
'r

DNOS • '

SCI and Utilities
Design Document

Part No. 2270513·9701 *B
15November1983

TEXAS INSTRUMENTS

©Texas Instruments Incorporated 1981, 1982, 1983

All Rights Reserved, Printed in U.S.A.

The information and/or drawings set forth in this document and all rights in and to inventions disclosed
herein and patents which might be granted thereon disclosing or employing the materials, methods,
techniques or apparatus described herein, are the exclusive property of Texas Instruments
Incorporated.

MANUAL REVISION HISTORY

DNOS SCI and Utilities Design Document (2270513-9701)

Original Issue 1August1981
Revision .. 1October1982
Revision .. 15November1983

The total number of pages in this publication is 570.

The computers offered in this agreement, as well as the programs that Tl has created to use
with them, are tools that can help people better manage the information used i.n their busi
ness; but tools-including Tl computers-cannot replace sound judgment nor make the
manager's business decisions.

Consequently, Tl cannot warrant that its systems are suitable for any specific customer
application. The manager must rely on judgment of what is best for his or her business.

I\.)
I\.)
"'-I
0

~
w «:.
"'-I

~

DNOS Software Manuals
This diagram shows the manuals supporting DNOS, arranged according to user type. Refer to the block identified by your user
group and all blocks above tl'lat set to determine which manuals are most beneficial to your needs.

DNOS Concepts and Facilities
2270501 ·9701

DNOS Operations Guide
2270502·9701

High-Level
Language Users:

COBOL Reference Manual
2270518-9701

DNOSCOBOL
Programmer's Guide
2270516-9701

DNOS Performance
Package Documentation
2272109·9701

Tl Pascal Reference Manual
2270519-9701

DNOS Tl Pascal
Programmer's Guide
2270517-9701

FORTRAN-78 Reference
Manual
2268681-9701

DNOS FORTRAN-78
Programmer's Guide
2268680-9701

MATHSTAT-78
Programmer's Reference
Manual
2268687·9701

FORTRAN-78 ISA
Extensions Manual
2268696·9701

Tl BASIC Reference Manual
2308769·9701

RPG II Programmer's
Guide

" .. All DNOS Users:

-~ DNOS System Command
Interpreter (SCI) Reference Manual
2270503-9701

DNOS Text Editor
Reference Manual

"" 2270504·9701

Assembly Productivity
Language Users: Tools Users:

990/99000 Assembly DNOS Sort/Merge
Language Reference User's Guide
Manual 2272060-9701
2270509-9701

DNOSTIFORM
DNOS Assembly Reference Manual
Language 2276573-9701
Programmer's Guide
2270508·9701 DNOS Query-990

User's Guide
DNOS Link Editor 2276554·9701
Reference Manual
2270522·9701 DNOS Data Base

Management System
DNOS Supervisor Call Programmer's Guide
(SVC) Reference 2272058-9701
Manual
2270507-9701 DNOS Data Base

Administrator User's
Guide
2272059·9701

Data Dictionary
User's Guide
2276582·9701

DNOS TIPE
Reference Manual
2308786-9701

DNOS TIPE
Exercise Guide

Security 2308787-9701

Managers: DNOS COBOL Program
Generator User's Guide

DNOS Security 2234375-9701
Manager"s Guide
2308954-9701

DNOS Messages and
Codes Reference Manual
2270506-9701

DNOS Reference Handbook
2270505-9701

Communications
Software.Users:

DNOS DNCS/SNA
User's Guide
2302663-9701

DNOSDNCS
Operations Guide
2302662-9701

DNOS DNCS 914A
User's Guide
2302664-9701

DNOS 3270 Interactive
Communications Software
(ICS) User's Guide
2302670-9701

DNOS 3780/2780
Emulator User's Guide
2270520-9701

DNOS DNCS System
Generation Reference
Manual
2302648-9701

DNOS DNCS X.25
Remote File Transfer
(RFT) User's Guide
2302640-9701

DNOS Remote Terminal
Subsystem (RTS)
User's Guide
2302676-9701

DNOS Master Index to
Operating System Manuals
2270500-9701

Systems
Programmers:

DNOS System Generation
Reference Manual
22/"0511·9701

DNOS Systems
Programmer's Guide
2270510-9701

DNOS Online Diagnostics
and System Log Analysis
Tasks User's Guide
2270532·9701

ROM Loader User's Guide
2270534-9701

Source
Code Users:

DNOSSystem
Design Document
2270512-9701

DNOS SCI and Utilities
Design Document
2270513·9701

DNOS Software Manuals Summary

Concepts and Facilities
Presents an overview of DNOS with topics grouped by operating system functions. All new users (o
evaluators) of DNOS should read this manual.

DNOS Operations Guide
Explains fundamental operations for a DNOS system. Includes detailed instructions on how to use each
device supported by DNOS.

System Command lnterpreter(SCI) Reference Manual
Describes how to use SCI in both interactive and batch jobs. Describes command procedures and gives
a detailed presentation of all SCI commands in alphabetical order for easy reference.

Text Editor Reference Manual
Explains how to use the Text Editor on DNOS and describes each of the editing commands.

Messages and Codes Reference Manual
-Lists the error messages, informative messages, and error codes reported by DNOS.

DNOS Reference Handbook
Provides a summary of commonly used information for quick reference.

Master Index to Operating System Manuals
Contains a composite index to topics in the DNOS operating system manuals.

Programmer's Guides and Reference Manuals for Languages
Contain information about the languages supported by DNOS. Each programmer's guide covers oper
ating system information relevant to the use of that language on DNOS. Each reference manual covers
details of the language itself, including language syntax and programming considerations.

Performance Package Documentation
Describes the enhanced capabilities that the DNOS Performance Package provides on the Model 990/12
Computer and Business System 800.

Link Editor Reference Manual
'Describes how to use the Link Editor on DNOS to combine separately generated object modules to
form a single linked output.

Supervisor Call (SVC) Reference Manual
Presents detailed information about each DNOS supervisor call and DNOS services.

NOS System Generation Reference Manual .
Explains how to generate a DNOS system for your particular configuration and environment.

er's Guides for Productivity Tools
Describe the features, functions, and use of each productivity tool supported by DNOS.

•r's Guides for Communications Software .;
Describe the features, functions, and use of the communications software availabl-e for execution
under DNOS.

ims Programmer's Guide
Discusses the DNOS subsystems and how to modify the system for specific application environments.

\ Diagnostics and System Log Analysis Tasks User's Guide
·xplains how to execute the online diagnostic tasks and the system log analysis task and how to inte
ret the results.

1ader User's Guide
plains how to load the operating system using the ROM loader and describes the error conditio

~sign Documents
ltain design information about the DNOS system, SCI, and the utilities.

~urity Manager's Guide
~ribes the file access security features available with DNOS.

SCI/Utilities Design

PREFACE

The purpose of this document is to provide information pertaining
to the organization and operation of the System Command
Interpreter and selected utility programs shipped with DNOS.
This information is sufficient to enable a system programmer who
is not familiar with the code to fix problems that may arise and
to make additions and improvements. All changes required to
internationalize the programs are discussed.

It is assumed that the reader is familiar with terms and concepts
discussed in the DNOS Concepts and Facilities Manual, and
Section 3 (Coding Conventions)of the DNOS System Design Document.

Changes made to this version of the manual, since the previous
release, are marked with revision bars in the outside margins.

This manual is organized as follows:

Section

How to Use the Design Document - Explains how to use
this manual.

2 Conventions and Libraries - Explains conventions used
in writing the SCI and utilities code. Contains a
summary of routines in S$SYSTEM and UTCOMN, libraries
used by SCI and utility programs.

3 Error and Status Message Handling Describes the

4

components of the DNOS message-handling system -- the
message files, utilities that build system message
files, and routines that construct messages for
display to the user.

System Command Interpreter
Command Interpreter.

Discusses the System

5 Text Editor - Discusses the Text Editor.

6 System Configuration Utility - Discusses the System
Configuration Utility.

7 Operator Interface - Discusses the Operator Interface
Subsystem.

8 Spooler - Discusses the Spooler subsystem.

9 File Maintenance Utilities Discusses the file

2270513-9701 v Preface

I

I

I

SCI/Utilities Design

maintenance utilities of DNOS.

10 User ID Maintenance - Discusses the DNOS utility for
maintaining the set of user IDs on the system.

1 1

12

1 3

Teleprinter
utilities

Dev ice
used to

teleprinter devices
characteristics.

Utilities
call, answer,

and to

Describes the
and disconnect

examine their

Debugging - Discusses the tools provided by DNOS for
debugging user programs.

Volume Utilities - Discusses several utilities that
handle disk volumes.

14 Data Structure Pictures - Contains computer generated
pictures of data structures used by the utilities.

Appendix

A Keycap Cross-Reference - Discusses the generic keycap
names that apply to all terminals that are used for
keys on keyboards through out this manual.

B Writing DSEG Position-Independent Code - Explains one
technique of writing code that can be shared by more
than one task in a program file.

c Task Segments, Procedure Segments
.S$UTIL Presents tables of
procedure segments and overlays
program file.

and Overlays in
installed tasks,
in the utility

For further information related to the use of DNOS, refer to the
manuals shown in the frontispiece.

Preface vi 2270513-9701

SCI/Utilities Design TABLE of CONTENTS

TABLE of CONTENTS

Paragraph Title

2 • 1
2.2
2. 2.1

2. 2. 2
2. 2. 3
2. 2. 4
2. 2. 5
2. 2. 6
2.2.7
2. 2. 8
2. 2. 9
2.2.10
2.2.11
2.2.12
2.2.13
2. 3
2. 3. 1
2. 3. 2
2. 3. 3
2.4
2. 5
2 • 5 • 1
2. 5. 2
2. 5. 3
2.6

PREFACE

SECTION l HOW 10 USE THE DESIGN DOCUMENT

SECTION 2

CONVENTIONS
S$SYSTEM

CONVENTIONS AND LIBRARIES

Routines Documented in Systems Programmer's
Guide
S$FMT
S$GKEY
S$KEY
S$MAPK
S$0PN
S$0PNX
S$PKEY
S$PNCT
S$RIT
S$SETK
S$WAIT
S$WIT

UT COHN
UTUERR and UTSERR
UTPUER
UTEACT

USE OF .RBID
NAMING STANDARDS

Command Naming Standards
Prompt Naming Standards
Naming Synonyms and Logical Names

Internationalizing The DNOS Utilities

2270513-9701 vii

·.

Page

2-1
2-1

2-1
2-3
2-4
2-4
2-4
2-5
2-5
2-5
2-5
2-5
2-5
2-6
2-6
2-6
2-8
2-10
2-10
2-10
2-11
2-11 \
2-18
2-18
2-18

SCI/Utilities Design TABLE of CONTENTS

3 • 1
3.2
3.3
3.4
3 • 4 • 1
3. 4. 2
3.4.3
3.4.3.1
3.4.3.2
3. 4. 4
3. 4. 5
3. 4. 6
3.5
3. 5 • 1
3.5.2
3.6
3.7
3 • 7 • 1
3. 7. 2
3.8
3. 9

4.1
4.2
4.3
4. 3 • 1
4. 3. 2
4. 3. 3
4. 3. 4
4.4
4. 4. 1
4. 4. 2
4.4.3
4.4.4
4. 4. 5
4.4.6
4.4.6.1
4.5
4 • 5. 1
4.5.1.1
4.5.1.2
4.5.1.3
4.5.1.4
4.5.1.5

SECTION 3 ERROR AND STATUS MESSAGE-HANDLING

OVERVIEW OF THE DNOS MESSAGE-HANDLING SYSTEM •••
SCI INTERFACE FOR MESSAGE HANDLING ••••••
THE USE OF $$CC • • • • • • • • • • • ••
MESSAGE CONTENTS

Source Indicator •••••••
Category-ID •••
Message • • • • • • ••

Fixed Information ••••••••
Variable Text ••••••••••••

Additional Text . • • • • •••
Translation Of I/O Errors Encountered By SVCs
Abbreviated Forms • • • • •••••••••

MESSAGE FILES • • • • • • • •••••••••
Details of the TEXT Files
Details of the EXPTEXT Files

FILENAMES •••••••••••
UTILITIES TO BUILD THE MESSAGE FILES

Build Message File •••••
Build Expanded Message File

SHOW EXPANDED MESSAGE UTILITY
THE MESSAGES AND CODES MANUAL

SECTION 4 SYSTEM COMMAND INTERPRETER

OVERVIEW
STRUCTURE • • •
FLOW OF CONTROL

Invoking SCI
Initialization
Maj or Loop
Termination

DESIGN CONCEPTS
Command Procedures
Environment Stacking in Nested Procedures
Task Bidding • • • • • • • • • • • •
SCI Subroutine Linkage • • • • • • •
~lacros ••.
Error Reporting • • • • ••••••

SCI ERR • • • • • • • • • • • • • • • • • •
DETAILED DESIGN

High-Level Routines and Modules
SCI990 • • • • • • •
DMENU
DERROR
GETCMD
GETOPC

3-1
3-1
3-2
3-2
3-3
3-4
3-4
3-4
3-4
3-5
3-5
3-5
3-6
3-7
3-9
3-11
3-14
3-14
3-15
3-16
3-17

4-1
4-1
4-3
4-3
4-3
4-4
4-4
4-4
4-5
4-5
4-6
4-8
4-9
4-10
4-12
4-13
4-13
4-14
4-15
4-15
4-16
4-17

viii 2270513-9701

SCI/Utilities Design

4.5.1.6
4.5.1.7

4.5.2
4.5.2.1
4.5.2.2
4.5.2.3

4.5.2.4
4.5.3
4.5.3.1
4.5.3.2
4.5.3.3
4.5.3.4
4.5.3.5
4.5.3.6
4.5.3.7
4.5.3.8
4.5.3.9
4.5.3.10
4.5.3.11
4.5.3.12
4.5.3.13
4.5.3.14
4.5.3.15
4.5.3.16
4.5.3.17
4.5.3.18
4.5.3.19
4.5.4
4.5.4.1
4.5.4.2

4.5.4.3
4.5.4.4

4.5.4.5

LIBSCN
XS TOP

Interactive Session
Batch Job Session

Command Procedure Processing Routines
Entry Point EXPROC
Entry Point XPROMP
Common Code for EXPROC and XPROMP

Processing Field Prompts
Verifying Field Prompt Values
Writing a Message to the User

DU MARG
Routines that Process SCI Primitives

XUSE
XPROC
XEOP
XMENU
XOPTIN
XBID
XQBID and XDBID
XRBID
XDATA
XEVAL
XS HOW
XSPLIT
XSYN
xsvc
XIF
XELSE
XE ND IF
XSTAGE
XEOS

Parsing Routines
Data Structures
Command Buffer Preparation

GETLINE
TXTSUB

Text-Handling Routines
Table-Building Routines

GETALT
GETLST
GETRGI

Verification Routines
GETVER
GETELT
GETRNG
GETNAM
GETACN
GETS TR
GET INT

2270513-9701 ix

TABLE of CONTENTS

4-17
4-18
4-18
4-19
4-19
4-20

. 4-21
4-21
4-24
4-25
4-27
4-27
4-30
4-30
4-30
4-30
4-31
4-31
4-31
4-32
4-32
4-33
4-33
4-34
4-34
4-34
4-34
4-34
4-35
4-35
4-36
4-36
4-36
4-36
4-38
4-39
4-39
4-40
4-41
4-41
4-42
4-42
4-43
4-43
4-43
4-44
4-44
4 44
4-45
4-45

SCI/Utilities Design

4.5.4.6

4.5.4.7

4.5.5
4.5.5.l
4.5.5.2
4. 5. 6
4.5.6.l

4.5.6.2
4.5.7
4.5.7.l
4.5.7.2
4.5.7.3
4.6

5 • 1
5.2
5.3
5 • 3 • l
5. 3. 2
5. 3. 3
5. 3. 4
5.4
5.5
5. 5. l
5. 5. 2
5. 5. 3
5. 5. 4
5.6
5 • 6. l
5. 6. 2
5. 6. 3
5. 7
5 • 7 • 1
5. 7. 2
5. 7. 3

GETYNO
Cleanup Routines

GETCMA
GETEOL
GETEQL
GNB

Utility Routines
GETKEY
GETRLN
GET SYN
GETTYP

Display Routjnes
OLINE
DB AT CH

Subsystem Support
MAILBOX

MB$RCV
MB$RLS

TINFO
Utility Routines

HEXSYN
APPROX
S$SYSTEM Routines

INTERNATIONALIZATION

SECTION 5 TEXT EDITOR

OVERVIEW
STRUCTURE
FLOW OF CONTROL

Invoking the Text Editor
Initialization
Maj or Path
Termination

COMMAND PROCEDURES
FILES

Input File
TEXT File
MOD File
MERGE File

DATA STRUCTURES, VARIABLES AND SYNONYMS
Data Related to the Display
Data Related to Text Editor Files
Synonyms

FILE MANAGEMENT AND FILE I/O
Change Record for a Line
Delete Record for a Line
Insert Line

x

TABLE of CONTENTS

4-45
4-45
4-45
4-46
4-46
4-46
4-46
4-46
4-46
4-47
4-47
4-47
4-47
4-48
4-48
4-48
4-49
4-49
4-49
4-50
4-50
4-50
4-50
4-51

5-1
5-1
5-2
5-2
5-2
5-2
5-3
5-4
5-4
5-5
5-5
5-6
5-9
5-9
5-9
5-10
5-11
5-12
5-13
5-13
5-14

2270513-9701

SCI/Utilities Design

5. 7. 4
5. 7. 5
5. 7. 6
5 • 7 • 7
5. 7 • 8
5. 7 • 9
5.7.10
5.8
5 • 8 • l
5. 8. 2
5.8.3
5.8.4
5.8.4.l
5.8.4.2
5.8 •. 4.3
5.8.4.4
5.8.4.5
5.8.4.6
5.8.4.7
5.8.4.8
5.8.4.9

5.8.4.10
5.8.4.11
5.8.4.12
5.8.4.13
5.8.5
5.8.5.l

5.8.5.2
5.8.5.3

5.9
5.10
5 .11

Open Files
Page Back
Page Forward
Position at Beginning-of-File
Position at End-of-File
Read Record for a Line
E$FLIO Routines

DETAILED DESIGN
RBID Statement Parameters and CODE
E$WAIT
E$DISP
Edit Functions

CMD
Edit/Compose
Line Number Display
Cursor Down
Cursor Up
Home Cursor
Roll Down
Roll Up
Tabbing Operations

VDT State Tab Operations
Clear to End-of-Line
Delete Line
Insert Line
RETURN

Command Functions
Session Commands

Activate Session
Terminate Session
Recover Edit Session

Independent Commands
Line and String Commands

Copy, Move, Delete Lines
Insert File
Save Lines
Show Line
Find String
Replace String
Delete String

ERROR PROCESSING
MODIFYING THE TEXT EDITOR
INTERNATIONALIZATION

TABLE of CONTENTS

5-14
5-14
5-14
5-15
5-15
5-15
5-15
5-17
5-17
5-18
5-18
5-19
5-20
5-20
5-20
5-21
5-21
5-22
5-22
5-22
5-22
5-22
5-23
5-23
5-23
5-23
5-24
5-25
5-25
5-27
5-28
5-29
5-29
5-29
5-30
5-31
5-32
5-32
5-33
5-34
5-34
5-34
5-35

SECTION 6 SYSTEM CONFIGURATION UTILITY

6 • l
6.2

OVERVIEW
STRUCTURE

2270513-9701 xi

6-1
6-2

SCI/Utilities Design TABLE of CONTENTS

6 • 2. 1
6. 2. 2
6. 2. 3
6.3
6. 3. 1
6. 3. 2
6.3.3
6.3.4
6.3.5
6.4
6 • 4. 1
6.4.2
6.4.3
6.4.4
6.5
6. 5. 1
6. 5. 2
6. 5. 3
6.5.3.1
6.5.3.2
6.5.3.3
6.5.3.4
6.5.4
6. 5. 5
6.~.6
6. 5. 7
6.5.8
6.5.9
6.5.10
6.5.11
6.5.11.1
6.5.11.2
6.5.11.3
6.5.11.4
6.5.12
6.6
6. 6. 1
6. 7
6.8
6.8.1
6.8.2

7 • 1
7 • 2
7. 2. 1
7 • 2. 2

Address Space
Special Features
Overlays

FLOW OF CONTROL
Invoking SCU
Initialization
Main Program
Termination
Error Processing

DATA STRUCTURES
Interrupt Trap Table and Supporting Structures
System Common Area
SCU Internal Data Structures and Variables
Synonyms

DETAILED DESIGN
Initiate SCU Session
List Device Configuration
Device Characteristics

Return Device Parameters
Change Device
Add Device
Delete Device

Show Country Code
Modify Country Code
Show System Table Sizes
Modify System Table Area Sizes
Show System Log
Initialize System Log
Terminate SCU Session
Modify System Parameters

Stage One
Stage Two
Stage Three
Stage Four (more miscellaneous values)

Modify Device State
MODIFYING SCU

Coding Conventions
INTERNATIONALIZATION
COMPANION COMMAND PROCEDURES

Command Procedure Design
MDC Command Procedure Package

OVERVIEW
STRUCTURE

SECTION 7 OPERATOR INTERFACE

System Operator Task
Operator Interface Task

... _.

6-2
6-2
6-3
6-4
6-5
6-6
6-6
6-7
6-7
6-8
6-8
6-14
6-15
6-15
6-16
6-17
6-18
6-18
6-18
6-20
6-21
6-22
6-22
6-23
6-23
6-24
6-25
6-25
6-26
6-26
6-27
6-28
6-29
6-29
6-30
6-30
6-31
6-31
6-32
6-33
6-33

7-1
7-2
7-2
7-2

xii 2270513-9701

SCI/Utilities Design

7 • 3
7 • 4
7 • 4. 1
7 • 4. 2
7 • 4. 3
7 • 4. 4
7 • 5
7. 5. 1
7.5.1.1
7.5.1.2
7.5.1.3
7.5.1.4
7.5.1.5
7.5.2
7 .5. 3
7.5.4
7.5.5
7.5.6
7.5.6.1
7.5.6.2
7.5.6.3
7.5.6.4
7.5.6.5
7.5.6.6
7.5.6.7
7.5.6.8
7.5.6.9
7.5.6.10
7.5.6.11

COMMUNICATION BETWEEN TASKS
GENERAL DESIGN CONCEPTS

Definitions
Operator Privilege
Transactions
Format of Displayed

SYSTEM OPERATOR TASK
Requests

Data Structures and Files
OPERATOR Local Variables
System Common Area
System Operator Information
Operator Request Table (ORT)
User ID Table (UIDT)

Initialization
Major Loop/Routines
Error Processing
Termination
Detailed Design

OISXOI
OISQOI
OISRD
OISLOM
OISROM
OISKOM
OISGRQ
OISPOR
OISROR
OISRPL
OISFMS

.. •

•

7.5.6.12 OISMBX
7.6 OPERATOR INTERFACE
7 • 6. 1
7.6.2
7.6.3
7.6.4
7.6.5
7.6.6

Invoking XOI
Data Structures
Initialization
Maj or Loop
Termination
Error Processing
Detailed Design

XOIXOI
XOIQOI
XOICRM
XOIROM
XOILOM
XOIKOM
XO I ROI
XO I SVC
XOISIO
XO ID SP

TASK

and Variables •

•

7. 6. 7
7.6.7.1
7.6.7.2
7.6.7.3
7.6.7.4
7.6.7.5
7.6.7.6
7.6.7.7
7.6.7.8
7.6.7.9
7.6.7.10
7 • 7
7 • 8

USER ACCESS TO THE OPERATOR INTERFACE
lNTERNATIONALIZATION

2270513-9701 xiii

TABLE of CONTENTS

•
•

•
• •
•

•

•

SUBSYSTEM

•
•

•
•

•

•

•

•

•

7-2
7-3
7-3
7-4
7-5
7-6
7-6
7-7
7-7
7-7
7-7
7-8
7-9
7-9
7-10
7-10
7-10
7-11
7-11
7-11
7-12
7-13
7-14
7-15
7-16
7-17
7-19
7-20
7-21
7-21
7-22
7-22
7-22
7-23
7-23
7-24
7-24
7-24
7-26
7-28
7-29
7-29
7-30
7-31
7-31
7-33
7-33
7-34
7-34
7-34

SCI/Utilities Design TABLE of CONTENTS

7 • 9

8 • 1
8.2
8.2.1
8.2.2
8.3
8. 3. 1
8.3.1.1
8.3.1.2
8.3.1.3
8.3.2
8.3.3
8.4
8.5
8. 5. 1
8.5.2
8.5.3
8.5.3.l
8.5.3.2
8.5.4
8.6
8.6.1
8.6.2
8.6.3
8.6.4
8.6.5
8.6.5.1
8.6.5.2
8.6.6
8. 6. 7
8.6.7.1
8.6.7.2

8.6.7.3
8.6.7.4
8.6.7.5
8.6.7.6
8.6.7.7
8.6.7.8
8.6.7.9
8.6.7.10
8.6.7.11
8.6.7.12
8.6.8

MAINTENANCE OF THE OPERATOR INTERFACE SUBSYSTEM 7-35

OVERVIEW
STRUCTURE

SECTION 8

Tasks in the Spooler Job

SPOOLER

Tasks in the User's Job
COMMUNICATION AMONG SPOOLER TASKS

Channels
.S$DSTCHN
.S$ACCCHN
.S$SPOOL

BID Statements
Semaphores

DEVICES
THE QUEUE FILE

Class Name Table (CNT)
(SDT) Spooler Device Table

Queue Records
Queue Entries
Continuation Entries

Spooler ID Logical Names
DETAILED DESIGN OF SP$DST

Memory Data Structures
Invoking SP$DST
Initialization
Maj or Loop
Error Processing

SP$DST
SPINIT

Termination
Detailed Design

SPSCHD
Queue File Space Management

Acquiring Space
Releasing Space

Writer Task Messages
Output Request Messages
Kill Output (KO)
Modify Output (MO)
Modify Spooler Device (MSD)
Halt Output (HO)
Resume Output (RO)
Verify Device or Class Name
Perform Copy ~ount Maintenance
Find File Name

Shared Modules

xiv

8-1
8-1
8-1
8-2
8-3
8-3
8-3
8-4
8-4
8-5
8-5
8-6
8-6
8-7
8....:.8
8-9
8-10
8-11
8-11
8-12
8-12
8-16
8-16
8-17
8-18
8-18
8-18
8-19
8-19
8-19
8-20
8-20
8-20
8-21
8-22
8-23
8-24
8-25
8-26
8-27
8-27
8-27
8-27
8-28

2270513-9701

SCI/Utilities Design TABLE of CONTENTS

8.6.9
8. 7
8 • 7 • 1
8. 7. 2
8. 7. 3
8. 7. 4
8. 7. 5
8. 7. 6
8 • 7 • 7
8.8
8 • 8 • 1
8. 8. 2
8.8.3
8. 8. 4
8.9
8. 9. 1
8. 9. 2
8. 9. 3
8. 9. 4
8.10
8.10.1
8.10.2
8.10.3
8.10.4

9 • 1
9. 2
9 • 2. 1
9.2.1.1
9.2.1.2

9.2.1.3
9.2.1.4
9.2.1.5
9.2.1.6
9.2.1.7
9. 2. 2
9. 2. 3
9. 2. 4
9. 2. 5
9.2.5.1
9.2.5.2
9.2.5.3

Internationalization
SPOOLER DEVICE WRITER TASKS

Invoking LPWRITER
Initialization
Processing a Print Request
Error Processing
Termination
Internationalization
The Banner Sheet

SPTASK
Invoking SPTASK
Initialization
Major Loop
Termination

SHOW OUTPUT STATUS
Invoking SOS
Processing

PF

Error Processing
Internationalization

Invoking PF
Processing
Error Processing
Internationalization

SECTION 9 FILE MAINTENANCE UTILITIES

OVERVIEW
MOVE TASKS

Design Concepts
Structure of Tasks
I/ 0

Blocking
Header Placement and Volume Numbers
Double Buffering
Direct I/O

Traversing a Hierarchy
Control File
Error Processing
Volume Numbers in Backups
Volume Number Checking by RD & VB

Data Structures and Variables
Invoking Move Tasks
Internationalization
Detailed Design

Routine CD
CFDRVR
xx DIR

2270513-9701 xv

8-28
8-28
8-29
8-29
8-30
8-31
8-32
8-32
8-33
8-34
8-34
8-34
8-35
8-35
8-36
8-36
8-36
8-37
8-37
8-37
8-37
8-38
8-39
8-39

9-1
9-1
9-2
9-4
9-4
9-5
9-6
9-6
9-6
9-11
9-13
9-13
9-13
9-14
9-15
9-17
9-18
9-18
9-19
9-19
9-20

SCI/Utilities Design TABLE of CONTENTS

9.2.5.4
9.2.5.5

9.3
9. 3. 1
9.3.2
9.3.3
9.4
9.5
9.6
9.7

xx DATA
Common Service Routines

ADUBLK
NBLKS
APPEND
REMOVE
GETACN
GET COM
GETDSC
GETEOL
GETTXT
JMPFN
CKFSTK
INCLUD
OPTION
SCHFNM
DATE
DESTIN
GETPRM
SOURCE
ERRINT
ERRCLR
ERROR
ERRS$
ERRSVC
SET CC
GET REC
I$ 0
OPNFIL
WRTHDR
WRTLIN
WRTLST
INITAL
CLRIRB
ME MM GR
STKDIR
POPSTK

.

SUPPORT FOR REMAINING FILE MAINTENANCE UTILITIES
0$ Routines •••
UTSORT • • • • • •

.
UTSORT Data Structures

LIST DIRECTORY (LD) •••••
MAP DISK (MD) •••
DELETE DIRECTORY (DD) . .

.
CCAF • • • • • • • • • • • • • • • • • • . . .

9-21
9-22
9-22
9-22
9-22
9-22
9-22
9-23
9-23
9-23
9-23
9-23
9-23
9-24
9-24
9-24
9-24
9-24
9-24
9-25
9-25
9-25
9-25
9-26
9-26
9-26
9-26
9-26
9-27
9-27
9-27
9-27
9-27
9-27
9-27
9-27
9-28
9-28
9-28
9-29
9-29
9-30
9-30
9-32
9-33

xvi 2270513-9701

SCI/Utilities Design TABLE of CONTENTS

10.1
10.2
10.3
10.3.1
10.3.1.1
10.3.1.2
10.3.1.3
10.3.1.4
10.3.1.5
10.3.1.6
10.3.2
10.4
10.4.1
10.4.2
10.4.3
10.4.3.1
10.4.3.2
10.4.3.3
10.4.3.4
10.4.4
10.5
10.6
10.6.1
10.6.2
10.6.3
10.6.3.1
10.6.3.2
10.6.3.3
10.6.3.4
10.6.3.5
10.6.3.6
10.6.3.7
10.6.3.8
10.6.4

11. 1
11. 2
11. 3
11.3.1
11.3.2
11.3.3
11.3.4
11. 4

SECTION 10 USER ID AND ACCESS GROUP MAINTENANCE

OVERVIEW
STRUCTURE OF THE TASKS
FILES • • • • • • • •

• SCLF .
Verification Record (VFY)
File Information Records FIR)
User Descriptor Record (UDR)

. . .
User Descriptor Overflow record (UDO)
Access Group name Record (AGR)
Structure of the .S$CLF file ••

Synonym and Logical Name File
FLOW OF CONTROL OF AUIDUI

. . .

. .

Invoking AUIDUI
Initialization
Major Routines •••

Add User ID - UIAUI
Delete User ID - UIDUI
Modify User ID - UIMUI
List User IDs - UILUI

Termination ••••••
FLOW OF CONTROL OF MPC
FLOW OF CONTROL OF AGTASK

Invoking AGTASK

.

.

.
.

Initialization
Major Routines •••••••••••••••

Add list of users to access group (AGADLU) ••
Create access group (AGCAG) • • • ••••
Change access group leader (AGCHGL) •••••
Delete access group (AGDAG) •••
Delete users from access group (AGDEL) ••
List access groups (AGLAG) ••••••
List access group members (AGLAGM) ••••••
Set file creation access group (AGSCAG) •••

Termination

SECTION 11 TELEPRINTER DEVICE UTILITIES

OVERVIEW
COMMANDS

.
TELEPRINTER DEVICE TASKS

TPCALANS • • • • • • •
TPDISC
TPMHPC
TPLHPC

HARDWARE ENVIRONMENT

2270513-9701 xvii

10-1
10-2
10-2
10-2
10-2
10-2
10-3
10-3
10-4
10-4
10-6
10-7
10-7
10-8
10-8
10-8
10-8
10-8
10-9
10-9
10-9

'10-9
10-9
10-10
10-10
10-11
10-11
10-11
10-11
10-12
10-12
10-12
10-12
10-13

11-1
11-2
11-3
11-3
11-5
11-6
11-6
11-6

SCI/Utilities Design TABLE of CONTENTS

SECTION 12 DEBUGGING TOOLS

12 .1 OVERVIEW
DEBUGGER 12.2

12.2.l
12.2.2
12.2.3
12.2.3.l
12.2.3.2
12.2.3.3
12.2.3.4
12.2.3.5
12.2.4
12.2.5
12.2.6
12.2.7
12.2.8
12.2.9
12.2.9.l
12.2.9.2
12.2.9.3
12.2.9.4
12.2.9.5
12.2.9.6
12.2.9.7
12.2.9.8
12.2.9.9
12.2.9.10
12.2.9.11
12.2.9.12
12.2.9.13
12.2.9.14
12.2.9.15
12.2.9.16
12.2.9.17
12.2.9.18
12.2.9.19
12.2.9.20
12.2.9.21
12.2.9.22
12.2.9.23
12.2.9.24
12.2.9.25
12.2.9.26
12.2.9.27
12.2.9.28
12.2.9.29

Operating System Considerations ••••••
Structure of the Task •••••••••••••
Flow of Control • • • • • • • • • •••

Invoking the Debugger • • • • • • • • ••
Initialization • • • • ••••••
Major Loop/Routines •••••••••••
Error Processing • • • • • ••
Termination •••••••••••••

Data Structures ••••••••••••••••
Files • . • • • • • • • • •
Synonyms • • • • • • • • • • • • • • • • • •
Coding Conventions • • • • • • • • • • • • •
Subroutine Linkage • • • • • • • ••
Detailed Design • • • • • • • • • •••

D$0V_l ••••••••••••••••••
List Breakpoints •••••••••••••
List Memory, List System Memory
Show Internal Registers •••••••••••
Show Panel
Show Value

.
Show Workspace Registers • • • • • • • • •
Modify Internal Registers ••••••
Modify Memory, Modify System Memory •••••
Modify Workspace Registers ••••
Assign Breakpoint ••••••••••••
Delete Breakpoint ••••••••••••••
Delete All Breakpoints. • ••••••••••
Delete/Proceed from Breakpoint(s) ••••••
Proceed from Breakpoint •••••
Activate Task • • • • ••••••••
Halt Task • • • • • • • • • • • •
Quit Debugger • • • • ••••••••
Resume Task • • • • • • •••••
Execute in Debug Mode • • • • •
Execute and Halt Task ••••••••••••
Find Byte ••••••••••••••••••
Find Word • • • • • • • • • • • • • •••
Assign Simulated Breakpoint •••
Delete Simulated Breakpoint(s) ••••••••
List Simulated Breakpoints • • • • ••
Resume Simulated Task • • • • • • • • • •
Simulate Task ••••••••••••••
Support Subroutines •••••••••••

D$PR1 and D$PR2
D$HT
D$RST

12-1
12-1
12-5
12-6
12-8
12-8
12-8
12-9
12-9
12-9
12-10
12-12
12-12
12-12
12-13
12-13
12-13
12-15
12-16
12-17
12-18
12-18
12-19
12-20
12-22
12-24
12-26
12-28
12-29
12-30
12-31
12-33
12-33
12-34
12-35
12-36
12-36
12-37
12-38
12-39
12-40
12-41
12-42
12-43
12-44
12-45
12-45
12-47

xviii 2270513-9701

SCI/Utilities Design TABLE of CONTENTS

D$DMC 12-47
D$ESE 12-48
D$PRP 12-49
D$PSP 12-49
D$POP 12-50
D$WL 12-50

12.2.9.30 Pascal Debugging Commands 12-50
12.2.10 Modifying the Debugger 12-51
12.2.10.1 Changing the code 12-51
12.2.10.2 Maintenance 12-51
12.2.11 Internationalization 12-51
12.3 LLR 12-51
12.3.1 Structure of the task 12-52
12.3.2 Coding Conventions 12-52
12.3.3 Flow of control • • 12-52
12.3.3.1 Invoking LLR 12-52
12.3.3.2 Initialization 12-53
12.3.3.3 Subroutine Linkage 12-53
12.3.3.4 Error Processing 12-53
12.3.3.5 Termination • 12-54
12.3.4 Data Structures and Files 12-54
12.3.5 Detailed Design 12-55 "I

12.3.6 Internationalization 12-55
12.4 MRFSRF 12-56
12.4.1 Structure of the task 12-56
12.4.2 Coding Conventions 12-56
12.4.3 Flow of Control 12-56
12.4.3.1 Invoking MRFSRF • 12-56
12.4.3.2 Ini t iali za tio.n 12-57
12.4.3.3 Maj or Loop/Routines 12-57
12.4.3.4 Error Processing 12-58
12.4.3.5 Termination • ·• • 12-58
12.4.4 Subroutine Linkage 12-58
12.4.5 Data Structures and Files • • 12-58
12.4.6 Detailed Design • 12-59
12.4.7 Internationalization 12-59
12.5 MPISPI 12-60
12.5.1 Structure of the task 12-60
12.5.2 Coding Conventions 12-61
12.5.3 Flow of Control • 12-61
12.5.3.1 Invoking MP I SP I 12-61
12.5.3.2 Initialization • 12-63
12.5.3.3 Maj or Loop/Routines 12-63
12.5.3.4 Error Processing 12-63
12.5.4 Termination 12-63
12.5.5 Subroutine Linkage 12-64
12.5.6 Data Structures and Files 12-64
12.5.7 Detailed Design 12-65
12.5.8 Internationalization 12-68

2270513-9701 xix

SCI/Utilities Design TABLE of CONTENTS

SECTION 13 VOLUME UTILITIES

13 • l INTRODUCTION
CVINIT -- PREPROCESSOR TASK FOR CV AND BDD 13. 2

13.2.l
13.2.l.l
13.2.1.2
13.2.1.3
13.2.2
13.2.3
13.2.3.l
13.2.3.2
13.2.3.3
13.2.3.4
13.2.3.5
13.2.3.6
13.2.3.7
13.2.3.8
13.2.3.9
13.2.3.10
13.2.3.11
13.2.3.12
13.2.3.13
13.2.3.14
13.2.3.15
13.2.3.16
13.2.3.17
13.2.3.18
13.2.3.19
13.2.3.20
13.2.3.21
13.2.3.22
13.2.3.23
13.2.3.24
13.2.3.25
13.2.3.26
13.2.3.27
13.2.3.28
13.2.3.29
13.2.4
13.3
13.3.l
13.3.l.l
13.3.1.2
13.3.1.3
13.3.1.4
13.3.1.5
13.3.1.6
13.3.2
13.3.2.l

CVINIT Data Definitions and Structures
PARM ARRAY
Saved Data File
.S$CVI - The CVINIT Temporary File

CVINIT Algorithm
CVINIT Module Descriptions

CV IBID
CVICLS
CV I DEV
CV I ERR
CV IF IL
CV I GET
CVIHDR
CV I IMP
CVILJB
CVILUN
CV IMAP
CVIMSG
CV I NAM
CVINJB
CV I NIT
CVIOPN
CV I PAT
CV I PDT
CVIPRT
CV I QUI
CVISDF
CVISLF
CV I SYN
CV I SYS
CVITRM
CVI TXT
CVIUNL
CV IVER
CVIWRT

CVINIT Debug Suggestions
COPY VOLUME (CV)

CV Algorithms

..

Algorithm for Initializing Copy Volume
Algorithm for Initializing a Copy
Algorithm for the Copy Driver
Algorithm for Copying Directories
Algorithm for Copying Files
Algorithm for Copying Program Files

CV Data Structures
AFR REC DEFN

xx

. . ..

13-1
13-1
13-1
13-1
13-2
13-4
13-4
13-5
13-5
13-5
13-5
13-5
13-7
13-7
13-7
13-7
13-8
13-8
13-8
13-8
13-8
13-9
13-9
13-9
13-9
13-9
13-9
13-9
13-10
13-10
13-10
13-10
13-10
13-10
13-10
13-10
13-11
13-11
13-12
13-13
13-13
13-13
13-14
13-14
13-15
13-15
13-16
13-16

2270513-9701

SCI/Utilities Design TABLE of CONTENTS

13.3.2.2 AFR ARRAY 13-19
13.3.2.3 APR REC DEFN 13-19
13.3.2.4 BAD ADU REC 13-22
13.3.2.5 BAD ADU ARRAY 13-22
13.3.2.6 BAR REC DEFN 13-22
13.3.2.7 BAR ARRAY 13-22
13.3.2.8 COR REC DEFN 13-23
13.3.2.9 DER REC DEFN 13-24
13.3.2.10 DER-ARRAY . 13-24
13.3.2.11 FAR REC DEFN 13-24
13.3.2.12 FAR ARRAY 13-24
13.3.2.13 IRR-REC DEFN 13-25
13.3.2.14 IRR ARRAY 13-25
13.3.2.15 LEVEL ENTRY 13-25
13.3.2.16 LEVEL ARRAY 13-25
13.3.2.17 PF I ARR 13-26
13.3.2.18 PRA REC DEFN 13-26
13.3.2.19 PRAARR 13-26
13.3.2.20 PRR REC DEFN 13-27
13.3.2.21 PRR ARRAY 13-27
13.3.2.22 SAT REC 13-28
13.3.2.23 SAT-TBL •.. 13-28
13.3.3 CV Pascal Modules 13-28
13.3.3.1 CV 13-28
13.3.3.2 CV AL CA 13-28
13.3.3.3 CV AL CD 13-28
13.3.3.4 CV BIAS 13-28
13.3.3.5 CV CD EV 13-29
13.3.3.6 CVCDIO 13-29
13.3.3.7 CVCFLE 13-29
13.3.3.8 CVCPRM 13-29
13.3.3.9 CVCSCY 13-30
13.3.3.10 CVCSNW 13-30
13.3.3.11 CVCSRD 13-30
13.3.3.12 cvcsvc 13-30
13.3.3.13 CVCVER 13-31
13.3.3.14 CVCVOL 13-31
13.3.3.15 CVENDR 13-31
13.3.3.16 CVFFOR 13-31
13.3.3.17 CVFNCl 13-32
13.3.3.18 CVFNC2 13-32
13.3.3.19 CVFNC3 13-32
13.3.3.20 CVFSRD 13-32
13.3.3.21 CV GI OB 13-32
13.3.3.22 CVLAFR 13-33
13.3.3.23 CVPDIR 13-33
13.3.3.24 CV PERM 13-33
13.3.3.25 CVPHDR 13-33
13.3.3.26 CVPPGF 13-33
13.3.3.27 CVPSTA 13-33

2270513-9701 xxi

SCI/Utilities Design

CVPSVC
CVRWVR
CVS MAP
CVSTRl
CVSTR2
CVTRCP

CV Assembly Modules
CV CM PB
CVDMVB
CVEACT
CVENDC
CVLCOM
CVMOVB
CVMSGM
CVPMSG
CVPTCH
CV RR TE
CVSTRT

CV Special Cases
Types

13.3.3.28
13.3.3.29
13.3.3.30
13.3.3.31
13.3.3.32
13.3.3.33
13.3.4
13.3.4.1
13.3.4.2
13.3.4.3
13.3.4.4
13.3.4.5
13.3.4.6
13.3.4.7
13.3.4.8
13.3.4.9
13.3.4.10
13.3.4.11
13.3.5
13.3.5.l
13.3.5.2
13.3.6
13.4
13.4.l
13.4.l.l
13.4.l.2
13.4.2
13.4.3
13.4.3.l
13 .4. 3. 2
13.4.3.3
13.4.3.4
13.4.3.5
13.4.3.6
13.4.3.7
13.4.3.8
13.4.3.9
13.4.3.10
13.4.3.11
13.4.3.12
13.4.3.13
13.4.3.14
13.4.3.15
13.4.3.16
13.4.3.17
13.4.3.18
13.4.3.19
13.4.3.20
13.4.3.21
13.4.3.22

Special Case File
Special Case Files and Directories

CV Debug Suggestions
BACKUP DIRECTORY TO DEVICE

BDD Data Structures
Buffers

(BDD)

Other BDD Data
Flow

Structures
BDD Program
BDD Modules

BDABSQ
BDADJF
BDADKD
BDAPLF
BDBFDR
BDBFSZ
BDBHED
BDBKUP
BDC2NM
BDCHBM
BDCKRD
BDCKVR
BDCLCT
BDCLNP
BDD
BDDl
BDDIRT
BDDOND
BDDONT
BDDUMP
BDFDRF
BDFDRP

xx ii

..

TABLE of CONTENTS

13-33
13-33
13-33
13-34
13-34
13-34
13-34
13-34
13-34
13-34
13-34
13-35
13-35
13-35
13-35
13-35
13-35
13-35
13-35
13-36
13-36
13-37
13-38
13-38
13-38
13-41
13-43
13-47
13-47
13-48
13-48
13-48
13-48
13-48
13-48
13-48
13-48
13-49
13-49
13-49
13-49
13-49
13-50
13-50
13-50
13-50
13-50
13-51
13-51
13-51

2270513-9701

SCI/Utilities Design TABLE of CONTENTS

13.4.3.23 BDFILT 13-51
13.4.3.24 BDFIND 13-51
13.4.3.25 BDFIXD 13-51
13.4.3.26 BDFLBL 13-51
13.4.3.27 BDFLSH 13-52
13.4.3.28 BDGBLK 13-52
13.4.3.29 BDGPRM 13-52
13.4.3.30 BDGTIM 13-52
13.4.3.31 BDGVIF 13-52
13.4.3.32 BDHASH 13-52
13.4.3.33 BDINCM 13-5 2
13.4.3.34 BDINIO 13-52
13.4.3.35 BD INV F 13-53
13.4.3.36 BDIOPR 13-53
13.4.3.37 BDIOQT 13-53
13.4.3.38 BD.MESG 13-53
13.4.3.39 BDMONT 13-53
13.4.3.40 BDMPTH 13-53
13.4.3.41 BDNVIO 13-53
13.4.3.42 BDMVPR 13-53
13.4.3.43 BDNMEQ 13-53
13.4.3.44 BDNXVL 13-54
13.4.3.45 BDOPEN 13-54
13.4.3.46 BDPFDR 13-54
13.4.3.47 BDPHED 13-54
13.4.3.48 BDPPTH 13-54
13.4.3.49 BDPTIM 13-54
13.4.3.50 BDQERR 13-54
13.4.3.51 BDREDD 13-54
13.4.3.52 BDREDF 13-54
13.4.3.53 BDREDV 13-54
13.4.3.54 BDSCAN 13-55
13.4.3.55 BDSCRM 13-55
13.4.3.56 BDSCTY 13-55
13.4.3.57 BDSORT 13-55
13.4.3.58 BDSPLT 13-55
13.4.3.59 BDSRCH 13-55
13.4.3.60 BDSTBD 13-55
13.4.3.61 BDSVCE 13-55
13.4.3.62 BDSV FD 13-55
13.4.3.63 BDVECT 13-56
13.4.3.64 BDVERF 13-56
13.4.3.65 BDWBGN 13-56
13.4.3.66 BDWDSK 13-56
13.4.3.67 BDWNDX 13-56
13.4.3.68 BDWRV 13-56
13.4.3.69 BDWT AP 13-56
13.4.3.70 BDZIRB 13-56
13.4.4 BDD Debug Suggestions 13-56
13.4.5 Miscellaneous Comments 13-58

2270513-9701 xxiii

SCI/Utilities Design TABLE of CONTENTS

SURFACE ANALYSIS ALGORITHM 13.5
13.5.1
13.5.2
13.5.2.1
13.5.2.2
13.5.2.3
13.5.2.4
13.5.2.5
13.5.2.6
13.5.2.7
13.5.2.8
13.5.2.9
13.5.2.10
13.5.2.11

Metacode
IDS Data

IDSPRM
BAD TAB

.
Structures

READ TYPES WORD
READ TYPES •••
FAILURES PER READ
SA ASSIST BUF
PATTERNS • • •
HEAD ERROR FLAG

TYPE

. . .
BAD RDS PATTERN and TOT RDS PATTERN - -REC DEFECT LENGTH
IDS-Global-Data

SECTION 14 DATA STRUCTURE PICTURES

. . .

.

14. 1 OVERVIEW .

A. 1

B.l
B.2
B.3
B.4

c. 1

APPENDIX A KEYCAP CROSS-REFERENCE

OVERVIEW .

APPENDIX B WRITING DSEG POSITION-INDEPENDENT CODE

OVERVIEW
EXAMPLE CONVERSION
RU LES • • • •
CONVENTIONS USED IN S$SYSTEM

APPENDIX C TASK, PROCEDURE AND OVERLAY SEGMENTS IN S$UTIL

OVERVIEW

13-59
13-59
13-7 9
13-79
13-80
13-81
13-81
13-82
13-82
13-83
13-83
13-84
13-84
13-84

14-1

A-1

B-1
B-2
B-12
B-12

C-1

xx iv 2270513-9701

SCI/Utilities Design LIST of TABLES

Table

1-1
2-1
2-2
2-2

2-3
2-3

2-3

2-4
2-4

3-1
3-2
3-3
4-1
4-2
5-1
5-2
6-1
6-2
6-3
6-4
7-1

'7-2
8-1
8-2
9-1
12-1
12-2
12-3
14-1
C-1
C-2
C-3

LIST of TABLES

Title

Acronyms Used in this Manual
Functions of UTCOMN Routines

Names
Names

. . List of Verbs Used in DNOS Command
List of Verbs Used in DNOS Command
(continued) ••••••••

Used as Objects
Used as Objects

. . . List of Nouns and Adjectives
List of Nouns and Adjectives
(continued) ••••••••
List of Nouns and Adjectives
(continued) ••••••••

.
Used as Objects

Command Processors to Change for Internationalizing
Command Processors to Change for Internationalizing
(continued)•.••.•.•.•....
Error Source Indicators
Reserved Message Filenames
Message File Indicators
Task Bid Characteristics
Flag States for)2B SVC Call
E$FLIO Routines Summary

Block

.

CODE Values for Edit Requests
SCU Overlays • • • • • • • • • • • • •
SCU Opcodes • • • • • • • • • • • • • • • • • •
$TYP Values •••••••••••
SCU Commands • • • • • • • • • • • • • • • •
OPERATOR Opcodes • • • • • •
FLAGS Byte of .S$0PER Message
Spooler Parameters •••
Structure of .S$SDTQUE ••••••••••••
Default Options for Move Tasks ••
Debugger General Commands •••••••••••
Debugger Commands for Controlled Tasks
Pascal Debugger Command Summary
Template Acronyms • • • • •
SCI/Utilities Tasks • • • • • • • • • • • • • •
SCI/Utilities Procedure Segments
SCI/Utilities Overliys

2270513-9701 xxv

Page

1-2
2-7
2-13

2-14
2-15

2-16

2-17
2-20

2-21
3-3
3-12
3-13
4-7
4-7
5-16
5-17
6-4
6-17
6-20
6-32
7-25
7-26
8-5
8-7
9-17
12-4
12-5
12-5
14-2
C-2
C-4
c-s

SCI/Utilities Design LIS T o f FIG U RE S

Figure

3-1
3-2
4-1
4-2
5-1
5-2
5-3
5-4
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
8-1
9-1

9-2
10-1
10-2
11-1
B-1
B-2
B-3
B-4
B-5
B-6
B-7

LIST of FIGURES

Title

Sample TEXT File • • • • • • • • • •
Sample EXPTEXT File ••••••••
Call Tree for SCI High-Level Routines •••
AUX2 Data Structure • • • • • • • • ••••
Flow Through E$1ST •••••••••••••••••
Flow Through E$EDIT ••••••••••••••••
TEXT File Format • • • • • • • • • • • • • • •
MOD Fi 1 e Entry • • • • • • • • • • • • • • • • •
SCU Address Space • • • • •••••
Calling Structure for SCU Overlays
Multi-Unit Workspace Structure • • ••••••
Single-Interrupt Decoder Data Structures • • ••
Multiple-Interrupt Decoder Data Structures •••
Expansion Chassis Decoder Data Structures •••
MUX Interrupt Decoder Data Structures •••••
MDC Command Procedure Structure •••••
Spooler Data Structures (Sheet 1 of 4)
CD Logic--Whether to Use Direct Disk I/O (Sheet 1
0 f 2) • • • • • • • • • • • •
Example of Traversing a Hierarchy
Logical Organization of S$CLF
Physical Organization of .S$CLF
Interfaces Between SCI and Control Tasks

. . .

DSEG Position-Dependent Code for S$XMPL ••••••
Address Resolution in Task Segment A ••••••••
Address Resolution in Task Segment B ••••••••
S$XMPL Code for Procedure Segment
S$XMPL Code for Task Segment •
DPI Task Structures ••••
DSEG Structure in S$SYSTEM Routines

.

Page

3-9
3-11
4-13
4-38
5-3
5-3
5-6
5-8
6-3
6-5
6-9
6-11
6-12
6-13
6-14
6-34
8-13

9-8
9-12
10-5
10-6
11-2
B-3
B-4
B-5
B-9
B-10
B-11
B-13

xxvi 2270513-9701

SCI/Utilities Design

SECTION 1

HOW TO USE THE DESIGN DOCUMENT

This manual is a description of the System Command Interpreter
(SCI) and the major DNOS utilities. It is divided into sections
according to subsystem or function. SCI is described first,
followed by a separate section that describes each of the major
utilities. (Not every utility program included in DNOS is
documented in this manual.) For an overview of major utilities,
skim through this document, reading carefully the overview
portion of each section. For details on a particular utility or
module within a utility, consult the detailed diagrams and
discussion that follow the overview.

Section 3 in the DNOS System Design Document details naming
conventions for the DNOS modules. When searching for details
about a particular module, use the module name to determine which
subsystem description is relevant. For details about special
purpose data structures, consult the section on data structure
pictures. Operating system data structures are detailed in the
DNOS System Design Document.

This manual assumes that you are familiar, at the user interface
level, with the subsystems described here. Refer to the System
Command Interpreter (SCI) Reference Manual for details of the
utilities at the user interface level.

The symbol > preceding a character string indicates that the
characters are hexadecimal digits.

The symbol ,<> is used to mean not equal.

Data structure pictures in this document are built directly from
the templates copied into SCI and utilities source code. The
structures are shown with hexadecimal byte counts, special
comments, flags, and diagrams.

Most of the special terms used in this document can be found in
the glossary in the DNOS Concepts and Facilities manual. Other
terms are defined in this document as they are needed. Acronyms
for system structures and routine names are introduced at various
points throughout the manual. If you choose to read a section
from the manual without reading all preceding sections, you may
encounter an acronym without an explanation of its meaning.
Table 1-1 lists most of the acronyms used in the manual. You may
want to refer to this list in conjunction with the glossary for a
complete description of a term.

2270513-9701 1-1 How to Use

How to Use

SCI/Utilities Design

Table 1-1 Acronyms Used in this Manual

Acronym Meaning

ACC
ADR
ADU
BTA
CDR

CMD
CRU
DEL

DOR
DPD
DSR
EOF
EOL

FCB
FDB
FDP
FDR
FIR

IOU
IPC
IPL
IRB
JCA

JSB
KDR
KSB
LDT
LPD

LUNO
MRB
MUW
NCT

PC

PDT
SCA
SCI
scu
SDQ

Accounting record contents
Alias descriptor record
Allocatable disk unit
Buffer table area
Channel descriptor record

Command key
Communications register unit
Descendant error list

Directory overhead record
Disk PDT extension data
Device service routine
End-of-file
End-of-line

File control block
File directory block
File descriptor packet
File descriptor record
File information record

I/O utility task
Interprocess communication
Initial program load
I/O request block
Job communication area

Job status block
Key descriptor record
Keyboard status block
Logical device table
Line printer PDT extension

Logical unit number
Master read/master write buffer
Multi-unit workspace
Name correspondence table
Program Counter

Physical device table
System communication area
System Command Interpreter
System Configuration Utility
Spooler device queue

1-2 2270513-9701

SCI/Utilities Design

Table 1-1 Acronyms Used in this Manual (Continued)

Acronym

SDT
SPM
SSB
STA
TCA

TLF
TSB
TTY
UDR
VDT

2270513-9701

Meaning

Spooler device table
Spooler message format
Segment status block
System table area
Communication area

Terminal local file
Task status block
Teletypewriter
User descriptor record
Video display terminal

1-3/1-4 How to Use

SCI/Utilities Design

SECTION 2

CONVENTIONS AND LIBRARIES

2.1 CONVENTIONS

General coding conventions for DNOS code are discussed in Section
3 of the DNOS System Design Document. Unless noted otherwise in
the specific discussion of the utility programs, these
conventions are followed in all utilities.

Conventions followed in data segment (DSEG) position-independent
routines are discussed in Appendix A of this document.

2.2 S$SYSTEM

S$SYSTEM is a collection of routines used extensively by SCI and
the utilities. S$SYSTEM is a shared procedure segment in the
S$UTIL program file. Each of the routines is DSEG position
independent (see Appendix A). Only the routines that are not
documented in the DNOS Systems Programmer's Guide are covered in
detail in this document.

2.2.1 Routines Documented in Systems Programmer's Guide.

The following S$ routines are discussed in detail in the DNOS
System Programmer's Guide, in the section titled How to Extend
SCI. Refer to that document for further details.

NOTE

S$CMSG AND S$SPLR are not included in the
procedure segment S$SYSTEM. They are,
however, DSEG position-independent code and
are documented in the referenced guide.

2270513-9701 2-1 Conventions and Libraries

Routine

S$BIDT

S$CMSG

S$CLOS

S$GTCA

S$IADD

S$IASC

S$IDIV

S$IMUL

S$INT

S$ISUB

S$MAPS

S$NEW

S$0PN S

S$0PEN

S$PARM

S$SPLR

S$PTCA

S$RTCA

S$SCOM

SCI/Utilities Design

Description

Allows tasks that are normally bid via the .BID or
.QBID primitives to be bid from another task

Creates a message in a specified buffer

Closes the terminal local file (TLF)

Makes the communication area (TCA) available for
use by the caller

Adds two 32-bit integers in two's complement form

Converts a 32-bit binary integer into an ASCII
text string representing that number

Divides a 32-bit integer by another 32-bit integer

Multiplies two 32-bit integers

Converts an ASCII text string that represents an
integer expression into a 32-bit binary value

Subtracts 32-bit integers

Searches the name correspondence table and returns
the value of the specified synonym

Initializes the task's run-time data base for use
by S$ routines

Opens a specified file in the same way S$0PEN does
but has an additional feature: when the Assign
LUNO is performed on the file, a specified user ID
and passcode are used for security purposes.

Opens the terminal local file, or a specified
file, for write access

Returns a parameter in the TCA

Submits a print request from the user's task

Saves synonym values in the TCA

Releases the TCA

Compares two
arithmetic
register

strings
greater

and
than

sets
bits

the
of

equal ·and
the status

Conventions and Libraries 2-2 2270513-9701

SCI/Utilities Design

Routine

S$SCPY

S$SETS

S$SNCT

S$SPLT

S$STAT

S$STOP

S$TAD

S$TERM

S$WEOL

S$WRIT

Description

Copies the specified string into a specified
buffer

Defines or redefines a synonym in the
correspondence table

name

Searches the name correspondence table for the
synonym that is the immediate successor or
predecessor of the specified character string

Separates elements of a list and returns the first
element and the remainder of the list separately

Returns the status of the terminal from which the
command processor was activated

Terminates a command processor and returns to SCI
(does not terminate SCI)

Returns time and date information maintained by
DNOS (ASCII format)

Sets the termination synonyms and terminates the
calling task

Terminates the current line and writes it to the
TLF

Writes a specified text string to the TLF

The remaining routines discussed in this section are not
calling documented in the DNOS Systems Programmer's Guide. The

sequences are documented in the code.

2.2.2 S$FMT.

S$FMT formats the interactive screen with the full name of the
command procedure, and the names and any associated values of
field prompts. When S$FMT is called, the SCI variable KWBUFW
contains the length of the longest field prompt name. This value
allows S$FMT to left-justify the prompts and allow the maximum
number of columns to the right of the prompt names.

S$FMT checks for video display terminal/teletypewriter (VDT/TTY)
mode and writes to the terminal accordingly.

2270513-9701 2-3 Conventions and Libraries

I

SCI/Utilities Design

2.2.3 S$GKEY.

This routine is called with an integer value that represents the
position of the field prompt whose value is currently expected to
be entered by the user. S$GKEY accepts a new value for any field
prompt at or prior to this position on the screen. The values
are not verified by S$GKEY. Pointers to the values are stored in
the SCI table VALTBL.

Note that the Up Arrow keystroke is processed by S$GKEY. The
user is allowed to change values of previously defined field
prompts. Any keystroke that moves the cursor to a lower line
causes S$GKEY to return to the caller.

2.2.4 S$KEY.

S$KEY sets
approximately
it is known
approximately

a name/value pair in the NCT. It does not delete
matching names. This routine is called only when
that no name resides in the NCT that matches or

matches the name being stored.

2.2.5 S$MAPK.

This routine interfaces with the Name Manager to obtain the value
of any field prompts stored at the current command procedure
nesting that approximately match the character string passed to
S$MAPK. S$MAPK builds a structure of the following format:

<OO><runID><depth level><x><FF>

where x is calculated as follows: Subtract one from the binary
number that is the ASCII representation of the first character of
the string passed to S$MAPK. Call this structure ARGUMENT.
Since the name correspondence table (NCT) is in alphabetic order,
ARGUMENT is the last entry that can precede the first name in NCT
that approximately matches the character string passed to S$MAPK
(that is, a name consisting of only the first character).

The following loop is executed:

1. A supervisor call (SVC), is issued to the Name Manager
requesting the name/value pair immediately following
ARGUMENT.

2. If the Name Manager returns a name that does not
exactly match the first six characters of ARGUMENT, the
partition of names available to the caller has been
exceeded without finding a match. Return a null value
to the caller.

Conventions and Libraries 2-4 2270513-9701

SCI/Utilities Design

3. If the name returned satisfies the approximate matching
algorithm when paired with the input character string,
then return the value to the caller.

4. Set ARGUMENT to the name that did not approximately
match and go to step 1.

By appending the run ID and and depth level to the name, a
partition within the NCT is created. Only name and value pairs
stored at one depth level are available to command procedures and
programs.

2.2.6 S$0PN.

S$0PN is the same as S$0PEN. This alternate label for the entry
point exists for historical reasons only.

2. 2. 7 S $0 PN X.

This routine forces an open extend of the specified file. Open
extend positions the file at the end-of-file (EOF) after it is
opened. S$0PNX has the same interface as S$0PEN.

2.2.8 S$PKEY.

S$PKEY writes a message on the command line of the interactive
terminal and waits for a reply.

2.2.9 S$PNCT.

S$PNCT purges the NCT. It calls the Name Manager to delete all
name/value pairs that start with the specified character string.

2.2.10 S$RIT.

S$RIT issues an SVC to read information from an interactive
terminal.

2.2.11 S$SETK.

S$SETK sets a name/value pair and deletes all names in the NCT,
that approximately match the name being set.

2270513-9701 2-5 Conventions and Libraries

I

I

SCI/Utilities Design

2.2.12 S$WAIT.

S$WAIT is called by RBID tasks that must be suspended. The
calling sequence is the same as for S$TERM. Termination synonyms
are set and control is returned to SCI. The calling task is not
terminated.

The logic of routine S$WAIT is described in the following
metacode:

Set Termination Synonyms;
$$RBID:Y;
Close the TLF;
Issue Activate Suspended Task SVC (>07) for parent task (SCI);
Issue Uncondition~l Suspend SVC (>06) for calling task;

**
* SCI (or another task it bids) executes until SCI issues *
* an Activate Suspended Task SVC for this task. *
**

Open the TLF;
Get CODE from call block parameters;
IF $$RBID is non-null

THEN Return the error (CODE) to the user;
END;

2. 2. 1 3 S $WIT.

S$WIT issues an SVC to write a specified buffer of text to an
interactive terminal.

2. 3 UT COM N

UTCOMN is a library of g~neral-purpose routines used by the
utility programs. The routines are written in either Pascal or
assembly language. Table 2-1 lists the routines and their
functions. The interface routines used by the DNOS error
handling system are documented in greater detail in the following
paragraphs.

Conventions and Libraries 2-6 2270513-9701

SCI/Utilities Design

Module/
Routine

UTACNM

UTCHEK

UT CM PS

UTCVDT

UT EA CT

UT EXIT

UTGJOB

UTLLWT

UTLMSG

UTLOGN

UTLWRT

UTMTBL

UT POP

2270513-9701

Table 2-1 Functions of UTCOMN Routines

Description

Builds the name of the channel or file
the input file description packet
assigned. Callable by Pascal code.

to which
(FDP) is

Checks for errors returned from R$ routines. If
there is an error, reports it through UTPUER.
Otherwise, returns to the caller.

Compares two character strings.

Converts time and date block to one of the
following formats:

HR:MIN:SEC: WEEKDAY, MONTH DAY, YEAR

HR:MIN:SEC:

Collects end-action data and reports it through
S$TERM

A command exit path used by MRFSRF (the processor
for Map and Show Relative to File) and LLR (the
processor for List Logical Record)

(Al so UTGTSB, UTTINT, UTJINT, UTTHIS) Transverses
a job status block (JSB) list or task status block
(TSB) list in the running system. Callable only
by programs that are hardware-privileged and
system tasks

Calls S$WRIT and S$WEOL to write the specified
buffer to the listing file

Issues an SVC to put a message to the system log
file

Resolves the input pathname, which may be a
logical name

Writes the message buffer (assumed to be prepared
by S$CMSG) to the listing file

Moves tables for the directory sort package

Restores as many as nine registers on exit from a
module.

2-7 Conventions and Libraries

SCI/Utilities Design

Table 2-1 Functions of UTCOMN Routines (Continued)

Module/
Routine

UT PS ER

UT PT CH

UTPUER

UT PUSH

'· UTR$ST

UTSERR

UTSORT

UTUERR

UTVERS

Description

Pascal interface to call UTSERR

Patch space

Pascal interface to call UTUERR

Saves as many as nine registers on entry to a
module

Module containing entry points for the following
four S$ routines that are used by Pascal tasks
that run in the system job:

* S$STOP Allows tailored cleanup
processing. If a
exists, it is called
SVC to terminate the

routine named CLNUP
via BLWP before the
task is issued.

* S$GTCA - Dummy entry point equated to
S$STOP

* S$PARM - Dummy entry point equated to
S$STOP

* S$INT Dummy entry point equated to
S$STOP

Re ports SVC errors through S$TERM

Module containing callable routines to sort
directory entries. The entry point is SORT.

Re ports non-SVC errors through S$TERM

Carries version information for use by IPL

2. 3. 1 UTUERR and UTSERR.

The common routines UTUERR and UTSERR are used by system
utilities to do commonly needed processing of utility errors and
SVC errors, respectively.

Conventions and Libraries 2-8 2270513-9701

SCI/Utilities Design

UTSERR is called when an SVC error occurs and the utility is to
exit through S$TERM. UTSERR can be used to set up registers for
and make the call to S$TERM. The interface to UTSERR is as
follows:

where:

BLWP @UTSERR
BYTE Ra,Rb

Ra is a register containing the condition code.
Rb is a register containing a call block pointer.

NOTE

If the SVC is an I/0 SVC, the logic~l unit
number (LUNO) must not be released before the
call to UTSERR completes.

UTUERR is called when an error message is needed from the UTILITY
file of the S$MSG directory. UTUERR makes the appropriate call
to S$TERM. The interface to UTUERR is as follows:

where:

BLWP @UTUERR
BYTE Ra,Rb

RO contains the internal message number.
Ra is a register containing the condition code.
Rb is a register containing a pointer to variable

text (0 if none).

If the internal message number supplied to UTUERR is less than
>8000, it is treated as an SVC error. Some of the S$ routines
return SVC error codes directly without translation. In this
case, UTUERR changes the file indicator and passes a call block
pointer.

To terminate normally with $$CC set to zero, a system utility
clears RO, and executes a BLWP to UTUERR using BYTE RO,RO.

2270513-9701 2-9 Conventions and Libraries

I
r

2.3.2 UTPUER.

Routines
UTUERR.

written in Pascal may call
The declaration for UTPUER is as

SCI/Utilities Design

UTPUER to interface to
follows:

UTPUER(P1:INTEGER;P2:INTEGER;P3:STRING);

where:

P1 is the internal message number.
P2 is the condition code.
P3 is a pointer to a variable text string (0 if none).

The string passed to UTPUER is a Pascal string with two byte
counts. The first byte count is the maximum size of the string
and the second is the actual size of the string.

2.3.3 UTEACT.

A common end-action routine, UTEACT is provided for system
utilities. For utilities that require no cleanup of their own,
UTEACT can be specified as the end-action routine address. If
cleanup is needed, the utility can do so in its own end-action
routine and then branch to the common routine via the following
instruction:

B @UTEACT

2.4 USE OF .RBID

The .RBID primitive is used to synchronize alternating execution
between SCI and a f6reground task. A number of utilities make
use of .RBID to alternate execution with SCI. These include the
operator interface, the system configuration utility, the text
editor, and XANAL. The syntax of .RBID is as follows:

.RBID TASK:INT/NAME,[PARMS:{STRING ••• STRING)],[CODE:INT]

The TASK parameter is the installed ID or name of a task on the
utility program file (S$UTIL) which is to be bid through .RBID.
The optional PARMS parameter is a character string list which is
passed to the task each time it is activated. The CODE
parameter, which is optional, is an integer value between zero
through 255 that the task being bid may access via S$STAT.

For each task that is bid through .RBID, SCI makes an entry into
the RBID active table. This table keeps a correspondence of
installed IDs to runtime IDs. If the ID of the task bid by .RBID

Conventions and Libraries 2-10 2270513-9701

SCI/Utilities Design

is not in this table, SCI assumes it is an initial bid of the
task. If the ID is found in the table, a resume is done for the
corresponding runtime ID.

The following is an example of a command procedure that uses the
.RBID primitive:

. PROC

.SYN

.SYN

.SYN

EX(EXAMPLE PROC):O,
INPUT PATHNAME:ACNM("@EXIP"),
OUTPUT PATHNAME(S):(ACNM),
PRINT THE FILE?:ELEMENT(Y,N)(NO)
EXIP:"&INPUT PATHNAME"
EX0P:"&0UTPUT PATHNAME"
EXP: 11 &PRINT"
.RBID TASK:>43,PARMS:("@EXIP 11 ,"@EX0P","@EXP")

.EOP

See the documentation on S$WAIT, the routine called by an RBID
task to return to SCI.

2.5 NAMING STANDARDS

Names for utility commands, for their prompts, and for synonyms
must be chosen carefully so that they are meaningful to the user
and consistent with other names already in use. The following
paragraphs provide guidelines for naming.

2.5.1 Command Naming Standards.

Commands are named by concatenating the first letter of a verb
with the first letter of an object. The verb and object are
chosen to describe the command, give a unique name, and blend in
with the style of the other commands in the system to maintain a
consistent user interface. The verb may be compounded of more
than one word, and the object may be compounded of nouns and
adjectives. A list of verbs in use is found in Table 2-2, and a
list of nouns and adjectives in use is found in Table 2-3. There
are a very few exceptions to the first letter rule. One is X for
Execute, and another is RW for Rewind. Variants of commands are
indicated by a tag letter or part of word. Create File, for
example, has six variants: CFSEQ, CFREL, CFKEY, CFIMG, CFPRO,
and CFDIR. Two variants of Execute COBOL Compiler exist: XCC
and XCCF, the tagged variant meaning to execute in foreground.

2270513-9701 2-11 Conventions and Libraries

SCI/Utilities Design

Commands must not be named using words with the same first letter
that have conflicting meanings. For example, the verb Cancel (C)
cannot be used because of conflicts with the current usage of C
(Create, Copy, COBOL, etc.). The goal is to avoid human-oriented
conflicts in meanings. For example, Create and Copy do not
conflict in meanings, as do Create and Cancel. Two words with
the same meaning should never be used. In the case of two words
with the same first letter, uniqueness should be obtained with
compound objects rather than compound verbs wherever possible,
such as CIC (Create !PC Channel). Copy/Concatenate, which has a
compound verb and no object, was one of the commands for which
there was no clean alternative to using a compound verb. It also
has no object.

Conventions and Libraries 2-12 2270513-9701

SCI/Utilities Design

Table 2-2 List of Verbs Used in DNOS Command Names

VERB LETTER

ACTIVATE A
ADD A
ANALYZE A
ANSWER A
APPEND A
ASSEMBLE A
ASSIGN A
BACKSPACE B
BACKUP B
BEGIN B
BUILD B
CALL c
CHECK CK
CLEAR c
CONCATENATE c
COPY c
COUNT c
CREATE c
DELETE D
DISPLAY D
END E
FIND F
FORWARD SPACE F
HALT H
INITIALIZE I
INSERT I
INSTALL I
KILL K
LIST L
MAP M
MODIFY M
MOVE M
PATCH p

PRINT p

PROCEED p

QUIT Q
READ R
RECEIVE R
RECOVER R
RELEASE R
REPLACE R
RESET R
RESPOND R
RESTORE R

2270513-9701 2-13 Conventions and Libraries

SCI/Utilities Design

Table 2-2 List of Verbs Used in DNOS Command Names (continued)

VERB

RESUME
REWIND
SAVE
SET
SCAN
SHOW
SIMULATE
SNAPSHOT
START
SUSPEND
TEST
TRANSFER
UNLOAD
UNLOCK
VERIFY
WAIT
WRITE
EXECUTE

Conventions and Libraries 2-14

LETTER

R
RW
sv
s
s
s
s
s
s
s
T
T
u
u
v
WAIT
w
x

2270513-9701

SCI/Utilities Design

Table 2-3 List of Nouns and Adjectives Used as Objects

2270513-9701

NOUNS and ADJECTIVES

ABSOLUTE
ACCESS
ALIAS
ALL LOGICAL UNITS
ALLOCATABLE DISK UNIT
ANALYZER
ASSEMBLER
ATTRIBUTE
CRASH ANALYSIS UTILITY
BACKGROUND
BACKUP
BATCH
BREAKPOINT(S)
BYTE
CHANNEL
COMMAND DEFINITION TABLE
COMPILER
COMPLETE
CONFIGURATION
CONFIGURATION UTILITY
CONSISTENCY
CONTENTS OF SPECIFIED

CRU REGISTER
CONVERSION
COPY
COUNT
COUNTRY CODE
DATE and TIME
DEBUG/DEBUGGER
DEFINITIONS
DEVICE
DEVICE CONFIGURATION
DIRECTORY
DISK/DISKETTE
EDIT/EDITOR/TEXT EDITOR
END
END OF FILE
ENTRY
ERROR
EXE CUT ION
EXPANDED
FILE (S)
FOREGROUND

2-15

LETTER

A
A
A
AL
ADU
AN
A
A
ANAL
B
B
B/BATCH
B
B
c
CDT
c
c
c
cu
c

CRU
c
c
c
cc
DT
D
D
D
DC
D/DIR
D
E
E
EOF
E
E
E
E
F
F

Conventions and Libraries

SCI/Utilities Design

Table 2-3 List of Nouns and Adjectives Used as Objects (continued)

NOUNS and ADJECTIVES

GENERATED/GENERATION
GLOBAL LUNO
GROUP
HORIZONTAL
I/0
IBM
IMAGE
INFORMATION
INTERFACE
INTERNAL
IPC
JOB (S)
KEY INDEXED FILE/KIF
LINE(S)
LINK EDITOR
LOG/LOGGING
LOGICAL
LUNO
MACRO
MARGIN
MEDIA
MEMBERS
MEMORY
MESSAGE (S)
MODE
MONITOR
MULTIFILE
NAME (S)
NEW
OPERATOR
OUT PUT
OVERLAY
PANEL
PASCAL
PASSCODE
PATCH
PATHNAME
PERFORMANCE DISPLAY
PRIORITY
PROCEDURE
PROCESSOR
PROGRAM
PROTECTION

Conventions and Libraries 2-16

LETTER

G
GL

H
I
IBM
I/IMG
I
I
I
I
J
K/KF
L
LE
L
L
L
M
M
M
M
M
M/MSG
M
M
M
N
N
0
0
0
p
p

PC
p
p
PD
p
p
p

P/PRO
p

2270513-9701

SCI/Utilities Design

Table 2-3 List of Nouns and Adjectives Used as Objects (continued)

2270513-9701

NOUNS and ADJECTIVES

RANDOMLY
REAL TIME/REAL-TIME
RECORD
REGISTER (S)
RELATIVE
RELATIVE RECORD
REQUEST
REVERSE
RIGHT MARGIN
RIGHTS
ROLL
SCALING
SCHEDULER/SWAP

PARAMETERS
SCI
SECURITY
SEGMENT
SEQUENTIAL
SESSION
SET
SIMULATED
SOFTWARE CONFIGURATION
SPOOLER
STACK
STATE
STATUS
STRING
SURFACE
SYNONYM (S)
SYSTEM
SYSTEM TABLE SIZES
TABS
TASK
TERMINAL
TRACK
UTILITY
USER ID (S)
VALUE
VOLUME
WORD
WORKSPACE

2-17

LETTER

R
R
R
R
R
REL
R
R
RM
R
R
s

SP
s
s
s
S/SEQ
s
s
s
SC
s
s
s
s
s
s
s
s
ST
T
T
T
T
U/UTL
UI
v
v
w
w

Conventions and Libraries

SCI/Utilities Design

2.5.2 Prompt Naming Standards.

The standards for field prompts for commands are that the total
number of prompts be minimized and that they be descriptive. For
example, if a command requires the runtime ID of a task, the
prompt RUN ID should be chosen, because that prompt is in use
throughout the command set, and has the required meaning. New
prompts should be carefully chosen and universally used.

The use of the phrases ACCESS NAME, PATHNAME, and FILE NAME are
also rigorously defined. The definitions are the following:

* PATHNAME or FILE NAME means specifically a disk file.
The use of PATHNAME is maintained for compatibility with
older software. FILE NAME is the preferred usage.

* ACCESS NAME means a disk file or any other I/0 resource.

The phrases LISTING and OUTPUT are chosen with
particular connotation in mind. A LISTING is a report to be
viewed by a person, and not be used by another program. Thus,
Map Disk produces a LISTING, while Copy/Concatenate produces
OUTPUT. The primary intent of the output of the- utility should
be considered in determining if it is a LISTING or OUTPUT. For
example, the fact that programs have been written to process the
listing file of the List Directory command should not be cause to
call its list OUTPUT.

2.5.3 Naming Synonyms and Logical Names.

Synonyms and logical names used by DNOS utilities should be
readily recognized as such. In general, these names are formed
using the format XY, where Xis the command name and Y is a
meaningful abbreviation for the synonym or logical name. The
initial $ identifies the synonym as one in use by a DNOS utility.
For example, MDCDEV might be a synonym for a device name prompt
used by the Modify Device Configuration (MDC) command.

2.6 Internationalizing The DNOS Utilities

DNOS is designed to meet the international requirements of the
United States as well as most Western European countries and
Japan. There are certain SCI commands which may be modified, if
so desired, to better fill the needs of the users of a particular
country. For instance, the prompts that are displayed when a SCI
command begins execution may be modified to be displayed in the
user's own language.

Conventions and Libraries 2-18 2270513-9701

SCI/Utilities Design

To assist internationalization, the DNOS utilities are written to
make use of the file based messages as much as possible. In
cases where the files are not practical, messages are maintained
in a single module for the particular utility. These modules
need to be changed as do all the message files. One of the
routines used to access the messages files has a message that
also needs to be translated; this module is .S$.SOURCE.S$CMSG.

For those commands that have a module with message text,
modifications need to be done to the command processor. Table
2-4 lists the SCI commands that may be modified for this purpose.
In addition, the IFSVC processor and the SCI module that executes 1 .SVC also need to have message modules changed.

2270513-9701 2-19 Conventions and Libraries

SCI/Utilities Design

Table 2-4 Command Processors to Change for Internationalizing

Command

BD
BDD
CD
CKD
CKR

CRV
CSM
CV
CVD
DCOPY
DD
HT
IBMUTL
IDS
IO
IP
IPS
IRT
IT
LAG
LAGFR
LB
LBP
LD
LDC
LHPC

LJ
LLN
LLR
LM
LOM
LPS
LSAR
LSB
LSM
MAD
MADU
MD
MDC
MKF
MM
MOE
MPE
MPF

Full Command Name

Backup Directory
Backup Directory to Device
Copy Directory
Check Disk for Consistency
Copy Key Indexed File to Sequential
File Randomly

Check and Reset Volume
Copy Sequential Media
Copy Volume
Copy and Verify Disk
Disk Copy
Delete Directory
Halt Task
IBM Diskette Conversion Utility
Initialize Disk Surface
Inst a 11 Over 1 a y
Install Procedure
Install Procedure Segment
Install Real-Time Task
Install Task
List Access Groups
List Access Groups File Rights
List Breakpoints
List Breakpoints-PASCAL
List Directory
List Device Configuration
List Hardcopy Terminal Port
Characteristics

List Jobs
List Logical Names
List Logical Record
List Memory
List Operator Messages
List Pascal Stack
List Security Access Rights
List Simulated Breakpoints
List System Memory
Modify Absolute Disk
Modify Allocable Disk Unit
Map Disk
Modify Device Configuration
Map Key Indexed File
Modify Memory
Mo~ify Overlay Entry
Modify Procedure Entry
Map Program File

Conventions and Libraries 2-20 2270513-9701

SCI/Utilities Design

Table 2-4 Command Processors to Change for Internationalizing (continued)

2270513-9701

Command

MP!
MRF
MS
MSE
MSM
MTE
MVI
RCRU

RD
SAD
SADU
scs
SD
SOT
SIR
SJS
SMM
SMS
SP
SP!
SPS
SRF
STS
svs
SWR
VB
vc
XJM
XPD
xscu
XSGU

Full Command Name

Modify Program Image
Modify Relative to File
Modify Synonym
Modify Segment Entry
Modify System Memory
Modify Task Entry
Modify Volume Information
Read Contents of Specified

CRU Address
Restore Directory
Show Absolute Disk
Show Allocable Disk Unit
Show Channel Status
Scan Disk
Show Date and Time
Show Internal Registers
Show Job Status
Show Memory Map
Show memory Status
Show Panel
Show Program Image
Show Pascal Stack
Show Relative to File
Show Task Status
Show Volume Status
Show Workspace Registers
Verify Backup of Directory
Verify Copy of Directory
Execute Job Monitor
Execute Performance Display
Execute System Configuration Utility
Execute System Generation Utility

2-21/2-22 Conventions and Libraries

SCI/Utilities Design

SECTION 3

ERROR AND STATUS MESSAGE-HANDLING

3. 1 OVERVIEW OF THE DNOS MESSAGE-HANDLING SYSTEM

The message-handling system of DNOS involves several sets of
message files, utilities to build message files, and routines to
construct messages for display to the user. Users who are
migrating from DX10 to DNOS should modify utilities to use the
DNOS message system for consistency of user interface.

Since the user's interface with DNOS is SCI, the burden of
displaying messages to the user lies with SCI. Each of the
utilities and support functions generates messages using the same
SCI interface, and SCI displays messages to the user. All DNOS
utilities that encounter the same condition produce the same
message.

Source code is independent of the file structure or message IDs.
This allows changing of the message file (deleting, adding, or
rearranging message without source code changes.

The DNOS message facility is designed for consistent handling of
error and completion messages from all sources, and for ease of
internationalization. To attain these design goals, all DNOS
language processors and utilities use error messages and
termination messages from standard files, call the routine S$TERM
to report errors and terminate processing, and isolate the text
of all internal messages to a single module.

3.2 SCI INTERFACE FOR MESSAGE HANDLING

The following SCI interface routines and common utility modules
are defined for the DNOS message-handling facility:

* S$TERM is used to pass along a message upon task
termination.

* S$CMSG is used during processing to format a message to
be output from a utility.

* The common modules UTCOMN.SOURCE.UTUERR and
UTCOMN.SOURCE,UTSERR are linked with various utilities
that use messages in the UTILITY or SVC files.

2270513-9701 3-1 Error Processing

SCI/Utilities Design

* UTCOMN.SOURCE.UTPSER is the Pascal-callable interface
routine for UTSERR.

* UTCOMN.SOURCE.UTPUER is the Pascal-callable interface
routine for UTUERR.

* UTCOMN.SOURCE.UTEACT is used by utility tasks that use
common end-action processing.

S$TERM and S$CMSG are documented in the DNOS Systems
Programmer's Guide. The UTCOMN routines are documented in the
Conventions and Libraries section of this manual.

3.3 THE USE OF $$CC

The synonym $$CC is used to report a completion code. Since the
severity of an error depends on the environment in which it
occurs, the utility writer decides the degree of severity to
report for each error condition that arises. The appropriate
value is placed into a register before calling UTSERR or UTUERR.
Usually, values of >OOOO, >4000, or >8000 are set. Some
utilities, such as the Link Editor, count warnings or errors and
provide that count in the last three digits. Only UTEACT sets
$$CC to >COOO under normal circumstances.

The conventional meanings used for the $$CC codes are as follows:

* COOO fatal An error which causes the utility to
terminate processing of a request without successfully
completing the request

* 8000 nonfatal - An error which causes the utility to
omit some part of its usual processing or in some other
way complete the user's request without doing the entire
operation which the user expects.

* 4000 - warning - A condition has arisen that may or may
not cause results to be complete. The user needs to
check the output of the utility.

* 0000 - Successful completion.

3.4 MESSAGE CONTENTS

The displayed message has the following format:

Error Processing 3-2 2270513-9701

SCI/Utilities Design

SOURCE CATEGORY-ID MESSAGE (ADDITIONAL TEXT)

where:

SOURCE is a one- to three-character error source
indicator.

CATEGORY is the one- to eight-character name of the DNOS
subsystem that generates the error.

ID is an alphanumeric string.

MESSAGE is the text of the message.

ADDITIONAL
TEXT

is additional text and may be blank. This
field is used by SCI to report errors in command
procedures. The format of the additional text is as
follows:

Command procedure name; line number

The combined parts of a message are displayed to the user by the
show expanded message (SEM) utility or by SCI when an error has
occurred or when some informative message must be displayed. If
the command being processed was executed interactively, the
message appears on the screen. If the command was executed from
a batch stream, the message appears in the batch listing file.
If more than one line is required for the message, text is
continued on the next line or lines, beginning in the same column
as the text of the first line. Margins are set by S$CMSG.

3.4. 1 Source Indicator.

The source indicator is one of the character combinations shown
in Table 3-1.

Table 3-1

Indicator

2270513-9701

I
w
u
s
H
us
UH
SH
USH

Error Source Indicators

Meaning

Informative message
Warning message
User error
System error
Hardware error
User or system error
User or hardware error
System or hardware error
User, system, or hardware error

3-3 Error Processing

. i

I

SCI/Utilities Design

3.4.2 Category-ID.

The category of a message is a string of from one to eight
characters, such as SVC or LINKER. The category identifies the
DNOS subsystem that generated the message.

The message identifier (ID) provides an index into the DNOS
Messages and Codes Reference Manual. Internally, this identifier
is a key for the key indexed file of expanded messages used by
the Show Expanded Message (SEM) command procedure that displays
additional information about a particular message.

3.4.3 Message.

The text of the message consists of fixed explanatory information
and optional variable text.

3. 4. 3. 1 Fixed Information.

Fixed information resides in a message file. The length of this
file-resident portion of the message may be as many as 238
characters, and may include any character except the question
mark. The question mark is used as a position marker which is
replaced by variable text when the message is processed. Each
question mark is followed by a decimal digit from 1 to 9 or an
upper case C. The digits 1 to 9 show which variable text element
replaces the question mark. (This allows translations of
messages to rearrange the variable text within the fixed text of
the message.) The upper case C indicates that the remainder of
the current line of the message is to be blank-filled, i.e. the
C is an effective carriage return, line feed sequence.

3.4.3.2 Variable Text.

Variable text is that part of the displayed message that is not
the same each time the message is output. It is determined by
the utility that generates the message, and is supplied to SCI
along with an identifier of the message file. The variable text
is passed to S$CMSG by the calling task in a buffer, with the
length in the first byte of the b~ffer.

The length of an element of variable text may be null, or it may
be as many as 235 characters, including variable text delimiters.
In a 255-byte buffer for Name Management requests, 20 bytes are
reserved for system data.

Error Processing 3-4 2270513-9701

SCI/Utilities Design

The semicolon is not a valid variable text character. It is used
as a delimiter between elements of variable text. Two
consecutive semicolons represent a null variable text element.
Variable text may include a pathname, a LUNO, an opcode, or other
run-time information.

When a question mark is found in the fixed text, variable text is
inserted into the buffer containing a copy of the fixed text. If
the specified variable text element is null, the question mark is
output without the associated digit. A variable text element
that is not referenced in the fixed text is not displayed.

3.4.4 Additional Text.

When additional text appears in the message, the character string
passed to S$CMSG by the utility generates the message. In the
sense that it is determined at run time, it is variable text, but
there is no processing of additional text. The character string
is appended to the message constructed from fixed and variable
text.

The maximum number of characters of additional text is 255.

3.4.5 Translation Of I/0 Errors Encountered By SVCs.

Special handling is performed for the message generated when an
SVC passes back an I/0 error. When this case is encountered, the
message text corresponding to the I/0 error is also displayed.
For example, the message generated when I/0 error 0001 is
encountered during an Install Task SVC appears as:

USH SVC-0010 THE FOLLOWING I/0 ERROR {INTERNAL CODE 0001) WAS
ENCOUNTERED DURING SVC 25:
U SVC-0118 LUNO ? NOT ASSIGNED FOR I/0 SUB-OPCODE ?

If the user enters a "?" following a display of the message, the
expanded test for the I/0 error will be shown. Since variable
text for the I/0 message is not available when the message is
processed, question marks appear in the I/0 portion of the
message.

3.4.6 Abbreviated Forms.

If the files containing the fixed portion of the message text are
not on the system disk, an abbreviated form of the message is
displayed. It contains only the category, an internal message
number, and any variable text that would normally have been
included with the fixed text. The following examples illustrate
both cases.

2270513-9701 3-5 Error Processing

SCI/Utilities Design

Assume the fixed portion of the message text for an SVC error
with internal number >0027 is the following: 0315 ?1 DOES NOT
EXIST. Assigning a LUNO to a nonexistent file .PRINT.OUT
produces an error message as follows:

U SVC-0315 .PRINT.OUT DOES NOT EXIST

This message appears as shown if the variable text has the value
.PRINT.OUT preceded by the byte count of 10.

On a system without a fixed text file, the same message appears
as follows:

SVC-INTERNAL CODE >0027 .PRINT.OUT

Suppose that a COBOL program compiles correctly and informs the
user of the results. The internal message number might be >9010
and the message C06 ?1 COMPILED WITH ?2 ERRORS might be in a
message file named COBOL. The displayed message appears as
follows:

I COBOL-C06 .SOURCE COMPILED WITH 0 ERRORS

Without the fixed text file, it appears as follows:

COBOL-INTERNAL CODE >9010 .SOURCE;O

The variable text in this case is made up of two items, the input
file pathname and the number of errors the COBOL compiler
discovered. The variable text buffer is as follows:

9.SOURCE;O

where 9 is binary data indicating the length of the text string
that follows.

If the utility specifies an internal message number that does not
exist (for example, SVC returns >8111), the message output form
is as follows:

SVC-UNDOCUMENTED ERROR - INTERNAL CODE >8111

3.5 MESSAGE FILES

Message files are maintained on the system disk to provide the
fixed text portion of the messages used by SCI, the languages,
and utilities. Four directories of message files are used to
build and support the DNOS message facility. In the descriptions

Error Processing 3-6 2270513-9701

SCI/Utilities Design

below, MESSAGES represents the volume ID of the disk that
contains the DNOS source/object kit shipped by Texas Instruments
Incorporated. The directories of message files are as follows:

* The MESSAGES.TEXT directory of the DNOS source directory
contains the files of error and status messages in text
editable form. There is a separate file for each of the
language processors, SCI, SVC processors, and the major
utilities.

* The .S$MSG directory contains
MESSAGES.TEXT, in the format used
system and SCI.

the
by

information in
the operating

* The MESSAGES.EXPTEXT directory contains expanded
explanations of the errors documented in the TEXT files.
The files in this directory are in text-editable form.

* The .S$EXPMSG directory contains the information in the
MESSAGES. EXPTEXT in the format used by the operating
system and SCI.

Corresponding entries in the various directories have the same
leaf node names. The filename SVC appears in each of the four
directories MESSAGES.TEXT, MESSAGES.EXPTEXT, .S$MSG, and
.S$EXPMSG, as the file of errors detected for system SVCs.

Compiler messages that appear in listings are not placed in the
files; messages are centralized into one module for the compiler.
Run-time error messages generally are placed into the message
files. Programmers in all environments using DNOS are expected
to understand English messages, but end users may not know
English. Therefore, any messages displayed to end users must be
easily internationalized.

All messages for a particular compiler or utility must be placed
into a single file, though there may be separate files for
compilers and for run-time support.

3.5. 1 Details of the TEXT Files.

The TEXT message files (DNOS as well as user-defined) are
editable, blank-suppressed, sequential files with a logical
record length of 80 bytes. A blank line is the entry delimiter.

Record one contains the internal message number limits for the
file and local language characters for the error source.

2270513-9701 3-7 Error Processing

SCI/Utilities Design

Each file in the TEXT directo~y has the following format:

* The lowest and highest internal message numbers are
'ASCII representations of the hexadecimal numbers, and
are in columns 1 through 4, and 6 through 9,
respectively.

* The abbreviation characters in the local language are in
columns 11 through 15, in the following order:

User error (U)

System error (S)

Hardware error (H)

Warning (W)

Informative (I)

The remaining records of the file contain error messages in the
following format:

* First line:

Error source indicator (U, S, H, US, UH, USH, I,
or W)

One or more blanks

One or more four-digit hexadecimal internal
message numbers, separated by commas and enclosed
in parentheses)

Optional comments. They are not output with the
message.

* Following Line(s). The message for this entry starts in
column 1 of the next line and can be up to three lines
long. This provides a maximum of 240 characters for the
fixed-text portion of a message. If a message
identifier is to be seen by the user, it must appear in
the message.

* A blank line

A TEXT file message may contain any displayable characters with
the exception of the question mark. A question mark and its
associated digit are replaced with variable text when the message
is processed. The question mark and digit pair may be embedded
between any two valid message characters. Similarly, the ?C may
be embedded between any two valid message characters.

Error Processing 3-8 2270513-9701

SCI/Utilities Design

Figure 3-1 shows a TEXT file consisting of three messages for
five different internal conditions.

1000 10FF USHWI

u
FL01

(1000) MESSAGE OCCURS OFTEN WITH UNPRINTABLE NAMES

u
FL02

FILE ?1 ALREADY PURGED

(1004, 1014, 1024) THIS COMMENT IS NOT OUTPUT.
KEY INDEXED FILE SUPPORT NOT AVAILABLE

(1OF0) u
FN02 INSUFFICIENT BUFFER SPACE ALLOCATED IN USER TASK

Figure 3-1 Sample TEXT File

Assume that this file is in the S$MSG directory as a
TESTER. A message generated for internal error code
displayed as follows:

file named
>1014 is

U TESTER-FL02 KEY INDEXED FILE SUPPORT NOT AVAILABLE

Message files in the TEXT directory built by Texas Instruments
Incorporated have messages in uppercase English.

The internal message numbers used within one file are independent
of those used in another file. The user is free to choose any
value when building a message file. It is recommended that the
internal message numbers be contiguous in order to minimize file
space used. The S$MSG file built from the TEXT file includes an
index that is a continuous sequential table of internal message
numbers and their corresponding record numbers in the S$MSG file.

If you use message files, you may want to create a companion
equate file for each TEXT file of messages in use. Programs can
then assemble, compile, or link with the equates module and refer
to specific errors by their equated label rather than by·hard
coded internal message number.

3.5.2 Details of the EXPTEXT Files.

For each TEXT file created by Texas Instruments Incorporated,
there is a companion expanded explanation file in the directory
MESSAGES.EXPTEXT. Files in the EXPTEXT directory are text
editable sequential files with a logical record length of 80
bytes. These files include the "Explanation:" and "User Action:"
portions of the messages that appear in the DNOS Messages and
Codes Reference Manual and in the information provided by the SEM
command.

2270513-9701 3-9 Error Processing

SCI/Utilities Design

Files in the EXPTEXT directory created by Texas Instruments
Incorporated have messages in uppercase and lowercase English.

In a file in the EXPTEXT directory, the first record contains the
characters for the two phrases "Explanation:" and "User Action:"
(including the colons), in the same language as the messages. The
fields must be enclosed in quotes if the phrases include blanks.

Each entry for a message in the file includes the following:

* First line:

A key consisting of two percent-sign characters
followed by the message identifier which can have
as many as 14 characters. The keys %%1 and %%2 are
reserved.

One or more blanks

One or more hexadecimal message numbers, separated
by commas, and enclosed in parentheses

* Next line(s). One or more explaining the message.

* A blank line

* Next line(s). User action. One or more paragraphs
explaining what to do when the message occurs

* A blank line

Expanded explanations may be included for some or all of the
entries in the, TEXT file. Figure 3-2 shows a sample EXPTEXT file
corresponding to the sample TEXT file in Figure 3-1.

Error Processing 3-10 2270513-9701

SCI/Utilities Design

"Explanation:" "User Action:"

% %FL 0 1 (100 0)
The file indicated has already been purged with a previous
command.

Verify that the correct filename has been provided.
resubmit the command with the correct filename.

%%FL02 (1004, 1014, 1024)

If not,

The system in use does not have key indexed file support. The
operations requested are not available.

Locate a system with key indexed file support or rewrite the
program to run without key indexed files.

%%FN02 (10FO)
The user task does not have enough buffer space for the
subroutine being called.

Rewrite the task providing more buffer space.

Figure 3-2 Sample EXPTEXT File

3.6 FILENAMES

The names of files within the four message directories may be any
name except those reserved for DNOS and its utilities. Table 3-2
lists the reserved names.

Each of the reserved filenames is recognized by S$CMSG, which
generates the error and status messages. It is also translated in
the command procedure M$02, for use with the Show Expanded Message
(SEM) Command.

To avoid conflict with the naming of other files, S$CMSG uses a
file indicator rather than a filename to access the appropriate
message file. The file indicator is a hexadecimal value between
>01 and >FF, which is used internally by the program needing the
file. The indicator is bound to the appropriate filename by the
synonym $$FNxy, where xy is the indicator. While DNOS-supplied
components use well known file indicators, DNOS cannot know user
defined indicators. User-defined command procedures that access
user-defined message files specify $$FNxy prior to bidding a
program that calls S$CMSG for error processing.

2270513-9701 3-11 Error Processing

SCI/Utilities Design

Table 3-2 Reserved Message Filenames

Filename Use

ASSEMBLR
BASIC
COBOL
COMMON
CRASH
CRASH1
DATADICT
DBMS
DEBUGGER
DNIO
DNOSHLL
EDITOR
FORT78CP
FORT78RT
ICS3270
LINKER
LOADER
MAIL
PASCAL
PTP
QUERY
RPG
S$ROUTIN
SCI
SMRG
STATUS
SVC
TAP
TIFORM
TIPE
UTILITY

Assembly language completion messages
BASIC messages
COBOL messages
Messages concatenated with CRASH, CRASH1 LOADER
System crash messages
Messages concatenated with CRASH, COMMON
Data Dictionary messages
DBMS run-time messages
SCI Debugger utility error messages
Distributed Network I/0 Messages
DNOS high-level language support messages
SCI Text Editor error messages
FORTRAN compiler messages
FORTRAN run-time messages
Communication messages for 3270
Link Editor completion messages
System loader flash crash messages
Support for the SCI MAILBOX function
PASCAL run-time messages
Performance tools package messages
QUERY run-time messages
RPGII run-time messages
Messages common to SCI, DEBUGGER, EDITOR, UTILITY
SCI error and status messages
Sort/Merge run-time messages
Alias of SVC file
SVC processor error and status messages
TAP X.29 Package
TIFORM run-time messages
TI Page Editor messages
DNOS utility program error and status messages

Table 3-3 lists the file indicators chosen by Texas Instruments
Incorporated for DNOS and its utilities, for the languages, and
for run-time support.

Error Processing 3-12 2270513-9701

SCI/Utilities Design

Table 3-3 Message File Indicators

Hex File Indicator

00 through 2F

01
02
03
04
05
06
07

08
10
11
12
21
30
31
32

34 through 3F
40 through 5F

41
42
43
44
45
46
47
48
49
4A
4B
4C
4D-5F

60 through 7F
60
61
62
63
64
65
66
67
68-7D
7E
7F

80 through FF

2270513-9701

Use

DNOS
SVC messages and codes
Utility messages
SCI messages
SCI Text Editor messages
SCI Debugger utility error messages
Status messages for certain SVCs
SVC messages and codes, in certain cases

when SVC >4C was already called
MAILBOX support
Assembly language completion messages
System crash messages
System loader flash crash messages
Link Editor completion messages
3270 Communications
TAP X.29 package
Distributed Network I/0 messages
Reserved for Communications
Language Run-Times
COBOL run-time support
FORTRAN run-time support
TI Pascal run-time support
DNOSHLL run-time support
RPG II run-time support
TIFORM executor run-time support
DBMS run-time support
QUERY run-time support
Sort/Merge run-time support
TIPE
Data Dictionary
Performance Tools Package
Reserved
Language Compilers/Interpreters
BASIC
COBOL compiler (Reserved)
FORTRAN-78 compiler
Reserved
Reserved
Reserved
TIFORM FDL compiler (Reserved)
DBMS DDL compiler (Reserved)
Reserved
TI Pascal compiler
DNOSHLL compiler
Available to users

3-13 Error Processing

SCI/Utilities Design

$$FNxy is set in the command procedure prior to bidding the
program, so that the synonym is uniquely defined when message file
access is required.

If the synonym $$FNxy
by SCI, and if the
indicators known by
indicator rather than
follows:

does not exist when the message is formatted
file indicator is not one of the file

SCI, the message appears with just the file
the filename as the category identifier as

xy--INTERNAL CODE message ID variable text

3.7 UTILITIES TO BUILD THE MESSAGE FILES

Two utilities build the message files. One creates the S$MSG
files from the TEXT files and the other creates the S$EXPMSG files
from the EXPTEXT files. To internationalize and rebuild the
entire set of DNOS messages, the batch stream
.BATCH.BUILD.MESSAGE1 from the DNOS source/object kit should be
used. This batch stream combines several input files to build the
output files correctly.

3.7.1 Build Message File.

The SCI Build Messages File (BMF) command procedure and the BMF
task build a message file in the .S$MSG directory. The BMF task
consists of a Pascal program (BMF) and supporting routines. It is
replicatable and nonprivileged.

BMF reads the TEXT file described above and creates two temporary
files that make up the .S$MSG file. The .S$MSG output file is
either a relative record file or a sequential file. The command
procedure creates an output file of the specified type and merges
the temporary files into it.

SCI bids BMF with a PARMS list that consists of the stack and heap
sizes. Values of 1000 and 500, respectively, are sufficient. The
program requires that the following synonyms be set:

$INPUT Pathname of the input TEXT file. This file must be
structured as described earlier in this section.

$INDEX Pathname of the relative record file in which an
index table (the first part of the .S$MSG file) is
built.

$M SGF IL Pathname of
message file
is built.

Error Processing

the sequential file in which the
(remaining records of the .S$MSG file)

3-14 2270513-9701

SCI/Utiliti~s Design

The detailed formats of the output files are documented in the BMF
code. The $INDEX file contains a header record (high and low
internal message IDs and local language character strings) and a
directory into $MSGFIL. For each internal message ID, the index
table contains the record number in $MSGFIL where the associated
message text is stored.

BMF opens the three files, reads the first record from the input
file, and creates a complete index file. For each message,
starting with the lowest message number and continuing through the
highest, the index table entry (the record number of the
associated text) is initialized to 0, indicating that no message
text exists for the internal message code).

BMF enters a loop in which the message information is read,
processed, and stored in the appropriate text record(s).
Appropriate entries in the index file are updated to point to the
message text.

BMF continues to process after finding an error, so that a single
execution can be used to detect all errors in the input file.
Errors are reported through UTPUER, the UTCOMN Pascal interface
routine to DNOS message handling.

NOTE

Messages in the .S$MSG files must be
displayable on VDTs, printers, and any other
output device. The TEXT files and the
corresponding .S$MSG files must be in all
uppercase (for English). No attempt is made
to translate lowercase to uppercase
characters.

3.7.2 Build Expanded Message File.

A similar utility, build expanded message file (BEMF), creates the
S$EXPMSG files from the EXPTEXT files. BEMF reads the EXPTEXT
file, formats each explanation into a key indexed file record and
writes that record to the S$EXPMSG file.

The BEMF task consists of a Pascal program (BEMF) and supporting
routines. It is replicatable and nonprivileged.

SCI bids BEMF with a PARMS list as follows:

2270513-9701 3-15 Error Processing

I

~

SCI/Utilities Design

PARM Definition

1 Pascal stack - 1500 is sufficient
2 Pascal heap - 500 is sufficient
3 $$LU - LUNO of output file
4 Convert lowercase to upper case? (YES/NO)
5 $BEMF$2 - adjusted message ID length

The program requires that the following synonyms be set:

INPUT Pathname of the input
must be structured
section.

EXPTEXT file. This file
as described earlier in this

OUTPUT Pathname of the error file.

Prior to bidding the BEMF task, the command procedure assigns a
LUNO to the output file specified by the user. The output file
may be any key indexed file, but it must reside in the S$EXPMSG
directory to be used by DNOS. BEMF writes directly to the
.S$EXPMSG file; no temporary files are created.

The key indexed file that is built by BEMF is capable of carrying
messages with IDs of as many as 14 characters. The keys that are
actually used are the two percent-sign characters followed by the
one to fourteen character keys provided in the EXPTEXT file. Two
special keys are built while processing the first line of the
EXPTEXT file. The first string (for "Explanation:") is stored
using the key %%1, and the second string (for "User Action:") is
stored with the key %%2.

BEMF opens the input, output, and error files, then processes the
first record to build the first record of the .S$EXPMSG file. The
program enters a loop that reads and processes expanded message
paragraphs until the EOF is encountered in the input file.

BEMF continues to process after finding an error, so that a single
execution can be used to detect all errors in the input file.
Errors are reported through UTPUER.

The key indexed file is closed prior to task termination errors.
The command procedure must release the LUNO.

3.8 SHOW EXPANDED MESSAGE UTILITY

The show expanded message (SEM) utility
of a specified message category and ID to
file. SEM is written in Pascal and
processing routines.

Error Processing 3-16

writes the expanded text
the specified listing
uses the UTCOMN error

2270513-9701

SCI/Utilities Design

The task segment SEM is replicatable and nonprivileged.

SCI bids SEM with a PARMS list as follows:

PARM Definition

1 Pascal stack - 1500 is sufficient
2 Pascal heap - 1000 is sufficient
3 $$LU - LUNO of message file
4 Flag to indicate whether or not to display the

short form of the message:
:1, means do not display short form
:2, means display short form

5 Message category
6 Message ID

The program requires that the following synonyms be set:

SEMLST The pathname of the listing file. If SEMLST
has a null value, the expanded text is written to
the TLF.

$$VT Variable text

$$ES Error source

$$MN Internal message number

SEM calls R$CMSG, the Pascal
formatting the explanation
expanded message.

interface routine to S$CMSG
and user action portions of

3.9 THE MESSAGES AND CODES MANUAL

for
the

The DNOS Messages and Codes Reference Manual contains messages and
explanations in a format similar to the output of the SEM command.
The manual is built directly from the message files, using
utilities in the messages manual data base. These utilities are
described in the README file of the messages manual data base, but
they are not supplied to users with either source or object
versions of DNOS.

2270513-9701 3-17/3-18 Error Processing

SCI/Utilities Design

SECTION 4

SYSTEM COMMAND INTERPRETER

4.1 OVERVIEW

The System Command Interpreter (SCI) is the interface between the
user and the kernel of DNOS. SCI provides service at two levels:

* The user
processes
function.

enters an SCI primitive and keywords. SCI
the keywords and performs the requested
SCI issues an SVC when services of the kernel

are required.

* The command procedure represents a level of removal from
the primitive. In this case, SCI interprets prompts and
SCI commands in the command procedure and constructs
primitives and the appropriate keywords.

SCI is written in assembly language. Task structure, flow of
control, and detail~ of the routines and data structures are
discussed in this section. Some comments concerning modification
of SCI are included.

Refer to the DNOS System Command Interpreter (SCI) Reference
Manual for details about SCI primitives, SCI command syntax, and
how SCI command procedures are written.

4.2 STRUCTURE

The SCI task is made up of three segments:

* S$SYSTEM procedure segment - Library of general service
routines shared by many DNOS tasks. S$SYSTEM includes
only DSEG position-independent code. Any changes made
to routines in S$SYSTEM must preserve this independence.

2270513-9701 4-1 SCI

SCI/Utilities Design

NOTE

Refer to the following sources for further
information about S$SYSTEM routines:

* DNOS System Programmer's Guide

* The section of this document
entitled Conventions and Libraries

* Appendix A of this document, Writing
DSEG Position-Independent Code

* SCI990 procedure segment - Procedural code that performs
SCI functions. This segment is shared among all
executing SCis. If changes are made to this segment,
the code must remain sharable.

* SCI990 task segment - DNOS transfer vector, all volatile
data for SCI (module SCITSK) and workspace, and DSEGs
for S$SYSTEM routines.

The S$SYSTEM and SCI990 procedure segments are write protected.

SCIXFR is the standard DNOS task transfer vector. It must be the
first module linked into the SCI990 task segment. This three
word vector contains a workspace pointer, an initial program
counter and an end-action address, in that',order.

SCITSK is the read and write data area for SCI990. This
is linked below SCIXFR in the SCI990 task segment.
includes the following categories of data:

* Sixteen registers of initial workspace

* Return address stack (25 words)

module
SCITSK

* SVC call block structures for accessing the following
entities:

SCI

Primary input and output devices (or files) for
this session

Output file for a .DATA primitive

File in which the procedure being expanded is
stored

Menu file

4-2 2270513-9701

SCI/Utilities Design

* SVC call block structures for issuing the following
S VCs:

Map Task Name to ID SVC

Get Job Information SVC

Self ID

Time Delay SVC

Convert Binary to Decimal SVC

* Buffers

* Area for stacking as many as 32 procedure environments

* Miscellaneous data, including a 64-byte patch area

4.3 FLOW OF CONTROL

The following paragraphs describe the flow af an SCI session.

4.3.1 Invoking SCI.

The LOGON task in DNOS is responsible for initiating SCI. The
LOGON task creates an interactive job and bids SCI as its initial
task. This task communicates with the terminal to which it is
assigned by LOGON.

Once SCI is active, it can initiate SCI as a background batch
task within the same job. This background task has access to
resources through its parent task, the SCI task that bid it.

SCI can create a batch job in which SCI is a task. Once this
batch job has been created, all ties with the parent job and task
are severed. Resources are not shared between the batch j-Ob and
the parent job.

4.3.2 Initialization.

Initialization of SCI consists of the following:

* Gaining access to input and output resources, synonyms,
and logical names

* Determining the mode (batch or interactive) in which SCI
is functioning

2270513-9701 4-3 SCI

SCI/Utilities Design

* If interactive mode, getting terminal information from
the TINFO task

* Establishing communication with MAILBOX

* Showing the news file .S$NEWS when appropriate

* Invoking the command procedure M$00.

SCI invokes M$00 to allow a user to perform one or more
operations deemed desirable at the beginning of every SCI
session. For example, the command procedure can be used to
customize prompts, menus, and command libraries. A companion
command procedure, M$01, is invoked at the termination of an SCI
session.

4.1.3 Major Loop.

Following successful
SCI enters its major
functions:

completion of the initialization process,
processing loop, which performs two

1. Displays the terminal local file (TLF), menus (if they
exist) and messages (if they exist)

2. Gets and processes the next input

Unless end-action is
terminates SCI, control
completion of command
(CMD) is pressed.

taken by SCI or the user specifically
returns to this major loop following
processing, or any time the Command key

4.3.4 Termination.

The SCI990 task terminates during
primitive. This primitive is in the
for an interactive session and in
(EBATCH) command procedure for a batch

4.4 DESIGN CONCEPTS

processing of the .STOP
Quit (Q) command procedure
the End Batch Execution
session.

The following paragraphs describe some overall concepts of the
design of SCI.

SCI 4-4 2270513-9701

SCI/Utilities Design

4.4.1 Command Procedures.

In command mode, SCI recognizes two kinds of user input -- an SCI
language primitive or the name of a command procedure. A command
procedure is a collection of SCI primitives and/or other command
procedures.

A procedure may invoke other command procedures, but ultimately,
when all nested procedures have been expanded, the result is a
series of one or more primitives. To expand a command procedure
is to read nested command procedures until all procedure
references have been resolved to SCI primitives.

SCI maintains a variable (DEPTH) that is a measure of the current
command procedure nesting depth. Depth level 0 is the primary
input level (that is, the batch input file or the interactive
terminal). DEPTH is incremented and decremented as command
procedures are entered and exited. The maximum nesting level is
32. SCI processes each command line using field prompts defined
in that command procedure, at that nesting depth. SCI commands
can be called recursively.

4.4.2 Environment Stacking in Nested Procedures.

SCI stacks the following elements of the environment when a new
nesting level is entered:

* LUNO for the current command procedure

* Record number in the current procedure

* IF/LOOP counter. Since .IF and .LOOP structures must be
terminated (by .ENDIF and .REPEAT, respectively) before
the end of the command procedure, this count is
maintained at each level of nesting.

* Expert mode flag. The variable EXPERT.
value implies that expert mode is active.

* Stage depth. Not currently implemented

* The name of the command procedure

Any nonzero

The environment information requires
nesting level.

17 bytes of memory per

In effect, the field prompt values
way they are stored by SCI. When
into the name correspondence table
with a name that has the following

2270513-9701 4-5

are stacked, because
a field prompt response
(NCT), SCI pairs the
format:

of the
is put

value

SCI

SCI/Utilities Design

OO<run ID><depth level><name>

where:

run ID is a binary number that is the run ID of the
parent task.

depth level is the current value of DEPTH (a binary number).
The depth level >50 is a special value used for
temporary storage of field prompt/value pairs
entered in expert mode. (See the discussion of
XPROMP for details.)

name is the name of the field prompt.

SCI appends the same information to a field prompt name when
requesting the value from the Name Manager. The only field
prompt values that are available to a command procedure are those
defined at that command procedure's depth level.

The environment is
the

at

unstacked when the end of a procedure is
procedure depth level is popped, all

the depth being exited are purged from the
reached. When
name/value pairs
NCT.

4.4.3 Task Bidding.

Four SCI primitives are used to bid tasks. They are as follows:

* .BID activates the specified task as a foreground
activity and suspends SCI until the task terminates.

* .QBID activates the specified
activity in a new stage. SCI
session, but does not suspend in
Tasks activated by .QBID do
logical names with SCI.

task as a background
suspends in a batch

an interactive session.
not share synonyms and

* .DBID activates the specified task in a new stage, with
the specification that the task is to be suspended
immediately. This primitive is for the Debugger
utility •

* • RBID activates the specified task and suspends SCI.
Tasks activated by .RBID can return control to SCI
without terminating.

Table 4-1 is a summary of two characteristics of each type bid:
whether or not SCI is suspended, and whether or not the synonyms
and logical names are shared by SCI and the task that is bid.

SCI 4-6 2270513-9701

SCI/Utilities Design

Table 4-1 Task Bid Characteristics

Interactive I
I

I Batch .BID .QBID .DBID .RBID

Yes I No I No I Yes I

Suspend SCI? I I I I
I Yes I Yes I I Yes

I I /(Note 1) I

----------------- ------- --------- ---------- -------
Share Synonyms Yes I No I No I Yes I

and I I I I
Logical Names? I Yes I No I I

I /(Note 2) /(Note 1) I Yes

--+
Note 1 - Not allowed in batch mode

Note 2 - Incompatible with DX10

In processing each of the primitives, an Execute Task SVC (>2B)
is issued when the task is first bid. Refer to the DNOS SVC
Reference Manual for details of the call block. Four flags in
the flags byte (byte 3 of the call block) vary with the four bid
primitives, and with interactive or batch mode. Table 4-2 shows
the flag states.

Table 4-2 Flag States for >2B SVC Call Block

Interactive I
I

I Batch

RBID task (Bit 2)
Background task

(Bit 3)
Unconditional

suspend (Bit 6)
Suspend calling
task (Bit 7)

.BID

0/0
0/0

0/0

1I1

• QBID

0/0
1 /1

0/0

0/1

• DBID

01*
1/*

1/*

01*

.RBID

1I1
0/0

0/0

1I1

---+
* Not allowed in batch mode

The RBID concept is implemented to allow alternating execution
between SCI and utility tasks, such as the Text Editor and the
System Configuration Utility. By calling the S$WAIT routine, a
utility task can relinquish control to SCI and remain in the

2270513-9701 4-7 SCI

SCI/Utilities Design

user's job until reactivated by SCI. The SCI routine S$RBID and
the S$SYSTEM routines S$NEW and S$WAIT coordinate the switching
of control between SCI and an RBID task. They use the Execute
Task SVC, the Unconditional Suspend SVC, the Activate Suspended
Task SVC, and the synonym $$RBID.

SCI maintains a table of active RBID tasks, in the SCI990 task
space. The name of the structure is RBIDAC. It contains a
maximum of five two-byte entries. Corresponding to each entry in
the list is a task in the user's job that has been bid using the
.RBID primitive, and has returned to SCI by calling S$WAIT. The
entry in this table is the installed ID of the task and the run.
ID of the task in the user's job.

The routines S$RBID, S$TERM and S$WAIT use the synonym $$RBID.
When SCI passes control to an RBID task, a non-null value
indicates that SCI is taking end action. The utility task takes
the appropriate action, that is, it should terminate. This is
the last opportunity for the .RBID task to do any cleanup
processing and to call S$TERM.

When the utility task passes control back to SCI, a non-null
value for $$RBID indicates that the utility task was suspended by
S$WAIT and should remain in the active RBID task list (RBIDAC).

WARNING

.RBID is intended for the exclusive use of
SCI and DNOS utilities. Texas Instruments,
Inc. does not guarantee implementation
detail consistency in future releases of
DNOS. Any application programs written to
exploit this feature may fail in future
releases.

4.4.4 SCI Subroutine Link~ge.

A push/pop stack of return addresses is maintained for executing
subroutine calls and returns in SCI code. The SCI CALL macro
generates a branch to SDCALL, whose address is always maintained
in register 10. SDCALL checks for and reports stack overflow. A
maximum of 25 nested calls can be stacked.

The return routine has two entry points SDSRET and SDSERR.
SDSRET unstacks the call and returns control to the calling
routine at the instruction following the CALL macro.

SDSERR is the error return entry point that reports an error.
The call is unstacked and control is transferred to the error

SCI 4-8 2270513-9701

SCI/Utilities Design

address specified on the CALL macro. If no error address is
specified, control is transferred back to the calling routine at
the location following the CALL macro.

No working registers are saved or restored with
call/return sequence within SCI. The routines SAVE09
are available to save and restore registers 0 through
buffer for storing registers is twenty bytes in
stacking facility for only one level.

a normal
and RSTR09

9. The
length, a

4.4.5 Macros.

The macros required by SCI are in the file DSC.SCI990.SOURCE.
MACROS. The macros are as follows:

LTXT

ZTXT

SEC

CALL

Produces a data structure consisting of the
appropriate byte length, followed by the character
string that is the operand of LTXT.

Produces a data structure consisting of the
appropriate byte length, followed by two bytes of
zero, followed by the character string that is the
operand of ZTXT. (ZTXT produces a structure with the
same format as a field prompt name in the NCT.)

Produces the appropriate calling sequence for S$XFER

Produces a branch and link sequence to the first
operand with an optional error exit to the second
operand. This macro implements the CALL portion of
the SCI subroutine linkage strategy. The format of
the macro is as follows:

where:

CALL @ROUTINE,ERROR

ROUTINE

ERROR

is the routine to be called.

is the address at which an error
encountered by ROUTINE is processed.

The following instructions are generated:

BL
DATA

*R10 (R10 = address of SDCALL)
ROUTINE,ERROR

2270513-9701 4-9 SCI

SCI/Utilities Design

4.4.6 Error Reporting.

The error reporting system in SCI consists of two phases:

1. When an error occurs, the information required to
format the proper message is saved.

2. The message is displayed on an interactive terminal
or in the batch listing file.

The standard error reporting interface, for both SCI and any
tasks it bids, is S$TERM. This routine sets the termination
synonyms and ter~inates any task bid by SCI. S$TERM treats a
call from SCI as a special case in which the calling task is not
terminated. Register assignments for S$TERM are covered in
detail in the DNOS Systems Programmer's Guide.

SCI reports one error for each command input by the user. The
routine that first encounters an error condition does not always
have the information required to determine which message or
action is most useful to the caller and/or user. The routine
S$XFER provides some flexibility in reporting errors~

When a utility routine detects an error,
condition (SEC) macro which branches
S$XFER.

it uses the set error
to SDSERR, which calls

S$XFER buffers error reporting in order to minimize the number of
calls to S$TERM. This buffering of error conditions is an
important performance consideration. Considerable overhead is
involved when S$TERM calls the Name Manager to set termination
synonyms.

Nested routines may ignore or recover from certain error
conditions. A code is passed to S$XFER to control the state of
the buffered error. The meaning of the code values are as
follows:

SCI 4-10 2270513-9701

SCI/Utilities Design

Code Action

Sets the error condition variables
In this case, any previously held
to S$TERM. This allows a calling
the error encountered by a called

and calls S$TERM.
condition is passed
routine to report

routine.

2 Resets the error condition. This causes all
previously held error conditions to be cleared. This
allows a calling routine to nullify any error reported
by called routine(s).

3 Holds the error condition. This causes future error
conditions to be ignored until a set or reset request
is processed.

4 Terminates error reporting. This is a special case
for processing the .STOP primitive in batch SCI.
After calling S$TERM, the TEXT and CODE keyword values
are used to set the termination synonyms $$VT and
$$CC, respectively. All future errors are ignored.
(The only errors that should be encountered are in the
LOGOFF procedure M$01.)

The phrase termination synonyms is used to refer to the following
set of synonyms:

* $$CC (Condition Code)

* $$VT (Variable Text)

* $$ES (Error Source)

* $$MN (Message Number)

* $$FN (Filename)

* $$PN {Additional Text: procedure name and line number)

These synonyms (with the exception of $$PN) are set by S$TERM.
S$XFER sets $$PN. The termination synonyms are used by DERROR to
format the message, if any, to be displayed.

Routines called in the display step of the major loop report
errors through DERROR, which calls S$TERM directly rather than
through S$XFER. Any error encountered in these routines is
reported to the user.

2270513-9701 4-11 SCI

I

SCI/Utilities Design

DERROR is designed to display messages in the following order:

1. Messages to report errors flagged by the foreground
task

2. Messages to report errors flagged by one or more
background tasks

3. Messages from MAILBOX

Foreground error messages are produced according to the values of
the termination synonyms. Background error messages are produced
by examining the values in descendant error lists (DELs). These
values correspond to the values of termination synonyms set in
descendant stages by S$TERM. DELs are data structures
implemented by the Name Manager. See the DNOS System Design
Document for further details.

In the current release of DNOS, only one background task is
allowed (and therefore, no more than one DEL is produced).
Should this limit be removed, DERROR is designed to process DELs
from multiple background tasks. The algorithm implemented is a
loop that consists of reading a DEL and displaying the message,
until the last DEL is processed.

S$CMSG formats error messages.
and the formatting process are
Programmer's Guide.

The required register assignments
documented in the DNOS Systems

Termination messages from batch SCI jobs will be logged to the
system log file and listing file. In the event the listing file
does not exist, the message will be written only to the system
log. No message will be written to the system log for normal
termination.

4.4.6.1 SCIERR.

Using the DEF and EQU facilities of the assembler, this module
establishes a label for each error recognized by SCI. A label is
used instead of a hexadecimal constant when an error is reported.
Under this scheme, an assembly cross-reference listing summarizes
all routines that generate the error of interest.

The existence of SCIERR also provides a summary listing of all
errors SCI reports. Whenever a new error condition is added to
SCI, SCIERR is extended and the appropriate message files are
updated. See the section of this document entitled Error and
Status Message Handling for details of the message files.

SCI 4-12 2270513-9701

SCI/Utilities Design

4.5 DETAILED DESIGN

SCI can be divided into the following functional groups of code:

* High-level routines Main driver, major loop
processing, and SCI constant data declarations

* Command procedure processing routines - Control the flow
of information between command procedures at various
levels

* Primitive processing routines
primitives

Process SCI language

* Parsing routines

*

substitution on the
specific entities

Display routines
(messages, menus, etc.)
file or device

Set up and
command buffer

perform textual
and search for

Process data to be displayed
and write it to the appropriate

* Subsystem support routines - Interface with MAILBOX, the
subsystem that distributes messages, and with TINFO, the
subsystem that maintains terminal information

* Utility routines - Perform basic functions.
used by all functional groups of code.

4.5.1 High-Level Routines and Modules.

They are

The high-level routines shown in the call tree Figure 4-1 are
described in detail in the following paragraphs.

SCI990
--+---

+--------------+-------------+
DMENU

+----------+
I
I

DERROR

I
I

GETCMD

I
I

LIBSCN
(GETMNU Entry)

(GETLCM Entry)

I
I

GETCMD

+-----------+----------+
I
I

GE TO PC
I
I

XPROMP/
EXPROC

I
I

LIBSCN

I
I

XS TOP

Figure 4-1 Call Tree for SCI High-Level Routines

2270513-9701 4-13 SCI

I

SCI/Utilities Design

4.5.1.1 scI990.

The main driver for SCI is SCI990. This routine calls for all
required initialization and executes the major loop.

SCI990 operates in one of three states, depending on I/0
requirements. Internally, the state is indicated by the value of
the one-word global flag STATE.

State
STATE
Flag I/0 Requirements

Batch 0 Input from a sequential file or device
Output to a different file or device

TTY)0001

VDT >FFFF

Input from an interactive device
that is not a VDT

Output to the same device

Input from a VDT keyboard
Output to a VDT screen

The following four bytes of information are available to the SCI
through the Get Task Parameters SVC:

* Byte O.
follows:

Eight bits of terminal status information, as

Bit O. Reserved~ Always zero

Bits through 3. Privilege level of the user

Bits 4 through 7. Terminal mode.
bit representation of the proper
STATE flag.

This is a four
val ue of the

* Byte 1. Station number of the physical terminal with
which this task is affiliated. When the station number
is in the range >01 through >FE, this is a background
SCI task, and any terminal information available is in
byte O. The station number values of >OO and >FF have
the following special meanings:

>OO. This is an interactive task. Terminal
information is not included in byte 0.

>FF. This is affiliated with a batch job and has
no access to a terminal.

* Byte 2. Value of the optional
task bid that invoked SCI.

parameter CODE on the
This information is not

SCI 4-14 2270513-9701

SCI/Utilities Design

presently used by SCI.

* Byte 3. Zero for SCI.

Note that when SCI is invoked as an interactive foreground task
by LOGON, no terminal information is passed in byte 1. A zero
value for station number implies that the information must be
obtained from other sources.

Terminal mode is obtained from the TINFO subsystem. Privilege
level is obtained through a Job Manager SVC, and station number
through a Self Identification SVC.

4.5.1.2 DMENU.

DMENU displays the TLF, defines certain synonyms, calls DERROR to
display messages, and, optionally, displays a menu.

The following synonyms are set when the user bids SCI and cannot
be changed.

* $$MO. Mode of the session:

>OO Batch

>01 TTY interactive

>OF VDT

* $$ST. Two-digit decimal station number for the
interactive session. This synonym has a value of zero
for a batch job session.

* $$UI. User ID with as many as eight characters

* $$12. Yes/no flag for the existence of 990/12 hardware

* ME. Four-character station name. This synonym is
deleted in a batch job session.

4.5.1.3 DERROR.

DERROR calls S$CMSG to format S$TERM, S$STOP, DEL, and MAILBOX
message information. DERROR writes the information to an
interactive terminal or to the batch listing file.

Once the foreground message has been displayed, DERROR resets bit
5 in the synonym $$ES. This prevents the message from being
displayed again. In interactive VDT mode, DERROR examines the
next user input. If it is a question mark (?), command procedure
M$02 is invoked. This command procedure displays the expanded
message text to the user.

2270513-9701 4-15 SCI

SCI/Utilities Design

In batch mode, the value of the synonym $$CC is examined. If it
is greater than zero, an 80-character highlight line of the
following format is written to the batch listing file:

<>*<>*<>*<>*<>*<>*<>*<>*<>*<>*<>*<>*<>*<>*<>

For batch SCI jobs, the final termination messages will be logged
to the listing file and the system log file. If the listing file
does not exist the message will be written only to the system
log. No message will be written to the system 19g file for
normal termination.

Message contents and files, as well as formatting rules and
examples, are described in detail in the section of this manual
entitled Error and Status Message Handling.

4.5.1.4 GETCMD.

Routine GETCMD is responsible for reading a command line,
identifying the desired function, and transferring control to the
appropriate processing routine. GETCMD identifies three types of
functions:

* Command line is a primitive

* Command line invokes a command procedure

* Command line is the end of a command procedure

read the input line into the command
make substitutions for synonyms and

is called to parse the operation code
buffer.

GETCMD calls GETLNE to
buffer and calls TXTSUB to
field prompts. GETOPC
specified in the command

GETOPC returns a result in a register. If the input is a
primitive, the leftmost byte is zero, and the rightmost byte is
an index into a table containing addresses of routines that
process the SCI primitives.

The address table in GETOPC offers a convenient way to disable an
SCI primitive. A check is made to detect the loading of a value
of zero into the branch register. If zero is loaded, the branch
is not taken, and an error message is generated. In the current
release of DNOS, the following primitives are disabled in this
manner: .STAGE, .EOS, and .COPY.

If the leftmost byte of register one is nonzero, the register
contains a pointer to a buffer containing the name of the command
procedure that is to be expanded. GETCMD calls EXPROC to do this
expansion.

SCI 4-16 2270513-9701

SCI/Utilities Design

4.5.1.5 GETOPC.

GETOPC has responsibility for determining whether the command is
a primitive or a procedure call. This determination is made by
examining the first nonblank character in the command buffer. If
it is a period, the command is processed as a primitive.

GETOPC identifies the primitive by searching a table of primitive
names. The character strings that are names of primitives are
stored in the name table in the same order as the addresses of
routines that process the primitives are stored in the branch
table. The index into the name table is the index into the
processing routine address table. GETOPC returns this index. If
no match is found in the name table, GETOPC generates an error.

The user request that a menu be displayed is a special case in
GETOPC. When the first nonblank character of the command buffer
is/, that slash is replaced with the character string .MENU.
For example, if the user enters /EDIT, GETOPC converts that
string to .MENU EDIT. This feature serves two functions:

* Provides a shorthand way to request the menu for any
command procedure

* Permits a user who is not normally allowed to enter
primitives from the terminal to, in effect, enter the
primitive requesting menus.

If the command is not a primitive, GETOPC returns a pointer to
the buffer that contains the name of the procedure.

4.5.1.6 LIBSCN.

LIBSCN directs access to command procedures and menus defined in
the primary and secondary libraries.

The entry point to gain or release access to a menu is GETMNU.
The entry point to gain or release access to a command procedure
is GETFIL.

Stacking or unstacking the command procedure environment is done
when LIBSCN is called through the entry point GETFIL.

When a new command procedure is invoked, LIBSCN stacks the
current environment, opens the new input file for reads, and
increments the procedure depth counter.

When access to a command procedure is released, LIBSCN closes the\
current input file, unstacks the previous command procedure
environment, and decrements the procedure depth counter.

When LIBSCN is called to push the procedure environment, it is
passed a pointer to the name of the new input source. The name

2270513-9701 4-17 SCI

SCI/Utilities Design

supplied is appended to the name of the primary procedure library
directory. (the library name is kept internally in the variable
USYS), and the LUNO for input resource is assigned to the new
file from which input is to be obtained. The file is opened. If
the assign and open produce no errors, LIBSCN processing is
complete.

If an error other than >27 (pathname undefined) or >21 (volume
not installed) is returned by the assign, ·the error is reported
and processing in LIBSCN terminates.

If the command procedure is not found in the primary library,
LIBSCN attempts to locate it in the secondary library. The
specified name is appended to the secondary directory name
pointed to by USE. The LUNO is assigned and the file is opened.
All errors are reported.

ll.5.1.7 XSTOP.

XSTOP processes the .STOP primitive, which terminates SCI. The
processing is different, depending on whether the session is
interactive or batch.

Interactive Session.

The following processing is done by XSTOP when the .STOP
primitive is from an interactive session:

·scI

1. Ensures that no background tasks or RBID tasks are
active. If so, an error is generated and the .STOP is
ignored.

2. Invokes M$01.

3. Calls DERROR to process messages
communication with MAILBOX.

!4. Performs processing in routine WRAPUP.

and terminate

a. Aborts RBID tasks. {This aborts anything RBID in
M $0 1.)

b. Copies the current synonyms and logical names to
the permanent files. The pathnames -0f these
files must be .S$USER.userID.SYN for the synonym
file and .S$USER.userID.LGN for the logical name
file. In both pathnames, userID is the ID used
to initiate the SCI session.

c. Clears the VDT screen, if VDT state.

d. Closes the input and output files and/or devices.

!4-1 8 2270513-9701

SCI/Utilities Design

e. Deletes the foreground and background TLFs.

f. Issues an SVC to terminate the task.

Batch Job Session.

The following processing is done when by XSTOP when the .STOP
primitive is from a batch job session:

1. Copies the TLF to the listing file.

2. Processes the TEXT and CODE
specified with the .STOP.
synonyms $$VT and $$CC to
respectively.

3. Invokes M$01.

parameters if they are
Sets the termination

TEXT and CODE values,

4. Writes the M$01 TLF to the listing file.

5. Performs processing in routine WRAPUP.

a. Aborts RBID tasks.

b. Closes the input and output files and/or devices.

c. Deletes the TLF, if this is a batch job.

d. Issues an SVC to terminate the task.

4.5.2 Command Procedure Processing Routines.

All user inputs that are not primitives are processed in module
XPROMP. The routines discussed in the following paragraphs
initiate processing of the command procedure and ensure that
user-provided inputs have valid characteristics, as defined in
the command procedure.

Field prompts may be defined either on the same line as the
command procedure name or on a .PROMPT primitive. The
information for each field prompt -- name, initial value, whether
or not a value is required, and acceptable data type(s) for the
value of the prompt -- satisfies the same syntax rules regardless
of where the definition appears.

A large part of the
implemented by common
for processing a newly
point EXPROC and for a

2270513-9701

processing in these two instances is
code in the module XPROMP. Initialization
invoked command procedure is done at entry
.PROMPT primitive at entry point XPROMP.

4-19 SCI

SCI/Utilities Design

Flow through the code in XPROMP is complex and not
obvious. The logic sketches in the discussion of common
intended solely to convey logic. The implementation
more GO TO transfers and common paths that sometimes
redundant testing.

always
code are
contains
contain

4.5.2.1 Entry Point EXPROC.

The code at entry point EXPROC initiates the processing of a
command procedure. Upon entry, the name of the desired procedure
is stored in the buffer PROCNM. The command buffer pointer CBPTR
points to the first nonblank character following the name of the
procedure.

EXPROC initialization consists of the following:

SCI

1. Calling the Name Manager (through routine S$PCNT) to
purge all field prompt names and values at expert depth
in the NCT.

2. Calling GETEOL to determine whether any nonblank
characters appear after the command procedure name.
(GETEOL sets CBPTR to point to the next nonblank
character when that character is not the end-of-line
byte.) If there is information on the command line,
the user is in expert mode and the flag is set by
EXPROC. Routine KEYLST is called to store all name and
value pairs specified on the command line. KEYLST
strips enclosing parentheses from lists. No
verification of values is done. At this point, the
names and values are associated pairs stored at expert
depth in the NCT. If a name appears in the assertive
state (no value assignment), it is paired with a value
of Y.

3. If this is batch mode, setting the expert mode flag.
There is no resource that can be prompted for values,
so it is assumed that all required information is
supplied on the command line. Even if no information
is specified, an attempt is made to execute the command
procedure using initial values of field prompts.

4. Calling LIBSCN, through entry point GETFIL, to gain
access to the specified command procedure.

5. Checking the first line of the procedure to ensure that
this is the command procedure desired. Unless the
first line of the procedure begins with name or .PROC
name, where name matches the character string in the
buffer PROCNM, processing is aborted and an error is
reported.

6. Initializing PRMTLN to a value of zero to indicate to

4-20 2270513-9701

SCI/Utilities Design

common code that entry was through the entry point
EXPROC.

Following this initialization, control passes to common code in
module XPROMP.

4.5.2.2 Entry Point XPROMP.

This entry point is used when a .PROMPT primitive is processed.
Initialization consists of two operations:

* If DEPTH:O, aborting processing. The .PROMPT primitive
is not accepted from the interactive terminal or from
the batch input listing file.

* Initializing PRMTLN to a
common code that entry
XPROMP.

value
was

of
through

4.5.2.3 Common Code for EXPROC and XPROMP.

to indicate to
the entry point

The code that is common to entry points EXPROC and XPROMP is in
module XPROMP.

The output of the common code is a set of name/value pairs stored
at the proper depth in the NCT. Each of these values has
attributes that satisfy the declarations in the procedure being
processed.

Command processing in this common code is in one of four modes:
normal mode, ENTER key mode, expert mode, or expedite mode.

* Normal mode is the absence of the requisite conditions
for any other mode -- that is, it is not expert mode,
not enter key mode and not expedite mode. In normal
mode, the screen is formatted and the user is allowed to
supply values for all field prompts.

* ENTER key mode is established when the user in normal
mode presses the ENTER key. This mode simulates a
carriage return as the user response to every remaining
field prompt. The ENTER key mode is reset when a
subsequent field prompt does not have an acceptable
value. Normal mode is reestablished.

* Expert mode is activated when one or more characters
appear on the command line beyond the name of the
command procedure. Expert mode remains active for all
prompting within the command procedure. Expert mode is
an attribute of the environment at each depth, and is
stacked. Expert mode reduces the number of reads from
the interactive terminal, and minimizes the processing

2270513-9701 4-21 SCI

SCI/Utilities Design

required to validate data from those reads.

In expert mode, the user is allowed to supply input only
at depth level one, and only for a field prompt that
does not have an acceptable value. In this case, any
field prompt prior to the one for which the user is
prompted may be changed, but expert mode is not reset.

Expert mode does not transfer to procedures invoked by
the one being processed in expert mode. For example,
assume that procedure A is invoked in expert mode and
procedure A invokes procedure B. Whether or not
procedure B is processed in expert mode is determined by
how procedure A invokes procedure B (with or without one
or more nonblank characters past the name of the
procedure). In a batch session, all commands are
processed in expert mode.

* Expedite mode is a submode of expert mode and is active
as long as the predicted number of reads to the
interactive terminal is zero. No terminal reads are
required if all field prompt conditions are satisfied in
expert mode. If the command procedure is invoked in
expert mode, the attempt is made to process the command
procedure in expedite mode. Expedite mode is reset when
a required field prompt has no acceptable value. The
performance advantages of expedite mode are realized if
all required field prompts have values that are verified
before the user is prompted. These values are either
initial values or values supplied by the user in expert
mode.

XPROMP is called to process each .PROMPT primitive in a command
procedure. It is possible that one part of a command procedure
qualifies for expedite mode and another does not qualify.

In this discussion, the following terms are used:

* Initial value Value supplied in the definition of a
field prompt or by the user, in expert mode. (These are
called DUMMY values in code comments.)

* Actual value - Value supplied by the user in response to
a prompt at the interactive terminal.

The following variables are used throughout XPROMP:

* EXPERT - Flag that reflects the status of expert mode

* XPDITE - Flag that reflects the status of expedite mode

* ARGDSP - Index equal to two times the number of field

SCI 4-22 2270513-9701

SCI/Utilities Design

prompts declared in the command procedure. This
variable is always incremented and decremented by two
because it is used as an offset into tables that have
two-byte entries. ARGDSP has a maximum value of 44.
(As many as 22 field prompts can be declared.)

* TYPTBL - Index into field prompt data structures

* KWTBL Data structure containing pointers to field
prompt names

* VALTBL - Data structure containing pointers to field
prompt values

* ENTERK Flag that reflects the status of ENTER key
mode.

* CURPOS - Flag for S$GKEY. When set, this flag indicates
that the horizontal cursor position (column) is not to
be changed.

* ERRPTR Pointer to
displayed by S$GKEY.
is to be displayed.

an error message that is to be
A value of zero indicates no error

* PRMTLN - Flag that indicates which entry point (EXPROC
or XPROMP) is used to enter XPROMP. If EXPROC was used
name/value pairs are stored at expert depth, and no
name/value pairs are stored at the current depth.

Three functional sections of common code exist. In the first
section, the field prompt definitions are processed. Any initial
value (either supplied on the statement that defines the prompt
or supplied by the user in expert mode) is examined for
appropriate characteristics. If necessary, the screen is
formatted.

The second section of processing in common code is a loop that
verifies the attributes of the value for each field prompt from
the interactive terminal. This loop is exited only· when
acceptable values are available for all required field prompts,
the CMD key is pressed, or an irrecoverable error occurs.

The final section writes a message to the user, when appropriate.

Certain conditions are examined each time it is possible to take
one of the following shortcuts:

* Avoid formatting the screen.
screen.

This saves I/0 to the

* Avoid prompting the user for further input. If all
information .known to be required at this point in the

2270513-9701 4-23 SCI

SCI/Utilities Design

command procedure is available, the values are verified
in section one, and section two (including reads to the
terminal, verification processing, and Name Manager
overhead) is bypassed.

Processing Field Prompts.

When common code is entered, the command buffer contains one or
the other of the following:

* The name line of the command procedure, with CBPTR
pointing to the first nonblank character

* The .PROMPT line, with CBPTR pointing to the first
nonblank character after .PROMPT

The command buffer is parsed for full name and/or privilege level
information. The full name is stored in FNBUFF and the privilege
level is checked against the privilege level of the user invoking
the procedure. Processing is aborted if the user's privilege
level is lower than that specified in the command procedure.

Initial values are processed by the routine DUMARG. For each
field prompt, GETALT is called to build the table of
characteristics that a value for the field prompt must satisfy.
In DUMARG, if expedite mode is active, an attempt is made to
verify the initial values and maintain expedite mode. An initial
value supplied by the user in expert mode overrides an initial
value defined in the command procedure. If expedite mode is not
active, verification is not performed until the next section of
the code, in which field prompt values are verified.

Following the processing of field prompt names and any initial
values specified, the interactive screen is formatted, except in
the following cases:

* Batch mode

* Expert mode at a depth level greater than one (that is,
in nested procedures)

The screen is formatted at depth level one, even though there may
be no opportunity for the user to enter values for field prompts.
When the screen is formatted in expert mode, the full name buffer
is blanked out to indicate to the user that this is expert mode.

At the end of section one, KWTBL and VALTBL contain pointers to
field prompt names and pointers to any values that exist (initial
values).

SCI 4-24 2270513-9701

SCI/Utilities Design

Verifying Field Prompt Values.

The second section of common code contains a loop that verifies
the values supplied for each field prompt, starting with the
first. If the expedite mode flag is set at the end of the first
section, every required field prompt has a value that is already
verified. In this case, the second section is bypassed and wrap
up processing begins.

The variable ERRPTR is cleared.

The logic of the loop is as follows:

LOOP: For each field prompt;
IF expert mode is set

THEN
IF a value is available in VALTBL

ELSE

THEN Enter carriage return processing
at ALTERNATE ENTRY;

ELSE
IF the field prompt is optional

THEN GO TO LOOP;
ELSE

Reset ENTERK;
IF batch mode

THEN Exit LOOP with error;
ELSE GO TO label PROMPT;

PROMPT: IF DEPTH is not
THEN

END LOOP;

IF expert mode is set
THEN Exit LOOP with error;

IF the ENTERK flag is set
THEN Process this as a carriage

ELSE
return;

Call S$GKEY to get a value;
Process according to event
character;

(Note 1)

(Note 2)

(Note 3)

(Note 1)

==
Note 1 - Processing of event characters is described in subse

quent paragraphs.

Note 2 - This test is required because it is possible to branch
from the THEN clause into the ELSE clause (at the label
PROMPT).

Note 3 - At this point, the screen is known to be formatted.

2270513-9701 4-25 SCI

SCI/Utilities Design

Event characters are processed inside the loop shown in the
immediately preceding metacode. The processing of each event key
is as follows:

SCI

* Command (CMD) Key. Returns to the primary input source.
The routine XEOP is called and the depth counter (DEPTH)
is decremented until DEPTH:O. Control is returned to
the major loop of SCI.

* ERASE INPUT Key. Starts over on field prompt values.
The values for field prompts are reset to the values
established in the first section. Control is then
returned to the end of the first section of common code,
where the screen is (re)formatted. The verify field
prompts section of code is reentered. This can be done
because the values set by DUMARG have been verified and
are in the NCT at the current depth level. Any values
specified in response to prompts have only been stored
in VALTBL (the Name Manager has not been called to store
values in the NCT).

* Down Arrow. Sets the flag CURPOS for the next S$GKEY

*

call. This keystroke is processed as a carriage return
except when it is entered on the line containing the
last field prompt. On the last line it is treated as a
no-op.

ENTER Key. The flag ENTERK is set to indicate that this
key has been pressed and the ENTER key mode has been
activated. Control is transferred to carriage return
processing.

* Carriage Return:

NORMAL ENTRY. Carriage return processing assumes
that the user has specified a value for a field
prompt. SQUISH (an internal routine) is called to
remove leading blanks and quotes surrounding the
text supplied by the user.

ALTERNATE ENTRY. The command buffer is set up to
appear as though the value had been supplied on
the command line. GETVER is called to determine
if the value supplied meets command procedure
specifications for the field prompt. After return
from GETVER, the following logic is executed:

4-26 2270513-9701

SCI/Utilities Design

IF the value acceptable
THEN Put the value in VALTBL;
ELSE

ENDIF;

Set ERRPTR for display of error message;
IF batch mode

THEN Exit LOOP with an error;
IF DEPTH = 1 and not expert mode

THEN
Clear the ENTERK flag;
IF batch mode

THEN Exit LOOP with error;
GO TO label PROMPT in LOOP;

ELSE Exit LOOP with error;

Once LOOP has been exited, S$KEY is called to place each name and
value pair into the NCT at the current depth.

Writing a Message to the User.

S$WIT is called to write the following message (in the local
language) to the interactive screen:

FOREGROUND COMMAND EXECUTING

This call to S$WIT is bypassed only in the following cases:

* Batch mode

* TTY mode

* Expert mode at a depth level greater than one (that is,
in nested procedures)

4.5.2.4 DUMARG.

This routine processes
builds the KWTBL and
pointers to field prompt
VALTBL contains pointers
may be null.)

field prompt type specifications and
VALTBL data structures. KWTBL contains
names to be formatted on the screen.
to values for field prompts. (Th~ value

Expedite mode is controlled by DUMARG.

Once DUMARG has built an entry in KWTBL and VALTBL, S$KEY is
called to store the name/value pair in the NCT at the current
depth. If a name/value pair has no declaration (the type
declaration may appear on a .PROMPT statement later in the
procedure), the pair is still stored at the proper depth, and
verification is done when the type declaration is available.

Initialization in DUMARG consists of clearing KWTBL,
ARGDSP.

2270513-9701 4-27

VALTBL and

SCI

SCI/Utilities Design

The loop in DUMARG implements the following functions:

* Gets the name of the field prompt and stores it in
KWTBL.

* Calls GETALT to build an entry in a buffer, according to
the specified type declarations.

* If in expert mode, calls S$MAPK to determine whether a
value for this field prompt is specified on the command
line. If so, deletes the name/value pair at expert
depth and saves the value in a temporary buffer for
later use.

* Gathers information to be used in formatting the screen,
should it be necessary. This involves examining the
length of each field prompt name. A limit of 28
characters is imposed on the displayable width of a
field prompt name. If the name is longer than 28
characters, it is truncated. The screen is formatted,
leaving the maximum possible number of blank columns to
the right of the field prompt names.

* The following special case for initial value is
processed: If the initial value of a field prompt
begins with the character $, a null string is used as
the initial value. This is implemented because it is
common to use synonyms as initial values of field
prompts. If the synonym is undefined, routine TXTSUB
substitutes the character string itself in the text of
the command buffer. Without special processing, this
value would be paired with the field prompt name as its
value. Since field prompt name/value pairs are
displayed and are often passed to tasks , the null
string is considered more indicative of the undefined
status of the field prompt value. This convention is
enforced in code, and any field prompt initial value
that begins with the character $ is replaced with the
null string.

When the following logic is entered, the command buffer contains
the first line of the command procedure or the .PROMPT line. Any
field prompt values supplied by the user in expert mode have been
stored in the NCT at expert depth if common code is entered
through EXPROC, and at the current depth if through XPROMP.

SCI 4-28 2270513-9701

SCI/Utilities Design

LOOP: For all field prompt declarations
Get field prompt name and save in KEYWRD;
IF expert mode is active

THEN
IF EXPROC entry point

THEN
Save current depth;
Set expert depth;
Call S$MAPK for a value;
IF a value is returned

THEN Delete name/value pair at
expert depth;

Restore current depth level;
ELSE Call S$MAPK for a value;

ENDIF;
(Note 1)

IF the next character is =
THEN

Call GETALT; (build AUX2 entries for field prompt)
Call GNB; (advance CBPTR to next nonblank character)
IF there is an initial value

ENDIF;

THEN
Parse initial value;
IF value starts with $

THEN VALUE = null string;
ELSE VALUE =value;

IF anything is stored in AUXBUF
THEN VALUE : AUXBUF;

ELSE VALUE : AUXBUF;
Update KWBUFW for length of name in KEYWRD;
Store pointers to name and VALUE in KWTBL and

VALTBL, respectively;
IF expedite mode

THEN
Call GETVER to verify VALUE;
IF VALUE is not acceptable

THEN reset expedite mode;

Call S$KEY to store name/value pair in the NCT at current depth;
END LOOP;

Note 1 - At this point S$MAPK has stored some value for the field
prompt in the temporary buffer AUXBUF. Any field prompt
with no value is paired with the null string.

The final section of DUMARG writes the field prompt names and
values to the batch listing file, if appropriate. If any field
prompts remain at expert depth, they are moved to the current
depth. These values are considered for assignment to field
prompts on subsequent .PROMPT primitives within the same command
procedure. In batch mode, these leftover name/value pairs are
written to the listing file as UNKNOWN.

2270513-9701 4-29 SCI

SCI/Utilities Design

4.5.3 Routines that Process SCI Primitives.

Each of the following routines processes an SCI primitive. It is
assumed that you are familiar with the syntax of those commands.
(Refer to the DNOS System Command Interpreter (SCI) Reference
Manual for details.)

Processing of the .PROMPT primitive is described in the Command
Procedure Processing Routines paragraph in this section.

4 • 5 • 3 • 1 XU SE .

XUSE processes the .USE primitive to redefine the five command
libraries. The routine scans the access names and calls S$MAPS
to do synonym substitution. The pathnames of the primary and
secondary libraries are stored in a buffer pointed to by the
variable USYS. In the absence an operand, a null pathname is
stored in the buffer. XUSE sets a flag to force DMENU to search
for a new menu the next time it is called. XUSE also sets the
synonym $$CL to contain the specified list of pathnames.

The default command· 1 ibrary is • S$CMDS, with no secondary
libraries.

4.5.3.2 XPROC.

XPROC processes the .PROC primitive to install a command
procedure into the primary procedure library. The name of the
primary library is constructed by appending the name supplied
with the primitive to the directory name stored in USYS.

XPROC calls XDATA (at entry point PUTDAT) to copy records between
the .PROC and .EOP primitives into the file with the following
pathname:

where:

@USYS

name

<USYS>.name

points to the name of the directory for the
primary command library.
is supplied by the user on the .PROC primitive.

Comments (lines with * in column 1) are not copied.
blanks and text beyond the SCI delimiter are deleted.

Leading

4 • 5 • 3 • 3 XE 0 P .

XEOP processs the end of command procedure condition. The
procedure depth counter is decremented and LIBSCN is called to
switch control back to the calling command procedure.

SCI 4-30 2270513-9701

SCI/Utilities Design

4.5.3.4 XMENU.

XMENU processes the .MENU primitive to identify the menu that is
displayed in the major loop. XMENU sets the parameters that
cause DMENU to display the specified menu. The variable S$$MNU
is set to reflect the form of the command.

Command

.MENU

.MENU name

.MENU *name

S$$MNU

-1
+1

0

Display Action

Does not display menu
Forces display of menu
Displays menu only in VDT

In the latter two cases, name is used to build the pathname of
the file from which the menu is obtained. Menus are expected to
be stored in the same directory as the primary command procedure
library. The constructed pathname is of the following format:

<USYS>.M$name

where:

USYS points to the directory name.

4.5.3.5 XOPTIN.

XOPT1N processes the .OPTION primitive to alter three
characteristics of an SCI session: PROMPT, MENU, and PRIMITIVE.
When the .OPTION operand field includes a keyword in the
assertive state (that is, no value assignment is made), the
following default values are assigned:

Keyword Feature Default Value

PROMPT Prompt displayed in the major loop []

MENU Name of the menu displayed in the LC
major loop (VDT only) (List Commands)

PRIMITIVE Accept primitives at depth YES
level zero

Only those features that appear on the command line are altered.

4.5.3.6 XBID.

XBID processes the .BID primitive. XBID processes keywords and
sets up parameters for routine S$BID. Elements of the PARMS list
are stored in the NCT. The name of each element is ·made up of
three binary numbers -- two zeros followed by a number that is
the position in the list occupied by the value. For example, the

2270513-9701 4-31 SCI

SCI/Utilities Design

name of the first element on the PARMS list is 001. Its value is
the first element on the PARMS list.

After the keywords are parsed, XBID executes the following steps:

1. Closes the TLF (if it is open).

2. If the primary input is a terminal, issues an SVC to
close the terminal.

3. Calls S$BID

4. Opens the TLF and terminal, as required to restore
prior status. \

5. Deletes any synonyms created for PARMS specified with
.BID.

6. If this is a call from QBID, sets error synonyms
appropriately.

4.5.3.7 XQBID ·and XDBID.

XQBID process the .QBID primitive. XQBID is the interface
between SCI and the routine S$QBID. XQBID processes the keyword
list, verifies keyword values and calls the S$ routine to bid the
specified task.

XQBID has an entry point for XDBID, the routine that processes
the .DBID primitive. This entry point is used for entry to the
Debugger. The specified task is bid and immediately suspended.

4.5.3.8 XRBID.

XRBID processes the .RBID primitive to bid a task, and subsequent
.RBID primitives to restart that task.

XRBID calls routine S$RBID, which is part of SCI.
in the S$SYSTEM shared procedure segment.)

(S$RBID is not

S$RBID uses the synonym $$RBID to determine whether or not SCI is
taking end action and to determine whether or not to delete the
calling task from the table of active RBID tasks. The logic of
S$RBID is described in the following metacode:

SCI 4-32 2270513-9701

SCI/Utilities Design

IF SCI is taking end action
THEN $$RBID:Y;
ELSE $$RBID: 1111 ;

IF the task is not in RBIDAC
THEN This is the initial bid.

Issue an Execute Task SVC (>28);
ELSE The task is already in the job, in a suspended state.

Issue an Activate Suspended Task SVC (>07);
Issue an Unconditional Suspend SVC (>06) for SCI;

* SCI is suspended. The RBID task must call S$WAIT to *
* return control to SCI (via Activate Suspended Task SVC). *

IF $$RBID is non-null
THEN Call ENTRY to make the entry in RBIDAC, if necessary;
ELSE Call ENTRY to delete the entry in RBIDAC, if necessary;

END;

Routines S$NEW and S$WAIT coordinate information essential to the
.RBID function. S$WAIT is discussed in the section of this
manual entitled Conventions and Libraries. S$NEW is documented
in the DNOS Systems Programmer's Guide.

Routine XRSTAT provides reporting and termination services for
SCI, with regard to RBID tasks. When it is called with a request
for status, it returns the names of all .RBID tasks currently in
the user's job. When it is called to terminate tasks, it sets
$$RBID to a non-null value and allows each of the tasks in the
RBIDAC list to perform end action.

The calling sequence for XRSTAT is documented in the code.

4.5.3.9 XDATA.

XDATA copies the records between the .DATA statement and the next
.EOD statement to a file specified by the access name on the
.DATA statement. If no access name is specified, the data is
copied into the TLF •

. The entry
procedures •
• EOD.

point PUTDAT
In this case,

is
the

used by XPROC
delimiter is

to
• EO P

copy command
rather than

XDATA returns an error if the end-of-file is encountered before
the delimiter (.EOP or .EOD).

4. 5. 3. 1 0 XE VAL.

XEVAL processes the numeric assignments of the .EVAL command.
S$INT is called to convert the integer expression text to a
binary number. S$IASC converts the binary number to decimal

2270513-9701 4-33 SCI

I

SCI/Utilities Design

ASCII digits. S$SETS is called to assign this value to the
specified synonym name.

XEVAL processes name and value pairs until the SCI line delimiter
is encountered.

4. 5. 3. 11 XS HOW.

XSHOW processes the .SHOW primitive, causing the specified file
or files to be displayed through a call or calls to S$SHOW.

4.5.3.12 XSPLIT.

XSPLIT processes the .SPLIT primitive. The keywords and values
in the operand field are verified as character strings. S$SPLT
is called to split the command stream into sets of keyword/value
strings. S$SETS is called to store the name/value pairs in the
synonym table.

4.5.3.13 XSYN.

XSYN processes the assignments of a .SYN primitive. It calls
S$SETS to perform the binding.

4. 5. 3. 14 XS VC •

XSVC processes the .SVC primitive. After parsing keywords and
values, the specified SVC is issued. If an SVC error is
returned, the return code processor is called using the Return
Code Processor SVC. (Refer to the DNOS Systems Programmer's

~~~---~~~~~-'E--.-~-....--

Guide for details of the return code processor SVC.) The 
condition code synonym ($$CC) is set. 

At the beginning of XSVC is a table of SVC opcodes and I/0 
subopcodes that are not allowed. These restrictions are imposed 
in order to protect the integrity of SCI. (Refer to the DNOS 
System Command Interpreter (SCI) Reference Manual for a list----of 
the opcodes and subopcodes that are disallowed.) 

4.5.3.15 XIF. 

XIF processes conditional statements. The routine evaluates 
clauses associated with the .IF, .WHILE, and .UNTIL primitives. 
XIF saves the information necessary to effect the .LOOP, .REPEAT, 
.ENDIF, and .ELSE primitives. 

XIF identifies the beginning of 
operands, and takes the appropriate 
result of the specified comparison. 

the construct, evaluates the 
action, depending on the 

Three positional parameters are parsed: 

<string1> <relation> <string2> 

SCI 4-34 2270513-9701 



SCI/Utilities Design 

An attempt is made to evaluate each string as a numeric integer 
expression. If this is not possible, S$SCOM is called to compare 
them as strings. 

Transfer of control is accomplished by placing the next command 
line to be processed into the command buffer. This involves one 
or the other of the following: 

* Reading lines forward until 
primitive is found 

the matching .ENDIF 

* Backspacing to the matching .LOOP primitive. 

The IF/LOOP level is maintained by XIF. The line number of each 
.LOOP is stacked when a nested .LOOP is encountered. These line 
numbers are used to calculate the number of lines to backspace 
the procedure file when transferring control to the matching 
.LOOP primitive. 

XIF calls GETRLN to parse the relation. 
used to access a mask in the table RLNVAL. 
in the status register by S$SCOM is 
relation is true. 

The offset returned is 
If the result stored 

equal to the mask, the 

The data structures RLNTBL and RLNVAL are organized in such a way 
that the index to the inverse relation name and mask are 
computable. For example, the first relation in both tables is IS 
and the last relation is ISNOT; the second is EQ and the next to 
last is NE, and so on. This organization is exploited in the 
code that processes .WHILE and .UNTIL primitives. The same code 
that processes the .WHILE is used to process the .UNTIL, with the 
operator inverted (table offset complemented). 

4. 5. 3. 1 6 XE LS E. 

XELSE bypasses the .ELSE primitive clause. Command procedure 
records are skipped until an .ENDIF or .EOP is encountered. 
XELSE pairs .IF and .ENDIF primitives within the .ELSE clause and 
returns when an unmatched .ENDIF is encountered. 

4.5.3.17 XENDIF. 

XENDIF processes the .ENDIF command. 
decremented. 

2270513-9701 4-35 

The IF/LOOP level is 

SCI 



SCI/Utilities Design 

NOTE 

The primitives discussed in the following 
paragraphs, .COPY, .STAGE, and .EOS, are 
currently disabled. (The processor address 
table entries in GETCMD are set to zero). 
The routines XCOPY, XSTAGE, AND XEOS are code 
that is never executed. 

4.5.3.18 XSTAGE. 

XSTAGE issues an SVC to the Name Manager, requesting the creation 
of a new stage. The stage depth counter is incremented. 

4.5.3.19 XEOS. 

XEOS issues an SVC to the Name Manager, requesting a return to 
the previous stage. The stage depth counter is decremented. 

4.5.4 Parsing Routines. 

Parsing routines are called in the major loop for command 
processing. Two routines prepare the command buffer for parsing 
and the remainder process the data. The routine that fetches SCI 
verbs (GETCMD) is similar to these parsing routines, but its 
function is to transfer control through a branch table. For that 
reason, GETCMD and GETOPC are described with the high-level 
routines that determine the major path through SCI. The parsing 
routines discussed here process character strings to arrive at a 
value. 

4.5.4.1 Data Structures. 

The major data structures used by the parsing routines are CBUFF, 
the command buffer, and CBPTR, a pointer to CBUFF. When 
processing field prompts, TYPTBL and a temporary buffer contain 
information about the prompts and their current values. 

CBUFF is a 256-byte buffer where input is stored and intermediate 
processing results are sometimes kept. CBPTR'points to the next 
character (in CBUFF) availab1e for processing. 

TYPTBL is a structure for storing abbreviated information about 
each of the 22 possible field prompts. Field prompts are treated 
as positional parameters. Information about the first prompt 
specified is the first entry in TYPTBL. Information stored in 
the structures KWTBL (pointers to field prompt names) and VALTBL 
(pointers to current values of field prompts) is also based on 

SCI 4-36 2270513-9701 



SCI/Utilities Design 

position of the field prompt. 

TYPTBL is a 46-byte table. The first word contains an offset to 
the field prompt currently being processed. Information in the 
TYPBTL is stored in the address that is the sum of the table 
address plus the value of the first word in the table. The value 
of the first word is also used as an offset into KWTBL and VALTBL 
to access information about the field prompt currently being 
processed. 

TYPTBL contains two bytes of information for each field prompt. 
The first byte consists of flags that are used to guide the 
processing of this field prompt. The flags indicate the 
following conditions: 

* Whether or not the field prompt is required 

* Whether or not the value can be a list 

* Type alternation whether the field prompt has more 
than one acceptable type (This bit is used only while 
building the list.) 

The second byte contains a count of the number of data types that 
can be considered for the value of this field prompt. 

All field prompt attribute information is stored in AUX2. AUX2 
is a 348-byte structure that overlays three buffers that are not 
in use when AUX2 is in use. The first 256-byte block is 
dedicated to AUX2, and is followed by: 

ACNM - A 51-byte buffer used by XDATA 

FSTNAM - A 20-byte buffer used by XSPLIT 

RSTNAM - A 20-byte buffer used by XSPLIT 

The total buffer size (348 bytes) is static, but storage within 
the buffer is dynamically allocated as field p~ompt type 
declarations are processed. The first 23 words of AUX2 are 
reserved for pointers. The remainder is allocated as required. 
Free space, if any, is at the bottom. 

The structure of AUX2 is shown in Figure 4-2. 

2270513-9701 4-37 SCI 



SCI/Utilities Design 

: Pointer to Free Space (PF) 

p -----------------------------------------------------------
0 : Pointer to Field Prompt #1 information (P1) 

I -----------------------------------------------------------
T -----------------------------------------------------------
E 
R 
s 

Pointer to Field Prompt #22 information 

P1->: TYPE ID I #bytes supplemental information: 

: Supplemental information for Field Prompt #1 (Note 1,2) : 

I TYPE ID : #bytes supplemental information: 

I Supplemental information for Field Prompt #1 (Note 1,2) : 

P2->: TYPE ID : #bytes supplemental information: 

I Supplemental information for Field Prompt #2 (Note 2) 

PF->1 FREE SPACE 

Note 1 - This structure is a case with two type declarations 
for field prompt #1. 

Note 2 - Formats of the supplemental information fields are 
discussed with the parsing routines that build this 
table. 

Figure 4-2 AUX2 Data Structure 

4.5.4.2 Command Buffer Preparation. 

GETLINE and TXTSUB set up the command buffer so that one or more 
of the parsing routines can be used to process input data. 

SCI 4-38 2270513-9701 



SCI/Utilities Design 

GETLINE. 

Routine GETLINE gets the next information to be placed into the 
command buffer. There are three entry points: 

* GETLNE - Fetchs 
the character 
(the default, 
primitive). 

a 72-character command line and displays 
string that is the command line prompt 
or as specified with the .OPTION 

* GETINP - Fetchs a 72-character command line and does not 
display the prompt. 

* GETDAT Fetchs an 80-character data line and displays 
the prompt. 

Depending on the entry point, an end-of-line (EOL) byte is placed 
in either column 73 or column 81 of the buffer. The buffer is 
blank filled to the EOL. In the code, EOL is referenced as an 
exclamation mark ( !), but it is not a printable character. 

A record from the appropriate source, either a file or device 
(primary input) or a command procedure definition (secondary 
input), is read into the command buffer. If the- session is in 
batch mode, commands from the primary input are written to the 
listing file. 

TXTSUB. 

TXTSUB makes two passes on the command buffer to remove extra 
blanks and to replace synonyms and field prompts with current 
values. 

On the first pass, multiple blanks are reduced to single blanks, 
except when multiple blanks appear within a quoted string. 

The second pass is a right t~ left parse. Substitutions are made 
as follows: 

* For every occurrence of @, the routine S$MAPS is called 
to supply the value associated with the synonym whose 
name follows @. If the synonym is undefined, the 
synonym name is used as its value in the command buffer 
text stream. 

* For every occurrence of &, the routine S$MAPK is called 
to supply the value of the command prompt that follows 
&. If the command prompt has no value, the null string 
is substituted into the command buffer text stream. 

On each pass, TXTSUB processing is terminated when the EOL 
character is encountered. 

2270513-9701 4-39 SCI 



SCI/Utilities Design 

4.5.4.3 Text-Handling Routines. 

The remaining parsing routines are divided into those that build 
and access the AUX2 data structure to verify field prompt value 
assignments, those that parse in search of the value to assign to 
a field prompt of a known type, those that skip over delimiters 
and superfluous blanks, and utility routines used by all parsing 
routines. 

Routines that build and access the AUX2 data structure to verify 
field prompt value assignments are of two types: 

* Routines that parse to build data structures for field 
prompt value verification: 

GETALT. Builds a data structure of alternative 
types for a given field prompt. This routine 
calls GETLST and GETRGI if the alternative types 
are themselves lists and/or ranges. 

GETLST. Builds a supplemental data structure of 
list elements 

GET RGI. Builds a supplemental data structure of 
range limits 

* Routines that access AUX2 to verify the value(s) being 
considered for assignment to a field prompt name: 

GETVER. Verifies data attributes for a field 
prompt value 

GETELT. Verifies that the item being considered 
is an element of the specified list 

GETRNG. Verifies that the value being considered 
is within the specified range. 

Routines that parse in search of the value to assign to a field 
prompt whose type is known are as follows: 

* GETNAM. Name type 

* GETACN. Access name type 

* GETSTR. String type 

* GETINT. Integer type 

* GETYNO. Yes/no type 

SCI 4-40 2270513-9701 



SCI/Utilities Design 

Routines that skip over delimiters and superfluous blanks are as 
follows: 

* GETCMA. Skips over a comma 

* GETEOL. Skips blanks to the first nonblank character. 
Returns an indicator if that character is the EOL 

* GETEQL. Skips over the equal sign 

* GNB. Skips over all blanks to the next nonblank 
character. 

Utility parsing routines are as follows: 

* GETKEY. Keyword 

* GETRLN. Relation 

* GETSYN. Synonym name 

* GETTYP. Type declaration 

These parsing routines return through SDSERR if an error 
condition is encountered and return a condition code in register 
zero. 

If the routine produces an error, the command buffer and pointer 
are restored to their values prior to the parsing routine call. 
The calling routine is responsible for taking the appropriate 
action, based on the error. 

If, however, no error is encountered, CBPTR points to the first 
character of the next item to be parsed and register one points 
to the text of the value for the item just parsed. This value 
may or may not be stored in the command buffer. Previous 
characters in the command buffer are not guaranteed to be 
unaltered. 

4.5.4.4 Table-Building Routines. 

The routines described in the following paragraphs build the AUX2 
table. 

GETALT. 

GETALT processes field prompt type declarations. 
information is stored in TYPTBL: 

* Flags that indicate the following: 

The following 

Whether or not alternate types are declared 

2270513-9701 4-41 SCI 



SCI/Utilities Design 

Whether or not a list has been declared 

Whether or not this field prompt is required to 
have a value 

* The number of types declared for this field prompt 

GETALT also makes entries in AUX2 that contain the following 
information as required: 

* A one-byte identifier for the type 

* Number of bytes of supplemental information. (This may 
be O, as in the case of a YESNO type where there is no 
supplemental information.) 

* Supplemental information: 

Range 

List 

GETALT is called once for each 
type declaration information. It 
necessary. Overflow of the AUX2 
through SDSERR. 

field prompt, and processes all 
calls GETLST and GETRGI if 

buffer is detected and reported 

GETLST. 

GETLST processes the elements of a set of acceptable values that 
a field prompt may have. Enclosure of the list in parentheses is 
checked and a syntax error is returned if a parenthesis is 
missing. The list is stored in AUX2 as supplemental information 
for the ELEMENT data type. The AUX2 format of the list is as 
follows: 

<number of elements in list><byte count for first 
element text><text of first element><byte count 
for translation value><translation value of first 
element><byte count for second element text><text 
of second element> ••• 

This information is used by GETELT to verify that the element 
specified is on the list. 

GE TR GI. 

GETRGI checks for AUX2 table overflow and for enclosure of range 
information in parentheses. Error conditions are reported 
through SDSERR. GETRGI parses the command buffer and constructs 
a supplemental information data structure in AUX2 consisting of 
the 32-bit signed integer lower and upper limits. 

SCI 4-42 2270513-9701 



SCI/Utilities Design 

This information is used by GETRNG to ensure that a value being 
considered for the field prompt is within the specified range. 

4.5.4.5 Verification Routines. 

These routines verify whether or not a specified value is 
acceptable, according to the information in AUX2. 

These routines are structured as follows: 

Save CBPTR; 
Search CBUFF for specific data type. (This includes 
syntax checking and verifying attributes of the value.) 

IF no error 
THEN 

ELSE 

Return; 

GETVER. 

Set CBPTR to point to the character in CBUFF 
immediately following the delimiter 
for this type; 

Set register one to point to the parsed value; 

Restore CBPTR to its prior position; 
Set an error indicator; 

GETVER verifies that the value to be assigned a field prompt has 
the proper attributes. It accesses the information stored in 
AUX2. GETVER processes a single value or a list of values, 
checking each value against all valid types. \ 

Upon completion of GETVER, register one points to a translated 
value list in AUX3. 

GETELT. 

NOTE 

Field prompts declared type STRING are not 
subjected· to any tests by GETVER. No 
information is stored in AUX2, and any non
null value proposed for the field prompt is 
accepted as is. 

GETELT parses an item in the command buffer that is expected to 
be an element of a list built by GETLST. The input item parsed 
is paired with the text of each element of the list. The 
approximate matching algorithm is used to determine whether or 
not they match. An error is generated if the item does not 
appear in the list or if it matches more than one element in the 

2270513-9701 4-43 SCI 



SCI/Utilities Design 

list. 

When a unique match is found, the item (or the translation value, 
if one exists) is returned. Notice that the translation value 
may differ, perhaps drastically, from the information input by 
the user. 

Upon return from GETVER, a register points to the value. If it 
is the user input, that value is in the command buffer. If it is 
a translation value, it is in AUX2. 

GETRNG. 

GETRNG parses the command buffer for what is expected to be an 
integer type and verifies that it is in the specified range. The 
bounds are inclusive so the value may equal either limit. 

GETINT is called to parse the next item in the command buffer. 
S$INT is called to convert that ASCII representation to binary. 

An error condition is set if the value is outside the range 
limits and control returns to the calling program through SDSERR. 

GETNAM. 

GETNAM parses for the name type. The only checking done is to 
ensure that the first character is alphabetic or $, and that th~ 
succeeding characters are alphanumeric or $. It should be noted 
that the term alphabetic includes the ASCII representations of 
the uppercase characters A through Z, plus [, \, and ], as well 
as the Katakana character set. Alphanumeric includes alphabetic 
characters and the ASCII codes for the decimal digits 0 through 
9. 

The GETNAM routine uses a data structure that contains the limits 
of the internal representation of these character sets. It is 
called ALPHA. The structure consists of the ASCII 
representations of the limits of the following three ranges. each 
of which is continuous: 

• A through Z, and [, \, and J 

• Katakana 

• 0 through 9 

GETACN. 

GETACN verifies the syntax of an access name. It calls PTHNAM to 
check the syntax of each node of the character string. 

The delimiter for an access name type is any character that is 
not alphanumeric, as in the preceding paragraph. 

SCI 4-44 2270513-9701 



SCI/Utilities Design 

GETSTR. 

GETSTR parses the command buffer in search of a STRING type. Two 
types of strings are processed -- quoted and unquoted. 

A quoted string begins with a quote ("), which is stripped. 
Subsequent adjacent quote pairs ("") are replaced with a single 
quote. An unpaired quote is the delimiter for a quoted string. 
It is also stripped. 

Processing of an unquoted string includes reduction of multiple 
blanks to single blanks and deletion of leading and trailing 
blanks. The delimiters for unquoted strings are as follows~ 

* Exclamation mark - ! 

* Right parenthesis - ) 

* Equal sign - = 

* Quote - " 

* Comma -

The delimiter is stripped. 

GETINT. 

GETINT calls GETSTR to isolate the character string to be 
processed as an integer type. Any remaining blanks are removed. 
S$INT is called to evaluate the expression. This is done to 
detect errors, not to obtain the value. GETINT returns the 
character string that is known to be a legitimate integer type. 

GETYNO. 

GETYNO calls GETNAM to isolate the name to be evaluated as a 
YESNO type. Only the first character of the name is·checked for 
Y or N. 

Unless an error is encountered, register one points to the 
original byte count followed by either Y or N and the remainder 
of the original character string. 

4.5.4.6 Cleanup Routines. 

The following cleanup routines are used: 

GETCMA. 

This routine skips over an anticipated comma. If the comma is 
the next nonblank character, it is skipped and CBPTR points to 
the first character after the comma that is not a line delimiter 

2270513-9701 4-45 SCI 



SCI/Utilities Design 

or a blank. New lines are read if necessary. (That is, the 
comma is treated as a line continuation character by SCI.) 

An error is generated if the next nonblank character is not a 
comma. In the error case, CBPTR points to the character that was 
expected to be a comma. 

GETEOL. 

This routine advances CBPTR to the next nonblank character. An 
error is returned if that character is not the SCI line 
delimiter. 

GETEQL. 

This routine parses the equal sign. If the first nonblank 
character is -, CBPTR is advanced to the next nonblank character 
after -. If the equal sign is not found, an error is returned 
and CBPTR points to the character that was expected to be the 
equal sign. New lines are read if necessary. (That is, the 
equal sign is treated as a line continuation character by SCI.) 

GNB. 

GNB advances CBPTR to the next non blank character. No err,ors are 
returned. No new lines are read because the line delimiter 
appears just past the right margin in the command buffer. 

4.5.4.7 Utility Routines. 

The following utility routines are called by many parsing 
routines: 

GETKEY. 

GETKEY calls GETSTR to isolate the character string to be 
processed as a keyword or field prompt name. S$SCPY is called to 
store the string in an 82-byte dedicated buffer pointed to by ~he 
global variable KEYWRD. 

GETRLN. 

GETRLN supplies information about the relation to be considered. 
GETNAM is called to isolate the character string that represents 
a logical operator. RLNTBL is searched for the specified 
operator, using S$SCOM to compare strings. GETRLN returns (in 
register one) the displacement from the beginning of RLNTBL to 
the match. This displacement can be used to access information 
in RLNVAL, a table of masks for isolating the comparison result 
of interest for this operation. 

SCI 4-46 2270513-9701 



SCI/Utilities Design 

GETSYN. 

This routine isolates the character 
synonym name. GETSYN recognizes 

string that represents a 
two forms -- name and access 

name types. 

GETSYN calls GETNAM first, and if no name is found, it calls 
GETACN and attempts to parse an access name. 

GETTYP. 

GETTYP is used by GETALT to parse the command buffer for 
legitimate type declarations. The anticipated type is scanned by 
GETNAM. A table containing the text for all types (TYPNAM) is 
searched for a match. 

Register one is returned pointing to a location that 
displacement to the match. (This displacement 
displacement into the table TYPXFR to the address of 
that processes the type.) 

contains the 
is also the 
the routine 

This routine parses only one type and must be called repeatedly 
in the case of alternate types. 

4.5.5 Display Routines. 

The following routines direct the writing of output to the 
appropriate device or file, depending on whether the SCI session 
is batch or interactive. 

4.5.5.1 DLINE. 

DLINE writes or displays one line of output to a file or device. 
The form of the line depends on the SCI mode. 

* Batch Generates a page eject and page header as 
required, using counters LINECT and PAGECT for lines and 
pages, respectively 

* TTY - Writes a single record without page headers, 
followed by a carriage return and line feed 

* VDT Writes a single record on the bottom of the 
screen. No page headers, carriage return or line feed 

DLINE requires an output buffer that begins on a word boundary, 
and is an even number of bytes in length, because the buffer is 
used in the SVC call block for the write. If the record length 
of the output file or device is greater than the buffer length, 
the record is truncated. 

2270513-9701 4-47 SCI 



SCI/Utilities Design 

If the buffer is an odd number of bytes in length, the number of 
bytes output is rounded down. The first two bytes of the output 
buffer are always cleared by OLINE. If the output is to a 
device, and there are no control characters in the text, OLINE 
uses the first two bytes for carriage control. 

4.5.5.2 DBATCH. 

DBATCH is called when the SCI session is in batch mode. DBATCH 
writes the field prompt name/value pairs to the listing file. 

DBATCH writes the names and values from KWTBL and VALTBL. The 
values in KWTBL and VALTBL are the same as those in the NCT 
because in batch, the user has no opportunity to make changes 
interactively. 

4.5.6 Subsystem Support. 

The following routines are interfaces to the MAILBOX and TINFO 
subsystems. 

4.5.6.1 MAILBOX. 

MAILBOX is a separate program that processes messages sent 
between tasks. 

Interactive SCI uses the receive services of MAILBOX in the 
initialization and termination portions of the task, as well as 
in DERROR. MAILBOX is bypassed in a batch session. The 
interface routines that receive messages {MBRCV and MBRLS) are 
included in the SCI990 procedure segment. The interfaces to 
MAILBOX are independent of the specific implementation of the 
MAILBOX functions. 

Pointers to two buffers must be passed to MAILBOX interface 
routines. One buffer is for the message and the other is for 
time and date. The first byte in each of the buffers must 
contain the length of the buffer. 

MAILBOX interfaces set the first byte of each buffer to zero if 
no message is found. 

Upon return, if register zero is zero, no errors occurred. If an 
error did occur, the following information is returned: 

SCI 

* Register zero is the error code. 

* If the error code in register zero is >90FF, register 
two points to an SVC call block that contains the error. 

4-48 2270513-9701 



SCI/Utilities Design 

MB$RCV. 

MB$RCV is the user interface for accessing messages sent to the 
task through MAILBOX. It leaves all conditions set in such a way 
that more messages can be requested later. 

In addition to the buffers 
requires a token list. 
addresses to be searched. 

(message, time 
The token list 

Each token should 
the tokens specified when a message is sent. 
the following format: 

<LIST LENGTH><TOKEN LENGTH><TOKEN> ••• 

where: 

and date), MB$RCV 
is a list of MAILBOX 
correspond to one of 

The token list has 

LIST LENGTH is the total number of bytes in the list 
that follows. 

TOKEN LENGTH 
TOKEN 

is the length of the next token (maximum of 8). 
is the character string. 

A maximum of three tokens is specified. SCI passes two tokens -
the station ID and the user ID. 

MB$RLS. 

MB$RLS is the user interface that allows the caller to take any 
messages pending and terminate communication with the MAILBOX 
subsystem. 

MB$RLS is called by SCI during processing of the .STOP primitive. 

4.5.6.2 TINFO. 

TINFO is a separate task that owns the system data structures 
that contain information about the status of terminals. It 
processes the following SCI commands: CM, KBT, MSG, MTS, SBS, 
SDT, and WAIT. 

Only those routines that provide SCI read access to the system 
communication area (SCA) are included in the SCI990 procedure 
segment. This allows SCI to determine the mode of the terminal. 

SCA$R reads terminal parameters. When this interface routine is 
called, register one points to a buffer that contains as its 
first four bytes STnn, where n is a decimal ASCII digit. Upon 
return, the buffer contains whatever information TINFO has 
concerning the station. The format of the station name is hard 
coded. 

2270513-9701 4-49 SCI 



SCI/Utilities Design 

4.5.7 Utility Routines. 

SCI uses two utility routines of its own, as well as several 
routines in the S$SYSTEM procedure segment. 

4.5.7.1 HEXSYN. 

HEXSYN converts a specified binary value to a five-character 
string. The first character, >, is followed by the ASCII 
representation of the four-digit hexadecimal number. This 
character string is then assigned as the value of the specified 
synonym. 

Registers one and two are pointers to the synonym name and binary 
value, respectively. They are preserved. 

4.5.7.2 APPROX. 

APPROX applies the approximate matching algorithm to two strings. 
The rules of the algorithm are outlined in the DNOS System 
Command Interpreter (SCI) Reference Manual. 

4.5.7.3 S$SYSTEM Routines. 

SCI makes extensive use of the following routines in the S$SYSTEM 
procedure segment. They are divided into two groups -- the first 
group is routines documented in the DNOS Systems Programmer's 
Guide. The second group lists routines documented in the section 
of this manual entitled Conventions and Libraries. 

The following routines are documented in 
Programmer's Guide: 

S$IADD Adds double precision 

S$IASC Converts binary to ASCII 

S$INT Converts ASCII to binary 

S $MA PS Maps the value of a synonym 

S$NEW Initializes a task data base 

S$PFIL Submits print request from user 

S$SCOM Compares strings 

S$SETS Sets the value of a synonym 

S$SNCT Searches the NCT 

SCI 4-50 

the DNOS Systems 

task 

2270513-9701 



SCI/Utilities Design 

S$TAD 

S$TERM 

Formats time and date 

Terminates a task 

The following routines are documented in the Conventions and 
Libraries Section of this manual: 

S$FMT 

S$GKEY 

S$KEY 

S$MAPK 

S$0PN 

S$0PNX 

S$PKEY 

S$RIT 

S$SKEY 

S$WIT 

S$PCNT 

S$SETK 

S$WAIT 

Formats the interactive display 

Gets keyword value 

Sets a name/value pair in the NCT. 

Maps keyword value 

Is the same as S$0PEN 

Forces an open extend of the specified file 

Writes to interactive terminal and waits for a 
reply 

Reads information from an interactive terminal 

Sets keyword value (special case) 

Writes to interactive terminal 

Purges the NCT 

Sets keyword value 

Suspends the calling task 

4.6 INTERNATIONALIZATION 

All character strings displayed to the user are declared in the 
module SCIPRC. 

2270513-9701 4-51/4-52 SCI 





SCI/Utilities Design 

SECTION 5 

TEXT EDITOR 

5.1 OVERVIEW 

The Text Editor is an SCI subsystem through which records in a 
file are modified, added, inserted or deleted. 

The Text Editor task is written in assembly language. 

The Text Editor is a 
interactive SCI session. 

co-resident task in a user job with an 
The Text Editor requires access to an 

interactive 
environment. 

terminal. It is not supported in a batch 

This section describes the structure 
files and data structures, and 
commands and functions. 

of 
the 

the Text 
processing 

Editor, its 
of the edit 

Refer to the DNOS Text Editor Reference Manual for a detailed 
description of the Text Editor user interface. 

5.2 STRUCTURE 

The Text Editor is composed of three segments: 

* 

* 

* 

Procedure segment S$SYSTEM - Library of routines that 
is used not only by the Text Editor, but by other 
DNOS tasks, including SCI. 

Procedure segment EDITOR Nonreplicatable segment 
that is procedural code and that performs text 
editing functions and editing commands as they are 
entered from the interactive terminal. 

Task segment EDITOR - Replicatable task segment of 
the Text Editor that contains the task transfer 
vector, volatile code, volatile information that 
contributes to the definition of the current state of 
the edit, and S$SYSTEM routine workspaces and DSEGs. 
Each time the Text Editor is invoked, a unique task 
segment is created in the user's job. 

2270513-9701 5-1 Text Editor 



SCI/Utilities Design 

5.3 FLOW OF CONTROL 

The major phases of a text editing session are outlined in the 
follow{ng paragraphs: 

5 • 3. 1 Invoking the Text Editor. 

The Text Editor is invoked by SCI during processing of any 
command procedure that bids the program. Once an edit is active, 
control can switch back and forth between the Text Editor and 
SCI, via the RBID mechanism. 

5.3.2 Initialization. 

Initialization of the Text Editor begins with an escape clause. 
This traps any command procedures that bid the task outside an 
active edit. The escape allows those command procedures to be 
executed without actually editing a file. (Command procedures, 
as shipped by Texas Instruments Incorporated, do not RBID the 
Text Editor unless an edit is in progress.) 

If the escape clause is not taken, initialization is performed as 
follows: 

1. Initializes the Text Editor variables and data 
structures 

2. Opens the input file (if one is specified) 

3. Creates the work files 

4. Displays the first page of the file to be edited (if 
one is specified) 

5.3.3 Major Path. 

Three kinds of processing are done during a text editing session: 

* Device service routine (DSR) processing 
performed entirely by the DSR, and not 
execution of Text Editor code 

Functions 
requiring 

* Function processing Functions that do not require 

* 

parameters (for example, Up Arrow and ERASE INPUT) 

Command processing - Functions that require parameters 
(for example, Move Lines (ML) and Find String (FS)) 

Text Editor 5-2 2270513-9701 



SCI/Utilities Design 

Figure 5-1 and Figure 5-2 depict the processing path through the 
Text Editor. Note that edit functions are performed in E$EDIT in 
a loop that is only exited when the CMD key is pressed. When 
this happens, the Text Editor suspends and returns to SCI for 
command procedure processing. This suspension is accomplished by 
a call to S$WAIT, a routine in the S$SYSTEM segment. The Text 
Editor is reactivated by SCI. 

TXTEDT: 

Note 1 

Reset STAY flag 
IF CODE is not 0 

THEN IF CODE is less than 0 
THEN CODE:-CODE 

Set STAY flag 
Call E$CMD$ to process the command; 

ELSE Set STAY; 
END IF; 
IF STAY flag is reset 

THEN Call E$WAIT to suspend; 
Call E$EDIT; 

STAY is a register. 

(Note 1) 
(Note 2) 

Note 2 CODE is the CODE parameter on the .RBID statement. 

Figure 5-1 Flow Through E$1ST 

The treatment of the CODE value on the .RBID statement allows a 
command procedure to process an edit command and then either to 
reactivate an edit already in progress (CODE < 0) or return to 
SCI (CODE < 0). 

E$EDIT: IF initialization is required 
THEN Call INITIL; 

EDT100: Read next input; 
IF CMD 

THEN Call E$WAIT; 
ELSE Perform function; 

Update the display at the terminal; 
END Loop READ; 

Figure 5-2 Flow Through E$EDIT 

5.3.4 Termination. 

Termination of the Text Editor involves disposing of the session 
information as specified by the user and terminating the task by 
a call to S$TERM. Unless the session is aborted, a new file is 
created using the input file (if one is specified) and the work 

2270513-9701 5-3 Text Editor 

I 

I 
I 
~-



SCI/Utilities Design 

files. This new file is renamed according to parameters passed 
in the PARMS list. 

A major design goal of the termination processing was to make it 
virtually impossible for the user to lose data. A new file is 
created containing information from the input file and the work 
files. If the replace option is YES, the input file is deleted 
when the new file is renamed. Only then are the work files 
deleted. The only exposure to loss of data is during catalog 
manipulation of pathnames. 

Should a system crash occur during any other phase of 
termination, recover edit processing can restore most of the 
information entered during the prior edit. Specific limitations 
of the recovery scheme are discussed in the paragraph on detailed 
design of recover edit processing. 

5.4 COMMAND PROCEDURES 

The Text Editor does not include the capability to prompt 
interactively; control is returned to SCI when the user must 
supply additional information for command processing. Command 
procedures in the SCI language are provided for this purpose. 
The command procedures collect data interactively and RBID the 
Text Editor with the appropriate parameter values on the PARMS 
list. 

5.5 FILES 

The Text Editor manages two work files, the MOD file and the TEXT 
file, in addition to the input file, which is optionally provided 
by the user. 

The MOD file contains one entry for each line of the input file 
that has been displayed. Information in the MOD entry indicates 
what kind of change, if any, is made to the original input file 
record. The largest file that is processed by the Text Editor is 
one with 65,250 records. (The record number variable is one 
word.) The size of the MOD file is monitored for exceeding the 
maximum file size. 

The TEXT file contains the text of the modified or inserted 
lines. 

The MERGE file is created during termination of the Text Editor. 
After the revised file is built, it is renamed according to the 
parameters passed to the Text Editor with the termination 

Text Editor 5-4 2270513-9701 



SCI/Utilities Design 

request. 

5 • 5. 1 Input File. 

The pathname of the input file is specified on the PARMS list 
passed to the Text Editor with CODE=O to (re)activate an edit 
session. If a pathname is provided, it must be for a relative 
record file or a sequential file. Key indexed files cannot be 
text edited. An error is generated if an attempt is made to text 
edit a device or a key indexed file. Two other prompts r-elated 
to input files are: 

1. Exclusive Edit - If yes, the file is opened exclusive 
write. If no, the file is opened shared. 

2. Length - Maximum length of lines 
edited. Records longer than 
Records shorter than this are 
output file. 

in 
this 

blank 

the file to be 
are truncated. 
filled in the 

If an input file name is not provided, editing takes place with 
regard to the MOD and TEXT files only. The presence or absence 
of an input file causes no significant changes in processing. 

5.5.2 TEXT File. 

The TEXT file is used to store the text of inserted, changed or 
moved records. It is a relative record file with a logical 
record length as prompted for in the XE command, not to exceed 
240 characters. The TEXT file is created during initialization 
of the edit. Its pathname is as follows: 

.S$TEXTxx 

where: 

xx is the station ID at which the edit is active. 

The structure of the TEXT file is shown in Figure 5-3. TEXT file 
records are written sequentially and are not blocked in physical 
records. 

2270513-9701 5-5 Text Editor 



FIRST RECORD: 

Byte(s) 

0 

1 
2-53 

79-80 

SCI/Utilities Design 

Contents 

Pointer to end of pathname. Fixed at >34 
to reserve 52 bytes 

Number of bytes in input file pathname 
Pathname of input file 
Time stamp 

ALL REMAINING RECORDS: 

Byte(s) Contents 

1-LENGTH Text of a line - where LENGTH was prompted for 
an XE command. 

Figure 5-3 TEXT File Format 

The two-byte time stamp is the result of an exclusive or of the 
seconds, minutes, hours, date (Julian), and year returned from 
the time and date SVC. 

The time stamp is created during the initialization of an edit 
session. In addition to being written in the first record of the 
TEXT file, it is written in each physical record of the MOD file. 
The time stamp is used as a validity check when merging the files 
to create the output file. It is used by Recover Edit to verify 
the mod and text records are not information left over from 
another edit session. 

5.5.3 MOD File. 

The MOD file is used to record the types of changes made to the 
input file and to point to data in the TEXT file. 

If an input file is specified, there is one MOD entry for each 
record of the input file. As each record is displayed for the 
first time, a null MOD file entry is written for the displayed 
(or skipped over) input file record. Additions and insertions 
are recorded by writing MOD file entries with numbers greater 
than the number of lines in the input file, and linking them with 
the MOD entries that correspond to the appropriate input file 
records. As part of initialization of a session, the 
characteristics of the input file are read, and the number of 
records originally in the input file is stored in the variable 
LSTINP. MOD file entries for inserted lines begin at LSTINP+2. 
Entry number LSTINP+1 is used for the end-of-file (EOF) line. In 

Text Editor 5-6 2270513-9701 



SCI/Utilities Design 

the current implementation, the variable MODEOF is equal to 
LSTINP+1. 

If an input file is not specified, MOD entries are assigned 
sequentially, and the MOD file becomes a complete linked list of 
entries. 

The MOD file is a relative record file with a logical record 
length of 252. The value 252 is chosen to best utilize space on 
disks with a 256-byte sector size. Twenty-five entries are 
blocked into a logical record. The remaining two bytes contain 
the same time stamp that appears in the first record of the TEXT 
file. The structure of each MOD file entry is shown in Figure 
5-4. 

The MOD file is created during initialization of the edit. Its 
pathname is as follows: 

.S$MODxx 

where: 

xx is the station ID at which the edit is active. 

2270513-9701 5-7 Text Editor 

! 

r 
I 



SCI/Utilities Design 

BYTE 

0 Previous MOD file entry number 

-------------------------1-----------------------------
2 Next MOD file entry number 

-------------------------1-----------------------------
4 This MOD file entry number 

-------------------------1-----------------------------
6 TEXT file record number 

I . -------------------------.-----------------------------8 MOD type code I Link flags 

BYTE(S) 

0-1 Previous entry number. If this MOD entry is linked 
to a previous entry, the number is stored here. 

2-3 Next entry number. If this MOD entry is linked to a 
next entry, the number of that entry is stored here. 

4-5 File entry number of this MOD entry. This is 
provided as an error check. 

6-7 TEXT File record number. If this is an insert or a 
change record, the text of the change is stored in the 
TEXT file record specified by this number. 

8 MOD type code. This value determines whether the input 
file record corresponding to this MOD entry, or the 
inserted or changed text is to be deleted. An unmodified 
input record is denoted by a null code. 

0 - Null 
1 - Insert 

2 - Delete 
3 - Change 

9 Link flags. In most cases, if a MOD entry is linked, 
it is linked both forward and backward. However, if a 
line is inserted at the beginning of the file or just 
prior to the end-of-file, the corresponding MOD file entry 
is only linked in one direction. 

Text Editor 

>80 - Linked to previous entry only 
>40 - Linked to next entry only 
>CO Linked in both directions 

Figure 5-4 MOD File Entry 

5-8 2270513-9 



SCI/Utilities Design 

5.5.4 MERGE File. 

The MERGE file is created during termination of the edit. It is 
a temporary file so its pathname is autogenerated by DNOS. 

The characteristics of the MERGE file are determined by the 
following algorithm: 

IF Specified output file already exists 
THEN Use the output file characteristics; 
ELSE IF an input file is specified 

THEN Use input file characteristics; 
ELSE Use default sequential file characteristics; 

ENDIF; 

If the logical record length of the file whose characteristics 
are being duplicated is greater than 80, records in the input 
file are blank filled past column 80. 

The MERGE file is created on the same disk volume as the output 
file so that the rename SVC can be used. The following logic is 
used to determine the name of the volume on which the file is 
created: 

IF the pathname starts with a • 
THEN Build MERGE file on system disk; 
ELSE 

Issue map logical name SVC 
IF Value returned is null 

THEN Volume name is first node of pathname; 
ELSE Volume name is first node of logical name value; 

ENDIF; 

5.6 DATA STRUCTURES, VARIABLES AND SYNONYMS 

Resident data modules are linked into the task segment. 
modules E$DDTA and E$FDTA contain data used strictly by the 
Editor. 

5.6.1 Data Related to the Display. 

The 
Text 

The module E$DDTA contains, in general, data pertaining to the 
state of the display, buffers used by some of the commands, and 
80 bytes of patch space, as follows: 

* EDTFLG Flag indicating whether or not an edit is in 
progress. A nonzero value indicates an active edit. 

* TXTBUF - General purpose buffer for reads and writes 

2270513-9701 5-9 Text Editor 

I 



I 

SCI/Utilities Design 

* 

* 
* 

* 

* 

* 

5.6.2 

LINBUF - Buffer used for building lines to be 
to the interactive terminal. This buffer 

displayed 
overlays 

TXTBUF. The format of LINBUF is as follows: 

Byte(s) Contents 

0-4 Line number. Five ASCII characters 
Blank if this line is an insert. Two bytes 
preceding buffer are reserved for carriage 
control. 

5 Field size. Must be set after each read 
operation 

6-241 Text (242 characters). Byte 6 must be on a 
word boundary. Two bytes at end are reserved 
for carriage control. 

BACKUP - Used to save the line for back out processing 

BUFFER - 250-byte 
entries 

buffer for blocking 25 MOD file 

CLBUFR - Line compare buffer containing the text of the 
current cursor line as it was when the cursor was first 
moved to that line, or when the last TEXT file record 
was written. The information in the compare buffer is 
used to determine whether a change record is processed 
in the MOD/TEXT files for this input record. 

MLBUFR - Working copy of 
changes made to date 

current line containing all 

PATCHE - 80 bytes of patch space available for data that 
must be patched into the resident module until a source 
change is made 

Data Related to Text Editor Files. 

Module E$FDTA contains the following data, used, in general, 
the file management modules of the Text Editor: 

* I/O Request Blocks (IRBs) for the input, MOD, TEXT, an 
MERGE files \ 

* File condition flags that indicate whether 
MOD, TEXT and input files are opened 

or not th1\ 

* IN PF IL Flag that indicates whether or not an input 
file is specified by the user 

\. 

\\I 

Text Editor 5-10 227or \ 

\ 

I 



SCI/Utilities Design 

* 

* 
* 

CURPOS - One-word data structure that contains the 
cursor row in the leftmost byte and the cursor column in 
the rightmost byte. Always relative to LHSCOL, not to 
screen edge. 

LHSCOL - Lefthand side column (0-origin) 

LINTBL - Line table with one entry for each displayable 
line, plus entries for a header and a trailer line. The 
header line is a dummy record that is sometimes used as 
a temporary storage area. The trailer line is used to 
store text to be displayed as the EOF line. 

Each entry in LINTBL is a copy of the MOD file entry 
corresponding to the edited line displayed on that line 
of the terminal. See Figure 5-4 for the format of each 
entry. The entries in LINTBL are structured exactly 
like entries in the MOD file. The Text Editor file 
management and I/O package maintains this table. 
Information regarding changes that have been made to the 
text of a line is recorded in this table. The table 
contains entries for displayed lines only, and is not 
equivalent to the output buffer for the MOD file. 

The size of LINTBL is determined at run time. A read 
device characteristics operation for SVC >OO is issued 
to determine the number of displayable lines available 
on the terminal. A Get Memory SVC is issued to obtain 
adequate space for LINTBL. The number of lines on the 
interactive terminal is kept in the variable VDTSIZ. 

Note that the full text displayed on a screen is not kept in 
memory (in the Text Editor address space), but is constructed on 
a line-by-line basis, as required, from input file, MOD file, and 
TEXT file records. 

5.6.3 Synonyms. 

Only one synonym, $$EA, is specifically accessed by the Text 
Editor. $$EA is used to indicate whether an edit session is 
currently active. Just prior to returning control to SCI, the 
Text Editor sets this synonym to Y if the session is not being 
ended. The Text Editor then calls S$WAIT to suspend until the 
task is RBID. When processing a request that terminates the 
session, $$EA is set to N just prior to the call to S$TERM. The 
name of the synonym ($$EA) is hard coded. 

2270513-9701 5-11 Text Editor 



SCI/Utilities Design 

5.7 FILE MANAGEMENT AND FILE I/O 

The Text Editor file I/0 package is the vehicle by which all but 
exceptional I/O functions are implemented. This simplified I/O 
interface leaves the edit function and command processors free to 
consider I/O on the basis of lines. It frees the processors f~om 
consideration of the details of I/O in each specific 
circumstance. 

File management routines in module E$FMNG determine which record 
in which file represents the desired line, and direct the I/0 
routines in module E$FLIO to perform the details of the function 
specified. 

NOTE 

The file management package discussed here 
serves a different purpose than the functions 
implemented by the operating' system File 
Manager. Despite the similarity of names, 
the two are separate entities. 

The E$FMNG interface is used whenever the file being edited (that 
is, the logical merging of the input, MOD and TEXT files) is 
affected. I/O routines in the module E$FLIO are called directly 
when action is required on any other file. These routines have a 
BLWP/RTWP interface. 

The control entry point for the package is E$FMNG. The function 
code passed in register 1 determines which process is performed. 

Function 
Code 

5 
6 
7 
8 
9 

1 0 
1 1 
12 

Process Performed 

Position to beginning-of-file 
Position to end-of-file 
Page forward (up) n records 
Page back (down) n records 
Read record for line n 
Change record for line n 
Delete record for line n 
Insert record for line n 

Line numbers, pointers to pathnames of files, and pointers to 
buffers are passed in registers, as noted in the subsequent 
paragraphs. Specific register assignments are documented in the 
code. Error indications are returned in register o. (A value of 
0 indicates no errors.) If I/Oto a file produces an error, 
E$WAIT is called to return directly to SCI. SCI displays the 

Text Editor 5-12 2270513-9701 



SCI/Utilities Design 

message. 

All edit and command functions conduct I/0 on the basis of 
displayed lines. I/O operations include read, insert after and 
change a specified line, among others. The line number is 
derived from the cursor position for VDT terminals and is always 
1 for TTY terminals. 

All file management functions use the data structure LINTBL (the 
line table, discussed in the paragraph on data related to Text 
Editor files). 

When E$FMNG is called to read a line, the edited line is placed 
into the specified buffer. The edited line is found by using the 
MOD file entry, which points to a line in the input file, or 
points to an inserted line in the TEXT file, or indicates that 
the line has been deleted. The text of the line is accompanied 
by the input file record number (blank if the line is an 
insertion). Therefore, the read operation makes all data to be 
displayed available to the calling routine. 

The discussion 
with the request. 
in the code. 

of each function includes the parameters passed 
Specific register assignments are documented 

5.7.1 Change Record for a Line~ 

Input to this process is the line number (in the edited file) on 
which the change is detected, and a pointer to the buffer of new 
text of the line. 

If the record has been previously changed, the existing TEXT file 
record (whose file record number is in the LINTBL entry) is 
rewritten with this new change. 

If the MOD code for this line is null {indicating no 
corresponding TEXT file record exists), the next available TEXT 
file record number is obtained, and the new text is stored in 
that TEXT file record. The MOD code in the line table is altered 
to reflect that this line has been changed. 

5.7.2 Delete Record for a Line. 

This function, implemented in E$FDEL, marks the line 
corresponding to the current line in the line table as a deleted 
record. The appropriate entry is updated in the MOD file. The 
specified entry in the line table is deleted by writing the entry 
for the following line over the deleted line, then moving- all 
subsequent entries in the line table forward one line. The next 
record in the input file is inserted at the bottom of the line 
table unless the corresponding MOD file entry specifies that the 

2270513-9701 5-13 Text Editor 



SCI/Utilities Design 

line has been deleted. Deleted lines are skipped until the next 
nondeleted line is found. 

5.7.3 Insert Line. 

This request must include the line number and a pointer to the 
buffer of text to be inserted. The insert line request is not 
processed if the number of records in the MOD file is greater 
than 65,250. If the MOD file is not full, it is determined 
whether or not the current MOD entry is chained back to the 
previous entry. If not, they are chained. If so, the previous 
MOD entry is read and the MOD entry for the line to be inserted 
is built and linked between the previous and the current entries. 
All three entries, now linked, are rewritten to the MOD file. 
All line table entries from the current entry through the end of 
the line table are moved down in LINTBL. The preceding entry is 
read and written over the current entry. This effectively 
inserts a MOD file entry and its corresponding TEXT file record 
before the old current line. 

5.7.4 Open Files. 

The routine E$0PEN is called directly by the Text Editor rather 
than through E$FMNG. A pointer to the input file pathname is 
passed to the routine. After a check to ensure that the pathname 
does not reference a device, the input file, if any, is opened. 
If the input file characteristics are acceptable, (that is, if it 
is not a key indexed file) the TEXT and MOD files are created by 
E$CRET. Flags are set to indicate that the files are opened, and 
whether or not an input file is specified. Control returns to 
the calling program. 

5.7.5 Page Back. 

This routine calls FGTRPV to get the previous record for line 
zero, and repeats the call for the specified count. This routine 
does not deal with line numbers as page forward does. 

5.7.6 Page Forward. 

-
Page forward is called with the relative roll count and the 
absolute line number. This routine operates in two modes -- page 
forward a certain number of records, or continue to page forward 
until a certain absolute record number is found. In the latter 
case, if that record is not found, an error code is returned. 
(If an error message is to be generated, the calling routine must 
do it.) The subroutine FGTNXT moves line table entries up one 
and reads the MOD entry corresponding to the next line of the 
edited file into the bottom of the line table. 

Text Editor 5-14 2270513-9701 



Entry 
Point 

E$0PEN 

E$CRET 

E$CLOS 

E$DELT 

E$REWD 

E$READ 

E$WRIT 
(Note 1) 

E$GTFC 
(Note 2) 

E$WEOF 

SCI/Utilities Design 

Table 5-1 E$FLIO Routines Summary 

Process 

Moves access name into 
IRB (input file only) 

Opens input file 

Creates specified file 

Closes specified file 
Releases LUNO 

Closes specified file 
Releases LUNO 
Deletes file 

Rewinds specified file 

Reads a record from 
specified file 

Writes from buffer to 
specified record in 
the specified file 

(Note 1) 

Reads characteristics 
of file 

Validates file type 
Checks write protection 
Returns file type 

(Note 2) 

Writes EOF in the 
specified file 

Parameters 

----------
Address of IRB 

Address of access 

Address of IRB 

Address of IRB 

Address of IRB 

Address of IRB 

Address of IRB 
File record number 
Address of buffer 

name 

Address of IRB (Note 1) 
Record number 
Address of buffer 

Address of IRB 

Address of IRB 

Note 1 - E$WRIT does not write in the input file. The IRB 
must specify the MOD, the TEXT or the MERGE file. 

Note 2 - E$GTFC returns a flag in register two of the 
caller's workspace. The values indicate file type, 
as follows: 

1:Relative record 

2:Sequential 

Text Editor 5-16 2270513-9701 



SCI/Utilities Design 

5.7.7 Position at Beginning-of-File. 

Position at beginning-of-file has no parameters. E$REWD is 
called to rewind the input file. The line table is cleared and 
the first MOD file entry is read into the line table entry. All 
entries are moved up one slot until the first entry has been 
moved into line zero of the line table. 

5.7.8 Position at End-of-File. 

Position at end-of-file has no parameters. The entry point is 
E$FEND. The routine calls E$GMOD to read MOD file entries until 
the MOD file EOF is in position zero of the line table. FGTPRV 
is then called to position the EOF entry into line one and the 
p·r ev ious line in line zero. 

LCOUNT is set to the number of active (not deleted) records in 
the edited file. 

5.7.9 Read Record for a Line. 

Routine E$FRED reads the text for the specified line into th, 
buffer. If the MOD code in the corresponding entry is null or 
change, the record number is converted to ASCII and returned with 
the text. If not, the record number field is blank. If the MOD 
file entry in the line table for the specified line is null, the 
text is read from the input file. If it is a change or insert, 
the text comes from the TEXT record specified by the line table 
entry. An EOF indication is returned if the specified line 
number is not found. 

E$FRED is called with the line number and a pointer to an 88-
character buffer, which must begin on a word boundary • 

.. 
5.7.10 E$FLIO Routines. 

Both the Text Editor and E$FMNG call E$FLIO routines for specific 
I/O requests. Table 5-1 summarizes E$FLIO entry points, 
functions and parameters. 

Except where noted in Table 5-1, E$FLIO routines use a workspace 
that is separate from the caller's workspace. 

2270513-9701 5-15 Text Editor 



SCI/Utilities Design 

5.8 DETAILED DESIGN 

Linkage between edit subroutines is implemented with a return 
address stack. The stack and the code that manages that stack 
are in the module E$STAK. The calling routine is STCALL and the 
return routine is STRETN. No registers are saved or restored. 
As many as ten calls can be stacked at any time. If the call 
being processed overflows the stack, STCALL drops into an 
infinite loop. If the return being processed underflows the 
stack, STRETN drops into an infinite loop. 

Edit functions are 
Command functions are 
of the edited file 
files as specified 
appropriately for 

not concerned with file record numbers. 
concerned only to the extent that the lines 

(the logical merging of the input and TEXT 
by the MOD file) must be positioned 
display during the course of command 

processing. 

5.8.1 RBID Statement Parameters and CODE. 

The RBID statement that invokes the Text Editor is unique for 
each service requested. All calls go through the entry point 
TXTEDT in module E$1ST. The CODE value and PARMS passed on the 
RBID statement provide the information the Text Editor needs in 
order to perform the requested operation. Table 5-2 shows the 
values of CODE for the various requests. 

Table 5-2 CODE Values for Edit Requests 

CODE Request 

0 

2 
3 
4 
5 
6 
7 
8 
9 

1 0 
1 1 

2270513-9701 

(Re)activate Text Editor (XE, XES) 
Modify Tabs (MT) 
Modify Roll (MR) 
Modify Horizontal Roll (MHR) 
Modify Right Margin (MRM) 
Show Line (SL) 
Copy Line(s) (CL) 
Move Line(s) (ML) 
Delete Line(s) (DL) 
Find String (FS) 
Replace String (RS) 
Delete String (DS) 
Insert File (IF) 
Quit Edit (QE) 
Save Line(s) (SVL) 
Recover Edit (RE) 

5-17 Text Editor 



SCI/Utilities Design 

5.8.2 E$WAIT. 

This routine, in the module with the same name, calls the 
appropriate S$ routine to suspend or terminate the Text Editor. 

E$WAIT does the following processing: 

1. Calls S$XFER if there is an error condition to report. 

2. Closes the LUNO to the interactive terminal. 

3. Calls S$XFER if registers must be set before calling 
S$WAIT or S$TERM. 

4. If an edit is in progress (as indicated by the flag 
EDTFLG), the Text Editor is suspended by calling 
S$WAIT. Otherwise, the task is terminated by calling 
S$TERM. 

After calling S$WAIT, when the Text Editor is RBID, E$WAIT opens 
(with event characters) the LUNO to the terminal and branches to 
TXTEDT in E$1ST. 

5.8.3 E$DISP. 

The routine E$DISP writes to the 
terminals. The processing includes 
when line numbers are displayed. 

display for either VDT or TTY 
adjusting the cursor position 
E$DISP is called with two 

arguments. One indicates how much of the display is to be 
rewritten, as follows: 

Argument 

<O 
=0 
>O 

Action 

Refreshes whole display 
Refreshes from current line to bottom of display 
Refreshes from top of display to current line. 

The other argument indicates whether the current line is to be 
read or whether the text of the line in MLBUFR is to be used. 

DISPAG contains a loop in which the line is read (by call to the 
file management and I/0 package) and rewritten. The loop is 
exited when all lines have been rewritten or when an EOF is 
encountered. When the EOF occurs, the current line is saved as 
the EOF line, and the remaining lines on the display are cleared. 

Within the loop to read lines, when the line that matches the row 
portion of CURPOS is read, SAVLIN is called to save the text in 
CLBUFR for later compares. 

Text Editor 5-18 2270513-9701 



SCI/Utilities Design 

5.8.4 Edit Functions. 

Edit functions pertain to the insertion, deletion, and 
modification of data on the cursor line as it is displayed at the 
terminal. Edit functions are invoked by keyboard keys, and have 
no parameters except as implied by the cursor position at the 
time the function is invoked. 

Edit functions are described only to the point that I/0 services 
are required. Interfaces with the Text Editor file management 
and file I/O package are noted. Edit functions not discussed in 
this section are performed by SVC. For further details on I/O to 
a specific device, refer to the DNOS Supervisor Call (SVC) 
Reference Manual. 

Edit functions vary, depending on the Text Editor state and mode. 
As used in this discussion and in the code itself, the Text 
Editor operates in two states -- VDT and TTY. The VDT state 
exploits the advantages of the 911 VDT and the 911-like behavior 
of other VDTs. The TTY state is for the 820 terminal and the 733 
ASR terminal. The variable STATE is accessed (through S$ 
routines) to determine the state of the terminal. 

The editing mode governs the action taken with selection of the 
new line function, which is requested by pressing the RETURN key. 
In edit mode the cursor is positioned on the first tab position 
of the next line, with a roll-up of one line taking place, if 
necessary. In compose mode, selection of the new line function 
causes the introduction of a blank line following the current 
line, with the cursor positioned as previously described. 

Edit function processing begins in the module E$EDIT at the label 
EDT100. General flow through E$EDIT is shown in Figure 5-2. 
This code sets up the parameters for a BLWP to S$RIT, which does 
all reading from the interactive terminal. Factors considered 
during this setup include the state of the terminal, tab 
information, right margin position, and whether or not the cursor 
is on the EOF line of the display. 

E$EDIT checks for an event character that physically moves the 
cursor to the next line. This does not signify completion of 
processing on the current line i.e., the line for which the read 
was issued. This situation is detected when the DSR returns a 
line number that is not the line number for which the read was 
issued. Corrective action is taken -- the cursor is set to the 
last displayed column of the line number for which the read was 
originally issued. 

After all special conditions have been processed, the event 
character returned by S$RIT is used to look up the address of the 
subroutine that performs the function indicated. The address of 

2270513-9701 5-19 Text Editor 



SCI/Utilities Design 

the required routine is written into a branch instruction in the 
task segment that makes the subroutine call. 

Following completion of processing by the edit function 
processor, control is returned to E$EDIT. A branch back to 
EDT100 is made and the Text Editor prepares for the next edit 
function. An exception to this return occurs only if the CMD 
function is selected. In this case, the EDT100 loop is exited by 
calling E$WAIT to suspend the Text Editor and reactivate SCI. 

The edit functions can be grouped into the following categories: 

* 

* 

CMD - Exit the edit function loop 

Toggle switches - Switch line number display 
switch edit mode or switch word wrap mode 

status or 

* Cursor and roll functions - All movements of the cursor 
except cursor right and cursor left, which are sometimes 
processed by the DSR. Cursor left is processed by the 
DSR only if the lefthand edge of the screen is column 1. 
Cursor right is processed by the DSR only if the right 
margin is on the screen. 

* Tabbing operations 

* Line functions 

5.8.4.1 CMD. 

This function is 
Text Editor is 
SCI990. E$EDIT 
Text Editor. 

processed in E$EDIT. When it is selected, the 
in a state to return control immediately to 

calls E$WAIT which calls S$WAIT to suspend the 

5.8.4.2 Edit/Compose. 

The edit/compose logic switches the editing mode between compose 
mode and edit mode. The necessary cleanup operations are also 
performed. Processing begins at the label MODFLP in the module 
E$KCL1. The edit/compose flag is inverted. The word wrap flag 
is reset if you are changing to edit mode. 

5.8.4.3 Line Number Display. 

The line number display function inverts the state of DLNFLG, the 
flag that indicates whether or not the line numbers are displayed 
at the left of each line. When the Text Editor is initialized, 
DLNFLG is set to 1, which indicates that line numbers are 
displayed. Any other value of DLNFLG causes suppression of line 
numbers. 

Text Editor 5-20 2270513-9701 



SCI/Utilities Design 

Processing begins at NUMFLP in E$KCL1. The current cursor column 
is adjusted to reflect the requested change if necessary. The 
cursor is adjusted if you are changing from no line number 
display to line number display and the cursor is on a character 
that would be pushed off screen. The flag is then reversed, 
E$DISP displays the current page, and if the state is TTY the 
portion of the current line up to the cursor is rewritten. 
Control is then returned to E$EDIT. 

5.8.4.4 Cursor Down. 

The cursor down function operates virtually the same in both 
states. 

The entry point is CURDWN in E$KCL1. Upon entry, a test is made 
to determine if the cursor is currently on the EOF line. If so, 
the operation is ignored. The current line is checked and a mod 
record written if needed via COMSAV. If the cursor is not on the 
EOF line, but is on the bottom line of the display, (which is 
always the case in TTY mode), the display is rolled up, or paged 
forward, one line. E$DISP is called to rewrite the display and 
save the new line for later compares. 

If the cursor is not on the bottom line of the display (VDT 
only), the cursor row address is incremented by one. E$FMNG is 
called to read the next line of the edited file. SAVLIN is 
called to save the text for later compares. The display is not 
rewritten. (The cursor is moved down by the next call to S$RIT.) 

Control is returned to E$EDIT. 

5.8.4.5 Cursor Up. 

The current line is checked and a modification record is written, 
if needed, using COMSAV. 

The cursor up entry point is CURSUP in E$KCL1. Upon entry, a 
test is made to determine the state of the terminal. 

In TTY mode, E$FMNG is called to page back or roll down one line 
(a NOP if the first record is displayed or if the file is empty) 
and the display is rewritten. 

In VDT mode, if the cursor is on the top line, the display is 
rolled down, or paged back one line. E$DISP is called to rewrite 
the display and to save the top line for later compares. If the 
cursor is not on the top line, the cursor row adrlress is 
decremented by one. E$FMNG is called to read the previous line 
and it is saved for later compares. The display is not 
rewritten. (The cursor is moved to the previous line by the next 
call to S$RIT). 

2270513-9701 5-21 Text Editor 



SCI/Utilities Design 

Control is returned to E$EDIT. 

5.8.4.6 Home Cursor. 

The record corresponding to the top line of the display is read 
and saved for later compares, if the cursor is not already on the 
top line (always true in TTY mode), and the cursor position is 
set to the first tab position for the next S$RIT call to be made 
by E$EDIT. 

5.8.4.7 Roll Down. 

Roll down processing begins at ROLDWN in E$KCL1. E$FMNG is 
called to page back the number of lines currently in the roll 
parameter. E$DISP displays the rolled page. On a TTY terminal, 
the top line of the rolled page is displayed. 

5.8.4.8 Roll Up. 

Roll up processing begins at ROLLUP in E$KCL1. E$FMNG is called 
to page forward the number of lines currently in the roll 
parameter. E$DISP displays the rolled page. On a TTY terminal, 
the top line of the rolled page is displayed. 

5.8.4.9 Tabbing Operations. 

The following routines in E$TABS are used in processing tab 
operations: 

* 

* 

NEXTAB Always permits TAB wrap around. Entry point 
GETNXT does not permit TAB wrap around and positions the 
cursor to 1 character past the margin if no tab is found 
to the right of the current position. NEXTAB updates 
the cursor position to the column in which the next tab 
stop occurs. 

PRVTAB - Examines the cursor position and returns the 
column in which the previous tab stop occurs. If there 
is no tab stop between the current cursor position and 
the beginning of the line, cursor position is set to the 
last tab stop prior to the right margin. 

VDT State Tab Operations. 

Clear to tab processing begins at CLRTAB. A line of blanks is 
set up, a call to DUPTAB is made to write the appropriate number 
of blanks from the current cursor position to the next tab 
position. 

Duplicate to tab processing begins at the label DUPTAB. If the 
cursor is on the EOF line, the operation is ignored. If not, 
E$FMNG is called to read the preceding line in the file. GETNXT 
is called to obtain the next tab position, with tab around not 

Text Editor 5-22 2270513-9701 



SCI/Utilities Design 

permitted. The start position of the cursor is used to determine 
the buffer starting address for the write and a call to S$WIT is 
made to write the change. Control is returned to E$EDIT. 

Tab back processing begins at the label TABACK. A call to PRVTAB 
sets up the cursor position, based on the tab position to the 
left of the current cursor position. 

Tab forward processing begins at the label TABFWD. NEXTAB is 
called to set the cursor position on the tab position to the 
right of the current cursor position. 

5.8.4.10 Clear to End-of-Line. 

The entry point for the clear to end-of-line function is KPSKIP 
in the module E$KCL2. 

The original line is saved for 
buffer to the right of the cursor is 
rewritten. 

5.8.4.11 Delete Line. 

possible later backout. The 
blanked and the line is 

The entry point for the delete line function is DELLIN in the 
module E$KCL2. The line specified on the last S$RIT call is 
deleted. A call to E$FMNG deletes the line, the display is 
rewritten, and control returns to E$EDIT. 

5.8.4.12 Insert Line. 

Processing for insert line begins at INSLIN in the module E$KCL2. 
A blank line is built in the compare buffer and E$FMNG is called 
to insert that line before the current line. Finally, E$DISP is 
called to display the new page with the inserted blank line. 

5.8.4.13 RETURN. 

The new line function operates differently for different 
combinations of mode and state. Processing begins at RETURN in 
E$KCL2, where terminal state is determined. 

VDT. 

E$EDIT fixes the cursor correctly. COMSAV in E$CSAV is called to 
determine if there have been any changes in the current line. If 
so, a change record is written into the MOD file and the text is 
written to the TEXT file. Mode is checked. 

Edit. 

The cursor column is set to the leftmost tab, and CURDWN in 
E$KCL1 is called to complete new line processing. CURDWN is 
described in the Cursor Down paragraph. 

2270513-9701 5-23 Text Editor 



SCI/Utilities Design 

Compose. 

Special 
current 
a blank 
is then 

processing takes place if the EDF is displayed on the 
page. E$FMNG is called to roll the display up one line, 
line is inserted at the current cursor position. Control 
returned to E$EDIT. 

5.8.5 Command Functions. 

With the exception 
command functions are 
values must be passed 
.RBID statement. 

The selected command 
parameter as detailed 

of the request to initiate an edit session, 
processed starting in E$CMD$. Parameter 
to the Text Editor in the PARMS list of the 

is specified to the Text Editor by the CODE 
in Table 5-2. 

E$CMD$ verifies that the CODE value passed is a recognized value, 
enforces rules concerning whether certain r.equests are valid with 
the current state of the Text Editor, and reports errors due to 
unacceptable values in the PARMS list. 

When E$CMD$ is called, CODE has a value greater than zero. 

E$CMD$ checks the internal flag EDTFLG to determine whether an 
edit is currently in progress. If an edit is in progress, 
control is transferred to the specific command processor through 
a branch table. If an edit is not in progress, only CODE values 
of 0 (initiate a session) or 11 (recover a session) are 
processed. This condition is enforced in the code. All other 
requests cause a return to SCI with an error condition set. A 
recover edit request is aborted if a session is currently active. 

Each command processor accesses the PARMS list as needed and 
deals with cases in which the values are not appropriate for the 
particular edit in progress. Invalid parameters may cause 
control to be returned to E$CMD$ for the display of an 
appropriate error message. In all other cases, each command 
processor is responsible for the termination of its processing 
with or without the display of an error code and/or descriptive 
message. Command processors return to E$1ST by a RTWP 
instruction unless the error return to E$CMD$ is taken. 

Command requests can be grouped into three categories of similar 
function: 

* Session commands Those that initiate, terminate and 
recover an edit session 

* Independent commands - Those that cause no significant 
activity within the Text Editor 

Text Editor 5-24 2270513-9701 



SCI/Utilities Design 

* Line and string commands - Those that alter one or more 
lines in the file 

NOTE 

The command functions involve parameters that 
are field prompts in SCI command procedures. 
The name of each parameter on the PARMS list 
is the same as the name of the respective 
field prompt. Refer to the DNOS Text Editor 
Reference Manual for a detailed discussion of 
the parameters. 

5.8.5.1 Session Commands. 

These commands activate, reactivate, terminate or recover an edit 
session. 

Activate Session. 

SCI Commands: XE, XES 

CODE: 0 

PARMS: 

Number Definition 

File access name 
Number of lines to roll 
Right margin position 

1 
2 
3 
4 Scaling? A value of 1 suppresses 

the scale display 
5 through n Tab columns 

The command procedure that issues the request to initiate an edit 
session is responsible for ensuring that no edit is in progress 
on a file other than the one specified. Otherwise, the Text 
Editor resumes the previous edit, disregarding the input file 
access name in the PARMS list. 

Initiate session (the Execute Editor (XE) or Execute Editor with 
Scaling (XES) command) processing starts in the module E$EDIT. 
EDTFLG is checked to determine if an edit is currently in 
progress. If so, initialization is skipped. 

If an edit is not in progress, a check for batch mode 
The Text Editor terminates if the bidding task is in a 
job. The error is reported through S$XFER. 

2270513-9701 5-25 

is made. 
background 

Text Editor 



SCI/Utilities Design 

The module E$INIT is called to initialize variables in the 
resident modules E$DDTA and E$FDTA, respectively. 

E$INIT initializes the session in the edit mode, unless no input 
file is specified (in which case, compose mode is chosen). The 
session is initiated with line numbers displayed. If the 
terminal is in the VDT state, the highest addressable line number 
for the terminal is determined by issuing an SVC to read the 
device characteristics of the terminal. (This information is 
stored in the variable VDTSIZ, and is referenced in other places 
by the Text Editor. The initialization phase is the only time 
the SVC is issued.) DLINES is set to the number of displayable 
lines. If the state is TTY, DLINES is set to 1. If the state is 
TTY and the device is a VDT, a message is displayed telling the 
user to change to VDT mode, and the Text Editor terminates. This 
is done because there are fundamental, unreconciled differences 
between the way the 733/820 DSRs and the VDT DSRs work. If the 
VDT DSRs are modified to operate in the TTY mode as the 733/820 
DSRs work (currently, the VDT DSRs do not recognize TTY/VDT 
states), this restriction could be removed. 

The strip 
is used to 
generated 
characters 
ANSI print 

carriage control flag, E$STRP, is cleared. This flag 
limit to one the number of times an error message is 
while editing a file that contains undisplayable 
(for example, the carriage control characters. of an 
file). 

The open file flags are cleared and the flag field of the input 
file IRB is set. Internal file position indicators are 
initialized. 

When control is returned to E$EDIT, the routine S$PARM is called 
to obtain the access name of the input file, if one is provided. 
E$FLIO is called directly to open the input file if any and to 
create and open the MOD and TEXT temporary files. A conventional 
E$FLIO call is made to position each file at the beginning of the 
file. The edit in progress flag, EDTFLG, is set. 

Initialization for an edit session is complete. The remaining 
processing of E$EDIT is executed each time it is called. 

E$PRMS obtains the vertical and horizontal roll, right margin, 
scaling and tab stop parameters. E$FOPN gets the exclusive edit 
and length parameters. The roll and right margin values are 
stored in the resident data area as integers, and a tab stop bit 
map is built from the tab parameter values. 

The value of the scaling parameter is checked and the following 
logic is executed if scaling is requested: 

Text Editor 5-26 2270513-9701 



SCI/Utilities Design 

IF VDT state 
THEN 

Set DLINES to VDTSIZ-1 (bottom line for scaling); 
Decrement roll by one; 
Set flag to reserve bottom display line for scale; 

ENDIF; 

Note that during any edit session, scaling can be turned on and 
off as desired. 

DISPAG is called to display the current page. The Text Editor is 
now prepared to accept user edit function selections. 

Terminate Session. 

SCI Command: QE 

CODE: 9 

PARMS: 

Number 

1 
2 
3 
4 

Definition 

Abort? 
Output file access name 
Replace? 
MOD list access name 

The Quit Edit {QE) command terminates an edit session and is 
processed in the module E$QE. When the first PARM is NO, 
creation of the MERGE file is performed in the module E$FMRG. A 
rename SVC (Assign New Pathname operation of the I/O SVC) is 
issued in E$QE to change the name of the MERGE file to the 
specified output file name. 

In the merge process, records are read from the MOD file to 
determine how the MERGE file is built. Records are copied from 
the input file or skipped (if deleted, changed, or inserted), and 
records from the TEXT file replace input file records for changes 
and insertions. If a MOD listing file is specified, the 
appropriate information, including proper carriage control, is 
written to it. 

During terminate session processing, each of the three levels of 
I/O is used: services are requested through the control point 
E$FMNG, I/O routines in E$FLIO are called directly, and during 
the rename process, one direct I/O SVC is issued. 

Upon successfully building (and possibly renaming) the new file, 
the Text Editor task is terminated by a call to E$WAIT, which 
calls S$TERM. 

2270513-9701 5-27 Text Editor 



SCI/Utilities Design 

Recover Edit Session. 

SCI Command: RE 

CODE: 11 

PARMS: 

Number 

1 
2 
3 
4 

Processing for the 

Definition 

Abort? 
Output file access name 
Replace? 
MOD list access name 

Recover Edit (RE) command does what is 
necessary to allow a terminate session request to be processed. 
The purpose of the command is to allow recovery of data 
entered/changed during an edit session that is active when the 
system crashes, or is stopped. 

The work files for that edit session are opened, and the pathname 
of the previously specified input file is read from the TEXT file 
header record. The input file, if any is opened. 

The following variables 
are not necessarily what 
interrupted, but they do 
complete . 

are initialized as shown. These values 
they are at the time the edit is 
allow session termination processing to 

• LSTINP:Number of lines in the 
This number is obtained 
characteristics are read. 

input 
when 

file 
the 

minus 
input 

one. 
file 

* MODEOF:LSTINP+1. This is the entry number of the MOD 
file entry. 

* E$NORC=LSTINP. In normal circumstances this value is a 
running count of input records processed. It is 
initialized as the number of lines in the input file, if 
any. 

* HIMRN=>7FFF. This variable is the highest MOD file 
entry number. It is set to an arbitrarily high number. 

* BGNREC=-1. This is an initializing value to ensure that 
all MOD entries are processed. 

Following this initialization, control is transferred to 
terminate session processing in the modul~ E$QE. The MERGE file 
is created and disposed of as indicated by the elements of the 
PARMS list. 

Text Editor 5-28 2270513-9701 



SCI/Utilities Design 

As long as the MOD, TEXT and input files are readable, the edit 
activity is recovered, with the exception of any MOD entries (and 
any TEXT records that they reference) that are buffered, but not 
written to the MOD file at the time the system fails. 

The MOD disk file is updated when the LINTEL does not contain all 
entries that are needed. The most damaging instance occurs when 
a previously empty file is being built and 24 lines (25 line VDT) 
have been entered when the system fails. LINTEL will, so far, 
have contained MOD entries for the entire file. No MOD file 
records will have been stored on disk. Recover edit, in this 
case, finds an empty MOD file and reconstructs a null file. 

5.8.5.2 Independent Commands. 

Modify Tabs (MT), Modify Roll (MR), Modify Horizontal Roll (MHR) I 
and Modify Right Margin (MRM) commands are independent commands 
in the sense that there is no special processing done by the Text 
Editor when these commands are entered. In the command 
procedures shipped by Texas Instruments Incorporated, these 
commands only bid the Text Editor when an edit session is active. 
When the Text Editor is bid, a CODE value of 0 is used, so that 
the commands reactivate the session. If no edit is active, the 
command procedures set synonyms but do not bid the Text Editor. 

5.8.5.3 Line and String Commands. 

All command functions call E$EVAL to convert the line parameters 
into absolute, relative, or combination absolute/relative line 
numbers. If the absolute portion of the line number is zero, the 
default value of the current cursor line is assumed. E$EVAL does 
not contain the logic to process the special cases of BEGIN and 
END as line numbers. Each command processor takes action on 
these values before calling E$EVAL. 

All command processors call E$POSF to position the file, based on 
the evaluation of line numbers. The MOD entry in LINTEL is 
altered, and the input file and TEXT file are read, as specified 
by the MOD file, to produce the text to be displayed at the 
terminal. 

Copy, Move, Delete Lines. 

PARMS and CODE: 

Copy Lines (CL) 2 Start line, end line, insert after line 

Move Lines (ML) 3 Start line, end line, insert after line 

Delete Lines (DL) 4 Start line, end line 

2270513-9701 5-29 Text Editor 



SCI/Utilities Design 

These three closely related commands are processed by code in the 
module E$CLML. The entry points for the Copy, Move and Delete 
Lines commands are E$CL, E$ML and E$DL, respectively. The 
command flag is set to a unique value at each entry point and 
control is transferred to common code at E$LCOM. 

Prior to positioning the file for processing, each line parameter 
is evaluated. If the parameter has an absolute component, an 
attempt is made to position the file. This determines if the 
specified line actually exists in the edited file. If one of the 
three parameters references a missing line, processing is 
terminated with an error message. If there is no absolute 
component, position in the file is moved the specified number of 
lines in the proper direction (or until the beginning-of-file or 
end-of-file is encountered). During this validation process, the 
number of records to be moved, copied, or deleted is counted. 
This information is used later to calculate the amount of memory 
~equired for a copy or move temporary buffer. 

After the line numbers have been successfully validated and the 
file positioned, the following processing is done: 

Position the file to the line specified by the first parameter; 
IF this is a copy or a move 

THEN issue an SVC to get memory for temporary buffer space; 
DO from start line to end line; 

Call E$FMNG to read the text of the line and page 
forward one line; 

IF Copy or move 
THEN Write the text of the line to the temporary buffer; 

IF Move or delete 
THEN Call E$FMNG to delete the line; 

END; 

IF Copy or move 
THEN 

Position file to the line specified by the third 
parameter; 

Insert temporary buffer into edit file, in reverse 
order (end line to start line); 

Issue an SVC to release the memory acquired for 
temporary storage. 

ENDIF; 

Insert File. 

SCI Command: IF 

CODE: 8 

Text Editor 5-30 2270513-9701 



SCI/Utilities Design 

PARMS: 

Number 

1 
2 

Definition 

File pathname 
Insert after line 

Processing for the Insert File (IF) command is in the module 
E$IF. S$PARM is called to obtain the access name of the file 
that is to be inserted. The file is opened by a call to E$0PEN 
(the standard I/O interface is not used because the file that is 
opened and read is not the file being edited). The file being 
edited is positioned by a call to E$POSF, which, in this case, 
fetches parameter number two and calls E$FLIO to read the record 
for that line. E$FMNG pages the file being edited forward one 
line and inserts the record before the current line. This 
process is repeated until an EOF is encountered in the file being 
inserted, at which time the inserted file is closed and insert 
file processing ends. 

Save Lines. 

SCI Command: SVL 

CODE: 10 

PARMS: 

Number 

1 
2 
3 
4 

Definition 

Start line 
End line 
Save file pathname 
Option(ADD,REPLACE,EXTEND) 

Processing of the Save Lines (SVL) command is done in module 
E$SVL. The current file position is saved so that it can be 
restored later. The edited file is positioned at the beginning 
and ending line numbers in order to verify those valu~s. E$SVL 
issues an assign LUNO (with autocreate) to the save file 
pathname. The file is opened and, if it was not created by the 
assign, the fourth parameter (option) is tested to determine what 
action to take regarding replacement. The ADD option stores the 
file if it does not currently exist. REPLACE saves the given 
lines whether the file exists or not, and EXTEND adds the lines 
to the end of the given file. An error condition is set and 
control returns to SCI for display of the error message. 

Lines are copied from the edit file to the save file until the 
line count is exhausted. (The line count is set during 
positioning of the file at the beginning and ending line.) An 
EOF is written to the save file, it is closed and processing of 
the request ends. 

2270513-9701 5-31 Text Editor 



SCI/Utilities Design 

Show Line. 

SCI Command: SL 

CODE: 1 

PARMS: 

Number Definition 

Line number 

Processing of the Show Line (SL) command is controlled by E$SL. 
After the only parameter is obtained, the first character is 
compared with B for beginning-of-file and E for end-of-file. If 
not B or E, it is assumed to be a line number. The file is 
positioned using the appropriate call to E$FMNG. -DISPAG displays 
the page. 

Find String. 

SCI Command: FS 

CODE: 5 

PARMS: 

Number 

1 
2 
3 
4 

Definition 

Number of occurrences 
Start column 
End column 
String 

The parameters passed are stored in E$PRMB, a parameter text 
buffer. E$SPRM is called to obtain and validate the first four 
elements of the PARMS list. 

The Find String (FS) command is processed in module E$FS. The 
text of the cursor line is read and E$MTCH is called to search 
the line for a match to the string. If one is found, the 
occurrence count ·is decremented. If the occurrence count is 
zero, the command is terminated, leaving the cursor at the 
beginning of the (last) line on which a match is found. If a 
match is not found, or if one is found but the occurrence count 
is not yet decremented to zero, E$FMNG is called to page forward 
one line and the next line is processed as described above. 
Lines are read until the EOF record is encountered or the cursor 
is positioned to the first character of the string found until 
the occurrence count is decremented to zero. 

Text Editor 5-32 2270513-9701 



SCI/Utilities Design 

Replace String. 

SCI Command: RS 

CODE: 6 

PARMS: 

Number 

1 
2 
3 
4 
5 

Definition 

Number of occurrences 
Start column 
End column 
String 
Replacement string 

The parameters passed are stored in E$PRMB, a parameter text 
buffer. E$SPRM is called to obtain and validate the first four 
elements of the PARMS list. 

Processing for the Replace String (RS) command is done in the 
module E$RS. 

The fifth parameter, the replacement string, 
direct call to S$PARM. 

is obtained by a 

In E$SREP, the text for the line denoted by the cursor is read by 
E$FMNG. E$MTCH is called to search the line for an occurrence of 
the specified string. If one is found, the characters to the 
right are shifted appropriately to make room for the replacement 
string, if any, which is inserted into the line. If the 
replacement string is shorter, blanks are inserted from the right 
margin to fill the line. An error is generated if the starting 
column plus the replacement string length is greater than the 
right margin. E$FMNG is called to write a change record for the 
altered line, and the starting column is updated for the next 
call to E$MTCH. The same line is examined for a match until no 
match is found, at which time E$FMNG is called to page forward 
one line, to make available the next line to be examined. This 
operation continues until the occurrence count is zero or until 
the EOF record is read. If there is no input string, all 
characters between the start and end column are assumed to match, 
and are replaced by the replacement string. 

The number of blanks that can be appended to the right of the 
line is limited to 80. Otherwise, an attempt to delete blanks 
from the entire line would cause an endless loop of delete blank, 
shift left and pad with a blank. 

2270513-9701 5-33 Text Editor 



Delete String. 

SCI Command: DS 

CODE: 7 

PARMS: 

Number 

1 
2 
3 
4 

SCI/Utilities Design 

Definition 

Number of occurrences 
Start column 
End column 
String 

The parameters passed are stored in E$PRMB, a parameter text 
buffer. E$SPRM is called to obtain and validate the first four 
elements of the PARMS list. 

Processing for the Delete String (DS) command begins in the 
module E$DS. The process is the same as for the Replace String 
(RS) command, except that the replacement string is null, that 
is, the length of the replacement string is zero. Control is 
transferred to E$SREP where the search and deletion takes place. 

5.9 ERROR PROCESSING 

The Text Editor uses the same S$ error reporting facilities used 
by SCI. 

The SEC macro is used to generate code to call S$XFER. All error 
conditions are set using constants of the format E$Exxx. These 
constants are defined in module E$ERRORS. A cross-reference 
listing for the Text Editor shows the modules in which an error 
condition is set. 

5.10 MODIFYING THE TEXT EDITOR 

Care must be exercised when modifying the module E$QE, which 
contains the code to rename the MERGE file. At any time during 
this process, the edited and/or original input file must remain 
recoverable in case of a system crash. 

In order to allow sharing of the code by more than one terminal, 
any volatile code (such as calculated branch instructions) must 
be in a DSEG. 

Text Editor 5-34 2270513-9701 



SCI/Utilities Design 

5.11 INTERNATIONALIZATION 

There is no embedded text in the Text Editor code. 

2270513-9701 5-35/5-36 Text Editor 





SCI/Utilities Design 

SECTION 6 

SYSTEM CONFIGURATION UTILITY 

6.1 OVERVIEW 

The system configuration utility (SCU) allows a user to modify 
the image of a DNOS operating system as created during system 
generation (sysgen), or to modify basic attributes of the 
currently executing system, without having to reexecute the 
System Generation utility. The capabilities provided by SCU 
include: 

* Listing the current device configuration 

* Modifying, adding, or deleting devices. The same 
attributes of a device that can be specified during 
sysgen can be modified through SCU. 

* Showing and/or modifying the country code 

* Modifying the sizes of various system table areas 

* Modifying various scheduler and swapping parameters 

* Modifying the current state of an existing device 

* Initializing the system log 

Some of the previously listed capabilities are not available when I 
modifying the currently executing system (for example, when 
changing, deleting, or adding devices or changing system table 
area sizes). 

SCU is written in Pascal, with calls to assembly language 
routines located in the system root. This section describes the 
logic flow and processing performed by SCU. 

2270513-9701 6-1 System Configuration Utility 



SCI/Utilities Design 

6.2 STRUCTURE 

The configuration utility is a DNOS system task with overlays. 

6.2.1 Address Space. 

SCU's logical address space is slightly different when modifying 
disk images and when modifying the running system. 

When modifying the running system, SCU has the system root in the 
first segment, and, since SCU is a system task, the user's SCI 
job communication area (JCA) in the second segment. The SCU task 
area, including overlays, is in the third segment. 

When modifying a disk image, the system root occupies SCU's first 
two map segments. The DNOS system root is installed as two 
separate segments on the kernel program file. (During the 
initial program load (IPL) sequence, the system loader coalesces 
the two root segments into one contiguous segment, the system 
root.) When SCU maps these disk image segments into memory, they 
are treated by the Segment Manager as two distinct segments, 
although SCU maps them such that all logical addresses in the 
root are valid. 

Figure 6-1 shows the different logical address spaces in which 
SCU may operate. 

6.2.2 Special Features. 

SCU uses the updateable program file processing of the Segment 
Manager to rewrite the disk image of an operating system. 

Most changes to the devices in a system configuration are 
accomplished by first deleting the old device definition and ,then 
adding the new one. The exception is the modification of the 
state of a device. This does not require any change in system 
data structure chaining, and therefore can be handled without the 
delete and add operation. 

When a device is deleted from the system PDT list, SCU calls the 
nucleus support table management routines NFGTA and NFRTA to 
compress table memory. 

The SCU program operates in either interactive or batch mode. 
The Modify Device Configuration (MDC) command procedure structure 
is not, however, executable in batch • 

• 
System Configuration Utility 6-2 2270513-9701 



SCI/Utilities Design 

>0000 +----------+ +----------+ 

ROOT 
or 

+----------+ 
JCA 

+----------+ 

I 
I 

ROOT 

+----------+ 
ROOT 

2 

+----------+ 

>COOO +----------+ 
scu 
TASK 

+---------+ ... I ; ... +---------+ : : : _O_v_e_r_l_a_y __ : : : 

: Overlay : 1 Overlay 
: : +----------+ 
+---------+ ... I Overlay 

2 : ... +---------+ 
+----------+ 
I Overlay 

3 
+----------+ 

Figure 6-1 SCU Address Space 

6.2.3 Overlays. 

There 
program 
maximum 
space. 

are seventeen SCU overlays as shown in Table 6-1. The 
file IDs are defined in the Pascal template SCUCONS. A 
of three overlays can be resident in the SCU ~ddress 

Figure 6-2 shows the calling structure for overlays. 

2270513-9701 6-3 System Configuration Utility 

I 



Overlay 
Name 

SCUINIT 

SCUDATA 

SCUDEV 

SC UL DC 

SCUADD 
SCUPDT 

SCUPD1 
SCUPD2 
SCUDSR 
SCUAINT 

SCUAEXP 
SCUAMUX 
SCUDEL 
SCUMDS 
SCUMISC 

SCUM SP 

SCUNAME 

SCI/Utilities Design 

Table 6-1 SCU Overlays 

Function(s) 

Initializes and terminates SCU session 
Returns Device Parameters 
Processes Modify Country Code (MCC) command 
Builds the SCU internal data base from system 
tables 

Processes a Modify Device Configuration (MDC) 
command 

Processes List Device Configuration (LDC) 
command 

Adds a device to the system configuration 
Builds the appropriate system data structures 

for a device being added 
Fills in certain extensions to the PDT 
Fills in certain extensions to the PDT 
Installs a DSR for a device being added 
Adds Single and multiple device interrupt 
tables 

Adds Expansion chassis interrupt tables 
Adds MUX board interrupt tables 
Deletes a device 
Processes Modify Device State (MDS) command 
Processes Modify System Table Sizes (MST) 

command 
Processes Initialize System Log (ISL) command 
Processes Modify Scheduler/Swap Parameters (MSP) 

command 
Allocates names to devices 

6.3 FLOW OF CONTROL 

SCU is bid by SCI. It processes the request, using the PARMS 
list passed by the command procedure, then calls R$WA1T to 
suspend SCU and to reactivate SCI. When SCU is invoked to 
process a request and no session is active (SCU maintains an 
internal flag to indicate whether a session is in progress), SCU 
terminates through R$TERM instead of R$WAIT. SCU also terminates 
through R$TERM after processing a request to terminate the 
session (QSCU command). 

Syste~ Configuration Utility 6-4 2270513-9701 



SCI/Utilities Design 

CUMAIN 

+---------+----------+----------+----------+ 
I 
I 

SCUINIT SCUDEV SCUADD 

+-------+-------+-------+ 
I I 
I I 

SCULDC SCUDATA SCUDEL SCUMDS: 

SCUMSP 
I 
I 

SCUMISC 

+--------+--------+---+----+--------+--------+ 
SCUPDT SCUPD1 SCUPD2 SCUNAME SCUDSR SCUAINT 

+-----------+ 
SCUAMUX SCUAEXP 

Figure 6-2 Calling Structure for SCU Overlays 

6. 3. 1 Invoking SCU. 

SCI invokes SCU by .RBID primitive. In general, information is 
passed from SCI to SCU by parameters on the RBID statement. The 
exception is the request to modify system parameters. Parameters 
are passed to SCU in synonyms for that process. Information is 
always passed from SCU to SCI by synonyms. 

The PARMS list varies, according to the service requested, but 
the first three elements are always the same, as follows: 

PARM 
No. Definition 

Pascal stack parameter 
2 Pascal heap parameter 
3 Opcode for request 

The contents of the fourth through last elements 
list depend on the opcode. Variations of the 
specific opcodes are discussed, with the detailed 
code, in the following paragraphs. 

of the PARMS 
PARMS list with 
design of the 

SCU does not make use of the CODE parameter on a bid statement. 

2270513-9701 6-5 System Configuration Utility 

I 
I 

1! 



SCI/Utilities Design 

6.3.2 Initialization. 

The initialization of SCU is done in the procedure CUINIT, which 
is called in CUMAIN. This code is executed only on the initial 
bid of SCU by the XSCU command, as opposed to subsequent RBIDs. 
The process consists of setting up the logical address space of 
the utility for the system being modified and initializing 
session and error variables used by SCU. 

6.3.3 Main Program. 

The driver routine for SCU, CUMAIN, has two major phases of 
execution: initializing the memory-resident data base, and 
processing changes to the operating system being modified. 
CUMAIN contains a loop that gets a new opcode to be processed, 
calls the appropriate opcode processor, and calls R$WAIT to be 
suspended until SCI restarts SCU with the next request. 

At the beginning of the opcode processing loop, the SCU variable 
REINIT is tested to determine whether the device definition data 
base needs to be rebuilt. This could be necessitated by 
changing, deleting, or adding a device. If it does need to be 
rebuilt, CUDATA is called. 

CUDATA executes in three stages, as follows: 

1. Deletes all current device definitions in the SCU 
internal data structure. 

2. Reads operating system tables to determine which 
devices are defined, and the associated interrupt 
level, expansion chassis, and expansion position for 
each device. This information is stored in an SCU data 
structure, the device definition list. 

3. Scans the PDT list, adding entries to the device 
definition list for devices with no interrupt. 

Building the device definition list involves processing the 
interrupt trap table located in memory locations >OOOO through 
>003F and following the appropriate chain of system data 
structures until the physical device table (PDT) associated with 
each device is located. The data structures that make up this 
chain are discussed in the subsequent paragraphs. 

If more than one device is defined at a given interrupt 
CUDATA processes every entry in the multiple-interrupt 
table, handling each device interrupt vector the same way 
the single device case. 

level, 
decoder 

as in 

System Configuration Utility 6-6 2270513-9701 



SCI/Utilities Design 

If an expansion chassis is defined at an interrupt level, each 
position for the chassis is processed the same way as in the 
single device case. 

Also, if one or more asynchronous multiplexor (MUX) boards is 
defined at an interrupt level all devices on each board are 
processed as in the single device case. 

6.3.4 Termination. 

SCU is designed to protect the integrity of the home file 
operating system in the event of a system failure. That is, the 
root segments are not marked modified during an active SCU 
session, so that in the event of an irrecoverable error, the 
Segment Manager does not destroy the originals on disk. The 
Segment Manager SVC that marks the memory-resident segments 
modified is issued during normal termination of an SCU session. 

NOTE 

This scheme only works as long as updateable 
segments are swapped out (rather than 
rewritten to disk) when SCU is swapped out. 
Should the swapping of updateable segments by 
the Segment Manager change in this regard, 
SCU will have to be modified, perhaps 
drastically. 

SCU sets the $$CA (configuration utility active) synonym. During 
a session, the synonym is set to either YES or NO, and at the end 
of the session, the synonym is deleted. The synonym is set to 
YES before R$WAIT is called to return control to SCI. However, 
the synonym is set to NO during actual execution of SCU, so that, 
in case of an abnormal termination, the synonym's meaning remains 
correct. 

6.3.5 Error Processing. 

Errors detected in SCU code are of two types: errors that cause 
abnormal termination of SCU, and warnings. Errors that cause 
termination are generated only by S$ routines, and are handled by 
the common utility routine, UTCHEK. Warnings are caused by 
errors detected by SCU code (such as NO SUCH DEVICE), and cause 
SCU to abort the request being processed and return an error to 
the user through R$WAIT. SCU remains active, and any session in 
progress remains in progress, although the warning message may 
advise the user to abort the session. 

2270513-9701 6-7 System Configuration Utility 

I 



SCI/Utilities Design 

Irrecoverable errors are not reported up the calling chain to the 
SCU main driver; they cause immediate task termination. Other 
errors are reported to the main driver eventually by setting four 
Pascal common error variables, $$CC, $$VT, $$MN, and $$ES. The 
values of these four variables are passed as the parameters to 
R$WAIT at the end of the major loop in the SCU main driver, 
CUMAIN. R$WAIT transfers the value of each variable to a synonym 
with the same name, and suspends SCU. 

6.4 DATA STRUCTURES 

SCU accesses several operating system data structures. The only 
data structures maintained by the program for its exclusive use 
other than data structures used by the Pascal run time, are the 
device definitions list, the device map file array (DEVMAP), 
error variables, and some global flags. 

System data structures as well as SCU internal data structures 
and variables are discussed in the subsequent paragraphs. 

6. 4. 1 Interrupt Trap Table and Supporting Structures. 

In order to access information about devices currently defined on 
the system being modified, SCU must read the PDT (and any 
associated extension data structures) associated with each 
device. Even though the PDT associated with each device may have 
an extension, in the remainder of this section, the set of one or 
more structures is called the PDT. Any reference to a PDT 
includes a reference to the appropriate set of data structures, 
depending on the device. 

For each device that is capable of generating an interrupt, there 
exists, in operating system tables, a device interrupt vector 
data structure. A device interrupt vector is a six-byte data 
structure that contains: 

* WP. A pointer to the interrupt workspace (either a PDT, 
a keyboard status block (KSB), or a multi-unit workspace 
(MUW)) for the device. The format of this data 
structure, as well as all extension data structures 
except the MUW, is shown in the Data Structure Pictures 
section of DNOS System Design Document. The structure 
of the MUW is shown in Figure 6-3. The PDT may also 
have extension data structures of the following types: 

Keyboard status block (KSB) 

Disk PDT extension (DPD) 

Line printer PDT extension (LPD) 

System Configuration Utility 6-8 2270513-9701 



SCI/Utilities Design 

* PC. 

Extension for a Terminal with a Keyboard (XTK) 

Device Information Block for TPD DSR (DSTDIB) 

Local ASYNCH Extension to the PDT (DSALLLEX) 

Multi-unit workspace (MUW). This structure is a 
16-register workspace, and is associated with a 
controller that interfaces with as many as four 
devices. Each device associated with the 
controller has a PDT, but it is the controller 
that generates an interrupt to the operating 
system. Figure 6-3 shows the register assignment~ 
in the MUW. 

Address of the DSR for the device. Because of the 
manner in which DSRs are installed in DNOS, this address 
is always >COOO. This fact is not, however, exploited 
in SCU code. 

* MAP. Address of the map file for the device 

+------------------------------------------------+ 
RO I PDTO - Pointer to PDT workspace for first 

device associated with controller 

+------------------------------------------------+ 
R1 I PDT1* 

+------------------------------------------------+ 
R2 I PPT2* 

+----~-------------------------------------------+ 
R3 I PDT3* 

+------------------------------------------------+ 
R4 I Flags 

+------------------------------------------------+ 
\ 
I 

I 
\ 

+------------------------------------------------+ 
R12 TILINE address of the controller 

+------------------------------------------------+ 
R13 Return context: Workspace pointer 

+------------------------------------------------+ 
R14 Program counter 

+------------------------------------------------+ 
R15 Status register 

* 

+------------------------------------------------+ 
Reserved for pointers to PDT workspaces for a maximum 
of four devices. 

Figure 6-3 Multi-Unit Workspace Structure 

2270513-9701 6-9 System Configuration Utility 



SCI/Utilities Design 

A unique device interrupt vector for each device is defined to 
the operating system. The following paragraphs describe the 
system data structures through which th~ vectors are located. 

The operating system interrupt trap table contains the initial 
pointers for all devices. This structure is stored in >0000 
through >003F of SCU's logical address space. For each of the 16 
interrupt levels (0 through 15), the interrupt trap table 
contains a workspace pointer and a program counter. 

The program counter for each device interrupt level is one of 
four entry points into the interrupt processor. The following 
addresses are defined in the system data structure NFPTR: 

* 

* 

PCSPTR - Entry point for processing if a 
is defined at this interrupt level 

single device 

PCMPTR - Entry point for processing if multiple devices 
are defined at this interrupt level 

* PCEPTR - Entry point for processing if an expansion 
chassis is defined at this interrupt level 

* PCAPTR Entry point for processing if a MUX board is 

* 

defined at this interrupt level. 

ILLPC - Entry point for processing 
defined at this interrupt level 

if no device is 

The program counter in the interrupt trap table is compared with 
those global constants to determine what kind of structures if 
any must be examined in order to find the associated device 
interrupt vector(s). 

If the program counter address indicates a single device, the WP 
value is the address of a workspace in which registers eight, 
nine and ten form a device interrupt vector, as shown in Figure 
6-4. 

System Configuration Utility 6-10 2270513-9701 



SCI/Utilities Design 

Trap 
Table 

0 +---------+ 

Workspace 

Device 
+-------> PDT 

+---------+ +-----------+ 
WP --+-------->/ I 

+---------+ +-----------+ I 
I PCSPTR R8 !Device WP 1---+ <--+ Device 
+---------+ +-----------+ 

R9 !Device PC Interrupt 
+-----------+ 

R10 !Device MAP I <--+ Vector 
+-----------+ 
I I 
+-----------+ >40+---------+ 

Figure 6-4 Single-Interrupt Decoder Data Structures 

If the interrupt trap table program counter is PCMPTR, multiple 
devices are defined at the interrupt level. The WP value points 
to a workspace where register nine points to a multiple-interrupt 
decoder table. A multiple-interrupt decoder table is an array of 
four-byte entrie~. The first two bytes are a communications 
register unit (CRU) bit address. The third and fourth bytes are 
a pointer to a device interrupt vector as shown in Figure 6-5. 
Each device defined at that interrupt level has one entry in the 
table. A CRU bit address of zero denotes the end of the table. 

2270513-9701 6-11 System Configuration Utility 



SCI/Utilities Design 

Trap 
Table Multiple-interrupt Decoder Table 

0 +---------+ +----------------------+ 
+--->I CRU I vector 

+----------+-----------+ 
Workspace CRU I vector ---+--+ 

+---------+ +-------+ 
I 
I WP --+---->/ I 
+---------+ +-------+ 
I PCMPTR R9 -+-+ 
+---------+ +-------+ 

I I 
+-------+ 

>40+---------+ 

+----------+-----------+ 
I I I 
+----------+-----------+ 

0 0 I 
I 

+----------+-----------+ 

+---------------------------+ 
I Device Interrupt Vector 
I +----------+ 
+------>IDevice WP I 

+----------+ 
IDevice PC I 
+----------+ 
IDevice MAPI 
+----------+ 

Figure 6-5 Multiple-Interrupt Decoder Data Structures 

If the program counter in the interrupt trap table is PCEPTR, an 
expansion chassis is defined at the interrupt level. The chain 
of data structures for an expansion chassis definition is shown 
in Figure 6-6. WP points to a workspace where the value in 
register twelve indicates which expansion card is defined at that 
level. A value of >1FOO indicates card one (chassis 1 through 4) 
while >1F20 indicates card two (chassis 5 through 7). Up to 
seven expansion chassis may be defined in a DNOS system. ETAB is 
an operating system table with seven entries, two bytes for each 
possible expansion chassis. Each entry contains either a pointer 
to a chassis position table or zero (chassis undefined). The 
address of ETAB is in the ETBPTR field of NFPTR. 

A chassis position table contains 24 entries, four bytes for each 
possible position (0 - 23) on an expansion chassis. Two bytes 
are a flag that indicates single or multiple devices at the 
position. The remaining bytes point either to a multiple
interrupt decoder table as shown in Figure 6-5 or to a device 
interrupt vector for a single device as shown in Figure 6-6), or 
are zero (position undefined). Figure 6-6 shows the path from 
the interrupt trap table to each of the devices associated with 
an expansion chassis definition. 

System Configuration Utility 6-12 2270513-9701 



SCI/Utilities Design 

Trap 
Table 

0 +---------+ 

ETAB Chassis 
+------+ Position Table 

->:Chas 1+---+ +-----+-----+ 
. +------+ +->:Pos o:Flag*: 
. I I +-----+-----+ 
. +------+ :Pos 1:F1ag*: 

IChas 4/ +-----+-----+ 
• +------+ :Pos 2:F1ag*: 

Workspace . I I +-----+-----+ 
+---------+ +-------+ • +------+ I I I 

WP --+---->/ I IChas 71 :-----+-----+ 
+---------+ +-------+ • +------+ 1Pos231Flag*I--+ 
: PCE R12: >1FOO : .. +-----+-----+ 
+---------+ +-------+ 

I I +-------------------------+ 
+-------+ Device Interrupt Vector 

: +-----------+ 
+-------->I Device WP I 

+-----------+ 
>40+---------+ I Device PC I 

+-----------+ 
I Device MAPI 
+-----------+ 

* Flag indicates single/multiple device(s) associated 
with chassis position. In this example, a single
device definition is shown. 

Figure 6-6 Expansion Chassis Decoder Data Structures 

If the program counter in the interrupt trap table is PCAPTR, a 
MUX card is defined at the interrupt level. The chain of data 
structures for a MUX card definition is shown in Figure 6-7. WP 
points to a workspace where the value in register ten points four 
bytes proceeding a MUX board table. A MUX board table contains a 
three word entry for each MUX card defined at this interrupt. 
The first word of an entry contains the TILINE address of the 
card. The second word contains a pointer to the channel table 
associated with the board, and the third word is unused in DNOS. 
The table is terminated by a word of binary zeros. Each MUX 
board must have one, and only one, four-entry channel table, the 
entries corresponding to channels zero through three, 
respectively, on the board. Each entry contains a standard DSR 
entry vector plus an unused word. 

2270513-9701 6-13 System Configuration Utility 



SCI/Utilities Design 

Trap 
Table 

0 +-------+ 

Workspace 
+-------+ +-------+ 

WP --1--> I I 

MUX Board Table 
+-->+----+----+ 

:----+----: 

+----+----+ 
I TILINE I 
I Address 1 I 

+-------+ +-------+ +----+----+ 
PCA R10I 1---+ I Channel I 

+-------+ +-------+ +--ITable PTRI 
+----+----+ 

I I 
I I I I I >18 

>40+-------+ +-------+ +----+----+ 

Channel Table 1 +---------+ 
+----------+ I TILINE I 
IDevice WP I <----+ IAddress NI 

Board 1 

Channel 
II 0 

+----------+ +---------+ Board N 

Channel 
fl 3 

IDevice PC I 
+----------+ 
IDevice MAPI 
+----------+ 

0 
+----------+ 

+----------+ 
IDevice WP I 
+----------+ 
IDevice PC I 
+----------+ 
IDevice MAPI 
+----------+ 

0 
+----------+ 

I Channel I 
ITable PTRI---+ 
+---------+ 

>18 ChanQel Table N 
+---------+ I +---------+ 

0 +--->I 
+---------+ 

+---------+ 

Figure 6-7 MUX Interrupt Decoder Data Structures 

6.4.2 System Common Area. 

System common areas defined in NFDATA, NFPTR, NFJOBC and NFCLKD 
are accessed and modified by SCU. The Data Structure Pictures 
section of the DNOS System Design Document contains the detailed 
formats of system common areas. 

System Configuration Utility 6-14 2270513-9701 



SCI/Utilities Design 

6.4.3 SCU Internal Data Structures and Variables. 

SCU maintains a linked list of Pascal records that contain device 
definitions. ~ach device definition contains information 
condensed from the chain of structures associated with the 
device, and from the PDT for that device. The following 
information is kept in each record of the list: 

* CRU or TILINE address 

* Device PDT address. If the device is a controller, as 
many as four device PDT addresses are saved. 

* Interrupt level, chassis number, and chassis position 

* Number of units 

* Interrupt workspace address 

The internal list is rebuilt at the beginning of the major loop 
in CUMAIN if the device configuration was changed by the last 
command. The need to rebuild the list is indicated by a global 
flag, REINIT. 

The global flags, SESSION and RUNNING_SYSTEM, indicate the 
current SCU environment (that is, whether or not a session is in 
progress, and whether or not the running system or a disk image 
is being modified). 

6.4.4 Synonyms. 

Seventeen synonyms are used by SCU. The names are as follows: 

$CU1, $CU2, $CU3, $CU4, $CU5, $CU6, $CU7, ••• $CU17 

This set of synonyms is used to pass information between SCU and 
SCI. The data contained in each synonym is dynamic, depending on 
which request is being processed by SCU. A mapping scheme that 
localizes assignment of synonyms for data transfer is used in 
most of SCU (synonym names are hard coded in the procedures 
CURISL and CUISL). 

Mapping variables are defined in SCUCONS (in the TEMPLATE.PTABLE 
directory) These variables are of the following format: 

where: 
name 

2270513-9701 

$$name 

is a meaningful character string -- it is either 
descriptive of the information to be mapped with 

6-15 System Configuration Utility 



SCI/Utilities Design 

the variable (CHAS for chassis, POS for position), 
or it is the exact name of a system variable from 
NFDATA or NFCLD. 

Each mapping variable is given an integer value between one and 
seventeen. The mapping is effected in SCU code by assigning 
values to synonyms whose names are constructed as follows: 

$CU@$$name. 

As an example, suppose the synonym mapping variable $$MEMTIC has 
a value of five. In SCU code, the value of the NFDATA variable 
MEMTIC is passed back to SCI as the value of the synonym $CU5. 

This synonym mapping scheme centralizes assignment of synonyms 
for data transfer between SCI and SCU. Only the $$name 
definitions in SCUCONS need be changed to alter the mapping. 

The following synonyms are set by SCU code. Their names are hard 
coded. 

* $$CA - Indicates whether an SCU session is currently 
active. 

* $CU$RS - Indicates whether the running system or a disk 
image is being modified 

• $TYP - Indicates device type. When SCU processes a 
request to return the characteristics of a device with a 
particular name, $TYP is set to a value that in~icates 
the type device associated with that name. (See Table 
6-3 for the values $TYP is assigned.) 

6.5 DETAILED DESIGN 

Each of the requests recognized by SCU is discussed in the 
following paragraphs._ The opcode, overlay(s) and PARMS list are 
defined. Processing is discussed in general terms. 

When SCU is invoked, the first three elements of the PARMS list 
are always the same -- stack, heap and opcode. Values of 500 for 
stack and 800 for heap are sufficient for the configuration 
utility. Table 6-2 summarizes the opcode values used by SCU. 
Only the fourth and subsequent elements of the PARMS list are 
discussed with each specific request. 

System Configuration Utility 6-16 2270513-9701 



SCI/Utilities Design 

Table 6-2 SCU Opcodes 

Opcode Function 

O Initiates an SCU session 
1 Lists current device configuration 
2 Requests device parameters 
3 Modifies an existing device 
4 Adds a device 
5 Deletes a device 
6 Shows country code 
7 Modifies country code 
8 Requests system table area sizes 
9 Modifies system table area sizes 

10 Requests system log parameters 
11 Modifies system log parameters 
12 Terminates SCU session 
13 Requests system parameters - screen 1 
14 Requests system parameters - screen 2 
15 Requests system parameters - screen 3 
16 Modifies system parameters - screen 1 
17 Modifies system parameters - screen 2 
18 Modifies system parameters - screen 3 
19 Modifies device state 
20 Requests system parameters - screen 4 
21 Modifies system parameters - screen 4 

In the following discussion, elements passed on the PARMS list 
and in SCU synonyms are defined as they appear in the DNOS 
System Command Interpreter (SCI) Reference Manual. Refer to the 
discussion of the referenced SCI command for additional 
information about the parameters. 

6 • 5 • 1 Initiate SCU Session. 

SCI Command: XSCU 

Opcode: 0 

Overlay: SCUINIT 

PARMS: 

One additional PARM must be passed. 
to be configured. 

It is the name of the system 

Initialization of an SCU session is done in the procedure CUINIT 
which is called by CUMAIN. After initializing SCU variables, 
CUINIT is called to map into memory the two system root segments 
for the system being modified. This is done by assigning a LUNO 

2270513-9701 6-17 System Configuration Utility 



I 

I 

SCI/Utilities Design 

to the program file containing the system to be modified, then 
issuing two change segment SVCs and a rebias segment SVC to map 
the root. 

Following this initialization, control drops into the major loop, 
where the internal device definition list is bUilt, and R$WAIT is 
called to suspend SCU until the next request is ready to be 
processed. 

6.5.2 List Device Configuration. 

SCI Command: LDC 

Opcode: 

Overlay: SCULDC, SCUDEV 

PARMS: 

The fourth element on the PARMS list must be the name of the 
output listing file. 

CULDC is called to format a report from the SCU internal device 
definition data base. The report is written tu the specified 
output destination by calls to R$WRIT, the Pascal interface 
routine to S$WRIT. 

6.5.3 Device Characteristics. 

Four requests are 
parameters, change 
device. 

concerned with devices 
device parameters, add 

6.5.3.1 Return Device Parameters. 

SCI Command: MDC 

Opcode: 2 

Overlay: SCUMDC 

PARMS: 

return device 
device and delete 

The fourth element of the PARMS list is the name of the device. 

SCU returns the current values for device characteristics. 
Routine CURDP searches the device definitfon data base for a 
device with the specified name, and sets, according to the device 
type, a subset of the following synonyms: 

* $CU$$DEVNAME - Name of the device 

System Configuration Utility 6-18 2270513-9701 



SCI/Uti11ties Design 

* $CU$$CRU - CRU or TILINE address of the device 

* $CU$$EXTENDED 
character set 

YES/NO line printer 

* $CU$$INT - Interrupt level 

* $CU$$CHAS - Chassis number 

* $CU$$POS - Expansion chassis position 

has extended 

* $CU$$QUEUE - Length of the character queue of a terminal 

* $CU$$MODE - Print mode for line printer (S for serial, P 
for parallel) 

* $CU$$DRIVES - Number of devices on a controller 

* $CU$$DEFAULT - Default physical record size for disk 

* $CU$$INTERFACE - Interface type 

* $CU$$SWITCHED - Phone line switched YES/NO 

* $CU$$BAUD - Baud rate of the station 

* $CU$$ACU - Automatic call unit YES/NO 

* $CU$$ACRU - Address of the automatic call unit 

* $CU$$PRINTER Associated line printer for the 940 
YES/NO 

* $CU$$MODEM - Full duplex modem YES/NO 

* $CU$$ECHO - Echo keystrokes YES/NO 

* $CU$$TYPE - KSR terminal type 

* $CU$$CDT - CDT number 

* $CU$$CDE - COE mask 

The synonym $TYP is set. The values assigned this synonym are 
determined by the operating system LDT template, as shown in 
Table 6-3. All values are given in hexadecimal. 

2270513-9701 6-19 System Configuration Utility 

I 

I 



I 

SCI/Utilities Design 

$TYP 
Value 

2 
3 
7 
8 
9 
A 
B 
c 

1 0 
1 1 
1 2 

Table 6-3 $TYP Values 

KSR 
ASR 

Device type 

Disk drive 
Magnetic tape drive 
TPD device 
911 VDT 
Serial line printer 
Parallel line printer 
Card reader 
940 VDT 
9 3 1 VDT 

6.5.3.2 Change Device. 

SCI Command: MDC 

Opcode: 3 

Overlays: 

PARMS: 

SCUDEV, SCUADD, SCUDEL, SCUPDT, SCUDSR, 
SCUPD2, SCUAINT, SCUAEXP, SCUAMUX 

SCUPD1, 

Depending on device type, values must be supplied for a subset of 
the following PARMS list. A device is changed via three 
operations. The parameters associated with the old device are 
first retrieved. The device is then deleted. Finally, the old 
parameters together with any modifications to those parameters 
are used to add a new device. 

REINIT is set to cause the device definition list to be rebuilt 
by CUDATA the next time through the major loop of CUMAIN. 

System Configuration Utility 6-20 2270513-9701 



SCI/Utilities Design 

PARM 
No. Definition 

4 Device name 
5 CRU or TILINE address 
6 Interrupt level 
7 Expansion chassis 
8 Expansion position 
9 Device type 

10 Drives 
11 Print mode (serial or parallel) 
12 Print width 
13 Extended character set? 
14 Time-out 
15 Opens validated? 
16 Character queue 
17 Cassette time-out 
18 Cassette opens validated? 
19 Default record size 
20 KSR type 
21 Interface 
22 Switched 
23 Baud 
24 ACU 
25 ACU CRU 
26 Echo 
27 Full duplex 
28 Associated printer 
30 CDT number 
31 CDE mask 
32 Channel number 

6.5.3.3 Add Device. 

SCI Command: MDC 

Opcode: 4 

Overlays: SCUADD, SCUPDT, SCUDSR, 
SCUAINT, SCUAEXP, SCUAMUX 

PARMS: 

Same as change device. 

CUAD is called to build the device record. 

SCUPD 1, SCUPD2, 

CUADD is called to allocate operating system table area for a new 
PDT. CUDSR is called to install the DSR, if necessary, and to 
link the PDT into the operating system PDT list. CUAINT is 
called to add the device at the specified interrupt level. 

2270513-9701 6-21 System Configuration Utility 



SCI/Utilities Design 

This process is more complex when the kind of data structure is 
changed (for example, the addition of the second device at an 
interrupt level changes the chain from the single-device 
structure to a set of multiple-device structures). 

REINIT is set to cause the device definition list to be rebuilt 
by CUDATA the next time through the major loop of CUMAIN. 

6.5.3.4 Delete Device. 

SCI Command: MDC 

Opcode:5 

Overlays: SCUDEV, SCUDEL 

PARMS: 

The fourth element of the PARMS list is the name of the device. 

CUMAIN calls CUDD to scan the device definition data base for a 
device that has the specified name. If one is found, IN USE is 
called to determine whether the device may be deleted. It may be 
deleted if no LUNOs are assigned, and it is not an installed 
disk. If the device cannot be deleted, processing of the.request 
is aborted. If it is acceptable to delete the device, CUDD calls 
CUDINT to delete that device from the interrupt trap table, then 
unchains the PDT for that device from the system PDT list and 
releases that memory to the system table area. 

6.5.4 Show Country Code. 

SCI Command: SCC 

Opcode: 6 

Overlay: SCUINIT 

PARMS: 

No additional input is required. 

The current value of the country code, from the system table 
NFDATA, is returned to SCI by the routine CUSCC in the module 
cucc. 

The value returned in the synonym $CU$$COUNTRY is an integer. 
All mapping of the country code to country name is done in the 
command procedure. 

System Configuration Utility 6-22 2270513-9701 



SCI/Utilities Design 

6.5.5 Modify Country Code. 

SCI Command: MCC 

Opcode: 7 

Overlay: SCUINIT 

PARMS: 

The fourth PARM is the new country code. 

When the country code is changed, CUMCC, in the module CUCC, is 
called to replace the old value in NFDATA with the new one. 

6.5.6 Show System Table Sizes. 

SCI Command: MST 

Opcode: 8 

Overlay: SCUMISC 

PARMS: 

No additional input is required. 

CURSTS processes this request and sets the following synonyms: 

* $CU$$STA - Size of the system table 
calculated from values in the 
structure, STAEND-STARES, which is 
minus the beginning address. 

area 
STA 

the 

(STA). This is 
overhead data 

ending address 

* $CU$$SMT - Size of the Segment Manager table area 

* $CU$$FMT - Size of the File Manager table area 

* $CU$$BTA Size of the buffer table area (BTA), BTALEN 
in the data structure NFDATA 

* $CU$$BTAMAX - Maximum size of BTA, BTAMAX in NFDATA 

* $CU$$STAMAX Maximum size of STA. This value is 
calculated using MAXSIZE (an SCU constant for maximum 
JCA/special table area size) and SYSTAB (from NFPTR, the 
address of the beginning of the system table area). The 
calculated value is calculated as follows: 

2270513-9701 6-23 System Configuration Utility 



SCI/Utilities Design 

* $CU$$SYS_JCA - System JCA size 

STAMAX = >COOO - MAXSIZE - SYSTAB. 

Calculating the Segment Manager and File Manager table areas 
involves reading segment status blocks (SSBs) in the STA. Refer 
to the DNOS System Design Document for details of SSBs. The 
lengths of segments belonging to each manager are summed to 
produce the total size of the tables allocated to the Segment 
Manager and to the File Manager. Pointers in NFPTR are used to 
access the appropriate SSB(s). 

6.5.7 Modify System Table Area Sizes. 

SCI Command: MST 

Opcode: 9 

Overlays: SCUMISC 

PARMS: 

PARM 
No. 

4 
5 
6 
7 
8 
9 

Maximum 
New size 
New size 
New size 
New size 
New size 

Definition 

job communication area (JCA) 
for system table area 
for segment manager tables 
for file manager tables 
for buffer tables 
for system job communication area (JCA) 

CUMAIN calls CUMSTS to process the values passed in the PARMS 
list. A new value for RELOCA, the relocation value used by the 
loader, is calculated and stored in NFDATA. The new value is the 
difference between the user-specified table area size and the 
current value of JCASTR (beginning address of the JCA), rounded 
to a beet boundary. The BTA size is changed by putting the new 
value in BTALEN in NFDATA. 

Altering the size of the Segment Manager and the File Manager 
table areas may involve making changes in the STA and in NFPTR. 
The SSBs associated with the segments are in the STA. The 
maximum length of a segment represented by one SSB is >3000. If 
the total size of an area decreases, one or more SSBs may have to 
be deleted. If the area increases in size, new SSBs may need to 
be built. The building and destroying of special table area SSBs 
and updating the appropriate pointers in NFPTR are handled by the 
routine MOD SSBS. 

System Configuration Utility 6-24 2270513-9701 



SCI/Utilities Design 

6.5.8 Show System Log. 

SCI Command: ISL 

Opcode: 10 

Overlay: SCUMISC 

PARMS: 

No additional input is required. 

This request is processed by the procedure CURISL, which returns 
current values from the system log for those items a user is 
allowed to change. 

The following information is returned through SCU synonyms: 

* $CU1 - Attention device name 

* $CU2 - Log device name 

* $CU3 - Task ID of system log processor 

* $CU4 - Task ID of user log processor 

* $CU5 - Number of records in each log file 

The synonym assignments are hard coded in CURISL. 

6.5.9 Initialize System Log. 

SCI Command: ISL 

Opcode: 11 

Overlay: SCUMISC 

PARMS: 

PARM 
No. Definition 

4 Logging device 
5 Attention device 
6 System log processor task ID 
7 User log processor task ID 
8 Recreate file? 
9 Allocation 

2270513-9701 6-25 System Configuration Utility 



I 

SCI/Utilities Design 

Procedure CUISL is called to process most of the values by 
setting flags or changing values in the log processor common 
area, LGLCOM. If the user has specified that the log files are 
to be recreated, CUISL bids. the log file recreate task, LGRCRT, 
in the system job. When LGRCRT terminates, CUISL checks LGLCOM 
for error codes. ·Ir an error was reported by LGRCRT, it is 
reported to the user through the Pascal interface routines. 

NOTE 

If a disk image of a system is being 
modified, the log files are never recreated, 
regardless of the value passed in the PARMS 
list. 

6.5.10 Terminate SCU Session. 

SCI Command: QSCU 

Opcode: 12 

Overlay: SCUINIT 

PARMS: 

The fourth element on the PARMS list is an abort indicator 
(YES/NO). 

Normal termination of an SCU session is handled by the 
CUQUIT. This procedure checks the abort parameter. 
equal to NO is specified, CUQUIT issues Segment Manager 
force write the root segments. 

procedure 
If a value 

SVCs to 

Although the request is meaningless, no error is generated when 
termination processing is requested with a value of YES passed as 
the abort parameter, and the running system is being modified. 

6.5.11 Modify System Parameters. 

SCI Command: MSP 

This function of SCU is done in four stages. 
chosen for the following reasons: 

This design was 

* Some terminals have as few as 12 display lines. This 
hardware limits the number of field prompts, so that all 
information cannot be displayed on one screen. 

System Configuration Utility 6-26 2270513-9701 



SCI/Utilities Design 

* Fewer synonyms are required for passing information 
between SCI and SCU than if all parameters are handled 
at once. 

* The parameters that may be modified fit rather naturally 
into three categories. 

The PARMS list used in bidding SCU for modifying 
parameters consists of only the first four parameters. 

system 

Each stage is performed by a pair of Pascal procedures: CURSP1 
and CUMSP1, CURSP2 and CUMSP2, CURSP3 and CUMSP3, and CUMSP4 and 
CURSP4. Procedures with an R in the name set synonyms to the 
current values in the system tables. Procedures with an M in the 
name store synonym values in the system tables. All procedures 
are in the module CUMSP. 

Each of the CUMSP procedures depends heavily on two subroutines, 
RETRIEVE and RETURN. These two subroutines are used to map 
synonym values to binary values and map binary values to synonym 
values, respectively. Since values are of various types (for 
example, character, integer, or list), RETRIEVE and RETURN are 
called with a parameter to indicate the kind of value being 
passed or requested. These calls are made with a knowledge of 
system table formats. Should those formats change, changes to 
code that calls RETRIEVE or RETURN will be required. 

6.5.11.1 Stage One. 

In the first stage, values of miscellaneous system variables are 
returned (opcode 13), and modified (opcode 16). 

Overlay: SCUMSP 

2270513-9701 6-27 System Configuration Utility 



Synonyms: 

Synonym 

$CU$$DSPFG1 

$CU$$DSPFG2 

$CU$$UNTSLC 

$CU$$ENDLMT 

$CU$$MEMTIC 

$CU$$JCA 

SCI/Utilities Design 

Contents Field Prompt Name 

Statistic to display FRONT PANEL DISPLAY-LEFT 
on left side of front 
panel 
Statistic to display FRONT PANEL DISPLAY-RIGHT 
on right side of 
front panel 
Number of clock ticks CLOCK TICKS/SLICE 
in a time slice 
Number of STUs a END ACTION LIMIT(STU'S) 
task is allowed for 
end-action 
Number of ticks MEMORY ERROR SAMPLE RATE 
between parity checks 
Number of bytes in a MEDIUM JCA SIZE 
medium JCA 

6 . 5. 11 • 2 St age Two • 

In stage two, parameters used in scheduling are returned (opcode 
14) and modified (opcode 17). 

Overlay: SCUMSP 

Synonyms: 

Synonym 

$CU$$INTPRI 

$CU$$JPRMOD 

$CU$$DYNMOD 

$CU$$AGEIND 

$CU$$IOINDX 

Contents Field Prompt Name 

Initial run time INITIAL PRIORITY VALUES 
priorities 
Weighting factors for WEIGHT OF JOB PRIORITY 
job priority on run 
time priority 
How much to vary run- DYNAMIC PRIORITY RANGE 
time priority for I/O 
bound tasks 
Whether to age run- AGING ON PRIORITY 
time priorities 
Average time a task TICS BETWEEN SUSPENDS 
suspends 

System Configuration Utility 6-28 2270513-9701 



SCI/Utilities Design 

6.5.11.3 Stage Three. 

In stage three, swapping parameters are returned (opcode 15) and 
modified (opcode 18). 

Overlay: SCUMSP 

Synonyms: 

Synonym 

$CU$$CLMXBF 

$CU$$CLMXPS 

$CU$$TLSPND 

$CU$$TLEXEC 

$CU$$TOLS24 

$CU$$LDRTDY 

$CU$$JCARES 

Contents 

Maximum number of 
buffers or segments 
to be cached 
Maximum number of 
program segments 
cached 

Field Prompt Name 

CACHABLE BUFFERS 

CACHABLE PROGRAM SEGMENTS 

Minimum number of STUs MINIMUM SUSPENSION TIME 
in suspension until 
task is swapped 
Minimum number of STUs MINIMUM EXECUTION TIME 
execution until task 
is swapped 
Whether to swap STATE >24 IMMEDIATE ROLL? 
queue servers 
Number 6f STUs to 
delay task loader 

LOADER TIME DELAY(STU'S) 

Minimum JCA free space JCA EXPANSION BOUNDARY 
prior to expansion 

6.5.11.4 Stage Four (more miscellaneous values). 

Overlay: SCUMSP 

Synonyms: 

Synonym Contents Field Prompt Name 

$CU$$JOBLMT Maximum number of FOREGROUND JOB LIMIT 
active foreground jobs 

$CU$$JOBBLM Maximum number of BATCH JOB LIMIT 
active background jobs 

$CU$$MEMSIZ Size (in beets) of PHYSICAL MEMORY SIZE 
physical memory 

$CU$$SITENM Site name (e.g. AUSTIN)SITE NAME 

2270513-9701 6-29 System Configuration Utility 



I 

6.5.12 Modify Device State. 

SCI Command: MDS 

Opcode: 19 

Overlay: SCUDEL 

PARMS: 

PARM 
No. Definition 

4 Device name 
5 New device state 

SCI/Utilities Design 

6 Does device accept eight-bit characters? 
7 Read after write error check? 
8 Bit map read after write error check? 

The modify device state request is processed in procedure CUMDS. 
It applies the specified changes directly to the PDT of the 
device being modified. 

The read after write error check can only be applied to the 
running system. This rule is enforced in the code. The feature 
is not allowed on DS31 drives, because the DS31 controller does 
not comprehend the transfer inhibit bit. SCU issues a store 
registers SVC to the device to determine whether it is a DS31. 
Because this test is always done, the read after write error 
check cannot be activated for a drive that is off-line. 

6.6 MODIFYING SCU 

In general, the use of Pascal to implement SCU facilitates 
sustaining or even adding capabilities. SCU does not use the 
Pascal I/O package. The only I/0 that SCU explicitly performs is 
through synonyms and SCI prompts or through calling S$ routines 
to write lists to the output file. The fact that the main driver 
is for all practical purposes a single CASE statement based on 
the opcode makes adding new capabilities to SCU straightforward; 
simply add a new case and define a new procedure to process it. 

Note that SCU does some implicit I/0 by using updatable program 
file segments. During processing of the request to terminate an 
SCU session, the root segments are force written to their home 
file unless the session is aborted by the user. 

System Configuration Utility 6-30 2270513-9701 



SCI/Utilities Design 

6.6.1 Coding Conventions. 

The SCU code uses copy files for constants and types that may 
need to change. Constants are used extensively, in an effort to 
localize potential SCU modifications due to data structure or 
command procedure changes. Constants are defined for the 
following: 

* Error message codes (message numbers) 

* 

* 

* 

* 

Overlay IDs 

SCI PARMS list positions 

Synonym name mapping 
CURISL and CUISL) 

SCU opcodes 

values (except for procedures 

The SCU code follows the DNOS naming conventions as described in 
the DNOS System Design Document, with regard to module names and 
source file names. The exception is that subroutines 
(procedures) defined and used locally in ·a single major 
subroutine are given names that have meaning. For example, the 
data base initialization routine, CUDATA, contains subroutines 
ADD SINGLE, ADD MULTIPLE, and so on; CUMDS, which modifies device 
state, contains-a function IN USE. 

The SCI command procedures that invoke SCU are two-phased; that 
is, they return defaults and then apply user-specified changes. 
Most command processors consist of two procedures. The procedure 
that applies the command is named CUxxx, where xxx is, in 
general, the command procedure name. The Pascal procedure that 
returns defaults is named CURxxx, with the R indicating return. 

6.7 INTERNATIONALIZATION 

The output produced by SCU consists of numbers, device names, and 
report text (for example, LDC headings, device attributes). The 
report text is all contained in the only SCU assembly language 
modules. The text is in the form of Pascal strings, with each 
string in a separate CSEG. In addition to report text, CUCOM 
contains the text for several necessary constants, such as YES, 
NO, TRUE, FALSE, and the device stat~s (online, offline, 
diagnostic, spooler). Whenever code within SCU must determine 
whether the answer to a prompt is YES/NO, TRUE/FALSE, etc., it 
compares the prompt answer to an appropriate string in CUCOM; 
thus, there is no imbedded text in any SCU module except CUCOM. 

2270513-9701 6-31 System Configuration Utility 



SCI/Utilities Design 

The country code is handled as an integer by the program. All 
mapping of integer to country name is done within the command 
procedure. 

6.8 COMPANION COMMAND PROCEDURES 

The user interface to SCU is SCI. 

Table 6-4 summarizes SCU functions, grouped by command procedures 
as shipped by Texas Instruments Incorporated. The commands that 
are available outside an initiated session are noted. System 
modifications made outside an initiated session cannot be made 
permanent in the same way as modifications made during an SCU 
session. Modifications are made permanent by updating the home 
program file. Updating is done as part of session termination. 
Some SCU commands make changes to system data structures that 
become effective only after an IPL (for example, adding a new 
type of device, which requires a new DSR for that device; 
changing system table sizes). 

System modifications made outside an active session are applied 
to the running system. 

Note 

Note 2 

Table 6-4 SCU Commands 

XSCU - Execute SCU 
LDC - List Device Configuration (Note 1) 
MDC - Modify Device Configuration 
SCC - Show Country Code (Note 1) 
MCC - Modify Country Code 
MST - Modify System Table size (Note 2) 
ISL - Initialize System Log (Note 1) 
MOS - Modify Device State (Note 1) 
MSP - Modify Scheduler/Swap Parameters (Note 1) 
QSCU - Terminate an SCU Session 

Command is available during uninitiated sessions. 

Command is available in limited 
uninitiated sessions. 

form during 

System Configuration Utility 6-32 2270513-9701 



SCI/Utilities Design 

6.8.1 Command Procedure Design. 

All command procedures to modify the system are written to flow 
as follows: 

* 

* 

RBID SCU with the opcode specifying that the utility is 
to return the current values of parameters associated 
with the item to be modified. 

Prompt the user for new values, using the current values 
as defaults. 

* RBID SCU with the opcode specifying that the utility is 
to modify the image in memory. The values supplied by 
the user are passed to SCU in either the PARMS list or 
in $CU synonyms. 

Nothing 
values. 

in the code requires that SCU be called first to return 
The first of the above steps could be omitted. 

SCU does not validate the values passed on the PARMS list. The 
command procedures, as shipped by Texas Instruments Incorporated, 
ensure that all data entered by the user is of a proper type and 
has an acceptable value (for example, range or element of a 
list). Changing the field prompt declarations in SCI command 
procedures that invoke SCU could allow a user to make disastrous 
changes to the operating system being modified. 

6.8.2 MDC Command Procedure Package. 

MDC is the top level of a three-tiered command procedure 
structure. This hierarchy minimizes the number of command 
procedures required to specify all possible modifications (add, 
delete, or change) to a total of twelve devices. A discussion of 
the structure follows, along with an example session to show how 
MDC steps the user through the process of changing the 
characteristics of a device. 

All other SCU command procedures are the more conventional 
single-level type and are not discussed in this document. 

The MDC hierarchy is shown in Figure 6-8. 

2270513-9701 6-33 System Configuration Utility 

I 

I 



SCI/Utilities Design 

MDC 

+--------------+--------------+ 
MDC$A 

Add Device 
MDC$C 

Change Device 

+---------+----+ 
I 
I 

MDC$D 
Delete Device 

+----+---+----+----+----+----+-----+---+--+---+----+----+ 
I 1-I 

MDC$010 MDC$0151 MDC$03 MDC$08 MDC$0B MDC$TYP 
Card Virtual I ASR Magnetic Serial Set the 

Re ad er Terminal I Device Tape Unit Line I Synonym I 

Base Printer I $TYP 

1 MDC$012 MDC$02 MDC$07 MDC$0A MDC$0C 
1931 VDT KSR Disk 9 1 1 Parallel 

Device Drive VDT Line 
Printer 

MDC$011 MDC$09 
940 VDT TPD 

Figure 6-8 MDC Command Procedure Structure 

MDC prompts the user 
change, or delete), and 
level two. 

for the kind of change to be made (add, 
invokes the appropriate procedure at 

Level two procedures prompt the user for device name and/or 
device type. At this level, all information necessary to delete 
a device is known. MDC$D RBIDs SCU and does not invoke any 
procedures at level three. 

MDC$A and MDC$C invoke the appropriate third-level procedure. 
The name of the third-level command procedure is constructed by 
appending the value of the synonym $TYP to the character string 
MDC$. $TYP represents the device type as defined in the LDT 
template. 

Level three procedures prompt the user for specific 
needed to define a device of the particular type. 
RBID with the proper opcode and PARMS list. 

information 
SCU is then 

The following example shows the technique used in writing the MDC 
command procedure set. Explanatory comments have been added, and 
the procedures are not exact replicas of those shipped with DNOS. 

System Configuration Utility 6-34 2270513-9701 



SCI/Utilities Design 

Assume that you have invoked MDC. 
procedure is executed: 

The following 

MDC(MODIFY DEVICE CONFIGURATION):6, 
DATA DISK/VOLUME=*ACNM("@$XSGU$D") 
.SYN $XSGU$D="@&DATA DISK/VOLUME", 
$MDC$DD="@@$XSGU$D .S$0SLINK.S$SGU$" 
.LOOP 
.PROMPT (MODIFY DEVICE CONFIGURATION), 
COMMAND(CHANGE,ADD,DELETE)=ELEMENT(C:C, 
A=A,D:D)(C) 
MDC$&COMMAND 
.UNTIL @$$CC,NE,O 
.UNTIL @$$MO,EQ,O 
.REPEAT 

command 

1 
2 
3 
4 
5 
6 
7 
8 
9 
7 
1 1 
12 

Lines 5 through 12 are a loop. Line 9 is the construction of the 
second-level command procedure name. Line 10 provides for 
exiting the loop if an irrecoverable error occurs and line 11 
prevents looping in batch mode. 

Assume you responded ADD to the COMMAND field prompt. The 
command procedure MDC$A is invoked. 

MDC$A (ADD DEVICE)=6, 1 
DEVICE TYPE = ELEMENT(VDT:VDT,911:VDT,DISK:DISK, 2 
MAG TAPE:MAG TAPE,VIRTUAL TERMINALS:VIRTUAL TERMINALS, 3 
ASR=ASR,KSR:KSR,CARD READER=CARD READER, 4 
LINE PRINTER=LINE PRINTER) 5 
.RBID TASK:02E, UTILITY, PARMS:(500,800,8,03000) 6 
.IF @$$CC, EQ, 0 7 
.SYN $SCU$BTA = @$CU4 8 
.SYN $TITLE="ADD &DEVICE TYPE",$0P=4, 9 
$CU1="",$CU2="",$CU3="",$CU4="",$CU5="",$CU6="",$CU7="", 10 
$CU8="" ,$CU9="" ,'$CU10="" ,$CU11="" ,$CU12="" ,$CU13="", 11 
$CU14="",$CU15="",$CU$16="",$CU17="" 12 
MDC$TYP DEVICE TYPE ="&DEVICE TYPE" 13 
.IF @$TYP, IS, ELEMENT(OA,03,02,015) 14 
.SYN $CU15=">@$TYP",$CU16=">E000" 15 
.END IF 16 
.SYN $MDC$AD="Y" 17 
MDC$@$TYP ·18 
.ENDIF 19 
.SYN $TYP="",$TITLE="",$PROC="",$0P="",$MDC$AD="", 20 
$CU1="",$CU2="",$CU3="",$CU4="",$CU5="",$CU6="",$CU7="", 21 
$CU8="",$CU9="",$CU10="",$CU11="",$CU12="",$CU13="", 22 
$CU14="",$CU15="",$CU16="",$CU17="",$SCU$BTA="",$SCU$INT="" 23 

Line 18 is the construction of the third-level command procedure 
name. 

2270513-9701 6-35 System Configuration Utility 



SCI/Utilities Design 

Assume you responded DISK to the DEVICE TYPE field prompt. Since 
this is a disk, TYP has the value 07 (the 7 was set by SCU the 
first time it was invoked, and the 0 was added in the command 
procedure). Command procedure MDC$07 is invoked. 

MDC$07 (@$TITLE):6, 
TILINE ADDRESS = RANGE(OF800,0FBF0)("@$CU2"), 
DRIVES= RANGE(1,4)("@$CU6"), 
DEFAULT RECORD SIZE = INT("@$CU7"), 
INTERRUPT = RANGE(3,15)("@$CU3"), 
EXPANSION CHASSIS= *RANGE(1,7)("@$CU4"), 
EXPANSION POSITION = *RANGE(0,23)("@$CU5") 
*BID TASK SCU 
.RBID TASK:02E,UTILITY,PARMS:(500,800,@$0P,@$CU1,&TILINE, 
&INTERRUPT,&EXPCHAS,&EXPPOS,@$TYP, 
&DRIVES,, ,,O,NO, 
, , , &DEFAULT, , , , , , , , , , , , , 0) 

This command procedure bids SCU with the appropriate PARMS list 
to add a disk in the system currently being configured. 

System Configuration Utility 6-36 2270513-9701 



SCI/Utilities Design 

SECTION 7 

OPERATOR INTERFACE 

7.1 OVERVIEW 

The operator interface subsystem provides a mechanism by which 
information and/or requests are communicated to a user who is 
performing operator functions, and to any other users who ask to 
see the messages. 

The operator interface is designed to enable any task in any job 
to pass a request to the system operator when the task requires 
intervention (for example, when devices require attention). The 
request may or may not require a response from an operator. If 
it does, the subsystem allows the task to specify time-out 
information. The requesting task is notified when an operator 
responds to the request, or when the specified time has expired, 
whichever occurs first. 

Operator functions may be either centralized to one user, who is 
called the system operator, or distributed among all users who 
have requested to have the text of operator requests displayed at 
their terminals. 

The basic design of the operator interface subsystem is passive. 
An operator must initiate the transaction of responding to a 
specific request. The subsystem maintains a list of pending 
requests, but takes no initiative to get operator response. 

While the operator interface subsystem does service a series of 
requests, it is not a queue server in the same sense as the Job 
Manager and the Name Manager. The operator interface subsystem 
does not accept input from a batch job. It is written in Pascal 
and requires the following support: 

* MAILBOX services 

* Interprocess communication 

* Initiate Event and Wait for Event SVCs 

* Access to a system disk for a temporary file 

2270513-9701 7-1 Operator Interface 



SCI/Utilities Design 

7.2 STRUCTURE 

The operator interface subsystem is implemented in two tasks -
the system operator task, OPERATOR, and the operator interface 
task, XOI. 

7.2.1 System Operator Task. 

The system operator task, OPERATOR, is a nonreplicatable, 
nonprivileged system task. OPERATOR is bid in the system job by 
the system restart task, and, once through the initialization 
phase, never terminates. 

The functions of the OPERATOR task are as follows: 

* 

* 

* 

* 

As the owner and master of S$0PER, processes all writes 
and reads issued to the channel 

Maintains the operator request 
pending operator requests 

table, a list of all 

Maintains the user ID table (UIDT), a list of all users 
who have requested that operator requests be di~played 
at their terminals 

Maintains the pointer in the system common area NFPTR to 
indicate which user, if any, is currently the system 
operator 

7.2.2 Operator Interface Task. 

The 
SCI. 

operator interface task, XOI, is bid in the user's job by 
XOI is replicatable and nonprivileged. 

The function of XOI is to interface between a user and the 
OPERATOR task. This consists of writing messages on the channel 
and processing the associated reply buffers. 

For the system operator whose terminal is dedicated to the system 
operator function, XOI displays incoming requests and provides 
special processing of two function keys for responding to and 
killing specific requests. 

7.3 COMMUNICATION BETWEEN TASKS 

OPERATOR is 
interprocess 

the owner of 
communication 

Operator Interface 

.S$0PER, a global 
(IPC) channel. All 

7-2 

master/slave 
communication 

2270513-9701 



SCI/Utilities Design 

between requesting tasks and the system operator task is done on 
.S$0PER. 

As owner of the channel, OPERATOR is responsible for processing 
Open and Close SVCs on .S$0PER. OPERATOR does not open the 
channel to any ~ccess privilege other than shared. 

All messages on .S$0PER must be sent with a write operation using 
the reply option. Any message received by OPERATOR that is not 
so written is not processed; an error code that indicates an 
invalid opcode is put into the SVC block and the write to the 
channel is terminated. 

Only the XOI task of the system operator is allowed to issue a 
read to .S$0PER. 

The format of messages written to .S$0PER is covered in the 
paragraph on detailed design _of the operator interface task, XOI, 
which has responsibility for formatting the appropriate message. 
The format of the reply buffer is in the detailed design of the 
system operator task, OPERATOR, which has responsibility for 
formatting the reply. 

7.4 GENERAL DESIGN CONCEPTS 

The following paragraphs contain information about terms used in 
this document, the rules of operator privilege, and the format of 
messages displayed by the operator interface subsystem. 

7.4.1 Definitions. 

The following terms are used throughout this document. They are 
not used in comments that appear in the source code, but are 
defined in this document to clarify concepts in the op~rator 

interface subsystem. 

* 

* 

* 

Operator A user who has executed the ROM command, 
without a subsequent KOM, or who is the system operator 

System Operator - A user who has been designated 
system operator by successfully executing the 
command (without a subsequent QOI) 

the 
XOI 

(Operator) Request - An entry in 
table 

the operator request 

* (Operator) Response The data produced by operator 
action with regard to a request 

2270513-9701 7-3 Operator Interface 



* 

* 

* 

SCI/Utilities Design 

Requester - The user task with which an operator request 
is associated. The requester may be XOI or another 
task. For example, the Spooler generates requests in 
behalf of the user who invoked the Spooler. In this 
case, the user task that invoked the Spooler is the 
requester. 

Message - An OPERATOR opcode and the supporting data 
obtain services from OPERATOR 

to 

Reply A buffer of information that is the result of 
services provided by OPERATOR 

NOTE 

The system task in the operator interface 
subsystem is installed with the name 
OPERATOR. In the code, it is often called 
SOT (for system operator task). In this 
document, the system task is called OPERATOR. 
This is done to avoid confusion between a 
reference to the system task and a reference 
to the XOI task associated with the user who 
is designated the system operator (the system 
operator's XOI task). 

7.4.2 Operator Privilege. 

The operator interface subsystem enforces the following 
restrictions concerning operator privilege: 

* 

* 

If a user is designated the system operator, only that 
user is allowed to respond to operator requests, 
although many other users may still be viewing the text 
of the requests. 

If no user is designated the system operator, several 
users may be eligible to respond to operator requests. 
When the user's ID is put on the list of those to whom 
requests are relayed, the user becomes eligible to 
respond to any request which would be relayed to him. 

OPERATOR places one further restriction on the system operator, 
in that only one session (terminal) is considered the system 
operator. This is enforced by requiring that not only the user 
ID and job ID of a requester be the same as the system operator, 
but that the task ID in the TSB must also match. Thus, even 
though DNOS allows a user ID to be concurrently logged on at 

Operator Interface 7-4 2270513-9701 



SCI/Utilities Design 

several terminals, only the session associated with the terminal 
where XOI was successfully executed is recognized by OPERATOR as 
the system operator. Other subsystems may allow the system 
operator to use multiple terminals, but the operator interface 
subsystem does not. 

Other subsystems may grant to the system operator privileges that 
are not generally available. For example, the Spooler subsystem 
allows the system operator to kill any request in any output 
queue. 

7.4.3 Transactions. 

The construct of a transaction is useful in understanding the 
flow of the operator interface subsystem. A transaction is the 
process by which a piece of business is accomplished. 

The operator interface subsystem conducts the following kinds of 
transactions: 

* 

* 

* 

The 

A transaction that consists of one message/reply pair. 
The reply may be written immediately or after some 
interval, but when the reply is written, the transaction 
is complete. 

A transaction that consists of more than one 
message/reply pair. A message is written to .S$0PER 
that initiates processing for a piece of business that 
cannot be completed before the reply is written. At 
least one more message/reply pair is required to 
complete the piece of business. 

A read message from the XOI task of the system operator. 
This transaction differs from the first two in that it 
is a read to .S$0PER, rather than a write. 

flow of the first transaction type is simple. This category 
includes all general requests and all SCI commands except KOR and 
ROR. As an example, when a user enters the ROM command, the XOI 
task is bid by SCI in the user's job. XOI writes a formatted 
message on .S$0PER. OPERATOR adds the user's ID to the list 
(UIDT) and replies to the user's XOI task, completing the write 
on .S$0PER. The XOI task in the user's job then terminates, 
unless the user is designated the system operator. 

With the second transaction type, XOI writes the first message of 
the transaction, processes the reply buffer, then writes a second 
message and processes that reply. XOI then terminates (unless 
the user is designated as the system operator) because the 
transaction is complete. OPERATOR processes both messages and 
writes both replies. This category includes the SCI commands KOR 
and ROR, commands that prompt the user for information used in 

2270513-9701 7-5 Operator Interface 



SCI/Utilities Design 

formatting the second message to OPERATOR. 

The third transaction type occurs only when a system operator has 
dedicated the terminal to system operator functions. The timing 
of completing the read depends upon whether there is a request 
that has not yet been dis~layed to the system operator. If there 
is such a request, the read is processed immediately. If not, 
the read to .S$0PER is left open until such a message does exist. 
There is no message buffer for this transaction. 

7.4.4 Format of Displayed Requests. 

Operator requests are always displayed in the following format: 

where: 

~R xxxxxf FROM user AT hh:mm-general text 

xxxxx 
f 

user 
hh:mm 

is 
is 
is 
is 
is 
in 

the request ID or blank. 
the response mark -- an asterisk if a response 
required and a blank otherwise. 
the user ID associated with the request. 
the time the request was received by OPERATOR, 
hours and minutes. 

general text is the general text of the request. 

When a request is displayed through MAILBOX, the entire message 
just shown is sent as the text of a MAILBOX message, with one 
exception. If the user to whom the request is being displayed is 
not allowed to respond to the request (that is, if another user 
is the system operator), then the request ID field, xxxxx, is 
blank. When the message is displayed at the user's terminal, 
MAILBOX headers are appended to the front of the message. 

7.5 SYSTEM OPERATOR TASK 

OPERATOR performs the following functions: 

* 

* 

* 

Processes general operator requests. 
in the operator request table (ORT) 

Initiates relay operator messages 
entry in the UIDT for this user ID 

Places 

(ROM). 

Terminates relay operator messages (KOM). 
user's ID from the UIDT 

a request 

Creates an 

Deletes the 

* Creates a file containing a list of (pending) operator 
requests 

Operator Interface 7-6 2270513-9701 



SCI/Utilities Design 

* Designates a user as the system operator 

* Terminates a user as the system operator 

* Processes the transaction whereby an operator responds 
to or kills a specified pending operator request 

OPERATOR is bid by the restart task during IPL. 

7.5.1 Data Structures and Files. 

OPERATOR maintains one item in the operating system common area, 
three major data structures for its own use, and task local 
variables to control flow through the code. 

7.5.1.1 OPERATOR Local Variables. 

The OPERATOR local variables are as follows: 

* REPLY - Flag to indicate whether or not to write a reply 

* NXTREQ The request ID for the next request placed in 
the operator request table 

7.5.1.2 System Common Area. 

OPERATOR maintains the pointer SOPJSB in NFPTR, which points to 
the JSB of the system operator's job. SOPJSB is zero when no 
user is acting as the system operator. 

7.5.1.3 System Operator Information. 

OISOPR is a data structure maintained by OPERATOR. It contains 
the following information concerning the current system operator: 

* OPRSTT. Operator state: 

XOI. Requests are to be sent to the system 
operator when a read is issued by XOI to .S$0PER. · 
This is the state when the user is first 
designated the system operator. If the system 
operator enters ROM mode and then leaves ROM mode, 
XOI state is reinstated. 

ROM. The system operator's terminal 
dedicated to XOI; the text of an incoming 
is sent through MAILBOX. 

is not 
request 

* OPRJID. Pointer to th~ job ID associated with the 
system operator. A value of zero implies that no user 
is designated the system operator. 

2270513-9701 7-7 Operator Interface 



SCI/Utilities Design-

* OPRTSB. 
task. 

Pointer to the TSB of the system operator's XO! 

* OPRRDP. Pointer to the reply buffer associated with a 

* 

pending read on .S$0PER. A value of zero means that no 
read is pending. 

OPRRPT. Pointer to the ORT entry to 
operator is currently responding. A 
indicates that the system operator 
responding to a request. 

which the system 
value of zero 

is not currently 

7.5.1.4 Operator Request Table (ORT). 

The ORT is maintained by OPERATOR. The structure is a circularly 
linked list of Pascal records in the OPERATOR task area. The 
header record in memory points forward to the next record and 
backward to the final record. In addition to the linking 
information for the entire ORT, entries that specify a time-out 
are circularly linked to form the time-out list. 

ORT entries remain indefinitely until they are removed for one of 
the following reasons: 

* An operator responds to the request 

* An operator kills the request 

* The request exceeds the time-out limit 

The ORT contains one record for each pending request. The 
following information is in each ORT record: 

* 

* 

* 

Pointer to the Master Read/Write buffer 
contains the information in the following 
format of the message written in this buffer 
in the paragraph on detailed design of XOI. 

(MRB) that 
list. The 
is covered 

Information needed to do a Master Write to .S$0PER 

General text 

Prompt information (maximum of two prompt/initial 
value pairs) 

Request ID (1 through 65,535). These decimal numbers 
are assigned sequentially as requests are placed in ORT. 

User ID of requester 

Operator Interface 7-8 2270513-9701 



SCI/Utilities Design 

* Flags: 

Response required? 

Written to the system operator yet? 

* Time of request 

* Time-out value 

* Response state. A pointer-to the UIDT entry for the 
user who is currently responding to this operator 
request and to minus one when the system operator is 
responding to the request. This pointer is set to zero 
when no user is responding to the request. 

7.5.1.5 User ID Table (UIDT). 

The UIDT is a list of all active users who wish to receive and 
possibly respond to operator messages. This list is maintained 
by OPERATOR. The structure is a circularly linked list of Pascal 
records in the OPERATOR task area. 

Each entry contains the following information: 

* User ID 

* Job ID 

* Pointer to the JSB of the job with which this user ID is 
associated 

* Station number with which the user is associated 

* Flags: 

UIDALL. Whether the user wants all operator 
messages (T) ·or only those originating from or 
directed to this user ID (F) 

UIDOPR. Whether this user is the system operator 

* Pointer to the operator request to which this user is 
currently responding 

7.5.2 Initialization. 

System operator task initialization 
OISINT, in the module of the same name. 
.S$0PER is deleted and created. A 
channel and it is opened. 

2270513-9701 7-9 

is done by the procedure 
The operator channel 

LUNO is assigned to the 

Operator Interface 



SCI/Utilities Design 

Internal buffers, pointers and variables are initialized. The 
pathname .S$0PMSxx is stored in the v~riable LOMNAM for use in 
building the pathname of the file where the formatted list of 
operator requests is temporarily written. (When a user requests 
a list of pending operator requests, xx is replaced with the 
user's station ID). 'The ORT and UIDT linked lists are 
initialized with only one record in each. The one record in ORT 
is linked to itself with respect to both the pointers for the 
entire list and pointers for the time-out list. OISOPR is 
in}tialized to reflect that there is no system operator, and that 
no read is pending on .S$0PER. 

7.5.3 Major Loop/Routines. 

OISTSK is the name of the Pascal program that executes in the 
OPERATOR task. The program is in module OISTSK. The major loop 
consists of the following logic: 

LOOP1:DO forever; 
IF the time-out list is empty 

THEN 
Issue a master read with suspend to .S$0PER; 
Process the I/O from .S$0PER; 

ELSE 
LOOP2: For all requests on time-out list; 

IF Request pending longer than specified time-out 
THEN Write reply with time-out code; 

END LOOP1; 

Remove request from ORT; 
END LOOP2; 
Issue a master read without suspend; 
IF I/O was returned from .S$0PER 

THEN Process the I/O; 
ELSE Suspend for five seconds; 

7.5.4 Error Processing. 

Errors are reported to requesters in the error code field of the 
reply buffer for S$0PER. Error code values returned by OPERATOR 
are defined in the Pascal template OISCONS. 

Errors resulting from SVCS issued by OPERATOR are processed in 
the routine OISERR. With one exception, all such errors are 
written to the system log. The error caused by writing a reply 
to a task that has terminated is ignored. 

7.5.5 Termination. 

OPERATOR is designed never to terminate. The only error that is 
irrecoverable occurs in the initial1zation phase. If OPERATOR is 

Operator Interface 7-10 2270513-9701 



SCI/Utilities Design 

unable to create, to assign a LUNO to, or to open the !PC channel 
.S$0PER, the error is written to the system log and the task is 
terminated through Pascal end-action. 

7.5.6 Detailed· Design. 

One major function of each OPERATOR processing routine is to 
prepare the reply buffer for a particular message. The contents 
of the reply buffer vary with the opcode in the message and the 
results of the processing done by OPERATOR. The details of the 
reply buffer format are discussed with each of the processors in 
the following paragraphs. 

7.5.6.1 OISXOI. 

OISXOI processes the message for designating a user as the system 
operator. 

If no system operator already exists, OISKOM is called to take 
the user out of the UIDT (the user may have previously entered 
the ROM command), the requester's JSB pointer is stored in 
NFPTR.SOPJSB, and the OISOPR data structure is set up with the 
following characteristics: 

* System operator not responding to any operator request 

* No read pending on S$0PER 

* System operator receiving messages in XOI mode 

If a system operator has already been designated, and 
requester, an error code indicating invalid request is 
the reply buffer. The requesting user is notified 
task that he or she has not been designated the system 
If this is a request from the system operator, OISKOM 
to remove the operator's user ID from UIDT and set the 
mode to XOI. 

The reply buffer for this message is as follows: 

Offset/Byte Length 

0/1 
1 I 1 

7.5.6.2 OISQOI. 

Description 

OPERATOR opcode (=5) 
Error code 

is not the 
put into 

by the XO! 
operator. 
is called 
operator 

OISQOI processes the message to terminate the designation of the 
user as system operator. 

Before any action is taken on the message, the job ID and TSB of 
the requester are compared to the data in OISOPR. Unless both 

2270513-9701 7-11 Operator Interface 



SCI/Utilities Design 

items match, the request is denied, an error code is written in 
the reply buffer and processing in OISQOI terminates. The XOI 
task informs the user of errors. 

The next consideration is whether the system operator is in ROM 
mode or XOI mode. If ROM mode, OISKOM is called to take the 
operator out of UIDT. In XOI mode, if a read is pending on 
.S$0PER, it is killed with an error code in the ~eply buffer to 
so indicate. The pointer to the read reply buffer is cleared, 
resetting the read pending flag. 

Next, OISQOI clears two pointers to the sys~em operator -- its 
own data structure element OPRJID and SOPJSB in the system common 
area NFPTR. 

If the operator was in the process of responding to a request, 
the response state of that ORT entry is cleared. 

Now that the system operator has been effectively relieved of 
that function, each entry in the ORT must be updated as follows: 

* 

* 

Mark each entry as not having been sent 
operator. 

to the system 

Call OISMBX to send each message to the appropriate 
u s e r s i n the U I D T . Th i s t i me , the re q u e s t ID fl e 1 d i s 
nonblank so that any user who so desires may respond to 
the request. Note that the user who was formerly the 
system operator does not receive these messages, as that 
ID has just been deleted from the table by OISKOM. 

An error code of zero is placed in the reply buffer and OISQOI 
processing ends. 

The reply buffer format is as follows: 

Offset/Byte Length 

0/1 
1I1 

7.5.6.3 OISRD. 

Description 

OPERATOR opcode (:6) 
Error code 

Procedure OISRD processes read messages on .S$0PER. A nonzero 
error code is placed into the reply buffer in the following 
cases: 

* The requester is not the system operator (a task that is 
not the system operator's XOI issues the read). 

* The requester is the system operator, but is not in XOI 
mode. 

Operator Interface 7-12 2270513-9701 



SCI/Utilities Design 

* A read is already pending from the system operator. 

Otherwise, the ORT is searched for the first entry that has not 
yet been sent to the operator. Since entries are added to ORT as 
they are received, the first entry found is the oldest pending 
request not yet displayed to the system operator. When an unsent 
request is found, the text is formatted into the reply buffer and 
the ORT entry is marked as having been sent to the operator. 

If no unsent entry is found, the OPERATOR 
to a value of false. The MRB is saved and a 
in OPRRDP. A reply is written on S$0PER to 
only when the value of REPLY is true. 

The format of the reply for the read message 

Offset/ 
Byte Length 

0/1 

Description 

OPERATOR opcode (:0) 

variable REPLY is set 
pointer to it stored 

complete .the read 

is as follows: 

1 I 1 
212 
4/8 
12/5 
17/1 

Error code (zero except when read not honored) 
Request ID 

18/1 
20/? 

User ID 
Time of request 
Response mark: 

A blank means no response is required. 
An asterisk means a response is required. 

Length of general text 
General text (maximum of 223 bytes) 

7.5.6.4 OISLOM. 

OISLOM processes the request to list operator requests, either 
all of them or a subset consisting of those associated with the 
requester's user ID. 

An error code indicating that the request is invalid is set in 
the reply buffer if the user is neither the system operator nor 
in the UIDT. Another error code is set in the reply buffer if 
there are no requests (entries in the ORT) to be displayed. 

The next section of OISLOM is a loop on entries in the ORT. The 
request is written to the temporary file .S$0PMSxx (the complete 
pathname is stored in the variable LOMNAM), if one of the 
following is true: 

* The requester is the system operator. 

* The requester specified that all requests be relayed. 

* The requester's user ID is the same as the user ID in 
the ORT entry. 

2270513-9701 7-13 Operator Interface 



SCI/Utilities Design 

The variable MSGSENT is maintained to determine whether a request 
is found in ORT that satisfies one of these conditions and is 
actually written to the file. 

For each request to be listed, procedure OISFMS is called to 
format the general text. 'If the requester is the system operator 
or if there currently is no system operator, the request ID is 
filled in. Otherwise, blanks are written into that field in the 
formatted text. 

The message is then written to the temporary file, in 80-
character lines, breaking on blanks (or in column 60 if no blank 
occurs past that point). 

After all entries in the ORT have been processed, the variable 
MSGSENT is tested, and if it is false, the error code indicating 
no messages is set in the reply buffer. 

The format of the reply buffer is as follows: 

Offset/Byte Length 

0/1 
1 I 1 

7.5.6.5 OISROM. 

Description 

OPERATOR opcode (:4) 
Error code 

OISROM processes the message to add a user ID to the UIDT. 

If the user ID is already in UIDT, the entry is updated to 
reflect the current specification for whether the user is to 
receive all operator requests or only those associated with the 
user ID, and an error code indicating no errors is returned to 
the requester in the reply buffer. Otherwise, a new UIDT entry 
is created and chained into the UIDT list, and all appropriate 
requests in the ORT are sent to the user through MAILBOX. 

The new UIDT entry has the following characteristics: 

* This user is currently not responding to 
the pointer is zero. 

a request so 

* UIDOPR is either true or false, depending on whether 
this user is the system operator. 

* UIDALL is set according to the following rules: 

True if this is the system operator or if the 
message specifies that the user wishes to see all 
operator requests 

False otherwise 

Operator Interface 7-14 2270513-9701 



SCI/Utilities Design 

NOTE 

Even if the system operator enters a request 
to be shown only the user's own messages, the 
UIDT e~try is built in such a way that the 
syste~ operator receives them all. The 
system operator is not allowed to change this 
item in UlDT with subsequent ROM commands. 

If the requester is the system operator, the data structure 
OISOPR is updated to show that the system operator is now in ROM 
mode. If a read is pending on S$0PER, it is terminated with an 
error code indicating an abort, and the read pending pointer is 
cleared. 

For each message that has not previously been sent to this 
operator, OISMBX is called. If the user is the system operator, 
the logic employed does not send messages through MAILBOX that 
have already been ient on .S$0PER to the operator in XO! mode. 

The reply buffer format is: 

Offset/Byte Length Description 

0/1 OPERATOR opcode (:2) 
1/1 Error code 

7.5.6.6 OISKOM. 

OISKOM processes a message to remove a user's ID from the UIDT 
(and therefore, discontinue relaying operator messages to that 
user through MAILBOX). 

In order to remove any ambiguity concerning which ID is to be 
removed from the table, several precautions are taken. Not only 
must the user ID match, but also the job ID that placed the user 
in UIDT must match the ID of the job in which the message to 
remove the ID was generated. If such a match is not found, an 
error code is set to indicate invalid KOM request. 

If the request is valid, the previous and next UIDT entries are 
altered to unchain the record for the user ID being deleted. If 
the UIDT entry shows that the user was in the process of 
responding to an operator request, the appropriate ORT entry is 
cleared to show that the request is no longer in response state. 

If the user being removed from UIDT is the system operator, the 
status of the system operator is changed to XOI mode. The memory 
used for the deleted entry is released and an error code of zero 
is set. 

2270513-9701 7-15 Operator Interface 



SCI/Utilities Design 

The format of the reply buffer is as follows: 

Offset/Byte Length Description 

0/1 
1 I 1 

OPERATOR opcode (:3) 
Error code 

7.5.6.7 OISGRQ. 

Procedure OISGRQ processes a message that contains an operator 
request to be added to the ORT. The message is examined for 
consistency of data. OISGRQ generates an error code when any of 
the following circumstances is encountered: 

* 

* 

* 

* 

* 

Flags are set that do not apply to a general request. 
Even though the flags would not cause erroneous 
processing of this particular request, their being 
improperly set casts suspicion on the remaining data. 

A response is not required, but the number of prompts is 
nonzero. 

Too many prompts are specified 
MXPRCT, is declared in OISCONS). 

(the maximum number, 

The length of the general text is either zero or greater 
than the maximum number of characters allowed. (Again, 
the maximum length of the general text, MXTXTL, is 
declared in OISCONS). 

The length of a prompt is either zero or greater than 
MXPRTL, the maximum prompt length, which is declared in 
OISCONS. 

If the flag which indicates that the job ID is specified in the 
message buffer is set, OISGRQ runs the operating system JSB chain 
in search of an entry that has the specified job ID. If the job 
ID is not found, an error is set and processing in OISGRQ ends. 

If the data is valid according to all these tests, a new ORT 
entry is created with the following characteristics: 

* 

* 

* 

* 

It is not in response state 
responding to this request). 

(no operator currently 

The value of NXTREQ is assigned as the request ID. 

If time-out is specified, the record is chained into the 
time-out list. Pointers in this record, the previous 
record, and the next record are updated to place the 
record in the list. 

The entry is marked not yet sent to the system operator. 

Operator Interface 7-16 2270513-9701 



SCI/Utilities Design 

* Each ORT entry contains forward and backward chaining. 
Pointers in this record, the previous record and the 
next record must be updated. 

NXTREQ is incremented by one and the 
is written to the system log. 
previous paragraph that describes 
requests). 

general text of the request 
(For more details, see the 
the format of displayed 

The next part of OISGRQ is concerned with sending the request to 
the system operator and/or any interested user. The variable 
REPLY is set to the complement of the flag that indicates whether 
a response is required. The variable REPLY determines whether or 
not a reply is written to the message on .S$0PER. If the request 
does not require an operator response, REPLY is given a value of 
YES so that the write on .S$0PER is completed. If the request 
does require a response, REPLY is given a value of NO. The 
requester remains suspended until the operator responds or kills 
the request or the request exceeds the time-out limit. The write 
on .S$0PER is not completed immediately. 

Procedure OISMBX is called to send the message, through MAILBOX, 
to each user whose ID is in UIDT. If the system operator XOI has 
a read pending, the message is placed in a holding buffer and 
OISRD is called to format the reply buffer. The reply is written 
to .S$0PER to complete that read on the channel. 

If the reply to the message just processed is to be written 
immediately (as reflected by the value of REPLY) the reply buffer 
is formatted for the general operator request, and written to 
.S$0PER to complete the write. 

The format of the reply buffer is as follows: 

Offset/Byte Length 

0/1 
1 I 1 
2/1 

7.5.6.8 OISPOR. 

Description 

OPERATOR opcode (:1) 
Error code 
Number of prompts (=0) 

OISPOR processes the initial (and possibly only) message in the 
transaction of an operator responding to a request. Information 
about the request is returned in the reply buffer. 

An error code is returned in the reply buffer if the user is not 
allowed to respond to the specified operator request. Any of the 
following circumstances prevents the requester from being allowed 
to respond to the request: 

* A system operator exists and the requester is not the 
system operator. 

2270513-9701 7-17 Operator Interface 

I 
I 



SCI/Utilities Design 

* 

* 

* 

The requester is not in the UIDT. 

The request 
operator. 

is currently being serviced 

The specified reque~t ID is not in the ORT. 

by another 

Once the requester has been cleared to respond to the request, 
the response required flag is checked. If no response is 
required, the ORT entry is unchained (on both the ORT list and 
the time-out list) and the error code in the reply buffer is set 
to indicate that no response is required for this operator 
request. This completes processing for requests to which no 
response is required. 

If a response is required, this is the first of two messages 
required to complete the transaction. The text and the prompt 
information is put in the reply buffer. The response state is 
updated in the appropriate ORT entry, indicating that this 
operator request is now being serviced. OISOPR or the 
appropriate UIDT record is updated to show which ORT entry is 
being serviced by the operator. The format of the reply buffer 
is as follows: 

Off set/ 
Byte Length 

0/1 
1I1 
2/2 

The remainder 
the error code 

4/1 
5/1 
6/1 
71? 
?/1 

?/? 
?/1 

?/? 
?/1 
?!? 
?/1 
?/? 

Description 

OPERATOR opcode (=7) 
Error code 
Request ID 

of the reply buffer is present only 
is zero. 
Filler for word boundary alignment 
Number of prompts 
Length of general text 
General text 
Length of first prompt 
(maximum of 28 bytes) 
Text of first prompt 
Length of default for first prompt 
(maximum of 50 characters) 
Text of default for first prompt 
Length of second prompt 
Text of second prompt 
Length of default for second prompt 
Text of default for second prompt 

Note Provided if number of prompts is one or 

Note 2 Provided if number of prompts is two 

Operator Interface 7-18 

if 

(Note 1 ) 
(Note l) 

(Note 1) 

(Note 1 ) 
(Note 2) 
(Note 2) 
(Note 2) 
(Note 2) 

two 

2270513-9701 



SCI/Utilities Design 

7.5.6.9 OISROR. 

OISROR processes the second message in the transaction of a user 
responding to an operator request. 

An error code is written into the reply buffer if the specified 
request is not in the ORT, or the request is not in response 
state, or the request is in response state to a user other than 
the user ID associated with this message. 

After checking all these conditions, OISPOR resets the response 
state of the request in the ORT. The appropriate data structure, 
either OISOPR or the UIDT, is updated to show that the 
operator/user is no longer occupied with responding to this 
request. Both the request and operator updates are done prior to 
processing the response data in the message, because even if the 
data is unacceptable, this two-part transaction must be repeated 
from the beginning. 

If there are any irrelevant flags set, a nonzero error code is 
set and OISPOR processing ends. 

The remainder of OISROR completes the transaction begun by 
processing in OISPOR. If there is no data to be· considered (as 
in the case of the user hitting the Command key and aborting the 
response), the error code in the reply buffer is set to zero and 
no further processing is done. This represents the no response 
condition. The request is left in ORT and the only thing 
remaining to be done is to complete the XOI write on S$0PER. The 
reply buffer is already formatted. 

If the response is negative (that is, if the operator killed the 
request rather than responding to it), OISRPL is called to do the 
following: 

1. Format a reply that indicates the negative response 
from the operator 

2. Send the reply to the task associated with the O~T 
entry 

The negative response is processed here because common code is 
used to kill and respond to an operator request. 

Otherwise, the response is positive unless one of the following 
errors is found in the data: 

* Number 
prompts 

of prompts returned does not match the number of 
in the ORT entry. 

* Data overflow is detected in value(s) 
prompt(s). 

returned for 

2270513-9701 7-19 Operator Interface 



SCI/Utilities Design 

If neither of these conditions is found, OISRPL is called to 
format and send a positive response to the task that initiated 
the operator request. 

NOTE 

Only the positive and negative responses are 
generated in OISROR. The other response that 
may be sent to the task that initiated the 
request is time-out, which is generated in 
OISTSK. The reply buffer format is detailed 
in the discussion of OISRPL. 

If a reply to the operator request was written, the master read 
buffer must be restored so that the proper reply is written to 
the XOI that supplied the operator response data. 

The format of the reply buffer for the messages processed by 
OISROI is as follows: 

Offset/Byte Length Description 

0/1 
1 I 1 

OPERATOR opcode (:8) 
Error code 

7.5.6.10 OISRPL. 

This is a service routine that sends a reply to the task that 
generated an operator request. It is called with two arguments; 
the first is a pointer to the ORT entry to which the reply 
applies and the second is the type response to be sent -
positive, negative, or time-out. 

The disposition of the request is written to the system log, as 
follows: 

where: 

**** OI - REPLY TO nn :disposition 

is the request ID. nn 
disposition is one of the following: 

* TIMEOUT - Request timed out prior to operator response. 
* REQUEST DENIED - Operator killed the request. 
* REQUEST GRANTED - Request with zero prompts was granted. 
* The prompt(s) and the response(s) of the operator if the 

request has one or two prompts. 

Operator Interface 7-20 2270513-9701 



SCI/Utilities Design 

The error code is set, depending on the response type. The error 
codes are defined in OISCONS, 

The reply is written and the entry is removed from the ORT list 
and the time-out list. 

If the reply is written because of a time-out, some additional 
processing must be done. If the request is in the response 
state, the operator who was servicing the request must be 
relieved of that burden. OISOPR or the UIDT entry is updated to 
reflect the fact that the request has timed out. 

For the general operator request, the reply buffer format is as 
follows: 

Offset/Byte Length Description 

0/1 Opcode (=1) 
1/1 Error code 

The remainder of the reply buffer is present only if the 
error code indicates a positive response. 

2/1 Filler for word boundary alignment 
3/1 Number of prompts 
4/1 Length of response to first prompt 
5/? Text of response to first prompt 
?/1 Length of response to second prompt 
?/? Text of response to second prompt 

Note Present only if number of prompts is one or two 

Note 2 Present only if number of prompts is two 

7.5.6.11 OISFMS. 

(Note 1) 
(Note 1) 
(Note 2) 
(Note 2) 

This routine places the text of an operator request into the 
MAILBOX message buffer. It also builds the other invariant 
fields of such a message -- user ID, time, response mark and 
length. 

7.5.6.12 OISMBX. 

This is a service routine that sends the text of an operator 
request to one user or to the appropriate users in UIDT. This 
includes any user who asked to see all requests or whose user ID 
matches the user ID for the operator request being processed. 
OISMBX has two arguments, both of which are pointers. The first 
argument points to an entry in ORT. The second argument, which 
is optional, points to an entry in UIDT. If the second argument 
is supplied, the general text of the request is sent to the 
specified user. Otherwise, the general text is sent to all 
interested users in UIDT. 

2270513-9701 7-21 Operator Interface 



SCI/Utilities Design 

Another function performed by OISMBX is cleanup of UIDT. 
OPERATOR is not notified when a user logs off. Before the 
message is formatted for MAILBOX, the system PDT list is searched 
for the PDT associated with the station number in the UIDT entry. 
If the JSB pointer in the PDT is not the same as the JSB pointer 
in the UIDT entry, the user is no longer logged on at that 
terminal, and the UIDT entry is deleted. 

7.6 OPERATOR INTERFACE TASK 

The name of the operator interface task is XOI. The Pascal 
program in XOI is named XOITSK. XOI operates in the following 
two modes: 

* 

* 

7 • 6 • 1 

When the system operator's terminal is dedicated to 
operator activities, the task provides an interface 
directly to OPERATOR for displaying messages and two 
functions, respond to operator request and kill operator 
request. 

When the user does any other operator activity, the task 
simply formats a message to OPERATOR, writes it to 
.S$0PER and processes the reply buffer. The user 
receives the text of operator requests through MAILBOX 
and SCI. 

Invoking XOI. 

XOI is bid by SCI with a PARMS list that contains the information 
required to write a message on .S$0PER for OPERATOR services. 
The PARMS list includes an opcode, which is not the same as the 
OPERATOR opcode. The specific elements in the PARMS list are 
discussed in the paragraphs on detailed design of the operator 
interface task. 

7.6.2 Data Structures and Variables. 

The operator interface task data structures and variables are as 
follows: 

* DISPATCH. Internal code for the function to be 
performed. This is initialized based on the PARMS list, 
but in certain circumstances, it is modified during 
execution. 

* READPEND. Boolean variable that indicates whether or 
not a read is active on .S$0PER 

Operator Interface 7-22 2270513-9701 



SCI/Utilities Design 

The 

* XOIACTIVE. Boolean variable that indicates whether the 
terminal is dedicated to operator activities 

* XOIMODE. Boolean variable that indicates whether or not 
this task represents the system operator 

following error variables are maintained by XOI: 

* MSGNUMBER. Message number 

* VARTEXT. Variable text for error message 

* CONDCODE. Condition code. The only codes returned by 
XOITSK are the following: 

>8000. Not an irrecoverable error 

O. Normal 

CONDCODE is set, using the constants NORMAL and NONFATAL, which 
are defined in XOICONS. 

The synonym $XOI$MEN is used to communicate with SCI regarding 
display of a menu. The command procedure ROM examines the 
synonym. If it is defined, ROM executes a .MENU·primitive to to 
suppress the normal display of a menu. This preserves the screen 
displayed by XOI. 

7.6.3 Initialization. 

Initialization of XOITSK is done in the routine XOIINT. The 
routine sets up IRBs and pointers, prepares message and character 
buffers for later use, opens the channel S$0PER and stores a 
false value in the flags XOIMODE and READPEND. 

7.6.4 Major Loop. 

The major loop of XOITSK is repeated as long as XOIMODE is true. 

At the top of the loop, XOISET is called to do the following: 

* Checks for batch mode. This is accomplished by calling 
R$STAT to determine the state of the session. If it is 
batch, processing is aborted. 

* Stores the station ID. This information is returned by 
R$STAT. 

* Sets DISPATCH. This requires translating the parameter 
on the PARMS list to the proper OPERATOR opcode. 

2270513-9701 7-23 Operator Interface 



SCI/Utilities Design 

* Clears the error variables CONDCODE and MSGNUMBER. 

The next portion of the loop is a case statement based on 
DISPATCH. The appropriate processor is invoked. If, after this 
processing, XOIMODE is true, XOI suspends by a call to R$WAIT. 
XOIMODE is set to true only when OPERATOR establishes the user as 
the system operator and is set to false when OPERATOR removes the 
user from the system operator designation. (In terms of SCI 
command procedures, XOI sets XOIMODE and QOI resets it.) 

7.6.5 Termination. 

When XOIMODE is false, XOITSK exits the major loop and closes the 
LUNOs for the terminal and for S$0PER. R$TERM is then called to 
terminate the task. The task also terminates (through R$TERM) if 
an SVC error occurs with regard to the read message on S$0PER or 
the keyboard read. 

7.6.6 Error Processing. 

XOITSK maintains error variables and reports errors through the 
Pascal interface routines R$TERM, R$WAIT and R$CMSG. 

7.6.7 Detailed Design. 

When XOI is bid, the PARMS list always contains the following 
three elements: 

1. Pascal stack parameter - A value of 1000 is sufficient. 

2. Pascal heap parameter - A value of 1000 is sufficient. 

3. A parameter to indicate what service is desired 

The third parameter passed from SCI to XOI is not the same as the 
opcode that is passed from XOI to OPERATOR. Both sets of values 
are shown in Table 7-1. 

The fourth element varies with the service requested, as follows: 

* XOI, QOI, KOM - No fourth element required 

* COM - General text of the request 

* ROM - Message selection (ALL or MY) 

* LOM - Listing access name 

* ROR, KOR - Request ID 

Operator Interface 7-24 2270513-9701 



SCI/Utilities Design 

COM has a fifth parameter, the operator interface channel 
pathname. This is .S$0PER, or <sitename>:.S$0PER, if the message 
is being sent to a network site. 

OPERATOR 
Opcode 

1 
2 

3 

4 
5 

6 

7/8 

7/8 
7 

8 

Table 7-1 OPERATOR Opcodes 

Action 
PARMS List 

Code 

Creates operator request 
Starts relaying operator 
requests (through MAILBOX) 

Stops relaying operator 
requests (through MAILBOX) 

Lists operator requests 
Designates user as system 
operator 

Removes user as system 
operator 

Responds to operator 
request 

Kills operator request 
Returns text and prompts 
of operator request 

Processes operator response 
to request 

8 
1 

2 

3 
4 

5 

6 

7 

SCI 
Command 

COM 
ROM 

KOM 

LOM 
XO! 

QOI 

ROR 

KOR 

The format of messages written on .S$0PER is discussed in the 
paragraph on detailed design of the processor that formats the 
message. The first byte is the OPERATOR opcode in all messages. 
The second byte contains flags. The format of the flags byte is 
detailed in Table 7-2 and is referred to as FLAGS in the detailed 
discussion of each message format. 

2270513-9701 7-25 Operator Interface 

I 



SCI/Utilities Design 

Table 7-2 FLAGS Byte of .S$0PER Message 

Bit(s) Description 

0 For use by relay operator messages (ROM) request. 

1 ' 2 

4 

1 - All operator messages 
0 - Only messages associated with this 

user ID 

Response type (for ROR) 
Bit 1 Bit 2 Type 
----- -----

0 0 Positive 
0 1 Negative 
1 0 No response 

Response required (for use with general operator 
requests) 

0 - No 
1 - Yes 

For use with general operator requests 
0 - User ID for this request is specified in' 

in the JSB of the task that generated the 
message. 

1 - User ID to be associated with this request 
is specified elsewhere in this buffer. 

5-7 Reserved, set to zero 

7.6.7.1 XOIXOI. 

Procedure XOIXOI formats a message to OPERATOR requesting that 
the user be designated the system operator. If the request is 
granted, XOIXOI writes the following text to the system log: 

where: 

userID - STxx BECAME SYSTEM OPERATOR 

userID and STxx (station number) identify the user who is 
designated system operator. 

XOIXOI handles all I/O between the operator terminal and OPERATOR 
until the operator indicates, by pressing the CMD key, that the 
terminal is no longer to be dedicated to the system operator 
interface. 

The Boolean variables XOIMODE, XOIACTIVE and READPEND are used 
throughout the procedure. 

Operator Interface 7-26 2270513-9701 



SCI/Utilities Design 

XOIXOI formats a message to OPERATOR and writes it to .S$0PER. 
If the reply buffer contains a nonzero value in the error code 
field, the request was not completed successfully. The message 
number, condition code, and variable text returned by OPERATOR in 
the reply buffer are stored in the error variables and XOIXOI is 
exited. 

If the error code is zero, the user is now the system operator, 
and XOIMODE is set to true. The user's display is cleared. At 
this point, the terminal is dedicated to system operator 
functions. Two things can happen -- either an operator request 
can be written to .S$0PER by another user, or the system operator 
can initiate activity with OPERATOR by entering operator commands 
from the keyboard. XOIXOI must respond to whichever of these two 
events occurs first. The event synchronization facility of the 
operating system is used. An initiate read on .S$0PER is event 
zero, and an initiate read on the keyboard is event one. After 
the display is cleared, if READPEND is false, an Initiate Event 
SVC is issued for event zero and READPEND is set to true. 

An Initiate Event SVC for reading the keyboard is issued, and 
XOIACTIVE is set to true. 

XOIXOI enters a loop that is continued as long as XOIACTIVE is 
true. The loop consists of waiting for an event to occur, and 
processing the data associated with that event. 

LOOP: DO while XOIACTIVE 
Issue Wait for Event SVC (either 0 or 1); 
IF the event is the channel read 

THEN IF SVC error 
THEN Terminate through R$TERM; 

IF no channel error (in reply buffer) 
THEN Abort keyboard read event; 

Display data from channel read; 
Initiate Event SVC for channel read; 

IF keyboard read is complete (always true) 
THEN IF SVC error 

THEN IF not due to intentional abort 
THEN Terminate through R$TERM; 

ELSE Call XOIKEY to process data from read; 
IF XOIACTIVE 

THEN Initiate Event SVC for keyboard read; 
END LOOP; (XOIACTIVE) 

The test for keyboard event complete is superfluous because it 
either is the event that occurred, or it has been completed by 
the abort issued in processing the channel read complete. 

Procedure XOIKEY processes keyboard input. 
except F4, F5 and CMD. F4 is processed as a 
request, and F5 as a kill operator request. 
key, XOIKEY resets XOIACTIVE. 

2270513-9701 7-27 

All keys are ignored 
respond to operator 
If CMD is the event 

Operator Interface 

l 



SCI/Utilities Desi~n 

When the input is F4 or F5, XOIKEY sets variables as though XOI 
had been invoked by SCI to process a ROR or KOR request, 
respectively. The processing of the request is handled in 
XOIKEY, with calls to XOIROI, which processes both transactions. 

Before returning 
message number, and 
errors. 

to XOITSK, 
condition 

XO I XO I 
code 

sets the variable text, 
variables to indicate no 

The message format is as follows: 

Offset/Byte Length 

0/1 
1 I 1 
2/2 

7.6.7.2 XOIQOI. 

Description 

OPERATOR opcode (:5) 
FLAGS 
Station ID 

XOIQOI formats the message to remove the user from designation as 
the system operator. If XOIMODE is false, the message number and 
condition code variables are set to indicate that the request is 
not allowed. 

Otherwise, a message is formatted and written to .S$0PER. If a 
nonzero error code is returned in the reply buffer, the error 
variables are set to indicate an internal error message number, 
and a recoverable error condition code. 

An error code of zero indicates success, and the following text 
is written to the system log: 

userID - STxx QUIT AS SYSTEM OPERATOR 

where: 

userID and STxx (station number) identify the former 
system operator. 

If a read on .S$0PER is pending, the read is terminated and 
READPEND is set to false. (OPERATOR aborted the read while 
processing the message.) XOIMODE is set to false and error 
variables are set to indicate no errors. 

The message format is as follows: 

Offset/Byte Length 

0/1 
1 I 1 
2/2 

Operator Interface 

Description 

OPERATOR opcode (:6) 
FLAGS 
Station ID 

7-28 2270513-9701 



SCI/Utilities Design 

7.6.7.3 XOICRM. 

XOICRM formats a general operator request message for .S$0PER 
(SCI command COM). The kind of request generated is limited in 
that no prompts are allowed, and no time-out may be specified. 

R$PARM is called to obtain the channel pathname and the message 
text from the PARMS list with which XOI was bid. The message is 
formatted and written to the specified pathname. When the reply 
is received, the XOITSK error variables are set to indicate 
whether an internal error or no error occurred. 

The general operator request message format is as follows: 

Offset/ 
Byte Length 

0/1 
1 I 1 
2/2 

4/1 
5/1 
6/1 
11? 
?/1 
?!? 
?/1 
?!? 
?/1 
?!? 
?/1 
?/? 

Note 

Note 2 

Description 

OPERATOR opcode (:1) 
FLAGS 
Job ID to be used rather than ID of job from 
which the request originated. 

Time-out count (minutes) 
Number of prompts 
Length of general text 
General text 
Length of first prompt 
Text of first prompt 
Length of default for first prompt 
Text of default for first prompt 
Length of second prompt 
Text of second prompt 
Length of default for second prompt 
Text of default for second prompt 

(Note 1) 
(Note 1) 
(Note 1) 
(Note 1) 
(Note 2) 
(Note 2) 
(Note 2) 
(Note 2) 

Must be provided if number of prompts is one or two 

Must be provided if number of prompts is two 

Prompts, time-out, and response required are not available 
through XOICRM. These fields are utilized by tasks that write a 
message to .S$0PER with those options specified. (For example, 
the Spooler subsystem writes general requests with prompts, time
outs and response required.) The XOI user interface provided for 
creating an operator message is not designed to deal with the 
complexities of waiting for a response. 

7.6.7.4 XOIROM. 

XOIROM formats and writes a message on .S$0PER to request that 
OPERATOR place the user's ID in UIDT and relay messages to the 
user through MAILBOX, rather than directly to the terminal. If 

2270513-9701 1-29 Operator Interface 



SCI/Utilities Design 

the error code in the reply buffer is nonzero, the error 
variables are set and XOIROM processing ends. 

If no error is returned from OPERATOR~ XOIROM tests the XOIMODE 
and READPEND variables to determine if a read on .S$0PER should 
be displayed. (OPERATOR aborts any read on the channel when the 
system operator quits or issues the ROM command. If, however, 
the read has completed, the data is in the reply buffer, and has 
not been displayed. The ORT entry is flagged as having been sent 
to the operator, and is not routed to the user through MAILBOX. 
Therefore, the request must be displayed now if the operator is 
to see it at all.) The request is displayed and READPEND is set 
to 1 false. Notice that XOIMODE remains true, even though the 
system operator's terminal is no longer dedicated to system 
operator activities. 

XOITSK error variables are set to indicate normal processing. 

The format of the message is as follows: 

Offset/ 
Byte Length 

0/1 
1 I 1 
2/2 

Description 

OPERATOR opcode (:2) 
FLAGS 
Station ID 

7.6.7.5 XOILOM. 

Procedure XOILOM produces a file containing a list of pending 
operator requests. The pathname of the file in which to write 
the information is the fourth element on the PARMS list with 
which XOI is bid. The access name is obtained through R$PARM, 
and R$0PEN is called to open the file. If an error occurs, the 
error variables are set and processing ends. 

After the successful open, the message is formatted and written 
on .S$0PER. If the error code in the reply buffer is nonzero, 
the error variables are set to reflect the kind of error, 
including the "error" of no pending operator requests. The user
specified file is closed by call to R$CLOS, with the parameter to 
specify that the file not be displayed. XOILOM processing ends. 

The remainder of XOILOM consists of transferring the contents of 
the temporary file created by OPERATOR to the file with the 
access name provided by the user. The write operations are 
accomplished by calls to R$WRIT and R$WEOL. The file is closed 
by call to R$CLOS, with the parameter to specify that the file be 
displayed. 

Operator Interface 7-30 2270513-9701 



SCI/Utilities Design 

The format of the message is as follows: 

Off set/ 
Byte Length Description 

0/1 OPERATOR opcode (:4) 
1/1 FLAGS 
2/2 Station ID 

7.6.7.6 XOIKOM. 

XOIKOM formats and writes to S$0PER a message to request that 
OPERATOR stop sending operator messages to the user through 
MAILBOX. Error variables are set to reflect the results returned 
in the reply buffer. 

The message format is as follows: 

Offset/Byte Length 

0/1 
1 I 1 
2/2 

7.6.7.7 XOIROI. 

Description 

OPERATOR opcode (=3) 
FLAGS 
Station ID 

Procedure XOIROI formats a message to OPERATOR for responding to 
or killing an operator request. It is invoked directly when SCI 
bids XOI to either kill or respond to a request. It is also 
called by XOIXOI when the system operator uses a function key 
shortcut. Because it may be called either way, an argument is 
passed to indicate whether the operator request ID is in the 
PARMS list (invoked by SCI) or in a buffer (called by XOIXOI). 
The variable DISPATCH is used to determine whether the call is 
for a response or a kill. 

The first step in either case is to format and write a message to 
.S$0PER, asking OPERATOR for the gener•l text and prompts, if 
any, of the specified operator request. If a nonzero error code 
is returned in the reply buffer, the appropriate error variables 
are set and processing ends. Among the possible "errors" 
returned is that the request requires no response. In this case, 
however, the error processing is appropriate, because there is no 
further action to be taken on the request. An operator request 
that requires no response is informational only, and killing or 
responding to it are equivalent. 

A case statement, based on the value of DISPATCH, is used to set 
up prompts and initial values to be displayed to the operator. 

* For the response operation, the data returned by 
OPERATOR in the reply buffer is used. If prompt text(s) 
and initial value(s) are supplied, they are saved for 

2270513-9701 7-31 Operator Interface 



SCI/Utilities Design 

display, and the type response expected from the 
terminal is non-null. If the prompt count is zero, the 
default prompt is used and a YESNO type response is 
required. The character string used for the default 
prompt is the constant RIODFLT. 

* For the kill operator request, a single default prompt 
is set up, with a YESNO response type required. The 
character string used for the default prompt is the 
constant KIODFLT. 

XOISIO is called to do the I/O to the display. When control is 
returned from XOISIO, a second message is formatted for OPERATOR. 
This message indicates one of three kinds of operator response to 
the request currently under consideration: 

* No response - Operator has looked at the request, but 
chose not to respond (that is, he o~ she pressed the CMD 
key rather than responding to the prompt). This 
response is also sent when the operator denies a request 
that has no prompts, but requires a response or when the 
operator decides not to kill a request after having 
started to do so. 

* Positive Request has been considered by the operator 
and the data, if any, is included in the message. 

* Negative - Request should be deleted from the ORT 
because the operator killed it. 

In the case of the positive response, the data supplied by the 
operator is put into the message. 

XOISVC is called to write the message to S$0PER. If an error is 
indicated in the reply buffer, the appropriate error variables 
are set. 

The format of the first message is as follows: 

Offset/Byte Length 

0/1 
1 I 1 
212 

Operator Interface 

Description 

OPERATOR opcode (:7) 
FLAGS 
Request ID 

7-32 2270513-9701 



SCI/Utilities Design 

The format of the second message is as follows: 

Offset/Byte Length 

0/1 
1 I 1 
2/2 
4/1 
5/1 
6/1 
11? 
?/1 
?/? 

Description 

OPERATOR opcode (:8) 
FLAGS 
Request ID 
Filler for word boundary alignment 
Number of prompts 
Length of first response 
Data in response to first prompt 
Length of second response 
Data in response to second prompt 

Note 1 Present only if number of prompts is one or two 

Note 2 Present only if number of prompts is two 

7.6.7.8 XOISVC. 

(Note 1) 
(Note 1) 
(Note 2) 
(Note 2) 

XOISVC issues all supervisor calls for XOITSK. The SVC block 
must be prepared, and a pointer to it passed as an argument to 
XOISVC. If an error is returned, XOISVC calls R$TERM to report 
the error and terminate the task. No local error variables are 
set when an SVC error occurs. 

7.6.7.9 XOISIO. 

Procedure XOISIO formats the data to be displayed, and handles 
user inputs in a manner that emulates the SCI user interface. 
The I/O to the device is handled through R$FMT and R$GKEY, the 
Pascal interfaces to S$FMT and S$GKEY, respectively. 

All event keys not processed by S$GKEY are ignored except for the 
following: 

* Up Arrow key - Starts over on prompt number one. 

* ERASE INPUT key - Ignores any previous input. Reformats 
the display with prompts and initial values and gets 
ready to accept input for prompt number one~ 

* ENTER key - Uses all current data, if it is acceptable. 

* RETURN, TAB, SKIP keys - Check the value returned, and 
if it is acceptable, go to the next prompt, if any. 

2270513-9701 7-33 Operator Interface 



SCI/Utilities Design 

The values supplied by the user are checked in function XIOVAL, 
which is called with an argument to indicate the type response 
required and a pointer to the string to be checked. It returns a 
value of true except in the following cases: 

* 
* 

* 

The length byte 'for a non-null string is zero. 

The first character of a YESNO type is not Y or N. 

R$INT returns a nonzero error code for the character 
string that is expected to be an integer expression. 

7.6.7.10 XOIDSP. 

This routine displays the message returned upon completion of a 
Channel Read SVC to .S$0PER. It is called with a Boolean 
argument, SUSPEND, that indicates whether to set the synonym 
$XOI$MEN. The appropriate SVC blocks are built, and XOISVC is 
called to write the data to the display. If SUS~END is true, the 
synonym $XOI$MEN is given a value of Y. This synonym is used in 
the command procedures. When $XOI$MEN has a non-null value, the 
command procedures execute a .MENU primitive to suppress display 
of the menu in the major loop of SCI. 

7.7 USER ACCESS TO THE OPERATOR INTERFACE SUBSYSTEM 

Users can access the operator interface using 
routines. Routines OI$BGN, OI$COM, OI$END and 
documented in the DNOS System Programmer's Guide. 

7.8 INTERNATIONALIZATION 

several 
OI$WAT 

OI$ 
are 

The following messages in procedure/module OISRPL of OPERATOR are 
coded in English: 

* **** OI ~ REPLY TO ## 

* TIMEOUT 

* REQUEST DENIED 

* REQUEST GRANTED 

The following text in procedure/module XOIINT of XOITSK are coded 
in English: 

* RESPOND TO OPERATOR INTERFACE REQUEST 

Operator Interface 7-34 2270513-9701 



SCI/Utilities Design 

* KILL OPERATOR INTERFACE REQUEST 

* REQUEST ID 

* KILL REQUEST? 

* GRANT REQUEST? 

* -STxx BECAME SYSTEM OPERATOR 

* -STxx QUIT AS SYSTEM OPERATOR 

7.9 MAINTENANCE OF THE OPERATOR INTERFACE SUBSYSTEM 

The user interface portions of the operator interface subsystem 
are designed to be compatible with SCI. In order to maintain 
this compatibility, the following things must be done: 

* 

* 

The S$ routines S$GKEY and S$FMT are linked into XOI. 
When changes are made in these routines, XOI must be 
relinked and reinstalled, in order to keep it compatible 
with SCI. 

If SCI changes the way the following keys are processed, 
an equivalent change is required in the XOITSK procedure 
XOISIO: 

Up Arrow key 

ERASE INPUT key 

RETURN key 

ENTER key 

TAB key 

SKIP key 

2270513-9701 7-35/7-36 Operator Interface 





SCI/Utilities Design 

SECTION 8 

SPOOLER 

8.1 OVERVIEW 

The Spooler subsystem is the interface between users and output 
devices. The functions performed by the Spooler subsystem 
include the following: 

* 

* 
* 

* 

Maintains output queues 

Schedules and starts output devices 

Halts and resumes output at devices 

Services user requests to do the following: 

Place an output request on a specified queue 

Modify the priority, form or destination of a 
request already on an output queue 

Display the status of devices and/or queues 

Modify spooler device attributes 

to prevent unauthorized 
requests, yet give a user 

The Spooler subsystem is designed 
deletion or modification of output 
complete control of the requests he or 
written in Pascal and assembly language. 

she initiated. It is 

8.2 STRUCTURE 

The Spooler subsystem consists of tasks that execute in the 
spooler job and tasks that execute in the user's job. 

8.2.1 Tasks in the Spooler Job. 

The Spooler job is created during IPL. The system initialization 
batch stream bids the Spooler device scheduler task (SP$DST) as 
the primary task. The XJ SCI command procedure specifies the 
task bid parameters for SP$DST. The leftmost 8 bits of Bid 
Parameter one (PARM1) are flags. The leftmost bit is normally 

2270513-9701 8-1 Spooler 

f 
I 

I 



SCI/Utilities Design 

set to 0, but may be set to 1 to specify that files are to be 
printed in priority order without regard for the currently 
mounted form. The other seven flags are reserved. The rightmost 
8 bits of Bid Parameter one (PARM1) specifies the number of class 
name records to be created in the Spooler queue file, where each 
class name record· will support 48 class name entries. Bid 
Parameter 2 (PARM2) specifies the number of device table records 
to be created in the queue file, where each device table record 
supports 12 device name entries. Because SP$DST changes the 
state of line printers, it must be a software-privileged task. 
SP$DST is privileged, software-privileged, and is not 
replicatable. 

The following tasks are bid by SP$DST and terminate upon 
completion: 

* SPINIT - Initialization task that is bid when SP$DST is 
first activated. It is neither reentrant nor sharable. 
SPINIT must be a software-privileged task and is not 
replica table. 

* xxWRITER A task that performs an output request. xx 
indicates the device type. (For example, LPWRITER 
spools lines of data to a printer, with a device name 
that starts with the characters LP.) The writer task 
signals SP$DST when the output request is complete. 
Writer tasks are replicatable. 

8.2.2 Tasks in the User's Job. 

The following tasks are bid in the user's job and terminate upon 
completion: 

* 

* 

SPTASK - Allows a user task to route output to a logical 
name rather than to a device. SPTASK generates a 
request to place the spooled output (temporary file) on 
the appropriate queue for output service. 

PF Interfaces with SCI and formats the informati'on 
supplied by the user to generate the following SCI 
requests: Print File (PF), Halt Output (HO), Kill 
Output (KO), Modify Output (MO), Resume Output (RO), and 
Modify Spooler Device (MSD); finds a specified device 
entry in the Spooler queue file and set a synonym for 
the device's associated class names. This synonym will 
be the default value issued for the class names prompt 
of the MSD command. This prevents a user from 
inadvertently destroying other user's class names. 

Spooler 8-2 2270513-9701 



SC!JUtilities Design 

* 

8.3 

( 

SOS Displays the requests queued for output and the 
status of Spooler devices. The output of this task is 
documented in the DNOS System Command Interpreter (SCI) 
Reference Manual with-the SOS command. 

COMMUNICATION AMONG SPOOLER TASKS 

SP$DST communicates with other tasks through channels, task bids 
and semaphores. 

8.3.1 Channels. 

Three channels provide the interprocess communication required by 
the Spooler subsystem. 

8.3.1.1 .S$DSTCHN . 

• S$DSTCHN is the global master/slave channel owned by SP$DST. 
All requests for output service on spooler devices must be 
requested with a message to SP$DST on this channel. 

All messages to SP$DST must be written with a request for reply. 
This is enforced in the code, and messages are ignored if no 
reply is specified. The length of the reply buffer must be 
greater than or equal to eight. 

The PF task (in the user's job) sends formatted messages to 
SP$DST on .S$DSTCHN. Each message contains a spooler request 
code a~d the information required to perform the function 
indicated by the code. Details of the format are shown in the 
section of this document entitled Data Structure Pictures. The 
spooler message format is named SPM. 

Most of the data is information needed to add, change or delete a 
request on the queue. The first two bytes, howe~er, are an 
opcode (used by SP$DST to control flow) and a byte in whi.ch an 
error code can be returned by SP$DST to the originator of the 
message. 

IPC passes open and close I/0 operations to SP$DST as the channel 
owner. No task is allowed to open the channel with exclusive 
access. Servicing of close requests to the channel is not 
altered. SP$DST issues a Master Write SVC indicating that no 
error occurred. 

2270513-9701 8-3 Spooler 



I 

SCI/Utilities Design 

The opcodes and the function each. represents are as follows: 

Code 

0 
1 
2 
3 
4 
5 
6 
1 
8 
20 
21 
22 

Function 

Writer task has completed or terminated 
Adds an entry to an output queue 
Halts output 
Resumes output 
Kills output 
Modifies a previous request 
Modifies attributes of a Spooler device 
Checks validity of a Spooler device or class name 
Find file name, given Spool ID 
Maintains current copy count for a print request 
Fake modify attributes request (used only by LPWRITER) 
Fake modify output request (used only by LPWRITER) 

8.3.1.2 .S$ACCCHN. 

This job-local 
task, LGACHN, 
information in 
completed. 

symmetric channel is owned by the accounting log 
and is used by SP$DST to place accounting 

the accounting queue when output service is 

The format of the message is shown in the Data Structure Piatures 
section of the DNOS System Design Document. The message is the 
same as the accounting record contents, ACC. 

8.3.1.3 .S$SPOOL. 

This task-local master/slave channel is owned by SPTASK. When a 
user assigns a LUNO to a logical name created with resource type 
SP, the channel .S$SPOOL is established as the route through 
which data is passed from the user's job to a temporary file. 

The channel has associated parameters from the user's assign 
logical name process. Those parameters and their meanings are 
defined in Table 8-1. SPTASK requires that the logical name be 
created with all 1 parameters and that the parameters are 
specified in numerical order. 

When the .S$SPOOL LUNO is released, SPTASK sends a print file 
message to SP$DST. 

Spooler 8-4 2270513-9701 



SCI/Utilities Design 

Table 8-1 Spooler Parameters 

Parameter Parameter 
Name Number 

ANSI! Format 00 
Banner Sheet 01 
Number of Lines/Page 02 
Number of Copies 03 
Forms 04 
Device/Class 05 
Spooler Logical Name 06 

8.3.2 BID Statements. 

Tasks are bid by SCI and by SP$DST using an appropriate SVC. The 
elements of the PARMS list passed with the bid are described in 
the detailed discussion of each task in the following paragraphs. 

SCI command procedures bid PF and SOS, each with a PARMS list. 

LPWRITER and SPINIT are bid by SP$DST. 

The system task IOU bids SPTASK (the owner of the channel 
.S$SPOOL) as part of processing an assign LUNO to a logical name 
with resource type SP. The user's assign LUNO IRB is passed to 
SPTASK. It contains a pointer to the parameter list specified 
when the logical name is created by the user. 

8.3.3 Semaphores. 

SP$DST and LPWRITER communicate using semaphores. The semaphore 
concept is discussed in the DNOS Supervisor Call (SVC) Reference 
Manual. The semaphore is used to coordinate requests for 
halting, resuming, killing and modifying output at a device. 

Each device that is available to the Spooler subsystem is 
assigned a unique job-local LUNO during the spooler 
initialization process, or when the device is made available to 
the Spooler subsystem via the MSD command. The LUNO number is 
known by both SP$DST and LPWRITER. This number is used as an 
index into the semaphore data structure (that is, the LUNO number 
is the same as the semaphore number). Since LUNOs are unique, a 
unique semaphore is referenced with regard to each device. 

Semaphores are given initial values during SP$DST initialization. 

2270513-9701 8-5 Spooler 



SCI/Utilities Design 

8.4 DEVICES 

Devices can be dynamically allocated and deallocated to the 
Spooler subsystem. The following functions are provided: 

* 
* 
* 

* 
* 

Adds and deletes spooler device entries. 

Changes the device availability to Spooler. 

Modifies the set of class names associated with the 
specific device. Class name usage allows the user to 
define an output class, composed of a set of devices, 
and allows the Spooler subsystem to dynamically select 
an available device from that set. 

Specifies the form currently mounted on the device. 

Allows devices to be specified as available exclusively 
to the spooler or available to the spooler, but to be 
shared with other programs, or as queue only. 

Output requests directed to a Spooler device that is currently 
defined as queue only are queued for future service when the 
device becomes available. This allows the installation to take 
devices from the Spooler on a temporary basis. The Spooler 
subsystem has exclusive access to any device so specified. A 
device may be usable by the Spooler but be specified as a shared 
device. The Spooler will contend with other users for this type 
of resource. 

The Spooler subsystem interfaces with the operator interface 
subsystem when forms are to be changed on a device. The name of 
the last form mounted on each device is maintained in the Spooler 
device entry table. 

8.5 THE QUEUE FILE 

A major design objective of the Spooler subsystem is to maintain 
the integrity of the print queues in the event of a system crash 
or intentional stopping of the system. This is accomplished by 
keeping a disk file that contains information about Spooler 
devices, the status of each of those devices, class names 
associated with the devices, and information about each output 
request that has not yet been serviced or that is being serviced. 
The queue file resides in a directory on the system disk, 
.S$SDTQUE. The name of the queue file is the same name as 
generated operating system that is currently executing. 

Spooler 8-6 2270513-9701 



SCI/Utilities Design 

In order to minimize disk access~s. the logical record size is 
large (768 bytes). The queue file is an unblocked relative 
record file. 

The Spooler maintains two types of queues for output requests -
class name queues and device queues. As mentioned earlier, each 
installation can edit the initialization batch stream .S$ISBTCH 
to specify the desired number of class name and device table 
records. The default values for the standard Spooler queue file 
are one class name record and one device table record. This 
gives the user the availability of 48 class names and 12 devices. 

The task SP$DST has exclusive write access to the queue file. 
Other tasks access the file for reading only. 

The structure of .S$SDTQUE is shown in Table 8-2. 

Record 
Number 

2 to i 

Table 8-2 Structure of .S$SDTQUE 

Contents 

Header record containing the name of the file, 
version number, the number of class name records 
in the file, and the number of device table 
records in the file. 

Class name records, each containing 48 class 
name entries 

i+1 to j Device table records, each containing 12 device entries 
entries 

j+1 to 65535 Bloeks of output requests. Each record has space 
for six queue entries. 

8.5.1 Class Name Table (CNT). 

The records 2 to i of the Spooler queue file contain class name 
table (CNT) entries. The organization and format of each CNT 
entry is shown in the section of this manual entitled Data 
Structure Pictures. The following information is maintained 
about each of the class name queues: 

* Class information: 

Number of devices that use this class name 

2270513-9701 Spooler 

I 



I 

I 

SCI/Utilities Design 

Status of the class (active, deleted, halted, 
etc.) 

Character string name of the class 

* Queue header: 

Record number, offset within that record 

Priority of the request 

8.5.2 Spooler Device Table (SDT). 

The device table records of the Spooler queue file contain 
Spooler device table (SDT) entries. SDT entries contain 
information about each device known to the Spooler, and a queue 
anchor to the requests waiting specifically for the device. The 
data structure picture SDT in the last section of this manual 
shows the organization and format of each entry in th~s record. 

The following information is maintained for each of the devices: 

* Name of the device 

* LUNO assign~d to the device, if the device is currently 
usable by the Spooler subsystem 

* 

* 

* 
* 

* 

Status of the device (active or deleted) 

Pointers for as many as six class names with which the 
device is associated; the pointers consist of a (class 
name record number, index into the clas~ name record) 
pair. 

Name of the form currently mounted on the device 

Device type (byte) and flags from the PDT 

Flags to indicate the state of the spooler device: 

Available exclusively to Spooler? 

Shared device 

Halted? 

Busy? (Set if a request is active at the device.) 

Spooler 8-8 2270513-9701 



SCI/Utilities Design 

The following information is maintained about the queue header 
for each device: 

* Record number and offset within the record 

* Priority of the request 

Information about the output request that is currently active 
(not on a queue) is maintained for each device. 

The following information about the request, if any, that is 
active on a device is maintained for each device: 

* Priority of the request 

* Record number and offset within the record 

* Number of units to page forward or backward (used only 
with Resume Output command) 

* Flags used to communicate with the writer task 

8.5.3 Queue Records. 

The remaining records consist of blocked output requests. A 
request occupies 114 (decimal) bytes, and a record contains a 
maximum of six requests. The organization and format of each SDQ 
entry (request) is shown in the section of this manual entitled 
Data Structure Pictures. 

Queue 
order. 

entries are 
(The highest 

Thus, the 
order.) The 
is the job 

i s 3 1 • 
priority 
request 
request. 

chained forward, in descending job priority 
priority in the system is 0 and the lowest 

queues are chained in ascending numerical 
initial output priority assigned to a 
priority of the job that generated the 

The anchors for these queues are the CNT and SDT entries. 
Entries are not on multiple queues, and an entry that is active 
on a device is not on any q~eue. (Pointers to the active request 
reside in the device table entry for the device on which the 
request is active.) If the user requests that a multifile or 
concatenated file be output, the SDQ entry is the header for a 
linked list of entries that contain pathname information 
necessary to process the request. 

There are two kinds of entries in the request queue. The SDQ 
data structure picture shows the format of both types. The most 
common entry is a queue entry. It contains information for 
starting an xxWRITER task. The second type is a continuation 
entry. It contains little more than names of additional files 
that are to be output as part of the same request. Every 

2270513-9701 8-9 Spooler 

I 

I 



I 

SCI/Utilities Design 

continuation entry that exists is associated with a queue entry. 

The following information is maintained for both types of 
entries: 

* Status of the r~quest (active or deleted) 

* Record number and offset to a continuation entry, if any 

* Queue chaining information: 

Record number and offset of the next request 

Priority of the next request 

8.5.3.1 Queue Entries. 

A queue entry carries the following additional information: 

* Information about the origin of the request: 

User ID 

Job ID 

Job name 

* Name of the device or class specified 

* Details of the request: 

Priority 

Number of copies 

Lines per page 

Form to be mounted on device 

Spooler ID of this request 

Pathname of the first file to be output 

Whether or not to print a banner sheet 

Whether queued for a device or for a class name 

Delete file after output flags 

ANSI flag 

Spooler 8-10 2270513-9701 



SCI/Utilities Design 

8.5.3.2 Continuation Entries. 

The continuation entry is used only when the request is to print 
a logically concatenated set of files. It contains status, queue 
chaining, and co~tinuation information, the same as a queue 
entry. The remainder of the record contains a one-word count 
that is the number of additional pathnames, followed by the 
pathnames, each in the following format: 

Ncc •.. cc 

where: 

N is the number of characters in the pathname. 
cc ••. cc is the character string itself. 

The number of pathnames in a continuation entry depends on the 
length of the pathnames. A total of 100 characters is available 
for packing pathnames in a continuation entry. The pathname list 
can be continued across as many SDQ entries as required. 

8.5.4 Spooler ID Logical Names. 

In the process of building a queue entry, SP$DST creates a 
logical name for the input pathname or pathnames supplied in the 
spooler message. This logical name is of the following format: 

where: 

Snnnnn 

nnQnn is the ASCII representation of a five-digit 
(decimal) number. 

The number is initialized during spooler initialization, and is 
incremented each time a request is added to a queue. The logical 
name created by SP$DST is the spooler ID displayed by the SOS 
task. 

This logical name defines a single file or a concatenated file 
set. This definition simplifies the function of writer tasks. 
Under this arrangement, the writer tasks require no knowledge of 
the user's request; the writer task assigns to the spooler ID as 
defined in the queue entry. Because SP$DST has created this 
logical name, the operating system File Management subsystem 
builds the structures necessary to access the file(s). The 
writer task reads the file until an EOF or EOM is encountered. 

2270513-9701 8-11 Spooler 

I 

I 



SCI/Utilities Design 

8.6 DETAILED DESIGN OF SP$DST 

Details of the 
initialization 
paragraphs. 

device scheduler 
task, SPINIT, are 

task, 
discussed 

SP$DST, and its 
in the following 

8.6.1 Memory Data Structures. 

Two major data areas are used by the Spooler subsystem: 

* 

* 

SPMSG - Segment containing the text of messages that are 
written by the Spooler to the system log. It is used by 
SP$DST. The structure is a table with 20 entries. The 
length of each entry is 50 charact~rs. 

SPCOMN - Area containing run-time information about the 
queue file. SPINIT initializes most of this area for 
SP$DST, but some of the common area is used for queue 
positioning parameters internal to SP$DST. These 
structures are described in greater detail in Figure 
8-1. 

Spooler 8-12 2270513-9701 



SCI/Utilities Design 

****************************************************************** 
* DESCRIPTION OF THE SPOOLER IN-MEMORY DATA STRUCTURES. * 
* THIS IS A PASCAL DEFINITION OF THE DNOS COMMON TEMPLATE * 
* FOR SPDATA, AND IS MAINTAINED AS THE SPCOMN PROCEDURE * 
****************************************************************** 
SPDATA : PACKED RECORD 

CNTREC : CNR "CLASS NAME RECORD BUFFER AREA 

" 
" CNTREC IS THE INTERNAL BUFFER AREA FOR CLASS NAME RECORDS 
" FROM THE SPOOLER QUEUE FILE 
" 

SDTREC :PACKED ARRAY [ 1 •• 12) OF SDT ; "DEVICE TABLE REtORD BUFFER 

" 
" SDTREC IS THE INTERNAL BUFFER AREA FOR 
" DEVICE TABLE RECORDS FROM THE SPOOLER QUEUE FILE 

" 
QREC1 
QREC2 

QR 
QR 

"QUEUE ENTRY RECORD BUFFER #1 
"QUEUE ENTRY RECORD BUFFER #2 

" 
" QREC1 AND QREC2 ARE INTERNAL BUFFER AREAS USED 
" TO BUFFER IMAGES OF RECORDS TWO THROUGH 255 OF 
" THE .S$SDTQUE FILE; QREC1 IS USED TO BUFFER THE 
" ENTRY BEING ADDED, DELETED, OR MODIFIED, WHILE 
" QREC2 IS USED TO BUFFER THE ENTRY THAT PRECEDES 
" THE ENTRY IN QREC1 IN THE QUEUE 

" 
HDRREC 
MRAREA 

" 

HR 
MRA 

"FILE HEADER RECORD 
"MASTER READ BUFFER AREA 

" MRAREA IS THE BUFFER AREA FOR THE SPOOLER MESSAGES 
" OBTAINED BY THE IPC MASTER READS AND WRITES ACROSS 
" THE .S$DSTCHN 
" 

SDFBLK : IRB "BLOCK FOR I/O TO SPOOLER QUEUE FILE 

" 
" SDFBLK IS THE I/O REQUEST BLOCK ( IRB ) USED TO 
" PERFORM I/0 TO THE SPOOLER QUEUE RELATIVE RECORD FILE 

" 
MREAD : IRB "MASTER READ/WRT SVC BLK 

" 
" MREAD IS AN I/0 REQUEST BLOCK USED BY SP$DST 
" TO PERFORM IPC MASTER READS AND WRITES ACROSS 
" THE SPOOLER'S CHANNEL ( .S$DSTCHN ) 

" 

Figure 8-1 Spooler Data Structures (Sheet 1 of 4) 

2270513-9701 8-13 Spooler 

I 



SCI/Utilities Design 

DEVI RB !RB "DEVICE I/0 BLOCK ** 001 ** 
" 
" 
" 
" 

ACCIRB !RB "ACCOUNTING CHANNEL ** 001 ** 
" 
" 
" 
" 

LNBLK : S43 "CREATE/DELETE LOGICAL NAME BLK 
" 
" LNBLK IS THE NAME MANAGER REQUEST BLOCK USED TO 
" CREATE SPOOLER LOGICAL NAMES IN THE PROCESSING OF 
" PF MESSAGES OR TO DELETE SPOOLER LOGICAL NAMES IN 
" THE PROCESSING OF COMPLETION ~ESSAGES FROM THE 
" WRITER TASKS 

BIDSVC : S2B "BLOCK FOR BID TASK SVC 
" 
" THIS IS THE BID TASK SVC BLOCK USED TO BID THE DEVICE 
" WRITER TASKS AND SPINIT 
" 

MAPPRG : S31 "BLOCK FOR MAP NAME TI ID SVC 
" 
" THIS IS THE MAP NAME TO INSTALLED ID SVC BL0CK 
" THAT IS USED TO DETERMINE THE INSTALLED ID OF 
" SPINIT AND THE DEVICE WRITER TASKS PRIOR TO 
" THE ACTUAL TASK BID SVC 
" 

SEMWAT : S3D "SEMAPHORE OPERATIONS SVC BLK 

Spooler 

" 
" THIS SVC BLOCK IS USED TO SEMAPHORE SIGNALLING 
" TO THE WRITER TASKS THAT IT SHOULD PREMATURELY TERMINATE 
" OR SUSPEND THE ACTIVE PRINT REQUEST. THE MANNER OF 
" TERMINATION USED BY THE WRITER TASK IS A FUNCTION 
" OF STATUS FLAGS SET BY SP$DST IN THE APPROPRIATE 
" SDT ENTRY. 
" 

Figure 8-1 Spooler Data Structures (Sheet 2 of 4) 

8-14 2270513-9701 



SCI/Utilities Design 

MISFLG : PACKED RECORD 
QTYP BOOLEAN; 
HOLFND BOOLEAN; 
ACCOFF BOOLEAN; 
DISABL BOOLEAN; 
QFC aooLEAN; 
FILL15 O •• 2047 ; 
END; 
" 

"MISCELLANEOUS FLAGS 
11 TRUE:DEVICE QUEUE ENTRY 
"TRUE:AVAILABLE SPACE FOUND 
"TRUE:ACCOUNTING DISABLED 
"TRUE:DISABLE ALL CMDS THAT 
"TRUE:QUEUE FILE JUST CREATED 

" MISFLG IS INTERNAL USE FLAGS 
" 

SP$ID : SID 11 SPOOL ID NAME AREA 
" 
" INTERNAL BUFFER USED TO BUILD AN ASCII SPOOL ID 
11 LOGICAL NAME 
II 

MSGADR 
CURFRM 
SPLID 

" 

@SPM "ADDRESS OF MESSAGE TO DST 
PACKED ARRAY [ 1 •• 8 ] OF CHAR; "WORKING SPACE FOR FORM 
WORD; "SPOOLER ID 

11 INTEGER VALUE THAT REPRESENTS THE VALUE OF THE NEXT SPOOL 
11 ID TO BE GENERATED 
" 

CUR CR 
CUR DR 
FIRS TD 
FIRSTQ 
PRIOPT 
MAXQR 

" 

WORD 
WORD 
WORD 
WORD 
WORD 
WORD; 

"CURRENT CLASS NAME RECORD 
"CURRENT DEVICE TABLE RECORD 
"FIRST DEVICE RECORD NUMBER 
"FIRST QUEUE RECORD NUMBER 
"PRINT BY PRIORITY OPTION FLAG 
"MAX QUEUE RECORD 

" REPRESENTS THE LAST RECORD NUMBER IN THE .S$SDTQUE FILE 
II 

Figure 8-1 Spooler Data Structures (Sheet 3 of 4) 

2270513-9701 8-15 Spooler 



I 

SCI/Utilities Design 

INIERR 
QUE OF 1 
QUERN1 

BYTE; 
BYTE; 
WORD; 

"INITIALIZATION ERROR CODE 
"OFFSET INTO QUEUE BUFFER ONE 
"QUEUE RECORD NUMBER IN BUFFER 

" 
" QUERN1 AND QUEOF1 ARE A RECORD NUMBER/ENTRY OFFSET 
" PAIR INDICATING A PARTICULAR SDQ ENTRY IN THE 
" QREC1 BUFFER THAT IS BEING PROCESSED 
II 

QUERN2 
QUEOF2 

WORD; 
BYTE; 

"QUEUE RECORD NUMBER IN BUFFER 2 
"OFFSET INTO QUE BUFFER TWO 

NDX 

II 

" QUERN2 AND QUEOF2 ARE A RECORD NUMBER/ENTRY OFFSET 
" PAIR THAT INDICATE THE PARTICULAR SDQ ENTRY THAT 
" PRECEDES THE ENTRY INDICATED BY QUERN1/QUEOF1 PAIR 
" IN THE QUEUE CHAIN; IF QUERN2 = 0 AND QUEOF2 = >FF, 
" THEN THERE IS NO ENTRY ON THE QUEUE THAT PRECEDES 
" THE QUERN1/QUEOF1 ENTRY 
" 

: BYTE; "INDEX INTO RECORD 
" 
" USED BY THE SP$DST QUEUEING ROUTINES TO INDICATE 
" WHICH CNT OR SDT ENTRY IS BEING USED 
II 

RESRV1 
QFPN 

BYTE; 11 *** RESERVED *** 
PACKED ARRAY [ 1. .52 ] OF CHAR; "QUEUE FILE PATHNAME 

Figure 8-1 Spooler Data Structures (Sheet 4 of 4) 

8.6.2 Invoking SP$DST. 

The spooler job is created when the system is initially loaded. 
The system initialization batch stream bids SP$DST as the initial 
task in the spooler job. If the spooler job is killed by the 
system operator, it can be restarted using the XJ command with 
SP$DST as the initial task. The user must remember to specify 
the identical task bid parameters that were last used in the 
initialization batch stream. If the Spooler initialization task 
finds differences in what is in the current queue file and what 
was specified in the task bid parms, the current queue file will 
be deleted and the task bid parms will be used to create a new 
queue file. This results in all device definitions and 
outstanding print requests being deleted. 

8.6.3 Initialization. 

A separate task, SPINIT, is bid by SP$DST to perform 
initialization functions for the Spooler subsystem. SPINIT calls 
procedure SPICHN, which deletes and recreates channels associated 
with the Spooler subsystem. 

Spooler 8-16 2270513-9701 



SCI/Utilities Design 

SPINIT calls SPIDTQ to assign, with autocreate, a LUNO to the 
spooler queue file. If no file is found, the Spooler queue file 
is created with no devices or class names defined. If the file 
is found, the active request at each device (if any) is placed on 
its original queue and the memory-resident variables are 
initialized to allo~ the restarting of output at spooler devices. 

During reconstruction of the queues, SPINIT scans all the queues I 
to determine the largest spool ID currently in use. (A given 
spool ID is associated with the same file across crashes.) 
SPINIT then terminates. 

SP$DST assigns a LUNO to its channel, .S$DSTCHN, and the 
accounting channel, .S$ACCCHN, and schedules any device that is 
available and that has entries on its device queue or on one of 
its associated class name queues. SP$DST then issues a Master 
Read SVC to its channel, and is ready to process messages from 
users. 

8.6.4 Major Loop. 

SP$DST is the heart of the Spooler subsystem. It builds the 
prioritized queues from requests it receives, and schedules 
devices to perform the output requests on the queues. After 
initial setup, the flow is as follows: 

DO UNTIL an irrecoverable error occurs; 
Clear previous error conditions; 
Call SPSCHD* to start the appropriate writer tasks; 
IF the write reply flag is set 

THEN Master Write to .S$DSTCHN; 
Master Read to .S$DSTCHN; 
IF the message is for SP$DST 

THEN CASE:Function code 
0: SPDONE* - Writer task message 
1: SPPFM* - Output request 
2: SPHOM* - Halt output message 
3: SPROM* - Resume output message 
4: SPKOM* - Delete an output request 
5: SPMOM* - Modify an output request 
6: SPMSDM* - Modify attribute(s) of a spooler device 
7: SPVFY* - Verify device or class name 

END; 

8: SPFFN* - Find file name, given spool ID 
20: SPCPYC* - Maintain copy count for active entry 
21: SPMSDM* - Fake MSD operation (used by LPWRITER) 
22: SPMOM* - Fake MO operation (used by LPWRITER) 

ELSE Report an error; 

2270513-9701 8-17 Spooler 



SCI/Utilities Design 

* Name of the module that performs the function. 

Various errors are reported to the user through SPERR, the error 
processing routine, but unless an error is catastrophic (see the 
subsequent paragraph on termination), control returns to the 
preceding loop. 

8.6.5 Error Processing. 

SP$DST and SPINIT process errors differently, as described in the 
following paragraphs. 

8.6.5.1 SP$DST. 

Error processing in SP$DST consists primarily of writing an error 
code in the user-specified reply buffer. Routine SPERR performs 
this function. 

An error code of >E5 (bad call block) is 
byte of the caller's request block 
conditions is encountered: 

placed 
if one 

in the second 
of the following 

* Caller does not specify write with reply 

* The caller output character count (length of buffer) 
does not exactly equal the size of the SPM (template). 

* Reply buffer supplied by 
bytes is the minimum buffer 
reply data. 

caller 
length 

is too short. Eight 
for returning the 

If the caller attempts to open the channel .S$DSTCHN with any 
access privileges other than shared, >38 (unable to grant 
requested access p~ivilege) is placed in the second byte of the 
caller's request block. 

If an attempt is made to add a device or class name queue when 
the maximum number of such queues already exists, a message is 
written to the system log, and an error code is returned to the 
caller. 

8.6.5.2 SPINIT. 

Errors that occur in the initialization task are either ignored 
or cause abnormal termination of the spooler job. If SPINIT is 
unable to access a channel or a file that it needs, an error flag 
is set in SPDATA and the task terminates. The error flag causes 
SP$DST (and therefore the spooler job) to terminate. 

Spooler 8-18 2270513-9701 



SCI/Utilities Design 

8.6.6 Termination. 

End-action is taken by SP$DST only when the task is terminated by 
the operating system (as a result of a Kill Job operation by the 
system operator). 

SP$DST and SPINIT terminate when one of the following resources 
is unusable: 

* !PC Channel .S$DSTCHN 

* Spooler queue file 

Routine SPQUIT handles termination. 
steps: 

It takes the following 

1. Writes a message to the system log 

2. Attempts to release all channels and associated LUNOs 

3. Attempts to release the Spooler queue file 

4. Issues an SVC to terminate SP$DST 

8. 6. 7 Detail ed Design • 

The major loop of SP$DST consists of scheduling devices and 
processing formatted messages from various sources for various 
services. The modules that contain code to perform these 
functions are discussed in greater detail in the following 
paragraphs. 

8.6.7.1 SPSCHD. 

Procedure SPSCHD performs scheduling. The devices associated 
with a class name are scheduled for continuous operation as long 
as requests are queued. If a device or its associated class name 
queues contain requests, and the device is not ·halted, 
unavailable, or busy, SPSCHD selects a request to start on the 
device. 

The priorities assigned the various requests are honored by the 
scheduler, regardless of the type queue in which the request is 
stored. Requests are normally selected from the device or class 
name queues according to requested print form first, and job 
priority second. This is to minimize operator forms mounting. 
Requests for the same form and having the same priority are 
processed on a first-in, first-out basis. Requests will be 
processed in priority order without regard to the requested print 
form if that option was specified when the spooler was started. 

2270513-9701 8-19 Spooler 

I 



SCI/Utilities Design 

Once the next request to be 
removes the request from 
queue header. The pointers 
the SDT. A writer task for 

serviced has been selected, SPSCHD 
its queue, updating the appropriate 

for the active request are updated in 
the device is bid. 

8.6.7.2 Queue File Space Management. 

Ongoing management of space in the Spooler queue file is done by 
the SP$DST routines SPQADD and SPQDEL, which add and delete 
entries in the queues. The algorithm is designed to keep the 
queues compact, minimizing the number of disk accesses required. 

The variable MAXQR is maintained in SPCOMN. 
current number of records in the file. 

Its value is the 

Acquiring Space. 

The queue file is created by SPINIT with the specified number of 
class name records, the specified number of device table records, 
and one (empty) queue entry record. It is expanded by SPQADD, 
one record at a time, as required to accommodate requests. 

When a queue entry is ready to be placed in the file, the 
following algorithm is exercised to find space for it: 

IF There is a deleted entry in the current record 
THEN Write the new entry there; 
ELSE 

Starting with the first queue record, search 
(sequentially) for a deleted entry. 

IF a deleted entry was found 
THEN Write the new entry there; 
ELSE 

IF MAXQR = >FFFF 
THEN Report "space not available" 

and ignore the request; 
ELSE 

Increment MAXQR; 
Expand the file; 
Write the new entry in the new record; 

ENDIF; 

Releasing Space. 

SPQDEL deletes entries from the queue records. 
pointers are updated in the proper entries, and the 
as well as all associated continuation entries 
deleted. 

Spooler 8-20 

The chain 
queue entry 
are marked 

2270513-9701 



SCI/Utilities Design 

8.6.7.3 Writer Task Messages. 

Device writer tasks send a formatted message on .S$DSTCHN to 
indicate to SP$DST that a request has been completed or 
terminated. Procedure SPDONE processes this message. 

Seven conditions cause a writer task to generate a spooler 
message: 

* Normal completion of the task. A termination due to an 
I/O error in the file being output is treated as a 
normal completion. 

* The active request has been terminated by a Kill Output 
command. 

* The active request has been terminated by a Modify 
Output command. 

* Device error 

* Request SP$DST to update (decrement) 
specified queue entry 

copy count for 

* The operator responds positively to a forms mount 
request, thus requiring the currently mounted form name 
(in the SDT) to be changed. 

* The operator responds negatively to a 
request, thus requiring the selected 
requeued. 

forms 
file 

mount 
to be 

Flags in the device table entry and in the spooler message are 
used to determine what condition caused the writer task to send a 
termination message as follows: 

* SDTFLG.SDFKIL:true means the task was killed by a kill 
output request. SP$DST signaled the writer task via a 
semaphore operation to terminate. 

* SDTFLG.SDFTRM:true means the task was terminated during 
processing of a modify output message request. SP$DST 
signaled the writer task via a semaphore operation to 
terminate. 

* SPMFLG.SDFDVE:true means that a device error occurred. 

* SPMFLG.SPFABE:true means the device writer task took 
end-action. 

SPDONE writes a record to the accounting channel, unless the flag 
SPDATA.MISFLG.ACCOFF is set to inhibit accounting. 

2270513-9701 8-21 Spooler 

' 



I 

I 

I 

SCI/Utilities Design 

SPDONE then determines the device to which the spooler message 
applies. This is done by matching the device name in the message 
with an entry in the device table. 

If the writer is terminated by a Modify Output command, the 
active request is placed back on the proper queue by SPMOM. The 
only processing done by SPDONE is to reset the flag SDFTRM. This 
completes processing by SPDONE for the termination message 
generated due to a Modify Output command. 

For those requests that specified multiple copies, the LPWRITER 
will, upon completion of each copy, send a message to the Spooler 
Device Scheduler Task. The message informs SP$DST to decrement 
the number of copies for the specified entry and update that 
entry on disk. In the event of a crash or intentional kill of 
the Spooler job, the original copy count will not be printed 
again; only the number remaining will be printed. 

If the message is generated because of a device error, a Halt 
Output command is simulated. This consists of the following: 

* Setting the halt flag in the device table entry 

* Updating the device table record in the Spooler queue 
file 

* Signaling the writer task, via semaphore, to halt and 
wait for a signal, and, again via semaphore, to resume 
output 

In all other cases, the following processing is done: 

IF the writer task ended abnormally 
THEN Write a message to the system log; 

IF the flag SQFDAP (delete after print) is set and 
the file was successfully printed 
or the flag SQFDAL (delete always) is set 

THEN Delete the file; 
Delete the queue entry; 
Update the device table entry to show that no request is 
active at this device. 

Reset the kill, busy and termination flags in the device entry; 
ENDIF; 

8.6.7.4 Output Request Messages. 

Procedure SPPFM processes output request 
the user's job, for instance by PF 
consists of the following steps: 

Spooler 8-22 

messages written from 
or SPTASK. The process 

2270513-9701 



( 

SCI/Utilities Design 

1. Determining whether the request belongs on a 
queue or a class name queue. If the device or 
name is not found, an error is reported through 
and no further action is taken on the message. 

device 
class 
SPERR 

2. Finding space in the appropriate queue and reporting 
the error if no space is available 

3. Formatting the SDQ entry or entries (procedures SPBLDQ 
and SPCONQ) 

4. Adding the entry to the queue (procedure SPQADD) 

If a device known to the Spooler subsystem is not currently 
available, queueing of entries for that device continues. The I 
requests are output whenever the device is made available to the 
Spooler subsystem. If a device is known to the Spooler, but is a 
shared device, the Spooler must contend with other tasks in the 
system for the use of the resource (device). 

8.6.7.5 Kill Output (KO). 

Either the system operator or the originator of ~n output request 
can issue a command to kill the output request. The PF task in 
the user's job writes the message to .S$DSTCHN that requests a 
kill output for the user. This message is processed by procedure 
SPKOM. 

The initial test is to determine whether the us~r has requested 
that the entire queue or a single entry be removed. If the 
spooler ID supplied is ALL, the entire queue is examined for 
candidates to delete. After determining whether the name 
supplied is a device or a class name, the routine .KILL QUE is 
called to delete all output requests that the caller is 
authorized to delete. 

In the event that the user identified a specific request (spooler 
ID), the active requests are searched first. If the 'spedified 
request is found, SPKOM terminates the writer task, via semaphore 
operation, and updates the queue to delete the request. If the 
request is not active, it is waiting in the queue. 

After the request is located, SPKOM calls SPOPCK to check the 
authority of the user to kill the request. SPOPCK returns a 
value of true if the user is either the system operator or the 
user who originated the request. If the user is authorized to 
kill the request, it is unchained and deleted. If the operator 
check is false, a privilege error indicator is returned. 

KILL QUE is a routine that processes an entire queue. Starting 
at the queue header in the class name or device table, each queue 

2270513-9701 8-23 Spooler 



SCI/Utilities Design 

entry is read, and SPOPCK is called to check operator privilege. 
If the user has authority to kill the request, the entry is 
unchained and deleted. If the entry cannot be killed by this 
user, it is left on the queue. No privilege error messages are 
generated as it is legitimate for a user to kill all requests on 
a queue that belong to the user. The system operator is allowed 
to kill any request. 

8.6.7.6 Modify Output (MO). 

Procedure SPMOM processes bhis message type. This command allows 
the user to make various changes in entries that are already 
queued for output. The following items may be changed: 

* 

* 

* 

Device name or class name - Removes the entry 
present queue and places it on the queue 
specified device or class name 

from its 
for the 

Form - Changes the form originally requested to the form 
now being specified 

Priority - changes the priority of an entry. The 
original priority is the priority of the requester's 
job, and can be changed to any value that is a valid job 
priority. 

Valid job priorities are 0 (highest priority) through 31 
priority). 

(lowest 

SPMOM determines what is being changed by examining the value of 
the following three variables passed in the spooler message: 

* S PM JPR - A value of >FF means there is no change in 
request priority. 

* SPMDVN A value of eight blanks means there is no 
change in device or class name. 

* S PMFRM - A value of eight blanks means there is no 
change in form name. 

The first test performed by SPMOM is to determine if this request 
involves changing the device/class. If so, the SOT or CNT entry 
for the specified device or class is located. 

The second step is to locate the SDQ entry specified by the spool 
ID. The active devices are search first. If the entry is not 
found as an active entry, then the waiting queues are searched. 
If the specified spool ID is not found, an error is given. 
Otherwise, the location of the SDQ entry is noted along with 
whether the entry was active or not. 

Spooler 8-24 2270513-9701 



SCI/Utilities Design 

SPMOM then calls SPOPCK to verify that the requestor has the 
authority to make changes to the specified SDQ entry. 

If the entry is not an active entry, it is unchained from the 
waiting queue. 

If the entry is active and the only change specified is to 
numerically lower the priority (logically increase the priority), 
then the priority in the SDQ entry is updated and SPMOM returns 
normally to its caller. 

If the entry is active and some other change is specified, then 
SPMOM signals the writer task to terminate. 

Finally, SPMOM queues the entry to the specified device/class or, 
if none was specified, then to the device/class for which the 
entry was previously queued. 

8.6.7.7 Modify Spooler Device (MSD). 

This message type is processed by the procedure SPMDSM. Modify 
spooler device messages alter the entries in the device table and 
class name table. If an entry in the tables is not found for the 
specified device or class name, it is assumed that the new name 
is to be added. 

In altering existing device or class name attributes, the 
following logic is exercised: 

IF the delete device (SPFUSE) is set in the spooler message 
THEN 

IF the device is available to Spooler subsystem 
THEN Release the device; 

Mark the device deleted in the SDT; 
ELSE Update the entry with newly specified attributes; 

ENDIF; 

When new class names are specified for a device, the entire list 
of previously specified class names for that device is replaced 
with the new list. 

When the device or class name specified does not match any entry 
known to the Spooler, the new information is used to construct an 
entry in the device table. A Map Task Name to Installed ID SVC 
is issued to ensure that there is a writer task for the specified 
device. If none is found, the device is not added and a name 
error message is returned through SPERR. 

2270513-9701 8-25 Spooler 



SCI/Utllities Design 

A device for which a writer task is found is added to the device 
table. Initially it has no request active and no requests 
queued. The form and device name are copied from the spooler 
message. 

If the spooler mode'indicates that the device is available, the 
routine SPDIAG is called to determine the status of the device. 
SPDIAG searches the system PDT list for the PDT of the device to 
be added. If no PDT is found, SPDIAG returns an error to the 
caller. The caller deletes the device table entry, when 
appropriate. 

If the device is to be available exclusively to the Spooler, the 
device state is tested. Unless the device is online, or in the 
spooler state, the not available flag in the device table entry 
is set and processing is complete. 

For -Oevices found in the online state and are to be available 
exclusively to the Spooler, SPDIAG issues a special assign .LUNO 
(an SVC that is reserved for system use) that gives the Spooler 
exclusive control of the device. If the device is shared, a 
regular Assign LUNO (op code >91) is performed. If an error is 
returned from the assign LUNO SVC, the not available flag in the 
device table entry is set. 

Class names are added to the device table entry and both the 
class name and device table records are rewritten to the queue 
file. 

8.6.7.8 Halt Output (HO). 

SP$DST sets the halted flag in the device table entry and writes 
the updated entry to disk. If the HO request indicates an 
immediate halt and if a request is active on the device, SP$DST 
signals the writer task, via semaphore operation, to halt and 
wait for another signal, via semaphore operation, to resume 
output. 

If the request does not specify an immediate halt, the halt 
output flag in the device entry table is set, but no semaphore 
operations are performed. After the active request is completed, 
the device is not scheduled again until the halt output flag is 
reset by a Resume Output command. 

If the request specifies a class name rather than a device name, 
then the class is marked halted. This means that SP$DST will not 
schedule any more files in that class queue for printing on any 
devices until a Resume Output command is entered to reactivate 
the class queue. Any files currently printing at the time of the 
Halt Output command continue to print. 

Spooler 8-26 2270513-9701 



SCI/Utilities Design 

8.6.7.9 Resume Output (RO). 

SP$DST resets the halted flag in the specified device 
entry. The user-specified number of pages is stored in the 
entry for the ·request. A positive number causes pages 
skipped; a negative number causes pages to be reprinted. 

table 
queue 
to be 

SP$DST signals the writer task to resume execution via semaphore 
operation. 

If the request specifies a class name rather than a device name, 
then SP$DST marks the class as not halted. This allows SP$DST to 
again schedule files in the specified class queue for printing on 
devices in the class. 

8.6.7.10 Verify Device or Class Name. 

The requested operation determines whether the specified device 
or class name currently exists in the SDT or CNT. SP$DST 
searches the CNT and SDT to find the device or class name 
specified. If it is not found, a name error message is reported 
through SPERR. Otherwise, no error is reported and processing 
ends. 

The verify request is generated by the task that assigns spooler 
parameters, ASP, during the creation of a logical name with 
resource type SP. It is also used by SPTASK to verify that the 
dev~ce/class name specified is still valid. 

8.6.7.11 Perform Copy Count Maintenance. 

If a user requests multiple copies on a print request, the writer 
task sends a message to SP$DST when each copy completes. This 
message indicates that SP$DST is to reduce the number of copies 
for the active entry on the specified device. 

8. 6. 7. 12 Find File Name. 

This message type is processed by the procedure SPFFN. SPFFN 
searches first the active devices for the specified spool ID. If 
the specified entry is not found as an active entry, SPFFN then 
searches the waiting queues. If the entry is still not found, an 
error is returned. Otherwise, the pathname of the file to be 
printed is returned to the requesting task via the reply buffer. 
The function provided by SPFFN is not used by any of the standard 
DNOS tasks. However, this functionality is provided for user 
programs to use if they need to. 

2270513-9701 8-27 Spooler 

I 



SCI/Utilities Design 

8.6.8 Shared Modules. 

The modules described in this paragraph are used by the tasks 
SPINIT and SP$DST. They must be linked into both tasks. The 
modules are as follows: 

* SPDCNT Marks the CNT entry specified by the calling 
parameter as a deleted entry. The queue headers are 
also deleted. 

* SPDIAG Assembly language routine that interfaces 
between the Spooler and the operating system PDT list. 
When the device is found in that list, a spooler job
local LUNO is assig-0ed to it. The SDT entry is set to 
indicate that the device is not busy and is not halted. 

* SPDSDT Deletes the specified entry in the SDT. The 
device is marked deleted and the queue headers as well 
as the active request are altered to indicate that there 
is no request active, and none queued. 

* SPIO Routine that performs I/O requests for a 
specified record and record type. 

* SPSDQD - Marks the specified queue entry deleted. 

8.6.9 Internationalization. 

The text of each message written to the system log is hard coded 
in English in module SPCOMN. 

8.7 SPOOLER DEVICE WRITER TASKS 

A spooler device writer task is bid when the device is found to 
be available, idle, and not halted, and an entry exists on the 
device queue or on one of its associated class name queues. In 
order to bid the writer task, SP$DST locates a task in the system 
utility program file, .S$UTIL, with the task name consisting of 
the first two characters of the device name followed by WRITER. 

Device writer tasks have the following responsibilities: 

* Requesting that SP$DST maintain the number of copies 

* Maintaining the lines-per-page count 

* Adding carriage control, unless the file has embedded 
carriage control 

Spooler 8-28 2270513-9701 



SCI/Utilities Design 

* Requesting the mounting of new forms 

The writer task terminates after servicing a single request. 

The only device currently supported by the DNOS Spooler is the 
line printer. LPWRITER services all line printers supported by 
DNOS. 

8. 7. 1 Invoking LPWRITER. 

SP$DST bids LPWRITER in the spooler job and passes information in 
the PARMS list. LPWRITER is passed 3 values: Bid parm 1 is 
XXYY, where XX is the shared luno assigned to the Spooler queue 
file and YY is an index into the device table record; Bid parm 2 
is DDDD, where DDDD is the device table record number. This is 
where LPWRITER finds pointers to the output request that is 
currently active on the device. 

8.7.2 Initialization. 

I 

Prior to printing a file, the Spooler queue file on disk must be 
opened and the device table read to obtain current information 
about the device. The queue entry for the request that is active 
on the device is then read into memory. 

If the form currently mounted on the printer is not the form 
specified in the request, LPWRITER calls SPFORM to interface with 
the operator interface subsystem. No further action is taken on 
the request until SPFORM returns control to LPWRITER. 

Following the call to SPFORM, the status of the device is checked 
to determine whether or not the active request has been killed. 
If so, LPWRITER closes the queue file, and formats and sends a 
message to SP$DST indicating that LPWRITER is done. LPWRITER 
then issues an SVC to terminate the task. 

Procedure SPFORM interacts with the operator interface subsystem 
when forms need to be changed on a printer. A general operator 
request is written on .S$0PER, the global channel owned by the 
OPERATOR task. The format of the message is discussed in the 
section of this manual entitled Operator Interface. 

SPFORM constructs a message with the following characteristics: 

* Response required 

* Job ID as the identifier 

* Prompt count of one 

* Message: MOUNT FORM = form name ON device name. 

2270513-9701 8-29 Spooler 

I 



SCI/Utilities Design 

* Prompt: FORM MOUNTED 

* Name of the requested form as the default value for the 
prompt 

If the reply for the operator interface subsystem indicates that 
the specified job ID is not valid, the operation is tried again 
without specifying a job ID. 

If the operator responds negatively, SPFORM sends a modify output 
request to SP$DST to tell SP$DST to requeue the file to the 
device or class for which it was previously queued. 

If the operator responds positively, SPFORM sends a modify 
spooler device request to SP$DST to notify SP$DST that the 
operator has changed the form. If the operator specifies that 
the form mounted is one other than the form specified for the 
file, SPFORM then sends a modify output request to SP$DST to tell 
SP$DST to requeue the file. 

Finally, SPFORM closes and releases its LUNO to the operator 
interface and returns to SPLPWT. 

8.7.3 Processing a Print Request. 

LPWRITER issues an Open File SVC for the device LUNO, prints a 
banner sheet if requested, opens the input file, and reads the 
first record. Carriage control information is extracted from the 
first record. The procedure SPCOPY prints one copy of the file 
or files. LPWRITER calls SPCOPY repeatedly for multiple copies. 

SPCOPY is a loop that consists of the following: 

* Writing a record to the device 

* Testing the semaphore associated with this device. If 
SP$DST has signaled LPWRITER, the appropriate action is 
taken. 

* Reading the next record from the input file 

* Reporting input file I/O errors 

This loop is repeated until the EOF is encountered in the input 
file or until the request is aborted. 

When LPWRITER is signaled, the device table entry is reread and 
the following processing is done: 

Spooler 8-30 2270513-9701 



SCI/Utilities Design 

* If the termination flag SDTFLG.SDFTRM or the kill flag I 
SDTFLG.SDFKIL is set, LPWRITER closes the input file, 
the device and the disk queue file, releases the 
associated LUNOs, sends a completion message to SP$DST, 
and issues an SVC to terminate the task. 

* If the halt flag SDTFLG.SDFHLT is set, LPWRITER waits 
for a signal via semaphore operation indicating a resume 
output. The queue entry is read again and the page 
number is changed to reflect the page forward or page 
back information in the resume output message. The 
input file is repositioned, if necessary, and execution 
continues in the inner loop. 

SPCOPY builds the SVC block to write a line to a printer. SPPRIO 
interfaces with the DSR. If the error code returned from the SVC 
is a device error, the write is retried as many as 10 times 
before a device error is returned to SPCOPY. 

NOTE 

The DSR error code 6 is assumed to be a 
device error. This is hard coded in·SPPRIO. 
The DSR open error code >3B is assumed to be 
an open access privilege error. This is hard 
coded in SPPRIO. 

8.7.4 Error Processing. 

Routine SPLOGM writes various error messages to the system log. 
The messages are of the following format: 

**** LPWRITER userID jobname ERROR ec:file/device 

where: 

user ID 

jobname 

ec 

is the user's ID. 

is the name of the job associated with the 
active request. 

is an error code. 

file/device is the name of the file or device on which the 
error occurred. 

2270513-9701 8-31 Spooler 



SCI/Utilities Design 

8.7.5 Termination. 

Normal termination of LPWRITER occurs in the modules SPLPWT and 
SPCOPY and consists of the following steps: 

* Closing the input file and releasing LUNO 

* Closing the device LUNO 

* Closing the Spooler queue file LUNO 

* Calling SPLOGM to write an error message to the system 
1 og, if appropriate 

* Formatting and sending a writer task completion message 
to SP$DST and waiting for the reply. This message 
contains the information SP$DST needs to build an 
accounting record. 

* Terminating LPWRITER 

A completion message is formatted and sent to SP$DST and the task 
is terminated. When the termination is because of an I/0 error 
in the file being printed, an error message is written to the 
system log. 

8.7.6 Internationalization. 

In procedure SPFORM, the following English messages are 
constructed for the general operator request message: 

MOUNT FORM: 

ON 

FORM MOUNTED 

In SPLOGM, the fixed portion of the following message written to 
the system log is hard coded: 

**** LPWRITER userID jobname ERROR ec:file/device 

The block character definition for the banner sheet in SPCHAR is 
in English characters. 

Spooler 8-32 2270513-9701 



SCI/Utilities Design 

8.7.7 The Banner Sheet. 

Pascal function SPBANN is the module that displays a user
requested banner sheet. The banner sheet is driven from the 
contents of the disk file .S$SDTQUE.S$BANNER. The banner sheet 
will examine the records of the disk file for command records. 
These command records and their indicated functions are: 

* ~JOB Display user's job name in large block 
letters 

* ~USER Display user's ID in large block letters 

* ~FILE Display requested print file name 

NOTE 

If output is directed to a Spooler logical 
name, that name is printed in large block 
letters; otherwise a single line is 
displayed. 

* ~TEXT,cccccccc - Display characters •cccccccc• in large 
block letters 

NOTE 

~TEXT must be immediately followed by a comma 
or the record is ignored. The next 8 
characters will be displayed in large block 
letters. 

* ~DATE Display date and time 

The standard banner sheet will consist of ~JOB, ~USER, ~FILE, and 
~DATE command records. Any record that is not a command record 
will be echoed to the output device. Using this feature and the 
~TEXT command record, the user can easily use the text editor on 
.S$SDTQUE.S$BANNER to create a custom banner sheet. 

2270513-9701 8-33 Spooler 



SCI/Utilities Design 

8.8 SPTASK 

SPTASK acts as an interface between a task in the user's job and 
a logical name created with spooler (SP) resource type. This 
allows user tasks to assign a LUNO to a Spooler logical name 
instead of to the actual device. When the LUNO is released, 
SPTASK writes a message to SP$DST on the channel .S$DSTCHN. The 
message requests that the file be output to the device or class 
name specified when the logical name was created. 

SPTASK is written in assembly language. Functionally it performs 
exactly like the line printer DSR dcres. 

8.8.1 Invoking SPTASK. 

When a LUNO is assigned to a logical name with resource type SP, 
SPTASK is bid in the user's job by the operating system task IOU. 

A unique SPTASK is invoked each time a LUNO is assigned to a 
logical name with resource type SP. For example, if a user has 
created a logical name SYSOUT as a Spooler resource type, and 
assigns two LUNOs to SYSOUT, there are two separate SPTASK tasks, 
two temporary files, and two separate output requests. 

When SPTASK is bid, it is passed the IRB that is requesting an 
Assign LUNO operation to the user's logical name. See the Data 
Structure Pictures section of the DNOS System Design Document for 
details of the IRB format. Associated with the IRB is the set of 
parameters describing the print file options defined with the 
logical name. These will be used later. 

8.8.2 Initialization. 

During the initialization phase, SPTASK issues an SVC to get the 
job and task IDs in which it is executing. This information is 
used to construct a pathname in the following format: 

where: 

.S$jjjjtt 

jjjj is the ASCII representation of the internal hexadecimal 
job ID. 

tt is the ASCII representation of the internal hexadecimal 
task ID. 

This name is used in the termination phase of SPTASK to rename 
the temporary file to which output has been spooled. 

Spooler 8-34 2270513-9701 



SCI/Utilities Design 

SPT ASK then 
channel across 
first message 
written to the 

issues a Master Read to .S$SPOOL, the task-local 
which all spooled output is received. If the 

on the channel is not an Assign, a message is 
system log and SPTASK terminates. 

When the Assign 1s received, SPTASK sends a Verify Device/Class 
Name message to SP$DST via the channel ·• S$DSTCHN to verify that 
the device or class specified as one of the parameters is still a 
device or class that is known to the spooler. If it is not, 
SPTASK puts an error >21 into the Assign LUNO call block, does a 
Master Write to complete the Assign LUNO processing, and then 
terminates. 

If the device/class is valid, SPTASK issues 
temporary file with autocreate. If the file 
error, SPTASK then issues a Master Write to 
the Assign LUNO processing. 

8.8.3 Major Loop. 

an Assign LUNO for a 
is opened without 

.S$SPOOL to complete 

The major loop of SPTASK consists of 
temporary file, and Master Write. 
SPTASK receives a request to release 
a release LUNO from the user task to 

Ma st er Read, I/O to the 
This loop is repeated until 

the .S$SPOOL LUNO (that is. 
its logical· name). 

8.8.4 Termination. 

When the release LUNO is received, SPTASK writes a close EOF to 
the temporary output file. The file is then renamed .S$jjjjtt. 
A spooler message is constructed to place the file on an output 
queue. The message specifies that the file be deleted after it 
is printed. These parameters from the Assign LUNO IRB are used 
to build the Spooler message to request output service on the 
file. 

SPTASK writes the message to .S$DSTCHN and waits for the reply. 
If an error is returned, a message is written to the system log. 

NOTE 

The task-local LUNO for .S$DSTCHN is 
specifically assigned to >77. 

Having put the output request 
termination processing. A Master 
channel .. S$SPOOL is then closed 
• S$DSTCHN is closed and its LUNO 
an SVC to terminate the task. 

2270513-9701 8-35 

on a queue, SPTASK then begins 
Write to .S$SPOOL clears the 
and the LUNO is released • 

is released. SPTASK then issues 

Spooler 



SCI/Utilities Design 

8.9 SHOW OUTPUT STATUS 

SOS executes in the user's job. It displays items queued for 
output for each device and each class name. It also displays 
that status of each device. The user specifies the following 
options: 

* 

* 

All devices known to the Spooler subsystem, or a 
specific device or class, the status of that device, and 
the currently mounted form 

All requests or the requests queued for the requester's 
user ID, including the remaining number of copies to be 
printed 

SOS is written in Pascal, and requires read access to the Spooler 
queue file. 

8.9.1 Invoking SOS. 

SOS is invoked by SCI with the following PARMS list: 

1. Pascal stack parameter - A value of 1000 is sufficient 

2. Pascal heap parameter - A value of 1000 is sufficient 

3 • De v i c e I c 1 a s s n am e - Ch a r a c t er st r i n g • A n u 11 ch a r a c t er 
string for this variable is interpreted as a request 
that all queues be displayed. 

4. User ID - Character string. A null character string 
for this variable is interpreted as a request that all 
entries in each queue be displayed. 

8.9.2 Processing. 

SOS opens the listing and Spooler queue files. The class name 
records and the device table records are sequentially read. 

The CNT is searched for the specified class name. If it is not 
found, the name supplied is assumed to be a device name. First 
the device queues and then the class name queues are displayed. 

Spooler 8-36 2270513-9701 



SCI/Utilities Design 

8.9.3 Error Processing. 

Errors in SOS are processed through UTCHEK, the SCI error 
reporting interface for Pascal. 

8.9.4 Internationalization. 

In the procedure SOPHDR, the following headings for the queue 
list are hard coded in English: 

DEVICE:XXXXXXXX 
STATUS: EXCLUSIVE 

OR = QUEUE ONLY 
OR = HALTED 
OR = SHARED 

FORM:FFFFFFFF 
CLASS NAMES: ( ) 
ST/ USER FORM 
PR I ID 

8. 10 PF 

SPOOL 
ID 

LOGICAL NAME. OR 
FILE NAME 

PF executes in the user's job. It accepts user information 
through SCI to format and send spooler messages to SP$DST, in the 
spooler job, for the following requests: 

* Print Files 

* Halt Output 

* Resume Output 

* Kill Output 

* Modify Output 

* Modify Spooler Dev ice 

PF is written in Pa SC al • 

8. 10.1 Invoking PF. 

PF is bid by SCI and accepts parameters through the PARMS list. 
These positional parameters are as follows: 

2270513-9701 8-37 Spooler 



I 

I 

Po si ti on 

1 
2 
3 

4 
5 
6 
7 
8 
9 

10 
11 
12 
1 3 
1 4 
15 

16 

17 
18 
19 

Parameter 

Pascal stack size 
Pascal heap size 
Command type (integer) 

1: Print File command 
2: Halt Output command 
3: Resume Output command 
4: Kill Output command 

SCI/Utilities Design 

5: Modify Output at Device command 
6: Modify Spooler Device command 
7: Build synonym for MSD prompt 

Spool ID 
Device or class name 
Class name list 
De 1 et e SD Q e n tr y? ( Y IN ) 
Form name 
File pathname 
ANSI? (Y/N) 
Delete after print? (Y/N) 
Banner sheet? ( Y /N) 
Lines per page 
Number of copies (integer) 
Page count (integer, used only by 
Resume Output command) 
Immediately or at EOF (integer, used only by 
Halt Output command) 
Priority (integer) 
Available exclusive to Spooler? (Y/N) 
Shared? (Y/N) 

8 • 1 0 • 2 Pr o c e s s i n g • 

The first part of PF performs processing common to all PF 
commands. The device or class name in the PARMS list is stored 
in the message buffer. If the form name PARM is blank, STANDARD 
is used in the message buffer. The spooler ID, if present, is 
s av e d • An SVC i s i s sued to g e t the j ob n am e and ID , the u s e r I D , 
and the job priority. 

After processing the particular function code, PF assigns a LUNO 
to and opens .S$DSTCHN. The message is written to the channel. 
An error code is set, based on the reply received from .S$DSTCHN. 
The channel is then closed and the LUNO is released. UTPUER is 
called to return the error code and to terminate PF. 

Spool er 8-38 2270513-9701 



SCI/Utilities Design 

8.10.3 Error Processing. 

Errors in PF are processed through UTCHEK, the SCI error 
reporting interface for Pascal. 

8.10.4 Internationalization. 

In PF, if no form is specified on the PARMS list, the English 
character string STANDARD is used. 

2270513-9701 8-39/8-40 Spooler 





SCI/Utilities Design 

SECTION 9 

FILE MAINTENANCE UTILITIES 

9.1 OVERVIEW 

DNOS file maintenance utilities provide the following functions: 

* Copy a hierarchical structure to another hierarchical 
structure 

* Copy the data in a hierarchical 
sequential structure, and rebuilds 
structure from the sequential structure 

structure to a 
a hierarchical 

* Verify the two kinds of copy operations 

* List the elements of a hierarchical structure 

* Map the contents of a disk volume 

* Delete all elements of a hierarchical structure 

File maintenance utilities are written in assembly language. 

NOTE 

Refer to the DNOS System Design Document and 
to the DNOS Systems Programmer's Guide for 
discussions of disk structures and files. 
The characteristics of those entities are 
integral to the design of the file 
maintenance utilities. 

9.2 MOVE TASKS 

A set of five tasks provides the following functions: 

* Copy directory (CD) - Copies a hierarchical structure to 
a hierarchical structure 

2270513-9701 9-1 File Maintenance 



SCI/Utilities Design 

* Verify copy (VC) - Compares two hierarchical structures 
and reports the results 

* 

* 

* 

Backup directory (BD) - Copies a hierarchical structure 
to a sequential structure 

' 

Restore directory (RD) Recreates a hierarchical 
structure from data previously copied to a sequential 
structure (by BD) 

Verify backup (VB) - Compares a hierarchical structure 
to backup data in a sequential structure and reports the 
results 

Each of these tasks is a collection of common modules and unique 
modules in the DSC;DP.CD directory. In order to avoid confusion, 
the group of tasks is called the move tasks rather than the CD 
tasks, since CD is the name of one of the tasks. 

Directory file structures and the files themselves are processed 
according to entries in the control file. If no control file is 
provided, all elements of the directory are processed, with the 
exception of temporary files, and certain system files, as noted 
in the paragraph entitled Design Concepts. 

NOTE 

The syntax and use of the control file is 
documented in the DNOS System Command 
Interpreter (SCI) Reference Manual. 

Move tasks execute either interactively or in batch mode except 
when a multivolume medium is used. The message to mount the next 
volume must be written to an interactive terminal. 

9.2.1 Design Concepts. 

Each of these tasks is software privileged 
Exclusive access to all files is required. 
been processed, however, the file is released. 

and replicatable. 
Once the file has 

Each move task is designed to process files that are elements of 
a DNOS directory structure. See the data structure pictures 
section of the DNOS System Design Document for details of the 
following data structures processed by move tasks: 

* Directory overhead record (DOR) 

* File descriptor record (FDR) 

File Maintenance 9-2 2270513-9701 



SCI/Utilities Design 

* Channel descriptor record (CDR) 

* Alias descriptor record (ADR) 

* Key indexed file key descriptor record (KDR) 

Files or subdirectories with the following names are not 
automatically processed. Only when specified by directive in the 
control file are they processed. The names are fixed in the 
code. 

* S$ROLLD 

* S$CRASH 

*· VCATALOG 

* S$DIAG 

* S$SDTQUE 

These names are stored in the data structure SPFMST, which is 
processed as an exclude list, regardless of the context in which 
the include/exclude list is processed. SPFMST is searched only 
if the name is not found in ~he include/exclude liat. 

The specific files are excluded because, in general, the data is 
considered transient, or because processing the file may result 
in system failure because of the requirement for exclusive access 
to the file. For instance, if the system swap file is being 
copied and the move task needs more memory, a deadlock results 
the Get Memory SVC requires that the move task be swapped out. 

The FDR of a directory file resides in the parent directory. The 
VCATALOG FDR resides within the VCATALOG directory file. The 
VCATALOG FDR is never processed in the first-level directory, I 
since processing it initiates ~n infinite loop. When the move 
task encounters a directory FDR, it stops processing the current 
directory and starts processing the directory associated with the 
FDR. In the case of a first level VCATALOG FDR, the asso~iated 
directory is the one currently being processed. 

Under no circumstances is a temporary file copied, even if there 
is a directive in the control file. Information in the FDR 
determines whether or not the file is temporary. 

Directory files are not copied when a hierarchical structure is 
copied. If. the destination directory does not exist, the 
hierarchy is duplicated by creating an empty directory of the 
same size. FDRs in this directory are rewritten as files and/or 
subdirectories are copied. When space is allocated for a file or 
subdirectory, the FDR is built in the new directory file. With 
this scheme, when a system crash occurs, no more than one FDR 

2270513-9701 9-3 File Maintenance 



SCI/Utilities Design 

that does not have a corresponding file is left in the new 
directory. 

9.2.1.1 Structure of Tasks. 

Each move task uses routines in the .SCI990.S$0BJECT directory. 
That library appears in each of the link streams. 

Each task consists of one task segment. The move tasks include 
the following categories of modules: 

* 

* 

* 

* 
* 

CD Highest-level control routine, common to all move 
tasks. This module contains the transfer vector, and 
must be linked first in each task. 

Common modules - Routines that are identical regardless 
of the function being performed 

xxNAME modules Modules of common design and/or 
purpose. xx is replaced with the two-character task 
name to form the name of the module to be linked into 
that task. For example, each task has an xxDOR module, 
and VBDOR is the name of the module linked in the verify 
backup (VB) task. Each xxDOR module processes a 
directory overhead record as required by the function of 
the move task xx. 

Modules unique to the task 

Modules from the UTCOMN directory 

9 • 2 • 1 • 2 I /0 • 

S$ routines are used to access PARMS on the bid statement and to 
write messages to the listing file. 

The backup tasks, BD, RD, and VB, allow the use of multiple 
volumes when the sequential access name specifies a device. The 
device can be either a disk or a magnetic tape. If it is a disk, 
BD allocates an image file that is extended, as required, up to 
the available space on the disk. Blocked records are written to 
this image file. A minimum block size of 2304 bytes is used; 
2304 is the smallest integer of which 256 (sector size of DS300, 
DS80,WD-800, and CD1400) and 288 (sector size of DS200, DS50, 
DS10 and FD1000) are factors. Choosing this block size ensures 
that either sector size is blocked efficiently. The block size 
used is determined by the amount of free memory available for 
buffer space. BLKSIZ is set to the highest multiple of 2304 that 
is less than or equal to the amount of available memory. 

File Maintenance 9-4 2270513-9701 



SCI/Utilities Design 

Blocking. 

When the blocking option is specified in a BD operation, physical 
records are blocked before they are written to the destination 
file or device. This provides more efficient use of space on the 
destination device. 

When blocking is specified, records are packed into buffers 
BLKSIZ bytes in length. (If no block size is specified, a 
default value of 9600 bytes is used. When BLKSIZ is 9600 bytes, 
approximately 10 percent of a magnetic tape is used for 
interrecord gaps.) 

Each blocked record starts on a word boundary, and is preceded by 
a two-byte count. This count is the byte count of the record, 
except in the following special cases: 

* A count of zero marks the end of useful data in a 
(short) block. 

* A count of >FFFF marks the EOF. 

* A count of >FFFE marks block of data read using direct 
I/0, rather than record by record. 

Records may span blocks. 

The first physical record of the sequential file is a header 
record. It is a 160-byte record that contains the following 
information: 

Byte 

0-5 

6-13 

14-15 
16-17 
18-19 
20-21 

22-63 
64-79 
80-95 
96-159 

Data 

ASCII text **HDR*. Identifies a header record 
to RD & VB. 

Binary cre~tion data. Same format as returned 
by the Get Time and Date SVC. 

Binary volume number. 
Binary block size BD used. 
Binary sector size of source directory 
Flags 

Bit 0:1 =>made with a system that has 
new EQT handling. 

Bit 1:1 => made by BDD. 
ASCII time and date of backup. 
ASCII text identifying the volume number. 
ASCII text identifying the sector size. 
ASCII text identifying the source directory 

pathname. 
160-161 Binary fast flag. = 0 if NOFAST was in effect 

for the backup. -1 if FAST was in effect. 

2270513-9701 9-5 File Maintenance 



SCI/Utilities Design 

Header Placement and Volume Numbers. 

The task's general buffer area is used for blocking buffer 
memory. As a rule, GETMEM manages this space, but in the case of 
BD, the values of BUFFER and MEMORY are altered to protect the 
blocking buffer. (The variables BUFFER and MEMORY are discussed 
later in this section.) 

Double Buffering. 

In order to improve 
there is enough memory 
specified block size. 
preceding read/write if 
complete before the 
complete. 

performance, BD and RD double buffer when 
available to allocate two buffers of the 

The read and write routines wait for the 
preparation of the second buffer is 

read/write of the previous buffer is 

Double buffering is not attempted unless the block option is 
specified. 

The VB task does not double buffer I/0, but two buffers are used 
to load equivalent source file and destination file blocks into 
memory for the compare. Memory must be available for both 
buffers or the VB task terminates. 

Direct I/0. 

For performance reasons, some move tasks use direct disk I/0. 
Direct disk I/0 is discussed in detail in the Supervisor Call 
(SVC) Reference Manual. 

VC does no direct disk I/0. 

BD reads the source directory using direct disk I/0, when the 
destination is a disk device. A destination with an access name 
of the format DSmn, where m and n are digits, is assumed to be a 
disk device. 

RD uses direct disk I/0 to write to the destination when the 
sequential medium is a disk device (DSmn). 

NOTE 

BD and RD code contains comments 
to direct I/0 on the sequential 
DNOS, this I/O is blocked file 
very large buffers. 

that refer 
medium. In 
I/0, using 

VB reads the file (hierarchical structure) using direct disk I/0, 
when the sequential medium is a disk device. 

File Maintenance 9-6 2270513-9701 



SCI/Utilities Design 

CD uses direct disk I/0 when it does not jeopardize the integrity 
of the destination file. Direct disk I/0 is not used in the 
following cases: 

* Copying a program file to an existing program file. 

* 

Both program files are handled, not as one stream of 
data, but as a collection of tasks, procedures and 
overlays. 

Copying 
because 
deleted 
CD is to 
does not 

a program file that contains unused space 
tasks, procedures, and/or overlays have been 

from the program file. One of the functions of 
compress program files, and direct disk I/0 
accomplish this goal. 

Files that are not program files are subjected to additional 
tests to determine whether or not to use direct disk I/0. Stated 
in general terms, using direct disk I/0 must not result in a file 
with an incorrect internal structure. Direct disk I/0 is not 
used if one or more of the following conditions would be created 
in the output file: 

* Unused space where a physical record should start 

* A physical record that violates the ·rule that any 
physical record spanning allocatable disk units (ADUs) 
must begin on an ADU boundary. (A physical record that 
begins in the middle of an ADU must not extend beyond 
the end of that ADU.) 

Figure 9-1 describes the logic used to determine whether or not 
the current combination of physical record size, sector size, and 
ADU size allows the use of direct disk I/O. The process is shown 
in three parts. The first part covers all the special cases that 
do not require examination of the relationships between the 
physical record size and the ADU sizes. The second part 
eliminates from consideration any source file that contains 
wasted space. Wasted space is caused by inefficient physical 
record size definition when the file is created. Some cases that 
could be processed using direct disk I/0 are eliminated i~ this 
part, because the code is designed never to copy wasted space. 
The third part of the code eliminates cases in which the output 
file created using direct disk I/0 violates the ADU spanning 
rule. 

The code corresponding to the logic shown in Figure 9-1 is in 
module DRCTIO. The three parts are not delineated in DRCTIO; 
they are shown here to highlight the logic. Comments in the code 
refer to MULTIPLES and SUBMULTIPLES of ADUs and physical records. 
This is implemented in the code and shown in Figure 9-1 as a test 
for integer value. The instructions used to make the 
determination are a divide, followed by a check of register four 
(the remainder) for zero. 

2270513-9701 9-7 File Maintenance 



Known: 

Define: 

SCI/Utilities Design 

The input file is intetnally cottect. 

X=(physical tecotd size/sectot size) 
X is the numbet of sectots each physical tecotd 
occupies in the source file. 

ADUDEST = the numbet of sectots pet ADU on the 
destination device. 

ADUSOURCE = the numbet of sectors pet ADU on the 
source device. 

DDIO is an abbteviation fot ditect disk I/O 

Patt I: Special Cases 

Ate the sector sizes the same on 
soutce and destination? ----no--> DO NOT USE DDIO 

yes 
I 
I 

v 
Ate the ADU sizes the same on 

soutce and destination? ----yes--> USE DDIO 

no 
I 
I 

v 
Is the physical tecotd length 

less than a sectot? ----yes--> USE DDIO -- In this 

v 
Patt II 

case, every sectot contains 
data and no physical tecotd 
spans a sectot Cot ADU) 
boundaty. 

Figute 9-1 CD Logic - Whethet to Use Ditect Disk I/O (Sheet 1 of 2) 

File Maintenance 9-8 2270513-9701 



SCI/Utilities Design 

Patt II: Eliminate cases in which thete is wasted space in the 
soutce file. We have already determined that the 
ADU sizes are not the same on the source and destination. 

Is X an integer? --no--> DO NOT USE DDIO -
Part of the last sector in 

yes 

I 
I 

v 

each physical record is 
wasted. 

Each physical record is an exact number of sectors 
+----- yes --------- X > ADUSOURCE? --------- no ----+ 

I 
I 

Is 
X I ADUSOURCE 

an integer? 

no 

v 
DO NOT USE DDIO 
See Example A 

Physical records span ADUs? 
I 
I 

Is 
ADUSOURCE I X 

yes ->--------+--------<- yes ----- an integer? 

v 
Part III 

no 

v 
DO NOT USE DDIO 
See Example B 

Patt III: Eliminate cases that create an output file with an 
incorrect internal sttuctute. It is known that the 
source file has no wasted space. 

Will physical records span ADUs on output device? 
+-----<--- yes --- X > ADUDEST ? ------- no --->----+ 

Is X I ADUDEST Is ADUDEST I X 
an integer? ------ yes -->--+-----<--- yes -------- an integer? 

no 
I 
I 

v 
DO NOT USE DDIO 

See Example C 
v 

USE DDIO 

no 

v 
DO NOT USE DDIO 

See Example D 

Figute 9-1 CD Logic--Whethet to Use Direct Disk I/0 (Sheet 2 of 2) 

2270513-9701 9-9 File Maintenance 



SCI/Utilities Design 

The following examples illustrate cases in which CD does not use 
direct disk I/0. The sec tor boundaries are marked by I , ADU 
boundaries by a, the physical records by a string of digits and 
wasted space by/. The conflicts that would be created by using 
direct disk I/Oare shown. 

Ex ample A 
X = 4, ADUSOURCE = 3, ADUDEST = 1 and 9 

Source: 
1111111111111111111111111 /////I///// 1222221222221222221 ••• 
a a a 

Destination (ADUDEST = 1) 
1111111111111111111111111 /////I///// 1222221222221222221 ••• 
a a a a a" 

Physical record 2 
expected to start here --+ 

Destination (ADUDEST = 9) 

a a a a a 

1111111111111111111111111 /////I///// 1222221222221222221 ••• 
a A a 

I 
I Physical record 2 I 

expected to start here --+ Improper ADU spanning -~ 

Example B 
X = 2, ADUSOURCE = 3, ADUDEST = 1 and 9 

Source: 
l11111l11111l/////l22222l22222l/////l333331333331/////I 
a a a a 

Destination (ADUDEST = 1) 
l11111l11111l/////l22222l22222l/////l333331333331/////I ••• 
a a a" a a a a a a a 

I Physical record 2 
+-- expected to start here 

Destination (ADUDEST = 9) 
I 1 1111 11 1111 I I I I I I I 2 2 2 2 2 I 2 2 2 2 21 I I I I II 3 3 3 3 3 I 3 3 3 3 3 I /I I I I I ••• 
a a 

I Physical record 2 
+-- expected to start here 

File Maintenance 9-10 2270513-9701 



SCI/Utilities Design 

Example C 
X = 4, ADUSOURCE = 1, ADUDEST = 3 

Source: 
1111111111111111111111111222221222221222221222221333331 ••• 
a a a a a a a a a a 

Destination (ADUDEST = 3) 
1111111111111111111111111222221222221222221222221333331 ••• 
a a a a 

Improper ADU spans --+ --+ 

Ex ample D 
X = 4, ADUSOURCE = 1, ADUDEST = 9 

Source: 
1111111111111111111111111222221222221222221222221333331 ••• 
a a a a a a a a a a 

Destination (ADUDEST = 9) 
1111111111111111111111111222221222221222221222221333331 ••• 
a a 

Improper ADU span --+ 

9.2.1.3 Traversing a Hierarchy. 

Directories are hierarchical structures. 
stacking technique in traversing the tree 
by the source directory. 

Move tasks use a 
structure represented 

FDRs in a directory identify either a user data file or another 
directory. When an FDR that points to a directory is processed, 
the following information is stacked before the new directory is 
opened: 

* LUNO for the current directory 

* Record number of the current directory entry 

FDRs are then processed from the new directory file. When the 
end of the directory is encountered, the directory level is 
decremented and the LUNO/record number is unstacked. Figure 9-2 
shows an example directory structure and the traversing order 
that results. 

2270513-9701 9-11 File Maintenance 



SCI/Utilities Design 

DIRECTORY STRUCTURE: 

DIRECTORY FILES: 

A 
+--------+------+-----+ 
I 
I 

• y I 
I 

. x 

I 
I 

.M 

+------+------+ 

• B 

I 
I 

• c I 
I 

.D 

I 
I 

• N 

+-----+-----+ 
I 
I 

• u 
I 
I 

.v 
I 
I 

.w 

A +--->A.X +->A.X.D 
+-------------+ +-------------+ +--------------+ 

Y B U 

x --+ 
M 

N 

+---------..----+ 

TRAVERSING ORDER: 

A.Y 
A.X.B 
A.X.C 
A.X.D.U 
A.X.D.V 
A.X.D.W 
A.M 
A.N 

I I 1-------------1 c v 
I I I 1-------------1 I 
I D I--+ w 
+-------------+ 

Figure 9-2 Example of Traversing a Hierarchy 

The stacking area is large enough to support a stacking depth of 
15 levels. In the 62-byte stack, the first word is a pointer to 
free space in the stack. Each four-byte entry contains the LUNO 
in the rightmost byte of the first word and the record number in 
the second word. 

The VC task maintains two directory stacks -- one for each of the 
directories being traversed. 

File Maintenance 9-12 2270513-9701 



SCI/Utilities Design 

9.2.1.4 Control File. 

A control file is optional. If no control file is specified, the 
tasks flow as though there is a control file with only an end 
directive. 

While an 80-byte record length in the control file is not 
specifically enforced in move tasks (record length is not checked 
and no error message is generated), only the first 80 bytes are 
read. Control files can have comments. A ! character causes 
the rest of the record to be ignored. 

9.2.1.5 Error Processing. 

The philosophy of error processing in move tasks is that if an 
I/0 error occurs, a message is written to the output listing file 
and the task continues. Register zero is used throughout to pass 
along error codes and indicators. 

Move tasks end abnormally when the following errors occur: 

* Task is unable to get memory for buffers. (This 
condition does not cause abnormal termination when 
attempting to get memory for double buffering.) 

* System data cannot be read or contains inconsistent or 
erroneous information. For example, if a directory file 
appears to extend beyond the end-of-medium, the move 
task terminates. 

The inability to access a file does not cause abnormal 
termination. The condition is reported, and processing continues 
with the next file or directory in the traversing order. 

A completion code is reported to the user through S$TERM. 

9.2.1.6 Volume Numbers in Backups. 

When direct disk is selected for the output of a BD, a control 
file cannot specify the destination in any move directive. This 
condition is not flagged as an error by the utility, but it 
produces a backup that does not have all the information in it. 
When done as required each volume of the backup increments the 
volume number in the header by one (in module EOTCHK) and retains 
the same date as the first volume header. 

When sequential file is selected as the output of a BD, and no 
move directive specifies a destination, there is only one header 
that states volume 1. Any move directive that states a 
destination must state a new file or it will overwrite the stated 
file with the new directory. Each new file will have a header 
that specifies volume 1 and has a new date in it. 

2270513-9701 9-13 File Maintenance 

I 



SCI/Utilities Design 

When tape is selected as the output of a BD and no move directive 
specifies the destination tape, a header is written at the 
beginning of the first tape which specifies wolume 1 and gives 
the time and date of the backup. Each time an EOT mark is 
encountered the volume number is incremented by one (in module 
EOTCHK) and a header written using the same time and date as the 
original header. 

When a control file contains move directives that specify the 
destination tape, the user is prompted so he can mount a new tape 
if he desires. After the user's response, a header is written 
with the same volume number as the previous header and a new time 
and date. 

9.2.1.7 Volume Number Checking by RD & VB. 

The method of handling sequential file and direct disk flow 
directly from the backup handling, the reason being that there is 
no variation from previous releases' handling of those cases. 
The method of handling tape, however, is complex because it was 
written for DX10 to handle any (reasonable) backups made and the 
code was copied verbatim for DNOS. Module RDHDR contains all the 
code to handle these cases, except that EOTCHK increments the 
volume number when an EOT (old backup) or trailer label (backup 
made by DX10 3.6 or DNOS 1.2) is encountered. There are 
basically 2 formats that need to be handled: 

1. Each MOVE specifying the destination tape increments 
the volume number and uses the same date as the first 
header 

2. Each such move specifies the same volume number as the 
preceding header, but gives a new time and date. 

In addition, two other conditions are handled: 

1. Some releases of the software wrote an EOF mark prior 
to writing the header produced by a MOVE directive. 

2. A user could specify the same tape as output on several 
move directives. It was desirable for such a tape to 
be restorable using a control file that did not specify 
the tape in exactly the same places. This case was 
also related to correctly restoring such tapes when 
double buffering was used. 

File Maintenance 9-14 2270513-9701 



SCI/Utilities Design 

WARNING 

These existing schemes in their variety have 
exhaused the set of schemes which give RD the 
ability to detect out-of-sequence mounts of 
tapes, and still be compatible with all 
schemes. Any new scheme will require a 
conscious decision to drop compatability with 
some previous scheme. 

9.2.2 Data Structures and Variables. 

Move tasks use the following data structures and variables: 

* BLKFLG. Two-byte structure that contains 
indicate whether or not records are blocked. 
byte is for the source file and the second byte 
the destination file. A value of O indicates 
associated file is not blocked. A value 
indicates that the associated file is blocked. 

flags to 
The first 

is for 
that the 
of >FF 

* CMDFLG. Flag to indicate whether or not a disk is 
specified as the sequential medium for a backup function 
( B D, RD , or VB) • A v a 1 u e of - 1 i n d i cat es that the 
sequential medium is a disk. A value of O indicates 
that it is not a disk. 

* DBLFLG. Flag to indicate whether or not I/O is being 
double buffered. This flag is always set when magnetic 
tape is the sequential medium. 

* BUFFER. Address of the beginning of free memory. 

* MEMORY. Amount of free memory that has been 

* 

cumulatively allocated to this task through Get Memory 
SVCs. 

INEX. Flag to indicate the mode in which the 
include/exclude list is to be processed, as follows: 

INEX = o. Implies that files and/or 
subdirectories in the list are to be included in 
the operation 

INEX = 1. Implies that files and/or 
subdirectories in the list are to be excluded from 
the operation. 

2270513-9701 9-15 File Maintenance 



SCI/Utilities Design 

* HDRPRC. Flag to indicate, on restore or verify backup, 
whether an attempt has been made, successful or not, to 
process a header. A value of O indicates it has not 
been attempted, -1 indicates it has. Set by RDHDR, and 
cleared by VBDOR, RDDOR, and EOTCHK. VBDOR and RDDOR 
use it to determine, if not set, that RDHDR must be 
called. 

* MVDR. Flag to indicate to MOUNT, RDHDR, and others if 
the call is a result of a request to move directory, 
rather than as a result of end of tape or volume. 
Different processing is performed in various places 
depending on this flag. 

CFDRVR processes the control file and produces a list of names in 
the source directory that are to be included or excluded from the 
operation. This list, the data structure INEXST, consists of a 
pointer to free space, INEXPT, followed by a maximum of 50 
entries. Each entry is ten bytes in length, with eight bytes 
reserved for the name, one byte for a flag that indicates whether 
or not the name has been processed, and one filler byte for word 
boundary alignment. Each name in this list is appended to the 
directory name to form the pathname of a file or subdirectory to 
be processed. 

OPTNS is a table used in processing the OPTIONS directive in the 
control file. Options have two states, for example, ALIAS or 
NOALIAS. All text strings that represent a state of the option 
are in the xxTEXT module, beginning at label OPTAL. Each six
byte entry in the OPTNS table contains the following information 
for the particular option: 

1. Po inter to the text for -1 value of option 

2. Pointer to the text for 0 value of option 

3. The option flag that indicates the current state of 
this option, as follows: 

a. -1. Text matches the -1 text. 

b. o. Text matches the 0 text. 

c • 1 • The user did not specify the option. 

The end of the table is marked with a value of 0 in the first 
word of what would be the next entry (the pointer to the text for 
the -1 value). 

Each entry has a label defined for the flag. The label is a six
character string consisting of a three-character approximation of 
the option name (for example ALI for ALIAS/NOALIAS and DAT for 
DATE/NODATE), followed by FLG. Processors use the flag as an 

File Maintenance 9-16 2270513-9701 



SCI/Utilities Design 

external reference to determine the state of the option. 

The initial state of each option is the default. 
options for move tasks are shown in Table 9-1. 

9.2.3 Invoking Move Tasks. 

Th e d e fa u 1 t s 

The move tasks are bid by SCI with the following PARMS list: 

PARM 

2 

3 
4 

Data 

Input directory (BD, CD) 
Input sequential (RD, VB) 
Ma st er ( VC) 
Copy directory (RD,CD,VC,VB) 
Output sequential (BD) 
Listing access name 
Control access name 

5 
6 

Direct disk sequential backup pathname (BD,RD,VB) 
Options 

7 
8-12 
13 
1 4 

Blocking factor (BD) 
Date YR,MO,DAY,HR,MIN 
PRL for SPRL/RPRL (CD,VC) 
Sequential pathname type 
3 for CD, VC 
For BD, RD, VB: 

2 => sequential is direct disk 
3 => sequential not direct disk 

With the exception of the last parameter, all parameters are 
discussed in detail in the section of the DNOS System Command 
Interpreter (SCI) Reference Manual that discusses the Copy 
Directory (CD) command. 

If no options information is specified on the bid statement, the 
values shown in Table 9-1 are used. 

Table 9-1 Default Options for Move Tasks 

Task Defaults 

CD ADD, ALIASES, NODATE, NOSPRL, NORPRL 
BD ALIASES, NODATE, NOBLOCK, NOREWIND, NOUNLOAD 
RD ADD, ALIASES, NODATE, NOREWIND, NOUNLOAD 
VB ALIASES, NODATE, NOREWIND, NOUNLOAD 
VC ALIASES, NODATE, NOSPRL, NORPRL 

2270513-9701 9-17 File Maintenance 



SCI/Utilities Design 

9.2.4 Internationalization. 

Internationalization of move tasks requires that message texts in 
the xxTEXT modules be translated. These modules contain all the 
messages a user sees. 

English text is used in the header record on the sequential 
medium in the BD, VB and RD tasks. The following text appears in 
the xxDATA modules: 

* **HDR* 

* VOLUME: 

* SECTOR SIZE: 

* SOURCE: 

9.2.5 Detailed Design. 

Many modules of move code are common to each of the five tasks. 
These common modules can be divided into three functional ~roups: 

* High-level control modules included in the linkstream 
for each of the five tasks: 

CD. Module that includes the task transfer 
vector, does initialization, and calls CFDRVR to 
process the move 

CFDRVR. Routine that processes the control file 
and calls the processor whose address is at label 
SWDIR. 

* Modules that are distinct by task but common in 
structure and/or purpose: 

xxDATA. Move task common area and variables 
unique to the task xx. 

xxTEXT. Text strings used by the task 
includes error messages, report 
informative messages, and the text 
options and directives. 

xx DIR. Major loop of the task xx. 

xx. This 
headers, 

of valid 

* Service routines that are included in the linkstream for 
each of the five tasks. 

File Maintenance 9-18 2270513-9701 



SCI/Utilities Design 

Details of the high-level routines are discussed in the following 
paragraphs. 

9. 2. 5. 1 Routine CD. 

CD calls the following routines: 

* INITST. Initializes statistics-gathering variables 

* I NIT AL. Do es the remaining ( genera 1 ) in i ti a 1 i z a ti on 

* GETPRM. Gains access to the parameters on the .BID 
statement 

* WRTHDR. Writes the header to the listing file 

* CFDRVR. Processes the input parameters and calls xxDIR 
to perform the move task. 

If CFDRVR returns an error, CD calls the routine ERROR to process 
the error and to write a message to the listing file. Registers 
are set to indicate an irrecoverable error. 

Regardless of error conditions, DISPST is called to write 
statistics to the listing file. (DISPST preserves the registers 
containing error information.) 

CD calls S$TERM to terminate the task, and to report any error 
conditions to the user. 

9.2.5.2 CFDRVR. 

This routine processes the control file, if any, and calls the 
xxDIR routine to do the move. The address of xxDIR is at label 
SWDIR in xxDATA. The logic of CFDRVR is shown in the following 
metacode: 

2270513-9701 9-19 File Maintenance 



SCI/Utilities Design 

IF no control file 
THEN Set up defaults to move all the files/subdirectories; 

Call xxDIR; 
Return; 

ELSE Open control file; 
LOOP: Read a control file record; 

Write the record to listing file; 
Determine type of directive; 
Perform preprocessing; 
Call directive processor; 

INCLUDE: If mode is include, add name to INEX;(Note 1) 
EXCLUDE: If mode is exclude, add name to INEX;(Note 1) 
OPTIONS: Set options flags; 
MOV: Call xxDIR to process the previous MOV; (Note 2) 

ENDIF; 

Set new access names; 
UNTIL End of file; 
Call xxDIR to execute the last MOV; 
Return; 

Note 1 - Mode is determined by first INCLUDE or EXCLUDE 
directive. The entire operation is aborted when a 
change of mode is encountered within the same MOV 
directive. INCLUDE and EXCLUDE directives are 
processed by common code. 

Note 2 -When a move task is bid, the information passed in 
the PARMS list is processed as though it is a MOV 
directive in the control file. 

9.2.5.3 xxDIR. 

xxDIR is the major loop of the move task. This module opens the 
source directory and traverses that directory, calling the 
appropriate routines to perform the function of the task. 

The logic in the xxDIR module is as follows: 

* Skips temporary files 

* Calls for reading the next entry in the 
directory 

* Calls for stacking, unstacking of directory level 

current 

* Calls for processing of the DOR and subsequent CDRs, 
ADRs, FDRs, and KDRs. 

* Processes files and/or 
directory according 
include/exclude list. 

subdirectories within 
to information in 

the 
the 

Fi 1 e Ma i n ten an c e 9-20 2270513-9701 



SCI/Utilities Design 

VC and CD use the same DIR routine, CDDIR. At this level, the 
function of xxDIR is to traverse the source directory. SWDOR and 
SWFDR, addresses in the xxDATA module, cause the correct process 
(verify or copy) to be performed by the two tasks. 

9.2.5.4 xxDATA. 

Since each task links in its own xxDATA module, it is not 
necessary for all of them to be structured exactly the same way. 
The xxDATA module includes variables used by routines common to 
all the move tasks and data unique to the particular move task. 

The variable TYPE is used to identify the move task internally. 
The values are as follows: 

1 - Backup directory 
2 - Copy directory 
3 - Restore directory 
4 - Verify backup 
5 - Verify copy 

The following labels are used in high level routines to load 
address for branching to xx routines. In xxDATA modules 
task that does not execute the logic which branches to 
routine, the value is set to -1 to resolve the address at 
time. 

* SWDIR - Entry point of xxDIR 

the 
of a 

the 
link 

* SWHDR - Entry point of the routine that processes 
headers on the sequential medium file for the task 

* SWDRCT 
disk I/0 

Entry point of the routine that does direct 

* 

* 

* 

Some 

SW DOR - Entry point of the routine that processes DO Rs 

SW FDR - Entry po int of the routine that processes FDRs 

SWFILE - En try point of the routine that processes 
file 

routines are cal 1 ed by name in common modules. 

NOTE 

In xxDATA modules, some of the entry point 
labels are defined with a value of -1 when it 
is certain that the branch to the routine is 
never executed. The value is assigned to 
resolve all references to it during the 
linking process. The value of -1 has no 

a 

2270513-9701 9-21 File Maintenance 



SCI/Utilities Design 

special meaning. Should the code of a move 
task be altered so that the routine is 
actually called, the xxDATA module must be 
altered and the routine included in the link 
stream. 

9.2.5.5 Common Service Routines. 

The following routines are used by more than one move task. 
Register assignments and calling sequences are documented in the 
code and are not specifically covered here. 

ADUBLK. 

This routine calculates the number of physical records that can 
be written in the specified number of ADUs. 

NBLKS. 

This routine determines the number 
initial file allocation and for copying 
relative record mode. 

APPEND. 

of blocks 
the file 

in a file for 
in unblocked 

This service routine appends a node to a specified character 
string to produce a pathname. A period and then characters are 
appended to the character string until a blank is encountered or 
until eight characters are appended. The count preceding the 
pathname is increased to produce the new byte count, including 
the period. 

REMOVE. 

This routine removes the rightmost portion of a pathname. The 
delimiter of what is removed is a period or a left parenthesis. 
The length of the pathname is adjusted for what is removed. If 
the entire pathname is removed, .VCATALOG is placed in the 
buffer. If the caller specified a secondary buffer, the portion 
of the pathname removed is placed into that buffer. 

GETACN. 

This routine moves an access name from one buffer to another. 
The character move is terminated by any illegal pathname 
character, and the count in the second buffer is set to reflect 
the length of the access name. 

GETACN calls S$MAPS to do synonym substitution. 

File Maintenance 9-22 2270513-9701 



SCI/Utilities Design 

Leading blanks are deleted. 

An error condition is set when the 
where n and m are integers. 
name, not a file pathname.) 

GE TC OM. 

pathname begins with DSmn, 
(DSmn is assumed to be a device 

GETCOM is a parsing 
nonblank character 
the parsing pointer 
is returned. 

routine that looks for a comma. If the next 
is a comma, no error is reported. Otherwise, 
is moved back one character and an error code 

GETDSC. 

This routine gets disk information for the specified pathname. 
If the pathname begins with a period, the system disk PDT is 
used. Otherwise, the first node of the pathname is assumed to be 
the volume name, and the system PDT list is searched for the 
appropriate entry. 

Once the PDT is located, a LUNO is assigned to the disk. The 
following information is stored in a six-byte buffer specified by 
the calling routine: 

* Sector size 

* Number of sectors per ADU 

* LUNO assigned to the disk 

GETEOL. 

GETEOL is a parsing routine to locate the EOL marker. 

GETTXT. 

GETTXT parses a text string. The tables PATHN1 and PATHN are 
used as ranges of legitimate characters that may appear in the 
string. The tables are defined in the xxTEXT module. 'PATHN1 
consists of A through Z and PATHN1 consists of O through 9 and $. 
The first character that is not in range is the delimiter. 
Leading blanks are ignored. 

JM PFN. 

JMPFN parses a filename. 
used by GETTXT. 

CKFSTK. 

It uses the same character set ranges 

CKFSTK searches the include/exclude stack for filenames that have 
not been processed. It checks the flag in each entry and writes 

2270513-9701 9-23 File Maintenance 



SCI/Utilities Design 

a message to the listing file if an entry exists that has not 
been processed. 

INCLUD. 

INCLUD processes the include directive in the control file. If a 
change of mode is encountered (that is, if an EXCLUDE directive 
follows an INCLUDE directive within the same MOV), the error is 
reported. INCLUD also does error checking for no source 
directory specified and improper pathnames. 

OPTION. 

OPTION processes the option directive and sets flags in the 
options table OPTNS. 

SCHFNM. 

SCHFNM searches the following two lists for a given filename: 

1. Include/exclude list INEX 

2. SPFMST, the list of special names that are excluded 
from processing unless they appear in INEX. 

INEX is always searched first. 

DATE. 

DATE determines whether the file should be excluded from copy 
because of date considerations. If the date option is not 
active, or if this is a directory file, nothing is done to 
inhibit the copy. Otherwise, the update and creation dates are 
compared with the specified date, and a register is set to -1 if 
the copy is not to be done because the file has not changed since 
the date. 

DESTIN. 

DESTIN processes the destination pathname. If the action is a 
CD, DESTIN verifies that the pathname is a directory. Otherwise, 
it closes the old file and opens the new file. If this is a VC 
operation, GETDSC is called to get disk information. 

GETPRM. 

This routine processes the PARMS list on the bid statement that 
invoked the task. The listing file is opened and the appropriate 
flags are set to reflect the options specified in the PARMS list. 
If there is not a source and a destination or a control file, an 
error code is set. (The source and destination can be specified 
in the control file.) 

File Maintenance 9-24 2270513-9701 



SCI/Utilities Design 

GETPRM calls S$ routines to access PARMS and to open the listing 
file. 

If the blocking size is invalid, 9600 is used, and processing 
continues. The blocking size is rounded down, if necessary, to 
make it even. 

The logic to process all elements of the PARMS list is in this 
module, but, depending on the task, variables are initialized to 
cause proper flow for the expected PARMS list. 

SOURCE. 

This routine processes the access name of the source. If it is a 
file pathname (as opposed to a directory name) variables are set 
up for calling the copy routine. In either case, the access name 
is stored in the source buffer and the include/exclude flag is 
cleared. 

ERR INT. 

ERRINT reports an intern~! error and saves variable text for 
eventual message construction. If an error condition has already 
been reported, the current error is ignored. 

ERRCLR. 

ERRCLR resets the error condition previously reported by calling 
ERR INT. 

ERROR. 

ERROR is the error processing routine. This routine is called 
with ERRTYP in register zero. The first byte contains the code 
for system errors and the second byte contains the code for 
program-defined errors. A value of >8000 implies an SVC error. 

The following actions are taken, depending on the error type: 

* SVC error: 

Gets information from the return code processor 
call block 

Sets the error file number 

* Internal error: 

Converts the error code to a message number. 
(Message numbers are used to access message text 
in the module xxTEXT.) 

Gets saved variable text 

2270513-9701 9-25 File Maintenance 



SCI/Utilities Design 

Sets the error file number 

An error message is created and written to the listing file. The 
error and the variable text buffer are cleared. 

Some internal errors are not reported. 

ERRS$. 

This routine reports errors returned by S$ routines. 

ERRSVC. 

ERRSVC examines an SVC call block and reports any errors found. 

SETCC. 

This routine calculates the value to be used for the $$CC 
synonym. (It does not set the synonym.) SETCC totals the number 
of times the error messages in xxTEXT have been written. There 
is a count byte in the data structure containing the text, and it 
is incremented each time the message is written. This total for 
all messages is added to >8000 to produce the condition code that 
is eventually returned to the user in the synonym $$CC. 

GE TR EC. 

This routine gets a specified record 
!RB is set up with the record number 
READB is called to do the read. 

in a 
and 

file being read. The 
the buffer address. 

!$0 structures the SVC block and issues all I/0 SVCs for the 
task. There is an entry point for each SVC listed. Blocks for 
the following services are formatted: 

* Assign a LUNO to the specified access name 

* Get the type of pathname in the specified !RB 

* Close the specified file 

* Close a file without changing the update information 

* Close and unload a device 

* Delete a file 

* Open a file 

* Release the specified LUNO 

File Maintenance 9-26 2270513-9701 



SCI/Utilities Design 

* ASCII operations, including special processing for 
multivolume considerations: 

Read a record 

Write a record 

Write EOF to specified IRB 

OPNFIL. 

This routine assigns a LUNO to arid opens the file. Program and 
image files are opened blocked. All other files are opened 
unblocked. 

WRTHDR. 

WRTHDR writes the initial header and parameter values to the 
listing file. 

WRTLIN. 

WRTLIN writes the contents of a buffer to the listing file as a 
single line. 

WRTLST. 

WRTLST uses a variable length parameter list to output user 
messages via the routines S$WRIT and S$WEOL. It also generates 
headings and controls paging in the listing file. 

IN ITAL. 

This routine does all CD initialization in every move task. 

CLRIRB. 

CLRIRB clears the contents of an IRB. 

MEMMGR. 

MEMMGR builds the call block and issues SVCs to get and release 
memory. It also maintains the variables BUFFER and MEMORY for 
internal allocation of memory. 

STKDIR. 

This routine stacks the directory level. The LUNO and record 
number in the source IRB are saved in the directory stack. A 
LUNO is assigned to the new access name and it is opened. If 
there is an error in either the assign or the open, the old IRB 
is restored and an error code is returned to the caller. If the 
error is on the open, the LUNO is released. 

2270513-9701 9-27 File Maintenance 



SCI/Utilities Design 

When there are no errors, the record number in the source IRB is 
set to 1. 

POPSTK. 

POPSTK pops the directory level stack. The logic of this routine 
is shown in the following metacode: 

Close present source and release LUNO; 
IF top of stack 

THEN Return with top of stack signal; 
ELSE Place new LUNO in IRB; 

ENDIF; 

Place record number into RECNUM; 
Decrement stack level counter; 
Return; 

9.3 SUPPORT FOR REMAINING FILE MAINTENANCE UTILITIES. 

The remaining file maintenance utilities make extensive use of 
two sets of routines -- those in the directory DSC.0$, and the 
UTCOMN routines that sort a directory file. This paragraph 
contains a short description of these support routines. 

These tasks also use routines that are in the S$SYSTEM procedure 
segment. All except CCAF include the procedure segment. CCAF 
uses the directory VOLOBJ.SCI990.S$SYSTEM as a library in the 
link stream. This directory contains object of the routines 
included in the S$SYSTEM procedure segment. 

9.3.1 0$ Routines. 

The object module 0$DTA in the DSC.0$ directory is a data area 
used by all 0$ routines. 

The module 0$INP contains the following routines: 

0$INIT Initializes tables and sets parameters to obtain 
PARMS list 

0$PARM Obtains the requested element of the PARMS list 
and does the requested conversions 

0$TERM Terminates the task through S$STOP. This routine 
releases the TCA and passes the following message 
or its local language equivalent: 

ERROR IN OUTPUT TERMINATION 

File Maintenance 9-28 2270513-9701 



SCI/Utilities Design 

The module 0$0UT contains the following routines that perform 
output functions: 

0$SOUT Initializes variables for output functions 

0$CHAR Puts a character string into the line buffer 

0$HEX Puts a hexadecimal number into the line buffer 

0$DEC Puts a decimal number into the line buffer 

0$TAB Puts blanks into the line buffer, to nelt tab 
position 

0$SPAC Puts a blank into the line buffer 

0$LINE Terminates the current line, writes it to the 
listing file, and blank fills the line buffer. 

9.3.2 UTSORT. 

The UTCOMN module UTSORT contains the following routines used 
extensively by the list directory and map disk utilities: 

SORT Sorts directory entries. This routine builds two 
data structures in memory and returns a pointer to 
the DOR in memory. 

NXTENT Gets the next sorted entry (directory/data file, 
alias or channel). This routine returns a pointer 
to the descriptor record for the next entry of the 
specified type. 

CLSSRT Closes the file opened by SORT and releases the 
LUNO. 

ADDSAT Computes the number of ADUs used by the entry (that 
is, the total of primary and secondary allocations. 

PMT Processes move table. Moves an entry in the linked 
list of sorted entries. 

9.3.3 UTSORT Data Structures. 

SORT builds two data structures that are available to callers. 
SDEDOR contains information from the DOR of the file that has 
just been sorted. SDEMD is a linked list that represents the 
sorted entries in the directory file. The first record contains 
information about the directory and space for statistics 

2270513-9701 9-29 File Maintenance 



SCI/Utilities Design 

gathering. 
number for 
two data 
section of 

The subsequent records contain a filename, the record 
the file, and linking information. Details of these 
structures are included in the data structure pictures 
this manual. 

9.4 LIST DIRECTORY (LD) 

The LD task formats ~nd writes a summary report of the entries in 
a directory file. The program is written in assembly language 
and makes extensive use of UTCOMN and S$SYSTEM routines. It does 
not use the procedure segment S$SYSTEM. 

LD is bid by SCI with the following PARMS list: 

PARM De fin i ti on 

1 Code. This parameter is not used 
2 Input directory name 
3 Output access name 

LD calls SORT (in UTSORT) to sort the entries in the specified 
directory file. The header information is extracted from the 
memory-resident DOR (SDEDOR), formatted into the report header, 
and written to the listing file. The directory information is 
processed in three passes: 

1 • Di r e ct o r i e s and a 1 i a s e s 

2. Fi 1 es and a 1 i as es 

3. Channels 

Each pass consists of a loop that calls the UTSORT routine NXTENT 
to determine the next entry of the type being processed in this 
pass. The information from the returned FDR, ADR or CDR is 
processed and written to the listing file. 

Errors are reported to SCI through the UTCOMN routines UTUERR and 
UTSERR. SCI reports errors to the user. 

9.5 MAP DISK (MD) 

MD is an assembly language program that maps the contents of a 
disk volume, a directory or a file. It produces a report with 
the level of detail specified by parameters i~ the PARMS list. 

MD is bid by SCI with the PARMS list as follows: 

File Maintenance 9-30 2270513-9701 



SCI/Utilities Design 

PARM De fin i ti on 

1 Code. This parameter is not used. 
2 Pathname of directory file 
3 Listing access name 
4 Short form? (YES/NO) 
5 Top level only? (YES/NO) 
6 Directory nodes only? (YES/NO) 

The report generated by MD is described 
Command Interpreter (SCI) Reference Manual in 
discusses the MD command. 

\ 

in the DNOS System 
the section that 

The task segment 
DSC.DP.MD.SOURCE 
conversion table 
procedure segment 

includes object of the source modules in the 
directory, UTCOMN routines, the KIFMGR 
(KMTAB), and the 0$ routines. MD links in the 

S$S YS TEM. 

The driver for MD is the module MD. It calls MAPFIL, in the 
module MDMAPF, to calculate statistics on the top-level directory 
file and to write that information to the listing file. On 
subsequent calls to MAPFIL, if the statistics are not written to 
the listing file (for instance, in processing a data file when 
the PARMS list specifies directory nodes only), MAPFIL only 
gathers statistics. 

MD calls MAPDIR, in the module MDMAPD, to control the mapping of 
the directory. MAPDIR calls SORT for the (currently) top-level 
directory. First directory files and then data files are 
processed. Channels and aliases are ignored. The processing 
loop for each pass calls NXTENT for the next sorted entry and 
calls MAPFIL to calculate statistics and write them to the 
listing file. 

After all files in the current directory are mapped, MAPDIR calls 
itself recursively to map each directory and subdirectory. 

MD uses the UTSORT data structures SDE DOR and SDEM D. If MA PDIR 
finds one or more directory files, after the files in a directory 
are processed, MD determines whether or not the memory-resident 
structure SDEMD needs to be compressed to make space available 
for subsequent calls to SORT. If so, the data file entries are 
taken out of the linked list so that SDEMD contains only 
directory files. 

Errors are reported through the UTCOMN routines UTUERR and 
UT SERR. 

2270513-9701 9-31 File Maintenance 



SCI/Utilities Design 

9.6 DELETE DIRECTORY (DD) 

DD is an assembly language program that deletes all entries in a 
specified directory, and deletes the directory file itself. 

DD is bid by SCI with the following PARMS list: 

PARM De fin i ti on 

1 Code, this parameter is not used. 
2 Pathname of the directory to delete 
3 Listing access name 

The task segment includes object of the 
DSC.DP.DD.SOURCE.DD, and UTCOMN routines. 
procedure segment S$SYSTEM. 

source in 
DD links 

module 
in the 

DD is the entry point where initialization is done, the routine 
DH is called, and the task is terminated. 

DH is a recursive routine that deletes a data file or deletes the 
entries in a directory file. When it is called by DD, L has a 
value of >CO and F points to the pathname of the directory 
specified on the PARMS list. The logic of DH is shown in the 
metacode below: 
DH: Assign LUNO L to file F; 

IF not a directory 
THEN Go to DIR20; 
ELSE 

Open file 
DIR10:Read next FDR 

IF EOF 
THEN Close file; 

Go to DIR20; 
ELSE IF ADR, CDR, KDR, ACR or unused 

THEN Go to DIR10; 
ELSE L:L+1; 

F 1 :Pathname F; 
F:F+FDR pathname field; 
Cal 1 DH; 

END DH; 

ENDIF; 
ENDIF; 

DIR20:Release file; 
Delete file; 

F:F' 
L:L-1; 
Go to DIR 10; 

Log deleted message; 
Return; 

DD uses the UTCOMN subroutine linkage UTPUSH and 
saves eight registers with each recursive call. 

File Maintenance 9-32 

UTPOP, and DH 
Th e s e r e g i st er s 

2270513-9701 



SCI/Utilities Design 

contain all information that must be stacked and unstacked in the 
recursion. 

DH makes a special case check for VCATALOG. 
file is never deleted, even though all 
contains entries are deleted. 

The volume directory 
files for which it 

9.7 CCAF 

CCAF is a task that performs two file maintenance functions: 

* Copies the contents of one file into another file 

* Appends the contents of one file to the end of another 
file 

CCAF is bid by SCI with a PARMS list and a CODE value. CODE:1 is 
for the copy function. CODE:2 is for the append function. The 
PARMS list is as follows: 

PARM Definition 

1 Input access name(s) 
2 Output access name 
3 ANSI flag (YES/NO) 
4 Replace? (YES/NO) 
5 Append? (YES/NO) 
6 Maximum record length 

The input and output 
option are discussed 
(SCI) Reference Manual 
command. 

access 
in the 

in the 

name parameters and the replace 
DNOS System Command Interpreter 

section that discusses the CC 

The ANSI flag tells CCAF whether the input file contains ANSI 
carriage control. 

The maximum record length (MRL) parameter is optional. When 
specified, it governs the amount of information (number of 
characters per record) written to the output file. MRL also has 
some effect on the amount of buffer space used by the utility. 

The task CCAF consists of the object module CC in the 
VOLOBJ.CC and UTCOMN routines. It uses the 
VOLOBJ.SCI990.S$0BJECT for S$SYSTEM routines. (It does 
the shared procedure segment.) 

directory 
library 

not use 

CCAF 
size 
not 

does initiate I/0 and uses double buffering. The buffer 
is initially set to the larger of MRL or 80. When MRL is 
specified (:0), the buffer size defaults to 512. After the 

2270513-9701 9-33 File Maintenance 



input file is opened and an 
characteristics, the size 
necessary. 

SVC is 
of the 

SCI/Utilities Design 

issued to get the file 
read buffer is adjusted, if 

If the fifth parameter is YES, the output access name is checked 
for the forms DSnn and CRnn (where n is numeric). An error is 
generated if this is an attempt to append a file to a disk or 
card reader device. A LUNO is assigned to the output access 
name, and it is opened. (If the fifth parameter is YES, the file 
is opened extended.) 

Most of the remaining processing is done in routines CPYDAT, 
PRTDAT, and INITIO. 

INITIO initiates a read with one buffer and does a write (with 
reply) from another buffer. After the write completes, INITIO 
waits on the read, if necessary. 

CPYDAT prepares buffers and calls INITIO. 

PRTDAT inserts carriage control, if necessary. PRTDAT is called 
only if the output access name is a device. The processing is 
dependent on the format of the input file, as follows: 

* Unformatted file - Inserts line feed between records and 
calls INITIO 

* ANSI formatted file Converts from ANSI to device 

* 

carriage control codes and calls INITIO 

File that already has device code carriage control 
Calls CPYDAT 

CCAF terminates when an EOF is encountered and all files 
specified in the input access name list have been processed. The 
second and subsequent files are assumed to have the same 
characteristics as the first file. Buffer sizes and other 
parameters are not reinitialized. The next input file is opened 
and copied. 

When the input access name list is exhausted, the files are 
closed and the task terminates through UTUERR. 

File Maintenance 9-34 2270513-9701 



SCI/Utilities Design 

SECTION 10 

USER ID AND ACCESS GROUP MAINTENANCE 

10.1 OVERVIEW 

The user ID maintenance package and the access group maintenance 
package are interrelated. User IDs and access groups are 
maintained in the same file and the tasks share common 
subroutines. 

The user ID maintenance package (AUIDUI) performs the following 
functions: 

* Add a user ID 

* Delete a user ID 

* Modify a user ID 

* List all user IDs 

The access group maintenance package (AGTASK) performs the 
following functions: 

* Create an access group 

* Delete an access group 

* 
* 

* 
* 

Set a users file creation access group 

Modify an access group 

List all the access groups of which the user is a membe~ 

List the members of all access groups of which the user 
is a leader 

A separate task (MPC) is provided to allow users to modify their 
passcode. 

AUIDUI, MPC, and AGTASK are all written in Pascal and are 
supported in both interactive and batch modes. These three tasks 
work together to maintain the file .S$CLF. This file contains 
all information pertaining to user IDs and access groups. 

2270513-9701 10-1 User ID/Access Group 



SCI/Utilities Design 

10.2 STRUCTURE OF THE TASKS 

Each task consists of a task segment only. The code is not 
designed to be sharable. It is replicated each time the program 
is invoked. These tasks receive input parameters via the 
standard PASCAL interface to SCI and return errors and messages 
via standard PASCAL interface to SCI. 

These tasks make use of two external functions -- JMHASH, a 
routine for hashing user IDs into their entries in the .S$CLF 
file, and PLCRYT, a routine for encrypting passcodes for storage 
in the .S$CLF file. 

10.3 FILES 

AGTASK, AUIDUI, and MPC maintain information concerning user IDs 
and access groups in a system file, .S$CLF. AUIDUI initializes a 
file in the directory .S$USER each time a user ID is added. This 
file has the name of the user ID that has been added. 

1 0 • 3. 1 • SC LF • 

Management of the .S$CLF file is the primary responsibility of 
AUIDUI, AGTASK, and MPC. .S$CLF is created when the system is 
booted the first time. It is a relative record file with 54 byte 
logical records and 864 byte physical records. This file 
contains five kinds of records, Verification Record (VFY), File 
Information Record (FIR), Access Group Record (AGR), User 
Descriptor Record (UDR), and User Descriptor Overflow record 
(UDO). The template that describes the five different records is 
called a Capabilities List file Record (CLR). Each record is 
described below. Refer to the section of data structure pictures 
at the back of this manual for a picture of the CLR and its five 
variants. 

1 O. 3. 1. 1 Verification Record (VFY). 

The first record is a header record that contains the name of the 
file and an indication of the version and release of the 
operating system that created the file. It also contains a 
pointer to the first access group record (AGR). The header 
record is used for verification purposes when the system is 
booted and by AGTASK to locate the list of AGRs. 

10.3.1.2 File Information Records FIR). 

Information about a particular user ID is accessed through FIRs • 
• S$CLF accomodates 53 base FIRs. An unlimited number of 
continuation FIRs may be linked to each base FIR. (The number of 
continuation FIRs is unlimited with respect to the UIDTASK code.) 

User ID/Access Group 10-2 2270513-9701 



SCI/Utilities Design 

The character string representation of the user ID is passed to 
JMHASH, which computes a number from 1 through 53. This number 
is the FIR into which the user ID will be written. 

A single FIR contains information for as many as five user IDs. 
FIRs may be linked to provide as many entries as required to 
store information for user IDs that hash to the same FIR number. 

The FIR contains 10 bytes of information for each user ID. The 
first eight bytes are used to store the character string 
representation of the user ID, and the last two bytes contain the 
.S$CLF record number of the UDR for the ID. 

The first word of an FIR indicates whether it has been linked. A 
value of zero indicates that the user IDs represented in the 
single record are all that hash to this record number. If the 
value is nonzero, it is the record number of the continuation 
record for this FIR. 

10.3.1.3 User Descriptor Record (UDR). 

A UDR describes the record that represents a given user of the 
system. It is a 54 byte record that includes the encrypted 
password, user description, and access group information. There 
is one UDR for each user in the system. 

The UDR can contain access group information for up to 5 access 
groups. Each access group in the UDR is represented by an access 
group entry. Each access group entry contains the record number 
of the access group record, the index into the access group 
record for this access group, and flags to indicate the users 
file creation access group and access groups of which the user is 
t~e leader. 

The first word of the UDR is a pointer to a user descriptor 
overflow record (UDO) If the user is a member of more than five 
access groups, a UDO is created. The first word of the UDR 
contains the record number of the overflow record. If there is 
no overflow record the first word is zero. 

10.3.1.4 User Descriptor Overflow record (UDO). 

A UDO describes the record that contains information pertaining 
to additional access groups of whichs the user is a member. This 
structure exists only when the user becomes a member of more 
access groups than will fit in the UDR. This structure has room 
for up to twelve access groups. Each access group is represented 
by an access group entry. Each access group entry contains the 
record number of the access group name record, the index into the 
access group name record for this access group, and flags. There 
is no limit to the number of UDOs that may be created for each 
user ID. 

2270513-9701 10-3 User ID/Access Group 



I 
I 
~ 

SCI/Utilities Design 

10.3.1.5 Access Group name Record (AGR). 

The AGR describes the record that contains the names of access 
groups. Each access group name record contains space for up to 
five access group names. Access group names are encrypted before 
being stored in the AGR. Each access group defined to the system 
has an entry in an AGR. Each entry consists of the access group 
name and a reserved word. The first word of the AGR contains the 
record number of the next AGR. The first word of the last AGR in 
the chain contains a zero. 

10.3.1.6 Structure of the .S$CLF file. 

The .S$CLF file is a relative record file and must be expandable. 
The file is initialized the first time the system is booted. It 
contains 53 FIRs and 16 AGRs. There are entries in the FIRs for 
the user IDs SYSTEM and SYSMGR, UDRs for the user IDs SYSTEM and 
SYSMGR, and an entry in the first AGR for the access group 
SYSMGR. Additional FIRs, UDOs, FIRs, and AGRs are created as 
needed. The logical format of .S$CLF is shown in Figure 10-1, 
and the physical format of .S$CLF is shown in Figure 10-2. 

The example shows the following information: 

* User ID MICHAEL is a member of access groups MODP and 
DNOS. 

* User ID JIM is a member of access group DNOS. 

* User ID DEBBIE is a member of access groups MODP and 
FILSEC. 

DEBBIE is a member of more access groups than will fit in her UDR 
so a UDO was created. 

* Access group MODP has users MICHAEL and DEBBIE as 
members. 

* Access group DNOS has users MICHAEL and JIM as members. 

* Access group FILSEC has user DEBBIE as a member. 

User ID/Access Group 10-4 2270513-9701 



SCI/Utilities Design 

+-------------------+ I RECORD 0 OF S$CLF I 

+-------------------+-------->+ 

+<-----+---------------+ +<---+ FIR RECORD 
+<-I 

+---------------+ 
+-+--------> +-+----> 
I 
I 

I +---------------+>+ +->I UDR RECORD 
JIM I 

I 

+---------------+ 
+-->+----------------+-->+ I UDR RECORD 1---->+ 

MICHAEL I 
+----------------+ 

+---->+----------------+------>+ 
I UDR RECORD 

+<----1 DEBBIE 
+----------------+ 

I +----------------+ 

+--> 

+---->I UDO RECORD 1-------->+ 
I I 
I I 

+--------------- + 

AGR BLOCK 

+----------------+<- PHYSICAL 
RECORD 
BOUNDARY 

AGR RECORD 1 
DNOS 
MODP 
FILSEC 
EMPTY 
EMPTY 

+----------------+ AGR RECORD 2 
EMPTY 
EMPTY 
EMPTY 
EMPTY 
EMPTY 

+----------------+ 
I 
I 

I 
I 

+----------------+-->+ 
AGR RECORD 16 

+----------------+ 

POINTER 
TO NEXT 
AGR BLOCK 
IF NEEDED 

Figure 10-1 Logical Organization of S$CLF 

2270513-9701 10-5 User ID/Access Group 



SCI/Utilities Design 

RECORD CONTENTS 

+-------------------------------------------------------+ 
0 VERIFICATION RECORD I 

+-------------------------------------------------------+ 
1 First FIR I 

+-------------------------------------------------------+ 
I I 
I I 
I I 

+-------------------------------------------------------+ 
53 FIR number 53 I 

+-------------------------------------------------------+ 
I I 
I UDRs, UDOs, FIRs I 
I I 

+-------------------------------------------------------+ 64 I First AGR 

+-------------------------------------------------------+ 
I I 

+-------------------------------------------------------+ 
79 I Last AGR 

+-------------------------------------------------------+ 
I I 
I UDRs, UDOs, AGRs, FIRs I 
I I 

+-------------------------------------------------------+ 
Figure 10-2 Physical Organization of .S$CLF 

The first bit in the second word of each record is used to 
indicate whether the record is in use. When the file is 
initialized this flag is set to indicate the record is available. 
Each time a new FIR, UDR, or UDO is needed, the file is searched 
for the first available record. When one is found, the used bit 
is reset to indicate the record is in use. Each time a UDR, UDO, 
or an FIR other than one of the original 53 is no longer needed, 
the used bit is set. When new AGRs are needed, they are always 
allocated in contiguous blocks of 16 records on physical record 
boundaries. This causes entire physical records to be dedicated 
to AGRs. This scheme minimizes the number of disk accesses 
necessary to read the list of access groups needed for security 
access checking. 

1 0 • 3 • 2 Syn on ym and Lo g i c a 1 Nam e Fi 1 e • 

User ID maintenance initializes this file when a user ID is 
added • 

User ID/Access Group 10-6 2270513-9701 



SCI/Utilities Design 

It is set up to appear to Name Manager as a synonym and logical 
name segment with no synonyms or logical names defined. 

UIAUI expects the value of the synonym SESYN to be the pathname 
of the synonym and logical name file. This file must be a 
relative record file that contains only one record. 

See the DNOS System Design Document 
structures used by Name Manager. 

for details of data 

10.4 FLOW OF CONTROL OF AUIDUI 

The following 
invoking the 
termination. 

paragraphs describe the major phases of AUIDUI-
task, initialization, major routines, and 

10.4.1 Invoking AUIDUI. 

AUIDUI is invoked by command procedures under SCI. 
bid by SCI990 with a PARMS list. 

The task is 

The first three PARMS are the same for each of the user ID 
commands: 

PARMS:(stack parameter, heap parameter, function code ••• ) 

Stack and heap parameters 
large enough for the program 
Incorporated. 

of 6000 and 1000, respectively, are 
as shipped by Texas Instruments 

The remainder of the PARMS list depends on what function is being 
requested. Listed below is the information expected by each of 
the functions in elements 4 through n of the PARMS list. 

Function 
Code 

2 

3 

4 

Process/ 
SCI Command 

Assign User ID 
(AU!) 

De 1 et e Us e r I D 
(DUI) 

Mod i f y Us er ID 
(MUI) 

Li st Us er IDs 
(LUI) 

PARMS List (past function cpde) 

New user ID, new passcode, user 
privilege level, user description 

Us er ID 

User ID, new passcode, user 
privilege level 

Output access name 

In addition to the BID statement, user ID maintenance requires 
that the synonym SECLF be the pathname of the system file .S$CLF. 
When a user ID is to be added, an additional synonym must be set 

2270513-9701 10-7 User ID/Access Group 



SCI/Utilities Design 

prior to bidding the task. The synonym SESYN is expected to be 
the pathname of a synonym and logical name file. Command 
procedures that invoke AUIDUI should set this synonym and create 
the directory .S$USER.<user ID>. 

10.4.2 Initialization. 

The entry point for user ID maintenance is the Pascal procedure 
UIMAIN. The function code is isolated and an SVC issued to 
establish the user ID of the job that invoked the task. The 
privilege level of the invoking user is checked to verify that 
the requested action is allowed. 

At the end of the routine, a case statement based on the value of 
the function code transfers control to the routine that does the 
processing. 

10.4.3 Major Routines. 

The following paragraphs describes the major routines in AUIDUI. 

10.4.3.1 Add User ID - UIAUI. 

The routine UIAUI in the procedure UIMAIN processes the addition 
of a user ID to the .S$CLF file and initializes the synonym and 
logical name file. 

If the user ID is already in the file, an error is returned 
through UTPUER. 

The process includes building an FIR entry and an associated UDR. 
They are written to .S$CLF. 

10.4.3.2 Delete User ID - UIDUI. 

Deletion of user IDs is processed by the routine UIDUI 
procedure UIMAIN. This processing requires that the user 
cleared from the FIR and that the UDR space be freed. 
deletion empties an FIR continuation record, the record is 
unused and the record is unlinked from the previous, and 
appropriate, next record in the chain. 

10.4.3.3 Modify User ID - UIMUI. 

in the 
ID be 
If the 
marked 

where 

Modification of user 
and/or description) is 
UIMAIN. 

ID attributes (passcode, privilege level 
processed by UIMUI in the procedure 

The UDR for the specified user ID is read, altered as specified, 
and rewritten to the .S$CLF file. A null value for passcode, 
privilege level, or description is processed as a no change 

User ID/Access Group 10-8 2270513-9701 



SCI/Utilities Design 

request for that attribute. 

10.4.3.4 List User IDs - UILUI. 

The routine UILUI in the procedure UIMAIN processes the request 
for listing user IDs. All nonempty FIRs are read to obtain 
active user IDs. For each ID, user description and privilege 
level are read from the associated UDR. This information is used 
to construct an element in a linked list. When all IDs have been 
read, the linked list is sorted by user ID, in alphabetic order. 
The list, along with the time and date, are written to the 
specified listing file. 

10.4.4 Termination. 

Termination of user ID maintenance is through R$TERM when there 
are no errors to report, and through S$TERM when an exit is taken 
to report errors through UTPUER. 

10.5 FLOW OF CONTROL OF MPC 

MPC is invoked by command procedures under SCI. The task is bid 
by SCI990 with a PARMS list. The first two parameters are stack 
and heap sizes, the third parm is expected to be the old 
passcode, the fourth is expected to be the new passcode. 

The olq passcode is encrypted and compared with the passcode 
stored in the .S$CLF file. If the passcode does not match, the 
processing is aborted and an error is returned to the user. If 
the passcode matches, the new passcode is encrypted and placed in 
the users UDR. The UDR is then rewritten to the file .S$CLF. 

10.6 FLOW OF CONTROL OF AGTASK 

The following paragraphs describe the major phases of AGTASK 
invoking the task, initialization, major routines, and 
termination. 

10.6.1 Invoking AGTASK. 

AGTASK is invoked by command procedures under SCI. The task is 
bid by SCI990 with a PARMS list. 

The first three parms are the same for each of the user ID 
commands: 

PARMS:(stack parameter, heap parameter, function code, ••• ) 

2270513-9701 10-9 User ID/Access Group 



SCI/Utilities Design 

Stack and heap parameters of 6000, and 1000, respectively, are 
large enough for the program as shipped by Texas Instruments 
Incorporated. 

The remainder of the parms list depends on what function is being 
requested. Listed below is the information expected by each of 
the functions in elements 4 through n of the PARMS list. 

Function 
Code 

Process/ 
SCI Command 

PARMS List 
(after function code) 

0 
1 

2 

3 
4 

5 

6 

7 

Create Access Group (GAG) 
List Access Group (LAG) 

Set Creation Access 
Group (SCAG) 

Delete Access Group (DAG) 
List Access Group 

Members (LAGM) 
Modify Access Group (MAG) 

Modify Access Group (MAG) 

Modify Access Group (MAG) 

10.6.2 Initialization. 

Access group, users to add 
NULL, NULL, passcode, 
output access name 

Access group, NULL, 
passcode 

Access group, NULL, passcode 
Access group, NULL, passcode 
output 

Access group, users to 
delete, passcode 

Ac.cess group, users to add, 
passcode 

Access group, NULL, passcode 
new leader 

The entry point for access group maintenance is the Pascal 
procedure AGTASK. A retrieve system data SVC is issued to verify 
the system is DNOS 1.2 or later. The function code is isolated 
and many checks are performed to verify that the request is 
valid. For every operation except GAG the users passcode is 
verified against the passcode for the job issuing the command. 
For every function except GAG, SCAG, and LAG the user must be the 
leader of the access group or a member of the SYSMGR access 
group. For every function except GAG the access group must 
exist. After initial verification the function code is used to 
transfer control to the appropriate routine. 

10.6.3 Major Routines. 

The following paragraphs describe the major routines in AGTASK. 

User ID/Access Group 10-10 2270513-9701 



SCI/Utilities Design 

10.6.3.1 Add list of users to access group (AGADLU). 

AGADLU is a routine to add a list of users to an access group. 
It gets the list of users as a PARM from SCI. User IDs are split 
from the list and processed one at a time. Each user ID is 
checked to verify it exists and the user is not already a member 
of the access group. If the user is a member of the SYSMGR 
access group he cannot become a member of any other access 
groups. Similarly, if the user is a member of other access 
groups he cannot become a member of SYSMGR. After the user ID is 
checked, an entry for this access group is added to the user's 
UDR or UDO. An informative message is written to the TLF to 
indicate which user IDs have been added, which have not, and why. 

10.6.3.2 Create access group (AGCAG). 

AGCAG is a routine to create an access group. The access group 
is checked to verify that it does not already exist. If it does 
not already exist, the access group name is encrypted and an 
entry is made in the next available AGR for this access group. 
If no entries are available in existing AGRs, a block of 16 AGRs 
are created, initialized, and the encrypted access group name is 
added to the first new AGR. The user who issued the request to 
create the access group is added to the access group as the 
leader by adding an entry is his UDR or UDO. AGADLU is then 
called to add the list of users specified when the CAG command 
was issued. 

10.6.3.3 Change access group leader (AGCHGL). 

The routine AGCHGL is a routine to process requests to change 
leadership of an access group. The user ID of the new leader is 
checked to insure it is a valid user ID. If the requestor is a 
member of the SYSMGR access group, a search of every user ID is 
performed to locate the old leader of the access group. The new 
leader is added to the access group if he is not already a 
member. In case of a crash it is better to have two leaders 
instead of none so the leader flag in the new leader's UDR or UDO 
is set before the leader flag in the old leader's UDR or UDO is 
reset. 

10.6.3.4 Delete access group (AGDAG). 

The routine AGDAG processes the deletion of an access group. The 
access group cannot be deleted if it has members. Every UDR and 
UDO is checked to verify that any member of the specified access 
group is also the leader. The access groups PUBLIC and SYSMGR 
cannot be deleted. After these checks the entry for this access 
group in the leader's UDR or UDO is cleared. The AGR which 
contains the entry for this access group is located and the entry 
is cleared. 

2270513-9701 10-11 User ID/Access Group 



SCI/Utilities Design 

10.6.3.5 Delete users from access group (AGDEL). 

The routine AGDEL deletes a list of users from an access group. 
It gets the list of users as a PARM from SCI. User IDs are split 
from the list and processed one at a time. Each user ID is 
checked to insure that it exists. If it exists the UDR and UDOs 
are checked to insure the user is a member and is not the leader. 
After these checks, the entry for this access group in the users 
UDR or UDO is cleared. An informative message is written to the 
TLF indicating which users were deleted, which were not, and why. 

10.6.3.6 List access groups (AGLAG). 

The routine AGLAG processes requests to list all access groups of 
which the requester is a member. If the requester is a member of 
SYSMGR all access groups are listed by reading all AGRs, 
decrypting the access group name, and inserting it into a linked 
list in sorted order. If the requester is not a member of SYSMGR 
his UDR is located. For each entry in the users UDR and UDOs the 
access group name is read, decrypted, and inserted into a linked 
list in sorted order. When all access groups have been located, 
the list is output to the specified listing file along with the 
date, time, an indication of those access groups of which the 
user is the leader, and an indication of the users file creation 
access group. 

10.6.3.7 List access group members (AGLAGM). 

The routine AGLAGM process requests to list the user IDs of all 
members of the specified access group. Every UDR and UDO is read 
in search of entries corresponding to the specified access group. 
Each time a match is found, the user ID is inserted into a linked 
list in sorted order. When all UDRs and UDOs have been searched, 
the list is output to the specified listing file along with the 
date, time, and an indication of which user ID is leader of the 
specified access group. 

10.6.3.8 Set file creation access group (AGSCAG). 

The routine AGSCAG processes requests to change a user's file 
creation access group. The users UDRs and UDOs are searched. 
The user's previous file creation access group flag is reset if 
one is found. If the specified file creation access group is not 
PUBLIC, the file creation access group flag in the entry 
corresponding to the specified access group is reset. An error 
is returned if the user is not a member of the specified access 
group. 

User ID/Access Group 10-12 2270513-9701 



SCI/Utilities Design 

10.6.4 Termination. 

Termination of AGTASK is through R$TERM if there are no errors to 
report. When there are SVC errors to report termination is 
through UTPSER. When there are utility errors to report 
termination is through UTPUER. 

2270513-9701 10-13/10-14 User ID/Access Group 





SCI/Utilities Design 

SECTION 11 

TELEPRINTER DEVICE UTILITIES 

11. 1 OVERVIEW 

The set of tasks provided as teleprinter device utilities provide 
control of the entire range of supported hardcopy terminal 
products. The utilities are accessable to a terminal user 
through use of SCI either interactively or via batch stream 
execution as shown in Figure 11-1. The user may be using the 
terminal to which the commands are addressed or another terminal, 
to the extent that each makes sense. 

All tasks defined here use standard conventions for interfacing 
between SCI and the control task. These are 

1. No synonyms are set by the task nor expected to be set 
prior to bidding the task except as specifically noted. 

2. All responses to prompts 
PARMS. The order of the 
of the prompts. No 

are passed to the bid task as 
PARMS is the same as the order 
PARMS which are not prompt 

responses are passed. 

3. Most tasks have various "tuning parameters". If 
are such parameters, they are listed as 
immediately following the prompt responses. 
order is as noted in this section. 

4. The CODE value for the .BID is set to zero except 
those cases specifically noted in the rest of 
section. 

5. The tasks are installed in S$UTIL. 

6. The task name for each task is noted as part of 
description. 

there 
PARMS 
Their 

for 
this 

the 

2270513-9701 11-1 Teleprinter Device Utility 



SCI/Utilities Design 

!----------! 
! Procs * 

!----------! 
! 

!----------! 
! ! 

>! User 
//! 

v // !----------! 
!----------! !----------! II 

Logical !--->! S !// 
! Name/Syn! C !< 
! Segment !<---! I !\\ 
!----------! !----------! \\ 

\\ ----------
v 

!-----------! 
! TPD ! 
! Utilities*! 

!-----------! 

v 
!----------! 

D ! 
s 

R 
!----------! 

\ \ Batch 
> Stream 

Batch 
Listing 

* Covered by this section 

Figure 11-1 Interfaces Between SCI and Control Tasks 

11. 2 COMMANDS 

The commands supported by the teleprinter device utilities 
utilize standard DNOS SCI interfaces. Terminology used in these 
commands corresponds to those of DNOS where applicable. 

Many commands prompt for TERMINAL ACCESS NAME. The proper 
response to this prompt is of the form STXX or a synonym for 
STXX. Strictly speaking, the reference is to a particular 
communication port rather than to a particular terminal. However 
common usage dictates use of the phrase TERMINAL ACCESS NAME. 
Note that multi-drop circuits are not supported. Thus no 
ambiguity arises. 

Teleprinter Device Utility 11-2 2270513-9701 



SCI/Utilities Design 

A synonym will be maintained for TERMINAL ACCESS NAME and 
displayed as the default after initial definition. 

All commands set a value in $$CC and $$MN before terminating. 
All tasks use the DNOS message handling convention. 

The following commands are supported: 

a. CALL - CALL TERMINAL 

b. ANS - ANSWER INCOMING CALL 

c. DISC - TERMINAL DISCONNECTION 

d. MHPC MODIFY HARDCOPY TERMINAL PORT 
CHARACTERISTICS 

e. LHPC LIST HARDCOPY TERMINAL PORT 
CHARACTERISTICS 

Details about these commands can be found in the DNOS System 
Command Interpreter (SCI) Reference Manual. 

All DNOS functions described in the remainder. of this section 
execute as foreground tasks or within background batch streams 
with the exception of the TPDISC task. The TPDISC task cannot be 
successfully run from a batch stream that was initiated at a 
remote terminal. 

11.3 TELEPRINTER DEVICE TASKS 

Four tasks support the teleprinter device utilities. The task 
named TPCALANS processes the CALL and ANS commands. The TPDISC 
task handles the DISC command, TPMHPC handles the MHPC command, 
and TPLHPC processes the LHPC command. 

11.3.1 TPCALANS. 

The CALL command is used to establish a connection with another 
terminal when the call is to be initiated by the system. 

The TPCALANS task accepts tuning parameters for the CALL command 
in the following order. Parameters apply to auto dialing unless 
noted otherwise. These are specified in the PARM list of the 
CALL PROC. 

1. Max delays in system time intervals 

a. between digits 

2270513-9701 11-3 Teleprinter Device Utility 



SCI/Utilities Design 

b. for primary dial tone 

c • for secondary dial tone 

d • for answerback (auto dial or manual dial) 

e. bet we en DSS true and DSR true 

f. between DPR true and PND false 

2 • Ma x d e 1 a y s i n sec on d s 

a. waiting for Data Link Occupied to go low at the 
start of dialing 

b. waiting for connect (auto dial) 

c. waiting for connect (manual dial 
infinite) 

zero means 

3. Time delay in system time intervals between setting CRQ 
and DTR 

4 • Ti m e d e 1 a y s i n second s 

a. between a failed attempt and a retry 

b. between Data Link Occupied 
assertion of Call Request 

going low and 

c. between receipt of primary dialtone and dialing 
the first digit 

d. between receipt of secondary dialtone and dialing 
the next digit 

5. Max number of tries 

a. to establish a valid connection 

b. to read an answerback (auto dial or manual dial) 

6. Flags (zero = no, not zero = yes) 

a. use "end of number" after last digit 

b. use pulse dialing if using TI internal ACU 

c. use even parity testing on answerback (zero = no 
parity test) 

d. assert RTS when dialing on half duplex circuits 
(auto dial or manual dial) 

Teleprinter Device Utility 11-4 2270513-9701 



SCI/Utilities Design 

e. save answerback in $ABM$ even if verification not 
requested 

When a number has been dialed, the program delays until either 
the time interval specified in 2b elapses or the hardware Abandon 
Call and Retry timer expires. Upon occurrence of either, the 
call is terminated. 

Many countries have laws rigidly controlling computer dialing. 
The many tuning parameters allow this function to be configured 
for legal conformity in those countries. 

The CODE argument of the .BID statement in the PROC is required 
and must equal zero when bidding TPCALANS to perform a CALL 
operation. 

The ANS command is used to monitor for completion of a connection 
with another terminal when the call is to be initiated by the 
terminal. Whether or not ANS is used, the system is continuously 
monitoring for a ring signal on those ports which are available. 
This command alerts the user that a specific incoming call has 
been received. 

The following items are tuning parameters for the ANS command 
listed in the order indicated. 

1. Max delay in system time intervals for answerback 

2. Max delay in seconds waiting for connect (Zero will be 
interpreted as infinite delay.) 

3. Number of tries to read an answerback 

4. Use even parity testing on answerback (zero = no parity 
test, not zero = yes) 

5. Save answerback in $ABM$ even if verification not 
requested 

When bidding this task to perform ANS, the CODE parameter on the 
.BID must be set equal to 1. 

11.3.2 TPDISC. 

The DISC command is used to terminate a connection. Disconnect 
is allowed provided no task is currently active with respect to 
the terminal or, if the terminal is ME, only SCI and the TPDISC 
task are active. If the terminal is ME, then the TPDISC task may 
not be running in background (i.e. in a batch stream.) If the 
terminal is ME, this task forces QUIT processing. If other users 
have LUNOs assigned to the terminal, disconnect is also 

2270513-9701 11-5 Teleprinter Device Utility 



SCI/Utilities Design 

disallowed. 

11.3.3 TPMHPC. 

The TPMHPC task allows a user access to the port characteristics 
modification calls supported by the DSR. Note that this task 
does not support all possible parameter modifications. Those not 
supported are generally associated with use of the DSR to drive 
nonstandard terminals or some other mode of usage which is not 
encouraged. The user who has need to perform modifications not 
supported by this task must develop a program to issue the 
appropriate SVC calls. 

11.3.4 TPLHPC. 

The TPLHPC task is used to obtain a table of the port 
characteristics for all hardcopy terminal ports. The table is 
written to the specified output access name. If no output access 
name is supplied, the table is written to the TLF. 

11. 4 HARDWARE ENVIRONMENT 

The teleprinter devices use DSRTPD which allows operation in the 
following environments. 

I/F CARD MODEM OR HARDWIRE TERMINAL OPTIONAL ACU 
-------- ----------------- -------- ------------TTY HARDWIRE 743/5 NO 
TTY HARDWIRE 82 OKS R NO 
TTY HARDWIRE 840KSR NO 
COMM/ TTY 103J/212A 743/5 EXTERNAL 801C 
COMM/ TTY 103J/212A 763/5 EXTERNAL 801C 
COMM/ TTY 103J/212A 781/3/5/7 EXTERNAL 801C 
COMM/ TTY 103J/212A 820KSR/ RO EXTERNAL 801C 
COMM/ TTY 103J/212A 840KSR/ RO EXTERNAL 801C 
COMM 202S 763/5 EXTERNAL 801C 
COMM 202S 781/3 EXTERNAL 801C 
COMM INTERNAL 202 763/5 INTERNAL 
COMM INTERNAL 202 781/3 INTERNAL 
9902 PORTS 103J/212A 74x/76x/78x/70x EXTERNAL 801C 

The following terminals will operate as the target terminal for 
the teleprinter device utilities. 

1. 70 3 

2. 707 

3. 7 4 3 

Teleprinter Device Utility 11-6 2270513-9701 



SCI/Utilities Design 

4. 745 

5. 763 

6. 765 

7. 781 

8. 783 

9. 785 

1 0. 787 

11. 820KSR 

12. 820RO 

13. 840RO 

Any terminal supported by DNOS as an SCI terminal may be used to 
initiate the TPD utilities to interact with a valid target 
terminal. 

2270513-9701 11-7/11-8 Teleprinter Device Utility 





SCI/Utilities Design 

SECTION 12 

DEBUGGING TOOLS 

12.1 OVERVIEW 

DNOS provides the following utilities for debugging user 
programs: 

* Debugger an interactive debugging facility that 

* 

* 

* 

12.2 

consists of three types of commands. One set can be 
used on any task. Another set can be used only on tasks 
that are executing in a special mode called debug mode. 
The third set of commands are for programs written in 
Pascal. 

LLR - a utility that allows the user to list the 
contents of a record or records in a file. The data is 
displayed in both hexadecimal and ASCII formats. 

MRFSRF - a utility that allows the user to show or 
modify data at an absolute word address within a file. 

MPISPI a utility that allows the user to show or 
modify a program (defined to be a task segment, a 
procedure segment, or an overlay) in a specified program 
file. 

DEBUGGER 

The Debugger is a task written in assembly language. It is 
invoked by any of a set of Debugger SCI commands (See Table 12-1 
through Table 12-3). The general commands shown in Table 12-1 
can be used on any task, whether or not it is in debug mode. The 
commands shown in Table 12-2, can only be used on controlled 
tasks. A controlled task is one that has been put in the debug 
mode by execution of the Execute in Debug Mode (XD) command. 

Table 12-3 is a summary of the Pascal debugging commands. These 
commands are for debugging object from the Pascal compiler. A 
Pascal task is put in debug mode by execution of the XD command. 
The Pascal debugging commands are not covered in detail in this 
document. 

2270513-9701 12-1 Debugging Tools 



SCI/Utilities Design 

The Debugger commands do not operate in a "closed" environment. 
Any SCI command is available while using the debug commands since 
the Debugger is an RBID task. 

In this discussion of the Debugger, when the word task is used, 
without "controlled" or "executing in debug mode", the intention 
is to refer to a task that is not a controlled task. 

With regard to a task that is not executing in the debug mode, 
the user can halt and resume a task, modify memory, set and reset 
breakpoints, display words and bytes of memory, evaluate 
expressions, and modify workspace and internal registers. A 
breakpoint stops the execution of a task when the program counter 
(PC) has a specified value. 

When debugging a task that is not in the debug mode, the user 
must supply addresses as absolute addresses or expressions using 
absolute addresses. 

The debug mode allows the user to simulate tasks, and to set and 
reset simulated breakpoints. These capabilities are in addition 
to the capabilities available with a task that is not in the 
debug mode. Simulated breakpoints are based on the occurrence of 
an event of one of the following types: 

* Memory (addresses within a specified range) is altered. 

* The communications register unit (CRU) address has a 
specified value. 

* The PC has a specified value. 

* Memory (addresses within a specified range) is 
referenced (either a read or a write). 

* The status register (ST) has a specified value. 

* A level 15 XOP (SVC) is executed. 

When a task is in the debug mode, and a symbol table is 
available, the Debugger evaluates expressions that contain labels 
as well as absolute addresses. These expressions determine the 
addresses used in processing Debugging commands. 

A major distinction between executing in debug mode and not in 
debug mode is that the task is partially simulated in debug mode. 
The following instructions are simulated: 

* Any instructions that alter the flow of control 
branches, jumps, returns 

* Any instructions 
relocations are 

Debugging Tools 

which reference or 
partially decoded. 

12-2 

alter 
This 

memory 
allows 

2270513-9701 



SCI/Utilities Design 

breakpoints on memory reference or alteration. 

If an instruction in a controlled task is not simulated, or only 
partially simulated, the Debugger places a breakpoint at the 
address immediately after the instruction. The task is allowed 
to execute one instruction at a time. Halting and restarting the 
task for each instruction drastically reduces execution time. In 
Debug mode, instructions execute at approximately 8 per second. 

The Debugger tests for breakpoint events following the execution 
or simulation of each instruction as long as the PC is within the 
specified debugging range. 

The task that is not in debug mode is allowed to run until it 
executes a PC breakpoint (that is, the Debugger suspends itself 
and allows the task to execute). In debug mode, the Debugger 
task remains active and either simulates each instruction as 
though the controlled task is executing, or allows the task to 
execute one instruction at a time. 

The words TRAP and BREAKPOINT are used in the code comments 
interchangeably. The word breakpoint is used exclusively in this 
discussion. 

2270513-9701 12-3 Debugging Tools 



SCI/Utilities Design 

Table 12-1 Debugger General Commands 

SCI 
Command Command Name 

Data Display Commands 

Li st Breakpoints 
Li st Memory 
Li st System Memory 

LB 
LM 
LSM 
SIR 
SP 
sv 
SWR 

Show Internal Registers 
Show Panel 
Show Value 
Show Workspace Registers 

Data Modification Commands 

MIR 
MM 
MSM 
MWR 

Modify Internal Registers 
Modify Memory 
Modify System Memory 
Modify Workspace Registers 

Breakpoint Commands 

AB Assign Breakpoint(s) 
DB Delete Breakpoint(s) 
DB(ALL)Delete All Breakpoints 
DPB Delete/Proceed from Breakpoint( s) 
PB Proceed from Breakpoint 

Task Control Commands 

AT 
HT 
QD 
RT 
XD 
XHT 

Activate Task 
Halt Task 
Qu i t De bug g er 
Resume Task 
Execute in Debug Mode 
Execute and Halt Task 

Se arch Commands 

FB 
FW 

Find Byte 
Find Word 

Debugging Tools 12-4 

CODE Module 

06 D$$LB 
00 D$$LM 
00 D$$LM 
05 D$$SI 
09 D$$S P· 
15 D$$SV 
OB D$$SW 

QA D$$MI 
04 D$$MM 
04 D$$MM 
14 D$$MR 

01 D$$AB 
02 D$$DB 

1F D$$DAB 
03 D$$DP 
13 D$$PB 

01 D$$HT 
10 D$$QD 
08 D$$RT 
OD D$$DEB 

16 D$$FB 
17 D$$FW 

2270513-9701 



SCI/Utilities Design 

Table 12-2 Debugger Commands for Controlled Tasks 

SCI 
Command 

ASB 
DSB 
LSB 
RST 
ST 
XD 
QD 

Command Name 

Assign Simulated Breakpoint(s) 
Delete Simulated Breakpoint(s) 
List Simulated Breakpoints 
Resume Simulated Task 
Simulate Task 
Execute Simulated Debug 
Quit Simulated Debug 

CODE 

OC 
OE 
OF 
11 
12 

Module 
------
D$$ASB 
D$$DSB 
D$$LSB 
D$$RS 
D$$S 
D$$DEB 
D$$QD 

Table 12-3 Pascal Debugger Command Summary 

SCI 
Command Command Name CODE Module 
------- ------------ ------

ABP Assign Breakpoint( s) - Pascal 1A D$$APB 
DBP De 1 ete Breakpoint( s) - Pascal 1B D$$DPB 
DPBP Delete/Proceed from Breakpoint( s) 

- Pascal 1C D$$DPP 
LBP Li st Breakpoints - Pascal 1E D$$LRB 
LPS Li st Pascal Stack 19 D$$LPS 
PBP Proceed from Breakpoint - Pascal 1D D$$PPB 
SPS Show Pa SC al Stack 18 D$$SPS 

12.2.1 Operating System Considerations. 

The Debugger implements a breakpoint by replacing the instruction 
at the specified address with >2FCF, the object for the following 
assembly language instruction: 

XO P 15, 15 

The Debugger is designed with the expectation that the XOP 
processor at level 15 performs the following services: 

* Recognition that the cal 1 is from a task that has had 
the >2FCF inserted by the Debugger. This is done in 
RPROOT, the level 1 5 XOP processor for DNOS. RPROOT 
determines that the cal 1 block was in register 1 5 in the 
workspace of the requesting task, and that the 
instruction is a level 1 5 XO P. (Register 1 5 need not 

2270513-9701 12-5 Debugging Tools 



SCI/Utilities Design 

contain an Unconditional Suspend SVC call block. Any 
task that executes the >2FCF instruction is suspended 
without examination of the call block.) 

* Adjust the PC of the requesting task backward to repeat 
the instruction at this address. The command processors 
that delete breakpoints and proceed from breakpoints are 
designed on the assumption that the PC is adjusted 
before they are called. 

* A flag in the TSB is set to indicate the task is 
suspended because of execution of a breakpoint. This 
flag is cleared by the Resume Task SVC processor. 

Following this processing, the operating system marks the task 
suspended and reactivates the parent task. In DNOS, SCI990 is 
always the parent task of the task being debugged. SCI990 RBIDs 
the Debugger when a Debugger command is processed. 

The Debugger issues an SVC to extend the time slice prior to 
altering the breakpoint table. This is not required in DNOS, but 
is done to remain compatible with DX10. In DX10, the breakpoint 
table is in the operating system address space, and the Debugger 
must complete the alteration of the table without interruption in 
order to ensure the integrity of the breakpoint table. 

12.2.2 Structure of the Task. 

The Debugger consists of a task segment and a procedure segment. 
It calls routines in the S$SYSTEM shared procedure segment. The 
Debugger is a replicatable, hardware- and software-privileged 
task. It must be privileged so that it can simulate privileged 
instructions. The Debugger issues the following privileged SVCs 
in its own behalf: 

* Read/Write Task 

* Read/Write TSB 

The Debugger task segment contains the transfer vector, the 
driver routine D$0V1, frequently used routines and global data. 

The data and workspace modules are as follows: 

* DW$0V1 - workspaces 

* DD$COM - Common data area for the Debugger. This module 
contains declarations for buffers, pointers, and tables 
used throughout the processing of commands. 

* DBGTSK IRBs, related data structures, and 
miscellaneous declarations for the Debugger 

Debugging Tools 12-6 2270513-9701 



SCI/Utilities Design 

* PARSED - Data segment 

* Four workspaces for S$SYSTEM routines 

* D$SDAT - Simulator local data area 

* DL$0V1 - local data area 

* DL$RWT - call blocks (IRBs) for SVCs that read and write 
data in the address space of the task being debugged. 

* DQ$GEN Equates, using set prefixes in six-character 
names. The characters after the prefix are optional, 
and are as meaningful as two or three characters can be. 
The forms of the equate names are as follows: 

DE$abc - error codes 

TSBabc - TSB displacements 

TS$abc - Task states 

TSFabc - TSB flag bits 

EC$abc - Event keys 

DQ$abc Breakpoint table locations and 
displacements, system pointers, !RB opcodes, and 
miscellaneous data 

TRAPab - Simulated breakpoint table displacements 

where: 

a, b, and c are nonblank alphanumeric 
characters. 

* D$MSG - Text of all messages written by the Debugger to 
the user screen 

The following program modules are in the Debugger task segment: 

* D$0V1 - Routine D$0V1, the driver for the Debugger 

* D$RTS - Routine D$RTS, read TSB 

* D$RTW 
space 

2270513-9701 

Routine D$RTW, read a word in the task address 

12-7 Debugging Tools 



SCI/Utilities Design 

12.2.3 Flow of Control. 

Once the Debugger task has 
command), it remains in the 
following conditions are met: 

been activated (by 
user's job until 

a Debugger 
both of the 

* 

* 

There is no controlled task associated with the Debugger 
task. That is, the internal variable DD$CTI has a value 
of zero. This variable is set to the run ID of the 
controlled task by the XD command processor, and is 
given a value of zero by the QD command processor. The 
task being debugged can terminate and no longer be 
active in the user's job, but the QD command is still 
required to clear DD$CTI. 

All breakpoints assigned by the Debugger in any task in 
the user's job are deleted. This condition is monitored 
in the driver routine through a local variable. The 
value of BRKPNT is the number of breakpoints that are 
set, but not deleted. 

If both conditions are satisfied after the completion of command 
processing, the Debugger exits through S$TERM. Otherwise, the 
Debugger exits through S$WAIT and is suspended. 

12.2.3.1 Invoking the Debugger. 

The Debugger is bid (or reactivated) by SCI while processing a 
Debugger command procedure. The .RBID statement contains the 
CODE and a PARMS list that varies, according to the command. 

12.2.3.2 Initialization. 

The following initialization steps are repeated each time the 
Debugger is RBID: 

1. Open the terminal LUNO, with event characters enabled. 

2. Initialize the VDT field size. 

3. Initialize the local flag for the use of 8-bit ASCII, 
based on the country code. 

4. Get access to the TCA and the status of the terminal. 

Routine D$$DEB establishes the environment for a controlled task. 
This initialization consists of the following steps: 

1. Set the controlled bit in the TSB. 

Debugging Tools 12-8 2270513-9701 



SCI/Utilities Design 

2. Initialize DD$CTI to the run ID of the task that is to 
run in debug mode. 

3. Initialize instruction count, WP, PC, and ST. It is 
the limit on the number of instructions to be executed 
in debug mode. 

4. Initialize the 990/12 flag to one of the following 
values: 

0: 990/10 object, 990/12 instructions not 
supported 

1: 990/12 object 

5. Call D$BST to initialize task symbols. This routine 
extends the Debugger task space and constructs a local 
symbol table for use in evaluating symbolic 
expressions. 

12.2.3.3 Major Loop/Routines. 

D$0V1, the driver, is a table driven algorithm. D$0V1 derived 
its name from being an overlay on DX10. The special cases are 
handled first. If the CODE value passed is >OOFF, a branch to 
the end-action routine in D$0V1 is taken. This is not the same 
processing as is done with the QD command. If the session is in 
batch mode, an error is returned (through S$STOP) for any request 
other than List Memory or List System Memory. 

The CODE value is an index into the command processor address 
table. A branch is taken to the appropriate address for command 
processing. 

12.2.3.4 Error Processing. 

The Debugger reports some errors to the user through 
termination synonyms are set to reflect the condition. 
codes returned are defined in module DQ$GEN. 

SCI. The 
The error 

Module D$MSG contains error messages and informative messages. 
These messages are output directly to the user, avoiding the SCI 
interface. The debugger uses these messages when it does not 
want to suspend itself by returning to SCI. An example is the 
messages supplied during task simulation. 

12.2.3.5 Termination. 

The Debugger terminates by calling S$STOP. When the debug mode 
is active, the Debugger terminates only when processing the QD 
(Quit Debugger) command. If there is no pending debug activity 
the Debugger terminates after processing each request. Whether 

2270513-9701 12-9 Debugging Tools 

I 



SCI/Utilities Design 

or not there is pending debug activity is determined by examining 
the values of the local variables DD$CTI and BRKPNT. 

12.2.4 Data Structures. 

Module DL$VEC contains three vectors associated with user 
of 

the 
The 

interface. The name of the data structure is KWT. A maximum 
22 entries is supported. The entries are called keywords in 
code, but their function is that of SCI field prompt. 
following information is maintained for each of the entries: 

* Text of the prompt 
vector 

five bytes, called the keyword 

* 
* 

Default value - the current value 

Actual value - the value entered by the user in response 
to the prompt. 

The data structure OPTABL in module D$SINS contains the opcodes, 
text strings, and a flag word for every 990/10 and 990/12 
assembly language instruction. The flag word contains the 
following information: 

* 

* 

* 

* 

Hardware- or software-privileged instruction 

990/12 instruction 

Illegal op code 

Instruction group The instruction group is an index 
into the address table (in D$SIM) for simulation or 
execution of the instruction. Instructions are grouped 
according to execution similarity, allowing one piece of 
code to simulate many instructions. 

The TCA data structure (synonym and logical name segment in DNOS) 
is transparent to the Debugger since all access of the PARMS list 
is done by calling S$PARM. The other system data structures 
utilized by the Debugger are the task status block (TSB), and the 
system pointer table (NFPTR). The TCA, TSB, and NFPTR are 
documented in the Data Structures Pictures section of the DNOS 
System Design Document. 

The variable DD$CTI is the task run ID of the controlled task. 
The special value of zero for DD$CTI is used throughout the 
Debugger code to mean that there is no controlled task. 

The constant DQ$SSU is the user privilege level required to 
perform Debugger functions in the system address space. In the 
current release, the minimum privilege level required is two. 

Debugging Tools 12-10 2270513-9701 



SCI/Utilities Design 

Task breakpoint information is stored in the data structure 
D$BRKP, in module DBGTSK. The table consists of 32 six-byte 
entries, each of which contains the following data: 

* Run ID of the task in which the breakpoint occurs 

* Address of the breakpoint 

* Original contents of the breakpoint location 

Simulated breakpoint information is stored in the data structure 
EVENTS, in module DD$COM. The simulated breakpoint table has 
space for ten six-word entries, each of which contains the 
following data about the breakpoint: 

* Running count of the number of times the breakpoint 
event has occurred. 

* 

* 

* 

Starting memory address for display when the breakpoint 
is executed 

The first address of the breakpoint range 

The last address of the breakpoint range 

* The number of times the event is to occur before the 
breakpoint is executed 

* A code that indicates the event on which the breakpoint 
is based. The codes are as follows: 

P: PC value 

S: ST value 

c : CRU value 

R : Memory reference 

A : Memory access 

X: XOP 15 

TYPTRP is a table of codes for the events on which breakpoints 
can be based. 

The Debugger maintains a simulated context (WP, PC, and ST). The 
simulated context is updated after each simulated instruction. 
Before simulation, the simulated context is compared to the WP, 
PC, and ST of the task's TSB. If they are different the 
simulation task is set to the TSB's context. This guarantees a 
correct simulation starting state. 

2270513-9701 12-11 Debugging Tools 



SCI/Utilities Design 

The Debugger maintains a local data structure that contains 
values for symbols. The address space of the Debugger is 
expanded by a Get Memory SVC to store the symbol table. SYMTBL 
is the local pointer to the table. 

The logic of the symbol compression 
assembler compression algorithm, 
metacode: 

algorithm, similar to the 
is shown in the following 

D$CMP symbol compression algorithm 
R2=0; 
R5:0; 
I=1; 
DO UNTIL (I=8) OR (no more characters in name); 

Load next character into R2; 
IF character is non-blank 

THEN R2 = exclusive OR of character and R5; 
Shift circular R2 five bits; 

I =I + 1; 
END DO; 

12.2.5 Files. 

The files accessed by the Debugger are the terminal local file 
(TLF) and the li~ked object file that may be optionally specified 
with the Execute Debug (XO) command. The linked object file is 
read to build the internal symbol table that is used to evaluate 
symbolic expressions. 

12.2.6 Synonyms. 

The Debugger uses the synonym $$DA to indicate whether or not the 
debug mode is active. $$DA is set to a value of YES when a task 
is executing in the debug mode. 

In DX10, the SCI variable S$$MNU is altered to suppress the 
display of the default menu. The code to alter S$$MNU is also in 
the DNOS Debugger, but the variable is local to the Debugger task 
and has no effect on SCI. In DNOS, surpressing the display of 
the main menu is accomplished via the .MENU command. The .MENU 
is placed at the end of the debugger command procedures. 

12.2.7 Coding Conventions. 

The Debugger code does not follow DNOS coding conventions. The 
major exceptions are as follows: 

* Labels do not start with a fixed prefix. 

* Error equates are not of the format ERRaa. 

Debugging Tools 12-12 2270513-9701 



SCI/Utilities Design 

* Prologues are incomplete. 

1 2 • 2 • 8 Subroutine Linkage. 

The command processors and the subroutines they call have a 
standard BLWP/RTWP interface. 

The RSTACK area in module DBGTSK is not used by the Debugger 
code. 

12.2.9 Detailed Design. 

This discussion of the detailed design of the Debugger includes a 
paragraph on the driver routine, a paragraph on each of the 
command processors, and a paragraph detailing some low-level 
routines called by many of the processors. The command 
processors are discussed in the same order as in Table 12-1 and 
Table 12-2. 

The driver routine for the Debugger is D$0V1. The routines 
invoked by D$0V1 all have names of the following form: 

where: 

abc is 
command. 
command. 

D$$abc 

the SCI command name, except for the XD 
Routine D$$DEB processes the XD 

In general, these routines are small. They typically process the 
PARMS list and the CODE value on the .RBID statement, and then 
invoke lower level routines that do the actual processing. These 
lower level routines have names that begin with the letters D$. 

Modules containing the source for the Debugger are in the 
directory DSC.DEBUGGER.SOURCE, where DSC is the name of the 
directory in which the DNOS source, object, and assembly listings 
reside. 

12.2.9.1 D$0V1. 

The first function of D$0V1 is initialization, which consists of 
the following steps: 

1. Issue a Self-ID SVC to get the run time task ID (of the 
Debugger) and the station ID from which it is RBID. 

2. Open the terminal LUNO, with event characters. 

3. Issue a Read Device Characteristics operation of the 

2270513-9701 12-13 Debugging Tools 



SCI/Utilities Design 

I/0 SVC to determine the size of the display, that is, 
the number of lines and the number of columns in each 
line. 

4. Based on the NFDATA variable for country 
initialize the following language flags: 

code, 

Set the eight-bit ASCII flag if the 
country code is Japanese. 

Set the low and high Arabic values if 
the country code is Arabic. 

Set the eight-bit display flag for 
Japanese or Arabic country code. 

5. Call S$GTCA to gain access to the communication area 
(TCA), that is, the synonym segment and the logical 
name segment. 

6. Call S$STAT to get the terminal status and the value of 
the CODE from the .RBID statement. 

The CODE value is examined to ensure that it is a val~d request. 
In batch mode, the only CODE value allowed is a value of zero. 
D$0V1 logic includes the assumption that a CODE value of zero is 
for either the List Memory (LM) or the List System Memory (LSM) 
command. 

D$0V1 uses the CODE value to index into the command processor 
address table. The debugger branches to the entry point of the 
processor found in the table. 

After completion of command processing, D$0V1 calls S$SETS to 
assign the appropriate value to the synonym $$DA (Y or N). D$0V1 
calls S$WAIT if the Debugger is to be suspended and calls S$STOP 
if the Debugger is to terminate. 

Debugging Tools 12-14 2270513-9701 



SCI/Utilities Design 

12.2.9.2 List Breakpoints. 

SCI Command: LB 

MODULE: D$$LB 

CODE: >06 

PARMS: 

PARM 
Number Definition 

Run ID of task being debugged 

Field Prompt Name 

RUN ID 

The entry point for the list breakpoint command processor is 
D$$LB in module D$$LB. The function of D$$LB is to produce a 
listing of all breakpoints that are set through either the AB or 
DPB commands. The logic of D$$LB is shown in the following 
metacode: 

D$$LB: 
Call D$PR1 to process the run ID; 
Initialize run ID and display line number; 
IF terminal mode is VDT 

THEN Call D$CSR to clear the screen; 
Call D$$WL to write the header line; 

LOOP: 
DO UNTIL (no more breakpoints); 

Increment line number; 
Call D$BBL to build display line for breakpoint; 
Call D$WL to write line to display; 

END LOOP; 
Modify S$$MENU to preserve breakpoint display; 

D$BBL reads the breakpoint table and constructs the display line. 
The length of the buffer passed to D$BBL determines the number of 
breakpoints that can be listed on one line. When there are as 
yet unlisted breakpoints and the buffer is full, a + is inserted 
at the end of the buffer (one character at the end of the buffer 
is reserved for this purpose). D$BBL calls S$IASC to convert 
binary addresses to ASCII characters. The only information 
listed about the breakpoint is the address. 

2270513-9701 12-15 Debugging Tools 



12.2.9.3 List Memory, List System Memory. 

SCI Commands: LM, LSM 

MODULE: D$$LM 

CODE: >OO 

PARMS: 

PARM 
Number 

1 
1 

2 

3 

4 

5 

Definition 

Run ID of task being debugged (LM) 
Overlay ID (LSM) 

Starting address of memory 
area to be listed 

Number of bytes to list 

Listing access name 

System memory indicator 
Null: LM 

Non-null: LSM 

SCI/Utilities Design 

Field Prompt Name 

RUN ID 
OVERLAY NAME OR ID * 

STARTING ADDRESS 

NUMBER OF BYTES 

LISTING ACCESS NAME 

None 

* The overlay name is translated by the command procedure 
to the installed overlay ID in the kernel program file. 

The entry point for the list memory and list system memory 
command processor is D$$LM in module D$$LM. 

D$$LM processes both the List Memory and the List System Memory 
commands. The function of D$$LM is to produce a listing of 
memory starting at a specified address and continuing a specified 
number of bytes. The logic of D$$LM is shown in the following 
meta code: 

Debugging Tools 12-16 2270513-9701 



SCI/Utilities Design 

D$$LM: 
IF fifth PARMS element is non-null 

THEN Call D$0ID to get the overlay ID; 
Set system memory flag; 

ELSE Call D$PR2 to process the run ID; 
Call D$PSP to process the beginning address; 
Call D$PSP to process the ending address; 
IF PARM four is null 

THEN Clear pointer to listing file access name; 
IF request is to list system memory 

THEN Call D$LM; 
ELSE Call D$HT to halt the task; 

Call D$LM to list memory; 
Call D$RST to restore the original state 

of the task; 

D$0ID enforces a minimum privilege level for listing system 
memory. It calls S$STAT to get the status of the user, and if 
the privilege level is greater than or equal to variable DQ$SSU, 
processing continues. This testing against DQ$SSU is described 
in the code comments as a test for system user, but it is a 
privilege level check only. The value of DQ$SSU in the current 
release of DNOS is 2. 

D$0ID gets the first element of the PARMS list (the overlay ID) 
and converts it to a binary number. The overlay ID is used in 
the call block for the Read/Write Task SVC. 

12.2.9.4 Show Internal Registers. 

SCI Command: SIR 

MODULE: D$$SI 

CODE: >05 

PARMS: 

PARM 
Number Definition 

Run ID of task being debugged 

Field Prompt Name 

RUN ID 

The entry point for the show internal registers command processor 
is D$$SI in module D$$SI. If the terminal is in TTY mode, the 
current workspace registers are displayed on a single line. If 
the terminal is in VDT mode, the entire debug panel is displayed. 
The logic of D$$SI is shown in the following metacode: 

2270513-9701 12-17 Debugging Tools 



SCI/Utilities Design 

D$$SI: 
Call D$PR1 to process the run ID; 
Call D$SPT to suspend the task; 
Call D$PIR to process the internal registers display; 
Call D$RST to restore the state of the task; 

12.2.9.5 Show Panel. 

SCI Command: SP 

MODULE: D$$SP 

CODE: >09 

PARMS: 

PARM 
Number Definition Field Prompt Name 

Run ID of task being debugged RUN ID 

2 Address of the first word of 
memory to be displayed 

MEMORY ADDRESS 

The entry point for the show panel command processor is D$$SP in 
module D$$SP. The function of D$$SP is to build the debug panel 
display and write it to the interactive terminal. The logic of 
D$$SP is shown in the following metacode: 

D$$SP: 
Call D$PR1 to process the run ID; 
Call D$PSP to process the address parameter; 
Round address down to even value; 
IF address parameter is null 

THEN Use >FFFF, me~ning current PC; 
IF run ID is the controlled task; 

THEN Update its memory address; 
Call D$HT to halt task; 
Call D$POP to put out the panel; 
Call D$RST to restore the state of the task; 

12.2.9.6 Show Value. 

SCI Command: SV 

MODULE: D$$SV 

CODE: >15 

Debugging Tools 12-18 2270513-9701 



SCI/Utilities Design 

PARMS: 

PARM 
Number Definition 

The expression to be evaluated 

Field Prompt Name 

EXPRESSION 

The entry point for the show value command processor is D$$SV in 
module D$$SV. The function of D$$SV is to evaluate the 
expression and display the value in the following forms: 
hexadecimal, decimal, and ASCII. The logic of D$$SV is shown in 
the following metacode: 

D$$SV: 
Call D$CSR to clear the screen; 
Call S$PARM to get the expression; 
Call D$ESE to evaluate the expression; 
Build the output line; 
Call S$IASC to convert hexadecimal value to ASCII; 
Replace the byte count with >; 
Call S$IASC to convert decimal value to ASCII; 
Insert labels and dots in output buffer; 
Replace dots with characters when printable~ 
Call D$WL to write the line to the display; 

D$$SV contains code to alter the variable S$$MNU. In DNOS, the 
command procedure must preserve the display. 

12.2.9.7 Show Workspace Registers. 

SCI Command: SWR 

MODULE: D$$SW 

CODE: >OB 

PARMS: 

PARM 
Number Definition 

Run ID of task being debugged 

Field Prompt Name 

RUN ID 

The entry point for the show workspace registers command 
processor is D$$SW in module D$$SW. The function of D$$SW is to 
format and write to the terminal the sixteen workspace registers 
from the current context of the specified task. The logic of 
D$$SW is shown in the following metacode: 

2270513-9701 12-19 Debugging Tools 



D$$SW: 
Call D$PR1 to process the run ID; 
Call D$HT to halt the task 
IF terminal mode is VDT 

THEN Call D$POP to put out the panel; 
ELSE Call D$RTS to get WP from TSB; 

SCI/Utilities Design 

Call D$DM to display workspace memory; 
Call D$RST to restore state of task; 

12.2.9.8 Modify Internal Registers. 

SCI Command: MIR 

MODULE: D$$MI 

CODE: >OA 

PARMS: 

PARM 
Number Definition 

Run ID of task being debugged 

Field Prompt Name 

RUN ID 

The entry point for the modify internal registers command 
processor is D$$MI in module D$$MI. The function of D$$MI is to 
display current values of internal registers (WP, PC, and ST) to 
the user and to modify the contents of the registers according to 
input from the terminal. D$$MI interfaces with the user terminal 
in a manner similar to SCI. Routine S$FMT is called to display 
the current values. What are called field prompts in SCI are 
called keywords in the code comments of D$$MI. The text 
displayed to the user is in the data structure KWT in module 
D$MSG. S$GKEY is called to return user input to D$$MI. The 
logic of D$$MI is shown in the following metacode: 

Debugging Tools 12-20 2270513-9701 



SCI/Utilities Design 

D$$MI: 
Call D$PR1 to process the Run ID; 
Call D$HT to halt the task being debugged; 
DO for all keywords; 

Convert keyword value in current TSB to ASCII and store; 
END DO; 
Call S$FMT to clear the screen and declare screen format; 
Initialize keyword counter; 
LOOP: DO UNTIL (keyword counter = 3) or (CMD key entered); 

Call S$GKEY to get user value for field prompt; 
IF error from S$GKEY 

THEN Call D$PKE to process error; 
ELSE IF event key 

THEN IF CMD key 
THEN Exit LOOP; 

IF EOL, TAB, or SKIP 
THEN Process as a RETURN (at LABEL1); 
ELSE Set error message indicator for S$GKEY; 

GO TO LOOP; 
LABEL1: ELSE IF value entered is non-null 

THEN Call D$PSE to process expression; 
IF Error 

ENDIF; 

THEN Set error message code for S$GKEY; 
GO TO LOOP; 

ELSE IF new value is not old value; 
THEN IF status register 

THEN Enforce privilege 
level rules; 

ELSE IF PC register 
THEN Reset break

point bit; 
Put new value into TSB; 

ENDIF; 

Increment keyword counter; 
END LOOP; 
Call D$PRP to process the panel; 
Call D$RST to restore state of the task; 

D$PKE allows the caller to continue execution only if the error 
code being examined is between >9000 and >9FFF, inclusive. If 
the error code is in that range, a pointer to the error message 
INVALID EXPRESSION (or the local language equivalent) is loaded 
in the appropriate register for display by S$GKEY the next time 
it is called. Otherwise, the error is considered irrecoverable 
and D$PKE returns to the caller through an error exit. 

D$PSE requires as inputs the Run ID and the address of a string 
that is a symbolic expression. It returns the value of the 
expression or the address of an error message in the caller's 
workspace. Register assignments for the interface are documented 
in the code. D$PSE calls D$ESE to evaluate the expression. 

2270513-9701 12-21 Debugging Tools 



I 

SCI/Utilities Design 

12.2.9.9 Modify Memory, Modify System Memory. 

SCI Commands: MM, MSM 

MODULE: D$$MM 

CODE: >04 

PARMS: 

PARM 
Number 

1-MM 

1-MSM 

2 

3 

De fini ti on 

Run ID of task being debugged 

Overlay ID 

First memory address to be 
modified 

System memory indicator 
Null implies not system 
Non-null for system 

Field Prompt Name 

-----------------
RUN ID 

OVERLAY NAME OR ID * 
ADDRESS 

None 

* The overlay name is translated by the command procedure 
to the installed overlay ID in the kernel program file. 

The entry point for the modify memory and modify system memory 
command processor is D$$MM in module D$$MM. The function of 
D$$MM is to display the eontents of specified locations in the 
address space of a specified task, and to interface with the user 
to alter the contents of those locations. The logic of D$$MM is 
shown in the following metacode: 

Debugging Tools 12-22 2270513-9701 



SCI/Utilities Design 

D$$MM: 
Call S$PARM to get third PARM; 
IF PARM is null 

THEN Call D$PR2 to process Run ID; 
ELSE Call D$0ID to process Overlay ID; 

Set system memory flag; 
Call D$PSP to get and process the beginning address; 
Round address down to an even number; 
IF not system memory 

THEN Call D$HT to halt the task; 
IF Run ID is not zero 

THEN Call D$BIR to build register display; 
DO UNTIL (CMD key is input); 

Initialize local memory address; 
Clear line count; 
DO UNTIL (line count= max) OR (error in fetching memory); 

Initialize pointers, buffers, and flags; 
Call D$GOC to get 8 words of memory; 
IF error 

THEN IF not end of memory 
THEN Take error exit; 

Clear forced fetch flag; 
Add number of words read to line count; 
IF zero words read 

THEN Take error exit; 
ELSE IF line count > number of words read 

THEN Start another line of output; 
Call D$GOC for second half; 

ELSE Use second half of display screen; 
Format output lines; 
Add number of words read to line count; 

END DO; 
Call S$FMT to write current values to screen; 
Initialize keyword count; 
LOOP: DO UNTIL (keyword count= line count); 
Call S$GKEY to read terminal; 
IF error 

THEN Call D$PKE to process it; 
Set error message pointer for S$GKEY; 
GO TO LOOP; 

IF event character 
THEN IF CMD key 

THEN Exit LOOP; 
IF EOL, TAB, or SKIP 

THEN Process as a RETURN (at LABEL1); 
ELSE Set error message indicator for S$GKEY; 

GO TO LOOP; 

2270513-9701 12-23 Debugging Tools 



SCI/Utilities Design 

LABEL 1: 
ELSE IF value entered is non-null 

THEN Call D$PSE to process symbolic expression; 
IF Error 

THEN Set error message number for S$GKEY; 
GO TO LOOP; 

ELSE Compare new value with old value; 
IF they differ 

THEN Call D$WTW to update task 
address space; 

Update value vector for display; 
ENDIF; 

Increment keyword counter; 
Increment base memory address; 
END LOOP; 
IF modifying system memory 

THEN Exit; . 
Call D$PRP to process ~he panel 
IF modifying system memory 

THEN Exit; 
Call D$RST to restore the state of the task; 

A zero value for the forced fetch flag (FFFLAG) is a signal to 
D$GOC that all or part of the octet being requested may still be 
in memory in the call block from a Read/Write Task SVC previously 
issued. The two routines are interdependent in that D$GOC takes 
the forced fetch flag from the caller and assumes it is valid. 
D$$MM is written with the assumption that D$GOC builds the SVC 
call block such that it reads 16 words. 

The logic of D$$MM requires that the buffers OCTET1 and OCTET2 be 
contiguoµs, and that OCTET2 follow OCTET1. 

12.2.9.10 Modify Workspace Registers. 

SCI Command: MWR 

MODULE: D$$MR 

CODE: >14 

PARMS: 

PARM 
Number 

1 

2 

De fin i ti on 

Run ID of task being debugged 

First workspace register to 
be displayed (and potentially 
modified) 

Debugging Tools 12-24 

Field Prompt Name 

RUN ID 

REGISTER NUMBER 

2270513-9701 



SCI/Utilities Design 

The entry point for the modify workspace registers command 
processor is D$$MR in module D$$MR. The function of D$$MR is to 
display the contents of the current workspace registers, and to 
interface with the user to alter the contents of those registers. 
The logic of D$$MR is shown in the following metacode: 

D$$MR: 
Initialization; 
Call D$PR2 to process run ID; 
Call S$PARM to get second PARM; 
Call D$ESE to evaluate the PARM; 
Convert register number to byte displacement; 
Call D$HT to halt task being debugged; 
IF run ID is not O 

THEN Call D$BIR to build display; 
Call D$RTS to get value of workspace pointer register from TSB; 
Initialize workspace buffer; 
DO UNTIL (CMD key); 

DO UNTIL (past register 15) OR (error fetching memory); 
Call D$RTW to read a word in task memory space; 
IF error 

THEN IF line count is zero 
THEN Abort; 

Increment line count; 
Store value read; 
Call S$IASC to convert value to ASCII; 
Insert > into field; 
Call S$SCPY to store string in keyword buffer; 
Adjust pointers; 

END DO; 
Call S$FMT to format the screen; 
Initialize keyword pointer; 

2270513-9701 12-25 Debugging Tools 



SCI/Utilities Design 

LOOP: 
DO UNTIL (CMD key) OR (keyword returned= line count); 

PROM PT: 
Call S$GKEY to read terminal; 
IF error 

THEN Call D$PKE to process error; 
Clear error code; 
GO TO PROMPT; 

IF event character 
THEN IF CMD key 

LABEL 1: 

THEN Exit LOOP; 
IF EOL or TAB or SKIP 

THEN Process as a RETURN at LABEL1; 
ELSE Load error message address; 

GO TO PROMPT; 

ELSE Adjust pointers; 
IF parameter is non-null 

THEN Call D$PSE to process expression; 
IF error 

THEN Load error message address; 
GO TO PROMPT; 

Increment line count and memory address; 
Call D$WTW to update task memory; 
Update screen format buffer with new value; 

END LOOP; 
IF CMD key input 

THEN Call D$PRP to process panel; 
Call D$RST to restore the state of the task; 
END DO; 

12.2.9.11 Assign Breakpoint. 

SCI Command: AB 

MODULE: D$$AB 

CODE: >O 1 

PARMS: 

PARM 
Number 

1 

2-n 

De fin i ti on 

Run ID of task to be debugged 

Addresses at which breakpoints 
are to be assigned. 

Field Prompt Name 

RUN ID 

ADDRESS( ES) 

The entry point to the assign breakpoint command processor is 
DP$$AB in module D$$AB. The function of D$$AB is to make entries 

Debugging Tools 12-26 2270513-9701 



SCI/Utilities Design 

in local data structures and to alter the task address space to 
implement a breakpoint at each specified address. The logic of 
the processor is shown in the following metacode: 

D$$AB: 
Call D$PR1 to process the run ID; 
Call D$HT to halt the task; 
Call D$ABS to assign the breakpoint(s); 
D$ABS: 

DO UNTIL (End of parameter list, or irrecoverable error); 
Get the next element of the PARMS list; 
IF error from PARMS list 

THEN IF null parameter error 
THEN Return with no error or duplicate 

breakpoint error; 
ELSE Abort attempt to assign breakpoints; 

Return; 
ELSE Call D$AB to assign the breakpoint; 

IF error in assigning breakpoint 

END DO; 

THEN IF error = duplicate breakpoint at address 
THEN Save error and keep going; 

Call D$PRP to display the breakpoints assigned; 
Call D$RST to restore the state of the task; 

END D$ABS; 

The logic of routines D$AB and D$MEB is shown in the following 
metacode: 

D$AB: 
Extend the time slice; 
Call D$MEB to make entry in breakpoint table; 
D$MEB: 

Search the entire breakpoint table for duplicate entry; 
IF Duplicate entry found 

THEN Set error code for duplicate entry; 
Return; 

Search breakpoint table for available entry; 
IF Available entry found 

THEN Make the entry; 
Increment breakpoint count; 

ELSE Set error code for breakpoint table overflow; 
Return; 

Return; 
END D$MEB; 

2270513-9701 12-27 Debugging Tools 



SCI/Utilities Design 

12.2.9.12 Delete Breakpoint. 

SCI Command: DB 

MODULE: D$$DB 

CODE: >02 

PARMS: 

PARM 
Number De fin i ti on Field Prompt Name 

1 Run ID of the task RUN ID 

2 List of addresses of break
points to be deleted 

ADDRESS( ES) 

The entry point to the Delete Breakpoint command processor is 
D$$DB in module D$$DB. The function of D$$DB is to remove 
breakpoints at the specified addresses. The logic of D$$DB is 
shown in the following metacode: 

D$$DB: 
Call D$PR1 to process run ID; 
Call D$HT to halt the task; 
Initialize PARM counter; 
Call S$PARM to get first PARM; 
IF first PARM begins with AL 

THEN Call D$DAB to delete all breakpoints; 
ELSE IF first PARM is null 

THEN Call D$VTB to veriry that the task is 
at a breakpoint; 

Call D$RTS to get current PC; 
Call D$DB to delete breakpoint at current PC; 

ELSE DO UNTIL PARM is null; 
Evaluate PARM; 
Call D$DB to delete the breakpoint; 
Increment PARM counter; 
Call S$PARM to get next PARM; 

END DO; 
Call D$PRP to process the display panel; 
Call D$RST to restore the state of the task; 

This routine deletes breakpoints assigned with either AB or DPB. 
Deleting a breakpoint consists of the following steps: 

* Restoring the original contents in the task address 
space 

Debugging Tools 12-28 2270513-9701 



SCI/Utilities Design 

* Removing the information from the local breakpoint table 
data structure 

* Decrementing BRKPNT, the breakpoint counter 

12.2.9.13 Delete All Breakpoints •• 

SC I Command : DB 

MODULE: D$$DAB 

CODE: >1F 

PARMS: None 

The entry point to the Delete All Breakpoints command processor 
is D$$DAB in modtile D$$DAB. The function of D$$DAB is to delete 
all breakpoints from the breakpoint table, removing them from 
existing tasks. The logic of D$$DAB is shown in the following 
metacode: 

D$$DAB: 
DO FOREVER 

Call D$GBA to get breakpoint table address; 
Search table till find an active entry; 
If no entry found THEN exit D$$DAB; 
Get run ID from entry; 
Call D$HT to halt the task; 
If task is not extant THEN set a TNE flag; 

LOOP: DO FOREVER 
Call D$GBE to get an active breakpoint for the task; 
If none found THEN exit LOOP; 
Call D$DB to delete the breakpoint; 
If error on delete and (error is not task-not-extant 

task-not-extant or the TNE flag is not set) 
THEN exit LOOP; 

END DO; 
If TNE flag is not set THEN Call D$RST to restore 

task state; 
If LOOP exit due to error THEN exit D$$DAB; 

END DO; 

D$$DB will restore the contents of the breakpoint address if the 
task exists. In any case, it will delete the entry from the 
breakpoint table. 

2270513-9701 12-29 Debugging Tools 



SCI/Utilities Design 

12.2.9.14 Delete/Proceed from Breakpoint{s). 

SCI Command: DPB 

MODULE: D$$DP 

CODE: >03 

PARMS: 

PARM 
Number 

1 

De fini ti on 

Run ID of the task being 
debugged 

Field Prompt Name 

RUN ID 

2-n List of breakpoint addresses DESTINATION ADDRESS{ES) 
to be assigned 

The entry point to the Delete and Precede from Breakpoint command 
processor is D$$DP in module D$$DP. The function of D$$DP is to 
delete the breakpoint at the current PC, to assign the specified 
breakpoint{s), and to reactivate the controlled task if it is 
suspended. The logic of D$$DP is shown in the following 
metacode: 

D$$DP: 
Call D$PR1 to process the run ID; 
Call D$ABS to assign the specified breakpoint{s); 
Call D$VTB to verify that the task is at a breakpoint; 
Call D$RTS to get the current PC; 
Call D$DB to delete the breakpoint at the current PC; 
Call D$PRC to issue an Activate Suspended Task SVC; 
Call D$DMC to wait for the controlled task to reach 

a breakpoint, or for the user to enter a control key; 

D$DB calls D$EXT to extend the time slice. The time slice 
extension is necessary in DX10 because the breakpoint table is in 
the system address space. To preserve the integrity of the 
table, the alterations must not be interrupted. Extending the 
time slice is not required in DNOS because the breakpoint table 
is in the Debugger task segment. D$DB calls D$WTW to restore the 
original contents in the address space of the task being 
debugged. D$WTW cancels the extended time slice. 

In D$PRC, the call block of the Activate Suspended Task SVC is 
structured to clear the following flags in the TSB of the task: 

* Breakpoint 

Debugging Tools 12-30 2270513-9701 



SCI/Utilities Design 

* SVC trap 

* Suspend 

* Stopped 

If any of the called routines returns an error, D$$DP returns to 
the control routine with an error code. 

12.2.9.15 Proceed from Breakpoint. 

SC I Command : PB 

MODULE: D$$PB 

CODE: >13 

PARMS: 

PARM 
Number De fin i ti on Field Pr om pt Name 

1 Run ID of task being debugged RUN ID 

2-n Addresses of new breakpoint(s) DESTINATION ADDRESS(ES) 

The entry point for the Proceed from Breakpoint command processor 
is D$$PB in module D$$PB. The function of D$$PB is to create 
breakpoints at the specified addresses and to restart the 
specified task, executing the instruction which was at the 
current breakpoint. The logic of D$$PB is shown in the following 
metacode: 

D$$PB: 
Call D$PR1 to process the run ID; 
Load the overlay that contains D$PIR and D$PSP; 
IF error 

THEN Return with overlay SVC error message; 
Call D$ABS to assign breakpoint; 
IF error 

THEN Process error; 
Call D$POB to precede over the breakpoint; 
Load overlay that contains D$DMC; 
IF error 

THEN Return with overlay SVC error message; 
Call D$DMC (debug mode controller); 
IF error 

THEN Process error; 
Return; 

* 

* 

* Errors returned to D$$PB from D$ABS and D$DMC are 

2270513-9701 12-31 De bugging Tools 



SCI/Utilities Design 

processed according to the logic shown in the following 
metacode: 

IF read task error 
THEN IF task is in debug mode 

THEN Call D$RSE to reset local variables/tables that 
describe the controlled task; 

Return with error message indicating that the 
controlled task terminated in debug mode; 

ELSE Return with task terminated error message code; 
ENDIF; 

The function of routine D$POB is to simulate the instruction at 
the breakpoint and then proceed. The instruction is simulated so 
that if it is a branch or jump instruction, only the one 
instruction is executed. The logic of D$POB is shown in the 
following metacode: 

D$POB: 
Call D$VTB to verify that task is at breakpoint; 
Save current PC, WP, and Status to set up simulation 

environment; 
Set new PC, WP, and Status; 
Call D$DB to delete the breakpoint at current PC; 
Load overlay that contains D$STT; 
Call D$STT to simulate the instruction; 
Call D$AB to restore the breakpoint; 
Restore PC, WP and Status to restore environment; 
Call D$PRC to proceed; 
IF read task error 

THEN IF task is in debug mode 
THEN Call D$RSE to reset local variables/tables that 

describe the controlled task; 

ENDIF; 

Return with error message indicating that the 
controlled task terminated in the debug mode; 

ELSE Return with task terminated error message code; 

The function of D$STT is to simulate the controlled task to a 
breakpoint or for the specified number of instructions. The 
logic of D$STT is shown in the following metacode: 

Debugging Tools 12-32 2270513-9701 



SCI/Utilities Design 

D$STT: 
Initialize local variables to control simulation; 
LOOP: DO UNTIL (breakpoint event occurs); 

IF iteration count is zero 
THEN Set time-out trap code; 

Return; 
IF PC is out of range 

THEN Set time-out trap code; 
Return; 

Ensure even PC value; 
Store current context and instruction in registers; 
Call D$SINS to identify instruction; 
Call D$GAS to process from and to addresses; 
CASE (trap type); 

Memory access: Set memory access trap code; 
Illegal opcode: Set illegal opcode trap code; 
Privileged opcode: Set privileged opcode trap code; 
PC value: Call D$CKT to process set trap code; 
ST value: Call D$CKT to process set trap code; 

END CASE; 
Call D$SIM to simulate instruction; 
IF >EFF address traps set 

THEN GO TO TRAPAF; return with error; 
ELSE IF WP = >FFFF 

THEN Process as an X group instruction; 
Clear extended execute flag; 
Decrement iteration counter; 
Write new context to task TSB; 
Reset allow trap variable; 

END LOOP; 

D$CKT is a local subroutine (in module D$STT). It searches the 
simulated breakpoint table to see if the current event matches a 
breakpoint condition. In order to meet the criteria for a PC or 
ST breakpoint event, the breakpoint type must match and the PC 
must be within the breakpoint range of addresses. 

12.2.9.16 Activate Task. 

SCI Command: AT 

The Activate Task command is not processed by the Debugger. The 
command procedure issues an Activate Suspended Task SVC. 

1 2. 2. 9. 1 7 Ha 1 t Task • 

SC I Command : HT 

MODULE: D$$HT 

CODE: >7 

2270513-9701 12-33 Debugging Tools 



PARMS: 

PARM 
Number 

1 

SCI/Utilities Design 

Definition Field Prompt Name 

Run ID of task being debugged RUN ID 

The entry point for the halt task command processor is D$$HT in 
module D$$HT. The function of D$$HT is to update the appropriate 
Debugger variables, to issue a Halt Task SVC for the specified 
task, and to display the debug panel. 

In a way similar to the Activate Task command, the Halt Task 
command is not strictly associated with the Debugger. Any task 
in the user's job can be halted, regardless of whether or not it 
is the controlled task or whether or not there is debugging 
activity in process on any task. 

The Logic of D$$HT is shown in the following metacode: 

D$$HT: 
Call D$PR1 to process the run ID; 
IF error 

THEN Return; 
Call D$HT to halt the task; 
Call D$PRP to build the debug panel and write it 

to the terminal; 

12.2.9.18 Quit Debugger. 

SCI Command: QD 

MODULE: D$$QD 

CODE: >10 

PARMS: 

PARM 
Number De fin i ti on 

Whether to kill the task being 
debugged -- YES or NO 

Field Prompt Name 

KILL TASK ? 

The entry point for the Quit Debugger command processor is D$$QD 
in module D$$QD. The function of D$$QD is to reset all local 
variables with regard to the controlled task, and to dispose of 
the task, as requested. The logic of D$$QD is shown in the 
following metacode: 

De bugging Tools 12-34 2270513-9701 



SCI/Utilities Design 

D$$QD: 
IF the controlled task ID is zero 

THEN report an error; 
ELSE Reset last 1 FOR' value; clears simulation state information 

PC, WP, and status; 
Reset panel memory address to PC; 
Call D$DASB to delete all simulated breakpoints; 
Call D$DST to delete the symbol table; 
Reset the controlled flag in controlled task TSB; 
IF first PARM is YES 

THEN Issue Kill Task SVC on controlled task; 
IF error 

THEN Re port it; 
ENDIF; 

ENDIF; 
Reset DD$CTI, the controlled task ID; 

ENDIF; 

Routine D$DST issues a Release Memory SVC to release the memory 
that was acquired for the symbol table. After that is done, the 
symbol table pointer, SYMTBL, is cleared. 

12.2.9.19 Resume Task. 

SCI Command: RT 

MODULE: D$$RT 

CODE: >08 

PARMS: 

PARM 
Number De fin i ti on Field Prompt Name 

Run ID of task being debugged RUN ID 

The entry point for the Resume Task command processor is D$$RT in 
module D$$RT. The function of D$$RT is to reactivate a task that 
is suspended because it executed a breakpoint sequence. The 
logic of D$$RT is shown in the following metacode: 

D$$RT: 
Call D$PR1 to process the run ID; 
Call D$RTS to get state of task; 
IF task is suspended 

THEN Call D$PRC to proceed from suspension; 
Call D$DMC; 

ELSE Report an error; 
ENDIF; 

2270513-9701 12-35 Debugging Tools 



12.2.9.20 Execute in Debug Mode. 

SCI Command: XD 

MODULE: D$$DEB 

CODE: >OD 

PA RMS: 

PARM 
Number Definition 

1 Run ID of the task to be 
executed in debug mode 

SCI/Utilities Design 

Field Prompt Name 

RUN ID 

2 Pathname of symbol table file SYMBOL TABLE OBJECT FILE 

3 Machine code 990/12 OBJECT CODE? 

The XD command processor is routine D$$DEB, in module D$$DEB. 
The function of D$$DEB is to establish the environment for a 
controlled task -- that is, a task that executes in debug mode. 

The elements of the controlled task environment are as follows: 

* The controlled bit in the TSB 

* Last 'FOR', How many ST instructions were requested in 
1 a st ST c om man d 

* Current context (WP, PC, and ST) 

* 990/12 flag. Any value that starts with the character Y 
is interpreted to mean yes, and the flag is set. 

Routine D$BST 
This routine 
when the SYMT 
SYMTBL. The 
DNOS Assembly 

is called to initialize the task symbols table. 
reads the symbol table produced by the assembler 

option is specified, and builds the internal table 
object code format is discussed in detail in the 

Language Programmer's Guide. 

12.2.9.21 Execute and Halt Task. 

The Execute and Halt Task command (XHT) is not processed by the 
Debugger. The SCI command procedure uses the .SVC primitive to 
bid the task with a call block structured to cause the operating 
system to halt the task immediately. 

Debugging Tools 12-36 2270513-9701 



SCI/Utilities Design 

12.2.9.22 Find Byte. 

SC I Command : FB 

MODULE: D$ $FB 

CODE: >16 

PARMS: 

PARM 
Number De fin i ti on 

Run ID of task being debugged 

Field Prompt Name 

RUN ID 

2 List of integer values to find * VALUE(S) 

3 Starting memory address to STARTING ADDRESS 
search 

4 Ending memory address to ENDING ADDRESS 
search 

* The list of values must be enclosed in parentheses. The 
elements of the list are separated by commas. 

The entry point for the find byte command processor is D$$FB in 
module D$$FB. The function of D$$FB is to scan each byte of the 
specified task until a byte or group of bytes matching the input 
value(s) is found. If starting and ending addresses are not 
specified, the entire task is scanned. 

D$$FB calls D$BVT to read the list of values specified as the 
second element of the PARMS list, and builds a value table. 
D$BVT scans the list and converts each expression on the list to 
a 16-bit (Find Word) or 8-bit (Find Byte) value that is stored in 
the table. A maximum of 32 bytes of data can be stored in the 
value table against which the task is searched. 

The 1 i st 
list can be 
elements. 

of values must be in parentheses. 
an expression. Comma is the 

Each element in the 
delimiter between 

D$ESE is called to evaluate each item on the list. 

2270513-9701 12-37 Debugging Tools 



SCI/Utilities Design 

NOTE 

The logic in the command processors for Find 
Byte and Find Word makes the assumption that 
the two processors use the same workspace. 
They use unique labels in their transfer 
vectors (DW$$FB and DW$$FW, respectively), 
but those labels must identify the same 
workspace. 

12.2.9.23 Find Word. 

SCI Command: FW 

MODULE: D$$FW 

CODE: >17 

PARMS: 

PARM 
Number 

1 

2 

3 

4 

De fin i ti on 

Run ID of task being debugged 

List of HEX values to find * 
Starting memory address to 
search 

Ending memory address to 
search 

Field Prompt Name 

RUN ID 

VALUE(S) 

STARTING ADDRESS 

ENDING ADDRESS 

* The list of values must be enclosed in parentheses. The 
elements of the list are separated by commas. 

The entry point for the Find Word command processor is D$$FW in 
module D$$FW. The function of D$$FW is to scan each word of the 
specified task until a word or group of words matching the input 
value(s) is found. If starting and ending addresses are not 
specified, the entire task is scanned. 

The list of values must be in parentheses. Each element in the 
list can be an expression. Comma is the delimiter. 

Debugging Tools 12-38 2270513-9701 



S C I I U t i 1 i t i e s De s i g n 

NOTE 

The logic in the command processors for Find 
Byte and Find Word makes the assumption that 
the two processors use the same workspace. 
They use unique labels in their transfer 
vector s ( D W $ $ F B and DW $ $ F W , respect iv e 1 y) , 
but those labels must identify the same 
workspace. 

12.2.9.24 Assign Simulated Breakpoint. 

SCI Command: ASB 

MODULE: D$$ASB 

CODE: >OC 

PA RMS: 

PARM 
Number 

2 

3 

5 

De fin i ti on 

Event on which the breakpoint 
is to occur. The value must 
be one of the following: 

A (for memory alteration) 
C (for CRU address) 
P (for PC value) 
R (for memory reference) 
S (for status value) 
X (for XO P 15) * 

Minimum address for the 
breakpoint 

Maximum address for the 
breakpoint 

Memory address to be displayed 
when breakpoint is reached 

Number of times breakpoint is 
to be encountered 

Field Prompt Name 

ON (A,C,P,R,S,X) 

FROM 

THRU 

DISPLAY 

COUNT 

*Note that the X option is not allowed at the SCI command 
1 ev el. 

2210513-9701 12-39 Debugging Tools 



SCI/Utilities Design 

The entry point to the Assign Simulated Breakpoint command 
processor is DP$$ASB in module D$$ASB. The function of D$$ASB is 
to enter the specified information in the simulated breakpoint 
table (EVENTS). The logic of D$$ASB is shown in the following 
metacode: 

D$$ASB: 
IF no controlled task 

THEN Return; 
Find an unused entry in the breakpoint table; 
IF none found 

THEN Report error; 
Return; 

Determine breakpoint type; 
Make entries in the table entry; 
Generate a message to return breakpoint number to user; 
Call D$PRP to write the panel to display; 

12.2.9.25 Delete Simulated Breakpoint(s). 

SCI Command: DSB 

OVERLAY: D$$DSB 

CODE: >OE 

PARMS: 

PARM 
Number 

1-n 

Definition 

List of breakpoint numbers to 
be deleted 

Field Prompt Name 

BREAKPOINT NUMBERS 

The breakpoint numbers can be one of the following three types of 
input: 

* A list of breakpoint numbers 

* A character string that 
which is interpreted to be 
breakpoints 

begins with the letters AL -
a request to delete all 

* Null which is processed to mean the breakpoint at the 
current value of the PC 

The entry point for the delete simulated breakpoint command 
processor is D$$DSB in the module D$$DSB. The function of the 
processor is to remove one or more entries from the EVENTS table. 
The logic of D$$DSB is shown in the following metacode: 

Debugging Tools 12-40 2270513-9701 



SCI/Utilities Design 

D$$DSB: 
IF no controlled task 

THEN Report error; 
Return; 

LOOP: DO UNTIL (no more PARMS); 
Increment PARM counter; 
Call S$PARM to get next element on PARMS list; 
IF string is not null 

THEN IF string begins with AL 
THEN DO FOR (all breakpoint table entries); 

Clear entry; 

END DO; 

END DO; 
Exit LOOP; 

ELSE Validate that breakpoint number is in 
the proper range (0 through >FFFF); 
IF Breakpoint is within table 

THEN Make the entry null by clearing 
first word; 

ELSE Report the error and quit; 

Call D$PRP to display the debug panel; 

Since the task is simulated, not executed, the address space of 
the task is not altered when a breakpoint is assigned, and need 
not be restored when the breakpoint is deleted. 

12.2.9.26 List Simulated Breakpoints. 

SCI Command: LSB 

MODULE: D$$LSB 

CODE: >OF 

PARMS: None 

The entry point for the List Simulated Breakpoints command 
processor is D$$LSB in module D$$LSB. The function of D$$LSB is 
to format and write to the interactive terminal (TLF) a summary 
of the information in the simulated breakpoint table, EVENTS. 
The logic of D$$LSB is shown in the following metacode: 

2270513-9701 12-41 Debugging Tools 



SCI/Utilities Design 

D$$LSB: 
IF Controlled task ID = O 

THEN Report an error; 
Return; 

Call S$0PEN to open the TLF; 
Call S$WRIT to write the breakpoint table header; 
DO UNTIL (No more table entries); 

IF table entry is non-null 
THEN Format breakpoint number (convert binary to ASCII); 

Call S$WRIT to write breakpoint number; 

END DO; 

Format breakpoint type; 
Call S$WRIT to write breakpoint type; 
DO for all positions in entry; 

Format information; 
Call S$WRIT to write information; 

END DO; 

12.2.9.27 Resume Simulated Task. 

SCI Command: RST 

MODULE: D$$RS 

CODE: >11 

PARMS: None 

The.entry point for the resume simulated task command 
processor is D$$RS in module D$$RS. The function of D$$RS 
is to resume simulation of the controlled task after 
encountering a simulated breakpoint. The logic of D$$RS is 
shown in the following metacode: 

Debugging Tools 12-42 2270513-9701 



SCI/Utilities Design 

D$$RS: 
IF no controlled task 

THEN Report error and abort; 
IF current PC is not the same as the simulation PC 

THEN Update PC, WP, and ST; 
LABEL1: 

ELSE Initialize to execute one breakpoint; 
IF last suspend was user; default trap count 

THEN Set iteration count to one; 
ENDIF 
IF last suspend was breakpoint 

THEN Call D$DB to delete breakpoint; 
Call D$STT to simulate one instruction; 
Call D$AB to restore the breakpoint; 
Adjust iteration count; 
Inhibit breakpoints; go over trap 

Set the iteration count; 
Call D$SMC; 
IF continue simulatidn 

THEN GO TO LABEL1; 

D$SMC is the simulation mode controller for the RS and ST 
instructions. It simulates the controlled task to a breakpoint, 
formats and writes the breakpoint message to the screen, and 
accepts input from the terminal. D$SMC only processes the 
following event keys: 

* CMD - Return to the caller 

* Continue key - continue simulation request key 

12.2.9.28 Simulate Task. 

SCI Command: ST 

MODULE: D$$S 

CODE: >12 

PARMS: 

PARM 
Number 

1 

2 

3 

Definition Field Prompt Name 

Number of instruction simulations FOR 
to be performed 

Address of the first instruction FROM 
to be simulated 

Address of the last instruction 
to be simulated 

TO 

2270513-9701 12-43 Debugging Tools 



SCI/Utilities Design 

The entry point for the simulate task command processor is D$$S 
in module D$$S. The function of D$$S is to begin simulation of 
the controlled task. The logic of D$$S is shown in the following 
metacode: 

D$$S: 
IF controlled task ID is zero 

THEN Abort with NO DEBUG TASK error code; 
Call D$PSP to process the second PARM; 
IF PARM is null 

THEN Assume current PC; 
ELSE IF not same value as simulation PC 

* The task may have executed "RT" since the last simulation. 
This updates simulation PS, WP, and ST to match possible 
change. 

THEN Replace WP, ST and PC 
Call D$PSP to process the ending address PARM; 
IF ending address is null or zero 

THEN Use last good value (DD$LFR); 

* Last valid 1 FOR 1 count 

Call D$SMC to simulate task to next breakpoint; 
IF "continue simulation" 

* Key returned (F3 key) 

THEN Call D$$RS to resume simulation; 
ENDIF; 

12.2.9.29 Support Subroutines. 

The subroutines discussed in this paragraph are called by many of 
the command processors. The function and logic of each of the 
following routines is discussed. 

* D$PR1 and D$PR2 , two routines that process the run ID. 
They are designed with the assumption that they use the 
same workspace. They have unique labels used to declare 
the workspace, DW$PR1 and D$PR2, but they must be equal. 
The routines are functionally equivalent with the 
exception that D$PR2 tests for run ID value of S, which 
is changed to a run ID of zero. A run ID of zero means 
system memory instead of a task. 

* D$HT halts the specified task. 

* D$RST restores the status of a task. 

* D$DMC is the debug controller. It controls either the 
simulation of the controlled task, or ·activates a task 

Debugging Tools 12-44 2270513-9701 



SCI/Utilities Design 

that is not in debug mode. 

* D$ESE evaluates an expression that may contain symbols. 

* D$PRP examines the terminal mode and controls output of 
the debug panel. 

* D$PSP writes the debug panel to 
terminal. 

the interactive 

* D$POP builds and writes the debug panel to a VDT 
terminal. 

* D$WL writes a line to the terminal. 

The calling sequences for the subroutines are documented in the 
prologues of the code. 

D$PR1 and D$PR2. 

The function of D$PR1 and D$PR2 is to validate the run ID passed 
in the PARMS list. Both routines return an error code if the run 
ID is one of the following: 

* Run ID = 0 

* Run ID i s for the Debug g er i ts e 1 f 

* Privilege level of the user is less than 2 and the run 
ID is for a system task. 

D$PR2 contains one further test on run ID. If the run ID is the 
letter S, D$PR2 returns a value of 0 t-0 the caller. 

The entry point for D$PR1 is D$PR1 in module D$PR1. 
point for D$PR2 is D$PR2 in module D$PR1. 

The entry 

D$HT. 

The function of subroutine D$HT is to halt the specified task. 

If the Run I D i s 
following states are 

zero, the task is not halted. 
not halted : 

Tasks in the 

* Waiting on diagnostic services 

* Suspended for queue input. The only tasks 
be in state >24 are the nucleus function 
system tasks. This exception is made to 
integrity of the operating system. 

that should 
queue server 
protect the 

D$HT has two entry points -- D$HT and D2$HT. The second entry 
point skips validation of the run ID and calling D$RTS to get the 

2270513-9701 12-45 Debugging Tools 



SCI/Utilities Design 

task state. 
metacode: 

The logic of D$HT is shown in the following 

D$HT: 
IF Run ID = 0 

THEN Take error exit; 
Call D$RTS to get task state; 
D2$HT: 
Save original task state; 
Eliminate the following cases from further processing; 

WAITING ON DIAGNOSTIC SERVICES 
SUSPENDED FOR QUEUE INPUT 

Call D$RST to get FLAG2 word from TSB; 
Save old FLAG2; 
Issue SVC to suspend task; 
OUTER LOOP: Set loop counter to MAX; 

INNER LOOP: Time delay 1/2 second; 
Get task state; 
IF state = suspended 

THEN Return; 
Decrement loop counter; 
IF loop count is zero 

THEN Exit INNER LOOP; 
END INNER LOOP; 

IF the task state is not suspended 
THEN Ask user whether to keep trying; 

IF answer = YES 
THEN GO TO OUTER LOOP; 
ELSE 

Call D$RST to get task state 
Ask user if he wishes to execute command 

without suspending the task; 
IF answer = YES 

ELSE Return; 
END OUTER LOOP; 

THEN Return; 
ELSE 

Ask user whether to leave 
suspend pending; 

IF answer = YES 
THEN Set error code; 

Return; 
ELSE 

Is sue Ac ti v ate 
Task SVC; 
Set error code; 
Return; 

The value of MAX is 10 (approximately 5 seconds delay) in the 
current release. D$HT calls S$PKEY to handle I/0 to the terminal 
when there is a need to communicate with the user. 

Debugging Tools 12-46 2270513-9701 



SCI/Utilities Design 

D$RST. 

The entry point is D$RST in module D$RST. The function of 
is to restore the previous state of the specified task. 
logic is as follows: 

D$RST: 
IF run ID = 0 

THEN Return; 
IF original state of task was suspended 

THEN Restore original TSB flag words; 
Return; 

IF original state of task was terminated memory resident 
THEN Call D$RTS to get current TSB; 

IF current state is terminated memory resident 
THEN Restore original TSB flag words; 
ELSE Re turn ; 

ELSE Call D$PRC to restore TSB and activate task; 
Return; 

ENDIF; 

D$DMC. 

D$RST 
The 

The entry point is D$DMC in module D$DMC. The ·function of D$DMC 
is to supervise the execution and simulation of the controlled 
task until it is in the unconditional suspend state, or until the 
user enters an event key. The logic of D$DMC is shown in the 
following metacode: 

2270513-9701 12-47 De bugging Tools 



SCI/Utilities Design 

D$DMC: 
IF run ID is not the controlled task 

THEN Take error exit; 
Call D$WFT to wait for task suspension; 

D$WFT:DO UNTIL (task suspends) OR (event key); 
Call D$RTS to get task state; 
IF task state is suspended 

THEN IF halted by XOP 15, 15; bit set in TSB flag word 
THEN Save the original TSB flag word 

in DD$0F2; 
Return; 

Issue Get Event Character SVC; 
IF event character input; 

THEN Halt the task; 
Put event character in caller's workspace; 
Return; 

Issue Time Delay SVC; 
END DO; 

END D$WFT; 

Call D$PIR to display data; 

Regardless of which event occurs (task suspends or user enters an 
event key), the task is suspended when control returns from D$WFT 
to the calling routine. 

D$PIR builds the display and writes it to the listing file. What 
is displayed depends on the mode in which the Debugger is 
operating, as follows: 

* 
* 

D$ESE. 

TTY - Display internal registers only 

VDT When there is a controlled task, display the 
section of memory previously specified. If there is no 
section specified, D$PIR builds a display of memory 
beginning at the current PC. 

D$ESE evaluates symbolic expressions. The operators +, -, * and 
/ are allowed. Operands may be of the following types: 

* Expressions consisting of constants and/or symbols. 

* Indexed address of the form: .Name(displacement) 

* Indirect address of the form: <address> 

where: 

name, address, and displacement may be symbolic 
expressions. 

Debugging Tools 12-48 2270513-9701 



SCI/Utilities Design 

Name is of the following form: 

PHASE.IDT.SYMBOL 

The following short forms are recognized: 

* PHASE.IDT 

* .IDT 

* .IDT.SYMBOL 

* .. SYMBOL 

where IDT is the module identifier name 

When PHASE is not specified, the previously specified PHASE is 
used. If no PHASE has been specified, 0 is the default. When 
IDT is not specified, the previously specified IDT is used. 

The logic of D$ESE is shown in the following metacode: 

D$ESE: 
IF first character is a period 

THEN Move past first character 
IF next character is a period 

THEN Process symbolic form •• NAME; 
(Using default PHASE and IDT) 

ELSE Process symbolic form .IDT.NAME; 
(Using default PHASE) 

ELSE Process symbolic form PHASE.IDY.NAME; 

D$PRP. 

The entry point for the D$PRP command processor is D$PRP in 
module D$PRP. The function of D$PRP is high-level control of 
processing the debug panel. The logic of D$PRP is shown in the 
following metacode: 

D$PRP: 
Call S$STAT to get terminal status; 
IF TTY terminal or batch mode 

THEN Take error exit; 
Call D$POP to put out the panel; 

The format of the debug panel is documented in the DNOS System 
Command Interpreter (SCI) Reference Manual, with the Show Panel 
(SP) command. 

D$PSP. 

The function of D$PSP is to process a symbolic expression that is 
an element of the PARMS list. 

2270513-9701 12-49 Debugging Tools 



SCI/Utilities Design 

The logic of D$PSP is shown in the following metacode: 

D$PSP: 
Call S$PARM to get the next element of the PARMS list; 
IF null parameter 

THEN Set error code; 
ELSE Call D$ESE to evaluate the expression and store 

it in the current workspace; 
ENDIF; 

D$POP. 

The entry point for D$POP is D$POP in module D$POP. The function 
of D$POP is to display the debug panel on a VDT terminal. The 
logic of D$POP is shown in the following metacode: 

D$POP: 
Call D$CSR to clear screen; 
Format internal register line; 
Call D$WL to write workspace registers heading; 
Call D$RTS to get workspace pointer; 
Call D$DM to display memory; 
Call D$WL to write breakpoints heading; 
Call D$BBL to build breakpoints line; 
Call D$WL to wr~te breakpoints line; 
Alter S$$MNU to preserve panel display; 
Call D$WL to write memory heading; 
IF memory display address is >FFFF 

THEN Replace address with current PC; 
Calculate number of bytes that can be displayed on 
remaining lines of screen; 

Call D$DM to display memory; 

D$WL. 

* 

The entry point is D$WL in module D$WL. The function of D$WL is 
to write a formatted line to the terminal. The logic is shown in 
the following metacode: 

D$WL: 
IF TTY 

THEN Call S$WIT to write carriage control; 
Adjust line number to row number {O origin); 
Call S$WIT to write the text; 

12.2.9.30 Pascal Debugging Commands. 

The following SCI commands are used in debugging Pascal tasks. 
They are not documented in detail in this document 

* Assign Breakpoint {Pascal) 

* Delete Breakpoint {Pascal) 

Debugging Tools 12-50 2270513-9701 



SCI/Utilities Design 

* Delete/Proceed from Breakpoint(s) (Pascal) 

* List Breakpoints (Pascal) 

* List Pascal Stack 

* Proceed from Breakpoint (Pascal) 

* Show Pascal Stack 

12.2.10 Modifying the Debugger. 

Since the driver is table driven, to add a new function, add an 
overlay to the overlay table and an entry point to the command 
processor address table. 

12.2.10.1 Changing the code. 

The logic in the command processors for Find Byte and Find Word 
makes the assumption that the two processors use the same 
workspace. They use unique labels in their transfer vectors 
(DW$$FB and DW$$FW, respectively), but those labels must point to 
the same workspace. 

12.2.10.2 Maintenance. 

The logic of D$0V1 is built on the assumption that the List 
Memory command has a zero value. 

The Debugger is not necessarily compatible with SCI when 
interfacing with the user. The number of event characters 
processed is limited, and the only function is that of inputting 
data. 

12.2.11 Internationalization. 

All messages displayed to the user are defined in module D$MSG. 
Translating the text of these messages makes the Debugger speak a 
language other than English. 

12. 3 

LLR 
or 
The 
the 

LLR 

is an assembly language program that formats and writes one 
more logical records of a file to a specified listing file. 
code that is unique to LLR is a single module named LLR, in 
source directory. 

2270513-9701 12-51 Debugging Tools 



SCI/Utilities Design 

12.3.1 Structure of the task. 

LLR is a replicatable task segment that contains the unique LLR 
code, the 0$ library of I/0 routines, and modules from the UTCOMN 
library. 

The 0$ routines are documented in the section of this manual 
entitled File Maintenance Utilities. This collection of routines 
does some I/0 processing and interfaces with S$SYSTEM I/0 
routines in the shared procedure segment. 

The UTCOMN routines are documented in the section of this manual 
entitled Conventions and Libraries. 

LLR requires access to routines in the S$SYSTEM shared procedure 
segment. 

12.3.2 Coding Conventions. 

DNOS coding conventions are not followed in LLR. Data structure 
names are descriptive. Address labels within the code are 
generally two alphabetic characters followed by two numeric 
characters. 

12.3.3 Flow of control. 

LLR is bid by SCI during processing of the LLR command. LLR 
writes the requested records to the specified file and terminates 
by calling either STOPS or FINISH, common exit routines in the 
UTEXIT module of the UTCOMN library. 

12.3.3.1 Invoking LLR. 

When SCI bids the LLR task, no CODE value is passed to the task. 
The following information is passed in the PARMS list on the bid 
statement: 

De bugging Tools 12-52 2270513-9701 



SCI/Utilities Design 

PARM 
Number 

1* 

2 

3 

4 

5 

6 

1 

Definition 

1* 

Pathname of the file to be 
listed 

First record to be listed 

Number of records to list 

Output file for listing 

Logical record size 

Open rewind? 

Field Prompt Name 

None 

PATHNAME 

STARTING RECORD 

NUMBER OF RECORDS 

LISTING ACCESS NAME 

None 

None 

* The first element in the PARMS list is not currently 
used. It is defined for historical reasons only. 

NOTE 

Refer to the DNOS System Command Interpreter 
(SCI) Reference Manual for further 
information on the field prompts. 

The command procedure LLR in the current release of DNOS does not 
specify the Open rewind? PARMS. A default of YES is used in all 
cases. 

12.3.3.2 Initialization. 

Initialization for LLR is done at the beginning of the module, as 
well as through DATA statements at the end of the module. 

12.3.3.3 Subroutine Linkage. 

LLR uses the UTCOMN routines UTPUSH and UTPOP to stack and 
unstack subroutine calls. 

12.3.3.4 Error Processing. 

LLR calls the UTCOMN routine STOPS to process nonrecoverable 
errors. The nonrecoverable errors are as follows: 

* Error from incorrect elements in the PARMS list 

2270513-9701 12-53 Debugging Tools 



SCI/Utilities Design 

* Error from S$ISUB when calculating the number of records 
to space forward in input file 

* Error from GTNXT (get ~ext record number) 

* Error from S$ISUB when calculating the number of records 
to list 

* Error from SVC to process the input and output files. 

12.3.3.5 Termination. 

When all records are written to the listing file, LLR calls the 
UTCOMN routine FINISH to terminate. When an nonrec-0verable error 
occurs, LLR terminates by calling the UTCOMN routine STOPS. 

12.3.4 Data Structures and Files. 

The following data structures for LLR are defined at the end of 
the source code module: 

* SVC call blocks and opcodes 

* Buffers for input parameters 

* Constants and temporary buffers for 32-bit arithmetic 

* SYSDAT, the call block to access the NFDATA common 
segment for the country code. 

* Country code constants 

* 8-bit ASCII flag bytes 

* Text strings for the headings to be written to the 
output file. Equates are used at the end of each text 
string so that a label is defined. The names of the 
data structures and their English contents are as 
follows: 

Name Contents 

RECMSG RECORD: 

TTLMSG FILE ACCESS NAME: 

SAMBUF SAME 

LLR has no files that are specifically its own. The input 
specified in the PARMS list is opened for read access only. 

file 
LLR 

De bugging Tools 12-54 2270513-9701 



SCI/Utilities Design 

optionally rewinds the output file, depending on the seventh 
element of the PARMS list, then writes the listing to it. 

1 2 • 3 • 5 De ta i 1 e d De s i g n • 

The logic of LLR is shown in the following metacode: 

Call 0$INIT to initialize the 0$ routines environment; 
Call 0$PARM to get first element of PARMS list; 
IF pathname is null 

THEN Direct output to the TLF; 
Call 0$SOUT to initialize for output; 
Call 0$PARM to get second element of PARMS list; 
IF beginning line number is not specified 

THEN Substitute -1 to show none specified; 
Call 0$PARM to get third element of PARMS list; 
IF ending line number is not specified 

THEN Substitute -1 to show none specified; 
Calculate number of records; 
IF logical record length is not specified 

THEN Use 512; 
IF rewind parameter is not specified 

THEN Set the flag to indicate YES; 
Issue Assign LUNO SVC for input file; 
Get Country Code fr om NF DAT A ; 
IF Japanese or Arabic 

THEN Set proper bits for use of 8-bit character codes; 
Issue Open File SVC for input file; 
Issue Get Memory SVC for logical record length; 
Position input file to specified beginning record; 
DO UNTIL (EOF) OR (Last record requested); 

Read a record; 
Write header line; 
Write record number; 
Format EOL and EOR cases (blank fill short buffer); 
Call 0$LINE to print the record; 

END DO; 
Terminate; 

When positioning the input file to the beginnini record, if the 
record number is greater than 65,536 (16-bits), the SVC must be 
issued twice because the call block has a one-word data field. 

12.3.6 Internationalization. 

All labels and headings displayed to the user are in the data 
structure declarations at' the end of module LLR. 

2270513-9701 12-55 Debugging Tools 



SCI/Utilities Design 

12.4 MRFSRF 

MRFSRF modifies or shows the contents at a specified offset in a 
record of a file. MRFSRF is written in assembly language. The 
code unique to MRFSRF is in a single module named MRFSRF in the 
source directory for MRF. 

12.4.1 Structure of the task. 

MRFSRF is a replicatable, software-privileged task. It must be 
software-privileged in order to issue the SVC to open the file 
unblocked. The MRFSRF task segment contains the unique MRF code, 
the 0$ library of I/0 routines, and modules from the UTCOMN 
library. The 0$ routines are documented in the section of this 
manual entitled File Maintenance Utilities. This collection of 
routines does some I/0 processing and interfaces with S$SYSTEM 
I/0 routines in the shared procedure segment. 

The UTCOMN routines are documented in the section of this manual 
entitled Conventions and Libraries. 

MRFSRF requires access to routines in the S$SYSTEM shared 
procedure segment. 

12.4.2 Coding Conventions. 

DNOS coding conventions are not followed in MRFSRF. Data 
structure names are descriptive. Address labels within the code 
are, generally, two alphabetic characters followed by two or more 
numeric characters •. 

In the declarations, variables that will be known at run time are 
initialized to zero with the following DATA statement: 

label DATA $-$ 

12.4.3 Flow of Control. 

MRFSRF is bid by SCI. The task processes the request, writes the 
appropriate display, and then terminates. 

12.4.3.1 Invoking MRFSRF. 

MRFSRF is bid by SCI during processing of the Modify Relative to 
File (MRF) command procedure and the Show Relative to File (SRF) 
command procedure. No CODE value is passed. The PARMS list is 
as follows: 

Debugging Tools 12-56 2270513-9701 



SCI/Utilities Design 

PARM 
Number 

2 

3 

4 

Definition 

Request code 
>42: Modify 
>41: Show 

Input file pathname 

Record number 

Offset to first word 

Field Prompt Name 

None 

PATHNAME 

RECORD NUMBER 

FIRST WORD 

The remaining elements are not the same for the two commands. 

5 

6 

7 

8 

5 

6 

MRF PARMS List 

List of replacement values 

List of verification values 

File to which processing 
messages are written 

Checksum value 

SRF PARMS List 

Address of last word to be 
shown 

File to which processing 
messages are written 

NOTE 

DATA 

VERIFICATION DATA 

OUTPUT ACCESS NAME 

CHECKSUM 

None 

OUTPUT ACCESS NAME 

Refer to the DNOS System Command Interpreter 
(SCI) Reference Manual for further 
information on the field prompts. 

12.4.3.2 Initialization. 

Initialization for I/O is done in the 0$ routine 0$INIT. 

12.4.3.3 Major Loop/Routines. 

The first part of the code in module MFRSRF is 
the modify and show operations. Following 

2270513-9701 12-57 

common for both 
the common code, 

Debugging Tools 



SCI/Utilities Design 

control is transferred to either the SHOW processor or to the 
MODIFY processor. 

12.4.3.4 Error Processing. 

MRFSRF calls the UTCOMN routine STOPS to process nonrecoverable 
errors. The nonrecoverable errors are as follows: 

* Unable to assign LUNO to input file 

* Attempt to modify data beginnin~ at an address that is 
not even 

* Error in attempting to read a record from the file 

* Error from S$ISUB or S$IADD when calculating a record 
number 

12.4.3.5 Termination. 

MRFSRF terminates by calling UTCOMN routine FINISH when there is 
no error to report, or by calling UTCOMN routine STOPS when there 
is an error to report. 

12.4.4 Subroutine Linkage. 

The UTCOMN routines in modules UTPUSH and UTPOP are called to 
stack and unstack branch and link/return subroutine calls. STACK 
is the local data structure used for register storage and 
retrieval. 

12.4.5 Data Structures and Files. 

Data structures are specified at the end of the module MRFSRF. 
The structures can be grouped into the following categories: 

* 
* 

* 
* 

* 

* 

A single sixteen-register workspace (WSP). 

Buffers for input parameters. This includes a 100 byte 
buffer for manipulation of parameters that are lists. 

Text strings for all headings written to the output file 

SVC call blocks, including the call block to retrieve 
the country code from NFDATA. 

Constants and temporary buffers for 32-bit arithmetic. 
MRFSRF is designed to process files with record numbers 
as large as 32 bits. 

Constants related to manipulation of country code and 8-

Debugging Tools 12-58 2270513-9701 



SCI/Utilities Design 

bit ASCII requirements 

MRFSRF uses two files, the input file and the listing file. The 
input file is is opened by issuing an SVC with the specification 
that the open be unblocked so that any type file can be treated 
as a relative record file. For the SRF command, read only access 
is requested. For the MRF command, exclusive write access is 
required. 

If no listing file is specified, all output is written to the 
TLF. 

12.4.6 Detailed Design. 

MRFSRF is divided into the following three parts: 

* Common code that performs common processing for the show 
and modify commands 

* Code that is specifically show functions 

* Code that is specifically modify functions 

The logic of MRFSRF is shown in the following metacode: 

Obtain common parameters: 
Parameter type, pathname, record· number, first word; 

Assign task-local LUNO to input file; 
Open input file as a relative record file; 
Calculate the record needed; 
Issue a Get Memory SVC to obtain space for the record; 
Get and test country code for 8-bit ASCII; 
Read the record into the buffer; 
IF parameter type is modify 

THEN Verify input data, if requested; 
Load new data into buffer; 
Write buffer back to disk; 
IF not all of data 

THEN Load the rest; 
Write record back to disk; 

ELSE Initialize output file; 
Write header line; 
Write address; 
Write eight words and corresponding ASCII; 
Delete duplicate lines; 

END; 

12.4.7 Internationalization. 

All text strings written to the output file are defined in the 
data structures section at the end of the code module. The names 

2270513-9701 12-59 Debugging Tools 



SCI/Utilities Design 

of the data structures and their contents (in English) are as 
follows: 

Name Contents 
--------

VE RH DR VERIFICATION DATA 

ORGHDR CURRENT DATA 

NEWHDR NEW DATA CHECKSUM= 

RECMSG RECORD: 

TTLMSG FILE: 

SAMBUF SAME 

HDRCHK CHECKSUM: 

CUMHDR CUMULATIVE CHECKSUM: 

12.5 MPISPI 

MPISPI modifies or shows the contents of a program image in a 
specified file. The program image may be a procedure segment, a 
task segment or an overlay segment. When a program file is 
modified, the relocation bit map may be optionally updated. 
MPISPI is written in assembly language. The code unique to 
MPISPI is in a single module named MPISPI in the source directory 
MPI. 

12.5.1 Structure of the task. 

MPISPI is a replicatable, software-privileged task. It must be 
privileged to write to a program file. The MPISPI task contains 
the transfer vector, the unique MPI code, the 0$ library of I/O 
routines, and modules from the UTCOMN library. 

The 0$ routines are documented in the section of this manual 
entitled File Maintenance Utilities. This collection of routines 
does some pre-processing and interfaces with S$SYSTEM I/0 
routines in the shared procedure segment. 

The UTCOMN routines are documented in the section of this manual 
entitled Conventions and Libraries. 

MPISPI requires access to routines in the S$SYSTEM shared 
procedure segment. 

Debugging Tools 12-60 2270513-9701 



SCI/Utilities Design 

12.5.2 Coding Conventions. 

not followed in MPISPI. DNOS coding conventions are 
structure names are descriptive. 
are, generally, two alphabetic 
numeric characters. 

Data 
code 
four 

Address labels within the 
characters followed by 

The entry point for each subroutine is two alphabetic characters 
followed by four zeros. 

12.5.3 Flow of Control. 

MPISPI is bid by SCI. The task processes the request, writes the 
results to the listing file, and then terminates. MPISPI does 
not interface with the interactive terminal. 

12.5.3.1 Invoking MPISPI. 

MPISPI is bid by SCI during processing of the Modify Program 
Image (MPI) command procedure and the Show Program Image (SPI) 
command procedure. No CODE value is passed. The PARMS list is 
as follows: 

2270513-9701 12-61 Debugging Tools 



PARM 
Number 

2 

3 

Definition 

Request code 
>43: Modify 
>44: Show 

Program file pathname 

Pathname of listing file 

SCI/Utilities Design 

Field Prompt Name 

None 

PROGRAM FILE 

OUTPUT ACCESS NAME 

4 Segment type (only two characters MODULE TYPE 

5 

6 

are examined by the program) 
TA: Task 
PR: Procedure 
OV: Overlay 
SE: Segment 

Segment identification 

Hexadecimal address 

MODULE NAME OR ID 

ADDRESS 

The remaining elements are not the same for the two commands. 

7 

8 

9 

1 0 

7 

MPI PARMS List 

List of verification values 

List of replacement values 

Checksum value 

Whether or not to update 
the relocation bit map 

SPI PARMS List 

Number of bytes of data to show 

NOTE 

VERIFICATION DATA 

DATA 

CHECKSUM 

RELOCATION OF DATA? 

LENGTH 

Refer to the DNOS System Command Interpreter 
(SCI) Reference Manual for further 
information on the field prompts. 

Debugging Tools 12-62 2270513-9701 



SCI/Utilities Design 

12.5.3;2 Initialization. 

Initialization for I/0 is done in the 0$ routine 0$INIT. MPISPI 
local variables are initialized at the beginning of the module, 
and through the use of DATA statements where the variables are 
declared. 

12.5.3.3 Major Loop/Routines. 

The first part of the code in module MPISPI is common for both 
the modify and show operations. Following the common code, 
control is transferred to the appropriate processor. 

12.5.3.4 Error Processing. 

MPISPI calls the UTCOMN routine UTSERR to report an SVC error and 
then return to SCI. MPISPI does not invoke the return code 
processor for an SVC error. 

The UTCOMN routine UTUERR is called to report an other error, and 
then return to SCI. MPISPI makes no attempt to recover from the 
following errors: 

* Error in attempting to access the communication area 
(TCA) 

* Error in opening or closing the program file 

* Error in accessing the specified segment in the program 
file 

* 

* 
* 
* 

* 

Error in processing PARMS list 

Error in attempting to read or write to the program file 

Error in displaying the program image 

Error in processing the verification data. There is one 
case in which the mismatch of verification data and the 
program file is not considered an error -- when the 
replacement data matches the data in the program file. 

SVC error 

MPISPI never returns any variable text. 

12.5.4 Termination. 

MPISPI terminates by calling UTCOMN routine UTSERR when there is 
an SVC error to report. Otherwise, MPISPI calls UTUERR with a 
condition code to reflect whether or not an error is to be 

2270513-9701 12-63 Debugging Tools 



SCI/Utilities Design 

reported. 

12.5.5 Subroutine Linkage. 

The UTCOMN routines in modules UTPUSH and UTPOP are called to 
stack and unstack branch and link subroutine calls. 

12.5.6 Data Structures and Files. 

MPISPI is designed to process files with record numbers as large 
as 32 bits. The current record number is kept in a two-word data 
structure. The two halves are at labels RCORD1 (high order bits) 
and RCORD2 (low order bits). 

The following variables contain information about the segment 
currently being processed: 

* RECLEN - the record length of the program file 

* BASE - load address of the segment 

* SRCRD - starting record number for the segment 

* MODLEN - length of the segment, in bytes 

RECBUF is a 512-byte buffer for program file records. This size 
accommodates two file overhead records. 

Control flags: 

* OPEN 
opened 

whether or not the program file is successfully 

* RMOD - whether or not the current record has been 
successfully modified 

The following variables are MPISPI local: 

* SVCERR - SVC error call block address 

* S$ERR - Termination status 

* CADDRS - Current word address 

* CLEN Offset from the beginning address displayed and 
CADDRS. 

* DATA a three-byte structure for storing the 
ASCII/JISCII representation (or a period, if the number 
is not a displayable character) of the contents of a 
word of memory, followed by a space. 

Debugging Tools 12-64 2270513-9701 



SCI/Utilities Design 

The DX10 terminology PRB is used to identify IRBs. The following 
data structures are defined: 

* SYSDAT Call block for accessing the NFDATA variable 
country code 

* PRB - I/O call block 

WD3158 is a one-word constant with the hexadecimal value >3158. 
>31 is the Map Name to ID SVC opcode and >58 is the error code 
for a module that does not exist. After the SVC is issued, 
WD3158 is used as the comparison value to test the call block to 
determine whether or not the SVC was successful. 

NIDFLG is a 
directory. 

table of starting record numbers for the program file 
It reflects a fixed organization of the program file. 

The following constants are defined to describe the program file 
segment: 

* DIRLEN - Length (in bytes) of the segment 

* DIRFLG - Flags that indicate whether or not the segment 
is in use 

* 
* 

DIRREC - Record number at which the segment begins 

DIRLOD - load address of the segment 

NOTE 

Program files are always in relative record 
file format. Refer to the DNOS System 
Design Document for further information on 
organization of relative record files. They 
are discussed in the section entitled Disk 
Structures and File I/O. 

12.5.7 Detailed Design. 

The logic of MPISPI is shown ln the following metacode: 

2270513-9701 12-65 Debugging Tools 



SCI/Utilities Design 

Initialize subroutine linkage stack; 
Call 0$INIT to initialize 0$ routine environment; 
Initialize internal control variables; 
Get country code; 
Set 8-bit ASCII and display flags; 
Call PROOOO to process PARMS list and open files; 
Call LMOOOO to locate the module in the program file; 
IF request code is MODIFY 

THEN Call VROOOO to check the verification data; 
Call MDOOOO to modify the program image; 

Call DSOOOO to display the program image; 
IF request code is SHOW 

THEN Construct CHECKSUM header line; 
Write out the line; 

Close the listing file; 
IF program file was not opened 

THEN IF last record was not modified 
THEN Write out last record; 

Close program file; 
IF SVC error occurred 

THEN Set condition code indicator for SVC error; 
Call UTSERR; 

ELSE Set condition code indicator for utility results; 
Call UTUERR; 

END; 

The local subroutines prologues contain details of each 
subroutine. The subroutine entry points and their major 
functions are as follows: 

PROOOO 

LMOOOO 

VROOOO 

Fetches and processes the PARMS list. The 
processing includes translating the first two 
characters of the the segment type in the PARMS 
list to an integer as follows: 

TA: 2 

ov: 

Other: O 

If the number of bytes to display is not specified 
with the show request code, the default of >10 is 
used. 

Locates the directory entry for the specified 
segment and saves the base address (load point), 
the record number in which the segment begins, and 
the length of the segment. 

Processes the verify data for a modify command. It 
returns one of the three following results: 

Debugging Tools 12-66 2270513-9701 



SCI/Utilities Design 

MDOOOO 

DSOOOO 

LNOOOO 

NIOOOO 

GTOOOO 

STOOOO 

RROOOO 

WTOOOO 

The verification data matches the contents of 
the program file. No error code is set, and 
processing in MPISPI continues. 

The verification data does not match the 
contents of the program file, but the 
replacement data matches the contents of the 
program file. In this case, an error code 
that results in an informative message is 
returned, and processing in MPISPI continues. 

The verification data does not match the 
contents of the program file, and neither 
does the replacement data. This is an error 
that requires MPISPI to abort processing of 
the modify request. 

Modifies the program file, and if 
updates the relocation bit map. 

NOTE 

requested, 

Refer to the DNOS System Design Document for 
additional information on relocation bit 
maps. The primary reason the capability is 
included in the design of MPISPI is for the 
support of other operating systems that 
relocate overlays at run time. 

Formats and displays data. The data is displayed 
in both ASCII and hexadecimal. 

Formats and writes one line of the display. 

Issues the appropriate SVCs to maps the name of the 
segment to an ID in the program file. 

Gets a word from either the verification data 
buffer or the program file record buffer. 

An alternate entry point to GTOOOO, which writes 
data rather than reading it. 

Reads a record from the program file. If the 
record currently in the buffer has been modified, 
it is written to the program file 

Writes the current record to the program file. 

2270513-9701 12-67 Debugging Tools 



SCI/Utilities Design 

12.5.8 Internationalization. 

All text strings written to the output file are defined in the 
data structures section at the end of the code module. The names 
of the data structures and their contents (in English) are as 
follows: 

Name Contents 

HDRVRD VERIFICATION DATA 

HDRIMD CURRENT IMAGE 

HDRNIM NEW IMAGE: CHECKSUM = 

HDRCHK CHECKSUM = 

SAME SAME 

The following fixed character strings are used in PROOOO to 
translate segment type to integer: 

* TA 

* ov 

* PR 

* SE 

Debugging Tools 12-68 2270513-9701 



SCI/Utilities Design 

SECTION 13 

VOLUME UTILITIES 

13.1 INTRODUCTION 

Th•is section includes details on several of the utilities that 
handle disk volumes. The Copy Volume (CV) and Backup Directory 
to Device (BDD) processors share a common user interface. That 
interface is d.escribed here, along with the design of CV and BDD. 
These utilities can be used for either DNOS or DX10 disks. 
Therefore, some file names mentioned here are relevant to DX10 
and others to DNOS. 

This section also includes a description of the algorithm used to 
analyze a disk surface. This algorithm is part of the Initialize 
Disk Surface (IDS) command and part of the tape build process. 

13.2 CVINIT -- PREPROCESSOR TASK FOR CV AND BDD 

CVINIT provides the interface between the user and the Copy 
Volume (CV) and Backup Directory to Device (BDD) utilities. It 
is bid from either the CV or BDD command procedures. CVINIT 
performs the same functions for CV as it does for BDD except 
where noted. CVINIT accepts and validates input from the user, 
saves this data in a file on the system disk, assigns LUNOs, 
opens appropriate devices, and quiets the system if the system 
disk drive is to be used. CV, BDD, and CVINIT provide a rerun 
capability so that a series of copies can be made with all user 
input occurring at the start of the entire process. 

13.2.1 CVINIT Data Definitions and Structures. 

13.2.1.1 PARM ARRAY. 

The primary data structure of CVINIT is PARM ARRAY. It is used 
to hold all of the information entered by the user for a given 
copy or backup. It is defined as follows: 

2270513-9701 13-1 Volume Utilities 



SCI/Utilities Design 

TYPE 
PROMPT CHARS =PACKED ARRAY[1 •. PROMPT LENGTH] OF CHAR; 

PARM VAL 

COMMON 
PARM ARRAY 

= RECORD 
SIZE BYTE; 
VALUE: PROMPT_CHARS; 

END; 

ARRAY[1 •. NUM PARMS] OF PARM_VAL; 

Each element of PARM ARRAY contains a response to a prompt and 
the length of that response. 

13.2.1.2 Saved Data File. 

The data collected by CVINIT is stored on the system disk in 
of two files. For Copy Volume, data is stored in .S$CV. 
Backup Directory to Device, data is stored in .S$BDD. The 
for all copies to be made are put in the appropriate file. 
files are not deleted when the copy completes. 

The file .S$CV has the following form: 

All but last record: 
<src. luno><dest. luno><list luno> 
<interactive luno><b><src. device> 
<b><dest.device><b><list device> 

one 
For 

data 
These 

<b><src. volume><b><dest. volume><b><verify?> 
<b><more copies?><b><conv. seq.> 
<b><conv. rel-rec><b><run #> 

Last record: <flags><interactive device name> 

Volume Utilities 13-2 2270513-9701 



SCI/Utilities Design 

Example: 

FILE ACCESS NAME: S$CV 
RECORD: 000000 
0000 0405 0200 0444 5330 3204 
0010 554D 5906 4441 5441 3241 
0020 4203 5945 5303 5945 5302 
0030 0131 0000 0000 0000 0000 

SAME 
005E 0000 
RECORD: 000001 

4453 3036 
0644 4154 
4E4F 0359 
0000 0000 

0444 
4132 
4553 
0000 

0000 0708 0300 0444 
0010 554D 5906 4441 
0020 4203 5945 5302 
0030 0000 0000 0000 

5330 3204 4453 
5441 3541 0644 
4E4F 024E 4F02 
0000 0000 0000 

3036 0444 
4154 4135 
4E4F 0132 
0000 0000 

SAME 
005E 0000 
RECORD: 000002 
0000 0000 5354 3038 0000 0000 0000 0000 0000 

SAME 
005E 0000 

The flags word has the following form: 

.D SO 2. DS 06 .D 
UM Y. DA TA 2A .D AT A2 
B. YE S. YE S. NO .Y ES 
• 1 • • • • • • • • • • 

• • • D SO 2. DS 06 • D 
UM Y. DA TA 5A .D AT A5 
B. YE S. NO .N O. NO .2 . . . . . . . . . . 

ST 08 • • • • • • • • • • 

.. 

Bit 0 
Bits 2-15 

Set to 1 if the system disk drive is involved. 
Reserved for future use. 

The file .S$BDD has the following form: 

All but last record: <src. luno><dest. luno><list luno> 
<interactive luno><b><src. device> 
<b><dest. device><b><list device> 
<b><src. path name><b><dest. pathname> 
<b><verify?><b><more backups?> 
<O><O><b><run #> 

Last record: <flags><interactive device name> 

2270513-9701 13-3 Volume Utilities 



SCI/Utilities Design 

Example: 

FILE ACCESS NAME: .S$BDD 
RECORD: 000000 
0000 OAOB 0600 0444 5330 3204 4D54 3031 0444 
0010 554D 5914 4441 5441 322E 5745 454B 4C59 
0020 2E52 4550 4F52 5453 0003 5945 5303 5945 
0030 5300 0001 3200 0000 0000 0000 0000 0000 

SAME 
005E 0000 
RECORD: 000001 
0000 ODOE 0900 0444 5330 
0010 554D 590C 4441 5441 
0020 0942 4B55 502E 4649 
0030 4FOO 0001 3300 0000 

SAME 
005E 0000 
RECORD: 000002 

3204 4453 3036 
322E 414E 4E55 
4C45 0359 4553 
0000 0000 0000 

0444 
414C 
024E 
0000 

UM Y. 
.R EP 
s. 

.. 
.. 

UM Y. 
.B KU 
o. 

.. 

.D so 2. MT 01 .D 
DA TA 2. WE EK LY 
OR TS YE s. YE 
2. . . . . . . 

.D so 2. DS 06 .D 
DA TA 2. AN NU AL 
P. FI LE .Y ES .N 
3. . . . . . . 

0000 0000 5354 3038 0000 0000 0000 0000 0000 
SAME 

.. ST 08 . . .. . . . . . . 
005E 0000 

The flags word has the following form: 

Bit 0 
Bits 2-15 

Set to 1 if the system disk drive is involved. 
Reserved for future use. 

13.2.1.3 .S$CVI - The CVINIT Temporary File. 

This file is used by CVINIT to keep track of whether the system 
disk will be used in any of the requested copies. It consists of 
one word of flags. The only currently defined flag is bit O. If 
this bit is on, the system disk will be involved in at least one 
of the copies. On the first bid of CVINIT, the data is always 
written to .S$CVI. If the system disk is not involved in the 
first copy, a word of zeros is written. Otherwise, a word in 
which only bit 0 is set is written. On all subsequent bids of 
CVINIT, if there are any, data is only written to .S$CVI if the 
system disk is involved in that particular copy. On the last bid 
of CVINIT, .S$CVI is read and the contents of its first word are 
written to the last record of the saved data file. This serves 
to alert CV or BDD that the system disk drive will be involved in 
at least one copy. 

13.2.2 CVINIT Algorithm. 

The main program is named CVINIT and it drives the flow of 
control. It performs the following functions: 

1. Perform self-identification. (CVISLF) 

2. Check device type of interactive device and set VDT 

Volume Utilities 13-4 2270513-9701 



SCI/Utilities Design 

flag. This is used by the message routines to 
determine if VDT or TTY I/O should be done. 

3. Get all parameters supplied by the user. These are put 
in PARM ARRAY. (CVIGET) 

4. Open the listing device after mapping its synonym. 
(CVISYN, CVIOPN) 

5. For the first run of the utility, write a header 
message to the listing device. (CVIHDR) 

6. Print the user's input parameters on the listing 
device. (CVIPRT) 

7. Open the saved data file. (CVISDF) 

8. Verify that the user's input parameters are correct. 
(CVIVER) 

9. Write COM FLAGS to the temporary file, .S$CVI, to keep 
track of system disk drive involvement. 

1 0 . If the system disk drive is involved in the copy or 
backup, make sure that no other activity is going on. 
(CVIQUI) 

11. If this is the last copy or backup requested by the 
user, do the following: 

a. Unload the disks that are involved. (CVIUNL) 

b. Read .S$CVI to find out if the system disk drive 
was involved in any of the copies. This will be 
written to the last record of the saved data 
file. 

c. Write contents of PARM ARRAY (input parameters 
and LUNOs) to the saved data file. (CVIWRT) 

d. Write the last record of the saved data file. 
(Contains flags word and interactive device 
name.) 

e. Bid the copy or backup task and terminate. 
(CVIBID) 

12. If this is not the last copy or backup requested by the 
user, do the following: 

a. Unload disks that are involved. (CVIUNL) 

b. Write the contents of PARM ARRAY to the saved 

2270513-9701 13-5 Volume Utilities 



data file. (CVIWRT) 

c. Terminate and return 
procedure. (R$TERM) 

13.2.3 CVINIT Module Descriptions. 

to 

SCI/Utilities Design 

the BDD command 

All modules are coded in Pascal except where noted. Also, any 
differences in execution between operating systems are noted. 
The source modules for CVINIT may be found in the following 
directories: 

Pascal Source 
Assembler Source 

DSC.DP.CV.PSOURCE 
DSC.DP.CV.SOURCE 

All CVINIT source modules are named CVIxxx where xxx is a unique 
mnemonic identifier of the module. 

13.2.3.1 CVIBID. 

This routine bids the CV or BDD task off the utility program 
file. The task to bid is determined by the global variable 
WHICH_TASK, which is set in CVIGET. CVIBID passes t·he size, in 
beets, of the saved data file to the task it bids. 

13.2.3.2 CVICLS. 

This routine closes a device or file and release its LUNO. 

13.2.3.3 CVIDEV. 

This routine performs a verify device name SVC on an access name. 

13.2.3.4 CVIERR. 

This routine is a general error handler. All errors returned by 
an SVC or from an R$ routine pass through CVIERR. The input 
parameters contain the completion code, the address of- any 
variable text associated with the error, the error source flag 
(denotes which DNOS expanded message file to use) and the error 
number or pointer to the SVC call block. Errors returned from an 
SVC are handled differently than other errors. The address of 
the offending SVC call block is passed to Return Code Processor 
SVC (>4C). This formats error message data in a manner 
acceptable to R$CMSG. R$CMSG is then called to get the error 
message. CVIMSG is called to write the message to the 
interactive and listing devices. This routine will write an 
error message no longer than two lines. It then terminates by a 
call to S$TERM. Rather than simply passing the error to R$TERM, 
R$CMSG is used and the message is written in order to display the 
error message between reruns. If this is the last rerun, the 

Volume Utilities 13-6 2270513-9701 



SCI/Utilities Design 

synonym $MC (which corresponds to the MORE COPIES? prompt) is 
set to YES. This forces the command procedure to display another 
set of prompts to give the user another chance. 

13.2.3.5 CVIFIL. 

This routine writes a record to the saved data file. The address 
of the buffer containing the record to be written, the length of 
that buffer, and the record number to write to are all input 
parameters. 

13.2.3.6 CVIGET. 

This routine retrieves the user's input from SCI via the R$PARM 
function. They are put into PARM ARRAY in the following form: 

<byte count, parm string> 
<byte count, parm string> 

The order in which they are put into the array is determined by a 
series of constants defined in the CONST template. These 
constants are used as array indices. , If the user requests that 
more copies or backups are to be made, the common variable 
MORE COPIES is set to true. The user makes·this request by 
answering the MORE COPIES? or MORE BACKUPS? prompt from the 
command procedure. If the maximum number of reruns is exceeded, 
MORE COPIES is set to false and no more SCI prompts will be 
offered to the user. The number of the current run is converted 
to an integer and will be used to select the record number in the 
saved data file to which information will be written. The type 
of copy requested (backup or copy) is determined by a check for a 
unique character sequence, which is passed by the command 
procedure to CVINIT. The common variable WHICH_TASK is given the 
value of this type of copy. If a backup is to be done, the 
source pathname undergoes synonym and logical name mapping since 
a synonym or logical name is allowed for that prompt. Next, 
CVIGET puts a copy of the system disk PDT in a buffer to be used 
later. If a backup was requested, the source pathname is checked 
for an implied system disk. If the system disk drive is involved 
in this copy or backup, a flag is set in the common variable 
COM FLAGS (this flag is bit 0). 

13.2.3.7 CVIHDR. 

This routine writes the date and time, along with a header 
message, to the listing device. 

13.2.3.8 CVIIMP. 

This routine inserts the volume name of the system disk in 
of the period in the source pathname field of PARM ARRAY. 
is only done for a backup operation (BDD). 

front 
This 

2270513-9701 13-7 Volume Utilities 



SCI/Utilities Design 

13.2.3.9 CVILJB. 

This assembly language routine disables the system log and DIOU, 
and sets the job limit to two (only this job and the system job). 
This is done by putting a zero in the task ID fields of the 
system log and DIOU queues, and setting the job limit field in 
NFJOBC to 2. The old values of the modified data are stored in 
common variables. It also disables crash dumps to prevent 
damaging a data disk. This module is only called when the system 
disk drive is involved. 

13.2.3.10 CVILUN. 

This routine assigns LUNOs and opens source and destination 
devices. It puts these values in the output parameter LUNOs. If 
there are no more copies or backups to be made, it also puts the 
interactive device LUNO in this parameter. 

13.2.3.11 CVIMAP. 

This routine gets the value of a logical name. The name is 
pointed to by an input parameter. It first looks for a local 
name. If one is found, return a pointer to the name to the 
calling routine. Otherwise look for a global name. If found, 
return a pointer to the value. If a name is not found return the 
Get Name's Value SVC call block to the calling routine. 

13.2.3.12 CVIMSG. 

This procedure writes messages to the user's terminal and reads 
the responses (if any). Messages and responses are also written 
to the listing device. If the user specified his terminal as the 
listing device (not recommended, but possible), only write the 
message once. It initiates a .write of the message to the 
terminal. If a reply is needed (specified by an input parameter 
of Y), this will be a write with reply. The routine writes the 
message to the listing device if it is different from the 
terminal. If a reply was requested, a test is made for valid 
responses (only Y and N are valid). The routine keeps asking 
until a valid response is given. The reply is passed back to the 
calling routine. The second parameter does double duty. On 
input it specifies whether or not a reply is needed (Y = reply, N 
=no reply). On output it is the value of the reply (Y or N). 

13.2.3.13 CVINAM. 

This routine 
attempt to map 
names' values 
PARM ARRAY. 

passes over PARM ARRAY and calls CVIMAP in an 
a user's device name inputs to their logical 
(if any). Each name's value replaces the name in 

Volume Utilities 13-8 2270513-9701 



SCI/Utilities Design 

13.2.3.14 CVINJB. 

This routine reads the NFJOBC data structure and returns the 
number of jobs in the system to the calling routine. 

13.2.3.15 CVINIT. 

This is the main program and serves as the driver routine. 

13.2.3.16 CVIOPN. 

This routine assigns a LUNO to a device or file and opens it. If 
there i& an error from the assign LUNO, it checks to see if it is 
a logical name and retries the assign LUNO. 

13.2.3.17 CVIPAT. 

This is pateh area. 

13.2.3.18 CVIPDT. 

This routine searches the PDT chain for the system disk PDT. 
This is denoted by the system disk flag in the PDT. 

13.2.3.19 CVIPRT. 

This routine prints the SCI prompts and the user's responses to 
the listing device in the format that the user sees on the 
screen, that is, SCI-like format as well as the command procedure 
header. The user's responses are kept in PARM ARRAY. 
Unfortunately, the order of these responses in PARM ARRAY-is not 
the same order that the user saw on his SCI screen. Therefore, a 
CASE statement is used to pluck the responses from PARM ARRAY in 
the order familiar to the user. The case statement is switched 
on a value called LNUM, which is also the index of a FOR loop. 
The FOR loop loops on a series of constants defined in the 
constant template. Each of these constants is the index of a 
particular user response in PARM ARRAY. Since the prompts for a 
backup are different from those for a copy, there are two FOR
loop/CASE constructs, one for backup and one for copy. 

13.2.3.20 CVIQUI. 

This routine makes sure that there is no other activity in the 
system. This means that no other jobs are active. If. the system 
is not quiet (as determined by CVINJB), a message is sent to the 
user requesting that the system be quieted, and asking if they 
are ready. If they are ready, it makes sure the system is quiet 
and calls CVILJB to disable other activity from occurring. If 
the user responds that they are not ready, it asks if they want 
to quit. If they do not want to quit, it requests that the 
system be quieted. If they want to quit, it terminates normally 

2270513-9701 13-9 Volume Utilities 



SCI/Utilities Design 

and informs the user that termination was requested by the user. 

13.2.3.21 CVISDF. 

If this is the first backup or copy, this routine deletes any 
existing saved data file. It recreates and opens the file. 

13.2.3.22 CVISLF. 

This routine gets the station ID of the user's terminal, converts 
it to ASCII, and passes it back to the calling routine in the 
form STxx. 

13.2.3.23 CVISYN. 

This routine calls R$MAPS to map the value of a synonym. It 
replaces the synonym with its value in PARM ARRAY. 

13.2.3.24 CVISYS. 

This routine obtains the NFDATA system data structure address. 

13.2.3.25 CVITRM. 

This termination routine sets the record number in the call block 
for the saved data file. This is to set end-of-file. The 
routine then closes all files and devices. 

13.2.3.26 CVITXT. 

This assembly language routine contains all message text. 
message must be in its own CSEG so that it can be accessed 
Pascal. 

13.2.3.27 CVIUNL. 

Each 
by 

This routine unloads the source and destination disk volumes. It 
does not try to unload the system disk. If a bad volume name 
error is returned, it is ignored. 

13.2.3.28 CVIVER. 

This routine calls CVIDEV to verify the source, destination, and 
listing device names. 

Volume Utilities 13-10 2270513-9701 



SCI/Utilities Design 

13.2.3.29 CVIWRT. 

This routine copies parameter information from PARM_ARRAY into 
the output buffer for the saved data file and computes the size 
of the buffer. It calls CVILUN to assign LUNOs and open 
necessary devices. The parameter returned from CVILUN contains 
the LUNOs it assigned. They are also put into the output buffer. 
The buffer is then written to the saved data file. 

13.2.4 CVINIT Debug Suggestions. 

SVC Errors 
The best place to trap error conditions is in CVIERR. All errors 
detected by CVINIT pass through CVIERR. These are usually SVC 
errors. Use the Pascal debugger to find out which module called 
CVIERR. After assigning a breakpoint at the beginning of 
CVIERR(ABP), execute the Resume Task (RT) command. When the 
breakpoint is hit, use the Show Pascal Stack (SPS) command to see 
the call chain. After finding out which module called CVIERR, 
you can then run the task again and breakpoint on the SVCs in the 
calling module. 

End Action 
If the task takes end action, you need to isolate the module that 
caused the offense. This is usually a tedious process. One 
common cause of end action in CVINIT is execution of a privileged 
instruction when CVINIT has been rendered unprivileged. It 
should be a privileged task and is shipped in that condition. 

The Data Structure Method 
If you are not sure about the 
CVINIT, look at the data 
command). 

The File Method 

information that SCI passed to 
in PARM ARRAY (use the SP debug 

If you are not sure about the information that CVINIT passed to 
CV or BDD, look at the file .S$CV or .S$BDD. CV and BDD look at 
the data in these files to determine what to do. 

When All Else Fails 
If, after repeated attempts, you can not find out where the error 
condition came from (especially if there is no error, but CVINIT 
is simply doing things wrong), use the Pascal debugger to 
breakpoint on the beginning and end of each module until you find 
the offending module. The CV algorithm below can help you trace 
the flow of control. 

2270513-9701 13-11 Volume Utilities 



SCI/Utilities Design 

3. Initialize all variables. 

4. Copy selected fields from the source volume information 
into the target volume information. 

5. Move the track 1 loader, if present. 

6. Construct the free ADU list from the bad ADU list from 
the target disk. 

7. Allocate disk space for VCATALOG, and stack VCATALOG. 

8. Place the modified volume information on track 1, 
sector n-1 of the target disk. 

9. Put $$$$$$$$ into the volume name and 2 (disk needs 
INV) into the state flag on track 0, sector 0 of the 
target disk. 

13.3.1.3 Algorithm for the Copy Driver. 

1. If an !RB has finished, release it and update the 
status of the data structure that was using the !RB. 

2. Look at all of the common overhead records (CORs) for 
the FDR and I/O buffers. If its status is: 

BUF NEED WRIT - Write the output buffer. 

SRC FDR FINI - Write the FDR buffer. 

DST WRIT FINI - Read int~ a verify buffer. 

DST READ FINI - Verify the buffer. 

BUF VERF FINI[IO] - Set status to BUF NEED FILE. - -
BUF_VERF_FINI[FDR] - Read in more FDRs. 

SRC READ FINI[FDR] Process the FDRs in the buffer. - -
3. Look at a buffer allocation record (BAR). If its 

source read has finished, or if it is in the process of 
being formatted, try to format the portion of the file 
it represents. 

13.3.1.4 Algorithm for Copying Directories. 

1. Stack VCATALOG. 

2. If a free FDR buffer and !RB can be found, pop an entry 

Volume Utilities 13-14 2270513-9701 



SCI/Utilities Design 

off the directory stack and read the FDRs it points to 
from the source disk. If all of the directory could 
not be read, update the entry and push it back on the 
stack. 

3. If a source read into an FDR buffer has finished, then 
process the FDRs in the FDR buffer (stack the directory 
FDRs and process the files). 

4. If all FDRs in a buffer have been processed, write the 
buffer to the target disk. 

5. Repeat steps 2 through 4 until there are no more 
directories. 

13.3.1.5 Algorithm for Copying Files. 

1. Try to get an additional FDR record (AFR), otherwise 
leave and try again later. 

2. Put the computed target parameters and the 
allocation information into the AFR. 

disk 

3. Continue initiating reads of the file into the input 
buffers until no IRBs are left, no BARs are left, no 
buffer space is left, or no file is left. 

4. Format the file into an output buffer. 

5. Repeat steps 2 through 4 until all of the file is 
completely formatted. 

6. Using the target parameters, update the FDR in the FDR 
buffer that represents this file. 

13.3.1.6 Algorithm for Copying Program Files. 

1. Try to get an AFR, otherwise leave and try again later. 

2. Reserve a sector in an input buffer to be treated as a 
temporary buffer, which will be used to read and write 
the program file's overhead records. 

3. Read and write overhead records until an entry for an 
image is found. 

4. Load another AFR so the image will go 
file processing as an image file. 
allow it to go through EOF processing. 

through normal 
However, do not 

5. Repeat steps 3 through 4 until all of the overhead 

2270513-9701 13-15 Volume Utilities 



SCI/Utilities Design 

records and images have been moved. 

6. Using the target parameters, update the FDR in the FDR 
buffer that represents this file. 

13.3.2 CV Data Structures. 

The fol!owing paragraphs describe the CV data structures. 

13.3.2.1 AFR REC DEFN. 

This holds the additional FDR information. It contains the new 
target parameters, such as the target physical record length and 
the target disk allocation. It is also the bookkeeper for all 
operations performed on the file, such as formatting. An FDR is 
assigned the same AFR throughout its copy operation. 

Volume Utilities 13-16 2270513-9701 



SCI/Utilities Design 

*---------+---------* 
>OO AFRSTA Current status of this AFR. 

)02 

>04 

>06 

>08 

+---------+---------+ 
AFRTYP 

+---------+---------+ 
I 
I AF RF DP 
+---------+---------+ 

AF RODD 
+---------+---------+ 

AFRLRI 
+---------+---------+ 

File and conversion type. 

Address of this AFR's FDR. 

Is seq log rec len odd or even? 

Formatting index into the input buf. 

>OA I AFRSLL I Src logical record length in words. 
+---------+---------+ 

>OC I AFRWSL Words moved from src log rec to dst. 
+---------+---------+ 

>OE I AFRSPL Src physical record length in words. 
+---------+---------+ 

>10 I AFRWSP I Words moved from src phy rec to dst. 
+---------+---------+ 

>12 AFRSPS Words of slop at end of src phy rec. 
+---------+---------+ 

>14 AFRSAS Words of slop at end of FDRAPB src ADUs. 
+---------+---------+ 

>16 I AFRSPM I Src phy recs moved, for slop detection. 
+---------+---------+ 

>18 AFRSPU Src phy recs to move before ADU slop. 
+---------+---------+ 

>1A AFRDLL Dst logical record length in words. 
+---------+---------+ 

>1C AFRWDL Words moved into a dst log rec. 
+---------+---------+ 

>1E AFRDPL Dst phy rec length in words. 
+---------+---------+ 

2270513-9701 13-17 Volume Utilities 



>20 

>22 

>24 

>26 

>28 

>2A 

>2C 

>2E 

>30 

>32 

>34 

>36 

>38 

>3A 

+---------+---------+ 
AFRWDP 

+---------+---------+ 
AFR DPS 

+---------+---------+ 
AFR DAS 

+---------+---------+ 
AFRDPM 

+---------+---------+ 
AFRDPU 

+---------+---------+ 
AFR PHI I 

I 

+---------+---------+ 
I AFRLHI 
+---------+---------+ 
I AFRLRS I 
+---------+---------+ 
I AFRLRN 
+---------+---------+ 
I AFRLRC 
+---------+---------+ 

AFRBSS 
+---------+---------+ 
l AFRWBS 
+---------+---------+ 

AFRBSL 
+---------+---------+ 

AFRPHD 
+---------+---------+ 

SCI/Utilities Design 

Words moved into dst phy rec. 

Words of slop at end of dst phy rec. 

Words of slop at end of dst FDR APB ADUs. 

Dst phy recs moved, for slop detection. 

Dst phy recs before ADU slop. 

Index of seq phy rec header. 

Index of seq log rec header. 

Status of this dst logical record. 

Will src log rec need combining? 

Combine next src log rec? 

Status of blank suppressed log rec. 

Words moved from blk suppressed log rec. 

Blank suppressed rec length. 

Dst physical record header word. 

>3C I AFREOM I Number of source logical records. 
+---------+---------+ Decrements to zero during formatting. 

>40 

I 
I 

I 
I 

I 
I 

+---------+---------+ 
AFRBKM 

+---------+---------+ 
I 
I 

I 
I 

I 
I 

+---------+---------+ 
>44 AFR PAA 

+---------+---------+ 
>46 AFR PAS 

+---------+---------+ 
>48 AFR APB 

+---------+---------+ 
>4A AFRBPA 

+---------+---------+ 
>4C I AFRCRP 

+---------+---------+ 

Volume Utilities 

Dst physical records formatted. 

Dst primary allocation ADU. 

Dst primary allocation size in ADUs. 

Dst ADUs per physical record. 

Dst physical records per ADU. 

Address of COR of output buffer. 

13-18 2270513-9701 



SCI/Utilities Design 

+---------+---------+ 
>4E AFRSTI Index into src sec ale table. 

+---------+---------+ 
>50 AFRSOA Source sector offset for next read. 

+---------+---------+ 
>52 I AFRSAA Source ADU address for next read. 

+---------+---------+ 
>54 AFRSSA Source sectors left in allocation. 

+---------+---------+ 
I I I 
I I I 
+---------+---------+ 

>58 AFRDTI Index into dst sec ale table. 
+---------+---------+ 

>5A I AFRDOA Dst sector offset for next format/write. 
+---------+---------+ 

>5C AFRDAA Dst ADU address for next format/write. 
+---------+---------+ 

>5E AFRDSA Dst sectors left in this allocation. 
+---------+---------+ 
I I I 
I I I 
+---------+---------+ 

>62 I AFRDST Dst secondary allocation table. 
+---------+---------+ 

13.3.2.2 AFR ARRAY. 

Holds MAXII0+1 number of AFRs. 

AFR ARRAY= PACKED ARRAY[1 •• MAXAFI] OF AFR REC DEFN. 

13.3.2.3 APR REC DEFN. 

This is used as a variant for an AFR. It stands for Additional 
Program File Information Record. Its purpose is to hold 
information about the program file being moved. It is the 
bookkeeper. It manages the target allocations and the 
information gathered from the program file record 0. The first 
three fields match an AFR, the rest have no relation. In the 
code, an AFR is type changed to be used as an APR. 

2270513-9701 13-19 Volume Utilities 



SCI/Utilities Design 

*---------+---------* 
>OO APRSTA Current status of the program file. 

+---------+---------+ 
>02 APRTYP Type of the file(matches AFR). 

>04 

>06 

>08 

>OA 

+---------+---------+ 
APRFDP I 

I 

+---------+---------+ 
APRAFI 

+---------+---------+ 
APRSPA 

+---------+---------+ 
APRSPS I 

I 

+---------+---------+ 

Address of the FDR attached to this APR. 

Index of the AFR used to move images. 

Source primary allocation ADU. 

Source primary allocation size in ADUs. 

>OC APRSTI Index into the src secondary allocation. 
+---------+---------+ 

>OE APRSOA Sector offset for src read of overhead r, 
+---------+---------+ 

>10 I APRSAA I ADU for src read of an overhead rec. 
+---------+---------+ 

>12 APR SSA Source sectors left in current allocatio! 
+---------+---------+ 
I I I 
+---------+---------+ 

>16 APRDRN Number of next free rec in program file. 
+---------+---------+ 

>18 APRDSL Sectors left at end of previous image. 
+---------+---------+ 

>1A APRDSA ADU address for next write. 
+---------+---------+ 

>1C APRDSO Sector offset for next write. 
+---------+---------+ 

>1E APRPAA Target primary allocation ADU. 
+---------+---------+ 

>20 APRPAS Target primary allocation size in ADUs. 
+---------+---------+ 

>22 I APRRNM Rec number of overhead record in buffer. 
+---------+---------+ 

Volume Utilities 13-20 2270513-9701 



SCI/Utilities Design 

+---------+---------+ 
>24 APRNDE Maximum number of entries. 

+---------+---------+ 
>26 APRRDE Record number where entries begin. 

+---------+---------+ 
>28 AP RODE Offset where entries begin. 

+---------+---------+ 
>2A APRPRI Index into APRAPR. 

+---------+---------+ 
>2C APRNAA Total allocated ADUs. 

>2E 

>30 

>70 

>70 

>72 

>74 

>76 

>78 

>7A 

>7C 

>7E 

>80 

>82 

>84 

>86 

+---------+---------+ 
APRDTI I 

I 

+---------+---------+ 
APRDST 

+---------+---------+ 
I 
I 

I 
I 

I 
I 

+---------+---------+ 
APR APR 

+---------+---------+ 
+---------+---------+ 

APRMNT I 
I 

+---------+---------+ 
APR TO 

+---------+---------+ 
APRTR 

+---------+---------+ 
APRMNP 

+---------+---------+ 
AP RPO 

+---------+---------+ 
APR PR 

+---------+---------+ 
I 
I APRMNO 
+---------+---------+ 

A PROO 
+---------+---------+ 

APROR 
+---------+---------+ 

APRMNH 
+---------+---------+ 
I 
I APRHO 
+---------+---------+ 

APRHR 
+---------+---------+ 

2270513-9701 

Index into target sec ale table •. 

Target secondary allocation table. 

Array of locations of T/P/O/Hole entries. 

Maximum number of task entries. 

Offset to beginning of task entries. 

Record where task entries begin. 

Maximum number of proc entries. 

Offset to beginning of proc entries. 

Record where proc entries begin. 

Maximum number of overlay entries. 

Offset to beginning of overlay entries. 

Record where overlay entries begin. 

M~ximum number of hole entries. 

Offset to beginning of hole entries. 

Record where hole entries begin. 

13-21 Volume Utilities 



SCI/Utilities Design 

13.3.2.4 BAD ADU REC. 

This is used to hold an ADU range that has been declared bad by 
some routine, and which will be used during the pathname trace to 
find the directories or files that are within that range. 

*---------+---------* 
>OO BGNBAD First bad ADU. 

+---------+---------+ 
>02 ENDBAD Number of words in bad ADU range. 

+---------+---------+ 

13.3.2.5 BAD ADU ARRAY. 

This is used to hold a finite number of bad ADU ranges. 

BAD ADU ARRAY= ARRAY[1 •• MAXBDI] OF BAD ADU REC. 

13.3.2.6 BAR REC DEFN. 

This is used to hold information about a file's input buffer 
allocation. It is used when reading, and when fo~matting the 
file. 

*---------+---------* 
>OO BARSTA Status of this BAR. 

+---------+---------+ 
>02 BAREOF EOF in this buffer allocation. 

+---------+---------+ 
>04 BARAFI I Index of the AFR currently using this BAR. 

+---------+---------+ 
>06 BARIAB Beginning of buffer allocation index. 

+---------+---------+ 
>OB I BARIEB I End of buffer allocation index. 

+---------+---------+ 
>OA BAR IR I Index of the !RB this BAR is using. 

+---------+---------+ 
>OC BARCRP Address of the input buffer's COR. 

+---------+---------+ 

13.3.2.7 BAR ARRAY. 

Is used to hold the BAR REC DEFNs. It is a circular list used by 
the file-reading and file-formatting code. There is one more BAR 
than there are IRBs (MAXIIO). The array's base is O, which 
allows easy index advancement ((cur index+ 1) MOD max index). 

BAR ARRAY= ARRAY[O •• MAXBAI] OF BAR REC DEFN. 

Volume Utilities 13-22 2270513-9701 



SCI/Utilities Design 

13.3.2.8 COR REC DEFN. 

This is the common overhead record structure for all of the I/O, 
FDR, and VERIFY buffers. It holds the necessary information to 
enable formatting, I/O, and FDR processing. Its variants enable 
it to be used for any of the buffer types. Note that since all 
output and verification processes act on buffers, this common 
structure allows the use of much common code. 

*---------+---------* 
>OO I CORSTA I Status of the buffer. 

+---------+---------+ 
>02 CORTYP Type of buffer. 

+---------+---------+ 
>04 CORDOW Dst sector offset for next I/O. 

+---------+---------+ 
>06 CORRII Index of current read IRB. 

>08 

>OA 

+---------+---------+ 
I 
I CORWII 
+---------+---------+ 

CORBPT 
+---------+---------+ 

Index of current write IRB. 

Address of the buffer. 

>OC I CORVCP I Address of the verify buffer COR. 
+---------+---------+ 

>OE CORAWB Words currently used. 
+---------+---------+ 

>10 CORDAW Dst ADU address for the next I/O. 
+---------+---------+ 

>12 COREC Number of times this error has occured. 
+---------+---------+ 
+---------+---------+ 

>14 CORRFB Number of FDRs in this buffer. 

>16 

>18 

>14 

>16 

>18 

>14 

>16 

+---------+---------+ 
CORFDI I 

I 

+---------+---------+ 
CORLFI 

+---------+---------+ 
+---------+---------+ 

CORTWB 
+---------+---------+ 

CORCRP 
+---------+---------+ 

CORI EB 
+----~----+---------+ 

+---------+---------+ 
CORPFS I 

I 

+---------+---------+ 
CO RAFI 

+---------+---------+ 

2270513-9701 

Index of first file FDR. 

Index of last file FDR. 

Length of buffer in words. 

Address of input buffer COR. 

.Index following last allocated word. 

Program file buffer status. 

Index of APR (AFR). 

13-23 Volume Utilities 



SCI/Utilities Design 

13.3.2.9 DER REC DEFN. 

This is a directory stack entry. It holds the number of FDRs 
left in the directory, and the source and target disk addresses 
to read from and write to. 

*---------+---------* 
>OO I DERSOR I DERDOW I Sector offset for the next source read. 

+---------+---------+ Sector offset for the next target write. 
>02 I DERRFB I Number of remaining FDRs in the directory. 

+---------+---------+ 
>04 DER SAR ADU address for the next source read. 

+---------+---------+ 
>06 DERDAW I ADU address for the next target write. 

+---------+---------+ 
13.3.2.10 DER ARRAY. 

This is used as a stack of DER REC DEFN. It allows the program 
to access directories at random. So, directories are not read 
sequentially, but may be partially read and written. If CV 
aborts, directories may be left partially filled on the target 
disk. 

DER ARRAY= ARRAY[1 •• MAXDRI] OF DER REC DEFN. 

13.3.2.11 FAR REC DEFN. 

This is used to hold a free ADU range that is on the target disk. 

*---------+---------* 
>OO FARNFA Number of free ADUs in this range. 

+---------+---------+ 
>02 I FARAFA I ADU address of free ADU range. 

+---------+---------+ 
13.3.2.12 FAR ARRAY. 

This is used to hold a finite number of free target ADU ranges. 
Currently, it will hold up to 66 ranges. 

FAR ARRAY= ARRAY[O •• MAXFRI] OF FAR REC DEFN. 

Volume Utilities 13-24 2270513-9701 



SCI/Utilities Design 

13.3.2.13 IRR REC DEFN. 

This is used to hold a user call block for disk I/O and to hold 
the status and error count for that call block. 

*---------+---------* 
>OO IRRSTA I Status of the call block. 

+---------+---------+ >02 IRREC Number of times this I/O has failed. 

+---------+---------+ 
>04 I IRRIRB User call block. 

+---------+---------+ 
I 
I 

I 
I 

13.3.2.14 IRR ARRAY. 

I 
I 

This is used to hold a finite number of IRR REC DEFN for both the 
source and target disk I/O. 

IRR ARRAY= PACKED ARRAY[1 •• MAXII0*2] OF IRR REC DEFN. 

13.3.2.15 LEVEL ENTRY. 

This is used during the pathname trace to keep track of the 
directories being read. 

*---------+---------* >OO LEVDNM Name of current directory on this level. 

+---------+---------+ 
>08 I LEVRFD I Number of FDRs still to be read. 

+---------+---------+ 
>OA LEVRAD ADU address of remaining FDRs. 

+---------+---------+ 
>OC LEVROF Sector offset of remaining FDRs. 

+---------+---------+ 
13.3.2.16 LEVEL ARRAY. 

This is used during the pathname trace to retain information 
about the directories being read at various levels. 

LEVEL ARRAY= ARRAY[0 •• 23] OF LEVEL ENTRY. 

2270513-9701 13-25 Volume Utilities 



SCI/Utilities Design 

13.3.2.17 PFIARR. 

This represents the maximum number of 
images, that an overhead record in 
Currently this is 16 16-byte entries. 

entries, which describe 
a program file can hold. 

PFIARR =PACKED ARRAY[O •• MAXPFI] OF PFI. 

13.3.2.18 PRA REC DEFN. 

This is a definition of an entry in the first overhead record of 
a program file. It is used to tell where the entries for tasks, 
procedures, overlays, and free spaces begin, and the maximum 
number of entries each can hold. 

*---------+---------* 
>OO PRAMNE Maximum number of entries. 

>02 
+---------+---------+ 

PR ARCO I 
I 

+---------+---------+ 
Record where entries begin. 

>04 PRARCA Offset in record where entries begin. 
+---------+---------+ 

13.3.2.19 PRAARR. 

This holds the PRA REC DEFNs from the overhead record 0 of a 
program file. 

PRAARR =PACKED ARRAY[1 •• MAXPRI] OF PRA REC DEFN. 

Volume Utilities 13-26 2270513-9701 



SCI/Utilities Design 

13.3.2.20 PRR REC DEFN. 

This is used to hold a record from the parameter file created by 
CVINIT {the initial task that interacts with SCI). These records 
are allocated space and are read in the initial routine of CV. 

*---------+---------* 
>OO I PRRLAR LUNOs for this copy 

+---------+---------+ 
I I I 

+---------+---------+ 
>04 PRRSDN I Source device name. 

+---------+---------+ 
I I I 
+---------+---------+ 

>OB PRRDDN I Target device name. 
+---------+---------+ 
I I I 

+---------+---------+ 
>OC PRRLDN Listing device name. 

+---------+---------+ 
I I I 

+---------+---------+ 
>10 PRRSVN I Source volume name. 

+---------+---------+ 
I I I 
+---------+---------+ 

>18 PRRDVN Target volume name. 
+---------+---------+ 
I I I 

+---------+---------+ 
>20 I PRRVER I PRRMCP I Verify copy? 

+---------+---------+ More copies? 
>22 I PRRCRR I PRRCSF Convert rel recs/prog files? 

+---------+---------+ Convert seq files? 
>24 I PRRRRN I PRRFL1 Run number in ASCII. 

+---------+---------+ Fill byte. 

13.3.2.21 PRR ARRAY. 

This is used to hold up to nine records from the parameter file 
created by CVINIT {the initial task that interacts with SCI). 
See PRR REC DEFN. 

PRR ARRAY= ARRAY[1 •• MAXRRN] OF PRR REC DEFN. 

2270513-9701 13-27 Volume Utilities 



SCI/Utilities Design 

13.3.2.22 SAT REC. 

This is a definition of a secondary allocation entry in an FDR. 

>OO 

>02 

*---------+---------* 
I 
I SAT SAS 

+---------+---------+ 
SAT SAA I 

I 

+---------+---------+ 
13.3.2.23 SAT TBL. 

Number of ADUs in the allocation. 

ADU address of the allocation. 

This is 
records. 

used to hold a finite number of secondary allocation 
Currently the maximum is set at 16 in an FDR. 

SAT TBL =PACKED ARRAY[1 •• MAXSTI] OF SAT REC. 

13.3.3 CV Pascal Modules. 

The following paragraphs briefly discuss each of the CV modules 
written in Pascal. 

13.3.3.1 CV. 

This is the main routine that calls the assembly language 
routines to get memory, allocate the memory to the various 
buffers, and to read in the parameter file. It calls the 
routines that initialize, perform, and complete a copy operation, 
looping until all copies are done or until the user wants to 
quit. 

13.3.3.2 CVALCA. 

This routine allocates ADUs on the target disk, using the free 
ADU list that was created using the bad ADU list from the target 
disk. 

13.3.3.3 CVALCD. 

This routine allocates disk space for all requested ADUs, and 
returns the disk allocation in two primary allocation variables 
and/or a secondary allocation table. 

13.3.3.4 CVBIAS. 

This routine converts binary numbers to ASCII decimal or 
hexadecimal characters. 

Volume Utilities 13-28 2270513-9701 



SCI/Utilities Design 

13.3.3.5 CVCDEV. 

This routine prompts the user to mount the volume if one of the 
following situations occurs: 

* This is not the first copy. 

* It is the first copy and the system-disk-flag is set. 

* The volume specified by the user is not in the drive. 

* An error occurs reading the drive. 

If everything is correct, it reads track 0 sector 0, VCATALOG's 
DOR, and the disk information into the first three sectors of the 
specified buffer. 

13.3.3.6 CVCDIO. 

This routine issues all I/O on the target device for the FDR and 
I/0 buffers. It updates the status to indicate whether it began 
a write from a buffer or read into a verify buffer. 

13.3.3.7 CVCFLE. 

This routine processes file I/O and formatting errors. 

13.3.3.8 CVCPRM. 

This routine computes all of the target parameters necessary for 
updating the FDR, formatting the file, and allocating target disk 
space. It must also make sure everything is properly initialized 
for the above three functions. All final values are in words, 
not bytes. Some primary computations are: 

Destination 
Physical 

Record Length 

Slop Values 

Formatting Unit 

2270513-9701 

Either the default physical record 
length 

For the target disk, or an ADU, 
depending upon which packs logical 
records best. For sequential file, 
if the target physical record length 
is greater than the output buffer 
length, the target physical record 
length is made equal to the target 
sector length. This ensures proper 
formatting. 

The amount of unused space at the end 
of source or target physical records 
and the unused space caused by packing 
physical records into ADUs. 

The length of the indivisible unit to 
be used when formatting. When no 

13-29 Volume Utilities 



Destination File 
Length 

SCI/Utilities Design 

conversion of physical record length 
is being performed, this is the physical 
record length. Otherwise, it is the 
logical record length. This unit is of 
variable length when converting 
sequential files. 

The length of the formatted file in 
target ADUs. 

In certain cases, the actual physical record length, the amount 
of data in the physical record, and the physical record length 
rounded to a multiple of sectors must be known. The only unusual 
aspect of this routine is the passing of data for relative record 
file formatting in two fields of an AFR (AFRBSL and AFRPHD) that 
are only to be used during the formatting of sequential files. 

13.3.3.9 CVCSCY. 

This routine computes the number of sectors that are left on a 
cylinder. 

13.3.3.10 CVCSNW. 

This routine computes the number of words that CVFFOR should move 
for a sequential logical record. At the beginning or a source 
physical record, CVCSNW checks to see if the last logical record 
is split. At the beginning of a target physical record, it 
remembers the index so it can update the header word at a later 
time. It advances the output buffer index. In order to process 
a logical record, CVCSNW must determine if the record must be 
split across target physical records, or if it must combine two 
source logical records. Note that it may be splitting a record 
it is combining or combining a split record. If the logical 
record is blank suppressed, the record is moved one blank
suppressed record at a time. Blank-suppressed records can be 
split across target physical records. 

13.3.3.11 CVCSRD. 

This routine pops a directory entry off the directory stack and · 
initiates a read into an FDR buffer. 

13.3.3.12 cvcsvc. 

This routine processes I/0 SVC errors. If the error has not 
happened MAXERR times, it will reissue it. If it has happened 
MAXERR times, an error message is printed and the ADUs 
represented by the !RB are put into the bad ADU list. 

Volume Utilities 13-30 2270513-9701 



SCI/Utilities Design 

13.3.3.13 CVCVER. 

This routine processes verification errors. It allows the buffer 
to be written/read/verified MAXERR times before it declares the 
verification bad, prints an error message, and puts the bad ADU 
range in the target bad ADU list. 

13.3.3.14 CVCVOL. 

This copy driver routine is basically a busy wait. It checks all 
of the SVC call blocks to see if any have finished. It then 
updates the appropriate records if any I/0 has completed. This 
routine calls the routines that format and allocate target disk 
space for files, read/write/verify FDR and I/0 buffers, and 
initiate all source reads of files. In order to avoid using the 
Pascal linkage routines, many of the functions that would 
normally be delegated to other modules have been incorporated 
into this routine. 

13.3.3.15 CVENDR. 

This routine builds and prints the end-of-run message. It 
prompts the user to ask if they wish to continue to the next 
copy. If necessary, it calls the bad file pathname trace. 

13.3.3.16 CVFFOR. 

This routine formats all file types. Note that program files 
will come through here one image at a time. Sequential files 
also go through the routine CVCSNW to determine how many words to 
move and to set flags for any additional processing required. 
CVFFOR will try to format only the portion of the file that is 
represented by the current-format input buffer allocation record. 
This forces the files to be formatted in the same order that they 
were read. As the portion of the file that the BAR represents is 
formatted, the BAR is released, enabling an AFR to use the BAR to 
initiate another file read at a later time. 

If a file is being converted, it is moved by logical records; If 
it is not being converted, it is moved by physical records. The 
formatting routine treats the conversion of sequential files as a 
special case, since they have variable length logical records. 
All other file types are treated normally. 

Beginning at the record index into the input buffer (AFRLRI), 
CVFFOR tries to move a logical record. If it has moved all of 
the data in a source physical record, it advances the source 
buffer index past any slop that might be at the end of the 
physical record. If it has moved all of the source physical 
records that have been packed into an ADU(s), it advances the 
index past any slop there. The same goes for the index into the 
output buffer when a target physical record has been filled. If 

2270513-9701 13-31 Volume Utilities 



SCI/Utilities Design 

either of the indexes is advanced past the allocation in its 
buffer, either by skipping slop or moving data, the formatting 
stops and enough information is retained so that after getting 
more source or freeing an output buffer, formatting can continue 
upon reentry. 

Since a sequential logical record can be split across physical 
records, and perhaps combined while changing record lengths, 
sequential data movement is treated as a special case at points 
where the header and trailer words can be updated appropriately. 

13.3.3.17 CVFNC1. 

This routine performs the calls to the Pascal divide/multiply 
routines. Specifically, this routine makes calls to divide 
words, divide words rounded, and round OP1 up or down to a 
multiple of OP2. 

13.3.3.18 CVFNC2. 

This routine adds/subtracts OP1 from OP2 and then DIVs/MODs by 
OP3. 

13.3.3.19 CVFNC3. 

This routine performs long integer division rounded up. 

13.3.3.20 CVFSRD. 

This routine issues 
buffers as possible. 
following occur: 

as 
It 

many 
will 

* There is no buffer space. 

* There are no IRBs. 

* There are no BARs. 

reads 
stop 

* All of the file has been read. 

13.3.3.21 CVGIOB. 

of a file into the input 
trying when any of the 

This routine gets an output buffer for formatting. 

Volume Utilities 13-32 2270513-9701 



SCI/Utilities Design 

13.3.3.22 CVLAFR. 

This routine loads an AFR with information about an image on a 
program file from the additional program file information record 
(APR) and the FDR of the program file. This AFR goes through 
normal file processing except that it does not go through end-of
file processing. Only one image of a program file is moved at a 
time. 

13.3.3.23 CVPDIR. 

This routine formates an FDR buffer, stacks and allocates disk 
space for directories, and sets the file FDR indexes. 

13.3.3.24 CVPERM. 

This routine builds and prints error messages. 

13.3.3.25 CVPHDR. 

This routine prints the various headers on the interactive and 
listing devices. 

13.3.3.26 CVPPGF. 

This routine processes the overhead records of a program file. 
It also sets up the AFR for moving the program file image. Note 
that little parallel I/0 occurs during program file movement. 

13.3.3.27 CVPSTA. 

This routine calls the routines that print the status line on the 
VDT screen. 

13.3.3.28 CVPSVC. 

This routine issues all I/O with an SVC call. 

13.3.3.29 CVRWVR. 

This routine 
SVC sequence. 
verifications. 

performs either a read SVC or a write/read/verify 
It allows MAXERR retries on I/Os and 

13.3.3.30 CVSMAP. 

This routine updates the target disk partial bit maps and puts 
the disk into a usable state. It first sets all of the ADUs in a 
map, as allocated, and then resets the ADUs that the free ADU 
list (FARARP) says are not allocated. 

2270513-9701 13-33 Volume Utilities 



SCI/Utilities Design 

13.3.3.31 CVSTR1. 

This is the outer level initialization routine for each copy. It 
is called at the beginning of each copy. It reads the target's 
bad ADU list, sets up the free ADU list, opens the devices, 
allocates disk space for VCATALOG, stacks VCATALOG, and copies 
the track 1 loader. It calls the routines that check the volumes 
in the drives and initialize the data structures. 

13.3.3.32 CVSTR2. 

This copy initialization routine loads the disk parameter 
variables which are in common with the information from buffers 
loaded in CVCDEV. It also initializes IRBs, AFRs, BARs, CORs, 
and the stack (DERARP). 

13.3.3.33 CVTRCP. 

This pathname trace routine determines which files on a given 
volume have bad ADUs in them. 

13.3.4 CV Assembly Modules. 

The following paragraphs briefly describe the CV 
language modules. 

13.3.4.1 CVCMPB. 

assembly 

This routine compares two buffers, given the number of words to 
verify. 

13.3.4.2 CVDMVB. 

This routine moves words from one buffer to another. 
moved from the bottom up. 

13.3.4.3 CVEACT. 

Words are 

This routine executes if the task takes end action. It formats a 
message and calls the end-of-copies routine to terminate the task 
cleanly. This routine traps the Pascal label R$EACT, so that the 
Pascal compiler will put this routine's R$EACT label into word 3 
of the task image. 

13.3.4.4 CVENDC. 

This is the termination (end-of-copies) routine. It prints an 
error message if one is passed to it. It then issues the end-of
copies message and, if the system disk was involved in any copy, 
hangs the system. If the system disk was not involved, it issues 
an end of task SVC. 

Volume Utilities 13-34 2270513-9701 



SCI/Utilities Design 

13.3.4.5 CVLCOM. 

This module only lists some of the variables in common because 
CVSTRT (the initialization module) cannot assemble with all of 
them in it. The discussion of CVSTRT explains why all common 
variables must be referenced before the initialization code. 
reserve block5 

13.3.4.6 CVMOVB. 

This routine moves words from one buffer to another, given the 
offsets from which to move and the number of words to move. 

13.3.4.7 CVMSGM. 

This routine contains all the text messages used by CV. 

13.3.4.8 CVPMSG. 

This routine issues all I/0 to the interactive and listing 
devices. 

13.3.4.9 CVPTCH. 

This is the patch module. 

13.3.4.10 CVRRTE. 

This routine traps Pascal abort and exit routine labels and SCI 
calls. It formats a message and calls the end-of-copies routine. 

13.3.4.11 CVSTRT. 

This module gets memory for buffers and reads the parameter file. 
This code is used as buffer space and is overwritten during 
execution. In order to do this, the code had to be at the end of 
the task. This was made possible by putting the code into a 
CSEG, and by making sure all other common variables were 
referenced before the code in the code-CSEG. This insures 'that 
the code will be the last thing in the task space. Note also 
that the Pascal stack-getting routine has been replaced here, and 
the Pascal stack is a static structure in this code. 

13.3.5 CV Special Cases. 

Certain file types, individual files, and directories are treated 
as special cases by CV. The following paragraphs discuss these 
special cases. 

2270513-9701 13-35 Volume Utilities 



SCI/Utilities Design 

13.3.5.1 Special Case File Types. 

Program files, image files, and key indexed files have various 
exceptions to standard CV operations. The exceptions for each 
file type are as follows: 

1. Program Files - Each image of a program file is 
allocated contiguously and each image goes through 
normal file processing with an AFR that makes it look 
like an image file. It does not go through end-of-file 
processing. Instead, control goes back to CVPPGF so 
that the rest of the program file can be moved. 

2. Image Files - Image files are allocated contiguous 
space on the target disk. Their physical record length 
is set to a target sector length. 

3. KIF Files - KIF files are never compressed, and their 
physical records are never converted. The copy is done 
by physical record, and the target disk allocation is 
made as if the file were bounded. 

1 3 • 3 • 5 • 2 Special Case Files and Directories. 

CV treats the following files as special cases: 

1. .S$0VLYA - Compress, but never convert its physical 
record length • 

2. • S$TCALIB - Compress, but never convert its physical 
record length. 

3. .S$CLF - Compress, but never convert its physical 
record length. 

4. .GENDAT - Compress, but never convert its physical 
record length. 

5. .JENDAT - Compress, but never convert its physical 
record length. 

6 •• S$ROLLA - Never compress, but physical record length 
can be converted. 

7 •• S$DIAG - Allocate space for this file on the last 
available ADUs on the target disk. 

8 .• VCATALOG directory - In CVPDIR, update . VCATALOG 's 
FDR, but do not stack it. 

Volume Utilities 13-36 2270513-9701 



SCI/Utilities Design 

13.3.6 CV Debug Suggestions. 

To change the size of the directory stack, patch the value of the 
common variable MAXDRI in CVSTRT. 

To change the size of the stack, R$GSHP and R$GSHS (in CVSTRT) 
must return the new value, and references to CSGINT must be 
altered to correspond to the new stack length. CSGINT is defined 
to be the part of the code that can be used as buffer space and 
which begins at the end of the stack. This patch is not easy, 
but only requires changing four words (in line) in CVSTRT. 

To change the size 
common variable MAXFDR 

of the FDR buffers, patch the value of the 
in CVSTRT. 

The best places to breakpoint an error condition caught by CV are 
in CVCSVC, CVCFLE, or CVCVER. These are the only modules that 
process errors during a copy. 

If the error is a file formatting error (CVCFLE called from 
CVFFOR), the AFR assigned to that file contains all of the 
pertinent file information. To find the correct AFR, use the 
index indicated in the BAR passed to CVCFLE. The AFR is your 
best bet for file allocation or formatting problem~. 

If CV does not catch the error, and it is a file formatting 
error, the best thing to do is try a copy of that one file. 
Breakpoint the code before and after CVFFOR. This allows you to 
examine the formatting process as it proceeds. The BAR indexed 
by CFRBRI is the current BAR that needs formatting. It contains 
the index for the AFR. 

If the error occurs when printing messages, the problem may be in 
CVPMSG. This is the only message printer. However, CVPERM and 
CVPSTA are responsible for building a message with variable text 
and numbers to be passed to CVPMSG. 

The majority of errors involve file fo~matting. If it appears 
CVCPRM is 

of disk 
that not enough disk space was 
responsible. However, if it appears 
space was the problem, see CVALCD and 

reserved, then 
that allocation 

CVLACA. 

Be very careful altering the sequential file formatting code. 
Much of it is context sensitive. The best safeguard is to work 
through, by hand, an example in which a source blank-suppressed 
logical record, with an odd length, is split across source 
physical records, but is combined and split across target 
physical records. Such an example will illustrate the reason for 
the placement and setting of the various status flags. 

2270513-9701 13-37 Volume Utilities 



SCI/Utilities Design 

Note that any additions to the modules CVFFOR 
cause a significant reduction in the speed of 
within the formatting loop in CVFFOR should be 
adds a major detour to the code path. 

13.4 BACKUP DIRECTORY TO DEVICE (BOD) 

or CVCSNW will 
CV. Module calls 
avoided. R$LINK 

The following paragraphs contain the design specification for the 
BOD utility. This utility allows users to perform a rapid 
sequential copy of the data in a disk directory or volume. The 
destination device may be either disk or tape and the backup file 
format is compatible with the Restore Directory (RD) processor. 

BOD is bid by CVINIT, the initial task for BDD and CV, and runs 
in foreground mode. BOD performs a series of up to nine backup 
operations from a disk volume or directory to a disk or tape. 
The user is kept aware of BDD's progress by a VDT display which 
keeps a running total of the number of bytes and files 
transferred to the destination media. The numbers displayed on 
the screen represent the actual number of bytes of data written. 
This .number may be different than the number of bytes of actual 
source, since BDD performs data compression (when possible) for 
source files with disk space allocated to them beyond the last 
physical record in the file. 

13.4.1 BOD Data Structures. 

All of BDD's data structures are declared .as COMMON variables. 
BDD is compiled with the LOCALS Pascal compiler option to achieve 
better (smaller) task size. Therefore much communication between 
BDD modules is accomplished through these common variables. 

13.4.1.1 Buffers. 

BOD uses a total of six large data structures. Their usage is as 
follows: 

* Two READ buffers 

* Two I/0 buffers 

* One VERIFY buffer 

* One FDR buffer 

The READ, I/O, and VERIFY buffers are identical in structure and 
their sizes are determined dynamically for each rerun of BDD. 
These buffers are simply arrays of WORDs which are indexed from 0 
to the dynamically determined maximum. 

Volume Utilities 13-38 2270513-9701 



SCI/Utilities Design 

The READ buffers are used to read data from the user's source 
files. Note that by data we mean actual file data, since FDRs 
for the files are read into the FDR buffer. The reads of this 
file data are accomplished by using direct disk I/O (read by ADU) 
in initiate mode. Therefore the data in these buffers at any 
point during BDD execution is an in-memory copy of the disk 
image. 

The I/0 buffers are used to hold data that has been formatted and 
moved from a READ or FDR buffer. This data is written directly 
to the output device. If the output device is a disk, the data 
is written to a VCATALOG image file using direct disk I/0 (write 
by ADU). If the destination is a tape drive (destination 
pathname= MTxx), the buffer is written using device I/O. In 
either case, the write is performed in initiate mode. 

The VERIFY buffer is used to hold data read from the destination 
(after it is written from an I/O buffer) to be compared to an I/O 
buffer already prepared and in memory. It is important to note 
that verification compares the formatted in-memory data to the 
data on the destination. It does not compare the source to the 
destination. If the destination is a disk, BDD starts (or 
queues) a read into the VERIFY buffer immediately after writing 
from an I/0 buffer. If the destination is tape, verification is 
performed as a second pass over the source. That is, BDD does 
all the work a second time, but at the point where it would have 
written an I/0 buffer in the first pass, it instead reads from 
the destination into the VERIFY buffer. This second pass is to 
avoid having the tape flutter back and forth during the backup. 

Several common variables are used to support the READ, I/O, and 
VERIFY buffer. These are IOPTR, IOINDX, RPTR, RINDX, IOVSIZE, 
and RSIZE. Each o~ these common variables is an array indexed 
from 0 to 1 with the exception of IOVSIZE and RSIZE, which are 
merely positive integers representing the size in WORDs of the 
I/O and VERIFY buffer and the READ buffers. The size of the I/O 
and VERIFY buffers must be the same since the VERIFY buffer will 
be used in a comparison with one of the I/0 buffers. 

The other array data structures run from 0 to 1 and are indexed 
by the common CIO (current I/0 buffer). The current I/0 buffer 
is the one that will receive data next. IOINDX is the word index 
into the I/0 buffer of the next available word. IOPTR is an 
array of two pointers to the two I/O buffers. RINDX and RPTR 
serve a similar function for the two READ buffers. 

Note that the size of the I/0 and VERIFY buffers must be an even 
multiple of the sector size of the destination disk. The size of 
the read buffers must be an even multiple of the sector size of 
the source disk. If the destination is tape, then BDD creates 
the I/0 buffers the largest size possible that is a multiple of 
288. 

2270513-9701 13-39 Volume Utilities 



SCI/Utilities Design 

The FDR buffer is more complicated in its structure than the 
other large buffers. The FDR buffer is conceptually a stack. 
Each stack entry is a queue. Each queue entry holds a sector 
from a source directory file. Therefore the FDR buffer is a 
stack of queues. The stack size is fixed at 23. Each entry in 
the stack represents one nesting level in the source pathname 
currently being backed up. Since the maximum pathname length is 
48 characters, the maximum nesting level for any file is 24 (for 
example, A.B.C.D.E.F ••• and so on). The VCATALOG level is not 
contained in the FDR buffer, thus the 23 stack entries. 
Currently each level queue holds two entries. 

A diagram of the FDR buffer structure is shown in Figure 13-1. 
begin figure 

LIFO I 
I 

\II 

LEVEL STACK 

(top of stack) 

stack bottom 

+--------+ 
QUEUE FOR LEVEL 1 

I I ·--------· QUEUE FOR LEVEL 2 

FIFO----> 
(head of queues) 

QUEUE FOR LEVEL N-2 

QUEUE FOR LEVEL N-1 

QUEUE FOR LEVEL N 
+--------+ 

Figure 13-1 Interfaces Between SCI and Control Tasks 

To produce a backup file compatible with the RD processor, each 
directory on the source disk must be completely moved to the 
backup file before any of the data from brother directories is 
moved. So, if BDD is currently working on a directory at level 
N, the FDR buffer slots for levels N+1 through 23 are available 
for use. To take advantage of this fact and avoid extra source 
reads, BDD reads directories at level N into all the slots from N 
through 23. 

When BDD encounters ~n FDR for a directory file it is forced to 
·adjust the FDR buffer by moving two (= max sectors per level) 
FDRs from the deepest level up to their proper level queue, and 
begin a read of the directory into the next deepest level. This 
adjustment causes a reread of any source sectors that were thrown 
away during the adjustment. This reread is forced on BDD by the 
structure of the backup file required by the RD processor. 

Volume Utilities 13-40 2270513-9701 



SCI/Utilities Design 

The FDR buffer is statically declared in the Pascal source, but 
its size can be changed by changing the values of two constants, 
MAX NEST(: 23), and SECT PER LEVEL(: 2). A Pascal variant record 
structure allows BDD to index into the FDR buffer in one of two 
ways. The first access method treats the FDR buffer as a two
dimensional array [1 •• 23,1 •• 2]. The second method treats the 
buffer as a monotone array [1 •• 23*2]. The monotone access is 
used for FDRs (source sectors) in the FDR buffer that reside on a 
level lower than their proper level. 

At any point during BDD execution, the current FDR (the one then 
being examined or backed up) is defined by 
FDRBUF[TOP Q,Q HEADS[TOP Q]]. TOP Q is an integer indicating 
which level Is current, and Q=HEADS is a 23 entry array of 
integers indicating the offset from the first entry on level 
TOP Q. One other BDD data structure, CURDIR, is logically 
related to the FDR buffer. CURDIR is an array of records that is 
indexed from 1 to MAX NEST(= 23). Each entry in CURDIR tracks 
the current state of the FDR at offset Q HEADS[level number] in 
the FDR buffer. One entry in CURDIR looks like the following: 

+-------------+ 
>OO START Start ADU for the directory file, this level 

+-------------+ 
>02 LENGTH Total length of this directory (in sectors) 

+-------------+ 
>06 INBUFF Total number of sectors now in buffer 

+-------------+ >OB TOPADU ADU address of the first sector, this level 

>OA 

>OC 

>OE 

+-------------+ 
TOPSEC 

+-------------+ 
I 
I , EODIN 

+-------------+ 
PNAME 

+-------------+ 

Sector offset (from TOPADU), first sector 

Boolean indicating logical end of directory 

8-character name component of this directory 

The START, LENGTH, & PNAME fields remain constant whereas the 
other fields change when BOD reads the next portion of a 
directory into the FDR buffer. <TOPADU,TOPSEC> is the disk 
address of the first sector for the given directory currently in 
the buffer. EODIN is a boolean that is set when the all of the 
given directory has passed through the FDR buffer. Since a read 
of a directory file into the FDR buffer may use up portions of 
the FDR bOffer that properly belong to "lower" levels, the data 
structure CURDIR is needed to track this overflow into the lower 
levels. 

13.4.1.2 Other BOD Data Structures. 

This paragraph briefly explains the uses of some of the other 
data structures used by BOD, which may or may not be clear from a 
perusal of the source code. 

2270513-9701 13-41 Volume Utilities 



SCI/Utilities Design 

The following common variables are used 
device is a disk rather than a tape drive: 

when the destination 
BKUPADU, DKUPSEC and 

DESTFDR. 

<BKUPADU,BKUPSEC> is the destination disk address of the FDR for 
the backup file in the destination's VCATALOG. DESTFDR is a copy 
of the backup file FDR which is kept in memory until the backup 
completes normally. A rudimentary FDR is placed on the 
destination disk immediately after BOD discovers that there is an 
available slot in the destination VCATALOG. This rudimentary FDR 
has all the constant fields filled in but omits the allocation 
information in the FDR. This information is filled in only after 
the backup completes normally. Therefore, if the backup aborts 
before normal completion, no space on the destination disk has 
been allocated to the backup file. Note that BOD has written 
into free ADUs on the disk, but these areas have not been 
actually allocated to the backup file until the end of the 
backup. DESTFDR, the in-memory copy of the FDR, has the 
allocation information filled in immediately after the 
rudimentary copy is written to disk; hence DESTFDR's allocation 
fields are used to calculate the next location to write on the 
disk. 

The U CHAIN and U ANCHOR variables are used in moving (and 
formatiing) data froi a read buffer to an I/O buffer~ 

UCHAIN is a chain of records describing unformatted source 
currently residing in a read buffer. U ANCHOR is an index which 
indicates which of the statically allocated links in the chain is 
first on the list. The format of a link is as follows: 

U LINK = record 
-RB 0 •• 1; 

RB SEC INDX SMALLINT; 
LENGTH- SMALLINT; 
ADUNUM WORD; 
SECNUM POSINT; 
READ DONE boolean; 
NEXT- : O .• MAX INITIATES; 

end;(*U_LINK*) -

"WHICH READ BUFFER? 
"SECTOR OFFSET INTO THE READ BUFFER 
"LENGTH OF THIS READ(IN SOURCE SECTORS) 
"ADU NUMBER OF THE READ 
"SECTOR OFFSET OF THE READ 
"HAS READ COMPLETED? 
"NEXT LINK IN U CHAIN(O:NONE) 

Note that <ADUNUM,SECNUM> defines the source disk address where 
the portion of the read buffer described by this link was 
obtained. The READ DONE field is needed because reads into a 
read buffer are initiated. Finally, note that the LENGTH and 
RB SEC INDX fields change as the data is moved from a read buffer 
into one of the I/0 buffers. 

The following common data structures are used in tracing source 
pathnames on their way to the backup file: DIREC, DIRECTRIES, 
LEAFS and LEAVES. This is done so that a report of the pathnames 

Volume Utilities 13-42 2270513-9701 



SCI/Utilities Design 

in error can be given to the user in the event of an I/O error on 
the destination device. 

DIREC is a pointer at the array DIRECTRIES, and likewise, LEAFS 
is a pointer at the array LEAVES. The array LEAVES is treated in 
the code as if it were declared as follows: 

LTRACE = array[0 •• 1,1 •• MAX_LEAF_TRC]of LTRC_REC; 

where LTRC REC is: 

LTRC REC = record 
NAM- NAME; 
DPART : integer; 

end; (*LTRC REC*) 

"leaf name 
"points at entry in DIREC@ 

LEAVES holds the leaf components of the files which are currently 
in one of the I/O buffers. The eight-character leaf component is 
stored in the NAM field. The DPART is an index into the 
DIRECTRIES array. This index specifies where the front part of 
the pathname (the part which goes in front of the leaf component) 
may be found. The LEAVES data structure is declared large enough 
to hold all the leaf components which might possibly be contained 
simultaneously in both I/O buffers. On the other hand, the 
DIRECTRIES array is declared only large enough to hold a 
heuristically determined maximum number of "front ends". This is 
done to save task code space. 

Should the DIRECTRIES array overflow during execution, no message 
is issued to the user until an I/O error occurs on the 
destination disk. At that time, if the DIRECTRIES data structure 
has overflowed, only the leaf components of the pathnames in 
error will be displayed for the user. If the DIRECTRIES array 
has not overflowed, BDD will be able to report fully expanded 
pathnames of all files in the I/0 buffer that encountered the 
error on the destination. Finally, note that the overflow of 
this array is not important, unless an error occurs getting the 
data to the destination media. Further explanation of these two 
data structures may be found in the Pascal type declaration 
module for BDD, located at DSC.TEMPLATE.PTABLE.BDTYPE. 

13.4.2 BOD Program Flow. 

1. GET MEMORY FOR BUFFERS AND PARAMETER FILE AND READ 
PARAMETER FILE 

Errors during this process will cause an abort of the 
entire program since all reruns depend on the parameter 
file and memory for the large buffers. Requests for 
memory for the I/0, READ, and VERIFY buffers are 
reduced until the desired amount is obtained, or until 
further reducing the request size would mean fewer than 

2270513-9701 13-43 Volume Utilities 



SCI/Utilities Design 

2304 bytes per I/O buffer. This memory request limit 
means ~hat BDD can run in approximately 53 K bytes of 
task space if necessary. When setting up pointers to 
the free space for large buffers, BOD takes advantage 
of the fact that the initial request for memory for the 
parameter file will return a pointer that is 
essentially the beet size of the task plus one beet. 
Note that the entire parameter file is read into memory 
and held until completion of all reruns. (This means 
that doing multiple reruns per task execution is 
slower, since memory needed to hold the parameters is 
stolen from I/O buffers). Also note that one of the 
bid parameters used by the initial task for bidding BOD 
is the number of beets required to hold the parameter 
file. After completion of this portion of BDD, the 
system disk is no longer needed. 

2. SET THE BID PARAMETERS FOR THIS RERUN. 

BOD interprets the in-memory parameter file to set up 
the following common flags for the rerun: 

LU NOS 

PATHS 
USESYS 

VERIFY 

DEVICES 

LUNOs for interactive, listing, source, 
and destination devices. 
Pathnames for source and destination. 
A flag that indicates if the system disk· 
was involved. 
A flag that indicates if verification 
was requested. 
An array of device names of the devices 
to be used. 

It also initializes the LUNO fields of the IRBs 
dedicated to the source and destination devices with 
the LUNOs for these devices. 

3. OPEN THE LISTING AND INTERACTIVE DEVICES. 

An error on these opens will cause a task abort. The 
listing and interactive devices are opened with an open 
rewind operation in order to form feed the listing 
device and clear the screens of the interactive devices 
before each rerun. 

4. GET THE SOURCE AND DESTINATION DEVICES MOUNTED AND 
OPENED. 

For the first rerun only, BDD will not issue mount 
requests for the user if the volumes specified by the 
parameter are already in the proper drives. For all 
reruns, the routine BDMONT verifies that the proper. 
volumes have been mounted. Verification of mount 
completion consists of opening each drive involved, 

Volume Utilities 13-44 2270513-9701 



SCI/Utilities Design 

reading the volume information for the disk drives 
involved, and setting the dynamic buffer sizes for the 
rerun. For disks, validation consists of checking that 
the volume name in ADU O of the disk matches the volume 
name specified in the parameter file. For tapes, 
validation varies depending on whether the mount 
routine is entered during first pass or second pass 
processing. During first pass, tapes are validated by 
issuing a dummy write of the tape, followed by a 
backspace LUNO. For second pass processing, tape 
validation consists of a forward space/backward space 
LUNO sequence. The dummy write during first pass i~ so 
that "virgin" tapes will not produce >43 errors on a 
forward space operation. 

5. BUILD FDR FOR BACKUP FILE AND PLACE SKELETAL VERSION ON 
DISK. 

A skeletal FDR for the backup file is built and placed 
on the disk. The constant fields of the FDR are filled 
in, but the information regarding disk allocation for 
the file is omitted from this skeletal version. After 
the partial FDR has been placed on the disk, BDD scans 
the partial bit maps on the destination disk to find 
the 17 largest free areas. These 17 slots are then 
placed in the in-memory copy of the FDR which was 
placed on the disk. Note that the free areas located 
during this scan must be at least as large as one I/O 
buffer to qualify for inclusion in the in-memory FDR. 

6. FIND THE TOP LEVEL SOURCE DIRECTORY. 

The final start-up operation is to locate the directory 
to back up on the source disk. BOD begins at VCATALOG 
on the source disk and searches for the directory (or 
file) specified by the user. When found, the FDR for 
the top level directory is left in the FDR buffer. 
Information about this top level pathname, including 
start ADU, length in sectors, and the eight character 
component name is left in the common CURDIR. 

7. INITIALIZE THE BUFFER INFORMATION FOR 
BUFFERS. 

THE LARGE 

The level queues (in the FDR buffer) are all marked as 
empty, except for the top level. The actual backup 
process begins. 

8. READ AS MUCH AS POSSIBLE OF THE FIRST DIRECTORY INTO 
THE FDR BUFFER 

Reads into the FDR buffer are performed as explained in 
the discussion of BDD data structures. When a 

2270513-9701 13-45 Volume Utilities 



SCI/Utilities Design 

directory is read, the amount to read is determined by 
the space remaining in the FDR buffer from the current 
level through level 23 (the last level). 

9. PROCESS THE ENTRIES IN THE FDR BUFFER. 

Entries in the FDR buffer at the current level are 
processed in the order in which they are read. 
Execution continues as long as FDRs for other 
directories are not encountered. When directory FDRs 
are found, the FDR buffer is adjusted and a read of the 
new directory is performed into the the next deeper 
level in the buffer. When file FDRs are encountered in 
the FDR buffer, some of the information which is needed 
to continue the backup process is saved before the file 
FDR is moved to an I/O buffer for output. Eventually 
the routine BDMVPR is called to move all of the 
physical records in the file to an I/0 buffer. 

10. MOVE THE PHYSICAL RECORDS IN THE FILE THRU AN I/O 
BUFFER. 

The routine BDMVPR essentially controls all of the 
actual backup work. Data is read into read buffers, 
unbuffered (formatted) into an I/O buffer, and written 
to the destination. When all of the physical records 
have been moved, control returns to step 9. Note that 
this routine is speed critical. Each Pascal procedure 
call added to this routine will cause an approximate 2% 
overall increase in the time to perform a backup. Care 
has been taken in the design of this module to execute 
calls only when absolutely necessary. (This includes 
calls by Pascal to run-time routines.) 

11. CLEAN UP AFTER THE BACKUP. 

When the FDR buffer has been exhausted, the rerun is 
essentially complete. For disk destinations, cleanup 
operations consist of the following: 

a. Change the in-memory copy to reflect the actual 
amount of disk space used by the backup. 

b. Change the bit maps to indicate that space has 
been assigned to the backup file. 

c. Write the adjusted in-memory· FDR to disk to 
replace the skeletal FDR previously placed there. 

d. Restore the volume name from $$$$$$$$ to its 
original value. 

Volume Utilities 13-46 2270513-9701 



SCI/Utilities Design 

For tapes, cleanup consists of the following: 

* 
* 

Write a double EOF mark to the tape. 

Position the tape to just before or just 
after the EOF marks. 

12. PUT FINAL STATISTICS AND FINISH TIME TO THE INTERACTIVE 
AND LISTING DEVICES 

13. CLOSE LUNOS USED FOR THIS RERUN. 

The LUNOs used for each rerun are closed from the main 
routine, BDD, at the conclusion of the rerun. 

14. RELEASE LUNOS BEFORE EXITING. 

Release of the LUNOs used by BDD is performed by BDD's 
substitute S$TERM routine. This substitute routine is 
always called to terminate the BDD program provided 
that the system disk drive was not involved in any of 
the reruns. If the system disk was involved, BDD does 
not release LUNOs, but performs a LIM! 0 and forces the 
user to boot the system. 

STEPS 

9-10 

2-13 
4-11 

Are repeated until the source directory 
is exhausted. 
Are repeated for each rerun. 
Are repeated for second pass tape 
verification, but instead of writing 
the destination, the tape is read and 
compared to the I/0 buffer which would 
have been written. 

13.4.3 BDD Modules. 

The following discussion of BDD modules explains the work don~ by 
each routine. 

13.4.3.1 BDABSQ. 

This routine produces the abort sequencing messages for various 
fatal errors encountered during processing. It can abort the 
current rerun by setting the global common flag ABORT RUN. 

2270513-9701 13-47 Volume Utilities 



SCI/Utilities Design 

13.4.3.2 BDADJF. 

This routine is called when a directory sector is encountered in 
the FDR buffer. BDADJF adjusts the FDR buffer by moving the next 
SECT PER LEVEL sectors up in the FDR buffer, so that they reside 
on level-TOP Q {instead of spanning other lower levels as they do 
when they are read into the buffer). 

13.4.3.3 BDADKD. 

This routine reads and moves either a KOR or all the ADRs for a 
file. The KOR or the first alias resides at SECOFF sectors from 
the beginning of the directory containing this file. The flag 
MOVKDR indicates whether the KOR or a chain of ADRs is being 
moved. Channels {DNOS only) are handled in an identical manner 
to aliases. 

13.4.3.4 BDAPLF. 

This routine appends the leaf component, LEAF, to the already 
constructed directory part of the pathname DPTH. It is used to 
construct pathnames to dump for the user when errors occur. 

13.4.3.5 BDBFDR. 

This routine builds a rudimentary FDR for the backup file. {It 
should be called only if DEST IS DISK is true.) 

13.4.3.6 BDBFSZ. 

This routine calculates the buffer sizes and sets pointers to the 
buffers based on the sector length of the source {and the 
destination if disk), and the amount of free space {calculated in 
BDGPRM). 

13.4.3.7 BOBBED. 

This routine builds a header record for the first volume of the 
backup file. 

13.4.3.8 BDBKUP. 

This is the driver routine for each BOD rerun. 

13.4.3.9 BDC2NM. 

This routine converts an 8 byte character string to the type 
NAME, and returns this name variable in OUTNAME. 

Volume Utilities 13-48 2270513-9701 



SCI/Utilities Design 

13.4.3.10 BDCHBM. 

This routine changes the partial bit maps on disk, beginning at 
the bit that represents STRT ADU and continuing for a length of 
LENGTH ADUs (bits). If ALLOCATE is true, the routine allocates 
these ADUS (sets bits to 1). If ALLOCATE is not true, the 
routine releases these ADUs (sets bits to 0). 

13.4.3.11 BDCKRD. 

This routine checks on the read status of the FDR buffer. 

13.4.3.12 BDCKVR. 

This routine checks to see if a verification read has completed. 
If so, it sets the common flag VERIF READY to true. 

13.4.3.13 BDCLCT. 

This routine collects the volume information for either the 
source (SRC) or destination (DST) disk from LOCALSEC. 

13.4.3.14 BDCLNP. 

This routine performs the final clean-up operations after a rerun 
has completed. This routine's responsibilities are: 

For disks: 

1. Make the in-memory copy of the backup file FDR reflect 
the amount of disk space actually used by the file. 

2. Make the bit maps on the destination disk reflect the 
amount of disk space actually used by the backup file. 

3. Make the disk copy of the backup file FDR the same as 
the in-memory copy (after modified by Step 1). 

4. Restore the volume name from $$$$$$$$ to the original 
value. 

For tapes: 

1. Write a double EOF mark on the tape. 

2. Position the tape to just before or just after the 
double EOF. 

2270513-9701 13-49 Volume Utilities 



SCI/Utilities Design 

13.4.3.15 BOD. 

This routine is the entry point for task BDD. 

13.4.3.16 BDD1. 

This routine is called by the main routine, BDD, to repeat the 
backup logic for the second pass against tapes. 

13.4.3.17 BDDIRT. 

This routine adds a directory pathname to the data structure used 
for tracing pathnames in the write (I/O) buffers. 

13.4.3.18 BDDOND. 

For disks only, this routine checks to see if any of the 
destination IRBs have completed an outstanding write. Screen 
statistics may also be printed from this module when a completed 
write is detected and the screen has not been updated for more 
than the threshold number of times (NEWSCREEN = threshold 
trigger). 

13.4.3.19 BDDONT. 

For tapes only, this routine checks to see if any of the 
destination IRBs have completed an outstanding write on the write 
buffer. If so, it reports any errors and marks the IRB as free. 
The I/0 buffers are searched in the order they were written 
(tracked by WB TAPE CNT). Screen statistics may be printed from 
this module when -a completed write (in the first pass) or read 
(in the second pass) is detected and the screen has not been 
updated for more than the threshold number of times (NEWSCREEN = 
threshold trigger). 

Two explicit cases are handled: 

* First pass (Backup Pass) 

* S2ND PASS (Verification Pass) 

During the first pass, if an end-of-tape marker is detected, 
control is passed to routine BDNXVL to handle the transition to 
the next destination volume. During second pass verification, 
volume switch time is detected by the trailer record on the tape. 
BDNXVL is still called to switch volumes, but control returns to 
BDDONT to complete processing after the volume switch. 

Volume Utilities 13-50 2270513-9701 



SCI/Utilities Design 

13.4.3.20 BDDUMP. 

This routine constructs the pathnames of all files in the I/0 
buffer WICH, and dumps them (print to screen) for the user. It 
does this based on the trace data structures. 

13.4.3.21 BDFDRF. 

This routine processes a file FDR for the routine BDFDRP. The 
flow of control continues from this module through the call to 
BDMVIO. BDFDRF is called when BDFDRP has detected a file FDR in 
the FDR buffer. 

13.4.3.22 BDFDRP. 

This routine is the driver to process the FDR buffer. 

13.4.3.23 BDFILT. 

This routine adds the leaf component (name) of a file to the 
trace data structure for tracing file names in the write (I/O) 
buffers. 

13.4.3.24 BDFIND. 

This routine finds the disk address of the top level directory or 
file pathname to backup (specified to the initial task by the 
user). There are really three cases : 

* The user is backing up a normal directory. 

* The user is backing up the VCATALOG directory (whole 
volume). 

* The user is backing up a single file. 

13.4.3.25 BDFIXD. 

This special purpose routine unconditionally restores the volume 
name of the destination disk to the name specified in 
PATHS[DPATH]. Also, if the parameter HKC is true, the routine 
decrements the FDRHKC in the FDR residing at <STRT ADU,STRT SEC>, 
which is presumably the disk address of where the backup- file 
name hashes in VCATALOG on the destination. 

13.4.3.26 BDFLBL. 

This routine performs a back-space/forward-space LUNO against the 
LUNO for the destination device (the flag FORWARD determines 
which). It returns any error code received from this operation 
in ERRCOD. 

2270513-9701 13-51 Volume Utilities 



SCI/Utilities Design 

13.4.3.27 BDFLSH. 

This routine will be called once for each rerun to flush any 
unwritten or partially filled I/0 buffers to the destination. 

13.4.3.28 BDGBLK. 

This routine obtains a source (or destination) dedicated !RB and 
returns it to the caller, or returns an invalid index into the 
array of IRBs (= 0) if all the IRBs are currently in use. 

13.4.3.29 BDGPRM. 

This routine gets the bid parameters from the file .S$BDD that 
define the execution parameters for BDD. This procedure is 
called exactly once when the initial task transfers control to 
BDD. 

It also gets the memory needed 
buffers and assigns to the memory 
pointers LEAFS and DIREC, for 
respectively. 

13.4.3.30 BDGTIM. 

to trace pathnames in the write 
obtained for such purpose the 
leaf names and directory names 

This routine performs a Get Date and Time SVC and puts the five 
words returned from this SVC in the time buffer, TIME BUFF. 

13.4.3.31 BDGVIF. 

This routine gets the appropriate volume information for the 
source disk from ADU 0, sector O. It saves the pertinent 
information in global variables for future reference during this 
rerun of BDD. 

13.4.3.32 BDHASH. 

This routine hashes NAME2H into a directory of length "DIRLEN". 
It assigns the hash key value of the name to this function. 

13.4.3.33 BDINCM. 

This routine performs data initializ~tions for common variables. 

13.4.3.34 BDINIO. 

This routine sets the I/0 buffer control variables to their 
initialized state. 

Volume Utilities 13-52 2270513-9701 



SCI/Utilities Design 

13.4.3.35 BDINVF. 

This routine initializes the 
verification. 

13.4.3.36 BDIOPR. 

common variables used for 

This routine processes the I/O buffers. It acts as the driver 
for moving data through the I/0 buffers. I/O is done in initiate 
mode. 

13.4.3.37 BDIOQT. 

This routine forces any I/O started in INITATE mode to complete. 

13.4.3.38 BDMESG. 

This routine writes messages for the user to the terminal and the 
listing device. All user seen output comes from this module. 

13.4.3.39 BDMONT. 

This routine issues a mount volume request for the next volume of 
a backup. It forces the user to mount the requested next volume 
or quit the current rerun. 

13.4.3.40 BDMPTH. 

This routine makes a fully expanded pathname representing the 
current directory being backed up. 

13.4.3.41 BDMVIO. 

This routine moves data from either the FDR buffer (if FROMFDR = 
true), or a READ buffer to the next available spots in the 
current I/0 buffer. It is the task standard way to move data 
into an I/0 buffer. 

13.4.3.42 BDMVPR. 

This routine moves the physical records of the file being backed 
up to an I/0 buffer. This is a speed critical module. Care has 
been taken to avoid unneeded calls to the Pascal run time. (The 
source has been written to force Rifle to generate the desired 
code.) Any added Pascal run-time calls will have a direct 
negative impact on task speed. This module is the work-horse for 
the backup process, and is the most important module in the task. 

13.4.3.43 BDNMEQ. 

This routine determines whether two NAME variables are equal. 

2270513-9701 13-53 Volume Utilities 



SCI/Utilities Design 

13.4.3.44 BDNXVL. 

This routine controls volume switches for BDD. It is called from 
BDWDSK for disks, and BDDONT for tapes. 

13.4.3.45 BDOPEN. 

This routine opens the devices and returns errors. 

13.4.3.46 BDPFDR. 

This routine puts the backup file FDR on the destination disk. 

13.4.3.47 BDPHED. 

This routine puts the backup header record on the destination. 

13.4.3.48 BDPPTH. 

This routine returns a bad pathname to the user. 

13.4.3.49 BDPTIM. 

This routine puts the begin and end time of each backup to the 
listing devices. It also paints the VDT screen template the 
first time. 

13.4.3.50 BDQERR. 

This routine is the utility to issue an error message 
This routine is a shorthand way of calling BDSVCE to 
error to the user (and append some text), setting the 
to inform BDD that the current rerun is aborting, 
aborting the current rerun by escaping several levels 
routine BDBKUP. 

13.4.3.51 BDREDD. 

(quickly). 
post an SVC 
abort flag 
and finally 
up to the 

This routine reads part of a directory into the FDR buffer. 

13.4.3.52 BDREDF. 

This routine starts a read into the current read buffer (if 
needed), or sets the read buffer control variables to indicate 
completion when a read has completed. This module is speed 
critical. Additional Pascal run-time calls should be avoided. 

13.4.3.53 BDREDV. 

This routine attempts to start a read into the verify buffer for 
disk destinations. 

Volume Utilities 13-54 2270513-9701 



SCI/Utilities Design 

13.4.3.54 BDSCAN. 

This routine scans the destination disk's partial bit maps to set 
up an array of the 17 largest free areas (of a minimum size) on 
the destination disk. 

13.4.3.55 BDSCRM. 

This routine calculates the number of sectors that still have not 
been read into the FDR buffer. It makes this calculation for the 
directory represented by CURDIR[INDEX]. It returns the number of 
unread sectors in REMAINING. 

13.4.3.56 BDSCTY. 

This routine finds out what type of sector is at 
FDRB.LVL[TOP_Q,Q_HEADS[TOP_Q]]. 

13.4.3.57 BDSORT. 

This routine sorts the allocation array produced by BDSCAN in 
order of allocation size. It puts the sorted results in the 
common DESTFDR, the in-memory copy of the destination file FDR. 

13.4.3.58 BDSPLT. 

This routine finds the 
pathname stored in PTH. 
CNAM (component name) • 

13.4.3.59 BDSRCH. 

name for the "CNUMth" component of the 
It returns this value in the parameter 

This routine searches the ADUs in a disk's partial bit map, 
looking for the next block of unallocated ADUs. 

13.4.3.60 BDSTBD. 

This routine sets the bid parameters for this rerun. 

13.4.3.61 BDSVCE. 

This routine outputs a message about an SVC error to the user. 
If the common variable UCODE is non-zero, The routine issues a 
utility error message for further explanation for the user. 

13.4.3.62 BDSVFD. 

This routine saves the needed portions of the FDR for a file in 
other named variables and commons for easy access. It is called 
by BDFDRF. 

2270513-9701 13-55 Volume Utilities 



SCI/Utilities Design 

13.4.3.63 BDVECT. 

This routine sets up the common variable SECVEC for use when 
unbuffering physical records from source ADU images. This vector 
(array) is only used if the physical records fit in a single 
source ADU. 

13.4.3.64 BDVERF. 

This routine performs verification. It verifies the write buffer 
specified by V WICH with the current contents of the verify 
buffer. 

13.4.3.65 BDWBGN. 

This routine determines if a write has begun. 

13.4.3.66 BDWDSK. 

This routine writes backup data to a disk destination. 

13.4.3.67 BDWNDX. 

This routine computes the word index of FDRB[LEVEL,SECT]. 

13.4.3.68 BDWRV. 

This routine is BDD's write, read, and verify utility. It is 
used only during volume switches. 

13.4.3.69 BDWTAP. 

This routine writes backup data to a tape destination. 

13.4.3.70 BDZIRB. 

This routine zeros an !RB. 

13.4.4 BDD Debug Suggestions. 

The module BDFDRP is a large case statement with the case 
selector being the type of sector in the FDR buffer to be 
examined next. This module is a good place to set a breakpoint 
to find errors on a particular file. Set the breakpoint at the 
FILSEC case and wait for the file in error to come through. When 
the FDR for the desired file is seen, follow the control flow 
from there. 

Tape verification errors occur only during second pass 
processing. Therefore, a good place to begin looking for this 
type of error is in the module BDD1, since this module is called 

Volume Utilities 13-56 2270513-9701 



SCI/Utilities Design 

to repeat the backup logic for the second pass. 

Until almost all processing is complete, 
destination is inaccurate. The proper 
debugging is the in-memory copy, DESTFDR. 

the FDR 
FDR to 

on the disk 
examine when 

If errors occur on multiple volume backups immediately after 
switching volumes, the routine BDNXVL should be examined. This 
module completely controls the switch to a new volume. BDNXVL is 
called from BDWDSK for disk backups, and BDDONT for tape backups. 

For major design changes in which several modules must be 
compiled often, it is much quicker to use the Pascal 
configuration processor than to always compile each module 
separately. The following file can be used as input to the 
configurator to allow compilation of several modules at one time. 
This file defines the static nesting structure of the BOD task. 

*BUILD PROCESS 
*LIBRARY S 
*ALTOBJ 0 
*ADD BOD 
*ADD BOD BDABSQ 
*ADD BDD BDFILT 
*ADD BOD BDAPLF 
*ADD BDD BDBKUP 
*ADD BDBKUP BDADJF 
*ADD BDBKUP BDADKD 
*ADD BDBKUP BODI RT 
*ADD BDD BDBFDR 
*ADD BDBKUP BDCKRD 
*ADD BDBKUP BDCKVR 
*ADD BOD BDCHBM 
*ADD BDBKUP BDDOND 
*ADD BDBKUP BDDONT 
*ADD BDBKUP BDCLNP 
*ADD BDBKUP BDQERR 
*ADD BDBKUP BDFDRP 
*ADD BDBKUP BDFDRF 
*ADD BDBKUP BDFLSH 
*ADD BDBKUP BDIOPR 
*ADD BDBKUP BDIOQT 
*ADD BOD BDMONT 
*ADD BDBKUP BDMVIO 
*ADD BDBKUP BDMVPR 
*ADD BDBKUP BDNXVL 
*ADD BOD BDPFDR 
*ADD BDBKUP BDREDF 
*ADD BDBKUP BDREDD 
*ADD BDBKUP BDREDV 
*ADD BDBKUP BDSVFD 
*ADD BDBKUP BDSCTY 
*ADD BOD BDSCAN 

2270513-9701 13-57 Volume Utilities 



*ADD 
*ADD 
*ADD 
*ADD 
*ADD 
*ADD 
*ADD 
*ADD 
*ADD 
*ADD 
*ADD 
*ADD 
*ADD 
*ADD 
*ADD 
*ADD 
*ADD 
*ADD 
*ADD 
*ADD 
*ADD 
*ADD 
*ADD 
*ADD 
*ADD 
*ADD 
*ADD 
*ADD 
*ADD 
*ADD 
*ADD 
*ADD 
*ADD 
*ADD 
*ADD 
*ADD 
*ADD 
*ADD 
*CAT 

13.4.5 

BDBKUP BDVECT 
BDD BDSRCH 
BDD BDSORT 
BDBKUP BDVERF 
BDBKUP BDWDSK 
BDBKUP BDWTAP 
BDD BDBFSZ 
BDD BDBHED 
BDD BDC2NM 
BDD BDD1 
BDD BDZIRB 
BDD BDSPLT 
BDD BDDUMP 
BDD BDSVCE 
BDD BDFIND 
BDD BDFIXD 
BDD BDFLBL 
BDD BDGTIM 
BDD BDGBLK 
BDD BDGVIF 
BDGVIF BDCLCT 
BDD BDGPRM 
BDD BDHASH 
BDD BDINCM 
BDD BDINIO 
BDD BDINVF 
BDD BDMPTH 
BDD BDMESG 
BDD BDNMEQ 
BDD BDOPEN 
BDD BDPHED 
BDD BDPTIM 
BDD BDPPTH 
BDD BDSCRM 
BDD BDSTBD 
BDD BDWNDX 
BDD BDWBGN 
BDD BDWRV 
PROCESS<O,FIG> 

Miscellaneous Comments. 

SCI/Utilities Design 

BDD uses several assembly language substitute run-time routines. 
The routines for which there are BDD substitutes are R$ABND, 
R$EXIT, R$GSHP, R$PBVT, and S$TERM. 

Substitute routines are used to save task space for run-time 
functions which need not be performed for BDD. Refer to the 
Pascal documentation for a description of the functions performed 
by each of these routines in the normal Pascal task. 

Volume Utilities 13-58 2270513-9701 



SCI/Utilities Design 

The message texts used by BOD are located in the assembly 
language module BDTEXT. All text, with three exceptions, is 
located in this module. The three exceptions are for the end
action message, run-time error message, and the IPL-sequence
required messages. The text for these messages is located in the 
run-time substitute module R$EXIT. If you change the text of a 
message (for internationalization for example), note that the 
length of the message is significant. 

The following common variables used by BOD are referenced by one 
or more BOD assembly language modules: USESYS, GIRB, PRMPTR, and 
TRERUN. 

13.5 SURFACE ANALYSIS ALGORITHM 

The following paragraphs contain the metacode and data structures 
used by IDS and tape build for surface analysis. The Disk 
Information Table, the master list of all disk information (words 
per track, default values, pointers, and so on) for each disk 
type supported by Texas Instruments, can be found in 
DSC.IDS.SOURCE.DITDAT, where DSC is the DNOS source directory. 

13.5.1 Metacode. 

BEGIN IDSADS 

----------------------------------------------·-------------------
This routine will analyze the surface of the disk according 
to the options specified in the parameter block. 
No surface analysis is performed if the ignore bad tracks 
option or restore bad tracks option is specified. 

INPUT: R3 contains the pointer to a parameter block (IDSPRM) 
indicating the options selected and disk information. 

OUTPUT: BADTAB - The bad tracks found, restored, or deleted· are 
combined with the bad track information in the 
bad track table when this routine is called. 
Track 0 sector 1 of the disk is updated. 
The diagnostic track is updated. 

* Initialize global variables, values dependent on disk type, 
* and values dependent on options specified in IDSPRM. 

CALL IDSIRP(R3) 

IF IDSPRM.FLAGS.DELETE 
THEN 

*Delete bad tracks is specified. 

2270513-9701 13-59 Volume Utilities 



SCI/Utilities Design 

CALL DELETE BAD TRACKS 
ESCAPE TO EXIT999 

ENDIF 

IF IDSPRM.FLAGS.RESTORE 
THEN 

*Restore bad tracks is specified. 
CALL RESTORE BAD TRACKS 
ESCAPE TO EXIT999 

ENDIF 

* Initialize graph. 
IF IDSPRM.FLAGS.GRAPH 
THEN 

CALL INITIALIZE GRAPH 
IF ERROR 
THEN 

GRAPH FLAG = NO 
ELSE 

GRAPH FLAG = YES 
ENDIF 

ELSE 
GRAPH FLAG = NO 

ENDIF 

IF IDSPRM.STARTING CYLINDER = 0 
THEN 

* This is not an IDS continuation, so read 
* the diagnostic track into the bad track table. 
CALL READ DIAGNOSTIC TRACK 
IGNORE ERRORS 

ENDIF 

* Analyze each cylinder on the disk. 
FOR CYLINDER = IDSPRM.STARTING CYLINDER TO TOTAL CYLINDERS - 1 

* Since some disks return errors if cylinder Is changed 
* with offsets active, issue a seek for this cylinder. 
* If disk type supports of~sets, issue restore command. 
ISSUE SEEK DIRECT TILINE DISK COMMAND 
IF SA ASSIST = YES 
THEN 

CLEAR REC DEFECT LEN table 
ENDIF 
CALL ANALYZE CYLINDER 
IF FATAL ERROR: EXIT1 
CALL UPDATE AFTER CYLINDER 
IF FATAL ERROR: EXIT1 

CONTINUE 

* Sort the bad track table. 
CALL IDSSRT(@BADTAB) 

* Map bad tracks. 

Volume Utilities 13-60 2270513-9701 



SCI/Utilities Design 

CALL MAP BAD TRACKS 

* Write the diagnostic track. 
CALL WRITE DIAGNOSTIC TRACK 
IF FATAL ERROR: EXIT1 

*Write the bad track list on track 0, sector 1. 
CALL AVOID BAD TRACKS 
IF FATAL ERROR: EXIT1 

* Note that there is a hole here: the bad track list 
*is in the state 2 format on track 0, sector 1, but 
*the disk is in state 1. 

* Change the disk state to 2. 
CLEAR SECTOR BUFFER 
SECTOR BUFFER.SCOSTA = 2 
WRITE SECTOR BUFFER 
IF FATAL ERROR: EXIT1 

TERMINATE GRAPH DISPLAY 

WRITE SYSTEM LOG MESSAGE FOR NORMAL TERMINATION 

B EXIT999 

ERROR EXIT -----------------

EXIT1 TERMINATE GRAPH DISPLAY 
WRITE SYSTEM LOG MESSAGE FOR ABNORMAL TERMINATION 
B EXIT999 

EXIT999 RETURN 

END IDSADS 

2270513-9701 13-61 Volume Utilities 



SCI/Utilities Design 

BEGIN IDSIRP - Initialize Routine Parameters 

This routine will initialize global variables that 
depend on disk type and options specified in IDSPRM. 
INPUT: R3 contains a pointer to parameter block (IDSPRM). 
OUTPUT: Global variables initialized. 

@IDSPRM = R 3 

@BADTAB = @IDSPRM.BADTRK 

* READ TYPES WORD has bits set corresponding to 
* each-read type used for surface analysis. 
READ TYPES WORD = IDSPRM.DITPTR.DITRTF 

NUM RD TYPES = number of bits set in READ TYPES WORD 

IF IDSPRM.TSTLVL .EQ. 'L' 
NUM PATTERNS:4 
WRTFMTS PER PATTERN:8 

ELSE 

IF IDSPRM.TSTLVL .EQ. 'M' 
NUM PATTERNS:4 
WRTFMTS_PER_PATTERN=5 

ELSE 

IF IDSPRM.TSTLVL .EQ. 'S' 
NUM PATTERNS:2 
WRTFMTS PER PATTERN:2 

ENDIF 
ENDIF 

ENDIF 

IF READ_TYPES_WORD indicates only nominal read 
THEN 

WRTFMTS PER PATTERN: WRTFMTS PER PATTERN * 4 
ENDIF 

PATTERNS(1) = @IDSPRM.DIT.@PATTERNS(1) 
PATTERNS(2) = @IDSPRM.DIT.@PATTERNS(2) 
IF @IDSPRM.UP1 = 0 
THEN 

* User did not enter patterns. 
PATTERNS(3) = IDSPRM.DIT.@PATTERNS(3) 
PATTERNS(4) = IDSPRM.DIT.@PATTERNS(4) 

ELSE 
* User has entered patterns. 
PATTERNS(3) = @IDSPRM.UP1 
PATTERNS(4) = @IDSPRM.UP2 

Volume Utilities 13-62 2270513-9701 



SCI/Utilities Design 

ENDIF 

* The legal limit of the bad track table is calculated 
* based on the disk type. 64 bad tracks are allowed for 
* all disks. The number of additional tracks allowed for 
* disks with bad track mapping depends on the number of 
* spare tracks available for mapping. 

CALCULATE BAD TRACK TABLE LEGAL LIMIT based on disk type 

* Note: Some disks support surface analysis assistance 
* (SA-Assist) only if they have a controller of a certain 
* revision level. Other disks support SA-Assist regardless 
* of the controller revision level. 
* To determine the revision level of the controller, 
* IDS issues a self test command >7C. 

IF DITDAT.SA ASSIST .EQ. YES 
THEN 

IF DITDAT.ISSUE SELF TEST .EQ.YES 
THEN 

CLEAR SELF TEST RETURN BUFFER 
ISSUE SELF TEST >7C 
IF REVISION OF CONTROLER .GE. TABLE VALUE 
THEN 

SA ASSIST = YES 
ELSE 

SA ASSIST = NO 
ENDIF 

ELSE 
SA ASSIST = YES 

ENDIF-
ELSE 

SA ASSIST = NO 
ENDIF 

TOTAL HEADS = 
FIRST FIVE BITS OF WORD 3 OF STORE REGISTERS FROM DIT 

TOTAL CYLINDERS = 
LAST 11 BITS OF WORD 3 OF STORE REGISTERS FROM DIT 

* The recorded defect length table is initialized to 2 in every 
* entry. It is important to note that if SA-Assist is supported, 
* the recorded defect length will be zeroed before the analysis 
* of each cylinder. If SA-Assist is not supported, the recorded 
* defect length remains set to 2 and is never changed. 
INITIALIZE REC DEFECT LENGTH table TO 2 IN EVERY ENTRY 

IF @IDSPRM.FLAGS.MARK MARGINAL TRACKS 
THEN 

ALLOWABLE TRACK PERCENTAGE = 100 
ELSE 

2270513-9701 13-63 Volume Utilities 



ALLOWABLE TRACK PERCENTAGE = 300 
ENDIF 

IF @IDSPRM.DIT.TRANSFER INHIBIT FLAG 
THEN 

SET UP GLOBAL VALUES USED TO FAKE 
REFORMAT FLAG = YES 

ELSE 

SCI/Utilities Design 

= NO 

TRANSFER INHIBIT 

SET UP GLOBAL VALUES TO USE WITH TRANSFER INHIBIT 
REFORMAT FLAG = NO 

ENDIF 

SET UP GLOBAL PARAMETERS THAT DEPEND ON DISK TYPE FOR 
ISSUE TILINE DISK COMMAND ROUTINE 

-----------------------------------------------------------------
END IDSIRP 
-----------------------------------------------------------------

Volume Utilities 13-64 2270513-9701 



SCI/Utilities Design 

BEGIN ANALYZE CYLINDER 

This routine will completely analyze one cylinder of a disk. 
The cylinder is input by the value of R1. 

GLOBAL DATA RELEVANT ON INPUT 
SA ASSIST 
TOTAL HEADS 
WRTFMTS PER PATTERN 
NUM PATTERNS 

OUTPUT: The cylinder specified by R1 is analyzed. 

BAD RDS PER PATTERN table contains the count of bad 
reads per pattern in the entry corresponding to 
each pattern and each head. 

TOT RDS PER PATTERN table contains the total reads 
per pattern in the entry corresponding to each pattern 
for each head. 

HEAD ERROR FLAG table contains an entry for each head: 

- An entry of 0 indicates the head never had an error. 

- An entry of indicates the head had an error, but 
it has not been determined to be bad. 

- An entry of -1 indicates the track corresponding 
to that head has been determined to be bad. 

CLEAR BAD RDS PATTERN table 
CLEAR TOT-RDS-PATTERN table 
CLEAR HEAD ERROR FLAG table 

* * This loop will repeat only once unless there is an error. 
* If there is an error, the loop will repeat five times to 
* perform "overdrive" on each head with an error. 
* Overdrive is caused by REPETITIONS being set to 5. This 
* occurs whenever an error occurs in FORMAT AND READ TRACK 
* or SA ASSIST FORMAT AND READ CYLINDER. 

REPETITIONS = 1 
FOR COUNT = 1 TO REPETITIONS 

FOR PATRN INDX = 1 TO NUM PATTERNS 

FOR FORMAT COUNT = 1 TO WRTFMTS PER PATTERN 
SET FORMAT PATTERN IN BUFFER 
IF COUNT = 1 

2270513-9701 13-65 Volume Utilities 



SCI/Utilities Design 

THEN 
* The first time through the outer loop, count 
*is 1, so analyze every track on the cylinder. 
IF SA ASSIST = YES 
THEN 

CALL SA ASSIST FORMAT AND READ CYLINDER 
IF FATAL_ERROR7 ESCAPE, ERROR CODE IN RO 

ELSE 
CALL FORMAT AND READ CYLINDER 
IF FATAL ERROR:-ESCAPE, ERROR CODE IN RO 

ENDIF -
ELSE 

*If in overdrive (count is not 1), analyze only 
* those tracks on the cylinder which had errors. 
* These tracks are indicated by a 1 
* in HEAD ERROR FLAG. 
FOR HEAD ~ 1 TO-TOTAL HEADS 

IF HEAD ERROR FLAGCHEAD) = 
THEN - -

IF SA ASSIST = YES 
THEN 

CALL SA ASSIST FORMAT AND READ TRACK 
IF FATAL ERROR7 ESCAPE, ERROR CODE IN RO 

ELSE -
CALL FORMAT AND READ TRACK - - -IF FATAL ERROR: ESCAPE, ERROR CODE IN RO 

ENDIF 
ENDIF 

CONTINUE (for head = to total heads) 
ENDIF 

CONTINUE (for format count = 1 to wrtfmts per_pattern) 
CONTINUE (for patrn indx = 1 to num patterns) 

CONTINUE (for count = 1-to repetition) 
RETURN 

END ANALYZE CYLINDER 

Volume Utilities 13-66 2270513-9701 



SCI/Utilities Design 

BEGIN UPDATE AFTER CYLINDER 

This routine is called after each cylinder is analyzed. 
It will call ANALYZE TRACK INFORMATION to evaluate the track. 
It will also update the bad track table, update state 1 and graph 
display if necessary, and reformat the track if necessary. 

GLOBAL DATA RELEVANT ON INPUT 
CURGRAPH 
REFORMAT FLAG 
TOTAL CYLINDERS 

GLOBAL DATA RELEVANT ON OUTPUT 
CURGRAPH 

IF REFORMAT FLAG = YES 
THEN 

CALL REFORMAT CYLINDER 
ENDIF 

CALL ANALYZE TRACK INFORMATION 

CALL UPDATE BAD TRACK TABLE - - -IF FATAL ERROR: ESCAPE WITH ERROR CODE IN RO 

INCREMENT = (TOTAL CYLINDERS * 79) I CYLINDER 
IF INCREMENT .GT. CURGRAPH or CYLINDER = 0 
THEN 

CALL UPDATE STATE1 
CURGRAPH = INCREMENT 
IF GRAPH FLAG = YES 
THEN 

CALL IDSDSP(INCREMENT) 
ENDIF 

ENDIF 

END UPDATE AFTER CYLINDER 

2270513-9701 13-67 Volume Utilities 



SCI/Utilities Design 

BEGIN FORMAT AND READ CYLINDER 

This routine is called only if SA_ASSIST = NO. 
This routine will call FORMAT AND READ TRACK for each head on the 
cylinder. 

GLOBAL DATA RELEVANT ON INPUT 
TOTAL HEADS 

GLOBAL DATA RELEVANT ON OUTPUT 
BAD RDS PATTERN(HEAD,PTRN INDX) is updated. 
TOT-RDS-PATTERN(HEAD,PTRN-IND~) is updated. 
HEAD_ERROR_FLAG(HEAD) is updated. 
REPETITIONS is set to 5 if any errors are encountered. 

FOR HEAD = 1 TO TOTAL HEADS 
IF HEAD ERROR FLAG(H EAD) . NE. >FF 
THEN 

CALL FORMAT AND READ TRACK 
IF FATAL ERROR: ESCAPE WITH ERROR CODE IN RO 

ENDIF 
CONTINUE 
RETURN 

END FORMAT AND READ CYLINDER 

Volume Utilities 13-68 2270513-9701 



SCI/Utilities Design 

BEGIN FORMAT AND READ TRACK 

This routine is called only if SA_ASSIST = NO. 
It performs a write format operation with the pattern indicated 
by PTRN INDX on the track indicated by CYLINDER and HEAD. 
After the write, a read will be issued for each read type. 
If any read type fails, the failing read type will be read 
nine more times. Read types which have not failed will be 
read four more times. If any errors are found, REPETITIONS 
will be set to 5 to force overdrive in the outermost loop of 
ANALYZE_CYLINDER, and HEAD_ERROR_FLAG will be set to 1. 

GLOBAL DATA RELEVANT ON INPUT 
CYLNDER - Cylinder containing track to analyze. 
PTRN INDX - Index of pattern to use. 
HEAD-- Head number to analyze. 
READ TYPES WORD 

GLOBAL DATA RELEVANT ON OUTPUT 
BAD RDS PATTERN(HEAD,PTRN INDX) is updated. 
TOT-RDS-PATTERN(HEAD,PTRN-INDX) is updated. 
HEAD ERROR FLAG(HEAD) is updated. 
REPETITIONS is set to 5 if any errors are encountered. 

ISSUE WRITE FORMAT WITH PATTERN 
IGNORE ERRORS 

CLEAR FAILURES PER READ TYPE table 
BAD RDS WRTFMT: 0 
TOT-RDS-WRTFMT = 0 
CLEAR MEDIA ERROR FLAG 

* Issue a read for each read type. 
FOR I = 1 TO 14 

IF READ TYPES WORD(bit I) = 1 
THEN -

SET READ TYPE(I) IN >18 SVC BLOCK 
SET READ-COMMAND IN >18 SVC BLOCK 
BL ISSUE TILINE DISK COMMAND 

TOT RDS WRTFMT = TOT RDS WRTFMT + 1 

IF ERROR 
THEN 

IF ERROR .EQ. MEDIA ERROR 
THEN 

FAILURES PER READ TYPE(I) = 
SET MEDIA ERROR FLAG 
REPETITION = 5 
HEAD ERROR FLAG(HEAD) = 1 

ELSE 
ESCAPE FORMAT AND READ TRACK WITH ERROR CODE IN RO 

2270513-9701 13-69 Volume Utilities 



SCI/Utilities Design 

END IF 
END IF 

END IF 

CONTINUE 

IF MEDIA ERROR FLAG SET 
THEN 

* Got an error on this track, so read it nine more 
* times for every read type that failed and four more 
* times for every read type without errors. 

FOR I = 1 TO 14 
IF READ TYPES WORD(bit I) = 
THEN 

FOR N = 1 TO 9 

* Only do read if read type has failed or if the 
* track has not already been read four more times. 
IF N LT. 5 .OR. FAILURES PER READ TYPE(!) .NE. ZERO 
THEN -

SET READ TYPE(!) IN SVC >18 CALL BLOCK 
BL ISSUE TILINE DISK COMMAND 
TOT RDS WRTFMT = TOT-RDS WRTFMT + 1 

IF ERROR 
THEN 

IF ERROR .EQ. MEDIA ERROR 
THEN 

INCREMENT FAILURES PER READ TYPE(!) 
IF FAILURES PER READ TYPE(!) .GE. 6 THEN 
THEN - - -

* Track is bad: 60% of reads failed for type I. 
HEAD ERROR FLAG(HEAD) = >FF - -ESCAPE FORMAT AND READ TRACK 

END IF 
ENDIF (if media error) 
ELSE 

ESCAPE FORMAT AND READ TRACK 
ENDIF (if error) 

ENDIF (if failure or n < 5) 
CONTINUE 
BAD RDS WRTFMT: BAD RDS WRTFMT + FAILURES PER READ TYPE(!) 

END IF 
CONTINUE 

END IF 
CALL ANALYZE FORMAT INFORMATION 
RETURN 

END FORMAT AND READ TRACK 

--------------=----=--------------------------------------------- \ 

Volume Utilities 13-70 2270513-9701 



SCI/Utilities Design 

BEGIN SA ASSIST FORMAT AND READ CYLINDER 

This routine is called only if SA ASSIST = YES. 
This routine performs a write format operation using the pattern 
indicated by PTRN INDX on the cylinder indicated by CYLNDR. 
It will then call-SA ASSIST STATISTICS to perform the additional 
reads if any errors occur. 

GLOBAL DATA RELEVANT ON INPUT 
CYLINDER - Cylinder number to format and analyze. 
PTRN INDX - Index of pattern to use. 
NUM RD TYPES 
READ TYPES WORD 
TOTAL HEADS 

GLOBAL DATA RELEVANT ON OUTPUT 
BAD RDS PATTERN(HEAD,PTRN INDX)is updated for each head. 
TOT-RDS-PATTERN(HEAD,PTRN-INDX)is updated for each head. 
HEAD_ERROR_FLAG(HEAD) is updated for all heads. 

* Set up SA_ASSIST_BUF for write format with pattern. 
SA ASSIST BUF.FLAGS = READ TYPES WORD 
SA-ASSIST-BUF.WRITE FORMAT FLAG =-YES 
SA-ASSIST-BUF.CYLINDER MODE= YES 

* Issue write format. 
SET HEAD TO ZERO 
BL ISSUE TILINE DISK COMMAND 

FOR HEAD = 1 TO TOTAL HEADS 
IF HEAD ERROR FLAG(HEAD) .NE. >FF 
THEN - -

TOT RDS WRTFMT= NUM RD TYPES 
BAD-RDS-WRTFMT= 0 - -CLEAR FAILURES PER READ TYPE table 

* Recorded defect length table is cleared in IDSADS. 
IF SA ASSIST BUF.FAILING READ TYPE(HEAD) <> ZERO 
THEN - - - -

IF REC_DEFECT_LEN(HEAD) .LE. SA ASSIST BUF.DEFECT LENGTH(HEAD) 
THEN 

REC DEFECT LEN(HEAD): SA ASSIST BUF.DEFECT LENGTH(HEAD) 
ENDIF - - - - -

HEAD_ERROR_FLAG(HEAD) = 
REPETITIONS = 5 

FOR J = 1 TO 14" 

2270513-9701 

IF SA ASSIST BUF.FAILING_READ_TYPES(HEAD,bit J) 
THEN 

INCREMENT FAILURES PER READ TYPE(J) 
BAD RDS WRTFMT= BAD RDS WRTFMT + 1 

13-71 Volume Utilities 



END IF 

CONTINUE 

END IF 
CALL SA ASSIST STATISTICS 

END IF 
CONTINUE 

RETURN 

END SA ASSIST FORMAT AND READ CYLINDER 

Volume Utilities 13-72 

SCI/Utilities Design 

2270513-9701 



SCI/Utilities Design 

BEGIN SA ASSIST FORMAT AND READ TRACK 

This routine is called only if SA ASSIST = YES. 
This routine performs a write format operation using the pattern 
indicated by PTRN INDX on the track indicated by HEAD and CYLNDR. 
This routine is niver reached unless there has been an 
error on this head previously. 

GLOBAL DATA RELEVANT ON INPUT 
CYLINDER - Cylinder containing track to analyze. 
PTRN INDX - Index of pattern to use. 
HEAD-- Head number to analyze. 

GLOBAL DATA RELEVANT ON OUTPUT 
BAD RDS PATTERN(HEAD,PTRN INDX) is updated. 
TOT-RDS-PATTERN(HEAD,PTRN-INDX) is updated. 
HEAD ERROR FLAG(HEAD) contains >FF if track is determined bad. 

* Set up SA ASSIST BUF for write format with pattern in head mode. 
SA ASSIST-BUF.FLAGS = READ TYPES WORD 
SA-ASSIST-BUF.WRITE FORMAT-FLAG~ YES 
SA-ASSIST-BUF.HEAD MODE =YES 
* Issue TlLINE disk command. 
SET HEAD VALUE 
BL ISSUE TILINE DISK COMMAND 

TOT RDS WRTFMT: NUM RD TYPES 
BAD-RDS-WRTFMT= 0 
CLEAR FAILURES PER READ TYPE table 

IF SA ASSIST BUF.FAILING READ TYPE(1) <>ZERO - -THEN 
IF REC DEFECT LEN(HEAD) .LE. SA ASSIST BUF.DEFECT LENGTH(1) 
THEN 

REC DEFECT LEN(HEAD)= SA ASSIST BUF.DEFECT LENGTH(1) 
ENDIF - - - -

FOR J = 1 TO 14 DO 
IF SA ASSIST BUF.FAILING_READ_TYPE(1,bit J) 
THEN 

INCREMENT FAILURES PER READ TYPE(J) 
BAD RDS WRTFMT= BAD RDS WRTFMT + 1 

ENDIF 
CONTINUE 

ENDIF 
BL SA ASSIST STATISTICS 

RETURN 

END SA ASSIST FORMAT AND READ TRACK 

2270513-9701 13-73 Volume Utilities 



SCI/Utilities Design 

BEGIN SA ASSIST STATISTICS (SAS) 

This routine will perform the additional reads to gather 
statistics for analyzing the specified track (HEAD). 
Each read type which fails will be read nine more times. 
Read types without errors will be read four more times. 

GLOBAL DATA RELEVANT ON INPUT 
HEAD 
BAD RDS WRTFMT 
TOT-RDS-WRTFMT 
FAILURES PER READ TYPE table 
NUM RD TYPES-

GLOBAL DATA RELEVANT ON OUTPUT 
BAD RDS WRTFMT is updated. 
TOT-RDS-WRTFMT is updated. 
HEAD_ERROR_FLAG is updated. 

IF BAD RDS WRTFMT .NE. ZERO 
THEN 

* There has been an error, so statistics will be gathered. 

* Set up SA_ASSIST_BUF for read without format in head mode. 
SET MODE TO READ WITHOUT WRITE FORMAT 
SA ASSIST BUF.HEAD MODE = YES 

* Issue TILINE disk command. 
SET HEAD VALUE 

CUR NUM READ TYPES = NUM READ TYPES 

FOR N = 1 TO 9 DO 

BL ISSUE TILINE DISK COMMAND 

TOT RDS WRTFMT = TOT RDS WRTFMT + CUR NUM READ TYPES 

IF SA ASSIST BUF.FAILING READ TYPE(1) .NE. ZERO 
THEN - - - -

IF REC DEFECT LEN(HEAD) .LE. SA ASSIST BUF.DEFECT LENGTH(1) - -THEN 
REC DEFECT LEN(HEAD)= SA ASSIST BUF.DEFECT LENGTH(1) 

ENDIF - - - - -

FOR J = 1 TO 14 DO 
IF SA ASSIST BUF.FAILING_READ_TYPE(1,bit J) 
THEN 

INCREMENT FAILURES PER READ TYPE(J) 
BAD RDS WRTFMT= BAD RDS WRTFMT + 1 

Volume Utilities 13-74 2270513-9701 



SCI/Utilities Design 

IF FAILURES PER READ TYPE(J) .GE. 6 
THEN 

* Track is bad: 60% of reads failed for read type. 
HEAD ERROR FLAG(HEAD) = >FF 
ESCAPE SA ASSIST STATISTICS 

ENDIF 
ENDIF 

CONTINUE (for j = 1 to 14) 

ENDIF (if sa_assist_buf .failed_read_types) 

* After four additional reads on this track, read types that 
* have not failed are reset in the SA ASSIST BUF because 
* they have been read five times. Only those read types which 
* have failed need to be read ten times. 
IF N • EQ. 4 
THEN 

FOR J = 1 TO 14 DO 
IF FAILURES PER READ TYPE(J) .EQ. 0 - -THEN 

SA ASSIST BUF.FLAGS(bit J) = 0 
CUR NUM READ TYPES = CUR NUM READ TYPES - 1 

ENDIF 
CONTINUE 

ENDIF 

CONTINUE (For n = 1 to 9) 
ENDIF 

BL ANALYZE FORMAT INFORMATION 

RETURN 

END SA ASSIST STATISTICS 

2270513-9701 13-75 Volume Utilities 



SCI/Utilities Design 

BEGIN ANALYZE FORMAT INFORMATION 

This routine is called after all the reads are complete for a 
write format operation. It verifies that 45% of all reads 
for this format did not fail. It also accumulates the total 
reads and bad reads for the track. 

GLOBAL DATA RELEVANT ON INPUT 

OUTPUT: 

HEAD - head number analyzed 
BAD RDS WRTFMT - -TOT RDS WRTFMT 
PTRN INDX 

BAD_RDS_PATTERN(HEAD,PTRN_INDX) is updated. 
TOT RDS PATTERN(HEAD,PTRN INDX) is updated. 
HEAD ERROR FLAG(HEAD) - set to >FF if track is determined bad. - -

TOT RDS PATTERN(HEAD,PTRN INDX) = 
- - TOT RDS PATTERN(HEAD,PTRN INDX) + TOT RDS WRTFMT 

IF BAD RDS WRTFMT .NE. 0 
THEN 

BAD RDS PATTERN(HEAD,PTRN INDX) = 
- BAD_RDS_PATTERN(HEAD,PTRN_INDX) + BAD RDS WRTFMT 

BAD RDS LIMIT= TOT RDS WRTFMT * 45% 
IF BAD RDS WRTFMT :GE.-BAD RDS LIMIT 
THEN 

HEAD ERROR FLAG(HEAD) = >FF 
ENDIF 

ENDIF 

RETURN 

END ANALYZE FORMAT INFORMATION 

Volume Utilities 13-76 2270513-9701 



SCI/Utilities Design 

BEGIN ANALYZE TRACK INFORMATION 

-----------------------------------------------------------------This routine is called after each cylinder is analyzed. 
The information about bad reads and total reads has been 
accumulated for each format pattern in two tables. 
This routine analyzes those two tables. 

GLOBAL DATA RELEVANT ON INPUT 
TOTAL HEADS 
NUM PATTERNS 
BAD-RDS PATTERN table 
TOT-RDS-PATTERN table 

GLOBAL DATA RELEVANT ON OUTPUT 
HEAD ERROR FLAG will contain >FF for every track determined bad 

FOR HEAD = 1 TO TOTAL HEADS 
BAD RDS TRK = 0 
TOT-RDS-TRK = 0 

FOR PTRN INDX = 1 TO NUM PATTERNS 
IF BAD RDS_PATTERN(HEAD,PTRN_INDX) .NE. ZERO 
THEN 

BAD RDS LIMIT = 
TOT RDS PATTERN(HEAD,PTRN INDX) * 37.5% 

IF BAD_RDS_PATTERN(HEAD,PTRN_INDX) .GE.-BAD RDS LIMIT 
THEN 

HEAD ERROR FLAG(HEAD) = >FF 
ENDIF 
BAD RDS TRK = BAD RDS TRK + 

BAD RDS_PATTRN(HEAD,PTRN_INDX) 
ENDIF 
TOT RDS TRK = TOT RDS TRK + 

TOT_RDS_PATTRN(HEAD,PTRN_INDX) 
CONTINUE 

BAD RDS LIMIT = 
TOT RDS TRK * ALLOWABLE TRACK PERCENTAGE I 100 

IF BAD RDS TRK .GE. BAD RDS LIMIT 
THEN 

HEAD ERROR FLAG(HEAD) = >FF 
ENDIF 

CONTINUE 

RETURN 

END ANALYZE TRACK INFORMATION 

2270513-9701 13-77 Volume Utilities 



SCI/Utilities Design 

BEGIN UPDATE BAD TRACK TABLE 

This routine will make an entry in the bad track table 
for every bad track found on the cylinder. 

GLOBAL DATA RELEVANT ON INPUT 
TOTAL HEADS 
HEAD ERROR FLAG - One entry for each head; >FF in each 

- - entry with a bad track. 
CYLNDER - Cylinder analyzed. 
BADTAB - Bad track table. 

GLOBAL DATA RELEVANT ON OUTPUT 
BADTAB - Bad track table is updated. 

FOR HEAD = 1 TO TOTAL HEADS 

IF HEAD ERROR FLAG(HEAD) .EQ. >FF 
THEN 

IF CYLINDER = 0 AND (HEAD = 0 OR HEAD = 1) 
THEN 

ATTEMPT TO CLEAR TRACK 0 SECTOR 0 to erase state 1 
CALL ERRINT(ERROR9) 
ESCAPE WITH ERROR CODE IN RO 

ENDIF 

IF BAD TRACK TABLE + 2 = BAD TRACK TABLE LEGAL LIMIT 
* Bad track table full? 
THEN 

* Sort the bad track table. 
CALL ADSSRT 
IF BAD TRACK TABLE +2 = BAD TRACK TABLE LEGAL LIMIT 
* Is the bad-track table still full? 
THEN 

CALL ERRINT(ERROR5) 
ESCAPE WITH ERROR CODE IN RO 

ENDIF 
ENDIF 
PLACE CYLNDER, HEAD, AND REC DEFECT LENGTH(HEAD) IN THE 
NEXT AVAILABLE ENTRY OF BADTAB 

ENDIF 
CONTINUE 

RETURN 

END UPDATE BAD TRACK TABLE 

Volume Utilities 13-78 2270513-9701 



SCI/Utilities Design 

13.5.2 IDS Data Structures. 

The following paragraphs describe the IDS data structures. 

13.5.2.1 IDSPRM. 

A pointer to this structure is in R3 when IDSADS is called. 

*----------+----------* 
R3-> I FLAGS I TSTLVL I Flags/Testing level 

*----------+----------* 
I UP1 I User entered pattern 

*----------+----------* 
I UP2 I User entered pattern 

*----------+----------* 
I STARTING CYLINDER I Starting cylinder 

*----------+----------* 
I INTERLEAVE I User specified interleave 

*----------+----------* 
I BADTRK I Pointer to bad track table 

*----------+----------* 
I DITPTR I Pointer to disk table entry 
*----------+----------* 
IDISK LUNO I I Disk LUNO 

*----------+----------* 
I DISK NAME I Pointer to disk name 

*----------+----------* 
FLAGS: (X •••.••• ) Graph 

( .X •••••• ) Mark questionable tracks 
( .. x ..... ) Delete - Delete bad track list 
( ••• X •••• ) Restore - Restore bad track list 

2270513-9701 13-79 Volume Utilities 



13.5.2.2 BADTAB. 

*----------+----------* 
I NEXT EMPTY ENTRY I ---+ 
*----------+----------* 

+---1 END OF TABLE I 

*----------+----------* 
I CYLINDER I 
*----------+----------* 
I HEAD l DEF LEN l 
*----------+----------* 
I I I 
I I I 
I I I 
*----------+----------* 
l CYLINDER I 

*----------+----------* 
I HEAD I DEF LEN I 

*----------+----------* 
I I !<---+ 
I EMPTY ENTRIES I 
I I I 
*- - - - - + - - - - -* 
I LAST LEGAL ENTRY I 
*- - - - - + - - -* 
I I 
I I 

*- - - - - + -

I 
I 

- - - -* 

SCI/Utilities Design 

*--------------+------------* 
IBAD TRACK TABLE LEGAL LIMIT 

*---=-----=----+=-----=-----
The number of bad tracks 
allowed depends on disk 
type. 64 bad tracks can 
be avoided on all disks. 
Disks that support bad 
track mapping are allowed 
to have all spare tracks 
mapped + 64 tracks avoided. 
The bad track table legal 
limit is calculated in 
IDSIRP and points to the 
first entry past the point 
where the bad track table 
is full for this disk type. 

I 
I 
I 
I 
I 

I 
I 
I 
I 
I 

!<-----------------------------------+ 
I ------------------------------
/ Additional space necessary to 
I allow for duplicates before 
I the table is coalesced. 

*- - - - - + - - - - -* 
l PHYSICAL LAST ENTRY I 
* - -+ - - - - -* 
I I 
I I 

* - - - - -+ - - - - -* 

+---> First word past end of table. 

The high order bit of the cylinder entry is set to 1 if the bad 
track is mapped. This allows the bad track table to be written 
to disk "as-is" on the diagnostic track. 

Volume Utilities 13-80 2270513-9701 



SCI/Utilities Design 

13.5.2.3 READ TYPES WORD. 

One bit is set for each read type to use. The bit is initialized 
in IDSIRP from the DITDAT entry for the disk type. 

*----------+----------* 
I READ TYPES WORD I 
*-------=--+--=-------* 

0 (X ••.••••••...••. ) - Offset forward 
1 (.X •••.•••••••••• ) - Offset reverse 
2 ( •• x •......•..... ) - Strobe early 
3 ( •.• x •••••••••••• ) - Strobe late 
4 ( .••• x ••••••••••• )-Nominal 
5 ( •.••. X ••.••••••. ) - Strobe early and offset early 
6 ( •...•• x ••••••••• ) - Strobe early and offset reverse 
7 ( ••••••• X .•.••••• ) - Strobe late and offset forward 
8 ( •••.•••• x ••••••• ) - Strobe late and offset reverse 

( •••..•••• XXXXX •• ) - Spare future read types - zero 
( •.••.••••••.•• XX) - Never used - zero 

13.5.2.4 READ TYPES. 

There is room for up to 1 4 entries corresponding to 
types to be used for surface analysis. The TPCS flags 
type are contained in the entry corresponding to that 

the 
for a 
read. 

read type corresponds to the bit positions defined 
READ TYPES WORD. 

read 
read 

The 
for 

To clarify, READ_TYPES(entry 1) contains the flags for the TPCS 
to issue the type of read defined for bit 1 of READ TYPES WORD. 

*----------+----------* 
I MASK FOR READ TYPES I 
*----------+----------* 
I 
I 

I 
I 

I 
I 

-·----------+----------* 

2270513-9701 13-81 Volume Utilities 



SCI/Utilities Design 

13.5.2.5 FAILURES PER READ TYPE. 

There-is one byte entry for each possible read type (14). 
Whenever a read type fails, the count is incremented. 

This table is initialized after each write format operation. 

*--------------------* I COUNT OF FAILURES I 
*--------------------* 
I 
I 

I 
I 

*--------------------* 
13.5.2.6 SA ASSIST BUF. 

The first three words of this buffer are set up before issuing 
the command. The entries corresponding to each head contain 
information returned from the SA-Assist command. The bits set in 
FAILING READ TYPES represent which read type has failed. The 
bits in the flag word and in FAILING READ TYPES are described 
below. 

*-------------------+--------------------* 
I RESERVED - ALWAYS 0 I 
*-------------------+--------------------* 
I FLAGS - READ TYPES, CYLINDER, WRITE I 
*-------------------+--------------------* 
I FORMAT PATTERN TO USE I 
*-------------------+--------------------* 
I FAILING READ TYPES I 
*-------------------+--------------------* 
I FAILING SECTOR I DEFECT LENGTH I 
*-------------------+--------------------* 
I 
I 

I 
I 

I 
I 

*-------------------+--------------------* 
I FAILING READ TYPES I 
*-------------------+--------------------* 
I FAILING SECTOR I DEFECT LENGTH I 
*-------------------+--------------------* 

Volume Utilities 13-82 

1 entry per head 

2270513-9701 



SCI/Utilities Design 

SA_ASSIST_BUF flags for READ TYPES, CYLINDER, and WRITE: 

0 
1 
2 
3 
4 
5 
6 
7 
8 

( x !!' •••••••••••••• ) 

( • x . · ............. ) 
( •• x ••••••••••••• ) 
( .•• x .•......•... ) 
( .•.• x .•.•.••.••• ) 
( . . . . . x . . . . . . . . . . } 
( •••••• x ••••••••• ) 
( •..•••.. x ••.•••.• ) 
( .•.••••• x •...•.• } 

- Offset forward 
- Offset reverse 
- Strobe early 
- Strobe late 
- Nominal 
- Strobe 
- Strobe 
- Strobe 

early and offset early 
early and offset reverse 
late and off set forward 

- Strobe late and offset reverse 
9 ( ••••••••• XXXXX •• ) - Spare future read types - zero 
14 ( •••••••••••••• X.) - 1 =Write format and read 

- 0 = Read only 
15 ( .••••••••.••••• X) - 1 =Issue command for entire cylinder 

- 0 = Issue command for one head only 

For FAILING READ TYPES, bits correspond to the flag bits except 
that bits 14 and 15 are not used. 

13.5.2.7 PATTERNS. 

This table is set 
standard patterns 
by the user. 

up by ADSIRP to contain the appropriate 
for the disk type, and the patterns specified 

*-------------+-------------* 
l PATTERN1 FROM DITDAT l 
*-------------+-------------* 
l PATTERN2 FROM DITDAT l 
*-------------+-------------* 
l PTRN3 FROM DITDAT OR USER l 
*-------------+-------------* l PTRN4 FROM DITDAT OR USER l 
*-------------+-------------* 

reserve block 

13.5.2.8 HEAD ERROR FLAG. 

There is one byte entry for each head. When the analysis on a 
cylinder begins, each entry is zero. 

If a track on a cylinder has an error, then HEAD ERROR FLAG (for 
that track) equals 1. 

2270513-9701 13-83 Volume Utilities 



SCI/Utilities Design 

If a track is determined bad at any time in the analysis, then 
HEAD ERROR FLAG (for that track) equals >FF. 

*--------------------* 
I ZERO, ONE, OR >FF I 
*--------------------* 
I 
I 
I 

I 
I 
I 

*--------------------* 
13.5.2.9 BAD RDS PATTERN and TOT RDS PATTERN. 

There are two tables of this format, BAD RDS PATTERN and 
TOT RDS PATTERN. They are used to count bad reads and total 
reads for each format pattern and each read during the analysis 
of a cylinder. 

PTRN1 PTRN2 PTRN3 PTRN4 

*------+------*------+------*------+------*------+------* 
I COUNT I COUNT I COUNT I COUNT I HD 0 
*------+------*------+------*------+------*------+------* 
I 
I 
I 

I 
I 
I 

I 
I 
I 

I 
I 
I 

I 
I 
I 

*------+------*------+------*------+------*------+------* 
I I I I I HD 31 
*------+------*------+------*------+------*------+------* 

13.5.2.10 REC DEFECT LENGTH. 

This is a byte table with one entry for each head. It is 
initialized to 2 for disks without SA-Assist and is never 
changed. For disks with SA-Assist, it contains the largest 
defect length returned by the SA-Assist command when an error is 
detected. If the track is determined bad, the information stored 
in this table is used to update the bad track table. 

*-----------------------* I LARGEST DEFECT LENGTH I 
*-----------------------* 
I 
I 
I 

I 
I 
I 

*-----------------------* 
13.5.2.11 IDS Global Data. 

NUM RD TYPES Count of the number of read types 
types used. Initialized in IDSIRP. 

NUM PATTERNS Set based on the level of testing. 
Initialized in IDSIRP. 

WRTFMTS PER PATTERN Set based on the level of testing. 

Volume Utilities 13-84 2270513-9701 



SCI/Utilities Design 

SA ASSIST 
TOTAL HEADS - ·. 
TOTAL CYLINDERS 
GRAPH FLAG 
@IDSPRM 

@BADTAB 

TOT RDS WRTFMT 

BAD RDS WRTFMT 

PTRN INDX 

ALLOWABLE TRACK 
PERCENTAGE 

CURGRAPH 

SECTOR BUFFER 

REPETITIONS 

REFORMAT FLAG 

2270513-9701 

Initialized in IDSIRP. 
Flag yes or no. Initialized in IDSIRP. 
Initialized in IDSIRP. 
Initialized in IDSIRP. 
Flag yes or no. Initialized in IDSIRP. 
Passed in register 3. Initialized in 

IDSIRP. 
From parameter block. Initialized in 

IDSIRP. 
Count of the total reads after each 
write format. 

Count of bad reads after each write 
format. 

Index into pattern lists. Current 
pattern to analyze. 

10 or 30, depending on the mark 
marginal tracks flag in IDSPRM. 
This variable is used to verify that 
the number of errors detected during 
analysis of a track does not exceed 
10% {if mark marginal tracks is yes) 
or 30%. Initialized in IDSIRP. 

Contains position of last graph update. 
Must be initialized in INITIALIZE 
GRAPH DISPLAY. 

256 bytes overlap TOT_RDS_PATTERN because 
they are never used at the same time. 

This word is set to 5 whenever an error 
is first encountered during the analysis. 
Reset to 1 before beginning the analysis 
for every cylinder. 

Set to ones to cause simulation of 
transfer inhibit. If a disk does not 
support transfer inhibit, the disk will 
be formatted at one record per track. 
During an analysis, reads will use an 
input count of 2. This causes the entire 
track to be checked, but no huge buffers 
are needed. Initialized in IDSIRP. 

13-85/13-86 Volume Utilities 





SCI/Utilities Design 

SECTION 14 

DATA STRUCTURE PICTURES 

14.1 OVERVIEW 

This section includes detailed pictures of special-purpose data 
structures used by SCI and the utilities. These templates are in 
the DSC.TEMPLATE.ATABLE directory, which includes templates for 
structures used throughout the operating system as well as 
templates for special purposes in a single subsystem or utility. 

Details of operating system data structures appear in the Data 
Structures Pictures section of the DNOS System Design Document. 

The template pictures include descriptions of various fields of 
data structures their locations, meanings of flags, and 
special comments. The following features are found in one or 
more of the structure pictures: 

* Header showing the structure name, 
system, and abbreviation for the name 

location 

* Comments describing the use of the structure 

in the 

* Hexadecimal starting location (or offset relative to the 
beginning of the structure) for each word of the 
structure 

* Label for each field, chosen from three types: 

Blank if no label 

Label of the form FILLxy, if the label is 
generated by software 

Label of six or fewer characters 

* Size of field indicated by space allocated in structure 
picture 

* Comment to right of field, describing that field 

* List of flag definitions for each flag field in the 
structure: 

Flag name 

2270513-9701 14-1 Data Structure Pictures 



SCI/Utilities Design 

Diagram showing position of flag, initial position 
being O. The flag is always defined as an 
assembly language equate for the first bit 
position shown with an X in the diagram. 

Description of flag 

Optional lines of extended explanations of flag 
settings 

* List of equated labels for fields in the structure: 

Label being equated 

~ Argument of the equate 

Value of the equate, or location of the argument 

Description of the label being equated 

Table 14-1 lists the templates detailed in this section. 

Acronym 

ACC 
CLR 
CNT 
FIR 
SCA 
SDEDOR 
SDEMD 
SDQ 
SDT 
SPM 
UDR 

Table 14-1 

Data Structure Pictures 

Template Acronyms 

Meaning 

Accounting record contents 
Capabilities list file record 
Class name table 
File information record 
System Communication Area 
Memory-Resident directory overhead record 
Sorted directory file entries table 
Spooler device queue entry 
Spooler device table entry 
Spooler message format 
User descriptor record 

14-2 2270513-9701 



SCI/Utilities Design 

************************************************************ 
* * * ACCOUNTING RECORD CONTENTS (ACC) 09/09/83 * 
* * 
* LOCATION: SYSTEM TABLE AREA OR DISK * 
************************************************************ 
* THE ACC DESCRIBES THE FORMAT OF ENTRIES ON THE QUEUE FOR 
*PROCESSING BY THE ACCOUNTING FORMATTING TASK (LGACCT). 
* WITH THE EXCEPTION OF THE QUEUE LINK, THE ENTRIES ARE 
* EXACTLY THE SAME WHEN ON DISK IN THE ACCOUNTING LOG FILE. 
* EACH BLOCK TYPE HAS ITS OWN SET OF INFORMATION FOLLOWING 
*A STANDARD HEADER. THE EXCEPTION IS IPL (RECORD TYPE 6), 
* WHICH USES ONLY THE HEADER INFORMATION. 

FIXED PART 
*----------+----------* 

>OO ACCLNK QUEUE LINK 
+----------+----------+ 

FIELD DESCRIPTOR VARIANT 
*----------+----------* 

>02 ! ACCTYP ACCLEN ! 

+----------+----------+ 
>04 ACCYRD 

+----------+----------+ 
>06 ! ACCHOU ! ACCMIN ! 

+----------+----------+ 
>08 ! ACCSEC ! ACCPRI ! 

+----------+----------+ 
>OA ! ACCJID ! 

+----------+----------+ 

RECORD TYPE 
LENGTH OF RECORD 

YEAR/DAY 

HOUR 
MINUTE 

SECOND 
PRIORITY 

JOB ID 

TYPE 1 - JOB INITIALIZATION 
*----------+----------* 

>OC ACCAID ! 

+----------+----------+ 
I 
I 

I 
I 

I 
I 

+----------+----------+ 
>1C ! ACCUID ! ! 

+----------+----------+ 
I 
I 

I 
I 

I 
I 

+----------+----------+ 
>24 ! ACCJNM ! ! 

+----------+----------+ 
I 
I 

I 
I 

I 
I 

+----------+----------+ 

ACCOUNT ID 

USER ID 

JOB NAME 

TYPE 2 - TASK TERMINATION 
*----------+----------* 

ACC 

2270513-9701 14-3 Data Structure Pictures 



ACC 

>OC ACCTID ACCT CD 
+----------+----------+ 

>OE ! ACCCPU ! 

+----------+----------+ 
> 1 0 ! ! 

+----------+----------+ 
>12 ! ACCSVC ! 

+----------+----------+ 
> 14 ! ! 

+----------+----------+ 
>16 ! ACCIOB ! 

+----------+----------+ 
> 18 ! 

+----------+----------+ 
>1A ! ACCMEM ! 

+----------+----------+ 
>1C AC CW AL 

+----------+----------+ > 1 E ! 

+----------+----------+ 
>20 ! ACCIID ! ACCSTN 

+----------+----------+ 
>22 ! ACCATR ! 

+----------+----------+ 
>24 ! ACCTNM ! ! 

+----------+----------+ 
I 
I 

I 
I 

I 
I 

+----------+----------+ 

SCI/Utilities Design 

TASK ID 
TASK TERM CODE 

TASK CPU TIME (CLOCK TICKS) 

NUMBER SVC'S ISSUED 

NUMBER I/0 BYTES TRANFERED 

MAX MEMORY ALLOCATED(BEETS) 

WALL CLOCK EXECUTION TIME 

INSTALLED TASK ID 
STATION ID 

TASK ATTRIBUTES 

TASK NAME 

TYPE 3 - JOB TERMINATION 
*----------+----------* 

>OC ACCJUD JCA AREA USED 
+----------+----------+ 

>OE ! ACCJSZ JCA TOTAL SIZE 
+----------+----------+ 

>10 ! ACCJEX JOB EXECUTION TIME 
+----------+----------+ 

>12 
+----------+----------+ 

TYPE 4 - DEVICE ENTRY 
*----------+----------* 

>OC ! ACCTPF ACCDTP ! 

+----------+----------+ 
>OE ! ACCNAM ! 

+----------+----------+ > 1 0 ! ! 

+----------+----------+ 
>12 ACCNRQ ! 

+----------+----------+ > 1 4 ! ! 

+----------+----------+ 

Data Structure Pictures 

DEVICE TYPE FLAGS 
DEVICE TYPE 

DEVICE NAME 

NUMBER I/0 REQUESTS 

14-4 2270513-9701 



SCI/Utilities Design 

>16 ACCTMU RESERVED-TIME USED(MINUTES) 
+----------+----------+ 

TYPE 5 - USER ENTRY 
*----------+----------* 

>OC ACCCHR 
+----------+----------+ 
I 
I 

I 
I 

I 
I 

+----------+----------+ 

USER DATA 

TYPE 7 - COMM ENTRY 
*----------+----------* 

>OC ACCCOM 
+----------+----------+ 
I 
I 

I 
I 

I 
I 

+----------+----------+ 

COMM DATA 

SINGLE ENTITY VARIANT 
*----------+----------* 

>02 ACCTXT 
+----------+----------+ 
I I I 
I I I 
+----------+----------+ 

FLAGS FOR FIELD: ACCYRD 1104 - YEAR/DAY 

ACCYER = (XXXXXXX •...•••.• ) - YEAR (7 BITS) 
ACCDAY = ( ....... XXXXXXXXX) - DAY (9 BITS) 

EQUATES: 

LABEL EQUATE TO VALUE DESCRIPTION 

ACC 

----- --------- ----- ------------------------------
ACCVNT $ >02 
ACTJIT 1 >01 JOB INITIALIZATION 
ACTTTM 2 >02 TASK TERMINATION 
ACTJTM 3 >03 JOB TERMINATION 
ACTDET 4 >04 DEVICE ENTRY 
ACTUET 5 >05 USER ENTRY 
ACT IPL 6 >06 IPL ENTRY 
ACCOHD $ >OC END OF OVERHEAD 
ACCJIZ $ >2C 
ACCTTZ $ >2C 
ACCJTZ $ >14 
ACCDSZ $ >18 
ACCUSZ $ >52 
ACCISZ $ >OC 
ACCCTZ $ >52 

2270513-9701 14-5 Data Structure Pictures 



CLR SCI/Utilities Design 

************************************************************ 
* 
* 
* 
* 
* 

CAPABILITIES LIST FILE RECORD (CLR) 

LOCATION .S$CLF ON DISK 

01/21/83 
* 
* 
* 
* 
* 

************************************************************ 
* THE CLR IS USED BY TASKS WHICH ADD, DELETE, OR MODIFY 
* USER IDS OR ACCESS GROUPS. IT HAS 5 VARIANTS: FIR, AGR, 
*UDR, UDO, AND VFY. THE STRUCTURE AND PURPOSE OF EACH VARIANT 
* IS DESCRIBED BELOW. 
* 
* * THIS PACKED RECORD IS USED FOR USER ID ENTRIES IN FIR 
* 

** BEGINNING PACKED RECORD UID 

*----------+----------* 
>OO FIRID USER ID 

+----------+----------+ 
I I I 
I I I 
+----------+----------+ 

>08 FIRRN ! USER'S UDR RECORD NUMBER 
+----------+----------+ 

>OA SIZE ** END OF PACKED RECORD 

* * THIS PACKED RECORD IS USED FOR ACCESS GROUP ENTRIES IN 
* USER DESCRIPTOR RECORDS (UDR) AND USER DESCRIPTOR OVERFLOW 
* RECORDS (UDO). 
* ** BEGINNING PACKED RECORD AGE 

ACCESS GROUP ENTRY 
*----------+----------* 

>OO ! AGERN ! ACCESS GROUP RECORD NUMBER 
+----------+----------+ 

>02 ! AGEOFF ! AGEFLG ! OFFSET INTO ACCESS GROUP RECORD 
+----------+----------+ ACCESS GROUP ENTRY FLAGS 

>04 SIZE ** END OF PACKED RECORD 

Data Structure Pictures 14-6 2270513-9701 



SCI/Utilities Design 

* * THIS PACKED RECORD IS USED FOR ACCESS GROUP NAMES IN 
* ACCESS GROUP RECORDS (AGR) 

* 

* 

* 
* 

** BEGINNING PACKED RECORD AGN 

*----------+----------* 
>OO ! AGNNAM ACCESS GROUP NAME 

>08 

+----------+----------+ 
I 
I 

I 
I 

I 
I 

+----------+----------+ 
AGNRSV 

+----------+----------+ 
RESERVED 

>OA SIZE ** END OF PACKED RECORD 

** BEGINNING PACKED RECORD CLR 

CLR 

2270513-9701 14-7 Data Structure Pictures 



CLR SCI/Utilities Design 

* * FILE INFORMATION RECORD (FIR) 
* * THIS VARIANT IS USED TO STORE USER IDs. IT CONTAINS A 
* FLAG WORD, A POINTER TO ANOTHER FIR, AND 5 UID ENTRIES. 
* EACH UID ENTRY CONTAINS A USER ID AND THE RECORD NUMBER 
* OF ITS USER DESCRIPTOR RECORD (UDR). 
* 
* 

*----------+----------* 
>OO ! FIRFIR ! 

+----------+----------+ 
>02 ! FIRRSV ! 

+----------+----------+ 
>04 FIRENT ! 

+----------+----------+ 
I 
I 

I 
I 

I 
I 

+----------+----------+ 
>OE ! ! 

+----------+----------+ 
I I I 
I I I 

+----------+----------+ > 1 8 ! ! 

+----------+----------+ 
I 
I 

I 
I 

I 
I 

+----------+----------+ 
>22 ! ! 

+----------+----------+ 
I I I 
I I I 

+----------+----------+ 
>2C ! 

+----------+----------+ 
I 
I 

I 
I 

I 
I 

+----------+----------+ 

Data Structure Pictures 

CONTINUATION RECORD NUMBER 

FIR USED/AVAILABLE FLAG 

5 UID ENTRIES 

14-8 2270513-9701 



SCI/Utilities Design 

* 
* 
* 
* 
* 
* 
* 
* 

ACCESS GROUP NAME RECORD (AGR) 

THIS VARIANT IS USED TO STORE ACCESS GROUP NAMES. 
IT CONTAINS A FLAG WORD, A POINTER TO THE NEXT AGR, AND 
5 AGN ENTRIES. EACH AGN ENTRY CONTAINS AN ACCESS GROUP 
NAME AND A WORD OF UNUSED FLAGS. 

*----------+----------* 
>OO AGRAGR 

+----------+----------+ 
>02 ! AGRRSV ! 

+----------+----------+ 
>04 ! AGRAGN ! 

+----------+----------+ 
I 
I 

I 
I 

I 
I 

+----------+----------+ 
>OE ! ! 

+----------+----------+ 
I 
I 

I 
I 

I 
I 

+----------+----------+ 
> 18 ! ! 

+----------+----------+ 
I 
I 

I 
I 

I 
I 

+----------+----------+ 
>22 ! ! 

+----------+----------+ 
I 
I 

I 
I 

I 
I 

+----------+----------+ 
>2C ! ! 

+----------+----------+ 
I 
I 

I 
I 

I 
I 

+----------+----------+ 

CONTINUATION RECORD NUMBER 

AGR USED/AVAILABLE FLAG 

5 AGN ENTRIES 

CLR 

2270513-9701 14-9 Data Structure Pictures 



CLR SCI/Utilities Design 

* 
* 
* 

USER DESCRIPTOR RECORD (UDR) 

* THIS VARIANT CONTAINS INFORMATION ASSOCIATED WITH A USER ID. 
* THIS INFORMATION INCLUDES THE ENCRYPTED PASSCODE, DESCRIPTION, 
* AND UP TO 5 ACCESS GROUP ENTRIES. EACH ACCESS GROUP ENTRY 
* CONTAINS A RECORD NUMBER OF AN ACCESS GROUP RECORD (AGR) 
* AND THE OFFSET INTO THE AGR FOR AN ACCESS GROUP NAME OF 
* WHICH THIS USER IS A MEMBER. 
* 

*----~-----+----------* 
>OO UDR UDO 

+----------+----------+ 
>02 UDR RSV ! 

+----------+----------+ 
>04 ! UDRPWD ! ! 

+----------+----------+ 
I 
I 

I 
I 

I 
I 

~----------+----------+ 
>OC ! UDRFLG ! 

+----------+----------+ 
>OE ! UDRDES ! ! 

+----------+----------+ 
I I I 
I I I 

+----------+----------+ 
>22 ! UDRAGE ! 

+----------+----------+ 
>24 ! ! 

+----------+----------+ 
>26 ! ! 

+----------+----------+ 
>28 ! ! ! 

+----------+----------+ 
>2A ! ! 

+----------+----------+ 
>2C ! ! ! 

+----------+----------+ 
>2E I I . . 

+----------+----------+ 
>30 I I . . 

+----------+----------+ 
>32 I I . . 

+----------+----------+ 
>34 I I I . . . 

+----------+----------+ 

POINTER TO OVERFLOW 

UDR USED/AVAILABLE FLAG 

ENCRYPTED PASSCODE 

UDR FLAG WORD 

DESCRIPTION OF USER 

5 ACCESS GROUP ENTRIES (AGE) 

Data Structure Pictures 14-10 2270513-9701 



SCI/Utilities Design 

* 
* 
* 

USER DESCRIPTOR OVERFLOW RECORD (UDO) 

* THIS VARIANT IS USED ONLY USED IN THE CASE THAT A USER IS 
* A MEMBER OF MORE ACCESS GROUPS THAN WILL FIT IN HIS UDR. 
* IT CONTAINS UP TO 12 ACCESS GROUP ENTRIES. 

* 

*----------+----------* 
)00 UDOUDO POINTER TO NEXT UDO 

+----------+----------+ 
>02 ! UDORSV ! UDO USED/AVAILABLE FLAG 

+----------+----------+ 
>04 UDOFIL ! NOT USED 

+----------+----------+ 
>06 ! UDOAGE ! 12 ACCESS GROUP ENTRIES (AGE) 

+----------+----------+ 
>OB ! ! ! 

+----------+----------+ 
>OA ! 

+----------+----------+ 
>OC ! ! ! 

+----------+----------+ 
>OE 

+----------+----------+ 
> 1 0 ! ! ! 

+----------+----------+ 
> 12 ! ! 

+----------+----------+ 
> 1 4 ! ! ! 

+----------+----------+ 
> 16 ! ! 

+----------+----------+ 
> 18 ! ! ! 

+----------+----------+ 
>1A ! 

+----------+----------+ 
> 1 c ! ! ! 

+----------+----------+ 
> 1 E ! ! 

+----------+----------+ 
>20 ! ! ! 

+----------+----------+ 
>22 ! ! 

+----------+----------+ 
>24 ! ! ! 

+----------+----------+ 
>26 ! 

+----------+----------+ 
>28 ! ! ! 

+----------+----------+ 
>2A ! ! 

CLR 

2270513-9701 14-11 Data Structure Pictures 



CLR SCI/Utilities Design 

+----------+----------+ 
>2C ! ! 

+----------+----------+ 
>2E ! 

+----------+----------+ 
> 3 0 ! ! 

+----------+----------+ 
> 3 2 ! ! 

+----------+----------+ 
>34 ! ! ! 

+----------+----------+ 

Data Structure Pictures 14-12 2270513-9701 



SCI/Utilities Design 

* 
* 
* 

VERIFICATION RECORD evFY) 

* THIS VARIANT IS USED BY THE SYSTEM RESTART TASK TO VERIFY 
* THE EXISTENCE OF .S$CLF. IT IS ALSO USED BY TASKS WHICH 
* CREATE AND MODIFY ACCESS GROUPS BECAUSE IT CONTAINS A 
* POINTER TO THE FIRST ACCESS GROUP RECORD. 

* 

>OO 
*----------+----------* 

VFYNAM 
+----------+----------+ 
I 
I 

I 
I 

I 
I 

+----------+----------+ 
>08 ! VFYBLK ! 

+----------+----------+ 

NAME OF S$CLF 

POINTER TO FIRST AGRBLK 

CLR 

>OA ! VFYFIL ! NOT USED, INITIALIZED TO BLANKS 
+----------+----------+ 
I 
I 

I 
I 

I 
I 

+----------+----------+ 
>36 SIZE ** END OF PACKED RECORD 

FLAGS FOR FIELD: AGEFLG #03 - ACCESS GROUP ENTRY FLAGS 

AGELDR = ex •••••••••••.••. ) - TRUE:USER IS LEADER OF ACCESS GROUP 
AGEFCG = e.x •••••••••••.•• ) - TRUE:FILE CREATION ACCESS GROUP 

FLAGS FOR FIELD: FIRRSV #02 - FIR USED/AVAILABLE FLAG 

FIRFRE = ex •••••••••••.••• ) - TRUE:AVAILABLE RECORD 

FLAGS FOR FIELD: AGRRSV #02 - AGR USED/AVAILABLE FLAG 

AGRFRE = ex •••.••••••••••• ) - TRUE:AVAILABLE RECORD 

FLAGS FOR FIELD: UDRRSV #02 - UDR USED/AVAILABLE FLAG 

UDRFRE = ex ••••••••••••••• ) - TRUE:AVAILABLE RECORD 

FLAGS FOR FIELD: UDRFLG #OC - UDR FLAG WORD 

UDRPVL = exXXXX ••••••••••• ) .USER PRIVELEDGE LEVEL 
UDRAGC = e •.••• XXXXXXXXXXX) - ACCESS GROUP COUNT 

2270513-9701 14-13 Data Structure Pictures 



CLR SCI/Utilities Design 

FLAGS FOR FIELD: UDORSV #02 - UDO USED/AVAILABLE FLAG 

UDOFRE = ex •..•••.••••.•.• ) - TRUE:AVAILABLE ENTRY 

EQUATES: 

LABEL 

FIR 
AGR 
UDR 
UDO 
VFY 
FIRSIZ 
AGRSIZ 
UDRSIZ 
UDOSIZ 
VFYSIZ 

EQUATE TO 

$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 

Data Structure Pictures 

VALUE 

>OO 
>OO 
>OO 
>OO 
>OO 
>36 
>36 
>36 
>36 
>36 

.1 4-1 4 

DESCRIPTION 

2270513-9701 



SCI/Utilities Design 

************************************************************ 
* * 
* 
* 
* 
* 

CLASS NAME TABLE ENTRY (CNT) 09/09183 * 
LOCATION: .S$SDTQUE. (SYSNAME) AND 

SPOOLER TASK COMMON (SPCOMN) 

* 
* 
* 

************************************************************ 
* THE CNT IS USED BY THE SPOOLER TO SAVE CLASS NAME 
* INFORMATION. 

** BEGINNING PACKED RECORD CNT 

*----------+----------* 
>OO CNTFLG CNTPRI 

+----------+----------+ QUEUE ELEMENT PRIORITY 

CNT 

>02 CNTDEV COUNT OF DEVICES USING CLASS NAME 
+----------+----------+ 

>04 ! CNTRN ! 

+----------+----------+ 
>06 CNTOFF CNTRES ! 

+----------+----------+ 
>08 ! CNTNAM ! ! 

+----------+----------+ 
I 
I 

I 
I 

I 
I 

+----------+----------+ 

QUEUE ELEMENT RECORD NUMBER 

QUEUE ELEMENT RECORD OFFSET 
*** RESERVED *** 

CLASS NAME 

>10 SIZE ** END OF PACKED RECORD 

FLAGS FOR FIELD: CNTFLG 1100 -

CNFDEL = (X ......•........ ) TRUE=DELETED ENTRY 
= ( • x ..••••••••••• · • ) 

CNFHLT = ( .. X ............. ) - TRUE=CLASS IS HALTED 

EQUATES: 

LABEL EQUATE TO VALUE DESCRIPTION 

CNTNUM 48 >30 NUMBER OF CNT ENTRIES 

2270513-9701 14-15 Data Structure Pictures 



FIR SCI/Utilities Design 

*********************************************************** 
* * 
* FILE INFORMATION RECORD 

* 
* LOCATION: DISK 

(FIR) 11/24/82 * 
* 
* 

****~****************************************************** 
* THE FIR IS USED BY THE TASKS WHICH ASSIGN, MODIFY, LIST, 
* AND DELETE USER IDS. IT IS A VARIANT OF THE CAPABILITIES 
*LIST FILE RECORD (CLR). FOR DETAILS SEE CLR. 

Data Structure Pictures 14-16 2270513-9701 



SCI/Utilities Design SCA 

**************************************************************** 
* SYSTEMS COMMUNICATION AREA (SCA) 1/09/80 

* * TERMINAL ENTRY DEFINITION ON FILE .S$SCA 

* 
******************************************.********************* 

*----------+----------* 
>OO SCADN 

+----------+----------+ 
>02 ! ! ! 

+----------+----------+ 
>04 ! FILLOO ! SCAUID ! 

+----------+----------+ 
I 
I 

I 
I 

I 
I 

+----------+----------+ 
>OC FILL01 ! 

+----------+----------+ 
>OE ! SCACCO ! ! 

+----------+----------+ 
I 
I 

I 
I 

I 
I 

+----------+----------+ 
>1E ! FILL02 SCAPSD ! 

+----------+----------+ 
I 
I 

I 
I 

I 
I 

+----------+----------+ 
>26 ! ! FILL03 ! 

+----------+----------+ 
>28 SCAJND ! 

+--------~-+----------+ 
I 
I 

I 
I 

I 
I 

+----------+----------+ 
>30 ! FILL04 FILL05 ! 

+----------+----------+ 
I 
I 

I 
I 

I 
I 

+----------+----------+ 
>48 ! SCALG SCAMD ! 

+----------+----------+ 
>4A SCAJN ! SCARC 

+----------+----------+ 
>4C ! SCAAC . ! SCASL ! 

+----------+----------+ 
>4E ! SCAOFF ! SCADFM ! 

+----------+----------+ 

SCA DEVICE NUMBER 

DEFAULT USER ID 

DEFAULT ACCOUNT NUMBER 

DEFAULT PASSCODE 

DEFAULT JOB NAME 

LOGIN REQUIRED 
VDT MODE 

DON'T SOLICIT JOB NAME 
RECONNECT DISABLED 

SOLICIT ACCOUNT NUMBER 
SOLICIT NAME MANAGER FILES 

TERMINAL OFF 
VDT MODE DEFAULT 

2270513-9701 14-17 Data Structure Pictures 

\ 



SCA 

EQUATES: 

LABEL 

SCADFS 
SCAFLG 
SCASIZ 

EQUATE TO 

$-SCADN 
8 
80 

Data Structure Pictures 

VALUE 

>31 
>08 
>50 

SCI/Utilities Design 

DESCRIPTION 

------------------------------
NUMBER OF FLAGS 

14-18 2270513-9701 



SCI/Utilities Design SDEDOR 

*************************************************************** 
* DIRECTORY OVERHEAD RECORD (SDEDOR) 
* 
* MEMORY RESIDENT TABLE FORM OF DOR 09/25/79 
*************************************************************** 

*----------+----------* 
>OO SDONRC 

+----------+----------+ 
>02 ! SDONFL ! 

+----------+----------+ 
>04 ! SDONAR ! 

+----------+----------+ 
>06 ! SDOTFC 

+----------+----------+ 
>08 ! SDODNM ! 

+----------+----------+ 
I 
I 

I 
I 

I 
I 

+----------+----------+ 
>10 ! SDOLVL ! 

+----------+----------+ 
>12 ! SDOPNM ! 

+----------+----------+ 
I 
I 

I 
I 

I 
I 

+----------+----------+ 
>1A SDORDH ! 

+----------+----------+ 
>1C ! SDORFH ! 

+----------+----------+ 
>1E ! SDORCH ! 

+----------+----------+ 
>20 ! SDOFLG ! 

+----------+----------+ 

EQUATES: 

LABEL EQUATE TO VALUE 

SDOSIZ $ >1A 

# RECORDS IN DIRECTORY 

# FILES CURRENTLY IN DIRECTORY 

# OF AVAILABLE RECORDS 

NUMBER OF TEMPORARY FILES 

DIRECTORY FILE NAME 

LEVEL # OF DIRECTORY 

PARENT'S NAME 

DIRECTORY ENTRY LIST HEADER 

FILE ENTRY LIST HEADER 

CHANNEL ENTRY LIST HEADER 

MODIFIED FORMAT FLAG 
O:NORMAL FORMAT 

DESCRIPTION 

2270513-9701 14-19 Data Structure Pictures 



SDEMD SCI/Utilities Design 

****************************************************** 
* SORTED DIRECTORY FILE ENTRIES (SDEMD) 
* FOR MAP DISC AND LIST DIRECTORY 
* 09/25/79 
****************************************************** 

*----------+----------* 
>OO SDEFNM 

+----------+----------+ 
I 
I 

I 
I 

I 
I 

+----------+----------+ 
>08 SDEREC ! 

+----------+----------+ 
>OA ! SDEFLG ! 

+----------+----------+ 
>OC ! SDEPRS ! 

+----------+----------+ 
>OE ! SDELRS ! 

+----------+----------+ 
>10 ! SDEPAS ! 

+----------+----------+ 
>12 ! SDESAS ! 

+----------+----------+ 
>14 ! SDESAA 

+----------+----------+ 
>16 ! SDERFA 

+----------+----------+ 
>18 SDEEOM ! ! 

+----------+----------+ > 1 A ! ! 

+----------+----------+ 
> 1 C ! SDEBKM ! ! 

+----------+----------+ > 1 E ! ! ! 

+----------+----------+ 
>20 ! SDEOFM ! 

+----------+----------+ 
>22 ! SDETNB ! 

+----------+----------+ >24 ! SDEKDR 
+----------+----------+ 

>26 SDEUD 
+----------+----------+ 

>28 ! ! 

+----------+----------+ 
>2A ! 

+----------+----------+ 
>2C ! SDECD ! ! 

+----------+----------+ 
>2E ! ! 

FILE NAME 

FDR RECORD NUMBER 

FLAGS 

PHYSICAL RECORD SIZE 

LOGICAL RECORD SIZE 

PRIMARY ALLOCATION SIZE 

SECONDARY ALLOCATION SIZE 

OFFSET OF SCONDARY TABLE 

RECORD # OF FIRST ALIAS 

END OF MEDIUM RECORD # 

END OF MEDIUM BLOCK # 

END OF MEDIUM OFFSET 

TOTAL # OF BLOCKS 

KEY DESCRIPTIONS RECORD # 

LAST UPDATE DATE 

CREATION DATE 

Data Structure Pictures 14-20 2270513-9701 



SCI/Utilities Design 

+----------+----------+ 
>30 ! ! ! 

+----------+----------+ 
>32 ! SDEAPB ! SDEBPA ! 

+----------+-~--------+ 

>34 SDELNK ! 
+----------+----------+ 

>36 ! SDEALO 
+----------+----------+ 

>38 ! SDEUSE ! 
+----------+----------+ 

*----------+----------* 
>OO MODFNM 

+----------+----------+ 
I I I 
I I I 
+----------+----------+ 

>08 ! MODREC 
+----------+----------+ 

>OA ! MODRAF ! 
+----------+----------+ 

>OC ! MODLNK ! 
+----------+----------+ 

EQUATES: 

LABEL EQUATE TO VALUE 
----- --------- -----
SDEIID SDEPRS >OC 
SDECFL SDEIID+1 >OD 
SDETF SDELRS >OE 
SDEMXL SDEPAS >10 
SDERAF $ >12 
SDERNA $ >16 
SDESIZ $ >3A 
MODFLG $ >08 
MODFSZ $ >OA 
MODSIZ $ >OE 

ADU'S PER BLOCK 
BLOCK'S PER ADU 

LINK TO NEXT ENTRY 

SDEMD 

TOTAL FILE ALLOCATION IN ADUS 

# OF USED SECONDARY ENTRIES 

FILE NAME 

RECORD NUMBER OF FILE 

POINTER TO ACTUAL FILE NAME 

LINK TO NEXT MODIFIED ENTRY 

DESCRIPTION 

------------------------------
OWNER TASK INSTALLED ID 
CHANNEL FLAGS 
CHANNEL RESOURCE FLAGS 
CHANNEL MAX MSG LENGTH 
RECORD fl OF ACTUAL FILE 
RECORD fl OF NEXT ALIAS 
SIZE IN BYTES OF FDR 
FILE TYPE FLAGS 
FILE SIZE IN ADUS 
SIZE IN BYTES 

2270513-9701 14-21 Data Structure Pictures 



SDQ SCI/Utilities Design 

**************************************************** 
* SDQ -- SPOOLER DEVICE QUEUE ENTRY * 
* 04/07/82 * 
**************************************************** 
* 
* 

** BEGINNING PACKED RECORD SDQ 

*----------+----------* 
>OO SDQFLG 

+----------+----------+ 
>02 ! SDQRN 

+----------+----------+ 
>04 SDQOFF SDQCOF ! 

+----------+----------+ 
>06 ! SDQCRN 

>08 

+----------+----------+ 

*----------+----------* 
SDQULN 

+----------+----------+ 
I 
I 

I 
I 

I 
I 

+----------+----------+ 
>10 SDQFRM 

+----------+----------+ 
I 
I 

I 
I 

I 
I 

+----------+----------+ 
>18 SDQUID ! 

+----------+----------+ 
I 
I 

I 
I 

I 
I 

+----------+----------+ 
>20 SDQJID ! 

+----------+----------+ 
>22 SDQJOB ! 

>2A 

+----------+----------+ 
I 
I 

I 
I 

I 
I 

+----------+----------+ 

*----------+----------* 
SDQCLN 

+----------+----------+ 
I 
I 

I 
I 

I 
I 

+----------+----------+ 
>32 SDQCOP SDQLPP ! 

STATUS FLAGS 

NEXT ENTRY RECORD NUMBER 

NEXT ELEMENT RECORD OFFSET 
NEXT FILENAME RECORD OFFSET 

NEXT FILENAME RECORD 

USER LOGICAL NAME 

REQUESTED FORM 

USER ID 

JOB ID 

JOB NAME 

CLASS NAME 

NUMBER OF COPIES 

Data Structure Pictures 14-22 2270513-9701 



SCI/Utilities Design SDQ 

* 

+----------+----------+ 
>34 ! SDQJPR ! SDQNPR ! 

+----------+----------+ 
>36 ! SDQSID ! ! 

+----------+----------+ 
> 38 ! ! 

+----------+----------+ 
> 3A ! ! 

+----------+----------+ 
>3C SDQPNL ! 

+-~--------+----------+ 
I 
I 

I 
I 

I 
I 

+----------+----------+ 

*----------+----------* 
>2A SDQDVN 

+----------+----------+ 
I 
I 

I 
I 

I 
I 

+----------+----------+ 

*----------+----------* 
>08 SDQFNM ! 

+----------+----------+ 
>OA ! SDQNAM ! ! 

+----------+----------+ 
I 
I 

I 
I 

I 
I 

+----------+----------+ 

LINES PER PAGE 
JOB PRIORITY 

NEXT ENTRY PRIORITY 
ASSIGNED SPOOLER ID 

FILE PATHNAME 

DEVICE NAME 

OF FILENAMES IN RECORD 

AREA RESERVED FOR FILE PATHNAMES 

>72 SIZE ** END OF PACKED RECORD 

FLAGS FOR FIELD: SDQFLG #00 - STATUS FLAGS 

SQFUSE = ( x ............... ) - TRUE=DELETED ENTRY 
SQFCON = ( . x .............. ) - TRUE:CONCATENATED FILE 
SQFANS = ( .. x ............. ) - TRUE=ANSI FILE 
SQFBNR = ( ... x ............ ) - TRUE:NO BANNER SHEET PROVIDED 
SQFDEV = ( .... x ........... ) - TRUE:QUEUED FOR DEVICE 
SQFDAP = ( -· ••.• x ••••••.••. ) - TRUE=DELETE AFTER PRINT 
SQFCFR = ( ...... x ......... ) - TRUE:CONCAT FILENAME RECORD 
SQFDAL = ( ....... x ........ ) - TRUE=DELETE ALWAYS (EVEN ON 

KILL OUTPUT) 

EQUATES: 

LABEL EQUATE TO VALUE DESCRIPTION 

2270513-9701 14-23 Data Structure Pictures 



SDQ 

SDQNUM 
SDQVR1 
SDQVR2 

6 
$ 
$ 

Data Structure Pictures 

>06 
>OB 
>2A 

14-24 

SCI/Utilities Design 

NUMBER OF SDQ ENTRIES PER RECORD 

2270513-9701 



SCI/Utilities Design 

************************************************************ 
* * 
* SPOOLER DEVICE TABLE ENTRY (SDT) 09/09/83 * 
* 
* 
* 
* 

LOCATION: .S$SDTQUE. (SYSNAME) AND 
SPOOLER TASK COMMON (SPCOMN) 

* 
* 
* 
* 

*************************~********************************** 
* THE SDT IS USED BY THE SPOOLER TO SAVE DEVICE INFORMATION. 
* ALL OF THE SPOOLER DEVICES ARE STORED ON DISK IN FILE 
* .S$SDTQUE.(SYSNAME) WHERE (SYSNAME) IS THE NAME OF THE 
* OS KERNAL. SPOOL DEVICE INFORMATION IN THE SDT INCLUDES 
* STATUS FLAGS, CLASS NAME INFORMATION, FORM INFORMATION 
* QUEUE INFORMATION AND PAGE INFORMATION. 
* 

* 

** BEGINNING PACKED RECORD DC 

*----------+----------* 
>OO SDTCN 

+----------+----------+ 
>02 ! SDTCNR ! 

+----------+----------+ 
>04 SIZE ** END OF PACKED RECORD 

** BEGINNING PACKED RECORD SDT 

*----------+----------* 
>OO SDTFLG SDTLUN 

+----------+----------+ 
>02 SDTDNM ! 

+----------+----------+ 
I 
I 

I 
I 

I 
I 

+----------+----------+ 
>DA ! SDTAPR ! SDTQPR ! 

+----------+----------+ 
>OC ! SDTARN ! 

+----------+----------+ 
>OE ! SDTQRN ! 

+----------+----------+ 

STATUS FLAGS 
ASSIGNED JOB-LOCAL LUNO 

DEVICE NAME 

ACTIVE REQUEST PRIORITY 
QUEUED REQUEST PRIORITY· 

ACTIVE REQUEST RECORD 

QUEUED REQUEST RECORD 

SDT 

>10 SDTAOF SDTQOF ! 

+----------+----------+ 
>12 SDTAID ! 

ACTIVE REQUEST RECORD OFFSET 
QUEUED REQUEST RECORD OFFSET 

ACTIVE REQUEST SPOOL ID 
+----------+----------+ 

>14 ! ! ! 

+----------+----------+ 
>16 ! ! ! 

+----------+----------+ 
>18 SDTCLS ! CLASS NAME INDEXES 

2270513-9701 14-25 Data Structure Pictures 



SOT SCI/Utilities Design 

* 

* 

+----------+----------+ 
>1A ! ! ! 

+----------+----------+ > 1 c ! ! 

+----------+----------+ > 1 E ! ! 

+----------+----------+ > 2 0 ! ! 

+----------+----------+ 
>22 ! 

+----------+----------+ > 2 4 ! ! 

+----------+----------+ 
>26 ! ! 

+----------+----------+ 
>28 ! 

+----------+----------+ 
>2A ! ! 

+----------+----------+ > 2 c ! ! 

+----------+----------+ 
>2E ! ! ! 

+----------+----------+ 
>30 ! SDTDTF ! SDTTYP ! 

+----------+----------+ 
>32 ! SDTPAG ! 

+----------+----------+ 
>34 SDTFRM ! 

+----------+----------+ 
I 
I 

I 
I 

I 
I 

+----------+----------+ 

MUST BE A PACKED ARRAY(1 •. 6) OF DCL 

DEVICE TYPE FLAGS 
DEVICE TYPE VALUE 

PAGES TO FORWARD/REVERSE 
NOTE: SDTPAG SIGN BIT 0 => FORWARD 

FORM MOUNTED ON DEVICE 

>3C SIZE ** END OF PACKED RECORD 

FLAGS FOR FIELD: SDTFLG #00 - STATUS FLAGS 

SDFDEL = ( x ......•........ ) - TRUE:DELETED ENTRY 
SDFAVB = ( . x ............•. ) - TRUE:NOT AVAILABLE TO SPOOLER 
SDFHLT = ( •• x ••••••••••••• ) - TRUE=DEVICE HALTED 
SDFBSY = ( ••• x •••••••••••. ) - TRUE:DEVICE BUSY 
SDFFRM = ( .... x ........•.. ) - TRUE:DEVICE DOES NOT USE FORMS 
SDFKIL = ( ••••• x •••••••••. ) - TRUE=KILL OUTPUT REQUEST 

[WRITER SENDS I I AM DONE'] 
SDFTRM = ( ...... x ......... ) - TRUE:WRITER TERMINATE 

[NO WRITER MESSAGE SENT] 
SDFSHR = ( ......• x ........ ) - TRUE:REMOTE OR SHARED DEVICE 

EQUATES: 

LABEL EQUATE TO VALUE DESCRIPTION 

Data Structure Pictures 14-26 2270513-9701 



SCI/Utilities Design SOT 

SDTNUM 12 >OC NUMBER OF SOT ENTRIES PER RECORD 

2270513-9701 14-27 Data Structure Pictures 



SPM SCI/Utilities Design 

************************************************************ 
* * * SPOOLER MESSAGE FORMAT (SPM) 09/09/83 * 
* * * LOCATION: • S$DSTCHN CHANNEL COMMUNICATION TO * 
* SPOOLER * 
************************************************************ 
* THE SPM TEMPLATE IS USED TO DECODE INFORMATION PASSED TO 
* THE SPOOLER TASK FROM THE PF TASK. 

** BEGINNING PACKED RECORD SPM 

*----------+----------* 
>OO SPMOPC SPMERC 

+----------+----------+ 
>02 ! SPMUSR 

+----------+----------+ 
I 
I 

I 
I 

I 
I 

+----------+----------+ 
>OA ! SPMJOB ! 

+----------+----------+ 
I 
I 

I 
I 

I 
I 

+----------+----------+ 
>12 ! SPMJID ! 

+----------+----------+ 
>14 ! SPMFLG ! 

+----------+----------+ 

DST MESSAGE OP CODE 
DST RETURNED ERROR CODE 

USER ID 

JOB NAME 

JOB ID 

STATUS FLAGS 

DEVICE NAME VARIANT 

*----------+----------* 
>16 SPMDVN 

+----------+----------+ 
I 
I 

I 
I 

I 
I 

+----------+----------+ 

OUTPUT DEVICE NAME 

CLASS NAME VARIANT 

*----------+----------* 
>16 SPMCLN 

>1E 

+----------+----------+ 
I 
I 

I 
I 

I 
I 

+----------+----------+ 
SPMULN 

+----------+----------+ 
I I I 
I I I 

+----------+----------+ 

OUTPUT CLASS NAME 

USER LOGICAL NAME 

>26 ! SPMSLN ! DST LOGICAL NAME (SPOOLER ID) 
+----------+-------~--+ 

Data Structure Pictures 14-28 2270513-9701 



SCI/Utilities Design 

>28 
+----------+----------+ 

>2A ! ! ! 

+----------+----------+ 
>2C ! SPMFRM ! ! 

+----------+----------+ 
I I I 
I I I 

+----------+----------+ 
>34 SPMCPY ! SPMLPP ! 

+----------+----------+ 
>36 ! SPMJPR FILL01 ! 

+----------+----------+ 
>38 SPMPAG 

+----------+----------+ 

DESIRED FORM 

NUMBER OF COPIES 
LINES PER PAGE 

JOB PRIORITY 
RESERVED 

FORWARD/REVERSE PAGE COUNT 

PATHNAME VARIANT 

*----------+----------* 
>3A SPMPTH 

+----------+----------+ 
I 
I 

I 
I 

I 
I 

+----------+----------+ 

PATHNAME(S) 

DEVICE USE VARIANT · 

*----------+----------* 
>3A SPMIOC DEVICE I/0 COUNT 

+----------+----------+ 
>3C ! ! 

+----------+----------+ 
>3E ! SPMTIM ! TIME DEVICE WAS USED 

+----------+----------+ 
>013A SIZE ** END OF PACKED RECORD 

FLAGS FOR FIELD: SPMFLG #14 - STATUS FLAGS 

SPFUSE = (X ••.••.•.•.•••.• ) - TRUE=DELETED ENTRY 

SPM 

SPFAVL = (.X ••.••••••••.•• ) - TRUE=NOT AVAILABLE TO SPO'OLER 
SPFPGD = ( .• X .••..•.•..•.• ) - TRUE:REVERSE PAGING 
SPFCON = ( ••. X .•.••••.•.•• ) - TRUE:CONCATENATED FILE 
SPFSOP = ( ...• X ••.•••...•. ) - TRUE=SYSTEM OPERATOR 
SPFANS = ( .••.• X •.•••.••.• ) TRUE=ANSI FORMAT 
SPFBNR = ( ••..•• X ...•...•• ) TRUE:NO BANNER SHEET DESIRED 
SPFDAP = ( ....... X ........ ) TRUE=DELETE AFTER PRINT 
SPFIMM = ( ..••.•.. X •.••.•• ) - TRUE=HALT IMMEDIATELY 

* INSTEAD OF HALT AT EOF 
SPFABE = ( ....•.... X ....•. ) TRUE:LPWRITER TASK ABENDED 
SPFDVE = ( ....••.... X .•.•. ) TRUE:DEVICE ERROR OCCURRED 
SPFPFE = ( .•....•..•. X .... ) TRUE:PRINT FILE ERROR 
SPFSHR = ( .•.•...•..•• X ..• ) TRUE=REMOTE OR SHARED DEVICE 
SPFDAL = ( ••.•••.•...•. X .. ) TRUE=DELETE ALWAYS (EVEN IF 

2270513-9701 14-29 Data Structure Pictures 



SPM 

* 
* 

EQUATES: 

LABEL 

NVRNT 
PNVRNT 

EQUATE TO 

SPMFLG+2 
SPMJPR+4 

Data Structure Pictures 

SCI/Utilities Design 

KILL OUTPUT DONE) 

VALUE 

>16 
>3A 

14-30 

DESCRIPTION 

2270513-9701 



SCI/Utilities Design 

*********************************************************** 
* * 
* USER DESCRIPTOR RECORD (UDR) 11/24/82 * 
* 
* LOCATION: DISK 

* 
* 

*********************************************************** 
* THE UDR DESCRIBES THE DISK STRUCTURES THAT REPRESENTS A 
* GIVEN USER OF THE SYSTEM. IT INCLUDES LOGON INFORMATION 

UDR 

* AND SECURITY INFORMATION. IT IS A VARIANT OF THE CAPABILITIES 
*LIST FILE RECORD (CLR). FOR DETAILS SEE CLR. 

2270513-9701 14-31/14-32 Data Structure Pictures 





Appendix A 

Keycap Cross-Reference 

Generic keycap names that apply to all terminals are used for keys on keyboards throughout this 
manual. This appendix contains specific keyboard information to help you identify individual keys 
on any supported terminal. For instance, every terminal has an Attention key, but not all Attention 
keys look alike or have the same position on the keyboard. You can use the terminal information in 
this appendix to find the Attention key on any terminal. 

The terminals supported are the 931 VDT, 911 VDT, 915 VDT, 940 EVT, the Business System 
terminal, and hard-copy terminals (including teleprinter devices). The 820 KSR has been used as a 
typical hard-copy terminal. The 915 VDT keyboard information is the same as that for the 911 VDT 
except where noted in the tables. 

Appendix A contains three tables and keyboard drawings of the supported terminals. 

Table A-1 lists the generic keycap names alphabetically and provides illustrations of the 
corresponding keycaps on each of the currently supported keyboards. When you need to press 
two keys to obtain a function, both keys are shown in the table. For example, on the 940 EVT the 
Attention key function is activated by pressing and holding down the Shift key while pressing the 
key labeled PREV FORM NEXT. Table A-1 shows the generic keycap name as Attention, and a 
corresponding illustration shows a key labeled SHIFT above a key named PREV FORM NEXT. 

Function keys, such as F1, F2, and so on, are considered to be already generic and do not need 
further definition. However, a function key becomes generic when it does not appear on a certain 
keyboard but has an alternate key sequence. For that reason, the function keys are included in the 
table. 

Multiple key sequences and simultaneous keystrokes can also be described in generic keycap 
names that are applicable to all terminals. For example, you use a multiple key sequence and 
simultaneous keystrokes with the log-on function. You log on by pressing the Attention key, then 
holding down the Shift key while you press the exclamation(!) key. The same information in a table 
appears as Attentionl(Shift)!. 

Table A-2 shows some frequently used multiple key sequences. 

Table A-3 lists the generic names for 911 keycap designations used in previous manuals. You can 
use this table to translate existing documentation into generic keycap documentation. 

Figures A-1 through A-5 show diagrams of the 911 VDT, 915 VDT, 940 EVT, 931 VDT, and Business 
System terminal, respectively. Figure A-6 shows a diagram of the 820 KSR. 

2274834 (1/14) 

2270513-9701 A-1 



Keycap Cross-Reference 

A·2 

Generic Name 

Alternate 
Mode 

Attention 2 

Back Tab 

Command 2 

Control 

Delete 
Character 

Enter 

Erase Field 

Notes: 

911 
VDT 

None 

None 

Table A·1. Generic Keycap Names 

940 
EVT.' 

iii 
iii 

931 
VDT 

Sr!IFTO 

'The 820 KSR terminal has been used as a typical hard-copy terminal with the TPD Device Service 
Routine (DSR). Keys on other TPD devices may be missing or have different functions. 

'On a 915 VDT the Command Key has the label F9 and the Attention Key has the label F10. 

2284734 (2;14) 

820' 
KSR 

None 

2270513-9701 



Generic Name 

Erase Input 

Exit 

Forward Tab 

F1 

F2 

F3 

F4 

Notes: 

Table A-1. Generic Keycap Names (Continued) 

911 
VDT 

940 
EVT 

ii 

ii 

931 
VDT 

Business 
System 
Terminal 

ii 

~ riiiil 
~~ 

. 

. 

rw . 
. 
. 

ii 
ii 
ii 
ii 

ii 

ii 

ii 

'The 820 KSR terminal has been used as a typical hard-copy terminal with the TPD Device Service 
Routine (DSR). Keys on otherTPD devices may be missing or have different functions. 

2284734 (3/14) 

2270513-9701 

Keycap Cross-Reference 

8201 

KSR 

ii 

A-3 



Keycap Cross-Reference 

A·4 

Generic Name 

FS 

F6 

F7 

FB 

F9 

F10 

Notes: 

Table A·1. Generic Keycap Names (Continued) 

911 
VDT 

iii 
rw 

940 
EVT 

ii 

931 
VDT 

Business 
System 
Terminal 

iii 

iii 

iii 

iii 

iii 
iii 
ii 
iii 

'The 820 KSR terminal has been used as a typical hard-copy terminal with the TPD Device Service 
Routine (DSR). Keys on other TPD devices may be missing or have different functions. 

2284734 (4/14) 

820 1 

KSR 

2270513-9701 



Generic Name 

F11 

F12 

F13 

F14 

Home 

Initialize Input 

Notes: 

Table A-1. Generic Keycap Names (Continued) 

911 
VDT 

940 
EVT 

931 
VDT 

Business 
System 
Terminal 

liiiiii1 
~ 

iii 
iii 
iii 
iii 
iii 
iii 

'The 820 KSR terminal has been used as a typical hard-copy terminal with the TPD Device Service 
Routine (DSR). Keys on other TPD devices may be missing or have different functions 

2284734 (5;14) 

2270513-9701 

Keycap Cross-Reference 

820' 
KSR 

A·S 



Keycap Cross-Reference 

A-6 

Generic Name 

Insert 
Character 

Next 
Character 

Next Field 

Next Line 

Previous 
Character 

Previous Field 

Notes: 

Table A-1. 

911 
VDT 

[ii . 

[8 
or 

ii 
ii 

iii 
ri1 

rw 

fJ 
or 

ii 

Generic Keycap Names (Continued) 

940 
EVT 

[ii 

ril 

rm· 

ii 
iii 

931 
VDT 

~ . 

[3 

LS 

Business 
System 
Terminal 

iii 
ril 

[ii 

'The 820 KSR terminal has been used as a typical hard-copy terminal with the TPD Device Service 
Routine (OSR). Keys on otherTPD devices may be missing or have differenl functions. 

2284734 (6,/14) 

820' 
KSR 

None 

None 

None 

or 

None 

2270513-9701 



Generic Name 

Previous Line 

Print 

Repeat 

Return 

Shift 

Skip 

Uppercase 
Lock 

Notes: 

Table A·1. Generic Keycap Names (Continued) 

911 
VDT 

94,0 
EVT 

931 
VDT 

Business 
System 
Terminal 

~ 
111111 

'The 820 KSR terminal has been used as a typical hard-copy terminal with the TPD Device Service 
Routine (DSR)_ Keys on other TPD devices may be missing or have different functions. 

'The keyboard is typamatic. and no repeat key is needed. 

2284734 (7/1 4) 

2270513-9701 

Keycap Cross-Reference 

820 1 

KSR 

None 

None 

None 

A·7 





N 
N ..... 
0 

~ 
(.> 

ci:> ..... 
~ 

)> 
cD 

CURSOR CONTROL 
AND EDIT 

2284734 (9/14) 

Fl .... ~.~ . .J:j 

SPECIAL CONTROL 

F3 J:!I ~:-:-:-~~-:-:-:J::: ... r.~ .. .J:: f7 I FS f 
~~~ 

.:::::.:::::::::.;::::::.;.;:;:;:;:;:;:;:;.;:;:;.::::::::;:::::::::;.::::::::::::::;:;:;.;:;::.:::.:::::.;:;:;:::::;:;:::;.:.;.::::::::::::::::::::::::;.:::::::::::IT:;:::;::;::::

DATA ENTRY

Figure A·1. 911 VDT Standard Keyboard Layout

NUMERIC PAD

;)\
CD

~
Cl>
"ti
0 a
"' "' :0
CD
Cii'
(ti
:::.
0
CD

·----------- ~ - -· ---- ---- ---------

J> .:..
0

I\)
I\)
0
~
c.>
cb
~

CURSOR CONTROL
AND EDIT KEYS

2284734 (10;14)

""

FUNCTION
KEYS

.. ;:::::::::;:;:;:::;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:::;:;:;:;:::;:::;:;:;:::;:;:::;:::;:;:::::::::::;:;:::::::;:;:::;:;:;:;:;:;:::::::: ..

DATA ENTRY
KEYS

Figure A-2. 915 VDT Standard Keyboard Layout

STATUS LEDs

0 0 0 0
IDLE EXEC TEST COMM

0 0 0 0
ERR MODE DS01 DS02

NUMERIC
KEY PAD

--- ------ --------------

~
~
Ill

1:l

~
Cl)
Cl)

ii
(I)

Cb
ii3
::::.
()
(I)

I\)
I\)
-..J
0

~
(.>

cl:>
-..J

~

~

rrn-11rn---11~11~11~11-;;-all"'7,9ll~ll-m-ll~ll-;nJl-.;z"~I ~ F1 F2 F3 F4 F5 F6 F7 FB F9 F10 F11 F12
~~~~~~~~~~~~ • LIDUICllD 

2284734 (1 f/14) 

Figure A·3. 940 EVT Standard Keyboard Layout 

[ii 

~ 
'<: 

2 
l:l 

~ 
"' "' :h 
CD 

<b' 
iil 
:::i 
() 
CD 



~ ..... 
I\) 

I\) 
I\) ..... 
0 
(J1 
~ 

(.,) 

cO ..... 
~ 

ON/OFF REV 
STATUS LINE BKGND 

2284734 (t 2;14) 

DISPLAY 
BRIGHT DIM 

~ ~El 
SPEC 
CHAR 

Figure A·4. 931 VDT Standard Keyboard Layout 

"' (1) 
'-<:: 

2 
"'O 

~ 
(/) 
(/) 

::0 
(1) 

ii)' 
iil 
::i 
() 
(1) 

--- ·-- -----------



N 
N 
"'-I 
0 

~ 
(.,) 

cO 
"'-I 

~ 

~ ..... 
w 

l~l~l~J[.l:J[~Jl~Jl_:_J[~l IJ;ll]@Ll 

2284734 ( 13/14) 

Figure A-5. Business System Terminal Standard Keyboard Layout 

~ 
'<:: 
l;l 
"l:J 
() 

a 
"' "' :0 
Q) 

iii 
(ti 
::i 
(') 
Q) 



~ ..... 
.r::. 

N 
N 
-...! 
0 
~ 
(.,) 

cO 
-...! 

~ 

[Q][g][Q] 

0 0 

t:t t:l 
····-·-·-···-·-·-·-·'·'·'·-·-·-·-·.·.·.·.·.'.·'·'~·'·~·'.:,;·:·.·.·.·.·.·.·. 

2284734 (14/14) 

Figure A·6. 820 KSR Standard Keyboard Layout 

~ 
'<: 
0 
II> 

"O 
() 

C3 
(I) 
(I) 

:Xi 
CD 
<D q; 
::i 
0 
CD 



SCI/Utilities Design 

APPENDIX B 

WRITING DSEG POSITION-INDEPENDENT CODE 

B.1 OVERVIEW 

The use of procedure segments that are shared by more than one 
task in a program file can result in significant savings of both 
disk space and memory required to execute the tasks concurrently. 
Special coding requirements must be met to allow this sharing. 
These requirements arise from the following conflicts: 

* References within the procedure to variables defined in 
a DSEG are resolved when a task is linked. Different 
tasks may have DSEGs positioned (by the Link Editor) at 
different locations, relative to the beginning of each 
task segment. 

* References within the procedure to external 
are also resolved when a task is linked. 
tasks may have the same variable defined at 
locations. 

variables 
Different 
different 

Consequently, a procedure segment that is shared by more than one 
task must be coded in such a way as to be independent of the 
position of its DSEG and of the location of external variables 
and addresses within a task segment. Code that satisfies this 
requirement is called DSEG position-independent (DPI) code. 

One technique for achieving such independence is to calculate 
task-dependent addresses using the following: 

* A base register that contains the address of a DSEG 

* Fixed offsets from that base address to variables and 
nonlocal addresses 

This technique is used in the shared procedure 
a collection of widely used service routines. 
into several tasks in the utility program 
SCI990 and the Text Editor. 

segment S$SYSTEM, 
S$SYSTEM is linked 
file, for example, 

This appendix contains a sample conversion using the technique, a 
set of rules for writing DPI code, and a summary of the 
conventions followed in S$SYSTEM routines. 

2270513-9701 B-1 DPI Code 



UDR SCI/Utilities Design 

B.2 EXAMPLE CONVERSION 

As an example, con&ider the routine S$XMPL shown in Figure B-1. 
This routine makes the TCA available to the caller. It is 
written to illustrate several points in a small amount of code. 
In this context, the code may seem awkward, but the coding 
techniques are common. The Note indicators at the far right are 
for reference in the discussion of specific changes to lines of 
code. 

DPI Code B-2 2270513-9701 



SCI/Utilities Design 

****************************************************** 
REF PARM1 NONLOCAL VARIABLE 
REF S$NEW NONLOCAL ADDRESS 
REF W$XMPL NONLOCAL ADDRESS 

* 
DEF S$XMPL ENTRY POINT 

* 
S$XMPL DATA W$XMPL,P$XMPL TRANSFER VECTOR Note 1 

EVEN 
P$XMPL 

MOV @TCAPTR,RO TCA INITIALIZED ? Note 2 
JNE P$XM80 -- YES: DO NOTHING 

* 
BLWP @S$NEW CALL INITIALIZATION 
MOV @PARM1,RO SEE IF PARAMETERS 

* INDICATE NO "TCA" NEEDED 
JEQ P$XM80 JUMP IF so 
BL @P$SUBR 
RTWP RETURN 

P$XM80 
SETO @TCAPTR SET FLAG FOR "TCA EXISTS" 
CLR *R13 NORMAL EXIT 
RTWP 

* 
P$SUBR LI R4,>0AOO SUBOPCODE:OA & FLAGS:O 

LI R3,>4300 SVC CODE 
SVC R3 DO "GET SEG SIZE" TO SEE IF 
ANDI R3,>00FF THE SEGMENT IS THERE 
JEQ P$SBR5 
LI RO,>FF05 UNABLE TO ACCESS THE TCA 
MOV RO,*R13 
RT RETURN 

P$SBR5 SETO @TCAPTR SET FLAG FOR "TCA EXISTS" 
CLR *R13 NORMAL EXIT 
RT RETURN 

*======================================================== 
DSEG 

*--------------------------------------------------------
* DATA SECTION FOR S$XMPL - MUST CONTAIN VOLATILE 
* INFORMATION 
*--------------------------------------------------------
* 
* 
TCAPTR DATA 0 
********************************************************* 

Note 
Note 

Note 

Note 

Note 
Note 

Note 

Notes - Changes to lines are detailed in the corresponding Notes 
later in this appendix. 

Figure B-1 DSEG Position-Dependent Code for S$XMPL 

3 
4 

5 

2 

5 
2 

5 

2270513-9701 B-3 DPI Code 



UDR SCI/Utilities Design 

Assume that the object from this code is included in the link 
stream of task A, as the first routine of the procedure segment 
X, and that the length of the declared task area for the program 
is >1000. Figure B-2 illustrates the resolution of addresses in 
S$XMPL by the linking process. 

Procedure 
Segment 

x 
+-------------+ 

>OOOO WP: >2100 

PC: >0004 

Object of 
S$XMPL code, 
with address 
of TCAPTR at 

,>2000. 

I 
\ \ 

+-------------+ 

+------> 

I 
I 

DSEGs 
for 

Procedure X 
Routines 

I 
I 

+------> 

Task 
Segment 

A 

+-------------+ 
>10001 Data area 

I 
\ 

>1FFEl 

for program 
A 

I 
\ 

I I .-------------, 
>2000 l TCAPTR 

I I ·-------------· I Other I 
\ data \ 

I I ·-------------· >21001 Workspace 

I 
I 

I 
\ 
I 
I 

>211 El 

W$XMPL ' I 
I 
I 
I 

I 
\ 

I 
I 

+- - --.- - -- - - - - - + 

Figure B-2 Address Resolution in Task Segment A 

This resolution of addresses works for task A, and for any 
replication of task A, since the task segments are identical and 
TCAPTR, the only volatile data in S$XMPL is in the task segment. 

Now assume that program B must perform precisely the same 
functions that are performed in the routines in procedure segment 
X. Task B includes the procedure segment in its link stream (as 
a DUMMY, so that another copy of the object is not generated). 
The addresses in procedure segment X that are referenced in 
program B, such as S$XMPL, are resolved. The DSEG elements 
required by routines in procedure X for volatile data are created 
at the end of the task segment of program B. 

Assume that program B has a declared task area that is >0400 
bytes long. Figure B-3 shows the address resolution that results 
from this linking. 

DP! Code B-4 2270513-9701 



SCI/Utilities Design 

Task 
Segment 

B 

+-------------+ 
>10001 Data area 

I 
\ 

>13FEI 

for program 
B 

I 
\ 

I I ·-------------. 
>14001 TCAPTR I 

I I ·-------------· 
I Other I 
\ data \ 

I I ·-------------· 
>15001 Workspace 

I 
\ 
I 
I 

>151EI 

W$XMPL 

I 
\ 

I 
I 

+-------------+ 

<--------+ 

I 
I 

DSEGs 
for 

Procedure X 
Routines 

I 
I 

<--------+ 
Figure B-3 Address Resolution in Task Segment B 

When program B executes a BLWP to S$XMPL, the code in procedure 
segment X expects the variable TCAPTR to be at >2000 and the 
address of the workspace to >2100! As it is currently written, 
the location of TCAPTR and the workspace to be used by S$XMPL are 
fixed in the procedure segment code when the object is linked 
into task A. This is the image stored on the program file when 
task A is installed. 

In order for the procedure segment code to execute properly, 
regardless of where the DSEG elements are located in the task 
segment, references to elements in the task segment must be 
resolved at run time. This is true whether the elements are 
variables or addresses. The following modifications accomplish 
this goal: 

* The transfer vector is moved to the DSEG so that the 
workspace pointer can be resolved properly each time the 
procedure segment is linked into a different task. 

* A register is initialized with the beginning address of 
the data area for the routine before branching to code 
in the procedure segment. 

2270513-9701 B-5 DPI Code 



UDR 

* 

SCI/Utilities Design 

All DSEG position-dependent addresses are referenced 
indexing off the base register. 

by 

Changes in the lines of code marked with Notes in Figure B-1 are 
discussed in the paragraphs that follow. Register 10 is used in 
this example for the base register. 

Note 

Moving the transfer vector and initializing the base register are 
accomplished by deleting the line at NOTE 1 and adding the 
following lines in the DSEG: 

* TRANSFER VECTOR 
S$XMPL DATA W$XMPL WORKSPACE POINTER 

DATA D$XMPL START ADDRESS 
* INITIALIZE REGISTER 1 0 
D$XMPL LI R10,BTABLE 
* BRANCH TO PROCEDURE SEGMENT 

B @P$XMPL 
* DEFINE ADDRESS TO BE PUT INTO R10 
BTABLE EQU $ 

Note 2 

The address of the variable TCAPTR must be indexed off register 
10. The offset of TCAPTR from BTABLE must be known. Define 
ETCAPT as follows, in the DSEG: 

ETCAPT EQU $-BTABLE 
TCAPTR DATA 0 

OFFSET FROM BTABLE 
RESERVE SPACE FOR VARIABLE 

This provides an offset that can be used in the procedure segment 
as follows: 

MOV @ETCAPT(R10),RO TCA INITIALIZED? 

SETO @ETCAPT(R10) SET FLAG FOR "TCA EXISTS" 

SETO @ETCAPT(R10) SET FLAG FOR "TCA EXISTS" 

Note 3 

Since S$NEW has a BLWP interface, its transfer vector must also 
be in the task segment. Therefore, the address of its transfer 
vector must be indexed off register 10. The address of the 
transfer vector (S$NEW) is resolved as part of the linking 
process. The following must appear in the DSEG portion of 
routine S$XMPL: 

DP! Code B-6 2270513-9701 



SCI/Utilities Design 

E$NEW EQU $-BTABLE 
DATA S$NEW 

* 

OFFSET FROM BTABLE 
ADDRESS OF S$NEW TRANSFER VECTOR 
IN THIS TASK SEGMENT 

The BLWP instruction is replaced with the following instructions: 

MOV @E$NEW(R10),RO 
BLWP *RO 

LOAD ADDRESS OF S$NEW TRANSFER VECTOR 
BRANCH INDIRECT -- TO INITIALIZATION 

Note 4 

PARM1 is a nonlocal variable for S$XMPL, but its address is 
resolved at link time. The following instructions are added to 
the DSEG portion, so that the variable can be accessed: 

EPARM1 EQU $-BTABLE 
DATA PARM1 

OFFSET FROM BTABLE 
ADDRESS OF PARM1 

The MOV instruction is replaced with the following instructions: 

Note 5 

MOV @EPARM1(R10),RO 
MOV *RO,RO 

LOAD ADDRESS OF PARM1 
LOAD INDIRECT 

If subroutine P$SUBR is to be called by more than one module in 
procedure segment X, the interface to the subroutine P$SUBR 
requires modification. 

Assume that a routine in another module, say S$EX2, calls the 
subroutine P$SUBR. When P$SUBR is called by S$EX2, register 10 
is the base address of the S$EX2 data area, but P$SUBR must 
execute using its local DSEG in order to modify the value of 
TCAPTR. This can be accomplished by meeting the following 
interface requirements in the subroutine: 

* The entry point must be in the DSEG. 

* R10 of the calling routine is saved and the local BTABLE 
address of the subroutine is placed in R10 prior to 
executing code in the procedure segment. 

* R10 of the caller is restored prior to the return. 

The requirements on the calling routine are: 

* The entry must be declared in the DSEG. 

* The calling routine must branch indirect to the 
subroutine. 

The following changes make it possible for any other routine in 
procedure segment X to call P$SUBR: 

2270513-9701 B-7 DPI Code 



UDR SCI/Utilities Design 

Call the entry point S$SUBR, for sake of consistency. Make the 
following additions to the BTABLE structure: 

E$SAVE 

E$SUBR 

EQU 
DATA 
EQU 
DATA 

$-BT ABLE 
0 
$-BT ABLE 
S$SUBR 

OFFSET FROM BTABLE 
RESERVE SPACE FOR SAVING R10 
OFFSET FROM BTABLE 
ADDRESS OF ENTRY POINT IN TASK 

Define the entry point and preprocessing in the DSEG as follows: 

* SAVE CURRENT R10 
S$SUBR MOV R10,@BTABLE+E$SAVE 
* LOAD LOCAL BTABLE ADDRESS 

LI R10,BTABLE 
* BRANCH TO PROCEDURE CODE 

B @P$SUBR 

R10 of the caller must 
following instruction 
statements in P$SUBR. 

be restored before the return. The 
is inserted before each of the RT 

MOV @E$SAVE(R10)iR10 

The call to P$SUBR in S$XMPL must be compatible with the newly 
be replaced as defined interface. The BL instruction must 

follows: 

MOV @E$SUBR(R10),RO 
BL *RO 

ADDRESS OF ENTRY POINT 
BRANCH INDIRECT 

S$SUBR can now be called by any routine in procedure segment X, 
using the calling sequence just shown. 

With these changes, S$XMPL can be linked with either task and 
execute properly for each. 

The object from code shown in Figure B-4 is the portion of the 
final version of S$XMPL that appears in the shared procedure 
segment. Figure B-5 shows the code from which the S$XMPL DSEG in 
the task segment is generated. The REF and DEF instructions are 
moved to the DSEG to improve readability of the listing. This 
keeps them near the BTABLE where they are used. 

DP! Code B-8 2270513-9701 



SCI/Utilities Design 

EVEN 
P$XMPL 

MOV @ETCAPT(R10),RO 
JNE P$XM80 

* 

* 

P$XM80 

MOV 
BLWP 
MOV 
MOV 

JEQ 
MOV 
BL 
RTWP 

@E$NEW(R10),RO 
*RO 
@EPARM1 (R10) ,Rb 
*RO,RO 

P$XM80 
@E$SUBR(R10),RO 
*RO 

SETO @ETCAPT(R10) 
CLR *R13 
RTWP 

* 
P$SUBR LI 

LI 
SVC 
ANDI 
JEQ 
LI 
MOV 
MOV 
RT 

P$SBR5 SETO 
CLR 
MOV 
RT 

R4,>0AOO 
R3,>4300 
R3 
R3,>00FF 
P$SBR5 
RO,>FF05 
RO,*R13 
@E$SUBR(R10),R10 

@ETCAPT(R10) 
*R13 
@E$SUBR(R10),R10 

TCA INITIALIZED ? 
-- YES: DO NOTHING 

LOAD ADDRESS OF S$NEW TRANSFER VECTOR 
BRANCH INDIRECT-TO INITIALIZATION 
LOAD ADDRESS OF PARM1 
LOAD INDIRECT-SEE IF PARAMETERS 
INDICATE NO "TCA" NEEDED 
JUMP IF SO 
ENTRY POINT OF S$$SUBR IS IN DSEG 
BRANCH INDIRECT TO S$SUBR 
RETURN 

SET FLAG FO~ "TCA EXISTS" 
NORMAL EXIT 

sugopcoDE:OA & FLAGS:O 
SVC CODE 
DO "GET SEG SIZE" TO SEE IF 
THE SEGMENT IS THERE 

UNABLE TO ACCESS THE TCA 

RESTORE CALLER'S R10 
RETURN 
SET FLAG FOR "TCA EXISTS" 
NORMAL EXIT 
RESTORE CALLER'S R10 
RETURN 

****************************************************************** 

Figure B-4 S$XMPL Code for Procedure Segment 

2270513-9701 B-9 DP! Code 



UDR SCI/Utilities Design 

*=========================================================== 
DSEG 

*-----------------------------------------------------------* DATA SECTION FOR S$XMPL - MUST CONTAIN ALL RELOCATABLE 
* INFORMATION 

*-----------------------------------------------------------
* 

* 
* 
* 

REF PARM1 
REF S$NEW 
REF W$XMPL 

DEF S$XMPL 

S$XMPL DATA W$XMPL 
DATA D$XMPL 

* 
D$XMPL LI R10,BTABLE 

B @P$XMPL 

NONLOCAL VARIABLE 
NONLOCAL ADDRESS 
NONLOCAL ADDRESS 

ENTRY POINT 

TRANSFER VECTOR 
WORKSPACE POINTER 
START ADDRESS 
INITIALIZE REGISTER 10 

BRANCH TO PROCEDURE SEGMENT 

* 
S$SUBR MOV 

LI 

ENTRY 
R10,@BTABLE+E$SAVE 
R10,BTABLE 

FOR P$SUBR 
SAVE CALLER'S REGISTER 10 
LOAD LOCAL BTABLE ADDRESS 
BRANCH TO PROCEDURE SEGMENT B @P$SUBR 

* 
BTABLE EQU $ 
* 
ETCAPT EQU $-BTABLE 
TCAPTR DATA 0 
* 
EPARM1 EQU $-BTABLE 

DATA PARM1 
* 
E$NEW EQU $-BTABLE 

DATA S$NEW 
* 
* 
E$SUBR EQU $-BTABLE 

DATA S$SUBR 

* 
E$SAVE EQU $-BTABLE 

DATA 0 

DEFINE ADDRESS TO BE PUT INTO R10 

OFFSET FROM BTABLE 
RESERVE SPACE FOR VARIABLE 

OFFSET FROM BTABLE 
ADDRESS OF PARM1 

OFFSET FROM BTABLE 
ADDRESS OF S$NEW TRANSFER VECTOR 
IN THIS TASK SEGMENT 

OFFSET FROM BTABLE 
ADDRESS OF S$SUBR IN TASK SEGMENT 

OFFSET FROM BTABLE 
RESERVE SPACE FOR SAVING CALLER'S R10 

*************************************************************** 

Figure B-5 S$XMPL Code for Task Segment 

Figure B-6 shows the resolution of the addresses when procedure 
X, containing this routine, is linked into task A and into task 
B. 

DP! Code B-10 2270513-9701 



SCI/Utilities Design 

Program B 
Task 

Segment 
+-------------+ 

>1000: Data area 

I 
\ 

>13FE 

for program 
B 

I 
\ 

------------- <----+ 
>1400 WP: >1600 

PC: >1404 

>1404 LI R10,>140C 

l B @P$XMPL 
I 1-------------

>140C I TCAPTR 
I ·-------------
lPARM1 address 
I ·-------------
IS$NEW address I 

I 

Program A 
Task 

Segment 
+-------------+ 

>1000: Data area 

>1FFE 
+-----> 

>2000 

I 
\ 

for program 
A 

WP: >2200 

PC: >2004 

>2004 LI R10,>200C 

B @P$XMPL 

>200C TCAPTR 

I 
\ 

I ·-------------
/ 

DSEGs for Procedure 
X Routines PARM1 address 

\ \ 
I I ·-------------· 

>16001 Workspace 

I 
\ 
I 
I 

>161El 

W$XMPL 

I 
\ 

I I 
I I 

+-------------+<----+ 

S$NEW address 

·-------------
/ I 
\ \ 
I I ·-------------· 

>22001 Workspace 

I 
I 

I 
\ 

W$XMPL 
I 
I 

I 
\ 

>221El l 
+------->+-------------+ 

Figure B-6 DPI Task Structures 

Notice that in both cases the values of the offsets, ETCAPT, 
EPARM1, and E$NEW, are the same, but the address that is passed 
to S$XMPL in register 10 is different. The offsets are hard 
coded in the procedure segment, but every task that includes the 
procedure segment X produces the identical DSEG structure, so 
that the offsets are valid, regardless of the position of the 
DSEG within the task segment. 

2270513-9701 B-11 DPI Code 



UDR SCI/Utilities Design 

B.3 RULES 

The rules for implementing this technique for writing DSEG 
position-independent code are summarized as follows: 

* The transfer vector for a routine with BLWP/RTWP 
interface must be in the DSEG. 

* The entry point of a common subroutine with BL/RT 
interface must be defined in a DSEG. 

* All local variables must be accessed by indexing off the 
base register. 

* All nonlocal variables and addresses must be accessed 
through a local variable that contains the address of 
the item. 

* If a BL/RT interface is used for a common routine, the 
called routine must save/restore the base register. 

B.4 CONVENTIONS USED IN S$SYSTEM 

S$SYSTEM is a procedure segment that is linked into several tasks 
in the utility program file. All routines in S$SYSTEM are DSEG 
position-independent. 

All S$SYSTEM routines have a BLWP/RTWP 
workspaces are defined for use by S$ routines. 
mapped into the workspaces by aliases with 
where name resembles the name of the routine. 

interface. Five 
The routines are 

the format W$name, 

All S$SYSTEM routines use register 10 in their own workspace for 
the address of the BTABLE structure. (Counting down from 
register 15, R10 is the first uncommitted register. R13 through 
R15 are used by BLWP/RTWP, R12 by read/write CRU instructions, 
and R11 by BL/RT.) 

Figure B-7 shows the structure of a typical DSEG for a S$SYSTEM 
routine. 

DP! Code B-12 2270513-9701 



SCI/Utilities Design 

***************************************************************** 
* LOCAL VARIABLES, EXTERNAL ADDRESSES 
* DEF 
* REF 
* 
* 
S$name DATA 

DATA 
* 
D$name LI 

B 
* 
BTABLE EQU 

W$name 
D$name 

TRANSFER VECTOR 
S$ routine workspace pointer 
S$ routine program counter 

R10,BTABLE 
@P$name 

Put BTABLE address in register 10 
Entry point in procedure segment 

DATA AREA POINTED TO BY R10 
$ 

* Reserve space for all local variables 
* Declare all nonlocal addresses 
***************************************************************** 

Figure B-7 DSEG Structure in S$SYSTEM Routines 

The procedure segment S$SYSTEM is installed with write 
protection. 

The convention of using a label of E followed by the (possibly 
abbreviated) name of the variable is generally followed in 
SSYSTEM routines. This makes it easier to recognize what is 
being referenced when reading the code and/or a cross reference 
listing. 

All routines in S$SYSTEM have names that begin with S$, but such 
names are not reserved in DNOS for DSEG position independent 
code. The name of a routine cannot be assumed to imply DSEG 
position independence. 

2270513-9701 B-13/B-14 DPI Code 





SCI/Utilities Design 

APPENDIX C 

TASK, PROCEDURE AND OVERLAY SEGMENTS IN S$UTIL 

C.1 OVERVIEW 

This appendix lists the task IDs, overlay IDs and procedure 
segment IDs associated with SCI and DNOS utility programs. All 
elements listed in this appendix are installed in the program 
file S$UTIL, except AGTASK which is in S$SECURE. 

Table C-1 provides a list of the task IDs, including the name of 
each task and its function. The tasks documented in this manual 
are grouped by subsystem. The tasks listed as miscellaneous 
tasks are not documented in this manual. Operating system tasks 
are not shown in this list. They are described in the DNOS 
System Design Document. 

Table C-2 provides a list of the procedure/program segments, the 
installed IDs and names, and the purpose of the segment. 

Table C-3 provides a list of the overlays, the IDs and names and 
the purpose of the overlay. They are grouped by the task to 
which they belong. 

2270513-9701 C-1 Utility Program File 



UDR SCI/Utilities Design 

Table C-1 SCI/Utilities Tasks 

Subsystem ID Name 

---------
SCI990 0 1 SCI990 

Text Editor OE EDITOR 

User ID Maintenance 
39 AUIDUI 
09 MPC 
02 AGTASK 

File Maintenance 
1 1 CCAF 

13 RD 
1 4 VB 
22 DD 
23 LD 

32 MD 
34 CD 
35 BD 

36 vc 
40 MKL 

Operator Interface 
61 OPERATOR 
62 XO! 
63 LGRCRT 

System Configuration Utility 

Spooler 

2E 

4D 

4E 
57 
59 
5B 

60 

scu 

SP$DST 

SPINIT 
PF 
LPWRITER 
SPTASK 

sos 

Message File Maintenance 
3C BMF 
49 BEMF 
55 SEM 

Utility Program File C-2 

Purpose 

The System Command Interpreter (SCI) 

The Text Editor 

Add/delete a user ID 
Modify Passcode 
Access Group Maintenance 

(in S$SECURE) 

Copy or append one file to another 
file 
Restore a directory 
Verify a backup of a directory 
Delete a directory 
List the contents of a directory 
structure 
Map a disk or a directory 
Copy a directory to another director 
Back up a directory on a sequential 
medium 
Verify a copy of a directory 
Modify key logging 

The Operator Interface system task 
The Operator Interface user interfac 
Create system log files 

Performs SCU functions 

Schedule Spooler devices, 
maintain Spooler queues 
SP$DST initialization 
Spooler user int~rface 
Line printer writer 
Interface between a user task and 
SP$DST 
Show status of output queues 

Build a message file 
Build an expanded message file 
Show an expanded message 

2270513-9701 



SCI/Utilities Design 

Table C-1 SCI/Utilities Tasks (Continued) 

Subsystem ID Name 

Miscellaneous Task Segments 
02 TINFO 
03 MS 
07 MAILBOX 
08 CKD 
OD DEBUGGER 
OE EDITOR 
OF TIGR 
1 0 MRFSRF 
12 LS 
15 CP 
18 RV! 

1A ANALZ 
1B IF SVC 

1C XBJ 
1D MPFMKF 

24 LLR 
26 MP ISP I 
2A IDT 
2C MADS AD 
2F SND 

33 SYSGEN 
3E MOEMPE 
3F CPI 
45 CSKCKS 

46 RWCRU 
4B IBMUTL 

4F ASP 
5C ALN 
5D DCOPY 
5E CSM 

5F SDA 
64 LSC 
65 CB 
66 SRFI 

2270513-9701 C-3 

Purpose 

Access terminal information 
Modify synonym 
Perform message routing functions 
Check disk consistency 
Perform Debugger functions 
Text Editor 
Interactive execution of SVCs 
Modify/show relative record file 
List synonyms 
Create patch 
Recover volume information 
(Track O, Sector 0 unusable) 
Analyze a crash dump 
Collection of SVC execution 
routines 
Execute batch job 
Map program file or key indexed file 
(KIF) 
List logical record 
Modify/show program image file 
Initialize date and time 
Modify/show absolute disk 
Write logical names and 
synonyms to disk 
Generate an operating system 
Modify overlay/procedure entry 
Copy program image file 
Copy sequential file to KIF or KIF 
to sequential file 
Read/write at a CRU address 
Convert flexible disk from IBM to 
TI format, and vice versa 
Assign spooler parameters 
Assign logical name 
Track-by-track copy (disk-to-disk) 
Copy sequential medium to 
sequential medium 
Show device attributes 
List software configuration 
Create batch stream 
Show relative record file 
(interactively) 

Utility Program File 



UDR SCI/Utilities Design 

Table C-2 SCI/Utilities Procedure Segments 

ID Name Purpose 
-------

02 S$SYSTEM S$ utility routines 
03 SCI990 System Command Interpreter (SCI) 
04 TIGR Interactive execution of SVCs 
05 EDITOR Text Editor 
06 SPCOMN Common data for Spooler subsystem 
07 LPWRITER Line printer writer 

Utility Program File C-4 2270513-9701 



SCI/Utilities Design 

Table C-3 SCI/Utilities Overlays 

Subsystem 

Debugger 

System Configuration 
Utility 

System Generation 

2270513-9701 

ID 

07 
08 
09 
OA 
OB 
OD 
OE 
OF 
1 0 
1 1 
12 
1 3 
1 4 
15 
16 
17 
18 
1 9 
1A 
1B 
50 
5 1 
52 

41 
42 
43 
44 
45 
46 

47 

Name 

L$$PB3 
L$$PB4 
L$$PB5 
L$$RS3 
L$$RS4 
L$$AB 
L$$ASB 
L$$DEB 
L$$FB 
L$$MI 
L$$MM 
L$$PB 
L$$RS 
L$$PB1 
L$$PB2 
L$$RS1 
L$$RS2 
L$$DB 
L$$MR 
L$$RS5 
L$$SPS 
L$$PB6 
L$$APB 

SCUINIT 
SCUDEV 
SCUADD 
SCUPDT 
SCUDSR 
SCUDEL 

SCUMISC 

Purpose 

Debugger 
Debugger 
Debugger 
Debugger 
Debugger 
Debugger 
Debugger 
Debugger 
Debugger 
Debugger 
Debugger 
Debugger 
Debugger 
Debugger 
Debugger 
Debugger 
Debugger 
Debugger 
Debugger 
Debugger 
Debugger 
Debugger 
Debugger 

Initialization, termination 
Modify device configuration 
Add device 
Build PDT 
Install DSR, add interrupt 
Delete device, modify device 
state 
Modify system parameters, tables 
Initialize system log 

01 !NIT Initialization 
02 INTERACT User interface 
03 BUILD Generate system 

C-5/C-6 Utility Program File 





SCI/Utili~ies Design 

ALPHABETICAL INDEX 

Introduction 

The following index lists key words and concepts from the subject 
material of this manual together with the area(s) in the manual 
that supply coverage of the listed concept. The numbers along 
with the right side of the listing reference the following manual 
areas: 

* 

* 

* 

* 

* 

Sections -- References to Sections of the manual appear 
as "Section x" with the symbol x reresenting any 
numeric quantity. 

Appendixes -- References to Appendixes of the manual 
appear as "Appendix y" with the symbol y representing 
any capital letter. 

Paragraphs -- References to paragraphs of the manual 
appear as a series of alphanumeric or numeric 
characters punctuated with decimal points. Only the 
first character of the string may be a letter; all 
subsequent characters are numbers. The first 
chartacter refers to the section or appendix of the 
manual in which the paragraph is found. 

Tables References to tables in the manual are 
represented by the capital letter T followed 
immediately by another alphanumeric character 
(representing the section or appendix of the manual 
containing the table). The second character is 
followed by a dash (-) and a number: 

Tx-yy 

Figures -- References to figures in the manual are 
represented by the capital letter F followed 
immediately by another alphanumeric character 
(representing the section or appendix of the manual 
containing the figure). The second character is 
followed by a dash (-) and a number: 

Fx-yy 

Should you be unable to find the item of interest in the index, 
review the Table of Contents, List of Tables and List of Figures 
for general categories of information. 

2270513-9701 Index 



SCI/Utilities Design 

Alphabetical Index 

Accounting !PC Channel .S$ACCCHN 
Add Spooler Device 
Additional Text, DNOS Message 
ADU Spanning Rule 
AF, Command Procedure 
Alphabetic Character Set, SCI 
Alphanumeric Character Set, SCI • 
ANS Command Procedure 
Approximate Match 
Asynchronous Multiplexor 
AU!, Command Procedure 
AUIDUI, User ID Maintenance Task 

Background Task, SCI 
Backup Directory Performance 
Banner Sheet, Spooler 
Batch Job: 

Operator Interface 
SCI • 

Batch Termination Messages 
BD: 

Command Procedure 
Move Task 

BEMF: 
Build Expanded Message File Task 
Command Procedure 

Blocked Output, Move Task 
BMF: 

Build Message File Task • 
Command Procedure 

Breakpoint 
Simulated 

BTALEN, System Data • 

8.3.1.2, 8.6.3 
8.6.7.7 

3.4.4 
9.2.1.2 

9.7 
4.5.4.5 
4.5.4.5 

. 11 • 2 
2.2.4, 2.2.5, 4.5.4.5, 4.5.7.2 

6. 3. 3 
10.4.1 
10.4.1 

4. 3. 1 
9.2.1.2 

8.7.7 

7. 1 
4.3.1 

4.4.6, 4.5.1.3 

9.2 
9.2 

3.1.2 
3.7.2 

. 9.2.1.2, 9.2.5.5 

3. 7. 1 
3. 7. 1 

• 1 2 • 2 

Build Expanded Message File Task BEMF 
Build Message File Task BMF • 

• 1 2 • 2 
6.5.7 
3.7.2 
3. 7. 1 

CALL Command Procedure 
CC, Command Procedure 
CCAF: 

CD: 

Copy Concatenate/Append File Task 
Special Name: 

CRnn 
DSnn 

Command Procedure 
Copy Directory Task • 
Move Task 

• 11. 2 
9.7 

9.7 

9.7 
9.7 

9.2 
9.2 
9.2 

Character, Event 
Character Set: 

4.5.2.3, 7.6.7.1, 7.6.7.9, 7.9 

DNOS Message 
Message File 

Index 2 

3. 7. 1 
3. 5. 1 

2270513-9701 



SCI/Utilities Design 

Move Task 
SCI: 

Alphabetic 
Alphanumeric 

CL, Command Procedure 
Class Name Queue, Spooler 
Class Name Table, Spooler .S$SDTQUE • 
CM Command Procedures 
CMD Disk 
CMDNAM 
CODE Complementing, Text Editor . 
Code: 

Completion 
Condition 
Spooler Message • 
User ID Maintenance • 

CODE Values, Text Editor 
Coding Conventions 
COM, Command Procedure 
Command Naming Standards 
Command Procedure 

AF 
ANS • 
AUI • 
BD 
BEMF 
BMF • 
CALL 
cc 
CD 
CL 
COM . 
DD 
DISC 
DL 
DS 
DUI . 
Environment Stacking 
FS 
HO 
IF 
ISL . 
KO 
KOM • 
KOR • 
LD 
LDC . 
LHPC 
Library, SCI 
LLR . 
LOM . 
LUI . 
MCC . 

2270513-9701 3 

9.2.5.5 

4.5.4.5 
4.5.4.5 
5.8.5.3 

8.5 
8. 5. 1 

4.5.6.2 
9.2 

2. 5. 1 
• F5-1 

3.3 
3.3 

8.3.1.1 
10.4.1 
• T5-2 

2. 1 
7. 6. 7. 3, T7-1 

2. 5. 1 
4. 4. 1 

9.7 
• 11. 2 
10.4.1 

9.2 
3.7.2 
3. 7. 1 

• 11. 2 
9.7 
9.2 

5.8.5.3 
7. 6. 7. 3, T7-1 

9.6 
• 11. 2 

5.8.5.3 
5.8.5.3 

10.4.1 
• 4.5.1.6, 4.5.3.3 

5.8.5.3 
• 8. 1 0 

5.8.5.3 
• 6.5.8, 6.5.9 

. • 8. 1 0 
7.5.6.6, 7.6.7.6, T7-1 

7.6.7.7, T7-1 
9.4 

6.5.2 
. 11. 2 

4.5.3.1 
• 1 2. 1 

7.5.6.4, 7.6.7.5, T7-1 
10.4.1 
6.5.5 

Index 



MD 
MDC 
MOS 
MHPC 
ML 
MO 
MPC 
MPISPI 
MR 
MRFSRF 
MRM 
MSD 
MSP 
MST 
MT 
MUI 
M$00 
M$01 
M$02 
Nesting 
Nesting Depth 
PF 
QE 
QOI 
QSCU 
RD 
RE 
RO 
ROM 
ROR 
RS 
sec 
SEM 
SL 
sos 
SVL 
VB 
vc 
XD 
XE 
XES 
XO! 
xscu 

Command Procedures: 
CM 
KBT 
MSG 
MTS 
SBS 
scu 
SDT 
Wait 

SCI/Utilities Design 

9.5 
6.5.3.1, 6.5.3.2, 6.5.3.3, 6.5.3.4, 6.8.2 

6.5.12 
11. 2 

5.8.5.3 
8. 10 

10.4.1 
1 2. 1 

5.8.5.2 
1 2. 1 

5.8.5.2 
8. 1 0 

6.5.11 
6.5.6, 6.5.7 

5.8.5.2 
10.4.1 
4.3.2 

4.3.2, 4.5.1.7, 4.5.1.7 
4.5.1.3 

4.4.1, 4.5.1.6, 4.5.3.3 
2.2.5, 4.4.1, 4.5.3.3 

8. 1 0 
5.8.5.1 

7.5.6.2, 7.6.7.2, T7-1 
6.5.10 

9.2 
5.8.5.1 

8. 1 0 
7.5.6.5, 7.6.7.4, T7-1 

7.5.6.8, 7.5.6.9, 7.6.7.7, T7-1 
5.8.5.3 

6.5.4 
3.4.2, 3.8 

5.8.5.3 
8.9 

5.8.5.3 
9.2 
9.2 

12. 2 
5.8.5.1 
5.8.5.1 

7.5.6.1, 7.6.7.1, T7-1 
6.5.1 

4.5.6.2 
4.5.6.2 
4.5.6.2 
4.5.6.2 
4.5.6.2 

Command Processors Internationalizing 

6.6.1, T6-4 
4.5.6.2 
4.5.6.2 

2.6, 2.6 

Index 4 2270513-9701 



SCI/Utilities Design 

Compatibility, DNOS/DX10 
Complementing, Text Editor CODE • 
Completion Code • 
Compression, Program File 
Condition Code 
Configuration Utility, System 
Control File: 

Directive, Move Task 
Move Task 
Processing, Move Task 

Controlled Task • 
Copy Concatenate/Append File Task CCAF 
Copy Directory Task CD 
Country Code, System Data 
CRnn, CCAF Special Name • 

Data Structure: 
KMTAB, KIF Manager 
SDEDOR, UTSORT 
SDEMD, UTSORT 

Data Structures, Spooler 
DD: 

Command Procedure 
Delete Directory Task 

Debugger 
Decoder Data Structures: 

Expansion Chassis 
Multiple-Interrupt 
Single-Interrupt 

Decoder, MUX Interrupt 
Default, Move Task OPTIONS 
DEL, Descendant Error List 
Delete Directory: 

Special Name VCATALOG 
Task DD • 

Delete Hierarchy Recursive Routine DH 
Descendant Error List DEL 
Device: 

Add Spooler • 
Error, Spooler 
Interrupt Vector 
Queue, Spooler 

Device Scheduler Task SP$DST 
Device Scheduling, Spooler 
Device Service Routine DSR 
Device State, System Data 
Device Table, Spooler .S$SDTQUE • 
Device Writer Task, Spooler . 
DH, Delete Hierarchy Recursive Routine 
Direct I/O: 

Move Task 
Program File 

Directive, Move Task Control File 

2270513-9701 5 

' . 

• T4-1 
• F5-1 

3.3 
9.2.1.2 

3.3 
6. 1 

9.2.5.2 
9.2.1.4 
9.2.5.2 

• 1 2 • 2 
9.7 
9.2 

6.1, 6.5.4, 6.5.5 
9.7 

9.5 
9 •· 3. 3 

9.3.3, 9.5 
• F8-1 

9.6 
9.6 

12.1, 12.2 

6.4.1 
• F6-5 
• F6-4 
6. 4. 1 

• T9-1 
4.4.6 

9.6 
9.6 
9.6 

4.4.6 

8.6.7.7 
8.6.1.3, ·8.1.3 

6.4.1 
8.5 

8. 2. 1 
8.1, 8.6.7.1 
6.4.1, 8.7.3 

6. 1 
8.5.2 

8.7 
9.6 

9.2.1.2 
9.2.1.2 
9.2.5.2 

Index 



Directory Level Stacking 
Directory: 

Traversing Order 
.EXPTEXT, Message 
.S$EXPMSG, Message 
.S$MSG, Message • 
.S$$SDTQUE 
.TEXT, Message 

DISC Command Procedure 
Disk, CMD 
Disk Drive, DS31 
Disk PDT Extension 
Display Refresh, Text Editor 
DL, Command Procedure 
DNOS: 

Message: 
Additional Text • 
Character Set 
Error Source 
F_ixed Text 
Format 
Variable Text 

DNOS/DX10 Compatibility . 
DPD, PDT Extension 
DS, Command Procedure 
DSnn, CCAF Special Name 
DSR, Device Service Routine • 
DSRTPD 
DS31 Disk Drive • 
DUI, Command Procedure 

End-Of-Line Byte EOL, SCI 
Environment Stacking, Command 
EOL, SCI End-Of-Line Byte 
Error Check, Read After Write 
Error Processing, Move Task • 
Error Reporting: 

Pascal Interface Routines 
Text Editor . 

Error Source, DNOS Message 
Error, Spooler Device 
ETAB, System Data 
Event Character . 
Expansion Chassis 

Decoder Data Structures • 
Expedite Mode, SCI 
Expert Mode, SCI 
EXPTEXT: 

Message File Format . 
Reserved Keys 

Field Prompt 
Initial Value 

Index 

SCI/Utilities Design 

9.2.1.3, 9.2.5.3, 9.2.5.5, 9.2.5.5 

• 9.2.1.3, 9.2.1.3 
3.5 
3.5 
3.5 
8.5 
3.5 

• 11. 2 
9.2 

6.5.12 
6. 4. t 
5.8.3 

5.8.5.3 

3.4.4 
3. 7. 1 

• T3-1 
3.4.3.1 

3.4 
3.4.3.2 

• T4-1 
6. 4. 1 

5.8.5.3 
9.7 

• 6.4.1, 8.7.3 
• 11. 4 
6.5.12 
10.4.1 

4.5.4.2 
Procedure • • 4.5.1.6, 4.5.3.3 

6 

4.5.4.2 
6.5.12 

9.2.1.5, 9.2.5.5, 9.2.5.5 

2.3 
5.8.2 

• T3-1 
8.6.7.3. 8.7.3 

6. 4. 1 
4.5.2.3, 7.6.7.1, 7.6.7.9, 7.9 

6. 4. 1 
6. 4. 1 

• 4.5.2.3, 4.5.2.4 
4.4.2, 4.5.2.1, 4.5.2.3 

3.5.2 
3.7.2 

• 2.2.3, 2.2.5, 4.4.2, 4.5.2.3 
4.5.2.4 

2270513-9701 



SCI/Utilities Design 

Name 
Translation Value 
Value 

File: 
I/O Routines, Text Editor 
Logical Name 

File Size Limit, Text Editor 
File: 

Synonym . 
Temporary 
Text Editor: 

MERGE 
MOD • 
TEXT 

.S$jjjjtt, Spooler 

.S$0PMSxx, Temporary 

.S$USER.userID.LGN Logical Name • 

.S$USER.userID.SYN Synonym 
FIR, .S$CLF • 
Fixed Text, DNOS Message 
FLAGS Byte, Operator Interface Message 
Format: 

DNOS Message 
EXPTEXT Message File 
Operator Interface Message 
TEXT Message File 

FS, Command Procedure 

General Request, Operator Interface Message • 
General Text, Operator Interface Message 

HO, Command Procedure 

IF, Command Procedure 
Indicator, Message File • 
Initial Value, Field Prompt • 
INPUT, Synonym 
Interface, SCI Message Processing 
Internationalizing: 

Command Processors 
Utilities 

Interrupt Decoder, MUX 
Interrupt Trap Table, System Data 
Interrupt Vector, Device 
INTSCI 
IPC Channel: 

.S$ACCCHN, Accounting 

.S$DSTCHN, Spooler 

.S$0PER, Operator Interface • 

.S$SPOOL, SPTASK 

.S$$0PER, Operator Interface 
ISL, Command Procedure 
I/O Routines, Text Editor File 

2270513-9701 7 

• 4.5.2.4, 4.5.4.1 
• 4.5.4.4, 4.5.4.5 

4.5.4.1 

. T5-1 
• 10.3.2, 10.4.3.1 

5.5 

. 10.3.2, 10.4.3.1 
• 8.6.7.3, 9.2.5.3 

5.5.4 
5.5.3, 5.7.3, 5.8.5.1 

5.5.2 
. 8.8.2, 8.8.4 
7.5.2, 7.6.7.5 

4.5.1.7 
4.5.1.7 

• 10.3.1.2 
3.4.3.1 

• T7-2 

3.4 
3.5.2 
7.6.7 
3.5.1 

5.8.5.3 

7.6.7.3 
7.5.6.7 

• 8. 1 0 

5.8.5.3 
. T3-3 

4.5.2.4 
3.1.2 

3.2 

• 2 . 6 ' 2 • 6 
2.6 

6.4.1 
6.3.3, 6.4.1, 6.5.3.4 

6.4.1 
. 2.6, 2.6 

8.3.1.2, 8.6.3 
8.3.1.1, 8.6.3 

1.3, 7.5.5, 8.7.2 
8.3.1.3 

7.5.2 
6.5.8, 6.5.9 

. T5-1 

Index 



I/0, SCU 

JSB Chain, System Data 

KBT Command Procedures 
Keyboard Status Block 
Keys, EXPTEXT Reserved 
KIF Manager Data Structure KMTAB 
KMTAB, KIF Manager Data Structure 
KO, Command Proc~dure • 
KOM, Command Procedure 
KOR, Command Procedure 
KSB, PDT Extension 

LD: 
Command Procedure 
List Directory Task . 

LDC, Command Procedure 
Level, User Privilege 
LGRCRT, Log File Recreate Task 
LHPC Command Procedure 
Library, SCI Command Procedure 
Line Number Values, Text Editor • 
Line Printer: 

PDT Extension 
Writer Task LPWRITER 

List Directory Task LD 
LLR Command Procedure 
Log File Recreate Task LGRCRT 
Logical Name: 

File 
.S$USER.userID.LGN 

Snnnnn, Spooler ID 
Standards 

Logoff 
LOM, Command Procedure 
LPD, PDT Extension 
LPWRITER, Line Printer Writer Task 
LUI, Command Procedure 

MAILBOX • 
Map Directory Recursive Routine MAPDIR 
Map Disk Task MD 
MAPDIR, Map Directory Recursive Routine • 
MCC, Command Procedure 
MD: 

SCI/Utilities Design 

6.6 

7.5.6.7 

4.5.6.2 
6. 4. 1 
3.7.2 

9.5 
9.5 

• 8. 1 0 
7.5.6.6, 7.6.7.6, T7-1 

7.6.7.7, T7-1 
6. 4. 1 

9.4 
9.4 

6.5.2 
10.4.2 
6.5.9 

• 11. 2 
4.5.3.1 

• 5.8.5.3, 5.8.5.3 

6. 4. 1 
8.2.1 

9.4 
• 1 2. 1 
6.5.9 

• 10.3.2, 10.4.3.1 
4.5.1.7 

8.5.4 
2.5.3 

• • • 7.5.6.12 
7.5.6.4, 7.6.7.5, T7-1 

6. 4. 1 
8. 2. 1 

10.4.1 

4.5.6.1, 7.5.6.12 
9.5 
9.5 
9.5 

6.5.5 

Command Procedure 
Map Disk Task 

MDC, Command Procedure 
MDS, Command Procedure 
ME, Synonym • 
Media, Multivolume 
Menu 

9.5 
9.5 

6.5.3.1, 6.5.3.2, 6.5.3.3, 6.5.3.4, 6.8.2 
6.5.12 

4.5.1.2 
• 9.2, 9.2.1.2 

4.3.3, 4.5.1.5, 4.5.3.4, 4.5.3.5, 7.6.2 

Index 8 2270513-9701 



SCI/Utilities Design 

Menus .. 
MERGE File, Text Editor • 
Message: 

Additional Text, DNOS 
Character Set, DNOS • 
Code, Spooler 
Directory: 

.EXPTEXT 

.S$EXPMSG 

.S$MSG 

.TEXT 
Error Source, DNOS 

Message File: 
Character Set 
Format: 

EXPTEXT • 
TEXT 

Indicator 
Message Filename, Reserved 
Message: 

Fixed Text, DNOS 
FLAGS Byte, Operator Interface 
Format: 

DNOS 
Operator Interface 

General Request, Operator Interface • 
General Text, Operator Interface 
Number 
Operator Interface 

Message Processing Interface, SCI 
Message: 

Prompts, Operator Interface • 
Variable Text, DNOS • 

Messages, Batch Termination • 
MHPC Command Procedure 
ML, Command Procedure 
MO, Command Procedure 

7.4.1, 

4.4.6, 

MOD File, Text Editor 
Mode, Text Editor 
Move Task: 

5.5.3, 5.7.3, 
5.8.4, 5.8.4.2, 5.8.4.13, 

BD 
Blocked Output 
CD 
Character Set 
Control File 

Directive 
Processing 

Direct I/O 
Error Processing 
Multivolume Output 
OPTIONS • 

Default • 
Program File .Direct I/0 • 

2270513-9701 

. 9.2.1.2, 

9.2.1.5, 9.2.5.5, 

9 

4.5.1.2 
5.5.4 

3.4.4 
3. 7. 1 

8.3.1.1 

3.5 
3.5 
3.5 
3.5 

• T3-1 

3. 5. 1 

3.5.2 
3. 5. 1 

• T3-3 
• T3-2 

3.4.3.1 
• T7-2 

3.4 
7.6.7 

7.6.7.3 
7.5.6.7 

3.5.1 
7.5.6.7 

3.2 

7.5.6.7 
3.4.3.2 
4.5.1.3 

• 11. 2 
5.8.5.3 

• 8. 1 0 
5.8.5.1 
5.8.5.1 

9.2 
9.2.5.5 

9.2 
9.2.5.5 
9.2.1.4 
9.2.5.2 
9.2.5.2 
9.2.1.2 
9.2.5.5 
9.2.1.2 

9.2.2 
• T9-1 

9.2.1.2 

Index 



RD 
Special Name 
SVC Call Blocks • 
Transfer Vector • 
VB 
vc 

MPC, Command Procedure 
MPISPI Command Procedure 
MR, Command Procedure 
MRFSRF Command Procedure 
MRM, Command Procedure 
MSD, Command Procedure 
MSG Command Procedures 
MSP, Command Procedure 
MST, Command Procedure 
MT, Command Procedure 
MTS Command Procedures 
MUI, Command Procedure 

SCI/Utilities Design 

9.2 
9.2.1, 9.2.5.5 

9.2.5.5 
9.2.5 

9.2 
9.2 

10.4.1 
• 1 2. 1 

5.8.5.2 
• 1 2. 1 

5.8.5.2 
• 8.10. 

4.5.6.2 
• 6.5.11 

Multiplexor, Asynchronous 
Multiple-Interrupt Decoder Data Structures 
Multivolume: 

• 6.5.6, 6.5.7 
5.8.5.2 
4.5.6.2 

10.4.1 
6.3.3 

• F6-5 

Media 
Output, Move Task 

Multi-Unit: 
Workspace 

MUW Structure 
MUW: 

PDT Extension 

• 9.2, 9.2.1.2 
9.2.1.2 

6. 4. 1 
• F6-3 

Structure, Multi-Unit Workspace • 
MUX Interrupt Decoder 

6. 4. 1 
• F6-3 
6.4.1 
4.3.2 

4.3.2, 4.5.1.7, 4.5.1.7 
4.5.1.3 

M$00, Command Procedure • 
M$01, Command Procedure • 
M$02, Command Procedure • 

Name Correspondence Table NCT 

Name, Field Prompt 
Naming Standards 
NCT • 

Name Correspondence Table 

Nesting, Command Procedure 
Nesting Depth, Command Procedure 
Number, Message • 

Objects in Command Names 
OBJLST 
Opcodes: 

Operator Interface 
scu • 

Operator 
Operator Interfac~: 

Batch Job 

Index 1 0 

2.2.1, 2.2.4, 2.2.11, 4.5.2.3, 
4.5.2.4, 4.5.3.6, 4.5.3.12 

• 4.5.2.4, 4.5.4.1 
2.5 

2.2.9 
2.2.1, 2.2.4, 2.2.11, 4.5.2.3, 

4.5.2.4, 4.5.3.6, 4.5.3.12 
4.4.1, 4.5.1.6, 4.5.3.3 

2.2.5, 4.4.1, 4.5.3.3 
3. 5. 1 

2.5.1, 2.5.1, 2.5.1 
2.5.1, 2.5.1, 2.5.1 

• T7-1 
• T6-2 
7.4.1 

7. 1 

2270513-9701 



SCI/Utilities Design 

IPC Channel: 
.S$0PER • 
.S$$0PER 

Message • 
FLAGS Byte 
Format 
General Request • 
General Text 
Prompts • 

Opcodes . 
Reply 
Transaction • 
User Interface 
Utility • 

Operator Privilege 
Operator: 

Request • 
Table 

Response 
State, System 
System 

OPTIONS: 
Default, Move Task 
Move Task 

Output: 
Move Task: 

Blocked • 
Multivolume • 

OUTPUT, Synonym • 
Overlays, SCU 
0$ Routines • 

Parameters, System Data Scheduling 
PARMS List 
Pascal Interface Routines, Error Reporting 
PDT • 
PDT Extension 

DPD . 
KSB . 
Line Printer 
LPD • 
MUW . 

7.3, 7.5.5, 8.7.2 
7.5.2 

7.4.1, 7.5.6.7 
• T7-2 
7.6.7 

7.6.7.3 
7.5.6.7 
7.5.6.7 

• T7-1 
7.4.1, 7.5.6 

•. 7.4.3 
7.9 
7. 1 

7.4.2, 8.6.7.5 

7. 4. 1 
7.5.1.4 

• 7.4.1, 7.6.7.7, T7-2 
7.5.1.3 

7.4.1, 8.6.7.5 

• T9-1 
9.2.2 

• 9.2.1.2, 9.2.5.5 
9.2.1.2 

3.7.2 
• T6-1 
9. 3. 1 

• 6.5.11.2 
4.5.3.6 

2.3 
9.2.5.5 

6.4.1 
6. 4. 1 
6.4.1 
6.4.1 
6.4.1 
6. 4. 1 

PDT List, System Data • 6.5.3.3, 6.5.3.4, 7.5.6.12, 8.6.7.7, 
8.6.8, 9.2.5.5 

6.3.3 PDT, Physical Device Table 
Performance: 

PF: 

Backup Directory 
Restore Directory 
SCI • 

Command Procedure 
Task 

Physical Device Table PDT 

2270513-9701 11 

9.2.1.2 
9.2.1.2 

4.4.6, 4.5.2.3 

. 8. 1 0 
8.2.2 
6.3.3 

Index 



Privilege Level, User 
Processing, Move Task Control File 
Program File: 

Compression • 
Direct I/O, Move Task 

Prompt Naming Standards • 
Prompts, Operator Interface Message • 

QE, Command Procedure 
QOI, Command Procedure 
QSCU, Command Procedure • 
Queue Record, Spooler .S$SDTQUE • 
Queue: 

RD: 

Spooler: 
Class Name 
Device 

Command Procedure 
Move Task 
Restore Directory Task 

RE, Command Procedure 
Read After Write Error Check 
Recursive Routine:. 

DH, Delete Hierarchy 
MAPDIR, Map Directory 

Refresh, Text Editor Display 
RELOCA, System Data • 
Reply, Operator Interface 
Request: 

Operator 
Table, Operator • 

Reserved: 
Keys, EXPTEXT 
Message Filename 

Response, Operator 
Restore Directory: 

Performance • 
Task RD • 

RO, Command Procedure 
ROM, Command Procedure 
ROR, Command Procedure 7.5.6.8, 
Routine S$RBID 
Routines, Error Reporting Pascal Interface 
RS, Command Procedure 

SBS Command Procedures 
SCC, Command Procedure 
Scheduler Parameters, System Data 
Scheduling: 

Parameters, System Data • 
Spooler Device 

SCI • 

Index 12 

SCI/Utilities Design 

10.4.2 
9.2.5.2 

9.2.1.2 
9.2.1.2 

2.5.2 
7.5.6.7 

5.8.5.1 
7.5.6.2, 7.6.7.2, T7-1 

6.5.10 
8.5.3 

8.5 
8.5 

9.2 
9.2 
9.2 

5.8.5.1 
6.5.12 

9.6 
9.5 

5.8.3 
6.5.7 

• 7.4.1, 7.5.6 

7.4.1 
7.5.1.4 

3. 7. 2 
• T3-2 

• 7.4.1, 7.6.7.7, T7-2 

9.2.1.2 
9.2 

8. 10 
7.5.6.5, 7.6.7.4, T7-1 
7.5.6.9, 7.6.7.7, T7-1 

4.5.3.8 
2.3 

5.8.5.3 

4.5.6.2 
6.5.4 

6. 1 

• 6.5.11.2 
• 8.1, 8.6.7.1 

4. 1 

2270513-9701 



SCI/Utilities Design 

Alphabetic Character Set 
Alphanumeric Character Set 
Background Task • 
Batch Job 
Command Procedure Library 
End-Of-Line Byte EOL 
Expedite Mode 
Expert Mode • 
Message Processing Interface 
Performance • 
Stage Depth • 
State 
String 

scu • 
Command Procedures 
I/O • 

4.5.4.5 
4.5.4.5 

4. 3. 1 
4. 3. 1 

4.5.3.1 
4.5.4.2 

• 4.5.2.3, 4.5.2.4 
4.4.2, 4.5.2.1, 4.5.2.3 

3.2 
4.4.6, 4.5.2.3 

4.4.2 
4.5.1.1 
4.5.4.5 

6. 1 
6.6.1, T6-4 

6.6 
• T6-2 Opcodes • 

Overlays 
Synonyms 

SCUMSP 
SDCALL 

• T6-1 
6.3.1, 6.4.4, 6.5.8, 6.5.11.1, 6.5.11.2, 6.5.11.3, 

6.5.11.4 
• T6-1 

SDEDOR, UTSORT Data Structure 
SDEMD, UTSORT Data Structure 
SDSERR 
SDSRET 
SDT Command Procedures 
SECLF, Synonym 
Segment Manager Services 
Segment Status Block SSB 
Segment, Updatable 
SELGN, Synonym 
SEM: 

Command Procedure 
Show Expanded Message Task 

Semaphore 
Services, Segment Manager 
Session Initialization, Text Editor • 
Session Recovery, Text Editor 
SESYN, Synonym 
Show Expanded Message Task SEM 
Show Output Status Task SOS • 
Simulated: 

Breakpoint 
Task 

Single-Interrupt Decoder Data Structures 
SL, Command Procedure 
Snnnnn, Spooler ID Logical Name • 
SOPJSB, System Data • 
SOS: 

Command Procedure 
Show Output Status Task . 

Space Management, Spooler .S$SDTQUE • 

2270513-9701 1 3 

4.4.4 
9.3.3 

9.3.3, 9.5 
4.4.4 
4.4.4 

4.5.6.2 
10.4.1 

6.2.2, 6.3.4, 6.6 
6.5.7 

6.2.2, 6.3.4, 6.6 
10.3.2 

6.2.2, 

3.4.2, 3.8 
3.8 

8.3.3 
6.3.4, 6.6 

5.8.5.1 
5.8.5.1 

10.3.2 
3.8 

8.2.2 

• 1 2 • 2 
• 1 2 • 2 
• F6-4 

5.8.5.3 
8.5.4 

7.5.1.2 

8.9 
8.2.2 

8.6.7.2 

Index 



Special Name: 
CRnn, CCAF 
DSnn, CCAF 
Move Task 
VCATALOG, Delete Directory 

SPINIT 
Spooler Initialization Task • 

SPLPARM • 
Spooler: 

Banner Sheet 
Class Name Queue 
Data Structures • 
Device: 

Add • 
Error 
Queue 
Scheduling 
Writer Task • 

File .S$jjjjtt 
Spooler ID Logical Name Snnnnn 
Spooler Initialization Task SPINIT 
Spooler: 

IPC Channel .S$DSTCHN 
Message Code 

Spooler Utility Class Names Task SPUTCN • 
Spooler: 

.S$SDTQUE: 

SPTASK: 

Class Name Table 
Device Table 
Queue Record 
Space Management 

IPC Channel .S$SPOOL 
Task 

SPUTCN, Spooler Utility Class 
SP$DST, Device Scheduler Task 
SSB . 

Segment Status Block 
Stacking: 

Names Task 

SCI/Utilities Design 

9.7 
9.7 

9.2.1, 9.2.5.5 
9.6 
8.6 

8.2.1 
8.3.1.3 

8. 7. 7 
8.5 

• F8-1 

8.6.7.7 
8.6.7.3, 8.7.3 

8.5 
• 8.1, 8.6.7.1 

8.7 
. 8.8.2, 8.8.4 

8.5.4 
8. 2. 1 

8.3.1.1, 8.6.3 
8.3.1.1 

8.2.2 

8. 5. 1 
8.5.2 
8.5.3 

8.6.7.2 

8.3.1.3 
8.2.2 
8.2.2 
8.2.1 
6.5.6 
6.5.7 

Command Procedure 
Directory Level . 

Environment • 4.5.1.6, 4.5.3.3 

Stage Depth, SCI 
Standards: 

Command Naming 
Logical Name 
Naming 
Prompt Naming 
Synonyms Naming • 

State: 
SCI • 
System Operator . 
Text Editor 

Station Number 4.5.1.1, 

Index 

9.2.1.3, 9.2.5.3, 9.2.5.5, 9.2.5.5. 
4.4.2 

2. 5. 1 
2.5.3 

2.5 
2.5.2 
2.5.3 

4.5.1.1 
7.5.1.3 

5.8.4, 5.8.4.13, 5.8.5.1 
5.5.2, 5.5.3, 5.5.4, 7.5.2, 7.6.7.1, 

14 2270513-9701 



SCI/Utilities Design 

String, SCI • 
Structure, Multi-Unit Workspace MUW • 
Subroutine Linkage, Text Editor • 

7.6.7.2 
4.5.4.5 

• F6-3 
5.8 

9.2.5.5 
5.8.5.3 

6.5.11.3 

SVC Call Blocks, Move Task 
SVL, Command Procedure 
Swapping Parameters, System Data 
Synonym: 

6. 1 ' 

File 
.S$USER.userID.SYN 

INPUT 
ME 
OUTPUT 
SECLF 
SELGN 
SESYN 

• 10.3.2, 10.4.3.1 
4.5.1.7 

3. 7. 2 
• . 4 • 5 • 1 • 2 

3.1.2 
10.4.1 
10.3.2 
10.3.2 

$CUn 
$INDEX 
$INPUT 

• 6.4.4, 6.5.8, 6.5.11.1, 6.5.11.2, 6.5.11.3, 6.5.11.4 
3. 7. 1 
3. 7. 1 

$MSGFIL • 
$SEM$LST 
$TYP 

Values 
$XOI$MEN 
$$CA 
$$CC 
$$EA 
$$ES 
$$FN 
$$FNxy 
$$MN 
$$MO 
$$PN 
$$RBID 
$$ST 
$$UI 
$$VT 
$$$$CC 
$$12 

Synonyms Naming Standards 

3. 7. 1 
3.8 

• 6 . 4 • 4 ' 6 • 8 . 2 
. T6-3 

7.6.2, 7.7 
6.3.4 

3.3, 4.4.6, 4.5.1.3, 4.5.3.14, 9.2.5.5 
5.6.3 

3.8, 4.4.6, 4.5.1.3 
4.4.6 

3.6 
3.8, 4.4.6 

4.5.1.2 
4.4.6 

4.4.3, 4.5.3.8 
4.5.1.2 
4.5.1.2 

3.8, 4.4.6 
2. 3. 1 

4.5.1.2 
2.5.3 

Synonyms: 
scu • 6. 3. 1 ' 6. 4. 4 ' .6. 5. 8 ' 6. 5. 11 • 1 ' 6. 5. 11 . 2' 6. 5. 11 • 3' 

Termination . 
System Command Interpreter 
System Configuration Utility 
System Data . 

BTALEN 
Country Code 
Device State 
ETAB 
Interrupt Trap Table 
JSB Chain 

2270513-9701 15 

6.5.11.4 
4.4.6, 6.3.5 

4. 1 
6. 1 

6.4.2 
6.5.7 

6.1, 6.5.4, 6.5.5 
6. 1 

6. 4. 1 
6.3.3, 6.4.1, 6.5.3.4 

7.5.6.7 

Index 



SCI/Utilities Design 

PDT List 
RELOCA 

6.5.3.3, 6.5.3.4, 7.5.6.12, 8.6.7.7, 8.6.8, 9.2.5.5 

Scheduler Parameters 
Scheduling Parameters 
SOPJSB 

6.5.7 
6. 1 

• 6.5.11.2 
7.5.1.2 

6.1, 6.5.11.3 
6.1, 6.5.3.3, 6.5.3.4, 6.5.6, 6.5.7 

6.1, 6.5.8, 6.5.9, 7.5.5, 7.6.7.1, 7.6.7.2, 8.7.4 

Swapping Parameters • 
Table Area 

System Log 
System: 

Operator 
State 

S$CMSG 
S$FMT 
S$GKEY 
S$RBID, Routine • 
S$SYSTEM 
S$TERM 
S$XFER 
S$$SYSTEM 

• 4. 2. 4.5.7.3, 

7.4.1, 8.6.7.5 
7.5.1.3 

3.2 
7.9 
7.9 

4.5.3.8 
5.2, 9.3, 9.5, 9.6 

3.2, 4.4.6 
• 4.4.4, 4.4.6 

2.2 

Tabbing Around, Text Editor • 
Table Area, System Data • 
Table, Operator Request • 
Task: 

5.8.4.9 
6.1, 6.5.3.3. 6.5.3.4, 6.5.6, 6.5.7 

7.5.1.4 

AUIDUI, User ID Maintenance 
BEMF, Build Expanded Message File 
BMF, Build Message File • 
CCAF, Copy Concatenate/Append File 
CD, Copy Directory 
DD, Delete Directory 
LD, List Directory 
LGRCRT, Log File Recreate 
LPWRITER, Line Printer Writer 
MD, Map Disk 
PF 
RD, Restore Directory 
SEM, Show Expanded Message 
Simulated 
SOS, Show Output Status • 
SPINIT, Spooler Initialization 
SPTASK 

10.4.1 
3.7.2 
3. 7. 1 

9.7 
9.2 
9.6 
9.4 

6.5.9 
8.2.1 

9.5 
8.2.2 

9.2 
3.8 

SPUTCN, Spooler Utility Class 
SP$DST, Device Scheduler 

Names • 

• 1 2 • 2 
8.2.2 
8.2.1 
8.2.2 
8.2.2 
8.2.1 

VB, Verify Backup 
VC, Verify Copy • 

Temporary: 
File 

.S$0PMSxx 
Terminal Local File TLF • 
Termination Synonyms 
Text Editor: 

CODE: 
Complementing 

Index 16 

9.2 
9.2 

• 8.6.7.3, 9.2.5.3 
7.5.2, 7.6.7.5 
4.3.3, 4.5.1.2 
• 4 • 4 • 6 • 6 • 3 • 5 

• F5-1 

2270513-9701 



SCI/Utilities Design 

Values 
Display Refresh • 
Error Reporting • 
File I/O Routines 
File Size Limit • 
Line Number Values 
MERGE File 
MOD File 

•. 

• 5.8.5.3, 

• 5.5.3, 5.7.3, 

• T5-2 
5.8.3 
5.8.2 

• T5-1 
5.5 

5.8.5.3 

Mode 5.8.4, 5.8.4.2, 5.8.4.13, 

5.5.4 
5.8.5.1 
5.8.5.1 
5.8.5.1 
5.8.5.1 
5.8.5.1 

Session Initialization 
Session Recovery 
State 
Subroutine Linkage 
Tabbing Around 
TEXT File 
Time Stamp 

TEXT: 
File, Text Editor 
Message File Format • 

Time Stamp, Text Editor • 
Time-out List 
TINFO 
TLF, Terminal Local File 
TPCALANS 
TPDISC 
TPLHPC 
TPMHPC 
Transaction, Operator Interface • 
Transfer Vector, Move Task 
Translation Value, Field Prompt • 
Trap 
Traversing Order, Directory • 

Updatable Segment 
User ID Maintenance: 

Code 
Task AUIDUI • 

User Interface, Operator Interface 
User Privilege Level 
UTCOMN 
UTEACT 
Utilities, Internationalizing 
Utility: 

Operator Interface 
System Configuration 

UTPSER 
UTPUER 
UT SERR 
UTSORT: 

Data Structure: 

UTUERR 

SDEDOR 
SDEMD 

2270513-9701 

•. 

17 

. 
• 5.8.4, 5.8.4.13, 

5.8 
5.8.4.9 

5.5.2 
5.5.2 

5.5.2 
3. 5. 1 
5.5.2 

7.5.3, 7.5.6.7 
4.5.6.2 

4.3.3, 4.5.1.2 
11.3.1 
11.3.1 
11.3.3 
11.3.2 
7.4.3 
9.2.5 

• 4.5.4.4, 4.5.4.5 
• 12.2 

• 9.2.1.3, 9.2.1.3 

6.2.2, 6.3.4, 6.6 

10.4.1 
10.4.1 

7.9 
10.4.2 

2.3 
3.2 
2.6 

7. 1 
6. 1 
3.2 
3.2 
3.2 

9.3.3 
9.3.3, 9.5 

3.2 

Index 



Value, Field Prompt . 
Values: 

Synonym $TYP 
Text Editor: 

CODE 

SCI/Utilities Design 

4.5.4.1 

• T6-3 

Line Number • 
Variable Text, DNOS Message • 
VB: 

• T5-2 
• 5.8.5.3, 5.8.5.3 

3.4.3.2 

VC: 

Command Procedure 
Move Task - • 
Verify Backup Task 

Command Procedure 
Move Task 
Verify Copy Task 

•, 

9.2 
9.2 
9.2 

VCATALOG, Delete Directory Special Name • 
Verbs in Command Names 

9.2 
9.2 
9.2 
9.6 

• 2.5.1, 2.5.1 
9.2 
9.2 

Verify Backup Task VB 
Verify Copy Task VC • 

Wait Command Proc_edures • 
Wait Event 
Workspace: 

Multi-Unit 

4.5.6.2 
7.6.7.1 

MUW Structure, Multi-Unit 
Writer Task LPWRITER, Line Printer 
Writer Task, Spooler Device • 

6.4.1 
• F6-3 
8. 2. 1 

8.7 

XD Command Procedure 
XE, Command Procedure 
XES, Command Procedure 
XOI, Command Procedure 
XSCU, Command Procedure • 
$CUn, Synonym 6.4.4, 

• 12. 2 
5.8.5.1 
5.8.5.1 

7. 5. 6. 1 , 7. 6. 7. 1 , T7-1 
6.5.1 

6.5.8, 6.5.11.1, 6.5.11.2, 6.5.11.3, 

$INDEX, Synonym • 
$INPUT, Synonym . 
$MSGFIL, Synonym 
$SEM$LST, Synonym 
$TYP: 

Synonym • 
Values, Synonym • 

$XOI$MEN, Synonym 
$$CA, Synonym 
$$CC, Synonym 
$$EA, Synonym 
$$ES, Synonym 
$$FN, Synonym 
$$FNxy, Synonym . 
$$MN, Synonym 
$$MO, Synonym 
$$PN, Synonym 

Index 

6.5.11.4 
3. 7. 1 
3. 7. 1 
3. 7. 1 

3.8 

• 6.4.4, 6.8.2 
• T6-3 

7.6.2, 7.7 
6.3.4 

3.3, 4.4.6, 4.5.1.3, 4.5.3.14, 9.2.5.5 
5.6.3 

3.8, 4.4.6, 4.5.1.3 
4.4.6 

3.6 
3.8, 4.4.6 

4.5.1.2 
4.4.6 

18 2270513-9701 



SCI/Utilities Design 

$$RBID, Synonym • 
$$ST, Synonym 
$$UI, Synonym 
$$VT, Synonym 
$$$$CC, Synonym • 
$$12, Synonym 
.EXPTEXT, Message Directory • 
• RBID 
.S$ACCCHN, Accounting IPC Channel 
.S$CLF FIR 
.S$DSTCHN, Spooler IPC Channel 
.S$EXPMSG, Message Directory 
.S$jjjjtt, Spooler File • 
.S$MSG, Message Directory 
.S$0PER, Operator Interface IPC Channel • 
.S$0PMSxx, Temporary File 
.S$SDTQUE: 

Class Name Table, Spooler 
Device Table, Spooler 
Queue Record, Spooler 
Space Management, Spooler 

.S$SPOOL, SPTASK IPC Channel 

.S$USER.userID.LGN Logical Name File 
• S$USER.userID.SYN Synonym File • 
.S$$0PER, Operator Interface IPC Channel 
.S$$SDTQUE Directory 
.TEXT, Message Directory 

2270513-9701 19/20 

• 

4.4.3, 4.5.3.8 
4.5.1.2 
4.5.1.2 

3.8, 4.4.6 
2.3.1 

4.5.1.2 
3.5 
2.4 

8.3.1.2, 8.6.3 
• 10.3.1.2 

8.3.1.1, 8.6.3 
3.5 

• 8.8.2, 8.8.4 
3.5 

7.3, 7.5.5, 8.7.2 
7.5.2, 7.6.7.5 

8.5.1 
8.5.2 
8.5.3 

8.6.7.2 
8.3.1.3 
4.5.1.7 
4.5.1.7 

~ 7.5.2 
8.5 
3.5 

Index 





I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

~I 
o I z 
0 
...I 
<( 

..... 
::::> 
0 

USER'S RESPONSE SHEET 

Manual Title: DNOS SCI and Utilities Design Document (2270513-9701) 

Manual Date: 15 November 1983 Date of This Letter: -------

User's Name: --------------- Telephone: ----------

Company=--------~-------~ Office/Department: -------

Street Address:-----------------------------

City/State/Zip Code: ---------------------------

Please list any discrepancy found in this manual by page, paragraph, figure, or table number in the 
following space. If there are any other suggestions that you wish to make, feel free to include 
them. Thank you. 

Location in Manual Comment/Suggestion 

NO POST AGE NECESSARY IF MAILED IN U.S.A. 
FOLD ON TWO LINES (LOCATED ON REVERSE SIDE), TAPE AND MAIL 



FOLD 

I II II I 

r BUSINESS REPLY MAIL" 
\.. FIRST CLASS PERMIT NO. 7284 DALLAS, TX ~ 

POSTAGE WILL BE PAID BY ADDRESSEE 

TEXAS INSTRUMENTS INCORPORATED 
DIGITAL SYSTEMS GROUP 

ATIN: TECHNICAL PUBLICATIONS 
P.O. Box 2909 M/S 2146 
Austin, Texas 78769 

FOLD 

NO POSTAGE 
·NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 




