
Model 990 Computer
ONOS Data Base Management System

Programmer's Guide

Part No. 2272058·9701 • A
15 July 1982

TEXAS INSTRUMENTS
INCORPORATED

© Texas Instruments Incorporated 1981, 1982

All Rights Reserved, Printed in U.S.A.

The information and/or drawings set forth in this document and all rights in and to inventions disclosed
herein and patents which might be granted thereon disclosing or employing the materials, methods,
techniques or apparatus described herein, are the exclusive property of Texas Instruments Incorporated.

MANUAL REVISION HISTORY

Model 990 Computer DNOS Data Base Management System Programmer's
Guide (2272058-9701)

Original Issue 1 August 1981
Revision .. 15 July 1982

The total number of pages in this publication is 172.

DNOS
Distributed Network Operating System

Software Manuals

The manuals supporting ONOS are arranged in this diagram according to the type of user. The manuals most
beneficial to your needs are those contained in the block identified as your user group and in all the blocks
above that set.

DNOS Operations
Guide
2270502-9701

DNOS System Command
Interpreter (SCI)
Reference Manual
2270503-9701

language users and
communications software

users

Language Reference
Manuals

DNOS Language
Programmer's Guides

DNOS Link Editor
Reference Manual
2270522-9701

DNOS Productivity Tools
User's Guides

DNOS Communications
Software User's Guides and
Programmer's Guides

2280078

2272058-9701

all users and
management

DNOS Concepts and
Facilities
2270501-9701

all users

ONOS Text Editor
Reference Manual
2270504-9701

ONOS Online Diagnostics
and System Log Analysis
Tasks User's Guide
2270532-9701

assembly language users

Assembly Language
Reference Manual
2270509-9701

ONOS Assembly Language
Programmer's Guide
2270508-9701

ONOS Link Editor
Reference Manual
2270522-9701

ONOS Supervisor Call
(SVC) Reference Manual
2270507-9701

DNOS Messages and
Codes Reference
Manual
2270506-9701

DNOS Master Index to
Operating System Manuals
2270500-9701

systems programmers

DNOS Systems
Programmer's Guide
2270510-9701

DNOS System Generation
Reference Manual
2270511-9701

source code users

DNOS System Design
Document
2270512-9701

DNOS SCI and Utilities
Design Document
2270513-9701

iii

DNOS
Distributed Network Operating System

Software Manuals Summary
Concepts and Facilities

Presents an overview of DNOS with topics grouped into functions of the operating system. All new users
(or evaluators) of DNOS should read this manual.

Operations Guide
Provides the information necessary to perform daily tasks at a TI 990 Computer installation using DNOS.
Step-by-step procedures are presented for such tasks as operating peripherals, initializing the system,
backing up the system, and manipulating disk files.

System Command Interpreter (SCI) Reference Manual
Describes how to use SCI in both interactive and batch jobs. Command procedures and primitives are
described, followed by a detailed presentation of all SCI commands in alphabetical order for easy
reference.

Text Editor Reference Manual
Shows how to use the Text Editor interactively on DNOS and includes a detailed description of each of the
editing commands and function keys.

Messages and Codes Reference Manual
Lists the error messages, informative messages, and error codes reported by DNOS.

Online Diagnostics and System Log Analysis Tasks User's Guide
Provides the information necessary to execute the online diagnostic tasks and the system log analysis
tasks and to interpret the results.

Master Index to Operating System Manuals
Contains a composite index to topics in the DNOS operating system manuals.

Programmer's Guides and Reference Manuals for Languages
Each programmer's guide describes one of the languages supported by DNOS (for example, assembly
language, Pascal, COBOL). Each guide covers operating system information relevant to the use of that
language in the DNOS environment. The details of the language itself, including language syntax and pro­
gramming considerations, are in the language reference manual.

Link ,Editor Reference Manual
Describes how to use the Link Editor on DNOS to combine separately generated object modules to form a
single linked output.

User's Guides for Productivity Tools
Each user's guide describes one of the productivity tools (for example, TIFORM, Query-990, DBMS-990,
Sort/Merge) supported by DNOS. Each guide explains the function of the processor, its features, and its
interface requirements.

User's Guides and Programmer's Guides for Communications Software
Describe the features, functions, and use of the communications software available for execution under
DNOS. For example, there is a user's guide for the DNOS 3780/2780 Emulator software package.

Supervisor Call (SVC) Reference Manual
Presents detailed information about each DNOS supervisor call and general information about DNOS
services.

Systems Programmer's Guide
Discusses the DNOS nucleus and subsystems at a conceptual and functional level and describes how to
modify the system for a specific application environment.

System Generation Reference Manual
Contains the information needed to perform system generation, including pregeneration requirements,
generation procedures, and information about postgeneration results.

System Design Document
Contains the information needed to understand the functioning of the system when using a source kit. This
includes descriptions of the subsystems in detail, naming and coding conventions, module cross­
references, data structure details, and information not found in other manuals.

SCI and Utilities Design Document
Presents design information about SCI and the DNOS utilities.

iv 2272058-9701

Preface

This manual is intended for the programmer and the data base user. It provides information for
defining data elements and for writi ng and testing programs for use with the Texas Instruments
data base management system, DBMS-990. The data base administrator (DBA) oversees the data
base operation, maintains the system, manages the security assignments and the security
system, and assists in the design and operation of the data base. For further details, consult the
Model 990 Computer DNOS Data Base Administrator User's Guide.

Certain symbols appear in the instruction definitions in this manual. Brackets ([]) signify that you
can omit an item. Angle brackets « » indicate that the appropriate user-defined item is required.
Braces ({ }) indicate that you must choose one of the enclosed items.

This manual is organized into the following sections and appendixes:

Section

1 General Description - Provides a general description of DBMS-990.

2 Data Base Elements - Describes the elements of the data hierarchy.

3 Data Definition Language (DDL) - Describes the statements in a DDL declaration and
presents example DDL procedures, and error messages.

4 Data Manipulation Language (DML) - Defines each call parameter and each DML func­
tion code.

5 Security - Discusses passwords and access authorization.

6 Primitive Query - Describes primitive query functions and presents example queries
and error messages.

7 Execution of Application Programs - Discusses preliminary procedures, program
techniques, compiling and linking, and program testing.

Appendix

A DBMS Exception Reporting - Explains DBMS-990 status exception codes.

B Example DBMS Programs - Provides an example DBMS application written in COBOL,
Pascal, and FORTRAN.

2272058·9701 V

Preface

In addition to the DNOS manuals shown on the frontispiece, the following documents contain in­
formation related to this manual:

vi

Title

Model 990 Computer DNOS COBOL Programmer's
Guide

Model 990 Computer DNOS TI Pascal Programmer's
Guide

Model 990 Computer FORTRAN Programmer's
Reference Manual

Model 990 Computer DNOS Data Base Administrator
User's Guide

Model 990 Computer DNOS Query-990 User's Guide

Part Number

2270516-9701

2270517-9701

946260-9701

2272059-9701

2276554-9701

2272058-9701

Paragraph

1.1
1.2
1.2.1
1.2.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.10.1
1.10.2
1.10.3
1.10.4
1.10.5

Contents

Title Page

1 - General Description

Introduction .. 1-1
Data Base Elements ... 1-1

Data Hierarchy .. 1-1
Keys .. 1-2

Data Retrieval Methods .. 1-2
Data Definition Language (DOL) ... 1-3
Data Manipulation Language (DML) .. 1-4
Security ... 1-4
Primitive Query : ... 1-4
File-Access Checking .. 1-5
Backup Logging .. 1-5
Transaction-Level Integrity ... 1-5

How Transaction-Level Integrity Protects Your Data Base 1-5
Locking Protocol .. 1-6
Deadlock .. 1-7
Advantages of Transaction-Level Integrity 1-9
Troubleshooting Deadlock .. 1-9

2 - Data Base Elements

2.1 Introduction ... 2·1
2.2 Data Hierarchy .. 2·1
2.2.1 File ... 2·1
2.2.2 Record .. 2·1
2.2.3 Li ne ... 2·3
2.2.4 G rou p ... 2·3
2.2.5 Field .. 2·3
2.3 Keys .. 2·4
2.3.1 Pri mary Keys ... 2·4
2.3.2 Secondary Keys ... 2·4

3 - Data Definition Language (DOL)

3.1 Introduction .. 3·1
3.2 Standard DOL IDs ... 3·1
3.3 DOL Declaration .. 3·1
3.3.1 FILE Statement ... 3·2

2272058·9701 vii

Contents

Paragraph

3.3.2
3.3.2.1
3.3.2.2
3.3.2.3
3.3.2.4
3.3.2.5
3.3.2.6
3.3.3
3.3.3.1
3.3.3.2
3.3.4
3.4
3.5
3.6
3.6.1
3.6.1.1
3.6.1.2
3.6.2
3.6.3
3.6.4
3.7

4.1
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.2.7.1
4.2.7.2
4.2.7.3
4.3
4.3.1
4.3.1.1
4.3.1.2
4.3.1.3
4.3.2
4.3.2.1
4.3.2.2
4.3.2.3
4.3.2.4
4.3.2.5
4.3.2.6

viii

Title Page

File Description ... 3-2
Record Identification (10) Statement 3-2
LI N E Statement ... 3-3-
G ROU P Statement .. 3-3
FIELD Statement .. 3-3-
End Group (ENDG) Statement ... 3-3-
End Line (ENOL) Statement ... 3-3 _

Secondary Key Description ... 3-4
SECON DARY-REFERENCES Statement 3-4
Secondary Key Statement .. 3-4

End File Statement .. 3-4
Data Formats ... 3-5
DOL Examples .. 3-7
DOL Procedures ... 3-10

User Design Considerations ... 3-10
Lines and Fields ... 3-10
Secondary Keys .. 3-10

Creating a DOL File ... 3-10
Format DOL (DOL) Command ... 3-10
DOL Listing ... 3-11

DOL Errors .. 3-12

4 - Data Manipulation Language (DML)

Introduction .. 4-1
Call Parameters ... 4-2

Control Block ... 4-2
End of Control Block ... 4-3
Line List ... 4-3
End of Line List ... 4-4
Data Area .. 4-4
End of Data Area .. 4-5
Parameter List Examples ... 4-5

COBOL Call with Dummy Parameters 4-5
FORTRAN Call with Dummy Parameters 4-8
Pascal Call with Dummy Parameters 4-8

DML Functions .. 4-10
File Functions ... 4-10

File-Access Checking ... 4-10
Open File (OF) ... 4-11
Close Fi Ie (CF) ... 4-12

Read Functions .. 4-12
Read Forward (RF) .. 4-14
Read Backward (RB) .. 4-15
Read Serial (RS) .. 4-16
Read Ascending (RA) ... 4-17
Read Descending (RD) .. 4-18
Partial Key Search .. 4-19

2272058·9701

Paragraph

4.3.2.7
4.3.2.8
4.3.3
4.3.3.1
4.3.3.2
4.3.3.3
4.3.3.4
4.3.3.5
4.3.4
4.3.4.1
4.3.4.2
4.3.4.3

Contents

Title Page

Hold Line (HL) ... 4·19
Release Line (RL) ... 4·20

Update Functions .. 4·20
Add After (AA) ... 4·21
Add Before (AB) .. 4·22
Write (WT) ... 4·23
Delete (DL) .. 4··23
Delete Record (DR) ... 4·24

Transaction Functions .. 4·24
Start Transaction (TS) ... 4·25
Commit Transaction (TC) .. 4·25
Rollback Transaction (TR) ... 4·25

5 - Security

5.1 Introduction .. 5·1
5.2 Passwords ... 5·1
5.3 Access Authorization .. 5·1

6 - Primitive auery

6.1 Introduction .. 6·1
6.2 Primitive Query (PQUERY) Command 6·1
6.2.1 PQUERY User Interface .. 6·1
6.2.2 PQUERY Output .. 6-2
6.3 Example Queries .. 6·3
6.4 Error Messages .. , 6·4

7.1
7.2
7.2.1
7.2.2
7.3
7.3.1
7.3.1.1
7.3.1.2
7.3.1.3
7.3.2
7.3.3
7.3.4
7.3.5
7.4
7.5
7.6

2272058·9701

7 - Execution of Application Programs

Introduction .. 7·1
Preliminary Procedures .. 7-1

File Creation ... 7-1
Security ... 7-1

Common Program Considerations ... 7·1
Coding of DML Parameters ... 7·2

Co·ntrol Block .. 7-2
Line List ... 7-2
Data Area .. 7·3

Call Techniques to DBMS·990 ... 7-3
Exception Processing and Optimization 7-4
Holding Lines .. 7~4
Transaction Bracketing .. 7-5

Compiling and Linking COBOL .. 7-9
Compiling and Linking Pascal ... 7-9
Compiling and Linking FORTRAN ... 7·10

ix

Contents

Paragraph Title Page

7.7 Program Testing with DBMS-990 " 7-11
7.7.1 StartUp .. 7-11
7.7.2 Execution ... 7-11
7.7.3 Termination ... 7-11
7.8 Summary of DBMS-990 Operation ... 7-12

Appendixes

Appendix Title Page

A DBMS Exception Reporting .. A-1

B Example DBMS Programs .. B-1

Illustrations

Figure Title Page

1-1 DBMS-990 Components .. 1-2
1-2 Example of File, Document, and Line Correlation 1-3
1-3 Example of a Data Structure .. 1-4
1-4 Upgrading a Lock ... 1-7

2-1 Relationship of Data Elements to a Document 2-2
2-2 Relationship of a Source Document to a DBMS-990 Data Structure 2-5

3-1 DDL Example Without a Group Primary Key 3-8
3-2 DDL Example with a Group Primary Key 3-9

4-1 Example One of COBOL DML Parameters 4-6
4-2 Example Two of COBOL DML Parameters 4-7
4-3 Example of FORTRAN DML Parameters 4-8
4-4 Example of Pascal DML Parameters .. 4-9
4-5 COBOL File Function ... 4-11
4-6 FORTRAN File Function .. 4-11
4-7 Pascal File Function .. 4-13

7-1 Line List Example ~ ... 7-2
7-2 Example of Single Data Area .. 7-3
7-3 Example of Multiple Data Areas ... 7-4
7-4 Example of Common DBMS-990 Call Routine 7-5
7-5 Adding and Updating .. 7-7
7-6 Use of HOLD Disposition ... 7-8

X 2272058-9701

Contents

Figure Title Page

7-7 Link Control File for COBOL and DBMS 7-9
7-8 Link Control File for Pascal and DBMS 7-10
7-9 Link Control file for FORTRAN and DBMS 7-11

Tables

Table Title Page

1-1 Locking Protocol .. 1-6
1-2 Illustration of Deadlock , .. 1-8

3-1 DOL Data Types ... 3-6

4-1 File Access Resolutions .. 4-10
4-2 RA Starting Location Pointers .. 4-18
4-3 RD Starting Location Pointers .. 4-19

2272058·9701 xi/xii

1

General Description

1.1 INTRODUCTION

DBMS-990 is the data base management system (DBMS) that operates under the DNOS operating
system on the Texas Instruments Model 990 Computer. Although DBMS-990 is a general-purpose
data manager, you establish the content, grouping, relationship, and security of all data elements.
DBMS-990 is easy to use and provides you with a logical viewpoint of the data. Normal physical
constraints such as access method, record size, block size, and relative field position should not
concern you.

The primary purpose of DBMS-990 is to provide a mechanism for organizing, storing, updating, and
retrieving data through mass-storage devices. The 990 computer's mass-storage media is disk,
which facilitates the use of random-access techniques.

This section provides an overview of the data base elements, data definition language (DDL), data
manipulation language (DML), security, primitive query, file-access checking, and backup logging.

Figure 1-1 shows the various components of DBMS-990. The nucleus performs the actual
manipulation of data. Security and logging of updated data are optional features of DBMS-990. The
interface module is the communication link between user programs and the nucleus. The DML is
embedded in each user program to facilitate this communication. The DDL and the DDL compiler
enable you to define the data base file(s). Utilities communicate with the interface module to per­
form various maintenance tasks, including copying and restoring data base files. Primitive query
also communicates with the interface module to enable you to inquire and display data in a limited
manner. The various components make DBMS-990 an integrated system. The components that
communicate with the interface module work indirectly with the nucleus. If security and backup
logging are installed in your system, you must consider their effects on DBMS-990 and the data
base. The DBMS-990 application programming languages are COBOL, FORTRAN, and Pascal.
These programs contain the DML functions.

1.2 DATA BASE ELEMENTS

Data base elements consist of the data hierarchy and keys. The data hierarchy contains the logical
data elements; keys allow access to the data.

1.2.1 Data Hierarchy
The DBMS-990 data hierarchy is oriented toward business documents such as invoices, purchase
orders, and sales orders. A document is the basic means of initiating, executing, and recording
business transactions. Accordingly, the document concept facilitates the automation of business
activities and the development of the required computer software.

2272058·9701 1-1

1.2.2 General Description

UTILITIES

2277674

8

. Figure 1-1. DBMS-990 Components

APPLICATION
PROGRAM

DOL COMPI LER

As Figure 1-2 shows, a DBMS-990 data file corresponds to a file contained in a filing cabinet, and a
data record corresponds to the document that first contained the information. A document con­
tains lines of information that describe the business transaction. The line in a DBMS-990 data file
corresponds to a line in a document. Thus, the order of the hierarchy is as follows: a file contains·
records, records contain lines, and lines contain groups of fields and/or individual fields.

1.2.2 Keys
A key identifies a certain data element to facilitate rapid access. The two types of keys in
DBMS~990 are primary and secondary. Primary keys identify records, while secondary keys iden­
tify lines. Figure 1-3 shows how a primary key (in this case, the invoice number) fits into a data
base structure.

1.3 DATA RETRIEVAL METHODS

DBMS-990 provides both random and sequential methods of storing and retrieving data. When
defining a key, the user declares its storage method as either random or sequential. With the se­
quential method, DBMS orders the key values sequentially and then maintains that order. Thus,
you can declare a key as sequential, add and delete data, and then retrieve the data in sorted order.

1-2 2272058-9701

General Description 1.4

} FILE

ADDRESS LINE

311 S.W. MILLS

GREENFIELD, IOWA

2277675

Figure 1·2. Example of File, Document, and Line Correlation

1.4 DATA DEFINITION LANGUAGE (DOL)

The DOL enables you to define or assign the data elements within the data base. Before any pro­
cessing can take place on the data base, you must perform a DOL operation. Use the DOL to define
fHe IDs; key IDs; retrieval methods; and the number of keys, lines, groups, and fields. When pro­
gramming, you need be only minimally concerned with file boundaries and the position of data;
most of these considerations are handled at the data definition level. Knowledge of the data posi­
tion within the file is not required since data requests are made by field or group 10. As long as the
field 10, format, and length do not change, the application programs do not need modification.

2272058·9701

1.5 General Description

DATE LINE

2277676

PRIMARY KEY
INVOICE
NUMBER

ADDRESS
LINE

PART LINES TOTAL LINE

Figure 1-3. Example of a Data Structure

1.5 DATA MANIPULATION LANGUAGE (DML)

LOGICAL
RECORD

The OML enables you to read, replace, add, and delete data. The OML is not a complete language;
it is a set of function codes passed to OBMS·990 through calls embedded in an application
language.

When using the OML, specify only the field and/or groups to be transferred. You need not know the
exact position of the data, only the declared 10 and line type.

1.6 SECURITY

Security is an optional feature of OBMS·990. You can choose to include security during installa·
tion of OBMS·990. Security limits unauthorized use of the dat~ base but requires a certain amount
of overhead. The actual overhead involved depends on the degree of protection assigned to the
data elements in the data base.

To retrieve data from a file, the password provided in the request to OBMS·990 must be associated
with the file and/or data base. Each password is associated with one or more files. Each file
associated with a password requires an access authorization code. You can assign access
authorization to lines, groups, and fields. Lower-level data elements, such as lines and fields,
assume the authorization of the next higher data element. For example, a line that does not have
an authorization code assumes the code of the record. However, you can assign less authorization
to the line. The same applies to groups and fields.

1.7 PRIMITIVE QUERY

Primitive query enables you to retrieve and display data base information without writing a pro·
gram. Three functions are provided for limited retrieval and data display: read forward, read back·
ward, and read serial. The display follows the format defined in the DOL.

1-4 2272058-9701

General Description 1.8

1.8 FILE-ACCESS CHECKING

File-access checking is an optional feature of DBMS-990 and is installed at generation time. File­
access checking involves three types of access:

• Shared access - All users have all access privileges to the file.

• Exclusive access - Only the current user has all access privileges.

• Read-only exclusive access - All users have only read access privileges to the file. File­
access checking monitors the current status to the requested access, checking for in­
compatibilities, and returns appropriate error conditions when incompatibility exists.

1.9 BACKUP LOGGING

Backup logging is an optional feature of DBMS-990; it automatically records successful updates in
an interactive environment. Updates include adds, replaces, and deletes.

1.10 TRANSACTION-LEVEL INTEGRITY

Transaction-level integrity is an optional feature that may be selected by the DBA at Data Base
Generation (DBGEN) time. It allows you to define a series of operations as a transaction. By utiliz­
ing the transaction-level integrity feature, a programmer is able to require that all operations
within the defined boundaries of the transaction be performed successfully or, if one operation
cannot be performed, that the data base be restored to its pretransaction state.

In the event of a system crash, all transactions in progress are rolled back, restoring the data base
to its pretransaction state. This relieves you of the need to manually examine the contents of the
file records in order to verify where processing was interrupted. Automatic rollback of all trans­
actions in progress at the time of a system crash is a feature of transaction-level integrity.

1.10.1 How Transaction-Level Integrity Protects Your Data Base
The advantage of transaction-level integrity in preventing erroneous changes to the data base is
illustrated in the following example.

A bank customer has a savings account and a checking account and wishes to make a transfer of
$1000 from savings to checking. Two data base operations must be performed to complete the
transfer, as follows:

1. Subtract $1000 from savings.

2. Add $1000 to checking.

In this sequence, steps 1 and 2 comprise a transaction. That is, unless both operations are com­
pleted, you do not want either operation applied to the data base.

2272058-9701 1-5

1.10.2 General Description

Without transaction-level integrity, each operation stands alone. If a system crash were to occur
after step 1 and before step 2, the data base would contain an inaccurate entry. In this simple
example, you could possibly recover by examining the contents of the data base and making the
necessary changes. However, in more complicated transactions, the recovery may be con­
siderably more complicated.

With the transaction-level integrity option, the fact that the two operations are defined as a trans­
action ensures that neither operation is applied or both are applied. This ensures that the data
base never contains erroneous data.

1.10.2 Locking Protocol
In order to prevent two users from accessing the same data base line during the course of two sep­
arate transactions, transaction-level integrity employs a system of locks. A line becomes locked
whenever a read or write operation involving that line occurs in a transaction. Whenever an add or
delete is performed, the entire record is locked.

There are two levels of locking: shared lock and exclusive lock. Under shared lock, the data is avail­
able for reading but cannot be modified. Under exclusive lock, the data can neither be read nor
modified by transactions other than the transaction with the exclusive lock. Table 1-1 diagrams
the locking protocol. .

When a lock is changed from a shared lock to an exclusive lock, it is said to be upgraded. The func­
tion for upgrading is hold line (HL), as shown in Figure 1-4.

Upgrading of a user's lock (from shared to exclusive) can only occur when no other user has a
shared lock on that line. If a transaction cannot be upgraded because another user also has a
shared lock on the line, a delay occurs in the transaction requesting the upgrade until one of the
following conditions occurs:

• The competing transaction releases its shared lock on the line, at which pOint the
delayed transaction is allowed to proceed.

• The second transaction also requests an exclusive lock, and a deadlock occurs.

In the second case, the system identifies the deadlock and gives the exclusive lock to the trans­
action that first requested the exclusive lock. The second transaction is denied access and rolled
back. This automatic resolution of deadlock prevents two transactions from waiting on each other
indefinitely.

Table 1·1. Locking Protocol

Type of lock First User Access Other User Access

Shared Read Only Read Only

Exclusive Read/Write Delayed

1-6 2272058-9701

HOLD LINE
(UPGRADING)

SHARED LOCK ~
-------2282274

Figure 1-4. Upgrading a Lock

-
1.10.3 Deadlock

General Description 1.10.3

EXCLUSIVE
LOCK

The importance of the deadlock resolution feature is illustrated in the following example of its use
in a multiuser environment. Table 1-2 summarizes the steps in the example.

In the example, two travel agents are each servicing a customer. 80th customers desire three
seats on the same airline flight. They initially want to know if three seats are available. The pro­
cedures that each agent executes are as follows:

1. Each agent starts a transaction by making an inquiry to the data base. The application
program would perform a start transaction (TS) and a read with release on the same
record for each agent. 80th agents have access to the same record. The record, there­
fore, is in a shared lock state. Neither agent can write to the record while the record isin
this state.

2. The customer working with Agent A decides that he wants the three seats that are avail­
able. Agent A issues a reservation request. The application program attempts to perform
a hold line function to upgrade the record lock from shared to exclusive.

3. The system delays Agent A's transaction due to the conflict with Agent 8's shared lock
on the record. Agent A's transaction is waiting on Agent 8's transaction.

4. The customer working with Agent 8 decides that he wants the three seats also. Agent 8
issues a reservation request. The DML program attempts to perform a hold line function
to upgrade the record lock from shared to exclusive. The two transactions are now
waiting on each other. A's transaction is delayed waiting for 8's transaction to release
the shared lock. At the same time, 8 is waiting for A's transaction to release its lock.
This condition is called deadlock.

2272058-9701 1 .. 7

1.10.3 General Description

5. The system identifies the deadlock and resolves it as follows:

a. Rolls back Agent B's transaction, thereby releasing Agent B's shared lock

b. Returns a deadlock status message to Agent B's transaction

c. Grants Agent A's transaction the exclusive lock it needs

6. Agent A's transaction is committed to the data base.

The deadlock message returned to Agent B's transaction can be used by the programmer to
restart Agent B's transaction or output a message to Agent B's terminal informing him of the con­
flict and instructing him to restart the transaction.

Table 1-2. Illustration of Deadlock

Agent A
User Action Program Function

1. Makes inquiry Start
transaction (TS)
Read with
release

2. Requests 3
seats

3. Waits

4.

5.

6. Receives 3
seats

1-8

Hold line (HL)

Task delayed

Commit
transaction (TC)

Agent B
User Action Program Function

Makes inquiry Start
transaction (TS)
Read with
release

Requests 3
seats

Hold line (HL)

Rollback
transaction (TR)
DL status
returned

System Status

Shared lock on record

Conflict (A is waiting on 8;
system cannot grant
exclusive lock)

Deadlock (8 is waiting on A;
A is waiting on 8)

System:
a. Rolls back 8's transaction
b. Returns DL status to 8's

transaction
c. Grants A's transaction

exclusive lock

2272058-9701

· General Description 1.10.4

1.10.4 Advantages of Transaction-Level Integrity
Transaction-level integrity allows the programmer to define a series of data base operations as a
transaction. In dOing so, the programmer can require that the system execute all operations within
the transaction successfully or, if one or more operations cannot be performed, roll back any data
base modifications made as part of the transaction.

DBMS-990 allows transaction nesting up to a maximum level of 10. The level of nesting permitted
is specified at DBGEN.

The transaction-level integrity feature simplifies the programmer's work in that the system per­
forms the following functions without programmer effort:

• Ensures that all conditions necessary for the success of a defined transaction are met
before making a permanent change to the data base

• Returns an indication of a deadlock that the programmer can use to cause a restart of
the transaction or abort the transaction and display a message to the user indicating a
problem with the transaction

• Locks all data lines involved in a transaction until the transaction is either committed to
the data base or rolled back

• Ensures that the outcome of any transaction operating in a concurrent environment is
identical to that obtained by running the transaction by itself

Remember that there is a performance cost associated with the use of the transaction-level inte­
grity option. System response time is sacrificed and additional memory space is required in return
for a more secure data base. It is recommended that you specify small parameter values when first
using the transaction-level integrity feature and increase the values if experience demonstrates
that deadlock occurs too frequently.

1.10.5 Troubleshooting Deadlock
Anyone of the following conditions can cause a deadlock:

• Two or more transactions request a lock on the same record.

• The system lock table is full. Too many locks are in use for the lock table to accommo­
date them all.

• A transaction contains too many updates.

• The primary keys of one or more users are longer than the maximum length specified at
DBGEN time.

• More users are on the system than were specified at DBGEN time.

If frequent occurrence of deadlock is a problem, you should determine the principle reason for
deadlock. If the Data Base Statistics (DBSTAT) option is enabled, you can do this by executing the
DBSTAT command and examining the statistics. Refer to the Model 990 Computer DX10 Data
Base Administrator User's Guide for an explanation of the DBSTAT command.

2272058-9701 1-9/1-10

2

Data Base Elements

2.1 INTRODUCTION

The major components of a data base are the data hierarchy and the keys. The following
paragraphs descri be these elements.

2.2 DATA HIERARCHY

The data hierarchy consists of data elements from highest to lowest ranking. These data elements
are as follows:

• File

• Record

• Line

• Group

• Field

The basis for the DBMS-990 data element is~he document concept. The document is the primary
means of initiating, executing, and recording business transactions. Since DBMS-990 allows a
direct correlation between the document and the data base (Figure 2-1), the document concept
aids development of commercial software systems.

2.2.1 File
A file is the highest level in the logical construct of the DBMS-990 data hierarchy. In terms of the
document concept, a file represents a collection of documents of a specific type. A document
might contain several pages of information; these pages are easily transferred to the file. Also, the
data base can contain one or more files. The design and relationship of the files depend on the ap­
plication and methods used in the application program.

2.2.2 Record
A record is a collection of one or more data lines. It represents one logical occurrence of a docu­
ment in a DBMS-990 file. Since a file represents only one type of document, only one record type is
represented in a file. However, a file contains many individual data records of the same type.

A primary key uniquely identifies each data record. This key allows rapid access to records,
facilitating data access and modification. The purpose of the record, therefore, is to group lines
under one primary key.

2272058·9701 2-1

2.2.2 Data Base Elements

} FILE

311 S.W. MI LLS
-----T-T--

GREENFIELD IA 50258
ADDRESS LINES

GREENFIELD

50258

ZIP FIELD
2277677

311 S.W. MI LLS

GREENFIELD, IOWA 50258

Figure 2-1. Relationship of Data Elements to a Document

2-2 2272058-9701

Data Base Elements 2.2.3

A record has no meaning in an input/output (I/O) sense (as commonly associated with file manage­
ment systems). Concepts such as variable-length or fixed-length records are meaningless in
OBMS-990. A data record is the logical construct that contains all of the document lines for a
specific transaction. Data transfers occur on a line basis unless the entire record is one line. In the
latter case, a transaction resembling a record transfer occurs whenever that one line is requested.

2.2.3 Line
A line is a collection of data fields and/or groups of fields. Usually, each data line corresponds to a
line on a business document. However, data from several lines in a document can form a single
data line in a record. A data line is the highest-level data element that can be transferred. Examples
of lines include address lines, name lines, part lines, and total lines.

Included within the line concept is the notion of line types, or levels. An alphanumeric value in the
range of 01 through ZZ indicates the line type. A file description can contain only one definition of
a particular line type. Each data record can contain only one 01 data line. Data lines of any other
type can appear any number of times. A line type distinguishes between the different lines of a
document or record. The DOL declaration defines each line type. Often, each line type has many
individual data lines. The maximum size of a line is 512 bytes minus the primary key length, minus
an additional 10 bytes, minus 8 times the number of secon.dary keys in the line.

A line can contain a secondary key that permits access to that line type. For example, by using
part number as a secondary key, you can determine all customers that purchased a certain part.
Only customer records that contain the specified part number (secondary key value) are read.

2.2.4 Group
A group associa.tes several fields within a line. The group identification consists of a unique four­
character 10. During the data definition stage, one or more fields are associated with the group.
The fields within the group always occur within the same line and cannot be defined in more than
one group. An access request for the group 10 retrieves all member fields of the group. The pur­
pose of a group is to allow you to access several fields by using a single name and to facilitate
user access to the data during processing of the file. The maximum number of groups/fields per
file is 200 minus the sum of the number of keys and the number of line types.

2.2.5 Field
A field is the most elementary member in the logical data base structure. It is the smallest unit
that you can access by name during data manipulation. The data definition for a field includes a
four-character 10, a data format, and a field length. Data is stored and retrieved by field or group 10
within a line. Therefore, a programmer must know the field or group 10 and the appropriate line
type when accessing data from a OBMS-990 file. The maximum field size is determined by the data
type of the field. The ma.ximum number of groups/fields per file is 200 minus the sum of the
number of keys and the number of line types.

2272058-9701 2-3

2.3 Data Base Elements

2.3 KEYS

The two types of keys in DBMS-990 are primary and secondary. Keys facilitate data access and
clarify file relationships. The primary key identifies the entire record, whereas a secondary key
identifies a particular line within a record. The maximum length for any key is 40 bytes. Figure
2-2 shows how keys fit into a data base structure and how the source document relates to that
structure.

2.3.1 Primary Keys
Accessing a file by primary key gives you immediate access to a specific record without requiring
you to read the entire file. To access a record, transmit the appropriate key value to DBMS-990.
Each record in a file must contain a unique primary key. Duplicate primary key values are not
allowed within the same file.

2.3.2 Secondary Keys
A secondary key is a group or a field in one of the defined line types that allows access to a data
line without requiring you to use the primary key. While the primary key allows keyed access to the
record level, the secondary key permits keyed access directly to the line level. Any line type can
contain a secondary key, but secondary keys are not required. Duplicate secondary key values are
allowed. A secondary key value can' be duplicated between records as well as within a record.
However, secondary key values can also be unique. If you plan to use unique secondary key
values, impose this restriction in the application program. You can use a maximum of 13 second­
ary keys for a given file.

An example of a secondary key is one that identifies all customers who purchased a certain
product. Using this key, you could determine geographic trends and then use that information to
make decisions about shipping, product inventory, and related matters. Figure 2-2 shows the data
structure that serves as the basis for this application. Line type 05 contains the secondary key
(part number) that facilitates this search.

Although multiple occurrences of line type 05 are possible within a record, a particular product ap­
pears only once within a record. Also, for each qualifying line 05, you can retrieve the primary key,
name, and address information. This data then transfers to a separate file, which can be sorted
and processed to produce a report by name and geographic location.

2-4 2272058-9701

2277678

DATE:

SOLD TO:

PART # QTY

DATE
TERMS
NAME

Data Base Elements 2.3.2

JOE'S PART SHOP

INVOICE #

TERMS

DESCRIPTION PRICE

I
I

j
I

I
I

I

1
I
I

SUBTOTAL
I

.. "- I
TAX

I
I

TOTAL AMT I
I

DESTINATION

PRIMARY KEY - IDENTIFICATION

l LlNEOI Z DATE, ETC.

J LINE 02) ADDRESS

LINE 05

•
•
•

LINE 05

} LINE 60

PARTS
PURCHASED

TOTALS

PRIMARY KEY
INVOICE

NUMBER

STREET
CITY
STATE
ZIP

*PART NUMBER
QUANTITY
DESCRIPTION
PRICE

* PART NUMBER IS A SECONDARY KEY FOR LINE 05

SUBTOTAL
TAX
TOTAL

LOGICAL

RECORD

Figure 2-2. Relationship of a Source Document to a DBM5-990 Data Structure

2272058-9701 2-5/2-6

3

Data Definition Language (DOL)

3.1 INTRODUCTION

The DOL describes the logical structure of the files that you manipulate. The DOL permits the
complete description- of a file and its associated record 10 (primary key), lines, groups, and fields.
Also, the DOL defines any secondary key IDs.

The output of the DOL compiler is stored with the file on the disk~ OBMS-990 uses this output dur::­
ing subsequent file operations. You must describe a file by using the DOL before DBMS-990 can
manipulate the file.

Programmers need be only minimally concerned with file boundaries or the position of data, since,
the DOL usually handles these considerations. As a result, program changes are less likely when
the relative position of the data changes. As long as the data names, format, and length do not
change, an application program does not need modification.

3.2 STANDARD DOL IDs

IDs in a data base structure apply to data names, keys, files, groups, and fields. The standard DOL
10 is fixed length and consists of four characters. The first character must be alphabetic; the re­
maining characters can be numeric (0 through 9) or alphabetic (A through Z). An ,10 can contain
trailing blanks but not embedded blanks. Whenever defining or accessing an 10, you must include
all four characters. For example, define the 10 Z1 with two trailing blanks (Z1 b'> b'».

3.3 DOL DECLARATION

The DOL declaration consists of a series of statements that DBMS-990 compiles. The overall
organization of a DOL declaration consists of the followin,g:

• FILE statement

• File description

• . Secondary key description

• End Fi Ie statement

You can include comments at the end of any statement. Placing an asterisk (*) in column one
reserves the entire line for a comme~t. DOL statements can start in any column.

2272058·9701 3-1

3.3.1 Data Definition Language (DOL)

3~3.1 FILE Statement
The FILE statement identifies the file by a user-supplied OOLname and defines the maximum size
of the file. The format is as follows:

FILE = <10>, LINES = <file size>Ib[<comments>] ,

The <10> is the standard OOL 10 for the file and must be used when accessing the file.

The <file size> is an estimate of the maximum number of data lines allowed in the file. The,OOL
allocates and reserves sufficient disk space for the file being defined. Refer to the Mode/990 Com­
puter DNOS Data Base Administrator User's Guide for details about estimating file size.

3.3.2 File Description
The actual file description consists of a series of statements that describe the primary key, lines,
groups, and fields. The following statements describe the file:

• Record Identification (10) statement

• LI N E statement

• GROUP statement

• FIELO statement

• End Group (ENOG) statement

• End Line (ENOL) statement

3.3.2.1 Record Identification (10) ~tatement. The Record Identification statement defines the
primary key 10 and the maximum number of primary keys allowed for the file. The following is the
format:

10=<10>= [<data format>IGROUP),VOL=<records>[,ACCESS= {RANOOMISEQUENTIAL}[/n))

The <10> is a standard OOL or group 10 for the primary key and must be used when accessing the
file through the primary key.

The <data format> isa standard OOL format for describing the data type of the primary key. It can
be signed and can contain assumed decimal places. Refer to paragraph 3.4 for valid data formats.
The maximum length of any key is 40 characters.

The <recordS> specifies the maximum number of primary keys that can exist in the file at any
time. This number is also the maximum number of records that can exist in a file, since the
primary key is unique for each data record.

The optional ACCESS clause specifies the data retrieval routine for the primary key. The choices
are sequential ordering (specified as SEQUENTIAU1J, or random access (specified as
RANOOM/1). The default is RANOOM/1. The /1 designator is optional because only oneJandom
routine and one sequential routine are currently available.

3-2 2272058·9701

Data Definition Language (DOL) 3.3.2.2

3.3.2.2 LINE Statement. The LINE statement defines the line type to be associated with the
subsequent GROUP and/or FIELD statement. The following is the format:

LINE = <line type> Ib[<comments>]

The <line type> specifies a two-character value referring to the kind of line. Use combinations of
letters or numbers in the ranges of 01 through 99 and AA through ZZ. Line type 01 is not required,
but you must define at least one line. Although no specific line type is required, each line type
must be unique within a particular DDL compile. The limit on the number of groups/fields (200
minus the sum of the number of keys and the number of line types) determines the limit on line
types. With the exception of line 01, you determine the order of the line type definitions. When tine
01 is present, you must specify it first. The maximum size of a line is 512 bytes minus the primary
key length, minus an additional 10 bytes, minus eight times the number of secondary keys in the
line. The size of a line is the sum of all field/group sizes in the line.

3.3.2.3 GROUP Statement. The GROUP statement defines the ID of a group; this ID applies to all
subsequent field and group statements until an End Group (ENDG) statement is encountered. The
format is as follows:

GROUP = <group ID> Ii> [<comments>]

The <group ID> specifies a standard DDL ID for the group. The name must be unique within the
file definition and can be declared as a secondary key.

3.3.2.4 FIELD Statement. The FIELD statement defines the field ID and data format. The follow­
ing is the format:

FIELD = <field ID> = <data format> Ib [<comments>]

The <field ID> is a standard DDL ID. The ID must be unique within the file definition and can be
declared as a secondary key.

The <data format> is the standard DDL format for describing the data type for the field.

The maximum field size is unique to each data type.

3.3.2.5 End Group (ENDG) Statement. The End Group statement definesthe end of a group. Suc­
ceeding group definitions are allowed. Any succeeding FIELD or GROUP statements are not part
of the last group definition. The format is as follows:

EN DGIb [<comments>]

3.3.2.6 End Line (ENOL) Statement. The End Line statement signifies the end of a line specifica­
tion. Subsequent statements can be other LINE statements, secondary references, or an End File
statement. The format is as follows:

ENDLIb[<comments>]

2272058·9701 3-3

3.3.3 Data Definition Language (DDL)

3.3.3 Secondary Key Description
The secondary key description consists of a SECONDARY-REFERENCES statement followed by
one or more secondary key statements.

3.3.3.1 SECONDARY-REFERENCES Statement. The SECONDARY-REFERENCES statement
signifies the beginning of the secondary key description. The following is the format:

SECONDARY-REFERENCES

3.3.3.2 Secondary Key Statement. The Secondary Key statement defines a previously defined
group or field as a secondary key. A maximum of 13 Secondary Key statements is allowed per file.
Any field or group defined as a secondary key can have a maximum of 40 characters. The format of
the statement is as follows:

{<group ID>I<field ID>} = VOL= <keys> [,ACCESS = {RANOOMISEQUENTIAL} [IN]]

The <group 10> or <field ID> is the standard ODL 10 for the previously defined group or field that is
specified as a secondary key.

The <keys> defines the maximum number of unique secondary key values that can exist in the file
at any time for a specific secondary key. Duplicate values are allowed for secondary keys; these
values are linked together. The size of the file determines the maximum number of duplicate
values.

The optional ACCESS clause specifies the data· retrieval routine for the secondary key. The
choices are sequential ordering (specified as SEQUENTIAU1), and random access (specified as
RANDOM/1). The default is RANDOM/1. The 11 designator is optional because only one random
routine and one sequential routine are currently available.

3.3.4 End File Statement
The End File statement signifies the end of the DDL declaration. The format is as follows:

EN D.Ii><comm~nts>

2272058·9701

Data Definition Language (DOL) 3.4

3.4 DATA FORMATS

The primary purpose of the data format is to allow the use of a query language, since this language
needs to know the format of the data it displays. The data format is also a handy user reference.
You are responsible for validating the format of data sent to the data base via DBMS-990.
DBMS-990 does not validate the data it receives against the data format defined by the DDL.

The syntax for the data formats specified in the DDL is one of the following:

Type one: <data type>

or

Type two: <data type>/n

or

Type three: <data type>/n.d

where:

<data type> is a two-character code representing the overall characteristics of the data.

n is the total field length in bytes; you can omit n in formats where a default exists.

d is the number of places to the right of the decimal; use 0 if no decimal values are needed; d
is not required for some formats (see Table 3-1).

Table 3-1 lists the various data types and provides a description and example of each. The data for­
mat is the last parameter in the FIELD statement and the second parameter in the Record Iden­
tification statement. Format types are specified according to the definition in the syntax. Type one
format specifies only the format code; type two specifies the format code and field length; and
type three specifies the format code, field length, and number of decimal places.

A single DDL can contain all of the data formats for the different languages. However, ensure that
each language accesses only those elements whose data formats that particular language can
use. Otherwise, unpredictable results can occur.

2272058·9701 3-5

3.4 Data Definition Language (DOL)

Table 3-1. DOL Data Types

Code

AN

AS

CH

CN

CS

CX

FX

IS

3-6

Description

Arithmetic without sign.
Decimal places are allowed.
Use zero for no decimal places.
Use type three format.

Arithmetic Signed. Length (n)
must include sign, and decimal
places are allowed. Use zero
for no decimal places. Use
type three format.

Character string. Length
includes total characters.
Decimal places not allowed.
Use type two format.

Character numeric. Decimal
places are allowed. Use zero
for no decimal places. Use type
three format.

Character numeric signed.
Length (n) must include the
sign. Decimal places are
allowed. Use zero for no
decimal places. Use type three
format.

Complex variable. Length (n)
default is 8; if specified, it
must be 8. Use type one or two
format.

Scaled integer FORTRAN.
Length (n) default is 2; if
specified, it must be 2. (d) is
the number of bits to the right
of the binary point: the default
is O. Use type three format.

Single-precision integer.
Contained in one 16-bit word.
Length (n) default is 2; if
specified, it must be 2. Field
may contain a sign. Use type
one or two format.

Example Formats

AN/8.2
COBOL: PIC 9(6)V9(2) COMPo
FORTRAN: <none>
Pascal: <none>

AS/8.2
COBOL: PIC S9(5)V9(2) COMPo
FORTRAN: <none>
Pascal: <none>

CH/20
COBOL: PIC X(20).
FORTRAN: <A format>
Pascal: PACKED ARRAY
[1 .. 20] of CHAR

CN/6.2
COBOL: PIC 9(4)V9(2).
FORTRAN: <none>
Pascal: <none>

C5/8.5
COBOL: PIC 59(2)V9(5)
FORTRAN: <none>
Pascal: <none>

CX/8
COBOL: <none>
FORTRAN: COMPLEX
Pascal: <none>

FX/2.4
COBOL: <none>
FORTRAN: FIXED(4)
Pascal: FIXED(16.4)

15/2
COBOL: PIC 9(5) COMP-1.
FORTRAN: INTEGER*2
Pascal: INTEGER

2272058-9701

Data Definition Language (DOL) 3.5

Table 3-1. DOL Data Types (Continued)

Code Description Example Formats

ID Double-precision integer. ID/4
Contained in two 16-bit words COBOL: <none>
and may be signed. Length (n) FORTRAN: INTEGER*4
default is 4; if specified, it Pascal: LONGINT
must be 4. Use type one or two
format.

LG Logical variable. Length (n) LG/2
default is 2; if specified, COBOL: <none>
it must be 2. Use type one FORTRAN: LOGICAL
or two format. Pascal: BOOLEAN

PK Packed decimal. Digit length PKl6.2
(n) must be even and includes COBOL: PIC S9(3)V9(2)
the sign. Decimal places are COMP-3.
allowed, and zero indicates no FORTRAN: <none>
decimal places. Contained in Pascal: <none>
n/2 bytes. Use type three
format.

RS Single-precision real. RS/4
Contained in two 16-bit words COBOL: <none>
and may be signed. Length (n) FORTRAN: REAL *4
default is 4; if specified, it Pascal: REAL
must be 4. Use type one or two
format.

RD Double-precision real. RD/8
Contained in four 16-bit words COBOL: <none>
and may be signed. Length (n) FORTRAN: REAL *8
default is 8; if specified, it Pascal: REAL
must be 8. Use type one or two
format.

3.5 DOL EXAMPLES

Figures 3-1 and 3-2 are DDL examples. Figure 3-1 shows a DDL using a group primary key, nesting
of groups, and indentation to improve readability. Figure 3-2 shows a DDL not using a group
primary key. The next few paragraphs discuss designing a DBMS-990 file, followed by an expla­
nation of the DDL.

2272058-9701 3-7

3.5 Data Definition Language (DOL)

DBMS-990 <L. V. R) DDL TRANSLATOR

FILE=EMPL,LINES=266

* ID=NUMB=CN/6.2,VOL=30,ACCESS=RANDOM/l

* LINE=Ol
FIELD=NAME=CH/20
GROUP=ADDR

FIELD=STRE=CH/20
FrELD=CITY=CH/15
FIELD=STAT=CH/2
FIELD=ZIPC=CN/5.0
ENDG

FIELD=SSN =CN/9.0
ENDL

* LINE=HI
FIELD=JOB =CH/l0
GROUP=LOCA

FIELD=LCTY=CH/10
FIELD=LSTA=CH/15
ENDG

GROUP=RANK
FIELD=GRAD=CH/2
FIELD=RATE=CN/6.2
FIELD=EXPT=LG/2
EhiDG

ENDL
* SECONDARY-REFERENCES
SSN =VQL=30, ACCESS=RANDOM/l

* ENf(

TOTAL PAGES REGUIRED - 108
LINE LENGTH (BYTES) - 96

TOTAL DESCRIPTION PAGES - 1
TOTAL KEY PAGES - 6

LINE 01 -- BASE = 16
LINE HI -- BASE = 16

DATA = 71 , LINKAGE = 8
DATA = 45 , LINKAGE = 0

U DBMS-0112 ** NEW DATA BASE FILE CREATED **

MM/DD/YY HH:MM:SS

TOTAL = 95
TOTAL 61

Figure 3·1. DDL Example Without a Group Primary Key

3-8 2272058-9701

Data Definition Language (DOL) 3.5

DB~tS-·990 <L.V.R) DDL TRANSLATOR

FILE=EMPL,LINES=266

* ID=ENUM=GROUP,VOL=30,ACCESS=SEQUENTIAL/l

*

FIELD=DEPT=CH/2
FIELD=SSN =CH/9
ENDG

LINE=02
FIELD=NAME=CH/30

ENDL
* LINE=03

GROUP=ADDR
FIELD=STRT=CH/20
FIELD=CITY=CH/20
FIELO=STAT=CH/2
FIELD=ZIPC=CN/S.O
ENDG

ENOL
* END.

TOTAL PAGES REQUIRED - 81
LINE LENGTH (BYTES) - 68

TOTAL DESCRIPTION PAGES - 1
TOTAL KEY PAGES - 8

LINE 02 -- BASE = 21
LINE 03 -- BASE = 21

DATA = 30 , LINKAGE = 0
DATA = 47 , L1NKAGE = 0

U DBM£-0112 ** NEW DATA BASE FILE CREATED **

I'ti"tlDDlYY HH: I'tM: SS

TOTAL = 51
TOTAL = 68

Figure 3·2. DDL Example with a Group Primary Key

2272058·9701 3-9

3.6 Data Definition Language (DOL)

3.6 DOL PROCEDURES

The basic user design considerations are those of organizing and defining a DBMS-990 file. Then,
to create the file, you must assemble a DDL to define the file and compile the DDL. The compiled
file definition (DDL) resides on the disk within the file it defines. This file definition is used not
only in creating the file but also in maintaining it.

3.6.1 User Design Considerations
You should work closely with the data base administrator (DBA) in designing the data base andlor
files. More detailed information is available in the Model 990 Computer ONOS Data Base
Administrator User's Guide.

3.6.1.1 Lines and Fields. The organization of lines and fields can influence both the overall effi­
ciency of programs that access the file and the effective use of disk storage. Line lengths for
various line types should be as close as possible to the same length. However, if a particular line
is contained no more than once per data record, the overhead factor is usually insignificant.

The number of line types defined for a record affects access efficiency. As a result of combining
several document lines with related information into one larger line type, fewer reads are
necessary and access efficiency increases. Therefore, balance line lengths and combine the
elements of the document lines into fewer line types.

In choosing a data format andlor data type for a field, choose one that best describes the use of
the field. Use complex data formats only when necessary. The query language uses this format for
display purposes. If the wrong data format is defined in the DDL for a particular field, an incorrect
display results, requiring a change in the data format.

3.6.1.2 Secondary Kf;)ys. A secondary key is a field that identifies a line for processing purposes.
You should limit the number of secondary keys as much as possible. Also, relate the justification
for a key to specific processing needs. You can use groups for secondary keys, but the maximum
size of a secondary key is 40 characters. The maximum number of secondary keys per file is 13.
Line 01 should not contain a secondary key if that key must be updated because a line type 01 can­
not be deleted until all other lines are deleted.

3.6.2 Creating a DOL File
You can use the Text Editor to make or correct a DDL file for input to the DDL compiler. For details
about the Text Editor, refer to the Model 990 Computer ONOS Text Editor Reference Manual. To
display or print DDL files, enter a Show File (SF) command or a Print File (PF) command.

3.6.3 Format DOL (DOL) Command
The SCI command DDL creates a data base file according to the DDL statements in the input con­
trol file. The DDL listing is placed in the output list file specified, and the data base file is created
with the pathname specified. The following shows the format and prompts of the DOL command:

FORMAT DDL
INPUT ACCESS NAME:

LISTING ACCESS NAME:
PAGE SIZE: 256

DB FILE PATHNAME:

3-1 0 2272058-9701

Data Definition Language (DOL) 3.6.4

Respond to the DOL prompts as follows:

INPUT ACCESS NAME - Enter a pathname that identifies the file containing the input to
the DOL compilation.

LISTING ACCESS NAME - Enter the pathname of the file to which the summary list of
the DOL compi lation is written.

PAGE SIZE - Enter 256 or 288. The size of the page is a blocking factor, specifying the
unit of bytes read or written during an I/O operation.

DB FILE PATHNAME - Enter the pathname of the section in which the defined file is
allocated; you can use DUMY as the filename to check the DOL syntax.

The following example shows how to enter a DOL command to define a file:

FORMAT DOL
INPUT ACCESS NAME:

LISTING ACCESS NAME:
PAGE SIZE:

DB FILE PATHNAME:

.SAMPLE.DDL

.SAMPLE.LSTDDL
256
.DBMS.DBFILE

This DOL execution creates the file definition specified in the file .SAMPLE.DDL and places the
DOL listing on file .SAMPLE.LSTDDL. The data base file is created under the pathname
.DBMS.DBFILE.

3.6.4 DOL Listing
After creating the DOL file, you must compile it. Information specific to the data definition is
printed after the compile ends, whether it ends normally or abnormally. In case of an abnormal ter­
mination, the approriate error messages appear.

The DOL in Figure 3-2 defines the DBMS-990 file EMPL. The primary-key 10 is NUMB (employee
number) and is 6 characters in length, with two decimal places. The maximum number of primary
keys that the file can contain is 30 (VOL = 30); this number is also the maximum number of data
records that the file can contain (since each data record must have a primary key). The primary key
values are ordered randomly.

The listing next defines the line types of the file. Each line type includes an identifying number.
The definition then specifies the fields in the line. Each line type definition ends with an End Line
statement. Each field type defined is given an 10 and a data format. To group fields, define them
between a GROUP statement and an End Group statement. A particular field cannot belong to
more than one group. After defining all of the line types, the listing specifies any secondary
references. Then, an End File statement terminates the DOL definition.

The information given at the end of a successful DOL run starts with the total number of pages re­
quired by the file. Next, the line length, in bytes, of each line to be stored in the file appears. This
length, which is justified to a word boundary, equals the length of the longest line defined pro­
vided the latter is an even number; if it is an odd number, 1 is added to it.

2272058·9701 3-11

3.7 Data Definition Language (DOL)

Next, the total number of pages used for description information and key storage appears. A page
is the unit of bytes that DBMS-990 uses for 110, that is, the basic unit that the data base actually
reads or writes. The page size can be either 256 or 288 bytes. Choose the page size based on the
sector size of the disk.

Line type summary information is printed last, before the **NEW FILE CREATED** message. This
information is as follows:

• BASE information - Refers to the number of bytes DBMS-990 uses to store primary key
data in each data line; the number of bytes equals ten plus the length of the primary key.

• DATA information - Refers to the number of bytes used in a data line to store the data
for that particular line type regardless of whether all fields are valued. Reserve space in
a data line for any fields that are not valued initially.

• LINKAGE information - Refers to the number of bytes used in a data line for each
secondary reference defined for that line type.

• TOTAL information - Shows the total number of bytes this particular line type uses
when it occurs as a data line in the DBMS-990 file.

Note that the number of bytes that each line type reserves for data is different. This difference can
result in a significant amount of unused space in a file when the lengths of the line types are
highly dissimilar and all line types, other than line 01, occur as data lines with a high frequency.

3.7 DOL ERRORS

Appendix A lists and explains the various DOL errors.

3-12 2272058·9701

4

Data Manipulation Language (DML)

4.1 INTRODUCTION

The data manipulation language (OML) consists of specific function codes that allow you to
manipulate data. The OML functions consist of reading or writing data lines, reading a key,
deleting data lines, opening or closing files, and starting, committing, or rolling back transactions.
Ensure that the appropriate file is open before any processing begins.

It is not possible to read or write an entire data record unless that particular record consists of only
one data line. Writing to a file consists of creating new data records (adding new lines to the file),
updating data records (changing data within a file), or deleting data records (removing lines from
the file).

To access a data base file, include the appropriate OML commands in an application program,
which is sometimes referred to as a host language program. Use the host language to contruct a
call to OBMS-990 according to the requirements of the OML. The host language OML call uses a
parameter list to inform OBMS-990 of the type of function (access) to be performed and the
elements to be manipulated by the function. OBMS-990 processes the request and returns the
results to the host language program in a data area provided in the OML call parameter list. Formu­
late the DML call parameter list according to the specifications in this section.

The OML calls occur on a line basis. However, the data access can occur on a field and/or group
basis. When initiating a OML call, you must provide the following information:

• Password

• File 10

• KeylD

• Key value

• Line type

• Field/group ID(s)

• Name of user data area

The password information is required only if you installed the secur.ity feature at generation time.
Otherwise, the password is ignored. In either case, you must allocate the password area of the call
parameters.

2272058-9701 4-1

4.2 Data Manipulation Language (DML)

You can transfer all or part of a data line by specifying the fields and/or group for which data is to
be transferred. You need not know the specific position of the data in the file, only the logical
name (the field or group ID), the data format, and the line type. Thus, the application program does
not change as long as the element's logical name, line type, and data format do not change.

4.2 CAll PARAMETERS

A DML call to DBMS-990 consists of six parameters. To call DBMS-990, use the procedures speci­
fied for calling external subroutines in the COBOL, FORTRAN, and Pascal manuals (see Preface).
The following is the COBOL syntax for a DML call:

CALL "DBMSYS" USING <control block>
<end of control block>
<line list>
<end of line list>
<data area>
<end of data area>

All parameters are required. The actual data item representing each parameter must begin on a
word boundary. In COBOL, the best way to ensure word alignment of the control block, line list,
and data area parameters is to define each as a 01 data item. In Pascal, use an unpacked record
structure to define the control block, line list, and data area parameters. If you pack a Pascal
record structure the call parameters might not align on a word boundary. Specify an extra element
(word) at the end of the control block, line list, and data area for Pascal. This element signifies the
end of the control block, line list, and data area to DBMS. In FORTRAN, define the control block,
line list, and data area parameters as DIMENSION arrays that will be aligned on a word boundary. If
you use any other methods, the parameters might not align on a word boundary.

4.2.1 Control Block
To define this parameter in COBOL, specify the name of the 01 data item that starts the control
block; in FORTRAN, specify the first location in the dimensioned array; in Pascal, specify the
variable name of the control block record structure. The control block contains the following
information:

length in
Description Positions Bytes Set By

Password 1-4 04 User
Function code 5-6 02 User
Status (exception code) 7-8 02 DBMS-990
File ID 9-12 04 User
Location pointer 1 (loc1) 13-16 04 Both
Location pointer 2 (loc2) 17-20 04 Both
KeylD 21-24 04 Both
Key value 25-N 1-40 Both

In FORTRAN, you must dimension an extra word after the key value.

In Pascal, you must define an extra unpacked element after the key value. The extra element marks
the end of the control block for DBMS. The password is optional, depending on whether security
was invoked during the installation of DBMS·990. However, you must always allocate the
password positions. The function code defines the type of data manipulation requested.

4-2 2272058·9701

Data Manipulation Language (DML) 4.2.2

When an exception occurs, an appropriate exception code is returned in the status field. Check
the status bytes after every operation. If they do not contain asterisks, an exception has occurred.
Refer to Appendix A for a description of exception conditions.

CAUTION

Do not modify the location pOinters (loc1 and loc2) to any value other
than asterisks (* * * *) unless a DML function explicitly calls for such
modification. Inappropriate modifications can seriously damage the file
or produce unpredictable results. The only exceptions are when you
place the location pointer results of one DML call into the control block
for another DML call or when you swap the contents of loc1 and loc2.

For most DML calls, you must set the key ID area before performing the call. The key ID is the four­
character name for the primary or secondary key defined at data definition time. Use a key value
that already exists, if possible. If the value does not have a corresponding key in the file for the key
ID specified, an exception condition results. The length of a key value may vary from key to key;
the maximum is 40 bytes. If the defined key value field is larger than the length of the key, the key
value is returned left justified.

CAUTION

If the defined key value field is shorter than the actual length of the key,
the next field is overlaid with a portion of the key value.

4.2.2 End of Control Block
The end of control block parameter tells DBMS-990 where the control block ends. In COBOL, this
parameter is the name of the 01 data item that immediately follows the key value. In Pascal or
FORTRAN, it is the name of the last (Le., extra) element in the control block.

4.2.3 Line List
The line list parameter defines the line(s) and field(s) used in the operation. It also specifies the
disposition of the returned information. In COBOL, this parameter is the name of the 01 data item
that starts the line list. In Pascal, it is the variable name of the line list record structure. In
FORTRAN, it is the first location in the dimensioned array for the line list.

The following is the format for a single line type in the line list parameter:

Description

Line identification
Return indicator
Field IDs

Disposition

2272058-9701

Length (Bytes)

07
01

Variable (4
characters each)

08

User
Both
User

User

Set By

(Must be present
for each line
type specified.)

(Must be last
entry of list.)

4-3

4.2.4 Data Manipulation Language (DML)

In FORTRAN, dimension an extra word at the end of the line list, after the disposition.

In Pascal, define an extra unpacked element at the end of the line list, after the disposition.

Line identification consists of a seven-character line type specification, as follows:

LlNE=xx

where:

xx is the line type.

The return indicator signifies the line type from which a data line is retrieved. If the return code
contains an asterisk, the data fields for that particular line type are returned in the data area. In a
line list containing multiple line types, the return indicator of the accessed line type is set to an
asterisk on return from the call. Each of the other return indicators is set to a comma. On adds,
replaces, and deletes, set the return indicator of the appropriate line type to an asterisk. Set each
of the other return indicators to a comma or to something other than an asterisk.

Field IDs are the four-character IDs of the fields in ,a specified line type. They may be individual
four-character definitions, they may be strung together, or, they may be defined by an array.

Disposition specifies whether to release (RLSE) or hold (HOLD) a retrieved data line. Release
implies that the retrieved information is for inquiry purposes. Hold retains the line for update or
deletion. The following is the format for disposition:

Position

1-4
5-8

Value

RLSE or
HOLD

With a RLSE disposition, the data line is available to other users immediately upon completion of
the DML call. The HOLD disposition retains a data line until the line is used in a write or delete
DML function or until the execution of another read with hold on a different data line. If the held
data line is not released, it is retained until the program terminates; no other program has update
capabilities on that line until such termination. Also, read access is not allowed on a held line. A
program can put on hold only one data line at a time, regardless of the number of files open. HOLD
has no meaning in any of the update functions.

4.2.4 End of line list
The end of line list parameter tells DBMS-990 where that line list ends. This parameter must be the
name of the next item after disposition of the line list. In a COBOL program, use the level 01 data
item that follows the line list. In Pascal, use the name of the last (or extra) element in the line list
record structure.

4.2.5 Data Area
The data area parameter specifies the data name of one of the following:

• The program area that contains the data to be transmitted

• The program area that will contain retrieved data

4·4 2272058·9701

Data Manipulation Language (DML) 4.2.6

The data area should be large enough to contain the data for the fields specified in the line list.
You can specify either a single definition for the data area or a definition that is subdivided into
definitions for all of the fields specified in the line list. If the defined data area is larger than the
combined length of the data fields requested, the retrieved data is returned left justified. Data is
placed in the data area in the same order as that of the field IDs of the line list.

CAUTION

If the defined data area is shorter than the combined length of the data
fields requested, the next field is overlaid with a portion of the retrieved
data.

4.2.6 End of Data Area
The end of data area parameter tells DBMS·990 where the data area ends. This parameter must be
the name of the data structure that follows the last data item in the data area. In a COBOL pro·
gram, use the next level 01 data item following the data area. In Pascal, use the name of the extra
or last element in the data read area record structure. In FORTRAN, use the name of the extra array
element (word) that is dimensioned at the end of the data area.

4.2.7 Parameter List Examples
Figure 4·1 is an example of a COBOL definition of the parameters and the corresponding CALL to
DBMS·990. Note that the end parameters are one·byte separators. As a result, the first two end
parameters and their corresponding data items can be eliminated; they are then replaced by the
data line list and the data area, as in Figure 4·2. Figure 4·2 shows the resulting COBOL call and its
definitions.

Figure 4·3 is an example of a Pascal definition of the DML parameters and the corresponding call
to DBMS·990. The end parameters are the name of the extra (last) unpacked element that must be
defined in the control block, line list, and data area parameters. A multiple line list parameter is
created by using a Pascal record structure large enough to contain the necessary data. This struc·
ture indicates the desired lines plus the extra (last) unpacked element at the end of each record
structure.

4.2.7.1 COBOL Call with Dummy Parameters. When a function code does not need a line list or
data area, you can use dummy parameters. For example, you can use a single asterisk as the open
function (OF) line list and data area parameters. The following is the COBOL call with ASK as the
dummy parameter; if ASK is a 01 data item following CONTROL·BLOCK, ASK can be used as the
END·CONTROL parameter.

CALL "DBMSYS" USING

2272058·9701

CONTROL·BLOCK
END·CONTROL,
ASK,
ASK,
ASK,
ASK,

4-5

4.2.7.1 Data Manipulation Language (DML)

4-6

DBMSYS(CB, CB. TERM, CB. TERM::LlNELlST, CB. TERM,
CB. TERM::DATAAREA, CB. TERM);

WORKING·STORAGE SECTION

01 CONTROL·BLOCK.
02 FILLER PIC X(4) VALUE SPACES.
02 FUNC PIC XX VALUE "RF".
02 STAT PIC XX VALUE " •• ".
02 FILEX PIC X(4) VALUE "SOFL".
02 LOC1 PIC X(4) VALUE " •••• ".
02 LOC2 PIC X(4) VALUe " •••• ".
02 KEYN PIC X(4) VALUE "SONM".
02 KEYX PIC X(6).

01 END-CONTROL-BLOCK PIC X VALUE ".".

01 LINE-LIST.
02 FILLER PIC X(7) VALUE "LlNE=01".
02 TST·1 PIC X VALUE ".".
02 FILLER PIC X(4) VALUE "VEN1".
02 FILLER PIC X(7) VALUE "LINE = 02".
02 TST·2 PIC X VALUE ",".
02 FILLER PIC X(4) . VALUE "VEN2".
02 FILLER PIC X(7) VALUE "LlNE=03".
02 TST·3 PIC X VALUE ",".
02 FILLER PIC X(8) VALUE "ITMMQTYX".
02 FILLER PIC X(8) VALUE "····HOLD".

01 EN D-LI N E-LiST PIC X VALUE ".".
01 DATA·AREA PIC X(40).
01 EN D-DATA-AREA PIC X VALUE ".".

PROCEDURE DIVISION.

CALL "DBMSYS" USING CONTROL·BLOCK,

EN D-CONTROL-BLOCK,

LINE-LIST,

END-LiNE-LlST,

DATA-AREA,

EN D·DATA·AREA.

Figure 4-1. Example One of COBOL DML Parameters

2272058·9701

WORKING-STORAGE SECTION.

01

01

01
01

CONTROL-BLOCK.
02 FILLER
02 FUNC
02 STAT
02 FILEX
02 LOC1
02 LOC~
02 KEYN
02 KEYX
LINE-LIST.
02 FILLER
02 TST-1
02 FILLER
02 FILLER
02 TST-2
02 FILLER
02 FILLER
02 TST-3
02 FILLER
02 FILLER
DATA-AREA
EN D-DATA-AREA

PROCEDURE DIVISION.

CALL "DBMSYS" USING

Data Manipulation Langugage (DML) 4.2.7.1

PIC X(4)
PIC XX
PIC XX
PIC X(4)
PIC X(4)
PIC X(4)
PIC X(4)
PIC X(6).

PIC X(7)
PIC X
PIC X(4)
PIC X(7)
PIC X
PIC X(4)
PIC X(7)
PIC X
PIC X(8)
PIC X(8)
PIC X(40).
PIC X

CONTROL-BLOCK,

LINE-LIST,

LINE-LIST,

DATA-AREA,

DATA-AREA,

EN D-DATA-AREA.

VALUE SPACES.
VALUE "RF".
VALUE "**".
VALUE "SOFL".
V A LU E "* * * *" .
VALUE "****".
VALUE "SONM".

VALUE "LINE = 01".
VALUE "*".
VALUE "VEN1".
VALUE "L1NE=2".
VALUE ",".
VALUE "VEN2".
VALUE "L1NE=3".
VALUE ",".
VALUE "ITMMQTYX".
VALUE "****HOLD".

VALUE "*".

Figure 4-2. Example Two of COBOL DML Parameters

2272058·9701 4-7

4.2.7.2 Data Manipulation Language (DML)

4.2.7.2 FORTRAN Call with Dummy Parameters. Figure 4-3 is an example of a FORTRAN defi­
nition of the DML parameters and the corresponding call to DBMS-990. The end parameters are
the name and subscript of the extra last word that must be dimensioned in the arrays for the con­
trol block, line list, and data area parameters. The multiple line list parameter dimensioned is large
enough to contain the data that indicates the desired lines plus the extra word at the end of the
array. The necessary constants can be easily loaded by using the FORTRAN data statements. All
FORTRAN examples assume IMPLICIT INTEGER (A-Z).

DBMSYS(CB, CB. TERM, CB. TERM::LlNELlST, CB. TERM,
CB. TERM::DATAAREA, CB. TERM);

DIMENSION ITEMCB(15), ITEMLL(13), ITEMDA(14)

C* INITIALIZE ARRAYS
DATA ITEMCB/' RF ITEM********ITMN 'I
DATA ITEMLU'LlNE=01, DESCUPRC****RLSE '/

C* CALL DATA BASE
CALL DBMSYS (ITEMCB(1), ITEMCB(15), ITEMLL(1),

1 ITEMLL(13), ITEMDA(1), ITEMDA(14))

Figure 4-3. Example of FORTRAN DML Parameters

4.2.7.3 Pascal Call with Dummy Parameters. Figure 4-4 illustrates an example of a Pascal call
using dummy parameters, the end of the control block is used for five of the parameters.

4-8 2272058-9701

Data Manipulation Langugage (DML) 4.2.7.3

(* DEFINE DATA TYPES *)
TYPE

C2 = PACKED ARRAY [1 .. 2] OF CHAR;
C4 = PACKED ARRAY [1 .. 4] OF CHAR;
C6 = PACKED ARRAY [1 .. 6] OF CHAR;
CS = PACKED ARRAY [1 .. S] OF CHAR;
C20 = PACKED ARRAY [1 .. 20] OF CHAR;
DA_ TYPE = (SOF2, SOF3, CUST, ITEM);

(* DEFINE RECORD AREAS *)
DATAREA = RECORD

CASE DA_TYPE OF
SOF2 (SHIP
SOF3 (QUAN

CUST
ITEM

END;

SONM
(NAME
(DESC

LlNELIST = RECORD

C6);
C4;
C6);
C20);
C20; U PRC : C6);

LL : PACKED ARRAY [1 .. 24] OF CHAR;
TERM : INTEGER; (* EXTRA ELEMENT MARKING END OF LlNELIST *)

END;
CONTROLBLOCK = RECORD

PSWD : C4;
FUNC : C2;
STAT C2;
DBFILE: C4;
LOC1 C4;
'LOC2 C4;
KEYN C4;
KEYV C6;
TERM INTEGER; (* EXTRA ELEMENT MARKING END OF CONTROL BLOCK *)

END;
(* VARIABLE DEFINITIONS *)
VAR

CUST _LL : LI N ELlST;
DA : RECORD

DATA: DATAREA;
TERM : INTEGER;

END;
(* EXTRA ELEMENT MARKING END OF DATA AREA *)

CB : CONTROLBLOCK; _
(* DEFINE EXTERNAL PRO'CEDURE TO CALL DBMS *)
PROCEDURE DBMSYS (VAR CB : CONTROLBLOCK; VAR CBE : INTEGER;

VAR LL : LlNELlST; VAR LLE : INTEGER);
VAR DA : DATAREA; VAR DAE : INTEGER);
EXTERNAL FORTRAN;

DBMSYS (CB, CB. TERM, CUST_LL, CUST_LL. TERM, DA.DATA, DA.TERM);

Figure 4·4. Example of Pascal DML Parameters

2272058·9701 4·9

4.3 Data Manipulation Language (DML)

4.3 DML FUNCTIONS

The DML functions are of four types: file, read, update, and transaction. Using the appropriate
function codes, you can manipulate, alter, and delete the data base records. However, data trans­
fers occur on a line basis. The field IDs specified in the line list parameter of the DML call deter­
mine which data fields the application program uses.

4.3.1 File Functions
The following paragraphs describe file-access checking and the open and close file functions.
Although the open and close file functions are not required when file-access checking is not
installed in DBMS-990, it is recommended that they be included in all applications so that the pro­
grams will still execute if file-access checking is later installed. File functions are ignored by
DBMS-990 when file-access checking is not installed.

4.3.1.1 File-Access Checking. An application program must issue open and close file functions
for each file when file-access checking is installed. Issue an open file before attempting to access
the file and a close file when finished with the file.

Three types of file access are allowed with DBMS-990: shared, exclusive, and read-only exclusive.
The most common type is shared. With shared access, all users can open the file and perform all
functions on the file. Exclusive access means that the current user has all access privileges and is
the only user with access to the file. Read-only exclusive access means that the current user has
only read privileges and that other users can read the file if they open with the same file access.

File-access checking monitors the current file status against requested accesses, checks com­
patibility, and returns appropriate error conditions when incompatibility exists. For example, a
file-access request of exclusive is allowed only when that file is free from any other file access. If
the file is not free and a user requests exclusive access, file-access checking returns the
appropriate error condition. Table 4-1 lists all of the conditions under which DBMS-990 must
resolve file-access requests and the corresponding results.

Table 4-1. File Access Resolutions

Current Status·
Requested Read-Only

Access None Shared Exclusive Exclusive

Shared Y y N N

Exclusive Y N N N

Read-Only Exclusive Y N N Y

Note:

• Y indicates access granted; N indicates access refused.

4-10 2272058·9701

Data Manipulation Langugage (DML) 4.3.1.2

4.3.1.2 Open File (OF). The open file function (DML function code OF) opens the file specified in
the file ID area of the control block. Specify the type of access needed in the key name area of the
control block. Use one of the following access types:

• EXCL - for exclusive access; no other user can access the file; all read and write func­
tions are permitted.

• ROEX - for read-only exclusive access; other users can read the file if they open ROEX;
only read functions are permitted.

• SHRD - for shared access; other users can access the file; all read and write functions
are permitted.

Figure 4-5 is an example of a COBOL control block parameter and DML call for performing file
functions.

01

01

CONTROL BLOCK.
02
02
02
02
02
02
02

ASK

PSWD
FUNC
STAT
FLiD
FILLER
KYID
KEYV

PIC X(4)
PIC XX
PIC XX
PIC X(4)
PIC X(8)
PIC X(4)
PIC X(40)
PIC X

CALL "DBMSYS" USING CONTROL-BLOCK, ASK, ASK, ASK, ASK, ASK.

Figure 4-5. COBOL File Function

VALUE SPACES.
VALUE "OF".
VALUE "**".
VALUE "PYRL".
VALUE "********".
VALUE "EXCL".
VALUE "EXCL".
VALUE "*".

Figure 4-6 is an example of a FORTRAN control block parameter and DML call for performing file
functions.

DIMENSION OFCB (13)
DATA OFCBI OF**SOFL********ROEX '/
CALL DBMSYS (OFCB (1), OFCB (13), OFCB (13), OFCB (13),

$OFCB (13), OFCB(13»

Figure 4-6. FORTRAN File Function

2272058·9701 4-11

4.3.1.3 Data Manipulation Language (OM L)

All call parameters must be specified even though the line list and data area parameters are not
used. The example in Figure 4-2 can be used for file functions. Parameters not needed can be
defined as one~byte fields but must be on a word boundary.

Even if security is included in the system, security checking is not performed on file functions.
Also, you must specify access type and check the status bytes for errors on returning from the
DML call. Refer to Appendix A for a list of error codes.

4.3.1.3 Close File (CF). The close file (CF) function closes the file specified in the file 10 area of
the control block. The CF function uses the same format as the OF function. The function and file
10 must be valid. The access type in the key 10 parameter must be the same as that specified in the
OF function. Check the status field for errors. If another program or task is using the file, the file is
not closed until all programs accessing the file have closed it. When the status is indicated by a
series of asterisks, the application program file has successfully closed.

You can specify the other parameters of the CF function in the same manner as in the OF function.
Define parameters that are not required as one-byte fields.

4.3.2 Read Functions
The DML read functions return a data line in a file based on the selection criteria provided in the
DML call parameters. The specified data is removed from the data line and returned to the calling
program via the call parameters. Only one data line is processed per DML call. Check the status
bytes of each read function after the DML has completed to ensure that the function has ter­
minated properly; the status code should contain a series of asterisks. If an error condition
occurs, refer to Appendix A. DBMS-990 sets the status bytes to asterisks before it executes the
function.

Figure 4-7 is an example of a Pascal control block parameter and DML call for performing file
functions.

4-12 2272058·9701

(* DEFINE DATA TYPES *)
TYPE

C2 = PACKED ARRAY [1 .. 2] OF CHAR;
C4 = PACKED ARRAY [1 .. 4] OF CHAR;
C6 = PACKED ARRAY [1 .. 6] OF CHAR;
CS = PACKED ARRAY [1 .. S] OF CHAR;
C20 = PACKED ARRAY [1 .. 20] OF CHAR;
DA_TYPE = (SOF2, SOF3, CUST, ITEM);

(* DEFINE RECORD AREAS *)
DATAREA = RECORD

CASE DA_ TYPE OF
SOF2 (SHIP
SOF3 (QUAN

CUST
ITEM

END;

SONM
(NAME
(DESC

LlNELlST= RECORD

C6);
C4;
C6);
C20);
C20; U PRC : C6);

LL : PACKED ARRAY [1 .. 24] OF CHAR;
TERM : INTEGER;

END;
CONTROLBLOCK = RECORD

PSWD : C4;
FUNC : C2;
STAT C2;
DBFILE: C4;
LOC1 C4;
LOC2 C4;
KYID C4;
KEYV C6;
TERM INTEGER;

END;
(* VARIABLE DEFINITIONS *)
VAR

CUST _LL : LI N ELlST;
DA : RECORD

DATA: DATAREA;
TERM : INTEGER;

END;
CB : CONTROLBLOCK;

Data Manipulation Langugage (DML) 4.3.2

(* DEFINE EXTERNAL PROCEDURE TO CALL DBMS *)
PROCEDURE DBMSYS (VAR CB: CONTROL BLOCK; VAR CBE : INTEGER;

VAR LL : LlNELlST; VAR LLE : INTEGER);

2272058·9701

VAR DA: DATAREA; VAR DAE : INTEGER);
EXTERNAL FORTRAN;

CB.DBFILE: = 'PYRL';
CB.PSWD : = 'BOSS';
CB.FUNC : = 'OF';
CB.KYID : = 'EXCL';
DBMSYS (CB, CB. TERM, CUST_LL, CUST_LL.TERM, DA, DA. TERM);

Figure 4-7. Pascal File Function

4.3.2.1 Data Manipulation Language (DML)

Read functions are normally performed using the RLSE disposition option. The data line read with
this option is always released after the DML call terminates. When a read function is performed
using the HOLD disposition option, the data line read is held until execution of a write or delete
function. If no subsequent write or delete function is performed on the held data line, that line can
be released by uSing the release line (RL) function or by executing a read with hold on another data
line. The new data line is then held. Any held data line is released when a program terminates.

To obtain the primary key value associated with a data line during any read function, specify the
primary key ID in the field ID portion of a line list. When using this feature, allocate space for the
primary key value in the data area.

CAUTION

Do not modify the location pointers (loc1 and loc2) to any value other
than asterisks (* * * *) unless a DML function explicitly calls for such
modification. Inappropriate modifications can seriously damage the file
or produce unpredictable results. The only exceptions are when you
place the location pointer results of one DML call into the control block
for another DML call or when you swap the contents of loc1 andloc2~

4.3.2.1 Read Forward (RF). The read forward (RF) function reads the next data line of the line type
associated with the key ID and key value specified in the control block parameter. The primary pur­
pose of the RF function is to retrieve data fields from a specified data line. You can use either a
primary or a secondary key to perform an RF function.

The RF function locates a data line for the line type specified in the line list and scans that data
line for the specified fields or groups. The requested data items are then returned via the data area
parameter.

When multiple line types are specified in the line list parameter, an asterisk is returned (instead of
a comma) in the return indicator field of the line type to indicate the particular data line that the
call is returning. A comma is returned in all other return indicators for all other line types
specified.

Each DML call returns only one data line, even if the line list parameter specifies multiple line
types. The data line returned is the first data line encountered whose line type matches one of the
line types specified.

4-14 2272058-9701

Data Manipulation Language (DML) 4.3.2.2

The following specifications apply to the location pointers at call initiation:

• Loc1 must contain either asterisks or a valid address from a previous call.

• If loc1 contains asterisks, the data lines associated with the specified key are searched
from first to last until the line type specified is encountered. Otherwise, the data lines
are read beginning with the address specified in loc2 until the line type specified is
encountered.

The following specifications apply to the location pointers at call termination:

• If both loc1 and loc2 contain asterisks, either the data line of the specified line type
does not exist or no more data lines of the type specified exist. If the value does not
exist, an NK exception code is returned; otherwise, the status code contains asterisks.

• Loc1 normally contains the address of the data line read.

• Loc2 normally contains the address of the next data line.

• When only loc2 contains asterisks, the data line returned is the last data line for the
specified key or record.

When changing primary or secondary keys, set loc1 to asterisks prior to reading the desired data
line. This ensures that the first data line is read and helps prevent further processing problems.

4.3.2.2 Read Backward (RB). The read backward (RS) function reads the preceding data line of
the type associated with the key value in the control block parameter. The primary purpose of the
RS function is to retrieve data fields from a specific data line. An RS function can use either a
primary or a secondary key.

The RS function scans the data line located for the line type specified in the line list, looking for
the desired fields or groups. The requested data items are then returned in the data area
parameter.

When multiple line types are specified in the line list parameter, an asterisk is returned (instead of
a comma) in the return indicator field of the line type to indicate the data line that the call is re­
turning. A comma is returned in all other return indicators for all other line types specified.

Each DML call returns only one data line, even if the line list parameter specifies multiple line
types. The data line returned is the first data line encountered whose line type matches one of the
line types specified.

When changing primary or secondary keys, set loc1 to asterisks prior to reading the desired data
line. This ensures that the correct data line is read and helps prevent further processing problems.

The following specifications apply to the location pOinters at call initiation:

• Loc1 must contain either asterisks or a valid address from a previous call.

2272058-9701 4-15

4.3.2.3 Data Manipulation Language (DML)

• If loc1 contains asterisks, the call searches the data lines associated with the specified
key from last to first until the line type specified is encountered. Otherwise, the call
reads the data lines backwards, starting with the address specified in loc2, until the line
type specified is encountered.

The following specifications apply to the location pOinters at call termination:

• If both loc1 and loc2 contain asterisks, either a data line of the specified line type does
not exist for the specified key or no more data lines exist for the type specified.

• Loc1 normally contains the address of the data line read.

• Loc2 normally contains the address of the next data line; it points to the data line
preceding the one just read.

• When only loc2 contains asterisks, the call returns the first data line for the specified
key or record (analagous to the last in the RF function).

4.3.2.3 Read Serial (RS). The read serial (RS) function reads the next data line in the file of the
line type specified in the call parameter list. This function reads the data lines in the order in which
they are found, ignoring the logical structure of data records. The RS ignores the key value field,
but a valid key ID must be specified.

The RS function is valid for all line types. This function scans the first data line encountered for
the line type specified in the line list parameter, looking for the desired fields or groups. To find
this data line, the function searches the file serially from the current location until it finds a data
line of the specified type or until it encounters the end of the data area. An RS may read the entire
file without finding a data line of the type specified. The call returns the requested data items via
the data area call parameter. The value of the primary key associated with the data line read is
returned in the key value field of the control block.

Each RS call returns only one data line, even if multiple line types are specified in the line list
parameter. An asterisk is returned in the return indicator field of the line list (instead of a comma)
to indicate the data line being returned. The'data line returned is the first data line encountered
whose line type matches one of the line types specified.

The fol/owing specifications apply to the location pOinters at call initiation:

•

•

•

4-16

Loc1 must contain either asterisks or a valid address from a previous call.

If loc1 contains asterisks, the call searches the appropriate data lines in physical
storage order, without regard to logical record associations, in a first to last sequence
until the specified line type is encountered.

If loc1 contains a valid address, the call searches the data lines, starting with the
address in loc1, until a data line of the type specified is encountered.

2272058·9701

Data Manipulation Language (DML) 4.3.2.4

The following specifications apply to the location pOinters at call termination:

• Loc1 normally contains the address of the data line read. When loc1 contains asterisks,
either a data line of the specified line type does not exist or no more data lines exist for
the requested line type.

• Loc2 pOints to the end of the data area.

NOTE

The value of the primary key for the data line found is returned in the
key value field of the control block parameter. The key value field
must be large enough to contain the key; otherwise, the key value is
truncated to fit into the field specified.

4.3.2.4 Read Ascending (RA). The RA function reads key values from the key storage area and
returns the key values in ascending order. RA does not transfer data other than key values. (For
key types that are not sequential, RA returns key values in a duplicatable random order.) In addi­
tion to retrieving keys in sorted order, RA can start from any pOint in the key area. The key value
specified in the control block defines the starting point (starting positions apply only to sequential
keys). By manipulating the location pointers (loc1 and loc2), you can describe any of the following
starting positions:

• Start at key equal to the specified value

• Start at key greater than the specified value

• Start at key greater than or equal to the specified value

• Start at the lowest key val ue

Table 4-2 shows the use of location pOinters to specify the starting pOint of the RA operation.
When the RA function terminates, loc1 points to the key just read and loc2 points to the first data
line of the key. The retrieved key value is placed in the key value area of the control block. Conse­
quently, you can perform successive RA operations without resetting the control blocks. (The key
value just read becomes the initial key value for the next RA operation.)

. 2272058-9701 4-17

4.3.2.5 Data Manipulation Language (DML)

Table 4-2. RA Starting Location Pointers

Loc1 Loc2 Starting Point

**** **** Lowest key value
**** xxxx Equal key value
xxxx xxxx Greater than key value
xxxx **** Greater than or equal

to key value

Note:

* * * * indicates that the location pOinter is set to asterisks, and xxxx indicates that the
pointer is set to some valid address or binary zeros.

The most convenient method of using the RA function is to provide one control block for retrieving
keys and another for retrieving data lines. You can set the location pointer to binary zeros by
equating it to a double precision (4-byte) integer constant with the value of zero.

4.3.2.5 Read Descending (RD). The RD function reads key values from the key storage area and
returns the key val'ues in descending order. RD does not transfer data other than key values. (For
key types that are not sequential, RD returns key values in a duplicatable random order that is the
same as the RA function.) In addition to retrieving keys in sorted order, RD can start from any point
in the key area. The key value specified in the control block defines the starting point (starting
positions apply only to sequential keys.) By manipulating the location pointers (loc1 and loc2), you
can describe any of the following starting positions:

• Start at key equal to the specified value

• Start at key less than the specified value

• Start at key less than or equal to the specified value

• Start at the highest key value

Table 4-3 shows the use of location pointers to specify the starting point of the RD operation.
When the RD function terminates, loc1 points to the key just read and loc2 points to the first data
line of the key. The retrieved key value is placed in the key value area of the control block. Conse­
quently, you can perform successive RD operations without resetting the control blocks. (The key
value just read becomes the initial key value for the next RD operation.)

4-18 2272058·9701

Data Manipulation Language (DML) 4.3.2.6

Table 4-3. RD Starting Location Pointers

loc1 loc2 Starting Point

**** **** Highest key value
**** xxxx Equal key value
xxxx xxxx Less than key value
xxxx **** Less than or equal to

key value

Note:

* * * * indicates that the location pointer is set to asterisks; xxxx indicates that the pointer is
set to some valid address or binary zeros.

The most convenient method of using the RD function is to provide one control block for retriev­
ing keys and another for retrieving data lines. A location pointer can be set to binary zerQs by
equating it to a double precision (4-byte) integer constant with the value of zero.

4.3.2.6 Partial Key Search. The sequential key capability allows a partial key search. If you
specify the beginning portion of a key value, DBMS-990 will find the first key that fits the descrip­
tion. For example, suppose the DOL for an employee file describes a name field as a 40-character
field that is a secondary key. Suppose further that you want to change an employee's address but
can remember only that the employee's name begins with CH. Perform the following steps to
retrieve the first employee whose name field begins with CH:

1. Initialize the key value area of the control block to binary zeros.

2. Move the characters CH into that key value area.

3. Perform an RA function to retrieve the first name field beginning with CH.

4. Perform subsequent RA functions with the same control block to retrieve the next se­
quential name fields beginning with CH.

4.3.2.7 Hold Line (HL). The hold line function places a hold on the data line to which the location
address in loc1 refers. Using this function, you need not reread a data line by using the HOLD
disposition in the line list in order to write (WT) or delete (DL) a data line. The function does not
replace or eliminate the HOLD disposition. Since this function does not read or transfer data, the
line list and data area call parameters are not used; you can replace them with dummy call
parameters in the call statement. The DML function code is HL.

The data line to which loc1 refers is verified as existing; if it does not exist, it is assumed to have
been deleted (by another task) and a status of invalid key (IK) is returned.

2272058-9701 4-19

4.3.2.8 Data Manipulation Language (DML)

The location pointers at call initiation are as follows:

• Loc1 must contain a valid address from a previous call; it cannot contain asterisks. If it
does contain asterisks, a status of lock line (LL) is returned.

• Loc2 must contain either asterisks or a valid address from a previous call.

The location pointers at call termination are as follows:

• Loc1 is unchanged by the HL function.

• Loc2 is unchanged by the HL function.

CAUTION

Use the hold line (HL) function carefully in an interactive environment. If
more than one program is accessing a particular line in the data base at
the same time, the data in the line may change between the time the
user executes a read and the time the HL function is executed.

4.3.2.8 Release Line (RL). The release line (RL) function releases any held data line associated
with a task. Since only one line can be held by a task at one time, the location pointers need not
contain the address of the held line. If the task is currently holding no line, the function terminates
with a status code of asterisks (no exception). Since this function does not read or transfer any
lines, the line list and.data area call parameters are not used; you can replace them with dummy
parameters in the call statement. The DML function code is RL

Using this function, you need not reread a data line by using the RLSE (release) dispOSition in
order to release the hold on a- data line. A hold on a data line can still be released by rereading the
line with a RLSE disposition, by reading a different line using the HOLD disposition, or by writing
to (Wn or deleting (DL) the line.

The location pOinters at call initiation are as follows:

• Loc1 must contain either asterisks or a valid address from a previous call.

• Loc2 must contain either asterisks or a valid address from a previous call.

The location pointers at call termination are as follows:

• Loc1 is unchanged by the RL function.

• Loc2 is unchanged by the RL function.

4.3.3 Update Functions
Provided they terminate successfully, the DML update functions always change the data content
or logical structure of the file. The data in the call parameters either replaces an existing data line
or adds a new data line. To delete data lines, use the delete function. The DML update functions
can manipulate only one data line at a time, except for the delete record (DR) function.

4-20 2272058·9701

Data Manipulation Language (DML) 4.3.3.1

Check the status of each update function after the DML call has completed to ensure that the
function has terminated properly. The status code should contain asterisks. (The DR function
returns asterisks as the status code even if no record existed for the specified key.) If an error con­
dition occurs, refer to Appendix A.

CAUTION

Do not modify the location pointers (loc1 and loc2) to any value other
than asterisks (* * * *) unless a DML function explicitly calls for such
modification. Inappropriate modifications can seriously damage the file
or produce unpredictable ,results. The only exceptions are when you
place the location pointer results of one DML call into the control block
for another DML call or when you swap the contents of loc1 and loc2.

All update functions require the RLSE disposition option. These functions ignore the HOLD
option. If HOLD is specified, release is performed. Perform a read with HOLD option before per­
forming a write or delete function. If you execute these functions without a prior read with HOLD
option, an exception status code other than asterisks is returned. Refer to Appendix A.

4.3.3.1 Add After (AA). The add after (AA) function inserts a data line of the line type specified in
the line list call parameter into the file after the data line to which loc1 refers. The primary use of
this function is to add lines to a file. The DML function code is AA. Each AA call can add only one
data line.

The AA function adds data lines only to primary keys. If no data lines currently exist for the
specified primary key, a new data record is created using the key value of the control block and the
line list and data area parameters. Secondary key values are added automatically when the added
data line contains secondary keys.

To insert the data line after a specific data line, perform a read function prior to the add; as a result,
the specified data line is found and its location pointer is placed in loc1. To add data lines in a
series, do not reload loc1 with asterisks.

If an AA function is performed with multiple line types specified in the line list, an asterisk must
appear in the return indicator field of one of the line types to indicate which line type is to be
added. If no asterisk appears, the first line type specified is added. When more than one return in­
dicator contains an asterisk, the first line type that contains an asterisk in its return indicator is
added.

2272058--9701

NOTE

When adding a line type 01, always set loc1 to asterisks; otherwise,
an error occurs. A line type 01 need not be present or defined within
a file. However, when it is defined, it must be the first line type,
added for each record.

4-21

4.3.3.2 Data Manipulation Language (DMLJ

The following specifications apply to the location pOinters at call initiation:

• Loc1 must contain either asterisks or a valid address from a previous call.

• If loc1 contains asterisks, the data line is added after the last data line associated with
the specified key. Otherwise, the data line is added after the data line whose address is
specified in loc1.

The ,following specifications apply to the location pOinters at call termination:

• Loc1 contains the address of the added data line.

• Loc2 normally contains the address of the next data line (the one after the added data
line).

• If loc2 contains asterisks, no data line exists after the added data line.

4.3.3.2 Add Before (A B). The add before (AB) function inserts a data line of the line type
specified in the line list call parameter into a file before the data line to which loc1 refers. The
primary use of the function is to add data lines to a file. The DML function code is AB. An AB call
can add only one data line.

The AB function adds data lines only to primary keys. If no data lines currently exist for the key, a
new data record is created by using the key value of the control block and the line list and data
area parameters. Secondary key values are added automatically when the added data line contains
secondary keys.

To insert a data line before a specific data line, perform a read function prior to the add; as a result,
the specified data line is found and its location pointer is placed in loc1. To add data lines in a
series, do not reload loc1 with asterisks.

If an AB function is performed with multiple line types specified in the line list, an asterisk must
appear in the return indicator field of one of the line types to indicate which line type to add. If the
asterisk does not appear the first line type specified is added. When more than one return in·
dicator contains an asterisk, the first line type that contains an asterisk in its return indicator is
added.

The following specifications apply to the location pOinters at call initiation:

•

•

4-22

Loc1 must contain either asterisks or a valid address from a previous call.

If loc1 contains asterisks, the data line is inserted before the first data line of the record
associated with the specified primary key. Otherwise, the data line is inserted before
the data line whose address is specified in loc1.

2272058·9701

Data Manipulation Language (DML) 4.3.3.3

The following specifications apply to the location pointers at call termination:

• Loc1 contains the address of the added data line.

• Loc2 normally contains the address of the next data line (the one after the added data
line).

• Loc2 contains asterisks when no data line exists after the added data line.

4.3.3.3 Write (WT). The write (WT) function replaces the data line to which loc1 refers with the
data line specified in the call parameters. The primary use of this function is to update the field
contents within existing data lines.

Perform a read with HOLD disposition option prior to a WT function. The held data line is used to
rewrite an updated data line. Only the fields specified in the line list are replaced. Any other fields
in the held data line are not changed. The held data line is released upon termination of the WT
function.

If a WT function is performed with multiple line types specified in the line list, an asterisk must
appear in the return indicator field of one of the line types to indicate which line type to replace.
The asterisk should appear in the appropriate return indicator as a result of the read with HOLD
option. When more than one return indicator contains an asterisk, the first line type that contains
an asterisk in its return indicator is used. If an asterisk does not appear in the line list, an excep­
tion condition is reported in the status field of the control block.

The WT function cannot modify secondary key values. You can delete the data line containing the
secondary key value and then add the line to the file with the new key value by using either the AA
or the AS function. However, you can update a line without changing its secondary key.

At call initiation, loc1 must contain the address of the data line to be updated. This is obtained
from the read with hold operation prior to the WT function.

The following specifications apply to the location pOinters at call termination:

• Loc1 is unchanged by the WT function.

• Loc2 is unchanged by the WT function.

4.3.3.4 Delete (DL). The delete (DL) function deletes the data line whose address is in loc1. The
primary use of this function is to delete data lines from the data base files. The DML function code
is DL.

Perform a read with HOLD disposition option before a DL operation. The held data line is released
upon termination of the DL function. When the data line to be deleted is the last data line for a
record, the data record and the primary key are also deleted.

2272058-9701 4-23

4.3.3.5 Data Manipulation Language (DMLJ

If a DL function is performed with multiple line types specified in the line list, an asterisk must
appear in the return indicator field of one of the line types to indicate which line type to delete. The
asterisk should appear as a result of the read with HOLD option. When more than one return in­
dicator contains an asterisk, the first line type that contains an asterisk in its return indicator is
used. If an asterisk does not exist in the line list, an exception condition is reported in the status
field of the control block. As a result of the deletion, DBMS-990 can reuse the line space.

At call initiation, loc1 must contain the address of the data line to be deleted. This is accom­
plished by performing the read with HOLD operation prior to the DL operation.

The following specifications apply to the location pOinters at call termination:

• Loc1 normally cont?ins the address of the data line that preceded the deleted data line.
Loc1 contains asterisks when no data line precedes the deleted data line.

• Loc2 is unchanged by the DL function.

4.3.3.5 Delete Record (DR). The delete record (DR) function deletes a record by deleting all of the
data lines associated with the primary key value specified in the control block. The key ID and key
value specified in the control block apply to a primary key. This function allows you to easily
delete entire records without executing both a read (with hold) and delete function for each data
line in the record. When the last data line is deleted for the record, the primary key value specified
is also deleted. The DR function returns asterisks as the status code even if no record existed for
the specified key.

The location pointers at call initiation are as follows:

• Loc1 must cqntain asterisks.

• Loc2 must contain asterisks.

The location pOinters at call termination are as follows:

• Loc1 is unchanged by the DR function.

• Loc2 is unchanged by the DR function.

4.3.4 Transaction Functions
Three DML functions used in defining transactions are available for DML applications if the
transaction-level integrity feature has been chosen at the time of data base generation. A trans­
action is a series of operations or updates to a data base that logically belong together, such as
the individual operations performed to transfer funds from one account to another.

The transaction functions mark the beginning and end of the operations comprising a transaction.
Within a transaction, all of the updates must be performed successfully, or the entire transaction
can be rolled back leaving the data base in its pretransaction state.

DBMS-990 allows transaction nesting up to a maximum level of 10. The actual level on your system
is specified at DBGEN. If you exceed this level, the system returns an invalid transaction (IT)
status. With nested transactions, all internal Rollback Transactions (TRs) are actually carried out.
However, only the outermost Te actually commits the updates to the data base files.

4·24 2272058-9701

Data Manipulation Language (DML) 4.3.4.1

Remember that there is a system performance cost associated with the use of the transaction­
level integrity feature. Consequently, you should use the transaction functions only to group oper­
ations that logically belong together. Also, you are cautioned to keep the number of operations
within a transaction to a minimum to reduce both the amount of memory and the execution time
needed to support this feature.

The transaction functions are as follows:

• Start transaction (TS)

• Commit transaction (TC)

• Rollback transaction (TR)

4.3.4.1 Start Transaction (TS). The start transaction (TS) function marks the beginning of a trans­
action. All operations that follow, up to the occurrence of either a TC orTR function, are defined as
belonging to the transaction.

4.3.4.2 Commit Transaction (TC). The commit transaction (TC) function marks the end of a trans­
action and causes all operations occurring since the last TS function to be applied to the data
base. In the case of nested transactions, only the outermost TC causes the uf)dates to be applied
to the data base.

4.3.4.3 Rollback Transaction (TR). The rollback transaction (TR) function causes all operations
occurring since the last TS function to be nullified. The data base is returned to its original pre­
transaction state.

The system performs the TR function in three situations, as follows:

• When two transactions are deadlocked

• When the computer memory workspace is not large enough to accommodate the
number of locks requested

• When the system crashes

The system returns a deadlock status (DL) or lock tables (LB) code in the first two cases.

2272058-9701

NOTE

It is the programmer's responsibility to check for the DL status code
and take appropriate action to ensure that the application program
user is aware that the transaction was not committed. It is advisable
to check for a DL status after every TC.

4-25

4.3.4.3 Data Manipulation Language (DMLJ

The following example illustrates a control block for a transaction function:

01

01

CONTROL BLOCK.
02
02
02
02
02
02
02

ASK

PSWO
FUNC
STAT
FLiO
FILLER
KYIO
KEYV

PIC X(4)
PICXX
PICXX
PIC X(4)
PIC X(8)
PIC X(4)
PIC X(40)
PICX

VALUE "DBMS".
VALUE "TS".
VALUE "* * ".
VALUE "PYRL".
VA LU E "* * * * * * * *".
VALUE "EXCL".
VALUE "EXCL".
VALUE "*".

CALL "OBMSYS" USING CONTROL-BLOCK, ASK, ASK, ASK, ASK, ASK.

In case of deadlock, the following example illustrates the most efficient method of structuring a
restart:

LABEL: START TRANSACTION

COM MIT TRANSACTION
I F DB_STAT = 'OL' GO TO LABEL

The programmer can also initiate the TR function. A program can perform a series of OML oper­
ations, test the result, and commit the transaction only if certain conditions are met. Using this
technique, the programmer can conditionally specify that the preceding operations are rolled
back.

4-26

NOTE

With transaction-level integrity, a pre-image log is maintained on
the system. This pre-image log records data prior to updates. If an
error occurs during a write or read from the pre-image log, the
following message is written to the system log: PREIMAGE FILE
ERROR.

2272058-9701

5

Security

5.1 INTRODUCTION

Security is an optional feature of DBMS·990 that can be included during installation of DBMS·990.
Security uses passwords to limit unauthorized use of the data base. Although the security system
cannot eliminate all violations, it does aid in controlling access to a data base.

Security requires a certain amount of overhead. The amount required depends on the degree of
protection assigned to the data elements in the data base. While the degree of protection affects
performance, the number of passwords affects storage requirements.

5.2 PASSWORDS

You can access a file or data base only if your password is associated with that file or data base.
Each password is associated with one or more files; a single data base might have one password
that applies to all of its files, or it might have several passwords distributed between the related
files of the data base. The primary purpose of passwords is to assign file access. For example,
employees in a personnel department might be assigned access only to personnel information
while those in payroll have access only to payroll information.

Various SCI commands assist in maintaini~g password entries and initiating security. (Refer to
the Model 990 Computer DNOS Data Base Administrator User's Guide.)

5.3 ACCESS AUTHORIZATION

Access authorization defines the type of access allowed to the data elements of a file for a par­
ticular password and/or user. Authorization must be assigned to each file associated with a
password. The following access types are available for each file:

• Read

• Write (replace)

• Add

• Delete

2272058-9701 5·1

5.3 Security

These access types are combined to form an authorization code. For example, one password may
specify read access to the data within a file. This same password may contain authorization to
read, write, and add data in another file so that the user of this password can only read the first file
but can read, write, and add data to the second file. Almost any combination of read, write, add,
and delete is permissible. However, any authorization code that includes write or delete must also
contain read.

Authorization codes can apply to all levels of data. In the absence of assigned authorization
codes, lower-level data elements assume the authorization of the next higher data element. For
example, a line assumes the authorization code of the file, and a field assumes the authorization
code of the line. To avoid this, you can usually assign less access authorization (including no ac­
cess) to a line or field. However, if a line has delete authorization all fields on that line must also
have delete authorization.

In security checking, no distinction is made between the access authorization of a group and one
of its fields. The DBA (or whoever assigns passwords) resolves any conflicts in access authoriza­
tion between a field and its group.

5-2 2272058-9701

6

Primitive auery

6.1 INTRODUCTION

This section contains the information necessary to operate primitive query in order to display data
base information in a limited manner. The following paragraphs discuss commands, examples of
queries, and error messages.

6.2 PRIMITIVE QUERY (PQUERY) COMMAND

The Primitive Query (PQUERY) command provides you with a limited capability to retrieve and
display information stored in a data base without writing a program. PQUERY is primarily a de­
bugging tool, used to view the contents of the data base during application program development.
PQUERY provides the following functions: read forward (RF), read backward (RB), and read serial
(RS).

6.2.1 PQUERY User Interface
You must resolve two screens in order to use PQUERY. The first screen is used only once per
session, but the second screen is repetitive.

The first screen for the PQUERY command is as follows:

PRIMITIVE QUERY
PASSWORD:

LISTING ACCESS NAME:

In response to the prompt LISTING ACCESS NAME, enter the pathname to which the output will
be sent. Pressing the RETURN key in response to this prompt displays the output at the VDT. To
change the output access pathname, terminate the current PQUERY session, reexecute the
PQUERY command, and enter a new pathname in response to the prompt. In response to the
prompt PASSWORD, enter the appropriate user password. The password must include at least
read authorization for any desired group or field. This prompt is displayed only when security is
part of DBMS-990.

The second screen for the PQUERY command is as follows:

PRIMITIVE QUERY
FUNCTION:
DB FILE ID:

KEY 10:
KEY VALUE:

FIELD IDS:
NO. OF OUTPUT LINES:

TERMINATE: YES

2272058·9701 6-1

6.2.2 Primitive Query

This PQUERY screen is repetitive and will be reissued to request new responses until you reply
YES to the prompt TERM INATE.

In response to the prompt FUNCTION, enter RF for read forward, RB for read backward, or RS for
read serial.

In response to the prompt FIELD IDS, enter a list of field and group IDs. When a group 10 is
specified, the data is displayed in hexadecimal format. All fields and groups specified must
belong to the same line type.

In response to the prompts KEY 10 and KEY VALUE, enter the 10 of the key field and the key value
from which you will select lines for output. The key 10 is required for all functions. The key value is
required for the RF or RB functions. For the RS function, the primary key value is returned for the
given key 10 and is displayed as the first field of output. The key value response is not required for
an RS function (press RETURN).

For an RF or RS function, the response to the prompt NO. OF OUTPUT LINES determines the
maximum number of lines to be retrieved and displayed for the specified primary key. If less than
the maximum number of lines are found, only that many lines are displayed. For an RS function,
this response determines the number of data lines to be retrieved and displayed at one time for
the field and/or group 10(s) specified.

6.2.2 PQUERY Output
If the response to the prompt TERMINATE is YES, the PQUERY command terminates following
the display of the data. Current positioning information is lost. If the response is NO, the com­
mand does not terminate and positioning information is not lost. The second screen reappears. If
you change no prompt responses other than the response to NO. OF OUTPUT LINES, reexecution
of an RF or RB function retrieves and displays the next data line of the specified key record. An RS
function always retrieves the next line. When all data lines containing a specified field or group
type are exhausted, the message END OF DATA LlNE(S) appears.

The output report consists of three parts. The first part contains information extracted from the
second screen prompt responses. The second part identifies the line number associated with the
data and provides the field headings in the order that the field IDs were listed. The third part con­
sists of the data listed under the field name headings.

When the number of characters in the output line exceeds 80, data carries over to the next output
line. Field headings are displayed for the portion that carries over. Fields that are not in ASCII for­
mat appear in hexadecimal format.

6-2 2272058·9701

Primitive Query 6.3

6.3 EXAMPLE QUERIES

The following is an example of an RF function, showing the user prompts and responses, along
with the associated output:

==
PRIJI>lITIVE QUERY

FUNCTION: RF
FILE ID: CUST

KEY ID: CUSN
KEY VALUE: DOOOl
FIELD IDS: NAMESTRTCITYSTATZIPCCREO

NO. OF OUTPUT LINES: 50
TERMINATE: YES

==

CUSN
STAT
D0001
TX

LINE TYPE IS: 01

NAME
ZIPC CRED
HOLE EARTH 018T.
78123 Al

8TRT

1234 MOUNTAIN LN.

CITY

LITTLE HILL

The following is an example of an RS function and illustrates the hexadecimal output obtained for
a data format other than CH (see the ITEM file DOL for the example program in Appendix B). The
user prompts and responses, along with the associated output are displayed.

2272058-9701 6-3

6.4 Primitive Query

===
PRIMITIVE QUERY

FUNCTION: RS
FILE ID: ITEM

t<EY ID: ITMN
KEY VALUE:
FIELD IDS: DESCUPRCQTYOQTYH

NO. OF OUTPUT LINES: 50
TERMINATE: YES

==
LINE TYPE IS: 01

ITMN DESC UPRC QTYO
A001 ARMADILLOS 313030313233 30303031
B002 BLACK HOLES 303230323334 :30303032
C003 CLAY 303033333435 30303033
0004 DIPS 303030343536 30303034
E005 ERECTORS 303035353637 30303035
F006 FREEBIES 303630363738 30303036
G007 GOOBERS 373030373839 30303037
Hooa HERBS 303830383930 30303038
1009 IDIOMS 303039393030 30303039
J010 .JUMPS 303031303030 30303130
K011 KILNS 303131313030 30303131
L012 LONE STARS 313230303030 30303132
N014 NIBBLES 303431343030 30303134
8019 SHOVELS 313031393031 39303139
T020 TALES 303939303939 30313030
Y025 YARNS 303235303030 30303235
Z026 ZEBRAS 303032363030 30303236
======= END OF DATA LINES =======

6.4 ERROR MESSAGES

QTYH
30313233
30323334
30333435
30343536
30353637
30363738
30373839
30383930
30393030
31303030
31313030
:31323030
31343030
31393030
34303030
32353030
32363030

PQUERY provides two types of error messages. The following messages are displayed in
response to errors in procedure speCifications:

1. INVALID PASSWORD.
2. INVALID KEY VALUE.
3. NO FIELD OR GROUP NAME SPECIFIED.
4. UNABLE TO OPEN OUTPUT FILE.
5. STATUS EXCEPTION FROM DBMS, STATUS = XX. (refer to Appendix A for meanings of

DBMS status codes)
6. FIELD XXXX IS UNDEFINED OR NOT IN SAME LINE-TYPE.
7. ILLEGAL FUNCTION, XX, MUST BE RS, RF OR RB.
B. FIELDS ARE ON DIFFFERENT LINES, BAD FIELD = XXXX.
9. BAD FIELD NAME XXXX.

Errors that the operating system discovers are reported by an error message of the following form:

OPERATING SYSTEM ERROR XXXX

where:

XXXX is the four-character system error code.

6 .. 4 2272058-9701

7

Execution of Application Programs

7.1 INTRODUCTION

This section discusses the steps required to produce a running application program using
DBMS-990 and outlines the procedure necessary to run the data base system. It is assumed that
DBMS-990 has been generated.

Data base users fall into two categories: those with a data base administrator (DBA) and those
without a DBA. The DBA designs the data structures, assigns security passwords, and maintains
the system. The Model 990 Computer DNOS Data Base Administrator User's Guide assists the
DBA in performing these functions. If a DBA is not assigned, the programmer should read the DBA
manual and perform the DBA's duties.

The following paragraphs describe preliminary procedures, programming considerations, and
operation of DBMS-990. It is assumed that the data structures have been designed.

7.2 PRELIMINARY PROCEDURES

The preliminary procedures involve two steps: creating files and security considerations.

7.2.1 File Creation
Data base files are created using the DDL compiler and the DDL for the appropriate file. Once the
design of the data structures is accomplished, file structures are translated into a series of DDL
statements. Use the Text Editor to enter these DDL statements into the computer, and to make
corrections. To initiate the DDL compiler, use the DDL command, as outlined in Section 3.

You must be aware of the structure and definition of the data in order to write effective programs.
The line types defined, the secondary keys, and the field IDs are required in most applications.
Usually, the DBA provides this information.

7.2.2 Security
Security is an optional feature of DBMS-990. When security is generated into the system, every
access to a data base file must include a valid password. Once the DDL compiler creates the data
base file, the DBA must assign passwords to the file. The Model 990 Computer DNOS Data Base
Administrator User's Guide specifies the SCI commands for maintaining the password files.

7.3 COMMON PROGRAM CONSIDERATIONS

Program considerations consist of the coding of DML parameters (or blocks), call techniques to
DBMS·990, and exception processing and optimization. The COBOL language is used in the
examples included in this section. Appendix B contains example programs in Pascal and COBOL.

2272058-9701 7-1

7.3.1 Execution of Application Programs

7.3.1 Coding of DML Parameters
In a COBOL program, the DML call parameters are coded in the working-storage section of the
data division. The three main parameters for the call are the control block, the line list, and the
data area. The other parameters are merely end indicators for the main parameters.

NOTE

DBMS-990 modifies each DML parameter to optimize future calls.
The control block and line list parameters are coded as described in
Section 4.

7.3.1.1 Control Block. To minimize storage requirements, define a limited number of control
blocks for each file. In most control blocks, only the function code need be changed from one call
to the next for the same fi Ie.

7.3.1.2 Line List. In coding line lists, avoid changing any of the fields except the return indicator
and disposition fields. DBMS-990 modifies the field IDs portion of the line list on the initial call
and each time that area changes. Frequent user modification of the field IDs portion of the line list
slows execution of the application program.

Figure 7-1 shows an example of a coded line list parameter. If one retrieval is for FLD1, one is for
FLD3, and another is for FLD2, retrieve all three fields in one call, as shown. Even if you have to
retrieve additional fields with a line type, this method saves time when compared to the time re­
quired to make individual calls to DBMS-990.

01 LlNE-DML.

05 LlNE-ID

05 RETURN-IND

05 FIELDS

05 DISPOSITION

PIC X(7)

PIC X

PIC X(12)

PIC X(8)

VALUE "LlNE=01".

VALUE "" , .

VALUE "FLD1 FLD2FLD3".

VALUE "****RLSE".

Figure 7-1. Line List Example

The use of multiple line types in a line list deserves some consideration. Generally, if accessing
more than one line type, a line list that specifies multiple line types requires the fewest DML calls.
The first encounter of any specified line type sets the return indicator for that line type to *.

For some applications, it might be convenient to include one line list that specifies a single line
type and another that specifies multiple line types. Use the line list best suited for each data
access.

7-2 2272058-9701

Execution of Application Programs 7.3.1.3

7.3.1.3 Data Area. Data to be sent or received is contained in the data area. This area can be
defined as a single area or as multiple areas with multiple definitions. The only restriction is that
the actual parameter must be defined on a word boundary, as with a COBOL 01-level definition.
When memory considerations are important, use a single data area for most of the calls to
DBMS-990. In this case, redefinitions are necessary so that all line types and their data elements
may be processed. Figure 7-2 shows an example of a single data area. Figure 7-3 shows an ex­
ample of multiple data areas. Note that with multiple data areas the DML calls use different data
areas rather than the same data area.

7.3.2 Call Techniques to DBMS-990
When security is installed, you must provide the appropriate file password to DBMS-990. The
password can be hard-coded into the application program, solicited from you or obtained through
an input parameter. When file-access checking is installed in DBMS-990, files must be opened
with the appropriate file access specified before any DML functions can be executed.

01 DATA-AREA.

05 FILLER PIC X(40) VALUE SPACES.

01 DA-LiNE-01 REDEFINES DATA-AREA.

05 FLD1 PIC X(10).

05 FLD2 PIC X(15).

05 FLD3 PIC X(15).

01 DA-LiNE-02 REDEFINES DATA-AREA.

05 ACCOUNT PIC 9(10).

05 DESCRIP PIC X(10).

05 AMOUNT PIC 9(8)V99.

05 FILLER PIC X(10).

Figure 7-2. Example of Single Data Area

2272058·9701 7·3

7.3.3 Execution of Application Programs

01 DATA-AREA-01.

05 FLD1·

05 FLD2

05 FLD3

01 DATA-AREA-02.

05 ACCOUNT

05 DESCRIP

05 AMOUNT

PIC X(10).

PIC X(15).

PIC X(15).

PIC 9(10).

PIC X(10).

PIC 9(8)V99.

Figure 7-3. Example of Multiple Data Areas

Prior to calling DBMS-990, initialize the control block and line list parameters. Appendix B con­
tains examples of complete calls to DBMS-990. To conserve memory, use common call
subroutines wherever possible. Figure 7-4 contains a common DBMS-990 call routine. Since the
same or common control block, line list, and data area are utilized, a PERFORM is used instead of
individual calls to DBMS-990. The only portion that needs to be altered prior to the PERFORM is
the function code. This application updates all current lines of aline type or adds new data lines.
This is a special application, used for illustrative purposes only.

7.3.3 Exception Processing and Optimization
A status return code of something other than asterisks does not always signify an error condition.
Figure 7-5 contains two examples of status code checking. Case A is primarily designated for
adding, while case B is best suited for updating or writing. Case B is more efficient if most of the
updates are changes; case A is best if most of the record transactions are additions.

7.3.4 Holding lines
Another consideration in program design is the method of holding lines for update (write) or delete
purposes. With DBMS-990, you can hold only one line at a time for update. In an interactive system
with more than one user, it is important to design update procedures that do not lock out other
users for excessive periods of time. Figure 7-6 illustrates the use of the HOLD disposition.

In case A of Figure 7-6, the user holds the part information from the first retrieval. All other users
are locked out of that part information while the first user decides what to do. The first user must
determine whether the part number is the correct one before entering an order. Any delay in enter­
ing the order delays the other users, since they cannot access the line being held.

In case B of Figure 7-6, more DBMS-990 calls are required. However, the part information is not
held on the first retrieval. As a result, another user might obtain the part before the first user
enters the order. Only one party can receive the parts when the quantity on hand is limited, and the
first order entered should receive the parts. In effect, case B holds the part for the time it takes
the computer, not a human, to make a decision. Thus, case B is a better interactive system than
case A.

7-4 2272058-9701

Execution of Application Programs 7.3.5

7.3.5 Transaction Bracketing
You should use the transaction commands (TS, TC or TR) to bracket updates that logically belong
together, such as the steps required in a transfer of funds between two accounts. Including too
many DML calls within a single transaction results in a deadlock. Therefore, you should limit the
size of transactions. Appendix B illustrates a program that uses transactions.

2272058~9701

01

01
01

01

CONTROL-BLOCK.
05 PASSWORD
05 FUNCTION
05 STATUS
05 FILENAME
05 LOC1
05 LOC2
05 KEY-NAME
05 KEY-VALUE

INPUT-PARAM
L1NE-IND
88 LINE-FOUND
EOF-IND
88 EOF-FOUND

PROCEDURE DIVISION
MAIN-LINE.

ACCEPT INPUT-PARAM.
PERFORM READ-TRANS.

PIC X(4).
PIC XX.
PIC XX.
PIC X(4)
PIC X(4).
PIC X(4).
PIC X(4)
PIC 9(9).

PIC X
PIC X

PIC X

VALUE "POFL".

VALUE "ORDN"

VALUE SPACE.
VALUE SPACE.
VALUE "Y".
VALUE SPACE.
VALUE ".".

PERFORM UPDATE-ROUTINE UNTIL EOF-FOUND.

UPDATE-ROUTINE.
MOVE "RF" TO FUNCTION.
PERFORM COMMON-CALL.
IF LINE-FOUND and FLD1 = INPUT-PARAM

(move in new data)

MOVE "WT" TO FUNCTION,
PERFORM COMMON-CALL,

Figure 7-4. Example of Common DBMS-990 Call Routine (Sheet 1 of 2)

7-5

7.3.5 Execution of Application Programs

7-6

ELSE,
MOVE "AA" TO FUNCTION,
PERFORM COM MON-CALL.

PERFORM READ-TRANS.
EN D-UPDATE-ROUTIN E.

COMMON-CALL.
CALL "DBMSYS" USING CONTROL-BLOCK,

IF STATUS NOT = "**,,
MOVE "N" TO LlNE-IND,

(Error logic)

ELSE,

EN D-CONTROL-BLOCK,
LINE-LIST,
END-LiNE-LlST,
DATA-AREA,
EN D-DAT A-AR EA.

IF LOC1 = "* ••• ,, AND LOC2 = "****,,
MOVE "N" TO LlNE-IND,

ELSE,
MOVE "Y" TO LINE-IND.

END-COMMON.

READ-TRANS.
READ TRANS-FILE AT END

MOVE "*,, TO EOF-IND.

Figure 7-4. Example of Common DBMS-990 Call Routine (Sheet 2 of 2)

2272058-9701

NO

2277679

2272058·9701

START

KEY INFO
AND DATA

"AA"

"RF" WITHHOLD

CHANGE DATA

"WT" (UPDATE)

CASE A

Execution of Application Programs 7.3.4

NO

"AA"

NO

START

KEY INFO
AND DATA

"RF"
WITH
HOLD

CASE B

Figure 7-5. Adding and Updating

YES

CHANGE DATA

"WT" (UPDATE)

7-7

7.3.4 Execution of Application Programs

2277470

7-8

"RL" TO

RELEASE

LINE

NO

START

ENTER PART #

PART INFO
"RF" WITHHOLD

DISPLAY

"\AJT" UPDATE
QUANTITY ON

HAND

CASE A

Figure 7-6.

"WT"(UPDATE)
YES

CASE 8

START

ENTER PART #

PART INFO "RF"

DISPLAY

"RF"
WITH
HOLD

CHECK QUAN­
TITY ON HAND
WITH ORDER

Use of HOLD Disposition

NO

NO

"RL" TO

RELEASE

LINE

INFORM
USER

2272058·9701

Execution of Application Programs 7.4

7.4 COMPILING AND LINKING COBOL

After writing the application program, the user must compile and link the program. The Model 990
Computer DNOS COBOL Programmer's Guide includes instructions for using the COBOL com­
piler. The Model 990 Computer DNOS Link Editor Reference Manual includes instructions for link
editing. Before linking the program, have available a program file in which to place the output of
the Link Editor.

To link COBOL, create the necessary link control file structure by using the Text Editor. The
resulting control file is then input to the Link Editor. All entries are required except for the optional
entries enclosed in brackets ([]); angle brackets « » indicate user-suppl ied information. Refer to
Section 3 of the Model 990 Computer DNOS Data Base Administrator User's Guide.

In Figure 7-7, the TASKNAME option of the TASK command defines the saved name for the pro­
gram file. The MAIN PROGRAM option is the user application program.

FORMAT IMAGE ,REPLACE
PROC RTCOBOL
INCLUDE .S$SYSLlB.RCBPRC
TASK <TASKNAME>
INCLUDE .S$SYSLlB.RCBTSK
INCLUDE .S$SYSLlB.RCBMPD
INCLUDE <MAIN PROGRAM>
INCLUDE .S$DBMS.SNDMSG
INCLUDE .S$DBMS.COBINT
[INCLUDE <USER SUBROUTINES>]
END

Figure 7-7. Link Control File for COBOL and DBMS

7.5 COMPILING AND LINKING PASCAL

After writing the Pascal application program, compile and link the program. See the Model 990
Computer DNOS TI Pascal Programmer's Guide for detailed instructions on using the Pascal com­
piler. See the ModeJ 990 Computer DNOS Link Editor Reference Manual for detailed instructions
on link editing. Before linking the program, have available a program file in which to place the out­
put of the Link Editor.

The link control file shown in Figure 7-8 is created using the Text Editor. The necessary control file
is then input to the Link Editor. All entries are required. Angle brackets « » indicate user-supplied
information.

The TASK NAME of the TASK command supplies the saved name for the program file. The MAIN
PROGRAM is the application name.

For additional information on Pascal, see Appendix B.

2272058-9701 7-9

7.6 Execution of Application Programs

NOSYMT
FORMAT IMAGE,REPLACE
LIBRARY S$TIP.OBJ
PROC DBINFACE
DUMMY,
INCLUDE .S$DBMS.DBINFACE
TASK <TASK NAME>
INCLUDE S$TIP.OBJ.MAIN
INCLUDE <MAIN PROGRAM>
INCLUDE .S$DBMS.SNDMSG
INCLUDE .S$DBMS.FRGMY
INCLUDE <USER SUBROUTINES>
END

Figure 7-8. Link Control File for Pascal and DBMS

7.6 COMPILING AND LINKING FORTRAN

After completing a FORTRAN application program, you must compile and link the program. The
Model 990 Computer FORTRAN DNOS Programmer's Reference Manual contains detailed instruc­
tions for using the FORTRAN compiler. The Model 990 Computer Link Editor Reference Manual
contains instructions for link editing. Before linking the program, have available a program file in
which to place the output of the Link Editor.

Since the FORTRAN run time cannot be linked with the DBMS interface, only the DBMS interface
module can be in procedure segment one (P1). Figure 7-9 illustrates an example of how to link a
FORTRAN task with DBMS-990.

The link control file shown in Figure 7-9 is created using the Text Editor. The desired control file is
then input to the Link Editor. All entries are required. Angle brackets « » indicate user-supplied
information.

The TASK NAME of the TASK command supplies the saved name for the program file. The MAIN
PROGRAM is the application program name.

For additional information on FORTRAN, see Appendix B.

7-10 2272058-9701

NOSYMT
FORMAT IMAGE,REPLACE
LI BRARY .FORT78.0SLOBJ
LI BRARY .FORT78.STLOBJ
TASK <TASK NAME>
INCLUDE <MAIN PROGRAM>
INCLUDE .S$DBMS.SNDMSG
INCLUDE <USER SUBROUTINES>
END

Execution of Application Programs 7.7

Figure 7-9. Link Control File for FORTRAN and DBMS

7.7 PROGRAM TESTING WITH DBMS-990

Program testing consists of three major steps: start up, execution, and termination. The following
paragraphs discuss these topics.

7.7.1 Start Up
Before executing the program, you must start DBMS-990 (provided it has not been started already).
Use the command SDBMS to activate DBMS-990. (See the Model 990 Computer DNOS Data Base
Administrator User's Guide.)

7.7.2 Execution
Once DBMS-990 is running, execution of the application program can proceed after it is compiled
and link edited. Two commands are available for COBOL execution: Execute COBOL Task (XCT)
and Execute COBOL Task Foreground (XCTF). The COBOL debugger is also available to help find
problems. During testing, use small files if possible. However, use any amount of data necessary
for adequately testing the program. For FORTRAN programs, the Execute FORTRAN Task (XFT) or
Execute FORTRAN Task Foreground (XFTF) commands are available. For Pascal programs use
the Execute Pascal Task (XPT) command. To select background or foreground mode, respond B or
F to the MODE prompt.

7.7.3 Termination
Once you have completed the execution phase of testing, you can terminate DBMS-990 by using
the EDBMS command. This protects the system from being damaged by a system or hardware
crash.

2272058·9701 7-11

7.8 Execution of Application Programs

7.8 SUMMARY OF DBMS-990 OPERATION

The following steps are required to develop and run an application on DBMS·990:

7-12

1. Design data structures.

2. Partition the structures into DBMS files.

3. Run the DOL compiler to create files. Use the DOL command.

4. Assign security to files, lines, groups, and fields. This is optional (applies only when
security is installed in the system).

5. Code the application program by using the DML.

6. Compile and link edit the application program.

7. If necessary, start DBMS·990 by using the SDBMS command. The SDBMS command
automatically opens the security and alias files and opens the log when these features
are installed in the system.

8. Assign the required files using the ADBF command.

9. Execute the NADB utility and/or test the application program.

10. If desired, use the CLLOG command to terminate the log and close the log file, and the
RDBF command to release the assigned files.

11. If desired, end DBMS·990 with the EDBMS command. The EDBMS command
automatically releases any assigned files, terminates the security and alias features,
and closes the backup log file.

2272058-9701

Appendix A

DBMS Exception Reporting

A.1 INTRODUCTION

DBMS-990 errors consist of the following:

• DML errors

• Uti I ity errors

• DBMS errors

The status code of the control block parameter reports DML errors. Utility errors are those that
DBMS-990 utilities encounter.

A.2 . DML ERRORS

Check the status parameter of the DML call control block after each call. If the status parameter
contains anything other than asterisks, an error condition has occurred.

Table A-1 lists and explains the error codes that appear in the status area; Table A-2 lists the utility
error codes and explanations.

Code Type of Error

AC Access error

AE Address error

2272058·9701

Table A-1. Error Codes

Probable Cause

An attempt has been made to access a file
using an improper access type (Le., an up­
date attempt to a file opened with ROEX
access), to close a file that has not been
opened, or to open a file with an undefined
access type.

The user has supplied an invalid address in
loc1 or Loc2. This error is possible on all
functions if the user has aCCidentally
altered loc1 or loc2. However, it is most
likely to occur on a read forward (RF) func­
tion. Check the program logic for possible
modification to loc1 or loc2.

A-1

DBMS Exception Reporting

Code

AS

BF

BP

DA

DB

OF

DL

DU

FA

FB

FE

A-2

Table A-1. Error Codes (Continued)

Type of Error

Add error

Bad file

Bad pathname

Delete asterisks

Data base error

Duplicate file

Deadlock

Duplicate

Find asterisks

Fi Ie buffers

Field error

Probable Cause

The user is attempting to execute an add
command on a line type 01 with loc1 not
set to asterisks.

The data base file has a bad internal
pointer or address. This can result if a sys­
tem failure occurred while the file was
being modified and the file was not
recovered. Refer to the Data Base Adminis­
trator's Guide for recovery procedures.

The pathname supplied for the log file
access name was too long.

A delete record (DR) function has been
specified and loc1 does not contain
asterisks.

The data base is not running.

An attempt has been made to assign a file
10 that has already been assigned.

The transaction has been rolled back.

The user is attempting to add multiple type
01 lines to the same data record.

The asterisks at the end of the line list were
not found. This can result if the asterisks
do not start on a word boundary or if they
are not the correct length.

No file buffers exist to open the file. If the
error occurred during an ADBF command,
the size specified in response to the
prompt MAXIMUM ASSIGNED FILES in the
SDBMS command was not large enough. If
the error occurred during an OF function,
the size specified in response to
MAXIMUM OPEN FILES was not large
enough. Wait until a file is closed, or restart
DBMS-990 and specify a larger number of
file buffers.

The user has specified an invalid field or
group ID(s) in the parameter list. DBMS-990
cannot find the field or group 10. Verify the
spelling in the file definition and calling
program. Verify that the correct line type is
specified.

2272058-9701

DBMS Exception Reporting

Table A·1. Error Codes (Continued)

Code Type of Error Probable Cause

FH Full hold buffer The internal buffer that DBMS-990 uses to
register the held lines is full. This results
when too many tasks are holding lines; it
can also occur when a number of tasks ter-
minate without releasing held lines, thus
filling the table.

FL Full The area reserved for data lines is full. This
error can occur during an add after (AA) or
add before (AB) function. Delete any un-
necessary records or create a larger file
and copy the data to the new file by using
CPYFI LlRLDFI L.

FN Function error An invalid function code was specified. The
function passed to DBMS-990 in the con-
trol block is not defined.

FS File reset A UOBF was performed on a file that had
previously been unlocked.

FU File in use The current file is in use and not available
at this time.

GF Good file A UOBF was performed on a file that was
not locked.

HL Hold line error A hold line (HL) function has been at-
tempted with loc1 set to asterisks.

IE Invalid entry 10 The key ID specified is not the primary or
secondary key. For an add or delete func-
tion, the key 10 must be the primary key.

IG Invalid group The group 10 specified for a query group
(QG) function is not a group.

II I nval id item The user is not authorized to perform the
function against a data item specified in
the call.

IK Invalid key Either the data line to which the loc1 pOints
does not contain the same value as the key
value given in the control block, or an at-
tempt has been made to execute a read on
a secondary key that does not exist in the
line specified.

IL Invalid line The specified line type does not contain
the specified field.

2272058-9701 A-3

DBMS Exception Reporting

Code

10

IT

KF

KU

LA

LB

LE

LF

LL

LO

L1

A-4

Table A-1. Error Codes (Continued)

Type of Error

I/O error

Invalid transaction

Key area full

Key update error

Line asterisk

Lock tables full

Line error

Log full

Lock line error

Log error

Line = 01 error

Probable Cause

The operating system encounters an I/O
error that occurred during a read or write to
the disk.

The transactions are not properly brack­
eted by TS, TC and/or TR.

Key area for specified key 10 is full for an
add after (AA) or add before (AB) function.

An attempt is being made to alter the value
of a primary or secondary key with the write
(WT) function. To alter a key value, delete
the line and then reenter it with the new
value included.

A multiple line type specification has been
passed to DBMS-990 but no asterisk was
found for a write (Wn or delete (DL)
function.

The lock tables are full due to keys that are
too large.

DBMS-990 has received an invalid line list.
The "LINE =" syntax cannot be located.
Thus the field or group IDs cannot be
found.

The log file is full. Use CLLOG to close the
file, define a new file, and then use OPLOG
to open the new file.

An attempt was made to lock a line with
LOC1 = *.
A log input/output error has occurred.

An attempt is being made to add a line type
other than line 01 before a line type 01 has
been added. Check the program logic. A
line type 01 must exist before any other
line type can be added to the record if a
LINE = 01 is specified in the DOL.

2272058-9701

Code

NB

NF

NH

NK

NL

OA

OE

OL

ON

2272058-9701

DBMS Exception Reporting

Table A-1. Error Codes (Continued)

Type of Error

No buffer

No file

No hold

No key found

No logging

Open assign
LUNO error

Open error

Open log error

Open name

Probable Cause

Not enough buffers are available to
facilitate the required operation. This is a
temporary condition. The size specified in
response to the prompt MAXIMUM
BUFFERS in the SOBMS command was not
large enough. Either wait until a buffer is
free, or stop OBMS-990, increase the maxi­
mum number of buffers, and then restart
OBMS-990.

OBMS-990 cannot find the file 10 specified
in the file command. The file 10 may be mis­
spelled, or it may have been released.
Verify that the file 10 is assigned and is
spelled correctly.

An attempt is being made to delete a line
that has not been held. Prior to deleting a
line, the read with hold option must have
been specified. The only line available for
the delete (OL) is the last one read; with the
hold option, the task can only hold one line
at a time.

OBMS-990 cannot find the primary or
secondary key value for a read forward (RF)
or a read backward (RS) function. Check
the program logic and input data.

OBMS-990 has back-up logging installed,
but a log file has not been opened.

An operating system error occurred while
the user was trying to assign a LUNO to the
file. Verify that the file exists.

An operating system error occurred while
trying to open the file. Note that OBMS-990
was successful in assigning a LUNO to the
file but could not open it, implying that the
file is already in use, or that the file was not
created by the DOL translator.

The log must be either a magnetic tape,
cassette, or sequential file. The type found
is none of these, or the logical record
length is too small.

The fire ID specified does not match the file
10 internally stored in the file of the
path name specified.

A-5

DBMS Exception Reporting

Code

RL

R1

SV

PF

S1

UF

UL

UT

WF

xx

A-6

Table A-1. Error Codes (Continued)

Type of Error

Record Length

ROEX access
error

Security
violation

Preimage buffer full

SHRD access
error

Undefined field

Undefined line

Undefined key

Wrong file

Call error

Probable Cause

The file being assigned has a record length
that is not a valid page size. This file was
not created by the DDL translator.

An attempt has been made to open a fi Ie
with SHRD or EXCL access while the file is
already open with ROEX access, or the
same task is trying to execute multiple
opens with ROEX access.

The user has entered an invalid password
and is not authorized to use a data item
specified in the call.

The value given for the MAX LINE IMAGES
at DBGEN has been exceeded. Reduce the
size of the transaction.

An attempt has been made to open a file
with EXCL or ROEX access while the file is
already open with SHRD access, or the
same task has already ?pened the file with
SH RD access.

The field name in the line list is not defined
in the DDL.

The DDL does not define the line type
specified for this file.

An attempt has been made to access a data
base file with a key type that was not in­
cluded in DBMS-990 during DBGEN.

All or part of a line that was encoded by a
previous call to DBMS-990 has been used
in a subsequent call, but the file ID was
changed and the new file specified does
not contain one of the fields.

The DML call parameter list is too large for
the interface buffer. Possible causes in­
clude the following: the call has too many
parameters; the wrong parameter list has
been sent; or the buffer size allocated dur­
ing DBGEN is not large enough for the
parameter list.

2272058-9701

Code

X1

01

Error Code

ABORT

BADDAT

BADFIL

BADKEY

BAD LOG

BADPSW

BADSFL

ERROR

FERROR

FILNTF

FNAME

INVTYP

2272058·9701

DBMS Exception Reporting

Table A-1. Error Codes (Continued)

Type of Error

EXCL error access

Line = 01 error

Probable Cause

An attempt has been made to open a file
with EXCL, SHRD, or ROEX access when
the file is already open with EXCL access.

An attempt is being made to delete a line
type 01 when other line types for the key
still exist. A line type 01 cannot be deleted
until all other line types for the key have
been deleted.

Table A-2. Utility Error Codes

Meaning

RECOVR forced to abort (entered Q).

A log record has an invalid date and time stamp. If the log file is being
used to recover from an operating system crash, BADDAT might signal
the end of a log file that has no EOF, instead of signaling an error
condition.

The DB FILE 10 specified does not match the file 10 of the DB FILE
PATHNAME specified.

Primary key 10 must be the same for the copy file and the DBMS file.

Log file pathname cannot be opened or contains inconsistent data.

I nval id password entry.

The specified copy file cannot be opened or is not of the proper type.

A command function name is not valid.

A disk I/O operation exceeded the bounds of the file, and all range checks
passed. (An operating system error, indicated by U SVC-0331, occurred.)

The specified pathname does not exist. (An operating system error,
either U SVC-0304 or U SVC-0315, occurred.)

The file 10 specified for RLDFIL does not match the copy file.

Invalid type or file change in RLDFIL.

A-7

DBMS Exception Reporting

Error Code

LlNTYP

LOG 110

NO OUT

WRPROT

Table A-2. Utility Error Codes (Continued)

Meaning

The number of line types that CPYFIL found exceeds the maximum
allowed.

1/0 error typing to read log file.

The output listing file cannot be opened.

The utility cannot write to the file. (An operating system error,
U SVC-0214, occurred; the disk drive is write protected.)

In addition to the error codes listed in Table A-2, DBMS utilities return the following six character
error codes:

CHAR

1 and 2
3and4
5and6

A.3 DBMS Error Messages and Codes

Contents

DML function code
DML status
Asterisks

DBMS error messages are in the following form:

nnnn <message>

Table A-3 lists the DBMS error messages and explanations. Table A-4 shows the internal error
codes and the corresponding message numbers. This is useful on systems that do not contain
message files. Use the internal code to find the message number. Then, look up the message
number in Table A-3 to find the explanation.

A-8 2272058·9701

U DBMS-0001

U DBMS-0002

U DBMS-0003

U DBMS-0004

U DBMS-0005

U DBMS-0006

2272058-9701

DBMS Exception Reporting

Table A-3. DBMS Error Messages

ERROR ON OPEN OR CLOSE DBMS FILE, STATUS = ?1

Explanation:
A file access error status was returned. This is a result of
some other user having exclusive (X1 status) or read-only ex­
clusive (R1 status) access to the file.

User Action:
Retry when file exclusive or read-only exclusive access
privileges are released from the file.

FIELDS ARE ON DIFFERENT LINES, BAD FIELD = ?1

Explanation:
All the output fields must be from the same line. The field
identified as the bad field is contained in a different data line
from the previous field(s).

User Action:
Retry excluding the bad field 10.

ILLEGAL FUNCTION "?1", MUST BE "RS","RF", OR "RB"

Explanation:
The function entered is not a legal function for the PQUERY
utility.

User Action:
Retry using a valid function, must be 'RS', 'CF', or 'RB'.

INVALID KEY VALUE

Explanation:
The value entered for the primary key field does not exist.

User Action:
Retry with a key value that exists.

NO FIELD OR GROUP 10 SPECIFIED

Explanation:
No field or group names were entered for the FIELD IDS
prompt.

User Action:
Retry using valid field(s) and/or group(s) 10 for prompt.

STATUS EXCEPTION FROM DBMS, STATUS = ?1

Explanation:
The data base manager returned the error status defined in
the return message when PQUERY tried to process the
request.

A-9

DBMS Exception Reporting

Table A-3. DBMS Error Messages (Continued)

U DBMS-0007

U DBMs-oooa

U DBMS-0009

U DBMS-0010

U DBMS-0011

A-10

User Action:
Consult the error code table to determine the reason for the
error status.

UNABLE TO OPEN FILE, DBMS STATUS = ?1

Explanation:
PQUERY could not open the file with shared access. Another
task has the file open with either exclusive or read-only
exclusive.

User Action:
Retry operation when PQUERY can get access to the fi Ie.

UNABLE TO OPEN LISTING FILE

Explanation:
PQUERY utility could not open the listing file requested.

User Action:
Probably caused by an invalid pathname, does not exist or is
a directory name. Another possibility is there is not enough
disk space for the listing file.

UNDEFINED FIELD NAME "?1"

Explanation:
The field name given in the message is not defined for the file
10 entered.

User Action:
Enter correct field name and retry.

UNABLE TO OPEN THE LISTING FILE, SVC ERROR ?1

Explanation:
The data base utility could not open the requested listing file.
The error could be caused by an invalid pathname, a full
directory, or a full disk space.

User Action:
Refer to the SVC error code for the exact cause of the error
and respond accordingly.

DBMS UTI L1TY ERROR: ?1

Explanation:
The DBMS-990 utility detected an error during processing.

User Action:
See the table containing the utility error codes for further
explanation.

2272058-9701

DBMS Exception Reporting

Table A-3. DBMS Error Messages (Continued)

U DBMS-0012 CANNOT CLOSE SECURITY FILE

Explanation:
An error was received from closing the security file.

User Action:
Possible hardware error.

U DBMS-0013 CANNOT GET TCA FILE

Explanation:
An error occurred when trying to access the TCA region.

User Action:
Possible hardware error.

U DBMS-0014 CANNOT GET OPEN SECURITY FILE

Explanation:
An error was received when opening the security file.

User Action:
Possible hardware error. Another possibility is that another
task has the file open with access privileges that conflict.

U DBMS-0015 ERROR IN SYNONYM ASSIGNMENT

Explanation:
An error was received when trying to assign a synonym

User Action:
Delete some synonyms and retry the operation.

U DBMS-0016 ERROR WHEN ASSIGNING LUNO TO SECURITY FILE

Explanation:
An error was received when trying to assign a LUNO to the
security file.

User Action:
Verify the security file exists.

U DBMS-0017 ERROR WHEN READING SECURITY FILE

Explanation:
An error was received when trying to read the security file.

User Action:
Possible hardware error.

2272058-9701 A-11

DBMS Exception Reporting

Table A-3. DBMS Error Messages (Continued)

U DBMS-0018

U DBMS-0019

U DBMS-0020

u DBMS-0021

U DBMS-0022

A-12

ERROR WHEN RELEASING LUNO FOR SECURITY FILE

Explanation:
An error was received when trying to release a LUNO as­
signed to the security file.

User Action:
Possible hardware error.

INVALID MASTER PASSWORD

Explanation:
The password entered is not the correct master password.

User Action:
Retry with the correct master password ..

INVALID DATA FORMAT CONVERSION FOR RLDFIL

Explanation:
RLDFIL does not support conversion of the data for format
specified.

User Action:
Do not use RLDFIL for changing the format for data types
that are not supported by RLDFIL.

DBMS FILE IS NOT EMPTY

Explanation:
The file into which the data is to be loaded is not empty. The
reload does not occur.

User Action:
Format the file with the DDL translator before trying the
reload.

INVALID FIELD CONVERSION IN RLDFIL

Explanation:
RLDFIL encountered a field conversion request that is
invalid.

User Action:
Refer to the documentation for RLDFIL for the valid type
changes. Compare the DDL forthe file that CPYFIL copied to
a sequential file against the DDL for the data base file that is
being reloaded. Change the invalid conversion to be valid.

2272058·9701

DBMS Exception Reporting

Table A-3. DBMS Error Messages (Continued)

U DBMS-0023 FIELD DROPPED IN NEW DOL - ?1

Explanation:
The field was found in the old DDL but is not in the new DOL.

User Action:
Verify that the field should not be in the new DDL.

U DBMS-0024 ?1 LINE TYPE MISSING IN NEW DOL

Explanation:
Line identifier is missing in new DOL. This message occurs if
the old DOL contains a line type not in the new DDL.

User Action:
Verify that the line type should not be in the new DOL.

U DBMS-0025 POSSIBLE LOSS OF SIGNIFICANCE IN FIELD - ?1

Explanation:
This message results if the field in the old DOL has more
significant digits than the field declared in the new DOL.

User Action:
Verify that loss of significance is valid.

U DBMS-0026 TYPE TRANSFER FOR RPG DATA NOT IMPLEMENTED

Explanation:
RPG data types are not supported by the RLDFIL utility.

User Action:
None.

U DBMS-0027 UNABLE TO OPEN THE INPUT FILE, SVC ERROR ?1

Explanation:
The DOL translator could not open the requested input file.
The error could be caused by an invalid path name or by speci-
fying a file that does not exist.

User Action:
Refer to the SVC error code for the exact cause of the error
and respond accordingly.

U DBMS-0028 CANNOT OBTAIN TCA FILE, SVC ERROR?1

Explanation:
The data base utility could not obtain the TCA file.

User Action:
Refer to the SVC error code for the exact cause of the error
and respond accordingly.

2272058-9701 A-13

DBMS Exception Reporting

Table A-3. DBMS Error Messages (Continued)

U DBMS-0029

U DBMS-0030

U DBMS-0031

U DBMS-0032

U DBMS-0033

U DBMS-0034

A-14

ERROR ON READ OF INPUT FILE, SVC ERROR?1

Explanation:
The DOL translator has detected an error on a read from the
input file.

User Action:
Refer to the SVC error code for the exact cause of the error
and respond accordingly.

DATABASE MANAGER ALREADY RUNNING

Explanation:
The data base manager is already running.

User Action:
An EDBMS command must be issued prior to reissuing the
SDBMS command.

INVALID OR MISSING PARAMETER

Explanation:
A parameter required by the data base is either missing or
invalid.

User Action:
Verify that the parameters used in the bid are correct.

UNABLE TO BID DATABASE MANAGER. SVC ERROR: 2B?1

Explanation:
An SVC error occurred during the bid task.

User Action:
Refer to the SVC error code for the correct action.

DBMS UTI LlTY ERROR: ?1

Explanation:
An error was detected during the execution of the DBMS-990
utility. The six-character code defines the type of error that
occurred.

User Action:
Look up the six-character code in the Utility Error Codes
table. Determine the cause of the error. Retry the operation.

INVALID FUNCTION

Explanation:
The SECFUNC task was bid with an invalid function code.

User Action:
Check to see that the SCI procedure has not been altered.

2272058-9701

DBMS Exception Reporting

Table A-3. DBMS Error Messages (Continued)

U DBMS-0035 INVALID PATHNAME

Explanation:
An invalid pathname was entered.

User Action:
Retry using a valid pathname.

U DBMS-0036 INVALID STATUS CODE: ?1

Explanation:
An error status code was returned by the data base manager.

User Action:
Refer to the DBMS-990 status codes for further information.

U DBMS-0037 INVALID FILE

Explanation:
The file ID specified is longer than four characters.

User Action:
Retry using a maximum of four characters for a file ID.

U DBMS-0038 ERROR ON WRITE TO LISTING FILE, SVC ERROR ?1

Explanation:
The DDL translator has detected an error on a write to the
listing file.

User Action:
Refer to the SVC error code for the exact cause of the error
and respond accordingly.

U DBMS-0039 ERRORS DETECTED DURING DDL TRANSLATION

Explanation:
The DOL translator has detected errors during translation.

User Action:
Check the listing file for the specific location of syntax errors
and for any semantic errors. Make the appropriate revisions
and resubmit the DDL.

U DBMS-0040 STATUS CODE: ?1

Explanation:
An invalid status was returned by the data base manager.

User Action:
Refer to DBMS-990 status codes for further information.

2272058-9701 A-15

DBMS Exception Reporting

Table A-3. DBMS Error Messages (Continued)

U DBMS-0041

U DBMS-0042

U DBMS-0043

U DBMS-0044

U DBMS-0045

A-16

CANNOT GET ACCESS

Explanation:
Another task has exclusive (or read-only exclusive) access to
the fi Ie specified.

User Action:
Retry the operation when the file has been released from
exclusive access.

CANNOT GET PARAMETER

Explanation:
An error occurred when trying to read bid parameter.

User Action:
The task was bid with incorrect number of parameters. Pos­
sible hardware error.

CANNOT OPEN FILES

Explanation:
The maximum number of open files has been reached or
another task has the security or alias files open with access
privileges that conflict.

User Action:
Restart the data base manager (SDBMS) with a larger maxi­
mum number of open files. If another task has the files open
then retry later.

CODE CONFLICT

Explanation:
The entry to be added is not a subset of the authorization of
the higher-level entry, or the item to be added does not have
delete authority but the associated line does have delete
authority.

User Action:
Resolve the conflict and retry.

DATABASE DOWN

Explanation:
The data base is not up; it has not been started.

User Action:
Start the data base with SDBMS command.

2272058-9701

U

U

U

U

U

2272058-9701

DBMS Exception Reporting

Table A-3. DBMS Error Messages (Continued)

DBMS-0046

DBMS-0047

DBMS-0048

DBMS-0049

DBMS-0050

DUPLICATE FILE

Explanation:
Tried to add a file that has already been assigned to the
password.

User Action:
Verify access authorizations for the file assigned to the
password.

DUPLICATE ITEM

Explanation:
Tried to add an item that has already been assigned to the
password.

User Action:
Verify access authorizations for the item assigned to the
password.

DUPLICATE LINE

Explanation:
Tried to add a line that has already been assigned to the
password.

User Action:
Verify access authorization for the line assigned to the
password.

DUPLICATE PASSWORD

Explanation:
Tried to add a password that has already been assigned.

User Action:
Verify password exists.

ENTRY AREA FULL

Explanation:
Attempted to add password/alias entry when the password/alias
entry area is full.

User Action:
Expand the disk data area. Users should consult the DBA. The
DBA should copy the security/alias file, depending on which
file is full, using the CPYFIL utility. The security file
($SC1)/alias file ($AL 1) is located in the SC1/AL 1 node of the
data base library directory. Redo the DBINS procedure speci­
fying new security/alias file. Increase the number of
security/alias entries and reload the copied data.

A-17

DBMS Exception Reporting

Table A-3. DBMS Error Messages (Continued)

U DBMS-0051

U DBMS-0052

U DBMS-0053

U DBMS-0054

U DBMS-0055

U DBMS-0056

A-18

FILE NOT FOUND

Explanation:
The file 10 specified does not have authorization. The file 10
specified for deletion does not exist for the password.

User Action:
Must first give authorization to the file. Retry deletion with
the valid file 10 for the password.

INVALID CODE

Explanation:
Error when entering the authorizations for the entry.

User Action:
Reenter the command.

INVALID LISTING ACCESS NAME

Explanation:
The listing access name is not valid.

User Action:
Retry using a valid listing access name. Check available
space in directory and/or disk volume.

INVALID FUNCTION

Explanation:
The task was bid with a function that is not defined.

User Action:
Check to see that the SCI procedure has not been altered.

INVALID ITEM

Explanation:
Item 10 is longer than four characters.

User Action:
Retry using four characters or less for the item name.

INVALID LINE

Explanation:
The line 10 specified is longer than two characters.

User Action:
Retry using two characters for the line 10.

2272058·9701

DBMS Exception Reporting

Table A-3. DBMS Error Messages (Continued)

U DBMS-0057 INVALID MASTER

Explanation:
Master password is longer than four characters.

User Action:
Retry using four characters or less for master password.

U DBMS-0058 INVALID MAX VALUE

Explanation:
When creating data base security, the MAX PASSWORDS or
MAX ENTRIES prompt value was greater than 999999.

User Action:
Redo the DBINS process specifying values less than 999999
for the MAX PASSWORDS and/or MAX ENTRIES prompt.

U DBMS-0059 INVALID PASSWORD

Explanation:
The password specified does not have access authorization
or has not been assigned. Also, the password specified is
longer than four characters.

User Action:
Verify the validity and/or authorization of the password.

U DBMS-0060 INVALID TYPE

Explanation:
Type is not FILE, LINE or ITEM.

User Action:
Retry using a valid type.

U DBMS-0061 ITEM NOT FOUND

Explanation:
The item 10 specified does not exist.

User Action:
Retry with different item 10.

U DBMS-0062 LINE NOT FOUND

Explanation:
The line 10 specified does not have authorization. The line 10
specified for deletion does not exist for password.

User Action:
Must first give the authorization to the line. Retry with a valid
line 10 for the password.

2272058-9701 A-19

DBMS Exception Reporting

Table A-3. DBMS Error Messages (Continued)

U DBMS-0063

U DBMS-0064

U DBMS-0065

U DBMS-0066

U DBMS-0067

A-20

NO BUFFERS

Explanation:
No open file buffers. Other tasks are already using the
buffers.

User Action:
Wait until buffers are available.

PASSWORD AREA FULL

Explanation:
The maximum number of passwords specified in DBINS has
been exceeded.

User Action:
Expand the disk data area. Users should consult the DBA. The
DBA should copy the security file using the CPYFIL utility.
The security file ($SC1) is located in the SC1 node of the data
base library directory. Redo the DBINS procedure specifying
new security file. Increase the number of passwords and
reload the copied data.

PASSWORD NOT FOUND

Explanation:
The password used is not a valid password.

User Action:
Verify the correct password was used.

DB FILE NOT ASSIGNED

Explanation:
An attempt was made to access the security or alias files
without the files being assigned.

User Action:
Stop the data base using the EDBMS command. Restart the
data base using the SDBMS command.

ALTERNATE COLLATING SEQUENCE SPECIFIED AND S1
ROUTINES WERE NOT INCLUDED

Explanation:
A path name for an alternate collating sequence was specified
as a bid parameter to the data . base manager that was
generated without sequential keys. Alternate collati ng
sequences are only valid for the ordering of sequential keys;
thus a data base manager generated without sequential keys
cannot use the alternate collating sequence file.

2272058-9701

U

U

U

U

U

2272058-9701

DBMS Exception Reporting

Table A-3. DBMS Error Messages (Continued)

DBMS-0068

DBMS-0069

DBMS-0070

DBMS-0071

DBMS-0072

User Action:
Remove the alternate collating sequence pathname from the
bid parameter.

UNABLE TO ASSIGN LUNO TO ALTERNATE COLLATING
SEQUENCE FILE

Explanation:
The pathname defined for the alternate collating sequence
file is invalid.

User Action:
Change the path name used for the alternate collating se­
quence to be valid or null.

. UNABLE TO OPEN ALTERNATE COLLATING SEQUENCE
FILE

Explanation:
An error occurred when the data base manager attempted to
open the alternate collating sequence file.

User Action:
Verify the validity of the pathname in the bid parameter for
the alternate collating sequence file.

UNABLE TO READ ALTERNATE COLLATING SEQUENCE
FILE

Explanation:
An error occurred when the data base manager attempted to
read the alternate collating sequence file.

User Action:
Verify the validity of the pathname in the bid parameter for
the alternate collating sequence file.

UNABLE TO OPEN THE DATA BASE FILE, SVC ERROR?1

Explanation:
The DOL translator could not open the requested data base
file. The error could be caused by an invalid pathname, a full
directory, or a full disk space.

User Action:
Refer to the SVC code for the exact cause of the error and
respond accordingly.

'" '" AN EQUAL SIGN (' = ') WAS EXPECTED'" '"

Explanation:
The DOL translator expected an equal sign in the location in­
dicated by the up arrow.

A-21

DBMS Exception Reporting

Table A-3. DBMS Error Messages (Continued)

U DBMS-0073

U DBMS-0074

U DBMS-0075

U DBMS-0076

U DBMS-0077

A-22

User Action:
Correct the syntax and resubmit the DDL.

** INVALID LINE/VOLUME VALUE **

Explanation:
A zero (0) has been entered for the value of a line or volume.

User Action:
Change the line or volume to a nonzero value and resubmit
the DDL.

** INVALID CHARACTERS IN ID **

Explanation:
A four character ID has been entered that contains an invalid
character. The invalid character has been flagged with an up
arrow. An ID may contain only alphanumeric characters,
numeric characters, dollar signs ($), and blanks. An ID must
start with a dollar sign or an alphanumeric character and may
not contain embedded blaQks.

User Action:
Correct the invalid character and resubmit the DDL.

** A COMMA (',') WAS EXPECTED **

Explanation:
The DDL translator expected a comma in the location in­
dicated by the up arrow.

User Action:
Correct the syntax and resubmit the DDL.

* * KEYWORD EXPECTED * *

Explanation:
The DDL translator expected a keyword before the location
indicated by the up arrow.

User Action:
Verify the entry is a valid keyword and resubmit the DDL.

** A NUMERIC VALUE WAS EXPECTED **

Explanation:
The DDL translator expected a numeric value before the loca­
tion indicated by the up arrow.

User Action:
Verify the entry is a valid numeric value and resubmit the
DDL.

2272058-9701

U DBMS-0078

U DBMS-0079

U DBMS-0080

U DBMS-0081

U DBMS-0082

2272058-9701

DBMS Exception Reporting

Table A-3. DBMS Error Messages (Continued)

** A FORMAT WAS EXPECTED AFTER THIS DATA TYPE **

Explanation:
The DDL translator expected a format after the data type
specified in a field definition line.

User Action:
Add a valid format to the data type and resubmit the DDL.

** INVALID DATA TYPE LENGTH **

Explanation:
An invalid data type I-ength has been entered. A ex or RD field
must be 8 bytes long, an RS or ID field must be 4 bytes long,
and an LG or IS field must be 2 bytes long. An FX field must
have a length of 2 bytes with between 0 and 16 bits. A PK, AN,
AS, CN, or CS data type must have a length of between 1 and
18 bytes.

User Action:
Verify the data length is valid and resubmit the DDL.

** A PERIOD ('.') WAS EXPECTED **

Explanation:
The DDL translator expected a period in the location in­
dicated by the up arrow.

User Action:
Correct the syntax and resubmit the DDL.

* * MAXIMUM LlNEIVOLUME COUNT EXCEEDED - ?1 * *

Explanation:
The number specified for the line/volume count is greater
than that allowed by the DDL translator.

User Action:
Revise the number and resubmit the DDL.

CANNOT FORMAT DATABASE FILE WITH PATHNAME
SPECIFIED

Explanation:
The file specified for the new data base file already exists
and does not match the characteristics of the file to be
created. The preexisting file must be a relative record file
with the same physical and logical page size as the file to be
created, and both files must have the same number of
records.

A-23

DBMS Exception Reporting

Table A-3. DBMS Error Messages (Continued)

U DBMS-0083

U DBMS-0084

U DBMS-0085

U DBMS-0086

U DBMS-0087

A-24

User Action:
Choose another path name for the data base fi Ie or delete the
file that currently resides at the path name specified.

ALIAS AREA FULL

Explanation:
Attempted to add an alias when the alias area was full.

User Action:
Expand the disk data area. Users should consult the DBA. The
DBA should copy the alias file using the CPYFIL utility. The
alias file ($AL 1) is located in the data base directory in the
AL 1 node. Redo the DBINS procedure specifying new alias
file. Increase the number of alias entries and reload the
copied data.

ALIAS NOT FOUND

Explanation:
The alias specified does not exist.

User Action:
Check for spelling error and try again.

DUPLICATE ENTRY FOR ALIAS

Explanation:
The specified alias name is already assigned.

User Action:
Select another al ias name.

ERROR WHEN OPENING LISTING FILE

Explanation:
An error was received when trying to open the listing file.

User Action:
Verify the validity of the listing file access name. Check to en­
sure that the file can be created with access name specified.

ERROR WHEN WRITING TO LISTING

Explanation:
An error was received when writing the listing file.

User Action:
Check to ensure listing file device is ready. If listing access
name is a disk then check that space is available for the file.

2272058·9701

U

U

U

U

U

U

2272058-9701

DBMS Exception Reporting

Table A-3. DBMS Error Messages (Continued)

DBMS-0088

DBMS-0089

DBMS-0090

DBMS-0091

DBMS-0092

DBMS-0093

FILE NOT DEFINED FOR ALIAS

Explanation:
The specified alias is not assigned to the specified file.

User Action:
Verify the correct alias and file and retry the operation.

ILLEGAL ALIAS NAME

Explanation:
An alias name must begin with an alphabetic character; be 20
characters or fewer in length; and consist of alphanumeric,
dollar sign ($), dash (-), or underscore characters only.

User Action:
Modify the alias name to fit the description above.

ILLEGAL FIELD FOR ALIAS

Explanation:
The specified field does not have access authorization or has
not been assigned.

User Action:
Verify the field ID and retry the operation.

LINE TYPE NOT DEFINED FOR ALIAS

Explanation:
The specified alias is not assigned to the specified line type.

User Action:
Verify the alias and line type and retry the operation.

** AN '01' LINE TYPE MAY ONLY FOLLOW THE PRIMARY
KEY DEFINITION * *

Explanation:
The DDL translator has encountered an 01 line type after
other line types have been defined. If a file contains an 01
line, it must precede all other line type definitions.

User Action:
Position the 01 definition to precede all others or change the
10 of the line; then resubmit the DDL.

** DUPLICATE FIELD/GROUP NAME ENCOUNTERED - ?1 **

Explanation:
The DOL translator has encountered a field or group 10 that
has been defined twice.

A-25

DBMS Exception Reporting

Table A-3. DBMS Error Messages (Continued)

U DBMS-0094

U DBMS-0095

U DBMS-0096

U DBMS-0097

A-26

User Action:
Change one of the occurrences of the duplicate 10 and resub­
mit the DOL.

** INVALID ACCESS DECLARATION **

Explanation:
The DOL translator has encountered an invalid access
declaration in the optional ACCESS clause. One of the ac-
cess keywords RANDOM or SEQUENTIAL is required. The /1
designator is optional.

User Action:
Correct the syntax error indicated by the location of the up
arrow and resubmit the DOL.

** DUPLICATE LINE TYPE ENCOUNTERED **

Explanation:
The DOL translator has encountered a line type 10 that has
been previously defined.

User Action:
Change the previous occurrence of the 10 or the occurrence
flagged and resubmit the DOL.

** INVALID DATA TYPE **

Explanation:
The DOL translator has encountered an invalid data type. A
list of valid data types is listed in the DBMS Programmer's
Guide.

User Action:
Verify that a valid data type has been entered and resubmit
the DOL.

* * SYNTAX ERROR * *

Explanation:
The DOL translator has encountered a syntax error. Usually,
this error is caused by a nonblank character at the end of a
line.

User Action:
Correct the syntax error marked by the location of the up ar­
row and resubmit the DOL.

2272058-9701

U

U

U

U

U

2272058~9701

DBMS Exception Reporting

Table A-3. DBMS Error Messages (Continued)

DBMS-0098

DBMS-0099

OM BS-01 00

DBMS-0101

DBMS-0102

** ERROR ON CONVERSION OF ASCII VALUE **

Explanation:
The DOL translator could not convert a numeric ASCII string
to internal format. The ASCII string probably contains a non­
numeric character.

User Action:
Verify that the value flagged by the up arrow contains only
numeric characters and resubmit the DOL.

** STATEMENT OUT OF ORDER **

Explanation:
The DOL translator has encountered a statement that it did
not expect. The statement is not valid in its present location.

User Action:
Relocate the statement in a valid location and resubmit the
DOL.

* * MAXIMUM LINE LENGTH EXCEEDED * *

Explanation:
The data line identified exceeds the maximum length
allowable, 512 bytes. The maximum size of a data line is 512
bytes minus the primary key length, minus 10 bytes
overhead, minus eight times the number of secondary keys in
the line.

User Action:
Shorten the line and resubmit the DOL.

ERROR ON CLOSE OF THE DATA BASE FILE, SVC ERROR?1

Explanation:
The DOL translator has detected an error while trying to
close the data base file.

User Action:
Refer to the SVC error code for the exact cause of the error
and respond accordingly.

ERROR ON WRITING TO THE DATA BASE FILE, SVC ERROR?1

Explanation:
The DOL translator has detected an error while trying to write
to the data base file.

User Action:
Refer to the SVC error code for the exact cause of the error
and respond accordingly.

A-27·

DBMS Exception Reporting

Table A-3. DBMS Error Messages (Continued)

U DBMS-0103

U DBMS-0104

U DBMS-0105

U DBMS-0106

U DBMS-0107

A-28

END OF TAPE ENCOUNTERED BY CPYFIL

Explanation:
CPYFIL utility encountered an end of tape mark.

User Action:
Mount a new reel of tape. Press the "return" key when the
tape unit becomes ready.

** FILE NOT PROCESSED DUE TO SYNTAX ERRORS OR
'DUMY' PATHNAME **

Explanation:
No data base file has been created. Either the DDL translator
detected syntax errors during parsing or the user specified
DUMY in response to the DB FILE PATH NAME indicating no
file should be created.

User Action:
Correct any syntax errors flagged in the listing and enter a
valid file pathname in response to the DB FILE PATHNAME
prompt.

END OF TAPE ENCOUNTERED BY RLDFIL

Explanation:
RLDFIL utility encountered an end of tape mark.

User Action:
Mount the next reel of tape from the multiple tapes produced
by CPYFIL. Press "return" when the tape unit becomes ready.

END OF TAPE ENCOUNTERED BY RECOVR

Explanation:
RECOVR utility encountered an end of tape mark.

User Action:
Mount the next reel of tape from the multiple tapes contain-
ing the log file. Press "return" when the tape unit becomes
ready.

?1: ?2 IS NOT A VALID KEYTYPE

Explanation:
The key type found in the file is not a valid DBMS-990 key
type. DBMS-990 supports two key types, sequential (S1) and
random (R1). The key type reported is not supported.

User Action:
None.

2272058-9701

U DBMS-0109

U DBMS-0110

U DBMS-0111

U DBMS-0112

U DBMS-0113

2272058-9701

DBMS Exception Reporting

Table A-3. DBMS Error Messages (Continued)

NO VALID DATABASE FUNCTIONS NEEDED

Explanation:
No valid data base functions were entered in response to the
FUNCTIONS prompt.

User Action:
Refer to the DBSTAT section of the DBA User's Manual for a
list of legal functions or enter ALL for a report listing the sta-
tistics on all the functions.

* * MAXIMUM GROUP LENGTH EXCEEDED * *

Explanation:
The group flagged by the DOL translator exceeds the maxi-
mum length allowable.

User Action:
Reduce the size of the 9r9uP and resubmit the DDL.

** MAXIMUM NUMBER OF SECONDARY KEYS EXCEEDED **

Explanation:
More than 13 secondary keys have been defined.

User Action:
Reduce the number of secondary keys and resubmit the DOL.

** NEW DATA BASE FILE CREATED **

Explanation:
The data base file has been formatted and is ready to be
accessed by DBMS-990.

User Action:
No user action required.

** NO FIELDS DEFINED FOR THIS LINE/GROUP **

Explanation:
The line or group flagged by the DOL translator has no fields
defined.

User Action:
Add a field definition to the line or group and resubmit the
DOL.

A-29

DBMS Exception Reporting

Table A-3. DBMS Error Messages (Continued)

U DBMS-0114

U DBMS-0115

U DBMS-0116

U DBMS-0117

U DBMS-0118

A-30

* * NO LINES DEFINED FOR THIS FILE * *

Explanation:
No lines have been defined to the DOL translator for this file.

User Action:
Add a line definition to the file and resubmit the DOL.

ERROR ON WRITE TO LISTING FILE, SVC ERROR ?1

Explanation:
The DBSTAT utility has detected an error during a write to the
listing file.

User Action:
Refer to the SVC error code for the exact cause of the error
and respond accordingly.

** KEY LENGTH EXCEEDS MAXIMUM ALLOWABLE **

Explanation:
The length of the primary or secondary key flagged by the
DOL translator is longer than the maximum allowable, 40
bytes.

User Action:
Reduce the size of the key field or group and resubmit the
DOL.

** INVALID SECONDARY KEY NAME **

Explanation:
The field/group name flagged by the DOL translator is invalid
as a secondary key. Either the field/group has not been defined
in a line, the field/group is defined as the primary key, or the
field/group is already defined as a secondary key.

User Action:
Verify that the field/group is valid as a secondary key and
resubmit the DOL.

ERROR RETURNED FROM DBMS, CODE ?1

Explanation:
DBMS-990 has returned an error code to the DBSTAT utility.

User Action:
Refer to the DBMS Programmer's Guide for an explanation of
the two character error code and respond accordingly.

2272058·9701

U

U

U

U

U

2272058-9701

DBMS Exception Reporting

Table A-3. DBMS Error Messages (Continued)

DBMS-0122

DBMS-0123

DBMS-0124

DBMS-0126

DBMS-0130

THE PAGE SIZE HAS TO BE EITHER 256 OR 288

Explanation:
The page size for the DB file must be either 256 or 288. Usu­
ally, choice is made dependent on sector size of target disk
for the DB file.

User Action:
Retry with valid page size, 256 or 288.

** DOL ENDS PREMATURELY **

Explanation:
The DOL translator has reached an EOF before parsing the
EN D. statement.

User Action:
Verify that all statements are in their correct order, add the
END. statement and resubmit the DOL.

DATABASE MANAGER UNABLE TO OPEN PRE-IMAGE FILE

Explanation:
The system files have been damaged.

User Action:
Perform system generation at this time.

DATABASE MANAGER CANNOT GET REQUIRED MEMORY

Explanation:
An attempt was made to start the data base manager (SDBMS)
with too many buffers.

User Action:
Retry the SDBMS command with smaller numbers for the
parameters.

DBMS SUCCESSFULLY STARTED

Explanation:
The data base manager is running

User Action:
No user action required.

A .. 31

DBMS Exception Reporting

U DBMS-0131

U DBMS-0132

U DBMS·0133

U DBMS-0134

U DBMS·0135

A-32

Table A-3. DBMS Error Messages (Continued)

SYSTEM FAilURE OCCURRED WHilE UPDATING FilE ?1

Explanation:
The system crashed in the process of updating the file in
question. The physical integrity of this file is now in question.

User Action:
Perform the Copy/Concatenate (CC) command on the backup
for the file pathname and the RECOVR utility.

UNABLE TO ACCESS FilE ?1

Explanation:
For some reason the file in question is no longer available.

User Action:
Check to see if the necessary volume is installed. If the file is
no longer available, perform CDBL.

PATHNAME OF THE FILE IS ?1

Explanation:
Gives the pathname of the affected file.

User Action:
None.

INTEGRITY ERROR ENCOUNTERED, PERFORM RECOVR

Explanation:
The system was interrupted in the process of updating a file.
The physical integrity of the file is now in question.

User Action:
Perform the Copy/Concatenate command on the backup for
the file path name and perform the RECOVR utility.

UNABLE TO RESTART DBMS, CANNOT REOPEN FILES

Explanation:
The system is not able to open all the files that were assigned
when the data base was last running.

User Action:
Check to see that the file(s) indicated is accessible, e.g., that
the appropriate volume is installed, the file(s) has not been
deleted. Perform the CDBl utility if the file is not accessible.

2272058-9701

U

U

U

2272058-9701

DBMS Exception Reporting

Table A-3. DBMS Error Messages (Continued)

DBMS-0136

DBMS-0137

DBMS-0138

RESTART FAILED

Explanation:
The system was unable to restart the data base manager.

User Action:
None.

FILES REOPENED, ROLLBACK FAILED

Explanation:
Either the system log has been damaged or one of the files
affected by rollback does not match the form it was in when
the data base was last running and an error has occurred
during rollback. '

User Action:
Perform CDBL.

DBMS OPEN ERROR IS ?1

Explanation:
Returns error status from DBMS.

User Action:
Check Appendix A of the DBMS Programmer's Guide for an
explanation of the two character code.

A-33,

DBMS Exception Reporting

Table A-4.lnternal Message Codes

Internal
Message

Code

DBMS
Message
Number

>0001 0001
>0002 0002
>0003 0003
>0004 0004
>0005 0005
>0006 '.' 0006
>0007 0007
>0008 0008
>0009 0009
>OOOA 0010
>0008 0011
>OOOC 0012
>0000 0013
>OOOE 0014
>OOOF 0015
>0010 0016
>0011 0017
>0012 0018
>0013 0019
>0014 0020
>0015 0021
>0016 0022
>0017 0023
>0018 0024
>0019 0025
>001A 0026
>0018 0027
>001C 0028
>0010 0029
>001E 0030
>001F 0031
>0020 0032
>0021 0033
>0022 0034
>0023 0035
>0024 0036
>0025 0037
>0026 0038
>0028 0040
>0029 0041
>002A 0042
>0028 0043
>002C ; 0044
>0020 0045
>002E 0046
>002F 0047
>0030 0048
>0031 0049
>0032 0050
>0033 0051

A-34 2272058.9701

2272058-9701

Table A-4. Internal Message Codes (Continued)

Internal DBMS
Message

Code
Message
Number

>0034 ,,""""""""" " 0052
>0035 """""""""""""" " 0053
>0036 """""""""""""" " 0054
>0037 """""""""""""" " 0055
>0038 """,,",,"",,",,""" " 0056
>0039 "",,""""""""""" " 0057
>003A """""""""""""" " 0058
>0038 """""""""""""" " 0059
>003C """""""""""""" " 0060
>0030 """""""""""""" " 0061
>003E """""""""",,""" " 0062
>003F """""""""""""" " 0063
>0040 """""""""""""" " 0064
>0041 """""""""""""" " 0065
>0042 """""""""""""" " 0066
>0043 "",,""""""""""" " 0067
>0044 """""""""""""" " 0068
>0045 """""""""",,""" " 0069
>0046 """""""""""""" " 0070
>0053 """""""""""",," " 0083
>0054 """""""""""""" " 0084
>0055 """""""""",,""" " 0085
>0056 """"""" """""""" 0086
>0057 """"""" """""""" 0087
>0058 "",,""""""""""" " 0088
>0059 """""""""""""" " 0089
>005A """""""""""""" " 0090
>0058 """""""""""""" " 0091
>005C """""""""",,""" " 0092
>0050 """""""""""""" " 0093
>005E """""""""""""" " 0094
>005F """ .. " 0095
>0061 .. """ .. ,, 0097
>0062 .. " "" .. " .. " 0098
>0063 0099
>0065 0101
>0066 0102
>0067 0103
>0068 0104
>0069 0105
>006A 0106
>0068 0107
>006e 0108
>0060 0109
>006E ••••••••••••• a. 0110
>o06F 0111
>0070 0112
>0071 ••••••••• a .••••• 0113
>0073 •••••••••••••• a 0115
>0074 •••••••• a •••••• 0116

DBMS Exception Reporting

A-3S

DBMS Exception Reporting

Table A-4. Internal Message Codes (Continued)

Internal DBMS
Message Message

Code Number

>0077 0119
>0078 0120
>0079 0121
>007A 0122
>0078 0123
>007E 0126

A-36 2272058-9701

Appendix B

Example DBMS Programs

B.1 INTRODUCTION

The programs and operating instructions in this appendix illustrate the comparative uses of
COBOL, FORTRAN, and Pascal by writing the same program in all three languages. An additional
COBOL program illustrates the use of transaction bracketing for transaction-level integrity. These
example programs also illustrate the use of secondary keys in DBMS-990. The example program in
B.7 illustrates the use of transactions. All programs run under the minimum DBMS-990 system.

The DBMS-990 installation disk contains the source necessary to execute each program. After the
installation process is complete, the code is located on the system disk under the library
.S$DBMS.TEST in the files listed in Table B-1. In the following paragraphs, DBMS-990 is assumed
to be installed, active, and ready for use.

Table B-1. Files Used to Execute Example Programs

File

.S$DB MS. TEST.CUST

.S$DBMS.TEST.lTEM

.S$DBMS.TEST.SOFL

.S$DBMS.TEST.lLDSOFL

.S$DBMS.TEST.ILDCUST

.S$DBMS.TEST.I LDITEM

.S$DBMS.TEST.TRAN

.S$DBMS.TEST.CEXMPL

.S$DBMS.TEST.PEXMPL

.S$DBMS.TEST.CNLNK

.S$DBMS.TEST.FNLNKN

.S$DBMS.TEST.PN LNK

.S$DBMS.TEST.CBATCHN

.S$DBMS.TEST.FBATCHN

.S$DBMS.TEST. PBA TCH N

.S$DBMS.TEST .CBATCHTR

.S$DBMS.TEST.LOADFILN

B.2 THE EXAMPLE PROGRAMS

Paragraph Reference

B.3.1
B.3.2
B.3.3
B.3, B.4, B.5
B.3, B.4, B.5
B.3, B.4, B.5
B.3, B.4, B.5
B.4
B.6
B.4
B.5
B.6
B.4
B.5
B.6
B.7
B.3, B.4, B.5, B.6

The COBOL example (CEXMPL), the FORTRAN example (FEXMPN), and the Pascal example
(PEXMPL) are small programs. The programs execute the same logic and use the same data base
and transaction files to produce the same output. The programs contain logic for security and file­
access checking. If your system includes security checking,assign the password TEST to the
three data base files SOFL, CUST, and ITEM. The programs will execute properly on systems that
do not include security and file-access checking.

2272058-9701 B-1

Example DBMS Programs

Each program extracts data from the sales order file (SOFL) about specific item numbers. These
item numbers are obtained from a sequential input transaction file. Data retrieved from the data
base files is sent to a user-specified sequential file. This file may be printed or displayed after the
program terminates.

The first column of output is the item number obtained from the input transaction file. This
number is checked against the file ITEM to verify that the item exists. It is also checked against
the SOFL file by using the ITEM secondary key to verify that the item has been sold. The second
and third columns of output are the item description (DESC) and unit price (UPRC) obtained from
the file ITEM. The fourth, fifth, and sixth columns, obtained from the file SOFL, are the quantity on
order (QUAN), the sales order number (SONM), and the ship-to-customer number (SHIP), re­
spectively. The ship-to-customer number is used to obtain the customer name (NAME) from the
customer file (CUST) and is shown in the seventh column of the output.

All three programs are documented with comments contained in the source. Appropriate error
messages appear in the output file when errors occur. If more than one of the programs is being
used, do not assign all of the output file synonyms to the same output file, since conflicts in
usage might occur.

B.3 DBM8-990 FILES

The example programs use three data base files, the customer file CUST, the item file ITEM, and
the sales order file SOFL. Figure 8-1 and Figure 8-2 show the relationship between these files.

LINE 02 PRIMARY KEY

\ \
LINE BL

f:l STAR COMPANY ,\LES ORDER NO. XXXXX

~ . 99 DATABASE ROAD
~ OURTOWN. TEXAS 99999

BILL NO: 12345 SHIP NO: 12456
BILL TO: OEM CITY SHIP TO: OTHER COMPANY

5525TH STREET 25 55TH STREET
VENDTOWN, TEXAS 98989 CUSTOWN, TX. 89898

ITEM QUAN ITEM NO. DESCRIPTION UNIT PRICE EXTENSION

1 10 44444 WIDGIT 0.555 5.55

LINE 03 /

2277680

Figure B-1. Relationship of DBMS-990 File to Sales Order Document

B-2 2272058·9701

~r

LINE 8L

* BILL TO CUSTOMER #

2277681

PRIMARY KEY
CUSTOMER

NUMBER

LINE 01

NAME
ADDRESS
CREDIT INFO.

PRIMARY KEY
SALES ORDER

NUMBER

~,

LINE 02

* SHIP TO CUSTOMER #

CUSTOMER
NUMBER FILE
"CUST"

* SECONDARY KEYS

Example DBMS Programs

SALES ORDER
FILE
"SOFL"

1
r

I

LINE 03 ~

to-

* ITEM #
QUANTITY ORDER ED

PRIMARY KEY
ITEM NUMBER

LINE 01

I

ITEM DESCRIPTION
UNIT PRICE
QUANTITY ON HAND
QUANTITY ON ORDER

ITEM FILE
"ITEM"

Figure B-2. Logical Relationship of Files

B.3.1 Customer File (CUST)
The customer file (CUST) contains the customer number, name, address, and credit information
(CRED) for each customer. The customer number must be unique, since it is the primary key of the
file. The customer file is referenced symbolically from the sales order file (SOFL) by using the
customer number. Figure 8-3 shows the DOL listing for the customer file. Note that the maximum
number of customers allowed is 50. This is because the total number of lines cannot exceed 50,
and only one line type is defined.

2272058-9701 B-3

Example DBMS Programs

DBMS-990 <l. V. R. > DDL TRANSLATOR

FILE=CUST,LINES=50
ID=CUSN=CH/5.VOL=50,ACCESS=RANDOM/1

* LINE=Ol
FIELD=NAME=CH/20
GROUP=ADDR

FIELD=STRT=CH/20
FIELD=CITY=CH/20
FIELD=STAT=CH/2
FIELD=ZIPC=CH/5
ENDG

FIELD=CRED=CH/2
ENDL

END.

TOTAL PAGES REQUIRED - 24
LINE LENGTH (BYTES) - 84

TOTAL DESCRIPTION PAGES - 1
TOTAL KEY PAGES - 5

MM/DD/YY HH:MM:SS

LINE 01 -- BASE = 15 , DATA = 69 ,LINKAGE 0 > TOTAL 84

00112 ** NEW DATA BASE FILE CREATED **

Figure B-3. DOL Listing for the Customer File

B.3.2 Item File (ITEM)
The item file (ITEM) contains information about each part in the inventory. The primary key for this
file is the item number. Consequently, each item number must be unique. This file contains the
description (DESC), unit price (UPRC), quanUty on order (QTYO), and quantity on hand (QTYH). You
can enter a maximum 50 items in the item file. Figure B-4 shows the DDL listing for the file.

B.3.3 Sales Order File (SOFL)
The sales order file (SOFL) symbolically links the ITEM and CUST files to form the sales order data
base. This file uses three line types. Line BL uses a pointer to designate which customer to bill for
the sales order. The field BILL contains the customer number of a customer for whom information
is maintained in CUST. Line 02 uses a pointer to designate the customerto which the order is to be
shipped. The SHIP field contains the customer number, and the related customer information is
maintained in CUST.

Line 03 contains the detail items for the sales order. Only one line BL and one line 02 are entered
in SOFL, but you can enter more than one line 03. Each line 03 contains the item number (ITEM)
and the quantity ordered (QUAN). The item number must be a valid item in the item file. The item
file also contains any additional information concerning that particular item.

B-4 2272058·9701

Example DBMS Programs

DBMS-990 <L. V. R)- DDL TRANSLATOR

FILE=ITEM,LINES=50
ID=ITMN=CH/4,VOL=50,ACCESS=RANDOM/i

* LINE=Ol
FIELD=DESC-=CH/20
FIELD=UPRC=CN/6. 3
FIELD=GTYO=CN/4.0
FIELD=GTYH=CN!4.0
E~JDL

END.

TOTAL PAGES REGUIRED - 16
LINE LENGTH (BYTES) - 48

TOTAL DESCRIPTION PAGES - 1
TOTAL KEY PAGES - 4

MM/DD/YY HH: M1'1: S5 .

LINE 01 BASE = 14 , DATA = 34 LINKAGE = 0 • TOTAL 48

0112 *~ NEW DATA BASE FILE CREATED **

Figure 8·4. DOL Listing for the Item File

You can enter a maximum of 300 lines of data in SOFL; however, you can enter no more than 50
sales orders (VOL = 50 on the ID line). If each sales order has an equal number of items and if the
file is full, line types BL and 02 occur 50 times each, and line type 03 occurs 200 times; also, each
sales order has four items specified.

The BILL, SHIP, and ITEM fields are secondary keys. By using these keys, you can write a program
to read and summarize the sales orders in order to bill the customer. Use the SHIP field to obtain a
summary of shipping information. To read and summarize the items currently on order, use the
ITEM secondary key. You can also use the ITEM secondary key to check for items still in the sales
order file when the item is to be deleted. Figure B·5 shows the DDL listing for SOFL.

8.3.4 The Initial Load Files
Use the batch stream control file .S$DBMS.TEST.LOADFILN to create the program file
.S$DBMS.TEST.PROG and the two directories .S$DBMS.TEST.FILE (contains the data base files)
and .S$DBMS.TEST.LlST (contains the reports generated by the test programs). The procedure
deletes the data base files SOFL, CUST, and ITEM, if they exist, and then recreates them using
the DDL compiler with the appropriate DDL definition file. The procedure then reloads the data
base files with the data from .S$DBMS.TEST.ILDSOFL, .S$DBMS.TEST.ILDCUST, and
.S$DBMS.TEST.ILDITEM and assigns a LUNO to the program file. To restore DBMS-990 files to
base point, run .S$DBMS.TEST.LOADFILN.

2272058-9701

NOTE

If security is installed, you must assign the synonym $P to the
master password before loading the data base files.

8-5

Example DBMS Programs

B.3.5 Verifying the File Data
After executing the batch stream for loading the files or after deleting and reloading a particular
file, verify the contents of the files by executing the following PQUERY session against the file.
You can also verify the data by executing the individual programs and comparing the outputob­
tained against the outputs documented in this appendix.

8-6

DBMS-990 (L. v. R:> DDL TRANSLATOR

FILE=SOFLILINES=300
ID=SONM=CH/6,VOL=50IACCESS=RANDOM/l
* LINE=BL

FIELD=BILL=CH/5
F I ELO=LDCJ.I,=CH/2
ENOL

*
LINE=02 .

*

FIELO=5HIP=CH/5
ENOL

LINE=03
FIELO:ITEM=CH/4
FIELO=GUAN=CN/4.0
ENOL

* SECONDARY-REFERENCES
BILL=VDL=50
SHIp:VDL=50
ITEM=VOL=200
END.

TOTAL PAGES REGUIRED - 71
LINE LENGTH (BYTES) - 32

TOTAL DESCRIPTION PAGES - 1
TOTAL KEY PAGES - 31

LINE BL BASE = 16 DATA = 7
LINE 02 SASE = 16 DATA = :;
LINE 03 'SASE = 16 DATA = 8

0112 ** NEW DATA BASE FILE CREATED

LIN~AGE

LI"'~AGE:
LINKAGE

**

MM/DD/YY HH:MM:SS

= 8 TOTAL = 31
= 8 TOTAL = 29
= 8 TOTAL = 32

Figure B-5. DOL Listing for the Sales Order File

2272058-9701

Example DBMS Programs

B.3.5.1 PQUERY Session with SOFL. The following PQUERY session demonstrates the output
obtained from the sales order file (SOFL). This session enables you to verify the loading of SOFL.

PRIMITIVE G!UERY
FUNCTION: RS

FILE ID: SOFL
KEY I D : ::;:ONM

I<EY VALUE:
FIELD IDS: BILLLOCK

NO. OF OUTPUT LINES: 50
TERMINATE: NO

==
LINE TYPE IS: BL

SONM BILL LOC~(

,-'80001 DOO01
,J80002 DOO02
,J80003 DOOO~:

.j:30004 80004
'-'80005 80005
,-'80006 80001:.,
,.J80007 SOO07
,-'80008 80088
,-':::0009 80009
------- END OF DATA -------
PRIMITIVE I:;"J.UERY

FUNCTION:
FILE ID:

KEY ID:
~::EY VALUE:
FIELD 108:

NO. OF OUTPUT LINES:
TERMINATE:

LINES

Re·
'-'

80FL
80NM

SHIP
50
NO

=====================================
LINE TYPE 1'-'-.0- 02

80NM 8HIP
,J80001 80001
. .-':30002 80002
.J8000~: 8000::::
,-'80004 80004
...180005 80007
.-'80006 80001:..
'-'80006 A0010
.-'80006 T0200
'-'80001:.. Y0250
.-':30007 80008
'-':::0007 10090
.-'8000:3 80088
.J80009 80001
------- END OF DATA LINE8 ------------- ------

2272058·9701 B-7

Example DBMS Programs

==.=
PRIMITIVE QUERY

FI_IN'::T I CIN : RE;
FILE ID: SOFL

KEY ID: SONM
KEY VALUE:
FIELD IDS: ITEMQUAN

NO. OF OUTPUT LINES: 50
TERMINATE: YE!:::

===
LINE TYPE IS: O~:

SONM
...180001
.J80001
• ...180001
...180001
• ...180001
.J:30002
• ...180002
• ...180002
• ...180002
• ...180002
.J80002
.J80003
...I8000~:

• ...180003
...18000:3
• ...1:3000:3
.... 1:30003
...180003
• ...180003
• ...180003
• ...180004
...180004
..... 80004
...1:30004
. ...180004
.J80005
.... 180005
...180005
..... 80005
,...180008
~.J80009

...180008

..... 80008
,...180008

=======

8·8

ITEM
AOOl
D004
E005
13007
N014
8002
D004
F006
....to 1 0
L012
8019
AOOl
B002
F006
13007
1009
L012
N014
T020
Y025
AOOl
C003
HOO::::
N014
Z026
AOOl

I;J.UAN
3030~:235

:303030:35
:3030:=:530
:30:30:3333
::::(>:3031 ::::5
303030:37
30::::03E:30
303032:35
:::: 130::::5~:0
30303'~:39

::::03130::'::0
::::235:3030
30~:13030

~:9:3939:39

303530~:0
:30393939
39::::0~:030

3032:35:30
::::035:3030
30:3235:30

:30:35:30:30

:3 0:3 ''9:39:3''i!
::::0~:0:30::::2

303130:30
B002 303030:::: 1
E005 :3030:35:35
1009 ::::030::::9::::9
AOO 1 :3031 :3030
AOO 1 ::::0::::0:32::::5
KOll 3030:3130
Y025 30303035
Z026 30303032

END OF DATA LINES ======

2272058-9701

Example DBMS Programs

8.3.5.2 PQUERY Session with CUST. The following PQUERY session demonstrates the output
obtained from the customer file (CUST). This session enables you to verify the loading of CUST.

===
PRIMITIVE I)UERY

FUNCTION: RS
FILE ID: CUST

I<EY I D : CUSN
KEY VALUE:
FIELD IDS: NAMESTRTCITYSTATZIPCCRED

NO. OF OUTPUT LINES: 50
TERMINATE: YES

==

CUSN
STAT
[10001
TX
[10002
TX
[10003
TX
SOOOl
TX
80002
TX
S0003
TX
S0004
TX
80005
TX
SOOot.
TX
!::a)007
TX
SOOOE:
TX
80009
TX

LINE TYPE IS: 01.

NAME
ZIPC CRED

HOLE EARTH DIST.
7:312:3 Ai

ROUND WORLD CORP.
7:309'~ [11

ALLOVER SUPPLY CO.
7 :3:3:3:3 [1:3

THING-A-MA-GIG CORP.
7:3001 Ai
WIDGIT~=;, INC.

7:32:34 B2
TOYS FOR TEXANS

78345 Ai
THUNDERBOLT CO.

78456 F:3
RAINMAKERS, INC.

7856'7 135
ODD .,JOB WYR.<ERS

78678 A:3
I

lUR.:::EYS, INC.
7:3789 Ai

THING MAKERS, INC.
788=3:3 C1

SPEEDY SUPPLY CO.

:=::::::::===== END OF DATA LINES

2272058·9701

1234 MOUNTAIN LN.

99 CIRCLE CT.

8::;=91 UNDEF, 8T.

1 HEYTHERE BLVD.

2:::=45 WIDGIT AVE.

:~:45l-:. TE.JAS AVE.

4567 FLASH ST.

5678 WHEllER BLVD.

6789 UNEVEN ST.

7E:'70 GOBBLER (:T.

'y2:;: FASTEST ST.

CI1'y

LITTLE HILL

SPHERE

WHYNOT

AUSTIN

BRIGHT

[IRY F'LA I NS

ANOMALY

BIG BIRD

I DON'n<NOW

INSTANT

8-9

Example DBMS Programs

8.3.5.3 PQUERY Session with ITEM. The following PQUERY session demonstrates the output ob­
tained from the item file (ITEM). This enables you to verify the loading of ITEM.

===
PRIMITIVE QUERY

FUNCTION: RS
FILE ID: ITEM

.(EY ID: ITMN
KEY VALUE:
FIELD IDS: DESCUPRCQTYOQTYH

NO. OF OUTPUT LINES: 50
TERMINATE: YES

==
LINE TYPE IS: 01

ITMN DESC UPRC QTYO
AOOI ARMADILLOS 313030313233 30303031
8002 BLACK HOLES 303230323334 30303032
C003 CLAY 303033333435 30303033
0004 DIPS 303030343536 30303034
E005 ERECTORS 303035353637 30303035
F006 FREEBIES 303630363738 30303036
G007 (;OOBERS 373030373839 30303037
HOO8 HERBS 303830383930 :30303038
1009 IDIOMS 303039393030 30303039
JOI0 .JUMPS 303031303030 30303130
K011 KILNS 303131313030 30303131
L012 LONE STARS 313230303030 30303132
N014 NIBBLES 303431343030 30303134
8019 SHOVELS 313031393031 39303139
T020 TALES 303939303939 30313030
Y025 YARNS 303235303030 30303235
Z026 ZEBRAS 303032363030 30303236
------- END OF DATA LINES ===.==== ------

8-10

QTYH
30313233
30323334
30333435
30343536
30353637
30363738
30373839
30383930
30393030
31303030
31313030
31323030
31343030
31393030
34303030
:32353030
32363030

2272058-9701

Example DBMS Programs

B.4 EXECUTION OF THE COBOL PROGRAM, CEXMPL

Install and execute the COBOL program, CEXMPL, as follows:

1. Start the DBMS-990. If security is installed assign the password TEST to the data base
files and assign the synonym $P to the value of the master password. This should be
done by first using the ADDPSW procedure to add the password to the security file.
Next, use the ADDPE procedure to assign the password to the files used by this
program.

2. Initialize the data base files by executing the batch stream control file
.S$DBMS.TEST.LOADFILN (use the XB command, followed by a WAIT command). When
finished, the batch stream displays the following message:

LUNa >#1# ASSIGNED TO THE PROGRAM FILE

3. Execute the batch stream .S$DBMS.TEST.CBATCHN to compile and install the
program.

This procedure uses link control file .S$DBMS.TEST.CNLNK to link edit the program
and install it on the program file S$DBMS.TEST.PROG.

4. Check the batch stream listing files for errors. Ignore errors U SVC-0316 (file already
exists) and U SVC-0315 (file does not exist) that occur while creating or deleting files.

5. Use the Assign Synonym (AS) command to assign synonyms to the input and output
files, as follows:

Synonym

CINP
COUT

Value

.S$DBMS.TEST.TRAN

.S$DBMS.TEST.LlST.CRPT

6. Execute CEXMPL using the Execute COBOL Task Foreground command (XCTF). For the
first parameter, enter the program file. Then enter CEXMPL as the task name and tab
through the remaining prompts. The program executes for about one minute.

7. Display or print the file .S$DBMS.TEST.LlST.CRPT and compare it to the listing in Figure
B-6. They should be the same.

8. After the program executes, you can halt DBMS-990 unless others are using the data
base. Use the End DBMS (ED8MS) command.

Figure B-7 contains the source listing for CEXMPL. Figure 8-8 contains the Link Editor control file
for CEXMPL.

2272058·9701 8-11

Example DBMS Programs

A001 ARMADILLOS $100.123 0025 . ..1:=:0001 SOOOl THING-A-MA-GIG CORP.
A001 ARMADILLOS $100. 12:3 2500 . ..18000:::: 8000:3 TOYS FOR TEXAN=::;
AOO1 ARMADILLOS $100. 12:::: 0025 .-'80004 80004 THUNDERBOLT CO.
A001 ARMAD I LLO==; $100.123 0100 . ..180005 =::;0007 TURKEYS., INC.
A001 ARMADILLOS $100. 12:::: 0100180008 =::;0088 ***NO SHIP NAME
A001 ARMADILLOS $100. 12:3 0025 . ..1::::0009 SOOOl THING-A-MA-GIG CORP •

B002 BLACK HOLE=::; $20.234 0007 .-'80002 80002 WIDGITS, INC.
B002 BLACK HOLES $20.2:34 0100 .-'8000:::: SOOO:::: TOYS FOR TEXANS
B002 BLACK HOLES $20.2:34 0001 .-':30005 80007 TURKEYS, INC.

COO:::: CLAY $3. ::::45 0500180004 ::;;0004 THUNDERBOLT CO.

D004 DIPS $.456 0005 . -'80001 SOOOl THING-A-MA-GIG CORP •
D004 DIPS $.456 00:30 . -'80002 80002 WIDGITS, INC •

E005 ERECTORS $5. 5~.7 0050 .-'80001 80001 THING-A-MA-GIG CORP.
E005 ERECTORS $5.567 0055 .-':30005 SOO07 TURKEYS, INC.

F006 FREEBIES $60.678 0025 .-'80002 =::;0002 WIDGITS, INC.
F006 FREEBIES $~.O. 678 999''iI . ..18000:3 80003 TOYS FOR TEXANS

ABCD *ITEM DOES NOT EXIST
ABCD *ITEM nOES NOT EXIST ***ITEM NOT SOLD

13007 GOOBERS $700.789 0033 .-'80001 =::;0001 THING-A-MA-GIG CORP.
13007 GOOBERS $700.789 0500 .-'80003 SOO03 TOYS FOR TEXANS

HOO8 HERBS $80.890 0250 ..J80004 =::;0004 THUNDERBOLT co.

1009 IDIOMS $9.900 O''il99 . ..18000:::: SOO03 TOYS FOR TEXANS
1009 IDIOMS $9. ';:'00 0099 . ..180005 SOO07 TURI<EY=::; , INC.

.-'010 ,JUMPS $1.000 1050 .-'80002 ::;;0002 WIDCiITS, INC.

~:::011 I<ILNS $11.100 0010 .-':;::0008 S0088 ***NO SHIP NAME

L012 LONE STARS $120.000 0099 . ..1:;::0002 SOO02 WIDGITS, INC.
L012 LONE STAR!::; $120.000 9000 .-':3000:::: :;:;000:3 TOYS FOR TEXAN!;:;

N014 NIBBLES $41.400 0015 .-'80001 :;:;0001 THINCi-A-MA-CiIG CORP.
N014 NIBBLES $41.400 0250 .-':3000:3 SOOO:::: TOYS FOR TEXANS
N014 NIBBLES $41.400 0':;.099 .-'80004 SOO04 THUNDERBOLT CO.

S019 SHOVELS $101.901 0100 .J80002 SOO02 WIDGITS, INC •

WXYZ *ITEM DOES NOT EXIST
WXYZ *ITEM DOES NOT EXIST ***ITEM NOT SOLD

-T020 TALES $99. o ''iI 9 0500 .-'8000:3 SOOO:3 TOYS FOR TEXANS

Y025 YARNS $25.000 0250 .-':3000:::: SOOO:3 TOYS FOR TEXANS
Y025 YARNS $25.000 0005 .-'80008 S0088 ***NO :;:;H IF' NAME

Z026 ZEBRAS $2.600 0002 . -':30004 SOO04 THUNDERBOLT co .
Z026 ZEBRAS $2.600 0002 .-'80008 SOO:38 ***NO SHIP NAME

Figure B·6. Output from the COBOL Program CEXMPL

8-12 2272058-9701

*

IDENTIFICATION DIVISION.
PROGRAM-ID. CEXMPL.
AUTHOR. TEXAS INSTRUMENTS, INC.
DATE-WRITTEN. OCTOBER, 1978.

* THIS PROGRAM WILL EXTRACT DATA FROM THE DBMS
* SALES-ORDER FILE ABOUT SPECIFIC ITEM NUMBERS
* READ FROM A SEQUENTIAL INPUT TRANSACTION FILE.
* DATA THAT IS RETRIEVED FROM THE DATA BASE FILES
* IS OUTPUT TO A SEQUENTIAL FILE WHICH CAN BE
* DISPLAYED AFTER THE PROGRAM TERMINATES.

*
*
*
*
*
*
*
*
*
*

THE ITEM DESCRIPTION AND UNIT PRICE ARE OBTAINED
FROM THE ITEM FILE. THE SALES-ORDER NUMBER,
SHIP-TO CUSTOMER NUMBER AND QUANTITY ON-ORDER
FOR EACH SALES ORDER THAT CONTAINS THE ITEM ARE
ARE OBTAINED FROM THE SOFL FILE. THE SHIP-TO
CUSTOMER NAME IS RETRIEVED FROM THE CUST FILE.
APPROPRIATE ERROR MESSAGES ARE PRINTED WHERE
APPLICABLE.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. TI-990.
OBJECT-COMPUTER. TI-990.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

* * A SEQUENTIAL FILE CONTAINING THE ITEM NUMBERS
* TO BE PROCESSED MUST HAVE THE SYNONYM CINP
* ASSIGNED TO IT BEFORE THIS PROGRAM CAN BE
* EXECUTED
* !;::ELECT T I NF I LE

*

ASSIGN TO INPUT, IICINP";
ORGANIZATION IS SEQUENTIAL;
ACCESS IS SEQUENTIAL.

* A SEQUENTIAL FILE FOR OUTPUT MUST HAVE
* THE SYNONYM COUT ASSIGNED TO IT BEFORE
* THIS PROGRAM CAN BE EXECUTED
* SELECT OUTFILE

ASSIGN TO OUTPUT, "COUTU;
ORGANIZATION IS SEQUENTIAL;
ACCESS IS SEQUENTIAL.

DATA DIVISION.
FILE SECTlON.
FD TINFILE;

LABEL RECORDS ARE OMITTED;
DATA RECORD IS TINREC.

01 TINREC.
05 ITEMNO
05 FILLER

PIC X(4).
PIC X (75).

FD OUTFILE;
LABEL RECORDS ARE OMITTED;
DATA RECORD IS OUTREC.

01 OUTREC.
05 FILLER PIC X(SO).

Figure 8-7. Listing of Program CEXMPL (Sheet 1 of 6)

2272058-9701

Example DBMS Programs

8-13

Example DBMS Programs

8-14

WORKING-STORAGE SECTION.
*
*
*

77
77
Ol

01

01

01

01

01

01

01

*

WORK AREAS AND INDICATORS

SLOC1 PIC X(4) VAL.UE 11****11.
::;:LOC2 PIC X (4) VALUE II **** II •
EOF-IND PIC X VALUE "Nil.
::;:8 TRAN-EOF VALUE II V" •
ITEM-IND PIC X VALUE SPACES.
88 ITEM-EXISTS VALUE IIVII.
MORE-IND PIC X VALUE SPACES.
88 MORE-SOFL-ITEMS VALUE 11M".
88 NO-MORE-SOFL-ITEMS VALUE "N".
SHIP-IND PIC X VALUE SPACES.
8:3 SH I P-EX I STS VALUE "V".
SOLD-IND PIC X VALUE SPACES.
8:::: I TEM-SOLD VALUE II V" •
DATAREC.
05 OITEMNO
05 FILLER
05 ODESCRPT
05 FILLER
05 OPRICE
05 FILLER
05 O(;,~TVOO

05 FILLER
05 OSONO
05 FILLER
05 OSHIPNO
05 FILLER
05 O:::H I PNA
05 FILLER
ERRREC.
05 EMSG
05 FILLER
05 ESTAT

PIC X(4).
PIC X(2).
PIC X (20) •
PIC X(2).
PIC $$$$.999.
PIC X(2).
PIC X(4).
PIC X (2).
PIC X(6).
PIC X(2).
PIC X(5).
PIC X(2).
PIC X (20).
PIC X(l).

PIC X(8) VALUE
PIC X(S) VALUE
PIC X(2) VALUE

II DB ERROR
IISTAT=".
SPACES.

II

05 FILLER PIC X(9) VALUE II ., DBFILE=" •
05 EFILE PIC X(4) VALUE SPACES.
05 FILLER PIC X (7) VALUE II ., t<EYN=".
OS EKEYN PIC X(4) VALUE SPACES.
05 FILLER PIC X(7) VALUE II , t<EVV=".
OS EI<EVV PIC X(6) VALUE SPACES.

ERROR-MSG.
10 FILLER PIC X(9) VALUE "ERROR IN II
10 ERR-FILE PIC X (4) •
10 FILLER PIC X(19) VALUE II FILE OPEN,
10 ERR-STAT PIC XX.

* DBMS DML CALL PARAMETER AREAS
*

STATUS=".

* IF SECURITY IS INSTALLED ON YOUR DBMS, THE VALUE OF
* PSWD DATA ITEM IN THE CONTROL BLOCK MUST BE CHANGED
* TO THE PASSWORD THAT WILL BE ASSIGNED TO THE SOFL,
* CUST AND ITEM DATA BASE FILES. NOTE: SINCE THERE
* IS ONLY ONE CONTROL BLOCK IN THIS PROGRAM ALL THREE
* FILES SHOULD HAVE THE SAME PASSWORD.
*

Figure 8-7. Listing of Program CEXMPL (Sheet 2 of 6)

2272058-9701

*
*

01
01

* 01

*
01

* 01

* 01

* 01

* 01

01

01

01

01

01
/

2272058·9701

Example DBMS Programs

DUMMY ADDRESSES USED WITH THE FILE ACCESS CHECKING
FOR OPEN AND CLOSE DATABASE FILE FUNCTIONS.

Dl PIC X.
D2 PIC X.

CONTROL BLOCJ<
CB.
02 PSWD PIC X(4)
02 FUNC PIC XX
02 STAT PIC XX
02 DBFILE PIC X(4)
02 LOCI PIC X(4)
02 LOC2 PIC X(4)
02 KEYN PIC X(4)
02 KEYV PIC X(6).

SALES ORDER FILE PRIMARY
SOFLPK-LL.
02 SPLTYPE PIC X(7)
02 SPRETIND PIC X
02 SPFIELDS PIC X(4)
02 SPDISP PIC xes)

SOFL SECONDARY KEY READ
SOFLSK-LL.
02 SSLTYPE
02 SSRETIND
02 SSFIELDS
02 SSDISP

CUSTOMER
CUST-LL.
02 CLTYPE
02 CRETIND
02 CFIELDS
02 CDISP

ITEM FILE
ITEM-LL.
02 ILTYPE
02 IRETIND
02 IFIELDS
02 IDISP

DBMS FILE
DA.

PIC X(7)
PIC X
PIC X(8)
PIC X(8)

FILE LINE LIST

PIC
PIC
PIC
PIC

LINE

PIC
PIC
PIC
PIC

DATA

X(7)
X
X(4)
X (:3)
LIST

X(7)
X
xes)
xes)
AREAS

02 FILLER PIC X(26).
SOFL02-DA REDEFINES DA.
02 SHIP PIC X(6).
02 FILLER PIC X(20).
SOFL03-DA REDEFINES DA.
02 QUAN PIC X(4).
02 SONM PIC X(6).
02 FILLER PIC X(16).
CUST-DA REDEFINES DA.
02 NAME PIC X(20).
02 FILLER PIC X(6).
ITEM-DA REDEFINES DA.
02 DESC PIC X(20).

VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE

IITEST II •
IIOpU.
"**".

"
11****11 .
11****11.
IISHRDII.

KEY READ LINE LIST

VALUE IILINE=02".
VALUE 11*".
VALUE IISHIP".
VALUE II****RLSE".

LINE LIST

VALUE "LINE=03 11
•

VALUE "*11.
VALUE IIQUANSONM II •
VALUE "****RLSE II

•

VALUE
VALUE
VALUE
VALUE

VALUE
VALUE
VALUE
VALUE

IILINE=01 11 •
11*".
II NAME II .
II ****RLSE II •

ULINE=01 11
•

11*11.
UDESCUPRC II •
II ****RLSE" •

02 UPRC PIC 9(3)V9(3).
DB-DELIM PIC XX VALUE 11/*".

Figure 8-7. Listing of Program CEXMPL (Sheet 3 of 6)

8-15

Example DBMS Programs

PROCEDURE DIVISION.
MAIN-PROG.

OPEN INPUT TINFILE, OUTPUT OUTFILE.
MOVE SPACES TO OUTREC DATAREC.
MOVE II OF II TO FUNC. MOVE II SHRD II TO I<EYN.
MOVE IICUST" TO DBFILE.
PERFORM OPEN-DATABASE-FILE.
MOVE IIITEM" TO DBFILE.
PERFORM OPEN-DATABASE-FILE.
MOVE "S0FL" TO DBFILE.
PERFORM OPEN-DATABASE-FILE.
MOVE IIRFII TO FUNC.
PERFORM PROCESS-TRAN UNTIL TRAN-EOF.

END-OF-RUN.
MOVE IICF II TO FUNC.
MOVE IICUST" TO DBFILE.
CALL II DBMSYS II U!::; I NO CB, SOFLPK -LL , D 1, D2'Jl D 1 'Jl D2.
MOVE IIITEMIl TO DBFILE.
CALL IIDBMSYS II USING CB'Jl SOFLPK-LL'Jl D1, D2'Jl Dl'Jl D2.
MOVE II !::a]FL" TO DBF I LE •
CALL "DBMSYS" USING CB'Jl SOFLPI<-LL'Jl Dl'Jl D2'Jl D1'Jl D2.
CLOSE TINFILE OUTFILE.
STOP RUN.

/
OPEN-DATABASE-FILE.

8-16

CALL IIDBMSYS II USING CB'Jl SOFLPK-LL, D1, D2'Jl D1, D2.
IF STAT NOT = 11**"

MOVE DBFILE TO ERR-FILE
MOVE STAT TO ERR-STAT
DISPLAY ERROR-MSG LINE 24
ACCEPT 01 LINE 24
PROMPT GO TO END-OF-RUN.

PROCESS-TRAN.
PERFORM READ-TRAN.
IF NOT TRAN-EOF

PERFORM DBMS-ROUTINES
MOVE SPACES TO TINREC DATAREC ESTAT EFILE EKEYN

EKEYV SOLD-IND ITEM-IND SHIP-IND
MORE-IND.

PERFORM OUTPUT-INFO.
DBMS-ROUTINES.

PERFORM GET-ITEM-FROM-ITEM.
PERFORM GET-ITEM-FROM-SOFL.
IF ITEM-EXISTS AND ITEM-SOLD

PERFORM PROCESS-ITEM UNTIL NO-MORE-SOFL-ITEMS.
PROCESS-ITEM.

PERFORM GET-SHIP-FROM-SOFL.
IF SHIP-EXISTS

PERFORM GET-NAME-FROM-CUST.
IF STAT IS EG!UAL TO "**11 AND !:;:;HIP-EXISTS

PERFORM OUTPUT-INFO.
IF SLOC2 EG'J.UAL II **** It

MOVE "N" TO MORE-IND
MOVE "****" TO SLOC1

ELSE
MOVE IIM" TO MORE-IND
PERFORM GET~ITEM-FROM-SOFL.

Figure 8-7. Listing of Program CEXMPL (Sheet 4 of 6)

2272058-9701

Example DBMS Programs

READ-TRAN.
READ TINFILE RECORD

AT END MOVE "V II TO EOF-IND.
IF NOT TRAN-EOF

MOVE "****" TO LOCI LOC2
MOVE ITEMNO TO KEVV OITEMNO.

OUTPUT-INFO.
MOVE DATAREC TO OUTREC.
PERFORM WRITE-DATA.

WRITE-DATA.
WRITE OUTREC.

INIT-LOCS.
MOVE "****" TO LOC1 LOC2.

GET-ITEM-FROM-ITEM.
MOVE IIITEM" TO DBFILE.
MOVE IIITMN" TO KEVN.
PERFORM INIT-LOCS.
CALL II DBMSVS II US I NO CB SOFLPt< -LL., I TEM-LL DA.,

DA DB-DELIM.
IF STAT IS EG~UAL TO "**11

ELSE

AND LOC I NOT EGlUAL II **** II
MOVE DESC TO ODESCRPT
MOVE UPRC TO OPRICE
MOVE lIy" TO ITEM-IND

IF STAT EQUAL TO IINKII
MOVE "*ITEM DOES NOT EXIST" TO ODESCRPT
PERFORM OUTPUT-INFO

ELSE
PERFORM ERR-ROUTINE.

GET-ITEM-FROM-SOFL.

2272058-9701

MOVE IISOFL" TO DBFILE.
MOVE IIITEMIl TO KEYN.
MOVE ITEMNO TO KEYV.
IF MORE-SOFL-ITEMS

MOVE SLOCI TO LOCI
MOVE SLOC2 TO LOC2

EL=::;E
PERFORM INIT-LOCS.

CALL "DBMSYS" USING CB SOFLSK-LL, SOFLSt<-LL C:lIST-LL.,
DA DB-DELIM.

IF STAT IS EI;~UAL TO 11**11
IF LOC I Ef~UAL II **** II

MOVE IINII TO MORE-IND
ELSE

ELSE

MOVE QUAN TO OQTYOO
MOVE SONM TO OSONO
MOVE lIy" TO SOLD-IND
MOVE LOCI TO SLOCI
MOVE LOC2 TO SLOC2

MOVE "Nil TO MORE-IND
IF STAT EQUAL TO IINKII

ELSE

MOVE II***ITEM NOT SOLD" TO OSHIPNA
PERFORM OUTPUT-INFO

PERFORM ERR-ROUTINE.

Figure B·7. Listing of Program CEXMPL (Sheet 5 of 6)

8-17

Example DBMS Programs

B-18

GET-SHIP-FROM-SOFL.
MOVE "SOFL" TO DBFILE.
MOVE "SONM" TO I<EYN.
MOVE SONM TO KEYV.
PERFORM INIT-LOCS.
CALL "DBMSYS" USING CB SOFLPI<-LL, SOFLPK-LL SOFLSK-LL,

DA· DB-DEL 1M.
IF STAT IS EI~~UAL TO "**11

ELSE

IF LOCi NOTEI:;-~UAL .. **** II
MOVE "Y" TO SHIP-IND
MOVE SHIP TO OSHIPNO

ELSE
MOVE SPACES TO SHIP-IND
MOVE II***NO SHIP IN SOFL .. TO OSHI.PNA
PERFORM OUTPUT-INFO

PERFORM ERR-ROUTINE.
GET-NAME-FROM-CUST.

MOVE IICUST" TO DBFILE.
MOVE "CUSNII TO KEYN.
MOVE SHIP TO KEYV.
PERFORM INIT-LOCS.
CALL IIDBMSYS" USING CB SOFLPK-LL, CUST-LL ITEM-LL,

DA DB-DEL 1M.
IF STAT IS EGJ.UAL TO 11**"

AND LOCi NOT EQUAL 11****11
MOVE NAME TO OSHIPNA

ELSE
IF STAT EQUAL TO IINKII

ELSE

ERR-ROUTINE.

MOVE II***NO SHIP NAME .. TO OSHIPNA
PERFORM OUTPUT-INFO

PERFORM ERR-ROUTINE.

MOVE DBFILE TO EFILE.
MOVE KEYN TO EKEYN.
MOVE KEYV TO EKEYV.
MOVE STAT TO ESTAT.
MOVE ERRREC TO OUTREC.
PERFORM WRITE-DATA.

END PROGRAM.

Figure B-7. Listing of Program CEXMPL (Sheet 6 of 6)

2272058·9701

SDSLNK 3.2.1
COMMAND LIST

FORMA T I MAGE , REPLACE
PROC RCOBOL
DUMMY
INCLUDE .S$SYSLIB.RCBPRC
TASK CEXMPL
INCLUDE .S$SYSLIB.RCBTSK
INCLUDE .S$SYSLIB.RCBMPD
INCLUDE S$DBMS.TEST.COBJECT
INCLUDE S$DBMS.SNDMSG
INCLUDE S$DBMS.COBINT
END

Example DBMS Programs

78.275 PAGE 1

Figure B-8. link Control File for Program CEXMPL

B.5 EXECUTION OF THE FORTRAN PROGRAM, FEXMPN

Install and execute the FORTRAN program, FEXMPN, as follows:

1. Start the DBMS·990. If security is installed assign the password TEST to the data base
files and assign the synonym $P to the value of the master password. This should be
done by first using the ADDPSW procedure to add the password to the security file.
Next, use the ADDPE procedure to assign the password to the files used by this
program.

2. Initialize the data base files by executing the batch stream control file
.S$DBMS.TEST.LOADFILN (use the XB command, followed by a WAIT command). When
finished, the batch stream displays the following message:

LUNO >## ASSIGNED TO THE PROGRAM FILE

3. Compile and install the program by executing the batch stream .S$DBMS.TEST.FBATCHN.
This procedure uses the link control file .S$DBMS.TEST.FNLNKN to link edit the pro·
gram and install it on the file .S$DBMS.TEST.PROG.

4. Check the batch stream listing files for errors. Ignore errors 0026 (file already exists) and
0027 (file does not exist) that occur while creating or deleting files.

2272058·9701 B-19

Example DBMS Programs

5. Use the Assign Synonym (AS) command to assign synonyms to the input and output
files, as follows:

Synonym

UNIT5
UNIT6

Value

.S$DBMS.TEST.TRAN

.S$DBMS.TEST.LlST.FRPT

6. Execute a Map Program File (MPF) command on the program file .S$DBMS.TEST.PROG
to find the task identification (TASK 10) of FEXMPN. Execute the program using the Exe­
cute FORTRAN Task Foreground (XFTF) command, specifying the LUNO reported in
step 2. Enter the TASK 10 for the program.

7. Display or print the file .S$DBMS.TEST.LlST.FRPT and compare it to the listing in Figure
B-9. They shou Id be the same.

8. After the program executes, you can halt DBMS-990 unless others are using the data
base. Use the End DBMS (EDBMS) command.

Figure B-9 contains the output from the FORTRAN program FEXMPN. Figure B-10 contains the
source listing of the program FEXMPN. Figure B-11 contains the Link Editor control file for the
program FEXMPN.

8-20 2272058-9701

Example DBMS Programs

AOOl ARMADILLOS 100123 0025 .-':;::0001 :30001 TH I NG-A--I"IA--'Ci I Ci COFW.

A001 ARMADILLOS 100123 2500 .-':=:OOO~: :::;OOO:~: TOYS FOF~ TEXAN:::;
A001 ARMADILLOS 10012:~: 0025 .-':30004 SOO04 THUNDERBOLT CO.
AOOl ARMADILLOS 100123 0100 .-':30005 SOO07 TURKEYS, INC.
A001 ARMADILLOS 10012:3 0100 .-'8000:3 SOO::;::::: ***NO :;:;HIP NAME
AOOl. ARMADILLOS 100123 0025 .-'80009 SOOOl TH I NG-A-MA--G I G COF:;:P.

B002 BLACK HOLES 020234 0007 .-'::::0002 SOO02 WIDGITS, INC.
B002 BLACk: HOLES 0202:~:4 0100 .-'8000~: SOOO:~: TOYS FOR TEXANS
B002 BLACK HOLES 0202:34 0001 .-'80005 SOO07 TURKEY~=:, INC.

COOO:~: CLAY 00:;::345 0500 .-'80004 80004 THUNDERBOLT co.

D004 DIPS 000456 0005 .-'::::0001 ::::0001 TH I NO-"A-MA-G I G CC)RP.
D004 DIP:::: 000456 0080 .-'80002 ::::0002 WIDGITS, II\lC.

EOO5 ERECTOR:::: 0055(:.7 0050 .-'::::0001 ::::0001 TH I NG-'-A-MA-(, I G CORP.
EOO5 ERECTORS 005567 0055 .-'80005 ::::0007 TURKEY::::, INC.

F006 FREEBIES 06067:3 0025 .-'80002 ::::0002 WIDGITS, INC.
FOOt:.. FREEBIES 060(:.78 9999 .-':=:OOO:~: ::::000:::: TOY:::: FOR TEXAN::::

ABCD *ITEM DOES NOT EXIST
ABCD *ITEM DOE:::: NOT EXIST ***ITEM NOT ::::OLD

13007 GOOBERS 700789 OO:~:3 .-':30001 ::::0001 TH I NCi-A'-MA""'G I Ci CORP.
13007 GOOBERS 7007::::9 0500 .-'::::000:;: ::::000:::: TOY::;: FOR TEXAN::::

HOO:::: HERBS 0:30:390 02:·0 .-'::;:0004 :30004 THUNDERBOLT CO.

IO()9 IDIOMS 009900 0999 .-'::::000:=: ::::0003 TOY:::; FOF< TEXAN:::;
'IOO'~J IDIOMS 009900 0099 . ..1:30005 ::::0007 TURKEY::::, INC •

.-'010 . .JUMP:::: 001000 1050 . ..1::::0002 ::::0002 WIDGIT~::;, INC.

K011 .<ILNS 011100 0010 . ..1::::0008 :::: 0 0:::: :::: ***NO ::;:HIP NAME~

L012 LONE STAF\~S 120000 0099 . ..1::::0002 ::::0002 W I DC; IT::::, INC •
L012 LONE STARS 120000 9000 . ..1::::000:::: :::0003 TOY:::: FOR TEXAN::::

N014 NIBBLES 041400 0015 . ..1::::0001 SOOOl TH I NG--A-'I~'I~~-(:; I c.:; com:'.
N014 NIBBLES 041400 0250 .-'::::0003 :::000:::: TOYS Fcm TEXAN~=:
N014 NIBBLES 041400 0''i''~/'~1 .-'::::0004 ::::0004 THUNDERBOLT co.

8019 SHOVELS 101901 0100 .-'::::0002 ::::0002 WIDGI T::::, INC.

WXYZ *ITEM DOE:::; NOT EXIST
WXYZ *ITEM DOES NOT EXIST ***ITEM NOT :::;OL.D

T020 TALES O''i'909'~1 0500 .-'BOOO:::: ::::000:::: TeIY:::: FOR TEXAN:::

Y025 YARNS 025000 0250 .-'8000:::: ::;;0003 TOYS FOR TEXANS
Y025 YARNS 025000 0005 . ..1:3000:::: ::::00:::: :::: *·lHl·NO :;::HIP N{~11"IE

Z026 ZEBRAS 002e.OO 0002 .-,::;:t)OO4 ::::0004 THUNDEFmOL T (:IJ.
ZC>2(:. ZEBRA:; 002600 0002 .-'::::000:::: ::::00:::::::: ***NO ~::H I P N(-1I"IE

Figure 8-9. Output from the FORTRAN Program FEXMPN

2272058·9701 8"21

Example DBMS Programs

8-22

C* THIS PROGRAM WILL EXTRACT DATA FROM THE DBMS SALES-ORDER
C* FILE ABOUT SPEC I FIe I TEM NUMBERS READ FROM A SEG!UENT I AL
C* INPUT TRANSACTION FILE. DATA THAT IS RETRIEVED FROM THE
C* DATA BASE FILES IS OUTPUT TO A SEQUENTIAL FILE WHICH CAN
C* BE DISPLAYED AFTER THE PROGRAM TERMINATES.
C*
C* THE ITEM DESCRIPTION AND UNIT PRICE ARE OBTAINED FROM
C* THE ITEM FILE. THE SALES-ORDER NUMBER, SHIP-TO CUSTOMER
C* NUMBER AND QUANTITY ON ORDER FOR EACH SALES ORDER THAT
C* CONTAINS THE ITEM ARE OBTAINED FROM THE SOFL FILE.
C* THE SHIP-TO CUSTOMER NAME IS RETRIEVED FROM THE CUST
C* FILE. APPROPRIATE ERROR MESSAGES ARE PRINTED WHERE
C* APPLICABLE.
C*
C* TWO SYNONYMS ARE REQUIRED TO RUN THE PROGRAM:

C*

SYNONYM
UNIT5

UNIT6

VALUE
INPUT TRANSACTION FILE PATHNAME

FILE .DBLIB.TEST.TRAN IS SUPPLIED
AND INSTALLED AT DBGEN TIME

OUTPUT FILE OR PRINTER PATHNAME

IMPLICIT INTEGER (A-Z)
DIMENSION INKEY(2)
DIMENSION DMSFLS(15),DBDMY(1)
DIMENSION ITEMCB(15),ITEMLL(13),ITEMDA(14)
DIMENSION SOFLC3(lS),SOFLL3(13),SOFLD3(6)
DIMENSION SOFLC2(16),SOFLL2(11),SOFLD2(4)
DIMENSION CUSTCB(16),CUSTLL(11),CUSTDA(11)

C* INITIALIZE ARRAYS

DATA DMSFLS /'TESTOF CUST********SHRD '/
DATA ITEMCB /'''TESTRF ITEM********ITMN .. ' /
DATA ITEMLL / "LINE=Ol*DESCUPRC****RLSE .' /
DATA SOFLC3 /'TESTRF SOFL********ITEM '/
DATA SOFLL3 / "'LINE=03*QUANSONM****RLSE .. ' /
DATA SOFLC2 /'TESTRF SOFL********SONM '/
DATA SOFLL2 / "LINE=02*SHIP****RLSE .. ' /
DATA CUSTCB /"TESTRF CUST********CUSN .' /
DATA CUSTLL /'LINE=Ol*NAME****RLSE '/

C* SET UP CONSTANTS
C*

CAST = "**'
CNK :: "NK'

C* THE FOLLOWING SECTION OF CODE IS USED TO OPEN ALL
cit OF THE DATABASE FILES. THE PROCEDURE I!::; NEEDED
C* IF FILE ACCESS CHECKING WAS REQUESTED AT SYSTEM
c* GENERATION. HOWEVER, IF IT WAS NOT REQUESTED,
C* NO HARM WILL BE CAUSED BY OPENING THE FILES BEFORE
c* ACCESSING THEM THROUGH THE PROGRAM.
C*

CALL DBMSYS (DMSFLS (1) ., DMSFLS (15) ,
1 DBDMY (1) , DBDMY (1) ,
2 DBDMY (1) , DBDMY (1))

IF (DMSFLS (4) • NE. CAST) GO TO 998
DMSFLS(S) = "'IT"
DMSFLS(6) = "'EM"

Figure 8-10. Listing of Program FEXMPN (Sheet 1 of 5)

2272058-9701

CALL DBMSYS (DMSFLS (1), DMSFLS (15),
DBDMY (1), DBDMY (1),

2 DBDMY (1). DBDMY (1))

.-,

..::.

IF (DMSFLS (4) .NE. CAST) GO TO 998
DMSFL.S(5) :::
DMSFU:; ((:,) ==
CALL DBMSY~:',;

IF (DMSFLS

CONTINUE

···SO···
···FL···
(DMSFLS (1),

DBDMY (1),
DBDMY (1),

(4) • NE. CA~=;T

DM~=;FLS (15),
DBDMY (1),
DBDMY (1))

GO TO 99::::

C* READ ITEM NUMBER KEY FROM INPUT FILE.
READ (5.100.END==999) INKEY(l), INKEY(2)

100 FORMAT (2A2)
WRITE (6,211)

211 FORMAT (lX)

C* GET ITEM FROM ITEM FILE.
C* ~=;ET LOC 1 AND LOC2 TO "*"

I TEMCB (7) ... ** ...
ITEMCB (8) ~**~

ITEMeB (9) ... ** ...
ITEMCB (10) ~**~

C*
C* SET KEY VALUE

I TEMeB (1 ::;:)
ITEMC:B (14)

INKEY (1)
INKEY (2)

C*
C* CALL DATA BASE

CALL DBMSYS ITEMCB(l), ITEMCB(15),
ITEMLL (1), ITEMLL (13) ,

2 I TEMDA (1), I TEMDA (14))
IF (ITEMCB (4) .NE. CAST GO TO 900

C* GET ITEM FOR LINE 3 OF SALES ORDER FILE
C* SET LOC1 AND LOC2 TO "*"

C*
c*

SOFLC3 (7) ~**~

SOFLC3 (8) ~**~

SOFLC::;: (9) == ... ** ...
SOFLC:::: (10) == ... ** ...

~=:ET I<:EY VALUE
SOFLC:::: (1 ::::) == INKEY (1)

SOFLC3 (14) :: INI<EY (2)

CAL.L DATA BASE
CAL.L. DBMSY:::; SOFLC3(1), SOFLC3(16),

SOFlL3(1), SOFLL3(13),
SOFLD3(1), SOFLD3(b)) .-, .. ::.

IF (SOFLC3 (4) .NE. CAST) GO TO 920

Example DBMS Programs

START LOOP TO PRINT INFORMATION - FOUND AT LEAST 1 ORDER
:;::ET LOC 1 AND lOC2 TO "*"

SOFLC3 (7) ~**~

SOFlC3 (8) == ~**~

SOFLC3 (9) :: ~**'

SOFLC3 (10) == ~**'

Figure 8-10. Listing of Program FEXMPN (Sheet 2 of 5)

2272058·9701 8-23

Example DBMS Programs

8-24

C*
C* SET KEY VALUE

~=;OFLC:::: (13) "­
~=;OFLC3 (14)

INKEY (1)
INKEY (2)

C* SET UP LOOP
2 C:ONTINI.JE

C* CALL DBMS TO RETRIEVE NEXT LINE=03
C*

CALL DBMSYS (SOFLC3(1), SOFLC3(15).
SOFLL3(1), SOFLL3(13),

2 SOFLD3(1), SOFLD3(6))
IF (SOFLC3 (4) .NE. CAST) GO TO 930

C* MOVE SALES ORDER NUMBER TO SALES ORDER RETRIEVAL
SOFLC2 (13) SOFLD3 (3)
SOFLC2 (14) - SOFLD3 (4)
SOFLC2 (15) = SOFLD3 (5)

C*
C* MOVE "*" TO LOCI AND LOC2

SOFLC2 (7) = ~**~

SOFLC2 (8) ~**'

SOFLC2 (9) = ~**'

SOFLC2 (10) :: ~**'

C* RETRIEVE SHIP-TO CUSTOMER NUMBER FROM SALES ORDER FILE
CALL DBMSYS (SOFLC2 (1), SOFLC2 (16), SOFLL2 (1),

1 SOFLL2 (11), SOFLD2 (1), SOFLD2 (4))
IF (SOFLC2 (4) .NE. CAST) GO TO 935

C* SET UP TO RETRIEVE NAME OF SHIP TO CUSTOMER FROM THE
C* r,::USTOMER FILE MOVE "*11 TO LOCI AND LOC2

CUSTCB (7) - '**~
CUSTCB (8) - ~**~

CUSTCB (9) """**"""
CUSTCB (10) - ~**'

C*
C* MOVE CUSTOMER NUMBER RETRIEVED FROM SOFL LINE 02 TO
C* CUSTOMER FILE KEY VALUE

C*

CUSTCB (13) - SOFLD2 (1)
CUSTCB (14) = SOFLD2 (2)
CUSTCB (15) SOFLD2 (3)

C* RETRIEVE CUSTOMER NAME
CALL DBMSYS (CUSTCB (1), CUSTCB (16), CUSTLL (1),

CUSTLL (11), CUSTDA (1), CUSTDA (11)
IF (CUSTCB (4) .NE. CAST) GO TO 940
WR I TE (6, 200) I N~:::EY (1), I N.:::EY (2), (I TEMDA (I), I 1, 13),

1. (SOFLD::;: (I), I :: 1, 5), (SOFLD2 (I), I :: 1, 3).
2 (,::'_'!::Tr'A (I), r = 1, 1 ())

200 FORMAT (lX2A2, 2XI0A2, 3X3A2, 2X2A2, 2(2X3A2), 2XI0A2)
C*
C* CHECK FOR LAST LINE=03 IN SOFL FOR ITEM.
S CONTINUE

IF (SOFLC3 (9) .EQ. CAST .AND. SOFLC3 (10) .EQ. CAST)
1 GO TO 1

GO TO 2

Figure 8-10. Listing of Program FEXMPN (Sheet 3 of 5)

2272058·9701

C*
C* EXCEPTION PROCESSING
C*
C* ITEM WAS NOT FOUND OR ERROR
900 IF (ITEMCB (4) .NE. CNK) GO TO 995

WRITE «(:.,201.) INKEY (1), INVEY (2)
201 FORMAT (lX2A2, 2X~*ITEM DOES NOT EXIST /)
C:*
C* CHECK TO SEE THAT NO ONE HAS ORDER ANY OF THE ITEM
C* WHICH DOES NOT EXIST
C* GET ITEM FOR LINE 3 OF SALES ORDER FILE
C* SET LOCI AND LOC2 TO H*H

c::*

SOFLC3 (7) ~**~
!::;OFLC3 (::::) .. ' ** .. '
SOFLC3 (9) ~**~

SOFLC3 (10) ~**~

!:;ET KEY VALUE
!::;OFLC:::: (13) -
!::;OFLC:::: (14)

INKEY (1)
INKEY (2)

C* CALL DATA BASE
CALL DBMSYS SOFLC3 (1), SOFLC3 (15), SOFLL3 (1),

SOFLL3 (13), SOFLD3 (1), SOFLD3 (6))
IF SOFLC3 (4) .EQ. CNK) GO TO 901

C*
C* FOUND ADDITIONAL EXCEPTION

WRITE (6,202) INKEY (1), INKEY (2), SOFLC3 (4)
202 FORMAT (lX2A2, 2X~*ITEM DOES NOT EXIST, BUT THE

C*

~STATUS ~, 2XA2, ~ WAS RETURNED FROM SOFL ~)

GO TO 1

C* Nb ORDER WAS ENTERED
901 WRITE (6,203) INKEY (1), INKEY (2)
203 FORMAT (lX2A2, 2X~*ITEM DOES NOT EXIST~, 32X

, C*
C*
920

~***ITEM NOT SOLD')
GCI TO 1

FOUND EXCEPTION ON READ OF SALES ORDER FILE
IF (SOFLC3 (4) .NE. CNK) GO TO 996

Example DBMS Programs

204
WR I TE «(:., 204) I NKEY (1.), I NVEY (2), (I TEMDA (I), 1== 1, 1 ::::)
FORMAT (lX2A2, 2Xl0A2, 3X3A2, 23X'***NO SALES ORDERS/)
GO TO 1.

C*
C* FOUND EXCEPTION ON SECOND READ OF SALES ORDER FILE
930 WR I TE (6, 2(5) I NKEY (1), I NKEY (2), (I TEMDA (I), I == 1, 13),

SOFLC:::: (4)
205 FORMAT (lX2A2, 2X10A2, 3X3A2, 2X~ EXCEPTION STATUS ',A2)

GO TO 1
C*
C* FOUND EXCEPTION ON LINE=02 READ FOR SHIP-TO NUMBER
935 WRITE (6,206) INKEY (1), INKEY (2), SOFLC2 (13),

1 SOFLC2 (14), SOFLC2 (15), SOFLC2 (4)
206 FORMAT (lX2A2, 2X/ EXCEPTION STATUS ON LINE=02 OF SONM

3A2, 2X~STATUS~, 2XA2)
GO TO 1

Figure 8-10. Listing of Program FEXMPN (Sheet 4 of 5)

2272058-9701 8-25

Example DBMS Programs

C*
940

207

FOUND EXCEPTION ON READ OF CUSTOMER FILE
IF (CUSTCB (4) .NE. CNK) GO TO 997
WRITE (1;.,207) IN.<EY (1), INI<EY (2), (ITEMDA (I), I

(!:;;OFLD::;: (I), 1== 1, 5), (SOFLD2 (I), I == 1, ::::)
FORMAT (lX2A2, 2Xl0A2, ::::X::::A2, 2X2A2, 2(2X3A2),

2X'***NO SHIP NAME')
GO TO 5

C* GENERAL EXCEPTION
995 WRITE (6,208) ITEMCB (4)
208 FORMAT (' EXCEPTION ON ITEM FILE .•. STATUS ',A2)

GO TO 1
996 WRITE (1;.,209) SOFLC3 (4)
209 FORMAT (' EXCEPTION O~ SOFL FILE .•. STATUS ',A2)

GO TO 1
997 WRITE (6,210) CUSTCB (4)
210 FORMAT (' EXCEPTION ON CUST FILE ••. STATUS ',A2)

GO TO 1
C*
C* FILE OPEN EXCEPTION PROCESSING
C*
998 WRITE (6,299) DMSFLS(5), DMSFLS(6), DMSFLS(4)
299 FORMAT (' ERROR IN ',2A2,' FILE OPEN, STATUS == ',A2)
C*
C* END OF FILE ON TRANSACTION INPUT
C*
99'~) CONT I NUE

DMSFL S (::::) = ", CF ",
CALL DBMSYS (DMSFLS (1), DMSFLS (15),

DBDMY (1), DBDMY (1),
2 DBDMY (1), DBDMY (1))

DMSFLS(5) = 'IT'
DMSFLS(6) = 'EM'
CALL DBMSYS (DMSFLS (1), DMSFLS (15),

DBDMY (1), DBDMY (1),
2 DBDMY (1), DBDMY (1))

DMSFLS(5) = 'CU'
DMSFLS(6) = 'ST'
CALL DBMSYS (DMSFLS (1), DMSFLS (15),

1 DBDMY (1), DBDMY (1),
2 DBDMY (1), DBDMY (1))

STOP
END

Figure B-10. Listing of Program FEXMPN (Sheet 5 of 5)

1, 13),

8-26 2272058.9701

NOS''!'tlT
FORMAT IMAGE,REPLACE
LIBRARY.FORT78.0SLOBJ
LIBRARY.FORT78.STLOBJ
TASK FEXMPL
1NCLUDE S$DBMS. TEST. FOBJECT
INCL0DE S$DBMS.SNDMSG
END

Figure 8-11. Link Control File for Program FEXMPN

8.6 EXECUTION OF THE PASCAL PROGRAM, PEXMPL

Install and execute the Pascal program, PEXMPL, as follows:

Example DBMS Programs

1. Start the DBMS-990. If security is installed assign the password TEST to the data base
files and assign the synonym $P to the value of the master password.

2. Initialize the data base files by executing the batch stream control file
.S$DBMS.TEST.LOADFILN (use the XB command, followed by a WAIT command). When
finished, the batch stream displays the following message:

LUNO >## ASSIGNED TO THE PROGRAM FILE

3. Execute the batch stream .S$DBMS.TEST.PBATCHN to compile and install the program.
This procedure uses the link control file .S$DBMS.TEST.PNLNK to link edit the program
and install it on the file S$DBMS.TEST.PROG.

4. Check the batch stream listing files for errors. Ignore errors U SVC-0316 (file already
exists) and U SVC-0315 (file does not exist) that occur while creating or deleting files.

5. Use the Assign Synonym (AS) .command to assign synonyms to the input and output
files, as follows:

Synonym

PINP
POUT

Value

.S$DBMS.TEST.TRAN

.S$DBMS.TEST.LlST.PRPT

6. Execute PEXMPL using the XPT command. Specify the program file
.S$DBMS.TEST.PROG and the task name PEXMPL. Tab through the remaining prompts.

7. Display or print the file .S$DBMS.TEST.LlST.PRPT and compare it to the listing in Figure
B-9. They should be the same.

8. After the program executes, you can halt OBMS-990 unless others are using the data
base. Use the End DBMS (EDBMS) command.

Figure B-12 contains the output from the Pascal program PEXMPL. Figure B-13 contains the
listing for PEXMPL. Figure 8-14 contains the Link Editor control file for PEXMPL.

2272058-9701 8-27

Example DBMS Programs

AOOl ARMADILLOS 1001Z3 0025 .-'80001 SOOOl THING-A-MA-GIG CORP.
AOOl ARMADILLOS 100123 2500180003 SOO03 TOYS FOR TEXANS
AOOl ARMADILLOS 100123 0025 .-'80004 SOO04 THUNDERBOLT CO.
AOOl ARMADILLOS 100123 0100 ..J80005 80007 TURKEYS, INC.
AOOl ARMADILLOS 100123 0100180008 80088 *** NO SHIP NAME
AOOl ARMADILLOS 10012:3 0025 .J80009 SOOOl THING-A-MA-GIG CORP.

B002 BLACK HOLES 020234 0007180002 80002 WIDGIT8, INC.
B002 BLACK HOLES 020234 0100 '-'80003 SOO03 TOYS FOR TEXANS
B002 BLACK HOLES 020234 0001180005 SOO07 TURKEYS, INC.

C003 CLAY 003345 0500180004 =:;0004 THUNDERBOLT CO.

0004 DIPS 000456 0005180001 80001 THING-A-MA-GIG CORP.
0004 DIPS 000456 0080180002 80002 WIDGITS, INC.

E005 ERECTORS 005567 0050180001 80001 THING-A-MA-GIG CORP.
E005 ERECTORS 005567 0055 ..J80005 80007 TURKEYS, INC.

F006 FREEBIES OC.0678 0025180002 SOO02 WIDGIT8, INC.
F006 FREEBIES OC.0678 9''iI'~/91==:0003 80003 TOYS FOR TEXANS

ABCD *ITEM DOES NOT EXIST
ABCD *ITEM DOES NOT EXIST ***ITEM NOT SOLD

G007 GOOBERS 700789 00:33 .J80001 SOOOl THING-A-MA-GIG CORP.
13007 GOOBERS 700789 0500I8000~: 8000:::: TOYS FOR TEXANS

H008 HERBS 080890 0250180004 SOO04 THUNDERBOLT CO.

1009 IDIOMS 009900 0999 ..J8000:::: SOO03 TOYS FOR TEXANS
1009 IDIOMS 009900 0099 .J80005 80007 TURKEYS, INC •

..J010 JUMPS 001000 1050180002 80002 WIDGIT8, INC.

KOll KILNS 011100 0010 .j80008 S0088 *** NO SHIP NAME

L012 LONE STAR8 120000 0099180002 80002 WIDGITS, INC.
L012 LONE STARS 120000 ~JOOO180003 SOO03 TOYS FOR TEXANS

N014 NIBBLES 041400 0015 ..J80001 80001 THING-A-MA-GIG CORP.
N014 NIBBLES 041400 0250180003 80003 TOYS FOR TEXANS
N014 NIBBLES 041400 0999 . ..180004 80004 THUNDERBOLT CO.

S019 SHOVELS 101901 0100 \,,'80002 80002 WIDGITS, INC.

WXYZ *ITEM DOES NOT EXIST
WXYZ *ITEM DOES NOT EXIST ***ITEM NOT SOLD

T020 TALES 099099 0500 . ..180003 SOOO~: TOYS FOR TEXANS

Y025 YARNS 025000 0250 . ..180003 80003 TOYS FOR TEXANS
Y025 YARNS 025000 0005 '-'80008 S0088 *** NO SHIP NAME

Z026 ZEBRAS 002600 0002 . .JE:Q004 80004 THUNDERBOLT CO.
Z026 ZEBRAS 002600 0002 '-'80008 800:::8 *** NO SHIP NAME

Figure 8-12. Output from the Pascal Program PEXMPL

8-28 2272058-9701

Example DBMS Programs

PROGRAM PEXMPL;
<**

THIS PROGRAM WILL EXTRACT DATA FROM THE DBMS SALES ORDER
FILE ABOUT SPECIFIC ITEM NUMBERS READ FROM A SEQUENTIAL
INPUT TRANSACTION FILE. DATA THAT IS RETRIEVED FROM THE
DATA BASE FILES IS OUTPUT TO A SEQUENTIAL FILE WHICH
CAN BE DISPLAYED AFTER THE PROGRAM TERMINATES.

THE ITEM DESCRIPTION AND UNIT PRICE ARE OBTAINED FROM
THE ITEM FILE. THE SALES-ORDER NUMBER~ SHIP-TO CUSTOMER
NUMBER AND QUANTITY ON-ORDER FOR EACH SALES ORDER THAT
CONTAINS THE ITEM ARE OBTAINED FROM THE SOFL FILE.
THE SHIP-TO CUSTOMER NAME IS RETEIEVED FROM THE GUST FILE.
APPROPRIATE ERROR MESSAGES ARE PRINTED WHERE APPLICABLE.

THE FOLLOWING SYNONYMS MUST BE DEFINED:
PINP = PASCAL INPUT FILE ACCESS NAME
POUT = PASCAL OUTPUT FILE ACCESS NAME

***)
CONST

EMI = 'ERROR IN ';
EM2 = ' FILE OPEN, STATUS=';

(* DEFINE DATA TYPES *)
TYPE

C2
C4
C6

=
=

PACKED ARRAY [1 •• 2J OF CHAR;
PACKED ARRAY [1 •• 4J OF CHAR;
PACKED ARRAY [1 •• 6J OF CHAR;

C20 = PACKED ARRAY [1 •• 20J OF CHAR;
DA_TYPE = (SOF2, SOF3, GUST, ITEM);

(* DEFINE RECORD AREAS *)
DATAREA = RECORD

CASE DA_TYPE OF
SOF2 (SHIP (6);

END;

SOF:3
cu::n
ITEM

(@JAN
(NAME
(DESC

LINELIST = RECORD

C4; SONM
(20) ;
C20; UPRC

(6) ;

C6) ;

LL PACKED ARRAY [1 •• 24J OF CHAR;
TERM : INTEGER;

END;
CONTROLBLOCK = RECORD

PSWD C4;
FUNC C2;
STAT
DBFILE
LOC1
LOC2
~~EYN
KEYV
TERM

END;

,-. .-... _·L,
C4;
C4;
C4;
C4;
C~.;

INTEGER;

(* VARIABLE
VAR

DEFINITIONS *)

ERR
ITEMNO
SOFLP.<_LL
SOFLSK_LL
CUST_LL
ITEM_LL

2272058-9701

BOOLEAN;
C6;
LINELIST;
LINELIST;
LINELIST;
LINELIST;

Figure 8-13. Listing of Program PEXMPL (Sheet 1 of 5)

8-29

Example DBMS Programs

8-30

DA

CB

DATA
TERM
END;

POUT

DATAREA;
INTEGER;

PINP
ITEM_EXISTS
MORE_ITEMS
SHIP_EXISTS
ITEM_SOLD

RECORD

CONTROLBLOCI<;
TEXT;
TEXT; .
BOOLEAN;
BOOLEAN;
BOOLEAN;
BOOLEAN;

SLOCI C4;
SLOC2 C4;
ODESCRPT C20;
OPRICE C6;
OQTYOO C4;
OSONO C6;
OSHIPNO C6;
OSHIPNA C20;

<* DEFINE EXTERNAL PROCEDURE TO CALL DBMS *>
PROCEDURE DBMSYS (VAR CB : CONTROLBLOCK; VAR CBE : INTEGER;

VAR LL : LINELIST; VAR LLE : INTEGER;
VAR DA : DATAREA; VAR DAE : INTEGER);
EXTERNAL FORTRAN;

(* ERROR ROUTINE *>
PROCEDURE ERR_ROUTINE;
BEGIN

WRITELN (POUT, ~DBERROR STAT=~, CB.STAT, ~, DBFILE=~, CB.DBFILE,
" KEYN=~, CB.KEYN, , KEYV=', CB.KEYV);

END;
(* SET LOCI AND LOC2 TO U*" TO START *>
PROCEDURE INIT_LOCS;
BEGIN

CB.LOCI .- '****';
CB.LOC2 .- '****';
END;

<* WRITE OUTPUT LINE *>
PROCEDURE WRITE_DATA;
BEGIN

WRITELN(POUT, ITEMNO, ODESCRPT, ,
OQTYOO, .. '
END;

, OSONO,'~ .,., OSHIPNO,
OPRICE,'~ ~.

OSHIPNA> ;

<* PROCEDURE TO GET ClISTOMER NAME FROM DBMS *>
(* CUSTOMER NAME IS RETRIEVED FROM THE CUSTOMER FILE IICUST" *>
PROCEDURE GET_NAME;
BEGIN

CB.DBFILE := 'CUST';
CB.KEYN := 'ClISN';
CB.KEYV := DA.DATA.SHIP;
INIT_LOCS;
DBMSYS <CB, CB.TERM, CUST_LL, CUST_LL.TERM, DA.DATA, DA.TERM);
IF CB.STAT = '**' AND CB.LOCI <> '****'

THEN OSHIPNA := DA.DATA.NAME
ELSE

IF CB.STAT = 'NK'
THEN BEGIN
OSHIPNA := '*** NO SHIP NAME
WRITE_DATA;
END

ELSE ERR_ROUTINE;
END;

, . ,

Figure 8-13. Listing of Program PEXMPL (Sheet 2 of 5)

2272058·9701

(***** PROCEDURE TO GET THE SHIP-TO NAME FROM THE DBMS
(* SHIP-TO NUMBER IS LINE=02 OF SOFL FILE
PROCEDURE GET_SHIP;
BEGIN

CB.DBFILE := 'SOFL';
CB.KEYN := 'SONM';
CB.KEYV := DA.DATA.SONM;
INIT_LOCS;
DA.DATA.SHIP := ' ';

Example DBMS Programs

*****>
*>

DBMSYS (CB, CB.TERM, SOFLPK_LL, SOFLPK_LL.TERM, DA.DATA, DA.TERM>;
IF CB.STAT = '**' THEN

IF CB.LOCl <> '****'
THEN BEGIN
SHIP_EXISTS := TRUE;
OSHIPNO := DA.DATA.SHIP;
END

ELSE BEGIN
SHIP_EXISTS := FALSE;
OSHIPNA := '***NO SHIP IN SOFL
WRITE_DATA;
END

ELSE ERR_ROUTINE;
END;

...• ,

(***** GET SECONDARY KEY FROM SALES ORDER FILE
(* SECONDARY KEY ITEM NUMBER IS RETRIEVED
PROCEDURE GET_SOFL;
BEGIN

CB.DBFILE := 'SOFL';
CB.KEYN := 'ITEM';
CB.KEYV := ITEMNO;
IF MORE_ITEMS

THEN BEGIN
CB.LOCl .- SLOC1;
CB.LOC2 := SLOC2;
END

ELSE INIT_LOCS;

*****>
*>

DBMSYS (CB, CB.TERM, SOFLSK_LL, SOFLSK_LL.TERM, DA.DATA, DA.TERM>;
IF CB.STAT ='**' THEN

IF CB.LOCl = '****'
THEN M6RE_ITEMS := FALSE
ELSE BEGIN

OQTYOO := DA.DATA.QUAN;
OSONO .- DA.DATA.SONM;
ITEM_SOLD := TRUE;
SLOCl := CB.LOC1;
SLOC2 := CB.LOC2;
END

ELSE BEGIN
MORE_ITEMS := FALSE;
IF CB.STAT = 'NK'

THEN BEGIN
OSHIPNA := '***ITEM NOT SOLD.
WRITE_DATA;
END

ELSE ERR_ROUTINE;
END;

END;

..- . ,

Figure 8-13. Listing of Program PEXMPL (Sheet 3 of 5)

2272058-9701 8-31

Example DBMS Programs

<* GET ITEM DESCRIPTION FROM ITEM FILE
PROCEDURE GET_ITEM;
BEGIN

CB.DBFILE := 'ITEM';
CB.KEYN := 'ITMN';
CB.KEYV := ITEMNO;
INIT_LOCS;
DBMSYS (CB, CB.TERM, ITEM_LL, ITEM_LL.TERM, DA.DATA, DA.TERM);
IF CB.STAT = '**' AND CB.LOCI <> '****'

THEN BEGIN
ODESCRPT := DA.DATA.DESC;
OPRICE := DA.DATA.UPRC;
ITEM_EXISTS := TRUE;
END

ELSE
IF CB.STAT = 'NK'

THEN BEGIN
ODESC~PT := '*ITEM DOES NOT EXIST';
WRITE_DATA;
END

ELSE ERR_ROUTINE;
END;

PROCEDURE PROC_ITEM;
BEGIN (PROCESSES EACH ITEM TO SEE IF A SHIP-TO CUSTOMER EXISTS)

GET_SHIP;
IF SHIP_EXISTS THEN GET_NAME;
IF CB.STAT = '**' AND SHIP_EXISTS THEN WRITE_DATA;
MORE_ITEMS := TRUE;
IF SLOC2 = '****'

THEN MORE_ITEMS .- FALSE
ELSE GET_SOFL;

END~
<***** GET ITEMS FROM IIITEMIl FILE AND PROCESS THE SECONDARY *****
***** KEY ON THE SALES ORDER FILE. *****>
PROCEDURE DBMS_ROUTINES;
BEGIN

ITEM_EXISTS := FALSE;
MORE_ITEMS := FALSE;
ITEM_SOLD := FALSE;
GET_ITEM;
GET_SOFL;
IF ITEM_EXISTS AND ITEM_SOLD

THEN REPEAT PROC_ITEM UNTIL NOT MORE_ITEMS;
END;

<* PROCEDURE TO OPEN THE DATABASE FILES FOR FILE ACCESS CHECKING *)
PROCEDURE OPEN_DATABASE_FILE(X:C4; VAR E:BOOLEAN);
BEGIN

CB.DBFILE:=X;
DBMSYS(CB,CB.TERM, CUST_LL, CUST_LL. TERM, DA.DATA,DA.TERM);
IF CB.STAT <> '**'

THEN BEGIN
E: =TRIJE;
WRITELN(OUTPUT, EM1, X, EM2, CB.STAT);
RESET (INPUT) ;
END

ELSE E:=FALSE;
END;

Figure 8·13. Listing of Program PEXMPL (Sheet 4 of 5)

8 .. 32 2272058-9701

PROCEDURE INITIALIZATION;
BEGIN

Example DBMS Programs

(*** INITIALIZE REMAINING AREAS AND PROCESS DATA ***
)

{

}

SOFLPK_LL.LL := ~LINE=02*SHIP****RLSE ~;

SOFLSK_LL.LL := 'LINE=03*QUANSONM****RLSE';
CUST_LL.LL := 'LINE=Ol*NAME****RLSE ';
ITEM_LL.LL := 'LINE=Ol*DESCUPRC****RLSE';
CB.PSWD := ~TEST';

*** INITIALIZE THE CONTROL BLOCK TO OPEN THE DATABASE FILES ***

CB.FUNC := 'OF';
CB.KEYN := ~SHRD';
OPEN_DATABASE_FILE('CUST',ERR);IF
OPEN_DATABASE_FILE('ITEM',ERR);IF
OPEN_DATABASE_FILE('SOFL',ERR);IF
CB. FUNC : = ·'RF···;
CB.KEYN := 'SOMN';
INIT_LOCS;
END;

ERR THEN ESCAPE INITIALIZATION;
ERR THEN ESCAPE INITIALIZATION;
ERR THEN ESCAPE INITIALIZATION;

(* MAIN PROCESSING CYCLE *)
BEGIN

RESET (PI NP) ;
REWRITE(POUT);
INITIALIZATION;
IF NOT ERR

THEN REPEAT BEGIN
READLN(PINP, ITEMNO);
INIT_LOCS;
ODESCRPT : = .'
OPRICE := ' ';
OQTYOO : = .'
OSONO := ./
OSHIPNO : = ,.
OSHIPNA : = .'
DBMS_ROUTINES;
WRITELN(POUT);
END;

UNTIL EOF(PINP);
CLOSE (PINP);
CLOSE (POUT);

END.

.J' • ,

.' .
7

.' . ,

.. ' . ,

Figure 8-13. Listing of Program PEXMPL (Sheet 5 of 5)

2272058·9701 8-33

Example DBMS Programs

NOSYMT
FORMAT IMAGE,REPLACE
LIBRARY S$TIP.OB~
TASK PEXMPL
INCLUDE S$TIP.OB~.MAIN
INCLUDE S$DBMS.TEST.POBJECT
INCLUDE S$DBMS.SNDMSG
INCLUDE S$DBMS.FRGMY
END

Figure B-14. Link Control File for Program PEXMPL

B.7 EXECUTION OF THE COBOL PROGRAM, CEXTRN

The following program demonstrates the use of transaction boundaries for transaction-level
integrity.

This program adds a new item to an existing sales order in the sales-order file.

It reads from a sequential input file. The data on the file are the sales order number, the item num-
ber to add, and the quantity desired. -

The sales order number, customer name, item number and description, quantity, unit price, and
total cost are printed on the output file. When items are not in stock, a back order message is
printed and items are not deducted from the stock.

Install and execute the COBOL program, CEXTRN, as follows:

B-34

1. Start the DBMS-990. If security is installed assign the password TEST to the data base
files and assign the synonym $P to the value of the master password.

2. Initialize the data base files by executing the batch stream control file .S$DBMS.TEST.LOADFILN
(use the XB command, followed by a WAIT command). When finished, the batch stream
displays the following message:

LUNa >## ASSIGNED TO THE PROGRAM FILE

NOTE

Steps 1 and 2 must be completed before continuing with the exe­
cution of the COBOL program CEXTRN.

2272058-9701

Example DBMS Programs

3. Execute the batch stream .S$DBMS.TEST.CBATCHTR to compile and install the
program.

4. Check the batch stream listing files for errors. Ignore errors U SVC-0316 (file already
exists) and U SVC-0315 (file does not exist) that occur while creating or deleting files.

5. Use the Assign Synonym (AS) command to assign synonyms to the input and output
fi les, as follows:

Synonym

CINP
COUT

Value

.S$DBMS.TEST.UPDATE

.S$DBMS.TEST.LlST.CRPTUPD

6. Execute CEXTRN using the Execute COBOL Task Foreground command (XCTF). For the
first parameter, enter the program file. Then enter CEXTRN as the task name and tab
through the remaining prompts. The program executes for about one minute.

7. Display or print the file .S$DBMS.TEST.LlST.CRPTUPD and compare it to the listing in
Figure B-15. They should be the same.

8. After the program executes, you can halt DBMS-990 unless others are using the data
base. Use the End DBMS (EDBMS) command.

Figure B-16 contains the source listing for CEXTRN. Figure 8-17 contains the Link Editor control
file for CEXMPL.

J80001 THING-A-MA-GIG CORP. B002 BLACK HOLES 0300 $20.234 $6070.20
*** BACK-ORDERED ***

J80001 THING-A-MA-GIG CORP. F006 FREEBIES 0300 $60. 678 $18203. 40

J80002 WIDGITS, INC. AOOI ARMADILLOS 0300 $100. 123 $30036. 90
*** BACK-ORDERED ***

J80003 TOYS FOR TEXANS C003 CLAY 0300 $3.345 $1003. 50

J80003 TOYS FOR TEXANS 0004 DIPS 0300 $.456 $136. 80

J80003 TOYS FOR TEXANS E005 ERECTORS 0300 $5. 567 $1670. 10

J80004 THUNDERBOLT CO. GOO7 GOOBERS 0300 $700. 789 $210236. 70

J80005 TURKEYS, INC. H008 HERBS 0300 $80.890 $24267. 00

J80005 TURKEYS, INC. 1009 IDIOMS 0300 $9. 900 $2970. 00

J80006 ODD JOB WYRKERS JOI0 JUMPS 0300 $1. 000 $300.00

J80006 ODD JOB WYRKERS K011 KILNS 0300 $11. 100 $3330.00

J80006 ODD JOB WYRKERS L012 LONE STARS 0300 $120.000 $36000.00

Figure B-15. Output from the COBOL Program CEXTRN

2272058-9701 B-35

Example DBMS Programs

8-36

IDENTIFICATION DIVISION.
PROGRAM-ID. CEXTRN.
AVTHOR. TEXAS INSTRVMENTS, INC.
DATE-WRITTEN. FEBRUARY, 1982.

* * THIS PROGRAM WILL ADD A NEW ITEM TO AN EXISTING
* SALES ORDER IN THE SALES-ORDER ~ILE.

* * IT WILL READ FROM A SEGUENTIAL INPUT FILE. THE
* DATA ON THE FILE WILL BE THE SALES ORDER NUMBER,
* THE ITEM NUMBER TO ADD, AND TH€ QUANTITY DESIRED.
* * THE SALES ORDER NUMBER, CUSTOMER NAME, ITEM NUMBER
* AND DESCRIPTION, QUANTITY, UNIT PRICE, AND TOTAL
* COST WILL BE PRINTED ON THE OUTPUT FILE. IF NOT
* ENOUGH IN STOCK TO FI!...L THE ORDER, A "BACK ORDER"
* MESSAGE WILL BE PRINTED AND NO ITEMS WILL BE
* DEDUCTED FROM THE STOCK.
·ct

ENvIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. TI-990.
OBJECT-COMPUTER. TI-990.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

* * A SEQUENTIAL FILE CONTAINING THE SALES ORDER,
* ITEM NUMBER, AND QUANTITY TO BE ADDED MUST HAVE
* THE SYNONYM "CINP" ASSIGNED TO IT BEFORE THIS
* PROGRAM CAN BE EXECUTED.
*

. ~

SELECT TINFILE
ASSIGN TO INPUT, "CINP"i
ORGANIZATION IS SEQUENTIAL;
ACCESS IS SEQUENTIAL .

* A SEQUENTIAL ~ILE FOR OUTPUT MUST HAVE
* THE SYNONYM "COUT" ASSIGNED TO IT BEFORE
* THIS PROGRAM CAN BE EXECUTED.
*

SELECT OUTFILE
ASSIGN TO OUTPUT, ::COUT';;
ORGANIZATION IS SEGUENTIAL;
ACCESS IS SEGUENTIAL.

DATA 01 VISION.
FILE SECTIm~
FD TINFiLEi

LABEL RECORDS ARE OMITTED;
DATA RECORD IS TINREC.

01 T II'~REC.
05 SALENO
05 ITEMNO
05 QUANT
05 FILLER

FD OUTFILE;

PIC X(6).
PIC X(4)'
PIC 9(4)
PIC X(65).

LABEL RECORDS ARE OMITTED;
DATA RECORD IS OUTREC.

01 OUTREC.
05 FILLER· PIC X (80).

WORKING-STORAGE SECTION.

* WOR~ AREAS AND INDICATORS

Figure 8-16. Listing of Program CEXTRN (Sheet 1 of 6)

2272058-9701

2272058-9701

* 77
77
01

01

01

01

Oi

TOTCOST PIC 9(7)V9(2).
DL-COUNT PIC 9(2).
EOF-IND PIC X VALUE II Nil .
88 TRAN-EOF VALUE "ya.
BACK-IND PIC X VALUE SPACES.
88 BACKORDER-NEEDED VALUE "Y:·.
TR-IND PIC X VALUE SPACES.
88 TR-NEEDED VALUE "Y".
DATAREC.
05 OSONO PIC
05 FILLER PIC
05 OSHIPNA PIC
05 FILLER PIC
05 OITEMNO PIC
05 FILLER PIC
05 ODESCRPT PIC
05 FILLER PIC
05 OGTYOO PIC
05 FILLER PIC
05 OPRICE PIC
05 FILLER PIC
05 OTOTALO PIC
ERRREC.
05 EMSG
05 FILLER
05 ESTAT
05 FILLER
05 EFIlE:
05 FILLER
05 EKEYN
05 FILLER
05 EKEYv

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

X (6 >.
X (i >.
X (20).
X (2).
X (4 >.
X (1).
X (20 >.
X (1) .
X (4 >.
X (1) .
$$$$.999.
X (1 >.
$$$$$$$$. 99.

X(8)
X(5)
X(2)
X(9)
X(4)
X(7)
X(4)
X(7)
X(6)

VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE

"DBERROR
"STAT=".
SPACES.
", DBFIlE:".
SPACES.
II, KEYN=".
SPACES.
", KEYV=".
SPACES.

Example DBMS Programs

01 ERROR-MSG.

~

*
*
*
*
*
*
*
*
.~

*
*

Oi
Oi

*
01

10 FILLER
10 ERR-FILE
10 FILLER
10 ERR-STAT

PIC X(9) VALUE "ERROR IN "
PIC X(4).
PIC X(19) VALUE II FILE OPEN, STATVS~".

PIC XX.

DBMS OML CALL PARAMETER AREAS

IF SECURITY 18 INSTALLED ON YOUR DBMS, THE VALUE OF
PSWD DATA ITEM IN THE CONTROL BLOCK MUST BE CHANGED
TO THE PASSWORD THAT WILL BE ASSIGNED TO THE SOFL,
CUST AND ITEM DATA BASE FILES. NOTE: SINCE THERE
IS ONLY ONE CONTROL BLOCK IN THIS PROGRAM ALL THREE
FILES SHOULD HAVE THE SAME PASSWORD.

DUMMY ADDRESSES USED WITH THE FILE ACCESS CHECKING
FOR OPEN AND CLOSE DATABASE FILE FUNCTIONS.

Di PIC X.
02 PIC X.

CONTROL BLOCK
CB.
02 PSWD PIC X (:4) VALUE "TEST".
02 FUNC PIC XX VALUE "OF".
02 STAT PIC XX VALUE 11**"
02 DBFILE PIC X(4) VALUE
02 L.OC1 PIC X(4) VAL.UE "****:<
02 LOC2 PIC X(4) VALUE "****".
02 KEYN PIC X(4) VALUE "SHRD".
02 KEYV PIC X (6)'

Figure 8-16. Listing of Program CEXTRN (Sheet 2 of 6)

8-37

Example DBMS Programs

* 01

*
01

* 01

* 01

SALES ORDER FILE PRIMARY
SOFLPK-LL.
02 SPLTiPE PIC X(7)
02 SPRETIND PIC X
02 SPFIELDS PIC X(4)
02 SPDISP PIC X(8)

SALES ORDER FILE PRIMARY
SOFL03-LL.
02 SPLTYPE PIC X(7}
02 SPRETIND PIC X
02 SPF"IELOS PIC X(S)
02 SPDISP 'PIC)(.(1::$)

CUSTOMER F"IlE LINE: lIST
CUST-LL.
02 CLTYPE PIC X(7)
02 CRETIND PIC X
02 CFIELDS PIC X(4)
02 CDISP PIC X(S)

ITEM FILE LINE LIST
ITEM-LL.
02 ILTYPE PIC X(7)
02 IRETIND PIC X

KEY READ LINE LIST

VALUE "LINE=02" .
VALUE "*"
VALUE "SHIP".
VALUE II ****RLSE 1/ .

KEY ADD LINE LIST

VALUE "LINE=03" .
VALUE 11*11
VALUE .. I TEMGUAN" .
VALUE II****RLSE" .

VALUE "LINE=Ol" .
VALUe: a*1I

VALUE "NAME".
VALUE u****RLSE".

VALUE "LINE=Ol" .
VALUE 11*"

02 IFIELDS PIC X(16) VALUE "DESCUPRCGTYOQTYH".

/

8-38

02 IDISP PIC X(S) VALUE "****HOLD" .
DBMS FILE DATA AREAS

01 DA.
02 FILLER PIC X(34).

01 SOFL02-DA REDEFINES DA.
02 SH I P PIC X (5) .
02 FILLER PIC X (29) .

01 SOFL03-DA REDEFINES DA.
02 ITEM PIC X (4) .
02 QUAN PIC 9(4)'
02 FILLER PIC X(26).

01 CUST-DA REDEFINES DA.
02 NAME PIC X(20).
02 FILLER PIC X (14) .

01 ITEM-DA REDEFINES DA.
02 DEse PIC X(20).
02 UPRC PIC 9(3)V9(3).
02 GTVO PIC 9 (4) .
02 GTYI-f PIC 9 (4 >.

01 DB-DELIM PIC XX VALUE II 1*".

PROCEDURE DIVISION.
MAIN-PROG.

OPEN INPUT TINFILE, OUTPUT OUTFILE.
MOVE SPACES TO OUTREC DATAREC.
MOVE "OF" TO FUNC. MOVE IISHRD" TO j.(.EYN
MOVE "CUST" TO DBFILE.
PERFORM OPEN-DATABASE-FILE.
MOVE "ITEM" TO DBFILE.
PERFORM OPEN-DATABASE-FILE.
MOVE "SOFL" TO DBFILE.
PERFORM OPEN-DATABASE-FILE
PERFORM PROCESS-TRAN UNTIL TRAN-EOF.

END-OF -RUN.
MOVE "CF" TO FUNC.
MOVE "CUST" TO DBFILE.
CALL "DBMSYSII USING CE, SOFLPK-LL, D1.
MOVE "ITEM" TO DEFILE.
CALL "DEMBYS" USING CB, SOFLPK-LL. D1.

D·.., c;., D1,

DL

Figure 8-16. Listing of Program CEXTRN (Sheet 3 of 6)

£12.

D2.

2272058·9701

2272058-9701

Example DBMS Programs

MOVE "SOFL" TO DBFILE.
CALL "DBMSYS" USING CB, SOFLPK-LL D1. 02, D1. 02.
CLOSE TINFILE OUTFILE.
STOP RUN.

I
OPEN-DATABASE-FILE.

j

CALL "DBMSYS" USING ca, SOFlPj;.-ll., 01, 02, 01. 02.
IF STAT NOT = "**"

MOVE DBFILE TO ERR-FILE
MOVE STAT TO ERR-STAT
DISPLAY ERROR-MSG LINE 24
ACCEPT 01 LINE 24 PROMPT
GO TO END-OF-RUN.

START-TRANSACTION.
MOVE II TS" TO FUNC.
PERFORM TRANSACTION-CALL.

COMMIT-TRANSACTION.
MOVE "TC II TO FUNC
PERFORM TRANSACTION-CALL.

ROLLBACK-TRANSACTION.
MOVE :' TR II TO FUNC
PERFORM TRANSACTION-CALL.

TRANSACTION-CALL.
CALL "DBMSYS" USING CB SOJ:"LPK-Li_, D1 02, 01 02.

INIT-LOCS.
MOVE 1*1H(*" TO LOC 1 LOC2.

CHECK-STAT.
IF STAT IS NOT EQUAL TO "**"

MOVE lIy" TO TR-IND
PERFORM ERR-ROUTINE.

READ-TRAN.
READ TINFILE RECORD

AT END MOVE "Y" TO EOF-IND.
IF NOT TRAN-EOF

MOVE 11****" TO LOC1 LOC2
MOVE SALENO TO OSONO
MOVE ITEMNO TO KEYV OITEMNO
MOVE QUANT TO OGTYOO.

OUTPUT- INFO.
MOVE DATAREC TO OUTREC.
PERFORM WRITE-DATA.

WRITE-DATA.
WRITE OiJTREC.

PROCESS-TRAN.
PERFORM READ-TRAN.
IF NOT TRAN-EOF

MOVE 0 TO DL-COUNT
PERFORM DBMS-ROUTINES
MOVE SPACES TO TINREC DATAREC ESTAT EFILE EKEYN

EKEYV BACK-IND TR-IND.
PERFORM OUTPUT-INFO.

DBMS-ROUT I NES.
PERFORM START-TRANSACTION.
PERFORM GET-ITEM-FROM-ITEM.
IF TR-NEEDED

PERFORM ROLLBACK-TRANSACTION
ELSE

PERFORM GET-SHIP-FROM-SOFL
IF TR-NEEDED

PERFORM ROLLBACK-TRANSACTION
ELSE

Figure 8-16. Listing of Program CEXTRN (Sheet 4 of 6)

8-39

8-40

Example DBMS Programs

PERFORM COMMIT-TRANSACTION
IF STAT IS EQUAL TO "DL"

IF DL-COUNT IS LESS THAN 10
ADD 1 TO DL-COUNT

ELSE

GO TO DBMS-ROUTINES
ELSE

PERFORM ERR-ROUTINE

PERFORM GET-NAME-FROM-CUST
PERFORM OUTPUT-INFO
IF BACKORDER-NEEDED

MOVE SPACES TO DATAREC
MOVE "*** BACK-ORDERED ***" TO ODESCRPT
PERFORM OUTPUT-INFO.

GET-ITEM-FROM-ITEM.
MOVE "RF" TO FUNC.
MOVE "ITEM" TO DBFILE.
MOVE 1& I TMN II TO KEYN.
MOVE ITEMNO TO KEYV.
PERFORM INIT-LOCS.
CALL "DBMSYS II USING CB SOFLPK-LL, ITEM-LL DA,

DA DB-DELIH.
IF STAT IS EQUAL TO "**"

AND LOC 1 NOT EGUAL 1\ **.**"
MOVE DESC TO ODESCRPT
MOVE UPRC TO OPRICE
MULTIPLY UPRC BY QUANT GIVING TOTeOST ROUNDED
MOVE TOTeOST TO OTOTALO
PERFORM UPDATE-ITEM

ELSE
MOVE "V" TO TR-IND
IF STAT EQUAL TO liNK"

MOVE II*ITEM DOES NOT EXIST" TO ODESCRPT
PERFORM OUTPUT-INFO

ELSE
PERFORM ERR-ROUTINE.

UPDATE-ITEM.
ADD QUANT TO QTYO.
IF QTYH IS LESS THAN QUANT

MOVE "V" TO BACK-IND
ELSE

SUBTRACT QUANT FROM GTYH.
MOVE: "(..IT" TO FUI\IC
CALL "DBMSYS" USING CB SOFLPJ.(.-LL ITEM-·L.L DA,

DA DB-DELHi.
PERFORM CHECK-STAT.

GET-SHIP-FROM-SOFL.
MOVE "RF" TO FUNC.
MOVE "SOFL " TO DSF I LE.
MOVE :. SmJM" TO KEYN.
MOVE SALENO TO KEYV.
PERFORM INIT-LOCS.
CALL "DBMSYS" USING CB SOFLPK- LLr SOFLPfJ..-LL SOFL03-LL,

DA DB-DEL H1.
IF STAT IS EQUAL TO H**"

IF LOCl EGUAL "****"
I"'IOVE "**·*NO SHIP IN SuFL " TO OSHIPNA
PERFORM UPDATE-SO

ELSE
MOVE SHIP TO OSHIPNA
PERFORM UPDATE-SO

Figure 8 .. 16. Listing of Program CEXTRN (Sheet 5 of 6)

2272058·9701

2272058·9701

Example DBMS Programs

MOVE "Y" TO TR-IND
IF STAT EQUAL TO IINK"

I"IOVE II***SO DOES NOT EXIST" TO OSHIPNA
PERFORM OUTPUT-INFO

ELSE
PERFORM ERR-ROUTINE.

UPDATE-SO.
MOVE ITEMNO TO ITEM.
MOVE GUANT TO GUAN.
PERFORM INIT-LOCS.
MOVE 11 AA" TO FUNC.
CALL "DBMSYS" USING CB SOFLPK- LL 80FL03-LL CUST-LL

DA DB-DELIM.
PERFORM CHECK-STAT.

GET-NAME-FROM-CUST.
MOVE "RF" TO FUNC.
t"lOVE IICUST" TO DBFILE.
MOVE "CUSN" TO KEYN.
MOVE OSHIPNA TO KEYV.
PERFORM INIT-LOCS.
CALL "DBMSYS" USING CB SOFLPK-LL, CUST-L.L. ITEM-LL ..

DA DB-DEL 1M.
IF STAT IS EGUAL TO "**"

AND LOCi NOT EQUAL 11****;0
MOVE NAME TO OSHIPNA

ELSE
IF STAT EQUAL TO "NK"

MOVE II ***NO SH I P NAME " TO OSH I Pr,IA
PERFORM OUTPUT-INFO

ELSE
PERFORM ERR-ROUTINE.

ERR-ROUTINE.
MOVE DBFILE TO EFILE.
MOVE KEYN TO EKEYN.
MOVE KEYV TO EKEYV.
MOVE STAT TO ESTAT.
MOVE ERRREC TO OUTREC.
PERFORM WRITE-DATA.

END PROGRAM.

Figure 8-16. Listing of Program CEXTRN (Sheet 6 of 6)

FORMAT IMAGE, REPLACE
PROC DBINFACE
DUMMY
INCLUDE.DBLIB.DBINFACE
TASK CE:(TRN
INCLUDE. S$SYSLIB.RCBT8K
INCLUDE . S$SYSLIB. RCBMPD
INCLUDE .DBLIE. TEST.COBJTRN
INCLUDE . DBLIB.SNDMSG
INCLUDE .DBLIB. COBINT
END

Figure 8-17. Link Control File for Program CEXTRN

8-41/8-42

Alphabetical Index

Introduction

HOW TO USE INDEX

The index, table of contents, list of illustrations, and list of tables are used in conjunction to ob­
tain the location of the desired subject. Once the subject or topic has been located in the index,
use the appropriate paragraph number, figure number, or table number to obtain the corre­
sponding page number from the table of contents, list of illustrations, or list of tables.

INDEX ENTRIES

The following index lists key words and concepts from the subject material of the manual together
with the area(s) in the manual that supply major coverage of fhe listed concept. The numbers along
the right side of the listing reference the following manual are~s:

• Sections - Reference to Sections of the manual appear as "Sections x" with the sym­
bol x representing any numeric quantity.

• Appendixes - Reference to Appendixes of the manual appear as "Appendix y" with the
symbol y representing any capital letter.

• Paragraphs - Reference to paragraphs of the manual appear as a series of
alphanumeric or numeric characters punctuated with decimal points. Only the first
character of the string may be a letter; all subsequent characters are numbers. The first
character refers to the section or appendix of the manual in which the paragraph may be
found.

• Tables - References to tables in the manual are represented by the capital lefter T
followed immediately by another alphanumeric character (representing the section or
appendix of the manual containing the table). The second character is followed by a
dash (-) and a number.

Tx-yy

• Figures - References to figures in the manual are represented by the capital letter F
followed immediately by another alphanumeric character (representing the section or
appendix of the manual containing the figure). The second character is followed by a
dash (-) and a number.

Fx-yy

• Other entries in the Index - References to other entries in the index preceded by the
word "See" followed by the referenced entry.

2272058·9701 Index .. 1

Index

Access:
Authorization ; 5.3
Resol utions, Fi Ie T 4-1

Add:
After {A A) Function 4.3.3.1
Before (AB) Function 4.3.3.2

Adding and Updating F7-5
Advantages of Transaction-Level

Integrity 1.10.4
After (AA) Function, Add 4.3.3.1
Application Program Execution ... Section 7
Area:

Data 4.2.5, 7.3.1.3
End Data 4.2.6
Example, Single Data F7-2

Areas Example, Multiple Data F7-3
Ascending (RA) Function, Read 4.3.2.4
Authorization, Access 5.3

Backup Logging ; 1.9
Backward (RB) Function, Read 4.3.2.2
Before (AB) Function, Add 4.3.3.2
Block:

Control 4.2.1,7.3.1.1
End Control 4.2.2

Call:
Parameters 4.2
Routine Example F7-4
Techniques 7.3.2
with Dummy Parameters:

COBOL 4.2.7.1
Pascal 4.2.7.3
FORTRAN 4.2.7.2

CEXMPL:
Compiler Listing FB-7
Execution, COBOL Program B.4
Link Control File FB-8
Output FB-6

Checking, File-Access 1.8,4.3.1.1
Close File (CF) Function 4.3.1.3
COBOL:

Call with Dummy Parameters 4.2.7.1
Compiling 7.4
DML Parameters F4-1, F4-2
File Function F4-7
Linking 7.4
Program CEXMPL Execution B.4
Run Time:

DBMS Interface
Linked with 7.4:1, F7-7, F7-8

DBMS Interface
Not Linked with 7.4.2, F7-9, F7-10

Codes, Error Appendix A
Coding, DML Parameters 7.3.1
Command:

Format DOL (DOL) 3.6.3
Primitive Query PQUERY 6.2

Commit Transaction (TC) 4.3.4.2
Common:

DBMS·990 Call Routine Example F7-4
Program Considerations 7.3

Index-2

Compiler:
Listing:

CEXMPL FB-7
PEXMPL FB-13

Compiling:
COBOL 7.4
Pascal 7.5

Components, DBMS-990 F1-1
Considerations:

Common Program 7.3
Design 3.6.1

Control:
Block 4.2.1, 7.3.1.1

End 4.2.2
File:

CEXMPL, Link FB-8
COBOL and DBMS, Link F7-7
Pascal and DBMS, Link F7-8
PEXMPL, Link FB-14

Creating DOL File 3.6.2
Creation, File 7.2.1
CUST PQU ERY Session B.3.5.2
Customer File (CUST) B3.1

DOL Listing FB-3

Data:
Definition Language (DOL) .. Section 3, 1.4
Elements to Document,

Relationship F2-1
Formats 3.4
Hierarchy 1.2.1, 2.2
Manipulation Language

(DM L) Section 4, 1.5
Retrieval Methods 1.3
Structure Example F1-3
Types, DOL T3-1
Verifying File8.3.5

Data Area 4.2.5, 7.3.1.3
End 4.2.6
Examples:

Single F7-2
Multiple F7-3

Data· Base:
Elements Section 2, 1.2
Field 2.2.5
File 2.2.1
Group 2.2.4
How Transaction-Level Integrity

Protects Your. 1.10.1
Keys 2.3
Line 2.2.3
Record 2.2.2

DBMS:
Exception Reporting Appendix A
Link Control File:

COBOL F7-7
Pascal F7-8

Programs, Example B.2
DBMS-990:

Call:
Routine, Example F7-4

2272058·9701

Techniques 7.3.2
Components F1-1
Fi Ie to Sales Order Document,

Relationship FB-1
Files B.3
Program Testing 7.8
Relationship of Source Document

to DBMS F2-2
DDL:

Data Types T3-1
Declaration 3.3
Errors 3.7
Examples 3.5
File, Creating 3.6.2
I Ds, Standard 3.2
Listing 3.6.4

Customer Fi Ie FB-3
Example F3-1, F3-2
Item File FB-4
Sales Order File FB-5

Procedures 3.6
Command, Format 3.6.3

Deadlock 1.10.3
Troubleshoot i ng 1.10.5

Declaration, DDL 3.3
Definition Language (DDL),

Data Section 3, 1.4
Delete:

Function (DL) 4.3.3.4
Record Function (DR) 4.3.3.5

Descending (RD) Function, Read 4.3.2.5
Description:

File 3.3.2
General DBMS Section 1
Secondary Key 3.3.3

Design Considerations 3.6~ 1
Disposition, Hold F7-6
DML:

Errors A.2
Functions 4.3
Parameters:

COBOL F4-1, F4-2
Coding 7.3.1
Pascal F4-4

Document:
Line Correlation Example, File F1-2
Relationship:

to Data Elements F2-1
to DBMS-990 F2-2, FB-1

Dummy:
Parameters:

COBOL Call 4.2.7.1
Pascal Call 4.2.7.3
FORTRAN Call 4.2.7.2

Elements:
Data Base Section 2, 1.2
to Document, Relationship of Data ... F2-1

End:
Control Block 4.2.2
Data Area 4.2.6

2272058-9701

Index

Fi Ie Statement 3.3.4
Group Statement (ENDG) 3.3.2.5
Line:

List " 4.2.4
Statement (ENDL) 3.3.2.6

Error:
Codes Appendix A
Messages, PQUERY Appendix A

Errors:
DDL 3.7
DML A.2

Example:
Common DBMS-990 Call Routine F7-4
Data Structure F1-3
DBMS Programs B.2
DDL 3.5

Listing F3-1, F3-2
File Document Line Correlation F1-2
Line List F7-1
Multiple Data Areas F7-3
Parameter Lists 4.2.7
Program Files TB-1
Queries 6.3
Single Data Area F7-2

Exception:
Processing 7.3.3
Reporting, DBMS Appendix A

Execution:
Application Program Section 7
COBOL Program CEXMPL B.4
Pascal Program PEXM PL B.6

Field:
Data Base 2.2.5, 3.6.1.1
Statement 3.3.2.4

File:
Access Resolutions T4-1
Close (CF) Function 4.3.1.3
Creating DDL 3.6.2
Creation 7.2.1
Customer (CUST) 8.3.1
Data Base 2.2.1
Data, Verifying B.3.5
DDL:

Listing, Customer FB-3
Listing, Item FB-4
Listing, Sales Order FB-5

Description 3.3.2
Function:

COBOL F4-5
Pascal F4-7
FORTRAN " F4:6

Functions : 4.3.1
Item (ITEM) B.3.2
Link Control:

CEXM PL FB-8
COBOL and DBMS F7-7
Pascal and DBMS F7-8
PEXMPL FB-14

Open (OF) Function 4.3.1.2

Index-3

Index

Sales Order (SOFL) B.3.3
Statement 3.3.1

End " 3.3.4
to Sales Order Document,

Relationship FB-1
Files:

DBMS-990 B.3
Example Program TB-1
Initial Load B.3.4
Logical Relationship of FB-2

File-Access Checking 1.8,4.3.1.1
Format DDL (DDL) Command 3.6.3
Formats, Data 3.4
Forward (RF) Function, Read 4.3.2.1
Function:

Add:
After (AA) 4.3.3.1
Before (AB) 4.3.3.2

Close File (CF) 4.3.1.3
COBOL File F4-5
Delete (DL) 4.3.3.4
Delete Record (DR) 4.3.3.5
Hold Line (HL) 4.3.2.7
Open File (OF) 4.3.1.2
Pascal Fi Ie F4-7
Read:

Ascendrng (RA) 4.3.2.4
Backward (RB) 4.3.2.2
Descending (RD) 4.3.2.5
Forward (RF) 4.3.2.1
Serial (RS) 4.3.2.3

Release Line (RL) 4.3.2.8
Write (WT) 4.3.3.3

Functions:
DML 4.3
File 4.3.1
Read 4.3.2
Transaction 4.3.4
Update 4.3.3

General DBMS Description Section 1
Group:

Data Base 2.2.4
Statement 3.3.2.3

(EN DG), End 3.3.2.5

Hierarchy, Data 1.2.1,2.2
Hold:

Disposition F7-6
Line (HL) Function 4.3.2.7

Holding Lines 7.3.4
How Transaction-Level Integrity

Protects Your Data Base 1.10.1

Identification Statement (ID),
Record 3.3.2.1

IDs, Standard DDL 3.2
Initial Load Files B.3.4
Integrity:

Advantages of Transaction-Level ... 1.10.4
Protects Your Data Base, How

Transaction-Level 1.10.1

Index-4

Transaction-Level 1.10
Interface:

PQU ERY User 6.2.1
Item File (ITEM) B.3.2

DDL Listing FB-4
PQU ERY Session B.3.5.3, B.3.5.4

Key:
Description, Secondary 3.3.3
Search, Partial 4.3.2.6
Statement, Secondary 3.3.3.2

Keys 1.2.2
Data Base 2.3
Primary 2.3.1
Secondary 2.3.2, 3.6.1.2

Language:
Data Definition, (DDL) Section 3, 1.4
Data Manipulation, (DM L) ... Section 4, 1.5

Line:
Correlation to File and Document F1-2
Data Base 2.2.3
Hold, (HL) Function 4.3.2.7
List 4.2.3,7.3.1.2

End 4.2.4
Example F7-1

Release, (RL) Function 4.3.2.8
Statement 3.3.2.2

End, (ENDL) 3.3.2.6
Lines 3.6.1.1

Holding 7.3.4
Link Control File:

CEXM PL FB-8
COBOL and DBMS F7-7
Pascal and DBMS F7-8

, PEXMPL FB-14
Linking:

COBOL 7.4
Pascal 7.5

List:
End Li ne 4.2.4
Example, Line F7-1
Examples, Parameter 4.2.7
Li ne 4.2.3, 7.3.1.2

Listing:
CEXMPL, Compiler FB-7
Customer File DDL FB-3
DDL 3.6.4
Example, DDL F3-2
Item Fi Ie DDL FB-4
PEXMPL, Compiler FB-13
Sales Order File DDL FB-5

Load Files, Initial B.3.4
Location:
Location Pointers:

RA Starting T4-2
RD Starting T4-3

Locki ng Protocol. 1.10.2
Logging, Backup 1.9
Logical Relationship of Files FB-2

2272058-9701

Index

Manipulation Language (DML),
Data Section 4,1.5

Program:
CEXMPL Execution, COBOL B.4

Messages, PQUERY Error Appendix A
Methods, Data Retrieval 1.3

Considerations, Common 7.3
Execution, Application Section 7

Multiple Data Areas Example F7-3 Files, Example TB-1
PEXMPL Execution, Pascal B.6

Open File (OF) Function 4.3.1.2 Testing,DBMS-990 7.B
Operation Summary, DBMS-990 7.B
Optimization 7.3.3
Output: '

CEXMPL FB-6
PEXMPL FB-12

Programs, Example DBMS B.2
Protects Your Data Base,

How Transaction-Level Integrity 1.10.1
Protocol, Locki ng 1.10.2

PQUERY 6.2.2 Queries, Example 6.3
Query:

Parameter List Examples 4.2.7 PQUERY Command, Primitive 6.2
Parameters: Primitive Section 6,1.7

Call 4.2
COBOL: RA Starting Location Pointers T4-2

Call with Dummy 4.2.7.1 RD Starting Location Pointers T4-3
DML F4-1, F4-2

Coding, DML 7.3.1
Read:

Ascending (RA) Function 4.3.2.4
Pascal: Backward (RB) Function 4.3.2.2

Call with Dummy 4.2.7.3 Descending (RD) Function 4.3.2.5
DML F4-4

Partial Key Search 4.3.2.6
Forward (RF) Function 4.3.2.1
Functions 4.3.2

Pascal: Serial (RS) Function 4.3.2.3
and DBMS, Link Control File F7-B Record:
Call with Dummy Parameters 4.2.7.3 Data Base 2.2.2
Compiling 7.5
DML Parameters F4-4
Linking 7.5
Program PEXM PL Execution B.6

Delete (DR) Function 4.3.3.5
Identification Statement (10) 3.3.2.1

Relationship:
Data Elements to Document F2-1

Passwords 5.2 DBMS-990 File to Sales Order
PEXMPL: Document FB-1

Compiler Listing FB-13
Execution, Pascal Program B.5
Link Control File FB-14
Output FB-12

Pointers:

Files, Logical FB-2
Source Document to DBMS-990 F2-2

Release Line (RL) Function 4.3.2.B
Reporting, DBMS Exception Appendix A
Resolutions, File Access T4-1

RA Starting Location T4-2
RD Starting Location T4-3

PQUERY:

Retrieval Methods, Data 1.3
Rollback Transaction (TR) 4.3.4.3
Routine Example, Common

Command, Primitive Query 6.2 DBMS-990 Call F7-4
Error Messages 6.4
Output 6.2.2
Session:

Sales Order:
Document, Relationship to

CUST B.3.5.2 DBMS-990 File FB-1
ITEM B.3.5.3, B.3.5.4
SOFL B.3.5.1

User Interface 6:2.1

File DDL Listing FB-5
File (SOFL) B.3.3

Search, Partial Key 4.3.2.6
Preliminary Procedures 7.2 Secondary:
Primary Keys 2.3.1 Key:
Primitive: Descri ption 3.3.3

Query Section 6,1.7 Statement 3.3.3.2
PQUERY Command 6.2 Keys 2.3.2, 3.6.1.2

Procedures: SECONDARY-REFERENCES
DDL 3.6 Statement 3.3.3.1
Preliminary 7.2 Security Section 5, 1.6, 7.2.2

Processing, Exception 7.3.3 Serial (RS) Function, Read 4.3.2.3

2272058·9701 Index-5

Index

Session:
CUST PQUERY B.3.S.2

Types, DDL Data T3-1

ITEM PQUERY B.3.S.3, B.3.S.4
SOFL PQU ERY B.3.S.1

Single Data Area Example F7-2
SOFL PQUERY Session B.3.S.1

Update Functions 4.3.3
Updating, and Adding F7-S
User Interface, PQUERY : 6.2.1

Source Document to DBMS-990,
Relationship F2-2

Verifying File Data B.3.S

Standard DDL IDs 3.2
Start Transaction (TS) 4.3.4.1

Write (WT) Function 4.3.3.3

Starting Location:
Poi nters, RA T 4-2

(AA) Function, Add After 4.3.3.1
(AB) Function, Add Before 4~3.3.2

POinters, RD T4-3 (CF) Function, Close File 4.3.1.3
Statement: (CUST), Customer File B.3.1

End File 3.3.4 (DDL):
End Group (ENDG) 3.3.2.S
End Line (ENDL) 3.3.2.6

Command, Format DDL 3.6.3
Data Definition Language ... Section 3, 1.4

FIELD 3.3.2.4
FILE ; 3.3.1
G ROU P 3.3.2.3
LI N E 3.3.2.2
Record Identification (ID) 3.3.2.1
Secondary Key 3.3.3.2
SECONDARY-REFERENCES 3.3.3.1

Structure Example, Data F1-3
Summary, DBMS-9900peration 7.8

(DL) Function, Delete 4.3.3.4
(DML), Data Manipulation

Language Section 4, 1.S
(DR) Function, Delete Record 4.3.3.S
(ENDG), End Group Statement 3.3.2.S
(ENDL), End Line Statement 3.3.2.6
(H L) Function, Hold Line 4.3.2.7
(I D), Record Identification

Statement 3.3.2.1

Techniques DBMS-990, Call 7.3.2
(ITEM), Item File B.3.2
(OF) Function, Open File 4.3.1.2

Testing, DBMS-990 Program 7.7 (RA) Function, Read Ascending 4.3.2.4
Transaction:

Functions 4.3.4
(RB) Function, Read Backward 4.3.2.2
(RD) Function, Read Descending 4.3.2.S

(TC), Commit. 4.3.4.2 (RF) Function, Read Forward 4.3.2.1
(TR), Rollback 4.3.4.3 (RL) Function, Release Line 4.3.2.8
(TS), Start 4.3.4.1 (RS) Function, Read Serial 4.3.2.3

Transaction-Level: (SOFL), Sales Order File B.3.3
Integrity 1.10 (TC), Commit Transaction 4.3.4.2

Advantages of 1.10.4 (TR), Rollback Transaction 4.3.4.3
Protects Your Data Base, How 1.10.1 (TS), Start Transaction 4.3.4.1

Troubleshooting Deadlock 1.1 O.S (WT) Function, Write 4.3.3.3

Index-6 2272058·9701

w
Z
:;
CJ
Z o
~
c(

t­
:::>
(,)

USER'S RESPONSE SHEET

Manual Title: Model 990 Computer ONOS Data Base Management System

Programmer's Guide (2272058-9701)

Manual Date: 15 July 1982 Date of This Letter: -----__

User's Name: _____________ _ Telephone: _________ _

Company: ________________ _ Office/Department: _______ _

Street Address: ___________________________ _

City/State/Zip Code: __________________________ _

Please list any discrepancy found in this manual by page, paragraph, figure, or table number in the
following space. If there are any other suggestions that you wish to make, feel free to include
them. Thank you.

Location in Manual Comment/Suggestion

NO POSTAGE NECESSARY IF MAILED IN U.S.A.
FOLD ON TWO LINES (LOCATED ON REVERSE SIDE), TAPE AND MAIL

FOLD

111111

r ~~~l~E~E~rr ~:~: y D~~I;)
POSTAGE WILL BE PAID BY ADDRESSEE

TEXAS INSTRUMENTS INCORPORATED
DIGITAL SYSTEMS GROUP

ATTN: TECHNICAL PUBLICATIONS
P.O. Box 2909 MIS 2146
Austin, Texas 78769

FOLD

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

TEXAS INSTRUMENTS
INCORPORATED

DIGITAL SYSTEMS GROUP
P.O. BOX 2909· AUSTIN, TEXAS 78769

