Model 990 Computer
DNOS Data Base Management System
Programmer’s Guide

Part No. 2272058-9701 *A
15 July 1982

(©)

7 TEXAS INSTRUMENTS

INCORPORATED

© Texas Instruments Incorporated 1981, 1982
All Rights Reserved, Printed in U.S.A.
The information and/or drawings set forth in this document and alil rights in and to inventions disclosed

herein and patents which might be granted thereon disclosing or employing the materials, methods,
techniques or apparatus described herein, are the exclusive property of Texas Instruments Incorporated.

MANUAL REVISION HISTORY

Model 990 Computer DNOS Data Base Management System Programmer’s
Guide (2272058-9701)

Originallssue i, 1 August 1981
Revision. ... e 15 July 1982

The total number of pages in this publication is 172.

DNOS

Distributed Network Operating System

Software Manuals

The manuals supporting DNOS are arranged in this diagram according to the type of user. The manuals most
beneficial to your needs are those contained in the block identified as your user group and in all the blocks

above that set.

all users and

management
DNOS Concepts and
Facilities
2270501-9701

DNOS Operations
Guide
2270502-9701

DNOS System Command
Interpreter (SCI)
Reference Manual
2270503-9701

all users

DNOS Text Editor
Reference Manual
2270504-9701

DNOS Online Diagnostics
and System Log Analysis
Tasks User’s Guide
2270532-9701

DNOS Messages and
Codes Reference
Manual
2270506-9701

DNOS Master Index to
Operating System Manuals
2270500-9701

language users and
communications software
users

Language Reference
Manuals ‘

DNOS Language
Programmer’s Guides

DNOS Link Editor
Reference Manual
2270522-9701

DNOS Productivity Tools
User’s Guides

DNOS Communications
Software User’s Guides and
Programmer’s Guides

assembly language users

Assembly Language
Reference Manual
2270509-9701

DNOS Assembly Language
Programmer’s Guide
2270508-9701

DNOS Link Editor
Reference Manual
2270522-9701

DNOS Supervisor Call
(SVC) Reference Manual
2270507-9701

systems programmers

DNOS Systems
Programmer’s Guide
2270510-9701

DNOS System Generation
Reference Manual
2270511-9701

source code users

DNOS System Design
Document
2270512-9701

DNOS SCI and Utilities
Design Document
2270513-9701

2280078

2272058-9701 |

DNOS

Distributed Network Operating System
Software Manuals Summary

Concepts and Facilities
Presents an overview of DNOS with topics grouped into functions of the operating system. All new users
(or evaluators) of DNOS should read this manual.

Operations Guide
Provides the information necessary to perform daily tasks at a Tl 990 Computer installation using DNOS.
Step-by-step procedures are presented for such tasks as operating peripherals, initializing the system,
backing up the system, and manipulating disk files.

System Command Interpreter (SCl) Reference Manual
Describes how to use SCI in both interactive and batch jobs. Command procedures and primitives are
described, followed by a detailed presentation of all SCI commands in alphabetical order for easy
reference.

Text Editor Reference Manual
Shows how to use the Text Editor interactively on DNOS and includes a detailed description of each of the
editing commands and function keys.

Messages and Codes Reference Manual
Lists the error messages, informative messages, and error codes reported by DNOS.

Online Diagnostics and System Log Analysis Tasks User’s Guide
Provides the information necessary to execute the online diagnostic tasks and the system log analysis
tasks and to interpret the results.

Master Index to Operating System Manuals
Contains a composite index to topics in the DNOS operating system manuals.

Programmer’s Guides and Reference Manuals for Languages
Each programmer’s guide describes one of the languages supported by DNOS (for example, assembly
language, Pascal, COBOL). Each guide covers operating system information relevant to the use of that
language in the DNOS environment. The details of the language itself, including language syntax and pro-
gramming considerations, are in the language reference manual.

Link Editor Reference Manual
Describes how to use the Link Editor on DNOS to combine separately generated object moduies to form a
single linked output.

User’s Guides for Productivity Tools
Each user’s guide describes one of the productivity tools (for example, TIFORM, Query-990, DBMS-990,
Sort/Merge) supported by DNOS. Each guide explains the function of the processor, its features, and its
interface requirements.

User’s Guides and Programmer’s Guides for Communications Software
Describe the features, functions, and use of the communications software available for execution under
DNOS. For example, there is a user’s guide for the DNOS 3780/2780 Emulator software package.

Supervisor Call (SVC) Reference Manual
Presents detailed information about each DNOS supervisor call and general information about DNOS
services.

Systems Programmer’s Guide
Discusses the DNOS nucieus and subsystems at a conceptual and functional level and describes how to
modify the system for a specific application environment.

System Generation Reference Manual
Contains the information needed to perform system generation, including pregeneration requirements,
generation procedures, and information about postgeneration results.

System Design Document
Contains the information needed to understand the functioning of the system when using a source kit. This
includes descriptions of the subsystems in detail, naming and coding conventions, module ‘cross-
references, data structure details, and information not found in other manuals.

SCl and Utilities Design Document
Presents design information about SCI and the DNOS utilities.

iv 2272058-9701

Preface

This manual is intended for the programmer and the data base user. It provides information for
defining data elements and for writing and testing programs for use with the Texas Instruments
data base management system, DBMS-990. The data base administrator (DBA) oversees the data
base operation, maintains the system, manages the security assignments and the security
system, and assists in the design and operation of the data base. For further details, consult the
Model 990 Computer DNOS Data Base Administrator User’s Guide.

Certain symbols appear in the instruction definitions in this manual. Brackets ([]) signify that you
can omit an item. Angle brackets (< >) indicate that the appropriate user-defined item is required.
Braces ({ }) indicate that you must choose one of the enclosed items.
This manual is organized into the following sections and appendixes:
Section

1 General Description — Provides a general description of DBMS-990.

2 Data Base Elements — Describes the elements of the data hierarchy.

3 Data Definition Language (DDL) — Describes the statements in a DDL declaration and
presents example DDL procedures, and error messages.

4 Data Manipulation Language (DML) — Defines each call pafameter and each DML func-
tion code.

(&4}

Security — Discusses passwords and access authorization.

6 Primitive Query — Describes primitive query functions and presents example queries
and error messages.

7 Execution of Application Programs — Discusses preliminary procedures, program
techniques, compiling and linking, and program testing.

Appendix
A DBMS Exception Reporting — Explains DBMS-990 status exception codes.

B Example DBMS Programs — Provides an example DBMS application written in COBOL,
Pascal, and FORTRAN.

2272058-9701 v

Preface

In addition to the DNOS manuals shown on the frontispiece, the following documents contain in-
formation related to this manual:

Title Part Number
Model 990 Computer DNOS COBOL Programmer’s
Guide 2270516-9701

- Model 990 Computer DNOS TI Pascal Programmer’s

Guide 2270517-9701
Model 990 Computer FORTRAN Programmer’s
Reference Manual v 946260-9701
Model 990 Computer DNOS Data Base Administrator
User’'s Guide 2272059-9701
Model 990 Computer DNOS Query-990 User’s Guide 2276554-9701

vi 2272058-9701

Contents

Paragraph

N —

SwoNOOrRWNDDND =

O G G G G U G QT |
o

1.10.1
1.10.2
1.10.3
1.10.4
1.10.5

2.1

2.2

2.21
222
223
224
2.25
2.3

2.31
2.3.2

3.1
3.2
3.3
3.3.1

2272058-9701

Title Page

1 — General Description

IntroduCtion e 1-1
DataBase Elements it e e 1-1
DataHierarChy i i i it e e 1-1
KBS ot i e e e e 1-2
Data Retrieval Methods i e 1-2
Data DefinitionLanguage (DDL) i i e e 1-3
Data Manipulation Language (DML) i 1-4
ST 1 1 3 1-4
PrMitive QUeTY .ot i i e e e e e 1-4
File-Access CheCKing. ovii ittt it i i sttt e et et it e e 1-5
Backup LOGgingcoiiiiii i i e e e e e e 1-5
Transaction-Level Integrity i i i 1-5
How Transaction-Level Integrity Protects YourDataBase.................... 1-5
Locking Protocol. i e e e 1-6
DEAdIOCK ..t e e e e 1-7
Advantages of Transaction-Level integrity.............. ..o .. 19
TroubleshootingDeadlock. i it i i it ee e 19
2 — Data Base Elements
Introduction.........coooiiiiiiiiiiinnennnnn e 2-1
DataHierarChy. i i i i i ittt e e 2-1
1= 2-1
2 =T o7 o] o 2-1
I 0 23
(] o] o X 2-3
7= P 23
= TN 2-4
Primary KeYsS ...ttt i i i et e 2-4
Secondary KeyS. . ..ottt i e e e e e et 2-4
3 — Data Definition Language (DDL)
14 e o [1 Lo (e T2 S 3-1
Standard DDL DS e e e e e e et 3-1
DL Declaration e et e 3-1
FILE Statement i i i i e ittt e 3-2

Contents

Paragraph Title Page
3.3.2 File DeSCripHON . . oottt it e e e e 3-2
3.3.21 Record Identification (ID) Statement 3-2
3.3.2.2 LINE Statement i e e et e 33
3.3.2.3 GROUP Statement it i ittt e e e 33
3.3.24 FIELD Statement. i i i i it et e e c e e 3-3
3.3.2.5 End Group(ENDG) Statement i e, 3-3
3.3.2.6 End Line (ENDL)Statement i it 33.
3.3.3 Secondary Key Description i i e e e 34
3.3.3.1 SECONDARY-REFERENCES Statement i, 34
3.3.3.2 Secondary Key Statement e 3-4
3.34 EndFile Statement i e e e 3-4
3.4 DataFormatso e e e e e 35
3.5 1] B ¢ o o = 3-7
3.6 DD ProCedUIES . ..ottt ettt e e 3-10
3.6.1 User Design Considerationsottt e, 3-10
3.6.1.1 Linesand Fields it it ettt e e i 3-10
3.6.1.2 Secondary KeYS. ..ottt e it e e e 3-10
3.6.2 Creatinga DDLFile. i i i et et enans 3-10
3.6.3 Format DDL (DDL)Command.t ce et e 3-10
3.6.4 DL LiStiNg .. oi i e e e e e e 3-11
3.7 D101 3¢ o - 3-12

4 — Data Manipulation Language (DML)

4.1 INtrOdUCHION . . . e e e 41
4.2 Call Parameterst e e e e e 4-2
4.21 CoNtrOl BIOCK. . ettt i e e e e e e 4-2
4.2.2 Endof Control BIOCKot it i e e e e e 4-3
423 Line LSt .. e e e 4.3
4.2.4 Endof Line List i e e e 4-4
425 I 1= 1 Y Y- L 4-4
426 EndofData Areaottt i e e e 4-5
427 Parameter List EXamplest e e 4.5
4,271 COBOL Call with Dummy Parametersc.ccciiiiiiinr e 4-5
4.2.7.2 FORTRAN Call with Dummy Parameterso, 4-8
4273 Pascal Call with Dummy Parameterscoiiiiii e, 4-8
4.3 DML FUNCHONS ..o e e e e e e e 4-10
4.3.1 Fille FUNCHIONSo e e e e e e e e 4-10
4.3.1.1 File-Access CheCKing.oiiiii i i it et et e i 4-10
4.3.1.2 OPEN FIlE (OF) .ot e e e e e 4-11
4.3.1.3 CloSE FIle (CF) ..ottt i it e et e et e e 4-12
4.3.2 Read FUNCHIONSo i i i i i i e e i e e 4-12
4.3.2.1 Read Forward (RF). ... i i i e e e e e e 4-14
4.3.22 Read Backward (RB) ... e e i 4-15
4.3.2.3 Read Serial (RS)t i i i e e e et e e 4-16
4.3.2.4 Read Ascending (RA)ttt i i i i it e e e 4-17
4.3.25 Read Descending (RD)cciiiiiiiii i e e et 4-18
4.3.2.6 Partial Key Search i i i i e i e i e e e 4-19

viii - 2272058-9701

Paragraph

43.2.7
4.3.2.8
4.3.3

4.3.3.1
4.3.3.2
43.3.3
4.3.3.4
43.35
4.3.4

4.3.4.1
4.3.4.2
4.3.4.3

5.1
5.2
5.3

6.1
6.2
6.2.1
6.2.2
6.3
6.4

7.1

7.2
7.2.1
722
7.3
7.3.1
7.3.1.1
7.3.1.2
7.3.1.3
7.3.2
7.3.3
7.3.4
7.35
7.4

7.5

7.6

2272058-9701

Hold Line (HL)
Release Line (RL)
Update Functions
Add After (AA)
Add Before (AB)
Write (WT)
Delete (DL)
Delete Record (DR)
Transaction Functions
Start Transaction (TS)
Commit Transaction (TC)
Rollback Transaction (TR)

..
...
..

5 — Security

Introduction
Passwords
Access Authorization

Introduction
Primitive Query (PQUERY) Command
PQUERY User Interface
PQUERY Output
Example Queries
Error Messages

DRI R R R R R R R R R R R R R N I

7 — Execution of Application Programs

Introduction
Preliminary Procedures
File Creation

Common Program Considerations
Coding of DML Parameters
Control Block

Call Techniques to DBMS-990
Exception Processing and Optimization
Holding Lines
Transaction Bracketing
Compiling and Linking COBOL
Compiling and Linking Pascal
Compiling and Linking FORTRAN

Contents

ix

Contents

Paragraph Title Page
7.7 Program TestingwithDBMS-990. i i i, 7-11
7.71 S At U ..o e e e 7-11
7.7.2 EXECULION . ..o e e 7-11
7.7.3 L= .21 =14 o o T 7-11
7.8 Summary of DBMS-990 Operationttt it 712
Appendixes
Appendix Title Page
A DBMS Exception Reporting ...t i e e A-1
B Example DBMS Programsiviiiin it et e e B-1
lllustrations
Figure Title Page
1-1 DBMS-990 COMPONENLS . -+« .+« o« e e e e e e e e e 1-2
1-2 Example of File, Document,and LineCorrelation............o, 1-3
1-3 ExampleofaDataStructure 1-4
1-4 Upgrading @ LoCKiit ittt ittt e e i e e e e 1-7
21 Relationship of Data ElementstoaDocument coviiivnn.. 2-2
2:2 Relationship of a Source Document to a DBMS-990 Data Structure 2-5
3-1 DDL Example WithoutaGroup PrimaryKeycoiiiii i 3-8
3-2 DDL Example withaGroup Primary Key oottt i ieennn 39
41 Example One of COBOL DML Parameterscoiviiiiiininnn... 4-6
4-2 Example Two of COBOL DML Parameterscviiviiieennnnnnennns 4-7
4-3 Example of FORTRAN DML Parameters.ccoiiiiii ittt 4-8
4-4 Example of Pascal DML Parametersccciiiennnnn. e 4-9
4-5 COBOLFile FUNCHON i i i i e i e e e et 4-11
4-6 FORTRAN File FURCHION ittt i i it sttt e et innnns 4-11
4-7 Pascal File FUNCHion i i i i i i i i e st et 4-13
7-1 Line LISt EXAMPIE . ..o\ttt ittt e ettt e e 7-2
7-2 Exampleof SingleDataAreattt i e e e 7-3
7-3 Example of Multiple DataAreas ittt ittt 7-4
7-4 Example of Common DBMS-990CallRoutineciiiiiiiiiiiinnn.n. 7-5
7-5 Addingand Updating ... et e 7-7
7-6 Use of HOLD DispoSition . ..ottt ittt it i e i i et ce et it 7-8
X 2272058-9701

Contents

Figure Title } Page
7-7 Link Control File for COBOL and DBMS i i i i ittt iaeens 79
7-8 Link Control File for Pascaland DBMS. i et ei e 7-10
79 Link Control file for FORTRANand DBMS i i i i 7-11

Table Title Page
11 LOoCKiNg Protocolo e e e e 1-6
1-2 lllustrationof Deadlock i i i i e i 1-8
31 DD L Data Ty PSS . . ottt ittt ittt e e e e e e e 3-6
4-1 File Access ResSOlUtioNs i it et i 4-10
42 RA Starting Location Pointerso i e 4-18
4-3 RD Starting Location Pointers i 419

2272058-9701 xilxii

General Description

1.1 INTRODUCTION

DBMS-990 is the data base management system (DBMS) that operates under the DNOS operating
system on the Texas Instruments Model 990 Computer. Aithough DBMS-990 is a general-purpose
data manager, you establish the content, grouping, relationship, and security of all data elements.
DBMS-990 is easy to use and provides you with a logical viewpoint of the data. Normal physical
constraints such as access method, record size, block size, and relative field position should not
concern you.

The primary purpose of DBMS-990 is to provide a mechanism for organizing, storing, updating, and
retrieving data through mass-storage devices. The 990 computer’'s mass-storage media is disk,
which facilitates the use of random-access techniques.

This section provides an overview of the data base elements, data definition language (DDL), data
manipulation language (DML), security, primitive query, file-access checking, and backup logging.

‘Figure 1-1 shows the various components of DBMS-990. The nucleus performs the actual
maniputation of data. Security and logging of updated data are optional features of DBMS-990. The
interface module is the communication link between user programs and the nucleus. The DML is
embedded in each user program to facilitate this communication. The DDL and the DDL compiier
enable you to define the data base file(s). Utilities communicate with the interface module to per-
form various maintenance tasks, including copying and restoring data base files. Primitive query
also communicates with the interface module to enable you to inquire and display data in a limited
manner. The various components make DBMS-990 an integrated system. The components that
communicate with the interface module work indirectly with the nucleus. If security and backup
logging are installed in your system, you must consider their effects on DBMS-990 and the data
base. The DBMS-990 application programming languages are COBOL, FORTRAN, and Pascal.
These programs contain the DML functions.

1.2 DATA BASE ELEMENTS

Data base elements consist of the data hierarchy and keys. The data hierarchy contains the logical
data elements; keys allow access to the data.

1.2.1 Data Hierarchy

The DBMS-990 data hierarchy is oriented toward business documents such as invoices, purchase
orders, and sales orders. A document is the basic means of initiating, executing, and recording
business transactions. Accordingly, the document concept facilitates the automation of business
activities and the development of the required computer software.

2272058-9701 1-1

1.2.2 General Description

APPLICATION
PROGRAM
AND DML

INTERFACE

SECURITY

LOGGING

PRIMITIVE QUERY

DDL COMP{LER

2277674

" Figure 1-1. DBMS-990 Components

As Figure 1-2 shows, a DBMS-990 data file corresponds to a file contained in a filing cabinet, and a
data record corresponds to the document that first contained the information. A document con-
tains lines of information that describe the business transaction. The line in a DBMS-990 data file
corresponds to a line in a document. Thus, the order of the hierarchy is as follows: a file contains
records, records contain lines, and lines contain groups of fields and/or individual fields.

1.2.2 Keys
A key identifies a certain data element to facilitate rapid access. The two types of keys in
DBMS-990 are primary and secondary. Primary keys identify records, while secondary keys iden-

tify lines. Figure 1-3 shows how a primary key (in this case, the invoice number) fits into a data
base structure.

1.3 DATA RETRIEVAL METHODS

DBMS-990 provides both random and sequential methods of storing and retrieving data. When
defining a key, the user declares its storage method as either random or sequential. With the se-
qguential method, DBMS orders the key values sequentially and then maintains that order. Thus,
you can declare a key as sequential, add and delete data, and then retrieve the data in sorted order.

1-2 . 2272058-9701

General Description 1.4

RECORD DOCUMENT

ADDRESS LINE

311 SW. MILLS

GREENFIELD, IOWA

2277675

Figure 1-2. Example of File, Document, and Line Correlation

1.4 DATA DEFINITION LANGUAGE (DDL)

The DDL enables you to define or assign the data elements within the data base. Before any pro-
cessing can take place on the data base, you must perform a DDL operation. Use the DDL to define
file IDs; key IDs; retrieval methods; and the number of keys, lines, groups, and fields. When pro-
gramming, you need be only minimally concerned with file boundaries and the position of data;
most of these considerations are handled at the data definition level. Knowledge of the data posi-
tion within the file is not required since data requests are made by field or group ID. As long as the
field ID, format, and length do not change, the application programs do not need modification.

2272058-9701 1-3

1.5 General Description

PRIMARY KEY ™
INVOICE
NUMBER
[, LOGICAL
RECORD
e
|
DATE LINE f&%ﬁ ESS PART LINES TOTAL LINE
e

2277676
Figure 1-3. Example of a Data Structure

1.5 DATA MANIPULATION LANGUAGE (DML)

The DML enables you to read, replace, add, and delete data. The DML is not a complete language;
it is a set of function codes passed to DBMS-990 through calls embedded in an application
language.

When using the DML, specify only the field and/or groups to be transferred. You need not know the
exact position of the data, only the declared ID and line type.

1.6 SECURITY

Security is an optional feature of DBMS-990. You can choose to include security during installa-
tion of DBMS-990. Security limits unauthorized use of the data base but requires a certain amount
of overhead. The actual overhead involved depends on the degree of protection assigned to the
data elements in the data base.

To retrieve data from a file, the password provided in the request to DBMS-990 must be associated
with the file and/or data base. Each password is associated with one or more files. Each file
associated with a password requires an access authorization code. You can assign access
authorization to lines, groups, and fields. Lower-level data elements, such as lines and fields,
assume the authorization of the next higher data element. For example, a line that does not have
an authorization code assumes the code of the record. However, you can assign less authorization
to the line. The same applies to groups and fields.

1.7 PRIMITIVE QUERY

Primitive query enables you to retrieve and display data base information without writing a pro-
gram. Three functions are provided for limited retrieval and data display: read forward, read back-
ward, and read serial. The display follows the format defined in the DDL.

1-4 22720589701

General Description 1.8

1.8 FILE-ACCESS CHECKING

File-access checking is an optional feature of DBMS-990 and is installed at generation time. File-
access checking involves three types of access:

. Shared access — Ali users have all access privileges to the file.
. Exclusive access — Only the current user has all access privileges.

. Read-only exclusive access — All users have only read access privileges to the file. File-
access checking monitors the current status to the requested access, checking for in-
compatibilities, and returns appropriate error conditions when incompatibility exists.

1.9 BACKUP LOGGING

Backup logging is an optional feature of DBMS-990; it automatically records successful updates in
an interactive environment. Updates include adds, replaces, and deletes.

1.10 TRANSACTION-LEVEL INTEGRITY

Transaction-level integrity is an optional feature that may be selected by the DBA at Data Base
Generation (DBGEN) time. It allows you to define a series of operations as a transaction. By utiliz-
ing the transaction-level integrity feature, a programmer is able to require that all operations
within the defined boundaries of the transaction be performed successfully or, if one operation
cannot be performed, that the data base be restored to its pretransaction state.

In the event of a system crash, all transactions in progress are rolled back, restoring the data base
to its pretransaction state. This relieves you of the need to manually examine the contents of the
file records in order to verify where processing was interrupted. Automatic roliback of all trans-
actions in progress at the time of a system crash is a feature of transaction-ievel integrity.

1.10.1 How Transaction-Level Integrity Protects Your Data Base
The advantage of transaction-level integrity in preventing erroneous changes to the data base is
illustrated in the following example.
A bank customer has a savings account and a checking account and wishes to make a transfer of
$1000 from savings to checking. Two data base operations must be performed to complete the
transfer, as follows:

1. Subtract $1000 from savings.

2. Add $1000 to checking.

In this sequence, steps 1 and 2 comprise a transaction. That is, unless both operations are com-
pleted, you do not want either operation applied to the data base.

2272058-9701 1-5

1.10.2 General Description

Without transaction-level integrity, each operation stands alone. If a system crash were to occur
after step 1 and before step 2, the data base would contain an inaccurate entry. In this simple
example, you could possibly recover by examining the contents of the data base and making the
necessary changes. However, in more complicated transactions, the recovery may be con-
siderably more complicated.

With the transaction-level integrity option, the fact that the two operations are defined as a trans-
action ensures that neither operation.is applied or both are applied. This ensures that the data
base never contains erroneous data.

1.10.2 Locking Protocol
In order to prevent two users from accessing the same data base line during the course of two sep-
arate transactions, transaction-level integrity employs a system of locks. A line becomes locked

‘whenever a read or write operation involving that line occurs in a transaction. Whenever an ddd or
delete is performed, the entire record is locked.

There are two levels of locking: shared lock and exclusive lock. Under shared lock, the data is avail-
able for reading but cannot be modified. Under exclusive lock, the data can neither be read nor
modified by transactions other than the transaction with the exclusnve lock. Table 1-1 dlagram
the locking protocol. :

When a lock is changed from a shared lock to an exclusive lock, it is said to be upgraded The func-
tion for upgrading is hold line (HL), as shown in Figure 1-4.

Upgrading of a user’s lock (from shared to exclusive) can only occur when no other user has a
shared lock on that line. If a transaction cannot be upgraded because another user also has a
shared lock on the line, a delay occurs in the transaction requesting the upgrade until one of the
following conditions occurs:

e The competing transaction releases its shared lock on the line, at which point the
delayed transaction is allowed to proceed.

L The second transaction also requests an exclusive lock, and a deadlock occurs.

In the second case, the system identifies the deadlock and gives the exclusive lock to the trans-
action that first requested the exclusive lock. The second transaction is denied access and rolled

back. This automatic resolution of deadlock prevents two transactions from waiting on each other
indefinitely.

Table 1-1. Locking Protocol

Type of Lock First User Access Other User Access
Shared Read Only Read Only
Exclusive Read/Write Delayed

1-6 2272058-9701

General Description 1.10.3

EXCLUSIVE
LOCK

/

HOLD LINE
(UPGRADING)

SHARED LOCK ////////////'

2282274

Figure 1-4. Upgrading a Lock

1.10.3 Deadlock
The importance of the deadlock resolution feature is illustrated in the following example of its use
in a multiuser environment. Table 1-2 summarizes the steps in the example.

In the example, two travel agents are each servicing a customer. Both customers desire three
seats on the same airline flight. They initially want to know if three seats are available. The pro-
cedures that each agent executes are as follows:

1. Each agent starts a transaction by making an inquiry to the data base. The application
program would perform a start transaction (TS) and a read with release on the same
record for each agent. Both agents have access to the same record. The record, there-
fore, is in a shared lock state. Neither agent can write to the record while the record is in
this state.

2. The customer working with Agent A decides that he wants the three seats that are avail-
able. Agent A issues a reservation request. The application program attempts to perform
a hold line function to upgrade the record lock from shared to exclusive.

3. The system delays Agent A’s transaction due to the conflict with Agent B’s shared lock
on the record. Agent A’s transaction is waiting on Agent B’s transaction.

4. The customer working with Agent B decides that he wants the three seats also. Agent B
issues a reservation request. The DML program attempts to perform a hold line function
to upgrade the record lock from shared to exclusive. The two transactions are now
waiting on each other. A’s transaction is delayed waiting for B’s transaction to release
the shared lock. At the same time, B is waiting for A’s transaction to release its lock.
This condition is called deadlock.

2272058-9701 1-7

1.10.3 General Description

5. The system identifies the deadlock and resolves it as follows:

a.

b.

C.

Rolls back Agent B's transaction, thereby releasing Agent B’s shared lock

Returns a deadlock status message to Agent B’s transaction

Grants Agent A’s transaction the exclusive lock it needs

6. Agent A’s transaction is committed to the data base.

The deadlock message returned to Agent B’s transaction can be used by the programmer to
restart Agent B’s transaction or output a message to Agent B’s terminal informing him of the con-
flict and instructing him to restart the transaction.

Table 1-2. lllustration of Deadlock

User Action

Agent A

Program Function User Action

Agent B
Program Function

System Status

1. Makes inquiry Start

transaction (TS)

Makes inquiry Start

transaction (TS)

Shared lock on record

Read with Read with
release release
2. Requests 3 Hold line (HL) Conflict (A is waiting on B;
seats system cannot grant
exclusive lock)
3. Waits Task delayed
4, Requests 3 Hold line (HL) Deadlock (B is waiting on A;
seats A is waiting on B)
5. Rollback System:
transaction (TR) a. Rolls back B’s transaction
DL status b. Returns DL status to B’s
returned transaction
c. Grants A’s transaction
exclusive lock
6. Receives 3 Commit
seats transaction (TC)
1-8 2272058-9701

"General Description 1.10.4

1.10.4 Advantages of Transaction-Level Integrity

Transaction-level integrity allows the programmer to define a series of data base operations as a
transaction. In doing so, the programmer can require that the system execute all operations within
the transaction successfully or, if one or more operations cannot be performed, roll back any data
base modifications made as part of the transaction.

DBMS-990 allows transaction nesting up to a maximum level of 10. The level of nesting permitted
is specified at DBGEN.

The transaction-level integrity feature simplifies the programmer’s work in that the system per-
forms the following functions without programmer effort:

. Ensures that all conditions necessary for the success of a defined transaction are met
before making a permanent change to the data base

. Returns an indication of a deadlock that the programmer can use to cause a restart of
the transaction or abort the transaction and display a message to the user indicating a
problem with the transaction

o Locks all data lines involved in a transaction until the transaction is either committed to
the data base or rolled back

° Ensures that the outcome of any transaction operating in a concurrent environment is
identical to that obtained by running the transaction by itself

Remember that there is a performance cost associated with the use of the transaction-level inte-
grity option. System response time is sacrificed and additional memory space is required in return
for a more secure data base. It is recommended that you specify small parameter values when first
using the transaction-level integrity feature and increase the values if experience demonstrates
that deadlock occurs too frequently.

1.10.5 Troubleshooting Deadlock
Any one of the following conditions can cause a deadlock:

° Two or more transactions request a lock on the same record.

* The system lock table is full. Too many locks are in use for the lock table to accommo-
date them all.

. A transaction contains too many updates.

e The primary keys of one or more users are longer than the maximum length specified at
DBGEN time.

. More users are on the system than were specified at DBGEN time.
If frequent occurrence of deadlock is a problem, you should determine the principle reason for
deadlock. If the Data Base Statistics (DBSTAT) option is enabled, you can do this by executing the

DBSTAT command and examining the statistics. Refer to the Model 990 Computer DX10 Data
Base Administrator User’s Guide for an explanation of the DBSTAT command.

2272058-9701 1-9/1-10

2

Data Base Elements

2.1 INTRODUCTION

The major components of a data base are the data hierarchy and the keys. The following
paragraphs describe these elements.

2.2 DATA HIERARCHY

The data hierarchy consists of data elements from highest to lowest ranking. These data elements
are as follows:

o File

e Record
e Line

¢ Group
. Field

The basis for the DBMS-990 data element is the document concept. The document is the primary
means of initiating, executing, and recording business transactions. Since DBMS-990 allows a
direct correlation between the document and the data base (Figure 2-1), the document concept
aids development of commercial software systems.

2.21 File

A file is the highest level in the logical construct of the DBMS-990 data hierarchy. In terms of the
document concept, a file represents a coliection of documents of a specific type. A document
might contain several pages of information; these pages are easily transferred to the file. Also, the
data base can contain one or more files. The design and relationship of the files depend on the ap-
plication and methods used in the application program.

2.2.2 Record

A record is a collection of one or more data lines. it represents one logical occurrence of a docu-
ment in a DBMS-990 file. Since a file represents only one type of document, only one record type is
represented in a file. However, a file contains many individual data records of the same type.

A primary key uniquely identifies each data record. This key allows rapid access to records,
facilitating data access and modification. The purpose of the record, therefore, is to group lines
under one primary key.

2272058-9701 21

2.2.2 Data Base Elements

FILE

fre — — . —— — —

RECORD

DOCUMENT

311 S.W. MILLS

311 S.W. MILLS

ADDRESS LINES

GREENFIELD T 1A T 50258 GREENFIELD, IOWA 50258
T]
GREENFIELD : 1A : 50258
l |
CITY, STATE, ZIP GROUP
50258
ZIP FIELD
2277677 '
Figure 2-1. Relationship of Data Elements to a Document

2272058-9701

Data Base Elements 2.2.3

A record has no meaning in an input/output (//O) sense (as commonly associated with file manage-
ment systems). Concepts such as variable-length or fixed-length records are meaningless in
DBMS-990. A data record is the logical construct that contains all of the document lines for a
specific transaction. Data transfers occur on aline basis unless the entire record is one line. In the
latter case, a transaction resembling a record transfer occurs whenever that one line is requested.

2.2.3 Line

A line is a collection of data fields and/or groups of fields. Usually, each data line corresponds to a
line on a business document. However, data from several lines in a document can form a single
dataline in arecord. A data line is the highest-level data element that can be transferred. Examples
of lines include address lines, name lines, part lines, and total lines.

Included within the line concept is the notion of line types, or levels. An alphanumeric value in the
range of 01 through ZZ indicates the line type. A file description can contain only one definition of
a particular line type. Each data record can contain only one 01 data line. Data lines of any other
type can appear any number of times. A line type distinguishes between the different lines of a
document or record. The DDL declaration defines each line type. Often, each line type has many
individual data lines. The maximum size of a line is 512 bytes minus the primary key length, minus
an additional 10 bytes, minus 8 times the number of secondary keys in the line.

A line can contain a secondary key that permits access to that line type. For example, by using
part number as a secondary key, you can determine all customers that purchased a certain part.
Only customer records that contain the specified part number (secondary key value) are read.

2.2.4 Group

A group associates several fields within a line. The group identification consists of a unique four-
character ID. During the data definition stage, one or more fields are associated with the group.
The fields within the group always occur within the same line and cannot be defined in more than

- one group. An access request for the group ID retrieves all member fields of the group. The pur-

pose of a group is to allow you to access several fields by using a single name and to facilitate
user access to the data during processing of the file. The maximum number of groups/fields per
file is 200 minus the sum of the number of keys and the number of line types.

2.2.5 Field :

A field is the most elementary member in the logical data base structure. It is the smallest unit
that you can access by name during data manipulation. The data definition for a field includes a
four-character ID, a data format, and a field length. Data is stored and retrieved by field or group ID
within a line. Therefore, a programmer must know the field or group ID and the appropriate line
type when accessing data from a DBMS-990 file. The maximum field size is determined by the data
type of the field. The maximum number of groups/fields per file is 200 minus the sum of the
number of keys and the number of line types.

2272058-9701 2-3

2.3 Data Base Elements

2.3 KEYS

The two types of keys in DBMS-990 are primary and secondary. Keys facilitate data access and
clarify file relationships. The primary key identifies the entire record, whereas a secondary key
identifies a particular line within a record. The maximum length for any key is 40 bytes. Figure
2-2 shows how keys fit into a data base structure and how the source document relates to that
structure.

2.3.1 Primary Keys

Accessing a file by primary key gives you immediate access to a specific record without requiring
you to read the entire file. To access a record, transmit the appropriate key value to DBMS-990.
Each record in a file must contain a unique primary key. Duplicate primary key values are not
allowed within the same file.

2.3.2 Secondary Keys

A secondary key is a group or a field in one of the defined line types that allows access to a data
line without requiring you to use the primary key. While the primary key allows keyed access to the
record level, the secondary key permits keyed access directly to the line level. Any line type can
contain a secondary key, but secondary keys are not required. Duplicate secondary key values are
allowed. A secondary key value can be duplicated between records as well as within a record.
However, secondary key values can also be unique. If you plan to use unique secondary key
values, impose this restriction in the application program. You can use a maximum of 13 second-
ary keys for a given file.

An example of a secondary key is one that identifies all customers who purchased a certain
product. Using this key, you could determine geographic trends and then use that information to
make decisions about shipping, product inventory, and related matters. Figure 2-2 shows the data
structure that serves as the basis for this application. Line type 05 contains the secondary key
(part number) that facilitates this search.

Although multiple occurrences of line type 05 are possible within a record, a particular product ap-
pears only once within a record. Also, for each qualifying line 05, you can retrieve the primary key,
name, and address information. This data then transfers to a separate file, which can be sorted
and processed to produce a report by name and geographic location.

2-4 . 2272058-9701

DATE:

SOLD TO:

JOE'S PART SHOP *

INVOICE #

TERMS

PART # QTY

DESCRIPTION

PRICE

SUBTOTAL

TOTAL AMT

TAX

r——-——————- o an e enp s e w—

PRIMARY KEY
INVOICE

NUMBER

Data Base Elements

DESTINATION

PRIMARY KEY — IDENTIFICATION

LINE 01 DATE, ETC.
LINE 02 ADDRESS

LINE 05 ™

LINE 05 <

LINE 60

/

$ PARTS

S TOTALS

PURCHASED

23.2

, LOGICAL
RECORD

2277678

2272058-9701

LINE 01 LINE 02 LINE 05 LINE 60
DATE STREET *PART NUMBER SUBTOTAL
TERMS CITY QUANTITY TAX
NAME STATE DESCRIPTION TOTAL

ZIP PRICE

* PART NUMBER IS A SECONDARY KEY FOR LINE 05

Figure 2-2. Relationship of a Source Document to a DBMS-990 Data Structure

2-5/2-6

3

Data Definition Language (DDL)

3.1 INTRODUCTION

The DDL describes the logical structure of the files that you manipulate. The DDL permits the
complete description of a file and its associated record ID (primary key), lines, groups and fields.
Also, the DDL defines any secondary key IDs. ;

The output of the DDL compiler is stored with the file on the disk. DBMS-990 uses this output dur:
ing subsequent file operations. You must describe a file by using the DDL before DBMS-990 can
manipulate the file.

Programmers need be only minimally concerned with file boundaries or the position of data, since .
the DDL usually handles these considerations. As a result, program changes are less likely when
the relative position of the data changes. As long as the data names, format, and length do not
change, an application program does not need modification.

3.2 STANDARD DDL IDs

IDs in a data base structure apply to data names, keys, files, groups, and fields. The standard DDL
ID is fixed length and consists of four characters. The first character must be alphabetic; the re-
maining characters can be numeric (0 through 9) or alphabetic (A through Z). An ID can contain
trailing blanks but not embedded blanks. Whenever defining or accessing an ID, you must include
all four characters. For example, define the ID Z1 with two trailing blanks (Z1bb).

3.3 DDL DECLARATION

The DDL declaration consists of a series of statements that DBMS-990 compiles. The overall
organization of a DDL declaration consists of the followin.g:

e FILE statement

. File description

* . Secondary key description
* End File statement

You can include comments at the end of any statement. Placing an asterisk (*) in column one
reserves the entire line for a comment. DDL statements can start in any column

2272058-9701 3-1

3.31 Data Definition Language (DDL)

3.3.1 FILE Statement

The FILE statement identifies the file by a user-supplied DDL name and defines the maximum size
of the file. The format is as follows:

FILE = <ID>, LINES = <file size> b[<comments>] -
The <|D§ is the standard DDL ID for the file and must be used when accessing the file.
The <file size> is an estimate of the maximum number of data lines allowed in the file. The DDL
allocates and reserves sufficient disk space for the file being defined. Refer to the Model 990 Com-

puter DNOS Data Base Administrator User’s Guide for details about estimating file size.

3.3.2 File Description

The actual file description consists of a series of statements that describe the primary key, lines,
groups, and fields. The following statements describe the file:

Record ldentification (ID) stateme"nt |
e LINE statement

. GROUP statement

e FIELD statement

. End Group (ENDG) statement

End Line (ENDL) statement

3.3.2.1 Record ldentification (ID) Statement. The Record ldentification statement defines the

primary key ID and the maximum number of primary keys allowed for the file. The following is the
format:

ID =<ID> = [<data format>|GROUP],VOL = <records>[,ACCESS = {RANDOM|SEQUENTIAL}[/n]]

The <ID> is a standard DDL or group ID for the pnmary key and must be used when accessing the
file through the primary key.

The <data format> is a standard DDL formét for describing the data type of the primary key. It can
be signed and can contain assumed decimal places. Refer to paragraph 3.4 for valid data formats.
The maximum length of any key is 40 characters.

The <records> specifies the maximum number of primary keys that can exist in the file at any
time. This number is also the maximum number of records that can exist in a file, since the
primary key is unique for each data record.

The optional ACCESS clause specifies the data retrieval routine for the primary key. The choices
are sequential ordering (specified as SEQUENTIAL/1), or random access (specified as
RANDOM/1). The default is RANDOM/1. The /1 designator is optional because only one random
routine and one sequential routine are currently available.

3-2 2272058-9701

Data Definition Language (DDL) 3.3.2.2

3.3.2.2 LINE Statement. The LINE statement defines the line type to be associated with the
subsequent GROUP and/or FIELD statement. The following is the format:

LINE = <line type> b[<comments>]

The <line type> specifies a two-character value referring to the kind of line. Use combinations of
letters or numbers in the ranges of 01 through 99 and AA through ZZ. Line type 01 is not required,
but you must define at least one line. Although no specific line type is required, each line type
must be unique within a particular DDL compile. The limit on the number of groups/fields (200
minus the sum of the number of keys and the number of line types) determines the limit on line
types. With the exception of line 01, you determine the order of the line type definitions. When line
01 is present, you must specify it first. The maximum size of a line is 512 bytes minus the primary
key length, minus an additional 10 bytes, minus eight times the number of secondary keys in the
line. The size of a line is the sum of all field/group sizes in the line.

3.3.2.3 GROUP Statement. The GROUP statement defines the ID of a group; this ID applies to all
subsequent field and group statements until an End Group (ENDG) statement is encountered. The
format is as follows:

GROUP = <group ID> bb[<comments>]

The <group ID> specifies a standard DDL ID for the group. The name must be unique within the
file definition and can be decliared as a secondary key.

3.3.2.4 FIELD Statement. The FIELD statement defines the field ID and data format. The follow-
ing is the format:

FIELD = <field ID> = <data format> b[<comments>]

The <field ID> is a standard DDL ID. The ID must be unique within the file definition and can be
declared as a secondary key.

The <data format> is the standard DDL format for describing the data type for the field.

The maximum field size is unique to each data type.

3.3.2.5 End Group (ENDG) Statement. The End Group statement defines the end of a group. Suc-
ceeding group definitions are allowed. Any succeeding FIELD or GROUP statements are not part
of the last group definition. The format is as follows:

ENDGb[<comments>]
3.3.2.6 End Line (ENDL) Statement. The End Line statement signifies the end of a line specifica-
tion. Subsequent statements can be other LINE statements, secondary references, or an End File
statement. The format is as follows:

ENDLbBb[<comments>]

2272058-9701 , ' 33 -

3.3.3 Data Definition Language (DDL)

3.3.3 Secondary Key Description
The secondary key description consists of a SECONDARY-REFERENCES statement followed by
one or more secondary key statements.

3.3.3.1 SECONDARY-REFERENCES Statement. The SECONDARY-REFERENCES statement
signifies the beginning of the secondary key description. The following is the format:

SECONDARY-REFERENCES

3.3.3.2 Secondary Key Statement. The Secondary Key statement defines a previously defined
group or field as a secondary key. A maximum of 13 Secondary Key statements is allowed per file.
Any field or group defined as a secondary key can have a maximum of 40 characters. The format of
the statement is as follows:

{<group ID>/<field ID>} = VOL = <keys> [,ACCESS = {RANDOM|SEQUENTIAL} [/N]]

The <group ID> or <field ID> is the standard DDL ID for the previously defined group or field that is
specified as a secondary key.

The <keys> defines the maximum number of unique secondary key values that can exist in the file
at any time for a specific secondary key. Duplicate values are allowed for secondary keys; these
values are linked together. The size of the file determines the maximum number of duplicate
values.

The optional ACCESS clause specifies the data retrieval routine for the secondary key. The
choices are sequential ordering (specified as SEQUENTIAL/1), and random access (specified as
RANDOM/1). The default is RANDOM/1. The /1 designator is optional because only one random
routine and one sequential routine are currently available.

3.3.4 End File Statement
The End File statement signifies the end of the DDL declaration. The format is as follows:

END.b<comments>

3-4 2272058-9701

Data Definition Language (DDL) 3.4

3.4 DATA FORMATS
The primary purpose of the data format is to allow the use of a query language, since this language
needs to know the format of the data it displays. The data format is also a handy user reference.

You are responsible for validating the format of data sent to the data base via DBMS-990.
DBMS-990 does not validate the data it receives against the data format defined by the DDL.

The syntax for the data kfciarrhvatbs sp;,gified ivnwfrhe DDL is one of the following:
Type one: <data type>
or
Type two: <data type>/n
or
Type three: <data type>/n.d
where:
<data type> is a two-character code representing the overall characteristics of the data.

n is the total field length in bytes; you can omit n in formats where a default exists.

d is the number of places to the right of the decimal; use 0 if no decimal values are needed; d
is not required for some formats (see Table 3-1).

Table 3-1 lists the various data types and provides a description and example of each. The data for-
mat is the last parameter in the FIELD statement and the second parameter in the Record Iden-
tification statement. Format types are specified according to the definition in the syntax. Type one
format specifies only the format code; type two specifies the format code and field length; and
type three specifies the format code, field length, and number of decimal places.

A single DDL can contain ali of the data formats for the different languages. However, ensure that

each language accesses only those elements whose data formats that particular language can
use. Otherwise, unpredictable results can occur.

2272058-9701 3-5

3.4 Data Definition Language (DDL)

Table 3-1. DDL Data Types

Code

3-6

Description Example Formats
AN Arithmetic without sign. AN/8.2
Decimal places are allowed. COBOL: PIC 9(6)V9(2) COMP.
Use zero for no decimal places. FORTRAN: <none>
Use type three format. Pascal: <none>
AS Arithmetic signed. Length (n) AS/8.2
must include sign, and decimal COBOL: PIC S9(5)V9(2) COMP.
places are allowed. Use zero FORTRAN: <none>
for no decimal places. Use Pascal: <none>
type three format.
CH Character string. Length CH/20
includes total characters. COBOL: PIC X(20).
Decimal places not allowed. FORTRAN: <A format>
Use type two format. Pascal: PACKED ARRAY
[1..20] of CHAR
CN Character numeric. Decimal CN/6.2 :
places are allowed. Use zero COBOL: PIC 9(4)V9(2).
for no decimal places. Use type FORTRAN: <none>
three format. Pascal: <none>
Cs Character numeric signed. CS/8.5
Length (n) must include the COBOL: PIC S9(2)V9(5)
sign. Decimal places are FORTRAN: <none>
allowed. Use zero for no Pascal: <none>
decimal places. Use type three
format.
CX Complex variable. Length (n) CX/8
default is 8; if specified, it COBOL: <none>
must be 8. Use type one or two FORTRAN: COMPLEX
format. Pascal: <none>
FX Scaled integer FORTRAN. FX/2.4
Length (n) default is 2; if COBOL: <none>
specified, it must be 2. (d) is FORTRAN: FIXED(4)
the number of bits to the right Pascal: FIXED(16.4)
of the binary point: the default
is 0. Use type three format.
IS Single-precision integer. 1S/2

Contained in one 16-bit word.
Length (n) default is 2; if
specified, it must be 2. Fieid
may contain a sign. Use type
one or two format.

COBOL.: PIC 9(5) COMP-1.
FORTRAN: INTEGER*2
Pascal: INTEGER

2272058-9701

Data Definition Language (DDL) 3.5

Table 3-1. DDL Data Types (Continued)

Code Description Example Formats
D Double-precision integer. ID/4
Contained in two 16-bit words COBOL: <none>
and may be signed. Length (n) FORTRAN: INTEGER*4
default is 4; if specified, it Pascal: LONGINT
must be 4. Use type one or two
format.
LG Logical variable. Length (n) LG/2
default is 2; if specified, COBOL: <none>
it must be 2. Use type one FORTRAN: LOGICAL
or two format. Pascal: BOOLEAN
PK Packed decimal. Digit length PK/6.2
(n) must be even and includes COBOL: PIC S9(3)V9(2)
the sign. Decimal places are COMP-3.
allowed, and zero indicates no FORTRAN: <none>
decimal places. Contained in Pascal: <none>
n/2 bytes. Use type three
format.
RS Single-precision real. RS/4
Contained in two 16-bit words COBOL: <none>
and may be signed. Length (n) FORTRAN: REAL *4
default is 4; if specified, it Pascal: REAL
must be 4. Use type one or two
format.
RD Double-precision real. RD/8

Contained in four 16-bit words
and may be signed. Length (n)
default is 8; if specified, it
must be 8. Use type one or two
format.

COBOL: <none>
FORTRAN: REAL *8
Pascal: REAL

3.5 DDL EXAMPLES

Figures 3-1 and 3-2 are DDL examples. Figure 3-1 shows a DDL using a group primary key, nesting
of groups, and indentation to improve readability. Figure 3-2 shows a DDL not using a group
primary key. The next few paragraphs discuss designing a DBMS-990 file, followed by an expla-

nation of the DDL.

2272058-9701

3.5 Data Definition Language (DDL)

DBMS-9%0 <L. V. R> DDL TRANSLATOR MM/DD/YY HH:MM: 58S

FILE=EMPL, LINES=266
3+
ID=NUMB=CN/6. 2, VOL=30, ACCESS=RANDOM/ 1
3
LINE=01
FIELD=NAME=CH/20
GROUP=ADDR
FIELD=STRE=CH/20
FIELD=CITY=CH/15
FIELD=STAT=CH/2
FIELD=ZIPC=CN/5. 0

ENDG
IELD=8SN =CN/?. 0
ENDL
#
LINE=HI
FIELD=JOB =CH/10
GROUP=LOCA

FIELD=LCTY=CH/10
FIELD=LSTA=CH/15
ENDG
GROUP=RANK

FIELD=GRAD=CH/2
FIELD=RATE=CN/&. 2
FIELD=EXPT=LG/2
ENDG

ENDL

3+

SECONDARY-REFERENCES

SSN =,0L=30, ACCESS=RANDOM/1

3+

END.
TOTAL PAGES REGUIRED - 108
LINE LENGTH (BYTES) - 96
TOTAL DESCRIPTION PAGES - 1
TOTAL KEY PAGES - &
LINE OL -- BASE = 14 , DATA = 71 , LINKAGE = 8 , TOTAL = 95
LINE HI -- BASE = 16 , DATA = 45 , LINKAGE = O , TOTAL = &1

U DBME-0112 #% NEW DATA BASE FILE CREATED ##

Figure 3-1. DDL Example Without a Group Primary Key

3-8 2272058-9701

DEMS-9%0 <LoVORD

FILE=EMPL, LINES=266
#

DOL TRANSBLATOR

Data Definition Language (DDL) 3.5

MM/DD/YY HH: MM: 55

ID=ENUM=GROUP, VOL=30, ACCESS=SEQUENTIAL/1

FIELD=DEPT=CH/2
FIELD=SSN =CH/?
ENDG
#*
LINE=02
FIELD=NAME=CH/30
ENDL
*
LINE=03
GROUP=ADDR
FIELD=STRT=CH/20
FIELD=CITY=CH/20
FIELD=STAT=CH/2
FIELD=ZIPC=CN/S. 0O
ENDG
ENDL

END.

TOTAL. PAGES REQUIRED
LINE LENGTH (BYTES)
TOTAL DESCRIPTION PAGES
TOTAL KEY PAGES

81
48
1
8

i

LINE 02 —-— BASE
LINE O3 —— BASE

21 . DATA
&1 . DATA

L]

30 , LINKAGE
47 ,

51
68

0 ., TOTAL
0 ., TOTAL

Wi

LINKAGE

U DBME-0112 ## NEW DATA BASE FILE CREATED ##

Figure 3-2. DDL Example with a Group Primary Key

2272058-9701

3.6 Data Definition Language (DDL)

3.6 DDL PROCEDURES

The basic user design considerations are those of organizing and defining a DBMS-990 file. Then,
to create the file, you must assemble a DDL to define the file and compiie the DDL. The compiled
file definition (DDL) resides on the disk within the file it defines. This file definition is used not
only in creating the file but also in maintaining it.

3.6.1 User Design Considerations

You should work closely with the data base administrator (DBA) in designing the data base and/or
files. More detailed information is available in the Model/ 990 Computer DNOS Data Base
Administrator User’s Guide .

3.6.1.1 Lines and Fields. The organization of lines and fields can influence both the overali effi-
ciency of programs that access the file and the effective use of disk storage. Line lengths for
various line types should be as close as possible to the same length. However, if a particular line
is contained no more than once per data record, the overhead factor is usually insignificant.

The number of line types defined for a record affects access efficiency. As a result of combining
several document lines with related information into one larger line type, fewer reads are
necessary and access efficiency increases. Therefore, balance line lengths and combine the
elements of the document lines into fewer line types.

In choosing a data format and/or data type for a field, choose one that best describes the use of
the field. Use complex data formats only when necessary. The query language uses this format for
display purposes. If the wrong data format is defined in the DDL for a particular field, an incorrect
display results, requiring a change in the data format.

3.6.1.2 Secondary Keys. A secondary key is a field that identifies a line for processing purposes.
You should limit the number of secondary keys as much as possible. Also, relate the justification
for a key to specific processing needs. You can use groups for secondary keys, but the maximum
size of a secondary key is 40 characters. The maximum number of secondary keys per file is 13.
Line 01 should not contain a secondary key if that key must be updated because a line type 01 can-
not be deleted until all other lines are deleted.

3.6.2 Creating a DDL File

You can use the Text Editor to make or correct a DDL file for input to the DDL compiler. For details
about the Text Editor, refer to the Model 990 Computer DNOS Text Editor Reference Manual. To
display or print DDL files, enter a Show File (SF) command or a Print File (PF) command.

3.6.3 Format DDL (DDL) Command

The SCI command DDL creates a data base file according to the DDL statements in the input con-
trol file. The DDL listing is placed in the output list file specified, and the data base file is created
with the pathname specified. The following shows the format and prompts of the DDL command:

FORMAT DDL
INPUT ACCESS NAME:
LISTING ACCESS NAME:
‘PAGE SIZE: 256
DB FILE PATHNAME:

3-10 / 2272058-9701

Data Definition Language (DDL) 3.6.4

Respond to the DDL prompts as follows:

INPUT ACCESS NAME — Enter a pathname that identifies the file containing the input to
the DDL compilation.

LISTING ACCESS NAME — Enter the pathname of the file to which the summary list of
the DDL compilation is written.

PAGE SIZE — Enter 256 or 288. The size of the page is a blocking factor, specifying the
unit of bytes read or written during an 1/O operation.

DB FILE PATHNAME — Enter the pathname of the section in which the defined file is
allocated; you can use DUMY as the filename to check the DDL syntax.

The following example shows how to enter a DDL command to define a file:

FORMAT DDL
INPUT ACCESS NAME: .SAMPLE.DDL
LISTING ACCESS NAME: .SAMPLE.LSTDDL
PAGE SIZE: 256
DB FILE PATHNAME: .DBMS.DBFILE

This DDL execution creates the file definition specified in the file . SAMPLE.DDL and places the

DDL listing on file .SAMPLE.LSTDDL. The data base file is created under the pathname
.DBMS.DBFILE.

3.6.4 DDL Listing

After creating the DDL file, you must compile it. Information specific to the data definition is
printed after the compile ends, whether it ends normally or abnormally. in case of an abnormal ter-
mination, the approriate error messages appear.

The DDL in Figure 3-2 defines the DBMS-990 file EMPL. The primary-key ID is NUMB (employee
number) and is 6 characters in length, with two decimal piaces. The maximum number of primary
keys that the file can contain is 30 (VOL = 30); this number is also the maximum number of data
records that the file can contain (since each data record must have a primary key). The primary key
values are ordered randomly.

The listing next defines the line types of the file. Each line type includes an identifying number.
The definition then specifies the fields in the line. Each line type definition ends with an End Line
statement. Each field type defined is given an 1D and a data format. To group fields, define them
between a GROUP statement and an End Group statement. A particular field cannot belong to
more than one group. After defining all of the line types, the listing specifies any secondary
references. Then, an End File statement terminates the DDL definition.

The information given at the end of a successful DDL run starts with the total number of pages re-
quired by the file. Next, the line length, in bytes, of each line to be stored in the file appears. This
length, which is justified to a word boundary, equals the length of the longest line defined pro-
vided the latter is an even number; if it is an odd number, 1 is added to it.

2272058-9701) 311

3.7 Data Definition Language (DDL)

Next, the total number of pages used for description information and key storage appears. A page
is the unit of bytes that DBMS-990 uses for I/0, that is, the basic unit that the data base actually
réads or writes. The page size can be either 256 or 288 bytes. Choose the page size based on the
sector size of the disk.

Line type summary information is printed last, before the **NEW FILE CREATED** message. This
information is as follows:

. BASE information — Refers to the number of bytes DBMS-990 uses to store primary key
data in each data line; the number of bytes equals ten plus the length of the primary key.

. DATA information — Refers to the number of bytes used in a data line to store the data
for that particular line type regardiess of whether all fields are valued. Reserve space in
a data line for any fields that are not valued initially.

. LINKAGE information — Refers to the number of bytes used in a data line for each
secondary reference defined for that line type.

. TOTAL information — Shows the total number of bytes this particular line type uses
when it occurs as a data line in the DBMS-990 file.

Note that the number of bytes that each line type reserves for data is different. This difference can
result in a significant amount of unused space in a file when the lengths of the line types are
highly dissimilar and all line types, other than line 01, occur as data lines with a high frequency.

3.7 DDL ERRORS

Appendix A lists and explains the various DDL errors.

3-12 2272058-9701

4

Data Manipulation Language (DML)

4.1 INTRODUCTION

The data manipulation language (DML) consists of specific function codes that allow you to
manipulate data. The DML functions consist of reading or writing data lines, reading a key,
deleting data lines, opening or closing files, and starting, committing, or rotling back transactions.
Ensure that the appropriate file is open before any processing begins.

It is not possible to read or write an entire data record unless that particular record consists of only
one data line. Writing to a file consists of creating new data records (adding new lines to the file),
updating data records (changing data within a file), or deleting data records (removing lines from
the file).

To access a data base file, include the appropriate DML commands in an application program,
which is sometimes referred to as a host language program. Use the host language to contruct a
call to DBMS-990 according to the requirements of the DML. The host language DML call uses a
parameter list to inform DBMS-990 of the type of function (access) to be performed and the
elements to be manipulated by the function. DBMS-990 processes the request and returns the
results to the host language program in a data area provided in the DML call parameter list. Formu-
late the DML call parameter list according to the specifications in this section.

The DML calls occur on a line basis. However, the data access can occur on a field and/or group
basis. When initiating a DML call, you must provide the following information:

o Password
e FilelD
e KeylD
. Key value
. Line type
° Field/group 1D(s)
. Name of user data area
The password information is required only if you instalied the security feature at generation time.

Otherwise, the password is ignored. In either case, you must allocate the password area of the call
parameters.

2272058-9701 4-1

4.2 Data Manipulation Language (DML)

You can transfer all or part of a data line by specifying the fields and/or group for which data is to
be transferred. You need not know the specific position of the data in the file, only the logical
name (the field or group ID), the data format, and the line type. Thus, the application program does
not change as long as the element’s logical name, line type, and data format do not change.

4.2 CALL PARAMETERS

A DML call to DBMS-990 consists of six parameters. To call DBMS-990, use the procedures speci-
fied for calling external subroutines in the COBOL, FORTRAN, and Pascal manuals (see Preface).
The following is the COBOL syntax for a DML cali:

CALL “DBMSYS” USING <control block>
<end of control block>
<line list>
<end of line list>
<data area>
<end of data area>

All parameters are required. The actual data item representing each parameter must begin on a
word boundary. In COBOL, the best way to ensure word alignment of the control block, line list,
and data area parameters is to define each as a 01 data item. In Pascal, use an unpacked record
structure to define the control block, line list, and data area parameters.:If you pack a Pascal
record structure the call parameters might not align on a word boundary. Specify an extra element
(word) at the end of the control block, line list, and data area for Pascal. This element signifies the
end of the control block, line list, and data area to DBMS. In FORTRAN, define the control block,
line list, and data area parameters as DIMENSION arrays that will be aligned on a word boundary. If
you use any other methods, the parameters might not align on a word boundary.

4.2.1 Control Block
To define this parameter in COBOL, specify the name of the 01 data item that starts the control
block; in FORTRAN, specify the first location in the dimensioned array; in Pascal, specify the

variable name of the control block record structure. The control block contains the following
information:

Length in
Description Positions Bytes Set By
Password 1-4 04 User
Function code 5-6 02 User
Status (exception code) 7-8 02 DBMS-990
File ID 9-12 04 User
Location pointer 1 (loc1) » 13-16 04 Both
Location pointer 2 (loc2) 17-20 04 Both
Key ID 21-24 04 Both
Key value 25-N 1-40 Both

In FORTRAN, you must dimension an extra word after the key value.

In Pascal, you must define an extra unpacked element after the key value. The extra element marks
the end of the control block for DBMS. The password is optional, depending on whether security
was invoked during the installation of DBMS-990. However, you must always allocate the
password positions. The function code defines the type of data manipulation requested.

4-2 22720589701

Data Manipulation Language (DML) 4.2.2

When an exception occurs, an appropriate exception code is returned in the status field. Check
the status bytes after every operation. If they do not contain asterisks, an exception has occurred.
Refer to Appendix A for a description of exception conditions.

CAUTION

Do not modify the location pointers (loc1 and loc2) to any value other
than asterisks (****) unless a DML function explicitly calls for such
modification. Inappropriate modifications can seriously damage the file
or produce unpredictable results. The only exceptions are when you
place the location pointer results of one DML call into the control block
for another DML call or when you swap the contents of loc1 and loc2.

For most DML calls, you must set the key ID area before performing the call. The key 1D is the four-
character name for the primary or secondary key defined at data definition time. Use a key value
that already exists, if possible. If the vaiue does not have a corresponding key in the file for the key
ID specified, an exception condition results. The length of a key value may vary from key to key;
the maximum is 40 bytes. If the defined key value field is larger than the length of the key, the key
value is returned left justified.

CAUTION

If the defined key value field is shorter than the actual length of the key,
the next field is overlaid with a portion of the key value.

4.2.2 End of Control Block

The end of control block parameter tells DBMS-990 where the control block ends. In COBOL, this
parameter is the name of the 01 data item that immediately follows the key value. in Pascal or
FORTRAN, it is the name of the last (i.e., extra) element in the control block.

4.2.3 Line List

The line list parameter defines the line(s) and field(s) used in the operation. It also specifies the
disposition of the returned information. in COBOL, this parameter is the name of the 01 data item
that starts the line list. In Pascal, it is the variable name of the line list record structure. In
FORTRAN, it is the first location in the dimensioned array for the line list.

The following is the format for a single line type in the line list parameter:

Description Length (Bytes) Set By
Line identification 07 User (Must be present
Return indicator 01 Both for each line
Field IDs Variable (4 User type specified.)
characters each)
Disposition 08 User (Must be last

entry of list.)

2272058-9701 43

4.2.4 Data Manipulation Language (DML)

In FORTRAN, dimension an extra word at the end of the line list, after the disposition.
In Pascal, define an extra unpacked element at the end of the line list, after the disposition.
Line identification consists of a seven-character line type specification, as follows:

LINE = xx

where:
xx is the line type.

The return indicator signifies the line type from which a data line is retrieved. If the return code -
contains an asterisk, the data fields for that particular line type are returned in the data area. In a
line list containing multiple line types, the return indicator of the accessed line type is set to an
asterisk on return from the call. Each of the other return indicators is set to a comma. On adds,
replaces, and deletes, set the return indicator of the appropriate line type to an asterisk. Set each
of the other return indicators to a comma or to something other than an asterisk.

Field IDs are the four-character IDs of the fields in a specified line type. They may be individual
four-character definitions, they may be strung together, or they may be defined by an array.

Disposition specifies whether to release (RLSE) or hold (HOLD) a retrieved data line. Release
implies that the retrieved information is for inquiry purposes. Hold retains the line for update or
deletion. The following is the format for disposition:

Position Value
1_4 % %k k%
5-8 RLSE or

HOLD

With a RLSE disposition, the data line is available to other users immediately upon completion of
the DML call. The HOLD disposition retains a data line until the line is used in a write or delete
DML function or until the execution of another read with hold on a different data line. If the held
data line is not released, it is retained until the program terminates; no other program has update
capabilities on that line until such termination. Also, read access is not allowed on a held line. A
program can put on hold only one data line at a time, regardless of the number of files open. HOLD
has no meaning in any of the update functions.

4.2.4 End of Line List
The end of line list parameter tells DBMS-990 where that line list ends. This parameter must be the
name of the next item after disposition of the line list. In a COBOL program, use the level 01 data

item that follows the line list. In Pascal, use the name of the last (or extra) element in the line list
record structure.

4.2.5 Data Area
The data area parameter specifies the data name of one of the following:

o The program area that contains the data to be transmitted

e The program area thai will contain retrieved data

4-4 2272058-9701

Data Manipulation Language (DML) 4.2.6

The data area should be large enough to contain the data for the fields specified in the line list.
You can specify either a single definition for the data area or a definition that is subdivided into
definitions for all of the fields specified in the line list. If the defined data area is larger than the
combined Iength of the data fields requested, the retrieved data is returned left justified. Data is
placed in the data area in the same order as that of the field IDs of the line list.

CAUTION

If the defined data area is shorter than the combined length of the data
fields requested, the next field is overlaid with a portion of the retrieved
data.

4.2.6 End of Data Area

The end of data area parameter tells DBMS-990 where the data area ends. This parameter must be
the name of the data structure that follows the last data item in the data area. In a COBOL pro-
gram, use the next level 01 data item following the data area. In Pascal, use the name of the extra
or last element in the data read area record structure. In FORTRAN, use the name of the extra array
element (word) that is dimensioned at the end of the data area.

4.2.7 Parameter List Examples

Figure 4-1 is an example of a COBOL definition of the parameters and the corresponding CALL to
DBMS-990. Note that the end parameters are one-byte separators. As a result, the first two end
parameters and their corresponding data items can be eliminated; they are then replaced by the
data line list and the data area, as in Figure 4-2. Figure 4-2 shows the resulting COBOL call and its
definitions.

Figure 4-3 is an example of a Pascal definition of the DML parameters and the corresponding call
to DBMS-990. The end parameters are the name of the extra (last) unpacked element that must be
defined in the control block, line list, and data area parameters. A multiple line list parameter is
created by using a Pascal record structure large enough to contain the necessary data. This struc-
ture indicates the desired lines plus the extra (last) unpacked element at the end of each record
structure.

4.2.7.1 COBOL Call with Dummy Parameters. When a function code does not need a line list or
data area, you can use dummy parameters. For example, you can use a single asterisk as the open
function (OF) line list and data area parameters. The following is the COBOL call with ASK as the
dummy parameter; if ASK is a 01 data item following CONTROL-BLOCK, ASK can be used as the
END-CONTROL parameter.

CALL “DBMSYS” USING CONTROL-BLOCK
END-CONTROL,
ASK,
~ASK,
ASK,
ASK,

2272058-9701 , 45

4271

Data Manipulation Language (DML)

DBMSYS(CB, CB. TERM, CB. TERM:LINELIST, CB. TERM,
CB. TERM::DATAAREA, CB. TERM);

WORKING-STORAGE SECTION

01

01

01

01
01
01

PROCEDURE DIVISION.

CALL “DBMSYS” USING

CONTROL-BLOCK.

02 FILLER
02 FUNC
02 STAT
02 FILEX
02 LOC1
02 LOC2
02 KEYN
02 KEYX

END-CONTROL-BLOCK PIC X

LINE-LIST.
02 FILLER
02 TST-1

02 FILLER
02 FILLER
02 TST-2

02 FILLER
02 FILLER
02 TST-3

02 FILLER
02 FILLER

END-LINE-LIST

DATA-AREA

END-DATA-AREA

Figure 4-1.

PIC X(4) VALUE
PIC XX VALUE
PIC XX VALUE
PIC X(4) VALUE
PIC X(4) VALUE
PIC X(4) VALUE
PIC X(4) VALUE
PIC X(6).

VALUE

PIC X(7) VALUE

PIC X VALUE

PIC X(4) VALUE

PIC X(7) VALUE

PIC X VALUE

PIC X(4) VALUE

PIC X(7) VALUE

PIC X VALUE

PIC X(8) VALUE

PIC X(8) VALUE

PIC X VALUE

PIC X(40).

PIC X VALUE
CONTROL-BLOCK,
END-CONTROL-BLOCK,
LINE-LIST,

END-LINE-LIST,

DATA-AREA,

END-DATA-AREA.

Example One of COBOL DML Parameters

SPACES.
(‘RF”.
“SOFL”.

Chdk ok ok k)

“SONM”.

% 23]

“LINE=01".
“VEN1”.

“LINE = 02",
“VEN2”,

“LINE = 03"
“ITMMQTYX".
6% % **HOLD’,.

E 23]

E 21

2272058-9701

WORKING-STORAGE SECTION.

01 CONTROL-BLOCK.
02 FILLER
02 FUNC
02 STAT
02 FILEX
02 LOCH
02 LOC2
02 KEYN
02 KEYX
01 LINE-LIST.
02 FILLER
02 TST-1
02 FILLER
02 FILLER
02 TST-2
02 FILLER
02 FILLER
02 TST-3
02 FILLER
02 FILLER
01 DATA-AREA
01 END-DATA-AREA

PROCEDURE DIVISION.

CALL “DBMSYS” USING

Figure 4-2. Example Two of COBOL DML Parameters

2272058-9701

Data Manipulation Langugage (DML)

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

X(4)
XX

XX

X(4)
X(4)
X(4)
X(4)
X(6).

PIC X(7)
PIC X
PIC X(4)
PIC X(7)
PIC X
PIC X(4)
PIC X(7)
PIC X
PIC X(8)
PIC X(8)
PIC X(40).
PIC X

CONTROL-BLOCK,
LINE-LIST,
LINE-LIST,
DATA-AREA,
DATA-AREA,

END-DATA-AREA.

VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE

VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE

VALUE

SPACES.
L‘RF’!.
SOFL"

f0d %k kI

“SONM".

“LINE =01
“VEN1.
“LINE =2
“VEN2".
“LINE = 3"
“TMMQTYX".
“****HOLD”.

% 2k

4271

47

4.2.7.2 Data Manipulation Language (DML)

4.2.7.2 FORTRAN Call with Dummy Parameters. Figure 4-3 is an example of a FORTRAN defi-
nition of the DML parameters and the corresponding call to DBMS-990. The end parameters are
the name and subscript of the extra last word that must be dimensioned in the arrays for the con-
trol block, line list, and data area parameters. The multiple line list parameter dimensioned is large
enough to contain the data that indicates the desired lines plus the extra word at the end of the
array. The necessary constants can be easily loaded by using the FORTRAN data statements. All
FORTRAN examples assume IMPLICIT INTEGER (A-Z).

DBMSYS(CB, CB. TERM, CB. TERM::LINELIST, CB. TERM,

CB. TERM:DATAAREA, CB. TERM),

DIMENSION ITEMCB(15), ITEMLL(13), ITEMDA(14)

c* II;HTIALIZE ARRAYS
DATA ITEMCB/* RF ITEM********ITMN ’/
DATA ITEMLL/'LINE=01, DESCUPRC****RLSE '/

C* CALL DATA BASE
CALL DBMSYS (ITEMCB(1), ITEMCB(15), ITEMLL(1),
1 ITEMLL(13), ITEMDA(1), ITEMDA(14))

Figure 4-3. Example of FORTRAN DML Parameters

4.2.7.3 Pascal Call with Dummy Parameters. Figure 4-4 illustrates an example of a Pascal call
using dummy parameters, the end of the control block is used for five of the parameters.

4-8 2272058-9701

Data Manipulation Langugage (DML) 4.2.7.3

(*~ DEFINE DATA TYPES *)

TYPE
C2 = PACKED ARRAY [1..2] OF CHAR,;
C4 = PACKED ARRAY [1..4] OF CHAR;
C6 = PACKED ARRAY [1..6] OF CHAR;
C8 = PACKED ARRAY [1..8] OF CHAR;
C20 = PACKED ARRAY [1..20] OF CHAR,;

DA_TYPE = (SOF2, SOF3, CUST, ITEM);
(* DEFINE RECORD AREAS *)
DATAREA = RECORD

CASE DA_TYPE OF

SOF2 : (SHIP : Cé6);
SOF3 : (QUAN : C4
SONM : C6);
CUST : (NAME : C20),
ITEM : (DESC : C20; UPRC: C6);
END;

LINELIST = RECORD

LL : PACKED ARRAY [1. .24] OF CHAR;

TERM : INTEGER,; (* EXTRA ELEMENT MARKING END OF LINELIST *)
END;
CONTROLBLOCK = RECORD

PSWD : C4;

FUNC : C2;

STAT : C2

DBFILE : C4;

LOC1 : C4

10C2 : C4

KEYN : C4;

KEYV : C6;

TERM : INTEGER; (* EXTRA ELEMENT MARKING END OF CONTROL BLOCK *)
END;
(* VARIABLE DEFINITIONS *)
VAR

CUST__LL : LINELIST;

DA : RECORD

DATA : DATAREA;
TERM : INTEGER; (* EXTRA ELEMENT MARKING END OF DATA AREA *)
END;
CB : CONTROLBLOCK; .
(* DEFINE EXTERNAL PROCEDURE TO CALL DBMS *)
PROCEDURE DBMSYS (VAR CB : CONTROLBLOCK; VAR CBE : INTEGER;
VAR LL : LINELIST; VAR LLE : INTEGER);
VAR DA : DATAREA; VAR DAE : INTEGER);
EXTERNAL FORTRAN;

. DBMSYS (CB, CB. TERM, CUST__LL, CUST__LL. TERM, DA.DATA, DA.TERM);

Figure 4-4. Example of Pascal DML Parameters

2272058-9701 | 49

4.3 Data Manipulation Language (DML)

4.3 DML FUNCTIONS

The DML functions are of four types: file, read, update, and transaction. Using the appropriate
function codes, you can manipulate, alter, and delete the data base records. However, data trans-
fers occur on a line basis. The field IDs specified in the line list parameter of the DML call deter-
mine which data fields the application program uses. :

4.3.1 File Functions

The following paragraphs describe file-access checking and the open and close file functions.
Although the open and close file functions are not required when file-access checking is not
installed in DBMS-990, it is recommended that they be included in all applications so that the pro-
grams will still execute if file-access checking is later installed. File functions are ignored by
DBMS-990 when file-access checking is not installed.

4.3.1.1 File-Access Checking. An application program must issue open and close file functions
for each file when file-access checking is installed. Issue an open file before attempting to access
the file and a close file when finished with the file.

Three types of file access are allowed with DBMS-990: shared, exclusive, and read-only exclusive.
The most common type is shared. With shared access, all users can open the file and perform all
functions on the file. Exclusive access means that the current user has all access privileges and is
the only user with access to the file. Read-only exclusive access means that the current user has
only read privileges and that other users can read the file if they open with the same file access.

File-access checking monitors the current file status against requested accesses, checks com-
patibility, and returns appropriate error conditions when incompatibility exists. For example, a
file-access request of exclusive is allowed only when that file is free from any other file access. If
the file is not free and a user requests exclusive access, file-access checking returns the
appropriate error condition. Table 4-1 lists all of the conditions under which DBMS-990 must
resolve file-access requests and the corresponding results.

Table 4-1. File Access Resolutions

Current Status*

Requested Read-Only
Access None Shared Exclusive Exclusive
Shared Y Y N N
Exclusive Y N N N
Read-Only Exclusive Y N N Y

Note:

* Y indicates access granted; N indicates access refused.

4-10 2272058-9701

Data Manipulation Langugage (DML) 4.3.1.2

4.3.1.2 OpenFile (OF). The open file function (DML function code OF) opens the file specified in
the file ID area of the control block. Specify the type of access needed in the key name area of the
control block. Use one of the following access types:

e EXCL — for exclusive access; no other user can access the file; all read and write func-
tions are permitted.

. ROEX — for read-only exclusive access; other users can read the file if they open ROEX;
only read functions are permitted.

. SHRD — for shared access; other users can access the file; all read and write functions
are permitted.

Figure 4-5 is an example of a COBOL control block parameter and DML call for performing file
functions.

01 CONTROL BLOCK.
02 PSWD PIC X(4) VALUE SPACES.
02 FUNC PIC XX VALUE “OF”.
02 STAT PIC XX VALUE “**”,
02 FLID PIC X(4) VALUE “PYRL".
02 FILLER PIC X(8) VALUE “rxrxxresr,
02 KYID PIC X(4) VALUE “EXCL”.
02 KEYV PIC X(40) VALUE “EXCL”.

01 ASK PIC X VALUE “*”.

bALL “DBMSYS” USING CONTROL-BLOCK, ASK, ASK, ASK, ASK, ASK.

Figure 4-5. COBOL File Function

Figure 4-6 is an example of a FORTRAN control block parameter and DML call for performing file
functions.

DIMENSION OFCB (13)

DATA OFCB/ OF**SOFL********ROEX ’/

CALL DBMSYS (OFCB (1), OFCB (13), OFCB (13), OFCB (13),
$OFCB (13), OFCB(13))

Figure 4-6. FORTRAN File Function

2272058-9701 4-11

4.3.1.3 Data Manipulation Language (DML)

All call parameters must be specified even though the line list and data area parameters are not
used. The example in Figure 4-2 can be used for file functions. Parameters not needed can be
defined as one-byte fields but must be on a word boundary.

Even if security is included in the system, security checking is not performed on file functions.
Also, you must specify access type and check the status bytes for errors on returning from the
DML call. Refer to Appendix A for a list of error codes.

4.3.1.3 Close File (CF). The close file (CF) function closes the file specified in the file ID area of
the control block. The CF function uses the same format as the OF function. The function and file
ID must be valid. The access type in the key ID parameter must be the same as that specified in the
OF function. Check the status field for errors. If another program or task is using the file, the file is
not closed until all programs accessing the file have closed it. When the status is indicated by a
series of asterisks, the application program file has successfully closed.

You can specify the other parameters of the CF function in the same manner as in the OF function.
Define parameters that are not required as one-byte fields.

4.3.2 Read Functions

The DML read functions return a data line in a file based on the selection criteria provided in the
DML call parameters. The specified data is removed from the data line and returned to the calling
program via the call parameters. Only one data line is processed per DML call. Check the status
bytes of each read function after the DML has completed to ensure that the function has ter-
minated properly; the status code should contain a series of asterisks. If an error condition
occurs, refer to Appendix A. DBMS-990 sets the status bytes to asterisks before it executes the
function. '

Figure 4-7 is an example of a Pascal control block parameter and DML call for performing file
functions.

412 2272058-9701

Data Manipulation Langugage (DML) 4.3.2

(* DEFINE DATA TYPES *)

TYPE
C2 = PACKED ARRAY [1..2] OF CHAR;
C4 = PACKED ARRAY [1. .4] OF CHAR;
C6 = PACKED ARRAY [1..6] OF CHAR;
C8 = PACKED ARRAY [1. .8] OF CHAR,;
C20 = PACKED ARRAY [1..20] OF CHAR;

DA_TYPE = (SOF2, SOF3, CUST, ITEM);
(* DEFINE RECORD AREAS *)
DATAREA = RECORD

CASE DA__TYPE OF

SOF2 : (SHIP : C6);
SOF3 : (QUAN : C4;
SONM : C6);
CUST : (NAME : C20);
ITEM : (DESC : C20; UPRC: C6)
END;

LINELIST = RECORD
LL : PACKED ARRAY [1. .24] OF CHAR,;
TERM : INTEGER,;

END;

CONTROLBLOCK = RECORD
PSWD : C4
FUNC : C2
STAT : C2;
DBFILE : C4;

LOC1 : Cg4

LOC2 : C4;

KYID : C4;

KEYV : C6;

TERM : INTEGER,;
END;

(* VARIABLE DEFINITIONS *)

VAR

CUST__LL : LINELIST;

DA : RECORD

DATA : DATAREA;
TERM : INTEGER;

END;

CB : CONTROLBLOCK;

(*

DEFINE EXTERNAL PROCEDURE TO CALL DBMS *)

PROCEDURE DBMSYS (VAR CB: CONTROL BLOCK; VAR CBE : INTEGER;

VAR LL : LINELIST; VAR LLE : INTEGER);
VAR DA : DATAREA; VAR DAE : INTEGER);
EXTERNAL FORTRAN;

" CB.DBFILE : = ‘PYRL":

2272058-9701

CB.PSWD : = ‘BOSS’;
CB.FUNC : = ‘OF’;

CB.KYID : = ‘EXCL’;

DBMSYS (CB, CB. TERM, CUST__LL, CUST__LL.TERM, DA, DA. TERM),

Figure 4-7. Pascal File Function

4-13

43.21 Data Manipulation Language (DML)

Read functions are normally performed using the RLSE disposition option. The data line read with
this option is always released after the DML call terminates. When a read function is performed
using the HOLD disposition option, the data line read is held until execution of a write or delete
function. If no subsequent write or delete function is performed on the held data line, that line can
be released by using the release line (RL) function or by executing a read with hold on another data
line. The new data line is then held. Any held data line is released when a program terminates.

To obtain the primary key value associated with a data line during any read function, specify the

primary key ID in the field ID portion of a line list. When using this feature, allocate space for the
primary key value in the data area.

CAUTION

Do not modify the location pointers (loc1 and loc2) to any value other
than asterisks (****) unless a DML function explicitly calls for such
modification. Inappropriate modifications can seriously damage the file
or produce unpredictable results. The only exceptions are when you
place the location pointer results of one DML call into the control block
for another DML call or when you swap the contents of loc1 and loc2.

4.3.2.1 Read Forward (RF). The read forward (RF) function reads the next data line of the line type
associated with the key ID and key value specified in the control block parameter. The primary pur-
pose of the RF function is to retrieve data fields from a specified data line. You can use either a
primary or a secondary key to perform an RF function.

The RF function locates a data line for the line type specified in the line list and scans that data

line for the specified fields or groups. The requested data items are then returned via the data area
parameter.

When multiple line types are specified in the line list parameter, an asterisk is returned (instead of
a comma) in the return indicator field of the line type to indicate the particular data line that the

call is returning. A comma is returned in all other return indicators for all other line types
specified.

Each DML call returns only one data line, even if the line list parameter specifies muitiple line
types. The data line returned is the first data line encountered whose line type matches one of the
line types specified.

414 2272058-9701

Data Manipulation Language (DML) 4.3.2.2

The following specifications apply to the location pointers at call initiation:
. Loc1 must contain either asterisks or a valid address from a previous call.

. If loc1 contains asterisks, the data lines associated with the specified key are searched
‘from first to last until the line type specified is encountered. Otherwise, the data lines
are read beginning with the address specified in loc2 until the line type specified is
encountered.

The following specifications apply to the location pointers at call termination:

. If both loc1 and loc2 contain asterisks, either the data line of the specified line type
does not exist or no more data lines of the type specified exist. If the value does not
exist, an NK exception code is returned; otherwise, the status code contains asterisks.

. Loc1 normally contains the address of the data line read.

. Loc2 normally contains the address of the next data line.

e When only loc2 contains asterisks, the data line returned is the last data line for the
specified key or record.

When changing primary or secondary keys, set loc1 to asterisks prior to reading the desired data
line. This ensures that the first data line is read and helps prevent further processing problems.

4.3.2.2 Read Backward (RB). The read backward (RB) function reads the preceding data line of
the type associated with the key value in the control block parameter. The primary purpose of the
RB function is to retrieve data fields from a specific data line. An RB function can use either a
primary or a secondary key.

The RB function scans the data line located for the line type specified in the line list, looking for
the desired fields or groups. The requested data items are then returned in the data area
parameter.

When multiple line types are specified in the line list parameter, an asterisk is returned (instead of
a comma) in the return indicator field of the line type to indicate the data line that the calli is re-
turning. A comma is returned in all other return indicators for all other line types specified.
Each DML call returns only one data line, even if the line list parameter specifies muitiple line
. types. The data line returned is the first data line encountered whose line type matches one of the
line types specified.

When changing primary or secondary keys, set loc1 to asterisks prior to reading the desired data
line. This ensures that the correct data line is read and helps prevent further processing problems.

The following specifications apply to the location pointers at call initiation:

. Loc1 must contain either asterisks or a valid address from a previous call.

2272058-9701 4-15

4.3.2.3 Data Manipulation Language (DML)

e If loc1 contains asterisks, the call searches the data lines associated with the specified
key from last to first until the line type specified is encountered. Otherwise, the call
reads the data lines backwards, starting with the address specified in loc2, until the line
type specified is encountered.

The following specifications apply to the location pointers at call termination:

. If both loc1 and loc2 contain asterisks, either a data line of the specified line type does
not exist for the specified key or no more data lines exist for the type specified.

. Loc1 normally contains the address of the data iine read.

. Loc2 normally contains the address of the next data line;. it points to the data line
preceding the one just read.

¢ When only loc2 contains asterisks, the call returns the first data line for the specified
key or record (analagous to the last in the RF function).

4.3.2.3 Read Serial (RS). The read serial (RS) function reads the next data line in the file of the
line type specified in the call parameter list. This function reads the data lines in the order in which
they are found, ignoring the logical structure of data records. The RS ignores the key value field,
but avalid key ID must be specified.

The RS function is valid for all line types. This function scans the first data line encountered for
the line type specified in the line list parameter, looking for the desired fields or groups. To find
this data line, the function searches the file serially from the current location until it finds a data
line of the specified type or until it encounters the end of the data area. An RS may read the entire
file without finding a data line of the type specified. The call returns the requested data items via
the data area call parameter. The value of the primary key associated with the data line read is
returned in the key value field of the control block.

Each RS call returns only one data line, even if multiple line types are specified in the line list
parameter. An asterisk is returned in the return indicator field of the line list (instead of a comma)
to indicate the data line being returned. The data line returned is the first data line encountered
whose line type matches one of the line types specified.
The following specifications apply to the location pointers at call initiation:
. Loc1 must contain either asterisks or a valid address from a previous call.
. If loc1 contains asterisks, the call searches the appropriate data lines in physical
storage order, without regard to logical record associations, in a first to last sequence
until the specified line type is encountered.

. If loc1 contains a valid address, the call searches the data lines, starting with the
address in loc1, until a data line of the type specified is encountered.

4-16 2272058-9701

Data Manipulation Language (DML) 4.3.2.4

The following specifications apply to the location pointers at call termination:

. Loc1 normally contains the address of the data line read. When loc1 contains asterisks,
either a data line of the specified line type does not exist or no more data lines exist for
the requested line type.

. Loc2 points to the end of the data area.

NOTE

The value of the primary key for the data line found is returned in the
key value field of the control block parameter. The key value field
must be large enough to contain the key; otherwise, the key value is
truncated to fit into the field specified.

4.3.2.4 Read Ascending (RA). The RA function reads key values from the key storage area and
returns the key values in ascending order. RA does not transfer data other than key values. (For
key types that are not sequential, RA returns key values in a duplicatable random order.) In addi-
tion to retrieving keys in sorted order, RA can start from any point in the key area. The key value
specified in the control block defines the starting point (starting positions apply only to sequential
keys). By manipulating the location pointers (loc1 and loc2), you can describe any of the following
starting positions:

® Start at key equal to the specified value

. Start at key greater than the specified vaiue

. Start at key greater than or equal to the specified value

e Start at the lowest key value
Table 4-2 shows the use of location pointers to specify the starting point of the RA operation.
When the RA function terminates, loc1 points to the key just read and loc2 points to the first data
line of the key. The retrieved key value is placed in the key value area of the control block. Conse-

quently, you can perform successive RA operations without resetting the control blocks. (The key
value just read becomes the initial key value for the next RA operation.)

| 2272058-9701 417

4.3.25 Data Manipulation Language (DML)

Table 4-2. RA Starting Location Pointers

Loc1 Loc2 Starting Point

* ok ok Kk * ke koK

Lowest key value

* ok kK

XXXX Equal key value
XXXX XXXX ' Greater than key value
XXXX ol Greater than or equal
to key value

Note:

* ok ok ok

indicates that the location pointer is set to asterisks, and xxxx indicates that the
pointer is set to some valid address or binary zeros.

The most convenient method of using the RA function is to provide one control block for retrieving
keys and another for retrieving data lines. You can set the location pointer to binary zeros by
equating it to a double precision (4-byte) integer constant with the value of zero.

4.3.2.5 Read Descending (RD). The RD function reads key values from the key storage area and
returns the key values in descending order. RD does not transfer data other than key values. (For
key types that are not sequential, RD returns key values in a duplicatable random order that is the
same as the RA function.) In addition to retrieving keys in sorted order, RD can start from any point
in the key area. The key value specified in the control block defines the starting point (starting
positions apply only to sequential keys.) By manipulating the location pointers (loc1 and loc2), you

can describe any of the following starting positions:
. Start at key equal to the specified value
. Start at key less than the specified value

. Start at key less than or equal to the specified value

e Start at the highest key value

Table 4-3 shows the use of location pointers to specify the starting point of the RD operation.
When the RD function terminates, loc1 points to the key just read and loc2 points to the first data
line of the key. The retrieved key value is placed in the key value area of the control block. Conse-
quently, you can perform successive RD operations without resetting the control blocks. (The key
value just read becomes the initial key value for the next RD operation.)

4-18 2272058-9701

Data Manipulation Language (DML) 4.3.2.6

Table 4-3. RD Starting Location Pointers

Loct Loc2 Starting Point

*kok K okok ok ngheSt key value

* % ok Kk

XXXX Equal key value
XXXX XXXX Less than key value
XXXX el Less than or equal to
key value

Note:

**** indicates that the location pointer is set to asterisks; xxxx indicates that the pointer is
set to some valid address or binary zeros.

The most convenient method of using the RD function is to provide one control block for retriev-
ing keys and another for retrieving data lines. A location pointer can be set to binary zerqs by
equating it to a double precision (4-byte) integer constant with the value of zero.

4.3.2.6 Partial Key Search. The sequential key capability allows a partial key search. If you
specify the beginning portion of a key value, DBMS-990 will find the first key that fits the descrip-
tion. For example, suppose the DDL for an employee file describes a name field as a 40-character
field that is a secondary key. Suppose further that you want to change an employee’s address but
can remember only that the employee’'s name begins with CH. Perform the following steps to
retrieve the first employee whose name field begins with CH:

1. Initialize the key value area of the control block to binary zeros.
2. Move the characters CH into that key value area.
3. Perform an RA function to retrieve the first name field beginning with CH.

4. Perform subsequent RA functions with the same control block to retrieve the next se-
guential name fields beginning with CH.

4.3.2.7 Hold Line (HL). The hold line function places a hold on the data line to which the location
address in loc1 refers. Using this function, you need not reread a data line by using the HOLD
disposition in the line list in order to write (WT) or delete (DL) a data line. The function does not
replace or eliminate the HOLD disposition. Since this function does not read or transfer data, the
line list and data area call parameters are not used; you can replace them with dummy call
parameters in the call statement. The DML function code is HL.

The data line to which loc1 refers is verified as existing; if it does not exist, it is assumed to have
been deleted (by another task) and a status of invalid key (1K) is returned.

2272058-9701 419

4.3.2.8 Data Manipulation Language (DML)

The location pointers at call initiation are as follows:

. Loc1 must contain a valid address from a previous call; it cannot contain asterisks. If it
does contain asterisks, a status of lock line (LL) is returned.

. Loc2 must contain either asterisks or a valid address from a previous call.
The location pointers at call termination are as follows:
. Loc1 is unchanged by the HL function.

. Loc2 is unchanged by the HL function.

CAUTION

Use the hold line (HL) function carefully in an interactive environment. If
more than one program is accessing a particular line in the data base at
the same time, the data in the line may change between the time the
user executes a read and the time the HL function is executed.

4.3.2.8 Release Line (RL). The release line (RL) function releases any held data line associated
with a task. Since only one line can be held by a task at one time, the location pointers need not
contain the address of the held line. If the task is currently holding no line, the function terminates
with a status code of asterisks (no exception). Since this function does not read or transfer any
lines, the line list and.data area call parameters are not used; you can replace them with dummy
parameters in the call statement. The DML function code is RL.

Using this function, you need not reread a data line by using the RLSE (release) disposition in
order to release the hold on a data line. A hold on a data line can still be released by rereading the
line with a RLSE disposition, by reading a different line using the HOLD disposition, or by writing
to (WT) or deleting (DL) the line.
The location pointers at call initiation are as follows:

o Loc1 must contain either asterisks or a valid address from a previous call.

. Loc2 must contain either asterisks or a valid address from a previous call.
The location pointers at call termination are as foliows:

] Loc1 is unchanged by the RL function.

. Loc2 is unchanged by the RL function.

4.3.3 Update Functions
Provided they terminate successfully, the DML update functions always change the data content
or fogical structure of the file. The data in the call parameters either replaces an existing data line

or adds a new data line. To delete data lines, use the delete function. The DML update functions
can manipulate only one data line at a time, except for the delete record (DR) function.

4-20 2272058-9701

Data Manipulation Language (DML) 4.3.3.1

Check the status of each update function after the DML call has completed to ensure that the
function has terminated properly. The status code should contain asterisks. (The DR function
returns asterisks as the status code even if no record existed for the specified key.) If an error con-
dition occurs, refer to Appendix A.

CAUTION

Do not modify the location pointers (loc1 and loc2) to any value other
than asterisks (****) unless a DML function explicitly calls for such
modification. Inappropriate modifications can seriously damage the file
or produce unpredictable results. The only exceptions are when you
place the location pointer results of one DML call into the control block
for another DML call or wihen you swap the contents of loc1 and loc2.

All update functions require the RLSE disposition option. These functions ignore the HOLD
option. If HOLD is specified, release is performed. Perform a read with HOLD option before per-
forming a write or delete function. If you execute these functions without a prior read with HOLD
option, an exception status code other than asterisks is returned. Refer to Appendix A.

4.3.3.1 Add After (AA). The add after (AA) function inserts a data line of the line type specified in
the line list call parameter into the file after the data line to which loc1 refers. The primary use of
this function is to add lines to a file. The DML function code is AA. Each AA call can add only one
data line.

The AA function adds data lines only to primary keys. If no data lines currently exist for the
specified primary key, a new datarecord is created using the key value of the control block and the
line list and data area parameters. Secondary key values are added automatically when the added
data line contains secondary keys.

To insert the data line after a specific data line, perform a read function prior to the add; as a result,
the specified data line is found and its location pointer is placed in loc1. To add data lines in a
series, do not reload loc1 with asterisks.

If an AA function is performed with multiple line types specified in the line list, an asterisk must
appear in the return indicator field of one of the line types to indicate which line type is to be
added. If no asterisk appears, the first line type specified is added. When more than one return in-
dicator contains an asterisk, the first line type that contains an asterisk in its return indicator is
added.

NOTE
When adding a line type 01, always set loc1 to asterisks; otherwise,
an error occurs. A line type 01 need not be present or defined within

a file. However, when it is defined, it must be the first line type -
added for each record.

2272058-9701 ' 4-21

4.3.3.2 Data Manipulation Language (DML)

The following specifications apply to the location pointers at call initiation:
. Loc1 must contain either asterisks or a valid address from a previous call.

U If loc1 contains aéterisks, the data line is added after the last data line associated with
the specified key. Otherwise, the data line is added after the data line whose address is
specified in loc1.

The following specifications apply to the location pointers at call termination:
. Loc1 contains the address of the added data line.

. Loc2 normally contains the address of the next data line (the one after the added data
line).

. If loc2 contains asterisks, no data line exists after the added data line.

4.3.3.2 Add Before (AB). The add before (AB) function inserts a data line of the line type
specified in the line list call parameter into a file before the data line to which loc1 refers. The
primary use of the function is to add data lines to a file. The DML function code is AB. An AB call
can add only one data line.

The AB function adds data lines only to primary keys. If no data lines currently exist for the key, a
new data record is created by using the key value of the control block and the line list and data
area parameters. Secondary key values are added automatically when the added data line contains
secondary keys.

To insert a data line before a specific data iine, perform a read function prior to the add; as aresult,
the specified data line is found and its location pointer is placed in loc1. To add data lines in a
series, do not reload loc1 with asterisks.

If an AB function is performed with muitiple line types specified in the line list, an asterisk must
appear in the return indicator field of one of the line types to indicate which line type to add. If the
asterisk does not appear the first line type specified is added. When more than one return in-
dicator contains an asterisk, the first line type that contains an asterisk in its return indicator is
added.

The following specifications apply to the location pointers at call initiation:
o Loc1 must contain either asterisks or a valid address from a previous call.
J If loc1 contains asterisks, the data line is inserted before the first data line of the record

~associated with the specified primary key. Otherwise, the data line is inserted before
the data line whose address is specified in loc1.

4-22 2272058-9701

Data Manipulation Language (DML) 4.3.3.3

The foliowing specifications apply to the location pointers at call termination:
. Loc1 contains the address of the added data line.

) Loc2 normally contains the address of the next data line (the one after the added data
line).

U Loc2 contains asterisks when no data line exists after the added data line.

4.3.3.3 Write (WT). The write (WT) function replaces the data line to which loc1 refers with the
data line specified in the call parameters. The primary use of this function is to update the field
contents within existing data lines.

Perform a read with HOLD disposition option prior to a WT function. The held data line is used to
rewrite an updated data line. Only the fields specified in the line list are replaced. Any other fields
in the held data line are not changed. The heid data line is released upon termination of the WT
function.

If a WT function is performed with multiple line types specified in the line list, an asterisk must
appear in the return indicator field of one of the line types to indicate which line type to replace.
The asterisk should appear in the appropriate return indicator as a result of the read with HOLD
option. When more than one return indicator contains an asterisk, the first line type that contains
an asterisk in its return indicator is used. If an asterisk does not appear in the line list, an excep-
tion condition is reported in the status field of the control block.

The WT function canhot modify secondary key values. You can delete the data line containing the
secondary key value and then add the line to the file with the new key value by using either the AA
or the AB function. However, you can update a line without changing its secondary key.

At call initiation, loc1 must contain the address of the data line to be updated. This is obtained
from the read with hold operation prior to the WT function.

The following specifications apply to the location pointers at call termination:

o Loc1 is unchanged by the WT function.

. Loc2 is unchanged by the WT function.
4.3;3.4 Delete (DL). The delete (DL) function deletes the data line whose address is in loc1. The
ipsriDmfn.ry use of this function is to delete data lines from the data base files. The DML function code
Perform a read with HOLD disposition option before a DL operation. The heid data line is released

upon termination of the DL function. When the data line to be deleted is the last data line for a
record, the data record and the primary key are also deleted.

2272058-9701 4-23

4.3.3.5 Data Manipulation Language (DML)

If a DL function is performed with muitiple line types specified in the line list, an asterisk must
appear in the return indicator field of one of the line types to indicate which line type to delete. The
asterisk should appear as a result of the read with HOLD option. When more than one return in-
dicator contains an asterisk, the first line type that contains an asterisk in its return indicator is
used. If an asterisk does not exist in the line list, an exception condition is reported in the status
field of the control block. As a result of the deletion, DBMS-990 can reuse the line space.

At call initiation, loc1 must contain the address of the data line to be deleted. This is accom-
plished by performing the read with HOLD operation prior to the DL operation.

The following specifications apply to the location pointers at call termination:

° Loc1 normally contains the address of the data line that preceded the deleted data line.
Loc1 contains asterisks when no data line precedes the deleted data line.

. Loc2 is unchanged by the DL function.

4.3.3.5 Delete Record (DR). The delete record (DR) function deletes a record by deleting all of the
data lines associated with the primary key value specified in the control block. The key ID and key
value specified in the control block apply to a primary key. This function allows you to easily
delete entire records without executing both a read (with hold) and delete function for each data
line in the record. When the last data line is deleted for the record, the primary key value specified
is also deleted. The DR function returns asterisks as the status code even if no record existed for
the specified key.

The location pointers at call initiation are as follows:
* Loc1 must contain asterisks.
. Loc2 must contain asterisks.

The location pointers at call termination are as follows:
o Loc1 is unchanged by the DR function.

. Loc2 is unchanged by the DR function.

4.3.4 Transaction Functions

Three DML functions used in defining transactions are available for DML applications if the
transaction-level integrity feature has been chosen at the time of data base generation. A trans-
action is a series of operations or updates to a data base that iogically belong together, such as
the individual operations performed to transfer funds from one account to another.

The transaction functions mark the beginning and end of the operations comprising a transaction.
Within a transaction, all of the updates must be performed successfully, or the entire transaction
can be rolled back leaving the data base in its pretransaction state.

DBMS-990 allows transaction nesting up to a maximum level of 10. The actual level on your system
is specified at DBGEN. If you exceed this level, the system returns an invalid transaction (IT)
status. With nested transactions, all internal Rollback Transactions (TRs) are actually carried out.
However, only the outermost TC actually commits the updates to the data base files.

4-24 2272058-9701

Data Manipulation Language (DML) 4.3.4.1

Remember that there is a system performance cost associated with the use of the transaction-
level integrity feature. Consequently, you should use the transaction functions only to group oper-
ations that logically belong together. Also, you are cautioned to keep the number of operations
within a transaction to a minimum to reduce both the amount of memory and the execution time
needed to support this feature.

The transaction functions are as follows:

e Start transaction (TS)

. Commit transaction (TC)

. Rollback transaction (TR)
4.3.4.1 Start Transaction (TS). The start transaction (TS) function marks the beginning of a trans-
action. All operations that follow, up to the occurrence of either a TC or TR function, are defined as
belonging to the transaction.
4.3.4.2 Commit Transaction (TC). The commit transaction (TC) function marks the end of a trans-
action and causes all operations occurring since the last TS function to be applied to the data
base. In the case of nested transactions, only the outermost TC causes the updates to be applied
to the data base.
4.3.4.3 Rollback Transaction (TR). The rollback transaction (TR) function causes all operations
occurring since the last TS function to be nullified. The data base is returned to its original pre-
transaction state.
The system performs the TR function in three situations, as follows:

. When two transactions are deadliocked

. When the computer memory workspace is not large enough to accommodate the
number of locks requested

. When the system crashes

The system returns a deadlock status (DL) or lock tables (LB) code in the first two cases.

NOTE

It is the programmer’s responsibility to check for the DL status code
and take appropriate action to ensure that the application program
user is aware that the transaction was not committed. It is advisable
to check for a DL status after every TC.

2272058-9701 4-25

4.3.4.3 Data Manipulation Language (DML)

The following example illustrates a control block for a transaction function:

01 CONTROL BLOCK.
02 PSWD PIC X(4) VALUE “DBMS".
02 FUNC PIC XX VALUE “TS".
02 STAT PICXX VALUE “**.
02 FLID PIC X(4) VALUE “PYRL".
02 FILLER PIC X(8) VALUE «“*#**#wawen,
02 KYID PIC X(4) VALUE “EXCL”.
02 KEYV PIC X(40) VALUE “EXCL".
01 ASK PIC X VALUE “*”.

bALL “DBMSYS” USING CONTROL-BLOCK, ASK, ASK, ASK, ASK, ASK.

In case of deadlock, the following example illustrates the most efficient method of structuring a
restart:

LABEL: START TRANSACTION

COMMIT TRANSACTION
IFE DB_STAT = ‘DL’ GO TO LABEL

The programmer can aiso initiate the TR function. A program can perform a series of DML oper-
ations, test the result, and commit the transaction only if certain conditions are met. Using this

technique, the programmer can conditionally specify that the preceding operations are rolled
back.

NOTE

With transaction-level integrity, a pre-image log is maintained on
the system. This pre-image log records data prior to updates. If an
error occurs during a write or read from the pre-image log, the

following message is written to the system log: PREIMAGE FILE
ERROR.

4-26 2272058-9701

5

Security

5.1 INTRODUCTION

Security is an optional feature of DBMS-990 that can be included during instatlation of DBMS-990.
Security uses passwords to limit unauthorized use of the data base. Although the security system
cannot eliminate all violations, it does aid in controlling access to a data base.

Security requires a certain amount of overhead. The amount required depends on the degree of
protection assigned to the data elements in the data base. While the degree of protection affects
performance, the number of passwords affects storage requirements. '

5.2 PASSWORDS

You can access a file or data base only if your password is associated with that file or data base.
Each password is associated with one or more files; a single data base might have one password
that applies to all of its files, or it might have several passwords distributed between the related
files of the data base. The primary purpose of passwords is to assign file access. For example,
employees in a personnel department might be assigned access only to personnel information
while those in payroll have access only to payroll information.

Various SCI commands assist in maintaining password entries and initiating security. (Refer to
the Model 990 Computer DNOS Data Base Administrator User’s Guide.)

5.3 ACCESS AUTHORIZATION

Access authorization defines the type of access allowed to the data elements of a file for a par-

ticular password and/or user. Authorization must be assigned to each file associated with a
password. The following access types are available for each file:

. Read
e Write (replace)
e Add

. Delete

2272058-9701 5-1

5.3 Security

These access types are combined to form an authorization code. For example, one password may
specify read access to the data within a file. This same password may contain authorization to
read, write, and add data in another file so that the user of this password can only read the first file
but can read, write, and add data to the second file. Almost any combination of read, write, add,
and delete is permissible. However, any authorization code that includes write or delete must also
contain read.

Authorization codes can apply to all levels of data. In the absence of assigned authorization
codes, lower-level data elements assume the authorization of the next higher data element. For
example, a line assumes the authorization code of the file, and a field assumes the authorization
code of the line. To avoid this, you can usually assign less access authorization (including no ac-
cess) to a line or field. However, if a line has delete authorization all fields on that line must also
have delete authorization.

In security checking, no distinction is made between the access authorization of a group and one
of its fields. The DBA (or whoever assigns passwords) resolves any conflicts in access authoriza-
tion between a field and its group.

5-2 2272058-9701

6

Primitive Query

6.1 INTRODUCTION

This section contains the information necessary to operate primitive query in order to display data
base information in a limited manner. The following paragraphs discuss commands, examples of
queries, and error messages.

6.2 PRIMITIVE QUERY (PQUERY) COMMAND

The Primitive Query (PQUERY) command provides you with a limited capability to retrieve and
display information stored in a data base without writing a program. PQUERY is primarily a de-
bugging tool, used to view the contents of the data base during application program development.
PQUERY provides the following functions: read forward (RF), read backward (RB), and read serial
(RS).

6.2.1 PQUERY User Interface
You must resolve two screens in order to use PQUERY. The first screen is used only once per
session, but the second screen is repetitive.

The first screen for the PQUERY command is as foliows:

PRIMITIVE QUERY
PASSWORD:
LISTING ACCESS NAME:

In response to the prompt LISTING ACCESS NAME, enter the pathname to which the output will
be sent. Pressing the RETURN key in response to this prompt displays the output at the VDT. To
change the output access pathname, terminate the current PQUERY session, reexecute the
PQUERY command, and enter a new pathname in response to the prompt. In response to the
prompt PASSWORD, enter the appropriate user password. The password must include at least
read authorization for any desired group or field. This prompt is displayed only when security is
part of DBMS-990.

The second screen for the PQUERY command is as follows:

PRIMITIVE QUERY

FUNCTION:

DB FILE ID:

KEY ID:

KEY VALUE:

FIELD IDS:

NO. OF OUTPUT LINES:
TERMINATE: YES

2272058-9701 : 6-1

6.2.2 Primitive Query

This PQUERY screen is repetitive and will be reissued to request new responses until you reply
YES to the prompt TERMINATE.

In response to the prompt FUNCTION, enter RF for read forward, RB for read backward, or RS for
read serial.

In response to the prompt FIELD IDS, enter a list of field and group IDs. When a group ID is
specified, the data is displayed in hexadecimal format. All fields and groups specified must
belong to the same line type.

In response to the prompts KEY ID and KEY VALUE, enter the ID of the key field and the key value
from which you will select lines for output. The key ID is required for all functions. The key value is
required for the RF or RB functions. For the RS function, the primary key value is returned for the
given key ID and is displayed as the first field of output. The key value response is not required for
an RS function (press RETURN).

For an RF or RB function, the response to the prompt NO. OF OUTPUT LINES determines the
maximum number of lines to be retrieved and displayed for the specified primary key. If less than
the maximum number of lines are found, only that many lines are displayed. For an RS function,
this response determines the number of data lines to be retrieved and displayed at one time for
the field and/or group ID(s) specified.

6.2.2 PQUERY Output

If the response to the prompt TERMINATE is YES, the PQUERY command terminates following
the display of the data. Current positioning information is lost. If the response is NO, the com-
mand does not terminate and positioning information is not lost. The second screen reappears. If
you change no prompt responses other than the response to NO. OF OUTPUT LINES, reexecution
of an RF or RB function retrieves and displays the next data line of the specified key record. An RS
function always retrieves the next line. When all data lines containing a specified field or group
type are exhausted, the message END OF DATA LINE(S) appears.

The output report consists of three parts. The first part contains information extracted from the
second screen prompt responses. The second part identifies the line number associated with the
data and provides the field headings in the order that the field IDs were listed. The third part con-
sists of the data listed under the field name headings.

When the number of characters in the output line exceeds 80, data carries over to the next output

line. Field headings are displayed for the portlon that carries over. Fields that are not in ASCII for-
mat appear in hexadecimal format.

6-2 ' 2272058-9701

Primitive Query 6.3

6.3 EXAMPLE QUERIES

The following is an example of an RF function, showing the user prompts and responses, along
with the associated output:

FRIMITIVE QUERY
FUNCTION: RF
FILE ID: CUST
KEY ID: CUSN
KEY VALUE: DO0O0O1
FIELD IDS: NAMESTRTCITYSTATZIPCCRED
NO. OF OUTPUT LINES: 50
TERMINATE: YES

LINE TYPE IS8: 01

CUSN NAME STRT CITY

STAT ZIPC CRED :
DO001 HOLE EARTH DIST. 1234 MOUNTAIN LN LITTLE HILL
TX 78123 Al

The following is an example of an RS function and illustrates the hexadecimal output obtained for
a data format other than CH (see the ITEM file DDL for the example program in Appendix B). The
user prompts and responses, along with the associated output are displayed.

2272058-9701 6-3

6.4 Primitive Query

v amver saoon sweme

e sae

it
il
i

PRIMITIVE QUERY

QTYO

30303031
30203032
30303033
30303034
30303035
20303036
30303027
30303038
20203039
20303130
30303131
30303132
203021324
39303139
30313030
30303235
30303236

FUNCTION: RS
FILE ID: ITEM
KEY ID: ITMN

KEY VALUE: ‘

FIELD IDS: DESCUPRCQTYOQTYH
NO. OF OUTPUT LINES: S0

TERMINATE: YES

LINE TYPE IS: 01

ITMN DESC UPRC
A001 ARMADILLOS 313030313233
BOO2 BLACK HOLES 303230323334
CO03 CLAY 303033333435
D004 DIPS 302030343536
EO0S ERECTORS 303035353637
FOO& FREEBIES 303630363738
G007 GOOBERS 373030373839
HOO8 HERBS 303830383930
1009 IDIOMS 203039393030
JO10 JUMPS 303031303030
K011 KILNS 303131313030
LO1Z LONE STARS 313230303030
NO14 NIBBLES 303431343030
5019 SHOVELS 313031393031
TO20 TALES 303939303939
Y025 YARNS 303235303030
7026 ZEBRAS 303032363030
======= END OF DATA LINES =======

6.4 ERROR MESSAGES

S o e WO SO S GBS 20090 SHUVD S U SEND St UGS ALY G P SSGRe SEND gRERD DD siate S O
e e e e R e ERNTETENSmms e

QTYH

30313232
30323334
20332435
30343536
30353637
30363738
3037383Y
30383930
20393030
31303030
31313030
31323030
31343030
31393030
34303030
32353030
32363030

PQUERY provides two types of error messages. The following messages are displayed in
response to errors in procedure specifications:

INVALID PASSWORD.

INVALID KEY VALUE.

NO FIELD OR GROUP NAME SPECIFIED.
UNABLE TO OPEN OUTPUT FILE.

R e

DBMS status codes)

ILLEGAL FUNCTION, XX, MUST BE RS, RF OR RB.

©EN®

BAD FIELD NAME XXXX.

FIELD XXXX IS UNDEFINED OR NOT IN SAME LINE-TYPE.

FIELDS ARE ON DIFFFERENT LINES, BAD FIELD = XXXX.

STATUS EXCEPTION FROM DBMS, STATUS = XX. (refer to Appendix A for meanings of

Errors that the operating system discovers are reported by an error message of the following form:

OPERATING SYSTEM ERROR XXXX

where:

6-4

XXXX is the four-character system error code.

2272058-9701

~

7

Execution of Application Programs

7.1 INTRODUCTION

This section discusses the steps required to produce a running application program using
DBMS-990 and outlines the procedure necessary to run the data base system. It is assumed that
DBMS-990 has been generated.

Data base users fall into two categories: those with a data base administrator (DBA) and those
without a DBA. The DBA designs the data structures, assigns security passwords, and maintains
the system. The Model 990 Computer DNOS Data Base Administrator User’s Guide assists the
DBA in performing these functions. If a DBA is not assigned, the programmer should read the DBA
manual and perform the DBA’s duties.

The following paragraphs describe preliminary procedures, programming considerations, and
operation of DBMS-990. It is assumed that the data structures have been designed.

7.2 PRELIMINARY PROCEDURES
The preliminary procedures involve two steps: creating files and security considerations.

7.2.1 File Creation

Data base files are created using the DDL compiler and the DDL for the appropriate file. Once the
design of the data structures is accomplished, file structures are translated into a series of DDL
statements. Use the Text Editor to enter these DDL statements into the computer, and to make
corrections. To initiate the DDL compiler, use the DDL command, as outlined in Section 3.

You must be aware of the structure and definition of the data in order to write effective programs.
The line types defined, the secondary keys, and the field IDs are required in most applications.
Usually, the DBA provides this information.

7.2.2 Security

Security is an optional feature of DBMS-990. When security is generated into the system, every
access to a data base file must include a valid password. Once the DDL compiler creates the data
base file, the DBA must assign passwords to the file. The Model 990 Computer DNOS Data Base
Administrator User’s Guide specifies the SCI commands for maintaining the password files.

7.3 COMMON PROGRAM CONSIDERATIONS
Program considerations consist of the coding of DML parameters (or biocks), call techniques to

DBMS-990, and exception processing and optimization. The COBOL language is used in the
examples included in this section. Appendix B contains example programs in Pascal and COBOL.

2272058-9701 7-1

7.3.1 Execution of Application Programs

7.3.1 Coding of DML Parameters

In a COBOL program, the DML call parameters are coded in the working-storage section of the
data division. The three main parameters for the call are the control block, the line list, and the
data area. The other parameters are merely end indicators for the main parameters.

NOTE

. DBMS-990 modifies each DML parameter to optimize future calls.
The control block and line list parameters are coded as described in
Section 4.

7.3.1.1 Control Block. To minimize storage requirements, define a limited number of control
biocks for each file. In most control blocks, only the function code need be changed from one call
to the next for the same file.

7.3.1.2 LinelList. Incoding line lists, avoid changing any of the fields except the return indicator
and disposition fields. DBMS-990 modifies the field IDs portion of the line list on the initial call
and each time that area changes. Frequent user modification of the field IDs portion of the line list
slows execution of the application program.

Figure 7-1 shows an example of a coded line list parameter. If one retrieval is for FLD1, one'is for
FLD3, and another is for FLD2, retrieve all three fields in one call, as shown. Even if you have to
retrieve additional fields with a line type, this method saves time when compared to the time re-
quired to make individual calls to DBMS-990.

01 LINE-DML.
05 LINE-ID PIC X(7) VALUE “LINE=01".
05 RETURN-IND PIC X VALUE “,”.
05 FIELDS PIC X(12) VALUE “FLD1FLD2FLD3".
05 DISPOSITION PIC X(8) VALUE “****RLSE".

Figure 7-1. Line List Example

The use of multiple line types in a line list deserves some consideration. Generally, if accessing
more than one line type, a line list that specifies multiple line types requires the fewest DML calls.
The first encounter of any specified line type sets the return indicator for that line type to *.

For some applications, it might be convenient to include one line list that specifies a single line

type and another that specifies multiple line types. Use the line list best suited for each data
access.

7-2 2272058-9701

Execution of Application Programs 7.3.1.3

7.3.1.3 Data Area. Data to be sent or received is contained in the data area. This area can be
defined as a single area or as multiple areas with multiple definitions. The only restriction is that
the actual parameter must be defined on a word boundary, as with a COBOL 01-level definition.
When memory considerations are important, use a single data area for most of the calls to
DBMS-990. In this case, redefinitions are necessary so that all line types and their data elements
may be processed. Figure 7-2 shows an example of a single data area. Figure 7-3 shows an ex-
ample of multiple data areas. Note that with multiple data areas the DML calls use different data
areas rather than the same data area.

7.3.2 Call Techniques to DBMS-990

When security is installed, you must provide the appropriate file password to DBMS-990. The
password can be hard-coded into the application program, solicited from you or obtained through
an input parameter. When file-access checking is installed in DBMS-990, files must be opened
with the appropriate file access specified before any DML functions can be executed.

01 DATA-AREA.
05 FILLER PIC X(40) VALUE SPACES.
01 - DA-LINE-01 REDEFINES DATA-AREA.
05 FLD1 PIC X(10).
05 FLD2 PIC X(15).
05 FLD3 PIC X(15).
01 DA-LINE-02 REDEFINES DATA-AREA.
05 ACCOUNT PIC 9(10).
05 DESCRIP PIC X(10).
05 AMOUNT - PIC 9(8)V99.
05 FILLER PIC X(10).

Figure 7-2. Example of Single Data Area

2272058-9701 7-3

7.3.3 Execution of Application Programs

01 DATA-AREA-01.
05 FLD1- PIC X(10).
05 FLD2 PIC X(15).
05 FLD3 PIC X(15).

01 DATA-AREA-02.
05 ACCOUNT PIC 9(10).
05 DESCRIP PIC X(10).
05 AMOUNT PIC 9(8)V9.

Figure 7-3. Example of Multiple Data Areas

* Prior to calling DBMS-990, initialize the control block and line list parameters. Appendix B con-
tains examples of complete calls to DBMS-990. To conserve memory, use common call
subroutines wherever possible. Figure 7-4 contains a common DBMS-990 call routine. Since the
same or common control block, line list, and data area are utilized, a PERFORM is used instead of
individual calls to DBMS-990. The only portion that needs to be altered prior to the PERFORM is
the function code. This application updates all current lines of a line type or adds new data lines.
This is a special application, used for illustrative purposes only.

7.3.3 Exception Processing and Optimization ,

A status return code of something other than asterisks does not always signify an error condition.
Figure 7-5 contains two examples of status code checking. Case A is primarily designated for
adding, whiie case B is best suited for updating or writing. Case B is more efficient if most of the
updates are changes; case A is best if most of the record transactions are additions.

7.3.4 Holding Lines

Another consideration in program design is the method of holding lines for update (write) or delete
purposes. With DBMS-990, you can hold only one line at a time for update. In an interactive system
with more than one user, it is important to design update procedures that do not lock out other
users for excessive periods of time. Figure 7-6 illustrates the use of the HOLD disposition.

In case A of Figure 7-6, the user holds the part information from the first retrieval. All other users
are locked out of that part information while the first user decides what to do. The first user must
determine whether the part number is the correct one before entering an order. Any delay in enter-
ing the order delays the other users, since they cannot access the line being heid.

In case B of Figure 7-6, more DBMS-990 calls are required. However, the part information is not
held on the first retrieval. As a result, another user might obtain the part before the first user
enters the order. Only one party can receive the parts when the quantity on hand is limited, and the
first order entered should receive the parts. In effect, case B holds the part for the time it takes
the computer, not a human, to make a decision. Thus, case B is a better interactive system than
case A.

7-4 2272058-9701

Execution of Application Programs 7.3.5

7.3.5 Transaction Bracketing

You should use the transaction commands (TS, TC or TR) to bracket updates that logically belong
together, such as the steps required in a transfer of funds between two accounts. Inciuding too
many DML calls within a single transaction results in a deadlock. Therefore, you should limit the
size of transactions. Appendix B illustrates a program that uses transactions.

01 CONTROL-BLOCK.
05 PASSWORD PIC X(4).
05 FUNCTION PIC XX.
05 STATUS PIC XX.
05 FILENAME PIC X(4) VALUE “POFL”.
05 LOCH1 PIC X(4).
05 LOC2 PIC X(4).
05 KEY-NAME PIC X(4) VALUE “ORDN”
05 KEY-VALUE PIC 9(9).
G1 INPUT-PARAM PIC X VALUE SPACE.
01 LINE-IND PIC X VALUE SPACE.
88 LINE-FOUND VALUE “Y”.
01 EOF-IND PIC X VALUE SPACE.
88 EOF-FOUND VALUE “*”,

PROCEDURE DIVISION
MAIN-LINE.
ACCEPT INPUT-PARAM.
PERFORM READ-TRANS.
PERFORM UPDATE-ROUTINE UNTIL EOF-FOUND.

UPDATE-ROUTINE.
MOVE “RF” TO FUNCTION.
PERFORM COMMON-CALL.
IF LINE-FOUND and FLD1 = INPUT-PARAM

(move in new data)

iVIOVE “WT” TO FUNCTION,
PERFORM COMMON-CALL,

Figure 7-4. Example of Common DBMS-990 Call Routine (Sheet 1 of 2)

2272058-9701 7-5

7.3.5 Execution of Application Programs

ELSE,
MOVE “AA” TO FUNCTION,
PERFORM COMMON-CALL.
PERFORM READ-TRANS.
END-UPDATE-ROUTINE.

COMMON-CALL.
CALL “DBMSYS” USING CONTROL-BLOCK,
END-CONTROL-BLOCK,
LINE-LIST,
END-LINE-LIST,
DATA-AREA,
END-DATA-AREA.

IF STATUS NOT = “**”
MOVE “N"” TO LINE-IND,

(Error iogic)

ELSE,
IFLOC1 = “****” AND LOC2 = “****”
MOVE “N” TO LINE-IND,
ELSE,
MOVE “Y” TO LINE-IND.
END-COMMON.

READ-TRANS.
READ TRANS-FILE AT END
MOVE “*” TO EOF-IND.

Figure 7-4. Example of Common DBMS-990 Call Routine (Sheet 2 of 2)

7-6

2272058-9701

Execution of Application Programs 7.3.4

‘ START ’ ‘ START ’

KEY INFO KEY INFO
AND DATA AND DATA
A
IIRF'I
AAT WITH
HOLD
YES NO YES
NO
CHANGE DATA
“RF" WITHHOLD
e
"WT* (UPDATE)
CHANGE DATA
"WT" (UPDATE)
DONE
NO
YES
HALT
CASE B

CASE A

2277679
Figure 7-5. Adding and Updating

2272058-9701 ' 7-7

7.3.4 Execution of Application Programs

< START ’

ENTER PART #

y

“RL"” TO PART INFO
RELEASE "RF" WITHHOLD
LINE

4

DISPLAY

CORRECT
PART #

USER
ENTERS
ORDER

“WT” UPDATE
QUANTITY ON
HAND

A

TERMINATE

CASE A

2277470

< START }

o

y

ENTER PART #

PART INFO “RF”

DISPLAY

CORRECT
PART #

USER
ENTERS
ORDER

“WT” (UPDATE)

< TERMINATE)

Figure 7-6. Use of HOLD Disposition

RE”
WITH
HOLD
A 4
CHECK OUAN-
TITY ON HAND
WITH ORDER
“RL” TO
RELEASE
YES NO LINE
INFORM
TERMINATE) USER
CASE B
2272058-9701

Execution of Application Programs 7.4

7.4 COMPILING AND LINKING COBOL

After writing the application program, the user must compile and link the program. The Mode/ 990
Computer DNOS COBOL Programmer’s Guide includes instructions for using the COBOL com-
piler. The Model/ 990 Computer DNOS Link Editor Reference Manual includes instructions for link
editing. Before linking the program, have available a program file in which to place the output of
the Link Editor.

To link COBOL, create the necessary link control file structure by using the Text Editor. The
resulting control file is then input to the Link Editor. All entries are required except for the optional
entries enclosed in brackets ([]); angle brackets (< >) indicate user-supplied information. Refer to
Section 3 of the Model 990 Computer DNOS Data Base Administrator User’s Guide.

In Figure 7-7, the TASKNAME option of the TASK command defines the saved name for the pro-
gram file. The MAIN PROGRAM option is the user application program.

FORMAT IMAGE ,REPLACE
PROC RTCOBOL

INCLUDE .S$SYSLIB.RCBPRC
TASK <TASKNAME>
INCLUDE .S$SYSLIB.RCBTSK
INCLUDE .S$SYSLIB.RCBMPD
INCLUDE <MAIN PROGRAM>
INCLUDE .S$DBMS.SNDMSG
INCLUDE .S$DBMS.COBINT
[INCLUDE <USER SUBROUTINES>]
END

Figure 7-7. Link Control File for COBOL and DBMS

7.5 COMPILING AND LINKING PASCAL

After writing the Pascal application program, compile and link the program. See the Model/ 990
Computer DNOS TiI Pascal Programmer’s Guide for detailed instructions on using the Pascal com-
piler. See the Model 990 Computer DNOS Link Editor Reference Manual for detailed instructions
on link editing. Before linking the program, have available a program file in which to place the out-
put of the Link Editor.

The link control file shown in Figure 7-8 is created using the Text Editor. The necessary control file
is then input to the Link Editor. All entries are required. Angle brackets (< >) indicate user-supplied
information.

The TASK NAME of the TASK command supplies the saved name for the program file. The MAIN
PROGRAM is the application name.

For additional information on Pascal, see Appendix B.

2272058-9701 7-9

7.6 Execution of Application Programs

NOSYMT

FORMAT IMAGE,REPLACE
LIBRARY S$TIP.OBJ

PROC DBINFACE

DUMMY

INCLUDE .S$DBMS.DBINFACE
TASK <TASK NAME>
INCLUDE S$TIP.OBJ.MAIN
INCLUDE <MAIN PROGRAM>
INCLUDE .S$DBMS.SNDMSG
INCLUDE .S$DBMS.FRGMY
INCLUDE <USER SUBROUTINES>
END

Figure 7-8. Link Control File for Pascal and DBMS

7.6 COMPILING AND LINKING FORTRAN

After completing a FORTRAN application program, you must compile and link the program. The
Model 990 Computer FORTRAN DNOS Programmer’s Reference Manual contains detailed instruc-
tions for using the FORTRAN compiler. The Model 990 Computer Link Editor Reference Manual
contains instructions for link editing. Before linking the program, have available a program file in
which to place the output of the Link Editor.

Since the FORTRAN run time cannot be linked with the DBMS interface, only the DBMS interface

module can be in procedure segment one (P1). Figure 7-9 illustrates an example of how to link a
FORTRAN task with DBMS-990.

The link control file shown in Figure 7-9 is created using the Text Editor. The desired control file is

then input to the Link Editor. All entries are required. Angle brackets (< >) indicate user-supplied
information.

The TASK NAME of the TASK command supplies the saved name for the program file. The MAIN
PROGRAM is the application program name.

For additional information on FORTRAN, see Appendix B.

7-10 2272058-9701

Execution of Application Programs 7.7

NOSYMT

FORMAT IMAGE,REPLACE
LIBRARY.FORT78.0SLOBJ
LIBRARY.FORT78.STLOBJ

TASK <TASK NAME>

INCLUDE <MAIN PROGRAM>
INCLUDE .S$DBMS.SNDMSG
INCLUDE <USER SUBROUTINES>
END

Figure 7-9. Link Control File for FORTRAN and DBMS

7.7 PROGRAM TESTING WITH DBMS-990

Program testing consists of three major steps: start up, execution, and termination. The following
paragraphs discuss these topics.

7.71 Start Up

Before executing the program, you must start DBMS-990 (provided it has not been started already).
Use the command SDBMS to activate DBMS-990. (See the Model 990 Computer DNOS Data Base
Administrator User’s Guide.)

7.7.2 Execution

Once DBMS-990 is running, execution of the application program can proceed after it is compiled
and link edited. Two commands are available for COBOL execution: Execute COBOL Task (XCT)
and Execute COBOL Task Foreground (XCTF). The COBOL debugger is also available to help find
problems. During testing, use small files if possible. However, use any amount of data necessary
for adequately testing the program. For FORTRAN programs, the Execute FORTRAN Task (XFT) or
Execute FORTRAN Task Foreground (XFTF) commands are available. For Pascal programs use

the Execute Pascal Task (XPT) command. To select background or foreground mode, respond B or
F to the MODE prompt.

7.7.3 Termination : :
Once you have completed the execution phase of testing, you can terminate DBMS-990 by using

the EDBMS command. This protects the system from being damaged by a system or hardware
crash.

2272058-9701 7-11

7.8 Execution of Application Programs

7.8 SUMMARY OF DBMS-990 OPERATION

The following steps are required to develop and run an application on DBMS-990:

1.

2.

10.

11.

7-12

Design data structures.
Partition the structures into DBMS files.
Run the DDL compiler to create files. Use the DDL command.

Assign security to files, lines, groups, and fields. This is optional (applies only when
security is installed in the system).

Code the application program by using the DML.

Compile and link edit the application program.

If necessary, start DBMS-990 by using the SDBMS command. The SDBMS command
automatically opens the security and alias files and opens the log when these features
are installed in the system.

Assign the required files using the ADBF command.

Execute the NADB utility and/or test the application program.

If desired, use the CLLOG command to terminate the log and close the log file, and the
RDBF command to release the assigned files.

If desired, end DBMS-990 with the EDBMS command. The EDBMS command

automatically releases any assigned files, terminates the security and alias features,
and closes the backup log file.

2272058-9701

Appendix A

DBMS Exception Reporting

A.1 INTRODUCTION
DBMS-990 errors consist of the following:
. DML errors
. Utility errors
. DBMS errors
The status code of the control block parameter reports DML errors. Utility errors are those that
DBMS-990 utilities encounter.
A.2 DML ERRORS

Check the status parameter of the DML call control block after each call. If the status parameter
contains anything other than asterisks, an error condition has occurred.

Table A-1 lists and explains the error codes that appear in the status area; Table A-2 lists the utility
error codes and explanations.

Table A-1. Error Codes

Code i Type of Error Probable Cause

AC Access error An attempt has been made to access a file
using an improper access type (i.e., an up-
date attempt to a file opened with ROEX
access), to close a file that has not been
opened, or to open a file with an undefined
access type.

AE Address error The user has supplied an invalid address in
loc1 or loc2. This error is possible on all
functions if the user has accidentally
altered loct or loc2. However, it is most
likely to occur on a read forward (RF) func-
tion. Check the program logic for possible
modification to loc1 or loc2.

2272058-9701 A-1

DBMS Exception Reporting

Table A-1. Error Codes (Continued)

Code Type of Error Probable Cause

AS ~ Add error The user is attempting to execute an add
command on a line type 01 with loc1 not
set to asterisks.

BF Bad file The data base file has a bad internal
pointer or address. This can result if a sys-
tem failure occurred while the file was
being modified and the file was not
recovered. Refer to the Data Base Adminis-
trator’s Guide for recovery procedures.

BP Bad pathname The pathname supplied for the log file

access name was too long.

DA Delete asterisks A delete record (DR) function has been
specified and loc1 does not contain
asterisks.

DB Data base error The data base is not running.

DF Duplicate file An attempt has been made to assign a file
ID that has already been assigned.

DL Deadlock The transaction has been rolled back.

DU Duplicate The user is attempting to add muitiple type

01 lines to the same data record.

FA Find asterisks The asterisks at the end of the line list were
not found. This can result if the asterisks
do not start on a word boundary or if they
are not the correct length.

FB File buffers No file buffers exist to open the file. If the
error occurred during an ADBF command,
the size specified in response to the
prompt MAXIMUM ASSIGNED FILES in the
SDBMS command was not large enough. If
the error occurred during an OF function,
the size specified in response to
MAXIMUM OPEN FILES was not large
enough. Wait until a file is closed, or restart
DBMS-990 and specify a larger number of
file buffers.

FE Field error The user has specified an invalid field or
group ID(s) in the parameter list. DBMS-990
cannot find the field or group ID. Verify the
spelling in the file definition and calling
program. Verify that the correct line type is
specified.

A-2 2272058-9701

Table A-1.

DBMS Exception Reporting

Error Codes (Continued)

Code

Type of Error

Probable Cause

22720589701

FH

FL

FN

FS

FU

GF

HL

Full hold buffer

Full

Function error

File reset

File in use

Good file

Hold line error

Invalid entry 1D

Invalid group

Invalid item

Invalid key

Invalid line

The internal buffer that DBMS-990 uses to
register the held lines is full. This results
when too many tasks are holding lines; it
can also occur when a number of tasks ter-
minate without releasing held lines, thus
filling the table.

The area reserved for data lines is full. This
error can occur during an add after (AA) or
add before (AB) function. Delete any un-
necessary records or create a larger file
and copy the data to the new file by using
CPYFIL/RLDFIL.

An invalid function code was specified. The
function passed to DBMS-990 in the con-
trol block is not defined.

A UDBF was performed on a file that had
previously been uniocked.

The current file is in use and not available
at this time.

A UDBF was performed on a file that was
not locked.

A hold line (HL) function has been at-
tempted with loc1 set to asterisks.

The key ID specified is not the primary or
secondary key. For an add or delete func-
tion, the key ID must be the primary key.

The group ID specified for a query group
(QG) function is not a group.

The user is not authorized to perform the
function against a data item specified in
the call.

Either the data line to which the loc1 points
does not contain the same value as the key
value given in the control block, or an at-
tempt has been made to execute a read on
a secondary key that does not exist in the
line specified.

The specified line type does not contain
the specified field.

DBMS Exception Reporting

Table A-1. Error Codes (Continued)

Code Type of Error Probable Cause
10 1O error The operating system encounters an /O
error that occurred during a read or write to
the disk.
IT Invalid transaction The transactions are not properly brack-

eted by TS, TC and/or TR.

KF Key area full Key area for specified key ID is full for an
add after (AA) or add before (AB) function.

KU Key update error An attempt is being made to alter the value
of a primary or secondary key with the write
(WT) function. To alter a key value, delete
the line and then reenter it with the new
value included.

LA Line asterisk A multiple line type specification has been
passed to DBMS-990 but no asterisk was
found for a write (WT) or delete (DL)

function.

LB Lock tables full The lock tables are full due to keys that are
too large.

LE Line error DBMS-990 has received an invalid line list.

The “LINE=" syntax cannot be located.
Thus the field or group IDs cannot be
found.

LF Log fuli The log file is full. Use CLLOG to close the
file, define a new file, and then use OPLOG
to open the new file.

LL Lock line error An attempt was made to lock a line with

LOC1="*.
LO Log error A log input/output error has occurred.
L1 Line =01 error An attempt is being made to add a line type

other than line 01 before a line type 01 has
been added. Check the program logic. A
line type 01 must exist before any other
line type can be added to the record if a
LINE =01 is specified in the DDL.

A-4 2272058-9701

DBMS Exception Reporting

Table A-1. Error Codes (Continued)

Code Type of Error Probable Cause

NB No buffer Not enough buffers are available to
facilitate the required operation. This is a
temporary condition. The size specified in
response to the prompt MAXIMUM
BUFFERS in the SDBMS command was not
large enough. Either wait until a buffer is
free, or stop DBMS-990, increase the maxi-
mum number of buffers, and then restart
DBMS-990.

NF No file DBMS-990 cannot find the file ID specified
in the file command. The file ID may be mis-
spelled, or it may have been released.
Verify that the file ID is assigned and is
spelled correctly. ‘

NH No hold An attempt is being made to delete a line
that has not been held. Prior to deleting a
line, the read with hold option must have
been specified. The only line available for
the delete (DL) is the last one read; with the
hold option, the task can only hold one line
at a time.

NK No key found DBMS-990 cannot find the primary or
secondary key value for a read forward (RF)
or a read backward (RB) function. Check
the program logic and input data.

NL No logging DBMS-990 has back-up logging installed,
but a log file has not been opened.

OA Open assign An operating system error occurred while

LUNO error the user was trying to assign a LUNO to the

file. Verify that the file exists.

OE Open error An operating system error occurred while
trying to open the file. Note that DBMS-990
was successful in assigning a LUNO to the
file but could not open it, implying that the
file is already in use, or that the file was not
created by the DDL translator.

oL Open log error The log must be either a magnetic tape,
cassette, or sequential file. The type found
is none of these, or the logical record
length is too small.

ON Open name The file ID specified does not match the file

ID internally stored in the file of the
pathname specified.

2272058-9701 A-5

DBMS Exception Reporting

Table A-1. Error Codes (Continued)

Code Type of Error Probable Cause

RL Record Length The file being assigned has a record length
that is not a valid page size. This file was
not created by the DDL translator.

R1 ROEX access An attempt has been made to open a file
error with SHRD or EXCL access while the file is
already open with ROEX access, or the
same task is trying to execute multiple
opens with ROEX access.

SV Security The user has entered an invalid password
violation and is not authorized to use a data item
specified in the call.

PF Preimage buffer full The value given for the MAX LINE IMAGES
at DBGEN has been exceeded. Reduce the
size of the transaction.

S1 SHRD access An attempt has been made to open a file
error with EXCL or ROEX access while the file is
already open with SHRD access, or the
same task has already ?pened the file with
SHRD access.

UF Undefined field The field name in the line list is not defined
in the DDL.
UL Undefined line The DDL does not define the line type

specified for this file.

uTt Undefined key An attempt has been made to access a data
base file with a key type that was not in-
cluded in DBMS-990 during DBGEN.

WF Wrong file All or part of a line that was encoded by a
previous call to DBMS-990 has been used
in a subsequent call, but the file ID was
changed and the new file specified does
not contain one of the fields.

XX Call error The DML call parameter list is too large for
the interface buffer. Possible causes in-
ciude the following: the call has too many
parameters; the wrong parameter list has
been sent; or the buffer size allocated dur-
ing DBGEN is not large enough for the
parameter list.

A-6 ' 2272058-9701

DBMS Exception Reporting

Table A-1. Error Codes (Continued)

Code Type of Error Probable Cause
X1 EXCL error access An attempt has been made to open a file
with EXCL, SHRD, or ROEX access when
the file is already open with EXCL access.
01 Line =01 error An attempt is being made to delete a line
type 01 when other line types for the key
stili exist. A line type 01 cannot be deleted
until all other line types for the key have
been deleted.
Table A-2. Utility Error Codes

Error Code Meaning

ABORT RECOVR forced to abort (entered Q).

BADDAT A log record has an invalid date and time stamp. If the log file is being
used to recover from an operating system crash, BADDAT might signal
the end of a log file that has no EOF, instead of signaling an error
condition.

BADFIL The DB FILE ID specified does not match the file ID of the DB FILE
PATHNAME specified.

BADKEY Primary key ID must be the same for the copy file and the DBMS file.

BADLOG Log file pathname cannot be opened or contains inconsistent data.

BADPSW Iinvalid password entry.

BADSFL The specified copy file cannot be opened or is not of the proper type.

ERROR A command function name is not valid.

FERROR A disk /O operation exceeded the bounds of the file, and all range checks
passed. (An operating system error, indicated by U SVC-0331, occurred.)

FILNTF The specified pathname does not exist. (An operating system error,
either U SVC-0304 or U SVC-0315, occurred.)

FNAME The file ID specified for RLDFIL does not match the copy file.

INVTYP Invalid type or file change in RLDFIL.

2272058-9701 A-7

DBMS Exception Reporting

Table A-2. Utility Error Codes (Continued)

Error Code Meaning

LINTYP The number of line types that CPYFIL found exceeds the maximum
allowed.

LOGI/O 1/0 error typing to read log file.

NO OUT The output listing file cannot be opened.

WRPROT The utility cannot write to the file. (An operating system error,

U SVC-0214, occurred; the disk drive is write protected.)

In addition to the error codes listed in Table A-2, DBMS utilities return the following six character
error codes:

CHAR Contents
1and 2 DML function code
3and 4 DML status
5and6 Asterisks

A.3 DBMS Error Messages and Codes
DBMS error messages are in the following form:
nnnn <message>
Table A-3 lists the DBMS error messages and explanations. Table A-4 shows the internal error
codes and the corresponding message numbers. This is useful on systems that do not contain

message files. Use the internal code to find the message number. Then, look up the message
number in Table A-3 to find the explanation.

A-8 2272058-9701

DBMS Exception Reporting

Table A-3. DBMS Error Messages

2272058-9701

DBMS-0001

DBMS-0002

DBMS-0003

DBMS-0004

DBMS-0005

DBMS-0006

ERROR ON OPEN OR CLOSE DBMS FILE, STATUS = 1

Explanation:

A file access error status was returned. This is a result of
some other user having exclusive (X1 status) or read-only ex-
clusive (R1 status) access to the file.

User Action:
Retry when file exclusive or read-only exclusive access
privileges are released from the file.

FIELDS ARE ON DIFFERENT LINES, BAD FIELD = 71

Explanation:

All the output fields must be from the same line. The field
identified as the bad field is contained in a different data line
from the previous field(s).

User Action:
Retry excluding the bad field ID.

ILLEGAL FUNCTION “?1”, MUST BE “RS”,”RF”, OR “RB”
Explanation:

The function entered is not a legal function for the PQUERY
utility.

User Action:
Retry using a valid function, must be ‘RS’, ‘CF’, or ‘RB’.

INVALID KEY VALUE

Explanation:
The value entered for the primary key field does not exist.

User Action:
Retry with a key value that exists.

NO FIELD OR GROUP ID SPECIFIED

Explanation:
No field or group names were entered for the FIELD IDS
prompt.

User Action:
Retry using valid field(s) and/or group(s) ID for prompt.

STATUS EXCEPTION FROM DBMS, STATUS = 71

Explanation:

The data base manager returned the error status defined in
the return message when PQUERY tried to process the
request.

DBMS Exception Reporting

Table A-3. DBMS Error Messages (Continued)

User Action:
Consult the error code table to determine the reason for the
error status.

U DBMS-0007 UNABLE TO OPEN FILE, DBMS STATUS = ?1

Explanation:

PQUERY could not open the file with shared access. Another
task has the file open with either exclusive or read-only
exclusive.

User Action:
Retry operation when PQUERY can get access to the file.

u DBMS-0008 UNABLE TO OPEN LISTING FILE

Explanation:
PQUERY utility could not open the listing file requested.

User Action:

Probably caused by an invalid pathname, does not exist or is
a directory name. Another possibility is there is not enough
disk space for the listing file.

U DBMS-0009 UNDEFINED FIELD NAME “?1”

Explanation:
The field name given in the message is not defined for the file
ID entered.

User Action:
Enter correct field name and retry.

u DBMS-0010 UNABLE TO OPEN THE LISTING FILE, SVC ERROR ?1

Explanation:

The data base utility could not open the requested listing file.
The error could be caused by an invalid pathname, a full
directory, or a full disk space.

User Action:
Refer to the SVC error code for the exact cause of the error
and respond accordingly.

U DBMS-0011 DBMS UTILITY ERROR: 71

Explanation:
The DBMS-990 utility detected an error during processing.

User Action:

See the table containing the utility error codes for further
explanation.

A-10 2272058-9701

DBMS Exception Reporting

Table A-3. DBMS Error Messages (Continued)

2272058-9701

DBMS-0012

DBMS-0013

DBMS-0014

DBMS-0015

DBMS-0016

DBMS-0017

CANNOT CLOSE SECURITY FILE

Explanation:
An error was received from closing the security file.

User Action:
Possible hardware error.

CANNOT GET TCA FILE

Explanation:
An error occurred when trying to access the TCA region.

User Action:
Possible hardware error.

CANNOT GET OPEN SECURITY FILE

Explanation:
An error was-received when opening the security file.

User Action:
Possible hardware error. Another possibility is that another
task has the file open with access privileges that conflict.

ERROR IN SYNONYM ASSIGNMENT

Explanation:
An error was received when trying to assign a synonym

User Action:
Delete some synonyms and retry the operation.

ERROR WHEN ASSIGNING LUNO TO SECURITY FILE
Explanation:

An error was received when trying to assign a LUNO to the
security file.

User Action:
Verify the security file exists.

ERROR WHEN READING SECURITY FILE

Explanation:
An error was received when trying to read the security file.

User Action:
Possible hardware error.

A-11

DBMS Exception Reporting

Table A-3. DBMS Error Messages (Continued)

A-12

DBMS-0018

DBMS-0019

DBMS-0020

DBMS-0021

DBMS-0022

ERROR WHEN RELEASING LUNO FOR SECURITY FILE

Explanation:
An error was received when trying to release a LUNO as-
signed to the security file.

User Action:
Possible hardware error.

INVALID MASTER PASSWORD

Explanation:
The password entered is not the correct master password.

User Action:
Retry with the correct master password..

INVALID DATA FORMAT CONVERSION FOR RLDFIL

Explanation: '
RLDFIL does not support conversion of the data for format
specified.

User Action:
Do not use RLDFIL for changing the format for data types
that are not supported by RLDFIL.

DBMS FILE IS NOT EMPTY

Explanation:
The file into which the data is to be loaded is not empty. The
reioad does not occur.

User Action:
Format the file with the DDL translator before trying the
reload.

INVALID FIELD CONVERSION IN RLDFIL

Explanation:
RLDFIL encountered a field conversion request that is
invalid.

User Action:

Refer to the documentation for RLDFIL for the valid type
changes. Compare the DDL for the file that CPYFIL copied to
a sequential file against the DDL for the data base file that is
being reloaded. Change the invalid conversion to be valid.

2272058-9701

DBMS Exception Reporting

Table A-3. DBMS Error Messages (Continued)

u DBMS-0023
U DBMS-0024
U DBMS-0025
U DBMS-0026
U DBMS-0027
U DBMS-0028

2272058-9701

FIELD DROPPED IN NEW DDL — M

Explanation:
The field was found in the old DDL but is not in the new DDL.

User Action:
Verify that the field should not be in the new DDL.

?1 LINE TYPE MISSING IN NEW DDL
Explanation:

Line identifier is missing in new DDL. This message occurs if
the oid DDL contains a line type not in the new DDL.

User Action:
Verify that the line type should not be in the new DDL.

POSSIBLE LOSS OF SIGNIFICANCE IN FIELD — ?1

Explanation:
This message results if the field in the old DDL has more
significant digits than the field declared in the new DDL.

User Action:
Verify that loss of significance is valid.

TYPE TRANSFER FOR RPG DATA NOT IMPLEMENTED

Explanation:
RPG data types are not supported by the RLDFIL utility.

User Action:
None.

UNABLE TO OPEN THE INPUT FILE, SVC ERROR 71

Explanation:

The DDL translator could not open the requested input file.
The error could be caused by an invalid pathname or by speci-
fying a file that does not exist.

User Action:

Refer to the SVC error code for the exact cause of the error
and respond accordingly.

CANNOT OBTAIN TCA FILE, SVC ERROR 7?1

Explanation:
The data base utility could not obtain the TCA file.

User Action:

Refer to the SVC error code for the exact cause of the error
and respond accordingly.

A-13

DBMS Exception Reporting

Table A-3. DBMS Error Messages (Continued)

A-14

DBMS-0029

DBMS-0030

DBMS-0031

DBMS-0032

DBMS-0033

DBMS-0034

ERROR ON READ OF INPUT FILE, SVC ERROR 7?1

Explanation: :
The DDL translator has detected an error on a read from the
input file.

User Action:
Refer to the SVC error code for the exact cause of the error
and respond accordingly.

DATABASE MANAGER ALREADY RUNNING

Explanation:
The data base manager is already running.

User Action:

An EDBMS command must be issued prior to reissuing the
SDBMS command.

INVALID OR MISSING PARAMETER
Explanation:
A parameter required by the data base is either missing or

invalid.

User Action:
Verify that the parameters used in the bid are correct.

UNABLE TO BID DATABASE MANAGER. SVC ERROR: 2B?1

Explanation:
An SVC error occurred during the bid task.

User Action:
Refer to the SVC error code for the correct action.

DBMS UTILITY ERROR: 71

Explanation:

An error was detected during the execution of the DBMS-990
utility. The six-character code defines the type of error that
occurred.

User Action:
Look up the six-character code in the Utility Error Codes
table. Determine the cause of the error. Retry the operation.

INVALID FUNCTION

Explanation:
The SECFUNC task was bid with an invalid function code.

User Action:
Check to see that the SCI procedure has not been altered.

2272058-9701

DBMS Exception Reporting

Table A-3. DBMS Error Messages (Continued)

U DBMS-0035

U DBMS-0036

U DBMS-0037

U DBMS-0038

U DBMS-0039

u DBMS-0040
2272058-9701

INVALID PATHNAME

Explanation:
An invalid pathname was entered.

User Action:
Retry using a valid pathname.

INVALID STATUS CODE: 71

Explanation:
An error status code was returned by the data base manager.

User Action:
Refer to the DBMS-990 status codes for further information.

INVALID FILE

Explanation:
The file ID specified is longer than four characters.

User Action:
Retry using a maximum of four characters for a file ID.

ERROR ON WRITE TO LISTING FILE, SVC ERROR ?1

Explanation:
The DDL translator has detected an error on a write to the
listing file.

User Action:
Refer to the SVC error code for the exact cause of the error
and respond accordingly.

ERRORS DETECTED DURING DDL TRANSLATION

Explanation:
The DDL translator has detected errors during translation.

User Action:

Check the listing file for the specific location of syntax errors
and for any semantic errors. Make the appropriate revisions
and resubmit the DDL.

STATUS CODE: M

Explanation:
An invalid status was returned by the data base manager.

User Action:
Refer to DBMS-990 status codes for further information.

A-15

DBMS Exception Reporting

Table A-3. DBMS Error Messages (Continued)

U DBMS-0041 CANNOT GET ACCESS

Explanation:
Another task has exclusive (or read-only exciusive) access to
the file specified.

User Action:
Retry the operation when the file has been released from
exclusive access.

u DBMS-0042 CANNOT GET PARAMETER

Explanation:
An error occurred when trying to read bid parameter.

User Action:
The task was bid with incorrect number of parameters. Pos-
sible hardware error.

YU DBMS-0043 CANNOT OPEN FILES

Explanation:

The maximum number of open files has been reached or
another task has the security or alias files open with access
privileges that conflict.

User Action:

Restart the data base manager (SDBMS) with a larger maxi-
mum number of open files. If another task has the files open
then retry later.

U DBMS-0044 CODE CONFLICT

Explanation: y

The entry to be added is not a subset of the authorization of
the higher-level entry, or the item to be added does not have
delete authority but the associated line does have delete
authority.

User Action:
Resolve the conflict and retry.

U DBMS-0045 DATABASE DOWN

Explanation:
The data base is not up; it has not been started.

User Action:
Start the data base with SDBMS command.

A-16 2272058-9701

DBMS Exception Reporting

Table A-3. DBMS Error Messages (Continued)

U DBMS-0046 DUPLICATE FILE

Explanation:
Tried to add a file that has already been assigned to the
password.

User Action:
Verify access authorizations for the file assigned to the
password.

U DBMS-0047 DUPLICATE ITEM

Explanation:
Tried to add an item that has already been assigned to the
password.

User Action:
Verify access authorizations for the item assigned to the
password.

U DBMS-0048 DUPLICATE LINE

Explanation:
Tried to add a line that has already been assigned to the
password.

User Action:
Verify access authorization for the line assigned to the
password.

U DBMS-0049 DUPLICATE PASSWORD

Explanation:
Tried to add a password that has already been assigned.

User Action:
Verify password exists.

U DBMS-0050 ENTRY AREA FULL

Explanation:
Attempted to add password/alias entry when the password/alias
entry area is full.

User Action:

Expand the disk data area. Users should consult the DBA. The
DBA should copy the security/alias file, depending on which
file is full, using the CPYFIL utility. The security file
($SC1)/alias file ($AL1) is located in the SC1/AL1 node of the
data base library directory. Redo the DBINS procedure speci-
fying new security/alias file. Increase the number of
security/alias entries and reload the copied data.

22720589701 ; A-17

DBMS Exception Reporting

Table A-3. DBMS Error Messages (Continued)

U DBMS-0051 FILE NOT FOUND

Explanation:
The file ID specified does not have authorization. The file ID
specified for deletion does not exist for the password.

User Action:
Must first give authorization to the file. Retry deletion with
the valid file ID for the password.

U DBMS-0052 INVALID CODE

Explanation:
Error when entering the authorizations for the entry.

User Action:
Reenter the command.

U DBMS-0053 INVALID LISTING ACCESS NAME

Explanation:
The listing access name is not valid.

User Action:
Retry using a valid listing access name. Check availabie
space in directory and/or disk volume.

U DBMS-0054 INVALID FUNCTION

Explanation:
The task was bid with a function that is not defined.

User Action:
Check to see that the SCI procedure has not been altered.

U DBMS-0055 INVALID ITEM

Explanation:
Item ID is longer than four characters.

User Action:
Retry using four characters or less for the item name.

U DBMS-0056 INVALID LINE

Explanation:
The line ID specified is longer than two characters.

User Action:
Retry using two characters for the line ID.

A-18 2272058-9701

DBMS Exception Reporting

Table A-3. DBMS Error Messages (Continued)

U

2272058-9701

DBMS-0057

DBMS-0058

DBMS-0059

DBMS-0060

DBMS-0061

DBMS-0062

INVALID MASTER

Explanation:
Master password is longer than four characters.

User Action:
Retry using four characters or less for master password.

INVALID MAX VALUE

Explanation:
When creating data base security, the MAX PASSWORDS or
MAX ENTRIES prompt value was greater than 999999.

User Action:
Redo the DBINS process specifying values less than 999999
for the MAX PASSWORDS and/or MAX ENTRIES prompt.

INVALID PASSWORD

Explanation:

The password specified does not have access authorization
or has not been assigned. Also, the password specified is
longer than four characters.

User Action:
Verify the validity and/or authorization of the password.

INVALID TYPE

Explanation:
Type is not FILE, LINE or ITEM.

User Action:
Retry using a valid type.

ITEM NOT FOUND

Explanation:
The item ID specified does not exist.

User Action:
Retry with different item ID.

LINE NOT FOUND

Explanation:

The line ID specified does not have authorization. The line ID
specified for deletion does not exist for password.

User Action:

Must first give the authorization to the line. Retry with a valid
line ID for the password.

A-19

DBMS Exception Reporting

Table A-3. DBMS Error Messages (Continued)

U DBMS-0063 NO BUFFERS

Explanation:
No open file buffers. Other tasks are already using the
buffers.

User Action:
Wait until buffers are available.

U DBMS-0064 PASSWORD AREA FULL

Explanation:
The maximum number of passwords specified in DBINS has
been exceeded.

User Action:

Expand the disk data area. Users should consult the DBA. The
DBA should copy the security file using the CPYFIL utility.
The security file ($SC1) is located in the SC1 node of the data
base library directory. Redo the DBINS procedure specifying
new security file. Increase the number of passwords and
reload the copied data.

u DBMS-0065 PASSWORD NOT FOUND

Explanation:
The password used is not a valid password.

User Action:
Verify the correct password was used.

U DBMS-0066 DB FILE NOT ASSIGNED

Explanation:
An attempt was made to access the security or alias files
without the files being assigned.

User Action: '
Stop the data base using the EDBMS command. Restart the
data base using the SDBMS command.

U DBMS-0067 ALTERNATE COLLATING SEQUENCE SPECIFIED AND S1
ROUTINES WERE NOT INCLUDED

Explanation:

A pathname for an alternate collating sequence was specified
as a bid parameter to the data base manager that was
generated without sequential keys. Alternate collating
sequences are only valid for the ordering of sequential keys;
thus a data base manager generated without sequential keys
cannot use the alternate collating sequence file.

A-20 2272058-9701

DBMS Exception Reporting

Table A-3. DBMS Error Messages (Continued)

User Action:
Remove the alternate collating sequence pathname from the
bid parameter.

U DBMS-0068 UNABLE TO ASSIGN LUNO TO ALTERNATE COLLATING
SEQUENCE FILE

Explanation:
The pathname defined for the alternate collating sequence
file is invalid.

User Action:
Change the pathname used for the alternate collating se-
quence to be valid or null.

U DBMS-0069 .UNABLE TO OPEN ALTERNATE COLLATING SEQUENCE
FILE

Explanation:
An error occurred when the data base manager attempted to
open the alternate collating sequence file.

User Action:
Verify the validity of the pathname in the bid parameter for
the alternate collating sequence file.

U DBMS-0070 UNABLE TO READ ALTERNATE COLLATING SEQUENCE
FILE

Explanation:
An error occurred when the data base manager attempted to
read the alternate collating sequence file.

User Action:
Verify the validity of the pathname in the bid parameter for
the aiternate collating sequence file.

U DBMS-0071 UNABLE TO OPEN THE DATA BASE FILE, SVC ERROR 71

Explanation:

The DDL translator could not open the requested data base
file. The error could be caused by an invalid pathname, a full
directory, or a full disk space.

User Action:
Refer to the SVC code for the exact cause of the error and
respond accordingly.
U DBMS-0072 ** AN EQUAL SIGN (‘=") WAS EXPECTED **
Explanation:

The DDL translator expected an equal sign in the location in-
dicated by the up arrow.

2272058-9701 A-21

DBMS Exception Reporting

Table A-3. DBMS Error Messages (Continued)

A-22

U

u

u

u

DBMS-0073

DBMS-0074

DBMS-0075

DBMS-0076

DBMS-0077

User Action: ;
Correct the syntax and resubmit the DDL.

** INVALID LINE/VOLUME VALUE **

Explanation:
A zero (0) has been entered for the value of a line or volume.

User Action:
Change the line or volume to a nonzero value and resubmit
the DDL.

** INVALID CHARACTERS IN ID **

Explanation:

A four character ID has been entered that contains an invalid
character. The invalid character has been flagged with an up
arrow. An ID may contain only alphanumeric characters,
numeric characters, dollar signs ($), and blanks. An ID must
start with a dollar sign or an alphanumeric character and may
not contain embedded blanks.

User Action:
Correct the invalid character and resubmit the DDL.

** A COMMA (‘") WAS EXPECTED **

Explanation:

The DDL translator expected a comma in the location in-
dicated by the up arrow.

User Action:
Correct the syntax and resubmit the DDL.

** KEYWORD EXPECTED **

Explanation:
The DDL translator expected a keyword before the location
indicated by the up arrow.

User Action:
Verify the entry is a valid keyword and resubmit the DDL.

** A NUMERIC VALUE WAS EXPECTED **

Explanation:

The DDL translator expected a numeric value before the loca-
tion indicated by the up arrow.

User Action:

Verify the entry is a valid numeric value and resubmit the
DDL.

2272058-9701

DBMS Exception Reporting

Table A-3. DBMS Error Messages (Continued)

U DBMS-0078

U DBMS-0079

U DBMS-0080

U DBMS-0081

U DBMS-0082
2272058-9701

** A FORMAT WAS EXPECTED AFTER THIS DATA TYPE **

Explanation:
The DDL translator expected a format after the data type
specified in a field definition line. '

User Action:
Add a valid format to the data type and resubmit the DDL.

** INVALID DATA TYPE LENGTH **

Explanation:

An invalid data type length has been entered. A CX or RD field
must be 8 bytes long, an RS or ID field must be 4 bytes long,
and an LG or IS field must be 2 bytes long. An FX field must
have a length of 2 bytes with between 0 and 16 bits. A PK, AN,
AS, CN, or CS data type must have a length of between 1 and
18 bytes.

User Action:
Verify the data length is valid and resubmit the DDL.

** A PERIOD (") WAS EXPECTED **

Explanation:
The DDL translator expected a period in the location in-
dicated by the up arrow.

User Action:
Correct the syntax and resubmit the DDL.

** MAXIMUM LINE/VOLUME COUNT EXCEEDED — 71 **

Explanation: '
The number specified for the line/volume count is greater
than that allowed by the DDL translator.

User Action:
Revise the number and resubmit the DDL.

CANNOT FORMAT DATABASE FILE WITH PATHNAME
SPECIFIED

Explanation:

The file specified for the new data base file already exists
and does not match the characteristics of the file to be
created. The preexisting file must be a relative record file
with the same physical and logical page size as the file to be
created, and both files must have the same number of
records.

A-23

DBMS Exception Reporting

Table A-3. DBMS Error Messages (Continued)

User Action:
Choose another pathname for the data base file or delete the
file that currently resides at the pathname specified.

U DBMS-0083 ALIAS AREA FULL

Explanation:
Attempted to add an alias when the alias area was full.

User Action:

Expand the disk data area. Users should consult the DBA. The
DBA should copy the alias file using the CPYFIL utility. The
alias file ($AL1) is located in the data base directory in the
AL1 node. Redo the DBINS procedure specifying new alias
file. Increase the number of alias entries and reload the
copied data.

U DBMS-0084 ALIAS NOT FOUND

Explanation:
The alias specified does not exist.

User Action:
Check for spelling error and try again.

u DBMS-0085 DUPLICATE ENTRY FOR ALIAS

Explanation:
The specified alias name is already assigned.

User Action:
Select another alias name.

U DBMS-0086 ERROR WHEN OPENING LISTING FILE

Explanation:
An error was received when trying to open the listing file.

User Action:
Verify the validity of the listing file access name. Check to en-
sure that the file can be created with access name specified.

U DBMS-0087 ERROR WHEN WRITING TO LISTING

Explanation:
An error was received when writing the listing file.

User Action:

Check to ensure listing file device is ready. If listing access
name is a disk then check that space is available for the file.

A-24 2272058-9701

DBMS Exception Reporting

Table A-3. DBMS Error Messages (Continued)

U DBMS-0088
U DBMS-0089
U DBMS-0090
U DBMS-0091
U DBMS-0092
u DBMS-0093
2272058-9701

FILE NOT DEFINED FOR ALIAS

Explanation:
The specified alias is not assigned to the specified file.

User Action:
Verify the correct alias and file and retry the operation.

ILLEGAL ALIAS NAME

Explanation:

An alias name must begin with an alphabetic character; be 20
characters or fewer in length; and consist of alphanumeric,
dollar sign ($), dash (-), or underscore characters only.

User Action:
Modify the alias name to fit the description above.

ILLEGAL FIELD FOR ALIAS

Explanation:
The specified field does not have access authorization or has
not been assigned.

User Action:
Verify the field ID and retry the operation.

LINE TYPE NOT DEFINED FOR ALIAS

Explanation:
The specified alias is not assigned to the specified line type.

User Action:
Verify the alias and line type and retry the operation.

** AN ‘01’ LINE TYPE MAY ONLY FOLLOW THE PRIMARY
KEY DEFINITION **

Explanation:

The DDL translator has encountered an 01 line type after
other line types have been defined. If a file contains an 01
line, it must precede all other line type definitions.

User Action:

Position the 01 definition to precede all others or change the
ID of the line; then resubmit the DDL.

** DUPLICATE FIELD/GROUP NAME ENCOUNTERED — 21 **
Explanation:

The DDL translator has encountered a field or group ID that
has been defined twice.

A-25

DBMS Exception Reporting

Table A-3. DBMS Error Messages (Continued)

User Action:
Change one of the occurrences of the duplicate ID and resub-
mit the DDL. :

U DBMS-0094 : ** INVALID ACCESS DECLARATION **

Explanation:

The DDL translator has encountered an invalid access
declaration in the optional ACCESS clause. One of the ac-
cess keywords RANDOM or SEQUENTIAL is required. The /1
designator is optional.

User Action:
Correct the syntax error indicated by the location of the up
arrow and resubmit the DDL.

'U DBMS-0095 ** DUPLICATE LINE TYPE ENCOUNTERED **

Explanation:
The DDL translator has encountered a line type ID that has
been previously defined.

User Action:
Change the previous occurrence of the ID or the occurrence
flagged and resubmit the DDL.

U DBMS-0096 ** INVALID DATA TYPE **

Explanation:

The DDL translator has encountered an invalid data type. A
list of valid data types is listed in the DBMS Programmer’s
Guide.

User Action:
Verify that a valid data type has been entered and resubmit
the DDL. ‘

u DBMS-0097 ** SYNTAX ERROR **

Explanation: ;

The DDL translator has encountered a syntax error. Usually,
this error is caused by a nonblank character at the end of a
line.

User Action:

Correct the syntax error marked by the location of the up ar-
row and resubmit the DDL.

A-26 2272058-9701

DBMS Exception Reporting

Table A-3. DBMS Error Messages (Continued)

U

u

2272058-9701

DBMS-0098

DBMS-0099

DMBS-0100

DBMS-0101

DBMS-0102

** ERROR ON CONVERSION OF ASCH VALUE **

Explanation:

The DDL translator could not convert a numeric ASClI string
to internal format. The ASCII string probably contains a non-
numeric character.

User Action:
Verify that the value flagged by the up arrow contains only
numeric characters and resubmit the DDL.

** STATEMENT OUT OF ORDER **

Explanation:
The DDL translator has encountered a statement that it did
not expect. The statement is not valid in its present location.

User Action:
Relocate the statement in a valid location and resubmit the
DDL.

** MAXIMUM LINE LENGTH EXCEEDED **

Explanation:

The data line identified exceeds the maximum length
allowable, 512 bytes. The maximum size of a data line is 512
bytes minus the primary key length, minus 10 bytes
overhead, minus eight times the number of secondary keys in
the line.

User Action:
Shorten the line and resubmit the DDL.

ERROR ON CLOSE OF THE DATA BASE FILE, SVC ERROR 1

Explanation:
The DDL translator has detected an error while trying to
close the data base file.

User Action:
Refer to the SVC error code for the exact cause of the error
and respond accordingly.

ERROR ON WRITING TO THE DATA BASE FILE, SVC ERROR 1

Explanation:
The DDL translator has detected an error while trying to write
to the data base file.

User Action:
Refer to the SVC error code for the exact cause of the error
and respond accordingly.

A-27

DBMS Exception Reporting

Table A-3. DBMS Error Messages (Continued)

U DBMS-0103 END OF TAPE ENCOUNTERED BY CPYFIL

Explanation:
CPYFIL utility encountered an end of tape mark.

User Action:
Mount a new reel of tape. Press the “return” key when the
tape unit becomes ready.

U DBMS-0104 ** FILE NOT PROCESSED DUE TO SYNTAX ERRORS OR
‘DUMY’ PATHNAME **

Explanation:

No data base file has been created. Either the DDL translator
detected syntax errors during parsing or the user specified
DUMY in response to the DB FILE PATHNAME indicating no
file should be created.

User Action: !

Correct any syntax errors flagged in the listing and enter a
valid file pathname in response to the DB FILE PATHNAME
prompt.

u DBMS-0105 END OF TAPE ENCOUNTERED BY RLDFIL

Explanation:
RLDFIL utility encountered an end of tape mark.

User Action:
Mount the next reel of tape from the multiple tapes produced
by CPYFIL. Press “return” when the tape unit becomes ready.

U DBMS-0106 END OF TAPE ENCOUNTERED BY RECOVR

Explanation:
RECOVR utility encountered an end of tape mark.

User Action:

Mount the next reel of tape from the multiple tapes contain-
ing the log file. Press “return” when the tape unit becomes
ready.

u DBMS-0107 ?1: 72 1S NOT A VALID KEYTYPE
Explanation: :
The key type found in the file is not a valid DBMS-990 key
type. DBMS-990 supports two key types, sequential (S1) and
random (R1). The key type reported is not supported.

User Action:
None.

A-28 2272058-9701

DBMS Exception Reporting

Table A-3. DBMS Error Messages (Continued)

U DBMS-0109
u DBMS-0110
U DBMS-0111
U DBMS-0112
u DBMS-0113

2272058-9701

NO VALID DATABASE FUNCTIONS NEEDED -

Explanation:
No valid data base functions were entered in response to the
FUNCTIONS prompt.

User Action:

Refer to the DBSTAT section of the DBA User’s Manual for a
list of legal functions or enter ALL for a report listing the sta-
tistics on all the functions.

** MAXIMUM GROUP LENGTH EXCEEDED **

Explanation:
The group flagged by the DDL translator exceeds the maxi-
mum length allowable.

User Action:
Reduce the size of the group and resubmit the DDL.

** MAXIMUM NUMBER OF SECONDARY KEYS EXCEEDED **

Explanation:
More than 13 secondary keys have been defined.

User Action:
Reduce the number of secondary keys and resubmit the DDL.

** NEW DATA BASE FILE CREATED **

Explanation:
The data base file has been formatted and is ready to be
accessed by DBMS-990.

User Action:
No user action required.

** NO FIELDS DEFINED FOR TH!S LINE/GROUP **

Explanation:
The line or group flagged by the DDL translator has no fields
defined. '

User Action: .
Add a field definition to the line or group and resubmit the
DDL.

A-29

DBMS Exception Reporting

Table A-3. DBMS Error Messages (Continued)

A-30

U

U

DBMS-0114

DBMS-0115

DBMS-0116

DBMS-0117

DBMS-0118

** NO LINES DEFINED FOR THIS FILE **

Explanation:
No lines have been defined to the DDL translator for this file.

User Action:
Add a line definition to the file and resubmit the DDL.

ERROR ON WRITE TO LISTING FILE, SVC ERROR ?1

Explanation:
The DBSTAT utility has detected an error during a write to the
listing file.

User Action:
Refer to the SVC error code for the exact cause of the error
and respond accordingly.

** KEY LENGTH EXCEEDS MAXIMUM ALLOWABLE **

Explanation:

The length of the primary or secondary key flagged by the
DDL translator is longer than the maximum allowable, 40
bytes.

User Action:
Reduce the size of the key field or group and resubmit the
DDL.

** INVALID SECONDARY KEY NAME **

Explanation:

The field/group name flagged by the DDL translator is invalid
as a secondary key. Either the field/group has not been defined
in a line, the field/group is defined as the primary key, or the
field/group is already defined as a secondary key.

User Action:

Verify that the field/group is valid as a secondary key and
resubmit the DDL.

ERROR RETURNED FROM DBMS, CODE 71

Explanation:
DBMS-990 has returned an error code to the DBSTAT utility.

User Action:

Refer to the DBMS Programmer’s Guide for an explanation of
the two character error code and respond accordingly.

2272058-9701

DBMS Exception Reporting

Table A-3. DBMS Error Messages (Continued)

U DBMS-0122 THE PAGE SIZE HAS TO BE EITHER 256 OR 288

Explanation:

The page size for the DB file must be either 256 or 288. Usu-
ally, choice is made dependent on sector size of target disk
for the DB file.

User Action:
Retry with valid page size, 256 or 288.

U DBMS-0123 ** DDL ENDS PREMATURELY **
Explanation:
The DDL translator has reached an EOF before parsing the
END. statement.

User Action:
Verify that all statements are in their correct order, add the
END. statement and resubmit the DDL.

U DBMS-0124 DATABASE MANAGER UNABLE TO OPEN PRE-IMAGE FILE

Explanation:
The system files have been damaged.

User Action:
Perform system generation at this time.

U DBMS-0126 DATABASE MANAGER CANNOT GET REQUIRED MEMORY
Explanation:
An attempt was made to start the data base manager (SDBMS)
with too many buffers.
User Action:
Retry the SDBMS command with smaller numbers for the
parameters.

u DBMS-0130 DBMS SUCCESSFULLY STARTED

Explanation:
The data base manager is running

User Action:
No user action required.

2272058-9701 A-31

DBMS Exception Reporting

Table A-3. ‘DBMS Error Messages (Continued)

U DBMS-0131 SYSTEM FAILURE OCCURRED WHILE UPDATING FILE 71

Explanation:
The system crashed in the process of updating the file in
question. The physical integrity of this file is now in question.

User Action:
Perform the Copy/Concatenate (CC) command on the backup
for the file pathname and the RECOVR utility.

u DBMS-0132 UNABLE TO ACCESS FILE 71

Explanation:
For some reason the file in question is no longer available.

User Action:
Check to see if the necessary volume is installed. If the file is
no longer available, perform CDBL.

U DBMS-0133 PATHNAME OF THE FILE IS 71

Explanation:
Gives the pathname of the affected file.

User Action:
None.

U DBMS-0134 INTEGRITY ERROR ENCOUNTERED, PERFORM RECOVR

Explanation:
The system was interrupted in the process of updating a file.
The physical integrity of the file is now in question.

User Action:
Perform the Copy/Concatenate command on the backup for
the file pathname and perform the RECOVR utility.

U DBMS-0135 UNABLE TO RESTART DBMS, CANNOT REOPEN FILES

Explanation:
The system is not able to open all the files that were assigned
when the data base was last running.

User Action:

Check to see that the file(s) indicated is accessible, e.g., that
the appropriate volume is installed, the file(s) has not been
deleted. Perform the CDBL utility if the file is not accessible.

A-32 2272058-9701

DBMS Exception Reporting

Table A-3. DBMS Error Messages (Continued)

U

U

DBMS-0136

DBMS-0137

DBMS-0138

RESTART FAILED

Explanation: :
The system was unable to restart the data base manager.

User Action:
None.

FILES REOPENED, ROLLBACK FAILED

Explanation:

Either the system log has been damaged or one of the files
affected by rollback does not match the form it was in when
the data base was last running and an error has occurred
during roltback. ’

User Action:
Perform CDBL.

DBMS OPEN ERROR IS 71

Explanation:
Returns error status from DBMS.

User Action:
Check Appendix A of the DBMS Programmer’s Guide for an
explanation of the two character code.

2272058-9701

A-33

DBMS Exception Reporting

Table A-4. Internal Message Codes

Internal DBMS
Message ‘Message
Code Number
>0001 0001
>0002 0002
>0003 0003
>0004 0004
>0005 0005
>0006 0006
>0007 0007
>0008 0008
>0009 0009
>000A 0010
>000B 0011
>000C 0012
>000D 0013
>000E 0014
S000F 0015
0010 0016
S0011, 0017
>0012 ...l 0018
>0013 0019
>0014 0020
>0016 0021
>0016 0022
>0017l 0023
>0018 0024
>0019 0025
>001A ..., 0026
>001B 0027
>001C ... 0028
>001D ...l 0029
S001E 0030
S001F ..., 0031
>0020 0032
>0021, 0033
>0022 0034
>0023 ...l 0035
>0024 0036
>0025 0037
>0026 0038
>0028 0040
>0029 0041
S002A ..., 0042
>002B 0043
>002C ...l 0044
>002D ... 0045
>002E 0046
S002F, 0047
>0030 0048
>0031 0049
>0032, 0050
>0033 0051

A-34 2272058-9701

DBMS Exception Reporting

Table A-4. Internal Message Codes (Continued)

Internal DBMS
Message Message
Code Number

>0034 0052
>0035 0053
>0036 0054
>0037 ..., 0055
>0038 0056
>0039 0057
S003A 0058
>003B 0059
>003C 0060
>003D 0061
S003E 0062
S003F 0063
>0040 0064
0041 ..., 0065
>0042 0066
>0043 0067
>0044 0068
>0045 0069
>0046 0070
>0053 ..., 0083
>0054 0084
>0085 0085
>0056 0086
>0057 ... 0087
>0058 0088
>0059 0089
S005A 0090
>005B 0091
>005C 0092
>005D ...l 0093
>005E 0094
S005F, 0095
>0061 PR 0097
>0062 0098
>0063 0099
>0065 0101
>0066 0102
>0067 0103
>0068 0104
>0069 0105
>006A 0106
>006B 0107
>006C, 0108
>006D, 0109
>006E 0110
S006F 0111
>0070 ... 0112
0071 0113
0073 ..., 0115
0074 0116

2272058-9701 A-35

DBMS Exception Reporting

Table A-4. Internal Message Codes (Continued)

Internal DBMS
Message Message
Code Number
>0077 ..., 0119
>0078 0120
>0079, 0121
S007A ... 0122
>007B ...l 0123
S007E ...l 0126

A-36 2272058-9701

Appendix B

Example DBMS Programs

B.1 INTRODUCTION

The programs and operating instructions in this appendix illustrate the comparative uses of
COBOL, FORTRAN, and Pascal by writing the same program in all three languages. An additional
COBOL program illustrates the use of transaction bracketing for transaction-leveli integrity. These
example programs also illustrate the use of secondary keys in DBMS-990. The example program in
B.7 illustrates the use of transactions. All programs run under the minimum DBMS-990 system.

The DBMS-990 installation disk contains the source necessary to execute each program. After the
installation process is complete, the code is located on the system disk under the library
.S$DBMS.TEST in the files listed in Table B-1. In the following paragraphs, DBMS-990 is assumed
to be installed, active, and ready for use.

Table B-1. Files Used to Execute Example Programs

File Paragraph Reference
.S$DBMS.TEST.CUST B.3.1
S$DBMS.TEST.ITEM B.3.2
.S$DBMS.TEST.SOFL B.3.3
.S$DBMS.TEST.ILDSOFL B.3, B.4, B.5
.S$DBMS.TEST.ILDCUST B.3, B.4,B5
.S$DBMS.TEST.ILDITEM B.3, B.4,B5
.S$DBMS.TEST.TRAN B.3, B.4, B.5
.S$DBMS.TEST.CEXMPL B.4
.S$DBMS.TEST.PEXMPL B.6
.S$DBMS.TEST.CNLNK B.4
.S$DBMS.TEST.FNLNKN B.5
.S$DBMS.TEST.PNLNK : B.6
.S$DBMS.TEST.CBATCHN B.4
.S$DBMS.TEST.FBATCHN B.5
.S$DBMS.TEST.PBATCHN B.6
S$DBMS.TEST.CBATCHTR B.7
.S$DBMS.TEST.LOADFILN B.3,B.4,B.5,B.6

B.2 THE EXAMPLE PROGRAMS

The COBOL example (CEXMPL), the FORTRAN example (FEXMPN), and the Pascal example
(PEXMPL) are small programs. The programs execute the same logic and use the same data base
and transaction files to produce the same output. The programs contain logic for security and fite-
access checking. If your system includes security checking, assign the password TEST to the
three data base files SOFL, CUST, and ITEM. The programs will execute properly on systems that
do not include security and file-access checking. ‘

2272058-9701 B-1

Example DBMS Programs

Each program extracts data from the sales order file (SOFL) about specific item numbers. These
item numbers are obtained from a sequential input transaction file. Data retrieved from the data
base files is sent to a user-specified sequential file. This file may be printed or displayed after the
program terminates.

The first column of output is the item number obtained from the input transaction file. This
number is checked against the file ITEM to verify that the item exists. It is also checked against
the SOFL file by using the ITEM secondary key to verify that the item has been sold. The second
and third columns of output are the item description (DESC) and unit price (UPRC) obtained from
the file ITEM. The fourth, fifth, and sixth columns, obtained from the file SOFL, are the quantity on
order (QUAN), the sales order number (SONM), and the ship-to-customer number (SHIP), re-
spectively. The ship-to-customer number is used to obtain the customer name (NAME) from the
customer file (CUST) and is shown in the seventh column of the output.

All three programs are documented with comments contained in the source. Appropriate error
messages appear in the output file when errors occur. If more than one of the programs is being
used, do not assign all of the output file synonyms to the same output file, since conflicts in
usage might occur.

B.3 DBMS-990 FILES

The example programs use three data base files, the customer file CUST, the item file ITEM, and
the sales order file: SOFL. Figure B-1 and Figure B-2 show the relationship between these files.

LINE 02 PRIMARY KEY
STAR COMPANY SALES ORDER NO. XXXXX
LINE BL ~_| 99 DATABASE ROAD
| \oumowm, TEXAS 99999
BILL NO: M 12345 SHIP NO: 12456
BILL TO: OEM CITY SHIP TO: OTHER COMPANY
56 25TH STREET | 25 55TH STREET
VENDTOWN, TEXAS 98989 CUSTOWN, TX. 89898

ITEM QUANJ ITEM NO. | DESCRIPTION | UNIT PRICE | EXTENSION

1 10 44444 WIDGIT 0.555 5.656

_

LINE 03

2277680

Figure B-1. Relationship of DBMS-990 File to Sales Order Document

B-2 2272058-9701

Example DBMS Programs

PRIMARY KEY SALES ORDER
SALES ORDER FILE
NUMBER “SOFL"’
!
|
LINE BL LINE 02 LINE 03
* ITEM #
* BILL TO CUSTOMER # * SHIP TO CUSTOMER # QUANTITY ORDERED
PRIMARY KEY CUSTOMER PRIMARY KEY ITEM FILE
CUSTOMER NUMBER FILE ITEM NUMBER "ITEM
NUMBER “"CUST"
LINE 01 ' LINE 01
NAME :;I"\li-‘.l\.:l_ PDESCRIPT|ON
ADDRESS ! N R'S/E
CREDIT INEO. QUANTITY ON HAND

QUANTITY ON ORDER
* SECONDARY KEYS

2277681

Figure B-2. Logical Relationship of Files

B.3.1 Customer File (CUST)

The customer file (CUST) contains the customer number, name, address, and credit information
(CRED) for each customer. The customer number must be unique, since it is the primary key of the
file. The customer file is referenced symbolically from the sales order file (SOFL) by using the
customer number. Figure B-3 shows the DDL listing for the customer file. Note that the maximum
number of customers allowed is 50. This is because the total number of lines cannot exceed 50,
and only one line type is defined.

2272058-9701 B-3

Example DBMS Programs

DEMS~290 <L VR, > DDL. TRANSLATOR MM/DD/YY HH: MM: 85

FILE=CUST, LINES=50
ID=CUSN=CH/ 35, VOL=50, ACCESS=RANDOM/ 1
%*

LINE=01
FIELD=NAME=CH/20
GROUP=ADDR

FIELD=8TRT=CH/20
FIELD=CITY=CH/20
FIELD=8TAT=CH/2
FIELD=ZIPC=CH/D
ENDG
FIELD=CRED=CH/2
ERNDL
END.

TOTAL PAGES REQUIRED

LINE LENGTH (BYTES) - B4
TOTAL DESCRIPTION PAGES - 1
TOTAL KEY PAGES — 9

LINE Qi —— BASE = 15 , DATA

it

6% ,» LINKAGE = O , TOTAL = 84

00112 ##% NEW DATA BASE FILE CREATED ##
Figure B-3, DDL Listing for the Customer File

B.3.2 Item File (ITEM)

The item file (ITEM) contains information about each part in the inventory. The primary key for this
file is the item number. Consequently, each item number must be unique. This file contains the
description (DESC), unit price (UPRC), quantity on order (QTYO), and quantity on hand (QTYH). You
can enter a maximum 50 items in the item file. Figure B-4 shows the DDL listing for the file.

B.3.3 Sales Order File (SOFL)

The sales order file (SOFL) symbolically links the ITEM and CUST files to form the sales order data
base. This file uses three line types. Line BL uses a pointer to designate which customer to bill for
the sales order. The field BILL contains the customer number of a customer for whom information
is maintained in CUST. Line 02 uses a pointer to designate the customer to which the order is to be
shipped. The SHIP field contains the customer number, and the related customer information is
maintained in CUST.

Line 03 contains the detail items for the sales order. Only one line BL and one line 02 are entered
in SOFL, but you can enter more than one line 03. Each line 03 contains the item number (ITEM)
and the quantity ordered (QUAN). The item number must be a valid item in the item file. The item
file also contains any additional information concerning that particular item.

B-4 . 2272058-9701

Example DBMS Programs

DBMS-920 L. V. R DDL TRANSLATOR MM/DD/YY HH: MM 68
FILE=ITEM. LINES=50
ID=1TMN=CH/4. VOL =50, A 55=RANDOM/ 1
#*
LINE=0O1

FIELD=DESC=CH/20

FIELD=UPRC=CN/&. 3
FIELD=GTYO=CN/4. 0
FIELD=QTYH=CN/4. 0

ENDL
END.
TOTAL PAGES REQUIRED - 1é
LINE LENGTH (BYTES) - 48
TOTAL DESCRIPTION PAGES - 1
TOTAL KEY PAGES - 4
LINE 01 -- BASE = 14 , DATA = 34 , LINKAGE = Q0 . TOTAL = 48

0112 ##% NEW DATA BASE FILE CREATED #3%
Figure B-4. DDL Listing for the item File

You can enter a maximum of 300 lines of data in SOFL; however, you can enter no more than 50
sales orders (VOL = 50 on the ID line). if each sales order has an equal number of items and if the
file is full, line types BL and 02 occur 50 times each, and line type 03 occurs 200 times; also, each
sales order has four items specified.

The BILL, SHIP, and ITEM fields are secondary keys. By using these keys, you can write a program
to read and summarize the sales orders in order to bill the customer. Use the SHIP field to obtain a
summary of shipping information. To read and summarize the items currently on order, use the
ITEM secondary key. You can also use the ITEM secondary key to check for items still in the sales
order file when the item is to be deleted. Figure B-5 shows the DDL listing for SOFL.

B.3.4 The Initial Load Files

Use the batch stream control file .S$DBMS.TEST.LOADFILN to create the program file
.S$DBMS.TEST.PROG and the two directories .S$DBMS.TEST.FILE (contains the data base files)
and .S$DBMS.TEST.LIST (contains the reports generated by the test programs). The procedure
deletes the data base files SOFL, CUST, and ITEM, if they exist, and then recreates them using
the DDL compiler with the appropriate DDL definition file. The procedure then reloads the data
base files with the data from .S$DBMS.TEST.ILDSOFL, .S$DBMS.TEST.ILDCUST, and
.S$DBMS.TEST.ILDITEM and assigns a LUNO to the program file. To restore DBMS-990 files to.
base point, run .S$DBMS.TEST.LOADFILN.

NOTE

If security is installed, you must assign the synonym $P to the
master password before loading the data base files.

2272058-9701 B-5

Example DBMS Programs

B.3.5 Verifying the File Data

After executing the batch stream for loading the files or after deleting and reloading a particular
file, verify the contents of the files by executing the following PQUERY session against the file.
You can also verify the data by executing the individual programs and comparing the output-ob-
tained against the outputs documented- in this appendix.

DBMS-990 <L.V.R> DDL TRANSLATOR MM/DD/YY HH: MM: SE

FILE=SOFL, L INES=300
ID=SONM=CH/&, YOL=50, ACCESS=RANDOM/ 1
3*

LINE=BL
FIELD=BILL=CH/5
FIELD=LOCK=CH/2
ENDL

*

LINE=02 -
FIELD=SHIP=CH/5
ENDL.

3*

LINE=03
FIELD=ITEM=CH/4
FIELD=QUAN=CN/4. 0
ENDL.

3%

SECONDARY-REFERENCES

BILL=VOL=50

SHIP=VOL=50

1TEM=VOL=200

END.
TOTAL PAGES REQUIRED - 71
LINE LENGTH (BYTES) - 32
TOTAL DESCRIPTION PAGES - 1

TOTAL KEY PAGES -~ 31
LINE BL -~ BASE = 146 , DATA = 7 ., LINKAGE = 8 , TOTAL = 31
LINE 02 —- BASE = 146 , DATA = 5 ., LINKAGE =8 , TOTaL = 29
LINE O3 —— BASE = {46 , DATA = 8 , LINKAGE =8 , TOTAL = 32

0112 ## NEW DATA BASE FILE CREATED #%

Figure B-5. DDL Listing for the Sales Order File

B-6 2272058-9701

Example DBMS Programs

B.3.5.1 PQUERY Session with SOFL. The following PQUERY session demonstrates the output
obtained from the sales order file (SOFL). This session enables you to verify the loading of SOFL.

FRIMITIVE GQUERY

FUNCTIONS

FILE ID:

KEY IL

EEY VALUE:

FIELD IDS:

NO. OF OUTPUT LINES:
TERMINATE:

c2004 e oot s somue roess Smmm ceyes Seous eovmt SHOTS seeee Smsce svee SvuSR SHNS sived SHNSS smoet e gr

omMmmmEmEESmEmTEE=E

RS
S0OFL
SONM

BILLLOCK
S0
NQ

ey -

LINE TYFE IZ: BL

SIONM BILL LOCK
20001 DOO001
LAE000Z2 D002
LAZ0003 D003
JAZ0004 SO004
20005 20005
JBO0046 B000A
LAS0007 0 S0007
S20002 0 S0023
LAZ0007 S0009
=m======= ENI OF DATA LIMES ======

FPRIMITIVE QUERY
FLUINCTION: RE
FILE ID: =0FL
KEY ID: S0NM
KEY VALUE:
FIELD IDS: SHIP
NO. OF QUTFUT LINES: S50
TERMINATE: NO

corre vers comim sonen e Py

LINE TYPE IZ: Q2

i

SONM SHIP
430001 20001
20007 50002
20003 S0003
A20004 20004
JAB0005 0007
HAB0006 S0004
0004 AQOLO
J20006 TOZOO0
200046 YOQ2T0
A20007 0 SO000S
J20007 0 10090
AZ0008 S0082
20002 SO001
mm===== ENDO OF DATA LINES =s=m==

22720589701 B-7

Example DBMS Programs

Satte adous coamm dmdes Se04n moeat 20004 et sibes smmse derms e fa0ew teuse srves smeee

PRIMITIVE GUERY
FUNCTION:
FILE ID:
KEY ID:
KEY VALUE:
FIELD IDS:
NO. OF OUTPUT LINES:
TERMINATE:

_mE=E

RS
SOFL
SONM

ITEMGEUAN
50

R R R S SN SN T NS IoEsoEoomInImIs NI s

LINE TYPE ISt O=

SONM ITEM RLAN
J20001 AOOL 20203225
JB0001 DOO4 . RO303R0O32S
J20O001 EQOT 2OJR0ISZO0
JB0001 G007 20203333
JB0001 NOL4 20303135
J20002 BOOZ 203032037
JE000Z D004 ZOZORETO0
JBOOOZ FOO& 30303235
J20002 J010 0 21203520
20002 LO1Z2Z 30303939
JSB0002 2019 202120320
J20003 A00L 2233030
J2O00E BOOZ 20Z12030
JEO003 FOO4& 3IPIFIVIY
J200032 GO0O7 20353020
20003 1009 30393939
20002 LOLZ2 39203020
J2B0003 NO14 30323530
JBO00E TOZO 20353020
J2O002 YORT 30323530
J20004 0 AOOL 2OZ03I23IS
JE0004 COOE 3038320320
JE0004 HOOZ 203285320
J20004 NOL4 30393939
J20004 0 Z026 20203032
JB000T ACOL 30213030
JS0005 BOOZ 303032031
JB0003 EOOS 30303535
JEO00T 1009 ZOR039EY
430008 AOOL 303132030
J28000% ACOL 20Z0222S
J20002 KO1l 30303130
JE0008 YOZRE 203203035
JBO002 Z026 30303032
=mmz=m=xm END OF DATA LINES ======

B-8

2272058-9701

Example DBMS Programs

B8.3.5.2 PQUERY Session with CUST. The following PQUERY sessiof\ demonstrates the output
obtained from the customer file (CUST). This session enables you to verify the loading of CUST.

SSI4% 0009 coave seamt Gseas toves Sevk aase tavee siets Wese smbin Siest EUESS Sem Sr0SE SHOT SONS SRS Sorvs S NGNS MAYS SRFEE $oae Se0st 91008 UM Pebeb ot TSSO eSS eSS SSNTD Seree PUEE Mamwd SSIUP STTNY Souwe fMeee dSwRe Suwes SPESS SSMFE ST SoREe SSeK v Sreed dudse M 4wess asUO) SSTRS sed Soeee SV SUSE So0my Sevem 0o daces seme Mese
P e i e R g e p b oo e pr e e et deona i em i

FRIMITIVE BLUERY
FUNCTION: RS
FILE ID: CUsT
EEY Ino: CLsN
FEY VALLUE:
FIELD IDS: NAMESTRTCITYSTATZIPCCORED
NOL. OF OUTPUT LINES: 50
TERMINATE: YES

290 oot oot s tose o Shum sveme omees coawe Grevd mpew proce TS 420 Sebie 048U eSS laves SN dovis Sumie e 00U SIS Seomt SO SUERE GVS! SOV ST PESee Soem Teiad tovu eds Soetm ease Seme Savey
R N T NN NSNS smTmsomsmE=m

LINE TYPE IZ: O}

CUSN NAME STRT CITY

STAT ZIPC CRED

00001 HOLE EARTH DIST. 1234 MOUNTAIN LN. LITTLE HILL
TX 78123 AL

D000 ROUND WORLD CORF. 99 CIRCLE CT. SFPHERE

TX 728099 D1

DOO0% ALLOVER SUFPLY CO. aav1 UNDER &T. INSIDE

TX 78333 D3

S0001 THING-A-MA-GIG CORF. 1 HEYTHERE ELVI. EPINEY

TX 73001 Al

50002 WIDGITS, INC. 2345 WIDGIT AVE. WHYNCIT

TX 78234 B2

S0003 TOYS FOR TEXANS 2454 TEJAS AVE. ALSTIN

TX 78345 Al :

S0004 THUNDERROLT CO. 4567 FLASH ST. BRIGHT

TX 78456 F3

S0005 RAINMAKERS, INC. 54678 WHETTER BLVD. DRY FLAINS
TX 78567 G5

£50006 ODD JOBR WYRKERS &78% UNEVEN ST. ANCIMALY
TX 78672 A3

S0007 TURKEYS, INC. 7890 GUEBLER CT. EIG BIRD
TX 78789 Al ,
S50008 THING MAKERS, INC. SE0 WHATISIT =T. 1DONTENCW
TX 72888 €1 |

S000% SPEEDY SUPPLY CO. w23 FASTEST ST. INSTANT
TX 7EI9P 51

mmmm=== END OF DATA LINES s=s====

2272058-9701 B-9

Example DBMS Programs

B.3.5.3 PQUERY Session with ITEM. The following PQUERY session demonstrates the output ob-
tained from the item file (ITEM). This enables you to verify the loading of ITEM.

i
it

]

PRIMITIVE GQUERY
FUNCTION:
FILE ID:
KEY ID:
KEY VALUE:

sa00 cruee asmos saaee v sevon smow
bt

B-10

END OF DATA LINES =======

FIELD IDS: DESCUPRCQTYOQTYH
NO. OF OQUTPUT LINEZ: 50
TERMINATE: YES
LINE TYPE IS: 01

ITMN DESC UPRC QTYO
AO01 ARMADILLOS 313030313233 30303031
B0O02 BLACK HOLES 303230323334 30303032
C003 CLAY 303033333435 30303033
Do04 DIPS 3023030343536 30303034
E0O0S ERECTORS 303035353637 20303035
FO0& FREEBIES 303630363738 30303036
G007 GOOBERS 373030373829 20303027
HOO8 HERBS 303830383930 30303038
1009 IDIOMS 303039393030 30303037
JO10 JUMPS 303031303030 3230303130
K011 KILNS 303131313030 30203131
LO12 LONE STARS 3132203020320 320303132
NO14 NIBBLES 303431343030 303021324
5019 SHOVELS 313031393031 39303139
TOZO0 TALES 303939303939 303132030
Y025 YARNS 303235203030 30303235
2026 ZEBRAS 303032363030 30303236

QATYH

30313232
230323334
30332435
30343536
20353637
30363738
20373839
30383930
30393030
31303030
31313030
213230320
31343030
313930320
34303030
32353030
32363030

2272058-9701

Example DBMS Programs

B.4 EXECUTION OF THE COBOL PROGRAM, CEXMPL

Install and execute the COBOL program, CEXMPL, as follows:

1.

Start the DBMS-990. If security is installed assign the password TEST to the data base
files and assign the synonym $P to the value of the master password. This should be
done by first using the ADDPSW procedure to add the password to the security file.

Next, use the ADDPE procedure to assign the password to the files used by this
program.

Initialize the data base files by executing the batch stream control file
.S$DBMS.TEST.LOADFILN (use the XB command, followed by a WAIT command). When
finished, the batch stream displays the following message:

LUNO >## ASSIGNED TO THE PROGRAM FILE

Execute the batch stream .S$DBMS.TEST.CBATCHN to compile and install the
program.

This procedure uses link control file .S$DBMS.TEST.CNLNK to link edit the program
and install it on the program file S$DBMS.TEST.PROG.

Check the batch stream listing files for errors. Ignore errors U SVC-0316 (file aiready
exists) and U SVC-0315 (file does not exist) that occur while creating or deleting files.

Use the Assign Synonym (AS) command to assign synonyms to the input and output
files, as follows: :

Synonym Value
CINP .S$DBMS.TEST.TRAN
couTt SSDBMS.TEST.LIST.CRPT

Execute CEXMPL using the Execute COBOL Task Foreground command (XCTF). For the
first parameter, enter the program file. Then enter CEXMPL as the task name and tab
through the remaining prompts. The program executes for about one minute.

Display or print the file . S$DBMS.TEST.LIST.CRPT and compare it to the listing in Figure
B-6. They should be the same.

After the program executes, you can halt DBMS-990 unless others are using the data
base. Use the End DBMS (ELBMS) command.

Figure B-7 contains the source listing for CEXMPL. Figure B-8 contains the Link Editor control file
for CEXMPL.

2272058-9701 B-11

Example DBMS Programs

AOO1
ACO1
AGO L
ADO L
AOO1L
AOO1L
BOOZ
ROOZ
BOOZ
CO03

noo4
noo4g

EQOS
EQOS

FOOA
FOO4L

ABCD
ARCD

007
G007

HOOS

TOO
1009

WJO10
EO11

LO12
LO12

TOZ

YOzs
YOS

1024
pALL

B-12

ARMADILLOZ
ARMADILLOS
ARMADILLOE
ARMADILLOE
ARMADTILLOE
ARMADILLOS

RLACK HOLES
BLACK HOLES
BLACK HOLES
LAY

nips
DIFs

ERECTORE
ERECTORS

FREERIES
FREERIEZ

$100,123
$100,123
$100,1232
$100.123
$100.1232
$100,.1232

$20. 234
$20. 234
$20., 234
$3. 345

%. 454
%. 4546

5. 547
3. 567

$60, 678
$L0. 675

#ITEM DOES NOT EXIST
#ITEM DOES NOT EXIEST

GOORERS
GOOBERS

HERRS

IDIOME
IDIOME

HIMPE

FILNS

LONE STARS
LLONE STARE
NIEBRLES
NIERBLES
NIEBBLES

SHOVELS

$700.759
$700,759

® 120

]
&
(1]

p

1,

“{

. 200

-
9. 200

&

%1.000

%11.100

$120. 000
$120.000
$41.400

$41.400
$41.400

%$101.%201

#ITEM DOES NOT EXIET
#ITEM DOES NOT EXIST

TALES

YARNS
YARNS

ZEBRAS
ZERRAS

Figure B-6.

-

9%, 0P

$25. 000
%25, 000

$2. 600
$2. 600

0025
2500
OOZ5
0100
0100
QOZS

0007
0100
Q001

QSO0
Q005
0020

QOS50
QOS5

Q025

'E_") l}? 1:_.") l.;’

0
=0

i)
A

oo
&

Q250

(AR
QO

1030

0010

QO
2000
0015
Q250
Qe

0100

OS00

QQo2
0002

SS0001
JE0003
20004
L0005
AR0008
JB0009

HE0003
JB0005

J20004

20001
S20002

J20001
JB0005

J20002

J20004

J200032
AB0005

J20002

JRO00R

A20001
A20003
J20004

JE0002

J20003

J200032

J20004
JEO00E

S0001
=O003
20004
S0007
S008R
S0001

50002
S0003
S0007

VOO0

o

20004

S0001
0002

=0001
S0007

S000Z
SO003

SOO02
S0003
0001
[00032
=004

SO002

=00073

0004

SO0

THING-A-MA-GIG CORF.
TOYS FOR TEXANS
THUNDERBOLT CO.
TURKEYZ, INC.

##¥NO SHIF NAME
THING-A-MA-GIG CORF.

WIDGITS. INC,
TAYS FOR TEXANE
TURKEYS, INC.

THUNDEREOLT CO.

THING-A-MA-GIG CORF.
WIDGITS, INC.

THING-A~-MA-GIG CORF.
TURKEYZ, INC.

WIDGITS, INC.
TAYs FOR TEXAND
###ITEM NOT SOLD

THING-A-MA-GIG CORP.
TOYES FOR TEXANS

THUNDERBOLT a3,

TOYS FOR TEXANS
TURKEYS, INC.
WIDGITS, INC.
###ND SHIF NAME

WIDGITE, INC.

TOYS FOR TEXANS
THING-A-MA-GIG CORF.
TOYE FOR TEXANZ
THUNDERBOLT (.,

WIDGITS, INC.

I TEM NOT SOLD

TOYE FOR TEXANZ

TOYS FOR TEXANS
#3#3#N0 SHIF NAME

THUNDERROLT CO.
#3##ND SHIF NAME

Output from the COBOL Program CEXMPL

2272058-9701

Example DBMS Programs

IDENTIFICATION DIVISION.
PROGRAM-ID. CEXMPL.

AUTHOR. TEXAZ INSTRUMENTSE, INC,
DATE-WRITTEN. QUTOBER. 19732.

THIS FROGRAM WILL EXTRACT DATA FROM THE DEMS
SALES-0ORDER FILE ABOUT SPECIFIC ITEM NUMBERES
READ FROM A SEQUENTIAL INFUT TRANSACTION FILE.
DATA THAT I3 RETRIEVED FROM THE DATA BASE FILES
IS QUTRFUT TO A SEGUENTIAL FILE WHICH CAN BE
DISPLAYED AFTER THE PROGRAM TERMINATES.

THE ITEM DESCRIPTION AND UNIT FRICE ARE OBTAINED
FRIM THE ITEM FILE. THE SALES-0ORDER NUMBER,
SHIP-TO CUSTOMER NUMBER AND QUANTITY ON-ORDER
FOR EACH SALES ORDER THAT CONTAINS THE ITEM ARE
ARE OBTAINED FROM THE SOFL FILE. THE SHIP-TO
CLSTOMER NAME IS RETRIEVED FROM THE CUST FILE.
APFROFRIATE ERROR MESSAGES ARE FRINTEDR WHERE
AFPLICABRLE.

Hox KR & K ok ok ok ok ok &k &k & K% ok &k K

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPLUTER. TI-290.
ORJECT~-COMPUTER. TI-270.
INPUT-OLITPUT SECTION.
FILE-CONTROL.

A SEQUENTIAL FILE CONTAINING THE ITEM NUMEBERS
TO BE PROCESEED MUST HAVE THE SYNOMYM CINP
ASSIGNED TO IT BEFORE THIS FROGRAM CAN BE
EXECUTEDR

* ok &k O K ¥

SELECT TINFILE
ASSIGN TO INPUT, “CINP"S
ORGANIZATION IS5 SEQUENTIALS
ACCESS IS SEQUENTIAL.

A SERUENTIAL FILE FOR CQUTFUT MUST HAVE
THE SYNONYM COUT ASSIGNED TO IT BEFORE
THIS PROGRAM CAN RE EXECUTED

% K ¥ %

SELECT QUTFILE
ASSIGN TO QUTPUT, “COUT"3
ORGANIZATION IS SEQUENTIALS
ACCESS IS SEQUENTIAL.
DATA DIVISION.
FILE SECTION.
FI' TINFILES
LABEL RECORDE ARE OMITTEDS
DATA RECORD IS TINRELC.
01 TINREC.
05 ITEMNG PIC X(4).
05 FILLER PIC X(75).
FD OUTFILES
LAREL RECORDS ARE OMITTEDS
DATA RECORD IS OUTREC.
01 OUTREC,
05 FILLER FIC X(20).

Figure B-7. Listing of Program CEXMPL (Sheet 1 of 6)

2272058-9701 ' B-13

Example DBMS Programs

WORE
3#*
#*
#*
77
77
01
o1

O1

o1

ING-STORAGE SECTION.

WORK AREAS AND INDICATORS

SLocy FPIC X(4) VALUE "s#xx",
SLoc2 PIC X(4) VALUE "is#xx",
EQOF-IND FIC X VALUE "N“. ’
282 TRAN-EOF VALUE "v",

ITEM-IND FIC X VALUE SPACES.

32 ITEM-EXISTS VALUE "Y“.

MORE-IND FIC X VALLE SPACES.

82 MORE-SOFL-ITEMS VALUE "M".

28 NO-MORE-SOFL-ITEMS VALUE "N",
SHIP-IND PIC X VALLUE SPACES.
82 SHIP-EXISTS VALUE "Y*“.
SOLD-IND FIC X VALUE SPACES.
28 ITEM-S0LD VALUE “Y“.

DATAREL.

05 OITEMNO PIC X{(4).

03 FILLER PIC X(2).

0% QDESCRPT PIC X{(20).

0% FILLER PIC X(2).

0% OFRICE PIC %$$$.999.

05 FILLER PIC X{2).

05 0aTYOOD FPIC X(4).

05 FILLER PIC X(2).

O3S DE0NG PIC X{(&).

053 FILLER PIC X(2).

05 OSHIPND PIC X(5).

0% FILLER PIC X(2).

0% OSHIPNA FIC X(2Z0).

05 FILLER PIC X(1).

ERRRELC.

05 EMBG PIC X(3) VALUE "“"DBERROR .
05 FILLER FIC X(3) VALUE "STAT=".
0% ESTAT FIC X(2Z) VALUE SPACEZ.

.05 FILLER PIC X(9) VALUE ", DBFILE=".

01 E

0% EFILE FIC X{(4) VALUE SFACES.

05 FILLER FIC X(7) VALUE ", KEYN=".
05 EKEYN FIC X{(4) VALUE SPACES.

05 FILLER PIC X(7) VALUE ", KEYV=",
0% EKEYV FIC X(&6) VALUE SPACES.
RROR-MSG,

10 FILLER FIC X(9) VALLE "ERROR IN “.

- 10 ERR-FILE PIZ X(4).

¥* % % ¥ ¥ ok ok ¥k ok X

B-14

10 FILLER FIC X(19) VALUE * FILE OPEN. STATUS=".
10 ERR-STAT PIC XX.

DEM= DML CALL PARAMETER AREAS

IF SECURITY IS INSTALLED ON YOUR DEMS. THE VALUE OF
PIWD DATA ITEM IN THE CONTROL BLOCK MUST BE CHANGED
TO THE FASSWORD THAT WILL BE ASSIGNED TO THE SOFL.,
CUST AND ITEM DATA BASE FILES. NOTE: SINCE THERE

IS ONLY ONE CONTROL BLOCK IN THIS PROGRAM ALL THREE
FILES SHOULD HAVE THE SAME PASSWORD.

Figure B-7. Listing of Program CEXMPL (Sheet 2 of 6)

2272058-9701

*

Q1
01

[a}]

01

01

a1

01

01

01

01

01

2272058-9701

Example DBMS Programs

DUMMY ADDRESSES USED WITH THE FILE ACCESS CHECKING
FOR OPEN AND CLOSE DATABASE FILE FUNCTIONS.

o1 FIC X,
oz PIC X.

CONTROL RBLOCK
CH.
02 PSWD FPIC X(4) VALUE
02 FUNC PIC XX VALUE
02 STAT FIC XX VALUE
02 DBEFILE PIC X{(4) VALUE
02 LOC1 FIC X{(4) VALUE
02 LOC2 PIC X(4) VALUE
02 KEYN PIC X(4) VALLE
02 KEYV PIC X{&6).

"TEST".
n ':|F| " -
n 334 " -

n n
-

Wt
W,
"SHRD™ .

SALES ORDER FILE PRIMARY KEY READ LINE LIST

SOFLPK-LL.

02 SPLTYPE PIC X(7) VALLE
02 SPRETIND FIC X VALUE
02 SPFIELDS PIC X(4) VALUE
02 SPDISP PIC X(8&) VALUE

SOFL SECONDARY KEY READ LINE L

SOFLSK-LL.

"LINE=0Z".
ll*ll.
"SHIP".
"sest#RLSE" .
1ST

02 SELTYPE FIC X(7) VALUE "LINE=02",

02 SSRETIND FIC X VALUE "=".

02 SEFIELDS PIC X(&) VALLE "QUANSONM".

02 SEDISP PIC X(2) VALUE “"####RLSE".
CUSTOMER FILE LINE LIST

CUsT-LL.

02 CLTYFE FIC X(7) VALUE “LINE=0O1".

02 CRETIND PIC X VALUE "#",

02 CFIELDS FIC X(4) VALUE “NAME".

2 CDISP PIC X(&) VALUE "#x#sRLSE".
ITEM FILE LINE LIST

ITEM~-LL.

02 ILTYPE FPIC X(7) VALUE "LINE=01".

02 IRETIND PIC X VALUE "#",

02 IFIELDS PIC X(&) VALUE "DESCUPRC"™.

02 IDISP PIC X(&) VALUE "####RLSE".
IBMS FILE DATA AREAS

DA,

02 FILLER PIC X(2&).

SOFLOZ2-I™ REDEFINES DA.

02 SHIP PIC X(&).

02 FILLER PIC X(20).

SOFLOZ2-DA REDEFINES DA.

02 GUAN PIC X{4).

02 SONM PIC X(&).

02 FILLER PIC X{(1&).

CUET-DA REDEFINES DA,

02 NAME FPIC X{(20.

02 FILLER PIC X(&).

ITEM-DA REDEFINES DA.

02 DESC FPIC X(20).

02 UPRC PIC 2(2)VP(3).

DE-DELIM FPIC XX VALUE "/#",

Figure B-7. Listing of Program CEXMPL (Sheet 3 of 6)

B-15

Example DBMS Programs

PROCEDLURE DIVISION.
MAIN-FROHG,
OFEN INPUT TINFILE. QUTPUT OUTFILE.
MOVE SPACES TO OUTREC DATAREC.
MOVE "OF" TO FUNC. MOVE "SHRD® TO KEYN.
MOVE "CUST" TO DRFILE.
FERFORM OPEN-DATARASE-FILE.
MOVE "ITEM" T2 DBFILE.
PERFORM OFPEN-DATABASE-FILE.
MOVE "S0FLY TO DBFILE.
PERFORM OPEN-DATABASE-FILE.
MOVE "RF" TO FLNC,
FERFORM PROCESS-TRAN LINTIL TRAN-EOF.
END—-0OF—-RIIN.
MOVE “CF" TO FUNC,
MOVE "CLEST" TO DBFILE.
CALL "DBMSYS" LUSING CRB, SOFLPK-LL, M. D2, [, D2,
MOVE "ITEM" TO DBRFILE.
CALL “"DBMSYS" LUSING CR, SOFLPK-LL. DM, D2, D1, D2,
MOVE "SOFL" TO DBFILE.
CALL "DEMSYSY USING CB, SOFLPE-LL, D1, D2, D1, D2,
CLOSE TINFILE QUTFILE.
STOP RUN.
/
OPEN-DATARASE-FILE.
CALL "DEM3YS" USING CR, SOFLPE-LL,. D1, D2, D1, Dz,
IF STAT NOT = "#x"
MOVE DEFILE TO ERR-FILE
MOVE STAT TO ERR-STAT
DISPLAY ERROR-MSG LINE 24
ACCERPT D1 LINE 24
PROMPT GO TO END-OF-RUN,
FROCESS~-TRAN.
FERFORM READ-TRAN.
IF NOT TRAN-EOF
FERFORM DEMS-ROUTINES
MOVE SPACES TO TINREC DATARECD ESTAT EFILE EKEYN
EKEYV SOLD-IND ITEM-IND SHIP-IND
MORE-IND.
FERFORM COUTPUT-INFO,
DEMS—-ROUTINES.
PERFDORM GET-ITEM-FROM-ITEM.
FERFIORM GET-ITEM-FROM-SOFL.
IF ITEM-EXIZTS AND ITEM-ZOLD
FPERFORM PROCESS-ITEM UNTIL NO-MORE-SOFL-ITEMS.
FPROCEZS-ITEM.
FERFORM GET-SHIP-FROM-SOFL.
IF SHIF-EXISTS
FPERFORM GET-NAME-FROM-CUST.
IF STAT 1= EGUAL TO "xx" AND SHIP-EXISTS
FERFORM CQUTPUT-INFQ.
IF SLOCZ ECUAL "swwe"
MOVE "N" TO MORE-IND
MOVE "™ T SLOCT
ELSE
MOVE "M" TO MORE-IND
FERFORM GET-ITEM-FROM-Z0FL..

Figure B-7. Listing of Program CEXMPL (Sheet 4 of 6)

B-16 2272058-9701

Example DBMS Programs

READ-TRAN.
READ TINFILE RECORD
AT END MOVE "Y" T} EOF-IND.
IF NOT TRAN-EQF
MOVE "####" TO LOC1 LOQC2
MOVE ITEMNO TO KEYV QOITEMNG,
CUTPUT-INFO,
MOVE DATAREC TO QUTREC,
FPERFORM WRITE-DATA.
WRITE-DATA.
WRITE OUTRELC.
INIT-LOCE.
MOVE " TO LOCYI LQC2.
GET-ITEM-FROM-ITEM.
MOVE "ITEM"™ TO DRFILE.
MOVE "ITMN" TO KEYN.
FERFORM INIT-LOCE,
CALL "DBRMSYSY USING CB SOFLPK-LL. ITEM-LL DA,
oA DB-DELIM.
IF STAT IS EQUAL TO s
AND LOCI NOT EQUAL "aatsx"
MOVE DESC TO ODESCRPT
MOVE UPRC TO OPRICE
MOVE "Y® T ITEM-IND
ELSE
IF STAT EQUAL TO "NKE®
MOVE "#ITEM DOES NOT EXIST" TO ODESCRPT
FPERFORM QUTFLT-INFQ
ELSE
FERFORM ERR-ROUTINE.
GET~ITEM-FROM-Z0FL.
MOVE "SOFL® TO DBFILE.
MOVE "ITEM" TO KEYN.
MOVE ITEMNO TO KEYV.
IF MORE-SOFL-ITEMES
MOVE SLOC1 TO LOC1
MOVE SLOCZ TO LOCZ
ELZE
FERFORM INIT-LOCE,
CALL "DEMSYS" USING CB SOFLSKE-LL, SOFLSK-LL CUST-LL,
DA DBR-DELIM.
IF STAT IS EQUAL TO "#s#"
IF LOCT EQUAL “sessa®
MOVE "N" TO MORE-IND
ELS
MOVE QUAN TO OQTYOO
MOVE SONM TO QSOND
MOVE “Y" TO SOLD-IND
MOVE LOCL TO SLOC1
MOVE LOCZ TGO sLOCZ
ELSE
MOVE "N" TO MORE-IND
IF STAT EQUAL ToO “NkK®
MOVE "###ITEM NOT SOLD" TO OSHIPNA
FPERFORM QUTPUT-INFO
ELSE
FPERFORM ERR-ROUTINE.

Figure B-7. Listing of Program CEXMPL (Sheet 5 of 6)

2272058-9701 - B17

Example DBMS Programs

GET-SHIP-FROM-S0FL..
MOVE "SOFL" TO DBFILE.
MOVE "SONM" TO KEYN.
MOVE SONM TOQ KEYV.
PERFORM INIT-LOCE,
CALL "DBMSYS" USING CB SOFLFE-LL., SOFLPK-LL SOFLSK~LL.
LA DB-LELIM,
IF STAT I3 EQUAL TO "aesn
IF LOC1 NOT EQUAL “aeesn
MOVE "Y" TO SHIP-IND
MOVE SHIF TO OSHIFPNG
ELSE
MOVE SPACES TO SHIP-IND
MOVE "###N0O SHIP IN SOFL " TO OSHIPNA
FERFORM CQUTPUT-INFQ
ELSE
PERFORM ERR-ROUTINE.
GET-NAME-FROM-CUST.
MOVE "CUST" TO DBFILE.
MOVE "CUSN" TO KEYN.
MOVE SHIF TO KEYV.
PERFORM INIT-LOCS.
CALL "DBMZYSY USING CRBR SOFLPK-LL, CUST-LL ITEM-LL,
DA DR-DEL.IM.
IF STAT IS EQUAL TO "x#Y
AND LOC1 NOT EQUAL “atsex
MOVE NAME TO 0OSHIPNA
ELSE
IF STAT EQUAL TO “NK“
MOVE "###NO SHIP NAME " TO QSHIFPNA
PERFORM QUTPUT-INFQ
ELSE
PERFORM ERR-ROUTINE.
ERR—-ROUTINE.
MOVE DRFILE TO EFILE.
MOVE KEYN TO EKEYN.
MOVE KEYV TO EKEYV.
MOVE STAT TO ESTAT.
MOVE ERRREC TO QUTREC.
FERFORM WRITE-DATA.
END PROGRAM.

Figure B-7. Listing of Program CEXMPL (Sheet 6 of 6)

B-18 2272058-9701

Example DBMS Programs

SDSLNK 3.2.1 78.275 PAGE 1
COMMAND LIST
FORMAT IMAGE » REFLACE
FROC RCOROL
DUMMY

INCLUDE .3$SYSLIRB.RCEBFRC
TASK CEXMPL

INCLUDE .3$SYSLIB.RCBTSK
INCLUDE .S%$SYSLIB.RCEMFD
INCLUDE S$DBMS. TEST. COBJECT
INCLUDE S$DBEMS.SNDMSG
INCLUDE S$DBMS.COBINT

END

Figure B-8. Link Control File for Program CEXMPL

B.5 EXECUTION OF THE FORTRAN PROGRAM, FEXMPN
Install and execute the FORTRAN program, FEXMPN, as follows:

1. Start the DBMS-990. If security is installed assign the password TEST to the data base
files and assign the synonym $P to the value of the master password. This should be
done by first using the ADDPSW procedure to add the password to the security file.
Next, use the ADDPE procedure to assign the password to the files used by this
program.

2. |Initialize the data base files by executing the batch stream control file
.S$DBMS.TEST.LOADFILN (use the XB command, followed by a WAIT command). When
finished, the batch stream displays the following message:

LUNO >## ASSIGNED TO THE PROGRAM FILE

3. Compile and install the program by executing the batch stream .S$DBMS.TEST.FBATCHN.
This procedure uses the link control file . S$DBMS.TEST.FNLNKN to link edit the pro-
gram and install it on the file . S$DBMS.TEST.PROG.

4. Check the batch stream listing files for errors. Ignore errors 0026 (file already exists) and
0027 (file does not exist) that occur while creating or deleting files.

2272058-9701 B-19

Example DBMS Programs

5.- Use the Assign Synonym (AS) command to assign synonyms to the input and output

files, as follows:

Synonym Value
UNITS .S$DBMS.TEST.TRAN
UNIT6 .S$DBMS.TEST.LIST.FRPT

Execute a Map Program File (MPF) command on the program file S$DBMS.TEST.PROG
to find the task identification (TASK ID) of FEXMPN. Execute the program using the Exe-
cute FORTRAN Task Foreground (XFTF) command, specifying the LUNO reported in
step 2. Enter the TASK ID for the program.

Display or print the file .S$DBMS.TEST.LIST.FRPT and compare it to the listing in Figure
B-9. They should be the same.

After the program executes, you can halt DBMS-990 unless others are using the data
base. Use the End DBMS (EDBMS) command.

Figure B-9 contains the output from the FORTRAN program FEXMPN. Figure B-10 contains the
source listing of the program FEXMPN. Figure B-11 contains the Link Editor control file for the
program FEXMPN.

B-20

2272058-9701

AOOD1
AOO1
AOO1L
AOD 1
AOOL
AOOL

ROOZ
BOOZ
BOOZ

000z

noo4
noog

EOQOS
EQOS

FOOA
FOOQ&

ARCD
ARCD

G007
GOO7

HOOS

100w
1009

d010

11

NO14
NO14
NO14
019

WXYZ
WXYZ

TOZO

YOZS
YOzS

02k
pA LS

ARMADILLOS
ARMADTLLOS
ARMADILLOE
ARMADILLOS
ARMADILLGES
ARMADILLOS

BLACK HOLES
BLACK HOLES
BLACK, HOLES
CLAY

DIFS
OIFS

ERELTORS
ERECTORS

FREERIES
FREEBIEZ

#ITEM DOES NOT EXIST
#ITEM DOES NOT EXIST

GOOBERS
GOOBERS

HEREBS

IDIOMS
IDIOME

JUMPE
EILNG

LIONE
LONE

STARS
STARS

NIEBBLEZ
NIRBLES
NIEBEBLES
SHOVELS

OOES
DOES

NOT EXIST
NOT EXIST

#ITEM
#ITEM

TALE=

YARNS
YARNS

ZEBRAS
ZEBRAS

Figure B-9.

2272058-9701

100123
100122
100123
100123
100123
100123

QZ0Z234

QOZ245

000454
000454

QOES567
005547

0606732
0L0L7E

700729
700729

020890

QOO0
00TTO0

001000
011100

120000
120000
041400
041400
041400

101201

099099

Q25000
Q22000

OOZE00
QOZ2L00

COOZS

2500
QOZS
0100
0100
Q025

Q007
0100
0001

0500

Q005
0020

QOS50

QOS5

0025

Ly Dy Dy

00E3

Q500

Q220

Qo
QO

1050

0010

0Oy
Q00
O01S
0250
(3

0100

Q500

—~

0

]

Lo
n

)

b
QO

e

Q0OZ
Q002

JE0001
AS0003
AS0004
JE0005
A20002
2000w

AER0002
A20003
J20005

J20004

N4E0001

AR2000%
AEO004

WO
HEO005

AB0002

0003

JE0002

JEO00E

4B0002

250001

S0002
0003
S0007

0004

S0001

S0001
S0007

L0002
L0003

0001

0001
SO003
=SO004

0002

=S0004

SO05E

Example DBMS Programs

THING-A-MA-GIG CORP.
TOYS FOR TEXANS
THUNDERROLT 0.
TURKEYS, INC,
###ND ZHIP NAME
THING—-A~-MA--GIG CORF.
WIDGITS, INC,

TOYS FOR TEXANES
TURKEYS, INC.

THUNDERBOLT 0.

THING-A-MA-GIG CORF.
WIDGITS, INC.

THING--A-MA-GIGE CORP.

TURKEYSZ, INC.
WIDGITS, INC,
TOYS FOR TEXANS

###ITEM NOT Z0OLD

THING—-A-MA-GIG CORP.
TOYE FOR TEXANE

THUNDERBOLT 0.

TOYs FOR
TUREEY:Z,

TEXANS
INC.

WIDNGEITS, INC.
##E#ND ZHIFP NAME

INC.
TEXANE

WIDGITE,
TOYS FOR
THING-A-MA-GIG CORF.
TOYS FOR TEXANS
THUNDERRBOLT CO.

WIDGITS, INC.

#¥#ITEM NOT S0OLD
TOYE FOR TEXANS

FOR TEXAND
SHIF NAME

TOYE
333 N0

THUNDERBOLLT Cid.
N0 ZHIF NAME

Output from the FORTRAN Program FEXMPN

B-21

Example DBMS Programs

B-22

3
C#
¥
C#
C#
C*
Ca#
C3#
C#
i
C#
Ci#
C#
C#
Ci#
Ca#
C#
C#
Ci#
C#
C#
[t 3

Ca
C#
Cx

C#
C#
(g

C#
Co#
C#
[ng]
C#
(e 3
C#
C#

THIS PROGRAM WILL EXTRACT DATA FRUM THE [BMS SALES-ORDER
FILE ABOUT SPECIFIC ITEM NUMBERZ READ FROM A SEGUENTIAL
INPUT TRANSACTION FILE. DATA THAT IS RETRIEVED FROM THE
DATA BASE FILES IS OUTPUT TO A SEGUENTIAL FILE WHICH CAN
BE DISPLAYED AFTER THE PROGRAM TERMINATES.

THE ITEM DESCRIFTION AND UNIT PRICE ARE OBTAINED FROM
THE ITEM FILE. THE SALES-ORDER NUMBER., SHIF-TO CUSTOMER
NUMBER AND QUANTITY ON ORDER FOR EACH SALES ORDER THAT
CONTAINS THE ITEM ARE OBTAINED FROM. THE SOFL FILE.

THE SHIP-TO CUSTOMER NAME IS RETRIEVED FROM THE CUST
FILE. AFFROPRIATE ERROR MESSAGES ARE FRINTELD WHERE
APFLICABLE.

TWO SYNONYMS ARE REQUIRED TO RUN THE FRUOGRAM:

SYNONYM VALLE
UNITS INFUT TRANSACTION FILE PATHNAME
FILE .DBLIB.TEST.TRAN IS SUPPLIED
AND INSTALLED AT DBGEN TIME
UNITS OUTFUT FILE OR PRINTER PATHNAME

IMPLICIT INTEGER (A-Z)

DIMENSION INKEY(2)

DIMENSION DMSFLS(15),DBDMY(1)

DIMENSION ITEMCB(1S5),ITEMLL(13),ITEMDA(14)
DIMENSION SOFLC3(15),S0FLL3(13),S0FLD3(4)
DIMENSION SOFLCZ(16),S0FLLZ(11),50FLDZ2(4)
DIMENSION CUSTCB(16),CUSTLL(11),CUSTDA(11)

INITIALIZE ARRAYS

DATA DMSFLS /“TESTOF CUST######4##5HRD “/
DATA ITEMCB /- TESTRF ITEMstia##suas I TMN s
DATA ITEMLL /“LINE=01#DESCUFPRC####RLSE </

DATA SOFLCZ /- TESTRF SOFL##sx###ITEM s
DATA SOFLL3 7/ LINE=03#QUANSONM####RLSE -/

DATA SOFLCZ /- TESTRF SOFL#dt#4% 3% #S0ONM “/
DATA SOFLLZ /- LINE=0Z#SHIP####RLSE -/

DATA CUSTCB /“TESTRF CUST#######CUSN 4
DATA CUSTLL /- LINE=01#NAME####RLSE -/

SET UF CONSTANTS

IR

CAST = “##7
CNK = “NK~*

THE FOLLOWING SECTION OF CODE IS USED TO OFEN ALL
OF THE DATABASE FILES. THE PROCEDURE 15 NEEDED

IF FILE ACCESS CHECKING WAS REQUESTED AT SYSTEM
GENERATION. HOWEVER, IF IT WAS NOT REQUESTED.

NQ HARM WILL BE CAUSED BY OPENING THE FILES BEFORE
ACCESSING THEM THROUGH THE PROGRAM.

CALL DBMSYS (DMSFLS (1), DMSFLS (15),
DBDMY (1), DBDMY (1),
DBDMY (1), DBDMY (1))

IF (DMSFLS (4) .NE. CAST) GO TO 998

DMSFLLS(3) = “IT~”

DMSFLS(6) = “EM~

Figure B-10. Listing of Program FEXMPN (Sheet 1 of 5)

2272058-9701

Example DBMS Programs

CALL DBEMSYS (DMESFLE (1), DMSFLS (15),

1 DEROMY (1), DROMY (1),

2 DEOMY (1), DEDOMY (1))

IF ¢ OMSFLS (4) JNE. CAST) GO TO 293

DMSFLS(S) =10

DMEFLE (&) TFLT

CALL DEMISYS (DMSFLES (1), DMSFLS (15),
DROMY (1), DBRIMY (1),
oBOMY (1), DROMY (1))

IF ¢ DMSFLE (4) .NE. CAST) GO TO @993

LI

P e

1 CONTINLUE

C# READ ITEM NUMBER EEY FROM INFPLUT FILE.
REALD (5, 100,END=22%2) INKEY(1), INKEY(Z)
100 FORMAT (Z2A2)
WRITE (&,211)
211 FORMAT (1X)
3%
C# GET ITEM FROM ITEM FILE.
% SET LOC1 AND LOCZ Ta s

ITEMCE (7)) = “##7
ITEMCE (8) = “#x
ITEMCR (9) = ~“##”
ITEMCZE (10) = “##~

(a3

C# SET HKEY VALUE
ITEMCE (132) = INKEY (1)
ITEMCE (14) = INKEY (&)

C# CALL DATA BASE

CALL DBEMSYS (ITEMCR(1), ITEMCR(15).
ITEMLL(1)> ITEMLL(1Z),
ITEMDACL), ITEMDA(LI4))

IF ¢ ITEMZE (4) JNE. CAST) GO TO 200

[

C# GET ITEM FOR LINE 2 OF SALES ORDER FILE
C¥ ZET Lol AND LOCZ To »s"

SOFLCE (7)) = “##7
SOFLCE (2) = “#x
SOFLCE (%) = “##7
SOFLCE (10) = %%~

(53

C# ZET KEY VALLE
SOFLCE (13) = INKEY (1)
SOFLCE (14) = INKEY (&)

C# DALL DATA BRASE
CALL DEMSYS (S0FLC3(1),. SOFLCR014),
1 SOFLL=(L1), BOFLL201E),
= SOFLD2(L), SOFLDEA))
IF (S0FLCE (4) JNE. CAST) GO T 920

C# START LOOFP TO PRINT INFORMATION — FOUND AT LEAST 1 ORDER
o= AT AND LOTE TO ter

(7) = “##"

2 2

() R TR

SOFLCE (10) = “#%~

-~
fex)
-

Wi

Figure B-10. Listing of Program FEXMPN (Sheet 2 of 5)

2272058-9701 B-23

Example DBMS Programs

C# SET EEY VALLUE
SOFLCE (13)
SOFLCE (14)

INEEY (1)
INEEY ()

Wi

o SET O URP LOOF
= CONT INLE

O
Z¥ CALL DEMS TO RETRIEVE NEXT LINE=OZ
C#

CALL DBMSYS (SOFLCE01), S0OFLC3LT),

1 SOFLE301), SOFLLZ20LZ),
b SOFLDE0L), SOFLDEAE))
IF ¢ S0FLCE (4) JNE. CAST) GO T 230
(e

¥ MOVE SALES ORDER NUMBER TO SALES ORDER RETRIEVAL
SOFLCE (13) = SOFLDZ (3)
SOFLCE (14) = SOFLDZ (4)
BOFLCE (15) = SOFLDE (5)

C# MOVE "#" TO LOC1 AND LOCE

SOFLCZ (7)) = “##”
SOFLCZ (8) = “#%7
SOFLCE (9) = “w%”
SOFLCZ (10) = "##”

C# RETRIEVE =SHIP-TO CUSTOMER NUMBER FROM SALES ORDER FILE
CALL DBEMSYS (SO0FLC2 (1), SOFLCE (14), SOFLLE (1),
1 SOFLLE (11), S0OFLDZ (1), SOFLDZ (4))
IF (SOFLCE (4) JNE. CAST) GO TO 935

C# SET UP TO RETRIEVE NAME OF SHIF T CUSTOMER FROM THE
C# CUSTOMER FILE MOVE "#" TO LOC1 AND LOCZ

CUSTCR (7)) = “%#~ -
CUSTCR (=) = “H##
CUSTCR () = “##7
CUSTCE (10) = “#%-
%

C# MOVE CLUSTOMER NUMBER RETRIEVED FROM S0OFL LINE Q2 T
C# CUSTOMER FILE KEY VALLUE

CUSTCR (13) = S0OFLDZ (1)

CLUSTCR (14) SOFLDE (2)

CUSTCR (175) SOFLDZ (3)

[

23
2% RETRIEVE CUSTOMER NAME
CALL DEMSYS (CUSTCR (1), CUSTCE (140, CUSTLL (1),
1 CUSTLL (11), CUSTDA (1), CUSTDA (11)) i
IF (¢ CLISTCR (4) JNE. CAST) GO TO 240
WRITE (4,200) INKEY (1), INKEY (2), (ITEMDA (I), I = 1, 13),
1 (CE0FLDE (1), T = 1, S), (BOFLOZE (I, I = 1,),
e (CUSTDA (1), I = 1, 1)
200 FORMAT (1X2AZ, ZX10AZ, 3X3AZ, ZXZAZ, 2(ZX3AZ). 2X10AZ)

Ca*
C# CHECK FOR LAST LINE=0Z IN SOFL FOR ITEM.
] CONT INUE
IF (SOFLCE (%) JER., CAST JAND. SO0FLCE (10) JER. CAST
1 G0OTO1

GooTO 2

Figure B-10. Listing of Program FEXMPN (Sheet 3 of 5)

B-24 2272058-9701

Example DBMS Programs

C# EXCERPTION PROCESEING

Cx ITEM WAS NOT FOUND OR ERROR

200 IF ¢ ITEMCE (4) .NE. ONK) GO TO 995
WRITE (&,201) INKEY (1), INKEY (2)

201 FORMAT (1X2AZ, ZX #ITEM DOES NOT EXIST)

C# CHECKE TO SEE THAT NO ONE HAZ DORIER ANY OF THE ITEM
% WHICH DOES NOT EXIST

. GET ITEM FOR LINE 2 OF SALES ORDER FILE

C# SET Lol AND LOCZ T "t

- * * -

- * E-3 -

kT

[U I

C#* 2ET KEY VALLE
HERN R D]
SOFLCE (14)

INKEEY (1)
INEEY (2)

iou

¥ CALL DATA BAX
CALL DERM (SOFLCE (1), S0FLCE (15), SOFLLE (1),
1 SOFLLE), SOFLLOZ (1), SOFLDE (&))
IF (ZOFLCZ (4) JER. CNE) GO TO 201

E

T FOUND ADDITIONAL EXCEPTION
WRITE (4&,20Z2) INEEY (1), INEEY (2), SOFLCE (4)
202 FORMAT (1X2AZ, 2X-"#ITEM DOEZ NOT EXIST, BUT THE -
1 TETATIES 7, 2XAZ, © WAS RETURNELDR FROM SOFL)
GOOTO 1
I3 .
Z# N ORDER WAS ENTERED
201 WRITE (4,202) INKEY (1), INEEY (Z)
20z FORMAT (1X2AZ, 2X #ITEM DOEZ NOT EXISTS, 22X
1 Tw##ITEM NOT Z0LD-)
GOOTO L

*
C# FOUND EXCEFTION ON READ OF SALES ORDER FILE
220 IF (SOFLCE (4) JNE. ONKE) GO TO 994
WRITE (& 4) INKEY (1), INKEY (2), (ITEMDA (I), I= 1, 1)
204 FORMAT (1XZAZ, 2X10AZ, 3X3ARZ, ZIX7###NQ SALES ORDERSS)
GoeoTo g

3 FOUNDY EXCEFPTION ON SECOND READ OF SALES ORDER FILE

PEHO WRITE (4&,205) INEEY (1), INKEY (2), (ITEMDA (I), I = 1, 13).
1 SOFLCZ (4)

205 FORMAT (1X2AZ, ZX10AZ, 2X2AZ, ZX7 EXCEFTION STATLE 7,AZ)

GO TO 1

*
C# FOUND EXCEFTION ON LINE=0Z READ FOR SHIF-TO NUMBER
a5 WRITE (4&,204) INKEY (1), INKEY (2), SOFLCZ (132),
1 S0OFLCE (14), SOFLCE (15), SOFLCE (4)
204 FORMAT (1XZAZ, 22X EXCERFTION STATUS ON LINE=0Z OF SONM 7,
1 FAZ, EXTSTATUEY, ZXAZ) :
GE0TO 1

Figure B-10. Listing of Program FEXMPN (Sheet 4 of 5)

2272058-9701 B-25

Example DBMS Programs

g3
22 18]

207

]
29
"3
[
3
R

B-26

FOUND EXCEFTION ON READ OF CUSTOMER FILE
IF ¢ CUSTCR (4) NE. ONE) GO TO 997

WRITE (4,207) INKEY (1), INKEY (2), (ITEMOA (I), I

1 (SOFLDZ (I), I = 1, T), (SOFLDZ (I), I = 1,)
FORMAT (1XZ2AZ, ZX10AZ, 2XIAZ, ZX2AZ, Z(ZX3AZ).

1 2X###N0 SHIP NAMES)
Goe TO S

GENERAL EXCEFTION
WRITE (46,202) ITEMCE (4)
FORMAT (7 EXCEFTION ON ITEM FILE ... STATUS “,A32)
G0 TO 1
WRITE (&,20%) S0OFLCE (4)
FORMAT (- EXCEFTION ON SOFL FILE ... STATUS <,A2)
GOOTO 1
WRITE (4,210) CUSTCE (4) .
FORMAT (< EXCEPTION ON CLUST FILE ... STATUS <,A2)
S0 TO 1

FILE DOFPEN EXCEFTION PROCESSING

WRITE (4,29%) DMSFLS(S), DMSFLE(&), OMEFLE(4)

FORMAT (¢ ERROR IN “,2AZ, " FILE OFEN, STATUES = -,AZ)

ENDN OF FILE ON TRANSACTION INFUT .

CONTINUE
OMSFLS(Z) = “CF-
CALL DBMSYS (DMSFLE (1), DMSFLE (15),

1 DBOMY (1), DOBROMY (1),
2 DROMY (1), [DEIMY (1))
OMEFLE(S) = “IT~
OMSFLE(&) = “EM”
CALL DRMSYS (DMSFLS (1), DMSFLS (15),
1 DERDMY (1), DBOMY (1),
= DRDMY (1), DEDMY (1))
DMIFLS(S) = “C~
OMSFLE (&) = “3T7
CALL DBMSYS (DMSFLS (1), DMSFLS (159,
1 DEOMY (1), DBROMY (1),
= neomMy (1), DBROMY (1))
=TOP .
ENL

Figure B-10. Listing of Program FEXMPN (Sheet 5 of 5)

2),

2272058-9701

pSE g

Example DBMS Programs

NOSYHMT

FORMAT IMAGE, REPLACE
LIBRARY . FORT78. OSLOBJ
LIBRARY . FORT78. STL.OBJ

TASK FEXMPL

INCLUDE S5$DBMS. TEST. FOBJECT
INCLUDE S+DBMS. SNDMGG

END

Figure B-11. Link Control File for Program FEXMPN

B.6 EXECUTION OF THE PASCAL PROGRAM, PEXMPL

Install and execute the Pascal program, PEXMPL, as follows:

1.

Start the DBMS-990. If security is installed assign the password TEST to the data base
files and assign the synonym $P to the value of the master password.

Initialize the data base files by executing the batch stream control file
.S$DBMS.TEST.LOADFILN (use the XB command, followed by a WAIT command). When
finished, the batch stream displays the following message:

LUNO >## ASSIGNED TO THE PROGRAM FILE
Execute the batch stream .S$DBMS.TEST.PBATCHN to compile and install the program.
This procedure uses the link control file . S$DBMS.TEST.PNLNK to link edit the program
and install it on the file SSDBMS.TEST.PROG.

Check the batch stream listing files for errors. Ignore errors U SVC-0316 (file already
exists) and U SVC-0315 (file does not exist) that occur while creating or deleting files.

Use the Assign Synonym (AS) command to assign synonyms to the input and output
files, as follows:

Synonym Value
PINP .S$DBMS.TEST.TRAN
POUT .S$DBMS.TEST.LIST.PRPT

Execute PEXMPL using the XPT command. Specify the program file
.S$DBMS.TEST.PROG and the task name PEXMPL. Tab through the remaining prompts.

Display or print the file . S$DBMS.TEST.LIST.PRPT and compare it to the listing in Figure
B-9. They should be the same.

After the program executes, you can halt DBMS-990 uniess others are using the data
base. Use the End DBMS (EDBMS) command.

Figure B-12 contains the output from the Pascal program PEXMPL. Figure B-13 contains the
listing for PEXMPL. Figure B-14 contains the Link Editor control file for PEXMPL.

2272058-9701 B-27

Example DBMS Programs

AQOO1
A0O1
AOOL
AOO1
AOQ1
A0O1
BOO2
BOOZ
BROQOZ2
[{slax]

Doo4
Doos

EQO0S
EQOS

FO06
FOO0é&

ABCD
ARCD

GO0o7
GOO7

HOOS

1009
1009

JO10
KO11

LO12
Lo12

NO14
NO14
NO14
5019

WXYZ
WXYZ

TOZ0

Y025
Yozs

7026
2026

B-28

ARMADILLOS
ARMADILLOS
ARMADILLOS
ARMADILLOS
ARMADILLOS
ARMADILLOS

BLACK HOLES
BLACK HOLES
BLACK HOLES
CLAY

DIPS
DIPS

ERECTORS
ERECTORS

FREEBIES
FREERIES

#ITEM DOES NOT EXIST
#ITEM DOES NOT EXIST

GOUBERS
GOOBERS

HERBS

IDIOMS
IDIOMS

JUMPS
KILNS

LONE STARS
LONE STARS

NIBBLES
NIBBLES
NIBBLES
SHOVELS

#ITEM DOES NOT EXIST
#ITEM DOEZ NOT EXIST

TALES

YARNS
YARNS

ZEBRAS
ZEBRAS

100123
100123
100123

- 100123

100123
100123

020234
020234
020224
003345

000454
000454

QOS5L7
OOSSA7

QLOLTS
0L067C

700729
700729

020890

Q09200
002900

001000
011100

120000
120000
041400
041400
041400

101901

092099

025000
025000

QOZ4L00
QO24600

Q028
2500
Q025
0100
0100
00z

Q007
0100
Q001
0500

Q003
0030

0050
0053

Q025
SPAY

0023
0500

0250

Q999
0092

1030
0010

Q099
000

Q015

0250
Q999

0100

Q500

Q250
000S

Q002
000z

80001
480003
J80004
J2000S
80002
JE000o

20002
JAB0O002
L8000
JA20004

J20001
J80002

480001
JE0005

J8O002
20003

JE0001
J20003

J20004

SABOOOE
JB0O00T

JB0002
20003

J20002
J20002

JB0001

JE0O003
J80004

JE20002

J200032

JE0003
J20008

JE20004
S20008

50001
S0003z
S0004
0007
50088
20001
S0002
0003
£0007

20004

S0001
S00032

0004

50003
50007

50002
ooz

Z0002
50003

50001
S0003
50004

0003
Soo3e

20004
S0088

THING-A-MA-GIG CORF.
TOYS FOR TEXANS
THUNDERBOL.T CO.
TURKEYS, INC.

##4# NO SHIP NAME
THING-A-MA-GIG CORP.

WIDGITS, INC.
TOYS FOR TEXANS
TURKEYS, INC.
THUNDEREBOLT CO.

THING-A-MA-GIG CUORP.
WIDGITS, INC.

THING-A-MA-GIG CORF.
TURKEYS, INC.

WIDGITS, INC.
TOYS FOR TEXANS
###ITEM NOT S0LD

THING-A-MA-GIG CORP.
TOYE FOR TEXANS

THUNDERBOLT CO.

TOYS FOR TEXANS
TURKEYZ, INC.
WIDGITS, INC.
##%# NO SHIP NAME

WIDGITS, INC.
TOYS FOR TEXANS

THING-A-MA-GIG CORP.
TOYS FOR TEXANS
THUNDERBOLT C0O.

WIDGITS, INC.

###ITEM NOT SOLD
TAYS FOR TEXANS

TOYS FOR TEXANS
NO SHIP NAME

THUNDEREBOLT C0O.
#3#4 NO SHIF NAME

Figure B-12. Output from the Pascal Program PEXMPL

2272058-9701

Example DBMS Programs

FPROGRAM FEXMPL 3

3835 3836 630 336 3636 6 303 336 33 30 30 36 3038 3030 96 36 3 303036 0 3 330 33 3 90 30 3030 3 640 3 3835 30 3030 30 3 33030 2 2
THIS PROGRAM WILL EXTRACT DATA FROM THE DBMS SALES ORDER
FILE AROUT SPECIFIC ITEM NUMBERS READ FROM A SEQUENTIAL
INFUT TRANSACTION FILE. DATA THAT 13 RETRIEVED FROM THE
DATA BASE FILES IS QUTPUT TO A SEQUENTIAL FILE WHICH
CAN BE DISPLAYED AFTER THE PROGRAM TERMINATES.

THE ITEM DESCRIFTION ANDY UNIT FRICE ARE OBTAINED FROM

THE ITEM FILE. THE SALES-ORDER NUMBER. SHIP-TCO CUSTOMER
NUMBER ANL QUANTITY ON-ORDER FOR EACH SALES ORDER THAT
CONTAINS THE ITEM ARE DOBTAINED FROM THE SOFL FILE.

THE SHIFP-TQ CUSTOMER NAME IS RETEIEVED' FROM THE CLUIST FILE.
APPROPRIATE ERROR MESSAGES ARE PRINTED WHERE APFLICABLE.

THE FOLLOWING SYNONYMS MUST BE DEFINED:
PINFP = PASCAL INPUT FILE ACCESS NAME
FPOUT = PASCAL OUTFUT FILE ACCESS NAME
30303036 3030 30330 30 30 3030 30 3030 3030 30 30330 301030 30 I 30 I 30 36 30 B30I 330 I)

CONST
EM1 = “ERROR IN 73
EM2 = © FILE OFEN, STATUS="3

(# DEFINE DATA TYPES #)

TYPE
c2 = PACKED ARRAY [1..21 OF CHAR:
c4 = PACKED ARRAY [1..41 OF CHARS
Cé = PACKED ARRAY [1..61 OF CHAR:
c20 = PACKED ARRAY [1..20] 0OF CHARS
DA_TYPE = (S0FZ, SOF3, CUsT, ITEM)S

(3% DEFINE RECORD AREAS #)
DATAREA = RECORD
CASE DA_TYPE OF

SOF2 @ (SHIP Ce)s

SOF2 CILIAN ¢ C43 SONM = Cé)s
CUST ¢ (NAME @ C20)3
ITEM : (DESC @ C203 UPRC @ C6)3

ENII3
LINELIST = RECORD
L.L : PACKED ARRAY [1..24]1 OF CHAR:
I |

TERM NTEGERS

ENDs

CONTROLRLOCK, = RECORD
PEWD : C4s
FUNC: T C2s
STAT : 023
IBFILE &« C4;s
LOC1 T 43
LOC2 : 435
KEYN T 43
KEYV ¢ C&s
TERM : INTEGERS

ENDS

(# VARIABLE DEFINITIONS #)

VAR
ERR : BOOLEANS:
ITEMND : CbLs
SOFLPE_LL : LINELISTS
SOFLSK_LL ¢ LINELIST:
CUSTLL : LINELISTS
ITEM..LL : LINELISTS

Figure B-13. Listing of Program PEXMPL (Sheet 1 of 5)

2272058-9701 B-29

Example DBMS Programs

DA : RECORD

DATA : DATAREA:S

TERM @ INTEGERS$

ENI3
CR I CONTROLBLOCKS
POLT i TEXTs
FINF : TEXTs -
ITEM_EXISTS : BOOLEANS
MORE_ITEMZ : BOOLEANS
SHIP_EXISTS : BOOLEANS
ITEM.S0OLD 3 BOOLEAN:
S0 T C43
shocz s 43
ODESCRPT T 203
OPRICE T Céhs
DETYOD : 4y
OSONG 2 C6s
OSHIPND : Cbs
DEHIPNA 2 D203

(# DEFINE EXTERNAL PROCEDURE TO CALL DBEMI #)

PROCEDURE DEMSYS (VAR CR @ CONTROLBLOCKS: VAR CBE @ INTEGERS3
VAR LL ¢ LINELIST: VAR LLE : INTEGERS:
VAR DA * DATAREAS VAR DAE @ INTEGER)S
EXTERNAL FUORTRANS

(# ERROR ROUTINE #)

FROCEDURE ERR_ROUTINES

BEGIN

WRITELN (POUT., “DRERROR STAT=", CR.ETAT. “, DBFILE=", CRB.DBFILE.

‘s KEYN=", CR.KEYN, 7, KEYV=", CH.KEYV)S

ENIDs
(# SET LOCI AND LOCZ TO "#" TO START #)
FPROCEDURE INIT_LOCSS
BEGIN

CR.LOCT 2= “%%exs

CRLLOCZ 2= “#a#u’s

ENDi3

(# WRITE OUTPUT LINE #)
FROCEDURE WRITE_DATAS

BREGIN
WRITELN(FOUT, ITEMNQ, ODESCRPT. < <, OPRICE. © 7,
oaTYon, <, OS0NQ, 0 <, OSHIPNO, < ¢ , QSHIPNA)S
ENIDis

(# PROCEDURE TO GET CUSTOMER NAME FROM DBMS #)
(# CUSTOMER NAME IS RETRIEVED FROM THE CUSTOMER FILE "“CUST" #)
FROCEDURE GET_._NAMES
BEGIN
CR.OBFILE 2= “CLST 3
CR.EEYN = “CLIZNTS
CR.KEYV = [A.DATA.SHIPS
INIT_LOCSS

DBEMEYS (CR, CR.TERM, CUST_LL, CUST_LL.TERM. DA.DATA. DA.TERM)S

IF CR.ETAT = “## AND CB.LOCY1 <3 “#3##e”
THEN OSHIFPNA := DA.DATA.NAME
ELSE

IF CR.STAT = “NK-”
THEN BEGIN
DSHIFPNA = “##% NO SHIP NAME “3
WRITE_DATAS
ENID
ELSE ERR_ROUTINES
ENIDi3

Figure B-13. Listing of Program PEXMPL (Sheet 2 of 5)

B-30

22720589701

Example DBMS Programs

(HEHREE FROCEDWRE TO GET THE SHIP-TO NAME FROM THE DEME HHHHR)
(3 SHIP-TO NUMBER IS LINE=0Z OF SOFL FILE #)
PROCEDURE GET_SHIPS

BEGIN

CR.DBFILE = “SOFL-"3
CB.KEYN = “S0ONM-3
CR.KEYV = DA.DATA. SONMS
INIT_LOCSS
DA.DATA. SHIP == ¢ 73
DEMSYS (CR, CR.TERM,. SOFLPK_LL., SOFLFPE_LL.TERM. DA.DATA. DA.TERM)S:
IF CB.STAT = “##° THEN
IF CR.LAOCY {3 7’
THEN BEGIN
SHIP_EXISTS := TRUES
OESHIPND = DA.DATA.SHIFS
ENID
ELSE BEGIN
SHIP_EXISTS = FALSES
OEHIPNA = “###NQ SHIP IN SOFL 73
WRITE_DATAS

END
ELSE ERR_ROUTINES
END3
(3t GET SECONDARY KEY FROM SALES ORDER FILE 3)
(% SECONDARY KEY ITEM NUMBER IS RETRIEVED #*)
FROCEDURE GET_SO0OFLS
BEGIN

CE.DRFILE = “SOFL*$
CR.EEYN = “ITEM” s
CR.EEYV = ITEMNO:
IF MORE._ITEMS
THEN REGIN
CR.LOCL := SLOC1S
CR.LOC2 = SLOC2s
END
ELSE INIT_LOCESS
OBMSYS (OB, CR.TERM, SOFLSK.LL., SOFLSK_LL.TERM. DA.DATA. DA.TERM);
IF CR.STAT ="##“ THEN
IF CR.LOCYL = “3eae”
THEN MORE.ITEMS := FALSE
ELSE BEGIN
OaaTYOD = DA.DATA. GLUANS
DE0OND = DA.DATA. SONMS
ITEM.SOLD := TRUE:
SLOCE = CR.LOCLS
SLOC2 = CR.LOCZ:
ENID
ELSE BEGIN
MORE_ITEMZ = FALSE:
IF CR.ETAT = “NK~”
THEN EEGIN
OSHIPNA = “###ITEM NOT S0LD . “3
WRITE.DATA;
ENI
ELZE ERR_ROUTINES
ENIs
END3

Figure B-13. Listing of Program PEXMPL (Sheet 3 of 5)

2272058-9701 B-31

Example DBMS Programs

(3 GET ITEM DESCRIPTION FROM ITEM FILE #*)
FPROCEDURE GET._.ITEM:
BEGIN
CR.DBFILE =:= “ITEM”;
CR.KEYN 2= “ITMN-3
CR.EKEYV 1= ITEMNO;
INIT..LOCSS
DEMSYS (CE. CB.TERM, ITEM_LL. ITEM_LL.TERM, DA.DATA, DA.TERM)S
IF CR.STAT = “##° AND CR.LOCT <3 7#as”
THEN BEGIN
ODESCRPT := DA.DATA.DESCS
OPRICE := DA.DATA.LUPRICS
ITEM_EXISTS == TRUES
END
ELSE
IF CR.STAT = “NK~
THEN BEGIN
ODESCRPT := “#I1TEM DOES NOT EXIST” s
WRITE. .DATAS
ENI
ELSE ERR.ROUTINES
ENDs
PROCEDURE PROC_ITEMS
BEGIN (PROCESSES EACH ITEM TQ SEE IF A SHIP-TO CUSTOMER EXISTE 3
GET__SHIFS
IF SHIP_EXIZSTS THEN GET.NAME:
IF CR.STAT = “##° AND SHIP_EXIZTS THEN WRITE_DATAS
MORE_ITEMS := TRUES
IF SLOCZ = “#3”
THEN MORE_ITEMS = FALSE
ELSE GET_SOFLs

ENDS
363636334 GET ITEMS FROM “ITEM" FILE AND PROCESE THE SECONDARY e
#A R KEY ON THE SALES ORDER FILE. HEEHER)
FPROCEDURE DEMS_ROUTINESS
BEGIN

ITEM_EXISTS := FALSE:
MORE_ITEMS := FALSE:
ITEM_SOLD := FALSES
GET_.ITEM:
GET.S0OFLs
IF ITEM.EXIZTS AND ITEM_S0OLLD
THEN REPEAT PROC_ITEM UNTIL NOT MORE_ITEMSS
ENIIs
(# PROCEDURE TO OPEN THE DATARASE FILES FOR FILE ACCESS CHECKING %)
PROCEDURE OPEN._DATABRASE_FILE(X:C435 VAR E:ROOLEAN)S
BEGIN
CR.OBFILE:=X3
DEMSYS(CR, CB. TERM, CUST_LL.CUST_LL.TERM. DA.DATA.DA.TERM)S
IF CR.STAT <> “##”
THEN BEGIN
E:=TRLES
WRITELN(QUTPUT, EM1, X, EM2, CRB.STAT):
RESET(INPLUT) 3
ENI
ELSE E:=FALSEs
ENDs

Figure B-13. Listing of Program PEXMPL (Sheet 4 of 5)

B-32 2272058-9701

Example DBMS Programs

FROCEDURE INITIALIZATIONS
BEGIN
{ ##3# INITIALIZE REMAINING AREAS AND FROCESS DATA 363
3

SOFLPK.LL.LL 2= “LINE=02#SHIP####RLEE <3
SOFLSK_LL.LL = “LINE=O3#QUANSONM®:t##RLIE"S
CUST_LL.LL 2= “LINE=01#NAME:::#i#RLSE ‘3
ITEM_LL.LL f= “LINE=01*DESCUPRCx##*##RLSE"S

CR.FSWD 3= “TEST“:
##% INITIALIZE THE CONTROL BLOCK TO OPEN THE DATABASE FILES ###

CR.FUNC == “0OF“3 ,
CE.KEYN == “SHRD:

OPEN_DATABASE_FILE(CUST ", ERR)3IF ERR THEN ESCAFE INITIALIZATIONS
OFEN_DATABASE_FILE(“ITEM',.ERR)$ IF ERR THEN ESCAPE INITIALIZATION:
OPEN.DATABASE_FILE("SOFL-,ERR) 3 IF ERR THEN ESCAFE INITIALIZATIONS
CR.FUNC 2= “RF-3

CB.KEYN 2= “S0OMN-3

INIT_LDOCSS

END3
(# MAIN FPROCESSING CYCLE 3#)
BEGIN

RESET(PINP)

REWRITE (POUT) 3

INITIALIZATIONS

IF NOT ERR

THEN REFEAT BEGIN
READLN(PINP, ITEMND) 3
INIT_LOCSS
ODESCRPT = - ‘3
OPRICE i= -
CaTYOn = ¢ -
OSOND == ¢
OSHIFNG := - “3
OSHIPNA 1= * ‘3
DEMS_ROUT INES:
WRITELN(POUT) 3
END3
UNTIL EOF(PINP):
CLOSE (PINP)S
CLOSE (POUT)S
END.

. e
-

“e

Figure B-13. Listing of Program PEXMPL (Sheet 5 of 5)

2272058-9701 B-33

Example DBMS Programs

NOSYMT

FORMAT IMAGE.REPLACE
LIBRARY S$TIP.OBJ

TASK PEXMPL

INCLUDE S$TIP.OBJ.MAIN
INCLUDE S$DBMS. TEST.POBJECT
INCLUDE S$DBMS. SNDMSG
INCLUDE S$DBMS. FRGMY

END

Figure B-14. Link Control File for Program PEXMPL

B.7 EXECUTION OF THE COBOL PROGRAM, CEXTRN

The following program demonstrates the use of transaction boundaries for transaction-level
integrity.

This program adds a new item to an existing sales order in the sales-order file.

It reads from a sequential input file. The data on the file are the sales order number, the item num-
ber to add, and the quantity desired.

The sales order number, customer name, item number and desdription, quantity, unit price, and

total cost are printed on the output file. When items are not in stock, a back order message is
printed and items are not deducted from the stock.

Install and execute the COBOL program, CEXTRN, as follows:

1. Start the DBMS-990. If security is installed assign the password TEST to the data base
files and assign the synonym $P to the value of the master password.

2. Initialize the data base files by executing the batch stream control file . S$DBMS.TEST.LOADFILN
(use the XB command, followed by a WAIT command). When finished, the batch stream
displays the following message: '

LUNO >## ASSIGNED TO THE PROGRAM FILE
NOTE

Steps 1 and 2 must be completed before continuing with the exe-
cution of the COBOL program CEXTRN.

B-34 ‘ 2272058-9701

Example DBMS Programs

Execute the batch stream .S$DBMS.TEST.CBATCHTR to compile and install the
program,

Check the batch stream listing files for errors. Ignore errors U SVC-0316 (file already
exists) and U SVC-0315 (file does not exist) that occur while creating or deleting files.

Use the Assign Synonym (AS) command to assign synonyms to the input and output
files, as follows:

Synonym Value
CINP .S$DBMS.TEST.UPDATE
couTt .S$DBMS.TEST.LIST.CRPTUPD

Execute CEXTRN using the Execute COBOL Task Foreground command (XCTF). For the
first parameter, enter the program file. Then enter CEXTRN as the task name and tab
through the remaining prompts. The program executes for about one minute.

Display or print the file .S$DBMS.TEST.LIST.CRPTUPD and compare it to the listing in
Figure B-15. They should be the same.

After the program executes, you can halt DBMS-990 unless others are using the data
base. Use the End DBMS (EDBMS) command.

Figure B-16 contains the source listing for CEXTRN. Figure B-17 contains the Link Editor control
file for CEXMPL.

J80001

JBC0O01

J80002

JB0003

JB0003

JBC003

JBOO0O4

JBO00S

JBOOOS

J80006

JBO006

JBO0DS

THING-A-MA~GIG CORP. BOO2 BLACWK HOLES C300 £20.234 $4070. 20
BACK—ORDERED =#%

THING-A-MA—GIG CORP. FO00& FREEBIES 0300 4$60. 678 $18243. 4¢
WIDGITS, INC. AOO1 ARMADILLOS 0300 $100. 123 $30036. 9C
#en BACK—DORDERED »as
TOYS FOR TEXANS c003 CLAY 0300 $3. 345 $1003. 50
TOYS FOR TEXANS Do04 DIPS 0300 $. 4564 $136. 80
TOYS FOR TEXANS EOOS ERECTORS C300 5. 567 $1670:10
THUNDERBOLT CO. 6007 GDbBERS 0300 $700. 789 $210236.70
TURKEYS, INC. HO08 HERBS 0300 #B80. 890 $24267. 00
TURKEYS, INC. 1009 IDIOMS 300 $9. 200 $2970. 00
ODD JOB WYRKERS JO10 JUMPS 0300 $1. 000 $300. 00
ODD JOB WYRKERS KO11 KILNS 0300 #$11.100 $3330. 00
ODD JOB WYRKERS LO12 LONE STARES 0300 $120. 000Q £36000. 00

Figure B-15. Output from the COBOL Program CEXTRN

2272058-9701 B-35

Example DBMS Programs

Bk R K ok ok koA ok ok % % o & X

PR

IDENTIFICATION DIVISION.
PROGRAM-ID. CEXTRN.

AUTHOR. TEXAS INSTRUMENTS, INC.
DATE-WRITTEN. FEBRUARY, 1982

THIS PRCGRAM WILL ADD A NEW ITEM TO AN EXISTING
SALES ORDER IN THE SALES-ORDER FILE.

IT WILL READ FROM A SEQUENTIAL INPUT FILE. THE
DATA ON THE FILE WILL BE THE SALES ORDER NUMBER,
THE ITEM NUMBER TO &DD, AND THE QUANTITY DESIRED

THE SALES ORDER NUMBER, CUSTOMZR NAME, ITEM NUMBER
AND DESCRIPTION, QUANTITY, UNIT PRICE, AND TOTAL
COST WILL BE PRINTED ON THE OUTPUT FILE. IF NOT
ENDUGH IN STOCK TO FILL THE ORDER, A& “BACK ORDER"
MESSAGE WILL BE PRINTED AND NO ITEMS WILL BE
DEDUCTED FROM THE STOCK.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE~COMPUTER. TI-290.
OBJECT-COMPUTER. TI-2%0.
INPUT-0UTRUT SECTIOM.
FILE-CONTROL..

A SEQUENTIAL FILE CONTAINING THE SALES ORDER.
ITEM NUMBER., AND QUANTITY TO BE ADDED MUST HAVE
THE SYNCNYM "CINP® ASSIGNED TO IT BEFORE THIS
PROGRAM CAN BE EXECUTED.

SELECT TINFILE

ASSIGN TO INPUT, *CINPY;
ORGANIZATION IS SEQUENTIAL;
ACCESS IS SEQUENTIAL.

A SEQUENTIAL FILE FOR DUTPUT muUST HAVE
THE SYNONYM “COUT" ASSIGNED TO IT BEFORE
THIS PROSRAM CAN BE EXECUTED

CT QUTFILE

ASBIGN TO GUTPUT, “COUT™:
UORGANIZATION IS SEQUENTIAL;
ACCESS IS5 SEQUENTIAL.

DATH DIVISION.
FILE BELTION
FD TINFILE:

LABEL RECDRDS ARE OMITTED:
DATA RECORD IS5 TINREC.

01 TINREC.
05 SALEND PIC X{&).
05 ITEMND PIC X{4)
03 QUANT PIC 2{4)
05 FILLER PIC X(635).
FD QUTFILE;
LABEL RECORDS ARE OMITTED;
DATA RECORD IS DOUTREC.
01 OQUTREC.

05 FILLER PIC X(80).

WORKING-STORAGE SECTION.

*
3*

B-36

WORK AREAS AND INDICATORS

Figure B-16. Listing of Program CEXTRN (Sheet i of 6)

2272058-9701

77 TOTCOST
77 DL~-COUNT
01 EOF-IND
88 TRAN-EOF
01 BACK-IND

PIC 9(7)ve(2).

PIC 2(2).

PIC X VALUE "N*.
VALUE "Y*™.

PIC X VALUE SPACES

Example DBMS Programs

88 BACKORDER-NEEDED VALUE ™Y*.

01 TR-IND PIC X VALUE SPACES.
88 TR-NEEDED VALUE "“Y".
01 DATAREC.
03 O0OSONO PIC X(&).
05 FILLER PIC X(1).
05 OSHIPNA PIC X(20).
05 FILLER PIC X(2)
05 OITEMND PIC X(4).
05 FILLER PIC X(1}
05 ODESCRPT PIC X(20).
05 FILLER PIC X(1).
05 0QTYOD PIC X(4).
05 FILLER PIC X(1).
05 OPRICE FPIC $#%%. 799,
05 FILLER PIC X(1).
05 OTOTALD PIC $$58$%$%. 97
01 ERRREC.
05 EMSG PIC X(8) VALUE "DBERROR

05 FILLER PIC X(3) VALUE "BTAT="

05 ESBTAT PIC X(2) VALUE SPACES.

05 FILLER PIC X(%) VALUE ", DBFILE=".
05 EFILE PIC X(4) VALUE SPACES.

05 FILLER PIC X{(7) VALUE ", KEYN="
05 EKEYN PIC X(4) VALUE SPACES.

05 FILLER PIC X(7) VALUE ", KEYV="
05 EKEYV PIC X(&) VALUE SPACES.

! 01 ERROR-MSG

¥
* DBMS DML CALL PARAMETER AREAS
+*
* IF SECURITY IS INSTALLED ON YOUR DBEMS, THE VALUE OF
* PSWD DATA ITEM IN THE CONTROL BLOCK MUST BE CHANSED
#* TO THE PASSWORD THAT WILL BE ASSIGNED TO THE SOFL.
* CUST AND ITEM DATA BASE FILES. NOTE: SINCE THERE
* IS ONLY ONE CONTROL BLOCK IN THIS PROGRAM ALL THREE
#* FILES SHOULD HAVE THE SAME PASSWORD.
k-3
* DUMMY ADDRESSES USED WITH THE FILE ACCESS CHICKING
* FOR OFEN AND CLOSE DATABASE FILE FUNCTIONS
01 Di PIC X.
0i Dz) PIC X.
#* CONTROL BLOCK
01 CB.
02 PSWD PIC X(¢(4) VALUE “TEST"
02 FUNC PIC XX VALUE "OF*"
o2 STAT PIC XX VALUE “ss®
02 DBFILE PIC X{(4) VALUE "
02 LOC1 PIC X(4) VALUE "’
02 LOC2 PIC X(4) VALUE Masesexn”
02 KEYN PIC X(4) VaLUE "SHRDY.
02 KEYV PIC X(&6)

2272058-9701

10 FILLER PIC X(9) VALUE "ERROR IN *.

10 ERR-FILE PIC X(4&)
10 FILLER PIC X(19) VALUE " FILE OPEN, STATUB=".
10 ERR-STAT PIC XX.

Figure B-16. Listing of Program CEXTRN (Sheet 2 of 6)

B-37

Example DBMS Programs

* SALES ORDER FILE PRIMARY KEY READ LINE LIST
01 SOFLPK-LL.
02 SPLTYPE PIC X(7) VALUE "LINE=0Z"
02 SPRETIND PIC X VALUE =",
02 SPFIELDS PIC X(4) VALUE "SHIP".
02 SPDIGP PIC X(8) VALUE "sx4xRL SE"
#* SALES ORDER FILE PRIMARY KEY ADD LINE LIST
01 SOFLO3-LL.
02 SPLTYPE PIC X(73 VALUE "LINE=03".
02 SPRETIND PIC X VALUE ="
02 SPFIELDS PIC X(8) VALUE “ITEMQUAN™.
02 SPDISP “PIC X(B) VALUE "###4RLSEY.
* CUSTOMER FILE LINE LIST
01 CUST-LL.
02 CLTYPE PIC X(7) VALUE "LINE=017.
02 CRETIND PIC X ValLUE "s"
02 CFIELDS PIC X(4) VAILUE “"NAME™.
02 CDISP PIC X(8) - VALUE “##xxRLSE"
#* ITEM FILE LINE LIST
01 ITEM-LL.
02 ILTYPE PIC X(7) VALUE "LINE=01"
02 IRETIND PIC X VALUE s®
02 IFIELDS PIC X(1ié&) VAILUE "DESCUPRCQTYOQTYH"
02 IDISP PIC X(8) VALUE "##xHOLD"
* DBMS FILE DATA AREAS
01 DA.
02 FILLER PIC X(34)
01 SOFL02-DA REDEFINES DA.
02 SHIP PIC X(5).
02 FILLER PIC X(29)
01 SOFLO3-DA REDEFINES DA.
02 ITEM PIC X(4)
02 QUAN PIC 9(4).
' 02 FILLER PIC X(26:}
01 (CUST-DA REDEFINES DA.
02 NAME PIC X(20}
02 FILLER PIC X(14).
01 ITEM-DA REDEFINES DA.
02 DESC PIC X(20)
02 UPRC PIC 9(3)V(3)
02 GTYO. PIC 9(4).
02 QTYH - PIC 9(4).
01 DB-DELIM PIC XX VALUE /=%,

4
PROCEDURE DIVISION.
MAIN-PROG.
OPEN INPUT TINFILE, OUTPUT DUTFILE.
MOVE SPACES TO OUTREC DATAREC.
MOVE "OF" TO FUNC. MOVE "SHRD" TO KEYN.
MOVE "CUST" TO DBFILE.
PERFORM DPEN-DATABABE~FILE.
MOVE “ITEM® TO DBFILE.
PERFORM OFPEN-DATABASE-FILE.
MOVE "SGFL" TO DBFILE.
PERFORM OPEN-DATABASE~-FILE.
PERFORM PROCESS-TRAN UNTIL TRAN-EOF.
END-DF -RUN. '
MOVE “CF®" TO FUNC.
MOVE “CUST" TO DBFILE.
CALL "DBMSYS" USING CB, SOFLPK-LL, Di. D2, Di, D2
MOVE “ITEM" TO DBFILE.
CALL "DBMSYS® USING {B. SOFLPR-LL, DI, D2, Di, D&

Figure B-16. Listing of Program CEXTRN (Sheet 3 of 6)

B-38 2272058-9701

Example DBMS Programs

MOVE "SCFL" TO DBFILE.
CALL "DBMSYS" USING CB, SOFLPK-LL, D1, D2, D1, D2.
CLOBE TINFILE OUTFILE.
STOP RUN.
/
OPEN-DATABASE-FILE.
CALL “DBMSYS" USING CB, SOFLPK-LL, Di, 02, Di, D2.
IF STAT NOT = “#="
MOVE DBFILE TO ERR-FILE
MOVE STAT TO ERR-STAT
DISPLAY ERROR-MSG LINE 24
ACCEPT Di LINE 24 PROMPT
¢0 TO END-OF-RUN.
START-TRANSACTION.
MOVE "T8" TO FUNC.
PERFORM TRANSACTION-CALL.
COMMIT-TRANSACTION.
MOVE "TC" TO FUNC
PERFORM TRANSACTION-CALL.
ROLLBACK~-TRANSACTION.
MOVE “TR" TO FUNC
PERFORM TRANSACTIODN-CALL.
TRANSACTION~CALL.
CALLL "DBMSYS" USING CB SOFLPK-LL. D1 D2, D1 DZ
INIT-LOCS.
MOVE "s#swxx" TO LOC1 LOC2.
CHECK~STAT.
IF STAT IS NOT EQUAL TO "#s"
MOVE "Y" TO TR-IND
PERFORM ERR~ROUTINE.
READ-TRAN.
READ TINFILE RECORD
AT END MOVE "Y" TC EOF-IND
IF NOT TRAN-EOF
MOVE "#a#es" TD LOCI LOC2
MOVE SALEND TO OSOND
MOVE ITEMNO TO KEYV OITEMND
MOVE QUANT TO QGTYOOD.
CUTPUT-INFO.
MOVE DATAREC TO OUTREC.
PERFORM WRITE-DATA.
WRITE-DATA.
WRITE OUTREC.

;
PROCESS—-TRAN.
PERFORM READ-TRAN.
IF NOT TRAN-EOF
MGVE O TO DL-COUNT
PERFORM DBMS-ROUTINES
MOVE SPACES TO TINREC DATAREC ESTAT EFILE EKEYN
EKEYV BACK~IND TR-IND.
PERFORM GUTPUT~INFO.
DBMS-ROUTINES.
PERFORM START-TRANSACTION.
PERFORM GET-ITEM-FROM-ITEM.
IF TR-NEEDED
PERFORM ROLLBACK-TRANSACTION
ELSE
PERFORM GET-SHIP-FROM~-SOFL
IF TR-NEEDED
PERFORM ROLLBACK-~TRANSACTION
ELSE

Figure B-16. Listing of Program CEXTRN (Sheet 4 of 6)

2272058-9701 B-39

Example DBMS Programs

PERFORM COMMIT-TRANSACTION
IF STAT IS EQUAL TO "CiL®
IF DL~COUNT IS LESE THAN 10
ADD 1 TO DL-COUNT
G0 TO DBMS-ROUTINES
ELSE :
PERFORM ERR-ROUTINE
ELSE
PERFORM GET-NAME-FROM-CUST
PERFORM DUTPUT—INFOQ
IF BACKORDER-NEEDEO
MOVE SPACES TO DATAREC
MOVE "##3% BACK-ORDERED ###" TO UDESCRPT
PERFORM DUTPUT-INFO.
GET-ITEM-FRCOM-ITEM.
MOVE “RF" TO FUNC.
MOVE "“ITEM" TO DBFILE.
MOVE *ITMN® TO KEYN.
MOVE ITEMND TO KEYV.
PERFDORM INIT-LOCS.
CALL "DBMSYS® USING CB BSOFLFK-LL, ITEM-LL DA,
DA DB-DELIN.
IF STAT IS EQUAL TO "#="
AND LOC1 NOT EQUAL "™
MOVE DESC TO ODESCRPT
MOVE UPRC TO OPRICE
MULTIPLY UPRC BY QUANT GIVING TOTCOSBT ROUNDED
MOVE TOTCOST TO OTOTALO
PERFORM UPDATE-ITEM
ELSE
MOVE "Y" TO TR-IND
IF STAT EGUAL TD "NK"
MOVE "#ITEM DDES NOT EXIST" TO ODESCRPT
' PERFORM QUTPUT~INFOQ
EL3SE
PERFORM ERR-ROUTINE.
UPDATE-ITEM.
ADD QUANT TO QTyO.
IF QTYH IS LESS THAN QUANT
MOVE "Y' TO BACK-IND
ELSE
SUBTRACT QUANT FROM QTYH.
MOVE "WT" TO FUNC
CALL “DBMBYS" USING CB SOFLPK-LL. ITEM-LL DA,
DA DB-DELIM.
PERFORM CHECK-STAT.
GET-SHIP-FROM~S0FL.
MOVE “RF" TO FUNC.
MOVE “SOFL" TO DBFILE.
MOVE “SONM" TO KEVYN.
MOVE SALEND TO KEYV.
PERFORM INIT-LOCS
CALL “DBMBYS" USING CB S0FLPK-LL, SOFLPK-LL BOFLO3-LL,
DA DB-DELINM.
IF STAT IS5 EQUAL TO "sex®
IF LOC1 EQUAL "ssas”
MOVE "=##ND SHIP IN SOFL " TO OSHIPNA
PERFORM UPDATE-SD
ELSE
MOVE SHIP TO OSHIPNA
PERFDRM UFPDATE-BO
ELSE

Figure B-16. Listing of Program CEXTRN (Sheet 5 of 6)

B-40 2272058-9701

Example DBMS Programs

MOVE "Y" TO TR-IND

IF STAT EQUAL TO "NK"
MOVE “###80 DOES NOT EXIST" TO OSHIPNA
PERFORM OUTPUT-INFO

EL.SE

PERFORM ERR-ROUTINE.

UPDATE-S0.

MOVE ITEMNO TO ITEM.

MOVE GUANT TO GQUAN.

PERFORM INIT-LOCS.

MOVE "AA"™ TO FUNC.

CALL “"DBMSYS" USING CB SOFLPK-LL, SOFLO3-LL CUST-LL,

DA DB-DELIM

PERFORM CHECK-STAT.

GET~-NAME-FROM-CUST.

MOVE “RF" TO FUNC.

MOVE "CUST" TO DBFILE.

MOVE “CUSN" TO KEYN.

MOVE OSHIPNA TO KEYV.

PERFORM INIT-LOCE

CALL "DBMSYS" USING CB SOFLPK-LL., CUST-LIL ITEM-LL.

DA DB-DELIM.

IF STAT IS5 EQUAL TO ‘'#x"
AND LDC1 NOT EQUAL "#wxs®
MOVE NAME TO OSHIPNA

ELSE

IF STAT EQUAL TO “NK"
MOVE "###N0O SHIF NAME " TO OSHIPHA
PERFORM OUTFPUT-INFO

ELSE

PERFORM ERR-ROUTINE.

ERR-ROUTINE.

MOVE DBFILE TO EFILE.
MOVE KEYN TD EKEYN.
MOVE KEYV TD EKEYV.
MOVE STAT TO ESTAT.
MOVE ERRREC TO OUTREC.
PERFORM WRITE~DATA.

END PROGRAM.

Figure B-16. Listing of Program CEXTRN (Sheet 6 of 6)

FORMAT IMAGE, REPLACE
PROC DBINFACE

DUMMY
INCLUDE

. DBLIB. DBINFACE

TAEK CEXTRN

INCLUDE

INCLUDE .
INCLUDE .
. DBLIE. SNDMBG
. DBLIEB. COBINT

INCLUDE
INCLUDE
END

. S$SYELIB. RCBTSK

S$SYSLIB. RCBMFD
DBLIB. TEST. COBJTRN

Figure B-17. Link Control File for Program CEXTRN

2272058-9701

B-41/B-42

Alphabetical Index

Introduction

HOW TO USE INDEX

The index, table of contents, list of illustrations, and list of tables are used in: conjunction to ob-
tain the location of the desired subject. Once the subject or topic has been located in the index,
use the appropriate paragraph number, figure number, or table number to obtain the corre-
sponding page number from the table of contents, list of illustrations, or list of tables.

INDEX ENTRIES

The following index lists key words and concepts from the subject material of the manual together
with the area(s) in the manual that supply major coverage of the listed concept. The numbers along
the right side of the listing reference the following manual areas:

Sections — Reference to Sections of the manual appear as “Sections x”’ with the sym-
bol x representing any numeric quantity.

Appendixes — Reference to Appendixes of the manual appear as “Appendix y”’ with the
symbol y representing any capital letter.

Paragraphs — Reference to paragraphs of the manual appear as a series of
alphanumeric or numeric characters punctuated with decimal points. Only the first
character of the string may be a letter; all subsequent characters are numbers. The first
character refers to the section or appendix of the manual in which the paragraph may be
found.

Tables — References to tables in the manual are represented by the capital lefter T
followed immediately by another alphanumeric character (representing the section or
appendix of the manual containing the table). The second character is followed by a
dash (-) and a number.

Tx-yy
Figures — References to figures in the manual are represented by the capital letter F
followed immediately by another alphanumeric character (representing the section or

appendix of the manual containing the figure). The second character is followed by a
dash (-) and a number.

Fx-yy

Other entries in the Index — References to other entries in the index preceded by the
word “See” followed by the referenced entry.

2272058-9701 Index-1

Index

Access:
Authorization 5.3
Resolutions, File T4-1
Add:
After (AA) Function 4.3.3.1
Before (AB) Function 4.3.3.2
Adding and Updating................. F7-5
Advantages of Transaction-Level
Integrity 1.10.4
After (AA) Function,Add 4.3.3.1
Application Program Execution . ..Section7
Area:
Data...................... 4.25,7.3.1.3
EndData......................... 4.2.6
Example, SingleData F7-2
Areas Example, Multiple Data F7-3
Ascending (RA) Function, Read4.3.2.4
Authorization,Access 53
BackuplLogging................:..... 19
Backward (RB) Function, Read . .4.3.2.2
Before (AB) Function, Add 4.3.3.2
Block:
Control 4.2.1,7.3.1.1
EndControl 422
Cali:
Parameters 4.2
RoutineExample F7-4
Techniques 7.3.2
with Dummy Parameters:
COBOLciiviiin.. 4.2.7.1
Pascal 4.2.7.3
FORTRAN 4.2.7.2
CEXMPL:
CompilerListing FB-7
Execution, COBOL Program.......... B.4
LinkControlFile FB-8
Output FB-6
Checking, File-Access 1.8,4.3.1.1
Close File (CF) Function 4.31.3
COBOL:
Call with Dummy Parameters . 4.2.71
Compiling i 7.4
DML Parameters.............. F4-1, F4-2
FileFunction ,.................... F4-7
Linkingco i, 7.4
Program CEXMPL Execution B.4

Run Time:
DBMS Interface »
Linkedwith 7.41,F7-7,F7-8
DBMS Interface
Not Linked with7.4.2, F7-9, F7-10

Codes,Error............ e Appendlx A
Codlng, DML Parameters 7.3.1
Command:
FormatDDL(DDL)................. 3.6.3
Primitive Query PQUERY............. 6.2
Commit Transaction(TC) 4.3.4.2
Common:
DBMS-990 Call Routine Example-. F7-4
Program Considerations 7.3
Index-2

Compiler:
Listing:
CEXMPL......cvviieiiii .. FB-7
; PEXMPL ... FB-13
Compiling:
COBOL ..vii et e e 7.4
Pascal 7.5
Components,DBMS-990.............. F1-1
Considerations:
CommonProgram 7.3
Design ..., 3.6.1
Control:
Blockoviiii i 42.1,7.3.1.1
Endcoiii 42.2
File:
CEXMPL,Link FB-8
COBOLand DBMS, Link F7-7
Pascal and DBMS, Link F7-8
PEXMPL,Link FB-14
Creating DDLFile 3.6.2
Creation,File....................... 7.2.1
CUST PQUERY Session B.3.5.2
Customer File(CUST) B3.1
DDLListingcoviian. FB-3
Data:

Definition Language (DDL) . .Section 3, 1.4
Elements to Document,

Relationship................. ... F2-1
Formats..............ccoivienn.. 3.4
Hierarchy..................... 1.2.1,2.2
Manipulation Language

(ODML) it Section 4,1.5
Retrieval Methods 1.3
Structure Example................. F1-3
Types,DDL L T3-1
VerifyingFile..................... B.3.5

DataArea.................... 4.2.5,7.3.1.3
End....... .. . 4.2.6
Examples:

Single i F7-2

Multiple....... oot F7-3

Data Base:

Elements................. Sectuon 2,1.2
Field i 2.2.5
File ..o 2.2.1
1T (o TV o 2.24
How Transaction-Level Integrity

ProtectsYour.................. 1.10.1
Keys. ..o e 2.3
Line.......ooiiiiiiii i 2.2.3
Recordo, 2.2.2

DBMS:

Exception Reporting......... Appendix A
Link Control File:

COBOL ... F7-7

Pascalot F7-8
Programs, Example B.2

DBMS-990:

Call:
Routine, Example F7-4

2272058-9701

Techniques 7.3.2
Components. F1-1
File to Sales Order Document,

Relationship FB-1
Files it B.3
Program Testing.................... 7.8
Relationship of Source Document

toDBMS F2-2

DDL:
DataTypesc.ooviiiiniinnn. T3-1
Declaration 3.3
Errors . . e 3.7
Examples o i 3.5
File,Creating..................... 3.6.2
IDs,Standard 3.2
Listing i, 3.6.4

CustomerFile FB-3

Example................... F3-1, F3-2

ItemFile....................... FB-4

SalesOrderFile................. FB-5
Procedures 3.6
Command, Format 3.6.3

Deadiock 1.10.3
Troubleshooting 1.10.5
Declaration,DDL 3.3
Definition Language (DDL),
Data..................... Section 3,1.4
Delete:
Function(DL) 4.3.3.4
Record Function(DR) 4.3.3.5
Descending (RD) Function, Read4.3.2.5
Description:
File ... 3.3.2
GeneralDBMS................ Section 1
SecondaryKey 3.3.3
Design Considerations. 3.6.1
Disposition,Hold.................... F7-6
DML:
Errors A.2
Functions 4.3
Parameters:

COBOLcviu.. F4-1,F4-2

Codingciiiiiiaan, 7.3.1

Pascal Fa4-4

Document:
Line Correlation Example, File....... F1-2
Relationship:
toDataElements................ F2-1
toDBMS-990............... F2-2, FB-1
Dummy:
Parameters:

COBOLCall 4271

PascalCall 4273

FORTRANCall 4.2.7.2

Elements:

DataBase Section 2, 1

to Document, Relationship of Data . . .F2-
End:

ControlBlock, 422

DataArea............ Ce e ..4.26

2272058-9701

Index

FileStatement..... 3.3.4
Group Statement (ENDG)3.3.25
Line:
List ..o 424
Statement(ENDL) 3.3.26
Error:
Codes........ccovvvvunn.. Appendix A
Messages, PQUERY Appendix A
Errors:
DDL ... 3.7
DML. ... A.2
Example:
Common DBMS-990 Call RoutineF7-4
DataStructure F1-3
DBMSPrograms B.2
DDL .ot 3.5
Listing F3-1, F3-2
File Document Line Correlation...... F1-2
LinekList F7-1
Multiple DataAreas................ F7-3
Parameterlists................... 427
Program Files TB-1
Queries ... 6.3
Single DataArea F7-2
Exception:
Processing.......................7. 7.3.3
Reporting, DBMS Appendix A
Execution:
Application Program........... Section7
COBOL Program CEXMPL B.4
Pascal Program PEXMPL B.6
Field:
DataBase 2.2.5,3.6.1.1
Statement 3.3.24
File:
Access Resolutions T4-1
Close (CF) Function.............. 4.3.1.3
CreatingDDL 3.6.2
Creation......................... 7.2.1
Customer(CUST) B.3.1
DataBase........................ 2.2.1
Data, Verifying B.3.5
DDL!
Listing, Customer FB-3
Listing,ltem.................... FB-4
Listing, SalesOrder FB-5
Description 3.3.2
Function:
COBOLiiiiiiin.. F4-5
Pascal F4-7
FORTRAN...................... F4-6
Functions........................ 4.3.1
tem(ITEM) B.3.2
Link Control:
CEXMPL..............ccu FB-8
COBOLandDBMS............... F7-7
PascalandDBMS F7-8
PEXMPL................c... FB-14
Open(OF)Function 4.3.1.2

Index-3

Index

SalesOrder(SOFL)................ B.3.3
Statement, 3.3.1
End 3.34
to Sales Order Document,
Relationship FB-1
Files:
DBMS-990......... ..., B.3
Example Program TB-1
InitialLoad B.3.4
Logical Relationshipof FB-2
File-Access Checking........... 1.8,4.3.1.1
Format DDL (DDL) Command 3.6.3
Formats,Data........................ 3.4
Forward (RF) Function, Read4.3.2.1

Function:

Add:
After(AA). ...t 4.3.3.1
Before(AB)o0h. 4.3.3.2
CloseFile(CF) 4.3.1.3
COBOLFilecvviiiiiiinnns F4-5
Delete(DL)covivvnnnn 43.3.4
Delete Record(DR)............... 4.3.3.5
HoldLine(HL)................... 4.3.2.7
OpenFile(OF)c.covnt. 4.3.1.2
PascalFileot Fa-7
Read: .
Ascending(RA)................ 4.3.2.4
Backward(RB) 4.3.2.2
Descending(RD) 4.3.2.5
Forward(RF) 4.3.2.1
Serial(RS)covvnnt. 4.3.2.3
Release Line(RL) 4.3.2.8
WriteWT)oov e 4.3.3.3
Functions:
DML .. i e 4.3
File ..o e 4.3.1
Readc.coiiiiiiiiiinnn. 4.3.2
Transaction 4.3.4
Updateccviiviiiinnnns 4.3.3
General DBMS Description Section 1
Group:
DataBase.................couvtnn 2.24
Statement 3.3.2.3
(ENDG),End 3.3.25
Hierarchy,Data.................. 1.2.1,2.2
Hold:
Disposition............. F7-6
Line(HL) Function 4.3.2.7
HoldingLines 7.3.4
How Transaction-Level Integrity
Protects Your DataBase 1.10.1
Identification Statement (ID),
- Record.......... . i 3.3.2.1
IDs,StandardDDL 3.2
Initial LoadFiles B.3.4

Integrity:
Advantages of Transaction-Level ...1.10.4
Protects Your Data Base, How
Transaction-Level 1.10.1

Index-4

Transaction-Level 1.10

Interface:

PQUERYUserccoovnn. 6.2.1

ltemFile(ITEM)..................... B.3.2
DDLListingcoiiio . FB-4
PQUERY Session......... B.3.5.3,B.3.5.4

Key:

Description, Secondary 3.3.3
Search,Partial 4.3.26
Statement, Secondary 3.3.3.2

KeYS v ittt s 122
DataBaseccoieiiiiin, 2.3
Primary........... ... oo, 2.3.1
Secondary 2.3.2,3.6.1.2

Language:

Data Definition, (DDL) Section 3, 1.4

¥ Data Manipulation, (DML) .. .Section 4,1.5

ine:

Correlation to File and DocumentF1-2
DataBase.........coonviieiinnnn.. 223
Hold, (HL) Function 4.3.2.7
List. .o 4.2.3,7.3.1.2

End ..ot e 424

Exampleo, F7-1
Release, (RL) Function 4.3.2.8
Statement, 3.3.2.2

End,(ENDL)................... 3.3.2.6

Lines ..vin i e e 3.6.1.1
Holdingo, 7.3.4

Link Control File:

CEXMPL......ii ittt FB-8
COBOLandDBMS................. F7-7
~PascalandDBMS F7-8
PEXMPL FB-14

Linking:

COBOL ..ot i e iii e 7.4
Pascalcoiiiiiiii it 7.5
List:
EndLine........cooivi i, 424
Example,Line F7-1
Examples, Parameter 4.2.7
Line ... 42.3,7.31.2

Listing:
CEXMPL,Compiler................. FB-7
CustomerFileDDL FB-3
DDL.. .. e 3.6.4
Example,DDL F3-2
ItemFileDDL..................... FB-4
PEXMPL, Compiler FB-13
Sales Order File DDLovvn.n. FB-5

Load Files, Initial B.3.4

Location:

Location Pointers:
RAStarting...........ol T4-2
RDStartingcooiiai, T4-3

Locking Protocol................... 1.10.2

Logging,Backupiil 1.9

Logical Relationshipof Files.......... FB-2

2272058-9701

Manipulation Language (DML),

Data..................... Section 4,1.5
Messages, PQUERY Error Appendnx A
Methods, Data Retrieval 1.3
Multiple Data Areas Example.......... F7-3
Open File (OF) Function 4.3.1.2
Operation Summary, DBMS-990......... 7.8
Optimization 7.3.3
Output:

CEXMPL...............iiiit. FB-6

PEXMPLt FB-12

PQUERY 6.2.2
Parameter List Examples 4.2.7
Parameters:

Call ... i e 4.2

COBOL:

CallwithDummy 4271
DMLt F4-1, F4-2

Coding,DML 7.3.1

Pascal:

CallwithDummy 4.27.3

DML....... .. F4-4
Partial KeySearch 4.3.2.6
Pascal:

and DBMS, Link Control File F7-8

Call with Dummy Parameters4.2.7.3

Compiling............. i, 7.5

DML Parameters F4-4

Linking i, 7.5

Program PEXMPL Execution B.6
Passwordscccvivnnnn. 5.2
PEXMPL.:

CompilerListing FB-13

Execution, Pascal Program B.5

Link Control File FB-14

Output FB-12
Pointers:

RA Starting Location............... T4-2

RD Starting Location............... T4-3
PQUERY:

Command, PrimitiveQuery 6.2

ErrorMessages 6.4

Output 6.2.2

Session:

CUST ...t B.3.5.2
ITEM B.3.5.3,B.3.5.4
SOFL. i B.3.5.1

Userinterface 6.2.1
Preliminary Procedures................ 7.2
PrimaryKeysciiiuvnn. 2.3.1
Primitive:

Query...........ccovun.. Section 6, 1.7

PQUERYCommand 6.2
Procedures:

DDL ... e 3.6

Preliminary 7.2
Processing, Exception 7.3.3
2272058-9701

Index

Program:
CEXMPL Execution,COBOL B.4
Considerations, COMMON - v evnrrn.. 7.3
Execution, Appllcatlon Section7
Files, Example TB-1
PEXMPL Execution, Pascal B
Testing, DBMS-990 7.8
Programs, ExampleDBMS B.2
Protects Your Data Base,
How Transaction-Level Integrity1.10.1
Protocol, Locking 1.10.2

Queries,Example..................... 6.3
Query:
PQUERY Command, Primitive 6.2
Primitive Section 6, 1.7

RA Starting Location Pointers T4-
RD Starting Location Pointers T4-
Read:
Ascending (RA) Function4
Backward (RB) Function 4,
Descending (RD) Function4
Forward (RF) Function............ 4
Functions........................
Serial(RS) Function.............. 4,
Record:
DataBase..............c...unn
Delete (DR) Function 4
ldentification Statement (ID).......3.3.2.
Relationship:
Data Elements to Document F2-
DBMS-990 File to Sales Order
Document
Files,Logical
Source Document to DBMS-990.
Release Line (RL) Function.......... 4.3.2.
Reporting, DBMS ExceptionAppendi
Resolutions, File Access
Retrieval Methods,Data
Rollback Transaction(TR)........... 4.3.
Routine Example, Common
DBMS-990Call

SO W= E N

“42wqmm
I A=EXNnEE
A WWADPOON A -

n

Sales Order:
Document, Relationship to
DBMS-990File.................. FB
FileDDL Listing FB-
File(SOFL) B
Search,PartialKey.................
Secondary:
Key:
Description 3.3.3
Statement 3.3.3.2
Keys..........c.couuiun.. 2.3.2,3.6.1.2
SECONDARY-REFERENCES
Statement 3.3.
Security Section 5, 1.6
Serial (RS) Function,Read 4.3.2.

P
wl
o

Index-5

Index

Session:
CUSTPQUERY..................
ITEMPQUERY B.3.5.3,
SOFLPQUERY..................

Single Data Area Example

SOFL PQUERY Session

Source Document to DBMS-990,
Relationship....................

StandardDDLIDs..................

Start Transaction(TS)

Starting Location:

Pointers,RA
Pointers, RD
Statement:
EndFile
End Group(ENDG)
EndLine(ENDL).................
FIELD,

LINE.o it
Record Identification (ID) .
SecondaryKey
SECONDARY-REFERENCES
Structure Example,Data............
Summary, DBMS-990 Operation

Techniques DBMS-990, Call.........
Testing, DBMS-990 Program
Transaction:

Functions......................

(TC),Commit....................

(TR),Rollback

(TS),Start.......................

Transaction-Level:

Integrity.
Advantagesof
Protects Your Data Base, How. . .

Troubleshooting Deadlock

Index-6

.7

1
.1.10.
.1.10.

3.4.

=N
H W

—
sy
wWN

WWww

MOLWWwWwwwwww
NS WRNbNG

—“ WA NN 0O ANANW=ROO D

N®

o

- O

.1.10.5

Types,DDLData..................... T3-1
Update Functions 4.3.3
Updating,and Adding F7-5
User Interface, PQUERY 6.2.1
Verifying FileData B.3.5
Write (WT) Function................ 4.3.3.3
(AA) Function, Add After 4.3.3.1
(AB) Function, Add Before 4.3.3.2
(CF) Function, CloseFile 4.3.1.3
(CUST), CustomerFile B.3.1
(DDL):
Command, FormatDDL 3.6.3
Data Definition Language .. .Section 3, 1.4
(DL) Function,Delete............... 4.3.3.4
(DML), Data Manipulation
Language Section 4,15
(DR) Function, Delete Record4.3.35
(ENDG), End Group Statement3.3.25
(ENDL), End Line Statement3.3.2.6
(HL) Function, Hold Line 4.3.2.7
(IDé, Record Identification
tatement............... 3.3.2.1
(ITEM), Item File B.3.2
(OF) Function,OpenFile............ 4.3.1.2
(RA) Function, Read Ascending4.3.24
(RB) Function, Read Backward4.3.2.2
(RD) Function, Read Descending4.3.25
(RF) Function, Read Forward4.3.21
(RL) Function, Release Line4.3.2.8
(RS) Function, Read Serial 4.3.2.3
(SOFL), Sales OrderFile B.3.3
(TC), Commit Transaction 4.3.4.2
(TR), Rollback Transaction 4.3.4.3
(TS), Start Transaction.............. 4.3.4.1
(WT) Function,Write 4.3.3.3

22720589701

CUT ALONG LINE

USER’S RESPONSE SHEET

Model 990 Computer DNOS Data Base Management System

Manual Title:

Programmer’s Guide (2272058-9701)
Manual Date: __15July 1982 Date of This Letter:
User’s Name: Telephone:
Company: Office/Department:

Street Address:

City/State/Zip Code:

Please list any discrepancy found in this manual by page, paragraph, figure, or table number in the
following space. If there are any other suggestions that you wish to make, feel free to include
them. Thank you.

Location in Manual Comment/Suggestion

NO POSTAGE NECESSARY IF MAILED iN U.S.A.
FOLD ON TWO LINES (LOCATED ON REVERSE SIDE), TAPE AND MAIL

FOLD

NO POSTAGE
NECESSARY
{F MAILED
IN THE
UNITED STATES

(BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 7284 DALLAS, TX

POSTAGE WILL BE PAID BY ADDRESSEE

TEXAS INSTRUMENTS INCORPORATED
DIGITAL SYSTEMS GROUP
ATTN: TECHNICAL PUBLICATIONS

P.O. Box 2909 M/S 2146
Austin, Texas 78769

FOLD

TExAs INSTRUMENTS

INCORPORATED

DIGITAL SYSTEMS GROUP
P.O. BOX 2909 » AUSTIN, TEXAS 78769

