990/99000 ASSEMBLY LANGUA GE%

Reference Manual

TEXAS INSTRUMENTS

© Texas Instruments incorporated 1981, 1982
All Rights Reserved, Printed in U.S.A.
The information and/or drawings set forth in this document and all rights in and to inventions disclosed

herein and patents which might be granted thereon disclosing or employing the materials, methods,
techniques or apparatus described herein, are the exclusive property of Texas Instruments Incorporated.

MANUAL REVISION HISTORY

990/99000 Assembly Language Reference Manual (2270509-9701)

Originallssue 15 January 1981
Revision. e 15 November 1982

The total number of pages in this publication is 528.

) Preface

Thrs manual descrrbes the assembly Ianguage for Model 990/10 990/10A and 990/12 Computers
as implemented by the SDSMAC macro assembler. Programs written in the 990 assembly
language may run under control of an operating system, DX10 for example, or they may be written
to run without the services provided by an operating system. This manual describes the 930
assembly language and the SDSMAC assembler only. For more information on the operating
systems, see the manuals in the reference list followrng Programs that are written to run without
the services of an operating system are called stand-alone programs and are discussed in Section 4.

ke . . Droe o a g

NOTE

8300 processors use the 990/10A assembly Ianguage set -

VigatEet i LS Dot Ty M SR L ’ EPERREIEE SR SR

This manual is intended for system programmers and analysts. It is assumed that the reader is
familiar with an assembly language and with at least one of the applicable operating systems.
This manual is intended for use by an experienced assembly language programmer who is learn-
ing the 990 instruction set or who has questrons about the operation of a specrfrc instruction.

The sectrons and appendrxes of thrs manual are orgamzed as follows

Section.. = - E
1 Introduction — Provides an introduction to the Model 990/10, 990/10A, and 990/12 Com-
puters and describes the status register and memory organization of the 990 computer.

2 General Programming Information — Introduces the 990/10, 990/10A, and 990/12
instruction sets, then describes the assembly language source statement format and
the data types used in the assembly language.

3 Assembly Instructrons — Descrrbes the addressrng modes and mstructron formats
then discusses the individual assembly instructions in detail in alphabetical order by
mnemonic.

4 Application Notes — Provides information about implementation and control of
subroutines, provides information for upgrading a program from a 990/10 system to a
990/12 system, describes reentrant programming techniques, and describes factors
that must be considered when writing a program that does not run under the control of
an operating system.

PR S ¢ N O R e R T S O LA
5 Assembler Directives — Describes the directives that control the assembly process.

s
VLM T

; TR S A S Cra
6 Pseudo-Instructions — Defines the three assembly pseudo-instructions.

2270509-9701 il

Preface

7 Macro Language — Describes the macro language available with the SDSMAC
assembler and defines the verbs used by the macro language.

8 Relocatability and Program Linking — Describes the relocation capability of assembly
language programs and the methods by which modules are linked with shared symbols
across the modules.

9 Assembler Output — Describes the error messages and object code formats produced
by the SDSMAC assember.

Appendixes

A Character Set — Lists the characters recognized by the SDSMAC assembler.

B Instruction Tables — Lists the instruction set by functional group, showing syntax,
results, and status information.

C Program Organization — Describes the data, workspace, and procedure areas of a pro-
gram for the 990 computer.

D Hexadecimal Instruction Table — Lists the instructions by order of hexadecimal
opcode.

E Assembler Directive Table — Lists the assembler directives and gives the required
syntax. : '

F Macro Language Table — Lists the macro language verbs and gives the required
syntax. o

G Example Program — Gives a general assembly language programming example.

H Numerical Tables — Gives commonly referenced numeric terms and decimal-
hexadecimal conversion charts.

| Instruction Usage Cross-Reference Table — Lists all of the instructions that perform a
type of operation and all instructions that operate on a data type.

J lllegal Opcodes — Lists the opcodes that cause an illegal operation interrupt.

The following documents contain additional information that may be helpful to the assembly
language programmer.

iv

Title Part Number
DX10 Operating System Concepts and Facilities N
(Volume l) ~946250-9701
DX10 Operating System Operations Guide (Volume Il 946250-9702

DX10 Operating System Application Programming Guide
{(Volume 11l 946250-9703

2270509-9701

2270509-9701

Title
DX10 Operating System Text Editor Manual (Volume 1V)

DX10 Operating System Systems Programming Guide
(Volume V)

DX10 Operating System Error Reporting and Recovery
Manual (Volume Vi)

DX10 Link Editor Reference Manual
Model 990 Computer Reference Manual

Model 990/10 Computer System Field Hardware
Reference Manual

Model 990/10A Computer General Description
Model 990/12 Computer Hardware User’s Guide
DNOS Master Index to Operating System Manuals
DNOS Concepts and Facilities

DNOS Operations Guide

DNOS System Command Interpreter (SCI)
Reference Manual

DNOS Text Editor Reference Manual

DNOS Reference Handbook

DNOS Messages and Codes

DNOS Supervisor Call (SVC) Reference Manual
DNOS Assembly Language Programmer’s Guide

DNOS Link Editor Reference Manual

Part Number

946250-9704

946250-9705

946250-9706
949617-9701

943442-9701

945417-9701
2302633-9701
2264446-9701
2270500-9701
2270501-9701

2270502-9701

2270503-9701
2270504-9701
2270505-9701
2270506-9701
2270507-9701
2270508-9701

2270522-9701

Preface

vivi

- Contents

Paragraph Title Page

1 — Introduction

1.1 INrOdUC I ON . e e 1-1
1.2 990/10 and 990/10A Computer Characteristics i 1-1
1.21 Byte Organization i e 1-1
1.2.2 Word Organization i e e 1-2
1.2.3 Memory Organization i et 1-2
1.2.4 TranS er Vet OrS ..o e e e 1-4
1.2.5 It UPES . . o ottt e 1-4
1.2.5.1 General Interrupt Structure e 1-5
1.25.2 Interrupt SEqUENCE i e e e e 1-5
1.2.6 L o] 4 <1 0 X- Lo 1 1-5
1.2.7 Registers .. . e e e 1-7
1.3 990/12 Computer Characteristicsot it et et e n e 1-7
14 Status Register e e 1-8
1.41 Logical GreaterThan i it it it e e 1-8
1.4.2 ArithmeticGreater Than i i i it it i ieaeneen 1-8
1.4.3 EQUAaL .. e e e e 19
1.4.4 MY ottt e 19
145 L0 =Y 5 T 19
1.4.6 Odd Parity ... i e e e 1-10
1.4.7 Extended Operation i i e e e 1-10
1.4.8 Privileged Mode. e e 1-10
1.4.9 Map File Select e e e e 1-10
1.4.10 Memory Management And ProtectionEnabled, 1-10
1.4.11 Overflow Interrupt Enable i i e 1-10
1.4.12 Writable Control Store e 1-10
1.4.13 Interrupt Mask e e 1-11
2 — General Programming Information
21 990 Assembly Language i e 21
2.2 990/10 and 990/10A InstructionSets T 21
2.21 Arithmetic InStruCtions i i i i e i et it e e 2-2
222 Branchand Jump Instructions i i 2-2
223 Compare Instructions. i i e e e e, 2-4
2.24 Controland CRU Instructions ittty 24
225 Loadand Move lnstructions. i i e 25
226 Logical Instructions i 2-6
2.2.7 ShiftINStrUCHIONS e e e 2-6

2270508-9701 vii

Contents

Paragraph

2.2.8
229
2.3
2.3.1
2.3.2
2.3.3
234
2.3.5
2.3.6
2.3.7
2.3.8
2.3.9
2.4
2.4.1
242
243
2.4.4
2.4.5
2.5
2.5.1
25.2
2.5.3
254
2.6
2.6.1
26.2
2.7
2.71
2.7.2
2.7.3
2.7.4
2.7.5
2.8
2.8.1
2.8.2
2.8.3
2.8.4
285
2.8.6
2.8.7
2.8.8
2.9

3.1
3.2

viii

Title Page

Extended Operation Instruction 2-6
Long-Distance AddressingInstructions. i, 2-7
990/12 Instruction Set L e e e 2-7
Arithmetic Instructions i i i e i e 27
JUMP INStIUCHIONS . . . L e e 2-8
Compare InstruCtions i e 2-8
Controland CRU Instructions i it i ittt e anas 29
Loadand Move Instructions. i it i i it it e 29
Logical Instructions 2-10
Shiftinstructions e 2-11
Extended Operation and Long-Distance Addressing instructions 2-11
Conversion INStructions i i i i e 2-11
Source Statement Format 212
Character Set. 2-14
Label Field e e e 2-14
Operation Field i e 2-14
Operand Field e 2-14
Comment Field e 2-14
CoNStaNtS ... 2-15
Decimal IntegerConstants i e 2-15
Hexadecimal IntegerConstants i i, 2-15
Character Constants i it i i e 2-15
Assembly-Time Constants i e 2-15
SYMDOIS L . e e 2-16
Predefined Symbols e 2-16
Character Strings i 217
EXPreSSIONS L. o 217
Use of External Referenced Symbols in Expressions....................... 2-18
Arithmetic Operators in EXpressions, 2-19
Logical Operators in EXpressions. it i i 2-20
Relational Operators in Expressions e e e e 2-20
Use of Parentheses in EXpressions 2-21
000/ 12 Data TYPES - o ot ittt ittt et e 2-22
Extended Integers i e e e e 2-22
Multiple PrecisioniIntegers it i e e 2-22
Byte Strings e 2-23

S ACKS . o e 2-24
Lists ... e e 2-24
Single PrecisionRealNumbers. 2-26
Double PrecisionReal Numbers i i 2-28
Floating Point Accumulator (FPA) i e 2-28
Reexecutable Instructions. 2-28

3 — Assembly Instructions

GeNeral. . o e e e e 3-1
Addressing Modes e 3-1

2270509-9701

Contents

Paragraph Title Page
3.21 Workspace Register Addressing i i 3-1
3.2.2 Workspace Register Indirect Addressing.l 3-1
3.2.3 Workspace Register Indirect Autoincrement Addressing 3-2
3.24 Symbolic Memory Addressing. it i i 33
3.25 Indexed Memory Addressingcovvit i in ittt ittt 3-3
3.26 Program Counter Relative Addressingot 34
3.2.7 CRUBIt AdAressingoiiiiii it i it it 3-4
3.2.8 Immediate AdAressingooi ittt i e e 34
3.3 Addressing SUMMIArY i i it i i i e 35
3.4 InsStruction Formatsciiiniiiii it i i ittt 35
3.4.1 Format1 — Two Addressinstructions i it 39
3.4.2 Format2 — Jumpinstructions, 3-10
343 Format2 — Bit /O Instructions i s 3-11
3.44 Format3 — Logical Instructions i 3-11
3.45 Format4 — CRUInstructions o i 3-12
3.46 Format 5 — Register Shift Instructions il 3-13
3.4.7 Format 6 — Single AddressInstructionso iiiiil, 3-14
3.4.8 Format 7 — Instructions WithoutOperands v, 3-15
3.4.9 Format 8 — Immediate Instructions i i, 3-15
3.4.10 Format 9 — Extended OperationsInstruction00 3-16
3.4.11 Format 9 — Multiply and Divide Instructionso it 3-17
3.4.12 Format 10 — Memory Map Fileinstructiont 3-18
3.4.13 Format 11 — Multiple PrecisionInstructions 3-18
3.4.14 Format 12 — String Instructions o it 3-19
3.4.15 Format 13 — Multiple Precision Shift Instructions 3-21
3.4.16 Format 14 — Bit TestingInstructions it 3-22
3.4.17 Format 15 — Invert Order of Field Instruction 3-23
3.4.18 Format 16 — Field Instructions it 3-24
3.4.19 Format 17 — Alter Registers and Jump Instructions. 3-25
3.4.20 Format 18 — Single Register Operand Instructions 3-25
3.4.21 Format 19 — Move Address Instruction i, 3-26
3.4.22 Format 20 — List Searchinstructions i il 3-27
3.4.23 Format 21 — Extend PrecisionInstruction............. it 3-28
3.5 Instruction Descriptions e e 3-29
3.5.1 10 T oo o 1 X 3-29
3.5.2 INStruCtionN Format i ittt et e et 3-29
3.5.3 Applicability e e s 3-29
3.5.4 Syntax Definition e e 3-29
3.5.5 Instruction Examplet e 3-31
356 OperationDefinition i 3-31
3.5.7 Status Bits Affectedcc i 3-31
3.5.8 Execution Resultsot e e 3-31
3.5.9 Application Notes i i i i i e 3-31
3.6 AddWords — A i e e 3-31
3.7 Add BYIES — AB i e e 3-32
3.8 AbsoluteValue — ABS i e e e 3-34
3.9 Add Double PrecisionReal — AD ittt it 3-36
3.10 Addimmediate — Al e e e 3-37
3.1 Add Multiple PrecisioniInteger — AM i i 3-38

22705099701 ix

Contents

Paragraph

3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33
3.34
3.35
3.36
3.37
3.38
3.39
3.39.1
3.40
3.41
3.42
3.43
3.43.1
3.44
3.44.1
3.45
3.46
3.47
3.48
3.49
3.50
3.51
3.52
353
3.53.1
3.54
3.55
3.56

Title - Page

AND Immediate — ANDI o 3-39
AND Multiple Precision — ANDM 3-41
AddReal — AR ... o 3-43
Add to RegisterandJump — ARJ e e e 3-44
Branch — B e et e e 3-46
Binary to Decimal ASCIi Conversion — BDC e e 3-47
BranchIndirect —BIND T e 3-49
Branchand Link —BL e e e e 3-51
Branch Immediate and Push LinktoStack —BLSK 3-52
Branch and Load Workspace Pointer — BLWP e 3-53
CompareWords — C i e P 3-54
CompareBytes —CB R e s 3-55
Convert Double Precision Real to Extended Integer — CDE 3-57
Convert Double Precision RealtoInteger —CDI. ... 3-58
Convert Extended Integer to Double Precision Real — CED e 3-59
Convert Extended IntegertoReal —CER ...t 3-61
Compare Immediate —CI e e e 3-62
Convert Integer to Double PrecisionReal —CID. e 3-63
Convert IntegertoReal — CIR................ e 3-65.
Clock Off — CKOF ..o e e i 3-66.
ClockOn—CKON e e e 3-67
Clear —CLR e m e .3-67
CountOnes —CNTO J . e e 3-68
Compare Ones Corresponding — COC PP PP [3-69
Cyclic Redundancy Code Calculation — CRC e, 3-70
Convert Real to Extended Integer — CRE uuinennn... 3-73
Convert RealtoInteger — CRl..................... e e .3-74
Compare Strings —CS........ N S e 3-76
Reexecutable InStructions i 3-78
Compare Zeros Corresponding—CZC S 3-80
Decimal ASClito Binary Conversion — DBC 3-81
Divide Double PrecisionReal — DD P 3-82
Decrement —DEC e e e e 3-84
Decrement Instruction Example e e P 3-85
Decrement by Two — DECTt e 3-86.
Decrement By Two Instruction Example i, 3-87
Disable Interrupts — DINT e 3-88
Divide — DIV e e e P, 3-89
Divide Signed — DIVS 3-3
Divide Real — DR 3-92
Enable Interrupts — EINT e i r e 3-94
Execute Micro-Diagnostic —EMD e 3-94
Extend Precision — EP. 3-96
Idle — IDLE J 3-97
Increment — INC. 3-98
Increment Instruction Example 3-99
Incrementby Two — INCT e e 3-100
Insert Field —INSF, e 3-101.
Invert —INV s e et ey e 3-102

2270509-9701

Paragraph

357
3.58
3.59
3.60
3.61
3.62
3.63
3.64
3.65
3.66
367
3.68
3.69
3.70
3
3.72
3.73
'3.74

13.74.1

375
3.76
3.77
3.78
3.79
"3.80
3.81
3.82
13.83
"3.84
13.85
1386
3.87
13.88
3.89
1390
3.91
3.9
393
1 3.94
3.95
- 3.96
3.97
3.98
.3.99
$3.100
3.101
3.102
3.103
3.104

2270509-9701

Invert Order of Field — IOF
Jump if Equal — JEQ
Jump if Greater Than — JGT
Jump if Logical High — JH
Jump if High or Equal — JHE
Jump if Logical Low — JL
Jump if Low or Equal — JLE
Jump if Less Than — JLT
Unconditional Jump — JMP
Jump if No Carry — JNC
Jump if Not Equal — JNE
Jump if No Overflow — JNO
Jumpon Carry — JOC
Jump if Odd Parity — JOP
Load Writable Control Store — LCS
Load Double Precision Real — LD .
Load CRU — LDCR
Long Distance Destination — LDD
Memory Mapping..
Long Distance Source — L.DS
Load Immediate — LI
Load Interrupt Mask — LIM
Load Interrupt Mask Immediate — LIMI
Load Memory Map File — LMF
Load Real — LR
Load or Restart Execution — LREX
Load Status Register — LST
Left Test forOnes — LTO
Load Workspace Pointer — LWP
Load Workspace Pointer Immediate — LWPI
Multiply Double Precision Real — MD X
Move Word — MOV
Move Address — MOVA
Move Byte — MOVB
Move String — MOVS
Multiply — MPY
Multiply Signed — MPYS
Multiply Real — MR
Move String From Stack — MVSK
Move String Reverse — MVSR
Negate — NEG
Negate Double Precision Real — NEGD . .
Negate Real — NEGR
Normalize — NRM
OR Immediate — ORI
OR Multiple Precision — ORM
Pop String From Stack — POPS
Push String to Stack — PSHS
Reset — RSET

Contents

Contents

Paragraph

3.1056
3.106
3.107
3.108
3.109
3.110
3.111
3.112
3.113
3.114
3.115
3.116
3.117
3.118
3.119
3.120
3.121
3.122
3.123
3.124
3.125
3.126
3.127
3.128
3.129
3.130
3.131
3.132
3.133
3.134
3.135
3.136
3.137
3.138
3.139
3.140
3.141
3.142
3.143
3.143.1
3.144
3.145
3.146
3.146.1
3.147
3.148
3.149

xii

Title Page

Right Test FOrOne — RTO ottt e 3-170
Return With Workspace Pointer — RTWP, 3172
SubtractWords — S ... 3-173
Subtract Bytes — SB 3-174
Set CRUBIttoLogicOne — SBO ..ottt e 3-175
SetCRUBIttoLogicZero — SBZ ..ottt et 3-176
Subtract Double Precision Real — SDuurre e, 3177
Search String ForEqual Byte — SEQBcoiiiiitn i, 3-179
SettoONe — SETOt e 3-182
Shift Left Arithmetic — SLA. s 3-182
Shift Left Arithmetic Multiple Precision —SLAMcvn.. .. 3-183
Search List Logical Address — SLSL ...ttt 3-185
Search List Physical Address — SLSPttt 3-188
Subtract Multiple Precisioninteger —SMo vii .., 3-190
Search String ForNot EqualByte — SNEBc.c0vveerinnnnn. 3-192
Set Ones Corresponding — SOC.ttt 3-194
Set Ones Corresponding, Byte —SOCBc.ccoiiiiinenninn... 3-195
Subtract Real — SR 3-196
Shift Right Arithmetic — SRA 3-198
Shift Right Arithmetic Multiple Precision —SRAM 3-199
Shift Right Circular —SRC et 3-200
Subtract From RegisterandJJump —SRJ 3-201
Shift RightLogical — SRLt e 3-203
Store CRU — ST Rt t ee ee 3-204
Store Double PrecisionReal — STDttt eianns, 3-205
Store Program Counter — STPCttt e, 3-206
Store Real — STR ...t 3-207
Store Status — STST e 3-208
Store Workspace Pointer — STWP e 3-209
SWap Bytes — SWPB 3-209
Swap Multiple Precision — SWPM i e 3-210
Set Zeros Corresponding — SZC i 3-212
Set Zeros Corresponding,Byte — SZCBccoiiiiinnennnnnnn.. 3-213
Test Bit — TB. . e 3-214
Testand ClearMemory Bit — TCMBottt e e 3-215
TestMemory Bit — TMB. o 3-217
Translate String — TS i 3-218
Testand Set Memory Bit —TSMB it 3-221
EXeCUte — X Lo e 3-223
X Applications e e et e et 3-224
Extract Field — XF ... e e 3-224
Exit From Floating Point Interpreter — XITo oo, .. 3-226
Extended Operation — XOP i 3-227
Extended Operationscoi it 3-228
EXClusive OR — XOR i e e 3-232
Exclusive OR Multiple Precision — XORM.o, 3-233

Extract Value — XV . ..o e e e e 3-235

2270509-9701

Paragraph

4.1

4.2
421
422
423
424
425
4.2.51
4.25.2
4.3
4.3.1
43.2
4.3.21
4322
43.23
43.2.4
4.3.2.5
4.3.2.6
4.3.2.7
43.2.8
43.29
43.3
4.3.3.1
4.3.3.2
4.3.3.3
43.3.4
4.3.3.5
43.3.6
4.4

4.5
4.5.1
4511
45.1.2
4513
45.1.4
45.1.5
4.5.1.6
4517
4.5.2
45.2.1
4522
45.2.3
4524
45.2.5
45.2.6
45.2.7

2270509-9701

Contents

Title Page

4 — Application Notes

GEneral. .. e e e e 4-1
SUDIOUTLINES « ottt it et e e 4-1
BL instruction Common Workspace SubroutineExample.................... 4-1
BLSK Common Workspace SubroutineExample 4-3
Context Switch Subroutine Example i i, 4-4
Passing DatatoSubroutines i 4-8
Non-Reentrant SubroutineControl i i 4-10
ABS INSIIUCHION . .. e e 4-10
TSMBand TCMB Instructions i i i i 4-11
990/10 t0 990/12 Upgrade Considerations. i ii it 4-12
Cache USage ... i it i it e et e 4-13
Execution Differenceso e e 4-14
ABS INStIUCHION e e 4-14
Second Word Modification 4-14
lHlegal OpCcodesot e e 4-14
Workspace Crossing Map SegmentBoundaries......................... 4-15
Deferred Mapping Error e 4-15
Error Status Register e 4-15
990/12 CPU Status Registero 4-15
Map DiagnosticHardware 4-15
TILINE AccesstoWorkspaceCache i, 4-15
Performance Differences i e e 4-15
TIMING LOOPS . .o e 4-16
Slower Instructionsonthe990/12 i 4-16
Workspace Register Addressing. i i i 4-16
Instruction Execution from Workspace Registers 4-17
LD S NS IUCHION « ot et e e e e e 4-17
User Device Service Routines i 4-17
Reentrant Programmingottt 4-17
Writing Stand-Alone Programsttt 4-20
I EITUPES « .ot e 4-20
Predefined Interruptst e e 4-20
System Errorinterrupt 4-20
Errorinterrupt Trace Memory i it 4-22
Breakpoint System i 4-24
Twelve Millisecond TestClockt 4-25
ForcedInterrupts it e e 4-25

[T eT=Yo .Y, =1 4 o) 20 = ¢ (o T £~ P 4-25
CRUINPU/OUIPpUL e i 4-26
CRUIOINSIIUCHIONS . . .o i e ittt it e et 4-26
CRU Base Address Development i, 4-26
SBO EXAMPIE . . oottt e 4-27
SBZ EXAMPIE . oottt e s 4-27

T EXAMPIE .ot i i i e 4-28
LDCREXGMpPIE ...ttt i i i i 4-29
STCR EXAMPIE . . oottt it e it i s 4-29

Contents

Paragraph

453

453.1
4.53.2
4533
4.53.4
453.5
453.6
453.7
454

4541
454.2

5.1

5.2

5.3
5.3.1
5.3.1.1
5.3.1.2
53.1.3
5.3.1.4
5.3.15
5.3.1.6
5.3.1.7
5.3.1.8
5.3.1.9
5.3.1.10
5.3.1.11
5.3.1.12
5.3.2
5.3.2.1
53.2.2
53.2.3
5.3.2.4
5.3.2.5
5.3.2.6
5.3.3
5.3.3.1
53.3.2
5.3.3.3
5.3.3.4
5.3.3.5
5.3.3.6
5.3.4
5.3.4.1
5.3.4.2
5.3.4.3

xiv

Title Page

CRU Interface Example ..ot 4-29
Software Interface Requirements, 4-32
Software Routines Required it 4-32
Initialization 4-33
Character Transfero it e 4-34
End-of-DataReporting i i 4-35
Interrupt Routine i e 4-35
Programming Notes o 4-35
TILINEInput/Output e e e 4-35
TILINE Interface Examplecooiiiiin i i, 4-36
Peripheral Controller Applicationcciiiiiinenenn.. 4-37

5 — Assembler Directives

General. . 5-1
SDSMAC ASSeMbDIerttt 5-1
AssemblerDirectives 5-2
Directives That Affect the LocationCounterc..... 5-2
Absolute Origin — AORG i 5-3
Relocatable Origin — RORGttt 5-3
Dummy Origin — DORGot i e e 5-5
Block Startingwith Symbol — BSS. i 5-6
Block EndingwithSymbol — BES i, 5-6
Word Boundary — EVEN e 5-7
DataSegment —DSEG i 5-7
DataSegmentEnd —DEND 0 i, 5-8
CommonSegment — CSEGccoiiiiiiiii i 5-9
CommonSegmentEnd — CEND i, 5-10
ProgramSegment — PSEGttt 5-11
Program SegmentEnd — PEND i, 5-12
Directives That Affect the AssemblerOQutput 5-12
Output Options — OPTION i i 5-12
Program Identifier — IDT 5-13
Page Title — TITL i e e e e 5-14
ListSource — LISTo i e 5-14
NoSource List — UNL i e 5-15
Page Eject — PAGE i 5-15
Directives That Initialize Constantsco .. 5-16
Initialize Byte — BYTE i 5-16
Initialize Word — DAT A e 5-16
Initialize Text — TEXT i e e 5-17
Define Assembly-TimeConstant —EQU 5-17
Checkpoint Register — CKPT i 5-18
Workspace Pointer — WPNT e 5-19
Directives That Provide Linkage Between Programs 5-20
External Definition — DEF e 5-20
External Reference — REF i 5-20
Secondary External Reference — SREF., 5-21

2270509-9701

Paragraph

53.4.4
5.3.5
5.3.5.1
5.3.5.2
5.3.5.3
5.3.5.4
5.3.5.5
5.3.5.6
5357
5.4

6.1
6.2
6.3
6.4

7.1

7.2

7.3

7.4
7.41
7.4.2
7.4.3
7.4.4
7.45
7.4.5.1
7.45.2
7.45.3
7.45.4
7.4.6
7.4.6.1
7.4.7
7.4.71
7.47.2
7.5
7.5.1
752
7.5.3
7.5.4
755
7.5.6
7.5.7
7.5.8

2270508-9701

Force Load — LOAD
Miscellaneous Directives
Define Extended Operation — DXOP
Program End — END
Copy Source File — COPY
Conditional Assembly Directives — ASMIF, ASMELS,ASMEND
Define Operation — DFOP

Set Right Margin — SETRM

Set Maximum Macro Nesting Level — SETMNL
Symbolic Addressing Techniques

6 — Pseudo-Instructions

No Operation — NOP
Return — RT
Transfer Vector — XVEC

7 — Macro Language

Processing of Macros
Macro Library
Macro Language Elements

Constants and Operators

Parameters
Macro Symbol Table
Referencing Variables
Variable Qualifiers
Concatenation

Linked Symbols

Symbol Attribute Component Keywords
Parameter Attribute Keywords

Contents

Contents

Paragraph

7.5.9
7.5.10
7.5.11
7.5.12
7.5.13
7.6
7.6.1
7.6.2
7.6.3
7.7
7.71
7.7.2
7.7.3
7.7.4
7.7.5
7.7.6
7.17.7
7.7.8

8.1
8.2
8.2.1
8.3
8.3.1
8.3.2
8.3.3
8.3.4

9.1
9.2
9.3
9.3.1
9.3.2
9.4
95
9.5.1
9.5.2
9.5.3
954

xvi

Title Page

] 7-21
BELSE . o 7-22
BENDDIF . o e 7-22
BENDD . 7-22
Model Statements. 7-23
Assembler Directives to Support Macro Libraries 7-24
LIBOUT DireCtive .. v ittt e e e e e e 7-24
LIBIN Directive e e e e 7-25
Macro Library Managemento i 7-25
Macro Examples 7-26
Macro GOSUB 7-26
Macro EXIT .. 7-27
MaCIO D . . oo 7-28
MacroUNIQUE e e 7-30
Macro GENCMT .. e e 7-31
Macro LOAD ... 7-31
Macro TABLE e 7-33
MacCro LIS S .. 7-34

8 — Relocatability and Program Linking

Introduction 8-1
Relocation Capability o 8-1
Relocatability of Source StatementElements. 8-1
Program Linking i 8-2
External Reference Directives i 8-2
External Definition Directive i 8-2
Program Identifier Directive. i 8-2
Linking Program Modules i 8-2

9 — Assembler Output

ItrOdUC I ON . L e 9-1
Source Listing 9-1
Assembler Error Messages oottt i it e e 9-3
Abnormal Completion ErrorMessages.coviii i in i, 9-3
Assembly Listing Errors o i e e 9-4
Cross-Reference Listing i 9-11
Object Codeo 9-12
ObjectCode Format 9-13
Machine Language Format i i e 9-18
SymbolTable 9-18
ChangingObject Code i 9-18

2270509-9701

Contents

Appendixes
Appendix Title Page
A Character Set e s A-1
B Instruction Tablest i e e e e B-1
C Program Organization it i i i e C-1
D Hexadecimal InstructionTable e D-1
E AssemblerDirective Table. i e E-1
F MacroLanguage Tablettt ittt F-1
G Example Program..................... e G-1
H Numerical Tableso i e e e e H-1
| Instruction Usage Cross-ReferenceTable it I-1
J legal OpCOdest i e et e J-1
Index

lllustrations

Figure Title Page
1-1 =T TaT 4V = T - N 1-2
1-2 Memory Word e e e 1-3
1-3 990 Computer Memory Mapottt i e e e e e 1-3
1-4 Workspace Pointerand Registers. i i 1-7
1-5 990 Computer Status Register. 1-9
2-1 SOUICE StAtEMENt FOIMAS\t e e ettt e e e et et 213
2-2 S ACKS .t e 2-25
2-3 T3 € A P 2-27
2-4 Memory Representation of Single Precision Real Numbers 2-27
2:5 Memory Representation of Double Precision Real Numbers 2-28
3-1 Mapping Limit Register it it e e e 3-121
3-2 Address Development, Model 990 Mapping 3-123
33 PSHS orPOPS Representation i i 3-169
3-4 Extended Operation Example i eiann 3-230
3-5 Extended Operation Example after ContextSwitch 3-231
4-1 Common Workspace SubroutineExample it 4-2
4-2 PC Contents After BL InstructionExecution i it 4-2
4-3 Before Execution of BLSK Instruction il 4-3
4-4 After Execution of BLSK Instruction. o i 4-4
4-5 Before Execution of BLWP Instruction. i, 4-5
4-6 After Execution of BLWP Instruction ool 4-6
2270509-9701 xvii

Contents

Figure " Title Page
4.7 After Execution of RTWP InsStruction ... 4-7
4-8 Reentrant Procedure for Process Control S 4-18
4-9 Error Interrupt HandlingRoutine L 4-22
4-10 Breakpoint Registerinterrupts e T P 4.25
4-11 LDCR/ISTCR DataTransfer.........o ... P 4-28
412 LDCR Byte Transfer 4-29
4-13 LDCRWord Transfer................... e e e et 4-30
4-14 STCRByte Transfer i 4-30
4-15 STCRWord Transfer. ... 4-31
4-16 CRUBItASSIgNMeENts e e 4-33
4-17 TILINE Device ControllerExamplecuoieeen 0. e 4-36
71 Macro Assembler Block Diagram P 7:-2
91 Cross-Reference Listing Format . e 3 .“ e 9-12
9.2 Object Code Example 9-12
9-3 External Reference Example S 9-16
9-4 Machine Instruction Formats 9-19
Tables
Table Title Page
1-1 Dedicated Workspace Registers . e L 18
21 StatusBitsTestedbyInstructions..............................1 ‘2-3
3-1 AddressingModes PR e 32
3-2 Instruction Addressing............. e e 36
3-3 CRC Byte StringFormat e 3-72
3-4 Memory Protection Control 3-121
3-5 SEQB/SNEB Status BitConditions it 3-180
3-6 Search Termination Conditions 3-186
3-7 XOPVectors............. R P e 3-229
41 Error Interrupt Status Register (CRU'BaSE TFCOu) +vornrerrereennnn. 4-21
4-2 Error Interrupt Trace Memory Data Word Bit Functions 4-23
4-3 CRU Output Bit Assignments for Error Interrupt Trace Control and
Map Control (CRU Base Address TFAD) .. oo oo oot 4-23
4-4 Medium-Speed Line Printer Characteristics, 4-31
4.5 Printer Control and Response Signalscccviiiiiiinnnennnnnnn. 4-32
741 Variable Qualifiers T
7-2 Variable Qualifiers for Symbol Componentsccvvninennnnn. 7-10
7-3 Symbol Attribute Keywords i e 7-11
7-4 Parameter Attribute Keywordst 7-12
91 Abnormal Completion Messages e e .9-4
192 Assembly Listing Errors e e .95
9-3 Symbol Attributes 9-12
9-4 ObjectRecord Formatand Tagsouiiiinii i, 9-14
~ xviti 2270509-9701

Introduction

1.1 INTRODUCTION

This manual provides detailed reference information on the 990/99000 assembly language instruc-
tion sets. L tel GEY :

The 990/10 and 990/10A instruction sets are subsets of the 990/12 instruction set. The 990/10 in-
struction set consists of 72 instructions, and the 990/10A instruction set consists of 77 instruc-
tions. Both of these instruction sets can be executed on a 990/12 computer. The 990/12 instruction
set consists of 144 instructions, 67 of which may execute only on a 990/12 computer. The instruc-
tions are implemented on all 990/99000 computer systems by the Software Development System
Macro (SDSMAC) assembler. ' o

Programs written in the 990 assembly language may run under the control of an operating system,
DX10 for example, or the programs may be written to run without the services provided by an
operating system. The standard Tl operating systems are disk-based, general-purpose, multi-
tasking operating systems that are oriented toward interactive, online applications, although each
supports a batch mode. Each operating system provides for the management of files, tasks, and
interrupts and supports a wide variety of peripheral devices. An assembly language program writ-
ten to run under the control of an operating system is called a task. A program that does not exe-
cute under control of an operating system is called a stand-along program. Such a program must
handle for itself the required services that an operating system normally provides. Considerations
in writing stand-alone programs are discussed in Section 4.

1.2 990/10 AND 990/10A COMPUTER CHARACTERISTICS

The 990/10 minicomputer is a general purpose computer available in two chassis configurations
with a wide variety of optional memory boards, power supplies, and /O interface boards. All
statements about the 990/10 and 990/10A apply equally to the 990/12 computer. The memory data
word in the 990 computer is 16 bits long. Each word is also defined as two bytes of eight bits each.
The maximum memory size in the 990/10 computer without the memory mapping option is 64,000
bytes. With the addition of the memory mapping option, the 990/10 memory may be expanded to a
maximum of 2,048,000 bytes. The 990/10A computer can hold a maximum of 512,000 bytes.

1.2.1 Byte Organization

Memory for the Model 990 Computer uses byte addresses. A byte consists of eight bits of
memory, as shown in Figure 1-1. The bits may represent the states of eight independent two-
valued quantities or the configuration of a character code used for input, output, or data transmis-
sion. The bits also may represent a number which is interpreted either as a signed number in the
range of -128 through + 127 or as an unsigned number in the range of zero through 255. The 990
computer implements signed integer numbers in two’s complement form.

2270509-9701 11

Introduction

Figure 1-1. Memory Byte

The most significant bit (MSB) is designated bit zero, and the least significant bit (LSB) is
designated bit seven. A byte instruction may address any byte in memory.

1.22 Word Organization

A word in the memory of the Model 990 Computer consists of 16 bits, a byte at an even address
and a following byte at an odd address. As shown in Figure 1-2, the MSB of a memory word is
designated bit zero, and the LSB is designated bit 15. A word may contain a computer instruction
in machine language, a memory address, the bit configurations of two characters, or a number.
When a word contains a number, the number may be interpreted as a signed number in the range
of -32,768 through + 32,767 or as an unsigned number in the range of zero through 65,535. (Signed
integer numbers are implemented in two’s complement form.)

Word boundaries are assigned to even-numbered addresses in memory. The even address byte
contains bits zero through seven of the word, and the odd address byte contains bits eight
through 15. When word instructions address an odd byte, the word operand is the memory word
consisting of the addressed byte and the preceding even-numbered byte. This is the memory word
that would be accessed by the odd address minus one. For example, a memory address of 1023,
used as a word address would access the same word as memory address 1022,,.

NOTE

All instructions must begin on word boundaries. Instructions are
one, two, three, or four words long.

1.2.3 Memory Organization

Figure 1-3 shows a generalized memory map for the 990/99000 systems without the memory
mapping option. Memory mapping is described in paragraph 3.74.1. The area of low-order
memory from physical addresses 0 through >7F is used for interrupt and extended operation
transfer vectors. Transfer vectors are explained in paragraph 1.2.4,

The area of memory from physical addresses >80 through >9E is reserved as a workspace for the
front panel routine.

The area of memory from physical addresses >A0 through >F7FE is available for workspaces, in-
structions, and data. Part of this area is used by the operating system.

When map file zero is active, addresses >F800 through >FBFE are reserved for TILINE com-
munication with peripheral devices. These addresses may be assigned to registers in controllers
for direct memory access devices. Direct input/output from or to these devices is performed using
any instruction that may be used to access memory. For 1/0, the address in the instruction must
be the TILINE address assigned to the appropriate controller register. TILINE I/0 to standard 990

1-2 2270509-9701

(LsB)

1 ¥ 1 L] Ll 1 T T T

0] 1 2 3 4 5 6 7 8 9 10 11

12 13 14 15

(WORD BOUNDARY)

Figure 1-2. Memory Word

MEMORY

AREA ADDRESS
DEFINITION (HEXADECIMAL)
0000 LEVEL O INTERRUPT
INTERRUPTS TRANSFER VECTOR
LEVEL 1 _INTERRUPT
0004 TRANSFER VECTOR
0008 ,,L
003C LEVEL 15 INTERRUPT
TRANSFER VECTOR
EXTENDED OPERATIONS 0040 XOP 0 TRANSFER VECTOR
0 THROUGH 15
0044 XOP 1 TRANSFER VECTOR
0048 ~
v
~o
007¢ XOP 15 TRANSFER VECTOR
R R
EEEEUQ:'VE,E '!Soéni‘.’v."s, 0080 FRONT PANEL WORKSPACE
AND DATA 009E
0040 "L GENERAL ~
~ MEMORY q
F7FE
F800
TILINE PERIPHERAL.
CONTROL. SPACE au TILINE A
i i
FBFE
PROM FC00
f'L PROGRAMMER PANEL ~
ﬂu AND LOADER q
FFFA
LOAD OR RESTART FFFC
FUNCTION RESTART TRANSFER VECTOR
FFFE

(A)132200A

Figure 1-3.

2270509-9701

D)
148

b))
O

|49

O

LS o

990 Computer Memory Map

Introduction

Introduction

peripheral devices is handled by the operating systems. An example of TILINE interface is shown
in Section 4.

Where map file zero is active, addresses >FC00 through >FFFE are reserved for programmed
read-only memory (PROM) which contains the programmer panel program, the loader program,
and the self-test program.

A context switch using the transfer vector at memory location >FFFC loads the workspace
pointer with the value >80, loads the program counter register with the address of a subroutine
which can load or restart the computer or read the front panel, and transfers control to that
subroutine. Execution of a Load or Restart Execution (LREX) instruction or activation of a switch
in the control panel initiates the context switch.

1.2.4 Transfer Vectors

A transfer vector is a pair of memory addresses in two consecutive words of memory. The first
word contains the address of a 32-byte area of memory called a workspace. The second word con-
tains the address of a subroutine entry point. The 990 computer uses the transfer vector in a type
of transfer of control called a context switch. A context switch places the contents of the first
word of a transfer vector in the workspace pointer (WP) register, making the workspace addressed
by that word the active workspace. The 16 words of the active workspace become workspace
registers 0 through 15, which are available for use as general purpose registers, address registers,
or index registers. A context switch places the contents of the second word of a transfer vector in
the program counter (PC), causing the instruction at that address to be executed next.

A context switch transfers control to an interrupt subroutine whenever an interrupt occurs. The
transfer vectors for interrupt levels 0 through 15 are located in memory locations >0000 through
>003E, as shown in Figure 1-3. The address of the first byte of the vector for an interrupt level is
the product of the level number times four.

The 990 computer supports extended operations implemented by subroutines. These extended
operations are effectively additional instructions that may perform user-defined functions. Up to
16 extended operations may be implemented. An extended operation (XOP) machine instruction
results in a context switch to the specified extended operation subroutine. The transfer vectors
for extended operations 0 through 15 are located in memory locations >0040 through >007E, as
shown in Figure 1-3. The address of the first byte of the vector for an extended operation is the
product of the extended operation number times four, plus >40.

A context switch to a user subroutine is performed by the Branch and Load Workspace (BLWP) in-
struction. The transfer vector must have previously been placed at a user-defined location in
memory.

1.2.5 Interrupts

Sixteen priority-vectored interrupt levels are implemented in the 990 computer. The contents of
the interrupt mask in the status register define the interrupt level that will be recognized. Low-
order memory addresses 0 through >3F are reserved for transfer vectors used by the interrupts, as
detailed in Figure 1-3. When an interrupt request at an enabled level occurs, the contents of the
transfer vector corresponding to the level are used to enter a subroutine to service the interrupt.

1-4 2270509-9701

Introduction

1.2.5.1 General Interrupt Structure. The interrupt levels, numbered 0 through 15, determine the
interrupt priority. Level 0 has the highest priority and level 15 the lowest. The contents of the inter-
rupt mask, bits 12 through 15 of the status (ST) register, determine the enabled interrupt levels.
The value in the interrupt mask enables the corresponding interrupt level and all higher priority
levels. For example, if bits 12 through 15 of the status register contain the value >A, interrupt
levels O through 10 are enabled. Note that level 0 interrupts cannot be disabled, since the level
contained in the mask is always enabled.

1.2.5.2 Interrupt Sequence. The level of the highest priority pending interrupt request is con-
tinually compared with the interrupt mask contents. When the level of the pending request is
equal to or less than the mask contents (equal or higher priority), the interrupt is taken after the
currently executing instruction has completed or has reached a point where it can be interrupted
(interruptible instructions).

The workspace defined for the interrupt subroutine becomes active and the entry point is placed
in the program counter. The CPU also stores the previous contents of the WP register in the new
workspace register 13, the previous contents of the program counter in the new workspace
register 14, and the previous contents of the ST register in the new workspace register 15. This
series of operations preserves the program environment existing when the interrupt is taken. No
additional interrupt is taken until the first instruction of the interrupt subroutine is completed.
Thereafter, interrupts of higher priority can interrupt processing of the current interrupt.

After storing the ST register contents, the CPU subtracts one from the level of the interrupt taken
and places the result in the interrupt mask. This operation disables all interrupts of priority equal
to or less than the one taken. Higher priority interrupts will be processed. If a higher priority inter-
rupt is taken, upon completion the previous interrupt routine is returned to at the point at which it
was interrupted. If the interrupt request for that routine is still active, it is ignored and status bits 7
through 11 are reset. For more information on interrupts, see Section 4.

1.2.6 Workspace

The 990 computer employs an advanced memory-to-memory architecture. Blocks of memory
designated as workspace replace internal hardware registers as program data registers. Each
workspace register may hold data or an address and may function as an operand register, ac-
cumulator, address register, or index register. This architecture allows for rapid context switching
without having to load and store a series of registers. The workspace concept is particularly
valuable during operations that require a context switch (a change from one program to another or
to a subroutine, as in the case of an interrupt). Such an operation using a conventional
multiregister arrangement requires that at least part of the contents of the register file be stored
and reloaded. A memory cycle is required to store or fetch each word. By exchanging the contents
of the program counter, status register, and workspace pointer, the processor accomplishes a
complete context switch with only three store cycies and three fetch cycles. After the switch, the
workspace pointer contains the starting address of a new 32-byte workspace in memory for use in
the new routine. The contents of the workspace pointer, status register, and program counter
registers from the previous routine have been saved. A corresponding saving in time occurs when
the original context is restored.

Any 32-byte area of general memory beginning on an even byte address may be assigned as a
workspace and becomes the active workspace when the address of the first byte of the area is
placed in the workspace register. Figure 1-4 shows a workspace pointer and associated registers.
The registers that have assigned functions are identified in Table 1-1.

2270509-9701 1-5

Introduction

Table 1-1. Dedicated Workspace Registers
Register Contents Used During
0 Shift count Shift instructions (SLA,SRA,
(bits 12-15) (optional) SRC,SRL)
0 Count field Byte string instructions (990/12
(optional) only - CRC,CS,MOVS,MVSK,MVSR,
POPS,PSHS,SEQB,SNEB,TCMB,TMB,
TS, TSMB)
0 (bits 4-7) Count field (990/12 only — INSF,IOF,SLAM,
(optional) SRAM,XF,XV)
0 Count field Multiple precision instructions
(bits 12-15) (optional) (990/12 only - AM,ANDM,BDC,CNTO,
DBC,INSF,|OF,LTO,NRM,ORM,RTO,
SLAM,SM,SRAM,SWPM,XF, XORM,XV)
0 Floating point Conversion instructions
accumulator (990/12 only - CDI,CRI)
0-1 Floating point Floating point instructions
accumulator (990/12 only - AR,CDE,CER,CIR,
CRE,CRI,DR,LR,MR,NEGR,SR,STR)
0-1 Destination Signed instructions (990/12 and 990/10A
operand only - DIVS,MPYS)
0-3 Floating point Floating point instructions
accumulator (990/12 oniy - AD,CDE,CDI,CED,
CID,DD,LD,MD,NEGD,SD,STD)
11 Return address Branch and link (BL) instruction
11 Effective Software implemented XOP
address instruction
12 CRU base CRU instructions (SBO,SBZ,TB,
(bits 3-14) address LDCR,STCR)
13 Saved WP Context switching (BLWP,RTWP,
register software XOP,recognized
interrupt,LOAD,RSET)
14 Saved PC Context switching (BLWP,RTWP,
register software XOP,recognized
interrupt,LOAD,RSET)
15 Saved ST Context switching (BLWP,RTWP,
register software XOP,recognized
interrupt,LOAD,RSET)
1-6 2270509-9701

Introduction

WORKSP?CEP)POI NTER WORKSPACE
w

ADDRESS
- REGISTERS
[wP } > WP + 00 0
WP + 02 1
WP + 04 2
WP + 06 3
WP + 08 4
WP + OA1g 5
womipsEsseR peos | T 01 ;
A INTER WP +
(WP) TO THE <& °E16 Z
REGISTER NUMBER TO WP + 104¢ 8
DERIVE ACTUAL
REGISTER ADDRESS WP + 1244 9
WP + 144¢g 10
WP + 161¢g 11
WP + 181¢g 12
WP + 1Ayg 13
WP + 1C 1¢ 14
WP + 1Eyg 15
NOTE: ~

ALL MEMORY WORD ADDRESSES ARE EVEN,

» (A)133119

Figure 1-4. Workspace Pointer and Registers

The assembly language programmer should not place an incomplete workspace at the end of the
user segment. Certain conditions can result in memory beyond the user’s area being illegally
modified with no report of a mapping violation. This typically causes a >21 system crash or a
system hang.

1.2.7 Registers

Three internal hardware registers are accessible to the user. The program counter (PC) register
contains the address of the instruction following the current instruction being executed. This
register is referenced by the processor to fetch the next instruction from memory and is then
automatically updated. The workspace pointer (WP) register contains the address of the first byte
in the currently active set of workspace registers. A workspace register file occupies 32 con-
tiguous memory bytes in the general memory area. The address of the first byte must be even. The
status (ST) register contains the interrupt mask level and status information pertaining to the in-
struction operation. Each bit position in the register signifies a particular function or condition
that exists in the processor. Some instructions use the status register to check for a prerequisite
condition, others affect the values of the bits in the register, and others load the entire status
register with a new set of parameters. The status register is described in detail in paragraph 1.4.

1.3 990/12 COMPUTER CHARACTERISTICS

The 990/12 minicomputer is a full-function minicomputer incorporating all of the features of the
990/10 computer plus floating-point arithmetic, byte string operations, bit-array instructions, and
multiprecision integer and decimal instructions. The 990/12 is implemented with Schottky TTL

2270509-9701 1-7

Introduction

and low-power Schottky TTL technology, using high-speed workspace register and memory
caches to achieve an average factor of two increase in speed over the 990/10 computer. The max-
imum memory size available in the 990/12 computer without the memory mapping option is 64,000
8-bit bytes. Memory may be expanded through the memory mapping option to a maximum of
2,048,000 8-bit bytes. Other features of the 990/12 include an expanded version of the 990/10 in-
struction set, memory cache controller, workspace cache memory, and a writable control store.
The memory cache controller decreases the execution time of memory-intensive programs by
automatically storing the words most recently fetched from regular memory in the high-speed
cache, then always looking for the next words needed in cache memory first, thereby decreasing
memory access time. The workspace cache is a 16-bit, high-speed bipolar memory. In this cache,
data accessed as workspace registers is stored as it is fetched from regular memory. Subsequent
accesses to the same data are made to the cache, allevnatmg the need for a memory cycle and
decreasing the amount of time required for processing.

NOTE

Execution of instructions from the workspace causes the cache to
be disabled with accompanying degradation of performance.

The writable control store is a 1024 by 16-bit memory containing microcode instructions. The
writable control store feature allows the user to code his own assembly language instructions
through microcode programming. For more information on microcode programming, refer to the
Model 990 Computer MDS-990 Microcode Development System Programmer’s Guide.

1.4 STATUS REGISTER .

The status reglster of the Model 990 Computer is shown in anure 1-5. Blts 0 through 7 are iden-
tical on both the 990/10 and 990/12. Bit 8 is used on 990/99000 systems that have the memory map-
ping option. Bits 9, 10, and 11 are not used on a 990/10 or 990/10A. Bits 12 through 15 contain the
interrupt mask for both computers.
1.4.1 Logical Greater Than

The logical greater than bit (zero) of the status register contains the result of a comparison of
bytes, words, real numbers, or strings as unsigned binary numbers. Bit zero set to one indicates
Ioglcally greater than

14.2 Arlthmetlc Greater Than

The arithmetic greater than bit (one) of the status register contains the result of a comparison of
bytes, words, real numbers, or strings as two’s complement signed numbers. In this comparison,
the most significant bits of the operands being compared represent the sign of the number: zero
for positive, one for negative. For positive integers, the remaining bits represent the binary value.
For negative integers, the remaining bits represent the two’s complement of the binary value. For
real numbers, the remaining bits represent the exponent and the unsigned digits of the binary
value. Bit one set to one indicates arithmetic greater than.

1-8 "'9270509-9701

Introduction

L>] A>| EQ c o P X { PRI|MFIMM| OI | CS M

{ L INTERRUPT MASK

WCS ENABLE
1=ENABLE WRITABLE CONTROL STORE

OVERFLOW INTERRUPT ENABLE
1=ENABLE ERROR INTERRUPT ON ARITHMETIC
OVERFLOW ERROR

MEMORY MANAGEMENT AND PROTECTION ENABLE
1 =ENABLE FLAGS

. MAP FILE SELECT
0=MAP 0 1=MAP 1

. PRIVILEGED MODE
1=NON—-PRIV. MODE

= XOP IN PROGRESS

.. BYTE PARITY BIT

— OVERFLOW

‘= CARRY

- EQUAL

— ARITHMETICALLY GREATER THAN

=~ LOGICALLY GREATER THAN

Figure 1-5. 990 Computer Status Register

1.4.3 Equal

The equal bit (two) of the status register is set when two bytes, words, real numbers, or strings be-
ing compared are equal. It is also set to indicate the value of a bit under certain conditions.
Whether the comparison is that of unsigned binary numbers or two’s complement numbers the
significance of equality is the same. Bit two set to one indicates equality.

1.4.4 Carry

The carry bit (three) of the status register is set by a carry out of a bit of an operand during
arithmetic operations. The carry bit is used by the shift operations to store the last bit shifted out
of the workspace register being shifted. The carry bit is used by floating point operations to
distinguish between underflow and overflow. When bit 3 is one and bit 4 is zero, a carry occurred.
When both bits 3 and 4 are one, an overflow condition occurred. When bit 3 is zero and bit 4 is one,
underflow occurred.

1.4.5 Overflow

The overflow bit (four) of the status register is set when the magnitude of the result of an
arithmetic operation is too large to be correctly represented in two’s compliement representation.
In integer addition operations, the overflow bit is set when the most significant bits of the
operands are equal and the most significant bit of the result is not equal to the most significant
bit of the destination operand. In integer subtraction operations, the overflow bit is set when the
most significant bits of the operands are not equal, and the most significant bit of the result is not
equal to the most significant bit of the destination operand. For an integer divide operation, the
overflow bit is set when the most significant 16 bits of the dividend are greater than or equal to the
divisor. In floating point arithmetic operations (add, subtract, multiply, and divide), overflow is set
if the magnitude of the exponent cannot be represented in seven bits. For an arithmetic left shift,
the overflow bit is set if the most significant bit of the operand being shifted changes value. For
the absoiute value and negate instructions, the overfiow bit is set when the source operand is the
maximum negative value, 8000,,. Bit four set to one indicates that an overfiow has occurred.

N

2270508-9701 1-9

Introduction

1.4.6 0Odd Parity

The odd parity bit (five) of the status register is set in byte operations when the parity of the result
is odd and is reset when the parity is even. The parity of a byte is odd when the number of bits hav-
ing values of one is odd; when the number of bits having values of one is even, the parity of the
byte is even. The odd parity bit is equal to the least significant bit of the sum of the bits in the byte.
Bit five set to one indicates odd parity.

1.4.7 Extended Operation

The extended operation bit (six) of the status register is set to one when a software-implemented
extended operation is initiated. An extended operation initiates a context switch using the
transfer vector for the specified extended operation. After the WP and PC have been set to the
values in the transfer vector, the extended operation bit is set. Bit six set to one indicates that an
extended operation is in progress.

1.4.8 Privileged Mode

The privileged mode bit (seven) of the status register is set to one to inhibit execution of privileged
instructions. When execution of a privileged instruction is attempted with the PR bit set to one, a
privileged instruction error occurs. Bit seven must be reset to zero for execution of privileged in-
structions. Privileged instructions perform operating system functions not appropriate to user
programs. The specific privileged instructions are identified in Section 3. The computer is placed
in privileged mode and the map file select is set to map file zero when power is applied, when an
interrupt occurs, or when an XOP instruction is executed.

1.49 Map File Select

The memory file bit (eight) of the status register provides access to memory addresses outside of
the range of addresses (32K words) of the address portions of the instructions. When bit eight is
set to zero, the six mapping registers of map zero are active. When bit eight is set to one, the six
mapping registers of map one are active. This bit has no meaning on a 990/10 computer without
the memory mapping option.

1.410 Memory Management And Protection Enabled

The memory management and protection enable bit (nine) of the status register is set to one to
enable the management and protection flags in the mapping limit register. The memory manage-
ment and protection enable bit is set or cleared by loading the status register. This bit has no
meaning on a 990/10 or a 990/10A computer.

1.4.11 Overflow Interrupt Enable

The overflow interrupt enable bit (10) of the status register is set to one to allow error interrupts on
arithmetic errors. An arithmetic error is any condition that would set the overflow bit (four). if the
overflow interrupt bit is set to one and an overflow error occurs due to an arithmetic instruction,
an error interrupt (level two) occurs and bit four of the error interrupt register is set. The overflow
interrupt enable bit is set to one (enabled) or reset to zero (disabled) by loading the status register.
This bit has no meaning on a 990/10 or a 990/10A computer.

1.4.12 Writable Control Store

If the writable control store bit (11) of the status registeris set to one, the XOP instructions vector
into the writable control store. If the bit is set to zero, XOP operates as explained in paragraph
1.2.4. The writable control store bit is set to one (enabled) or reset to zero (disabled) by loading the
status register. This bit has no meaning on a 990/10 or a 990/10A computer.

1-10 2270509-9701

Introduction

1.4.13 Interrupt Mask

The interrupt mask (bits 12-15) indicates the lowest priority interrupt that can occur. When an in-
terrupt occurs, the interrupt mask is loaded with the value of the next highest priority interrupt,
masking the active level and all levels below it. The interrupt mask can also be loaded under pro-
gram control by the LIMI or LIM instructions.

2270509-9701 1-111-12

2

General Programming Information

2.1 990 ASSEMBLY LANGUAGE

The 990 assembly language is a powerful set of instructions consisting of mnemonic operation
codes (sometimes called mnemonics or opcodes) that correspond directly with binary machine in-
structions. The assembly language program as coded by the programmer is called a source pro-
gram and must be processed by an assembler to obtain a machine language program before it
can be executed by the computer. Processing of a source program is called assembling. It con-
sists of assembling the binary values that correspond to the mnemonic operation code with the
binary address information to form the machine language instruction. Assembler directives,
discussed in Section 5, control the process of making a machine language program from the
assembly language program, place data in the program, and assign values to symbols to be used
in the program.

2.2 990/10 AND 990/10A INSTRUCTION SETS

The 990/10 assembly language is a set of 72 instructions that provide for the input, output,
manipulation, and comparison of integer and ASCII character data. The 72 instructions are a
subset of the 990/12 instruction set and may execute on any 990/99000 system. The 990/10A
instruction set adds five instructions to the 990/10 instruction set. All five are applicabie to the
990/12 instruction set. The 990/10 instruction set provides five modes for addressing memory.
Each instruction must be stated in one of the ten instruction formats for the 990/10 and 990/10A
instruction sets described in paragraph 3.4. The instructions in the 990/10 and 990/10A assembly
language are introduced according to logical function in the paragraphs that follow and are

described in detail in the referenced paragraph in Section 3. The instructions are divided into the
following functional categories:

o Arithmetic instructions

. Branch and Jump instructions
e Compare instructions

e Control and CRU instructions
A Load and Move instructions

. Logical instructions

L Shift instructions

. Extended operation instruction

] Long-distance addressing instructions

2270509-9701 24

General Programming Information

2.2.1 Arithmetic Instructions
The 990/10 arithmetic instructions operate on integer values only and are listed below. Detailed
descriptions are found in the referenced paragraph in Section 3.

Instruction Mnemonic Paragraph
Add Words | A 3.6
Add Bytes AB 3.7
Absolute Value ABS 3.8
Add Immediate Al 3.10
Decrement DEC 3.43
Decrement by Two DECT 3.44
Divide DIV 3.46
Divide Signed* DIVS 3.47
Increment INC 3.53
Increment by Two INCT 3.54
Muitiply MPY 3.91
Multiply Signed* MPYS 3.92
Negate NEG 3.96
Subtract Words S 3.107
Subtract Bytes SB 3.108

*Does not apply to 990/10.

2.2.2 Branch and Jump Instructions

The branch instructions transfer control to the specified address, which may be anywhere within
the 64K byte program space. Some branch instructions also store a return address. The jump in-
structions also transfer control, but they are limited to a displacement of up to + 127 or — 128
words relative to the current PC. The jump instructions transfer control either unconditionally, or
conditionally according to the state of one or more of the bits in the status register. Table 2-1 lists
the conditional jump instructions and shows the status bit or bits tested.

2-2 2270509-9701

General Programming Information

Table 2-1. Status Bits Tested by Instructions

Mnemonic L> A> EQ C opP Jump If:
JH X — X — — L>=1and EQ=0
JL X — X — — L>=0and EQ=0
JHE X — X — — L>=10orEQ=1
JLE* X — X — — L>=0o0orEQ=1
JGT — X — — — A>=1
JLT - X X — — A>=0and EQ=0
JEQ — — X — — EQ=1
JNE — - X — — EQ=0
JocC — —_ — X — C=1
JNC - - — X — C=0
JNO - - — — — ov=0
JOP - — — — X OP =1
Note:

* JLE is a logical comparison of jump if low or equal, not the arithmetic comparison.

For all jump instructions, a displacement of zero words results in execution of the next instruction
in sequence. A displacement of minus one word results in execution of the same jump instruction

(a single-instruction loop). The jump instructions are:

Instruction

Branch

Branch Indirect*
Branch and Link
Branch and Load WP
Jump if Equal

Jump if Greater Than
Jump if Logical High
Jump if High or Equal
Jump if Logical Low
Jump if Low or Equal
Jump if Less Than
Unconditional Jump

Jump if No Carry

* Does not apply to 990/10.

2270509-9701

Mnemonic

B
BIND
BL
BLWP
JEQ
JGT
JH
JHE
JL
JLE
JLT
JMP
JNC

Paragraph

3.16
3.18
3.19
3.21
3.58
3.59
3.60
3.61
3.62
3.63
3.64
3.65
3.66

General Programming Information

Instruction Mnemonic Paragraph
Jump if Not Equal JNE _ 3.67
Jump if No Overflow JNO 3.68
Jump on Carry JOC 3.69
Jump if Odd Pa‘rity JOP 3.70
Return with WP RTWP 3.106
Execute X -' 3.143

2.2.3 Compare Instructions

The compare instructions set or reset bits in the status register, usually in preparation for a jump
instruction. The compare instructions perform both arithmetic and logical comparisons. The
arithmetic comparison is of the two operands as two’s complement values and the logical com-
parison is of the two operands as unsigned magnitude values. The compare instructions are as
follows:

Instruction Mnemonic Paragraph
Compare Words C 3.22
Compafe By‘tes | éB 3.23
Compare Immediate Cl 3.28
Compare Ones Corresponding COC 3.35
Compare Zeros Corresponding CczC 3.40

2.2.4 Control And CRU Instructions

The control instructions affect the operation of the Arithmetic Unit (AU) and the associated por-
tions of the computer. CRU instructions affect the interface boards connected to the Communica-
tions Register Unit. These mstructlons perform functions normally handled by the operating
system and are not applicable to most user tasks running under an operating system. Most of the
control and CRU instructions are privileged instructions and require that the privileged bit (bit 7)
of the status register be set to zero before they can execute. Instructions marked by an asterisk (*)
are privileged only if the effective CRU address is greater than >0E00. The control and CRU in-
structions are as foilows:

Instruction Mnemonic Paragraph
Clock Off CKOF 3.31
Clock On CKON 3.32
Idle IDLE 3.52

2.4 2270509-9701

General Programming Information

Instruction Mnemonic o Paragraph
Load CRU " | | LDCR* 373

Load or Restart Execution LREX 3.81
Reset ; , RSET 3.104

Set CRU Bit to Logic One SBO* 3.109

Set CRU Bit to Logic Zero SBzZ* 3.110
Store CRU STCR* 3128
Test Bit TB* 3.138

* These instructions are privileged if the effective CRU address is greater than >EOQ0.

2.2.5 Load and Move Instructions - _

The load and move instructions manipulate data between two memory locations or between hard-
ware registers and memory locations. The LIMI and LMF instructions are privileged. The instruc-
tions are as follows:

Instruction Mnemonic | Pafégraph |
Load Immediate LI 376
Load Interrupt Mask immediate LIMI 378 |
Load Memory Map File) . LMF 379
Load Status Régister* LST . 3.82
Load Workspace Poinfer* | ” | LWP k ' 384
.I:_oad Workspace.\Pointely'blmmedi’ate - | LWPI o 3.85
Move Word , MOV 3.87
Move Byte MOvB 3.89
Store Status STST 3.132
Store Workspace Pointer STWP 3.133
Swap Bytes SWPB 3.134

* Does not apply to 990/10.

2270509-9701 2-5

General Programming Information

2.2.6 Logical Instructions
The logical instructions provide the capability to perform various logical operations on memory
locations and/or workspace registers. The instructions are as follows:

Instruction Mnemonic Paragraph
AND Immediate ANDI 3.12
Clear CLR 3.33
Invert INV 3.56
OR Immediate ORI 3.100
Set to One SETO 3..113
Set Ones Corresponding (OR) SOC 3.120
Set Ones Qorresponding, Byte (OR) SOCB 3.121
Set Zero\‘e, Corresponding SzC 3.136
Set Zeros Corresponding, Byte SZCB 3.137
Exclusive OR XOR 3.147

2.2.7 Shift Instructions

The shift instructions permit the shifting of the contents of a specified workspace register from 1
to 16 bits. For each of these instructions, if the shift count in the instruction is zero, the shift
count is taken from bits 12 through 15 of workspace register 0. If the four bits of workspace
register 0 are equal to zero, the shift count is 16 bit positions. The value of the last bit shifted out
of the workspace register is placed in the carry bit of the status register. The resulting value is
compared to zero and the results of that comparison are shown in the logical greater than,
arithmetic greater than, and equal bits (bits 0 through 2) of the status register. If a shift count
greater than 15 is specified, the assembiler fills in the four-bit field with the least significant four
bits of the shift count and issues a warning message. The shifting instructions are:

Instruction Mnemonic Paragraph
Shift Left Arithmetic SLA 3.114
Shift Right Arithmetic SRA 3.123
Shift Right Circular ’ SRC 3.125
Shift Right Logical SRL 3.127

2.2.8 Extended Operation Instruction

The extended operation (XOP) instruction permits the extension of the existing instruction set to
include additional instructions and provides an interface between a user program and standard
operating system subroutines. The additional instructions may be coded in 990 assembly

2-6 2270509-9701

General Programming Information

language, in which case the XOP instruction functions like a subroutine call, or they may be
coded in 990 microcode. For more information on using 990 microcode, refer to the Mode! 990/12
Computer MDS-990 Microcode Development System Programmer’s Guide. For more information
on using the XOP instruction as a call to a user-written or operating system subroutine, refer to
the manuals describing the applicable operating system.

Instruction Mnemonic Paragraph

Extended Operation XOP 3.146

2.29 Long-Distance Addressing Instructions

These instructions are applicable only to 990 computers equipped with the memory mapping op-
tion. The long-distance addressing instructions enable access to memory locations outside of the
current memory map. These instructions require that the map enable bit (bit 4 at CRU base ad-
dress >1FAQ) be set to one. The instructions are as follows:

Instruction Mnemonic Paragraph
Long-Distance Destination LDD 3.74
Long-Distance Source LDS 3.75

2.3 990/12 INSTRUCTION SET

The 990/12 instruction set includes all of the instructions listed in the preceding paragraphs and
72 additional instructions. The additional instructions provide the capability to manipulate
stacks, lists, strings, individual memory bits, multiple-precision integers, and single- and double-
precision real numbers, to enable or disable interrupts, to execute microcode diagnostics, to load
the writable control store, and to convert one type of data to another. The paragraphs that follow
list the 990/12 extensions to the nine functional groups of instructions described for the 990/10 in-
struction set and introduce a tenth functional group of conversion instructions.

2.3.1 Arithmetic Instructions
The additional 990/12 arithmetic instructions provide the capability to manipulate, in hardware,

multiple-precision integer, single- and double-precision real, and signed numbers. The additional
instructions are as follows:

Instruction Mnemonic Paragraph
Add Double-Precision Real AD 3.9

Add Multiple-Precision Integer AM 3.1

Add Real | AR 3.14
Count Ones CNTO 3.34
Divide Double-Precision Real DD 3.42

2270509-9701 2-7

General Programming Information

Instruction

Divide Signed

Divide Real

Multiply Double-Precision Real
Multiply Signed

Multiply Real

Negate Double-Precision Real
Negate Real

Subtract Double-Precision Real
Subtract Multiple-Precision Integer
Subtract Real

2.3.2 Jump Instructions

Mnemonic

DIVS
DR
MD
MPYS
MR
NEGD
NEGR
SD
SM

SR

Paragraph
3.47

3.48

3.86

3.92

3.93

3.97

3.98

3.111
3.118

3.122

The additional 990/12 jump instructions enable the manipulation of a register and jumping in a
single instruction, the use of a stack to maintain subroutine linkage, and a branch indirect. The in-

structions are as follows:
Instruction
Add to Register and Jump
Branch Indirect
Branch Immediate and Push Link to Stack

Subtract from Register and Jump

2.3.3 Compare Instructions

Mnemonic

ARJ

BIND

BLSK

SRJ

Paragraph
3.15
3.18
3.20

3.126

The additional 990/12 compare instructions enable the comparision and searching of strings,
testing for the presence of ones, and the testing and setting of individual memory bits. The in-

structions are as follows:
Instruction
Compare Strings
Left Test for Ones

Right Test for Ones

2-8

Mnemonic

Cs

LTO

RTO

Paragraph
3.39
3.83
3.105
2270509-9701

Instruction

Search String for Equal Byte
Search List for Logical Address
Search List for Physical Address
Search String for Not Equal Byte
Test Memory Bit

2.3.4 Control And CRU Instructions

Mnemonic

SEQB
SLSL
SLSP
SNEB

T™MB

General Programming Information

Paragraph
3.112
3.116
3.117
3.119

3.140

The additional 990/12 control and CRU instructions can enable or disabie interrupts, execute a
microcode diagnostic routine, and load the writable control store. The DINT, EINT, LCS, and EMD
instructions are privileged. The 990/12 control and CRU instructions are as follows:

Instruction

Disable Interrupts

Enable Interrupts

Execute Micro Diagnostic
Load Writable Control Store

2.3.5 Load and Move Instructions

Mnemonic

DINT

EINT

EMD

LCS

Paragraph
3.45
3.49
3.50

3.71

The additional 990/12 load and move instructions enable the manipulation of real numbers,
strings, stacks, lists, and fields. The instructions are as follows:

Instruction

Insert Field

Load Double-Precision Real
Load Interrupt Mask

Load Real

Load Status Register

Load Workspace Pointer
Move Address

Move String

2270509-9701

Mnemonic
INSF

LD

LIM

LR

LST

LWP
MOVA

MOVS

Paragraph
3.55
3.72
3.77
3.80
3.82
3.84
3.88

3.90

2-9

General Programming Information

Instruction

Move String from Stack
Move String Reverse
Pop String From Stack

Push String to Stack

Store Double-Precision Real

Store Program Counter
Store Real

Swap Multiple-Precision’
Extract Field

Extract Value

2.3.6 Logical Instructions

Mnemonic

MVSK
MVSR
POPS
PSHS
STD
STPC
STR
SWPM
XF

XV

Paragraph

3.94

3.95

3.102

3.103

3.129

3.130

3.131

3.135

3.144

3.149

The additional 990/12 logical instructions enable the manipulation of multiple precision values
and single memory bits. The instructions are as follows:

Instruction

AND Multiple-Precision
Invert Order of Field

OR Multiple-Precision
Test and Clear Memory Bit
Test and Set Memory Bit

Exit from Floating Point
Interpreter

Exclusive OR Multiple-Precision

2-10

Mnemonic

ANDM

IOF

ORM

TCMB

TSMB

XIT

XORM

Paragraph

3.13

3.57

3.101

3.139

3.142

3.145

3.148

2270509-9701

General Programming Information

2.3.7 Shift Instructions
The additional 990/12 shift instructions enable the shifting and normalization of multiple-
precision values. The additional instructions are as follows:

Instruction Mnemonic Paragraph
Normalize NRM 3.99

Shift Left Arithmetic
Multiple-Precision SLAM 3.115

Shift Right Arithmetic
Multiple-Precision SRAM 3.124

2.3.8 Extended Operation and Long-Distance Addressing Instructions

No extensions have been added to the 990/12 instruction set for these two groups. Any instruction
in these two groups may be executed on either computer. The long-distance addressing instruc-
tions require that the memory mapping option be instalied.

2.3.9 Conversion Instructions
The 990/12 conversion instructions enable the conversion of one data type to another and the
calculation of a cyclic redundancy code. The instructions are as follows:

Instruction | Mnemdnic Paragraph
Binary to Decimal ASCIlI Conversion BDC 3.17
Convert Double-Precision Real to

Extended Integer CDE 3.24
Convert Double-Precision Real

to Integer CDI 3.25
Convert Extended Integer to Double-

Precision Real , CED 3.26
Convert Extended Integer to Real CER 3.27
Convert integer to Double-

Precision Real , CiD 3.29
Convert Integer to Real CIR 3.30
Cyclic Redundancy Code Calculation CRC 3.36
Convert Real to Extended Integer CRE 3.37
Convert Real to Integer CRI 3.38
Decimal ASCIl to Binary Conversion DBC 3.41

2270509-9701 2-11

General Programming Information

Instruction Mnemonic Paragraph
Extend Precision | o EP 351
Translate String TS 3.141

2.4 SOURCE STATEMENT FORMAT
An assembly language source program consists of source statements that, may contain
assembler directives, machine instructions, pseudo-instructions, or comments. Each source
statement is a source record as defined for the source medium, that is, an 80-column card for
punched card input, or a line of characters terminated by a carriage return for input from the
keyboard of a terminal such as the Model 733 ASR Data Termlnal ora CRT d|SpIay termmal
EXREER S SN (FERE SARINS 5 “‘\?,"gv’; L : T :

The following conventions apply in the syntax deflnltlons for machlne mstructrons macro verbs
and assembler directives:

J Iltems in capital letters and special characters must be entered as shown,

. ltems within angle brackets (< >) are defmed by the user.

': < P : ’ o

. Items in Iowercase Ietters are classes (generlc names) of |tems

. Items W|th|n brackets (]) are opttonal

e ltems within braces ({ }) are alternatlve items; one must be entered

. All ellipses (...) indicate that the preceding item may be repeated.
. The symbo| brepresents a blank or space.

The syntax for source statements other than comment statements is deflned as follows

- A s .
S . ; TR A Y S

[<label>]lh..opcodeb...[<operand>]..h..[<comment>]

This syntax definition means that a source statement may have a label that is defined by the user.
One or more blanks separate the label from the opcode. Mnemonic operation codes, assembler
directives codes, and user-defined operation codes are ali included in the generic term opcode,
and any of these may be entered. One or more blanks separate the opcode from the operand,
when an operand is required. Additional operands, when required, are usually separated by com-
mas. One or more blanks separate the operand or operands from the comment field.

Comment statements are recognized by an asterisk (*) in the first character position. Comment
statements are listed in the source portion of the assembly Ilstlng and have no other effect on the
assembly. .

The length of source records to be scanned by the assembler is set by the set right margin
(SETRM) assembler directive. The default value is 60 characters. Using the SETRM directive, the
length to be scanned may range from ten to 80 characters. Assembler directives are described in
Section 5. Only the first 52 characters are printed on a Model 733 ASR data terminal. The last

2412 2270509-9701

General Programming Information

source statement of a source program is followed by the end-of-file statement for the source
medium, that is, for punched cards acard with a slash (/) punched in column one and an asterisk
(*) punched in column two.

Figure 2-1 shows source statements written on a coding form illustrating alternative methods of
entering statements. The first four statements illustrate one method of entering statements. In
each statement, the label begins in column one, the opcode in column eight, the operands in col-
umn 13, and the comments in column 26. This method promotes readability, but may be time-
consuming on some input devices, particularly data terminals. The last four statements show the
use of horizontal tab characters represented by % to separate the fields. On the Model 733 ASR
Data Terminal, the tab character is entered by holding the CTRL key while pressing the | key.

LABEL OPER OPERAND COMMENTS
1 [8 " 13 (k4 21 2326 ko] 35 40 45 50 55 60
« TclonvIEINTTTiToIN]ATLT TsTolulRTcTET TsTT]AlTIEIMTEIN]TT fFlo[RIMIALT
siTIAR(T L1 HRBAE Liolain] Wl [R] [3
A 50,03 alp[o] [wlr[S| [Tlo] WIR[3
RIT RIE[TIU[RINT [rlo] [clajLic|iin]a| [p|r|olc|r A |M

slamlsl, [3fklaloin]| [wiris| iTlo| WR(3

HRITIIFRIEURINT [r{o] [clajtitiTiN|a] [P[R]O|G [R|A|M

PROGRAM PROGR AMMED BY CHARGE PAGE OF
(A)132203A .

Figure 2-1. Source Statement Formats

2270509-9701 ' 2-13

General Programming Information

2.4.1 Character Set ,

The assembler for the Model 990 Computer recognizes the ASCII character set and special
characters that are undefined in ASCII. Appendix A contains tables that list the 990 character set
with the ASCII and Hollerith codes.

242 Label Field

The label field begins in character position one of the source record and extends to the first blank.
The label field contains a symbol of up to six characters, the first of which must be alphabetic. Ad-
ditional characters may be any alphanumeric characters. A label is optional for machine instruc-
tions and for many assembler directives. When the label is omitted, the first character position
must contain a blank. A source statement consisting of only a label field is a valid statement; it
has the effect of assigning the currect location to the label. This is usually equivalent to placing
the label in the label field of the following machine instruction or assembler directive. However,
when a statement consisting only of a label follows a TEXT or BYTE directive and is followed by a
DATA directive or a machine instruction, the label will not have the value of a label in the follow-
ing statement unless the TEXT or BYTE directive left the location counter on an even (word) loca-
tion. An EVEN directive following the TEXT or BYTE directive prevents this problem.

2.4.3 Operation Field

The operation (opcode) field begins following the blank that terminates the label field, or in the
first nonblank character after the first character position when the label is omitted. The operation
field is terminated by one or more blanks and may not extend past the right margin as specified in
the SETRM assembler directive or character position 60 if SETRM has not been used. The opera-
tion field contains one of the following types of opcodes:

. Mnemonic operation code of a machine instruction.

° Assembler directive operation code.

e Symbol assigned to be an extended operation by a DXOP directive.

e Symbol assigned to be a previously defined operation by a DFOP directive.
. Pseudo-instruction operation code.

s Macro name.

2.4.4 Operand Field

The operand field begins following the blank that terminates the operation field and may not ex-
tend past the right margin of the source record. The operand field may contain one or more ex-
pressions or constants, according to the requirements of the operation. The operand field is ter-
minated by one or more blanks.

245 Comment Field

The comment field begins following the blank that terminates the operand field and may extend
to the end of the source record if required. The comment field may contain any ASCIl character in-
cluding blank. The contents of the comment field are listed in the source portion of the assembly
listing and have no other effect on the assembly.

2-14 2270509-9701

General Programming Information

2.5 CONSTANTS

The assembler recognizes four types of constants: decimal integer constants, hexadecimal in-
teger constants, character constants, and assembly-time constants.

2.5.1 Decimal Integer Constants

A decimal integer constant is written as a string of numerals. The range of values of decimal in-
tegers is — 32,768 to + 32,767. Positive decimal integer constants in the range 32,768 to 65,535 are
considered negative when interpreted as two’s complement values.

The following are valid decimal constants:

1000 Constant equal to 1000 or 3E8,,
- 32768 Constant equal to — 32768 or 8000,

25 Constant equal to 25 or 19,4

2.5.2 Hexadecimal Integer Constants

A hexadecimal integer constant is written as a string of up to four hexadecimal numerals pre-
ceded by a greater than (>) sign. Hexadecimal numerals include the decimal values 0 through 9
and the letters A through F.

The following are valid decimal constants:

>78 Constant equal to 120 or 78,
>F Constant equal to 15 or F,,
>37AC Constant equal to 14252 or 37AC,,

253 Character Constants
A character constant is written as a string of one or two characters enclosed in single quotes. For
each single quote required within a character constant, two consecutive single quotes are re-
quired to represent the quote. The characters are represented internally as eight-bit ASCII
characters. A character constant consisting only of two single quotes (no character) is valid and
is assigned the value 0000,,.

The following are valid character constants:

‘AB’ Represented internally as 4142,,
‘c Represented internally as 0043,,
‘N’ Represented internally as 004E,,
“p’ Represented internally as 2744,

2.5.4 Assembly-Time Constants

An assembly-time constant is a symbol given a value by an EQU directive, described in a subse-
quent paragraph. The value of the symbol is determined at assembly time and is considered to be
absolute or relocatable according to the relocatability of the expression, not according to the
relocatability of the location counter value.

2270509-9701 2-15

General Programming Information

2686 SYMBOLS

Symbols are used in the label field, the operator field, and the operand field. A symbol is a string
of alphanumeric characters, (A through Z, zero through nine *;’ and ‘$’), the first of which must be
an alphabetic character (A through Z), ‘;’ or ‘$’ and none of which may be blank. When more than
six characters are used in a symbol, the assembler prints all the characters, but accepts only the
first six characters for processing. The assembler also prints a warning indicating that the symbol
has been truncated. Therefore symbols must be unique in the first six characters. User-defined
symbols are valid only during the assembly in which they are defined.

Symbols used in the label field become symbolic addresses. They are associated with locations
in the program and must not be used in the label field of other statements. Mnemonic operation
codes and assembler directive names are valid user-defined symbols when placed in the label
field.

Symbols used in the operator field must be either predefined instruction mnemonics, assembler
directives, defined in a DFOP or DXOP, or defined as a macro name.

Symbols used in the operand field must be defined in the assembly, usually by appearing in the
label field of a statement or in the operand field of a REF or SREF directive.

The following are examples of valid symbols:

START Assigned the value of the location at which it ap-
pears in the label field.

Al Assigned the value of the location at which it ap-
pears in the label field.

OPERATION OPERAT is assigned the value of the location
where it appears in the label field.

2.6.1 Predefined Symbols

The predefined symbols are the dollar sign character ($) and the workspace register symbols. The
dollar sign character is used to represent the current location within the program. The workspace
register symbols are as follows:

Symbol Value Symbol Value Symbol Value
RO 0 R6 6 R12 12
R1 1 R7 7 R13 13
R2 2 R8 8 R14 14
R3 3 R9 9 R15 15
R4 4 R10 10
R5 5 R11 11

2-16 2270509-9701

General Programming information

The following is an example of a valid predefined symbol:
$ Represents the current location.

2.6.2 Character Strings

Several assembler directives require character strings in the operand field. A character string is
written as a string of characters enclosed in single quotes. For each single quote in a character
string, two consecutive single quotes are required to represent the required single quote. The
maximum length of the string is defined for each directive that requires a character string. The
characters are represented internally as eight-bit ASCIl. Appendix A gives a complete list of valid
characters within character strings.

The following are valid character strings:

‘SAMPLE PROGRAM’ Defines a 14-character string consisting of
SAMPLEBWPROGRAM

‘PLANB‘C™” Defines an 8-character string consisting
of PLANB'C’

‘OPERATOR Defines a 37-character string consisting of

MESSAGE*PRESS the expression enclosed in single quotes

START SWITCH’

2.7 EXPRESSIONS

Expressions are used in the operand fields of assembler directives and machine instructions. An
expression is a constant, a symbol, or a series of constants, a series of symbols, or a series of
constants and symbols separated by arithmetic operators. Each constant or symbol may be
preceded by a minus sign (unary minus) or a plus sign (unary plus). An expression may not contain
embedded blanks. Symbols that are defined as external references may be operands of arithmetic
instructions within certain limits, described in the next paragraph.

An expression may contain more than one symbol that is not previously defined. When the sym-
bols in an expression have values which are absolute, they may also be operands of multiplica-
tion or division operations within an expression. An expression that contains a relocatable sym-
bol or relocatable constant immediately following a multiplication or division operator is an il-
legal expression. Also, when the result of evaluating an expression up to a multiplication or divi-
sion operator is relocatable, the expression is illegal. An expression in which the number of
relocatable symbols or constants added to the expression exceeds the number of relocatable
symbols or constants subtracted from the expression by more than one is an illegal expression.

If NA
NS

Number of relocatable values added and
Number of relocatable values subtracted

Then if
0, The expression is absolute

NA - NS ={1, The expression is relocatable
Other than 0 or 1, the expression is illegal

2270509-9701 2-17

General Programming Information

An expression containing relocatable symbols or constants of several different relocation types
(see Section 5) is absolute if it is absolute with respect to all relocation types. If it is relocatable
with respect to one relocation type and absoiute with respect to all other relocation types, then
the expression is relocatable.

An expression is represented in the syntax definitions by <exp>.
Two other types of expressions are used in the operand field:

. Well-defined expressions

. Nibble expressions
For an expression to be well-defined, any symbols or assembiy-time constants must have been
previously defined. Also, the evaluation of a well-defined expression must be absolute. A well-
defined expression is represented in the syntax definitions by <wd-exp>.
A nibble expression is an expression which evaluates to an absolute number in the range 0
through 15. This expression’s result will be one hexadecimal digit (four bits). A nibble expression
may be represented in the syntax definition by several conventions (see Syntax Definition in Sec-

tion 3).

The following are examples of valid expressions:

BLUE + 1 The sum of the value of symbol BLUE plus one.

GREEN -4 The result of subtracting four from the value of sym-
bol GREEN.

2*16+ RED The sum of the value of symbol RED plus the prod-
uct of two times 16.

440/2 - RED The result of dividing 440 by two and subtracting the
value of symbol RED from the quotient. RED must be
absolute.

2.7.1 Use of External Referenced Symbols in Expressions
The assembler allows external referenced symbols (defined in REF and SREF directives) in ex-
pressions under the following conditions:

1. Only one externally referenced symbol may be used in an expression.
2. The character preceding the referenced symbol must be a plus sign, a blank, or a

comma (at sign “@” is not considered). The portion of the expression preceding the
symbol, if any, must be added to the symbol.

2-18 2270509-9701

General Programming Information

3. The portion of the expression following the referenced symbol must not inciude
multiplication, division, or logical operations on the symbol (same as for a relocatable
symbol, paragraph 2.7).

4. The remainder of the expression except the referenced symbol must be absolute
(relocatable symbols may be used).

As a result of this feature, the assembler limits the user to a total of 255 external referenced sym-
bols per module. Modules using more than 255 external symbols must be broken into smaller
modules for assembly and linked using the link editor.

2.7.2 Arithmetic Operators in Expressions
The arithmetic operators in expressions are as follows:

. + for.addition

— for subtraction

* for multiplication

| for signed division

/1 for logical right shift.

In evaluating an expression, the assembler first negates any constant or symbol preceded by a
unary minus and then performs the arithmetic operations from left to right. The assembler does
not assign precedence to any operation other than unary plus or unary minus. All operations are
integer operations. The assembler truncates the fraction in division.

For example, the expression 4 +5*2 would be evaluated 18, not 14 and the expression 7 + 1/2
would be evaluated four, not seven.

The logical right shift opefator (/ 1) allows a logical division by a power of two.

Examples:
8000//1 = 4000 AAAB//1 = 5555
FFFF/I0 = FFFF FFFF//16 = 0000

The assembler checks for overflow conditions when arithmetic operations aré performed at
assembly time and gives a warning message whenever an overflow occurs, or when the sign of
the result is not as expected in respect to the operands and the operation performed. Examples
where a “VALUE TRUNCATED"” message is given are as follows:

4000*2 7FFF +1 —-1*>8000

8000*2 8000 -1 —2*>8001

2270509-9701 219

General Programming Information

2.7.3 Logical Operators in Expressions
The assembler supports logical operations in expressions that are the bit-by-bit logical opera-
tions between the values of the symbols and/or constants. The logical operators are as follows:

. & for AND
. && for exclusive OR
. + + for OR
. # for NOT (logical complement)
The order of evaluation of expressions that contain logical operators is similar to that of expres-
sions that contain only arithmetic operators. Like the unary minus, the logical complement takes
precedence over other operations, regardless of position, except as altered by parentheses.
The following are examples of expressions that contain logical operators:
BLUE&&255 Specifies the result of an exclusive OR operation
between the bits of the value of symbol BLUE and
the bits of constant value 255.
GREEN + + 15 Specifies the result of an OR operation between the
bits of the value of symbol GREEN and the bits of
constant value 15.
REDÿ Specifies the result of an AND operation between
the bits of the value of symbol RED and the inversion
of the bits of constant value 255.

REDÿ + + ANDs the value of BLUE with the constant 255.

(BLUE&255) ANDs the value of RED with one’s complement of
255. ORs the two AND results to get the value of the
expression.

2.7.4 Relational Operators in Expressions o

The assembler supports six relational operators that represent the relationship between two con-
stants and/or symbols, that is, the result of comparing the constants and/or symbols. When the
relationship corresponding to the operator exists (is true), the value of the combination is one.
When the relationship corresponding to the operator does not exist (is not true), the value of the
combination is zero. The result may be used as an arithmetic value or as a logical value. The rela-
tional operators are as follows:

¢ = for equal

< for less than
> for greater than

<= for less than or equal

2-20 2270509-9701

General Programming Information

>= for greater than or equal

®* #= for not equal.

NOTE

The greater than character (>) is also used to identify hexadecimal
constants. The context determines the meaning of the greater than
character in each statement.

The following are examples of expressions that contain relational operators:

BLUE# =GREEN Compares the value of symbol BLUE to the value
of symbol GREEN. When the values are not equal,
the combination has a value of one. When the
values are equal, the combination has a value of
zero.

WHITE<BLACK Compares the value of symbol WHITE to the value
of symbol BLACK. When the value of WHITE is
less than the value of BLACK, the combination
has a value of one. Otherwise, the value of the
combination is zero.

RED*(GREEN =0) Compares the value of symbol GREEN to zero.
When GREEN equals zero, the value of symbol
RED is multiplied by one, and the value of the ex-
pression is that of symbol RED. When GREEN is
not equal to zero, the multiplier is zero, and the
value of the expression is zero.

BLUE>=RED Compares the value of symbo!l BLUE to the value
of symbol RED. When BLUE is greater than or
equal to RED, the combination is equal to one.
When BLUE is less than RED, the combination is
equal to zero.

2.7.5 Use of Parentheses in Expressions

The assembler supports the use of parentheses in expressions to alter the order of evaluation of
the expression. Nesting of pairs of parentheses within expressions is also supported. When
parentheses are used, the portion of the expression within the innermost parentheses is
evaluated first. Then the portion of the expression within the next-innermost pair is evaluated.
When evaluation of the portions of the expression within all parentheses has been completed, the
evaluation is completed from left to right. Evaluation of portions of an expression within paren-
theses at the same nesting level may be considered to be simultaneous.

For example, the use of parentheses in the expression LAB1 +((4 + 3)*7) would result in the addi-
tion of four and three. The result, seven, would be multiplied by seven, giving 49. The complete

'2270509-9701 2-21

General Programming Information

evaluation would be the value of LAB1 plus 49. Without parentheses, four would have been added
to the value of LAB1, three would have been added to the sum, and the value of the second addi-
tion would have been multiplied by seven if LAB1 had an absolute value. If LAB1 had a relocatable
value, the expression would have been illegal without the parentheses.

2.8 990/12 DATA TYPES
In addition to the data types described in the preceding paragraphs, which are applicable to both
computers, there are seven other data types, applicable only to the 990/12 instruction set, which
are listed below and explained in the paragraphs that follow.

. Extended Integers

U Multiple Precision Integers

. Byte Strings

e Stacks

. Lists

. Single Precision Real Numbers

. Double Precision Real Numbers
28.1 Extended Integers
An extended integer represents an integer value in the range -2% to + (2*'-1). The extended integer
uses two consecutive 16-bit words in memory. The value is right-justified in the double word. Ex-
tended integers are represented in two’s compliement form.
2.8.2 Multiple Precision Integers
A multiple precision integer is a series of one to 16 consecutive bytes. A length may be specified
in one of two ways using the 990/12 multiple precision integer instructions:

* A length of one to 15 bytes may be specified in the instruction.

. If a zero is specified in the instruction, then the length is fetched from the four LSBs of
workspace register RO. If the four LSBs are zero, then the length is 16 bytes.

When using the multiple precision instructions to manipulate these integers, there is no way to
specify an integer of zero precision. Instructions operating on two multiple precision operands
operate only on operands of the same precision.

Multiple precision integers also may be manipulated using the byte string instructions such as
MOVS or CS, which are described in Section 3. Note that the method of specifying a length of 16
bytes using byte string instructions is slightly different than multiple precision instructions.
Muitiple precision integers use the four LSBs of workspace register zero; strings use all 16 bits of
register zero.

2-22 2270509-9701

General Programming Information

Multiple precision instruction:
CLR RO CLEAR RO SO THAT 4 LSBs EQUAL 0

AM @INTEGER, @ ACCUM,0 ADD MULTIPLE PRECISION INTEGERS
OF LENGTH 16 (RO BITS 12-15) = 0)

Byte string instruction:

SETO R7Y INITIALIZE CHECKPOINT REGISTER
LI RO,16 LOAD RO WITH 16
MOVS @INTEGER,@ACCUM,0,R7 MOVE STRING OF LENGTH 16

28.3 Byte Strings
A byte string is a group of consecutive bytes that have a specified general address and length.
The length of the byte string may be specified in one of three ways.

. If the byte string length is from 1 to 15 bytes, the length can be specified in the in-
struction.

. If the byte string length is from 0 to FFFE,s bytes, length may be specified in workspace
register zero.

. If RO is equal to FFFF,, the byte string length is in the first byte of the string. This type
of string is referred to as a tagged string, and the length specified is from 1 to 256. The
tag byte is the most significant byte of the string and is included in the string length. A
tag value of zero indicates a string length of 256.

When an instruction is encountered with a byte string operand, the length is searched for in the
following order:

. in the instruction;
. in RO, if instruction specifies length of zero;
. in the tag, if RO equals FFFF,.

A zero length string is specified by a length field in the instruction equal to zero and workspace
register zero equal to zero.

The following examples illustrate these methods of specifying the string length in these three
respective ways using the Move String instruction:

. MOVS A,B,4, <ckpt> A length of 4 explicitly in the instruction

2270509-9701 2-23

General Programming Information

U L1 R0,80 A length of 80 in workspace register zero
MOVS A,B,, <ckpt>

e SETO RO As a tagged string
MOVS AB, <ckpt>

28.4 Stacks
A stack, as illustrated by Figure 2-2, is an area of accessible consecutive memory that is used for
storing, calculating, and manipulating byte strings of information. The stack is addressed using a
three-word control block. A stack may be addressed also with a register that contains the top of
stack through direct workspace register addressing.
The contro! block contains the following information:

. Word 1 — the address of the first byte containing data (the top of stack [TOS])

. Word 2 — the lowest address of the stack (the stack limit)

. Word 3 — the highest address of the stack + 1 (the bottom of the stack)

The stack grows from high addresses to low addresses. An empty stack is described with (Word 1)
= (Word 3)

2.8.5 Lists
A list is a group of data blocks that are linked together by linkage words. Each data block contains
at least one linkage word and an arbitrary number (possibly zero) of data words. A List Search
Control Block (LSCB) is used in searching the list. The LSCB is five words long and contains the
following information:

. Word 0 — Signed byte displacement to link word (the LSB is ignored)

. Word 1 — Signed byte displacement to compare word (the LSB is ignored)

. Word 2 — Test value to be used

. Word 3 — Test mask to be used

] Word 4 — Terminal link value

The List Search Control Block is located at the source address of the list instructions. The
destination address specifies a two-word block, as follows:

° Word 0 — Pointer to the beginning of the list (or the first element of the list involved in
the search)

. Word 1 — Pointer to the previous element in the list
Word 0 of the destination address can point to any place in the data block; the signed byte

displacement to the link word (word zero of the LSCB) is added to the pointer to access the next
linkage word. When a data block is accessed, and the list search is incomplete, word zero of the

2-24 2270509-9701

General Programming Information

TOP ? Low
OF STACK ADDRESS
S ODRESS STACK LIMIT
STACK LIMIT
ADDRESS
BOTTOM TOP OF STACK
OF STACK S TACK
GROWS
ADDRESS TOWARD
oW
ADDRESSES
BOTTOM OF STACK
HIGH
ADDRESSES
200 2F1 TOP OF STACK ADDRESS
206 STACK LIMIT ADDRESS
300 BOTTOM OF STACK ADDRESS
206
l‘ IN THIS EXAMPLE, BYTE 2F11¢g THROUGH BYTE 2FF1g CONTAIN
MEANINGFUL DATA. THESE BYTES ARE INDICATED BY THE
) SHADED PORTION.
o
o THE NEXT AVAILABLE BYTE FOR DATA TO BE STORED IS AT

ADDRESS 2F0;¢. THE BYTES AVAILABLE FOR STORAGE ARE
ADDRESS 20635 THROUGH 2F0,¢g.

— A

2F0 /////

2F2 7////////

2F4 /////////
2F6 ////////

7,

2eal 1

el
5,

300

Figure 2-2. Stacks

2270509-9701 2-25

General Programming Information

destination address is moved to word one, and the linkage word in the data block is moved into
word zero. The linkage word in each data block must be located at the same displacement from
the previous pointer. The compare word in each data block must also be the same displacement
from the pointer. Figure 2-3 illustrates the list data structure and the control blocks used in list in-
structions.

2.8.6 Single Precision Real Numbers

Single precision real numbers (floating point numbers) represent any value within the approx-
imate range 107" to 107, including zero. Single precision real numbers are stored in memory in two
16-bit words as illustrated in Figure 2-4. The number consists of a normalized hexadecimal frac-
tion, a corresponding hexadecimal exponent, and a sign bit.

The fractional portion of the number (mantissa) is normalized; that is, it is shifted to the left to
eliminate leading zeros between the radix point and the first significant digit of the fraction. Nor-
malization is by hexadecimal digits, not by bits. Each digit position shift in the normalization pro-
cess produces a corresponding change in the exponent portion of the number to maintain the cor-
rect magnitude of the number. When completely normalized, the hexadecimal mantissa is stored
in bits 8 through 15 of the first memory word and in the entire second memory word. The radix
point for the fraction is assumed to be positioned between bits seven and eight of the first
memory word (at the start of the hexadecimal fraction).

The exponent portion of the number is a hexadecimal exponent. The exponent is biased by 40,,
(excess 64 notation), so that an exponent for the number 16° ((1X16') is represented in memory by
41,,. Exponents of zero are represented by 40,,, except for the number zero. The number zero is
represented with the exponent and mantissa both as 0. Positive exponents, therefore, are
represented by numbers greater than 40,,, and negative exponents are represented by numbers
less than 40,,. For example, a normalized 167 is represented in the exponent field by a value of
39,.. The exponent may be any value from 00,, to 7F,,. Using the 40, bias value, these numbers
represent exponent values from —40,, to + 3F,; (167 to 16%). The seven exponent bits are stored
in bits one through seven of the first memory word.

Bit 0 of the first memory word is used for a sign bit. When this bit is a zero, the number is positive;
when this bit is one, the number is negative.

Single Precision Examples:

Hexadecimal Contents
of Memory Words

Base Ten Number Word 1 Word 2
1.0 4110 0000
0.5 4080 0000
101.0 4265 0000
.03125 (1/32) 3F80 0000
-1.0 C110 0000

2-26 2270509-9701

General Programming Information

SOURCE DESTINATION
ADDRESS ADDRESS
WORD 0 | SiCNER BYTIES DISPLACEMENT WORD 0] BEGINNING POINTER
SIGNED BYTE DISPLACEMENT
WORD 1 | SISHED BYTE DISPL WORD 1 | PREVIOUS POINTER
WORD 2 | TEST VALUE
WORD 3 | TEST MAsK
WORD 4 | TERMINAL LINK VALUE
LIST SEARCH CONTROL OPERANDS
SOURCE
W6
w1 —\/] .—v
w2 COMPARE WORD
w W 1=SOURCE E
wi w1 e w1 | Wi=souRce Appress
WO=SOURCE ADDRESS
wo l we l Wo | worbo
WA4=SOURCE ADDRESS
DESTINATION W4 Wa=so :
wo
wi s N e~ ——~—
LIST AT BEGINNING OF SEARCH
SOURCE
wo
wi [~ [~ [~
w2
ws w1 ' w1
wa
wo wo wo
DESTINATION
wo
wi TN TSN ~—

LIST DURING SEARCH, OR WHEN SEARCH IS TERMINATED BY A TRUE CONDITION

SOURCE
wo
w1 ™~ ——] S
w2
w3
wi wi wi
wa
wo wo wo
DESTINATION ADDRESS
ORDO CONTAINS TER-
wo MINAL LINK VALUE
wi TN N

LIST AT END OF SEARCH, WHEN SEARCH CONDITION 1S NOT FOUND
(A) 140269

Figure 2-3. Lists

RADIX POINT

1 74 15

MOST SIGNIFICANT 8 BITS
WORD 1 | S EXPONENT OF MANTISSA NORMALIZED
4, HEXADECIMAL
WORD 2 LEAST SIGNIFICANT 16 BITS OF MANTISSA FRACTION
(A) 133468

Figure 2-4. Memory Representation of Single Precision Real Numbers

2270509-9701 2-27

General Programming Information

2.8.7 Double Precision Real Numbers

Double precision real numbers are similar to single precision real numbers, except that they oc-
cupy two more memory words and provide a 56-bit mantissa instead of the 24 bits available with
single precision real numbers. Double precision real numbers have values from 107 to 107, in-
cluding zero.

Double precision real numbers are stored in memory in four 16-bit words as illustrated in Figure
2-5. The most significant bit of the first word is a sign bit for the mantissa; zero if the number is
positive and one if it is negative. Bits one through seven of the first word are the exponent. The ex-
ponent follows the same form as for single-precision real number exponents. The remaining bits
of the first word of the other three words contain the significant digits of the double precision
mantissa normalized in the same manner as a single precision floating point.

2.8.8 Floating Point Accumulator (FPA)

If a floating point operation requires two operands, such as multiply or subtract, then the second
operand is assumed to exist in an implicit “accumulator” register created by the results of a load
instruction or a previous calculation. The implicit accumulator acts as a single register that par-
ticipates in all floating operations as either an operand or result, or both. The outcome of all
floating point operations (except the store operations), is placed in the implicit accumulator.
Single precision real instructions use RO and R1 as the FPA, leaving R2 and R3 unaltered. Double
precision real instructions use RO, R1, R2, and R3 as the FPA.

2.9 REEXECUTABLE INSTRUCTIONS

Certain instructions (CS, SEQB, SNEB) can be reexecuted to continue a search or comparison
from the point the instruction ended. For example, the search equal byte (SEQB) instruction can
be executed to find the first equal byte of a byte string, the second, and so on. This is made pos-
sible by the checkpoint register: when the instruction ends on the proper search termination con-
dition, the checkpoint register returns a dlsp|acement into the string where the byte meeting that
cond|t|on is located. By executing a jump that goes back to that instruction, or by recoding the in-
struction with the same checkpoint register (unmodified), the search can be made to continue
from the point it ended, which is the value in the checkpoint register. Also by making the initial
value of the checkpoint register greater than -1, the search can be made to begin at some point in-
side the string. String and stack instructions use the value of the checkpoint register plus one as
the initial index into the string. This is true for the other string instructions also (MOVS, MVSR,
PSHS, MVSK, TS, and CRC). For more information on reexecutable instructions, see paragraph
3.39.1.

RADIX POINT

0 1 7/8 15

M
WORD 1 53 EXPONENT 0sT Sg}’:—"bﬁ{ﬁ#?‘g&g BITS
WORD 2 NORMALIZED
HEXADECIMAL
WORD 3 FRACTION
WORD 4 LEAST SIGNIFICANT 16 BITS OF MANTISSA

Figure 2-5. Memory Representation of Double Precision Real Numbers

2-28 2270509-9701

P

_Assembly Instructions

3.1 GENERAL

This section describes the mnemonic instructions of the 990 assembly language. Detailed
assembly instruction descriptions follow descriptions of the addressing modes used in the
assembly language and the instruction formats of the assembly instructions. The section also in-
cludes examples of programming the various instructions.

3.2 ADDRESSING MODES

Eight addressing modes are featured in the 990 assembly language. Three of these modes, pro-
gram counter relative addressing, CRU bit addressing, and immediate addressing, are special pur-
pose addressing modes discussed in paragraphs 3.2.6, 3.2.7, and 3.2.8, respectively. The remain-
ing five modes are used in the instructions that specify a general address for the source or
destination operand. Table 3-1 lists these modes and shows how each is used in the assembly
language. Each of the modes is described in a subsequent paragraph.

3.21 Workspace Register Addressing
Workspace register addressing specifies a workspace register that contains the operand. A
workspace register address is written as an expression having an absolute value of 0 through 15.

The following examples show the coding of instructions that have two workspace register ad-
dresses each:

MOV R4,R8 L Cobykhe contents bf wofképace register fbtjr injco
workspace register eight.

COC R15,R10 Compare to oh‘é thé bits 6f workspace registér ten
that correspond to the bits set to one in workspace

register 15.

3.2.2 Workspace Register Indirect Addressing

Workspace register indirect addressing specifies a workspace register that contains the address
of the operand. An indirect workspace register address is written as an expression having an ab-
solute value of 0 through 15 preceded by an asterisk (*). The following examples show the coding
of instructions that have workspace register indirect addresses.

A *R7,”R2 Add the contents of the word at the address in
workspace register seven to the contents of the
word at the address in workspace register two,
and place the sum in the word at the address in
workspace register two.

2270509-9701 3-1

Assembly Instructions

MOV *R7,R0 Copy the contents of the word at the address in
workspace register seven into workspace register
zero,

Table 3-1. Addressing Modes

Addressing Mode T Field Value' Example
Workspace Register 0 R5
Workspace Register Indirect 1 *R7
Workspace Register Indirect Autoincrement 3 *R7 +
Symbolic Memory?? 2 @l ABEL
Indexed Memory?* 2 @LABEL(5)
Notes:

'The T field is described in the addressing format descriptions as T, and T..

2 The instruction requires an additional word for each T field value of two. This word contains
a memory address.

*The S or D field is set to zero by the assembler.

“ Workspace register zero cannot be used for indexing.

3.2.3 Workspace Register Indirect Autoincrement Addressing

Workspace register indirect autoincrement addressing specifies a workspace register that con-
tains the address of the operand. After the address is obtained from the workspace register, the
workspace register is incremented by one for a byte instruction or by two for a word instruction.
Increment values for other data types are defined in the instruction that uses those data types. A
workspace register autoincrement address is written as an expression having an absolute value
of 0 through 15 preceded by an asterisk and followed by a plus sign (+). The following are coding
examples of instructions that have workspace register indirect autoincrement addresses:

S *R3+,R2 Fetch the word at the address contained in
register 3, increment register 3 by two, subtract
the fetched word from the contents of register 2,
and place the result in register 2.

3-2 2270509-9701

Assembly Instructions

C R5,"R6 + Fetch the word at the address contained in
register 6, increment register 6 by two, and
compare the fetched word to the contents of
register 5.

NOTE

The autoincrement is performed after the operand is fetched and
before the operation takes place.

3.2.4 Symbolic Memory Addressing

Symbolic memory addressing specifies the memory address that contains the operand. A sym-
bolic memory address is written as an expression preceded by an ‘at’ sign (@). The following are
coding examples of instructions which have symbolic memory addresses:

S @TABLE1,@LIST4 Subtract the contents of the word at location
TABLE1 from the contents of the word at location
LIST4, and place the remainder in the word at
location LIST4.

C RO,@STORE Compare the contents of workspace register zero
with the contents of the word at location STORE.

MOV @>C,@>7C Copy the word at address 000C,, into location
007C,s.

NOTE

Symbols previously defined as having relocatable values or values
greater than 15 need not have @. The at (@) sign is used to
distinguish a register from an undefined memory storage label.

3.2.5 Indexed Memory Addressing

Indexed memory addressing specifies the memory address that contains the operand. The ad-
dress is computed by adding the contents of the specified index register to an expression. An in-
dexed memory address is written as an expression preceded by an at sign (@) and followed by a
symbol specifying a workspace register enclosed in parentheses. The workspace register
specified by the symbol within the parentheses is the index register. Workspace register 0 may
not be specified as an index register. The following are coding examples of instructions that have
indexed memory addresses:

A @2(R7),R6 Add the contents of workspace register six to the
contents of the word at the address computed by
adding 0002,; and the contents of workspace
register seven. Store the sum in workspace
register six.

2270509-9701 3-3

Assembly Instructions

MOV R7,@LIST4-6(R5) Copy the contents of workspace register seven in-
to a word of memory. The address of the word of
memory is the sum of the contents of workspace
register five and the value of symbol LIST4 minus
six.

3.2.6 Program Counter Relative Addressing

Program counter relative addressing is used by the jump instructions. A program counter relative
address is written as an expression that corresponds to an address at a word boundary. The
assembler evaluates the expression and subtracts the sum of the current location plus two. One-
half of the difference is the value that is placed in the object code. This value must be in the range
of -128 through + 127. When the instruction is in relocatable code (that is, when the location
counter is relocatable), the relocation type of the evaluated expression must match the relocation
type of the current location counter. When the instruction is in absolute code, the expression
must be absolute. The following example shows a program counter relative address:

JMP THERE Jumps unconditionally to location THERE

3.2.7 CRU Bit Addressing

The CRU bit instructions use a well-defined expression that represents a signed displacement
from the CRU base address (bits 3 through 14 of workspace register 12). The displacement, in the
range of — 128 through + 127, is added algebraically to the base address in workspace register 12.
The following are examples of CRU bit instructions having CRU bit addresses:

SBO 8 Sets CRU bit to one at the CRU address eight
greater than the CRU base address. If workspace
register 12 contained 0020,,, CRU bit 24 would be
set by this instruction, (24 = (20, /2) + 8).

SBZ @DTR Sets CRU bit to zero. Assuming that DTR has the

value 10 and workspace register 12 contains

0040,,, the instruction sets bit 42 to zero

(42 = (40,6 /12) + 10).
3.2.8 Immediate Addressing
Immediate instructions use the contents of the word following the instruction word as the
operand of the instruction. The immediate value is an expression, and the value of the expression
is placed in the word following the instruction by the assembler. Those immediate instructions
that require two operands have a workspace register address preceding the immediate value. The
following are examples of coding immediate instructions.

LIMI 5 Places five in the interrupt mask, enabling inter-
rupt levels 0 through 5

LI R5,>1000 Places 1000,, into workspace register 5

NOTE

An @ sign may precede an immediate operand, but has no effect.

3-4 2270509-9701

Assembly Instructions

3.3 ADDRESSING SUMMARY

Table 3-2 shows the addressing required for each instruction. The first column lists the instruction
mnemonics. The other columns specify the required address as follows:

G

WR

PC

CRU

CNT
CKPT
POS
WID

COND

General address:

Workspace register address

Indirect workspace register address

Indirect workspace register autoincrement address
Symbolic memory address

Indexed memory address

Workspace register address

Program counter relative address

CRU bit address

iImmediate value

Nibble

The address into which the result is placed when two operands are required.
Count

Checkpoint

Position

Width

Condition

The Processor set explains the group of processors (990/10, S300, and so on) for which the in-
struction is valid. See paragraph 3.5.3 for further details.

3.4 INSTRUCTION FORMATS

The required addressing previously described relates to the 21 instruction formats of the Model
990 Computer. These formats are described in the following paragraphs.

2270509-9701

3-5

Assembly Instructions

Table 3.-2.

Instruction Addressing

Mnemonic

Processor
Set

First
Operand

Second
Operand

Third
Operand

Fourth
Operand

3-6

A

AB
ABS
AD

Al

AM
ANDI
ANDM
AR
ARJ

B
BDC
BIND
BL
BLSK
BLWP

CB
CDE
CDI
CED
CER
Cl
CID
CIR
CKOF
CKON
CLR
CNTO
coC
CRC
CRE
CRI
Cs
czC
DBC
DD
DEC
DECT
DINT
DIV
DIVS
DR
EINT
EMD
EP
IDLE
INC
INCT
INSF

OTTTO000WPOIPIPOOIOOOOTOZIIPOOPOO0OPEZ>OPDOPO00POPO>» PP

| OOOSOONOTOOSOIOONOEG
. © 33

| @02 |

| 000 | 000000 | | OO0 |

OO0 | 0|

G*
G*

CNT

| @ |

| @@ | — |

2270509-9701

Assembly Instructions

Table 3-2. Instruction Addressing (Continued)

Processor First Second Third Fourth
Mnemonic Set Operand Operand Operand Operand
INV A G — — —
IOF C G — — —
JEQ A PC — — —
JGT A PC —_ — —
JH A PC — — _
JHE A PC — — —
JL A PC —_— — —
JLE A PC — — —
JLT A PC — —_ —
JMP A PC _— — —
JNC A PC —_ — —
JNE A PC — — —
JNO A PC — —_ —
JOC A PC —_ — —
JOP A PC — — —
LCS C WR —_— — —
LD C G —_ — —
LDCR A G NOTE 1 — —
LDD A G — —_ —
LDS A G - — —
Li A WR* | — —
LIM C WR — —_ —
LiMI A | — — —
LMF A WR* NOTE 2 — —
LR C G — — —
LREX A — — — _
LST B WR — — —
LTO C G G* CNT —
LWP B WR — — —
LWPI A I — — —
MD C G — — —
MOV A G G* — —
MOVA C G G* — —
MOVB A G G* — —
MOVS C G G* CNT CKPT
MPY A G WR* — —
MPYS B G — — —
MR C G — — —
MVSK C G G* CNT CKPT
MVSR C G G* CNT CKPT
NEG A G — — —
NEGD C — — — —
NEGR C — — - —
NRM C G G* CNT —
Notes:

1. The second operand is the number of bits to be transferred, 1 through 15, 0= 16.

2. The second operand specifies a memory map file, zero or one.

2270509-9701 3.7

Assembly Instructions

Table 3-2. Instruction Addressing (Continued)

3-8

Processor _ First Second . Third Fourth
Mnemonic Set Operand Operand Operand Operand

ORI A WR* | — —_—
ORM C G G* CNT —_
POPS C G G* CNT CKPT
PSHS C G G* CNT CKPT
RSET A — —_ — —
RTO C G G* CNT —
RTWP A — — — —
S A G G* — —
SB A G G* — —
SBO A CRU G* — —
SBZ A CRU — — —
SD C G — — —
SEQB C G G CNT CKPT
SETO A G — — —
SLA A WR* NOTE 3 — —_
SLAM C G G* CNT —
SLSL C COND G G* —
SLSP C COND G G* —
SM C G G* CNT —
SNEB C G G CNT CKPT
SOC A G G* — —
SOCB A G G* — —
SR C G — — —
SRA A WR* NOTE 3 — —
SRAM C G - G* CNT —
SRC A WR* NOTE 3 — —
SRJ C PC CNT WR* —
SRL A WR* NOTE 3 — —
STCR A G* NOTE 1 — —
STD C G — — —
STPC C WR* — — —
STR C G — — —
STST A WR — — —
STWP A WR — — —
SWPB A G —_ — _
SWPM C G G* CNT —
SzZC A G G* — —
SZCB A G G