DNOS ASSEMBLY LANGUAGE {9

Model 990 Computer
Programmer’s Guide

__TEXAS INSTRUMENTS

© Texas Instruments Incorporated 1981
All Rights Reserved, Printed in U.S.A.
The information and/or drawings set forth in this document and all rights in and to inventions disclosed

herein and patents which might be granted thereon disclosing or employing the materiais, methods,
teChnigues O apparaius descrived nerein, are ihe exciusive property of Texas Instruments Incorporated.

MANUAL REVISION HISTORY

Model 990 Computer DNOS Assembly Language Programmer’s
Guide (2270508-9701)

OriginalIssueo 1 August 1981

The totai number of pages in this pubiication is 206.

DNOS

Distributed Network Operating System
Software Manuals

The manuals supporting DNOS are arranged in this diagram according to the type of user. The manuals most
beneficial to your needs are those contained in the biock identified as your user group and in all the biocks
above that set.

all users and

management
DNOS Concepts and
Facilities
2270501-9701

DNOS Operations
Guide
2270502-9701

DNOS System Command
Interpreter (SCI)
Reference Manual
2270503-9701

all users

DNOS Text Editor
Reference Manual
2270504-9701

DNOS Online Diagnostics
and System Log Analysis
Tasks User’s Guide
2270532-9701

DNOS Messages and
Codes Reference
Manual
2270506-9701

DNOS Master Index to
Operating System Manuals
2270500-9701

language users and
communications software
users

Language Reference
Manuals

DNOS Language
Programmer’s Guides

DNOS Link Editor
Reference Manual
2270522-9701

DNOS Productivity Tools
User’s Guides

DNOS Communications
Software User’s Guides and
Programmer’s Guides

assembly language users

Assembly Language
Reference Manual
2270509-9701

DNOS Assembly Lanugage
Programmer’s Guide
2270508-9701

DNOS Link Editor
Reference Manual
2270522-9701

DNOS Supervisor Call
(SVC) Reference Manual
2270507-9701

systems programmers

DNOS Systems
Programmer’s Guide
2270510-9701

DNOS System Generation
Reference Manual
2270511-9701

source code users

DNOS System Design
Document
2270512-9701

DNOS SCI and Utilities
Design Document
2270513-9701

2280078

2270508-9701 iiii

DNUDS
Distributed Network Operating System
Software Manuals Summary

Concepts and Facilities

Presents an overview of DNOS with topics grouped into functions of the operating system. All new users
(or evaluators) of DNOS should read this manual.

Operations Guide
Provides the information necessary to perform daily tasks at a Ti 890 Computer instaiiation using DNOS.
Step-by-step procedures are presented for such tasks as operating peripherals, initializing the system,
backing up the system, and manipulating disk files.

Svstem Command Interpreter (SC!) Rafarance Manusl
Describes how to use SCI in both Interactive and batch Jobs. Command procedures and primitives are

described, followed by a detailed presentation of all SCI commands in alphabetical order for easy
reference.

Text Editor Reference Manual

Shows how to use the Text Editor interactively on DNOS and includes a detailed description of each of the
editing commands and function keys.

Messages and Codes Refarence Manual
Lists the error messages, informative messages, and error codes reported by DNOS.

Online Diagnostics and System Log Analysis Tasks User’s Guide
Provides the information necessary to execute the online diagnostic tasks and the system log analysis
tasks and to interpret the results.

Master Index to Operating System Manuals
Contains a composite index to topics in the DNOS operating system manuals.

Programmer’s Guides and Reference Manuals for Languages
Each programmer’s guide describes one of the languages supported by DNOS (for example, assembly
language, Pascal, COBOL). Each guide covers operating system information relevant to the use of that
language in the DNOS environment. The details of the language itself, including language syntax and pro-
gramming considerations, are in the ianguage reference manuai.

Link 'Editor Reference Manual
Describes how to use the Link Editor on DNOS to combine separately generated object modules to form a
single linked output.

User’s Guides for Productivity Tools
Each user's guide describes one of the productivity toois (for exampie, TIFORM, Query-890, DBMS-990,
Sort/Merge) supported by DNOS. Each guide explains the function of the processor, its features, and its
interface requirements.

User’s Guides and Programmer’s Guides for Communications Software
Describe the features, functions, and use of the communications software available for execution under
DNOS. For example, there is a user's guide for the DNOS 3780/2780 Emulator software package.

Supervisor Call (SVC) Reference Manual
Presents detailed information about sach DNOS supervisor call and general information about DNOS
services.

Systems Programmer’'s Guide
Discusses the DNOS nucleus and subsystems at a conceptual and functional level and describes how to
modify the system for a specific application environment.

System Generation Reference Manual _
Contains the Information needed to perform system generation, including pregeneration requirements,
generation procedures, and information about postgeneration results.

System Design Document
Contalns the information needed to understand the functioning of the system when using a source kit. This
includes descriptions of the subsystems in detail, naming and coding conventions, module cross-
references, data structure detalls, and information not found in other manuais.

A mmal HdHIMan Nanime Noercmenmd
W GV WYY WVt WewKWaTwiie

Presents design information about SCI and the DNOS utilities.

iv 2270508-9701

Preface

This man

ual contains the information necessary for the assembly language applications pro-

grammer to assemble, link, and execute programs under DNOS. The manual is designed as a pro-
grammer’s guide rather than a reference manual so it does not focus on the assembly language

instructio
using the

ns. Information in this manual relates to the assembling and executing of programs
two-pass assembler, SDSMAC.

This manual is organized into the following sections and appendixes:

Section

1

2270508-9701

Introduction — Presents a brief overview of the steps involved in constructing, assem-
bling, linking, installing, and executing an assembly language program.

DNOS Concepts and Environments — Introduces the major concepts and features of
the DNOS environment and familiarizes the user with the capabilities of the system.

DNOS Assembly Language Program Concepts — Introduces mapping, program
segmentation, task attributes, supervisor calls, and file and device services.

Building an Assembly Language Program — Provides a brief description of the Text
Editor and a sample of the use of the Text Editor commands and editing function keys.
Helpful programming techniques are presented for the construction of a source code
file.

Assembling a Program — Describes the Execute Macro Assembler command and files
generated during assembly. Examples of source listing, error message formats, cross-
reference listing, and object code are presented.

Linking and Installing a Program — Describes the linking operations performed by the
Link Editor. Presents samples of linking and installing tasks, procedures, and overlays
before execution. Sample link maps and a detailed description of the map contents is
given for use in debugging.

Executing a Program — Explains the three commands used to execute assembly
language programs.

Debugging a Program — Presents the debugging commands and samples of debugging
techniques.

Assembly Language Example — Presents a sample of assembling and executing an
assembly language program.

reface

Appendix

A Abnormal Completion Messages — Lists the DNOS Abnormal Completion Messages
mentioned in Section 5.

B Completion Messages — Lists the DNOS Completion Messages mentioned in Section
5.

C Listing Error Messages — Lists the DNOS Listing Error Messages mentioned in Section
5.

in addition to this manuali, the DNOS software manuais shown on the support manual diagram
(frontispiece) contain information related to DNOS SVCs. Further manuals containing useful
DNOS and assembly language information are listed below:

Title ~ Part Number

Model 990 Computer Microcode Development System
Programmer’s Guide 2264445-9701

vi 2270508-9701

Contents

Paragraph

1.1
1.2
1.3
1.4
1.5
1.6
1.7

2.1

2.2
2.2.1
222
2.3
2.3.1
23.2
2.3.3
2.3.4
2.3.4.1
2.3.4.2
2.35
2.3.5.1
2.3.5.2
2.3.5.3
2.3.54
2.4
2.4.1
2.4.2
243
25

26
2.6.1
26.2
2.7
2.71

2270508-9701

Title Page

1 — Introduction

DNOS and Assembly Languagettt ittt e 1-1
ENtering Programs i e 1-1
Assembling Programs e e 1-2
Linking and Installing Programs i e s 1-2
Executing Programs o e s 1-2
Debugging Programso s 1-2
DNOS Response Notation i e e et 1-2

2 — DNOS Concepts and Environment

4 o Yo [V T o« J 241
JOD StrUCTUIE . . o e e 2-1
Interactive JoDS e e e 2-1
BatCh JobS . .. e e e 2-2
UsSiNG SOl .. o e e e 2-2
SCEDesSCIiPtioN e 2-2
SClActivation o i e e 2-2
Entry of SClCommands inVDTMode 2-5
Examples of Using SCl e 2-5
The Show Background Status (SBS)Command 25

The List Directory (LD)Command it i e e 25
BatchUse of SCI e e e 26
BatchStream Format e e 2-6
BatchCommand Format i e et et 2-6
Interactive Execution of Batch Streams and BatchdJdobs 2-8
Entering Programs from SequentialDevices 29
Directory and File Structure. i e 2-9
Establishing Volume Names i i e 2-9
Establishing Directories i e e 2-9
Establishing Files e 2-11
Pathnames and ACCeSS NaMeS.ttt e e 2-11
Synonyms and Logical Namest e 2-12
SYNMONYIMIS . ..ttt it e e 2-12
Logical Names o i e e e e 2-12
File TYPeS . e e e 2-13
Sequential Files e 2-13
vii

Contents

Paragraph

2.7.2
273
2.74
2.8
2.8.1
2.8.1.1
2.8.1.2
2.8.2
2.8.2.1
28.2.2

N QNN

£.0.£.9
2.8.2.4
2.8.2.5
2.8.3
2.8.4
2.8.5
2.9
2.10
2.10.1
2.10.2
2.10.2.1
2.10.2.2
2.10.3

3.1

3.2

3.3
3.3.1
3.3.2
3.4

3.5

3.6

3.7

3.8

3.9
3.9.1
3.9.2
3.9.3
3.10
3.1
3.11.1
3.11.11
3.11.1.2
3.11.2

244 2

viii

Title Page

Relative Record Files e e e e e 2-13
Keylndexed Files it e e e e 2-14
Concatenatedand Multi-FileSets i .. 2-14
HO Facilities e e e e e e 2-16
O Methods e e 2-16
Resource-SpecificHO e 2-16
Resource-independent /O e 2-17
Interprocess Communication i 217
PO USES . ittt e e 217

IPC Channelso e e 2-17
Chanmel SCOPE ..ot i e e e e e e e 217
System-Level IPCFunctions i, 2-18
Program-Level IPCFunctions it 2-18

Flle O . e e e e 2-18
Device WO . . . e e e 2-18
SPOOIING . o o e e e 2-18
SIS . . . L e e 2-19
Message Facilities i e 2-20
Error MesSagesot i e e e e e e e 2-20
On-Line Expanded Error Message Documentation......................... 2-20
Show Expanded Message (SEM)Command 2-21

The 2 RESDONSE . . . ittt et et et e e e e 2-21
Status MeSSageSo e 2-21

3 — Assembly Language Concepts

Introductiono e e 3-1
Program Mapping . ..o o e e e e 3-1
Program Segmentation and ProceduralSteps 3-3
SingleTask Segment i e e 3-3
Task Segmentand OneorTwo Procedures i, 3-4
SUpPervisor Calls e e e 3-5
The SupervisorCall BIoCk i e e e 3-5
EntryVector..........ooiiii e 3-6
Sharing Procedure Segments it e 37
Reentrant Programmingottt e e e et 3-7
L0 Y= 4 - Y 3-8
Overlay StrUCIUIES i e e e e 3-8
Overlay Loadingoitii it it e it 3-8
Relocatable Overlays e e e e 39
Segment Managementt e e 3-9
Task Attributes e 3-10
Privileged e e e 3-11
Hardware Privileged e 3-11
Software Privileged e 3-11
3= (=1 11 T 3-11
Briarity . 3.12

2270508-9701

Contents

Paragraph Title Page
3.11.4 Memory-Resident e 3-12
3.11.5 Replicatable 3-13
3.11.6 Protected 3-13
3.11.6.1 Delete Protected i 3-13
3.11.6.2 Execute Protected i 3-13
3.11.7 Copyable ... e e 3-13
3.11.8 Reusable e 3-13
3.11.9 Updatable e 3-13
3.11.10 Arithmetic Overflow Protection. o ... R 3-13
3.11.11 Writable Control Storage i 3-14
3.12 Task Termination i i e e e 3-14
3.12.1 Normal Termination i i e et e et et 3-14
3.12.2 Abnormal Termination i e 3-14
3.13 File and DeviCe ServiCes ... i it e e e e 3-14
3.13.1 O CONCEPES . o it e 3-15
3.13.2 Fileand Device 10 e e 3-15

4 — Building an Assembly Language Program

4.1 TextEditorUse e e e e 41
4.2 Terminal Use o e e e 41
43 SCIComMmMAaNd USe e e 4.2
4.4 Edit Control Functions e i e 4-3
45 Text Editor Exampleo e 4-4
451 Creatinga New File i e e et e e 4-4
4.5.2 Editingan Existing File i e e 4-9
46 Programming Techniques e e e e e e e e 4-10

5 — Assembling a Program

5.1 Operating the Macro Assembler i et et i i 5-1
5.2 Formatof Generated Files i e e n 5-3
5.2.1 Source LisSting e e e 5-3
5.2.2 Error MBS SageS . i ittt it e e e e e 5-7
5.2.3 Cross-Reference Listing o i i i 5-7
5.2.4 ObjeCt Code . .. e e e 5-8
5.2.4.1 ObjectCode Format i i i i e i et e et e 5-8
5.2.4.2 Machine Language Format it it e e e 5-16
5.2.4.3 Symbol Table e 5-16
5.2.4.4 Procedures for Changing ObjectCodeottt 5-16
5.3 Operating the AssemblerinBatchMode i i, 5-19
5.3.1 Batch Stream Structure e 5-19
5.3.2 Execute BatchCommand it 5-20
5.3.3 Execute BatCh Job e 5-21
5.3.4 Operating fromCard Reader i i 5-22

2270508-9701 ix

Contents

Paragraph

7.1
7.2
7.2.1
7.2.2
7.2.3
7.3
7.4

Title Page

6 — Linking and Installing a Program

Supported Featureso e e e 6-1
Link EditControl Fileo i i i e e e e 6-1
Link Editor OperationwithDNOS i i i 6-4
Program Linking and Directives i 6-5
External Reference Directivesttt i i 6-5
External Definition Directive i i 6-5
Program Identifier Directive. o i 6-5
Linking Program Modules i i i e e ...65
LINKMap. . .o 6-5
Link Editor EXamples o e et e e 6-8
Single Task With No Procedure — Example it 6-8
Task with Two Attached Procedures — Example 6-10
Link Edit Example WithOverlay i i i 6-12
Linked Format OutputOptions e 6-16
NormalTagged Object i e et i e 6-16
Compressed Tagged Object i i i 6-16
Memorylmage Format e e e 6-16
instailinga linked Program i i e et 6-17
Install Task Segment — 1T i i e it e i 6-18
Install Real-Time Task Segment — IRT 6-21
Install ProcedureSegment — IP ittt i e 6-24
InstallOverlay — 10 e e 6-25
Install Program Segment — IPS i e 6-26
Delete Task — DT ... e e e e e 6-29
Delete Procedure — DP i i i e e i e 6-29
DeleteOverlay — DO i i i e e 6-29
Delete Program Segment — DPS i e 6-30
Modify Task SegmentEntry — MTE 6-30
Modify Procedure Entry — MPE i e e 6-34
Modify Overlay Entry — MOE i 6-35
Modify Segment Entry — MSE i e e 6-36
Installing Image Format with LinkEditor......... i i i, 6-38

7 — Executing a Program

INtrOdUCHION e e e e e 7-1
Executing an Assembly Language Task............ ..o it i, 7-1
Execute Task — XT ...t e e e e e e e e 7-1
Execute Task and Suspend SCI — XTS ittt 7-2
Executeand Halt Task — XHTo it i i e e 7-3
SVC Executionof Task i e e e s 7-4
Batch Stream and Interactive Executionc i i i e 7-4

2270508-9701

Paragraph

8.1

8.2
8.2.1
8.2.2
8.2.3
8.3
8.3.1
8.3.1.1
8.3.1.2
8.3.1.3
8.3.1.4
8.3.1.5
8.3.1.6
8.3.1.7
8.3.1.8
8.3.1.9
8.3.1.10
8.3.1.11
8.3.1.12
8.3.2
8.3.2.1
8.3.2.2
8.3.2.3
8.3.24
8.3.2.5
8.3.2.6
8.3.2.7
8.3.2.8
8.3.3
8.3.3.1
8.3.3.2
8.3.3.3
8.3.3.4
8.3.4
8.3.4.1
8.3.4.2
8.3.4.3
8.3.4.4
8.3.45
8.3.5
8.3.5.1
8.3.5.2
8.3.6
8.3.6.1
8.3.6.2
8.3.6.3
8.3.6.4

2270508-9701

Contents

Title Page

8 — Debugging a Program

General Information i e 8-1
Modes of Debugging i e 8-1
Unconditional Suspend i e e 8-2
SYMbOIS . o e 8-2
EXPreSSiONS . oot e e, 8-4
Commands for All Tasks e e e e 8-5
DataDisplay Commandst e e e 8-6
List Breakpoints — LB i e e 8-7
ListLogicalRecord — LLR 8-7
List Memory — LM e e 8-7
ListSystemMemory — LSM e 8-8
Show Absolute Disk — SAD i e e 8-9
Show Allocatable Disk Unit —SADU it 8-10
Show Internal Registers — SIR i e e 8-10
Show Panel — SP e e e e 8-11
Show ProgramIimage — SPI e e 8-12
Show RelativetoFile — SRF i e 8-13
Show Value — SV .. . e 8-13
Show Workspace Registers —SWR. i i i i 8-14
Data ModificationCommands ittt 8-14
Modify Absolute Disk — MAD e 8-14
Modify Allocatable Disk Unit — MADU o oot 8-15
Modify Internal Registers — MIR i i e 8-16
Modify Memory — MM ..o e 8-17
Modify Programimage — MPI 8-17
Modify RelativetoFile — MRF i e 8-18
Modify SystemMemory — MSM e 8-20
Modify Workspace Registers — MWR i i, 8-20
Breakpoint Commands.t i it e e e e e 8-20
Assign Breakpoints — AB e e 8-20
Delete Breakpoints — DB e 8-21
Delete and Proceed from Breakpoint — DPB 8-22
Proceed from Breakpoint — PB. ...ttt e 8-22
Task Control Commands it e e et 8-23
Activate Task — AT e e e e e 8-23
Halt Task — HT . oo e e e e et e e e e 8-23
Resume Task — RTt i e e e et e e 8-24
ExecuteinDebugMode — XDo e 8-24
Executeand HaltTask — XHT i e e 8-25
Search Commands i i e e 8-26
FindByte — FB ... oo e e e 8-26
FindWord — FW . .o e e e e e 8-26
Controlled Task Commandsttt 8-27
Assign Simulated Breakpoint — ASB........ il 8-27
Delete Simulated Breakpoints — DSB i 8-28
List Simulated Breakpoints — LSB. i L 8-28
QuitDebugMode — QD it e 8-29

Xi

Contents

Paragraph Title Page
8.3.6.5 Resume Simulated Task — RST oo, 8-29
8.3.6.6 Simulate Task — ST i e 8-29
8.4 Station DependentDisplavs, 2-30

9 — Assembly Language Program Example

9.1 Example Programmingo e 9-1
9.2 Review of Text EAiting i e i 9-2
9.3 Assemblethe Program93
9.4 Link Editthe ObjectCodeot e 9-4
9.5 Install the Program i i e et e 9-5
9.6 Execute the Program — Symbolic Debugging with Simulation 9-6
9.7 Execute the Program — BreakpointDebugging 9-8
9.8 Execute the Program — NoDebuggingoo i 9-10
9.9 Delete Directory 9-12
Appendixes
Appendix Title Page
A Abnormal Completion i e A-1
B CompletioN MeSSageSot e e B-1
] Error Listing Messages C-1
Index

lllustrations
Figure Title Page
21 SClDefault Main Menu. 2-4
2-2 Directoryand File Structure. i e 210
3-1 M AP DINg . oo 31
32 Tasks Sharing Segments i 3-2
3-3 Task Memory Configurations i i 3-4
4-1 Assembly Language Program Example i 4-6
5-1 Source Listing Example i 5-4
5-2 OutputCoverPageExample iiiiiiiirnraene.....5b
5-3 Source Statement Listing Example i 5-6

xii 2270508-9701

Figure

5-4
5-5
5-6
5.7
5-8
5-9
6-1
6-2
6-3
6-4
7-1
9-1
9-2

Cross-Reference Listing
Object Code Example
External Reference
Machine Instruction Formats
Macro Assembly Batch Stream
Macro Assembly Stream for Cards

Link Edit Output Listing
Single Task, No Procedure Example
Task, Two Attached Procedures Example
Overlaid Program Example

Execution Batch Stream

Object Code with Symbol Table
Panel Display

Contents

Table
1-1
1-2

4-1
4-2

5-1
5-2

6-1

8-1
8-2

2270508-9701

Response Type Indicators
Field Prompt Notation

Text Editor Commands
Edit Control Functions

Symbol Attributes
Object Record Format and Tags

Link Editor Commands

Debug Commands
Command Displays

xiii/xiv

Introduction

1.1 DNOS AND ASSEMBLY LANGUAGE
The assembler supported by DNOS is the Model 990 Computer macro assembier (SDSMAC).
SDSMAC supports the 990 computer instruction set as well as an extensive macro language
capability. In addition to the macro capability, SDSMAC supports the following:

. All instructions of the 990/10 and /12 instruction set with map option

U] Thirty-one assembler directives

. Three pseudo-instructions

. Use of parentheses in expressions

U Logical operators in expressions

. Relational operators in expressions

. Many output options

e Workspace pointer directive

e Copy source file directive

. Define operation directive

. Transfer vector pseudo instruction

i Common/Program/Data segment directives

1.2 ENTERING PROGRAMS

Assembly language programs may be prepared externally and entered into the system via a card
reader or magnetic tape, or they may be prepared at a terminal using the Text Editor to create a
file of source code. The compose mode of the Text Editor is used and the source code is entered
on a line-by-line basis. Once all of the source code has been entered, the assembly language pro-
gram is ready to assemble and execute.

Assembly programs may use supervisor calls to perform 1/0 and program support functions. The
supervisor calls are defined in the DNOS Supervisor Call (SVC) Reference Manual.

2270508-9701 11

1.2 Introduction

.............

1.3 ASSEMBLING PROGRAMS

Assembly language programs are assembled by using the System Command Interpreter (SCI)
Execute Macro Assembler (XMA) command procedure. The appropriate entries are made for each
request. Once all the entries are made, the assembler is activated. When the assembly has com-
pleted, a message appears stating that the assembly is complete. The number of errors or warn-
ings encountered also appears. If errors are detected, the user should consult Appendix A or
Appendix B, correct the errors, and reassemble the program.

1.4 LINKING AND INSTALLING PROGRAMS
A program must be linked if the assembled program issues references (REFs) to exiernai pro-
grams or modules. The Link Editor is defined in detail in the Link Editor Reference Manual.

The Link Editor is called by the Execute Link Editor (XLE) command. All modules and libraries to
be linked are listed in the link edit control file. The user may alsc specify the output format.

The output of the Link Editor exists in one of three formats, as defined by the user in the control
stream. Two of the formats, normal tagged object and compressed object, are output to a sequen-
tial file and must be installed in the system prior to execution. The third format, image, is installed
by the Link Editor directly to a user specified program file.

rograms are installed as procedures, tasks,

mbly ep r overlays by the various
installation SCI commands or supervisor calls (SVCs).

1.5 EXECUTING PROGRAMS

Assembly language programs can be executed by the Execute Task (XT), the Execute and Halt
Task (XHT), or Execute Task and Suspend SCI (XTS) commands, or the various SVCs.

1.6 DEBUGGING PROGRAMS

The debugging commands supported by DNOS aid the user in removing errors from (debugging) a
program. The debug commands consist of two sets: controlled task commands and commands
for all tasks. The controlled task commands operate on tasks in the debug mode. The other set of
commands may be used on all tasks. Care must be taken in cases where tasks unconditionally
suspend themselves, since some debug commands reactivate tasks.

1.7 DNOS RESPONSE NOTATION
Throughout the manual, the System Command Interpreter (SCl) commands are described and
discussed for the purpose of aiding the user in the assembly and execution of programs. The legal

response type, which may be entered for each particular prompt, is specified in each command
description. These response types are listed and defined in Table 1-1.

1-2 2270508-9701

Introduction

Table 1-1. Response Type Indicators

1.7

Response
Type

Definition

Pathname

Devicename

Filename

Stationname

YES/NO

Integer

Integer exp

List

Full exp

Full exp list

Alphanumeric

Character(s)

/O resource pathname. This type includes channel name,
devicename, filename and stationname. The pathname may be
specified by a synonym, synonym followed by a pathname
(synonym.pathname), logical name, or logical name followed by a
pathname (logical name. pathname). Legal characters in pathnames
include uppercase alphabetic characters, numbers, $, [,], and back
slash (\). On 911 VDTs, the back slash character is displayed by
pressing the CONTROL and the equal (=) keys. The name must
start with an alphabetic character.

Name of a device (DS01, ST01, etc.).
File name may include disk name, the directory which contains the
file, the file name within a directory, a logical name, or a logical

name and file name (logical name.file name).

Station ID (ST01, ST02, etc.). Users can find out the station ID by
entering the Show Terminal Information (STl) command.

The response to a prompt may be YES, NO, Y, or N.

Hexadecimal or decimal number. Hexadecimal numbers must be
preceded by entry of the > symbol or by entry of a leading zero.

Decimal or hexadecimal values or expression. Composed of
decimal or hexadecimal integers and the operators +, —, *, and /.

List of decimal or hexadecimal values or expressions, separated by
commas.

Integer expression with the additional operators <, >, and (). String
operands are also permitted. In debugger controlled mode, sym-
bolic names and the symbols #PC, #WP, #ST, and #Rn are permit-
ted. This type is unique to the SCI debugger.

A list of integer expressions separated by commas.
Alphabetic and/or numeric characters or a dollar sign ($), starting
with an alphabetic character. (Used with user IDs, volume names,

etc))

Set of any characters.

2270508-9701

1-3

To assist the user in determining the range of field prompt responses allowed by DNOS, the nota-
tion convention shown in Tabie 1-2 is used throughout this manuai. These notation symbois
enclose some prompt responses in the command descriptions to define how DNOS expects the
response type to be entered.

Table i-2. Field Prompt Notation

Notation Meaning
Uppercase Enter the response as listed.
Lowercase Enter a response of this type.
No marks The response is required.
[] The response is optional.
{} The response must be exactly one of the enclosed

items or must be a type of one of the enclosed
items (choices separated by a slash).

Item . .. item More than one item of this type may be entered to
the response. Items should be separated by com-
mas.

@ Synonyms are allowed as responses.
() Represents the initial value. If (*) is shown, the

value may be supplied from a synonym set by a
previously used command procedure.

If a list is supplied in a form other than interactive-
ly (batch mode or a command procedure calling a
command procedure), the list must be enclosed in
parentheses.

1-4 2270508-9701

2

DNOS Concepts and Environment

2.1 INTRODUCTION

This section provides an overview of DNOS and describes some important system capabilities.
Although some of these capabili®es are not used in program development, they are included to
familiarize you with the major system features and concepts. This section includes references to
other documentation for more detailed discussion of some topics.

2.2 JOB STRUCTURE

DNOS uses a structure of jobs and tasks to perform the functions of a multitasking operating
system. This job structure facilitates effective resource usage and subsystem isolation.

A job is a collection of cooperating tasks (programs) initiated by command procedures or from
within an executing program. When you iog on at a terminai, an interactive job begins. This job is
associated with the terminal that started it. When you initiate a batch job, that job is not
associated with any particular terminal.

At each terminal, it is possible to have one foreground task and one background task concurrently
active in the interactive job. Any number of jobs can be created as batch jobs.

2.2.1 interactive Jobs

An interactive job can include tasks operating in the foreground, in the background, or both. A
foreground task can accept data or commands from the terminal as the task operates. However, a
background task, although initiated from the terminal, executes without interaction with the ter-
minal until the task is finished. Consequently, you can start a task (for example, updating a data
base) in background mode and perform other activities (such as data collection) in foreground
mode while the background task is active. When complete, the background task returns a
message to the terminal, indicating completion.

Commands entered from interactive terminals are entered in foreground mode. The operating
system responds by displaying the appropriate command prompts. Enter the required informa-
tion; the task now begins execution. While the task executes in foreground, SCl is suspended to
avoid interference. User interaction now occurs directly with the foreground task. The DNOS
System Command Interpreter (SCI) Reference Manual describes the commands used to initiate
tasks in all modes.

2270508-9701 21

2.2.2 DNOS Concepts and Environment

2.2.2 Batch Jobs

Batch jobs use SC! to process batch commands. In the batch mode, SC! accepis commands from
any sequentially oriented device (typically a disk file of commands) but not from a terminal. Com-
mands submitted in a batch command stream must inciude all parameters required for the opera-
tion. Also, the commands included must be suitable for execution in the background mode. Com-
mands that initiate operations requiring user interaction (for example, text editing and debugging

commands) are not permitted.

2.3 USING SCI

The following paragraphs discuss the use of SCI. The DNOS System Command Interpreter (SCI)
Reference Manual contains complete descriptions of SClI commands, plus procedures for

creating new commands and menus.

2.3.1 SCI Description

SCl is the interface between you and the operating system, system utilities, the software develop-
ment programs, and application programs. Application programs can interface with you through
user-defined SCl commands and menus.

You can use SCI to activate programs and to pass parameters to the programs during execution.
SCl also allows you to build and maintain tables of variables, called synonyms and logical names,
and their values. SCI allows application programs to access these variables for use in the pro-
grams.

To execute an application program via SCI, you can use predefined execution commands such as
Execute Task (XT), Execute COBOL Task (XCT), and Execute Pascal Task (XPT) or you can write
your own SCl command to initiate a program. You can add user-defined commands to the system
library, or you can group them in a separate command library. The .USE primitive (described in the
DNOS System Command Interpreter (SCI) Reference Manual) allows you to specify which com-
mand library SCI should use.

You can enter SClI commands from interactive terminals or in batch command streams. In
response to commands entered interactively, SClI displays command prompts associated with the
command.

When all required prompts have been properly answered, SCI interprets the responses and
initiates the requested operation.

2.3.2 SCI Activation
The following procedure shows the steps to activate SCI at video display terminals:

1. Turn on the terminal if it is not already on.
2. Press the blank orange key.

3. Press the ! {(exclamation mark) key.

2-2 2270508-9701

10.

11.

12.

13.

DNOS Concepts and Environment 2.3.2

DNOS responds by displaying or printing the following message:
DNOS X.X.XX
where X.X.XX is the release version of DNOS.
If user identification is required, DNOS displays the following two prompts:

USER ID: PASSCODE:

Type in the assigned user ID and press the RETURN key to signal DNOS that an entry
has been made. Next, type in the assigned passcode and press the RETURN key to
signal DNOS that an entry has been made. The characters of the passcode entered by
the user are not displayed to preserve passcode security.

DNOS may respond by displaying the following prompt (if it is not already displayed):
JOB NAME:

Type in a job name and press the RETURN key to signal DNOS that an entry has been

made. A job name may be any alphanumeric string (maximum of eight characters)

which starts with an alphabetic character or $ and consists of only uppercase
characters.

DNOS may respond by displaying the following prompt (if it is not already displayed):
ACCOUNT ID:

Type in the assigned account ID and press the RETURN key to signal that an entry has
been made.

DNOS may respond by displaying the following messages:

SYNONYM FILE PATHNAME:
LOGICAL NAME FILE PATHNAME:

Type in the pathnames which contain the synonyms and logical names to be used, or
press the RETURN key if the default pathnames are to be used.

If the job name entered is already in use with the same user ID, DNOS may respond with
the following prompt:

RECONNECT?:
Type in YES or NO and press the RETURN key to signal that an entry has been made.

YES specifies that this terminal is also to be associated with the job name in use. NO
specifies that this terminal is to be associated with a new job.

2270508-9701 2-3

2.3.2 ODNOCS Coinicepts and Environment

14. If the log-on is successful, DNOS may respond with the SCI prompt ([]) or may display
the news fiie if one exists. SCi then waits for the CMD key to be pressed. Afier the CMD
key is pressed, SCI displays the default main menu and SCI prompt ([]) as shown in
Figure 2-1. The default main menu may be changed at the option of the systems pro-
agrammer. Use the .MENU and .OPTION SClI primitives to specify the menu and prompt
to be used. Refer to the DNOS System Command Interpreter (SCI) Reference Manual.

15. Begin to operate the terminal by entering the SCl commands that are available as deter-
mined by the privilege level associated with the user ID. If a command is entered that is

not authorized for the user’s 1D, SCI displays an appropriate error message.

16. While executing SCl commands, the terminal should not be turned off. If the terminal is
turned off, device errors are written to the system log and the system may loop in an at-
tempt to complete the command.

4633 36 302336036 36 320 3006 636 36 3030 I HE TR T I I B A I RS
*¥% TEXAS INSTRUMENTS 3
*¥ DNOS SYSTEM L
RS R A S Y YT Y

Command Groups:

/DEBUG
/DEVICE
/DIR
/EDIT
/FILE
/JOB
/LANG
/LUNO
/MSG
/NAME
/PREXEC
/PFILE
/STATUS
/SYSMGT
/VOLUME

£1

Interactive Debuager
1/0 Devices
Directories

Text Editor

File Mznagement

Job Management
Languaoe Support
Logical Unit Numbers
Message Facilities
Synonyms and Logical Names
Program Execution
Program Files

Status Reports
System Management
Disk Volumes

Figure 2-1. SCI Default Main Menu

2270508-9701

DNOS Concepts and Environment 2.3.3

2.3.3 Entry of SCl Commands in VDT Mode

To enter an SCl command in VDT mode, type the characters (in uppercase letters) of the command
and press the RETURN key. Upon entry of a command, SCI displays the full name of the command
entered and all the field prompts associated with the command. Field prompts provide informa-
tion and request parameters to complete command execution. For example, the following field
prompt requests that you identify an output pathname:

OUTPUT PATHNAME:

2.3.4 Examples of Using SCI
The following paragraphs contain examples of specific uses of SCI commands. Consult the
DNOS System Command Interpreter (SCI) Reference Manual for a complete discussion of the SCI

commands.

2.3.41 The Show Background Status (SBS) Command. Use the SBS command to view the
status of a program that is currently executing in background mode and that was initiated from
your terminal. Since this command has no associated prompts, the command executes
immediately after you enter SBS and press the RETURN key. A message indicating the state of
the background activity appears, as follows:

[1sBS
SHOW BACKGROUND STATUS
| STATUS-1217 TASK IS ACTIVE

2.3.4.2 The List Directory (LD) Command. Use the List Directory command to list the names of
all files and subdirectories in a directory. The display for this command is as follows:

[ILD

LIST DIRECTORY
PATHNAME: pathname@
LISTING ACCESS NAME: [pathname@]

In response to the prompt PATHNAME, enter the pathname of the directory whose file names and
subdirectory names wiil be listed. The @ indicates that the pathname can be specified by a
synonym.

In response to LISTING ACCESS NAME, enter the pathname of the device or file to which the
listing should be written. The brackets ([]) indicate that the response is optional. The default value
is the terminal at which the command is entered. A null response (pressing RETURN whiie the cur-
sor is in a blank field) causes the default value to be accepted. In the following case, the directory
SYS2.DP0080 is listed to the terminal from which the command was executed.

2270508-9701 2-5

2.3.5 DNOS Concepts and Environment

L1 LD

LIST DIRECTORY
PATHNAME: SYS2Z. DP0080O
LISTING ACCESS NAME:

DIRECTORY LISTING OF: SYS2. DPOOBO
MAX # OF ENTRIES: 101 # OF ENTRIES AVAILABLE: 78

DIRECTORY ALIAS OF ENTRIES LAST UPDATE CREATION
ML *] 05/30/80 13:44:48 03/17/80 12:51: 04
TIP # 13 03707/8C 12:02:20 0O2/11/80 16:44: 21
FILE ALIAS OF RECORDS LAST UPDATE FMT TYPE BLK PROTECT
BATCH # 24 06/03/80 08:16:56 BS N SEQ YES
COBOL # 3550 05/30/80 14:06:46 NBS N SE@ VYES

DATA # 17 05/07/80 15:31:57 BS N S8EQ YES

16:21: 50 TUESDAY, JUN 03, 1980.

LT

To use SCI in a batch mode through batch streams, use the Execute Batch (XB) command; or
through a batch job using the Execute Batch Job (XBJ) command. The XB command starts a
background task that is associated with your terminal. XBJ starts a new job, not associated with a
terminal.

The following paragraphs discuss the characteristics of batch SCI and the differences in format
between batch commands and commands entered interactively.

2.3.5.1 Batch Stream Format. The first and last commands of a batch stream should be the
BATCH and EBATCH commands, respectively. The BATCH command initiates the batch SCI

environment. EBATCH indicates that the batch stream contains no more commands to be pro-
cessed by SCi.

Upon normal completion of the batch stream executing in background mode, the following
message appears:

BATCH SCI HAS COMPLETED
2.3.5.2 Batch Command Format. When suppiying SCi commands in batch stream format,
include the following information for each command:

. The characters of the command

. All required prompts associated with the command

. The parameter values (responses) for the command prompts

2-6 2270508-9701

DNOS Concepts and Environment 2.3.5.2

The following demonstrates the Execute Link Editor (XLE) command in both interactive and batch
form. (Refer to the Link Editor Reference Manual for a complete description of the XLE command.)

Interactive Format. When you enter XLE interactively, the following prompts appear:
[1XLE

EXECUTE LINK EDITOR
CONTROL ACCESS NAME: pathname@ ")
LINKED OUTPUT ACCESS NAME: [pathname@] *)
LISTING ACCESS NAME: [pathname@])
PRINT WIDTH (CHARS): [integer] (80)

To execute the command, respond to the CONTROL ACCESS NAME prompt by specifying the
pathname of the file or device from which the control stream is to be read. Then, either specify
values or accept the default values for the remaining prompts. If the control stream is contained
in directory .M, file . CONTROL, the linked output is to be written to directory .M, file .OBJECT, the
link editor listing is to be written to directory .M, file .LIST, and an 80-character line is acceptable,
respond as foliows:

[1XLE

EXECUTE LINK EDITOR
CONTROL ACCESS NAME: .M.CONTROL
LINKED OUTPUT ACCESS NAME: .M.OBJECT
LISTING ACCESS NAME: .M.LIST
PRINT WIDTH (CHARS): 80

Batch Format. To execute this command in a batch stream, include the characters of the com-
mand, all required and any optional prompts that are specified, and the responses to those
prompts. The following batch command is equivalent to the interactive version shown previously:

XLE CONTROL =.M.CONTROL, LINKED OUTPUT =.M.OBJECT, LISTING =.M.LIST

Notice that the default value for the PRINTWIDTH(CHARS) prompt is accepted by omitting it from
the batch command. Also, you can use abbreviated versions of the specified command prompts.
The abbreviation must be sufficient to uniquely identify the prompt. Often, only the first character
of a command prompt need be entered. For example, the following is equivalent to the previous
example:

XLE C=.M.CONTROL, LO =.M.OBJECT, LIST=.M.LIST

A batch stream consists of one command or a series of commands in this format when preceded
by the BATCH command and followed by the EBATCH command. The file containing the batch
command stream is the input file for the XB and XBJ commands. Consult the DNOS System Com-
mand Interpreter (SCI) Reference Manual for more information on batch command construction
and batch capabilities.

2270508-9701 2-7

2.353 DNOS Concepts and Environment

2.3.5.3 Interactive Execution of Batch Streams and Batch Jobs. Use the XB command to
execute batch streams as background activities from an interactive job. After you enter the XB
command and the batch stream begins execution, you can continue to execute SCl commands in
foreground mode. After the batch stream completes, the completion message appears the next
time you press the CMD key. To monitor batch stream execution, you can enter the Show
Background Status (SBS) command from time to time or use the WAIT command. Also, you can

use the Show File (SF) command to view the listing file for the batch stream during the run.
An exampie of the XB command is as foiiows:
[1X8

EXECUTE BATCH
INPUT ACCESS NAME: pathname@
LISTING ACCESS NAME: pathname@

The INPUT ACCESS NAME is the pathname from which DNOS should read the batch command
stream. The LISTING ACCESS NAME is the pathname of the device or file to which DNOS should
write the results of the batch stream execution. This device or file must not be used by any com-
mand in the batch command stream.

The XBJ command allows you to create the job stream commands and execute a batch SCI job
independent of a terminal. Consequently, you can continue to execute SClI commands in
foreground or background mode. A description of the XBJ command is as follows:

QAU VIV YY

[1XBJ

EXECUTE BATCH JOB
JOB NAME: aiphanumeric
USE CURRENT USER ID?: YES/INO (YES)
LOGICAL NAME TABLE PATHNAME: [filename@]
SYNONYM TABLE PATHNAME: [filename@]

The response to the JOB NAME prompt is a one-to-eight character, user-defined name for the job.
if the response to the USE CURRENT USER ID? prompt is NO, a prompt for another user ID
appears. (Some instailations may require a passcode and/or account iD with the new user iD.) The
LOGICAL NAME TABLE PATHNAME is a file containing the logical names to be passed to the
new job. The logical name tabie is created using the Snapshot Name Definition (SND) command,
described in the DNOS System Command Interpreter (SCI) Reference Manual. To pass the logical
names of the creating job, enter a null response (the default). The SYNONYM TABLE PATHNAME
is the file name containing the set of synonyms to be used by the new job. (The synonym table is
also created using the SND command.) The synonym table must specify the Input Access Name
and the Listing Access Name for the XBJ command. As in the XB command, the Input Access
Name is the file that contains the batch commands, and the Listing Access Name specifies the
file or device to which the results of the batch job should be written. If you enter a null response to
the SYNONYM TABLE PATHNAME prompt, DNOS prompts for the INPUT ACCESS NAME and
LISTING ACCESS NAME as in the XB command. The DNOS System Command Interpreter (SCi)
Reference Manual contains further information on the XBJ command.

2-8 2270508-9701

DNOS Concepts and Environment 2.3.5.4

2.3.5.4 Entering Programs from Sequential Devices. You can use any sequential file of pro-
gram source code for input to the compilers or assembler. If necessary, copy source code that has
been key punched on a card deck to a sequential disk file. Program source code, entered by the
Text Editor or Copy Concatenate (CC) command, can be read from devices. An example using the
GC command to copy the source code from cards to a disk file is as follows:

[1CC

COPY/CONCATENATE
INPUT ACCESS NAME(S): CRO1
OUTPUT ACCESS NAME: .USER.SOURCE
REPLACE?: NO
MAXIMUM RECORD LENGTH:

2.4 DIRECTORY AND FILE STRUCTURE

DNOS file management allows you to build, organize, and access directories and files. A file con-
sists of a named collection of data. The data in the file can be generated by you (for example,
source code or documentation) or by the system (for example, object code or listing files). A direc-
tory is a relative record file that contains the information necessary to locate other files and
describes the characteristics of those files. It does not contain user data.

2.4.1 Establishing Volume Names

Volume names are alphanumeric character strings of as many as eight characters that identify
the disk on which a file is found. The first character of a volume name must be an alphabetic
character. For example, VOL1 could be the volume name of a disk.

The Initialize Disk Surface (IDS) command prepares the disk surface for initialization by the
Initialize New Volume (INV) command. The IDS command must be performed prior to the first INV
command. It is not necessary to perform another IDS before any further initializations of the disk.

The INV command assigns volume names to disks. Once a volume is initialized by an INV com-
mand, all access to files on that volume must include the volume name in the pathname or access
name, unless the volume is the system disk or unless a device is specified.

One disk drive on each system (usualiy DS01) is designated to hold the system disk. The system
disk contains all required operating system components, including the loader program, system
program files, and temporary system files. The system disk is the default volume when no volume
name is specified. For example, .PROOF designates a file named PROOF on the system disk.

2.4.2 Establishing Directories
Each disk volume has a file directory named VCATALOG, where DNOS maintains a volume table
of contents. The files described in VCATALOG are data files or directory files (Figure 2-2).

DNOS directories contain the names of and pointers to other files. Directories do not contain user
data. Typically, related files are contained in a directory. Directories can also contain subdirec-
tories. Both directories and subdirectories are created by the Create Directory File (CFDIR) com-
mand. A subdirectory can be created under a directory only after the directory has been created.
For example, subdirectory VOL1.SOURCE.PROGRAMA can not be created unless directory
VOL1.SOURCE already exists.

2270508-9701 2-9

2.4.2 DNOS Concepts and Environment

LEVEL 1 —p

LEVEL 2 —¢p

2279937

It is convenient to group related files into a single directory. For example, all source files for a pro-
gram might be in a directory named VOL1.SOURCE.PROGRAMA; all listings generated from
assembly or compilation of source modules for this program might be in a directory named
VOL1.LISTING.PROGRAMA. (Refer to Section 3 for more information on aiternative ways to struc-

VCATALOG
DIRECTORY

USER
FILES

USER
DIRECTORIES

SYSTEM
FILES

SYSTEM
DIRECTORY

USER
FILES

ER

us
DIRECTORIES

LEVEL 3 —p

ture files for programs.)

Do not assign file names that might be confused with DNOS system file names. Most system file

or directory names begin with S$.

2-10

USER
FILES

USER
DIRECTORIES

LEVEL n —p

Figure 2-2. Directory and Fiie Structure

2270508-9701

DNOS Concepts and Environment 2.4.3

2.4.3 Establishing Files
After initializing a disk volume and creating directories and subdirectories, you can create files
that are accessible either under the volume or under a directory or subdirectory. The following
commands are available to create files:

° Create Key Indexed File (CFKEY)

. Create Relative Record File (CFREL)

¢ Create Sequential File (CFSEQ)

e Create Program File (CFPRO)

. Create Image File (CFIMG)

. Create File (CF)
The CF command requires the subsequent selection of a file type. These commands are
described in detail in the DNOS System Command Interpreter (SCI) Reference Manual.
25 PATHNAMES AND ACCESS NAMES
A file on a disk volume is referenced by its pathname. A pathname is a concatenation of the
volume name, names of the directory leveis leading to the file (excluding VCATALOG), and the file
name itself. Each component of a pathname cannot exceed eight characters in length. A com-
plete pathname must not exceed 48 characters including periods. The components of the
pathname are separated by periods, as in the following examples:

VOL1.AGENCY.RECORDS

MYDIRECT.MYDIRCTA.MYFILE

VOLTWO.DEB

EMPLOYO01.USRA.PAYROLL

EMPLOY01.USRB.CATALOGX.PAYROLL
An access name may be a device name, volume name or file pathname. For device names, you

must use certain default names (except for special devices). Example device names include ST02
for terminal number 2, LPO1 for line printer number 1, and DS03 for disk number 3.

2270508-9701 2-11

2.8 DNOS Concepts and Environment

You can reference a volume on which a file resides through either the device name or the volume
name. Omitting the voiume name and beginning the pathname with a period indicates that the fiie
is on the system disk. Samples of valid names for devices and files are as follows:

File Identifier Meaning
CRO1 Device name
DS02.MYCAT.MYFILE Device name, directory name, file name
.MYCAT.MYFILE System disk, directory name, file name
VOLID.MYCAT.MYFILE Volume name, directory name, file name

26 SYNONYMS AND LOGICAL NAMES

DNOS supports use of synonyms and logical names for /O resources. Synonyms are used to
abbreviate long text strings. Logical names are used to abbreviate resource names, define
resource access, and pass parameters associated with the resource (devices, files, or channels).

2.6.1 Synonyms

Synonyms are abbreviations of one or more characters in length that are commonly used in place
of long pathnames or portions of pathnames. These synonyms are always available to foreground
tasks. Background tasks receive a copy of the foreground synonyms when the background task is
initiated. At terminals requiring log-on, user-defined synonyms are associated with that user’s ID

i i H {AC) A
and are available whenever the user logs on at any terminal. Use the Assign Synonym {AS) and

Modify Synonym (MS) commands to define synonyms and to modify defined synonyms. When you
enter a synonym in response to an SCI command prompt, the synonym is replaced by the actual
text string.

When an SCl command is executed in foreground mode, you can use a synonym only as the first
or only component of a pathname (device name or file name). For example, if A is a synonym for
directory VOL1.SOURCE and B is a synonym for PROGRAMA in that directory, A .PROGRAMA is
an acceptable file name. However, VOL1.SOURCE.B or A.B are not acceptable. Refer to the DNOS
System Command Interpreter (SCI) Reference Manual for use of synonyms in batch streams in the
background mode.

2.8.2 Logicai Names

A logical name is a user-specified, alphanumeric string of up to eight characters. Programs use
logicai names to access i/O resources. An I/O resource-can be a device, an IPC channel, afile,ora
set of concatenated files. You have the option of assigning a LUNO to a logical name that maps to
an access name. (A LUNO is a logical unit number that represents a file or device; see paragraph
2.8.4)

Since each logical name is associated with a set of parameters (the set assigned to the cor-
responding /0 resource), iogical names provide a means of passing the parameters assigned to a
given resource. Use the Assign Logical Name (ALN) command to specify values for these
parameters. The DNOS System Command Interpreter (SCI) Reference Manual contains a detailed
description of this command.

2-12 2270508-9701

DNOS Concepts and Environment 2.7

Some examples of the types of parameters associated with logical names are as follows:
o File characteristics
. Access privileges
o Spooler information
o File creation
. Auto-generate pathname

e Job temporary files

2.7 FILE TYPES
DNOS supports the following file types: sequential, relative record, and key indexed.

2.7.1 Sequential Files

Sequential files are variable-record-length files whose records are always read, written, and
accessed serially (that is, record 0 must be accessed first, record 1 must be accessed next, and so
on). Some examples of using sequential files are as follows:

e Asaninput file for card images. If a logical record length of 80 is specified, the sequen-
tial file can be treated as a card reader by the program reading the file.

o As an output file. In this function, the file can resemble the line printer.
) As a location for listing files from DNOS processors.

2.7.2 Relative Record Files

Relative record files are also called random access files. Unlike sequential files, reiative record
files may be accessed in any order. Each record has a unique record number, which you specify to
access that individual record. The operating system increments the caller's record number after
each read or write so that sequential access is permitted. One end-of-file (EOF) record is main-
tained wherever it was last specified by a program. The range of record numbers is from 0 to one
less than the number of records in the file. The maximum number of records in a relative record
file is 2 to the 24th power. The records are fixed in length, and the length must be specified during
file creation.

Relative record files are useful when each record in the file is already associated with a unique
value ranging from 0 to n; for example, in an inventory file, the item number can be specified as
the record number. Consequently, information about item number i can be obtained by accessing
record number i.

2270508-9701 2-13

2.7.3 DNOS Concepts and Environment

Special types of relative record files available in DNOS are directory, program, and image files.

e ol - ‘-- S + ‘A FaYa
These files provide special interface mechanisms that are used primarily for memory images,

memory swapping, and diagnostic dumps.
. Directory Files — Contain names of and pointers to other files
. Program Files — Contain program images and an internal directory of the images

s Image Files — Special-purpose files used primarily by the operating system for memory
images, memory swapping, and diagnostic dumps.

2.7.3 Key Indexed Files
A key indexed file (KIF) aliows random access to its records via a key. The key is a character string
of up to 100 characters, located in a fixed position within each file record. From 1 to 14 individual
keys may be specified. For example, the records in an employee file might be accessed by keys
that indicate the employee’s id, name, and social security number.
Keys can overlap one another, with certain restrictions, within the record. Although the keys can
be structured anywhere within a record, they must appear in the same relative position in all
records in the file. One key must be specified as the primary key; the other keys are secondary
keys. The primary key must be present in all records, but secondary keys are optional.
In addition to supporting random access, KIFs include the following characteristics:

. Records can be accessed sequentially in the sort order of any key.

. At file creation, any key can be designated as allowing duplicates, which means that
two or more records in the file can have the same value for this key.

. At file creation, any key except the primary key can be designed as being modifiable.
This means that when a record is being rewritten, the key value may change. Also, a
secondary key value that is missing in the record can be added later on a rewrite.

. Keys can overlap.

e Records can be of variable length and can change in size on a rewrite.

e Searching on partial keys is allowed.

. Records are automatically blank suppressed.

. Record-level locking is supported.

e The size of the file can increase.

. File integrity is maintained through pre-image logging of modified blocks. Before a
record is modified on disk, it is copied to a backup area in the file overhead area. Conse-

quently, system failures cause the loss of only the last I/O operation.

. Records of odd or zero length are not allowed.

2-14 2270508-9701

DNOS Concepts and Environment 2.7.4

2.7.4 Concatenated and Multifile Sets

Sequential and relative record files can be logically concatenated by setting the values of a
logical name to the pathnames of a set of files. Logical concatenation allows access to the files,
in sequence, without requiring that they be physically concatenated. (When required, physical
concatenation can be performed by the Copy/Concatenate SCl command.) A multifile set is a set
of key indexed files, the pathnames of which are the values of a logical name. The files in the set
are associated in a nonreversible manner. Individual components of concatenated and multifile
sets can be on separate disks.

Several restrictions apply to the concatenation of files. The files must be of the same type and
may not be special use files such as directories, program files, key indexed files, or image files.
Relative record files to be concatenated must have the same logical record size. A concatenation
cannot contain both blocked and unblocked records, and any LUNO assigned to a file must be
released before concatenating the file.

The following special rules apply to combining key indexed files in a multifiie set:
* At the first definition of the multifile set, all but the first file must be empty.
. None of the files can be a member of an existing multifile set.
. All of the files must have the same physical record size.

. The files must have the same key definitions. In subsequent definitions of these sets,
the same files must be associated in the same order, and none of the original set can be
omitted. One empty file can be added at the end (but not at any other position).

. You cannot use key indexed file operations to individually access key indexed files of a
multifile set. You can access these files only by using operations that examine physical
records or absolute disk addresses.

The multifile set of key indexed files permits a larger key indexed file than one disk can store.
When a key indexed file can no longer expand because there is insufficient space on the disk, you
can create a new file on another disk. By using a logical name, the two files can be used as one.
The second file is used as an extension of the first. For example, assume the first file contains
5000 physical records. When physical record 5001 is required, the first physical record of the sec-
ond file, record C, is used.

Only a few of the file utility operations of the I/O Operations SVC apply to concatenated and
multivolume sets. They are as follows:

Code Operation
91 Assign LUNO
93 Release LUNO
99 Verify Pathname

The Assign Logical Name (ALN) SCl command associates files collectively with a logical name.
Actual logical concatenation or creation of a multifile set occurs when a LUNO is assigned to the
logical name. You can access a concatenated file only for the duration of the logical name. You
must specify the files in the concatenation order desired. You can specify by pathname, synonym,

2270508-3701 2-15

2.8 DNOS Concepts and Environment

logical name, or a logical name and pathnamé combination. However, all forms must resolve to
valid pathnames. All files in the concatenation or muitifile set must be precreated and oniine

when the logical name is used.

The last file in a concatenation set can be expandable. All other files become nonexpandable
until the logical name is released or the job terminates.

When a single end-of-file (EOF) mark appears at the end-of-medium (EOM), the end-of-file is masked.
This allows concatenated files tc be accessed logically as a singie file without the return of in-
termediate end-of-file marks. Note that any intermediate end-of-file mark not at the end-of-
medium is always returned. If two end-of-file marks are encountered at the end-of-medium, a
single end-of-file is returned.

Several users can access the same concatenated or multifile set if the access privileges permit.
Two concatenated files are identical when they consist of the same pathnames in the same order.
To maintain file integrity, an error is returned if any of the precreated files of a concatenated file
are being accessed independently. A concatenated file is deleted by deleting the individual files.

2.8 1/0 FACILITIES

110 resource management in DNOS allows a program to request resources dynamically during
execution. When a resource is requested but is not available, the program or the user is notified
immediately. The request for resources is not queued and the program is not suspended. This

LR R~

allows the program to either abort or retry the request, thereby avoiding a deadlock situation.

/O resources are allocated to programs according to access privileges that the program requests
when issuing an open operation. If the requested privilege is compatible with previously granted
requests, the open completes without error. The program is then guaranteed the type of access
requested (exclusive, exclusive write, shared, or read only).

2.8.1 110 Methods

DNOS supports /0 operations to various types of devices, files, and IPC channels, all of which are
referred to as /O resources. DNOS also supports communication between programs using IPC
channeils.

Two methods of /O are available: resource-specific and resource-independent. Resource-specific
110 uses special features of one particular device or file. Resource-independent i/O allows the
user to specify /O for any of several devices without concern for special features. Both types of
I/O allow a program to interact with predefined devices, files, and channels. The interaction
occurs through the use of LUNOs.

2.8.1.1 Resource-Specific /0. Resource-specific 1/0 operations assume device, channel, or
file peculiarities. For example, activating the graphic capability on the 911 VDT is a resouice-
specific /0O operation. Other such operations inciude the following:

. Extended VDT operations

U Create/delete files and other fiie-specific /O utility operations

® Direct disk i/O

2-16 2270508-9701

DNOS Concepts and Environment 2.8.1.2

. Random access operations to key indexed and relative record files
U IPC master-slave channel owner operations

2.8.1.2 Resource-Independent /0. When resource-independent 1/O is used, application pro-
grams do not distinguish between devices, files, and channels. Also, a program can read and
write data records independently of the type of device or file used. Examples of such types of
operations include read, write, forward space, and write EOF. All devices, files (including KIF),
and channels support resource-independent access.

2.8.2 Interprocess Communication

Interprocess communication (IPC) enables two or more tasks to exchange information via com-
munication channeis. IPC channels are created by the Create IPC Channel (CIC) command, or the
Create IPC Channel I/O SVC. In each channel, one task must be designated as the owner of the
channel. The channel owner task controls use of the channel. Requester tasks (slaves) have less
flexibility and fewer privileges.

2.8.21 IPC Uses. IPC is used for four primary reasons:
o Synchronization — Tasks may synchronize activities by passing messages via IPC.
o Queue serving — A channel owner may serve a queue of requests from other tasks.

. Interception — Channel owner tasks receive requests from queues, interpret or modify
the information, and pass the changed data to another task or device.

° Messages — Any variety of uses determined by the programs involved.

2.8.2.2 IPC Channels. An IPC channelis alogical path used for communications between two
tasks. Two types of IPC channels are available in DNOS: master/slave channels and symmetric
channels. For a master/slave channel, the owner of the channel (the master) interprets and/or
executes messages transmitted on the channel by requesters (slaves). Special commands must
be used by the owner to appropriately read and write the messages. For a symmetric channel, the
owner and requestor(s) issue simple Read and Write commands. These commands must match
each other. The Read command of one task is processed as soon as the other task issues a Write
command and vice versa.

28.2.3 Channel Scope. The scope of a channel governs access to various jobs and tasks. The
scope is determined by the channel type: global, job-local, or task-local.

. Global Channel — Not replicated (only one exists in the whole system) and accessible
by any task in the system. The channel must first be used by the owner task. The owner
task cannot be automatically bid (made ready for execution) by an AL command. Multi-
ple tasks can concurrently use a global channel that permits shared access.

. Job-Local Channel — Replicated once for each job and accessible by any task in the
job. The channel can be shared and the owner task may be automatically bid by an AL
command.

. Task-Local Channel — Replicated once for each requester task (many per job) in any

job. The channel cannot be shared, and the owner must be automatically bid by an AL
command from a requester task.

2270508-9701 2-17

2.8.2.4 DNOS Concepts and Environment

2.8.2.4 System-Level iPC Functions. SCI commands are available to perform the following
system-level IPC functions:

¢ Create IPC Channel (CIC)

° Deiete iPC Channel (DIC)

o Assign LUNO (AL)

. Release LUNO (RL)

. Show Channel Status (SCS)

2.8.2.5 Program-Level IPC Functions. All program-level access to IPC occurs through the use
of SVCs. Operations used by a master/slave channel owner are special /O SVCs; operations used
by requesters and by symmetric channel owners are standard 1/0O SVCs. In general, owner tasks
get information from the channels and return an owner-determined response. However, requester
tasks use IPC SVCs in a transparent manner; the effect of each call depends on the owner task.
Refer to the DNOS Supervisor Call (SVC) Reference Manual for more details about channel opera-
tions.

28.3 FilellO

DNOS provides disk file /O support for application and system programs. Disk file I/O is per-
formed through the same SVYC mechanism used to perform /O to devices. Assembly language
programs must directly incorporate the SVC mechanism to perform /0.

2.8.4 Device lIO

A device may be specified by either a device name or by a logical name. All standard DNOS I/O is
performed to LUNOSs rather than to physical resources. A LUNO, specified in an I/O operation, isa
hexidecimal number that represents a file, channel, or device. DNOS maintains a list of LUNOs
that indicate corresponding physical devices. LUNOs can be assigned by the AL command, or by
use of an Assign LUNO SVC, and can have one of three scopes as follows:

o Global LUNOs are defined (and are available) for all tasks and jobs.

» Job-iocal LUNOs are defined (and are avaiiabie) for ail tasks in a job.

o Task-iocal LUNOs are defined only for the task that assigns them.
285 Spooling
The spooling of data can occur during job execution as output is generated by one or more tasks.
Spooling is the process of receiving data destined for a particular device (or type of device) and
writing that data to a temporary file (or files). The spooler subsystem schedules the printing of job-
local and permanent files among available printing devices. You can impiement spooiing in two
ways, either by the PF command, or by sending output to a logical name.
If you use the PF command, specify the following options:

. Banner Sheet — A cover sheet containing the job name, user ID, time, and date.

. Forms — A particular form for printing devices.

2-18 2270508-9701

DNOS Concepts and Environment 2.9

o Device Class Type — Any of a class of devices (class name definition). For example,
you can specify any line printer, or any printer that prints uppercase/lowercase, without
naming a specific printer.

. Format Selection — Either FORTRAN control characters (blank, 0, 1, or + in column
one) or ASCIl control characters.

o Multiple Copies — Multiple copies for a file or files.
. Priority — Files for printing based on an assigned priority.

To use a logical name , you must assign the logical name, using the ALN command, and specify
the options (which are the same as those for the PF command.) You can use the logical name in
programs and utility commands, such as SCl, in either batch or interactive mode.

As an example, let’s assume you have assigned the logical name OUT and specified the following
options:

o LPO2
o standard format
e 2 copies

Each time you send a file or listing to OUT, the spooler schedules two copies of OUT to print on
LP02 in standard format. You can design strategies according to your specific needs.

29 SEGMENTS

A task in DNOS consists of various program sections, each of which has certain features (at-
tributes). The attributes of some sections may be different from others. A program section is called
a segment. A task in DNOS can consist of up to three “segments.” The number of segments in
a task depends in part on the attributes that can be assigned to the various sections of the pro-
gram. In general, if all sections of a program have the same attributes, only one segment is need-
ed; if a division of the program is made into sections with differing attributes, multiple segments
may be needed.

The user can build the program, specifies appropriate division of the program to the Link Editor,
and installs the segments on a program file. The actual movement of segments into memory dur-
ing execution varies, depending on whether or not the program explicitly requests certain
segments. In most cases, DNOS handies segment changes without user action required.

To install a task, specify an initial set of segments (up to three) and the desired mode of access to
those segments. To execute a task from an executing program, load the initial segment set (if
necessary) and grant the desired access. Use the appropriate SCl command to execute a task
from SCI.

2270508-9701 2-19

2.10 MESSAGE FACILITIES

The DNOS Messages and Codes Reference Manual describes all system codes and messages in
detail and should be consulted if the system displays only the error code. For systems that have
the full message displayed, the paragraphs that follow discuss the components of termination
messages and two methods of showing expanded error messages. Later sections discuss the use
of condition codes and messages in application programs. The DNOS Systems Programmer’s
Guide gives instructions for creating and modifying messages.

2.10.1 Error Messages

When an error occurs, SCI displays the message on the bottom line of the terminal screen and
inhibits further operation until you acknowledge the message by pressing the CMD key or the
RETURN key. Errors may be generated within SCi during SCi command execution or by any utiiity
activated by an SCI command.

The error messages consist of three parts: the error source indicator, a unique identifier, and the
message. The error source indicators are as follows:

Indicator Meaning

Informative message

1

w Warning message

U User error message

S System error message

H Hardware error

us User or system error

UH User or hardware error
SH System or hardware error
UHS User, hardware, or system

The unique identifier is a code containing the category of the message (such as SVC, Pascal, or
utility). This code may be followed by an identifier for a specific message within that category.

For example, if you attempt to access a nonexistent file, the following error message appears:
U SVC-0315 filename DOES NOT EXIST (SF; 5)

where filename is the name of the file you tried to access. if you need additionai information

about an error, use on-line expanded error messages or refer to the DNOS Messages and Codes

Reference Manual.

2.10.2 On-Line Expanded Error Message Documentation

If your system supports expanded message information on-line, both the Show Expanded
Message {SEM) command and the ? response to the error messages are available.

2-20 2270508-9701

DNOS Concepts and Environment 2.10.2.1

2.10.2.1 Show Expanded Message (SEM) Command. Use the SEM command to display an
expanded description of a termination code. Enter SEM to activate the procedure. You are promp-
ted to specify the type of error (such as SVC or SCI) and the message identifier. These appear in
the second field of the termination message. An example of the SEM command display is as
follows:

[ISEM

SHOW EXPANDED MESSAGE
MESSAGE CATEGORY: SVC
MESSAGE ID: 0315

The following information appears on the terminal:

Explanation
The specified file or channel does not exist.

Action
If the file or channel pathname is specified as intended, create the file or channei and retry
the operation. Otherwise, retry the operation specifying the intended pathname.

2.10.2.2 The ? Response. If you enter a question mark (?) immediately after receiving an error
message, SCI uses the error category and message iD io display the expanded description of the
error. SCI displays the original message and the same information as the SEM command.

2.10.3 Status Messages

Several SCI commands display status messages to inform you of the actions being taken during
command execution. These messages appear on the bottom line of the terminal screen.
Acknowledge the message by pressing the CMD key or RETURN key so that operation can con-
tinue. Expanded status messages can be secured in the same way as error messages.

2270508-9701 2-21/2-22

3

Assembly Language Concepts

3.1 INTRODUCTION

A program is a collection of machine instructions and data that direct the activities of the com-
puter to perform a particular function. A program that executes under DNOS is called a task.
There may be several activations of the same program at a given time but each activation is a dif-
ferent task. For exampie, the System Command Interpreter (SCI) is a program and each station
may have, as a task, a unique activation of the SCI program. A program becomes a task when
DNOS assigns a runtime iD. Multipie copies of a task may share common procedure or data
segments.

3.2 PROGRAM MAPPING

The 990/10 and 990/12 computer hardware has a 20-bit memory address bus and can address
1024K words of memory. The logical address space available to a task is limited, by a 16-bit byte
address, to 64K bytes. This difference is resolved by DNOS mapping the logical address space of
the task into the physical address space of the computer. As shown in Figure 3-1, the mapping
hardware can map one, two, or three segments of logical address space into one, two, or three
segments of physical address space.

PHYSICAL. ADDRESS
SPACE

LOGICAL ADDRESS V
SPACE

f / > A

/ ” T
MAKIVG < //// ///// - 7 > St

c/

~ A —ee "

Sw

2279939 /

Figure 3-1. Mapping

2270508-9701 3-1

3.2 Assembly Language Concepts

The segments in physical address space need not be contiguous. Since DNOS maintains

U S - P S N o P N R B e Pl R I P -L .S I G ey F Y S W W Y FPY
11 Ladn THiay COUIDIOL Ul VT, 1WU, Ul LIITCT STYITITIILD

separate mapping parameters for each task, eac
with a total size of 64K bytes. A program includes one unique segment called a task segment. The
task segment must contain the workspace address, the entry point, and the end action entry
point. A program may also contain sharable segments called procedures. Figure 3-2 illustrates
two tasks sharing two segments of memory. The two tasks could be, but need not be, instances of
the same program. For example, both tasks might be instances of the SCI program executing at

different stations.

The 990 computer instructions which control mapping are privileged. (Use of these instructions by
nonprivileged user tasks causes task termination.) DNOS memory management controls mapping
so that the mapping function is transparent to user tasks.

PHYSICAL ADDRESS
SPACE

XXX XX AXAXARXAXAX XA XX AXAAAAAANARS
t'o:o’0‘0'o’o’o’o’o'0’o’o’0’»‘o'o:o:0:0:0:020:0:0:0:0:0:0:0:
DABNANS

L W AN
. L

W \
T LA

//// %// '/ ‘{‘{/;/(/é/ K//// ////////

' SEGMENT 7 V// SEGMENT/ N\ SEGMENT)
n ww | -

\\ \

\§SE2:§I§NT\
A\

Figure 3-2. Tasks Sharing Segments

2279941

3-2 2270508-9701

Assembly Language Concepts 3.3

3.3 PROGRAM SEGMENTATION AND PROCEDURAL STEPS
Mapping allows users to segment programs as:
o Single segments, including both data and executable code. When installed on a pro-
gram file, these segments are called task segments, and each instance of the program

in execution is called a task.

e Two separately loadable segments consisting of a procedure segment and a task seg-
ment.

o Three separate segments, consisting of two procedure segments and a task segment.

Since DNOS manages memory in 32-byte blocks, the following boundary rules apply for programs
consisting of two or three separate segments:

e The first procedure segment (if any) begins at address 0 in the logical address space
seen by the executing program.

e The second procedure segment (if any) begins on the first 32-byte boundary immedi-
ately following the first procedure in the logical address space seen by the executing
program.

o The task segment begins on the 32-byte boundary immediately following the last pro-
cedure in the logical address space seen by the executing program.

These memory boundary requirements are supported by the Link Editor, as defined in the Link
Editor Reference Manual.

Figure 3-3 illustrates the possible memory configurations for programs under DNOS. The follow-
ing paragraphs outline the processes for achieving any of these configurations. The maximum
allowable memory for each task in any configuration is 64K bytes.
3.3.1 Single Task Segment
Part A of Figure 3-3 illustrates a program consisting of a task segment. The following process
generates this configuration:

1. The source program is assembled (perhaps in several modules).

2. If more than one object module is involved, the object code is linked into one module by
the Link Editor.

3. The linked object module is installed on a program file as a task segment using the
Install Task (IT) command, or as a function of the Link Editor FORMAT IMAGE command.

4. The installed task is executed using an SCI command or SVC operation.

2270508-9701 3-3

3.3.2 Assembly Language Concepts

64K TASK
BYTES <4— S =
MAXIMUM EGMENT

A. SINGLE SEGMENT PROGRAM

PROCEDURE
SEGMENT
64K 32 BYTE
BYTES €— < <+—
MASTNIUM BOUNDARY
TASK
SEGMENT
~
B. TWO SEGMENT PROGRAM
”~
PROCEDURE
SEGMENT
32 BYTE
<4— BOUNDARY
64K PROCEDURE
BYTES ¢— SEGMENT
' MAXIMUM
32 BYTE
BOUNDARY
TASK
SEGMENT

2279940 C, THREE SEGMENT PROGRAM

Figure 3-3. Task Memory Configurations

3.3.2 Task Segment and One or Two Procedures
Parts B and C of Figure 3-3 iliustrate a program with a task segment and procedure segment(s).
The following process generates this configuration.

1. The various modules of the program are separately assembied.
2. The two (or three) segments of the program are linked by the Link Editor. To be separ-

atelv loadahle, the nroceduras miist be snecifiad by the PROCEDURE command to the
Link Editor. The task must be specified with a TASK or PHASE 0 command.

3-4 2270508-9701

Assembly Language Concepts 3.4

3. The procedure(s) is installed using the Install Procedure (IP) command or by the Link
Editor FORMAT IMAGE command.

4. The task segment is installed using the IT command with the ATTACHED PRO-
CEDURES? option selected. The procedure IDs specified during the I[P command are
entered in response to the prompts of the ATTACHED PROCEDURES? option prompts.

5. The installed task is executed using an SCl command or SVC operation.

3.4 SUPERVISOR CALLS

The interface between application programs and DNOS is the supervisor call (SVC). In programs
written in a high level language, most supervisor calls are provided in the run-time package for the
language and are transparent to the user. However, the high level language programmer may
write SVCs to perform functions not otherwise available. The assembly language programmer
must code all supervisor calls.

Supervisor calls are implemented as an extended operation (XOP) in DNOS. SpecifiCaIIy, XOP 15
is the means of entry to the SVC processor of DNOS. The address supplied with the XOP instruc-
tion is that of the user’s supervisor call block. The following is an example of the code for a SVC:

XOP @SCB,15 EXECUTE SVC DEFINED IN BLOCK SCB

The assembly language includes a directive that provides a convenient and meaningful substitute
for the XOP command. The DXOP directive defines a symbolic operation code for an XOP. The
following example defines SVC as XOP 15:

DXOP SVC,15 DEFINES SVC AS XOP 15
When you include the DXOP at the beginning of your program, you may code an S$VC as follows:

SVC @SCB EXECUTE SVC DEFINED IN BLOCK SCB

3.5 THE SUPERVISOR CALL BLOCK

The DNOS supervisor call block is the data structure that defines the supervisor call. The
statements described in the preceding paragraph apply to all DNOS supervisor calls. The dif-
ference between SVCs is the content and format of the supervisor call block.

A supervisor call block consists of at least one byte, and as many additional bytes as the SVC
requires. The first byte (and only byte for some SVCs) contains the opcode that defines the SVC.
Opcodes >00 through >7F are reserved for SVCs supported by DNOS. The user may define SVCs
for applications in the range of >80 through >FF. Creation of user-defined SVCs is described in
the DNOS Systems Programmer’s Guide.

The second byte of many SVCs is the return code byte. DNOS returns a satisfactory completion

code (zero in most cases) in this byte when the operation completes successfully. DNOS returns
an error code in this byte when the operation completes in error.

2270508-9701 3-5

Some of the DNOS SVCs provide several different operations as determined by a sub-opcode in
the third byte of the supervisor caii biock. in these cases, the actuai operation to be performed is
selected by the opcode and the sub-opcode.

Some of the bytes in the supervisor call blocks of some SVCs contain the result of the requested
operation after the operation has completed. That is, the system returns values in some fields of
some supervisor call blocks.

The additional bytes of the call blocks of SVCs may contain various types of information reiaied
to the operation which are provided by the user:

° Flags

. Input or output data

. Addresses of inpﬁt or output data

e Size or count values

. Identifiers

. Task parameters

=+ LUNOs

. Character strings
The specific supervisor call block for each SVC is described in the DNOS Supervisor Call (SVC)
Reference Manual.

3.6 ENTRY VECTOR

DNOS transfers control to a task via an entry vector in the task segment. The first three words of
the task segment must consist of the foilowing vector:

First Word: Initial workspace address (WP).
Second Word: initial entry point address (PC).
Third Word: ‘ End action entry point address.
For example: IDT 'TASK’

REF PROC1, ERPROC
DATA WSPACE

DATA PROCH
DATA ERPROG
WSPAGE BSS 32 WORKSPAGE
. Task Data
END

3-6 2270508-9701

Assembly Language Concepts 3.7

If the end action entry point address is zero, DNOS terminates the task when a fatal error is
detected. If the address is not zero, control is transferred to the specified address whenever a
fatal task error occurs. If no end action routine exists or when the end action routine executes an
End Task SVC, DNOS releases resources from the task and takes it out of execution.

3.7 SHARING PROCEDURE SEGMENTS

A program may have one or two procedure segment(s) which contain code or data to be shared
with a second activation of the program or with a different program. In the case where two or more
tasks using the procedure segment are active concurrently, the procedure segment must be reen-
trant to be sharable (refer to the paragraph on reentrant programming for more information). If
there will never be two or more tasks active at the same time using the procedure segment, the
procedure segment may contain modifiable code or data storage and still be sharable.

To be reentrant, a procedure segment must not contain any data storage that is modified during
execution, including a workspace. Also, all tasks that include a shared procedure segment must
be linked so that any memory addresses in the task segment that are referenced by the procedure
segment contain the same code or data storage in each individual task segment.

Refer to section on linking and the Link Editor Reference Manual for command descriptions and
further linking information.

3.8 REENTRANT PROGRAMMING

A procedure is called reentrant if it may be shared by several users at the same time without loss
of data. A procedure is called pure if it contains only unmodifiable code and constant data; it is,
effectively, read only. Pure procedures are reentrant. Moreover, every program may be split into a
pure part containing only executable code and another part containing data and code which is
modified at run time.

DNOS supports shared pure procedures. (Nonreentrant procedures may be shared, but DNOS
does not guarantee data integrity.) Further, the 990 language processors and the 990 Link Editor
support a special construction which simplifies reentrant coding. That is, if an assembly
language program uses the Program Segment (PSEG) directive to denote executable code, the
Common Segment (CSEG) directive to denote common data, and the Data Segment (DSEG) direc-
tive to denote locally used data for modules included in a procedure, the Link Editor separates the
program accordingly:

. Executable code into the procedure segment
. Data into the task segment
. Common data into the task segment

If the PROCEDURE directive is used during link edit, the procedure segment created during link-
ing contains no DSEGs. If all the volatile storage is in DSEGs, then the procedure will be reentrant.

A shared procedure must either be installed on the program file on which the task is installed, or
on the shared program file, .S$SHARED.

2270508-9701 3-7

3.9 Assembly Language Concepts

For further information, consult the Link Editor Reference Manual.

3.9 OVERLAYS

Overlays are part of a program that resides on disk until explicitly requested. When requested, the
overlay replaces part of the program previously in memory. The use of overlays can reduce the
amount of memory required by a program to the amount required for the largest segment needed
at one time. Programs that do not use overiays are ioaded in their entirety into memory for
execution.

In the subsequent discussion of overlays, the following definitions apply:

. Phase — The smallest functional unit that can be loaded as a logical entity during
execution. The linked object output by the Link Editor contains one object module for
each phase.

. Root Phase — The main or memory resident phase (level 0) of a program.

. Level — The point at which a new phase begins, identified by a level number in the
overlay structure. Phases having the same level number and same parent (preceding)
phase are loaded at the same location and are mutually exclusive (they cannot be in
memory at the same time).

. Path — A series of phases starting with the root phase and including a successive,
higher numbered phase at each level.

The memory requirements of a program can be reduced significantly if it is split into two or more
overlays that share the same overlay area. A root phase that is not overlaid must be added to the
program to control the loading of the overiays. However, overlays increase execution time by the
time required to load the overlays. An effective scheme is to overlay seldom-used phases of a pro-
gram and retain common code in the root phase.

3.9.1 Overlay Structures

Overlay structures are defined by the user and generated by the Link Editor. The structure of an
overlaid program is dependent upon the relationships between the phases in the program. Phases
that do not have to be in memory at the same time can overlay each other. These phases are con-
sidered to be independent in that they do not reference each other either directly or indirectly.
Independent phases can be assigned the same load address and are loaded only when referenced.
Refer to the Link Editor Reference Manual on organizing overlay structures.

3.9.2 Overlay Loading
In the root segment or in phases in memory, the user loads overlays from a program file into
memory with the Automatic Overlay Manager or by issuing the Load Overlay SVC call.

When the Link Editor is used to produce overlaid programs, the user can specify (by use of the
LOAD command) that the Link Editor include an Automatic Overlay Manager in the linked output.
The overlay manager performs automatic overlay loading during execution of the overlaid pro-
gram. The LOAD command is only applicable when the IMAGE format is seiected.

3-8 2270508-9701

Assembly Language Concepts 3.9.3

3.9.3 Relocatable Overlays

Overlays are usually loaded into memory at the load address determined during link edit.
However, a user may load an overlay elsewhere in memory. Modules installed as relocatable
overlays in a program file can be relocated by the Load Overlay SVC. This enables users to load
overlays where space is available rather than where link edited. However, the relocatable overlay
cannot have references to other overlays.

3.10 SEGMENT MANAGEMENT

In addition to program segments already described, disk- or memory-based program segments
may be provided. These program segments may be dynamically mapped into or removed from the
memory area of the task.

Disk-based program segments are instalied on program files using the Install Procedure/Program
Segment SVC. They are loaded into memory and mapped into memory areas of tasks by the seg-
ment manager. The segment manager maintains a count of the tasks that require the program
segment, and disposes of program segments that are no longer required. When the program seg-
ment contents have not changed, or when changes to the disk copy are not permitted, segment
manager releases the memory space occupied by the program segment. Otherwise, segment
manager writes the program segment to the program file and releases the memory space.

A task may request the segment manager to hold a program segment in memory even when no
task currently requires the program segment. This allows passing data to another task that may
not be currently executing. When the program segment is no longer required, a task may request
the segment manager to release the program segment.

Memory-based program segments are created by the segment manager as uninitialized program
segments, and are mapped into the memory area of the task that requests their creation. The task
then writes the required data into the program segment. Shared memory-based program
segments are a means of passing data between tasks in the same job or in different jobs. A task
must reserve this type of segment or the memory is released when the segment is released.

Attributes are defined for a segment when it is installed. The attributes of a task segment are
specified in the Install Task SVC that installs the task on a program file. Similarly, the attributes of
a procedure segment or a disk-based program segment are specified in the Install Pro-
cedure/Program Segment SVC. The attributes of a memory-based program segment are specified
when the program segment is created by the segment manager. The segment attributes are as
follows:

L Readable. The segment may be accessed in memory for read operations.

° System. The segment may only be accessed by system tasks.

. Memory resident. The segment remains accessible in memory.

. Replicatable. More than one copy may exist in memory.

o Share protected. Segment may not be shared concurrently by two or more tasks.

2270508-9701 3-9

3.1

3.1

Assembly Language Cencepls

Writable control store. Segment contains executable code that accesses writable con-
trol store.

Execute protected. Segment contents may not be executed.
Write protected. Segment contents may not be altered in memory.

Updatable. Segment will be written to its permanent file position on disk if it has been
marked modified.

Reusable. Segment may be used consecutively without reloading. This segment may
reside on the software cache list while memory space is available for it.

Copyable. Segment may be replicated by copying the segment from the memory copy.

Privileged. Segment has been installed in a program file as a privileged task segment.
The task can execute hardware privileged instructions. ,

Software privileged. Segment has been installed in a program file as a software privi-
leged task segment. The task can issue privileged supervisor calls.

Overflow protected. Segment has been installed in a program file with overflow protec-
tion. During execution, arithmetic overflow is detected as a fatal task error.

TASK ATTRIBUTES

Task attributes are determined during task installation in response to prompts during the iT com-
mand or the Install Task SVC. The attributes are:

3-10

Privileged (Hardware and Software)

System

Priority

Memory-Resident

Replicatable

Protected, Delete and Execute (990/12 only)
Copyable

Reusabie

Updatable

Arithmetic Overflow Protected (990/12 only)

Writable Control Storage (990/12 only)

2270508-9701

Assembiy Language Concepts 3.11.1

3.11.1 Privileged

There are two kinds of privilege: hardware and software. The Link Editor cannot be used to install
privileged tasks on a program file. These tasks must be installed using the Install Task SVC, or the
IT command.

3.11.1.1 Hardware Privileged. The PRIVILEGED? prompt of the IT command or the correspond-
ing flag for the Install Task SVC indicates whether or not a task may issue privileged instructions.
Only tasks installed as privileged tasks may issue privileged hardware instructions. Most pro-
grams are nonprivileged and may not use the following 990 Computer assembly language
instructions:

e Computer Control Instructions (RSET, IDLE, LREX, LIMI)

. Real Time Clock Instructions (CKON, CKOF)

. Mapping Instructions (LMF, LDD, LDS)

. 11O Instructions (SBO, SBZ, TB, LDCR, STCR) when the communications register unit
(CRU) address is greater than >EQO.

3.11.1.2 Software Privileged. Task specified as having software privileges may execute all
system SVCs. The SOFTWARE PRIVILEGED?: prompt of the IT command or the corresponding
flag for the Install Task SVC commands determine privilege. Nonprivileged tasks may not use the
following SVCs:

install Disk Volume Delete Task

Unload Disk Volume Delete Procedure/Segment
initialize Disk Volume Delete Overlay

Disk Management Kill Task

Direct Disk 110 Read/Write TSB

Open File Unblocked Read/Write Task

Install Task Assign Space on Program File
Install Procedure/Segment Initialize Time and Date

Install Overlay

3.11.2 System
A task is either a system task or a user task. System tasks execute in system memory address
space (coexistent with other portions of the system).

A task is defined as a system task by the Install Task SVC or by the user responding YES to the

SYSTEM TASK? prompt in the IT command during task installation. The Link Editor cannot be
used to install a system task.

2270508-9701 3-11

3.11.3 Assembly Language Concepts

3.11.3 Priority
ONOS requires that each task
vides the following 132 levels

(Highest) 0 Critical System Tasks (Reserved for DNOS)
R1-R127 Real-time priorities
1 Foreground interactive tasks
2 Foreground compute-bound tasks
(Lowest) 3 Background tasks
(Floating) 4 (Priority 1 and 2)

Priority level 0 is intended for the most critical system functions and is reserved for DNOS internal
use oniy. The remaining system tasks are distributed appropriateiy among the iower priority
levels with regard to their relative importance.

Real-time priorities provide the user the capability to supercede all except the most important
system tasks. For applications which require prompt access tc the CPU, DNOS forgoes some
routine maintenance of system duties in an effort to schedule real-time tasks.

Priorities 1, 2, 3, and 4 satisfy requirements of most installations. Priority levels 1 and 2 are used
mainly by programs requiring user interaction. Priority level 1 gives quick response for programs
interacting with the user’s terminal, while priority level 2 is adequate for programs requiring multi-
ple disk accesses. ’

For programs requiring user interaction and multiple disk accesses, execution priority level 4
automatically switches between priority levels 1 and 2 as the program executes. Therefore, pro-
grams requiring user attention can be serviced quickly.

Priority level 3 is for programs executing in batch or background mode, which require no user
interaction.

The priority level of a task is assigned during task installation in response to the PRIORITY?
prompt of the IT command or the Install Task SVC. The real-time task priorities are assigned with
the Install Real-Time Task (IRT) command or the Install Real-Time Task SVC.

DNOS executes tasks according to their priority level by aliocating the CPU to the highest priority
task awaiting execution. As newly-bid tasks enter the system, the tasks awaiting execution are
requeued according to the newly-bid task priorities.

If time slicing is enabled, tasks execute for a fixed interval of time. Upon expiration of a time slice,
the task is rescheduled. Time slicing allows tasks of equal priority to share the CPU in a round-
robin fashion. (Time slicing and slice value are determined during system generation).

3.11.4 Memory-Resident

Tasks may be memory resident (always in memory) or disk resident (in memory when active, but
possibly swapped to the disk when not active). Most user tasks should be disk resident to free
memory for other tasks, since some supervisor calls depend on the DNOS swapping facility.
Memory-resident tasks must be installed on the utilities program file .S$UTIL, or the shared pro-
gram file .S$SHARED, or on the applications program file defined during system generation.

3-12 2270508-9701

Assembly Language Concepts 3.11.5

These tasks are disk-resident tasks until an Initial Program Load (IPL) is performed. Certain sup-
port features which depend on swapping (such as dynamic memory allocation) are not available
to a memory-resident task.

A memory-resident task, even if terminated, occupies memory until deleted from the program file
and an IPL is performed.

Memory-resident tasks are installed on program files by the IT command or the Install Task SVC.
The Link Editor cannot be used to install memory-resident tasks on a program file. Tasks are
deleted from program files by the Delete Task (DT) command or the Delete Task SVC. Task
residency is determined during installation in response to the MEMORY RESIDENT? prompt.

3.11.5 Replicatable

Tasks specified as replicatable may have multiple copies concurrently in memory. Replicatable
tasks are frequently used in multiterminal environments or in industrial applications where
several similar device types are controlled. A replicatable task allocates multiple copies of a task
in memory simultaneously and conserves disk space and time. Allocating tasks in this way,
avoids the requirement of installing a copy of the same task with a different ID for each concur-
rent activation of the program. Replicatability is determined by the installation response to the
REPLICATABLE? prompt.

3.11.6 Protected
A task may be delete and/or execute protected. Protection is specified during the iT command
and Install Task SVC.

3.11.6.1 Delete Protected. A delete-protected task cannot be deleted with the Delete Task (DT)
command or the Delete Task SVC without removing protection with the Modify Task Entry (MTE)
command. Delete protection is specified by the DELETE PROTECT? prompt during installation.

3.11.6.2 Execute Protected. Execute protection applies when a task contains oniy data and is
not to be executed. Execute protection is specified by the Install Task SVC or by the EXECUTE
PROTECT? prompt when using the IT command and applies to only the 990/12 computer.

3.11.7 Copyable. A task may be specified as copyable by responding to the IN MEMORY
COPYABLE? prompt of the IT command or by a flag of the Install Task SVC. A copyable task may
be copied from a copy in memory rather than from the disk copy.

3.11.8 Reusable. The IN MEMORY REUSABLE? prompt of the IT command or flag of the Install
Task SVC specifies that after the task terminates, the task segment can be reused by another
activation of the task. It does not have to be copied either from disk or memory.

3.11.9 Updatable. The UPDATABLE? prompt of the IT command or flag of the Install Task SVC
specifies that the task segment on disk may be updated from the in-memory copy.

3.11.10 Arithmetic Overflow Protection. The 990/12 allows detection of overflow or underflow
in arithmetic operations. This condition is signaled as a task error. Overflow detection is deter-
mined by the OVERFLOW CHECKING? prompt of the IT command or by a flag of the Install Task
SVC.

2270508-9701 3-13

3.11.11 Assembly Language Concepts

3.11.11 Writable Control Storage. The 990/12 microcode resides in a special memory called the
controi store. The controi store consist of the Read Oniy Memory controi store (not discussed
here) and the writable control store. The writable control store is composed of random-access
memory (RAM) devices which contain user-written microcode. The writable control store is loaded
by either DNOS or an assembly language instruction.

A portion of the writable control store and three Extended Operation (XOP) levels are reserved for
Texas Instruments use. DNOS uses XOP levels 13, 14, and 15 and writable control store addresses
>810 through >9FF to implement system routines. The user should not load microcode routines
into these locations. Refer to the Microcode Development System Programmer’s Guide for further
information on control store management.

Use of the writable control storage is enabled or disabled by the WRITABLE CONTROL
STORAGE? prompt of the IT command or by a flag of the Install Task SVC.

3.12 TASK TERMINATION

Tasks executing under DNOS may terminate normally or abnormally. In either case, the task
should make provision for termination. If a task does not explicitly terminate using an End Task
SVG, it either loops indefinitely or it attempts to exceed its memory bounds and causes abnormal
termination. A task in an infinite loop may be killed externally by using the Kill Task (KT) or Kill
Background Task (KBT) commands or by pressing first the RESET (blank orange) then the CON-

TROL X key when the task is running in the SC! foreground mode.

3.12.1 Normal Termination

To terminate normally, a task executes an End Task SVC. DNOS then releases the resources of
the task and takes it out of execution. Disk-resident tasks are removed from memory. Memory-
resident tasks remain in memory and occupy space but do not execute.

3.12.2 Abnormal Termination

if a task commits a fatal error {(for example, illegal instruction, supervisor cail, or memory
reference), and the task entry vector includes an end action address, the routine at that address is
activated. Typically, the end action routine executes an End Action Status SVC, outputs the
returned data, and executes an End Task SVC. However, it is possible for the end action routine to
implement error recovery procedures. If the end action routine commits errors or if the task
includes no end action routine, DNOS unconditionally aborts the task and reports the error to the
system log.

3.13 FILE AND DEVICE SERVICES
DNOS supports input and output operations to various types of devices, and to several types of
files. in addition, DNOS supporis communication between programs, in which each program is

analogous to a peripheral device of the other. To include all types of |/0, this manual refers to
devices, files, and communication channels between programs as I/O resources.

3-14 2270508-9701

Assembly Language Concepts 3.13.1

3.13.1 1/O Concepts

DNOS supports two concepts of /O to resources. Many I/O operations apply to various devices
and are essentially the same for each device. This concept is called resource-independent 1/0.
Resource-independent /O allows the programmer to code I/O for terminals, magnetic tape units,
line printers, card readers, and for sequential files, independently of the device or file.

A problem with resource-independent l/O is that operation of the resource is restricted to a mode
that is common to other resources. Resource-specific /O allows the programming of specific
capabilities of the device. Resource-specific /O supports terminals, special industrial devices,
relative record files, key indexed files, and interprocess communication.

3.13.2 File and Device l/O

Several utility operations are required to support device /0. A device may be specified by either a
device name or by a logical name. The utility that manages logical names is used to assign a
logical name. All /O requires Logical Unit Numbers (LUNOs) which are assigned and deleted by

another utility.

File I/O combines the support of the file management and I/O capabilities of DNOS for three types
of disk files. The file types are:

e Sequential files

o Relative record files

. Key indexed files
Files may be accessed by a pathname or by a logical name, and a LUNO is required for I/O. The
utility functions required for device /O apply to file I/O aiso. In addition, functions exist to create a

file, delete a file, verify or change the pathname, apply or change protection, and add or delete an
alias.

2270508-9701 3-15/3-16

4

Building an Assembly
Language Program

4.1 TEXT EDITOR USE

The Text Editor interactively creates and modifies files of textual data. The data in these files may
be assembly language source code, high level language source code, or material that is to be
printed, such as software documentation, memos, or drafts.

The user, working interactively, invokes and operates the Text Editor from a Model 911 Video
Display Terminal (VDT). Most of the editing functions are available at both the VDT and hard copy
terminals, but the means of invoking a particular function may vary depending on the terminal
type and its current mode of operation. This manual assumes the use of a 911 VDT, being
operated in VDT mode. Details about operation of a hard copy terminal can be found in the DNOS
Text Editor Reference Manual.

The Text Editor is invoked by use of the Execute Text Editor (XE) command. The prompt for the
filename allows the user to create a new file or edit an existing file.

To create a new file using the Text Editor, no pathname is entered when the editor is invoked.
When the Text Editor is used to modify the data in an existing file, the user specifies the file name
when the Text Editor is invoked. Each record in the input file is numbered, relative to the start of
the file. The editor is terminated by use of the Quit Edit (QE) command. The user may abort the
edit, by answering YES to the ABORT? prompt. In this case all modifications and new data are
discarded. Answering NO to this prompt causes the edited file to be saved in the output fiie
specified in response to the OUTPUT FILE ACCESS NAME prompt.
Errors detected by the Text Editor are described in the DNOS Messages and Codes Reference
Manual.
4.2 TERMINAL USE
Text editing consists of four major types of operations:

o Command selection and specification

o Edit control

. Data display

. Data entry
Command selection and specification includes the selection of Text Editor functions that assist

the user with the management of the text in the source file. The commands are listed in Table 4-1.
Most of these commands have parameters that are supplied by the user, or, in many cases, by

2270508-9701 4-1

4.3 Building an Assembly Language Program

default. After entering each parameter, press the TAB, RIGHT FIELD, or RETURN key to store the
parameter. in addition, any System Command Interpreter {SC!} command may be called during
text editing. The terminal must be in the command mode before selecting any command. The ter-
minal is placed in the command mode by pressing the CMD key.

Edit control consists of the operations that control the immediate editing of data. The operations
available are: altering the current file position, adding data by line, and deleting data by line, alter-
ing cursor position, adding data by character, and deleting data by character. Edit control opera-
tions have no parameters.

Data display manages the display of data on the device.

Data entry operations coniroi the actuai entering of data into the file.

Command selection from the 911 VDT is accomplished by keying in the command and responding
to the prompts presented on the display screen. Edit control is performed by using the cursor con-
trol keys and some of the function keys.

Data entry or editing may occur on any record displayed on the screen by positioning the cursor
anywhere within the line that contains the record to be edited. Records may be inserted between
any lines, and may be inserted or deleted in any order. In addition, characters within a line may be
inserted, deleted, or modified. The Show Line (SL) command, and the Roll Up, Roll Down, Cursor
Up, and Cursor Down edit control functions listed in Table 4-2 position the file for display.

43 SCI COMMAND USE

The Text Editor is initiated when the user selects and completes the XE command and terminates
when the user enters and completes the QE command. Whenever the terminal is in the command
mode, the Text Editor is suspended and the user may select any SCI command. The commands
selected when the terminal is in the command mode and the Text Editor is suspended are not
necessarily Text Editor commands. The Text Editor remains suspended until the XE command or
another Text Editor command is selected. Then the Text Editor is reactivated, the state that
existed at the time of suspension is restored, and the entered command is processed. Any Text
Editor command entered after the Text Editor has been terminated with the QE command causes
the following message to be displayed:

U EDITOR-0003 COMMAND IS ALLOWED ONLY WHILE EDITING

If the user quits SCI (by entering the Quit (Q) command) while the editor is suspended, the QE
command is automatically invoked, and the user must supply edit termination information.

Table 4-1 displays the valid commands of the Text Editor. For further information concerning the

of the Text Editor refer 1o the DNOS Text Editor Reference Manual.

US€ O tne 1exXt cGiior CAL UtV 1IVIVIC

4-2 2270508-9701

Table 4-1.

Building an Assembly Language Program 4.4

Text Editor Commands

CL — Copy Lines
DL — Delete Lines
DS — Delete String
FS — Find String
IF — Insert File
ML — Move Lines
MR — Modify Roll

MRM — Modify Right Margin

MT — Modify Tabs

QE — Quit Editor

RE — Recover Edit

RS — Replace String

SL — Show Line

SVL — Save Lines

XE — Execute Text Editor

XES — Execute Text Editor
with Scaling

4.4 EDIT CONTROL FUNCTIONS

Edit Control functions are those that specify to the Text Editor precisely where within the file the
modifications are to be made. Refer to Table 4-2 for the edit control functions supported and keys
specified on the 911 VDT.

Table 4-2. Edit Control Functions

2270508-9701

911 VDT

Edit Control Function Key Pressed
Command Mode CMD
Roll (Display) Up F1
Roll (Display) Down F2
Duplicate To Tab F4
Clear To Tab F5
Display/Suppress Line Numbers ' F6
Edit Mode/Compose Mode 2 F7
Begin Line RETURN
Forward Tab TAB/SKIP (shifted)
Erase Rest of Line TABISKIP
Forward Space One Character CHAR — (shifted)
Backspace One Character CHAR «
Back Tab (Left Field) FIELD <«
Right Margin (Right Field) FIELD — (shifted)
Left Margin ENTER
Erase Characters on Line ERASE FIELD
Delete Line ERASE INPUT

4.5 Building an Assembly Language Program

Table 4-2. Edit Control Functions (Continued)

911 VDT
Edit Control Function Key Pressed
_ Insert Line Blank Gray Key
Repeat (Input of Key) REPEAT (plus key)
Insert Character INS CHAR
Delete Character DEL CHAR
Move Cursor Up (Up Arrow)
Move Cursor Down (Down Arrow)
Move Cursor Right —(Right Arrow)
Move Cursor Left ~(Left Arrow)
Move Cursor Home HOME
Uppercase 2 UPPERCASE LOCK

Notes:

' Alternates display of line numbers (74 data characters) with no display of line numbers (80
data characters) each time key is pressed.

2 Alternates modes each time the key is pressed.

3 SHIFT key must be pressed concurrently with the TAB/SKIP key to achieve the tab function
on the 911 VDT.

4.5 TEXT EDITOR EXAMPLE

The following paragraphs show examples of the Text Editor functions for creating a new fiie and
for modifying an existing file. These examples provide a quick reference for the more common
uses of the Text Editor. This simple program, RESPONSE, is also used in Section 9 to
demonstrate the linking, installing, executing, and various debugging techniques discussed in
this manual. Details of editor operations can be found in the DNOS Text Editor Reference Manual.

4.5.1 Creating a New File

The following procedure applies to creating a new file using the Text Editor on a 911 VDT in the
VDT mode. The example assumes that you are properly logged-on, and that SCl is active. Refer to
preceding section for details on log-on and activating SCI.

Create a directory .USER, on the system disk, with the Create File Directory (CFDIR) command.
Enter CFDIR and press the RETURN key. Respond to the prompts as follows:

[] CFDIR

CREATE DIRECTORY FILE
PATHNAME: .USER

RE AN, RIS
WIRAA SN NIEO,

DEFAULT PHYSICAL RECORD SIZE:

4-4 2270508-9701

Building an Assembly Language Program 4.5.1

Throughout the examples, files are automatically created in this directory.
Enter XE and press RETURN to activate the Text Editor. The following prompt appears:
[IXE

EXECUTE TEXT EDITOR
FILE ACCESS NAME:

Press the RETURN key to indicate that no input file is to be edited. (Press the TAB SKIP key if
there is a file pathname displayed.) The screen is cleared and the following display is presented in
the first four columns of row one, with the cursor in column one, row one:

*EOF

This display indicates the only record in the file is the end-of-file record. To begin entering data,
press the RETURN key to enter the first blank line into the file. The end-of-file record is now in line
two and the cursor is in row one, column one, with the rest of the line blank. Enter data by posi-
tioning the cursor and keying the data. Press the RETURN key to return to column one and receive
a new line. Enter the short assembly language program shown in Figure 4-1. Use the following col-
umn numbers to promote program readability.

1. The LABEL field begins in coiumn 1
2. The OPERATION field begins in column 8
3. The OPERATOR field begins in column 13

4. The COMMENT field begins in column 26 or any column on a line with an asterisk (*) in
column 1

Any of the edit control functions may be used during data entry, as may any SCl commands (press
the CMD key to enter the command mode before entering an SClI command). Text editor com-
mands return the Text Editor to the edit mode upon completion.

Once all the data has been entered, the Text Editor is terminated by calling the QE command.
First, press the CMD key to enter the command mode, then enter QE and press the RETURN key.
The following prompt appears:

[IQE

QUIT EDIT
ABORT?: NO

2270508-9701 4-5

4.5.1 Building an Assembly Language Program

R e e 2y e e Ty ey

* BEGINNING OF DATA SECTION

FAE I3 36306 T 463636 I 030636 30 FE 36 3E 0636 36 30 36 33 2040 3 3306 30 36 420 3 263 10 00 B B3 3 S R
IDT ‘RESPONSE’

T e e e s i r e E A TSt

#* OPENING DATA WORDS

1. WORKSPACE POINTER

* 2. PC VALUE AT START OF PROGRAM

#* 3. END ACTION ITEM (IF ANY)

36 3 3 3 3 A 40 B 3 30 05 3 30 3 30 B 0 0 30 3040 30 30 00 30 30 3R 9040 30 2 0 36 46 30 30 36 IR 3 20 3 30 90 30 3 0 00 B OF X AE H IR 0 SR S SR E O
¥*

DATA UWSP WORKSPACE POINTER ADDRESS
DATA START PC AT PROGRAM BEGINNING
DATA O END ACTION (NONE SPECIFIED)
WsP BGS 32 WORKEPACE REGISTERS
OPEN DATA O 1/0 REQUEST
BYTE >0, >20 OPEN LUNO 220
DATA O
DATA O
DATA O
DATA O
MSESG0 DATA O I1/0 REQUEST
BYTE >B, >20 WRITE ASCII TO LUNO >20
DATA O
DATA GREET MESSAGE LOCATION
DATA O

DATA MS5S8G1-GREET MESSAGE LENGTH
#

336 36 36 95 36 34 36 30 I3 I 30 0 36 3 3 30 R 0T 36 3 3R IR 36 2 A3 M I B S
* SPECIFY THE FIRST MESSAGE

FRFRFHHRRRWEEEF RS E R CR SRR R R W WS H R HREHHEEENE
*

GREET DATA >0A0D
TEXT ‘HELLO, PLEASE INPUT NUMBER OF ITEME
TEXT ‘S0OLD TODAY. USE 4-DIGIT NUMBERS.
DATA >0A0D

Figure 4-1. Assembly Language Program Example (Sheet 1 of 3)

2270508-9701

5TR1
STORE
ITEM!

ME5G2

5TR2

ITEMZ

MESG3

STR3

ITEM3

M55G4

2270508-9701

DATA
BYTE
BYTE
DATA
DATA
DATA
DATA
DATA
DATA
DATA
BGS

DATA
TEXT
DATA
BYTE
BYTE
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
TEXT
DATA
BYTE
BYTE
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
TEXT
DATA
BYTE
DATA
DATA
DATA
DATA

Figure 4-1.

=

o]
>B, 20
0, »40
ITEM1

0

10

STR1
STORE

3

0

i2
=0A0D
‘ITEM |
0

>B, »20
0. »40
ITEM2

0

10

STRZ
STORE+4
4

0

>0A0D
TITEM 2
)

>B, »>20
0, »40
ITEM3

0

10

STR3
STORE+S
4

0

>0A0D
‘ITEM 3
0O

>B, >20
0
GOODBY
0

¥

z

Building an Assembly Language Program 4.5.1

1/0 REQUEST
WRITE TO LUNO 20
WRITE WITH REPLY

CHARACTERS SPECIFIED IN INPUT ROUTE
MESGAGE LENGTH

LOCATION OF INPUT PARAMETERS

SAVE PARAMETERE IN STORE

STORE FOUR CHARACTERS

1/0 REGUEST

WRITE TO LUNO 20
WRITE WITH REPLY
MESSAGE LOCATION

MESSAGE LENGTH

2ND ITEM CHARACTERS STORE LOCATION

1/0 REQUEGT

WRITE TO LUNO 20
WRITE WITH REPLY
MESSAGE LOCATION

MESSAGE LENGTH

3RD ITEM CHARACTERS STORE LOCATION

I1/0 REQUEST
WRITE TO LUNO

20

MESSAGE LOCATION

CLOSE-GOODBY MESSAGE LENGTH

Assembly Language Program Example (Sheet 2 of 3)

4.5.1 Building an Assembly Language Program

#
BHARREERERE R FF RS R RRFC R R P AR L F R RFRARR ARG R AR RRRERRRFRR R E R R H
* FINAL MESSAGE DISPLAYED
e T R R T e e
*
GOODBY DATA >0AO0D
TEXT ’'THANK YOU FOR YOUR PURCHASE. ’
TEXT ’ HAVE A NICE DAY
DATA Z0AO0D
CLOSE DaATA O I/0 REQUEST
BYTE 1, 20 CLOSE LUNO 20
DATA
DATA
DATA
DATA
EOP BYTE

COoOQ

+04, 0 TERMINATE TASK

L,

START XOP @OPEN. 15 OPEN LUNO 220
XO0P @MS5G0, 15 OPENING MESSAGE
XO0pP emM5561, 15 INPUT 1
XOP emMsSsG2., 15 INPUT 2
X0P £eM5563, 15 INPUT 3
XOP @emMS55G4, 15 EXIT MESSAGE
XKOP @eCLOSE, 15 CLOSE FILE, UNLOAD/REWIND
XOP @EOP. 15 TERMINATE TASK
END START

Figure 4-1. Assembly Language Program Example (Sheet 3 of 3)

The reply to the ABORT? prompt allows you to either accept (NO response) or discard (YES
response) the data you entered. A YES response ignores all the data entered and leaves the file in
its original form. Accept the data by pressing the RETURN key to accept the default value (NO).
The example uses the NO response. The following display appears:

QUIT EDIT
OUTPUT FILE ACCESS NAME:
REPLACE?: NO
MOD LIST ACCESS NAME:

The cursor appears after the colon in the first line of the display. Enter the pathname of the new
output file, USER.SOURCE and press the RETURN key. An entry is required since there is no input
fiie.

Press the RETURN key to accept the NO default value of the REPLACE? prompt. The NO response
allows you to avoid accidentally destroying an existing file.

Press the RETURN key in response to the MOD LIST ACCESS NAME prompt.

4-8 2270508-9701

Building an Assembly Language Program 4.5.2

Once the file has been created, the Text Editor is no longer active and the terminal returns to com-
mand mode. The SCI prompt [] and a menu appear.

4.5.2 Editing an Existing File
The following example shows the general procedures for editing an existing file by using the Text
Editor. The file used as input is the one shown in Figure 4-1.

First, press the CMD key to enter command mode. Enter XE and press the RETURN key. The
following appears:

[IXE

EXECUTE TEXT EDITOR
FILE ACCESS NAME: .USER.SOURCE

The sample file, .USER.SOURCE, is displayed. (Enter .USER.SOURCE as the FILE ACCESS NAME
response, if .USER.SOURCE is not displayed). Press the RETURN key to display the first
24-records from the file. The Text Editor is in the edit mode, the cursor is in column one, row one,
and line numbers are displayed. In this example, we are going to modify the message, HELLO,
PLEASE INPUT NUMBER OF ITEMS SOLD TODAY. USE 4-DIGIT NUMBERS. We are going to
change HELLO to GOOD MORNING. To modify the message, perform the following:

1. Enter the command mode by pressing the GMD key.
2. Type RS to specify the Replace String command and press the RETURN key.
3. The prompts appear. Enter the following responses:

[1RS

REPLACE STRING
NUMBER OF OCCURRENCES: 1
START COLUMN: 14
END COLUMN: 18
STRING: HELLO
CHANGE: GOOD MORNING

4. Press RETURN to activate the command processor.

5. When the Text Editor completes the string replacement, the line containing the old
string, now changed, is displayed with the cursor in column one.

The RS command replaces the string HELLO with the string GOOD MORNING. Note that the
occurrence number indicates that it replaces the first occurrence of the word HELLO that starts in
column 14. Care should be taken that the occurrence number corresponds to the intended
replacement. The advantage of using the RS command is that the text editing system finds the
word in the file for you and replaces it without your having to manually delete the word and insert
the correction.

2270508-9701 4-9

4.6 Building an Assembiy Language Frogram

Alternatively, the file can be edited manually. Once you have entered the file using the XE com-
mand, you can page through the text using the F1 function key to page forward, and the F2 func-
tion key to page backward. When you find the text you want to change, position the cursor over
the word to be corrected. Use the DEL CHAR key to delete the word or characters. Then press the
INS CHAR key and type in the characters to be inserted. Note that vou can also locate a particular

word in a file by using the FS command to find a specified string or word. The FS command
operates very similarly to the RS command.

Once the modifications to the file are complete, press the CMD key to enter the command mode.
Type QE and press the RETURN key. The following appears:

[IQE

QUIT EDIT
ABORT?: NO

Press RETURN in response to the ABORT? prompt to save the modified file. The foliowing
appears:

QUIT EDIT
OUTPUT FILE ACCESS NAME: .USER.SOURCE
REPLACE?: NO
MOD LIST ACCESS NAME:

Press RETURN to accept .USER.SOURCE as the output file. Enter Y in response to the REPLACE?
prompt and press the RETURN key twice. The Text Editor now terminates and the SCI prompt []
and menu return.

4.6 PROGRAMMING TECHNIQUES

The first step in developing an Assembly Language program is to clearly define the problem that
the program is to solve and produce a good flowchart of the proposed solution. Try to break up the
program into a series of subfunctions that can be coded in small modules: two to three hundred
lines is a good limit for the size of a single module.

Determine what data you will need, beth glcobal and local to a subfunction, and how you will struc-
ture the data. Plan your subroutine linkage: calling, parameter passing, and returning protocols.

Data structures can be made global by using the External Reference (REF) and External Definition
(DEF) directives or by putting them into a CSEG. If a CSEG is used, have only one source version
of each CSEG. This version is copied into the moduies requiring the CSEG information by the
COPY directive.

4-10 2270508-9701

Building an Assembly Language Program 4.6

Techniques that can be used for subroutine calls include using the Branch (B), Branch Indirect
(BIND), Branch and Link (BL), Branch and Push Link to Stack (BLSK), or Branch and Load
Workspace Pointer (BLWP) instruction. With the BL instruction, it is necessary to save the con-
tents of register 11 before making a call from the called routine. This instruction is faster than the
BLWP instruction and takes less memory. An advantage of using the BLWP instruction is that a
fresh set of registers is available for use and the contents of the previously used set can be
accessed by using register 13 as an index register. Status information can be passed back to the
calling routine by placing data in bits 0-5 (status bits) of register 15. When the Return with
Workspace Pointer (RTWP) instruction is executed, the contents of register 15 become the con-
tents of the status register, and the calling routine can test the appropriate bits.

When coding individual modules, clearly identify the module using the Page Title (TITL) and Pro-
gram ldentifier (IDT) directives. Comments should be included at the beginning of the program
stating the name and function of the module plus any useful information concerning parameters,
calling conventions, and various programming methods used in coding the program. Instead of
constants, use meaningful symbolic names defined with the Define Assembly-Time Constant
(EQU) directive. Segmentation (use of the CSEG, DSEG, and PSEG directives) is mainly useful for
coding shared procedures or RAM/ROM partitioned programs, but it can be used as documenta-
tion. Document the function or meaning of externally referenced symbols as well as locally
defined symbols.

2270508-9701 4-11/412

S

Assembling a Program

5.1 OPERATING THE MACRO ASSEMBLER

The Macro Assembler is executed by the DNOS System Command Interpreter (SCI) in either
background or batch mode.

To execute the Macro Assembler in background mode, enter the Execute Macro Assembler (XMA)
command and press RETURN.

The XMA command prompts appear:
[1 XMA

EXECUTE MACRO ASSEMBLER
SOURCE ACCESS NAME: pathname@ ("
OBJECT ACCESS NAME: [pathname@] (*)
LISTING ACCESS NAME: pathname@ (")
ERROR ACCESS NAME: [pathname@] *)
OPTIONS: [characters] ")
MACRO LIBRARY PATHNAME: [pathname@] ")
PRINT WIDTH (CHARS): integer (80
PAGE LENGTH (LINES): integer (60)

Enter the pathname or device name in response to the prompts described below. The Wait com-
mand may be entered after the last response.

[1WAIT
— WAITING FOR BACKGROUND TASK TO COMPLETE —
When the assembler terminates normally, the following message is displayed:
| ASSEMBLR-0001 MACRO ASSEMBLY COMPLETE, XXXX ERROR(S), YYYY WARNING(S)

The message displays the number of errors and warnings encountered, if any. Refer to Appendix
B for the completion messages.

A description of the prompts follows:

SOURCE ACCESS NAME
The input file or device containing assembly language code to be assembled.

2270508-9701 5-1

5.1 Assembling a Program

OBJECT ACCESS NAME
The object code output fiie or device. if this parameter is nuii, no object output is produced.
This is useful for preliminary assemblies to check for errors; since the assembler produces
no output, it operates faster.

LISTING ACCESS NAME
The assembly listing file or device. If DUMY is entered, no assembly listing is produced.

ERROR ACCESS NAME
The assembly error output. This file may be viewed by entering the Show File (SF) command.
If the ERROR ACCESS NAME is null, or if it is the same as the listing file, then errors are
displayed on the terminal by the Show Background Status (SBS) command. If the device
DUMY is specified, no error iisting is produced.

The error file contains a complete list of any source records which cause assembly errors
along with the other errors. If a condition is sensed which prevents the assembler from conti-
nuing, a message is written to the error file stating what has occurred. Then the user must
enter the SBS command to view the error messages output by the assembler. Appendix A
contains a list of abnormail completion messages and possibie causes.

OPTIONS
Output and list options for the assembler. The user specifies any (or all) of the following op-

tions, separated by commas.

XREF — Prints a cross-reference listing at the end of the source and object listing file.

RXREF — Prints a reduced cross-reference listing at the end of the source and object listing
file.

SYMT — Includes a symbo! table with the output object code. This cption must be specified
to allow fully symbolic debugging.

TUNLST — Limits the listing for TEXT directives to a single line.
BUNLST — Limits the listing for BYTE directives to a singie line.
DUNLST — Limits the listing for DATA directives to a singie iine.

MUNLST — Limits the listing for a macro expansion to a single line. TEXT, BYTE, and DATA
statements and Macro usage often expand to produce multiple lines of code. If these op-
tions are selected, the statements appear in the listing but the expansion does not. For ex-
ample, the source statement TEXT 'ABCDEF’ produces the listing:

41 TEXT 'ABCDEF’
42
43
44
45
48

5-2 2270508-9701

Assembling a Program 5.2

With the TUNLST option specified, only the line 41 TEXT 'TABCDEF’ is produced in the listing.
FUNL — Overrides the unlist directives.

NOLIST — Suppresses all listing output, except to the error file. Overrides other directives
and keywords.

12 — Specifies the full 990/12 instruction set. If the 990/12 instruction set is not specified, the
Macro Assembler defaults to the 990/10 instruction set.

Any of the Option Key words may be abbreviated; for example, any of the following may be
used for the TUNLST option:

T
TU

TUN
TUNL
TUNLS
TUNLST

To select more than one option, enter a list of keywords separated by commas. The keywords
may appear in any order. To select all the options, one could enter the line:

OPTIONS: X,S,T,B,D,M

The options specified for this parameter are in addition to any options specified by OPTION
directives in the source. (Refer to the Assembly Language Reference Manual.)

MACRO LIBRARY PATHNAME
A directory containing macro definitions for this assembly. This pathname specification is
equivalent to specifying the same pathname in a LIBIN directive, except that this pathname
becomes the system macro library and is retained through stacked assemblies. This
pathname is printed on the cover sheet of the first module only.

PRINT WIDTH (CHARS)
Specifies the length of the lines to be written to the output file.

PAGE LENGTH (LINES)

Specifies the number of lines per page in the listing file.
5.2 FORMAT OF GENERATED FILES
The assembler prints a source listing of the assembly code and the error or warning messages
when these conditions are encountered. This section discusses the source listing, the error and
warning codes output by the assembler, and the object code format.
5.2.1 Source Listing

The source listing shows the source statements and the resulting object code. A typical listing is
shown in Figure 5-1.

2270508-9701 5-3

5.2.1 Assembiing a Program

SOURCE ACCESS NAME=
OBJECT ACCESS NAME=
LISTING ACCESS NAME=
ERROR ACCESS NAME=
OPTIONS=

MACRO LIBRARY PATHNAME=

. USER. SOURCE
. USER. OBJECT
. UBER. LISTING
. USER. ERROR

RESPONSE SDSMAC

PAGE 0002
o001 0000
0002 Q000
0003 WA IR R R RN R R R AR FREREERRR SIS ERERES
0004 #* BEGINNING OF DATA SECTION
0005 HEREHBEEE A B S EREE R R B R BB EEER SR E RSB R R BB EEEXRE
0006 IDT ‘RESPONSE’
0007 FHEREREERE R R R R R E R B E R R R R R R BB AR RS ERRRBEEF A RRRE S
0008 * OPENING DATA WORDS
0009 #* 1. WORKSPACE POINTER
0010 * 2. PC VALUE AT START OF PROGRAM
0011 * 3. END ACTION ITEM (IF ANY)
DOi2 I I Iy Y T
0013 #
0014 0000 0004 DATA WSP WORKSPACE POINTER ADDRESS
0015 0002 0142/ DATA START PC AT PROGRAM BEGINNING
0016 0004 0000 DATA O END ACTION (NONE SPECIFIED)

0017 0006 WSP BSS 32 WORKSPACE REGISTERS

0018 0026 0000 OPEN DATA O I/0 REQUEST
0019 0028 00 BYTE 20,220 OPEN LUNO 220
0029 20
0020 002A 0000 DATA O
0021 002C 0000 DATA O
0022 002E 0000 DATA ©
0023 0030 0000 DATA O
0024 0032 0000 MSS60 DATA O I1/0 REQUEST
0025 0034 OB BYTE >B.>»20 WRITE ASCII ON LUNO 220
0035 20
0026 0036 0000 DATA O
0027 0033 O03E” DATA GREET MESSAGE LOCATION
0028 003A 0000 DATA O
0029 003C 0050 DATA MS5G1-GREET MESSAGE LENGTH
0030 #*
0031 HR AR EFFF TSR RSB R R ERFRRERF RS ERRERFRERE S S
0032 * SPECIFY THE FIRST MESSAGE
0033 HEREFERREF R FRHE R R R R B R R R EF S E R R R R REHEH RN RS
0034 *

Figure 5-1. Source Listing Example

5-4 2270508-9701

Assembling a Progran 5.2.1

The assembler produces a cover page as the first output in the listing. This cover page contains a
table that provides a record of the files and devices used during the assembly process. Figure 5-2
is an example of this output when a macro library is specified. A macro library is a directory con-
taining files of macro definitions. The assembler directives LIBIN and LIBOUT identify macro
libraries where macro definitions are read and written.

The output has two sections:

A listing of the parameters that were passed to the assembler via SCI.

A list of access names encountered during the first pass of the assembly.

In the first section, any parameters that have no values are left blank. The fields in the second sec-
tion are labeled as follows:

LINE — This field contains the record number in which the access name was encountered.

KEY — This field contains one of the following:

LI (indicating a LIBIN usage)

LO (indicating a LIBOUT usage)

single character (a single character key assigned to a copy file)

SDSMAC

ACCESS NAMES TABLE

SOURCE ACCESS NAME=

. USER. BRC. TEGT!

OBJECT ACCESS NAME=

LISTING ACCERSS NAME=

. USER. LIST. TEST1

ERROR ACCESS NAME=

OPTIONS= XREF, SYMT, TUNLST., MUNLST
MACRO LIBRARY PATHNAME= . SDSMAC. MACRODEF
LINE KEY NAME
0001 LI . SDSMAC. MACRODEF

=>. SD5MAC. MACRODEF
0001 Lo MACROS

=2, SDSMAC. MACRODEF
0002 A DSC. SYSTEM. TABLES. DOR

=>pS01. SYSTEM. TABLES. DOR
0003 LI . SDSHAC. MACRODEF

=2, SD3MAC. MACRODEF

Figure 5-2. Output Cover Page Example

2270508-9701

PAGE 0001

5.2.1 Assembling a Program

NAME — This field contains two access names. Th

a4 Th a8 £l ; dhas
the scurce record. The second name, foliowing the =

in the first name.

first name is the name that appears in
>, is the resuit of

synonym substitution

Each page of the source listing has a title line at the top of the page. Any title supplied by a TITL
directive is printed on this line, and a page number is printed to the right of the title area. The
printer skips a line below the title line, and prints a line for each source statement listed. The line
for each source statement contains a source statement number, a location counter value, object
code assembied, and the source statement as entered. When a source statement resulits in more
than one word of object code, the assembler prints the location counter value and object code on
a separate line succeeding the source statement. The source listing lines for some exampie
source statements are shown in Figure 5-3:

The source statement number, 0014 in the example, is a four-digit decimal number. Source
records are numbered in the order in which they are entered, whether they are listed or not. The
TITL, LIST, UNL, and PAGE directives are not listed, and source records between a UNL directive
and a LIST directive are not listed. The difference between source record numbers printed
indicates how many source records are not listed.

The next field on a line of the listing contains the location counter value, a hexadecimal value. In
the example, 0000 is the location counter value. Not all directives affect the location counter, and
those that do not affect the location counter leave this field blank. Specifically, the directives IDT,
REF, DEF, DXOP, EQU, SREF, LOAD, and END leave the location counter field blank.

The third field normally ¢ontains a single biank. However, the assembler places a dash in this
field when warnings are detected.

The fourth field contains the hexadecimal representation of the object code placed in the location
by the assembler, 0006 in the example. The apostrophe following the fourth field indicates that
the content, 0006, is program-relocatable. A relocatable address is an address which is relative to
the base address of a particular code segment. The link editor will modify the address by adding
the base address of the segment to it when the base address is determined. A program-
relocatable address is an address relative to the beginning of a program segment (PSEG). A quote
() in this location indicates the location is data-relocatable, the address is relative to the base
address of a data segment (DSEG). A plus (+) indicates the label is relocatable with respect to a
common segment (CSEG). All machine instructions and the BYTE, DATA, and TEXT directive use
this field for object code. The EQU directive places the value corresponding to the label in the
object code field.

0014 0000 0006~ DATA WSF WORKESPACE POINTER ADDRESS
C015 Q0002 o142 DATA START FC AT PROGRAM BEGINNING
0014 0004 0000 DATA O END ACTION (NONE SPECIFIED)
0017 0006 WSP TBSS 32 WORKSPACE REGISTERS

Figure 5-3. Source Statement Listing Example

5-6 2270508-9701

Assembling a Program 5.2.2

The fifth field contains the first n-characters of source statement as supplied to the assembler,
where n equals a print width between 20 and 80, inclusive. Spacing in this field is determined by
the spacing in the source statement. The four fields of source statements will be aligned in the
listing only when they are aligned in the same character positions in the source statements or
when tab characters are used.

5.2.2 Error Messages
The assembler prints the following error message on successive lines of the listing when an error
is detected:

* % k

*** error description
LAST ERROR AT XXXX
The second line identifies the statement in which the previous error was detected.
At the end of the listing is an error summary, as follows:
NNNN ERRORS, LAST ERROR AT XXXX,YYYY WARNINGS

NNNN is the count of errors in the assembly. XXXX identifies the last error detected in the
assembly. YYYY is the count of the warnings in the assembly. The second lines of the error
messages link the error messages so that the user may begin at the error summary message and
readily locate all error messages. In an error-free assembly, the final message is:

NO ERRORS, NO WARNINGS or NO ERRORS, XXXX WARNINGS

Several errors detected by the assembier (such as arithmetic overflow while evaluating expres-
sions) are considered to be only warnings. The programmer should examine the code generated
when warning messages occur since the results may or may not be the code expected. Warning
messages are written only to the error file and are not included in the listing. However, a dash is
placed in column 11 of the listing where the warning error occurred. Warning messages do not
include an indication of a previous warning or error. Refer to the Appendix C for listing error
messages.

5.2.3 Cross-Reference Listing

The assembler prints an optional cross-reference listing following the source listing. The format
of the listing is shown in Figure 5-4. In the LABEL column, the assembler prints each symbol
defined or referenced in the assembly program. In the second column, the attributes of the sym-
bol are indicated as a list of single characters. The characters that appear in the second column,
and their meanings, are listed in Table 5-1. The VALUE column contains a four-digit hexadecimal
number assigned to the symbol. The DEFN column is the statement number of the defined sym-
bol. For undefined symbols, the fourth column is left blank. The REFERENCE column contains a
list of the statement numbers that reference the symbol. This column is left blank if the symbol is
unused. An apostrophe in the value column means that the content is program-relocatable.

2270508-9701 5-7

8.2.4 Assembling a Program

CROSS REFERENCE

LABEL VALUE DEFN REFERENCES

ADDT 01A8’ 0325 0314

ADSR D C1A0° Q316 0342 0343 0348 0349
GT 0006 0997

Figure 5-4. Cross Reference Listing

Table 5-1 shows the characters that appear in the second column of the cross-reference and their
meanings.

Table 5-1. Symbol Attributes

Character Meaning
R External reference (REF)
D External definition (DEF)
U Undefined
M Macro name
S Secondary reference (SREF)
L Force load (LOAD)

5.2.4 Object Code

The assembler produces object code to load into the 990 computer. This object code may be
linked to other object code modules (or programs) or loaded directly. Object code consists of
records containing up to 71 ASCII characters each. The format, described in the next paragraph,
permits corrections of errors without reassembling the program (discussed in Procedures on
Changing Object Code paragraph). An example of output object code is shown in Figure 5-5.

5.2.4.1 Object Code Format. The object record consists of a number of tag characters, each
followed by one to three fields as defined in Table 5-2. The first character of a record is the first
tag character, which tells the ioader which field or fields follow the tag. The next tag character
follows the end of the field or fields associated with the preceding tag character. When the
assembler has no more data for the record, the assembler writes tag character 7 followed by its
field in turn followed by the tag character F. The assembler then fills the rest of the record with
blanks and a sequence number, and begins a new record with the appropriate tag character.

5-8 2270508-9701

Assembling a Program 5.2.4.1

001 SCRESPONSEADOOOCOO06C013CBOCI0A0006A0026B0000B0O0O20B0000B00007F211F RESFOO0O01
BOCCOBOOOOBOO0O0OBOB20B0000CO03ERBCOO0OBO04ABOAODBAB4ASRB4C4CBAF2CB20507F 1CFF RESPOOOZ
B4C45B4153B4520B494EBS055B5420B4E55B4D42B4552B204FB4620B4954B454D7F 187F RESPONO3
BS5220B534FB4C44B2054R4F44B4159B2E20B2055B5345B20348B2D44B4947B49547F 199F RESPOO04
B204ERS554DB4245B5253R2EQ0A0086B040DBCCO0OBOB20B0O040C00ABBO000BO0O0OA7F1CBF RESPOOOS
CO0R6CO0CRBOO0O4BOO0O0A00ICADOABBOAODB4954B454DB2031B2020B0000BOB207F1D1F RESFPOO0A
BOO40CO0OCSEBOCOOBOOOACO0OCOCO0AOBCOO4RO0O00BOAODB4A954B454DB2032B20207F LEFF RESPOQO7
BOOGOBOB20B0O04QCOOE4BOOOOBOO0OACCODECOOA2BO0OD4BO00O0OBOAODEB4754B454D7F 1CEF RESPOOOS
B2033B2020B2000A00F0B0O000B0OB20BO0O00OCO0OFCBOCO0OBO032B0OA0ODB5448B414E7F1F IF RESPOOOZ
B4B20B594FB5520B444FB5220B594FB5552B2050B5552B4348B41538452EB20487F 197F RESPOG10
B4156B4520B4120B4E49B4345B2044B41 59B2E00A012CBOAODBO0OCOBO120BO0007F1ELF RESPOO11
BOCGOOBOOOOBOOOOBO4O0OB2FEOCQO26BEFEOCOO32B2FEOCOOBBB2FECCOOB2B2FECO7F125F RESPOOL2
CCODOB2FEOCOCFOB2FECCO12EB2FEQOCOLI 3A7F7DIF RESPO0O13
2013C7FECOF RESPOO14
: RESPONSE RESPOO15
Figure 5-5. Object Code Example
Table 5-2. Object Record Format and Tags

Tag Field 1 Field 2 Field 3

MODULE DEFINITION

0 PSEG Length Program ID (8) —

M DSEG Length $DATA 0000

M Blank Common Length $BLANK Common #

M CSEG Length Common Name (6) Common #

M CBSEG lLength ~ $CBSEG CBSEG # *

ENTRY POINT DEFINITION

1 Absolute Address — —_

2 P-R Address — —

LOAD ADDRESS

9 Absolute Address — —

A P-R Address — —

S D-R Address — —

P C-R Address Common or CBSEG # —

DATA

B Absolute Value — —

C P-R Address — —

T D-S Address — —

N C-R Address Common or CBSEG # —_

EXTERNAL DEFINITIONS

5 P-R Address Symbol (6) —

6 Absolute Value Symbol (6) —

w D-R/C-R Address Symbol (6) Common #
2270508-9701 5-9

N A
TN

4
4

Assembling a Program

Table 5-2. Object Record Format and Tags (Continued)

Tag Field 1 Field 2 Field 3
EXTERNAL REFERENCES
3 P-R Address of Chain Symbol (6) —
4 Absolute Address of Chain Symbol (6) —
X D-R/C-R Address of Chain Symbol (6) Common #
E Reference Index Number Absolute Offset —
SYMBOL DEFINITIONS
G P-R Address Symbol (6) —
H Absolute Value Symbol (6) —
J D-R/C-R Address Symbol (6) Common #
FORCE EXTERNAL LINK
U 0000 Symbol (6) —
SECONDARY EXTERNAL REFERENCE
\") P-R Address of Chain Symbol (6) —
Y Absolute Address of Chain Symbol (6) —_
Z D-R/C-R Address of Chain Symbol (6) Common #
CHECK SUM
7 Vaiue - -

IGNORE CHECK SUM *

8 Any Value — —
LOAD BIAS *
D Absolute Address — —_

END OF RECORD
F _ — —

REPEAT COUNT (FORTRAN OPTION) *

R Value Repeat Count —
PROGRAM ID (SYMT OPTION) *

i P-R Address Program iD {8) —
COBOL SEGMENT REFERENCE *

Q Record Offset CBSEG # —_
Notes:

All field widths are four-characters unless otherwise specified by numbers in parentheses
If the first tag is >01, the file is in compressed object format

P-R Program Segment Relative (address)
D-R Data Segment Relative (address)
C-R Common Segment Relative (address)

* Not generated during assembly.

5-10

2270508-9701

Assembling a Program 5.2.4.1

Tag Character 0
This tag character is followed by two fields.

Field 1 — The number of bytes of program-relocatable code.

Field 2 — The program identifier assigned to the program by an IDT directive. When no IDT
directive is entered, the field contains blanks. The linker uses the program identifier to name
the program. The number of bytes of program-relocatable code determines the load bias for
the next module or program. The assembler places a single tag character 0 at the beginning
of each program.

Tag Character M
This tag character is used when data or common segments are defined in the program and is
followed by three fields. COBOL also uses this tag for special code segments.

Field 1 — The length, in bytes, of data- or common-relocatable code.

Field 2 — The data or common segment identifier. The identifier is a six-character field con-
taining the name $DATA (there must be a blank after $DATA) for data segments and $BLANK
for blank common segments. If a named common segment appears in the program, an M tag
will appear in the object code with an identifier field corresponding to the operand in the
defining CSEG directive(s). The name $CBSEG is used for COBOL special code segments.

Field 3 — A four-character hexadecimal number defining a unique “common number” to be
used by other tags which reference or initialize data of that particular segment. For data
segments, this common number is always zero. For common segments (including blank
common), a common number is assigned to each segment beginning with one and ending
with the number of different common segments. The maximum number of common
segments that a program may contain is 126.

Tag Characters 1 and 2
These tag characters are used with entry addresses.

1 — Used when the entry address is absolute.

2 — Used when the entry address is program-relocatable.
Field 1 — The entry address in hexadecimal. One of these tags may appear at the end of the
object code file. The associated field is used by the loader to determine the entry point at
which execution starts when the loading is complete.

Tag Characters 9, A, S, and P

These tag characters are used with load addresses for data that follows. Tag P contains two
fields, all the other tags contain only one field.

9 — Used when the load address is absolute.

A — Used when the load address is program-relocatable.

2270508-9701 5-11

5.2.4.1

Assembling a Program

S — Used when the load address is data-relocatable.

P — Used when the load address is common-relocatable.
Field 1 — The address at which the following data word is to be loaded. A load address is re-
quired for a data word that is to be placed in memory at some address other than the next ad-

dress. The load address is used by the loader.

Field 2 — The common number for tag character P.

Tag Characters B, C, T, and N

These tag characters are used with data words. Tag N contains two fields; all the other tags
contain only one field.

B — Used when the data is absolute (an instruction word or a word that contains text
characters or absolute constants).

C — Used for a word that contains a program-relocatable address.

T — Used for a word that contains a data-relocatable address.

N — Used for a word that contains a common-relocatable address.
Field 1 — The data word. The loader places the data word in the memory location specified
in the preceding load address field or in the memory location that follows the preceding data

word.

Field 2 — The common number for tag character N.

Tag Characters 5, 6, and W

5-12

These tag characters are used for external definitions. Tag W consists of three fields; the
other two tags contain two fields.

5 — Used when the location is program-relocatable.

6 — Used when the location is absolute.

W — Used when the location is data- or common-relocatable.
The fields are used by the Link Editor to provide the desired linking to the external definition.
Field 1 — The defined value of the external symbol.
Field 2 — The symbol which is being defined.

Field 3 — The common number for tag character W.

2270508-9701

Assembling a Program 5.2.4.1

Tag Characters 3, 4, and X
These tag characters are used for external references. Fields 1 and 2 are used by the linker to
provide the desired linking to the external reference.

3 — Used when the last appearance of the symbol in field 2 of the tag is in program-
relocatable code.

4 — Used when the last appearance of the symbol is in absolute code.

X — Used when the last appearance of the symbol is in data- or common-reiocatable
code.

Field 1 — The location of the last appearance of the symbol.

— When the location of the last appearance is absolute zero, no focation in the pro-
gram requires the address corresponding to the reference.

— When the location of the last appearance is (__not) absolute zero, that location
serves as the base address of a back chain. The various locations of uses of an ex-
ternal reference are chained together with each link in the chain pointing to a loca-
tion which has appeared previously in the object code. Thus the contents of the
base address of the back chain is the address of the immediately preceding link in
the chain. The location of the final link will contain absolute zero.

Field 2 — The external reference.
Field 3 — Tag character X, which gives the common number.

For each external reference in a program, there is a tag character in the object code with a
location or an absolute zero, and the symbol referenced.

Figure 5-6 illustrates the chain of the external reference (EXTR).

The object code contains the following tag and fields:
4CO0EEXTR

At location COOE, the address COOA points to the preceding appearance of the reference. The
chain includes both absolute and relocatable addresses. The absolute addresses are COOE, CO0A,
C006, C002, BOOE, BOOA, B006, and B002. The relocatable addresses are 029E, 029A, 0298, 0294,
0290, and 028E. Each location points to the preceding appearance, except for location 028E,
which contains zero. The zero identifies location 028E as the first appearance of EXTR, the end of
the chain.

Tag Character E
This tag character is also used for external references. An E tag is used when a non-zero
quantity is to be added to a reference.

Field 1 — The index into references identified by 3, 4, V, X, Y, and Z tags in the object code.

2270508-9701 5-13

5.2.4.1

0229
0230
0231
0232
0233
0234

0235

0237

0238

0248

Assembling a Program

028C
028C
028E
0290
0292
0294
0236
BOOO
BOO2
BOO4
BOO&
BOO8
BOOA
BOOC
BOOE
0296
0296
0298
029A
029C
027E
€000
€000
€002
€004
€006
co08
CO0A
C00C
COOE

€820
2000
028k’
28E0
02907
BOOO
3220
0294
0420
BOO2
0223
BOOS
38A0
BO0A

c820
BOOE
0298
28E0
029A

3220
029E /
04120
€002
0223
C006
38A0
COO0A

* DEMONSTRATE EXTERNAL

*

REF
RORG
Mav

XOR

LDCR
BLWP
Al
MPY

RORG
MOV

MPY

REFERENCEL INKING

EXTR

@EXTR, @EXTR

@EXTR, 3

AORG >B0O0O
@EXTR, 8

@EXTR
3, EXTR

@EXTR, 2

@EXTR., @EXTR

3. EXTR

@EXTR, 2

Figure 5-6. External Reference

Field 2 — The value to be added to the reference after the reference is resolved.

The list is maintained by order of occurrence (the first entry in the list is the symbol located
in field 2 of the first 3, 4, V, X, Y, or Z tag.) The index to that reference in the E tag would be

0000.

Tag Characters G, H, and J

These tag characters are used when the symbol table option is specified with the assembler.
Tag J contains three fields, all the other tags contain two fields.

2270508-9701

Assembling a Program 5.2.4.1

G — Used when the location or value of the symbol is program-relocatable.
H — Used when the location or value of the symbol is absolute.

J — Used when the location or value of the symbol is data- or common-relocatable.
Field 1 — The location or value of the symbol.

Field 2 — The symbol to which the location is assigned.
Field 3 — The common number for tag character J.
Tag Character U
This tag character is generated by the LOAD directive. The symbol specified is treated as if it
were the value specified in an INCLUDE command to the loader.

Field 1 — All zeros.

Field 2 — The symbol to be defined. Refer to the LOAD directive in the Assembly Language
Reference Manual for further information.

Tag Characters V, Y, and Z
These tag characters are used for secondary external references. The three fields are used
by the Link Editor to provide linking to the secondary external reference.
V — Used when the last appearance of the symbol is in program-relocatable code.

Y — Used when the last appearance of the symbol is in'absolute code.

Z — Used when the last appearance of the symbol is in data- or common-relocatable
code.

Field 1 — The location of the last appearance of the symbol.
Field 2 — The symbol that is used as the secondary external reference.
Field 3 — The common number for tag character Z.

Tag Character 7
This tag character precedes the checksum, which is an error detection word. The checksum
is formed as the record is being written. it is the two’s complement of the summed 8-bit
ASCII character values from the first tag through tag 7.

Field 1 — The checksum value.

Tag Character 8
This tag character is used to ignore the checksum and is not generated at assembly.

Field 1 — The checksum value to be ignored.

2270508-9701 5-15

5.2.42 Assemblinga Program

Tag Characte

r
Thistag ¢

o
L r

Ha

Field 1 — The absolute address used by the loader to relocate the symbols when loading.
The Link Editor does not accept the D tag.

Tag Character F
This tag character indicates the end of record. It may be followed by blanks.

Tag Character R
This tag character is generated during FORTRAN compilation and represents the repeated
count of an absolute value (B tags).

Tag Character |
This tag character represents the base address of a module and is generated by the Link
Editor.

Field 1 — The base address of the named module in the linked object.
Field 2 — IDT name of the module.

Tag Character Q
This tag character is generated during COBOL compilation. This tag is the segment identifier
to the overlay directory entry.

Field 1 — The record offset.
Field 2 — CBSEG number.

The last record of an object module has a colon () in the first character position of the record,
followed by blanks or a time and date identifying stamp.

5.2.4.2 Machine Language Format. Some of the data words preceded by tag character B repre-
sent machine instructions. Comparing the source listing with the object code fields identifies the
data words that represent machine instructions. Figure 5-7 shows the manner in which the bits of
the machine instructions reiate to the operands in the source statements for each format of
machine instruction.

5.2.4.3 Symbol Table. When the SYMT option is specified, the symbol table is included in the
object code file. One entry, using tag character G or H as appropriate, is supplied for each symbol
defined in the assembly.

5.2.4.4 Procedures for Changing Object Code. In most cases, changing the object code to cor-
rect errors in a program is not recommended. Ali changes or corrections to a program should be
made in the source code. Then the program should be reassembled. Failure to follow this princi-
ple can make subsequent correction or maintenance of the program impossible. The information
in the following paragraphs is intended for those rare instances when reassembly is not possible.
Any changes made directly to the object code should be thoroughly documented to show what

the program actually does, not what the source code says it does. To correct the object code
without reassamhbling a program, change the ahiect code by changing or adding one or more

5-16 2270508-9701

Assembling a Program 5.2.4.4

0O 1 2 345 67 89 101112131415164— » 31
1} X B
w
1 0 X T
! /@ D
B
1 Jo 1 x T s
3,9 lo o 1 x x x
4 o o1 10 x[__Num
6 |lo oo 001 XX X X
2 lo oo 1 xx x x| DISP) NOT USED
500001oxx|COUNTI
8 lo o0 000 10X XX O
REG
18 10 0 0 00O 00 X XX X
18 lo 0 0 000 10 1 XX O
7 |lo 00000 11 X XX 0 O0O0 0O
7 looooooo0oo0o0o01 01 1 X X
7 |lo 00011 000000 X X X X
10 00000011001[@ REG
11 looooooo0o060O00T1 1 1 1 X
t1 [0 00000 O0DO0O0OOT1 0 X X X X
11 o 0o 0o o1 00 000O0OT1 0O O BC
12 lo
00000 0O X X X X CKPT
12 o 0 0 0 1 10 0 0 X X Ta D
19 |10 00000 O0OCOCOOT!1O0 1 0 1 1|(NOTUSED|
20 oooooooooowoooxx! conD_ | Ts s
,21 Jo o o000 11 1 11 1[pLENGTH[S LENGTH]
1 {
6 [0o0oo0o011 000 0XX| woru
15 |0 00 0O1 1 10 0 00O POS NOT USED
., 14 loooo1 1 0000001 X X X |
t3 |0 00000 000001 1t 1 0 x[sceneTH[NU][counT _ __ J
17 |00 0 011 000000 1 1t o x| CONST][REG | DISP
X IS A BIT OF THE OPERATION CODE THAT IS EITHER O OR 1 ACCORDING TO THE
SPECIFIC INSTRUCTION IN THE FORMAT
w/B IS A BIT IN THE OPERATION CODE THAT IS O IN INSTRUCTIONS THAT OPERATE ON
WORDS, AND 1 IN INSTRUCTIONS THAT OPERATE ON BYTES
o IS A PAIR OF BITS THAT SPECIFY THE ADDRESSING MODE OF THE DESTINATION
OPERAND, AS FOLLOWS;
00 = WORKSPACE REGISTER ADDRESSING
01 = WORKSPACE REGISTER INDIRECT ADDRESSING
10 = SYMBOLIC MEMORY ADDRESSING WHEN D = O
10 = INDEXED MEMORY ADDRESSING WHEN D =+ O
11 = WORKSPACE REGISTER INDIRECT AUTOINCREMENT ADDRESSING
D IS THE WORKSPACE REGISTER FOR THE DESTINATION OPERAND
Tg 1S A PAIR OF BITS THAT SPECIFY THE ADDRESSING MODE OF THE SOURCE OPERAND
AS SHOWN FOR Tp
s IS THE WORKSPACE REGISTER FOR THE SOURCE OPERAND
NUM IS THE NUMBER OF BITS TO BE TRANSFERRED
DISP IS A TWO'S COMPLEMENT NUMBER THAT REPRESENTS A DISPLACEMENT
REG 1S A WORKSPACE REGISTER ADDRESS
COUNT IS A SHIFT GOUNT
M IS A MAP REGISTER FILE NUMBER (0 OR 1)
BC IS A BYTE COUN
CKPT 1S A CHECKPOINT REGISTER ADDRES
COND IS A LOGICAL SEARCH CONDITION ETC.)
D LENGTH 1S A BYTE COUNT OF THE DESTINA N l!'ERAND
S LENGTH IS A BYTE GOUNT OF THE SOURCE OPERAND
WIDTH 1S THE NUMBER OF BITS CONTAINED IN THE OPERAND
POS IS A BIT POSITION
CONST IS A CONSTANT TO BE ADDED TO OR SUBTRACTED FROM A WORKSPACE REGISTER
NOT USED IS A GROUP OF BITS NOT USED IN THE INSTRUCTION
N U NOT USED
2279942

Figure 5-7. Machine Instruction Formats

2270508-9701 517

5.2.4.4 Assembling a Program

records. On
Tha
Hic

additional tag character is recognized by the loader to permit specifying a load

[2 AAAA ~~ar
cords changed or added manua

Vel ls] v

ind 1ann in ahinntd r
Point. i

ag characier D, may be used in object
Tag character D is followed by a load bias (offset) value. The loader uses this value instead of the
load bias computed by the loader itself. The loader adds the load bias to all relocatable entry
addresses, external references, external definitions, load addresses, and data. The effect of the D
tag is to specify the area of memory for loading. The tag character D and the associated field must
precede the assembler generated object code.

NOTE

Both linked object code and object code ioaded by the boot ioader
can be changed without reassembling the program. However, the
Link Editor will not accept tag character D in changed or added
object records.

Correction of the object code may require only changing a character or a word in an object code
record. The user may duplicate the record up to the character or word in error, replace the incor-
rect data with the correct data, and duplicate the remainder of the record up to the tag character 7.
Because the changes the user has made will cause a checksum error when the checksum is
verified as the record is loaded, the user must change tag 7 to tag 8.

When more extensive changes are required, the user may write an additional object code record
or records. Begin each record with a tag character 9, A, S, or P, followed by an absolute load
address or a relocatable load address. This may be an address into which an existing object code
record places a different value. The new value on the new record will override the other value
when the new record follows the other record in the loading sequence. Follow the load address
with a tag character B, C, or N, and an absolute data word or a relocatable data word. Additional
data words preceded by appropriate tag characters may follow. When additional data is to be
placed at a non-sequential address, write another load address tag character (9, A, S, or P), the
load address and data words, and precede with the appropriate tag character (B, C, or N). When
the record is full, or all changes have been written, write tag character F to end the record.

When additional memory locations are loaded as a result of changes, the user must change field 1
of tag character 0 which contains the number of bytes of relocatable code. For example, when the
object file written by the assembler contains >1000 bytes of relocatable code, and the user adds 8
bytes in a new object record, additional memory locations will be loaded. Therefore, the user must
find the first 0 tag character in the object code file and change the value following the tag value
from 1000 to 1008. The 7 tag character must be changed to a tag 8 in that record.

When added records place corrected data in locations previously loaded, the added records must
follow the incorrect records. The loader processes the records as they are read from the object
medium. The last record that affects a given memory location determines the contents of that
location at execution time.

The object code records that contain the external definition fields, the external reference fields,
the entry address field, and the final program start field must follow all other object records. An
additional field or record may be added to include reference to a program identifier with the tag
character 4. In this case, Field 1 contains 0 and Field 2 contains the first six characters of the IDT

5-18 2270508-9701

Assembling a Program 5.3

character string. External definitions may be added using tag character 5 or 6 followed by the
relocatable or absolute address, respectively, in Fieid 1. Field 2 contains the first six characters of
the defined symbol, left justified and blank filled to the right.

5.3 OPERATING THE ASSEMBLER IN BATCH MODE
Operating the Macro Assembler in batch mode requires two steps:
1. Prepare the batch command stream.

2. Execute the batch command stream using the Execute Batch (XB) or the Execute
Batch Job (XBJ) command.

Refer to the DNOS System Command Interpreter (SCI) Reference Manual for information related
to batch mode execution and batch stream examples.

5.3.1 Batch Stream Structure
The Batch command stream for macro assembly is depicted in Figure 5-8.

Any sequential media (cards, cassette, magnetic tape, or sequential file) may be used for the
batch stream.

The parameters for records in a Macro Assembly batch stream are the following:

BATCH and EBATCH
In order to remove unwanted synonyms and default values, the BATCH command should be
the first command in any batch stream and the EBATCH command should be the last com-
mand.

XMA record

Specifies the Macro Assembly and supplies the required parameters. Parameters are sup-
plied in the following format:

field prompt = value
The prompts assign the first, second, and other parameters associated with the command. A
prompt is either the full field prompt associated with each parameter, or an abbreviation that
includes enough characters to identify the field prompt. Often, only the first character of a field
prompt has to be entered. For example, to specify the source file .ALFILE, the following
characters may be used:
SOURCE = .ALFILE

or

S = .ALFILE

2270508-9701 5-19

5.3.2 Assembling a Program

BATCH
XMA S=. ALFILE, O-.ALOBJ, L
EBATCH

CALLIST

i

Figure 5-8. Macro Assembly Batch Stream

When a prompt takes a list as input, the list must be enclosed in parentheses:
OPTIONS = (X,T,U)

Each prompt response must be separated from other responses by a comma. For example, the
following record assembles a source file named .SOURCE, producing an object file (OBJECT), a
listing file (.LIST), and reporting errors to .ERR; the options selected are cross reference (XREF)
and symbol table (SYMT); no macro library is to be used:

XMA S =.SOURCE,OB = .OBJECT,L =.LIST,E =.ERR,OP =(X,S)

The only required parameters are SOURCE and LISTING. Other parameters may use initial values
as indicated in the paragraph on background processing.

5.3.2 Execute Batch Command

T +
To execute a batch stream, enter the Execute Batich (XB) command and

following appears:
Prompts:

EXECUTE BATCH
INPUT ACCESS NAME: pathname@
LISTING ACCESS NAME: pathname@

Prompt Details:

INPUT ACCESS NAME:
The pathname from which SCi should read the batch command stream.

LISTING ACCESS NAME:
The pathname of a device or file to which SCl should write the results of the batch command
stream execution. This device or file must not be used by any command in the batch com-
mand stream.

Example:
In the foilowing exampie, the XB command wiil execute a baich stream from a file and output
the results of the batch command stream to a line printer.

[1XB
EXECUTE BATCH
INPUT ACCESS NAME: MY.BATCH

LISTING ACCESS NAME: L PO

5-20 2270508-9701

Assembling a Program 5.3.3

5.3.3 Execute Batch Job
The Execute Batch Job (XBJ) command allows a user to create a batch job with different

operating parameters than those of the creating job.

To execute the XBJ command, enter XBJ and press RETURN. The following appears:

Prompts:

EXECUTE BATCH SCI JOB
JOB NAME: alphanumeric
USE CURRENT USER ID?: YES/NO (YES)
LOGICAL NAME TABLE PATHNAME: [filename@]
SYNONYM TABLE PATHNAME: [filename@]

If NO is the response to the USE CURRENT USER ID? prompt, the following prompts are
displayed:

EXECUTE BATCH SCi JOB
USER ID: alphanumeric
PASSCODE: [characters]
ACCOUNT ID: [characters]

If the user’'s response to the SYNONYM TABLE PATHNAME prompt is nuil, the following
prompts are displayed on the user’s terminal:

INPUT ACCESS NAME: pathname@
LISTING ACCESS NAME: pathname@

Prompt Details:

JOB NAME:
A one- to eight-character, user-defined string by which the user wishes to réference the job.

USE CURRENT USER ID:
If YES is specified, the current user ID is used. If the response is NO, the user must specify a

new user ID.

USER ID:
The user ID to be associated with the new job. A response to this prompt is required if the
response to the USE CURRENT USER ID? prompt was NO.

PASSCODE:
The passcode corresponding to the user ID of the new job.

ACCOUNT ID:
A 1- to 16-character string that is the account ID for the new job.

2270508-9701 5-21

5.3.4 Assembling a Program

LOGICAL NAME TABLE PATHNAME:
The file name containing the iogicai names to be passed to ihe new job. A nuii response
passes the creating job’s logical names. Any other entry is considered a file name containing
logical names established by the Snapshot Name Definition (SND) command. The default for
this prompt is a null value.

SYNONYM TABLE PATHNAME:
The file name containing the set of synonyms to be used by the new job. The file must have
been created via the SND command and must include the new job’s input and listing access
names in its parameter list. If a null response is entered, the INPUT ACCESS NAME and
LISTING ACCESS NAME prompts are displayed at the user’s terminal.

INPUT ACCESS NAME:
The pathname of a device or file where the job command stream resides.

LISTING ACCESS NAME:
The pathname of a device or file where the job execution results are to be listed.

Example:

In the following example, suppose a batch job is created that creates a file, outputs data to the
file, prints the file contents, then deletes the file. The command stream to perform these func-
tions resides in a file named SYS1.KCO017.INPUT, and the logical names and synonyms of the
creating job will be passed to the new job. The XBJ command could be used to create and execute
the batch job as shown below:

[]XBJ
EXECUTE BATCH SCI JOB
JOB NAME: BATCH
USE CURRENT USER ID?: YES
LOG!CAL NAME TABLE PATHNAME:
SYNONYM TABLE PATHNAME:
INPUT ACCESS NAME: SYS1.KC0017.INPUT
LISTING ACCESS NAME: LPO1

5.3.4 Operating from Card Reader

To execute a batch stream on a deck of cards in the card reader, the macro assembly stream
should be in the prescribed order as shown in Figure 5-9.

5-22 2270508-9701

Assembling a Program 5.3.4

Execute the assembly stream by entering the XBJ command and entering CR0O1 in response to the
INPUT ACCESS NAME prompt, as shown below:

[1XBJ

EXECUTE BATCH JOB
JOB NAME: BATCH
USE CURRENT USER ID?: YES
LOGICAL NAME TABLE PATHNAME:
SYNONYM TABLE PATHNAME:
INPUT ACCESS NAME: CRO1
LISTING ACCESS NAME: .USER.LFILE

(EBATCH
&
4

- |

J SCOURCE CODE l

rXMA S=CRO1

BATCH

2279938

Figure 5-9. Macro Assembly Stream for Cards

2270508-9701 5-23/5-24

6

Li'nking and Installing a Program

6.1 SUPPORTED FEATURES

The Link Editor links separate object modules together to form a single program which runs under
DNOS.

The following Link Editor features are supported by DNOS:
. Automatic overlay loading
. Random libraries
o Sequential libraries
. ASCII, compressed and image format
. Absolute memory partitioning.

For more information about these features, consult the DNOS Link Editor Reference Manual.

6.2 LINK EDIT CONTROL FILE

The first step in performing a link edit run is to write a control file defining the link edit functions.
The control file can be written using the DNOS Text Editor. The control file contains link edit com-
mands and the names of any object modules. Object modules not included in the control file may
be on disk, tape, cassette, cards, or diskette.

Table 6-1 presents a brief description and syntax for the Link Editor commands. Refer to the Link
Editor Reference Manual for compiete details on the commands.

2270508-9701 61

§.2

Linking and Installing a2 Program

Table 6-1. Link Editor Commands

Command Description
Symbol Resolution Commands

LIBRARY Specifies the libraries to be searched for unresoived external
references

AUTO Specifies use of automatic symbol resolution

NOAUTO inhibits use of automatic symbol resolution

SEARCH Specifies that the symbols in the random or sequential libraries
specified are to be resolved when this command is issued

FIND Specifies that the symbols in the random or sequential libraries
specified are to be resolved when this command is issued

Procedure, Task and Overlay Linking Commands

PROCEDURE Defines a phase be installed as a procedure

TASK Defines a phase be installed as a task

PHASE Specifies a new object module in the linked object file and
states the level and name of the phase

ALLOCATE Controls the relative position of program, data, and common
segments

LOAD Includes the overlay manager when the FORMAT IMAGE com-
mand is used

NOLOAD Specifies that the overlay manager and its tables be excluded
from the linked output

SHARE Specifies modules to share the same data area

PARTIAL Performs a partial iink edit and outputs a normal tagged object
or compressed tagged object output file

NOTGLOBAL Identifies symbols defined in the current phase as not global

ALLGLOBAL Declares all external definitions in the current phase to be
global symbols

GLOBAL Identifies symbols defined in the current phase as global

DUMMY Suppresses the linked output for the defined phase, procedure,

or task in which it appears

2270508-9701

Linking and installing a Program 6.2

Link Editor Commands (Continued)

Command Description
Procedure, Task and Overlay Linking Commands (Continued)
ADJUST Specifies alignment of a phase or module within a phase
Symbol Processing Commands

SYMT Includes the symbol tables in the linked object module

NOSYMT Omits the symbol tables from the linked object module
Execution and Listing Option Commands

INCLUDE Defines the modules or files of modules to be included in the
linked object output

FORMAT Defines the format of the linked output (normal tagged object,
compressed tagged object, or memory image format)

MAP Controis the format of the link map

NOMAP Suppresses the load map listing

PAGE/NOPAGE Controls the format of the output listing

ERROR/NOERROR Specifies whether link editor is to continue after it encounters
an efrror
Absolute Memory Partitioning Commands

PROGRAM Specifies the starting location counter value for the program
segments

DATA Defines the starting location counter value for data segments

COMMON Defines the starting location counter value for the specified

common segments

2270508-9701

6.3 Linking and Installing a Program

6.3 LINK EDITOR OPERATION WITH DNOS

The Link Editor is executed by entering the Execute Link Editor (XLE) command. Enter XLE and
press the RETURN key. The following appears:

[]XLE

EXECUTE LINK EDITOR
CONTROL ACCESS NAME: pathname@ (*)
LINKED OUTPUT ACCESS NAME: [pathname@] *)
LISTING ACCESS NAME: [pathname@] (")
PRINT WIDTH (CHARS): integer (80)

*

After entering the last response to the prompts, enter the WAIT command. The message
| LINKER-0001 LINK EDITOR COMPLETED, 0 ERRORS, 0 WARNINGS:

appears on the screen when the linking process terminates. Press the CMD key to return to the
command mode.

The prompts for the XLE command are described below:

CONTROL ACCESS NAME:

The nathname of the Link Editor ntra
LR A Pulllll BEN, W7 LN Rl RN AT LWV 7

i

fole) I +
or any sequential device such as a tape unit, cassette

ila Tha n rn
Hivw. 1w W v

- -
3
o
=
O
Y]
=
o
=
[
[
Q.
D
=

LINKED OUTPUT ACCESS NAME:
The access name of the sequential device or file where the output of the Link Editor is writ-
ten. If the object output is not desired, the user may specify DUMY which will suppress the
generation of the output. Use of the DUMY value allows for a trial run to ensure that no errors
occur.

If the FORMAT command specifies the IMAGE option, the entry made in response to the
LINKED OUTPUT ACCESS NAME prompt must be a DNOS program file or a DNOS image file.

LISTING ACCESS NAME:
The access name of the device or file where the load map listing is written. If the listing out-
put is not desired, the user may specify DUMY which will suppress the listing. The value
entered in response to the prompt can be any valid DNOS access name, synonym, or device
name.

For a description of the load map listing, refer to the DNOS Link Editor Reference Manual.

PRINT WIDTH (CHARS):
The width of the print line.

6-4 , 2270508-9701

Linking and Installing a Program 6.4

The following example shows the responses for the prompts when the control file is on
.USER.CNTRLINK, the output file is .USER.LNKOUT, the listing device is line printer one (L.P01),
and the initial PRINT WIDTH (CHARS): value is accepted:

[1XLE

EXECUTE LINK EDITOR
CONTROL ACCESS NAME: .USER.CNTRLINK
LINKED OUTPUT ACCESS NAME: .USER.LNKOUT
LISTING ACCESS NAME: LPO1
PRINT WIDTH (CHARS): 80

6.4 PROGRAM LINKING AND DIRECTIVES

Since the assembler includes directives that generate the information required to link program
modules, it is not necessary to assemble an entire program in the same assembly. A long program
may be divided into separately assembled modules to avoid a long assembly or to reduce the sym-
bol table size. Also, modules common to several programs may be combined as required. Pro-
gram modules may be linked by the Link Editor to form a linked object module that may be stored
on a library and/or loaded as required. The following paragraphs define the linking information
that must be included in a program module.

6.4.1 External Reference Directives
Each symbol from another program moduie must be piaced in the operand field of an REF or
SREF directive in the program module that requires the symbol.

6.4.2 External Definition Directive
Each symbol defined in a program module and required by one or more other program modules
must be placed in the operand field of a DEF directive.

6.4.3 Program Identifier Directive
Program modules linked by the Link Editor should include an IDT directive. The module name
specified in the IDT directive should be unique.

6.4.4 Linking Program Modules

The Link Editor maiches symbols from REF directives and symbols from DEF directives in a
similar manner within a program phase. The Link Editor follows linking commands to determine
the modules to be linked. IDT character strings are not matched with REF directive operands.

6.5 LINK MAP
Figure 6-1 shows the DNOS format of the output listing generated by the Link Editor. This exam-

ple linked three modules to form a task. The three modules are named SUBT1, SUBR1, and MODX,
and the task itself is named LSCAN.

2270508-9701 6-5

6.5 Linking and Installing a Program

L INKER
COMMAND LIST

TASK LSCAN
LIBRARY . MSK. EXO

TN o InTAH
AT . WA A

INCL . SUBR1
INCL . MODX
END

LINKER
LINK MAP

CONTROL FILE = . MSK. EXO. MODCOM
LINKED OUTPUT FILE = DUMY
LIST FILE = . MBK. LST

OUTPUT FORMAT = ASCII

LINKER

PHASE 0. LSCAN ORIGIN = 0000 LENGTH = 0054
MODULE NG ORIGIN LENGTH TYPE DATE
SUBT1 1 0000 0034 INCLUDE 04/26/80
SUBR1 2 0034 000%C INCLUDE 04/26/80
MODX 3 0040 0016 INCLUDE 04/26/80

DEFINITIONS

NAME VALUE NO NAME YALUE NO NAME VALUE NO

DCsAMP O02A 1 DC$RET 00=2C 1 DCs$TX 002E
#SUBR1 0034 2 #*SUBT1 070 1

ENTRY =

TIME

13:27: 49
13: 30: 29
13:33: 35

NAME
#MODX

UNRESZTLVETD REFERENCES

NAME COUNT NO NAME COUNT NO NAME COUNT NO

SUBR 1 i

####% LINKING COMPLETED

Figure 6-1. Link Edit Output Listing

6-6

NAME

PAGE 1

PAGE 2

PAGE 3
0000

CREATOR

SDSMAC
SDSMAC
SDSMAC

VALUE NO
G040 3

COUNT NO

2270508-9701

Linking and Installing a Program 6.5

Page one in the example, titled COMMAND LIST, is the list of the control file used to control the
linking operations. This list is generated at the beginning of each Link Edit. Page two, titled LINK
MAP, lists the parameters entered at the terminal when the Link Editor was activated. This page
also gives the format of the output from the Link Editor (ASCIl in the example). The last page, page
three, is the actual link map. The PHASE name, address of the ORIGIN, LENGTH of the linked ob-
ject code, and the execution ENTRY point are defined in the top line.

The subdivisions of the link map are listed below:

MODULE
The module names (identified by the IDT directives) included in the phase.

ORIGIN
The beginning of the module relative to the beginning of the program.

LENGTH
The length of the module, in bytes.

TYPE
The method by which the module was included in the phase (INCLUDE, SEARCH com-
mand, LIBRARY auto resolution).

TIME
The time the module was created.

CREATOR
The assembler or compiler that generated the module (SDSMAC).

DEFINITIONS
The entries under this heading describe all external definitions (DEFs) in the phase.

NAME — The symbol specified by the DEF statement. ;
VALUE — The address within the phase associated with the symbol.

NO — The number of the module within the phase in which the symbol is DEFed.

NOTE
Names that are DEFed within the phase but not referenced (REFed)

within the program are preceded by an asterisk (*). Symbols that are
self-defining (absolute) are identified by a trailing asterisk (*).

2270508-9701 6-7

6.6 Linking and Installing a Program

UNRESOLVED REFERENCES

The entries under this section of the listing defines any references that

the phase.

~
—
)
—
D
—
1))
]
[}
D
wm
—
-
[AM]
el
(A5
-
1)
-
]
't
D
[¥2]
(=)
g
(1)
[
&
ey
=
=)

NAME — The symbol that was referenced and could not be found.
COUNT — The number of times the symbol was referenced.
NO — The module within the phase in which the reference occcurred.

Unresolved references cause a warning message to be output at the end of the link map. The
message is of the form:

n WARNINGS

where n is the number of unresolved references.

NOTE

Partial link edits do not produce a warning message for unresolved
references.

The end of the Link Edit processing is indicated by the following message:

**** LINKING COMPLETED

6.6 LINK EDITOR EXAMPLES

The following paragraphs contain examples of Link Edits on a DNOS system. Provided for each
example is the complete Link Map (containing a copy of the control file) and the parameters
entered when the Link Editor is called from a VDT.

-6.6.1 Single Task With No Procedure — Example

The example shown in Figure 6-2 illustrates the use of the Link Editor to build a task consisting of
two modules with no attached procedures. The parameters entered in response tc the prompts
are as follows:

[1XLE

EXECUTE LINK EDITOR
CONTROL ACCESS NAME: .USER.TEST1
LINKED OUTPUT ACCESS NAME: DUMY
LISTING ACCESS NAME: .USER.TEST1L
PRINT WIDTH (CHARS): 80

Note that no linked output is created since the LINKED OUTPUT ACCESS NAME: DUMY, was
used. The default value was used in response to the PRINT WIDTH (CHARS) prompt.

6-8 2270508-9701

Linking and Installing a Program 6.6.1

LINKER PAGE 1
COMMAND LIST

TASK RANDOM

INCLUDE . USER. TESTX

INCLUDE . UBER. 8ORT

END

LINKER PAGE &
LINK MAP

CONTROL FILE = . UBER. TESTI
LINKED OUTPUT FILE = DUMY
LIST FILE = . USER. TEGTIL

OUTPUT FORMAT = ASBCII

LINKER PAGE 3

FHASE 0. RANDOM ORIGIN = 0000 LENGSTH = 005E ENTRY = 0000

MODULE NO ORIGIN LENGTH TYPE DATE TIME CREATOR

TESTX 1 0000 0032 INCLUDE 04/26/80 13:09:29 G&DSMAC

SORT a 0032 o02C¢ INCLUDE 0©04/26/80 13:12:48 SDSMAC
DEFINITION

NAME VALUE NO NAME VALUE NO NAME VALUE NO NAME VALUE NO
SORT 0032 &

##%# [INKING COMPLETED

Figure 6-2. Single Task, No Procedure Example

2270508-9701 6-9

6.6.2 Linking and Installing a Program

The control file defines the task name as being RANDOM, with files TESTX and SORT included by
use of the INCLUDE command. The default format, ASCl|, is used.

The Link Map shows that PHASE 0, RANDOM, begins at relative address 0000 and has a length of
>005E bytes. Module TESTX is >32 bytes in length and begins at relative address 0000, and
module SORT is >2C bytes in length and begins at relative address >32.

Only one external definition, SORT, is made.

6.6.2 Task with Two Attached Procedures — Example

The example shown in Figure 6-3 is a Link Edit for a program having a task, CONTRL, and two
attached procedures, TABLE and ROUT. The parameters entered when the Link Editor is activated
from the VDT are as follows:

[]XLE

EXECUTE LINK EDITOR
CONTROL ACCESS NAME: .USER.EXC.TWOP
LINKED OUTPUT ACCESS NAME: DUMY
LISTING ACCESS NAME: .USER.LST
PRINT WIDTH (CHARS): 80

Note that within the control file, the procedures are defined before the task. On the Link Map, the
procedures are also presented first. Page three of the example contains the Link Map for Pro-
cedure 1, TABLE, which has an origin at relative address 0000 and a length of eight bytes. One
module, ALPHA, is included in TABLE and it is taken from random library .USER.EXO.

Procedure 2, ROUT, is shown in the Link Map on page four of the example and consists of one
module, BETA, which has a relative origin of >20 and a length of eight bytes. BETA is specified by
an INCLUDE command and is read from the random library .USER.EXO. Note that BETA contains
one external definition, B$BY, that is not referenced. External definitions that are not referenced
are denoted by a preceding asterisk (*).

PHASE 0, shown on page five of the example, is defined by the TASK command and is named
CONTRL. CONTRL consists of one module, TGAMA, specified by the INCLUDE command and
read from the random library .USER.EXO. CONTRL has an origin at relative address >40 and a
length of >3C bytes. CONTRL contains no external definitions.

The two procedures have to be installed before the task is installed using the Install Procedure
(IP) and the Install Task (IT) commands, respectively.

The output format of the Link Edit is ASCH.

6-10 2270508-9701

Linking and Installing a Program 6.6.2

L INKER PAGE 1
COMMAND LIST

LIBRARY . USER. EXO
PROCEDURE TABLE
INCL {ALPHA)

FROC ROUT

INCLUDE (BETA)

TASK CONTRL

INCL { TGAMA)
END

LINKER PAGE =2
LINK MAP

CONTROL FILE = . USER. EXC. TWOP
LINKED DUTPUT FILE = DUMY
LIST FILE = .USER. LST

OUTPUT FORMAT = ASBCII
LIBRARIES

NO ORGANIZATION PATHNAME

i RANDOM . UBER ERD

LINKER PAGE 3

PROCEDURE 1, TABLE ORIGIN = 0000 LENGTH = 0008

MODULE NG ORIGIN LENGTH TYPE DATE TIME CREATOR

ALPHA 1 0000 0008 INCLUDE, ! 04/246/80 13:52:07 5DSHMAC
DEFINITIONS

NAME VALUE NO NAME VALUE NO NAME VALUE NO NAME VALUE NO

MEA 0000 1 M$B 0002 1 M&C 0004 i M&D 0006

Figure 6-3. Task, Two Attached Procedures Example (Sheet 1 of 2)

2270508-9701 6-11

6.6.

PR
MC

BE

NA
BY

L1

PH
MC

T¢C

¥#3

6.¢
Th
tui
the

Th
ce
mi
ta

Th
Of
an
be

6.6.3 Linking and Installing a Program

LINKER PAG

PHASE O, T4CAL ORIGIN = 0040 LENGTH = 00A0 ENTRY = 0000

MODULE NO ORIGIN LENGTH TYPE DATE TIME CRE#
ROOT 2 0040 0050 INCLUDE 04/26/80 15:20:37 SDS
LINKER PAC

PHASE 1, O$0ONEA ORIGIN = OC90 LENGTH = 0028 ENTRY = 0000

MODULE NO ORIGIN LENGTH TYPE DATE TIME CRE¢
MOD1 3 0090 0028 INCLUDE 04/246/80 15:20: 37 SDSt
DEFINITIONS

NAME VALUE NO NAME VALUE NO NAME VALUE NO NAME VALUE
SUBR1 0090 3

LINKER PAL

PHASE 2, O$TWOA ORIGIN = O0B8 LENGTH = 0028 ENTRY = 0000

MODULE NO ORIGIN LENGTH TYPE DATE TIME CRE/
MOD2 4 o0B8 0028 INCLUDE 04/26/80 15:31:12 8DS&!
DEFINITIONS

NAME VALUE NO NAME VALUE NO NAME VALUE ND NAME VALUE
SUBR2 00BB 4

6-14 227

Linking and Installing a Program 6.6.3

LINKER PAGE 7

PHASE 2, O%TWOB ORIGIN = 0CB8 LENGTH = 0028 ENTRY = 0000

MODULE NO ORIGIN LENGTH TYPE DATE TIME CREATOR
MOD3 5 00B8 0028 INCLUDE 04/26/80 15:31: 50 SDSMAC
DEFINITIONS

NAME WVALUE NO NAME VALUE NO NAME VALUE NO NAME VALUE NO
SUBR3 00BB 5

LINKER PAGE B8
PHASE 1, (O%$ONEB ORIGIN = 0090 LENGTH = 0034

MODULE NO ODORIGIN LENGTH TYPE DATE TIME CREATOR
MOD4 & 0070 coac INCLUDE 04/26/80 15:40:57 SDSMAC

MODDAT 7 00BC 0008 INCLUDE 04/26/80 15:47:16 SDSMAC

DEFINITIONS
NAME VALUE NO NAME VALUE NO NAME VALUE ND NAME VALUE NO

SUBR4 0090 6 TABLE OOBC 7

LINKING COMPLETED

Figure 6-4. Overlaid Program Example (Sheet 3 of 3)

2270508-9701 6-15

6.7 Linking and Installing a Program

6.7 LINKED FORMAT OUTPUT OPTIONS

The following paragraphs define the listing output options. The link edit FORMAT command
defines the format of the linked object code.

The syntax of the FORMAT command is as follows:

ASCII
FORMAT COMPRESSED
IMAGE [,REPLACE] [,priority]

There are three formats supported by the Link Editor: normal tagged object, compressed tagged
object, and memory image format. The default is 4.

6.7.1 Normal Tagged Object

This format consists of ASCIlI characters and ASCII control tag characters. Except for COBOL, it
must be output to a sequentialfile. Except for COBOL, the normal tagged object is not executable
and must be installed or loaded as a task/procedure/overiay before it can be executed. Normal
tagged object format is generally transportable between 990 computer systems and can be linked
again if generated using a PARTIAL command. Normal tagged object is the default value for the
FORMAT command.

6.7.2 Compressed Tagged Object

This format is a condensed version of the normal tagged object and can only be output to a file
that supports binary data. Except for this, compressed object is treated as normal tagged object.
Compressed object results in a savings of disk space as compared to the normal tagged format.
The difference between compressed and normal object is that in compressed the numeric fields
are expressed in binary instead of ASCIIL. Also, in compressed format, the binary 01 is used
instead of tag 0.

6.7.3 Memory Image Format
Memory image format appears exactly as the program appears in memory and is loaded directly
to a DNOS Program File or a DNOS Image File.

When the IMAGE format is selected, the user may enter the REPLACE parameter which causes
the new procedures, tasks, or overlays to replace existing ones of the same name, in the program
file (defined by the LINKED OUTPUT ACCESS NAME). The task execution priority is defined by the
priority parameters (1,2,3 or 4). The default priority value is 4.

in DNOS, the IMAGE format can aiso be used to instaii the Linked Output on an image Fiie, a
unique file type containing the loadable image for the loader. It is used for the Initial Program
Load. Refer to following paragraphs on installing the image file with the Link Editor.

The Link Editcr cannot be used to install memory-resident, system, or privileged tasks on a
program file. These tasks must be installed using the Install Task SVC, or the Install Task (IT)
command.

6-16 2270508-9701

Linking and Installing a Program 6.8

6.8 INSTALLING A LINKED PROGRAM

Under DNOS, programs are called tasks. A task may be segmented to include sharable pro-
cedures and may also include overlays. After link edit, and before program execution, the task and
its procedures and overlays must be installed on a program file (unless this step is bypassed by
use of the IMAGE format option of the Link Editor). Either the system program file or a program
file created by the Create Program File (CFPRO) command may be used to install the task. To
create the program file, .USER.PROGA for the example program, enter CFPRO and press
RETURN. Enter the responses displayed below:

[]1 CFPRO

CREATE PROGRAM FILE
PATHNAME: .USER.PROGA
MAX NUMBER OF TASKS: 255
MAX NUMBER OF PROCEDURES: 255
MAX NUMBER OF OVERLAYS: 255
INITIAL ALLOCATION: 85
SECONDARY ALLOCATION:

EXPANDABLE?: YES

All of the install commands in this section allow the program file and the object file to be
specified by file name or by LUNO. The manner in which the program fiie is seiected is arbitrary.
There is an important difference between selecting the object file by LUNO and selecting the
object file by pathname. Files specified by pathname are rewound when opened, but files
specified by LUNO are not rewound when opened. Therefore, if the same object file contains pro-
cedures, tasks, and overlays, it must be specified by LUNO for the commands to correctly install
all of the object code in a program.

Procedures, tasks and overlays must be installed in the following order:
1. Procedures, if any, must be installed first.
2. The task is installed after the procedures.
3. Overlays are installed last.

Thus, object files containing more than one object (procedure, task, overlay) must be ordered with
the procedures first, task second, and overlays last.

To install object files, enter the installation commands necessary and answer the prompts (press-
ing the RETURN key after each response).

Do not install a task on the S$UTIL file. Use the program file .S$SHARED to install shared pro-
cedures. The .S$SHARED program file is used as the default program file for a bid with no LUNO
specified. It is recommended that you install tasks in your own program file. This recommenda-
tion also applies to installing real-time tasks, procedures, and overlays.

The following paragraphs discuss the commands which install, delete, and modify programs. For

complete command descriptions, refer to the DNOS System Command Interpreter (SCl)
Reference Manual. "

2270508-9701 6-17

8.8.1 Linking and Installing a Prograim

Installing or modifying a task or procedure to be memory resident requires an Initial Program Load
(IPL) be performed before the task or procedure is in memory.

6.8.1 Install Task Segment — IT

The IT command places an executable task on a program file. If the task has attached procedures,
the procedures must be installed before the IT command. For an explanation of the task attributes
(priority, privileged, system, memory resident, and replicatable) consult Section 3.

The IT command and prompts are described below:

Prompts:

INSTALL TASK SEGMENT
PROGRAM FILE OR LUNO:

{filename @/integer}

*)

TASK NAME: [alphanumeric]
TASK ID: [integer]
OBJECT PATHNAME OR LUNO: {pathname@/integer})
PRIORITY: [integer] (4)
DEFAULT TASK FLAGS?: YES/NO (YES)
ATTACHED PROCEDURES?: YES/NO (NO)

If the response to the DEFAULT TASKS FLAGS?: prompt was NO, the following sets of prompts

are displayed on the user’s terminal:

DEFINE TASK FLAGS

PRIVILEGED?: YES/NO (NO)

SYSTEM TASK?: YES/NO (NO)
MEMORY RESIDENT?: YES/NO (NO)
REPLICATABLE?: YES/NO (YES)
DELETE PROTECT?: YES/NO (NO)

IN MEMORY COPYABLE?: YESINO (NO)
IN MEMORY REUSABLE?: YES/NO (NO)
UPDATABLE?: YES/NO (NO)
SOFTWARE PRIVILEGED?: YES/NO (NO)

After the responses to the previous prompts are entered, the following prompts are displayed on

the user’s terminal;

990/12 FLAGS

EXECUTE PROTECT?: YES/NO (NO)
OVERFLOW CHECKING?: YES/INO (NO)
WRITABLE CONTROL STORAGE?: YES/NO (NO)

if the response to the ATTACHED PROCEDURES: prompt was YES, the foiiowing set of prompis is

displayed on the user’s terminal:

ATTACH TASK PROCEDURES

1ST PROCEDURE ID: integer (0)

P1 FROM TASKS PROGRAM FILE?: [YESINO] (YES)
OND PROCEDURE ID: [lintegerl (0)

P2 FROM TASKS PROGRAM FILE?: [YES/NO] (YES)

6-18

2270508-9701

Linking and Installing a Program 6.8.1

Prompt Details:

PROGRAM FILE OR LUNO:
The file name of or the LUNO assigned to the program file on which the task segment is to be

instalied. If a LUNO is specified in response to this prompt, it must be assigned to the pro-
gram file prior to the execution of the IT command. If zero is specified, the .S$SHARED pro-
gram file is assumed.

TASK NAME:
A user-defined character string, up to eight ASCIl characters, which is the name of the task

segment to be installed on the specified program file. If zero or a null response is specified,
the system will assign the IDT name of the object module as the task segment name.

TASK ID:
A hexadecimal value which will be associated with the installed task segment. If zero or a

null response is specified, the system assigns an available ID.

OBJECT PATHNAME OR LUNO:
The pathname of or the LUNO assigned to a device or file where the object module of the

task segment resides.

PRIORITY:
The integer value which represents the execution priority level of the task. Priorities may
range from zero through four. Priorities zero through three are fixed, with priority zero as the
highest level and three the lowest. Priority four is dynamically managed by the operating
system. Four is the default priority level.

DEFAULT TASK FLAGS?:
If NO is entered in response to this prompt, the user has the option to set the task flags. If
YES is entered, the initial values are used for the flags.

PRIVILEGED?:
If YES is entered, the task is allowed to execute privileged hardware instructions. Privileged
hardware instructions should be executed cautiously and only by the user who is very
familiar with the system.

SYSTEM TASK?:
If YES is entered, the task is allowed to execute in system memory space. Tasks should be
executed in system memory space with caution and only by the user who is very familiar with
the system.

MEMORY RESIDENT?:
If YES is entered, and the task is installed on the program file . S$SHARED of the applications
program file specified at system generation the task will be loaded into memory during initial
program load (IPL) and remain in memory when terminated.

REPLICATABLE?:
If YES is entered, there may be multiple copies of the task in memory simultaneously.

2270508-9701 6-19

6.8.1 Linking and Installing a Program

DELETE PROTECT?:
If YES is entered, the task segment cannot be deleted from the program file unless the
Modify Task Segment Entry (MTE) command is used to unprotect the task segment prior to
the execution of the Delete Task Segment (DT) command. If NO is specified, the task seg-

ment may be deleted by the DT command.

IN MEMORY COPYABLE?:
If YES is entered, the task segment may be copied from memory rather than being copied
from disk. This situation may occur if the task is in memory, and another user wishes to ex-
ecute the task.

IN MEMORY REUSABLE?:
If YES is entered, the task segment memory may be reused by another task rather than being
copied from disk or from one memory location to another.

UPDATABLE?:
If YES is entered, the data of a task may be modified, and the task segment will be written to
disk with the new data modifications when the task terminates.

SOFTWARE PRIVILEGED?:
If YES is entered, the task is allowed to execute privileged supervisor calls.

EXECUTE PROTECT?:
If YES is entered, execution of the task segment is prohibited. The protection is enforced on-
ly on a 990/12 computer.

OVERFLOW CHECKING?:
If YES is entered, the occurrence of arithmetic overflow will cause control of the task to pass
to the task’s end action routine. Overflow checking is enforced only on a 990/12 computer.

WRITABLE CONTROL STORAGE?:
If YES is entered, the task uses the writable control storage area. Writable control storage is
available only on a 990/12 computer.

ATTACHED PROCEDURES?:
If YES is entered in response to this prompt, the user will be prompted for the I1D(s) of pro-
cedure segments attached to this task segment and asked if the procedures reside on the
same program file as the task.

T PROCEDURE iD:

The integer value representing the ID of a procedure attached to the task segment. If zero is

entered, there are no procedures.

iS

P1 FROM TASKS PROGRAM FILE?:
If YES is entered, the attached procedure segment whose ID was specified for the 1ST PRO-
CEDURE ID: prompt resides on the same program file as the task segment. If NO is entered,
that procedure segment must reside on the .S$SHARED program file.

2ND PROCEDURE ID:

The integer value representing the ID of a procedure segment attached to the task segment.
If zero is entered, there is no 2nd procedure.

6-20 2270508-9701

Linking and Installing a Program 6.8.2

P2 FROM TASKS PROGRAM FILE?:
If YES is entered, the attached procedure segment whose ID was specified for the 2ND PRO-
CEDURE ID: prompt resides on the same program file as the task. If NO is entered, that pro-
cedure segment must reside on the .S$SHARED program file.

6.8.2 Install Real-Time Task Segment — IRT

The IRT command places an executable real-time task on a program file. If the task has attached
procedures, the procedures must be installed before the IRT command. For an explanation of the
task attributes (priority, privileged, system, memory resident, and replicative) consult Section 3.
The previously mentioned restrictions on installing tasks also apply to installing real-time tasks.
The prompts for installing a real-time task are similar to the IT command and are described in the
paragraph on installing a task.

Prompts:

INSTALL REAL-TIME TASK SEGMENT
PROGRAM FILE OR LUNO: {filename@/integer} (")
TASK NAME: [alphanumeric]
TASK ID: [integer]

OBJECT PATHNAME OR LUNO: {pathname@!/integer} *)
PRIORITY: integer _
DEFAULT TASK FLAGS?: YES/NO (YES)
ATTACHED PROCEDURES?: YES/NO {(NO)

If the response to the DEFAULT TASKS FLAGS?: prompt was NO, the following prompts are
displayed on the user’s terminal:

DEFINE TASK FLAGS

PRIVILEGED?: YES/NO (NO)

SYSTEM TASK?: YESINO {(NO)
MEMORY RESIDENT?: YES/NO (NO)
REPLICATABLE?: YES/NO (YES)
DELETE PROTECT?: YES/NO (NO)

IN MEMORY COPYABLE?: YES/NO (NO)
IN MEMORY REUSABLE?: YES/NO (NO)
UPDATABLE?: YESINO (NO)
SOFTWARE PRIVILEGED?: YES/INO (NO)

After the responses are entered for the previous prompts, the following prompts are displayed on
the user’s terminal:

990/12 FLAGS

EXECUTE PROTECT?: YES/NO (NO)
OVERFLOW CHECKING?: YES/INO (NO)
WRITABLE CONTROL STORAGE?: YES/NO (NO)

2270508-9701 6-21

6.8.2 Linking and Installing a Program

If the response to the ATTACHED PROCEDURES: prompt was YES, the following prompts are
displaved on the user’s terminal:
ATTACH TASK PROCEDURES
1ST PROCEDURE ID: integer (
OM TASKS PROGRAM FILE?: [YES/INO] (
2ND PROCEDURE ID: [integer])
P2 FROM TASKS PROGRAM FILE?: [YES/NO] (

P1 FR

Prompt Details:

PROGRAM FILE OR LUNO:
The file name or the LUNO assigned to the program file on which the task segment is to be
installed. If a LUNO is specified in response to this prompt, it must be assigned to the pro-
gram file prior to execution of the IRT command. If zero is specified, the .S§SHARED pro-
gram file is assumed.

TASK NAME:
A user-defined character string, up to eight ACSII characters, which is the name of the task
segment to be installed on the specified program file. If zero or a null response is entered,
the system assigns the IDT name of the object module as the name of the task segment.

TASK ID:
A hexadecimal value which will be associated with the installed task segment. If the
response to this prompt is zero or a null response is entered, the system assigns an available
ID. '

OBJECT PATHNAME OR LUNO:
The pathname of or the LUNO assigned to the device or file where the object module for the
task segment resides.

PRIORITY:
The integer value which represents the execution priority level of the task segment. Priorities
may range from 1 through 127, with 1 being the highest priority.

DEFAULT TASK FLAGS?:
iIf NO is entered in response to this prompt, the user has the option to set the task flags. If
YES is entered, the initial values are used for the flags.

PRIVILEGED?:
If YES is entered, the task is allowed to execute privileged hardware instructions. Privileged
hardware instructions should be executed cautiously and only by the user who is very
familiar with the system.

SYSTEM TASK?:
If YES is entered, the task is allowed to execute in system memory space. Tasks should be
executed in system memory space with caution and only by the user who is very familiar with
the system.

6-22 2270508-9701

Linking and Installing a Program 6.8.2

MEMORY RESIDENT?:
if YES is entered, and the task is installed on the program file . S$SHARED or the application
program file specified at system generation, the task will be loaded into memory during in-
itial program load (IPL) and remain in memory when terminated.

REPLICATABLE?:
If YES is entered, there may be multiple copies of the task in memory simultaneously.

DELETE PROTECT?:
If YES is entered, the task segment cannot be deleted from the program file unless the
Modify Task Segment Entry (MTE) command is used to unprotect the task segment prior to
the execution of the Delete Task Segment (DT) command. If NO is specified, the task seg-
ment may be deleted by executing the DT command.

IN MEMORY COPYABLE?:
If YES is entered, the task segment may be copied from memory rather than being copied
from disk. This situation may occur if the task is in memory and another user wishes to
execute the task.

IN MEMORY REUSABLE?:
If YES is entered, the task segment memory may be reused by another task rather than being
copied from disk or from one memory location to another.

UPDATABLE?:
If YES is entered, the data of the task segment may be modified, and the task segment will be
written to disk with the new data modifications after the task terminates.

SOFTWARE PRIVILEGED?:
If YES is entered, the task is allowed to execute privileged supervisor calls. Privileged super-
visor calls should be executed cautiously and only by the user who is very familiar with the
system.

EXECUTE PROTECT?:
If YES is entered, execution of the task is prohibited. The protection is enforced only on a
990/12 computer.

OVERFLOW CHECKING?:
if YES is entered, the occurrence of arithmetic overflow causes control of the task to pass to
the task’s end action routine. Overflow checking is available only on a 990/12 computer.

WRITABLE CONTROL STORAGE?:
If YES is entered, the task uses the writable control storage area. Writable control storage is
availabie only on a 990/12 computer.

ATTACHED PROCEDURES?:
If YES is entered in response to this prompt, the user will be prompted for the ID(s) of pro-
cedure segments attached to this task segment and asked if the procedures reside on the
same program file as the task.

1ST PROCEDURE ID:

The integer value representing the ID of a procedure segment attached to the task segment.
If zero is entered, there are no procedures.

2270508-9701 6-23

6.8.3 Linking and Installing a Program

P1 FROM TASKS PROGRAM FILE?:
If YES is entered, the attached procedure segment whose ID was specified for the 1ST PRO-
CEDURE ID: prompt resides on the same program file as the task segment. If NO is entered,
that procedure segment must reside on the .S$SHARED program file.

ND PROCEDURE iD:
The integer value representing the ID of a procedure segment attached to the task segment.
If zero is entered, there is no 2nd procedure segment.

Ny

P2 FROM TASKS PROGRAM FILE?:
If YES is entered, the attached procedure segment whose ID was specified for the 2ND PRO-
CEDURE ID: prompt resides on the same program file as the task segment. If NO is entered,
that procedure segment must reside on the .S§SHARED program file.

6.8.3 Install Procedure Segment — IP

The IP command places a procedure on a program file and assigns a procedure ID for use by
subsequent IT commands. The previously mentioned restrictions on installing tasks also apply to
installing procedures. The IP command and prompts are described below:

Prompts:

INSTALL PROCEDURE SEGMENT
PROGRAM FILE OR LUNO: {filename@/integer} (")
PROCEDURE NAME: [alphanumeric]
PROCEDURE ID: [integer]

OBJECT PATHNAME OR LUNO: {pathname@/integer} (")
MEMORY RESIDENT?: YES/NO (NO)
DELETE PROTECT?: YES/NO (NO)

After responses are entered for the previous prompts, the following prompts are displayed on the
user’s terminal:

990/12 FLAGS

EXECUTE PROTECT?: YES/NO (NO)
WRITE PROTECT?: YES/NO (NO)
WRITABLE CONTROL STORAGE?: YES/NO (NO)

Prompt Details:

PROGRAM FILE OR LUNO:
The file name of, or the LUNO assigned to, the program file on which the procedure segment
is to be installed. If a LUNO is specified in response to this prompt, it must be assigned to
the program file prior to execution of the IP command. If zero is specified, the .S$SHARED
program file is assumed.

PROCEDURE NAME:
A user-defined character string, up to eight characters, that identifies the procedure seg-
ment. if the procedure name is not specified, the system wili assign the iDT name of the
object module as the procedure name.

6-24 2270508-9701

Linking and Installing a Program 6.8.4

PROCEDURE ID:
A hexadecimal integer that will be assigned as the ID of the procedure segment. If zero or a
null response is specified, the system assigns an ID.

OBJECT PATHNAME OR LUNO:
The name of, or the LUNO assigned to, a device or file where the object module for the pro-
cedure segment resides.

MEMORY RESIDENT?:
If YES is entered, and the procedure segment is instalied on the program file .S$SHARED or
the applications program file specified at system generation, the procedure segment will be
loaded into memory during initial program load (IPL) and will stay in memory even when
terminated.

DELETE PROTECT?:
If YES is entered, the procedure segment cannot be deleted from the program file unless the
Modify Procedure Segment Entry (MPE) command is used to unprotect the procedure seg-
ment prior to the execution of the Delete Procedure Segment (DP) command. If NO is
specified, the procedure segment may be deleted by executing the DP command.

EXECUTE PROTECT?: .
If YES is entered, the procedure segment cannot be executed. The protection is enforced

only on a 990/12 computer.

WRITE PROTECT?:
If YES is entered, the procedure segment cannot be modified when in memory. The protec-
tion is enforced only on a 990/12 computer.

WRITABLE CONTROL STORAGE?:
If YES is entered, the procedure segment uses the writabie coniroi storage area. Writable
control storage is available only on a 990/12 computer.

6.8.4 Install Overlay — 10

The IO command places an overlay associated with a task on the program file with the task. The
task must be installed before the overlay and may be specified by name or installed ID. The
previously mentioned restrictions on installing tasks also apply to installing real-time tasks. The
10 command and prompts are described below:

Prompts:
INSTALL OVERLAY
PROGRAM FILE OR LUNO: {filename@/integer} (")
OVERLAY NAME: [alphanumeric]
OVERLAY ID: [integer]
OBJECT PATHNAME OR LUNO: {pathname@!/integer} "
RELOCATABLE?: YES/NO (NO)
DELETE PROTECT?: YES/NO (NO)
ASSOCIATED TASK NAME OR ID: [{character(s)/integer}] ™)

2270508-9701 6-25

6.8.5 Linking and Installing a Program

Prompt Details:

PROGRAM FILE OR LUNO:
The file name of, or LUNO assigned to, the program file on which the overlay is to be installed.
If a LUNO is specified in response to this prompt, it must be assigned to the program file
prior to the execution of the I command. if zero is specified, the .S$3SHARED program fiie is
assumed.

OVERLAY NAME:
A user-defined character string, a maximum of eight characters, that is unique to the pro-
gram file. If a null response is specified, the system uses the IDT name of the object module
as the name of the overlay.

OVERLAY ID:
An integer value in the range of 1 through 255 that is associated with the overlay name and is
unique to the program file. If zero or a null response is specified, the system will assignan |ID
to the overlay.

OBJECT PATHNAME OR LUNO:
The name of, or the LUNO assigned to, the device or file where the object module for the
overlay resides.

RELOCATABLE?:
If YES is entered, the overlay is allowed to be loaded at an address other than its natural load
address.

DELETE PROTECT?:
If YES is entered, the overlay cannot be deleted from the program file uniess the Modify
Overlay Entry (MOE) command is used to unprotect the overlay prior to the execution of the
Delete Overlay (DO) command. If NO is specified, the overlay may be deleted by executing
the DO command.

ASSOCIATED TASK NAME OR ID:
The name or ID of a previously installed task segment on the same program file as the
overlay. The overlay is automatically deleted when the task segment is deleted.

6.8.5 Install Program Segment — IPS
The iPS command ailows the user to install a segment on a program file and assign a segment ID.
The IPS command and prompts are described below:

Prompts:

INSTALL PROGRAM SEGMENT
PROGRAM FILE OR LUNO: {filename@/integer} *)
SEGMENT NAME: [alphanumeric]
SEGMENT ID: [integer]
OBJECT PATHNAME OR LUNO: {pathname@!/integer} ")
DEFAULT SEGMENT FLAGS?: YES/INO (YES)

6-26 2270508-9701

Linking and Installing a Program 6.8.5

If the response to the DEFAULT SEGMENT FLAGS?: prompt is NO, the following set of prompts is
displayed on the user’s terminal:

DEFINE SEGMENT FLAGS

SYSTEM SEGMENT?: YES/NO (NO)
MEMORY RESIDENT?: YES/NO (NO)
DELETE PROTECT?: YES/NO (NO)
UPDATABLE?: YES/NO (NO)
SHARABLE?: YES/NO (NO)
REPLICATABLE?: YES/NO (NO)

IN MEMORY REUSABLE?: YES/NO (NO)
IN MEMORY COPYABLE?: YES/NO (NO)

After the responses are entered for the previous prompts, the following prompts are displayed on
the user’s terminal:

990/12 FLAGS

EXECUTE PROTECT?: YES/NO (NO)
WRITE PROTECT?: YES/NO (NO)
WRITABLE CONTROL STORAGE?: YES/NO (NO)

Prompt Details:

PROGRAM FILE OR LUNO:
The file name of, or the LUNO assigned to, the program file on which the program segment is
to be installed. If a LUNO is specified in response to this prompt, it must be assigned to the
program file prior to execution of the IPS command. If zero is specified, the .S$SHARED pro-
gram file is assumed.

SEGMENT NAME:
A user-defined character string, up to eight characters, composed of characters which are
legal in pathnames. The segment name must be unique to the specified program file. If zero
or a null response is specified, the IDT name of the object file will be used as the segment
name.

SEGMENT ID:
A hexadecimal integer value that wiii be assigned as the ID of the program segment by the
user. If zero or a null response is specified, the system will assign the ID.

OBJECT PATHNAME OR LUNO:
The pathname of, or the LUNO assigned to, the device or file where the object module for the
program segment resides.

DEFAULT SEGMENT FLAGS?:
If YES is entered, the initial values are used for the flags. If NO is entered, the user has the
option of which program segment flags will be modified.

SYSTEM SEGMENT?:
If YES is entered, the program segment may only be accessed by a system task.

2270508-9701 6-27

6.8.5 Linking and Installing a Program

MEMORY RESIDENT?:
the applications program file specified-‘a‘{ ‘églstéfﬁ'géheration, the program segment will be
loaded into memory during initial program load (IPL) and remain in memory even when ter-
minated.

DELETE PROTECT?:
If YES is entered, the program segment cannot be deleted from the program file unless the
Modify Program Segment Entry (MSE) command is used to unprotect the program segment
prior to the execution of the Delete Program Segment (DPS) command. If NO is specified, the
program segment may be deleted by executing the DPS command.

UPDATABLE?:
If YES is entered, the data of a program segment may be modified, and the program segment
will be written to disk with the new data modifications after the program segment is no
longer used.

SHARABLE?:
If YES is entered, the program segment may be shared concurrently with more than one task.

REPLICATABLE?: ‘
If YES is entered, there may be multiple copies of the program segment in memory
simultaneously.

IN MEMORY REUSABLE?:
If YES is entered, the program segment in memory may be reused after termination by
another task rather than a new copy being read from disk.

IN MEMORY COPYABLE?:
If YES is entered, the program segment may be copied from memory rather than being copied
from disk. This situation may occur when the program segment is in memory and another
user wishes to use the program segment.

EXECUTE PROTECT?:
If YES is entered, execution of the program segment is prohibited. The protection is enforced
only on a 990/12 computer.

WRITE PROTECT?:
if YES is entered, the program segment may not be modified in memory. The protection is
enforced only on a 990/12 computer.

WRITABLE CONTROL STORAGE?:
If YES is entered, the program segment uses the writable control storage area. Writable con-
trol storage is available oniy on a 990/12 computer.

6-28 2270508-9701

Linking and Installing a Program 6.8.6

6.8.6 Delete Task — DT

The DT command removes a previously installed task from a program file. The task may be
deleted by either name or by installed ID. If associated overlays exist, they are also deleted. The
task may be specified by name or by installed ID, as shown below:

Prompts:

DELETE TASK SEGMENT
PROGRAM FILE OR LUNO: {filename@/integer} *
TASK NAME OR ID: {alphanumeric/integer}

Prompt Details:

PROGRAM FILE OR LUNO:
The file name of, or LUNO assigned to, the program file on which the task segment has been
installed. If a LUNO is specified in response to this prompt, it must be assigned to the pro-
gram file prior to execution of the DT command.

TASK NAME OR ID:
The name or ID of the task segment on the specified program file.

6.8.7 Delete Procedure — DP
The DP command removes a previousiy instaiied procedure from a program fiie. The procedure
may be specified by name or by installed ID, as shown below:

Prompts:

DELETE PROCEDURE SEGMENT
PROGRAM FILE OR LUNO: {filename@!/integer} M
PROCEDURE NAME OR ID: {aiphanumericiinteger}

Prompt Detaiis:

PROGRAM FILE OR LUNO:
The file name of, or the LUNO assigned to, the program file in which the procedure segment
has been installed. If a LUNO is specified in response to this prompt, it must be assigned to
the program file prior to execution of the DP command.

PROCEDURE NAME OR ID:
The name or ID of the procedure segment to be deleted from the specified program file.

6.8.8 Delete Overlay — DO
The DO command removes a previously installed overlay from a program file. The overlay may be
specified by name or by installed ID, as shown below:

Prompts:
DELETE OVERLAY

PROGRAM FILE OR LUNO: {filename@/integer} *)
OVERLAY NAME OR ID: {alphanumeric/integer}

2270508-9701 6-29

6.8.8 Linking and Installing a Program

Prompt Details:

PROGRAM FILE OR LUNO:
The file name of, or the LUNO assigned to, the program file on which the overlay has been
installed. If a LUNO is specified in response to this prompt, it must be assigned to the pro-
gram fiie prior to execution of the DO command.

OVERLAY NAME OR ID:
The name or ID of the overlay installed on the specified program file that is to be deleted.

6.8.9 Delete Program Segment — DPS
The DPS command is used to delete a segment from a specified program file. The program seg-
ment may be specified by name or be installed ID, as shown below:

Prompts:

DELETE PROGRAM SEGMENT
PROGRAM FILE OR LUNO: {filename@/integer} (*)
SEGMENT NAME OR ID: {alphanumeric/integer}

Prompt Details:

PROGRAM FILE OR LUNO:
The filename of, or the LUNO assigned to, the program file on which the program segment
has been installed. if a LUNO is specified in response to this prompt, it must be assigned to
the program file prior to execution of the DPS command.

SEGMENT NAME OR ID:
The name or ID by which the program segment is known on the specified program file.

6.8.10 Modify Task Segment Entry — MTE

The MTE command allows the user to alter the data supplied when the task was installed. The
values displayed are those defined during installation. Any of the displayed values may be
changed, or the displayed value can be accepted by pressing the RETURN key. Refer to the IT
command paragraph for the prompt descriptions for the task attributes. When the MTE command
is called, the following appears:

Prompts:
MODIFY TASK SEGMENT ENTRY

PROGRAM FILE PATHNAME: filename@ *
MODULE NAME OR ID: {alphanumeric/integer}

6-30 2270508-9701

Linking and installing a Program 6.8.10

After the responses to the PROGRAM FILE PATHNAME: and MODULE NAME OR ID: prompts
have been entered, the following set of prompts is displayed on the user’s terminal:

MODIFY TASK ENTRY FOR ID <n>
NAME: alphanumeric

(")

REAL TIME?: YES/NO (*)

PRIORITY: integer (*)
MODIFY FLAGS?: YES/INO (YES)
ATTACHED PROCEDURES?: YES/NO (NO)

where <n> is the ID of the task to be modified. (This ID is for user information only and may not be
modified.)

If YES was entered in response to the MODIFY FLAGS? prompt, the foliowing prompts are
displayed on the user’s terminal:

MODIFY TASK FLAGS

*

PRIVILEGED?: YES/NO

SYSTEM TASK?: YES/NO

MEMORY RESIDENT?: YES/NO
REPLICATABLE?: YES/NO

DELETE PROTECT?: YES/NO

IN MEMORY COPYABLE?: YES/NO
IN MEMORY REUSABLE?: YES/INO
UPDATABLE?: YES/INO
SOFTWARE PRIVILEGED?: YES/NO

* *

*

* * *

*

P — o~ — o~ — o~ —
*
R I N

After the responses to the previous prompts are entered, the following prompts are displayed on
the user’s terminal:

990/12 FLAGS
EXECUTE PROTECT?: YES/NO
OVERFLOW CHECKING?: YES/NO
WRITABLE CONTROL STORAGE?: YES/NO

— o~ —
*

if the response to ihe ATTACHED PROCEDURES?: prompt was YES, the following set of prompts
is displayed on the user’s terminal:

MODIFY TASK-ATTACHED PROCEDURES

1ST PROCEDURE ID: ' integer (
P1 FROM TASKS PROGRAM FILE?: YES/NO *
2ND PROCEDURE ID: integer (
P2 FROM TASKS PROGRAM FILE?: YES/NO (

Prompt Details:
PROGRAM FILE PATHNAME:

The file name of the program file on which the task segment to be modified has been
installed.

2270508-9701 6-31

6.8.10 Linking and Installing a Program

MODULE NAME OR 1D:
The task name or ID of the task segment installed on the specified program file.

NAME:
The name of the

noanniniad foals
AOVVLUIGLTU LQON 1

i onwm e b

REAL TIME?:
If YES is entered, the task segment to be modified was installed as a real-time task segment.

PRIORITY:
If YES was entered in response to the REAL TIME?: prompt, the priority value specified must
be in the range of 1 through 127 (inclusive). If NO was entered, the priority value specified
must be in the range of 0 through 4 (inclusive).

MODIFY FLAGS?:
If YES is entered, the user has the option of modifying the task flags.

PRIVILEGED?:
If YES is entered, the task is allowed to execute privileged hardware instructions. Privileged
hardware instructions should be executed cautiously and only by the user who is very
familiar with the system.

SYSTEM TASK?:
If YES Is entered, the task is allowed to execute in system memory space. For the task to be
modified to become a system task, the task’s load address must be greater than or equal to
>C000. Tasks should be executed in system memory space with caution and only by the user
who is very familiar with the system.

MEMORY RESIDENT?:
If YES is entered and the task is installed on the .S$SHARED program file or the applications
program file specified at system generation, the task will be loaded into memory during
initial program load (IPL) and remain in memory when terminated.

REPLICATABLE?:

If YES is entered, there may be multiple copies of the task in memory simultaneously.
DELETE PROTECT™:

If YES is entered, the task is protected against accidental deletion.

IN MEMORY COPYABLE?:
If YES is entered, the task segment may be copied from memory rather than being copied
from disk. This situation may occur if the task is in memory and another user wishes to exe-
cute the task.

IN MEMORY REUSABLE?:
If YES is entered, the program segment in memory may be reused after termination by
another task, rather than a new copy being copied from disk or being copied from one
memory iocation to another.

6-32 2270508-9701

Linking and Installing a Program 6.8.10

UPDATABLE?:
If YES is entered, the data of a task may be modified, and the task segment will be written to
disk with the new data modifications when the task terminates.

SOFTWARE PRIVILEGED?:
If YES Is entered, the task is allowed to execute privileged supervisor calls. Privileged super-
visor calls should be executed with caution and only by the user who is very familiar with the
system.

EXECUTE PROTECT?:
If YES is entered, execution of the task segment is prohibited. The protection is enforced
only on a 990/12 computer.

OVERFLOW CHECKING?:
If YES is entered, the occurrence of arithmetic overflow will cause control of the task to pass
to the task’s end-action routine. Overflow checking is available only on a 990/12 computer.

WRITABLE CONTROL STORAGE?:
I1f YES is entered, the task uses the writable control storage area. Writable control storage is
available oniy on a 990/12 computer.

ATTACHED PROCEDURES?:
If YES is entered, the user has the option of modifying the procedures to be attached to the
task segment.

1ST PROCEDURE ID:
The integer value representing the ID of a procedure segment attached to the task segment.
If zero is entered, there are no procedure segments.

P1 FROM TASKS PROGRAM FILE?:
If YES is entered, the attached procedure segment with an ID specified for the 1ST PRO-
CEDURE ID: prompt resides on the same program file as the task segment. If NO is entered,
the procedure segment must reside on the .S$SHARED program file.

2ND PROCEDURE ID:
The integer value representing the ID of a procedure segment attached to the task segment.
If zero is entered, there is no 2nd procedure segment.

P2 FROM TASKS PROGRAM FILE?:
If YES is entered, the attached procedure segment with an ID specified for the 2ND PRO-
CEDURE ID: prompt resides on the same program file as the task segment. If NO is entered,
the procedure segment must reside on the .S$SHARED program file.

2270508-9701 6-33

6.8.11 Linking and Installing a Program

6.8.11 Modify Procedure Entry — MPE

The MPE command allows the user to modify the data supplied when the procedure was installed.
The values displayed are those defined when the procedure was installed. Any of the displayed
values may be changed, or the displayed value can be accepted by pressing the RETURN key.
When the MPE command is called, the following appears:

Prompts:

PROGRAM FILE PATHNAME: filename@ (*)
MODULE NAME OR ID: {alphanumeric/integer}

After the responses to the PROGRAM FILE PATHNAME and MODULE NAME OR ID prompts have
been entered, the following set of prompts are displayed on the user’s terminal:

MODIFY PROCEDURE ENTRY FOR ID <n>
NAME: alphanumeric
MEMORY RESIDENT?: YES/NO
DELETE PROTECT?: YESI/NO

*

where <n> is the ID of the procedure to be modified. (This ID is for user information only and may
not be modified.)

After the responses to the above prompts are entered, the following prompts are displayed on the
user’'s terminal:

990/12 FLAGS

EXECUTE PROTECT?: YES/NO ()
WRITE PROTECT?: YES/INO (*)
WRITABLE CONTROL STORAGE?: YES/NO *)

Prompt Details:

PROGRAM FILE PATHNAME:
The file name of the program file where the procedure segment to be modified has been
installed.

MODULE NAME OR iD:
The procedure name or ID of the procedure segment installed on the specified program file.

NAME:
The name of the procedure segment. If the procedure ID was entered, the system auto-
matically places the associated procedure name in the response field of this prompt.

MEMORY RESIDENT?:
If YES is entered, and the procedure segment is installed on the program file . S$SHARED or
the applications program file specified at system generation, the procedure segment will be
loaded into memory during initial program load (IPL) and remain in memory even when
terminated.

6-34 2270508-9701

Linking and Installing a Program 6.8.12

DELETE PROTECT?:
If YES is entered, the procedure segment is protected against accidental deletion.
EXECUTE PROTECT?:
If YES is entered, execution of the procedure segment is prohibited. The protection is
enforced only on a 990/12 computer.

WRITE PROTECT?:
If YES is entered, procedure data cannot be modified in memory. The protection is enforced
only on a 990/12 computer.

WRITABLE CONTROL STORAGE?:
If YES is entered, the procedure uses the writable control storage area. Writable control
storage is available only on a 990/12 computer.

6.8.12 Modify Overlay Entry — MOE

The MOE command allows the user to alter the data supplied when the overlay was installed. The
values defined when the overlay was installed are displayed. Any of the entries may be changed,
or the displayed value may be accepted by pressing the RETURN key. When the MOE command is
called, the following appears:

Prompts:

MODIFY OVERLAY ENTRY
PROGRAM FiLE PATHNAME: filename@)
MODULE NAME OR ID: {alphanumericl/integer}

After the responses to the previous prompts have been entered, the following prompts are
displayed on the user’s terminal:

MODIFY OVERLAY ENTRY FOR ID <n>
NAME: alphanumeric
RELOCATABLE?: YES/NO
DELETE PROTECT?: YES/NO

—~ o~~~
*
— —

where <n> is the ID of the overlay to be modified. (This ID is for user information only and may not
be modified.)

Prompt Details:

PROGRAM FILE PATHNAME:
The file name of the program file on which the overlay is installed.

MODULE NAME OR ID:
The overlay name or ID of the overlay installed on the specified program file.

NAME:
The name of the overlay. If the overlay ID was entered, the system automatically places the
associated overlay name in the response field of this prompt.

2270508-9701 6-35

6.8.13 Linking and Installing a Program

RELOCATABLE?:
If YES is entered, the overlay is allowed to be loaded at an address other than its natural load
address.

DELETE PROTECT?:
if YES is entered, the overiay is protecied against accidentai deietion.

6.8.13 Modify Segment Entry — MSE

The MSE command allows the user to modify the attributes of a segment installed on a program
file. The attribute values displayed are those defined when the segment was instalied. Any of the
displayed values may be changed, or the displayed values can be accepted by pressing the
RETURN key. When the MSE command is called, the following appears:

Prompts;'

MODIFY PROGRAM SEGMENT ENTRY
PROGRAM FILE PATHNAME: filename@ (*)
MODULE NAME OR ID: {alphanumeric/integer}

After the responses to the PROGRAM FILE PATHNAME: and MODULE NAME OR ID: prompts
have been entered, the following set of prompts is displayed on the user’s terminal:

MODIFY PROGRAM SEGMENT ENTRY FOR ID <n>
NAME: alphanumeric ("

SYSTEM SEGMENT?: YES/NO ")

MEMORY RESIDENT?: YES/NO (*)

DELETE PROTECT?: YES/NO (*)
UPDATABLE?: YES/NO (")

SHARABLE?: YES/NO *)

REPLICATABLE?: YES/NO *)

iIN MEMORY REUSABLE?: YES/NO *)

IN MEMORY COPYABLE?: YES/NO *)

where <n> is the ID of the segment to be modified. (This ID is for user information only and may
not be modified.)

After the responses to the previous prompts are entered, the following prompts are displayed on
the user’s terminal:

990/12 FLAGS
WRITE PROTECT?: YESINO
EXECUTE PROTECT?: YESINO
WRITABLE CONTROL STORAGE?: YES/NO

— o~ —
*
e - -

Prompt Details:

PROGRAM FILE PATHNAME:
The file name of the program file on which the program segment to be modified has been
installed.

6-36 2270508-9701

Linking and Installing a Program 6.8.13

MODULE NAME OR ID:
The segment name or ID of the program segment installed on the specified program file.

NAME:
The name of the program segment. If the segment ID was entered, the system automatically
places the associated segment name in the response field of this prompt.

SYSTEM SEGMENT?:
If YES is entered, the program segment may only be accessed by a system task.

MEMORY RESIDENT?:
If YES is entered, and the program segment is installed on the program file .S$SHARED or the
applications program file specified at system generation, the program segment will be loaded
into memory during initial program load (IPL) and remain in memory even when terminated.

DELETE PROTECT?:
If YES is entered, the program segment is protected against accidental deletion.

UPDATABLE?:
If YES is entered, the data of a program segment may be modified, and the program segment
will be written to disk with the new data modifications after the task is terminated or if the
task maps the program segment out of its addressable memory area.

SHARABLE?:
If YES is entered, the program segment may be shared concurrently with more than one task.

REPLICATABLE?:
If YES is entered, there may be multiple copies of the program segment in memory
simultaneously.

IN MEMORY REUSABLE?:
If YES is entered, the program segment in memory may be reused after termination by
another task; rather than a new copy being copied from disk or being copied from one
memory location to another.

IN MEMORY COPYABLE?:
If YES is entered, the program segment may be reused by copying the segment to more than
one memory location rather than copying the segment from disk.

WRITE PROTECT?:
If YES is entered, the program segment may not be modified. The protection is enforced only
on a 990/12 computer.

EXECUTE PROTECT?:
If YES is entered, execution of the program segment is prohibited. The protection is enforced
only on a 990/12 computer.

WRITABLE CONTROL STORAGE?:

If YES is entered, the program segment uses the writable control storage area. Writable con-
trol storage is available only on a 990/12 computer.

2270508-9701 6-37

8.9 Linking and Installing a Program

6.9 INSTALLING IMAGE FORMAT WITH LINK EDITOR

The IMAGE format, selected by use of the FORMAT command, allows the Link Editor to install
linked output memory images directly to a specified DNOS program file or to a DNOS image file.
This feature allows the user to bypass the actual installation of tasks, procedures, and overlays.
Linked output programs can replace existing programs or they can be added to the file. When the
IMAGE format is selected and the overlays, tasks, and procedures are installed on a program file,
the identifiers (IDs) of these overlays, tasks, and procedures are automatically assigned by the
system. The assigned ID appears on the Load Map for the appropriate procedure, task, or phase.
In order to load an overlay using a Load Overlay SVC, reference the overlay by name in the calling
program, as shown:

REF overlay name
DATA overlay name
The Link Editor resolves the reference and stores the assigned overlay ID as the DATA statement
operand. The ID may then be used in the supervisor call block.
NOTE

If the task name matches the overlay name, the task ID is stored in
the DATA statement.

6-38 2270508-9701

7

Executing a Program

7.1 INTRODUCTION

Many commands are provided to execute tasks. Three of these commands are used for assembly
language tasks, while the others are used for executing tasks of the various language processors
available for the 990 computer.

7.2 EXECUTING AN ASSEMBLY LANGUAGE TASK

The three commands for executing assembly language tasks each serve a particular function.
These commands are described and their syntax given in the following paragraphs.

7.2.1 Execute Task — XT
The XT command is used to execute a task and to leave SCI active during task execution. This
command is used for most tasks, except those being debugged and terminal interactive tasks.

Prompts:
EXECUTE TASK
PROGRAM FILE OR LUNO: {filename@/integer} (")
TASK NAME OR ID: {alphanumeric/integer} (")
PARM1: integer)
PARM2: integer 0)
STATION ID: {integer/ME} (*)
Purpose:

The XT command activates a program that does not interact with the user’s terminal. Two
16-bit words of information can be passed to the program being activated in response to the
PARM1 and PARM2 prompting messages of the XT command. The operating system
automatically assigns a run-time 1D to each program that it activates and displays the run-
time ID at the user’s terminal upon successful activation of the program. A task activated by
the XT command cannot access event characters entered at the user’s terminal.

Prompt Details:

PROGRAM FILE OR LUNO:
The file name of or the LUNO assigned to the program file on which the task to be ex-
ecuted has been installed. If a LUNO is specified in response to this prompt, it must be
assigned prior to the execution of the XT command. If zero is specified, the S$SHARED
program file is assumed.

2270508-9701 7-1

7.2.2 Executing a Program

D:

ama nr IDindar whinh tho
Qilivwv Wi T WATINAWE [REASA RN A

TASK NAME OR

Eithar t
LIS i 1

file.

PARM1: and PARM2:
Decimal or hexadecimal numbers in the range of 0 through 65535 representing a value
to be passed to the program.

STATION ID:
The number (i.e., 2, not ST02) of the station with which the executing task is to be
associated. A zero, or the characters ME indicates the user’'s terminal. A >FF indicates
the task is not to be associated with a station.

A task should not be associated with a station unless it is used by the task for terminal
1/0. If a station ID is specified through the XT command and SCl is quit (via the QUIT SCI
command) before the task terminates, log on to SCI may not be performed until the task
terminates.

7.2.2 Execute Task and Suspend SCI — XTS

The XTS command activates the specified task and suspends SCI until the task terminates. This
command should be used for terminal interactive tasks to avoid contention between SCI and the
task for terminal access.

Prompts:

EXECUTE TASK AND SUSPEND SCI

PROGRAM FILE OR LUNO: {filename@/integer} ")
TASK NAME OR ID: {alphanumeric/integer} (*)
PARM1: integer (0)

PARM2: integer 0)

STATION ID: {integer/ME} (*)

Furpose:

The XTS command activates an interactive program and automatically suspends SCi to pre-
vent it from interfering with the execution of the program. If SCl were not suspended, it would
continue to interpret data entered at the terminal as though that data were intended for SCl,
and an error would result. This command is also used to make event characters available to a
task other than SCI.

Prompt Details:

PROGRAM FILE OR LUNO:
The file name of or the LUNO assigned to the program file on which the task to be ex-
ecuted has been installed. If a LUNQ is specified in response to this prompt, it must be
assigned prior to the execution of the XT command. if zero is specified, the .S$SHARED
program file is assumed.

TASK NAME OR ID:

Either the name or 1D under which the program is installed on the specified program
file.

7-2 2270508-9701%

Executing a Program 7.2.3

PARM1: and PARM2;
Decimal or hexadecimal numbers in the range of 0 through 65535 representing a value

to be passed to the program.

STATION 1D:
The number (i.e., 2, not ST02) of the station with which the executing task is to be
associated. A zero, or the characters ME indicates the user’s terminal. A >FF indicates
the task is not to be associated with a station.

A task should not be associated with a station unless it is used by the task for terminal
/0. If a station ID is specified through the XT command and SCl is quit (via the QUIT SCI
command) before the task terminates, log on to SCl may not be performed until the task
terminates.

7.2.3 Execute and Halt Task — XHT

The XHT command places a task in memory in a suspended state so that it can be debugged.
Typically, the user places the task to be debugged in memory using XHT, establishes the debug
environment (including breakpoints), and then activates the task using the Resume Task (RT)
command.

Prompts:

EXECUTE AND HALT TASK :
PROGRAM FILE OR LUNO: {filename@/integer} (
TASK NAME OR ID: {alphanumeric/integer} (
PARM1: integer (
PARM2: integer (
STATION ID: {integer/ME} (

Purpose:

The XHT command places a task in memory in a suspended state so that it can be debugged.
Typically, the user places the task to be debugged in memory using XHT, establishes the
debug environment (including breakpoints), and then activates the task using the Resume
Task (RT) command.

Prompt Detaiis:
PROGRAM FILE OR LUNO:
The file name of or the LUNO assigned to the program file on which the task has been
installed. If a LUNO is specified in response to this prompt, it must be assigned prior to
the execution of the XHT command. If zero is specified, the .S$SHARED program file is
used.

TASK NAME OR ID:
The name or the associated installed ID of the task whose execution is to be halted.

PARM1:

An integer value to be passed to the task being halted, determined by the programmer
who wrote the task.

2270508-9701 7-3

7.3 Executing a Program

PARM2:
A second integer vaiue io be passed io the task being haited, determined by the
programmer who wrote the task.

STATION ID:
The station ID (e.g., 1, 2) with which the task is to be associated or the two-character

pseudo device name of ME. If >FF is entered, the task is not associated with any
station.

7.3 SVC EXECUTION OF TASK

The Execute Task supervisor call is used to initiate the execution of a task installed on any pro-
gram file. If the task specified in the call is already active and was defined as being replicatable
(during installation), another copy of the task is placed in execution. The replicated task can share
procedures with previous activations of the task. If the call is issued for a task that is active but is
not replicatable, the system returns an error to the calling task.

Refer to the DNOS Supervisor Call (SVC)} Reference Manual for a complete description of the
supervisor call block.

7.4 BATCH STREAM AND INTERACTIVE EXECUTION

Execution of an assembly language task may also be performed in a batch stream. The batch
command stream for executing a task is depicted in Figure 7-1.

Refer to the section on assembling a program in this manual or the DNGS System Command
Interpreter (SCI) Reference Manual for more information on batch stream operations.

BATCH
XT PR=, USER.PF. T=TEST1, PARM1=0, PARM2=0, S5=ME
EBATCH

Figure 7-1. Execution Batch Stream

7-4 2270508-9701

8

Debugging a Program

8.1 GENERAL INFORMATION

Flaws in software are commonly calied “bugs’. The process of removing flaws from software is
called debugging. Modern programming techniques can drastically reduce the number of bugs in
a program; however, the bugs which remain tend to be subtle and hard to find. DNOS provides
several levels of debugging support, as follows:

. Several System Command Interpreter (SCl) commands provide debugging capabilities
without requiring a special mode of operation.

e A special mode of operation allows a single task to be examined in detail during the
execution process.

Since all of the debug commands interact with the terminal, special care must be taken when
debugging a program that uses the terminal, because two processes requesting terminal support
can be confusing to the user. If the program being debugged requests use of a terminal, two ter-
minals should be used: one for executing the program and one for debugging.
8.2 MODES OF DEBUGGING
There are two sets of debug commands:

e Commands used for debugging all tasks.

o Controlled task commands used for tasks that have been put into the debug mode

through the use of the Execute Debug (XD) command.

NOTE

Putting a task into debug mode affects the execution of all debug
commands as follows:

— Symbolic expressions may be used in place of integer expres-
sions as responses to commands involving a controlled task.

— Every command functions as if the controlled task is uncondi-
tionally suspended.

— Every command leaves the controlled task unconditionally
suspended.

22705089701 8-1

8.2.1 Debugging a Program

— Tasks which unconditionally suspend themselves can be

. . . .
momentarily reactivated by some of the debug commands.

- The CMD key automatically suspends the controlled task
when executing the Proceed from Breakpoint (PB), Delete and
Proceed from Breakpoint (DPB), or Resume Task (RT) com-
mands.

8.2.1 Unconditional Suspend

Most of the debugging commands require that the task being debugged be unconditionally
suspended either before or during the debug command. The “unconditional suspend” task state
under DNOS (task state 6) is the state in which the task is dormant until activated by a command.
There are several ways for a task to become unconditionally suspended:

. The task is bid with the suspend option selected. Either a supervisor call, the Execute
and Halt Task (XHT) command, or the .DBID SC! primitive suspend a task when the task
is bid.

The XHT command is used for tasks normally executed by an Execute Task (XT) com-
mand. XHT places the task in a suspended state for debugging and displays the run ID
of the task to the user. If the user desires to execute and halt the task, and
simultaneously place it in controlled mode, the Execute Debug (XD) command may be
used with no input for the RUN 1D prompt. The XD command performs the XHT and

saves the run ID as the default for the Debugger commands.

The .DBID primitive is used for tasks that interface through SCI, such as command pro-
cessors which are normally bid using the .BID and .QBID primitives, described in the
DNOQS System Command Interpreter (SCI) Reference Manual. When the .DBID primitive
is executed through SCI, the task is bid and immediately placed in a suspended state.
The run ID of the task is saved in the synonym $$BT or it may be obtained by issuing a
Show Task Status (STS) command.

. The task suspends itself.
. The task executes a breakpoint (XOP 15,15).
. The task is suspended by the SCiI debug commands.

Once the task has been placed in a suspended state, the Debugger may be used to assign break-
points, simulate execution, display memory, and perform other debugging functions. When the
debugging session is over, the task may be terminated by the Kill Task (KT) command. If the task
was put into controlled mode by an XD command, it may be killed by responding YES to the KILL
TASK? prompt of the Quit Debug (QD) command.

8.2.2 Symbols

The debug support provided allows symbolic debugging; whereby, the user can specify labels
within the task being debugged rather than memory addresses. This method of debugging is both
convenient and meaningful since the source code list can be used as reference for the symbolic

8-2 2270508-9701

Debugging a Program 8.2.2

labels used. Symbolic constants consist of the link edit phase name, a period (.), the module iden-
tifier name (IDT), a period (.}, and the symbol, an assembly language label. The syntax is defined
as:

phase name.IDT name.symbol

NOTE
To have full symbolic capability, both the assembler and Link Editor
must have used the SYMT option.
If the assembiler did not use the SYMT option, but the Link Editor did, then symbols of the follow-
ing form are available:

phase name.IDT name

If either the phase name or the IDT name of a symbol is omitted, the immediately preceding phase
name or IDT name is used. The syntax is as follows:

IDT name.symbol (no phase name)
phase name..symbol (no IDT name)

..symbol (no phase or IDT name)

Examples:
PHASE1.MOD1.XYZ References Phase = PHASE1
IDT = MOD1
Label = XYZ
.MOD2.MNO References Phase = PHASE1
IDT = MOD2
Label = MNO
..ABC References Phase = PHASE1
IDT = MOD2
Label = ABC

Four words of memory per symbol are required to store symbol values.

If the task being debugged is a single routine instalied without being linked, then the symbolic
constant consists of a period (.), the characters of the module identifier name, a period (.), and the
characters of the symbol, as follows:

.IDT name.symbol

2270508-9701 83

8.2.3 Debugging a Program

NOTE

Symbols may only be used for commands affecting a task that has
been placed in the debug mode by the Execute Debug (XD) command.

Symboi encoding uses a hashing method which sometimes pro-
duces a seeming duplication of values for a symbol. In such cases,
use another symbol.

8.2.3 Expressions

Constants (and symbolic constants for tasks in the debug mode) may be combined using the
operators +, -, *, 1, ()}, and <> to form expressicns which may be used as command operands.
The operators have the following meanings:

Operator Meaning

Unary plus or addition

Unary minus or subtraction
Multiplication

Division

Evaluation order

<> Indicated memory location contents

S~ .+

NOTE
The right angle bracket, >, is regarded as a hexadecimal number
indicator rather than the right part of <> whenever there are hex-
adecimal digits immediately following. Thus, no conflict arises.

Expressions are evaluated according to the following rules:

* Subexpressions delimited by () and < > are evaluated first with the innermost expres-
sion evaluated before any other levels.

. Unless otherwise instructed by parentheses or angle brackets, unary + and - are
evaluated first, multiplication and division are evaluated second, and addition and sub-

+ i 1 +
traction last.

. For operators at the same level, evaluation proceeds left to right.

. Arithmetic treats all constants as unsigned numbers.

8-4 2270508-9701

Debugging a Program 8.3

For example, if .IDTNAM.BEGIN is memory address >7A, and if memory address >7F contains
>3B, then the expression FF/(IDTNAM.BEGIN + 5 + -2 + 3*>F) is evaluated as follows:

>FF/(<.IDTNAM.BEGIN + 5> + -2 + 3*>F)
SEFI<>TA +5> + -2 + 3*>F)
SFEIKSTF> 4 -2 + 3*>F)

>FFI(>3B + -2 + >2D)

SFFI(>3B + (-2) + >2D)

>FF/(>39 + >2D)

>FF/>66

2

These symbols may be used in expression lists in the same way as constants or symbolic con-
stants. For example,

#PC + NAME.IDT - #R15
is a valid expression.

Several special symbols are allowed in expressions. These special symbols are:

Symbol Description
#PC Contents of the Program Counter
#WP Contents of the Workspace Pointer
#ST Contents of the Status Register
#Rn Contents of the Workspace Register whose number

corresponds to the number (0 through 15) given for n.

Character strings are also allowed in expressions. A character string is of the form “XXXX__
where X is any valid ASCII character. The apostrophe can be represented in a character string by
using double apostrophes. A character string may be any length, but only the leftmost four
characters are significant. Strings shorter than four characters are right-justified with leading
zeros. The value of a character string is an expression in the ASCIl hexadecimal representation of
the characters expressed as a 32-bit number.

String Value
"ABCD’ 41424344
A’ 00000041
'ABCDFE’ 41424244
o 00000020
'A”B’ 00412742

8.3 COMMANDS FOR ALL TASKS

The SC1 commands described in the following paragraphs may be used for all tasks. These com-
mands are most frequently used in debugging; however, may be used whenever SCI is active.

2270508-9701 8-5

8.3.1

Debugging a Program

Many of the debug commands require the run-time task ID returned by the XT or XHT commands.
Make note of the run-time task ID when the task is placed in execution. The Show Task Status
(STS) command may be used to identify the run-time ID (which identifies the task to DNOS).

8.3.1

Data Display Commands

These SCi commands dispiay the conienis of memory, registers and specified breakpoint
addresses. Table 8-1 lists the paragraphs associated with each command for easier referencing.

Table 8-1.

Debug Commands

Debug Command

Activate Task
Assign Breakpoints

Assign Simulated Breakpoints

Paragraph Reference

Delete and Proceed From Breakpoint

Delete Breakpoints

Delete Simulated Breakpoints
Execute and Halt Task
Find Byte

Find Word

Halt Task

Initiate Debug Mode

List Breakpoints

List Logical Record

List Memory

List Simulated Breakpoints
List System Memory
Modify Absolute Disk
Modify Allocatable Disk Unit
Modify Internal Registers
Modify Memory

Modify Program Image
Modify Relative to File
Modify System Memory
Modify Workspace Registers
Proceed from Breakpoint
Quit Debug Mode

Resume Simulated Task
Resume Task

Show Absolute Disk

Show Allocatable Disk Unit
Show Internal Registers
Show Panel

Show Program Image
Show Relative to File
Show Value

Show Workspace Registers
Simulate Task

8.3.4.1
8.3.3.1
8.3.6.1
8.3.3.3
8.3.3.2
8.3.6.2
8.3.45
8.3.5.1
8.3.5.2
8.34.2
8.3.4.4
83.1.1
8.3.1.2
8.3.13
8.3.6.3
8.3.14
8.3.2.1
8.3.2.2
8.3.2.3
8.3.24
8.3.2.5
8.3.26
8.3.2.7
8.3.2.8
8.3.3.4
8.3.6.4
8.3.6.5
8.3.4.3
8.3.15
8.3.1.6
8.3.1.7
8.3.1.8
8.3.1.9
8.3.1.10
8.3.1.11
8.3.1.12
8.3.6.6

2270508-9701

Debugging a Program 8.3.1.1

8.3.1.1 List Breakpoints — LB. The LB command is used for displaying the breakpoints for a
specified task. If the breakpoints are to be displayed for a system task, the user must have a
privileged user ID.

Prompts:

LIST BREAKPOINTS
RUN ID: integer (")

Prompt Details:

RUN ID:
A valid run ID in the user’s job. Current run IDs may be obtained by executing the Show
Task Status (STS) command.

8.3.1.2 List Logical Record — LLR. The LLR command lists the contents of a record or records in
a file. The contents of the record or records specified are listed in both hexadecimal and ASCII
representation. The amount displayed per record is a maximum of decimal 512 (hexadecimal 200)
or the logical record length of the file, whichever is less.

Prompts:

LIST LOGICAL RECORD
PATHNAME: pathname@ (*)
STARTING RECORD: integer 0)
NUMBER OF RECORDS: [integer]
LISTING ACCESS NAME: [pathname@]

Prompt Details:

PATHNAME:
The pathname that identifies the file in which the records to be listed reside.

STARTING RECORD:
A decimal or hexadecimal integer that identifies the first record whose contents are to
be listed.

NUMBER OF RECORDS:
A decimal or hexadecimal integer that identifies how many records are to be listed. A
null response specifies that all records are to be listed.

LISTING ACCESS NAME:
The device name of a device or the pathname of a file to which the LLR command
should write the contents of the record(s) specified. The default value is the terminal
local file.

8.3.1.3 List Memory — LM. The LM command is used to list the specified memory area of a

task to a specified cutput device or file. If the task is not unconditionally suspended, it is tem-
porarily suspended while the listing is being formatted.

2270508-9701 8-7

8.3.1.4 Debugging a Program

Prompts:

LIST MEMORY
RUN ID: integer (*)
STARTING ADDRESS: full exp
NUMBER OF BYTES: [fuil expj
LISTING ACCESS NAME: [pathname @]

rompt Details:

RUN ID:
A valid run ID in the user’s job. Current run IDs may be obtained by executing the Show
Task Status {STS) command.

STARTING ADDRESS:
The integer value which is the starting address of the memory area to be listed.

NUMBER OF BYTES:
The integer value which is the number of bytes of memory to be listed, beginning with
the specified starting address. The default value is 16 bytes.

LISTING ACCESS NAME:
The device name or file name of the device or file where the memory list is to be output.
The default value is the terminal local file.

8.3.1.4 List System Memory — LSM. The LSM command is used to list the memory occupied
by the DNOS operating system. This command is similar to the List Memory (LM) command,
except the user specifies an overlay name or ID instead of a run ID.

The LSM command is intended for use only by someone very familiar with DNOS source code.
Prompts:

LIST SYSTEM MEMORY
OVERLAY NAME OR ID: {integer/alphanumeric}
STARTING ADDRESS: integer
NUMBER OF BYTES: [integer]
LISTING ACCESS NAME: [pathname@]

OVERLAY NAME OR ID:
The overlay name or integer value specified in the Install Overlay (10) command which is
the ID of the overlay whose memory is to be listed. By executing the Map Program File
(MPF) command on the kernel program file, (whose name is specified at system genera-
tion, the user may inspect the acceptable overlay names and associated IDs.

STARTING ADDRESS:
The integer expression which is the starting address of the memory area to be listed.

8-8 2270508-9701

Debugging a Program 8.3.1.5

NUMBER OF BYTES:
The integer value which is the number of bytes of memory to be listed, beginning with
the specified starting address. The initial value is >40 bytes.

LISTING ACCESS NAME:
The device name or file name where the memory list is to be output. The default value is
the terminal local file.

8.3.1.5 Show Absolute Disk — SAD. The SAD command is used to print the contents of a
specified absolute address on a disk and may be executed only by privileged users. The contents
of sixteen bytes are printed per line, with the address of the first byte printed as the first entry on
the line. The contents of each pair of bytes are shown as four hexadecimal digits. At the right end
of the line, the contents are printed as ASClI characters. The bytes that contain values that corres-
pond to printable ASCII characters are translated and printed as ASCII characters; nonprinting
ASCII characters are printed as periods.

Prompts:

SHOW ABSOLUTE DISK
DISK UNIT: devicename@
TRACK: integer exp
SECTOR: integer exp

FIRST WORD: integer exp 0)
NUMBER OF WORDS: [integer exp]
OUTPUT ACCESS NAME: [pathname@] *)

Prompt Details:

DISK UNIT:
The device name assigned to the disk during system generation. Normally, the
characters DS01 are used for the system disk and DSxx for other disks on the system;
where xx is a two digit decimal number less than or equal to ten (for example DS02).

TRACK:
The integer value that is the starting track address from which to begin printing the con-
tents of the disk.

SECTOR:
The integer value that is the starting sector address, within the specified disk track,
from which to begin printing the contents of the disk.

FIRST WORD:
The integer value that is the word offset, within the specified disk sector, from which to
begin printing the contents of the disk.

NUMBER OF WORDS:

The integer value that is the number of words of the specified sector to print. The
default value is the disk sector size.

2270508-9701 8-9

8.3.1.6 Debugging a Program

OUTPUT ACCESS NAME:

The device name or file name of a device or file where the contents of the specitied

woviveo Ul

absolute disk address is to be printed. The default value is the terminal local file.

8.3.1.6 Show Allocatable Disk Unit — SADU. The SADU command is used to output the con-
tents of the specified allocatabie disk units (ADUs) to the specified device.

All disks on a DNOS system are addressed in ADUs, the basic addressable disk unit in a DNOS
system. The maximum number of ADUs on a disk is 65,535. Therefore, if a disk contains more than
65,535 sectors, multiple sectors are used as ADUs.

Prompts:

SHOW ALLOCATABLE DISK UNIT
DISK UNIT: devicename@
ADU NUMBER: integer exp
SECTOR OFFSET: integer exp
FIRST WORD: integer 0)
NUMBER OF WORDS: [integer exp]
OUTPUT ACCESS NAME: [pathname@] *)

Prompt Details:

DISK UNIT:
The device name assigned to the disk during system generation. Normally, the
characters DS01 are used for the system disk and DSxx for other disks on the system,
where xx is a two-digit decimal number greater than one (e.g., DS02).

ADU NUMBER:
The integer value that is the ADU with contents to be listed.

SECTOR OFFSET:
The integer value that is the sector of the ADU with contents to be listed.

FIRST WORD:
The integer value that is the word offset, within the specified sector, from which to
begin listing the contents of the ADU.

NUMBER OF WORDS:
The integer value that is the number of words of the specified sector to list. The default

value is the disk ADU size.

OUTPUT ACCESS NAME:
The device or file name where the contents of the specified ADU are to be listed. The

default value is the terminal locai file.
8.3.1.7 Show Internal Registers — SIR. The SIR command is used to display the task state and

the contents of the internal registers of a task: program counter (PC), workspace pointer (WP),
workspace register (WR), status register (ST), memory, and breakpoints. The STATE field is the

8-10 2270508-9701

Debugging a Program 8.3.1.8

state of the task before it was suspended to show the contents of the internal registers. The re-
mainder of the display reflects the internal register values in effect after the task was suspended.

The character string representation of the status register follows the hexadecimal value and may
include the following characters:

L = Logical greater than P = Parity

A = Arithmetic greater than X = XOP in progress
E = Equal S = Privileged mode
C = Carry M = Map file

O = Overflow

if the internal registers are to be shown for a system task, the user must have a privileged user ID.
Prompts:

SHOW INTERNAL REGISTERS
RUN ID: integer (")

Prompt Details:
RUN ID:

A valid run ID in the user’s job. Current run IDs may be obtained by executing the Show
Task Status (STS) command.

8.3.1.8 Show Panel — SP. The SP command is used to display the debug panel for a specified
task. If the task is not unconditionally suspended, it will be temporarily suspended while the
panel is being formatted and displayed. The displayed task state is the state of the task before it
was suspended. The debug panel consists of the following:

o Internal registers

* Workspace registers

. Breakpoints

. Memory display

Task state
The SP command also shows the character string representation of the status register.
If the debug panel to be displayed is for a system task, the user must have a privileged user ID.
Prompts:
SHOW PANEL

RUN ID: integer ()
MEMORY ADDRESS: [full exp]

2270508-9701 8-11

8.3.1.9 Debugging a Program

Prompt Details:

RUN ID:
A valid run ID in the user’s job. Current run IDs may be obtained by executing the Show
Task Status (STS) command.

MEMORY ADDRESS:
The integer value that is the starting memory address for the memory portion of the
debug panel display. The default value is the current PC address.

8.3.1.9 Show Program Image — SPl. The SPI command is used to display the disk-resident
memory image of a module (defined as a task, procedure, segment, or overlay) for a specified
program.

Prompts:

SHOW PROGRAM IMAGE
PROGRAM FILE: filename@ (
OUTPUT ACCESS NAME: [pathname@] (
MODULE TYPE: {T/PIO/S} (
MODULE NAME OR ID: {alphanumeric/integer} *
ADDRESS: integer (
LENGTH: integer (

Prompt Details:

PROGRAM FILE:
The file name of or the LUNO assigned to the program file on which the program (task,
procedure, overlay, or segment) has been installed. If a LUNO is specified in response
to this prompt, it must be assigned prior to the execution of the SPI command. If zero is
specified, the .S$SHARED program file is assumed.

OUTPUT ACCESS NAME:
The device name or file name where the display of the memory image of the program is
to be written. The default value is the terminal local file.

MODULE TYPE:
The type of program with a memory image to be displayed. The following characters are
valid responses:

Task

Procedure
Overlay

Program Segment

»wo7Uv-H

MODULE NAME OR ID:

The characters or the associated ID that identifies the program on the specified pro-
gram file.

ADDRESS:
The integer value that is the starting address of the memory image to be displayed.

812 2270508-9701

Debugging a Program 8.3.1.10

LENGTH:
The integer value that is the number of words of the memory image to be displayed.

8.3.1.10 Show Relative to File — SRF. The SRF command is used to display any word or group
of words within a file. It assumes that the user has knowledge of the file structure and allows the
user to address any word within the file.

Prompts:

SHOW RELATIVE TO FILE
PATHNAME: filename@ (
RECORD NUMBER: integer (")
FIRST WORD: integer {
NUMBER OF WORDS: [integer]
OUTPUT ACCESS NAME: [pathname@] *)

Prompt Details:

PATHNAME:
The name of the file with a record to be displayed.

RECORD NUMBER:
The integer value that is the record number within the file to be displayed.

FIRST WORD:
The integer value that is the byte offset within the record to be displayed.

NUMBER OF WORDS:
The integer value that is the number of words of the record to display. The default is to
display the whole record.

OUTPUT ACCESS NAME:
The pathname of a device or file where the results of the SRF command are to be listed.
The default is the terminal local file.

8.3.1.11 Show Value — SV. The SV command is used to display the value of a specified expres-
sion. The hexadecimal, decimal, and ASCII representations of the value are given.

Prompts:

SHOW VALUE
EXPRESSION: full exp

Prompt Details:
EXPRESSION:

The integer and/or character(s) expression with a vaiue to be displayed. If a task is being
debugged and is a controlled task, the expression may be symbolic.

2270508-9701 8-13

8.2.1.12 Debugging a Program

8.3.1.12 Show Workspace Registers — SWR. The SWR command is used to display the current
workspace of a task. if the task is not unconditionally suspended, it is temporarily suspended
while the workspace is displayed.

If the terminal requesting the command is a VDT, the SWR command functions the same as the
Show Panel (SP) command. If the workspace to be displayed is for a system task, the user must
have a privileged user ID.

Prompts:

SHOW WORKSPACE REGISTERS
RUN ID: integer ("

Prompt Details:

RUN ID:
A valid run ID in the user’s job. Current run 1Ds may be obtained by executing the Show
Task Status (STS) command.

8.3.2 Data Modification Commands

These commands are used to place specified data on a disk or change data at an absolute word
address. Modification of specified ADUs, internal registers, memory image, or programs may be
accomplished using these debugging commands.

8.3.2.1 Maodify Absolute Disk — MAD. The MAD command is used to place specified dataon a
disk at a specified absolute track, sector, and word address and may only be executed by privi-
leged users. Data is entered in groups of word values to be placed on disk. Word values must be
separated from each other with a comma and loaded on disk in successive addresses. The
verification parameter allows the user to enter a string of words to be compared to the data at the
specified address. If there is not a correspondence between the string of words and the data at
the specified address, the modification does not take place.

NOTE

Since the MAD command has the capability to write anything,
anywhere on the disk, and can therefore destroy the DNOS system
image, the verify option should always be used.

Prompts:

MODIFY ABSOLUTE DISK

DISK UNIT: devicename@
OUTPUT ACCESS NAME: [pathname@]

TRACK: integer exp

SECTOR: integer exp

FIRST WORD: integer exp

VERIFICATION DATA: [integer(s)]

DATA: integer(s)

—
S

8-14 2270508-970%

Debugging a Program 8.3.2.2

Prompt Details:

DISK UNIT:
The device name of the disk device assigned during system generation. Normally, the
characters DS01 are used for the system disk and DSOx for other disks on the system,
where x is a digit greater than one.

OUTPUT ACCESS NAME:
The device or file name where the contents of the specified absolute disk address are to
be printed. The default value is the terminal local file.

TRACK:
The integer value which is the starting track address from which to begin the disk
modification.

SECTOR:
The integer value which is the starting sector address, within the specified disk track,
from which to begin the disk modification.

FIRST WORD:
The integer value which is the starting word address, within the specified disk sector,
from which to begin the disk modification.

VERIFICATION DATA:
If specified, the integer value contained in the specified starting address. If more than
one integer is specified, they must be separated by commas; it is assumed these values
are contained in successive words, beginning with the specified first word.

DATA:
The integer value to replace the existing value contained in the specified first word. if
more than one value is specified, they must be separated by commas; it is assumed
these values are to replace the existing values contained in successive words, begin-
ning with the first word.

8.3.2.2 Modify Allocatable Disk Unit — MADU. The MADU command is used to modify a
specified allocatable disk unit (ADU). If verification data does not match the data already on the
disk, modification will not be performed.

All disks on a DNOS system are addressed in ADUs. The maximum number of ADUs on a disk is
65,535. Therefore, if a disk contains more than 65,535 sectors, multiple sectors are used as ADUs.
ADUs are the basic addressable disk unit in a DNOS system.

Prompts:

MODIFY ALLOCATABLE DISK UNIT
DISK UNIT: devicename@
OUTPUT ACCESS NAME: [pathname@] (")

ADU NUMBER: integer exp

SECTOR OFFSET: integer exp

FIRST WORD: integer exp

VERIFICATION DATA: [integer exp list]
DATA: integer exp list

2270508-9701 8-15

8.3.2.3 Debugging a Pregram

Prompt Details:

DISK UNIT:
The device name of the disk assigned during system generation. Normally, the
characters DS01 are used for the system disk and DSOx for other disks on the system,
where x is a digit greater than one.

OUTPUT ACCESS NAME:
The device or file name where the resuits of the ADU modification are to be listed. The
default value is the terminal local file.

ADU NUMBER:
The integer value which is the ADU with contenis to be modified.

SECTOR OFFSET:
The integer value which is the sector of the ADU with contents to be modified.

FIRST WORD:
The integer value which is the starting word offset, within the specified sector, where
modifications of the ADU are to begin.

VERIFICATION DATA:
If specified, the integer value contained in the specified first word address. If more than
one integer is specified, they must be separated by commas; it is assumed these values
are contained in successive words, beginning with the specified first word.

DATA:
The integer vaiue to replace the existing value contained in the specified first word. If
more than one value is specified, they must be separated by commas; it is assumed
these values are to replace the existing values contained in successive words, begin-
ning with the first word.

8.3.2.3 Modify Internal Registers — MIR. The MIR command is used to modify the internal
registers of a task: program counter (PC), workspace pointer (WP), and status register (ST). If the
task being debugged is not a privileged task, then only bits 0 through 6 of the status register can
be modified with this command. if the task is not unconditionally suspended, it is temporarily
suspended while the command is interacting with the register modification.

As in the Modify Memory (MM) command, the MIR command is interactive; the RETURN key may
be pressed after the register and its contents have been displayed and/or modified to cause the
next register and its contents to be displayed. Also, by pressing the Command (CMD) key, SCl is
returned to command mode.

If the internai registers to be modified are for a system task, the user must have a privileged user
ID.

Prompts:

MODIFY INTERNAL REGISTERS
RUN !

D: integer ™

8-16 2270508-9701

Debugging a Program 8.3.2.4

Prompt Details:

RUN ID:
A valid run ID in the user’s job. Current run IDs may be obtained by executing the Show
Task Status (STS) command.

8.3.2.4 Modify Memory — MM. The MM command is used to modify the memory image of a
task, starting at the address specified. if the task is not unconditionally suspended, it is tem-
porarily suspended while the command is interacting. Swapping does not affect the modification
process. Consecutive memory addresses, and their values, may be displayed and/or modified by
pressing the RETURN key. Pressing the Command (CMD) key will return SCI to command mode.

Prompts:

MODIFY MEMORY
RUN ID: integer *)
ADDRESS: full exp

Prompt Details:

RUN ID:
A valid run ID in the user’s job. Current run IDs may be obtained by executing the Show
Task Status (STS) command.

ADDRESS:
The integer value of the first memory address to be modified.

8.3.2.5 Modify Program Image — MPIl. The MPI command is used to modify a program (defined
to be a task, procedure, or overlay) in a specified program file.

Prompts:

MODIFY PROGRAM IMAGE

PROGRAM FILE: filename@ *)
OUTPUT ACCESS NAME: [pathname@] *
MODULE TYPE: {T/P/OIS} "
MODULE NAME OR ID: {alphanumeric/integer} ")
ADDRESS: integer ™

VERIFICATION DATA: [integer(s)]

DATA: integer(s)
CHECKSUM: [integer(s)]
RELOCATION OF DATA?: [YES/NO...YES/NQ]

Prompt Details:

PROGRAM FILE:
The file name of or the LUNO assigned to the program file on which the program (task,
procedure, segment, or overlay) to be modified has been installed. If a LUNO is
specified in response to this prompt, it must be assigned prior to the execution of the
MPI command. If zero is specified, the .S$SHARED program file is assumed.

2270508-9701 8-17

8.3.2.6 Debugging a Program

OUTPUT ACCESS NAME:
The device name or file name where the results of the memory image medification of
the program are to be written. If a null response is specified, the terminal local file is
used.

MODULE TYPE:
The type of program with a memory image to be modified. The following characters are
valid responses:

Task

Procedure
Overlay

Program Segment

Nnoo-

MODULE NAME OR ID:
The character(s) or the associated ID which identifies the program on the specified pro-
gram file.

ADDRESS:
The integer value which is the starting address of the memory image to be modified.

VERIFICATION DATA:
If specified, the integer value contained in the specified starting address. If more than
one integer is specified, they must be separated by commas; it is assumed these values
are contained in consecutive memory addresses, beginning with the specified starting
address.

DATA:
The integer value to replace the existing value contained in the specified starting
address. If more than one value is specified, they must be separated by commas; it is
assumed these values are to replace the existing values contained in consecutive
memory addresses, beginning with the specified starting address.

CHECKSUM:
The checksum is an exclusive OR of each word of new data. If the checksum is not
known and a null response is entered, the checksum will be printed to the device or file
specified in response to the OUTPUT ACCESS NAME: prompts.

RELOCATION OF DATA?:

i HH il i + a4 H H vy
if YES is specified, the data value will be relocated when the task is loaded into memory

for execution. NO specifies that the data value will not be reiocated. if a list of data
values are specified in response to the DATA prompt and relocation is desired, the user
must specify which values are to be relocated. That is, a YES or NO response must be
entered for each corresponding data value. If there is a list of YES or NO responses,
they must be separated by commas.

8.3.2.6 Modify Relative to File — MRF. The MRF command changes data at an absolute word
address within a file. It is assumed that the user has knowledge of the fiie and disk structure.
Addresses above 64K (65,536) bytes must have a record number and sector offset supplied by the
user. Words below 64K bytes can be addressed directly and the sector is located by the program.
Verification should be used, when possible.

8-18 2270508-9701

Debugging a Program 8.3.2.6

Prompts:

MODIFY RELATIVE TO FILE
PATHNAME: filename@ (*)
OUTPUT ACCESS NAME: [pathname@] ")
RECORD NUMBER: integer (")
FIRST WORD: integer ("

VER!FICATION DATA: [integer...integer]
DATA: integer...integer
CHECKSUM: [integer]

Prompt Details:

PATHNAME:
The file name with contents to be modified.

OUTPUT ACCESS NAME:
The device name or file name where the results of the MRF command will be listed. If a
null response is specified, the terminal local file is used.

RECORD NUMBER:
The integer value which is the physical record number within the file to be modified. If
the specified word address is over 64K bytes, the user must supply the sector offset as
the response to this prompt.

FIRST WORD: .
The integer value which is the starting byte offset where the modification of the record
is to begin. The byte offset must be on an even boundary.

VERIFICATION DATA:
If specified, the integer value contained in the specified first word address. If more than
one integer is specified, they must be separated by commas; it is assumed these values
are contained in successive word addresses, beginning with the specified first word
address.

DATA:
The integer value to replace the existing value contained in the specified first word
address. If more than one value is specified, they must be separated by commas; it is
assumed these values are to replace the existing values contained in successive word
addresses, beginning with the specified first word address.

CHECKSUM:
The checksum is an exclusive OR of each word of new data. If the checksum is not
known and a null response is entered, the checksum will be printed to the device or file
specified in response to the OUTPUT ACCESS NAME: prompt.

2270508-9701 8-19

8.3.3.3 Debugging a Program

8.3.3.3 Delete and Proceed from Breakpoint — DPB. The DPB is used to proceed from a bre:

already been deleted, the command functions as if it were a Proceed from Breakpoint (F
command.

Prompis:

DELETE AND PROCEED FROM BREAKPOINT
RUN ID: integer)
DESTINATION ADDRESS(ES): ([full exp list]

Prompt Details:

RUN ID:
A valid run ID in the user’s job. Current run IDs may be obtained by executing the Shc
Task Status (STS) command.

DESTINATION ADDRESS(ES):
The integer value(s) of the address(es) within the task which are additional breakpoir
to be set. A null response specifies that no new breakpoints are to be set.

8.3.3.4 Proceed from Breakpoint — PB. The PB command is used to resume execution of
task that is stopped at a breakpoint without deleting the breakpoint. The task is resume
executing the instruction at the breakpoint at which it is currently stopped; however, the brec
point remains active. If the task is not currently at a breakpoint, the user is notified by a warni
message that the task is not at a breakpoint, and the task remains in whatever state it was
before the PB command.

The PB command may also be used to assign new breakpoints in the specified task by respondii
to the DESTINATION ADDRESS(ES) prompt. Breakpoints are set, if possible, at all the specifi
destination addresses. If no destination address(es) is specified, the task resumes execution b
no breakpoints are set.

Prompts:

PROCEED FROM BREAKPQINT
RUN ID: integer ™
DESTINATION ADDRESS(ES): [full exp list]

Promipt Details:

RUN ID:
A valid run ID in the user’s job. Current run IDs may be obtained by executing the Shc
Task Status (STS) command.

DESTINATION ADDRESS(ES):
The integer value(s) of the address(es) within the task where the new breakpoints are
occur. Addresses must be separated by a comma. The default value is no ne
breakpoints.

8-22 2270508-9°

Debugging a Program 8.3.4

8.3.4 Task Control Commands
The control commands are used to unconditionally suspend and activate the task during the
debugging process.

8.3.4.1 Activate Task — AT. The AT command is used to activate an unconditionally sus-
pended task.

Prompts:

ACTIVATE TASK
RUN ID: integer *

Prompt Details:

RUN ID:
A valid task run ID in the user’s job. Current run IDs may be obtained by executing the
Show Task Status (STS) command.

8.3.4.2 HaltTask — HT. The HT command is used to unconditionally suspend a task at the end
of the current time slice. If the task is already unconditionally suspended, it has no effect on the
task. If the task is not in the active state, the HT command waits five seconds for the task to reach
unconditional suspend, then gives the user the option of aborting or continuing to wait. This
option occurs every five seconds if the task is not active and the HT command is executed.

If the task cannot be suspended, the following message is displayed:

UNABLE TO SUSPEND TASK. CURRENT STATESXX. CONTINUE COMMAND?
If a YES response is entered, another attempt is made to suspend the task. If unsuccessful, the
message is displayed again. A NO response to the preceding message causes the foiiowing
message to be displayed:

DO YOU WISH TO LEAVE SUSPENSION PENDING?

A YES response leaves the suspension pending, while a NO response terminates the suspension
attempt.

If the specified task is a system task, the user must have a privileged user ID.
Prompts:

HALT TASK
RUN ID: integer (*)

Prompt Details:
RUN ID:

A valid run ID in the user’s job. Current run IDs may be obtained by executing the Show
Task Status (STS) command.

2270508-9701 8-23

8.3.4.3 Resume Task — RT. The RT command is used to activate a task at the point at which it

T H
was Suspendwd The Sp-‘:,—‘c.ued task must be unconditionally su

executed or an error is indicated. The Delete Breakpoint (DB) and the RT command, Delete and
Proceed from Breakpoint (DPB) or Proceed from Breakpoint (PB) commands must be used to
restart a task halted at a breakpoint. The RT command should be used instead of the Activate
Task (AT) command, to reactivate a task halted by the Halt Task (HT) command.

n
HvuUHdnuviian y ouSpenucu ""’hen th!s C\JIIIIII Ild IS

Prompts:

RESUME TASK
RUN ID: integer *)

Prompt Details:

RUN ID:
The response to this prompt must be a valid run ID in the user’s job. Current run IDs may
be obtained by executing the Show Task Status (STS) command.

8.3.4.4 Execute in Debug Mode — XD. The XD command is used to place a specified task inte
controlied mode. The run-time ID is optional but cannot be the ID of a system task. If no run-time
ID is specified, an automatic call is made to the Execute and Halt Task (XHT) command to place
the task into execution.

The symbol table object file is optional and its presence determines whether symbolic expres-
sions are allowed on any of the subsequent debug commands. If a symbol table was specified to
the Link Editor (SYMT option was selected) and if the controlied task symbol table object file is
specified, then symbolic expressions involving symbols in the object code symbol table may be
used in commands that call for string parameters.

The debugger may be used to simulate 990 computer object code. The command defaults to the
object code of the host computer.

Only one task for each station may be in debug mode at a given time.
Prompts:

EXECUTE IN DEBUG MODE
RUN ID: [integer] ("
SYMBOL TABLE OBJECT FILE: [filename@] *)
{

990/12 OBJECT CODE?: YESINO
Prompt Details:
RUN ID:

A valid run ID in the user’s job. Current run IDs may be obtained by executing the Show
Task Status (STS) command.

If a null response is specified, the prompts for the Execute and Halt Task (XHT)

command are displayed. Refer to the XHT command for information concerning
responses to these prompts.

8-24 2270508-9701

Debugging a Program 8.3.4.5

SYMBOL TABLE OBJECT FILE:
The file name specified to the Link Editor if the SYMT option has been selected. By
specifying this file name in response to the prompt, the user is allowed to use symbolic
expressions which involve symbols in the object code symbol table on any debug
command prompt which calls for a character(s) response. If a null response is entered,
no symbol table file is used and symbolic expressions are not allowed.

990/12 OBJECT CODE?:
If YES is entered in response to this prompt, the debugger will simulate 990/12 object
code if executing on a 990/12 computer. If NO is entered, the debugger will simulate
990/10 object code whether executing on a 990/10 or 990/12 computer.

8.3.4.5 Execute and Halt Task — XHT. The XHT command is used to place a task in memory in
a suspended state so that it can be debugged. Typically, the user places the task to be debugged
in memory using XHT, establishes the debug environment (including breakpoints), and then
activates the task using the Resume Task (RT) command.

Prompts:

EXECUTE AND HALT TASK
PROGRAM FILE OR LUNO: {filename@/integer} (
TASK NAME OR ID: {alphanumeric/integer} (
PARM1: integer (
PARM2: integer (
STATION ID: {integer/ME} (

Prompt Details:

PROGRAM FILE OR LUNO:
The file name of or the LUNO assigned to the program file on which the task has been
installed. If a LUNO is specified in response to this prompt, it must be assigned prior to
the execution of the XHT command. If zero is specified, the .S$SHARED program file is
used.

TASK NAME OR ID:
The name or the associated installed ID of the task whose execution is to be halted.

PARM1:

An integer value to be passed to the task being halted, determined by the programmer
who wrote the task.

PARM2:

A second integer value to be passed to the task being halted, determined by the pro-
grammer who wrote the task.

STATION ID:
The station ID (e.g., 1, 2) with which the task is to be associated or the two-character
pseudo device name of ME. If >FF is entered, the task is not associated with any
station.

2270508-9701 8-25

8.3.5 Debugging a Program

8.3.5 Search Commands
The search commands are used to search for the s
8.3.5.1 Find Byte — FB. The FB command is used to search for the specified value(s) in a
memory area of a task; with the search beginning on a byte boundary. If the specified value is
found, the corresponding memory address is displayed. if the task is not unconditionally
suspended, it is temporarily suspended while the search is performed.

Prompts:

FIND BYTE
RUN ID: integer ™)
VALUE(S): full exp list
STARTING ADDRESS: [full exp]
ENDING ADDRESS: {[full exp]

Prompt Details:

RUN ID:
A valid run ID in the user’s job. Current run IDs may be obtained by executing the Show
Task Status (STS) command.

VALUE(S):
The integer value(s) to find in the memory area of the task.

STARTING ADDRESS:
The integer value which is the starting address of the memory area to be searched. The
default is zero.

ENDING ADDRESS:
The integer value which is the ending address of the memory area to be searched. The
default is end of task.

8.3.5.2 Find Word — FW. The FW command is used to search for the specified value(s) in a
memory area of a task; with the search beginning on a word boundary. If the specified value is
found, the corresponding memory address is displayed. If the task is not unconditionally
suspended, it is temporally suspended while the search is performed.

Prompts:

FIND WORD
RUN ID: integer (")
VALUE(S): full exp list
STARTING ADDRESS: [full exp]
ENDING ADDRESS: [full exp]

Prompt Details:
RUN ID:

A valid run ID in the user’s job. Current run IDs may be obtained by executing the Show
Task Status (STS) command.

8-26 2270508-9701

Debugging a Program 8.3.6

VALUE(S):
The integer value(s) to find in the memory area of the task.

STARTING ADDRESS:
The integer value which is the starting address of the memory area to be searched. If an
odd address is specified, the address is rounded up to the nearest even value. The
default is zero.

ENDING ADDRESS:
The integer value which is the ending address of the memory area to be searched. The
default address is the end of task.

8.3.6 Controlled Task Commands
The control commands allow control and trace execution of instructions in a task until:

s The execution of a specified number of instructions has been simulated.
¢ A specified address is placed in the PC.
. A breakpoint or simulated breakpoint occurs.

8.3.6.1 Assign Simulated Breakpoint — ASB. The ASB command is used to set up a breakpoint
on a range of values for memory as follows:

. Memory alteration (A)

. CRU access (C)

) Program Counter value (P)
¢ Memory references (R)

. Status register value (S)

A memory write operation, which does not change the value in memory, is not a memory altera-
tion. The breakpoints set with this command are only valid during a Simulate command. Break-
points, in this case, are conditions which stop execution but allow execution to be resumed by an
operator command, either by using the Resume Simulated Task (RST) command or by pressing
the F3 function key. Each simulated breakpoint is assigned a number which is displayed at the
completion of the ASB command. When a breakpoint occurs during simulation, a panel and the
breakpoint number are displayed along with the display string.

Prompts:

ASSIGN SIMULATED BREAKPOINT
ON (A,C,P,R,S): {AICIPIRIS} (PC)
FROM: full exp
THRU: [full exp]
COUNT: full exp (1
DISPLAY: [full exp]

2270508-9701 8-27

8.3.6.2 Debugging a Program

Prompt Details:

ON (A,C,P,R,S):
The characters A, C, P, R, S are valid responses to this prompt and have the following
meanings:

Memory alteration
CRU access

Program Counter value
Reference (memory)
Status Register value

NnIVWOO>P
I I TR T |

FROM:
The integer expression that specifies the lower address limit for breakpointing.

THRU:
The integer expression that specifies the upper address limit for breakpointing. The
default value is the value specified for the FROM: prompt.

COUNT:
The integer expression that specifies the number of times this breakpoint is to be
encountered before execution is halted. The default value is one.

DISPLAY:
The integer expression that specifies the memory address to be displayed when this
breakpoint is reached. The default value is the PC value at the time the breakpoint is
reached.

8.3.6.2 Delete Simulated Breakpoints — DSB. The DSB command is used to allow the user to
delete a list of simulated breakpoints assigned with the Assign Simulated Breakpoint (ASB)
command.

Prompts:

DELETE SIMULATED BREAKPOINTS
BREAKPOINT NUMBERS: [full exp list/ALL]

Prompt Details:

BREAKPOINT NUMBERS:
The integer value that specifies the number of the breakpoint to delete, which was the
breakpoint number returned by the ASB command. If the characters ALL are entered, all
the simulated breakpoints are deleted. The default is the breakpoint at which the task is
stopped. Current simulated breakpoints may be obtained by executing the List
Simulated Breakpoints (LSB) command.

8.3.6.3 List Simulated Breakpoints — LSB. The LSB command is used to display all current
simulated breakpoints. When the breakpoints are listed, the first column of the display lists the
numbers assigned when the breakpoints were set; the numbers start at one and are consecutive.

identify the value on which the breakpoint was set, and the FROM and THRU columns list the

8-28 2270508-9701

Debugging a Program 8.3.6.4

corresponding operand addresses. The COUNT column lists the count operand entered when the
breakpoints were set, and the REMAINING column lists the number of times the program has yet
to go through the breakpoint. The DISPLAY column lists the display operand.

When the operands represent CRU addresses or ST register values, the operands are listed as
hexadecimal numbers.

Prompts:
None

8.3.6.4 Quit Debug Mode — QD. The QD command is used to take a controlled task out of
debug mode. The user has the option of killing the task at this point. If the user chooses not to kill
the task, it will be left unconditionally suspended; but the user may still issue any of the general
SCl commands. The Resume Task (RT) or Proceed from Breakpoint (PB) commands (depending on
whether the task is at a breakpoint) may be used to activate the task.

The RT command is discussed in the task control commands paragraphs.
Prompts:

QUIT DEBUG MODE
KILL TASK ?: YES/NO (YES)

Prompt Details:

KILL TASK?:
If YES is entered, the current executing task will be killed. The task then executes its
end-action routine. If NO is entered, the current executing task will be unconditionally
suspended.

8.3.6.5 Resume Simulated Task — RST. The RST command is used to allow the user to resume
simulation following a breakpoint, a simulated breakpoint, or simulation of a specified number of
instructions. The last entered values for the FOR: and TO: prompts of the Simulate Task (ST) com-
mand are used as the RST limits. Upon reaching a terminating condition (breakpoint, simulated
breakpoint, time-out or the value specified for the TO: prompt), a panel and termination reason are
displayed. Simulation may be continued by pressing the F3 function key or terminated by press-
ing the Command (CMD) key, which returns SCI to the command mode.

8.3.6.6 Simulate Task — ST. The ST command is used to provide controlled and traced execu-
tion of the instructions in a task. Controlled execution continues until the execution of a specified
number of instructions has been simulated or until a specified address is placed in the PC or until
a breakpoint or simulated breakpoint occurs. Simulation may be continued by pressing the F3
function key.

Simulated execution continues without operator intervention and locks out further SCl com-
mands. Following simulation of the instruction whose address is specified by the response to the
TO: prompt, SCI displays the panel and halts simulation. The user can regain SCI capabilities by
pressing the Command (CMD) key to return to command mode.

2270508-9701 8-29

8.4 Debugging a Pregram

When the number of specified simulations has been performed, SCI displays the following
message and haits simuiation:

TIME OUT
Prompts:

SIMULATE TASK

FOR: [full exp] "
FROM: [full exp]
TO: [full exp]

Prompt Details:

FOR:

The integer expression that specifies the number of instruction simulations to be per-
formed and must be less than or equal to 32,767. When the specified number of simula-
tions has been performed, SCI displays the following message and halts simuiation:

TIME OUT

If a null response is entered for this prompt, the value specified in a previous ST com-
mand is used; if no previous ST commands were executed, a one is used.

FROM:

The integer expression that specifies the address of the first instruction to be
simulated. If a null response is entered in response to this prompt, simulation begins at
the instruction with an address in the PC.

TO:

The integer expression that specifies the address of the last instruction to be
simulated. The integer expression entered may be less than that entered for the FROM
command. If a null response is entered in response to this prompt, simulation con-
tinues until a breakpoint or simulated breakpoint is encountered or until the user
presses the CMD key, returning SCI to command mode.

Messages:
STOP AT TRAP NO. X

where X is the number of the simulated breakpoint set through the Assign Simulated Break-
point (ASB) command.

8-30 2270508-9701

8.4 STATION DEPENDENT DISPLAYS

Debugging a Program 8.4

As mentioned previously, the displays generated by debugging SCl commands vary in format and
content depending on the display device. High-speed display terminals (such as Video Display
Terminals) display more information than slower, hard copy terminals. Table 8-2 lists the display
generated by several of the debug commands in varying environments.

Table 8-2. Command Displays

Hard Copy Hard Copy VDT VDT
Command Regular Debug Regular Debug
AB — — — PANEL
DB — — — PANEL
PB — — — PANEL
DBP — — — PANEL
LB BRKPTS BRKPTS BRKPTS BRKPTS
HT — — — PANEL
RT — — — PANEL
MM INTERACT INTERACT INTERACT INTERACT PANEL
LM TLF TLF LF TLF
Fw MSG OR TLF MSG OR TLF MSG OR TLF MSG + PANEL OR TLF
FB MSG OR TLF MSG OR TLF MSG OR TLF MSG + PANEL OR TLF
SIR INT REG INT REG PANEL PANEL
MWR INTERACT INTERACT INTERACT INTERACT PANEL
SWR WKSPC WKSPC PANEL PANEL
SP PANEL PANEL PANEL PANEL
sV VALUES VALUES VALUES VALUES
XD — — — PANEL
ASB — — — BRKPT NO. + PANEL
DsSB — — — PANEL
LSB — SIMULATED BRKPTS — SIMULATED BRKPTS
ST — TRAP#OR'TIMEOUT - TRAP#OR'TIMEOUT’
+ PANEL
RST — TRAP#OR'TIMEOUT’ - TRAP#OR'TIMEOUT’
+ PANEL
QD — — — —
BRKPTS = Breakpoints TIMEOUT = Time-out
INTERACT = Interactive - TLF = Terminal local file
INT REG = Internal registers TRAP#OR = Trap number

MSG = Message

WKSPC = Workspace

PANEL = Debug panel

2270508-9701

8-31/8-32

9

Assembly Language Program Example

9.1 EXAMPLE PROGRAMMING

This paragraph describes a simple procedure for creating and executing an assembly language
program using DNOS. This brief program is assembled with the SYMT command entered in the
OPTIONS?: prompt of the Execute Macro Assembler (XMA) command.

This program may be assembler without the Symbol Table by omitting the SYMT OPTION in the
XMA command; however, symbolic debugging cannot be performed without the Symbol Table.

The program is debugged in three different ways:

° Symbolic Debugging — The Symbol Table is supplied to the linked object making the
addresses of the labels in the program recognizable to the debugger.

. Breakpoint Debugging — Breakpoints are assigned to addresses in the executed pro-
gram. When a breakpoint is reached, execution halts, and the panel is displayed, show-
ing the address values of the breakpoint.

o Simulated Debugging — Used in the same example as the symbolic debugging. The
address values are displayed for the address range specified during the Assign
Simulated Breakpoints (ASB) command until a breakpoint or end of execution is
reached.

The examples also explain how to write messages to the terminal, or to an assigned file by assign-
ing a Logical Unit Number (LUNO) to the terminal or file.

An example is supplied, near the end of the section, describing the execution of a previously
debugged program.

For more detailed information on how to code a program, consult the Assembly Language
Reference Manual.

The brief assembly language example given in this section displays a message and requests the
input of three numbers. The program, for this example, was used as the Text Editor Example
(Figure 4-1) and entered in file .USER.SOURCE.

The procedures given in this section are for use on a 911 VDT.

2270508-9701 9-1

9.2 Assembly Language Program Example

The directory .USER, previously created in the section on building a program, is used to simplify
fiie references during assembiy and execuiion. A suggesied syntax is as foiiows:

Source file: .USER.SOURCE
Obiject file: .USER.OBJECT
Listing file: .USER.LISTING
Link edit listing file: .USER.LNKLIST
Linked output file: .USER.LNKOUT
Error file; .USER.ERROR
Message file: .USER.MESSAGE
Link edit control file: .USER.CNTRLINK

The volume name is optional if the system disk (DS01) is used, and it may be omitted.

The .USER.SOURCE file is already created. The remaining files, except .USER.MESSAGE are
created automatically by the following procedures. It is necessary to create the file
.USER.MESSAGE, using the Create File Sequential (CFSEQ) command, as shown below:

[] CFSEQ

CREATE SEQUENTIAL FILE

PATHNAME: .USER.MESSAGE
LOGICAL RECORD LENGTH: <Press RETURN>

v 1 lelel=1a Nl n . . DCTI
PHYSICAL RECORD LENGTH: <Press RETURN>

INITIAL ALLOCATION: <Press RETURN>
SECONDARY ALLOCATION: <Press RETURN>
EXPANDABLE?: YES
BLANK SURPRESS?: NO
FORCED WRITE?: NO
The messages produced by the program are written to this file instead of the terminal, since SCi
has command of the terminal.

9.2 REVIEW OF TEXT EDITING
A quick review on entering the program into the computer is discussed in this paragraph.
1. Power up the computer and terminal and log-on using the procedures given in Section 2.

2. Invoke the Text Editor by entering the Execute Editor (XE) command. The following
parameter appears:

[1XE

EXECUTE TEXT EDITOR
FILE ACCESS NAME: <Press TAB key>

3. Press the unlabeled gray key or the RETURN key to create the first blank line above the

*EQF record.

9-2 2270508-9701

Assembly Language Program Example 9.3

4. Type in the program source code.
5. Press CMD, after entering the source code, to leave the compose mode.

6. Enter the Quit Editor (QE) command to quit the Text Editor. Select the following
parameters:

[1QE

QUIT EDIT
ABORT?: NO

QUIT EDIT
OUTPUT FILE ACCESS NAME: .USER.SOURCE
REPLACE?: NO
MOD LIST ACCESS NAME: <Press RETURN>

9.3 ASSEMBLE THE PROGRAM

1. Invoke the macro assembler by entering XMA command and select the following
parameters:

[1XMA

EXECUTE MACRO ASSEMBLER
SOURCE ACCESS NAME: .USER.SOURCE
OBJECT ACCESS NAME: .USER.OBJECT
LISTING ACCESS NAME: .USER.LISTING
ERROR ACCESS NAME: .USER.ERROR
OPTIONS: SYMT
MACRO LIBRARY PATHNAME: <Press RETURN>
PRINT WIDTH (CHARS): 80
PAGE LENGTH (LINES): 60

2. Enter the Wait command.
[1WAIT
—WAITING FOR BACKGROUND TASK TO COMPLETE—
3. When the assembly completes, the following message is displayed:

| ASSEMBLER-0001 MACRO ASSEMBLY COMPLETE, 0000 ERROR(S) 0000
WARNING(S)

4. Press the RETURN key to return to the command mode.

2270508-9701 9-3

9.4 Assembly Language Program Example

9.4 LINK EDIT THE OBJECT CODE

1. First create a command file for the Link Editor. invoke the Text Editor by entering XE
command. Press the TAB key to clear the display.

[1XE

INITIATE TEXT EDITOR
FILE ACCESS NAME: <Press TAB key>

2. Place the Text Editor in compose mode by pressing F7 and then press the unlabeled
gray key for the first blank line above the EOF* record.

3. Enter the following lines into the control file:
TASK TEST
INCLUDE .USER.OBJECT
END
4. lLeave the compose mode by pressing the CMD key.

5. Quit the Text Editor by entering QE. Select the following parameters:

[1QE
QUIT EDIT
ABORT?: NO
QUIT EDIT
OUTPUT FILE ACCESS NAME: .USER.CNTRLINK
REPLACE?: N

MOD LIST ACCESS NAME: <Press RETURN>

6. Invoke the Link Editor by entering the Execute Link Editor (XLE) command. Select the
following parameters:

[]XLE
EXECUTE LINK EDITOR
CONTROL ACCESS NAME: .USER.CNTRLINK
LINKED OUTPUT ACCESS NAME: .USER.LNKOUT
LISTING ACCESS NAME: .USER.LNKLIST
PRINT WIDTH (CHARS): 80 <Press RETURN>

7. The SCI prompt [] appears, enter the WAIT command and press RETURN key. The
following display appears:

[IWAIT

—WAITING FOR BACKGROUND TASK TO COMPLETE—

9-4 2270508-9701

Assembly Language Program Example 9.5

When the Link Editor terminates, the following is displayed:
| LINKER-0001 LINK EDITOR COMPLETED, 0 ERROR(S), 0 WARNING(S)

8. Press the CMD key to return to command mode.

9.5 INSTALL THE PROGRAM

The program must now be installed as a DNOS task by use of the Install Task (IT) command. A pro-
gram file is required for the IT command. The .USER.PROGA program file created in Section 6, can
be used in this example. Perform the following steps to install the task:

1. Enter the IT command to place the program on .USER.PROGA program file. Specify the
following parameters:

[HIT
INSTALL TASK SEGMENT

PROGRAM FILE OR LUNO: .USER.PROGA
TASK NAME: TEST

TASKID: 0
OBJECT PATHNAME OR LUNO: .USER.LNKOUT
PRIORITY: 4

DEFAULT TASK FLAGS?: YES
ATTACHED PROCEDURES: NO

The installed ID is displayed in the following form when the installation is completed:

TASK NAME = TEST
TASK ID = >run-time ID

2. Press the CMD key to return to the command mode.

3. The program uses LUNO >20 and the LUNO must be assigned to either the VDT or the
file USER.MESSAGE. For the first examples the LUNO is assigned to .USER.MESSAGE.
Cali the Assign Luno (AL) command and respond as follows:

[TAL
ASSIGN LUNO
LUNO: >20
ACCESS NAME: .USER.MESSAGE
PROGRAM FILE?: NO
The message ASSIGNED LUNO: >20 is then displayed.

4. Press the CMD key to return to the command mode.

2270508-9701 9-5

9.6 Assembly Language Program Example

9.6 EXECUTE THE PROGRAM — SYMBOLIC DEBUGGING WITH SIMULATION

Symbolic debugging involves the use of the Symbol Table. During the XMA command, the
OPTIONS: SYMT must be entered to include the Symbol Table in the object code. Inclusion of the
Symbol Table allows you to reference addresses by the label name rather than the address on any
SCl command where an address is required, such as SP and AB. An example of the object code
containing the Symbol Table information is shown in Figure 9-1.

Notice the tag character, address, and label are presented at the bottom of the code. For example

’

GO12ECLOSE
To execute the program:

1. Use the Execute and Halt Task (XHT) command. Use of this command activates the task
but does not begin execution. When XHT is entered, the following prompt is displayed.
Respond as shown:

[1XHT

EXECUTE AND HALT TASK
PROGRAM FILE NAME OR LUNO: .USER.PROGA
TASK NAME OR ID: TEST

PARM1: O
PARM2: 0

STATION ID: ME
The following message appears:
RUNTIME TASK ID = >run-time ID

2. Note that the run-time ID of the task is returned on the display. Remember the run-time
ID for the next step. Return to the command mode.

001 5CRESPONSEADOGOCO006C01 3CBOCODAGO0LAC0R26B0000BOO20B0O0D0BOOOO7F211F RESFO0O1
BOOOQBOOO0OBOO0OBOBR20B0000C0O03EBCOO0BO04ABOAODBAB4ASBACACRBAF2CB20507F iCFF RESPOOOR
B4C45B4153B4520B494EB5055B542084E55B4D42B4552B204FB4620B4954B454D7F 187F RESPOO03
B5320B534FB4C44B2054B4F 44B4 1 5PB2E20R2055E5345B2034B2D44B4947R49547F 199F RESPOOO4
B204EB554DB4245B5253B2E00A0086B040DB0OC0O0OBOB20B0040CO0ABBO0O00OBOO0OATF1ICBF RESPOOOS
C00946C009CBO0O04BOCO0A00FCADOABBOAODB49548454DB2031B2020B0000B0OB207F 1DIF RESPO006
BO040C00CABOO0OBOO0ACGOCOCO0ADBCS04BOCOOBLACDE4254B454DR2032R20207FIEFF REGPODOY
BOOOOBOB20B0O040CO0E4BOO00OBOOOACOODECOOAZBO004BOO00BOAODB4954B454D7F 1CEF RESPOOOB
B2033B2020B2000A00F0OB0O0CO0OBOB20BCO00COOFCBOO0OOBO0O32B0A0DE5448B414E7F1F1IF RESPOOO?
B4B20B594FB5520B4464FB5220B594F35552B2050B5552B4348B4153B452EB20487F197F RESPOO10
B4156B4520B4 120B4E47B4345B2044B41 59B2E00AC12CBOAODBO0OOBO120BO0OO07FIESF RESPOO11
BCCOOBOO0OOBOOCOB0400B2FEQCOO26B2FEOCO032B2FECCOOBBB2FEOCOOB2B2FEC7F195F RESPOO1IZ

COODOB2FEOCOOFOB2FEOCO12EB2FEOCO13A7F7D9F RESPOO13
GO12ECL.OSE GO13AEOP GOOFCGOODBYGOO3EGREET GOOABITEML 7F26AF RESPOO14
GOOCLITEM2 GOOE4ITEM3 GO032MSSGO GOOBBMSSG1 GOOB2MSSG2 7F2A7F RESPOO15
GOODOMSSG3 GOOFOMSSG4 GOO260PEN 2013CGOI3CSTART GOOPCSTORE 7F150F RESPOO16
GO0965TR1 GOOCOSTRZ GOODESTR3 GOOO&WSP 7FSC1F RESPOO17
: RESPONSE RESPOQIR

Figure 9-1. Object Code with Symbol Table

9-6 2270508-9701

Assembly Language Program Example 9.6

3. Place the task in the debug mode by entering the Execute Debug (XD) command. Res-
pond to the following prompts (answer NO to the 990/12 OBJECT CODE, if using 990/10
system.), as shown:

[1XD
EXECUTE IN DEBUG MODE
RUN ID: >run-time ID
SYMBOL TABLE OBJECT FILE: .USER.LNKOUT
990/12 OBJECT CODE?: YES

4. The contents of the panel appear.

5. Assimulated breakpoints may be assigned to aid in debugging by entering the ASB
command, as follows:

[]ASB

ASSIGN SIMULATED BREAKPOINT
ON (A,C,P,R,S): PC (default)

FROM: >14E
THRU: >14E
COUNT: 1
DISPLAY:

The panel display and message SIMULATED BREAKPOINT 1 appear. Press the
RETURN key.

6. To begin execution of the task, use the Simulate Task (ST) command. The prompts and
responses are as follows:

[1ST
SIMULATE TASK
FOR: 100
FROM: <Press RETURN>
TO: <Press RETURN>

The panel display for address >14E appears on the screen, with the message STOP AT
TRAP #1. Press the CMD key to return to the command mode.

7. To exit the debug mode, enter the Quit Debug (QD) command and respond as below:
[1QD

QUIT DEBUG MODE
KILL TASK?: NO <Press RETURN>

2270508-9701 9-7

9.7 Assembly Language Program Example

8. To resume execution from the breakpoint enter the Resume Task (RT) command, as
shown beiow:

[IRT

RESUME TASK
RUN ID: >run-time ID <Press RETURN>

9. The test program has executed. Perform a Show File (SF) command on the file
.USER.MESSAGE. The following messages appear in the file.

GOOD MORNING, PLEASE INPUT NUMBER OF ITEMS SOLD TODAY. USE 4-DIGIT
NUMBERS.

ITEM 1
ITEM 2

ITEM 3
THANK YOU FOR YOUR PURCHASE. HAVE A NICE DAY.

Press the CMD key to return to the command mode.

10. Execute the Release Luno (RL) command, to release LUNO >20 assigned to
.USER.MESSAGE, as shown below:

[1RL

RELEASE LUNO
LUNO: >20

11. Delete file .USER.MESSAGE with the Delete File (DF) command, as shown below:
{j DF
DELETE FILE
PATHNAME(S): .USER.MESSAGE
9.7 EXECUTE THE PROGRAM — BREAKPOINT DEBUGGING

In this example, the RESPONSE program is debugged using assigned breakpoints, and the
responses are written to USER.MESSAGE file.

1. Create the .USER.MESSAGE file and assign LUNO >20 to the file, as shown above.

9-8 2270508-9701

Assembly Language Program Example 9.7

To execute the task, use the XHT command. Use of this command activates the task but
does not begin execution. The XHT command is useful when the debugging commands
are to be used for the task. When XHT is entered, the following prompt is displayed.
Respond as shown:

[1XHT
EXECUTE AND HALT TASK
PROGRAM FILE NAME OR LUNO: .USER.PROGA
TASK NAME OR ID: TEST
PARM1: O
PARM2: O
STATION ID: ME

The following message appears:

RUNTIME TASK ID

>run-time ID

3. Note that the run-time ID of the task is returned on the display. Remember the run-time
ID for the next step. Return to the command mode.
4. To assign breakpoints and stop execution of the task at location >146, enter the Assign
Breakpoints (AB) command. Respond to the following prompts as shown:
[1AB
ASSIGN BREAKPOINTS
RUN ID: >run-time ID
ADDRESS(ES): >146

The panel showing the address values of the WORKSPACE REGISTERS, BREAK-

POINTS (0146), and MEMORY appear on the screen. A panel display similar to the one in

Figure 9-2 appears:
RUN ID=FD STATE=0& WP=0004& FC=0142 CPC»=2FE0 ST=018F M

WORKSPACE REGISTERS
0004 0000 0000 Q000 0000 0000 Q000 Q000 Q000 . e .
0014 Q000 0000 Q000 CQO00 0000 0000 0000 0000 . . .
BREAKPOIINTS
0144
MEMDORY
0142 2FEQ 0026 2FCF 0032 2FEQC OQ02E 2ZFEQ QOBE /. & /. .2 /. oo /o W
0152 2FEO O0O0D& ZFED OQOF& ZFEQ 0124 ZFEQ 0140 /. .. /. o. /v .4 /. .8
0162 COO0 Q003 0000 0000 002& 0001 2002 4002 .. v .. Lo 0.\,
Figure 9-2. Panel Display
2270508-9701

9.8 Assembly Language Program Example

each the specified assigned breakpoint in the program. The

anrann
=1 i vy

RESUME TASK
RUN ID: >run-time ID <Press RETURN>

8. Task execution begins.

7. Todisplay memory contents of the assigned breakpoint, the Show Panel (SP) command
or the Show Internal Registers (SIR) is entered. In this example the SP command is
used. Respond to the prompts as foliows:

[1SP
SHOW PANEL
RUN ID: >run-time ID
MEMORY ADDRESS: >146

The panel values for address >146 appear on the screen in the section MEMORY.

8. Toresume execution of the task, the Proceed from Breakpoint (PB) command must be
entered. The following prompts appear:

[]PB
PROCEED FROM BREAKPOINT
RUN ID: >run-time ID
DESTINATION ADDRESS(ES): <Press RETURN>

9. Execution is complete. View the .USER.MESSAGE file with the SF command. The
following appears in the file:

GOOD MORNING, PLEASE INPUT NUMBER OF ITEMS SOLD TODAY. USE 4-DIiGIT
NUMBERS.

ITEM 1
ITEM 2
ITEM 3
THANK YOU FOR YOUR PURCHASES. HAVE A NICE DAY.
10. Press the RETURN key to enter the command mode.
11. Execute the RL command to release LUNO >20 assigned to .USER.MESSAGE and
delete the file.

9.8 EXECUTE THE PROGRAM — NO DEBUGGING

This method is used when the task has previously been debugged and is ready to execute.

9-10 2270508-9701

Assembly Language Program Example 9.8

Assign LUNO >20 to the terminal with the AL command, as shown below:

[1AL

ASSIGN LUNO
LUNO: >20
ACCESS NAME: ME
PROGRAM FILE?: NO

The message ASSIGNED LUNO: >20 appears. Return to the command mode.

Execute the program using the Execute Task and Suspend SCI (XTS) command. Select
the following parameters:

[1XTS

EXECUTE TASK AND SUSPEND SCI
PROGRAM FILE OR LUNO: .USER.PROGA
TASK NAME OR ID: TEST
PARM1: O
PARM2: 0
STATION ID: ME

The test program now executes. The greeting and ITEM 1 appear. Enter a four-digit
number in response. The next ITEM # appears after the four-digit response is complete.
Enter another 4-digit number for all ITEM # prompts (1 through 3). The closing message
appears. Below is an example of what appears:

= = FOREGROUND COMMAND EXECUTING = =
GOOD MORNING, PLEASE iINPUT NUMBER OF iTEMS SOLD TODAY. USE 4-DiGiT

NUMBERS.

ITEM 1 2571

ITEM 2 3123

ITEM 3 4619

THANK YOU FOR YOUR PURCHASE. HAVE A NICE DAY.

After the closing message, the RUNTIME TASK ID = >run-time ID appears on the
screen.

Press the CMD key to return to the initial SCI menu.

Delete the task entry by using the Delete Task (DT) command as follows:
[1DT
DELETE TASK

PROGRAM FILE OR LUNO: .USER.PROGA
TASK NAME OR ID: TEST

2270508-9701 9-11

8.8 Assembly Language Program Example

9.9 DELETE DIRECTORY

To delete the directory .USER from the system disk, enter the Delete Directory (DD) command, as
shown below:

[1DD
DELETE DIRECTORY
PATHNAME: .USER
LISTING ACCESS NAME: <Press RETURN>
ARE YOU SURE: YES

The directory created and aii fiies in it are now deieted. Return the terminal to the command
mode.

8-12 2270508-9701

Appendix A

Abnormal Completion Messages

The following messages are issued by the assembler upon abnormal completion of processing. In
addition to these messages, a number of messages are issued to the user in the assembly listing
file and/or in the file specified in response to the ERROR ACCESS NAME prompt of the XMA
procedure.

The codes listed below are defined in the DNOS Messages and Codes Reference Manual.
Message

SOURCE FILE I/0 ERROR, CODE = XXXX
OBJECT FILE I/O ERROR, CODE = XXXX
LIST FILE 1.0 ERROR, CODE = XXXX
TEMP FILE 1.O ERROR, CODE = XXXX

The messages listed below are assembler bugs. If the message reappears on subsequent
assemblies, load a fresh copy of the assembler from a backup disk. If the error still persists, con-
tact your customer representative.

Assembler Bugs

ATTEMPT TO POP EMPTY STACK — SDSMAC BUG
DIRECTIVE EXPECTED — SDSMAC BUG
UNEXPECTED END OF PARSE — SDSMAC BUG
ERROR MAPPING PARSE — SDSMAC BUG
INVALID OPERATION ENCOUNTERED — SDSMAC BUG
NO OP CODE — SDSMAC BUG
INVALID LISTING ERROR ENCOUNTERED
SYMBOL TABLE ERROR
MACRO EXPANSION ERROR
BUG — INVALID SDSLIB COMMAND ID
UNKNOWN ERROR PASSED, CODE = XXXX

2270508-9701 A-1/A-2

Appendix B

Completion Messages

The following messages are issued by the assembler upon completion of processing. In addition
to these messages, a number of messages are issued to the user in the assembly listing file
and/or in the file specified in response to the ERROR ACCESS NAME prompt of the XMA
procedure.

For this set of messages, the internal message code and the message ID in this manual are
identical.

| ASSEMBLR-0001 MACRO ASSEMBLY COMPLETE, ?1 ERROR(S), 72 WARNING(S)

Explanation:
The macro assembler has completed normally, although there may have been errors or warn-
ings generated from the source code.

User Action:
No action is required.

USH ASSEMBLR-0002 MACRO ASSEMBLY ABNORMAL TERMINATION
Explanation:
The macro assembler has terminated before completing the assembly of the source code.
The exact nature of the error is explained by the message in the file specified in response to
the ERROR ACCESS NAME prompt.

User Action:
The action to take depends on the message in the file specified in response to the ERROR
ACCESS NAME prompt.

US ASSEMBLR-0003 MEMORY REQUIRED EXCEEDS SYSTEM CAPACITY

Explanation:

The macro assembler was unable to secure enough memory to complete the requested
assembly. If there are any source lines in the file specified in response to the LISTING
ACCESS NAME prompt, the assembler was unable to complete the cross reference.

User Action:

If the system memory is relatively small, it may help to run the assembly when the system is
less busy. If there is no shortage of physical memory, reduce the memory requirements of
the program. The major items that use memory are macros and symbols. If the program con-
tains macros that have no parameters or other macro variables, consider replacing the
macro calls by source lines which are brought into the progam using a COPY statement. If
the program contains macros with large amounts of text, assemble the macros into a macro
library and use the LIBIN statement or provide a library pathname for the MACRO LIBRARY

2270508-9701 B-1

Completion Messages

PATHNAME prompt. If the program has many symbols, break it into two or more parts (using

the REF command for references between paris) and use the Link Editor to combine the
parts.

USH ASSEMBLR-0004 END ACTION TAKEN BY MACRO ASSEMBLER

Explanation:
The macro assembler was forced to the end action address either by executing an instruc-
tion that caused a task error or by the user killing the task.

User Action:
if the end action was not forced by user action, call a customer representative for
assistance.

USH ASSEMBLR-0005 ERROR ATTEMPTING TO OPEN THE SPECIFIED ERROR ACCESS NAME

Explanation:
The macro assembler was unable to open the file specified for the ERROR ACCESS NAME

prompt.

User Action:

Check the response to ERROR ACCESS NAME to be sure the syntax is correct and that all
directories in the pathname exist. If this does not correct the problem, call a customer
representative for assistance.

st

USH ASSEMBLR-0006 ERROR ATTEMPTING TO ACCESS SYNONYMS

B-2

Explanation:
The macro assembler received an error from the SCI routine S$GTCA.

User Action:

This is an unexnected internal error. Call a customer renregentative for assistance.

=3 HOY L OIS : (-3

2270508-9701

Appendix C

Error Listing Messages

This appendix contains a list of error and warning messages produced by the assembler. Error
messages are printed in the listing file, when an error is detected, with the statement where the
error occurred. Warning error messages are written only to the error file and are not included in
the listing. A dash is placed in column eleven of the listing where the warning error occurred.
Warning messages do not include an indication of a previous warning or error. Note that a warn-
ing is a dash (-) in column 1l of the assembled program listing.

Error Message
Absolute value required.

Attempt to index by
register zero.

Bad access name syntax.
"CEND’ assumed.

Close ()’) missing.
Comma missing.
Common table overflow.

Conditional assembly
nesting error.

'DEND’ assumed.

Directory open error.

Directory read error.

Directory required.

2270508-9701

Possible Causes

A warning

A warning

A warning

Too many common segments used (127 maximum).

An if-then-else construct is in error. Conditions which could
cause this are:

a. Missing ASMEND’S

b. Surplus ASMEND’S

c. Surpius ASMELS’S

A warning.

Check that any synonyms are valid and that no other pro-
cessor is currently writing to the MARCO library.

An 1/O error was encountered while trying to read a macro
library Directory. Verify that no other processor is currently
writing to that macro library.

The access name specified is not an existing directory.

Verify that all synonyms are correct and that the macro
library does indeed exist; it can not be auto-created.

C-1

Error Listing Messages

Error Message

Directory write error.

Displacement too big.

'DSEG’ assumed.

Duplicate definition.

Error expanding call.

Error on copy open.

Expression syntax error.

Indirect (*) missing.

Invalid $ASG variable.

Invalid character in
symbol - blank used.

Invalid Condition

C-2

Possible Causes

Verify that no other processor is currently writing to that
macro library.

An instruction requiring an operand with a fixed upper limit
was encountered which overflowed this limit. An example is
the 'JMP’ instruction, whose single operand must evaluate
to within >7F words distance from the current program
counter.

This is a warning that the following two statements have the
same resuit:

CSEG ’ $DATA’
DSEG

a. The symbol appears more than once in the label field of
the source.

b. The symbol appears as an operand of a REF statement
as well as in the label field of the source.

c. An atiempt was made to define a macro variable or
macro language label which was previously defined in
the macro.

The symbol in the operand field of the $CALL statement is
not a defined macro.

The access name specified as the operand of copy directive
can not be opened. Check that the synonyms are correct
and that the file is not currently being written to by another
processor.

a. Unbalanced parentheses.
b. Invalid operations on relocatable symbols.

a. An attempt was made to change the length component
of a variable.

b. An attempt was made to change the attribute com-
ponent or the value component of a macro variable
which was declared as a macro language label.

¢c. The target variabie is not present or is not a symboi.

A warning (Note 1). The legal characters to be used in
symbols under SDSMAC are A-Z, 0-9, ”’;”’, and ’$"".

The List Search instructions require conditions to be
specified as one of the onerands. The following are legal

conditions: EQ, NE, HE, L, GE, LT, LE, H, LTE, GT.

2270508-9701

Error Message

Invalid CRU or shift
value.

Invalid directive in
absolute code.

Invalid expression.
Invalid macro
expression.

invalid macro variable.

Invalid model statement.

Invalid opcode.

Invalid option.

Invalid relocation
type.

invalid use of
conditional assembly.

Invalid use of REF’d
symbol.

Invalid $ASG expression.

invalid $IF expression.

Label required.

2270508-9701

Error Listing Messages

Possible Cause
A warning
The directives PEND, DEND, CEND have no meaning in
absolute code.

May indicate invalid use of a relocatable symbol in
arithmetic.

Invalid construct in $ASG statement.
The target variable specified on a $ASG or $GOTO verb is
not a valid target variable.

A macro symbol in a model statement must be foliowed
with either a colon operator (:) or end-of-record.

The second field of the source record contained an entry
that is not a defined instruction, directive, pseudo-op, DX-
OP, DFOP, or macro name.

A warning. The only legal options are:

XREF TUNLST
SYMT BUNLST
NOLIST DUNLST
MUNLST FUNL
RXREF

(or suitable abbreviation).

Only PSEG relocatable or absolute symbols are allowed as
the operand of an ‘END’ statement.

A conditional assembly directive may not appear as a model
statement.

REF’d symbols may appear in expressions only under
certain conditions (see the 990/10 manual).

The expression is not present.

The expression either is not present or does not evaluate to
an integer value.

$NAME statements must begin with a label of maximum

length 2. SMACRO statements must begin with a label of
maximum length 6.

C-3

Error Listing Message

o

Error Message
Macro definition
discarded due to
errors.
Macro library read
error.

Macro library write
error.

Macro string
overflow.

Macro symbol truncated.

Max macro nesting stack
depth overflow.

Memory exceeded.
Missing $SEND.

Model statement
truncated.

QOnen '’ Missina
Jpen (" Missing

c4

Possible Causes

An error was detected during the assembly of the macro
definition. Use of the macro name in succeeding lines will
cause error messages.

A’LIBIN’ was in effect and the statement was a macro in a
specified macro library, but an /0 error was encountered
when reading it.

The current 'LIBOUT’ library could not be used at com-
pletion of a macro definition. Check that the macro is not
currently begin written by another processor.

In building a concatenated string, the length of the string
exceeded 225 characters.

A warning. The maximum length for a macro symbol is two
characters. The foiiowing are legai macro symbois: A, A.S,
B2.SV.

The following are illegal macro symbols: CNT, CNT.A,
PM2.SL.

a. A macro calls itself recursively more than the ailowed
maximum number of times.

b. More levels of macro calling have been used than the
allowed maximum.

The program counter overflowed the value >FFFF.

A warning. When expanded, the model statement exceeded
80 characters in length.

A parenthesized operand is required with the Extract Field,

Extract Value, Insert Field, and invert Order of Field Insert
instruction.

2270508-9701

Error Message

Operand conflict PASS1/
PASS2.

Sus

SuB

Operand missing.

'PEND’ assumed.
Register required.
String required.

String truncated.

Symbol truncated.

Symbol required.

Symbol used in both REF
and DEF.

Syntax error.

'TO’ missing.

2270508-9701

Error Listing Messages

Possible Causes

During pass 1, the assembler defaults currently undefined
symbols as register names if that symbol is used in an
ambiguous way, as shown in the example below. If during
the pass 2 it is discovered that the symbol was not a register
name, this error results.

An example is:

BL SuB

EQU §
If this example had been coded as follows, no ambiguity
would have existed due to the explicit @ sign:

BL @SuB

EQu $

On instructions having a fixes number of operands, too few
appeared before encountering a blank. On instructions hav-
ing a variable number of operands, such as 'DATA’, a com-
ma may have been encountered with no operand following
it. An expression extending beyond the 60th column could
cause this problem.

A warning.

A warning. Check the syntax for the directive in question to
determine the maximum length for the string.

A warning. The maximum length for a symbol is six
characters.

This is a conflicting, duplicate definition.

'TO’ is a required part of the syntax for the $ASG Macro
verb.

C-5

Index

Modify Internal Registers (MIR)8.3.2.3
Modify Memory(MM) 8.3.2.4
Modify Overlay Entry (MOE) 6.8.12
Modify Procedure Entry (MPE)......6.8.11
Modify Program image (MPl).......8.3.25
Modify Relative to File(MRF)8.3.26
Modify Segment Entry (MSE) 6.8.13
Modify Synonym (MS).............. 2.6.1
Modify System Memory (MSM).....8.3.2.7
Modify Task Entry (MTE)........... 6.8.10
Modify Workspace Registers
(MWR) 8.3.2.8
MOE L 6.8.12
MPE 6.8.11
MPU 8.3.2.8
MRBRF 8.3.2.6
MBRW 8.3.2.8
MS.. . 26.1
MSE 6.8.13
MSM 8.3.2.7
MTE 6.8.10
Normal Tagged Object FORMAT.....6.7.1
PARTIAL Link Editor............... 6.7.1
PB 8.2,8.3.3.1,8.3.3.3,
8.3.3.4, 8.3.4.3, 8.3.6.4,9.7
PROCEDURE 3.8
Proceed from Breakpoint
PB) 8.2,8.3.3.1,8.3.3.3,
8.3.3.4, 8. 3.4, 3,8.3.6.4,9.7
Q . 4.3
QD ... 8.2.1,8.3.6.4,9.6
QE ... 41,451,452
Quit Debug Mode (QD) ...8.2.1,8.3.6.4,9.6
QuitEdit(QE) 4.1,451,4.5.2
Quit(Q) 4.3
Release LUNO(RL) 9.8
Replace String(RS)................ 45.2
Resume Simulated Task
(RST) 8.3.6.1,8.3.6.5,8.3.6.6
Resume Task (RT) 8.2,8.3.3.1,8.3.3.2,
8.3.4.3,8.3.4.5,8.3.6.4, 9.6
RL . 9.8
RS ... 45.2
RST 8.3.6.1,8.3.6.5,8.3.6.6
RT .. 8.2,8.3.3.1,8.3.3.2,
8.3.4.3, 8.3.4.5,8.3.6.4, 9.6
SAD ..., 8.3.1.5
SADU......... 8.3.1.6
SBS ... 2.3.41
Selection.......................... 4.2
SEM 2.10.2.1
SF 9.6
Show Absolute Disk (SAD)8.3.1.5
Show Allocatable Disk Unit
(SADU) 8.3.1.6
Show Background Status (SBS)2.3.4.1
Show Expanded Message (SEM) .2.10.2.1
Show File(SF)...................... 9.6
Show Internal Reg|sters
s L .8.3.1.7.83.3.1,9.7
Show Line SL) .. 4.2
Index-4

Show Panel

shP8318,831.12
Show Program Image (P)
Show Relative to File (SRF)......
Show Task Status (STS).........
ShowValue(SV)
Show Workspace Registers

SWR)................ ...
Simulate Task(ST)............ 8.

IR ... 8.3.1.7,8.

Usage,SCl
gser-Defined

4.
XLE.o 2.3.

Commands:
Breakpoint Debug e
Controlled:

Dlsplay Debug..............
ModificationDebug
Debug 8.2
LinkEditor
SearchDebug
SimulateDebug...............
Task ControlDebug
TextEditor
Common Segment 4
Common Segment (CSEG) Directive
Common-Relocatable
Communications
Compressed Tagged:
Object FORMAT Command
Object Link Editor Output Format
Concatenated File
Configuration, Task Memory
Constants
Symbolic

Control:
Debug Commands, Task 8.34
File,Link Editor 6.2
Functions, Edit............. 42,44 ,T4-2
Control Storage Task Attributes 3.11.11
Controlled:

3
Mode 8.2,8.3. 4. 4, 8.3.
Task Commands g

6.

mmmbhbm

Copyab|e Task Attributes . .3.11.7,6.8.1,
Cover Page Example, Output F5-
Create Directory File (CFDIR)

Command...................
CreateFile
Create File Sequential (CFSEQ)

Command
Create IPC Channel (CIC) Command. .. .2.
Create IPCChannelSVC 2.8.
Create Logical NameSVC 27.
Create Program File (CFPRO)

Command
Create SegmentSVC 3.
Cross-Reference Listing......... 5.2.3, F5-

Assembler..................
CSEG Directive 3.8, 46

DATA Directive 5.1,6.9
Data:

Display i, 4.2
DebugCommands 8.3.

Entry Operations

Modification Debug Commands8.

Relocatable..................... 5.2

Segment, 5.2.

Data Segment (DSEG) Directive 4,
DataWord 5.2.4.1,5.2.
Absolute 5.2
Relocatable..................... 5.2.
DBCommand............... 8.3.3.1,8.3.
DDCommand........................ 9.
Debug:

Commands 8.2,8.3, T8
Breakpoint..................... 3
Controlled.......................
DataDisplay....................
Data Modification
Search
Simulate.......................
TaskControl

Mode 8.2,8.3.4.4,8.

Panel.................... 8.3.1.8, 8.

Symbolic

Unconditionally Suspended

Debugging

Example:

Execute Breakpoint 7
Execute Symbolic 6
Programs................ ... vt .6
DEF Directive 46,6.4.2,6.4.4

NN

4.2
4.3,

\Jooooco
Shoo DD

gL, o

»

OMLLAQA;MNA

[00)

00 & &> 00 00 00 00 0O
000N O LW W WL

SRR OIDANDW =

Pt

2270508-9701

Index

Default:
MainMenu F2-1
ProgramFile....................... 6.8

Delete and Proceed from Breakpoint
(OPB)Command 8.2, 8.

3.3.
8.3.3. 3 8.3.4.
Delete Breakpoints (DB)

Command . .8.3.3.1,8.3.3.2,8.3.4.
Delete Dlrectory (DD) Command
Delete File (DF)Command
Delete Overlay (DO)Command 6.8.
Delete Procedure (DP) Command . ..6.
6
1.

1

Delete Program Segment (DPS)
Command
Delete Protected Task Attributes3.1
Delete Simulated Breakpoints
(DSB)Command
Delete Task (DT) Command . .3.11.4,6.8.6,
Delete TaskSVC 3.1
Device:
ClassType ..., 2.
Displaycciiiiii..
HO . 2.8.4,3.1
Services ... i
DFCommand
Directive......... 5.
BLSK ..
Branch and Push Link to Stack
(BLSK) ...
BYTE i
Common Segment (CSEG)
CSEG i, 8,
DATA A,
Data Segment(DSEG)
4,

030) oooococo
Lo Nooow 00

0o
- w

] ¢ A DA ¢ ANO WO ¢
POOWBRRIAANANIORDOIOAD OD_OWNROT BN

ow
prOBRDOD

‘b-

External Reference (REF)
IDT.......... 4.6, 524164164

PageTitle(TITL), .
Program. ..., .
Program Identifier(IDT) 4.6, 6.
Program Segment (PSEG)
PSEG ...t
REF 4.6,6.4.
Secondary External Reference
SREF)civiiiii 5.
SREF
TEXT o .
TITL o e .
Directory:
File 2.4,
Structure 2.4 F2-
VCATALOGcien... 2.4,
Disk-Based Segments
DiskFile.......................... 3.

»
-h-h-h-h@-h-b(ﬂ

—w
ke

(220 \ I e
OV DS

—w
TR NN S
(CY=Y YT U SEGEGEN

Index-5

Index

Disk-Resident:
Memoryimage 8.
Task .o e
Task Attributes 3.
Display:
Data i e
DebugCommands 8.
Device ... e
Panel......... .o,
Displays:
Command...........ccviivevvnnn
Station-Dependent..................
DNOS Assembly Language.............
DOCommandccovvn...
DPCommand..........cccvivee...
DPB Command. .. .8.2,8.3.3.1,8.3.3.3,8.3.
DPSCommand
DSBCommand...............on... 8.
DSEG Directive8,
DTCommand 3.11.4,6.8.6,
DUMYCommand
DUNLST AssemblerOption
DXOPlInstruction.....................

ww

-
— P -
£ O

—-
SO® QWO

CLawomhOWwNDaRND BRI

(o)X o]

8.
8.
4.
8.
6.
4.
9.

COO”

w

OJU'ICD

EBATCH Command 2.35.1,5.3.
Edit Control Functions 4.2,4.4, T4
EditingFile 4.5,

End Action:
EntryPoint,
Routinecc ..
End Action StatusSVC................ 4
End-of-Record 5.2.4.
EndTaskSVC8 4,
Entering Programs 1.2,2.3.5.
2.4

W

mmNMAmmwmb rLhlpoe dpoo

whw

Entry:
Address 5.2.4.1,5.
Point, EndAction

)

Vectorcov v
EQUDirectiveo
Error Message.......... 2.10.1,8.2.2,8.3. 3.

Assembler 5.2.

OnlineExpanded................. 2. 12

2.

a0

?Response 2.10
Evaluation, Expression............... 8.
Execute and Halt Task

(XHT) Command 2.3,8.2.1,

' '8.3.4. 4 8 3.45,96
Execute Batch Job (XBJ)

Command 2.3.5,2.35.3,5.3.3
Execute Batch (XB)

Command 2.3.5,2.35.3,5.3.2
Execute Breakpoint Debugging

Example 9.7
Execute COBOL Task (XCT)

Command 2.3.1
Execute in Debug Mode

(XD)Command8.2,8.2.1,8.2.2,8.3.4.4
Execute Link Editor

(XLEYCommand 2352 A3 34

Index-6

Execute Macro Assembler

(XMA)Command 5.1,9.3
Execute NoDebugging 9.8
Execute Pascal Task (XPT) Command ..2.3.1

Execute:

PlUula!lls 1 5

Protected Task Attributes 3.11.6.2

Symbolic Debugging Example 9.6
Execute Task and Suspend SCI

{(XTS)Command7.22,9.8
Execute Task (XT)

Command.............. 2.3.1,7.2.1,8.2.1
Execute Text Editor (XE)

Command 4.1,45.1,45.2
Execution:

Batch:

Job, Interactive................ 2.3.5.3
Stream 7.4, F71
Stream, Interactive............. 2.3.5.3

Controlled...................... 8.3.6.6

Interactive......................... 7.4

Program......................ccut. 71

Simulated 8.3.6.6

SVCProgramccuvvvunnn 7.3
Expanded Error Message, Online 2.10.2
Expression:

Evaluation 8.2.3

Symbolic 8.2,8.3.4.4
Expressions 8.3.1.11
External Definition 5.2.4.1,5.24.4
External Definition (DEF)

Directive 4.6,6.4.2
External Reference5.2.4.1,5.2.4.4,F5-6
External Reference (REF)

Directive 46,6.4.1
Field Prompt Notation................ T1-2
File:

Concatenated 274

Create...................... 2.4.3,4.51

DefaultProgram.................... 6.8

Directory 2.4.2

Disk.......coiiiiiii 3.13.2

Editing 4.5.2

Format.......... 5.2

Image i 6.7.3

Instaliation, Link Editor image89

WO .. 2.8. 3 3.13.2

Keyindexed...................... 2.7.3

Link EditorControl. 6.2

Multivolume...................... 2.7.4

Program...2.7.2, 3.9.3, 3.10, 6.7.3,6.8,6.8.1

Relative ReCOrdo oovrennen. 2.7.2

Sequential 271

Services i 3.13

Systemimage 6.7.3

TP . ot e e 2.7

S$SHARED Program 3.8,3.11.4,6.8

SSUTIL Program 3.11.4,6.8
Find Ryta (FRY Command | ..., .83581

2270508-9701

Find Word (FW) Command 8.3.5.2
ForegroundTask.................... 2.2.1
Format:
Batch:
Command 2.
Stream............ccccviiiin.. 2
Command,IMAGE.
Compressed Tagged Object
Link EditorQutput...............
File. .. oo
IMAGE 3.9.2,6. 3,
Link Editor Command, IMAGE
Linked ObjectCode
Machine Instruction . .5.2.4.2, F5-
Memory Image Link Editor Output ...6.7.
Normal Tagged Object Link Editor
Output6. 7.
4.
5-

DWW

ooouN NOO»
OO\I\ICOCDNN W =N

(o2

NO

ObjectCode 5.2
ObjectRecord T
Output Option, Link Editor
Selection
FORMATCommand 6.
Compressed Tagged Object
Memorylmage....................
Normal Tagged Object
Forms i
FUNL AssemblerOption...............
F3Key.........coviiiant. 8.3.6.1,8.3.6.

Global:
Channel............ ..., 2.
LUNO ... s

Halt Task (HT) Command

Hardware Privileged Task
Attributes 3.11.

HTCommand............... 8.3.4.2,8.3.

NoOoO® N
moowwwouooc»

1
1
2
4
5
v
2
3
A
5
A
5

2.3
8.4
4.3

N 0

.8.3.4.2,8.3.

identifier,Module
IDS COMMANG « .+ v v vovveeeeen
IDT Directive....4.6,5.2.4.1,6.4.1,6.4.3, 8.
image:
EISK Resident Memory 8.3.1.
fle i LB
Installation, Link Editor
System 0.
FORMAT Command, Memory
Link Editor Output Format Memory .
Memory 8.
Program........................ 8.
IMAGE Format. 3.9.2
Command
INCLUDECommand 6.6.
Initial Program Load (IPL)6.7.3,6.
initialize Disk Surface (IDS) Command .
Initialize New Volume (INV) Command .
Install Overlay (I0) Command
Install Procedure (IP)
Command 3.10,6.6.2, 6.
Install Procedure/SegmentSVC........ 3.1

N o

"
4.
2.
4.
2.

o
o SN

ow AAAAwomwbwwwwbo pahd wo

(A)C»)CDO')O')

-

03

6.
7.
2
8

3,
3
,6
6.
2.
2.

O')

7
7.
1.
2.
2.
6.
6.
6.
8.
4.
4.
8.
8.

2270508-9701

Index

Install Program Segment (IPS)

Command 3.10, 6.
Install Real-Time Task (IRT) Command . .6.
Install Task:

Exampleo i

SVC ... 3.10,3.11.1,6.
Install Task (IT) Command 3.10, 3.1

6.6.2, 6.7.3, 6.8. 1,

oooo
wo oo

o*uo
—

Installation:
Link EditorImage File
Overlaycciiiiiiiiinnenn..
Procedure
Program............ ... o i,
TasK ... oo e

Installing Programs

Instruction:

BIND
BL ..
BLWP. ...
Branchand Link(BL)
Branch and Load Workspace
Pointer(BLWP)
Branch Indirect (BIND).
DXOP ...
Return with Workspace Pointer
(RTWP).
RTWP. ... e
XOP .

Interactive: -

Execution Ll
BatchJob 2.
BatchStream 2

f Whh WAA BAALR —LOOPOO
NialLpws oo oo oooo®m hroomooo o

N

InterceptionIPCUse 2
Internal Registers 8.
Interprocess Communication
(IPC) ..o 2.8.1.3,28.
INVCommand 2.4,
I0OCommand 6.8.
13.
3.

Ao

1/0:
Concepts 3.1
Device..................... 2.8.4,3.1
Facilities
File 2.8.3, 3.1
Methods......................... 2.
Resource-Independent . .2.8.1.2,3.1
Resource Management
Resource-Specific . .2.8.1.1,3A1

IPCommand 3 10, 662,6

IPC:
Channel........................ 2
Functions:

Programlevel................. 2
Systemlevel 2
Use......coi i 2.
Interception g
2

2

8

Noooooom

maaaaapO, N w—xoo—u—tmoom—-

Messagec.o...
Queue Servicing...............
Synchronization...............
IPL .. 6.7.3, 6.

Index-7

Index

IPSCommand.................. 3.10,6.8.5
iRfCommand 6.8.2
ITCommand............. 3.10,3.11.1,6.6.2,
6.7.3, 6.8.1,9.5
Job:
Batch 222
Description........................ 2.2
Interactive 2.21
ExecutionBatch............... 2.35.3
Structure 2.2
Job-Local:
Channel........................ 2.8.2.3
LUNO 28.4
JOBNAMEPrompt 2.3.2
KBTCommand 3.4
Key Indexed File(KIF)................ 2.7.3
KIF e 273
Kill Background Task (KBT) Command ...3.4
Kill Task (KT) Command 3. 4, 8.2.1
KTCommand 3.4,8.21
LBCommand 8.3.1.1
LDCommand 2.3.4.2
Level:
IPC Functions, Program 28.25
Overlayiviiiiiinnnn.. 3.9
Priority, 3.11.3
LIBIN Directive 5.1
Library Option,Macro 5.1
Link Editor............ 1.4,3.3,3.9.1,5.2.4.1
Command:
IMAGEFormat 6.9
LOAD 3.9.2
PARTIAL....................... 6.7.1
TASK .. 6.6.4
Commands 6.2, T6-1
ControlFile........................ 6.2
Example 6.6,9.4
Overlay 6.6.4, F6-5
Single Task, No Procedure ...6.6.1, F6-2
Task, Two Attached
Procedures 6.6.2, F6-3
Two Procedures. 6.6.3, F6-4
Format QOutputOption............... 6.7
Image File Installation. 6.9
Operation 6.3
Output:
Format, Compressed Tagged
Object....................... 6.7.2
Format, Memoryimage 6.7.3
Format, Normal Tagged Object6.7.1
Listing 6.5, F6-1
SupportFeatures 6.1
LinkMap i . 6.5
Linkage Program 6.4
Module 6.4.4
Linked:
ObjectCodeFormat, 5.7
Output Suppression 6.3

Index-8

| Machine Instruction

LinkingPrograms.....................
List Breakpoints (LB) Command.
List Directory (LD) Command .
List Logical Record (LLR) Command .
List Memory (LM) Command .
List Simulated Breakpoints (..SB)
Command
List System Memory (LSM)
Command 8.3.1
Listing:
Assembler Cross-Reference..........
Cross-Reference 5.2.3, F5-
Example,Source
Link EditorQutput 6.5,
Option, Assembier.................. .
Source
LLRCommand 8.
LMCommand..................... 8.
Load:
Address 5.2.41,5.2.
Bias................... . 5.2.41,5.2.
5

o0 @@N@
LwLw
-t h P bk

w

A oW wiobaks

mm

wwom
Soapoeaao
Dh W= SaRn

l\)l\)

LOAD:
Directive5.
Link EditCommand

Load OverlaySVC........... 3.9.2,3.9. 3,

Loading,Overlay

L02|cal

ddressSpace
Nameccoivvn.. 2.3.1,
Definition......................
Table
Unit Number 2.8.4,3.13.2,6.8,

Log-Ono

LSBCommand 8.

LSMCommand.................... 8.

LUNO........i i 6.8

wn

ODW -h-bs

OJ
Erbrabhwbhilwbid Movs

w

N

o2
MDRONOWWNhDOWDND

Job-local
Task-Local,

(3]

Format 5.2.4. 2,F

Source Statement F
Macro Library Option e
MADCommand 8.
MADUCommand 8.
Main Meny, Default F2-
Management:

fOResource.......................

SVC,Segment
Manager, Automatic Overlay
Map, Link.
Mapping ... F3-

Program..................
Master/Slave Channel
Memory:

8.
6.
5.
.8.
3.
6.
1.
8.
8.
8.
8.
2.
5-
5-

- - \L’.I
R o~

0 6
NN

W
NWEWMON

WWRrMW DN GIDO®

2
Areao il 8.3.
Configuration, Task................ F3-
image g

2270508-9701

Link Editor Output Format 6.7.3

System 8.3.2.7

Memory-Based Segment.............. 3.10
Memory-Resident:

Task ... e e 3.4.1

Task Attributes ...3.11.4,6.8.1,6.8.3,6.8.5
Menu, Default MaIN .« F2-1
Message:

AssemblerError 5.2.2

AssemblerWarning 5.2.2

Error................ 2.10.1,8.2.2,8.3.3.1

Facilities......................... 2.10

IPCUsecooviin.. 2.8.21

Online Expanded Error 2.10.2

Status L. 2.10.3

Warhing.............oooiiii. 8.3.3.4

? Response, Error. 2.10.2.2
MIRCommand 8.3.2.3
MMCommand 8.3.24
Modification:

Debug Commands, Data 8.3.2

Task Attributes 6.8.10
Modify Absolute Disk (MAD)

Commandccuunnn 8.3.21
Modify Allocatable Disk Unit

(MADU)Command 8.3.2.2
Modify Internal Registers (MIR)

Commandccvun.. 8.3.2.3
Modify Memory (MM) Command8.3.2.4
Modify Overlay Entry (MOE)

Command 6.8.12
Modify Procedure Entry (MPE)

Command 6.8.11
Modify Program Image (MPI)

Command......................83.25
Modify Relative to File (MRF)

Command 8.3.2.6
Modify Segment Entry (MSE)

Command 6.8.13
Modify Synonym (MS) Command2.6.1
Modify System Memory (MSM)

Commandc.aoun. 8.3.2.7

Modify Task Entry (MTE) Command ...6.8.10
Modify Workspace Registers (MWR)

Command 8.3.2.8
Module:

Identifier, 8.2.2

Linkage, Program 6.4.4
MOECommand.................... 6.8.12
MPECommand 6.8.11
MPICommand 8.3.2.5
MRFCommand 8.3.2.6
MBRWCommand 8.3.28
MSCommand 2.6.1
MSECommand 6.8.13
MSMCommand 8.3.2.7
MTECommand 6.8.10
Multiple Copies..................... 2.85
MultivolumeFile 2.7.4
MUNLST Assembler Option 5.1

2270508-9701

Index

No Debugging, Execute 9.8
NOLIST AssemblerOption 5.1
Normal:
Tagged:
Object FORMAT Command 6.7.1
Object Link Editor Output
Format 6.7.1
Task Termination 3.4.1
Notation:
FieldPrompt...................... T1-2
Response 1.7
ObjectCode.............c.coiv.. 5.2.4
Change 5.2.4.4
Example, F5-5
Format......................... 5.2.4.1
Linked 6.7
SymbolTable............... 8.3.4.4, F9-1
Object:
FORMAT Command:
Compressed Tagged. 6.7.2
NormalTagged 6.7.1
Link Editor Output Format:
Compressed Tagged. 6.7.2
Normal Tagged 6.7.1
Record:
Format......................... T5-2
TagS . o i it e T5-2
Online Expanded Error Message. 2.10.2
Option:
Assembiler:
Listing, 5.1
Output, 5.1
BUNLST Assembler................. 5.1
DUNLST Assembler................. 5.1
FUNLAssembler 5.1
Link Editor Format Output 6.7
MacrolLibrary 5.1
MUNLST Assembler 5.1
NOLIST Assembler 5.1
RXREF Assembler 5.1
Symbol Table
Assembier.......... 5.1,56.2.4.1,5.2.4.3
SYMT Assembler 5.1,56.2.4.3,8.2.2,
8.3.4.4,9.1,9.6
TUNLST Assembler 5.1
XREF Assembler 5.1
990/12 Assembler................... 5.1
Output:
CoverPageExample F5-2
Format:
Compressed Tagged Object Link
Editor 6.7.2
Memory Image Link Editor........ 6.7.3
Normal Tagged Object Link
Editor L. 6.7.1
Listing, Link Editor 6.5, F6-1
Option:
Assembler.............. 5.1
Link EditorFormat 6.7
Index-9

index

Inde

CUT ALONG LINE

USER’S RESPONSE SHEET

Manual Title: __Model 990 Computer DNOS Assembly Language

Programmer’s Guide (2270508-9701)

Manual Date: _1 August 1981 Date of This Letter:
User’s Name: Telephone:
Company: Office/Department:

Street Address:

City/State/Zip Code:

Please list any discrepancy found in this manual by page, paragraph, figure, or table number in the
following space. If there are any other suggestions that you wish to make, feel free to include
them. Thank you.

Location in Manual Comment/Suggestion

NO POSTAGE NECESSARY IF MAILED IN U.S.A.
FOLD ON TWO LINES (LOCATED ON REVERSE SIDE), TAPE AND MAIL

FOLD

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

(BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 7284 DALLAS, TX

POSTAGE WILL BE PAID BY ADDRESSEE

TEXAS INSTRUMENTS INCORPORATED
DATA SYSTEMS GROUP

_ATTN: TECHNICAL PUBLICATIONS
P.O. Box 2909 M/S 2146
Austin, Texas 78769

FOLD

Cover Part No. 2310002-0001

i
Texas
INSTRUMENTS

