TEXAS INSTRUMENTS




IMPORTANT NOTICES

Texas Instruments reserves the right to make changes at any time to

improve design and to supply the best posible product for the spectrum
of users.

Microprocessor Pascal System (TMSW753P or TMSW754P) is copyrighted by
Texas Instruments Incorporated, and is sole property thereof. Use of
this product is defined by the license agreement SC-1l between the
customer and Texas Instruments. The software may not be reproduced in
any form without written permission of Texas Instruments. However,
application run-time packages generated from the Microprocessor Pascal

System may be reproduced for resale exclusively by the customer -

purchasing the Microprocessor Pascal System.

All manuals associated with Microprocessor Pascal (MP35l1) are printed
in the United States of America and are copyrighted by Texas
Instruments Incorporated, all rights reserved. No part of these
publications may be reproduced in any manner, including storage in a
retrieval system or transmittal via electronic means, or other
reproduction in any form or by any method (electronic, mechanical,
photocopying, recording, or otherwise) without prior written
permission of Texas Instruments Incorporated. )

Information contained in these publications is believed to be accurate
and reliable. However, responsibility is neither assumed for its use,
nor for any infringement of patents or rights that may result from its
use. No 1license 1is granted by implication or otherwise under any
patent or patent right of Texas Instruments or others.

COPYRIGHT, TEXAS INSTRUMENTS INCORPORATED, 1981

-




TABLE OF CONTENTS

OVERVIEW

SECTION 1:

LI} o o o
LI ) e o o
e e o 9
* e o o
* o e o o
o o e o o
. o o o
L] o L] L]
. e o o
. e * o

Rx AS THE DRIVER OF COMPONENT SOFTWARE

AN Rx APPLICATION .

PRODUCT FEATURES/BENEFITS .
Rx I/0 SUBSYSTEMS .

REFERENCE MATERIALS

GENERAL .

Rx CONCEPTS

SECTION 2:

=S ANMOOOPTPNSN0

ANANANANAANANANANANANNANNN

o % e o o o o
o .

-no.-oo

e o) o o o
n 0]

. o @ o o o
Z 0

ok o O o o o
Q v

B ey o @
(o] VI =1

. Ewudo0
mmani

- ONO0OO0d

MAthCC
EL2S885

MFSPPPF

[ e

(LR

NN
* o o o o
- N N

O~
~
UL L L UL

2-12
2-13

og.o.ooNo
..z .8
— O E
oqwoomoom.
-eovooIc
N o] N (|
¢« 0 Io.Ao
nunuz (.
Omutg B
ZPLODE o 0% o
g N0 (S
QM -,
OmMOUM>ALEM
UimtRaam
OnocO o
SANHEMNW
(o] & >
O = wnun
— N ™M ~ N

NANANNOOO TS IS N

SECTION 3:

RXx CONVENTIONS

N~ e~ N~ O O
| I T N T T T B I |
MO OmMMmOmmm

e o 6 o © o & o o
® o @ o o o o o o
© o o o o o e o o
® o © o © ¢ o o o
e o © o o o o o o
¢ o © o o o o o o
® o ©® o ©® o o o o
® o o o ® o o o o
* o @ o o o o o o
o
e o (@ o o o o o o
A
o o £ e o o o o o
o
¢ o] o © o o o o
® o £ e o o o ¢ o
(¢]
® s o o o 0 o o
s
¢ o) e o o o o o
=]
¢ e T3 e o o2 0 o
N
o o « ® o o
(0] Ho
N NP [ S =]
ZooD muo
c OV M YT A »
Hox DDOO
cHOCS MO O o
Z20Hdx Og
. anwru.
A A
° T aD °
Ow o [a Lo le]
cOMNUNOHNW
G- NEQOC0
HETWEU TTO
MGniCEnnC
CaOoPOoOUmMmO
BMPLQuNEDDY
Z2Zunopmnbunum
[ O
U4 w0
= (N M T NM
o o o e o
12222333&
e o o & e o o o o

/// ,\\..



N~~~ SHEHANANANNOONMDLPDLPPONOONODNNNAAA A A AA~AA—"A~A"A A A~ AN
[ L I N I T T I e e e I I O I e I I R I O O R I R R R R A R R O A |
Mmoo LIS IS AS IS IS PSS
L) L] e o . L] [ L I ) e o o o L e o . ° LI ) e L] ° e o e o o . L ] . e o L] * o L] o 0 . o o
Ld . o o L] . . * e o o o L ) e o o L) e o LI ) e o o o . e o . L ] L] o o ] e o . e . LI ]
. e o o e o e ©® ¢ .0 o © o 0o o o ,» o e © s o o ° o o o o o e & o & o o e o o e o o e O o
L4 e o e & o © ¢ o o o o o e o ® ¢ 6 ¢ o o o o e o * o © o e e e o L] L ) * o @ e o o
L4 e o o ° o o & o o 9 & o o o * o o o o ., ® o © o ¢ o ® o & o o o ¢ o o e o o e o o e ©® o
. e o o e © o 6 o o ¢ o o o ® o ©® ¢ 0 o 0o o & o o o * o o e o o ® o o L] e o * o ® e °
L] ) e o L[] L] ) L I} e e © o o o e o o . ® o L] e © 9 e o . o 0 . e o . e o L[] e o L] e ®° . o
L4 e ° o e © 9 0 3 @0 9 6 o o ¢ ©° ¢ o o o ® o © o o o e o O o * o o o o . o * o o e ® o
* o o o @ 0 o © ¢ 0 o 0 9 o ¢ O o 0 ¢ ° o o o ¢ o * o ® o ® 9 0 o o o o o o+ o ® o ©° o o o
¢ o o o ® ® ¢ 0 9 © 9 © o @ o 0 g O g @ g 0 o 0 9 0 4 O 9 0 s 0 o o 9 ¢ o o o o g o o o o
* o o o o o e ©& o o o o o o o @ o © o ° ¢ o o o o ¢ o ® o © o o o e o o e o * o o e o o
4
° e ° o e & o 0 o 0o o & o o o ® o © o o o e o * o o o o o o e o o e o o e o o o o © o ¢ o
z
L] e ® o H o o e ® o o o © o o o o o o o @ o 0 o o o o o * o o o & o ¢ o o o o ¢ o ® o o o
mm c
L] L[] e o | ) . L] e 9 e o o o o o * o L] . o o o o o o e [ e 0 . o o . o o . e . o o . L3
® o ©* o m e ©® g o ¢ © 9 o ¢ o o @ o ©® ¢ © 9 0 o o 3 o e o o e ® @ o o o e o o e o o ° oam
. +
e o o o m @ ® o © o e 9 © o ° o & o ° o o o & o o o o ® o ©® o o o o ® o o o o o o o oy
+ L] S
: ® o o o ® & o o o o o 0 o o o s o ° o o o o o o £ o o o o o o off] ¢ o o o o o o o o D
, . Yo = o]
e o o o < © ® o © o @ o 0 o © o o o ° o o o 0 o P LD e 4 0 e 0 e PH e .mo e o o o o]
1 coao (ol
% * o o o -1 e o o 8 o o s 0 o @ e o@D ¢ s 0 e o e PO e e e PDOEH e eD e ) o . om
L (] Y] ~ c>oa e>D &) 23]
1 ® s o o () e ® o o o o 0 0 s O e e O o o e e s QOHLC * o o 2 s QOOD e e oF e o oD
. e < L ~ S @ M > >NmP O H [a)
! () e . (@) o o o o o o o o e N, e N, oM@ e QMWL D® © o o o o @~ e e QO o e o o o1
g Lol =} M © ] C00 ~Hownd >NQ B M ~ ) Q
: 306 * - n . o Eq,'ER 883 Suoxd . K JEZQ «A e rQ - O
T - nAhconnny A4 < H @~ WETEE SKC@ B4 (+9 1
U o . s UL VLOOURVLE NZBHVACEHMEXE D npEnNnEMm HOw B>
00 . SLTTTRRNTNTMGITSVNEXELEK MSESEPMNS.ETTIM
og e HHHHAAMHHDH IAIAMITETALS Hu g OH EWMNNA V)
T M oOR NAXXXS.S.TNIAESWAM TXOLOTMEWNSOAEWME ET.WEN
PFMG .HCEEESEWISW CCW%%WENANW 0 IANNSS@NFMM DH
T owno e DOVOVOVOVOVOVAKOVOVOOO OO Moooo eeeeeemee.ﬁecheeR
0o obm Mrrrrrr MMM NN NN OE MMM HOQHNMHMNMYN M MHZNNG HNO
N N (a7 . UUUUUUMUUUUUUUOOTUUUUOUUUUUURUUMUUNSUUP
Rl TOTVTOUTRTUOTUVTUTUVOA-AAQTOUT ATV TUTTTTOT T ddms.d.dw
mmnﬁw HH0000VO0VOVO00O0VOVOOVOOPIYDOVOOOUVHN VIOV OWO O (O3 Qoo
o e B4 MGCCCCCCHCCCCCCCCCMCCCCCCCCCCCSCCYCC V0D
LYoy AOOOOOOMOOOOOOODH 0000000000 HMOOKOONKOOOM
PPIM MKrrrrrr R W Y W Vi - < I Y VI VI W R W ¥ L U ¥ W Y O N Y N o N VRO N I TN @]
(Ol oNL) NPPPPPPMPPPPPPPFFTPPPPFPPPPPPOPPMPPOPPPM
mx - 3] 1 ~ (3] =
] o4l (/7] - o~ N = O &=
<L un SN0 S NMP O~000N S NN O~~~ 12 — N - N ™M
L4 L] o o L I L e o 0 L e o o o o e o L] L] o o o o . L] . . . . e o
™M o< 12222222333333333344444444444455566677778
* o o o ® ® o 8 6 o 0 o o o 6 o 0 5 o o & O o 5 O o o o 0o o o o ® o o o o o o o o o o o
MmMnmmnm 4444444444444444444444444444%444444444444

ii



SECTION 5:

ENERAL « ¢ ¢ ¢ ¢ o o o o o o
HANNEL ROUTINE DESCRIPTIONS
Procedure CSACKN . . . .
Procedure C$SALLO . .
Procedure C$RECEive .
Procedure CSWAI . . .
Procedure C$DISPose .
Procedure CS$INIT . .

G
C

Procedure C$SNOTI .
Procedure CSRECEive
ProcedureC$SEND . .
Procedure CSTERM .
Procedure CSWAIT « « « o o o o o o o
Function CSSHEA . ¢ « ¢ « ¢ o o o &
Procedure CSSMSG « « ¢ o « o o o o =

° e o e o L) o o o

e © o 0 o 0 o 0 o o

e @ ¢ 0 o 0 o o o o o o
@ ® o @ o 0 o o o o o o
L] L] ° L] . L] . ° ° L[] . [ ]

[SARCL RS RS RS RS RS RS, RS, RS, NS, N, N, NG ]

NNV

HFERERFR OO &EWN -

wWwN - O

SECTION 6: CONFIGURING TARGET SYSTEMS FOR

GENERAL ¢ « « « o o o o o o 2 o o o
CUSTOMIZING THE CONFIG MODULE . . . .
Specification of System Parameters

Specification of RAM Locations . .
Specification of the I/0 Subsystem
Example CONFIG Module . . « « « « &
CUSTOMIZING THE "GHOST" PROCEDURE . .
ASSEMBLY LANGUAGE INTERRUPT HANDLERS
LINKING THE APPLICATION SYSTEM . . .
Control File Creation . « « « « « &

.1
.2
.3
.4

N =

Link Editor Execution . « « « .
TARGET (CONFIGURED) Rx APPLICATION

1
2
2
2
2
2
3
4
5
5
5
6

AANNA NN
o«

SECTION 7: THE Rx STANDALONE

ENERAL L . L L] L] L] * . L] L]

ONFIGURING A TARGET SYSTEM
1" Link Control File .
2 Data Terminal . . .
1 .

Q@

USING THE DEBUGGER
Getting Started .

.
[ ] L]
L] e L]
[ . [

iii

CHANNEL ROUTINES

OBJECT CODE

L] L[] L] [ [ ]
e o o o o
® o o o o
e o o o o
e o o o o
e o © o o

DEBUGGER

e o o 0 o o

.
e © o @ o o
e © @ 6 e 0 ¢ 02 o o o o
© © o 9 ¢ 0o o © ¢ o o o
e @& o 6 ¢ 6 ¢ o o o

EXECUTION

e o © o © o

ANV UNE W WW

[
[ REY. R py




Commands . . . .

NN SNNSNNNNNNNNNNNa
L] L] L] L] L] L]

NN DD N
WO

WWWWWWLwWwWwwwwwwww
e 6 o o o o @ o o o o o o o
® 6 6 o o o o o o 0 o o o o

PHRERRFOONONTEWN -

(IC)

(PD)
(DAP)

Process Creation Trap (SC)
Trace Process Scheduling

Inspect/Modify/Dump Memory (IM)
Inspect/Modify CRU
Inspect/Modify Registers
Process Record Dump

Display all Processes
Assign Process Breakpoint .
Delete Process Breakpoint (DBP)
Set Breakpoint (SB)
Clear Breakpoint (CB)
Simulate Interupt (SIMI)
Return To User Context (GO)
Instruction Step (IS)

(TP)

(IR)

e O o 0 o & o &6 4 o o o 4 o

e O o 0 o o o © o o ¢ o o o o

SECTION 8: DEBUGGING THE TARGET APPLICATION WITH

GENERAL .« « « « .« .
. AMPL. PROCEDURES . .

Procedure INIT .
Procedure HELP .
Procedure SIMI .

SB . .
CB . .
GO . .
SC L] L]
TP . .

Procedure
Procedure
Procedure

1l
2
3
1 Procedure
2
3
4
5 Procedure

HP . .
RP . .
ABP . .
DBP

PD .
SEMA
SM .
MM . . .

1 Procedure
2 Procedure
3 Procedure
4 Procedure
5 Procedure
6 Procedure
g Procedure
9
1
1
1
1

Procedure

Procedure SP . . .
Procedure SF . . .

0
1
2 Procedure SH . . .
3 Procedure HALT . .

Getting Ready . .
The Debug Session

Q0 GO CO QO CO 0O COCO COGO GO CO 0O OO COCO GO GO COGO COCO GO0 GO O ™

BREAKPOINT PROCEDURES

INSTRUCTION SIMULATION

* o e o

&

Single-step Instructio

.

°

°
0

AMPL WALK-THROUGH DEBUGG

PRO

REALTIME EXECUTIVE PROCEDURE

n(s

E

® o ® o o o o o ¢ (Yo o

® o o [N o ¢ s o 0 o s s [Je o

e o " o o o o

a

Oco.oaloloooleOc

® o ~ e © o o

.

()
o o (N e o o o o
N

¢ o o o o o o o o [N o

ING SESSION

iv

.

. . . . .

. . e o o

° 0 o o o

e o o o o o e 0 . . . .

L) . L] [

AMPL

. L] [} L] L[] L] . . ) L] [ L] ) L] '}

WOWWRO®NINIJAANASN VN &

G0 00 GO 0O 00 CO 0O 00 GO CO GO CO QO 0O GO CO OO QO 0O CO GO QO O ®
|
HHEEFOWOOOINIANNANAAUVITNE D BWNN



N

APPENDIX A.
APPENDIX B.

APPENDIX C.
APPENDIX D.
APPENDIX E.

Figure 1-1.
Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 3-1.
Figure 3-1.
Figure 5-1.
Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6-4.
Figure 6-5.
Figure 6-6.
Figure 6-7.
Figure 6-8.
Figure 6-9.
Figure 6-10
Figure 7-1.
Table 7-1.

APPENDICES

RX Data StructuUres =« « ¢ « o ¢ o o o o »
Rx Errors Codes, Error Recovery, and
Exception Handling . « « ¢ « ¢ ¢ o o &
RX Routine Templates . « « « o « o o o o
Rx Size Breakdown . « « o « « o« . e
RXDEMO: Assembler Listing and L1nk Map .

LIST OF ILLUSTRATIONS

Example of RX Control Of A Factory Systen
The Nesting Concept « « -« « ¢ « o o ¢ o
Scheduling Policy « « ¢ ¢ o ¢ o o &
Interrupt Handlers . ¢« ¢ « o « o« &
Stack and Heap Allocations In Rx .
Rx System Initialization . . . . .
Standard Stack Nesting . . . . . .
Optimized Stack Nesting . . . . . .
Process Communication Via Channels
CONFIG Module « .« « « o o « o o &
Simple RAM Table . . . . . . .
Use Of RAM Table In CONFIG Module
I/0 Subsystem Directory . . . . .
Example CONFIG Module . « « + .
Default Version Of Procedue GHOSTS
Sample Link Edit Control File . . . . .
Sample Link Edit Control File (Using
Stamdalone Debugger) . « « ¢ ¢« ¢ « o o
Sample Link Edit Control File (Specifying
RAM/ROM Partitioning) « « « ¢« « &« « « &
Producing An Rx Load Module . . . « « « &
Link Control File (wWith Debugger) . . . .

LIST OF TABLES

Allowable Data Transfer Rates . « s « « &

L[] Y L] ° L] ° [ ] *

NS O mmamm?mmwwwwwuww

[ L UL
wnN

i
PR EFFRPOOVWFEF AR ONMNNNW

UL
Uw+=oO

i
N
N W»m







SECTION I

OVERVIEW

l.1 GENERAL

The Realtime Executive (Rx) is a standalone executive designed to
support software applications executing on the 9900 family of
microprocessors. The information in this manual is specifically
oriented toward the assembly language user; the Microprocessor Pascal
System User”“s Guide describes the MPP interface to Rx.)

A software environment denotes software constructs, routines,
structures and all associated data and related software that permit
system operation. The environment normally familiar to the assembly
language programmer supports a single program executing sequentially.
This program has the undivided attention of the central processor; it
runs from beginning to end without interruption. Rx, however, supports
multiprogramming. Independent sites of execution (processes) exist
within a single environment and share a single processor. E-ecution of
one process may be interrupted by the executive when another, more
urgent, process is ready to execute. There are various constructs
within Rx which support multiprogramming and automatically participate
in helping the user application to run.

Rx can be thought of as a "configurable" executive; a "do it yourself"
kit that allows the user to build an executive to fit user application
needs by allowing selection of only those modules needed to eXecute
the task at hand. The user can also take advantage of a variety of
data structures and routines supplied by the executive which are
usually not available to the 1low-level 1language application
programmer. These routines support concurrency and reentrancy in code.

This section introduces the wuser to the Realtime Executive, its
features and benefits. Section 2 discusses the Rx concepts that are
necessary for the user to understand in order to use the product,
while Section 3 builds on that information to enable the user to write
an Rx routine. In addition, an example, "DEMOPGM" is offered to give
the Rx user some early "hands-on" experience. Standard Rx routines are
listed and explained in Section 4, with pertinent examples, while RX
Channel routines are detailed in Section 5. The configuration of the
target system and creation of an object code load module are covered
in Section 6. Target debugging explanations are provided for both the
Rx Standalone Debugger (Section 7), and the AMPL Debugger (Section 8).
The codes and remedial actions, routine templates, size breakdown, and
assembler listing and link map for the Demo Program.

1-1




1.2 PRODUCT FEATURES

Short descriptions of the features available in Rx are presented

below:

O Processor Management (including concurrent process
execution with preemptive priority scheduling)

o Interrupt processing and control

O Memory Management (including Stack and Heap
management)

o Inter-process communication capability

O Real-time clock servicing

o Semaphore creation/management

o Dynamic process creation -

o Operator communications input/output

o Debugger support

o Configurability (to conserve memory requirements)

0 Reentrancy in code

O Compatibility with Texas Instruments” device

independent I/0 Subsystems

1.3 Rx AS THE DRIVER OF COMPONENT SOFTWARE
Rx is associated with the Texas Instruments” 9900 family of
component software. This family consists of a variety of
individual software products that can be separately purchased and
linked to the user®s application.
Compatible with the spectrum of Texas Instruments”® component
software, RXx acts like a software bus, "driving" the application.
Various component pieces such as Texas Instruments” Math Package,

File Manager, and Data Communications packages can be added and
used in the application. (Because of the modularity of the

routines comprising these products, the load module produced to

run on a target will include only those "pieces" of the component
that are required by the application.)

l.4 AN Rx APPLICATION

Although several concepts will be new to some users, a simple
example can be used to illustrate the benefits of Rx. Consider a

1-2



factory that needs a system to control both a manufacturing
process and an accounting department. This factory has a
TM990/101M CPU with a TM990/206 memory board and a TM990/305 I/O
board. within the factory, many machines must be controlled
simultaneously, some interrelated and some not (see Figure 1l-1).
A standard operating system approach to control these many
machines would be hard to implement and inefficient to wuse. A
better way to approach the problem of control involves writing a
separate piece of code for every machine process, each executing
as required. Communication between these processes is necessary
to ensure that each separate step associated with the manufacture
of a product and the keeping of factory books 1is carried out
within the correct time frame. A modular executive that supports
multiprogramming will ease such software design. Rx supplies all
of these executive features.

ACCOUNTS | ¢ PROCESS!|
RECEIVABLE\-——" R MANU. (LEVEL 2)
(LEVEL 2) | ACCOUNTING | - |
R e SYSTEM | — '
¢ TEST
_ (LEVELZJ
CVEDT LEVEL ¢) e
(LEVEL 7)] f—— ¢ 2 L (LEVEL 1)
ACCOUNTS o —
PAYABLE | 1 PACKAGE
(LEVEL 2) ‘ . (LEVEL 2)i

FIGURE l-1. EXAMPLE OF Rx CONTROL OF A FACTORY SYSTEM.

1.5 Rx I/0 SUBSYSTEMS
RX supports Texas Instruments” File I/O Decoder which provides

the means for the user to initiate and execute device-independent
(file) 1/0.

1-3




Use of the I/0 subsystem enables communication with and
manipulation of data to and from various locations regardless of
the media on which the data resides. _

For more detailed information regarding file I/O, refer to the
Device Independent File I/O User“s Manual, MP386.

1.6 REFERENCE MATERIALS

the following Texas Instruments publications were used in the

development of this manual, and provide additional information
relative to Rx and to related TI software.

THE SOFTWARE DEVELOPMENT HANDBOOK, MPA29

- THE FILE MANAGER USER”S MANUAL, MMP355

- MODEL 990 COMPUTER TMS9900 MICROPROCESSOR ASSEMBLY LANGUAGE

PROGRAMMER”S GUIDE, 943441-9701

- AMPL MICROPROCESSOR PROTOTYPING LABORATORY OPERATION GUIDE,
946275-9701*A

- 9900 FMILY SYSTEMS DESIGN AND DATA BOOK, LCC4400, 97049-118-NI

- THE MICROPROCESSOR PASCAL SYSTEM USER”S MANUAL, MP351

- DEVICE INDEPENDENT FILE I/O USER”S MANUAL, MP386




SECTION 2

Rx CONCEPTS

2.1 GENERAL

Understanding the concepts used and supported by Rx is a necessary
prerequisite for understanding the product itself. Rx software
organization is discussed in subsection 2.2 and descriptions of
procedures, functions, processes and systems in the Rx environment are
given. Subsection 2.3 will deal with the concept of concurrency,
priority scheduling, semaphores and interrupts. Memory organization
using stacks and heaps and a discussion of system initialization.
Understanding the Rx terms and concepts in this section 1is necessary
in order to understand Rx module construction. Templates are provided
in Appendix C.

2.2 SOFTWARE ORGANIZATION

In Rx, user applications are built using a collection of processes
nested at different levels in a system. These levels are referred to
as "lexical levels" and indicate to Rx the level at which a process is
embedded ‘within the system. Figure 2-1 depicts this concept:

As the figure indicates, the system is found at lexical level 0, with
those processes that the system starts residing at level l. Any
process called in the course of these (Level 1) processes” execution
will be assigned 1level 2 or lower. A process that starts any other
process is referred to as that process® 1lexical "parent", and the
called process is referred to as the "spawn". These processes are
composed of functional units referred to as procedures and functions.

2-1




SYSTEM EXAMPLE: ~ LEVELO =
PROGRAM PROS1; ———————————== LEVEL1 =

PROCESS PROC1; - LEVEL2 =

BEGIN (PROCESS BODY)
END;

BEGIN (PROGRAM BOODY)
END:

PROGRAM PROS2; LEVEL 1 ﬁ
PROCESS PROC2; - |EVEL2 -

PROCESS PROC2A; — LEVEL3

BEGIN (PROCESS BOOY)
ENO:

BEGIN (PROCESS 800Y)
END;

PROCESS PROC3: —— LEVEL2

BEGIN (PROCESS 800Y)
END;

BEGIN (PROGRAM BOOY)
END;

BEGIN (SYSTEM BODY)
ENO;

FIGURE 2-1. THE NESTING CONCEPT.

2.2.1 System

The System, designated by the SYSTM$ label, is a special case of a
process within which all other modules are contained; it is the
outermost level of executable statements in the Rx environment. The
System usually starts the other processes contained within it. Only
one System can exist in the Rx environment at any one time, and all
global data is defined within it. Occupying lexical level 0, those
processes nested in the System reside at levels 1, 2, 3, and so on.
When started, the  system is allocated all available memory (or less if
it asks for 1less in the heapsize parameter to S$PRCS) which becomes
the system heap (subsection 2.4.2). It is from this parent heap that
subsequent allocations of stack and heap, when needed, are made to
starting processes. The System, then, may be thought of as the process
in which execution begins. '




2.2.2 Program Process

A special case of process, an Rx program resides only at lexical level
1, and therefore cannot call another program. A program”s lexical
parent is always the System.

2.2.3 Process

Residing at lexical 1level 1 or lower, a process is a collection of
procedures, functions, and data which perform an independent operation
concurrently with the scheduling and execution of other processes.
Analogous to a "task" in IBM“s 08370, it is independently scheduled
and may interact with other processes or with the executive as
necessary during execution.. Note that processes may be created by
other processes.

An Rx process is defined in terms of its three component parts: a) the
process code, b) the process data, and c¢) the process record.
Processes differ from procedures or functions in that they are
independently scheduled by the executive, and are executed in a
concurrent fashion. A process will execute until it reaches a point
where either required data 1is needed, a higher priority process
becomes ready for execution, or the process simply completes. When
control is switched from a process, the current state of the process
is "saved" in the associated process record.

The process record itself is an area of memory dynamically allocated
from the parent heap (subsection 2.4.1) when the process is started
(i.e., performs a call to S$PRCS), and will be located wherever memory
is available when it 1is started. In addition to the status of the
current process, the record also contains the process priority, a
pointer to the stack and other data required to schedule and execute
the process. (Reference Appendix A for the structure of a process
record.)

The executive uses the information contained in the process record to
schedule. For “ready” processes (subsection 2.3), a queue of pointers
to process records is maintained. The priority of a process determines
its place in this queue. (Subsection 2.3.1 discusses priorities and
priority scheduling of processes.)

2.2.4 Procedure

Functional units of code can be isolated into separate modules called
procedures. Similar to a subroutine in FORTRAN, PASCAL or BASIC,
procedures are computer software design constructs used to associate
sequences of low-level processing steps by the higher-level function
they perform. A procedure is included in a process code section by
virtue of being invoked (called) by a single instruction from either
the process code section, or some other procedure which has been
called by the process code section. When execution of the procedure

2-3




has completed, control returns to the calling routine at the
instruction following the call. .

When a procedure is called, an area of memory referred to as a "stack
frame" is assigned for that procedure”s workspace from the "stack" of
the calling process. (See subsection 2.4 for more information on
stacks and stack frames.) The size of the assigned memory 1is a
function of the value specified by the stackframe size set in the
beginning section of the procedure template (refer to Appendix C,
subsection C.3).

2.2.5 Function

Functions are composed of a set of instructions that, like procedures,
can be called by a single instruction in a process. Procedures and
functions are similar with the exception that a function will
generally return a result upon its completion. (An Rx function can be
likened to the FORTRAN function.)

2.3 CONCURRENCY

The Rx environment supports the execution of several processes
concurrently. Although it appears to the user that these processes are
executing at the same time, execution is actually moving from one to
another as CPU time is shared on a process priority basis. The
execution of several processes in the same system is termed
"multiprogramming®. Each process in the Rx environment is in one of
three states:

l) Active
2) Ready to execute

3) Suspended (blocked) and waiting for a condition in the
system to change (an event to occur) before it can
become ready to execute.

The executing process resides in the active queue. Processes that
are ready to exXecute reside in a ready (or scheduling) queue.
Processes that are suspended and waiting for an event to occur
are placed in another Qqueue associated with the event until
notified that an event has taken place. This notification will
come via information supplied by a "semaphore" (simply thought of
as an event flag). Semaphores are signaled of events by other
processes or interrupts. These three features (prioritized
scheduling, °semaphores, and 1nterrupts) are tools used by Rx to
support concurrency. They are described in more detail in the
following subsections.




2.3.1 Priority Scheduling

The Rx scheduling policy determines the assignment of the
processor to one of the ready processes. Ready processes are
inserted into the ready queue and scheduled for execution
according to priority. '

A process” priority is represented by a user-assigned numeric
value. The greatest urgency is represented by 0; the least by
32767, which is reserved for the IDLE process. (IDLE is active
only when all other processes in the system are blocked.)
Priority values 0 to 15 indicate device processes associated with
interrupts. Interrupts occur due to a change in some "real world"
condition or because they are programmed to occur. Priority
values 16 TO 32766 represent non-device processes.

A scheduling decision is made by Rx each time a suspended process
becomes ready or the currently executing process terminates or
becomes suspended. (An explanation of process readiness follows
this discussion of scheduling.) When the active process
terminates execution (or becomes suspended) the first process in
the ready qgqueue becomes the active process. Because the ready
queue is ordered by priority, the most urgent process that is
ready is given the processor. When a suspended process becomes
ready, it is inserted in the ready queue based on its priority.
The newly-ready process preempts the currently active process
(i.e., is placed in it’s place in the active queue) if it is more
urgent. Non-device processes that become ready are placed in the
queue behind processes of equal priority. This ensures that when
two processes have equal priority, the process that has been
ready the longest executes first. Device processe8 are placed in
front of other processes of equal priority including the active
process. Figure 2-2 illustrates the working of this scheduling
policy.

The first column contains the active process. The ready queue is
represented as a horizontal series of boxes behind the active
process. Each process (box) is 1labeled with a letter and a
priority number. The first box in the ready queue is the active
process. Time moves vertically from top to bottom. Comments to
the right of each queue describe the action performed.

2-5




time . active A . comments

N

AN
[a:16 | [ 5:181] [Ccioe | A 1s active . \
D becomes ready; is inserted \
[ a6 ] | o:16 | B:18 C:IDLE in the ready queue
A blocks and is suspended;
L D:IGJ U,w] C:IDLE D becomes active
E (a device process) is inserted
in the ready queue and preempts
# [ s | ] peae] I D
F (a device process with
- - - - ) higher priority than E's)
‘ I F:7 l LEﬂ D:16 B:18 l C.IDLE] preempts E and becomes
active.
6 I E:8 I Ln:l6l C:IDLE F blocks and is suspended;

E becomes active

E blocks and is suspended;
A becomes ready I
D i8 the active process .”

t l D:16 ‘ l A:l6[ ) B:18

FIGURE 2-2. SCHEDULING POLICY.

The execution of Rx scheduling policy displayed in Figure 2-2
results in process "B" never becoming active. In fact, B will
never become active unless all other processes in queue with
greater urgency become blocked or terminate execution. A process
of higher urgency that becomes ready will always interrupt the
(currently) active process. Once the more urgent process
terminates (or becomes blocked) the previously active process
will resume execution (unless another higher priority process
become ready). This "preemptive scheduling with resumption” is
designed for event-driven systems in which the event 1is some
real-world occurrence that demands the immediate attention of the
processor.

Up to this point, the discussion has been concerned with the

management of processes that are ready for execution. However,
processes may become suspended or blocked because of a condition
in the system. When another process signals that the condition
has changed, the waiting process can become ready. The mechanics
of this process synchronization are described in the next
section.

2-6




2.3.2 SEMAPHORES

The semaphore is the fundamental mechanism for synchronization of
processes via Rx, and can be thought of as representing some
event on which processes synchronize. A process which is
dependent on the occurence of an event can perform a WAIT
operation to ensure that the event has occurred before continuing
execution. If the event has already occurred, the process
executes; if not, the process is suspended in that semaphore”s
queue until the event does occur. A SIGNAL operation performed on
the associated semaphore allows a process to signal the occurence
of an event. If some process is waiting for the event, it is made
ready for execution by removing it from that semaphore”s queue
and inserted into the ready (or “scheduling”) queue. If no
process is waiting, the occurrence of the event is recorded in
the semaphore until a WAIT operation occurs for that event.

The semaphores of Rx can be thought of as "counting" semaphores
in that an occurence of an event 1is never lost, even if no
process 1is waiting when the event occurs; a count is kept in the
semaphore of all events that occurred (by SIGNAL) but were not
received (by WAIT). (Reference Section 4, 4.2.2 and 4.2.3 for
further informatio on SIGNAL and WAIT.)

Rx defines semaphores as structures composed of three elements:

1) A non-negative counter of unserviced events

2) A queue (possibly empty) of suspended processes. 1In
this queue, processes are made ready on a first-in
first-out (FIFO) basis

3) A level specifying the interrupt levels that this
semaphore may be associated with.

A semaphore is operated on by several procedures, the most
important of which are WAIT and SIGNAL. These operations are
implemented as routines, but are executed as though they were
single machine instructions. Until these operations have
completed, nothing can access the semaphore, the queues, or the
operations themselves. This is assured when the interrupt mask is
set to zero upon entry to the routines, and reset to its previous
state upon exit.

WAIT decrements the counter; if the counter is =zero, -the
currently active process is suspended (the process is moved  from
the active queue to the semaphore queue).

SIGNAL increments the counter if the semaphore gueue is not

empty, the first process in the queue (which will always be the
process that has been in the queue the longest) is activated ' by

2-7




méving the first process from the semaphore queue to the ready
dqueue. _

When semaphores are used to ensure exclusive access to two or
more resources, extreme caution must be exercised to prevent a
condition known as "deadlock". This takes place when a situation
is created in which two or more processes are suspended, awaiting
a condition that cannot happen because there is no active process
to cause the needed event to occur.

For example, if two simultaneously executing processes (A and B)
both require exclusive access to resources (X and Y), the
following sequence can result:

Incorrect (deadlock) Correct
A gets X, A requests Y A requests X, then Y
B gets Y, B requests X B requests X, then Y

In the above incorrect example, neither A nor B will ever resume
execution, as A will be waiting for Y (which B has) and B will be
waiting for X (which A has). The safest way to prevent such a
situation is for all processes to request resources in the same
order. In the above correct example, the X resource is used as a
"lock"; if a process can allocate X it is guaranteed to find the
rest of the resources available.

2.3.3 Interrupts

Interrupts are hardware-signalled events, usually associated with
system peripheral or process monitoring devices. With RX,
processes may be specified to service interrupts. These processes
must have a priority greater than or equal to the interrupt level
which they will service. Level 0 denotes the highest priority:
the RESET interrupt; all other interrupt level or device process
priorities must be between 1 and 15.

There are several Rx routines that are used to associate
semaphores with hardware interrupts. The primary two being
Procedure EXTERNalevent and Procedure ALTEXTernalevent. (Section
4, 4.3 lists and describes these procedures.)

The CPU has a priority ranking system to resolve conflicts
between simultaneous interrupts, and a 1level mask to disable

lower priority interrupts. A process waits on an interrupt -by:

waiting on a semaphore associated with the interrupt. (The
process will have a priority level number less than or equal to
the interrupt to be serviced.) The process is suspended until an
interrupt at the appropriate level occurs. When the interrupt
occurs, the process is scheduled to service the interrupt as the

2-8



CPU performs a context switch to the interrupt service routine.
The interrupt mask of the process prohibits further interrupts
from this or any lower priority device while the interrupt |is
being serviced.

There are three methods by which the user can write an interrupt
handler. The first uses the Rx procedure EXTERNalevent to assign
a semaphore to an interrupt. The second uses Procedure
ASSEMBlyevent (See Section 4) to assign a dedicated assembly
language interrupt handler. The 1last method entails writing a
routine external to the Rx environment.

PROCESS (PRIORITY < INTERRUPT LEVEL)

‘ START '

CODE
OUTSIDE
. Rx

INITIALIZE
_ DEVICE _

§

INITIALIZE / 4
.INTERRUPT

SEMAPHORE. /
miTse)_ / v

SEMAPHORE
WITH INTERRUPT
—EXTEAN} /

 ASSOCIATE /

TWAIT FOR /

INTERRUPT
WAIT(SEMA)) INTERRUPT
TRAPS

RESET / we
INTERRUPT .

/ rc

PERFORM INTERRUPT /
PROCESSING

DEDICATED INTERRUPT
HANDLER

Rx METHOD

FIGURE 2-3. INTERRUPT HANDLERS

2-9




The Rx method shown in Figure 2-3 is useful to the user because
it is flexible: the interrupt is reset and can be associated with
another semaphore to perform its function over and over again.

In the interest of speed, however, the second method illustrated
in 2-3 using a dedicated interrupt handler can be chosen. This
involves the user writing a piece of code completely outside the
Rx environment that will process the interrupt.

In the 9900 Family CPU, when the interrupt occurs, a context
switch 1is performed. The contents of the current workspace (WP)
and program counter (PC) registers are saved and then loaded with
the address of the new WP and PC which are fetched from the
appropriate interrupt vector, and stored. (This identifies the
location of the workspace assigned to the interrupt service
routine.) When the context switch 1is completed, processing
resumes with the first instruction of the interrupt service
routine (the user”s interrupt handler code). Processing will
continue in this mode until an RTWP instruction 1is encountered,
and a reverse context switch returns control to the previous
program in Rx. ’

Although the dedicated interrupt method is faster than the Rx
method, there is a drawback: the workspace areas created for the
context must reside in memory space (RAM) not known to Rx, and
therefore cannot be reclaimed for use by Rx. 1In addition,
interrupts must be masked during execution of the interrupt
handler. LIMI 0 as the first instruction in the interupt handler
results in the required masking of interrupts.

2.4 MEMORY ORGANIZATION

The following concepts deal with the utilization of memory in the
RX environment. Memory is allocated and used to hold variables
and workspaces for each process, procedure and function through
the use of the "stack" and "heap" concepts which are described in
the following subsections. It may be said that Rx "owns" the
memory allocated to it and "loans" it to processes as they need
it, for as long as they need it.

2.4.1 Heap

The system heap is all available RAM memory allocated to the
system when it is started. It is from this heap that all future
memory allocations to starting processes will come. Each process
that calls another process, procedure or function will be the
"parent” that allocates memory for use by the routines it
"spawns" or calls. A process, then, is allocated heap and stack
from its 1lexical parent”“s heap. (Note that heap should be
allocated to a process if that process will be starting any other
to ensure there will be enough memory for the called process”

2-10

{?)




stack.)

A process” heap is an area of memory allocated in packets which
may be disposed of and used again. These packets are used as
storage for dynamically allocated variables. When required, a
call to NEWS by the executing process requests a packet of memory
of a certain size and sets a pointer to this packet. When the
process no longer needs this space, a call to FREE§ returns the
packet to the "pool" where it can be used again.

2.4.2 Stack

This is a region of memory associated with a process. A separate
stack region is allocated to each instance of a process when that
process is started (via SSPRCS). Although the "top" and "bottom"
of a stack are fixed, the use of the area inside is dynamic.
Space is allocated to procedures and functions by Rx from both
ends, working toward the middle, since both local variables and
workspace areas are required.

Every invocation of a procedure or function requires a workspace
for the called routine. Space in which to store local variables
(i.e., variables that will be used by the called routine), as
well as other data is also needed. This space is called the stack
frame. Memory is allocated from the top down for workspaces, and
from the bottom up for stack frames; a stack overflow would
indicate that the two have met in the middle. (Reference Appendix
A for further information on stacks and stack frames.)

In Figure 2-4, the concepts of stack and heap are depicted,
beginning with the initial allocation of system heap and
progressing through the starting of the lexical level 1 process
which, in turn, calls a subordinate process. (Note the
allocations of stack and heap by the lexical parents.)

Note that processes must have a stack region but are not required
to have a heap region unless they start another process or use
dynamically allocated heap packets.

2-11




LEXICAL LEVEL|

......................

0| SYSTEM STACK|

DYNAMI
VARIABLES

PROCESS Il
STACK

FIGURE 2-4. STACK AND-HEAP ALLOCATIONS IN RX.

2.5 SYSTEM INITIALIZATION

System initialization is accomplished by a hardware interrupt
which is reserved for the processor hardware RESET. The reset
vector contained in low memory points to the RXINIT routine.
RXINIT declares the default system crash routine (which consists
of an IDLE instruction), and starts the BOOT$ program. BOOTS,
initializes system data structures, starts the IDLE program, and
then calls the GHOST procedure. GHOST$, in turn, starts the
user”s system module at the SYSTMS$ designation.  (Note that GHOSTS
may be customized to perform application-independent
initialization (refer to 6.3 for further information).

The IDLE process runs when all other processes are "asleep"
(i.e., suspended or waiting). With a priority of 32767 (the
lowest possible priority), IDLE is actuated when all other

processes of priority 32766 or less are suspended or when there
are no other processes.

2-12




TN

USERINIT GHOST | L svsTmMs_____|
HARDWAR E‘\ R-iaadi » ——

INITIALIZE MEMORY

_ RESET SET-UP Rx FIRST USER CODE
- AND DEVICES
> = »  environment P executen wiTHiN |

¢

FIGURE 2-5. Rx SYSTEM INITIALIZATION.

2.6 SUMMARY

The software tools discussed in this section provide interprocess
scheduling and coordination of system resources in Rx. While
simple in terms of construct, these tools provide a
sophistication in capability that enables a higher programmer
productivity using a realtime programming environment. Detailed
information on how to write Rx applications using the concepts
described follows in Section III.







SECTION 3

Rx CONVENTIONS

‘3.1 GENERAL

When writing software to be used with Rx, certain conventions must be
followed when interaction is required between the application software
and the executive environment. These conventions apply to the way in
which the application code is structured, how routines are called, and
which registers may be used. The following sections detail these
conventions as they apply to Rx procedures, functions, processes, and
systems.

When using the Rx routine linkage mechanisms described in 3.2, the
routines must be structured according to the proper module format
(i.e., procedure, function, process). These linkage and module format
conventions give the code <certain properties which increase the
reliability and flexibility of the software. Linkage conventions
produce code which is reentrant. Reentrant procedures may be executing
within more than one process at a time without erroneous results. By
using the same portion of code to do two or more concurrent tasks,
memory space is conserved. The standard 1linkage conventions also
produce code which is recursive, allowing the procedure to call
itself. This property can be very useful when solving certain types of
complex problems.

3.2 LINKAGE CONVENTIONS

There are two types of 1linkage supported within Rx: standard and
optimized procedure/function linkage. The standard linkage provides a
modular approach to writing these routines. It allows the calling
procedure to know nothing about the called procedure except the
arguments passed between them (no registers must be saved, etc.). The
optimized linkage provides a faster 1linkage mechanism for routines
which will not call any other routines or need any local storage.

3.2.1 Standard Procedure/Function Linkage

The standard procedure/function 1linkage supports parameter passing,
local storage, reentrancy, and recursion. It achieves these by using
the stack data structure illustrated in Figure 3-1. In this stack,
stack frames grow from the bottom toward high memory while workspaces
grow from the top toward low memory. The stack region is allocated
when the process is created. A stack overflow error occurs when there
is not enough stack for another procedure call (the stack frames and

3-1




workspaces overlap). The first workspace is used by the

stack pointer (R10)

CALLING ROUTINE

------ R9 (LF) -=>

---R10(SP) -->

NEXT
' ' WORKSPACE-->

WORKSPACE
POINTER===->

FIGURE 3-

previous
stack
frames

parent
stack
frame

passed
parameters

local
storage

called
procedure”s
workspace

calling
procedure”s
workspace

previous
workspaces

process’s
workspace

process. Its

<--PROCESS STACK BASE
.CALLED ROUTINE
<==R9 (LF) =====--
<==R10(SP) ==--

WORKSPACE
<--POINTER
<--PROCESS STACK LIMIT

R9 global stack

frame

l. STANDARD STACK NESTING.

3-2




points to the base of the process stack, while the local frame pointer
(R9) points to the global stack frame which is a separate memory
packet. 'In the example, & routine has been called from another routine
nested within a process. The calling routines stack pointer (R10) and
local frame pointer (R9) are shown on the left. These pointers, other
system pointers, and the routine”s general registers are contained in
the calling routine’s workspace. The called routine has a new
workspace allocated to it which is pointed to by the workpsace pointer
shown on the right. Registers R9 and R10 in this workspace point to
its local frame and current top-of-stack. Both the parameters and
local storage are referenced using R9 (LF) as the base register. This
type of routine nesting repeats for as many routines as are called. As
routines return to their caller, their stack frame and workspace are
returned to the unused portion of the stack.

The stack frame for a standard procedure/function is determined by the
routine prologue described in Sections 3.3.1 and 3.3.2. Basically, the
routine prologue specifies how many parameters the called routine
expects the calling routine to have pushed and how much local storage
the called routine needs. Both the parameters and 1local storage are
referenced using RY9(LF) as the base register.

A routine with standard linkage has two data areas that it may access
during execution. It may use any of the general registers (described
in Section 3.4) and the local storage space of its stack frame. The
general registers should be used for frequently accessed data or if
only a few words of storage are needed. If the general registers do
not provide enough data space, then either local storage or the stack
must be wused. Local storage is an area reserved in the stack
immediately above the passed parameters that remains allocated until
the routine returns. Therefore, this space should be used for data
which will be accessed during nested routine calls. When a routine is
called, there must be enough unused stack to allow for the standard
linkage memory requirements. These requirements include the new
workspace, the passed parameters, and any local storage. When enough
stack does not exist, a stack overflow error occurs. The process stack
size is contained in the literals field of the process” code.

When a process is invoked, its stack is allocated with the desired
size, and its workspace is defined and initialized. Its process record
is also created, the first field of which is contains a pointer to the
first- 32 bytes of unused workspace stack which resides just before
this new process”s initialized workspace. This pointer is called the
"next workspace" pointer and will be used as the workspace pointer of
any routine called from the process module. Whenever a routine 1is
called, the linkage handler decrements "next workspace" by 32 bytes to
be prepared for the next call. As a result of this algorithm, the
unused stack region will always be at least 32 bytes long, and it will
always be possible to use this amount of stack without overflow
occurring. For example, 16 ne-word parameters could be pushed onto
the stack without danger of over-writing the current workspace. If the
‘parameters intrude into what will become the called routine”s

3-3




workspace, they may be modified as linkage handler executes out of the i

. new workspace; however stack overflow will be detected before the
called routine can make use of the erroneous parameters. CAUTION: if
more parameters are pushed and there is no additional unused stack
other than the next workspace, the contents of the allocated
workspaces of previously called routines may be destroyed, and
catastrophic errors may occur which are impossible to recover from and
difficult to debug. If a routine will pass more than 32 bytes of
parameters, the following code should inserted into the prologue of
that routine to make a pre-emptive stack overflow check:

BL ~ @STK$CK
DATA "maximum number of bytes to be pushed"

The "next workspace" field of the process record in incremented by 32
at exit from a routine to reclaim the space used for its workspace.

To make use of the standard linkage, a routine must be called in the
proper manner. Parameters can be passed in two different ways: by
value and by reference. A value parameter contains the actual value
being passed, while a reference parameter 1is the address of the
variable. The user should be sure that a parameter is referenced in a
consistent manner. An example of a call using the standard routine
linkage is as follows:

Code in the calling routine:

MOV @PARMl, *R10+ PUSH FIRST ARGUMENT
MOV @PARM2,*R10+ PUSH SECOND ARGUMENT
MOV @PARMn,*R10+ PUSH (n)th ARGUMENT
DATA CALLS,ROUTIN CALL ROUTINE “ROUTIN”

Code in the called routine:

MOV *R9,QARGl SAVE ARGUMENT ONE
MOV @2 (R9) ,@ARG2 SAVE ARGUMENT TWO

MOV @2*n-2(R9) ,@PARMn SAVE ARGUMENT n

oo o

If any local storage is specified, this storage begins at an address

gointed to by the displacement (2*n) off of R9 and extends for as many
Ytes as specified.

- Function linkages are similar, and arguments are passed in exactly the

same way. The function result is returned at the end of the stack;
i.e. wupon return from the function, the stack pointer R10 points to
the first word of the result, which may be 1 byte, 2 bytes, or 4 bytes
long.

3-4



‘/.-\\

TR

For detailed examples of subroutine linkage see the routiné templates
in Appendix C, and the demonstration program in Appendix E.

The actual linkage functions are performed by the standard RX routine
CALLS$S. This external symbol CALLS$ is resolved to be the instruction
BLWP *PR which performs a "branch and link workspaces" using the
transfer vector contained in the first two words of the process record
of the active process. As mentioned previously, the first word in the
process record is a pointer to the next workspace. The second word
contains the address of the entry handler, CALL$$S. The resulting
action is a branch to CALL$$ and begin executing in the "next
workspace." CALLSS$ initializes registers in the new workspace, resets
the next workspace pointer in the process record, and branches to the
code of the called routine.

When the calling routine has completed, it returns via a branch or
branch and 1link to the exit routine. This routine deallocates the
stack frame and workspace allocated to the execution of the calling
routine. »

3.2.2 oOptimized Linkage

An alternative to the standard routine 1linkage is the optimized
linkage mechanism. This linkage executes faster than the standard
linkage since it does not perform as many functions: a new workspace
is allocated and initialized for the called routine; 1local storage,
other than the space needed for passed parameters, is not allocated.
Any routine which was called with the optimized 1linkage cannot call
other routines.

Figure 3-2 illustrates a process stack after an optimized linkage. The

calling routine’s workspace pointer and registers are shown on the
left, while those of the called routine are shown on the right.

3-5




&

CALLING ROUTIN
---------------- > =———————e—e—————- <--PROCESS STACK BASE

previous
stack
frames

------ RY/LF) ==> | mmmmmm e
parent CALLED ROUTINE
stack
frame
===R10(SP) ~=> | ~==m—mmm o= <==R9 (LF) ~=====~
. passed

parameters -

p S — <==R10 (SP) -=--

stack .

NEXT WORKSPACE
WORKSPACE-=> | ~~==—cmemmsmm e <--POINTER R

procedure’s |-=—=——————eeee=-
WORKSPACE workspace = |===——mm—mmmcoeea-
POINTER-===> | m=——m—mmmc e cmme e
calling
------------- procedure”s
--------------- workspace

previous
workspaces

----------------- <-~PROCESS STACK LIMIT

process®s | @ emmemmecmee—————-
workspace R9 global stack
R1O | e > frame

FIGURE 3-2. OPTIMIZED STACK NESTING.

3-6




The stack frame, eneral registers, and unused stack are available to
an optimized routine. Since the optimized linkage produces a stack
frame which is only used for passed parameters, local storage is not
reserved. .

The calling sequence to an optimized routine is identical to the
calling sequence for a standard 1linkage routine. This similarity
allows the calling routine to call other routines without knowing
whether they are coded for either standard or optimized linkage. When
the MPX 1linkage routine determines that the called routine is using
the optimized linkage, it initializes workspace registers and branches
directly to the new routine”“s code. Since a routine with optimized
linkage is not permitted to call other routines, there is no need to
update the "next workspace"™ pointer in the process record. The called
routine with optimized linkage references the passed parameters in the
same way as the standard linkage routine.

wWhen the optimized routine has completed, it returns to the calling
routine via a return with workspace pointer (RTWP) instruction. This
takes the saved workspace pointer, program counter, and status from
registers R13 through R15 and restores them.

3.2.3 Process Linkage

The process linkage mechanism is very similar in use to the standard
procedure/function 1linkage. The process is called in an identical
manner; however parameters can only be passed by value. The called
process dgets the parameters in an identical manner. However, the
effect on the stack is quite different. The initial code of a process
contains calls to the executive which create a new stack region (along
with a process record and other process data structures) for the new
process to execute from. Once this initial code has executed the
calling procedures stack returns to the state it was in prior to
pushing parameters and calling the process. The new processes” stack
and process record are allocated from the heap region of its calling
process. If the calling process does not have a heap, the stack and
heap are allocated from the system heap.

NOTE: for one process to start another, about 144 bytes of stack space
are required.

3.3 SOURCE MODULE FORMAT

To make use of the Rx linkage mechanisms, routines must be formatted
in a certain structure. It is this structure which allows the 1linkage

mechanism to operate. The basic structure consists of the following
segments within the routine:

3-7




routine
descriptor

routine
prologue

routine
body

routine
epilogue

The routine descriptor contains constants needed by the 1linkage
routine upon routine entry. The routine prologue contains any code
necessary to start the routine. The routine body is the code which

actually performs the purpose of the routine. The routine epilogue is

the code required to exit the routine. Some routine types do not
require all of these code segments. The different routine formats are
summarized in Appendix C.

3.3.1 standard Procedure

A standard procedure requires a desriptor with the following
information: ~

#00  ——mmmmmmee o <--- Procedure address
prologue Displacement to start of code
(bytes).
$02 e
epilogue Displacement to epilogue of routine
(bytes)
#04 |-
local Size of local variable portion of local
frame (bytes)
#06 |———mmmem——
frame size Routine frame size (bytes)

The start offset defines the offset to be added to the procedure
address for the initial procedure program counter. The end offset

defines the offset to be added to the procedure address in case the

procedure is aborted. The local size specifies how many bytes should
be allocated from the stack when the procedure is called for use as
local storage. The frame size specifies the total stack frame size
including passed parameters and local storage. Both the local size and

3-8




frame size should be even values.

The prologue of a procedure is usually just a label which is
immediately followed by the procedure”s main body.

The procedure body consists of the assembly language statements
required to achieve the procedure”’s desired effect. (This will vary
from procedure to procedure).

The procedure epilogue contains a branch to the Rx procedure exit
routine EXITS$P. This routine returns execution to the calling routine.

3.3.2 Standard Function

The standard function format is very similar to the standard procedure
format, the only difference being that the epilogue section of the
function must return the function result. A standard function epilogue
consists of the following:

BL @EXITSn
DATA mmmm

In this example, "n" is the length of the result in words and "mmmm"
is the displacement into the stack frame in bytes of the result. The
EXITSn routine returns the function result at the stack pointer of the
calling routine and returns execution to the calling routine.

3.3.3 Process

The standard process format contains a descriptor with the following
information:

#00  —emeeeeeeeee <--- process address
start Offset to beginning of
offset process prologue (in bytes)
#02 |-
end Offset to process
: offset epilogue (in bytes)
04 [ccommmmee—o
0 Zero constant
$06 |———m—eemee
parameter Size of passed parameters
size (in bytes)

The start offset and end offset have the same meaning as for a

procedure or function. The parameter size specifies how many bytes of.

parameters that the starting routine has pushed onto the stack. The
zero constant specifies how much local storage should be allocated.
This is always 2zero because a process is invoked in two steps. The
first phase invokes the process routine as a standard procedure with a

3-9




stack frame just large enough to contain to process”s parameters; the
no" in the process descriptor suppresses allocation of 1local
variables. When the process routine is entered, it calls procedure
SSPRCS to perform the second phase of process invocation by using
constants in the literals section to create the data structures that
permit the new process to become a separate site of execution. In
particular, one of these literals is the total frame size of the
process module. (With this implementation the invoking process need
not have enough stack space to hold the global frame of the new
process.)

The literals segment contains the following:

(1) routin PSEG

(2) EQU § Origin of process

(3) frmsiz DATA >nnnn Total size of stack frame needed for
process body (in bytes)

(4) 1lexlvl DATA >nnnn Lexical nesting level.

(5) priori Process Priority.

(6) stksiz Size of stack region to be allocated for
process (in words).

(7) hpsize Size of heap required for process (in
words) .

The frame size specifies the process”s global stack frame size. The
lexical level specifies the number of 1levels that this process is
nested within other processes. The lexical level of a system process
is 0, a orogram process started from the system has a lexical level of
1, a process started from a program has a lexical 1level of 2, ete.
These 1lexical 1levels are not enforced by the system, but are
conventions which the user must follow to allow variable scoping and
communication with other software using the RX Executive.

The process priority specifies the relative urgency of this process
compared to other processes. The lower the numerical priority, the
greater the wurgency. The process stack size specifies how many words
of stack will be required for the routines within the process. The
process heap size specifies how many words of heap memory the process
will need. Any user defined constants are stored after the heapsize,
and before the first executable statement.

The prologue of a’process body is required to initialize the process

data structures and schedule the process according to its priority.
The prologue contains the following start up code:

3-10




prolog EQU ,
MOV @frmsiz-routin(R8),*R10+ Push frame size (in bytes)
MOV @LEXLVL-routin(R8),*R10+ Push lexical level
MOV @PRIORI-routin(R8),*Rl10+ Push process priority
MOV @STKSIZ-routin(R8) ,*R10+ Push stack size (in words)
MOV @HPSIZE-routin(R8),*R10+ Push heap size (in words)
DATA CALLS$,S$PRCS Call start process

This code passes the necessary parameters from the literals segment to
the process start procedure S$PRCS. All of the parameters do not
necessarily have to be distinct entries in the literals section. The
code can be optimized so that the parameters are shared or omitted
altogether. For example, if a system process with a zero frame size,
priority, stack, and heap size were started, the literals section
could be empty and the prologue optimized.

CLR *R10+ : PASS FRAME SIZE
CLR *R10+ PASS LEX LEVEL
CLR *R10+ PASS PRIORITY

CLR *R10+ PASS STACK SIZE
CLR *R10+ PASS HEAP SIZE
DATA CALLS CALL START PROCESS

DATA S$PRCS

The SS$PRCS routine concludes the second step of process
initialization. Not only does it allocate and initialize the new
process”“s data structures, it also copies the parameters contained in
the temporary stack frame into the new global stack frame and sets the
contents of the new process workspace to begin execution at the first
instruction following the call to SSPRCS. The temporary workspace and
stack frame are then returned to the unused stack of the starting
process.

The epilogue of a process terminates execution of the process by
calling the MPX routine ESPRCS to deallocate its resources. Its
process record and stack region are deallocated immediately; the
global stack frame is deallocated after all offspring processes have
terminated. The epilogue contains the following termination code:

MOV @LEXLVL-routin(R8),*R10+ PUSH LEX LEVEL
DATA CALLS,ESPRCS CALL PROCESS TERMINATION ROUTINE
B @EXITSP COMPLETE TERMINATION PROCESSING

This code passes the lexical level to the process termination routine
and then branches to the procedure exit routine. ,




3.3.4 oOptimized Procedure

The optimized routine format is fairly simple. The format of an
optimized routine is as follows:

#00 e p— Descriptor
negative
parameter
size
#02 | <--- Body
routine
body
------------ <--- Epilogue
RTWP

The descriptor contains only the negative value of the parameter size
(or zero if the routine has no parameters). This non-positive value
indicates to the linkage routine CALLS$S$ that this routine is in an
optimized format. The actual parameter size can then be easily
computed by negating the value. The routine body contains no prologue.
The epilogue is only a return with workspace pointer (RTWP)
instruction which causes execution to return to the calling routine
when this routine is finished.

3.3.5 optimized Function

An optimized function format is very similar to an optimized procedure
format. The difference 1is the epilogue which must contain the
following:

REF EXITSO OH, NOT ZERO
MoV @RESULT, *LF SAVE RESULT ON THE STACK
BL @EXITSO CALL EXIT ROUTINE

The function result is stored in the location pointed to by R9 (LF),
and the EXITS$O optimized exit routine is called. This routine saves
the status so that it is available to the caller. The calling routine
retrieves the result from the location pointed to by its own stack
pointer (R10). Note that EXITSO only allows one word function results.

3.4 REGISTER USAGE

RX wuses certain registers within procedure, function, and process
workspaces to maintain system level pointers. These registers must not
be changed by the application software or erroneous results may occur.
The following registers may NOT be changed when using optimized
linkages:

)




R13 - 01d workspace Pointer. This register maintains
a link to the previous routine”s workspace.

Rl14 - 014 Program Counter. This register maintains a
link to the previous routine“s program counter.

When using the standard 1linkage mechanism, the following
registers are assigned special purposes and may not be altered by
the application software:

R7 - Process Record Pointer. This register contains
the address of the process record for this process.

R8 - Code Base. This register contains the address
of this routine and may be used as a base register.

R9 - Local Frame. This register contains the address
of this routine®s stack frame which contains passed
parameters and local storage.

R10 - Stack Pointer. This register contains this
routine”s stack pointer.

Rl5 - Status Register. This register stores the
summary of the results of the processor operation.

The user may, for convenience, include the following equates in
his programs:

PR EQU 7
CODE "EQU 8
LF EQU 9
SP EQU 10

The remaining registers RO, Rl, R2, R3, R4, R5, R6, R1l, and RI12
may be used by the application software. Rll is used by the BL
instruction to hold the return address, and may be used as such
for subroutine 1linkage outside of the Rx environment. Rl2 is
reserved as the CRU base if any CRU operations are to be
performed.

3.5 EXAMPLE PROGRAM

A portion of the Rx demonstration program is included at the end
of this section as an example of an RXx program. A complete system
is included in Appendix E.

This routine takes three arguments: (1) the CRU address of a
terminal, (2) a baud rate flag (which is returned by a routine
which sets the baud rate of the terminal), and (3) a pointer to a
message which is terminated by a null character (>00).

3-13




This program loops through the string and calls another routine
TISCOT to print the character on the terminal. TI$SCOT also takes
three arguments: (1) the CRU address of a terminal, (2) a baud
rate flag (which is returned by a routine which sets the baud
rate of the terminal), and (3) the character to be printed.



WAITIO SDSMAC 3.3.0 79.312 09:59:39 THURSDAY, MAY 07, 1981.

'ISLIB -- WAIT LOOP DRIVEN I/0O -- 6/25/80 PAGE 0012

03 80 ************************************_************************

0381 * , *

0382 * TISMSG: OUTPUT A STRING, DELIMITED BY A NULL *

0383 * *

0384 * *

0385 *  PURPOSE: OUTPUT A STRING TO A 9902 PORT. THE STRING *

0386 * IS COMPOSED OF CONSECUTIVE BYTES POINTED *

0387 * TO BY THE THIRD ARGUMENT, AND DELIMITED BY *

0388 * A ZERO BYTE. *

0389 * *

0390 *  CALLING_SEQUENCE: *

0391 * PUSH CRU ADDRESS OF PORT *

0392 * PUSH BAUD RATE FLAG FROM TISSET *

0393 * PUSH POINTER TO MESSAGE STRING *

0394 * *

0395 * MOV @<CRU ADDRESS>, *SP+ *

7396 * MOV @<BAUD RATE FLAG>,*SP+ *

0397 * MOV @<PTR TO MSG>, *SP+ *

0398 * DATA CALLS,TISMSG *

0399 * *

0400 *  INPUTS: PORT: CRU BASE OF OUTPUT PORT *

0401 * BAUD: BAUD RATE FLAG FROM TIS$SET *

0402 * MSGP: POINTER TO MESSAGE STRING *

0403 * *

0404 *  QUTPUTS: OUTPUT IS SENT TO PORT. o
- 0405 * *
- 0406 *  EXCEPTIONS: NONE. *

0407 * *

0408 *  CALLS: TISCOT *

0409 * : *

04 ]_0 hkhkkhkkhkkhkhkkhkhkhkkhhkhkhkkhkkkkhkkhkhhkhkkkhkhkhhkhkhkhkhkhkhkhhkkhkkhkhkdhkhkhkkkkkkkk

0411 *

0412 * REFERENCES

0413 *

0414 REF CALLS ,EXITSP

0415 REF TISCOT

0416 *

0417 * EQUATES

0418 *

0419 0000 PORTOF EQU >0000 ADDRESS 2

0420 0002 BAUDOF EQU >0002 INTEGER 2

0421 0004 MSGP EQU >0004 POINTER 2

0422 *

0423 0001 MSGPTR EQU 1

0424 0002 WORD EQU 2




WAITIO SDSMAC 3.3.0 79.312 09:59:39 THURSDAY, MAY 07, 1981.

TISLIB -- WAIT LOOP DRIVEN I/0 -- 6/25/80 PAGE 0013. ™
0426 0126 PSEG o
0427 0126° TISMSG EQU $
0428 0126 0008 DATA  MSGENT-TIS$MSG OFFSET TO EXECUTABLE CODE
0429 0128 0024 DATA  MSGEXI-TIS$MSG OFFSET TO TERMINATION CODE
0430 012A 0000 DATA O LOCAL VARIABLE SIZE
0431 012C 0006 DATA 6+0 LOCAL FRAME SIZE

WAITIO SDSMAC 3.3.0 79.312 09:59:39 THURSDAY, MAY 07, 1981.

TISLIB -- WAIT LOOP DRIVEN I/0 -- 6/25/80 PAGE 0014
0433 012E” MSGENT EQU $ MSGENT POINT OF PROCESS
0434 khkkhkdkkhhkhkhkhkhhkhkdhkhkhkdkhhkhkhkkhhkhkhkhhhhkhkhhhkhkrhhkhhkhhhhhhhkhkhkkhkkkhkhkk
0435 * --—-- MAIN BODY OF CODE ---- *
0436 Je de Je g de de de Je Je e de e de Je de K de ke de ke de K de ke d de ke de ke de e K de K de K K ke de e de de K e de de de e dede ke ke de ke kek ok okk
0437 gigg gggz MOV @MSGP (LF) ,MSGPTR GET POINTER TO MESSAGE
0438 0132 04C2 CHARLP CLR WORD ZERO BOTH BYTES
0439 0134 DpOB1 MOVB  *MSGPTR+,WORD CHR IN HIGH BYTE OF WORD
0440 0136 1309 JEQ MSGEX1I YES: QUIT
0441 0138 CEA9 MOV @PORTOF (LF) , *SP+ PUSH PORTOF

013a 0000 _
0442 013Cc CeEA9 MOV @BAUDOF (LF) , *SP+ PUSH BAUDOF RATE FLAG
013E 0002
0443 0140 06C2 SWPB  WORD CHR IN LOW BYTE OF WORD
0444 0142 CES82 MOV WORD, *SP+ PUSH WORD ON STACK
0445 0144 0000 DATA  CALLS$,TISCOT SEND CHR
0146 00AO~
0446 0148 10F4 JMP CHARLP
0447 hkhkhkkhhkhkhhkhkhkhkhkhhkkhkhhkkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhhkkhkhhkhkhkhkhkhkhkkkhkhkhkkhkhh
0448 * --—-- END OF CODE —---- ' *
0449 hhkhkhkhkhkhkkhkhdkhhhhkhhhkhkhkhhhkhkhhhkkhkdkhkhkhkkhkhkhhkhkhhkkhkhhkkhkhhkhkhkhkkhkhkkkk
0450 014A“° MSGEXI EQU $ EXIT CODE .
0451 014A 0460 B @EXITSP ‘ '
0l4c 0000
0452 END
NO ERRORS, NO WARNINGS




SECTION 4

Rx ROUTINES

4.1 GENERAL

This section describes user-callable routines within the Rx executive
package. These routines are intended to perform commonly needed
functions within a software system. Use of these routines will
considerably reduce application software complexity while increasing
its reliability and understandability.

The routines are grouped according to function, and the purpose of
each routine described in detail. The required parameters and calling
sequence are listed along with any possible side effects or errors.

4.2 LINKAGE ROUTINES

The linkage routines are used to call and return from procedures,
functions, and processes.

4.2.1 Procedure CALLSS

This nonstandard procedure performs the necessary linkage for standard
procedures, standard functions, standard processes, optimized
procedures, and optimized function calls. A BLWP vector contained at
the beginning of each process record points to this routine and the
next available workspace. The routine is entered by performing a BLWP
*R7 (R7 points to the current process record). This BLWP instruction.
has been equated to the symbol CALLS.

The first word of the routine descriptor is compared to zero. If it is
Zero, an optimized linkage is assumed and the routine is immediately
entered. If the first word of the desriptor is nonzero, a standard
linkage is performed. The standard 1linkage includes allocating a
workspace for nested routines, initializing the stack pointer (R10),
al%?cating local storage, and initializing the 1local frame pointer
(RY) .

EXAMPLE:

REF routine

DATA CALLS
DATA routine
EXCEPTIONS AND CONDITIONS: A stack overflow error occurs during a

4-1




standard linkage if there is not enough stack remaining to allocate
the new workspace.

"4.2.2 Procedure EXITSP

This nonstandard procedure performs the return from a standard
procedure. The next workspace (for nested routines) is deallocated and
a RTWP is performed to return to the caller”s context.

EXAMPLE:

REF EXITSP

B @EXITSP

EXCEPTIONS AND CONDITIONS: None.

4.3.3 Procedure EXITSn

This nonstandard procedure returns “n” words from a standard function.
The next workspace (for nested routines) is deallocated. Then “n”
words at “OFFSET” bytes into the function 1local frame (R9) are
returned at the caller’s stack pointer (R10), “n” must be either 1, 2,
or 4. Upon return from this routine, the caller”’s stack pointer (R10)
points to the first word of the function result.

EXAMPLE:

REF EXITSn

BL EXITSn
DATA nnnn “OFFSET” INTO LOCAL FRAME

EXCEPTIONS AND CONDITIONS: The caller”s condition code is set based on
the returned result.

4.2.4 Procedure EXITSO

This nonstandard procedure returns 1 word from an optimized function.
The next workspace (for nested routines) is deallocated. Then 1 words
at “OFFSET” bytes into the function local frame (R9) are returned at
the caller”s stack pointer (R10); upon return from this routine, the
caller”s stack pointer (R10) points to the function result.

o/

I




EXAMPLE:

REF EXITSO

BL EXITSO
MOV result,*LF

EXCEPTIONS AND CONDITIONS: The caller”s condition code is set based on
the returned result.

4.2.5 Procedure S$SPRCS

This procedure 1is called by the prologue of a process to initialize
its data structures and start itself. It allocates a process record,
process stack, and routine stack from its parent®s heap and then
initializes all the necessary fields in these structures. The new
process 1is then 1inserted into the ready Qqueue according to its
priority. ’

EXAMPLE:

REF SS$PRCS

MOV @<ga>,*R10+ PUSH FRAME SIZE IN BYTES
MOV @<ga>,*R10+ PUSH LEXICAL LEVEL

MOV @<ga>,*R10+ PUSH PROCESS PRIORITY
MOV @<ga>,*R10+ PUSH STACK SIZE IN WORDS
MOV @<ga>,*R10+ PUSH HEAP SIZE IN WORDS
DATA CALLS

DATA SS$SPRCS
EXCEPTIONS AND CONDITIONS: Errors will occur if there is not enough
parent heap to allocate data structures, if the called process does
not have enough stack, or if the lexical level is invalid.
4.2.6 Procedure ES$PRCS
This procedure is called by the epilogue of a process to terminate it.

EXAMPLE:

REF ESPRCS

MOV @<ga>,*R10+ PUSH LEXICAL LEVEL
DATA CALLS
DATA E$PRCS

EXCEPTIONS AND CONDITIONS: None.

4-3




4.3 SEMAPHORE ROUTINES

These procedures synchronize processes on the basis of events.

4.3.1 Procedure INITSEmaphore

This procedure initializes the semaphore SEMA. It allocates three
words from the system heap for the semaphore record and puts the
address of this record at the specified 1location. Recall that a
semaphore is defined as the address of the semaphore record. It uses
the parameter COUNT as the initial value of the number of unprocessed
(unreceived) SIGNALs to the semaphore. It initializes the semaphore
queue to be empty by setting the queue pointer to zero. It initializes
the semaphore level field to be 32767, the lowest urgency level, so
that while at this level, any process may wait on this semaphore.

EXAMPLE:

REF INITSE

MOV @<ga>,*R10+ PUSH ADDRESS WHERE SEMAPHORE “SEMA”
WILL BE PLACED

MOV @<ga>,*R10+ PUSH INITIALIZATION “COUNT”

DATA CALLS ‘

DATA INITSE

EXCEPTIONS AND CONDITIONS: This procedure may fail if there is not
enough system heap available. It is 1illegal to initialize the
semaphore with a negative number.

4.3.2 Procedure SIGNAL .

This procedure performs a SIGNAL operation on the semaphore named
SEMA. The semaphore count field of the semaphore record is incremented
by one, indicating that another event which requires processing has
occurred. If the semaphore count field is still less than or equal to
Zero after the increment, there are process(es) WAITing on the
semaphore, and a scheduling procedure 1is called. The rescheduled
WAITing process either preempts the calling process or is placed in
the ready queue, according to its priority. If the semaphore count
field is greater than zero after being incremented, the procedure
simply returns to its caller, leaving the semaphore with its one extra

unprocessed (or unreceived) event. If the semaphore count overflows,
the run-time support exception routine is called.



EXAMPLE:

REF SIGNAL
MOV @<ga>,*R10+ PUSH SEMAPHORE
DATA CALLS

DATA SIGNAL

EXCEPTIONS AND CONDITIONS: An exception occurs if the semaphore counter
overflows or if an illegal semaphore counter is passed.

4.3.3 Procedure WAIT

This procedure causes a WAIT operation to be performed on the
semaphore SEMA. The procedure decrements the semaphore count field of
the semaphore record. If there are unprocessed (unreceived) SIGNALs to
the semaphore, the procedure simply returns to the calling process.
If, however, there are no unprocessed SIGNALs, the process becomes
suspended on the semaphore SEMA and is placed in the semaphore Qqueue
behind any other WAITing processes. The procedure also checks that the
priority (contained in the priority field of the process record) is
numerically less than the semaphore priority level (contained in the
semaphore 1level field of the semaphore record). This ensures that if
the semaphore 1is ever associated with an interrupt 1level, any
processes which are suspended on it are of sufficient urgency to
handle the interrupt immediately. (If the semaphore was initialized by
INITSE, its priority field contains 32767 so that any process may wait
on it.)

EXAMPLE:

REF WAIT

MOV @<ga>,*R10+ PUSH SEMAPHORE
DATA CALLS
DATA WAIT

EXCEPTIONS AND CONDITIONS: An exception occurs if a process attempts
to become suspended on a semaphore when the process priority is
numerically greater than the semaphore level (i.e., it is not urgent
enough to WAIT on that semaphore). An exception will also occur if an
illegal semaphore is passed.

4.3.4 Procedure TERMSEmaphore

This procedure is used to terminate a semaphore when it is no 1longer
to be used. IF there are no WAITing processes (i.e., the semaphore
count field is not a negative integer) the procedure passes the
address of the semaphore to the routine HPSFRE which reclaims the
memory allocated to the semaphore into the system heap.

4-5




EXAMPLE:

REF TERMSE

MOV @<ga>,*R10+ PUSH ADDRESS OF SEMAPHORE “SEMA”
DATA CALLS :
DATA TERMSE

EXCEPTIONS AND CONDITIONS: An exception will occur if there are
WAITing processes on the semaphore that is being terminated or if the
semaphore is illegal.

4.3.5 Procedure CSIGNAl

This procedure performs a conditional SIGNAL operation on the
semaphore SEMA.. It first checks the validity of the semaphore, then
sets the value of WAITER to false, then masks all interrupts and
checks to see if any processes are WAITing on the semaphore SEMA. It
does this by looking at the semaphore count field . If the semaphore
count is less than zero (there are WAITing processes), the parameter
WAITER is set true and the procedure branches to the SIGNAL procedure.
If there are no WAITing processes, the procedure returns with WAITER
set to false.

EXAMPLE:

REF CSIGNA

MOV @<ga>,*R10+ PUSH SEMAPHORE “SEMA”
MOV @<ga>,*R10+ PUSH ADDRESS OF “WAITER”
DATA CALLS

DATA CSIGNA

EXCEPTIONS AND CONDITIONS: An exception occurs when the semaphore
is illegal.

4.3.6 Procedure CWAIT

This procedure performs a conditional WAIT operation on the semaphore
SEMA. The procedure first checks the validity of the semaphore, then
masks interrupts, and then tests the semaphore counter. If the
semaphore counter is less than or equal to zero (i.e., there are no
unprocessed or unreceived SIGNALs), control simply returns to the
caller. If unprocessed SIGNALs exist, the semaphore counter 1s
decremented by one, just as if a WAIT operation had been performed
under similar circumstances. The parameter WAITER is set true if there

was at least one unprocessed SIGNAL on the semaphore, and false if
there were no unprocessed SIGNALs.

4-6

TN




EXAMPLE:

REF CWAIT

MOV @<ga>,*R10+ PUSH SEMAPHORE “SEMA”
MOV @<ga>,*R10+ PUSH ADDRESS OF “WAITER”
DATA CALLS

DATA CWAIT

EXCEPTIONS AND CONDITIONS: Because this procedure never results in
suspension of the calling process on the semaphore, the procedure does
not check the process priority; however, an invalid semaphore will be
detected. 7

4.3.7 Procedure WAITSIgnal

This procedure performs a WAIT operation on the semaphore WAITFOR and
a SIGNAL operation on the semaphore SIGNALTHE, in a single indivisible
step. This procedure ensures that both operations are performed at
once, which cannot be done by performing a SIGNAL followed by a WAIT
or vice versa. In the first case, the SIGNAL might cause another
process to preempt the current process before it does the WAIT; in the
second, the process might become suspended when it does the WAIT
before it can do the SIGNAL.

WAITSIgnal first checks the validity of the semaphore, then masks all
interrupts. Next, WAITSIgnal decrements the semaphore counter of the
WAITFOR semaphore. This is the essential part of the WAIT operation.
If this action 1leaves the semaphore count greater than or equal to
zero, (i.e., will not cause the process to become suspended), a signal
operation is performed on the SIGNALTHE semaphore (without wusing
another workspace). Control returns to the calling process if no
process is waiting on the semaphore.

If a decrement to the semaphore count will cause suspension of the
calling process, the routine $WAIT is executed. $WAIT performs a
variety of functions. It verifies that the process has sufficient
urgency to wait on the semaphore (i.e., that the process priority is
numerically less than the semaphore 1level). It sets the semaphore
pointer field in the process record to point to the semaphore on which
the process is suspended. It places the process on the semaphore
queue, stores the workspace pointer and becomes ready to perform the
context switch.

Having completed the WAIT operation, but before the context switch is
performed, WAITSIGNAL performs an operation similar to SIGNAL on the
SIGNALTHE semaphore; it increments the semaphore counter and checks to
see that it does not overflow. If there are suspended processes on the
semaphore, the oldest is taken off the semaphore queue and rescheduled
(according to its priority) in the same fashion as the procedure
SIGNAL. If the process is an interrupt handler, it will be placed in
the active gqueue as 1long as it 1is of equal or numerically lower

4-7




priority (i.e., equal or higher urgency) to the present head of the
queue. If the rescheduled process is not put in the active queue, it
is put on the queue before the last process of the same priority.

Finally, the context switch is performed and the process on the head
of the ready queue (which may be the rescheduled process) becomes the
currently executing process.

EXAMPLE:

REF WAITSI

MOV @<ga>,*R10+ PUSH SEMAPHORE “WAITFOR”
MOV @<ga>,*R10+ PUSH SEMAPHORE “SIGNALTHE”
DATA CALLS

DATA WAITSI

EXCEPTION AND CONDITIONS: All the exceptions that occur under SIGNAL
and WAIT; incorrect priority of a process attempting to WAIT on the
semaphore WAITFOR, overflow of the semaphore counter SEMOVR in the
semaphore SIGNALTHE, and an illegal semaphore.

4.3.8 Function SEMASTate

This function returns the state of the semaphore, which can be
0 (AWAITED), 1l(EMPTY), or 2(SIGNALED). It first initializes the return
value to O(AWAITED). It then inspects the semaphore counter field of
the semaphore record. If this is found to be 1less than =zero,
0 (AWAITED) is the correct value to be returned. If the semaphore count
field equals 2zero, then the returned value is 1(EMPTY). If the
semaphore count is greater than zero, then the returned value is
2 (SIGNALED) . .

NOTE: The value returned accurately reflects the state of the
semaphore at the time the function was called, but the state could
change immediately thereafter.

EXAMPLE :

REF SEMAST

MOV @<ga>,*R10+ PUSH SEMAPHORE “SEMA”
DATA CALLS

DATA SEMAST

MOV *R10,@<ga> POP STATE

EXCEPTIONS AND CONDITIONS: None.

ﬂ;)\



4.3.9 Function SEMAVAlue

This function simply returns the value in the semaphore count field of
the semaphore record. A positive integer value indicates the number of
unprocessed (unreceived) SIGNALs to the semaphore. A negative integer
value indicates the number of processes WAITing on the semaphore. A
zero value indicates that there are neither unreceived SIGNALsS nor
WAITing processes.

EXAMPLE:
REF SEMAVA
MOV @<ga>,*R10+ PUSH SEMAPHORE “SEMA”
DATA CALLS
DATA SEMAVA
MOV *R10,@<ga> POP SEMAPHORE VALUE

EXCEPTIONS AND CONDITIONS: None.

4.4 INTERRUPT ROUTINES

The routines listed in this subsection (with the possible exception of
Procedure ASSEMBLYEVENT and Procedure NOASSEMBLYEVENT), are used to
associate semaphores with hardware interrupts and perform necessary
functions within the interrupt service code.

When an interrupt occurs, the interrupt handling procedure INT$PC
searches for processes to handle the interrupt. INTSPC first looks for
an assembly 1language event then for any process WAITing on the
semaphore that has been designated as the primary receiver of
interrupts at that 1level by use of the EXTERNalevent procedure. If

either:

1) There is no semaphore assigned to that interrupt level as
a primary receiver, or

2) There are no processes WAITing on the semaphore which has
been assigned as the primary receiver of interrupts at
that level,

INTSPC looks for a secondary receiver of interrupts by inspecting
the semaphore associated with that level by use of the
ALTEXTernalevent procedure. If no processes are found waiting,
the system will crash.

Only one primary receiver and one secondary receiver are allowed
to exist at a time, at any particular interrupt level.

4.4.1 Procedure EXTERNalevent

4-9




This procedure designates the semaphore SEMA to be the primary
interrupt handler at a particular level of interrupts specified
by the parameter LEVEL. SLVLCK is called to ensure that the
interrupt 1level is in the range 1 to 15. LOWER$ is called to
determine if the semaphore is associated with an external event
and if the process(es) WAITing on the semaphore are of
sufficiently high urgency to handle an interrupt at the level
specified by LEVEL. LOWERS also sets the level of the semaphore
;o that of the interrupt if it is associated with an interrupt
andler.

LOWERLevel 1is called a second time to adjust the semaphore level
field of the semaphore record of any semaphore that was
previously allocated as the primary receiver of interrupts at the
level specified by LEVEL. It lowers the urgency level to either.
the level at which this semaphore is attached, or to 32767 (the
lowest possible level).

Because only one semaphore may be attached to a given interrupt
level as the primary receiver at any one time, this procedure
effectively does a NOEXTErnalevent at the level specified by
LEVEL and then attaches a new primary interrupt handler at this
level.

EXAMPLE:

REF EXTERN

MOV @<ga>,*R10+ PUSH SEMAPHORE “SEMA”
MOV @<ga>,*R10+ PUSH LEVEL (INTEGER)
DATA CALLS

DATA EXTERN
EXCEPTIONS AND CONDITIONS:
1) The interrupt level is invalid, i.e., outside the range 0-15.

2) Processes which are already Waiting on the semaphore are
unable to handle that interrupt level.

3) The interrupt level is not allocated a dedicated workspace.

4) An illegal semaphore is detected.
4.4.2 Procedure NOEXTErnalevent

This procedure detaches the semaphore which has been designated

as the primary receiver of interrupts at the level specified in the
parameter LEVEL. 1In its place, the "No-event" semaphore, NOEVT is
attached at this level. 1If no primary receiver semaphore is attached
to this level, the procedure has no effect. The detached semaphore (if

4-10




any) has its level adjusted as required by the procedure LOWERS.

EXAMPLE:
REF NOEXTE
MOV @<ga>,*R10+ PUSH LEVEL (INTEGER)
DATA CALLS

DATA NOEXTE

EXCEPTIONS AND CONDITIONS: An exception will occur if the interrupt

level is outside the range 1-15.
4.4.3 Procedure ALTEXTernalevent

This procedure designates the semaphore SEMA to be the secondary
receiver of interrupts at the level specified by the parameter
LEVEL. The interrupt level must be in the range 1-15.

This procedure checks for the exception conditions (see below)
and calls $LVLCK and then LOWERS twice. LOWERS first checks to
see that the semaphore 1level field of the semaphore record
indicates that any processes WAITing on the semaphore are of
sufficiently high wurgency to handle an interrupt at the level
specified by LEVEL. LOWERS then adjusts the semaphore level field
of the semaphore that was previously attached as the primary
receiver at this level of interrupts, as necessary.

EXAMPLE:
REF ALTEXT
MOV @<ga>,*R10+ PUSH SEMAPHORE “SEMA”
MOV @<ga>,*R10+ PUSH LEVEL (INTEGER)

DATA CALLS
DATA ALTEXT

EXCEPTIONS AND CONDITIONS: An exception occurs if:

1) The interrupt 1level is invalid, i.e., outside the range
1—15. . .

2) Processes which are already WAITing on the semaphore SEMA
are unable to handle that interrupt level.

3) The interrupt level is not allocated a dedicated
workspace. ‘
4) Illegal semaphore is detected.

4.4.4 Procedure NOALTExternalevent

4-11




4.4.4 Procedure NOALTExternalevent

This procedure detaches a semaphore which 1is the secondary
receiver of interrupts at the level specified in the parameter
LEVEL. If no semaphore has been previously allocated (by
ALTEXTernalevent) as the secondary receiver, this procedure has
no effect.

The no event semaphore NOEVT is re-attached to this 1level. The
level of interrupt specified in the parameter LEVEL must be in
the range 1-15. This procedure calls LOWER$, which adjusts the
semaphore level as necessary.

EXAMPLE:

REF NOALTE

MOV @<ga>,*R10+ PUSH LEVEL (INTEGER)
DATA CALLS
DATA NOALTE

EXCEPTIONS AND CONDITIONS: An exception occurs if the interrupt
level LEVEL is outside the range 1-15.

4.4.5 Function INTLEVel

This function returns a number which indicates the type of SIGNAL
which activated the process. If the returned value is in the
range 1-15 then an interrupt of that 1level activated this
process. If the value returned is "-1", then activation was by
another process SIGNALing the semaphore on which this process had
been WAITing. If the returned value is "0", the process has not
been suspended and reactivated since it was started. INTLEVel can
be used by a reactivated process in order to find which interrupt
level (if any) that activated it.

EXAMPLE:

REF INTLEV

DATA CALLS
DATA INTLEV

MOV *R10,@<ga> POP INTERRUPT LEVEL

EXCEPTIONS AND CONDITIONS: None.

4.4.6 Procedure MASK

4-12



This procedure is called to disable interrupts. Interrupts remain
masked until the procedure UNMASK is called. A return from the
routine which called MASK does NOT remove the mask. The interrupt
mask, bits 12 to 15 of the status register are set to zero.

EXAMPLE: ' o

REF MASK

DATA CALLS
DATA MASK

EXCEPTIONS AND CONDITIONS: None.

4.4.7 Procedure SETMASK

This procedure sets the interrupt mask to disable all interrupts
equal to or 1less urgent than the interrupt level passed (as
parameter NEWMASK) to SETMASK in the calling sequence. The value
of the previous mask (i.e., the value at which the interrupt mask
was set prior to calling SETMASK) is returned to the user as an
output parameter. Specifying 0 as the NEWMASK value, will cause
all interrupts to be masked Calling SETMASK, specifying the
previous mask as the new mask will restore the o0ld interrupt
setting. NEWMASK must be between 0 and 15 (inclusive).

EXAMPLE:

REF SETMASK

MOV @<ga>,*R10+ PUSH NEW MASK

MOV @<ga>,*R10+ PUSH PTR TO WORD
DATA CALLS WHICH WILL BE SET
DATA SETMASK TO OLD MASK

EXCEPTIONS AND CONDITIONS: None.

4.4.8 Procedure UNMASK

This procedure enables interrupts. It reverses the effect of the
MASK procedure. The procedure first checks the priority of the
current process. If that process is not an interrupt handler
(i.e., it has a numerical priority of dgreater than  15), all
interrupts are enabled by setting the interrupt mask (bits 12 to
15 of the status register) to "1°s". If the process 1is an
interrupt handler, those interrupt levels which are equally or
lesg urgent remain inhibited. Level zero interrupts always remain
enabled.




EXAMPLE:

REF UNMASK

DATA CALLS
DATA UNMASK

EXCEPTIONS AND CONDITIONS: None.

4.4.9 Procedure INTSPC

This procedure controls interrupt handling. When an interrupt

occurs, control passes to this procedure, which immediately masks
further interrupts.

The procedure first checks for ASSEMBlyevent and then determines
if a process is suspended on the semaphore that has been
designated as the Primary receiver of interrupts (by
EXTERNalevent). If no primary receiver of interrupts has been
specified, the semaphore designated as the secondary receiver of

interrupts is checked (by ALTEXTernalevent). If no processes are.

found suspended on an interrupt handling semaphore, the system
crashes.

If a process capable of handling an interrupt is found, the
oldest process is taken off the semaphore queue, and the pointer
to the next process is moved to the head of the that queue. The
level of interrupt is placed in the current interrupt field of
the process record for debug information. The context of the
current process 1is stored and the interrupt handler process is
moved to the active queue. The context of the interrupt handler
process 1is 1loaded and the interrupt handler becomes the current
active process.

NOTE: The user will never need to call this procedure; therefore,
no example is given.

EXCEPTIONS AND CONDITIONS: If there is no designated interrupt
handler at a given interrupt level, the system crashes.

4.4.10 Procedure ASSEMBlyevent

When an interrupt occurs, and further interrupts are masked,
internal data structures are examined to determine whether
ASSEMBlyevent has been called to associate an assembly language
handler with the current interrupt. If so, the workspace pointer
and entry point address passed to ASSEMBlyevent in the calling
sequence are used as a transfer vector to branch to the handler.
The interrupt mask 1is zero when the handler is given control
(i.e., all interrupts are masked) and must not be modified at any

4-14

————iERT




time within that routine. When the assembly language handling of
interrupts is complete, the user has a choice of action:

l) If no further processing of this interrupt is
required, a return is made directly to the interrupt
workspace by returning control to the interrupted
routine. This may be done using the following
sequence:

LI R14,R
R RTWP

This code causes two "RTWP" instructions to be
executed in a row. Note that this code is not
position independent. If the assembly event handler
is to be position independent, another method of
setting R14 to the address of an RTWP instruction is
to get the routine entry point from the interrupt
trap address and add the offset of the RTWP from the
routine entry point:

PSEG
ENTRY EQU $
MOV  @<level>*4+2,R14 GET ADDRESS OF ENTRY
AI R14, R-ENTRY FROM INT TRAP AREA
R RTWP DOUBLE RETURN

2) If the interrupt should also be processed by the Rx
interrupt environment, simply execute a single
"RTWP" instruction. This causes a return to the
point at which the 'Rx transfer code would have
branched had there been no assembly handler. Thus,
internal data structures are examined to determine
if an event semaphore has been associated with this
interrupt level by a call to either EXTERNALEVENT or
ALTEXTERNALEVENT, and Rx handles the interrupt.

EXAMPLE:
MOV @<ga>,*R10+ ADDRESS OF INTERRUPT WORKSPACE
MOV @<ga>,*R10+ ADDRESS OF INTERRUPT ROUTINE
MOV @<ga>,*R10+ INTERRUPT LEVEL
DATA CALLS
DATA ASSEMB

EXCEPTIONS AND CONDITIONS: An exception occurs when a bad
LEVEL parameter is passed.

4-15




4.4.11 Procedure NOASSEmblyevent

This procedure is called to disassociate an interrupt level with
an assembly language handler.

EXAMPLE:
MOV @<ga>, *R10+ LEVEL OF HANDLER TO BE REMOVED
DATA CALLS

DATA NOASSE

EXCEPTIONS AND CONDITIONS: An exception occurs when a bad
LEVEL parameter is passed.

4.5 PROCESSOR MANAGEMENT ROUTINES

These routines are used to reschedule the execution of multiple
process systems and locate the current process record.

4.5.1 Procedure SETPRIOrity

This procedure modifies the priority of the most urgent,
non-interrupt process. It ensures that NEWVALUE is in the range
16-32767 and masks all interrupts, scanning the ready Qqueue and
active queue for the first non-interrupt handler (i.e., a process
with a numerical priority greater than 15). If one is not found,
the parameter OLDVALUE is returned as 2zero, otherwise the o1d
process priority 1is returned. The new process priority is then
loaded from NEWVALUE and compared with the old value. If the new
value 1is numerically greater than the o0ld, the procedure SWAP is
called to re-schedule the process. This routine is used to force
rescheduling of the most urgent non-interrupt process.

EXAMPLE:

REF SETPRI

MOV @<ga>,*R10+ PUSH ADDRESS OF “OLDVALUE”
MOV @<ga>,*R10+ PUSH ADDRESS OF “NEWVALUE~”
DATA CALLS

DATA SETPRI

EXCEPTIONS AND CONDITIONS: An exception will occur if the NEWVALUE is

outside the range 16-32767.

4.5.2 Procedure SWAP
This procedure reschedules the current non-interrupt process

(i.e., the process nearest the head of the ready queue or the
active process with a priority numerically greater than 15). The

4-16



process that is being SWAPped is placed in the ready queue behind
the last process of the same priority. This means that if there
is more than one process with the same priority as the currently
active one (and it is a noninterrupt process), a SWAP operation
will cause a new process to become the currently active one.

The following example illustrates a swap operation when the
current process is resheduled. In this example each process is
represented by its priority and a letter indicating initial
seguence. :

Current process

Ready queue (before SWAP): 26a 20b 20c 234 23e 25f
Ready Queue (after SWAP): 20b 20c 20a 23d 23e 25f

The SWAP operation may be used to allocate execution time slices
to different processes. This time slicing is implemented by the
CLKINT process described later.

EXAMPLE:

REF SWAP

DATA CALLS
DATA SWAP

EXCEPTIONS AND CONDITIONS: None.

4.6 MEMORY MANAGEMENT PROCEDURES

These routines are used to perform dynamic management of the heap
packets of memory.

4.6.1 Procedure NEWS

This process allocates a contiguous area from the current
process”s heap of LENGTH or more words and returns a pointer to

the area in pointer. This memory may then be used by the calling
process until released by use of the FREES procedure.

4-17



EXAMPLE:

REF NEWS

MOV @<ga>,*R10+ PUSH ADDRESS OF POINTER
MOV @<ga>,*R10+ PUSH “LENGTH” IN WORDS
DATA CALLS

DATA NEW$

EXCEPTIONS AND CONDITIONS: If the heap area cannot be allocated,
a zero value pointer is returned.

4.6.2 Procedure FREES$

This procedure releases an area of heap allocated by the NEWS
procedure. The pointer to the heap packet is passed to this
procedure which sets it equal to 2zero.

EXAMPLE:

REF FREES

MOV @<ga>,*R10+ PUSH ADDRESS OF POINTER
DATA CALLS
DATA FREES

EXCEPTIONS AND CONDITIONS: None.

4.7 CLOCK MANAGEMENT ROUTINES

The clock management routines time events or ensure specific time
delays in the user”s system. Whenever any real time operations
are required the user must first start CLKINT process. (Note that
the Rx clock is NOT a time of day clock, but rather an internal
timer.) )

4.7.1 Process CLKINT
This process performs the following three functions:

l) Initialize the system clock to 00000000 milliseconds,

2) Provide “time out” signals that a specified time interval

has occured, with a resolution of n milliseconds per
interrupt,

3) Implement time slicing between processes by calling SWAP

every “n” milliseconds. If “n” is zero, no time slicing
is performed.

4-18



This process must be started whenever a system clock is required.
There is some processor overhead when using the clock routines,
and the overhead will increase as the number of time elements
waiting increases. The overhead is also inversely proportional to
the number of milliseconds per timer interrupt: the lower the
numbr of milliseconds per interrupt, the greater the overhead.

The system clock uses a double integer (32 bits) contained in the
clock record. A pointer to the head of a queue of time element
records is also maintained in the clock record. (Clock and clock
service records are described in Appendix A). Note that a
workspace for level three interrupts is provided in the CONFIG
module by default.

Time elements are put on the queue by the TWAIT procedure, and
may be signaled by other user processes.

EXAMPLE:
REF CLKINT
MOV @<ga>,*R10+ PUSH MILLISECONDS PER INTERRUPT
MOV @<ga>,*R10+ PUSH MILLISECONDS PER SWAP (IF 0, NO SWAPPING
MOV @<ga>,*Rl0+ PUSH 9901 BASE (USUALLY >100)
DATA CALLS

DATA CLKINT

EXCEPTIONS AND CONDITIONS: Must have workspace for 1level three
interrupts.

4.7.2 Procedure TWAIT

This procedure is used to suspend a process for a specified time
interval or until another process has signaled an event,
whichever comes first. This feature is necessary when only a
certain amount of time can pass before the event should have
occured (such as 1/0).

The time interval is a two word, signed positivé integer value.
The most significant word is pushed first, followed by the least
significant word. ’

This procedure builds a time element from the parameters it is
passed, and then proceeds to place it in the clock”s time Qqueue.
It then performs a WAIT on the semaphore. If the semaphore is
signaled by the clock process, it sets the status word to zero
and returns. If the semaphore was signaled from another user
process (i.e., before the time was up), then the procedure sets
the status word to one. '

4-19




Note that the resolution of the clock is user-specified in‘chINT

and therefore a delay request will suspend a process for n ms
(where “n” is a multiple of the user-specifed clock resolution).

RETURN CODES:
0 SIGNALLED

1 TIMED-OUT
2 THERE WAS ANOTHER WAITER
3

THE "TIME TO WAIT" IS INVALID, OR THE SEMAPHORE IS INVALID.

EXAMPLE:
REF TWAIT
MOV @<ga>,*R10+ PUSH THE ADDRESS OF THE SEMAPHORE
MOV @<ga>,*R10+ PUSH FIRST WORD OF TIME PARAMETER
MOV @<ga>,*R10+ PUSH SECOND WORD OF TIME PARAMETER
MOV @<ga>,*R10+ PUSH THE ADDRESS OF STATUS
DATA CALLS
DATA TWAIT

EXCEPTIONS AND CONDITIONS: The process CLKINT must be started
prior to the use of this procedure. There must be no other
processes waiting on the semaphore.

4.7.3 Procedure DELAY

This procedure causes the user process to suspend execution for a
specified number of milliseconds. This delay is achieved by
calling TWAIT with a specially allocated DELAY semaphore. This
semaphore is allocated once, and is thereafter re-used by DELAY,
and is reclaimed by the CLK$STE routine when the process
terminates.

EXAMPLE:

REF DELAY

MOV RO,*R10+ PUSH FIRST WORD OF TIME PARAMETER
MOV R1,*R10+ PUSH SECOND WORD OF TIME PARAMETER

DATA CALLS

DATA DELAY
EXCEPTIONS AND CONDITIONS: The process CLKINT must be started
prior to the use of this procedure. .

4.8 ERROR REPORTING PROCEDURE EXCEPTion

This procedure performs an error trap from a process. The values

4-20




of CLASSCODE and REASONCODE are placed in the error fields of Fhe
caller’s process record and the run-time support exception
routine is called.

EXAMPLE:
REF EXCEPT
MOV @<ga>,*R10+ PUSH “CLASSCODE” IN MSB
MOV @<ga>,*R10+ PUSH “REASONCODE” IN MSB
DATA CALLS

DATA EXCEPT

EXCEPTIONS AND CONDITIONS:
None.

4-21




e



SECTION V

CHANNEL ROUTINES

5.1 GENERAL

Rx makes it possible for the user to create and pass messages between
processes using the concept of channels. Channels can be thought of as
data structures over which messages (data) can be sent and received by
processes located at either end (see Figure 5-1). Initialization of
the channel, construction of the message to be sent, and
synchronization of the actual message transfer are performed using the
Channel Routines described in the following subsections.

In the normal start-up sequence for transmission between producer and

consumer processes, each process issues a C$SINIT on the same channel

name. (A process MUST initialize a channel in order to send messages

over that channel.) A call is then made to CSALLOC by the process

gending the message to allocate a heap packet for passing the text
ata.

PRODUCER CONSUMER

PROCESS PROCESS

FIGURE 5-1. PROCESS COMMUNICATION VIA CHANNELS

The following is a skeletal outline for a typical message transmission
between producer/consumer processes. For a complete example, see the
demonstration program in Appendix E.

SYSTEM:

REF PRODUC
REF CONSUM

DATA CALLS$,PRODUC
DATA CALLS,CONSUM

5-1




PRODUCER:

REF C$SINIT
REF CSTERM
REF CS$ALLO
REF CS$SEND
REF CS$WAIT

<call CS$INIT to connect to channel>
<call CSALLO to allocate message buffer>
loop: “

<fill message buffer>

<call CS$SEND to send message>

<call CSWAIT to wait for acknowledgement>
loop exit:
<call CSTERM to disconnect fom channel>

CONSUMER:
REF CS$INIT
REF CSTERM
REF CS$SRECE
REF CS$SACKN

<call CSINIT to connect to channel>
loop: ‘
<call CSRECE to send message>
<process data in message buffer>
<call CSACKN to wait for acknowledgement>
loop exit:
<call CSTERM to disconnect fom channel>

In the previous example, the producer first initializes a channel that
will be wused to send the message to the consumer, then allocates
memory for that message using the CS$INIT and CSALLO routines
respectively. The C$SEND routine actually sends the message to the
consumer, while CSWAIT will suspend the producer (i.e., the producer
is placed in a WAIT queue) uritil an acknowledgement of the message is
received. (Reference Section 2, 2.3.2 for detailed information on
semaphore queues.)

The consumer initializes the same channel as the producer via the
C$INIT routine and then calls CSRECE to suspend until a message is
received over the intialized channel. When the message is received,
the consumer performs whatever action is necessary to process the
data. The consumer may send messages back to the producer by modifying
the message that was sent. When the consumer has processed the
message, it calls CSACKN to notify the producer that the message has
been received/processed, and the producer is released from suspension.

5-2

g




Finally, when each process is finished, it calls CSTERM to disconnect

from the channel. When the last process disconnects from a Qarticu}ar
channel, all message buffers and other data structures associated with
that channel are freed.

When dealing with channels, it is important to remember that a channel
will not exist wunless it 1is designated (named) by a process as
existing (via C$SINIT), and that in order to speak to another process,
the receiving process must designate (name) the same channel. Two
terms are used: channel "name" and channel identifier or "ID". The
name of a channel is a number from 1 to 32767 which is passed to
CSINIT. CSINIT returns a channel ID, which is a pointer to the channel
data structure. v

5.2 CHANNEL ROUTINE DESCRIPTIONS

The following subsections will list and describe each channel routine,
as well as provide example calling sequences for each.

5.2.1 Procedure CSACKN

This routine acknowledges that a message has been received and/or
processed, and notifies the sending process of that fact.

CALLING SEQUENCE:

MOV @<ga>,*R10+ PUSH ADDRESS MESSAGE TEXT POINTER
DATA CALLS,CSACKN

EXTERNAL ROUTINES: C$$HEADER, RTSENTER, RTSEXIT, SIGNAL

5.2.2 Procedure CSALLO

The CS$SALLO routine allocates a heap packet for passing text data
between processes. The heap packet has a header of fixed size which
contains information used to synchronize interprocess communication.
The header is followed by a text data field containing any message to
be transmitted. The maximum number of characters allowed in the
message is defined in the first parameter of the calling sequence.

CALLING SEQUENCE:
MOV @<ga>,*R10+ PUSH MESSAGE SIZE (INTEGER)
MOV @<ga>,*R10+ PUSH POINTER TO HEAP PACKET
DATA CALLS$,CSALLO N

EXTERNAL ROUTINES: C$$SMSG, RTSENTER, RTSEXIT, CKSEMAPHORE,
INITSEMAPHORE, TERMSEMAPHORE, HPSFREE, HPSNEW, HP$SYSTEM

5-3




5.2.3 Procedure CSCRECEive

This routine checks that a message has been sent to a channel. If one
is present, the routine returns its address. If no message has been

sent, a message pointer set to nil is returned.
CALLING SEQUENCE:

MOV @<ga>,*R10+ PUSH CHANNEL ID
MOV @<ga>,*R10+ PUSH MESSAGE TEXT POINTER

DATA CALLS$,CSCRECE
EXTERNAL ROUTINES: SETMASK, C$$MSG, RTSENTER, RTSEXIT, CWAIT

5.2.4 Procedure C$CWAI

This routine conditionally waits for a sent message to be
acknowledged. If the message has been acknowledged, the status word is
set to TRUE (all ones). If the receiving process does not acknowledge,
the status word is set to FALSE (zero).

CALLING SEQUENCE:

MOV @<ga>,*R10+ PUSH MESSAGE TEXT POINTER
MOV @<ga>,*R10+ PUSH PTR TO STATUS WORD
DATA CALLS$,CSCWAI

5.2.5 Procedure C$DISPose
This procedure deallocates a channel message.
CALLING SEQUENCE:

MOV @<ga>,*R10+ ‘ PUSH MESSAGE TEXT POINTER
DATA CALLS,C$DISP

EXTERNAL ROUTINES CS$$HEADER, RTSENTER, RTSEXIT, TERMSEMAPHORE
HPSFREE, HPS$SYS _

5.2.6 Procedure CSINIT

CSINIT searches the channel directory for the channel identified by
<name>. If the channel is found, C$SINIT sets the ID to point to the
channel. 1If the channel is not found, a channel is created, inserted

into the channel directory, and the ID is set to point to it., If the
passed value of <name> is "0", the channel is assumed to have been

created either in COMMON, or in other memory not declared available to

the system. Although the channel does not appear in the channel"

directory, the routines using ID as an ' identifier will operate
correctly on such a channel.

5-4

./




CALLING SEQUENCE:

MOV @<ga>,*R10+ PUSH CHANNEL NAME
MOV @<ga>,*R10+ PUSH POINTER TO CHANNEL ID

DATA CALLS,CSINIT

EXTERNAL ROUTINES: RTSENTER, RTSEXIT, CKSEMAPHORE, INITSEMAPHORE,
SIGNAL, WAIT, HPSFREE, HPSNEW, NP$SSYSTEM, MYS$SMPX -

5.2.7 Procedure C$SNOTI

CSNOTIFY is used to set the channel "Notify" semaphore field to point
to a user-supplied semaphore. This allows a consuming process waiting
on a single semaphore associated with several conditions to receive
notification that a message is present on the channel. The consuming
process must perform a receive to get control of the message buffer.
When several channels are used, the consumer can perform a conditional
receive to determine the location of the message.

CALLING SEQUENCE:

MOV @<ga>,*R10+ PUSH CHANNEL ID

MOV @<ga>,*R10+ PUSH ADDRESS OF SEMAPHORE
DATA CALLS$,C$NOTI

EXTERNAL ROUTINES: None.

5.2.8 Procedure CS$RECEive

This routine causes a process to suspend until a message is sent to
the channel. It then takes the message from the channel and sets <msg>
to point to that message”s text field.

CALLING SEQUENCE:
MOV @<ga>,*R10+ PUSH CHANNEL ID

MOV @<ga>,*R10+ PUSH MESSAGE TEXT POINTER
DATA CALLS$,CSRECE

EXTERNAL ROUTINES: C$$MSG, SETMASK, RTSENTER, RTSEXIT, WAIT

5.2.9 Procedure C$SEND

CSSEND sends a message to the channel and signals that a message is
present for processing. The oldest pending CSRECEive on this channel
will be activated.
CALLING SEQUENCE:

MOV @<ga>,*R10+ PUSH CHANNEL ID

5-5




MOV @<ga>,*R10+ PUSH MESSAGE TEXT POINTER
DATA CALLS$,C$SSEND ' :

EXTERNAL ROUTINES: CS$SS$SHEADER, RTSENTER, RTS$EXIT, SIGNAL '

5.2.10 Procedure C$TERM

This procedure disconnects the calling process from the channel. When
the last process is disconnected, the routine closes the data
structures associated with the channel, terminates the channel pointed
to by <c>, and updates the directory to reflect the termination.

CALLING SEQUENCE:

MOV @<ga>,*R10+ PUSH CHANNEL ID
DATA CALLS,CSTERM

EXTERNAL ROUTINES: RTSENTER, RTSEXIT, SIGNAL, WAIT, TERMSEMAPHORE,
HPSFREE, HP$SYSTEM, MYS$SMPX

5.2.11 Procedure CSWAIT
CSWAIT waits for a message to be acknowledged by a consuming process.

No further use of the message is allowed until an acknowledgment is
received from the consumer (via CS$SACKNO) .

CALLING SEQUENCE:

MOV @<ga>,*R10+ PUSH MESSAGE TEXT POINTER
DATA CALLS,CSWAIT

EXTERNAL ROUTINES: CSSHEADER, RTSENTER, RTSEXIT, WAIT

5.2.12 Function C$S$SHEA

CSSHEADE, given a pointer to a message text field, returns a pointer

to that message”’s header. This function is normally used only by the
other channel routines.

CALLING SEQUENCE:

MOV @<ga>,*R10+ PUSH MESSAGE HEADER POINTER
DATA CALLS,CS$SHEA

EXTERNAL ROUTINES: LOCATION, SIZE

5.2.13 Procedure C$$SMSG

C$$MSG, given a pointer to a message header, returns a pointer to the
text field of that message. Upon return, the stack pointer (R1l0)

5-6

i
j
-



v/""\\\

points to a word containing the address of the text field of the
message.

CALLING SEQUENCE:

MOV @<ga>;*R10+ PUSH MESSAGE HEADER POINTER

DATA CALLS,CS$$MSG

EXTERNAL ROUTINES: LOCATION, SIZE




ey
/

.




SECTION 6

CONFIGURING TARGET SYSTEMS FOR OBJECT CODE EXECUTION

6.1 GENERAL

The user has the capability to customize Rx, modeling the system to
fit his or her application requirements by producing a load module
that includes the application routines and those processes,
procedures, and functions supplied in the Rx library that will enable
the application to execute.

The link editor of the user”s software development system is used to
create the 1load module. The configuration process involves giving a
‘simple description of the target machine to identify ROM/RAM addresses
and the location of the target machine’s restart vector. The user”’s
own interrupt handlers and system crash handler may also be included.
The result will be a 9900 load module which may be debugged using AMPL
or the Rx Standalone Debugger.

The steps required to produce a customized load module will be fully
explained in following sections. They are:

l) Assemble user source. .

2) Customize and assemble CONFIG. (Section 6.2)
3) Create a link edit control file. (Section 6.5)
4) Execute 1inka§e editor. (Section 6.5.2)

5) Test using the debugger of the user”s choice.
(Sections 7 and 8)

6.2 CUSTOMIZING THE CONFIG MODULE

Configuration of a target system requires that the user build a
simple specification of the target machine into the Rx module
called "CONFIG". CONFIG contains the specification of the
system“s RAM organization and the locations of the system RESTART
and LREX vectors. :

NOTE: Because of the symbols used to define the Ram Table, the
warning message “VALUE TRUNCATED” will be sent to the user’s
error file during assembly of CONFIG. The user can ignore this
message. .

Figure 6-1'is the version of CONFIG supplied the user. It
specifies that RAM is located from >5000 to >A000. Note that this

6-1




version of CONFIG may not contain the correct specifications for
the system being configured. Information on the appropriate
modific¢ations may be found in following subsections.



IDT
IDT

EXTERNAL

* % % ok % % % ¥ * % * ¥

REVISION: 08/01/80 1.00
ROUTINE LIST: CONFIG, IWP$0 .. IWP$1l5, BADSWP,

“CONFIG”
“CONFIG” SPECIFY CONFIGURATION
ORIGINAL FOR RX 2.0

SRAMTB, $RESTA, S$LREX, $SYSCR,
SDEFAU, $FILL, $STKSZ, S$BOOTP,
S$IODIR, DBS$WP .

COPY MODULES:
NONE.

MACRO DEFINITIONS:
NONE.

ROUTINES:

NONE.
EXTERNAL DATA:
PSEG

* MODULE CONSTANTS:

IWPSZ EQU
*

LOWRAM EQU

24 SIZE OF AN INTERRUPT
WORKSPACE (R4-R15)
>5000 LOW BOUNDARY OF RAM

* MODULE VARIABLES:

*

DORG LOWRAM

*

DEF
DEF
DEF
DEF
DEF
IWPS0 BSS
IWPS$S1l BSS
DBSWP EQU
IWPS2 EQU
BSS
IWPS3 EQU
BSS
IWPS$4 EQU
BSS
IWPS5 EQU
BSS
IWPS6 EQU
BSS
IWPS7 EQU
: BSS
IWPS$8 EQU
BSS

IWPSO0,IWPS1l, IWPS2, IWPS3
IWPS$4, IWPSS, IWPS6, IWPS7
IWPS$8, IWPS$9, IWPS10, IWPS11
IWPS$12,IWPS$13,IWPS14, IWPS1S
BADSWP, DBSWP

32

32

IWPS1

$-32+IWPS2Z

IWPSZ

$-32+IWPSZ

IWPSZ

$-32+IWPSZ

IWPSZ

$-32+IWPSZ

IWPSZ

$-32+IWPS2Z

IWPSZ

$-32+IWPSZ :
IWPSZ

$-32+IWPSZ

IWPSZ

FIGURE 6-1. CONFIG MODULE (Sheet 1 of 4).

6-3




IWPS9 EQU $-32+IWPSZ
BSS IWPSZ
IWP$10 EQU $-32+IWPSZ
BSS IWPSZ
IWPS1ll EQU $-32+IWPSZ
BSS IWPSZ
IWP$12 EQU $-32+IWPSZ
BSS IWPS2Z
"IWP$13 EQU $-32+IWPSZ
BSS IWPSZ
IWPS$14 EQU $-32+IWPS2Z
BSS 1IWPSZ
IWPS15 EQU $-32+IWPSZ ‘
BSS 1IWPSZ
BADSWP BSS 32
*

LOWHP EQU $
*

RORG

gITL “CONF1IG: SPECIFY CONFIGURATION”
ABSTRACT:

SPECIFY CERTAIN SYSTEM PARAMETERS, THE RAM

CONFIGURATION, AND THE I/0O SUBSYSTEM

DIRECTORY.

CALLING SEQUENCE:

NONE.

EXCEPTIONS AND CONDITIONS:

NONE..

LOCAL DATA:
NONE.
ENTRY POINT:

NONE.
khkhkkhkkhhkhkhkhkkhkkhkhkhkhkkhkhkhkhkhhkhkhkhkhkhkhkhkhhkhkkhkkhhkhkhkhhkhkhhkkkhkhkkkk
* ADDRESS OF THE "BLWP" VECTOR FOR RESTARTS; USE "0" FOR
* LEVEL 0 INTERRUPT, ">FFFC" FOR THE "LREX" VECTOR, OR
* THE ADDRESS OF A USER-DEFINED VECTOR.
khkkdhkhhdkkhhkkhkhkhkhhkhkhhhkhhkhkhhhkhhhhhkkhhhkhhkhkkhkhhkrhhkhiikkhii

DEF $RESTA
SRESTA DATA O

* % ¥ % % F ¥ ¥ % * ¥ *

FIGURE 6-1. CONFIG MODULE (Sheet 2 of 4).




Khkhkhkkhkhhhkkhhkhhkhkhhkkhkkkhkhkhkkhkhkhkhkkkhkkkkhkhkhkkhkhkhkhkkhhhkkkhhhkkkhdkkk

* ADDRESS OF THE "BLWP" VECTOR FOR THE "LREX" INSTRUCTION;
* USE "0" IF THERE IS TO BE NO "LREX" VECTOR OR IF HIGH
* MEMORY IS ROM.

. hkkkhkkkkhkkhkkhkkhkhkhkhkhkhhkhhkhkhhkhkdkkhkhhkhkhhkhkhkhkhhkhkhkhkhkhhkhkhkhkhkhkkkd

DEF SLREX

SLREX DATA 0

[ 2 X X2 22X XT TR RIS IIISIIITIZ IS I SS SIS XL X X 3

" * ADDRESS OF THE USER-DEFINED ROUTINE TO BE INVOKED IN CASE

* OF A SYSTEM CRASH; USE "0" FOR THE SYSTEM DEFAULT WHICH

* IS TO MASK INTERRUPTS AND IDLE THE PROCESSOR.

KREEREEEEEKE KRR RRRRRRRRRRRRRRRRARRRRR AR AR AR AR A kX
DEF $SYSCR

S$SYSCR DATA 0

dkkkhkkkhkhkkhkhkhkhhhhkkhkhhkhkhhhkkhhkkhkhkhhkhkhkhkhkhhhkhkhhhkhkkkhkhkkkhkhkkkhhkhk

* ADDRESS OF THE MPP ROUTINE TO BE INVOKED IF AN EXCEPTION

* OCCURS BUT NO EXCEPTION HANDLER HAS BEEN SPECIFIED; USE

* "0" FOR THE SYSTEM DEFAULT WHICH IS A "NO EXCEPTION

* HANDLER" SYSTEM CRASH.

***********************************************************
DEF S$DEFAU

- SDEFAU DATA 0

I Z X IZ 2T IS LIIIIIILIISIISISRLSRI SRS XXX RS2 2 2 2 22 2 2 2

* THIS IS THE VALUE WITH WHICH THE HEAP WILL BE

* INITIALIZED AT POWER-UP.

dhkkkhkhkdkkhkhhhkhkhhkhkhkkhhkhkhhkhkhhkhkhhhkhkhhhkhkhhhkkkkhkhhhkhkhhhkhkkhkhkkhkkk
DEF SFILL

SFILL JMP §$

khkkhhkhkhkhkhkhkhkhkhkhkhkhhhkhk AR AR ARARkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkkhkhkkkk

* THIS IS THE DEFAULT STACK SIZE (IN WORDS) THAT IS USED

* IF A "STACKSIZE" CONCURRENT PARAMETER IS NOT SPECIFIED.

I X X R R R R R X R X R X R X2 XXX RAISYSYSXSX ISR XXX 2222 22 2 2 2 3
DEF S$STKSZ

S$STKSZ DATA >100

khkkhkhkkkhkkkhhhkhhhhkhhhhhkhkhhhkhhhhkhhkhhhhkkhhkhkhkhkkhkhkrhkhhhhhhhhhd

* THE PARAMETER LIST FOR THE CALL TO "S$PRCS" TO START THE

* "BOOT" PROGRAM.
hhkhkhkhhhhhhkhhhhhhhhkhkhhkhhkhhkhhhkhkhkhhhhhhhhhhhhkhhkhhhhdhddd

DEF $BOOTP
$BOOTP DATA >0000 FRAME SIZE
DATA >0000 LEXICAL NESTING LEVEL
DATA >0000 PRIORITY
DATA >0100 STACK SIZE
DATA >0000 HEAP SIZE

FIGURE 6-1. CONFIG MODULE (Sheet 3 of 4).

6-5




% e Je g Jo g Jo g de de de e g o de e de dode o g de de de ke de do de do de de de K dode de dode dedede ke de ke dekk de ke ok ke ke kekkhkk

* ADDRESS OF THE "RAM TABLE," THE TABLE THAT DESCRIBES THE

* REGIONS OF READ-WRITE MEMORY TO BE COLLECTED INTO THE

* HEAP.

*******t***************************************************
DEF $RAMTB

SRAMTB DATA RAMTB

***********************************************************

* ADDRESS OF THE DIRECTORY OF I/O SUBSYSTEMS.
hhkhkhhkkhkhhkkhkhkhkhhkhhkhhhhhhhkhkkhkhkkhhkhkkhhkhkhhkhkhhkhhkihhkikikkkikkkikk
DEF S$IODIR
$IODIR DATA IODIR
khkkhkhhkhkhkhkhhhhhkhkhhhkhhhkhhhkhkhkhkkhhhkkhhkhdhkkhkhkhhkhhhkkkhkhkkhkkkhkkkhk
* THE FOLLOWING TABLE IS A LIST OF "LENGTH_IN_ BYTES,
* STARTING_ADDRESS" PAIRS THAT DEFINE THE RAM PO BE USED
* BY THE EXECUTIVE; A WORD OF "0" TERMINATES THE LIST.
* THE RAM REGIONS MUST BE IN ASCENDING ORDER AND MUST NOT
* OVERLAP.
khkhkhkhkhkhhkhkhhhkhhhhkhkhhhhhhkhhhkhkhkhkhkkhhkhkhkhkhkhkhkhkhkkhkhhkkhkhkkkhkhkkhkkkkihik
RAMTB DATA >A000-LOWHP, LOWHP
DATA 0 LIST TERMINATOR
khkkhkhkhkkhkhkhkhkhhhhkhkhkhkhkhkhkhkhkhkhkhkhhkkkhkhkhkhkkkhkhkhkhkhkhkhkhkhhkhhkhkhkkhkkhkikhhk
* THE FOLLOWING TABLE IS A LIST OF "SERVICE DIRECTORY,
* PORT_CONSTANTS" PAIRS THAT DEFINE THE I/O SUBSYSTEM TO
* BE INITIALIZED WHEN ROUTINE "D$INIT" IS CALLED;
* A WORD OF "O"™ TERMINATES THE LIST.
khhkhkkhhhkhhkhhkhkhkhkhhhhkhhhhhhhkhhkhhkihiidhkihkdikkkikkdikdkikkiikkik

IODIR EQU §$
*

* INSERT LIST ENTRIES HERE.
*

DATA 0 LIST TERMINATOR
*

END

FIGURE 6-1. CONFIG MODULE (Sheet 4 of 4).

6-6




6.2.1 Specification of System Parameters

A number of target system parameters have been collected into
CONFIG so they can be conveniently modified by the user. Each
parameter is described in one of the following paragraphs.

Parameter S$RESTA 1is a data word that contains the address of a
transfer vector for a BLWP instruction that will be executed if
the procedure RESSTART is invoked. A value of "0" will cause a
level 0 interrupt to be simulated; a value of ">FFFC" will
simulate a LREX instruction. Special restart processing may be
specified via a user-defined transfer vector.

An LREX instruction causes a trap through the transfer vector at
location >FFFC; it is often used for reloading or "warm starting"”
a system in which the level 0 interrupt is used for a power-up or
"cold start". If high memory is in RAM, then the LREX vector must
be initialized at run-time. If the data word $LREX contains a
non-zero value, it is interpreted as the address of a (ROM)
transfer vector that Rx will copy to >FFFC through >FFFF during
system initialization. If the data word is 0 (i.e., high memory
is ROM, or no LREX instructions will be used), no copy will be
made.

" Parameter $SYSCR permits the user to specify the action to be
taken if a system crash occurs. A non-zero value of the data word
$SYSCR is interpreted by the Executive Run Time Support as the
address of an assembly language routine that will be invoked (via
a BL instruction with register RO containing the crash code) in
case of a unrecoverable error. A value of zero results in a
default routine being invoked that masks all interrupts and
executes the IDLE instruction.

Parameter S$DEFAU permits specification of a default exception
handler that will be invoked if an exception occurs in a process
for which no exception handler has been established. If a default
is to be used, then the data word $DEFAU must contain the entry
point address of that routine. A value of zero will cause a "no
exception handler" system crash to occur.

The value in the data word SFILL is the pattern with which the
heap will be initialized at power-up; the suggested value is the
instruction "JMP $" (Hex value >10FF) which will sometimes stop
errant execution.

Parameter $STKSZ is the default stack size (in words) that will
be used if a "stacksize" concurrent parameter is not specified
for process. To do this, the process start code (see 4.1.5) needs
to be changed to this:




REF S$PRCS

MOV @<ga>,*R10+ PUSH FRAME SIZE IN BYTES
MOV @<ga>,*R10+ PUSH LEXICAL LEVEL

MOV @<ga>,*R10+ PUSH PROCESS PRIORITY
MOV @$STKSZ,*R10+ USE DEFAULT STACK SIZE
MOV @<ga>,*R10+ PUSH HEAP SIZE IN WORDS

The five words labeled $BOOTP are the parameters to the process
creation routine S$PRCS that creates the "boot" program. The
Executive Run Time Support begins execution in a program that
"bootstraps"™ the system into execution by initializing system
data structures and then invoking the "ghost" procedure GHOSTS
which the user must customize to perform application dependent
~initialization and start the user”s system (Section 6.3). Since

the processing that is performed in the boot program is .

application-dependent, its stack size parameter in the $BOOTP
parameter 1list may have to be adjusted by the user; the other
four parameters will not require modification. (Since the stack
region of the boot program will be reclaimed when procedure

GHOSTS returns and the program terminates, the estimated stack
size need not be exact.)

Parameter $RAMTB is a data word containing the address of the
"RAM table" that is described in the following subsection.

Parameter $IODIR is a data word containing the address of the I/O
subsystem directory that is described in 6.2.3.

6.2.2 Specification of RAM Locations

The module CONFIG contains a two part description of RAM of the
target system. The symbol LOWRAM must be equated to the low
boundary of RAM that is to be managed by Rx. The first part of
the RAM description declares static data structures that are not
to be included in the heap. This area begins at LOWRAM and
contains interrupt and XOP workspaces. Any user-declared static
(not COMMON) storage (e.g., LREX workspace) should be declared
following these structures but preceding the symbol LOWHP which
marks the end of the static data area and the beginning of the
dynamically allocated heap area. The "RAM table" is a structure
that contains the addresses and sizes of regions of RAM that are
to be wused for heap allocation. Each region is described by a
pair of values, the first of which is the size of the segment and
the second is its beginning address; a size of zero terminates
the 1list. (Regions must be in ascending order and must not
overlap.) The RAM table for a target system with RAM from Hex

gdgresses >4000 to 9FFF, and >F000 to >FFFF looks like Figure

6-8



RAMTB DATA >6000,>4000 4000 - 9FFF
DATA >1000,>F000 F000 - FFFF
DATA 0

) L

FIGURE 6-2. SIMPLE RAM TABLE

Figure 6-3 shows how this RAM table would be incorporated into
CONFIG so the static area would be allocated from the first RAM
region. The expression ">A000-LOWHP" calculates the space
remaining in the first region after the static areas are
allocated.

LOWRAM EQU >4000

DORG LOWRAM
*

IWPSO0 BSS 32

LOWHP EQU $

RAMTB DATA >A000-LOWHP, LOWHP
DATA >1000,>F000
DATA 0

FIGURE 6-3. USE OF RAM TABLE IN CONFIG MODULE.

COMMON regions of memory may be used by more than one routine to
eliminate the passing of certain parameters. This may be done
using the CSEG assembler directive. Common regions must exist in
regions of RAM outside the Rx system heap to ensure the executive
cannot allocate the region for other purposes. Therefore, CONFIG
must not include any memory to be used as a common region; the
value equated to COMMON should be changed so that memory for the
common is not included in the RAM table, and the 1link control
file (described in 6.5.1) should be changed to specify to specify
the beginning of RAM.

Use of COMMON is not generally regarded as good programming
practice, and should be avoided if possible. :

6.2.3 Specification of the I/O Subsystem Directory

In his GHOSTS$ procedure, the user has the option to include a.

call to Procedure D$INIT, causing automatic initialization of I/0
subsystems at power-up. The specific subsystems to be initialized
must be enumerated in the I/0 directory table in CONFIG. Each

6-9




subsystem is described by a pair of values. The first is the
address of the service directory that defines the entry points of
those routines that provide subsystem services. The second value
is the address of the "port constants" associated with the
subsystem. The directory is terminated by a value of zero where a
service directory address is expected.

Figure 6-4 depicts a sample I/O subsystem directory that will
cause two subsystems to Dbe initialized automatically. A
record-oriented terminal subsystem 1is specified by its service
directory (T02$SD) and port constants (T02$PC). The interprocess

communication subsystem is specified by its service directory
(IPC$SD) and a NIL (0) port constants address.

IODIR EQU §
*

REF T028SD,T02SPC
DATA T02$SD,T02$PC

REF IPC$SD
DATA IPCS$SD,0

DATA 0 LIST TERMINATOR

FIGURE 6-4. I/O SUBSYSTEM DIRECTORY.

6.2.4 Example CONFIG Module
As an example consider the following system:
1) RAM in locations >B000 to >BFFF and >D000 to >DFFF

2) ROM in locations >0000 to >9FFF, >C000 to >CFFF and
>FF00 to >FFFF

3) a user-defined restart routine. This routine
requires a workspace (BGN$WP) and has an entry point
(BGNSPC) .

4) 1/0 subsystems for terminal communication and
interprocess communication.

Figure 6-5 shows how the pertinent portions of CONFIG might be
specified for this system. _ _




LOWRAM EQU >B000 LOW BOUNDARY OF RAM
IWPS0 BSsS 32

BADSWP BSS 32
*

BGNSWP BSS 32
*

LOWHP EQU §
* .

DEF S$RESTA
SRESTA DATA RESTA

SRAMTB DATA RAMTB

S$IODIR DATA IODIR

RAMTB DATA >C000-LOWHP, LOWHP
DATA >1000,>D000 ‘ .
DATA O LIST TERMINATOR

IODIR EQU §$
*

REF TO02$SD,T02SPC
DATA T02$SD,T02$PC

REF IPCSSD
DATA IPC$SD,0

DATA 0 LIST TERMINATOR

RESTA DATA BGNS$SWP,BGNS$PC
REF BGNSPC

FIGURE 6-5. EXAMPLE CONFIG MODULE.

The RAM table of Figure 6-5 reflects the two RAM memory segments.
Notice that the ROM memory segment addresses have no effect on
CONFIG. The workspace BGNSWP has been declared in the static area
of CONFIG, and the word $RESTA now points to the transfer vector
labeled RESTA.

The variable length and user-defined structures have been added
at the end of the ROM section of CONFIG. This is done to enable
changes to be made to these structures without requiring that
ROMs be reconstructed that reference the CONFIG module.

e




6.3 CUSTOMIZING THE "GHOST" PROCEDURE

Rx begins execution in a program called BOOTS$ that "bootstraps"
the system into execution by initializing system data structures
and then invoking the "ghost" procedure GHOSTS. The ghost
procedure is obligated to START the user”s SYSTEM module; it may
be customized to perform application-dependent initialization.
Figure 6-6 lists the default version of GHOST$ that is supplied
" with the Executive Run Time Support. (Procedure DS$INIT is part of
the File I/O subsystem components. This procedure will only need
to be called if File I/O subsystems will be supported. (Reference
the Device 1Independent File I/O Package manual, MP386 for
detailed information). Procedure MSGS$INIT is called to identify
the pathname of the device that is to receive the output of the
standard procedure MESSAGE. The "start systm$" statement
activates the user”s system since all system modules are given
the entry point SYSTMS.

For most applications the default version of GHOSTS will be
adequate. If certain initialization must be performed for a class
of applications (e.g. special devices that must be initialized),
it is appropriate that it be performed in the ghost procedure so
it need not be repeated in each application. If it is known that
I/0 will not be used, then a slight saving in code space can be
made by removing the calls to D$INIT and MSGSINIT in GHOSTS. (If
the I/O support 1library is not specified at link edit time,
DSINIT and MSGSINIT will be resolved by "dummy"™ routines that
perform no processing.)

6-12

U,




IDT “GHOST$ 08/01/80 11:18:47

DEF GHOSTS

REF DSINIT

REF MSGSIN

REF SYSTMS$

REF CALLS

REF EXITSP
* LC HEX CHAR

PSEG !
GHOSTS EQU §$ j
PR EQU R7 ‘
CODE EQU RS8
LF EQU R9 ; .
SP EQU RI10 |
LO EQU

$
DATA L0014-L0
DATA L0036-L0

DATA >0008 0004 0008 .o
DATA >0008 0006 0008 .o
DATA >4F50 000A  4FS0 OP
‘DATA >4552 . 000Cc 4552 ER
DATA >4154 000E 4154 AT
DATA >4F52 0010 4F52 OR
D0012 DpATA >0008 0012 0008 .o
* LC  WORD(S)
L0014 EQU $
DATA CALLS$,DSINIT 0014
MOV CODE,Rl5 0018 c3cs
AI R15,>000A 001a 022F 000A
MOV LF,R12 00lE C309
MOV *R154,*R12+ 0020 CF3F -
MOV *R15+,*R12+ 0022 CF3F
MOV *R15+4,*R12+ 0024 CF3F
MOV *R15+4,*R12+ 0026 CF3F
MOV LF,*SP+ 0028 CES89
MOV @Dp0012-L0 (CODE) , *SP+ 002A CEAS8 0012
DATA CALLS$,MSGSIN 002E
DATA CALLS$,SYSTMS 0032
L0036 EQU $
B @EXITSP 0036 0460 0000
END

FIGURE 6-6. DEFAULT VERSION OF PROCEDURE GHOSTS.

6.4 ASSEMBLY LANGUAGE INTERRUPT HANDLERS
Rx permits the user to handle interrupts in an efficient manner

using Procedure ASSEMBLYEVENT. ASSEMBLYEVENT allows a specific
assembly language routine to be given control when a particular

6-13



interrupt occurs. This routine has two methods by which to
relinquish control after the interrupt has been handled. One
causes the interrupt process to be resumed; the other causes the
interrupt to be propagated to a routine in the Rx environment.
This capability is designed to permit assembly language handlers
to accumulate data associated with high frequency interrupts
until it is appropriate to invoke a higher level handler. Using
ASSEMBLYEVENT, interrupts can be handled in approximately 1/5 the
amount of time normally required for interrupt handling (see
Section 4, 4.3.7 for detailed information on Procedure
ASSEMBlyevent) .

6.5 LINKING THE APPLICATION SYSTEM

The Link Editor enables the user to 1link together only the
modules which are required by the target application.

6.5.1 Control File Creation

A link control file must be created to input to the Link Editor,
which specifies what application routines to link together and
the location of the Rx Run-Time Support library. The 1link edit
control file is created utilizing the source editor of the user”s
development system.

A sample 1link control file is included with each different
version of Rx. This file specifies the file names of the user”s
application and CONFIG modules, and the file names of the Rx
Kernel and libraries.

These must be specified in the following order:

1) INCLUDE The kernel RXKERN for normal processing, or
DBKERN to use the standalone debugger.

2) INCLUDE the optional . stream-lined ESPRCSO process
termination routine, if desired. This routine provides
faster process termination at the expense of less
thorough resource reclamation.

3) INCLUDE the user routines and CONFIG module in any
order desired. If a customized version of GHOSTS is to
be used, it should also be included here.

4) FIND the standard Rx routines needed in RX1OBJ.

5) FIND the channel routines needed in CHNOBJ. If
channels are not being used, this step may be left out
for a slightly faster link edit.

6) FIND the clock management routines needed in CLKOBJ.

As with the channel routines this step may be left out
if the clock is not being used. faster link edit.

6-14




7) Finally, FIND the Rx support routines in RX20BJ. This
must be the last step, because the standard routines,
channel routines, and clock routines reference symbols

defined in this library.

A template for the Link Edit Control File

Detailed information

SYMT
TASK
INCLUDE
INCLUDE
’
INCLUDE
INCLUDE
FIND
FIND
FIND
FIND
END

In this example,
information.

<system
<device
<device

<device
<device
<device
<device
<device
<device

name>
or volume>.RXKERN
or volume>.EPRCSO

or volume>.<config>

regarding the format and instructions used
can be found in the user manuals for the respective link editors.

or volume>.<user app>

or volume>.RX10BJ
or volume>.CHNOBJ
or volume>.CLKOBJ
or volume>.RX20BJ

is presented below.

Name of load module

or DBKERN

Optional ES$PRCS routine,
use only with RXKERN
Configuration Module

As many as needed
Standard Routines
Channel Library

Clock Library

Optional Routines

e w0 w0

N0 W N0 w0 WO wo

FIGURE 6-7. SAMPLE LINK EDIT CONTROL FILE.

<device or volume> stands for whatever pathname

is needed to accesss the specified file. A sample
link control file, as well as a description of the files included
in the release, is shipped with each copy of Rx.

If the Rx Standalone Debugger will be
Control file shoul

SYMT

TASK <system

INCLUDE <device or
INCLUDE <device or
INCLUDE <device or

FIND <device or
FIND <device or
FIND <device or
FIND <device or
END

used, the user“s Link

d include a reference to the DBKERN module
rather than the RXKERN module. as shown in Figure 6-8.

name>

volume>.DBKERN
volume>.<config>
volume>.<user app>
volume>.RX10BJ
volume>.CHNOBJ
volume>.CLKOBJ
volume>.RX20BJ

VO wmp N0 wg N0 W w0 w

Name of load module
or RXKERN
Configuration Module
As many as needed
Standard Routines
Channel Library
Clock Library
Optional Routines

FIGURE 6-8. SAMPLE ﬁINK EDIT CONTROL FILE
(USING STANDALONE DEBUGGER) . !

6-15



Often, the target system will contain a combination of RAM .and
ROM. All data and common segments within the application must be
in RAM. The link edit control file must specify to the 1linkage
editor where to place the different types of program segments.
This can be accomplished through the use of the PROGRAM and DATA
link editor commands. The PROGRAM command is used to specify
where all procedure segments (designated via PSEG assembler
directives) are to be placed. This command should be used to
specify the starting address of ROM. The DATA command is used to
specify where all data segments (designated via the DSEG
assembler directive) are to be placed. This command should be
used to specify the starting address of RAM. All common segments
(designated by the CSEG assembler directive)are automatically
placed following ay data segments, unless specifically located
using the COMMON command. Figure 6-9 illustrates the use of
PROGRAM and DATA commands in which ROM starts at address zero and
the value >MMMM is the start address of RAM.

SYMT

TASK <system name> Name of load module
PROGRAM >0 Starting address of ROM
DATA >mmmm Starting address of RAM

INCLUDE <device or volume>.RXKERN
INCLUDE <device or volume>.<config>
INCLUDE <device or volume>.<user app>

or DBKERN
Configuration Module
As many as needed

WO N V0 N N N N N N N

FIND <device or volume>.RX10BJ Standard Routines
FIND <device or volume>.CHNOBJ Channel Library
FIND <device or volume>.CLKOBJ Clock Library
FIND <device or volume>.RX20BJ Optional Routines
END :

FIGURE 6-9. SAMPLE LINK EDIT CONTROL FILE
(SPECIFYING RAM/ROM PARTITIONING) .

6.5.2 Link Editor Execution

Once the 1link edit control file has been created using the
development system”s text edit facilities, the link editor must
be executed using the link control file as input. The link editor
will include the application modules along with only those
modules of Rx necessary for the application system to operate.

There should be no unresolved references 1listed in the 1link
editor 1listing output. If unresolved external references are
detected by the link editor, the 1link control file should be
rexamined to insure that all the user modules and the correct Rx
libraries have been supplied.



6.6 TARGET (CONFIGURED) Rx APPLICATION

Upon completion of Link Editor execution, the specified output
file will contain the final target application object module.
Figure 6-10 reiterates all the steps necessary to produce an Rx
load module. The module can now be tested and debugged using
either the Rx Standalone Debugger or AMPL. These debugging
methods are described in the following two sections.

. ASSEMBLY
LANGUAGE
APPLICATION'

N

CREATE
LINK CONTROL
FILE

N

[

EXECUTE
LINK
EDITOR

N

LOAD
MODULE

FIGURE 6-10. PRODUCING AN Rx LOAD MODULE.

6-17

e B A g S S e e < vty




(>




P R BT FRIG I SN N

IERPRSNIEE % VI







SECTION 7

THE Rx STANDALONE DEBUGGER

7.1 GENERAL
This section describes the purpose, capabilities, and use of the
standalone debugger supplied with Rx. The standalone debugger is
designed to be included in the Rx target system software to aid in
testing and locating errors. After the software has been debugged, the
standalone debugger software can be removed from the system to reduce
code size, or it can remain to assist in field testing or other
software maintenance. :
‘The standalone debugger supplies the fundamental tools necessary to
debug concurrent and non-concurrent software which may be either ROM
or RAM resident. Its commands and messages are very simple in order to
con<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>