directory file of the
specified file.

Builds a file descriptor
record and writes it to the
specified directory record.

Initializes a file based on
its file type.

Description of DX10 Routines System Design Document

Table 9~9 File Utility Routines -- Part 5 of 5

Routine Source Module Pathname Description

CSDFLT .CF$ Computes the £file creation
parameter defaults, based on
file type.

CRBLK .CF$ Computes the number of file

physical records required for
a file based on file type and
specified initial allocation.

ASBLK .CF$ Allocates the specified
number of physical records on
the disk. Calls the disk
manager to allocate the
required disk space.

R$DSC .DF$ Releases disk space. Calls
the disk manager to release
the primary file allocation
and all secondary
allocations.

R$FDR .DF$ Releases all file descriptor
records (FDRs) in i
directory for the file beWN._
released.

RSALS .DF$ Release aliases. Releases

all ADR entries in the
directory for aliases of the
file being deleted.

FLLRMV .RLS$ Removes and cleans up file
LDT. Delinks a file LDT from
all chains. If the file to
which the LDT was assigned
has no more LUNOs assigned
and no descendants, FLLRMV
releases the file“s FCB.

CLEAN FUS Calls TMQUE to queue the

buffered call block for the
SVC clean up task, SVCCIN.

9-26 939153-9701

System Design Document Description of DX10 Routines

The file .FUTIL.SOURCE.USS$ contains many routines commonly used
by the file utility processors. These included:

* LDTSCH -- Searches the LDT tree at the specified level
(task, station, global) for the specified LDT.

* FNDLUN -- Finds the specified LDT. (Not affected by leve.)

* LDTRMV =-- Removes the specified LDT from all chains.

* LDTENT -- Enters the specified LDT in the LDT tree.

* HASH -- Computes a hash key value for the specified
pathname component.

* LOOKUP -- Looks up the specified file by name.

* ISBLK -- 1Initializes the file blocking buffer.

* GSREC -- Transfers the specified directory record to
the caller”s buffer.

* FILE1l0 -- Performs all disk I/O for FUTIL.

* TSCLEN -- Cleans up the FCB tree (releases all unnecessay
FDBs on the upward path from a single leaf nod)..

* FDRFCB -- Translates a buffered FDR and associated block

into an FCB.

9.9 FILE MANAGER

File management under DX10 consists of a pool of memory resident
queue serving tasks and four system overlays. The main driver of
each task is a routine called FM$TSK. This routine is activated
whenever the I/O supervisor, DXIOS, places an entry on its queue.
FMSTSK dequeues each entry and passes control to the correct
processor for the specified I/0 opcode. The processor returns to
FMSTSK, which wunbuffers the 1I/0 call block, reactivates the
calling task, and gets the next entry on the queue. FMSTSK
issues SVC code >24 when its queue is empty.

939153-9701 9-27

Description of DX10 Routines System Design Document

Table 9-10 shows the major routines that process file I/0 calls.
All source modules are in directory .FILMGR.SOURCE.

Table 9-10 File I/O Processors -- Part 1 of 3

Source Module

Routine Description Overlay "Name
FMSTSK Main driver of file manager. N .FMSTSK

Looks up the opcode in the
table, then branches to the
correct processor.

FMOPEN Open File processor. Checks N .FMOPEN
access privileges for conflicts.
FMCLOS Close File processor. Updates N .FMCLOS
or file buffers to disk, and

FMCLUN unlocks locked records.

FMCLEF Close File with EOF. Writes Y .FMCLEF
end-of-file, then calls FMCLOS.

FMOPRW Open and Rewind File processor. Y .FMOPRW
Calls FMOPEN, then FMRWND.

FMRDST Read File Status processor. Y .FMRDST
Calls BMSMAP to map in user
buffer, then writes file
characteristics in buffer.

FMFBSP Forward/Backward Space processor. Y .FMFMBSP
Calls FBSP to reset LDT pointers.

9-28 939153-9701

System Design Document NDescription of NX10 Routines

Figure 9-10 File I/O Processors -- Part 2 of 3

Source Module

Routine Description Overlay Name
FMREAD Read ASCII and Read Direct N .FMREAD

processor, Calls BMSMAP to

map in user buffer, then calls
BMSRD (blocked file) or FMS$I/
(unblocked) to get proper
physical record. Transfers the
proper logical record to a user
buffer and releases the file

buffer (if the file is blocked).

FMWRIT Write ASCII and Write Direct N .FMWRIT
processor. Calls BMSMAP to map
in the user buffer, then gets
the proper physical record
through BM$SRD (blocked file).
New logical record transferred
(via FM$SIO if unblocked).
The buffer (if any) is
released.

FMWEOF Write End-of-File processor. Y .FMWEOF
Writes an EOF (zero length)
record to a sequential file.
EOFs to relative record files
are ignored.

FMRWND Rewind File processor. Resets Y .FMOPRW
LDT pointers to show that the
file is rewound (before the
first file record).

FMRWRT Rewrite Record processor. Y .FMRWRT
Backs up one record on a
sequential or relative record
file and writes the user’s
buffer to that record (calls
FMWRIT to write).

939153-9701 9-29

Description of DX10 Routines System Design Document

Figure 9-10 File I/O Processors -- Part 3 of 3

Source Module

Routine Description Overlay Name
FMACES Modify Access Privileges N .FMACES

processor. Checks for access
conflicts between different
users of a file, and if none
exist, modifies LDT flags to
reflect new privileges.

FMOPXT Open Extend processor. Calls Y .FMOPXT
FMOPEN to open the file, sets
LDT pointers to end-of-medium,
then backspaces over any EOFs
at the end of the file.

FMOPUB Open for Unblocked I/0. Calls Y .FMOPUB
FMOPEN to open the file, then
sets a flag in the LDT to allow
unblocked I/0 to the file.

FMSIO File manager disk I/O routine. N .FMSIO
Maps a file physical record
number into ADU/sector offset
disk address and transfers data
between a user buffer and the
disk.

9-30 939153-9701

System Design Document Description of DX10 Routines

9.9.1 Key Indexed Files

Key indexed file I/0 processing is a major part of file
management. KIF I/O processing routines reside in one memory
resident linked object module, KIF, and five system overlays.
Table 9-11 shows the major routines involved in key indexed file
I/0 processing. All source modules are in directory
.KIFILE.SOURCE.

Table 9-11 Key Indexed File I/0 Processors -- Part 1 of 3

Source Module

Routine Description Overlay Name
KISBEG Key indexed file I/0 driver. N .KISBEG

Receives key indexed file 1I/0
requests from FMS$TSK, decodes
the opcode, and branches to
the correct processor.

OLNOO02 Inserts records into key Y .OLNOO02
indexed files, using the
primary key. The key is hashed
to get a block number, and then
the record is inserted. The key
is added to the B-tree for a
primary key.

OLNOO08 Deletes a record from a key Y .OLNOO8
indexed file, either by key
value or currency information.
The record is removed from the
block and key values from the
B-trees.

RKISBTD Deletes an entry from a B-tree. N .KISBTD
Searches a B-tree for the
specified key. If it finds the
key, it deletes the entry. If
the B-tree entry is a B-tree
divider (see the section on
disk organization), OLNOQ9 is
called to delete the entry from
the next higher node in the
B-tree.

939153-9701 9-31

Description of DX10 Routines

System Design Document

Table 9-11 Key Indexed File I/0 Processors -- Part 2 of 3

Routine

OLNOO09

KISRR

KI$sC

KISRN

RISBIT

OLNOO1

KIS$BTS

Description Overlay
Continues the B-tree delete Y
routine.

Reads a record from a key N

indexed file. If no currency
information is provided,
searches the B-tree for the
specified key and sets up
currency. Calls BMSMAP to map
in user buffer, reads the
desired record using the
currency information, and
releases the file blocking
buffer.

Driver for Set Currency commands. N
Sets user”s currency information

to point to the data record and

the B-tree position corresponding

to the specified key value.

Read next record. Uses currency N

information to find the record

containing the next largest key,
then calls KISRD (same as BM$RD)
to read the record.

Insert an entry into a B-tree. N
Inserts a new key value in the
proper leaf node of the B-tree.

If the node becomes full, calls
OLNOOl to split the leaf into

two new nodes and add an entry

to the next higher node.

B-tree split routine. Y

Searches the B-tree for the N
specified key value. If RISBTS

finds the key value, it creates

a stack that traces the path

down the B-tree to the correct

leaf node; otherwise the routine
finds the leaf node in which the

key would fit if it existed, and
still creates the stack.

9-32

Source Module

Name

.OLNOQ9

-KISRR

.KI$sC

.KISRN

KISBIT

.OLNOO1

.KISBTS

939153-9701

System Design Document Description of DX10 Routines

Table 9-11 Key Indexed File I/O Processors —-- Part 3 of 3

Source Module
Routine Descrivotion Overlay Name

KISGRF Get free block. This routine is N .KISGFR
used to get an overflow block or
B-tree block from the free block
chain. If the last free block is
returned, another secondary
allocation is made to the file.

OLNOO4 Open Random and Close opcode b4 .OLNOO4
processor.

OILNOO3 Subroutines used by RKISRW Y .OLNOO3
(rewrite). This overlay contains
three pieces of code used by KISRW
(rewrite).

939153-9701 9-33/9-34

System Design Document System Command Interpreter

Section 10

System Command Interpreter

10.1 GENERAL

This section describes the routines that make up the System
Command Interpreter (SCI) task, as well as the data structures
and files that SCI uses. 1In this description, SCI is divided
into four parts: the command interpreter, the background
resource managder, the background task bidder, and the output
queuer. The following paragraphs describe the parts of SCI.

10.2 SYSTEM COMMAND INTERPRETER

The function of the command interpreter SCI990 is to interpret
commands entered at a terminal or listed in a sequential file.
The command language consists of a set of primitive operations,
whose names start with a period (such as .BID), and a procedure
definition and parameter gathering facility that permits you to
extend the set of commands. :

SCI990 executes in both batch and interactive modes. In
interactive mode, the command may prompt you for the values of
command parameters. In batch mode, parameters are specified by
keyword assignments in the command statement. Except for
accessing the commands and their parameters, the command
interpreter is essentially indifferent to the mode of operation.
This document mentions a mode of operation (Batch, VDT, TTY) only
when the description does not apply to all modes.

10.2.1 Structure of SCI

SCI990 has two functions, parsing and executing commands. The
parsing function includes: displaying menus and messages, and
reprompting for invalid input. The execution of a command can be
performed internally (for primitive operations) or result in
evaluation of a procedure definition. Figure 10-1 shows the
generalized flow of control through SCI990.

The structure of SCI is composed of direct procedure calls.

Indirect calls (A <calls B calls C) are 1listed in a cross
referenced table at the end of this section.

939153-9701 10-1

System Command Interpreter

(OD—

‘ BEGIN)

INITIALIZE

DISPLAY THE
NEWS FILE

ANY_PENDING
MESSAGES
?

DISPLAY
THEM

DISPLAY
TERMINAL
LOCAL FILE

DEFINE
GLOBAL
SYNONYMS

(COMMAND NESTING)
LEVEL = 0

®__.

DISPLAY THE
NEXT MENU

PARSE THE
NEXT COMMAND

CASE * COMMAND OF

System Design Document

. 8ID .DATA \ELSE ...OTHER PRIMITIVES. .. prodiiySE CommanD
|
NESTING Froer D
4— PROCESSORS —p LEVEL S~ EE‘SIELNs_

E

. STOP OR

END OF FILE

?
YES
TERMINATE
2278141

Figure 10-1 SCI Flow of Control

10-2

939153-9701

System Design Document System Command Interpreter

10.2.2 Overlay Strategy

Two kinds of overlay structures exist for the Svstem Command
Interpreter (SCI) task: Those designed for use with the .0OVLY
primitive command, and those that are loaded by the Load OCverlay
SVC. The first type, executed by the S$OVLY routine, include the
Text Editor and the Debugger. Those loaded by the Load Overlay
SVC include PARSER and secondary overlays of the Debugger.

The command interpreter itself has two overlays that are part of
its basic operation. PARSER contains the bulk of the routines
used for parsing a command, expanding a procedure definition, and
executing a primitive command. The GETCMD routine 1loads the
PARSER overlay as needed. DERROR contains the error formatting
and display routines (including the English language text for
messages) and the log-in/log-off routines. The DERROR routines
are accessed by means of S$OVLY while the PARSER routines are
accessed by means of a Load Overlay SVC.

A third overlay, TINFO, is part of SCI990 proper. TINFO contains
the command processors for the following commands:

LTS -- List Terminal Status

MTS -- Modify Terminal Status

SBS -~ Show Background Status

KBT -- Kill Background Task

MSG -- Display Message at Own Terminal
CM -- Create Message

AUI -- Assign User ID

DUI -- Delete User ID

MUI -- Modify User 1ID

LUI -- List User IDs

WAIT -- Wait For Background Task To Complete

A fourth overlay, OUTQUE, contains the command processors for the
output queuer:

PF -- Print File At Device

HO -- Halt Output At Device
RO -- Resume Output At Device
KO —— Kill Output At Device
SO0S -- Show Output Status

Other overlays support routines for various command processors,
such as the Text Editor and Debugger.

The general strategy for partitioning the command interpreter
between the shared procedure area, SCI, and the PARSER overlay is
to attempt to keep the size of the shared procedures plus the
task area plus the largest overlay as small as possible, but to
make the shared area as large as possible. You can move any of
the routines in the PARSER overlay into the shared procedure SCI
if PARSER becomes the 1largest overlay. However, take care in
moving routines from SCI to PARSER, since PARSER is only loaded

939153-9701 10-3

System Command Interpreter System Design Document

by GETCMD and many of the routines such as PUTLINE and GETFIL ma.
be called when PARSER is not loaded. For example, GETFIL is
called during error recovery from a procedure expansion, which
may occur while a user overlay is loaded.

10.2.3 Data Structures

The following paragraphs describe the internal data structures
created and maintained for system use by SCI.

10.2.3.1 System Communication Area (sca) . The System
Communication Area (SCA) 1is an area of memory that all command
interpreters, the background resource manager and the background
request handlers (QBID, OQUEUE) share as a "dirty" procedure.
The SCA contains a table of global system data, such as global
LUNOs and task bid IDs, plus a table called an SCA entry for each
terminal that uses SCI990.

10.2.3.2 SCA Entry. Each terminal has a 32-byte entry in the
SCA for communication between the system command interpreter and
the background resource manager (BRM). The fields of the SCA
entry are labeled and defined as follows:

SCASTT EQU O Terminal Type
SCASTI EQU 1 Terminal ID

SCASDV EQU 2 Terminal Device WName
SCASUI EQU 6 User ID

SCASFO EQU 12 FG Opcode

SCASBO EQU 13 BG Opcode

SCASFE EQU 14 FG Error Code
SCASBE EQU 15 BG Error Code
SCASFS EQU 16 FG Status

SCAS$BS EQU 17 BG Status

SCASFT EQU 18 FG Task ID

SCASBT EQU 19 BG Task ID

SCASFL EQU 20 FG Task LUNO
SCASBL EQU 21 BG Task LUNO
SCASFC EQU 22 FG "CODE"™ Value
SCASBC EQU 23 BG "CODE" Value
SCASFR EQU 24 FG Return Code (CCQC)
SCASBR EQU 25 BG Return Code (CC)
SCASFI EQU 26 FG SCI Task ID
SCASBI EQU 27 BG SCI Task ID

10-4 939153-9701

System Design Document System Command Interpreter

The fields SCASTT, SCA§FS, and SCAS$BS are subdivided as follows:

SCASTT (Byte 0) Terminal/User Type Information
Bit
0 1l = Terminal is disabled
1-3 User privilege code (0-7)
4~-7 Current terminal mode
0 = Batch mode
1 = TTY mode
F = VDT mode

Memory images of every user”s TCA are maintained on disk 1in a
library of wuser TCA images. During the log-on process, the
system loads a user”s TCA image into the SCI990 task. When the
TCA 1is passed from one system task to another, it is transferred
via a record on a background or foreground TCA file. Figure 10-2
shows the overall layout of the TCA.

SCASFS (Byte 16) Foreground Status
Bit
0 1 = Log-on is required

1-3 Default user privileges
4-7 Default terminal mode
0 = Batch mode
1 = TTY mode
F = VDT mode
SCASBS (Byte 17) Background Status
Bit
0 1 = BG Task pending
1 1l = Message pending
2 1 = BG Task complete
3 1 = BG Task bid error
4-7 Reserved

10.2.3.3 Text String. Strings of characters are uniformly
represented within SCI990 as a series of bytes and a pointer.
The first byte, which the pointer addresses and which can be on
an odd byte address, contains the count of the number of
characters in the string. The following bytes contain the
characters. A string with 1length =zero represents the null
(empty) string.

939153-9701 10-5

System Command Interpreter System Design Document

i

An output buffer for a routine that returns a string vala!i
usually must have the buffer capacity in the first byte so that
no buffer overflows occur. Some examples of string constants and
buffers follow:

STR1 BYTE 10

TEXT “STRING ONE”
BUF1 BYTE 31

BSS 31

Note that the first (count) byte is not included in the count.
The count refers to the number of following bytes.

10.2.3.4 Terminal Communications Area (TCA). The terminal
communications area (TCA) has three purposes. First, it contains
a description of the user currently logged in at the terminal.
This description includes his user ID, status, encoded passcode,
and allotted terminal time. Secondly, the TCA contains the name
correspondence table (NCT) belonging to the user. The NCT
contains the user defined synonyms and their values. Thirdly,
the TCA 1is used to pass information, including parameters, from
one system task to another. These task parameters are embedded
in the NCT. Figure 10-2 shows the lavout of the TCA.

Hex.
Byte
T e o o e o o e o o " . . o 22 > 0 b *
>00 | LENGTH OF TCA |
e e ——————————— +
>02 | OFFSET TO TERMINAL STATUS BLOCK |
e e e e +
>04 | RESERVED |
o —————— +
>06 | RESERVED |
e e +
>08 | OFFSET TO NAME CORRESPONDENCE TABLE (NCT) |
e e e e e e e e e ——————————— +
>0A | OFFSET TO END OF NCT |
it +
>0C | |
- TERMINAL STATUS BLOCK ~
| l
e e +

Figure 10-2 TCA Layout

10-6 939153-9701

System Design Document System Command Interpreter

10.2.3.5 Terminal Status Block (TSB). The TSB, as shown in
Figure 10-3, is used to identify the 1logged-in wuser to the
var ious command Drocessors. The encoded passcode permits
passcode verification without exposing the actual passcode value.
The user status information is copied to the terminal SCA entry
at log-in, and specifies the level of user capabilities in the
system. The FG task completion code is the medium by which FG

task completion codes are returned (those tasks executed with
".BID").

Hex.
Byte
T e e o o o e e s T b i b i o A Ao A o " T —————— v — o &
>00
USER ID (6 CHARACTERS)
l
o e +
>06 | FOREGROUND TASK COMPLETION CODE |
e e e e e +
>08 | ENCODED PASSCODE |
e e e e +
>0A | USER STATUS l
e +
>0C | : |
- RESERVED -
I l
i e S e +
>14 i {
B T e o +
>18 | MAX DES SIZE ! ACTUAL DES SIZE |
et D et it +
>1a | l
- USER DESCRIPTION TEXT -
| |
K e e e e e o e et e e e o e e e o = o o o o . S o > o 0 o o o o o o %*

Figure 10-3 Terminal Status Block

10.2.3.6 Name Correspondence Table (NCT). The NCT, as shown in
Figure 10-4, consists of pairs of text strings terminated by a
zero Dbyte. Each text string is formed from a series of
characters preceded by the count of the number of characters. A
length of zero is not permitted. User defined synonvms may
consist of printable characters only. :

939153-9701 10-7

System Command Interpreter System Design Document

Positional parameters (elements of the "PARMS" list on a .BTL,
-QBID, or .OVLY command) are transmitted to the command processor
program via special entries of the following form:

Byte 3, 0, 0, Parameter Number Synonym
Byte 15
Text ““DS02.SYS.SOURCE”” Value

A program completion message (argument R2 of S$STOP) returned by
a task executed via a .BID or .QBID command is transmitted back
to the FG command interpreter as a bogus parameter 0.

S1ZE OF SYN 1 NAME

SYNONYN 1 NAME
TEXT

SIZE OF SYN 1 VALUE

SYNONYM 1 VALUE

SIZE OF SYN 2 NAME

< -

0 (END OF NCT)

2278142

Figure 10-4 Name Correspondence Table

10.2.4 Interfaces

SCI interfaces to the user, and to various SCI routines, through
the terminal and several files. The following paragraphs
describe the interfaces.

10.2.4.1 calling Sequence. The calling sequence for SCI990
depends on the mode of operation. In interactive (VDT or TTY)
mode, the SCI task is bid by the operating system in response to
the user entering RESET followed by an exclamation mark "i". In
batch mode, the task is bid by the QBID mechanism (see paragrgf

10.4) as a result of an XB command. The mode is determinedW%

10-8 939153-9701

System Design Document System Command Interpreter

the four bytes passed as parameters of the Bid Task SVC, which
are formatted as follows: .

X e o ——— e e *
| TYPE | STATION ID |
o - e +
| RESERVED |
B e . e et e e *

The TYPE field is a copy of the SCASTT (terminal type) field in
the ter minal SCA entry. The STATION ID is the terminal
(station) number. 1In interactive mode, both the tvpe and STN ID
fields are zero and the information is derived from a SELFID SVC
and the SCA entry. In batch mode, the fields are (and must be)
non-zero to distinguish the mode.

10.2.4.2 Terminal Local File. The terminal local file (TLF) is
a buffer on disk for lines to be displayed to the user. The
lines are buffered so that VDT users can scroll back and forth
through them and so they can be listed together in batch mode.
The name of the file is determined from the SCI mode and the
terminal number as follows:

terminal number
terminal number

FOREGROUND: S $FTLF** where *%*
BACKGROUND: .S“$BTLF** where * %

The interactive modes of SCI run in the foreground, while the
batch mode executes in background.

The TLF is written to by the SS$SIO routines: SSOPEN, SSWRIT,
SSWEOL, and SS$SCLOS. Whenever SCI990 prepares to input a new
command, the TLF is displayed (TTY, VDT modes) or 1listed (batch
mode) by the S$SSHOW routine.

10.2.4.3 System Procedure Library. Commands are mapped into
procedure file names by concatenating them on the end of the
current procedure library name. Unless the user overrides the
default PROC library name with a .USE command, the standard
system PROC library is used. This directory is named .S$PROC.

10.2.4.4 Menu Files. Menus are displayed in VDT mode by
displaying the contents of a menu file. Menu files are named by
concatenating the name of the system PROC library, the characters
".M$", and the menu name. The default menu file is .S$PROC.MS$LC,
which is also displayed in response to "/LC".

939153-9701 10-9

System Command Interpreter System Design Document

10.2.4.5 TCA Library File -~ L.SSTCALIB. The terminal
communication area (TCA) is described in paragraph 10.2.3.4 A TCA
image is created for each user when his wuser 1ID is assigned.
This TCA image resides on the TCA library file .S$TCALIB while
the user is not logged in. Each record of the TCA library file
holds exactly one TCA image. The number of the record containing
the TCA image for a particular user ID is the same as the numeric
part of the ID. For example, a user ID of "ABCO0l0" uses record
10 (or >A) or the TCA library file. The numeric parts of user
IDs must therefore be unique. Since the TCA 1library is
implemented as an unblocked, relative record file, DX10 allocates
records in blocks. Thus it is desirable that the record numbers
be grouped, preferably by assigning them sequentially starting at
1. Unneeded wuser 1IDs can be deleted and their TCA library
records reused by assigning the same numeric part of the ID. For
example, delete user ABCO010 and assign user DEF01l0.

The TCA library file .S$TCALIB is accessed only during log-in and
log-out (in the DERROR module) and by the command processors for
AUI, DUI, LUI, and MUI (in the TINFO module). The byte field
SCASLS in the SCA module defines the globally assigned LUNO used
for accessing the TCA library file (>C3).

10.2.4.6 Foreground TCA File -- .SSFGTCA. When a user logs i’
at a terminal, SCI990 reads his TCA image into memory. While tlI§,
user is logged in, this TCA image is used by the various command
processors to maintain his list of synonyms, maintain a history
of the status of his operations, and transmit parameter values
and messages between the various components of the SCI system.
When a command processor is implemented as a task separate from
SCI990, the TCA image is written to a record of the foreground
TCA file for the command processor task to read it. Routines
SSPTCA and S$SGTCA put and get the TCA, respectively. The record
number of TCA file is the same as the terminal number. The
foreground TCA file, S$FGTCA, is accessed through the global LUNO
found in byte SCASL3 of the SCA module.

10.2.4.7 Background TCA File -- .S$BGTCA. The background TCA
file, .S$BGTCA, is similar to the foreground TCA file. This file
is used for communication between the batch/background SCI and
its command processors. In addition, the background TCA file is
used for passing synonyms and parameters to tasks which are
executed through QBID. The QBID task "freezes"™ the foregound TCA
image on record "I"™ of the foreground TCA file (where "I" is the
terminal number) onto record "I" of the background TCA file when
the background task bid request is made through the background
request manager. The background TCA file is accessed through the
global LUNO found in byte SCASL4 of the SCA module.

10-10 939153-9701

System Design Document System Command Interpreter

10.2.5 SVC Overhead Analysis

The following four subsections detail the use of DX10 SVCs,
primarily for 1I/0, which are necessary for the execution of a
typical .BID or .OVLY program. The .BID and .OVLY cases assume a
task or overlay which accesses the TCA for parameters or synonyms
and generates a listing on the terminal local file. An analysis
is presented in paragraph 10.2.5.5. :

10.2.5.1 .BID SVC Overhead for Foreground SCI990. Table 10-1
shows the SVC overhead incurred by SCI990 while processing a .BID
command. In the timing estimates, the Bid Task SVC cost includes
the overhead for End Task processing. The overlay for the Open-
Extend of the TLF is assumed to be on disk.

Table 10-1 .BID SVC Overhead for SCI

Time Disk
Routine svC {Msec) Accesses
XBID 01 -- Close the terminal 4.4 0
SSPTCA 00 -- Open .SSFGTCA 4.7 0
0C == Write direct, 1 record 11.4 1
01 -- Close .SSFGTCA 5.9 0
S$BID 2B -- Bid Task 36.2 2
SSGTCA 00 -- Open terminal 4,5 0
00 -- Open .SSFGTCA 4.7 0
0A -- Read direct, 1 record 11.3 1
01l -- Close .S$SFGTCA 5.9 0
SSOPEN 12 -- Open-extend TLF 25.9 2
TOTALS) 119.6 6

10.2.5.2 .BID SVC Overhead In The Task Being Bid. Table 10-2
shows the SVC overhead incurred by a task being bid through .BID.
In the timing estimates, the (91) LUNO assignment to the TLF
requires no disk accesses because the SCI task has a previously
assigned LUNO attached to the file. This also reduces the timing
from about 42 msec to 17 msec. The (12) open-extend estimate
assumes that the overlay is in memory and the TLF is empty. If
it is not empty, the estimate would be (18, 2, 1). The TLF is
closed during task termination. The overhead for task
termination is assumed in the Task Bid in paragraph 10.2.5.1.

939153-9701 10-11

System Command Interpreter System Design Document

Table 10-2 Overhead in the Bid Task

Time Disk

Routine svC {(Msec) Accesses
S$NEW 17 -- Get Bid Parameters 2 0
SSGTCA 00 -- Open .SSFGTCA 4.7 0
0A -- Read Direct, 1 Record 11.3 1
0l -- Close .SSFGTCA 5.9 0
SSOPEN 91 -- Assign LUNO to TLF 17.0 0
12 -- Open-Extend TLF 9.7 0
SSPTCA 00 -- Open .SSFGTCA 4.7 0
0C -- Write Direct, 1 Record 11.4 1
01 -- Close .S$SFGTCA 5.9 0

TOTALS 70.8

»

10.2.5.3 ,0OVLY SVC Overhead for SCI990. Table 10-3 shows the
overhead incurred by SCI in executing an .OVLY command. Since an
overlay is part of the SCI task, the TCA is available in memory
and the TLF is already open.

Table 10-3 .OVLY SVC Overhead for SCI

Time Disk
Routine svC {(Msec) Accesses
SSovVLY 14 -- Load Overlay 19.2 2

10.2.5.4 .OVLY SVC Overhead in the Overlay. For overlays,
S$GTCA and SS$SRTCA access the TCA directly in memory and require
no I/0. The TLF is not actually opened and closed by SSOPEN and
S$CLOS, so the only TLF I/0 overhead is in the actual write svCs,
which are ignored 1in this analysis. Therefore, no overhead is
incurred by the overlay being bid through an .0OVLY command.

10.2.5.5 Analysis. The assumptions made for this analysis are
neither best nor worst case and are probably typical. It is
further assumed that the cost of a disk access is approximately
100 msec for a DS31/32 disk drive and 60 msec for a DS25/50 disk
drive. The SVC overhead for a typical .BID is then about 986
msec (114.9 + 70.8=185.7 msec, 6+2=8 disk accesses). The SVC
overhead for the same program executed as an .OVLY is then 219
msec (19.2 msec, 2 disk accesses). The overhead for writig
lines to the TLF is the same in both cases and is ignored, as W
all other processing done by the program. For short functions, a

10-12 939153-9701

System Design Document System Command Interpreter

.BID costs four times as much as an .OVLY in system overhead and
terminal response time. 1In both cases, the response time 1is on
the order of a second or less.

10.3 BACKGROUND RESOURCE MANAGER

. The Background Resource’' Manager (BRM) manages the background
resources of the DX10 system command interpreter. These
resources include the background task execution facility (QBID)
and the output queuer (OQUEUE). BRM polls the SCA for background
service requests from user terminals and bids the appropriate
program to handle the request. It does not service reguests
itself and is not aware of the meaning of the requests it
manages. Adding background services may be accomplished by
adding background tasks to the system. '

10.3.1 Structure of BRM

The BRM program consists of three modules,. a task and two
procedures. The first procedure is the system communication area
(scA), which contains the SCA entries which are polled for
service requests. The second procedure is the background
communication area (BCA) through which BRM communicates with QBID
and OQUEUE. The task contains the actual BRM code and data.
Both the SCA and BCA are "dirty" shared procedures. The SCA is
described in the earlier discussion of SCI990. The BCA 1is
described in paragraph 10.3.3.

10.3.2 Calling Sequence

The BRM must be placed into execution before any SCI background
service request is made through the SCA. This is normally done
by bidding BRM from the DX10 system restart task. BRM then waits
in a time delay for a service request.

A service request is made by placing an opcode value in the
SCASFO (FG SCI opcode) or SCAS$BJO (BG SCI opcode) field of a
terminal®s SCA entry and executing an Activate Time Delay Task
SVC to wake up the BRM. The run ID of the BRM task is
initialized in byte SCASL2 of the SCA. The requesting SCI then
enters a time delay loop waiting for the SCA$FO (or SCAS$SBO) field
to clear. '

Background service request opcodes are byte wvalues consisting of
two hexadecimal digits. The first digit identifies the program
that processes the request. The second digit specifies a
particular operation. BRM uses only the first digit to determine
the task ID to bid.

939153-9701 10-13

System Command Interpreter System Design Document

Specific opcode values are documented in the QBID and OQUE.:
descriptions (paragraphs 10.4 and 10.5).

10.3.3 Background Communications Area (BCA)

The BCA consists of two parallel vectors, the TASKID and BUSY
tables, which are used for communication with the background
request handler tasks. The first digit of a service request
opcode is used to index these vectors. The TASKID vector maps
the opcode into a DX10 task bid ID. The BUSY vector informs the
BRM whether the indicated task/opcode is currently in execution
or must be bid to handle the request. The BRM sets the busy flag
when it successfully bids the task. The task resets it when it
terminates.

Entry 0 of each vector is meaningless since an opcode field value
of 0 indicates no request.

10.4 QUEUED TASK BID HANDLER (QBID)

QBID supervises the enqueueing and bidding of background tasks.
In this context, Background (abbreviated BG) means that a task
execution is to be initiated at a terminal via the .QBID r
language primitive. Such tasks are then managed by the ui{
indirectly through commands that access the QBID program. ’

10.4.1 Structure of OBID

The QBID program consists of three segments. Two shared "dirty"
procedures, the SCA and BCA, are used for communication with the
background resource manager and the command interpreter making a
QBID service request. These procedures are described in the
documentation for theée background resource manager and SCI.

The task segment of the QBID program consists of several modules
which contain the QBID code and data. The code is organized as a
supervisor and four major components. The supervisor executes
the four routines BOOKIE, POLLER, BIDDER, and WAITER repeatedly
until WAITER determines that no work remains.

The bookkeeper routine BOOKIE keeps track of the status of all
tasks being managed by QBID. 1Its principal duties are:

* Try to remove blocks from blocked tasks
* Remove queue entries of expired tasks

* Calculate the current level of background task activity

10-14 939153-9701

System Design Document System Command Interpreter

Blocked tasks are thcse that cannct be bid at a particular time
but are expected to be bidable later. Examples are tasks that
are not replicable but are currently in execution. Expired tasks
are those that have been successfully bid and have subsequently
terminated.

The POLLER routine periodically examines the SCA for QBID service
request opcodes. Opcodes in the range >10 - >1F are handled

immediately by invoking the appropri routine:
Opcode Routine Purpose
10 | BUILDQ Build a queue entry
11 STATUS Check status of queued task
12 KILLQT Kill a queued task
13 DBID Bid task in halted state

The BIDDER routine attempts to bid tasks waiting on the
background task queue within the constraints of the sysgen-
imposed threshold count. Tasks are bid only if the current
background activity level count is not exceeded. Candidate tasks
on the queue must not be currently executing or marked as
blocked. Bid attempts that fail because the spec1f1ed task is
not replicable or because the system table area is full cause the
task to be marked as blocked.

The WAITER routine decides whether QBID has further work to do.
If not (if the queue is empty), it informs the BRM via the BUSY
vector in the BCA that is terminating and does so. 1If there is
more work to do, WAITER executes a time delay SVC and exits. The
supervisor then repeats the execution of the four primary
routines.

Table 10-4 shows the structure of OBID as a table of direct
subroutine calls.)

Table 10-4 QBID Subroutine Call Table

Calling Routines

Routine Called

OBID BIDDER,BOOKIE, POLLER,WAITER
BIDDER -

BOOKIE TSTATE

POLLER BUILDQ,DBID,KILLQT,STATUS
WAITER -

BUILDQ . TCASVC

DBID BUILDQ

RILLQT STATUS

STATUS TSTATE

TCASVC -

TSTATE -

939153-9701 10-15

System Command Interpreter System Design Document

10.4.2 Data Structures

The following paragraphs describe the data structures used by
QBID routines.

10.4.2.1 System Communication Area (SCA). The SCA is an area of
memory shared as a "dirty" procedure by all command interpreters,
the BRM, and the background request handlers (QBID,OQUEUE). The
SCA contains a table of global system data, such a global LUNOs
and task bid 1IDs, plus a table called an SCA entry for each
terminal that will use SCI990. The SCA is documented in the
description of SCI990 (see paragraph 10.2).

10.4.2.2 Background Communication Area (BCA). The BCA consists
of two parallel vectors, the TASKID and BUSY tables, which are
used for communications between the BRM, QBID, and OQUEUE. The
first digit of a service request opcode is used to index these
vectors. The TASKID vector maps the opcode into a DX10 task bid
ID. The BUSY vwvector informs the BRM whether the indicated
task/opcode is currently in execution or must be bid to handle
the request. The BRM sets the busy flag when it successfully
bids the task. OQBID resets it when it.terminates.

10.4.2.3 Task Queue Entry. Each task to be bid by QBID has an
associated queue entry, which is created by QBID in its own task
area, Each queue entry describes a task, information necessary
to bid the task, and the current execution status. The fields of
a queue entry are labeled and defined as follows:

QNEXT . EQU 0 Address of next queue entry
* -= QNEXT must be zero --
QSTAT EQU 2 Status of queue entry
QTERM EQU 3 Terminal ID

QUSRID EQU 4 User ID

QBTASK EQU 10 Task bid ID

QLUNO EQU 11 LUNO

QCODE EQU 12 Code wvalue

QRTASK EQU 13 Task Run ID

QTIME1 EQU 14 Time place in queue

QTIME2 EQU 18 Time task was bid

*

QESIZE EQU 22 No. of bytes in a queue entry

10-16 939153-9701

System Design Document System Command Interpreter

The status byte (QSTAT) is divided as follows:

Bit
0 1l = Task has been bid
1 1 = Task is blocked (task ID in use)
2 1 = Task is running

3-7 Reserved

10.4.3 Calling Sequence

QBID Is always bid by the background resource manager (BRM) task
in response to a background service request from a terminal
command interpreter (FG or BG). SCA opcodes in the range 10
through 1F are directed to QBID. The currently defined opcodes
are:

10 Enqueue a background task bid (.QBID)
11 Check status of an enqueued task

12 Kill an enqueued task

13 Execute a BG task in debug mode (.DBID)

Associated with these opcodes are fields within the SCaA entry
that specify parameter values. These are:

SCASBC BG "CODE" Value

SCASBL BG Program File LUNO
SCASBS BG Status

SCASBT BG Task ID

SCASFE Returned error code (FG)
SCASTI Terminal ID

10.4.4 Files

The only files accessed by the QBID task are the foreground and
background TCA files, .S$SFGTCA and .SSBGTCA, via the LUNOs
specified in the SCA. When a task is enqueued for BG execution,
the FG TCA image for the terminal is copied from the FG TCA file
to the BG TCA file. The TCA image is a single record in each
case. The record number is the same as the terminal number. The
TCA image is "frozen" in this manner so that the parameters
specified on the corresponding .QBID language primitive will be
available to the enqueued task when it executes. Also, all
synonyms defined at the terminal will be available to the task.

The TCA image 1is described in detail in the SCI990 discussion
(see paragraph 10.2)

939153-9701 10-17

System Command Interpreter System Design Document

10.4.5 Error Codes

The following error codes are returned in the SCASFE field of the
SCA entry for the terminal making the QBID request.

Code Meaning
00 No error -- request serviced
01 Unable to allocate a queue entry block
02 Unable to access the TCA
02 BG already pending (should be caught by the
command interpreter first)
03 Bid svC failed for ".DBID" request
80 Unknown SCA opcode

FF No queue entry found (Status)

10.5 OQUEUED OUTPUT HANDLER (OQUEUE)

OQUEUE supervises the enqueuing of files and output to devices
and of messages to and from terminals. Files are queued up for
output by name, rather than by copying the named file to a
spooled data area. Any number of files may be queued for any
number of devices. OQUEUE also engueues messages for
transmission to terminals.

10.5.1 Structure

The OQUEUE program is divided into two tasks, 0OQSCOPY and OQSMGR,
each of which consists of three segments. Both tasks share
"dirty" procedures, the SCA and BCA which are used for
communication with the SCI990 task making an OQUEUE service
request. These procedures are described in the documentation for
the background resource manager and the command interpreter.

The task segment of the OQ$SMGR program consists of several
modules. The code 1is organized as a supervisor and four major
components. The supervisor executes the three routines POLLER,
BOOKIE, and WAITER repeatedly until WAITER determines that no
work remains.

The POLLER routine periodically examines the SCA for OQUEUE

service request opcodes. Opcodes in the range >20->2F are
handled immediately by invoking the appropriate routine:

10-18 939153-9701

System Design Document System Command Interpreter

Opcode Routine Purpose
20 BUILDQ Build a queue entry
21 STATUS Show output status
22 KILLDV Kill output at a device
23 HALTIT Halt output to a device
24 RESUME Resume output to a device
2E SMSG ’ Send a message
Z2F RMSG Receive a message

The bookkeeper routine BOOKIE tracks current I/0 and message
activity, ensuring that each queue entry is ultimately processed.
BOOKIE calls MBOOKY to check each pending message destination
against each currently logged-in SCA entry. When a terminal for
which a message 1is pending is discovered to be activated, the
message pending flag in the background status field (SCAS$BS) of
the SCA entry is set. BOOKIE then calls OBOOKY, which attempts
to assign an output processor to a file queue entry waiting for
access to an output device, and assigns an 0Q$COPY task to each
device for which output is queued. Thus, queued output may be
directed to many devices simultaneously.

OQ$COPY is a replicative task that copies files to a device. The
file and device must have been assigned global LUNOs prior to
execution of OQ$COPY. OQ$COPY is bid by the BOOKIE portion of
OQ$SMGR. The Device Status Table (DST) in the BCA contains all
the information necessary to copy file records to the device.

The WAITER routine decides whether OQUEUE has further work to do.
If not, (if the queues are empty), it informs the BRM via the
BUSY vector in the VCA that it is terminating and does so. 1If
there is more work to do, WAITER executes a time delay SVC and
exits. The amount of the time delay is determined dynamically by
WAITER. After the time delay, WAITER exits. The supervisor then
repeats the execution of the four primary routines.

Table 10-5 shows the structure of OQUEUE by its subroutine call
linkages.

939153-9701 10-19

System Command Interpreter System Design Document

Table 10-5 OQUEUE Subroutine Call Table

Calling Routines

Routine Called

OQS$MGR BOOKIE, POLLER, SLICER,WAITER
BOOKIE MBOOKY ,0BOOKY

POLLER BUILDQ,HALTIT,KILLDV, RESUME, RMSG,

SMSG, STATUS

WAITER -

MBOOKY -

OBOOKY GETFET

BUILDQ GETBLK,GTCA, SSPARM

HALTIT FINDDV,OPARMS

KILLDV FINDDV,OPARMS

RESUME FINDDV,OPARMS

RMSG GTCA,S$SSETS, PTCA

SMSG GETBLK,GTCA, SSPARM

STATUS GTCA,SSPARM,Q$SOPEN,Q$SWRIT,QSWEOL,

WRSTAT,QS$CLOS

WRITER OPENDV,OPENFL,COPYFD,CLOSEF,CLOSED,WSTOP
GETFET -

GETBLK -

GTCA TCHELP

SSPARM -

FINDDV -

OPARMS GTCA.S$SPARM

S$SETS -

PTCA TCHELP

QS$SOPEN CLRBUF

Q$SWRIT -

QSWEOL CLRBUF

WRSTAT QS$SWRIT,Q$WEOL

QSCLoSs -

OPENDV SVC$R2,0PNSR2

OPENFL SVCSR1

COPYFD SVCS$R1,FORMAT, SVCSR2,0PNSR2,WAIT
CLOSEF SVCSR1

CLOSED SVCR2,WAIT

WSTOP -

TCHELP -

CLRBUF -

SVC$R2 WAIT

OPN$R2 SVC$R2

SVCSR1 WAIT

FORMAT -
 WAIT -

10-20 939153-9701

System Design Document System Command Interpreter

10.5.2 Data Structures

The internal data structures used by OQUEUE routines are
described in the following paragraphs.

"10.5.2.1 System Communication Area (SCA). The SCA is an area of
memory shared (as a "dirty" procedure) by all command
interpreters, the BRM, and the background request handlers (QBID,
OQUEUE). The SCA contains a table of global system data, such as
global LUNOs and task bid IDs, plus a table called an SCA entry
for each terminal which may use SCI990 (see paragraph 10.2).

10.5.2.2 Background Communication Area (BCA). The BCA consists
of two parallel vectors, the TASKID and BUSY tables, which are
used for - communication between the BRM, OBID, and OQUEUE. The
first digit of a service request opcode is used to index these
vectors. The TASKID vector maps the opcode in a DX10 task bit
ID. The BUSY vector informs the BRM whether the indicated
task/opcode 1is currently in execution or must be bid to handle
the request. The BRM sets the busy flag when it successfully
bids the task. OQUEUE resets it when it terminates.

10.5.2.3 Output Queue Entry. Each output entry describes a file
and a device to which the file is to be copied. The fields of
the output queue entry are labeled and defined as follows:

QNEXT EQU O Address of next queue entry

* -—- ONEXT must be zero --

QSTAT EQUu 2 Status of queue entry

QTERM EQUu 3 Terminal ID

QUSRID EQU 4 User 1D

QTIMELl EQU 10 Time placed in queue

QTIME2 EQU 14 Time task was bid

QDLMAX EQU 18 Max length of message name
QULMAX EQU 18 Max length of message user ID
ODNLEN EQU 19 Actual length of device name
QUILEN EQU 19 Actual length of message user ID
QDVNM EQU 20 Device access name/message user ID
QALMAX EQU 26 Max length of access name

QTLMAX EQU 26 Max length of message text
QANLEN EQU 27 Actual length of access name
QMTLEN EQU 27 Actual length of message text
QACNM EQU 28 File access name/message text

*

QASIZE EQUu 80 Max No. of bytes in a file name
QDSIZE EQU 6 Max No. of bytes in device name

QESIZE EQU OQACNM+QASIZE No. of bytes in queue entry

The status byte (QSTAT) is subdivided as follows:

939153-9701 10-21

System Command Interpreter System Design Document

Bit
0 1 = Qutput has hegun
1 1 = ANSI Format
2 1l = I/0 completed
3-7 Reserved

10.5.2.4 File Environment Table. A file environment table (FET)
is assigned to each output device for which files are queued.
The FET contains the data specifying the file and device, a
workspace, and all data and buffers used by a WRITER routine to
copy records from the file to the device. The FETs and WRITER
are analogous to DX10 tasks and a shared procedure. The fields
of a FET are labeled and defined as follows:

WFETRO EQu O 32 BYTE WORKSPACE

WNFET EQU 32 @ NEXT FET IN FET QUEUE
WPC EQU 34 @ NEXT ENTRY INTO WRITER
WONTRY EQU 36 @ INPUT FILE QUEUE ENTRY
WLINES EQU 38 # LINES LEFT ON PAGE
WDVTYP EQU 40 DEVICE TYPE CODE

WSTAT EQU 41 STATUS

WDEVNM EQU . 42 DEVICE NAME

WSTACK EQU 46 RETURN STACK

WPRBI EQU 54 INPUT PRB

WPRBO EQU 94 OUTPUT PRB

WBUFF1 EQU 134 BUFFER 1

WFSIZE EQU WBUFF1l+140 END OF FET

The FET status byte (WSTAT) is subdivided as follows:

Bit
0 1l = Halt output immediately
1 1 = Halt output at EOF
2 1 = Kill output of current file
3 1 = Kill all output at device
4-7 Reserved

10.5.3 Calling Sequence

OQUEUE 1is always bid by the background resource manager (BRM)
task in response to a background service request from a terminal
command interpreter (FG or BG). SCA opcodes in the range of >20
through >2F are directed to OQUEUE. The currently defined
opcodes are:

>20 Release file to queue

>21 Show output status

>22 Kill output to a device
>23 Halt output to a device
>24 Resume output to a device

10-22 939153-9701

System Design Document _ System Command Interpreter

>2E Send message
>2F Receive messade

Associated with these opcodes are fields within the SCA entry
that specify parameter values. These are:

SCASBS . BG Status

SCASDV Terminal device name
SCASFE Returned error code (FG)
SCASTI Terminal ID

SCASUI User 1D

10.5.4 Files
OQUEUE uses the TCA file and a listing file, as described below.

10.5.4.1 TCA File. The foreground or background TCA file record
corresponding to the number of the terminal making the OQUEUE
service request is read (by module OQ$TCA) so that the opcode
handling routines can access the parameters in the NCT.

The TCA image is described in detail in the documentation for the
system command interpreter program, SCI990.

10.5.4.2 Listing File. The Show Output Status function has a
listing file as a parameter. This listing file is normally the
foreground or background terminal local file (TLF), at the option
of the SCI PROC which invokes OQUEUE. The module OQSTLF includes
the routines used to write to the listing file. ’

10.5.5 'Error Codes

The following error codes are returned in the SCASFE field of the
SCA entry for the terminal making the OQUEUE request.

Code Meaning
00 No error - request serviced
01 No queue block available
80 Unknown SCA opcode
FA Invalid argument
FD NCT error (internal)
FD TLF Error
FD TCA error
FF Queue entry not found

939153-9701 10-23/10-24

System Design Document System Crash Analysis

Appendix A

System Crash Analysis

A.l1 GENERAL

When the DX10 operating system detects a system failure, it
displays an error code on the front panel lights and idles the
CPU, as described in the DX1l0 Operating System Operations Guide
(Volume II).

If your system uses DX10 release 3.4 or later, it automatically
dumps memory to the predefined crash file (usually .SSCRASH) on
disk if the system crashes. However, earlier releases of DX10
software require that you manually preserve the memory at crash
time by pressing the HALT and then the RUN buttons on the front
panel. Once memory is preserved, you must perform an initial
program load (IPL), and bid the system command interpreter (SCI)
as explained in Volume II of the DX10 manuals. At this point,
you are ready to execute the crash analyzer, ANALZ, using the
XANAL command. .

939153-9701 A-1

System Crash Analysis System Design Document

A.2 OPERATING PROCEDURE

When you activate ANALZ with the XANAL command, five prompts
appear on your screen. These are:

CONTROL ACCESS NAME: Enter the name of the file or
device from which ANALZ is to
receive commands. The default
is ME.

LISTING ACCESS NAME: Enter the name of the file or
device to which ANALZ should
write its output. If this is
a file, you should precreate
it as an expandabhle sequential
file.

ANALYZE RUNNING SYSTEM?: Enter YES to analyze the
currently running system.
Enter NO to analyze the crash
dump. The default is NO.

DISK DEVICE NAME: Enter the name of the disk
unit on which the crash file
is written. The default is
DS01l. The crash file must be
at the volume catalog level.

CRASH FILE NAME: Enter the name of the file
containing the crash dump.
The default is SSCRASH.

If ANALZ is running in batch mode, that is, you specified a file
or sequential input device as the control access name, each input
value or command must start in column one of a separate record
(or card). Batch input to ANALZ allows you to keep a standard
ANALZ command stream on file or cards which can be easily and
quickly executed after every system crash.

A-2 939153-9701

System Design Document System Crash Analysis

A.3 COMMANDS

When vyou enter the XANAL command, you invoke the ANALZ utility.
Use the auxiliary commands under XANAL to select certain areas of
the memory dump on the crash file (or actual memory, if it is
analyzing the running system,) format them, and write them to the
listing device. Auxiliary commands write 9 columns of four-digit
numbers. The left hand column contains the address of the first
word on each line, and the remainder of the 1line contains 8
columns of 4-digit hexadecimal numbers. The auxiliary commands
also write an abbreviated ASCII representation of the eight words
to the right of the hexadecimal representation. Byte values that
do not represent a character appear as periods ("."). For
example:

MEMORY DUMP FOR TSB/PDT/SEGMENT 0000 ., BETWEEN 00000222 AND 00000410
0222-0354 ZBAZ 0001 0000 OE4D S1F4 25462 0002 WV +. ¢ on MBE.
02392-0077 Q012 924A 0288 95462 2BB2Z 419E 0001l oo .. 3. A. ..
0342-0000 250F 0000 0000 0000 0000 0000 0000 .. %. 2a 2o ss =ec 20 o=
O2EZ#0000 0000 QOO0 0000 0000 0000 0000 454F .. .u es s« =a «. .. EO
03F2-5300 3CS6 04460 B72A F03F 0024 FOO0O 045A S. <V «o % .0 W2

Table A-1l shows the auxiliary commands and the action each
performs.

939153-9701 A-3

System Crash Analysis

Command

System Design Document

Table A-1 Auxiliary XANAL Commands

Function

Perform the following auxiliary commands: GI, TS, SS,
MM, AQ, PQ, TR, TA, and a DM with 0, 0, and >FFFF

as parameters. Perform them in the listed ocrder.
Perform the same commands as AL, omitting TA.

List
List
Dump
List
List
List
List
List
List
List
List

a representation of the four active queues.
disk information (simple map disk function).
a specific area of memory.

the FCBs for all currently assigned files.
general information about the system crash.
the LDTs for all assigned LUNOs in the systen.
a map of memory.

the PBMs for all installed disk volumes.

the PDTs for all devices in the system.

a representation of the other system queues.
the PSBs for all procedures in the system.

Terminate execution of the ANALZ command.

List

the System Table Area.

Write memory images of the system structures.
(perform TB, PS, PD, FC, PB, and LD commands
in that order.)

List

memory images of every task area in memory.

Lists the TSBs for all tasks in the system.

List

the workspace register contents of all tasks

in memory.

List

task state of all tasks in memorvy.

a-4 939153-9701

System Design Document System Crash Analysis

Normally, you need to execute only the AL or AM command to obtain
enough information about a crash. The following paragraphs
describe the results of some of the commands in more detail. The
commands appear in the order in which the AL command executes
them, (see Table A-1l). Useful information is also provided for
determining the reason for the crash.

A.3.1 General Information (GI) Command

The GI command lists general information about the crash.

A.3.1.1 Crash Code. The first entry is the system crash code,
(also called screech code) that the front panel displayed when
the crash occurred, as well as an English translation of the
code. See the DX10 Operating System Error Reporting and Recovery
Manual (Volume VI), for a description of the crash codes.

A.3.1.2 Executing Task. The second entry is the address of the
task status block (TSB) of the task that was executing when the
crash occurred. When this value 1is 2zero, the crash occurred
within the operating system, during a scheduling cycle or in a
Device Service Routine (DSR}. : :

A.3.1.3 Location of Failure. The third entry is the address at
. which the crash routine was called. 1In some cases, this entry
points to the exact location of the crash. However, in most
cases, this value is the location of a common crash point that is
entered from any of several locations.

939153-9701 A-5

System Crash Analysis System Design Document

A.3.1.4 Status Register. The fourth entry lists the wvalue of
the status register when the crash routine was called. The
status register information is valuable when the crash code is
>20. The last four bits (last digit in the entry) of the status
register is the interrupt mask. When the interrupt mask value is
in the range >2 - >E, the crash was caused by an illegal
interrupt. When the interrupt mask value is 1, the crash was

caused by one of the task error states occurring within the
system or system task.

A.3.1.5 System Variables. A set of system variables is printed
after the status register value. Most of these do not contain
useful information. Three of the variables may be of some
impor tance. They are:

MEMSIZ Total amount of memory in the system
expressed in beets (32-byte blocks).
This 1is wuseful in determining the
amount of memory space available for
system and user tasks.

NUMDEC Negation of the number of time units
since the 1last scheduling action.
If, this number is wunusually large,
a task may be in a loop with the
scheduler suspended or the scheduler
itself may be in error.

RSTRSW Flag that tells if the system has
completed initialization. If the
flag is set to -1 (>FFFF), the crash
occurred because the system was not
initialized.

A.3.1.6 Fixed and Runtime Task IDs. These entries are bit maps
of all fixed and runtime task IDs. They are generally of no
value in a crash analysis.

aA.3.1.7 System Patch Area. A dump of all out-of-line patches
that have been applied to the system by the MEMRES patch file is
listed. This is used to verify that all out-of-line patches have
been applied to the system successfully. The beginning address
of the patch area should be equal to the value assigned to SS$PAT.
The last five lines of the patch area will give the revision
letter of the release. The revision letter should be checked to
make sure that all recent patches have been applied.

A-6 939153-9701

System Design Document System Crash Analysis

A.3.1.8 Monitor Registers and Stack. The monitor registers are
the registers of the executing task at the time of the crash. RO
of " these registers will often contain the code of an error that
caused the task to abort the system. The error codes are as
follows:

Code Explanation Notes

Memory parity error

Illegal instruction

TILINE time-out

Illegal SVC code

Mapping violation

Privileged instruction violation

Terminated by a Kill Task SVC

Installed memory configuration is

not big enough to allow task to

be loaded

Map segment not in memory

Execute Protect Violation (990/12)
Write Protect Violation (990/12)
Stack Overflow (990/12)
Hardware Breakpoint (990/12)
12 Millisecond Clock (990/12)
Arithmetic Overflow (990/12)

O ~IRAULE WN

HEHOOW>»o

R10 is the stack pointer for the task. A segment of the stack
will be printed following the workspace registers. The stack
pointer can be used to trace back through the stack to determine
if a lower tier routine has passed an error code.

A.3.1.9 1Interrupt and XOP Vectors. The hardware interrupt and
XOP trap vectors should be examined to verify that they are
intact. Since these values reside in the first 1locations of
physical memory, they are often destroyed by a system or
privileged task that branches to memory location zero. Usually,
the 1locations that are destroyed are locations 0-3 (power-up
interrupt) or locations 1lA-1F (interrupts six and seven) .
Location 0 1is often 1loaded with a bad value when a data word
required by a task is not specified. Locations 1lA-1F are
destroyed when a task executes a BLWP instruction to location 0.
When the BLWP instruction occurs, the return context of the task
will be in locations 1A-~1F. When a >20 crash occurs, and the
interrupt mask indicates a defined interrupt (mask value minus
one), the interrupt trap values should be checked to determine if
they are within the proper address range. Except for interrupt
levels 0, 1, 2, and 5, the workspace pointer and program counter
for each trap should point to about the same locations.

939153-9701 aA-7

System Crash Analysis System Design Document

A.3.1.10 Internal Workspaces. The last data printed are tne
workspaces for the clock processor, the interrupt 2 processor,
and the SVC processor. These routines are entered through
context switches, so the return context will be found in
registers R13-R15 of these workspaces. The clock workspace will
contain the location in the executing task where the last clock
interrupt occurred. The SVC workspace will contain the location
of the last supervisor call. These two locations can sometimes
help determine where a task was at the time of the crash. The
interrupt 2 workspace contains diagnostic information about a >20
crash. R13-R15 contains the context of the crash within the
system. Rl contains the error code (listed on the previous page).
When looking at the saved status register for interrupt 2 (R135),
check to see if bit 8 is set or reset. If bit 8 is set, the crash
occurred in task driven code. If bit 8 1is reset, the crash
occurred in system code. It may be necessary to dump memory
around the location pointed to by R14 and check the listing to
determine if the code has been modified.

A.3.2 Task State (TS) Command

The TS command lists the most commonly referenced terms from the
TSBs of the tasks in the system. The 1list contains, for each
‘entry, the task 1ID, the task context at the last time the task
was scheduled or performed a supervisor call, the current sig'e
of the task, the task flags, and the TSB address. The % :
status block list follows the 1listing of commonly referenced
terms. The task flags contain useful information in bit 5: when
this bit is set, the task has been rolled out to disk; when this
bit is reset, the task is in memory. By examining this bit for
each task, the user can determine which tasks were in memory and
may be associated with the crash.

A-8 939153-9701

System Design Document System Crash Analysis

A.3.3 System Structures (SS) Command

The SS command lists the TSB, PSB, PDT, FCB, and LDT information
from the system. The system templates and/or data structure
descriptions are helpful when examining the SS command listing.

A.3.3.1 Task Status Block (TSB). The TSB 1listing gives the
entire TSB for every task in the system. The TSB contains all
the information about the task that is used by the system. The
most important fields in the TSB 1listing are the end action
address, the second flag word, the task diagnostic field, and the
task map file.

The end action address entry contains the starting address of the
memory task segment. This parameter is helpful when partial
links of the system segments are available (provided with DX10
source). By taking the end action address entry, and 1locating
where the task segment is in one of the partial links, the
location of other system parts can be found. The length of the
root segment can be found from the partial links. The starting
address of DMGR, which is the start of the memory resident task
segment, -‘can be located in the TSB listing. By subtracting the
length of the root segment from the starting address of DMGR, the
starting address of the root can be determined. The starting
address of the root segment is useful in determining if the crash
was caused by DX10. :

The second flag word in the TSBs contains information about the
task. If the task is being debugged, the first seven bits of the
flag word contain information regarding the debugger; otherwise
the first seven bits are set to zero. 1If the task is suspected
as causing the crash, the flags should by verified with the
templates, and TMRWT and the DEBUGGER modules should be examined
for possible problems.

The diagnostic information field in the TSB contains the
interrupt 2 values for a task that has taken end action. This
field is helpful when analyzing a crash code of >27. The >27
crash 1is caused by TMEXT being non-zero when a task is killed.
Often this occurs when a system task sets TM$EXT to suspend
scheduling, then takes end action. Thus, even though a task may
have a unique crash code, a >27 crash may occur because of these
circumstances. The diagnostic information contains the context
vector of the task at the time it was aborted. By taking these
values, the listings can be examined to determine what conditions
caused the abort (if the source listings are available). If the
listings are not available, this information 1is wuseful in
discovering a faulty module, if subsequent crashes occur within
the same task area.

939153-9701 A-9

System Crash Analysis System Design Document

it
The task map file is also kept in the TSB. The map file consist(
of three segments, with each segment containing a 1limit and &
base. When a memory management problem is being considered, or
an unexplainable map violation occurred from the task, the task
map file should be examined. To find the upper limit of a task,
find the last limit register that is not equal to >FFFF and
negate it. The task should be able to address memory locations
up to that point. To check for a memory management problem or a
TILINE time out problem, the location of each segment in physical
memory should be determined. This is done by the following
formulas:

Segment Beet Address Beet Length
1 Bl -L1/32
2 B2+ (-L1/32) (L1-L2) /32
3 B3+(-L2/32) (L3-L2) /32

Note:
1. The map file = L1, Bl, L2, B2, L3, and B3.

The segment beet address can be checked against MEMSIZ (GI
command listing) to see if the beet address exceeds the memory
limit. Also, the segment can be checked on the time ordered list
(MM command listing) if a memory management error is suspected.

A.3.3.2 Procedure Status Block (PSB). The PSB list follows the
TSB 1list. These entries contain the memory Beet address and the
length of the segment in Beets. It may be necessary to verify
the procedure 1locations in memory and check for their entry on
the time ordered list (MM command listing). The procedures have
a count of tasks that are attached to them. 1If the procedure is
flagged as memory resident, then this count must always be at
least one. There is no link to the attached task(s) in the PSB;
this link is maintained by the tasks in the TSB. ~

A.3.3.3 Physical Device Tables (PDT) and Device Buffers. The
next items listed are the PDTs. The PDTs define every device ip
the system. The device buffers are shown with the PDTs; these

are meaningful only if the device is marked assigned and busy 1n
the PDT flag field. The first two words in the PDT c¢ontain the

PDT link and the map file address and are not included in the PDT
workspace. If a crash occurred when the system was in a DSR, the
general location of the PC can sometimes be found by looking at
the PDT workspace registers 5 and 6. These registers often
contain either the interrupt entry vector or a BLWP vector used
in the DSR. R5 contains the workspace pointer, and R6 contains
the program counter.

A-10 939153-9701

System Design Document System Crash Analysis

All keyboard devices have a keyboard status block (KSB) as the
last part of the PDT. The KSB contains a ring buffer for the
characters being input. By looking at this buffer, the last 6
characters input can be determined. Also, the KSB flags contain
information about an SCI bid and whether SCI is active at the
terminal.

The TILINE and diskette drive PDTs have an extension for each
controller. The controller can have up to 4 drives associated
with it. There is one PDT per drive. The extension is found on
the first drive PDT. The extension indicates the number of
drives that the controller services. The PDTs for TILINE devices
also contain the last TILINE image that was sent to or from the
device. These parameters are useful in isolating disk problems
when the crash was related to the disk or the crash was forced by
the user, when disk activity was 100% and the system was in a
"hung" state.

A.3.3.4 File Control Blocks (FCB). The FCB list gives all the
files that were assigned at the time of the crash. Each disk
drive has a 1list consisting of its VCATALOG entry and all the
directories and files under it. Each FCB contains information:
the file name, pointers to its parent directory, disk allocation
space, and logical and physical record sizes. This list is most
useful on a running system when a drive cannot be released
because of LUNO assignment. When the FCB LUNO count is zero, the
FCB should be released. If an FCB is in memory with a LUNO count
of zero (see system templates), the file is released by assigning
a LUNO to that file, and then releasing it. This allows FUTIL
another chance at removing the FCB. A disk will not be released
until the only file opened under it is VCATALOG. The FCBs are
also helpful with FUTIL and file management crashes. The FCB
1ist shows all the files in the system at the time of the crash.
The FCBs can then be examined to determine which file or files
were involved in the crash.

A.3.3.5 Disk Partial Bit Maps. Each disk that is installed has
information concerning its ADU allocation printed in the dump. A
3-entry 1list 1is given for each sector of track 0 that contains
disk allocation information. The list entries contain the size
of the biggest ADU block for each sector, the size of the first
block, and the size of the last block in that sector. There is
room in each sector of the bit map to define 2032 ADUs. The disk
bit map is printed next. Each entry has one word of overhead and

127 words of bit maps. The allocation information is of little
use when analyzing a crash; it tells only if the disk is full.

939153-9701 A-11

System Crash Analysis System Design Document

A.3.3.6 Logical Device Tables (LDT). The last 1listing printed
by the SS command is the LDT list. The LDTs provide information
about LUNO assignment in the system. Every task, station, and
global LUNO is 1listed, with global LUNOs listed first, then
station and task LUNOs listed in order of TSB. The LDT contains
the LUNO number and the pointer to the associated file or device.
When the LUNO is assigned, the TSB field will contain a non-zero
value pointing to the TSB that owns the LUNO (see system
templates). The LDTs are structured as a forward-linked 1list.
The task LUNOs will point to the global ©LUNO 1list, either
directly or through a list of task LUNOs. The LDT information is
most helpful when using ANALZ on a running system. The LDT
information can show why a LUNO is not being released and what it
is pointing to. When examining the 1listing for a particular
LUNO, the first LDT with the LUNO desired is looked at first.
There may be more than one LDT with the same LUNO. The
information in the first LDT is checked, and if this does not
solve the problem, the next is examined. The LDT list <can also
be used in diagnosing file utility (FUTIL) problems in a crashed
system.

A.3.4 List Memory Map (MM) Command

The MM command lists information about the system mapping scheme,
memory within the system table area, memory in the user tajw
area, and system overlay segment usage. This set of entri
should be examined whenever memory management might be involved
with a crash. '

A.3.4.1 System Memory Maps. The system memory maps listing
contains the current pointer to the map 0 map file, followed by
all the system map files defined in the system. Each entry in
the map file list contains seven words. The first word given is
the overlay ID of the system image. This should correspond to
one of the overlay IDs on the link map of the system. (The 1IDs
listed in the dump are in hexadecimal, while the IDs in the link
map are in decimal. This is used only if the link maps of the
system are available). The remaining six words are the map file
registers. These are the same as explained for the TSB 1listing.
The first several entries are always the same, as follows:

File Management and Key Indexed Files
Memory Resident Tasks
User Common Area
I/0 Common Area
Scheduler
Disk Device Service Routine (DSR)
+ DSR for Each Remaining Device

OO WA

The current map file (CURMAP) pointer is usually pointing to t‘g

A-12 939153-9701

System Design Document System Crash Analysis

scheduler map file, entry five in the map file 1list. When a
crash occurs and CURMAP is not pointing to the schedular map
file, the problem is within one of the DSRs. Whenever a crash
occurs and the interrupt mask (bits 12-15 of the status register)
does mot equal >F, CURMAP and the map file it points to should be
checked. The addresses of the device DSR maps are found in the
second word of the device PDT. When the PDT is dumped, the map
file can be verified by checking that the second word of the PDT
points to one of the listed map files. The memory for the DSR is
examined by supplying the PDT address (not the TSB address) for
the Dump Memory (DM) command.

A.3.4.2 System Table Area. The system table area contains
system usage information and a list of available memory. Crashes
that are caused by too little table area can be determined by
looking at the system table header. A >30 crash occurs when the
system table overflows. The overflow can be determined by adding
the starting address of the table (located in the header) and the
total length of the table (also located in the header). If this
sum is greater than the highest address allocated, a system table
overflow has occurred. When the system crashes because of a
table overflow, DX10 should be generated with a 1larger table
area.

The remainder of the table area defines the free space chain of
available memory. The header information gives the address of
the first byte available. The remaining entries give the length
of that block in bytes and an address pointer to the next
available block. The list is ended with a zero pointer.

The system table area contains many structures of 10-100 bytes.
When the system table area is heavily fragmented and approaching
100% utilization, some devices (such as diskettes) may not be
able to obtain memory for the device buffer, and cause a table
overflow crash. When this occurs, the size of the system should
be evaluated and resizing the system by system generation should
be considered.

Tasks with a coding error can cause a table overflow crash by
using an unusual amount of table area. Wwhen this occurs, the
table area listing contains many structures of the same type and
size. Each entry in the system table lists its size in bytes.
An example of this type of crash occurs when a COBOL program
performs record locking on every record of a very large (20,000)
record file. The system table area will have many RTL entries
and will overflow. Programs that cause this type of crash should
be rewritten.

939153-9701 A-13

System Crash Analysis System Design Document

A.3.4.3 User Memory Area. The user memory area consists o‘
three parts: the user memory header, the available memory list,
and the time ordered list. All values in these tables are given
in beets (32-byte blocks). The user memory is considered to be
all of the physical memory that is not taken up by the memory
resident segments of the operating system.

The user area header contains a pointer to the first available
block of memory, the starting address of user memory, and the
total 1length of user memory. No user task can be greater than
the total length of memory. A crash normally does not occur from
this unless the available memory space is less than 32K words or
>800 beets. Also, no address on any of the three lists should be
greater than the total 1length of memory (MEMSIZ). If this
occurs, it indicates an error in memory management.

The available space list is a 1list of the blocks of memory
available for wuser programs and their beet lengths. This is a
linked list, with each entry containing a length word and a
pointer to the next available block. These entries are kept in
the first two words of the first beet of the block.

All user tasks, procedures, and blocking buffers that are not
defined as memory resident are found on the time ordered list
(TOL). Each of these segments have one beet of overhead that
links them on the time ordered list. The TOL beet contains th
block length, the associated structure address, the forward linki
the backward link, and the segment type. Blocks on the TOL ar
located by 1looking at the pointers in the preceeding or
succeeding block, which contain the beet address of the desired
block. The beet address of each block is not found at the front
of the entry.

The TOL is a circular list that is headed by a beet found at the
start of memory. The segment types are as follows:

>FFFF Header Entry
Blocking Buffer
Task Segment
Procedure Segment
Available Block

wHOo

The header entry appears first on the list and should not be
repeated. No buffer on the TOL should have a segment type of
three.

The user area 1list 1is useful for diagnosing a crash that was
forced, due to roll in/roll out deadlocks. Deadlocks can be
caused by an area of memory being "lost" to the system; that is,
the pointer to a memory block may have been accidentally deleted.

Memory can be verified by checking all memory on the TOL and the
available space list. Memory is verified by finding the first

A-14 939153-9701

System Design Document , System Crash Analysis

segment of the user area, then adding its length to its starting
address to find the second segment. That segment should be
located on either the TOL or the available space 1list. Rach
segment of memory is then checked in similar fashion, until all
of the segments are accounted for or the missing segment is
found. If a segment 1is missing, this indicates a problem in
memor y management which should be handled by a Texas Instruments
representative, When checking the available memory list, care
must be exersized when the task loader was active at the time of
the c¢rash. The loader may have been in the process of delinking
a block of memory.

Anytime an entry or pointer in the lists is greater than MEMSIZ,
the entry is in error. This is wusually caused by memory
management allocating a second block of memory over the top of
the first block allocated. The segment that overwrote the first
should be examined for conditions that would cause memory
management to put that segment at that location in memory.

NOTE

Do mot try to look at the TOL on an active
system. The memory chain will change while
ANALZ is scanning the list, causing ANALZ to
print meaningless data.

A.3.4.4 System Overlay Areas. The system overlay area
information gives the address of each overlay area, the status of
the area, and the overlay ID. This listing is useful only if the
crash occurred when the system was executing in one of the
overlays. When the crash occurs in an overlay, this area is used
to find the overlay. The system listings indicate the correct
code that should be in the overlay area.

A.3.5 List Queues (AQ and PQ) Command

The AQ command is wused to list the four active queues of the
system. The PQ command is used to 1list other queues in the
system. The active queues show the tasks queued for execution at
the four priority levels of the system. The other queues include
the file utility queue (FUTIL), the waiting on memory queue, the
system log queue, and the device queues. These gqueues may be of
impor tance during a system crash.

939153-9701 A-15

System Crash Analysis System Design Document

The queues 1listed by the PQ commands should not have more thag
three entries, except for the waiting on memory queue, where th§
length of the queue is a factor of system load versus system
memory. When a queue is found to be unusually 1long, the queue
processor should be checked to see if it is still active and the
state it is in.

A.3.5.1 FUTIL Queue. The file utility routine (FUTIL) services
all create file functions and all assign LUNO functions to files
and devices. The FUTIL queue is sometimes large because of the
type of operation it is performing, such as creating large key
index files. The queue processor should be checked when this
occurs. Sometimes the FUTIL queue and processor will be blocked
when performing I/0 to a device. Some devices, such as 1line
printers, have a long time-out associated with them. When the
device is offline, and FUTIL is trying to assign a LUNO to the
device, FUTIL is suspended until the time-out is performed.
During that time, no other entry on the FUTIL queue can be
serviced. Users may force a crash when this occurs, because it
appears that the system is in a roll in/roll out deadlock. Some
crashes are caused by a FUTIL roll in/roll out deadlock.
Sometimes FUTIL will be rolled out of memory with a longer than
average queue, and will not be able to obtain memory for roll in.
When this occurs, it must be determined why FUTIL cannot get
memory and what routine is supposed to handle that condition.
The 1listings of the task loader area should contain the routine
that handles FUTIL memory management.

A.3.5.2 Waiting on Memory Queue. The waiting on memory queue
contains the task status blocks (TSBs) of all tasks that are
ready to execute but need memory. This queue grows in proportion
to the number of tasks that are in the system and the size of
available memory. There are times when no task is executing, and
every task is on this queue. When this happens, the system
deadlocks and crashes are usually forced. Conditions that lead
to this are when tasks 1lock other tasks into memory without
following the rules of the operating systemn. The most common
occurrence of this is when a device tries to simulate TILINE I/0,
which locks a task into memory, and the task does mot set the
supervisor control block (SCB) flag when the I/0 completes. The
SCB flag indicates to the system schedular that end-of-record
processing must be performed, and that the task can be rolled out
of memory. When this flag is not set, there is the possibility
that the roll out algorithm will be caught in an endless loop.
Other situations that lock tasks into memory and cause deadlocks
are file management requests and alternate TSB servers.

A-16 939153-9701

System Design Document System Crash Analysis

Another situation that <causes the waiting for memory queue to
grow, and causes system deadlocks, is problems with the system
disk. Sometimes the disk will go offline and roll in/roll out
cannot be performed. The system log and system log queue should
contain error messages when the system disk is in question.

A.3.5.3 System Log Queue. The system log queue contains all the
system log messages that are waiting to be written to the system
log device. System log messages will be kept on the queue if the
system log device has mot been initialized or if the queue is
getting more messages than the system log device can handle. 1In
this second case, the messages on the queue will often give a
clue as to what went wrong with the system before the crash
occurred (for example, when there are problems with the system
disk).

A.3.5.4 Device Queues. Each device has a queue list anchored in
the PDT. This queue is a 1list of I/O requests made to that
device. When a particular device is off-line or down, and the
device has no time out value, the list may become long. When a
crash is forced because a task would not come back from an I/0
request, the device queues should be checked for the task
requesting I/O and for unusual queue length. The system
templates indicate where the queue pointer is in the PDT.

A.3.6 Task Registers (TR) Command

The TR command lists all cf the workspace registers of the tasks
that are in memory at the time of the crash. Workspace registers
10 and 11 are useful in determining where the task was executing
at the time of the crash. Registers 10 and 11 give the stack
location for the task and where the last return from a branch and
link (BL) was in the task. These registers are wused with the
task listing to locate where the task was executing, and the data
structures it was executing on. Register 10 points to the area
containing information on routines called and parameters passed
to them.

A.3.7 Task Area (TA) Command

The TA command lists two parts of memory: the task memory area
and the system data base.

939153-9701 A-17

System Crash Analysis System Design Document

A.3.7.1 Task Area. The task area listing shows the raw memor%
dumps of the task segments. The procedure segments are not
shown; these must be listed with the dump memory (DM) command.
The push/pop stack is usually kept in the task segment and will
be listed by this command when it is. You often need to
determine if the task memory space has been altered. By checking
the task area with a listing of the task, you can determine if
any task memory has been wiped out. If several words have been
destroyed, you can possibly determine which processor wiped out
the code and what type of operation was being performed. File
management and TILINE data transfers often cause destroyed code.
By checking the SVC call blocks, the buffer areas of the transfer
can be determined. An incorrect address in the SCBs will cause
code to be wiped out. Another cause of destroyed code is caused
by the TILINE device service routine not getting the right
physical address of the output buffer. Common places where this
is discovered is in the first 100 words of the system, or at
addresses greater than >C000. The device service routines may
have bugs when this occurs.

A.3.7.2 ©System Memory. This listing is a dump of the system
data base. This area is the first module of the operating
system, with the largest part being the system table area. It is
often necessary to examine data structures that are not listed in
the above sections of the ANALZ dump, but are found in the syste
table area. Sometimes the table area is modified, similar to t
modifications of the task area listed above. This part of th
dump is important, because it lists the system data base without
being restrained to data structures.

A.3.8 All (AL) Command

The AL command allows the user to do all of the functions 1listed
above, in the order given, with one command. This is the most
useful way of performing a crash dump analysis. It allows for
easy referencing between different parts of the system without
having to enter separate commands for each part to be analyzed.
Two other commands are available for the analysis; these are
listed below.

A.3.9 Dump Memory (DM) Command

The DM command is used to list memory not shown by any of the
above commands. The DM command can be used in three ways. The
first is to give a task status block address and a relative
address within the task. This gives a list of the task area not
given by one of the above commands. The second method is is to
give the address of one of the physical device tables for the
device. This gives the memory available for the DSR. This
second method also allows for the viewing the system root and Iiﬁ

A-18 939153-9701

System Design Document System Crash Analysis

common area. The third method is to list absolute memory. This
requires a TSB address of zero, and a 21 bit absolute address.
This method should be used when examining the time ordered list

memory (that is, the memory pointed to by entries on the time
ordered list). :

A.3.10 Disk Information (DI) Command
The DI command provides information on each file and directory of
the system disk. This command is rarely used in a crash
analysis. The information given by the DI command, for each
file, is a follows:

* PFile Name: the name of the file.

* TLRL: the logical record length of the file.

* PRL: the physical record length of the file.

* Size: the number of ADUs in the file. ‘

* Address: the starting ADU address of the file.

* Tlogical EDM: the logical end of file address.

* Block EDM: the physical end of file address.

A.3.11 System Table Analyzer (SA) Command

This command displays a breakdown of the system table area,

including memory usage by the system queues, lists, and
unallocated memory holes

A.4 ANALYZING >20 AND >27 CRASHES

The most common types of crashes are >20 and >27 crashes. The
following paragraphs give suggestions on how to start analyzing
these crashes and what conditions to look for.

A.4.1 >20 Crashes

The >20 crash occurs while the system is executing a system task
(memory resident or disk resident). The system task either takes
end action, or receives an internal interrupt.

A.4.1.1 Status Register. When a >20 crash occurs, £first check
the status register. 1If the last 4 bits of the status register
do not equal one, the crash is caused by an 1illegal internal

939153-9701 A-19

System Crash Analysis System Design Document

interrupt. This indicates that a device interrupted at ig
interrupt level that is not defined, or that a device interrupted
within an expansion chassis and the device position in that
expansion chassis is not defined. The value of status register
bits 12 through 15 plus one indicate the interrupt level that was
taken. The hardware configuration and the system generation
listing should be checked to determine if the interrupt level
taken is a legal interrupt. 1If the interrupt is legal, then the
interrupt workspace is checked for a bad chassis position
interrupt. A pointer to that workspace is at the beginning of
memor y at location interrupt 1level times four. Wor kspace
register 9 will have the position value times 8 that caused the
the interrupt. Divide the contents of R9 by eight, and check the
hardware configuration to verify the chassis position.

A.4.1.2 1Interrupt Two Workspace. 1In most cases, the status will
be >C001. This indicates a task error within the operating
system. In the error interrupt workspace, register 1 will
contain the task error code that caused the crash. These error
codes are listed above under the description of the level 2
wor kspace. When the error code is found, the contents of
registers 13, 14, and 15 show the location of the crash, and the
status at the time of the crash. If bit 8 of workspace register
15 is set to one, the crash occurred in a user task; if it is set
to zero, the crash occurred in a system task. The contents of
register 14 1is the program counter at the time of the cras
This code around this location should indicate what caused tHE
crash. The workspace pointer 1is in register 13; the task
wor kspace is used to check indexed addresses. The task 1listing
should be consulted to determine what instructions were being
executed at the time of the crash.

A.4.2 >27 Crashes

The definition of a >27 crash is "TMSEXT non-zero during kill
task", which 1is caused by a task taking end action while it has
suspended the scheduler. The crash occurs before the end action
is taken. When this crash occurs, the value of ETSK shows the
executing task at the time of the crash. The TSB for this task
(found in the TSB 1list) has a diagnostic information field
containing the error code and the context of the task at the time
of the area. With this information, the >27 crash is handled the
same as the >20 crash.

A-20 939153-9701

System Design Document Regenerating DX10, SCI, SDSMAC, & XLE

Appendix B

Regenerating DX10, SCI, SDSMAC, and XLE From Source

B.1l GENERAL INFORMATION '

A DX10 Release 3.2 (or later) system with FORTRAN installed must
be used when it is desirable to regenerate DX10. Because of the
large volume of data required, the regeneration process normally

requires a 4-disk system to complete the process. The disks
required are:

System disk Contains a DX10 system, 5000
contiguous sections of temporary
space, and the FORTRAN compiler
and run-time package.

Source disk Contains source and object files.
Listings disk Contains the source listings.
Build disk Disk onto which to build the

new system.

Batch listings disk Contains the batch execution
listings. Not necessarily
a different disk.

The system disk must be a DS10 or larger disk. The source disk
must be a DS25 or larger disk (64176 sectors required).

The 1listings disk must be larger than a DS25 to contain all the
source listings (102543 sectors required). The assemblies may be
done so that the listing disk capacity requirement may be reduced
by changing the disk during the course of the assemblies. It is
recommended that a DS25 disk be the minimum capacity disk used.
The additional files for the microfiche require an additional
6624 sectors for a total of 109167 sectors.

The batch execution listings disk may be a DS31 or larger disk.
The batch listings require 5082 sectors. These listings may go
to the system disk, the listngs disk, or any other disk in the
system (excluding the source disk).

A single magnetic tape drive is required if the magnetic tape
disk build media is to be done.

939153-9701 B-1

Regenerating DX10, SCI, SDSMAC, & XLE System Design Document

To execute the batch stream named VOLSRC.BATCH.LINKBLD, the u{
must have a privilege code of 6 or 7. ;

B.2 ASSEMBLING AND COMPILING DX10

The DX10 source is logically divided into directories according
to operating system function. These directories are described in
this system design document. A batch stream is supplied for each
operating system directory that will perform the conversion of
source to object. These batch streams recompile or reassemble
all source modules if the proper synonyms are correctly assigned.
The required synonyms are:

Synonym Value

VOLSRC SYSBLD (volume name of source disk)

VOLOBJ SYSBLD (volume name of object disk)

VOLLST LIST3X (volume name of listing disk)

VOLSYS 222222 (volume name of executing system disk)

VOLS$$BAT LIST3X (volume name of batch listings disk)

The source disk supplied by Texas Instruments is named SYSBLD.
Normally, the listing disk contains the release level in the
volume name when the procedure is executed by Texas Instruments
personnel. The names have been LIST30 for Release 3.0 and LIST31l
for Release 3.1. The name may be changed without impacting the
procedure.

The following is a list of the batch streams to
reassemble/compile DX10:

SYSBLD.BATCH.ASM.ANALYZ
SYSBLD.BATCH.ASM.DEBUGR
SYSBLD.BATCH.ASM.DEVDSR
SYSBLD.BATCH.ASM.DSCBLD
SYSBLD.BATCH.ASM.DSCMGR
SYSBLD.BATCH.ASM.DX10
SYSBLD.BATCH.ASM.DXMISC
SYSBLD.BATCH.ASM.DXUTIL
SYSBLD.BATCH.ASM.FILMGR
SYSBLD.BATCH.ASM.FUTIL
SYSBLD.BATCH.ASM.GEN990
SYSBLD.BATCH.ASM.KIFILE
SYSBLD.BATCH.ASM.MEMMGR
SYSBLD.BATCH.ASM.NOSHIP
SYSBLD.BATCH.ASM.PGFILE
SYSBLD.BATCH.ASM.SYSTSK
SYSBLD.BATCH.ASM.TSKMGR
SYSBLD.BATCH.ASM.UTCOMM
SYSBLD.BATCH.ASM.UTDIRP
SYSBLD.BATCH.ASM.UTDXTX
SYSBLD.BATCH.ASM.UTGENR
SYSBLD.BATCH.ASM.UTSVC

B-2 939153-9701

System Design Document Regenerating DX10, SCI, SDSMAC, & XLE

Assign the synonyms and execute each of the batch streams with
the XB command. The approximate run time is 13 hours.

B.3 ASSEMBLING SCI990

To assemble SCI990, execute the following batch stream with the
same synonyms assigned as required for DX10 reassemblies:

SYSBLD.SCI990.BATCH.ASM

This batch stream runs approximately 3.25 hours.

B.4 ASSEMBLING SDSMAC

To assemble SDSMAC, execute the following batch stream with the
same synonyms assigned as required for DX10 reassemblies:

SYSBLD.SDSMAC.BATCH.ASM

This batch stream runs approximately 2.5 hours.

B.5 TRANSLITERATING THE LINK EDITOR

To transliterate the link editor, execute the batch stream named:
SYSBLD.LINKER.UTILITY.INSTALL.

This installs the transliterator required to translate and

assemble the link editor source. Use the same synonyms assigned

for DX10 reassemblies. When this batch stream has completed,

execute the batch stream named:

SYSBLD.LINKER.BATCH.ASM

This batch stream runs approximately 2.2 hours.

939153-9701 B-3

Regenerating DX10, SCI, SDSMAC, & XLE

B.6 LINK EDITING DX10

System Design Document

Assign the following synonyms and then execute the following
batch streams:
Synonym Value

VOLSRC SYSBLD (volume name of source disk)

VOLOBJ SYSBLD (volume name of object disk)

VOLBLD REL32 (volume name of disk to build)

VOLSYS ?2222? (volume name of executing disk)

VOLS$ BAT LIST3X (volume name of batch listings disk)

Batch Stream Function

SYSBLD.BATCH.DXLINKS
SYSBLD.BATCH.UTLINKS
SYSBLD.BATCH.GENPARTS
SYSBLD.SCI990.BATCH.LINK

SYSBLD.SDSMAC.BATCH.LINK
SYSBLD.LINKER.BATCH.LINK

Pre-links and links of
DX10 parts

Pre-links and links of
all utilities

Compress object for SYSGEN
parts

Link of command interpreter
parts

Link of macro assembler

Link of link editor

The approximate run time is 2.9 hours.

B.7 BUILDING THE DX10 SYSTEM DISK

Install a new disk in drive DS03

(must be DS03 for MVI commands).

Initialize the volume using the INV command and the following
responses:
[1 Inv
INITIALIZE NEW VOLUME
ONIT NAME: DSO03
VOLUME NAME: REL33

NWMBER OF VCATALOG ENTRIES:

100 (Ds32),

200 (ps1o0),

342 (DS25, DS50)

BAD TRACK ACCESS NAME:

DUMY

939153-9701

System Design Document Regenerating DX10, SCI, SDSMAC,

NOTE

If drive DS03 is not available

for

this

purpose, it may be changed but with
difficulty. One must text edit a file on the
master source disk to change the operand

the disk drive for the MVI command.

for
The file

pathname is SYSBLD.MVICONT. The first line
of the file contains the entry DS03 that must

be changed to the name of the

available

drive. This change and changing the operand
for the drive response of the INV command

above are the only changes required.

Proceed

with caution since the master disk must be
written to when QUITING the edit session.

Aséign the synonyms as described for the links
following batch streams:

and

execute

& XLE

the

Batch Stream Function
SYSBLD.BATCH.BLDX10 Build the new DX1l0 system disk
SYSBLD.SCIS90.BATCH.SCI990 Install the command interpreter
SYSBLD.BATCH.PROCO Install SCI procedures (level 0)
SYSBLD.BATCH.PROC2 Install SCI procedures (level 2)
SYSBLD.BATCH.PROC4 Install SCI procedures (level 4)
SYSBLD.BATCH.PROC6 Install SCI procedures (level 6)
SYSBLD.BATCH.MENU Install the SCI procedure menus
SYSBLD.BATCH.SDSMAC Install the macro assembler

SYSBLD.LINKER.BATCH.INSTALL Install the link editor

SYSBLD.BATCH.PROTCT

The approximate time is 1.1 hours.

939153-9701 : B-5

Delete protect the system tasks

Regenerating DX10, SCI, SDSMAC, & XLE System Design Document

Patch the system just built by copying and editing the file namea
REL 33 .PATCH.MEMRES. The instructions for editing the file are
contained in the first few lines of the Ffile itself. Use the
Copy/Concatenate utility to copy the file:

[1cc

COPY/CONCATENATE .
INPUT ACCESS NAME (S): REL33,PATCH.MEMRES
OUTPUT ACCESS NAME: REL33.PATCH.XMEMRES
REPLACE?: NO
MAXIMUM RECORD LENGTH: 80

Edit the file named REL33.PATCH.XMEMRES to assign the required
synonyms. The link map for the built system is in the file named
VOLOBJ.DXLINK.MAP.SSIMAGES. Assign the synonym $$DSC$ to the
value REL33 and execute the batch stream named
REL33.PATCH.XMEMRES. The runtime is approximately 5 minutes.

Execute the batch stream named REL33.PATCH.PROGA to patch the
system program file. This takes about 5 minutes.

B.8 BUILDING THE DX10 DISK BUILD MAGNETIC TAPES

To make the magnetic tapes for the magnetic tape disk build
procedure, follow the instructions listed below. The synonyms
assigned are to be wused during the entire process. Three
magnetic tapes are made requiring the following resources:

System Disk Contains system and temporary space.

Source Disk Contains source, object, and batch
streams (SYSBLD).

Built DX10 System Contains a DX10 system as the result of

the preceding procedure for building the
DX10 system disk.

B-6 939153-9701

System Design Document Regenerating DX10, SCI, SDSMAC, & XLE

Assign the following synonyms:
Synonym Value

DSC SYSBLD
DSC2 REL33 (new DX10 system disk)

* For Tape l: Mount a 1200-foot magnetic tape in drive
one (MTO0l) with a write-enable ring installed. Then,
execute the batch stream named SYSBLD.BATCH.BSTI. The
approximate run-time is 25 minutes.

* PFor Tape 2: Mount a second 1200-foot magnetic tape in
drive one (MT0l) with a write-enable ring installed and
execute the batch stream named SYSBLD.BATCH.BST2. The
approximate run-time is one minute.

* PFor Tape 3: Mount a third 1200-foot magnetic tape 1in
drive one (MT0l) with a write-enable ring installed and
execute the batch stream named SYSBLD.BATCH.BST3. The
approximate run-time is 10 minutes.

939153-9701 B-7/B-8

System Design Document Scheduler Structure

Appendix C

Scheduler Structure and Operation

C.1 FLOW OF CONTROL FOR DX10 SCHEDULER

The following list is a detailed flow of control for the DX10
task scheduler. The scheduler is entered when one of the
following five conditions is met:

* When the executing task suspends.
* When a time delay task is due to become active.

* When a task time slices out (if time slicing is
enabled). : '

* When a device service routine (DSR) bids a task.

* When the task sentry decides to lower the priority of
the executing task.

The scheduler is entered from the routine named TRAPRT, which is
the common exit point for XOPRT2, XOPRT3, TMSDEC, and TMSCLR.
The scheduler will not be entered if the scheduler inhibit flag
(TMSEXT) is high, if the time slice extended flag (TMESLC) is
non-zero, or if the previously executing task was in map file 0.

The variable ETSK is a word in the root of DX10 that points to
the TSB of the currently executing task. When no task is
executing, ETSK is null.

The flow of control for the task scheduler is given in the steps
that follow:

0.0 MAIN ENTRY POINT (defined as SLCSUS)

1.0 ETSK NULL?
If ETSK points to a TSB when the scheduler is
entered, then either this task was time sliced
out, a device service routine (DSR) bid a task, a
time delay task was due to become active, or the
task sentry decided to lower this task”s priority.

YES - GO TO 3.0

939153-9701 c-1

Scheduler

4.0

5.0

6.0

8.0

9.0

10.0

Structure System Design Document

Put the TSB pointed to by ETSK on the active queue,
task sentry for CPU-bound tasks, and
set ETSK to zero.

CLEAR:
These flags are cleared each scheduling cvcle:
Time slice ended flag (TM$DFR):;
Scheduler inhibit flag (TMS$EXT);
Time slice extended flag (TMESLC).

UPDATE TIME AND DATE
The number of elapsed system time units is added
to the computer clock calendar.

UPDATE TIME DELAY TASKS
Time delay tasks also are updated by the number of
elapsed system units. If the task is due to
become active, the scheduler puts it in an active
status.

HAS A SYSTEM TIME UNIT ELAPSED? .
The timeout 1logic for device service routirf
should be entered at 50 millisecond interval%,
i.e., each system time unit.

YES - GO TO 8.0

HAS A DSR BID UP A TASK?
If a DSR bids a task, then the global wvariable
BIDTSK 1is mon-zero. If this is the case, the DSR
timeout must be entered now.

NO — GO TO 9.0
CHECK REENTER-ME AND TIMEOUTS FOR PDTS (BLWP TMOUT)

IS TILINE END OF RECORD OUTSTANDING?
Since tasks that do TILINE I/O are 1locked into
memory, do a TILINE end of record as soon as
posible to allow the task to be rolled. If TILINE
EOR is outstanding, the global wvariable SCB is
non-zero.

YES -- GO TO 24.5

IS ACTIVE QUEUE EMPTY?

c-2 939153-9701

System Design Document Scheduler Structure

11.0

13.0

14.0

15.0

16.0

17.0

18.0

19.0

YES -- GO TO 13.0

GET HIGHEST PRIORITY TASK OFF ACTIVE QUEUE:;
SET ETSK TO PONT TO TSB OF HIGHEST PRIORITY TASK.

IS ETSK A REAL TIME OR SYSTEM PRIQRITY?
If a real time or system task wants to execute,
the scheduler does mot attempt to service SCI bids
during this scheduling cycle.

YES -- GO TO 19.0
IS RESTART IN PROGRESS? .
No SCI bids are serviced until the system restart

task has initialized the system.

YES -- GO TO 15.0

SCAN KSBs FOR SCI BIDS
The scheduler bids SCI for each KSB that requests

it using the routine named TMBIDO.

HAS A TASK BEEN SELECTED (Is ETGK not null)?

YES -- GO TO 19.0

IS TASK LOAD IN PROGRESS (TMMLIP not null)?
If the scheduler has previously requested a task
to be rolled in, there is mo need to try to roll

in another task.

YES -- GO TO 18.0

IS ANY TASK WAITING ON MEMORY (TMWOMO not null)?

YES -- GO TO 21.0

GO IDLE (wait for interrupt).
GO T0 3.0

IS THERE AN ALTERNATE TSB FOR ETSK?

YES -- GO TO 22.0

939153-9701 c-3

Scheduler

20.0

21.0

22.0

23.0

24.0

24.5

25.0

26.0

27.0

Structure System Design Document

SHOULD A TASK WAITING ON MEMORY BE LOADED? ,
If a task waiting on memory is of higher priority
or equal priority and ETSK has had a minimum
number of time slices, if time slicing is
available, then the task loader is given the CPU
to load the waiting task.

NO — GO TO 22.0
REQUEUE ETSK ON ACTIVE QUEUE IF NOT NULL:

SET ETSK TO POINT TO TASK LOADER TSB;
SET TMMLIP TO NONZERO (SIGNAL LOAD IN PROGRESS).

SET TIME SLICE COUNT
Initialize the number of clock ticks for a time
slice. If time slicing is disabled, a non-zero
number is used here.

IS END OF RECORD QUTSTANDING FOR ETSK?
Since TILINE EOR was checked earlier, this 1is a
check for CRU I/0.

NO — GO TO 25.0
REQUEUE ETSK ON THE ACTIVE QUEUE

SET ETSK TO POINT TO DEVICE DRIVER TASK;

GO TO 34.0

IS THERE ANY ALTERNATE TSB PRESENT FOR ETSK?

NO — GO TO 27.0

SET ETSK TO POINT TO ALTERNATE TSB;

GO TO 34.0

IS THIS TASK QUIETING?
Tasks that are quieting have been selected to be
rolled and are kept on the active queue until
their I1/0 is finished.

NO — GO TO 30.0

C-4 939153-9701

System Design Document Scheduler Structure

28.0

29.0

30.0

31.0

32.0

33.0

34.0

35.0

36.0

37.0

IS I/0 IN PROGRESS?

YES -- GO TO 2.0

PUT ETSK ON QUIET QUEUE;
The task loader is a dedicated queue server of the
quiet queue and will be activated when something
is placed on its queue.

CLEAR ETSK;

GO TO 3.0

IS LEAVE ALONG FLAG SET FOR ETSK?
YES -- GO TO 34.0

IS ABORT FLAG SET?

NO — GO TO 34.0

IS I/0 COMPLETE?

NO — GO TO 2.0
BRANCH TO END ACTION

PROCESS GET CHARACTER SVC
The processing necessary for the get character SVC
is small and the SVC overhead is saved by moving
the character from the TSB, placed there by the
DSR, to task register 0.

DOES AN OVERLAY NEED TO BE READ IN FOR ETSK?

PLACE ETSK ON OVERLAY LOADER QUEUE;
GO TO 3.0
IS ETSK UNDER CONTROL?

This is a flag set in the TSB.

NO — GO TO 39.0

939153-9701 C-5

Scheduler Structure System Design Document

38.0 PLACE ETSK IN STATE 6;
Task suspended by the scheduler.
CLEAR ETSK;

GO TO 2.0

39.0 SET UP TASK FOR EXECUTION
Set task in state 7;
Increment loader roll count (TSBT1):;
Put task memory on time ordered 1list (if not
memory resident)

40.0 GIVE CONTROL TO ETSK VIA A RTWP USING PC, WS, AND
STATUS IN THE TSB POINTED TO BY ETSK.

C.2 PREEMPTIVE EXECUTION

Task scheduler operation is based on the concept of preemptive
execution. Preemptive execution allows a higher priority task to
have the CPU whenever it becomes active. For example, if task T1
with a priority of R5 is executing, and a task T2 of priority R2
is bid, Tl is suspended and T2 is placed in execution. If g-sk
T3 of priority RO is subsequently bid, T2 is suspended and ’(
put into execution. Preemption is shown in Figure C-1.

Task in Active
Time - Execution Task Queue Action
0 ms. Tl T1/R5

30 ms. T2 pre-empts Tl T2 T2/R2,T1,R5 T2 is bid

50 ms. i T2 T2/R2,T1,R5

750 ms. T2 T2/R2,T1/R5

783 ms. T3 pre-empts T2 T3 T3/R1,T2/R2,T1/R5 T3 is bid

800 ms. T3 T3/R1,T2/R2,T1,R5

841 ms. T2 T2/R2,T1/R5 T3 has
completed

850 ms. T2 T2/R2,T1/R5

Figure C-1 Pre-emption

Notes:

Tl has an assigned priority of R5
T2 has an assigned priority of R2
T3 has an assigned priority of R1

C-6 939153-9701

System Design Document Scheduler Structure

C.3 TIME SLICING

Time slicing is a task scheduler option that can be selected at
system generation (sysgen) time. Also specified at sysgen is the
length of the time slice. This is defined as a multiple of
system time wunits (at 50 milliseconds each). The default
parameters are to have time slicing, with each time slice is to
be one system time unit (50 milliseconds). When time slicing is
invoked, the time slice value is the amount of CPU time that is
given a task each time it executes, and the next task to execute
is the next task of the same priority. (This is somewhat
different from the pre-DX10 3.2/TX2.3/TX5 task scheduler as this
scheduler only slices tasks of the same priority.) For example,
take the case where time slicing 1is selected H and task T4,
priority R5, is the only task running. If task T5, priority R2,
is bid, followed shortly by task T6, priority R2, then T5, and T6
will alternate running for 50 millisecond time slices. When both
have completed, task T4 is allowed to execute again. This is
shown in Figure C-2.

939153-9701 c-7

Scheduler Structure

Time

50
100
128
150
183
200
250
300
350
400

450
500
540

550
600
650
700
717
750
800
850
852
900
950

mse.
ms.
ms.
ms‘
ms.
ms.
nms.
ms.
ms.
ms.
ms.

ms.
ms.
ms.

ms.
ms.
nmns.
ms.
ms.
ms.
ms.
ms.
ms.
ms.
ms.

Notes:

1.
2.
3.

T4
TS5
T6

Task ig
Execution

- T4

T5 pre—-empts T4

T4
T4
TS
T5

TS5

T6
TS
T6
TS
T6

T6
T6
T6

T5
T6
TS
T6
TS5
TS
TS
TS
T4
T4
T4

System Design Document

Active
Task Queue

T4 /R5

T4/R5

T4 /RS

T5/R2,T4/R5
T5/R2,T4/R5
T5/R2,T6/R2,T4/R5
T6/R2,T5/R2,T4/R5
T5/R2,T6/R2,T4/R5
T6/R2,T5/R2,T4/R5
T5/R2,T6/R2,T4/R5
T6/R2,T4/R5

T6/R2,T4/R5
T6/R2,T4/R5
T6/R2,T5/R2,T4/R5

T5/R2,T6/R2,T4/R5
T6/R2,T5/R2,T4/R5
T5/R2,T6/R2,T4/R5
T6/R2,T5/R2,T4/R5
TS5/R2,T4/R5
T5/R2,T4/R5
T5/R2,T4/R5
T5/R2,T4/R5

T4 /R5

T4/R5

T4 /RS

has an assigned priority of RS5.
has an assigned priority of R2.
has an assigned priority of R2.

Figure C-2 Time Slicing

Action

Task T5 is bid

Task T6 is bid

TS5 suspends for
I/0

TS completes
I/0

T6 terminates

TS5 terminaté&s

939153-9701

System Design Document Scheduler Structure

C.4 TASK SENTRY

Task sentry is the other scheduler option that can be selected at
sysgen -time. Also defined at sysgen is the task sentry value
(expressed in multiples of system time units), if the task sentry
is to be used. The sysgen default parameters are not to have
task sentry selected, but if task sentry is selected, the default
time value is 60 system time units (three seconds). When task
sentry is operational the operating system determines which task
is running at the end of each system time unit. If the same task
is running now as was running at the last check, an elapsed time
counter is decremented. If a different task is running, then the
elapsed time counter is reset to the task sentry value specified
at sysgen. TIf the elapsed time counter reaches zero, the task in
execution 1is lowered to the next lower oriority value and placed
at the bottom of the list for that priority level. The elapsed
time counter is then reset, and the top task on the active queue
is placed in execution. If task sentry places a task on a
populated 1list, then the task is returned to its loaded priority
level when it is next allowed to execute (i.e., task sentry
cannot reduce a task priority below that of the next lower
priority task in the system). Likewise, if a task terminates or
suspends for any reason, its priority 1is reset to that the
priority assigned to it when it was loaded. Figure C-3 describes
this action.

939153-9701 C-S

Scheduler

Time
0 ms.
27 ms.
50 ms.
81 ms.
100 ms.
150 ms.

3100 ms.
3150 ms.
3200 ms.

6500 ms.
6550 ms.

9550 ms.

9600 ms.
9621 ms.

9650 ms.
9700 ms.
9750 ms.
9772 ms.

9781 ms.
9800 ms.
9850 ms.
9894 ms.

9900 ms.
9981 ms.

Structure

Task in
Execution
T7
T8
T8
T9
T
T9

T8
T8

T8

T9
T9

7

T7:
T9

T9
T9
T9
T

T7

™7
T7
T9

T9
T7

Active

Task Queue

T7/R10
T8 /R9,T7/R10
T8/R9,T7/R10

T9/R8,T8/R9,T7,R10
T9/R8,T8/R9,T7,R10
T9/R8,T8/R9,T7,R10

T8/R9,T9/R9,T7/R10
T8 /R9,T9/RI,T7/RL0
T8 /R9,T9/R9, T7/R10

T9/R8,T7/R10
T9/R9,T7/R10

T7/R10,T9/R10

T7/R10,T9/R10
T9/R8

T9/R8
T9/R8
T9/R8
T9/R8,T7/R10

T7/R10

T7/R10
T7/R10
T9/R8,T7/R10

T9/R8,T7/R10
T7/R10

I. T7 has an assigned priority of R10
2. T8 has an assigned priority of R9
3. T9 has an assigned priority of RS8

System Design Document

Action

Task T8 is bid

Task T9 is bid

Task T9 exceeds
sentry

Task T9 resumes
execution

Task T9 exceeds
sentry

Task T9 exceeds
sentry

T7 suspends
for 1/0

T7 completes
1/0

T9 suspends for
for 1/0

T9 completes
1/0

T9 teminates

Figure C-3 Task Sentry Operation

939153-9701

System Design Document Scheduler Structure

C.5 SUMMARY OF SCHEDULER OPERATION

The four modes of scheduler operation are summarized in Figure C-
4. The modes in which either time slicing or task sentry are
described in the previous paragraphs. The scheduler mode in
which both time slicing and task sentry are used, acts 1like the
time-slicing-only mode for 1lists with more than one task, and
like task sentry only for lists of just one task, providing that
the task sentry value is greater than the time slice value. This
is because the task sentry timer is reset each time a new task is
allowed a time slice. In the simplest scheduler mode neither
time slicing nor task sentry is used. 1In any case, the highest
priority task in the system is always in execution.

Most industrial applications use time slicing only or neither
- time slicing nor task sentry. If timesharing, scientific
programming, or other general purpose data processing functions
are performed on the same machine with a real-time control
function, the time-slicing-only mode should be used. 1In this
case, the general purpose data processing functions can be
carried out on priority levels 1-3, and the control programs can
occupy priority levels R1-R127. If each control task is assigned
a different priority level, no time slicing of the real-time
control tasks occurs. The general purpose DP functions are
allowed to use any CPU time not required for the real time
control function. If only real-time control is carried out by
the CPU, neither time slicing mode nor task sentry mode should be
used. In this case, all tasks are assigned a separate priority
level. Execution 1is nearly the same as described above for R1-
R127 tasks but there is slightly less system overhead since the
operating system no 1longer performs the time slicing function.
In critical response environments, this mode may provide the
extra fraction of a second response required. Because of the
response characterisitics of the real-time priorities,
communications software is frequently given a real time priority.

939153-9701 c-11

Scheduler Structure System Design Document

Task Sentry

D ——— — T —— - — — —— — - D - =D = - - — — — — - - - — — — = D T D W D W D - - = — - - . o —

At end of time slice, task| At end of time slice, task
is put on the bottom of is put at the bottom of
the list for its priority the list for its priority
level. 1If a task executes| level. .

more oonsecutive system
YES time units than specified
for the task sentry, then
the task is placed at the
bottom of the next lowest
priority list in the
active queue.

“If a task executes more Highest priority task has
consecutive system time CPU as long as it wants it.
units than specified for

NO the task sentry, the

task is placed at the

bottom of the next lowest
priority list in the
active queue.

Figure C-4 Summary of Scheduler Operation

NOTE

The highest priority task is ALWAYS being
executed.

C.6 SUPERVISOR CALLS AFFECTING SCHEDULER OPERATION

Another feature that is wuseful in the industrial application
environment is the Do Not Suspend supervisor call. Execution of
the SVC causes the task scheduler to be inhibited from suspending
the task making the call. This is the only way to override the
scheduler functions. Suspension 1is inhibitied either 200
milliseconds or a specified number of system time units (50
milliseconds. to 12.750 seconds). The task can suspend itself
by executing an I/0, Time Delay, Wait for I/0, o Unconditional
Wait supervisor call. This should be used in place of the LIMI O
instruction.

Cc-12 939153-9701

System Design Document Scheduler Structure

The following supervisor calls also affect scheduler operation:

* Execute Task -- Causes the initiation of a task that has
been installed on any program file.

* Activate Suspended Task ~- Reactivates a task that has
placed itself in a suspended state by using the
Unconditional Wait supervisor call. :

* Scheduled Bid Task -- Activates a task at a specified
time.
* Time Delay -- Suspends the calliing task for the

specified number of full system time units.

* Change Priority -- Changes the priority of the calling

task.

* Unconditional wWait -- Suspends the calling task
indefinitely.

* Activate Time Delay Task -- Activates a specified task

that is in time delay.

939153-9701 C-13/C-14

System Design Document Device States & LUNO Assignment

Appendix D

Device States and Luno Assignment

Devices supported by DX10 have three possible states: online,
offline, and diagnostic. When a device is offline, no LUNO can
be assigned to it. When a device is in the diagnostic state,

FUTIL sub-opcode >94 must be used when assigning a LUNO to that
device,

939153-9701 D-1/D-2

System Design Document VDT Character Input SVCs

Appendix E

VDT Character Input SVCs

E.1 INTRODUCTION

Two supervisor calls (SVCs) are available to write a character
from a specified VDT keyboard. They are SVC >08 and SVC >18.
Since these SVCs are optional in DX10 release 3.5, refer to your
system generation documentation to verify the existence of SVCs
>08 and >18 on your system.

E.1l.1 VDT Character Input Supervisor Call (Code >08)

This supervisor call inputs a character from a specified station
keyboard. The calling task is suspended until the character is
transferred. The system places the character in the most
significant byte of the task workspace register 0.

The supervisor call block consists of three bytes, and need not
be aligned on a word boundary. Byte 0 contains the code, and the
system returns a value in byte 1. Byte 2 contains the station
number. When the system is unable to locate the station, it
returns -1 in byte 1. When the station has not been opened in
the character mode, or when power is off at the station, the
system returns >80 in byte 1. Otherwise, the system returns zero
in that byte.

The VDT character input call block is formatted as follows:

Hex.
Byte
| J S Y - + o o o o e e e i . *
>00 | >08 | ERROR CODE
S T e frmr e +
>02 | STATION NUMBER |
E . ————— — o — — — - %*

The following is an example of coding for a supervisor call block
for a character input from station keyboard supervisor call. The
SVC says to input a character from station 2 and place the
character in the most significant byte of workspace register O0:

SCBC BYTE 8,0,2

939153-9701 E-1

VDT Character Input SVCs System Design Document

E.l.2 VDT Conditional Character 1Input Supervisor Call (Code
>18)

This supervisor call writes a character from a specified station
keyboard. When a character is entered, the function sets the
equal bit (bit 2) of the status register to 1 and places the
character in the most significant byte of workspace register 0.
When a character is not entered, the function sets the equal bit
of the status register to 0, indicating a not equal status. 1In
either case, the function returns control to the <calling task
immediately.

The supervisor call block consists of three bytes, and you do not
need to align it on a word boundary. Byte 0 contains the code,
and the system returns a value in byte 1. Byte 2 contains the
station number. When the system is unable to locate the station,
it returns -1 in byte 1. When the station has not been opened in
the character mode, or when power is off at the station, the

system returns >80 in byte 1. Otherwise, the system returns zero
in that byte.

The VDT conditional character input call block is formatted as
follows: :

Hex.
Byte
* ——— et e e 2 e e e e ——————— e *
>00 | >18 | ERROR CODE
i e Ty —— +
>02 | STATION NUMBER I
B e e e e e e e o e e e e *

The following is an example of coding for a supervisor call block
for a conditional character input from station keyboard
supervisor call. The SVC says to input a character from station
5 and place it in the most significant byte of workspace register
0 if a character has been entered at the keyboard:

SCBT BYTE >18,0,5

E-2 939153-9701

System Design Document The System Level Debugger

Appendix F

The System Level Debugger

F.1 GENERAL INFORMATION

Use the system level Debugger for breakpointing and 1listing the
contents of memory locations and registers when debugging the
system root only. The primary purpose for the system level
Debugger is to debug DSRs. The Debugger allows you to control a
program”“s execution and examine intermediate results to determine
exactly where problems are occurring.

F.2 INCLUSION IN THE OPERATING SYSTEM

The Debugger is system generated as the XOP 1 processor. In
response to the prompt DEVICE TYPE?, press the Command key to
enter the command mode. Next enter CHANGE for the change
command, and the prompt PARAMETER TO BE CHANGED? appears.
Respond by entering DEBUG. The system generation program then
prompts you with DEBUG?(NO). If you want to include the Debugger
in the operating system, enter YES. You exclude the Debugger by
entering NO or taking the default value at this point. After
entering YES, enter BUILD to generate the configuration.

Next, perform the Assemble and Link Generated System (ALGS)
command .

F.3 PREPARING THE DX10 SYSTEM DEBUGGER

Prior to using the system level Debugger, vyou must modify the
Debugger image to specify the target terminal. The default

terminal specification is a 911 VDT to which global LUNO 0 is
assigned.

F.3.1 Specifying the Interactive Terminal Type

The value in location >0A6C within the system level Debugger
determines the type of interactive terminal to be used. Consult
your system linkmap for the location of the system level Debugger
within the system image. The system level Debugger is module
DEBUG in the system root. The following values indicate the
terminal type:

939153-9701 F-1

The System Level Debugger System Design Document

-~ ASR/KSR
-- 913 VDT
911 vDpT
-= 940 EVT (9902 interface)
-— 940 EVT (COMIF interface)

OO
|
|

NOTE

The system level Debugger assumes the CRU
address for a 911 VvDT is >100. The CRU
address used for 913 VDTs is >0C0, and the
CRU address for ASR/KSR devices 1is >000.
These CRU addresses can be modified to allow
communication with other terminals. To do
so, you must change the word 1locations
immediately following the terminal type
address (>0A6C).

F.4 ACTIVATING THE SYSTEM LEVEL DEBUGGER
The system level Debugger is activated through XO0P 1lg
breakpoints. The breakpoint may be hard coded in a module, [
the system 1level Debugger can be activated by entering the
breakpoint through the front panel. The following procedure
activates the Debugger in this manner, if the system is in an
idle state.

1. Press HALT.

2. Press PC under DISPLAY.

3. Write down the address displayed.

4. Press MA under ENTER.

5. Press MDD.

6. Write down the value displayed.

7. Press CLR.

8. Enter >2C40 in the display lights.

9. Press MDE.

10. Press RUN.

F-2 939153-9701

System Design Document The System Level Debugger

The Debugger activates. Use the Debugger to set the value from
step 6 back into the location of step 3.

F.5 LIST OF DEBUGGER COMMANDS

When the Debugger is activated, it requests commands by
displaying a question mark (?) on your screen. You can then
enter one of the Debugger commands listed in Table F-1. Each
Debugger command is specified by entering a single character.
All command parameters are hexadecimal numbers displayed without
the hex (>) sign. A number is automatically terminated after 4
hexadecimal digits are entered. A number can also be terminated
by a period.

Table F-1 List of Debugger Commands

Command Description

Display/alter memory location -- long distance
Set the breakpoint using offset

Display condition code in status register
‘Dump outside of memory space -- long distance
Examine a range of memory, relative
Display/alter the next sequential memory location
Execute program being debugged

Set/reset 990/12 hardware breakpoints

Inspect a range of memory locations

Display all workspace registers

List all instruction breakpoints

Display/alter the contents of a memory address
Display/alter the contents of the next memory
address

Set breakpoint offset

Display/alter program counter

Quit Debugging session

Display/alter the contents of a workspace
register :

Set instruction breakpoint

Clear breakpoint

Display/alter workspace pointer

Execute single instruction

Resume execution after breakpoint

Hexadecimal sum

Hexadecimal difference

Display menu of commands

Wwl+nXEdn WOWO ZIpaHOEREHOOW P

939153-9701 F-3

The System Level Debugger System Design Document

F.5.1 A Command -- Display/Alter Memory Location --
Long Distance

The A command allows you to display or alter a particular memory
location long distance.

Syntax: A yyyy bbbb oooco=xxxx zzzz

Explanation: The yyyy is the memory address to be displayed.
The bbbb is most often the beet bias, although it can represent
the beet address of a task segment. If bbbb is a beet bias, the
value of oooo must be >0000; but if bbbb is a beet address of a
segment, 0000 becomes the 1logical starting address of that
segment in the task”s address space.

The original value of the memory location 1is xxxx, and zzzz
represents your desired value change. The values of bbbb and
0000 can be defaulted to their previous values.

Example: ? A 5A34 0034 0000=C003 C004

The example shows the memory address >5A34 that is to be
displayed. It has a beet bias of >0034, therefore oocoo must be
>0000. The original value at the address is >C003, and that
value becomes >C004 at the conclusion of the A command.

E.5.2 B Command -- Set the Breakpoiht Using Offset

The B command allows you to set an instruction breakpoint using
an offset value from the O command.

Syntax: ? B yyyy

Explanation:: The value you enter for yyyy sets your breakpoint
at yyyy plus the offset value.

Example: ? B 67F4
If, in the example, you have previously created an offset value
of >0100 with the O command, you have now set a breakpoint at
location >68F4.
NOTE
Unloading a breakpoint requires using the U
command. The U command value you enter does

not add the offset to the memory location
value of the breakpoint.

F-4 939153-9701

System Design Document The System Level Debugger

»

F.5.3 C Command -- Display Condition Code in Status Register

The C command displays the contents of the status register
(condition code) and allows you to modify those contents.

Syntax: ? C
C=xXxXXxX YYYY

Explanation: The xxxXxX represents the contents of the status
register, and yvyy represents the value you wish to enter as the
new contents of the status register (optional entry).

Example: ?2 C
C=CO00F C1l0F

The example 1lists the status register contents, >CO0OF. The
contents are changed to >Cl0F. This sets bit 7 of the status
register, placing the computer in the non-privileged mode. If
you enter no value, the contents of the register are unchanged.

F.5.4 D Command — Dump Outside of Memory Space — Long
Distance :

The D command allows you to inspect a range of memory locations
outside of the your allotted memory space. Be aware that TILINE
timeout can occur when you are using the D command.

Syntax: ? D 1111 uuuu bbbb ssss

Explanation: The lower memory boundary value is represented by
1111, and the upper memory boundary is represented by uuuu. The
value of bbbb most often represents a beet bias, although it can
represent the beet address of a task segment. If bbbb is a beet
bias, the value of ssss must be >0000; but if bbbb is a beet
address of a segment, ssss becomes the logical starting address
of that segment in the task”’s address space. The uuuu value is
optional. If you donot include the uuuu value, the system dumps
the next 16 words. If you do not specify a bbbb value, the
command assumes the previous values of bbbb and ssss.

Example: ? D 0382

0382-0356 2BA2 0001 0000 OE4D 51F4 9562 0002
0392-0077 0012 924A 0288 9562 3BB2 419E 0001

The example lists the 16 words of memory specified by address

>0382. Since no uuuu, or bbbb values are specified, only the
next 16 words of memory are displayed.

939153-9701 F-5

The System Level Debugger System Design Document

»

F.5.5 E Command -- Examine a Range of Memory, Relative

The E command allows you to examine a range of memory locations
using a relative address. Use the E command to examine a block
of data that can be thought of as one unit, such as a Physical
Record Block (PRB).

Syntax: ? E 1111 uuuu

Explanation: The lower memory boundary value is represented by
1111 plus the offset from the O command, and the upper memory
boundary is represented by uuuu plus the offset. The uuuu value
is optional. If you chose mot to specify a value for wuuuu, the
system displays the values from 1111 (plus the offset value) to
1111 (plus the offset value) plus eight.

Example: ? E 0312
0392-0356 2BA2 0001 0000 OE4D 51F4 9562 0002

If, in the example, you had previously assigned an offset value
of >0080 with the O command, the E command adds >0312 and >0080
to find the memory location that you want to examine (>0392).
Since no wuuuu value is specified, only 8 words of memory are
displayed.

NOTE
Unloading a breakpoint requires using the U
command . The U command value you enter does

not add the offset to the memory location
value of the breakpoint.

F.5.6 F Command -- Display/Alter Next Sequential Memor y
Location -- Long Distance

The F command allows you to display or alter the next memory
location.

Syntax: ? F WWWW=XXXX YYYY

F-6 939153-9701

System Design Document . The System Level Debugger

Explanation: The wwww value is the location being displaved, and
XxXxx represents the wvalue in that 1location. The change value
yyyyY is the value you enter to modify xxxx. The instruction uses
the current map bias.

Example: ? F A555=03B2 03C2

The example shows that memory address >A555 contains >03B2
currently, but >03C2 replaces that value upon completion of the
command .

F.5.7 G Command -- Execute Program Being Debugged

The G command executes the program currently being debugged. Use
it to start the program 1initially, and to proceed from a
breakpoint. It is identical to the Z command when used to
restart the program.

Syntax: ? G
Explanation: This command does nmot require parameters.
Example: ?2 G

The example initiates execution of the user program. Use the G
command to start the program, or in some cases, to restart the
program after stopping to examine the register contents.

F.5.8 H Command -- Set/Reset 990/12 Hardware Rreakpoint

The H command allows you to set or reset a 990/12 hardware

breakpoint. This instruction is only applicable on systems using
the 9%0/12 CPU.

Syntax: ? H=xXxxx yyyy m t

Explanation: The xxxx value represents the address of an
existing hardware breakpoint (displayed by the system), and yvyy
is the new logical address to be breakpointed. Blank means use
current breakpoint and PO means disable breakpoint. The m value
is the map file to be breakpointed (0 or 1). The m default is 0.
The t value is the type of memory access to breakpoint. (R =
READ, W = WRITE, I = INSTRUCTION FETCH, and A = ANY ACCESS. The
default value is A.)

Example: ? H=3516 3586 0 R

The example changes the breakpoint from >3516 to >3586 using map
file 0 on a READ.

939153-9701 p-7

The System Level Debugger System Design Document

F.5.9 I Command -- Inspect a Range of Memory Locations

This command allows you to inspect a range of memory locations in
the current address space.

Syntax: ? I 1111 uuuu
XXXX XXXX ... XXXX YY VY s ¥Y

Explanation: The lower address of the memory locations to be
displayed is represented by 1111. This is a required entry. The
upper address of the memory locations to be displayed, an
optional entry, 1is represented by uuuu. If you do not specify
1111 and uuuu, the Debugger displays the locations displays the
locations pointed to by the current PC (1111 through 1111 + >1E).
A warning message is displayed indicating that you have entered
an illegal hexadecimal value if you fail to specify either
address. Each xxxx 1is the displayed hexadecimal contents of a
memory location. Each yy is the ASCII representation of the
memory contents. The command displays >10 bytes per line, and
fills the line of the display on which uuuu is displayed. That
is, the command always displays a multiple of >10 bytes.

Example: ? I C000 CO020

2202 0006 0800 ...5336 e eo oo «s. S6
0045 3132 3658 ...0000 .E 12 6X
3148 4444 2634 ...5541 1H DD &4 ... UA

The example displays the memory locations from >C000 to .>C020.
Memory location >C000 contains >2202, 1location >C002 contains
>0006, and so on. Location >C020 contains >3148. The memory
locations up to and including location >CO02F are displaved,
filling out the line in the example.

F-8 939153-9701

System Design Document The System Level Debugger

F.5.10 J Command -- Show All Local Workspace Registers

The J command displays all local workspace registers on one line
of the display.

Syntax: ?2J

XXXX XXXX XXXX ... XXXX
Explanation: This command does not require parameters. Each
Xxxxx 1is the value in one of the workspace registers, RO through
R15.
Example: ?J

0002 4AC7 0000 0000 ... 0000

The example list the contents of all the workspace registers.
Wor kspace register 0 contains >0002, workspace register 1
contains >4AC7, and so on. The listing displays all 16 workspace
registers.

F.5.11 L Command -- Lists All Breakpoints

This command lists the logical addresses of all breakpoints
currently set in the program.

Syntax: ? L

LOCATION

XXXX

XXXX ,
Explanation: This command requires no parameters. Each xxxx is
the displayed location of a breakpoint.

Example: ?2 L
LOCATION
B610
BC24

The example shows the two breakpoints that have been set in the
program, at locations >B610 and >BC24.

939153-9701 F-9

The System Level Debugger System Design Document

F.5.12 M Command -- Display/Alter Contents of Memory Address

The M command displays and allows you to alter the contents of a
specified memory location. Only addresses currently mapped in
the task space may be modified with this command.

Syntax: ? M nnnn
M nnnn=xxxx yyvyy

Explanation: In this syntax, mnn is the word address of the
memory location you want to display. It is a required entry.
When nnnn is an odd byte, the memory word at nnnn-1 is displayed.
The displayed value of the memory address is represented by =xxxx,
and yyyy is the new value you want to place in the memory address
(optional entry).

Example: ? M B680
M B680=A002 A003
The example displays the contents of memory location >B680. The

value in that location is >A002, and the contents are changed to
>A003.

F.5.13 N Command -- Display/Alter Contents of -Next Memory
Address :

The N command allows you to display and alter the contents of the
next memory address after the previously examined address. This
command is used in connection with the M, N, or R commands.

Syntax: ? N nnnn=xxxx yyyy
Explanation: In this syntax, nnnn is the displayed address of
the next location, xxxx represents the displayed value of the

next location, and yyyy is the new value you want to place in the
memory location (an optional entry).

F-10 939153-9701

System Design Document The System Level Debugger

Example: ? R4=0022

)

N BO0OE=0400 0800

This example shows an R command and an N command. The R command
displays workspace register 4. The N command displays the
contents of the next memory address. In this example, the next
memory address is workspace register 5, at location >BOOE. The
value in the workspace register, >0400, is changed to >0800.

F.5.14 O Command -- Set Offset
The O command sets the offset for use by the E and B commands.

Syntax:' ? O0=xXxXXX YYVY

Explanation: The xxxx value displayed is the current relative
address for the offset and can be changed by entering the desired

value yyyy.

Example: ? O=28DE 0500
The example changes the offset for the B or E commands from >28DE
to >0900.

F.5.15 P Command -- Display/Alter the Program Counter
The P command displays the contents of the program counter. You
can alter the contents of the program counter if you so desire.
Syntax: ? P

PC=XXXX YYYY

Explanation: The current program counter value is represented by
xxxx, and yyyy represents the value to replace the currently
displayed value (optional).

939153-9701 F-11

The System Level Debugger System Design Document

Example: ? P
PC=BA20 BA2C
The example displays >BA20 as the program counter contents. The
contents are then changed to >BA2C.
F.5.16 Q Command -- Quit Debug Session
Use the Q command to terminate a Debug session.
Syntax: ?2Q |
END DEBUG.
Explanation: This command does mot require any parameters.
Example: ?2Q
END DEBUG.

The message indicates that the systyem is in an idle state. 1If
you want to exit from the Debugger entirely, enter a G command.

F.5.17 R Command -- Display/Alter Wor kspace Register

The R command displays the contents of a wor kspace register. You
can alter these contents if you so desire.

Syntax: ? RN=XXXX YYYY

Explanation: The n represents the workspace register, from 0 to
F. This is a required entry. The xxxx represents the displayed
wor kspace register contents, and yyyy is the value that replaces
the displayed contents (optional entry).

Example: ? R4=2A60 2A64

The example displays the contents of wor kspace register 4 which
is >2A60. That value is then changed to >2A64.

F-12 939153-9701

System Design Document The System Level Debugger

F.5.18 S Command -- Set Breakpoint

Use the S command to set an instruction breakpoint at any address
currently mapped in the task space. When the breakpoint is
reached, the contents of all current workspace registers (0
through 15) are displayed, along with the current PC.

Syntax: ? S yyyy

Explanation: The yyyy represents the address for the instruction
breakpoint. The yyyvy value is a required entrv.

Example: ? S C006

The example sets a breakpoint at memory location >C006. When the
task is executed, it stops at location >C006 to allow you to
examine registers, memory, and so on. You can make necessary
changes at this point. The following values are displayed at a
breakpoint:

BRKPT AT C006
0000 23CO 1000 3348 4566 7290 0000 ... 2448

The first 1line of the display shows the current program counter

value. The second line in the display shows the contents of the
16 workspace registers, 0 through 15.

F.5.19 U Command -- Clear a Breakpoint

The U command clears (removes) one or ali instruction
breakpoints.
Syntax: ? U yyyy

Explanation: The yyyy represents the location of the breakpoint
that is to be removed. This is an optional entry. If you do not
enter a value for yvyy, all breakpoints are removed.

939153-9701 F-13

The System Level Debugger System Design Document

Example: ? U C006
The example deletes an instruction breakpoint set at memory
location >C006.
NOTE
Unloading a breakpoint does nmot consider the
offset value you may have added using the O
command. Therefore the value of yyyy is the

sum of the address from which you want to
delete the breakpoint and the offset value.

F.5.20 W Command -- Display/Alter Workspace Pointer

The W command displays the contents of the workspace pointer.
You can alter these contents if you then wish.

Syntax: ? W=XXXX yyvyy
Explanation: The value represented by =xxxx is the displayed
wor kspace pointer contents. The yyyy value 1is the optional
replacement value for xxxx.

Example: ? W=B01l0 BO030

The example displays the contents of the workspace pointer, which
is >B010. The displayed contents are then changed to >B030.

F-14 939153-9701

System Design Document - ‘The System Level Debugger

F.5.21 X Command -- Execute a Single Instruction

The X command allows you to step through the program being
debugged one instruction at a time. The contents of all current
wor kspace registers are displayed after executing each
instruction. The X command executes the instruction at the
address in the program counter.

Syntax: ?2 X
BRKPT AT xxxXX
LLrr rrrr rrrr ... crcrr

Explanation: This command requires mo parameters from you. The
XXXX value represents the displayed contents of the program
counter. Each rrrr is the displayed contents of one of the
wor kspace registers, 0 through 15,

Example: ?2 X

BRKPT AT B250

0002 A020 0000 ... 0000
The example illustrates an X command executing the instruction at
the address in the program counter. The new program counter
address, >B250, and the contents of the wor kspace registers are

displayed. Wor kspace register 0 contains >0002, wor kspace
register 1 contains >A020, and so on.

F.5.22 Z Command -- Resume Execution After Breakpoint

When you enter the 2 command, execution proceeds from the current
breakpoint to the next breakpoint if one is present. The
breakpoint is mot cleared, and can be used again, unless you
enter a U command.

Syntax: ? 2

Explanation: This command requires no parameters from you.

Example: ? 2

This example restarts program execution after it has stopped at a
breakpoint. Use the Z command after a breakpoint is reached, and
after you have examined and changed memory, register contents,
and so on, as necessary.

939153-9701 F-15

The System Level Debugger System Design Document

F.5.23 + Command -- Add Hexadecimal Numbers

Use the Plus (+) command to display the hexadecimal sum of two
hexadecimal numbers.

Syntax: ? + XXXX YYVY = 2222

Explanation: The ‘xxxx value is a hexadecimal number (required
entry), and yyyy is a hexadecimal number to be added -to XxxXX;
(yyyy is also a required entry). The hexadecimal sum of xxxx +
yyyy is represented by zzzz.

Example: ? + C420 2184 = E5A4

The example adds >C420 to >2184 and displays the sum of >ES5Ad4.

F.5.24 - Command -~ Subtract Hexadecimal Numbers

Use the Minus (-) command to display the ‘hexadecimal difference
of two hexadecimal numbers.

Syntax: ? - XXXX YYYY = 2222

Explanation: The 'xxxx value is a hexadecimal number (requir!L
entry), and yyyy the hexadecimal. number that xxxx 1is to
subtracted trom; (yyyy is also a required entry). The
hexadecimal difference of yyyy - XXXX is represented by zzzz.
Example: 2 - 0048 21CE = 2186

The example subtracts >0048 from >21CE and displays the
difference of >2186. ..

F-16 939153-9701

System Design Document The System Level Debugger

F.5.25 ? Command -- Display a Menu of Commands

Use the ? command to display a-menu of all available Debug
commands, showing the format of each command and giving a brief
description of each.

Syntax: ?2?
Explanation: This command requires o parameters from you.

?

“J

fExample:

PROGRAM COUNTER
WORKSPACE POINTER
STATUS REGISTER
MODIFY WORKSPACE REGISTER

MODIFY MEMORY WORD

ALTER A MEMORY LOCATION - LONG DISTANCE

INSPECT MEMORY

SET BREAKPOINT OFFSET

EXAMINE A RANGE OF MEMORY LOCATIONS, RELATIVE
DUMP A RANGE OF MEMORY OUTSIDE OF ADDRESS SPACE
DUMP ALL REGISTERS

SET BREAKPOINT

SET BREAKPOINT USING OFFSET

REMOVE BREAKPOINTS

LIST ALL BREARKPOINTS

EXECUTE PROGRAM BEING DEBUGGED

SINGLE STEP PROGRAM

CONTINUE EXECUTION AFTER BREAKPOINT

DISPLAY NEXT WORD

DISPLAY/ALTER NEXT. SEQUENTIAL MEMORY LOCATION -
LONG DISTANCE

QUIT DEBUGGER?- L

SET/RESET 990/12 HARDWARE BREAKPOINTS

ADD

SUBTRACT

DISPLAY MENU OF COMMANDS

Wil +EHO "WZNXQAPAWNUUOEORHPRWOEW

You can select any of the commands or exit from the Debugger by
entering Q, waiting for the END DEBUG response, then entering the
G command.

939153-9701 F-17/F-18

CUT ALONG LINE

USER’S RESPONSE SHEET

Manual Title: _DX10 Operating System Release 3.5 System Design Document

(939153-9701)
Manual Date: _1 September 1982 Date of This Letter:
User’s Nama: | Telephone:
Company: Office/Department:

Street Address:

City/State/Zip Code:

Please list any discrepancy found in this manual by page, paragraph, figure, or table number in the
following space. If there are any other suggestions that you wish to make, feel free to include
them. Thank you.

Location in Manual Comment/Suggestion

NO POSTAGE NECESSARY IF MAILED IN U.S.A.
"~ FOLD ON TWO LINES (LOCATED ON REVERSE SIDE), TAPE AND MAIL

FOLD

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

[BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 7284 DALLAS, TX

POSTAGE WILL BE PAID BY ADDRESSEE

TEXAS INSTRUMENTS INCORPORATED
DIGITAL SYSTEMS GROUP
ATTN: TECHNICAL PUBLICATIONS

P.O. Box 2909 M/S 2146
Austin, Texas 78769

FOLD

°. TEXAS INSTRUMENTS
INCORPORATED

DIGITAL SYSTEMS GROUP
POST OFFICE BOX 2909 AUSTIN. TEXAS

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	01-24
	01-25
	01-26
	01-27
	01-28
	01-29
	01-30
	01-31
	01-32
	01-33
	01-34
	01-35
	01-36
	01-37
	01-38
	01-39
	01-40
	01-41
	01-42
	01-43
	01-44
	01-45
	01-46
	02-01
	02-02
	02-03
	02-04
	03-01
	03-02
	03-03
	03-04
	03-05
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	04-46
	04-47
	04-48
	04-49
	05-01
	05-02
	05-03
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	06-39
	06-40
	06-41
	06-42
	06-43
	06-44
	06-45
	06-46
	06-47
	06-48
	06-49
	06-50
	06-51
	06-52
	06-53
	06-54
	06-55
	06-56
	06-57
	06-58
	06-59
	06-60
	06-61
	06-62
	06-63
	06-64
	06-65
	06-66
	06-67
	06-68
	06-69
	06-70
	06-71
	06-72
	06-73
	06-74
	06-75
	06-76
	06-77
	06-78
	06-79
	06-80
	06-81
	06-82
	06-83
	06-84
	06-85
	06-86
	06-87
	06-88
	06-89
	06-90
	07-01
	07-02
	08-01
	08-02
	08-03
	08-04
	08-05
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	09-33
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	D-01
	E-01
	E-02
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	F-11
	F-12
	F-13
	F-14
	F-15
	F-16
	F-17
	replyA
	replyB
	xBack

