Model 990/12 Computer
Assembly Language Programmer’s Guide

Rl

ca WEN
% I S
o i i R A .

Part No. 2250077-9701 *A
15 May 1979

© Texas Instruments Incorporated 1978, 1979
A1l Rights Reserved

The information and/or drawings set forth in this document and all rights in and
to inventions disclosed herein and patents which might be granted thereon disclos-
ing or employing the materials, methods, techniques or apparatus described herein
are the exclusive property of Texas Instruments Incorporated.

INSERT LATEST CHANGED PAGES DESTROY SUPERSEDED PAGES

LIST OF EFFECTIVE PAGES

Note: The portion of the text affected by the changes is

indicated by a vertical bar in the outer margins of
the page.
Model 990/12 Assembly Language Programmer’s Guide (2250077-9701)

Original Issue i 1 November 1978
Revisedo i it e e 15 May 1979 (ECN9717)

Total number of pages in this publication is 480 consisting of the following:

PAGE CHANGE PAGE CHANGE PAGE CHANGE
NO. NO. NO. NO. NO. NO.
Covercvvvviennn. 0 D-1-D6............. 0
Effective Pages 0 E1-E6............. 0
Hiexvi.. 0 Fa-F2 0
2-1-1-20 00 0 G1-G2............. 0
2-1-232. ... 0 H1-H6............. 0
3-1-3-198. 0 F1-12 ... o s 0
4.1-4-34. 0 J1-J-8. .o 0
5.1-528. 0 K1-K-16............ 0
6-1-6-4. 0 L1-L-6............. 0
7-1-730. 0 Ml-M2............. 0
81-82. 0 Index-1 - Index-14. 0
9-1-9-8. 0 User’s Response 0
10-1-10-18........... 0 Business Reply 0
Al-A4, 0 CoverBlank 0
B-1-B26 0 Cover v v vvieiie e 0

C1-C4 0

[o]
é—\@? 2250077-9701

PREFACE

This manual describes the assembly language for the Model 990/12 Computer as 1mp1emented by
SDSMAC a two-pass assembler that operates under the DX10 disk-based operating system.

This manual describes:

Source statement formats and elements
Addressing modes

Assembler directives and pseudo-instructions
Assembly insiructions

Macro language

Assembler output

Appendixes contain:

The character set
Instruction tables

Directive tables

A macro language summary

CRU, TILINE, and programming examples.

The following documents contain additional information related to the assembly language:

Title Part Number
990 Computer Family Systems Handbook 945250-9701
Model 990 Computer DXI0 Operating System 946250-9703
Documentation; Volume 3 — Application Programming
Guide
Model 990 Computer DX10 Operating System 946250-9704

Documentation, Volume 4 — Development Operation

Model 990 Computer 990/ 12 Instruction 2250081-9701
Simulation Package User’s Guide B

Model 990 Computer MDS-990 : 2264445-9701
Microcode Development System
Programmer’s Guide

iiii/iv Digital Systems Group

o]
{@; 2250077-9701

TABLE OF CONTENTS
Paragraph Title Page
SECTION INTRODUCTION

990/12 COMPULET . v v v vt vttt et ev st onatoensuonnsaenonsennosenssens 1-1
1.2 990/12 Assembly Language v ittt i e i e e e e i-i

SECTION II. GENERAL PROGRAMMING INFORMATION

2.1 Byte Organizationc.couiueenuesnnens et 2-1
2. Word Organization v v vttt ittt ittt enntononossonaenseaenans 2-1
23 Transfer VECIOTS . . v v v v v it ittt sttt ettt e st s e et teeannasoeeenennns 2-2
24 11750 8 | 2-3
24.1 General Interrupt StTUCtUTE o vt ittt ittt ittt ittt 24
24.2 INterrupt SEqUENCE . . . o v v v ittt ittt ettt e et e e 24
243 Predefined Interrupts oo v i ittt ittt ittt e i i e 2-5
244 System Error Interruptttt ittt it ittt i e 2-5
2.4.5 Error Interrupt Trace Memoryot ittt it ittt i et neonnesss 2-7
24.6 Breakpoint Systemttt i i e i e 29
24.7 Twelve Millisecond Test Clock oottt ittt ittt ie s e 29
24.8 Forced Interrupts oo i it ittt ittt ettt ettt e oe e e 29
249 Forced Memory EITOISot v os e cnoonceasnncnoansnssansassansnss 2-10
2.5 Status Registerttt it i e et et e e e e 2-10
25.1 Logical Greater Thanc. it ennennnns e 2-10
25.2 Arithmetic Greater Thanttt inininrernnnenenense 2-11
253 20 . 2-11
254 L o . 2-11
25.5 L 3Ty 3 T 2-11
25.6 Odd Pamityttt ittt it i e et et e e e 2-11
25.7 Extended Operationt iiiititeneeneneeneneanennos 2-11
258 Privileged Mode oottt i et i it e e e e e e e 2-11
259 Map File Selecto it ittt it i it et it i it ettt e e 2-12
2.5.10 Memory Management and Protection Enabled 2-12
2.5.11 Overflow Interrupt Enable. ittt it inneennennn 2-12
2.5.12 Writable Control Store v ittt ittt ittt ittt et e 2-12
2.5.13 Interrupt Maskttt ittt it et e it e 2-12
2.6 Memory Organization vt inientteenenoeneeneneensensenss 2-12
2.6.1 Memory Mapping i ittt it ittt e e e e e 2-13
2.6.2 Loader and Self-test ROMt 2-14
263 TILINE Peripheral Control Space00ttt inenenennnnnn, 2-16
2.6.4 Memory Cache ittt ittt ineneneneeananenns 2-16
2.7 Workspace Cachet i ittt it ittt ittt e te e e 2-16
2.8 Privileged Mode o i e e e 2-16
29 Source Statement Format i e e e e e 2-16
29.1 Character Set ... v it ittt ittt e it e e e e e 2-17
29.2 Label Field oo ittt ittt ittt ettt i nna e 2-17
293 Operation Field ittt ittt e e anenns 2-19
294 Operand Fieldo i ittt ittt ittt nnanans 2-19
295 Comment Fieldttt ittt ittt iie et 2-19

v Digital Systems Group

2250077-9701
TABLE OF CONTENTS (Continued)
Paragraph Title Page
2.10 EXPIESSIONS . o 0o vttt it ittt it ittt et ettt 2-19
2.10.1 Arithmetic Operators in EXpressionsc.uiu e rnenenenens 2-20
2.10.2 Logical Operators in EXpressionsc.uuuiueneneneeenenennnn 2-21
2.10.3 Relational Operators in EXPressionsuoeueeunenenenennnnnns 2-22
2.104 Use of Parentheses in EXpressions oo v i it it ininneneneennsnns 2-23
2.11 L0701 3 11 2-23
2.11.1 Decimal Integer Constants vt ittt ittt nentnenenenenennnens 2-23
2.11.2 Hexadecimal Integer Constantsttt tnreenenenennnns 2-23
2.11.3 Character Constantst inrnsennenenenenensneasnnns 2-23
2.114 Assembly-Time Constants ittt enennennreeeneennenennss 2-24
2.12 Data Types ..o v ittt it e i e et e e e e e 2-24
2.12.1 Extended Integers i vt i i it ittt ittt it e e e 2-24
2.12.2 Multiple Precision Integers.ottt i i i i e 2-24
2.12.3 Byte StringSttt i i e i e e e e e e e e e 2-25
2.124] 7 1] 2-26
2.12.5 5 2-26
2.12.6 Single Precision Real Numbersttt ininrnennns 2-28
2.12.7 Double Precision Real Numbersttt inenennnnnns 2-29
2.12.8 Floating Point Accumulator (FPA)0t iniinnnennn 2-30
2.13 Symbols e i e e e e e e e e e 2-30
2.13.1 Predefined Symbols ittt e e 2-31
2.14 = 5 1P 2-31
2.15 Character StINESttt ii ittt it ittt it eeeenenennoneneaeannnes 2-32
2.16 Reexecutable Instructions ittt 2-32
SECTION III. ASSEMBLY INSTRUCTIONS
3.1 Gemeral ... i e e e e e e e et e e 3-1
3.2 Addressing Modes ittt i i i e e e e e 3-1
3.2.1 Workspace Register Addressingc.ciiite i enenenns 3-1
322 Workspace Register Indirect Addressingt rnnn.n 32
323 Workspace Register Indirect Autoincrement Addressing 3-2
324 Symbolic Memory Addressing.ouuriitinien i it i it i enneneanenss 3-3
3.25 Indexed Memory Addressingc.. ittt reeee e 33
3.26 Program Counter Relative Addressingc0tiiinneneenrnnnn. 33
3.2.7 CRU Bit Addressinguvtviinnne i iineeneennnn P 34
3.28 Immediate Addressingttt it i i i et 34
33 Addressing SUIMIMATY ot ittt ittt ittt tr et e te s teeaeonrneennss 34
34 Instruction Formats ittt it it et i e 3-5
34.1 Format I — Two Address Instructionscvivvierneenennnen. 3-5
34.2 Format II — Jump Instructions 0ttt rinennenennnns, 39
343 Format II — Bit I/O Instructions.t ittt ininneennnns 3-10
344 Format 11l — Logical Instructions 0.t iiiurnenennnn. 3-10
345 Format IV — CRU Instructions0 v vttt ittt ittt teeennenenns 3-11
346 Format V — Register Shift Instructions. 3-12
34.7 Format VI — Single Address Instructionsc.ccvveu.uon.. 3-12
3438 Format VII — Instructions Without Operands 3-13
349 Format VIII — Immediate Instructions enenn. 3-13
3.4.10 Format IX — Extended Operation Instructionsc.uuueun... 3-14

vi Digital Systems Group

[o]
{@ 2250077-9701

TABLE OF CONTENTS (Continued)

Paragraph Title Page
3.4.11 Format IX — Multiply and Divide Instructionso 3-15
34.12 Format X — Memory Map File Instruction it 3-15
34.13 Format XI — Multiple Precision Instructionsc.ocuieeueenencnn 3-16
34.14 Format XII — String Instructions 3-17
34.15 Format XIII — Multiple Precision Shift Instructions 3-18
34.16 Format XIV — Bit Testing Instructionst 3-18
3.4.17 Format XV — Invert Order of Field Instruction 3-19
34.18 Format XVI — Field Instructionsttt iennnneeranss 3-20
34.19 Format XVII — Alter Register and Jump Instructions 3-21
34.20 Format XVIII — Single Register Operand Instructions 3-21
3.4.21 Format XIX — Move Address Instructionsoceeevieeennsos 3-22
3.4.22 Format XX — List Search Instructions e 3-22
3.4.23 Format XXI — Extend Precision Instruction 3-23
35 Instruction Descriptions v vt vt ittt ittt ie et 3-24
3.5.1 OPCOAE . v it ittt i e e e e e e e 3-24
3.5.2 Addressing Modettt i ittt it i e e e e e s 3-24
353 Instruction Format ittt ittt i iitnanrasonananns 3-25
354 Syntax Definitiono v ittt i i e e 3-25
35.5 Instruction Examplettt ittt e 325
3.5.6 Operation Definitiono i ittt i i it s 3-25
3.5.7 Status Bits Affected v v ittt i e e e e AP 3-25
358 Execution Resulfs ittt iiiineons e 3-26
359 Applications Noteso ittt ittt it i it ittt s e 3-26
3.6 Add Words — A .. i e e e e e i e e e e 3-26
3.7 Add Bytes — AB e e e 3-27
38 Absolute Value — ABS i i i e e 3-28
39 Add Double Precision Real — AD iiiiiiiiiiiiineas 3-29
3.10 Add Immediate — Al i i e it e e 3-31
3.11 Add Multiple Precision Integer — AM i i e 3-31
3.12 And Immediate — ANDI ittt 3-33
3.13 And Multiple Precision Integer — ANDM i, 3-34
3.14 Add Real — AR it i et it e e e 3-36
3.15 Add to Register and Jump — ARJ i e 3-37
3.16 Branch — B e e i e e e 3-38
3.17 Binary to Decimal Conversion — BDC i, 3-39
3.18 Branch Indirect — BINDt it it ii e 341
3.19 Branch and Link — BL it it i 343
3.20 Branch Immediate and Push Link to Stack — BLSK 344
3.21 Branch and Load Workspace Pointer — BLWP. 345
3.22 Compare Words — € . ..ottt ittt it i it tii i 346
3.23 Compare Bytes — CB ittt ittt ittt et 347
3.24 Convert Double Precision Real to Extended Integer — CDE 348
3.25 Convert Double Precision Real to Integer — CDI, 349
3.26 Convert Extended Integer to Double Precision Real — CED 3-50
3.27 Convert Extended IntegertoReal —CERt tv it innnneennneans 3-52
3.28 Compare Immediate — CI it it it 3-53
3.29 Convert Integer to Double Precision Real — CID, 3-54
3.30 Convert Integer to Real — CIR it e 3-55
3.31 Clock Off — CKOF ittt it ittt ittt inatentanaeaans 3-56
3.32 Clock On — CKON ittt it et i ittt ianeaas 3-56

vii Digital Systems Group

O
(@ 2250077-9701

TABLE OF CONTENTS (Continued)

Paragraph Title Page
3.33 Clear — CLR . .. i i ettt e et e e 3-57
3.34 Count Ones — CNTOottt ettt e ettt e e 3-58
3.35 Compare Ones Corresponding — COCttt it eeennnn 3-59
3.36 Cyclic Redundancy Code Calculation — CRCccvvurrunnnn. 3-60
3.37 Convert Real to Extended Integer — CREcc0ooviueunnn... 3-62
3.38 Convert Real to Integer — CRI00ttt 3-63
3.39 Compare Strings — CSt e e 3-64
3.40 Compare Zeros Corresponding — CZCiiiiir e enneennnnnn. 3-67
341 Decimal ASCII to Binary Conversion — DBC00uovueernnn.. 3-68
3.42 Divide Double Precision Real — DD0iiiiineeeennnnnnn. 3-69
343 Decrement — DECcovinnnnn... R 371
344 Decrement by TWo — DECTttt ittt e e e 3-72
3.45 Disable Interrupts — DINTttt et e 3-73
3.46 Divide — DIV e e ..373
3.47 Divide Signed — DIVS i e 3-75
3.48 Divide Real — DR ettt et e e, 3-76
3.49 Enable Interrupts — EINT it ittt eee e, 3-78
3.50 Execute Micro-Diagnostic — EMD00ttt 3-78
3.51 Extend Precision — EP i 3-79
3.52 Idle — IDLEt e 3-81
3.53 Increment — INC i e 3-82
3.54 Increment by Two — INCTttt et it 3-83
3.55 Insert Field — INSF i e e 3-84
3.56 Invert — INV . L e 3-85
357 Invert Order of Field — IOF ittt e, 3-86
3.58 Jump if Equal — JEQottt e e e 3-87
3.59 Jump if Greater Than — JGTttt 3-87
3.60 Jump if Logical High — JH ittt i 3-88
3.61 Jump if High or Equal — JHEttt 3-89
3.62 Jump if Logical Low — JL it 390
3.63 Jump if Low or Equal — JLEttt 391
3.64 Jump if Less Than — JLT ittt 3-92
3.65 Unconditional Jump — JMP i 3-92
3.66 Jump if No Carry — INCttt 393
3.67 Jump if Not Equal — JNEttt 394
3.68 Jump if No Overflow — JNOttt 395
3.69 Jump on Carry — JOCo i 395
3.70 Jump if Odd Parity — JOP i 396
3.71 Load Writable Control Store — LCS0v e, 397
3.72 Load Double Precision Real — LDouuunennn .. 398
3.73 Load CRU — LDCR ottt e 399
3.74 Long Distance Destination — LDDouuununnnnnnunnn. .. 3-100
3.75 Long Distance Source — LDS 0.ttt 3-101
3.76 Load Immediate — LI............0t 3-102
3.77 Load Interrupt Mask — LIM 0.0t 3-103
3.78 Load Interrupt Mask Immediate — LIMI 3-104
3.79 Load Memory Map File — LMF R T T 3-105
3.80 Load Real — LR 3-107
3.81 Load or Restart Execution — LREX, 3-108
3.82 Load Status Register — LST0 0t 3-109

viii Digital Systems Group

: Q
@ 2250077-9701

TABLE OF CONTENTS (Continued)

Paragraph Title Page
3.83 Left Test for Ones — LTOo i ittt it it it i it ea e aee e 3-110
3.84 Load Workspace Pointer — LWP i 3-111
3.85 Load Workspace Pointer Immediate — LWPI oot 3-112
3.86 Multiply Double Precision Real — MD @t vnaaset o onenons 3-112
3.87 Move Word — MOV .ottt iiiiiieeeeeeennnnananeeees. 3114
3.88 Move Address — MOV Attt ittt eaaaeansssanssns 3-115
3.89 Move Byte — MOVB i ittt aaaaaso 3-116
3.90 Move String — MOVS i i i e i e 3-117
391 Multiply — MPY ... i e e e e 3-119
392 Multiply Signed — MPYS e 3-121
393 Multiply Real — MR o it i i i i e e 3-122
394 Move String from Stack — MVSK i e 3-123
3.95 Move String Reverse — MVSR i i i e 3-126
3.96 Negate — NEGo ittt ittt ittt e anananns 3-127
3.97 Negate Double Precision Real — NEGDo 3-128
3.98 Negate Real — NEGR ittt ittt i 3-130
3.99 Normalize — NRM et e 3-131
3.100 Or Immediate — ORI i it it ciae s 3-132
3.101 Or Multiple Precision — ORM o ittt it 3-133
3.102 Pop String from Stack — POPS i 3-135
3.103 Push String to Stack — PSHS i i i i e 3-138
3.104 Reset — ROET . ittt ittt ie et eiineeneannensssenaas 314l
3.105 Right Test for One — RTOo i i i it 3-142
3.106 Return with Workspace Pointer — RTWP i, 3-143
3.107 Subtract Words — Sot i i it i e i e e 3-144
3.108 Subtract Bytes — SB i i e it e 3-145
3.109 Set CRUBIittoLogicOne — SBO i 3-146
3.110 Set CRUBIitto Logic Zero — SBZo i ittt it it iinieaennn 3-147
3.111 Subtract Double Precision Real — SD 3-147
3.112 Search String for Equal Byte — SEQB i 3-149
3.113 Setto One — SETO ittt ittt i it ittt aeannaeeaas 3-151
3.114 Shift Left Arithmetic — SLA ittt ittt eeneeenn 3-152
3.115 Shift Left Arithmetic Multiple Precision — SLAM, 3-153
3.116 Search List Logical Address — SLSL it 3-154
3.117 Search List Physical Address — SLSP iy 3-157
3.118 Subtract Multiple Precision Integer — SM, i i i 3-159
3.119 Search String for Not Equal Byte — SNEB 3-160
3.120 Set Ones Corresponding — SOC ittt ittt nannannans 3-162
3121 Set Ones Corresponding Byte — SOCB cccuonn.. 3-163
3.122 Subtract Real — SRttt i i e e . 3164
3.123 Shift Right Arithmetic — SRA ittt it i 3-166
3.124 Shift Right Arithmetic Multiple Precision — SRAM 3-166
3.125 Shift Right Circular — SRC i ittt 3-168
3.126 Subtract From Register and Jump — SRJ 3-168
3.127 Shift Right Logical — SRL i ittt 3-170
3.128 Store CRU — STCRottt ittt ettt e aaaaanes 3-171
3.129 Store Double Precision Real — STD P 3-172
3.130 Store Program Counter — STPC ittt 3-173
3.131 Store Real — ST R ... it i i e e e e 3-173
3.132 Store Status — ST ST ... ittt it et i et e 3-174

ix Digital Systems Group

2250077-9701
TABLE OF CONTENTS (Continued)
Paragraph Title Page
3.133 Store Workspace Pointer — STWPt 3-175
3.134 Swap Bytes — SWPB e 3-176
3.135 Swap Multiple Precision — SWPM0 itieennnnnnnnn. 3-176
3.136 Set Zeros Corresponding — SZCttt et e 3-178
3.137 Set Zeros Corresponding Byte — SZCBo ivr .. 3-179
3.138 Test Bit — TB ... e e et e e e 3-180
3.139 Test and Clear Memory Bit — TCMB, 3-181
3.140 Test Memory Bit — TMB et 3-183
3.141 Translate String — TS it e 3-184
3.142 Test and Set Memory Bit — TSMBt 3-186
3.143 Execute — X ... e, 3-187
3.144 Extract Field — XF e 3-188
3.145 Exit from Floating Point Interpreter — XIT00vuuuunnn.... 3-189
3.146 Extended Operation — XOP ittt 3-190
3.147 Exclusive Or -—— XOR i 3-192
3.148 Exclusive Or Multiple Precision — XORM0c0vuuuunu. .. 3-193
3.149 Extract Value — XV e 3-195
SECTION 1V. APPLICATION NOTES
4.1 General 4-1
4.2 Programming Examples 0ttt 4-1
4.2.1 ABS Instruction e e 4-1
422 TSMB and TCMB Instructionsvviinnsn e e e e e et e e eeeeenns 4-2
4.2.3 Shift INStructionsttt . 4-3
423.1 Shift Left Arithmetic ittt nnnnn, 44
4232 Shift Right Arithmetic it 44
4233 Shift Right Circular. e e 4-5
4234 Shift Right Logical ittt 4-5
4235 Shift Right Arithmetic Multiple Precision 4-5
42.3.6 Shift Left Arithmetic Multiple Precision000vuuuerunnn.. 4-6
424 Incrementing and Decrementing J 4-6
4.2.4.1 Increment Instruction Example 4-6
4242 Decrement Instruction Examplettt ten e, 4-7
4243 Decrement by Two Instruction Examplec0uummuuennnnn. 4-8
4.2.5 Subroutines 49
4.2.5.1 BL Instruction Common Workspace Subroutineoovvonenu... 4-9
425.2 BLSK Instruction Common Workspace Subroutine 4-10
4253 Context Switch Subroutine Example00u'uuuunnnn. 4-10
4254 Passing Data to Subroutinesoouvin 4-14
4.2.6 Extended Operationsttt ettt et 4-16
427 Special Control Instructionsttt e e ettt 4-19
4.2.7.1 LREX Applications ittt 4-19
4.2.7.2 CKON/CKOF Applicationsuuuuimomneeen e, 4-20
42.73 RSET Applications it 4-20
4.2.74 X Applicationst e e 4-20
428 CRU Input/Output ottt ittt et e e e e e e e e e e e, 4-21
4.2.8.1 CRU I/O InStructionsuiiii ittt et 4-21
4282 SBO Exampleot e 4-22
4283 SBZ Exampleo ot 4-22

X Digital Systems Group

o
é@ 2250077-9701

Paragraph

4284
4285
4.2.8.6
429
4.2.10
4.2.11
4.2.12
4.3
4.3.1
4.3.1.1
43.1.2
43.13
43.14
4.3.1.5
4.3.1.6
4.3.1.7
43.1.8
43.1.9
4.3.2
43.2.1
43.2.2
4323
43.24
4325

5.1

5.2

5.3
5.3.1
53.1.1
5.3.1.2
5.3.1.3
5.3.14
5.3.1.5
5.3.1.6
5.3.1.7
5.3.1.8
5.3.19
5.3.1.10
5.3.1.11
5.3.1.12
5.3.2
5.3.2.1
5322
53.23
5324
5.3.2.5
5.3.2.6

TABLE OF CONTENTS (Continued)

Title . Page

TB EXample . . oottt i ittt et e e e e e e 4-22
LDCR Example iiiiiiitiiinn it eneinennaneas 4-23
STCR Example. . . . i it ittt it ittt tn oo e innaneneenaennens 4-24
TILINE Input/Output o v ettt ittt ittt ittt aeaaaanaenanes 4-25
Reentrant Programmingc.co ittt inninnneaneneennenss 4-25
Reexecutable Instructions. v vttt it in i it ienneennnennanss 4-27
LT T O T 4-29
990/10 To 990/12 Upgrade Considerationsoeeuueoooeonnannns 4-29
Execution Differencesttt 4-29
ABS Instructiont it ii ittt et ettt i 4-29
Second Word Modification ittt ittt eeennan 4-30
Illegal Opcodes . . . oottt ittt e et et ten e et ineenensnnseanaas 4-30
Workspace Crossing Map Segment Boundaries 4-30
Deferred Mapping ErTOrcitiiiii it ittt iiii it it eens 4-31
Error Status Registervviitiiiii ittt ieaaanaaaneeenannasnosnans 4-31
990/12 CPU Status Registerttt ittt eiianieeeeennnns 4-31
Map Diagnostic Hardware.cvtiit ittt it ienaes 4-31
TILINE Access to Workspace Cachevvutirientiiennienieennennnecnss 4-31
Performance Differencesc.vvveeeeiiitieieiiiieeeeeeeeerereeeeeeenenns 4-31
00111370 0T) 431
Slower Instructions on the 990/12 e e 4-32
Workspace Register Addressingttt ittt eennnns 4-32
Instruction Execution from Workspace Registers 4-32
User Device Service Routinesttt inineennnns 4-33

SECTION V. ASSEMBLER AND ASSEMBLER DIRECTIVES

General e e et e i e e e e 5-1
SDSMAC Assemblero v ittt ittt et e ettt ettt eeenes 5-1
Assembler DIrectiveso v v ittt it ittt i e e e e e e 5-1
Directives that Affect the Location Countero enennnn 5-2
Absolute Origin — AORGttt iiiinnentenenneanns 5-2
Relocatable Origin — RORGttt iiennnnnan 5-3
Dummy Origin — DORGttt 54
Block Starting with Symbol — BSS i, 5-5
Block Ending with Symbol — BES iiinrennn 5-5
Word Boundary — EVEN ittt 5-6
Data Segment — DSEG ittt ittt 5-6
Data Segment End — DEND i i e 5-7
Common Segment — CSEGttt ennnnoeneneerennn 5-7
Common Segment End — CEND iitiiiiiennnnnn, 5-9
Program Segment — PSEG00ttt eeeeineannn 59
Program Segment End — PEND it 5-10
Directives that Affect the Assembler Output v, 5-11
Output Options — OPTION i it iiieeennnn 5-11
Program Identifier — IDTt iieennnnns 5-12
Page Title — TITL i ittt ittt ittt iatatnenneenenannan 5-12
List Source — LISTttt it ittt it 5-13
NoSource List — UNLttt iiittennanennns 5-13
Page Eject — PAGE i i ittt e 5-13

xi Digital Systems

Group

o
;[@ 2250077-9701

Paragraph

533
5.3.3.1
5.3.3.2
5333
5334
53.35
5.3.3.6
5.3.4
5.34.1
53.4.2
5343
53.4.4
535
5.3.5.1
5352
5353
5354
5355
5.3.5.6
5.4

6.1
6.2
6.3
6.4

7.1

7.2

7.3

7.4

1.5
7.5.1
7.5.2
7.5.3
7.5.4
7.5.4.1
7.54.2
7.54.3
7.5.5
7.5.5.1
7.55.2
7.5.6
7.5.6.1
7.5.6.2
7.5.6.3
7.5.6.4

TABLE OF CONTENTS (Continued)

Title Page

Directives that Initialize Constantsc.uuuuuneuneennnnenn 5-14
Initialize Byte — BYTE ittt ittt 5-14
Initialize Word — DATA it et i e 5-14
Initialize Text — TEXT f e e e 5-15
Define Assembly-Time Constant — EQUccvvruun.n.. 5-15
Checkpoint Register — CKPTc0itiiintinnennnennn. 5-16
Workspace Pointer — WPNT i, 5-17
Directives that Provide Linkage Between Programs 5-17
External Definition — DEF 5-18
External Reference — REFttt 5-18
Secondary External Reference — SREF 5-19
Force Load — LOAD ittt 5-19
Miscellaneous DIrectivesv ittt ittt et 5-20
Define Extended Operation — DXOPcciuiiinnneennn. 5-21
Program End — END i 5-21
Copy Source File — COPY ittt ittt et 5-22
Conditional Assembly Directives — ASMIF, ASMELS, ASMEND.......... 5-22
Define Operation — DFOPttt 5-23
Set Maximum Macro Nesting Level — SETMNL 5-25
Symbolic Addressing Techniquesc.rrrnnnnnn 5-25

SECTION VI. PSEUDO-INSTRUCTIONS

General ... e e 6-1
No Operation — NOPt i i ettt 6-1
Return — R ... e e e e e e 6-1
Transfer Vector — XVEC ittt e e e e 6-2

Gemeral e 7-1
Processing of Macrosttt e 7-1
Macro Translator Interface with the Assemblercc0ovvuu... 7-2
Macro Library i e 7-2
Macro Language Elements cuiuiiinnnine et 7-3
Labels ... 7-3
ST DS .« o vt e e 7-3
Constants and OPerators ovuu it te et en ittt 7-3
Variables 7-3
Parameters e 7-3
Macro Symbol Table i e 74
Variable Qualifiers o i 7-5
Keywords . ..o 7-7
Symbol Attribute Component Keywordsvvvvrvunnnnnnn. 7-7
Parameter Attribute Keywords0iiuiurernennnnn. 7-8
Verbs . 79
SMACRO e e e e e 79

SV AR 7-11
BASG e, 7-12
INAME . . e e, 7-14

xii Digital Systems Group

2250077-9701
TABLE OF CONTENTS (Continued)
Paragraph Title Page
7.5.6.5 61 1 & S A I 7-14
7.5.6.6 . 254 5 S I R 7-14
7.5.6.7 Y07 1 I 7-14
7.5.6.8 3 1 S I 7-15
7.5.6.9 Y 2 R0 2 R 7-16
7.5.6.10 3 22 0) 1 2 7-16
7.5.6.11 BEND . oottt ittt e e e e e e e e 7-16
75.7 Model StatemENtS . « « v v v v v v e e e e e s s s aa et ot 7-17
7.6 Assembler Directives to Support Macro Libraries oo 7-17
7.6.1 LIBOUT DileCtivVe . v v o v vt vttt e e e en e tenasoanansoasesonansnnns 7-18
7.6.2 LIBIN DIFECHIVE « o v v v v o v vt e m e e emtteaae s onnseaanssooessenssanas 7-18
7.6.3 Macro Library Management oo vt v ettt it 7-18
7.7 Macro EXampleso v cv ittt ittt i e e e 7-19
7.7.1 Macro GOSUB . .t ittt i ittt et i ittt ittt s ettt 7-20
7.7.2 Macro EXIT ..ttt ittt et ittt sesacnenannens 7-20
7.7.3 MAaCTO ID o oot et e e e e e et 12
7.7.4 Macro UNIQUEttt ittt ittt ettt is e 7-23
1.7.5 Macro GENCMT .. ittt ittt it et i e ettt ittt asssnnasonas 7-24
7.7.6 Macro LOAD ..ottt i ittt ittt ittt ettt e e 7-24
7.1 Macro TABLE ..ottt ittt et ettt i iiiana oo eaaneos 7-25
7.7.8 Macro LISTS ot ittt ittt ettt it ettt i e e e 7-26

SECTION VIII. RELOCATABILITY AND PROGRAM LINKING

8.1 F018 0e Y6 10113 1o) K e 8-1
8.2 Relocation Capability oo v ittt it i i e i i e e 8-1
8.2.1 Relocatability of Source Statement Elements. oo 8-1
8.3 Program LinKingo oo ittt ittt ettt i it eni e 8-2
8.3.1 External Reference DIr€CtiVES « v v v v v v v v v v ie i e iie e iiien e cnns 8-2
8.3.2 External Definition DIreCtives . . v v v v v o v v v it vttt it e a o s oo 8-2
833 Program Identifier Directiveso v viieiine e it eenenn 8-2

8.34 Linking Program Modules oot e e 8-2

SECTION IX. OPERATION OF THE MACRO ASSEMBLER

9.1 (€75 175 v 1 1 I R 9-1
9.2 Operating the Macro Assembler. i 9-1
9.2.1 Completion MeSSAgeS . . v v v vt v vt ittt 94
922 Operation of the Assembler in Batch Mode o 9-5

SECTION X. ASSEMBLER OUTPUT

10.1 INtroduCtion . . v vttt ittt e e e e e e 10-1
10.2 Source LiStiNg .. oo v vttt it ittt it e 10-1
10.3 SDSMAC Error MeSSageS . « o oo v oo vt v cnnncnnonoancansnsooanannesss 10-3
104 Cross-Reference Listingttt viiienieniencnninaeseeans 10-10
10.5 Object Codeovviiniiiiiiennennn e 10-10
10.5.1 Object Code Format v vttt ittt it et c i e e 10-11
10.5.2 Machine Language Formatc.itiuienunerernieneannnns 10-15
10.5.3 Symbol Table i i e e e 10-15
10.5.4 Changing Object Codeot v v ii vttt ittt 10-15

xiii Digital Systems Group

2250077-9701
APPENDIXES
Appendix Title Page
A Character Set ittt it A-1
B Instruction Tables B-1
C Program Organization, C-1
D Hexadecimal Instruction Table0.uuruniinnnnn.. D-1
E Alphabetical Instruction Tableouuurr . E-1
F Assembler Directive Table 00, F-1
G Macro Language Tablec.uuuruin i . G-1
H CRU Interface Examplet H-1
I TILINE Interface Exampleuutnenennn e, I-1
J Example Program J-1
K Numerical Tablest . K-1
L Instruction Usage Cross-Reference Table0.oouernnnennnn. . L-1
M Ilegal Opcodesottt e e M-1
LIST OF ILLUSTRATIONS
Figure Title Page
2-1 Memory Byteot 2-1
22 Memory Word, 2-1
23 Typical Memory Map I 22
24 Error Interrupt Handling Routine 0. 2-6
2-5 Breakpoint Register INterruptso vt ettt e e 29
2-6 Status Register i 2-10
2-7 Model 990/12 Computer WOrKSPace . . . oo v v oo v e e e e e e, 2-13
2-8 Mapping Limit Register 00, 2-14
29 Address Development Model 99012 Mapping oo oo nsn e, 2-15
2-10 Source Statement Formats0'tuurnrnr 2-18
2-11 StacKs . . . 2-27
2-12 Lists e 2-28
2-13 Memory Representation of Single Precision Real Numbers e 2-29
2-14 Memory Representation of Double Precision Real Numbers 2-30
3-1 PSHS or POPS Representationovvuunennnnennnn.. 3-139
4-1 Common Workspace Subroutine Example e e 4-9
4-2 PC Contents BL Instruction Execution et i e, 4-10
4-3 Before Execution of BLSK INStruction.'ouuueeinneennesenenenn, 4-11
44 After Execution of BLSK INStructionvvuueeee et 4-11
4-5 Before Execution of BLWP INStructionoueuneuunernneennnnnn, 4-12
4-6 After Execution of the BLWP INStructionc.veueunneunsinnsnnn, 4-13
4-7 After Return Using the RTWP Instructionoouovnoo... 4-14
4-8 Extended Operation Exampleouuuiniinnni . 4-18
49 Extended Operation Example after Context Switch0........ 4-19
4-10 Reentrant Procedure for Process Control 000 'o ... 4-26
7-1 Macro Assembler Block Diagram.ooouuuvinn . 7-1
9-1 Macro Assembly Stream 9.5
9-2 Macro Assembly Stream for Cards...................ccooeiiiiii 9-7

xiv Digital Systems Group

2250077-9701
LIST OF ILLUSTRATIONS (Continued)
Figure Title Page
10-1 Cross-Reference Listing Formato vt iniiiieien e norecneenn 10-7
10-2 Object Code Exampleottt 10-10
10-3 External Reference Exampleot ie i 10-14
104 Machine Instruction Formatsttt iirnn oo aneancaesns 10-16
LIST OF TABLES

Table Title Page
2-1 Interrupt Transfer Vector Addresses covv v 2-3
2-2 Interrupt Mask . ..o vvv ittt i e 2-5
2-3 Error Interrupt Status Register (CRU Base >1FC0)ot 2-5
24 Error Interrupt Trace Memory Data Word Bit Functionsc...oun 2-7
2-5 CRU Output Bit Assignments for Error Interrupt Trace Control and Map Control

(CRU Base Address >1FAQ)0t 2-8
3-1 Addressing MOES . . o v o v it ittt e et e 3-1
32 Instruction Addressing e e e et e e e 3-6
'3-3 CRC Byte String Formatttt i 3-61
34 SEQB/SNEB Status Bit Conditionscctuutteennrrncnonen 3-150
3-5 Search Termination Conditionso .ot v v vt v v oo nnnsoonooennnssss 3-155
4-1 XOP VECOTS . . oo asss e e s esessassesssssnsnsneneasssssnsssseseseneseanssaens 4-17
7-1 Variable Qualifierso ittt e e e e e e 7-5
7-2 Variable Qualifiers for Symbol Componentsccoovoveeennn 7-7
7-3 Symbol Attribute Keywordst 7-8
74 Parameter Attribute Keywords.o ottt e 7-8
9-1 Abnormal Completion Messagesttt 9-1
9-2 Completion MESSAES « « -« o v ot vttt 9-4
10-1 SDSMAC Listing EITOIS .« . oot vt iv ittt ittt teeeea et cans 104
10-2 Symbol AHIIDULES . . . v vt vttt e e 10-10
10-3 Object Record Format and Tabsooiiiiiin e 10-12

Xv/xvi

Digital Systems Group

[o]
%@ 2250077-9701

SECTION 1

INTRODUCTION

1.1 990/12 COMPUTER

The 990/12 computer is, to date, the most powerful member of the Texas Instruments 990
Computer family. The 990/12 is implemented with Shottky TTL and low-power Shottky TTL
technology using high-speed workspace register and memory caches. The 990/12 features
expandable memory (up to two megabytes), serial communications register unit (CRU) interfacing,
and TILINE* parallel interfacing. The workspace register cache provides a high-speed memory area
containing the workspace registers currently in use. The writable control store feature allows the
user to code his own instructions through microcode programming.

1.2 990/12 ASSEMBLY LANGUAGE
The 990/12 assembly language is a computer-oriented language with mnemonic operation codes
which correspond directly to machine instructions. Features of the 990/12 assembly language
include:

e Decimal integer, floating point, and hexadecimal arithmetic

e Single-, double-, and multiple-precision arithmetic operands

e Processor context and program control instructions

e Logical and compare instructions

e Load and move instructions

e Bit array, byte string, stack, and list data types

e Long-distance addressing.

The 990/12 assémbly language is supported by the SDSMAC macro assembler. A macro definition
is a set of source statements that is called by the assembly language program. The macro source
statements are inserted into the assembly language program during the assembly process.

*Trademark of Texas Instruments Incorporated

1-1/1-2 Digital Systems Group

o
(@ 2250077-9701

SECTION 11

GENERAL PROGRAMMING INFORMATION

2.1 BYTE ORGANIZATION

Memory for the Model 990/12 Computer uses byte addresses. A byte consists of eight bits of
memory, as shown in figure 2-1. The bits may represent the states of eight independent two-valued
quantities or the configuration of a character code used for input, output, or data transmission. The
bits also may represent a number which is interpreted either as a signed number in the range of -128
through +127 or as an unsigned number in the range of zero through 255. The 990 computer
implements signed integer numbers in two’s complement form.

The most significant bit (MSB) is designated bit zero, and the least significant bit (LSB) is designated
bit seven. A byte instruction may address any byte in memory.

(MSB) (LSB)
T T T T T T T
o 1 2 3 4 5 6 7

Figure 2-1. Memory Byte

2.2 WORD ORGANIZATION

A word in the memory of the Model 990/ 12 Computer consists of 16 bits, a byte at an even address
and a following byte at an odd address. As shown in figure 2-2, the MSB of a memory word is
designated bit zero, and the LSB is designated bit 15. A word may contain a computer instruction in
machine language, a memory address, the bit configurations of two characters, or a number. When a
word contains a number, the number may be interpreted as a signed number in the range of -32,768
through 432,767 or as an unsigned number in the range of zero through 65,535. (Signed integer
numbers are implemented in two’s complement form.)

Word boundaries are assigned to even-numbered addresses in memory. The even address byte
contains bits zero through seven of the word, and the odd address byte contains bits eight through
15. When word instructions address an odd byte, the word operand is the memory word consisting of
the addressed byte and the preceding even-numbered byte. This is the memory word that would be
accessed by the odd address minus one. For example, a memory address of 10236 used as a word
address would access the same word as memory address 1022;.

NOTE

All instructions must begin on word boundaries. Instructions are one,
two, three, or four words long.

(MsB) (LsB)
1 1 T | L T L T T 1 T 1 T]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(WORD BOUNDARY)

Figure 2-2. Memory Word

2-1 Digital Systems Group

2.3 TRANSFER VECTORS

A transfer vector is a pair of memory addresses in two consecutive words of memory. The ﬁrsg word
contains the address of a 16-word area of memory called a workspace. The second word contains the
address of a subroutine entry point. The Model 990/ 12 Computer uses the transfer vector in a type of
transfer of control called a context switch. A context switch places the contents of the first word of a
transfer vector in the workspace pointer (WP) register, making the workspace addressed by that
word the active workspace. The 16 words of the active workspace become workspace registers zero
through 15, which are available for use as general purpose registers, address regi§tcrs, or index
registers. A context switch places the contents of the second word of a transfer vector in the program
counter (PC), causing the instruction at that address to be executed next.

A context switch transfers control to an interrupt subroutine whenever an interrupt occurs. The
transfer vectors for interrupt levels zero through 15 are located in memory locations 0000, through
003Es, as shown in figure 2-3. The address of the first byte of the vector for an interrupt level is the
product of the level number times four.

5] x & = O
r MEMORY
AREA

ADDRESS P4
DEFINITION (HEXADECIMAL)
0000 LEVEL O INTERRUPT ‘6’ =2
INTERRUPTS TRANSFER VECTOR x 32
LEVEL 1 INTERRUPT ’
0004 TRANSFER VECTOR 4 2 c
L=
O
ooos A A
M v
003¢C LEVEL 15 INTERRUPT
— TRANSFER VECTOR
EXTENOED OPERATIONS 0040 XOP 0 TRANSFER VECTOR
O THROUGH 15
0044 XOP 1| TRANSFER VECTOR
0048 "Ju Av
. AV A
007¢C XOP 15 TRANSFER VECTOR
GENERAL MEMORY FOR 0o
EXECUTIVE , Pgocamus, 8o FRONT PANEL WORKSPACE
AND DATA 009E
- ey P
~
o AREA Y%
F7FE
F800
TILINE PERIPHERAL A
CONTROL SPACE ~ TILINE ﬂ:
FBFE
PROM FC00
~, PROGRAMMER PANEL ~,
Y AND LOADER N
FFFA
LOAD OR RESTART FFFC
FUNCTION RESTART TRANSFER VECTOR
FFFE
{A)132200

Figure 2-3. Typical Memory Map

2-2 Digital Systems Group

2250077-9701

The Model 990/12 Computer supports extended operations implemented by subroutines. These
extended operations are effectively additional instructions that may perform user-defined functions.
Up to 16 extended operations may be implemented. An extended operation machine instruction
results in a context switch to the specified extended operation subroutine. The transfer vectors for
extended operations zero through 15 are located in memory locations 0040 through 007E;s as
shown in figure 2-3. The address of the first byte of the vector for an extended operation is the
product of the extended operation number times four, plus 40s.

A context switch using the transfer vector at memory location FFFCi¢ transfers control to a
subroutine to load or restart the computer. Execution of an LREX instruction or activation of a
switch on the control panel initiates the context switch.

A context switch to a user subroutine is performed by the BLWP instruction. The transfer vector is
placed at a user-defined location in memory.

2.4 INTERRUPTS

Sixteen priority-vectored interrupt levels are implemented in the Model 950/12 Computer. The
contents of the interrupt mask in the status register define the interrupt level. Low-order memory
addresses zero through 3F ¢ are reserved for transfer vectors used by the interrupts (table 2-1). When
an interrupt request at an enabled level occurs, the contents of the transfer vector corresponding to
the level are used to enter a subroutine to serve the interrupt, as discussed in paragraph 2.3 above.
The reserved memory locations are shown in figure 2-3.

Table 2-1. Interrupt Transfer Vector Addresses

Interrupt
Memory Transfer
Address Vector Vector Contents Typical Assignment
0000 0 WP address for interrupt 0 Power On
0002 0 PC address for interrupt 0
0004 1 WP address for interrupt 1 Power Failing
0006 1 PC address for interrupt 1|
0008 2 WP address for interrupt 2 Error
000A 2 PC address for interrupt 2
000C 3 WP address for interrupt 3 External Device
000E 3 PC address for interrupt 3
0010 4 WP address for interrupt 4 External Device
0012 4 PC address for interrupt 4
0014 5 WP address for interrupt 5 External Device or
Line Frequency Clock
0016 5 PC address for interrupt 5
0018 6 WP address for interrupt 6 External Device
001A 6 PC address for interrupt 6
001C 7 WP address for interrupt 7 External Device
001E 7 PC address for interrupt 7
0020 8 WP address for interrupt 8 External Device
0022 8 PC address for interrupt 8

2.3 Digital Systems Group

2250077-9701

Table 2-1. Interrupt Transfer Vector Addresses (Continued)

Interrupt

Memory Transfer

Address Vector Vector Contents Typical Assignment
0024 9 WP address for interrupt 9 External Device
0026 9 PC address for interrupt 9
0028 10 WP address for interrupt 10 External Device
002A 10 . PC address for interrupt 10
002C 11 WP address for interrupt 11 External Device
002E 11 PC address for interrupt 11
0030 12 WP address for interrupt 12 External Device
0032 12 PC address for interrupt 12
0034 13 WP address for interrupt 13 External Device
0036 13 PC address for interrupt 13
0038 14 WP address for interrupt 14 External Device
003A 14 PC address for interrupt 14 ’
003C 15 WP address for interrupt 15 External Device or

: Line Frequency Clock

003E 15 PC address for interrupt 15

24.1 GENERAL INTERRUPT STRUCTURE. The interrupt levels, numbered zero through 15,
determine the interrupt priority. Level zero has the highest priority and level 15 the lowest. The
contents of the interrupt mask, bits 12 through 15 of the status (ST) register, determine the enabled
interrupt levels. Table 2-2 shows the interrupt levels enabled by the contents of the interrupt mask.
Note that level zero cannot be disabled since the ievel contained in the mask is always enabled.

2.4.2 INTERRUPT SEQUENCE. The level of the highest priority pending interrupt request is
continually compared with the interrupt mask contents. When the level of the pending request is
equal to or less than the mask contents (equal or higher priority), the interrupt is taken after the
currently executing instruction has completed, or has reached a point where it can be interrupted
(interruptible instructions).

The workspace defined for the interrupt subroutine becomes active and the entry point is placed in
the program counter. The CPU also stores the previous contents of the WP register in the new
workspace register 13, the previous contents of the program counter in the new workspace register
14, and the contents of the ST register in the new workspace register 15. This preserves the program
environment existing when the interrupt is taken. No additional interrupt is taken until the first
instruction of the interrupt subroutine is completed. Thereafter, interrupts of higher priority can
interrupt processing of the current interrupt.

After storing the ST register contents, the CPU subtracts one from the level of the interrupt taken
and places the result in the interrupt mask. This disables all interrupts of priority equal to or below
the one taken. Higher priority interrupts will be processed. If a higher priority interrupt is taken,
upon completion the previous interrupt routine is returned to at the point it was interrupted. If the
interrupt request for that routine is still active, it is ignored. Also, status bits seven through 11 are
reset.

f 2-4 Digital Systems Group

(o]
(l‘_\‘if? 2250077-9701

Status Register

Bits 12-15

MmO O W P> 0 00 2 s wN— O

Table 2-2. Interrupt Mask

Interrupt Levels Enabled

0

0,1

0,1,2

0,1,2,3

0,1,2,34

0,1,2,3,4,5

0,1,2345,6

0,1,2,3,4,5,6,7
0,1,2,3,4,5,6,7,8
0,1,2,3,4,5,6,7,8,9
0,1,2,3,4,5,6,7,8,9,10
01,2,3,4,5,6,7,8,9,10,11
0,1,2,3,4,56,7,8,9,10,11,12
0,1,2,3,4,5,6,7,8,9,10,11,12,13
01,2,3,4,5,6,7,8,9,10,11,12,13,14

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

Mask Set
By Interrupt
Level

MmO O W P> © 0 3 & U b WD~ OO

2.4.3 PREDEFINED INTERRUPTS. Level zero is the power-on interrupt for the Model 990/12
Computer, used for power-on initialization of the processor. Level one is the power-failing interrupt,
used when ac power begins to fail. At this point, the computer has seven milliseconds of program
time before operation is halted. Interrupt level two is the system error interrupt, detailed below.
Interrupt levels five or 15 can be defined as the line frequency clock interrupt. The remaining
interrupt levels are available for assignment to devices on the CRU and TILINE. Several interrupt
lines may be combined at one level. Any interrupt request must remain active until the interrupt is
taken and must be reset before the interrupt subroutine is complete.

2.4.4 SYSTEM ERROR INTERRUPT. Interrupt level two is defined as the system error interrupt.
Eleven conditions may cause a system error interrupt (although the breakpoint and the 12 ms test
clock are forced error interrupts). These conditions are listed in table 2-3.

Table 2-3. Error Interrupt Status Register (CRU Base 1FC0s)

Error

TIMEOUT (Unimplemented Memory was Addressed)
PRIVOP (Privileged Violation)

ILLOP (Illegal Instruction Code)

MER (Memory Data Error)

Input Bit

15
14
13
12

Output Bit *

15
14
13
12

Digital Systems Group

2250077-9701

Table 2-3. Error Interrupt Status Register (CRU Base 1FC06) (Continued)

Error Input Bit Output Bit *

MAPERR (Address Beyond Map) 11 11
EV (Execution Attempt in Execute-protected Memory) 9 9
WYV (Write Attempt in Write-protected Memory) 8 8
SO (Stack Overflow/underflow) 7 7
BP (Breakpoint Address Encountered) 6 6
CK (12 ms Test Clock) 5 5
AO (Arithmetic Overflow) 4 4
ID (990/10-990/12 Indicator) 0

*Individually cleared by SBZ. Any SBO to bits 0-7 of this register sets all bits to one for diagnostic purposes.

To isolate the cause of the error, read the CRU error interrupt status register using the STCR
instruction. The interrupt is cleared by executing a set CRU bit to zero (SBZ) instruction. A sample
routine for doing this is shown in figure 2-4. The error interrupt status register is cleared by any of
the following operations.

® Reset (RSET instruction)

e Power-up

¢ CRU output operations to CRU base address 1FC0;¢ (clear the individual bits).

* This example routine shows how the error interrupt status register is read, the error recovery
* routines are entered, and the error is cleared. Error recovery routines are entered through
* TABLE, a table of workspace pointers and program counters similar to the interrupt vectors.
* This routine reads the error register and enters the recovery routine if an error bit is set. If an
* error bit is not set, the next bit is tested. When all the bits are reset, the routine is exited.
TABLE EQU >1000 Initialize the table entry address.
* TABLE starts at address HEX 1000.
READ EQU h) Entry point.

Ll R3, TABLE Initialize recovery routine index.

LI R12, >1FC0 Initialize CRU base address.

STCR R 1,12 . Read error interrupt register.

JEQ ouT If all bits equal zero, exit routine.
TESBIT TB 0 Test the bit in the error register.

JNE INCRMN If the bit is not set, increment the registers and test the

T next bit.

BLWP *R3 Branch to the recovery routine.

SBZ 0 Reset the bit in the error register.

JMP READ Retest the error register.
INCRMN INCT RI12 Increment the CRU address.

INCT R3 Increment recovery routine.

INCT R3 Index by four.

JMP TESBIT Test the next bit.
ouT RTWP Return.

Figure 2-4. Error Interrupt Handling Routine

2-6 Digital Systems Group

2250077-9701

2.4.5 ERROR INTERRUPT TRACE MEMORY. The trace memory has sixteen 32-bit words
containing trace information useful in error recovery and for diagnostic purposes. When a system
error interrupt occurs, the trace memory contains a trace of the 15 memory cycles or workspace
accesses prior to and including setting of the system error interrupt. The trace memory does not stop
immediately upon the setting of a system error interrupt, but stores one more workspace access or
memory cycle to make the 16th word. The functions of the bits of the 32-bit trace words, are listed in
table 2-4. Each 32-bit word is composed of two 16-bit words that are read consecutively by the CRU.

The error interrupt trace memory is read by software through a 16-bit CRU register at CRU base
address 1FAQ;6. The first 16-bit word read from this register after an error interrupt is the first 16 bits
of the last 32-bit trace memory word. The second 16-bit word read from this register is the second 16
bits of the last trace memory word. The next 16-bit word read is the first 16 bits of the next-to-the-
last trace memory word. The entire error interrupt trace memory is transferred in this manner. Each
read (STCR) should be followed by an SBO or SBZ to bit zero to decrement the trace pointer.

The output bits at CRU address 1FA0¢ are listed in table 2-5. Output bit zero is used to decrement

Ao e an ATy WATTEar a ra ini 1 i 1
the trace memory pointer. The remaining bits are used for control and breakpoint operations. Power

reset clears all bits to zero. 1/ O reset does not affect this register. The breakpoint system is discussed
in the next paragraph.
Table 2-4. Error Interrupt Trace Memory Data Word Bit Functions

First Word CRU

Bit Number Function
0-15 Least significant 16 bits of saved TILINE address.
Second Word
CRU Bit Number Function
0-3 Most significant fouf bits of saved TILINE address.

4 End of Instruction Flag. “1” = E.O.L

5 Workspace Access Flag. “1” = W.A.

6 TILINE Read/Write Flag. “1” = Write.

7 TILINE Access Flag. “1” = T.A.

8 Workspace Read/Write Flag. “1” = Write.
9 Privileged Violation. “1” = P.V.

10 Illegal Opcode. “1” = 1.O.

11 Mapping Error. “1” = Error. Indicates an attempt
to address memory beyond the limits set in the
active map file limit registers.

12 Memory Data Error. “1” = Error.

13 TILINE Time Out. “1” = Timeout. Indicates an
attempt to address unimpiemented TILINE addresses
(memory).

14 Execution Violation. “1” = E.V. Indicates an

attempt to execute from a mapped memory segment
that has been flagged as nonexecutable.

15 Write Violation. “1” = W.V. Indicates an attempt to
write to a mapped memory segment that has been
flagged as nonwritable.

2-7 Digital Systems Group

2250077-9701

Table 2-5. CRU Output Bit Assignments for Error Interrupt Trace Control
and Map Control (CRU Base Address 1FA0;¢)

Output Bit Function

0 SBO or SBZ instruction to bit zero decrements error interrupt trace
memory display pointer.

1 Test clock enable. SBO enables the test clock, SBZ disables the test clock.
2 TILINE cache enable. SBO = enable, SBZ = disable.
3 Mapping enable. SBO enables memory mapping, SBZ disables mapping

except for addresses to the TILINE peripheral control space and to the
loader and self-test PROM.

4* SBO or SBZ to bit four clears the mapping violation bit in the error
interrupt status register.

5 Breakpoint on map zero or map one. SBZ = map 0, SBO = map one.
6, 7= 0,0%* Breakpoint occurs on any read.
6, 7= 0,1%* Breakpoint occurs on any instruction stream fetch.
6, 7= 1,0%* Breakpoint occurs on any write.
6, 7=],]%%* Breakpoint on any address occurrence.
8 Diagnostic interrupt enable. SBO = enable. See paragraph 2.4.8.
9 Diagnostic memory error. SBO = enable. See paragraph 2.4.9.
10 CRU output bits 10, 11, and 12 develop PROM address lines to address
13 one of eight 512-word sections of the loader and self-test PROM. Bit 12 is
12 the most significant bit. See paragraph 2.6.2.
13 Breakpoint qualifier in privileged mode. SBO disables breakpoint system

when processor is in privileged mode (ST7 = 0).
14, 15 Reserved.

* Also cleared by SBZ to CRU output bit 11 at CRU base address 1FCO0,6, power-up, or RSET
instruction.

** Breakpoint bit in the error interrupt status register is set after memory request that satisfied the
breakpoint.

*** Breakpoint bit in the error interrupt status register is set after the map request.

2-8 Digital Systems Group

[o]
d—@; 2250077-9701

2.4.6 BREAKPOINT SYSTEM. The Model 990/12 Computer features a programmable
breakpoint system for diagnostic use. The breakpoint system is implemented using the following:

e The 16-bit register at CRU base 1F80:s
e The error interrupt status register
e The error trace memory

e The 16-bit register at CRU base 1FAOs.

v
a
7

Bits five through seven and 13 of the error interrupt trace control and map control register (CRU
base 1FAO;6) are used to indicate the breakpoint condition(s). These bits are listed in table 2-5. CRU
bits one (LSB) through 15 (MSB) of the breakpoint register ({CRU Base 1F80is) are used for the
breakpoint word address. Bit zero is the breakpoint enable (1 = enable). When the breakpoint
system is enabled and the proper memory reference (table 2-5) is made to the address which
corresponds to the value in the breakpoint register, the error interrupt trap (level two) is taken and
the breakpoint flag is set in the error interrupt status register (bit six of CRU base 1FCO0;6). The
breakpoint address and breakpoint enable are cleared by the hardware when the breakpoint is
encountered or when a reset (RSET) or power-up occurs.

2.47 TWELVE MILLISECOND TEST CLOCK. When CRU bit one at CRU base address 1FAOQus
is set to a one, the 12 ms (£15%) test clock interrupt is enabled. When the clock interrupt occurs, the
error interrupt, level two, is taken and the 12 ms test clock flag (CK) is set in the error interrupt status
register (bit five of CRU base 1FC0;s). The interrupt is cleared by clearing the CK flag.

This test clock interrupt is used by a service routine which gathers statistical data for znalysis of the
operating system software and to determine the percentage of time available to the users. This
function is cleared and disabled by power-up or RSET.

2.4.8 FORCED INTERRUPTS. The error interrupt trace control and map control register outputs
and the breakpoint register can be programmed to initiate interrupt levels three through 15. When
bit eight of the error interrupt trace control and map control register is set, CRU bits three through
15 of the breakpoint register correspond to interrupt levels three through 15, respectively. Setting
one of the breakpoint bits causes the corresponding interrupt to occur. This is illustrated in figure
2-5, '

BREAKPOINT
15114113]12(11}10} 9 8 7 6 5 4| 3 |NOT USED REGISTER
CRU BITS
i i4 i3 iz 1ii 160 8 8 7 ©& 5 4 3 CORRESPONDING
INTERRUPT

WHEN A BIT IN THE BREAKPOINT REGISTER IS SET, THE
CORRESPONDING INTERRUPT WILL OCCUR,

Figure 2-5. Breakpoint Register Interrupts

2-9 Digital Systems Group

2250077-9701

2.4.9 FORCED MEMORY ERRORS. Bit nine of the error interrupt trace control and map control
register can be used to cause a memory error. By setting CRU bit nine in the register, any memory
cycle addressing the loader and self-test PROMs will generate a memory error. This causes a level
two interrupt (error interrupt), with bit 12 of the error interrupt status register set.

2.5 STATUS REGISTER

The configuration of the Status Register of the Model 990/ 12 Computer is shown in figure 2-6. The
bits are set and reset as a result of executing machine instructions.

2.5.1 LOGICAL GREATER THAN. The logical greater than bit (zero) of the status register
contains the result of a comparison of bytes, words, real numbers, or strings as unsigned binary
numbers. When bit zero is set to one, this indicates logically greater than.

9 10 11 12 13 14 15

MF

1 i
MM} Ol | Cs 1M

— OVERFLOW

— CARRY

— EQUAL

== LOGICALLY GREATER THAN

l— INTERRUPT MASK

WCS ENABLE
1=ENABLE WRITABLE CONTROL STORE

OVERFLOW INTERRUPT ENABLE
1=ENABLE ERROR INTERRUPT ON ARITHMETIC
OVERFLOW ERROR

L. MEMORY MANAGEMENT AND PROTECTION ENABLE
1 =ENABLE FLAGS

. MAP FILE SELECT

O0=MAP 0 1=MAP 1

PRIVILEGED MODE
1=NON—-PRIV, MODE

— ARITHMETICALLY GREATER THAN

Figure 2-6.

— XOP IN PROGRESS

L. BYTE PARITY BIT

Status Register

2-10 Digital Systems Group

2250077-9701

2.5.2 ARITHMETIC GREATER THAN. The arithmetic greater than bit (one) of the status register
contains the result of a comparison of bytes, words, real numbers, or strings as two’s complement
signed numbers. In this comparison, the most significant bits of the operands being compared
represent the sign of the number: zero for positive, one for negative. For positive integers, the
remaining bits represent the binary value. For negative integers, the remaining bits represent the
two’s complement of the binary value. For real numbers, the remaining bits represent the exponent
and the unsigned digits of the binary value. When bit one is set to one, this indicates arithmetic
greater than.

2.5.3 EQUAL. The equal bit (two) of the status register is set when two bytes, words, real numbers,
or strings being compared are equal. It is also set to indicate the value of a bit under certain
conditions. Whether the comparison is that of unsigned binary numbers or two’s complement
numbers the significance of equality is the same. When bit two is set to one, this indicates equality.

2.5.4 CARRY. The carry bit (three) of the status register is set by a carry out of a bit of an operand
during arithmetic operations. The carry bit is used by the shift operations to store the last bit shifted
out of the workspace register being shifted. The carry bit is used by floating point operations to
distinguish between underflow and overflow.

2.5.5 OVERFLOW. The overflow bit (four) of the status register is set when the magnitude of the
result of an arithmetic operation is too large to be correctly represented in two’s complement
representation. In integer addition operations, the overflow bit is set when the most significant bits of
the operands are equal and the most significant bit of the result is not equal to the most significant bit
of the destination operand. In integer subtraction operations, the overflow bit is set when the most
significant bits of the operands are not equal, and the most significant bit of the result is not equal to
the most significant bit of the destination operand. For an integer divide operation, the overflow bit
is set when the most significant 16 bits of the dividend are greater than or equal to the divisor. In
floating point arithmetic operations (add, subtract, multiply, and divide), overflow is set if the
magnitude of the exponent cannot be represented in seven bits. For an arithmetic left shift, the
overflow bit is set if the most significant bit of the operand being shifted changes value. For the
absolute value and negate instructions, the overflow bit is set when the source operand is the
maximum negative value, 8000;s. When bit four is set to one, this indicates that an overflow has
occurred.

2.5.6 ODD PARITY. The odd parity bit (five) of the status register is set in byte operations when
the parity of the result is odd and is reset when the parity is even. The parity of a byte is odd when the
number of bits having values of one is odd; when the number of bits having values of one is even, the
parity of the byte is even. The odd parity bit is equal to the least significant bit of the sum of the bits
in the byte. When bit five is set to one, this indicates odd parity.

2.5.7 EXTENDED OPERATION. The extended operation bit (six) of the status register is set to
one when a software-implemented extended operation is initiated. An extended operation initiates a
context switch using the transfer vector for the specified extended operation. After the WP and PC
have been set to the values in the transfer vector, the extended operation bit is set. When bit six is set
to one, this indicates that an extended operation is in progress.

2.5.8 PRIVILEGED MODE. The privileged mode bit (seven) of the status register is set to one to
inhibit execution of privileged instructions. When execution of a privileged instruction is attempted
with the PR bit set to one, a privileged instruction error occurs. Bit seven must be reset to zero for
execution of privileged instructions.

2-11 Digital Systems Group

(o]
{@ 2250077-9701

2.5.9 MAP FILE SELECT. The memory file bit (eight) of the status register provides access to
memory addresses outside of the range of addresses (32K words) of the address portions of the
instructions. When bit eight is set to zero, the six mapping registers of map zero are active. When bit
eight is set to one, the six mapping registers of map one are active.

2.5.10 MEMORY MANAGEMENT AND PROTECTION ENABLED. The memory management
and protection enable bit (nine) of the status register is set to one to enable the management and
protection flags in the mapping limit register. The memory management and protection enable bit is
set or cleared by loading the status register.

2.5.11 OVERFLOW INTERRUPT ENABLE. The overflow interrupt enable bit (10) of the status
register is set to one to allow error interrupts on arithmetic errors. An arithmetic error is any
condition that would set the overflow bit (four) on. If the overflow interrupt bit is set to one and an
overflow error occurs due to an arithmetic instruction, an error interrupt (level two) occurs and bit
four of the error interrupt register is set. The overflow interrupt enable bit is set to one (enabled) or
reset to zero (disabled) by loading the status register.

2.5.12 WRITABLE CONTROL STORE. If the writable control store bit (11) of the status register
is set to one, the XOP instructions vector into the writable control store. If the bit is set to zero, XOP
operates as explained in paragraph 2.3. The writable control store bit is set to one (enabled) or reset
to zero (disabled) by loading the status register.

2.5.13 INTERRUPT MASK. The interrupt mask (bits 12-15) indicates the lowest-prioritized
interrupt that can occur. When an interrupt occurs, the interrupt mask is loaded with the value of the
next highest priority interrupt, masking the active level and all levels below it. The interrupt mask
can also be loaded under program control by the LIMI or LIM instructions. Interrupts are explained
further in paragraph 2.4.

2.6 MEMORY ORGANIZATION

Figure 2-3 shows a generalized memory map for the Model 990 /12 Computer. The area of low-order
memory from addresses 0 through 7F s is used for interrupt and extended operation transfer vectors.
Addresses reserved for transfer vectors that are not used may be used for instructions and /or data.
The area of memory from addresses 80,5 through F7FE;s is available for workspaces, instructions,
and data. Part of this memory is used by the DX10 operating system.

Where map file zero is active, addresses F800;4 through FBFEs are reserved for TILINE
communication with peripheral devices. These addresses may be assigned to registers in controllers
for direct memory access devices. Input/Output from or to these devices is performed using any
instruction that may be used to access memory. For 1O, the address in the instruction must be the
TILINE address assigned to the appropriate register. An example of TILINE interface is shown in
Appendix 1. Addresses FC00;¢ through FFFB¢ are reserved for programmed read-only memory
(PROM) which contains the programmer panel program, the loader program, and the self-test
program. Control passes to the programmer panel program by a context switch using the transfer
vector at address FFFCs.

Any 16-word area of memory may be assigned as a workspace and becomes the active workspace
when the address of the first word of the area is placed in the WP register. Figure 2-7 shows a
workspace with those registers that have assigned functions identified in the figure.

2-12 Digital Systems Group

2250077-9701

ADDRESS
WP REGISTER (HEXADECIMAL.)

0500— 0500 COUNT COUNT WR 0
0502 WR 1
0504 WR 2
0506 WR 3
0508 WR 4
050A WR ©
050C WR 6
050E WR 7
0510 WR 8
0512 WR S
0514 WR 10
os1e | EEFECTIVE APDRESS 0P | we 11
0518 CRU BASE ADDRESS WR 12
051A WP REGISTER CONTENTS WR 13
051C PC CONTENTS ' WR 14
0S1E ST REGISTER CONTENTS WR 15

(A)132201

Figure 2-7. Model 990/12 Computer Workspace

2.6.1 MEMORY MAPPING. Memory for the Model 990/12 Computer may contain more than
32K words, but the address format addresses only 32K words directly. The mapping option is used to
address memory locations outside of the 32K word addressing capability. The mapping hardware
has three 16-bit limit registers and three 16-bit bias registers for each of the three map files. The
mapped address is a 20-bit address: the sum of the 16-bit processor address and the contents of 11
bits of the bias register extended to the right with five zeros. The least significant bit (which selects
bytes) is ignored. The limit registers contain the one’s complement of the limits and determine which
bias register is used. When the 11 most significant bits of the 16-bit address are less than or equal to
limit one, bias register one is used. When the same value is greater than limit one and less than or
equal to limit two, bias register two is used. When the same value is greater than limit two and less
than or equal to limit three, bias register three is used. When the same value is greater than limit
three, a mapping error interrupt occurs and memory is not accessed.

Bits 14 and 15 of the mapping limit registers indicate the status and protection of each segment of
mapped memory. Bits E and W (14 and 15) determine the memory protection, listed in table 2-6.
These bits are controlled by software and tested by hardware. The mapping limit register is shown in
figure 2-8.

2-13 Digital Systems Group

[e]
@ 2250077-9701

NOT
LIMIT USED E w
0 t¢ 11t 12 13 14 15

Figure 2-8. Mapping Limit Register

Table 2-6. Memory Protection Control

Mapping Limit Register Bits Memory Protection in Segment
14(E) 15(W)
0 0 No protection
0 1 Write protected
1 0 Execute protected
1 1 Execute and write protected

When power is applied, the status register clears, selecting map file zero, and the limit and bias
registers are set to zero. The limits (one’s complement of limit register contents) are FFFF;s. This
results in all addresses using bias register one which contains zero. The result is that all addresses are
mapped into the same addresses. Map file one consists of three limit registers and three bias registers
and is intended for application programs. Map file two similarly consists of three limit registers and
three bias registers and is used to map one specified address outside of the current map. The LMF
instruction loads map files zero and one. The LDD and LDS instructions load map file two.

For example, figure 2-9 shows a map file and the comparison of processor addresses to limits. Figure
2-9 also shows the addition of a bias register to a processor address. The contents of the map file are
chosen in this example so that processor addresses 00006 through 10FF;¢ map to addresses 0000006
through 0010FF;s, processor addresses 11006 through AOFF s map to addresses 0322E0Q;s through
03B2DFi6, and processor addresses A100;s through F7FF;s map to addresses 04A100,6 through
04F7FFs. A processor address greater than F7FF ¢ results in an error interrupt. This requires that
limit register L1 contain 11101111000, the one’s complement of the 11 most significant bits of
10FFi6. Similarly, limit register L2 contains 01011111000, (one’s complement of 11 most significant
bits of AOFF¢) and limit register L3 contains 00001000000, (one’s complement of the 11 most
significant bits of F7FFje). Bias register B1 contains 0000;s, bias register B2 contains 188F ¢, and bias
register B3 contains 20006.

2.6.2 LOADER AND SELF-TEST ROM. The loader and self-test ROM is implemented with two
TMS 2532 Erasable Programmable Read-Only Memory (EPROM) devices. The devices provide 4K
16-bit words of loader and self-test routines.

The 990 ROM address space allocation is 512 words at central processor addresses FC00;6 through
FFFE;s when mapfile zero is selected. To facilitate addressing the 4K words of ROM in the allocated
address space, the EPROM is divided into eight 512-word sections. The sections are selected by the
binary code (zero - seven) of CRU output bits 10, 11, and 12 at CRU base address 1 FAO;s. This CRU
base address also addresses the error interrupt control and map control, described in a preceding
paragraph.

The self-test routines provide fault detection with some internal fault isolation. When the test fails,
the “FAULT” lamp on the programmer/operator panel lights, and the operating system software is
not loaded. There are also internal lamps that light according to the fault detected by the self-test
routine. When the test succeeds, the operating system software is loaded.

2-14 Digital Systems Group

15

14

12 13

11

15
10

14 15
9

14

13
13
8

15

(o]
(GREATER THAN)

(LESS THAN)

12
12

14

13
10 11
10 11

1

12
9
9

8

11

OIX X} X]|O

10

MAP FILE

0

8 9

7

0

0o
0

0

1

2250077-9701

L1

B1

L2

B2

L3

B3

PROCESSOR
ADDRESS

L1 (BITS 0—-10)
PROCESSOR
ADDRESS

L2 (BITS 0~-10)
PROCESSOR
ADDRESS

——— — — ” Ol— = = — -

_—— - = -] -]=-=--- - -

—_—_ ——-— ol—————

PLUS
EQUALS

B2

19

18

17
Digital Systems Group

15 16

14

13

12

11

10

2-15

Figure 2-9. Address Development, Model 990/12 Mapping

MEMORY
ADDRESS

o
(@ 2250077-9701

2.6.3 TILINE PERIPHERAL CONTROL SPACE. When map file zero is enabled, CPU byte
addresses F800is through FBFE;s are mapped to TILINE word addresses FFC00,s through
FFDFFi¢ (the TILINE Peripheral Control Space).

2.6.4 MEMORY CACHE. The Model 990/ 12 Computer features a cache memory option. For each
32K words of main memory, 1K words of cache memory can be implemented. The memory cache
offers a significant increase in processing speed over the main memory in the 990/12. Refer to the
Application Notes for techniques to enhance program execution using the memory cache.

2.7 WORKSPACE CACHE

A bipolar memory is provided as part of the 990/12 central processor, which is separate from and
operates much faster than TILINE memory. This memory is dedicated to holding workspace register
data. Data accessed as workspace registers is stored in the workspace cache as it is fetched from
TILINE memory, and subsequent accesses to the same data are taken from the cache. If the
workspace pointer is changed, the registers in the cache are stored in TILINE memory provided they
have been modified in the cache. Only registers that have been altered are moved. When TILINE
memory is accessed through symbolic or indexed addressing and the TILINE address corresponds to
the workspace register area, both the cache and the TILINE memory are updated. When the same
data is accessed through register addressing, only the cache is updated.

NOTE

Execution of instructions from the workspace will cause the cache to
be disabled with accompanying degradation of performance.

2.8 PRIVILEGED MODE

The Model 990/12 Computer has a privileged mode in which any instruction of the instruction set
may be executed. When the computer is not in the privileged mode and execution of a privileged
instruction is attempted, the instruction is not executed and an error interrupt occurs. The privileged
instructions perform operating system functions not appropriate in user programs. The specific
instructions are identified in a subsequent section. The computer is placed in the privileged mode and
the map file is set to map file zero when power is applied, when an interrupt occurs, or when an XOP
instruction is executed.

2.9 SOURCE STATEMENT FORMAT

An assembly language source program consists of source statements which may contain assembler
directives, machine instructions, pseudo-instructions, or comments. Each source statement is a
source record as defined for the source medium, i.e., an 80-column card for punched card input, or a
line of characters terminated by a carriage return for input from the keyboard of a terminal such as
the Model 733 ASR Data Terminal or a CRT display terminal.

The following conventions apply in the syntax definitions for machine instructions and assembler
directives: :

e lItems in capital letters and special characters must be entered as shown.
® Items within angle brackets (< >>) are defined by the user.

e Items in lowercase letters are classes (generic names) of items.

e Items within brackets ([]) are optional.

o Items within braces ({ }) are alternative items; one must be entered.

2-16 Digital Systems Group

o
(@ 2250077-9701

e All ellipses (. . .) indicate that the preceding item may be repeated.
e The symbol b represents a blank or space.

The syntax for source statements other than comment statements is defined as follows:
[Klabe>]b. . .opcodeb. . [<operand>] . . .b. . . [comment>]

This syntax defintion means that a source statement may have a label which is defined by the user.
One or more blanks separate the label from the opcode. Mnemonic operation codes, assembler
directives codes, and user-defined operation codes are all included in the generic term opcode, and
any of these may be entered. One or more blanks separate the opcode from the operand, when an
operand is required. Additional operands, when required, are separated by commas. One or more
blanks separate the operand or operands from the comment field.

Comment statements consist of a single field starting with an asterisk (*) in the first character
position followed by an ASCII character including a blank in each succeeding character position.
Comment statements are listed in the source portion of the assembly listing and have no other effect
on the assembly.

The maximum length of source records is 60 characters. However, only the first 52 characters will be
printed on the Model 733 ASR Data terminal. The last source statement of a source program is
followed by the end-of-record statement for the source medium, i.e., for punched cards, a card
having a slash (/) punched in column 1 and an asterisk (*) punched in column 2.

Figure 2-10 shows source statements written on a coding form illustrating alternative methods of
entering statements. The first four statements illustrate the alignment of the label, opcode, operands,
and comments to begin in the same column in each statement. This method promotes readability,
but may be time-consuming on some input devices, particularly data terminals. The last four
statements show the use of horizontal tab characters represented by ! to separate the fields. On the
I\gociel 733 ASR Data Terminal, the tab character is entered by holding the CTRL key while pressing
the I key.

2.9.1 CHARACTER SET. The assembler for the Model 990/ 12 Computer, SDSMAC, recognizes
the ASCII character set and special characters that are undefined in ASCII. Appendix A contains
tables that list the 990/12 character set with the ASCII and Hollerith codes.

2.9.2 LABEL FIELD. The label field begins in character position one of the source record and
extends to the first blank. The label field contains a symbol containing up to six characters the first
of which must be alphabetic. Additional characters may be any alphanumeric characters. A label is
optional for machine instructions and for many assembler directives. When the label is omitted, the
first character position must contain a blank. A source statement consisting of only a label field is a
valid statement; it has the effect of assigning the current location to the label. This is usually
equivalent to placing the label in the label field of the following machine instruction or assembler
directive. However, when a statement consisting of a label only follows a TEXT or BYTE directive
and is followed by a DATA directive or a machine instruction, the label will not have the value of a
label in the following statement unless the TEXT or BYTE directive left the location counter on an
even (word) location. An EVEN directive following the TEXT or BYTE directive prevents this
problem.

2-17 Digital Systems Group

81-7

anoug swaisAs jerib1qg

LABEL OPER OPERAND . COMMENTS
' 6 8 1" 13 17 21 2526 30 33 0 435 50

55

60

* ICIONIVIEIN|TIT|ONAIL| |S|O|U|R|CIE| |S|TIAITIE[MIEIN]T] [FlO[R[M]ATT

S|ITIAR|T LI 31,1>|2]5 L|O|A|D| W} [R] |3
A 50,13 AID[D| [W|R[S] [T|O] |WR|3
R|T RIE|T|{UIRIN| [T|O| (CJA[L{L|IIN|G| |[P{R|O|GI|RIAM

HIAHIs |, [3[4lADiD| MIRS| [Tlo| IwR[3
FRITIFIFREFTURINT Trlo] [clalcIcTrinie] [P [R[ol6 R[AIM

PROGRAM PROGRAMMED BY CHARGE PAGE
(A)132203 A

Figure 2-10. Source Statement Formats

T0L6-LL0O0STT

[o]
é‘_@] 2250077-9701

2.9.3 OPERATION FIELD. The operation (opcode) field begins following the blank that
terminates the label field, or in the first nonblank character position after the first character position
when the label is omitted. The operation field is terminated by one or more blanks and may not
extend past character position 60 of the source record. The operation field contains one of the
following opcodes:

e Mnemonic operation code of a machine instruction

e Assembler directive operation code

e Symbol assigned to an extended operation by a DXOP directive
e Symbol assigned to another operation by a DFOP directive.

o Pseudo-instruction operation code.

anrrn mnama

Y LY}
1vidCl'O Iallic.

2.9.4 OPERAND FIELD. The operand field begins following the blank that terminates the
operation field and may not extend past character position 60 of the source record. The operand field
may contain one or more expressions, terms, or constants, according to the requirements of the
operation. The operand field is terminated by one or more blanks.

2.9.5 COMMENT FIELD. The comment field begins following the blank that terminates the
operand field and may extend to the end of the source record if required. The comment field may
contain any ASCII character including blank. The contents of the comment field are listed in the
source portion of the assembly listing and have no other effect on the assembly.

2.10 EXPRESSIONS

Expressions are used in the operand fields of assembler directives and machine instructions. An
expression is a constant, a symbol, or a series of constants, a series of symbols, or a series of
constants and symbols separated by arithmetic operators. Each constant or symbol may be preceded
by a minus sign (unary minus). An expression may not contain embedded blanks or symbols that are
defined as extended operations. Symbols that are defined as external references may not be operands
of arithmetic operations. An expression may contain more than one symbol that is not previously
defined. When these symbols are absolute, they may also be operands of multiplication or division
operations within an expression. An expression that contains a relocatable symbol or relocatable
constant immediately following a multiplication or division operator is an illegal expression. Also,
when the result of evaluating an expression up to a multiplication or division operator is relocatable,
the expression is illegal. An expression in which the number of relocatable symbols or constants
added to the expression exceeds the number of relocatable symbols or constants subtracted from the
expression by more than one is an illegal expression.

If NA = Number of relocatable values added and
NS = Number of relocatable values subtracted

Then if

0, The expression is absolute
NA - NS= 1, The expression is relocatable
Other than 0 or I, the expression is illegal

2-19 Digital Systems Group

[o]
{@ 2250077-9701

An expression containing relocatable symbols or constants of several different relocation types (see
Section VII) is absolute if it is absolute with respect to all relocation types. If it is relocatable with
respect to one relocation type and absolute with respect to all other relocation types, then the
expression is relocatable.

An expression is represented in the syntax definitions by <exp>.
Two other types of expressions are used in the operand field. They are:

® Well-defined expressions.

® Nibble expressions.
For an expression to be well-defined, any symbols or assembly-time constants must have been
previously defined. Also, the evaluation of a well-defined expression must be absolute and may not
contain a character constant. A well-defined expression is represented in the syntax definitions by
<wd-exp>.
A nibble expression is an expression which evaluates to an absolute number in the range 0-15. This
expression’s result will be one hexadecimal digit (four bits). A nibble expression may be represented

in the syntax definition by several conventions (see Syntax Definition in Section III).

The following are examples of valid expressions:

BLUE+1 The sum of the value of symbol BLUE plus one.

GREEN-+4 The result of subtracting four from the value of
symbol GREEN.

2*16+RED The sum of the value of symbol RED plus the product
of two times 16.

440/2-RED The result of dividing 440 by two and subtracting the
value of symbol RED from the quotient. RED must
be absolute.

2.10.1 ARITHMETIC OPERATORS IN EXPRESSIONS. The arithmetic operators in
expressions are as follows:

® + for addition

e - for subtraction

e * for multiplication

e / for signed division

e // for logical right shift.
In evaluating an expression, the assembler first negates any constant or symbol preceded by a unary
minus and then performs the arithmetic operations from left to right. The assembler does not assign

precedence to any operation other than unary minus. All operations are integer operations. The
assembler truncates the fraction in division.

2-20 Digital Systems Group

Q@ 2250077-9701

For examplie, the expression 4+35%2 would be evaluated i8, not i4, and the expression 7+1/2 would
be evaluated four, not seven.

The logical right shift operator (//) allows a logical division by a power of two.
Examples:

8000//1 = 4000 AAAB//1 = 5555

FFFF//0 = FFFF FFFF//16 = 0000

SDSMAC checks for overflow conditions when arithmetic operations are performed at assembly
time, and gives a warning message whenever an overflow occurs, or when the sign of the result is not
as expected in respect to the operands and the operation performed. Examples where a “VALUE
TRUNCATED” message is given are:

4000%*2 TFFF+1 -1*>8000
8000*2 8000-1 -2¥>8001

2.10.2 LOGICAL OPERATORS IN EXPRESSIONS. SDSMAC supports logical operations in
expressions which are the bit-by-bit logical operations between the values of the symbols and/or
constants. The logical operators are as follows:

e & for AND

e && for exclusive OR

e ++ for OR

e # for NOT (logical complement)

The order of evaluation of expressions that contain logical operators is similar to that of expressions
that contain only arithmetic operators. Like the unary minus, the logical complement takes
precedence over other operations regardless of position, except as altered by parentheses.

The following are examples of expressions that contain logical operators:

BLUE&&255 Specifies the result of an exclusive OR operation
between the bits of the value of symbol BLUE and the
bits of constant value 255.

GREEN++15 | Specifies the result of an OR operation between the
bits of the value of symbol GREEN and the bits of
constant value 15.

REDÿ Specifies the result of an AND operation between the
bits of the value of symbol RED and the inversion of
the bits of constant value 255.

REDÿ++(BLUE&255) AND the value of BLUE with the constant 255. AND
the value of RED with the one’s complement of 255.
OR the two AND results to get the value of the
expression.

Logical operators are not used in assembly instructions or pseudo-instructions.

2-21 Digital Systems Group

[e]
{@ 2250077-9701

2.10.3 RELATIONAL OPERATORS IN EXPRESSIONS. SDSMAC supports six relational
operators that represent the relationship between two constants and/or symbols, i.e., the result of
comparing the constants and/or symbols. When the relationship corresponding to the operator
exists (is true), the value of the combination is one. When the relationship corresponding to the
operator does not exist (is not true), the value of the combination is zero. The result may be used as
an arithmetic value or as a logical value. The relational operators are as follows:

e = for equal
e < for less than
e > for greater than
e <= for less than or equal
. >= for greater than or equal
e #= for not equal.
NOTE

The greater than character () is also used to identify hexadecimal
constants. The context determines the meaning of the greater than
character in each statement.

The following are examples of expressions that contain relational operators:

BLUE#=GREEN Compares the value of symbol BLUE to the value of
symbol GREEN. When the values are not equal, the
combination has a value of one. When the values are
equal, the combination has a value of zero.

WHITE<BLACK Compares the value of symbol WHITE to the value of
symbol BLACK. When the value of WHITE is less
than the value of BLACK, the combination has a
value of one. Otherwise, the value of the combination
is zero.

RED*(GREEN=0) Compares the value of symbol GREEN to zero. When
GREEN equals zero, the value of symbol RED is
multiplied by one, and the value of the expression is
that of symbol RED. When GREEN is not equal to
zero, the multiplier is zero, and the value of the
expression is zero.

BLUE>=RED Compares the value of symbol BLUE to the value of
symbol RED. When BLUE is greater than or equal to
RED, the combination is equal to one. When BLUE is
less than RED, the combination is equal to zero.

Relational operators are not used in assembly instructions or pseudo-instructions.

2-22 Digital Systems Group

[o]
{%P 2250077-9701

2.10.4 USE OF PARENTHESES IN EXPRESSIONS. SDSMAC supports the use of parentheses
in expressions to alter the order of evaluation of the expression. Nesting of pairs of parentheses
within expressions is also supported. When parentheses are used, the portion of the expression
within the innermost parentheses is evaluated first. Then the portion of the expression within the
next-innermost pair is evaluated. When evaluation of the portions of the expression within all
parentheses has been completed, the evaluation is completed from left to right. Evaluation of
portions of an expression within parentheses at the same nesting level may be considered to be
simultaneous.

For example, the use of parentheses in the expression LAB1 + ({4+3)*7) would result in the addition
of four and three. The result, seven, would be multiplied by seven, giving 49. The complete
evaluation would be the value of LABI plus 49. Without parentheses, four would have been added to
the value of LABI, three would have been added to the sum and the sum of the second addition
would have been multiplied by seven if LABI had an absolute value. If LABI had a relocatable
value, the expression would have been illegal without the parentheses.

2.11 CONSTANTS
Constants are used in expressions. The assemblers recognize four types of constants: decimal integer
constants, hexadecimal integer constants, character constants, and assembly-time constants.

2.11.1 DECIMAL INTEGER CONSTANTS. A decimal integer constant is written as a string of
numerals. The range of values of decimal integers is -32,768 to +32,767. Positive decimal integer
constants in the range 32,768 to 65,535 are considered negative when interpreted as two’s
complement values. All comparisons compare numbers both as signed and unsigned values.

The following are valid decimal constants:

1000 Constant equal to 1000 or 3E8;s.
-32768 Constant equal to -32768 or 8000;s.
25 Constant equal to 25 or 19s.

2.11.2 HEXADECIMAL INTEGER CONSTANTS. A hexadecimal integer constant is written as a
string of up to four hexadecimal numerals preceded by a greater than (>) sign. Hexadecimal
numerals include the decimal values 0 through 9 and the letters A through F.

The following are valid hexadecimal constants:

>78 Constant equal to 120 or 78. -
>F Constant equal to 15 or Fie.
>37AC Constant equal to 14252 or 37ACs.

2.11.3 CHARACTER CONSTANTS. A character constant is written as a string of one or two
characters enclosed in single quotes. For each single quote required within a character constant, two
consecutive single quotes are required to represent the quote. The characters are represented
1nterpa}ly as eight-bit ASCII characters, with the leading bit set to zero. A character constant
consisting only of two single quotes (no character) is valid and is assigned the value 0000;.

2-23 Digital Systems Group

[s]
{@ 2250077-9701

The following are valid character constants:

‘AB’ Represented internally as 4142,
‘< Represented internally as 0043,.
‘N’ Represented internally as 004E .
“D’ Represented internally as 2744,

2.11.4 ASSEMBLY-TIME CONSTANTS. An assembly-time constant is written as an expression
in the operand field of an EQU directive, described in a subsequent paragraph. The value of the label
is determined at assembly time, and is considered to be absolute or relocatable according to the
- relocatability of the expression, not according to the relocatability of the location counter value.

2.12 DATA TYPES

The Model 990/ 12 Computer uses nine data types in the execution of instructions. Two of these, the
byte and the word, are discussed in paragraphs 2.1 and 2.2. The remaining data types are listed below
and explained in subsequent paragraphs.

e Extended Integers
® Multiple Precision Integers
® Byte Strings
® Stacks
® Lists
e Single Precision Real Numbers
® Double Precision Real Numbers
2.12.1 EXTENDED INTEGERS. An extended integer represents an integer value in the range -2*'

to +(2*'-1). The extended integer uses two consecutive 16-bit words in memory. The value is right-
Justified in the double word. Extended integers are represented in two’s complement form.

2.12.2 MULTIPLE PRECISION INTEGERS. A multiple precision integer is a series of one to 16
consecutive bytes. A length may be specified in one of two ways using the 990/ 12 multiple precision
integer instructions.

® A length of one to 15 bytes may be specified in the instruction.

® If a zero is specified in the instruction, then the length is fetched from the four LSBs of
workspace register RO. If the four LSBs are zero, then the length is 16 bytes.

When using the multiple precision instructions to manipulate these integers, there is no way to
specify an integer of zero precision. Instructions operating on two multiple precision operands
operate only on operands of the same precision.

Multiple precision integers also may be manipulated using the byte string instructions such as
MOVS or CS which are described in Section II1. Note that the method of specifying a length of 16
bytes using byte string instructions is slightly different than multiple precision instructions. Multiple
precision integers use the four LSBs of workspace register zero; strings use all 16 bits of register zero.

2-24 Digital Systems Group

(]
(@ 2250077-9701

Multiple precision instruction:
CLR RO CLEAR RO SO THAT 4 LSBs EQUAL 0

AM @INTEGER,@ACCUM,0 ADD MULTIPLE PRECISION INTEGERS
OF LENGTH 16 (RO BITS 12-15) = 0)

Byte string instruction:
SETO " R7 INITIALIZE CHECKPOINT REGISTER
LI | RO,16 ‘ LOAD RO WITH 16
MOVS @INTEGER,@ACCUM,0,R7 MOVE STRING OF LENGTH 16

2.12.3 BYTE STRINGS. A byte string is a group of consecutive bytes that have a specified general
address and length. The length of the byte string may be specified in one of three ways.

e If the byte string length is from one to 15 bytes, the length can be specified in the
instruction.

e If the byte string length is from zero to FFFE;s bytes, length may be specified in
workspace register zero.

e If RO is equal to FFFF s, the byte string length is in the first byte of the string. This type of
string is referred to as a tagged string, and the length specified is from one to 256. The tag
byte is the most significant byte of the string and is included in the string length. A tag
value of zero indicates a string length of 256.

When an instruction is encountered with a byte string operand, the length is searched for in the
following order:

e in the instruction;
e in RO, if instruction specifies length of zero;
e in the tag, if RO equals FFFFs.

A zero length string is specified by a length field in the instruction equal to zero and workspace
register zero equal to zero.

The following examples illustrate these methods of specifying the string length in these three
respective ways using the Move String instruction:

e MOVS A,B4,<ckpt> A length of 4 explicitly in the instruction.
e LI R0,80 A length of 80 in workspace register zero.
MOVS A,B, <ckpt>
e SETO RO As a tagged string.
MOVS A,B, . <ckpt>

2-25 Digital Systems Group

o]
@ 2250077-9701

2.12.4 STACKS. A stack, as illustrated by figure 2-11, is an area of accessible consecutive memory
which is used for storing, calculating, and manipulating byte strings of information. The stack is
addressed using a three-word control block. A stack may be addressed also with a register which
contains the TOS (T, = 0 or Ty = 0).
The control block contains the following information:

® Word | — the address of the first byte containing data (the top of stack [TOS]).

® Word 2 — the lowest address of the stack (the stack limit).

¢ Word 3 — the highest address of the stack +1 (the bottom of the stack).

The stack grows from “high™ addresses to “low” addresses. An empty stack is described with(Word 1)
= (Word 3).

2.12.5 LISTS. A list is a group of data blocks that are linked together by linkage words. Each data
block contains at least one linkage word and an arbitrary number (possibly zero) of data words. A
List Search Control Block (LSCB) is used in searching the list. The LSCB is five words long and
contains the following information:

® Word 0 — Signed byte displacement to link word (the LSB is ignored).

® Word | — Signed byte di_splacement to compare word (the LSB is ignored).
® Word 2 — Test value to be used.

® Word 3 — Test mask to be used.

¢ Word 4 — Terminal link value.

The List Search Control Block is located at the source address of the list instructions. The
destination address specifies a two-word block, as follows:

® Word 0 —Pointer to the beginning of the list (or the first element of the list involved in
the search).

¢ Word I —Pointer to the previous element in the list.

Word 0 of the destination address can point to any place in the data block; the signed byte
displacement to the link word (word zero of the LSCB) is added to the pointer to access to the next
linkage word. When a data block is accessed, and the list search is incomplete, word zero of the
destination address is moved to word one, and the linkage word in the data block is moved into word
zero. The linkage word in each data block must be located at the same displacement from the
previous pointer. The compare word in each data block must also be the same displacement from the
pointer. Figure 2-12 illustrates the list data structure and the control blocks used in list instructions.

2-26 , Digital Systems Group

2250077-9701

200

206

TOP
OF STACK
ADDRESS

STACK LIMIT
ADDRESS

BOTTOM
OF STACK
ADDRESS

2F1

206

3060

2F0 /////«
2F2 V/M

2F

\
\

S
2xsl
SNV,

2: L)
2kel

300

STACK LIMIT

TOP OF STACK

BOTTOM OF STACK

TOP OF STACK ADDRESS
STACK LIMIT ADDRESS

BOTTOM OF STACK ADDRESS

? LOW

ADDRESS

STACK

T GROWS
TOWARD

LOW
ADDRESSES

HIGH
ADDRESSES

IN THIS EXAMPLE, BYTE 2F11g THROUGH BYTE 2FF1g CONTAIN
MEANINGFUL DATA. THESE BYTES ARE INDICATED BY THE

SHADED PORTION,

THE NEXT AVAILABLE BYTE FOR DATA TO BE STORED IS AT
ADDRESS 2F04g. THE BYTES AVAILABLE FOR STORAGE ARE

ADDRESS 20615 THROUGH 2F0;¢.

Figure 2-11. Stacks

2-27

Digital Systems Group

2250077-9701

SOURCE
ADDRESS

SOURCE

wo

wi1
w2

w3
w4

‘
SIGNED BYTE
(WORD 0 TO LINI

SIGNED BYTE DISPLACEMENT
WORD 1 | 70 COMPARE worp
WORD 2| TEST VALUE
WORD 3 | TEST MASK

WORD 4 | TERMINAL LINK VALUE

K WOR

g DISPLACEMENT

DESTINATION
ADDRESS

WORD ©

WORD 1

LIST SEARCH CONTROL OPERANDS

[~

wi

wi

DESTINATION

wo-—,

wo __J

wWo
Al ~—— \.)
LIST AT BEGINNING OF SEARCH
SOURCE
wo
wi 1 "1
w2
w3
wi 1 Wi
W4 r
wo WO wo
DESTINATION
wo
' wi _) N e

BEGINNING POINTER
PREVIOUS POINTER

COMPARE WORD
W1=SOURCE ADDRESS
WORD 1

WO=SOURCE ADDRESS
WORDO

W4=S0URCE ADDRESS
WORD 4 .

LIST DURING SEARCH, OR WHEN SEARCH IS TERMINATED BY A TRUE CONDITION

SOURCE

wi ———L

~——

w1 wt wi
wo wo wo

DESTINATION ADDRESS
WORDO CONTAINS TER—
MINAL LINK VALUE

LIST AT END OF SEARCH, WHEN SEARCH CONDITION IS NOT FOUND

(A) 140269

Figure 2-12. Lists

2.12.6 SINGLE PRECISION REAL NUMBERS. Single precision real numberg (floating goint
numbers) represent any value within the approximate range 107 to 107, incl.udmg zero. Single
precision real numbers are stored in memory in two 16-bit words as illustrated in figure 2-13. The
number consists of a normalized hexadecimal fraction, a corresponding hexadecimal exponent, and

a sign bit.

2-28

Digital Systems Group

2250077-9701

RADIX POINT

o] 1 7A 15

MOST SIGNIFICANT B BITS
WORD 1 | S EXPONENT OF MANTISSA NORMALIZED
L HEXADECIMAL
WORD 2 LEAST SIGNIFICANT 16 BITS OF MANTISSA FRACTION
(A) 133468

Figure 2-13. Memory Representation of Single Precision Real Numbers

The fractional portion of the number (mantissa) is normalized; that is, it is shifted to the left to
eliminate leading zeros between the radix point and the first significant digit of the fraction.
Normalization is by hexadecimal digits, not by bits. Each digit position shift in the normalization
process produces a corresponding change in the exponent portion of the number to maintain the
correct magnitude of the number. When completely normalized, the hexadecimal mantissa is stored
in bits eight through 15 of the first memory word and in the entire second memory word. The radix
point for the fraction is assumed to be positioned between bits seven and eight of the first memory
word (at the start of the hexadecimal fraction).

The exponent portion of the number is a hexadecimal exponent. The exponent is biased by 40:6
(excess 64 notation), so that an exponent for the number 16° (.1X16') is represented in memory by
41,6. Exponents of zero are represented by 40;6, except for the number zero. The number zero is
represented with the exponent and mantissa both as 0. Positive exponents, therefore, are represented
by numbers greater than 404, and negative exponents are represented by numbers less than 40:6. For
example, a normalized 16® is represented in the exponent field by a value of 3916. The exponent may
be any value from 006 to 7F16. Using the 40y bias value, these numbers represent exponent values
from -40,6 to +3F6 (16 to 16%%). The seven exponent bits are stored in bits one through seven of the
first memory word.

Bit 0 of the first memory word is used for a sign bit. When this bit is a zero, the number is positive;
when this bit is one, the number is negative.

Single Precision Examples:

Hexadecimal Contents
of Memory Words

Base Ten Number Word 1 Word 2
1.0 4110 0000

0.5 4080 0000

100.0 4265 0000
03125 (1/32) 3F80 0000
-1.0 Cl110 0000

2.12.7 DOUBLE PRECISION REAL NUMBERS. Double precision real numbers are similar to
single precision real numbers, except that they occupy two more memory words and provide a 56-bit
mantissa instead of the 24 bits available with single precision real numbers. Double precision real
numbers have values from 107 to 10”°, including zero.

2-29 Digital Systems Group

(o]
q@ 2250077-9701

Double precision real numbers are stored in memory in four 16-bit words as illustrated in figure 2-14.
The most significant bit of the first word is a sign bit for the mantissa: zero if the number is positive
and one if it is negative. Bits one through seven of the first word are the exponent. The exponent
follows the same form as for real number exponents. The remaining bits of the first word of the other
three words contain the significant digits of the double precision mantissa normalized in the same
manner as a single precision floating point.

RADIX POINT

o 1 7,/3 15

MOST SIGNIFICANT 8 BITS
WORD 1 S EXPONENT OF MANTISSA
NORMALIZED
WoRe 2 HEXADECIMAL
FRACTION
WORD 3
WORD 4 LEAST SIGNIFICANT 16 BITS OF MANTISSA

Figure 2-14. Memory Representation of Double Precision Real Numbers

2.12.8 FLOATING POINT ACCUMULATOR (FPA). If a floating point operation requires two
operands, such as multiply or subtract, then the second operand is assumed to exist in an implicit
“accumulator” register created by the results of a load instruction or a previous calculation. The
implicit accumulator acts as a single register that participates in all floating operations as either an
operand or result, or both. The outcome of all floating point operations (except the store
operations), is placed in the implicit accumulator. Single precision real instructions use R0 and R1 as
the RPA, leaving R2 and R3 unaltered. Double precision real instructions use RO, R1, R2, and R3 as
the FPA.

2.13 SYMBOLS

Symbols are used in the label field, the operator field, and the operand field. A symbol is a string of
alphanumeric characters, (A through Z, zero through nine, *;’, and ‘$”), the first of which must be an
alphabetic character (A through Z), %’ or ‘$’ and none of which may be blank. When more than six
characters are used in a symbol, the assembler prints all the characters, but accepts only the first six

characters for processing. User-defined symbols are valid only during the assembly in which they are
defined.

Symbols used in the label field become symbolic addresses. They are associated with locations in the
program, and must not be used in the label field of other statements. Mnemonic operation codes and
assembler directive names are valid user-defined symbols when placed in the label field.

The DXOP directive defines a symbol to be used in the operator field. Except for a symbol in the
operand field of a DXOP directive or a predefined symbol, any symbol that is used in the operand
field must be placed in the label field of a statement or in the operand field of a REF directive.

2-30 Digital Systems Group

[o]
(@ 2250077-9701

The following are examples of valid symbols:

START Assigned the value of the location at which it appears
in the label field.

Al Assigned the value of the location at which it appears
in the label field.

OPERATION OPERAT is assigned the value of the location where
it appears in the label field.

2.13.1 PREDEFINED SYMBOLS. The predefined symbols are the dollar sign character ($) and the
workspace register symbols. The dollar sign character is used to represent the current location within
the program. The workspace register symbols are as follows:

Symbol Value Symbol Value Symbol Value Symbol Value
RO 0 R4 4 R8 8 RI2 12
R1 1 RS 5 R9 9 R13 14
R2 2 R6 6 R10 10 R14 14
R3 3 R7 7 R11 1 RI15 15

The following is an example of a valid predefined symbol:
$ Represents the current location.
2.14 TERMS
Terms are used in the operand fields of machine instructions and assembler directives. A term is a
3;:&2& or hexadecimal constant, an absolute assembly-time constant, or a label having an absolute
The following are examples of valid terms:
12 The value is 12 or Ce.
>C The value is 12 or Cie.
WR2 Valid if WR2 is defined having an absolute value.
R3 Predefined as a value of three.
If START were a relocatable symbol, the following statement would not be valid as a term:
WR2 EQU STARTH+4 WR2 would be a relocatable value four greater than

the value of START. Not valid as a term, but valid as
a symbol.

2-31 Digital Systems Group

[o]
@ 2250077-9701

2.15 CHARACTER STRINGS

Several assembler directives require character strings in the operand field. A character string is
written as a string of characters enclosed in single quotes. For each single quote in a character string,
two consecutive single quotes are required to represent the required single quote. The maximum
length of the string is defined for each directive that requires a character string. The characters are
represented internally as eight-bit ASCII characters with the leading bits set to zeros. Appendix A
gives a complete list of valid characters within character strings.

The following are valid character strings:

‘SAMPLE PROGRAM’ Defines a 4-character string
consisting of:
SAMPLEpPPROGRAM.,

‘PLAN“C™ Defines an 8-character string

consisting of: PLANPC’.

‘OPERATOR MESSAGE * PRESS START SWITCH’ Defines a 37-character string
) consisting of the expression
enclosed in single quotes.

2.16 REEXECUTABLE INSTRUCTIONS

Certain instructions (CS, SEQB, SNEB) can be reexecuted to continue a search or comparison from
the point the instruction ended. For example, the search equal byte (SEQB) instruction can be
executed to find the first equal byte of a byte string, the second, and so on. This is made possible by
the checkpoint register: when the instruction ends on the proper search termination condition, the
checkpoint register returns a displacement into the string where the byte meeting that condition is
located. By executing a jump which goes back to that instruction, or by recoding the instruction with
the same checkpoint register (unmodified), the search will continue from the point it ended, which is
the value in the checkpoint register. Also, by making the initial value of the checkpoint register
greater than -1, the search can begin at some point inside the string. String and stack instructions use
the value of the checkpoint register plus one as the initial index into the string. This is true for the
other string instructions also (MOVS, MVSR, PSHS, MVSK, TS, and CRC).

2-32 Digital Systems Group

(o]
%@ 2250077-9701

SECTION III

ASSEMBLY INSTRUCTIONS

3.1 GENERAL

This section describes the mnemonic instructions of the assembly language for the SDSMAC
assembler. Detailed assembly instruction descriptions follow descriptions of the addressing modes
used in the assembly language and the addressing formats of the assembly instructions. The section
also includes examples of programming the various instructions.

3.2 ADDRESSING MODES

Eight addressing modes are featured in the 990/12 assembly language. Three of these modes,
program counter relative addressing, CRU bit addressing, and immediate addressing, are special
purpose addressing modes discussed in paragraphs 3.2.6, 3.2.7, and 3.2.8, respectively. The
remaining five modes are used in the instructions that specify a general address for the source or
destination operand. Table 3-1 lists these modes and shows how each is used in the assembly
language. Each of the modes is described in a subsequent paragraph.

Table 3-1. Addressing Modes

T Field Value

Addressing Mode {Note 1) Example Note
Workspace Register 0 RS
Workspace Register 1 *R7
Indirect
Workspace Register 3 *R7+
Indirect Autoincrement
Symbolic Memory 2 @LABEL 2,3
Indexed Memory 2 @LABEL(5) 2,4
Notes:

1. The T field is described in the addressing format descriptions as Ty and Ta.
2. The instruction requires an additional word for each T field value of two.
3. The S or D field is set to zero by the assembler.
4. Workspace register zero cannot be used for indexing.
3.2.1 WORKSPACE REGISTER ADDRESSING. Workspace register addressing specifies a

workspace register that contains the operand. A workspace register address is written as an
expression having an absolute value of zero through 15.

3-1 Digital Systems Group

[o]
%@ 2250077-9701

The following examples show the coding of instructions that have two workspace register addresses

each:
MOV R4,R8 Copy the contents of workspace register four into
workspace register eight.
COC RI15,R10 Compare the bits of workspace register ten to one that

corresponds to the one bits in workspace register 15.

3.2.2 WORKSPACE REGISTER INDIRECT ADDRESSING. Workspace register indirect
addressing specifies a workspace register that contains the address of the operand. An indirect
workspace register address is written as an expression having an absolute value of 0-15 preceded by
an asterisk (*). The following examples show the coding of instructions which have workspace
register indirect addresses.

A *R7,*R2 Add the contents of the word at the address in
workspace register seven to the contents of the word
at the address in workspace register two, and place the
sum in the word at the address in workspace register
two.

MOV *R7,R0 Copy the contents of the word at the address in
workspace register seven into workspace register zero.

3.2.3 WORKSPACE REGISTER INDIRECT AUTOINCREMENT ADDRESSING. Workspace
register indirect autoincrement addressing specifies a workspace register that contains the address of
the operand. After the address is obtained from the workspace register, the workspace register is
incremented by one for a byte instruction or by two for a word instruction. Increment values for
other data types are defined in the instruction which uses those data types. A workspace register
autoincrement address is written as an expression having an absolute value of 0-15 preceded by an
asterisk and followed by a plus sign (+). The following are coding examples of instructions which
have workspace register indirect autoincrement addresses:

S *R3+,R2 Subtract the contents of the word at the address in
workspace register three from the contents of
workspace register two, increment the address in
workspace register three by two, and place the result
in workspace register two.

C R5,*R6+ Compare the contents of workspace register five with
the contents of the word at the address in workspace
register six, and increment the address in workspace
register six by two.

NOTE

The autoincrement is performed after the operand is fetched and
before the operation takes place.

3-2 Digital Systems Group

o]
{@ 2250077-9701

3.2.4 SYMBOLIC MEMORY ADDRESSING. Symbolic memory addressing specifies the memory
address that contains the operand. A symbolic memory address is written asan expression preceded
by an ‘at’ sign (@). The following are coding examples of instructions which have symbolic memory

addresses:

S @TABLEl,@LIST4 Subtract the contents of the word at locatien
TABLE! from the contents of the word at location
LIST4, and place the remainder in the word at
location LIST4.

C RO,@STORE Compare the contents of workspace register zero with
the contents of the word at location STORE.

MOV @>C,@>7C Copy the word at address 000C;¢ into location 007Cis.

NOTE

Symbols previously defined as having relocatable values or values
greater than 15 need not have ‘@

3.2.5 INDEXED MEMORY ADDRESSING. Indexed memory addressing specifies the memory
address that contains the operand. The address is the sum of the contents of a workspace register and
a symbolic address. An indexed memory address is written as an expression preceded by an ‘at’sign
and followed by a term enclosed in parentheses. The workspace register specified by the term within
the parentheses is the index register. Workspace register zero may not be specified as an index
register. The following are coding examples of instructions which have indexed memory addresses:

A @2(R7),R6 Add the contents of workspace register six to the
contents of the word at the address computed by
adding 0002;s and the contents of workspace register
seven. Store the sum in workspace register six.

MOV R7,@LIST4-6(R5) Copy the contents of workspace register seven into a
word of memory. The address of the word of memory
is the sum of the contents of workspace register five
and the value of symbol LIST4 minus six.

3.2.6 PROGRAM COUNTER RELATIVE ADDRESSING. Program counter relative addressing
is used by the jump instructions. A program counter relative address is written as an expression that
corresponds to an address at a word boundary. The assembler evaluates the expression and subtracts
the sum of the current location plus two. One-half of the difference is the value that is placed in the
object code. This value must be in the range of -128 through +127. When the instruction is in
relocatable code (that is, when the location counter is relocatable), the relocation type of the
evaluated expression must match the relocation type of the current location counter. When the
instruction is in absolute code, the expression must be absolute. The following example shows a
program counter relative address:

JMP THERE Jumps unconditionally to location THERE.

'3-3 Digital Systems Group

(o]
e—@; 2250077-9701

3.2.7 CRU BIT ADDRESSING. The CRU bit instructions use a well-defined expression that
represents a signed displacement from the CRU base address (bits three through 14 of workspace
register 12). The displacement, in the range of -128 through +127, is added algebraically to the base
address in workspace register 12. The following are exampies of CRU bit instructions having CRU
bit addresses:

SBO 8 Sets CRU bit to one at the CRU address eight greater
than the CRU base address. If workspace register 12
contained 0020;6, CRU bit 24 would be set by this
instruction, (24=(20,¢/2)+8).

SBZ @DTR Sets CRU bit to zero. Assuming that DTR has the
value 10 and workspace register 12 contains 00406,
the instruction sets bit 42 to zero (42=(40,4/2)+10).

3.2.8 IMMEDIATE ADDRESSING. Immediate instructions use the contents of the word
following the instruction word as the operand of the instruction. The immediate value is an
expression, and the value of the expression is placed in the word following the instruction by the
assembler. Those immediate instructions that require two operands have a workspace register
address preceding the immediate value. The following are examples of coding immediate
instructions.

LIMI 5 Places five in the interrupt mask, enabling interrupt
levels zero through five.

LI R5,>1000 Places 100046 into workspace register five.
NOTE
An @ sign may precede an immediate operand.

3.3 ADDRESSING SUMMARY

Table 3-2 shows the addressing required for each instruction of the Model 990/ 12 instruction set.
The first column lists the instruction mnemonics. The third and fourth columns specify the required
address as follows:

. G — General address:

Workspace register address

Indirect workspace register address

Indirect workspace register autoincrement address
Symbolic memory address

Indexed memory address

® WR — Workspace register address

;3'4 Digital Systems Group

(o]
é@ 2250077-9701

e PC — Program counter relative address
e CRU — CRU bit address

e | — Immediate value

e N — Nibble

e * — The address into which the result is placed when two operands are required.

¢ CNT — Count
e CKPT — Checkpoint

. POS — Position

e WID — Width

¢ COND — Condition

3.4 INSTRUCTION FORMATS
The required addressing previously described relates to the 21 instruction formats of the Model

990/ 12 Computer. These formats are described in the following paragraphs.

3.4.1 FORMAT I — TWO ADDRESS INSTRUCTIONS. The operand field of Format I
instructions contains two general addresses separated by a comma. The first address is the source
address; the second is the destination address. The following mnemonic operation codes use Format

L

A MOV SOC
AB MOVB SOCB
C S SZC
CB SB SZCB

The following example shows a source statement for a Format I instruction:

SUM A @LABELI1,*R7 Adds the contents of the word at location LABEL1 to
the contents of the word at the address in workspace
register seven, and places the sum in the word at the
address in workspace register seven. SUM is the
location in which the instruction is placed.

35 Digital Systems Group

9-¢

dno.g swaisAs jenbiq

First
Mnemonic Operand
A G
AB G
ABS G
AD G
Al WR#*
AM G
ANDI WR*
ANDM
AR
ARJ
B
BDC
BIND
BL
BLSK
BLWP
C
CB
CDE
CD1
CED
CER
Cl
CID
CIR
CKOF
CKON
CLR
CNTO
cocC
CRC
CRE
CRI
CS

*

loooollmoﬁlllloooﬁomowgoo

Second
Operand

G*
G*

Third
Operand

Fourth

Operand

Table 3-2. Instruction Addressing

Mnemonic

CzZC
DBC
DD
DEC
DECT
DINT
DIV
DI1VS
DR
EINT
EMD
EP
EX
IDLE
INC
INCT
INSF
INV
IOF
JEQ
JGT
JH
JHE
JL
JLE
JLT
JMP
JNC
JNE
JNO
JOC
JOP
LCS
LD

First
Operand

| oo ocooo

Qoo | o |

Second
Operand

WR
G*

‘Third
Operand

CNT

Fourth
Operand

10L6-LLO0STT

Mnemonic

LDCR
LDD
LDS
LI
LIM
LIMI
LMF
LR
LREX
LST
LTO
LWP
LWPI
MD
w MOV
4 MOVA
' MOVB
MOVS
MPY
MPYS
MR
MVSK
MVSR
NEG
NEGD
NEGR
NRM
ORI
ORM
POPS
PSHS
RSET
RTO
RTWP
S

dno.c) swaisAsS [enbiq

First
Operand

G
G
G
WR*
WR
|
WR*
G
WR
G

£
=

*

ol Q| OOO§O| | oo -~

Second
Operand

NOTE 1

Table 3-2. Instruction Addressing (Continued)

Third Fourth
Operand Operand Mnemonic

— — SB
— — SBO
— — SBZ
— — SD

— — SEQB
— — SETO
— — SLA
— — SLAM
— — SLSL
— — SLSP
CNT — SM
— — SNEB
— — SOC
— — SOCB
— — SR

— — SRA
— SRAM
CNT CKPT SRC
— SRJ
— — SRL
— — STCR
CNT CKPT STD
CNT CKPT STPC
— — STR
— — STST
— — STWP
CNT — SWPB
— SWPM
— SZC
CNT CKPT SZCB
CNT CKPT TB

— — TCMB
CNT — TMB
— — TS

— — TSMB

First

Operand

G
CRU
CRU

Second
Operand

G*

3
Q3| ol

(gs]

w

*

QQeQaoo

POS
POS
G*
POS

Third
Operand

Fourth
Operand

10L6°LLO0STT

dno.ig swaysAs jexbig

Table 3-2. Instruction Addressing (Continued)

First Second Third Fourth First Second Third
Mnemonic Operand Operand Operand Operand Mnemonic Operand Operand Operand
X G — — — XOR G WR* —
XF G G* POS WID XORM G G* CNT
XIT — — — — XV G G* POS
XOP G NOTE 4 — —
Notes:
1. The second operand is the number of bits to be transferred, one through 15, 0=16.
2. The second operand specifies a memory map file, zero or one.
3. The second operand is the shift count, zero through 15. Zero means count is in bits 12-15 of workspace register zero.
When count = zero and bits 12-15 of workspace register zero equal zero, count is 16.

4. Second operand specifies the extended operation, zero through 15. Disposition of result may or may not be in the first

operand address, determined by the user.

Fourth
Operand

WID

10/.6-LLO0STT

o]
@ 2250077-9701

The assembler assembles Format I instructions as follows:

o 1 2 3 4 5 6 7 8 9 10 1112 13 14 15
T T T 1 T T T 1

OP CODE B T4 D Ts S

The bit fields are:
e Opcode — Three bits that define the machine operation.
e B — Byte indicator, one for byte instructions, zero for word instructions.
e Ty, — Addressing mode (table 3-1) for destination.

e D — Destination workspace register.

e T, — Addressing mod

e S — Source workspace register.

When T, or Ty is equal to 10, the instruction occupies two words of memory, and the second word
contains a memory address used with S or D, respectively, in developing the effective address. When
both T, and T are equal to 10,, the instruction occupies three words of memory. The second word
contains the memory address for the source operand, and the third word contains the memory
address for the destination operand.

3.4.2 FORMAT II — JUMP INSTRUCTIONS. Format II instructions use program counter
relative addresses which are coded as expressions that correspond to instruction locations on word
boundaries. The following mnemonic operation codes are Format II jump instructions:

JEQ JLE JNE
JGT JLT JNO

JH JMP JOC
JHE JNC JOP
JL

The following is an example of a source statement for a Format II jump instruction:

NOW JMP BEGIN Jumps unconditionally to the instruction at location
BEGIN. The address of location BEGIN must not be
greater than the address of location NOW by more
than 127 words, nor less than the address of location
NOW by more than 128 words.

3-9 Digital Systems Group

(o]
(@ 2250077-9701

The assembler assembles Format II instruction as follows:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1] I 1 1 LI | 1 1 T 1 T | T
OP CODE DISPLACEMENT

The bit fields are:
® Opcode — Eight bits that define the machine operation.
® Displacement — Signed displacement value.

The signed displacement value is shifted one bit position to the left and added to the contents of the
PC after the PC has been incremented to the address of the following instruction. In other words, it
is a displacement in words from the sum of the instruction address plus two.

3.4.3 FORMAT II — BIT I/O INSTRUCTIONS. The operand field of Format II CRU bit 1/0
instructions contains a well-defined expression. It is a CRU bit address, relative to the contents of
workspace register 12. The following mnemonic operations codes are Format II CRU bit I/0
instructions:

SBO SBZ TB
The following example shows a source statement for a Format II CRU bit I/O instruction:

SBO 5 Sets a CRU bit to one. If workspace register 12
contains 10,5, CRU bit 13 is set by this instruction.

The format assembled for Format II instructions is shown and described in the preceding paragraph.
For CRU bit instructions the signed displacement is shifted one bit position to the left and added to
the contents of workspace register 12. In other words, it is a displacement in bits from the contents of
bits three through 14 of workspace register 12.

3.44 FORMAT III — LOGICAL INSTRUCTIONS. The operand field of Format III instructions
contains a general address followed by a comma and a workspace register address. The general

address is the source address, and the workspace register address is the destination address. The
following mnemonic operation codes use Format III: :

COoC CzC XOR
The following example shows a source statement for a Format III instruction:

COMP XOR @LABELS(R3),R5 Perform an exclusive OR operation of the contents of
a memory word and the contents of workspace
register five, and place the result in workspace register
five. The address of the memory word is the sum of

the contents of workspace register three and the value
of symbol LABELS.

310 Digital Systems Group

1o

{@ 2250077-9701

The assembler assembles Format 111 instructions as follows:

o 1 2 3 4 5 6 7 8 9 10 11 1213 14 15
17 T 1T 1 1 | L 1 LI

OP CODE D Ts S

The bit fields are:
e Opcode— Six bits that define the machine oberation.
e D — Destination workspace register.
e T, — Addressing mode (table 3-1) for source.

e S — Source workspace register.

the memory address for the source operand.

3.45 FORMAT IV — CRU INSTRUCTIONS. The operand field of Format IV instructions
contains a general address followed by a comma and a well-defined expression. The general address
is the memory address from which bits will be transferred. The CRU address for the transfer is the
contents of bits three through 14 of workspace register 12. The term is the number of bits to be
transferred, a value of zero through 15 (a zero value transfers 16 bits). For eight or fewer bits the
effective address is a byte address. For nine or more bits the effective address isa word address. The
following mnemonic operation codes use Format IV:

LDCR STCR
The following example shows a source statement for a Format IV instruction:

LDCR *R6+,8 Place eight bits from the byte of memory at the
address in workspace register six into eight
consecutive CRU lines at the CRU base address in
workspace register 12.

The assembler assembles Format IV instructions as follows:

0 1 2 3 4 5 6 7 8 9 10 1112 13 14 15
LI | LI IR l | { I
OP CODE c Ts s

The bit fields are:
e Opcode — Six bits that define the machine operation.
e C — Four bits that contain the bit count.
e T, — Addressing mode (table 3-1) for source.
e S — Source workspace register.

When T, is equal to 10, the instruction occupies two words of memory. The second word contains
the memory address for the source operand.

773-11 Digital Systems Group

o
Y@ 2250077-9701

3.4.6 FORMAT V — REGISTER SHIFT INSTRUCTIONS. The operand field of Format V
instructions contains a workspace register address followed by a comma and a well-defined
expression. The contents of the workspace register are shifted a number of bit positions specified by
the term. When the term equals zero, the shift count must be placed in bits 12-15 of workspace
register zero. The following mnemonic operation codes use Format V.

SLA SRC SRL SRA
The following example shows a source statement for a Format V instruction:

SLA R6,4 Shift the contents of workspace register six to the left
: four bit positions replacing the vacated bits with zero.

The assembler assembles Format V instructions as follows:

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
LI L L I L LI | I
OP CODE ’ Lod w

The bit fields are:
® Opcode — Eight bits that define the machine operation.
® C — Four bits that contain the shift count.
® W — Workspace register to be shifted.

3.4.7 FORMAT VI — SINGLE ADDRESS INSTRUCTIONS. The operand field of Format VI
instructions contains a general address. The following mnemonic operation codes use Format VI:

ABS DECT MPYS
AD DIVS MR
AR DR NEG

B EX SETO
BIND INC SD
BL INCT SR

BLWP INV STD
CID LD STR
CIR LDD SWPB
CLR . LDS X

DD LR

DEC MD

The following example shows a source statement for a Format VI instruction:

CNT INC R7 Add one to the contents of workspace register seven,
and place the sum in workspace register seven. CNT is
the label of the location into which the instruction is
placed.

312 Digital Systems Group

(o]
{@ 2250077-9701

The assembler assembles Format VI instructions as follows:

0O 1t 2 3 4 5 6 7 8 9 10 1112 13 14 15
| N N BN B RN B N S T | B
OP CODE Ts s

The bit fields are:
e Opcode — Ten bits that define the machine operation.
e T, — Addressing mode for source.
e S — Source workspace register.

When T, is equal to 10,, the instruction occupies two words of memory. The second word contains
the memory address for the source operand.

3.4.8 FORMAT VII — INSTRUCTIONS WITHOUT OPERANDS. Format VII instructions
require no operand field. The following operation codes use Format VII:

CDE CRE LREX
CDlI CRI NEGD
CED DINT NEGR
CER EINT RSET
CKOF EMD RTWP
CKON IDLE XIT

The following example shows a source statement for a Format VII instruction:

RTWP 7 Returns control to the calling program, and restores
the context of the calling program by placing the
contents of workspace registers 13, 14, and 15 into the
workspace pointer, the program counter, and the
status register, respectively.

The assemblers assemble Format VII instructions as follows:

0 1 2 3 4 5 6 7 8 910 11 12 13 14 15
rrr.rr 1T 1T 1T 1T © 1 P bl

OP CODE

The opcode field contains 16 bits that define the machine operation.

3.4.9 FORMAT VIII — IMMEDIATE INSTRUCTIONS. The operand field of Format VIII
instructions contains a workspace register address followed by a comma and an expression. The
workspace register is the destination address, and the expression is the immediate operand. The
following mnemonic operation codes use Format VIII:

Al BLSK LI
ANDI (I ORI

313 Digital Systems Group

o]
{@ 2250077-9701

There are two additional Format VIII instructions that require only an expression in the operand
field. The expression is the immediate operand. The destination is implied in the name of the
instruction. The following mnemonic operation codes use this modified Format VIII:

LIMI LWPI
The following are examples of source statements for Format VIII instructions:

ANDI R4, >000F Perform an AND operation on the contents of
workspace register four and immediate operand
000F;6. Place the result in workspace register four.

LWPI @WRK1 Place the address defined for the symbol WRK1 into
the WP register.

The assembler assembles Format VIII instructions as follows:

(o) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

| NN R DR D D B R R N L
OPCODE w WORD 1

IMMEDIATE OPERAND WORD 2

The bit fields are:
Opcode — Twelve bits that define the machine operation.
W — Workspace register operand.
Immediate Operand — Sixteen bits which are the immediate operand.

The instructions that have no workspace register operand place zeros in the W field. The instructions
that have immediate operands place the operands in the word following the word that contains the
opcode, i.., these instructions occupy two words each.

3.4.10 FORMAT IX — EXTENDED OPERATION INSTRUCTION. The operand field of a
Format IX, extended operation, instruction contains a general address and a well-defined
expression. The general address is the address of the operand for the extended operation. The term
specifies the extended operation to be performed and must be in the range of zero to 15. The
mnemonic operation code is XOP.

- The following example shows a source statement for a Format 1X extended operation instruction:

XOP @LABEL(R4),12 Perform the extended operation 12 using the address
computed by adding the value of symbol LABEL to
the contents of workspace register four.

The assembler assembles Format IX instructions as follows:

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T T T | I — T 1 1
OP CODE D Ts s

3-14 Digital Systems Group

(o]
{[’@) 2250077-9701

The bit fields are:
e Opcode — Six bits that define the machine operation.
e D — Four bits that define the extended operation.
e T, — Addressing mode (table 3-1) for source.
e S — Source workspace register.

When T is equal to 10,, the instruction occupies two words of memory. The second word contains
the memory address for the source operand.

3.4.11 FORMAT IX — MULTIPLY AND DIVIDE INSTRUCTIONS. The operand field of
Format IX multiply and divide instructions contains a general address followed by a comma and a
workspace register address. The general address is the address of the multiplier or divisor, and the
workspace register address is the address of the workspace register that contains the multiplicand or

dividend. The workspace register address is also the address of the first of two workspace registers to
contain the result. The mnemonic operation codes are MPY and DIV.

The following example shows a source statement for a Format IX Multiply instruction:

MPY @ACC,R9 Multiply the contents of workspace register nine by
the contents of the word at location ACC, and place
the product in workspace registers nine and 10, with
the 16 least significant bits of the product in
workspace register operand.

The format assembled for the Format IX multiply and divide instructions is shown and described in
the preceding paragraph.

3.4.12 FORMAT X — MEMORY MAP FILE INSTRUCTION. The operand field of a Format X,
memory map file, instruction contains a workspace register address followed by a comma and a well-
defined expression which evaluates to either zero or a one. The workspace register address specifies a
workspace register that contains the address of a six-word area of memory that contains the map file
data. The term specifies the map file into which the data is to be loaded. The mnemonic operation
code is LMF.

The following example shows a source statement for a Format X memory map file instruction:

LMF R4,0 Load memory map file zero with the six-word area of
memory at the address in workspace register four.

The assembler assembles a Format X instruction as follows:

c 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 1 1 tv r 1 1 1 1 1

OP CODE M w

The bit fields are:
e Opcode — Eleven bits that define the machine operation.
e M — A single bit that specifies a memory map file, zero or one.

e W — Workspace register operand.

3-15' Digital Systems Group

o]
%@ 22500779701

3.4.13 FORMAT XI - MULTIPLE PRECISION INSTRUCTIONS. The operand field of the
Format X1 instructions contains two general addresses and a nibble operand separated by commas.
The first operand is the source address; the second is the destination address. The nibble operand is

the number of bytes addressed by the operands.

The following mnemonic operation codes use Format XI.

AM DBC RTO
ANDM LTO SM
BDC NRM SWPM
CNTO ORM XORM

The following examples shows a source statement for a Format XI instruction:

AM *R1,@RCN(R2),3

Add the contents of the three-byte operand at the
address in workspace register one to the contents of
the three-byte operand whose address is the sum of
the contents of workspace register two and the value
of symbol RCN, and place the result in the three bytes
beginning at the address specified by the second

general address.

The assembler assembles Format XI instructions as follows:

14 15

0O 1 2 3 4 5 6 7 8 9 10 11 12 13

P T T T T T T 17
OP CODE

c T D T s

The bit fields are:
® Opcode — Sixteen bits that define the machine operation.
¢ C — Four bits that contain the byte count.
® T, — Addressing mode for destination.
® D — Destination workspace register.
® T, — Addressing mode for source.

® S — Source workspace register.

WORD 1

WORD 2

The nibble operand is optional. If it is missing, the assembler will supply a zero in the ‘C’ field.

If Ts or Ty is equal to 10,, the instruction occupies three words of memory. When both T; and T, are

equal to 10, the instruction occupies four words of memory.

3-16

Digital Systems Group

(o]
(@ 2250077-9701

3.4.14 FORMAT XII — STRING INSTRUCTIONS. The operand field of the Format XII
instructions contains two general addresses, a nibble operand, and a checkpoint register separated by
commas. The first operand is the source address; the second is the destination address. The nibble
operand is the number of bytes addressed by the operands. When the byte count is not specified, a
zero is provided by the assembler. This indicates that the byte count is in RO, bits 0-15. The
checkpoint register is a multipurpose register whose specific purpose depends on the instruction
being executed. When the checkpoint register is not specified, the implied checkpoint register is used.
This is specified by the CKPT directive.

NOTE
The assembler will not automatically set the CKPT register.
The following mnemonic operation codes are Format XII instructions:

CRC POPS

CS PSHS
MOVS SEQB
MVSK SNEB
MVSR TS

The following is an example of a source statement using a Format XII instruction:

CS @INPUT,@CORE Compare the string starting at location INPUT for the
length specified in workspace register zero to the
string starting at location CORE for the length
specified in workspace register zero using the implied
checkpoint directive.

The assembler assembles Format XII instructions as follows:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 1T 7T [7T 17T 1 D 71
OP CODE w WORD 1

c Ty D T s WORD 2

The bit fields are:
e Opcode — Twelve bits that define the machine operation.
e W — Defines the checkpoint register.
e C — Four bits that contain the byte count.
e T, — Addressing mode for destinat.ion.
e D — Destination workspace register.
e T, — Addressing mode for source.
e S — Source workspace register.

When T or T is equal to 102, the instruction occupies three words of memory. When T, and T, are
both equal to 10, the instruction occupies four words of memory.

3-17 Digital Systems Group

[e]
@ 2250077-9701

3.4.15 FORMAT XII — MULTIPLE PRECISION SHIFT INSTRUCTIONS. The operand field
of Format XIII instructions contains a general address and two nibble operands. The general address
is the source address. The second operand contains the byte count tor the first operand. The third
operand is the number of bits to shift the operand.

The following mnemonic operation codes are Format X111 instructions:

SLAM
SRAM

The following examples are source statements using Format X111 instructions.
SLAM @BIT,6,8 Shift the six-byte string BIT eight bits to the left.
SRAM @BIT,6,8 Shift the six-byte string BIT eight bits to the right.

The assembler assembles Format XIII instruction as follows:

O 1 2 3 4 5 6 7 8 910 11 12 13 14 15
I A D A D D D D D B N
OP CODE WORD 1

C XX SC S WORD 2

The bit fields are:
® Opcode — Sixteen bits that define the machine operation.
¢ C — Four bits that define the length of the field.
e XX — These bits are not used.
® SC — Four bits that define the length the field is to be shifted.
® T, — Addressing mode for source.
® S — Source workspace register.
When the T; field is equal to 10,, the instruction occupies three words of memory.
When the C field is zero, the four LSBs of workspace register zero are used. When determining a byte
count, if the four LSBs of the workspace register are zero, then the byte count is 16. When the SC

field is zero, bits four through seven of workspace register zero are used. If bits four through seven
are zero, the shift is zero.

3.4.16 FORMAT XIV — BIT TESTING INSTRUCTIONS. The operand field of Format XIV
instructions contains a general address and an expression defining the position of the bit separated
by a comma. If the position is not defined, the default value 3FF,, is used. The following mnemonic
operation codes are Format XIV instructions:

TCMB
TMB
TSMB

3-18 Digital Systems Group

(o]
%@) 2250077-9701

The following is an example of a source statement using the Format XIV instruction:

TSMB @BITMAP(R3),6 Test and set bit six at the location at the sum of
location BITMAP and the contents of workspace

register three.
Bit positions are defined such that the most significant bit is position zero.

The assembler assembles Format XIV instructions as follows:
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

rrrrrrr ittt 1t 71

OP CODE WORD 1

P Ts s WORD 2

The bit fields are:
e Opcode — Sixteen bits that define the machine operation.
o P — Ten bits that define the position of the bit to be tested.
e T, — Addressing mode for source.
e S — Source workspace register.
When the T, field is equal to 10, the instruction occupies three words of memory.

3.4.17 FORMAT XV — INVERT ORDER OF FIELD INSTRUCTION. The operand field of the
Format XV instruction contains a general address and the position and width of the source in
parentheses separated by commas. The IOF mnemonic operation code is the only Format XV
instruction.

The following is an example of a source statement using the Format XV instruction:

IOF @WORD,(1,8) Invert (reverse) the order of the bits in the word at
location WORD beginning at bit position one for a
bit-field width of eight bits.

The assembler assembles the Format XV instruction as follows:

[0} 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T T T T T T T 1T 171 L
OP CODE w WORD 1

P X X X X X X S WORD 2

The bit fields are:
e Opcode — Twelve bits that define the machine operation.
e W — Four bits that define the width of the source.

e P — Four bits that define the position of the source.

3-19 Digital Systems Group

(o]
%@ 2250077-9701

® XXXXXX — These bits are not used.

® T, — Addressing mode of the source.

® S — Source workspace register.
When T; is equal to 10, the instruction occupies three words of memory.
3.4.18 FORMAT XVI — FIELD INSTRUCTIONS. The operand field of Format XVI instructions
contains two general addresses and two nibble operands. The first address defines the source; the
second defines the destination. The first nibble defines the position of the field; the second nibble
defines the width of the field.
The following mnemonic operation codes are Format XVI instructions:

INSF

XF

XV

The following is an example of a source statement using the Format XVI instruction:

XF @CORE,@OUTPUT,(3,6) Place the six-bit value at location CORE, starting at
bit position three, into the word at location
OUTPUT.

The assembler assembles Format XVI instructions as follows:

0 1 2 3 4 5 6 7 B8 910 11 12 13 14 15
LI B B D A I R B B L
OPCODE w WORD 1

P T D s s WORD 2

The bit fields are:
¢ Opcode — Twelve bits that define the machine operation.
® W — Four bits that define the width of a field.
® P — Four bits that define the position of a field.
® Ty — Addressing mode for the destination.
¢ D — Destination workspace register.
¢ T, — Addressing mode for the source.
® S — Source workspace register.

If T; or T4 is equal to 10, the instruction takes up three words of memory. If T, and Ty are equal to
10;, the instruction takes up four words of memory.

3-20 Digital Systems Group

[o]
@ 2250077-9701

3.4.19 FORMAT XVII ALTER REGISTERS AND JUMP INSTRUCTIONS. The operand field
of Format XVII instructions contains an expression, a nibble operand, and a workspace register. If
the nibble operand is not present, a default of one is assumed. The following mnemonic operation
codes are Format XVII instructions:

ARJ
SRJ

The following are examples of source statements using Format XVII instructions:

ARJ @BEGIN,,R3 Increment workspace register three and jump to the
contents of the word at location BEGIN.

ARJ @BEGIN,12,R3 Add 12 to workspace register three and jump to the
contents of the word at location BEGIN.

he assembler assembles Format XVII i

am Sy

istructions as follows:

o1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
r 1 1 T ¥ ¥ © & ¥ & & 1T 1T/

OP CODE WORD 1

C R D WORD 2

The bit fields are:
e Opcode — Sixteen bits that define the machine operation.
e C — Four bits that define the constant to be added or subtracted.
e R — Four bits that define the workspace register to be altered.
e D — Eight bit signed displacement.
3.4.20 FORMAT XVIII — SINGLE REGISTER OPERAND INSTRUCTIONS. The operand

field of Format XVIII instructions contains a workspace register address. The following mnemonic
operation codes are Format XVIII instructions:

LCS STPC
LIM STST
LST STWP
LWP

The following is an example of a source statement using the Format XVIII instruction:

LCS R4 Load the writable control store using the control
block addressed by workspace register four.

The assembler assembles Format XVIII instructions as follows:

L 17 17 1T 1T vV 7T 7 T 171
OP CODE W

3-21 Digital Systems Group

o]
{@ 2250077-9701

The bit fields are:
® Opcode — Twelve bits that define the machine operation.
® W — Four bits that define a workspace register address.

3.4.21 FORMAT XIX — MOVE ADDRESS INSTRUCTION. The operand field of the Format
XIX instruction contains two general addresses separated by a comma. The first address defines the
source address; the second is the destination address. The mnemonic operation code, MOVA, is the
Format XIX instruction.

The following is an example of a source statement using the Format XIX instruction:

MOVA @CHAR(R6),*R7 Move the sum of the value of CHAR and the contents
of workspace register six to the address in workspace
register seven.

The assembler assembles the Format XIX instruction as follows:

O t+ 2 3 4 5 6 7 8 910 11 12 13 14 15

LA N N AN O I A N (N N N RN N |
OP CODE WORD 1

X X X X d D s S WORD 2

The bit fields are:
® Opcode - Sixteen bits that define the machine operation.
¢ XXXX — These bits are not used.
® Ty — Addressing mode for the destination.
® D — Destination workspace register.
¢ T, — Addressing mode for the source.
¢ S — Source workspace fegister.

If T; or Tq is equal to 10,, the instruction occupies three words. If both T, and T, are equal to 10,, the
instruction occupies four words.

3.4.22 FORMAT XX — LIST SEARCH INSTRUCTIONS. The operand field of Format XX
instructions contains a condition and two general addresses.

The condition statement is one of the following:

EQ equal 0
NE not equal I
HE high or equal 2
L low 3
GE greater than or equal 4
LT less than 5
LE low or equal 6

3-22 Digital Systems Group

o \
{_@p 2250077-9701

H high 7
LTE less than or equal 8
GT greater than 9

The first general address is the source address; the second is the destination address. The following

mnemonic operation codes are Format XX

SLSL
SLSP

instructions:

The following is an example of a source statement using a Format XX instruction:

SLSL EQ,@CONTROL,@MATCH

Search the list addressed by the contents of the word
at location MATCH until an equal condition is met
using the contents of the five-word control block
addressed by the contents of the word at location

CONTROL.

The assembler assembles the Format XX instructions as follows:

0o 1 2 3 4 5 6 7 8 91011 12 13 14 15

1T 117 T 1 1T 17 ©° 1T 1T
OP CODE

WORD 1

WORD 2

The bit fields are:
e Opcode - Sixteen bits that define the machine operation.
e C — Four bits that define the condition searched for.
e Ty — Addressing mode for the destination.
e D — Destination workspace register.
e T, — Addressing mode for the source.

e S — Source workspace register.

If T, or Tq is equal to 10, then the instruction is three words long. If both T, and Ta are equal to 10,

then the instruction is four words long.

3.4.23 FORMAT XXI — EXTEND PRECISION INSTRUCTION. The operand field of the
Format XXI instruction contains two general addresses and two nibble operands separated by
commas. The first general address is the source address; the second general address is the destination
address. The first nibble operand specifies the byte count (length) of the source address; the second
nibble operand specifies the byte count (length) of the destination address. The mnemonic operation

code, EP, is the Format XXI instruction.

The following is an example of a source statement using the Format XXI instruction:

LABEL EP @NUMBER,@NEWMUM,6,10

Extend the six-byte long contents of the word at
location NUMBER to 10 bytes and place it in

NEWNUM.

323

Digital Systems Group

(o]
@ 2250077-9701

The assembler assembles the Format XXI instruction as follows:

[o] 1 2 3 4 5 € 7 8 9 10 11 12 13 14 15

OPCODE DC WORD 1

R L L I L L L A I I L
sSC Td D T = WORD 2

The bit fields are:

Opcode — Twelve bits which define the machine operation.

DC — Four bits which define the length of the destination field.
SC — Four bits which define the length of the source field.

Ta — Addressing mode for destination.

D — Destination workspace register.

T, — Addressing mode for source.

S — Source workspace register.

If T; or Ty is equal to 10,, the instruction is three words long. If both T; and Ty are equal to 10,, the
instruction is four words long.

3.5 INSTRUCTION DESCRIPTIONS
The instruction descriptions include the following information:

The instruction’s opcode.

The instruction’s assembled format.

The syntax definition.

An example.

A definition of the instruction’s operation.
The status bits affected.

The execution results.

The application notes.

3.5.1 OPCODE. The opcode is the four-digit hexadecimal number which defines the instruction to
be executed.

3.5.2 ADDRESSING MODE. The addressing mode lists the format (I-XXI) in which the
instruction will be assembled.

3.24 Digital Systems Group

[o]
i’_\:i@ 2250077-9701

3.5.3 INSTRUCTION FORMAT. The instruction format gives a block diagram of the machin
language format of the instruction after it is assembled. An ‘X’in the instruction format indicates an
unused bit. The assembler generates zeros for bits shown as ‘X’

(¢

3.54 SYNTAX DEFINITION. The syntax definition for each instruction is shown, using the
conventions described in Section II. The generic names used in these definitions are:

e ga, — General address of source operand.

e pa, — General address of destination operand.
e wa — Workspace register address.

e iop — Immediate operand.

e way — Destination workspace register address.

e disp — Displacement of CRU lines from the CRU base register or signed word
displacement from the current location counter.

e exp — Expression that represents an instruction location.

e cnt — Bit or byte count of another operand (specific type of nibble).
e m— Memory map file.

e scnt — Shift count (nibble value).

e op — Number (zero through 15) of extended operation (nibble value).
e ckpt — Checkpoint register (specific type of wa).

e pos — Bit position (nibble value).

e wid — Bit width (nibble value).

e cond — Matching condition to search for (nibble value).

Source statements that contain machine instructions use the label field, the operation field, the
operand field, and the comment field. Use of the label field is optional for machine instructions.
When the label field is used, the label is assigned the address of the machine instruction. The
assembler advances the location counter to a word boundary (even address) before assembling a
machine instruction. The operation (opcode) field contains the mnemonic operation code of the
instruction. The use of the comment field is optional. When the comment field is used, it may contain
any ASCII character, including blank, and has no effect on the assembly process other than to be
printed in the listing.

3.5.5 INSTRUCTION EXAMPLE. An executable example is given for each instruction. Across
from the example is a brief description of the operation taking place in the example.

3.5.6 OPERATION DEFINITION. The operation definition describes the function of each of the
operands in the operand field.

3.5.7 STATUS BITS AFFECTED. The status bits affected by the execution of the instruction are
listed.

325 Digitai Systems Group

[o]
A (%) 2250077-9701

3.5.8 EXECUTION RESULTS. The execution results uses a relational expression to describe the
execution results. The following conventions are used in the expression:

® () — indicates “the contents of”.
® — — indicates “replaces”.
® | | — indicates the absolute value.

3.5.9 APPLICATION NOTES. The application notes expand on the operation definition to give
the user a more complete explanation of the use of the instruction from an application point of view.

3.6 ADD WORDS — A
Opcode: A000
Addressing mode: Format 1

Format:

0O ' 2 3,4 5 6 798 9 10 11{12 13 14 15
] T 11 T L
tlol1]o] 1y D Ts s

Syntax definition:
[<label>]p. . Ap. . .<ga>,<ga>h. . [<comment>]
Example:

LABEL A @ADDRI(R2),@ADDR2(R3) Add the contents of the word at the location
ADDRI plus workspace register two to the
contents of the word at the location ADDR2
plus workspace register three and store the
results in the location ADDR2 plus workspace
register three.

Definition: Add a copy of the source operand (word) to the destination operand (word) and replace
the destination operand with the sum. The AU compares the sum to zero and sets/ resets the status
bits to indicate the result of the comparison. When there is a carry out of bit zero, the carry status bit
is set. When there is an overflow (the sum cannot be represented as a 16-bit, two’s complement
value), the overflow status bit is set.

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, and overflow.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
L>(a>lEQ@|c o | P | x |PrR IMFlMM o1 |cs ™

4 4 A 4 2

Execution results: (ga;) + (gas) — (gaq)

3-26 Digital Systems Group

o A
{@5) 2250077-9701 AB

Application notes: A is used to add signed integer words. For example, if the address labeled TABLE
contains 3124, and workspace register five contains 86, then the instruction

A R5,@TABLE

results in the contents of TABLE changing to 312Cis and the contents of workspace register five not
changing. The logical and arithmetic greater than status bits set and the equal, carry, and overflow
status bits reset.

3.7 ADD BYTES — AB
Opcode: B000
Addressing mode: Format 1

Format:

;8 9 10 11§12 13 14 15
T T LI
tlof1]1] 7 D T s

Syntax definition:
[<labe>]p. . . ABp. . . <ga>,<ga.>h. . . [<comment>]
Example:

LABEL AB R3,R2 Add the contents of workspace register three (byte) to
the contents of workspace register two (byte) and
place the result in workspace register two. The most
significant bytes are used as operands.

Definition: Add a copy of the source operand (byte) to the destination operand (byte), and replace
the destination operand with the sum. When operands are addressed in the workspace register mode,
only the leftmost bytes (bits zero through seven) of the addressed workspace registers are used. The
AU compares the sum to zero and sets/ resets the status bits to indicate the results of the comparison.
When there is a carry out of the most significant bit of the byte, the carry status bits sets. The odd
parity bit sets when the bits in the sum (destination operand) establish odd parity and resets when the
bits in the sum establish even parity. i

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, overflow and odd
parity.
0 1 2 3 4 5 6 7 8 9 10 1112 1314 15

T

L>{A>EQ| C | O | P]| X | PRIMF|MM Ol |[CS IM

A A A A A

Execution results: (gas) + (gas) — (gaq)

327 Digital Systems Group

AB S
ABS 2250077-9701

Application notes: AB is used to add signed integer bytes. For example, if the contents of workspace
register three is 7400, the contents of memory location 2122, is F318;s, and the contents of
workspace register two is 21236, then the instruction

AB R3*R2+

changes the contents of memory location 2122,¢ to F38Cis and the contents of workspace register
two to 2124,4, while the contents of workspace register three remain unchanged. The logical greater
than, overflow, and odd parity status bits set, while the arithmetic greater than, equal, and carry
status bits reset.

3.8 ABSOLUTE VALUE — ABS
 Opcode: 0740
Addressing mode: Format VI

Format:

o 1 2 3,4 5 6 7;8 9 10 11,12 13 14 15
I 1 | I

ojojofjojojrir|1]jof 1| T S

Syntax definition:

[<label>]p. . . ABSp. . . <ga>h. . [<comment>]

Example:

LABEL ABS *R2 Replace the contents of the memory word addressed
by workspace register two with its absolute value.

Definition: Compute the absolute value of the source operand and replace the source operand with
the result. The absolute value is the two’s complement of the source operand when the sign bit (bit
zero) is equal to one. When the sign bit is equal to zero, the source operand is unchanged. The AU
compares the original source operand to zero and sets/ resets the status bits to indicate the results of
the comparison. The carry bit is cleared in all cases.

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, and overflow.

O 1t 2 3 4 5 6 7 8 9 1011 12 13 14 15

T 1
w>jasfea|c o | P | x |PrR |MF{MM 01 | cs M

A A 4 4 A
Execution results: |(gas)| — (gas)
Application notes: Use the ABS instruction to take the absolute value of an operand. For example, if
the fourth word in array LIST contains the value FF3Cs and workspace register seven contains the

value 4,6, then the instruction

ABS @LIST(R7)

3-28 Digital Systems Group

_{ o] ABS
2250077-9701 AD

changes the contents of the fourth word in array LIST to 00C4s. The logical greater than status bit
sets while the arithmetic greater than and equal status bits reset. The overflow bit is set if the operand

is 800056, otherwise, it is reset. Refer to Section IV for additional application notes.

Multiple CPU Systems: Several 990/ 12 CPUs can be connected together to create a multiple CPU
system. In these systems, the CPUs must share a common memory. Simultaneous access attempts to
memory by more than one CPU can result in a loss of data. To prevent this conflict, software
“memory busy” flags in memory can be used. When a processor desires access to memory, it must
first check the flag to determine if any other processor is actively using memory. If memory is not
busy, the processor sets the busy flag to lock out other processors and begins its memory transfers.
When the processor is finished with memory, it clears the busy flag to allow access from other
processors.

However, the busy flag system is not foolproof. If two CPUs check the status of the busy flag in
successive memory cycles, each CPU proceeds as if it has exclusive access to memory. This conflict
occurs because the first CPU does not set the flag until after the second CPU reads it. All instructions
in the 990 instruction set, except three, allow this problem to occur since they release memory while
executing the instruction (i.e., while checking the state of the busy flag). The ABS instruction
maintains control over memory even during execution of the instruction after the flag has been
fetched from memory. This feature prevents other programs from accessing memory until the first
program has evaluated the flag and has had a chance to change it. Therefore, use the ABS instruction
to examine memory busy flags in all memory-sharing applications. The other instructions that
perform this way are test and set memory bit (TSMB) and test clear memory bit (TCMB). These are
described in subsequent paragraphs.

NOTE

When workspace registers are cached, ABS in direct register
addressing will not detect a flag changed in the corresponding
memory location by another processor. Therefore, ABS can only be
used with indirect, indirect autoincrement, indexed, and symbolic
addressing modes when used for the above purpose.

3.9 ADD DOUBLE PRECISION REAL — AD
Opcode: 0E40
Addressing mode: Format VI

Format:

0o 1 2 3 4 5 6 7 8 9 1011 12 13 14 15
I L
ol ofoloj 1| 1] 1]o]oj1 Ty s

Syntax definition:
[<label>]p. . . ADb. . . <ga=>b. . . [<comment>]
Example:

LABEL AD R6 Add the contents of workspace registers six through
nine to the FPA (R0-R3)

Definition: The contents of the source address are added to the FPA (RO-R3).

3-29 Digital Systems Group

AD

2250077-9701

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, overflow.

Execution results: (ga;) + FPA — FPA

0O 1t 2 3 4 5 6 7 8 9 10 11 12 13 14 15
oo

L>lA>lEQlc | o | P| X |PR| MAMM| 01 |CS IM

A & A 4 A

Application notes: The results of the AD instruction are compared to zero and status register bits
zero, one, and two reflect the comparison. If status regiter bits three and four are set to zero and one,
respectively, underflow has occurred. If both are set to one, overflow has occurred. If T; is equal to
three, the indicated register is incremented by eight.

An example of the add double precision real instruction is: If workspace registers six, seven, eight,
and nine contain, after normalization, the value .2000000A,s, as shown figuratively below,

R6

R7

R8

R9

o 1 2 3 5 6 7 8 9 10 11 12 13 14 15

o[1 0 000 T0T0]o'o0o ' '1 0o 0 "0 o %
|| 1] i 1 ¥ T T T T T

o o o o 0 o0 0 o o0 0 o0 o o0 o o
1 ¥ 1 I 1) I 1 1) 1 |

o o o0 o o 1 0 0o o0 o0 o o0 o o o
I I I T [I T T T T T T

o o o0 o 0 o0 o o o o 0 o o o0 o

and the double precision FPA (R0-R3) contains, after normalization, the value 0400770AB;s, as
shown figuratively below,

o 1 2 3 6 7 8 9 10 11 12 13 14 15

I] 1 I 1 I I 1] 1 1

ROl o | o 1 1 1 1 o 1 0 o o0 o0 o o

1) 1 [1 1 1 1) 1 1

Rt o o o o 1 1 o 1 1 1 ¢ © o ¢

I i 1 1 I I 1 I] I 1 I

rR2 | 1 0 1 o 1 1 0O o0 0 o o o0 o o

! I 1 1 I I] ¥ 1 I i [

R3] 0 o0 o0 o 0O o o o o o o0 O o0 o
then the instruction
LABEL AD Ré6

will add the contents R6-R9 to the FPA and
shown below.

place the result, .24007714B, in the FPA, figuratively

[o] 1 2 3 6 7 8 9 10 11 12 13 14 15
T T T T T T T T T T T

RO [o] 1 0 [0} (o] 0 [¢] [} 1 o} (¢] 1 (o] [}
T T T T T T T T T T T

R1 s} 0 0 o 0 o 0 1 1 1 0 1 1 1
T T T T T T T T T T T T

R2 (o] 0 o] 1 0 o} 1 0 1 1 0 0 0 [0}
T T T T T T T T T T T T

R3) [o] (o] 0 0] o [») 0 0 0 [} [0} 0 0

3-30 Digital Systems Group

AD

o Al
@ 2250077-9701 AM

The logical greater than and arithmetic greater than bits of the status register are set; and the equal,
carry, and overflow bits of the status register are reset.

3.10 ADD IMMEDIATE — Al
Opcode: 0220
Addressing mode: Format VIII

Format:

(o] 1 2 3,4 5 6 7,8 9 10 11 12 13 14 15

ojojojojo |oO 1 ojJo|oO 1 [o] w

IMMEDIATE OPERAND

Syntax definition:
[<label>]p. . . Alp. . . <wa><iop>b. . . [<comment>]
Example:
LABEL AI R2,7 Add seven to the contents of workspace register two.

Definition: Add a copy of the immediate operand, the contents of the word following the instruction
word in memory, to the contents of the workspace register specified in the W field and replace the
contents of the workspace register with the results. The AU compares the sum to zero and sets/resets
the status bits to indicate the result of the comparison. When there is a carry out of bit zero, the carry
status bit sets. When there is an overflow (the result cannot be represented within a word as a two’s
complement value), the overflow status bit sets.

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, and overflow.

0 1 2 3 4 5 6 7 8 9 10 11 12 1314 15
’ |
L>|A>|EQ| C O | P|] X |[PRIMFIMM Ol | CS IM

A A4 A A A

Execution results: (wa) + iop — (wa)

Application notes: Use the Al instruction to add an immediate value to the contents of a workspace
register. For example, if workspace register six contains a zero, then the instruction

Al R6,>C

changes the contents of workspace register 6 to 000C;s. The logical greater than and arithmetic
greater than status bits set while the equal, carry, and overflow status bits reset.

3.11 ADD MULTIPLE PRECISION INTEGER -~ AM
:\Opcade: 002A

Addressing mode: Format XI

3-31 Digital Systems Group

o
AM &@ 2250077-9701

Format:
O 1 2 3 4 5 6 7 8 9 10 11 1213 14 15

0000000000101010WORDI

c Td D T s WORD 2

Syntax definition:
[<label>]p. . . AMp. . . <ga>,<ga:>[,<cnt>]p. . [<comment>]
Example:

LABEL AM *RI,@RCN(R2),3 Add the three bytes beginning at the address in
workspace register one to the three bytes beginning at
the location RCN plus workspace register two. The
result is placed in the three bytes beginning at the
location RCN plus workspace register two.

Definition: The multibyte two’s complement integer at the source address is added to the multibyte
two’s complement integer at the destination address. The sum is placed in the destination address.
The <cnt> field is the number of bytes of precision of the integer. If <cnt> equals zero or is not
present, the count is taken from the four LSBs of workspace register zero. If the four LSBs of
workspace register zero are zero, the count is 16.

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, overflow.

0O 1 2 3 4 5 6 7 8 9 10 11 12 1314 15
I LI
L>lA>|EQ|Cc O] P| X [PR|MF|MM 01| CcS IM

44 4 423
Execution results: (gas) + (gas) — (gas)

Application notes: If T, and/ or Ty is equal to three the indicated register is incremented by the byte
- count.

The result of the AM instruction is compared to zero and status register bits zero, one, and two
reflect the comparison. Status register bits three and four indicate the carry and overflow.

An example of Add Multiple Precision is: If an eight-byte string at location RA contains the values
3124,6, E008,6, 674216, and 4013;6, and an eight-byte string at location RCN contains the values
001016, 41356, 000F 6, and 00726, the instruction

LABEL AM @RA,@RCN,4

will change the contents of the first four bytes of RCN to 31355 and 213D;s. The latter four bytes of
RCN and the entire contents of RA are unchanged.

The logical greater than and arithmetic greater than bits of the status register are set; and the equal,
carry, and overflow bits of the status register are reset.

3-32 Digital Systems Group

[o]
@ 2250077-9701 ANDI

3.12 AND IMMEDIATE — ANDI
Opcode: 0240

Addressing mode: Format VIII
Format:

o 1 2 3,4 5 6 7,8 9 10 11 12 13 14 15

IMMEDIATE OPERAND

Syntax definition:
[<label>]p. . . ANDIp. . . <wa><iop>p. . . [<comment>]
Example:

LABEL ANDI R3,>FFF0 Perform the logical ‘AND’ of workspace register three
and the immediate value FFFOss.

Definition: Perform a bit-by-bit AND operatxon of the 16 bits in the immediate operand and the
corresponding bits of the workspace register. The immediate operand is the word in memory
immediately following the instruction word. Place the result in the workspace register. The AU
compares the result to zero and sets/ resets the status bits according to the results of the comparison.

Status bits affected: Logical greater than, arithmetic greater than, and equal.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
LI |
L>lA>|EQjc |l o | P| X |PR|MF{MM Ol | CS IM

A A A

Execution results: (wa) AND iop - (wa)

Application notes: Use the ANDI instruction to perform a logical AND with an immediate operand
and a workspace register. Each bit of the 16-bit word of both operands follows the truth table.

Immediate Workspace AND
Operand Bit Register Bit Result
0 0 0
0 1 0
1 0 0
I 1 1

For an example, if workspace register zero contains D2AB¢, the instruction

ANDI R0,>6D03

3.33 Digital Systems Group

ANDI S
ANDM 2250077-9701

results in workspace register zero changing to 4003,s. This AND operation on a bit-by-bit basis is

101 10100000011 (Immediate operand)
0100101010101°1 (Workspace register 0)
0000000000001 1 (Workspace register 0 result)

SO
bt | ket

For this example, the logical greater than and arithmetic greater than status bits set while the equal
status bit resets. ANDI is also useful for masking out bits of a workspace register.

3.13 AND MULTIPLE PRECISION — ANDM
Opcode: 0028
Addressing mode: Format XI

‘Format:

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0jojJojojojojojlo]lojo|l1]o}l1]lo]olo}lworDpi1

c T D Ty s WORD 2

Syntax definition:
[<label>]p. . . ANDMpD. . . <ga>,<ga:>[,<cnt>]p. . . [<comment>]
Example:

LABEL ANDM *R1,@RCN(R2),3 Perform the logical ‘AND’ between the three-byte
value starting at the location pointed to by workspace
register one and the three-byte value at the location
starting at RCN plus workspace register two. The
result is placed at the location RCN plus workspace
register two.

Definition: Perform a bit-by-bit AND operation of the muitibyte two’s complement integer at the
source address with the multibyte two’s complement integer at the destination address. The result is

- placed in the destination address. The <cnt> field is the number of bytes of precision of the integer.
If <cnt> equals zero, or is not present, the count is taken from the four LSBs of workspace register
zero. If the four LSBs of workspace register zero are zero, the count is 16.

Status bits affected: Logical greater than, arithmetic greater than, and equal.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I i |
L>|A>IEQ | C | O| P|] X |PR |[MF{MM| Ol | CS IM

A A A
Execution results: (ga;) AND (gas) — (gaq)
Application notes: The result of the ANDM instruction is compared to zero and the status register

bits zero, one, and two indicate the results of the comparison. If T; and/or Ty is equal to three, the
indicated register is incremented by the byte count.

3-34 Digital Systems Group

[o]
@ 2250077-9701

An example of the AND Muitiple Precision instruction is: If workspace register one contains the
address of an eight-byte string at location 4328,s, and RCN is the address of a six-byte string as

shown below:

4328, o OA

1F

4ac

FF

A7

86

56

then the instruction

LABEL ANDM *R1,@RCN,3

RCN

3E

72

co

54

F4

27

will AND the three bytes beginning at location 4328;¢ with the three bytes beginning at location
RCN, and will place the results in the three bytes starting at location RCN. The resuits of this

example are shown figuratively below:

OA

12

40

54

Fa

27

The logical greater than and arithmetic greater than bits of the status register are set, and the equal

bit is reset.

This truth table describes the AND operation between two bits:

Corresponding Corresponding
Source Bit Destination Bit Result Bit
0 0 0
0 1 0
| 0 0
1 1 1
335 Digital Systems Group

ANDM

AR

2250077-9701

3.14 ADD REAL — AR

Opcode: 0C40
Addressing mode: Format VI

Format:

O 1 2 3 4 5 6 7 8 9 10 11 12 131415
| |

0000110001Ts s

Syntax definition:
[<label>]p. . . ARD. . . <ga>p. . . [<comment>]
Example:

LABEL AR RS Add workspace register five and six to the FPA

(RO,R1)

Definition: Add the real number specified by the source address to the FPA and store the result in
the FPA (RO,R1).

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, overflow.

0O 1t 2 3 4 5 6 7 8 9 10 11 12 1314 15
LI
L>JA>|EQ| c | o | P] x |PR|MF|MM oI | CcS M

A A A A A
Execution results: FPA + (ga,) — FPA

Application notes: 1If T; is equal to three, the indicated register is incremented by four. The results of
the AR instruction are compared to zero and status register bits zero, one, and two reflect the
comparison. If status register bits three and four are set to zero and one, respectively, underflow has
occurred. If both are set to ones, overflow has occurred.

An example of an add real instruction is: If workspace register five and workspace register six, after
normalization, contain the value .3;5, as shown figuratively below,

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

¥
R5 [s) 1 (o] [3) o} [} 0 (o) [} 0 1 1 0o 0 0 [s)

R6] O (o] o o) o (8] (o) o o o o 0 0 0 0 0

RO o] 0 1 1 1 1 1 [s) 1 o] 1 0 0 o (o] (o)

R1 (o] o o [} 0 o (o) 0 0 o] o o [s]] (o] o]

3-36 Digital Systems Group

o AR
:’_@? 2250077-9701 ARJ

then the instruction
LABEL AR RS

will add the contents of RS and R6 to the FPA and place the result, .30A, in the FPA, shown
figuratively below.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The logical greater than and arithmetic greater than bits of the status register are set; and the equal,
carry, and overflow status bits of the status register are reset.

Refer to Section 11 for a detailed description of normalization and single precision floating point

. .

LML UL LIVILLD.

3.15 ADD TO REGISTER AND JUMP — ARJ
Opcode: 0COD
Addressing mode: Format XVII

Format:

s 1 2 3 4 5 & 7 8 9 10 11 12 13 14 15

oOjojoOojoOo}1 1 ojlolojojo|oOjf1 1 O {1} WORD 1

Cc R D WORD 2

Syntax definition:
[<label>]p. . . ARJD. . . <exp>, [<cent>],<wa>h. . . [<comments>]
Example:

LABEL ARJ @BEGIN,12,R3 Add 12 to the contents of workspace register three
and jump to BEGIN if the sum of 12 and the contents
of workspace register three is not equal to zero or does
not pass through zero.

Definition: The unsigned positive integer in the <cnt> field is added to the register specified by
<wa>. If the <cnt> field is zero, the value to be added is obtained from workspace register zero as a
16-bit unsigned value. If the <cnt> operand is not present, it defaults to one. If <cnt> plus (wa) is
not equal to zero, or does not pass through zero (wrap-around), the signed word displacement,
<exp>, is added to the program counter.

Status bits affected: None.

Execution results: <cnt> + (wa) — (wa)
Conditionally (PC) + <exp> — (PC)

3-37 Digital Systems Group

ARIJ
B

o]
{@ 2250077-9701

If the value of the register is not equal to zero or has not passed through zero, then the value of the
program counter plus the displacement is placed in the program counter.

Application notes: The ARJ instruction is not useful for writing loops where the ARJ instruction
controls loop termination. It lends itself more to being the last instruction in a loop where the loop is
exited from some other point. The example which follows shows a “while” loop. A table of text
strings is indexed consecutively while the input value is not equal to the current table value.

TABLE EVEN
TEXT ‘JAN’
BYTE 31

ENTSIZ EQU $-TABLE
TEXT ‘FEB’
BYTE 28
TEXT ‘MAR’
BYTE 31
TEXT ‘APR’
BYTE 30

TABEND EQU §
INPUT BSS 4

The ARJ instruction could be used to search this table for a specified month as follows:

SETO RO
LI RI, TABLE-TABEND
WHILE
CsS @INPUT,@TABEND(R1),3,R0

JEQ ENDWHL
ARJ WHILE,ENTSIZ,R1
NOTFND MONTH NOT FOUND

ENDWHL
Cl R1,TABEND]
JEQ NOTFND (INPUT NOT FOUND IN TABLE)

* MONTH FOUND

3.16 BRANCH — B

Opcode: 0440

3.38 Digital Systems Group

[o]
{@ 2250077-9701

Addressing mode: Format VI

Format:
0O t 2 344 5 6 7,8 9 10 11,412 13 14 15
T LS
olo|lololoj1]o}lo]lo]1 Ts s
Syntax definition:
[<label>]p. . . Bp. . . <ga>p. . . [<comment>]
Example:
LABEL B @THERE Transfer control to the instruction at location

THERE.

Definition: Replace the PC contents with the source address and transfer control to the instruction at
that location.

Status bits affected: None.

Execution results: ga; — (PC)

Application notes: Use the B instruction to transfer control to another section of code to change the
linear flow of the program. For example, if the contents of workspace register three is 21CC;s then
the instruction

B *R3

causes the word at location 21CC;s to be used as the next instruction, because this value replaces the
contents of the PC when this instruction is executed.

3.17 BINARY TO DECIMAL ASCIHI CONVERSION — BDC
Opcode: 0023
Addressing mode: Format XI

Format:
0 1 2 3 4 5 6 7 8 9 10 11 1213 14 15

ojojololo|lo|lo]o}jo]lol1]o]olofl]!] worbp 1

T T
Cc d D s S WORD 2

Syntax definition:

[<label>]p. . . BDCh. . . <ga>,<gas>[,<cnt>]p. . . [<comment>]

13-39 Digital Systems Group

BDC

o) .
BDC (‘@ 2250077-9701

Example:
LABEL BDC @BIN,@DEC,9 The nine-byte binary number starting at location BIN
is converted to decimal ASCII and placed at location
DEC.

Definition: The multibyte binary integer at the source address is converted to a multibyte decimal in-
teger in USASCII format. The number of bytes in the source is specified by the <cnt> field. If
<cnt> equals zero or is not present, the count is taken from the four LSBs of workspace register
zero. If the four LSBs are zero, the count is 16. The result (of length 2*<cnt> bytes) is deposited at
the destination address. Leading zeros are stored as space characters (20,). The sign of the result is
indicated by an USASCII plus or minus character after the least significant digit of the result.

Status bits affected: Logical greater than, arithmetic greater than, equal, and overflow.
' 0O ' 2 3 4 5 6 7 8 9 10 11 1213 14 15

| B |
L> A>fEQ| C | O | P| X | PRIMF|MMOI | CS IM

A A A A

Execution results: (ga;) — (gad)

Application notes: A zero is expressed by spaces followed by a single right-justified zero character
" and a plus character. If T, and/or T, is equal to three, the indicated register is incremented by the
byte or character count (the byte count or twice the byte count, respectively).

The result of the BDC instruction is compared to zero and status register bits zero, one, and two
reflect the comparison. If the result cannot be contained in 2*<cnt> bytes, status register bit four is
set to one. In this event, the low order part of the ASCII result will be in the destination operand.

Care must be taken by the programmer to provide adequate space in the destination operand to hold
the result. For example, a one-byte binary number has the range -128 to +127. The ASCII result
requires three bytes to represent either of these values, plus one byte for the sign. To insure the
correct number of bytes is allocated in this example, the programmer can perform an extend
precision (EP) instruction, extending the precision of the one byte value to two bytes. This causes the

* destination operand to be four bytes long, enough for the one byte case. However, a general rule for
extending the precision of the source operand cannot be devised, since 16 bytes is the maximum
precision the EP instruction will extend a multiple precision number.

An example of the binary to decimal ASCII conversion is: If the three bytes at location BIN contain
the binary value of 2005, as shown figuratively below:

BIN 00

02

00

then the instruction

LABEL BDC @BIN,@DEC,3

3-40 Digital Systems Group

o BDC
@ 2256077-9701 BIND

will convert the value to a decimal integer, placing the integer in a six-byte string starting at location
DEC. The results of this instruction are shown figuratively below:

DEC| 20,.
20, .
35 OR (WRITTEN AS
16 A TEXT STRING)
‘Bgs512+°
31, ¢
3
%16
2B, o

The logical greater than and arithmetic greater than bits of the status register are set; and the equal
and overflow bits are reset.

3.18 BRANCH INDIRECT — BIND
Opcode: 0140

Addressing mode: Format VI
Format:

0 1t 2 3 a4 5 6 7 8 9 1011 12 1314 15

| P
ololojololoflo|l1]o}1}| Ts S

Syntax definition:
[<label>]p. . . BINDD. . . <ga=>p. . . [<comment>]
Example:

LABEL BIND R4 Branch to the instruction addressed by workspace
register four.

Definition: The value specified by the source address is loaded into the program counter.
Status bits affected: None.
Execution results: {gas) — (PC)

Application notes: The indirect autoincrement form of the BIND instruction can be used in
implementing threaded code. If T, is equal to three, the indicated register is incremented by two.

In the following example of the branch indirect instruction, a branch and link to location PROCESS
is first executed. At this point, address SUBR, the label of a list containing the addresses of several
subroutines, is loaded into workspace register four, and the BIND instruction activates the first
subroutine in the list.

3-4i Digitai Systems Group

o
BIND @ 2250077-9701

The last instruction of each subroutine is a BIND instruction with the address contained in R4 which
points to the next subroutine in the list to be executed.

When the return instruction at the end of the EXIT subroutine is encountered, execution will resume
at the instruction following the BL @PROCESS instruction.

The sample code listed below shows the execution steps for this example.

BL @PROCESS 1) Branch to location PROCESS
(Exeéutable Instructions) 8) Resume execution

PROCESS
LI R4,@SUBR 2) Load SUBR address in R4

BIND *R4+ 3) Branch to SUBRA and increment value in R4

(Executable Instructions)

SUBR
DATA SUBRA
DATA SUBRB
DATA SUBRC

(Othér Subroutines)
DATA EXIT

SUBRA

(Executable Instructions) |

BIND *R4+ 4) Branch to SUBRB and increment value in R4

SUBRB

(Executable Instructions)

BIND *R4+ 5) Branch to SUBRC and increment value in R4

3-42 Digital Systems Group

o BIND
{@P 2250077-9701 BL

SUBRC

(Exec;utable Instruction)

BIND *R4+ 6) Branch to EXIT and increment value in R4

EXIT
(Executable Instructions)

RT 7Y Return to instruction
/) Keturn mstruction

{nstruction
3.19 BRANCH AND LINK — BL
Opcode: 0680

Addressing mode: Format VI

Format:
0 1 2 3;]4 5 6 7,8 9 10 1111213 14 15
T | I
ololojolo]1li1]o]1t]o] T s
Syntax definition:
[<label>1p. . . BLp. . . <ga=>p. . . [<comment>]
Example:
LABEL BL @SUBR : Branch to the instruction at location SUBR and

continue execution from that point. The current value
of the program counter, plus two, is stored in
workspace register 11.

Definition: Place the source address in the program counter, place the address of the instruction
following the BL instruction (in memory) in workspace register 11, and transfer control to the new
PC contents.

Status bits affected: None.

Execution results: ga, — (PC);
(old PC) — (workspace register 11)

3-43 Digital Systems Group

‘ [e]
ngK (@ 2250077-9701

Application notes: Use the BL instruction when return linkage is required. For example, if the
instruction

BL @TRAN
is located at memory location (PC count) 04BCje, then this instruction has the effect of placing
memory location TRAN in the PC and placing the value 04C0,6 in workspace register 11. Refer to
Section 1V for additional application notes.
3.20 BRANCH IMMEDIATE AND PUSH LINK TO STACK — BLSK
Opcode: 00B0
Addressing mode: Format VIII

Format:

0O 1+ 2 3 4 53 6 7 8 9 10 11 12 13 14 15

I T 1
ojo|ojo|o]lolojo]|]1]of| 1]1 w WORD 1
I
BRANCH ADDRESS X | worD 2
NOT USED

Syntax definition:
[<labeD>Jp. . . BLSKp. . . <wa><iop>p. . . [<comment>]
Example:

LABEL BLSK RS5,@SUBR Branch to location SUBR and push the address of the
next instruction onto the stack addressed by
workspace register five.

Definition: The first operand is the register containing the TOS (top of stack pointer); the second is
the address to which to branch. The address of the next instruction (Program Counter plus four), is
pushed onto the stack pointed to by the first operand <wa>>. The address being pushed is treated as
two bytes, so the TOS may be odd.

Status bits affected: None.
Execution results: PC — (wa)-1 (wa)-2 — (wa) iop = PC
Application notes: Limit checking is not performed. This is a side effect due to the fact that the TOS

must be specified as a register. Note: the branch address must specify a word address. If an odd
branch address is given, it will be rounded down to a word boundary.

3-44 Digital Systems Group

° BLSK
{@? 2250077-9701 BLWP

An example of the branch immediate and push link to stack instruction is: if workspace register five
points to location 3A 106, label SUBR is at location 4236y, and the BLSK instruction is at location
2006, then the instruction

LABEL BLSK R5,@SUBR

will update the PC to point to location 4236,6, and update workspace register five to point to the next
available byte in the stack, in this case 3A0E;s, shown figuratively below: '

— A

TOP OF STACK AFTER EXECUTION
SACE | 02 94— OF BLSK INSTRUCTION

3A0F 04

% TOP OF STACK BEFORE EXECUTION
3Ai0 //% %—— OF BLSK INSTRUCTION

3A11 ////

H
%

D\

N\
N

N
N

N
N

The status register is not affected.
3.21 BRANCH AND LOAD WORKSPACE POINTER — BLWP
Opcode: 0400

‘ Addressing mode: Format VI

Format:

] 1 2 3,4 5 6 7,8 9 10 11312 13 14 15
I I ! I
ojo}o ojojl1jojo olo Ts S

Syntax definition:
[<label>]p. . . BLWPp. . . <ga>h. . [<comment>]

Example:

LABEL BLWP @VECT Load the workspace pointer with the contents of the
memory word at location VECT. Load the program
counter with the contents of the memory word at
location VECT plus two. The previous values of the

3-45 Digital Systems Group

BLWP
C

[o]
@ 22500779791

workspace pointer, program counter, and status
register are stored in new workspace registers 13, 14,
and 15, respectively. The status register is unchanged.

Definition: Place the source operand in the WP and the word immediately following the source
operand in the PC. Place the previous contents of the WP in the new workspace register 13, place the
previous contents of the PC (address of the instruction following BLWP) in the new workspace
register 14, and place the contents of the ST register in the new workspace register 15. When all store
operations are complete, the AU transfers control to the new PC.

Status bits affected: None.

Execution results: (ga;) — (WP)
(gas + 2) — (PC)
(old WP) — (Workspace register 13)
(old PC) — (Workspace register 14)
(ST) — (Workspace register 15)

Application notes: Use the BLWP instruction for linkage to subroutines, program modules, or other
programs that do not necessarily share the calling program workspace. Refer to Section 1V for a

detailed explanation and example.

3.22 COMPARE WORDS — C

Opcode: 8000

Addressing mode: Format 1

Format:

12 13 14 15

Td

Ll

I
S

I

Syntax definition:

[<label>]p. . . Cp. . . <ga>,<ga>p. . . [<comment>]

Example:

LABEL C R2,R3

Compare the contents of workspace register two and
workspace register three.

Definition: Compare the source operand (word) with the destination operand (word) and set/ reset
the status bits to indicate the results of the comparison. The arithmetic and equal comparisons
compare the operand as signed, two’s complement values. The logical comparison compares the two
operands as unassigned, 16-bit magnitude values.

Status bits affected: Logical greater than, arithmetic greater than, and equal.

0 1 2 3 4 5 6 7 B8 9 1011 1213 14 15
1 1
L>A>EQ{ C 1O P! X I|PR|MFIMMOIL jCS IM
A A A
3-46 Digital Systems Group

(o]
{@ 2250077-9701

Execution results: (gas) : (gaq)

Application notes: C compares the two operands as signed, two’s complement values and as
unsigned integers. Some examples are:

Source Destination Logical Arithmetic Equal
FFFF 0000 | 0 0
7FFF 0000 I 1 0

8000 0000 1 0 0
8000 7FFF 1 0 0
7FFF 7FFF 0 0 1
7FFF 8000 0 1 0
7FFE 7FFF 0 0 0

3.23 COMPARE BYTES — CB
Opcode: 9000

Addressing mode: Format |

Format:
0O 1 2 3,4 5 6 7,38 9 10 1112 13 14 15
T T T T T 1 1
tlofo]l1}| W D Ts s
Syntax definition:
[<label>]b. . . CBb. . . <ga=>,<gas>hp. . . [comment>>]
Example:
LABEL CB R2,R3 Compare the leftmost bytes of workspace register two

and workspace register three.

Definition: Compare the source operand (byte) with the destination operand (byte) and set/reset the
status bits according to the result of the comparison. CB uses the same comparison basis as does C
(compare word). If the source operand contains an odd number of logic one bits, the odd parity
status bit sets. The operands remain unchanged. If either operand is addressed in the workspace
register mode, the byte addressed is the most significant byte.

Status bits affected: Logical greater than, arithmetic greater than, equal, and odd parity.

0O ¢+ 2 3 4 S 6 7 8 9 10 11 1213 14 15
I L |
L>|A>]EQ] C | O | P| X |PR|MF MM!OI Ccs IM

A & A

Execution results: (ga;) : (gad)

3-47 Digital Systems Group

o
CDE {@ 2250077-9701

Application notes: CB compares the two operands as signed, two’s complement values or as
unsigned integers. Some examples are:

Source Destination Logical Arithmetic Equal 0dd Parity
FF 00 1 0 0 0
7F 00 1 1 0 1
80 00 1 0 0 1
80 7F 1 0 0 1
7F 7F 0 0 1 1
7F 80 0 1 0 1
7E 7F 0 0 0 0

3.24 CONVERT DOUBLE PRECISION REAL TO EXTENDED INTEGER — CDE
Opcode: 0C05
Addressing mode: Format VII

Format:
0 1 2 3 4 5 6 7 8 9 10 11 12 1314 15

Ojojojojitjr1jojojolofolo]o]li1]oli1

Syntax definition:
[<labe>]p. . . CDEp. . . [<comment>]

Example:

LABEL CDE Convert the double precision number in the FPA to
an extended integer and place it in the FPA.

Definition: Convert the double precision number in the FPA (RO, R1, R2, R3) to an extended
integer in the FPA (RO,R1).

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, and overflow.

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

|
L> A>jEQjCc |0 | P | X | PRIMF|MM 01| cs M

A A A A &

FExecution results: FPA—FPA

Application notes: The result of the CDE instruction is compared to zero and status register bits
zero, one, and two reflect the comparison. Status bit three is set to one. If status register bit four is set
to one, overflow has occurred. Fractions are converted to zero without underflow.

3-48 Digital Systems Group

CDE

[+}
‘@ 2250077-9701 CDI

An example of the convert double precision real to extended integer instruction is: if the doubie
precision real number in the FPA (R0-R3) is the normalized repesentation of 30.A;s as shown

figuratively below:
o 1 2 3 4 s 6 7 8 9 10 11 12 13 14 15

1T 1 1 Ll 1 1 1] 1 ¥ T ! 1
RO o| 1 o o o o 1 ol o o 1 1 o o o o©
1 1 \] 1 1 ¥ 1 L 1 1 1 T
R1 1 o 1 o o o o0 o o o o o0 o o o o NORMALI ZED
HEXADECIMAL
T T Y T Y T T T 1 T — T T T ” FRACTION
R2 o 0 o o0 o o o o6 o o o o o o o o
1 Y L H L] 4 L] T LI 1 ¥ T L] 4
R3 o o o o o o o o o o o o o o o o
-~

then the instruction
LABEL CDE

will convert the double precision real number in the FPA to an extended integer, and place the resuit,
30,6, in the FPA (RO-R1), as shown figuratively below:

] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 1 I 1 ¥)
RO (o) 0 o] C 0 0 o) (o) 0 (o]] 0o 0 0o (o} 0

R1 o (o] 0 8] 0 0o o) 0 0 0 1 1 (o] (] 0 o

The logical greater than, arithmetic greater than, and carry bits of the status register are set; the equal
and overflow bits are reset.

Refer to Section II for information concerning normalization and double precision real numbers.
3.25 CONVERT DOUBLE PRECISION REAL TO INTEGER — CDI

Opcode: 0C01

Addressing mode: V11

Format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ojojojo}l1}j1]o0}tO0ojoOo}jOo|lO]lOjO}O}O]|1

Syntax definition:
[<label>]p. . . CDIp. . . [<comment>]
Example:

LABEL CDI Convert the double precision number in the FPA to
an integer and place it in the FPA.

Definition: The double precision number in the FPA (R0, R1, R2, R3) is converted to an integer and
the result is placed in the FPA (RO0).

3-49 Digital Systems Group

CDI °
CED 2250077-9701

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, and overflow.

o 1 2 3 4 5 6 7 B8 9 10 11 12 13 14 15
rod
L>|A>EQC |0 | P | X |PR|MF MM Ol|] Cs IM

A A A A A
Execution results: FPA—FPA
Application notes: The results of the CDI instruction are compared to zero and status register bits

zero, one, and two reflect the results. Bit three is set to one. If overflow occurs, bit four is set to one.
Fractions are converted to zero without underflow.,

An example of the convert double precision real to integer instruction is: If the double precision real
number in the FPA (R0-R3) is the normalized representation of 30.A 6, as shown figuratively below:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T T T T T Y T ! T T T T T N
RO 0 1 (o] 0 (o] 0 1 (¢] (o] o 1 1 [¢] [+] 0 [o]
! T T T T T 1 T T T Y T T
R1 1 [o] 1 o] (o] (o] (o] [o] [o] (o] [s] 0 0 0 (o] 0 NORMALIZED
¥ T Y T T T T T T T T T T Y T > HEXADECIMAL
R2 Jo o o0 o o o0 o0 o0 o0 o0'o o0'0"06 0o FRACTION

”Raoooooooooooooooo

then the instruction
LABEL CDI

will convert the double precision real number in the FPA to an integer, and place the result, 30,6, in
the FPA (RO), as shown figuratively below:

I T 1 T T T T T T T T T T T T
RO o)] (o] o o] o o o 0o (o} 1 1 o] (¢} o] 0

The logical greater than, arithmetic greater than, and carry bits of the status register are set; and the
equal and overflow bits are reset.

Refer to Section II for information concerning normalization and double precision real numbers.
3.26 CONVERT EXTENDED INTEGER TO DOUBLE PRECISION REAL — CED
Opcode: 0C07

Addressing mode: Format VII

Format:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OfojojJo |1 j1jojojolololo o] 1] 1]1

3-50 Digital Systems Group

2250077-9701

Syntax definition:
[<labe[>1p. . . CEDD. . . [<comment>]
Example:

LABEL CED Convert the extended integer in the FPA to a double
precision real number and place it in the FPA.

Definition: The extended integer in the FPA (RO,R1) is converted to a double precision number and
placed in the FPA (RO,R1,R2,R3).

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, and overflow.

0O {t 2 3 4 5 6 7 8 9 10 11 12 1314 15

LI
L>jAa>jEQjc o] P} X |PRIMF[MM Ol | CS IM

A A A A& A

Execution results: FPA—FPA

Application notes: The result of the operation is compared to zero and status register bits zero, one,
and two reflect the comparison. Status register bits three and four are set to zero.

An example of the convert extended integer to double precision real instruction is: If the value in the
FPA (RO-R1) is 030A;6, as shown figuratively below:

o 1 2 3 4 5 6 7 8 9 10 11 iz 13 i4 i35

RO 0 (o] o (o} (o} o] 0 (¢} o 0 o] 0] (o] 0 0 o

R1 o] (o} (o] Q (o] (o] 1 1 (8] 0 0 o) 1 0 1 [s)

then the instruction
LABEL CED

will convert the extended integer in the FPA to a normalized double precision real number and place
it in the double precision FPA, as shown figuratively below:

0 1 2 3 4 5 6 7 8 9 10 1t 12 13 14 15

T T T T T T T T T T T T Y
rRoJo|l1 o o o o 1 1 1o o 1 1 o o o o
I 1 T | | 1] ¥ T T L] T T T T
o o o o o o o o o NORMALI ZED
R 1 o vt 0 90 o° ° S HEXADECIMAL
T T T T T T T LI T v T T J T FRACTION

R2 0 o 0 o] o o o] 4]) (o] 4] 0 o 0 [s] Y]

R3 0 (o] 0 0 (o) (o] 0 o] (o] 0 0 0 o] 0 8] o]

The logical greater than and arithmetic greater than bits of the status register are set; the equal, carry,
and overflow bits are reset.

Refer to Section II for information concerning normalization and double precision real numbers.

3-51 Digital Systems Group

CED

©
CER {?@ 2250077-9701

3.27 CONVERT EXTENDED INTEGER TO REAL — CER
Opcode: 0C06
Addressing mode: Format VII

Format:

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0000110000000110

Syntax definition:
[<labe>]p. . . CER}. . . [<comment>]
Example:

LABEL CER Convert the extended integer in the FPA to a real
number and place it in the FPA.

Definition: The extended integer in the FPA is converted to a real number and placed in the FPA
(RO,R1).
Status bits affected: Logical greater than, arithmetic greater than, equal, carry, and overflow.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
| [}
L>l|A>lEQfc|o| P]| x [PrR|MF{MM 0t] cs iM

4 4 4 4 A
Execution results: FPA—~FPA

Application notes: The result of the CER instruction is compared to zero and status register bits
zero, one, and two reflect the comparison. Status register bits three and four are reset to zero.

An example of the convert extended integer to real instruction is: If the value in the FPA (RO,R1)is
030Aj6, as shown figuratively below:
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RO o) 0 0 [s) o) o] 8] o) o] (o] (8] [s) o o] 0 (o]

R1 o [0} 0 0 [8) (8] 1 1 8] 0 [¢] 0 1 o] 1 o)

then the instruction
LABEL CER

will convert the extended integer in the FPA to a normalized single precision real number and place
it in the single precision FPA, as shown figuratively below:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T T T T Y T T Y T T T T T
RO o] 1 [s] [¢] o [o] 1 1 0 (s} 1 1 [¢] [o] [o] [0} NORMAL|ZED\
Y T T T T T Y T T T T T T ngé?Fo‘:r}MA
R1 1 (o] 1 o 0 [o] 0 [o] (o] (o] 0 [¢] 0 (o] [o] 0

3-52 Digital Systems Group

° CER
{@p 2250077-9701 CI

The logical greater than and arithmetic greater than bits of the status register are set; the equal, carry,
and overflow bits are reset.

Refer to Section II for information concerning normalization and single precision real numbers.
3.28 COMPARE IMMEDIATE — CI

Opcode: 0280

Addressing mode: Format V11

Format:
O I 2 3.4 5 6 7.8 9 10 11 12 13 14 15

[

0] w

o
o
(=}
(=
o
o
-
(=}
-

o]

iMMEDIATE OPERAND

Syntax definition:
[<iabel>]p. . . CIp. . . <wa><iop>p. . [<comment>]
Example:

LABEL CI R3,7 Compare the contents of workspace register three to
seven.

Definition: Compare the contents of the specified workspace register with the word in memory
immediately following the instruction. Set/reset the status bits according to the comparison. CI
makes the same type of comparison as does C.

Status bits affected: Logical greater than, arithmetic greater than, and equal.

O 1t 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I I i
L>|A>{EQ|Cc|o| P| X |PR|MFiMM Ol | CS M

A A A

Execution results: (wa) : iop

Application notes: Use the CI instruction to compare the workspace register to an immediate
operand. For example, if the contents of workspace register nine is 21836, then the instruction

CI R9,>F330

results in the arithmetic greater than status bit set and the logical greater than and equal status bits
reset.

3-53 Digital Systems Group

o
CID @ 2250077-9701

3.29 CONVERT INTEGER TO DOUBLE PRECISION REAL — CID
Opcode: 0E80
Addressing mode: Format VI

Format:

o 1 2 3 4 5 6 7 8 9 1011 12 13 14 15

T] T T 1
00001110101'5 S

Syntax definition:
[<label>]p. . . CIDp. . . <ga>h. . .[<comment>]
Example:

LABEL CID @WORD Convert the integer at location WORD to a double
precision real number and place it in the FPA.

Definition: The integer at the source address (1 word) is converted to double precision and is stored
in the floating point accumulator (R0O-R3).

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, and overflow.

O 1 2 3 4 5 6 7 8 9 1011 12 13 14 15

I I I
L>lA>lEQ| Cc | O | P| X |[PR|MF{MM Ot | CS IM

4 A 4 A A
Execution results: (ga;y~FPA
Application notes: If T is equal to three, the indicated register is incremented by two. The results of
the CID instruction are compared to zero and status register bits zero, one, and two reflect the

results. Status register bits three and four are reset.

An example of the convert integer to double precision real instruction is: If the value in WORD is
1BFFi¢, then the instruction

LABEL CID @WORD

will convert the integer in WORD to a normalized double precision real number and place the value
in the double precision FPA, as shown figuratively below:

RO [o) 1 o] (o] [s) o (o] (o] 0 o 4] 1 1 [o] 1 1

Rt 1+ 1 1 1 1 1 1 1 1 0 o0 O 0 o o o NORMALIZED
] 1 T L] 1 T ¥ T ¥ I ¥) 1 L) L] r Egié?—lEochMAL
R2 o o0 ©0© 9 o 0 © 0 0 o0 © 0 0 o0 o o

R3 0 (o) (o] o] (o] 0 o] o] 0 o) 0 (o) o] 0 0 o

3-54 Digital Systems Group

o CID
{@? 2250077-9701 _ CIR

The logical greater than and arithmetic greater than bits of the status register are set; the equal, carry,
and overflow bits are reset.

Refer to Section Il for information on normalization and double precision real numbers.
3.30 CONVERT INTEGER TO REAL — CIR

Opcode: 0C80

Addressing mode: Format Vi

Format:

0O 1 2 3 4 5 6 7 8 9 1011 12 1314 15
I T 1 1

00001100!0T5 3

Syntax definition:
[<label>]p. . . CIRp. . . <ga>h. . [<comment>]
Example:

LABEL CIR @WORD Convert the integer at location WORD to a real
number and store it in the FPA.

Definition: The integer specified by the source address is converted to a real number and stored in
the FPA (RO-R1).

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, and overflow.
0 1 2 3 4 5 6 7 8 9 10 11 12 1314 15

1L
L>|A>|EQ| C | O | P} X |PRIMF MN{OI cs IM
4 4 A 4 A

Execution results: (gay~FPA
Application notes: The results of the CIR instruction are compared to zero and status register bits

zero, one, and two reflect the comparison. Status register bits three and four are set to zero. If T is
equal to three, the indicated register is incremented by two.

An example of the convert integer to real instruction is: If location WORD contains the value
1BFF4, then the instruction

LABEL CIR @WORD

will convert the integer at location WORD to a normalized single precision real number and place
the value in the single precision FPA, as shown figuratively below:

o 1 2 3 4 s 6 7 8 9 10 11 12 13 14 15
1 1 1 | 1 1 L ! 1 L] 1 1
rRo fo|1 o o o 1 o olo o o 1 1 o 1 1 NORMALI ZED
T T T T T T T T T T T 1 T HEXADECIMAL
R1 1 1 1 1 1 1 1 1 o o o o o o0 o0 o FRACTION

3-5§ Digital Systems Group

CIR S
- CKOF 2250077-9701

The logical greater than and arithmetic greater than bits of the status register are set; the equal, carry,
and overflow bits are reset.

Refer to Section II for information concerning normalization and single precision real numbers.

3.31 CLOCK OFF — CKOF
Opcode: 03C0
Addressing mode: Format VII

Format:
O 1 2 3,4 5 6 718 9 10 11412 13 14 15

0Ojojojojojojsji1l1]|tjo]lojojfololo

Syntax deﬁnition:f
[<label>]p. . . CKOFp. . . [<comment>]
Example:
STOCK CKOF Stop the clock.

Definition: Stop the line frequency clock (120 Hz). No status bits are changed and the clock interrupt
will not occur as long as the clock is off. CKOF is a privileged instruction.

When the privileged mode bit (bit seven of ST register) is set to zero, instruction executes normally.
When the privileged mode bit is set to one, an error interrupt occurs when execution of a CKOF
instruction is attempted.

Status bits affected: None.

Execution results: The line frequency clock is disabled, and the clock interrupt is cleared.-
Application notes: Clock applications are described in the application notes in Section IV.
3.32 CLOCK ON — CKON

Opcode: 03A0

Addressing mode: Format VII

Formazt:
O t 2 3,4 5 6 7,8 9 10 11|12 13 14 1S

ojofofojojof1f1]1]o]li]lololo]lolo

3-56 Digital Systems Group

0 CKON
é@ 2250077-9701 CLR

Syntax definition:

[<label>]p. . . CKONB. . . [<comment>]
Example:

STRTC CKON Start the clock.
Definition: Enable the line frequency clock. The clock interrupt may be wired as interrupt level five
or level 15. If the interrupt is enabled, an interrupt will occur every 8.33 ms after the initial interrupt,
which may occur from 1 ms to 8.33 ms after the clock is turned on. The clock interrupt may be
enabled/disabled by the interrupt mask as necessary. CKON is a privileged instruction.
When the privileged mode bit (bit seven of ST register) is set to zero, the instruction executes

- normally. When the privileged mode bit is set to one, an error interrupt occurs when execution of a

CKON instruction is attempted.
Status bits affected: None.
Execution results: The line frequency clock is enabled.
Application notes: Clock applications are described in the application notes in Section IV.
3.33 CLEAR — CLR
Opcode: 04C0

| Addressing mode: Format VI

Format:
0Ot 2 3}]4 5 6 738 9 10 11712 13 14 15
IR T T 1
olo]Jololo}lt1t]lojo} 1t]1] Ts s

Syntax definition:
[<labe>]p. . . CLRp. . . <ga=>h. . . [<comment>]
Example:

PRELM CLR @BUFF(R2) Replace the word at the location BUFF plus
workspace register iwo with zeros.

Definition: Replace the source operand with é full, 16-bit word of zeros.
Status bits affected: None.

Execution results: 0—(gas)

3-57 Digital Systems Group

CLR
CNTO

[o]
;@ 2250077-9701

Application notes: Use the CLR instruction to set a 16-bit memory word to zero. For example, if
workspace register 11 contains the value 20016, then the instruction

CLR *R11

results in the contents of memory location 2001, being set to zero. Workspace register 11 and the
status register are unchanged.

3.34 COUNT ONES — CNTO
Opcode: 0020
Addressing mode: Format XI

Format:

o 1 2 3 4 5 6 7 8 9 10 11 1213 14 15

ojojojojo]|J]ojojojOojo]1j]0]j]O]JO]O}]1] WORDI 11

~
T T
C d D s S WORD 2

Syntax definition:
[<labe>]Jp. . . CNTOB. . . <ga>,<ga>[,<cnt>lp. . . [<comment>]
Example:

LABEL CNTO R4,R73 Count the number of ones in workspace register four
and the most significant half of workspace register
five and add the count to workspace register seven.

Definition: The number of ones in the multibyte value at the source address is counted and the count
is added to the word at the destination address. The number of bytes of precision of the source
operand is determined by the <cnt> field. If the <cnt > field equals zero or is not present, the count

is taken from the four LSBs of workspace register zero. If the four LSBs of workspace register zero
are zero, the count is 16. '

Status bits affected: Equal

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 T
L>A>EQ| Cc | 0o | P} X |PRIMF|MM] O1]CS IM

A

Execution results: (gas) + # of ‘1’ bits in (ga,)—(gas)

Application notes: If T, is equal to three, the indicated register is incremented by the byte count.
Status register bit two is set if the entire source operand is zero. If Tq is equal to three, the indicated
register is incremented by two.

3-58 Digital Systems Group

° CNTO
2250077-9701 CoC

An example of a count ones instruction is: If workspace register four contains the value 4312,
workspace register five contains the value 11361, and workspace register seven contains the value
21576, then the instruction

LABEL CNTO R4,R73

counts the number of ones in register four and the most significant half of register five and adds the
count to register seven. After the execution of this instruction, the contents of register seven changes
to the value 215E;c. The equal bit of the status register is reset.

3.35 COMPARE ONES CORRESPONDING —COC

Opcode: 2000

Addressing mode: Format III

Format:

8 9 10 111213 14 15

1 i 1 | IR
Ts S

o
[«
-
(o]
o
o
O 4=

Syntax definition:
[<label>]p. . . COCh. . . <ga><wa.>Ph. . . [<comment>]

Example:

LABEL COC @MASK,R2 Compare the bits in workspace register two which
correspond with the logic one bits in MASK. If they
are all equal, set the equal status bit. '

Definition: When the bits in the destination operand workspace register that correspond to the logic
one bits in the source operand are equal to logic one, set the equal status bit. The source and
destination operands are unchanged.

Status bits affected: Equal.

o t 2 3 4 5 6 7 8 9 1011 1213 14 15

L
> A>jEQj Cc | O | P] X | PRIMF{MMOLI | CS M

A

Execution results: The equal bit sets if all bits of (was) that correspond to the bits of (ga.) that are
equal to one are also equal to one.

Application notes: Use the COC instruction to test single/ multiple bits within a word in a workspace
register. For example, if TESTBI contains the word C102;s and workspace register eight contains the
value E306;¢, then the instruction

COC @TESTBI,R8

3-59 Digital Systems Group

COoC
CRC

[¢]
;@ 2250077-9701

results in setting the equal status bit. If workspace register eight were to céntain E3016, the equa}l
status bit would reset. Use this instruction to determine if a workspace register has ones in the bit
positions indicated by ones in a mask.

3.36 CYCLIC REDUNDANCY CODE CALCULATION — CRC

Opcode: 0E20

Addressing mode: Format XI1I

Format: _
O 1 2 3 4 5 6 7 8 9 1011 1213 14 15
L
ofojlojojlr]if1|lo]ofol1t{o w WORD 1
L L
c T4 D Tg s WORD 2

Syntax definition:
[<labe[>]p. . . CRC. . . <ga><gas>[<cnt>],<ckpt>]p. . . [<comment>]

Trailing commas in the operand list may be omitted. The checkpoint register may be omitted from
the instruction if a default has been specified with the CKPT assembler directive.

Example:

CRC @CORE,@TCORE,,R6 Update the value of the word at location TCORE by
the value of the byte string starting at location CORE.
The length of CORE is specified by RO or as a tagged
string. R6 is the checkpoint register.

Definition: The 16-bit CRC partial sum at the destination address is updated by the byte string at the
source address. The string length may be specified in the <cnt>field, in workspace register zero, or
as a tagged string (if <cnt> = 0 and R0 = >FFFF). If the <cnt> field is not present, then zero is
assumed. If the length of the string is 16 bytes or more, the checkpoint register is used for interrupts.
If an interrupt occurs during execution, checkpoint data is stored in the checkpoint register. After
the interrupt is serviced, execution continues from the point it was interrupted. Upon completion of
the instruction, the checkpoint register is set to -1.

The checkpoint register value plus one is used as an initial index into the string (from the beginning
of the string). To access the first byte (lowest address) in the string, the checkpoint register must be
set to -1 before the instruction is executed. When the string length is zero, the CRC partial sum is not
updated.

NOTE

1. If no checkpoint register is specified, the default must be defined
by the CKPT assembler directive.

2. The register following the checkpoint register must contain the
16-bit polynomial (X'*=LSB; X'=MSB) for the CRC
calculation.

3-60 Digital Systems Group

2250077-9701

Status bits affected: The resultant CRC partial sum is compared to zero and status bit two is set
accordingly.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
’ i L
L>| A>jEQl c | o} P| X |PR|MF|MM| Oi{CS M
a4

Execution results: (gas,gas) CRC (ckpt+1)—(gaas)

Application notes: If T, is equal to three, the indicated register is incremented by the string length.
The resulting partial sum is compared to zero and status register bit two reflects the comparison. If
Ty is equal to three, the indicated register is incremented by two.

Table 3‘-‘6 displays the format of the byte string for the CRC instruction.

Table 3-3. ’CRC Byte String Format

OPTIONAL BYTE
COUNT
FIRST BYTE OF %
STRING n-7 n-6 n-s n-a n-3 n-2 n=1 n

X X X X X X X X
SECOND BYTE n-15 n-14 n-13 n-12 | n-11 n-10 n-9 n-8
OF STRING X X X X X X X X

o
L L
T o T
[]
LAST BYTE OF 17 18 19 20 21 22 23 24
STRING X X X X X X X X
*x N

X IS THE FIRST BIT TRANSMITTED.
The CRC partial sum has the following format:
EFFECTIVE 9 10 11 12 13 14 15 16
DESTINATION X X X X X 28 x X
EFFECTIVE 1 2 3 4 5 6 7 8
DESTINATION+1 X X X X X X X X

3-61 Digital Systems Group

CRC

CRC °
CRE 2250077-9701

The polynomial in <ckpt> + 1 has the following format:

Table 3-6. CRC Byte String Format (Continued)

S BYTE OF WORD 1 2 3 4 5 6 7
XFTER <CKPT> X X X X X X X
REGIS

LS BYTE OF WORD 9 10 11 12 13 14 15
AFTER <CKPT> X X X X X X X
REGISTER

16

X° of the above polynomial is always 1.

An example of the cyclic redundancy code instruction is: If STRING points to a five-byte string
containing the values >9, >8, >7, >6, and >5, R4 contains the value ABCD, and the polynomial

located in RI11 is >21AS5, then the instructions

SETO R10
LABEL CRC @STRING,R4,5,R10

will update R4 by the values of the byte string pointed to by STRING. After execution of this

instruction, the value of R4 is >DO0AD.

The equal bit of the status register is reset.

3.37 CONVERT REAL TO EXTENDED INTEGER — CRE
Opcode: 0C04
Addressing mode: Format VII

Format:
0 1 2 3 4 5 6§ 7 g 9 10 11 12 13 1415

0000110000000100

Syntax definition:
[<label>]p. . . CREp. . . [<comment>]

Example:

LABEL CRE Convert the real number in the FPA to an extended

integer and place it in the FPA.

Definition: The real number in the FPA (RO,R1) is converted to an extended integer in the FPA

(RO,R1).
Status bits affected: Logical greater than, arithmetic greater than, equal, carry, and overflow.
0 ' 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T T
LlaxleQlc | o | P | x |PR|MAMM 01| cs M

A 4 A A2

3-62 Digital Systems Group

o CRE
2250077-9701 CRI

Execution results: FPA—FPA

Application notes: The result of the CRE instruction is compared to zero and status register bits
zero, one, and two reflect the comparison. Status bit three is set to one. Status bit four is set to one if
overflow occurs; otherwise it is set to zero. Fractions convert to zero and underflow does not occur.

An example of the convert real to extended integer instruction is: If the real number in the FPA (RO-
R1) is the normalized representation of 3.0A;s, as shown figuratively below:

[¢) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

! { T T T T T T T Y T i T
RO 0 1 o] 0] o [o] 0 1 o 0 1 1 0 (o] (o] (o] NORMALI ZED

I 1 1 1 I T T T 1 T 1 T T HEXADECIMAL
R1 1 o 1 [s] [s) o [s) 0 0 o o 0 o o o 0 FRACTION

then the instruction
LABEL CRE

will convert the real number in the FPA to an extended integer, and place the result, 3¢, in the FPA
(RO-R1), as shown figuratively below:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ROl o o o 0o 0o 0o 0 O o o o o o o o0 o

R] o o o o 0o o 0o © 66 o0 ©6 0 o o0 1 1

The logical greater than, arithmetic greater than, and carry bits of the status register are set; the equal
and overflow bits are reset.

Refer to Section II for information concerning normalization and single precision real numbers. .
3.38 CONVERT REAL TO INTEGER - CRI

Opcode: 0C00

Addressing mode: Format VII

Format:
0O t 2 3 4 5 6 7 8 ‘9 10 11 12 13 14 15

0l ojoOojoOo}j1j1j]0j]0j0|O0O]|O]O (Ol O]JO]O

Syntax definition:

[<label>]p. . . CRIp. . .[<comment>]

Example:

LABEL CRI Convert the real number in the FPA to an integer and
place it in the FPA.

3-63 Digital Systems Group

o

2250077-9701

Definition: The real number in the FPA (RO,R1) is converted to an integer in the FPA (RO).
Fractions convert to zero.

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, and overflow.

o 1 2 3 4 5 6 7 B8 9 10 11 12 13 14 15
I | |
L>A>lEQjCc |Oo | P | X |PRIMF|[MM|OI1 | cs M

4 A4 A A A

Execution results: FPA—~FPA

Application notes: The result of the CRI instruction is compared to zero and status register bits zero,
one, and two reflect the comparison. Status bit three is set to one. Status bit four is set to one if
overflow occurs, otherwise it is set to zero.

An example of the convert real to integer instruction is: If the real number in the FPA (RO-R1)is the
normalized representation of 30.A;s as shown figuratively below:

o 1 2 3 4 S 6 7 8 9 10 11 12 13 14 15

T ¥ i L L T L) ! T T I) v
RO o 1 0 o [o) 0 1 o [s) 4] 1 1 Q (o] o] o NORMALIZED
HEXADECIMA
4 4 4 4 4 v ¥ v ¥ L 1 ' I FRACTION
R1 1 o} 1 [¢] [o} o s} 0 0 o) (¢} o) s} 4] (] o)

then the instruction
LABEL CRI

will convert the real number in the FPA to an integer, and place the result, 30,6, in the FPA (RO), as
shown figuratively below:

RO o] o] o o o [o) (o) (o) (o] o 1 1 (o) 0 (o] 0

The logical greater than, arithmetic greater than, and carry bits of the status register are set; the equal
and overflow bits are reset.

Refer to Section II for information concerning normalization and single precision real numbers.
339 COMPARE STRINGS — CS

Opcode: 0040

Addressing mode: Format XII

Format:

0O 1 2 3 4 5 6 7 8 9 1011 1213 14 15
L
oj 0|0 |O ojojo]o] o 1 o1 O w WORD 1

| L
c Td D T s WORD 2

3-64 Digital Systems Group

2250077-9701

Syntax definition:
[<label>]p. . . CSh. . . <ga>,<gas>,[<cnt>][,<ckpt>]p. . . [Kcomment>]

Trailing commas on the operand list may be omitted. The checkpoint register may be omitted from
the instruction if a default has been specified with the CKPT assembler directive. If the <cnt> field is
omitted, a default of zero is taken.

Example:

LABEL CS @INPUT,@CORE, R6 Compare the string, starting at location INPUT, for
the length specified in workspace register zero, with
the string starting at location CORE, for the length
specified in workspace register zero. Index the first
nonequal bytes in workspace register six.

Definition: The bytes in the string starting at the source address are compared to the bytes in the
string starting at the destination address. The comparison reflects any of three conditions:
equality/inequality of the strings, equality/inequality of the strings as signed, two’s complement
integers, and equality/inequality of the strings as unsigned binary numbers. Status bits zero through
two are set to reflect the results of the comparison.

When the two strings are compared for equality, the equal status bit (bit two) reflects the results of
the comparison. If the strings are equal, the equal status bit is set to one at the end of the instruction.
If the strings are not equal, the equal status bit is set to zero at the end of the instruction .

When the two strings are compared as signed, two’s complement values, the arithmetic greater than
bit (bit one) and the equal bit of the status register reflect the results of the comparison. If the strings
are equal, the equal status bit is set to one at the end of the instruction. If the strings are not equal,
the equal bit is set to zero, and the arithmetic greater than bit reflects the relationship of the source
string to the destination string (set to one, the source string is arithmetically greater than the
destination string).

When the two strings are compared as unsigned binary numbers, the logical greater than bit (bit
zero) and the equal bit of the status register reflect the results of the comparison. If the strings are
equal, the equal status bit is set to one at the end of the instruction. If the strings are not equal, the
equal status bit is set to zero, and the logical greater than bit reflects the relationship of the source
string to the destination string (set to one, the source string is greater that the destination string as an
unsigned binary number).

Note that there is no difference in the instruction when comparing the strings as different values. The
interpretation as strings, two’s complement integers, or unsigned binary numbers is performed using
bits zero through two of the status register. The equal bit (bit two) is used in all three cases to
determine equality. The logical greater than bit (bit zero) reflects the comparison of the strings as
unsigned binary numbers. The arithmetic greater than bit (bit one) reflects the comparison of the
strings as signed, two’s complement integers.

The string length may be specified in the <cnt>field, register zero, or as a tagged string (if <cnt>=0
and RO = >FFFF).

3-65 Digital Systems Group

CS

CS

2250077-9701

An index to the first nonequal bytes is returned in the checkpoint register <ckpt> and status bits
zero through two reflect the comparison of the strings as binary integers. If the strings are equal, the
checkpoint register is set to -1 and status bits zero through two will equal zero, zero, and one,
respectively.

The checkpoint register value plus one acts as an initial index into the string. To access the beginning
of the string it must be set to -1 C>FFFF) before the compare strings instruction is executed. If the
checkpoint register is not set to ones before the CS instruction is executed, the initial value of status
bit two (EQ) determines how the instruction will operate:

e If status bit two equals one, it is assumed that the bytes skipped are equal. If two unequal
bytes are subsequently found, the status bits (zero through two) are set to reflect the
comparison of the strings as binary integers.

e If status bit two equals zero, it is assumed that the instruction is being reexecuted with two
unequal bytes having already been found. If two more unequal bytes are found, the status
is set to reflect the comparison of the two bytes only (not the whole strings).

If the string length is zero, no comparison is made, status bits zero through two are set to zero, zero,
and one, respectively, and the checkpoint register is set to minus one.

If tagged strings are specified and the tags are equal, the instruction behaves as with untagged strings.
The tag values do not affect the setting of the status. If the tags are not equal, the checkpoint register
will be returned equaling zero (pointing to the tag byte) and the status will reflect the comparison of
the two tags as unsigned integers (a tag of zero will be handled as though it were 256). If the
instruction is reexecuted with the checkpoint register equal to zero, the strings will be compared for
the number of bytes in the shortest string.

If the length of the strings is 16 bytes or more, the checkpoint register <ckpt> is used for interrupts.
After the interrupt is serviced, the instruction continues the comparison where it left off.

Status bits affected: Logical greater than, arithmetic greater than, and equal.

0o "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I i I
L>/A>IEQ|C] O| P| X |[PR|MF|MM Ol | CS M

A A A

Execution results: (ga;) : (gaq)

Application notes: If T, and/or Ty is equal to three, the indicated register is incremented by the byte
count. The compare strings instruction may be used to compare two extended-precision binary
integers.

An example of the compare strings instruction is: If INPUT addresses a byte string at memory
location 4E72,6, CORE addresses a byte string at memory location 376 A, workspace register zero
contains the value six, and workspace register six has been set to ones, then the instruction

LABEL CS @INPUT,@CORE,,R6

3-66 Digital Systems Group

o CS
2250077-9701 CZC

will compare a six-byte string beginning at location INPUT against a six-byte string beginning at
location CORE. Workspace register six will contain the displacement to the unequal bytes. The
results, upon execution of the CS instruction in this example, are shown figuratively below:

INPUT CORE
4E72 376A
UPON COMPARING THE THIRD BYTES
4E73 3768 OF THE STRING WHICH ARE NON-
EQUAL, A VALUE OF 2 1S PLACED
IN THE CHECKPOINT REGISTER WR6.,
4E74 4——» 375C AT THIS POINT, THE LOGICAL
GREATER THAN AND ARITHMETIC
GREATER THAN BITS OF THE STATUS
4E75 376D REGISTER ARE SET; AND THE EQUAL
lgll:__T g_llf THE STATUS REGISTER IS
4E76 376E SET.
AE77 376F

...+ >l |wl~w)] o] -
...% >N [I -9 g | -

3.40 CbMPARE ZEROS CORRESPONDING — CZC

Opcode: 2400

Addressing mode: Format 111

Format:

8 9 10 11]12 13 14 15

]
T | L | | L
D Ts S

Syntax definition:
[Klabel>]p. . . CZCh. . . <ga>>,<wa>p. . . [<comment>]

Example:

LABEL CZC @MASK, R2 Compare the bits in workspace register two which
correspond with the logic one bits in MASK and if

they are all equal to a logic zero, set the equal status
bit.
Definition: When the bits in the destination operand workspace register that correspond to the one
bits in the source operand are all equal to a logic zero, set the equal status bit. The source and
destination operands are unchanged.

Status bits affected: Equal.

o 1 2 3 4 5 6 7 8 910 t1 12 13 14 15
| LR
L>] A>|JEQ| C| O | P| X |PR|MFMM|] Ol |CS IM
a

3-67 Digital Systems Group

CzC X
DBC 2250077-9701

Execution results: The equal bit sets if all bits equal to one of (gas) correspond to bits equal to zero in
(waq).

Application notes: Use the CZC instruction to test single/multiple bits within a word in a workspace
register. For example, if the memory location labeled TESTBI contains the value C1026, and
workspace register eight contains 23016, then the instruction

CZC @TESTBI, RS
results in the equal status bit reset. If workspace register eight contained the value 22016, then the

equal status bit would set. Use this instruction to determine if a workspace register has zeros in the
position indicated by ones in a mask.

3.41 DECIMAL ASCII TO BINARY CONVERSION — DBC
Opcode: 0024

Addressing mode: Format XI

Format:

o i 2 3 4 5 6 7 8 9 10 11 1213 14 15

0000000000100100WORD1

c Td D T S WORD 2

Syntax definition:
[<labe>]p. . . DBCp. . . <ga=>,<gas>[,<cnt>h. . . [<comment>>]

Example:

LABEL DBC @DEC,@BIN,11 The 22-byte decimal ASCII value in DEC is converted
to an 11-byte binary value and placed in BIN.

Definition: The USASCII decimal character string at the source address is converted to a multibyte
binary integer and deposited at the destination address. The number of bytes in the source is
specified by twice the byte count in the <cnt> field. Any USASCII characters other than zero
through nine and a minus sign are ignored during the conversion process. If a minus sign is
encountered at any point in the string, the result is negative. The length of the result is specified in the
<cnt> field.

If <cnt>equals zero or is not present, the count is taken from the four LSBs of workspace register
zero. If the four LSBs of workspace register zero are zero, the count is 16.

Status bits affected: Logical greater than, arithmetic greater than, equal, and overflow.

O 1 2 3 4 5 6 7 8 9 1011 1213 14 15

| I B
L> A>EQ| C | O | P] X | PRIMF{MMOI | CS M
A A A A

3-68 Digital Systems Group

DBC
DD

[o]
{@ 2250077-9701

Execution results: (ga;)—(gas) A decimal ASCII value at (ga,) is converted to a binary number at

(gaq).

Application notes: If T, and/or Ty is equal to three, the indicated register is incremented by the

character or byte count, repectively.

The result of the DBC instruction is compared to zero and status register bits zero, one, and two
reflect the comparison. Status register bit four is set to one if a character other than zero through

nine, minus sign, a blank, or a plus is encountered.

An example of the decimal ASCII to binary conversion instruction is: If DEC addresses the six-byte
decimal value of -2, as shown figuratively below:

DEC

then the instruction

LABEL DBC @DEC,@BIN,3

2046

206

201 ¢

20,¢

3256

2D, ¢

OR (WRITTEN AS
A TEXT STRING):

‘Bppp2=

will convert the decimal integer to a binary value and place the binary number in the three-byte string
starting at location BIN. The results of this instruction are shown figuratively below:

BIN

FF

FF

FE

The logical greater than bit of the status register is set, and the arithmetic greater than, equal, and

overflow bits are reset.

3.42 DIVIDE DOUBLE PRECISION REAL - DD

Opcode: 0F40

Addressing mode: Format VI

Format:
0 1 2 3 4 5 7 8 9 10 11 12 13 14 15
T |
ofo|o |o]1]1 1 |o |1 L =
3-69 Digital Systems Group

2250077-9701

Svntax definition:

[<label>]b. . . DDb. . . <ga>h. . . [<comment>]

Example:
LABEL DD @WORD Divide the contents of the FPA by the contents of the
word at location WORD and place the result in the
FPA.

Definition: Divide the FPA by the word at the source address and place the result in the FPA (RO-
R3).

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, and overflow.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

r 1
L>lA>]EQ|C |O | P | X |PR [MF|MM OI | CS M

A A A A 2

Execution results: FPA + (ga,)—FPA

Application notes: The results of the DD instruction are compared to zero and status register bits
zero, one, and two reflect the comparison. If status register bits three and four are set to one,
overflow has occurred. If status register bits three and four are set to zero and one, respectively,
underflow has occurred. If T; is equal to three, the indicated register is incremented by eight.

An example of the divide double precision real instruction is: If the value starting at location
WORD, after normalization, is 345, shown figuratively below,

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
| T T 1 T T T T T T T T T 3
WORD 0 1 0 0 0 0 1 0 0 0 1 1 0 1 0 0
T T T T T T T T T T T | T
WORD+1| 0 0 o] o] 0 o 0 i] 0 0 o o 0 0 0 o] NORMALIZED
T T T T T T T T T T T T T T T > HEXADECIMAL
WORD+2] © 0 o 0 0 0 0 0 0 0 0 0 o] 0 0 0 FRACTION
) 1 I 1 ! ! ! 1 1 1 I 1 I 1]
WORD+2] © o o] 0 0 0 o] o] 0 o] o] 4] o o] 0 o]
P

and the value in the double precision FPA (R0-R3), after normalization, is 26,6, shown figuratively
below,

s} 1 2 3 4 S 6 7 8 9 10 11 12 13 14 15

§ 1} 1) I 1 1 I I T I T T N
RO 0 1 0 0 (o) o 1 o} o 0 1 (o] 0 1 1 o
. o o T R T o T o T o T o T o o T o T T T T T T
o} [0} o) 0 o 8]
NORMALLI ZED
T T T T T T T T T T T T T T T HEXADECIMAL
R2| © 0 o 0 0 o o] 0 0 o] o] o o 0 o] o] FRACTION
i 1 1 1 I I 1 1 I ¥ | | T T T
R3 o} o] 8] [} 0 0 (o] o 0 0] o} [} o} 0 0 o

3-70 Digital Systems Group

DD

2250077-9701 DEC
then the instruction
LABEL DD WORD
will divide the value in the FPA by the value starting at location WORD, and place the result,
.BB13BI3B13BI3By¢, in the FPA; shown figuratively below.
o 1t 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T T T T T T T T T 1 T T
rRojo|1 o o o o o o[t o0 1 1 i 0 1 1
T 1 T | p— T T T T 1 T
R1 0o o o] 1 o 0o 1 1 1 o 1 1 o (o} o 1 NORMALI ZED
I T T T T T T T T T T T T T T > HEXADECIMAL
rR2 | o o 1 1 1 o0 1 i "o o0 "o 1 o o @1 . FRACTION
) 1 T T 1 I I 1 1 T ¥ 1 1 1 1
R3 |1 o 1 1t o o o 1 o o0 1 1 1t 0 1 1
7’

w
-
(¢
aQ
o
w
-
a
-
[N}
-t
a
[72]
(47
ba
V]
e
(=%
—
a
a
£
€.
&
b

The logical greater than and arithmetic greater than bits of the status
carry, and overflow bits of the status register are reset.

-

Refer to Section II for a detailed description of normalization and double precision floating point
instructions.

3.43 DECREMENT — DEC
Opcode: 0600
Addressing mode: Format VI

Format:

o 1t 2 3,4 5 6 7,8 9 10 11,12 13 14 1S
T G G |
olojoflojlofi1]1]loflo]o| T s

Syntax definition:
[<label>]p. . . DECp. . . <gaa>p. . . [<comment>]
Example:

LABEL DEC R2 Subtract one from the contents of workspace register
two and place the result in workspace register two.

Definition: Subtract a value of one from the source operand and replace the source operand with the
result. The AU compares the result to zero and sets/ resets the status bits to indicate the result of the
comparison. When there is a carry out of bit zero, the carry status bit sets. When there is an overflow
(the difference cannot be represented in a word as a two’s complement value), the overflow status bit
sets.

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, and overflow.

0 1 2 3 4 5 6 7 8 9 10 11 12 1314 15

LI
L>A>EQCOPXPRMFMN{OICS IM

4 4 A 4 A

3-71 Digital Systems Group

DEC
DECT

e}
@ 2250077-9701

Execution results: (ga,) - 1—(gas)
Application notes: Use the DEC instruction to subtract a value of one from any addressable
operand. The DEC instruction is also useful in counting and indexing byte arrays. For example, if
COUNT contains a value of 16, then

DEC @COUNT
results in a value of zero at location COUNT and sets the equal and carry status bits while resetting
the logical greater than, arithmetic greater than, and overflow status bits. The carry bit is always set
except on transition from zero to minus one. Refer to Section IV for additional application notes.
3.44 DECREMENT BY TWO — DECT
Opcode: 0640

Addressing mode: Format VI

Format:
0t 2 3;4 S5 6 738 9 10 11,12 13 14 15
T | L
olo|oJoJoj1j1]o]lo]1] T s
Syntax definition:
[<labe>]p. . . DECTp. . . <ga>b. . . [<comment>]
Example:
LABEL DECT @ADDR Subtract two from the contents of location ADDR
and replace the contents of location ADDR with the

result.

Definition: Subtract two from the source operand and replace the source operand with the result.
The AU compares the result to zero and sets/resets the status bits to indicate the result of the
comparison. When there is a carry out of bit zero, the carry status bit sets. When there is an overflow
(the result cannot be represented in a word as a two’s complement value), the overflow status bit sets.

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, and overflow.

0O 1+ 2 3 4 5 6 7 8 9 10 11 12 1314 15
' I 1
L>IA>|EQ| C}|JO | P| X |PR|IMF|MM Ot] CS M

4 A A A A

Execution results: (ga;) - 2—(ga;)

Application notes: The DECT instruction is useful in counting and indexing word arrays. Also, use
the DECT instruction to subtract a value of two from any addressable operand. For example, if
workspace register PRT (PRT equals three) contains a value of 2C10;, then the instruction

DECT PRT

3-72 ' Digital Systems Group

o DECT
2250077-9701 DINT
DIV

changes the contents of workspace register three to 2COE;s. The logical greater than, arithmetic
greater than and carry status bits set while the equal and overflow status bits reset. Refer to Section
IV for additional application notes.

3.45 DISABLE INTERRUPTS — DINT

Opcode: 002F

Addressing mode: Format VII

Format:

o 1 2 3 4 5 6 7 8 9 10 11 12 131415

ojojlojojo]J]ojojoj]JOojoj1jOo |t |1} 1]1

Syntax definition:
[<labe>]p. . . DINTH. . . [<comment>]
Example:

LABEL DINT Disable all interrupts except level zero but do not
change the interrupt mask.

Definition: DINT disables all interrupts except level zero and the front panel load interrupt without
changing the interrupt mask. DINT is a privileged instruction. The interrupts disabled by DINT are
enabled only by EINT, RSET, or the power fail/restore sequence.

Status bits affected: None.

Execution results: None.

Application notes: None.

3.46 DIVIDE — DIV

Opcode: 3C00

Addressing mode: Format 1X

Format:

8 9 101112 13 14 1S
1 1 1 | L
Ts S

(o]
o
-
-
—
-
U -4

3-73 Digital Systems Group

DIV 2250077-9701

Syntax definition:
[<labe>]p. . . DIVD. . . <ga><wa>h. . . [<comment>]
Example:

LABEL DIV @ADDR(R2),R3 Divide the contents of workspace registers three and
four by the contents of the word at the location
ADDR plus workspace register two and store the
integer result in workspace register three with the
remainder in workspace register four.

Definition: Divide the destination operand (a consecutive two-word area of workspace) by a copy of
the source operand (one word) using integer rules, place the quotient in the first word of the two-
word destination operand area, and place the remainder in the second word of that same area. This
division is graphically represented as follows:

Destination operand workspace registers

WORKSPACE REGISTER (n) WORKSPACE REGISTER (n+1)

0 15})0 15
f¢——————— RESULTING ‘—;-l RESULTING REMAINDER ————#
& QUOTIENT DIVIDEND

Source operand

ADDRESSABLE MEMORY

(o] 15

— DIVISOR —

The first of the destination operand workspace registers, shown above, is addressed by the contents
of the D field. The dividend is located right-justified in this two-word area. When the division is
complete, the quotient (result) is placed in the first workspace register of the destination operand
(represented by n above) and the remainder is placed in the second word of the destination operand
(represented by n+1 above).

When the source operand is greater than the first word of the destination operand, normal division
occurs. If the source operand is less than or equal to the first word of the destination operand,
normal division will result in a quotient that cannot be represented in a 16-bit word. In this case, the
AU sets the overflow status bit, leaves the destination operand unchanged, and aborts the division
operation.

If the destination operand is specified as workspace register 15, the first word of the destination
operand is workspace register 15 and the second word of the destination operand is the word in
memory immediately following the workspace area. :

3-74 Digital Systems Group

o DIV
@ 2250077-9701 DIVS

Status bits affected: Overflow.

0 1 2 3 4 5 6 7 8 9 1011 1213 14 15
1 i I
>l asleal c | o] p| x | PrRIMFIMMo1 | cs M
A

Execution results: The contents of <was> and <was> + 1 (32-bit magnitude) are divided by the
contents of <ga>> and the quotient is placed in <was>. The remainder is placed in <was> + 1.

Application notes: Use the DIV instruction to perform a magnitude division. For example, if
workspace register two contains a zero and workspace register three contains 000Ci, and the
contents of LOC is 00056, then the instruction

DIV @LOC,R2

results in a 00026 in workspace register two and 0002; in workspace register three. The overflow
status bit resets. If workspace register two contained the value 00056, the magnitude contained in the
destination operand would equal 327,692 and division by the value five would result in a quotient of
65,538, which cannot be represented in a 16-bit word. This attempted division would set the overflow

status bit and the AU would abort the operation.

3.47 DIVIDE SIGNED — DIVS
Opcode: 0180
Addressing mode: Format VI

Format:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 1415

I i LI

oflojofo|lolo]lojo]1|1]| Tg s

Syntax definition:
[<label>]p. . . DIVSH. . . <ga=>h. . . [<comment>]

Example:

LABEL DIVS R4 Divide the two’s complement of the value in
workspace register zero and one by the two’s
complement value in workspace register four and
place the result in workspace register zero and the
remainder in workspace register one.

Definition: The signed, double-precision two’s complement integer in workspace registers zero and
one is divided by the signed two’s complement integer at the source address. Algebraic two’s
complement integer division is performed. The quotient is deposited in workspace register zero and
the remainder is deposited in workspace register one. The quotient and remainder are derived so that
the following conditions are met:

DIVISOR X QUOTIENT + REMAINDER = DIVIDEND,

where the absolute value of the remainder is less than the absolute value of the divisor.

3-75 Digital Systems Group

DIVS °
DR 2250077-9701

The sign of the remainder is the same as the sign of the dividend. The sign of the quotient is derived
by algebraic rules, as shown below.

DIVIDEND

POS , NEG,

DIVISOR POS, POs, [NEG,

NEG, NEG, |POSs,

Status bits affected: Logical greater than, arithmetic greater than, equal, and overflow.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Fr

L>A>|EQ|C |0 | P| X |PR [MF|MM Ol | CS M

A A A A

the remainder in R!

Execution results: RO, R1 + (ga,) =
= the quotient in RO

Application notes: The DIVS instruction allows for division of signed numbers. The quotient is
compared to zero and status register bits zero, one, and two reflect the comparison. Status register
bit four is set if the quotient cannot be expressed in 16 bits or if the divisor equals zero. If status bit
four is set, workspace registers zero and one remain unmodified.

If T; is equal to three, the indicated register is incremented by two.

An example of a divide signed instruction is: If the double precision value contained in workspace
register zero and workspace register one is FFFFFF9F 6, and the value contained in workspace
register four is FFDOy6, then the instruction

LABEL DIVS R4

will divide the two’s complement of the value in R0 and R1, 616, by the two’s complement of the
value in R4, 306, and place the quotient result, 00026, in RO and the remainder, FFFFy, in R1.

The logical greater than and the arithmetic greater than bits of the status register are set; the equal
and overflow bits of the status register are reset.

3.48 DIVIDE REAL — DR
Opcode: 0D40
Addressing mode: Format VI

Format:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

| T

oooo11o1o1Ts =

Syntax definition:

[<labe>]p. . . DRp. . . <ga>p. . . [<comment>]

3-76 Digital Systems Group

2250077-9701

Example:

LABEL DR R7 Divide the contents of the FPA (two words) by the
contents of workspace registers seven and eight and
place the result in the FPA.

Definition: The real number specified by the source address is divided into the FPA (RO,R1) and the
result is stored in the FPA (RO,R1).
Status bits affected: Logical greater than, arithmetic greater than, equal, carry, and overflow.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
I i 1
L>la>|E@| c| o] P] X|PR|MFIMMOI | CS IM

4 A A A4 A

Execution resuits: FPA + (ga))—FPA

Application notes: The result of the DR instruction is compared to zero and status register bits zero,
one, and two reflect the comparison. If status register bits three and four are set to zero and one,
respectively, underflow has occurred. If they are set to one, overflow has occurred. If T, is equal to
three, the indicated register is incremented by four.

An example of the divide real instruction is: If the value contained in workspace registers seven and
eight, after normalization, is 34:6, shown figuratively below,

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1} 1 1 1 1]] i i]] T
rR7 o |1 o o o0 o0 1 o |o o 1 1 o 1t o o NORMALIZED

T T I T T T T T T T T | T pEXADECIMAL
rRe lo o o o o o o o o o o0 o o o o o ACTION

and the value contained in the single precision FPA (RO,R1), after normalization, is 2616, shown
figuratively below,

RO o 1 0 0 o (o} 1 o] [0} o) 1 o 0 1 1 [s} NORMI‘-\I.!ZE:Dl
I T T T T T T T T T T T T :EﬁégFgAMA'
R1 o [} (o} 0 0 4] 0 [}] 0 0 o o) o] 0 4]

then the instruction

LABEL DR R7

will divide the value in the FPA by the value contained in R7 and RS, and place the result,
.BB13Blys, in the FPA, shown figuratively below.

1 2 4 8 10 11 12 13 14 15
olo |1 o0 o o o o ot o 11y o g
o ! ro o 1 ! NORMALIZED
T T 1 | p— T 1 T T HEXADECIMAL
riloe o o 1 o o 1 1 1 o0 1 1 o0 0 o0 1 FRACTION

3-77 Digital Systems Group

DR

DR
EINT
EMD

(o]
(@ 2250077-9701

The logical greater than and the arithmetic greater than bits of the status register are set; and the
equal, carry, and overflow bits of the status register are reset.

3.49 ENABLE INTERRUPTS — EINT
Opcode: 002E
Addressing mode: Format VII

Format:

o 1 2 3 4 5 6 7 8 9 10 11 1213 1415

0Ojojojojojojojojojol1r1jol1l1]1]o

Syntax definition:
[<label>]p. . . EINT). . . [<comment>]
Example:
LABEL EINT Reenable previously disabled interrupts.
Definition: EINT reenables interrupts previously disabled by DINT, effective after the next
instruction. The level of interrupts enabled is given by the current value of the interrupt mask. EINT
is a privileged instruction.
Status bits affected: None.
Execution results: None.
Application notes: Note that RSET also enables the interrupts disabled by DINT.
3.50 EXECUTE MICRO-DIAGNOSTIC — EMD
Opcode: 002D
Addressing mode: Format VII'

Format:
0 1 2 3 4 5 6 7 8 9 10 11 1213 14 15

ojojJojo]jJo]ojo}jo ojol1]o] t}1]O}1

Syntax definition:
[<label>]p. . . EMDp. . . [<comment>]
Example:

LABEL EMD Execute the microcoded CPU self-test.

3-78 Digital Systems Group

[¢]
@ 2250077-9701

Definition: The microcoded CPU self-test is executed.
e If the microcoded self-test passes:
1. Map file zero is cleared.
2. The mapping logic is turned off.
3. The error status latch is cleared.
4. The status register is cleared.
5. The next instruction is executed.

e If the microcoded diagnostic fails, the following occurs:

__
-

2. The CPU locks up.
EMD is a privileged instruction.

Status bits affected: All bits.

o 1 2 3 4 5 6 7 8 9 10 11 1213 14 15
I 1]
L>{A>|EQ| Cj O]| P| X |PR|MFIMM]OI |CS M

2 & A A & 4 & A A A 4 A 4 A A

Execution results: Refer to definition above.

Application notes: EMD is automatically executed on power-up. If the microcoded self-test fails, the
CPU locks up and the fault lights have the following meanings:

FRONT

PANEL SMI AU
ON OFF OFF Unable to isolate failure.
ON OFF ON . AU probable cause of failure.
ON ON OFF SMI probable cause of failure.
ON ON ON Self-test was not executed.

EMD loads the last 4K bytes of the loader ROM:s into writable control store. The previous contents
of the WCS are destroyed.

3.51 EXTEND PRECISION — EP
Opcode: 03F0

Addressing mode: Format XXI

3-79 Digital Systems Group

(o]
EP ([@ 2250077-9701

Format:
0O 1 2 3 4 5 6 7 8 9 1011 12 13 14 15
ololojoJolol 1111} 1]1 DC WORD 1
I |
sc Ty D Ts s WORD 2

Syntax definition:

[<label>]p. . . EPp. . . <ga.=>,<wag> [<scnt>][,<dcnt>1p. . . [<comment>]
Trailing commas in the operand list may be omitted.
Example:

LABEL EP @NUMBER,@NEWNUM,6,10
The six-byte value starting at location NUMBER is
extended to 10 bytes and placed in location
NEWNUM.

Definition: The value specified by the source address (<scnt> bytes long) is extended in precision by
placing it right-justified in the destination (<dcnt> bytes long), and appending sign-extension bytes
to the left until the precision reaches the value specified by <dcnt>. If <scnt> is greater than
<dcnt>, the destination is unchanged and overflow is indicated. If <scnt> is zero or is not present,
the source precision is taken from bits 12-15 of workspace register zero. If bits 12-15 are zero the
source precision is 16 bytes. If <dcnt> is zero or is not present, the destination precision is taken
from bit four through seven of workspace register zero. If bits four through seven are zero, the
destination precision is 16 bytes.

Status bits affected: None.
Execution results: (ga;)—~(gaq), extended the number of bytes specified by <dcnt>.

Application notes: If T, or Ty is equal to three, the indicated register is incremented by the source
count or the destination count, respectively.

An example of the extend precision instruction is: If NUMBER addresses a six-byte string, as shown
figuratively below:

NUMBER FB

04

2C

18

AA

87

3-80 Digital Systems Group

0 EP
(r\@? 2250077-9701 IDLE

then the instruction
LABEL EP @NUMBER,@NUMBR2,6,10

will move NUMBER to location NUMBR2 and append sign-extension bytes to the left of NUMBR2
for ten bytes. The result of this instruction is shown figuratively below:

NUMBR2 FF

FF

FF

FF

FB

o4

2C

18

AA

87

3.52 IDLE — IDLE
Opcode: 0340
Addressing mode: Format VII

Format: ,
0O 1 2 314 5 6 7]8 9 10 1111213 14 15

ojolojo}lolo]1}j1jo]jt1]l]ojojojloio} o

Syntax definition:
[<label>]p. . . IDLEp. . . [<comment>]
Example:
LABEL IDLE Place the computer in the idle state.

Definition: Place the computer in the idle state. Note that the PC is incremented prior to the
execution of this instruction and the contents of the PC point to the instruction word in memory
immediately following the IDLE instruction. The computer will remain in the idle state until an
interrupt, reset, or load occurs. IDLE is a privileged instruction.

When the privileged mode bit (bit seven of ST register) is set to zero, the instruction executes
normally. When the privileged mode bit is set to one, an error interrupt occurs when execution of an
IDLE instruction is attempted.

3-81 Digital Systems Group

IDLE
INC

(o]
(@ 2250077-9701

Status bits affected: None.

Execution results: IDLE places the computer in the idle mode, suspending program execution until
an interrupt occurs.

Application notes: Use the IDLE instruction to place the computer in the idle state. This instruction
is useful in timing delays using the clock or in waiting for interrupt signals.

3.53 INCREMENT — INC
Opcode: 0580
Addressing mode: Format VI

Format:

O 1 2 3;4 5 6 7;8 9 10 1141213 14 15
' L L
ofolojolof1jo]1}1]o] T s

Syntax definition:
[<label>]p. . . INCp. . . <ga>p. . . [<comment>]

Example:

LABEL INC @ADDR(2) Increment the source operand, the contents of the
word at the location ADDR plus workspace register
two and place the result in the source operand.

Definition: Add one to the source operand and replace the source operand with the result. The AU
compares the sum to zero and sets/resets the status bits to indicate the result of the comparison.
When there is a carry out of bit zero, the carry status bit sets. When there is an overflow (the sum
cannot be represented in a 16-bit, two’s complement value), the overflow status bit sets.

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, and overflow.

0O 1 2 3 4 5 6 7 8 9 10 11 12 1314 15
1 | I
L>lA>|EQ] c | o | P| X |PR|MF|MM o1 | cs IM

A A A A A

Execution results: (ga;) + 1—(ga,)

Application notes: Use the INC instruction to count and index byte arrays, add a value of one to an
addressable memory location, or set flags. For example, if COUNT contains a zero, the instruction

INC @COUNT
places a 0001, in COUNT and sets the logical greater than and arithmetic greater than status bits,

while the equal, carry, and overflow status bits reset. Refer to Section 1V for additional application
notes.

3-82 Digital Systems Group

2250077-9701

3.54 INCREMENT BY TWO — INCT
Opcode: 05C0
Addressing mode: Format VI

Format:

0O t 2 3,4 5 6 7.8 9 10 11412 13 14 15
§ 1 1 1 4 L
olololololtloj1]v]t}] s s

label>1b. . . INCTh. . . <ga>b. . . [<comment>]

Example:

LABEL INCT R3 Add two to the contents of workspace register three
and replace the contents of workspace register three
with the results.

Definition: Add a value of two to the source operand and replace the source operand with the sum.
The AU compares the sum to zero and sets/resets the status bits to indicate the result of the
comparison. When there is a carry out of bit zero, the carry status bit sets. When there isan overflow,
(the sum cannot be represented ina 16-bit word as a two’s complement value), the overflow status bit
sets.

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, and overflow.

o f 2 3 4 5 6 7 8 9 1011 12 13 14 15
LI
L>la>lealc o | P | X |PR|[MF|MM Of CS M

A A A 4 A

Execution results: (gas) + 2—(gas)

Application notes: Use the INCT instruction to count and index word arrays, and add the value of
two to an addressable memory location. For example, if workspace register five contains the address
(210046) of the fifteenth word of an array, the instruction

INCT RS
changes workspace register five to 2102;, which points to the sixteenth word of the array. The

logical greater than and arithmetic greater than status bits are set while the equal, carry, and
overflow status bits are reset. Refer to Section 1V for additional application notes.

3-83 Digital Systems Group

INC

o]
INSF {[@ 2250077-9701

3.55 INSERT FIELD — INSF
Opcode: 0C10
Addressing mode: Format XVI

Format:

o 1 2 3 4 5 6 7 8 9 1011 12 13 14 15
¥ ¥

'
0jojJoO0 (o] 1 ojJojojojo] 1 w WORD 1

| | L
P T D T s WORD 2

| Syntax definition:
[<labe>]p. . . INSFp. . . <ga=>,<gas>,(<pos>,<wid>)p. . . [<comment>]
Example:

LABEL INSF @ROW,@CORE,(3,6) The six, least-significant bits in the memory word at
address ROW is placed in the memory word at
address CORE, starting at bit three.

Definition: The right-justified bit field of width (<wid>) in the word at the source address is
deposited in the word at the destination address beginning at bit position <pos>. If either <pos> or
<wid> is zero, the position or width is taken from workspace register zero. In this case, bits four
through seven of workspace register zero determine the position and bits 12-15 determine the width.
If the four LSBs of register zero are zero when searching for <wid>, the width becomes 16 bits. If
bits four through seven are zero, then the position is zero. If <pos> plus <wid>> is greater than 16,
the remainder of the field is deposited in the next word in memory, starting at the most significant
bit. The source and destination operands must start on a word boundary.

Status bits affected: Logical greater than, arithmetic greater than, and equal.

o 1 2 3 4 5°6 7 8 9 10 11 12 13 14 15

T 1
L>|A>|EQ|c|o]| P| x |Pr |MF|MM o1] cs M

A A A

Execution results: (gas)—(gaq)

Application notes: The resulting field at the destination address of the INSF instruction is compared
to zero and status register bits zero, one, and two are set to indicate the results of the comparison. If
Ts or Ty is equal to three, the indicated register is incremented by two.

An example of the insert field instruction is: If ROW contains the value 182316, and CORE contains
the value 3FC9¢, then the instruction

LABEL INSF @ROW,@CORE,(3,6)

3.84 Digital Systems Group

[¢]
%@ 2250071-9701

will place the rightmost six bits in ROW into CORE, starting at bit position three of CORE. The new
value of CORE is 31C9;s. The example is shown figuratively below:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ROW o o o 1 1 o o o o o 1 o o o 1 1
3 /

_ V©

N&E— INSERTED FIELD

o 1 2 I3 4 5 6 7 s 9 10 11 12 13 14 15
1 1 | T 1 1 1 1 1 i 1 1 1 1 I
CORE 6 o 1 1 o o o 1 1 1 o o 1 o o 1

The logical greater than bit of the status register is set, and the arithmetic greater than and equal bits
of the status register are reset. Only the inserted bits are compared to zero.

3.56 INVERT — INV
Opcode: 0540
Addressing mode: Format VI

Format:

o 1 2 3,4 5 6 7,8 9 i0 11,12 13 14 15
1 7T 7

Syntax definition:
[<label>1b. . . INVD. . . <ga=bp. . . [<comment>]
Example:

COMPL INV @BUFF(R2) Replace the contents of the location BUFF plus
workspace register two with the one’s complement of
the original value.

Definition: Replace the source operand with the one’s complement of the source operand. The one’s
complement is equivalent to changing each logic to zero in the source operand to a logic one and
each logic one in the source operand to a logic zero. The AU compares the result to zero and
sets/resets the status bits to indicate the result of the comparison.

Status bits affected: Logical greater than, arithmetic greater than, and equal.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

! [
>laslealc ol P| X |[PR|MF|MM Ol CS IM

A A

- 3-85 Digital Systems Group

INSF
INV

INV
IOF

[¢]
@ 2250071-9701

Execution results: The one’s complement of (ga;) is placed in (ga;).

Application notes: INV changes each logic zero in the source operand to a logic one and each lqgic
one to a logic zero. For example, if workspace register 11 contains A54B,, then the instruction

INV R11

changes the contents of workspace register 11 to 5AB4y. The logical greater than and arithmetic
greater than status bits set and the equal status bit resets.

3.57 INVERT ORDER OF FIELD — IOF
Opcode: 0E00
Addressing mode: Format XV

Format:

o 1 2 3 4 5 6 7 8 9 10 11 12 1314 15

I
ojofjfojJolt1|1]lijolo]lolo]o w WORD i

LI
P X X X X X X Ts S WORD 2

Syntax definition:
[<labe>]p. . . IOFp. . . <ga=>,(<pos>,<wid>)p. . . [<comment>]
Example:

LABEL IOF @WORD,(0,8) Reverse the order of eight bits of the contents of
location WORD beginning at the bit position
indicated in workspace register zero.

Definition: The order of the bits in the bit field of width <wid> is reversed starting at bit position
<pos> in the word at the source address. If either <pos> or <wid>> are zero, the position or width is
taken from workspace register zero. In this case, bits four through seven of workspace register zero
indicate the position and bits 12-15 determine the width: If bits 12-15 equal zero, then the width is 16.
If bits four through seven are zero, then the position is zero. If <pos> plus <wid> is greater than 16,
the next word is used for the remainder of the field, starting at the most significant bit. The source
operands must start on a word boundary.

Status bits affected: None.
Execution results: The bit field in the word at <ga.> is reversed.

Application notes: An example of the Invert Order of Field instruction is: If WORD contains the
value E72By¢, and register zero contains 00FF;s then the instruction

LABEL IOF @WORD,(0,9)

will reverse nine bits, starting at bit zero, of WORD and place the results in WORD. After execution
of this instruction, the value in WORD will be 73ABys.

3-86 Digital Systems Group

f Lo JEQ

('.@ 2250071-9701 JGT

3.58 JUMP IF EQUAL — JEQ

Opcode: 1300
Addressing mode: Fermat 11

Format:

0 1 2 334 5 6 738 9 10 1131213 1415
T T 1 1 11
ololof1]ofjof1]1 DISPLACEMENT

Syntax definition:
[<label>]p. . . JEQp. . . <exp>p. . . [comment>]
Example:
LABEL JEQ LOC Jump to LOC if EQ = 1.

Definition: When the equal status bit is set, add the signed displacement in the instruction word to
the PC and place the sum in the PC.

Status bits tested:

o 1 2 3 4 5 6 7 8 $ iG 11 12 13 14 i5
i ol
Ll as|leQl cl ol P X |PRIMFMM| OT|CS M
A

Jump if: EQ = 1

Status bits affected: None.

Execution results: If the equal bit is equal to one: (PC) + displacement—(PC).
If the equal bit is equal to zero: (PC)—~(PC)

Refer to the explanation of execution in unconditional jump - JMP.

Application notes: Use the JEQ instruction to transfer control when the equal status bit is set and to
test CRU bits.

3.59 JUMP IF GREATER THAN — JGT
Opcode: 1500

Addressing mode: Format 11

Format:
o 1 2 3|14 5 6 718 9 10 11312 13 14 15
LI | | L LI
olo|lo]1]o}1]lo]1 DISPLACEMENT

3-87 Digital Systems Group

JGT
JH

[o]
q@ 2250077-9701

Syntax definition:
[<label>]p. . . JGTh. . . <exp>p. . . [<comment>]
Example:
LABEL JGT THERE Jump to THERE if A> = 1.

Definition: When the arithmetic greater than status bit is set, add the signed displacement in the
instruction word to the PC and place the sum in the PC.

Status bits tested:

o 1 2 3 4 5 6 7 8 9 10 1112 13 14 15
IR
L>IA>|EQ| C | O | P | X | PRIMF|MM Ol |CS IM
A

Jump if: A> = 1.

Status bits affected: None.

Execution results: If the arithmetic greater than bit is equal to one: (PC) + displacement—(PC).
If the arithmetic greater than bit is equal to zero: (PC)—(PC).

Refer to the explanation of execution in unconditional jump — JMP.

Application notes: Use the JGT instruction to transfer control when the arithmetic greater than
status bit is set.

3.60 JUMP IF LOGICAL HIGH — JH
Opcode: 1B00
Addressing mode: Format 11

Format:

0O 1 2 3;4 S5 6 7 8 9 10 11,12 13 14 15
LI | I ry v
oj o ojt1j1jo0]1 1 DISPLACEMENT

Syntax definition:
[<label>]p. . . JHp. . . <exp>p. . . [<comment>]

Example:

LABEL JH CONT If the logical greater than bit is equal to one and the
‘ equal bit is equal to zero, jump to CONT.

Definition: When the equal status bit is reset and the logical greater than status bit is set, add the
signed displacement in the instruction word to the contents of the PC and replace the PC with the

sum.

3-88 Digital Systems Group

° JH
@ 2250077-9701 JHE

Status bits tested:

O 1 2 3 4 5 6 7 8 9 10 1112 1314 15
IR

L>|A>|EQl c |0 | P | X | PRIMF|MM Ol |CS M

A)

Jump if L>=1and EQ = 0
Status bits affected: None.

Execution results: If the logical greater than bit is equal to one and the equal bit is equal to zero:
(PC) + displacement—(PC).

If the logical greater than bit is equal to zero or the equal bit is equal to one: (PC)—(PC).
Refer to the explanation of the execution in unconditional jump — JMP.

Application notes: Use the JH instruction to transfer control when the equal status bit is reset and
the logical status bit is set.

3.61 JUMP IF HIGH OR EQUAL — JHE
Opcode: 1400
Addressing mode: Format 11

Format:

0O 1 2 3,4 5 6 7,8 9 10 11,12 13 14 15
v 1 1. 1 17
ojoloj1lojo]l1]o DISPLACEMENT

Syntax definition:
[<label>]1p. . . JHEp. . . <exp>h. . . [<comment>]
Example:
LABEL JHE LABELI If L> or EQ equals one, jump to LABELL.

Definition: When the equal status bit or the logical greater than status bit is set, add the signed
displacement in the instruction word to the PC and place the sum in the PC.

Status bits tested:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1

L>{A>|EQjC | O | P | X | PRIMFIMM OI|CS| " M

[Y A

3-89 Digital Systems Group

JHE
JL

[o]
(@ 2250077-9701

Jump if: I>=1o0or EQ =1
Status bits affected: None.

Execution results: If the logical greater than bit is equal to one or the equal bit is equal to one:
(PC) + displacement—(PC).

If the logical greater than bit and the equal bit are equal to zero: (PC)—(PC).
Refer to the explanation of the execution in unconditional jump — JMP.

Application notes: Use the JHE instruction to transfer control when either the logical greater than or
equal status bit is set.

3.62 JUMP IF LOGICAL LOW — JL
Opcode: 1A00
Addressing mode: Format 11

Format:

o] 1 2 3,4 5 6 7,8 9 10 H.IZ 13 14 15
LI T T T LI |
ofj o [} 1 1 [o] 1 0 DISPLACEMENT

Syntax definition:
[<label>1p. . . JLp. . . <exp>p. . . [<comment>]
Example:

LABEL JL PREVLB If L> and EQ are equal to zero, jump to PREVLB.

peﬁnitfon.' When the equal and logical greater than status bits are reset, add the signed displacement
in the instruction word to the PC contents and replace the PC with the sum.

Status bits tested:

0 1 2 3 4 5 6 7 B8 9 10 11 12 13 14 15
I |

L>1A>1EQ| Cc | 0| P| X | PRIMF|MM oOt|cCs IILI

A A

Jump if: L> = 0 and EQ = 0
Status bits affected: None.

Execution results: If the logical greater than bit and the equal bit are equal to zero:
(PC) + displacement—(PC).

If the logical greater than bit is equal to one or the equal bit is.equal to one: (PC)—(PC).

Refer to the explanation of execution in unconditional jump — JMP.

3-90 Digital Systems Group

. | JL
%@ 22500779701 JLE

Application notes: Use the JL instruction to transfer control when the equal and logical greater than
status bits are reset.

3.63 JUMP IF LOW OR EQUAL — JLE
Opcode: 1200
Addressing mode: Format II

Format:

o 1 2 3,4 5 6 738 9 10 11,12 13 14 i35
1 1 | 1 1 1 1

ojojojJ1}]o oj 1] 0 DISPLACEMENT

Syntax definition:
[<label>1p. . . JLEp. . . <exp>b. . . [<comment>]
Example:
LABEL JLE THERE Jump to THERE when EQ = 1 or L> = 0.

Definition: When the equal status bit is set or the logical greater than status bit is reset, add the
signed displacement in the instruction word to the contents of the PC and place the sum in the PC.

NOTE
JLE is not jump if less than or equal.

Status bits tested:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
[

L>|a>{EQ} ¢c| O| P | X |PR|MFIMM Ol |CS IM

A A

Jump if: L>=0o0or EQ=1"
Status bits affected: None.

Execution results: If the logical greater than bit is equal to zero or the equal bit is equal to one:
(PC) + displacement—(PC).

If the logical greater than bit is equal to one and the equal bit is equal to zero: (PC)—~(PC).
Refer to the explanation of execution in unconditional jump — JMP.

Application notes: Use the JLE instruction to transfer control when the equal status bit is set or the
logical greater than status bit is reset.

3-91 Digital Systerns Group

JLT

JMP

o
(@ 2250077-9701

3.64 JUMP IF LESS THAN — JLT
Opcode: 1100
Addressing mode: Format 11

Format:

o] 1 2 3 4 S 6 7 8 9 10 11 1 12 13 14 15
T T T T7
o}lo o} 1 oOjojojf1 DISPLACEMENT

Syntax definition:
[<label>Jp. . . JLTh. . . <exp>b. . . [<comment>]
Example:
LABEL JLT THERE Jump to THERE if A> = 0 and EQ = 0.

Definition: When the equal and arithmetic greater than status bits are reset, add the signed
displacement in the instruction word to the PC and place the sum in the PC.

Status bits tested:

0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
o
L>fas>lEQlc o lpP | x PR{MF MM Ol]|Cs IM '
[I 3

Jump if: A> =0 and EQ = 0
Status bits affected: None.

Execution results: If the arithmetic greater than bit and the equal bit are equal to zero:
(PC) + displacement—(PC).

If the arithmetic greater than bit is equal to one or the equal bit is equal to one: (PC)—(PC).
Refer to the explanation of execution in unconditional jump — JMP.

Application notes: Use the JLT instruction to transfer control when the equal and arithmetic greater
than status bits are reset.

3.65 UNCONDITIONAL JUMP — JMP
Opcode: 1000
Addressing mode: Format 11

Formatz:

01234567891011112131415
L B

ojojojljt]J]ojo]o]o DISPLACEMENT

3-92 Digital Systems Group

o JMP
Q‘@ 2250077-9701 INC

Syntax definition:

[<label>]b. . . IMPh. . . <exp>B. . . [<comment>]
Example:

LABEL JMP NXTLBL Jump to NXTLBL.

Definition: Add the signed displacement in the instruction word to the PC and place the sum in the
PC.

Status bits affected: None.
Execution results: (PC) + displacement—(PC)

The PC is incremented to the address of the next instruction prior to execution of an instruction.
The execution results of jump instructions refer to the PC contents after the contents have been
incremented to address the next instruction in sequence. The displacement (in words) is shifted to
the left one bit position to orient the word displacement to the word address, and added to the PC

contents.

Application notes: Use the JMP instruction to transfer control to another section of the program
module.

3.66 JUMP IF NO CARRY - IJNC
Opcode: 1700
Addressing mode: Format 11

Format:

0 1 2 314 5 6 718 9 10 11,1213 1415
1L L L
oloflo]1]olt]1]1 DISPLACEMENT

Syntax definition:
[<label>]p. . . INCp. . . <exp>h. . . [<comment>]
Example:
LABEL JNC NONE Jump to NONE if C = 0.

Definition: When the carry status bit is reset, add the signed displacement in the instruction word to
the PC and place the sum in the PC.

Status bits tested:

0o 1 2 3 4 5 6 7 8 9 10 11 12 13 1415
LI
L]JA|EQ|c|o|P| x |PR|IMF|MM|OI | CS M

3-93 Digital Systems Group

INC
JNE

[o]
@ 2250077-9701

Jump if: C=0

Status bits affected: None.

Execution results: 1f the carry bit is equal to zero: (PC) + displacement —(PC).

If the carry bit is equal to one: (PC)—~(PC).

Refer to the explanation of exécution in unconditional jump — JMP.

Application notes: Use the JNC instruction to transfer control when the carry status bit is reset.
3.67 JUMP IF NOT EQUAL — JNE

Opcode: 1600

Addressing mode: Format 11

Format:

[+] 1 2 314 5 6 7;8 9 10 11112 13 14 15
LI | ¥ L) 1 I
oo ojJ1]o0]1 1|0 DISPLACEMENT

Syntax definition:
[<label>]p. . . INEp. . . <exp>b. . . [<comment>]
Example:
LABEL JNE LOC2 Jump to LOC2 if EQ = 0.

Definition: When the equal status bit is reset, add the signed displacement in the instruction word to
the PC and replace the PC with the sum.

Status bits tested:

0O 1 2 3 4 5 6 7 8 910 11 12 13 14 15

L>|A>|EQJ C| O | P| X |[PR|MF|MM] O1{CS M

Jump if: EQ =0
Status bits affected: None.

Execution results: If the equal bit is equal to zero: (PC) + displacement—(PC).

3-94 Digital Systems Group

o INO
{@ 2250077-9701 J0C

3.68 JUMP IF NO OVERFLOW — JNO
Opcode: 1900
Addressing mode: Format 11

Format:

O 1t 2 3]4 5 6 718 9 10 11,412 13 1418
™1 1T 1 1 71 71
ojojojijijojoqi DISPLACEMENT

Syntax definition:
[<labe>]p. . . INOp. . . <exp>b. . . [<comment>]
Example:
LABEL JNO NORML Jump to NORML if O = 0.

Definition: When the overflow status bit is reset, add the signed displacement in the instruction
word to the PC and place the sum in the PC. ‘

Status bits tested:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
b
i
L>A>|EQ] C}] OfP | X |PRIMFIMMOI |CS IM
&

Jump if: 0O =0

Status bits affected: None.

Execution results: If the overflow bit is equal to zero: (PC) + displacement—(PC).

If the overflow bit is equal to one: (PC)—(PC).

Refer to the explanation of execution in unconditional jump — JMP.

Application notes: Use the JNO instruction to transfer control when the overflow status bit is reset.
JNO normally transfers control during arithmetic sequences where addition, subtraction,
incrementing, and decrementing may cause an overflow condition. JNO may also be used following
an SLA (shift left arithmetic) operation. If during the SLA execution, the sign of the workspace
register being shifted changes (+ to -, - to +), the overflow status bit sets. This feature permits
transfer, after a sign change, to error correction routines or to another functional code sequence.
3.69 JUMP ON CARRY - JOC

Opcode: 1800

Addressing mode: Format 11

3-95 Digital Systems Group

JOoC
JOP

o
{[@ 2250077-9701

Format:

o 1 2 314 5 6 7)8 9 10119112 13 14 15
L L L
ol o o]t 1 ojojo DISPLACEMENT

Syntax definition:
[<label>]p. . . JOCP. . . <exp>b. . . [<comment>]
Example:
LABEL JOC PROCED If C=0, jump to PROCED.

Definition: When the carry status bit is set, add the signed displacement in the instruction word to
the PC and replace the PC with the sum.

Status bits tested:

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

L>tAaxleQlclo | P x| PrRIMFIMMoOI Ccs IM

Jump if: C = 1—

Status bits affected: None.

Execution results: If the carry bit is equal to one: (PC) + displacement—(PC).

If the carry bit is equal to zero: (PC)—(PC).

Refer to the explanation of execution in the unconditional jump — JMP.

Application notes: Use the JOC instruction to transfer control when the carry status bit is set.
3.70 JUMP IF ODD PARITY — JOP

Opcode: 1C00

Addressing mode: Format 11

Format: O ' 2 314 5 6 7,8 9 10 11712 13 14 15

LI D | | | LI
o0j10]o0 1 1 11ojo DISPLACEMENT

Syntax definition:
[<label>]p. . . JOPP. . . <exp>p. . [<comment>]

Definition: When the odd parity status bit is set, add the signed displacement in the instruction word
to the PC and replace the PC with the sum.

3.96 Digital Systems Group

: JOP
{“@ 2250077-9701 LCS

Status bits tested:
0o 1 2 3 4 5 6 7 8 9 160 11 12 13 14 15

v
x

t>|A>|EQ| C | O PR|MF [MM] O1|CS IM

»>

Jump if: P =1

Status bits affected: None.

Execution results: If the odd parity bit is equal to one: (PC) + displacement—(PC).

If the odd parity bit is equal to zero: (PC)—(PC).

Refer to the explanation of execution in unconditional jump — JMP.

Application notes: Use the JOP instruction to transfer control when there is odd parity. Odd parity
indicates that there is an odd number of logic one bits in the byte tested. JOP transfers control if the
byte tested contains an odd number (sum) of logic one bits. This instruction may be used in data
transmissions where the parity of the transmitted byte is used to ensure the validity of the received
character at the point of reception.

3.71 LOAD WRITABLE CONTROL STORE — LCS

Opcode: 00A0

Addressing mode: Format XVIII

Format:

o 1 2 3 4 5 6 7 8 9 10 11 1213 14 15 -

R
olojJoj|o|ojojojoft]o]1}o w

Syntax definition:
[<label>]p. . . LCSh. . . <wa>p. . . [<comment>]
Example:

LABEL LCS R4 Load the writable control store using the control
block pointed to by R4.

Definition: The workspace register <wa>> contains the starting location of a three-word control
block that specifies the memory data to be loaded into the writable control store. The control block
has the following format:

Word 1. the number of 64-bit microwords to be loaded.

Word 2: the starting microword address.

Word 3: the starting address in memory of the data to be loaded.

3-97 Digital Systems Group

LCS
LD

o]
@ 2250077-9701

Status bits affected: None.
Execution results: ((wa) + 4)—writable control store

An example of the load writable control store instruction is: If workspace register four points to a
block of memory at location 3274;s containing the values as shown below:

3274 416 WORD 1
80016 WORD 2
B762 & WORD 3

then the instruction

LABEL LCS R4

will load 32 bytes, beginning at location B762;s in memory, into the four, 64-bit microwords
beginning at location 0800;s in the writable control store.

NOTE

The microcode must be loaded into an address range of 800,s through
BFFie. The starting address in word two of the control block must be
within this range. Also, the starting address (word two) plus the
number of microcode words (word one) cannot exceed the upper
limit of BFFys. An illegal operation interrupt will occur if these
conditions are violated.

3.72 LOAD DOUBLE PRECISION REAL — LD
Opcode: 0F80
Addressing mode: Format VI

Format:
O ! 2 3 4 5 6 7 8 9 1011 1213 14 15

| I
0_0001.11-11'0Ts-]

Syntax definition:
[<labe>]p. . . LDp. . . <ga>bh. . . [<comment>]
Example:

LABEL LD @WORD Load the contents of the memory location pointed to
by address WORD into the FPA.

3-98 Digital Systems Group

o LD
2250077-9701 LDCR

"N

Definition: The value specified by the source address is loaded into the FPA (RO-R3).

Status bits affected: Logical greater than, arithmetic greater than, equal.
. s} 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T 1 1
L>laslealclof| P| x|PrR|MFlMMOI|CS M

A A A
Execution results: (gas)—FPA

Application notes: The results of the LD instruction are compared to zero and status register bits
zero, one, and two reflect the comparison. If T, is equal to three, the indicated register is incremented
by eight.

An exampie of the load double precision real instruction is: If the value contained in the eight bytes
pointed to by WORD, after normalization, is .24007AAB;s, then the instruction

LABEL LD @WORD

will store the normalized fraction in the FPA (R0-R3), as shown figuratively below.

4] 1 2 3 4 5 s 7 8 9 10 11 12 13 14 15

T T T T T T T T Y T T T T T

RO 0 1 0 (¢} [¢] (o] Q [o) 0 1 (o] 0 1 [0} 0

T T T T T 1 T T T T T
R1 0 [o] (o] o] 0 (o] [s] (o] 1 1 1 1 (o] 1 0 NORMALIZED

T T T T T T T T T T T HEXADECIMAL
rR2 | 1 o] 1 0 1 v} i o el o] o] 0 0 0 o FRACTION

T T T T T T T T T T T
R3 [o] o s} o o [¢] 0 o) 0 0 0 (o] 0 0 (o]

7

The logical greater than and arithmetic greater than bits of the status register are set; and the equal
bit is reset.

3.73 LOAD CRU — LDCR
Opcode: 3000
Addressing mode: Format 1V '

Format:

j8 9 10 1131213 1415
1 1 T 1 1

c TS s

Syntax definition:

[<labe>]p. . . LDCRb. . . <ga>,<cnt>h. . . [<comment>]

Example:

WRITE LDCR @BUFF,15 Send 15 bits from BUFF to CRU.

3-99 Digital Systems Group

LDCR S
LDD 2250077-9701

Definition: Transfer the number of bits specified in the <cnt> field from the source operand to the
CRU. The transfer begins with the least significant bit of the source operand. The CRU address is
contained in bits three through 14 of workspace register 12. When the <cnt> field contains zero, the
number of bits transferred is 16. If the number of bits to be transferred is from one to eight, the
source operand address is a byte address. If the number of bits to be transferred is from nine to 16,
the source operand address is a word address. When the source operand address is odd, the address is
truncated to an even address prior to data transfer if more than eight bits are transferred. When the

number of bits transferred is a byte or less, the source o
are set/reset according to the results of the com

in a byte (or less) to be transferred establish odd parity.

perand is compared to zero and the status bits
parison. The odd parity status bit sets when the bits

When the privileged mode bit (bit seven) of the ST register is set to zero, the LDCR instruction

executes normally. When bit seven is set to one and the effe

ctive CRU address is equal to or greater

than E0Ois, an error interrupt occurs and the instruction is not executed.

Status bits affected: Logical greater than, arithmetic greater than, and equal. When <cnt> is less

than nine, odd parity is also set or reset. Status is set ac

transferred bits.

0O 1 2 3 4 5 ¢

7 8 9 10 11

cording to the full word or byte, not just the

12 13 14 15

L>JA>lEQjc o} P| X

PR | MF

MM,OI cs

I
M

a & 4

Execution Results: The number of bits specified by <cnt> is transferred from memory at address
<ga>> to consecutive CRU lines beginning at the address in workspace register 12.

Application notes: Use the LDCR instruction to transfer a specific number of bits from memory to
the CRU at the address contained in bits three through 14 of workspace register 12. Refer to Section
IV for a detailed example and explanation of the LDCR_instruction.

3.74 LONG DISTANCE DESTINATION — LDD

Opcode: 07C0
Addressing mode: Format VI

Format:

7,8 9 10 11

12 13 14 15

T

I
S

I

Syntax definition:
[<label>]p. . . LDDp. . . <ga>h. . .
Example:

LABEL LDD @SIXWD

[<comment>]

Place the contents of the six words starting at location
SIXWD into map file two and use map file two to -
develop the destination address of the next

instruction.

'3-100

Digital Systems Group

2250077-9701

Definition: Place the contents of a six-word area of memory into map file two, and use map file two
in development the destination address of the next instruction. The instruction places the contents of
the six-word memory area at the effective address of the source operand in map file two in all cases;
the map file is not used when the following instruction has no destination operand, or when the
destination address has a workspace register address. The instruction inhibits all interrupts until the
following instruction is executed.

Status bits affected: None.

Execution results: When the privileged mode bit (bit seven of ST register) is set to zero, the contents
of a six-word area at address <ga,> are placed in map file two, and the destination address of the
following instruction is mapped with map file two. (If T, of the following instruction is equal to zero,
or if the destination address is a workspace register address, the new map is not used.) LDD is a
privileged instruction.

When the privileged mode bit is set to one, an error interrupt occurs.

Application notes: Use the LDD instruction in the privileged mode to access an address outside of
the current map. The contents of the six-word area are placed in the L1, L2, L3, Bl, B2, and B3
registers of map file two as shown in Section II. The address to which the map file applies is the
destination address of the next instruction. Placing an LDD instruction prior to an instruction that
has no destination operand, or an instruction having a workspace register address for the destination
operand, does not result in an access outside of the current map.

3.75 LONG DISTANCE SOURCE — LDS
Opcode: 0780
Addressing mode: Format VI

Format:

o 1 2 3,4 5 6 7,8 9 10 11,12 13 14 15
T L
S

Syntax definition:
[<label>]p. . . LDSH. . . <ga>p. . . [<comment>]
Example:

LABEL LDS @SIXWD Place the contents of the six words starting at location
SIXWD into map file two and use map file two to
develop the source address for the next instruction.

Definition: Place the contents of a six-word area of memory into map file two, and use map file two
in developing the source address of the next instruction. The instruction places the contents of the
six-word memory area at the effective address of the source operand in map file two in all cases; the
map file is not used when the source address of the following instruction is a workspace register
address, or when the following instruction is a B, BL, or BLWP instruction.

Status bits affected: None.

3-101 Digital Systems Group

LDD
LDS

LDS
LI

[¢]
{[@ 2250077-9701

Execution results: When the privileged mode bit (bit seven of ST register) is set to zero, the contents
of a six-word area at address <ga.>> are placed in map file two, and the source address of the
following instruction is mapped with map file two. (If T, of the following instruction is equal to zero,
or if the following instruction is a B, BL, or BLWP instruction, the new map is not used.) LDS is a
privileged instruction.

When the privileged mode bit is set to one, an error interrupt occurs.

Application notes: Use the LDS instruction in the privileged mode to access an address outside of the
current map. The contents of a six-word area are placed in the L1, L2, L3, B, B2, and B3 registers of
map file two as shown in load memory map file (Section II). The address to which the map file
applies is the source address of the next instruction. Placing an LDS instruction prior to an

~ instruction that has no destination operand, or an instruction having a workspace register address

for the destination operand does not result in an access outside of the current map.

3.76 LOAD IMMEDIATE — LI

Opcode: 0200
Addressing mode: Format VIII

Format:
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0OJj]0]JOjO]oOo jOo |1 ojojojojo w

IMMEDIATE OPERAND

Syntax definition:
[<label>1p. . . LIp. . . <wa>,<iop>p. . . [<comment>]
Example:
GETIT LI R3>17 . Load workspace register three with 17;.

Definition: Place the immediate operand (the word of memory immediately following the
instruction) in the user-specified workspace register (W field). The immediate operand is not affected
by the execution of this instruction. The immediate operand is compared to zero and status bits zero,
one, and two are set or reset according to the result of the comparison.

Status bits affected: Logical greater than, arithmetic greater than, and equal.

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I LI
L>A>IEQIC | O| P| X |PR |[MF|MM| O1] CS IM

A A A

Execution results: iop—(wa)

3-102 Digital Systems Group

= LI
{@? 2250077-9701 LIM

Application notes: Use the LI instruction to place an immediate operand in a specified workspace
register. This is useful for initializing a workspace register as a loop counter. For example, the
instruction

LI R7,5

initializes workspace register seven to the value 0005:. The logical greater than and arithmetic
greater than status bits are set, while the equal status bit is reset.

3.77 LOAD INTERRUPT MASK - LIM
Opcode: 0070
Addressing mode: Format XVIII

Format:

o 1 2 3 4 5 6 7 8 9 1011 12 13 1415
| LI
olojlolojo]Jo]Jojo}oOo}f1 1 1 w

Syntax definition:
[<label>]b. . . LIMb. . . <wac>h. . . [<comment>]
Example:

LABEL LIM R3 The four LSBs of workspace register three are loaded
into the interrupt mask of the status register.

Definition: The four LSBs of <wag> are loaded into the four LSBs of the status register (the
interrupt mask). LIM is a privileged instruction.

When the privileged mode bit (bit seven of ST register) is set to zero, the instruction executes
normally. When the privileged mode bit is set to one, an error interrupt occurs when execution of an
LIM instruction is attempted and the interrupt mask is not loaded.

Status bits affected: Interrupt mask.

0 1 2 3 4 5 6 7 8 910 11 12 13 14 15
| 1 |
>l a>l galc 1o | P | x | PRIMFjMM| 01| cs M

A A A A
Execution results: The four LSBs of <wa>> are loaded into the interrupt mask of the status register.
Application notes: The LIM loads the interrupt mask of the status register. Use the load interrupt

mask instruction to initialize the interrupt mask for a particular level of interrupt to be accepted. For
example, if workspace register four contains the value 3;6, then the instruction.

LABEL LIM R4

will load the contents of the four least significant bits of R4, in this case 3i6, into the four least
significant bits of the status register. The interrupt mask of the status register is set to level three and
enables interrupts at levels zero, one, two, and three.

3-103 Digital Systems Group

]
LIMI @ 2250077-9701

3.78 LOAD INTERRUPT MASK IMMEDIATE — LIMI
Opcode: 0300
Addressing mode: Format VIII

Format: 7
O 1 2 3 4 5 6 7 8 9 10 11 .12 13 14 15

[OJ ¢ 0jojo}o 1 tlolJojo]lo]Jo}lo}jo]o

IMMEDIATE OPERAND

Syntax definition:

[<label>]p. . . LIMIp. . . <iop>p. . . [<comment>]
Example:

LABEL LIMI 3 Mask interrupt levels four through 5.
Definition: Place the low order four bits (bits 12-15) of the contents of the immediate operand (the
next word after the instruction) in the interrupt mask of the status register. The remaining bits of the
status register (zero through 11) are not affected. LIMI is a privileged instruction.
When the privilged mode bit (bit seven of ST register) is set to zero, the instruction executes
normally. When the privileged mode bit is set to one, an error interrupt occurs when execution of an

LIMI instruction is attempted and the interrupt mask is not loaded.

Status bits affected: Interrupt mask.

O 1 2 3 4 5 ¢ <% 8 9 10 11 12 13 14 15
1 I
Ll A>lEQjc |o |P | x | PR MFIMM| o1 | cs M
4 A A A

Execution results: Places the four least significant bits of <iop> in the interrupt mask: the four least
significant bits of the ST register.

Application notes: Use the LIMI instruction to initialize the interrupt mask for a particular level of
interrupt to be accepted. For example, the instruction

LIMI 3

sets the interrupt mask to level three and enables interrupts at levels zero, one, two, and three.

3-104 Digital Systems Group

o]
{@ 2250077-9701 LMF

3.79 LOAD MEMORY MAP FILE — LMF
Opcode: 0320

Addressing mode: Format X

[,

Syntax definition:

Format:

[<label>]p. . . LMFp. . . <wa><m>p. . . [<comment>]

Example:
NMAP LMF R3,1 Load memory map file 1 with six words of memory,
starting at the address specified in workspace register
three.

Definition: Place the contents of a six-word area of memory at the address in the workspace register
specified by <wa> into the memory map file designated by <m>. LMF is a privileged instruction.

When the privileged mode bit (bit seven of ST register) is set to zero, the instruction executes
normally. When the privileged mode bit is set to one, an error interrupt occurs when execution of an
LMF instruction is attempted and the interrupt mask is not loaded.

Status bits affected: None.

Execution results: When the privileged mode bit (bit seven of ST register) is set to zero. the contents
of a six-word area at the address in <wa> are placed in map file <m>.

When the privileged mode bit is set to one, an error interrupt occurs.
NOTE
Do not use the LMF instruction to change the (mapped) address of
the workspace pointer. This will cause the next context switch to

dump cached workspace registers to the wrong memory location.

Application notes: Use the LMF instruction to load either map file zero or one (map file two is
loaded by the long distance instructions). The map file is a set of six registers that maps the 32K word

3-105 Digital Systems Group

LMF 2250077-9701

addresses of the AU into the desired 20-bit addresses of TILINE memory. The six-word area
contains the following:

0 10 11 15

WORD O L1 X X X]Jojo
1 81

2 L2 X X x]oljo
3 B2

a L3 X X x]o|o
S B3

(A) 132204A
Words zero, two, and four contain values that are placed in limit registers L1, L2, and L3.
To determine the values to be placed in the limit registers, the following considerations apply:

® The 11 most significant bits of each memory word (the limit) are placed in the I1-bit limit
registers.

e Bits 11-13 may be any value (they are ignored).

® Bits 14 and 5 define the protection of the memory segment. The protection is defined as
follows:

Mapping Limit Register Bits

14E) 15(W) Memory Protection in Segment
0 0 No protection
0 1 Write protected
l 0 Execute protected
I 1

Execute and write protected

If one of the three protected options are chosen, status bit nine must be set for the
protection to be enabled. If status bit nine equals zero, the protection is ignored.

® The one’s complement of the limit is placed in the memory word (and in the map file).

The values in words one, three, and five are the 16 most significant bits of the bias register values,
and are placed in registers Bl, B2, and B3.

To determine the values to be placed in the six-word memory area, consider the following:
® All addresses from zero through limit one are contiguous in memory.
® All addresses greater than limit one, up through limit two are contiguous in memory.

® All addresses greater than limit two, up through limit three are contiguous in memory.

3-106 Digital Systems Group

o LMF
(’@ 2250077-9701 LR

. Place the one’s complement of the limit values in words zero, two, and four.

e Place the 16 most significant bits of the bias address for the lowest group in the second
word.

e Place the 16 most significant bits of the bias address for the next group in the fourth word.

e Place the 16 most significant bits of the bias address for the highest group in the sixth
word.

3.80 LOAD REAL — LR
Opcode: 0D80
Addressing mode: Format VI
Format: .
0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15

1 17 T 1
ojoflofofijijofi]i]o]| Tg s

Syntax definition:
[<labe>]p. . . LRp. . . <ga>p. . . [<comment>]
Example:

LABEL LR R6 Load workspace registers six and seven into the FPA
(RO-R1)

Definition: The real number in the source address is stored in the FPA (RO-R1).
Status bits affected: Logical greater than, arithmetic greater than, and equal.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LI
L>|A>|EQ|c |o | P | X | PRIMF|MM 01| CS M

A A A

Execution results: (ga;)—~FPA

Application notes: The result of the LR instruction is compared to zero and status register bits zero,
one, and two reflect the comparison. If T is equal to three, the indicated register is incremented by
four.

An example of the load real instruction is: If the value contained in workspace register six and
workspace register seven, after normalization, is .20000A,s then the instruction

LABEL LR R6

3-107 Digitel Svetems Grovz

LR g
LREX 2250077-9701

will store the normalized fraction in the FPA (RO-R1), shown figuratively below.

(o) 1 2 3 4 S 6 7 8 9 10 t1 12 13 14 15
! ' i 1 I T 1 ! 1 ' I J T
RO (o] 1 o o o] (o] (o) o 0 0 1 o o] o] o] 0 NORMALIZED
AT AT Tl
R1 (o] o] 4] (4] o o] (o] o (4] o o 1 0 1 o]

The logical greater than and arithmetic greater than bits of the status regéiter are set; and the equal
bit is reset.

3.81 LOAD OR RESTART EXECUTION — LREX
Opcode: 03EQ
Addressing mode: Format VII

Format:
O 1 2 3]4 5 6 7|8 9 10 11112 13 14 15

0opojojojojojt1jt1]t1t]1]t1tiotolo]lolo

Syntax definition:
[<labe>]p. . . LREXD. . . [<comment>]
Example:
LABEL LREX Start all over.

Definition: Place the contents of location FFFCys into the WP register and the contents of location
FFFE;¢ into the PC. Store the previous contents of the WP register, the PC, and the ST register in
workspace registers 13, 14, and 15, respectively. Set the interrupt mask to zero, disabling all interrupt
levels except level zero. LREX is a privileged instruction.

The LREX instruction sets the privileged mode bit (bit seven) of the ST register to zero in addition to
performing the context switch. When the privileged mode bit is set to zero prior to execution of an
LREX instruction, the instruction executes normally. When the privileged mode bit is set to one and
execution of an LREX instruction is attempted, an error interrupt occurs. The LREX instruction
also sets the map file bit (bit eight) of the ST register to zero.

Status bits affected: Map file, privilege, memory management, overflow interrupt enable, writable
control store, and interrupt mask.

0 1 2 3 4 5 6 7 8 9 10 1112 13 1415

bor ol
L>| A>lEQ| c| o] P | X |PR|MF[MM|OI |CS M

A A A A A A A2

3-108 Digital Systems Group

° LREX
2250077-9701 LST

Execution Results: (location FFFC;5)—(WP)
(location FFFE;)—(PC)
(old WP)—(Workspace register 13)
(old PC)—(Workspace register 14)
(old ST)—~(Workspace register 15)
0—(Interrupt Mask)
0—(Map File) Status Register
0—(Privilege)
0—(WCS Enable)
0—(Memory Management)
0—(Overflow Interrupt Enable)

Application notes: Use the LREX instruction to perform a context switch using the transfer vector at

location FFFCys. Typically, the transfer vector transfers control to the front panel routine in Read
Only Memory (ROM). Additional application information is included in a subsequent paragraph.

3.82 LOAD STATUS REGISTER — LST

Opcode: 0080

Addressing mode: Format XVIII

Format: .
' 0 1 2 3 4 5 6 7 8 9 1011 12 13 1415

L
olojolJolo|o]J]oOojo}1|o}joO}O w

Syntax definition:
[<label>]p. . . LSTh. . . <wa>p. . . [<comment>]

Example:

LABEL LST R3 The contents of workspace register three is loaded
" into the status register.

Definition: The contents of <was> are placed in the status register.

Status bits affected: All bits.

o 1 2 3 4 5 6 7 8 9 10 11 1213 1415
i |

L>|asjEQjc}lo| P| X |PR MFMM|OI cs M
X & & 2 2 A 2 &4 A4 A a4 4 44 A s

If the privileged bit is set to one in the current status register, then only bits zero through five and ten
will be loaded into the status register.

 Execution results: (waq)—(ST)

Application notes: The LST instruction loads the status register.

3-109 Digital Systems Group

LST
LTO

e}
{@ 2250077-9701

An example of the load status register instruction is: If workspace register three contains the value
870016, and the value of the status register is 80006, then the instruction

LABEL LST R3
will place the value of workspace register three into the status register, in this case 8700;. If th_c
privileged bit of the status register had been set, the value of the status register, after execution of this
instruction, would be 8400;.
3.83 LEFT TEST FOR ONE — LTO
Opcode: 001F
Addressing mode: Format XI

Format:
O 1 2 3 4 5 6 7 B8 9 10 11 12 13 14 15

0pojojojojojofo]lo]lolof1 s |1]1]1]worp1

c T D T s WORD 2

Syntax definition:

[<label>]p. . . LTOW. . . <ga.>,<ga.>[,<cnt>]p. . . [<comment>]

Example:

LABEL LTO @TST,@CNT,4 Locate the leftmost one in the four-byte value starting
at location TST and add the bit’s position to the word
at location CNT.

Definition: The multibyte value at the source address is examined for the leftmost one. The bit
position value is added to the word at the destination address. If the value at the source address is
zero, nothing is added to the destination and status register bit two is set to a one; otherwise status bit
two is set to zero. The number of bytes of precision of the value at the source address is determined
by the <cnt> field. If <cnt> equals zero or is not present, the count is taken from the four LSBs of
workspace register zero. If the four LSBs of workspace register zero are zero, the count is 16.

Status bits affected: Equal.

O 1 2 3 4 5 6 7 8 910 11 12 13 14 15

LI
L>tA>jEQl c (o] P| x [PR{MF]MM| 01 |Cs IM

[y

Execution results: (gas) + index to first ‘I’ bit in (gas)—(gaq)

Application notes: If T, is equal to three, the indicated register is incremented by the byte count.

3-110 Digital Systems Group

LTO
LWP

[e]
Qf%fp 2250077-9701

An example of the left test for ones instruction is: If TST is a pointer to a four-byte string at memory
address 3274 (the values contained in these bytes are Ois, O16, 2016, 016, respectively), and CNT
contains the value 0A4A;q, then the instruction

LABEL LTO @TST,@CNT 4

will check for the leftmost one, in the four bytes beginning at location TST, and add the bit position
to the value in CNT. The result, in this example, is the value 0A60,s, being placed in CNT.

This example is shown figuratively below.

1 1 1 1 L{ 1 1 1 1 1 1 1 1 1
3274 (o) 0] 0 0 o] [s) o] 0 o] o) [o] 0] (o] o} 0 o}
(o) 0 o] o) 0 o] 1 o] O G o] o] o) Q o] o)

1 1 1 1 1 1 L 1 1 1 1 1 1 i
i6 17 i8 i9 20 21 22 23 24 25 26 27 28 29 30 31

CNT BEFORE EXECUTION
0A4dA, g

%%AA;ZTER EXECUTION
The equal bit of the status register is reset; the other bits of the status register are unaffected.
3.84 LOAD WORKSPACE POINTER REGISTER — LWP
* Opcode: 0090
Addressing mode: Format XVIII

Format:

0 1t 2 3 4 S 6 7 8 9 1011 12 1314 153

<)'oo<)_ooooloutI\J[l
Syntax definition:
[<labe>]p. . . LWPH. . . <was>h. . . [<comment>]
Example:
LABEL LWP RS Place the contents of workspace register five in the

workspace pointer register.

Definition: The contents of the workspace register <was> are placed in the workspace pointer
register.

Status bits affected: None.

Execution results: (was)—WP

3-111 » Digital Systems Group

Lwp

LWPI g

MD

2250077-9701

Application notes: An example of the load workspace pointer register instruction is: If workspace
register five contains the value of 22016, the instruction

LABEL LWP RS
will place the contents of workspace register five, 220;¢, into the workspace pointer register.
3.85 LOAD WORKSPACE POINTER IMMEDIATE ~ LWPI
Opcode: 02E0
Addressing mode: Format VIII

Format:
0 1 2 3,4 5 6 7,8 9 10 11 12 13 14 15

OJ]ojojJojJojJo]1]o}]1 1 1tojojojojo

IMMEDIATE OPERAND

Syntax definition:
[<label>]b. .. LWPIp. . . <iop>p. . . [<comment>]
Example:
NEWWP LWPI >02F2 The workspace pointer is loaded with 02F2;.

Definition: Replace the contents of the WP with the immediate operand. The immediate operand is
the word of memory immediately following the LWPI instruction.

Status bits affected: None.

Execution results: iop—(WP)

Application notes: Use the LWPI instruction to initialize or change the WP register to aiter the
workspace environment of the program module. The user should use either a BLWP or a LWPI
instruction prior to the use of any workspace register in a program module.

3.86 MULTIPLY DOUBLE PRECISION REAL — MD

Opcode: 0F00

Addressing mode: Format VI

Format:

0O 1 2 3 4 5 6 7 8 9 1011 12 13 14 15

| N R N B
00001111001'5 s

. 3-112 Digital Systems Group

2250077-9701

Syntax Definition:

[<label>]p. . . MDp. . . <ga>b. . . [<comment>]

Example:
LABEL MD @WORD Multiply the contents of the FPA by the contents of
the word at location WORD and place the result in
the FPA.

Definition: The contents of the FPA are multiplied by the word at the source address. The result is
placed in the FPA (R0-R3).

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, and overflow.

O t 2 3 4 5 6 7 8 9 10 11 12 1314 15
I LI
L>|a>|ealc|o]| P] x |PRIMF|MM OI | CS IM
' Y

a4 A A A

Execution results: FPA X (ga,)—~FPA

Application notes: The results of the MD instruction are compared to zero and status register bits
zero, one, and two reflect the comparison. If status register bits three and four are set to one,
overflow has occurred. If status register bits three and four are set to zero and one, respectively,
underflow has occurred. If T, is equal to three, the indicated register is incremented by eight.

An example of multiply double precision real is: If the value starting at location WORD contains,
after normalization, the value 34,5, as shown figuratively below,

1 2 3 4 5 3] 7 8 9 10 11 12 13 14 15

MD

T T T T] 1 T T T T T T T N
WORD 0 1 [} 0 o [1 0 ¢} o) 1 1 0 1 o]
I I 1) i] I ¥ |] I ¥ L]
WORD+ 1 0 0 0 o 0 0 o} 0 0 [o} 0 0 (o] [o] (o] (s} NORMALIZED
? HEXADECIMAL
I 1 T T T T T T T T T T T T T FRACTION

WORD+2 | O o (o] o o 0 0o o 0 o] e] o] o o (o} o]

WORD+3 | O o 0 (] o 0 0o o 0 o o (o] o] 0 4] [o)

7

and the double precision FPA (RO0-R3), after normalization, contains the value 2616, shown
figuratively below,

o} 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RO [s) i 4] o] s} O i o] o] o] 1 o] 0 1 1 (o]

R1 o o 0 0 [0} [0} o] o) [s) [¢] o 0 o [s) o] o} NORMALIZED
T 1 1 T T T T T T T T T T T T > HEXADECIMAL

rR2lo ¢ o o o o o o o o o o o0 o0 o0 O FRACTION

R3] O 0 0 o 0 o) (o] Q o] 0 (o] o] 0 0 (8] 0o

3-113 Digital Systems Group

MD
MOV

(o]
@ 2250077-9701

then the instruction
LABEL MD @WORD

will multiply the contents at location WOR D by the contents of the FPA, and place the result, 7B8,s,
in the FPA, shown figuratively below.

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1s
¥ 1 1 1 | § 1] 1} 1 1) I 1 1]) N
ROJOoJ1 o o6 o o 1 110 1 1 1 1 o 1 i
i 1 i [1 I I L i 1 1 i 1
Rt 1 0 0 0 o0 0 0 9 o0 0 0 0 o0 o o o NORMALIZED
T T T T T HEXADECIMAL
R2JO 0 0 o0 o0 0 0 0 o0 0 0 o0 o0 o0'o o r FRACTION
T T i) 1 I ¥ 1] i] 1 1 i I
R8J]O0O ©0 0 0 o0 0 0 0 0 o0 o0 0 0 o0 o o)

The logical greater than and the arithmetic greater than bits of the status register are set; and the
equal, carry, and overflow bits of the status register are reset.

Refer to Section II for a detailed description of normalization and double precision floating point
instructions.

3.87 MOVE WORD — MOV
Opcode: C000
Addressing mode: Format |

Format:

18 9 10 11912 13 14 15
1 V 1 I ¥ I i I
D Ts S

Syntax definition:

[<label>]p. . . MOV. . - <ga=><gas>h. . . [<comment>]

Example:

GET MOV @WORD,R2 Copy the contents of the memory word at location
WORD and place the copy in workspace register two.

Definition: Replace the destination operand with a copy of the source operand. The AU compares
the resulting destination operand to zero and sets/ resets the status bits according to the comparison.

Status bits affected: Logical greater than, arithmetic greater than, and equal.
0 ! 2 3 4 5 6 7 8 910 11 12 13 14 15

I D
L>IA>lEQ|{Cclo| P| x|Pr|MFIMM|OIl]| cs IM

A 4 &

3-114 Digital Systems Group

MOV

o]
q@ 2250077-9701 MOVA

Execution results: (gas)—(gaa)

Application notes: MOV is used to move 16-bit words as follows:
e Memory-to-memory (nonregister).
e Load register (memory-to-register).
e Register-to-register.
e Store register (register-to-memory).
MOV may also be used to compare a memory location to zero by the use of
JNE EST
which would move register seven to itself and compare the contents of register seven to zero. If the
contents are not equal to zero, the equal status bit is reset and control transfers to TEST. Another
use of MOV is: if workspace register nine contains 341615 and location ONES contains FFFFie, the
instruction
MOV @ONES,R9
changes the contents of workspace register nine to FFFFje, while the contents of location ONES is
not changed. For this example, the logical greater than status bit sets and the arithmetic greater than
and equal status bits reset.
3.88 MOVE ADDRESS — MOVA
Opcode: 002B
Addressing mode: Format XIX

Format:
0 1 2 3 4 5 6 7 8 9 10 11 1213 1415

olojojojojojo]ojoOo}joO]}1 ol110]1 1] WORD 1

x x x x| Ty D T s WORD 2

Syntax definition:
[<labe[>]p. . . MOVAD. . . <ga><gas>h. . . [<comment>]
Example:

LABEL MOVA CHAR(R6),R7 Move the value of CHAR plus the contents of
workspace register six into workspace register seven.

Definition: The effective address specified by the source address is moved to the destination address.

3-115 Digital Systems Group

MOVA =
MOVB 2250077-9701

Status bits affected: Logical greater than, arithmetic greater than, and equal.

0 1 2 3 4 5 6 7 8 910 11 12 13 14 15

[
L>lA>|EQ)c| o] P| X |PR|MFjMM(OI | CS M

A A A
Execution results: ga,—(gaq)
Application notes: The result of the MOVA instruction is compared to zero and status register bits
zero, one, and two indicate the result. If T, or T, is equal to three, the indicated register is

incremented by two.

An example of the move address instruction is: If TABLE is at location 2001, and workspace register
two contains the value 6,6, then the instruction

LABEL MOVA TABLE(R2),R7
will place the address 20655 in workspace register seven.
3.89 MOVE BYTE — MOVB
Opcode: D000
Addressing mode: Format |
Formar:
8 9 10 11,12 13 14 15

l
T T LI
1tl1]of 1] 1 D Ts s

Syntax definition:
[<label>]p. . . MOVBp. . . <ga>,<ga>h. . . [<comment>]
Example:

NEXT MOVB R2,@BUFFER(R3) Move the most significant byte of workspace register
two to the byte at the location addressed by BUFFER
plus workspace register three.

Definition: Replace the destination operand (byte) with a copy of the source operand (byte). If either
operand is addressed in the workspace register mode, the byte addressed is the most significant byte
of the word (bits zero through seven) and the least significant byte (bits eight through 15) is not
affected by this instruction. The AU compares the destination operand to zero and sets/resets the
status bits to indicate the result of the comparison. The odd parity bit sets when the bits in the
destination operand establish odd parity. :

Status bits affected: Logical greater than, arithmetic greater than, equal, and odd parity.

o 1 .2 3 4 S 6 7 8 9 10 11 12 13 14 15
I

L>|A>lEQ|C |]Oo | P | X | PRIMF|MM o1{cCs IM

A A A A

" 3-116 Digital Systems Group

o MOVB ‘
@ 22500779701 MOVs ‘

Execution result: (gas)—(gaaq)

Application notes: MOVB is used to move bytes in the same combinations as the MOV instruction
moves words. For example, if memory location TEMP contains a value of 201616, and if workspace
register three contains 542By¢, then the instruction

MOVB @TEMP,R3

changes the contents of workspace register three to 202Bis. The logical greater than, arithmetic
greater than, and odd parity status bits set while the equal status bit resets.

3.90 MOVE STRING — MOYVS
Opcode: 0060

Addressing mode: Format XII

Format:
0 1 2 3 4 5 6 7 8 9 10 11 1213 1415
ololo|olo|lolojoflo]1|1]o0 l v‘v ' WORD 1
I —
c T4 D Ts s WORD 2

Syntax definition:

[<label>]p. . . MOVSH. . . <ga><gas>,[lcnt>][,<ckpt>]b. . . [<comment>]

Trailing commas may be omitted from the operands. The checkpoint register may be omitted from
the instruction if a default has been specified with the CKPT assembler directive. If <cnt> is
. omitted, a default of zero is used.

Example:

LABEL MOVS @INPUT,@MOVE,I0,R1 Move ten bytes beginning at location INPUT to
the ten bytes beginning at location MOVE. The
checkpoint register is R1.

Definition: The byte string, starting at the location specified by the source address, is moved to the
destination address. The byte at the source address is moved first. The string length may be specified
in the <cnt> field, register zero, or as a tagged string (if <cnt> = 0 and RO = FFFF).

The string is compared to zero (as a signed two’s complement value), and bits zero, one, and two of
the status register are set accordingly. If the string is tagged, the tag byte is moved, but it is not used
in the comparison.

If the length of the string is 16 bytes or more, the checkpoint register <ckpt> is used for interrupts. If
an interrupt occurs during execution, checkpoint data is stored in the checkpoint register, the
program counter is decremented and the interrupt trap is taken. After the interrupt is serviced,
execution continues from where it stopped. Upon completion of the instruction the checkpoint
register is set to -1.

3117 Digital Systems Group

[¢]
MOVS {@ 2250077-9701

The checkpoint register value plus one is used as an initial index into the string. To access the
beginning of the string, the checkpoint register must be set to -1 before the MOVS instruction is first
executed.

Status bit affected: Logical greater than, arithmetic greater than, and equal.

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I) 1
L>A>lEQC O] P| X |PR|MF MN{OI Cs IM

A A A

Execution results: (ga;)—~(gas) The byte at ga, is moved first.

The result of the MOVS instruction is compared to zero and status register bits zero, one, and two
reflect the comparison.

Application notes: If T, and/or Ty is equal to three, the indicated register is incremented by the string
length.

If the checkpoint register is not initially equal to -1, status registers bits zero through two are
assumed to reflect the correct status for the bits that were skipped.

If a string has a length of zero, no data is moved, and status bits zero through two are set to zero. If a
tagged string has a length of one, only the tag byte is moved, and status bits zero through two are set
to zero.

For example, if location ZEROS contained five bytes of zeros and workspace registers R0, R6, R7,
and R8 contained >FFFF, >406, >274E, and >764C respectively, then the instruction

MOVS @ZEROS,R6,5,R0

would result in the following register contents:

R6 =0
R7=0

R8 = >4C
RO = FFFF

The status register bits affected would be

logically greater than =0
arithmetically greater than =0
equal =1

3-118 Digital Systems Group

o MOVS
@ 2250077-9701 MPY

In the next example, workspace register zero contains the siring length, and workspace register one is
used as the checkpoint register. Assume that location ALPABT contains the 26-byte long character
string consisting of the alphabet. Assume that location BUFFER is completely filled with Xs. The
sequence of code '

LI R0,26
SETO Rl
MOVS @ALPABT,@BUFFER,RI

will result in location BUFFER containing the string ‘ABCDEFGHIJ KLMNOPQRSTUVWXYZ’.
The status bits affected would indicate

logically greater than =1
arithmetically greater than =1
equal =0

If the MOVS instruction was executed with the value of the checkpoint register something other than
-1, the current value of the status register would be considered as a partial status result for the
instruction. If the checkpoint register is set to a value greater than -1, the byte that are moved will be
taken from inside the string, starting with the byte at <ckpt> + L.

The MOVS instruction can be used to initialize a buffer. The following example initializes a buffer of
length BLENTH to the value of VALUE. ‘

MOV @VALUE,@BUFF

LI R2,BLENTH-2

SETE RI

MOVS @BUFF,@BUFF+2,R2,R1
Another aspect of the MOVS instruction is the way in which the use of tagged strings affects the
setting of the status register. The following cases demonstrate status register settings for several

tagged strings.

SOURCE STRING (BYTES) STATUS (L>,A>.E)

>FF,00, ..0 0,0,1
3,>FF,>FF >FF 1,0,0
4,0,0,1,0 1,1,0
1 0,0,0

391 MULTIPLY — MPY
Opcode: 3800

Addressing mode: Format IX

. 3-119 Digital Systems Group

(o]
MPY Q’__@; 2250077-9701

Format:
18 9 10 11412 13 14 15
L | T T T 1
oloj1f{1}1]o D T s

Syntax definition:
[<labe>]p. . . MPYD. . . <ga=>,<wac>p. . . [<comment>]
Example:

LABEL MPY @ADDR,R3 Multiply the contents of workspace register three by
the contents of the word at location ADDR and place
the result, right-justified, in the 32-bits of workspace
registers three and four.

Definition: Multiply the first word in the destination operand (a consecutive two-word area in
workspace) by a copy of the source operand and replace the two-word destination operand with the
result. The multiplication operation may be graphically represented as follows:

Destination operand workspace registers

WORKSPACE REGISTER (n) WORKSPACE REGISTER (n+1)

o 15}0 15
Ii——-—MULTIPLICAND-—D—I |
™ PRODUCT —>

Source operand

SOURCE OPERAND
ADDRESSABLE MEMORY

(o] 15

f¢——————— MULTIPLIER —————p]

The first word of the destination operand shown above is addressed by the contents of the D field.
This word contains the muitiplicand (unsigned magnitude value of 16 bits) right-justified in the
workspace register (represented by workspace n above). The 16-bit unsigned multiplier is located in
the source operand. When the multiplication operation is complete, the product appears right-
justified in the entire two-word area addressed by the D field as a 32-bit unsigned magnitude value.
The maximum value of either input operand is FFFF;s and the maximum value of the unsigned
product is (16° - 2(16*)+1) or FFFE0001s.

If the destination operand is specified as workspace register 15, the first word of the destination
operand is workspace register 15 and the second word of the destination operand is the memory
word immediately following the workspace memory area.

Status bits affected: None.

Execution results: (ga;) X (waq). The product (32-bit magnitude) is placed in waq and waq + 1, with
the most significant half in wag.

| 3—120 Digital Systems Group

[}
{@ © 2250077-9701 MPYS

Application notes: Use the MPY instruction to perform a magnitude multiplication. For example, if
workspace register five contains 001215, workspace register six contains 1B31:, and memory location
NEW contains 00056, then the instruction

MPY @NEW,R5

changes the contents of workspace register five to 0000;6 and workspace register six to 005A;¢. The
source operand is unchanged. The status register is not affected by this instruction.

3.92 MULTIPLY SIGNED — MPYS
Opcode: 01CO
Addressing mode: Format VI

Format:

Syntax definition:
[<labe>]p. . . MPYSh. . . <ga>b. . . [<comment>]

Example:

LABEL MPYS R3 Multiply the contents of workspace register zero by
the contents of workspace register three and place the
results in workspace register zero and one.

Definition: The signed, two’s complement integer in workspace register zero is multiplied by the
signed, two’s complement integer at the source address. The product, a signed, two’s complement
double-length integer, is deposited in workspace registers zero (most-significant half) and one (least
significant half).

Status bits affected: Logical greater than, arithmetic greater than, and equal.

0O {1 2 3 4 5 6 7 8 9 1011 12 13 14 15
1 I I
L>|a>(EQ]jc | o | P| X |PR|MF|MM O1] CS M

A A A
Execution results: (R0) X (ga;)—(R0O and R1)
Application notes: The MPYS instruction allows for multiplication of signed numbers.

The result of the MPYS instruction is compared to zero and status register bits zero, one, and two
reflect the comparison. If T; is equal to three, the indicated register is incremented by two.

An example of the multiply signed instruction is: If workspace register zero contains the value
FFCC¢, and workspace register three contains the value FFDAjg, then the instruction

LABEL MPYS R3

3-121 Digital Systems Group

MPYS [4S
MR 2250077-9701

will multiply the signed, two’s complement value of workspace register zero by the signed, two’s
complement value of workspace register three, and will place the double-length result in workspace
register zero and workspace register one.The product is, in this example, R0=0 and R1=7B8;s.
The sign of the result follows normal algebraic rules as follows:

positive X positive = positive

positive X negative = negative

negative X negative = positive

The logical greater than and the arithmetic greater than bits of the status register are set; and the
equal bit of the status register is reset. :

3.93 MULTIPLY REAL — MR
Opcode: 0D00

Addressing mode: Format VI
Format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 T 1
oJojoloft|li|lo]1]ofof| Tg s

Syntax definition:
[<label>]p. . . MRp. . . <ga>p. . . [<comment>]

Example:

LABEL MR R5 The contents of the FPA are multiplied by the
contents of workspace registers five and six. The
result is placed in the FPA.

Definition: The FPA (RO,R1) is multiplied by the contents of the two words at the source address
and the result is placed in the FPA (RO,RI). :

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, and overflow.

o 1 2 3 4 5 6 7 8 9 10 11 12 1314 15

LI
L>A>EQCOPXPRMFMMOI Ccs M

4 A A A A

Execution results: FPA X (ga,)—FPA

Application notes: The results of the MR instructions are compared to zero and status register bits
zero, one, and two reflect the comparison. If status register bits three and four are set to zero and
one, respectively, underflow has occurred. If they are set to ones, overflow has occurred. If T, is equal
to three, the indicated register is incremented by four.

3-122 Digital Systems Group

2250077-9701 MVSK
An example of a multiply real instruction is: If workspace registers five and six, after normalization,
contain the value 346, shown figuratively below,
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T T 1 T | — LENDANL B B B B T
rRs| o] 1 o o o o 1t oo o 1 1 0o o o NORMALIZED
T T T T T T T T 1 T T T T HEXADECIMAL.
Rl o o o o o o o 0o o0 O O O o0 ©O0 O o© FRACTION

and the single precision FPA (RO-R1),
figuratively below,

(o] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
] 1 L 1] ! ! ! 1 L) L] 1 I I
RO (8] 1 (o} o] o (o] 1 o) 0 o 1 o o 1 1 (o] NORMALIZED
N D ARG
R1 o] (o} o o o o o] o (o] o o o o] o o

then the instruction
LABEL MR RS

will multiply the contents of the FPA by the contents of R5 and R6, and place the results, 7B8s, in
the FPA, as shown figuratively below.

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
1 1] 1 1 1 k) 1 1 1 1 1 3
RO) 1 o} (o) 0 o] 1 1 0 1 1 1 1 o] 1 1 NORMALIZED
S S N B R T T T T HEXADECIMAL
R1 1 o] o) [o] (o) o] 4] (o] 0 o} (o] o) o 0 o) o]

The logical greater than and arithmetic greater than bits of the status register are set; and the equal,
carry, and overflow bits of the status register are reset.

Refer to Section II for a detailed description of normalization and single precision instructions.
3.94 MOVE STRING FROM STACK —MVSK

Opcode: 00D0

Addressing mode: Format XII

Format:

MR

7 8

9

10 11

12 13 14 15

(o}

1

w

WORD 1

WORD 2

Syntax definition:

[<label>Jp. . . MVSKD. . . <ga>,<ga>[<cnt>][,<ckpt>]p. . . [<comment>]

Trailing commas in the operand list may be omitted. The checkpoint register may be omitted from
the instruction if a default has been specified with the CKPT assembler directive. If the <cnt> is
omitted, a default of zero is used.

- 3-123 Digital Systems Group

o
MVSK é@ 2250077-9701

Example:

LABEL MVSK @STCK,@INPUT,7,.R6 Move seven bytes from the top of the stack to the
seven bytes beginning at location INPUT. The
stack parameters are a three-word block at
location STCK. Workspace register six is the
checkpoint register.

Definition: The source operand is a stack descriptor. The destination is a byte string. The byte string
at the top of the stack is moved to the location defined by the destination address. The string length
may be specified in the <cnt> field, RO, or as a tagged string (if <cnt> = 0 and R0 = FFFF).

If the top of stack is specified in a workspace register (T, is equal to zero), no limit checking is done.
Otherwise, before the string is moved, limit checking is done. Limit checking consists of verifying
-that the string is entirely contained within the stack. If this relationship does not hold, the stack
overflow bit in the error interrupt status register is set and a level two interrupt is taken. If the length
of the string is 16 bytes or more, the checkpoint register is used for interrupts. If an interrupt occurs
during execution, checkpoint data is stored in the checkpoint register. After the interrupt is serviced,
execution continues from where it stopped. Upon completion of the instruction, the checkpoint
register is set to -1.

The checkpoint register value +1 is used as an initial index into string. To access the first byte (lowest
address) in the string, the checkpoint register must be set to -1 before the instruction is executed.

If a string has a length of zero, no data is moved and status bits zero through two are set to zero. If a
tagged string has a length of one, only the tag byte is moved, and status bits zero through two are set
to zero.

Stacks are described further in Section II.

Status bits affected: Logical greater than, arithmetic greater than, and equal.

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T 1

L>|a>|eQfc|o| P| x |Pr|MF|MM 01| cs M

A A A

Execution results: ((gas))—(gaq)

Application notes: If T, is equal to three, the indicated register is incremented by the byte count. If
T, is equal to three, the indicated register is incremented by six.

3124 Digital Systems Group

2250077-9701

An example of the move string from stack instruction is: If locations INPUT and STCK contain the

following data:

INPUT

2A

FF

OA

B6&

17

then the instructions
SETO

LABEL MVSK

BEFORE EXECUTION

STCK

LOCATION .—p
O8FB

3A

O8FB

10

0800

OAQCO

FC

84

cc

o8

R6
@STCK,@INPUT,7,R6

will move seven bytes starting at the location indicated by location STCK into seven bytes starting at
location INPUT; as shown figuratively below:

AFTER EXECUTION

INPUT STCK
3A LOCATION 3A 08FB
O8FB
‘o 10 0800
B B 0A00
FC FC
84 84
cc cc
98 98
‘3-125 Digital Systems Group

MVSK

o
MVSR (@ 2250077-9701

3.95 MOVE STRING REVERSE — MVSR
Opcode: 00C0

Addressing mode: Format XII

Format:
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
| L]
ololo|lololo]lojol1]1] o]l o w WORD 1
L
c T4 D Ts s WORD 2

Syntax definition:
[<label>]p. . . MVSRp. . . <ga>,<gas>.[<cnt>][,<ckpt>]p. . . [<comment>]

Trailing commas in the operand list may be omitted. The checkpoint register may be omitted from
the instruction if a default has been specified with the CKPT assembler directive. If the <cnt> is
omitted, a default of zero is used.

Example:

LABEL MVSR @INPUT,@MOVE,,R1 Move the byte string beginning at location
INPUT to the bytes beginning at location
MOVE. The string length is specified in
workspace register zero. The last byte of string
INPUT is moved first, into the last byte in
MOVE.

Definition: The byte string starting at the source address is moved to the destination address. The
last byte of the source string is moved first. The number of bytes to be moved is specified by the
<cnt>field. If the checkpoint register is set to a value greater than -1, the bytes that are moved will be
taken from inside the string, starting with the byte at <ckpt> +1 bytes from the end of the string.

The string length may be specified in the <cnt> field, register zero, or as a tagged string (if <cnt>=
0 and RO = >FFFF). If the string length is zero, no data is moved.

The string is compared to zero (as a signed two’s complement value), and bits zero, one, and two of
the status register are set accordingly. If the string is tagged, the tag length is not used in the
comparison.

If the length of the string is 16 bytes or more, the checkpoint register is used for interrupts. If an
interrupt occurs during execution, checkpoint data is stored in the checkpoint register. After the
interrupt is serviced, execution continues from where it stopped. Upon completion of the instruction,
the checkpoint register is set to -1.

The checkpoint register value +1 is used as an initial index into the string (from the end of the
string). To access the last byte (highest address) in the string, the checkpoint register must be set to -1
before the MVSR instruction is executed.

If the checkpoint register is not initially equal to -1, the value of status bit two (EQ) is assumed to
have the correct value for the bytes that were skipped.

3-126 Digital Systems Group

MVSR

[e]
q_r@; 2250077-9701 NEG

If a string has a length of zero, no data is moved, and status bits zero through two are set to zero. Ifa
tagged string has a length of one, only the tag byte is moved, and status bits zero through two are set

to zero.

Status bits affected: Logical greater than, arithmetic greater than, and equal.
0o 1t 2 3 4 5 & 7 8 9 10 11 12 13 14 15

- T 7
w>jas|ea|c o] Pl x |PR|MF|MM 01| CS M

A A A
Execution results: (ga;)—~(gas) The last byte of (gas) is moved to the last byte of (gaq) first.

Application notes: The result of the MVSR instruction is compared to zero and status register bits
zero, one, and two reflect the comparison.

The MVSR instruction may be used to move overlapping strings where the source address is “lower”
than the destination address. An example would be an alphabetical table where an insert is desired.
The instruction to make a “hole” for a ‘T’ to be inserted in the accompanying figure would be:

SETO R1
MVSR (@ TABLE+2, (@ TABLE+3,3, R
TABLE BEFORE INSERTION TABLE AFTER INSERTION
A A
R R
TABLE+2 TABLE+2
T T
v T
z v
TABLE+5 ,/ TABLE+5
TABLE+6 7//% TABLE+6 z
Z W
H, 7
Y%

If the MOVS instruction were to be used, the first byte moved would put a ‘T’ on top of the “V’in the
table. Subsequent bytes being moved would also be ‘T".

3.96 NEGATE — NEG
Opcode: 0500
Addressing mode: Format VI

Format:

0O 1 2 334 S5 6 738 9 10 11;12 13 14 15
T L

oOjojojojojtrjolitjo 0 Ts S

3-127 Digital Systems Group

NEG S
NEGD 2250077-9701

Syntax definition:
[<label>]p. . . NEG). . . <ga>p. . . [<comment>]
Example:

LABEL NEG R2 Replace the contents of workspace register two with
its additive inverse.

Definition: Replace the source operand with the two’s complement of the source operand. The AU
determines the two’s complement value by inverting all bits of the source operand and adding one to
the resulting word. The AU then compares the result to zero and sets/ resets the status bits to indicate
the result of the comparison.

Status bits affected: Logical greater than, arithmetic greater than, equal, and overflow.

0O 1 2 3 4 5 6 7 8 9 1011 1213 14 15

L
L>|A>EQjC | O | P] X | PRIMF[MMOI | Cs IM

A A A A

Execution results: -(ga;)—(ga,)
Application notes: Use the NEG instruction to make the contents of an addressable memory location
its additive inverse. For example, if workspace register five contains the value A342¢. then the
instruction

NEG RS
changes the contents of workspace register five to SCBEs. The logical greater than and arithmetic
greater than status bits set while the equal status bit resets. The overflow bit is set if the operand is
800046, otherwise, it resets.
3.97 NEGATE DOUBLE PRECISION REAL — NEGD
Opcode: 0C03
Addressing mode: Format VII

Format: .
0 1t 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ojojojojtjr1jo|lojlojfojojojolo}1 |1

Syntax definition:
[<label>]p. . . NEGDp. . . [<comment>]
Example:

LABEL NEGD Negate the double precision number in the FPA and
place the results in the FPA.

3-128 Digital Systems Group

2250077-9701 NEQD

Definition: Negate the double precision number in the FPA (R0-R3) and place the results in the FPA
(RO-R3).

Status bits affected: Logical greater than, arithmetic greater than, and equal.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 i
L>|A>[EQ[C | O| P] X |PR |MF{MM O] CS M

A A A
Execution results: -FPA—FPA

Application notes: The results of the NEGD instruction are compared to zero and status register bits
zero, one, and two reflect the comparison.

An exampie of the negate doubie precision real instruction is: If the value in the double precision
FPA (RO-R3), after normalization, is .BB13B13B13B13B,¢, shown figuratively below

1 2 3 4 5 6 7 8 9 10 11 t2 13 14 15

T T T T T T T T T T T T T
RO | O 1 0 0 0 o 0 0 1 0 1 1 1 o 1 1
T | 1 1 1 1 1 T 1 I 1 I |
R1 0 o 0 1 0 0 1 1 1 0 1 1 0 0 0 1 NORMALIZED
T T T T T T T T T T) T T T T ? HEXADECIMAL
R2 | O 0 1 1 1 o 1 1 0 0o 0 1 0 0 1 1 FRACTION
1 I 1 1 L 1] 1 1 i | 1 ¥ I 1
R3 1 0 1 1 [} 0 0 1 0 0 1 1 1 0o 1 1
: J

then the instruction
LABEL NEGD

will negate (additive inverse) double precision value in the FPA, and place the result,
-.BB13B13B13BI13By, in the FPA as shown figuratively below.

0 1 2 3 a 5 6 7 8 9 10 11 12 13 14 15
T T T Y I T 1 T T T T T T 3
RO | 1 1 0 0 o) o o o |1 0 1 1 1 o 1 1
i I T | | 1 i T T T T T T
R1 0 0 o 1 o 0 1 1 1 o 1 1 o o o 1 NORMALI ZED
T T T T T T T T T T T T T T T > HEXADECIMAL
R2 0 0 1 1 1 0 1 1 0 0 0 1 0 0o 1 1 FRACTION
1 I 1 1] 1 T T 1 1 I 1 1 1 |
R3 | 1 0 1 1 0 o 0 1 0 o 1 1 1 0 1 1
/

The logical greater than bit of the status register is set; and the arithmetic greater than and equal bits
of the status register are reset.

3-129 Digital Systems Group

(¢}
NEGR ({@ 2250077-9701

3.98 NEGATE REAL — NEGR
Opcode: 0C02
Addressing mode: Format VI1I

Format: .
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Olojojoj1l]1jojJojojojojololofjijo

Syntax definition:
[<label>]p. . . NEGR. . . [<comment>]
Example:

LABEL NEGR Negate the real number in the FPA and place the
result in the FPA.

Definition: The real number in the FPA (RO, R1) is negated and the result is placed in the FPA (RO,
R1).

Status bits affected: Logical greater than, arithmetic greater than, and equal.

0 1 2 3 4 5 6 7 8 92 10 11 12 13 14 15

I i 1
L>A>IEQ|C | O| P| X |PR |[MF MM{OI cs M

A A A
Execution results: (FPA)Y—~(FPA)

Application notes: The results of the NEGR instruction are compared to zero and status register bits
zero, one, and two reflect the results.

An example of the negate real instruction is: If the value in the single precision FPA (R0-R1), after

normalization, is .BB13Bl,s, shown figuratively below, .
0 1 2 3 4 s5 6 7 8 9 10 11 12 13 14 15
T T T T T T | B— T T T T T
rRoJo |1 o o o o o o1 o 1 1 1t 0 1 1 NORMALIZED
HEXADECIMAL
T T | E— T T T L I— — T T FRACTION

R1 (o) (] 0 1 0 Q 1 1 1 0 1 1 0 (¢} o) 1

then the instruction
LABEL NEGR

will negate (additive inverse) the single precision value in the F PA, and place the result, - BBI13B1,s,
in the FPA as shown figuratively below.

o) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T j — T T T | — | p— | —
RO 1 1 o] o] (] (o] 0 (o) 1 0 1 1 1 (o] 1 1 NORMALLI ZED

T T | T T T Ea— T T T T Egi‘éﬁf‘%”“—
Rt J]o o o 1 o o 1 1 1 o0 1 i 0 0 o0 1

3-130 Digital Systems Group

) NEGR
@ 2250077-9701 NRM

The logical greater than bit of the status register is set, and the arithmetic greater than and equal bits
of the status register are reset.

3.99 NORMALIZE — NRM
Opcode: 0C08
Addressing mode: Format XI

Format:
O 1 2 3 4 3 6 7 8 9 10 11 1213 1415

OjJ]O|O O} 1 1 ojojlojJojJojoq1 O] O] O] WORD 1

c T D T s WORD 2
d

Syntax definition:
[<label>]p. . . NRMb. . . <ga>,<ga>[,<cnt>]b. . . [<comment>]
Example:

LABEL NRM *R4,R5,6 Shift the two’s complement of the six-byte long string
addressed by the contents of workspace register four
to the left until the two leftmost bits are different. Add
the number of positions shifted to workspace register
five.

Definition: The multibyte two’s complement integer at the source address is shifted left until the two
leftmost bits are different. The <cnt> field specifies the byte count. If zero or not present the count is
taken from the four LSBs of workspace register zero. If the four LSBs are zero, the count is 16. The
bits at the LSB end are filled with zeros. The number of positions shifted is added to the destination
address contents. If the integer is zero, no shifting is performed.

Status bits affected: Logical greater than, arithmetic greater than, equal, and carry.

o 1t 2 3 4 5 6 7 8 9 10 11 12 13 1415

] L
L>| A>|EQ| C | O | P| X | PRIMFIMMOI | CS M

& A A A

Execution results: Number of sign extension bits shifted equals N
(ga) * 2™—(ga)
(gas) + N—(gaq)

Application notes: If Tqis equal to three, the indicated register is incremented by two. If T is equal to
three, the indicated register is incremented by the byte count.

The result of the NRM instruction is compared to zero and status register bits zero, one, and two
reflect the comparison. Status register bit three is a copy of the resultant sign bit.

3-131 \ Digital Systems Group

NRM
ORI

2250077-9701

An exampie of the normalize instruction is: If workspace register four points to a three-byte string at
location 32B8:s, workspace register five contains the value 0440;s, and workspace register zero
contains the value 3,6; then the instruction

LABEL NRM *R4,RS

will shift the multibyte two’s complement integer, beginning at location 32B8;¢, until the two leftmost
bits are different, and add the number of bit positions shifted to register five. This example is shown

figuratively below:

BEFORE EXECUTION

32B8 0A WRS5 0400‘ 6
17
42
AFTER EXECUTION
32B8 50 WRS5 04('.'31 6
BA
10

WRO

0003, ¢

The logical greater than and arithmetic greater than bits of the status register are set, and the equal

and carry bits are reset.

3.100 OR IMMEDIATE — ORI
Opcode: 0260

Addressing mode: Format VIII

Format:

7 8

9

10

1112 13 14 15

ojo

1

1

0

IMMEDIATE OPERAND

Syntax definition:

[<label>]p. . . ORIp. . . <wa><iop>h. . . [<comment>]

3132

Digital Systems Group

o ORI
{i@ 2250077-9701 ORM

Example:

LABEL ORI R3,>F000 Perform the logical ‘OR’ of workspace register three
and the immediate value F000ss.

Definition: Perform an OR operation of the 16-bit immediate operand and the corresponding bits of
the workspace register. The immediate operand is the memory word immediately following the ORI
instruction. Place the result in the workspace register. The AU compares the result to zero and
sets/resets the status bits to indicate the result of the comparison.

Status bits affected: Logical greater than, arithmetic greater than, and equal.

O { 2 3 4 5 6 7 8 9 10 11 12 13 14 15

! I ¥
L>|a>|eQ|c|o|{ P| X |PR|MFfMM Ol | CS iM

A A A

Execution results: (wa) OR iop—(wa)

Application notes: Use the ORI instruction to perform a logical OR with the immediate operand and
a specified workspace register. Each bit of the 16-bit word of both operands is OR'd using the truth

table
Immediate Workspace OR
Operand Register Resuit
0 0 0
1 0 1
0 1 1
1 1 1

For example, if workspace register five contains D2ABys, then the instruction
ORI R5,>6D03

results in workspace register 5 changing to FFAB;s. This OR operation on a bit-by-bit basis is

0110110100000011 (Immediate operand)
1101001010101011 (Workspace register 5)
111111111010101°1 (Workspace register 5 result)

For this example, the logical greater than status bits sets, and the arithmetic greater than and equal
status bits reset.

3.101 OR MULTIPLE PRECISION — ORM
Opcode: 0027

Addressing mode: Format XI

3-133 Digital Systems Group

(o]
ORM q_r@] 2250077-9701

Format:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0jojojojojojojojojojitjofol1]l1}1] worD 1
(o T D T s WORD 2
d s

Syntax definition:
[<labe>]p. . . ORMB. . . <ga.>,<ga:>[,<cnt>]p. . . [<comment>]
Example:

LABEL ORM *R4,@TAB(R2).4 Perform the logical ‘OR’ of the four bytes beginning
at the address in workspace register four and the four
bytes beginning at the location TAB plus workspace
register two. The result is placed in the four bytes at
location TAB plus workspace register two.

Definition: A bit-by-bit OR operation is performed between the bits of the multibyte two’s
complement integer at the source address and the corresponding bits of the multibyte two’s
complement integer at the destination address. The result is placed at the destination address. The
<cnt> is the number of bytes of precision of the integer. If <cnt> equals zero or is not present, the
count is taken from the four LSBs of workspace register zero. If the four LSBs of workspace register
zero are zero, the count is 16.

Status bits affected: Logical greater than, arithmetic greater than, and equal.

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

| I |
L>[A>|EQ|C | O | P| X |PR |[MF|MM O1| cs IM

A A A

Execution results: (ga;) OR (gas)—(gas)

Application notes: The result of the ORM instruction is compared to zero and the status register bits
zero, one, and two indicate the result of the comparison. If T, and/or Ty is equal to three, the
indicated register is incremented by the byte count.

An example of the OR multiple precision instruction is: If workspace register four contains the value
37A446, which points to a four-byte string with the values 4533, and 328Ci6, and TAB is the address
of a four-byte string with the values AAAAs and AAO00y6, as shown figuratively below:

37A4 45 TAB AA
33 AA
32 AA
8cC 00

3-134 Digital Systems Group

o ORM
é@ 2250077-9701 POPS

then the instruction
LABEL ORM *R4,@TAB,4
will perform a bit-by-bit OR operation between the four bytes starting at 37A4:¢ and the four bytes

starting at location TAB, placing the results in TAB. The results of this instruction, after execution,
are shown figuratively below:

TAB EF

BB

BA

8C

The logical greater than bit of the status register is set, and the arithmetic greater than and equal bits
are reset.

This truth table describes the OR operation between two bits:

Corresponding Corresponding
Source Bit Destination Bit Resulting Bit
0 0 0
! 0 !
0 1 1
1 | 1

3.102 POP STRING FROM STACK — POPS
Opcode: 00EQ

Addressing mode: Format XII

Format: .
0 1 2 3 4 5 6 7 8 9 10 1112 13 14 15
- I 1 |
ololo|lolojololo|l1]1]1]o w WORD 1
1 L] |
c T4 D Ts s WORD 2

Syntax definition:
[Klabel>]p. . . POPSH. . <ga>,<gas> [<cnt>][,<ckpt>]p. . . [<comment>]

Trailing commas in the operand list may be omitted. The checkpoint register may be omitted from
the instruction if a default has been specified with the CKPT directive.

3-135 Digital Systems Group

(o]
POPS {@ 2250077-9701

Example:

LABEL POPS @STACK,@OUTPUT,10,R6
Pop ten bytes from the stack and place them starting
at location OUTPUT. The stack parameters are a
three-word block at location STACK. Workspace
register six is the checkpoint register.

Definition: The source operand is a stack descriptor. The destination operand is a byte string. The
byte string at the top of the stack is moved to the location defined by the destination and the TOS
value is incremented by the string length. The string length may be specified in the <cnt> field,
register zero, or as a tagged string (if <cnt> = zero and R0 = >F FFF). String length is described
further in Section II.

If the TOS is specified as a workspace register (T, is equal to zero), no limit checking is done.

Before the string is moved, limit checking is done. This involves verifying that the following
relationship is true:

stack limit < old TOS < new TOS < bottom of stack

If this relationship does not hold, the stack overflow bit in the error interrupt status register is set and
a level two interrupt is taken. Stacks are described further in Section II.

If the length of the string is 16 bytes or more, the checkpiont register is used for interrupts. If an
interrupt occurs during execution, checkpoint data is stored in the checkpoint register. After the
interrupt is serviced, execution continues from where it stopped. Upon cormpletion of the instruction,
the checkpoint register is set to -1.

The checkpoint register value plus one is used as an initial index into the string. To access the first
byte (lowest address) in the string, the checkpoint register must be set to -1 before the instruction is
executed,

Status bits affected: Logical greater than, arithmetic greater than, and equal.

O 1t 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I i i
L>A>IEQJC | O P X |PR|MF{MM| Ol | CS IM

A & A
Execution results: Refer to figure 3-1. ((gas))—(gas)

Application notes: If Ty is equal to three, the indicated register is incremented by the string length. If
T; is equal to three, its indicated register is incremented by six (the length of a stack descriptor).

The following paragraphs describe an example of the pop string from stack instruction.

If the stack boundaries, upper and lower, are in the range from 235A;¢ to 2373 16, the TOS points to
address 2362, and OUTPUT points to the address 44786, then the instructions

SETO R6
LABEL POPS @STACK,@OUTPUT,10,R6

3136 Digital Systems Group

2250077-9701

will move 10 bytes, beginning at the TOS, to the byte string at location OUTPUT. The TOS
descriptor value will change to 236C;s. This example is shown figuratively below:

STACK
LIMIT —» 235A

TOS ——P 2362

OUTPUT AFTER EXECUTION

4478 OA

oB

ocC

oD

OE

OF

10

11

12

13

STACK BEFORE EXECUTION

OA

oB

ocC

oD

OE

STACK —p 5354 .

LIMIT

oF

16

17

ot

02

03

BOTTOM OF
2373 «—~ STICK

STACK AFTER EXECUTION

oF
10
11
12
13
14 236C g TOS
15
16
0A 17
o8 o1
oc 02
oD 03
OE 2373 <— BOTTOM OF

- 3-137

Digital Systems Group

POPS

[o]
PSHS ;@ 2250077-9701

3.103 PUSH STRING TO STACK — PSHS
Opcode: 00F0

Addressing mode: Format XII

Format:
O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
For
ofojojJojlofolofo]|l1]1] 1] w WORD 1
i T 1
T
c d D s s WORD 2

Syntax definition:

[<label>]p. . . PSHS. . . <ga><ga>[<cnt>],<ckpt>]p. . . [<comment>]

Trailing commas in the operand list may be omitted. The checkpoint register may be omitted from
the instruction if a default has been specified with the CKPT directive.

AExampIe:

LABEL PSHS @STRING,@STACK,14,R6
Push 14 bytes starting at location STRING onto the
stack. The stack parameters are a three-word block at
location STACK. Workspace register six is the
checkpoint register.

Definition: The byte string starting at the source address is moved to the stack specified by the stack
descriptor at the destination address and the TOS is decremented by the string length. The last byte
of the string is moved first, as in the MVSR instruction. The stack is managed as a byte stack (i.e.,
the top of stack address (TOS) may be even or odd). :

The stack descriptor is specified by the word(s) at the destination address. If TOS is specified in a
workspace register (Tq equals zero), limit checking is not done. Otherwise, limit checking is done
before the string is moved. This involves verifying that the following relationship is true.

stack limit < new TOS < old TOS < bottom of stack

If this relationship does not hold, the stack overflow bit in the error interrupt status register is set and
a level two interrupt is taken. Stacks are described further in Section IL

If the length of the string is 16 bytes or more, the checkpoint register is used for interrupts. If an
interrupt occurs during execution, checkpoint data is stored in the checkpoint register. After the

interrupt is serviced, execution continues from where it stopped. Upon completion of the instruction,
the checkpoint register is set to -1.

The checkpoint register value plus one is used as an initial index into the string. To access the last

byte (highest address) of the string, the checkpoint register must be set to -1 before the instruction is
executed.

3-138 Digital Systems Group

2250077-9701

If a string has a length of zero, no data is moved, and status bits zero through two are set to zero. Ii a
tagged string has a length of one, only the tag byte is moved,and status bits zero through two are set
to zero.

If the checkpoint register is set to a value greater than -1, the bytes that are moved will be taken from
inside the string, starting with the byte at <ckpt> +1.

NOTE
PSHS sets the <ckpt> register to -1 at completion.

Figure 3-1 illustrates the PSHS and POPS instructions.

: PSHS AND POPS
SOURCE STRING STACK

MEMORY LOW ADDRESSES MEMORY
(BYTES) (BYTES)
X
X 0 TOS
(AFTER P3HS)
0 1
1 |
psHS |
| |
I l
| PS |
| PO I
|
' n-1
n—-1 n
n X —
TOS
(BEFORE PSHS)

HIGH ADDRESSES

X = MEMORY DATA THAT 1S NOT AFFECTED BY PSHS OR POPS.

Figure 3-1. PSHS or POPS Representation

3-139 Digital Systems Group

PSHS

[s]
PSHS (_r@] 2250077-9701

Status bits affected: Logical greater than, arithmetic greater than, and equal.

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T 1
L>|la>|e@|c o] P| x|PrR|MFlMM o1] cs M

A A4 A

Execution results: (gas)—((gaa))

Application notes: If T, is equal to three, the indicated register is incremented by six. If T, is equal to
three, the indicated register is incremented by the string length.

The following paragraphs describe an example of the push string to stack instruction. The stack

boundaries must be set prior to execution of this instruction (refer to the paragraph on stacks in
Section II).

If the stack boundaries, upper and lower, are in the range from 235A,6 to 23736, and the TOS points
to address 236F;¢, then the instruction

SETO R6
LABEL PSHS @STRING,@STACK,14,R6

will move 14 bytes, starting at location STRING, onto the stack specified by the stack descriptor
block at location STACK. The TOS descriptor value will change to 2361,s. This example is shown
figuratively below:

STRING VALUE STACK BEFORE EXECUTION

0A CIMIE — 235A

oB

ocC

oD

OE

OoF

10

11

12

13 o1 2370 4¢— 10S

15 03

2373 BOTTOM OF
16 — STack

3-140 Digital Systems Group

2250077-9701

STACK AFTER EXECUTION

2373 ¢ BOTTOM OF

LIMIT OF
10
11
12
13
14
15
16
Tos —® 2362 0A 17
oB ot
oc 02
oD 03
OE
3.104 RESET — RSET
Opcode: 0360
Addressing mode: Format VII
Format:
o 1 2 7¢8 9 101112 13 1415
olo]o 0 1tJofl1|1]ojojo]o}o
Syntax definition:
[<labe>]b. . . RSETH. . . [comment>]
Example:
LABEL RSET Start over.

STACK

Definition: The RSET instruction clears the interrupt mask, which disables all except level zero
interrupts and clears the “disabled interrupt condition” set by the DINT instruction. It also resets all
directly connected input/output devices and those CRU devices that provide for reset in the interface
with the CRU. RSET also resets all pending interrupts and turns the clock off. RSET is a privileged
instruction.

3-141

Digital Systems Group

PSHS
RSET

RSET S '
RTO 2250077-9701

When the privileged mode bit (bit seven of ST register) is set to zero, instruction executes normally.
When the privileged mode bit is set to one, an error interrupt occurs when execution of an RSET
instruction is attempted.

Status bits affected: None.

Execution results: RSET clears the interrupt mask, resets directly connected /0 devices, resets the
CRU devices that provide for reset in the interface with the CRU, resets pending interrupts, and
turns the clock off.

Application notes: Use the RSET instruction to reset the interrupt mask to zero, turn off the clock,
and (depending on the device and interface) clear any pending interrupt and reset interface
electronics.

3.105 RIGHT TEST FOR ONE — RTO

Opcode: 001E

Addressing mode: Format XI

Format:
0O 1 2 3 4 5 6 7 B8 9 1011 1213 14 15

ojojojojojojojojojojofj1 {1]1]1]0o] worDi1

c Ty D T s WORD 2

Syntax definition:

[<label>]p. . . RTOp. . . <ga>, <gas>[,<cnt>h. . . [<comment>]

Example:

LABEL RTO @TST,@CNT.4 Locate the rightmost one in the byte string starting at
location TST and add the one’s bit position to the
word at location CNT.,

Deﬁrgition: Thg: multibyte value at the source address is examined for the rightmost one. The bit
position vgluq 1s added to the word at the destination address. If the value at the source address is
zero, nothing is added to the destination and status register bit two is set to a one; otherwise status bit

two is set to zero. The number of bytes of precision of the source value is determined by the
<cnt>field.

If <cnt> equals zero, the count is taken from the four LSBs of workspace register zero. If the four
LSBs of workspace register zero are zero, the count is 16.

Status bits affected: Equal

O 1 2 3 4 5 6 7 8 9 10 11 1213 14 15

L> A>EQ] C| O| P| X |PR|MF|MM] OI| Ccs IM
A

3-142 Digital Systems Group

RTO

Q
é@ 2250077-9701 RTWP

Execution results: (gas) + index to the rightmost one bit in (gas)—(gas)

Application notes: 1f T; is equal to three, the indicated register is incremented by the byte count.
An example of the right test for one instruction is: If TEST is a pointer to a four-byte string at
memory address 449C;s (the values contained in these bytes are 4016, 9A1s, 016, 016, respectively), and
CNT contains the value BFC7¢, then then instruction

LABEL RTO @TEST,@CNT 4

will check for the rightmost one in the four bytes beginning at location TEST, and add the bit
position to the value in CNT. The result, in this example, is the value BFD5,¢ being placed in CNT.

This example is shown in figuratively below.

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

CNT BEFORE EXECUTION
BFC7, 6

CNT AFTER EXECUTION
BFD5, ¢

The equal bit of the status register is reset; the other bits of the status register are unaffected.
3.106 RETURN WITH WORKSPACE POINTER — RTWP

Opcode: 0380
Addressing mode: Format VII

Format:
6 1 2 3)4 5 6 7,8 9 1011112 13 14 15

o]J]o| O ol ojo} 1}1 tjojojojo ojo}j o

Syntax definition:
[<labe>]p. . . RTWP). . . [<comment>]
Example:

LABEL RTWP Return from the subroutine called by the BLWP and
restore the WP register, PC, and ST register with their
contents previous to the BLWP.

3-143 Digital Systems Group

RTWP 0
S 2250077-9701

Definition: Replace the contents of the WP register with the contents of the current workspace
register 13. Replace the contents of the PC with the contents of the current workspace register 14.
Replace the contents of the ST register with the contents of the current workspace register 15. The
effect of this instruction is to restore the execution environment that existed prior to an interrupt, a
BLWP instruction, or an XOP instruction.

With the privileged mode bit (bit seven) of the ST register set to one, only bits zero through five and
bit 10 of workspace register 15 are placed in bits zero through five of the ST register. When bit seven
of the ST register is set to zero, the instruction places bits zero through 15 of workspace register 15
into bits zero through eight and 12 through 15 of the ST register.

Status bits affected: Restores status bits zero through five and 10 or zero through 15 to the value
contained in workspace register 15.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I B |
L>|A>|EQ]lc]o| P| X |PR MF{MMIOI cs M
4 & A A A A A A VYAETTTS

Execution results: (Workspace register 13)—~(WP)

(Workspace register 14)—(PC)

(Workspace register 15)—(ST)
Application notes: Use the RTWP instruction to restore the execution environment after the
completion of execution of an interrupt, a BLWP instruction, or an XOP instruction. Refer to
Section IV for additional information.
3.107 SUBTRACT WORDS - S
Opcode: 6000

Addressing mode: Format 1

Formaz:
0O 1 2 3;4 S5 6 7,8 9 10 1112 13 14 15
T LI | T =T 7
of1j1]o] Ty D Ts s

Syntax definition:
[<label>]p. . . Sp. . . <ga>,<ga>p. . . [<comment>]
Example:

LABEL S R2,R3 Subtract the contents of workspace register two from
the contents of workspace register three.

Definition: Subtract a copy of the source operand from the destination operand and place the
difference in the destination operand. The AU compares the difference to zero and sets/resets the
status bits to indicate the result of the comparison. When there is a carry out of bit zero, the carry
status bit sets. When there is an overflow (the difference cannot be represented within a word as a
two’s complement value), the overflow status bit sets. The source operand remains unchanged.

3-144 Digital Systems Group

(o]
é—@p 2250077-9701

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, and overflow.

0O { 2 3 4 5 6 7 8 9 10 11 12 1314 15
i | I 1
L>|a>|ealc|o| P| x |PR{MF|MM 01] cs M

A A A 4 A

Execution results: (gas) - (gas)—(gaq)
Application notes: Use the S instruction to subtract signed integer values. For example, if memory
location OLDVAL contains a value of 1225, and memory location NEWVAL contains a value of
82236, then the instruction

S @OLDVAL,@NEWVAL

results in the contents of NEWVAL changing to 6FFEs. The logical greater than, arithmetic greater
than, carry, and overflow status bits set while the equal status bit resets.

The logical greater than and arithmetic greater than bits of the status register are set, and the equal,
carry, and overflow bits of the status register are reset.

Refer to Section II for a detailed description of normalization ard single precision floating point
instructions. :

3.108 SUBTRACT BYTES — SB
Opcode: 70
Addressing mode: Format I

Format:

{8 9 10 1141213 1415
T 1 T T T 1 1
D T s

Syntax definition:

[<label>1p. . . SBh. . . <ga>,<gac>h. . . [<comment>]

Example:

LABEL SB R2,R3 Subtract the leftmost byte of workspace register two
from the leftmost byte of workspace register three and
place the result in the leftmost byte of workspace
register three.

Definition: Subtract a copy of the source operand (byte) from the destination operand (byte) and
replace the destination operand byte with the difference. When the destination operand byte is
addressed in the workspace register mode, only the leftmost byte (bits zero through seven) of the
workspace register is used. The AU compares the result byte to zero and sets/resets the status bits
accordingly. When there is a carry out of the most significant bit of the byte, the carry status bit sets.
When there is an overflow (the difference cannot be represented as an eight-bit, two’s complement

3-145 Digital Systems Group

SB
SBO

o]
(@ 2250077-9701

value in a byte), the overflow status bit sets. If the result byte establishes odd parity (an odd number
of logic one bits in the byte), the odd parity status bit sets.

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, overflow, and odd
parity.

0 1 2 3 4 5 6 7 8 910 11 1213 14 15
: I LI
L>jA>lEQ| Cc | o | P| X {PR|MF|MM{OI |CS M

4 &4 A 4 A2

Execution results: (gaq) - (ga,)—(gas)

Application notes: Use the SB instruction to subtract signed integer bytes. For example, if
workspace register six contains the value 121 Cis, memory location 121Cy contains the value 2331 16
and workspace register one contains the value 1344,¢, then the instruction

SB *R6+,R1

results in the contents of workspace register six changing to 121D s and the contents of workspace

register one changing to F044;s. The logical greater than status bit sets while the other status bits
affected by this instruction reset.

3.109 SET CRU BIT TO LOGIC ONE — SBO
Opcode: 1D00
Addressing mode: Format 11

Format:

o 1 2 3174 5 6 738 9 10 11 112 13 14 15
I ! i 4 H H i
ojoto}1 1 110} 1 DISPLACEMENT

Syntax definition:
[<label>1p. . .SBOp. . <disp>p. . [<comment>]

Example:
LABEL SBO 7 Set bit seven on the CRU to one.

Definition: Set the digital output bit to a logic one on the CRU at the address derived from this
instruction. The derived address is the sum of the user-supplied signed displacement and the contents
of the workspace register 12, bits three through 14. The execution of this instruction does not affect
the status register or the contents of workspace register 12.

When the privileged mode bit (bit seven) of the ST register is set to zero, the SBO instruction
executes normally. When bit seven is set to one and the effective CRU address is equal to or greater
than E00s6, an error interrupt occurs and the instruction is not executed.

Status bits affected: None

3-146 Digital Systems Group

SBO

o SBZ
2250077-9701 SD

Execution results: The CRU bit addressed by the sum of the contents of workspace register 12 (bits
three through 14) + displacement is set to one.

Application notes: Use the SBO instruction to set a CRU bit to a logic one. Refer to Section IV for
additional application notes.

3.110 SET CRU BIT TO LOGIC ZERO — SBZ
Opcode: 1E00
Addressing mode: Format Il

Format:

o 1 2 314 5 6 7 8 9 10 11312 13 14 15
L i LI LI
ojojoj1 1 1 110 DISPLACEMENT

Syntax definition:
[<label>1p. . .SBZp. . .<disp>b. . [<comment>]
Example:
LABEL SBZ 7 Set bit seven on the CRU to zero.

Definition: Set the digital output bit to a logic zero on the CRU at the address derived from this
instruction. The derived address is the sum of the user-supplied signed displacement and the contents
of workspace register 12, bits three through 14. The execution of this instruction does not affect the
status register or the contents of workspace register 12.

When the privileged mode bit (bit seven) of the ST register is set to zero, the SBZ instruction
executes normally. When bit seven is set to one and the effective CRU address is equal to or greater
than E006, an error interrupt occurs and the instruction is not executed.

Status bits affected: None.

Execution results: The CRU bit addressed by the sum of the contents of workspace register 12 (bits
three through 14) + displacement is set to zero.

Application notes: Use the SBZ instruction to set a CRU bit to a logic zero. Refer to Section IV for
additional application notes.

3.111 SUBTRACT DOUBLE PRECISION REAL — SD
Opcode: 0ECO
Addressing mode: Format VI

Format:

o 1 2 3 4 5 6 7 8 9 1011 12 13 14 15

0000111011TS s

3-147 Digital Systems Group

2250077-9701

Syntax definition:

[<label>]p. . .SDp. . <ga>b. . [<comment>]

Example:
LABEL SD RS Subtract the contents of workspace registers five
through eight from the FPA and place the result in the
FPA.

Definition: The four-word value at the source address is subtracted from the FPA (R0-R3). The
result is placed in the FPA.

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, and overflow.

Qo 1 2 3 4 5 6 7 8 9 10 11 12 1314 15
P
L>[A>lEQ| C O | P| X |PR|MF|MM 01 { CcsS M

4 4 4o A A

Execution results: (FPA) - (ga,) —FPA

Application notes: The result of the SD instruction is compared to zero and status register bits zero,
one, and two reflect the comparison. If status register bits three and four are set to zero and one,
respectively, underflow has occurred. If they are set to one, overflow has occurred.

If T; is equal to ihree, the indicated register is incremented by eight.

An example of a subtract double precision real instruction is: If R35-R8, after normalization, contain
the value .040077ABy¢, as shown figuratively below,

1 2 3 4 5 6 7 8 9 10 11 1I 13 14 1S .
! ! i i i i T T T T T T T
RS o o 1 1 1 1 1 1 o 1 0 o o (¢} o o
T T T T T T T T T T T T T
R6 o o o o o 1 1 1 0 1 1 1 1 0 1 o]

NORMALIZED
T T T T T T T T T Y T T T T T HEXADECIMAL

RZp 1 0 1 1 0 0 © 0 0 0 o0 0 o0 o o ol [FracTiON

)

and the double precision FPA (R0-R3) contains, after normalization, the value .200000A 6, as shown
figuratively below,

R8 o o] o 0 0 o] 0 [} 0 o] (o] (o] [8] 0 (o] o}

0 1 2 3 4 5 6 7] 9 10 11 12 13 14 15 R
i I 1 1] 1 - 1 1 i | 1 1 1
RO o 1 0o 0 o 0 o] ol o 0 1 0 0 0 0 0
T T T T T T T T T T T T T
R1 4] 0 0 1] 0 o 0 0 o] 0 o 0 0 0 0 o] >28§MA%ZED
ADECIMAL
I 1 I I I 1 1 1 1 1 1 i
R2 1 ! o 1 ! o 0o 0 ! 0 0 0 0 0 0 0 0 0 4] FRACTION
T T T T T T T T T T T T T T T
R3 0 0 0o [} 0 0 0 0 0 0 0 o] 0 0 0 0
/

3-148 Digital Systems Group

° SC
2250077-9701 SEQE

then the instruction
LABEL SD 5

will subtract the contents of R5-R8 from the FPA and place the result, .1BFF88F5;¢, in the FPA,
shown figuratively below.

LI 1 I I T 1] L 1 i 1 1 1 1
ROI 0| 4 o o o 0 o o o 0 0 1 1 0 1 1
T T T T T T T T i i T T T
R1 1 1 1 1 1 1 1 1 1 [o] (o) (o] 1 0 0 [o} PNg;‘mELCIZED
T T T 1 T T T 1 T T T T T H IMAL
R2 1 1 1 1 0 1 0 1 o] 0 0 0 0 ol 0 0 FRACTION
| 1 L 1 T] 1 1 | i T 1 I I 1
R3] © 0 0o 0] 0 o o o] 0 o 0 o 0 o 0 0

-~

The logical greater than and arithmetic greater than bits of the status register are set; and the equal,
carry, and overflow bits of the status register are reset.

Refer to Section II for a detailed description of normalization and single precision floating point
instructions.

3.112 SEARCH STRING FOR EQUAL BYTE — SEQB
Opcode: 0050

Addressing mode: Format XII

Format:
0 1 2 3 4 5 6 7 8 9 10 11 1213 14 15
L
olofo|o|ojolojo|of1]o]: w WORD 1
LI
c T4 D T s WORD 2

Syntax definition:
[<label>]p. . .SEQBp. . <ga>.<gas>[<cnt>] [<ckpt>]p. . [<comment>]

The checkpoint register may be omitted from the instruction if a default has been specified with the
CKPT assembler directive. If the <cnt> is not present, a default of zero is assumed.

Example:

SETO R6
LLABEL SEQB @INSEQ,@OUSEQ,,R6 Search the string starting at location
OUSEQ for a byte equal to the one
specified in location INSEQ using the
length in workspace register zero, and
using workspace register six as the
checkpoint register.

3-149 Digital Systems Group

SEQB 2250077-9701

Definition: The word at the source address is used to specify a mask byte (MSB) and a data byte
(LSB) for the search. The destination is a byte string. The search byte is compared to the bytes in the
string starting at the location specified by D and T,. Only the unmasked bits of each byte are
examined. The search byte is equal to the data byte ANDed with the mask byte. Each byte of the
string is ANDed with the mask byte before being compared to the search byte.

The string length may be specified in the <cnt> field, in register zero, or as a tagged string (if <cnt>
= 0 and RO = >FFFF).

If a byte in the string is found which is equal to the search byte, an index pointer to the byte is stored
in the checkpoint register <ckpt>> and status bit two is set. To continue the search the instruction
must be reexecuted. As bytes are found that are equal to the search byte, the checkpoint register is
updated. When the last byte in the string is tested and found not equal to the search byte, status bit
two is cleared and the checkpoint register is set to -1. If the last byte is equal to the search byte, the
checkpoint register is set to point to the last byte with status bit two equal to one. Reexecution from
this state sets status bit two equal to zero and the checkpoint register is set to -1.

If the length of the string is 16 bytes or more, the checkpoint register is used for interrupts. When
reexecuted after the interrupt is serviced, the instruction continues the search where it left off.

NOTE

The checkpoint register value plus one acts as an initial index into
string. To access the beginning of the string, the checkpoint register
must be set to -1 FFFF) before SEQB is first executed. The first
byte of a tagged string is not tested. If the string length is zero (or one
for tagged strings), no search is performed, status bits zero through
two are all equal to zero, and the checkpoint register equals -1.

Status bits affected: Logical greater than, arithmetic greater than, and equal.

Qe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 I
L>|A>IEQ|C | O | P| X |PR |MF|MM OI] CS IM

A A A
Table 34 lists conditions and status bit results for the SEQB.

Table 3-4. SEQB/SNEB Status Bit Conditions
Condition Status Bit Result

SEQB SNEB

String length is zero 0-2 000 001
Last byte in the string is 0-2 001 001
equal to the search byte
The last byte in the string 0-2 (XX0) (XX0)
is not equal to the search
byte

NOTE

Status bits 0-2 always reflect the results of the last comparison.

3-150 Digital Systems Group

o SEQB
q@ 2250077-9701 SETO

Execution results: An index pointer to the byte in (gas) matching the specified byte in (gas) is
returned in the checkpoint register.

Application notes: When the SEQB instruction is executed, the contents of the checkpoint register
are incremented, and then used as a starting index into the string at which to begin the search. The
instruction could be used in a loop which terminates when the equal bit (ST2) in the status register is
reset upon completion of the SEQB instruction.

If T, is equal to three, two is added to the indicated register. If Ty is equal to three, the indicated
register is incremented by the string length.

An example of a search string for equal byte instruction is: If location INSEQ contains the value
FFO0A;s, OUSEQ addresses a byte string at memory address 5COE;s, and workspace register zero
contains the value seven; then the instructions

SETO R6
LABEL SEQB @INSEQ,@OUSEQ,,R6

will initialize the checkpoint register (R6) and compare the data byte of INSEQ to the bytes starting
at location OUSEQ for an equal byte using the string length specified in RO. The first half of the
word of INSEQ is the mask byte, and the second byte is the data byte.

In this example a match will be found when the fourth byte of OUSEQ is compared to the data byte
of INSEQ, as shown figuratively below:

INSEQ OUSEQ

MASK BYTE FF 5COE 11

DATA BYTE OA 3A

A4

CA

03

77

OF

When the byte is found in the string at OUSEQ matching the data byte of INSEQ, an index pointer
to the byte is stored in the checkpoint register, in this case 316, and the equal bit of the status register
is set.

In general, after completion of the SEQB instruction, if the equal bit of the status register is set, the
checkpoint register contains the index information to the equal byte in the byte string.

If the equal bit of the status register is reset, and the checkpoint register is equal to a -1, then the
entire byte string was searched and no equal byte was found.

3.113 SET TO ONE — SETO
Opcode: 0700

Addressing mode: Format VI

3-151 Digital Systems Group

SETO
SLA

Q
@ 2250077-9701

Format:

o 1 2 3944 5 6 738 9 10 11312 13 14 15
I 1 i I

oOjojJojojlojt1tt1lt1jojo}y Ts S

Syntax definition:

[<label>]p. . .SETOb. . <ga>p. . [<comment>]
Example:

LABEL SETO R3 Set workspace register three to -1.
Definition: Replace the source operand with a 16-bit word logic one value.
Status bits affected: None.

Execution results: FFFF,s — (ga;)

Application notes: Use the SETO instruction to initialize an addressable memory location to a -1
value. For example, the instruction

SETO R3

initializes workspace register three to a value of FFFFs. The contents of the status register is
unchanged. This is a useful means of setting flag words.

3.114 SHIFT LEFT ARITHMETIC - SLA
Opcode: 0A00

Addressing mode: Format V

Format:

0O 1 2 3,4 5 6 7,8 9 1011{12 13 14 15
LI LI
Ojojojofj1jo]1 (o] Cc w

Syntax definition:
[<labe>]p. . SLAp. . <wa>,<scnt>h. . [<comment>]
Example:

LABEL SLA R2,1 Shift the contents of workspace register two left one
bit location.

3-152 Digital Systems Group

o SLA
%@ 2250077-9701 SLAM

Definition: Shift the contents of the specified workspace register to the left for the specified number
of bit positions while filling the vacated bit positions with logic zero values. Note that the overflow
status bit sets when the sign of the word changes during the shifting operation.

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, and overflow.

o 1 2 3 4 5 6 7 8 9 10 t1 12 t3 14 13
IR
L>|A>|EQ}J C O | P| X |[PR{MF|MM Ol | CS iM

A A A A A

Execution results: Shift the bits of (wa) to the left, filling the vacated bit positions with zeros. When
<scnt> is greater than zero, shift the number of bit positions specified by <scnt>. If <scnt> is equal
to zero, shift the number of bit positions contained in the four least significant bits of workspace
register zero. When <scnt> and the four least significant bits of workspace register zero both contain
zero, shift 16 bit positions.

Application notes: An example of an arithmetic left shift is: If workspace register 10 contains the
value 13576, then the instruction

SLA R10,5
changes the contents of workspace register 10 to 6AEO;s. The logical greater than, arithmetic greater
than, and overflow status bits set while the equal and carry status bits reset. Refer to Section IV for
additional examples.
3.115 SHIFT LEFT ARITHMETIC MULTIPLE PRECISION — SLAM
Opcode: 001D
Addressing mode: Format XIII

Format:

o 1 2 3 4 53 6 7 8 9 10 11 12 13 1415

ololololo}jofololo|lOo]|lo}t1r |1 |10l 1] WORDI1

c X X sc T s WORD 2

Syntax definition:

[<label>]p. . .SLAMD. . .<ga>,[<cnt>] [<scnt>]p. . [<comment>]
Example:

LABEL SLAM @BIT,6,8 Shift the 6-byte field, BIT, eight bits to the left.
Definition: The multibyte value at the source address is shifted left by the number of bits specified by

<scnt>. The <cnt> is the number of bytes of precision. If <cnt>> is zero or is not present, bits 12-15
of workspace register zero are used. If bits 12-15 are zero, the precision is 16 bytes.

3-153 Digital Systems Group

SLAM S

SLSL

2250077-9701

If <scnt> is zero or is not present, bits four through seven of workspace register zero are used. If bits
four through seven are zero, the shift count is zero. Bits shifted out of the most significant end are
shifted into status register bit three; the bit positions at the least significant end are filled with zeros
as they are vacated.

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, and overflow.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
LI
L>lA>lEQ| c o | P| X |PR{MF{MM oI Cs IM

A 4 A A A

Bit three is a copy of the last bit shifted out of the most significant end of the multibyte value. Bit
three is cleared to zero if the shift count is zero. Bit four indicates an arithmetic overflow.

Execution results: The source address is shifted left by the number of bits specified in <scnt>.
Application notes: If T, is equal to three, the indicated register is incremented by the byte count. The
result of the SLAM instruction is compared to zero and status register bits zero, one, and two reflect
the comparison. Status register bit three is a copy of the last bit shifted out of the most significant
end of the multibyte value. If the shift count is zero, status register bit three is cleared to zero. Status
register bit four indicates the arithmetic overflow.

An example of a shift left arithmetic multiple precision is: If location BIT contains the value 1357,
the instruction

LABEL SLAM @BIT,2,5
shifts the contents of BIT to the left five bits, resulting in the value of BIT changing to 6 AEQ;s.

The logical greater than, arithmetic greater than, and overflow bits of the status register are set; and
the equal and carry bits are reset.

3.116 SEARCH LIST LOGICAL ADDRESS — SLSL
Opcode: 0021

Addressing mode: Format XX

Format:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Otofo|ofjo|o|ofo|lojo]|1]o Ojo0ojo]1 WORD 1

c T D Tg s WORD 2

Syntax definition:

[<label>]p. . .SLSLp. . <cond>,<ga><ga;>h. . [<comment>]

3-154 Digital Systems Group

2250077-9701

Example:

LABEL SLSL EQ,@TAB,@NTAB Search, using data in TAB, until an equal condition is
met. The contents of NTAB specifies the initial
address of the list to search.

Definition: The source operand is a five-word control block (LSCB). The destination operand is a

two-word block specifying the current, or starting, node pointer and the previous node pointer in the
first and second words, respectively.

The list search control block (LSCB), beginning with the word specified by the source address, is
applied in searching a list. The first word specified by destination address specifies the initial block
address for execution of the instruction. This same word is also a checkpoint in case of interrupts.
When an interrupt occurs the checkpoint data is stored and the program counter is adjusted so that
upon return from the interrupt the instruction is reexecuted. On completion of the instruction the
first destination word contains a pointer to the block which matched and the following word
contains the pointer to the previous block. When comparing elements of a list, the result of a logical
AND operation between the test value and the test mask is compared with the result of a logical
AND operation between the list element and the test mask. When no match occurs, the first word of
the destination address contains the terminal link value. The second word contains the final block
address.

The instruction’s <cond> field defines the condition for exit from the search as listed in table 3-5.

Table 3-5. Search Termination Conditions

<cond> Field Entry Value Condition

EQ 0 Equal (=)

NE 1 Not Equal (#)
HE 2 Logical ()

L 3 Logical (<)
GE 4 Arithmetic)
LT 5 Arithmetic (<)
LE 6 Logical (<)

H 7 Logical)
LTE 8 Arithmetic (<)
GT 9 Arithmetic ()

10 RESERVED*
12 RESERVED*
12 RESERVED*
13 RESERVED*
14 RESERVED*
15 RESERVED*

*Note: If one of these undefined conditions is specified, an illegal operation error will result.

3-155 Digital Systems Group

SLSL

SLSL

2250077-9701

The list search control block, addressed by S and T, is five words long and contains the following
information;

WORD 0 — Signed byte displacement to link word (the LSB is ignored).
WORD 1 — Signed byte displacement to compare word (the LSB is ignored).
WORD 2 — Test value to be used.

WORD 3 — Test mask to be used.

WORD 4 — Terminal link value.

Status bit affected: Equal.

o 1 2 3 4 5 6 7 8 910 11 12 13 14 15
I LR
L> A>JEQ| C] o | P| X |PR{MF|MM]| O1]cCS IM

‘ -

Execution results: (gaq) is searched using table <ga,>> until <cond> is met.

Application notes: If T; is equal to three, the indicated register is incremented by 10. If T, is equal to
three, the indicated register is incremented by four. If the search was exited due to a true test
condition, status register bit two is set to one. If the search was terminated because the end of the list
was reached, status register bit two is equal to zero.

If the list is empty (indicated by the destination operand containing the terminal link value), the
destination operands are unchanged and the equal status bit is reset. If a match is found on the first
block, the destination operands are unchanged and the equal bit is set.

The following example of an SLSL instruction searches for a single bit to be set. The first time the
search is attempted, a match will be found in the second list block.

MEMORY ADDRESS CONTENTS

™
'~
o

DESTINATION OPERAND BEFORE SEARCH

N
o
[4]
(=4
o

100

PTR

3

ES
o
e
eoe |2 sne
©O

DESTINATION OPERAND AFTER EXECUTION

EE

Fo 200

©
-3
on
co

PTR
100

S |eee
[-1-]

FE
100

N

SOURCE OPERAND

Lsce -2

2CE
2D0

go

=3

(X X) gs |eeo
-0

3FE -1 -
400 FFF1 1

3-156 Digital Systems Group

Q
@ 2250077-9701 SLSP

3.117 SEARCH LIST PHYSICAL ADDRESS — SLSP
Opcode: 0022
Addressing mode: Format XX

Format:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

olololo|lo]l]olo|o|lolo|l1]0]|0]O0}| 1] O] WORD 1

c Td D T s WORD 2

Syntax definition:
[<label>]p. . .SLSPh. . .<cond><ga>,<ga:>p. . [<comment>]
Example:

LABEL SLSP NE,@TAB,@NTAB Search, using the data in TAB, until an NE condition
is found. The contents of NTAB specified the initial
address of the list to search.

Definition: The SLSP instruction extends the addressability of a list search. SLSP allows for
addressing physical memory since all list block addresses are 16-bit bias values.

The list search control block (LSCB) beginning with the word specified by the source address is
applied in searching a list. The first word specified by the destination address contains the initial
block bias value for execution of the instruction. This same word is also a checkpoint in case of
interrupts. When an interrupt occurs, the checkpoint data is stored and the program counter is
adjusted so that upon return from the interrupt the instruction is reexecuted. On completion of the
instruction, the first destination word contains the bias value of the block which matched and the
following word contains the bias value of the previous block.

The instruction’s <cond>> field defines the condition for exit from the search. Table 3-5 contains the
conditions that allow termination of a search.

SLSP is a privileged instruction.

The list search control block, addressed by the source address, is five words long and contains the
following information:

WORD 0 — Signed byte displacement to link word (the. LSB is ignored in word zero).
WORD 1. — Signed byte displacement to compare word (the LSB is ignored in word one).
WORD 2 — Test value to be used.

WORD 3 — Test mask to be used.

WORD 4 — Terminal link value.

3-157 Digital Systems Group

SLSP

2250077-9701

Status bits affected: Equal.

o 1 2 3 4 5 6 7 8 910 11 12 13 14 15

I o
L>lAsEQlclo | P x IPrRIMFIMM]l Oilcs IM

A

Execution results: (gas) is searched using table (ga,) until <cond> is met.

Application notes: When the 990/12 mapping logic is enabled, the SLSP instruction extends the
addressability of a list search. SLSP allows for addressing physical memory since all list block
addresses are 16-bit bias values. Status register bit two (equal bit) is set/reset to indicate if the
condition was met during the search; this represents a pass/fail indication rather than an
equal/nonequal indication. If the search was exited due to a true test condition, status register bit
two is set to one. If the search was terminated because the end of the list was reached, status register
bit two is reset. If the list is empty (indicated by the destination operand containing the terminal link
value), the destination operand is unchanged and status register bit two is reset. If a match is found
on the first block, the destination operand is unchanged and status register bit two is set.

If T; is equal to three, add 10 to the indicated register. If T, is equal to three, add four to the indicated
register.

To obtain the physical address, the 16-bit bias values in the link word are multiplied by 20,6, giving a
21-bit byte address. The sign of the 16-bit displacement in words zero and one of the list search
control block is extended to form a 21-bit bias address to form the memory address of the link word
and the bias word, respectively.

The following example of an SLSP instruction searches for a not equal condition in bit position 15.
The not equal condition will be met at the second block of the searched addresses.

PHYSICAL MEMORY ADDRESS CONTENTS
07FFE 0800
08000 C001
L L 4 i
T o T
® DESTINATION OPERAND BEFORE SEARCH
OFFFE 5A00
10000 €800 1E00
NTAB
1 o i -1
o 1
9
3BFFE 2000 DESTINATION OPERAND AFTER EXECUTION
3C000 0801
2000
°
. ° NTAB
[° 1E00
3FFFE 0400
40000 0800 SOURCE OPERAND
- : A TAB -2
2 ‘r
9o
B3FFE -1 0
B4000 FFF1
1
1
-1

The equal bit of the status register is set, the other bits of the status register are unaffected.

3-158 Digital Systems Group

Q
{@ 2250077-9701

3.118 SUBTRACT MULTIPLE PRECISION INTEGER — SM
Opcode: 0029

Addressing mode: Format XI

Format:

o 1 2 3 4 5 6 7 8 9 10 11 1213 14 15

oloJojojojlo|o]joOojoO]oO] 1 otl1 ojol}1 WORD 1

c Td D T S WORD 2

Syntax definition:
[<label>]p. . .SMbp. . <ga><ga>[,<cnt>]p. . [<comment>]
Example:

LABEL SM R4,R6,4 Subtract the two’s complement four-byte value
starting at workspace register four from the two’s
complement four-byte value starting at workspace
register six, and put the result in the four bytes
beginning with workspace register six.

Definition: The multibyte two’s complement integer at the source address is subtracted from the
multibyte two’s complement integer at the destination address. The result is placed in the destination
address. The <cnt> field determines the number of bytes of precision for the integer.

If <cnt> equals zero or is not present, the count is taken from the four LSBs of workspace register
zero. If the four LSBs of workspace register zero are zero, the count is 16.

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, and overflow.

0 1t 2 3 4 5 6 7 8 9 t0 11 12 1314 15
LI
L>|A>|EQ| C O] P| X |[PR|MF|[MM Ol | CS IM

& A A A A

Execution results: (gaq) - (gas) —(gaq)

Application notes: If T, and/or Ta is equal to three, the indicated register is incremented by the byte
count.

The result of the SM instruction is compared to zero and the status register bits zero, one, and two
indicate the results of the comparison. The status register bits three and four indicate the carry and
overflow.

3-159 Digital Systems Group

SM

SM °
SNEB 2250077-9701

An example of a subtract multiple precision instruction is: If workspace registers four and five
contain the values 849C;s and BA72y, respectively, then the instruction

LABEL SM R4,R5,2

will subtract the two’s complement two-byte value in R4 from the two'’s complement two-byte value
in RS, and place the result, in this case 35D6y6, in RS.

The logical greater than, arithmetic greater than, and carry bits of the status register are set; and the
equal and overflow bits of the status register are reset.

3.119 SEARCH STRING FOR NOT EQUAL BYTE — SNEB
Opcode: 0E10

Addressing mode: Format XII

Format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

U
ojolojJoj1i1]1|lojo]lo]lo]o w WORD 1

I I I
c Ty D Ts s WORD 2

Syntax definition:
[<label>]p. . .SNEBb. . .<ga>,<gas>[<cnt>] [,<ckpt>]p. . [<comment>]

Trailing commas from the operand list may be omitted. The checkpoint register may be omitted
from the instruction if a default has been specified with the CKPT assembler directive. If the <cnt>
is not present, a default of zero is used.

Example:

SETO R6
LABEL SNEB @INSEQ@OUSEQ,,R6 Search the string starting at location OUSEQ
for a byte that is not equal to the one specified
in location INSEQ. The string length is
specified by the length in workspace register
zero or as a tagged string. Workspace register
six is used as the checkpoint register.

Definitions: The word at the source operand is used to specify a mask byte (MSB) and a data byte
(LSB) for the search. The destination operand is a byte string. Only the unmasked bits of each byte in
the string are examined. The search byte is equal to the data byte ANDed with the mask byte. Each
byte of the string is ANDed with the mask byte before being compared to the search byte.

The search byte is compared to the bytes in the string starting at the location specified by <gas>. The
length of the string is specified by the <cnt> field, RO, or as a tagged string (if<cnt>= 0 and R0 =
>FFFF).

3-160 Digital Systems Group

[o]
@ 2250077-9701 SNEB

If a byte in the string is found which is not equal to the search byte, an index pointer to the byte is
stored in the checkpoint register and status bit two is set to zero. Status bits zero and one are set to
reflect the results of the comparison of the search byte with the unequal byte (after being masked).

To continue the search, the instruction must be reexecuted. As bytes are found that are not equal to
the search byte, the checkpoint register is updated. When the last byte in the string is tested and
found equal to the search byte, status bit two is set. If the last byte is not equal to the search byte, the
checkpoint register is set to point to the last byte with status bit two equal to zero. Reexecution from
this state sets status bit two to one and the checkpoint register is set to -1. If the length of the string is
16 bytes or more, the checkpoint register is used for interrupts.

When reexecuted after an interrupt is serviced, the instruction continues the search where it left off.
NOTE

The checkpoint register value plus one acts as an initial index into the
string. To access the beginning of the string, the checkpoint register
must be set to -1 before SNEB is first executed. The first byte of a
tagged string is not searched. If the string length is zero (or one for a
tagged string), no search is performed, status bits zero through two
are set to zero, zero, and one, respectively, and the checkpoint register
is set to -1.

Status bits affected: Logical greater than, arithmetic greater than, and equal.

o i 2 3 4 3 & 7 8 5 10 11 12 13 14 15

l i |
L>|A>{EQ|Cc] O] P|] X PR |MF|MM Ol CS M

A A A
Table 3-4 lists conditions and status bit results for the SNEB.
Execution results: (gas) : (gas) for a not equal byte.

Application notes: If T, is equal to three, the indicated register is incremented by two. If T4 is equal to
three, the indicated register is incremented by the byte string length.

An example of a search string for not equal byte instruction is: If location INSEQ contains the value
FFO0l;, location OUSEQ addresses a byte string at memory address SCOE;s, and workspace register
zero contains the value seven; then the instructions

SETO R6
LABEL SNEB @INSEQ,@OUSEQ,,R6

will initialize the checkpoint register (R6) and compare the data byte of INSEQ to the bytes
addressed by OUSEQ for a nonequal byte using the string length specified in RO. The first half of the
word of INSEQ is the mask byte, and the second byte is the data byte.

3-161 Digital Systems Group

SNEB °
SoC 2250077-9701

In this example a nonequal value will be found when the seventh byte of OUSEQ is compared to the
data byte of INSEQ, as shown figuratively below:

INSEQ OUSEQ

MASK BYTE FF 5COE o1

DATA BYTE 01 [o1

- 01

o1

o1

o1
L— 3 o0

When the nonequal byte is found in the string at OUSEQ matching the data byte of INSEQ, an
index pointer to the byte is stored in the checkpoint register, in this case 6:s. The equal bit of the
status register is reset, and the logical greater than and arithmetic greater than status bits are set.
If the equal bit of the status register is set, all bytes searched equal the search byte. If the equal bit of
the status register is reset, a nonequal byte was found and the checkpoint register contains the index
information to the nonequal byte in the byte string.

3.120 SET ONES CORRESPONDING — SOC

Opcode: E000

Addressing mode: Format 1

Format:

8 9 10 11312 13 14 15
1 LI
Ts S

—
-
o+
-
-

Syntax definition:

[<label>]p. . .SOCh. . <ga> <ga>p. . [<comment>]

Example:

LABEL SOC R3,R2 Set the bits in workspace register 2 which correspond
to logic one bits in workspace register 3 to one.

Definition: Set to a logic one the bits in the destination operand that correspond to any logic one bit
in the source operand. Leave unchanged the bits in the destination operand that are in the same bit
positions as the logic zero bits in the source operand. The changed destination operand replaces the
original destination operand. This operation is an OR of the two operands. The AU compares the
result to zero and sets/resets the status bits to indicate the result of the comparison.

3-162 Digital Systems Group

o | SOC
%@ 2250077-9701 SOCB

Status bits affected: Logical greater than, arithmetic greater than, and equal.

o] 1 2 3 4 53 6 7 8 9 10 11 12 13 14 15

I i i
L>A>|EQJC | O| P| X |PR|MF{MM| O1}CS M

A A A

Execution results: Bits of (gas) corresponding to bits of (ga;) equal to one are set to one.
Application notes: Use the SOC instruction to OR the 16-bit contents of two operands. For example,
if workspace register three contains FF00,s and location NEW contains AAAA;s, then the
instruction

SOC R3,@NEW

changes the contents of location NEW to FFAA¢ while the contents of workspace register three is
unchanged. This is shown as

I111111100000000 (Source operand)
1010101010101010 (Destination operand)
1111111110101010 (Destination operand result)

For this example, the logical greater than status bit sets and the arithmetic greater than and equal
status bits reset.

3.121 SET ONES CORRESPONDING, BYTE — SOCB
Opcode: FO00
Addressing mode: Format I

Format:

0O 1 2 3]4 5 6 7358 9 10 11412 13 14 15
T T 1 1 T T 1T 1
1111 1y D T s

Syntax definition:
[<label>]p. . .SOCBp. . <ga=>,<gas>h. . .J<comment>]
Example:

LABEL SOCB R3,@DET Set the bits in the byte at location DET to one that
corresponds to the one bits in the first byte of
workspace register three.

Definition: Set to a logic one the bits in the destination operand byte that correspond to any logic
one bits in the source operand byte. Leave unchanged the bits in the destination operand that are in
the same bit positions as the logic zero bits in the source operand byte. The changed destination
operand byte replaces the original destination operand byte. This operation is an OR of the two

3-163 Digital Systems Group

SOCB
SR

[¢]
@ 2250077-9701

operand bytes. The AU compares the resulting destination operand byte to zero and sets/ resets the
status bits to indicate the results of the comparison. The odd parity status bit sets when the bits in the
resulting byte establish odd parity.

Status bits affected: Logical greater than, arithmetic greater than, equal, and odd parity.

o 1 2 3 4 5 6 7 8 9 10 11 12 1314 15
| I

L>lA>|EQ| Cc |O | P | X | PRIMF|{MM Ol |CS llﬂ

A A A A

Execution results: Bits of (gas) corresponding to bits of (ga;) equal to one are set to one, (i.,e, (gas)
OR (gas)—(gaq)).

Application notes: Use the SOCB instruction to OR two byte oprands. For example, if workspace
register 5 contains the value FO13,s and workspace register eight contains the value AA24,, then the
instruction

SOCB R5,R8

changes the contents of workspace register eight to FA24,4, while the contents of workspace register
five is unchanged. This is shown as

1111000000010011 (Source operand)

1010101000100100 (Destination operand)

1111101000100100 (Destination operand result)
(unchanged)

For this example, the logical greater than status bit sets while the arithmetic greater than, equal, and
odd parity status bits reset.

3.122 SUBTRACT REAL - SR
Opcode: 0CCO
Addressing mode: Format VI

Format:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

L

1
0000110011Ts s

Syntax definition:
[<label>]p. . .SRp. . <ga=>p. . [<comment>]

Example:

LABEL SR @WORD Subtract the contents of the two-word real number,
beginning at location WORD, from the FPA and
replace the FPA with the difference.

3-164 Digital Systems Group

© 2250077-9701

Definition: The two word normalized value at the source address is subtracted from the FPA and the
result is stored in the FPA (RO-R1).

Status bits affected: Logical greater than, arithmetic greater than, equal, carry, and overflow.

0 1 2 3 4 5 6 7 8 9 10 11 12 1314 15

1 1
L>|as|eajc|o| P xPRMFMw{m cs M
4 4 & A A

Execution results: FPA - (ga,)~FPA

Application notes: The result of the SR instruction is compared to zero and status register bits zero,
one, and two reflect the comparison. If status register bits three and four are set to zero and one,
respectively, underflow has occurred. If they are set to ones, overflow has occurred.

If T; is equal to three, the indicated register is incremented by four.

An example of the subtract real instruction is: If location WOR D, after normalization, contains the
value 326C;6, as shown figuratively below,

] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

] l l] ' l 0 l o] ' 1 l K o] l 0 l l o) NORMAL
o 1 o 0 1 1 -
WORD 0 1 0 0 T
1 I 1 I 1 I T I | I I I T DECIMAL,
WORD+1 [} 1 1 0 1 1 o 8] [s) o] (o} 0 o 0 o] (¢} FRACTION

and the single precision FPA (R0-R!) after normalization, contains the value SF7Cj, as shown
figuratively below,

0O 1 2 3 4 5 7 8 9 10 11 12 13 14 15
' "o ! ' ' ' ' ' ' Ty ' ' NORMAL:
rRo| o1 o o o i o oo 1 o 1 1 1 1 1 R A A
! i I 1 I 1 1 1 I 1 1 1 i DECIMAL
Rt] o 1 1 1 1t * 0 0 o o0 o o0 o0 o0 o0 o FRACTION

then the instruction
LABEL SR @WORD

will subtract the contents of the two words, beginning at location WORD, from the FPA and place
the result, 2D10;¢, 'in the FPA, shown figuratively below.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
| 1 | I T 1 I I T T T T T
1 1 1 NORMAL-—-
RO] O 1 0 o o 0 0 0 o] 1 0 1 0 V2E HEX A=
T T T T T T T T T T T I T DECIMAL
R1 0o V] o 1 (s} o 0 0 0 0 0 0 0 0 0 0 FRACTION

3-165 Digital Systems Group

SR

SRA S
SRAM 2250077-9701

3.123 SHIFT RIGHT ARITHMETIC — SRA
Opcode: 0800
Addressing mode: Format V

Format:

0 1 2 314 5 6 718 9 10 11112 1314 15
R ¥ |l LI |
o] ojyojoj1jojojo Cc w

Syntax definition:
[<label>]p. . .SRAP. . <wa><scnt>p. . [<comment>]
Example:

LABEL SRA R23 Shift the contents of workspace register two to the
right three bit locations.

Definition: Shift the contents of the specified workspace register to the right for the specified number
of bit positions, filling vacated bit positions with the sign bit.

Status bits affected: Logical greater than, arithmetic greater than, equal, and carry.

O 1 2 3 4 5 6 7 B8 9 10 11 12 13 1415
[B

L A>lEQ| C | O | P| X | PRIMF|MMoOI | CS IM

A A A b

Execution results: Shift the bits of (wa) to the right, extending the sign bit to fill vacated bit
positions. When <scnt>> is greater than zero, shift the number of bit positions specified by <scnt>. If
<scnt> is equal to zero, shift the number of bit positions contained in the four least significant bits of
workspace register zero. When <scnt>> and the four least significant bits of workspace register zero
both contain zero, shift 16 bit positions.

Application notes: An example of an arithmetic right shift is: If workspace register five contains the
value 8824;5, and workspace register zero contains the value F326,6, then the instruction

SRA RS5,0
changes the contents of workspace register five to FE206. The logical greater than and carry status
bits set while the arithmetic greater than and equal status bits reset. Additional examples are shown
in Section IV,

3.124 SHIFT RIGHT ARITHMETIC MULTIPLE PRECISION — SRAM
Opcode: 001C

3-166 Digital Systems Group

[e]
{@ 2250077-9701 SRAM

Addressing mode: Format XIII

0o 1 2 3 4 5 6 7 8 9 10 11 12 13 1415

ojojojolojojJo]J]OjoOo]O]oO]1 1 11]0]o}] WORD 1

c XX sc 1 Tg s WORD 2

Syntax definition:
[Klabel>]p. . .SRAMD. . <ga>[<cnt>] [<scnt>]h. . [<comment>]
Example:

LABEL SRAM @BIT,6,8 Shift the six-byte field starting at location BIT eight
bits to the right.

Definition: The multibyte value at the source address is shifted right by the number of bits specified
by <scnt>. The count <cnt> is the number of bytes of precision. If <cnt> is zero, bits 12 - 15 of
workspace register zero are used. If bits 12 - 15 equals zero, the precision is 16 bytes.

If <scnt> is zero, bits four through seven of workspace register zero are examined to determine this
shift count. If bits four through seven are zero, the shift count is zero. Bits shifted out of the least
significant end are shifted into status register bit three. The bit positions at the most significant end
are filled with the sign bit as they are vacated.

Status bits affected: Logical greater than, arithmetic greater than, equal, and carry.

g 1t 2 3 4 5 6 7 8 9 10 11 12 13 1415

L
L>I A>{EQ| C | O | P} X | PRIMF|MMOI | CS M

A A A &

Execution results: The source operand is shifted to the right the number of bits specified in <scnt>
and the sign is extended.

Application notes: The MSB (sign bit) is not changed during execution. The result of the SRAM
instruction is compared to zero and the status register bits zero, one, and two reflect the comparison.
Status register bit three is a copy of the last bit shifted out of the least significant end of the multibyte
value. If the shift count is zero, the status register bit three is set to zero. If T is equal to three, the
indicated register is incremented by the byte count.

An example of a shift right arithmetic multiple precision is: If location BIT contains the value 8224,
and workspace register zero contains the value F326,,, then the instruction

LABEL SRAM @BIT,2,0
shifts the contents of BIT to the right three bits, causing the value of BIT to change to F044.

The logical greater than and carry bits of the status register are set; and the arithmetic greater than
and equal bits are reset.

3-167 Digital Systems Group

SRC 9
SRJ 2250077-9701

3.125 SHIFT RIGHT CIRCULAR - SRC
Opcode: 0B00

Addressing mode: Format V

Format:

0O 1 2 344 S 6 7|8 9 10 11412 13 14 15
71 1 S |
olojlo o] 1}o] 1]1 c w

Syntax definition:
[<labe>]p. . .SRCh. . .<wa><scnt>ph. . .[<comment>]
Example:
LABEL SRC R7,3 Shift workspace register seven three bit locations to
the right filling in the vacated bit positions with the bit
shifted out of position I5.

Definition: Shift the specified workspace register to the right for the specified number of bit positions
while filling vacated bit positions with the bit shifted out of position 15.

Starus bits affected: Logical greater than, arithmetic greater than, equal, and carry.

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T

L>l a>leq| c] o | P]| X | PR|MF|MMoOI | cs M

A A A A

Execution results: Shift the bits of (wa) to the right, filling the vacated bit positions with the bits
shifted out at the right. When <scnt> is greater than zero, shift the number of bit positions specified
by <scnt>. If <scnt> is equal to zero, shift the number of bit positions contained in the four least
significant bits of workspace register zero. When <scnt> and the four least significant bits of
workspace register zero both contain zero, shift 16 bit positions.

Application notes: An example of a circular right shift is: If workspace register two contains the
value FFEFs, then the instruction

SRC R2,7
changes the contents of workspace register two to DFFFjs. The logical greater than and carry status
bits set while the arithmetic greater than and equal status bits reset. Shift left circular is not

implemented since SRC can perform the same function: SLC x,n = SRC x,16-n. Refer to Section IV
for additional application notes.

3.126 SUBTRACT FROM REGISTER AND JUMP — SRJ
Opcode: 0COC

3-168 Digital Systems Group

o]
;{@ 2250077-9701

Addressing mode: Format XVII
Format:

o 1 2 3 4 5 6 7 8 9 10 11 1213 1415

oloj|o jo |1 1 ojojojojojo]1 1 O O} WORD 1

C R D WORD 2

Syntax definition:
[<label>]p. . .SRIP. . <exp>[<cnt>],<was>h. . [<comment>]
Example:

LABEL SRJ BEGIN,I2,R3 Subtract 12 from workspace register three and jump
to BEGIN if the result of the subtraction is not equal
to zero or does not pass through zero.

Definition: The unsigned position integer in the <cnt> field is subtracted from the register specified
by <wa>. If the <cnt> field is zero, the value to be subtracted is obtained from workspace register
zero as a 16-bit unsigned value. If the <cnt> operand is not present, it defaults to one. If <wa>
minus the effective <cnt> does not equal zero or pass through zero (wrap-around), the signed word
displacement, <exp>, is added to the program counter.

Status bits affected: None.
Execution results: (wa) - <cnt>—(wa)

If the value of the register has not passed through zero, then the value of the program counter plus
the displacement is placed in the program counter.

Application notes: The SRJ instruction is useful for controlling a counter for a loop. A loop to
transfer a character string in 990/12 instructions could be written as follows:

SOURCE TEXT ‘ABCDEF’
DEST TEXT ‘ :
LI R6,6
TOP
MOVB SOURCE-}(R6),DEST-1(R6)
DEC R6
JGT TOP

This loop could be coded using the SRIJ instruction as follows:

LI R6,6

TOP
MOVB - SOURCE-1(R6),DEST-1(R6)
SRJ TOP,1,R6

3-169 Digital Systems Group

SRJ °
SRL 2250077-9701

These two loops require the same amount of memory but the SRJ loop has only two instructions in it
and will run faster. When the decrement value is greater than two, the SRJ instruction begins to
make the loop shorter in size as well as in the number of instructions. The MVSR instruction can
also be used to perform this function.

The status register is not affected.

3.127 SHIFT RIGHT LOGICAL — SRL

Opcode: 0900

Addressing mode: Format V

Format:

o 1 2 314 5 6 7?7 8 9 10 t1 31213 14 15
. L L LI
ojojojojy1jojloj1 Cc w

Syntax definition:
[<labe>]p. . .SRLp. . .<wa><scnt>p. . .[<comment>]
Example:

LABEL SRL R3,7 Shift the contents of workspace register three seven-
bit locations to the right.

Definition: Shift the contents of the specified workspace register to the right for the specified number
of bits while filling the vacated bit positions with logic zero values.

Status bits affected: Logical greater than, arithmetic greater than, equal, and carry.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 1415

L
L>l A>JEQ]J C O | P| X | PRIMF|MMoOI | CS M

A A A A

Execution results: Shift the bits of (wa) to the right, filling the vacated bit positions with zeros. When
<scnt> is greater than zero, shift the number of bit positions specified by <scnt>. If <scnt> is equal
to zero, shift the number of bit positions contained in the four least significant bits of workspace
register zero. When <scnt>> and the four least significant bits of workspace register zero both contain
zero, shift 16 bit positions.

Application notes: An example of a logical right shift is: If workspace register zero contains the value
FFEF;¢, then the instruction

SRL R0,3

changes the contents of workspace register zero to 1FFDs. The logical greater than, arithmetic
greater than, and carry status bits set while the equal status bit resets. Additional examples are
shown in Section 1V,

3-170 Digital Systems Group

[e]
%@ 2250077-9701 ~ STCR

3.128 STORE CRU — STCR

Opcode: 3400

Addressing mode: Format 1V

Format:

8 9 10 11)12 13 14 15

l
T 1 T UL
c Ts s

Syntax definition:
[<label>]p. . .STCRbH. . <ga><cnt>h. . [<comment>]
Example:

READ STCR @BUF, 9 Read nine bits from the CRU and store at location
BUF.

Definition: Transfer the number of bits specified in the <cnt> field from the CRU to the source
operand. The transfer begins from the CRU address specified in bits three through 14 of workspace
register 12 to the least significant bit of the source operand and fills the source operand toward the
most significant bit. When the <cnt>> field contains a zero, the number of bits to transfer is 16. If the
number of bits to transfer is from one to eight, the source operand address is a byte address. Any bit
in the memory byte not filled by the transfer is reset to a zero. When the number of bits to transfer is
from nine to 16, the source operand address is a word address. In word mode, if the source operand
address is odd, the address is truncated to an even address prior to data transfer. If the transfer does
not fill the entire memory word, unfilled bits are reset to zero. When the number of bits to transfer is
a byte or less, the bits transferred are compared to zero and the status bits set/reset to indicate the
results of the comparison. Also, when the bits to be transferred are a byte or less, the odd parity bit
sets when the bits establish odd parity.

When the privileged mode bit (bit seven) of the ST register is set at zero, the STCR instruction
executes normally. When bit seven is set to one and the effective CRU address is equal to or greater
than E00is, an error interrupt occurs and the instruction is not executed.

Status bits affected: Logical greater than, arithmetic greater than, and equal. When <cnt> is less
than nine, odd parity is also set or reset. Status is set according to the full word or byte, not just those
bits transferred.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
i

X | PRIMF MM O1]CS IM

L>|A>|EQ| C | ©

P
A& A A A

Execution results: The number of bits specified by <cnt> are transferred from consecutive CRU
lines beginning at the address in workspace register 12 to memory at address <gas>.

3-171 Digital Systems Group

sTCR [S
yTD 2250077-9701

Application notes: Use the STCR instruction to transfer a specified number of CRU bits from the
CRU to the memory location supplied by the user as the source operand. Note that the CRU base
address must be in workspace register 12 prior to the execution of this instruction. Refer to a Section
IV for a detailed explanation and examples of the use of the STCR instruction.

3.129 STORE DOUBLE PRECISION REAL — STD
Opcode: OFCO
Addressing mode: Format VI

Format:

0O 1 2 3 4 5 6 7 8 9 1011 1213 14 15
| LR L
ololoflaj1 1] rj1r]t1]1 Ts S

Syntax definition:
[<label>]p. . .STDp. . <ga>h. . [<comment>]
Example:

LABEL STD @WORD Store the value in the floating point accumulator (R0-
R3) in memory beginning at location WORD.

Definition: The value specified by FPA (R0-R3) is stored in the four words beginning at the address
specified by the operand.

Status bits affected: Logical greater than, arithmetic greater than, and equal.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I i }
L>A>|{EQ|C | O| P} X |PR MF|MM| Ol | CS IM

A A A

Execution results: FPA — (ga,)

Application notes: The results of the STD instruction are compared to zero and status register bits
zero, one, and two reflect the comparison. If T, is equal to three, the indicated register is incremented
by eight.

An example of the store double precision real instruction is: If the value contained in the four words
of the double precision FPA (R0-R3), is .24007AAB, then the instruction

LABEL STD @WORD

3-172 Digital Systems Group

Sip

o STPC
@ 2250077-9701 STR

will store the normalized fraction in the four words specified by WORD, as shown figuratively

below.
0 1 2 3 4 S 6 7 8 9 10 11 12 13 t4 18
|] \J |] ¥ T L 1 1 L] | I T
WORD 0 1 0 o -0 [+] 0 [+] 0 (4] 1 [»] (o] 1 0 (o]
T T T T T T | 1 I I I v T
WORD+1 o (] [+] [+] [o] 0 [o] [} [} 1 1 1 1 0o 1 0 NORMAL~-
Y T T T y T T T | T T T Y T T > 1ZE HEXA~=
DECIMAL
WORD+2 1 0 1 o] 1 0 1 1 0o 0 (o] 0 0 o o] o] FRACTION
1 H ¥ H 1 : 7 ! || 1 ¥ L L] L] L
WORD+3 [+] 0 0 [+] 0 0 0 [¢] 0 0 [o] 0 0 [o] [¢] [+]
P

The logical greater than and arithmetic greater than bits of the status register are set; and the equal
bit is reset.

3.130 STORE PROGRAM COUNTER — STPC
Opcode: 0030
Addressing mode: Format XVIII

Format:
O 1 2 3 4 5 6 7 B8 9 10 11 12 13 14 15

L] L) ¥

ojo]Jo]Jo}jojojojojojoj1r|tj - W

Syntax definition:
[<label>]p. . .STPCh. . <wa>p. . [<comment>]
Example:

LABEL STPC R3 The address of the STPC instruction (the program
counter before it is incremented) is stored in
workspace register three.

Definition: The contents of the program counter is placed in <wa>.
Status bits affected: None.

Execution results: PC — (wa)

Application notes: The STPC instruction stores the contents of the program counter before it is
incremented.

3.131 STORE REAL — STR
Opcode: 0DCO

Addressing mode: Format VI

3-i73 Digital Systems Group

STR
STST

(o]
@ 2250077-9701

Format:

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0000110111TS';r
Syntax definition:
[<label>]p. . .STRp. . .<ga>p. . [<comment>)
Example:
LABEL STR Ré6 Store the real number in the FPA in workspace

registers six and seven.
Definition: The real number in the FPA (RO-R1) is stored at the source address.

Status bits affected: Logical greater than, arithmetic greater than, and equal.

01234567891011121314!5

I 1)
L>|A>JEQCJO| P|] X |PR MFMN{OI cs IM

A 4 2
Execution results: FPA — (ga,)
Application notes: The result of the STR instruction is compared to zero and status register bits zero,
one, and two reflect the comparison. If T, is equal to three, the indicated register is incremented by

four.

An example of the store real instructions is: If the value contained in the single precision FPA (R0-
R1), after normalization, is .20000A,6, then the instruction

LABEL STR Ré6

will store the normalized fraction in workspace register six and workspace register seven, as shown
figuratively below:

T T T 1 T T L 1 I 1 I ¥ |
R6 o} 1 [0} o s} 0 4] 0 [0} 0 1 (o] o] 0 0 o) NORMALIZED
T T T T T T T T T T T T T HEXADECIMAL
R7L 0O o o0 0o 0o 0 o0 o0 0o o0 o0 o 1 0 1 o FRACTION

The logical greater than and arithmetic greater than bits of the status register are set; and the equal
bit is reset.

3.132 STORE STATUS — STST
Opcode: 02C0

3-174 Digital Systems Group

o STST
{@ 2250077-9701 - STWP

Addressing mode: Format XVIII

Format:

o 1 2 3|14 5 6 748 9 10 1151213 14 15
: | 1 1

ol olo]lololoj1]o]t]trjoy]o w

Syntax definition:
[<label>]p. . .STSThH. . .<wa>b. . [<comment>]
Example:

LABEL STST R7 Store the contents of the status register in workspace

Definition: Store the status register contents in the specified workspace register.
Status bits affected: None.
Execution results: (ST) — (wa)
Application notes: Use the STST instruction to store the ST register contents.
3.133 STORE WORKSPACE POINTER — STWP
Opcode: 02A0
Addressing mode: Format XVIII
Format:
0 1 2 3;4 5 6 78 9 10 11}12 13 14 15

1 LI |
olo]l]olo]lojojt]o]1t1jo}t 0 w

Syntax definition:
[<label>]p. . .STWPh. . <wa>h. . [<comment>]
Example:

LABEL STWP R6 Store the contents of the workspace pointer in
workspace register six.

Definition: Place a copy of the workspace pointer contents in the specified workspace register.

Status bits affected: None.

3-175 Digitai Systems Group

DIWr

SWPB >
SWPM 2250077-9701

Execution results: (WP) — (wa)

Application notes: Use the STWP instruction to store the contents of the WP register.
3.134 SWAP BYTES — SWPB

Opcode: 06C0

Addressing mode: Format VI

Format:
O 1 2 314 5 6 718 9 10 1112 13 14 15
T L |
ojojofofjolt]r]ol1]1] = s
Syntax definition:
[<label>]p. . .SWPBp. . .<ga>h. . [<comment>]
Example:
SWITCH SWPB R3 Move the least significant byte to the most significant

byte, and the most significant byte to the least
significant byte, in workspace register three.

Definition: Replace the most significant byte (bits zero through seven) of the source operand with a
copy of the least significant byte (bits 8 through 15) of the source operand and replace the least
significant byte with a copy of the most significant byte.

Status bits affected: None.

Execution results: Exchanges left and right bytes of word (ga;).

Application notes: Use the SWPB instruction to interchange bytes of an operand prior to executing
various byte instructions. For example, if workspace register zero contains 21444 and memory
location 21446 contains the value F312y, then the instruction

SWPB *R0+

changes the contents of workspace register zero to 2 14616 and the contents of memory location 24114
to 12F3;6. The status register remains unchanged.

3.135 SWAP MULTIPLE PRECISION — SWPM
Opcode: 0025

Addressing mode: Format XI

3-176 Digital Systems Group

. .
{@ 2250077-9701 SWPM

Format:

0O 1 2 3 4 5 6 7 8 9 1011 1213 1415

ololojlolo}lojolojlojo]1]jo]oOo]t]oO]1] WORDI

c T4 D Tg s WORD 2

Syntax definition:
[<label>]p. . .SWPMb. . .<ga><ga>[,<cnt>]p. . [<comment>]
Example:

LABEL SWPM @TAB,@NTAB,8 Place the eight bytes beginning at location TAB into
the eight bytes beginning at location NTAB, and place
the eight bytes at NTAB into the eight bytes at TAB.

Definition: The multibyte value at the source address is swapped with the value at the destination
address. The count of the number of bytes of precision of the values is determined by the <cnt>
field. If <cnt> is zero or is not present, the four LSBs of RO are used. If the four LSBs of RO are
zero, the count is 16.

Status bits affected: Logical greater than, arithmetic greater than, and equal.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 i 1
t>|las>lealc|o| Pl X |PR |MF{MM O1 | CS IM

A A A

Execution results: (gas)—(gaq) ; (gad)—(gas)

Application notes: If T, and/ or Ty is equal to three, the indicated register is incremented by the byte
count.

The resulting value at the source address of the SWPM instruction is compared to the resulting
destination value. Status register bits zero, one, and two reflect the comparison.

An example of a swap multiple precision instruction is: If TAB is the starting address of an eight-
byte string containing the value F312;¢, 214416, 127615, D430y6, and location NTAB is the starting
address of an eight-byte string containing the values 11345, 84171, 448016, 532616, then the
instruction _

LABEL SWPM @TAB,@NTAB,8

changes the values of the eight-byte string starting at TAB to 1134y, 841716, 448015, and 53266, and
changes the values of the eight-byte string starting at NTAB to F312;6, 214416, 127615, and D430s.

The arithmetic greater than bit of the status register is set, and the logical greater than and equal bits
are reset.

3-177 Digital Systems Group

SWPM °
SzC 2250077-9701

An example of where the operands overlap is as follows

shown figuratively as

The instruction

SWPM @TAB,@TAB+2,4

. A six-byte string starting at location TAB is

TAB

01

02

TAB+2

03

04

05

06

will result in the data at TAB being 03, 04, 01, 02, 03, 04. The instruction

SWPM @TAB+2, @TAB.4

will result in the data at TAB being 03, 04, 05, 06, 01, 02.

3.136 SET ZEROS CORRESPONDING — SZC

Opcode: 4000
Addressing mode: Format |

Format:

12 13 14 15

I LI
S

Syntax definition:

[<label>]p. . .SZCp. . >ga>,<ga:>p. . [<comment>]

Example:

LABEL SZC @MASK,R2

Reset the bits in workspace register 2 which
correspond to the one bits of MASK to zero.

Definition: Set to a logic zero the bits in the destination operand that correspond to the bit positions
equal to a logic one in the source operand. This operation is effectively an AND operation of the
one’s complement of the source operand and the destination operand. The AU compares the

resulting destination operand to zero and sets

comparison.

/resets the status bits to indicate the results of the

3-178

Digital Systems Group

) : SZC
@ 2250077-9701 SZCB

Status bits affected: Logical greater than, arithmetic greater than, and equal.

0O 1t 2 3 4 5 6 7 8 9 1011 12 13 14 15

1 I]
L>{A>|EQjcj o} P| X |PR|MF{MMH Ol | CS M

A A A

Execution results: Bits of (gas) corresponding to bits of (gas) equal to one are set to zero, (i.e.,[NOT
(gas) AND (gaq)]—(gaq))

Application notes: Use the SZC instruction to turn off flag bits or AND the contents of the one’s
complement of the source operand and the destination operand. For example, if workspace register
five contains 6D03,s and workspace register three contains D2AA ¢, then the instruction

SZC R5,R3

changes the contents of workspace register three to 92A8;¢ while the contents of workspace register
five remains unchanged. This is shown as

0110110100000011 (Source operand)
1101001010101010 (Destination operand)
1001001010101000 (Destination operand result)

For this example, the logical greater than status bit sets while the arithmetic greater than and equal
status bits reset.

3.137 SET ZEROS CORRESPONDING, BYTE — SZCB
Opcode: 5000

Addressing mode: Format 1

Format:

o 1 2 3/]4 5 6 7,8 9 10 1112 13 14 15
T L L T T 7 1
S

Syntax definition:
[<label>]p. . .SZCBp. . .<ga>,<gas>h. . [<comment>]

Example:

LABEL SZCB @MASK,@CHAR Reset the bits in a byte at location CHAR which
correspond to the one bits in a byte at location MASK
to zero.

Definition: Set to a logic zero the bits in the destination operand byte that correspond to the bit
positions equal to a logic one in the source operand byte. This operation is effectively an AND
operation of the one’s complement of the source operand byte and the destination operand byte. The

3-179 Digital Systems Group

SZCB
B

[e]
%@ 2250077-9701

AU compares the resulting destination operation byte to zero and sets/resets the status bits to
indicate the result of the comparison. The odd parity status bit sets when the bits in the resulting
destination operand byte establish odd parity. When the destination operand is addressed in the
workspace register mode, the least significant byte (bits eight through 15) is unchanged.

Status bits affected: Logical greater than, arithmetic greater than, equal, and odd parity.

0123456789101112131415

N I

L>lA>|EQ| C 10 | P | X | PRIMF|{MM 0Oi |cS IM

A A A a

Execution results: Bits of (gas) corresponding to bits of (ga;) equal to one are set to zero, (ie.,[NOT
(ga:) AND (gad)]—(gad))

Application notes: The SZCB instruction is used for the same applications as SZC except bytes are
used instead of words. For example, if location BITS contains the value F018,s, and location
TESTVA contains the value AA24,6, then

SZCB @BITS,@TESTVA

changes the contents of TESTVA to 0A24,s while BITS remains unchanged. This is shown as

1111000000011000 (Source operand)

1010101000100100 (Destination operand)

0000101000100100 (Destination operand result)
(unchanged)

For this example, the logical greater than and arithmetic greater than status bits set while the equal
and odd parity status bits reset.

3.138 TEST BIT — TB
Opcode: 1F00
Addressing mode: Format 11

Format:

o 1 2 314 5 6 7,8 9 10 11 (12 13 14 15
LI | T LI B A |
0jojol}1 1 1 1 1 DISPLACEMENT

Syntax definition:
[<labe>]p. . .TBp. . .<disp>p. . [<comment>]
Example:

CHECK TB 7 Read bit seven on CRU and set the equal status bit
with the value read.

3-180 Digital Systems Group

° TB
2250077-9701 TCMB

Definition: Read the digital input bit on the CRU at the address specified by the sum of the user-
supplied displacement and the contents of workspace register 12, bits three through 14, and set the
equal status bit to the logic value read. The digital input bit and the contents of workspace register 12
are unchanged.

When the privileged mode bit (bit seven) of the ST register is set to zero, the TB instruction executes
normally. When bit seven is set to one and the effective CRU address is equal to or greater than
E00:6, an error interrupt occurs and the instruction is not executed.

Status bits affected: Equal.

Qo 1 2 3 4 5 6 7 8 910 t1 12 13 14 15
1 Pt
>l A>EQ) C 1 O | P| X |PR|MFMM} Ol {CS IM

a

Execution results: The equal bit is set to the value of the CRU bit addressed by the sum of the
contents of workspace register 12 (bits three through 14) + displacement.

Application notes: The TB CRU line logic level test transfers the logic level from the indicated CRU
line to the equal status bit without modification. If the CRU line tested is set to a logic one, the equal
status bit sets to a logic one and if the line is zero, sets to a zero. JEQ will then transfer control when
the CRU line is a logic one and will not transfer control when the line is a logic zero. In addition,
JNE will transfer control under the exact opposite conditions.

3.139 TEST AND CLEAR MEMORY BIT — TCMB

Opcode: 0COA

Addressing mode: Format X1V

Format:

O 1 2 3 4 5 6 7 8 9 10 11 1213 14 15

0lJ]ojo JOo] 1 tj]ojojojo|Jojo}jt1jojtit]l]of] WORD 1

P Te s WORD 2

Syntax definition:
[<label>]p. . . TCMBp. . <ga>{,<pos>]p. . [<comment>]
Example:

LABEL TCMB @BITMAP(R3),6 Reset the value of bit six of the contents of location
BITMAP plus workspace register three.

Definition: The value of the bit at position <pos>> in the bit string starting at the source address is
copied into status register bit two and then set to zero. If the position operand is not present, it will
default to 3FFs, the maximum value of the position. When the position is 3FFs, all 16 bits of

3-181 Digital Systems Group

TCMB {@ 22500779701

workspace register zero are used to determine the bit position. TCMB will work correctly as an
interlock instruction in multiprocessor systems; i.e., only TILINE memory cycles from the CPU
executing the TCMB instruction are allowed to the source operand.

Status bits affected: Equal.

o 1 2 3 4 5 6 7 8 910 11 12 13 14 15
| [
L>lA>JEQ]J Cc | o | P| X |PR|MF{MM] O1}{CS IM
a

Execution results: (gas + pos)—ST2
0—(ga, + pos)

Application notes: If T; is equal to three, the indicated register is incremented by one. The previous
value of the affected bit is copied into status register bit two.

An example of the test and clear memory bit instruction is: If BITMAP contains the value 4E28;¢,
then the instruction

LABEL TCMB @BITMAP,6

will copy the previous value of bit six (a one) into the equal bit of the status register (ST2); and will
clear bit six of the value in BITMAP. The value of BITMAP, after execution of this instruction, is
4C285.

Multiple CPU Systems: Several 990/12 CPUs can be connected together to create a multiple CPU
system. In these systems, the CPUs must share a common memory. Simultaneous access attempts to
memory by more than one CPU can result in a loss of data. To prevent this conflict, software
“memory busy” flags in memory can be used. When a processor desires access to memory, it must
first check the flag to determine if any other processor is actively using memory. If memory is not
busy, the processor sets the busy flag to lock out other processors and begins its memory transfers.
When the processor is finished with memory, it clears the busy flag to allow access from other
processors.

However, the busy flag system is not foolproof. If two CPUs check the status of the busy flag in
successive memory cycles, each CPU proceeds as if it has exclusive access to memory. This conflict
occurs because the first CPU does not set the flag until after the second CPU reads it. All instructions
in the 990 instruction set, except three, allow this problem to occur since they release memory while
executing the instruction (i.e., while checking the state of the busy flag). The TCMB instruction
maintains control over memory even during execution of the instruction after the flag has been
fetched from memory. This feature prevents other programs from accessing memory until the first
program has evaluated the flag and has had a chance to change it. Therefore, use the TCMB
instruction to examine memory busy flags in all memory-sharing applications. The other instructions
that perform this way are absolute value (ABS) and test and set memory bit (TSMB).

NOTE

When workspace registers are cached, TCMB in direct register
addressing will not detect a flag changed in the corresponding
memory location by another processor. Therefore, TCMB can only
be used with indirect, indirect autoincrement, indexed, and symbolic
addressing modes when used for the above purpose.

3-182 Digital Systems Group

o
@P 2250077-9701 ~ TMB

3.140 TEST MEMORY BIT — TMB
Opcode: 0C09

Addressing mode: Format XIV
Format:

0o 1 2 3 4 5 6 7 8 9 10 11 12 13 1415

ojfo0}jo0lo 1}1 olojo}jo}o o1 0|l 0| 1] WORD 1

POS T s WORD 2

Syntax definition:
[<label>]p. . .TMBp. . .<ga>[,<pos>]p. . [<comment>]
Example:

LABEL TMB @BITMAP(R3),6 Test bit six at the location specified by BITMAP plus
workspace register three.

Definition: The bit at position <pos> in the bit string starting at the source address is copied into
status register bit two. If <pos> is all ones, the position is taken from all 16 bits of workspace
register zero. When the position is not present, it defaults to all ones (>3FF).

Status bits affected: Equal.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
L
L>{ A>|EQl Cc | O | P| X |PR{MF|MMj OICS IM

A

Execution results: ((gas) + pos)—ST2 in status register
Application notes: If T, is equal to three the indicated register is incremented by one.
Status register bit two is set or cleared.

An example of the test memory bit instruction is: If BITMAP points to memory address 7D42;s, and
workspace register three contains the value of five, then the instruction

LABEL TMB @BITMAP(R3),5

3-183 Digital Systems Group

TMB
TS

[e]
@ 2250077-9701

will copy the value of bit five of the source address,
the status register; shown figuratively below:

BITMAP

7

8

7D42

7D4a4

7D46

STATUS REGISTER [

in this example location 7D47,s, into bit two of

o 1 2 3 4 5 [7 8 9 10 1 12 13 14 15
Status register bit 2 is the only bit of the status register affected.
3.141 TRANSLATE STRING — TS
Opcode: 0E30
Addressing mode: Format XII
Format:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
I LI
ofoflofolr1j1]1]o]lo]loli1] w 'WORD 1
T 1
c T D T s WORD 2

Syntax definition:
[<label>]p. . .TSh. . <ga>,<gas>[<cnt>] [<ckpt>]p. . [<comment>]

Trailing commas on the operand list may be omitted. The checkpoint register may be omitted from
the instruction if a default has been declared using the CKPT assembler directive. If the <cnt> is not
present, a default of zero is used.

Example:
LABEL TS @NTAB,@TAB,10,R1

Replace the TAB values with the corresponding
NTAB values.

Definition: The bytes in the string starting at the destination address are used as indexes into a 256-
byte translation table at the source address. Each byte in the destination string is replaced by its
respective value from the table pointed to by the source address. The length of the string may be
specified by the <cnt> field, by workspace register zero, or as a tagged string (if <cnt>= (0 and R0
= >FFFF).

If the length of the string is 16 bytes of more, the checkpoint register is used for interrupts. If an
interrupt occurs during execution, checkpoint data is stored in the checkpoint register. After the
interrupt is serviced, execution continues from where it stopped. Upon completion of the instruction,
the checkpoint register is set to -1.

3-184

Digital Systems Group

2250077-9701

The checkpoint register value plus one is used as an initial index into the string. To access the first
byte (lowest address) in the string, the checkpoint register must be set to -1 before the instruction is
executed.

If the string length is zero (or one for a tagged string), no data is translated (and status bits zero
through two are set to zero). If the string is tagged, the tag byte is not translated.

Status bits affected: Logical greater than, arithmetic greater than, and equal.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I i 1
L>|A>|EQ|Cc | O | P| X |PR|MF|MM| Ol | CS M

A 4o A

The translated string is compared to zero (as a signed, two’s complement value), and the status bits
in t

zero, one, and two are set accordingly. The tag length in a tagged string is not u

comparison.
Execution results: For each byte in gaq,

(gas + (gad))—gaq

Application notes: If T, is equal to three, the indicated register is incremented by the string length. If
T; is equal to three, the indicated register is incremented by 256. .

An exampie of the transiate string instruction is: if NTAB points to a 256-byte table, the TAB points
to a string of bytes which are indexes into the table pointed to by NTAB, then the instruction

LABEL TS @NTAB,@TAB,10,R1

will replace the value in each byte of TAB, by the value of the respective byte in NTAB. For instance,
if the first byte of TAB contains the hexadecimal representation for an asterisk (*), which is 2A; then
the index into the table would be NTAB + 2A. If the value in the byte at NTAB + 2A is the
hexadecimal representation of a blank (), which is 206, this value, after execution of the instruction,
will replace the index value of the first byte of TAB. This example is shown figuratively below:

BEFORE EXECUTICON

(4
[]
.
NTAB

NTAB+>20 >33 TAB >2A
+>21 >2F >23
+>22 >29 >20
+>23 >3¢C >28
+>24 >58 >2C
e >20
+>24 >20 >23
+>28 >7D >2p
+>2C >40 >22
+>20 >SE >2A

A

r

L J

[

L]

3-185 Digital Systems Group

TS o
TSMB 2250077-9701

AFTER EXECUTION

NTAB °

L]

[]

4

v

NTAB+>20 >33 TAB >20
+>21 >2F >3C
+>22 »29 ' >5E
+>23 »3¢C >7D
+>24 >58 >40
>33
+>2A >20 >3C
+>28 >70 >85E
+>2¢ >40 >29
+>20 >5E >z0

A

L 4

[4

[]

L]

The logical greater than and arithmetic greater than bits of the status register are set, and the equal
bit is reset.

3.142 TEST AND SET MEMORY BIT — TSMB
Opcode: 0COB

Addressing mode: Format XIV

Format:

0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15

0| 0|0 |0 1 110lj]0jO0jOo}joO}JOj1]O]1 WORD 1

P Ts s WORD 2

Syntax definition:
[<label>]p. . .TSMBp. . .<ga>[,<pos>]p. . [<comment>]
Example:

LABEL TSMB @BITMAP(R3),6 Set bit six of the contents of location BITMAP plus
workspace register three to one.

Definition: The bit at position <pos> in the bit string starting at the source address is placed in
status register bit two and then set to one. If the position operand is not present, it will default to
3FFis, the maximum value of the position. When the position is 3FF, all 16 bits of workspace
register zero are used to determine the bit position. TSMB will work correctly as an interlock
instruction in multiprocessor systems; i.e., only TILINE memory cycles from the CPU executing the
TSMB instruction are allowed to the source operand.

3-186 Digital Systems Group

° = TSMB
@ 2250077-9701 X

Status bits affected: Equal.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

>l A>|EQl Cc O} P| X |PR|MFIMM| Ol |CS M

a

Execution results: (ga; + pos)~ST2
1—(gas + pos)

Application notes: 1f T, is equal to three, the indicated register is incremented by one.

An example of the test and set memory bit instruction is: If BITM AP contains the value 4C28;6, then
the instruction

LABEL TSMB @BITMAP,6

will reset the equal bit of the status register (ST2); and will set bit 6, of the value of BITMAP, to one.
The value of BITMAP, after execution of this instruction, is 4E28;s.

Multiple CPU Systems: Several 990/12 CPUs can be connected together to create a muitiple CPU
system. In these systems, the CPUs must share a common memory. Simultaneous access attempts to
memory by more than one CPU can result in a loss of data. To prevent this conflict, software
“memory busy” flags in memory can be used. When a processor desires access to memory, it must
first check the flag to determine if any other processor is actively using memory. If memory is not
busy, the processor sets the busy flag to lock out other processors and begins its memory transfers.
When the processor is finished with memory, it clears the busy flag to allow access from other
processors.

However, the busy flag system is not foolproof. If two CPUs check the status of the busy flag in
successive memory cycles, each CPU proceeds as if it has exclusive access to memory. This conflict
occurs because the first CPU does not set the flag until after the second CPU reads it. All instructions
in the 990 instruction set, except three, allow this problem to occur since they release memory while
executing the instruction (i.e., while checking the state of the busy flag). The TSMB instruction
maintains control over memory even during execution of the instruction after the flag has been
fetched from memory. This feature prevents other programs from accessing memory until the first
program has evaluated the flag and has had a chance to change it. Therefore, use the TSMB
instruction to examine memory busy flags in all memory-sharing applications.

NOTE

When workspace registers are cached, TSMB in direct register
addressing will not detect a flag changed in the corresponding
memory location by another processor. Therefore, TSMB can only
be used with indirect, indirect autoincrement, indexed, and symbolic
addressing modes when used for the above purpose.

3.143 EXECUTE — X

Opcode: 0480

Addressing mode: Format VI

3-187 Digital Systems Group

2250077-9701

Format:

71 8

9

10 11

12 13 14 15

I
S

I

Syntax definition:

[<label>]p. . .Xb. . <ga>h. . [<comment>]

Example:

LABEL X R2 Execute the contents of workspace register 2.
Definition: Execute the source operand as an instruction. When the source operand is not a single
word instruction, the word or words following the execute instruction are used with the source
operand as a two-word instruction. The source operand, when executed as an instruction, may affect
the contents of the status register. The PC increments by either one, two, or three words depending
upon the source operand. If the executed instruction is a branch, the branch is taken. If the executed
instruction is a jump and if the conditions for a jump (i.e., the status test indicates a jump) are
satisfied, then the jump is taken relative to the location of the X instruction.

Status bits affected: None, but the substituted instruction affects the status bits normally.
Execution results: An instruction at <ga,> is executed instead of the X instruction.

Application notes: Use the X instruction to execute the source operand as an instruction. This is
primarily useful when the instruction which will be executed is dependent upon a variable factor.
Refer to Section IV for additional application notes.

3.144 EXTRACT FIELD — XF

Opcode: 0C30

Addressing mode: Format XVI

Format:

9

10 11

12 13 14 15

1

|
w

o

U o

Syntax definition:

[<label>]p. . XFp. . <ga><gas>,(<pos><wid>)p. . [<comment>]

WORD 1

WORD 2

3-188

Digital Systems Group

o XF
%@ 2250077-9701 XIT

Example:
LABEL XF @CORE,@OPUT,(3,6)

Definition: The bit field of width <wid> beginning at position <pos> in the word at the source
address is stored, right-justified, in the word at the destination address. Leading zeros fill the most
significant bit positions at the destination. If either <pos> or <wid>> is zero, the position or width is
taken from workspace register zero. In this case, bits four through seven of workspace register zero
indicate the position and bits 12 through 15 determine the width. If bits four through seven are zero,
the position is zero. If bits 12 through 15 are zero, the width is sixteen. If <pos> plus <wid> is
greater than 16, the remainder of the extracted value is taken from the next word in memory, starting
at the most significant bit. The source and destination operands must start on a word boundary.

Status bits affected: Logical greater than, arithmetic greater than, and equal.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
N T T

L>IA>|EQ[C | O| P| X |PR [MF|MM Ol | CS M

A A A

Execution results: (gas)—(gaa)

Application notes: The result of the XF instruction stored in the memory location specified by
<gas> is compared to zero and status register bits 0, 1, and 2 reflect the results of the comparison. If
T, or Tq is equal to three, the indicated register is incremented by two.

An example of the extract field instruction is: If CORE contains the value 7BA4;q, then the
instruction

LABEL XF CORE,OPUT,3.,6)
‘will place the six-bit value of CORE, starting at bit position three, into OPUT, right-justified. The

most significant bit positions of OPUT will be filled with zeros. The new value of OPUT is 0037s.
The example is shown figuratively below:

1 T 1 T 1 Li 1 1 !] T] ¥ 1 1

CORE o 1 1 1 1 o 1 1 1 o 1 o o 1 o o
A\ /
ZERO FILL V. EXTRACTED FIELD
A —n
o 1 2 3 4 5 6 7 8 9"%1i0o 11 12 13 14 15°

T T T T T T T T Y T T T T T T

OPUT o o o o o o o0 o o0 o 1 1 o 1 1 1

The logical greater than and arithmetic greater than bits of the status register are set, and the equal
bit of the status register is reset.

3.145 EXIT FROM FLOATING POINT INTERPRETER — XIT

Opcode: 0COE or 0COF

3-189 Digital Systems Group

XIT
XOP

(o]
%@ 2250077-9701

Addressing mode: Format VII

Format:

0l 0Jjojo] 1 11 0j]0j]0]0}jO0}O 1 t}0
or

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0t ojolo}|1 1tjo]J]ojojojo]o {1 1 1

Syntax definition:

[<labe>]p. . XITp. . [<comment>]
Example:

LABEL XIT

Exit from the floating point interpreter.

Definition: The XIT instruction is used to exit from the floating point interpreter. It is effectively a

NOP.

Status bits affected: None.

Application notes: XIT is generated by the S option when compiling a FORTRAN program. This

instruction is treated as a NOP.

3.146 EXTENDED OPERATION — XOP
Opcode: 2C00

Addressing mode: Format X

Format:

4 5 6 7 8

9 10 11 12 13 1415

| I I | 1
T
S

I
S

1

Syntax definition:
[<label>]p. . .XOPp. . <ga><cnt>h. . [<comment>]
Example:

LABEL XOP @DATA,12

3-190

Digital Systems Group

o
Q@ 2250077-9701

Definition: If the status register bit 11 (WCS enable) is zero, the <cnt> field specifies the extended
operation transfer vector in memory. The two memory words at that location contain the WP
contents and PC contents for the XOP instruction subroutine. The memory location for these two
words is derived by multiplying the <cnt> field contents by four and adding the product to 0040;s.
Note that the two memory words at this location must contain the necessary WP and PC values prior
to the XOP instruction execution.

The effective address of the source operand is placed in workspace register 11 of the XOP workspace.
The WP contents are placed in workspace register 13 of the XOP workspace. The PC contents are
placed in workspace register 14 of the XOP workspace. The status register contents are placed in
workspace register 15 of the XOP workspace. Control is transferred to the new PC address and the
XOP is executed. (XOP execution is similar to an interrupt trap execution.) When the extended
operation is executed, the privileged mode and map file bits in the status register are set to zero.

If the XOP instruction is executed with the WCS (writable control store) enable bit (status register
bit 11) set to one, the effective (source) address is calculated and deposited in a hardware register
internal to the CPU. Control is then transferred to the microcode instruction in the WCS word
specified by the <cnt> field. Refer to the Model 990 Computer M DS-990 Microcode Development

System Programmer’s Guide, part number 2264445-9701.

Status bits affected: If status register bit 11 is zero, the extended operation, privileged mode, and
map file bits are affected. If status register bit 11 is one, the status register may be affected by the
microcode being executed in WCS.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

| T
AEGISTER L>[a> [EQ| c |ov|oP| x | PRIMF|MM oI | CS M
cs =0
A A A
0o 1 2 3 4 5 6 7 8 9 10 11 1213 1415
STATUS por ol
REGISTER L>{a> |Ea| c |ov|or| x [PR|MF|MM|OI | cS M

W A A A A A A AL AL LDLADL,

\'4
DETERMINED BY USER MICROPROGRAM

Execution results: If status register bit 11 is zero:

(gas)—(workspace register 11)
(0040,6+(<cnt>)*4)—(WP)
(00426 +(<cnt>)*4(—(PC)
(WP)—(workspace register 13)
(PC)—(workspace register 14)
(ST)—(workspace register 15)
0—ST8 0-—-ST9

0—ST7 0—STI10

1-ST6 0—STl11

If status register bit 11 is one:

(gas)—CPU register

3-191 Digital Systems Group

XOoP

XOP o
XOR %@ 2250077-9701

Application notes: When WCS is enabled (ST 11 = 1), the table of transfer vector subroutine
addresses, and the subroutines within WCS, must be set up by the LCS instruction or the operating
system prior to execution of the XOP instruction. Entry to these subroutines might be through
microcode jumps in the first 16 words of WCS. Return to the next machine instruction must be
handled by microcode. Refer to Section IV for additional application notes.

3.147 EXCLUSIVE OR — XOR
Opcode: 2800

Addressing mode: Format 111
Format:

L 8 9 10 11]12 13 14 15
| B T T T
ofo]l1]o]1]o D TS s

Syntax definition:
[<label>]p. . . XORp. . <ga><was>p. . [<comment>]
Example:

LABEL XOR @WORD,R3 Perform the logical ‘¢xclusive OR’ of the memory
word at location WORD and the contents of
workspace register three. Place the result in
workspace register three.

Definition: Perform a bit-by-bit exclusive OR of the source and destination operand with the result.
This exclusive OR is accomplished by setting the bits in the resultant destination operand to a logic
one when the corresponding bits of the two operands are not equal. The bits in the resultant
destination operand are reset to zero when the corresponding bits of the two operands are equal. The
AU compares the resultant destination operand to zero and sets/ resets the status bits to indicate the
result of the comparison.

Status bits affected: Logical greater than, arithmetic greater than, and equal.

o 1 2 3 4 5 6 7 8 9 1011 12 13 14 15

|
L>la>fe@ic|o| P| x |Pr|MFIMM 01] cs ™M

A A A
Execution results: (ga;) XOR (wag)—(waq)
(i.e., [(gas) AND NOT (was)] OR [(was) AND NOT (gas)]~(waa))
Application notes: Use the XOR instruction to perform an exclusive OR on two-word operands, For
example, if workspace register two contains D2AAs and location CHANGE contains the value

6D03,¢, then the instruction

XOR @CHANGE,R2

3-192 Digital Systems Group

o XOR
4@ 2250077-9701 XORM

results in the contents of workspace register two changing to BFA9;6. Location CHANGE remains
6D0316. This is shown as

011011010000001°11 (Source operand)
1101001010101010 (Destination operand)
1011111110101001 (Destination operand result)

For this example, the logical greater than status bit sets while the arithmetic greater than and equal
status bits reset.

3.148 EXCLUSIVE OR MULTIPLE PRECISION — XORM
Opcode: 0026

Addressing mode: Format X1

Format:

0O 1t 2 3 4 5 6 7 8 9 1011 1213 1415

olojfojolojlo|jojojoOo}jo}j1jotjofj1]t1}jo}] WORD 1

c T D T s WORD 2

Syntax definition:
[<label>]p. . XORMB. . <ga><ga>[,<cnt>]p. . [<comment>]
Example:

LABEL XORM @TAB,@NTAB,14 Perform the logical ‘exclusive OR’ between the 14
bytes starting at location TAB and the 14 bytes
starting at location NTAB. The result is placed in the
14 bytes starting at location NTAB.

Definition: A bit-by-bit exclusive OR operation is performed between the multibyte two’s
complement integer at the source address and the corresponding bits of the multibyte two’s
complement integer at the destination address. The result is placed in the destination address. The
<cnt> is the number of bytes of precision of the integer. If <cnt> equals zero, the count is taken
from the four LSBs of workspace register zero. If the four LSBs of workspace register zero are zero,
the count is 16.

Status bits affected: Logical greater than, arithmetic greater than, and equal.

0O 1+ 2 3 4 5 6 7 8 9 10 11 12 13 14 15
| I B
L>|A>|EQI C|]O| P{ X |[PRIMF|IMM Ol | CS IM

A A A

Execution results: (ga;) XOR (gas)—(gad)

3-193 Digital Systems Group

(o]
XORM q_r{g;) 2250077-9701

Application notes: The result of the XORM instruction is compared to zero and the status register
bits zero, one, and two indicate the results of the comparison. If T, and/or Ty is equal to three, the

indicated register is incremented by the byte count.

An example of the exclusive OR multiple precision instruction is: If TAB addresses a 16-byte string,
and NTAB addresses a 16-byte string, as shown figuratively below:

TAB 1F

33

B7

5C

25

77

13

39

A5

EO

99

AC

EF

DE

NTAB

14

0A

88

4C

9B

65

D3

Fa

77

00

c2

33

B7

c9

3-194

Digital Systems Group

o XORM
{@ 2250077-9701 XV

then the instruction

CLR RO
XORM @TAB,@NTAB,0

will perform a bit-by-bit exclusive OR operation between the multibyte two’s complement integer at
TAB and the corresponding bits of the multibyte two’s complement integer at NTAB, placing the
results in NTAB. The results of this instruction are shown figuratively below:

NTAB oD

39

3F

10

32

EC

A8

5C

76

14

DD

99

8E

DC

69

6B

The logical greater than and arithmetic greater than bits of the status register are set, and the equal
bit is reset.

3.149 EXTRACT VALUE — XV

Opcode: 0C20

Addressing mode: Format XVI

3-195 Digital Systems Group

[o]
XV q@ 2250077-9701

Format:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Olojojo]1 1 ojojo]oj1 o w WORD 1

L
P Td D T s WORD 2

Syntax definition:
[<label>]p. . . XVp. . <ga>,<ga>,(<pos>,<wid>)b. . [<comment>]
Example:"

LABEL XV @WORD,@NWORD,(7,7) Extract a seven-bit value, beginning with bit seven,
from the word at location WORD and place the
value in the word at location NWORD.

Definition: The bit field of width <wid>, beginning at position <pos>, in the word at the source
address is stored right-justified in the word at the destination address. The MSB of the extracted field
fills the vacant bit positions at the destination. If either <pos> or <wid> are zero, the position or
width is taken from workspace register zero. In this case, bits four through seven of workspace
register zero indicate the position and bits 12 through 15 determine the width. If bits four through
seven are zero, the position is zero. If bits 12 through 15 are zero, the width is sixteen. If <pos> plus
<wid> is greater than 16, the remainder of the extracted value is taken from the next word in
memory, starting at the most significant bit. The source and destination operands must start on a
word boundary.

Status bits affected: Logical greater than, arithmetic greater than, and equal.

¢ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I L
L>|A>|EQjCc|Oo]| P] X PRMF‘MN{OI cs IM
4 & A

Execution results: (ga,)—(gas)

Application notes: The result of the XV instruction is stored in memory at the address specified by
<gas> is compared to zero, and the status register bits zero, one, and two reflect the results of the
comparison. If T, or Ty is equal to three, the indicated register is incremented by two.

An example of the extract value instruction is: If WORD contains the value 0AEAs, then the
instruction

LABEL XV @WORD,@NWORD,(7,7)

will extract the seven-bit value starting at bit position seven of WORD, and place the seven-bit value
in NWORD, right justified (bits 9-15). The MSB of the extracted value (bit seven) will fill the vacant

3-196 Digital Systems Group

2250077-9701

bit positions (bits zero through eight). The new value of NWORD is 003A6, shown figuratively
below:

VAWJES OF WORD, NWORD BEFORE EXECUTION

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T T T T T I I LB 1 I 1 1 | I 1
WORD 0 0 o} o] 1 o} 1 o} 1 1 1 [o] 1 o 1 o

) .
e V. EXTRACTED
A -

9 10 11 12 13 14 15
T T T ! 1 T T 1 T T T ! I 1 I

NWORD 0 0 o) o 0 0o 0 Q o] o 1 1 1 (o] 1 s}

The logical greater than and arithmetic greater than bits of the status register are set; and the equal
bit of the status register is reset.

3-197/3-198 Digital Systems Group

XV

[e]
%@ 2250077-9701

SECTION 1V
APPLICATION NOTES

4.1 GENERAL

This section provides information and examples for the 990/12 assembly language. There are two
parts to this section. The programming examples show the use of several instructions for special
purposes or expand upon the application notes in Section III. The 990/10 to 990/12 upgrade
considerations offer information specifically for users converting their computing system from a
990/ 10 to a 990/ 12. The information in these paragraphs lists the differences in performance between
the 990/10 and the 990/ 12, with information on upgrading 990/ 10 programs to take advantage of
the 990/ 12 features. Much of the information presented in these paragraphs is also applicabie for
general programming techniques.

4.2 PROGRAMMING EXAMPLES

The following paragraphs describe several of the 990/ 12 instructions. This information is designed to
aid the programmer’s understanding of the 990/12 instruction set. The examples provided can be
incorporated into user programs with little or no modification.

4.2.1 ABS INSTRUCTION. Since the ABS instruction compares the operand to zero prior to any
modification of the operand, the ABS instruction may be used to test a switch. The following
example program illustrates this use of the instruction. A word of memory at location SWITCH is
used to indicate whether or not a subroutine at location SUBR is being executed. Subroutine SUBR
is used by several programs, but only one may use it at a time. When the subroutine is in use, location
SWITCH contains one, and other programs may not transfer control to location SUBR. When
control returns from the subroutine, location SWITCH is set to -1, making subroutine SUBR
available again.

The first instruction would be used in the initialization portion, to make the subroutine available
initially. The four instructions at location TEST would be included in each program that calls in the
subroutine. These instructions branch to location CALL when location SWITCH contains -1,
setting location SWITCH to +1 after testing its value. Any attempt to access the subroutine before
its completion results in the program entering a delay mode, retesting following each delay interval.

A BL instruction at location CALL transfers control to the subroutine, and stores the address of the
SETO instruction in workspace register 11. When the subroutine returns control, the SETO
instruction sets location SWITCH to -1, so that the next time any calling program tests the location,
a transfer to the subroutine occurs. The code is as follows.

SETO @SWITCH INITIALIZES SWITCH NEGATIVE'
TEST AI§S @SWITCH TEST SWITCH?

JLT CALL IF NEGATIVE, TRANSFER’

XOP @TMDLY,I5 IF NOT, WAIT*

JMP TEST TEST AGAIN

4-1 Digital Systems Group

Q
Q@ 2250077-9701

CALL BL @SUBR USE SUBROUTINE

SETO @SWITCH RESET SWITCH’
SUBR SUBROUTINE ENTRY

B 511 SUBROUTINE RETURN
SWITCH DATA 0 STORAGE AREA FOR SWITCH
TIMDLY DATA 200,10 TIME DELAY SUPERVISOR

CALL BLOCK
NOTE

1. Set SWITCH to all ones, making it negative.

2. If SWITCH negative, set to positive value to prevent subsequent
entry.

3. If value in SWITCH was negative, the JLT instruction transfers
control.

4. Supervisor call pointing to data block defining time delay
request. Used to wait for a time period before retesting
SWITCH. While in a time delay, other programs can be
executed, thus leaving the SUBR available for use. Time delay
supervisor calls are supported by the DX10 operating system.
Reference the DXI10 Operating System Reference Manual,
Volume III, Application Programming Guide, part number
946250-9703.

5. Upon return, reset SWITCH to negative value to permit feature
use.

4.2.2 TSMB AND TCMB INSTRUCTIONS. The test and set memory bit (TSMB) and test and
clear memory bit (TCMB) instructions can be used to test flags in memory like the ABS instruction
in the paragraph above. The following example is similar to the one above, except it uses the TSMB
instruction for switch control. The TSMB instruction is useful when there are several common
subroutines, each of which can be used by only one program at a time. These subroutines use a bit
map, with each bit indicating the availability of the subroutine (0 = available, 1 = in use). The
example program uses the TSMB instruction to determine if the subroutine is available, and if
available, to set the flag and use the subroutine.

Location MAP is a 16-bit word where each bit can be used to control a common subroutine. Only bit
zero is used in this example. The assembly language program does a TSMB to bit zero of location
MAP. This bit is tested before it is set. If the bit equals zero, the subroutine SUBR is called. If the bit
equals one, the program enters delay mode, and tests the bit again after the delay.

The test and clear memory bit (TCMB) can be used in the same way, except that a one would
indicate the subroutine is available, and a zero would indicate the subroutine is active.

4-2 Digital Systems Group

[o]
{@ 2250077-9701

TCMB @MAP,0 INITIALIZE CONTROL BIT TO ZERO
TEST TSMB @MAP,0 TEST CONTROL BIT!
INE CALL IF ZERO, TRANSFER?
XOP @TMDLY, 15 IF NOT ZERO, WAIT®
JMP TEST TEST AGAIN AFTER DELAY
CALL BL @SUBR BRANCH TO SUBROUTINE
TCMB @MAP,0 RESET CONTROL BIT
SUBR SUBROUTINE ENTRY
RT SUBROUTINE RETURN
MAP DATA 0
TMDLY DATA 200,10 TIME DELAY SUPERVISOR CALL
BLOCK
NOTE

1. If bit zero of MAP equals zero, set to one to prevent subsequent
entry. If bit zero of MAP equals one, the bit is unchanged.

2. The instruction reads the bit in MAP into status register bit two
(equal). If status bit two equals zero, the jump not equal (JNE)
instruction transfers control.

3. The XOP instruction performs a call to the DX10 supervisor
requesting a time delay. The task goes into a wait state before
retesting bit zero of map. While this task is in a time delay, other
programs can be executed, leaving the subroutine available for
use. Reference the DX10 Operating System Reference Manual,

Volume III, Application Programming Guide, part number
946250-9703.

5. Upon return, set bit zero of MAP to zero to permit further use
of the subroutine. :

4.2.3 SHIFT INSTRUCTIONS. There are four register shift instructions available with the Model
990/ 12 Computer that permit the user to shift the contents of a specified workspace register from one

to 16 consecutive bit positions. There are two multiple precision instructions that permit the user to
shift an integer of up to 16 bytes from one to 16 bit positions.
The four register shift instructions are:

e Shift left arithmetic (SLA)

e Shift right arithmetic (SRA)

4-3 Digital Systems Group

[¢]
@ 2250077-9701

e Shift right circular (SRC)
e Shift right logical (SRL).
The two multiple precision shift instructions are:
e Shift right arithmetic multiple precision (SRAM)
e Shift left arithmetic multiple precision (SLAM)

4.2.3.1 Shift Left Arithmetic. This shifting instruction shifts the indicated workspace register a
specified number of bits to the left. For example, the instruction

SLA 5,1

would shift the contents of register five one bit to the left. The carry status bit contains the value
shifted out of bit position zero and the jump instructions JOC and JNC permit the user to test the
shifted bit. The overflow status bit sets when the sign of the contents of the register being shifted
changes during the shift operation. If register five contained

0100111100000111
before the above instruction, the results of the instruction execution would be
1001111000001110

and the carry status bit would contain a zero and the overflow status bit would set because the
contents changed from positive to negative (bit zero equal to zero changed to equal to one). If this
shift sign change is important, the user could insert a JNO instruction to test the overflow condition.
If there is no overflow, control transfers to the normal program sequence. Otherwise, the next
instruction is executed, which activates the recovery routine.

4.2.3.2 Shift Right Arithmetic. This shifting instruction shifts the contents of a workspace register
right a specified number of bits and extends the sign bit (bit zero) at the logic level that existed prior
to the shift. The carry status bit contains the last bit shifted out of bit 15 of the workspace register.
For example, the instruction

SRA RS,3

would shift the contents of workspace register five three bits to the right. If workspace register five
contained

1100000011110000
prior to the shift, the results of this instruction would be
1111100000011110

and the carry status bit would contain a logic zero for the last shifted bit.

4-4 Digital Systems Group

o]
%@ 2250077-9701

P Y B~ A . ey T MDA s bl nee ol il PR c ~f - 1 s
4.2.3.3 Shifi Right Circular. The SRC insiruction shifts the contents of a workspace register a2

specified number of bits to the right and transfers the bits shifted off the right end of the workspace
into the left end of the workspace register. The carry status bit contains the last bit shifted out of bit
15 of the workspace register. For example, the instruction

SRC Ré6.,5
would shift the contents of register six five bits to the right and transfer the five bits shifted off the
right end to the first five bits of workspace register six. For this example, if workspace register six
contained

1100110011110101
before this instruction was executed, workspace register six would contain

1010111001100111
and the carry status bit would contain a logic one from the last bit shifted in workspace register six.
4.2.3.4 Shift Right Logical. The SRL instruction shifts the contents of a special workspace register
to the right for a specified number of bits and fills the vacated bit positions on the left end of the
workspace with zeros. The carry status bit contains the last bit shifted out of bit 15 of the workspace
register. For example, the instruction

SRL R5,8

would shift the contents of workspace register five eight bits to the right and would fill the first eight
bits of the word with zeros. If the workspace register contained

1000100011111000
prior to the SRL instruction, the contents of workspace register five would be
0000000010001000

and the carry status bit would contain a logic one for the last bit shifted off the right end of
workspace register five.

4.2.3.5 Shift Right Arithmetic Multiple Precision. The SRAM instruction shifts the contents of the
specified area in memory right a specified number of bits and extends the sign bit (bit zero) at the
logic level that existed prior to the shift. The carry status bit contains the last bit shifted out of the
rightmost byte of the memory area. The memory area can be from one to 16 bytes long. For
example, the instruction

SRAM @BIT,3,5

would shift a three-byte field starting at location BIT five positions to the right. If the three bytes
starting at location BIT contained :

100110000011000101110010
prior to the shift, the results of the instruction would be

111111001100000110001001

and the carry status bit would contain a logic one for the last bit shifted out.

4-5 Digital Systems Group

(o]
{%p 2250077-9701

4.2.3.6 Shift Left Arithmetic Multiple Precision. The SLAM instruction shifts the contents of the
specified area in memory left a specified number of bits. If the most significant bit (bit zero of the
first byte) changes at any time during the shift, the overflow bit is set. The carry status bit contains
the last bit shifted out of the leftmost byte of the memory area. The memory area can be from one to .
16 bytes long. For example, the instruction

SLAM R04,3

would shift workspace combined registers zero and one three bit positions to the left. If workspace
registers zero and one contained

00001111101001010011110010010110

prior to the shift, the results of this instruction would be
01111101001010011110010010110000

The carry status bit and the overflow status bit would both contain a logic zero.

4.2.4 INCREMENTING AND DECREMENTING. There are two decrement and two increment
instructions that may be used for various types of control when passing through a loop, indexing
through an array, or operating within a group of instructions.

The four incrementing and decrementing instructions available for use with the 990/12 computer
are: |

® Decrement (DEC)

® Decrement by two (DECT)
® Increment (INC)

® Increment by two (INCT).

The increment and decrement instructions are useful for indexing byte arrays and for counting byte
operations. The increment by two and decrement by two instructions are useful for indexing word
arrays and for counting word operations. The following paragraphs provide some examples of these
operations.

4.2.4.1 Increment Instruction Example. Since the INC instruction is useful in byte operations, an
example problem searches a character array for a character with odd parity. The last character
contains zero to terminate the search. Begin the search at the lowest address of the array and
maintain an index in a workspace register. The character array for this example is called Al (also the
relocatable address of the array). The code for a solution to this problem is:

SETO 1 SET COUNTER INDEX TO -1
SEARCH INC 1 INCREMENT INDEX

MOVB @AI1(1),2 GET CHARACTER

JOP ODDP JUMP IF FOUND

JNE SEARCH CONTINUE SEARCH IF NOT ZERO

ODDP

4-6 Digital Systems Group

o]
%@ 2250077-9701

4.2.4.2 Decrement Instruction Example. To illustrate the use of a DEC instruction in a byte array,
this example problem inverts a byte array and places the results in another array of the same size.
This example inverts a 26-character array called Al and places the results in array A2. The contents
of Al are defined with a data TEXT statement to be as follows:

Al TEXT ‘ABCDEFGHIJKLMNOPQRSTUVWXYZ’
Array A2 is defined with the BSS statement as follows:
A2 BSS 26

The sample code for the solution is:

LI R5,26 COUNTER AND INDEX FOR Al
LI R4,A2 ADDRESS OF A2
INVRT MOVB @AI(R5),*R4+ INVERT ARRAY'
DEC RS REDUCE COUNTER
JGT INVRT CONTINUE IF NOT COMPLETE
'NOTE

@AI1(5) addresses elements of array Al in descending order as
workspace register five is decremented. *4+ addresses array A2 in
ascending order as workspace register four is incremented.

Array A2 would contain the following as a result of executing this sequence of code:
A2 ZYXWVUTSRQPONMLKIJIHGFEDCBA

Even though the result of this sequence of code is trivial, the example use of the MOVB instruction,
with indexing by workspace register five, and the result incrementally placed into A2 with the auto-
increment function can be useful in other applications.

The JGT instruction used to terminate the loop allows workspace register 5 to serve both as a
counter and as an index register.

A special quality of the DEC instruction allows the programmer to simulate a jump greater than or
equal to zero instruction. Since DEC always sets the carry status bit except when changing from zero
to minus one, it can be used in conjunction with a JOC instruction to form a JGE loop. The example
below performs the same function as the preceding example:

Al TEXT ‘ABCDEFGHIJKLMNOPQRSTUVWXYZ’

A2 BSS 26
LI RS,25 COUNTER AND INDEX FOR Alf
LI R4,A2 ADDRESS OF A2

INVRT MOVB @AI(RS),*R4+ INVERT ARRAY
DEC R5 REDUCE COUNTER

JOC INVRT CONTINUE IF NOT COMPLETE

4-7 Digital Systems Group

[e]
Q@ 2250077-9701
‘ tNOTE

Since the use of JOC makes the loop execute when the counter is
zero, the counter is initialized to 25 rather than 26 as in the preceding
example.

4.2.4.3 Decrement By Two Instruction Example. To illustrate the use of a DECT instruction in
processing word arrays, the example problem adds the elements of a word array to the elements of
another word array and places the results in the second array. The contents of the two arrays are
initialized as follows:

Al DATA 500,300,800,1000,1200,498,650,3,27,0
A2 DATA 36,192,517,29,315,807,290,40,130,1320

The sample code that adds the two arrays is as follows:

LI R4,20 INITIALIZE COUNTER
SUMS A @AI1-2(R4),@A2-2(R4) ADD ARRAYS
DECT R4 DECREMENT COUNTER BY TWO
JGT SUMS REPEAT ADDITION
NOTE

Addressing of the two arrays through the use of the @ sign is indexed
by the counter, which is decremented after each addition.

The contents of the A2 array after the addition process is as follows:
A2 536,492,1317,1029,1515,1305,940,43,157,1320

There is another method by which this addition process may be accomplished. This method is shown
in the following code:

L1 R4,10 INITIALIZE COUNTER'
LI R5,A1-2 LOAD ADDRESS OF Al’
L1 R6,A2-2 LOAD ADDRESS OF A2’
SUMS A *R5+,*R6+ ADD ARRAYS®
DEC R4 DECREMENT COUNTER
JGT - SUMS REPEAT ADDITION*
NOTE

1. Counter preset to ten (the number of elements in the array).

2. This address will be incremented each time an addition takes
place. The increment is via the auto-increment function (+).

3. The * indicates that the contents of the register is to be used as
an address and the + indicates that it will be automatically
incremented by two each time the instruction is executed.

4. Workspace register four will only be greater than zero for ten
executions of the DEC instruction and control will be
transferred to SUMS nine times after the initial execution.

The contents of array A2 are the same for this method as for the first.

4-8 Digital Systems Group

2250077-9701

4.2.5 SUBROUTINES. There are two types of subroutine linkage available with the Model 990
Computer. One type uses the same set of workspace registers that the calling routine uses, and is
called a common workspace subroutine. The BL instruction and BLSK instruction store the contents
of the program counter and transfer control to the subroutine. Another type is called a context
switch subroutine. The BLWP instruction stores the contents of the WP register, the program
counter, and the status register. The instruction makes the subroutine workspace active and transfers
control to the subroutine. '

4.2.5.1 BL Instruction Common Workspace Subroutine Example. Figure 4-1 shows an example of
memory contents prior to a BL call to a subroutine. The contents of workspace register 11 is not
important to the main routine. When the BL instruction is executed, the CPU stores the contents of
the PC in workspace register 11 of the main routine and transfers control to the instruction located at
the address indicated by the operand of the BL instruction. This type of subroutine uses the main
program workspace. Figure 4-2 shows the memory contents after the call to the subroutine with the
BL instruction.

When the instruction at location 1130, is executed (BL @RAD), the present contents of the PC,
which point to the next instruction, are saved in workspace register 11. WR11 would then contain an
address of 1134,s. The PC is then loaded with the address of label RAD, which is address 2220;s.
This example subroutine returns to the main program with a branch to the address in WR11 (B *11).

MEMORY

b 3
ADDRESS ‘b MEMORY
HARDWARE ~-# 0100 MAIN PROGRAM WORKSPACE (WRO)
REGISTERS ! A
-/ ccoe X
WP 0100 - — - Y i o
(WR11)
~N, ~
~ (XL X] i
PC 1134 T~ o o
| 1020 A/, MAIN PROGRAM ,L
| ~ >
|
ST EXECUTION | 1130 BL @RAD
STATUS L_gmt1347, JINE FIX A
, > »~
L]
2220 RADes
* WORKSPACE REGISTERS ARE
SUBROUTINE AREA
CACHED WHEN ACCESSED A ﬁb
(READ OR WRITE). . i
L d
B *1t

(A}128615A e e

Figure 4-1. Common Workspace Subroutine Example

4-9 Diaital Systems Group

2250077-9701

MEMORY MEMORY *
ADDRESS
HARDWARE #0100 (WR0)
REGISTER | i]
/ \/
~\ * o 0 o la
WE c100 I o e
1134 (WR11}
?: e se o
PC 2220 - - -
| 102¢c MAIN PROGRAM
I 4
— | n::.o‘.1 8L @RAD
ST EXECUTION 1134 JNE FIX
STATUS |
|

L..2220 RAD o e 0 o

*WORKSPACE REGISTERS ARE
CACHED WHEN ACCESSED
(READ OR WRITE).

SUBROUTINE AREA

3 *11

ARER2RETR
~laavalp—etee

(A)128616A
Figure 4-2. PC Contents After BL Instructions Execution

4.2.5.2 BLSK Common Workspace Subroutine Example. Figure 4-3 shows an example of memory
contents prior to a BLSK call to a subroutine. The stack is located in the data area of the main
routine. When the BLSK instruction is executed, the CPU stores the contents of the PC in two
consecutive bytes on top of the stack and transfers control to the instruction located at the address
indicated by the operand of the BLSK instruction. This type of subroutine uses the main program
workspace. Figure 4-4 shows the memory contents after the call to the subroutine with the BLSK
instruction.

When the instruction at location 2000, is executed (BLSK RS, @SUBR), the present contents of the
PC, which point to the next instruction, are pushed on to the stack, as two consecutive bytes. The
next instruction address is 20046, so the top byte of the stack would contain 20,s, and the second
byte would contain 04,,. The PC is then loaded with the address of label SUBR, which is address
2500,¢. This example subroutine returns to the main program with an indirect branch through
workspace register five. The top of stack is updated by using autoincrement to the return.

4.2.5.3 Context Switch Subroutine Example. Figure 4-5 shows the example memory contents prior
to the call to the subroutine. The contents of workspace register 13, 14, and 15 are not significant.
When the BLWP instruction is executed at location 0300, there is a context switch from the main
program to the subroutine. The context switch then places the main program WP, PC, and ST
register contents in workspace registers 13, 14, and 5 of the subroutine. This saves the environment
of the main program for return. The operand of the BLWP instruction specifies that the address
vector for the context switch is in workspace registers five and six. The address in workspace register
five is placed in the WP register and the address in workspace register six is placed in the PC.

4-10 Digital Systems Group

2250077-9701

wP

PC

ST

MEMORY

ADDRESS
— —» 1Foo
HARDWARE I
REGISTERS |
I
1F00 S
1F7E
1F80
2000 ——
. 2000
> 2004
EXECUTION
STATUS
2500

* WORKSPACE REGISTERS ARE CACHED
WHEN ACCESSED (READ OR WRITE).,

WP

PC

ST

Figure 4-3. Before Execution of BLSK Instruction

MEMORY
ADDRESS
— ¥ 1Foo
HARDWARE |
REGISTERS I
|
1F00 — —
1F7E
1F80
2500 ——
L - 2000
2004
EXECUTION
STATUS
2500

* WORKSPACE REGISTERS ARE CACHED
WHEN ACCESSED (READ OR WRITE).

~ MEMORY * ~
MAIN PROGRAM WORKSPACE (WRO)
-~ ~
~ o o O ¥
1F80 (WRS)
MAIN PROGRAM
-~ ~
~> BLSK RS ,@suBRr ~
Al RO, >100
SUBR....
s SUBROUTINE AREA ~
B % R5+
~ ~N
~ MEMORY * ~
MAIN PROGRAM WORKSPACE (WRO)
= e o0 5
1F7E (WRS)
04
20
MAIN PROGRAM
~ ~N
~ 8LSK R5,{@ SUBR I
Al RO, 5100
SUBR. ...
n~ SUBROUTINE AREA L
- -
B % R5+
~, ~

Figure 4-4. After Execution of BLSK Instruction

4-11

Digital Systems Group

2250077-9701

After the instruction at location 0300 is executed, the memory contents are shown in figure 4-6. This
illustration shows the subroutine in control, with the WP pointing to the subroutine workspace and
the PC pointing to the first instruction of the subroutine. The contents of the status register are not
reset prior to the execution of the first instruction of the subroutine, so the status indicated will

actually be the status of the main program execution. A subroutine may then execute in accordance
with the status of the main program.

MEMORY MEMORY *
ADDRESS ? ("
r--.0100 (WR0)
: A oo oo AV
| N v
| 0220 (WRS)
|
: 0700 (WRe6)
Pa
: ~ coee At
' 0220 (WR0)S
|
! :g ee oo :g
HARDWARE |
REGISTERS -: WR1DS
WP 0100 8 (WR14)S
(WR15)S
300 ——
Pc B —l' :: 26 090 ’%‘;
| 02€0 MAIN PROGRAM AREA ’L
\/
ST EXECUTING | V] : -
STATUS L -e0300 BLWP 5
L
o
~ . ~
~
(WRn) —WORKSPACE REGISTER - . Y
= ! PROGRAM
OF MAIT PR) 0700 START
(WRn)S = WORKSPACE REGISTER .
OF SUBROUTINE A SUBROUTINE AREA L
l"u L4 ﬁv
*WORKSPACE REGISTERS ARE :
CACHED WHEN ACCESSED (READ OR RTWP
WRITE). e
(A)128617A

Figure 4-5. Before Execution of BLWP Instruction

4-12

Digital Systems Group

2250077-9701

HARDWARE
REGISTERS

WP 0220

PC 0700

ST

EXECUTING
STATUS

* WORKSPACE REGISTERS ARE CACHED
WHEN ACCESSED (READ OR WRITE).

THE STORED CONTEXT (R13,R14,R15) IS
NOT CACHED BY THE BLWP INSTRUCTION

M, e
0100 (WRO)
’:: ec e f\:
0220 (WRS)
0700 (WR6)
~N ~N
ﬂv [a W)
[#0220 (WR0)S
|
~
! AT ceee A
|
| 0100 (WR13)S
e =
0302 (WR14)S
EXECUTING STATUS (WR15)S
T _} :: o 00 dd
' 02604, MAIN PROGRAM AREA A
! 2 V3 . VA
: 0300 BLWP 5
[]
' L]
~ . ~
| vl . 0‘5
| "' *
L e=0700 START o4 4.
[]
SUBROUTINE AREA A
® ﬁv
[]
T RTWP

Figure 4-6. After Execution of BLWP Instruction

This example subroutine contains a RTWP return from the subroutine. The results of executing the
RTWP instruction are shown in figure 4-7. Control is transferred to the main program at the
instruction following the BLWP to the subroutine. The status register is restored from workspace
register 15 and the workspace pointer points to the workspace of the main program.

When_ the cal}ing program’s workspace contains data for the subroutine, this data may be obtained
by using the indexed memory address mode indexed by workspace register 13. The address used is

equal to two times the number of the workspace register that contains the desired data. The
following instruction is an example:

MOV @10(13),R10

4-13

Diaital Systems Grouo

2250077-9701

HARDWARE
REGISTERS

WP

PC

ST

* WORKSPACE REGISTERS ARE CACHED
WHEN ACCESSED (READ OR WRITE),

0100

0302

t:__l

AoDRESS 5 MEMORY * 5
r —»0100 (WRO0)
' ﬂb [N NN] \’
| b W
: 0220 (WRS)
I 0700 (WR6)
~
AB e 00 ’:
0200 (WRO0)S
< ¥ cone ~
~
NN
| g 0100 (WR13)S
~
0302 (WR14)S
S—
| ~
| EXECUTING STATUS (WR1S5)S
| ﬂ; (XX Y] ﬂ;
I 0
onu MAIN PROGRAM AREA
l ~ . . S
I i :
L]
L
l 0300 BLWP S
L]
0302A .
” ® ~
. 2
0700 S.TARTo see
[]
~ ~
ﬂ: SPBROUTINE AREA ﬂ:
L]
[]
L
RTWP

¢

Figure 4-7. After Execution of RTWP Instruction

4.2.5.4 Passing Data to Subroutines. When a subroutine is entered with a context switch (BLWP)
data may be passed using either the contents of workspace register 13 or 14 of the subroutine
workspace. Workspace register 13 contains the memory address of the calling program’s workspace.
The calling program’s workspace may contain data to be passed to the subroutine. Workspace
register 14 contains the memory address of the next memory location following the BLWP
instruction. This location and following locations may contain data to be passed to the subroutine.

4-14

Digital Systems Group

(o]
@ 2250077-9701

The following example shows passing of data to a subroutine by placing the data following the
BLWP instruction:

BLWP @SUB SUBROUTINE CALL
DATA Vi DATA
DATA V2 DATA
DATA V3 DATA

JEQ ERROR RETURN FROM SUBROUTINE, TEST
. FOR ERROR (Subroutine sets the
equal status bit to one for error.)

SUB DATA SUBWS,SUBPRG ENTRY POINT FOR SUB
. AND SUB WRKSPCE

SUBWS BSS 32

SUBPRG MOV *14+1 FETCH VI PLACED IN WRI
MOV *14+2 FETCH V2 PLACED IN WR2
MOV *14+3 FETCH V3 PLACED IN WR3
RTWP RETURN FROM SUBROUTINE

The three MOV instructions retrieve the variables from the main program module and place them in
workspace registers one, two, and three of the subroutine.

When the BLWP instruction is executed, the main program module status is stored in workspace
register 15 of the subroutine. If the subroutine returns with a RTWP instruction, this status is placed
in the status register after the RTWP instruction is executed. The subroutine may alter the status
register contents (stored in the subroutine workspace register 15) prior to executing the RTWP
instruction. The calling program can then test the appropriate bit of the status word, the equal bit in
this example, with jump instructions. -

A BL instruction can be used to pass parameters to a subroutine. When using this instruction, the
originating PC value is placed in workspace register 11. Therefore, the subroutine must fetch the
parameters relative to the contents of workspace register 11 rather than the contents of workspace
register 14 as in the BLWP example. The following example demonstrates parameter passing with a
BL instruction. ' :

BL @SUBR BRANCH TO SUBROUTINE
DATA PARMI,PARM2 PASSED PARAMETERS STORED IN NEXT
TWO MEMORY WORDS
- JEQ ERROR TEST FOR ERROR (Subroutine sets the equal
status bit to one for error)

4-15 Digital Systems Group

o
({@ 2250077-9701

SUBR EQU $

MOV *R11+,R0 GET VALUE OF FIRST PARAMETER AND
PUT IN WRO

MOV *R11+.R1 GET VALUE OF SECOND PARAMETER
AND PUT IN WRI1 (R11 is incremented past
the locations of the two data words and now
indicates the address of the next instruction in
main program)

B *11

A BLSK instruction can also be used to pass parameters to a subroutine. When using this
instruction, the originating PC value is placed on the stack. Therefore, the subroutine must pop the
PC value from the stack, and retrieve the parameters relative to the location of the popped PC value.
The following example demonstrates parameter passing with a BLSK instruction.

STACK BSS 20 20 BYTE STACK
STEND EQU $
L1 RS5,STEND LOAD REGISTER WITH CURRENT TOP
OF STACK
BLSK R5,@SUBR BRANCH TO SUBROUTINE

DATA PARMI,PARM2 PASSED PARAMETERS STORED IN NEXT
TWO WORDS OF MEMORY

JEQ ERROR TEST FOR ERROR (Subroutine sets the equal
status bit if an error occurs)

SUBR EQU $
POPS R5,R6,2 POP TWO BYTES FROM STACK (PC value)
MOV *R6+,R0 GET FIRST PARAMETER
MOV *Ré6+,R1 GET SECOND PARAMETER (R6 is
' incremented past the locations of the two data
words and now indicates the address of the next
instruction in the main program)
PSHS R6,RS,2 RESTORE CORRECT RETURN ADDRESS

TO STACK

4.2.6 EXTENDED OPERATIONS. Extended operation instructions permit the extension of the
existing instruction set to include additional instructions. In the Model 990/12 Computer, the
instructions are implemented by software routine’s. Interface between a user program and the
standard TI executives is implemented as XOP 15.

The extended operation instruction also implements microcode routines in the writable control
store. For a writable control store routine to be executed, bit 11 of the status register must be set to
one. The writable control store should be loaded by use of the load control store (LCS) instruction,
or by other means detailed in the MDS-990 Programmer’s Guide. Refer to the Model 990/12
Computer MDS-990 Microcode Development System Programmer’s Guide, part number 226445-
9701. Execution of the XOP instruction with status bit 11 set to zero implements the standard
software extended operation.

4-16 Digital Systems Group

(o]
{@ 2250077-9701

Memory locations 0040, through 007E;s are used for XOP vectors for software-implemented XOPs.
Vector contents are user-supplied WP and PC addresses for the XOP routine workspace and starting
address. Table 4-1 contains the addresses and contents of the 16 XOP vectors. Note that these
vectors must be supplied and loaded prior to the XOP instruction execution.

Table 4-1. XOP Veptors

Memory Address XOP Number Vector Contents
0040 0 WP address for XOP workspace
0042 0 PC address for XOP routine
0044 1 WP address for XOP workspace
0046 1 PC address for XOP routine
0048 2 WP address for XOP workspace
004A 2 PC address for XOP routine
004C 3 WP address for XOP workspace
004E 3 PC address for XOP routine
0050 4 WP address for XOP workspace
0052 4 PC address for XOP routine
0054 5 WP address for XOP workspace
0056 5 PC address for XOP routine
0058 6 WP address for XOP workspace
005A 6 PC address for XOP routine
005C 7 WP address for XOP workspace
005SE 7 PC address for XOP routine
0060 8 WP address for XOP workspace
0062 8 PC address for XOP routine
0064 9 WP address for XOP workspace
0066 9 PC address for XOP routine
0068 10 WP address for XOP workspace
006A 10 PC address for XOP routine
006C 11 WP address for XOP workspace
006E : 11 PC address for XOP routine
0070 12 WP address for XOP workspace
0072 12 PC address for XOP routine
0074 13 WP address for XOP workspace
0076 13 PC address for XOP routine
0078 14 WP address for XOP workspace
007A 14 PC address for XOP routine
007C 15 WP address for XOP workspace
007E 15 PC address for XOP routine

On the DX10 operating system, the vectors are loaded at operating system load time. XOPs are
included in the DX10 operating system at system generation time. Reference the DX10 Operating
System Release 3 Reference Manual, Volume V, System Programming Guide, part number 946250-
9705.

4-17 . Digital Systems Group

2250077-9701 -

When the program module contains a software XOP instruction, the AU locates the XOP WP and
PC words in the XOP reserved memory location and loads the WP and PC. When the WP and PC
are loaded, the AU transfers control to the XOP instruction set through a context switch. When the
context switch is complete, the XOP workspace contains the calling routine return data in WRs 13,
14, and 15.

The XOP instruction passes one operand to the XOP (input to the XOP routine in workspace
register 11 of the XOP workspace). At the completion of the software XOP, the XOP routine
should return to the calling routine with an RTWP instruction that will restore the execution en-
vironment of the calling routine to that in existence at the call to the XOP.

An example of a software XOP, shown in figure 4-8, causes XOP number two to be executed on the
data stored at the address contained in workspace register one of the calling program module. Prior
to the execution of the XOP, the PC contains the address of the XOP *R1, 2 instruction and the WP
contains the address of the calling program workspace. At this point, the PC increments by two, to
922, and the XOP is executed. This execution is a context switch in which the XOP routine gains
control of the execution sequence. Note that workspace register one of the calling program module
contains the data address for the operand that is passed to the XOP routine.

MEMORY

MORY *
ADDRESS MEMORY
0048 0220
004A 0240
XOP 3-15
» A
HARDWARE
REGISTERS
0220 XOP WORKSPACE
WP 0700
l 0240 XOP SUBROUTINE
I Ju ﬂu
PC 0922 al iy »
b
| lgm 0700 PROBLEM PROGRAM
| WORKSPACE (WR0)
ST seoee I 0750
|
| p
I * x
|
I PROBLEM PROGRAM
| 0750 DATA
| 0800 PROBLEM PROGRAM
* WORKSPACE REGISTERS ARE CACHED
WHEN ACCESSED (READ OR WRITE), |
| *
0920 XOP " R1,2
L-.oezz

Figure 4-8. Extended Operation Example

4-18 Digital Systems Group

2250077-9701

After the context switch is complete and the XOP subroutine is in control (figure 4-9), the PC
contains the starting address of the XOP subroutine and the WP contains the address of the XOP
subroutine workspace. Workspace register 11 of the XOP subroutine contains the effective address
of the data to be used as an operand. Workspace registers 13, 14, and 15 contain the return control
information, which is used to return control to the main program module when the XOP subroutine
completes execution.

MEMORY MEMORY ™
ADDRESS)
ooss | 0220
004A | 0240
4
~ A
HARDWARE [- #0220 XOP WORKSPACE
REGISTERS \
| 0750 (WR11)
wP 1 0220 L
L i (WR12)
0700 (WR13)
PC r 0240 ‘J-,
0922 (WR14)
EXECUTION STATUS (WR15)

ST r LYY}

]

0240 XO.P SUBROUTINE 2

RTWP

Le»0700 | CALLING PROGRAM WORKSPACE

l—e»0750 | CALLING PROGRAM DATA

* WORKSPACE REGISTERS ARE
CACHED WHEN ACCESSED
(READ OR WRITE). THE STORED
CONTEXT (R13, R14, RIS) IS
NOT CACHED BY THE XCP 20 | xoPp “m12

INSTRUCTION. RETURN FROM XOP]

—-.oszze———————e

Figure 4-9. Extended Operation Example after Context Switch

0800 { CALLING PROGRAM

4.2.7 SPECIAL CONTROL INSTRUCTIONS. There are five special control instructions that per-
mit the programmer to control the state of the execution process of the 990/12 computer. These in-
structions are:

Instruction Mnemonic
Load or restart execution LREX
Clock on and clock off CKON/CKOF
Reset ‘ RSET
Execute X
Idle IDLE

4.2.7.1 LREX Applications. The LREX instruction may be used to activate any desired function by
placing a transfer vector for that function in addresses FFFCs and FFFE s and placing a subroutine
and workspace to perform that function in the locations specified in the transfer vector. These
lfocati.ons are ROM locations, and the LREX instruction activates a programmer’s panel and loader
unction.

The LREX instruction is a privileged mode instruction in the Model 990/12 Computer.

4-19 Digital Systems Group

<
(@P 2250077-9701

4.2.7.2 CKON/CKOF Applications. These two instructions are used to turn on and turn off the
clock, respectively. Through the use of these two instructions, the programmer may use the clock for
timing operations. As an example, the clock may be used to time-out 1/ O procedures by turning the
clock on, counting the clock interrupts until the desired time is passed, and turning the clock off.
This is possible only if the interrupt level for the real-time clock has previously been enabled.

The clock interrupt is normally attached to level five or optionally at level 15 on the 990/12
computer. The interrupt is normally cleared in the clock interrupt service routine with a
CKOF/CKON instruction sequence.

The RSET instruction also clears an interrupt.

When a program executes under an executive, the executive uses the clock for timing various
executive and user program functions. Executing either a CKON or a CKOF instruction interferes
with normal operation of the executive. I/ O timeout is part of the support provided by the executive,
and is not a user function. Refer to the DX10 Operating System Release 3 Reference Manual for
methods of timing user program functions supported by that executive.

The CKON and CKOF instructions are privileged mode instructions in the Model 990/12
Computer.

4.2.7.3 RSET Applications. RSET is primarily used to initialize the state of the computer and has
the effect of clearing any pending interrupts. This instruction is useful at the start of a program to
clear the state in existence so that the new application will not be adversely affected by the previous
state of the computer.

When a program executes under an executive, the executive processes internal interrupts and
external interrupts for supported devices. Execution of an RSET instruction interferes with normal
operation of the executive. Refer to the DX10 Operating System Release 3 Reference Manual for
permissable changes in the enabled interrupt level.

The RSET instruction is a privileged mode instruction in the 990/12 computer.

4.2.7.4 X Applications. The execute instruction may be used to execute an instruction that is not in
sequence without transferring control to the desired instruction. One useful application is to execute
one of a table of instructions, selecting the desired instruction by using an index into the table of
instructions. The computed value of the index determines which instruction is executed.

A table of shift instructions is an example of the use of the X instruction. Place the following
instructions at location TBLE:

TBLE SLA R6,3 SHIFT WORKSPACE REGISTER 6
SLA R7.3 SHIFT WORKSPACE REGISTER 7
SLA R8,3 SHIFT WORKSPACE REGISTER 8
TABEND EQU $

4-20 Digital Systems Group

[e]
(@ 2250077-9701

A character is placed in the most significant byte of workspace register five to select the workspace
register to be shifted to the left three bit positions. ASCII characters A, B, and C specify shifting
workspace registers six, seven, and eight, respectively. Other characters are ignored. The following
code performs the selection of the shift desired:

SRL R5,8 MOVE TO LOWER BYTE
Al R5,~A’ SUBTRACT TABLE BIAS
JLT NOSHFT ILLEGAL
SLA RS5,1 MAKE IT A WORD INDEX
CI RS, TABEND - TBLE
JGT NOSHFT ILLEGAL
X @TBLE(RS)

NOSHFT EQU $

When using the X instruction, if the substituted instruction contains a T field or a T, field that
results in a two word instruction, the computer accesses the word following the X instruction as the

P, PYSFENFINS: B S . ctitrrbnd emcdenn

. J R | /S TSRS Y o | (PRGN SRR ISR : - AV T cizla 3 S
second word, not the word following the substituted instruction. When the substituted instruction is
a jump instruction with a displacement, the displacement must be computed from the X instruction,
not from the substituted instruction.

PUS PO N

4.2.8 CRU INPUT/OUTPUT. The communications register unit (CRU) performs single and
multiple bit programmed input/output in the Model 990/ 12 Computer. All input consists of reading
CRU line logic levels into memory and output consists of setting CRU output lines to bit values from
a word or byte of memory. The CRU provides a maximum of 4096 input and output lines that may
be individually selected by a 12-bit address. The 12-bit address, located in bits 3 through 14 of
workspace register 12, is the base address of all CRU communications.

1/ O to supported devices is provided through the use of I/ O supervisor calls. For these CRU devices,
it is not necessary to use the instructions described in the following paragraphs. The information
provided here is for writing routines for nonstandard device handling,

4.2.8.1 CRU 1/0 Instructions. There are five instructions for communications with CRU lines. They
are:

e SBO — Set CRU bit to one. This instruction sets a CRU output line to a logic one. If the
device on the CRU line is a data module, SBO results in zero volts at the data module
terminal corresponding to the addressed bit.

e SBZ — Set CRU bit to zero. This instruction sets a CRU output line to a logic zero. If the
device on the CRU line is a data module, SBZ results in a float (no signal applied) at the
data module terminal corresponding to the addressed bit.

e TB — Test CRU bit. This instruction reads the digital input bit and sets the equal status
bit (bit two) to the value of the digital input bit.

4-21 Digital Systems Group

[e]
(@ 2250077-9701

The CRU address of the SBO, SBZ, and TB instructions is
determined as follows:

NOTE

Bits 3-14 of workspace register 12 equal the CRU base
address

+

The user supplied displacement in the instruction with sign
bit extended

Effective CRU address

¢ LDCR — Load Communications Register. This instruction transfers the number of bits
(1-16) specified by the C field of the instruction onto the CRU from the source operand.
When less than nine bits are specified, the source operand address is a byte address. When
more than eight bits are specified, the source operand is a word address. The CRU address
is the address of the first CRU digital output affected. The CRU address is determined by
the contents of workspace register 12, bits 3 through 14.

® STCR — Store Communications Register. This instruction transfers the number of bits
specified by the C field of the instruction from the CRU to the source operand. When less
than nine bits are specified, the source operand address is a byte address. When there are
nine or more bits specified, the source operand address is a word address. The CRU
address is determined by workspace register 12, bits 3 through 14.

4.2.8.2 SBO Example. Assume that a control device that turns on a motor when the computer sets a
one on CRU line 10F ¢, and that workspace register 12 contains 02005, making the base address in
bits 3 through 14 equal to 100,s. The following instruction sets CRU line 10F;6 to one:

SBO 15

If a data module were connected as the CRU device, the instruction would place zero volts on output
line 15 of the module without affecting other lines.

4.2.8.3 SBZ Example. Assume that a control device that shuts off a valve when the computer sets a
zero on a CRU line is connected to CRU line two, and that workspace register 12 contains zero. The
following instructions sets CRU line 2 to zero:

SBZ 2

If a data module were connected as the CRU device, output line two of that module would float at a
voltage determined by the characteristics of the control device. No other CRU line would be affected
by the instruction.

4.2.8.4 TB Example. Assume that workspace register 12 contains 0140;, making the base address in
bits 3 through 14 equal to AOs. The following instructions would test the input on CRU line A4,
and execute the instructions beginning at location RUN when the CRU line is set to one. When the
CRU line is set to zero, execute the instructions beginning at location WAIT:

4-22 Digital Systems Group

Q
qr\(ifp 2250077-9701

WAIT . IF OFF, CONTINUE

TB 4 TEST CRU LINE 4
JEQ RUN IF ON, GO TO RUN

RUN

The TB instruction sets the logic level of the equal bit of the ST register to the level on line four of the
CRU device.

4.2.8.5 LDCR Example. Assume that a 913 CRT display terminal is connected to the CRU and
that the base address in workspace register 12 is set to CRU line 48,6. The following instructions
display a character in an even address at location TOM on the screen of the CRT. Output CRU lines
40, through 47,6 must be set to the bit configuration of the character, which requires that the base
address in bits 3 through 14 of workspace register 12 be modified. The instructions are:

Al R12,-16 MODIFY BASE ADDRESS BY 8
LDCR @TOM,8 TRANSFER CHARACTER
Al R12,16 RESTORE BASE ADDRESS

The operand required in the first instruction is -16 because the least significant bit of workspace
register 12 is not included in the base address. The base address must be decremented by 8, so 16
must be subtracted. The following diagram shows the transfer of data, which places the character in
the proper register of the CRT controller. The write data strobe line, CRU output line 48,6, must be
set to actually display the character.

0O 1 2 3 4 5 6 7 8 9 10 1y 12 13 14 15

CRU LINES

MEMORY

ADDRESS| © © 1 1 0 1 0 0 X X X X X X X X4~ g
TOM

l | O 40

| ° a1

& 1 42

o> 0 43

o | 1 44

L) 1 45

> 46

- 47

X = NOT USED R L s

4-23 Digital Systems Group

o]
(’:@p 2250077-9701

If the LDCR instruction were changed as follows:

LDCR @TOM.9
there would be a transfer of nine bits beginning with the least significant bit of address TOM to nine
CRU lines, 40,6 through 48,. Setting bit 484 to either a value of zero or one causes the character to
be displayed on the screen. The following diagram shows the data transfer:

o 1+ 2 3 4 S5 6 7 8 91011 12 13 14 15

EMORY CRU LINES
:‘DDRESSXXXXXXXIOIOIOIll - - 3F
TOM
I a0
S, 1 a1
— 1 42
e 0 43
L 1 44
—) 45
- 1 46
L 0 4
X=NOT USED 2 1 a8
49

4.2.8.6 STCR Example. The last Al instruction of the LDCR example in the preceding paragraph
left the base address in workspace register 12 set for a keyboard input operation. The following
instruction places the seven bits of the keyboard character into the seven least significant bits of the
byte at the address in workspace register two:

STCR *R2,7 READ CHARACTER

The STCR instruction stores the bits as shown in the following diagram:

1 2 3 4 5 6 7 8 9 10 11 12 13 1415

]
1 I T | L 1 T T L 1 L L L) 1 T CRU LINES
o 1 [+ t 1. 0 1t 0 X X X X X X X X ~
| W a8

49

aA

48

AC

40

4E

X NOT USED BIT 0 IS SET TO ZERO aF

[TTTTTTTT

If the STCR instruction were changed to:
STCR *RI12,0

sixteen bits would be transferrred from the CRU lines specified by workspace register 12 to the
address that is specified by the contents of workspace register 2. The transfer of data is shown in the
following diagram:

4-24 Digital Systems Group

2250077-9701

o 1t 2 3 4 S 6 7 B8 9 10 1112 13 14 15
r 111 111t TTr 1T 7T 7
1 1+ 1+ 0 0 0 t t 1 0 O O ¥t 1 1

CRU LINES

48

49

4A

a8

4C

40

4E

4F

S0
51
52
$3
S4
55

56

[l fele el e e o]] -]

57

(Aa)r32212 S8

The keyboard character is placed in the least significant byte.

4.2.9 TILINE INPUT/OUTPUT. The set of machine instructions that communicate with the
memory may be used to communicate with devices connected to the TILINE, as illustrated in
Appendix 1. To communicate with the TILINE device, these instructions must be coded with the
TILINE addresses for the device. The hardware supplies the five most significant bits, each having
the value of one, to convert the upper 1024 memory byte addresses to TILINE addresses. The actual
TILINE addresses for a device and the significance of data transferred to these addresses are device
dependent.

The DX10 disk executive supports I/ O to the available disk units. The user programs that execute
under DX10 use the 1/O supervisor call to perform 1/O to the disk.

4.2.10 REENTRANT PROCGRAMMING. Reentrant programming is a technique that allows the
same program code to be used for several different applications while maintaining the integrity of the
data used with each application. The common program code and its associated constants are stored
in one area in memory. Each function that uses that code is then assigned a unique workspace and
data area so that as it executes the common code, its variable data is developed without affecting the
variable data associated with any of the other functions that use the program. With this arrangement
one function can execute the common code routine and be interrupted in the middle of the routine by
another function that also uses the same routine. The second function then uses the routine for its
purpose and returns control to the first function so that it can proceed from the point of interruption
without returning to the start of the routine. Reentrant programming of this type lends itself well to
servicing similar peripheral devices that interface with the computer at different priority levels. The
following characteristics apply to a reentrant procedure:

o The procedure does not contain data except data common to all tasks.

® The procedure does not alter the contents of any word in the procedure whether that word
contains data or an instruction.

e Data that is unique to one or more tasks is in the data division for the task and is either in
a workspace or is indirectly addressed.

4-2§ Digital Systems Group

2250077-9701

A very important application of a reentrant procedure is one that controls a process using several
sets of identical control devices through identical sets of CRU lines. Each task using the reentrant
procedure addresses a unique set of control devices that controls a set of equipment to perform the
same process concurrently. The workspace for each task contains the CRU base address in
workspace register 12 for the set of control devices for the task. The procedure addresses a control
device by a displacement from the base address. For each task, the base address in workspace register
12 of its workspace controls the proper device. Figure 4-10 shows a procedure common to sixteen
tasks, each of which uses an identical set of CRU lines at different CRU base addresses.

MEMORY
TASK A —T8
WR12 200
DATA
TASK B — @
SHARED
PROCEDURE
u WR12 230
DATA
-~
S
TASK F —
WR12 400
DATA

-

S

100

200

CRU

EQUIPMENT
FOR TASK A

EQUIPMENT
FOR TASK B

rr

EQUIPMENT
FOR TASK F

Figure 4-10. Reentrant Procedure for Process Control

The following is an example of reentrant code. The following assumptions apply:

e Workspace register 14 contains the address of a word that contains the size of a buffer, in

bytes.

¢ Workspace register nine contains the start address of that buffer.

® Label NOTFND is the location that contains the first instruction of a routine that is to be
executed if the buffer does not contain a carriage return character.

e Label FOUND is the location of the first instruction of a routine that is to be executed

when the buffer contains a carriage return.

4-26

Digital Systems Group

[o]
q@ 2250077-9701

The reentrant code is as follows:

ENTER MOV *R14,R3 GET BUFFER SIZE

MOV R9,R8 GET START ADDRESS

A R3,R8 POINT TO END OF BUFFER
LOOK C R9,R8 CHECK FOR END

JH NOTFND BRANCH AT END

CB *R9+,@CARRET CHECK CHARACTER

JNE LOOK BRANCH WHEN NOT FOUND
FOUND CHARACTER FOUND

CARRET BYTE >D
The code is reentrant because it is not altered during execution of the code. Also, when execution
resumes following an interruption, the workspace for the code again becomes active, and contains
the correct values for resuming the execution as if execution had not been interrupted.

Another possible version of the same code is as follows:

ENTER MOV *R14,@ADDLOC
MOV R9,R8
Al R8,$-$

ADDLOC EQU $-2

LOOK C R9,R8
JH NOTEND
CB *R9+ @CARRET
JNE LOOK

FOUND

CARRET BYTE >D

The code performs the same function by storing the buffer length in the word that contains the
immediate operand of an Al instruction. As long as only one task using this code is active, there
would be no problem. However, if one task is interrupted after storing a value in ADDLOC and
before executing the Al instruction, and another task executes the code, the size of the buffer for the
first task is lost. The code is not reentrant because it alters data within itself.

4.2.11 REEXECUTABLE INSTRUCTIONS. The byte string manipulation instructions are
reexecutable instructions. There are two types of reexecutable instructions. The interruptable
instructions can be stopped during execution to allow the CPU to process hardware interrupts. After
the hardware interrupts are serviced, the instruction continues from where it was interrupted. The
interruptions are transparent to the program. The program reexecutable instructions are instructions
that may be reexecuted under program control. There are three reexecutable instructions of this
type: compare strings (CS), search string for equal byte (SEQB), and search string for not equal byte
(SNEB). These instructions compare two strings or search a string until the first test condition is met.
Under program control, these instructions can be reexecuted to find subsequent occurrences of the
test condition.

4-27 Digital Systems Group

Q
(@ 2250077-9701

Reexecutable instructions use a checkpoint register as the index (zero origin) into the string. The
checkpoint register acts as the initial index on the first execution of the instruction. After the first
execution, the checkpoint register indicates the byte at which the test condition was met. When the
instruction is reexecuted, the checkpoint register indexes the next byte after the byte that met the test
condition. The checkpoint register is incremented before the comparison is made. Therefore, the
checkpoint register must be set to a -1 (FFFFy6) to index the first byte of the string.

The example below shows the CS instruction used to compare the bytes of two strings. When a
nonequal byte is found, a branch is made to an appropriate processing routine. When the processing
routine is finished, the CS instruction is reexecuted to test the rest of the string. When the entire
string is compared, control passes out of the string test loop.

STRINGA BYTE A0,B0,C0,D0,E0,F0,01,02,03,04,05,06,07,08,09,

STRINGB BYTE A0,B0,C0,FF,E0,F0,01,FF,03,04,05,06,07,08,09,

SETO RO INITIALIZE CHECKPOINT REG-
ISTER!

LOOP CS @STRINGA,@STRINGB,I5,R0 COMPARE STRINGS

JEQ OUT JUMP IF STRINGS EQUAL®

BL @SUBR BRANCH IF NOT EQUAL

JMP LOOP LOOP IF NOT DONE
OUT R CONTINUE WITH PROGRAM
SUBR : BYTE PROCESSING ROUTINE

RT RETURN FROM ROUTINE

NOTES

1. The set to ones instruction (SETO0) initializes the checkpoint
register to FFFF)6 for the initial string index.

2. If the two strings are equal, the equal status bit (bit two) is set to
one. If the two strings are not equal, the equal status bit is set to
one if the last bytes compared are equal.

When the CS instruction is first executed, it returns the value three in R0. This indicates that byte
three of the two strings are not equal. Upon return from the subroutine (SUBR), the jump to the CS
instruction (LOOP) is taken. The CS instruction compares the strings starting at byte four, the next
byte after the unequal bytes. The instruction returns the value seven in R0, indicating that byte seven
of the two strings are unequal. Upon return from the subroutine, the CS instruction is executed
again. The remainder of the strings are equal, which causes the equal status bit to be set. The loop is
exited by the jump if equal (JEQ) instruction.

4-28 Digital Systems Group

o]
(@ 2250077-9701

4.2.12 CACHE USAGE. The Model 990/12 Computer features a high-speed workspace register
cache memory. The cache is loaded with workspace data on a demand-fill basis, and subsequent
accesses to the data are made to the cache instead of memory. The 990/ 12 also features an optional
TILINE memory cache, with 1K 16-bit words of high speed general memory. Both of these features
can be used to significantly enhance program operation.

The workspace is designed to hold high usage data and addresses. By keeping as much of this data as
possible in the workspace, the programmer gains the efficiency of the workspace register cache. Once
the data is loaded into the cache, accesses are made to the cache instead of memory. Therefore, only
the first read of a workspace register requires a full main memory cycle. All other accesses to that
register made from the high-speed cache. This offers a significant increase in processor speed. When
the workspace pointer is changed, the registers that have had a write cycle made to them are written
to memory.

NOTE

Many of the two-word instructions on the 990/12 have the general
source and destination address fields in the second word of the
instruction. If the register direct addressing mode is selected for these
instructions (T; or T¢ = 0), this addressing mode usually operates
slower than the other addressing modes (i.e. T, or Ta=1, 2, or 3). It
will not operate faster, as might be expected due to the workspace
register cache. This is because the hardware will employ the
workspace cache overlap circuitry for the direct addressing case. This
is similar to the case described in paragraph 4.3.2.2.

The memory cache option provides a similar increase in processor speed. The memory cache is
loaded on a two-word demand fill basis. When an even numbered memory word (word zero, two,
four, . . .) is addressed in memory, that word and the next word are loaded into the cache. When an
odd numbered memory word (one, three, five, . . .) is addressed in memory, that word and the
previous word are loaded into the cache, provided that it has not yet been loaded into the cache.
Once the initial odd numbered word has been loaded into memory, the even-odd pairs are loaded.
Therefore, the usual minimum hit ratio is 50%, and typically the hit ratio is much higher.

4.3 990/10 TO 990/12 UPGRADE CONSIDERATIONS

These paragraphs are written specifically for the user who is upgrading his computing system from a
Model 990/10 Computer to a Model 990/ 12 Computer. The advanced architecture of the 990/12
may require modification of existing 990/10 code, due to differences in instruction execution or
speed. None of the current release 990 software has upgrade problems, but users writing their own
programs or transporting their own programs may encounter the problems discussed below.

4.3.1 EXECUTION DIFFERENCES. The 990/12 CPU contains several features that enhance
instruction throughput or expand the capability of the machine. Some of these features cause
instructions to execute somewhat differently when transferred from the 990/ 10 to the 990/12. These
cases are rare, and most programs written for the 990/10 will transfer to the 990/12 without
modification. Each case, and methods to correct the operation, is described below.

4.3.1.1 ABS Instruction. Section I1I and the application notes in this section describe the use of the
ABS instruction for multiprocessor control.

4-29 Digital Systems Group

o]
@ 2250077-9701

The 990/12 normally locks out all other processors from accessing memory while the ABS
instruction is accessing the memory control flag. However, when the flag is located in a workspace
register, the memory fetch traps to the workspace cache. Control of memory is released when the
cache is accessed. Therefore, the flag could be read incorrectly by another processor. When the flag is
incorrectly read as reset, two or more CPUs may access memory at the same time. When the flag is
incorrectly read as set, the memory access may be delayed.

This prcblem can be solved by keeping all memory interlock control flags in memory locations that
are not used as workspace register.

4.3.1.2 Second Word Modification. The 990/ 12 central processor contains a prefetch register, which
usually contains the next memory word following the currently executing instruction. If an
instruction modifies the next word in memory, the modification occurs in memory, but not in the
prefetch register. Therefore, an instruction cannot modify the next word in memory and have the
central processor use the correct value.

For example, in the code segment shown below, the 990/12 will execute the unmodified JMP
instruction. The MOVB instruction modifies the signed displacement in the JMP instruction in
memory, but the JMP instruction executes from the prefetch register.

MOVB RO,@LABEL+1
LABEL JMP DUMMY

In general, code modification is an unreliable programming practice, It is not recommended on the
990/12.

4.3.1.3 Illegal Opcodes. Some instructions on the 990/ 10 have “don’t care” bits in the opcode field
(the bits can be either zero or one). On the 990/ 12, these instructions have specific values for the
“dont’t care” bits, and any values besides the specified values will cause an illegal opcode error. For
example, the opcode of the IDLE instructions on the 990/ 10 is 000000110100X XXX, where the Xs
represent either zero or one. The opcode of the IDLE instruction on the 990/12 is
0000001101000000, in which the value of the last four bits must be 0000. Executing the IDLE
instruction on the 990/ 12 with any of the last four bits set to one will cause an illegal opcode error on
the 990/ 12, but it will execute normally on the 990/ 10. The instructions that have specific bit values
on the 990/12 and not on the 990/10 are:

IDLE Idle

LWPI Load Workspace Pointer Immediate
LIMI Load Interrupt Mask Immediate
RSET Reset

RTWP Return Workspace Pointer

CKON Clock On

CKOF Clock Off

LREX Load or Restart Execution

4.3.1.4 Workspace Crossing Map Segment Boundaries. On the 990/12, the workspace register file
should never be located so that it extends over a map segment boundary. Access to registers which
cross the end of the map boundary could cause the wrong physical address to be generated, thus fill-
ing the cache with bad data. This problem can be solved by either allocating space for the entire
workspace, or by not locating the workspace at the end of the task.

4-30 Digital Systems Group

o
@ 2250077-9701

4.3.1.5 Deferred Mapping Error. In some cases, workspace register data is not written to memory
until a context switch occurs. If a write to a workspace register causes a mapping error, the error will
be deferred until the context switch occurs.

NOTE

If an unallocated workspace register is referenced, and it does not
cross a map segment boundary, program data or instructions may be
overwritten.

4.3.1.6 Error Status Register. The error status register on the 990/10 computer contains five
significant bits, CRU bits 11-15 at CRU base >1FCO. On the 990/12, the error status register
contains 16 significant bits, CRU bits 0-15 at CRU base >1FCO. A program transferred from the
990/ 10 to the 990/ 12 may require that the additional bits be masked when the error status register is
read on the 990/12.

4.3.1.7 990/12 CPU Status Register. Bits 9-11 of the 990/ 10 status register are unused. On the
990/ 12, these three bits store relevant information. If a 990/10 program writes to any of bits 9-11,
unexpected execution results may occur on the 990/12.

4.3.1.8 Map Diagnostic Hardware. Both the 990/10 and the 990/12 have memory mapping
diagnostic hardware to isolate faults in the memory mapping logic. Both computers have diagnostic
control bits at CRU base address >1FAQ. But, the map diagnostic hardware on the 990/10 is
different from the diagnostic hardware on the 990/12, and the control bits serve different functions.
Programs written for the 990/ 10 that use the map diagnostic hardware will not execute correctly on
the 990/ 12.

4.3.1.9 TILINE Access to Workspace Cache. The workspace cache is accessible only to the 990/12
central processor. TILINE master devices other than the central processor address the workspace
data that is in main memory. If parameters are passed between the CPU and another TILINE device
through the workspace, errors in operation can result. Therefore, all such flags and parameters
should be kept in main memory, and not in workspace registers.

4.3.2 PERFORMANCE DIFFERENCES. When a program is transferred from a 990/10 to a
990/12, differences in instruction execution speed may sometimes require modification to the
transferred code, even though the instructions execute identically on the 990/12. These cases are
described below.

4.3.2.1 Timing Loops. Program loops written to allow devices time to complete an operation
execute faster on the 990/12 than they do on the 990/ 10. Therefore, a timing loop may not allow a
device enough time to perform a function if the device service routine (DSR) is transferred from the
990/10 to the 990/12. Timing loops should be gauged against the real-time clock or some other
hardware clock when possible. Another solution would be to replace the timing loops with hardware
bit testing instructions. If the solutions are not possible, the loop execution time can be increased by
placing a larger value in the loop counter variable.

4-31 Digital Systems Group

o
{@ 22500779701

4.3.2.2 Slower Instructions on the 990/12. Most 990/ 10 instructions will execute faster on the
990/12. However, instructions that change the workspace pointer may execute slower on the 990/ 12.
This is because the workspace register cache must be restored in memory when the workspace is
changed. 990/10 compatible instructions with this characteristic are:

BLWP Branch and Load Workspace Pointer
RTWP Return Workspace Pointer

XOP Extended Operation

LWPI Load Workspace Pointer Immediate
Hardware Interrupt Traps

If a program’s maximum execution time is a consideration, the user may have to adjust program
sequences to minimize the use of these instructions.

4.3.2.3 Workspace Register Addressing. The 990/ 12 workspace register cache provides a significant
increase in workspace register access speed. Increased efficiency occurs when the workspace registers
are addressed directly from an instruction opcode. When a workspace register is addressed in a mode
other than directly from the opcode, the efficiency of the workspace cache is lost. For example,
consider the two instruction sequences below. They both increment workspace register one, but
program one has the register number in the INC instruction opcode. Program two will try to access
memory before it is able to manipulate the data in the workspace cache. Consequently, program two
will operate slower than program one, and program two may operate even slower on the 990/ 12 than
if it were run on the 990/ 10.

PROGRAM ONE

wP DATA 0 WORKSPACE REGISTER 0

WRI1 DATA 0 WORKSPACE REGISTER 1
LWPI WP LOAD WORKSPACE POINTER
INC R1 INCREMENT WORKSPACE

REGISTER ONE
PROGRAM TWO

WP DATA 0 WORKSPACE REGISTER 0

WRI1 DATA 0 WORKSPACE REGISTER 1
LWPI WP LOAD WORKSPACE POINTER
INC @WRI1 INCREMENT WORKSPACE

REGISTER ONE

4.3.2.4 Instruction Execution from Workspace Registers. Instructions can be executed from any
location in memory, including cached workspace registers. However, when instructions are executed
from the cache, there is a significant increase in instruction execution time. This problem is a special
case of the workspace register addressing discussed in paragraph 4.3.2.3. The instructions that are
cached are not addressed in direct mode, so the time for fetching the instruction is longer than if the
instruction was in memory.

432 Digital Systems Group

o
@ 2250077-9701

4.3.2.5 User Device Service Routines. Device service routines written by the user can be entered on
the DX10 operating system to support nonstandard devices. User DSRs transported from the
990/10 to the 990/12 may not operate properly because of timing differences and the workspace
cache. This also pertains to user DSRs written for other Model 990 Computers or other 990
operating systems. The typical problems encountered are described in paragraphs 4.3.1.9 (workspace
cache) and 4.3.2.1 (timing loops), respectively.

4-33/4-34 Digital Systems Group

(o]
{@p 2250077-9701

SECTION V
ASSEMBLER AND ASSEMBLER DIRECTIVES

5.1 GENERAL

The Model 900/ 12 Computer assembly language is processed by the program development system
assembler, SDSMAC. The section describes the SDSMAC assembler and the directives processed
by SDSMAC.

5.2 SDSMAC ASSEMBLER
The program development system assembler, SDSMAC, is a two-pass assembler that assembles
object code for the 990/12 computer. SDSMAC executes under the DX10 disk executive.

A two-pass assembler reads the source statements of a program two times. The first time (first pass),
the assembler maintains the location counter, builds a symbol table similar to those in a one-pass
assembler, and processes any macro definitions for expansion. The two-pass assembler also copies
the source statements for reading during the second pass, but does not assemble any object code.
During the second pass, the assembler reads the copy of the source statements, and assembles the
object code using the operation codes and the symbol table completed during the first pass.

The only restrictions on forward references are instances in which the value of the symbol affects the
location counter.

SDSMAC supplies the additional capability of macro-instructions or MACROs. A macro is a user-
defined set of assembler language source statements. Macro definitions assign a name to the macro

" and define the source statements of the macro. The macro name may then be used in the operation
field of a source statement of the program to cause the assembler to insert the predefined source
statements and assemble them along with the other source statements of the program. The macro
capability of SDSMAC allows the user to:

e Define macros to specify frequently used sequences of source code

e Define macros for problem-oriented sequences of instructions to provide a means of
programming that may be more meaningful to users who are not computer-oriented.

Macros are defined in a macro language consisting of the verbs described in Section VII. In addition
to the macro language, SDSMAC supports a number of assembler directives which are described in
subsequent paragraphs of this section.

5.3 ASSEMBLER DIRECTIVES
Assembler directives and machine instructions in source programs supply data to be included in the
program and control of the assembly process. The Model 990/12 Computer assembler supports a
number of directives in the following categories:

e Directives that affect the location counter

o Directives that affect the assembler output

. Directives that initialize constants

5-1 Digital Systems Group

1 0
(@? 2250077-9701

® Directives that provide linkage between programs

® Miscellaneous directives.
5.3.1 DIRECTIVES THAT AFFECT THE LOCATION COUNTER. As an assembler reads the
source statements of a program, a component of the assembler called the location counter'advances
to correspond to the memory locations assigned to the resulting object code. The first nine of the
assembler directives listed below initialize the location counter and define the value as relocatable,
absolute, or dummy. The last three directives advance the location counter to provide a block or an
area of memory for the object code to follow. The word boundary directive also ensures a word
boundary (even address). The directives are:

® Absolute origin

® Relocatable origin ’

¢ Dummy origin

¢ Data segment

e Data segment end

e Common segment

e Common segment end

® Program segment

® Program segment end

® Block starting with symbol

e Block ending with symbol

¢ Word boundary
5.3.1.1 Absolute Origin — AORG
Syntax definition:

[<label>]p. . .AORGH. . [<wd-exp>]p. . [<comment>]
AORG places a value in the location counter and defines the succeeding locations as absolute. Use of
the label field is optional. When a label is used, it is assigned the value that the directive places in the
location counter. The operation field contains AORG. The operand field is optional, but when used,
contains a well-defined expression (wd-exp). The assembler places the value of the well-defined
expression in the location counter. The comment field is optional, and may be used only when the
operand field is used. When no AORG directive is entered, no absolute addresses are included in the
object program. When the operand field is not used, the length of all preceding absolute code
replaces the value of the location counter.

The following example shows an AORG directive:

AORG >1000+X

5-2 Digital Systems Group

[o]
(’:@? 2250077-9701

Symbol X must be absolute and must have been previously defined. If X has a value of 6, the
location counter is set to 10066 by this directive. Had a label been included, the label would have
been assigned the value 1006;¢.

5.3.1.2 Relocatable Origin — RORG
Syntax definition:
[<label>]p. . .RORGH. . [<exp>]p. . [<comment>]

RORG places a value in the location counter; if encountered in absolute code, it also defines
succeeding locations as program-relocatable. When a label is used, it is assigned the value that the
directive places into the location counter. The operation field contains RORG. The operand field is
optional, but when it is used, the operand must be an absolute or relocatable expression (exp) which
contains only previously defined symbols. The comment field may be used only when the operand
field is used.

When the operand field is not used, the length of the program segment, data segment, or specific
common segment of a program replaces the value of the location counter. For a given relocation type
X (data-, common-, or program-relocatable), the length of the X-relocatable segment at any time
during an assembly is either of the following values:

e The maximum value the location counter has ever attained as a result of the assembly of
any preceding block of X-relocatable code.

¢ Zero, if no X-relocatable code has been previously assembled.

Since the location counter begins at zero, the length of a segment and the “next available” address
within that segment are identical.

If the RORG directive appears in absolute- or program-relocatable code and the operand field is not
used, the location counter value is replaced by the current length of the program segment of that
program. If the directive appears in data-relocatable code without an operand, the location counter
value is replaced by the length of the data segment. Likewise, in common-relocatable code, the
RORG directive without an operand causes the length of the appropriate common segment to be
loaded into the location counter.

When the operand field is used, the operand must be an absolute or relocatable expression (exp) that
contains only previously defined symbols. If the directive is encountered in absolute code, a
relocatable operand must be program-relocatable; in relocatable code, the relocation type of the
operand must match that of the current location counter. When it appears in absolute code, the
RORG directive changes the location counter to program-relocatable and replaces its value with the
operand value. In relocatable code, the operand value replaces the current location counter value,
and the relocation type of the location counter remains unchanged.

The following example shows a RORG directive:
RORG §$-20 OVERLAY TEN WORDS
The § symbol refers to the location following the preceding relocatable location of the program. This

has the effect of backing up the location counter ten words. The instructions and directives following
the RORG directive replace the ten previously assembled words of relocatable code, permitting

5-3 Digital Systems Group

(o]
(_'@ 2250077-9701

correction of the program without removing source records. If a label had been included, the label
would have been assigned the value placed in the location counter.

SEG2 RORG

The location counter contents depend upon preceding source statements. Assume that after defining
data for a program which occupied 445 bytes, an AORG directive initiated an absolute block of
code. The absolute block is followed by the RORG directive in the above example. This places 00446
in the location counter and defines the location counter as relocatable. Symbol SEG2 is a relocatable
value, 0044:5. The RORG directive in the above example would have no effect except at the end of an
absolute block or a dummy block.

5.3.1.3 Dummy Origin — DORG
Syntax definition:
[<label>]p. . .DORGH. . [<comment>]

DORG places a value in the location counter and defines the succeeding locations as a dummy block
or section. When assembling a dummy section, the assembler does not generate object code but
operates normally in all other respects. The result is that the symbols that describe the layout of the
dummy section are available to the assembler during assembly of the remainder of the program. The
label is assigned the value that the directive places in the location counter. The operation field
contains DORG. The operand field contains an expression (exp) which may be either absolute or
relocatable. Any symbol in the expression must have been previously defined.

When the operand field is absolute, the location counter is assigned the absolute value. When the
operand is relocatable, the location counter is assigned the relocatable value and the same relocation
type as the operand. When this occurs, space is reserved in the section which has that relocation type.

The following example shows a DORG directive:

DORG 0

The effect of this directive is to cause the assembler to assign values relative to the start of the dummy
section to the labels within the dummy section. The example directive would be appropriate to define
a data structure. The executable portion of the module (following a RORG directive) should use the
labels of the dummy section as indexed addresses. In this manner, the data is available to the
procedure regardless of the memory area into which the data is loaded.

The following example shows another use of the DORG directive:

RORG 0

(code as desired)

DORG §

(data segment)

END

5-4 Digital Systems Group

]
(@ 2250077-9701

The example of the DORG directive would be appropriate for the executable portion (procedure
division) of a disk-resident procedure that is common to more than one task, and which executes
under the disk executive. The code corresponding to the dummy section must be assembled in
another program module. In this manner, the data in the task portion (dummy section) is available
to the procedure portion.

The DORG directive may also be used with data-relocatable or common-relocatable operands to
specify dummy data or common segments. The following example illustrates this usage:

CSEG ‘COMY!”

DORG $ “$” HAS A COMMON-RELOCATABLE VALUE

LAB! DATA §

MASK DATA >F000

CEND

SZC @MASK,@LABI(R3)
In the example, no object code is generated to initialize the common segment COM1, but space is
reserved and all common-relocatable labels describing the structure of the common block (including
LABI and MASK) are available for use throughout the program.
5.3.1.4 Block Starting With Symbol — BSS.
Syntax definition:

[<labe>]p. . .BSSh. . .<wd-exp>H<comment>]
BSS advances the location counter by the value of the well-defined expression (wd-exp) in the
operand field. Use of the label field is optional. When a label is used, it is assigned the value of the
location of the first byte in the block. The operation field contains BSS. The operand field contains a
well-defined expression that represents the number of bytes to be added to the location counter. The
comment field is optional.
The following example shows a BSS directive:

BUFF1 BSS 80 CARD INPUT BUFFER
This directive reserves an 80-byte buffer at location BUFFI.
5.3.1.5 Block Ending With Symbol — BES.

Syntax definition:

[<label>]p. . .BESH. . .<wd-exp>h. . [<comment>]

5-5 Digital Systems Group

(o]
4@ 2250077-9701

BES advances the location counter according to the value in the operand field. Use of the label fiel_d
is optional. The label is assigned the value of the location following the block, when the label is
entered. The operation field contains BES. The operand field contains a well-defined expression that
represents the number of byzes to be added to the location counter. The comment field is optional.

The following example shows a BES directive:
BUFF2 BES >10

The directive reserves a 16-byte buffer. Had the location counter contained 1005 when the assembler
processed this directive, BUFF2 would have been assigned the value 110.

5.3.1.6 Word Boundary — EVEN.
Syntax definition:
[<labe>]p. . .EVEND. . [<comment>]

Even places the location counter on the next word boundary (even byte address). When the
location counter is already on a word boundary, the location counter is not altered. Use of the label
field is optional. When a label is used, the value in the location counter after processing the directive
is assigned to the label. The operation field contains EVEN. The operand field is not used, and the
comment field is optional.

The following example shows an EVEN directive:
WRF1 EVEN WORKSPACE REGISTER FILE ONE

The directive assures that the location counter contains a word boundary address, and assigns the
location counter address to label WRF1. Use of an EVEN directive preceding or following a machine
instruction or a DATA directive is redundant. The assembler advances the location counter to an
even address when it processes a machine instruction or a DATA directive.

5.3.1.7 Data Segment — DSEG
Syntax definition:
[<labe>]p. . .DSEGH. . .[<comment>]

DSEG places a value in the location counter and defines succeeding locations as data-relocatable.
Use of the label field is optional. When a label is used, it is assigned the data-relocatable value that
the directive places in the location counter. The operation field contains DSEG. The operand field is
not used, and the comment field is optional. One of the following values is placed in the location
counter:

¢ The maximum value the location counter has ever attained as a result of the assembly of
any preceding block of data-relocatable code.

® Zero, if no data-relocatable code has been previously assembled.

The DSEG directive defines the beginning of a block of data-relocatable code. The block is normally
terminated with a DEND directive (see paragraph 4.3.1.8). If several such blocks appear throughout
the program, they together comprise the data segment of the program. The entire data segment may
be relocated independently of the program segment at link-edit time and therefore provides a
convenient means of separating modifiable data from executable code.

5.6 Digital Systems Group

o}
@ 2250077-9701

In addition to the DEND directive, the following directives will properly terminate the definition of a
block of data-relocatable code: PSEG, CSEG, AORG, and END. The PSEG directive, like DEND,
indicates that succeeding locations are program-relocatable. The CSEG and AORG directives
effectively terminate the data segment by beginning a common segment or an absolute segment,
respectively. The END directive terminates the data segment as well as the program.

The following example illustrates the use of both the DSEG and the DEND directives.

RAM DSEG START OF DATA AREA

éData-relocatable code>

ERAM DEND
LRAM EQU ERAM-RAM

The block of code between the DSEG and DEND directives is data-relocatable. RAM is the
symbolic address of the first word of this block; ERAM is the data-relocatable byte address of the
location following the code block. The value of the symbol LRAM is the length in bytes of the block.

5.3.1.8 Data Segment End — DEND
Syntax definition:
[<labe>]p. . . .DENDp. . [<comment>]

DEND terminates the definition of a block of data-relocatable code by placing a value in the
location counter and defining succeeding locations as program-relocatable. Use of the label field is
optional. When a label is used, it is assigned the value of the location counter prior to modification.
The operation field contains DEND. The operand field is not used, and the comment field is
optional. One of the following values is placed in the location counter as a result of this directive:

o The maximpm value the location counter has ever attained as a result of the assembly of
any preceding block of program-relocatable code.

® Zero, if no program-relocatable code has been previously assembled.
If encountered in common-relocatable or program-relocatable code, this directive functions as a
_CEND or PEND (and a warning message is issued); like CEND and PEND, it is invalid when used
in absolute code. See paragraph 5.3.1.7 for an example of the DEND directive.
5.3.1.9 Common Segment — CSEG
Syntax definition:

[<label>p. . .CSEGH. . [<string>"]p. . .]<comment>]
CSEG places a value in the location counter and defines succeeding locations as common-relocatable

(i.e., relocatable with respect to a common segment). Use of the label field is optional. When a label
is used, it is assigned the value that the directive places in the location counter. The operation field

5-7 Digital Systems Group

o
{@ 2250077-9701

contains CSEG, and the operand field is optional. The comment field may be used only when the
operand field is used.

If the operand field is not used, the CSEG directive defines the beginning of (or continuation of) the
“blank common” segment of the program. When the operand field is used, it must contain a
character string of up to six characters enclosed in quotes. (If the string is longer than six characters,
the assembler prints a truncation error message and retains the first six characters of the string.) If
this string has not previously appeared as the operand of a CSEG directive, the assembler associates
a new relocation type with the operand, sets the location counter to zero, and defines succeeding
locations as relocatable with respect to the new relocatable type. When the operand string has been
previously used in a CSEG, the succeeding code represents a continuation of that particular common
segment associated with the operand. The location counter is restored to the maximum value it
previously attained during the assembly of any portion of the particular common segment.

The following directives will properly terminate the definition of a block of common-relocatable
code: CEND, PSEG, DSEG, AORG, and END. The block is normally terminated with a CEND
directive (see paragraph 5.3.1.10). The PSEG directive, like CEND, indicates that succeeding
locations are program-relocatable. The DSEG and AORG directives effectively terminate the
common segment by beginning a data segment or an absolute segment. The END directive
terminates the common segment as well as the program.

The CSEG directive permits the construction and definition of independently relocatable segments
of data which several programs may access or reference at execution time. The segments are the
assembly language counterparts of FORTRAN blank COMMON and labeled COMMON, and in
fact permit assembly language programs to communicate with FORTRAN programs which use
COMMON. Information placed in the object code by the assembler permits the link editor to
relocate all common segments independently and to make appropriate adjustments to all addresses
which reference locations within common segments. Locations within a particular common segment
may be referenced by several different programs if each contains a CSEG directive with the same
operand or no operand.

The following example illustrates the use of both the CSEG and the CEND directives:
COMIA CSEG ‘ONE’

<Common-relocatable code, type ‘ONE™>

CEND
COM2A CSEG ‘TWO’

<Common—relocatable code, type ‘TWO™>

COM2B CEND

5.8 Digital Systems Group

(o]
é@ 2250077-9701

COMIC CSEG ‘ONE’
<Common-relocatable code, type ‘ONE™>

COMIB CEND

COMIL DATA COMIB-COMIA LENGTH OF SEGMENT ‘ONE’
COM2L DATA COM2B-COM2A LENGTH OF SEGMENT ‘TWQO’

The three blocks of code between the CSEG and the CEND directives are common-relocatable. The
first and third blocks are relocatable with respect to one common relocation type; the second is
relocatable with respect to another. The first and third blocks comprise the common segment ‘ONE”,
and the value of the symbol COMIL is the length in bytes of this segment. The symbol COM2A i

the symbolic address of the first word of common segment ‘TWQ’ COM2B is the common-
relocatable (type “TWO’) byte address of the location following the segment. (Note that the symbols
COM2B and COMIC are of different relocation types and possibly different values.) The value of

the symbol COM2L is the length in bytes of common segment ‘TWO".
5.3.1.10 Common Segment End — CEND
Syntax definition:

[<labe>]p. . .CENDp. . [<comment>]
CEND terminates the definition of a block of common-relocatable code by placing a value in the
location counter and defining succeeding locations as program-relocatable. Use of the label field is
optional. When a label is used, it is assigned the value of the location counter prior to modification.
The operation field contains CEND. The operand field is not used, and the comment field is

optional. One of the following values is placed in the location counter as a result of this directive:

® The maximum value the location counter has ever attained as a result of the assembly of
any preceding block of program-relocatable code.

® Zero, if no program-relocatable code has been previously assembled.
If encountered in data- or program-relocatable code, this directive functions as a DEND or PEND
(and a warning message is issued); like DEND and PEND, it is invalid when used in absolute code.
See paragraph 5.3.1.9 for an example of the use of the CEND directive.
5.3.1.11 Program Segment — PSEG
Syntax definition:

[<labe>]p. . .PSEG). . [<comment>]

PSEG places a value in the location counter and defines succeeding locations as program-
relocatable. When a label is used, it is assigned the value that the directive places in the location

5-9 Digital Systems Group

(o]
@ 2250077-9701

counter. The operation field contains PSEG. The operand field is not used and the comment field is
optional. One of the following values is placed in the location counter:

® The maximum value the location counter has ever attained as a result of the assembly of
any preceding block of program-relocatable code.

® Zero, if no program-relocatable code has been previously assembled.
The PSEG directive is provided as the program-segment counterpart to the DSEG and CSEG

directives. Together, the three directives provide a consistent method of defining the various types of
relocatable segments. The following sequences of directives are functionally identical:

DSEG
<f)ata-relocatable code>

DEND
CSEG

<éommon—relocatable code>

CEND
PSEG

<15rogram-relocatable code>

PEND
END

DSEG

<15ata-relocatable code>
CSEG
<éommon-relocatable code>

PSEG

<I;rogram—relocatablc code>

END

5.3.1.12 Program Segment End — PEND
Syntax definition:
[<labe>]p. . .PENDp. . [<comment>]

The PEND directive is provided as the program-segment counterpart to the DEND and CEND
directives. Like those directives, it places a value in the location counter and defines succeeding
locations as program-relocatable (however, since PEND properly appears only in program-
relocatable code, the relocation type of succeeding locations remains unchanged). Use of the label
field is optional. When a label is used, it is assigned the value of the location counter prior to
modification. The operation field contains PEND. The operand field is not used, and the comment

5-10 Digital Systems Group

(o]
Q‘f@ 2250077-9701

field is optional. The value placed in the location counter by this directive is simply the maximum
value ever attained by the location counter as a result of the assembly of all preceding program-
relocatable code. If encountered in data- or common-relocatable code, this directive functions as a
DEND or CEND (and a warning message is issued). Like DEND and CEND, it is invalid when used
in absolute code. See paragraph 5.3.1.11 for an example of the use of the PEND directive.

5.3.2 DIRECTIVES THAT AFFECT THE ASSEMBLER OUTPUT. This category includes the
directive that supplies a program identifier in the object code and five directives which affect the
source listing. The directives in this category are:

Output Options
Program Identifier
Page Title

No Source List

Page Eject

5.3.2.1 Output Options — OPTION

Syntax definition:

b. .

.OPTIONb. . <keyword>[,<keyword>]. . .p. . [<comment>]

OPTION specifies output and list options to the assembler. No label is entered with the OPTION
directive. The operation field contains OPTION. The operand field contains one or more keywords
to specify the desired options. The comment field is optional.

XREF — Print a cross-reference listing at the end of the source and object listing.

SYMT — Output a symbol table in the object code that contains all symbols in the
program.

NOLIST — Suppress printing of any listing. Overrides other directives and keywords.
TUNLST — Limit the listing for text directives to a single line.

DUNLST — Limit the listing for data directives to a single line.

BUNLST — Limit the listing for byte directives to a single line.

MUNLST — Limit the listing for a macro expansion to a single line.

FUNL — Overrides all unlist directives.

The following example shows an OPTION directive:

OPTION XREF,SYMT

The directive in the example specifies the printing of a cross-reference listing and the output of a
symbol table with the object code.

5-11 Digital Systems Group

(o]
(@ 2250077-9701

5.3.2.2 Program Identifier — IDT

Syntax definition:
[<label>]p. . .IDTh. . .‘<string>p. . [<comment>]

IDT assigns a name to the program. Use of the label field is optional. When a label is used, the
current value of the location counter is assigned to the label. The operation field contains IDT. The
operand field contains the program name (string), a character string of up to eight characters within
single quotes. When a character string of more than eight characters is entered, the assembler prints a
truncation error message, and retains the first eight characters as the program name. The comment
field is optional.

The following example shows an IDT directive:
IDT ‘CONVERT’

The directive assigns the name CONVERT to the program to be assembled. The program name is
printed in the source listing as the operand of the IDT directive, but does not appear in the page
heading of the source listing. The program name is placed in the object code, but serves no purpose
during the assembly.

NOTE

Although SDSMAC will accept lowercase letters and special
characters within the quotes, ROM loaders, etc., will not. Therefore
only uppercase letters and numerals are recommended.

5.3.2.3 Page Title — TITL
- Syntax definition:
[<labe>]p. . .TITLD. . .‘<string>h. . [<comment>]

TITL supplies a title to be printed in the heading of each page of the source listing. When a title is
desired in the heading of the first page of the source listing, a TITL directive must be the first source
statement submitted to the assembler. This directive is not printed in the source listing. Use of the
label field is optional. When a label is used, the current value of the location counter is assigned to
the label. The operation field contains TITL. The operand field contains the title (string), a character
string of up to 50 characters enclosed in single quotes. When more than 50 characters are entered, the
assembler retains the first 50 characters as the title, and prints a truncation error message. The
comment field is optional; the assembler does not print the comment, but does increment the line
counter.

The following example shows a TITL directive:
TITL **REPORT GENERATOR**’

This directive causes the title * REPORT GENERATOR ** to be printed in the page headings of the
source listing. When a TITL directive is the first source statement in a program, the title is printed on
all pages until another TITL directive is processed. Otherwise, the title is printed on the next page
after the directive is processed, and on subsequent pages until another TITL directive is processed.

5-12 Digital Systems Group

(o]
(@ 2250077-9701

The maximum source record length is 60 characters. If a full 50-
character title is desired, the operand field must be started at or
before column 6 of the source record.

NOTE

5.3.2.4 List Source — LIST
Syntax definition:
[<label>]p. . .LISTp. . [<comment>]

LIST restores printing of the source listing. This directive is required only when a no source list
(UNL) directive is in effect to cause the assembler to resume listing. This directive is not printed in
the source listing, but the line counter increments. Use of the label field is optional. When a label is

used, the current value of the location counter is assigned to the label. The operation field contains

1 i n i ontional ki e ascembler does not
LIST. The operand field is not used. Use of the comment field is optionai, out tnc assemoicr aoes not

print the comment.
The following example shows a LIST directive:
LIST
The directive causes the source listing to be resumed with the next source statement.
5.3.2.5 No Source List — UNL
Syntax definition:
[<label>]p. . .UNLp. . [<comment>]

UNL inhibits printing of the source listing. The UNL directive is not printed in the source listing, but
the line counter increments. Use of the label field is optional. When a label is used, the current value
of the location counter is assigned to the label. The operation field contains UNL. The operand field
is not used. Use of the comment field is optional, but the assembler does not print the comment.

The following example shows a UNL directive:
UNL

The UNL directive inhibits printing of the source listing. The UNL directive can be used to reduce
assembly time and the size of the source listing.

5.3.2.6 Page Eject — PAGE
Syntax definition:
[<page>]p. . .PAGEp. . [<comment>]

PAGE causes the assembler to continue the source program listing on a new page. The PAGE
directive is not printed in the source listing, but the line counter increments. Use of the label field is
optional. When a label is used, the current value of the location counter is assigned to the label. The
operation field contains PAGE. The operand field is not used. Use of the comment field is optional,
but the assembler does not print the comment.

5-13 Digital Systems Group

o]
@ 2250077-9701

The following page shows a PAGE directive:

PAGE
The directive causes the assembler to begin a new page of the source listing. The next source
statement is the first statement listed on the new page. Use of the page directive to begin new pages of
the source listing at the logical divisions of the program improves documentation of the program.
5.3.3 DIRECTIVES THAT INITIALIZE CONSTANTS. This category includes directives that
place values in successive bytes or words of the object code, and a directive that places characters of
text in the object code to be displayed or printed. It also includes a directive that initializes a constant
for use during the assembly process. The directives are:

e Initialize byte

e Initialize word

e [Initialize text

® Define assembly-time constant

e Define checkpoint register

e Define workspace pointer
5.3.3.1 Initialize Byte — BYTE
Syntax definition:

[<label>]p. . .BYTED. . .<exp>[,<exp>]. . .p. . [<comment>]
BYTE places one or more values in one or more successive bytes of memory. Use of the iabel fieid is
optional. When a label is used, the location at which the assembler places the first byte is assigned to
the label. The operation field contains BYTE. The operand field contains one or more expressions
separated by commas. The expressions must contain no external references. The assembler evaluates
each expression and places the value in a byte as an eight-bit two’s complement number. When
truncation is required, the assembler prints a truncation warning message and places the rightmost
portion of the value in the byte. The comment field is optional.
The following example shows a BYTE directive:

KONS BYTE >F+1,-1,'D-=",0,'AB*-*AA’

The directive initializes five bytes, starting with a byte at location KONS. The contents of the
resulting bytes are 00010000, 11111111, 00000111, 00000000, and 00000001.

5.3.3.2 Initialize Word — DATA
Syntax definition:

[<label>]p. . .DATAp. . <exp>[,<exp>]. . .p. . [<comment>]

5-14 Digital Systems Group

[e]
(@ 2250077-9701

Data places one or more values in one or more successive words of memory. The assembler advances
the location counter to a word boundary (even) address. Use of the label field is optional. When a
label is used, the location at which the assembler places the first word is assigned to the label. The
operation field contains DATA. The operand field contains one or more expressions separated by
commas. The assembler evaluates each expression and places the value in a word as a 16-bit two’s
complement number. The comment field is optional.

The following example shows a DATA directive:

KONS1 DATA 3200,1+°AB’-AF’ >F4A0,'A°
The directive initializes five words, starting with a word at location KONSI. The contents of the
resulting words are 0C80¢, 4143;6, BEBAs, F4A0;6, and 0041,5. Had the location counter contents
been 010Fs prior to processing this directive, the value assigned to KONSI would be 0110;s.
5.3.3.3 Initialize Text — TEXT
Syntax definition:

[<label>1p. . .TEXTH. [-]<<string>’p. . [<comment>]
TEXT places one or more characters in successive bytes of memory. The assembler negates the last
character of the string when the string is preceded by a minus (-) sign (unary minus). Use of the label
field is optional. When a label is used, the location at which the assembler places the first character is
assigned to the label. The operation field contains TEXT. The operand field contains a character
string of up to 52 characters enclosed in single quotes, which may be preceded by a unary minus sign.
The comment field is optional.
The following example shows a TEXT directive:

MSGI1 TEXT ‘EXAMPLE’ MESSAGE HEADING
The directive places the eight-bit ASCII representations of the characters in successive bytes. When
the location counter is on an even address, the result, in hexadecimal representation, is 4558, 414D,
504C, and 45XX. XX represents the contents of the rightmost byte of the fourth word, which are
determined by the next source statement. The label MSGI is assigned the value of the first byte
address in which 45 is placed. Another example, showing the use of a unary minus, is as follows:

MSG2 TEXT —NUMBER’

When the location counter is on an even address, the result, in hexadecimal representation, is 4ES55,
4D42, and 45AE. The label MSG2 is assigned the value of the byte address in which 4E is placed.

5.3.3.4 Define Assembly-Time Constant — EQU
Syntax definition:
<label>p. . .EQUP. . <exp>p. . [<comment>]
NOTE

<exp> may not be a REF’d symbol.

5-15 Digital Systems Group

[o]
{7@ 2250077-9701

EQU assigns a value to a symbol. The label field contains the symbol to be given a value. The
operation field contains EQU. The operand field contains an expression. Use of the comment field is
optional.

The following example shows an EQU directive:
SUM EQU R5 WORKSPACE REGISTER 5

The directive assigns an absolute value to the symbol SUM, making SUM available to use as a
workspace register address. Another example of an EQU directive is:

TIME EQU HOURS
The directive assigns the value of previously defined symbol HOURS to symbol TIME. When
HOURS appears in the label field of a machine instruction in a relocatable block of the program, the
value is a relocatable value. The two symbols may be used interchangeably. Symbols in the operand
field must be previously defined when using SDSMAC.
5.3.3.5 Checkpoint Register — CKPT
Syntax definition:

[<label>]p. . .CKPTp. . .<wa>p. . [<comment>]

CKPT reserves a register <wa> for use by instructions using byte strings. Use of the comment field
and label field is optional.

The following example shows a CKPT:

CKPT Ré6
The CKPT directive is used by the Format XII instructions to imply a checkpoint register. The
checkpoint register is used to decrease the number of operands necessary in the instruction, thereby

increasing the readability.

Multiple CKPT directives may appear in a module. The most recent CKPT directive operand is used
in the assembly of an instruction requiring an implied checkpoint register.

CKPT example:

CKPT R6
1. MOVS @A@B,R6
2. CKPT R7

5-16 Digital Systems Group

[o]
@ 2250077-9701

3. MOVS @A,@B
4. MOVS @A@B.R6
5. CKPT R4

6. MOVS @A@B

In this program segment for line one, the workspace register R6 is used as a checkpoint register. For
line three, an implied checkpoint register is used, in this case, R7, which was defined in line two. In
line four the explicitly specified CKPT regls er (R6) overrides the implied CKPT register (R7). In
line five, a new implied CKPT register is specified (R4), so the CKPT register for line six is R4.

5.3.3.6 Workspace Pointer — WPNT
Syntax definition:
(<labe>]p. . .WPNTp. . <label>p. . .[<comment>]

WPNT defines the current workspace to the assembler. WPNT generates no object code. The user
must provide a machine instruction to actually place the value in the workspace register. The symbol
in the label field, when used, must represent a word (even) address and must have been previously
defined. The operation field contains WPNT. The operand field contains the label assigned to the
workspace. The comment field is optional.

The following example shows a WPNT directive:

WPNT WORK

The directive in the example is appropriate when the workspace at location WORK is the active
workspace. The assembler stores the value of label WORK as the current workspace address, and
from this information identifies symbolic addresses as workspace registers when the symbolic
addresses have values less than WORK plus 15. The assembler also recognizes WORK or a label
equal to WORK as workspace register zero. Symbolic addresses having values outside this range are
considered to be symbolic memory addresses.

5.3.4 DIRECTIVES THAT PROVIDE LINKAGE BETWEEN PROGRAMS. The category
consists of two directives that enable program modules to be assembled separately and integrated
into an executable program. One directive places one or more symbols defined in the module into the
object code, making them available for linking. The other directive places symbols used in the
module but defined in another module into the object code, allowing them to be linked. The
directives are:

° External Definition

° External Reference

5-17 Digital Systems Group

[o]
(@ 2250077-9701

o Secondary external reference

e Force load

5.3.4.1 External Definition — DEF
Syntax definition:
[<labe>]p. . .DEFp. . <symbol>[,<symbol>]. . .p. . [<comment>]

DEF makes one or more symbols available to other programs for reference. The use of the label field
is optional. When a label is used, the current value of the location counter is assigned to the label.
The operation field contains DEF. The operand field contains one or more symbols, separated by
commas, to be defined in the program being assembled. The comment field is optional.

The following example shows a DEF directive:
DEF ENTER,ANS

The directive causes the assembler to include symbols ENTER and ANS in the object code so that
these symbols are available to other programs.

5.3.4.2 External Reference — REF
Syntax definition:
[<label>]p. . .REFp. . .<symbol>[,<symbol>]. . .b. . [<comment>]

REF provides access to one or more symbols defined in other programs. The use of the label field is
optional. When a label is used, the current value of the location counter is assigned to the label. The
operation field contains REF. The operand field contains one or more symbols, separated by
commas, to be used in the operand field of a subsequent source statement. The comment field is
optional.

The following example shows a REF directive:
REF ARGI,ARG2

The directive causes the assembler to include symbols ARG and ARG?2 in the object code so that
the corresponding addresses may be obtained from other programs.

If a symbol is listed in the REF statement, then a corresponding symbol must also be present in a
DEF statement in another source module. If a one-to-one matching of symbols does not occur, then
an error occurs at link edit time. The system will generate a summary list of all “unresolved
references”.

NOTE

If a symbol in the operand field of a REF directive is the first operand
of a DATA directive, the assembler places the value of the symbol in
location zero of the routine. If that routine is loaded at absolute
location zero, the symbol will not be linked correctly. Use of the
symbol at other locations will be correctly linked.

5-18 Digital Systems Group

o]
@ 2250077-9701

5.3.4.3 Secondary External Reference — SREF
Syntax definition:
[<label>]p. . .SREF. . <symbol>[,<symbol>]. . .b. . [<comment>]

SREF provides access to one or more symbols defined in other programs. The use of the label field is
optional. When a label is used, the current value of the location counter is assigned to the label. The
operation field contains SREF. The operand field contains one or more symbols, separated by
commas, to be used in the operand field of a subsequent source siatement. The comment field is
optional.

The following example shows a SREF directive:
SREF ARGI!,ARG2

The directive causes the link editor to inciude symbois ARG and ARG2 in the object code so that
the corresponding addresses may be obtained from other programs.

SREF unlike REF does not require a symbol to have a corresponding symbol listed in a DEF
statement of another source module. The symbol will be an unresolved reference, but no error
message will be given.

5.3.4.4 Force Load — LOAD
Syntax definition:
[<label>]p. . .LOADP. . .<symbol>[,<symbol>]. . .b. . [<comment>]
The load directive is like a REF, but the symbol does not need to be used in the module containing
the LOAD. The symbol used in the LOAD must be defined in some other module. LOADS are used

with SREFs. If a one-to-one matching of LOAD-SREEF pairs and DEF symbols does not occur, then
unresolved references will occur during link editing.

5-19 Digital Systems Group

(=]
{?@ 2250077-9701

The following example shows the use of the SREF and the LOAD directives:

A1l A2 A3

LOAD C, D LOAD C LOAD E, F

SREF C, D, E, F

DATA C
DATA D
DATA E
DATA F

DEF C DEF D DEF E DEF F

Module A1l uses a branch table in module B to get one of the modules C, D, E, or F. Module Al
knows which of the modules C, D, E, and F it will need. Module B has an SREF for C,D,E,and F.
Module C has a DEF for C. Module D has a DEF for D. Module E has a DEF for E. Module F has
a DEF for F. Module A1 has a LOAD for the modules C and D it needs. Module A2 has a LOAD
for the module C it needs. Module A3 has a LOAD for the modules E and F it needs.

The LOAD and SREF directives permit module B to be written to handle the most involved case and
-still be linked together without unneeded modules since Al only has LOAD directives for the
modules it needs.

When a link edit is performed, automatic symbol resolutions will puil in the modules appearing in
the LOAD directives.

If the link control file included Al and A2, modules C and D would be pulled in while modules E and
F would not be pulled in. If the link control file included A3, modules E and F would be pulled in
while modules C and D would not be pulled in. If the link control file included A2, module C would
be pulled in while modules D, E, and F would not be pulled in.

5.3.5 MISCELLANEOUS DIRECTIVES. This category includes the remainder of the assembler
directives which are not applicable to the other categories. The directives are:

® Define extended operation
® Program end

e Copy source file

5-20 Digital Systems Group

[e)
@ 2250077-9701

e Conditional assembly directives
e Define operation
e Set maximum macro nesting level
5.3.5.1 Define Extended Operation — DXOP
Syntax definition:
[<label>]p. . .DXOPH. . .<symbol>,<term>p. . [<comment>]

DXOP assigns a symbol to be used in the operation field in subsequent lines to specify an extended
operation. The use of the label field is optional. When a label is used, the current value in the location
counter is assigned to the label. The operation field contains DXOP. The operand field contains a
symbol followed by a comma and a term. The symbol assigned to an extended operation must not be
used in the label or operand field of any other statement. The assembler assigns the symbol to the
extended operation specified by the term, which must have a value in the range of zero to 15. The
comment field is optional.

The following example shows a DXOP directive:
DXOP DADD,13

The directive defines DADD as extended operation 13. When the assembler recognizes the symbol
DADD in the operation field, it assembles an XOP instruction that specifies extended operation 13.
The following example shows the use of the symbol DADD in a source statement:

DADD @LABELI1(4)

The assembler places the operand field contents in the T, and S fields of an XOP instruction, and
places 13 in the D field.

5.3.5.2 Program End — END
Syntax definition:
[<label>]p. . .END}p. . [<symbol>]p. . [<comment>]

END terminates the assembly. The last source statement of a program is the END directive. When
any source statements follow the END directive, they are considered part of the next assembly. Use
of the label field is optional. When a label is used, the current value in the location counter is
assigned to the symbol. The operation field contains END. Use of the operand field is optional.
When the operand field is used, it contains a program-relocatable or absolute symbol that specifies
the entry point of the program. When the operand field is not used, no entry point is placed in the
object code. The comment field may be used only when the operand field is used.

The following example shows an END directive:

END START

5-21 Digital Systems Group

(o]
%@ 2250077-9701

The directive causes the assembler to terminate the assembly of this program. The assembler also
places the value of START in the object code as an entry point.

When a program executes in a stand-alone mode and is loaded by the ROM loader, it must supply an
entry point to the loader. When no operand is included in the END directive and that program is
loaded by the ROM loader, the loader transfers control to the entry point of the loader and attempts
to load another object program. ’ ‘
5.3.5.3 Copy Source File — COPY
Syntax definition:

[<label>]p. . .COPYD. . <file name>h. . [<comment>]
COPY changes the source input for the assembler. Use of the label field is optional. The operation
field contains COPY. The operand field contains a file name from which the source statements are to
be read. The file name may be:

® An access name recognized by the DXI10 operating system.

® A synonym form of an access name.
The comment field is optional.
The following example shows a COPY directive:

COPY .SFILE
The directive in the example causes the assembler to take its source statements from a file SFILE. At
the end-of-file of SFILE, the assembler resumes taking source statements from the file or device from
which it was taking source statements when the COPY directive was processed. A COPY directive
may be placed in a file being copied, which results in nested copying of files.
5.3.5.4 Conditional Assembly Directives — ASMIF, ASMELS, ASMEND

Syntax definition:

[<label>]p. . éSMIFb. .<wd-exp>b. . [<comment>]
Asset:nbly language statements

b, . .ASMELs:b[<comment>]
Asser:nbly language statements

b. . .ASMENDb. .[<comment>]

5-22 Digital Systems Group

2250077-9701

Three directives, ASMIF, ASMELS and ASMEND, furnish conditional assembly capability in
SDSMAC. The three function as IF-THEN-ELSE brackets for blocks of assembly language
statements. When the expression in the operand field of an ASMIF evaluates to a non-zero (or true)
value, the block of statements enclosed by either ASMIF-ASMEND or ASMIF-ASMELS is
assembled. If the block is terminated by ASMELS, the block enclosed by ASMELS-ASMEND is
not assembled. When the expression on an ASMIF evaluates to zero (or false), the block of
statements immediately following ASMIF is not assembled. If an alternate ASMELS-ASMEND
block occurs, it is assembled. Statements not assembled are treated as comments. Macro calls within
unassembled parts are not assembled. The ASMIF expression must be well defined when it is
encountered.

NOTE

ASMIF, ASMELS, and ASMEND may not appear as macro model
statements. ASMIF-ASMELS-ASMEND constructs may be nested.

The following example shows the use of conditional assembly.

]

-

A El EA

SDEMAC 24TFOTE +E

FHGE S8al
[al% +
[+ THIS IS AWM ESAMPLE OF A USE OF CONDITIOMAL RSSEMELY
S + TO OITHCLUDE YARIOUS LEYELS OF DEBUG IWNFORMATION.
5155 L) +
EERS + A OSYMEDL IS DEFIMED WHICH IMDICATES THIS LEWEL
SEEAS * @ — MO DEBUG
(51515 + 5 — EMTREY SE®IT SHOET LDULMPS
AREE # 16— THE ABDYE. COUTER LDOF SHORT DUMPS. ENTRYAESIT
& + LOHG DUfPS
5] + 15— ALL THE AREOYVE & IMHMER L‘CIUF‘ SHORT [hHFS
[} +
5 aEEs DERUG B 12

A OYALUE OF 12 FOR DEBUG MILL GIYE THE FIRST I LEWEL:
OF DEBUG THFORMATION

+

o
REF ZRTDMP. LMGDMF
* PROGRAM EMNTREY POIHT

=3 Ty LR B el T B A0

] DEF EMTEY
S BREEE EMTREY .
: (5] AEZMIF DEBUG IF DEBUG=E, SkIF THIS BLOCKE
AL ASMIF DEBLIGES #*
BEZE BRGER AsHS Bl LHGEMF ENTRY POQINT SHORT DUFMF o+
3R ABAE
AZMELS e
BEL SETOMF EMTREY FOINT LOMG LUMP #*
HoMEMD +
HZMEMD sk bbbk sk
Cl2E MY Rid. Be CSAYE RETURM ADDRESS
E S
T ODE
ot
w QUTER LOOF
LABEL L
15 bl 5 1.1 F&5, =188
H1R8

% IMHER LOOF
LREELZ
LI R4E

,..,
fal il
=
st

't

i

LA

,
)

=
]

5-23 Digital Systems Group

-
—

2250077-9701

SLEMAC SATETS +E T

w T E
4
ASMIF DEBUG:=15
BL SETLMF IMMER LDOOF SHORT DUMF
A=ME D
DEC 4
JGT LABELZ
EH
00 E
4
ASMIF DEBLG>:=16
EL SRETOMP OUTER LOOF SHORT DUMF
ASME ML
EC RS
JET LAEBEiLL
4
4 O T
ES
ERIT FOIHT
H=MIF DEBLG IF DEBUG=G. SEIF THIS BLOCES
HSMIF DEBUG:S *
EL LMNGHHF ESIT LOMG DIUMF *
SHAsE HEMELS *
] l-% N BEL =SETDMF EXIT SHORET DUMF *
sl HEMEME *
ARG ASMEMD: bk e
HESd BALE Bd5e E HRE CRETURM THREOUGH =AY
15[EML
0 ERRORES

5.3.5.5 Define Operation — DFOP
Syntax definition:
[<label>]p. . .DFOPp. . .<symbol>,<operation>p. . [<comment>]

DFOP defines a synonym for an operation. Use of the label field is optional. The operation field
contains DFOP. The operand field contains a symbol which is the synonym for an operation, and
the operation, which may be the mnemonic operation code of a machine instruction, a macro name,
or the symbol of a previous DFOP or DXOP directive. The comment field is optional.

The following example shows a DFOP directive:
DFOP LOAD,MOV

The directive in the example defines LOAD for a synonym for the MOV machine instruction. The
LOAD symbol might be more meaningful where the source is a symbolic memory location and the
destination is a workspace register. The machine code for the MOV instruction is assembled
whenever either symbol appears in the operation field of a source statement. A single symbol may
appear in more than one DFOP directive in the same assembly, and an operation symbol may
appear in the label field of a DFOP directive. When an operation symbol appears as the defined

5.24 Digital Systems Group

o]
Q@ 2250077-9701

symbol of a DFOP directive, the corresponding operation is not available unless it had appeared in
the operand field of a previous DFOP directive. The effect of a group of DFOP directives is shown in
the following example:

DFOP HOLD,LWPI HOLD DEFINED TO BE LWPI

DFOP LWPLSOMMAC LWPI REDEFINED AS MACRO SOMMAC
DFOP SAVE,HOLD SAVE DEFINED AS HOLD (LWPI)

DFOP HOLD,BLWP HOLD REDEFINED AS BLWP

DFOP LWPILSAVE LWP! RESTORED

The first pair of DFOP directives substitutes macro SOMMAC for the LWPI machine instruction
which may be specified by the symbol HOLD. The second pair of DFOP directives changes the
symbol by which the LWPI machine instruction is specified to SAVE, and the symbol by which the
BLWP instruction is specified to HOLD. The last DFOP directive restores the symbol LWPI to the
LWPI machine instruction.

5.3.5.6 Set Maximum Macro Nesting Level — SETMNL
Syntax definition:
[<label>]p. . .SETMNLB. . <exp>h. . [<comment>]

The SETMNL directive allows the programmer to change the maximum macro nesting stack level as
required. SDSMAC maintains a count of the number of levels of macro nesting and declares an
error if this count exceeds the maximum number allowed. The default maximum is 16. The
SETMNL directive may be used to set the allowed maximum to greater or less than 16.

5.4 SYMBOLIC ADDRESSING TECHNIQUES
SDSMAC processes symbolic memory addresses differently than the other assemblers so that the
user may:

e Use the symbolic memory address of a workspace register to address the workspace
register.

¢ Omit the @ character to identify a symbolic memory address.

When SDSMAC processes a symbol as an operand of a machine instruction, it compares the value
of the symbol to the address of the current workspace. When the value is equal to the workspace
address, or is greater by 15 or less, the symbol represents a workspace and SDSMAC assembles a
workspace register address. Otherwise SDSMAC assembles a symbolic memory address. A WPNT
directive or an LWPI instruction supplies the address of the current workspace to the assembler.
Without this capability, two symbols are frequently assigned to the same address. The following
example illustrates this type of coding:

5-25 Digital Systems Group

(e}
(@ . 2250077-9701

SUM

QUAN

WS1
QUANT
FIVE

SUBI
ENTI

EQU
EQU

DATA
DATA
DATA

MOV
BLWP

DATA
DATA
A

0 ASSIGN SUM FOR WORKSPACE
REGISTER 0
1 ASSIGN QUAN FOR WORK-

SPACE REGISTER 1

WORKSPACE REGISTER 0
WORKSPACE REGISTER 1
WORKSPACE REGISTER 2

Lo o

@FIVE,@QUANT INITIALIZE QUANTITY

@SUBI BRANCH TO SUBROUTINE
WSI TRANSFER VECTOR

ENTI FOR SUBROUTINE
QUAN,SUM ADD QUAN TO SUM

The two initial EQU directives assign meaningful labels to be used as workspace register addresses in
the subroutine. The labels of the DATA statements are required to access the same memory
locations in the main program when another workspace is active. The following code would produce
the same object code when assembled on SDSMAC:

SUM
QUAN
FIVE

SUBI
ENTI

DATA
DATA
DATA

MOV

BLWP

XVEC
A

0 WORKSPACE REGISTER 0
0 WORKSPACE REGISTER 1
5 WORKSPACE REGISTER 2

FIVE,QUAN INITIALIZE QUANTITY
SUBI BRANCH TO SUBROUTINE

SUM TRANSFER VECTOR FOR SUBROUTINE
QUAN,SUM ADD QUAN TO SUM

The MOV instruction in the main program results in symbolic memory addresses for both operands.
The BLWP instruction uses transfer vector SUB1, provided by the XVEC directive labeled SUBI.
The XVEC directive also provides a WPNT directive that identifies SUM as the address of the
current workspace. The A instruction uses the symbol QUAN (as used in the MOV instruction) but
results in a workspace register address, because QUAN is now workspace register one.

When using SDSMAC, the @ character is considered redundant if:

® All symbols in the expression have been previously defined and the resulting value of the
expression is greater than 15, or

® Another @ character prefaces the expression.

5.26 Digital Systems Group

(o]
Q‘%} 2250077-9701

The following notations for the MOV instruction in the previous example would generate the same
object and result in an error-free assembly:

" MOV @FIVE,@QUAN
MOV FIVE,QUAN
MOV @@FIVE,@@QUAN

NOTE

When the @ is omitted from a symbolic expression, the symbol must
be defined before its use. If the symbol is not first defined, a register
reference is assumed. If later the symbol is defined as a memory
reference, an OPERAND CONFLICT PASS1/PASS2 error is
generated.

5-27/5-28 Digital Systems Group

Q
J_@) 2250077-9701

SECTION VI
PSEUDO-INSTRUCTIONS

6.1 GENERAL
A pseudo-instruction is a convenient way to code an operation that is actually performed by a
machine instruction with a specific operand. The Model 990/12 Computer assembly language
includes three pseudo-instructions. The pseudo-instructions are:

e No operation

e Return

e Transfer vector
6.2 NO OPERATION — NOP
Syntax definition:

[<labe>]p. . .NOPp. . [<comment>]
NOP places a machine instruction in the object code which has no effect on execution of the program
other than execution time. Use of the label field is optional. When the label field is used, the label is
assigned the location of the instruction. The operation field contains NOP. The operand field is not
used. Use of the comment field is optional.
Enter the NOP pseudo-instruction as shown in the following example:

MOD NOP
Location MOD contains a NOP pseudo-instruction when the program is loaded. Another
instruction may be placed in location MOD during execution to implement a program option. The
assembler supplies the same object code as if the source statement had contained the following:

MOD JUMP $+2
6.3 RETURN — RT
Syntax definition:

[<label>]p. . .RTP. . [<comment>]
RT places a machine instruction in the object code to return control to a calling routine from a
subroutine. Use of the label field is optional. When the label field is used, the label is assigned the

location of the instruction. The operation field contains RT. The operand field is not used. Use of the
comment field is optional.

6-1 Digital Systems Group

10
([@ 2250077-9701

Enter the RT pseudo-instruction as shown in the following example:
RT

The assembler supplies the same object code as if the source statement had contained the following:
B *11

When control is transferred to a subroutine by execution of a BL instruction, the link to the calling
routine is stored in workspace register 11. An RT pseudo-instruction returns control to the
instruction following the BL instruction in the calling routine.

6.4 TRANSFER VECTOR — XVEC
Syntax definition:
<label>p. . XVECH. . <wp address>[,<subr address>]p. . .[<comment>]

The XVEC pseudo-instruction is a means of coding the transfer vector for a subroutine. XVEC
places a set of assembler directives in the source code to provide a transfer vector for a BLWP
instruction. XVEC also provides a WPNT directive to define the newly active workspace to the
assembler. The label field contains the label of the resulting transfer vector. The operation field
contains XVEC. The operand field contains the label (wp address) of the workspace that becomes
active when the BLWP instruction is executed. Optionally, the wp address may be followed by a
comma and the label (subr address) or the first instruction to be executed in the subroutine. When
the second operand is omitted, the assembler assumes that the first instruction to be executed follows
the transfer vector. The use of the comment field is optional.

Enter the XVEC pseudo-instruction as shown in the following example:
SUBRA XVEC WKSPA,ENTRYA

Transfer of control to a subroutine at location ENTRYA with a workspace at location WKSPA
becoming the active workspace is coded as follows:

BLWP SUBRA

The resulting object code and assembler processing is the same as would result from the following
directives:

SUBRA DATA WKSPA
DATA ENTRYA
WPNT WKSPA

Alternatively, the XVEC pseudo-instruction may be entered as follows:

SUBRA XVEC WKSPA

6-2 Digital Systems Group

o
%@ 2250077-9701

In this case, the executable code of the subroutine must immediately follow the XVEC pseudo-
instruction. The resulting object code and assembler processing is the same as would result from the
following directives:

SUBRA DATA WKSPA
DATA $+2
WPNT WKSPA
NOTE

No executable code that requires a different active workspace than
that of the subroutine may be entered between the XVEC pseudo-
instruction and the subroutine entry address.

6-3/6-4 Digital Systems Group

2250077-9701

SECTION VII
MACRO LANGUAGE

7.1 GENERAL

The SDSMAC assembler supports a macro defining language used in programs. A macro definition
is a set of source statements (machine instructions and assembier directives) specified by a macro cali
in a source program. When the assembler processes a macro call it substitutes the predefined source
statements of the macro definition for the macro call source statement, and assembles the substituted
statements as if they had been included in the source program. Macro definitions may be placed in a
macro library for use in a subsequent assembly. This section describes the macro language, the verbs
used to define macros, and the macro library directives.

7.2 PROCESSING OF MACROS

Figure 7-1 illustrates the data paths between the basic assembler, the macro translator (consisting of
the statement classify, macro define, and macro expander modules) and the macro library. The
statement classify module processes all source statements to detect macro language statements and
macro calls, ignoring non-macro language statements. A special macro language statement,
$MACRO, identifies the beginning of a macro definition, and $END identifies the end of a macro
definition. Statements that occur between these two statements constitute a macro definition and are
passed to the Macro Define module. The module writes them in the macro name to the Statement
Classify module. :

MACRO ENCODED
EXPANDER e-———— MACRO
)
i
]
| e
STATEMENT MACRO
CLASSIFY | DEFINE
—
PRIMARY
INPUT
SOURCE
ROGRAM)
ASSEMBLER

(A)132254

Figure 7-1. Macro Assembler Block Diagram

7-1 Digital Systems Group

2250077-9701

The statement classify module recognizes a macro call by the macro name in the operation field. The
statement classify module then passes the name to the macro expander module. The macro expander
module accesses the desired macro definition. The macro call is expanded as specified in the macro
definitions. The source statement that results from this expansion is used as input by the statement
classify module.

During the expansion of a macro call, a macro language statement may call another macro, or a
resulting source statement may be a macro call. A nesting of macro calls can occur in the expansion
of one macro call. The macro processor suspends processing of the current macro, processes the new
macro, and then resumes processing the original macro at the point of interruption. The macro
translator allows a macro to be recursive.

7.3 MACRO TRANSLATOR INTERFACE WITH THE ASSEMBLER

Expansion of a macro call may be varied according to the contents of the assembler symbol table
(AST) and may result in alteration of the contents of the AST. The AST contains an entry for each
symbol identified in the source program. The entry in the AST is divided into a number of
components. The value of the symbol is stored as the value component (a binary value used in
computations). The segment component contains the location counter segment number of the
symbol, and the attributes of this symbol are stored in the attribute component as a group of bits,
each of which represents an attribute of the symbol. The string component is null unless the macro
translator places a string of characters in it. The length component contains the number of characters
in the string component. An eight-bit, user attribute field allows special attributes to be defined for a
symbol. In this section, the symbol table entry components are referred to as symbol components.

Using keywords, a macro definition may access any component of any symbol in the AST. Symbols
that are operands of the macro call may be used in the definition without any further declarations.
Other symbols used in the macro definitions must be explicitly declared before use.

A set of macro language statements beginning with a SMACRO statement and ending with a SEND
statement is a macro definition. The SMACRO statement includes a macro name that is used as the
operation field. Macro definitions may appear anywhere in a program prior to macro calls that
activate the definitions and they may be unique to a program or shared by many programs.

The LIBIN directive makes it easy to incorporate a library of previously encoded macro definitions
in every program. These definitions become a part of the source program but they are used only
when a macro is called in the source program.

A macro definition need only be as sophisticated as its application requires. The macro definition
simply redefines an instruction, supplies one or more fixed operands for commonly used
instructions, contains one or more calls for other macros, or calls itself recursively. The statements in
a macro definition may access AST symbol components to specify processing of a macro or they may
alter the contents of the AST.

To prevent the assembler from getting into an infinite loop, the maximum nesting levels for macros is
sixteen. However, the SETMNL directive may be used to change the established maximum as
required.

74 MACRO LIBRARY :

A macro library is a DX10 directory, and each member file of the directory contains a macro
definition. Two assembler directives, LIBIN and LIBOUT, identify macro libraries for input and
output, respectively. In addition, a system macro library may be input via the assembler input
parameters.

7.2 Digital Systems Group

[o]
(‘r@) 2250077-9701

The purpose of a macro hbrary is to reduce execution time and memory overhead associated with
using macros. Execution time is reduced by encoding the macro definitions only once and by making
them available for subsequent assembler runs. Memory requirements are reduced since macro
definitions not under expansion reside only in the directory on disk.

7.5 MACRO LANGUAGE ELEMENTS

The elements of the macro language are labels, strings, constants, operators, variables, keywords,
and verbs. A macro definition consists of statements containing macro language verbs and model
statements. A model statement can be constructed from some of the elements and results in an
assembly language source statement. The elements of the macro language and model statements are
explained fully in the following paragraphs.

7.5.1 LABELS. A macro language label consists of one or two characters. The first must be an
alphabetic character (A. . .Z) optionally followed by an alphanumeric character (A. . .Z, 0. . .9).
Macro language labels are used to determine the prccesslng sequence of statements in a macre
definition when the statements are not to be processed in order. Labels have no significance in the
actual assembly language. The following are examples of valid macro language labeis:

L1 MA C

7.5.2 STRINGS. The literal strings of the macro language consist of one or more characters
enclosed in single quotes. They are identical to the character strings used in the assembly language.

An example of a string is: ‘ONE’. Another example is: ‘b’ (a blank).

7.5.3 CONSTANTS AND OPERATORS. Constants for the macro language are defined the same
as constants for the assembly language. The arithmetic operators of the assembly language appiy
also to the macro language. The logical operators and the relational operators of SDSMAC also
apply to the macro language.

The macro language permits concatenation of macro variable components with literal strings,
characters of model statements, and other macro variables. Concatenation is indicated by writing
character strings in juxtaposition with string mode references to macro variables.

7.5.4 VARIABLES. A macro definition may include variables which are represented in the same
manner as symbols in the assembler symbol table with the restriction that they may be a maximum of
two characters in length. The following are examples of variables:

VA P4 SCF2 A2
NOTE

Macro variables are strictly local; they are available only to the macro
which defines them. Access to symbols in the AST is through the
symbol components.

7.5.4.1 Parameters. A parameter is a variable that is an operand of the expanded macro call and is
declared in the SMACRO statement at the beginning of the macro definition. The sequence of
parameters in the operand field of the SMACRO statement corresponds to the sequence of operands
in the operand field of the macro instruction.

7-3 Digital Systems Group

<
;{@ 2250077-9701

7.5.4.2 Macro Symbol Table. The macro translator maintains a macro symbol table (MST) similar
to the symbol table of the assembler. Each entry consists of the string, value, length, and attributes of
a variable or parameter. The macro expander module places parameters in the MST as it processes a
macro call, and places variables in the MST as it processes the macro language statements that
declare variables.

The string component contains a character string assigned to the macro variable or parameter by the
macro expander. The value component contains the binary equivalent of the string component if the
string component is an integer. The value component can also contain the value of the symbol if the
string component is a symbol in the AST.

The length component contains the number of characters in the string component. The attribute
component of the MST is similar to the attribute component of the AST entry in that it is a bit
vector, the bits of which correspond to the attributes of the variable or parameter.

The macro expander comprehends the addressing of modes of the assembler language. The value
components contain a binary value which can be interpreted if the operand is a valid integer
expression of any assembler addressing mode.

For example, the statement:
ADD $MACRO AU,AD

identifies a macro, ADD, having parameters AU and AD.

A macro call to activate that macro definition could be coded as follows:
ADD NUM,*3

The MST would not contain parameters AU and AD. The string component of parameter AU
would be the characters: NUM. The value component would be the value of the symbol NUM, and
the attribute component would indicate that the parameter is supplied in a macro call. The length
component would be three. The string component of parameter AD would be the characters: *3. The
value component would be three expressed as a binary number, and the length component would be
two. The attribute component would indicate that the parameter is an indirect workspace register
address appearing in the macro call.

Another macro call for the same macro could be coded as follows:

ADD VAL(5),SUM

The components of the parameters AU and AD would now correspond to the operands of this
instruction. The string component of parameter AU would be the characters: VAL(S). The value
component would be five (the index register number), and the length component would be six. The
attribute component would indicate that parameter AU is an indexed memory address appearing in
the macro call instruction.

The string component of parameter AD would be the characters: SUM, and the value component
would be the value of SUM. The length component would be three, and the attribute component
would indicate that parameter AD appears in the macro call.

7-4 Digital Systems Group

o
@ 2250077-9701

Each component of a macro variable may be accessed individually. Reference to a variable is made
in either binary mode or string mode. In the binary mode, the referenced macro variable component
is treated as a signed 16-bit integer. Binary mode access is made by writing the variable name and
component. Thus, the binary mode value of the length component of AD would be the 16-bit integer,
three. A reference to the string component of a macro variable in binary mode is, by definition, the
16-bit integer value of the ASCII representation of the first two characters of the string. The binary
mode value of the string component of AD is >5355, which is the ASCII representation for SU.

String mode access of macro variable components is signified by enclosing the variable in colon
characters (:); for example, :AD:.

NOTE
Colons are always used in pairs to enclose a variable name.

The string mode value of a component, other than the string component, is the decimal character
string whose value is the binary value of the component. In the previous example, the string mode
value of the length component of AD would be the character string: 3. If the value of SUM were
>28, then the string mode value of the value component of AD would be the character string: 40,
which is the decimal equivalent of >28. Since the string component of a macro variable is a string,
the string mode value of a string component is the entire string.

7.5.4.3 Variable Qualifiers. The components of a parameter or variable may be specified using the
specific names as shown in table 7-1. The variable name is followed by a period (.) and the single
letter qualifier. The following examples show qualified variables:

AU.S String component of variable AU.
In the first example of the macro call for the macro ADD, AU.S equals the
binary equivalent for NU or >4ES55. If a colon (:) has indicated the string mode,
the string component is the characters: NUM (:AU.S: = NUM).

AU.A Attribute component of variable AU.
This component may be accessed by use of logical operators and keywords.

AUV Value component of variable AU.
In the first example of the macro call for the macro ADD, this would be the
value of the symbol NUM in the AST.

AU.L Length component of variable AU.
In the first example of the macro call for the macro ADD, AU.L = 3.

Table 7-1. Variable Qualifiers

Qualifier ' Meaning
S The string component of the variable.
A The attribute component of the variable.
A% The value component of the variable.
L The length component of the variable.

7-5 Digital Systems Group

(]
q@ 2250077-9701

Except in an $ASG statement (described in a subsequent paragraph), an unqualified variable means
the string component of the variable. In the two following examples, the concatenated strings are

equivalent:
:CT.S:.pWAY Variable CT qualified
:CT:pWAY Variable CT unqualified

When the string component of a variable is a symbol in the AST, the additional qualifiers of table 7-2
may be used to access the symbol components of that symbol. The symbol components of the
parameters of macro instructions and the symbol value of an AST symbol are accessible directly. To
access the other components of a symbol which have not been passed as a parameter in the macro
definition, the symbol must be assigned as a string component of a macro variable and the symbol
component qualifiers of table 7-2 applied to that variable. The following are examples of qualified
variables that specify symbol components of string components of variables:

B.SS String component of a symbol that is the string component of variable B. This is
null unless a macro instruction has caused a string to be associated with it by
using a $ASG statement.

G2.SV Value component of the symbol that is the string component of variable G2. If
G2.S has been defined as MASK, a statement MASK EQU FF has been
encountered in the assembly language source, then G2.SV = >FF. In string
mode, :G2.SV: equals the characters :255.

NO.SA Attribute component of the symbol that is the string component of the variable
NO. This component may be accessed by use of logical operators and keywords,
as described later.

V2.SL Length component of the symbol that is the string component of macro variable
V2. If a string has been assigned to the symbol which is V2.S, then V2.SL is the
length of that string.

NV.SU User attribute component of the symbol that is the string component of variable
NV. This component is zero except when a macro instruction has been issued to
set bits in the component with a $ASG macro verb. This component is eight bits
long and may be used as desired.

LM.SG Segment component of the symbol that is the string component of variable LM.

Concatenation is especially useful when a previously defined string is augmented with additional
characters. The string ONE could be represented by a qualified variable such as CT.S. In that case,
concatenation expressed as follows:

:CT.SI'PWAY’
would provide the same result as writing
‘ONE WAY’

If the qualified variable CT.S represents the characters: TWO, the result of the concatenation in the
example would be TWO WAY. Strings and qualified variables may be concatenated as required and
the variable need not be first. Components of variables that are represented by a binary value (e.g.,
CT.V and CT.L) are converted to their ASCII decimal equivalent before concatenation.

7-6 Digital Systems Group

(o]
Qj@ 2250077-9701

For example:
:CT.S‘PWAYP:CT.L:
is expanded as
ONE WAY 3
since the length component of the variable CT is three.
Table 7-2. Variable Qualifiers for Symbol Components
Qualifier Meaning

SS String component of a symbol that is the
string component of a variable.

Sv Value component of a symbol that is the
string component of a variable.

SA Attribute component of a symbol that is
the string component of a variable.

SL Length component of a symbol that is
the string component of a variable.

sU User attribute component of a symbol that
is the string component of a variable.

SG Segment component of a symbol that is the
string component of a variable.

7.5.5 KEYWORDS. The macro language recognizes keywords to specify the attributes of assembler
symbols and macro parameters. Each keyword represents a bit position within a word that contains
all attributes of the symbol or parameter. A keyword may be used with a logical operator and the
attribute component to test or set a specific attribute of a symbol or parameter.

7.5.5.1 Symbol Attribute Component Keywords. The keywords listed in table 7-3 may be used with
a logical operator and the symbol attribute component (.SA) to test or set the corresponding
attribute component in the AST or MST. The following example shows an expression that uses a
symbol attribute component keyword:

P5.SA&SSTR This is the result of an AND operation between the attribute component of
the symbol that is the string component of variable PS5 and a bit vector
corresponding to keyword $STR. The expression has a nonzero value
when the contents of the string component of PS5 is not null; otherwise, the
expression has a value of zero.

Another example shows an expression that uses a symbol attribute keyword:

CT.SA++SREL This is the result of an OR operation between the attribute component of
the symbol in the string component of variable CT and the bit
corresponding to keyword SREL. The value of the expression is that of the
attribute component showing the symbol as relocatable.

7-7 Digital Systems Group

2250077-9701

Table 7-3. Symbol Attribute Keywords

Keyword Meaning
$REL Symbol is relocatable.
SREF Symbol is an operand of an REF directive.
$DEF Symbol is an operand of a DEF directive.
$STR Symbol has been assigned a component string.
$VAL Symbol is defined as a macro name.

SUNDF Symbol is not defined.

7.5.5.2 Parameter Attribute Keywords. The keywords listed in table 7-4 may be used with a logical
operator and the macro symbol attribute component to test or set the corresponding attribute in the
MST attribute component. These attribute keywords may be used to test or set attributes of both
parameters and variables in the MST. The following examples show expressions that use parameter
attribute component keywords:

P6.A&SPCALL This is the result of an AND operation between the attribute component of
variable P6 and the bit vector corresponding to keyword SPCALL. The
expression has a nonzero value when variable P6 is a parameter supplied in
a macro call. Otherwise the value of the expression is zero.

RA.A++$PSYM This is the result of an OR operation between the attribute component of
variable RA and the bit vector corresponding to keyword SPSYM. The
value of the expression is that of the parameter attribute component
showing the parameter as a symbolic memory address.

Table 7-4. Parameter Attribute Keywords

Keyword Meaning
SPCALL Parameter appears as a macro-instruction operand.
$POPL Parameter is an operand list. The value component

contains the number of operands in the list.

$PNDX Parameter is an indexed memory address. The value
component contains the index register number.

$PIND Parameter is an indirect workspace register address.
SPATO Parameter is an indirect auto-increment address.
$PSYM Parameter is a symbolic memory address.

7-8 Digital Systems Group

2250077-9701

7.5.6 VERBS. The macro language supports 11 verbs that are used in macro language statements.
Any statement in a macro definition that does not contain a macro language verb in the operation
field is processed as a model statement. The verbs and the statements named after all verbs are
described in the following paragraphs.

7.5.6.1 SMACRO
Syntax definition:
[<macro name>]p. . .SMACRO}p. . [<parm>][,<parm>]. . .pb. . [<comment>]

The $MACRO statement must be the first statement of a macro definition. It assigns a name to the
macro and declares the parameters for the macro. The macro name consists of from one to six
alphanumeric characters, the first of which must be alphabetic. Each <parm> is a parameter for the

parameters as the size of the field allows and must contain all parameters used in the macro
definition. The comment fieid may not be used if there are no parameters.

The macro definition is used in the expansion of macro calls that have the macro name as an
operation code. The syntax for a call is as follows:

<operand> <operand>
~ [<label>]p. . .<macro name>b. . . { } > { } .. .b. . [<comment>]
<operand list> <operand Jist>

When the label field contains a label, the label is assigned to the location of the first object code or
dummy object code of the expanded macro instruction. The macro name specifies the macro
definition to be used. Each operand may be any expression or address type recognized by the
assembler, or a character string enclosed in quotes. Alternatively, an operand list may be used. An
operand list is a group of operands enclosed in parentheses and separated by commas (when two or
more operands are in the list). An operand list is processed as a set after removal of the outer
parentheses during macro expansion.

Operands (or operand lists) may be nested in parentheses in the macro call for use within macro
definitions.

For example:

ONE $MACRO P1,P2
specifies 2 parameters.
A call such as

ONE PARI1,PAR2
will result in

PARI being associated with P1 and PAR2 being associated with P2.

7-9 Digital Systems Group

]
{[@ 2250077-9701

However, a call such as
ONE PARI1,(PAR21,PAR22)
will result in
PARI being associated with Pl and PAR21, PAR22 being associated with P2.

Now if :P2: or :P2.S: is used as an operand in a model statement, it has the effect of being two
operands (i.e., matching two parameters in the macro definition).

Processing of each macro call in a source program causes the macro expander to associate the first
parameter in the SMACRO statement with the first operand or operand list on the macro call line
and the second parameter with the second operand or operand list, etc. Each parameter receiving a
value has the SPCALL attribute set. When the macro definition has more parameters specified than
the number of operands in the macro call, the SPCALL attribute is not set for the excess parameters.
The $PCALL attribute is also not set if an operand is “null”, i.e., the call line has two commas
adjacent or an operand list of zero operands. Expansion of the macro can be conditioned on the
number of operands by testing this attribute, SPCALL.

For example, a macro definition containing
AMAC $MACRO P1,P2,P3
when called by
AMAC ABI1,AB2
sets SPCALL in parameters Pl and P2 but not for P3.
Similarly,
AMAC XY, XY3
causes $PCALL to be set for P1 and P3 but not for P2.
When the macro instruction has more operands than the number of parameters in the SMACRO
statement, the excess operands are combined with the operand or operand list corresponding to the
last parameter to form an operand list (or a longer operand list). For example, with the macro

statement shown, the operands of the two macro calls in the following code would be assigned to the
parameters in the same way:

ONE EQU 9

TWO EQU 43

THREE EQU 86

FIX $SMACRO PI,P2 MACRO FIX
FIX ONE,TWO,THREE MACRO INSTRUCTION
FIX ONE,(TWO,THREE) MACRO INSTRUCTION

7-10 Digital Systems Group.

[s]
Qr@? 2250077-9701

Example:

ZommgoOw

D-Ui—i

AR

M

EQU 7
EQU 15
DATA 17
DATA 63
EQU 95
EQU 47
EQU 58
EQU 101
EQU 119
$MACRO
PARM

Parameter assignments:

PIS = A
PI.A = $PCALL
PIL =1
PLV=7

P3S =B

P3.A = $PCALL
P3L =1

P3V =15
P58 = C
P5.A = $PCALL
P5.L = 1
P5.V = 17

P7.S = (E)F)
P7.A = $PCALL.$PNDX
PI.L=6

PV = 47

P9.S = *RT+
P9.A = $PCALL,SPATO
P9.L = 4

POV =7
7.5.6.2 SVAR

Syntax definition:

b. .

SVARD. .

Lvar>[,<var>]. . .b. . [<comment>]

A,,B,(),C,(D),(EXF),(G(H,1)),*R7+

P2.S =

P2.A =

P2L=0

P2V =0

P4S =
P4.A = $POPL

PAL =0

P4V =0

P6.S = D

P6.A = SPCALL,SPOPL
P6.L = |

P6.V = |
P8.S = G(H,])

P8.A = $PCALL,$POPL
P8.L = 6

P8.V = 2

P1,P2,P3,P4,P5,P6,P7,P8,P9

(no string)

(no string)

7-11

Digital Systems Group

o]
@ 2250077-9701

The $VAR statement declares the variables for a macro definition. The $VAR statement is required
only if the macro definition contains one or more variables other than parameters. More than one
$VAR statement may be included and each $VAR statement may declare more than one variable.
Each <var> in the operand is a variable as previously described.

The following is an example of a $VAR statement:
$VAR A,CT,V3 THREE VARIABLES FOR A MACRO

The example declares variables A, CT, and V3. A, CT, and V3 must not have been declared as
parameters. The $VAR statement does not assign values to any components of the variables. §VAR
statements may appear anywhere in the macro definition to which they apply, except each variable
must be declared before the first statement that uses the variable. It is logical to place SVAR
statements immediately following the SMACRO statement.

71.5.6.3 $ASG
Syntax definition:

<expression>
b. . .SASG)H. . . pTOP<var>p. . [<comment>]
<string>

The $ASG statement assigns values to the components of a variable. Variables that are not
parameters have no values for components until values are assigned using $ASG statements.
Components previously assigned to parameters or to variables by $ASG statements may be assigned
new values with SASG statements.

The expression operand may be any expression valid to the assembler and may contain binary mode
variable references and the keywords in tables 7-3 and 7-4.

NOTE

The binary mode value of a string component or symbol string
component used in an expression is the binary value of the first two
characters of the string.

Thus, if GP.S has the string LAST, the value used for GP.S is an expression in the <string>
hexadecimal number >4C41 which is the ASCII representation for LA.

A string may be one or more characters enclosed in single quotes or the concatenation of a literal
with the string mode value of a qualified variable. The <var> may be either an unqualified variable
or a qualified variable.

When the operands are both unqualified variables, all components are transferred to target
variables. When the source variable is qualified or is a quoted string and the destination variable is
unqualified, an error results. When the destination variable is qualified, only the specified
component receives the corresponding component of the expression or string. An exception to this is
when a string is assigned to the string component of a variable or symbol, the length component of
that variable or symbol is set to the number of characters in the assigned string. If the attribute
component of the target variable is to be changed, only those attributes which can be tested using
keywords are changed. Other attributes maintained by SDSMAC may or may not be changed as
appropriate.

7-12 Digital Systems Group

(o]
@ 2250077-9701

NOTE

A qualified variable that specifies the length component is illegal as a
target in a $ASG statement. Also, a qualified variable that specifies
the attribute component or the value component of a macro variable
which was declared to be a macro language label (for the purpose of a
$GOTO) is illegal as the target in a $ASG statement.

The following examples show the use of the SASG statement:

$ASG P3 TO V3 Assign all the components of variable P3 to variable
V3.
$ASG :P3.S:‘ES’ TO P3.S Concatenate string ‘ES’ to the string component of

variable P3, and set the string component to the
result. Also, add 2 to the length component of the new

$ASG CT.A++SPSYM TO CT.A Set the bit in the attribute component of variable CT
to indicate the symbolic address attribute.

Variables P3, V3, and CT must have been previously declared either as parameters in a SMACRO
statement or as variables in a $VAR statement.

The $ASG statement may be used to modify symbol components as shown in the following
examples. Assume that P3.V = 6 and P3.S = SUB.

$ASG ‘TEN’ TO G.S Assigns ‘TEN’ as the string component of variable G.
When ‘TEN’ is a label in the AST, this statement
allows the use of symbol component qualifiers to
modify the components of symbol TEN.

$ASG P3.V TO G.SV Sets the value component of the symbol in the string
component of variable G to the value component of
variable P3. In this case, the value component of TEN
is set to six.

$ASG‘A”P3.S:'S” TO G.SS Concatenates string ‘A’, the string component of
variable P3, and string ‘S’ and places the result in the
string component of the symbol in the string
component of variable G. Also sets the length
component of the same symbol. Thus, the string
component of TEN is ASUBS and the length
component is five.

7-13 Digital Systems Group

[e]
(@ 2250077-9701

7.5.6.4 SNAME
Syntax definition:

<label>p. . .SNAMED. . [<comment>]
The $NAME statement associates a macro language label with a macro language statement. When a
label is required for branching within a macro definition, it must be provided by a SNAME
statement. The SNAME statement performs no processing in the expansion of a macro instruction.

The following example shows a SNAME statement:

AB SNAME BRANCH TO THIS POINT A $GOTO statement with AB as an operand
branches to this point.

$ASG P3 TO V3 Expansion of the macro instruction continues
with the $ASG statement.

7.5.6.5 $GOTO
Syntax definition:
p. . $GOTOB. . <label>h. . [<comment>]

The $GOTO statement branches within a macro definition either to a SNAME statement or to an
$END statement. The label is a macro language label of either type of statement.

The following example shows a $GOTO statement:

$GOTO AB Branch to a $SNAME statement having the label AB.
and execute the following statement, or to an $END
statement having the label AB.

7.5.6.6 SEXIT
Syntax definition:
p. . SEXITH. . [<comment>]

The SEXIT statement terminates processing of the macro expansion. The $EXIT statement has the
same effect as a $GOTO statement with the label of the SEND statement as the operand.

7.5.6.7 $SCALL
Syntax definition:
p. . SCALLp. . .<macro name>p. . .[<comment>]

The $CALL statement initiates processing of the macro definition named in the operand field. The
operands passed to the macro being expanded are mapped to the parameters of the macro specified
in the $CALL statement. When the macro expander executes a $END statement or a $SEXIT
statement in the called macro, processing returns to the statement following the SCALL statement in
the calling macro.

7-14 Digital Systems Group

o]
@ 2250077-9701

The following is an example of a SCALL statement:

$CALL CONV Activates the macro definition CONV. The
parameters of the calling macro are passed as the
operands of the macro CONV.

7.5.6.8 SIF
Syntax definition:
p. . SIFp. . .<expression>p. . [<comment>]

The $IF statement provides conditional processing in a macro definition. An $IF statement is
followed by a block of macro language statements terminated by an $ELSE statement or an
$ENDIF statement. When the SELSE statement is used, the SELSE statement is followed by another
block of macro language statements terminated by an SENDIF statement. When the expression in
the SIF statement has a nonzero value, the block of statements following the $IF statement is
processed. When the expression in the $IF statement has a zero value, the block of statements
following the $IF statement is skipped. When the $ELSE statement is used and the expression in the
$IF statment has a nonzero value, the block of statements following the $ELSE statement and
terminated by the $SENDIF statement is skipped. Thus, the condition of the $IF statement may
determine whether or not a block of statements is processed, or which of two blocks of statements is
processed. A block may consist of zero or more statements.

The <expression> may be any expression as defined for the $ASG statement and may include
qualified variables and keywords. The expression defines the condition for the $IF statment.

NOTE

The expression is always performed in binary mode. Specifically, the
relational operations (<,>,=#=,etc.) operate only on the binary
mode value of the macro variable. This has the effect that
comparisons of two character strings may be done only on the initial
two character positions.

The following examples show conditional processing in macro definition:

$IF KY.Sv Process the statement of BLOCK A when the value
component of the symbol in the string component of
BLOCK A variable KY contains a nonzero value. Process the
. statements of BLOCK B when the component
$ELSE contains zero. After processing either bloc. .*
statements, continue processing at the statement

BLOCK B following the SENDIF statement.

$ENDIF

7-18 Digital Systems Group

o
@ 2250077-9701

$IF T.A&SPCALL=0 Process the statements of BLOCK A when the
: attribute component of parameter T indicates that
BLOCK A parameter T was not supplied in the macro

. instruction. If parameter T was supplied, do not
SENDIF process the statements of BLOCK A. Continue

processing at the statement following the SENDIF

statements in either case.
$IF T.L=5 Process the statements of BLOCK A when the length
. component of variable T is equal to 5. If the length
BLOCK A component of the variable is not equal to 5, do not
. process the statements of BLOCK A. Continue
$SENDIF processing at the statement following the SENDIF

statement.

7.5.6.9 SELSE
Syntax definition:
p. . .SELSEp. . [<comment>]

The $ELSE statement begins an alternate block to be processed if the preceding $IF expression was
false.

7.5.6.10 SENDIF
Syntax definition:

p. . SENDIFp. . [<comment>]
The SENDIF statement terminates the conditional processing initiated by an $IF statement in a
macro definition. Examples of $ENDIF statements and their use are shown in a preceding
paragraph.
7.5.6.11 SEND
Syn'tax definition:

| [<label>]p. . .$SENDp. . [<macro name>]p. . [<comment>]

The SEND statement marks the end of the group of statements of the macro definition named in the
operand. When executed, the SEND statement terminates the processing of the macro definition.
The label may be used in a $GOTO statement to terminate processing of the macro definition. The
<macro name>> parameter is optional.

The following is an example of an $END statement:

$END FIX Terminates the definition of macro FIX.

7-16 Digital Systems Group

[o]
(@ 2250077-9701

7.5.7 MODEL STATEMENTS. As mentioned earlier, a macro definition consists of statements
that contain macro language verbs and model statements. A model statement always results in an
assembly language source statement and may consist only of an assembly language statement or
portions of an assembly language statement combined with string mode qualified variable
components using the colon operator (:). In any case, the resulting source statement must be a legal
assembler language statement or an error will result. The following examples show model
statements:

MOVB R6,R7 This model statement is itself an assembly language
source statement that contains a machine instruction.

:P7.S:pppSOCHbH: P2.S:,R8bPH:V4.S: This model statement begins with the string
component of variable P7. Three blanks, SOC, and
three more blanks are concatenated to the string. The
string component of variable P2 is concatenated to
the result, to which R8 and three blanks are

concatenated. A final concatenation places the string

component of variable V4 in the model statement.
The result is an assembly language machine
instruction having the label and comment fields and
part of the operand field supplied as string
components.

:MS.S: This model statement is the string component of
variable MS. Preceding statements in the macro
definition must place a valid assembly language
source statement in the string component to prevent
assembly errors.

NOTE

Conditional assembly directives may not appear as operations in a
model statement. Comments supplied in model statements may not
contain periods (.) since SDSMAC scans comments in the same way
as model statements and improper use of punctuation may cause
syntax errors.

7.6 ASSEMBLER DIRECTIVES TO SUPPORT MACRO LIBRARIES

Two directives have been added to support the use of libraries of macros in SDSMAC. These two
directivs are LIBOUT, which is used to build or add to a library of macro definitions, and LIBIN,
which is used to “recall” a previously built macro library.

7-17 Digital Systems Group

Q
{'@ 22500779701

7.6.1 LIBOUT DIRECTIVE
Format:
p. . .LIBOUTH. . <library-access-name>

The LIBOUT directive declares a macro library where macro definitions are written during an
assembly. The library must have been previously created by a CFDIR (create file directory) utility
command. Macro definitions appearing in the assembler input stream following a LIBOUT directive
are written to the specified library upon successful translation. Macro definitions appearing prior to
the first LIBOUT directive remain in memory and are not written to any library. Multiple LIBOUT
directives may appear in a single assembly. Each successive output library supercedes its predecessor
so that only one output library is in effect at a time. The same library may be specified on multiple
LIBOUT directives. Furthermore, a library may be used for both input and output simultaneously.
Macro definitions are written to the library using the replace option which will redefine any macro
with the same library name. Hence, a macro library may be maintained (updated) without difficulty.

In addition to macro definitions, a sub-directory of the macro library with the name DDFX
contains the results of DXOP and DFOP directives and the results of macro names which redefine
an assembly language instruction, directive, or pseudo-instruction appearing within the span of the
current LIBOUT directive.

The macro definitions, DXOPs, and DFOPs are written to the library completely replacing any prior
definitions of the symbols on that macro library. For example, if a macro library contained a macro
definition for the symbol LOCK and a subsequent assembly encounters a DFOP LOCK,ABS
statement while a LIBOUT directive to that library is in effect, the macro library will result in
containing information that LOCK is another name for the instruction ABS. The macro definition
which existed on the library previously will have been deleted.

7.6.2 LIBIN DIRECTIVE
Format:
p. . .LIBINB. . <library-access-name>

The LIBIN directive declares a macro library to be used in the current assembly. The library must
have been previously created and must contain only macro definitions and DFOP and DXOP
directives previously encoded during assembly (by use of the LIBOUT directive). Multiple LIBIN
directives may appear in a single assembly. When the LIBIN directive is encountered, the library
directory is examined for any redefinition of assembler instructions, and their existence is flagged.
No further use is made of the macro library until an undefined operation is encountered. At that
time, the macro library is searched for a possible macro definition of the operation. In the case of
multiple macro libraries, the search order is inverse to the order of presentation, i.e., the last macro
library is searched first. The system macro library, specified in the SCI XMA command, is always
searched last.

7.6.3 MACRO LIBRARY MANAGEMENT. A macro library may be listed, added to, deleted

from, and replicated using a combination of utility commands provided by the operating system and
the macro assembler LIBIN and LIBOUT directives.

To list or replicate a macro library, use the utility commands provided by the operating system.

7-18 Digital Systems Group

(o]
(r_@/» 2250077-9701

To add to an existing macro library or to change an existing macro definition, DFOP, or DXOP, use
only the LIBOUT directive provided by the macro assembler. Do not use utility commands for
copying files to copy a macro definition to another macro library.

To delete macro definitions, DFOPs, and DXOPs, use the utility commands provided by the
operating system to delete files. In the following examples, assume that a macro library with the
name

SYSTEM.MACROS
is present.

a. If the result of the DFOP

DFOP T,TEXT
is to be deleted, use the deleie file DX10 utility command to delete the fi

.SYSTEM.MACROS.DDFX.T

b. If the result of the DXOP |
DXOP SVC,15

is to be deleted, use the delete file DX 10 utility command to delete the following file in the
same manner as above:

.SYSTEM.MACROS.DDFX.SVC

c. If a macro definition for CALL is to be deleted, use the delete file DX10 utility command
to delete the following file:

.SYSTEM.MACROS.CALL

d. If a macro definition which redefines an assembly language instruction, directive, or
pseudo-instruction is to be deleted, then two files must be deleted. If the macro name was
TEXT then delete:

.SYSTEM.MACROS.TEXT
SYSTEM.MACROS.D$DFXS$.TEXT

If only one of these is deleted, either an invalid opcode assembly error will result or the
intended macro will not have been used.

7.7 MACRO EXAMPLES

Macros may simply substitute a machine instruction for a macro instruction, or they may include
conditional processing, access the assembler symbol table, and employ recursion. Several examples
of macro definitions are described in the following paragraphs.

1-19 Digital Systems Group

=]
(@ 2250077-9701

7.7.1 MACRO GOSUB. Macro GOSUB is an example of a macro that substitutes a machine
instruction for the macro instruction. The macro definition consists of three macro language
statements, one of which is a model statement, as follows:

GOSUB $MACRO AD Defines macro GOSUB and declares a parameter,
AD.

BL :AD.S: A model statement that results in a BL instruction
with the string component of the parameter as
operand.

$END GOSUB Terminates macro GOSUB.

The syntax of the macro instruction for the GOSUB macro is defined as follows:
[<labe>]p. . .GOSUBp. . .<address>p. . .[<comment>]

When a label is used, it is effectively the label of the resulting BL machine instruction. The address
may be any address form that is valid for a BL instruction. When a comment is used, it applies to the
macro instruction. For example, the following macro instruction is valid for the GOSUB macro:

GOSUB @SUBR

The statement in the example results in a machine instruction to branch and link to a subroutine at
location SUBR, as follows:

BL @SUBR

Another example shows the macro instruction that could be used if the subroutine address were in
workspace register 8 and had a label.

NEXIT GOSUB *R8
The resulting instruction would be:
NEXIT BL *R8

7.7.2 MACRO EXIT. Macro EXIT is an example of a macro that supplies an assembler directive
the first time the macro is executed and a machine instruction each successive time. The macro
requires an EQU directive to be placed in the source program prior to calling the macro, and the
definition consists of nine macro language statements, including two model statements. The
definition is as follows:

EXIT $MACRO Defines macro EXIT with no parameters.
$VAR L Defines variable L.
$ASG ‘FI’ TO L.S Assign F1 to the string component of variable L to
allow access to symbol F1 in the assembler symbol
table.
XOP @TERM,15 Model statement—places an XOP machine

instruction in the source program.

7-20 Digital Systems Group

(o]
%@ 2250077-9701

SIF L.SV If the value component of symbol F1 is a nonzero
value, perform the next two statements and terminate
the macro. Otherwise, terminate the macro.

TERM BYTE 16 Model statement — places a byte directive referenced
by the XOP instruction following the XOP
instruction.

$ASG 0 TO L.SV Set the value component of symbol F1 to zero. Any

further calls to macro EXIT will omit the preceding
model statement and its statement.

$ENDIF Defines the end of conditional processing.
$END End of macro definition:
Fl EQU . 1 Defines F1 with a value of 1. This is not part of the

macro definition, but is a source statement. It must
precede the first macro call for macro EXIT and may
precede the definition.

The syntax of the macro instruction for the EXIT macro is defined as follows:

[<label>]p. . .EXIT

When a label is used, it is effectively the label of the XOP machine instruction resulting from the
macro. The first time the macro is called, the following source statements are placed in the program:

XOP @TERM, 15
TERM BYTE 16
Subsequent calls for the macro result in the following:
XOP @TERM,15
7.7.3 MACRO ID. Macro ID is an example of a macro having a default value. The macro supplies

two DATA directives to the source program. The macro consists of nine macro language statements,
four of which are model statements. The definition is as follows:

ID $MACRO WS,PC ~ Defines ID with parameters WS and PC.
DATA :WS.S: Model statement — places a DATA directive
with the string of the first parameter as the
operand in the source program.

SIF PC. A&SPCALL Tests for presence of parameter PC.

7-21 Digitai Systems Group

(=]
@ 2250077-9701

DATA :PC.S:,15 Model statement — places a DATA directive in
the source program. The first operand is the
string of the second parameter, and the second
operand is 15. This statement is processed if the
second parameter is present.

$ELSE State of alternate portion of definition.

DATA START,I15 Model statement — places a DATA directive in
the source program. The first operand is label
START, and the secnd operand is 15. This
statement is processed if the second parameter is
omitted.

START Model statement — places a label START in the
source program. This statement is processed if
the second parameter is omitted.

SENDIF End of conditional processing.

$END End of macro.
This macro could be used to place a three-word vector at the beginning of a program. The first word
could be the workspace address, the second the entry point, and the third the value 15 to be placed in
the SR register. The first operand of the macro instruction would be the workspace address, and the
second operand would be the entry point. When the executable code immediately follows the vector
and the entry point is the first word of executable code, the second parameter may be omitted. The
syntax definition of the macro instruction for macro ID is as follows:

<label>p. . .IDp. . .<address> [,<address>]p. . [<comment>]

The label becomes the label of the three-word vector, and the addresses may be expressions or
symbols.

The following is an example of a macro instruction for macro ID:
PROGI ID WORKI,BEGIN
The resulting source code would be:
PROG1I DATA WORKI
DATA BEGIN,15

When the entry point immediately follows the macro instruction, the macro instruction could be
coded as follows:

PROG2 ID WORK2

7-22 Digital Systems Group

[o]
é@ 22500779701

This would result in the following source code:
PROG DATA WORK2
DATA START,1S
START

This form of the macro instruction imposes two restrictions on the source program. The source
program may not use the label START and may not call macro ID more than once. The user may
prevent problems with labels supplied in macros by reserving certain characters for use in macro-
generated labels. A macro definition may maintain a count of the number of times it is called and use
this count in each label generated by the macro.

7.7.4 MACRO UNIQUE

0001 IDT ‘UNIQUE’

0003 * THIS EXAMPLE DEMONSTRATES A METHOD FOR CREATING UNIQUE
0004 * LABELS USING THE MACRO LANGUAGE. EACH CALL OF THE MACRO
0005 * GENERATES A UNIQUE LABEL OF THE FORM ‘U, xxx’ WHERE ‘xxx’
0006 * IS A NUMBER

0007 LABEL $MACRO)

0008 * DECLARE A VARIABLE TO USE IN THE MACRO

0009 $VARL

0010 * ASSIGN THE CHARACTER STRING OF A SYMBOL THAT WILL HOLD
0011 * A COUNTER VALUE AND THE LAST LABEL GENERATED

0012 $ASG “U;;;" TOLS

0013 * INCREMENT THE SYMBOL VALUE OF “Uy;;;; TO OBTAIN THE

0014 * LABEL VALUE

0015 $ASG L. SV+1 TOL.SV

0016 * CREATE THE LABEL AND SAVE IN THE SYMBOL STRING COMPONENT
0017 * GENERATE THE LABEL IN THE NEXT LABEL FIELD. NOTE THAT
0018 * MODEL STATEMENT STARTS IN COLUMN 1

0019 U;;:LSV:

0020 $END

0021 *

0022 * NOW GENERATE SOME LABELS

0023 *

0024 LABEL

*0001 0000 U;sl
0025 0000 0000 DATAO, 1

0002 0001
0026 LABEL
*0001 0004 U;;2
0027 LABEL

*0001 0004 U;:3
0028 0004 0004 DATA 4
0029 END
NO ERRORS

7-23 Digital Systems Group

[e]
(’_@} 2250077-9701

7.7.5 MACRO GENCMT. Macro GENCMT is an example showing how to implement both those
comments which appear in the macro definition only, and those comments which appear in the
expansion of the macro. When this macro is called, the statement in line six generates a comment.

0001 IDT ‘GENCMT’
0002 GENCMT $MACRO
0003 $VARV
0004 *THIS IS A MACRO DEFINITION COMMENT
0005 $ASG “* TOV.S
0006 :V.S: THIS IS A MACRO EXPANSION COMMENT
0007 $END
0008 GENCMT

*0001 *THIS IS A MACRO EXPANSION COMMENT
0009 0000 0000 DATA 0,1

0002 0001

0010 GENCMT

*0001 *THIS IS A MACRO EXPANSION COMMENT
0011 GENCMT

*0001 *THIS IS A MACRO EXPANSION COMMENT
0012 0004 0004 LABEL DATA 4
0013 END

7.7.6 MACRO LOAD

0001 IDT ‘LOAD’

0002 *

0003 * GENERALIZED LOAD IMMEDIATE MACRO

0004 *

0005 * THIS MACRO DEMONSTRATES USE OF THE MACRO
0006 * SYMBOL ATTRIBUTES $PSYM, $PNDX, $PATO, $PIND.
0007 *

0008 * OPERANDS: D (DESTINATION) MAY BE REGISTER,
0009 * INDIRECT, SYMBOLIC,
0010 * OR AUTO-INC.

0011 * V (VALUE) SHOULD BE LITERAL VALUE.
0012 *

0013 *

0014 * [F THE FIRST OPERAND IS NOT A REGISTER, IT
0015 * WILL BE MOVED INTO THE SCRATCH REGISTER
0016 * BEFORE PERFORMING THE LOAD. THE SCRATCH
0017 * REGISTER IS ASSUMED TO BE RO.

0018 *

0019 *

0020 * THIS SYMBOL DEFINITION OR’S TOGETHER ALL
0021 * ADDRESSING MODES BUT ‘REGISTER’.

0022 *

0023 001E COMPLX EQU $PATO++$PSYM++$PNDX++$PIND

0024 *

0025 * THIS MACRO WILL MASK OUT THE REGULAR ‘LI’
0026 * INSTRUCTION, SO THE ‘DFOP’ FOR ‘LI’ IS

0027 * USED TO DEFINE A SYNONYM FOR THE ‘LI’

0028 i * INSTRUCTION.

0029 *

7-24 Digital Systems Group

o]
@ 2250077-9701

0030

0031

0032

0033

0034

0035

0036

0037

0038

0039 0000

0040

*0001 0002
0004

*0002 0006

0041

*0001 0008
000A

0042

*0001 000C
000E

*0002 0010
0012

0043

*0001 0014
0016

*0002 0018
001A

0044

0045

0046

0047

0048

0049

0050

*0001 0oi1cC
001E

0000

0200
0019
C540

020C
0004

0200
0010
CB40
000C

0200
006F
C800
0000’

0200
006F

DFOP LIS,LI
LI $MACRO D,V
$1F D.A&COMPLX
LIS RO,:V:
MOV RO,:D:
$ELSE
LI$:D::V:
$ENDIF
$END
DATAO
LI *RS5,25
LI$ RO0,25

LOC

MOV RO,*R5
LI R12,4
LIS RI124

LI 12(R13),16
LIS RO,16

MOV RO0,12(R13)

LI @LOC,111
LI$ RO,111 .

MOV R0,@LOC

*

* NOTE THAT THE FOLLOWING CASE DOES NOT
* GENERATE THE DESIRED CODE. TO CORRECTLY
* DETECT MEMORY LOCATION REFERENCES, LABELS
* SHOULD HAVE ‘@’ SIGNS PRECEEDING THEM.
*
LI LOC,111
LI$ LOC,111

*xxxxkkk% REGISTER REQUIRED

0051

END

0001 ERRORS, LAST ERROR AT 0050

7.7.7 MACRO TABLE

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

IDT ‘TABLE’

*

* THIS MACRO DEMONSTRATES RECURSIVE PROCESSING
*

* WHEN MORE OPERANDS ARE PASSED TO A MACRO

*+ THAN WERE INCLUDED IN THE DEFINITION, ALL THE
* SURPLUS OPERANDS ARE ASSIGNED (WITH THE

* COMMAS BETWEEN THEM) TO THE LAST PARAMETER.
* THIS IS A USEFUL FEATURE WHEN RECURSIVE PRO-

* CESSING IS NEEDED.

*

7-25 Digital Systems Group

[o]
%@ 2250077-9701

0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
*0001
0031
*0001
*0001
*0001
*0001
0032
*0001
*0001
*0001
*0001
*0001
0033
*0001
*0001
0034
NO ERRORS

0000

0002

0004

0006

7.7.8 MACRO LISTS

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

0000

0100

000F

000F

1111

* THE EXPECTED OPERAND FOR THE ‘OR’ MACRO IS A
* LIST OF BIT PATTERNS 16 BITS IN WIDTH. THIS
* MACRO USES RECURSION TO ‘OR’ THE BITS
* TOGETHER. ‘TEMP’ IS A SYMBOL USED BY THE
* MACRO.
*
TEMP EQU 0
OR $MACRO A,B
SVART
$ASG ‘TEMP’ TO T.S
$ASG A.V++T.SVTO T.SV
$IF B.A&SPCALL
’ OR :B.S:
$ELSE
DATA :T.SV:
$ASGOTO T.SV
$ENDIF
$END
OR >100
DATA 256
OR1,24,8
OR2,4,8
OR 4,8
OR 8
DATA 15
OR1,1,2,4,8
OR1,2,4,8
OR2,4,8
OR4,8
OR 8
DATA 15
OR >11, >1100
OR >1100
DATA 4369
END

IDT ‘LISTS’
*
* THE PREORD AND ENDORD MACROS DEMONSTRATE
* RECURSION AND LIST PROCESSING.

*
*

* INPUTS: A PARENTHESIZED EXPRESSION OF
* THE FOLLOWING FORM:

*

* A, 0PC

*

7-26 Digital Systems Group

(o]
e"@p 2250077-9701

0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
00438
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064

A= PARENTHESIZED EXPRESSION
OP= OPERATION
(MULTIPLICATION IS REPRESENTED
AS A NULL PARAMETER, SIMILAR
TO ITS REPRESENTATION IN
ALGEBRAIC EXPRESSIONS)
B= PARENTHESIZED EXPRESSION

OUTPUTS: UNPARENTHESIZED EXPRESSION IN
PREORDER (PREORD), OR ENDORDER
(ENDORD).

sekok kR ok kR gk R Rk kokdokkdkokkkkkokKok

* PREORDER MACRO DEFINITION
*
PREORD $MACRO A,OP.B
$VAR C VARIABLE TO HOLD‘*’FOR COMMENTS.

* ¥ K K K X K X ¥ ¥ *

*

* PRINT THE OPERATION
*
$ASG “*’ TOC.S
$IF OP.A&$PCALL=0
$ASG ¥’ TO OP.S
$ENDIF
:C: :OP:
*
#* PRINT THE FIRST OPERAND
%
$IF A.A&SPOPL
PREORD :A:
$ELSE
:C: A
SENDIF

*

* PRINT THE SECOND OPERAND
%
$IF B.A&SPOPL
PREORD :B:
$ELSE

$ENDIF
$END

skkkdekkokkkkkkokkkkkdkkkokkkkkkk

* ENDORDER MACRO DEFINITION

*

ENDORD $MACRO A,OP,B
$VAR C VARIABLE TOHOLD ‘*’ FOR COMMENTS.
$ASG **’ TO C.S

*

* PRINT THE FIRST OPERAND
E 3
$IF A.A&SPOPL
ENDORD :A:
SELSE

7-27 Digital Systems Group

]
@ 2250077-9701

0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
*0001
*0002
*0003
0087
*0001
*0002
*0003
0088
*0001
*0002
*0001
*0002
*0003
*0003
*0001
*0002
*0003
*0001
*0002
*0003
0089
*0001
*0001
*0002
*0003
*0002
*0001
*0002
*0001
*0002
*0003

:C: A
SENDIF

%k

* PRINT THE SECOND OPERAND
*
$IF B.A&SPOPL
ENDORD :B:
$ELSE
:C: :B:
$ENDIF

*

* PRINT THE OPERATION
*
$IF OP.A&SPCALL=0 THEN
$ASG “*> TO OP.S
$ENDIF
:C: :0P:
$END

*

* SAMPLE MACRO CALLS

*

PREORD A, /, B
*/
*A
*B

ENDORD A, /, B
* A
*B
*

PREORD (A; +, B) 9 (6’ /, (23) B))
* *k

PREORD A, +, B

* 4
* A
+B

*/
*6

PREORD 6, /, (2, —, B)

PREORD 2, —, B

*

2
*B
ENDORD (A’ +a B), ’ (6: /7 (25 T B))

ENDORD A, +, B

*A

*B

* 4
ENDORD 6, /, (2, —, B)

*6
ENDORD 2, —, B

*2

*B

*

7-28 Digital Systems Group

o]
({rbp 2250077-9701

*0003 */
*0003 *

0090 PREORD (X, +, Y),/, X, -, YY), - (1,/,)
*0001 *
*0002 PREORD (X, +, Y), /, (X, -, Y)
*0001 *
*0002 PREORD X, +, Y
*0001 * 4+
*0002 * X
*0003 *Y
*0003 PREORD X, —, Y
#0001 *
*0002 * X
#0003 *Y
*0003 PREORD 1, /, Z
*0001 *
*0002 *]
*0003 *Z7

0091 ENDORD ((X,+, V), /, (X, -, Y)), -, (1,/,2)
*0001 ENDORD (X, +, Y), /, (X, —, Y)
*0001 ENDORD X, +, Y
*0001 * X
*0002 *Y
*0003 *
*0002 ENDORD X, —, Y
#0001 * X
*0002 *Y
*0003 *_
*0003 *
*0002 ENDORD 1, /, Z
*0001 *]
*0002 *Z
*0003 *
*0003 * _

THE FOLLOWING SYMBOLS ARE UNDEFINED

B

Y
Z
NO ERRORS

7-29/7-30 Digitai Systems Group

q‘ré@ 2250077-9701

SECTION VIII
RELOCATABILITY AND PROGRAM LINKING

8.1 INTRODUCTION

The assembler for the Model 990/ 12 Computer supplies both absolute and relocatable object code
that may be linked as required to form executable programs from separately assembled modules.
This section contains guidelines to assist the user in taking full advantage of these capabilities.

8.2 RELOCATION CAPABILITY

Relocatable code includes information that allows a boot loader to place the code in any available
area of memory. This allows the most efficient use of available memory and is required for disk-
resident programs executed under DX10. Absolute code must be loaded into a specified area of
memory. Absolute code is appropriate for code that must be placed in dedicated areas of memory
and may be used for memory-resident programs executing under operating systems.

Object code generated by an assembly is a representation of machine language instructions,
addresses, and data comprising the assembled program. The code may include absolute segments,
program-relocatable segments, data-relocatable segments, and numerous common-relocatable
segments. In assembly language source programs, symbolic references to locations within a
relocatable segment are called relocatable addresses. These addresses are represented in the object
code as displacements from the beginning of a specified segment. A program-relocatable address, for
example, is a displacement into the program segment. At load time, all program-relocatable
addresses are adjusted by a value equal to the load address. Data-relocatable addresses are
represented by a displacement into the data segment. There may be several types of common-
relocatable addresses in the same program, since distinct common segments may be relocated
independently of each other. A subsequent section of this manual describes the representation of
these relocatable addresses in the object code.

8.2.1 RELOCATABILITY OF SOURCE STATEMENT ELEMENTS. Elements of source
statements are expressions, constants, symbols, and terms. Terms are absolute in all cases; the other
elements may be either absolute or relocatable.

The relocatability of an expression is a function of the relocatability of the symbols and constants
that make up the expression. An expression is relocatable when the number of relocatable symbols
or constants added to the expression is one greater than the number of relocatable symbols or
constants subtracted from the expression. (All other valid expressions are absolute.) When the first
symbol or constant is unsigned, it is considered to be added to the expression. When a unary minus
follows a subtraction operator, the effective operation is addition. For example, when all symbols in
the following expressions are relocatable, the expressions are relocatable:

LABEL + 1
LABEL+TABLE+-INC
-LABEL+TABLE+INC

Decimal, hexadecimal, and character constants are absolute. Assembly-time constants defined by
absolute expressions are absolute, and assembly-time constants defined by relocatable expressions
are relocatable.

8-1 Digital Systems Group

o
@ 2250077-9701

Any symbol that appears in the label field of a source statement other than an EQU directive is
absolute when the statement is in an absolute block of the program. Any symbol that appears in the
label field of a source statement other than an EQU directive is relocatable when the statement is in a
relocatable block of the program.

The relocatability of expressions having logical and relational operators follows similar rules to
those for expressions containing only arithmetic operators. The result of a logical operation between
a relocatable constant or symbol and an absolute constant or symbol is relocatable. A logical
operation between two relocatable elements of an expression is invalid. Relational operators result in
an absolute value, zero or one. The relation is the assembly-time relation and ignores the effect of
relocation on relocatable values.

To summarize, a location is either absolute or relocatable. The location may contain either absolute
or relocatable values. The example program in Appendix J includes absolute locations with
relocatable contents and relocatable locations with absolute contents.

8.3 PROGRAM LINKING

Since the assembler includes directives that generate the information required to link program
modules, it is not necessary to assemble an entire program in the same assembly. A long program
may be divided into separately assembled modules to avoid a long assembly or to reduce the symbol
table size. Also, modules common to several programs may be combined as required. Program
modules may be linked by the link editor to form a linked object module that may be stored on a
library and/or loaded as required. The following paragraphs define the linking information that
must be included in a program module.

8.3.1 EXTERNAL REFERENCE DIRECTIVES. Each symbol from another program module
must be placed in the operand field of an REF or SREF directive in the program module that
requires the symbol.

8.3.2 EXTERNAL DEFINITION DIRECTIVE. Each symbol defined in a program module and

required by one or more other program modules must be placed in the operand field of a DEF
directive.

833 ‘PROGRAM IDENTIFIER DIRECTIVE., Program modules that are to be linked by the link
editor should include an IDT directive. The module names in the character strings of the IDT
directives should be unique.

8.3.4 LINKING PROGRAM MODULES. The link editor builds a list of symbols from REF
directives as it links the program modules. The link editor matches symbols from DEF directives to
the symbols in the reference list. The link editor follows linking commands to determine the modules
to be linked. Refer to Section V for linking commands generatable from the assembler.

82 Digital Systems Group

(o]
i@ 2250077-9701

SECTION IX
OPERATION OF THE MACRO ASSEMBLER

9.1 GENERAL
The 990 macro assembler executes under the DX 10 operating system. The macro assembler has the
following features:

Assembles the instructions of the instruction set for the Model 990/12 Computer.
Supports 32 assembler directives, 12 in addition to those supported by other assemblers.

Supports three pseudo-instructions, one in addition to those supported by other
assemblers.

Supports use of parentheses in expressions.
Supports logical operators in expressions.
Supports relational operators in expressions.
Supports a logical division operator.
Supports additional output options.

Supports a powerful macro language.

The macro assembler is defined in detail in Section VII of this document.

9.2 OPERATING THE MACRO ASSEMBLER
The macro assembler is executed by the DX10 System Command Interpreter (SCI) and may run in
either of two modes.

Background

Batch background.

To execute the macro assembler in background mode, enter the SCI command XMA.

The XMA command prompts for the following parameters:

SOURCE ACCESS NAME: <access name>
OBJECT ACCESS NAME: <access name>
LIST ACCESS NAME: <access name>
ERROR ACCESS NAME: <access name>
OPTIONS: <keyword list>

MACRO LIBRARY PATHNAME: <directory access name>

$-1 Digitai Systems Group

o
{@ 2250077-9701

SOURCE ACCESS NAME specifies the input file or device containing the assembly language code
to be assembled. No default is allowed for this parameter.

OBJECT ACCESS NAME specifies the output file or device to which the object code is to be
written. If this parameter is null, no object output is produced. This is useful for preliminary
assemblies to check for errors; since the assembler produces no output, it operates faster.

LIST ACCESS NAME specifies the file or device to which the assembly listing is to be written. If
DUMY is entered, no assembly listing is produced.

ERROR ACCESS NAME specifies the output file to which assembly errors are written. This file
may be viewed by entering the SF (Show File) SCI command. If the ERROR ACCESS NAME is
null or if it is the same as the listing file, errors will be displayed on the terminal by the SBS (Show
Background Status) SCI command. If the device DUMY is specified, no error listing is produced.

The error file contains a complete list of any source records which caused assembly errors along with
the errors. If a condition is sensed which prevents the assembler from continuing, a message is
written to the error file as to what has occurred. Then the user must enter the SBS (Show
Background Status) SCI command to view the error messages output by the assembler. Table 9-1
contains a list of these abnormal completion messages and possible causes.

Table 9-1. Abnormal Completion Messages
Message Cause and Recovery

SOURCE FILE I/O ERROR, CODE = XXXX The codes are defined in the DXI0
OBJECT FILE 1/0 ERROR, CODE = XXXX Operating System Release System 3
LIST FILE 1I/O ERROR, CODE = XXXX Reference Manual, Volume II, part
TEMP FILE 1/O ERROR, CODE = XXXX number 945250-9702.

Assembler Bugs

ATTEMPT TO POP EMPTY STACK — SDSMAC BUG
DIRECTIVE EXPECTED — SDSMAC BUG
UNEXPECTED END OF PARSE — SDSMAC BUG
ERROR MAPPING PARSE — SDSMAC BUG
INVALID OPERATION ENCOUNTERED -- SDSMAC BUG
NO OP CODE — SDSMAC BUG

INVALID LISTING ERROR ENCOUNTERED
SYMBOL TABLE ERROR

MACRO EXPANSION ERROR

BUG — INVALID SDSLIB COMMAND ID
UNKNOWN ERROR PASSED, CODE = XXXX

Call a Texas Instru-
ments representative.

OPTIONS specifies any (or all) of the following options:
XREF — prints a cross-reference listing at the end of the listing file.

SYMT — includes a symbol table with the output object code. This option must be
specified to allow complete symbolic debugging.

9-2 Digital Systems Group

o
@ 2250077-9701

TUNLST — Text statement unlist.
BUNLST — Byte statement unlist.
DUNLST — Data statement unlist.
MUNLST — Macro expansion unlist.

TEXT, BYTE, and DATA statements and macro usage often expand to
produce multiple lines of code. If these options are selected, the statements
appear in the listing but the expansion does not. For example, the source
statement TEXT ‘ABCDEF’ produces the listing:

41 TEXT ‘ABCDEF
42
43
44
45
46

With the TUNLST option specified, only the line
41 TEXT ‘ABCDEF’

is produced in the listing.

FUNL — Overrides unlist directives.

NOLIST — Suppresses all listing output, except to the error file.

10 — Specifies 990/ 10 instruction set.

12 — Specifies 990/ 12 instruction set. Twelve (12) must be specified to use the

990/ 12 assembly language. If the 990/ 12 instruction set is not specified, the
system defaults to the 990/10 instruction set.

Any of the option keywords may be abbreviated. For example, any of the following may be used for
the TUNLST option:

T

TU

TUN
TUNL
TUNLS
TUNLST

To select more than one option, enter a list of keywords separated by commas. The keywords may

appear in any order. The options specified for this parameter are in addition to any options specified
by “OPTION” directives in the source.

9-3 Digital Systems Group

2250077-9701

MACRO LIBRARY PATHNAME specifies a directory containing macro definitions for this
assembly. This pathname specification is equivalent to specifying the same pathname in a LIBIN
directive, except that this pathname becomes the system macro library pathname and is retained
through stacked assemblies. This pathname is printed on the cover sheet of the first module only. If
this parameter is not specified, no macro library is used.

9.2.1 COMPLETION MESSAGES. A completion message is displayed on the terminal at the first
available time after the macro assembler has terminated. Table 9-2 contains these messages.

Table 9-2. Completion Messages

Message

MEMORY REQUIRED EXCEEDS
SYSTEM CAPACITY

MACRO ASSEMBLY COMPLETE,
XXXX ERRORS, YYYY WARNINGS

ERROR FILE ERROR

TCA ERROR

ABNORMAL COMPLETION

UNABLE TO LOAD OVERLAY

END ACTION TAKEN BY MACRO
ASSEMBLER

Possible Causes and Recovery

a) Program is too large — break into
several assembly modules, take out
some of the macros or use the
LIBIN capability, decrease the num-
ber of symbol definitions.

b) A macro containing an infinite loop
or infinite recursion is being expanded —
check all macros.

¢) The assembler itself is in a loop
infinitely allocating memory — call a
TI representative.

Normal termination message, which gives the
number of errors and warnings encountered, if
any.

The error access name specified when using
the XMA command cannot be accessed.
Verify that the file has been created and is not
currently open for another program. If a null
input was entered for this parameter, then
there is an SCI problem.

The assembly was unable to access the param-
eters specified in the XMA command. There is
an SCI problem.

A condition was sensed which caused the
assembler to abort. Display the error file to get
more information and use table 9-1 to under-
stand its contents.

Macro assembler has been denied access to its
overlay file. Check that global luno S10 is
assigned to a program file.

Call a TI representative.

9-4

Digital Systems Group

[e]
@ 2250077-9701

9.2.2 OPERATING THE ASSEMBLER IN BATCH MODE. Operating the macro assembler in
batch mode requires two steps:

1. Prepare the batch command stream.
2. Execute batch using the XB command.
The batch command stream for the macro assembly is pictured in figure 9-1.

Any sequential media (cards, cassette, magnetic tape, or sequential file) may be used for the batch
stream.

.DATA .MYFILE
IDT XXXX
XXXX

XXXX ASSEMBLER SOURCE CODE
XXXX

END

.EOD

XMA S=.MYFILE, L=LP01

Q

Figure 9-1. Macro Assembly Stream
The parameters for records in a macro assembly batch stream are the following:
e _DATA record. This record has the form:

.DATA <file name>

The file name must be the name of the sequential file to which the input source is to be
copied. :

e _EOD record. This record has the form:
.EOD
No parameters are required. This case signifies the end of data to be copied.
NOTE

If the source file already exists or is to come from a source other than
the batch stream, then the sequence:

.DATA
<source>
.EOD

should be omitted from the batch stream.

9-5 Digital Systems Group

[o]
(':@; 2250077-9701

e XMA record. This record, in addition to specifying macro assembly, also supplies the
parameters required by the macro assembler. Parameters are supplied in the following
format:

<keyword or keyword abbreviation>=value
For example, to specify a source file .MYFILE, the following characters may be used:
SOURCE=.MYFILE
Keywords may be abbreviated. Any unambiguous initial segment is acceptable. For example:
S=MYDISC.MYFILE
means the same thing as:
SOURCE=MYDISC.MYFILE

But 0=MYDISC.MYFILEO is not acceptable since zero could mean OBJECT ACCESS NAME or .
OPTIONS.

When a keyword takes a list as input, the list should be enclosed in parentheses:
OPTIONS=(X,T,U)
Each keyword string must be separated from other keyword strings by a comma. For example, the
following record assembles a source file named .SOURCE, producing an object file .OBJECT, a
listing file .LIST, and reporting errors to .ERR. The options selected are cross reference (XREF) and
symbol table (SYMT); no macro library is to be used:
XMA S=.SOURCE,OB=.0BJECT,L=.LIST,E=.ERR,OP=(X,S)
The only required parameters are SOURCE and LISTING. Other parameters may take defaults as
indicated in the paragraph on background processing except that the batch listing file replaces the
terminal local file as a default output file. '
When a card reader is used, use the macro assembly stream as shown in figure 9-2.
To execute in batch mode enter the SCI command XB. XB requires two parameters:
e INPUT ACCESS NAME: <sequential device or sequential file name>
e LISTING ACCESS NAME: <file or device name>

The INPUT ACCESS NAME specifies the batch stream source. The LISTING ACCESS NAME
specifies a listing file or device.

Batch mode operation of SCI is defined in detail in the DX10 Operating System Release 3 Reference
Manual, Volume 11, part number 946250-9702.

9-6 Digital Systems Group

Q
Q@ 2250077-9701

r-x-

y A4

y 4
rgouncs CARD

XMA S=CROI

Figure 9-2. Macro Assembly Stream for Cards

When the macro assembler is executed in batch mode, the condition codes returned by the assembler
may be checked. The synonym $3CC contains this condition code. The values returned are as

follows:
0- no errors
4xxXx- assembly errors. The least significant three digits contain the error count.
C000- the assembly aborted.

For more information about condition codes, see DXI0 Operating System Release 3 Reference
Manual, Volume V, part number 946250-9705.

9.7/9-8 Digital Systems Group

[o]
{@ 2250077-9701

SECTION X

ASSEMBLER OUTPUT

10.1 INTRODUCTION

The Model 990/12 Computer prints a source listing of the assembly code and the error or warning
messages when these conditions are encountered. This section discusses the source listing and lists
the error/ warning codes output by the SDSMAC assembler. The object code format is also covered

in this section.

10.2 SOURCE LISTING
The source listings show the source statements and the resulting object code. A typical listing is
shown with the example program in Appendix J.

SDSMAC produces a cover sheet as the first output in the listing. This cover page contains a table
which provides a record of the files and devices used during the assembly process. An example of this
output is as follows:

SDSMAC 3.2.078.274 11:26:51 MONDAY, OCT 17, 1977.

ACCESS NAMES TABLE : PAGE 0001
SOURCE ACCESS NAME= .SUSAN.SRC.TESTI!
OBJECT ACCESS NAME=
LISTING ACCESS NAME= .SUSAN.LIST.TESTI
ERROR ACCESS NAME=
OPTIONS= 12,XR,SY, TU,MU
MACRO LIBRARY PATHNAME= .SDSMAC.MACRODEF
LINE KEY NAME
0001 LI .SDSMAC.MACRODEF
=>.SDSMAC.MACRODEF
0001 LO MACROS
=>.SDSMAC.MACRODEF
0002 A DSC.SYSTEM.TABLES.DOR
=>DS01.SYSTEM.TABLES.DOR
0003 LIl SDSMAC.MACRODEF

=>.SDSMAC.MACRODEF
The output has two sections:
e A listing of the parameters that were passed to the assembler via SCI.

e A list of access names encountered during the first pass of the assembly.

i0-i Digitai Systems Group

[o]
@ 2250077-9701

In the first section, any parameters which had no value are left blank. The fields in the second section
are labeled as follows:

LINE - This field contains the record number in which the access name was
encountered.
KEY - This field contains one of the following:

LI - indicating a LIBIN usage,
LO- indicating a LIBOUT usage,
one character - indicating a copy file to be given this character as a key.

NAME - This field contains two access names. The first name is an image of the name on
the source record. The second name, appearing after the =>, is the result of
synonym substitution on the first name.

Each page of the source listing has a title line at the top of the page. Any title supplied by a TITL
directive is printed on this line, and a page number is printed to the right of the title area. The printer
skips a line below the title line and prints a line for each source statement listed. The line for each
source statement contains a source statement number, a location counter value, object code
assembled, and the source statement as entered. When a source statement results in more than one
word of object code, the assembler prints the location counter value and object code on a separate
line following the source statement for each additional word of object code. The source listing lines
for a machine instruction source statement are shown in the following example:

0018 0156 C820 MOV @INTH+3.@3
0158 012B’
0I5SA 0003

The source statement number, 0018 in the example, is a four-digit decimal number. Source records
are numbered in the order in which they are entered whether they are listed or not. The TITL, LIST,
UNL, and PAGE directives are not listed, and source records between a UNL directive and a LIST
directive are not listed. The difference between source record numbers printed indicates how many
source records are not listed.

The next field on a line of the listing contains the location counter value, a hexadecimal value. In the
example, 0156 is the location counter value. Not all directives affect the location counter, and those
that do not affect the location counter leave this field blank. Specifically, of the directives that the
assembler lists, the IDT, REF, DEF, DXOP, EQU, SREF, LOAD, and END directives leave the
location counter field blank.

The third field normally contains a single blank. However, SDSMAC places a dash in this field when
warning errors are detected.

The fourth field contains the hexadecimal representation of the object code placed in the location by
the assembler, C820 in the example. The apostrophe following the field of the second line in the
example indicates that the contents, 012B, is program-relocatable. A quote (“) in this location would
indicate that the location is data-relocatable, while a plus (+) would indicate that the label INIT is
relocatable with respect to a common segment. All machine instructions and the BYTE, DATA, and
TEXT directives use this field for object code. The EQU directive places the value corresponding to
the label in the object code field.

10-2 Digital Systems Group

[o]
(@) 2250077-9701

The fifth field contains the first 60 characters of the source statement as it was supplied to the
assembler. Spacing in this field is determined by the spacing in the source statement. The four fields
of source statements will be aligned in the listing only when they are aligned in the same character
positions in the source statements or when tab characters are used.

The machine instruction used in the example specifies the symbolic memory addressing mode for
both operands. This causes the instruction to occupy three words of memory and three lines of the
listing. The object code corresponds to the operands in the order in which they appear in the source
statement.

10.3 SDSMAC ERROR MESSAGES
SDSMAC prints the following error message on successive lines of the listing when an error is
detected:

*¥**error description
T AQT I'D rays) reY Q
LAST ERROR ON S

The error description is the brief description shown in table 10-1. The second line identifies the
statement in which the previous error was detected.

At the end of the listing is an error summary, as follows:
NNNN ERRORS, LAST ERROR ON STATEMENT XXXX, YYYY WARNINGS

NNNN is the count of the errors in the assembly. XXXX identifies the last error detected in the
assembly; YYYY is the count of the warnings in the assembly. The second line of the error messages
link the error messages so that the user may begin at the error summary message and readily locate
all error messages. In an error-free assembly, the final message is:

NO ERRORS, NO WARNINGS or NO ERRORS, XXXX WARNINGS

Several errors detected by SDSMAC (such as arithmetic overflow while evaluating expressions) are
considered to be only warning errors. The programmer should examine the code generated when
warning messages occur since the results may or may not be the code expected. Warning error
messages are written only to the error file and are not included in the listing; however, a dash is
placed in column 11 of the listing where the warning error occurred. Warning messages do not
include an indication of a previous warning or error.

10-3 Digital Systems Group

2250077-9701

Table 10-1. SDSMAC Listing Errors

Error Message
ABSOLUTE VALUE REQUIRED
BLANK MISSING
‘CEND’ ASSUMED
CLOSE (*)) MISSING
COMMA MISSING

CONDITIONAL ASSEMBLY NESTING
ERROR

‘DEND’ ASSUMED

DIRECTORY OPEN ERROR

DIRECTORY OPEN ERROR

DIRECTORY REQUIRED

DIRECTORY WRITE ERROR

DISPLACEMENT TOO BIG

‘DSEG* ASSUMED

Possible Causes

A warning.

An if-then-else construct is in error. Condi-
tions which could cause this are:

A) Missing ASMEND:s.
B) Surplus ASMELS:s.
C) Surplus ASMEND:s.

A warning.

Check that any synonyms are valid and that
no other processor is currently writing to the
macro library.

An 1/ 0O error was encountered while trying to
read a macro library directory. Verify that no
other processor is currently writing to that
macro library.

The access name specified is not an existing
directory. Verify that all synonyms are correct
and that the macro library does indeed exist; it
cannot be auto-created.

Verify that no other processor is currently
writing to that macro library.

An instruction requiring an operand with a
fixed upper limit was encountered which over-
flowed this limit. An example is the JMP
instruction, whose single operand must eval-
uate to within >7F words distance from the
current program counter.

This is a warning that the following two state-
ments have the same result:

CSEG'$DATA’
DSEG

10-4

Digital Systems Group

2250077-9701

Table 10-1. SDSMAC Listing Errors (Continued)

Error Message

DUPLICATE DEFINITION

ERROR EXPANDING CALL

ERROR ON COPY OPEN

EXPRESSION SYNTAX ERROR

INDIRECT(*)MISSING

INVALID $ASG VARIABLE

INVALID CHARACTER IN SYMBOL —
BLANK USED

INVALID CONDITION

INVALID CRU OR SHIFT VALUE

INVALID DIRECTIVE IN ABSOLUTE
CODE

Possible Cause

A) The symbol appears more than once in
the label field of the source.

B) The symbol appears as an operand
of a REF statement as well as in
the label field of the source.

C) An attempt was made to define a
macro variable or macro language

label which was previously defined
in the macro.

|53 1oy $41-102 4

The symbol in the operand field of the SCALL
statement is not a defined macro.

The access name specified as the operand of a
copy directive cannot be opened. Check that
the synonyms are correct and that the file is
not currently being written to by another
processor.

A) Unbalanced parentheses.

B) Invalid operations on relocatable
symbols.

A) An attempt was made to change
the length component of a variable.

B) An attempt was made to change
the attribute component of a
macro variable which was declared
as a macro language variable.

A warning.
The legal characters to be used in symbols
under SDSMAC are A-Z, 0-9, <, and ‘$".

The List Search instructions require condi-

tions to be specified as one of the operands.
The following are legal conditions: EQ, NE,
HE, L, GE, LT, LE, H, LTE, GT.

A warning.

The directives PEND, DEND, and CEND
have no meaning in absolute code.

16-5 ' Digital Systems Group

2250077-9701

Table 10-1. SDSMAC Listing Errors (Continued)
Error Message Possible Cause

INVALID EXPRESSION This may indicate invalid use of a relocatable
symbol in arithmetic.

INVALID MACRO VARIABLE The target variable specified on a $ASG or
$GOTO verb is not a valid target variable.

INVALID MODEL STATEMENT A macro symbol in a model statement must be
followed with either a colon operator (:) or an
end-of-record.

INVALID OPCODE The second field of the source record con-
tained an entry that is not a defined instruc-
tion, directive, pseudo-op, DXOP, DFOP, or
macro name.

INVALID OPTION A warning.
The only legal options are:
XREF
SYMT
NOLIST
MUNLST
TUNLST
BUNLST
DUNLST
FUNL
10 or 12
(or suitable abbreviation).

INVALID RELOCATION TYPE Only PSEG relocatable or absolute symbols
are allowed as the operand of an END state-
ment.

INVALID USE OF CONDITIONAL A conditional assembly directive may not

ASSEMBLY appear as a model statement.

INVALID $ASG EXPRESSION The expression is not present.

INVALID $ASG VARIABLE The target variable is not present or is not a
symbol.

INVALID $IF EXPRESSION The expression either is not present or does

not evaluate to an integer value.

LABEL REQUIRED $NAME statements must begin with a label of
maximum length two. SMACRO statements
must begin with a label of maximum length
siX.

10-6 Digital Systems Group

2250077-9701

Table 10-1. SDSMAC Listing Errors (Continued)

Error Message

MACRO DEFINITION DISCARDED
DUE TO ERRORS

MACRO EXPANSION ERROR

MACRO LIBRARY READ ERROR

MACRO LIBRARY WRITE ERROR

MACRO SYMBOL TRUNCATED.

MAX MACRO NESTING STACK DEPTH
OVERFLOW

MEMORY EXCEEDED

MODEL STATEMENT TRUNCATED.

OPEN ‘(" MISSING

Possible Cause

An error was detected during the assembly of
the macro definition. Use of the macro name
in succeeding lines will cause error messages.

This indicates an internal assembler error.
Contact a TI representative.

A LIBIN was in effect and the statement was a
macro in a specified macro library, but an 1O
error was encountered when reading it.

The current LIBOUT library could not be
used at completion of a macro definition.
Check that the macro is not currently being
written by another processor.

A warning.

The maximum length for a macro symbol is
two characters. The following are legal macro
symbols: A, A.S, B2.SV.

The following are illegal macro symbols:
CNT, CNT.A, PM2.SL.

A) A macro calls itself recursively
more than the allowed maximum
number of times.

B) More levels of macro calling have
been used than the allowed maximum.

The program counter overflowed the value
>FFFF.

A warning.
When expanded, the model statement ex-
ceeded 80 characters in length.

A parenthesized operand is required with the
Extract Field, Extract Value, Insert Field, and
Invert Order of Field Insert instruction.

10-7

Digital Systems Group

2250077-9701

Table 10-1. SDSMAC Listing Errors (Continued)
Error Message Possible Cause

OPERAND CONFLICT PASSI/PASS2 The assembler defaults currently undefined
symbols to register uses in the first pass if that
symbol is used in an ambiguous way. If during
the second pass it is discovered that the symbol
was not a register use, this error will result. An
example is:

BL SUB

SUB EQU $

If this had been coded as follows, no ambi-
guity would have existed due to the explicit

“@” sign:
BL @SUB
SUB EQU $
OPERAND MISSING On instructions having a fixed number of

operands, too few appeared before encoun-
tering a blank. On instructions having a var-
iable number of operands, such as DATA, a
comma may have been encountered with no
operand following it. An expression extending
beyond the 60th column could cause this

problem.
‘PEND’ ASSUMED A warning.
REF'D SYMBOL IN EXPRESSION Due to the object code format of the 990 com-

puter, REF’D symbols may not appear within
an expression.

REGISTER REQUIRED
STRING REQUIRED
STRING TRUNCATED A warning.
Check the syntax for the directive in question

to determine the maximum length for the
string.

10-8 Digital Systems Group

2250077-9701

Table 10-1. SDSMAC Listing Errors (Continued)

Error Message

SYMBOL TRUNCATED

SYMBOL REQUIRED
SYMBOL USED IN BOTH REF AND DEF
SYNTAX ERROR

‘TO” MISSING

UNDEFINED MACRO VARIABLE

UNDEFINED SYMBOL

VALID OPCODE REQUIRED

VALUE TRUNCATED

WORKSPACE ADDRESS NOT
PREVIOUSLY DEFINED

SIF — $ELSE — $ENDIF
CONSTRUCT IN ERROR

$MACRO INVALID WITHIN
MACRO DEFINITION

Possible Causes

A warning.
The maximum length for a symbol is six char-
acters.

This is a conflicting, duplicate definition.

‘TO’ is a required part of the syntax for the
$ASG macro verb.

The target variable specified in a $ASG or a
$GOTO verb is undefined.

A) A symbol is used which did not
appear in the label field of a
source record.

B) The use requires definition in the
first pass and is undefined when the
assembler first encounters it.

The defining symbol (i.e., the second operand)
is not a valid instruction or directive.

A warning.

Overflow is checked after every operation in
an arithmetic expression. This may result in
several truncations in one expression.

The operand field must have been previously
defined. Note that the WPNT directive (or
implied WPNT) is ignored. Any previous
WPNT is also ignored from this point on.

Possible errors are:

A) Surplus SELSEs.
B) Surplus $SENDIFs.
C) Missing SENDIFs.

A) The $SEND verb belonging to the
previous macro was missing.

B) A $MACRO verb was unintentionally
included.

i6-5

Digitai Systems Group

2250077-9701

10.4 CROSS-REFERENCE LISTING

SDSMAC prints an optional cross-reference listing following the source listing. The format of the
listing is shown in figure 10-1. In the left column, the assembler prints each symbol defined or
referenced in the assembly. In the second column, the attributes of the symbol are indicated as a
single character, defined in table 10-2. The third column contains a four-digit hexadecimal number,
which is the value assigned to the symbol. The number of the statement that defines the symbol
appears in the fourth column. The last column contains a list of the numbers of the statements that
‘reference the symbol. When a symbol is undefined or unreferenced, SDSMAC leaves the fourth or
-fifth fields blank, respectively.

CROSS-REFERENCE

LABEL VALUE DEFN REFERENCES

ADDT D 0IA%’ 325 314

ADSR R 01A0° 316 342 343 348 349
GT D 0006 997

* Figure 10-1. Cross-Reference Listing Format

Table 10-2. Symbol Attributes

Character Meaning
R External reference (REF)
D External definition (DEF)
X Extended operation (XOP)
U Undefined
0] Defined operation (DFOP)
M Macro name
S Secondary reference (SREF)
L Force load (LOAD)

10.5 OBJECT CODE

The assemblers produce object code that may be linked to the object code modules or programs and
loaded into the Model 990 Computer, or which may be loaded into the computer directly. Object
code consists of records containing up to 71 ASCII characters each. The format, described in the
next paragraph, permits correction using a keyboard device. Reassembly to correct errors is
unnecessary. An example of output code is shown in figure 10-2.

00000SAMPROG 20040C0000AR0020RCOSDEONOZS0042C0020R0024BCS1BCOOSATFE19F
ARO023B0241B0O000RCEB41B00C2BO2R0AR0O0CACO0S2CO0AREO2ENC 0032BOZ00ROF OF 7F 1 DEF
AOODEBCOROCOUCABO4C2BC1A0CO0UCCBCIAOCO0DORCO72B0221 B3ROORVOECROSZITFISIF
ROOEEBO90OR06CIA00EAB]1102A00F2B0S43B1 1FER2C20C0032BC1 01 ROB44EE 0144 7F 1 REF
AD100BDDSGR0003B0282CO00R2RL IEDROS407FR32F

200CE0QOL0C 7FCABF

Figure 10-2. Object Code Example

10-10 Digital Systems Group

2250077-9701

10.5.1 OBJECT CODE FORMAT. The object record consists of a number of tag characters each
followed by one to three fields as defined in table 10-3. The first character of a record is the first tag
character, which tells the loader which field or fields follows the tag. The next tag character follows
the end of the field or fields associated with the preceding tag character. When the assembler has no
more data for the record, the assembler writes the tag character seven followed by the checksum field
and the tag character F which requires no fields. The assembler then fills the rest of the record with
blanks and a sequence number and begins a new record with the appropriate tag character.

Tag character zero is followed by two fields. Field one contains the number of bytes of program-
relocatable code, and field two contains the program identifier assigned to the program by an IDT
directive. When no IDT directive is entered, the field contains blanks. The linker uses the program
identifier to identify the program, and the number of bytes of program-relocatable code to determine
the load bias for the next module or program. SDSMAC places a single tag character zero at the
beginning of each program.

The tag character M, used only when data or common segments are defined in the program, is
followed by three fields. Field one contains the length, in bvtes, of data- or common-relocatable

VY LAXIVL 2a0EGS. 4 dvaw Vi OO GRS AL ILAIpSiay 221 UYL, U LOoliiiniulili=1

code, field two contains the data or common segment identifier, and field three contains a “common
number.” The identifier is a six-character field containing the name $DATAP for data segments and
$BLANK for blank common segments. If a named common segment appears in the program, an M
tag will appear in the object code with an identifier field corresponding to the operand in the defining
CSEG directive(s). Field three of the M tag consists of a four-character hexadecimal number
defining a unique common number to be used by other tags which reference or initialize data of that
particular segment. For data segments, this common number is always zero. For common segments
(including blank common), the common numbers are assigned in increasing order beginning at one
and ending with the number of different common segments. The maximum number of common
segments that a program may contain is [25.

Tag characters one and two are used with entry addresses. Tag character one is used when the entry
address is absolute. Tag character two is used when the entry address is relocatable. Field one
contains the entry address in hexadecimal. One of these tags may appear at the end of the object code
file. The associated field is used by the linker to determine the entry point at which execution starts
when the linking is complete.

Tag characters three, four, and X are used for external references. Tag character three is used when
the last appearance of the symbol in field two of the tag is in program-relocatable code. Tag
character four is used when the last appearance of the symbol is in absolute code. The X tag is used
when the last appearance of the symbol in field two is in data- or common-relocatable code. Field
three of the X tag gives the common number. Field three of the tag characters contains the location
of the last appearance of the symbol. The symbol in Field two is the external reference. Both fields
are used by the linker to provide the desired linking to the external reference.

For each external reference in a program, there is a tag character in the object code with a location or
an absolute zero, and the symbol that is referenced. When field one of the tag character contains
absolute zero, no location in the program requires the address that corresponds to the reference.
When field one of the tag character contains a location, the address corresponding to the reference is
placed by the linker in the location specified and the location’s previous value is used to point to the
next location or, if the previous value is absolute zero, reference is discontinued.

i0-11 Digital Systems Group

2250077-9701

Table 10-3. Object Record Format and Tags

TAG 1ST FIELD 2ND FIELD 3RD FIELD
MODULE DEFINITION

o PSEG LENGTH PROGRAM IDX8)

M DSEG LENGTH $DATA 0000

M BLANK COMMON LENGTH SBLANK 0001

M CSEG LENGTH COMMON NAME(6) COMMON #

M CBSEG LENGTH $CBSEG CBSEG #
ENTRY POINT DEFINITION

1 ABSOLUTE ADDRESS

2 P-R ADDRESS
LOAD ADDRESS

9 ABSQLUTE ADDRESS

A P-R ADDRESS

s D-R ADDRESS

P C-R ADDRESS COMMON OR CBSEG #
DATA

B ABSOLUTE VALUE

C P-R ADDRESS

T D-R ADDRESS

N C-R ADDRESS COMMON OR CBSEG #
EXTERNAL DEFINITIONS

6 ABSOLUTE VALUE SYMBOL(6)

5 P-R ADDRESS SYMBOL(6)

w D-R/C-R ADDRESS SYMBOL(6) COMMON #
EXTERNAL REFERENCES

3 P-R ADDRESS OF CHAIN SYMBOL{6)

4 ABSOLUTE ADDRESS OF CHAIN SYMBOL(6)

X D-R/C-R ADDRESS OF CHAIN SYMBOL(6) COMMON #

E SYMBOL INDEX NUMBER ABSOLUTE OFFSET
SYMBOL DEFINITIONS

G P-R ADDRESS SYMBOL(6)

H ABSOLUTE VALUE SYMBOL(6)

J D-R/C-R ADDRESS SYMBOL(6) COMMON #
FORCE EXTERNAL LINK

v 0000 SYMBOL(6)
SECONDARY EXTERNAL REFERENCE

v P-R ADDRESS OF CHAIN ENTRY SYMBOL{6)

Y ABSOLUTE ADDRESS OF CHAIN SYMBOL(6)

4 D-R/C-R ADDRESS OF CHAIN SYMBOL(6) COMMON #
CHECK SUM

7 VALUE

IGNORE CHECK SUM
8 ANY VALUE

LOAD BIAS
D ABSOLUTE ADDRESS

END OF RECORD
F

REPEAT COUNT

R VALUE REPEAT COUNT
PROGRAM ID (SYMT OPTION)
1 P-R ADDRESS PROGRAM 1D(8}
COBOL SEGMENT REFERENCE
Q RECORD OFFSET CBSEG #
NOTES:
1. ALL FIELD WIDTHS ARE FOUR CHARACTERS UNLESS OTHERWISE SPECIFIED BY NUMBERS IN PARENTHESES
2. IF THE FIRST TAG IS 01 (HEX), THE FILE IS IN COMPRESSED OBJECT FORMAT.
3. P-R PROGRAM SEGMENT RELATIVE (ADDRESS]V

D-R DATA SEGMENT RELATIVE (ADDRESS)
C-R COMMON SEGMENT RELATIVE (ADDRESS)

10-12 Digital Systems Group

(¢}
q@ 2250077-9701

Figure 10-3 illustrates the chain of the external reference EXTR. The object code contains the
following tag and fields:

4COOEEXTR

At location COOE, the address CO0A points to the preceding appearance of the reference. The chain
includes both absolute and relocatable addresses and consists of absolute addresses COOE, CO0A,
C006, and C002, relocatable addresses 029E, 029A, and 0298, absolute addresses BOOE, BOOA, B006,
and B002, and relocatable addresses 0290 and 028E. Each location points to the preceding
appearance, except for location 028E, which contains zero. The zero identifies location 028E as the
first appearance of EXTR and the end of the chain.

Tag characters five, six, and W are used for external definitions. Tag character five is used when the
location is program-relocatable. Tag character six is used when the location is absolute. Tag
character W is used when the location is data- or common-relocatable. The fields are used by the
linker to provide the desired linking to the external definition. Field two contains the symbol of the
external definition. Field three of tag character W contains the common number..

Tag character seven precedes the checksum, which is an error detection word. The checksum is
formed as the record is being written. It is the two’s complement of the sum of the eight-bit ASCII
values of the characters of the record from the first tag of the record through the checksum tag,
seven.

Tag characters nine, A, S, and P are used with load addresses for data that follows. Tag character
nine is used when the load address is absolute. Tag character A is used when the load address is
program-relocatable. Tag character two is used when the load address is data-relocatable. Tag
character P is used when the load address is common-relocatable. Field one contains the address at
which the following data word is to be loaded. A load address is required for a data word that is to be
placed in memory at some address other than the next address. The load address is used by the
linker. Field two of tag character P contains the common number.

Tag characters B, C, T, and N are used with data words. Tag character B is used when the data is
absolute, e.g., an instruction word or a word that contains text characters or absolute constants. Tag
character C is used for a word that contains a program-relocatable address. Tag character T is used
for a word that contains a data-relocatable address. Tag character N is used for a word that contains
a common-relocatable address. Field one contains the data word. The linker places the data word in
the memory location specified in the preceding load address field or in the memory location that
follows the preceding data word. Field two of tag character N contains the common number.

10-13 Digital Systems Group

2250077-9701

BOOO

ROOZ
0NzIe BOO4
jclala¥ch
OZIR BOOS
EOOA
DZ40 BOGC
EQOE
DZ41 QZT4A
NzAZ NIV
DR
DZDA
NZ432 0OZ9C
NZTE
GEA4 CO00
0O24% 2000
o0z
0244 COO4
CO0L
0247 COOE
CO0A
OzZ45 COOC
COOE

CEz0

QD00

NZEE

ZBED

DNED0

e [:.‘

- s

Il

Q420
BOOZ

oy e iy
LAY

BOOA
2I2A0

BOOA

= By
[N S)

e«

NZVE-

0420
OOz

Ty S v::
el

CO0s

&

DEMONZTRATE EXTERNAL REFERENCE LINKIMG

REF
RORG
Moy
XOR

AORG
LOCR

EBLWF

Al

MFY

RORG

MoV

XOR

ADRG

LDCR 2

ELWF

MFY

EXTR

REXTF, @EXTKR

REXTK, =

=BOOO
REXTR,

]

REXTR
3, EXTR

REXTR, 2

REXTR, @EXTR

REXTR, =

Figure 10-3. External Reference Example

Tag characters G, H, and J are used when the symbol table option is specified with SDSMAC. Tag
character G is used when the location or value of the symbol is program-relocatable, tag character H
is used when the location or value of the symbol is absolute, and tag character J is used when the
location or value of the symbol is data- or common-relocatable. Field one contains the location or
value of the symbol, and field two contains the symbol to which the location is assigned. Field three
of tag character J contains the common number.

Tag character U is generated by the LOAD directive. The symbol specified is treated as if it were the
value specified in an INCLUDE command to the linker. Field one contains zeros. Field two contains
the symbol for which the loader will search for a definition. Refer to the LOAD directive for further

information.

10-14

Digital Systems Group

o]
Q‘@ 2250077-9701

Tag character V specifies a program-relocatable address for a secondary external reference. Field
one contains the location of the last appearance of the symbol. Field two contains the symbol.

Tag character eight is used to ignore the checksum. Field one contains the checksum to be ignored.

Tag character D is used to specify a load bias. Field one contains the absolute address which will be
used by the loader to relocate the symbols when loaded. The link editor does not accept the D tag.
Tag character D is described in detail in a subsequent paragraph.

Tag character F indicates the end of record. It may be followed by blanks.

The last record of an object module has a colon (:) in the first character position of the record,
followed by blanks or a time and date identifying stamp.

10.5.2 MACHINE LANGUAGE FORMAT. Some of the data words preceded by tag character B
represent machine instructions. Comparing the source listing with the object code fields identifies the
data words that represent machine instructions. Figure 10-4 shows the manner in which the bits of
the machine instructions relate to the operands in the source statements for each format of the
machine instructions. '

10.5.3 SYMBOL TABLE. When the SYMT option is specified, the symbol table is included in the
object code file. One entry, using tag character G, H, or J as appropriate, is supplied for each symbol
defined in the assembly.

10.5.4 CHANGING OBJECT CODE. To correct the object code without reassembling a program,
change the object code by changing or adding one or more records. One additional tag character is
recognized by the loader to permit specifying a load point. The additional tag character, D, may be
used in object records changed or added manually.

Tag character D is followed by a load bias (offset) value. The loader uses this value instead of the
load bias computed by the loader itself. The loader adds the load bias to all relocatable entry
addresses, external references, external definitions, load addresses, and data. The effect of the D tag
character is to specify that area of memory into which the loader loads the program. The tag
character D and the associated field must be placed ahead of the object code generated by the
assembler.

Correction of the object code may require only changing a character or a word in an object code
record. The user may duplicate the record up to the character or word in error, replace the incorrect
data with the correct data, and duplicate the remainder of the record up to the seven tag character.
Because the changes the user has made will cause a checksum error when the checksum is verified as
the record is loaded, the user must change the seven tag character to eight.

When more extensive changes are required, the user may write an additional object code record or
records. Begin each record with a tag character 9, A, S, or P followed by an absolute load address or
a relocatable load address. This may be an address into which an existing object code record places a
different value. The new value on the new record will override the other value when the new record
follows the other record in the loading sequence. Follow the load address with a tag character B, C,
T, or N and an absolute data word or a relocatable data word. Additional data words preceded by
appropriate tag characters may follow. When additional data is to be placed at a nonsequential
address, write another load address tag character followed by the load address and data words
preceded by tag characters. When the record is full, or all changes have been written, write tag
character F to end the record.

i0-i5 Digital Systems Group

2250077-9701

0O 1t 2 345 6 7 89 10111213141516& —p 31
e
111 1 x
1]t o x (Wl T
/ D
110 1 x !B
Tg s
111,1x}0 0 1 x x X
ivlo o 1 1 0 x NUM
vilo o o001 xx x xL__JL_
110 00 1 xXx xXx DISP NOT USED
v{o 0 0 0 1 0 x x [COUNT]
Viti]Jo 0 0 000 1 0 X XX O
REG]
Xxvi11Jo 0 0 000 00 X XX X
Xvii1]o 0 0 000 1 0 1 XX O
viitlo o 0 000 11 X XX 000 00
viiJo 0 0 000 00 0 01 0 1 1 X X
vit|o o o 011 00 0 00 0 X X X X
x|lo 0o o 000 11 0 01 M[_RrREG |
X1}jo o o 000000001 1 1 1 X
x1lo 0 0o 000 000 010 X X X X
X1]o 0o o011 000000710000 BC
X11]0 0 0 000 00 X XX X CKPT
Xt1]0 0 0 011 10 0 O0XX Td o
Xi1X]0 0 0 000 00 O O0O10 1 0 1 1[|NOTUSED
xx00000000001oooxx| cono | TS s
xxt1lo o o 000 11 1 11 1 [pLENGTH[S LENGTH] "
= Ak
Xvi|o 0 0 01 1 000 0XX| Wi
Xvjo o o o111 10 0 00O POS NOT USED
xtiv]o 0o o 011 000000 1 X X X
X111]Jo 0 0o 000 00 0 001 1 1 o0 x[s teENneTH[Nu][count
XVi1 o 0 0 0 1 1 00 0 00O 1 1 0 xL CONST
X IS A BIT OF THE OPERATION CODE THAT IS EITHER O OR 1 ACCORDING TO THE
SPECIFIC INSTRUCTION IN THE FORMAT
w/B IS A BIT IN THE OPERATION CODE THAT IS O IN INSTRUCTIONS THAT OPERATE ON
WORDS, AND 1 IN INSTRUCTIONS THAT OPERATE ON BYTES
T 1S A PAIR OF BITS THAT SPECIFY THE ADDRESSING MODE OF THE DESTINATION
D OPERAND, AS FOLLOWS:
00 = WORKSPACE REGISTER ADDRESSING
01 = WORKSPACE REGISTER INDIRECT ADDRESSING
10 = SYMBOLIC MEMORY ADDRESSING WHEN D = O
10 = INDEXED MEMORY ADDRESSING WHEN D # O
11 = WORKSPACE REGISTER INDIRECT AUTOINCREMENT ADDRESSING
D 1S THE WORKSPACE REGISTER FOR THE DESTINATION OPERAND
Tg IS A PAIR OF BITS THAT SPECIFY THE ADDRESSING MODE OF THE SOURCE OPERAND
AS SHOWN FOR Tp
s 1S THE WORKSPACE REGISTER FOR THE SOURCE OPERAND
NUM IS THE NUMBER OF BITS TO BE TRANSFERRED
DISP 15 A TWO'S COMPLEMENT NUMBER THAT REPRESENTS A DISPLACEMENT
REG 1S A WORKSPACE REGISTER ADDRESS
COUNT IS A SHIFT COUNT
M IS A MAP REGISTER FILE NUMBER (0 OR 1)
BC IS A BYTE COUNT
CKPT 1S A CHECKPOINT REGISTER ADDRESS
COND 1S A LOGICAL SEARCH CONDITION (EQ,GT,ETC,)
D LENGTH IS A BYTE COUNT OF THE DESTINATION OPERAND
S LFNGTH IS A BYTE COUNT OF THE SOURCE OPE RAND
WIDTH IS THE NUMBER OF BITS CONTAINED IN THE OPERAND
POS IS A BIT POSITION
CONST IS A CONSTANT TO BE ADDED TO OR SUBTRACTED FROM A WORKSPACE REGISTER
NOT USED IS A GROUP OF BITS NOT USED IN THE INSTRUCTION
u NOT USED
(A)141481

Figure 10-4. Machine Instruction Formats

10-16 Digital Systems Group

o]
{@? 2250077-9701

When additional memory locations are loaded as a result of changes, the user must change field one
of tag character zero which contains the number of bytes of relocatable code. For example, if the
object field written by the assembler contained 1000;s bytes of relocatable code and the user has
added eight bytes in a new object record, additional memory locations will be loaded. The user must
find the zero tag character in the object code file and change the value following the tag character
from 1000 to 1008; he must also change the seven tag character to eight in that record.

When added records place corrected data in locations previously loaded, the added records must
follow the incorrect records. The loader processes the records as they are read from the object
medium, and the last record that affects a given memory location determines the contents of that
location at execution time.

The object code records that contain the external definition fields, the external reference fields, the
entry address field, and the final program start field must follow all other object records when being
loaded.

NOTE

Both object code which will be linked and object code which will be
loaded by the boot loader can be changed without reassembling the
program. The link editor, though, will not accept tag character D in
changed or added object records.

10-17/10-18 Digital Systems Group

o]
%@ 2250077-9701

APPENDIX A i

CHARACTER SET

All of the 990 assemblers recognize the ASCII characters listed in table A-1. The macro assembler,
SDSMAGC, also accepts the characters listed in table A-2 if they occur within quoted strings or in
comment fields. The special characters in table A-3 are not accepted by the 990 assemblers but may
be recognized and acted upon appropriately by other programs. The device service routine for the
card reader accepts (and stores into the calling program’s buffer) all the characters listed in tables A-
1, A-2, and A-3.

All of the tables include the ASCII code for each character represented as a hexadecimal value and a
decimal value. The tables also include the Hollerith Code for each character. Table A-1 also lists the

IBM Modei 29 Keypunch Character for those characters in table A-I whose keypunch character
representation differs from the character representation.

Table A-1. Character Set

Hexadecimal Value Decimal Value Character Hollerith Code
20 32 Space Blank
21 33 ! 11-8-2
22 34 ” 8-7
23 35 # 8-3
24 36 $ 11-8-3
25 37 % 0-84
26 38 & 12
27 39 ! 8-5
28 40 (12-8-5
29 41) 11-8-5
2A 42 * 11-8-4
2B 43 + 12-8-6
2C 4 , 0-8-3
2D 45 - 11
2E 46 . 12-8-3
2F 47 / 0-1
30 48 0 0
31 49 1 1
32 50 2 2
33 51 3 3
34 52 4 4
35 53 5 5
36 54 6 6
37 55 7 7
38 56 8 8
39 57 9 9
3A 58 : 8-2
3B 59 ; 11-8-6
3C 60 < 12-84
3D 61 = 8-6

i

A-i Digital Systems Group

[o]
%@ 2250077-9701

Table A-1. Character Set (Continued)

Hexadecimal Value Decimal Value Character Hollerith Code
3E 62 > 0-8-6
3F 63 ? 0-8-7
40 64 @ 8-4
41 65 A 12-1
42 66 B 12-2
43 67 C 12-3
44 68 D 124
45 69 E 12-5
46 70 F 12-6
47 71 G 12-7
48 72 H 12-8
49 73 1 129
4A 74 J 11-1
4B 75 K 11-2
4C 76 L 11-3
4D 77 M 114
4E 78 N 11-5
4F 79 0 11-6
50 80 P i1-7
51 81 Q 11-8
52 82 R 119
53 83 S 0-2
54 84 T 0-3
55 85 U 04
56 86 \% 0-5
57 87 W 0-6
58 88 X 0-7
59 89 Y 0-8
5A 90 Z 0-9
5B 91 [12-2-8 ¢!
5C 92 \ 0-2-8 0-8-2'
5D 93] 11-1-8 | (vertical bar)'
5E 94 A 11-7-8 ~(logical NOT)!
SF 95 — 0-5-8

'IBM 29 Keypunch Character

Table A-2. Special Characters Recognized by SDSMAC in Quoted Strings and Comment Fields

Hexadecimal Value Decimal Value Character Hollerith Code

60 96 \ 8-1

61 97 a 12-0-1
62 98 b 12-0-2
63 99 c 12-0-3
64 100 d 12-0-4
65 101 e 12-0-5
66 102 f 12-0-6
67 103 g 12-0-7
68 104 h 12-0-8

A-2 Digital Systems Group

o
q@ 2250077-9701

Tabie A-2. Speciai Characters Recognized by SDSMAC in Quoted Sirings and Comment Fields {Continue

Hexadecimal Value Decimal Value Character Hollerith Code
69 105 i 12-0-9
6A 106 j 12-11-1
6B 107 k 12-11-2
6C 108 1 12-11-3
6D 109 m 12-11-4
6E 110 n 12-11-5
6F iii 0 12-1i-6
70 112 p 12-11-7
71 113 q 12-11-8
72 114 r 12-11-9
73 115 s 11-0-2
74 116 t 11-0-3
75 117 u 11-0-4
76 118 v 11-0-5
77 119 w 11-0-6
78 120 X 11-0-7
79 121 y 11-0-8
7A 122 z 11-0-9
7B 123 { 12-0
7C 124 : 12-11
7D 125 } 11-0 -
7E 126 ~ 11-0-1

Table A-3. Additional Characters Recognized by the Card Reader Device Service Routine

Hexadecimal Value Decimal Value Character Hollerith Code
00 0 NUL 12-0-9-8-1
01 1 SOH 12-9-1
02 2 STX 12-9-2
03 3 ETX 12-9-3
04 4 EOT 9-7
05 5 ENQ 0-9-8-5
06 6 ACK 0-9-8-6
07 7 BEL 0-9-8-7
08 8 BS 11-9-6
09 9 HT 12-9-5
0A 10 LF 0-9-5
0B 11 vT 12-9-8-3
0C 12 FF 12-9-8-4
oD 13 CR 12-9-8-5
OE 14 SO 12-9-8-6
OF 15 SI 12-9-8-7
10 16 DLE 12-11-9-8-1
11 17 DCl1 11-9-1
12 18 DC2 11-9-2
13 19 DC3 11-9-3
14 20 DC4 9-84
15 21 NAK 9-8-5
16 22 SYN 9-2

A-3 Digitai Systems Group

2250077-9701

Table A-3. Additional Characters Recognized by the Card Reader
Device Service Routine (Continued)

Hexadecimal Value Decimal Value Character Hollerith Code
17 23 ETB 0-9-6
18 24 CAN 11-9-8
19 25 EM 11-9-8-1
1A 26 SUB 9-8-7
1B 27 ESC 0-9-7
1C 28 FS 11-9-8-4
1D 29 GS 11-9-8-5
1E 30 RS 11-9-8-6
IF 31 UsS 11-9-8-7
7F 127 DEL 12-9-7

A-4 Digital Systems Group

o]
(@ 2250077-9701

APPENDIX B
INSTRUCTION TABLES

The source formats for the machine instructions are summarized in 11 tables. Refer to Section 111 for
complete descriptions of the instructions.
The tables are organized as follows:

B-1 Arithmetic Instructions

B-2 Branch Instructions

B-3 Compare Instructions

B-4 Control and CRU Instructions

B-5 Load and Move Instructions

B-6 Logical Instructions

B-7 Shift Instructions

B-8 Extended Operation Instruction

B-9 Long Distance Addressing Instructions

B-10 Conversion Instructions

B-11 Pseudo-Instructions

The following symbols are used in tables B-1 through B-11:

Sa Source Address

Sb Source Byte

Sw Source Word

St Source Single or Double Word (Field Instructions)
Si Source Instruction (One to four words)
Sd Source Double Word

Sq Source Quad Word

Ss Source String

Sm Source Multiple Precision

St Source Stack Descriptor

Sk Source Stack String

S1 Source List Search Control Block

Signed Offset to Link

Signed Offset to Compare

Value to Compare

Mask for Comparison

Terminal Link Value (End of List)

B-i Digital Systems Group

[o]
;@ 2250077-9701 -

Da Destination Address

Db Destination Byte

Dw Destination Word

Df Destination Single or Double Word (Field lnstructxon)
Dd Destination Double Word

Dq Destination Quad Word

Ds Destination String

Dm Destination Multiple Precision
Dt Destination Stack Descriptor
Dk Destination Stack String

Di Destination List Pointer Block

Pointer to Current Node
Pointer to Previous Node

FPAw Floating Point Accumulator (R0) Integer
FPAd Floating Point Accumulator (RO,R1) Extended Integer or Real
FPAq Floating Point Accumulator (R0-R3) Double Precision Real

I Immediate Operand

Cs String Length

Cm Muitiple Precision Length

G Amount to Add/Subtract from Register

Cp Position

Cl List Search Termination Code

Wr Workspace Register

Ww Width

Wc Checkpoint Register

Wt Top-of-Stack Pointer (in Workspace Register)
Wm EP Destination Multiple Precision Length
SC Shift Count

Pb Bit Position

Dj Jump Displacement

X Extended Operation Number

T Number of Bits to Transfer (CRU Instructions)
M Map File Number

ST Status Register

PC Program Counter

WP Workspace Pointer

() The contents of the address within the parentheses
- Indicates “replaces”

: Indicates “is compared to”

The following example shows the use of the symbols in the format column:

XOR Sw,Wr.

B-2 Digital Systems Group

22500779701

The format entry means that the mnemonic opcode XOR requires a general source address and a
workspace register address separated by a ccmma. In the effect column, the symbols are used as in
the following example:

(Sw) XOR (Wr) — (Wr)
This means that the result of the exclusive or of the contents of the source address and the contents of
the workspace register replaces the previous contents of the workspace register. In the status bits test
column, the symbols are used as in the following example:

(Wn):0

This means that the result placed in the status register is compared to zero and the status bits contain
the result of the comparison.

B-3 Digital Systems Group

r-4

dno.g swaisAg fexbiqg

Instruction

Add Words
Add Bytes
Absolute Value

Add Double
Precision Real

Add Immediate
Add Multiple

Precision Integer

Add Real

Count Ones

Divide Double
Precision Real

Decrement

Decrement by Two

Divide

Divide Signed

Divide Real

Increment

Format

A Sw,Dw
AB Sb,Db
ABS Sw
AD Sq

Al Wr,I
AM Sm,Dm,Cm

AR Sd
CNTO Sm,Dm,Cm

DD Sq

DEC Sw
DECT Sw
DIV Sw,Wr
DIVS Sw

DR Sd

INC Sw

Table B-1. Arithmetic Instructions

Effect

(Sw) + (Dw) — (Dw)
(Sb) + (Db) — (Db)

[(sw)] — (5w)

(Sq) + (FPAQ) — (FPAq)

(Wr) + I — (Wr)
(Sm) + (Dm) — (Dm)

(Sd) + (FPAd) — (FPAd)

(Dm) + the number of ones
in (Sm) — (Dm)

(FPAq) - (Sq) — (FPAq)

(Sw) - 1— (Sw)

(Sw) - 2— (Sw)

(Wr) - (Sw) — (Wr)
(RO,R1) - (Sw)— (RO,R1)

(FPAd) - (Sd) — (FPAd)

(Sw) + 1— (Sw)

Notes

Note 1

Note 2

Note 2

Note 3,4
Note 3

Opcode

A000
B0OOO
0740
0E40

0220
002A

0C40
0020

OF40

0600
0640
3C00
0180

0D40

0580

Status Bits
Affected

0-4
0-5
0-2,4
0-4

0-4
0-4

0-4

Status Bits
Test

(Dw):0
(Db):0
(Sw):0
(FPAq):0

(Wr):0
(Dm):0

(FPAd):0

#1's in
(Dm):0

(FPAg):0

(Sw):0
(Sw):0
(Sw)<(Wr)

RO:0
(Sw)<RO’

(FPAd):0

-63«(exponent
FPAd)<63

(Sw):0

Format Number

VI
V1

VIII
XI

VI
XI

VI

Vi
VI
IX
VI

VI

VI

10L6-LL0O0STT

ano.io) swaisAs 1eubiq

Instruction
Increment by Two
Multiply Double
Precision Real
Multiply
Multiply Signed
Multiply Real

Negate

Negate boub1e
Precision Real
Negate Real
Subtract Words
Subtract Bytes
Subtract Double
Precision Real
Subtract Multiple
Precision Integer

Subtract Real

Format
INCT Sw
MD Sq

MPY Sw,lWr

MPYS Sw

MR Sd

NEG Sw

NEGD

NEGR
S Sw,Dw
SB Sb,Db
SD Sq

SM Sm,Dm,Cm

SR Sd

Table B-1. Arithmetic Instructions (Continued)

Effect
(Sw) + 2—(Sw)
(Sq) x (FPAg) — (FPAq)

(Sw) x (Wr)— (Wr)
(Sw) x (RO)— (RO,R1)
(Sd) x (FPAd)— (FPAd)
-(Sw)— (5w)
-(FPAq) — (FPAq)

-(FPAd) — (FPAd)

(Dw) - (Sw) — (Dw)
(Db) - (Sb) — (Db)
(FPAQ) - (Sq)— (FPAq)

(Dm) - (Sm) — (Dm)

(FPAd) - (Sd) — (FPAd)

Notes

Note 5
Note 5§

Note 2

Opcode
05C0
0F00

3800

01Cco

0D00

0500

0co3

0co2
6000
7000
0ECO

0029

0cco

Status Bits
Affected

0-4
0-4

none

0-4

0-2,4

0-2

0-2
0-4
0-5
0-4

0-4

Status Bits
Test

(Sw):0
(FPAg):0

-63<{exponent
FPAq)<63

RO,R1:0
(FPAd) :0
-63<(exponent
FPAd}<63

(Sw):0
(Sw) = 8000

(FPAg):0

16

(FPAd):0
(Dw):0

(Db):0
(FPAqQ):0
-63<(exponent
FPAq)<63
(Dw):0
(FPAd):0

-63<(exponent
FPAd)<63

Format Number
VI
VI

IX

VI

VI

VI

VII

VII

VI

XI

VI

10L6-LLO0STT

dno.g swaysAs jebiq

Note 1:

Note 2:

Note 3:

Note 4:

Note 5:

Table B-1. Arithmetic Instructions (Continued)

The original value of Sw is compared to zero.
The Cm field specifies the number of bytes for the multiple precision operands.

The contents of Wr and the next consecutive register (32-bit magnitude) are divided by Sw (16-bit magnitude). The quotient
(16-bit magnitude) is placed in Wr and the remainder is placed in the next consecutive register. If Wr is R15, the remainder
is placed in the memory location immediately following the workspace. In the DIVS instruction, RO and Rl are always used.

%f the)divisor is less that or equal to the left half of the dividend, the instruction is aborted and the overflow status bit
bit 4) is set.

Sw is multiplied by Wr. The result (32-bit magnitude) is placed in registers Wr and Wr + 1. If Wr = 15, the least significant
half of the result is placed in the memory location immediately following the workspace. In the MPYS instruction, RO and Rl
are always used.

T0L6-LLOOSTT

L4

anoto suwRsAS 1eybicy

Instruction

Add to Register
and Jump

Branch
Branch Indirect
Branch and Link
Branch Immediate
and Push Link to
Stack

Branch and Load
Workspace Pointer

Jump if Equal

Jump if Greater
Than

Jump if Logical
High

Jump if High
or Equal

Jump if Logical
Low

Jump if Less
or Equal

Format

ARJ Dj,Cj,Wr

B Sw
BIND Sw
BL Sw

BLSK Wt,I

BLWP Sw

JEQ Dj
JGT Dj

JH Dj
JHE Dj
JL Dj

JLE Dj

Table B-2. Branch Instructions

Effect
Cj + (Wr)— (Wr)

Conditionally Dj — (PC)

Sw —(PC)
(Sw) — (PC)

(PC) — (R11)
Sw— (PC)

(PC) — (Wt)
I —(PC)

(PC) + Dj — (PC)
(PC) + Dj — (PC)

(PC) + Dbj — (PC)

(PC) + Dj — (PC)

(PC) + Dj — (PC)

(PC) + Dj —(PC)

Notes

Note 1

Note 2

Necessary Status

Unconditional

Unconditional
Unconditional

Unconditional

Unconditional

Unconditional

Bit 2

L
-—

Bit 1

u
pa—r

Bit 0 = 1 and
Bit2 =0

Bit 0 or Bit 2 =1

Bit 0 and Bit 2 = 0

Bit 1
Bit 2

0 or
1

[[]

Opcode
0CDO

0440
0140
0680

0080

0400

1300
1500

1800

1400

1A00

1200

Format Number

XVII

VI
VI
VI

VIII

VI

IT
IT

11

I1

IT

II

T0L6-LLO0STT

84

anoun swsisAs 1e1big

Instruction

Jump if Less
Than

Unconditional
Jump

Jump if No
Carry

Jump if Not
Equal

Jump if No
Overflow

Jump on
Carry

Jump if 0dd
Parity

Return Workspace

Pointer
Subtract from
Register and
Jump

Execute

Format

JLT Dj

JMP Dj

JNC Dj

JNE Dj

JNO Dj

Joc bj

JOP Dj

RTWP

SRJ Dj,Cj,Wr

X Si

Table B-2. Branch Instructions (Continued)

Effect Notes
(PC) + Dj — (PC)

(PC) + Dj— (PC)

(PC) + Dj— (PC)

(PC) + Dj— (PC)

(PC) + Dj — (PC)

(PC) + Dj— (PC)

(PC) + Dj — (PC)

Note 3
(Wr) - (Cj)— (Wr) Note 1
Conditionally Dj — (PC)

Note 4

Necessary Status

Bit 1 and Bit 2 = 0

Unconditional
Bit3=0
Bit2=0
Bit4 =20
Bit 3 =1
Bit 5 = 1
Unconditional
Unconditional
Unconditional

Opcode
1100

1000

1700

1600

1900

1800

1C00

0380

ococ

0480

Format Number

IT

I1

I1

II

IT

I1

I1

VII

XVII

VI

Note 1: If the value of the register does not equal zero, or has not passed through zero (sign change), the jump is performed.

Note 2: This instruction is explained fully in Section 3. The execution can be summarized as follows:

(Sw) — (WP) Previous(WP)— R13
(Sw+2) — (PC) PreviousgPC)—* R14
000016—-(ST) Previous(ST)— R15

10L6-LLO0STT

69

dnoJo) suwssAS jexbiq

Note 3:

Note 4:

Table B-2. Branch Instructions (Continued)

This instruction is explained fully in Section 3. The execution can be summarized as follows:

R13 — (WP)
R14——§PC)
R15 — (ST)

In the Execute instruction, an instruction at address Si is executed. If the instruction is more than one word long (i.e. data
or address), the word(s) following the Execute instruction ave used, not the words following Si. The executed instruction affects

the status register normally.

10L6°LLOOSTT

01-4

anouy swaysAs [exbig

Instruction
Compare Words
Compare Bytes

Compare
Immediate

Compare Ones
Corresponding

Compare Strings
Compare Zeros
Corresponding

Left Test for
Ones

Right Test for
Ones

Search String for

Equal Byte

Search List
Logical Address

Search List
Physical Address

Search String for

Not Equal Byte

Test Memory Bit

Format
C Sw,Dw
CB Sb,Db
CI Wr,I

COC Sw,Wr

CS Ss,Ds,Cs,NWc

CZC Sw,kWr

LTO Sm,Dw,Cm

RTO Sm,Dw,Cm

SEQB Sw,Ds,Cs,Wc

SLsL €1,81,D1

SLSP €1,51,D1

SNEB Sw,Ds,Cs,Wc

TMB Sw,Pb

Table B-3. Compare Instructions

Effect
None
None

None

None

Position of first
unequal byte — (Wc)
None

Position of leftmost
one + (Dw) — (Dw)

Position of rightmost
one + {Dw) — (Dw)

Index to equal
byte — (Wc)

Index to non-equal
byte —(Wc)

Bit at (Sw) + Pb— ST Bit 2

Notes

Note

Note

Note

Note

Note

Note

Note

Note

Note

Opcode
8000
9000
0280

2000

0040

2400

001F

001E

0050

0021

0022

OE10

0609

Status Bits Status Bits
Affected Test

0-2 (Sw): (Dw)
0-2,5 {sb) :(Db)
0-2 (Wr):1

0-2 (Ss):(Ds)

Format Number
1

I

VIII

111

XI1

ITI

XI

XI

XII

XX

XX

XII

X1V

T10L6-LLO0STT

g

anouo swaisAS 1exbig

Note

Note

Note

Note
Note

Note

Table B-3. Compare Instructions (Continued)

The bits in the destination operand that correspond to bits equal to one in the source operand are compared to one. If the
corresponding bits are equal to one, status bit two is set to one. Otherwise status bit two is set to zero.

The two strings are searched until an unequal byte is found. When the unequal byte is found, status bits zero - two reflect the
comparison of the bytes. This instruction can be re-executed, which will cause the comparison to continue from the
point where the previous unequal byte was found.

The bits in the destination operand that correspond to bits equal to one in the source operand are compared to zero. If the
corresponding bits are equal to zero, status bit two is set to one. Otherwise status bit two is set to zero.

The Cm field specifies the number of bytes of precision. If a one bit is not found, status bit two is set to one.

The source operand is a 2-byte value containing a mask byte and a data byte. All bytes in the destination string are masked
before being compared to the data byte. The status register bits 0-2 are affected by each comparison made. In the SEQB
instruction, if no equal bytes are found in the destination string, the status register reflects the comparison of the data
byte and the Tast byte in the destination string. In the SNEB instruction, if no nen-equal bytea is found, status bit 2 is set
to one. When a non-equal byte is found, status bits 0 and 1 reflect the results of the comparison. .

The SLSL and SLSP instructions are explained fully in Section III. The source operand is the 1ist search control block. The
destination operand is the 1ist pointer block. The C1 field specifies which of the following conditions must be met for the
search to terminate:

C1 Field Condition Cl Field Condition
EQ Equal LT Arithmetic Less Than
NE Not Equal LE Logical Low or
HE Logical High or Equal Equal
L Logical Low H Logical High
GE Arithmetic Greater Than LTE Arithmetic Less Than
or Equal) or Equal
GT Arithmetic Greater Than

The SLSL instruction searches the processor's directly accessable 64K byte address space. The SLSP instruction searches any-
where in the available physical memory. When the search condition is met, the destination operand contains a pointer to the
list element where the condition was met and a pointer to the previous element.

10L6-LL00STT

-4

dnoug swaisAs jenbiq

Instruction

Clock Off

Clock On

Disable Interrupts
Enable Interrupts

Execute Micro-
diagnostics

Idle

Load Writable
Control Store

Load CRU

Load or Restart
Execution

Reset

Set CRU Bit
to Logic One

Set CRU Bit
to Logic Zero

Store CRU
Test Bit

Format
CKOF
CKON
DINT
EINT
EMD

IDLE
LCS Wr

LDCR Sa,T
LREX

RSET
SBO Pb

SBZ Pb

STCR Sa,T
TB Pb

Table B-4. Control and CRU Instructions

Effect

Note
Note
Note
Note
Note

Note
Note

Note
Note

Note
Note

Note

Note
Note

1

;s W N

[=,3

12

13
14

Opcode
03co
03A0
002F
002E
002D

0340
00AO

3000
03E0

0360
1D00

1E00

3400
1F00

Status Bits
Affected

None
None
None
None

0-15

None

None

0-2,5

None

None

None

None

0-2,5
2

Status Bits
Test

(Sw):0

(Sw):0

Format Number
VII
VII
VII
VII
Vi1

VII
XVII

1V
VII

VII
II

II

IT

10L6-LLO0STT

¢£1-4

adnouig swasAs jexbiq

Note
Note
Note
Note

Note

Note

Note

Note

Note

Note
Note
Note
Note

Note

[$,] B w V]
. . Yy .

10:

12:
13:

14:

Table B-4. Control and CRU Instructions (Continued)

Disables 120 Hz clock.

Enables 120 Hz clock. If interrupt level five is enabled, an interrupt occurs every 8.33 milliseconds.
A1l interrupts except level zero are disabled. The interrupt mask of the status register is not affected.
The interrupts are enabled according to the current level of the interrupt mask of the status register.

This instruction is explained fully in Section 3. The hardware microcoded diagnostic test is performed on the system. If the
test fails, the system halts and the fault lamp is 1it. If the test succeeds, the system is re-booted automatically.

Places the computer in an idle state. An interrupt or start signal causes the computer to resume execution at the instruction
following the IDLE instruction.

This instruction is explained fully in Section III. The writable control store (user-implemented microcode) is loaded from
memory for subsequent execution.

Transfers consecutive data bits from the address specified by Sw to the CRU. The number of bits to be transferred is specified
by T. The CRU base address is specified in workspace register 12, bits 3-14. The least significant bit of the word specified by
Sw is placed in the CRU bit addressed by R12. One to sixteen bits can be transferred. When eight bits or less are transferred,

status bit five reflects the parity of the transferred data.

Performs a context switch. The contents of memory location hex FFFC are loaded into the WP, the contents of memory location
hex FFFE are loaded into the PC, and the status register is cleared.

Disables all interepts. Resets all directly connected I/0 devices.

. Sets the CRU bit at the address in R12 plus Pb to one.

Sets the CRU bit at the address in R12 plus Pb to zero.

Transfers consecutive data bits from the CRU to the address specified.by Sw. The number of bits transferred is specified by T.
The CRU base address is specified in R12, bits 3-14. The CRU bit addressed by R12 is placed in the least significant bit of the
word addressed by Sw. One to sixteen bits can be transferred. When eight bits or less are transferred, status bit 5 reflects
the parity of the transferred data.

Tests CRU bit addressed by R12 plus Pb. Sets status bit two to the value of the CRU bit.

10L6-LLO0STT

vI-d

dnouig swaisAg (exbiq

Instruction
Insert Field

Load Double
Precision Real

Load Immediate

Load Interrupt
Mask

Load Interrupt
Mask Immediate

Load Memory Map
File

Load Real

Load Status
Register

Load Workspace
Pointer

Load Workspace
Pointer Immediate

Move Words
Move Address

Move Bytes

Format
INSF Sw,Dw,Cp,Ww
LD Sq

LI Wr,I
LIM Wr

LIMI I

LMF Wr,M

LR Sd
LST Wr

LWP Wr

LWPT I

MOV Sw,Dw
MOVA Sa,Dw
MOVB Sb,Db

Table B-5. Load and Move Instructions

Effect
Field (Sw) — (Dw)
(Sq) — (FPAq)

I — (Wr)

(Wr) — ST Bits 12-15

I — ST Bits 12-15

((Wr))—Map File M

(Sd)— (FPAd)
(Wr)— (ST)

(Wr) — (wP)

I — (Wp)

(Sw) — (Dw)

Sa — (Dw)
(Sb) — (Db)

Notes

Note 1

Note 2

Note 3

Note 4

Note 5

Opcode
ocio
0F80

0200
0070

0300

0320

0D80
0080

0030

02E0

€000
0028
D000

Status Bits
Affected

0-2
0-2

0-2
12-15

12-15

None

0-2
0-15

None

None

0-2
0-2
0-2,5

Status Bits
Test

Field (Sw):0
(Sq):0

I:0

None

None

(sd):0

None

(Dw):0
(Dw):0
(Db):0

Format Number
XVI
VI

VIII
XVIII

VIII

IX

VI
XVIII

XVIII

VIII

XIX

T0L6-LLOOSTT

dnoug swalsAS je1ibic

1

Instruction
Move String

Move String
from Stack

Move String
Reverse

Pop String
from Stack

Push String
to Stack

Store Double
Precision Real

Store Program
Counter

Store Real

Store Status
Register

Store Workspace

Pointer
Swap Bytes

Swap Multiple
Precision

Format
MOVS Ss,Ds,Cs,Wc
MVSK St,Ds,Cs,Wc

MVSR Ss,Ds, Cs, Wc

POPS St,Ds,Cs,Wc

PSHS Ss,Dt,Cs,Wc

STD Sq

STPC Wr

STR Sd
STST Wr

STWP Wr.

SWPB Sw
SWPM Sm,Dm,Cm

Table B-5. Load and Move Instructions (Continued)

Effect
(Ss) — (Ds)
((st)) — (Ds)

(Ss) — (Ds)
((st)) — (Ds)
(Ss)— ((Dt))
(FPAq) — (Sq)
(PC) — (Wr)

(FPAd) — (Sd)
(ST) — (Wr)

(WP) — (Wr)
(Sw) — (Sw)

Sm) — Dmg
Dm) — (Sm

Notes Opcode
Note 6 0060
Note 7 00DO

Note 6 00CO

Note 7 O0OEOD

Note 7 O0OF0

OFCO

0030

0DCO
02€C0

02A0

Note 8 06CO
Note 9 0025

Status Bits
Affected

0-2
0-2

0-2

None

0-2

None

0-2

None

None

None

0-2

Status Bits
Test

(Ds):0
(Ds):0

(Ds):0

(Ds):0

(sq):0

(sd):0

(Sm) : (Dm)

Format Number
XII
X11I

XII

XII

XII

VI

XVIII

VI
XVIII

XVITI

VI

T0L6-LLOOSTT

9II-4

anoug swajsAs jeybig

Table B-5. Load and Move Instructions (Continued)

Status Bits Status Bits

Instruction Format Effect Notes Opcode Affected Test Format Number

Extract Field XF Sw,Dw,Cp,kw Field (Sw)— (Dw) Note 10 0C30 0-2 (Dw):0 XVl

Extract Value XV Sw,Dw,Cp,Ww Value (Sw)— (Dw) Note 10 0C20 0-2 (Dw):0 XVI

Note 1: The field is the number of bits specified by Ww, extracted from the source operand starting at the least significant bit. The
field is inserted in the destination operand, staring from bit position Cp and proceeding toward the least significant bit.

Note 2: The four least significant bits of Wr are used.

Note 3: The immediate operand should have the value 0-15. If not, only the four least significant bits are used.

Note 4: The Wr operand points to six consecutive words in memory. These six words are loaded into the map file specified by M M must
have a value of zero, one, or two.

Note 5: The binary value of address Sa is loaded into memory at the location specified by Dw. Any of the five general forms of addressing
can be used.

Note 6: The Cs field specifies the length of the string. Workspace register zero may also be used to specify the length of the string,
and the string may be a tagged string, where the string length is specified in the tag. If the string is tagged, and the tag
specifies the string length is zero, status bits 0-2 are reset to zero. MOVS and MVSR perform the same functionally, but the
MVSR instruction begins the move from the last byte of the source string, to the last byte of the destination string.

Note 7: The St and Dt operands are addresses to the stack control block. The stack control block contains the top-of-stack pointer
(address of top element on the stack), the stack 1imit, and the bottom of stack. The string length is specified by the Cs field,
by RO, or by the string tag.

Note 8: The least significant byte of the source operand is moved to the most significant byte, and the most significant byte is moved
to the least significant byte.

Note 9: The two multiple precision operands are swapped byte for byte. The Cm field specifies the number of bytes of precision.

T10L6°LL00STT

dno.s) swaisAS jexbiq

Table B-5. Load and Move Instructions (Continued)

Note 10: The bit field of width Ww beginning at position Cp at the source address is stored, right justified, at the destination address.
The bit at Cp is the most significant bit of the field. The position and/or width can be specified in RO. In the XF instruction,
unused bits in the destination operand are filled with zeros. In the XV instruction, unused bits are filled with the most

significant bit of the extracted value (sign extension).

10L6-LLOOSTT

81-4

dnoun swaysAs (ebig

Instruction
And Immediate

And Multiple
Precision

Clear

Exit from
Floating Point
Interpreter
Invert

Invert Order
of Field

Or Immediate

Or Multiple
Precision

Set to One

Set Ones
Corresponding

Set Ones
Corresponding, Byte

Set Zeros
Corresponding

Format
ANDI Wr,I
ANDM Sm,Dm,Cm

CLR Sw

XIT

INV Sw

I0F Sw,Cp,Ww

ORI Wr,I
ORM Sm,Dm,Cm

SETO Sw
SOC Sw,Dw

SOCB Sb,Db

SZC Sw,Dw

Table B-6. Logical Instructions

Effect
(Wr) AND I — (Wr)
(Sm) AND (Om) — (Dm)

0000 — (Sw)

None

Compliment (Sw) — (Sw)

(Wr) OR I — (Hr)
(Sm) OR (Dm) — (Dm)

FFFF1g — (Sw)

Notes

Note 1

Note 2

Note 3
Note 4

Note 1

Note 5

Note 5

Note 6

Opcode
0240
0028
04Co
OCOE
OCOF

0540
OE00

0260
0027

0700
E000

F0O00

4000

Status Bits
Affected

0-2
0-2

None

None

0-2

None

0-2
0-2

None

0-2

0-2,5

0-2

Status Bits
Test

(Wr):0
(Dm):0

(Sw):0

(Wr):0
(Dm):0

(Dw):0
(DB):O

(Dw):0

Format Number
VIII
XI

VI

VII

VI

XVII

VIII
XI

VI

10L6-LLO0STT

61-94

ano.o swaisAs 1exbiq

Table B-6. Logical Instructions (Continued)

Status Bits Status Bits
Instruction Format Effect © Notes Opcode Affected Test Format Number
Set Zeros SZCB Sb,Db Note 6 5000 0-2,5 (Db):0 I
Corresponding, Byte
Test and Clear TCMB Sw,Pb 0—Bit (Sw) + Pb Note 7 O0COA 2 XIV
Memory Bit
Test and Set TSMB Sw,Pb 1—Bit (Sw) + Pb Note 7 0COB 2 XIv
Memory Bit
Exclusive Or XOR Sw, Wr (Sw) XOR (Wr)— (Wr) 2800 0-2 (Wr):0 111
Exclusive Or XORM Sm,Dm,Cm (Sm) XOR (Dm) — (Dm) Note 1 0026 0-2 (Dm):0 XI

Multiple Precision

Note
Note
Note
Note

Note
Note
Note

SwWw N

The Cm field specifies the number of bytes of precision of the operands. The precision may also be specified in RO, bits 12-15.
Used to exit from the floating point interpreter. This instruction is effectively a no-op.
The ones compliment value is placed in the source operand.

The order of the bits in the bit field of width Ww is reversed. Cp indicates the starting position of the field. The bit at Cp
is the most significant bit.

Set to a logic one the bits in the destination operand that correspond to the logic one bits in the source operand.
Set to a logic zero the bits in the destination operand that correspond to the logic one bits in the source operand.

Status bit two is set to the value of the memory bit previous to the instruction execution.

T0L6-LLO0STT

0z-4

anoi9 swaisAg 1e1ib1g

Table B-7. Shift Instructions

Value Placed in Vacated Bit

Instruction Format Position on Each Shift Notes Opcode Format Number
Normalize NRH Sm,Dw,Cm Bit one position to the right. Note 1 0C08 XI
Shift Left SLA Wr,SC Logic zero. Note 2 OAO0O v
Arithmetic
Shift Left SLAM Sm,Cm,SC Logic zero Note 2 001D XIII
Arithmetic
Multiple Precision
Shift Right SRA Wr,SC Original value of leftmost bit. 0800 v
Arithmetic
Shift Right SRAM Sm,Cm,SC Original value of leftmost bit. Note 3 001C XIII
Arithmetic
Multiple Precision
Shift Right SRC Wr,SC Rightmost bit moves to leftmost 0B0O V
Circular bit; all other bits move one

position to the right.
Shift Right SRL Wr,SC Logic zero 0900 v
Logical

General Note: The shift count can be specified in RO, bits 12-15. If these bits are zero, the operand is shifted sixteen bits.
The result is compared to zero and status bits 0-2 reflect the comparison. The carry bit (bit 3) contains the last bit

shifted out of the operand. ‘

Note 1: The source operand is shifted left until the two leftmost bits differ. The number of positions shifted are added to the
destination operand. The Cm field specifies the number of bytes of precision. The precision can also be specified in RO, bits
four - seven. If bits four - seven equal zero, the precision is 16 bytes.

T0L6-LLO0STT

1Z-4

anous swaisAs jeybiq

Note 2:
Note 3:

Table B-7. Shift Instructions (Continued)
The overflow bit is set if the sign bit (MSB) changes from its original value.

The Cm field specifies the number of bytes of precision. The precision can also be specified in RO, bits four - seven. If
bits four - seven equal zero, the precision is 16 bytes.

T0L6-LLO0STT

(441

anoi9 sweisAs /e11b1q

Table B-8. Extended Operation Instruction

Status Bits Status Bits
Instruction Format Effect Opcode Affected Test Format Number
Extended XOP Sw,X Note 1 2C00 Note 1 Iv

Operation

Note 1: The extended operation instruction executes a software-implimented routine, or executes the writable control store (user-
implimented microcode). If status bit 11 is set to zero, execution can be summarized as follows:

Memory Location X x 4 + 4076— (WP) Sw —R11
(WP)— R13
" " X x4+ 42]6~—‘(PC) (PC) —R14
(sTY— R15

Status bit six is set to one.

If status bit 11 is set to one, the source address is depositted in a hardware register. Control is then transfered to the
writable control store, at the word specified by two times the X field.

10L6-LLO0STT

€4

anousy swalsAs 1e11big

Table B-9. Long Distance Addressing Instructions

Instruction Format Effect
Long Distance LDS Sa (Sa)— M2
Source

Long Distance LDD Sa (Sa)— M2
Destination

Note 1: Places the contents of six words in memory at
for the following instruction.

Status Bits
Notes Opcode Affected

Note 1 0780 None

Note 2 07CO None

Status Bits
Test Format Number

VI

VI

the source address into memory map file two, to use for the source address

Note 2: Places the contents of six words in memory at the source address into memory map file two, to use for the destination address

for the following instruction.

10L6-LLO0STT

ye-d

anoug swasAs 1enbiq

Instruction

Binary to Decimal
ASCII Conversion

Convert Double
Precision Real to
Extended Integer

Convert Double
Precision Real
to Integer

Convert Extended
Integer to Double
Precision Real

Convert Extended
Integer to Real

Convert Integer
to Double
Precision Real

Convert Integer
to Real

Cyclic Redundency
Code Calculation

Convert Real to
Extended Integer

Format

BDC Sm,Ds,Cm

CDE

CDI

CED

CER

CID Sw

CIR Sw
CRC Sm,Dw,Cm,Wc

CRE

Table B-10. Conversion Instructions

Effect
(Sm) — (Ds)

(FPAq) — (FPAg)

(FPAq) — (FPAq)

(FPAd) — (FPAq)

(FPAd) — (FPAd)

(Sw) — (FPAq)

(Sw) — (FPAd)

(FPAd) — (FPAd)

Notes

Note 1

Note 2

Note 2

Note 2

Note 2

Note 3

Note 2

Opcode
0023

0co5
0col
0co7
0Co6

0E80

0C80
OE20

0Cco4

Status Bits
Affected
0-2,4

0-4

0-2

0-2

0-2

0-2
0-2

0-4

Status Bits
Test
(Dm):0

(FPAq):0

(FPAq):0

(FPAq):0

(FPAd):0

(FPAd):0

(FPAd) :0
(Dw):0

(FPAd):0

Format Number

XI

VII

VII

VII

VII

VI

VI
XII

VII

10L6-LL0O0STT

st-d

ano.g swaisAs 1eubiq

Table B-10.
Instruction Format Effect
Convert Real CRI (FPAd) — (FPAw)
to Integer
Decimal ASCII DBC Ss,Dm,Cm (Ss)— (Dm)
to Binary
Conversion
Extend Precision EP Sm,Dm,Cm,Wm (Sm) — (Dm)
Note 1:

Note 2:
Note 3:

Note 4:

The source string is converted from the existing format and placed in the destination string. The Cm field specifies the precision
of the binary operand. The precision can also be defined by RO, bits 12-15. If bits 12-15 equal zero, the precision is sixteen bytes.
The decimal operand string length is teice the number of bytes in the binary operand (Cm x 2).

The floating point accumulator must be loaded with the value to be converted before execution of the instruction.

Conversion Instructions (Continued)

Notes

Note 2

Note 1

Note 4

Status Bits
Opcode Affected

0C00 0-4
0024 0-2,4
03F0 None

Status Bits
Test

(FPAw) :0

(Dm): O

Format Number

VII

XI

XXI

The 16-bit CRC partial sum at the destination address is updated by the byte string at the source address. The length of the

byte string is specified by the Cm field, by RO, or by the string tag for tagged strings. If the string length is zero, the update

does not occur. This instruction is explained fully in Section III.

The value at the source address, specified by Cm, is placed right-justified at the destination address, of length Wm. Sign bits

are used to fill in the unused bits.

10L6-LLOOSTT

2250077-9701

Instruction
NOP

RT

XVEC

Table B-11.

Pseudo-Instructions

Equivalent
Instruction

JMP $ + 2
B *11
DATA,DATA,WPNT

Opcode
1000
0458

None

B-26

Digital Systems Group

@ 2250077-9701

APPENDIX C

PROGRAM ORGANIZATION

C.1 PROGRAM AREAS

There are three types of areas in a program for the Model 990/12 Computer. These are the
procedure, the workspace, and the data areas. The procedure area contains the computer
instructions. The workspace area contains program linkage, high activity data, and addresses. As
many workspaces as convenient may be allocated for a program. Data areas may be allocated as

required.

The three previously described hardware registers — WP, PC and ST — control program execution.
The workspace pointer contains the address of the first word of a 16-word area of memory called the
workspace. Note that the program workspace may be changed by changing the contents of the WP

register. The PC contains condition bits set by instructions already performed and the interrupt level
mask. These three registers, then, completely control and define the context of a program.

The general environment of the Model 990/ 12 Computer is shown in figure C-1. This arrangement of
workspace, procedure, and data is the simplest approach to 990 programming. However, though
many application programs may be written in this manner, a more segregated approach with
possibly several workspaces, data areas, and connected simply procedures would provide increased
flexibility and applicability.

The programs execute in the environment provided by the DX10 executive. The areas may be
combined in a single task, or the workspace and data areas may be combined in the division of the
task. The procedure area becomes the procedure division of the task in that case. The DX10
executive supports writing a procedure division to be used with several data divisions to form tasks
that perform the same functions on several sets of data. Refer to the DX 10 Reference Manual for
information about the environment it provides for user programs.

C.2 PROCEDURE

A procedure is the main body of a program and contains computer instructions. It is the action part
of a program. Procedures could be coded to solve an equation, run a motor, determine status of a
process, or condition a set of data that is to be processed by another procedure. Procedures in the
Model 990/ 12 Computer may have workspaces and data as an integral part of the coding or may use
workspaces and data passed from another procedure.

C.3 WORKSPACE

The Model 990/ 12 Computer uses workspaces that may be anywhere in memory and that consist of
16 consecutive memory words. A context switch due to an interrupt, an XOP instruction, or a
BLWP instruction changes the active workspace. A return from the subroutine provided for either of
these context switches using an RTWP instruction restores the original workspace. Execution of an
LWPI instruction makes a specified workspace active without changing the PC contents. When the
data division is separate from the procedure division, any workspace that contains data that is
unique to the task represented by the data division should be a part of the data division.

C-1 Digital Systems Group

2250077-9701

MEMORY

\J
et

020 PROGRAM

L

MEMORY¥* MEMORY
ADDRESS
HARDWARE REGISTERS USE
WP 0100 -— — — —® 0100 WRO
0102 WR1
PC 0220 - = 0104 WR2
|
' -
A \/
sT l Y »~
I WR14
| oticC
[
I O11E WRI15
~
: .
|
|
|

"/
021E|” (INSTRUCTION IN EXECUTION) ' |MPROCEDURE
L — 0220 (NEXT INSTRUCTION) AREA
CONTAINING
~
ASMACHINE
omT INSTRUCTIONS
~
X A
100 PROGRAM
*
t12 DATA AREA

WORKSPACE REGISTERS ARE CACHED
WHEN ACCESSED (READ OR WRITE).

R0 m Canm

Figure C-1. Model 990 Computer Programming Environment

C.4 DATA
Data for a procedure may appear in many forms. In assembly, there are three directives available to
the programmer to initialize data within a program module. These directives are:

e DATA — Initializes one or more consecutive words of memory to specific values that are
input on this statement.

e BYTE — Initializes one or more consecutive bytes of memory as does the DATA
statement, except that bytes are initialized.

¢ TEXT — Initializes a textual string of characters in consecutive bytes of memory. The
characters are represented in USASCII code.

C-2 Digital Systems Group

[o]
@ 2250077-9701

Also, data input from the data terminal or device attached to the CRU or TILINE is available to
procedures in the 990/12 computer.

The DX10 executive for the Model 990/12 Computer supports the user programs by executing
supervisor calls to perform input and output operations, data conversions, and other functions. The
user provides data in required formats for supervisor call blocks that define the supervisor call, and
for other data blocks as appropriate. The assembler directives described previously may be used to
provide this data. Details of the data requirements for interface with the executive are described in
the Model 990 Computer Reference Manual, Volumes I1I and V, part numbers 946250-9703, 9705.

C-3/C-4 Digitai Systems Group

o]
(Ijg) 2250077-9701

Hexadecimal
Operation
Code

001C
001D

001E
001F
0020
0021

0022
0023
0024

0025
0026

0027
0028
0029

002A

002B
002D
002E
002F
0030
0040

HEXADECIMAL INSTRUCTION TABLE

Mnemonic
Operation
Code

SRAM

SLAM

RTC
LTO
CNTO
SLSL

SLSP

BDC

DBC

SWPM
XORM

ORM
ANDM
SM

AM

MOVA
EMD
EINT
DINT
STPC

Cs

APPENDIX D

Name
Shift Right Arithmetic
Multiple Precision

Shift Left Arithmetic
Muitiple Precision

Right Test for One
Left Test for One
Count Ones

Search List
Logical Address

Search List
Physical Address

Binary to Decimal
ASCII Conversion

Decimal to Binary
ASCII Conversion

Swap Multiple Precision

Exclusive OR Multiple
Precision

OR Multiple Precision
AND Multiple Precision

Subtract Multiple
Precision Integer

Add Multiple Precision
Integer

Move Address

Execute Micro-Diagnostic
Enable Interrupts

Disable Interrupts

Store Program Counter

Compare Strings

Format

XII

X111

Xi
X1
XI
XX

XX

XI

XI

X1
XI

XI
X1
XI

XI

XIX
VIl
VIl
VII
XVIII
X1l

Paragraph

3.124

3.115

3.41

3.135
3.148

3.101
3.13
3.118

3.11

3.8.8
3.50

3.49

345

3.130
3.39

D-1

Digital Systems Group

[o]
q@ 2250077-9701

Hexadecimal Mnemonic
Operation Operation
Code Code Name Format Paragraph
0050 SEQB Search String for XII 3.112
Equal Byte
0060 MOVS Move String XI1I 3.40
0070 LIM Load Interrupt Mask XVIIl 3.77
0080 LST Load Status Register XVil 3.82
0090 LWP Load Workspace Pointer XVIIl 3.84
00A0 LCS Load Writable XVII 37
Control Store
00BO BLSK Branch Immediate and Push VI 3.20
Link to Stack
00C0 MYVSR Move String Reverse XH 3.95
00D0 MVSK Move String from Stack X1 3.94
00EQ POPS Pop String from Stack X1 3.102
00F0 PSHS Push String from Stack X1 3.103
0140 BIND Branch Indirect VI 3.18
0180 DIVS Divide Signed V1 3.47
01C0 MPYS Multiply Signed Vi 3.92
0200 L1 Load Immediate VIII 3.76
0220 Al Add Immediate VIII 3.10
0240 ANDI AND Immediate VIII 3.12
0260 ORI OR Immediate VI 3.100
0280 ClI Compare Immediate VIII 3.28
02A0 STWP Store Workspace Pointer XVIII 3.135
02C0 STST Store Status XVIII 3.132
02E0 LWPI Load Workspace Pointer VIII 3.85
Immediate
0300 LIMI Load Interrupt Mask VIl 3.78
Immediate
0320 LMF Load Memory Map File X 3.79
0340 IDLE Idle vl 3.52
0360 RSET Reset VII 3.104
0380 RTWP Return With Workspace A1 3.106
Pointer
03A0 CKON Clock On VIl 3.32
03Co CKOF Clock Off VII 3.31
D-2 Digital Systems Group

2250077-9701

Hexadecimal
Operation
Code

03E0
03F0
0400

(440
0480
04C0
0500
0540
0580
05C0
0600
0640
0680
06C0
0700
0740
0730
07Co
0800
0900
0A00
0B00
0C00
0Co1

0C02
0Co3
0C04

0C05

0C06

0Co07

Mnemonic
Operation
Code

LREX
EP
BLWP

CLR
NEG
INV
INC
INCT
DEC
DECT
BL
SWPB
SETO
ABS
LDS
LDD
SRA
SRL
SLA
SRC
CRI1
CDI

NEGR
NEGD
CRE

CDE

CER

CED

Name

Load or Restart Execution

Extended Precision

Branch And Load Workspace

Pointer

Branch

Execute

Clear

Negate

Invert

Increment
Increment By Two
Decrement
Decrement By Two
Branch and Link
Swap Bytes

Set To One
Absolute Value

Long Distance Source

"Long Distance Destination

Shift Right Arithmetic
Shift Right Logical
Shift Left Arithmetic
Shift Right Circular
Convert Real to Integer

Convert Double Precision
Real to Integer

Negate Real
Negate Double Precision

Convert Real to
Extended Integer

Convert Double Precision
Real to Extended Integer

Convert Extended Integer
to Real

Convert Extended Integer
to Double Precision Real

Format

VII
XXl1
Vi

Vi
VI
Vi
Vi
VI
VI
VI
VI
VI
VI
VI
VI
Vi
\2!
VI
Vv
A
\’
\
VIl
A\t

VIl
A28
VII

VIl

Vi1

VII

Paragraph

3.81
3.51
3.21

3.16
3.143
3.33
3.96
3.56
353
3.54
3.43
3.44
3.19
3.134
3.113
3.8
3.75
3.74
3.123
3.127
3.114
3.125
3.38
3.25

3.98
3.97
3.37

3.24

3.27

3.26

Digital Systems Group

2250077-9701

Hexadecimal
Operation
Code

0Co08
0C09
0CO0A
0CO0B
0CoC

0CoD

0COE/
0COF

0C10
0C20
0C30
0C40
0C80
0CCo
0D00
0D40
0D80
0DCo
0E00
0E10

0E20

0E30
0E40
0E80

0ECO

0F00

0F40

0F80
0FCo

Mnemonic
Operation
Code

NRM
TMB
TCMB
TSMB
SRJ

ARJ
XIT

INSF
XV
XF
AR
CIR
SR
MR
DR
LR

STR
IOF

SNEB

CRC

TS
AD
CID

SD

MD

DD

LD
STD

Name

Normalize

Test Memory Bit

Test and Clear Memory Bit
Test and Set Memory Bit

Subtract from Register
and Jump

Add to Register and Jump

Exit from Floating
Point Interpreter

Insert Field

Extract Value
Extract Field

Add Real

Convert Integer to Real
Subtract Real
Multiply Real

Divide Real

Load Real

Store Real

Invert Order of Field

Search String for Not
Equal Byte

Cyclic Redundancy Code
Calculation

Translate Strings
Add Double Precision Real

Convert Integer to
Double Precision Real

Subtract Double
Precision Real

Multiply Double
Precision Real

Divide Double
Precision Real

Load Double Precision Real

Store Double Precision
Real

Format

X1
X1V
X1V
XIv
XVIl

XVl
Vil

XVI
XVI
XVI
VI
VI
VI
Vi
VI
VI
VI
XV
X1

XII

XII
Vi
VI

VI

\%!

\%!

VI
VI

Paragraph
399
3.140
3.139
3.142
3.126

315
3.145

3.55
3.149
3.144

3.14

3.30
3.122

393

3.48

3.80
3.131

3.57
3.119

3.36

3.141
3.9
3.29

3.111

3.86

342

3.72
3.129

D-4

Digital Systems Group

2250077-9701

Hexadecimal Mnemonic
Operation Operation
Code Code Name Format Paragraph
1000 JMP Unconditional Jump I1 3.65
1100 JLT Jump If Less Than I1 3.64
1200 JLE Jump If Low Or Equal 11 3.63
1300 JEQ Jump If Equal I 3.58
1400 JHE Jump If High Or Equal 11 3.61
1500 JGT Jump If Greater Than 11 3.59
1600 JNE Jump If Not Equal I1 3.67
1700 JNC Jump If No Carry 1 3.66
1800 JocC Jump On Carry I1 3.69
1900 JNO Jump If No Overflow 11 3.68
1A00 JL Jump If Logical Low 11 3.62
1B0O JH Jump If Logical High I 3.60
1C00 JOP Jump If Odd Parity 11 3.70
1D00 SBO Set CRU Bit To Logic One 1 3.109
1E00 SBZ Set CRU Bit to Logic Zero I1 3.110
1F00 TB Test Bit II 3.138
2000 CcoC Compare Ones Corresponding 111 3.35
2400 CZC Compare Zeros Corresponding 111 3.40
2800 XOR Exclusive OR 111 3.147
2C00 XOP Extended Operation IX 3.146
3000 LDCR Load Communication v 3.73
Register
3400 STCR Store Communication Iv 3.128
Register
3800 MPY Multiply IX 391
3C00 DIV Divide IX 3.46
4000 SZC Set Zeros Corresponding I 3.136
5000 SZCB Set Zeros Corresponding, I 3.137
Byte
6000 S Subtract Words I 3.107
7000 SB Subtract Bytes I 3.108
8000 C Compare Words 1 3.22
9000 CB Compare Bytes I 3.23
A000 A Add Words 1 3.6
B000 AB Add Bytes | 3.7
D-§ Digital Systems Group

2250077-9701

Hexadecimal

Operation
Code

C000
D000
E000
F000

Mnemonic
Operation
Code

MOV
MOVB
SOC
SOCB

Name

Move Word
Move Byte

Set Ones Corresponding

Set Ones Corresponding,

Byte

Format

Paragraph

3.87
3.89
3.120
3.121

Digital Systems Group

2250077-9701

Mnemonic
Operation
Code

A
AB
ABS
AD

Al
AM

ANDI
ANDM
AR
ARJ

BDC

BIND
BL
BLSK

BLWP

CB
CDE

CDI

CED

CER

Cl
CID

ALPHABETICAL INSTRUCTION TABLE

Hexadecimal
Operation

Code

A000
B00GO
0740
OE40

0220
002A

0240

0028

0C40
0CoD
0440

0023

0140
0680
00BO

0400

8000
9000
0C05

0Co1

0Co7

0Co06

0280
OES0

APPENDIX E

Name

Add Words

Add Bytes

Absolute Value

Add Double Precision Real

Add Immediate

Add Multiple Precision
Integer

AND Immediate

AND Multiple Precision
Add Real

Add to Register and Jump
Branch

Binary to Decimal ASCII
Conversion

Branch Indirect
Branch and Link

Branch Immediate and Push
Link to Stack

Branch and Load Workspace
Pointer

Compare Words
Compare Bytes

Convert Double Precision
Real to Extended Integer

Convert Double Precision
Real to Integer

Convert Extended Integer
to Double Precision Real

Convert Extended Integer
to Real

Compare Immediate

Convert Integer to Double
Precision Real

Format

55’—’—

45

VIII
XI
VI
XVII
Vi
X1
VI

VI
VIII

VI

A28

VII

VII

VIl

VIII
\2!

Paragraph

3.6
3.7
3.8
39

3.10
3.11

3.12
3.13
3.14
3.15
3.i6
3.17

3.18
3.19
3.20

3.21

3.22
3.23
3.24

3.25

3.26

3.27

3.28
3.29

E-1

Digital Systems Group

2250077-9701

Mnemonic Hexadecimal
Operation Operation
Code Code Name Format Paragraph
CIR 0C80 Convert Integer to Real \'2 3.30
CKOF 03Co Clock Off VII 3.31
CKON 03A0 Clock On VII 3.32
CLR 04C0 Clear VI 3.33
CNTO 0020 Count Ones X1 3.34
COC 2000 Compare Ones Corresponding 111 3.35
CRC 0E20 Cyclic Redundancy Code X1l 3.36
Calculation
CRE 0C04 Convert Real to Extended VII 3.37
Integer
CRI 0C00 Convert Real to Integer viI 3.38
CS 0040 Compare Strings XII 3.39
CzC 2400 Compare Zeros I 3.40
Corresponding
DBC 0024 Decimal to Binary ASCII Xl 341
Conversion
DD 0F40 Divide Double Precision VI 342
Real
DEC 0600 Decrement A2 3.43
DECT 0640 Decrement By Two VI 3.44
DINT 002F Disable Interrupts Vil 3.45
DIV 3C00 Divide IX 3.46
DIVS 0180 Divide Signed Vi 347
DR 0D40 Divide Real Vi 3.48
EINT 002E Enable Interrupts VIl 3.49
EMD 002D Execute Micro-Diagnostic Vil 3.50
EP 03F0 Extended Precision XXI 3.51
IDLE 0340 Idle VII 3.52
INC 0580 Increment VI 3.53
INCT 05C0 Increment By Two A4/ 3.54
INSF 0Cl10 Insert Field XVl 3.55
INV 0540 Invert A2 3.56
IOF 0E00 Invert Order of Field XV 3.57
JEQ 1300 Jump If Equal I 3.58
JGT 1500 Jump If Greater Than 11 3.59

E-2 Digital Systems Group

2250077-9701

Mnemonic Hexadecimal
Operation Operation

Code Code
JH 1B00
JHE 1400
JL 1A00
JLE 1200
JLT 1100
JMP 1000
JNC 1700
JNE 1600
JNO 1900
JOC 1800
JOP 1C00
LCS 00A0
LD 0F80
LDCR 3000
LDD 07C0
LDS 0780
L1 0200
LIM 0070
LIMI 0300
LMF 0320
LR 0D80
LREX 03E0
LST 0080
LTO 001F
LWP 0090
LWPI 02E0
MD 0F00
MOV C000
MOVA 002B
MOVB D000
MOVS 0060

Name

Jump If Logical High
Jump If High Or Equal
Jump If Logical Low
Jump If Low Or Equal
Jump If Less Than
Unconditional Jump
Jump If No Carry
Jump If Not Equal
Jump If No Overflow
Jump On Carry

Jump If Odd Parity

Load Writable Control
Store

Load Double Precision Real

Load Communication Register '

Long Distance Destination
Long Distance Source
Load Immediate

Load Interrupt Mask

Load Interrupt Mask
Immediate

Load Memory Map File
Load Real

Load or Restart Execution
Load Status Register

Left Test for One

Load Workspace Pointer

Load Workspace Pointer
Immediate

Multiply Double
Precision Real

Move Word
Move Address
Move Byte
Move String

Format

11
11
I
I1
Il
I1

11
11

11
I1
I1

XVl

Vi

VI

VI
VIIi
XVIl
VIII

Vi
VII
XVIII
X1
XVIII
VIII

VI

XIX

XII

Paragraph
3.60
3.61
3.62
‘3 .63
3.64
3.65
3.66
3.67
3.68
3.69
3.70
3.71

3.72
3.73
3.74
375
3.76
3.77
3.78

3.79
3.80
3.81
3.82
3.83
3.84
3.85

3.86

3.87
3.88
3.89
3.90

Digital Systems Group

2250077-9701

Mnemonic
Operation
Code

MPY
MPYS
MR
MVSK
MVSR
NEG
NEGD
NEGR
NRM
ORI
ORM
POPS
PSHS
RSET
RTO
RTWP

SB
SBO
SBZ

SD

SEQB

SETO
SLA
SLAM

SLSL

SLSP

SM

Hexadecimal
Operation

Code

3800
01Co
0D00
00D0
00C0
0500
0Co3
0C02
0C08
0260
0027
00EQ
00F0
0360
001E
0380

6000
7000
1D00
1E00
0ECO

0050

0700
0A00
001D

0021

0022

0029

Name

Multiply

Multiply Signed
Multiply Real

Move String from Stack
Move String Reverse
Negate

Negate Double Precision
Negate Real

Normalize

OR Immediate

OR Multiple Precision
Pop String from Stack
Push String from Stack
Reset

Right Test for One

Return With Workspace
Pointer

Subtract Words
Subtract Bytes

Set CRU Bit to Logic One
Set CRU Bit to Logic Zero

Subtract Double Precision

Real

Search String for
Equal Byte

Set To One
Shift Left Arithmetic

Shift Left Arithmetic
Multiple Precision

Search List Logical
Address

Search List Physical
Address

Subtract Multiple
Precision Integer

Format

IX
VI
VI
X1l
X1
Vi
Vil
Vil
XI
VIII
X1
X1
X
VIl
XI
A28

11
11
\2!

X1

VI

XIIl

XX

XX

X1

Paragraph

391
3.92
393
3.94
3.95
3.96
397
3.98
3.99
3.100
3.101
3.102
3.103
3.104
3.105
3.106

3.107
3.108
3.109
3.110
3.111

3.112

3.113
3.114
3.115

3.116

3.117

3.118

E-4

Digital Systems Group

2250677-9761

Mnemonic
Operation
Code

SNEB

SOC
SOCB

SR
SRA
SRAM

SRC
SRJ

SRL
STCR

STD

STPC
STR
STST
STWP
SWPB
SWPM
SzC
SZCB

TB
TCMB
TMB
TS
TSMB

XF
XIT

Hexadecimal
Operation
Code

OE10

E000
F000

0CCo
0800
001C

0B00
0coC

0900
3400

0FCO

0030
0DCOo
02C0
02A0
06C0
0025
4000
5000

1F00
0COA
0C09
0E30
0COB
0480
0C30

0COE/
0COF

Name

Search String for Not
Equal Byte

Set Ones Corresponding

Set Ones Corresponding,
Byte

Subtract Real

Shift Right Arithmetic

Shift Right Arithmetic
Multiple Precision

Shift Right Circular

Subtract from Register
and Jump

Shift Right Logical

Store Communication
Register

Store Double Precision
Real

Store Program Counter

Store Real

Store Status

Store Workspace Pointer
Swap Bytes

Swap Multiple Precision
Set Zeros Corresponding

Set Zeros Corresponding,
Byte

Test Bit

Test and Clear Memory Bit

Test Memory Bit
Translate Strings

Test and Set Memory Bit
Execute

Extract Field

Exit from Floating
Point Interpreter

Format

X1l

\4!
|

VI
\Y
X1

XVl

v

VI

XVill
VI
XVIII
XVIHI
VI
X1

I1
X1V
X1V
Xl
X1V
VI
XVl
VIl

Paragraph
3.119

3.120
3.121

3.122
3.123
3.124

3.125
3.126

3.127
3.128

3.129

3.130
3.131
3.132
3.133
3.134
3.135
3.136
3.137

3.138
3.139
3.140
3.141
3.142
3.143
3.144
3.145

Digital Systems Group

2250077-9701

Mnemonic
Operation
Code

Xop
XOR
XORM

XV

Hexadecimal
Operation
Code

2C00
2800
0026

0C20

Name

Extended Operation
Exclusive OR

Exclusive OR Multiple
Precision

Extract Value

Format
IX
11
X1

XVI

Paragraph
3.146
3.147
3.148

3.149

Digital Systems Group

[o]
@ 2250077-9701

APPENDIX F

ASSEMBLER DIRECTIVE TABLE

The assembler directives for the Model 990/ 12 Computer assembly language are listed in table F-1.

- All'directives may include a comment field following the operand field. Those directives that do not
require an operand field may have a comment field following the operator field. Those directives that
have optional operand fields (RORG) and (END) may have comment fields only when they have
operand fields.

The following symbols and conventions are used in defining the syntax of assembler directives:

Angle brackets (< >) enclose items supplied by the user.
Brackets ([]) enclose optional items.
An ellipsis {. . .) indicates that the preceding item may be repeated.

Braces ({ }) enclose two or more items of which one must be chosen.

The following words are used in defining the items used in assembler directives:

symbol.

label — a symbol used in the label field.

string — a character string of a length defined for each directive.
exp — an expression.

wd-exp — well-defined expression.

term.

operation — mnemonic operation code, macro name, or previously defined operation or
extended operation.

*xf
-

Digital Systems Group

2250077-9701
Table F-1. Assembler Directives
Force Word

Directive Syntax Boundary Note
Output Options b. . . OPTIONS). . . <keyword>[,<keyword>]. .. p. . . [<comment>] NA I
Page Title [<label>]p. . . TITLp. . . '<string>p. . . [<comment>] NA
Program Identifier [<label>]p. . . IDTh. . . <string>'p. . . [<comment>] NA
Copy Source File [<label>]p. . . COPYp. . . <file name>b. . . [<comment>] NA
External Definition [<label>]p. . . DEFp. . . <symbol>[,<symbol>]. .. b. .. [<comment>] NA
External Reference [<label>]p. . . REFp. . . <symbol>[,<symbol>]. .. b. . . [comment>] NA
Secondary Reference [<label>]p. . . SREF}. . . <symbol>[.<symbol>]. .. p. . . [<comment>] NA
Force Load [<label>]p. . . LOAD}. . . <symbol>[,<symbol>]...p...[<comment>] NA
Absolute Origin [<label>]p. . . AORGH. . . <wd-exp>h. . . [<comment>] No
Relocatable Origin [<label>1b. . . RORG}D. . . [<exp>]p. . . [<comment>] No 23
Dummy Origin [<label>]p. . . DORG). . . <exp>h. . . [<comment>] No 2
Workspace Pointer [<label>1p. . . WPNTH. . . <label>p. . . [<comment>] NA
Block Starting With Symbol [<label>]p. . . BSSh. . . <wd-exp>p. . . [<comment>] No
Block Ending With Symbol [<label>]p. . . BESp. . . <wd-exp>h. . . [<comment>] No
Initialize Word [<label>]p. . . DATAD. . . <exp>[.<exp>]. .. b. . . [comment>] Yes
Initialize Text [<label>1p. . . TEXT). . . [-[J<<string>b. . . [<comment>] NA 4
Define Checkpoint Register [<label>]p. . . CKPTp. . . <wa>p. . . [<comment>] No
Define Extended Operation [<label>]p. . . DXOPp. . . <symbol><term>p. . . [<comment>] NA
Define Operation [<label>]p. . . DFOPp. . . <symbol>.<operation>p. . . [<comment>] NA
Define Assembly-Time Constant <label>b. . . EQUp. . . <exp>p. . . [<comment>] NA
Word Boundary [<label>]p. . . EVEND. . . [<comment>] Yes
No Source List [<label>]p. . . LNLp. . . [<comment>] NA
List Source [<label>]p. . . LISTP. . . [<comment™>] NA
Page Eject [<label>]p. . . PAGEp. . . [<comment>] NA
Initialize Byte [<label>1p. . . BYTED. . . <exp>[.<exp>). .. b. .. [<comment>] No
Program End [<label>]p. . . ENDp. . . [<symbol>]p. . . [<comment>] NA 3.5
Program Segment [<label>]p. . . PSEGP. . . [Kcomment>] No
Program Segment End [<label>]p. . . PENDp. . . [<comment>] No
Data Segment [<label>]p. . . DSEG}. . . [<comment>] No
Data Segment End [<labe>]b. . . DEND). . . [<comment>] No
Common Segment [<label>1p. . . CSEG). . . ['<string>7Tp. . . [<comment>] No 3
Common Segment End [<label>]p. . . CEND). . . [<comment>] No
Assemble If [<label>]p. . . ASMIFp. . . <wd-exp>p. . . [<comment>] NA
Assemble Else [<label>]p. . . ASMELS}. . . [<comment>] NA
Assemble End [<labe>]p. . . ASMEND®S. . . [<comment>] NA

NOTE
I. One of the <keyword>>s must be “12” to speciiy the 990/ 12 instruction set. Keywords

supported by SDSMAC are XREF, OBJ, SYMT, NOLIST, TUNLST, DUNLST,

BUNLST, MUNLST, and FUNL.

2. Any symbols in the expression must have been previously defined.
3. The comment field may be used only when the operand field is used.
4. The minus sign causes the assembler to negate the rightmost character.

5. The symbol must be previously defined.

Digital Systems Group

2250077-9701

APPENDIX G

MACRO LANGUAGE TABLE

The syntax of the statements that contain the Macro Language verbs is shown in the following table.

Statement
Macro
Variable
Assign

Name

PoPPuR
o to

Exit
Call

if

Else
End if
End

Syntax
<macro name>p. . . SMACRO®b. . . [<parm>][,<parm>]. .. b. .. [<comment>]
b. . . SVARB. . . <var>[<var>]. . . p. . . [<comment>]

p. . . SASGh. . . <expression>PTOp <var>h. . . [<comment>]
<string>
<label>p. . . SNAMED. . . [<comment>]

p. . . 3GOTOD. . . labe>p. . . [<commeni>]

B. . . SEXITH. . . [<comment>]

B. . . $CALLp. . . <macro name>ph. . . [<comment>]

b. . . $IFp. . . <expression>p. . . [<comment>]

b. . . SELSEp. . . [<comment>]

B. . . SENDIFp. . . [<commeni>]

<label>h. . . SENDb. . . <macro name>p. . . [<comment>]

Macro Variable Components

Qualifier

H< >0

Meaning

The string component of the variable.
The attribute component of the variable.
The value component of the variable.
The length component of the variable.

Symbol Components

Qualifier

SS
Sv
SA
SL
SU
SG

Meaning

String component of a symbol that is the string component of a variable.
Value component of a symbol that is the string component of a variable.
Attribute component of a symbol that is the string component of a variable.
Length component of a symbol that is the string component of a variable.
User attribute component of a symbol that is the string component of a variable.
Segment component of a symbol that is the string component of a variable.

G-1/G-2 Digital Systems Group

(o]
@ 2250077-9701

APPENDIX H
CRU INTERFACE EXAMPLE

H.1 GENERAL

This appendix contains an example of programming for a CRU device to aid the user in
programming any CRU device which the executive does not support. A medium-speed line prmter
having the characteristics listed in table H-1 is used as an example device, although this device is
supported by the executives.

Table H-1. Medium-Speed Line Printer Characteristics

Function Description
Print line length 80 characters maximum
Paper width Variable, up to 9-1/2 inches, sprocket-fed
Character format 5X7 dot matrix, 10 characters per inch (horiz)

6 lines per inch (vertical)

Printer speed 60 lines per minute for 80 character lines or
150 lines per minute for 20 character lines

Printer input buffer 80 characters
Buffer data rate 75,000 characters per second (8-bit characters

supplied in parallel) maximum

H.2 SOFTWARE INTERFACE REQUIREMENTS

The control characters recognized by the line printer and the control and response signals for the
printer are listed in table H-2. An arbitrary CRU signal arrangement shown in figure H-1 has been
selected for this example.

H.2.1 ASSEMBLY LANGUAGE INSTRUCTIONS
The available assembly language instructions that may be used to cause data transfers between the
CRU and the printer are:

e SBO — Set Bit to Logic One

e SBZ — Set Bit to Logic Zero

¢ LDCR — Load Communications Register

o TB — Test Bit

The instructions are described and examples of their use are shown in Section IIL.

H-1 Digital Systems Group

2250077-9701

Table H-2. Printer Control and Response Signals

Signal
Control Characters
LF
CR
TOF
PS
PP
PD

Discrete Signals

Definition

Line Feed
Carriage Return
Top of Form
Printer Strobe
Printer Prime

Printer De-select

Hexadecimal Value

0Ass
0Dss
0Cs

s
FFie

1316

PS Paper Low—

PSD Printer Selected—

PF Printer Fault—

BSY Printer Busy—

IM Interrupt Mask—

IR Interrupt Reset—

ACK Acknowledge—
*— Signal from printer
— Signal to printer

H-2 Digital Systems Group

o
é@ 2250077-9701

CRU BITS

o = O (O IO (U bW [N]=]O

- et | s e
ajid jwin = O

CRU GUTPUTS

DATA BIT 0 (LSB) BUSY
DATA BIT 1 FAULT
DATA BIT 2 SELECTED
DATA BIT 3 NOT USED
DATA BIT 4 NOT USED
DATA BIT 5 NOT USED
DATA BIT 6 NOT USED
DATA BIT 7 (MSB) NOT USED
STROBE NOT USED
PRIME NOT USED
NOT USED NOT USED
NOT USED NOT USED
NOT USED NOT USED
NOT USED NOT USED
INTERRUPT MASK NOT USED
INTERRUPT RESET ACKNOWLEDGE -

Figure H-1. CRU Bit Assignments

H.2.2 SOFTWARE ROUTINES REQUIRED

To properly operate the medium-speed line printer, software routines must provide initialization,
character transfer, and end-of-data reporting. The following paragraphs define these operations and
provide specific programming examples.

H.2.2.1 INITIALIZATION. Initialization should occur when power is applied to the system. A
generalized approach to initialization with specific printer initialization follows:

AORG 0

DATA PWRONW
DATA PWRONP
RORG

PWRONP EQU

PRBASE EQU

PRIME EQU
STROBE EQU
MASK EQU
INT EQU

>120

14
15

INITIALIZE POWER ON
INTERRUPT VECTOR

OTHER VECTORS

REMAINDER OF PROGRAM RELOCATABLE
POWER ON INITIALIZATION

OTHER INITIALIZATIONS

CONNECTED TO MODULE SELECT 9
RESET PRINTER

TAKE DATA

INTERRUPT MASK

INTERRUPT RESET

H-3 Digital Systems Group

[o]
{@ 2250077-9701

BUSY EQU 0 PRINTER BUSY

*

* PRINTER INITIALIZATION
LI 12,PRBASE LOAD CRU BASE ADDRESS
SBZ PRIME SET PRIME TO ZERO
SBZ STROBE SET STROBE TO ZERO

SBZ MASK MASK INTERRUPTS

H.2.2.2 CHARACTER TRANSFER. Character transfer can be accomplished as follows by the use
of a subroutine call. The assumptions for the subroutine are:

® Workspace register 8 (WRS8) contains the address of the data to be printed.
® Workspace register 9 (WR9) is used for temporary storage.

e Workspace register 10 (WR10) contains the number of characters to transfer.
® Workspace register 12 (WR12) contains the CRU base address.

The following subroutine is one method of transferring characters to the printer:

PRINTR EQU § PRINT SUBROUTINE

*

* SET UP INTERRUPTS

%*
SBZ INT RESET INTERRUPT
LIMI 15 ENABLE LEVEL 15
SBO MASK ENABLE INTERRUPTS

*

* TEST FOR PRINTER BUSY, PRINT IF NOT

* BUSY, WAIT FOR ANY INTERRUPT IF BUSY

* AND RETRY TEST

%*

TSTBSY TB BUSY TEST BUSY BIT
JEQ PRINT JUMP IF NOT BUSY
IDLE WAIT IF BUSY

JMP TSTBSY RETRY TEST
* CHARACTER PRINT SUBROUTINE

*

PRINT EQU $ START
MOVB *8+9 WR9 CONTAINS PRINT CHAR
INV 9 INVERT BITS (FALSE DATA)
LDCR 9.8 OUTPUT TO PRINTER

SBO STROBE PULSE STROBE LINE

SBZ STROBE ABOUT 1.5 MICROSECONDS

DEC 10 DECREMENT CHARACTER COUNT
JEQ EXIT EXIT IF COMPLETE

H-4 Digital Systems Group

[o]
{@ 2250077-9701

JMP TSTBSY GO FOR NEXT CHARACTER

%*

* EXIT CODE

*

EXIT SBZ MASK MASK INTERRUPT
RTWP RETURN TO CALLER

H.2.2.3 END-OF-DATA REPORTING. End-of-data reporting in the example subroutine is the
exit code, which is executed when the character count in WR10 reaches zero. The code masks the
interrupt and returns control to the calling routine.

H.2.2.4 INTERRUPT ROUTINE. In the character transfer subroutine, the CPU enters an idle state
when the printer is busy. The occurrence of any enabled interrupt signal causes the CPU to resume
processing. The printer is assumed to be connected at interrupt level 15, and all levels are enabled
following execution of the LIMI 15 instruction. The following interrupt routine resets the printer
interrupt and returns control to the instruction following the interrupted instruction, the JMP
TSTBSY instruction, in this case:

AORG >3C INTERRUPT LEVEL 15 VECTOR

DATA PRIWP WORKSPACE ADDRESS

DATA PRIPC PROGRAM ADDRESS
PRIWP RORG §$-24 : SET WORKSPACE ADDRESS RELATIVE TO

DATA PRBASE CRU BASE ADDRESS

RORG §$+6 RESERVE REMAINDER OF WORKSPACE
PRIPC EQU $ INTERRUPT ROUTINE

SBZ INT RESET INTERRUPT

RTWP

H.2.3 PROGRAMMING NOTES

A specific device to be programmed might require more sophisticated routines. These are intended to
show possible ways of programming input and output for a CRU device. Error tests may be included
to transfer control to error recovery routines when errors are detected. Error recovery routines may
simply indicate the occurrence of an error or may correct or overcome the error.

H-5/H-6 Digital Systems Group

2250077-9701

APPENDIX 1
TILINE INTERFACE EXAMPLE

I.1 INTRODUCTION ‘ . .
This appendix contains an example of programming for a TILINE device to aid the user in
programming any TILINE device which the executive does not support. Figure I-1 shows a typical
TILINE device, a disk controller, which is used for this example. Actual input/output for the disk is
provided by the executive. This example is only intended to illustrate the principles involved in
TILINE input/output programming.

INTERRUPT

V SIGNAL

I

! A

" 1}
AU MASTER| I

MASTER jg—p DIsSC

CONTROLLER

MEMORYM——P| SLAVE ~===9
1]]
SLAVE ‘-—ﬂ ! J
' Se== UNIT UNlT UNlT UNIT
TILINE L !g————J
AN
/ Y
CONTROL REGISTERS
TYPICAL CORRESPONDING ADDRESS
(o] 7 8 15 TILINE ADDRESS USED BY PROGRAM
DISC STATUS FFCOO F800
COMMAND FORMAT FFCO1 F802
SECTOR SURFACE FFCO2 F804
CYLINDER ADDRESS FFCO03 F806
WORD COUNT FFCO4 F808
MEMORY ADDRESS FFCO5 F80A
EXT. MA SELECTION FFCO6 F80C
CONTROLLER STATUS FFCO7 F80E

BUSY/ACTIVATE

Figure I-1. TILINE Device Controller Example

I-1

Digital Systems Group

o
@ 2250077-9701

1.2 PERIPHERAL CONTROLLER APPLICATION

Controllers for peripheral devices connected to the TILINE have a master interface for transferring
data to and from memory. They also have a slave interface for receiving command information from
the AU and for sending status information to the AU. A simplified block diagram for a disk
controller is shown in figure I-1. Typical use of control registers accessed by the slave interface is also
shown in figure I-1. It is assumed that address F800¢ is assigned to the controller. This corresponds
to TILINE address FFC00;s. A program would operate the disk controller by moving the
appropriate parameters into the control registers and setting the activate bit as follows:

PARAMS DATA >017F COMMAND,FORMAT
DATA >0000 SECTOR,SURFACE
DATA 0 CYLINDER ADDRESS
DATA >1000 WORD COUNT
DATA BUFF MEMORY ADDRESS
DATA >0201 EXT. MA,SELECTION

%*

* TEST FOR DISK CONTROLLER BUSY

*

L1 7,>7FFF WR7=BUSY TEST MASK
cocC @>F80E,7 TEST FOR BUSY
JNE BUSY IF NOT

*

* TRANSFER DISK PARAMETER LIST FROM MEMORY TO
* DISK CONTROLLER

*

LI 8,PARAMS WR8=PARAMETER LIST ADDRESS

LI 9,>F802 WR9=DISK CONTROLLER ADDRESS
FILL MOV *8+,*9+ MOVE LIST WORD TO CONTROLLER

CI 9,>F80E STOP WHEN WR9=CONT. STATUS ADDR.

JNE FILL

INV 7 WR7=>8000

SOC 7,*9 SET ACTIVATE BIT

The disk controller performs the action requested in the command register. During the time the
controller is active, the busy flag is on. When the operation is complete the busy flag is turned off and
an interrupt signal is generated. The interrupt can be connected to an external interrupt input line, as
determined by the system designer.

12 Digital Systems Group

o]
‘r@; 2250077-9701

APPENDIX J

EXAMPLE PROGRAM

J.1 CREATING A SOURCE PROGRAM

The multi-pass assembler (SDSMAC) executes under DX10. It requires a source input device, a
printing device, a scratch file on disk, and an object file on disk. Refer to the Model 999 Computer
DX10 Operating System Reference Manual, Volume V, part number 946250-9705 for information
about loading and executing DX10, assigning the devices, and loading and executing SDSMAC.

J.2 EXAMPLE PROGRAM

The source program shown in figure J-1 is an example of a source program written on coding forms
from which the source programs are prepared. Figure J-2 shows the listing produced by the
assembler. The message printed as the program is executed is shown in figure J-3. The program
executes on a 990 computer with a 733 ASR and assumes that the CRU base address for the 733
ASR iS 00016-

Digital Systems Group

™
1
o

r

dnoug swaisAs [enbiq

TEXAS INSTRUMENTS

INCORPORATED

MODEL 990/TMS 9900 ASSEMBLY LANGUAGE CODING FORM

LABEL OPER OPERAND COMMENTS
| I 13 20 25 31 35 40 45 50 55 60
t[T[u] [*[n]e[c[L]o] ! |P|R@]6|R[A|M]"
RE RipGRA M [PIRITINT|S| [[HE[L]L o Y]] (BN [T[R[E] [TIE|L|E]PIR[E R 7
p[T|R E|au p|alT[A| [T[€[r]M[1[n][A[c] [R[E[a]D]Y].]
Wir[Q E[Q|u wr[1|T]e] [r[E[a]u|e]s]|T |
R[T|S E[a]u R[ejofule]s[T] [T|o| [s|e[n[o].
Als[r[1]o] | [ela]u s|r|7(3[3]/]3[3] |1|D
p[s[r ElQfu p|a|T|A] |s|elt] [R|E|A[D
*
HlE[L[L]e
Wl G|s 1n1]t]t]alL]1]z[e] [w]o|r]k|s|p]alc|e 1{n[T]e
1M1 | o|1|s{als|Le] [1|n|T[e|r[R[u]P|T
I .0 i|n]1{t]t]al]t]z]e] [c[r]u] |8]a]s]e]. -
L 7(Al8[L[E L|o[alo] |7]a[8[L|€] [alo[o[r]E]s B
slslp R
LIp@|P SiB|p S
PROGRAM PROGRAMMED BY .CHARGE PAGE OF

Figure J-1. Example Program (Sheet 1 of 4)

10L6-LLOOSTT

gr

dnoug) swasAs jexbiq

TEXAS INSTRUMENTS

INCORPORATED

MODEL 990/TMS 9800 ASSEMBLY LANGUAGE CODING FORM

LABEL OPER OPERAND COMMENTS
t 6| |s 1y 3 20 25 31 35 40 45 50 55
Mlo|v|B +|,|8 GIE|T] |A AlR TIE{R].
JILIT ST LIAIS|T] {C RIA E{R|?
BiL UvTc NjO],| |P|U IHT Uit
J(MP pip
LIAIS|T
B|L ujT|C UiT| T uj|T].
S|T[@|P
I{DILIE
*
* QUITIPIUIT] |RIBIU|T El.
PUIT|C
T|B RII{D CIHIE|CIK R .
JIEQ T GIp| [FIPIR TlY
PROGRAM PROGRAMMED BY CHARGE PAGE OF

Figure J-1. Example Program (Sheet 2 of 4)

10L6-LLOOSTT

v-r

dnoug swaisAs 1ebiq

TEXAS INSTRUMENTS

INCORPORATED
MODEL 990/TMS 9900 ASSEMBLY LANGUAGE CODING FORM

LABEL OPER OPERAND COMMENTS

I 8 1] 13 20 25 31 35 40 45 55 60
MTo[V IRE sTATV]E[[R[E[T[ulR]N]
B[L olulT s|e[n[o]| [c]n[al[r[a]c|T]E[r
5Bz s T/ 1im{1|n[e] [Flolr] Jals[r[7]3]3
B|L plulT |
B|L plulT B
BJL plult N
slslp 1ls g
B 5 RIEIT|ulRIN| [Tle] [clalu]ilelr

* —

plulr B]

bINLINE] Tl s |R alsR| Join| liinlel]
b v e NJL [T]E waloi | iielol] Joie] lrls i

i

L bkR] [lsl.ls purlp | halRalelrER] i

PROGRAM PROGRAMMED BY CHARGE PAGE OF

Figure J-1. Example Program (Sheet 3 of 4)

10L6-LLOOSTT

TEXAS INSTRUMENTS

INCORPORATED
MODEL 990/TMS 9900 ASSEMBLY LANGUAGE CODING FORM

LABEL OPER OPERAND COMMENTS
I 6| |s n| s 20 25 31 35 40 45 50
WAITIT T|B WiRIQ WAITIT] [N [I]T].

J{N|E WA T[T

S|B(P “|W[R]Q

B 1 RIE|TIUIRIN| |T|@| {CIA[L|L|E|R|.

T0L6-LLO0SZT -

anoux) swalsAs jexbiq

T|al8[L]E
ARG ‘HE[L[L]p]
BlY[T[E 1 |+[>]8lo] | | sie|T| [plA[R]TT]Y] [BlI]T
Efv]e|n j
RIE[Gs Bls|s 3[2 wipRik[sIP|alc|e] [alrlE]a
EIND| | | [W]E[L]L]0 .
PROGRAM PROGRAMMED BY CHARGE PAGE

Figure J-1. Example Program (Sheet 4 of 4)

[o]
(J:@D 2250077-9701

nont +THIS PROGRAM FPRIMTZ “HELLO'® OM THE TELEFFRIMTEF.

ooz oauns DTR Eog = ARTA TERMIMAL FERDY.

noos NDO0E LER ECd 11 MFITE FFHHE -T.

000 QooR RTE ECL 10 ZEMD.

nans Q00R ASRID EQML 10 SRETY22.33 10,

nones OonaE DER ECL 1s DHTH “ET FERDY.

nony +

Dons HELLD

Snnns o onon NZed LWFI FEGZ IMITIRLIZE WORESPACE FOIMTER.

D00 ————

0ol ooos 0360 LIMI 0 DIZRELE INTERFUFRTE.
D ﬂﬂuu

no1l oooE 02nc LI 12«0 IMITIALIZE CFUJ EBREZE.
DOoA 000D

onlE oo ggog LI 2+ TRELE LDADN TRELE RIDDREZZ.
DOnE ————

aolz 0010 1Do9 ZEOD DTFE

nois G012 1DoR LDOR RO FRTE

oMs onls DEaEg MOVE #2432 ET A CHARACTER.

anle onte 11-- JLT LAET LAZT CHARRCTERY

oLy oois 0RRD EL FFUTC HOs FPLUT IT DOUT.
iR ———-—-

aois anic 10FRA JMP LDOF

onys LAET
N1+« 1 03

nozo O0iE O&RD EL PRUTC FUT IT DUT.
COOE0 ———

NSl 002E 0240 IDLE =TOF.

nonas +

Nz +[LUTPUT FOUTIMNE.
s +
an2s FUTLC

DO1R++INZSG 7

NOS e+ N0z
e o0nEas 1F A TE FEZRIT CHECK REIRE ID.
N2y nnge 13-—— JEZ OUT =0 FOR TTY.
noga anzs ClaE . Moy 1145 ZHAYE FETLUFRM,
nnzs oNzR 0sRD EL 20UT ZEMD CHRRACTER.

-

ON2L ——=—-
aQzn 00ZE 1EOA =RZ FTE TIMIMG FOR AZRTEE.
an=t nn:n NaAD EL 00T

NER D EL FOUT

R EL P0OUT

nnEs

nnz3

n3s O03C 1DoR _ ZEOD RTE

D025 002E . N=S5 E +5 FETURM TD CALLEF.
QO0ZE +

a3y auT

0= Hﬁ‘rllllwll"‘

Figure J-2. Assembly Listing of Example Program (Sheet 1 of 2)

J-6 Digital Systems Group

(o]
4@ 2250077-9701

o ansn
= s
Vi Pl B
O0GeE
Onss
noasA
YN N$SE

g
H0ss
TS
0SS
aNgs
anat

NODE++N0SE "

0ogE G5
ans3 H1

nogs
Das

nasn

nost 005

QOO ++ 0057

nosg
nnnn ERRORE
REM-TERMT T

TE I=ER
AME -2
LDCRE =3
TE LR
JdHE | -2
SRO WFR
E +11

*

+MEZIARE THELE.

THELE

TEXT “HELLO-

EYTE 7t~
EVEM
FERE BEE =2

EMD HELLD

ARZFE OMLIMEY
WRIT TILL IT IZ.
OUTFLT CHRFACTEER.
WRIT O IT.

RETURM TO CRLLEFR.

ZET PRRITY EIT.

WOREEZFPARCE HFEER.

Figure J-2. Assembly Listing of Example Program (Sheet 2 of 2)

HELLO!

Figure J-3. Example Program Message

J-7/3-8

Digital Systems Group

o]
e@ 2250077-9701

APPENDIX K
NUMERICAL TABLES

K-1 Digital Systems Group

2250077-9701

Table K-1. Hexadecimal Arithmetic

ADDITION TABLE
0 1 2 3 4 5 6 7 8 9 A B C D E F
1 02 03 04 05 06 07 08 09 OA 0B 0OC OD OE OF 10
2 03 04 05 06 07 08 09 O0A OB 0C OD OE OF 10 11
3 04 05 06 07 08 09 OA OB OC 0D OE OF 10 11 12
4 05 06 07 08 09 O0A OB 0C OD OE OF 10 11 12 13
5 06 07 08 09 OA OB 0C OD OE OF 10 11 12 13 14
6 07 08 09 0A 0B OC 0D OE OF 10 11 12 13 14 15
7 08 09 O0A OB 0C OD OE OF 10 11 12 13 14 15 16
8 09 O0A OB 0C OD OE OF 10 11 12 13 14 15 16 17
9 0A 0B OC 0D OE OF 10 11 12 13 14 15 16 17 18
A OB OC OD OE OF 10 11 12 13 14 15 16 17 18 19
B oC 0D OE OF 10 11 12 13 14 15 16 17 18 19 1A
C 0D OE OF 10 11 12 13 14 15 16 17 18 19 1A 1B
D OE OF 10 11 12 13 14 15 16 17 18 19 1A 1B 1IC
E OF 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D
F 10 11 12 13 14 15 16 17 18 19 1A 1B 1¢ 1D 1E
MULTIPLICATION TABLE

1 2 3 4 5 6 7 8 9 A B C D E F

2 04 06 08 O0A OC OE 10 12 14 16 18 1A 1C 1E

3 06 09 0C OF 12 15 18 1B 1E 21 24 27 2A 2D

4 08 0C 10 14 18 1C 20 24 28 2¢ 30 34 38 3C

5 0A OF 14 19 1E 23 28 2D 32 37 3C 41 46 4B

6 oC 12 18 1E 24 2A 30 36 3C 42 48 4E 54 S5A

7 OE 15 1C 23 2A 31 38 3F 46 4D 54 5B 62 69

8 10 18 20 28 30 38 40 48 50 58 60 68 70 78

9 12 1B 24 2D 36 3F 48 51 SA 63 6C 75 7E 87

A 14 1E 28 32 3C 46 50 5A 64 6E 78 82 8C 96

B 16 21 2C 37 42 4D 58 63 6E 79 84 8F 9A A5

C 18 24 30 3C 48 54 60 6C 78 84 90 9C A8 B4

D 1A 27 34 41 4E 5B 68 75 82 8F 9C A9 B6 C3

E 1C 2A 38 46 54 62 70 7E 8C 9A A8 B6 C4 D2

F 1E 2D 3C 4B 5A 69 78 87 96 A5 B4 C3 D2 E1
K-2 Digital Systems Group

2250077-9761

Table X-2. Table of Powers of 1653

16" n 161
1 0 0.10000 00000 00000 00000 x 10
16 1 0.62500 00000 00000 00000 x 101
256 2 0.39062 50000 00000 00000 x 10~ 2
4 096 3 0.24414 06250 00000 00000 x 1073
65 536 4 0.15258 78906 25000 00000 x 104
1 048 576 5 0.95367 43164 06250 00000 x 10~
16 777 216 6 0.59604 64477 53906 25000 x 1077
268 435 456 7 0.37252 90298 46191 40625 x 10~°
4 294 967 296 8 0.23283 06436 53869 62891 x 107 °
68 719 476 736 9 0.14551 91522 83668 51807 x 1010
1 099 511 627 776 10 0.90949 47017 72928 23792 x 10~ 12
17 592 186 044 416 11 0.56843 41886 08080 14870 x 1013
281 474 976 710 656 12 0.35527 13678 80050 09294 x 1014
4 503 599 627 370 496 13 0.22204 46049 25031 30808 x 1015
72 057 594 037 927 936 14 0.13877 78780 78144 56755 x 10’6
1 152 921 504 606 846 976 15 0.86736 17379 88403 54721 x 1018

Table K-3. Table of Powers of l!)l 6

10" n 10"
1 0 1.0000 0000 0000 0000
A 1 0.1999 9999 9999 999A

64 2 0.28F5 C28F 5C28 F5C3 x 161
3E8 3 0.4189 374B C6A7 EF9E x 162
2710 4 0.68DB 8BAC 710C B296 x 163
1 86A0 5 0.A7C5 AC47 1B47 8423 x 164
F 4240 6 0.10C6 F7A0 BSED 8D37 x 164
98 9680 7 0.1AD7 F29A BCAF 4858 x 167>
5F5 E100 8 0.2AF3 1DC4 6118 73BF x 16~
3B9A CA00 9 0.44B8 2FA0 9B5A 52CC x 16/
2 540B E400 10 0.6DF3 7F67 SEF6 EADF x 16
17 4876 E800 11 0.AFEB FFOB CB24 AAFF x 16~
E8 D4AS 1000 12 0.1197 ~ 9981 2DEA 1119 x 16~
918 4E72 A000 13 0.1C25 €268 4976 81C2 x 1610
5AF3 107A 4000 14 0.2D09 370D 4257 3604 x 1611
3 8D7E A4C6 8000 15 0480E BE7B 9D58 566D x 16712
23 86F2 6FC1 0000 16 0.734A CASF 6226 FOAE x 16~ 13
163 4578 5DSA 0000 17 0.B877 AA32 36A4 B449 x 16714
DEO B6B3 A764 0000 18 0.1272 5DD1 D243 ABA1 x 16714
8ACT 2304 89E8 0000 19 0.1D83 C94F B6D2 AC35 x 16713

K-3 Digital Systems Group

2250077-9701

268
536
1 073
2 147

-

16
32

65
131
262
524

048
097
194
k}.1.]

554
108
217

435
870
741
483

768

536
072
144
288

576
152
304
608

216
432
864
728

456
912
824
648

Table K-4. Table of Powers of Two

wWNmo B

N o e

10
11

12
13
14
15

16
17
18
19

20
21
22
23

24
25
26
27

28
29
30
31

2—"

1.0
0.5
0.25
0.125

0.062
0.031
0.015
0.007

0.003
0.001
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

25
625
812

906
953
976
488

244
122
061
030

015
007
003
001

000
000
000
000

000
000
000
000

000
000
000
000

25

125
562
281

140
070
035
517

258
629
814
907

953
476
238
119

059
029
014
007

003
001
000
000

625
312
156
578

789
394
697
348

674
837
418
209

604
802
901
450

725
862
931
465

25
125

062
531
265
632

316
158
579
289

644
322
161
580

290
645
322
661

25
625
812

406
203
101
550

775
387
193
596

298
149
574
287

5

25

125
562
781

390
695
847
923

461
230
615
307

5
25

625
312
656
828

914
957
478

2739

25
125

062 5

031 25
515.625
257 812 §

Digital Systems Group

2250077-9761

Table K-5. Hexadecimal-Decimal Integer
Conversion Table

The table appearing on the following pages provides a mears for direct conversion of decimal integers in the
range of 0 to 4095 and for hexadecimal integers in the range of 0 to FFF.

To convert numbers above those ranges, add table values to the figures below:

Hexadecimal Decimal Hexadecimal Decimal
01 000 4 096 20 000 131072
02 000 8192 30000 196 608
03 000 12 288 40 000 262 144
04 000 16 384 50 000 327 680
05 000 20 480 60 000 393 216
06 000 24 576 70 000 458 752
07 000 28 672 80 000 524 288
08 000 32768 90 000 589 824
09 000 36 864 A0 000 655 360
0A 000 40 960 . B0 000 720 896
0B 000 45 056 C0 000 786 432
0C 000 49 152 DO 000 ~ 851968
0D 000 53248 EO 000 917 504
OE 000 57 344 FO 000 983 040
OF 000 61 440 100 000 1 048 576
10 0600 65 536 200 000 2 097 152
11 000 69 632 300 000 3145728
12 000 73728 400 000 4194 304
13 000 77 824 500 000 5 242 880
14 000 81 920 600 000 6 291 456
15 000 86 016 700 000 7 340 032
16 000 90112 800 000 8 388 608
17 000 94 208 900 000 9437184
18 000 98 304 A00 000 10 485 760
19 000 102 400 B0O 000 11 534 336
1A 000 106 496 C00 000 12 582912
1B 000 110592 D00 000 13 631 488
1C 000 114 688 E00 000 14 680 064
1D 000 118 784 F00 000 15 728 640
1E 000 122 880 1 000 000 16 777 216

1F 000 126 976 2 000 000 33554 432

K-5 Digital Systems Group

2250077-9701

Table K-5. Hexadecimal—Decimal Integer Conversion Table (Cont.)

0 1 2 3 4 5 6 7 8 9 A B C D E F
000 0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015
010 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031
020 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047
030 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063
040 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079
050 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095
060 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111
070 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127
080 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143
090 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159

0AO0 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175
0BO 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191

0Co 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207
0DO0 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223
0EO 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239
OF0 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255

100 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271
110 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287
120 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303
130 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319

140 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335
150 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351
160 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367
170 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383

180 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399
190 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415
1A0 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431
1B0 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447 -

1Co 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463
1D0 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479
1EO 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495
1F0 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511

200 0512 0513 0514 0515 0516 0517 0518 0519 0529 0521 0522 0523 0524 0525 0526 0527
210 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
220 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559
230 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575

240 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591
250 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
260 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623
270 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639

280 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655
290 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671
2A0 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687
2B0 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703

2C0 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719
2D0 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735
2E0 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751
2F0 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767

K-6 Digital Systems Group

2250077-9701

Tabie K-5. Hexadecimai—Decimai integer Conversion Tabie (Cont.)

0 1 2 3 4 5 6 7 8 S A B C D E F
300 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
310 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
320 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
330 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831
340 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847
350 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863
360 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 087¢ 0877 0878 0879

370 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895

380 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911
390 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927
3A0 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943
3B0O 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959

3Co 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975
3D0 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991
3E0 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007

3F0 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
400 1024 1025 0126 0127 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
410 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
420 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
430 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
440 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
450 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
460 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 113i 1132 1133 1134 1135
470 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
480 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
490 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
4A0 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
4B0O 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
4C0 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231

4D0 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
4E0 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
4F0 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

500 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1291 1293 1294 1295
510 1296 1297 1298 1299 1399 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
520 1312 1313 1314 1315 1316 1317 1318 1319 1329 1321 1322 1323 1324 1325 1326 1327
530 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
540 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1367 1358 1359
550 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
560 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
570 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
580 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1429 1421 1422 1423
590 1324 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439

5A0 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
3B0 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

5C0 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
5DO 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
5E0 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
5F0 1520 1521 1522 1523 1524 1515 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

K-7 Digital Systems Group

2250077-9701

Table K-5. Hexadecimal—-Decimal Integer Conversion Table (Cont.)

0 1 2 3 4 5 6 7 8 9 A B C D E F
600 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
610 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
620 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
630 1584 1585 1586 1587 1588 1589 1590 1591 1592 1592 1594 1595 1596 1597 1598 1599
640 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
650 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
660 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
670 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
680 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
690 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
6A0 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
6B0 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 17231 1724 1725 1726 1727
6CO 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
6D0 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
6E0 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
6F0 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
700 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 8102 1803 1804 1805 1806 1807
710 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
720 1824 1825 1826 1827 1818 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
730 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
740 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
750 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
760 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1909 1902 1903
770 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
780 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
790 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
7A0 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
780 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1975 1980 1981 1982 1983

7C0 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
7D0 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

7E0 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
7F0 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
800 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
810 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
820 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
830 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
840 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
850 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
860 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
870 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
880 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
890 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
8A0 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
8B0 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
8Co 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
8D0 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
8EOQ 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
8F0 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303

K-8 Digital Systems Group

2250077-9701

Tabie K-5 Hexadecimai—Decimai integer Conversion Tabie (Cont.)

0 1 2 3 4 5 6 7 8 9 A B Cc D E F
900 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
910 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
920 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351

930 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367

940 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
950 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 3496 2397 2398 2399

960 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
970 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
980 2432 2433 2434 24351 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
990 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463

9A0 2464 2465 2466 2467 2468 2469 2479 2471 2472 2473 2474 2475 2476 2477 2478 2479
9B0 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495

9Co 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
9D0 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
9EO0 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
9F0 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

A00 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 257¢ 2571 2572 2573 2574 2575
Al0 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
A20 2592 2593 2594 2595 2596 2597 2598.2599 2600 2601 2602 2603 2604 2605 2606 2607
A30 2608 2609 2610 2611 2612 2613 2614 2615 2626 2617 2618 2619 2620 2621 2622 2623

A40 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
A50 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
A60 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
A70 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687

A80 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
A90 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
AAO0 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
ABO 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751

ACO 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
ADO 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AEQ 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AFO0 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815

B0OO 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
B10 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
B20 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
B30 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879

B40 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
B50 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
B60 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
B70 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943

B8O 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
B90 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
BAO 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
BBO 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007

BCO 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
BDO 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BEO 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
BFO 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

K-9 Digital Systemns Group

Co0
Cc10
cz2o
C30

C50
C60
C70

C80
C90
CAO0
CBO

cco
CDo
CEO
CFO0

D00
D10
D20
D30

D40
D50
D60
D70

D80
D90
DAO
DBO

DCO
DDo
DEO
DFo

Eoo
E10
EB20
E30

E40
E50
E60
E70

E80
E90
EAO
EBO

2250077-9701

Table K-5. Hexadecimal—Decimal Integer Conversion Table (Cont.)

0 1 2 3

3072 3073 3074 3075
3088 3089 3090 3091
3104 3105 3106 3107
3120 3121 3122 3123

3136 3137 3138 3139
3152 3153 3154 3155
3168 3169 3170 3171
3184 3185 3186 3187

3200 3201 3202 3203
3216 3217 3218 3219
3232 3233 3234 3235
3248 3249 3250 3251

3264 3265 3266 3267
3280 3281 3282 3283
3296 3297 3298 3299
3312 3313 3314 3315

3328 3329 3330 3331
3344 3345 3346 3347
3360 3361 3362 3363
3376 3377 3378 3379

3392 3393 3394 3395
3408 3409 3410 3411
3424 3425 3426 3427
3440 3441 3442 3443

3456 3457 3458 3459
3472 3473 3474 3475
3488 3489 3490 3491
3504 3505 3506 3507

3520 3521 3522 3523
3536 3537 3538 3539
3552 3553 3554 3555
3568 3569 3570 3571

3584 3585 3586 3587
3600 3601 3602 3603
3616 3617 3618 3619
3632 3633 3634 3635

3648 3649 3650 3651
3664 3665 3666 3667
3680 3681 3682 3683
3696 3697 3698 3699

3712 3713 3714 3715
3728 3729 3730 3731
3744 3745 3746 3747
3760 3761 3762 3763

4 5 6 7

3076 3077 3078 3079
3092 3093 3094 3095
3108 3109 3110 3111
3124 3125 3126 3127

3140 3141 3142 3143
3156 3157 3158 3159
3172 3173 3174 3175
3188 3189 3190 3191

3204 3205 3206 3207
3220 3221 3222 3223
3236 3237 3238 3239
3252 3253 3254 3255

3268 3269 3270 3271
3284 3285 3286 3287
3300 3301 3302 3303
3316 3317 3318 3319

3332 3333 3334 3335
3348 3349 3350 3351
3364 3365 3366 3367
3380 3381 3382 3383

3396 3397 3398 3399
3412 3413 3414 3415
3428 3429 3430 3431
3444 3445 3446 3447

3460 3461 3462 3463
3476 3477 3478 3479
3492 3493 3494 3495
3508 3509 3510 3511

3524 3525 3526 3527
3540 3541 3542 3543
3556 3557 3558 3559
3572 3573 3574 3575

3588 3589 3590 3591
3604 3605 3606 3607
3620 3621 3622 3623
3636 3637 3638 3639

3652 3653 3654 3655
3668 3669 3670 3671
3684 3685 3686 3687
3700 3701 3702 3703

3716 3717 3718 3719
3732 3733 3734 3735
3748 3749 3750 3751
3764 3765 3766 3767

8 9 A B

3080 3081 3082 3083
3096 3097 3098 3099
3112 3113 3114 3115
3128 3129 3130 3131

3144 3145 3146 3147
3160 3161 3162 3163
3176 3177 3178 3179
3192 3193 3194 3195

3208 3209 3210 3211
3224 3225 3226 3227
3240 3241 3242 3243
3256 3257 3258 3259

3272 3273 3274 3275
3288 3289 3290 3291
3304 3305 3306 3307
3320 3321 3322 3323

3336 3337 3338 3339
3352 3353 3354 3355
3368 3369 3370 3371
3384 3385 3386 3387

3400 3401 3402 3403
3416 3417 3418 3419
3432 3433 3434 3435
3448 3449 3450 3451

3464 3465 3466 3467
3480 3481 3482 3483
3496 3497 3498 3499
3512 3513 3514 3515

3528 3529 3530 3531
3544 3545 3546 3547
3560 3561 3562 3563
3576 3577 3578 3579

3592 3593 3594 3595
3608 3609 3610 3611
3624 3625 3626 3627
3640 3641 3642 3643

3656 3657 3658 3659
3672 3673 3674 3675
3688 3689 3690 3691
3704 3705 3706 3707

3720 3721 3722 3723
3736 3737 3738 3739
3752 3753 3754 3755
3768 3769 3770 3771

C D E F

3084 3085 3086 3087
3100 3101 3102 3103
3116 3117 3118 3119
3132 3133 3134 3135

3148 3149 3150 3151
3164 3165 3166 3167
3180 3181 3182 3183
3196 3197 3198 3199

3212 3213 3214 3215
3228 3229 3230 3231
3244 3245 3246 3247
3260 3261 3262 3263

3276 3277 3278 3279
3292 3293 3294 3295
3308 3309 3310 3311
3324 3325 3326 3327

3340 3341 3342 3343
3356 3357 3358 3359
3372 3373 3374 3375
3388 3389 3390 3361

3404 3405 3406 3407
3420 3421 3422 3423
3436 3437 3438 3439
3452 3453 3454 3455

3468 3469 3470 3471
3484 3485 3486 3487
3500 3501 3502 3503
3516 3517 3518 3519

3532 3533 3534 3535
3548 3549 3550 3551
3564 3565 3566 3567
3580 3581 3582 3583

3596 3597 3598 3599
3612 3613 3614 3615
3628 3629 3630 3631
3644 3645 3646 3647

3660 3661 3662 3663
3676 3677 3678 3679
3692 3693 3694 3695
3708 3709 3710 3711

3724 3725 3726 3727
3740 3741 3742 3743
3756 3757 3758 3759
3772 3773 3774 3775

K-10

Digital Systems Group

ECO
EDO
EEO
EFO

F00
F10
F20
F30

F40
F50
F60
F70

F80
F90
FAO
FBO

FCo
FDO
FEO
FFO

2250077-9701

Table K-5. Hexadecimal—Decimal Integer Conversion Table (Cont.)

0 1 2 3

3776 3777 3778 3779
3792 3793 3794 3795
3808 3809 3810 3811
3824 3825 3826 3827

3840 3841 3842 3843
3856 3857 3858 3859
3872 3873 3874 3875
3888 3889 3890 3891

3904 3905 3906 3907
3920 3921 3922 3923
3936 3937 3938 3939
3952 3953 3954 3955

3968 3969 3970 3971
3984 3985 3986 3987
4000 4001 4002 4003
4016 4017 4018 4019

4032 4033 4034 4035
4048 4049 4050 4051
4064 4065 4066 4067
4080 4081 4082 4083

4 5 6 7

3780 3781 3782 3783
3796 3797 3798 3799
3812 3813 3814 3815
3828 3829 3830 3831

3844 3845 3846 3847
3860 3861 3862 3863
3876 3877 3878 3879
3892 3893 3894 3895

3908 3909 3910 3911
3924 3925 3926 3927
3940 3941 3942 3943
3956 3957 3958 3959

3972 3973 3974 3975
3988 3989 3990 3991
4004 4005 4006 4007
4020 4021 4022 4023

4036 4037 4038 4039
4052 4053 4054 4055
4068 4069 4070 4071
4084 4085 4086 4087

8 9 A B

3784 3785 3786 3787
3800 3801 3802 3803
3816 3817 3818 3819

. 3832 3833 3834 3835

3848 3849 3850 3851
3864 3865 3866 3867
3880 3881 3882 3883
3896 3897 3898 3899

3912 3913 3914 3915
3928 3929 3930 3931
3944 3945 3946 3947
3960 3961 3962 3963

3976 3977 3978 3979
3992 3993 3994 3995
4008 4009 4010 4011
4024 4025 4026 4027

4040 4041 4042 4043
4056 4057 4058 4059
4072 4073 4074 4075
4088 4089 4090 4091

C D E F

3788 3789 3790 3791
3804 3805 3806 3807
3820 3821 3822 3823
3836 3837 3838 3839

3852 3853 3854 3855
3868 3869 3870 3871
3884 3885 3886 3887
3900 3901 3902 3903

3916 3917 3918 3919
3932 3933 3934 3935
3948 3949 3950 3951
3964 3965 3966 3967

3980 3981 3982 3983
3996 3997 3998 3999
4012 4013 4014 4015
4028 4029 4030 4031

4044 4045 4046 4047
4060 4061 4062 4063
4076 4077 4078 4079
4092 4093 4094 4095

K-11

Digital Systems Group

2250077-9701

Table K-6. Hexadecimal—Decimal Fraction Conversion Table

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal ~ Decimal

.00 000000 .00000 00000 .40 00 00 00 .25000 00000 .80 00 00 00 .50000 00000 .CO 00 00 00 .75000 00000
.01 00 00 00 .00390 62500 41 00 00 00 .25390 62500 .81 00 00 00 .50390 62500 .C1 00 00 00 .75390 62500
.02 00 00 00 .00781 25000 42 00 00 OO0 .25781 25000 .82 00 00 00 .50781 25000 .C2 00 00 00 .75781 25000
.03 00 00 00 .01171 87500 .43 0000 00 .26171 87500 .83 00 00 00 .S51171 87500 .C3 00 00 00 .76171 87500
.04 0000 00 .01562 50000 .44 00 00 00 .26562 50000 .84 00 00 00 .51562 50000 .C4 00 00 00 .76562 50000
.05 000000 .01953 12500 .45 00 00 00 .26953 12500 .85 00 00 00 .51953 12500 .C5 00 00 00 .76953 12500
.06 00 00 00 .02343 75000 .46 00 00 00 .27343 75000 .86 00 00 00 .52343 75000 .C6 00 00 00 .77343 75000
.07 000000 .02734 37500 47 000000 .27734 37500 .87 00 00 00 .52734 37500 .C7 00 00 00 .77734 37500
.08 00 00 00 .03125 00000 .48 00 00 00 .28125 00000 .88 00 00 0O 53125 00000 .C8 00 00 00 .78125 00000
.09 0000 00 .03515 62500 49 00 00 00 .28515 62500 .89 00 00 00 .53515 62500 .C9 00 00 00 .78515 62500
.0OA 00 00 00 .03906 25000 .4A 00 00 00 .28906 25000 .8A 00 00 00 .53906 25000 .CA 00 00 00 .78906 25000
OB 00 00 00 .04296 87500 4B 00 00 00 .29296 87500 .8B 00 00 00 .54296 87500 .CB 00 00 00 .79296 87500
.0C 0000 00 .04687 50000 .4C 00 00 00 .29687 50000 .8C 00 00 00 .54687 50000 .CC 00 00 00 .79687 50000
.0D 00 00 00 .05078 12500 4D 00 00 00 .30078 12500 .8D 00 00 00 .55078 12500 .CD OO 00 00 .80078 12500
.OE 00 00 00 .05468 75000 4E 00 00 00 .30468 75000 .8E 00 00 00 .55468 75000 .CE 00 00 00 .80468 75000
OF 000000 .05859 37500 4F 00 00 00 .30859 37500 8F 00 00 00 .55859 37500 .CF 00 00 00 .80859 37500
.10 00 00 00 .06250 00000 .50 00 00 00 .31250 00000 .90 00 00 00 .56250 00000 .DO 00 00 00 .81250 00000
.11 00 00 00 .06640 62500 .51 00 00 00 .31640 62500 .91 00 00 00 .5664C 62500 .D1 00 00 00 .81640 62500
.12 00 00 00 .07031 25000 .52 00 00 00 .32031 25000 .92 00 00 00 .57031 25000 .D2 00 00 00 .82031 25000
.13 0000 00 .07421 87500 .53 00 00 00 .32421 87500 .93 00 00 00 .57421 87500 .D3 00 00 00 .82421 87500
14 0000 00 .07812 50000 54 00 00 00 .32812 S0000 .94 00 00 00 .57812 50000 .D4 00 00 00 .82812 50000
15 00 00 00 .08203 12500 55 00 00 00 .33203 12500 .95 00 00 00 .58203 12500 .DS 00 00 00 .83203 12500
.16 00 00 00 .08593 75000 .56 00 00 00 .33593 75000 .96 00 00 00 .58593 75000 .D6 00 00 00 .83593 75000
17 000000 .08984 37500 .57 00 00 00 .33984 37500 .97 00 00 00 .58984 37500 .D7 00 00 00 .83984 37500
8 00 00 00 09375 C0000 S8 0000 00 .34375 00000 98 00 00 00 59375 000CC .DS 00 00 00 .84375 00000
19 0000 00 .09765 62500 .59 00 00 00 .34765 62500 .99 0000 00 .59765 62500 .D9 00 00 00 .84765 62500
JA 00 00 00 .10156 25000 .5A 0000 00 .35156 25000 9A 00 00 00 .60156 25000 .DAOO 00 00 .85156 25000
B 00 00 00 .10546 87500 .SB 00 00 00 .35546 87500 9B 00 00 00 .60546 87500 .DBO0OO 00 00 .85546 87500
AC 00 00 00 .10937 50000 .5C 00 00 00 .35937 S0000 .9C 00 00 00 .60937 SO0000 .DCOO 00 00 .85937 50000
AD 00 00 00 .11328 12500 .5D 00 00 00 .36328 12500 9D 00 00 00 .61328 12500 .DDOO 00 00 .86328 12500
JdE 000000 .11718 75000 SE 0000 00 .36718 75000 9E 0000 00 .61718 75000 .DEO0OO 00 00 .86718 75000
JAF 0000 00 .12109 37500 .SF 00 00 00 .37109 37500 .9F 00 0000 .62109 37500 .DF 00 00 00 .87109 37500
20 000000 .12500 00000 .60 00 00 00 .37500 00000 .AO0 00 00 00 .62500 00000 .EO 00 00 00 .87500 00000
.21 0000 00 .12890 62500 .61 00 00 00 .37890 62500 .Al 00 00 00 .62890 62500 .El1 00 00 00 .87890 62500
.22 000000 .13281 25000 .62 00 00 00 .38281 25000 .A2 00 00 00 .63281 25000 .E2 00 00 00 .88281 25000
.23 00 00 00 .13671 87500 .63 00 00 00 .38671 87500 .A3 00 00 00 .63671 87500 .E3 00 00 00 .88671 87500
24 00 00 00 .14062 50000 .64 00 00 00 .39062 50000 .A4 00 00 00 .64062 SC000 .E4 00 00 00 .89062 50000
25 000000 .14453 12500 .65 00 00 00 .39453 12500 .AS 00 00 00 .64453 12500 .E5 00 00°00 .89453 12500
.26 000000 .14843 75000 .66 00 00 00 .39843 75000 .A6 00 00 00 .64843 75000 .E6 00 00 00 .89843 75000
27 00 00 00 .15234 37500 .67 00 00 00 .40234 37500 .A7 00 00 00 .65234 37500 .E7 00 00 00 .90234 37500
.28 00 00 Q0 .15625 00000 .68 00 00 00 .40625 00000 .A8 00 00 00 .65625 00000 .E8 00 00 00 .90625 00000
29 00 00 00 .16015 62500 .69 00 00 00 .41015 62500 .A9 00 00 00 .66015 62500 .E9 00 00 00 .91015 62500
2A 00 00 00 .16406 25000 .6A 00 00 00 .41406 25000 .AA 00 00 00 .66406 25000 .EA 00 00 00 .91406 25000
2B 0000 00 .16796 87500 6B 0000 00 .41796 87500 .AB 00 00 00 .66796 87500 .EB 00 00 00 .91796 87500
.2C 0000 00 .17187 50000 6C 00 00 00 .42187 50000 .AC 00 00 00 .67187 50000 .EC 00 00 00 .92187 50000
2D 00 00 00 .17578 12500 6D 00 00 00 .42578 12500 .AD 00 00 00 .67578 12500 .ED 00 00 00 .92578 12500
2E 000000 .17968 75000 6E 00 00 00 42968 75000 .AE 00 00 00 .67968 75000 .EE 00 00 00 .92968 75000
2F 00 00 00 .18359 37500 6F 00 00 00 .43359 37500 .AF 00 00 00 .68359 37500 .EF 00 00 00 .93359 37500
.30 000000 .18750 00000 .70 00 00 OO0 .43750 00000 .BO 00 00 00 .68750 00000 .FO 0D 00 00 .93750 00000
31 000000 .19140 62500 .71 0000 00 .44140 62500 .B1 00 00 00 .69140 62500 .F1 00 00 00 .94140 62500
.32 000000 .19531 25000 .72 00 00 00 .44531 25000 .B2 00 00 00 .69S31 25000 .F2 00 00 00 .94531 25000
.33 000000 .19921 87500 .73 00 00 00 .44921 87500 .B3 00 00 00 .69921 87500 .F3 00 00 00 .94921 87500
.34 0000 00 .20312 50000 .74 00 00 00 .45312 50000 .B4 00 00 00 .70312 50000 .F4 00 00 00 .95312 50000
.35 000000 .20703 12500 .75 00 00 00 45703 12500 .BS 00 00 00 .70703 12500 .F5 00 00 00 .95703 12500
36 0000 00 .21093 75000 .76 00 00 00 .46093 75000 .B6 00 00 00 .71093 75000 .F6 00 00 00 .96093 75000
.37 0000 00 .21484 37500 .77 00 00 00 .46484 37500 .B7 00 00 00 .71484 37500 .F7 00 00 00 .96484 37500
.38 000000 .21875 00000 .78 00 00 00 .46875 00000 .B8 00 00 DO .71875 00000 .F8 00 00 00 .9687S5 00000
.39 0000 00 .22265 62500 .79 00 00 00 .47265 62500 .B9 00 00 00 .7226S5 62500 .F9 00 00 00 .97265 62500
J3A 0000 00 .22656 25000 .7TA 00 00 00 .47656 25000 .BA 00 00 00 .72656 25000 .FA 00 00 00 .97656 25000
3B 00 00 00 .23046 87500 7B 00 00 00 .48046 87500 .BB 00 00 00 .73046 87500 .FB 00 00 00 .98046 87500
3C 000000 .23437 50000 .7C 00 00 00 .48437 50000 .BC 00 00 00 .73437 50000 .FC 00 00 00 .98437 50000
3D 00 00 00 .23828 12500 .7D 00 00 00 .48828 12500 .BD 00 00 00 .73828 12500 .FD 0O 00 00 .98828 12500
3E 000000 .24218 75000 .7E 00 00 00 .49218 75000 .BE 00 00 00 .74218 75000 .FE 00 00 00 .99218 75000
3F 00 00 00 .24609 37500 .7F 00 00 00 .49609 37500 .BF 00 00 00 .74609 37500 .FF 00 00 00 .99609 37500

K-12

Digital Systems Group

2250077-9701

Table K-6. Hexadecimal—Decimal Fraction Conversion Table (Cont.)

tlexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal

.00 00 00 00 .00000 00000 .00 40 00 00 .00097 65625 .00 80 00 00 .00195 31250 .00 CO 00 00 .00292 96875
00 01 0000 .00001 52587 .00 41 0000 .00099 18212 .00 81 00 00 .00196 83837 .00 Cl 00 00 .00294 49462
0002 0000 .00003 05175 .00 42 00 00 .00100 70800 .00 82 00 00 .00198 36425 .00 C2 00 00 .00296 02050
00 03 0000 .00004 57763 .00 43 0000 .00102 23388 .00 83 00 00 .00199 89013 .00 C3 00 00 .00297 54638
00 04 00 00 .00006 10351 .00 44 0000 .00103 75976 .00 84 00 00 .0020i 41601 .00 C4 00 00 .00299 07226
00 05 0000 .00007 62939 .00 45 00 00 .00105 28564 .00 85 00 00 .00202 94189 GO C5 00 00 .00300 59814
.00 06 00 00 .00009 15527 .00 46 00 00 .00106 81152 .00 86 00 00 .00204 46777 .00 C6 00 00 .00302 12402
.00 07 00 00 .00010 68115 .00 47 00 00 .00108 33740 .00 87 00 00 .00205 99365 00 C7 00 00 .00303 64990
00 08 00 00 .00012 20703 .00 48 00 00 .00109 86328 .00 88 00 00 .00207 51953 .00 C& 00 00 .0030S5 17578
00 09 0000 .00013 73291 .00 49 00 00 .00111 38916 .00 89 00 00 .00209 04541 .00 C9 00 00 .00306 70166
.000A 0000 .00015 25878 .00 4A 00 00 .00112 91503 .00 8A 00 00 .002i0 57128 .00 CA 00 00 .00308 22753
00 0B 00 00 .00016 78466 .00 4B 00 00 .00114 44091 .008B 00 00 .00212 09716 .00 CB 00 00 .00309 75341
.00 0C 00 00 .00018 31054 .00 4C 00 00 .00115 96679 .00 8C 00 00 .00213 62304 .00 CC 00 00 .00311 27929
.00 OD 00 00 .00019 83642 .00 4D 00 00 .00117 49267 .00 8D 00 00 .00215 14892 00 CD 00 00 .00312 80517
.00 OE 00 00 .00021 36230 .00 4E 00 00 .00119 01855 .00 8E 00 00 .00216 67480 .00 CE 00 00 .00314 33105
.00 OF GO 00 .00022 83818 .0G 4F 00 00 .00120 54443 00 8F 00 00 .00218 20068 .00 CF 00 00 .00315 85693
.00 10 00 00 .00024 41406 00 SO 00 00 .00122 07031 .00 90 00 00 .00219 72656 .00 DO 00 00 .00317 38281
.00 11 0000 .00025 93994 .00 51 00 00 .00123 59619 .00 91 00 00 .00221 25244 .00 D1 00 G0 .00318 90869
00 12 00 00 .00027 46582 .0052 0000 .00125 12207 .00 92 00 00 .00222 77832 .00 D2 00 00 .00320 43457
.00 13 0000 .00028 99169 .00 53 00 00 .00126 64794 .00 93 00 00 .00224 30419 .00 D3 00 00 .00321 96044
.00 14 0000 .00030 51757 0054 0000 00128 17382 .00 94 00 00 .00225 83007 .00 D4 00 00 .00323 48632
0015 0000 .00032 04345 .00 5SS 00 00 .00129 69970 .00 95 00 00 .00227 35595 .00 DS 00 00 .00325 01220
.00 16 00 00 .00033 56933 .00 56 00 00 .00131 22558 .00 96 00 00 .00228 88183 .00 D6 00 00 .00326 53808
0017 0000 .00035 09521 .00 57 00 00 .00132 75146 .00 97 00 00 .00230 40771 .00 D7 00 O0C .00328 06396
.00 18 0000 .00036 62109 .00 58 00 00 .00134 27734 0098 00 00 .00231 93359 .00 D8 00 00 .00329 58984
.00 19 0000 .00038 14697 .00 59 00 00 .00135 80322 .00 99 00 00 .00233 45947 .00 D9 00 00 .00331 11572
.00 1A 00 00 .00039 67285 .00 SA 00 00 .00137 32910 .00 9A 00 00 .00234 98535 .00 DA 00 00 .00332 64160
.00 1B 00 00 .00041 19873 .00 SB 00 00 .00138 85498 .00 9B 00 00 .00236 51123 .00 DB 00 00 .00334 16748
.00 1C 0000 .00042 72460 .00 SC 00 00 .00140 38085 .00 9C 00 00 .00238 03710 .00 DC 00 00 .00335 69335
00 1D 00 00 .00044 25048 .00 5D 00 00 00141 90673 .00 9D 00 00 .00239 56298 .00 DD 00 00 .00337 21923
.00 1E 00 00 .00045 77636 .00 SE 00 00 .00143 43261 .00 9E 00 00 .00241 08886 .00 DE 00 00 .00338 74511
.00 1IF 00 00 .00047 30224 .00 SF 00 00 .00144 95849 .00 9F 00 00 .00242 61474 .00 DF 00 00 .00340 27099
.00 20 00 00 .00048 82812 .00 60 00 00 .00146 48437 .00 A0 0000 .00244 14062 .00 EO 00 00 .00341 79687
.00 21 00 00 .00050 35400 .00 61 00 00 .00148 01025 .00 A1 00 00- .00245 66650 .00 E1 00 00 .00343 32275
.00 22 00 00 .00051 87988 .00 62 00 00 .00149 53613 .00 A2 00 00 .00247 19238 .00 E2 00 00 .00344 84863
.00 23 00 00 .00053 40576 .00 63 00 00 .00151 06201 .00 A3 00 00 .00248 71826 .00 E3 00 00 .00346 37451
.00 24 00 00 .00054 93164 .00 64 00 00 .00152 58789 .00 A4 00 00 .00250 24414 00 E4 00 00 .00347 90039
.00 25 00 00 ~.00056 45751 .00 65 00 00 .00154 11376 .00 AS 00 00 .00251 77001 .00 ES 00 00 .00349 42626
.00 26 0000 .00057 98339 .00 66 00 00 .00155 63964 .00 A6 00 00 .00253 29589 .00 E6 00 00 .00350 95214
.00 27 00 00 .00059 50927 .00 67 00 00 .00157 16552 .00 A7 00 00 .00254 82177 .00 E7 00 00 .00352 47802
.00 28 00 00 .00061 03515 .00 68 00 00 .00158 69140 .00 A8 00 00 .00256 34765 .00 E8 00 00 .00354 00390
.00 29 0000 .00062 56103 .00 69 00 00 .00160 21728 .00 A9 00 00 .00257 87353 .00 E9 00 00 .00355 52978
.00 2A 00 00 .00064 08691 .00 6A 00 00 .00161 74316 .00 AA 00 00 .00259 39941 .00 EA 00 00 .00357 05566
.00 2B 00 00 .00065 61279 .00 6B 00 00 .00163 26904 .00 AB 00 00 .00260 92529 .00 EB 00 00 .00358 58154
.00 2C 00 00 .00067 13867 .00 6C 00 00 .00164 79492 .00 AC 00 00 .00262 45117 .00 EC 00 00 .00360 10742
.00 2D 00 00 .00068 66455 .00 6D 00 00 .00166 32080 .00 AD 00 00 .00263 97705 .00 ED 00 00 .00361 63330
.00 2E 00 00 .00070 19042 .00 6E 00 00 .00167 84667 .00 AE 00 00 .00265 50292 .00 EE 00 00 .00363 15917
.00 2F 00 00 .00071 71630 .00 6F 00 00 .00169 37255 .00 AF 00 00 .00267 02880 .00 EF 00 00 .00364 68505
.00 30 00 00 .00073 24218 .00 70 00 00 .00170 89843 .00 BO 00 00 .00268 55468 .00 FO 00 00 .00366 21093
.00 31 0000 .00074 76806 .00 71 00 00 .00172 42421 .00 B1 00 00 .00270 08056 .00 F1 00 00 .00367 73681
.00 32 00 00 .00076 29394 .00 72 00 00 .00173 95019 .00 B2 00 00 .00271 60644 .00 F2 00 00 .00369 26269
.00 33 0000 .00077 81982 .00 73 00 00 .00175 47607 .00 B3 00 00 .00273 13232 .00 F3 00 00 .00370 78857
.00 34 00 00 .00079 34570 .00 74 00 00 .00177 00195 .00 B4 00 00 .00274 65820 .00 F4 00 00 .00372 31445
.00 35 0000 .00080 87158 .0075 0000 .00178 52783 .00 BS 00 00 .00276 18408 .00 F5 00 00 .00373 84033
.00 36 00 00 .00082 39746 .00 76 00 00 .00180 05371 .00 B6 00 00 .00277 70996 .00 F6 00 00 .00375 36621
.00 37 00 00 .00083 92333 .00 77 00 00 .00181 57958 00 B7 00 00 .00279 23583 .00 F7 00 00 .00376 89208
.00 38 00 00 .00085 44921 .00 78 00 00 .00183 10546 .00 B8 00 00 .00280 76171 .00 F8 00 00 .00378 41796
.00 39 0000 .00086 97509 .00 79 00 00 .00184 63134 00 BS 00 00 .00282 28759 .00 F9 00 G0 .00379 94384
.00 3A 00 00 .00088 50097 .00 7TA 00 00 .00186 15722 .00 BA 00 00 .00283 81347 .00 FA 00 00 .00381 46972
.00 38 00 00 .00090 02685 .00 7B 00 00 .00187 68310 .00 BB 00 00 .00285 33935 .00 FB 00 00 .00382 99560
.00 3C 0000 .00091 55273 .00 7C 00 00 .00189 20898 .00 BC 00 00 .00286 86523 .00 FC 00 00 .00384 52148
.00 3D 00 00 .00093 07861 .00 7D 00 00 .00190 73486 .00 BD 00 00 .00288 39111 .00 FD 00 00 .00386 04736
.00 3E 00 00 .00094 60449 .00 7E 00 00 .00192 26074 .00 BE 00 00 .00289 91699 .00 FE 00 00 .00387 57324
.00 3F 0000 .00096 13037 .00 7F 00 00 .00193 78662 .00 BF 00 00 .00291 44287 .00 FF 00 00 .00389 09912

K-13 Digital Systems Group

2250077-9701

Table K-6. Hexadecimal—Decimal Fraction Conversion Table (Cont.)

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal

.00 00 00 00 .00000 00000 .00 00 40 00 .00000 38146 .00 00 80 00 .00000 76293 .00 00 CO 00 .00001 14440
0000 01 00 .00000 00596 .00 00 41 00 .00000 38743 .00 00 81 00 .00000 76889 .00 00 C1 00 .00001 15036
.00 00 02 00 .00000 01192 .00 00 42 00 .00000 39339 .00 00 82 00 .00000 77486 .00 00 C2 00 .00001 15633
.00 00 03 00 .00000 01788 .00 00 43 00 .00000 39935 .00 00 83 00 .00000 78082 .00 00 C3 00 .00001 16229
.00 00 04 00 .00000 02384 .00 00 44 00 .00000 40531 .00 00 84 00 .G0000 78678 .00 00 C4 00 .00001 16825
000005 00 .00000 02980 .00 00 45 00 .00000 41127 .00 00 85 00 .00000 79274 .00 00 CS 00 .00001 17421
0000 06 00 .00000 03576 .00 00 46 00 .00000 41723 .00 00 86 00 .00000 79870 .00 00 C6 00 .00001 18017
0000 07 00 .00000 04172 .00 00 47 00 .00000 42319 .00 00 87 00 .00000 80466 .00 00 C7 00 .0000! 18613
.00 00 08 00 .00000 04768 .00 0C 48 00 .00000 42915 .00 00 88 00 00000 81062 .00 00 C8 00 .00001 19209
000009 00 .00000 05364 .00 00 49 00 .00000 43511 .00 00 89 00 .00000 81658 .00 00 C9 00 .00001 19805
.00 00 OA 00 .00000 05960 .00 00 4A 00 .00000 44107 .00 00 8A 00 .00000 82254 .00 00 CA 00 .00001 20401
.00 00 OB 00 .00000 06556 .00 00 4B 00 .00000 44703 .00 00 8B 00 .00000 82850 .00 00 CB 00 .00001 20997
.00 00 OC 00 .00000 07152 .00 00 4C 00 .00000 45299 .00 00 8C 00 .00000 83446 .00 00 CC GO .00001 21593
.00 00 OD 00 .00000 07748 .00 00 4D 00 .00000 45895 .00 00 8D 00 .0GOCO 84042 .00 00 CD OO .00001 22189
.00 00 OE 00 .00000 08344 .00 00 4E 00 .00000 46491 .00 00 8E 00 .00000 84638 .00 00 CE 00 .00001 22785
.00 00 OF 00 .00000 08940 .00 00 4F 00 .00000 47087 .00 00 8F 00 .00000 85234 .00 OC CFO00 .00GCI 23381
.00 00 10 00 .00000 09536 .00 00 50 00 .00000 47683 .00 00 90 00 .00000 85830 .00 00 DO OO .00001 23977
.00 00 11 00 .00000 10132 .00 00 S1 00 .00000 48279 .00 00 91 00 .00000 86426 .00 00 D1 00 .00001 24573
.00 00 12 00 .00000 10728 .00 00 52 00 .00000 48875 .00 00 92 00 .00000 87022 .00 00 D200 .00001 25169
.00 00 13 00 .00000 11324 .00 00 53 00 .00000 49471 .00 00 93 00 .00000 87618 .00 00 D3 00 .00001 25765
.00 00 14 00 .00000 11920 .00 00 54 00 .00000 50067 .00 00 94 00 .00000 88214 .00 00 D4 00 .00001 26361
.00 00 15 00 .00000 12516 .00 00 55 00 .00000 50663 .00 00 95 00 .00000 88810 .00 00 DS 00 .00001 26957
.00 00 16 00 .00000 13113 .00 00 56 00 .00000 51259 .00 00 96 00 .00000 89406 .00 00 D6 00 .00001 27553
.00 00 17 00 .00000 13709 .00 00 57 00 .00000 51856 .00 00 97 00 .00000 90003 .00 00 D7 00 .00001 28149
.00 00 18 00 .00000 14305 .00 00 58 00 .00000 52452 .00 00 98 00 .00000 90599 .00 00 D8 00 .00001 28746
.00 00 19 00 .00000 14901 .00 00 S9 00 .00000 53048 .00 00 99 00 .00000 91195 .00 00 D9 00 .00001 29342
.00 00 1A 00 .00000 15497 .00 00 5A 00 .00000 53644 .00 00 9A 00 .00000 91791 .00 00 DAQO .00001 29938
.00 00 1B 00 .00000 16093 .00 00 5B 00 .00000 54240 .00 00 98 00 .00000 92387 .00 00 DBOO .00001 30534
.00 00 1C 00 .00000 16689 .00 00 5C 00 .00000 54836 .00 00 9C 00 .00000 92983 .00 00 DCOO ,00001 31130
.00 00 1D 00 .00000 17285 .00 00 5D 00 .00000 55432 .00 00 9D 00 .00000 93579 .00 00 DDOO .00001 31726
.00 00 1IE 00 .00000 17881 .00 00 SE 00 .00000 56028 .00 00 9E 00 .00000 94175 .00 00 DEOO .00001 32322
.00 00 1F 00 .00000 18477 .00 00 SF 00 .00000 56624 .00 00 9F 00 .00000 94771 .00 00 DF00 .00001 32918
.00 00 20 00 .00000 19073 .00 00 60 00 .00000 57220 .00 00 AO 00 .00000 95367 .00 00 EO 00 .00001 33514
.00 00 21 00 .00000 19669 .00 00 61 00 .00000 57816 .00 00 A1 00 .00000 95963 .00 00 E1 00 .00001 34110
.00 00 22 00 .00000 20265 .00 00 62 00 .00000 58412 .00 00 A2 00 .00000 96559 .00 00 E2 00 .00001 34706
.00 00 23 00 .00000 20861 .00 00 63 00 .00000 59008 .00 00 A3 00 .00000 97155 .00 00 E3 00 .00001 35302
.00 00 24 00 .00000 21457 .00 00 64 00 .00000 59604 .00 00 A4 00 .00000 97751 .00 00 E4 00 .00001 35898
.00 00 25 00 .00000 22053 .00 00 65 00 .00000 60200 .00 00 A5 00 .00000 98347 .00 00 ES 00 .00001 36494
.00 00 26 00 .00000 22649 .00 00 66 00 .00000 60796 .00 00 A6 00 .00000 98943 .00 00 E6 00 .00001 37090
.00 00 27 00 .00000 23245 .00 00 67 00 .00000 61392 .00 00 A7 00 .00000 99539 .00 00 E7 00 .00001 37686
.00 00 28 00 .00000 23841 .00 00 68 00 .00000 61988 .00 00 A8 00 .00001 00135 .00 00 E8 00 .00001 38282
.00 00 29 00 .00000 24437 .00 00 69 00 .00000 62584 .00 00 A9 00 .00001 00731 .00 00 E9 00 .00001 38878
.00 00 2A 00 .00000 25033 .00:00 6A 00 .00000 63180 .00 00 AA 00 .00001 01327 .00 00 EAOQ0 .00001 39474
.00 00 2B 00 .00000 25629 .00 00 6B 00 .00000 63776 .00 00 AB 00 .00001 01923 .00 00 EBOO .00001 40070
.00 00 2C 00 .00000 26226 .00 00 6C 00 .00000 64373 .00 00 AC 00 .00001 02519 .00 00 ECO0 .00001 40666
.00 00 2D 00 .00000 26822 .00 00 6D 00 .00000 64969 .00 00 AD 00 .00001 03116 .00 GO EDOO .00001 41263
.00 00 2E 00 .00000 27418 .00 00 6E 00 .00000 65565 .00 00 AE 00 .00001 03712 .00 00 EEO0 .00001 41859
.00 00 2F 00 .00000 28014 .00 00 6F 00 .00000 61661 .00 00 AF 00 .00001 04308 .00 00 EF 00 .00001 42455
.00 00 30 00 .00000 28610 .00 00 70 00 .00000 66757 .00 00 BO 00 .00001 04904 .00 00 FO 00 .00001 43051
.00 00 31 00 .00000 29206 .00 0071 00 .00000 67353 .00 00 B1 00 .00001 05500 .00 00 F1 00 .00001 43647
.00 00 32 00 .00000 29802 .00 00 72 00 .00000 67949 .00 00 B2 00 .00001 06096 .00 00 F2 00 .00001 44243
.00 00 33 00 .00000 30398 .00 00 73 00 .00000 68545 .00 00 B3 00 .00001 06692 .00 00 F3 00 .00001 44839
.00 00 34 00 .00000 30994 .00 00 74 00 .00000 69141 .00 00 B4 00 .00001 (07228 .00 00 F4 00 .00001 45435
.00 0035 00 .00000 31590 .00 00 75 00 .00000 69737 .00 00 BS 00 .00001 07884 .00 00 F5 00 .00001 46031
.00 00 36 00 .00000 32186 .00 00 76 00 .00000 70333 ,00 00 B6 00 .00001 08480 .00 00 F6 00 .00001 46627
.00 00 37 00 .00000 32782 .00 00 77 00 .00000 70929 .00 00 B7 00 .00001 09076 .00 00 F7 00 .00001 47223
.00.00 38 00 .00000 33378 .00 0078 00 .00000 71525 .00 00 B8 00 .00001 09672 .00 GO F8 00 .00001 47819
.00 00 39 00 .00000 33974 .00 0079 00 .00000 75121 .00 00 B9 00 .00001 10268 .00 00 F9 00 .00001 48415
.00 00 3A 00 .00000 34570 .00 00 7A 00 .00000 72717 .00 00 BA 00 .00001 10864 .00 00 FAQO .00001 49011
.00 00 3B 00 .00000 35166 .00 00 7B 00 .00000 73313 .00 00 BB 00 .00001 11460 .00 00 FBOO .00001 49607
.00 00 3C 00 .00000 35762 .00 00 7C 00 .00000 73909 .00 00 BC 00 .00001 12056 .00 00 FC 00 .00001 50203
.00 00 3D 00 .00000 36358 .00 00 7D 00 .00000 74505 .00 00 BD 00 .00001 12652 .00 00 ED0OO .00001 50799
.00 00 3E 00 .00000 36954 .00 00 7E 00 .00000 75101 00 00 BE 00 .00001 13248 .00 00 FEOO .00001 51395
.00 00 3F 00 ,00000 37550 .00 00 7F 00 .00000 75697 .00 00 BF 00 .00001 13844 .00 00 FFOO .00001 51991

K-14 Digital Systems Group

2250077-9701

Tabie K-6. Hexadecimai—Decimai Fraction Conversion Tabie {(Cont.}

¥

Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal Decimal
.00 00 00 00 .00000 00000 .00 00 00 40 .00000 00149 .00 00 00 80 .00000 00298 .00 00 00 CO .00000 00447
.00 00 00 01 .00000 00002 .00 00 00 41 .00000 00151 .00 00 00 81 .00000 00300 .00 00 00 C1 .00000 00449
.00 00 00 02 .00000 00004 .00 00 00 42 .00000 00153 .00 00 00 82 .00000 00302 .00 00 00 C2 .00000 00451
.00 00 00 03 .00000 00006 .00 00 00 43 .00000 00155 .00 00 00 83 .00000 00305 .00 00 00 C3 .00000 00454
.00 00 00 04 00000 00009 .00 00 00 44 .00000 00158 .00 OC GO 24 .00000 00307 .00 00 00 C4 .00000 00456
.00 00 00 05 .00000 00011 .00 00 00 45 .00000 00160 .00 00 00 85 00000 00309 .00 00 00 CS .00000 00458
.00 00 00 06 .00000 00013 .00 00 00 46 .00000 00162 00 00 00 86 .00000 00311 .00 00 00 C6 .00000 00461
.00 00 00 07 .00000 00016 .00 00 00 47 .00000 00165 00 00 00 87 .00000 00314 .00 00 00 C7 .00000 00463
.00 00 00 08 .00G00 00018 .00 00 00 48 .00000 00167 00 00 00 88 .00000 00316 .00 00 00 C8 .00000 00465
.00 00 00 09 .00000 00020 .00 00 00 49 .00000 00169 00 00 00 89 .00000 00318 .00 00 00 C9 .0C000 00467
.00 00 00 0A .00000 00023 .00 00 00 4A .0C000 00172 00 00 00 8A .00000 00321 .00 00 00 CA .00000 00470
.00 00 00 0B .00000 000Z5 .00 00 00 4B .00000 00174 00 00 00 8B .00000 00323 .00 00 00 CB .00000 00472
.00 00 00 OC .00000 00027 .00 00 00 4C .00000 00176 .00 00 00 8C .00000 00325 .00 00 00 CC .00000 00474
.00 00 00 OD .00000 00030 .00 00 00 4D .00000 00179 .00 00 00 8D .00000 00328 .00 00 00 CD .00000 00477
.00 00 00 OE .00000 00032 .00 00 00 4E .00000 00181 .00 00 00 8E .00000 00330 .00 00 00 CE .00000 00479
.00 00 00 OF .00000 00034 .00 00 00 4F .00000 00183 .00 00 00 8F .00000 00332 .00 00 00 CF .00000 00481
.00 00 00 10 .00000 00037 00 00 00 50 .00000 00186 .00 00 00 90 00000 00335 .00 00 00 DO .00000 00484
.00 00 00 11 .00000 00039 .00 00 00 51 .00000 00188 .00 00 00 91 .00000 00337 .00 00 00 D1 .00000 00486
.00 00 00 12 .00000 00041 .00 00 00 52 .00000 00190 .00 00 00 92 .00000 00339 .00 00 00 D2 .00000 00488
.00 00 00 13 .00000 00044 .00 00 00 53 .00000 00193 .00 00 00 93 .00000 00342 .00 00 00 D3 .00000 00491
.00 00 00 14 .00000 00046 .00 00 00 54 .00000 00195 .00 00 00 94 .00000 00344 .00 00 00 D4. .00000 00493
.00 00 00 15 .00000 00048 .00 00 00 35 .00000 00197 .00 00 0C 95 .00000 00346 .00 00 00 D5 .00000 00495
.00 00 00 16 .00000 00051 .00 00 00 56 00000 00200 .00 00 00 96 .00000 00349 .00 00 00 D6 .00000 00498
.00 0000 17 .00000 00053 .00 00 00 57 .00000 00202 .00 00 00 97 .00000 00351 .00 00 00 D7 .00000 005G
.00 00 00 18 .00000 00055 .00 00 00 58 .00000 00204 .00 00 OO0 98 .00000 00353 .00 00 00 D8 .00000 00502
.00 00 00 19 .00000 00058 .00 00 00 59 .00000 00207 .00 00 00 99 .00000 00356 .00 OC 00 D9 .00000 00505
.00 00 00 1A .00000 00060 .00 00 00 SA .00000 00209 .00 00 OC 9A .00000 00358 .00 00 00 DA .00000 00507
.00 00 00 1B .00000 00062 .00 00 0O 5B .00000 002i1 .00 00 OG 9B .00000 00360 .00 00 GO DB .00000 00509
.00 00 00 1C .00000 00065 .00 00 00 SC .00000 00214 .00 00 00 9C .00000 00363 .00 00 00 DC .00000 00512
.00 00 00 1D .00000 00067 .00 00 00 SD .00000 00216 .00 00 00 9D .00000 00365 .00 00 00 DD .00000 00514
.00 00 00 1E .00000 00069 .00 00 00 SE .00000 002i8 .00 00 00 9E .00000 00367 .CO 00 00 DE .00000 00516
.00 00 00 1F .00000 00072 00 00 00 SF .00000 00221 .00 00 00 9F .0000Q 00370 .00 00 00 DF .00000 00519
0000 0G 20 .00000 00074 00 06 00 60 .00000 00223 .00 00 00 AO .00000 00372 .00 00 00 EO .00000 00521
.00 00 00 21 .00000 00076 00 00 00 61 .00000 00225 .00 00 00 Al .00000 00374 .00 00 00 E1 .00000 00523
.00 00 00 22 .00000 00079 00 00 00 62 .00000 00228 .00 00 00 A2 .00000 00377 .00 00 00 E2 ..00000 00526
.00 00 00 23 .00000 00081 00 00 60 63 .00000 00230 .00 00 00 A3 .00000 00379 .00 00 00 E3 .00000 00528
.00 00 00 24 .00000 00083 00 00 00 64 .00000 00232 .00 00 00 A4 .00000 00381 .00 00 00 E4 .00000 00530
.00 00 00 25 .00000 00086 00 00 00 65 .00000 00235 .00 00 00 AS .00000 00384 .00 00 00 ES .00000 00533
.00 00 00 26 .00000 00088 .00 00 00 66 .00000 00237 .00 00 00 A6 .00000 00386 .00 00 00 E6 .00000 00535
.00 00 00 27 .00000 00090 .00 00 00 67 .00000 00239 .00 00 00 A7 .00000 00388 .00 00 00 E7 .00000 00537
.00 00 00 28 .00000 00093 .00 00 00 68 .00000 00242 .00 00 00 A8 .00000 00391 .00 00 00 E8 .00000 0054C
.00 00 00 29 .00000 00095 .00 00 00 69 .00000 00244 .00 00 00 A9 .00000 00393 .00 00 00 E9 .00000 00542
.00 00 00 2A .00000 00097 .00 00 00 6A .00000 00246 .00 00 00 AA .00000 00395 .00 00 00 EA .00000 00544
00 00 00 2B .00000 00100 .00 00 00 6B .00000 00249 .00 00 00 AB .00000 00398 .00 00 00 EB .00000 00547
.00 00 00 2C .00000 00102 .00 00 00 6C .00000 00251 .00 00 00 AC .00000 00400 .00 00 00 EC .00000 00549
.00 00 00 2D .00000 60104 .00 00 00 6D .00000 00253 .00 00 00 AD .00000 00402 .00 00 00 ED .00000 00551
.00 00 00 2E .00000 00107 .00 00 00 6E .00000 00256 .00 00 00 AE .00000 00405 .00 00 00 EE .00000 00554
00 00 00 2F .00000 00109 .00 00 00 6F .00000 00258 .00 00 00 AF .00000 00407 .00 00 00 EF .0G00O 00556
.00 00 00 30 .00000 00111 00 00 00 70 .00000 00260 .00 00 00 BO .00000 00409 .00 00 00 FO .00000 00558
.00 00 00 31 .00000 00114 00 00 00 71 .00000 00263 .00 00 00 B1 .00000 00412 .00 00 00 F1 .00000 00561
.00 00 00 32 .00000 00116 00 00 00 72 .000G0 00265 .00 00 00 B2 .00000 00414 .00 00 00 F2 .00000 00563
.00 60 00 33 .00000 00118 00 00 00 73 .00000 00267 .00 00 00 B3 .00000 00416 .00 00 00 F3 .00000 00565
.00 00 00 34 .00000 00121 00 00 00 74 .00000 00270 .00 00 00 B4 .00000 00419 .00 00 00 F4 .00000 00568
.00 00 00 35 .00000 00123 00 00 00 75 .00000 00272 .00 00 00 BS .00000 00421 .00 00 00 FS .00000 00570
.00 00 00 36 .00000 00125 00 00 00 76 .00000 00274 .00 00 00 B6 .00030 00423 .00 00 00 F6 .00000 00572
.00 00 00 37 .00000 00128 .00 00 00 77 .00000 00277 .00 00 00 B7 .00000 00426 .00 00 00 F7 .00000 00575
.00 00 00 38 .00000 00130 .00 00 00 78 .00000 00279 .00 00 00 BS .00000 00428 .00 00 00 F8 .00000 00577
.00 00 00 39 .00000 06132 .00 00 OG 79 .00000 00281 .00 00 00 B9 .00000 00436 .00 00 00 F9 .00000 00579
.00 00 00 3A .00000 00135 .00 00 00 7A .00000 00284 .00 00 00 BA .00000 00433 .00 00 00 FA .00000 00582
.00 00 00 3B .00000 00137 .00 06 00 7B .00000 00286 .00 00 00. BB .00000 00435 .00 00 00 FB .00000 00584
.00 00 00 3C .00000 00139 .00 00 00 7C .00000 00288 .00 00 00" BC .00000 00437 .00 00 00 FC .00000 00586
.00 00 00 3D .00000 00142 .00 00 00 7D .00000 00291 .00 00 00 BD .00000 00440 .00 00 00 FD .00000 00589
.00 00 00 3E .00000 00144 .00 00 00 7E .00000 00293 .00 00 00 BE .00000 00442 .00 00 00 FE .00000 00591
.00 00 00 3F .00000 00146 .00 00 DO 7F .00000 00295 .00 00 00 BF .00000 00444 .00 00 00 FF .00000 00593

K-15 Digital Systems Group

2250077-9701

Table K-7. Common Mathematical Constants

Constant Decimal Value Hexadecimal Value
T 3.14159 26535 89793 3.243F 6A89
“'1 0.31830 98861 83790 0.517C C1B?7
T 1.77245 38509 05516 1.C5BF 891C
Inn 1.14472 98858 49400 1.250D 048F
e 2.71828 18284 59045 2.B7E1 5163
-1 0.36787 94411 71442 0.5E2D 58D9
\/? 1.64872 12707 00128 1.A612 98E2
logloe 0.43429 44819 03252 0.6F2D EC55
logze 1.44269 50408 88963 1.7154 7653
¥ 0.57721 56649 01533 0.93C4 67E4
Iny —0.54953 93129 81645 ~0.8CAE 9BC1
\/5 141421 35623 73095 1.6A09 E668
In2 0.69314 71805 59945 0.B172 17F8
105102 0.30102 99956 63981 0.4D10 4D42
A0 3.16227 76601 68379 3.298B 075C
In 10 2.30258 40929 94046 2.4D76 3777
K-16 Digital Systems Group

@ 2250077-9701
APPENDIX L

INSTRUCTION USAGE CROSS-REFERENCE TABLE

This table shows the operations and operands of the 990/ 12 instruction set. The table is designed to
tell the user all of the instructions that perform a type of operation (arithmetic, shift, etc.) and all of
the instructions that operate on a given data type (word, multiple precision, etc.). The instructions
are listed alphabetically by mnemonic. The terminology for the instruction categories is as follows:

ARITH Arithmetic

JMP/BR Jump and Branch
SRCH/CM Search and/or Compare
CNT/CRU Control/ CRU

LD/MOVE Load and Move

LOGICAL Logical

SHIFT Shift

LDA Long Distance Addressing
CONVERT Conversion

BYTE Byte Operand(s)

WORD Word Operand(s)

FLT PNT Floating Point Number Operand(s)
MUL PRE Multiple Precision Operand(s)
STRING String Operand(s)

STACK Stack Operand

LIST List Operand

FIELD Field Operand(s)

MISC Miscellaneous Instructions

Digital Systems Group

2250077-9701

CATEGORY

nI-utek

Jov~—-v<d

Ja~Z20>uw

OZFrR~N0LED

meoIT~ 02

220~ oM

< =-F+I

X

X

2Zw20zZ-0

AB
ABS
AD

Al

AM
ANDI
ANDM
AR
ARJ
BDC
BIND
BL
BLSK
BLWP
cB
CDE
CDI1
CED
CER
Cli
CcID
CIR
CKOF
CKON
CLR

CNTO
coC
CRC

CRE
CRI

CcsS

czZC
DBC
DD

DEC

DECT
DINT

Digital Systems Group

2250077-9701

ke -2z

204 0

CATEGORY

OZkFN0X

nweoIT~\o

2 2o~ m

X

X

w0z

DIV

DIVS

DR

EINT
EMD
EP

IDLE
INC

INCT
INSF
INV

10F

JEQ

JGT
JH

JHE
JL

JLE

JLT

JMP
JNC

JNE
JNO

Joc

JOP

LCS

LDCR

LDD
LDS

Ll

LIMI

LMF

LREX
LST
LTO

LWP

LWPI
MD

Digital Systems Group

L3

2250077-9701

"k -

204 10

L Jpk o

CATEGORY

J00v-0

JdaZo

OZEFN0O

oI

JMP/

X
X

W20z~

MOV

MOVA

MOVB
MOVS
MPY

MPYS| X
MR

MVSK

MVSR
NEG

NEGD
NEGR
NRM
ORI

ORM

POPS

PSHS
RSET
RTO

RTWP

SB

SBO
SBZ
SD

SEQB
SETO

SLA

SLAM
SLSL

SLSP
SM

SNEB
SOC

sSocCB

SR

SRA

SRAM
SRC
SRJ

Digital Systems Group

L-4

CATEGORY

J0UV=-0<aqd

Ja~ 200w,

VZEr~N0ED

WEOUOINL X

220~ 0K

«xX-=-pF2zI

Z2ZWZ0Z~0

SRL

STCR
STD

STPC

STR

STST
STWP
SWPB

SWPM

szce
TB

TCMB
TMB
TS

TSMB

XF

XIT

XOP
XOR

XORM
XV

. 2250077-9701

Digital Systems Group

L-5/L-6

[e]
@ 2250077-9701

0000-001B
002C

0100-013F
0210-021F
0230-023F
0250-025F

APPENDIX M

ILLEGAL OPCODES

0270-027F
0290-029F
02B0-02BF
02D0-02DF
02E1-02FF
0301-031F

0341-035F
0361-037F
0381-039F
03A1-03BF
03C1-03DF
03E1-03FF

The following instructions will also cause an illegal operation interrupt:

1. SLSL instruction (opcode = 0021) or SLSP instruction (opcode = 0022) when the C field

(bits 0-3 of the second word) is in the range A-Fis.

2. LCS instruction (opcode = 00AQ) when the specified microcode load addresses are in the
ranges 0000-07FF or 0C00-FFFF.

M-1/M-2

Digital Systems Group

1o

{@ 2250077-9701

ALPHABETICAL INDEX

INTRODUCTION

HOW TO USE THE INDEX

The index, table of contents, list of illustrations, and list of tables are used in conjunction to obtain
the location of the desired subject. Once the subject or topic has been located in the index, use the
appropriate paragraph number, figure number, or table number to obtain the corresponding page
number from the table of contents, list of illustrations, or list of tables.

INDEX ENTRIES

The following index lists key words and concepts from the subject material of the manual together
with the area(s) in the manual that supply major coverage of the listed concept. The numbers along
the right side of the listing reference the following manual areas:

e Sections — References to Sections of the manual appear as “Section x”” with the symbol x
representing any numeric quantity.

e Appendixes — References to Appendixes of the manual appear as “Appendix y”’ with the
symbol y representing any capital letter.

e Paragraphs — References to paragraphs of the manual appear as a series of alphanumeric
or numeric characters punctuated with decimal points. Only the first character of the
string may be a letter; all subsequent characters are numbers. The first character refers
to the section or appendix of the manual in which the paragraph is found.

e Tables — References to tables in the manual are represented by the capital letter T fol-
lowed immediately by another alphanumeric character (representing the section or
appendix of the manual containing the table). The second character is followed by a dash
(-) and a number: '

Tx-yy
e Figures — References to figures in the manual are represented by the capital letter F
followed immediately by another alphanumeric character (representing the section or

appendix of the manual containing the figure). The second character is followed by a
dash (-) and a number:

Fx-yy

e Other entries in the Index — References to other entries in the index are preceded by
the word “See” followed by the referenced entry.

Index-1 Digital Systems Group

2250077-9701

A lnstruction 3.6 ARJ Instruction 3.15
AB Instruction 3.7 ASMELS Directive 5.3.5, 5354
Abnormal Completion Messages T8-1 ASMEND Directive. 535, 5354
ABS Instruction 38, 4.2.1, 43.1.1 ASMIF Directive 5.3.5,5.3.5.4
Absolute: Assembler:
Codeiiiiiiiininnnnnn. 8.2 Bugs i T8-1
Origin (AORG) Directive 5.3.1, 5.3.1.1 Directives 5.3,5.3.1, 532,533,
Symbols 2.10 534, 5.3.5
Absolute Value 255 Macro Library 7.6
Instruction 3.8, 421, 43.1.1 Macro, 9.1,9.2
Access Name: Outputcivivn.n.. 5.3.2
Erroro, 9.2 SDSMAC 5.2
Listttt i i ., 9.2 Assembly Language:
Objectcvviiiinnennn.. 9.2 Instructions 3.1
SOUTCE . . v vt i i it i ie it e 9.2 990/12 e 1.2
AD Instruction 3.9 Assembly-Time Constants 2.11.4, 8.2.1
Add Bytes Instruction 3.7 Attribute Component 7543
Add Double Precision Real Instruction. .. .3.9 Attributes, Symbol 10.4, T10-2
Add Immediate Instruction 3.10 Autoincrement Addressing, Workspace
Add Multiple Precision Register Indirect. 3.23
Integer Instruction 3.11
Add Real Instruction 3.14 B lInstruction 3.16
Add to Register and Jump Instruction . .. 3.15 Background: ‘
Add Words Instruction 3.6 Mode0 ... 9.2
Addition Operation 2.5.5 Batch 9.2
Address: Batch:
Byte i e 2.1 Background Mode 9.2
Indexed Memory 3.25 ode i e e, 9.2.2
Indirect Workspace 3.2.2 Stream 922
Memoryc.civiiuennnennn, 2.1 BDC Instruction 3.17
Program Counter Relative 3.24, 326 BES Directive 5.3.1, 5.3.1.5
Symbolic Memory 3.24 Bias Register 2.6.1
Trace Memory 245 Binary to Decimal ASCII
Wordo, 2.1 Conversion Instruction 3.17
Workspace Register 3.2.1 BIND Instruction 3.18
Addresses, Symbolic 2.13 Bipolar Memory 2.7
Addressing: Bit:
CRUBIit...........ciivua... 327 Addressing, CRU 3.2.7
Immediate 328 Arithmetic Greater Than 252
Indexed Memory 325 Breakpoint 245, 246, 248
Instruction T3-2 Carry ..o e 254
Mode 35.2 Equal 253
Modes 3.2, T3-1 Extended Operation 2.5.7
Program Counter Relative 3.2.6 Logical Greater Than 25.1
Symbolic....................... 54 Memory File 259
Symbolic Memory 324 Memory Management and
Workspace Register 3.2.1 Protection Enabled 25.10
Indirect 322 Overflow 25.5
Indirect Autoincrement.......... 323 Interrupt 2.5.11
Al Instruction. 3.10 Bit I/O Instructions 343
Alter Registers and Jump Bit Testing Instructions 34.16
Instructions 34.19 BL Instruction 3.19, 4.25.1
AM Instruction 3.11 Block:
AND Immediate Instruction 3.12 Ending With Symbol (BES)
AND Multiple Precision Directive 5.3.1, 53.1.5
Instruction 3.13 Starting with Symbol (BSS)
ANDI Instruction 3.12 Directive 5.3. l 53.14
ANDM Instruction 3.13 BLSK Instruction 3.20, 4.2.5.2
AORG Directive 5.3.1, 5.3.1.1 BLWP Instruction . 2.3, 321, 4.2.5. 3 4.3.2.2
AR Instruction 3.14 Branch and Link Instructxon 3.19, 4.2.5.1
Arithmetic: Branch and Load Workspace Pointer
Error 2.5.11 Instruction 3.21, 4.2.5. 3 4322
Expressions 2.10.1 Branch and Push Link to Stack
Greater Than Bit 2.5.2 Instruction 4252
Left Shift 25.5
Index-2 Digital Systems Group

2250077-9701

Branch Immediate and Push Link to Compare Bytes Instruction 3.23
Stack Instruction 3.20 Compare Immediate Instruction........ 3.28

Branch Indirect Instruction 3.18 Compare Ones Corresponding

Branch Instruction 3.16 Instruction 3.35

Breakpoint: Compare Strings Instruction 3.39
Bit......ovovvevnnn. 245,246,248 Compare Words Instruction 322
RegisteTccvvuuen. 24.6, 2438 Compare Zeros Corresponding
System ii i 246 Instruction, 340

BSS Directive . . . v v v v v v v 5.3.1,53.14 Completion Messagesc... .. 9.2.1

Bugs, Assembler T8-1 Component:

Byte: Attribute i e e 7543
Address ... ccv it i e 2.1 length 7.54.2,7.543
Directive . . . o v v i oo v 29.2, 533, 5.3.3.1 Parameter Attribute 7.55.2
Even Addressoveeiveenenn 2.2 Segmentc000tiiin. 7.54.3
Instructioncovvieeeenanos 2.1 String 7.54.2,7.543
Odd Addresso vt i i 2.2 Symbol Attribute 7.5.4.3, 75.5.1
StHNg . o v v v vt et ie it 2.12.2 User Attribute 7.5.4.3

Byte (BYTE) Directive, Valuecvvvn.. 7.54.2, 7543
Initializecc0vvvun.. 5.3.3, 5.3.3.1 Components of Variables 7.5.6.3

Computer, 990/12 i.i

Clnstructioncooveeuveeans 3.22 Conditional Assembly (ASMELS)

Cache: Directive . . . v v v v e v v v nnnn 535, 5354
Workspace 2.7,4.3.14, 43.15,43.19, Conditional Assembly (ASMEND)

4323, 4324 Directive . . .« v v v v v v v v 5.3.5, 5.3.54
Registerovviiinnenn.s 1.1 Conditional Assembly (ASMIF)

Carry Bitcovviiiii et 254 Directive vvvvvenn 5.35,5354

CB Instructionccvveevnnns 3.23 Conditions:

CDE Instructionccovvueeen 3.24 Overflowoiiviv v 2.10.1

CDI Instructionccoeeeeean 3.25 System Error Interrupt 244

CED Instructionco0ouvenas 3.26 Constants 2.10, 2.11, 5.3.3, 7.5, 753

CEND Directive 5.3.1, 5.3.1.9, 5.3.1.10 Assembly-Time 2114

CER Instructionvouveuenens 3.27 Charactercocovuunean 2.11.3

Character Constantsc.oov oo 2.11.3 Decimal Integer 2.11.1

Character Set, SDSMAC 29.1 Hexadecimal Integer 2.11.2

Character Stringccoevevuenen 2.15 Relocatable 2.10

Characters, Tag......... 10.5, 10.5.1, T10-3 Context Switch 2.3

Checkpoint Register (CKPT) Control Space, TILINE Peripheral 2.6.3
Directive . . v v v v v v v e e v v e 5.3.3, 5.3.3.5 Conventions:

ClInstructionccvvveeunnnns 3.28 SYNtax ..o vt iii i i e e 29

CID Instructioncco0ve.. 3.29 Syntax Definition 354

CIR Instructioncooouuus 3.30 Convert Double Precision Real to

CKOF Instruction 3.31, 4.2.7.2 Extended Integer Instruction 3.24

CKON Instruction 3.32,4.2.7.2 Convert Double Precision Real to

CKPT Directivecocvvenn 5.3.3, 5335 Integer Instruction 3.25

Clear: Convert Extended Integer to Double
Instruction 333 Precision Real Instruction 3.26
Status Register 0. 25.10 Convert Extended Integer to Real

Clock Off Instruction.......... 3.31,42.7.2 Instructionccouivvnvnnn 3.27

Clock On Instruction 3.32,4.2.7.2 Convert Integer to Double Precision

CLR Instructionccouvuunnn 3.33 Real Instructioncc0o... 3.29

CNTO Instructioncevveeunn 3.34 Convert Integer to Real Instruction 3.30

COC Instructiono vvvvenenenns 3.35 Convert Real to Extended Integer

Code: Instruction00iennn 3.37
Absoluteciitiiiiin. 8.2 Convert Real to Integer Instruction 3.38
Object0... 10.2, 10.5, 10.54 COPY Directive 5.3.5, 5353
Relocatableccovvnn. 8.2 Copy Source (COPY) Directive . . 5.3.5, 5.3.5.3

Comment: Count Ones Instruction 3.34
Field 295, 354 CRC Byte String Format T3-6
Statement v i i it 29 CRC Instructionoveeeeennn. 3.36

Common: CRE Instructioncccceu.. 3.37
Segmentc000000ennnn 539 CRI Instructionvoueu. 3.38
Segment End (CEND) Cross-Reference Listing 10.4

Directive 5.3.1, 53.19, 53.1.10 CRU ...t e ittt s iiieen 428
Segment (CSEG) Directive 5.3.1, 5.3.1.9 Bit Addressing 327
Communications Register Unit 428 Error Interrupt Status Register . . 2.4.4, 2.4.5
Instructionsovvveeens 345

Index-3 Digital Systems Group

(<]
@ 2250077-9701

CSInstruction 3.39 Copy Source (COPY) 5.3.5, 5353
CSEG Directive 5.3.1, 5.3.1.9 CSEG 5.3.1, 5.3.19
Cyclic Redundancy Code Calculation DATA 292,533, 5332
Instruction 3.36 Segment End
CZC Instruction00.... 3.40 (DEND)5. 53.1, 5.3.1.7, 5.3.1.8
», Segment (DSEG)......... 5.3.1,5.3.1.7
DATA: DEF 5.3.4, 534.1, 8.3, 8.3.2
Directive 29.2, 533, 533.2 Define Assembly-Time Constant
Segment 5.3.1.7 (EQU) 5.3.3, 5334
Segment End (DEND) Define Extended Operation
Directive 5.3.1, 5.3.1.7, 53.1.8 (DXOP)............... 5.35,5.35.1
Segment (DSEG) Directive 5.3.1, 5.3.1.7 Define Operation (DFOP) 5.3.5, 5355
TYPes vt e e 2.12 DEND5. 53 l, 5.3.1.7, 5.3.1.8
DBC Instruction 341 DFOP 5.3.5, 5.35.5, 7.6.1
DD Instruction 342 DORG 53.1, 5.3.1.3
DEC Instruction 343, 4242 DSEG 53.1, 5.3.1.7
Decimal ASCII to Binary Conversion Dummy Origin (DORG) ----- 53.1,5.3.1.3
Instruction 3.41 DXOP 3, 535, 5.35.1, 7.6.1
Decimal Integer Constants 2.11.1 EQU 2.114, 5.3.3, 5.3.34
Decrement by Two Instruction .. .3.44, 424.3 EVEN 29.2, 5.3.1, 5.3.1.6
Decrement Instruction 343,424.2 External:
DECT Instruction 344, 4243 Definition (DEF). . 5.3.4, 5.3.4.1, 8.3, 8.3.2
DEF Directive 5.3.4, 534.1, 8.3, 8.3.2 Reference (REF) .. 5.3.4, 5.3.4.2, 8.3, 8.3.1
Define Assembly-Time Constant Force Load (LOAD) 534, 5344
(EQU) Directive 533, 5334 IDT............ 5.32,5322, 83, 8.3.3
Define Extended Operation (DXOP) Initialize:
Directiveovuun... 5.3.5, 5.3.5.1 Byte (BYTE) 5.3.3, 5.3.3.1
Define Operation (DFOP) Text (TEXT) 5.3.3,53.33
Directive 5.3.5, 5.3.5.5 Word (DATA) 53.3,5.33.2
Definition (DEF) Directive, LIBIN 7.6, 7.6.2
External 5.3. 4, 5.34.1, 8.3, 8.3.2 LIBOUT 7.6, 7.6.1
DEND Directive 5.3.1 5.3.1 7, 5.3.1.8 LIST 5.32,5324
DFOP Directive 5.3. 5 5.3.5.5, 7.6.1 Source (LIST) 5.3.2,5324
Differences: LOAD 534,5344
Execution 4.3.1 Macro:
Performance 432 Library Attachment (LIBIN) 7.6, 7.6.2
DINT Instruction 3.45 Library Declaration
Directive: (LIBOUT) 7.6, 7.6.1
Absolute Origin (AORG). 5.3.1, 5.3.1.1 No Source List (UNL) 53.2,5325
AORG 5.3.1, 5.3.1.1 OPTION............. 3. 2, 53.2.1,9.2
ASMELS 5.35, 5354 Output Options (OPTION) ... 5.3.2, 5.3.2.1
ASMEND............... 5.3.5, 5.3.54 PAGE 5.3.2, 5.3.2.6
ASMIF 5.3.5, 5.3.54 Page Eject (PAGE)......... 53.2, 5.3.2.6
BES, 5.3.1, 5.3.1.5 Page Title (TITL). 53.2, 5323
Block: PEND 5.3.1, 53.1.11, 5.3.1.12,
Ending With Symbol 5.3.5, 5.3.5.2
BES)............... 5.3.1, 53.1.5 Program:
Staring With Symbol End (PEND) 5.3.5, 5.3.5.2
BSS)............... 53.1,53.14 Identifier (IDT) .. .5.3.2, 5.3.2.2,, 8.3, 8.3.3
BSS, 53.1, 53.14 Segment End (PEND) . 5.3.1, 5.3.1.11,
BYTE.............. 29.2, 533, 53.3.1 5.3.1.12
CEND 5.3.1, 5.3.1.9, 5.3.1.10 Segment (PSEG) 5.3.1, 5.3.1.11
Checkpoint Register (CKPT) .. 5.3.3, 5.3.3.5 . PSEG................. 5.3.1, 5.3.1.11
CKPT 5.3.3, 5335 REF 2.13,5.34, 5342, 83, 8.3.1
Common: Relocatable Origin (RORG) . 53.1,53.1.2
Segment End RORG 5.3.1, 5.3.1.2
(CEND) 5.3.1, 5.3.1.9, 5.3.1.10 Secondary External Reference
Segment (CSEG) 5.3.1, 5.3.1.9 (SREF) 5.34, 5.3.4.3
Conditional Assembly Set Maximum Macro Nesting Level
(ASMELS)............. 535, 5354 (SETMNL)............. 5.3.5, 5.35.6
Conditional Assembly SETMNL 5.3.5,5.35.6
(ASMEND) 5.3.5, 5354 SREF.................. 534, 5343
Conditional Assembly TEXT 29.2, 533, 5.3.3.3
(ASMIF) 5.3.5, 5354 TITL, 5.3.2,,5.3.23
COPY 5.3.5, 5353 UNL 5.3.2, 5325
Index-4 Digital Systems Group

2250077-9701

Word Boundary (EVEN) 5.3.1, 5.3.1.6 Execute Instruction 3.143, 4.3.7.4
Workspace Pointer (WPNT). .. 5.3.3, 5.3.3.6 Execute Micro-Diagnostic Instruction 3.50
WPNT 5.3.3, 5336 Execution Differences.............. 4.3.1
Directives: EXIT ... it iieinnn. 7.7.2
Assembler 5.3, 5.3.1, 5.3.2, 5.3.3, Exit from Floating Point
534,535 Interpreter Instruction 3.145
Macro Library Assembler 7.6 Expander, Macro 7.2, 7.54.2, 7.5.6.1
Miscellaneouso v v v v e 5.3.5 Expressionsc.cc0... 2.10
Disable Interrupts Instruction 3.45 Arithmetic. 2.10.1
DIV Instructioncvvvvu.. 3.46 Evaluating 2.10.1, 2.10.2, 2.10.4
Divide Double Precision Nibble 2.10
Real Instruction 3.42 Well-Defined 2.10
Divide: Extend Precision Instruction 3.4.23, 3.51
Instruction0vueeeenn. 3.46 Extended Operation 2.3, 2.5.12
Operationccuovvue.. 255 Bit.......... . i, 2.5.7
Divide Real Instruction 3.48 Instruction34.10, 3.146, 4.2.6, 4.3.2.2
Divide Signed Instruction 347 Extended Operatlon (DXOP) Dlrectlve
DIVS Instructioncoovuueen.. 347 Define 5.3.5, 5.3.5.1
DORG Directive 53.1,53.13 Extended Operations 426
Double Precision Real Numbers 2.12.6 External:
DR Instructioncc0.... 3.48 Definition (DEF)
DSEG Directive 5.3.1, 5.3.1.7 Directive 5.34, 5.34.1, 8.3, 8.3.2
Dummy Origin (DORG) Reference (REF)
Directive . . v v v v v i i e 5.3.1, 5.3.1.3 Directive 5.3.4, 5.34.2, 8.3, 8.3.1
DXOP Directive 2.13, 5.3.5, 5.3.5.1, 7.6.1 Reference (SREF) Directive,
DSDFXS$ 7.6, 7.6.1 Secondary 5.34, 5343
Editor, Link 8.3, 8.34 Extract Field Instruction 3.144
EINT Instruction. cvvvvuvennn 3.49 Extract Value Instruction 3.149
Elements, Macro Language 7.5 Field:
EMD Instructioncvuun. 3.50 Comment 295,354
Enabie Interrupis Instruction.......... 3.49 Instructions 3.4.18
Enabled Bit Memory Management KEY i, 10.2
and Protection 2.5.10 Label 292,354
End-of-Record Statement 29 LINE ittt i it 10.2
Entry Point, Subroutine 23,242, NAME 10.2
EP Instructioncco0uuun.. 3.51 Operandcc0uiuvu... 294
EQU Directive 2.11.4, 533, 5.3.34 Operationoevueueunnn. 293
Equal Bit........... S 253 Floating Point Accumulator FPA 2.12.7
Error: Force Load (LOAD)
Access Nameo v vt v v vvnnnnnens 9.2 Directivecvvvvn.. 5.34, 5.34.4
Arithmetic.00, 25.11 Forced Interrupt 248
Interrupt: Format:
Conditions, System 244 Machine Language 10.5, 10.5.2
Handling Routine 244 Source Statement 29
Error Interrupt Status Register 43.1.6 Format I Instructions.............. 34.1
Error: Format II Instructions 342, 343
Interrupt: Format III Instructions 344
Status Register, CRU....... 244,245 Format IV Instructions 345
System0.... 243,244 Format V Instructions 34.6
Trace Control and Map Format VI Instructions 347
Control Register 245, 246, Format VII Instructions 348
24.7, 248 Format VIII Instructions 349
Trace Memory 245, 24.6. Format IX Instructions 34.10, 3.4.11
Mappingcvvvvvvn.. 43.1.5 Format X Instructions 34.12
Messages, SDSMAC 10.3, T10-1 II::ormat gllilstructions 34.13
ormat nstructions 34.14
Ezghual,{l&grelz: pl;")e;:xo?s. o 210 ‘1] 2 .1(? .2’. 2 13421 Format XIII Instructions 3.4.15
EVEN Directive 292 53.1,53.16 Format X1V Instructions 34.16
Examples: ’ Format XV Instructions 34.17
MACTO & o ooeeeee e oo 7.7 Format XVI Instructions 3.4.18
Programmingoveeunrnn.. 4.2 Format XVII Instructions3.4.19
Exclusive OR Instruction 3.147 Format XVIII Instructions 3.4.20
Exclusive OR Multiple Eormat §§(Xllnstruc'uons gj%é
ormat nstructions34,
Precision Instruction 3.148 Format XXI Instructions. . . - . - 3423
Index-5 Digital Systems Group

<]
@ 2250077-9701

Formats, Instruction 34 Binary to Decimal ASCII
FPA e e 2.12.7 Conversionovuueennns 3.17
Floating Point Accumulator 2.12.7 BIND....... it 3.18
Functions: BL........0iiiiiiinnn. 3.19, 4.2.5.1
Loaderv.u... 2.6.2 BLSK................... 3.20, 4.2.5.2
Self-Test ROM 2.6.2 BLWP 2.3, 321, 4.2.5.3,4.3.2.2
Branch 3.16
GENCMT ... ittt 7.7.5 Branch and Link 3.19, 4.2.5.1
GOSUBciiiiiinnnnn. 7.7.1 Branch and Load Workspace
Greater Than: Pointer 3.21, 4.2.5. 3, 4322
Bit: Branch and Push Link to Stack . 4252
Arithmetic 2.5.2 Branch Immediate and Push Link
Logical 2.5.1 toStack 3.20
Handling Routine, Error Interrupt 244 Branch Indirect 3.18
Hexadecimal Integer Constants 2.11.2 Byte i 3225
ID . e e e 7.7.3 CB. ..ttt et e i e 3.23
Identifier (IDT) Directive, CDE i i 3.24
Program 532 5.3.2.2, 8.3, 8.33 CDI it i i 3.25
Idle Instruction 3.52 CED ... ittt 3.26
IDT Directive 5.3.2, 5.3.2.2, 8.3, 83.3 CDI ... ittt it 3.25
Illegal Opcodes . . L. .43l 3, Appendix M CED i 3.26
Immediate: CER ... ittt 3.27
Addressing0.... 3.2.8 Cl .. i 3.28
Instructions 349 CID ... it i i i i e 3.29
INC Instruction 3.53, 4.24.1 CIR ... i 3.30
Increment by Two Instruction 3.54 CKOF 331,4272
Increment Instruction 3.53, 4.24.1 CKONoent 332,4272
INCT Instruction 3.54 Clearttt ittt iiinnnnnn 3.33
Indexed Memory Addressing 325 Clock Off 3.31,42.72
Indirect: ClockOn 3.32,4.2.7.2
Addressing, Workspace Register 3.22 CLR i 3.33
Autoincrement Addressing, Workspace CNTO ittt ii i 3.34
Registerccvvun... 3.23 COC ... 3.35
Initialize: Compare Bytes 3.23
Byte (BYTE) Directive 5.3.3, 5.3.3.1 Compare Immediate 3.28
Text (TEXT) Directive 5.3.3, 5.3.3.3 Compare Ones Corresponding 335
Word (DATA) Directive 5.3.3, 5.3.3.2 Compare Strings 3.39
Insert Field Instruction.............. 3.55 Compare Words 3.22
INSF Instructioncovvvu.. 3.55 Compare Zeros Corresponding 3.40
Instruction: Convert Double Precision Real
S 3.6 to Extended Integer 3.24
AB e e 3.7 Convert Double Precision Real
ABS................ 3.8, 4.2.1, 4.3.1.1 tolnteger.................... 325
Absolute Value 3.8, 4.2.1, 4.3.1.1 Convert Extended Integer to Real 3.27
AD . e e 39 Convert Integer to Double
Add Bytes 3.7 Precision Real 3.29
Add Double Precision Real 39 Convert Integer to Real 3.30
Add Immediate 3.10 Convert Real to Extended Integer. 3.37
Add Multiple Precision Integer....... 3.11 Convert Real to Integer 3.38
AddReal 314 Count Omescocvun. 3.34
Add to Register and Jump 3.15 CRC i 3.36
Add Words 36 CRE i, 3.37
Addressing, T3-2 CRI......... .. . 3.38
Al L. e 3.10 CS e 3.39
AM . e 3.11 Cyclic Redundancy Code Calculation . . . 3.36
And Immediate 3.12 CZC .. 3.40
And Multiple Precision 3.13 DBCiiiiii. 341
ANDI 3.12 DD 3.42
ANDM 3.13 DEC 3.43,4242
AR 3.14 Decimal ASCII to Binary
N 2 3.15 Conversionvvvvwunn... 341
2 3.16 Decrement................ 3.43, 4242
BDC i 3.17 Decrement by Two 344, 4243
Index-6

Digital Systems Group

(o]
%@ 2250077-9701

DECTccivnvinnn.. 344, 4243
DINT .. ittt ittt ineann 3.45
Disable Interruptso v vv ... 345
DIV .t i e e 3.46
Dividet viiiienirannannns 3.46
Divide Double Precision Real 3.42
Divide Real 3.48
Divide Signed 3.47
DIVS .. e 3.47
DR .. i e 3.48
EINT .. i 3.49
EMD ... i i 3.50
Enable Interrupts 349
2 S 3.51
Exclusive OR 3.147
Exclusive OR Multiple Precision. 3.148
Execute3.143, 4274
Execute Micro-Diagnostic 3.50
Exit from Floating Point

Interpreter00u.. 3.145
Extend Precision 3.4.23, 3.51
Extended Operation3.146, 4.2.6, 4.3.2.2
Extract Field 3.144
Extract Value 3.149
Formatciivinn.. 34
Format XIX 34.21
Format XXI 3.4.23
Idle i i 3.52
INC......oiiiiiiiiinn, 3.53, 4.24.1
Increment by Two 3.54
Incrementcc0000.. 3.53, 4.24.1
INCT .. i e 3.54
Imsert Field 3.55
INSF ... i i e e 3.55
INV i e e 3.56
Inverto it i i e 3.56
Invert Order of Field 34.17, 3.57
IOF it i 3.57
JEQ .ot e e 3.58
JGT . . e 3.59
JH ..o e 3.60
JHEo i i 3.61
0 3.62
JLE . e e 3.63
JLT i i e 3.64
JMP .. 3.65
INC ... e 3.66
JNE ... i i 3.67
JNO i e 3.68
JOC 3.69
JOP e 3.70
Jump If Equal 3.58
Jump If Greater Than............. 3.59
Jump If High or Equal 3.61
Jump If Less Than............... 3.64
Jump If Logical High 3.60
Jump If Logical Low 3.62
Jump If Low or Equal 3.63
Jump If NoCarry 3.66
Jump If No Overflow 3.68
Jump If Not Equal............... 3.67
Jump If Odd Parity 3.70
JumpOnCarry 3.69
LCS .. 3.71
LD . 3.72

IDCR, 3.73, 4.2.8.5
LDD ... e 3.74
LDS ... 3.75
Left Test forOne 3.83
LI e e 3.76
LIM........ ... 2.5.13, 3.77
LIMI, 2.5.13, 3.78
IMF 2.6.1, 3.79
Load CRU 3.73, 4.28.5
Load Double Precision Real 3.72
Load Immediate 3.76
Load Interrupt Mask 3.77
Load Interrupt Mask Immediate 3.78
Load Memory Map File 3.79
Load or Restart Execution3.81, 4.2.7.1
Load Real 3.80
Load Status Register 3.82
Load Workspace Pointer

Immediate 3.85, 43.2.2
Load Workspace Pointer Register 3.84
Load Writable Control Store 3.71
Long Distance Destination 3.74
Long Distance Source 3.75
LR .. e 3.80
LREX 2.3, 3.81, 4.2.7.1
LST .ttt i e e 3.82
LTO, i 3.83
LWP ... e 3.84
LWPL.............. 3.85, 4322
MD e 3.86
Memory Map File 34.12
MOV i i e 3.87
MOVA 3.88
MOVB i, 3.89
Move Address 3.4.21, 3.88
Move Byte 3.89
Move String 3.90
Move String from Stack 3.94
Move String Reverse 3.95
Move Word 3.87
MOVS e 3.90
MPY e 3.91
MPYS 3.92
MR ... e 3.93
Multiply, 391
Multiply Double Precision Real 3.86
Multiply Real 393
Multiply Signed 3.92
MVSK 3.94
MVSR 3.95
NEGo, 3.96
Negatec0uiuiuennnnn. 3.96
Negate Double Precision Real 3.97
Negate Real 3.98
NEGD 3.97
NEGR 3.98
No Operation (NOP) 6.1, 6.2
NOP i, 6.1, 6.2
Normalize 3.99
NRM 3.99
OR Immediate 3.100
OR Multiple Precision 3.101
OR Multiple Precision 3.101
ORI........ 3.100
ORM 3.101

Index-7

Digital Systems Group

o
{@ 2250077-9701

Pop String from Stack 3.102 STR..... . i 3.131
POPS 3.102 STST ..o i it 3.132
PSHS it 3.103 STWP 3.133
Push String to Stack 3.103 Subtract Bytes 3.108
Reset 2.4.4, 3.104, 4.2.7.3 Subtract Double Precision Real 3.111
Return with Workspace Pointer 3.106 Subtract from Register
Return Workspace Pointer . . . 4.2.5.3, 4.3.2.2 and Jump 3.126
Return (RT) 6.1, 6.3 Subtract Multiple Precision
Right Test forOne 3.105 Integer 3.118
RSET..... 244, 246, 2.4.7, 3.104, 42.7.3 Subtract Real 3.122
RT ... i i, 6.1, 6.3 Subtract Words 3.107
RTO 3.105 Swap Bytes 3.134
RTWP 3.106, 4.2.5.3, 4.3.2.2 Swap Multiple Precision 3.135
0 3.107 SWPB, 3.134
SB ... e i e e 3.108 SWPM 3.135
SBO.......... 244, 245, 3.109, 4.2.8.2 Symbol Attributes 10.4, T10-2
SBZ.......... 244,245, 3.110, 4.2.8.3 ZC . e e 3.136
] I 3.111 SZCB e e 3.137
Search List Logical Address........ 3.116 TB. .. 3.138, 4.2.84
Search List Physical Address 3.117 TCMBc0u.... 3.139, 4.2.2
Search String for Equal Byte 3.112 Test and Clear Memory Bit 3.139, 4.2.2
Search String for Not Equal Byte 3.119 Test and Set Memory Bit 3.142, 4.2.2
SEQB...... ..ottt 3.112 Test Bit 3.138, 4.2.8.4
Set CRU Bit to LogicOne 3.109 Test Memory Bit 3.140
Set CRU Bit to Logic Zero 3.110 TMB 3.140
Set CRUBittoOne............ 4.2.8.2 Transfer Vector (XVEC) 6.1, 6.4
Set CRU Bitto Zero 4.2.8.3 Translate String 3.141
Set Ones Corresponding 3.120 TS e 3.141
Set Ones Corresponding (Byte) 3.121 TSMB 3.142, 4.2.2
SettoOne 3.113 Unconditional Jump 3.65
Set Zeros Corresponding 3.136 D, S 3.143, 4.2.7.4
Set Zeros Corresponding (Byte) 3.137 XE e 3.144
SETO....... it 3.113 XIT oo e i e i 3.145
Shift Left Arithmetic 3.114, 4.2.3.1 XOoP .2.5.12, 2.8, 3.146, 4.2.6, 4.3.2.2
Shift Left Arithmetic Multiple XOR 3.147
Precision 3.115, 4.3.2.6 XORM i, 3.148
Shift Right Arithmetic 3.123, 4.2.3.2 XV o e e e 3.149
Shift Right Arithmetic Multiple XVEC i, 6.1, 6.4
Precision 3.124, 4.3.2.5 Instructions:
Shift Right Circular 3.125, 4.2.3.3 Alter Registers and Jump 3.4.19
Shift Right Logical 3.127, 4234 Assembly Language 3.1
SLA. i e 3.114, 4.2.3.1 Bit1/O...................... 343
SLAM, 3.115, 4.3.2.6 Bit Testing 34.16
SLSL i 3.116 CRU 345
SLSP i e 3.117 Extended Operation 34.10
SM .. e i i 3.118 Field 34.18
SNEB........iiiiiriinnnnnnn 3.119 Format1 34.1
SOC ... i i i i 3.120 Format Il 342, 343
SOCBcit ittt 3.121 Format III 344
SR ... e e e 3.122 Format IV 345
SRA, 3.123, 4.2.3.2 FormatV 3.4.6
SRAM 3.124, 4.3.2.5 Format VI 347
SRC 3.125, 4.2.3.3 Format VII 3.4.8
SRJ .. e e 3.126 Format VIII 349
SRL.......... 3.127, 4.2.34 Format IX 3.4.10, 3.4.11
STCR 244, 245, 3.128, 4.2.8.6 Format X 34.12
STD ... i e e 3.129 Format XI 3.4.13
Store CRU 3.128, 4.2.8.6 Format XII 34.14
Store Double Precision Real 3.129 Format XIII 34.15
Store Program Counter 3.130 Format XIV 34.16
Store Real 3.131 Format XV 3.4.17
Store Status 0. 3.132 Format XVI 3.4.18
Store Workspace Pointer 3.133 Format XVII.................. 34.19
STPC. ...t i ii 3.130 Format XVIII 3.4.20
Index-8 Digital Systems Group

o;
(@ 2250077-9701

Format XX 3.4.22 Jump If No Carry Instruction 3.66
Immediate 349 Jump If No Overflow Instruction....... 3.68
Jump i, 34.2 Jump If Not Equal Instruction 3.67

List Search 34.22 Jump If Odd Parity Instruction 3.70

Logical 344 Jump Instructions 342

Multiple Precision 34.13 Jump On Carry Instruction........... 3.69

Multiple Precision Shift. 34.15

Multiply and Divide 34.11 KEY Field 10.2

Register Shift 346 Keywords 75.5

Single Address 34.7 Parameter Attribute 7.5.52

Single Register Operand 3420 Symbol Attribute 7.55.1

String 34.14

Two Address 34.1 Label 29

Without Operands 348 Field 292,354
Integer Constants: Labels 7.5, 7.5.1

Decimal 2.11.1 Language:

Hexadecimal 2.11.2 Elements, Macro 7.5
Integers, Multiple Precision.......... 2.12.1 Format, Machine 10.5, 10.5.2
Interrupt 23,24 LCS Instruction 3.71

Bit, Overflow 2.5.11 LD Instruction3.72

Conditions, System Error 244 LDCR Instruction 3. 73 4285

Forced 248 LDD Instruction 3.74

Handling Routine, Error 244 LDS Instruction 3.75

Level 24,241,242, 243 Least Significant Bit (LSB) 2.1, 22

Line-Frequency-Clock 243 Left Shift, Arithmetic........ e 255

Mask 24,241, 242, 2513 Left Test for One Instruction 3.83

Power Failing 243 Length: .

Power-On 243 Component 7.54.2, 7 54.3

Predefined 2.4.3 Source Word 2.9

Priority. 24.1, 242 Level, Interrupt-. 2 4, 2 4.1, 24, 2, 4.3

Sequence..................... 24.2 Lllnstruction. 3.76

Status Register, CRU Error 244, 245 LIBIN Directive 7.6, 7.6.2

Subroutine 2.3, 242 LIBOUT Directive 7.6, 7.6.1

System Error 243,244 Library:

Trace Control and Map Control Assembler Directives, Macro 7.6

Register, Error ... 24.5, 24.6, 247, 248 Attachment (LIBIN) Directive,

Trace Memory, Error 24.5, 24.6 Macro 7.6, 7.6.2

Transfer Vector 24 Declaration (LIBOUT) Directive,

12 Millesecond Test Clock 24.7 Macro.................. 7.6, 7.6.1
Interrupts e 43.2.2 Macro I 7.3,74,176
INV Instruction 3.56 Management, Macro 7.6, 7.6.3
Invert Instruction 3.56 Pathname, Macro................. 9.2
Invert Order of Field Instruction .. 3.4.17, 3.57 LIM Instruction 25.13, 3.77
IOF Instruction.oouvuu... 3.57 LIMI Instruction............. 2.5.13, 3.78

Limit Register -2.6.1
JEQ Instruction 3.58 LINE Field 10.2
JGT Instruction 3.59 Lme-Frequency—Clock Interrupt 24.3
JH Instruction0....... 3.60 Link Editor 8.3, 834
JHE Instruction 3.61 Linkage, Program 5.34
JLInstruction.................... 3.62 Linking, Program 8.3
JLE Instruction. 3.63 List......., 2,124, 7.7.8
JLT Instruction. 3.64 Access Name 9.2
JMP Instruction0ovvu... 3.65 Directive 532, 5324
JNC Instruction 3.66 Search Control Block (LSCB) 2.124
JNE Instruction 3.67 List Search Instructions 3.4.22
IJNO Instruction 3.68 List Source (LIST) Directive 5.3.2, 5.3.2.4
JOC Instruction 3.69 Listing:
JOP Instruction 3.70 Cross-Reference 104
Jump If Equal Instruction 3.58 Source 10.2
Jump If Greater Than Instruction 3.59 LMF Instruction veve.. 260,379
Jump If High or Equal Instruction 3.61 LOAD........... 7.7.6
Jump If Less Than Instruction 3.64 Load CRU Instruction 3.73, 4.2.8.5
Jump If Logical High Instruction 3.60 LOAD Directive 534, 5344
Jump If Logical Low Instruction 3.62 Load Double Precision
Real Instruction 3.72
Index-9 Digital Systems Group

2250077-9701

Load Immediate Instruction 3.76 Memory:
Load Interrupt Mask Address it 2.1
Immediate Instruction 3.78 Trace .. v v v ivin i 2.4.5
Load Interrupt Mask Instruction 3.7 Bipolar o s 2.7
Load Memory Map File Instruction 3.79 Memory Cache 42.12
Load or Restart Execution Memory, Error Interrupt Trace ... 2.4.5, 24.6
Instructionc0u0u.. 3.81, 4.2.7.1 Memory File Bit 2.5.9
Load Real Instruction 3.80 Memory Management and Protection
Load Status Register Instruction 3.82 Enabled Bit« 2.5.10
Load Workspace Pointer Memory Map File Instruction 34.12
Immediate Instruction 385, 4322 Memory:
Load Workspace Pointer Register Mappingcooiiiiiiinen 2.6.1
Instructionc.on v 3.84 Organizationovueeen 2.6
Load Writable Control Store PROM, Programmed Read Only . 2.6.2, 2.6
Instructioncc0vienn. 3.71 Protection 2.6.1
Load (LOAD) Directive, Force .. 5.3.4, 5.34.4 Word & oo it e e e e 2.2
Loader Functions e .. 262 Messages:
Location Counter 5.3.1, 10.2 Abnormal Completion. T8-1
Logical: Completion 9.2.1
reater Than Bit c.. 251 SDSMAC:
Instructionso oo v v v vv e 344 Error.................. 10.3, T10-1
Operatorsooouvnnn 2.10.2 Warning0.00.... 10.3, T10-1
Logical Operators in Expressions 5.22 Warningcoivi i 10.2
Long Distance Destination Instruction ... 3.74 Miscellaneous Directives 5.35
Long Distance Source Instruction 3.75 Mode:
LR Instructionccvvu.n.n 3.80 Addressingcieunin.n 3.5.2
LREX Instruction23, 3.81, 4.2.7.1 Background 0. 9.2
LSB, Least Significant Bit 2.1, 22 Batch, 9.2.2
LSCB List Search Control Block 2,124 Background 9.2
LST Instructxon 3.82 Privileged, 2.8
LTO Instructionc0ovueeu.. 3.83 Model Statements 7.5.7
LWP Instructioncov..n. 3.84 Modes, Addressing 3.2, T3-1
LWPI Instruction 3.85, 4.3.2.2 Most Significant Bit (MSB) 2.1, 2.2
MOV Instructioncv0nu.n.. 3.87
Machine Language Format 10.5, 10.5.2 MOVA Instruction 3.88
Macro: MOVB Instruction 3.89
Assembler v 9.1, 9.2 Move Address Instruction....... 3.4.21, 3.88
Examples000vivivenn, 7.7 Move Byte Instruction 3.89
Expander 7.2, 7.54.2, 7.5.6.1 Move String from Stack Instruction 3.94
Macro Language 7.1 Move String Instruction 3.90
Macro: Move String Reverse Instruction 3.95
Language Elements 1.5 Move Word Instruction 3.87
Library . .. oo vv v e i e 7.3, 74,76 MOVS Instruction 3.90

Assembler Directives 7.6 MPY Instruction 3.91

Attachment (LIBIN) Directive . . 7.6, 7.6.2 MPYS Instructionov... 392

Declaration (LIBOUT) MR Instructioncovvenenn... 3.93

Directive 7.6, 7.6.1 MSB, Most Significant Bit 2.1, 22

Management 7.6, 7.6.3 Multxple Precision:

Pathnamecoooonn 9.2 Instructionsovouvun 34.13
Macro Processingcciieeann 7.2 Integers, 2.12.1
Macro Symbol Table 7.5,7.54,754.2 Multiple Precision Shift Instructions. .. .3.4.15
Macro Translator 7.3 Multiply and Divide Instructions3.4.11
Macro Instructions 5.2 Multiply Double Precision
Management: Real Instruction 3.86

and Protection Enabled Bit, Multiply Instruction 391
Memory.........vvviivnnn. 2.5.10 Multiply Real Instruction 3.93
Macro Library 7.6, 7.6.3 Multiply Signed Instruction........... 3.92
Map Diagnostic Hardware 43.18 MVSK Instruction. 3.94
Mapping: MVSR Instruction 3.95
Error .. cv v it in e it 4.3.1.5 NAME Field 10.2
Memoryocoviiinninnnn. 2.6.1 NEG Instructionc.0.... 3.96
Registersvcvivinnnunn 259 Negate Double Precision
Mask, Interrupt 24,241,242, 25.13 Real Instruction 3.97
MD Instruction. 3.86
Index-10 Digital Systems Group

[o]
é@ 2250077-9701

Negate: Parameters 7.5, 754, 7.54.1
Instruction0vu.... 3.96 Pathname, Macro Library............. 9.2
Operation 255 PEND Directive 5.3.1, 5.3.1.11, 5.3.1.12,

Negate Real Instruction 3.98 5.3. 5 5.3.5.2

NEGD Instructionoovvvsun.. 3.97 Performance Differences 43.2

NEGR Intruction0oouuun.. 3.98 Peripheral Control Space, TILINE 26.3

Nibble Expressions 2.10 Pop String from Stack Instruction 3.102

No Operation (NOP) Instruction 6.1, 6.2 POPS Instruction 3.102

No Source List (UNL) Power Failing Interrupt 243
Directive 5.3.2, 5.3.2.5 Power-On Interrupt 243

NOP Instruction 6.1, 6.2 Predefined:

Normalization 2.12.5 Interrupt 243

Normalize Instruction. 3.99 Symbols 2.13.1

NRM Instruction 3.99 Priority, Interrupt 24.1, 242

Number, Source Statement 10.2 Privileged Mode 2.8

Numbers Real 2.12.5, 2.12.6 Privileged Mode Bit............... 258

Program Counter 23,242

Object: Relative:

Access Namec..oun... 9.2 Address 3.24, 326
Code 10.2, 10.5, 10.5.4 Addressing 3.26

Odd Address Byte 2.2 Program:

Odd Parity Bit 2.5.6 End (PEND) Directive 535,535.2

Opcode 29, 35.1, 3.54 Identifier (IDT)

Operandccv..... 29 Directive 532,5322, 83,833
Field 29.4 Linkage 5.34

Operand List 7.5.6.1 Linking, 8.3

Operation: Segment 5.3.1L11
Addition 2.5.5 Segment End (PEND)

Divide 255 Directive 5.3.1, 53.1.11, 5.3.1.12
Fieldc0 ..., 29.3 Segment (PSEG) Directive . . . 5.3.1, 5.3.1.11
Negate0veveo.. 255 Programmed Read Only

Operation of the Macro Assembler 9.1 Memory (PROM). 26, 2.6.2

Operation, Subtraction 255 Programming Examples 472

Operatorso vvvinve .. 7.5, 7.5.3 PROM, Programmed Read
Logical, 2.10.2 Only Memory 2.6, 2.6.2
Relational 2.10.3 Protection:

OPTION Directive 53.2,5321,92 Enabled Bit, Memory

Options, Output 9.2 Management and 2.5.10

Options (OPTION) Directive, Memory 2.6.1
Output 5.3.2, 5.3.2.1 PSEG Directive 5.3.1, 5.3.1.11

Or Immediate Instruction 3.100 Pseudo-Instructions 6.1

Or Multiple Precision Instruction 3.101 PSHS Instruction 3.103

Organization, Memory 2.6 PSHS or POPS Representation F3-1

ORI Instruction 3.100 Push-String-to-Stack Instruction. 3.103

Origin:

(AORG) Directive, Absolute .. 5.3.1, 5.3.1.1 Qualifiers, Variable 7.54.3

(DORG) Dlrecnve Dummy ... 5.3.1, 53.1.3

(RORG) Directive, Real Numbers.............. 2.12.5, 2.12.6
Relocatable 5.3.1, 5.3.1.2 Double Precision 2.12.6

ORM Instruction 3.101 Single Precision 2.12.5

Output: Reentrant Programming 4.2.10
Assembler 5.3.2 Reexecutable Instructions 4.2.11
Optionscovvvvuuun.. 9.2 REF Directive .. 2.13, 534, 5.3.4.2, 8.3, 8.3.1
Options (OPTION) Directive .. 5.3.2, 5.3.2.1 Reference Llstmg, CroOSS « v oo 10.4

Overflow: Reference (REF) Directive,

Bit 2.5.5 External 5.34,534.2, 8.3.1, 8.3

Conditions 2.10.1 Reference (SREF) Directive,

Interrupt Bit 2.5.11 Secondary External......... 5.34, 53423
Register:

PAGE Directive 5.3.2, 5.3.2.6 Bias 2.6.1

Page Eject (PAGE) Directive ... 5.3.2, 5.3.2.6 Breakpoint 246,248

Page Title (TITL) Directive 5.3.2, 5.3.2.3 Cache, Workspace 1.1

Parameter Attribute: Clear Status 2.5.10
Component 7.5.5.2 CRU Error Interrupt Status 244, 2.4.5
Keywords 7.5.5.2 Error Interrupt Status 4.3.1.6

Index-11 Digital Systems Group

(¢]
{@ 2250077-9701

Error Interrupt Trace Control and

Segment End (CEND) Directive,

Map Control 245, 246, 24.7, 248 Common.......... 5.3.1, 5.3.1.9, 53.1.10
Limitcc.... 2.6.1 Segment End (DEND) Directive,
Register Shift Instructions. 34.6 Data 5.3.1, 5.3.1.7, 5.3.1.8
Register: Segment End (PEND) Directive,
Status. 24.1, 242, 25, 43.1.7 Program 5.3.1, 5.3.1.11, 5.3.1.12
Workspace Pointer 2.3, 242,26 Segment, Program 53.1.11
Registers, Mapping 2:59 Segment (CSEG) Dlrectxve
Relational Operators 2.10.3 Common................ 5.3.1, 5.3.1.9
Relational Operators in Expressnons .. 523 Segment (DSEG) Directive,
Relocatability: Data 5.3.1, 5.3.1.7
of Expressions 8.2.1 Segment (PSEG) Directive,
of Source Statement Elements 8.2.1 Program 5.3.1, 5.3.1.11
Relocatable: Self-Test ROM Functions 2.6.2
Code e e e e 8.2 SEQB Instruction 3112
Constantscc000c0nens 2.10 Sequence, Interrupt 24.2
Origin (RORG) Directive 5.3.1, 5.3.1.2 Set CRU Bit to Logic
Symbolscvvun. 2.10 One Instruction v .. 3109
Relocation Capability 8.2 Set CRU Bit to Logic
Reset Instruction 244, 3.104, 42.7.3 Zero Instruction 3.110
Return with Workspace Pointer Set CRU Bit to One
Instruction 3.106 Instruction 4282
Return Workspace Pointer Set CRU Bit to Zero
Instruction 4253, 4322 Instruction0vveuuu.. 4283
Return (RT) Instruction 6.1, 6.3 Set Maximum Macro Nesting Level
Right Test for One Instruction 3.105 (SETMNL) Directive 5.3.5, 5.3.56
ROM Functions, Self-Test 2.6.2 Set Ones Corresponding Instruction 3.120
RORG Directive 5.3.1, 5.3.1.2 Set Ones Corresonding (Byte)
RSET Instruction 244,246, 247, Instruction00.. 3.121
3.104, 42.7.3 Set to One Instruction 3.113
RT Instruction00.. 6.1, 6.3 Set Zeros Corresponding Instruction. ... 3.136
RTO Instruction0c... 3.105 Set Zeros Corresponding (Byte)
RTWP Instruction 3.106, 4.2.5.3, 4.3.2.2 Instruction 3.137
SETMNL Directive 5.3.5, 5.35.6
S Instructionc00.... 3.107 SETO Instruction 3.113
SBlInstructionco00u.s 3.108 Shift, Arithmetic Left.............. 2.5.5
SBO Instruction . .. 244 24.5, 3.109, 42.8.2 Shift Left Arithmetic
SBSCommand' ooviverrennn 9.2 Instruction 3.114, 4.2.3.1
SBZ Instruction . 244,245, 3.110, 4.2.8.3 Shift Left Arithmetic Multiple
SD Instructionco0cevees 3.111 Precision Instruction 3.115, 43.2.6
SDSMACiviiiiivnens 9.1, 9.2 Shift Right Arithmetic
Assembler, 5.2 Instruction 3.123, 4.2.3.2
Character Set 29.1 Shift Right Arithmetic Multiple
Error Messages 10.3, T10-1 Precision Instruction 3.124, 4.3.2.5
Warning Messages 10.3, T10-1 Shift Right Circular
Search Control Block (LSCB, Instruction 3.125, 4.2.3.3
List ... vtii it 2.124 Shift Right Logical
Search List Logical Address Instruction 3.127, 4234
Instruction0iiu.n 3.116 Show Background Status (SBS)
Search List Physical Address Commandc0o.u.., 9.2
Instruction000vun 3.117 Single Address Instructions 34.7
Search String for Equal Single Precision Real Numbers 2,125
Byte Instruction 3.112 Single Register Operand
Search String for Not Equal Instructions 3420
Byte Instruction 3.119 SLA Instruction 3.114, 4.2.3.1
Search Termination ConditionsT34 SLAM Instruction 3.115, 4.3.2.6
Second Word Madification 43.1.2 SLSL Instruction 3.116
Secondary External Reference SLSP Instruction 3117
(SREF) Directive 534, 5343 SM Instruction 3.118
Segment: SNEB Instruction 3.119
COmMmMON . . v vvineen s envnnennn 5.39 SOC Instruction 3.120
Componentovvuun.nn 7.5.4.3 SOCB Instruction 3.121
Datacccvivvnnn 5.3.1.7
Index-12 Digital Systems Group

2250077-9701

Source: Swap Multiple Precision Instruction 3.135
Access Name . . . v v e e oo 9.2 SWPB Instruction 3.134
LiSting « v i vttt i e 10.2 SWPM Instruction 3.135
Statementc.0iiuuen.. 10.2 Symbol Attribute:

FOrmat . ..o v v oo e e e e e iiiii 2.9 Component 7.54.3, 75.5.1
Source Statement Number 10.2 Keywords 7.5.5.1
Source Word Length 29 Symbol: .

Source (LIST) Directive, List ... 5.3.2, 5.3.2.4 Attributes 104, T10-2

SR Instructionccvuuun. 3.122 Table 7.3, 10.5, 10.5.3

SRA Instruction 3.123, 4.2.3.2 Macro 75,754,754.2

SRAM Instruction. 3.124, 4.3.2.5 Symbolic:

SRC Instruction 3.125, 4.2.3.3 Addresses 2.13

SREF Directive 53.4, 5.34.3 Addressing 5.4

SRJ Instruction 3.126 Symbolic Memory:

SRL Instruction 3.127, 4234 Addressing 3.24

SEACK & v v te i e 2.12.3 Symbols.................... 2.10, 2.13

Starting with Symbol (BSS) Directive, Absolute 2.10
BIOCK & oo v it 53.1, 53.14 Predefined 2.13.1

Statement: Relocatable 2.10
COMMENt « . v o oo e v e eee e, 2.9 User-Defined 2-13
End-of-Record 0o, 29 Syntax Conventions 29
Format, Source00uuuu... 29 Syntax Definition Conventions 354
SOUICE & v vttt ettt 10.2 System:

Status: Breakpoint 24.6
Register 24.1,242, 25, 43.1.7 Error: ’

Clear . . v v ittt e e e 2.5.10 Interrupt 243,244

CRU Error Interrupt 244,245 Interrupt Conditions 244
STCR Instruction .. 2.4.4, 2.4.5, 3.128, 4.2.8.6 SZC Instruction 3.136
STD Instruction 3.129 SZCB Instruction 3.137
Store CRU Instruction 3.128, 4.2.8.6 :

Store Double Precision Real TABLE i, 7.7.7
Instructionovovun.. 3.129 Macro Symbol 7.5,754,17542

Store Program Counter Instruction 3.130 Symbol 7.3, 10.5, 10.5.3

Store Real Instruction 3.131 Tag Characters 10.5, 10.5.1, T10-3

Store Status Instruction 3.132 Tagged String 2.12.2

Store Workspace Pointer Instruction ... 3.133 TB Instruction 3.138, 4.2.8.4

STPC Instructiono vvuuu.. 3.130 TCMB Instruction 3.139, 4.2.2

STR Instructionocvnu.. 3.131 Term 2.14

Stream, Batch 9.2.2 Test and Clear Memory Bit

String: Instruction 3.139, 4.2.2
Byte .. oii i 2.12.2 Test and Set Memory Bit
Charactero ovvie. 2.15 Instruction 3.142, 4.2.2
Component 7.54.2, 7.54.3 Test Bit Instruction 3.138, 4.2.84
Instructions 3.4.14 Test Memory Bit Instruction 3.140
Tagged i it 2.12.2 TEXT Directive 29.2, 5.3.3,5.3.33

Strings.ovviiinain... 7.5, 7.5.2 Text (TEXT) Directive,

STST Instruction 3.132 Initialize 5.3.3,5333

STWP Instruction 3.133 TILINE........... 26, 263, 4.2.9, 43.1.9

Subroutine: Peripheral Control Space 2.6.3
Entry Point 2.3, 2.4.2 Timing Loops 43.2.1
Interruptovvve..... 23,242 TITL Directive 5.3.2, 5323

Subroutines 425,425.1,425.2, Title (TITL) Directive,

4253, 4254 Page 5.3.2, 5.3.2.3

Subtract Bytes Instruction........... 3.108 TMB Instruction 3.140

Subtract Double Precision Trace Control and Map Control Register,

Real Instruction 3.111 Error Interrupt . 245, 24,6, 24.7, 2.4.8

Subtract from Register and Trace:

Jump Instruction 3.126 Memory:

Subtract Multiple Precision Address 24.5
Integer Instruction 3.118 Error Interrupt 245, 246

Subtract Real Instruction 3.122 Transfer Vector, Interrupt 24

Subtract Words Instruction 3.107 Transfer Vector (XVEC) Instruction . . .6.1, 6.4

Subtraction Operation 255 Transfer Vectors 23,24

Swap Bytes Instruction............. 3.134 Transfer Vector (XVEC) Instruction . . .6.1, 6.4

Index-13 Digital Systems Group

o]
@ 2250077-9701

TS Instruction, 3.141 Workspace Pointer (WPNT)
TSMB Instruction 3.142, 4.2.2 Directive oo vn .. 5.3.3, 5.3.3.6
Two Address Instructions 34.1 Workspace Register:
Two’s Complement 2.1,22,25.2 Address 3.2.1
Types, Datac00ueununn 2.12 Indirect 3.22
Addressing, 3.2.1
Unconditional Jump Instruction........ 3.65 Workspace Register Cache 1.1
UNIQUE, 7.74 Workspace Register:
UNL Directive 5.3.2,5.3.25 Indirect:
Upgrade Considerations, 990/10 Addressing 322
To990/12. ittt iinen, 43 Autoincrement Addressing 3.23
Use of Parentheses in Expressions 5.2.1 WPNT Directive 5.33, 5.3.3.6
User Attribute Component 7.543 Writable Control Store. 1.1
User-Defined Symbols 2.13 Bit . .. e 2.5.12
Value Component 7542, 7543 X Instruction 3.143, 42.7.4
Variable Qualifiers 7.54.3 XF Instructionc000.. 3.144
Vanables 7.5, 754, 7.5.6.2 XIT Instruction . . « . v v v v v v v v veennn 3.145
Vector, Interrupt Transfer............. 24 XOP Instruction 2.8, 2.5.12, 3.146,
Vectors, Transfer 23,24 4.2.6, 43.2.2
Verb: XOR Instructionovvvvvnn.. 3.147
SASG.......... o 7.5.6, 7.5.6.3 XORM Instructioncc0n.. 3.148
SCALL 7.5.6, 7.5.6.7 XV Instructioncovuveuen. 3.149
$ELSE 7.5.6, 7.5.6.8, 7.5.6.9 XVEC Instruction 6.1, 6.4
SEND 7.5.6, 7.5.6.10 12 Millesecond Test Clock
SENDIF 7.5.6, 7.5.6.8, 7.5.6.9 Interrupt, 24.7
SEXIT ..., 7.5.6, 7.5.6.6 990/10 to 990/12 Upgrade '
$GOTO 7.6.6, 7.5.6.5 Considerationscounvu.n. 43
SIF i 7.5.6, 7.5.6.8 990/12:
SMACRO 7.3, 7.5.6, 7.5.6.1 Assembly Language 1.2
SNAME 7.5.6, 7.5.6.4 Computercivneevuneenn 1.1
SVAR 7.5.6, 7.5.6.2
Verbso e 7.5.6 SASB Verb 7.5.6, 1.5.6.3
SCALL Verb 7.5.6, 7.5.6.7
Warning: SELSE Verb.......... 7.5.6, 7.5.6.8, 7.5.6.9
MeESSaBeS . « o v v v v it i 10.2 SEND Verb 7.5.6, 7.5.6.10
SDSMAC 10.3, T10-1 SENDIF Verb......... 7.5.6, 7.5.6.8, 7.5.6.9
Well-Defined Expressions 2.10 SEXIT Verb o 7.5.6, 7.5.6.6
Word Address 2.1 $GOTO Verb 7.5.6, 7.5.6.8
Word Boundary 22 $IF Verb 7.5.6, 1.5.6.8
Word Boundary (EVEN) SMACRO Verb 7.3, 7.5.6, 7.5.6.1
Directive 5.3.1, 5.3.1.6 SNAME Verb 7.5.6, 7.5.6.4
Word: SVAR Verb 7.5.6, 7.5.6.2
Length, Source 29
Memoryot viivnennunennn 2.2 (AORG) Directive,
Word (DATA) Directive, Absolute Origin 5.3.1, 5.3.1.1
Initialize 5.3.3,533.2 (DORG) Directive,
Workspacc 2.3, 24.2, 2.6, 43.14, 4.3.2.3 Dummy Origin 5.3.1, 5.3.1.3
Cache ... 2.7, 4.2 12 43.14, 43.1.5, 43.1.9, (RORG) Directive,
4323,4324 Relocatable Origin 5.3.1, 5.3.1.2
Workspace Pointer Register ... 2.3, 2.4.2, 2.6
Index-14 Digital Systems Group

CUT ALONG LINE

USER’S RESPONSE SHEET

Manual Title: Model 990/12 Computer Assembly Language Programmer’s

Guide (2250077-9701)
Manual Date: 15 May 1979 (Date of This Letter:
User’s Name: Telephone:
Company: Office/Department:

Street Address:

City/State/Zip Code:

Please list any discrepancy found in this manual by page, paragraph, figure, or table number in
the following space. If there are any other suggestions that you wish to make, feel free to
include them. Thank you.

Location in Manual Comment/Suggestion

NO POSTAGE NECESSARY IF MAILED IN U.S.A.
FOLD ON TWO LINES (LOCATED ON REVERSE SIDE), TAPE AND MAIL

FOLD

NO POSTAGE
NECESSARY
IF MAILED
IN THE

UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 7284 DALLAS, TX

POSTAGE WILL BE PAID BY ADDRESSEE

TEXAS INSTRUMENTS INCORPORATED
DIGITAL SYSTEMS GROUP

ATTN: TECHNICAL PUBLICATIONS
P.O. Box 2909 M/S 2146
Austin, Texas 78769

FOLD

Texas Instruments U.S. District Sales and Service Offices
(A complete listing of U.S. offices is available from the
district office nearest your location)

California
831 S. Douglas Street
El Segundo, California 90245
(213) 973-2571

100 California Street

Suite 480

San Francisco, California 94111
(415) 781-9470

776 Palomar Avenue

P.0. Box 9064

Sunnyvale, California 94086
(408) 732-1840*

3186 Airway

Suite J

Costa Mesa, California 92626
(714) 540-7311

Colorado
9725 East Hampden Avenue
Suite 301
Denver, Colorado 80231
(303) 751-1780

Florida
1850 Lee Road
Suite 115
Winter Park, Florida 32789
(305) 644-3535

Georgia
3300 Northeast Expressway
Building 9
Atlanta, Geargia 30341
(404) 458-7791

*Service telephone number

408-
732-1840

7147 r
540-7311

@ SRo

808-955-2617 (Hawaiian Islands)

800-525-8055

1llinois
515 West Aigonquin Road
Arlington Heights, illincis 606005
(312) 640-2900
(800) 942-0609*

Massachusetts
504 Totten Pond Road
Waltham, Massachusetts 02154
(617) 890-7400

Michigan
24293 Telegraph Road
Southfield, Michigan 48034
(313) 353-0830
(800) 572-8740*

Minnesota
7625 Parklawn Avenue
Minneapolis, Minnesota 55435
(612} 830-1600

Missouri
2368 Schuetz
St. Louis, Missouri 63141
(314) 568-0801*

New Jersey
1245 Westfield Avenue
Clark, New Jersey 07066
(201) 574-9800

Ohio
4124 Linden Avenue
Dayton, Ohio 45432
(513) 258-3877

Pennsylvania
420 Rouser Road
Coraopolis, Pennsylvania 15108
(412) 771-8550

TI-CARE*

Centralized Dispatch Telephone Numbers

for Requesting Service

800-
392-
4225

800-
325-4324

303-751-1780

7

Installation for Computer Systems

800-
525-8055

800-392-1488

800-231-2807
713-937-1200 (Texas only, collect)

5266320
800" z

Houston Customers-
713-776-6511
Ext. 553 or 554

Dallas Customers-
214-238-3881

Texas

8001 Stemmons Expressway
P.0. Box 226080

M/S 3108

Dallas, Texas 75266

{214) 689-4460

13510 North Central Expressway
P.0O. Box 225214

M/S 383

Dallas, Texas 75265

(214) 238-3881

9000 Southwest Freeway, Suite 400
Houston, Texas 77074
(713) 776-6577

85685 Commerce Drive, Suite 518
Houston, Texas 77036

(713) 776-6531

(713) 776-6553*

Virginia

1745 Jefferson Davis Highway
Crystal Square 4, Suite 600
Arlington, Virginia 22202

{703} 553-2200

Wisconsin
205 Bishops Way

Suite 214
Brookfield, Wisconsin 53005
(414) 784-1323

201-574-9800
New Jersey
North of
Princeton

800-241-3047

*Service mark of Texas Instruments

The Tl Customer Support Line is available to answer our customers’ complex
technical questions. The extensive experience of a selected group of Tl senior
engineers and systems analysts is made available directly to our customers. The T!
Customer Support Line telephone number is {(512) 250-7407.

° TEXAS INSTRUMENTS
INCORPSRATED
DIGITAL SYSTEMS GROUP
POST OFFICE BOX 2809 N AUSTIN, TEXAS

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0025
	01-01
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	03-001
	03-002
	03-003
	03-004
	03-005
	03-006
	03-007
	03-008
	03-009
	03-010
	03-011
	03-012
	03-013
	03-014
	03-015
	03-016
	03-017
	03-018
	03-019
	03-020
	03-021
	03-022
	03-023
	03-024
	03-025
	03-026
	03-027
	03-028
	03-029
	03-030
	03-031
	03-032
	03-033
	03-034
	03-035
	03-036
	03-037
	03-038
	03-039
	03-040
	03-041
	03-042
	03-043
	03-044
	03-045
	03-046
	03-047
	03-048
	03-049
	03-050
	03-051
	03-052
	03-053
	03-054
	03-055
	03-056
	03-057
	03-058
	03-059
	03-060
	03-061
	03-062
	03-063
	03-064
	03-065
	03-066
	03-067
	03-068
	03-069
	03-070
	03-071
	03-072
	03-073
	03-074
	03-075
	03-076
	03-077
	03-078
	03-079
	03-080
	03-081
	03-082
	03-083
	03-084
	03-085
	03-086
	03-087
	03-088
	03-089
	03-090
	03-091
	03-092
	03-093
	03-094
	03-095
	03-096
	03-097
	03-098
	03-099
	03-100
	03-101
	03-102
	03-103
	03-104
	03-105
	03-106
	03-107
	03-108
	03-109
	03-110
	03-111
	03-112
	03-113
	03-114
	03-115
	03-116
	03-117
	03-118
	03-119
	03-120
	03-121
	03-122
	03-123
	03-124
	03-125
	03-126
	03-127
	03-128
	03-129
	03-130
	03-131
	03-132
	03-133
	03-134
	03-135
	03-136
	03-137
	03-138
	03-139
	03-140
	03-141
	03-142
	03-143
	03-144
	03-145
	03-146
	03-147
	03-148
	03-149
	03-150
	03-151
	03-152
	03-153
	03-154
	03-155
	03-156
	03-157
	03-158
	03-159
	03-160
	03-161
	03-162
	03-163
	03-164
	03-165
	03-166
	03-167
	03-168
	03-169
	03-170
	03-171
	03-172
	03-173
	03-174
	03-175
	03-176
	03-177
	03-178
	03-179
	03-180
	03-181
	03-182
	03-183
	03-184
	03-185
	03-186
	03-187
	03-188
	03-189
	03-190
	03-191
	03-192
	03-193
	03-194
	03-195
	03-196
	03-197
	03-198
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	06-01
	06-02
	06-03
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	08-01
	08-02
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	C-01
	C-02
	C-03
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	F-01
	F-02
	G-01
	H-01
	H-02
	H-03
	H-04
	H-05
	I-01
	I-02
	J-01
	J-02
	J-03
	J-04
	J-05
	J-06
	J-07
	K-01
	K-02
	K-03
	K-04
	K-05
	K-06
	K-07
	K-08
	K-09
	K-10
	K-11
	K-12
	K-13
	K-14
	K-15
	K-16
	L-01
	L-02
	L-03
	L-04
	L-05
	M-01
	index-01
	index-02
	index-03
	index-04
	index-05
	index-06
	index-07
	index-08
	index-09
	index-10
	index-11
	index-12
	index-13
	index-14
	replyA
	replyB
	xBackA
	xBackB

