

IMPORTANT NOTICES

Texas Instruments reserves the tight to make changes at any time to
improve design and to supply the best posible product for the spectrum
of users.

Microprocessor Pascal System (TMSW753P or TMSW754P) is copyrighted by
Texas Instruments Incorporated, and is sole property thereof. use of
this product is defined by the license agreement sc-1 between the
customer and Texas Instruments. The software may not be reproduced in
any form without written permission of Texas Instruments. However,
application run-time packages generated from the Microprocessor Pascal
System may be reproduced for resale exclusively by the customer
purchasing the Microprocessor Pascal System.

All manuals associated with Microprocessor Pascal (MP351) are printed
in the United States of America and are copyrighted by Texas
Instruments Incorporated, all rights reserved. No part of these
publications may be reproduced in any manner, including storage in a
retrieval system or transmittal via electronic means, or other
reproduction in any form or by any method (electronic, mechanical,
photocopying, recording, or otherwise) without prior written
permission of Texas Instruments Incorporated.

Information contained in these publications is believed to be accurate
and reliable. However, responsibility is neither assumed for its use,
nor for any infringement of patents or rights that may result from its
use. No license is granted by implication or otherwise under any
patent or patent right of Texas Instruments or others.

COPYRIGHT, TEXAS INSTRUMENTS INCORPORATED, 1981

TABLE OF CONTENTS

SECTION 1: OVERVIEW

GENERAL •
PRODUCT FEATURES/BENEFITS

1.1
1.2
1.3
1.4
1. 5
1.6

RX AS THE DRIVER OF COMPONENT SOFTWARE
AN RX APPLICATION •
RX I/O SUBSYSTEMS
REFERENCE MATERIALS

SECTION 2: RX CONCEPTS

2.1 GENERAL •
2.2 SOFTWARE ORGANIZATION
2.2.1
2.2.2
2.2.3
2.2.4

System
Program Process
Process
Procedure

2.2.5 Function
2.3 CONCURRENCY

•

2.3.1 Priority Scheduling
2.3.2 Semaphores
2.3.3 Interrupts
2.4 MEMORY ORGANIZATION
2.4.1 Heap
2.4.2 Stack
2.5 SYSTEM INITIALIZATION •
2.6 SUMMARY

•

SECTION 3: RX CONVENTIONS

3.1 GENERAL
3.2 LINKAGE CONVENTIONS
3.2.1
3.2.2

Standard Procedure/Function
Optimized Linkage •

3.2.3 Process Linkage
3.3 SOURCE MODULE FORMAT
3.3.1 Standard Procedure
3.3.2 Standard Function
3.3.3 Process

•

i

Linkage

• •

•

•

•

..

1-1
1-2
1-2
1-2
1-3
1-4

2-1
2-1
2-2
2-3
2-3
2-3
2-4
2-4
2-5
2-7
2-8
2-10
2-10
2-11
2-12
2-13

3-1
3-1
3-1
3-5
3-5
3-7
3-8
3-9
3-9

3.3.4 Optimized Procedure ••
3.3.5 Optimized Function
3.4 REGISTER USAGE
3.5 EXAMPLE PROGRAM •••••

.

.

SECTION 4: RX ROUTINES

3-12
3-12
3-12
3-14

4 .1 GENERAL • 4-1
4.2 LINKAGE ROUTINES • 4-1
4.2.l Procedure CALL$$ • • • • • • • • • • • • • 4-2
4.2.2 Procedure EXIT$P • • • • • • • • • • • • • • • • • • • 4-2
4.2.3 Procedure EXIT$n • 4-2
4.2.4 Procedure EXIT$0 • • • • • • • • • • • • • • • • • 4-2
4.2.5 Procedure S$PRCS • • • • • • • • • • • • • • • 4-3
4.2.6 Procedure E$PRCS • • • • • • • • • • • • • • • • • • • 4-3
4.3 SEMAPHORE ROUTINES • • • • • • • • • • • • • • • • • • • 4-4
4.3.1 Procedure INITSEmaphore • • • • • • • • • • • • • • 4-4
4.3.2 Procedure SIGNAL • • • • • • • • • • • • • 4-4
4.3.3 Procedure WAIT • 4-5
4.3.4 Procedure TERMSEmaphore • • • • • • • • • • • • 4-5
4.3.5 Procedure CSIGNAL • • • • • • • • • • • • • • • • • 4-6
4.3.6 Procedure CWAIT • 4-6
4.3.7 Procedure WAITSignal • • • • • • • • • • • • • • • • • • • 4-7
4.3.8 Function SEMASlate • • • • • • • • • • • • • • • • 4-8
4.3.9 Function SEMAVAlue • • • • • • • • • • • • • • 4-9
4.4 INTERRUPT ROUTINE • • • • • • • • • • • • • • • • 4-9
4.4.1 Procedure EXTERNalevent • • • • • • • • • • • • • • 4-9
4.4.2 Procedure NOEXTErnalevent • • • • • • • • • • • • • • • • • 4-10
4.4.3 Procedure ALTEXTernalevent • • • • • • • • 4-11
4.4.4 Procedure NOALTExternalevent • • • • • • • • • • • • • • • 4-12
4.4.5 Function INTLEVel • • • • • • • • • • • • • • • • • • • 4-12
4.4.6 Procedure MASK • • • • • • • • • • • • • • 4-12
4.4.7 Procedure SETMASK • • • • • • • • • • • • ••••• 4-13
4.4.8 Procedure UNMASK • • • • • • • • • • • • • • • • • 4-13
4.4.9 Procedure INT$PC • • • • • • • • • • • • • • • • • 4-14
4. 4 .10 Procedure ASSEMBLyevent • • • • . • • • • • 4-14
4.4.11 Procedure NOASSEmblyevent • • • • • • • • • • • • • • • 4-15
4.5 PROCESSOR MANAGEMENT ROUTIINES • • • • • • • • • • • • • • • 4-16
4.5.1 Procedure SETPRiority • • . • • . • • • • • • • 4-16
4.5.2 Procedure SWAP • • • • • • • • • • • • • . • • • • • • 4-16
4.6 MEMORY MANAGEMENT PROCEDURE • • • • • • • 4-17
4.6.1 Procedure NEW$ • • • • . •.•..••.••.••• 4-17
4.6.2 Procedure FREE$. • • • • • • • • . • • . • • . 4-18
4. 7 CLOCK MANAGEMENT ROUTINES • • • • • • • . • • • • • • 4-18
4.7.1 Process CLKINT • . • • • • • . • • • . •••• 4-18
4.7.2 Procedure TWAIT. • • • • • • • • • • • . • •• 4-19
4.7.3 Procedure DELAY • • • • • • • • • • • • • • • • 4-20
4.8 ERROR REPORTING PROCEDURE EXCEPtion • • • • • • • 4-20

ii

SECTION 5: CHANNEL ROUTINES

5.1 GENERAL • • • • • • • • • • • • • • • • • • . • • • • 5-1
5.2 CHANNEL ROUTINE DESCRIPTIONS • • • • • • • • • • • • • • 5-3
5.2.l Procedure C$ACKN • • • • • • • • • • • • • • • • • 5-3
5.2.2 Procedure C$ALLO • • • • • • • • • • • • • • • • • • • 5-3
5.2.3 Procedure C$RECEive • 5-4
5.2.4 Procedure C$WAI • 5-4
5.2.5 Procedure C$DISPose • • • •• • • • • • • • • • 5-4
5.2.6 Procedure C$INIT • • • • • • • • • • • • • 5-4
5.2.7 Procedure C$NOTI • • • • • • • • • • • • • • • • • • • 5-5
5.2.8 Procedure C$RECEive • • • • • • • • • • 5-5
5.2.9 ProcedureC$SEND • • • • • • • • • • • • • • • • • • 5-5
5.2.10 Procedure C$TERM • • • • • • • • • • • • • • • • • • • 5-6
5.2.11 Procedure C$WAIT • 5-6
5.2.12 Function C$$HEA • • • • • • • • • • • • • • • 5-6
5.2.13 Procedure C$$MSG • • • • • • • • • • • • • • • • • • • 5-6

SECTION 6: CONFIGURING TARGET SYSTEMS FOR OBJECT CODE EXECUTION

6.1 GENERAL ••••••••••••••••••••••••••• 6-1
6.2 CUSTOMIZING THE CONFIG MODULE • • • • 6-1
6.2.1 Specification of System Parameters • • • • • • • • • • 6-7
6.2.2 Specification of RAM Locations • • • • • • • • • • 6-8
6.2.3 Specification of the I/O Subsystem • • • • • • 6-9
6.2.4 Example CONFIG Module • • • • • • • • • • • • • • • 6-10
6.3 CUSTOMIZING THE nGHOSTn PROCEDURE •••••••••• • • 6-12
6.4 ASSEMBLY LANGUAGE INTERRUPT HANDLERS • • • • • • • • • • 6-13
6.5 LINKING THE APPLICATION SYSTEM • • • • • • • • • 6-14
6.5.1 Control File Creation • • • • • • • • • • • • • • • • • 6-14
6.5.2 Link Editor Execution • • • • • • • • • • • • • 6-16
6.6 TARGET (CONFIGURED) RX APPLICATION ••••••••• • • • • 6-17

SECTION 7: THE RX STANDALONE DEBUGGER

7 .• 1 GENERAL • • • • • • • • • • • • • • • • • • •
7.2 CONFIGURING A TARGET SYSTEM
7.2.1 Link Control File ••••••
7.2.2 Data Terminal ••••••••

.
7.3 USING THE DEBUGGER •••••••••••••
7.3.1 Getting Started •••••••• . . .

iii

.

7-1
7-2
7-2
7-2
7-3
7-3

__ .,_ ·-- - . - _ .. :_,,~:.__ ·.--·

7.3.2 Commands •••••••••••••••••••••••
7.3.2.1 Process Creation Trap (SC) • • • • • • • ••
7.3.2.2 Trace Process Scheduling (TP) •••••••••••
7. 3. 2. 3 Inspect/Modify /Dump Memory (IM) • • • • • • •
7.3.2.4 Inspect/Modify CRU (IC) • • • • • • • •••••••
7.3.2.5 Inspect/Modify Registers (IR) • • • • •••••
7.3.2.6 Process Record Dump (PD) ••••••••••
7.3.2.7 Display all Processes (OAP) ••••••••••
7.3.2.8 Assign Process Breakpoint • • • • • •••••
7.3.2.9 Delete Process Breakpoint (DBP) •••••••••••••
7.3.2.10 Set Breakpoint (SB) • • • • • • •••••
7.3.2.11 Clear Breakpoint (CB) • • • • • • ••
7.3.2.12 Simulate Interupt (SIMI) •••••••••
7.3.2.13 Return To User Context (GO) ••••••

. .
7.3.2.14 Instruction Step (IS) • • • • • •••••••••••

SECTION 8: DEBUGGING THE TARGET APPLICATION WITH AMPL

8. 1 GENERA.L • • • • • • • 1 • • • • • • • • • • • • • • •

8. 2 . AMPL PROCEDURES •
8.3 INSTRUCTION SIMULATION PROCEDURES ••••••••••••• •
8.3.1 Procedure INIT ••••••••••••••••••• •
8.3.2 Procedure HELP • • • • ••••••••••••
S.3.3 Procedure SIMI • • • • • • • • •••••••
8.4 BREAKPOINT PROCEDURES • • • • • •••• •
8.4.1 Procedure SB •••••••••••••••••
8. 4. 2 Procedure CB • . • • • • • • • • • • • • •
8.4.3 Procedure GO • • • • • • • . • • • • • • • ••• •
8.4.4 Procedure SC • • • • • • • • • • • • •
8.4.5 Procedure TP • . • • . • ••.•••••••••.
8.5 REALTIME EXECUTIVE PROCEDURES • • • • • • • • • • • •
8.5.1 Procedure HP • • • • • • • • • • • • • • • • •
8. 5. 2 Procedure RP •
8. 5. 3 Procedure ABP •
8.5.4 Procedure DBP • • • • • • • . ••••• •
8. 5. 5 Procedure PD • • • • • . • • • • •
8.5.6 Procedure SEMA •••.••.•••••.•.••• · • • •
8.5.7 Procedure SM ••.•...•..••••••.• • • • · •
8. 5. 8 Procedure MM • • • • . • . • • • • . . • • • • • •
8.5.9 Single-step Instruction(s) (IS) . . • • • • . . .••
8.5.10 Procedure SP • • • • • . ••.••••• ·
8.5.11 Procedure SF . • • . • • • • . · · • • • · • ·
8.5.12 Procedure SH •••• ~ . • • •••• · • • · • • • • •
8.5.13 Procedure HALT • • . . . • . •••...•••. •
8.6 AMPL WALK-THROUGH DEBUGGING SESSION •.••••••••••
8.6.1 Getting Ready • • • • • • • • • • • • . •• • • · • •
8.6.2 The Debug Session • • • • • • • • • • • • ••••

iv

'7-4
7-4
7-5
7-5
7-6
7-6
7-6
7-7
7-7
7-7
7-8
7-8
7-8
7-8
7-8

8-1
8-1
8-2
8-2
8-3
8-4
8-4
8-4
8-5
8-5
8-6
8-6
8-6
8-6
8-7
8-7
8-8
8-8
8-8
8-9
8-9
8-10
8-10
8-11
8-11
8-11
8-12
8-12
8-12

APPENDICES

APPENDIX A. RX Data Structures A-1
APPENDIX B. RX Errors Codes, Error Recovery, and

Exception Handling • . B-1
APPENDIX c. RX Routine Templates C-1
APPENDIX D. RX Size Breakdown D-1
APPENDIX E. RXDEMO: Assembler Listing and Link Map E-1

LIST OF ILLUSTRATIONS

Figure 1-1. Example Of Rx Control Of A Factory System 1-3
Figure 2-1. The Nesting Concept 2-2
Figure 2-2. Scheduling Policy 2-6
Figure 2-3. Interrupt Handlers • 2-9
Figure 2-4. Stack and Heap Allocations In RX 2-12
Figure 2-5. RX System Initialization 2-13
Figure 3-1. Standard Stack Nesting 3-2
Figure 3-1. Optimized Stack Nesting 3-6
Figure 5-1. Process Communication Via Channels 5-1
Figure 6-1. CONFIG Module . 6-3
Figure 6-2. Simple RAM Table 6-9
Figure 6-3. Use Of RAM Table In CONFIG Module 6-9
Figure 6-4. I/O'Subsystem Directory 6-10
Figure 6-5. Example CONFIG Module 6-11
Figure 6-6. Default Version Of Procedue GHOST$ 6-13
Figure 6-7. Sample Link Edit Control File 6-15
Figure 6-8. Sample Link Edit Control File (Using

Stamdalone Debugger) 6-15
Figure 6-9. Sample Link Edit Control File (Specifying

RAM/ROM Partitioning) 6-16
Figure 6-10. Producing An RX Load Module 6-17
Figure 7-1. Link Control File (With Debugger) 7-2

LIST OF TABLES

Table 7-1. Allowabl~ Data Transfer Rates •••••••••• • • 7-3

v

SECTION I

OVERVIEW

1.1 GENERAL

The Realtime Executive (RX) is a standalone executive designed to
support software applications executing on the 9900 family of
microprocessors. The information in this manual is specifically
oriented toward the assembly language user1 the Microprocessor Pascal
System User~s Guide describes the MPP interface to RX.)

A software environment denotes software constructs, routines,
structures and all associated data and related software that perm.it
system operation. The environment normally familiar to the assembly
language programmer supports a single program executing sequential~Y·
This program has the undivided attention of the central processor1 it
runs from beginning to end without interruption. RX, however, supports
multiprogramming. Independent sites of execution (processes) exist
within a single environment and share a single processor. E--:ecution of
one process may be interrupted by the executive when another, more
urgent, process is ready to execute. There are various constructs

· within RX which support multiprogramming and automatically participate
\, in helping the user application to run.

RX can be thought of as a nconfigurablen executive1 a ndo it yourselfn
kit that allows the user to build an executive to fit user application
needs by allowing selection of only those modules needed to execute
the task at hand. The user can also take advantage of a variety of
data structures and routines supplied by the executive which are
usually not available to the low-level language application
programmer. These routines support concurrency and reentrancy in code.

This section introduces the user to the Realtime Executive, its
features and benefits. ·section 2 discusses the RX concepts that are
necessary for the user to understand in order to use the product,
while Section 3 builds on that information to enable the user to write
an RX routine. in addition, an example, nDEMOPGMn is offered to give
the RX user some early nhands-onn experience. Standard RX routines are
listed and explained in Section 4, with pertinent examples, while RX
Channel routines are detailed in Section 5. The configuration of the
target system and creation of an object code load module are covered
in Section 6. Target debugging explanations are provided for both the
RX Standalone Debugger (Section 7), and the AMPL Debugger (Section 8).
The codes and remedial actions, routine templates, size breakdown, and
assembler listing and link map for the Demo Program.

1-1

··.\:'
,_ ~ - ' . '

1.2 PRODUCT FEATURES

Short descriptions of the features available in RX are presented
below:

o Processor Management (including concurrent process
execution with preemptive priority scheduling)

o Interrupt processing and control

o Memory Management
management)

(including Stack

o Inter-process communication capability

o Real-time clock servicing

o Semaphore creation/management

o Dynamic process creation

o Operator communications input/output

o Debugger support

and Heap

o Configurability (to conserve memory requirements)

o Reentrancy in code

o Compatibility
independent

with Texas
I/O Subsystems

Instruments""

1. 3 RX AS THE DRIVER OF COMPONENT SOFTWARE

device

RX is associated with the Texas Instruments"" 9900 family of
component software. This family consists of a variety of
individual software products that can be separately purchased and
linked to the user""s application.

Compatible with the spectrum of Texas Instruments"" component
software, RX acts like a software bus, "driving" the application.
Various component pieces such as Texas Instruments"" Math Package,
File Manager, and Data Communications packages can be added and
used in the application. (Because of the modularity of the
routines comprising these products, the load module produced to
run on a target will include only those "pieces" of the component
that are required by the application~)

1.4 AN RX APPLICATION

Although several concepts will be new to some users, a simple
example can be used to illustrate the benefits of RX. Consider a

1-2

---\
.)

(

.
factory that needs a system to control both a manufacturing
process and an accounting department. This factory has a
TM990/101M CPU with a TM990/206 memory board and a TM990/305 I/O
board. Within the factory, many machines must be controlled
simultaneously, some interrelated and some not (see Figure 1-1).
A standard operating system approach to control these many
machines would be hard to implement and inefficient to use. A
better way to approach the problem of control involves writing a
separate piece of code for every machine process, each executing
as required. Communication between these processes is necessary
to ensure that each separate step associated with the manufacture
of a product and the keeping of factory books is carried out
within the correct time frame. A modular executive that supports
multiprogramming will ease such software design. RX supplies all
of these executive features.

ACCOUNTS i ~
PROCESS!

RECEIVABLE\ ~ (LEVEL 2)

ACCOU-fll!'~~ I MANU· , --
(LEVEL 2) , __., ------ i... FACTURING \.

SYSTEM l -· ·-.. -, --·---·

I+- TEST I
(LEVEL 2)

------ --- ----· .. ---

(LEVE-L1li
i.._ (LEVEL f/>) .. (LEVEL 1)'.- ..

ACCOUNTS\ r-+ l>ACKA-GE\ PAYABLE H
(LEVEL 2) (LEVEL 2)1

-···-

FIGURE 1-1. EXAMPLE OF RX CONTROL OF A FACTORY SYSTEM.

1.5 RX I/O SUBSYSTEMS

RX supports Texas Instruments~ File I/O Decoder which provides
the means for the user to initiate and execute device-independent
(file) I/O.

1-3

Use of the I/O subsystem enables communication with and
manipulation of data to and from various locations regardless of
the media on which the data resides. ·

For more detailed information regarding file I/O, refer to the
Device Independent File I/O User~s Manual, MP386.

1.6 REFERENCE MATERIALS

the following Texas Instruments publications were used in the
development of this manual, and provide additional information
relative to RX and to related TI software.

THE SOFTWARE DEVELOPMENT HANDBOOK, MPA29

THE FILE MANAGER USER~S MANUAL, MMP355

MODEL 990 COMPUTER TMS9900 MICROPROCESSOR ASSEMBLY LANGUAGE
PROGRAMMER~S GUIDE, 943441-9701

AMPL MICROPROCESSOR PROTOTYPING LABORATORY OPERATION GUIDE,
946275-970l*A

9900 FMILY SYSTEMS DESIGN AND DATA BOOK, LCC4400, 97049-118-NI

THE MICROPROCESSOR PASCAL SYSTEM USER~S MANUAL, MP351

DEVICE INDEPENDENT FILE I/O USER~S MANUAL, MP386

1-4

.·.··~'\

... I

,.,,,.--- SECTION 2

RX CONCEPTS

2.1 GENERAL

Understanding the concepts used and supported by RX is a necessary
prerequisite for understanding the product itself. RX software
organization is discussed in subsection 2.2 and descriptions of
procedures, functions, processes and systems in the RX environment are
given. Subsection 2.3 will deal with the concept of concurrency,
priority scheduling, semaphores and interrupts. Memory organization
using stacks and heaps and a discussion of system initialization.
Understanding the RX terms and concepts in this section is necessary
in order to understand RX module construction. Templates are provided
in Appendix c.

2.2 SOFTWARE ORGANIZATION

In RX, user applications are built using a collection of processes
nested at different levels in a system. These levels are referred to
as "lexical levels" and indicate to RX the level at which a process is
embedded'within the system. Figure 2-1 depicts this concept:

As the figure indicates, the system is found at lexical level O, with
• those processes that the system starts residing at level 1. Any

process called in the course of these (Level 1) processes~ execution
will be assigned level 2 or lower. A process that starts any other
process is referred to as that process~ lexical "parent"I and the
called process is referred to as the "spawn". These processes are
composed of functional un~ts referred to as procedures and functions.

2-1

.- _ .. ·-·~ - - . . .·- ,_
~ .

. -··- .

2. 2.1 System

SYSTEM EXAM,LE: ·· -----------

PROGRAM PROS1;

PROCESS PROC1;

BEGIN IPROCESS BODYI
END;

BEGIN (PROGRAM BODYI
END;

LEVEL 1

LEYEL2 .

LEYELO

PROGRAM PROS2; -------- LEVEL 1

PROCESS PROC2;

PROCESS PROc2A:

IEGIN (PROCESS BODYI
END;

BEGIN !PROCESS BODYI
END:

LEVEL2

LEVEL3

PROCESS PROC3; - LEVEL 2

BEGIN CPROCESS BODYI
END;

BEGIN IPROGRAM BODYI
END:

BEGIN !SYSTEM BODYI
END;

FIGURE 2-1. -THE NESTING CONCEPT.

.. ,·.-·

The System, designated by the SYSTM$ label, is a special case of a
process within which all other modules are containedi it is the
outermost level of executable statements in the Rx environment. The
System usually starts the other processes contained within it. Only
one System can exist in the RX environment at any one time, and all
global data is defined within it. Occupying lexical level O, those
processes nested in the System reside at levels 1, 2, 3, and so on.
When started, the· system is allocated all available memory (or less if
it asks for less in the heapsize parameter to S$PRCS) which becomes
the system heap (subsection 2.4.2). It is from this parent heap that
subsequent allocations of stack and heap, when needed, are made to
starting processes·. The System, then, may be thought of as the process
in which execution begins.

2-2

i
/

2.2.2 Program Process

A special case of process, an Rx program resides only at lexical level
1, and therefore cannot call another program. A program's lexical
parent is always the System.

2.2.3 Process

Residing at lexical level 1 or lower, a process is a collection of
procedures, functions, and data which perform an independent operation
concurrently with the scheduling and execution of other processes.
Analogous to a ntaskn in IBM's OS370, it is independently scheduled
and may interact with other processes or with the executive as
necessary during execution •. Note that processes may be created by
other processes.

An RX process is defined in terms of its three component parts: a) the
process code, b) the process data, and c) the process record.
Processes differ from procedures or functions in that they are
independently scheduled by the executive, and are executed in a
concurrent fashion. A process will execute until it reaches a point
where either required data is needed, a higher priority process
becomes ready for execution, or the process simply completes. When
control is switched from a process, the current state of the process
is nsavedn in the associated process record.

The process record itself is an area of memory dynamically allocated
from the parent heap (subsection 2.4.1) when the process is started
(i.e., performs a call to S$PRCS), and will be located wherever memory
is available when it is started. In addition to the status of the
current process, the record also contains the process priority, a
pointer to the stack and other data required to schedule and execute
the process. (Reference Appendix A for the structure of a process
record.)

The executive uses the information contained in the process record to
schedule. For 'ready' processes (subsection 2.3), a queue of pointers
to process records is maintained. The priority of a process determines
its place in this queue. (Subsection 2.3.1 discusses priori~ies and
priority scheduling of processes.)

2.2.4 Procedure

Functional units of code can be isolated into separate modules called
procedures. Similar to a subroutine in FORTRAN, PASCAL or BASIC,
procedu~.e·s are computer software design constructs used to a_ssociate
sequences of low-level processing steps by the higher-level function
they perform. A procedure is included in a process code section by
virtue of being invoked (called) by a single instruction from either

/;- the process code section, or some other procedure which has been
_____- called by the process code section. When execution of the procedure

2-3

~ ·. . ·: -

has completed, control returns to the calling routine at the
instruction following the call.

When a procedure is called, an area of memory referred to as a nstack
framen is assigned for that procedure~s workspace from the nstack" of
the calling process. (See subsection 2.4 for more information on
stacks and stack frames.) The size of the assigned memory is a
function of the value specified by the stackframe size set in the
beginning section of the procedure template (refer to Appendix c,
subsection c.3).

2.2.S Function

Functions are composed of a set of instructions that, like procedures,
can be called by a single instruction in a process. Procedures and
functions are similar with the exception that a function will
generally return a result upon its completion. (An RX function can be
likened to the FORTRAN function.)

2.3 CONCURRENCY

The RX environment supports the execution of several processes
concurrently. Although it appears to the user that these processes are
executing at the same time, execution is actually moving from one to
another as CPU time is shared on a process priority basis. The
execution of several processes in the same system is termed
nmultiprogrammingn. Each process in the RX environment is in one of
three states:

1) Active

2) Ready to execute

3) Suspended (blocked) and waiting for a condition in the
system to change (an event to occur) before it can
become ready to execute.

The executing process resides in the active queue. Processes that
are ready to execute reside in a ready (or scheduling) queue.
Processes that are suspended and waiting for an event to occur
are placed in another queue associated with the event until
notified that an event has taken place. This notification will
come via information supplied by a "semiphore" (simply thought of
as an event flag). Semaphores are signaled of events by other
processes or interrupts. These three features (prioritized
scheduling, 'semaphores, and interrupts) are tools used by RX to
support concurrency. They are described in more detail in the
following ~ubsections.

2-4

(

2.3.l Priority Scheduling

The Rx scheduling policy determines the assignment of the
processor to one of the ready processes. Ready processes are
inserted into the ready queue and scheduled for execution
according to priority.

A process~ priority is represented by a user-assigned numeric
value. The greatest urgency is represented by O; the least by
32767, which is reserved for the IDLE process. (IDLE is active
only when all other processes in the system are blocked.)
Priority values 0 to 15 indicate device processes associated with
interrupts. Interrupts occur due to a change in some "real world"
condition or because they are programmed to occur. Priority
values 16 TO 32766 represent non-device processes.

A scheduling decision is made by RX each time a suspended process
becomes ready or the currently executing process terminates or
becomes suspended. (An explanation of process readiness follows
this discussion of scheduling.) When the active process
terminates execution (or becomes suspended) the first process in
the ready queue becomes the active process. Because the ready
queue is ordered by priority, the most urgent process that is
ready is given the processor. When a suspended process becomes
ready, it is inserted in the ready queue based on its priority.
The newly-ready process preempts the currently active process
(i.e., is placed in it~s place in the active queue) if it is.more
urgent. Non-device processes that become ready are placed in the
queue behind processes of equal priority. This ensures that when
two processes have equal priority, the process that has been
ready the longest executes first. Device processes are placed in
front of other processes of equal priority including the active
process. Figure 2-2 illustrates the working of this scheduling
policy.

The first column contains the active process. The ready queue is
represented as a horizontal series of boxes behind the active
process. Each process (box) is labeled with a letter and a
priority number. The first box in the ready queue is the active
process. Time moves vertically from top to bottom. Comments to
the right of each queue describe the action performed.

2-5

time active comments
'·

"' A: 16 I G!:!!] C:lDLE A ia active \

D becomes ready; is inserted \
A:l6 I ~ Gill C:IDLE I in the ready queue

D: 16 I ~ I
A blocks and is suspended;

C:IDLE D becomes active

E(a device process) is inserted

I .~ B I C:IDLE I in the ready queue and preenpts
E:S D

F (a device process with

F:7 ~ B G:3 C:IDLE I higher priority than E'a}
preempts E and becomes
active.

E:S B ~ (C:IDLE (' blocloo ""' lo ,.,,...,,,~
E becomes active

E blocks and is suspended;

D:l6 I G!il ~ C:IDLE J A becomu ready ,·
D is the active proces&, /

FIGURE 2-2. SCHEDULING POLICY.

The execution of RX scheduling policy displayed in Figure 2-2
results in process nBn never becoming active. In fact, B will
never become active unless all other processes in queue with
greater urgency become blocked or terminate execution. A process
of higher urgency that becomes ready will always interrupt the
(currently) active process. Once the more urgent process
terminates (or becomes blocked) the previously active process
will resume execution (unless another higher priority process
become ready). This npreemptive scheduling with resumptionn is
designed for event-driven systems in which the event is some
real-world occurrence that demands the immediate attention of the
processor.

Up to this point, the discussion has been concerned with the
management of processes that are ready for execution. However,
processes may become suspended or blocked because of a condition
in the system. When another process signals that the condition
has changed, the waiting process can become ready. The mechanics
of this process synchronization are described in the next
section.

2-6

"~

.··.)

2.3.2 SEMAPHORES

The semaphore is the fundamental mechanism for synchronization of
processes via Rx, and can be thought of as representing some
event on which processes synchronize. A process which is
dependent on the occurence of an event can perform a WAIT
operation to ensure that the event has -Occurred before continuing
execution. If the event has already occurred, the process
executes; if not, the process is suspended in that semaphore's
queue until the event does occur. A SIGNAL operation performed on
the associated semaphore allows a process to signal the occurence
of an event. If some process is waiting for the event, it is made
ready for execution by removing it from that semaphore's queue
and inserted into the ready (or 'scheduling') queue. If no
process is waiting, the occurrence of the event is recorded in
the semaphore until a WAIT operation occurs for that event.

The semaphores of Rx can be thought of as ncountingn semaphores
in that an occurence of an event is never lost, even if no
process is waiting when the event occurs; a count is kept in the
semaphore of all events that occurred (by SIGNAL) but were not
received (by WAIT). (Reference Section 4, 4.2.2 and 4.2.3 for
further informatio on SIGNAL and WAIT.)

Rx defines semaphores as structures composed of three elements:

1) A non-negative counter of unserviced events

2) A queue (possibly empty) of suspended processes. In
this queue, processes are made ready on a first-in
first-out (FIFO) basis

3) A level specifying the interrupt levels that this
semaphore may be associated with.

A semaphore is operated on by several procedures, the most
important of which are WAIT and SIGNAL. These operations are
implemented as routines, but are executed as though they were
single machine instructions. Until these operations have
completed, nothing can access the semaphore, the queues, or the
operations themselves. This is assured when the interrupt mask is
set to zero upon entry to the routines, and reset to its previous
state upon exit.

WAIT decrements the counter; if the counter is zero, .the
currently active process is suspended (the process is moved.-from
the active queue to the semaphore queue).

SIGNAL increments the counter if the semaphore queue is not
empty, the first process in the queue (which will always be the
process that has been in the queue the longest) is activated by

2-7

m~ving the first process from the semaphore queue to the ready
queue.

When semaphores are used to ensure exclusive access to two or
more resources, extreme caution must be exercised to prevent a
condition known as "deadlock". This takes place when a situation
is created in which two or more processes are suspended, awaiting
a condition that cannot happen because there is no active process
to cause the needed event to occur.

For example, if two simultaneously executing processes (A and B)
both require exclusive access to resources (X and Y), the
following sequence can result:

Incorrect (deadlock) Correct

A gets x, A requests Y A requests x, then Y

B gets y, B requests X B requests x, then Y

In the above incorrect example, neither A nor B will ever resume
execution, as A will be waiting for Y (which B has) and B will be
waiting for X (which A has). The safest way to prevent such a
situation is for all processes to request resources in the same
order. In the above correct example, the X resource is used as a
"lock": if a process can allocate X it is guaranteed to find the
rest of the resources available.

2.3.3 Interrupts

Interrupts are hardware-signalled events, usually associated with
system peripheral or process monitoring devices. With RX,
processes may be specified to service interrupts. These processes
must have a priority greater than or equal to the interrupt level
which they will service. Level 0 denotes the highest priority:
the RESET interrupt: all other interrupt level or device process
priorities must be between 1 and 15.

There are several RX routines that are used to associate
semaphores with hardware interrupts. The primary two being
Procedure EXTERNalevent and Procedure ALTEXTernalevent. (Section
4, 4.3 lists and describes these procedures.)

The CPU has a priority ranking system to resolve conflicts
between simultaneous interrupts, and a level mask to disable
lower priority interrupts. A process waits on an interrupt ·by·•
waiting on a semaphore associated with the interrupt. (The
process will have a priority level number less than or equal to
the interrupt to be serviced.) The process is suspended until an
interrupt at the appropriate level occurs. When the interrupt
occurs, the process is scheduled to service the interrupt as the

2-8

··~ . "-.)

j

CPU performs a context switch to the interrupt
The interrupt mask of the process prohibits
from this or any lower priority device while
being serviced.

service routine.
further interrupts
the interrupt is

There are three methods by which the user can write an interrupt
handler. The first uses the RX procedure EXTERNalevent to assign
a semaphore to an interrupt. The secorid uses Procedure
ASSEMBlyevent (See Section 4) to assign a dedicated assembly
language interrupt handler. The last method entails writing a
routine external to the RX environment.

PROCESS !PRIORITY< INTERRUPT LEVELi

START)
1 PC-

INITIALIZE
OEVICE

COOE
OUTSIDE

R•

\ I
INITIALIZE /

-INTERRUPT
SEMAl'HOR E · I
_}_1_~11!~.I_ I R"TWP

I

I
I

ASSOCIATE
SEMAPHORE

WITH INTERRUPT
__ IEXTERNI -

I
I

J I
1

·-WAIT FOR I
INTERRUPT

IWAITISEMAll I INTERRuPT
TRAPS

I I
-
0

I
I

RESET
INTEFIAUPT I WP

I PC

I
,EAFOAM INTERRUPT v

I
I

I
PROCESSING

-
.·

J
40

DEDICATED INTERRUPT

Ra METHOD HANDLE A

FIGURE 2-3. INTERRUPT HANDLERS

2-9

The RX method shown in Figure 2-3 is useful to the user because <'!)
it is flexible: the interrupt is reset and can be associated with
ano.ther semaphore to perform its function over and over again.

In the interest of speed, however, the second method illustrated
in 2-3 using a dedicated interrupt handler can be chosen. This
involves the user wr.iting a piece of code completely outside the
RX environment that will process the interrupt.

In the 9900 Family CPU, when the interrupt occurs, a context
switch is performed. The contents of the current workspace (WP)
and program counter (PC) registers are saved and then loaded with
the address of the new WP and PC which are fetched from the
appropriate interrupt vector, and stored. (This identifies the
location of the workspace assigned to the interrupt service
routine.) Wh~n the context switch is completed, processing
resumes with the first instruction of the interrupt service
routine (the user~s interrupt handler code). Processing will
continue in this mode until an RTWP instruction is encountered,
and a reverse context switch returns control to the previous
program in· RX.

Although the dedicated interrupt method is faster than the RX
method, there is a drawback: the workspace areas created for the
context must reside in memory space (RAM) not known to RX, and
therefore cannot be reclaimed for use by RX. In addition,
interrupts must be masked during execution of the interrupt
handler. LIMI 0 as the first instruction in the interupt handler
results in the required masking of interrupts.

2.4 MEMORY ORGANIZATION

The following concepts deal with the utilization of memory in the
RX environment. Memory is allocated and used to hold variables
and workspaces for each process, procedure and function through
the use of the "stack" and "heap" concepts which are described in
the following subsections. It may be said that RX "owns" the
memory allocated to it and "loans" it to processes as they need
it, for as long as they need it.

2.4.1 Heap

The system heap is all available RAM memory allocated to the
system when it is started. It is from this heap that all future
memory allocations to starting processes will come. Each process
that calls another process, procedure or function will be the
"parent" that allocates memory for use by the routines it
"spawns" or calls. A process, then, is allocated heap and stack
from its lexical parent~s heap. (Note that heap should be
allocated to a process if that process will be starting any other
to ensure there will be enough memory for the called process~

2-10

(~

stack.}

A process# heap is an area of memory allocated in packets which
may be disposed of and used again. These packets are used as
storage for dynamically allocated variables. When required, a
call to NEW$ by the executing process requests a packet of memory
of a certain size and sets a pointer to this packet. When the
process no longer needs this space, a call to FREE$ returns the
packet to the "pool" where it can be used again.

2.4.2 Stack

This is a region of memory associated with a process. A separate
stack region is allocated to each instance of a process when that
process is started (via S$PRCS}. Although the "top" and "bottom"
of a stack are fixed, the use of the area inside is dynamic.
Space is allocated to procedures and functions by Rx from both
ends, working toward the middle, since both local variables and
workspace areas are required.

Every invocation of a procedure or function requires a workspace
for the called routine. Space in which to store local variables
(i.e., variables that will be used by the called routine}, as
well as other data is also needed. This space is called the stack
frame. Memory is allocated from the top down for workspaces, and
from the bottom up for stack frames; a stack overflow would
indicate that the two have met in the middle. (Reference Appendix
A for further information on stacks and stack frames.}

In Figure 2-4, the concepts of stack and heap are depicted,
beginning with the initial allocation of system heap and
progressing through the starting of the lexical level 1 process
which, in turn, calls a subordinate process. (Note the
allocations of stack and heap by the lexical parents.}

Note that processes must have a stack region but are not required
to have a heap region unless they start another process or use
dynamically allocated heap packets.

2-11

LEXICAL LE\(_ELI

1 I

FIGURE 2-4. STACK AND·HEAP ALLOCATIONS IN RX.

2.5 SYSTEM INITIALIZATION

System initialization is accomplished by a hardware interrupt
which is reserved for the processor hardware RESET. The reset
vector co~tained in low memory points to the RXINIT routine.
RXINIT declares the default system crash routine (which consists
of an IDLE instruction), and starts the BOOT$ program. BOOT$
initializes system data structures, starts the IDLE program, and
then calls the GHOST procedure. GHOST$, in turn, starts the
user~s system module at the SYSTM$ designation. (Note that GHOST$
may be customized to perform application-independent
initialization (refer to 6.3 for further information).

The IDLE process runs when all other processes are "asleep"
(i.e., suspended or waiting). With a priority of 32767 (the
lowest possible priority), IDLE is actuated when all other
processes of priority 32766 or less are suspended or when there
are no other processes.

2-12

- ":'_·
- ·_._)
. -'-,_,

(

USER I NI"[~~~~J ____ !;Y~T~$ ___ --·-- I

7 INITIALIZE MEMORY\
-···----------

-~;~;~ USER-~O~E-1
~ AND DEVICES 1----t- SET.UP Rx

~ ENVIRONMENT EX~<;UT~~_!i~TH !_N_~!' ...
Ll_S~R INl}"IA_!..g_~~-""- START IDLE

• -· ------ ·--·---·---

FIGURE 2-5. Rx SYSTEM INITIALIZATION.

2.6 SUMMARY

The software tools discussed in this section provide interprocess
scheduling and coordination of system resources in RX. While
simple in terms of construct, these tools provide a
sophistication in capability that enables a higher programmer
productivity using a realtime programming environment. Detailed
information on how to write RX applications using the concepts
described follows in Section III.

2-13

-~

· ..)

SECTION 3

rue CONVENTIONS

·3 .1 GENERAL

When writing software to be used with rue, certain conventions must be
followed when interaction is required between the application software
and the executive environment. These conventions apply to the way in
which the application code is structured, how routines are called, and
which registers may be used. The following sections detail these
conventions as they apply to rue procedures, functions, processes, and
systems.

When using the rue routine linkage mechanisms described in 3.2, the
routines must be structured according to the proper module format
(i.e., procedure, function, process). These linkage and module format
conventions give the code certain properties which increase the
reliability and flexibility of the software. Linkage conventions
produce code which is reentrant. Reentrant procedures may be executing
within more than one process at a time without erroneous results. By
using the same portion of code to do two or more concurrent tasks,
memory space is conserved. The standard linkage conventions also
produce code which is recursive, allowing the procedure to call
itself. This property can be very useful when solving certain types of
complex problems.

3.2 LINKAGE CONVENTIONS

There are two types of linkage supported within rue: standard and
optimized procedure/function linkage. The standard linkage provides a
modular approach to writing these routines. It allows the calling
procedure to know nothing about the called procedure except the
arguments passed between them (no registers must be saved, etc.). The
optimized linkage provides a faster linkage mechanism for routines
which will not call any other routines or need any local storage.

3.2.1 Standard Procedure/Function Linkage

The standard procedure/function linkage supports parameter passing,
local storage, reentrancy, and recursion. It achieves these by using
the stack data structure illustrated in Figure 3-1. In this stack,
stack frames grow from the bottom toward high memory while workspaces
grow from the top toward low memory. The stack region is allocated
when the process is created. A stack overflow error occurs when there
is not enough stack for another procedure call (the stack frames and

3-1.

workspaces overlap). The first workspace is used by the process. Its
stack pointer (RlO)

CALLING ROUTINE

----------------> ----------------- <--PROCESS STACK BASE

previous
stack
frames

------R9(LF)--> -----------------

I I I

parent
stack
frame

.CALLED ROUTINE

---RlO(SP)--> ----------------- <--R9(LF)------­
passed

NEXT

parameters

local
storage

unused
stack

WORKSPACE--> - - - - - - - - -

<--RlO(SP)----

called
procedure .. s

workspace

WORKSPACE
<--POINTER I I

WORKSPACE
POINTER---->

RlO

calling
procedure .. s I

workspace
-----------------1

previous
workspaces

process .. s
workspace

I

<--PROCESS STACK LIMIT

FIGURE 3-1. STANDARD STACK NESTING.

3-2

points to the base of the process stack, while the local frame pointer
(R9) points to the global stack frame which is a separate memory
packet. 'In the example, a ·routine has been called from another routine
nested within a process. The calling routines stack pointer (RlO) and
local frame pointer (R9) are shown on the left. These pointers, other
system pointers, and the routine~s general registers are contained in
the calling routine~s workspace. The called routine has a new
workspace allocated to it which is pointed to by the workpsace pointer
shown on the right. Registers R9 and RlO in this workspace point to
its local frame and current top-of-stack. Both the parameters and
local storage are referenced using R9 (LF) as the base register. This
type of routine nesting repeats for as many routines as are called. As
routines return to their caller, their stack frame and workspace are
returned to the unused portion of the stack.

The stack frame for a standard procedure/function is determined by the
routine prologue described in Sections 3.3.l and 3.3.2. Basically, the
routine prologue specifies how many parameters the called routine
expects the calling routine to have pushed and how much local storage
the called routine needs. Both the parameters and local storage are
referenced using R9(LF) as the base register.

A routine with standard linkage has two data areas that it may access
during execution. It may use any of the general registers (described
in Section 3.4) and the local storage space of its stack frame. The
general registers should be used for frequently accessed data or if
only a few words of storage are needed. If the general registers do
not provide enough data space, then either local storage or the stack
must be used. Local storage is an area reserved in the stack
immediately above the passed parameters that remains allocated until
the routine returns. Therefore, this space should be used for data
which will be accessed during nested routine calls. When a routine is
called, there must be enough unused stack to allow for the standard
linkage memory requirements. These requirements include the new
workspace, the passed parameters, and any local storage. When enough
stack does not exist, a stack overflow error occurs. The process stack
size is contained in the literals field of the process~ code.

When a process is invoked, its stack is allocated with the desired
size, and its workspace is defined and initialized. Its process record
is also created, the first field of which is contains a pointer to the
first· 32 bytes of unused workspace stack which resides just before
this new process~s initialized workspace. This pointer is called the
"next workspace" pointer and will be used as the workspace pointer of
any routine called from the process module. Whenever a routine is
called, the linkage handler decrements "next workspace" by 32 bytes to
be prepared for the next call. As a result of this algorithm, the
unused stack region will always be at least 32 bytes long, and it will
always be possible to use this amount of stack without overflow
occurring. For example, 16 ne-word parameters could be pushed onto
the stack without danger of over-writing the current workspace. If the
parameters intrude into what will become the called routine~s

3-3

workspace, they may be modified as linkage handler executes out of the
new workspace; however stack overflow will be detected before the
called routine can make use of the erroneous parameters. CAUT~ON: if
more parameters are pushed apd there is no additional unused stack
other than the next workspace, the contents of the allocated
workspaces of previously called routines may be destroyed, and
catastrophic errors may occur which are impossible to recover from and
difficult to debug. If a routine will pass more than 32 bytes of
parameters, the following code should inserted into the prologue of
that routine to make a pre-emptive stack overflow check:

BL - @STK$CK
DATA "maximum number of bytes to be pushed"

The "next workspace" field of the process record in incremented by 32
at exit from a routine to reclaim the space used for its workspace.

To make use of the standard linkage, a routine must be called in the
proper manner. Parameters can be passed in two different ways: by
value and by reference. A value parameter contains the actual value
being passed, while a reference parameter is the address of the
variable. The user should be sure that-a parameter is referenced in a
consistent manner. An example of a call using the standard routine
linkage is as follows:

Code in the calling routine:

...
MOV @PARMl,*RlO+
MOV @PARM2,*Rl0+

MOV @PARMn,*RlO+
DATA CALL$,ROUTIN

PUSH FIRST ARGUMENT
PUSH SECOND ARGUMENT

PUSH (n)th ARGUMENT
CALL ROUTINE ~ROUTIN~

Code in the called routine:

...
MOV *R9, @ARGl
MOV @2(R9) ,@ARG2 ...

SAVE ARGUMENT ONE
SAVE ARGUMENT TWO

MOV @2*n-2(R9) ,@PARMn SAVE ARGUMENT n ...

If any local storage is specified, this storage begins at an address
pointed to by the displacement (2*n) off of R9 and extends for as many
bytes as specified.

Function linkages are similar, and arguments are passed in exactly the
same way. The function result is returned at the end of the stack;
i.e. upon return from the function, the stack pointer RlO points to
the first word of the result, which may be 1 byte, 2 bytes, or 4 bytes
long.

3-4

For detailed examples of subroutine linkage see the routine templates
in Appendix c, and the demonstration program in Appendix E.

The actual linkage functions are performed by the standard RX routine
CALL$$. This external symbol CALL$ is resolved to be the instruction
BLWP *PR which performs a "branch and link workspaces" using the
transfer vector contained in the first two words of the process record
of the active process. As mentioned previously, the first word in the
process record is a pointer to the next workspace. The second word
contains the address of the entry handler, CALL$$. The resulting
action is a branch to CALL$$ and begin executing in the "next
workspace." CALL$$ initializes registers in the new workspace, resets
the next workspace pointer in the process record, and branches to the
code of the called routine.

When the calling routine has completed, it returns via a branch or
branch and link to the exit routine. This routine deallocates the
stack frame and workspace allocated to the execution of the calling
routine.

3.2.2 Optimized Linkage

An alternative to th·e standard routine linkage is the optimized
linkage mechanism. This linkage executes faster than the standard
linkage since it does not perform as many functions: a new workspace
is allocated and initialized for the called routine; local storage,
other than the space needed for passed parameters, is not allocated.
Any routine which was called with the optimized linkage cannot call
other routines.

Figure 3-2 illustrates a process stack after an optimized linkage. The
calling routine~s workspace pointer and registers are shown on the
left, while those of the called routine are shown on the right.

3-5

CALLING ROUTIN

----------------> ----------------- <--PROCESS STACK BASE

previous
stack
frames

------R9 1 LF)--> -----------------

parent
stack
frame

CALLED ROUTINE

---RlO(SP)--> ----------------- <--R9(LF)------­
passed

parameters

(----------------- <--RlO(SP)----

unused
stack

NEXT WORKSPACE
WORKSPACE--> ----------------- <--POINTER

called
procedure~s --------------

WORKSPACE workspace ----------------
POINTER----> -----------------

calling
procedure~s

workspace

previous
workspaces I

-----------------1<--PROCESS

RlO

process~s
works_pace

FIGURE 3-2. OPTIMIZED STACK NESTING·

3-6

STACK LIMIT

The stack frame, eneral
an optimized routine.
frame which is only used
reserved.

registers, and unused stack are available to
Since the optimized linkage produces a stack
for passed parameters, local storage is not

The calling sequence to an optimized routine is identical to the
calling sequence for a standard linkage routine. This similarity
allows the calling routine to call other routines without knowing
whether they are coded for either standard or optimized linkage. When
the MPX linkage routine determines that the called routine is using
the optimized linkage, it initializes workspace registers and branches
directly to the new routine's code. Since a routine with optimized
linkage is not permitted to call other routines, there is no need to
update the "next workspace" pointer in the process record. The called
routine with optimized linkage references the passed parameters in the
same way as the standard linkage routine.

When the optimized routine has completed, it returns to the calling
routine via a return with workspace pointer (RTWP} instruction. Tl)is
takes the saved workspace pointer, program counter, and status from
registers Rl3 through RlS and restores them.

3.2.3 Process Linkage

The process linkage mechanism is very similar in use to the standard
procedure/function linkage. The process is called in an identical
manner; however parameters can only be passed by value. The called
process gets the parameters in an identical manner. However, the
effect on the stack is quite different. The initial code of a process
contains calls to the executive which create a new stack region (along
with a process record and other process data structures) for the new
process to execute from. Once this initial code has executed the
calling procedures stack returns to the state it was in prior to
pushing parameters and calling the process. The new processes' stack
and process record are allocated from the heap region of its calling
process. If the calling process does not have a heap, the stack and
heap are allocated from the system heap.

NOTE: for one process to start another, about 144 bytes of stack space
are required.

3.3 SOURCE MODULE FORMAT

To make use of the RX linkage mechanisms; routines must be formatted
in a certain structure. It is this structure which allows the linkage
mechanism to operate. The basic structure consists of the following
segments within the routine:

3-7

routine
descriptor

literals

routine
prologue

routine
body

routine
epilogue

The routine descriptor contains constants needed by the linkage
routine upon routine entry. The routine prologue contains any code
necessary to start the routine. The routine body is the code which
actually performs the purpose of the routine. The routine epilogue is
the code required to exit the routine. Some routine types do not
require all of these code segments. The different routine formats are
summarized in Appendix c.

3.3.1 Standard Procedure

A standard procedure requires a desriptor with
information:

#00 ------------ <--- Procedure address
prologue Displacement to start of code

(bytes)
~i02 ------------

the

epilogue Displacement to epilogue of routine
(bytes)

i04

following

local Size of local variable portion of local
frame (bytes)

#06
frame size Routine frame size (bytes)

The start offset defines the offset to be added to the procedure
address for the initial procedure program counter. The end offset
defines the offset to be added to the procedure address in case the
procedure is aborted. The local size specifies how mariy bytes should
be allocated from the stack when the procedure is called for use as
local storage. The frame size specifies the total stack frame size
including passed parameters and local storage. Both the local size and

3-8

·~
. }

frame size should be even values.

The prologue of a procedure is usually just a label which is
immediately followed by the procedure~s main body.

The procedure body consists of the assembly language statements
required to achieve the procedure~s desired effect. (This will vary
from procedure to procedure).

The procedure epilogue contains a branch to the RX procedure exit
routine EXIT$P. This routine returns execution to the calling routine.

3.3.2 Standard Function

The standard function format is very similar to the standard procedure
format, the only difference being that the epilogue section of the
function must return the function result. A standard function epilogue
consists of the following:

BL @EXIT$n
DATA mmmm

In this example, "n" is the length of the result in words and "mmmm"
is the displacement into the stack frame in bytes of the result. The
EXIT$n routine returns the function result at the stack pointer of the
calling routine and returns execution to the calling routine.

3.3.3 Process

The standard process format contains a descriptor with the following
information:

#00

#02

#04

#06

start
off set

end

offset
------------0

parameter
size

<--- process address
Offset to beginning of
process prologue (in bytes)

Off set to process
epilogue (in bytes)

.
Zero constant

Size of passed parameters
(in bytes)

The start offset and end offset have the same meaning as for a
procedure or function. The parameter size specifies how many bytes of
parameters that the starting routine has pushed onto the stack. The
zero constant specifies how much local storage should be allocated.
This is always zero because a process is invoked in two steps. The
first phase invokes the process routine as a standard procedure with a

3-9

stack frame just large enough to contain to process~s parameters1 the
"0" in the process descriptor suppresses allocation of local
variables. When the process routine is entered; it calls procedure
5$PRCS to perform the second phase of process invocation by using
constants in the literals section to create the data structures that
permit the new process to become a separate site of execution. In
particular, one of these literals is the total frame size of the
process module. (With this implementation the invoking process need
not have enough stack space to hold the global frame of the new
process.)

The literals segment contains the following:

(1) rout in PSEG
(2) EQU $ Origin Of process

(3) frmsiz DATA >nnnn Total size of stack frame needed for
process body (in bytes)

(4) lexlvl DATA >nnnn Lexical nesting level.
(5) priori Process Priority.
(6) stksiz Size of stack region to be allocated for

process (in words) •
(7) hpsize Size of heap required for process (in

words).

The frame size specifies the process~s global stack frame size. The
lexical level specifies the number of levels that this process is
nested within other processes. The lexical level of a system process
is 0, a orogram process started from the system has a lexical level of
1, a process started from a program has a lexical level of 2, etr.
These lexical levels are not enforced by the system, but are
conventions which the user must follow to allow variable scoping and
communication with other software using the RX Executive.

The process priority specifies the relative urgency of this process
compared to other processes. The lower the numerical priority, the
greater the urgency. The process stack size specifies how many words
of stack will be required for the routines within the process. The
process heap size specifies how many words of heap memory the process
will need. Any user defined constants are stored after the heapsize,
and before the first executable statement.

The prologue of a process body is required to initialize the process
data structures and schedµle the process according to its priority.
The prologue contains the following start up code:

3-10

___ /

pro log EQU
MOV
MOV
MOV
MOV
MOV
DATA

@frmsiz-routin(R8),*Rl0+
@LEXLVL-routin(R8) ,*RlO+
@PRIORI-routin(R8) ,*RlO+
@STKSIZ-routin(R8) ,*RlO+
@HPSIZE-routin(R8),*Rl0+
CALL$,S$PRCS

Push frame size (in bytes)
Push lexical level
Push process priority
Push stack size (in words)
Push heap size (in words)
Call start process

This code passes the necessary parameters from the literals segment to
the process start procedure S$PRCS. All of the parameters do not
necessarily have to be distinct entries in the literals section. The
code can be optimized so that the parameters are shared or omitted
altogether. For example, if a system process with a zero frame size,
priority, stack, and heap size were started, the literals section
could be empty and the prologue optimized.

CLR *RlO+ PASS FRAME SIZE
CLR *RlO+ PASS LEX LEVEL
CLR *RlO+ PASS PRIORITY
CLR *RlO+ PASS STACK SIZE
CLR *RlO+ PASS HEAP SIZE
DATA CALL$ CALL START PROCESS
DATA S$PRCS

The S$PRCS routine concludes the second step of process
initialization. Not only does it allocate and initialize the new
process~s data structures, it also copies the parameters contained in
the temporary stack frame into the new global stack frame and sets the
contents of the new process workspace to begin execution at the first
instruction following the call to S$PRCS. The temporary workspace and
stack frame are then returned to the unused stack of the starting
process.

The epilogue of a process terminates execution of the process
calling the MPX routine E$PRCS to deallocate its resources.
process record and stack region are deallocated immediately;
global stack frame is deallocated after all offspring processes
terminated. The epilogue contains the following termination code:

PUSH LEX LEVEL

by
Its
the

have

MOV @LEXLVL-routin(R8) ,*RlO+
DATA CALL$,E$PRCS
B @EXIT$P

CALL PROCESS TERMINATION ROUTINE
COMPLETE TERMINATION PROCESSING

This code passes the lexical level to the process termination routine
and then branches to the procedure exit routine.

3-11

3.3.4 Optimized Procedure

The optimized routine format is fairly simple. The·· format of an
optimized routine is as follows:·

too <--- Descriptor
negative
parameter

size
t02 ------------ <--- Body

routine
body

------------ <--- Epilogue
RTWP

The descriptor contains only the negative value of the parameter size
(or zero if the routine has no parameters). This non-positive value
indicates to the linkage routine CALL$$ that this routine is in an
optimized format. The actual parameter size can then be easily
computed by negating the value. The routine body contains no prologue.
The epilogue is only a return with workspace pointer (RTWP)
instruction which causes execution to return to the calling routine
when this routine is finished.

3.3.S Optimized Function

An optimized function format is very similar to an optimized procedure
format. The difference is the epilogue which must contain the
following:

REF ...
MOV
BL

EXIT$0

@RESULT,*LF
@EXIT$0

OH, NOT ZERO

SAVE RESULT ON THE STACK
CALL EXIT ROUTINE

The function result is stored in the location pointed to by R9 (LF),
and the EXIT$0 optimized exit routine is called. This routine saves
the status so that it is available to the caller. The calling routine
retrieves the result from the location pointed to by its own stack
pointer (RlO). Note that EXIT$0 only allows one word function results.

3.4 REGISTER USAGE

Rx uses certain registers
workspaces to maintain system
be changed by the application
The following registers may
linkages:

within procedure, function, and process
level pointers. These registers must not
software or erroneous results may occur.
NOT be changed when using optimized

3-12

Rl3 - Old workspace Pointer. This register maintains
a link to the previous routine's workspace.

Rl4 - Old Program Counter. This register maintains a
link to the previous routine's program counter.

When using the standard linkage mechanism, the following
registers are assigned special purposes and may not be altered by
the application software:

R7 - Process Record Pointer. This register contains
the address of the process record for this process.

R8 Code Base. This register contains the address
of this routine and may be used as a base register.

R9 - Local Frame. This register contains the address
of this routine's stack frame which contains passed
parameters and local storage.

RlO Stack Pointer. This register contains this
routine's stack pointer.

Rl5 - Status Register. This register stores the
summary of the results of the processor operation.

The user may, for conyenience, include the following equates in
his programs:

PR
CODE
LF
SP

EQU
•EQU

EQU
EQU

7
8
9
10

The remaining registers RO, Rl, R2, R3, R4, RS, R6, Rll, and Rl2
may be used by the application software. Rll is used by the BL
instruction to hold the return. address, and may be used as such
for subroutine linkage outside of the RX environment. Rl2 is
reserved as the CRU base if any CRU operations are to be
performed.

3.5 EXAMPLE PROGRAM

A portion of the RX demonstration program is included at the end
of this section as an example of an RX program. A complete system
is included in Appendix E.

This routine takes three arguments: (1) the CRU address of a
terminal, (2) a baud rate flag (which is returned by a routine
which sets the baud rate of the terminal), and (3) a pointer to a
message which is terminated by a null character (>00).

3-13

This program loops through the string and calls another routine
TI$COT to print the character on the terminal. TI$COT also takes
three arguments: (1) the CRU address of a terminal, (2) a baud
rate flag (which is returned by a routine which sets the baud
rate of the terminal), and (3) the character to be printed.

3-14

--".

)

/

WAIT IO
'!$LIB
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391
0392
0393
0394
0395
1396
0397
0398
0399
0400
0401
0402
0403
0404

- 0405
(0406

0407
0408
0409
0410
0411
0412
0413
0414
0415
0416
0417
0418
0419
0420
0421
0422
0423
0424

SDSMAC 3.3.0 79.312 09:59:39 THURSDAY, MAY 07, 1981.
WAIT LOOP DRIVEN I/O -- 6/25/80 PAGE 0012

0000
0002
0004

**
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

TI$MSG: OUTPUT A STRING, DELIMITED BY A NULL

PURPOSE: OUTPUT A STRING TO A 9902 PORT. THE STRING
IS COMPOSED OF CONSECUTIVE BYTES POINTED
TO BY THE THIRD ARGUMENT, AND DELIMITED BY
A ZERO BYTE.

CALLING SEQUENCE:
- PUSH CRU ADDRESS OF PORT

PUSH BAUD RATE FLAG FROM TI$SET
PUSH POINTER TO MESSAGE STRING

MOV @<CRU ADDRESS>,*SP+
MOV @<BAUD RATE FLAG>,*SP+
MOV @<PTR TO MSG>,*SP+
DATA CALL$,TI$MSG

INPUTS : PORT: CRU BASE OF OUTPUT PORT
BAUD: BAUD RATE FLAG FROM TI$SET
MSGP: POINTER TO MESSAGE STRING

OUTPUTS: OUTPUT IS SENT TO PORT.

EXCEPTIONS: NONE.

CALLS: TI$COT

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

**
*
* REFERENCES
*

REF CALL$,EXIT$P
REF TI$COT

*
* EQUATES

*
PORTOF EQU
BAUDOF EQU
MSGP EQU
*

>0000
>0002
>00.04

ADDRESS 2
INTEGER 2
POINTER 2

0001 MSGPTR EQU 1
0002 WORD EQU 2

3-15

I

WAITIO SDSMAC 3.3.0 79.312
TI$LIB WAIT LOOP DRIVEN I/O

0426 0126 PSEG
0427 0126~ TI$MSG EQU $
0428 0126 0008 DATA
0429 0128 0024 DATA
0430 012A 0000 DATA
0431 012C 0006 DATA

09:59:39 THURSDAY, MAY 07, 1981.
-- 6/25/80 PAGE 0011,

MSGENT-TI$MSG
MSGEXI-TI$MSG
0
6+0

OFFSET TO EXECUTABLE CODE
OFFSET TO TERMINATION CODE
LOCAL VARIABLE SIZE
LOCAL FRAME SIZE

WAITIO
TI$LIB

0433
0434
0435
0436
0437

SDSMAC 3.3.0 79.312 09:59:39 THURSDAY, MAY 07, 1981.

0438
0439
0440
0441

0442

0443
0444
0445

0446
0447
0448
0449
0450
0451

0452

WAIT LOOP DRIVEN I/O -- 6/25/80 PAGE 0014
012E~ MSGENT EQU $ MSGENT POINT OF PROCESS

012E C069
0130 0004
0132 04C2
0134 DOB!
0136 1309
0138 CEA9
013A 0000
013C CEA9
013E 0002
0140 06C2
0142 CE82
0144 0000
0146 OOAO~
0148 10F4

**
* ---- MAIN BODY OF CODE ---- *
**!

MOV @MSGP(LF) ,MSGPTR GET POINTER TO MESSAGE

CHARLP CLR WORD ZERO BOTH BYTES
MOVB *MSGPTR+,WORD CHR IN HIGH BYTE OF WORD
JEQ MSGEXI YES: QUIT
MOV @PORTOF(LF) ,*SP+ PUSH PORTOF

MOV @BAUDOF(LF),*SP+ PUSH BAUDOF RATE FLAG

SWPB WORD CHR IN LOW BYTE OF WORD
MOV WORD,*SP+ PUSH WORD ON STACK
DATA CALL$,TI$COT SEND CHR

JMP CHARLP
**
* ---- END OF CODE ---- *
**

014A~ MSGEXI EQU $
@EXIT$P

EXIT CODE
014A 0460 B
014C 0000

NO ERRORS,
END

NO WARNINGS

3-16

SECTION 4

RX ROUTINES

4.1 GENERAL

This section describes user-callable routines within the RX executive
package. These routines are intended to perform commonly needed
functions within a software system. Use of these routines will
considerably reduce application software complexity while increasing
its reliability and understandability.

The routines are grouped according to function, and the purpose of
each routine described in detail. The required parameters and calling
sequence are listed along with any possible side effects or errors.

4.2 LINKAGE ROUTINES

The linkage routines are used to call and return from procedures,
functions, and processes.

4.2.1 Procedure CALL$$

This nonstandard procedure performs the necessary linkage for standard
procedures, standard functions, standard processes, optimized
procedures, and optimized function calls. A BLWP vector contained at
the beginning of each process record points to this routine and the
next available workspace. The routine is entered by performing a BLWP
*R7 (R7 points to the current process record). This BLWP instruction.
has been equated to the symbol CALL$.

The first word of the routine descriptor is compared to zero. If it is
zero, an optimized link~ge is assumed and the routine is immediately
entered. If the first word of the desriptor is nonzero, a standard
linkage is performed. The standard linkage includes allocating a
workspace for nested routines, initializing the stack pointer (R10),
allocating local storage, and initializing the local frame pointer
(R9) •

EXAMPLE:

REF routine

DATA CALL$
DATA routine

EXCEPTIONS AND CONDITIONS: A stack overflow error occurs during a

4-1

standard linkage if there is not enough stack remaining to allocate ··~
the new workspace.

4.2.2 Procedure EXIT$P

This nonstandard procedure performs the return from a standard
procedure. The next workspace (for nested routines) is deallocated and
a RTWP is performed to return to the caller~s context.

EXAMPLE:

REF EXIT$P

B @EXIT$P

EXCEPTIONS AND CONDITIONS: None.

4.3.3 Procedure EXIT$n

This nonstandard procedure returns ~n~ words from a standard function.
The next workspace (for nested routines) is deallocated. Then ~n~
words at ~OFFSET~ bytes into the function local frame (R9) are
returned at the caller~s stack pointer (RlO), ~n~ must be either 1, 2,
or 4. Upon return from this routine, the caller~s stack pointer (RlO)
points to the first word of the function result.

EXAMPLE:

REF EXIT$n

BL EXIT$n
DATA nnnn ~OFFSET~ INTO LOCAL FRAME

EXCEPTIONS AND CONDITIONS: The caller~s condition code is set based on
the returned result.

4.2.4 Procedure EXIT$0

This nonstandard procedure returns 1 word from an optimized function.
The next workspace (for nested routines) is deallocated. Then 1 words
at ~OFFSET~ bytes into the function local frame (R9) are returned at
the caller~s stack pointer (Rl0); upon return from this routine, the
caller~s stack pointer (RlO) points to the function result.

4-2

EXAMPLE:

REF EXIT$0

BL EXIT$0
MOV result,*LF

EXCEPTIONS AND CONDITIONS: The caller~s condition code is set based on
the returned result.

4.2.5 · Procedure S$PRCS

This procedure is called by the prologue of a process to initialize
its data structures and start itself. It allocates a process record,
process stack, and routine stack from its parent~s heap and then
initializes all the necessary fields in these structures. The new
process is then inserted into the ready queue according to its
priority.

EXAMPLE:

REF S$PRCS

MOV
MOV
MOV
MOV
MOV
DATA
DATA

@<ga>,*RlO+
@<ga>, *RlO+
@<ga>,*RlO+
@<ga>, *RlO+
@<ga>,*RlO+
CALL$
S$PRCS

PUSH
PUSH
PUSH
PUSH
PUSH

FRAME SIZE IN BYTES
LEXICAL LEVEL
PROCESS PRIORITY
STACK SIZE IN WORDS
HEAP SIZE IN WORDS

EXCEPTIONS AND CONDITIONS: Errors will occur if there is not enough
parent heap to allocate data structures, if the called process does
not have enough stack, or if the lexical level is invalid.

4.2.6 Procedure E$PRCS

This procedure is called by the epilogue of a process to terminate it.

EXAMPLE:

REF E$PRCS

MOV @<ga>,*RlO+
DATA CALL$
DATA E$PRCS

EXCEPTIONS AND CONDITIONS: None.

4-3

PUSH LEXICAL LEVEL

4.3 SEMAPHORE ROUTINES

These procedures synchronize processes on the basis of events.

4.3.1 Procedure INITSEmaphore

This procedure initializes the semaphore SEMA. It allocates three
words from the system heap for the semaphore record and puts the
address of this record at the specified location. Recall that a
semaphore is defined as the address of the semaphore record. It uses
the parameter COUNT as the initial value of the number of unprocessed
(unreceived) SIGNALS to the semaphore. It initializes the semaphore
queue to be empty by setting the queue pointer to zero. It initializes
the semaphore level field to be 32767, the lowest urgency level, so
that while at this level, any process may wait on this semaphore.

EXAMPLE:

REF INITSE

MOV @<ga>,*RlO+

MOV @<ga>,*RlO+
DATA CALL$
DATA INITSE

PUSH ADDRESS WHERE SEMAPHORE 'SEMA'
WILL BE PLACED
PUSH INITIALIZATION 'COUNT'

EXCEPTIONS AND CONDITIONS: This procedure may fail if there is not
enough system heap available. It is illegal to initialize the
semaphore with a negative number.

4.3.2 Procedure SIGNAL

This procedure performs a SIGNAL operation on the semaphore named
SEMA. The semaphore count field of the semaphore record is incremented
by. one, indicating that another event which requires processing has
occurred. If the semaphore count field is still less than or equal to
zero after the· increment, there are process (es) WAITing on the
semaphore, and a scheduling procedure is called. The rescheduled
WAITing process either preempts the calling process or is placed in
the ready queue, according to its priority. If the semaphore count
field is greater than zero after being incremented, the procedure
simply returns to its caller, leaving the semaphore with its one extra
unprocessed (or unreceived) event. If the semaphore count overflows,
the run-time support exception routine is called. ·

4-4

~. !

(

EXAMPLE:

REF SIGNAL

MOV @<ga>,*RlO+
DATA CALL$
DATA SIGNAL

PUSH SEMAPHORE

EXCEPTIONS AND CONDITIONS: An exception occurs if the semaphore counter
overflows or if an illegal semaphore counter is passed.

4.3.3 Procedure WAIT

This procedure causes a WAIT operation to be performed on the
semaphore SEMA. The procedure decrements the semaphore count field of
the semaphore record. If there are unprocessed (unreceived) SIGNALS to
the semaphore, the procedure simply returns to the calling process.
If, however, there are no unprocessed SIGNALs, the process becomes
suspended on the semaphore SEMA and is placed in the semaphore queue
behind any other WAITing processes. The procedure also checks that the
priority (contained in the priority field of the process record} is
numerically less than the semaphore priority level (contained in the
semaphore level field of the semaphore record}. This ensures that if
the semaphore is ever associated with an interrupt level, any
processes which are suspended on it are of sufficient urgency to
handle the interrupf immediately. (If the semaphore was initialized by
INITSE, its priority field contains 32767 so that any process may wait
on it.}

EXAMPLE:

REF WAIT

MOV @<ga>,*RlO+
DATA CALL$
DATA WAIT

PUSH SEMAPHORE

EXCEPTIONS AND CONDITIONS: An exception occurs if a process attempts
to become suspended on a semaphore when the process priority is
numerically greater than the semaphore level (i.e., it is not urgent
enough to WAIT on that semaphore). An exception will also occur if an
illegal semaphore is passed.

4.3.4 Procedure TERMSEmaphore

This procedure is used to terminate a semaphore when it is no longer
to be used. IF there are no WAITing processes (i.e., the semaphore
count field is not a negative integer} the procedure passes the
address of the semaphore to the routine HP$FRE which reclaims the
memory allocated to the semaphore into the system heap.

4-5

,-\
. I

EXAMPLE: · ... /

REF TERMSE

MOV @<ga>,*RlO+
DATA CALL$
DATA TERMSE

PUSH ADDRESS OF SEMAPHORE ~SEMA~

EXCEPTIONS AND CONDITIONS: An exception will occur if there are
WAITing processes on the semaphore that is being terminated or if the
semaphore is illegal.

4.3.5 Procedure CSIGNAl

This procedure performs a conditional SIGNAL operation on the
semaphore SEMA., It first checks the validity of the semaphore, then
sets the value of WAITER to false, then masks all interrupts and
checks to see if any processes are WAITing on the semaphore SEMA. It
does this by looking at the semaphore count field • If the semaphore
count is less than zero (there are WAITing processes), the parameter
WAITER is set true and the procedure branches to the SIGNAL procedure.
If there are no WAITing processes, the procedure returns with WAITER
set to false.

EXAMPLE:

REF

MOV
MOV
DATA
DATA

CSIGNA

@<ga>,*RlO+
@<ga>,*RlO+
CALL$
CSIGNA

PUSH SEMAPHORE ~SEMA~
PUSH ADDRESS OF ~WAITER~

EXCEPTIONS AND CONDITIONS: An exception occurs when the semaphore
is illegal.

4.3.6 Procedure CWAIT

This procedure performs a conditional WAIT operation on the semaphore
SEMA. The procedure first checks the validity of the semaphore, then
masks interrupts, and then tests the semaphore counter. If the
semaphore counter is less than or equal to zero (i.e., there are no
unprocessed or unreceived SIGNALs}, control simply returns to the
caller. If unprocessed SIGNALS exist, the semaphore counter is
decremented by one, just as if a WAIT operation had been performed
under similar circumstances. The parameter WAITER is set true if there
was at least one unprocessed SIGNAL on the semaphore, and false if
there were no unprocessed SIGNALs.

4-6

EXAMPLE:

REF CWAIT

MOV
MOV
DATA
DATA

@<ga>,*RlO+
@<ga>,*RlO+
CALL$
CWAIT

PUSH SEMAPHORE 'SEMA'
PUSH ADDRESS OF 'WAITER'

EXCEPTIONS AND CONDITIONS: Because this procedure never results in
suspension of the calling process on the semaphore, the procedure does
not check the process priority; however, an invalid semaphore will be
detected.

4.3.7 Procedure WAITSignal

This procedure performs a WAIT operation on the semaphore WAITFOR and
a SIGNAL operation on the semaphore SIGNALTHE, in a single indivisible
step. This procedure ensures that both operations are performed at
once, which cannot be done by performing a SIGNAL followed by a WAIT
or vice versa. In the first case, the SIGNAL might cause another
process to preempt the current process before it does the WAIT; in the
second, the process might become suspended when it does the WAIT
before it can do the SIGNAL.

WAITSignal first checks the validity of the semaphore, then masks all
interrupts. Next, WAITSignal decrements the semaphore counter of the
WAITFOR semaphore. This is the essential part of the WAIT operation.
If this action leaves the semaphore count greater than or equal to
zero, (i.e., will not cause the process to become suspended), a signal
operation is performed on the SIGNALTHE semaphore (without using
another workspace). Control returns to the calling process if no
process is waiting on the semaphore.

If a decrement to the semaphore count will cause suspension of the
calling process, the routine $WAIT is executed. $WAIT performs a
variety of functions. It verifies that the process has sufficient
urgency to wait on the semaphore (i.e., that the process priority is
numerically less than the semaphore level). It sets the semaphore
pointer field in the process record to point to the semaphore on which
the process is suspended. It places the process on the semaphore
queue, stores the workspace pointer and becomes ready to perform the
context switch.

Having completed the WAIT operation, but before the context switch is
performed, WAITSIGNAL performs an operation similar to SIGNAL on the
SIGNALTHE semaphore; it increments the semaphore' counter and checks to
see that it does not overflow. If there are suspended processes on the
semaphore, the oldest is taken off the semaphore queue and rescheduled
(according to its priority) in the same fashion as the procedure
SIGNAL. If the process is an interrupt handler, it will be placed in
the active queue as long as it is of equal or numerically lower

4-7

priority (i.e., equal or higher urgency) to the present head of the '.-~
queue. If the rescheduled process is not put in the active queue, it /
is put on the queue before the last process of the same priority.

Finally, the context switch is performed and the process on the head
of the ready queue (which may be the rescheduled process) becomes the
currently executing process.

EXAMPLE:

REF WAITS!

MOV @<ga>,*RlO+
MOV @<ga>,*RlO+
DATA CALL$
DATA WAITS!

PUSH SEMAPHORE 'WAITFOR'
PUSH SEMAPHORE 'SIGNALTHE'

EXCEPTION AND CONDITIONS: All the exceptions that occur under SIGNAL
and WAIT; incorrect priority of a process attempting to WAIT on the
semaphore WAITFOR, overflow of the semaphore counter SEMOVR in the
semaphore SIGNALTHE, and an illegal semaphore.

4.3.8 Function SEMASTate

This function returns the state of the semaphore, which can be
O(AWAITED), !(EMPTY), or 2(SIGNALED). It first initializes the return
value to O(AWAITED). It then inspects the semaphore counter field of
the semaphore record. If this is found to be less than zero,
O(AWAITED) is the correct value to be returned. If the semaphore count
field equals zero, then the returned value is !(EMPTY). If the
semaphore count is greater than zero, then the returned value is
2(SIGNALED).

NOTE: The value returned accurately reflects the state of the
semaphore at the time the function was called, but the state could
change immediately thereafter.

EXAMPLE:

REF SEMAST

MOV
DATA
DATA
MOV

@<ga>,*RlO+
CALL$
SEMAST
*Rl0,@<ga>

PUSH SEMAPHORE 'SEMA'

POP STATE

EXCEPTIONS AND CONDITIONS: None.

4-8

(
\

4.3.9 Function SEMAVAlue

This function simply returns the value in the semaphore count field of
the semaphore record. A positive integer value indicates the number of
unprocessed (unreceived) SIGNALs to the semaphore. A negative integer
value indicates the number of processes WAITing on the semaphore. A
zero value indicates that there are neither unreceived SIGNALS nor
WAITing processes.

EXAMPLE:

REF SEMAVA

MOV @<ga>,*RlO+ PUSH SEMAPHORE 'SEMA'
DATA CALL$
DATA SEMAVA
MOV *Rl0,@<ga> POP SEMAPHORE VALUE

•
EXCEPTIONS AND CONDITIONS: None.

4.4 INTERRUPT ROUTINES

The routines listed in this subsection (with the possible exception of
Procedure ASSEMBLYEVENT and Procedure NOASSEMBLYEVENT), are used to
associate semaphores with hardware interrupts and perform necessary
functions within the interrupt service code.

When an interrupt occurs, the interrupt handling procedure INT$PC
searches for processes to handle the interrupt. INT$PC first looks for
an assembly language event then for any process WAITing on the
semaphore that has been designated as the primary receiver of
interrupts at that level by use of the EXTERNalevent procedure. If
either:

1) There is no semaphore assigned to that interrupt level as
a primary receiver, or

2) There are no processes WAITing on the semaphore which has
been assigned as the primary receiver of interrupts at
that level,

INT$PC looks for a secondary receiver of interrupts by inspecting
the semaphore associated with that level by use of the
ALTEXTernalevent procedure. If no processes are found waiting,
the system will crash.

Only one primary receiver and one secondary receiver are allowed
to exist at a time, at any particular interrupt level.

4.4.1 Procedure EXTERNalevent

4-9

This procedure designates the semaphore SEMA to be the primary
interrupt handler at a particular level of interrupts specified
by the parameter LEVEL. $LVLCK is called to ensure that the
interrupt level is in the range 1 to 15. LOWER$ is called to
determine if the semaphore is associated with an external event
and if the process(es) WAITing on the semaphore are of
sufficiently high urgency to handle an interrupt at the level
specified by LEVEL. LOWER$ also sets the level of the semaphore
to that of the interrupt if it is associated with an interrupt
handler.

LOWERLevel is called a second time to adjust the semaphore level
field of the semaphore record of any semaphore that was
previously allocated as the primary receiver of interrupts at the
level specified by LEVEL. It lowers the urgency level to either
the level at which this semaphore is attached, or to 32767 (the
lowest possible level).

Because only one semaphore may be attached to a given interrupt
level as the primary receiver at any one time, this procedure
effectively does a NOEXTErnalevent at the level specified by
LEVEL and then attaches a new primary interrupt handler at this
level.

EXAMPLE:

REF EXTERN

MOV
MOV
DATA
DATA

@<ga>,*RlO+
@<ga>,*RlO+
CALL$
EXTERN

PUSH SEMAPHORE ~SEMA~
PUSH LEVEL (INTEGER)

EXCEPTIONS AND CONDITIONS:

1) The interrupt level is invalid, i.e., outside the range 0-15.

2) Processes which are already waiting on the semaphore are
unable to handle that interrupt level.

3) The interrupt level is not allocated a dedicated workspace.

4) An illegal semaphore is detected.

4.4.2 Procedure NOEXTErnalevent

This procedure detaches the semaphore which has been designated
as the primary receiver of interrupts at the level specified in the
parameter LEVEL. In its place, the "No-event" semaphore, NOEVT is
attached at this level. If no primary receiver semaphore is attached
to this level, the procedure has no effect. The detached semaphore (if

4-10

)

any) has its level adjus~ed as required by the procedure LOWER$.

EXAMPLE:

REF NOEXTE

MOV @<ga>,*RlO+
DATA CALL$
DATA NOEXTE

PUSH LEVEL (INTEGER)

EXCEPTIONS AND CONDITIONS: An exception will occur if the interrupt
level is outside the range 1-15.

4.4.3 Procedure ALTEXTernalevent

This procedure designates the semaphore SEMA to be the secondary
receiver of interrupts at the level specified by the parameter
LEVEL. The interrupt level must be in the range 1-15.

This procedure checks for the exception conditions (see below)
and calls $LVLCK and then LOWER$ twice. LOWER$ first checks to
see that the semaphore level field of the semaphore record
indicates that any processes WAITing on the semaphore are of
sufficiently high urgency to handle an interrupt at the level
specified by LEVEL. LOWER$ then adjusts the semaphore level field
of the semaphore that was previously attached as the primary
receiver at this level of interrupts, as necessary.

EXAMPLE:

REF ALTEXT

MOV @<ga>,*RlO+
MOV @<ga>,*RlO+
DATA CALL$
DATA ALTEXT

EXCEPTIONS AND CONDITIONS:

PUSH SEMAPHORE ~SEMA~

PUSH LEVEL (INTEGER)

An exception occurs if:

1) The interrupt level is invalid, i.e., outside the range
1-15.

2) Processes which are already WAITing on the semaphore SEMA
are unable to handle that interrupt level.

3) The interrupt level is not allocated
workspace.

4) Illegal semaphore is detected.

4.4.4 Procedure NOALTExternalevent

4-11

a dedicated

I
. I

I

4.4.4 Procedure NOALTExternalevent

This procedure detaches a semaphore which is the secondary
receiver of interrupts at the level specified in the parameter
LEVEL. If no semaphore has been previously allocated (by
ALTEXTernalevent) as the secondary receiver, this procedure has
no effect.

The no event semaphore NOEVT is re-attached to this level. The
level of interrupt specified in the parameter LEVEL must be in
the range 1-15. This procedure calls LOWER$, which adjusts the
semaphore level as necessary.

EXAMPLE:

REF NOALTE

MOV @<ga>,*RlO+
DATA CALL$
DATA NOALTE

PUSH LEVEL (INTEGER)

EXCEPTIONS AND CONDITIONS: An exception occurs if the interrupt
level LEVEL is outside the range 1-15.

4.4.5 Function INTLEVel

This function returns a number which indicates the type of SIGNAL
which activated the process. If the returned value is in the
range 1-15 then an interrupt of that level activated this
process. If the value returned is "-1", then activation was by
another process SIGNALing the semaphore on which this process had
been WAITing. If the returned value is "0", the process has not
been suspended and reactivated since it was started. INTLEVel can
be used by a reactivated process in order to find which interrupt
level (if any) that activated it.

EXAMPLE:

REF INTLEV

DATA CALL$
DATA INTLEV
MOV *Rl0,@<ga> POP INTERRUPT LEVEL

EXCEPTIONS AND CONDITIONS: None.

4.4.6 Procedure MASK

4-12

\ j

This procedure is called to disable interrupts. Interrupts remain
masked until the procedure UNMASK is called. A return from the
routine which called MASK does NOT remove the mask. The interrupt
mask, bits 12 to 15 of the status register are set to zero.

EXAMPLE: • ·

REF MASK

.
DATA CALL$
DATA MASK

EXCEPTIONS AND CONDITIONS: None.

4.4.7 Procedure SETMASK

This procedure sets the interrupt mask to disable all interrupts
equal to or less urgent than the interrupt lev~l passed (as
parameter NEWMASK) to SETMASK in the calling sequence. The value
of the previous mask (i.e., the value at which the interrupt mask
was set · prior to calling SETMASK) is returned to the user as an
output parameter. Specifying 0 as the NEWMASK value, will cause
all interrupts to be masked Calling SETMASK, specifying the
previous mask as the new mask will restore the old interrupt
setting. NEWMASK must be between 0 and 15 (inclusive).

EXAMPLE:

REF SETMASK

MOV
MOV
DATA
DATA

@<ga>,*RlO+
@<ga>,*RlO+
CALL$
SETMASK

EXCEPTIONS AND CONDITIONS: None.

4.4.8 Procedure UNMASK

PUSH NEW MASK
PUSH PTR TO WORD

WHICH WILL BE SET
TO OLD MASK

This procedure enables interrupts. It reverses the effect of the
MASK procedure. The procedure first checks the priority of the
current process. If that process is not an interrupt handler
(i.e., it has a numerical priority of greater than. 15), all
interrupts are enabled by setting the interrupt mask (bits 12 to
15 of the status register) to "l's". If the process is an
interrupt handler, those interrupt levels which are equally or
less urgent remain inhibited. Level zero interrupts always remain
enabled.

4-13.

EXAMPLE: J
REF UNMASK

DATA CALL$
DATA UNMASK

EXCEPTIONS AND CONDITIONS: None.

4.4.9 Procedure INT$PC

This procedure controls interrupt handling. When an interrupt
occurs, control passes to this procedure, which immediately masks
further interrupts.

The procedure first checks for ASSEMBlyevent and then determines
if a process is suspended on the semaphore that has been
designated as the primary receiver of interrupts (by
EXTERNalevent) • If no primary receiver of interrupts has been
specified, the semaphore designated as the secondary receiver of
interrupts is checked (by ALTEXTernalevent) • If no processes are
found suspended on an interrupt handling semaphore, the system
crashes.

If a process capable of handling an interrupt is found, the
oldest process is taken off the semaphore queue, and the pointer
to the next process is moved to the head of the that queue. The
level of interrupt is placed in the current interrupt field of
the process record for debug information. The context of the
current process is stored and the interrupt handler process is
moved to the active queue. The context of the interrupt handler
process is loaded and th~ interrupt handler becomes the current
active process.

NOTE: The user will never need to call this procedure; therefore,
no example is given.

EXCEPTIONS AND CONDITIONS: If there is no designated interrupt
handler at a given interrupt level, the system crashes.

4.4.10 Procedure ASSEMBlyevent

When an interrupt occurs, and further interrupts are masked,
internal data structures are examined to determine whether
ASSEMBlyevent has been called to associate an assembly language
handler with the current interrupt. If so, the workspace pointer
and entry point address passed to ASSEMBlyevent in the calling
sequence are used as a transfer vector to branch to the handler.
The interrupt mask is zero when the handler is given control
(i.e., all interrupts are masked) and must not be modified at any

4-14

_/

I
I

(·

\,

\....____ __

time within that routine. When the assembly language handling of
interrupts is complete, the user has a choice of action:

1) If no further processing of this interrupt is
required, a return is made directly to the interrupt
workspace by returning control to the interrupted
routine. This may be done using the following
sequence:

LI R14,R
R RTWP

This code causes two nRTWPn instructions to be
executed in a row. Note that this code is not
position independent. If the assembly event handler
is to be position independent, another method of
setting R14 to the address of an RTWP instruction is
to get the routine entry point from the interrupt
trap address and add the offset of the RTWP from the
routine entry point:

PSEG
ENTRY EQU $

R

...
MOV
AI
RTWP

@<level>*4+2,R14
R14,R-ENTRY

GET ADDRESS OF ENTRY
FROM INT TRAP AREA

DOUBLE RETURN

2) If the interrupt should also be processed by the RX
interrupt environment, simply execute a single
nRTWPn instruction. This causes a return to the
point at which the ·RX transfer code would have
branched had there been no assembly handler. Thus,
internal data structures are examined to determine
if an event semaphore has been associated with this
interrupt level by a call to either EXTERNALEVENT or
ALTEXTERNALEVENT, and RX handles the interrupt.

EXAMPLE:

MOV @<ga>,*RlO+
MOV @<ga>,*RlO+
MOV @<ga>,*RlO+
DATA CALL$
DATA ASSEMB

ADDRESS OF INTERRUPT WORKSPACE
ADDRESS OF INTERRUPT ROUTINE
"INTERRUPT LEVEL

EXCEPTIONS AND CONDITIONS: An exception occurs when a bad
LEVEL parameter is passed.

4-15

. - - .. -· - ·: .·~

4.4.11 Procedure NOASSErnblyevent

This procedure is called to disassociate an interrupt level with
an assembly language handler.

EXAMPLE:

MOV @<ga>,*RlO+
DATA CALL$
DATA NOASSE

LEVEL OF HANDLER TO BE REMOVED

EXCEPTIONS AND CONDITIONS: An exception occurs when a bad
LEVEL parameter is passed.

4.5 PROCESSOR MANAGEMENT ROUTINES

These routines are used to reschedule the execution of multiple
process systems and locate the current process record.

4.5.l Procedure SETPRiority

This procedure modifies the priority of the most urgent,
non-interrupt process. It ensures that NEWVALUE is in the range
16-32767 and masks all interrupts, scanning the ready queue and
active queue for the first non-interrupt handler (i.e., a process
with a numerical priority greater than 15). ·If one is not found,
the parameter OLDVALUE is returned as zero, otherwise the old
process priority is returned. The new process priority is then
loaded from NEWVALUE and compared with the old value. If the new
value is numerically greater than the old, the procedure SWAP is
called to re-schedule the process. This routine is used to force
rescheduling of the most urgent non-interrupt process.

EXAMPLE:

REF SETPRI

MOV
MOV
DATA
DATA

@<ga>,*RlO+
@<ga>,*RlO+
CALL$
SETPRI

PUSH ADDRESS OF ~OLDVALUE~
PUSH ADDRESS OF ~NEWVALUE~

EXCEPTIONS AND CONDITIONS: An exception will occur if the NEWVALUE is
outside the range 16-32767.

4.5.2 Procedure SWAP

This procedure reschedules the current non-interrupt process
(i.e., the process nearest the head of the ready queue or the
active process with a priority numerically greater than 15). The

4-16

I
~

I

(
'

process that is being SWAPped is placed in the ready queue behind
the last process of the same priority. This means that if there
is more than one process with the same priority as the currently
active one (and it is a noninterrupt process), a SWAP operation
will cause a new process to become the currently active one.

The following
current process
represented by
sequence.

example illustrates a swap operation when the
is resheduled. In this example each process is
its priority and a letter indicating initial

Current process

Ready queue (before SWAP) :

Ready _queue .(after SWAP):

20a 20b 20c 23d 23e 25f

20b 20c 20a 23d 23e 25f

The SWAP operation may be used to allocate execution time slices
to different processes. This time slicing is implemented by the
CLKINT process described later.

EXAMPLE:

REF SWAP

DATA CALL$
DATA SWAP

EXCEPTIONS AND CONDITIONS: None.

4.6 MEMORY MANAGEMENT PROCEDURES

These routines are used to perform dynamic management of the heap
packets of memory.

4.6.1 Procedure NEW$

This process allocates a contiguous area from the current
_process's heap of LENGTH or more words and returns a pointer to
the area in pointer. This memory may then be used by the calling
process until released by use of the FREE$ procedure.

4-17

EXAMPLE:

REF NEW$

MOV
MOV
DATA
DATA

@<ga>,*RlO+
@<ga>,*RlO+
CALL$

PUSH ADDRESS OF POINTER
PUSH ~LENGTH~ IN WORDS

NEW$

EXCEPTIONS AND CONDITIONS: If the heap area cannot be allocated,
a zero value pointer is returned.

4.6.2 Procedure FREE$

This procedure releases an area of heap
procedure. The pointer to the heap
procedure which sets it equal to zero.

EXAMPLE:

REF FREE$

allocated by the NEW$
packet is passed to this

MOV @<ga>,*RlO+ PUSH ADDRESS OF POINTER
DATA CALL$
DATA FREE$

EXCEPTIONS AND CONDITIONS: None.

4.7 CLOCK MANAGEMENT ROUTINES

The clock management routines time events or ensure specific time
delays in the user~s system. Whenever any real time operations
are required the user must first start CLKINT process. (Note that
the RX clock is NOT a time of day clock, but rather an internal
timer.) ·

4.7.1 Process CLKINT

This process performs the following three functions:

1) Initialize the system clock to 00000000 milliseconds,

2) Provide ~time out~ signals that a specified time interval
has occured, with a resolution of ~n~ milliseconds per
interrupt,

3) Implement time slicing between processes by calling SWAP
every ~n~ milliseconds. If ~n~ is zero, no time slicing
is performed.

4-18

------\ ' I ,
/

___ ,

/
\,

This process must be started whenever a system clock is required.
There is some processor overhead when using the clock routines,
and the overhead will increase as the number of time elements
waiting increases. The overhead is also inversely proportional to
the number of milliseconds per timer interrupt: the lower the
numbr of milliseconds per interrupt, the greater the overhead.

The system clock uses a double integer (32 bits) contained in the
clock record. A pointer to the head of a queue of time element
records is also maintained in the clock record. (Clock and clock
service records are described in Appendix A)~ Note that a
workspace for level three interrupts is provided in the CONFIG
module by default.

Time elements are put on the queue by the TWAIT procedure, and
may be signaled by other user processes.

EXAMPLE:

REF CLKINT

MOV @<ga>,*RlO+
MOV @<ga>,*RlO+
MOV @<ga>,*RlO+
DATA CALL$
DATA CLKINT

PUSH MILLISECONDS PER INTERRUPT
PUSH MILLISECONDS PER SWAP (IF 0, NO SWAPPING
PUSH 9901 BASE (USUALLY >100)

EXCEPTIONS AND CONDITIONS: Must have workspace for level three
interrupts.

4.7.2 Procedure TWAIT

This procedure is used to suspend a process for a specified time
interval or until another process has signaled an event,
whichever comes first. This feature is necessary when only a
certain amount of time can pass before the event should have
occured (such as I/O).

The time interval is a two word, signed positive integer value.
The most significant word is ·pushed first, followed by the least
significant word.

This procedure builds a time element from the parameters it is
passed, and then proceeds to place it in the clock~s time queue.
It then performs a WAIT on the semaphore. If the semaphore is
signaled by the clock process, it ·sets the status word to zero
and returns. If the semaphore was signaled from another user
process (i.e., before the time was up), then the procedure sets
the status word to one.

4-19

Note that the resolution of the clock is user-specified in CLKINT
and therefore a delay request will suspend a process for ~n~ ms
(where ~n~ is a multiple of the user-specifed clock resolution).

RETURN CODES:

0 SIGNALLED
1 TIMED-OUT
2 THERE WAS ANOTHER WAITER
3 THE "TIME TO WAIT" IS INVALID, OR THE SEMAPHORE IS INVALID.

EXAMPLE:

REF TWAIT

MOV
MOV
MOV
MOV
DATA
DATA

@<ga>,*RlO+
@<ga>, *RlO+
@<ga>,*RlO+
@<ga>, *RlO+
CALL$
TWAIT

PUSH THE ADDRESS OF THE SEMAPHORE
PUSH FIRST WORD OF TIME PARAMETER
PUSH SECOND WORD OF TIME PARAMETER
PUSH THE ADDRESS OF STATUS

EXCEPTIONS AND CONDITIONS: The process CLKINT must be started
prior to the use of this procedure. There must be no other
processes waiting on the semaphore.

4.7.3 Procedure DELAY

This procedure causes the user process to suspend execution for a
specified number of milliseconds. This delay is achieved by
calling TWAIT with a specially allocated DELAY semaphore. This
semaphore is allocated once, and is thereafter re-used by DELAY,
and is reclaimed by the CLK$TE routine when the process
terminates.

EXAMPLE:

REF DELAY

MOV
MOV
DATA
DATA

RO, *RlO+
Rl,*RlO+
CALL$
DELAY

PUSH FIRST WORD OF TIME PARAMETER
PUSH SECOND WORD OF TIME PARAMETER

EXCEPTIONS AND CONDITIONS: The process CLKINT must be started
prior to the use of this procedure.

4.8 ERROR REPORTING PROCEDURE EXCEPTion

This procedure performs an error trap from a process. The values

4-20

I
I

_/

(
'-..

of CLASSCODE and REASONCODE are placed in the error fields of the
caller~s process record and the run-time support exception
routine is called.

EXAMPLE:

REF EXCEPT

MOV @<ga>,*RlO+
MOV @<ga>,*RlO+
DATA CALL$
DATA EXCEPT

EXCEPTIONS AND CONDITIONS:
None.

4-21

PUSH ~CLASSCODE~ IN MSB
PUSH ~REASONCODE~ IN MSB

\
.)

SECTION V

CHANNEL ROUTINES

5.1 GENERAL

Rx makes it possible for the user to create and pass messages between
processes using the concept of channels. Channels can be thought of as
data structures over which messages (data) can be sent and received by
processes located at either end (see Figure 5-1). Initialization of
the channel, construction of the message to be sent, and
synchronization of the actual message transfer are performed using the
Channel Routines described in the following subsections.

In the normal start-up sequence for transmission between producer and
consumer processes, each process issues a C$INIT on the same channel
name. (A process MUST initialize a channel in order to send messages
over that channel.) A call is then made to C$ALLOC by the process
sending the message to allocate a heap packet for passing the text
data.

. --------
PRODUCER CONSUMER

<-----> CHANNEL <------>
________ , PROCESS PROCESS

1----------
FIGURE 5-1. PROCESS COMMUNICATION VIA CHANNELS

The following is a skeletal outline for a typical message transmission
between producer/consumer processes. For a complete example, see the
demonstration program in Appendix E.

SYSTEM:

REF PRODUC.
REF CONSUM

DATA CALL$,PRODUC
DATA CALL$,CONSUM

5-1

PRODUCER:

REF C$INIT
REF C$TERM
REF C$ALLO
REF C$SEND
REF C$WAIT

<call C$INIT to connect to channel>
<call C$ALLO to allocate message buffer>
loop: ."

<fill message buffer>
<call C$SEND to send message>
<call C$WAIT to wait for acknowledgement>

loop exit:
<call C$TERM to disconnect fom channel>

CONSUMER:

REF C$INIT
REF C$TERM
REF C$RECE
REF C$ACKN

.
<call C$INIT to connect to channel>
loop:

<call C$RECE to send message>
<process data in message buffer>
<call C$ACKN to wait for acknowledgement>

loop exit:
<call C$TERM to disconnect fom channel>

In the previous example, the producer first initializes a channel that
will be used to send the message to the consumer, then allocates
memory for that message using the C$INIT and C$ALLO routines
respectively. The C$SEND routine actually sends the message to the
consumer, while C$WAIT will suspend the producer (i.e., the producer
is placed in a WAIT queue) until an acknowledgement of the message is
received. (Reference Section 2, 2.3.2 for detailed information on
semaphore queues.)

The consumer initializes the same channel as the producer via the
C$INIT routine and then calls C$RECE to suspend until a message is
received over the intialized channel. When the message is received,
the consumer performs whatever action is necessary to process the
data. The consumer may send messages back to the producer by modifying
the message that was sent. When the consumer has processed the
message, it calls C$ACKN to notify the producer that the message has
been received/processed, and the producer is released from suspension.

5-2

Finally, when each process is finished, it calls C$TERM to disconnect
from the channel. when the last process disconnects from a particular
channel, all message buffers and other data structures associated with
that channel are freed.

When dealing with channels, it is important to remember that a channel
will not exist unless it is designated (named) by a process as
existing (via C$INIT), and that in order to speak to another process,
the receiving process must designate (name) the same channel. Two
terms are used: channel "name" and channel identifier or "ID"· The
name of a channel is a number from 1 to 32767 which is passed to
C$INIT. C$INIT returns a channel ID, which is a pointer to the channel
data structure.

5.2 CHANNEL ROUTINE DESCRIPTIONS

The following subsections will list and describe each channel routine,
as well as provide example calling sequences for each.

5.2.1 Procedure C$ACKN

This routine acknowledges that a message has been received and/or
processed, and notifies the sending process of that fact.

CALLING SEQUENCE:

MOV @<ga>,*RlO+ PUSH ADDRESS MESSAGE TEXT POINTER
DATA CALL$,C$ACKN

EXTERNAL ROUTINES: C$$HEADER, RT$ENTER, RT$EXIT, SIGNAL

5.2.2 Procedure C$ALLO

The C$ALLO routine allocates a heap packet for passing text data
between processes. The heap packet has a header of fixed size which
contains information used to synchronize interprocess communication.
The header is followed by a text data field containing any message to
be transmitted. The maximum number of characters allowed in the
message is defined in the first parameter of the calling sequence.

CALLING SEQUENCE:

MOV @<ga>,*RlO+
MOV @<ga>, *RlO+
DATA CALL$,C$ALLO

PUSH MESSAGE SIZE (INTEGER)
PUSH POIN~ER TO HEAP PACKET

EXTERNAL ROUTINES: C$$MSG, RT$ENTER, RT$EXIT, CKSEMAPHORE,
INITSEMAPHORE, TERMSEMAPHORE, HP$FREE, HP$NEW, HP$SYSTEM

5-3

5.2.3 Procedure C$CRECEive

This routine checks that a message has·been sent to a channel. If one
is present, the routine returns its address. If no message has been
sent, a message pointer set to nil is returned.

CALLING SEQUENCE:

MOV @<ga>,*RlO+ PUSH CHANNEL ID
MOV @<ga>,*RlO+ PUSH MESSAGE TEXT POINTER
DATA CALL$,C$CRECE

EXTERNAL ROUTINES: SETMASK, C$$MSG, RT$ENTER, RT$EXIT, CWAIT

5.2.4 Procepure C$CWAI

This routine conditionally waits for a sent message to be
acknowledged. If the message has been acknowledged, the status word is
set to TRUE (all ones). If the receiving process does not acknowledge,
the status word is set to FALSE (zero).

CALLING SEQUENCE:

MOV @<ga>,*RlO+
MOV @<ga>,*RlO+
DATA CALL$,C$CWAI

5.2.5 Procedure C$DISPose

PUSH MESSAGE TEXT POINTER
PUSH PTR TO STATUS WORD

This procedure deallocates a channel message.

CALLING SEQUENCE:

MOV @<ga>,*RlO+ PUSH MESSAGE TEXT POINTER
DATA CALL$,C$DISP

EXTERNAL ROUTINES C$$HEADER, RT$ENTER, RT$EXIT, TERMSEMAPHORE
HP$FREE, HP$SYS

5.2.6 Procedure C$INIT

C$INIT searches the channel directory for the channel identified by
<name>. If the channel is found, C$INIT sets the ID to point to the
channel. If the channel is not found, a channel is created, inserted
into the channel directory, and the ID is set to point .to it., If the
passed value of <name> is "0", the channel is assumed to have been
created either in COMMON, or in other memory not declared available to
the system. Although the channel does not appear in the channel ·
directory, the routines using ID as an· identifier will operate
correctly on such a channel.

5-4

·.~

..)

I

j

CALLING SEQUENCE:

MOV @<ga>,*RlO+
MOV @<ga>,*RlO+
DATA CALL$,C$INIT

PUSH CHANNEL NAME
PUSH POINTER TO CHANNEL ID

EXTERNAL ROUTINES: RT$ENTER, RT$EXIT, CKSEMAPHORE, INITSEMAPHORE,
SIGNAL, WAIT, HP$FREE, HP$NEW, NP$SYSTEM, MY$MPX -

5.2.7 Procedure C$NOTI

C$NOTIFY is used to set the channel "Notify" semaphore field to point
to a user-supplied semaphore. This allows a consuming process waiting
on a single semaphore associated with several conditions to receive
notification that a message is present on the channel. The consuming
process must perform a receive to get control of the 'message buffer.
When several channels are used, the consumer can perform a conditional
receive to determine the location of the message.

CALLING SEQUENCE:

MOV @<ga>,*RlO+
MOV @<ga>,*RlO+
DATA CALL$,C$NOTI

EXTERNAL ROUTINES: None.

PUSH CHANNEL ID
PUSH ADDRESS OF SEMAPHORE

5.2.8 Procedure C$RECEive

This routine causes a process to suspend until a message is sent to
the channel. It then takes the message from the channel and sets <msg>
to point to that message's text field.

CALLING SEQUENCE:

MOV @<ga>,*RlO+ PUSH CHANNEL ID
MOV @<ga>,*RlO+ PUSH MESSAGE TEXT POINTER
DATA CALL$,C$RECE

EXTERNAL ROUTINES: C$$MSG, SETMASK, RT$ENTER, RT$EXIT, WAIT

5.2.9 Procedure C$SEND

C$SEND send.s a message to the channel and signals that a message is
present for processing. The oldest pending C$RECEive on this channel
will be activated.

CALLING SEQUENCE:

MOV @<ga>,*RlO+ PUSH CHANNEL ID

5-5

MOV @<ga>,*RlO+
DATA CALL$,C$SEND

PUSH MESSAGE TEXT POINTER
'

EXTERNAL ROUTINES: C$$HEADER, RT$ENTER, RT$EXIT, SIGNAL

5.2.10 Procedure·C$TERM

This procedure disconnects the calling process from the channel. When
the last process is disconnected, the routine closes the data
structures associated with the channel, terminates the channel pointed
to by <c>, and updates the directory to reflect the termination.

CALLING SEQUENCE:

MOV @<ga>,*RlO+
DATA CALL$,C$TERM

PUSH CHANNEL ID

EXTERNAL ROUTINES: RT$ENTER, RT$EXIT, SIGNAL, WAIT, TERMSEMAPHORE,
HP$FREE, HP$SYSTEM, MY$MPX

5.2.11 Procedure C$WAIT

C$WAIT waits for a message to be acknowledged by a consuming process.
No further use of the message is allowed until an acknowledgment is
received from the consumer (via C$ACKNO).

CALLING SEQUENCE:

MOV @<ga>,*RlO+ PUSH MESSAGE TEXT POINTER
DATA CALL$,C$WAIT

EXTERNAL ROUTINES: C$$HEADER, RT$ENTER, RT$EXIT, WAIT

5.2.12 Function C$$HEA

C$$HEADE, given a pointer to a message text field, returns a pointer
to that message~s header. This function is normally used only by the
other channel routines.

CALLING SEQUENCE:

MOV @<ga>,*RlO+ PUSH MESSAGE HEADER POINTER
DATA CALL$,C$$HEA

EXTERNAL ROUTINES: LOCATION, SIZE

5.2.13 Procedure C$$MSG

C$$MSG, given a pointer to a message header, returns a pointer to the
text field of that message. Upon return, the stack pointer (R10)

5-6

(

points to a word containing the address of the text field of the
message.

CALLING SEQUENCE:

MOV @<ga>,*RlO+ PUSH MESSAGE HEADER POINTER
DATA CALL$,C$$MSG

EXTERNAL ROUTINES: LOCATION, SIZE

5-7

SECTION 6

CONFIGURING TARGET SYSTEMS FOR OBJECT CODE EXECUTION

6.1 GENERAL

The user has the capability to customize RX, modeling the system to
fit his or her application requirements by producing a load module
that includes the application routines and those processes,
procedures, and functions supplied in the RX library that will enable
the application to execute.

The link editor of the user~s software development system is used to
create the load module. The configuration process involves giving a
·simple description of the target machine to identify ROM/RAM addresses
and the location of the target machine#s restart vector. The user~s
own interrupt handlers and system crash handler may also be included.
The result will be a 9900 load module which may be debugged using AMPL
or the RX Standalone Debugger.

The steps required to produce a customized load module will be fully
explained,in following sections. They are:

1) Assemble user source.

2) Customize and assemble CONFIG. (Section 6.2)

3) Create a link edit control file. (Section 6.5)

4) Execute linkage editor. (Section 6.5.2)

5) Test using the debugger of the user~s choice.
(Sections 7 and 8)

6.2 CUSTOMIZING THE CONFIG MODULE

Configuration of a target
simple specification of
called ncONFIGn. CONFIG
system~s RAM organization
and LREX vectors.

system requires that the user build a
the target machine into the Rx module
contains the specification of the

and the locations of the system RESTART

NOTE: Because of the symbols used to define the :Ram Table, the
warning message ~VALUE TRUNCATED~ will be sent to the user~s
error file during assembly of CONFIG. The user can ignore this
message.

Figure 6-1 'is the version of CONFIG supplied the user. It
specifies .that RAM is located from >5000 to >AOOO. Note that this

6-1

version of CONFIG may not contain the correct specifications for
the system being configured. Information on the appropriate
modifications may be found in following subsections.

6-2

< ·,

-· -~-

IDT '"CONFIG'"
IDT '"CONFIG'" SPECIFY CONFIGURATION

* REVISION: 08/01/80 1.00 ORIGINAL FOR RX 2.0
* ROUTINE LIST: CONFIG, IWP$0 •• IWP$15, BAD$WP,
* $RAMTB, $RESTA, $LREX, $SYSCR,
* $DEFAU, $FILL, $STKSZ, $BOOTP,
* $IODIR, DB$WP
* COPY MODULES:
* NONE.
* MACRO DEFINITIONS:
* NONE.
* EXTERNAL ROUTINES:
* NONE.
* EXTERNAL DATA:

PSEG
* MODULE CONSTANTS:
IWPSZ EQU 24
* LOWRAM EQU >5000
* MODULE VARIABLES:
*

DORG LOWRAM
*

SIZE OF AN INTERRUPT
WORKSPACE (R4-R15)

LOW BOUNDARY OF RAM

DEF IWP$0,IWP$1,IWP$2,IWP$3
DEF IWP$4,IWP$5,IWP$6,IWP$7
DEF IWP$8,IWP$9,IWP$10,IWP$11
DEF IWP$12,IWP$13,IWP$14,IWP$15
DEF BADWP,DBWP

IWP$0 BSS 32
IWP$1 BSS 32
DB$WP EQU IWP$1
IWP$2 EQU $-32+IWPSZ

BSS IWPSZ
IWP$3 EQU $-32+IWPSZ

BSS IWPSZ
IWP$4 EQU $-32+IWPSZ

BSS IWPSZ
IWP$5 EQU $-32+IWPSZ

BSS IWPSZ
IWP$6 EQU $-32+IWPSZ

BSS IWPSZ
·IWP$7 EQU $-32+IWPSZ

BSS IWPSZ
IWP$8 EQU $-32+IWPSZ

BSS IWPSZ

FIGURE 6-1. CONFIG MODULE (Sheet 1 of 4)~

6-3

IWP$'9 EQU $-32+IWPSZ
BSS IWPSZ

IWP$10 EQU $-32+IWPSZ
BSS IWPSZ

IWP$11 EQU $-32+IWPSZ
BSS IWPSZ

IWP$12 EQU $-32+IWPSZ
BSS IWPSZ

IWP$13 EQU $-32+IWPSZ
BSS IWPSZ

IWP$14 EQU $-32+IWPSZ
BSS IWPSZ

IWP$15 EQU $-32+IWPSZ
BSS IWPSZ

BAD$WP BSS 32
*
LOWHP EQU $
*

RORG
TITL ~CONFIG: SPECIFY CONFIGURATION~
6-

* ABSTRACT:
* SPECIFY CERTAIN SYSTEM PARAMETERS, THE RAM
* CONFIGURATION,. AND THE I/O SUBSYSTEM
* DIRECTORY.
* CALLING SEQUENCE:
* NONE.
* EXCEPTIONS AND CONDITIONS:
* NONE.
* LOCAL DATA:
* NONE.
* ENTRY POINT:
* NONE.
***************************************W*******************
* ADDRESS OF THE nBLWPn VECTOR FOR RESTARTS; USE non FOR
* LEVEL 0 INTERRUPT, n>FFFCn FOR THE nLREXn VECTOR, OR
* THE ADDRESS OF A USER-DEFINED VECTOR.

DEF $RESTA
$RESTA DATA 0

FIGURE 6-1. CONFIG MODULE (Sheet 2 of 4).

6-4

-·-v

) ___ ,,.

* ADDRESS OF THE •BLWPn VECTOR FOR THE •LREXn INSTRUCTION1
* USE •on IF THERE IS TO BE NO "LREx• VECTOR OR IF HIGH
* MEMORY IS ROM.
·~***

DEF $LREX
$LREX DATA 0

* ADDRESS OF THE USER-DEFINED ROUTINE TO BE INVOKED IN CASE
* OF A SYSTEM CRASH1 USE •Q• FOR THE SYSTEM DEFAULT WHICH
* IS TO MASK INTERRUPTS AND IDLE THE PROCESSOR.

DEF $SYSCR
$SYSCR DATA 0

* ADDRESS OF THE MPP ROUTINE TO BE INVOKED IF AN EXCEPTION
* OCCURS BUT NO EXCEPTION HANDLER HAS BEEN SPECIFIED1 USE
* "0" FOR THE SYSTEM DEFAULT WHICH IS A "NO EXCEPTION
* HANDLER• SYSTEM CRASH.

DEF $DEFAU
·$DEFAU DATA 0

* THIS IS THE VALUE WITH WHICH THE HEAP WILL BE
* INITIALIZED AT POWER-UP.

DEF
$FILL JMP

$FILL
$

* THIS IS THE DEFAULT STACK SIZE (IN WORDS) THAT IS USED
* IF A •sTACKSIZE• CONCURRENT PARAMETER IS NOT SPECIFIED.

DEF $STKSZ
$STKSZ DATA >100

* THE PARAMETER LIST FOR THE CALL TO •s$PRcs• TO START THE
* •BooT• PROGRAM.

DEF
$BOOTP DATA

DATA
DATA
DATA
DATA

$BOOTP
>0000
>0000
>0000
>0100
>0000

FRAME SIZE
LEXICAL NESTING
PRIORITY
STACK SIZE
HEAP SIZE

LEVEL

FIGURE 6-1. CONFIG MODULE (Sheet 3 of 4).

6-5

... -

* ADDRESS OF THE nRAM TABLE,n THE TABLE THAT DESCRIBES THE
* REGIONS OF READ-WRITE MEMORY TO BE COLLECTED INTO THE
* HEAP.

DEF $RAMTB
$RAMTB DATA RAMTB

* ADDRESS OF THE DIRECTORY OF I/O SUBSYSTEMS.

DEF $IODIR
$IODIR DATA IODIR

* THE FOLLOWING TABLE IS A LIST OF nLENGTH IN BYTES,
* STARTING ADDRESSn PAIRS THAT DEFINE THE RAM-'l'O BE USED
* BY THE EXECUTIVE: A WORD OF non TERMINATES THE LIST.
* THE RAM REGIONS MUST BE IN ASCENDING ORDER AND MUST NOT
* OVERLAP.

RAMTB DATA >A000-LOWHP,LOWHP

DATA 0 LIST TERMINATOR

* THE FOLLOWING TABLE IS A LIST OF nSERVICE DIRECTORY,
* PORT CONSTANTSn PAIRS THAT DEFINE THE I/0-SUBSYSTEM TO
* BE INITIALIZED WHEN ROUTINE nD$INITn IS CALLED:
* A WORD OF non TERMINATES THE LIST.

IODIR EQU $
* * INSERT LIST ENTRIES HERE.
*

DATA 0 LIST TERMINATOR
*

END

FIGURE 6-1. CONFIG MODULE (Sheet 4 Of 4).

6-6

6.2.1 Specification of System Parameters

A number of target system parameters have been collected into
CONFIG so they can be conveniently modified by the user. Each
parameter is described in one of the following paragraphs.

Parameter $RESTA is a data word that contains the address of a
transfer vector for a BLWP instruction that will be executed if
the procedure RE$START is invoked. A value of "0" will cause a
level 0 interrupt to be simulated~ a value of ">FFFC" will
simulate a LREX instruction. Special restart processing may be
specified via a user-defined transfer vector.

An LREX instruction causes a trap through the transfer vector at
location >FFFC~ it is often used fo·r reloading or "warm starting"
a system in which the level 0 interrupt is used for a power-up or
"cold start". If high memory is in RAM, then the LREX vector must
be initialized at run-time. If the data word $LREX contains a
non-zero value, it is interpreted as the address of a (ROM)
transfer vector that RX will copy to >FFFC through >FFFF during
system initialization. If the data word is 0 (i.e., high memory
is ROM, or no LREX instructions will be used), no copy will be
made.

Parameter $SYSCR permits the user to specify the action to be
taken if a system crash occurs. A non-zero value of the data word
$SYSCR is interpreted by the Executive Run Time Support as the
address of an assembly language routine that will be invoked (via
a BL instruction with register RO containing the crash code) in
case of a unrecoverable error. A value of zero results in a
default routine being invoked that masks all interrupts and
executes the IDLE instruction.

Parameter $DEFAU permits specification of a default exception
handler that will be invoked if an exception occurs in a process
for which no exception handler has been established. If a default
is to be used, then the data word $DEFAU must contain the entry
point address of that routine. A value of zero will cause a •no
exception handler" system crash to occur.

The value in the data word $FILL is the pattern with which the
heap will be initialized at power-up~ the suggested value is the
instruction "JMP $" (Hex value >10FF) which will sometimes stop
errant execution.

Parameter $STKSZ is the default stack size (in words) that will
be used if a "stacksize" concurrent parameter is not specified
for process. To do this, the process start code (see 4.1.5) needs
to be changed to this:

6-7

REF S$PRCS

MOV @<ga>,*RlO+
MOV @<ga>,*RlO+
MOV @<ga>,*RlO+
MOV @$STKSZ,*Rl0+
MOV @<ga>,*RlO+

PUSH FRAME SIZE IN BYTES
PUSH LEXICAL LEVEL
PUSH PROCESS PRIORITY
USE DEFAULT STACK SIZE
PUSH HEAP SIZE IN WORDS

The five words labeled $BOOTP are the parameters to the process
creation routine S$PRCS that creates the "boot" program. The
Executive Run Time Support begins execution in a program that
"bootstraps" the system into execution by initializing system
data structures and then invoking the "ghost" procedure GHOST$
which the user must customize to perform application dependent
initialization and start the user~s system (Section 6.3). Since
the processing that is performed in the boot program is ,
application-dependent, its stack size parameter in the $BOOTP
parameter list may have to be adjusted by the user1 the other
four parameters will not require modification. (Since the stack
region of the boot program will be reclaimed when procedure
GHOST$ returns and the program terminates, the estimated stack
size need not b~ exact.)

Parameter $RAMTB is a data word containing the address of the
"RAM table" that is described in the following subsection.

Parameter $IODIR is a data word containing the address of the I/O
subsystem directory that is described in 6.2.3.

6.2.2 Specification of RAM Locations

The module CONFIG contains a two part description of RAM of the
target system. The symbol LOWRAM must be equated to the low
boundary of RAM that is to be managed by RX. The first part of
the RAM description declares static data structures that are not
to be included in the heap. This area begins at LOWRAM and
contains interrupt and XOP workspaces. Any user-declared static
(not COMMON) storage (e.g., LREX workspace) should be declared
following these structures but preceding the symbol LOWHP which
marks the end of the static data area and the beginning of the
dynamically allocated heap area. The "RAM table" is a structure
that contains the addresses and sizes of regions of RAM that are
to be used for heap allocation. Each region is described by a
pair of values, the first of which is the size of the segment and
the second is its beginning address1 a size of zero terminates
the list. (Regions must be in ascending order and must not
overlap.) The RAM table for a target system with RAM from Hex
addresses >4000 to 9FFF, and >FOOO to >FFFF looks like Figure
6-2.

6-8

RAMTB DATA >6000,>4000
DATA >1000,>FOOO
DATA 0

4000 - 9FFF
FOOO - FFFF

FIGURE 6-2. SIMPLE RAM TABLE

Figure 6-3 shows how this RAM table would be incorporated into
CONFIG so the static area would be allocated from the first RAM
region. The expression ">A000-LOWHP" calculates the space
remaining in the first region after the static areas are
allocated.

LOWRAM EQU >4000

DORG LOWRAM
*
IWP$0 BSS 32

LOWHP EQU $

RAM TB DATA >A000-LOWHP,LOWHP
DATA >1000,>FOOO
DATA 0

FIGURE 6-3. USE OF RAM TABLE IN CONFIG MODULE.

COMMON regions of memory may be used by more ·than one routine to
eliminate the passing of certain parameters. This may be done
using the CSEG assembler directive. Common regions must exist in
regions of RAM outside the RX system heap to ensure the executive
cannot allocate the region for other purposes. Therefore, CONFIG
must not include any memory to be used as a common region; the
value equated to COMMON should be changed so that memory for the
common is not included in the RAM table, and the link control
file (described in 6.5.1) should be changed to specify to specify
the beginning of RAM.

Use of COMMON is not generally regarded as good programming
practice, and should be avoided if possible.

6.2.3 Specification of the I/O Subsystem Directory

In his GHOST$ procedure, the user has the option to include a.
call to Procedure D$INIT, causing automatic initialization of I/O
subsystems at power-up. The specific subsystems to be initialized
must be enumerated in the I/O directory table in CONFIG. Each

6-9

subsystem is described by a pair of values. The first is the
address of the service directory that defines the entry points of
those routines that provide subsystem services. The second value
is the address of the nport constantsn associated with the
subsystem. The directory is terminated by a value of zero where a
service directory address is expected.

Figure 6-4 depicts a sample I/O subsystem directory that will
cause two subsystems to be initialized automatically. A
record-oriented terminal subsystem is specified by its service
directory (T02$SD) and port constants (T02$PC). The interprocess
communication subsystem is specified by its service directory
(IPC$SD) and a NIL (0) port constants address.

I OD IR EQU $
*

REF T02$SD,T02$PC
DATA T02$SD,T02$PC

*
REF IPC$SD
DATA IPC$SD,0

*
DATA 0 LIST TERMINATOR

FIGURE 6-4. I/O SUBSYSTEM DIRECTORY.

6.2.4 Example CONFIG Module

As an example consider the following system:

1) RAM in locations >BOOO to >BFFF and >DOOO to >DFFF

2) ROM in locations >0000 to >9FFF, >COOO to >CFFF and
>FFOO to >FFFF

3) A user-defined restart routine. This routine
requires a workspace (BGN$wP) and has an entry point
(BGN$PC).

4) I/O subsystems for terminal
interprocess communication.

communication and

Figure 6-5 shows how the pertinent portions of CONFIG might be
specified for this system.

6-10

-~
. ,_,/

_;)

...
LOWRAM EQU >BOOO ...
IWP$0 BSS 32

- ...
BAD$WP BSS 32
*
BGN$WP BSS 32
*
LOWHP EQU $
* . . .

DEF $RESTA
$RESTA DATA RESTA ...
$ RAMTB DATA RAMTB

$IODIR DATA IODIR ...
RAMTB DATA >C000-LOWHP,LOWBP

DATA >1000,>DOOO

LOW BOUNDARY OF RAM

DATA 0 LIST TERMINATOR ...
IODIR EQU $
*

*

*

*

REF T02$SD,T02$PC
DATA T02$SD,T02$PC

REF IPC$SD
DATA IPC$SD,0

DATA 0

RESTA DATA BGNWP,BGNPC
REF BGN$PC ...

LIST TERMINATOR

FIGURE 6-5. EXAMPLE CONFIG MODULE.

The RAM table of Figure 6-5 reflects the two RAM memory segments.
Notice that the ROM memory segment addresses have no effect on
CONFIG. The workspace BGN$WP has been declared in the static area
of CONFIG, and the word $RESTA now points to the transfer vector
labeled RESTA.

The variable length and user-defined structures have been added
at the end of the ROM section of CONFIG. This is done to enable
changes to be made to these structures without requiring that
ROMs be reconstructed that reference the CONFIG module.

6-11

··.·_.-

-·'

6.3 CUST9MIZING THE "GHOST" PROCEDURE

RX begins execution in a program called BOOT$ that "bootstraps"
the system into execution by initializing system data structures
and then invoking the "ghost" procedure GHOST$. The ghost
procedure is obligated to START the user~s SYSTEM module; it may
be customized to perform application-dependent initialization.
Figure 6-6 iists the default version of GHOST$ that is supplied
with the Executive Run Time Support. (Procedure D$INIT is part of
the File I/O subsystem components. This procedure will only need
to be called if File I/O subsystems will be supported. (Reference
the Device Independent File I/O Package manual, MP386 for
detailed information). Procedure MSG$INIT is called to identify
the pathname of the device that is to receive the output of the
standard procedure MESSAGE. The "start systm$" statement
activates the user~s system since all system modules are given
the entry point SYSTM$.

For most applications the default version of GHOST$ will be
adequate. If certain initialization must be performed for a class
of applications (e.g. special devices that must be initialized),
it is appropriate that it be performed in the ghost procedure so
it need not be repeated in each application. If it is known that
I/O will not be used, then a slight saving in code space can be
made by removing the calls to D$INIT and MSG$INIT in GHOST$. (If
the I/O support library is not specified at link edit time,
D$INIT and MSG$INIT will be resolved by "dummy" routines that
perform no processing.)

6-12

·~ /

c-·

*

*
*

*
GHOST$
PR
CODE
LF
SP
LO

D0012

*

IDT 'GHOST$

DEF GHOST$
REF D$INIT
REF MSG$IN
REF SYSTM$
REF CALL$
REF EXIT$P

PSEG
EQU
EQU
EQU
EQU
EQU
EQU
DATA
DATA
DATA
DATA
DATA

'DATA
DATA
DATA
DATA

$
R7
R8
R9
RlO
$
L0014-LO
L0036-LO
>0008
>0008
>4F50
>4552
>4154
>4F52
>0008

L0014 EQU $
DATA CALL$,D$INIT
MOV CODE,R15
AI R15,>000A
MOV LF,R12
MOV *Rl5+,*Rl2+
MOV *Rl5+,*Rl2+
MOV *Rl5+,*Rl2+
MOV *Rl5+,*Rl2+
MOV LF,*SP+
MOV @D0012-L0(CODE),*SP+
DATA CALL$,MSG$IN
DATA CALL$,SYSTM$

L0036 EQU $
B @EXIT$P
END

08/01/80 11:18:47

LC

0004
0006
OOOA
oooc
OOOE
0010
0012

LC

0014
0018
001A
OOlE
0020
0022
0024
0026
0028
002A
002E
0032

0036

HEX CHAR

0008
0008
4F50
4552
4154
4F52
0008
WORD(S)

C3C8
022F
C309
CF3F
CF3F
CF3F
CF3F
CE89
CEA8

0460

OP
ER
AT
OR

OOOA

0012

0000

FIGURE 6-6. DEFAULT VERSION OF PROCEDURE GHOST$.

6.4 ASSEMBLY LANGUAGE INTERRUPT HANDLERS

RX permits the user to handle interrupts in an efficient manner
using Procedure ASSEMBLYEVENT. ASSEMBLYEVENT allows a specific
assembly language routine to be given control when a particular

6-13

---- --- -- ----· ·-- - .. ______ , :------·;---=--:---·~·-·· "

interrupt occurs. This routine has two methods by which to
relinquish control after the interrupt has been handled. One
causes the interrupt process to be resumed: the other causes the
in-terrupt to be propagated to a routine in the RX environment.
This capability is designed to permit assembly language handlers
to accumulate data associated with high frequency interrupts
until it is appropriate to invoke a higher level handler. Using
ASSEMBLYEVENT, interrupts can be handled in approximately 1/5 the
amount of time normally required for interrupt handling (see
Section 4, 4.3.7 for detailed information on Procedure
ASSEMBlyevent).

6.5 LINKING THE APPLICATION SYSTEM

The Link Editor enables the user to link together only the
modules which are required by the target application.

6.5.1 Control File Creation

A link control file must be created to input to the Link Editor,
which specifies what application routines to link together and
the location of the RX Run-Time Support library. The link edit
control file is created utilizing the source editor of the user~s
development system.

A sample link control
version of RX. This file
application and CONFIG
Kernel and libraries.

file is included with each different
specifies the file names of the user~s
modules, and the file names of the RX

These must be specified in the following order:

1) INCLUDE The kernel RXKERN for normal processing, or
DBKERN to use the standalone debugger.

2) INCLUDE the optional . stream-lined E$PRCS0
termination routine, if desired. This routine
faster process termination at the expense
thorough resource reclamation.

process
provides
of less

3) INCLUDE the user routines and CONFIG module in any
order desired. If a customized version of GHOST$ is to
be used, it should also be included here.

4) FIND the standard RX routines needed in RXlOBJ.

5) FIND the channel routines needed in CHNOBJ. If
channels are not being used, this step may be left out
for a slightly faster link edit.

6) FIND the clock management routines needed in CLKOBJ.
As with the channel routines this step may be left out
if the clock is not being used. faster link edit.

6-14

-~ ',

. /

\

)

(

i

7) Finally, FIND the RX support routines in RX20BJ. This
must be the last step, because the standard routines,
channel routines, and clock routines reference symbols
defined in this library. ·

A template for the Link Edit Control File is presented below.
Detailed information regarding the format and instructions used
can be found in the user manuals for the respective link editors.

SYMT
TASK <system name> ; Name of load module
INCLUDE <device or volume>.R.XKERN . or DBKERN I

INCLUDE <device or volume>.EPRCSO . Optional E$PRCS routine, I . use only with RXKERN I

INCLUDE <device or volume>.<config> . COnf iguration Module I

INCLUDE <device or volume>.<user app> . As many as needed I

FIND <device or volume>.RXlOBJ 0 Standard Routines I

FIND <device or volume>.CHNOBJ . Channel Library I

FIND <device or volume>.CLKOBJ . Clock Library I

FIND <device or volume>.R.X20BJ . Optional Routines I

END

FIGURE 6-7. SAMPLE LINK EDIT CONTROL FILE.

In this example, <device or volume> stands for whatever
information is needed to accesss the specified file.
link control file, as well as a description of the files
in the release, is shipped with each copy of RX.

pathname
A sample
included

If the RX Standalone Debugger will be used, the user~s Link
Control file should include a reference to the DBKERN module
rather than the RXKERN module. as shown in Figure 6-8.

SYMT
TASK
INCLUDE
INCLUDE
INCLUDE
FIND
FIND
FIND
FIND
END

<system name> . Name of load module I

<device or volume>.DBKERN . or RXKERN I

<device or volume>.<config> ; configuration Module
<device or volume>.<user app> . As many as needed I

<device or volume>.RXlOBJ . Standard Routines I

<device or volume>.CHNOBJ . Channel Library I

<device or volume>.CLKOBJ . Clock Library I

<device or volume>.RX20BJ . Optional Routines I

FIGURE 6-8. SAMPLE LINK EDIT CONTROL FILE
(USING STANDALONE DEBUGGER).

6-15

·~

Often, the target system will contain a combination of RAM .and .J
ROM. All data and common segments within the application must be
in RAM. The link edit control file must specify to the linkage
editor where to place the different types of program segments.
This can be accomplished through the use of the PROGRAM and DATA
link editor commands. The PROGRAM command is used to specify
where all procedure segments (designated via PSEG assembler
directives) are to be placed. This command should be used to
specify the starting address of ROM. The DATA command is used to
specify where all data segments (designated via the DSEG
assembler directive) are to be placed. This comma~d should be
used to specify the starting address of RAM. All common segments
(designated by the CSEG assembler directive)are automatically
placed following ay data segments, unless specifically located
using the COMMON command. Figure 6-9 illustrates the use of
PROGRAM and DATA commands in which ROM starts at address zero and
the value >MMMM is the start address of RAM.

SYMT
TASK
PROGRAM
DATA
INCLUDE
INCLUDE
INCLUDE
FIND
FIND
FtND
FIND
END

<system name> Name of load module
>O . Starting address of I

>mmmm ; Starting address of
<device or volume>.RXKERN . or DBKERN I

<device or volume>.<config> ; Configuration Module
<device or volume>.<user app> . As many as needed I

.<device or volume>.RXlOBJ . Standard Routines I

<device or volume>.CHNOBJ . Channel Library I

<device or volume>.CLKOBJ . Clock Library I

<device or volume>.RX20BJ ; Optional Routines

FIGURE 6-9. SAMPLE LINK EDIT CONTROL FILE
(SPECIFYING RAM/ROM PARTITIONING).

6.5.2 Link Editor Execution

Once the link edit control file has been created using the
development system~s text edit facilities, the link editor must
be executed using the link control file as input. The link editor
will include the application modules along with only those
modules of RX necessary for the application system to operate.

There should be no unresolved references listed in the link
editor listing output. If unresolved external references are
detected by the link editor, the link control file should be
rexamined to insure that all the user modules and the correct Rx
libraries have been supplied.

6~16

ROM
RAM

j

6.6 TARGET (CONFIGURED) Rx APPLICATION

Upon completion of Link Editor execution, the specified output
file will contain the final target application object ·module.
Figure 6-10 reiterates a_ll the steps necessary to produce an RX
load module. The module can now be tested and debugged using
either the RX Standalone Debugger or AMPL. These debugging
methods are described in the following two sections.

ASSEMBLY \
LANGUAGE

APPLICATION'

CREATE
LINK CONTROL

Fl.LE

I
EXECUTE

LINK
EDITOR

LOAD
MODULE.

FIGURE 6-10. PRODUCING AN RX LOAD MODULE.

6-17

\

)

..

t
l r-

~·

t
!

I
t

. __ , ',
tp ... ,e.~_;;

i

SECTION 7

THE .RX STANDALONE DEBUGGER

7.1 GENERAL

This section describes the purpose, capabilities, and use of the
standalone debugger supplied with RX. The standalone debugger is
designed to be included in the RX target system software to aid in
testing and locating errors. After the software has been debugged, the
standalone debugger software can be removed from the system to reduce
code size, or it can remain to assist in field testing or other
software maintenance •
•
The standalone debugger supplies the fundamental tools necessary to
debug concurrent and non-concurrent software which may be either ROM
or RAM resident~Its commands and messages are very simple in order to
conserve memory requirements. The. standalone debugger offers the
following features:

o Inspect/change/dump memory contents

o Inspect/change CRU data

o Inspect/change hardware registers (WP, PC, ST)

o Map concurrent processes

o Display process record

o Set and unset process entry traps

o Trace concurrent process scheduling

o Trap on process creation

o Set and clear instruction level breakpoint

o Simulate interrupts

o Single/multi-step execution

o Error reporting and recovery

o Operates with most standard data terminals

The standaione debugger package requires 1780 bytes of procedure space
and 56 by~es of data space. It communicates interactively with the
operator via a data terminal connected to the target system. The

7-1

• • ••·--.-...--,-- .,.,, _______ - ·- -- ,. •·-;• .. --,,---------·· c •••• •-----•·-=--·-· ·•·--.-~·.-- -~-.·--; -.,.,~."'"""'""'""' ___ ...,.._ --,-··:-""~. --.·-:;~r···-·~·-·•··-~·-:--:-··--·--.•·•.~· --...--·--:-•'

monitor may be entered at power-up, via interrupt level one, via the
load interrupt, or called directly by the application software. A
momentary switch connected on the backplane of the target system
chassis can be used to supply either the level one or load stimulus.
If RAM is located in high memory, the load vector· will be used by the
debugger and may not be used by the application software.

7.2 CONFIGURING A TARGET SYSTEM

Certain modifications must be made to the RX software system to allow
the use of the standalone debugger. These are including DBKERNEL
(rather than RXKERNEL) and the debugger in the linked system, and
supplying a data terminal at the proper I/O connector.

7.2.1 Link Control File

Figure 7-1 shows a typical link editor control file for an RX system
with debugger. INCLUDEd in the control file is the CONFIG module, the
debug version of the the kernel (DBKERNEL), and the application object
modules.

SYMT
TASK <system name> . Name of load module I

INCLUDE <device or volume>.DBKERN . or RXKERN I

INCLUDE <device or volume>.<config> . Configuration Module I

INCLUDE <device or volume>.<user app> . As many as needed I

FIND <device or volume>.RXlOBJ . Standard Routines I

FIND <device or volume>.CHNOBJ . Channel Library I

FIND <device or volume>.CLKOBJ . Clock Library I

FIND <device or volume>.RX20BJ . Optional Routines I

END

FIGURE 7-1. LINK CONTROL FILE (WITH DEBUGGER)

7.2.2 Data Terminal

A data terminal is needed by the standalone debugger for command entry
and message display. Most asynchronous data terminals including
teletypes, TI Silent 700 series terminals, and CRT type terminals with
an EIA interface may be used. The data transfer rate of the terminal
is sensed at power-up and is automatically set. The allowable data
transfer rates are listed in Table 7-1. If a 1200 baud terminal is
sensed, characters are output at a rate of 30/SEC to allow use with
certain TI Silent 700 series data terminals. Character format consists
of a start bit, 7 data bits, even parity bit, and two stop bits.

The standalone debugger software is designed to communicate via the
main port on either a TM990/101 or TM990/100 microcomputer module. If ~·
using a custom configuration, this corresponds to a TMS9902

7-2

(
\.

,/~--- -

(~_

Asynchronous Controller located at a software CRU base of >80.

1--
TABLE 7-1. ALLOWABLE DATA TRANSFER RATES

*

7.3 USING THE DEBUGGER

19200 baud
9600 baud
4800 baud
2400 baud
1200 baud*

600 baud
300 baud

110 baud

Actually transfers characters at
30 char/sec

The RX Debugger serves as an interface between the user and the user's
application system. As such, it allows the user to selectively display
information about the state of a target system in execution and/or
halt the target system to further examine or modify its environment.
This section describes how to use the RX Debugger to debug a target
system which has been configured as in Section 6.2.

7.3.1 Getting Started

The RX Debugger is given control of the target system when the system
is first powered-up, and upon RESET. To initialize the system, the
user should enter a carriage return to set the baud rate for the
terminal being used. The Debugger will then respond with the heading

RX2.0 STANDALONE DEBUGGER

and wait
for a command to be input. Once the system has been initi~lized, the
debugger may be reentered by an interrupt level one stimulus or, if
high memory is RAM, by a LOAD stimulus. Either of these may be
supplied by means of a 'momentary switch connected between the
corresponding terminal and ground on the chassis backplane. The
debugger responds with a "?" prompt upon reentry.

Whenever the RX executive software detects an error condition, the­
debugger is entered and the message "ERR= nnnn" is issued. "nnnn" is
the ~ error code detected. (Appendix B lists the RX error codes.) If
the momentary switch is not debounced, the switch may cause a spurious
interrupt for which the system prints the message "ERR=nnnn". The·

7-3

-- -·----- ------ --~- ... ----- --.---,-~.,,-"~,..;--:--·-~--.....,.-·---..

error code ~nnnn~ has no meaning in this instance, and the debugger -')
returns the ~?~ prompt. The ~GO~ command given at this point would
cau·se the system to idle. Therefore, a level 0 interrupt should be
supplied in order to reinitialize the system. (This can be simulated
using the debugger command _~SIMI o~.) When the system is
reinitialized, the ~GO~ command returns to the debugger, and the
heading and prompt are again shown.

7.3.2 Commands

The commands implemented by the RX Debugger fall into three
categories: an informatory message command (TP), system inspection and
modification commands (IM, re, IR, Po, SIMI and OAP), and control of
execution commands (SC, ABP, DBP, SB, CB, GO and IS). The informatory
message command (TP) displays information about the system in
execution but does not halt the system or otherwise affect its
execution. The system inspection and modification commands display
information about a target system which has been halted and allow the
user to modify its environment. The control of execution commands
provide means for the user to selectively halt a target system and
return to the Debugger. Any output provided by the debugger can be
prematurely terminated by pressing the escape key of the data
terminal. This causes the n?n prompt to be issued for a new command.
The escape key can also be used to terminate entry of an improperly
typed command or parameter.

1

The RX Debugger implements the following commands:)

SC <flag>
TP <flag>

Set Process Creation Trap
Trace Process Scheduling
Inspect/Modify/Dump Memory
Inspect/Modify CRU

IM <addr,addr>
IC <base,width>
IR
PD <addr>
OAP

Inspect/Modify Hardware Registers (WP, PC, ST)
Process Record Dump

ABP <addr>
DBP <addr>
SB <addr>
CB
SIMI <level>
GO
IS <count>

Display All Processes
Assign Process Breakpoint
Delete Process Breakpoint
Set Breakpoint
Clear Breakpoint
Simulate Interrupt
Return to User Context
Instruction Step

These commands are described in detail in the following sections.

7.3.2.1 Process Creation Trap (SC)

SYNTAX: SC <flag>

This command is used to set or reset a flag which,
cause the message ncREATE TRAP PR=nnnnn to be
target system to be halted whenever a new process is

7-4

when set, will
displayed and the
created. nnnnnn

is the address of the process record of the newly created process
record.

The command has an optional argument which specifies how the flag is
~9 pe set: a zero enables the process creation trap and any non-zero
value disables it. The default value (if no argument is specified) is
to enable the trap.

7.3.2.2 Trace Process Scheduling (TP)

.SYNTAX: TP <flag>

This command is used to set or reset a flag which, when set, will
cause the message "PRCS TRC PR=nnnn" to be displayed whenever an
active process is suspended and a new process becomes active. "nnnn"
is the address of the process record of the newly activated process.
This command does not cause the target system to be halted when the
message is displayed.

The command has an optional argument which specifies whether or not to
trace process scheduling: a zero enables the process trace and any
non-zero value disables it. The default value (if no argument is
specified) is to enable the trace.

7.3.2.3 Inspect/Modify/Dump Memory (IM)

SYNTAX: IM <addr,addr>

This command is used in two . ways: to display a range of memory
locations or to interactively display and/or modify memory locations.
If two arguments are input and the second is greater than the first, a
memory dump is performed from the first address to the second.
Otherwise, the contents of the first address are displayed and the
monitor waits for instructions on what to do next. At this point the
user may assign a new hexadecimal value to the memory location by
entering the new value terminated by one of the following:

1) A carriage return to return to the Debugger -ft?"
prompt mode, or

2) A minus sign to cause the Debugger to back up one
word and display that value, or

3) Anything else to display the next word of memory.

Example:

?IM 1A,2C <er> (Dump memory from >001A to >002C)
001A=0123 4567 89AB CDEF FEDC BA98 7654 3210
002A=0466 2117
?IM le <er> (Inspect/Modify memory starting at >001C)

7-5

001C=4567 !OFF <sp>
001E=89AB
001C=l0FF <sp>
001E=89AB <sp>
0020=CDEF <er>

If no argument is specified the command will go into interactive
mode at location zero.

7.3.2.4 Inspect/Modify CRU (IC)

SYNTAX: IC <base,width>

This command operates in the same manner as the IM command, with
the difference that the first argument is considered the CRU base
and the second argument is used as the transfer width. A width of
zero is considered a width of sixteen. To change either of these
arguments after the command has been entered it is necessary to
enter a carriage return and re-enter the command with the new
arguments.

7.3.2.5 Inspect/Modify Registers (IR)

SYNTAX: IR

This command displays the hardware registers WP, PC, and ST for
the current user routine. The registers are displayed one at a
time and the user is given the option of changing the register
value by entering a new value terminated by one of the following:

2) Inspecting the next register by entering a space,

3) Inspecting the same register again by entering a minus
sign, or

4) Returning to the Debugger n7n prompt mode by entering a
carriage return.

Example:

?IR
WP=908C 906C <->
WP=906C <sp>
PC=0480 121A <sp>
ST=OOOF 0000 <er>

7.3.2.6 Process Record Dump (PD)

SYNTAX: PD <addr>

7-6

\
!

/

_)

I
1-

(
\

' I
\ - ·­,, This command displays

location <addr>. If no
The meaning of each
Appendix A.

an unformatted process- record beginning at
address is specified, location zero is assumed.
field in the process record is explained in

Example:

?PD FED6
FED6=FE36 OFBC FF58 0000 0000 0000 0000 0000
FEE6=0000 0000 0000 0000 FF58 FBDA FED6 FED6
FEF6=02EO FEE2 0380 FEB6 0936 0000 0000 0000
FFOf>=OOOl FCOO FF78 0000 0000 0000 0000 0000
FF16=EBAC - EBAC FFAA 0000 FFFF 0001

7.3.2.7 DisEla All Processes (DAP)

SYNTAX: DAP

This command displays a listing of all the processes currently in the
system, starting with the active 9rocess. The listing displays the
process record pointer, process identification field of the process
record and current workspace pointer (WP) for each process. The
low-order byte of the process identification field indicates the
process number of the process in question; the high-order byte
indicates its creator#s process number. Example:

?DAP
PR=EBAC
PR=FB70
PR=FFAA
PR=B4C2
PR=FED6

ID=0102
ID=0203
ID=OOOO
ID=OOOO
ID=OOOl

WP=EBOC
WP=FB7C
WP=FFB6
WP=B462
WP=FE76

7.3.2.8 Assign Process Breakpoint (ABP)

SYNTAX: ABP <addr>

This command sets a trap on a process whose process record is at
location <addr>, such that the message nPRCS TRAP PR=nnnnn is
displayed and the target system returns to the Debugger prompt mode
whenever the process indicated becomes active. nnnnrin is the process
record address for the newly-activated process. This command has no
default argument. -

After a trap has been set the Assign Process Breakpoint command prints
a list of the traps that are currently set. A maximum of four traps
may be set at any one time.

I

7.3.2.9 Delete Process BreakEoint (DBP)

SYNTAX: DBP <addr>

7-7

This command removes a trap set
command for a process whose
After the trap has been removed
that remain set. If no value
removed.

7.3.2.10 Set Breakpoint (SB)

by the Assign
process record is

the command prints
is -entered, all

SYNTAX: SB <addr>

Process Breakpoint
at location <addr>.
a list of the traps
process traps are

This command sets a breakpoint at a given memory location, such that
the target system will halt, print a nBRK PT PC=nnnnn message and
return to the Debugger prompt mode when the breakpoint is encountered.
Only one breakpoint at a time may be resident in the system and is
removed when encountered. Entering a breakpoint when one is already
set causes the clearing of the old breakpoint. If no value is entered,
the current breakpoint is displayed.

Note that breakpoints may not be set in ROM.

7.3.2.11 Clear Breakpoint (CB)

SYNTAX: CB

This command clears the current breakpoint if one is set.

7.3.2.12 Simulate Interrupt (SIMI)

SYNTAX: SIMI <level>

This command is used to simulate an interrupt of <level> to the user~s
system. The parameter must be a valid interrupt level in the range 0
<= level <= 15. If the interrupt is simulated, the new PC and WP are
displayed. -

7.3.2.13 Return To User Context (GO)

SYNTAX: GO

This command is used to start or resume execution of- the user~s target
system. The first time GO is entered, execution begins at the
beginning of the user~s system: thereafter execution resumes wherever
it was last suspended (as by a breakpoint or a trap).

7.3.2.14 Instruction Step (IS)

SYNTAX: IS <count>

7-8

This command single-steps a target system for a specified number of
instructions and prints a "WP=nnnn PC=mmmm" message for each
instruction executed. <count> specifies the number of instructions to
be single-stepped; the default value (if none is specified) is one.

Note that Instruction Step will not work if high memory is ROM.
FFFC-FFFF must be RAM, and accessible only to the debugger.

7-9

-'

SECTION 8

DEBUGGING THE TARGET APPLICATION WITH AMPL

8.1 GENERAL

The Advanced Microprocessor Prototyping Laboratory (AMPL) provides
hardware and software tools enabling the user to perform real-time
debugging with in-circuit emulation capabilities (execution in the
target environment monitored by the host development system). Hardware
requirements for use of AMPL include an FS990/4 or FS990/10
Minicomputer System with floppy diskette storage and a Model 911 (or
913) Video Display Terminal (VDT) to provide operator interface. A
Model 810 printer can be optionally added to provide hard copy
production capability.

The FS990 systems include the AMPLUS software system. AMPLUS is an
operating system containing, an assembler, a text editor, a link
editorl and a compliment of file manager utilities.

Additional information on the AMPL system and the·FS990 system (and
peripherals) are available from the local Texas Instruments sales
office or authorized distributor.

The purpose of the information that follows is to describe a set of
predefined AMPL procedures providing a convenient user interface with
target application systems supported by the rue. Examples of system
output will be provided for those routines that require it. Following
the description of these procedures, a debug session (listing) is
presented to demonstrate the procedures' actual use. ·

8.2 AMPL PROCEDURES

A set of AMPL II procedures are supplied the user. For those using
AMPL I systems, instructions are provided to convert AMPL II
procedures to AMPL I by removing comments from existing statements.
These instructions are found in the source code for the AMPL II
procedures.

There are three files containing AMPL procs, grouped according to
these functions:

1) Basic commands INIT, GO, HALT, IS, SB, CB, SIMI, HELP

2) Process commands SC, TP, ABP, DBP, DAP, PD

3) Miscellaneous commands HP, RP, SM, MM, SP, SF, SH,
SEMA

8-1

These are broken into three files to accomodate systems with
limited memory, and normally all three sets of commands are used.
The first set of commands must be read in, and either of the
other files may also be used. If some other combination of
procedures is desired, the user may edit the file containing the
desired proc or procs and extract them. They may then be read in
usinng the AMPL COPY command.

8.3 INSTRUCTION SIMULATION PROCEDURES

The following procedures simulate specific actions in the target
system.

8.3.1 Procedure INIT

PURPOSE: Initialize the debugger with the or1g1ns of RX Routines
S$$PRC, INT$PC, RELINQ and SWITCH. These addresses are needed to
set hooks in RX code to implement the 'Sc', 'TP' and 'ABP'
commands. Init will also initialize the ready queue and the
suspend HP queue to NIL.

CALLING SEQUENCE: INIT

The user will be prompted for the origins of the particular
system routines via the form ,INIT'.

ARG 1 -
ARG 2
ARG 3
ARG 4

The origin of
The origin of
The origin of
The origin of

routine
routine
routine
routine

S$$PRC
INIT$PC
RELINQ
SWITCH

EXECUTION: The message ,INITIALIZATION COMPLETE' is printed after
all initialization has been performed.

CONDITIONS: The user should enter zero for any routine not
in his system.

AMPL I
EXAMPLE: ? INIT

INITIALIZATION COMPLETE

EXAMPLE: ?INIT

INITIALIZATION COMPLETE

8-2

_)

8.3.2 Procedure HELP

PURPOSE: Display information about the commands available with
the RX target debugger.

CALLING SEQUENCE: HELP .

CONDITIONS: None.

EXAMPLE: ? HELP

* RX TARGET DEBUGGER COMMANDS *

INIT(<load address>)
GO
HALT
IS
SB(<ADDR<,ADDR ••• >>)
CB(<ADDR<,ADDR ••• >>)
SC (<FLAG>)
TP (<FLAG>)
ABP(<PROCESS<,PROCESS •• >>)
DBP(<PROCESS<,PROCESS •• >>)
HP(<PROCESS RECD>)
RP (PROCESS RECD)
SIMI (LEVEL)
SM(ADDR<,DISP<,LENGTH>>)
MM(ADDR,OLD,NEW)
DAP
PD(PROCESS RECD)
SP (PROCESS RECD)
SF (ROUTINE ADDR)
SH (HEAP PACKET)
SEMA (SEMAPHORE)

8-3

INITIALIZE DEBUGGER
- START EMULATOR EXECUTION
- HALT EMULATOR EXECUTION
- SINGLE-STEP INSTRUCTION(S)
- SET SOFTWARE BREAKPOINT(S)
- CLEAR SOFTWARE BREAKPOINT(S)
- HALT ON PROCESS CREATIONS
- TRACE PROCESS ACTIVATIONS
- ASSIGN PROCESS TRAP(S)
- DELETE PROCESS TRAP(S)
- HOLD PROCESS
- RELEASE PROCESS
- SIMULATE INTERRUPT
- SHOW MEMORY
- MODIFY MEMORY
- DISPLAY ALL PROCESSES
- DISPLAY PROCESS RECORD
- SHOW PROCESS
- SHOW STACK FRAME
- SHOW HEAP PACKET
- DISPLAY SEMAPHORE

8.3.3 Procedure SIMI

PURPOSE: Simulate an interrupt at a particular interrupt level
in the target system.

CALLING SEQUENCE: SIMI(level)

where <level> is the level of the interrupt request.

EXECUTION: If the interrupt is allowed to occur (determined by
checking ST), a BLWP is perfomed through the vector stored at the
appropriate interrupt level. Also, the priority of the CPU is set
to the level of the interrupt minus one. SIMI returns ~INTERRUPT
IS NOT ALLOWED~ if the interrupt was not allowed, and ~INTERRUPT
SUCCESSFUL~ if it was.

CONDITIONS: SIMI may be called whenever the emulator is halted.
The interrupt is serviced only if the CPU~s priority is
numerically less than or equal to the level on which the
interrupt is raised.

EXAMPLE: ? SIMI(O)
INTERRUPT SUCCESSFUL

8.4 BREAKPOINT PROCEDURES

The following procedures implement breakpoints in the target
software.

8.4.1 Procedure SB

PURPOSE: Set a breakpoint or inspect all current breakpoints.

CALLING SEQUENCE:

Set Breakpoints: SB(addr,addr •••) where addr is the address at
which the system sets each breakpoint. (~addr~ must be a RAM
location.)

Check Breakpoints: SB

EXECUTION: The message ~BREAKPOINT SET AT addr~ is printed for
each breakpoint set. Up to 16 breakpoints may be set at any one
time.

CONDITIONS: A breakpoint will not be set when the breakpoint
table is full (the message noted above in nExecutionn will not
print).

8-4

8.4.2 Procedure CB

PURPOSE: Clear the given (or all) breakpoints.

CALLING SEQUENCE:

Clear The Breakpoints Given: CB(addr,addr •••)

where (addr) is the address of the breakpoint to be cleared.

Clear All Breakpoints: CB

EXECUTION: The message 'BREAKPOINT CLEARED AT addr' is printed
for each breakpoint cleared.

CONDITIONS: If user supplied address in call contains no
breakpoint, the message noted above will not print.

8.4.3 Procedure GO

PURPOSE: Start Emulator Execution

CALLING SEQUENCE: GO

EXECUTION: Target system execution starts from a software
breakpoint and continues up to the next software breakpoint
encountered. The instruction at this encountered breakpoint is
not executed. Software breakpoints are set by the SB (SET
SOFTWARE BREAKPOINT) command and cleared by the CB (CLEAR
BREAKPOINT) command.

CONDITIONS: The GO procedure uses an internal procedure called
'EBRON' which uses both the emulator and trace modules• Users who
do not have a trace module may use an alternate version of
'EBRON' by editing the procedure file, commenting out the current
version, and removing comment delimiters from the alternate
version.

EXAMPLE: ? GO
PROCESS CREATED: PR = >9EDA

? GO
PROCESS ACTIVE: PR = >9EDA
PROCESS CREATED: PR = >8BB0

8-5

8.4.4 Procedure SC

PURPOSE: Enable
procedure.

process creation monitoring -by the ~GO'

CALLING SEQUENCE: SC(flag)

where (flag) ON = nMONITOR PROCESS CREATIONSn, and flag OFF = noo
NOT MONITOR PROCESS CREATIONSn. (Note that the default = ON.)

EXECUTION: When monitoring is in effect and ~GO~ is entered, the
emulator will be halted and message ~PROCESS CREATED : PR= >nnnn~
will be printed every time a new process is created.

CONDITIONS: None.

8.4.5 Procedure TP

PURPOSE: Enables process activation monitoring by the ~Go'.

CALLING SEQUENCE: TP(flag)

where (flag) ON = nMONITOR PROCESS ACTIVATIONSn, and flag OFF =
nDO NOT MONITOR PROCESS ACTIVATIONSn. (Note that the default =
ON.)

EXECUTION: When monitoring is in effect and 'GO~ is entered, the
emulator will be halted and the message ~PROCESS ACTIVE: PR=
>nnnn~ will be printed every time a new process is created.

CONDITIONS: None.

8.5 REALTIME EXECUTIVE PROCEDURES

The following AMPL procedures
Microprocessor Executive.

8.5.1 Procedure HP

PURPOSE: Hold an RX process.

CALLING SEQUENCE: HP(addr)

use constructs of the

where (addr) is the address of the process record of the process
to be held. (Entering ~HP~ by itsei+ will print a li~t of all the
currently held processes.)

EXECUTION: The process is removed from the ready queue or
semaphore queue in a suspend queue that exists outside of the RX
system.

8-6

')
. _,/

\

-_J I

CONDITIONS: The process may not execute until it is released via
the RP procedure. A process may not be held when the processor is
halted at a process crea·tion breakpoint; ABP or SB may be used to
halt the processor at a later point to perform the HP operation.

8.5.2 Procedure RP

PURPOSE: Release a process held by HP.

CALLING SEQUENCE: RP(process)

where (process) is the process to be released.

EXECUTION: A process that has been
the suspend queue and either
resuspended upon a semaphore that
held.

held by HP is released from
scheduled for execution or

it. was suspended upon when

CONDITIONS: A process may not be released when the processor is
halted at a process creation breakpoint; ABP or SB may be used to
halt the processor at a later point to perform the RP operation.

8.5.3 Procedure ABP

PURPOSE: Assign process traps.

CALLING SEQUENCE: ABP(addr)

where (addr) is the address of the process record of the process
to be "trapped".

EXECUTION: A breakpoint is set on a given process so that the
system is halted at the next instance in which the process
becomes active. The message ~PROCESS TRAPPED: PR= >nnnn~ will be
printed when this occurs. ·

CONDITIONS: If no argument is supplied, a list of all process
traps currently set is printed. A maximum of four process traps
may be set at any one time.

EXAMPLE: ? ABP
LIST OF ALL TRAPS CURRENTLY SET

PROCESS >9EDA
PROCESS >8BB0

8-7

8.5.4 Procedure DBP

PURPOSE: Delete process traps.

CALLING SEQUENCE: DBP(addr)

where (addr) is the address of a process record of a process for
which a trap is to be removed.

EXECUTION:

CONDITIONS: If no argument is supplied, all currently set traps
will be removed. Up to four traps may be removed at one time.

8.5.5 Procedure PD

PURPOSE: Print a formatted dump of an RX process record.

CALLING SEQUENCE: PD(addr)

where (addr) is the address of the process record to be
displayed.

EXECUTION: The procedure prints out a formatted listing of an RX
process record given its address.

CONDITIONS: None.

EXAMPLE:
?PD(05960)

DUMP OF PROCESS RECORD AT >5060

NEXTWS = >590C LEX$8 = >0000 PC = >OC7A FIRST =
CALL = >0268 LEX$9 = >0000 ST = >DOOO NS/OBJ =
UNUSED = >0000 GLOBAL = >595C OUTPUT = >0000 OBJECT =
LEX$1 = >595C STKMIN = >517C INPUT = >0000 PRLIST =
LEX$2 = >0000 STKMAX = >592C PRITY = >001E LSTRTD =
LEX$3 = >0000 UNUSED = >0000 CLKSRV = >0000 QNEXT =
LEX$4 = >0000 LWPI = >02EO MPXPTR = >5FF0 QUEUE =
LEX$5 = >0000 CNTEXT = >596C CL/RS = >0000 INTLVL =
LEX$6 = >0000 RTWP = >0380 XHNDLR = >0000 CR/MY =
LEX$7 = >0000 WP = >5FCE

8.5.6 Procedure SEMA

PURPOSE: Display information about a semaphore.

CALLING SEQUENCE: SEMA(addr)

where (addr)is the address of the semaphore.

8-8

')

>0000
>0000
>0000
>5CFC
>0000
>0000
>0000
>0000
>0304

EXECUTION: This procedure prints out a listing of a semaphore
value given a semaphore address.

CONDITIONS: None.

8.5.7 Procedure SM

PURPOSE: Show memory.

CALLING SEQUENCE: SM(addr,<length>,<displacement>)

where (addr) is the address to start, <length> is the length to
display (default=2), and <displacement> is the displacement to
display (default=O)

EXECUTION: Shows the contents of one or more absolute memory
locations.

CONDITIONS: None.

EXAMPLE: ? SM(>8BB0,>4C)
>8BB0 (>0000) >8B10 >0676 >9F5C >9BD2 (.. .v ./
>8BB8 (>0008) >0000 >0000 >0000 >0000 (.. ..

SAME AS LAST LINE
>8BC8 (>0018) >9BD2 >878C >8BB0 >8BB0 (.. .< .o
>8BD0 (>0020) >02EO >8BBC >0380 >8B90 (.. ..
> BOS (>0028) >0284 >OOOF >0000 >0000 (.. . .
>8BE0 (>0030) >OOlE >FCOF >9F7C >0000 (..
>8BE8 (>0038) >0000 >0000 >0000 >0000 (.. . .
>8BF0 (>0040) >9B74 >9B74 >9FAE >0000 (.. .t
>8BF8 (>0048) >0102 >0102 (..

8.5.8 Procedure MM

PURPOSE: Modify memory.

CALLING SEQUENCE: MM(addr,old,new)

where (addr) is the address to modify, (old) is the verification
value, and (new) is the new value.

EXECUTION: Modifies the contents of any single (word) location in
memory. Note that caution should be exercised when using this
command.

CONDITIONS: None.

8-9

.R)
)

.o)
) . .)
)
)
)
)

8.5.9 Single Step In~truction(s) (IS)

PURPOSE: Instruct the emulator to execute a specified number
instruction and then halt.

CALLING SEQUENCE: IS(count)

where (count) specifies the
individually stepped through.
default is one.

number
When no

of instructions to be
argument is supplied,

EXECUTION: One or more instructions are executed in single-step
mode, printing information about each instruction before it is
executed. 'IS' prints the current instruction, the current WP, PC
and ST, and the source and destination operands (if any),
executes the current instruction and then displays the above
information about the next INSTRUCTION TO BE EXECUTED.

CONDITIONS: The emulator comparison logic may not be utilized
during use of the IS procedure. However, IS can be used with with
the emulator trace logic and the trace module when only the
instruction need be recorded.

8.5.10 Procedure SP

PURPOSE: Show process.

CALLING SEQUENCE: SP(process)

where (process) is the address of the process record.

EXECUTION: Displays information about stack and heap usage,
process ID, exceptions outstanding, etc.

CONDITIONS: None.

EXAMPLE: ? SP(>8BB0)
? SP(>8BB0)

SHOW PROCESS >8BB0

STACK BASE = >878C
STACK SIZE = >083F

STACK LIMIT
STACK USED (MAX)

= >8BB0
= >087F

STACK BOUNDARY
STACK USED (CUR)

PRIORITY = 30
NO OUTSTANDING EXCEPTIONS
NEXT PROCESS IN LIST = >9B74
CREATOR'S ID = >01

NEXT PROCESS IN QUEUE = >9FAE
MY ID = >02

8-10

= >8BB0
= >7FAF

I
I

8.5.11 Procedure SF

PURPOSE: Show stack frame.

CALLING SEQUENCE: SF(<addr>,<displacement>,<length>)

where (addr) is the address of the routine or process code
(default=current routine), <displacement> is the displacement
into the frame (default=O), <length> is the length to display
(default=rest of frame).

EXECUTION: Displays the specified memory locations. The message
'STACK FRAME NOT FOUND' is printed if the requested routine or
process is not in the system at the time SF is entered.

CONDITIONS: None.

8.5.12 Procedure SH

PURPOSE: Show heap packet.

CALLING SEQUENCE: SH(addr,<displacement>,<length>)

where <addr> is the address of the heap packet, <displacement> is
the displacement into the packet (default=O), and <length> is the
length to display (default=rest of packet).

CONDITIONS: None.

8.5.13 Procedure HALT

PURPOSE: Halt emulator (and trace module) execution.

CALLING SEQUENCE: HALT

EXECUTION: HALT will reset the default process to the currently
active process.

CONDITIONS: None.

8.6 AMPL WALK-THROUGH DEBUGGING SESSION

The listing that follows demonstrates a debugging session with
AMPL utilizing 'RXDEMO' as the program being debugged. Note that
Appendix E supplies the user an assembler listing and link map of
'RXDEMO' for use with this session.

8.6.1 Getting Ready

8-11

·~ .

,. ..
• 4.c
;; :

·f - ..

Before proceeding with the debug session, a set of "compiled"
AMPL II - procedures should be built. This will provide for fast
access to the AMPL emulator in future debug sessions. The same
set of compiled procedures can be used on all RX systems,
therefore time spent will pay dividends in the future. To build
this set of procedures, load AMPL and proceed as shown below:

? CLR(50)

? COPY(""<pathname Of RXAMPLA"") Load and "compile" the

? COPY(""'<pathname of RXAMPLB"") procedures which are

? COPY(""<pathname of RXAMPLC"") provided with RX

? COPY(""<pathname of user proc> "") Repeat with any user procs

? SAVE(""<pathname of saved procs>"") "SAVE" the compiled procs

? EXIT Finished with this phase

CAUTION

DO NOT remove this disk during the debug session as the second
generation of AMPL uses overlays on the disk which contains the
debug session. At the beginning of a session, always reload AMPL
to ensure the initial state of this disk is recorded by AMPL. For
every other debug session, restore the procedures to the system.

Note that when attempting "'COPY"', the user must first perform a
CLR command with an operand of 50 to ensure that a symbol table
of the appropriate size is created. ·

8.6.2 The Debug Session

The debug session begins as any other, with loading of the AMPL
program (NOTE:comments are bracketed by asterisks, and are not to
be typed in) :

*** OBTAIN A HARD COPY (if desired} ***

? LIST(""LP"")

*** RESTORE THE SAVED PROCEDURES ~**

? RSTR(""<path name of saved RX procs>"")

*** INITIALIZE THE BUFFER AND TRACE MODULES ***

? EINT(""EMOl"",0,""TMOl"") •• 0 ==> target clock

8-12

·,

)
. '._./'

'1

I-

•• 1 ==> host clock

*** LOAD THE DEMONSTRATION PROGRAM ***

? LOAD('<path name of demo load module>',0)

*** GET A LISTING OF THE SYMBOLS DEFINED ***

? MSYM

LOAD MODULE SYMBOLS:
LOAD POINT: >0000, LENGTH: >150E BYTES.

RX DEMO PGMID >0000 RXKERN IDT >0000 CONFIG IDT >08D8
$BOOTP LCL >08E4 $DEFAU LCL >08DE $FILL LCL >08EO
$IODIR LCL >08F0 $LREX LCL >08DA $RAMTB LCL >08EE
$RESTA LCL >08D8 $STKSZ LCL >08E2 $SYSCR LCL >08DC
I OD IR LCL >08F8 RAM TB LCL >08F2 RX DEMO IDT >OBFA
EPILOG LCL >092C FRMSIZ LCL >0902 HPSIZE LCL >090A
LEXLVL LCL >0904 PRIORI LCL >0906 PROLOG LCL >090C
RX DEMO LCL >08FA STKSIZ LCL >0908 SYS TM$ LCL >08FA
PRODUC IDT >0938 EPILOG LCL >0AF6 FRMSIZ LCL >0940
HPSIZE LCL >0948 LEXLVL LCL >0942 PRIORI LCL >0944
PRODUC LCL >0938 PROLOG LCL >09DC SEND LP LCL >0A42
STKSIZ LCL >0946 CONS UM IDT >0B02 CONS UM LCL >0B02
EPILOG LCL >0BE6 FRMSIZ LCL >OBOA HPSIZE LCL >0Bl2
LEXLVL LCL >OBOC PRIORI LCL >OBOE PROLOG LCL >0B48
STKSIZ LCL >OBlO WAITLP LCL >0B70 WAITIO IDT >0BF2
BAUD LP LCL >OC40 BAUD TB LCL >0C50 CHARLP LCL >0D24
CONTRL LCL >0C4E CR LCL >0CE7 FOUND LCL >0CC2
LOAD LP LCL >0C36 MATCH LCL >0C48 MS GENT LCL >0D20
MSGEXI LCL >0D3C NULLCH LCL >0CE6 PAD LCL >0CD2
PADCR LCL >OCDO SENDOF LCL >0CE2 TABLE LCL >0CE8
TBLLP LCL >0CB8 TES TSP LCL >0Cl0 TI$CIN LCL >0C70
TI$COT LCL >OC92 TI$MSG LCL >0Dl8 TI$SET LCL >0BF2
TIME LP LCL >OC26 WAITLP LCL >0C84 WTLP$1 LCL >OCAE
WTLP$2 LCL >0CD6 E$PRCS IDT >0D40 GHOST$ IDT >0EA4
C$ACKN IDT >OEDC C$ALLO IDT >OFOE C$INIT IDT >OFAA
C$RECE IDT >1094 C$SEND IDT >1102 C$TERM IDT >1182
C$WAIT IDT >1212 C$$MSG IDT >1244 C$$HEA IDT >125E
CLK$TE IDT >1278 CKSEMA IDT >1314 D$INIT IDT >132C
D$TERM IDT >1330 EXIT$1 IDT >1334 F$TERM IDT >1354
HP$SYS IDT >1358 IN I TSE IDT >1364 MSG$IN IDT >13AC
MY$MPX IDT >13B8 RT$ENT IDT >13C2 RT$EXI IDT >13D0
SETMAS IDT >13D8 TERMSE IDT »13F4 CK$SEM IDT >142E
EXCEPT IDT >1442 EXIT$0 IDT >1460 HP$FRE IDT >146E
HP$NEW IDT >14B2

100 ENTRIES IN TABLE.

8-13

*** GET A LIST OF COMMANDS AVAILABLE ***

? HELP

* RX TARGET DEBUGGER COMMANDS *

INIT<(LOAD ADDR)>
GO
HALT
IS<(COUNT)>
SB(<ADDR<,ADDR ••• >>)
CB(<ADDR<,ADDR ••• >>)
SC(<FLAG>)
TP(<FLAG>)
ABP(<PROCESS<,PROCESS •• >>)
DBP(<PROCESS<,PROCESS •• >>)
HP (<PROCESS RECD>)
RP (PROCESS RECD)
SIMI (LEVEL)
SM(ADDR<,DISP<,LENGTH>>)
MM(ADDR,OLD,NEW)
OAP
PD(PROCESS RECD)
SP (PROCESS RECD)
SF(ROUTINE ADDR)
SH (HEAP PACKET)
SEMA (SEMAPHORE)

- INITIALIZE DEBUGGER
- START EMULATOR EXECUTION
- HALT EMULATOR EXECUTION
- SINGLE-STEP INSTRUCTION(S)
- SET SOFTWARE BREAKPOINT(S)
- CLEAR SOFTWARE BREAKPOINT(S)
- HALT ON PROCESS CREATIONS
- TRACE PROCESS ACTIVATIONS
- ASSIGN PROCESS TRAP(S)
- DELETE PROCESS TRAP(S)
- HOLD PROCESS
- RELEASE PROCESS
- SIMULATE INTERRUPT
- SHOW MEMORY
- MODIFY MEMORY
- DISPLAY ALL PROCESSES

DISPLAY PROCESS RECORD
SHOW PROCESS

- SHOW STACK FRAME
- SHOW HEAP PACKET
- DISPLAY SEMAPHORE

*** INITIALIZE THE RX PROCS ***

? INIT
INITIALIZATION COMPLETE

*** SIMULATE A LEVEL ZERO INTERRUPT ***
*** TO RESET THE SYSTEM ***

? SIMI (0)
INTERRUPT SUCCESSFUL

*** TRACE PROCESS ACTIVIATION ***

? TP

*** HALT ON PROCESS CREATION ***

? SC

8-14

)

I
./

\ __ .

? GO
PROCESS
PROCESS
PROCESS
PROCESS

? GO
PROCESS
PROCESS
PROCESS
PROCESS

? GO
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS

? GO
PROCESS
PROCESS
PROCESS
PROCESS

? GO
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS

*** START EMULATION ***

ACTIVE: PR= >9F72
ACTIVE: PR= >9F72
ACTIVE: PR= >9F72
CREATED: PR= >9CE0

*** GHOST$ PROCESS STARTED ***

ACTIVE: PR = >9F72
ACTIVE: PR= >9F72
ACTIVE: PR= >9F72
CREATED: PR= >9C5E

*** SYSTEM PROCESS STARTED ***

ACTIVE: PR= >9F72
ACTIVE: PR= >9F72
ACTIVE: PR = >9F72
ACTIVE: PR= >9F72
ACTIVE: PR = >9CSE
ACTIVE: PR= >9CSE
ACTIVE: PR= >9CSE
CREATED: PR= >99FC

*** PRODUCER PROCESS STARTED ***

ACTIVE: PR= >9C5E
ACTIVE: PR= >9CSE
ACTIVE: PR= >9C5E
CREATED: PR= >9794

*** CONSUMER PROCESS STARTED ***

ACTIVE: PR= >9CSE
ACTIVE: PR= >9C5E
ACTIVE: PR= >9C5E
ACTIVE: PR= >9C5E
ACTIVE: PR= >99FC

*** TYPE A CARRIAGE RETURN ON THE TARGET SYSTEM ***
*** TO AUTO-BAUD THE TERMINAL, THEN TYPE ANY LETTER ***
*** TO BE INPUT TO THE PRODUCER PROCESS. ***

PROCESS ACTIVE: PR = >99FC
PR = >99FC
PR = >99FC
PR = >99FC
PR = >99FC

PROCESS ACTIVE:
PROCESS ACTIVE:
PROCESS ACTIVE:
PROCESS ACTIVE:

8-15

PROCESS ACTIVE: PR = >9794
PROCESS ACTIVE: PR= >9794
PROCESS ACTIVE: PR = >9794
PROCESS ACTIVE: PR= >9794
PROCESS ACTIVE: PR= >99FC

*** HIT <CMD> ON THE HOST SYSTEM ***
*** TO ENTER COMMAND MODE ***

? HALT

*** TURN OFF PROCESS TRACING ***

? TP(OFF)

? SC (OFF)

*** DISPLAY ALL PROCESSES IN SYSTEM ***

? DAP
STATUS SUMMARY OF ALL EXISTING PROCESSES

PROCESS NUMBER ADDRESS
4 >99FC
2 >9CE0
5 >9794

LEXICAL
LEVEL

1
1
1

CURRENT
STATUS
ACTIVE
READY
WAITING

PRIORITY
256

32767
256

*** >99FC IS THE PROCESS RECORD ADDRESS FOR THE PRODUCER ***
*** >99EO IS THE PROCESS RECORD ADDRESS FOR THE IDLE PROCESS ***
*** >9974 IS THE PROCESS RECORD ADDRESS FOR THE CONSUMER ***

*** DISPLAY THE REGISTERS FOR THE CURRENT ROUTINE ***

? DR
RO = >0000 R8 = >0C70 PC = >0C86 I >16FE JNE WAITIO.WAITLP
Rl = >9560 R9 = >97E6 wP = >99A2'
R2 = >0000 RlO = >97E2 ST = >900F
R3 = >5400 Rll = >0000
R4 = >0000 Rl2 = >0080
RS = >0000 Rl3 = >99C2
R6 = >0000 Rl4 = >OA52
R7 = >99FC RlS = >800F

*** SET A BREAKPOINT IN PRODUC AFTER CALL TO TI$CIN ***

? SB(PRODUC.+>llA)

BREAKPOINT SET AT PRODUC.+>OllA / >CEA9 MOV @RXDEM0.+>0002(R9) ,*RlO+

*** RESTART EMULATION ***

? GO

8-16

-~
j

\

j

*** NOW TYPE ~K~ ON THE TARGET TERMINAL ***

BREAKPOINT ENCOUNTERED AT ADDRESS: PRODUC.+>OllA / >CEA9 MOV @RXDEM0.+>00
9) , *RlO+

? SF

*** DISPLAY THE LOCAL FRAME OF THIS PROCEDURE ***
*** THIS WILL NOT WORK FOR ROUTINES WITH AN ***
*** OPTIMIZED LINKAGE ***

STACK FRAME FOR ROUTINE PRODUC.
>99F4 (>0000) >0068 >956E >9560 (.h • n

WORKSPACE REGISTERS ARE:
RO = >0000 RS = >0938 PC
Rl = >9560 R9 = >99F4 WP
R2 = >9560 RlO = >97E2 ST
R3 = >0000 Rll = >0A52

= >0A52
= >99C2
= >800F

I >CEA9 MOV @RXDEM0.+>0002(R9) ,*RlO

R4 = >0000 Rl2 = $0000
RS = >0000 Rl3 = >9C2A
R6 = >0000 Rl4 = >0928
R7 = >99FC RlS = >OOOF

*** DISPLAY THE MESSAGE BUFFER Rl POINTS ***
*** TO FOUR BYTES OF INFORMATION. ***

? SM (Rl, 4)
>9560 (>0000) >004B >0068 (. K • h,

*** A MESSAGE BUFFER IS PART OF A HEAP PACKET ***
*** MSGBUF-4 POINTS TO THE START OF THE PACKET ***
*** SH (SHOW HEAP) WILL DISPLAY THE WHOLE PACKET ***

? SH (Rl-4)
HEAP PACKET AT
>955C (>0000)
>9564 (>0008)

ADDRESS: >955C SIZE: >OOOA
>9554 >0000 >004B >0068
>0009

(• T .K
(..

*** THE FIRST WORK OF A MESSAGE PACKET IS A ***
*** SEMAPHORE USED TO ASSURE EXCLUSIVE ACCESS ***
*** THERE ARE NO WAITERS ON IT BEFORE A ***
*** MESSAGE HAS BEEN SENT TO THE CONSUMER ***

? SEMA (> 9 5 5 4)
SEMAPHORE VALUE IS >9554

THERE ARE NO WAITERS OR UNRECEIVED SIGNALS PRESENT
THIS SEMAPHORE IS NOT ASSOCIATED WITH ANY INTERRUPTS

8-17

.h

*** IS(N) WILL SINGLE STEP EXECUTION ~N~ STEPS ***

? IS

MOV @RXDEM0.+>0002(R9) ,*RlO+
WP=>99C2 PC=>0A52 ST=>800F SRC=>99F6 I >956E DST=>97E2'
WP=>99C2 PC=>OA56 ST=>800F SRC=>99F6 I >956E DST=>97E2

MOV Rl, *RlO+
? IS

MOV Rl,*RlO+
WP=>99C2 PC=>OA56 ST=>800F SRC=>99C4 I >9560 DST=>97E4
WP=>99C2 PC=>OA58 ST=>800F SRC=>99C4 I >9560 DST=>97E4

BLWP *R7

*** DON~T SINGLE STEP THROUGH A SUBROUTINE CALL ***
*** IT WILL WORK, BUT IT WILL TAKE A LONG TIME ***
*** TO GET BACK TO THE PRODUC PROCESS ***

*** INSTEAD, SET A BREAKPOINT AFTER THE CALL ***

? SB (PC+4)

I
I

I
I

BREAKPOINT.SET AT PRODUC.+>0124 / >CEA8 MOV @RXDEM0.+>0016(R8) ,*RlO+
? GO

>0080
>956E

>9560
>9560

BREAKPOINT ENCOUNTERED AT ADDRESS: PRODUC.+>0124 / >CEA8 MOV @RXDEM0.+>0016
8) , *RlO+

*** STEP FIVE MORE INSTRUCTIONS ***

? IS (5)

MOV @RXDEM0.+>0016(R8) ,*RlO+
WP=>99C2 PC=>OA5C ST=>200F SRC=>094E
WP=>99C2 PC=>OA60 ST=>COOF SRC=>094E

MOV @RXDEMO.(R9),*Rl0+
WP=>99C2 PC=>OA60 · ST=>C00F SRC=>99F4
WP=>99C2 PC=>OA64 ST=> CO OF SRC=>99F4

MOV RB ,R2
WP=>99C2 PC=>OA64 ST=>COOF SRC=>99D2
WP=>99C2 PC=>OA66 ST=>COOF SRC=>99D2

AI R2,RXDEM0.+>003D
WP=>99C2 PC=>OA66 ST=>COOF SRC=>99C6
WP=>99C2 PC=>OA6A ST=>COOF SRC=>99C6

MOV R2, *RlO+
WP=>99C2 PC=>OA6A ST=>COOF SRC=>99C6
WP=>99C2 PC=>0A6C ST=>COOF SRC=>99C6

BLWP *R7

8-18

I >0080
I >0080

I >0068
I >0068

I >0938
I >0938

I >0938
I >0975

I >0975
I >0975

DST=>97E2 I >956E
DST=>97E2 I >0080

DST=>97E4 I >9560
DST=>97E4 I >0068

DST=>99C6 I >9560
DST=>99C6 I >0938

DST=>97E6 I >9566
DST=>97E6 I >0975

i
1-

*** THE ARGUMENTS HAVE BEEN PUSHED, DISPLAY ***
*** THE TOP THREE ITEMS ON THE STACK ***

? SM(Rl0-6,6)
>97E2 (>0000) >0080 >0068 >0975 (.. .h • u

*** >0975 IS A POINTER TO A STRING IN ROM, ***
*** DISPLAY THE STRING WHICH IS 15 CHARACTERS ***

? SM(>0975,15)
>0974 (>0000) >0050 >524F >4455 >4345
>097C (>0008) >5220 >5345 >4E44 >5320

(.P RO DU CE
(R SE ND S

*** SET ANOTHER BREAKPOINT AFTER THE NEXT CALL ***

? SB(PC+4)

SREAKPOINT SET AT PRODUC.+>0138 / >CEA8 MOV @RXDEM0.+>0016(R8) ,*RlO+
? GO

*** THE TARGET TERMINAL JUST PRINTED ~PRODUCER SENDS ' ***

BREAKPOINT ENCOUNTERED AT ADDRESS: PRODUC.+>0138 / >CEA8 MOV @RXDEM0.+>001E
8),*RlO+

*** NOW GET RID OF ALL BREAKPOINTS ***

? CB
CLEARING ALL BREAKPOINTS

*** SHOW THE CONSUMER PROCESS ***

? SP(>9794)
SHOW PROCESS >9794

STACK BASE = >957C STACK LIMIT = >975C
3TACK SIZE = >01C0 STACK USED (CUR) = >0004
PRIORITY = 256
NO OUTSTANDING EXCEPTIONS
NEXT PROCESS IN LIST = >99FC NEXT PROCESS IN QUEUE = >9CE0
CREATOR'S ID = >03 MY ID = >05

8-19

*** DUMP THE CONSUMER PROCESS RECORD ***

? PD(>9794)
DUMP OF PROCESS RECORD AT >9794

NEXTWS = >971C LEX$8 = >0000 PC = >OB60 FIRST = >0000
CALL = >028E LEX$9 = >0000 ST = >OOOF NS/OBJ = >0100
UNUSED = >0000 GLOBAL = >978E OUTPUT = >0000 OBJECT = >0000
LEX$1 = >978E STKMIN = >957C INPUT = >0000 PRLIST = >99FC
LEX$2 = >0000 STKMAX = >975C PRITY = >0100 LSTRTD = >0000
LEX$3 = >0000 UNUSED = >0000 CLKSRV = >0000 QNEXT = >9CE0
LEX$4 = >0000 LwPI = >02EO MPXPTR = >9FE6 QUEUE = >9566
LEX$5 = >0000 CNTEXT = >971C CL/RS = >0000 INTLVL = >FFFF
LEX$6 = >0000 RTWP = >0380 XHNDLR = >0000 CR/MY = >0305
LEX$7 = >0000 WP = >975C

*** SET A PROCESS BREAKPOINT ON THE CONSUMER ***

? ABP(>9794)

? GO
PROCESS TRAPPED: PR = >9794

*** SET A BREAKPOINT AFTER THE CALL TO C$RECEIVE ***

? SB(CONSUM.+>7E)

BREAKPOINT SET AT CONSUM.+>007E / >C069 MOV @RXDEM0.+>0002(R9) ,Rl
? GO

\

BREAKPOINT ENCOUNTERED AT ADDRESS: CONSUM.+>007E / >C069 MOV @RXDEM0.+>0002
9), Rl

*** SHOW THE FRAME TO FIND THE ADDRESS OF THE MESSAGE ***

? SF
STACK FRAME FOR ROUTINE CONSUM.
>978E (>0000) >956E >9560

WORKSPACE REGISTERS ARE:
RO = >0000 RS = >0B02 PC
Rl = >9560 R9 = >978E wP
R2 = >9790 RlO = >957C ST
R3 = >0000 Rll = >0B80
R4 = >0000 Rl2 = >0000
RS = >0000 R13 = >9C2A
R6 = >0000 R14 = >092C
R7 = >9794 R15 = >300F

= >0B80
= >975C
= >800F

8-20

(.n ...

I >C069 MOV @RXDEM0.+>0002(R9) ,Rl

*** DUMP THE MESSAGE PACKET; REMEMBER THE PACKET
*** STARTS 4 BYTES BEFORE THE MESSAGE BUFFER

? SH(Rl-4)
HEAP PACKET AT
>955C (>0000)
>9564 (>0008)

ADDRESS: >955C SIZE: >OOOA
>9.~54 . >0000 >004B >0068
>0009

*** INDEED, THE CHARACTER IN THE ***
*** MESSAGE IS >4B, OR 'K' ***

(• T .K
(..

*** SHOW THE ACCESS SEMAPHORE FOR THE MESSAGE ***

? SEMA(>9554)
SEMAPHORE VALUE IS >9554

THERE ARE 1 WAITERS PRESENT
THIS SEMAPHORE IS NOT ASSOCIATED WITH ANY INTERRUPTS

.b)
)

*** THE CONSUMER HAS ALLOCATED THE MESSAGE BUFFER, ***
*** SO THE PRODUCER HAS TO WAIT UNTIL THE CONSUMER ***
*** IS FINISHED BEFORE IT CAN SEND THE NEXT MESSAGE ***

*** NOW, LET THE PROGRAM RUN UNTIL IT FINISHES ***

? CB
CLEARING ALL BREAKPOINTS

i ? TP (OFF)
\,.

/

(

? SC(OFF)

? GO

*** TYPE CHARACTERS ON THE TARGET TERMINAL UNTIL ***
*** YOU ARE SATISFIED THAT THEY ARE SENT TO THE ***
*** CONSUMER PROCESS, THEN TYPE A 'z'. ***

*** HIT <CMD> ON THE HOST ***

? HALT

*** SHOW THE PROCESSES LEFT IN THE SYSTEM ***

? DAP
STATUS SUMMARY OF ALL EXISTING PROCESSES

LEXICAL
PROCESS NUMBER ADDRESS LEVEL

2 >9CE0 1

CURRENT
STATUS
ACTIVE

*** ONLY THE IDLE PROCESS IS LEFT ***

? EXIT

8-21

PRIORITY
32767

After the program is started, type a carriage return, and then
type characters to be input to the PRODUCer process. To terminate
the program, type a capital ~z~.

8-22

APPENDIX A

RX DATA STRUCTURES

A. l GENERAL

This appendix describes the data structures used by RX. The user
initialized data structures are discussed first, such as the RAM
configuration table, the segment table, and the trap table. The
following subsections cover the process record, global data
structures, and process local data structures. The data structures
used by the processor are discussed, such as the processor's registers
and local variables, and stack areas.

Note that some records support the File I/O
specifically, while some contain fields
package. For more information reference the
I/O Package User's Manual, MP386.

Decoder and I/O Subsystems
pertaining to the File I/O

Device Independent File

A.2 USER INITIALIZED DATA STRUCTURES

The data structures described must be initialized by the user and
defined in the "CONFIG" module. Further information on this
configuration module can be found in Section VI.

A.2.1 RAM Configuration Table

This table describes the configuration of RAM memory used as data
space by RX. It is included anywhere in the user's code space (ROM).

NOTE: This table MAY require descending addresses, and DOES require
non-overlapping addresses.

#00 !---------------
length

#02

Length of contiguous RAM (16-bit logical
value in number of bytes)

Address at which contiguous RAM starts

Length and start are repeated for each
contiguous RAM area.

End of table is indicated by a length of
zero.

A-1

A.2.2 I/O Subsystem Directory

A table is included in the "CONFIG" module which lists pointers to
service directory port constants defining an I/O subsys·tem. The last
word in this directory is set to zero to terminate the list. This
structure is subsystem dependent, and unless the "CONFIG" module is
modified by the user, the default value is assumed. This default
directory is empty and does not support an I/O subsystem.

IOSVCDIR@ (il)

PORTCONS@(il)

IOSV€DIR@ (#2)

PORTCONS@(i2)

*
*
*
0

A.3 RX DATA STRUCTURES

Pointer to I/O service directory il

Pointer to port constants list il

Pointer to I/O service directory i2

Pointer to port constants list #2

The data structures described are used by RX to manage processes, and
the memory area associated with a process. The process record is the
fundamential data structure used by RX. From· it one can get to all
other data structures used by RX. All data structures (except the
process record shown here) are in alphabetical order.

A.3.1 Process Record

The process record is the fundamental structure which is used by RX to
access all other data structures. A unique process record exists for
each instance of a process. Register 7 will always point to the
process record of the currently active process. The layout of the
process record is shown below:

iOO [-------------] next wp

Next workspace pointer to be used

#02
call handler Entry point of call handler

A-2

... ~-~~-'\
. •/

.,,.~,.-,·

I

#04

#06

#16

#18

#lA

#le

:----i~~~i_a ___ j_

~-------------) - *
i * I
i *
l * !
.._, ____________ _
I
i
i
!

level 9
,.... ____________ _

! global base

!---------------!
1 stack base

~~;~;~;-;:1;1~-
i
!

#lE ~-------------
stack body

#20 1--------------i lwpi

#22 -------------

#24

#26

#28

#2A

#2C

#2E

#30

#32

context I
l

--------------1
rtwp I

~--------------4
j wp I
~------~~-----1
• I ' ' I I _____________ ,,

______ :: _____ I
output l

~---~---------! input

[~:~::~:~~~~
clock

service

Display level 0 frame pointer

Intermediate level frame pointers

Display level 9 frame pointer

Stack frame of process

Minimum stack address for process

Maximum stack address for process

Not used

LWPI instruction (used in starting process)

Machine context of the process
(workspace pointer)

RTWP Instruction

The following are valid only if pointed to
by the context field above.
The workspace pointer of the machine context

The program counter of the machine context

The status word of the machine context

Pointer to file descriptor for 'output~

Pointer to file descriptor for 'input'

Priority of the process

Pointer to the clock service record

A-3

#34 ---------------
mpxptr

#36. ---------------
error

class code
··#37

reason code

#38 --------------~
xhandler

#3A '
~-------------~

first

#3C --------------~
nesting

#3D ~-------------i
object type ,

!
!

--------------1
. object :

#3E

#40 ~--------------
. next process
'of all
processes

#42 ---------------

#44

#46

· last started

I

next process
in queue

queue

#48 ---------------
current

interrupt
level

#4A •--------------
• creator""s id

#4B ~--------------
I my id

#4D
L _____________ _

Add~ess of executive record

Error class code

Error reason code

Address of exception handler

Address of first Rx workspace

Rx nesting level

Type of first Rx structure

Pointer to the first Rx structure

Address of next process record in a
circular, one-way list of ALL process
records.

Address of process record last started
by this process.

Address of next process record in a queue
(semaphore or.scheduling queue) or nil
if this process is the last member or
is not in a queue.

Address of current or last semaphore
queue

Interrupt currently being serviced.
(-1 if no interrupt in progress)

See explanation below.

See explanation below.

A-4

.. ---~.,

_, .j

j

The field of the process record called "my id" (displacement >4B) is
set to a value as follows. A count is kept of all processes started
(stored in process management record). If this count is less than 256,
then it is stored in "my id" when the process is first created. If
this count is greater than or equal to 256 at the time a process is
first created, then the most significant byte of the count is stored
in "my id" of the new process record.

The field of the process record called "creator's id" (displacement
4A) in a new process record is set to the value of "my id" of the
process which created the new process.

A.3.2 Channel Record

The following record is referenced by the executive record and
subdirectory records. It is used to control the message flow from one
process to another.

#00 --------------
message
present

#02
notify

#04 --------------

#06

#08

#OA

#OC

header list
tail

id

number
connected

link L _____________ _

A.3.3 Executive Record

Address of a semaphore which signals
the availability of a message on the channel

Address of a user defined semaphore (This
field is set by a special channel routine.
This channel routine will signal the notify
semaphore if it has been initialized
and a message was sent over the
channel. This allows the user to create
processes which can be notified when a
message is present on one of several
channels that the process services.
The process can then perform conditional
receives to determine which channel has
the message)

Address of the last message in a channel's
circular buffer queue of messages.

Integer corresponding to a channel's
identification number.

The number of readers and writers currently
connected to the channel.

Address of next channel in list.

The following record exists once in Rx

A-5

and points to all other fundamental data structures. Every process
record has a pointer to this record.

#00
active

#02 -------------
ready queue

#04 -------------
no event sem.

#06 -------------
process mgmt.

#08 -------------
system memory

#OA -------------
channel

directory
mutex

#OC -------------

#OE

#10

#12

#14

#16

#18

channel list
pointer

I/O
semaphore

I/O
list header

message
semaphore

message
f id

clock
record ptr

Address ·Of active process.

Address of ready queue. All ready
processes are linked in this queue.

Address of NO EVENT semaphore (used by inter
processing routines.) This semaphore has no
waiters on it.

Address of process management record.

Address of heap record for all data space
used by RX

Address of the exclusive access semaphore
for channel list

Pointer to the first channel on the channel
list

I/O subsystem semaphore

I/O subsystem list header

nMessage" file identifier semaphore

Address of file identifier for nmessagen

Pointer to the clock record

A.3.4 File Identifier Record

Each process has a unique file identifier (FID) record associated with
it, one for every file variable it declares. The file identifiers
allow the process to access the data structures required to implement
I/O for a particular subsystem. The FID records for a process are
linked together.

A-6

:--..,..._
' 1

j

#00 ----------------
link

#02 ----------------
subsystem

#04 ----------------
status

#06 ----------------
state

#08 ----------------
variables

#OA ----------------
global frame

#OC ----------------

A.3.5 FID Variables Record

Pointer to next FID in the linke1 list

Pointer to the subsystem record associated
with the file

Status of the file

State of the file

Pointer to the subsystem dependent variable
record

Address of the process's global frame

The file identifier (FID) variables record is a subsystem dependent
structure. It contains the variables required for ~ given subsystem.
These variables may be different for different subsystems, so the FID
variables record will be unique for different subsystems. An example
is the IPC$FID variables record described in subsection A.3.8.1.

A.3.6 File Descriptor

A file is implemented by the following record. In Microprocessor
Pascal a file variable is a pointer to a file descriptor. This record
is not used in RXKERNEL.

#00 ---------------
fill

#02 ---------------
file name

#04 ---------------
file name

length
#06 ---------------

next

#08 ---------------
last

#OA ---------------
line buffer

Not used

Pointer to the string containing the file's
name

Length of the file's name

Pointer to next element in the buffer

Pointer to the last element in the buffer

Address of the file's buffer

A-7

#OE ----------------, . f'l 'd I l. e l. !

#10 ~--------------1
1 link I

I
#12 --------------!

type I
#14 --------------1

state

#15
packed data

#16 --------------
status

#18 -------------

A.3.7 Heap Record

Address of file identification record (FID)

Pointer to next file descriptor defined
within the same process

Packed record defining file format, record
format, file usage, and file compression

File state (closed, open for reading,
open for writing, or eof)

Terminate on error flag (1 byte)
File kind (sequential, text, or random
I/O in progress flag (1 byte)

Error class and reason

Each heap is administered through the following heap record. A heap
record is referenced from each process record.

#00
heap sema

#02
minimum ptr.

#04
maximum ptr.

A.3.7.1 Free Heap Packet

Address of semaphore ensuring mutually
exclusive access to heap data structures

Value of smallest valid heap pointer

Value of largest valid heap pointer

A heap packet which is not allocated has the following format.

#00 -------------
size

#02 -------------
*
*
*

Size of this packet (16-bit logical
value of number of bytes)

Remainder of packet

A-8

'·'\.·
' .)

)

A.3.7.2 Allocated Heap Packet

A heap packet, which is allocated by a process, is referenced by the
process through a pointer and has the following format.

#-02 T""-------------
s i ze+ 1 Size of this packet plus one (16-bit

logical value of number of bytes)

#00 ------------- <-- pointer
*
*
*

Remainder of packet

A.3.8 Interprocess Data Structures

These data structures are used exclusively to implement interprocess
communication. The following data structures allow messages to be
passed through channels. Note that these specifically apply to the
File I/O Decoder and I/O Subsystems.

A.3.8.1 IPC$FID Variables Record

This record is accessed through a FID record. It contains the
addresses of read parameters, the file's message buffer, and a pointer
to the pathname record.

#00 --------------
read length

pointer
#02 --------------

maximum
length

#04 --------------buffer

#06 --------------
pathname

node
#08 --------------

command

#OA --------------

Indicates the number of characters which
have been read

Indicates the maximum number of characters
that can be read into a buffer

Address of the buffer which contains the
message

Address of the unique pathname record for
the file

Address of a related message record

A-9

A.3.8.2 IPC$Port Variables Record

This record is accessed through an !PC-subsystem record. It points to
a linked list of pathname records, each containing the unique
characteristics of a particular file.

#00 ---------------
mutex

#02
pathname node

#04

A.3.8.3 Pathname Record

Address of the semaphore used to insure
mutual exclusion when accessing the list

Address of the first pathname in the list

This record is accessed through either the pathname node field of the
process IPC$FID variable record or the IPC$port variables record. The
pathname record contains characteristics unique to a given file. Also
contained are values used to access and synchronize access to the
f ile .. s channel.

#00 'P"'"--------------
mutex

#02 --------------
link

#04 --------------length

#06 --------------
name

#08 --------------
type

#OA --------------
record size

#OC --------------
end of

production
#OE --------------

create
called

#10 --------------
end of

consumption
#12 --------------

Address of the semaphore used to ensure
exclusive access to the pathname record

Address of next pathname in linked list

Number of characters in the file .. s name

Address of the string containing the file .. s
name

Packed record defining file format, record
format, fil~ usage, and file compression

Maximum number of characters in a logical
record

Boolean indicates if all producers have
closed on a channel

Boolean indicates if file has been created

Points to a semaphore used to synchronize
the closing of producers

A-10

)

I
_,)

#14

#16

#18

waiting
for create

~~~~~~;~~;~~~~l 
number of ~ 
consumers 

umber connecte 

#lA --------------
channel 

#le 

A.3.9 Interrupt Record 

Points to a semaphore used to synchronize 
the creation of a file 

The number of processes writing to a file 

The number of processes reading a file 

The number of processes connected to a file 

Address of the unique channel associated 
with this pathname 

The interrupt records in Rx are stored in the workspace for the 
individual interrupt levels. In particular, Rll and Rl2 contain the 
addresses of the externalevent and altexternalevent semaphores. If no 
semaphore has been associated with the interrupt level, both of the 
registers will point to the NOEVENT semaphore (where there are no 
waiters present). R9 and RlO contain the 9900 context of the assembly 
event handler. If no handler has been specified, the WP portion of the 
vector is set to 0. 

#00 
* 
* 

#OC ---------------
level 

#OE ---------------
mpxptr 

#10 ---------------
wsptr 

#12 ---------------
WP 

#14 ---------------
PC 

Interrupt level 

Address of Rx executive record 

Context workspace pointer 

9900 context of interrupt handler 
If no handler, WP is set to zero 

Program counter of interrupt handler 

A-11 



#16 ,.----------------! externalevent 

#18 
j sema 

rl~~;~~;. ~~1~;~~~ sema 
---------------

A.3.10 Message Descriptor 

Address of EXTERNALEVENT 
semaphore or NOEVENT 

Address of ALTEXERNALEVENT 
semaphore or NOEVENT 

Interprocess messages are passed by means of pointers to the starting 
address of the message field in the message descriptor. The two words 
which precede the message field are used by the ipc$ routines for 
synchronization and are normally not accessed by the user. The message 
descriptor is defined as follows: 

#-04 

#-02 

# 00 

acknowledge 

link 

. --------------
message 

A.3.11 Message Record 

Semaphore signalled when a message has been 
processed 

Address of next message ( used in the 
circular buffer of a channel ) 

Variable length message field 

Interprocess communication data is transmitted through a message 
record. 

#00 
buffer 

#02 --------------
length 

#04 --------------
count 

#06 --------------

Address of the message sent 

Number of total bytes in the message field 

Number of bytes actually sent in the 
message field 

A-12 



A.3.12 Node Header Record 

The node header record defines one or more nodes associated with a 
given port. It is referenced by port constants records. Note that this 
record applies specifically to the File I/O Decoder and I/O 
subsystems. For further information, reference the Device Independent · 
File I/O Package User~s Manual, MP386. 

#00 

#02 

#04 

#06 

#08 

link --------------1 
--------------

node tyP,e 

node name 

node name 
length 

* 
* 
* 

Points to the next node header record 

Indicates the type of the node 

Pointer to the string containing the node~s 
name 

Length of the node~s name 

Subsystem dependent fields 

A.3.13 Port Constants Record 

This structure contains the constant values necessary in performing 
I/O operations with a particular device. Note that this record applies 
specifically to the File I/O Decoder and I/O Subsystems. For further 
information, reference the Device Independent File I/O Package, MP 
386. 

#00 
link 

#02 --------------
interrupt leve 

#04 --------------
io address 1 

#06 ---------------
io address 2 

#08 
heap size 

#OA 
handler 

Pointer to next port constants record 

Indicates the interrupt level of a device 

Port address 1 ( used when appropriate to 
specify a memory mapped I/O port ) 

Port address 2 ( used when appropriate to 
specify a memory mapped I/O port ) 

Size Of the heap packet allocated to the 
subsystem 

Address of interface handler 

A-13 



toe 

.BP 
#OE 

#10 

#12 

#14 

--~~;~-~~~~---1 

I 
--------------

port name 
length 

--------------node header 

--------------
* 
* 
* --------------

Address of the string containing the port~s 
name 

Length of the port~s name 

Pointer to the associated node header record 

Subsystem dependent fields 

A.3.14 Port Variables Record 

The port variables record contains the variables necessary for I/O 
with a device. Since the required variables may be different for 
different devices, this structure is subsystem dependent. Note that 
this record applies to the File I/O Decoder and I/O Subsystems. 
Reference the Device Independent File I/O Conversion Package, MP386, 
for further information. 

A.3.15 Process Management Record 

The following record is referenced by the Executive Record and exists 
once in RX. 

#00 

#02 

#04 

utex semaphor 

number of 
starts 

termination 
ws 

A.3.16 Semaphore Record 

Address of semaphore ensuring mutual 
exclusion in process management 

Number of started processes 

Address of termination workspace 

A semaphore is a pointer to a semaphore record described below. 

#00 ---------------
count Count of semaphore (returned by 

SEMAVALUE function) • 

A-14 

,---....._ 
.) 

/ 



#02 

• BP 
#04 

#06 

Address of queue record in which 
waiting processes are enqueued . 

Maximum value of priority which may wait 
on this semaphore (32767 except when 
associated with an interrupt.) 

A.3.17 Service Directory Record 

The service directory record provides the capability of accessing 
different code for different subsystem types. The fields in this 
record contain the addresses of the various subsystem routines. For 
example, the service directory record for the IPC subsystem contains 
the starting locations for each of the IPC routines. 

#00 --------------
length 

#02 ---------------
$ini t 

#04 ---------------

#06 

#08 

#OA 

#OC 

#OE 

$connect 
I ---------------{ 

$open 

---------------1 ' 
$read 

---------------! I 
$close t 

r 
' I 

~---------------\ 
$dstatus ' 

#10 --;ai~~~~~~~~--1 

#i2 ---------------~ 
$abort i6 

#14 l ______________ J 

$create 

Total size of this record ( Currently not 
used ) 

Address of xxx$init routine 

Address of xxx$connect routine 

Address of xxx$open routine 

Address of xxx$read routine 

Address of xxx$write routine 

Address of xxx$close routine 

Address of xxx$dstatus routine 

Address of xxx$disconnect routine 

Address of xxx$abortio routine 

Address of xxx$create routine 

A-15 



Address of xxx$delete routine 

Address of xxx$position routine 

Address of xxx$wait routine 

A.3.18 Subsystem Record 

The subsystem record contains a pointer to the service directory 
record which is associated with a particular subsystem. Pointers to 
the port constants and variables are also included in the subsystem 
data structure. 

#00 
link 

#02 --------------
service 

directory 
#04 

port constants 

#06 
port variables 

A.4 STACK DATA STRUCTURES 

Pointer to the next subsystem record 

Pointer to the associated service directory 
record 

Pointer to the subsystem dependent port 
constants record 

Pointer to the subsystem dependent port 
variables record 

The data structures described are used by RX to maintain the stack 
structures in memory. These stack structures are necessary to support 
concurrency and reentrancy. 

A.4.1 Process Stack 

The stack for a process is allocated as two 
first is the stack frame for the process, and 
to be used by routines which are called from 
regions have the following format: 

PROCESS 
STACK 

A-16 

separate regions, the 
the second is the stack 
the process. The two 

J 



( 

----""."---------i 
process mark I 

I 
I 

--------------' 
process 

stack frame 

ROUTINE 
STACK 

first 
stack frame 

* 
* 
* 

current 
stack frame 

* 
* 
* 

current 
workspace 

Administration area for process 

<-- global frame 
Stack frame for process variables 

<-- stack base 
Stack frame for first routine 

Stack frames of intermediate routines 

<-- local base (R9) 
Stack frame for currently active routine 

<-- stack pointer (RlO) 

Rest of available stack 

------------- <-- workspace pointer 
* 
* 
* 

process 
workspace 

Workspaces of intermediate routines 

-------------~ <-- stack limit 

A.4.2 Stack Frame 

Each stack frame contains the values of the variables and parameters 
for a given routine. The stack frame consists of two regions, either 
of which may be zero length. A stack frame is shown on the following 
page: 

A-17 



passed 
parameters 

local 
variables 

A.4.3 Process Mark 

<-- R9 
Parameters pushed onto stack before 
calling routine 

Reserved storage for variables used 
within the routine 

The administration area below the frame of a process is used to hold 
information about the process. 

#-10 
FID list 

#-OE 
files 

#-Oc 
process heap 

#-OA 
packed data 

#-09 -------------
references 

#-08 
priority 

#-06 
input 

#-04 
output 

#-02 -------------

Pointer to the list of FID records 

Pointer to the list of files which is 
created during process termination 

Address of heap record for this process 

Boolean which is true if this process 
created this process>s heap, or is false 
if this process is sharing a nested heap 
(1 bit). 
Boolean equal to process heap termination 
flag (1 bit). 
Boolean equal to process start termination 
flag (1 bit). 
Boolean indicates if process has completed 
(1 bit). 
Lexical level of this process (5 bits). 

Number of references to this process 
frame by processes which can address 
this franie. 

Priority of this process 

Pointer to this process>s input file 

Pointer to this process>s output file 

global frame Address of global frame of lexical parent 
if lexical level is 2 or greater. 
(otherwise zero) 

------------- <--- Global frame pointer 

A-18 



A.5 ROUTINE DESCRIPTORS (CONTAINED IN PROLOGUE OF THE CODE) 

The routine descriptor contains information about a procedure, 
function, or process which is used when it is called. This information 
includes data such as the start of code, data frame size, parameter 
size, end of code, and the number of registers that need to be 
initiallized. 

A.5.1 Standard Procedure/Function Descriptor 

The procedure/function descriptor is used by the linkage routines when 
the routine is called. The first four fields of the process descriptor 
record are fixed and are always generated by the compiler. The 
remaining fields following the frame size may or may not be generated 
by the compiler and included in a process descriptor record. This will 
occur if the compiler can optimize the use of these fields in the 
code. The standard linkage supports the passing of parameters or local 
variables. 

#00 

#02 

#04 

#06 

#08 

nn 

-------------
prologue 

-------------
epilogue 

-------------
local 

-------------
frame size 

-------------
literals 

-------------
routine 

Displacement to start of code 
(bytes) 

Displacement to epilogue of routine 
(bytes) 

Size of local variable portion of local 
frame (bytes) 

Routine frame size (bytes) 

Literals Section 

Object code for routine; its location 
(nn) is determined by length of literal 
section 

A.5.2 Optimized Procedure/Function Descriptor 

The optimized procedure/function linkage executes faster than the 
standard linkage. Howe9er, this linkage does not directly support 
passing of parameters or local variables. 

#00 
0 Zero value 

A-19 



#02 

A.5.3 Process Descriptor 

The data structure for a process is basically the same as that for a 
procedure or function, containing several additional parameters for 
system use. Note that the Executive will only look at the first four 
fields. The remaining fields can be used as the programmer wishes. If 
the remaining fields are used, it is suggested that they be listed in 
the order shown below. 

#00 -------------
prologue 

#02 -------------
epilogue 

#04 -------------
0 

#06 -------------
parameter 

size 
#08 -------------

frame size 

#OA -------------
lexical 
level 

#OC -------------
priority 

#OE -------------
stacksize 

#10 -------------
heapsize 

#12 -------------
literals 

nn -------------
start-up 

code 

-------------

Displacement to start of code (bytes) 

Displacement to epilogue of process (bytes) 

Zero value 

Size of passed parameters (bytes) 

Process frame size (bytes) 

Lexical level of process 

Process Priority 

Stacksize of process (words) 

Heapsize of process (words) 

Literals section 

Start-up code for process; its 
location (nn) is determined by length 
of literals section 

A-20 



A.6 CLOCK DATA STRUCTURES 

The clock process (CLKINT) maintains an elapsed time field in memory 
along with a list of time elements which should be signalled at 
certain specified times. 

A.6.1 Clock Record 

The clock process increments a two-word integer value every 10.0053 
milliseconds. This two word integer is stored in a portion of common 
data space with the following structure: 

#00 -------------
elapsed time 

#04 -------------
queue 

A.6.2 Clock Service Record 

Integer length of current execution time 
(two word value with most significant word 
first) 

Address of the first clock service record 
waiting on the clock for some event 

A clock service record is created for each process performing a timed 
wait or delay function. These time elements are maintained in a list 
pointed to by "queue" in the clock record structure. When a clock 
service record is initially inserted into this list a field is set 
indicating a length of time that the structure is to remain in the 
waiting queue. The time is decremented on each interrupt. When the 
length of time to wait is zero the clock service record is removed 
from the queue list and the event (such as a delay) is signalled. 

#00 -------------.., 
link 

#02 
sema 

#04 
time left 

#08 -------------
timed out 

signalled 

#OA --------------
elay semaphore! 

l --------------· #OC 

Address of next clock service record in the 
waiting queue (twait_q list) 

Address of semaphore to be signalled 
when time has expired 

Time remaining until the semaphore 
should be signalled (two word value 
with most significant word first) 

Boolean flag set to true wh_en the 
""time left"" reaches zero 

Boolean flag set to true when ""sema"" 
signalled 

is 

Address of user semaphore us~d to implement 
delay procedure 

A-21 



·.?"\ ... · .· ',c,'') 
---· 

·, 

_) 



APPENDIX B 

RX ERRORS CODES, ERROR RECOVERY, AND EXCEPTION HANDLING 

B. l GENERAL 

As a process executes, it may encounter an exception such as division 
by zero or subscript out of range. The ability of a process to deal 
with and possibly recover from exceptions is called exception 
handling. The mechanism by which a process can recover from exceptions 
and reprocess lost work is explained in this section. 

B.2 EXECUTIVE RTS DETECTED ERRORS 

The RX RTS passes error codes to RXBUG when a system failure occurs, 
and a message is displayed by RXBug in the form: 

ERR = xxyy 

where xx is the class code, and yy the reason code. 

All class codes are unique, with 
and Run-Time Support errors. 
distinguishable by the fact that 
the process record error field~ 
process record. 

the expection of System Crash Codes 
Both are: 00. The difference is 

System Crash Codes do not appear in 
i.e., >36 bytes from the start of the 

If a SHOWHEAP command is performed on the process record of the active 
process, the error code will be in the fourth row at the fourth 
position A zero in this position means no error was written to the 
process record. 

NOTE: a zero in the fourth position of the fourth row does not mean no 
error occurred, but simply that one wasn~t detected. A DR command 
shows all registers. Check Register 0 of the current workspace to 
identify such an error. A non-zero value in Register 0 is indicative 
of a System Crash error. Table B-1 lists a'il RTS-detected errors and 
their meanings. Table B-2 explains the meaning of each reason code and 
provides remedial action, if applicable. 

B-1 



----------------------------------------------------------------------

CODE 
Class Reason 
(xx) (yy) 

TABLE B-1. ERROR CODES. 

MEANING 

SYSTEM CRASH CODES (00) (APPEAR IN RO ONLY) 

00 
00 
00 
00 
00 
00 
00 
00 

00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 

01 

01 
02 
03 
04 
05 
06 
07 
08 

02 
04 
05 
06 
07 
08 
09 
OA 
OB 
oc 
OD 
14 
15 
16 

yy 

Unable To Boot System 
No Exception Handler 
No Interrupt Handler 
Illegal Interrupt or XOP 
Scheduling Queue In Error 
ROM/RAM Partitioning Error 
Process List In Error 
Heap In Error 

RUN-TIME SUPPORT ERRORS (00) 

Stack Overflow 
Division By Zero 
Floating Point Error 
Set Element Out Of Bounds 
Assert Error 
Missing OTHERWISE In CASE 
Array Index Error 
Pointer Equals NIL 
Subrange Assignment Error 
LONGINT Array Index Error 
LONGINT Subrange Error 
Halt Called 
String Index Error 
String Length Error 

USER DEFINED ERRORS (01) 

Defined by the user as a parameter to the 
RX procedure: EXCEPTION 

(Continued) 

B-2 



r 

TABLE B-1. ERROR CODES (Continued). 

CODE 
Class Reason 
(xx) (yy) 

02 
02 

03 
03 
03 
03 
03 

04 
04 
04 
04 

01 
02 

01 
02 
03 
04 
05 

02 
03 
04 
05 

MEANING 

SCHEDULING ERRORS (02) 

Invalid Queue 
Priority Error 

SEMAPHORE ERRORS ( 0 3) 

Invalid Semaphore Structure 
Count Error 
Operation Error 
Count Overflow 
Priority Error 

Level Invalid 
Semaphore Invalid 
No Interrupt Handler 
No Dedicated Interrupt workspace 

(RX 1.1) 

PROCESS MANAGEMENT ERRORS (05) 

05 
05 
05 

06 
06 
06 

03 
04 
OB 

Invalid priority 
Negative Stack Size 
No Memory 

EXCEPTION HANDLING ERRORS (06) 

01 
02 
03 

Handler Not Established In Process 
Handler Cannot Have Parameters 
Not Enough Memory For Handler 

(Continued) 

B-3 



TABLE B-1. ERROR CODES (Continued) 

CODE 
- Class Reason 
(xx) (yy) MEANING 

MEMORY MANAGEMENT ERRORS (07) 

07 
07 
07 
07 

08 
08 
08 
08 
08 
08 
08 
08 
08 
08 

08 

09 

09 

09 
09 
09 
09 
09 

10 
10 
10 

01 
02 
03 
04 

01 
02 
03 
04 
05 
06 
07 
08 
09 
OA 

OB 

01 

02 

03 
04 
05 
06 
07 

01 
02 
03 

Heap Pointer Invalid 
Heap Overflow 
Invalid Packet Pointer 
Attempt To Free A Packet 

FILE I/O ERRORS (08) 

File Not In State For Reading 
File Not In State For Writing 
Sequential End Of File 
Error In Opening File 
Read Error 
Write Error 
No Memory For File Descriptor 
No Memory For Pathname 
File Not Closed 
Invalid Parameter Passed To 

F$STLENGTH 
Not A Text File 

TEXT I/O ERRORS (09) 

CHANNEL 

Text Conversion Parameter Out Of 
Range 

Text Conversion Field Width 
Too Large 

Incomplete Text Conversion Data 
Invalid Character In Text Field 
Text Conversion Value Too Large 
Text Read Past End Of File 
Text Field Exceeds Record Size 

ERRORS (10) 

No Memory For Buffets 
No Memory For Semaphore 
No Memory For Channels 

(Continued) 

B-4 



TABLE B-1. ERROR CODES (Continued). 

CODE 
Class Reason 

(xx) (yy) MEANING 

FILE I/O DECODER ERRORS (11) 

11 
11 
11 

12 
12 
12 

01 
02 
03 

Empty File ID List 
File ID Not Found 
File Not Released 

INTERPROCESS COMMUNICATION ERRORS (12) 

01 
02 
03 

No Heap For Pathname Record 
No Heap For Name Field 
No Heap For File Variable Record 

8.2 EXPLANATION OF REASON CODES 

Table B-2 provides a detailed explanation for each reason code given 
in Table -1. 

------------------------------------------------------------------------
TABLE 8-2. EXPLANATION OF ERROR REASON (yy) CODES. 

SYSTEM CRASH CODES (00) 

Non-recoverable errors are defined to cause a system crash, which 
results in the execution of the system crash code that is specified by 
parameter $SYSCR in the user~s CONFIG module (See Section 8). A 
description of these errors follow: 

-
01 Executive RTS is unable to boot the system, probably because 

of insufficient memory. 

02 A system, program, or process fails without having 
established an exception handler. 

03 An interrupt occurs at a level for which no handler has been 
specified at the time of the occurrence of the .interrupt. 

04 An unimplemented interrupt or XOP occurs and cannot be 
serviced. 

B-5 



TABLE 8-2. EXPLANATION OF ERROR REASON (yy) CODES. 

05 The scheduling queue has been destroyed; further scheduling 
is impossible. 

06 RAM made available to Executive RTS is found to be in error. 
An address specified to be RAM is either bad, ROM, or 
unimplemented memory. 

07 The process list is in error. 

In attempting to deallocate the resources associated with a 
process, the process record of that process could not be 
found in the list of all active processes. The probable 
cause is the destruction of system data structures. 

08 The heap pointer is invalid. An invalid heap packet pointer 
was encountered while attempting to deallocate a process. 

RUN-TIME SUPPORT ERRORS (00) 

02 Stack Overflow: This error occurs when the allocated stack 
memory region is exhausted. The problem can normally be 
remedied by increasing the stack size parameter. 

04 Division By Zero: This error occurs when division by zero is 
detected. The offending expression should be checked and 
corrected to avoid this error. 

05 Floating 
too large 
absolute 
l.OE75. 

Point Error: This error occurs when a REAL value is 
or too small to be represented. The range of 
values that can be represented is about l.OE-78 to 

06 Set Element Out Of Bounds: This error indicates that a member 
of a set has an ordinal value less than 0 or greater than 
1023. This problem can be solved by restructuring the set or 
breaking it into more than one set if necessary. 

07 Assert Error: This error occurs when the expression in an 
ASSERT statement evaluates to "false". Either the expression 
was improperly formed or a logical error occured at some 
point in the program. 

B-6 

) 



TABLE B-2. EXPLANATION OF ERROR REASON (yy) CODES. 

08 Missing OTHERWISE in CASE: This error occurs when the 
selector expression in a CASE statement does not evaluate to 
any of the case labels present and there is no OTHERWISE 
clause to be used as the default statement. If there are no 
logical errors in the program, an. OTHERWISE clause should be 
added so that unanticipated label values will be handled 
uniformly. 

09 Array Index Error: This error occurs when an array index is 
out of bounds for the array. The error may have been caused 
by an incorrectly formed index expression(s). Alternatively, 
the array def~nitio~ may be incorrect. 

10 Pointer Equals NIL: This error occurs when a reference is 
attempted through a pointer which has the value NIL. (No 
check is made to ensure that the pointer points to a valid 
((allocate)) heap packet.) To avoid this error, make sure 
that all pointers have a valid, non-NIL value before they are 
used. 

11 Subrange Assignment Error: This error occurs when a subrange 
variable is given a value that is outside its range. This 
could be the result of an unanticipated assignment or 
function result. Expressions should be examined to ensure 
that their values are in bounds: alternatively, the subrange 
bounds may have to be altered. 

12 LONGINT Array Index Error: This error occurs when a LONGINT 
array index is out of bounds. 

13 LONGINT Subrange Error: This error occurs when a LONGINT 
subrange variable is given a value that is outside its range. 

20 HALT called: The procedure HALT has been called. 

USER-DETECTED ERRORS (01) 

A user error can be forced by calling the routine EXCEPTION 
with its class code parameter set to 1 to denote a 
user-detected error. The process which executes this routine 
fails with some designated reason code (as specified by the 
user as a parameter to EXCEPTION). 

B-7 



TABLE 8-2. EXPLANATION OF ERROR REASO~ (yy) CODES. 

SCHEDULING ERRORS (02) 

01 Invalid Queue: This error should not be seen by the user. It 
indicates a system error which probably resultd from RX code 
being accidently modified. 

02 Priority Error: This error occurs if SETPRIORITY is called 
with an interrupt priority (in the range 0 to 15). The 
priority of a process cannot be set to an interrupt priority. 

SEMAPHORE ERRORS (03) 

01 Invalid Semaphore: This error indicates that a structure that 
was passed to a semaphore routine is not a valid semaphore. 
The error occurs primarily in cases when a semaphore is used 
before it has been initialized by INITSEMAPHORE or after it 
has been terminated by TERMSEMAPHORE; otherwise it is a 
run-time support error which may be a result of system data 
structures being accidently destroyed. 

02 Count Error: This error can occur when INITSEMAPHORE is 
called with a count value that is not in the range 0 to 
32767. A semaphore cannot be initialized to a negative value. 

03 Operation Error: This error can occur when a semaphore 
operation is attempted and fails. TERMSEMAPHORE can produce 
this error if the semaphore being terminated has waiters. 

04 Count Overflow: This error occurs whenever the counter 
associated with a given semaphore becomes equal to 32767, 
meaning that no more events can be signaled until some 
waiting processes perform a WAIT. 

05 Priority Error: This error occurs when a process attempts to 
WAIT on a semaphore that is associated with an interrupt and 
the priority of the process is less urgent than the level of 
the interrupt. 

INTERRUPT ERRORS (04) 

02 Level Invalid: This error occurs when the priority passed to 
one of the routines ALTEXTERNALEVENT, EXTERNALEVENT, 
NOALTEXTERNALEVENT, NOEXTERNALEVENT, ASSEMBLYEVENT, or 
NOASSEMBLYEVENT is not in the range 1 to 15. 

B-8 



TABLE 8-2. EXPLANATION OF ERROR REASON (yy) CODES. 

03 Semaphore Invalid: This error results if an invalid semaphore 
is passed to ALTEXTERNALEVENT or EXTERNALEVENT. 

04 Interrupt Not Handled: This error occurs when an interrupt is 
signaled and there is no process waiting to service the 
interrupt. 

PROCESS MANAGEMENT ERRORS (05) 

03 Not Started - Invalid Priority: This error occurs when it is 
not possible to start a user process because the priority 
given in the concurrent characteristics for the process is 
not in the range 0 through 32766. 

04 Not Started - Negative Stacksize: The stacksize given in the 
concurrent characteristics for the process must be 
non-negative. 

11 Not Started - No Memory: This error indicates there was not 
sufficient memory for allocation of data structures necessary 
for starting the process. 

EXCEPTION HANDLING ERRORS (06) 

01 Exception Handler Not Established From Program Or Process: 
The procedure ONEXCEPTION must be called from a program or 
process module, not a procedure or function. 

02 Exception Handler Cannot Have Parameters: The routine 
identified as an exception handler must not have parameters. 

03 Exception Handler Local Variables Too Large: The exception 
handler specified to ONEXCEPTION requires more. stack space 
than is available in the process in which it will execute. 
Either increase the STACKSIZE concurrent characteristic or 
decrease the size of the local variables of the exception 
handler. 

B-9 



TABLE 8-2. EXPLANATION OF ERROR REASON (yy) CODES. 

MEMORY MANAGEMENT ERRORS (07) 

01 Invalid Heap: This error should only occur if the integrity 
of the user~s system heap is accidently deatroyed either by 
run-time support code or by the user~s code. 

02 Heap Overflow: This error indicates that the available heap 
space has been exhausted. 

03 Heap Packet Error: This error occurs when a heap packet is 
passed to a routine such as DISPOSE and the heap packet is 
invalid. 

04 Invalid Packet Error: This error occurs when an attempt is 
made to free a packet that is no longer allocated. 

FILE I/O ERRORS (08) 

The following errors pertain to (Pascal) file management. 

01 File Is Not Open For Reading: This error occurs when an 
attempt was made to read from a file which was not open for 
reading. A file is opened for reading by using RESET. 

02 File Is Not Open For Writing: This error occurs when an 
attempt is made to write to a file which was not open for 
writing. A file is opened for writing by using REWRITE. 

03 Sequential Read Past End Of File: This error occurs when an 
attempt is made to read past the end of a sequential file. 

04 Open Error: This error occurs when an attempt to open a file 
fails. 

05 Read Error: This error occurs when a read operation fails. 

06 Write Error: This error occurs when a write operation fails. 

07 No Memory For File Descriptor: This error occurs when there 
is not sufficient memory space with which to allocate a file 
descriptor. 

08 No Memory For Pathname: This error occurs when system memory 
cannot be obtained in which to save the pathname associated 
with a file variable. 

B-10 

\ 
. J 

_,,/ 



TABLE 8-2. EXPLANATION OF ERROR REASON (yy) CODES. 

09 File Not Closed: This error occurs when a file routine, which 
must only operate on a closed file (F$STLENGTH for example) 
is passed an open file variable. 

10 Invalid Parameter Passed To F$STLENGTH: This error occurs if 
F$STLENGTH was called with a component length less than one. 

11 Not A Text File: This error occurs when a text file operation 
is attempted on a sequential or random file. ( For example, 
F$STLENGTH can only operate on text files.) 

TEXT I/O ERRORS (09) 

01 Text Conversion; Parameter Out Of Range: This error occurs 
when a parameter to an encode or decode routine is out of 
range. For example, the index parameter must be a positive 
integer. 

02 Text Conversion; Field Width Too Large: This error occurs 
when a field width in a write statement is larger than the 

1 logical record length of the file. 

03 Text Conversion; Incomplete Data: This error occurs when a 
data value read or decoded is syntactically incomplete, for 
example, the value "1.0E" given for a real number. 

04 Text Conversion; Invalid Character In Text Field: This error 
occurs when a field being read contains a character which is 
invalid for the particular data type, for example, the 
character "·" when reading an integer value. 

05 Text Conversion; Value Too Large: This error occurs when some 
data value being read is too large to be represented as the 
particular data type, for example, attempting to read "32768" 
as an integer value. 

06 Text Read Past End Of File: This error occurs when an attempt 
is made to read past the end of a text file. 

07 Text Field Exceeds Record Size: This error occurs when a 
specified field width is greater than the logical record size 
of the file. 

B-11 



TABLE 8-2. EXPLANATION OF ERROR REASON (yy) CODES. 

CHANNEL ERRORS (10) 

01 No Memory For Buffers: This error occurs when there is no 
memory available for allocating message buffers in calls to­
C$ALLOCATE. 

02 No Memory For Semaphores: This error occurs when there is no 
memory available for allocating channel synchronization 
semaphores. This error may be generated from calls to C$INIT 
or C$ALLOCATE. 

03 No Memory For Channels: This error occurs when there is no 
memory available for allocating channel records in calls to 
C$INIT. 

FILE I/O DECODER ERRORS (11) 

These errors are returned by the I/O decoder routines. Complete 
information on I/O decoder errors can be found in the Device 
Independent File I/O (DIF) User~s Manual. 

01 Empty File Identifier List: The list of all file identifiers 
allocated in a process was empty when D$FIDRELEASE was called 
to deallocate a file identifier record. The probable cause is 
that D$DISCONNECT has been called to deallocate a file 
identifier that has already been deallocated. 

02 File Identifier Not Found: D4FIDRELEASE was unable to find a 
file identifier in the list of all file identifier of the 
process in which it was allocated. The probable cause is that 
D$DISCONNECT has been called to deallocate a file identifier 
that has already been deallocated. 

03 File Identifier Not Released: Routine D$TERM has been called 
during process termination to close and disconnect all files 
that are active; for some file the associated file identifier 
was not deallocated. The probable cause is an I/O subsystem 
whose disconnect entry did not call D$FIDRELEASE. 

INTERPROCESS COMMUNICATION ERRORS (12) 

01 No Heap For Pathname Record: This error occurs in IPC$CONNECT 
when there is no memory available for allocating pathname 
records. 

B-12 

, -. 
) 



TABLE B-2. EXPLANATION OF ERROR REASON (yy). 

02 No Heap For Name field: This error occurs in IPC$CONNECT when 
there is no memory available for allocating the .name field 
found in the channel record. 

03 No Heap For File Variable Record: This error occurs in 
IPC$CONNECT when there is no memory available for allocating 
the file variable record. 

04 No Heap For Port Variables: This error occurs in IPC$INIT 
when there is no memory available for allocating the port 
variable record. 

B-13 



) 



APPENDIX C 

RX ROUTINE TEMPLATES 

C. l GENERAL 

This section describes the RX linkage conventions, and contains 
templates for RX processes, standard procedures and functions, and 
optimized procedures and functions. Items in upper case must be 
specified as shown: items in lower case must be specified by the user 
(i.e. the user must choose names for labels, and values for stack and 
heap sizes, etc.). Lines starting with asterisks ("*") are comments 
and need not be included in the source. Parts of the templates are 
numbered, and these numbers refer to notes in paragraph c.7. 

C.2 TEMPLATE FOR A PROCESS 

The following template specifies the format of an RX process. 

0---.. ~~ IDT ""proces"" 
************************************************************ 
* -- MODULES DEFINED -- * 
************************************************************ ©---.. It~ DEF proces 
************************************************************ 

- * -- EXTERNAL REFERENCES -- * 
************************************************************ 

© l =~ ____ ..,_. REF 

REF 

CALL$ 
S$PRCS 
E$PRCS 
EXIT$P 

© 

REF 
REF 
REF 

OTHER SYSTEM AND 
USER DEFINED 
SYMBOLS REFERENCED 

************************************************************ 
* -- REGISTERS -- * 
************************************************************ 

IPR 
CODE 
LF 
SP 

EQU 
EQU 
EQU 
EQU 

7 
8 
9 
10 

REGISTER 7 POINTS TO PROCESS RECORD 
REGISTER 8 POINTS TO CODE BASE 
REGISTER 9 POINTS TO LOCAL FRAME 
REGISTER 10 IS STACK POINTER 

C-1 



************************************************************ 
* -- PROCESS DESCRIPTOR * 
************************************************************ ® .. 

@._.-proces 
7>----

PSEG 
EQU $ 
DATA prolog-proces OFFSET TO FIRST STATEMENT 
DATA epilog-proces OFFSET TO TERMINATION CODE 
DATA 0 ZERO FOR PROCESSES 
DATA >nnnn SIZE OF ARGUMENTS (BYTES) 
DATA >nnnn TOTAL FRAME SIZE (BYTES) 

~ ,,...1exlvl DATA >nnnn LEXICAL LEVEL 
'8'-'-Priori DATA >nnnn PROCESS PRIORITY 
~stksiz DATA >nnnn PROCESS STACKSIZE (WORDS) 
~hpsize DATA >nnnn PROCESS HEAPSIZE (WORDS) 
~ ************************************************************ 

* -- USER DATA -- * 
************************************************************ 

@i----....... • 1-: : : ... any user defined constants appear here 

************************************************************ 
* -- PROCESS START CODE -- * 
************************************************************ 

~prolog EQU $ 
MOV @frmsiz-proces(CODE),*SP+ PUSH FRAME SIZE, BYTES 
MOV @lexlvl-proces(CODE),*SP+ PUSH LEXICAL LEVEL 

~----.... MOV @priori.-proces (CODE), *SP+ PUSH PRIORITY 
® MOV @stksiz-proces (CODE) , *SP+ PUSH STACKSIZE, WORDS 

MOV @hpsize-proces(CODE) ,*SP+ PUSH HEAPSIZE, WORDS 
, DATA CALL$,S$PRCS START THIS PROCESS 

************************************************************ 
* -- USER CODE -- * 
************************************************************ 

~ {MOV 
~---••-- MOV 

. . . 

*LF,@<ga> 
@2(LF) ,@<ga> 

I MOV Rl, *SP+ 
~---•.-.-.. MOV R2,*SP+ 

DATA CALL$,routin 

. . . 

Sample references to arguments 

GET lST ARGUMENT 
GET 2ND ARGUMENT 

A typical process call: 

PASS lST ARGUMENT 
PASS 2ND ARGUMENT 
CALL THE PROCEDURE 

~routin~ must appear above 
in a REF statement. 

C-2 

) 

"/ 



0 

© 

************************************************************ 
* -- PROCESS TERMINATION CODE -- * 
************************************************************ 
epilog EQU 

l MOV 
~ATA 

END 

$ 
@lexlvl-proces(CODE) ,*SP+ 
CALL$,E$PRCS 
@EXIT$P 

C.3 TEMPLATE FOR A STANDARD PROCEDURE 

PUSH LEXICAL LEVEL 
TERMINATE THIS PRCS 
EXIT 

The following template defines the format for a standard RX procedure. 

IDT '°proced"' 
************************************************************ 
* -- MODULES DEFINED -- * 
************************************************************ 

DEF proced 
************************************************************ 
* -- EXTERNAL REFERENCES -- * 
************************************************************ 

!REF 
REF 
REF 
REF 
REF 
REF 
REF 

CALL$ 
S$PRCS 
E$PRCS 
EXIT$P . . . OTHER SYSTEM AND 

USER DEFINED 
SYMBOLS REFERENCED 

************************************************************ 
* -- REGISTERS -- * 
************************************************************ 
PR 
CODE 
LF 
SP 
* 

EQU 
EQU 
EQU 
EQU 

7 
8 
9 
10 

R7 POINTS TO PROCESS RECORD 
RB POINTS TO CODE BASE 
R9 POINTS TO LOCAL FRAME 
RlO IS THE STACK POINTER 

************************************************************ 
* -- PROCEDURE DESCRIPTOR * 
************************************************************ 

@- ... PSEG 
©- proced EQU $ 
<V ... DATA prolog-proced OFFSET TO FIRST STATEMENT 
(!)- ... DATA epilog-proced OFFSET TO TERMINATION CODE 
QD------- DATA >nnnn SIZE OF LOCAL VARS (BYTES) 
~ -DATA >nnnn LOCAL FRAME SIZE (BYTES) 
. *********************************************************~** 

* -- USER DATA -- * 
************************************************************ 

@-----1 .. ~ l: : : . . . any user defined constants appear here 

C-3 



************************************************************ 
* -- USER CODE -- * 
************************************************************ 

~prolog EQU $ 

*LF,@<ga> 
@2(LF),@<ga> 

Sample references to arguments 

GET lST ARGUMENT 
GET 2ND ARGUMENT 

A typical procedure call: 

MOV Rl,*SP+ 
@---••• MOV R2,*SP+ 

DATA CALL$,routin 

PASS lST ARGUMENT 
PASS 2ND ARGUMENT 
CALL THE PROCEDURE 

. . . ~routin~ must appear above 
in a REF statement. 

************************************************************ 
* -- PROCEDURE TERMINATION CODE -- * 
************************************************************ 

~:ou :EXIT$P EXIT 
~END 

C.4 TEMPLATE FOR A STANDARD FUNCTION 

The following template defines the format of a standard RX function. 

C!)f----....... IDT ~ funct i ~ 
************************************************************ 
* -- MODULES DEFINED -- * 
************************************************************ 

{!)------•• DEF functi 
************************************************************ 
* -- EXTERNAL REFERENCES -- * 
************************************************************ 

©---·--
REF 
REF 
REF 
REF 
REF 
REF 
REF 

CALL$ 
S$PRCS 
E$PRCS 
EXIT$n 

© 

(EXIT$1 OR EXIT$2) 
OTHER SYSTEM AND 
USER DEFINED 
SYMBOLS REFERENCED 

************************************************************ 
* -- REGISTERS -- * 
****************************************************~******* 

IPR 
CODE 
LF 
SP 

EQU 
EQU 
EQU 
EQU 

7 
8 
9 
10 

R7 POINTS TO PROCESS RECORD 
R8 POINTS TO CODE BASE 
R9 POINTS TO LOCAL FRAME 
RlO IS THE STACK POINTER 

C-4 

_) 



( 

************************************************************ 
* -- PROCESS DESCRIPTOR * 
************************************************************ 

@ • PSEG 
~functi EQU $ 
0 .. DATA prolog-functi OFFSET TO FIRST STATEMENT 
(!) ..-- DATA epilog-functi OFFSET TO TERMINATION CODE 
Qj).. ..-- DATA >nnnn SIZE OF LOCAL VARS (BYTES) 
~ ..- DATA >nnnn LOCAL FRAME SIZE (BYTES) 
~ ************************************************************ 

* -- USER DATA -- * 
************************************************************ 

any user defined constants appear here 

************************************************************ 
* -- USER CODE -- * 
************************************************************ 

~prolog EQU $ 

Sample references to arguments . . . 
@ ..... ·---~ l MOV *LF,@<ga> GET lST ARGUMENT .. MOV @2 (LF) ,@<ga> GET 2ND ARGUMENT ... . . . A typical function call: 

MOV Rl,*SP+ PASS lST ARGUMENT 
MOV R2,*SP+ PASS 2ND ARGUMENT .., MOV R3,*SP+ PASS 3RD ARGUMENT 
DATA CALL$,functi CALL THE FUNCTION 
MOV *SP ,@RESULT SP POINTS TO RESULT (RlO) 

'functi' must appear above 
in a REF statement. 

************************************************************ 
* -- FUNCTION TERMINATION CODE -- * 
************************************************************ 

~epilog EQU $ 

{ B @EXIT$n s .. DATA >rnrnrnrn 
@ • END 

RETURN RESULT OF LENGTH n 
OFFSET INTO LOCAL STORAGE 

OF THE DESIRED RESULT 

C.5 TEMPLATE FOR AN OPTIMIZED PROCEDURE 

The following template defines the format of an optimized Rx routine 
linkage (sometimes called a "special" linkage). A negative or zero 
value in the first word of the routine indicates that the routine uses 
an optimized linkage. A new workspace is allocated~ and registers R7, 
RB, R9, and RlO are initialized, but no new stack frame is allocated. 
Instead, the routine uses the caller's stack. The caller's stack 
pointer is reset, by adding the first word in the routine to the 

c-s 



caller""s RlO. An optimized procedure may not call any other procedures , ~;·~ 
or functions. . '.::/ 

C!)------4 ... ~ IDT ""proced"" FOR OPTIMIZED PROCEDURE 
************************************************************ 
* -- MODULES DEFINED -- * 
************************************************************ 

~------~ ... ~ DEF proced 
************************************************************ 

© 

* -- REGISTERS -- * 
************************************************************ 
PR EQU 7 R7 POINTS TO PROCESS RECORD 
CODE EQU 8 R8 POINTS TO CODE BASE 
LF EQU 9 R9 POINTS TO LOCAL FRAME 
SP EQU 10 RlO IS THE STACK POINTER 
************************************************************ 
* -- PROCEDURE DESCRIPTOR -- * 
************************************************************ 

@ • PSEG 
@.proced EQU $ 
~ .. DATA ->nnnn NEGATIVE OF ARG SIZE (BYTES) 

************************************************************ 
* -- USER CODE -- * 
************************************************************ 

. . . Sample references to arguments I 

IM.ov 
_j 

@--__. .. ~ MOV 

. . . 

*LF,@<ga> 
@2(LF) ,@<ga> 

GET lST ARGUMENT 
GET 2ND ARGUMENT 

NOTE: Optimized routines may 
not call other routines. 

************************************************************ 
* -- PROCEDURE TERMINATION CODE -- * 
************************************************************ 

@----11•~ RTWP RETURN TO CALLER 
~ ., END 

C.6 TEMPLATE FOR AN OPTIMIZED FUNCTION 

The following template specifies the format of an optimized function. 
An optimized function may only return a single word result (a standard 
function may return a one, two,· or four word result). The restrictions 
which apply to an optimized procedure also apply to an optimized 
function. 

C-6 



FOR OPTIMIZED FUNCTION G)~~~~•- IDT ~functi~ 
************************************************************ 
* -- MODULES DEFINED -- * 
************************************************************ 

~--~~--.... - DEF functi 
************************************************************ 
* -- EXTERNAL REFERENCES -- * 
************************************************************ ©---... •- REF EXIT$0 
************************************************************ 
* -- REGISTERS -- * 
************************************************************ 
PR 
CODE 
LF 
SP 

EQ'V 7 
EQU 8 
EQU 9 
EQU 10 

R7 POINTS TO PROCESS RECORD 
R8 POINTS TO CODE BASE 
R9 POINTS TO LOCAL FRAME 
RlO IS THE STACK POINTER 

************************************************************ 
* -- PROCEDURE DESCRIPTOR -- * 
************************************************************ 

@ • PSEG 
@-- functi EQU $ 
@ ., DATA ->nnnn NEGATIVE OF ARG SIZE (BYTES) 

************************************************************ 
* -- USER CODE ~- * 
************************************************************ 

... 
@---1·-l=~~ *LF,@·<ga> 

@2(LF) ,@<ga> 

Sample references to arguments 

GET lST ARGUMENT 
GET 2ND ARGUMENT 

NOTE: Optimized routines may 
not call other routines. 

************************************************************ 
* -- PROCEDURE TERMINATION CODE -- * 
************************************************************ 

~ lMOV @result,*SP+ 
~ ... BL @EXIT$0 EXIT OPTIMIZED FUNCTION 
~...-~~ ... ~ END 

C-7 



C. 7 NOTES 

1) An IDT statement which gives the module its name. 

2) Each module must contain a DEF directive, which must be the 
same six letter (or less) label that defines the beginning of 
the descriptor. 

3) Any external modules (user or executive) that are used by the 
process must be REFed as being external. 

4\ Register equates for the four Rx defined 
process record pointer, (CODE) code base, 
pointer, and (SP) stack pointer. 

registers: (PR) 
(LF) local frame 

5) A PSEG statement is needed to declare the beginning of the 
program code. 

6) A label which defines the beginning of the descriptor section 
of the routine. This label should be set to the first six 
characters of the routine name unless the process is at the 
outermost level and is therefore a system. The main routine or 
system should be labelled "SYSTM$". 

7) An assembler defined constant which specifies the number of 
bytes from the beginning of the descriptor section to the 
beginning of the prologue section (i.e., the offset to the 
first executable statement) • 

8) An assembler defined constant which specifies the number of 
bytes from the beginning of the descriptor section to the 
beginning of the epilogue section (i.e., the offset to the 
termination code). 

9) A zero value constant necessary for proper linkage. 

10) The size in bytes of the parameters that have been passed to 
this process. 

11) 

12) 

13) 

Th~ size in bytes of the local storage required by this 
pr cedure/ function. 

The total stackframe size in bytes. This includes the size of 
any local variables plus the passed parameters. 

ThJ lexical level is an integer which represents the level of 
nesting at which this process is operating. The outermost 
level (the SYSTEM level) is designated as level O. Any 
processes that are started by the SYSTEM level would be level 
1 and any started by these would be level 2, etc. Note that 
lexical level nesting conventions must be STRICTLY obeyed. 

C-8 

\ 
/ 



( 

14) Process priority is an integer greater than 0 and less than 
32767. Priorities 1 through 15 correspond to interrupt level 
priorities which are allocatable to a user~s process. The 
lower the numerical value, the higher the process~ urgenc··. 

15) The stack size indicates the amount of memory in words that is 
to be allocated to this process for stack frames and 
workspaces of routines called within this process. The actual 
numerical value needed by any specific process will vary 
according to what routines the process calls. To start the 
process will generally take around 150 words in addition any 
other requirements that the process might have. 

16) The heap size indicates the amount of memory in words that the 
process requires for dynamically allocated variables and 
stacks of nested processes. If the heap size is set to zero, 
the process takes any heap it needs from its parent~s heap. 
However, a process that has no heap specifically allocated to 
it (when it is started), will not be able to call another 
process. The implication of this is that a process must have 
enough heap for itself and all of its lexical descendants. The 
system level process should have enough heap for all processes 
and is often specified as zero to indicate that the system 
level process can take all available memory as its heap. 

17) The user may define any number of data words which may be used 
as constants by the process. 

18) A label which defines the first executable statement of the 
routine. 

19) Process prologue code required to start the process. 

20) Sample references to arguments passed by caller. 

21) Sample call to another routine. 

22) Sample call to another function. 

23) A label which defines the beginning of the epilogue code. 

24) Epilogue code required to terminate a process in RX. 

25) Epilogue code required to terminate a standard procedure. 

26) Epilogue code required to terminate a standard function. The 
value of ~n~ is the number of words that the function result 
occupies (e.g., for an integer, ~n~ would be 1; for a real 
number, 2); valid values are 1, 2, and 4. The data word 
following the branch is used by the exit handler to indicate 
the byte displacement into the local storage of the result to 
be returned. 

C-9 



27) Epilogue code required to terminate an optimized procedure. 

28) Epilogue code required to terminate an optimized function. 

29) End statement required to terminate a source module. 

C-10 



APPENDIX D 

RX SIZE BREAKDOWN 

D.l FUNCTIONAL UNIT (MODULE NAMES) SIZE IN DECIMAL BYTES 

1) Target configuration description 
( CONF I G) ••••••••••••••••••••••••••••••••••••••••••• 3 4 

2) RX Minimum ••••••.•••.•••••••••.•••••••••••••••••• 3034 

3) Clock Routines • ••••.•••.•••••••••••.•••••••••••••• 720 

4) Channel Routines (!NIT, ALLOC, DISPOSE, SEND, WAIT 
RECEIVE I ACKNOWLEDGE) ••• -•••••••••••••••••••••••••• 8 4 4 

5) RX with Clock ••••••••••••••••••••••••••••• _ •• 4492 + 34 (CONFIG) 

6) RX with Channels •••••••••••••••••••••••••••• 4140 + 34 (CONFIG) 

7) RX with everything •••••••••••••••••••••••••• 5410 + 34 (CONFIG) 

D-1 



. , 



APPENDIX E 

RXDEMO: ASSEMBLER LISTING AND LINK MAP 

The assembler listing and link map that follows is provided for use 
with the AMPL Debugger Walkthrough (Section VIII). 

E-1 



){DEMO 
KDEMO 
)002 
)003 
)004 
)005 
)006 
)007 
)008 
1009 
1010 
1011 
1012 
013 
014 
015 
016 
017 
018 
019 
020 
021 
022 
023 
024 
025 
026 
027 
028 
029 
)30 
)31 
)32 
)33 

)34 

SDSMAC 3.3.0 79.312 10:05:30 THURSDAY, MAY 07, 1981. 
DEMONSTRATION PROGRAM FOR RX 2.0 PAGE 0002 

IDT .. RXDEMO .. 
DEF RXDEMO 
DEF SYSTM$ 

************************************************************ 
* * 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

RXDEMO: RX 2.0 DEMONSTRATION 

PURPOSE: THIS PROGRAM DEMONSTRATES THE USE OF THE 
RX 2.0 REAL TIME EXECUTIVE TO IMPLEMENT 
A PRODUCER / CONSUMER PAIR OF PROCESSES. 

* 
* 
* 
* 
* 
* 

CALLS: 

NOTES: 

TWO PROCESSES ARE STARTED, .. PRODUC .. AND * 
.. CONSUM ..... PRODUC .. AUTO-BAUDS THE USER * 
TERMINAL AND ALLOCATES CHANNEL 1. IT THEN * 
SENDS THE BAUD RATE OF THE TERMINAL TO THE * 
CONSUMER OVER THE CHANNEL. IT THEN READS * 
CHARACTERS FROM THE TERMINAL AND SEND THEM * 
TO THE CONSUMER. THE CONSUMER PROCESS * 
PRINTS OUT MESSAGES ABOUT THE CHARACTERS * 
IT HAS BEEN SENT. WHEN THE PRODUCER READS * 
AND SENDS A .. z .. , THE PRODUCER TERMINATES. * 
WHEN THE CONSUMER RECEIVES A .. z .. , IT TERM!- * 
NATES. * 

PRODUC, CONSUM 

TERMINAL I/O IS DONE THROUGH A SET OF FOUR 
SIMPLE WAIT LOOP DRIVEN I/O ROUTINES. THESE 
CANNOT BE USED IN AN INTERRUPT ENVIRONMENT; 
FOR SUCH PURPOSES, THE .. DEVICE INDEPENDENT 
FILE I/0 .. COMPONENT PACKAGE IS AVAILABLE. 

* 
* 
* 
* 
* 
* 
* 
* 
* 

************************************************************ 

E-2 

~~~' 
. -~ -~~-- ;.'

)

\
\

--...,XDEMO SDSMAC 3.3.0 79.312 10:05:30 THURSDAY, MAY 07, 1981
;.XDEMO
0036
0037
0038
0039
0040
0041
0042
004'3
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055

DEMONSTRATION PROGRAM FOR RX 2.0 PAGE 0003

0056 0000
0057
0058
0059

0007
0008
0009
OOOA

(gg~~

0000"'
0000"'

0000 0012
0002 0032
0004 0000
0006 0000
0008 0000
OOOA 0001
oooc 0100
OOOE 0100
0010 0000

__.

0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
·0073

**
* -- EXTERNAL REFERENCES -- *
**

REF CALL$
REF S$PRCS
REF E$PRCS
REF EXIT$P
REF PRODUC
REF CONSUM

**
* -- REGISTERS -- *
*********************************~**************************
PR
CODE
LF
SP
*

EQU
EQU
EQU
EQU

7
8
9
10

REGISTER 7 POINTS TO PROCESS RECORD
REGISTER 8 POINTS TO CODE BASE
REGISTER 9 POINTS TO LOCAL FRAME
REGISTER 10 IS STACK POINTER

**
* -- PROCESS DESCRIPTOR *
**

PSEG
SYSTM$ EQU $ REQUIRED IN MAIN PROCESS
RXDEMO EQU $ NAME OF MODULE

DATA PROLOG-RXDEMO OFFSET TO FIRST STATEMENT
DATA EPILOG-RXDEMO OFFSET TO TERMINATION CODE
DATA 0 ZERO FOR PROCESSES
DATA >0000 SIZE OF ARGUMENTS (BYTES)

FRMSIZ DATA >0000 TOTAL FRAME SIZE (BYTES)
LEXLVL DATA >0001 LEXICAL LEVEL
PRIORI DATA >0100 PROCESS PRIORITY
STKSIZ DATA >0100 PROCESS STACKSIZE (WORDS}
HPSIZE DATA >0000 PROCESS HEAPSIZE (WORDS)
**
* -- USER DATA -- *
**
* * NONE
*

E-3

SDSMAC 3.3.0 79.312 10:05:30 THURSDAY, MAY 07, 1981. RX DEMO
RX DEMO

0075
0076
0077
0078
0079

DEMONSTRATION PROGRAM FOR RX 2. 0 PAGE 0004 ·.· /

0080

0081

0082

0083

0084

0085
0086
0087
0088

0012"'"
0012 CEA8
0014 0008
0016 CEA8
0018 OOOA
001A CEA8
001C OOOC
OOlE CEA8
0020 OOOE
0022 CEA8
0024 0010
0026 0000
0028 0000

0089 002A 0026"'"
002C 0000

0090 002E 002A"'"
0030 0000

0091
0092
0093
0094
0095
0096

0032"'"
0032 CEA8
0034 OOOA
0036 002E"'"
0038 0000
003A 0460
003C 0000

**
* -- PROCESS START CODE -- *
**
PRO LOG EQU $

MOV @FRMSIZ-RXDEMO(CODE) ,*SP+ PUSH FRAME SIZE, BYTES

MOV @LEXLVL-RXDEMO(CODE) ,*SP+ PUSH LEXICAL LEVEL

MOV @PRIORI-RXDEMO(CODE) ,*SP+ PUSH PRIORITY

MOV @STKSIZ-RXDEMO(CODE) ,*SP+ PUSH STACKSIZE, WORDS

MOV @HPSIZE-RXDEMO(CODE) ,*SP+ PUSH HEAPSIZE, WORDS

DATA CALL$,S$PRCS START THIS PROCESS

**
* -- USER CODE -- *
**
*

DATA CALL$,PRODUC START PRODUCER

DATA CALL$,CONSUM START CONSUMER

*
**
* -- PROCESS TERMINATION CODE -- *
**
EPILOG EQU $

MOV @LEXLVL-RXDEMO(CODE) ,*SP+ PUSH LEXICAL LEVEL

DATA CALL$,E$PRCS TERMINATE THIS PRCS

·a @EXIT$P EXIT

0097

0098

0099
10 ERRORS,

END
NO WARNINGS

E-4

- --....

I
_/

I

(

PRODUC
PRODUC

0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041

SDSMAC 3.3.0 79.312 10:08:10 THURSDAY, MAY 07, 1981.
PRODUCER PROCESS FOR DEMONSTRATION

IDT ""PRODUC""
PAGE ooo• i

I
I

:**l

* PRODUC: THE PRODUCER PROCESS
* ~
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

PURPOSE: THIS PROCESS FIRST CALLS TI$SET TO FIND THE
BAUD RATE OF THE USER TERMINAL, AND THEN
ALLOCATES CHANNEL 1. THE BAUD RATE FLAG FROM
TI$SET IS SENT TO THE CONSUMER PROCESS OVER
THE CHANNEL (THE CONSUMER NEEDS TO KNOW THE
BAUD RATE OF THE TERMI~AL SO THAT IT CAN ALSO
PERFORM I/O) •

THEN PRODUCER THEN READS CHARACTERS FROM THE
TERMINAL AND SENDS THEM TO THE CONSUMER OVER
THE CHANNEL. WHEN THE PRODUCER RECEIVES A
""Z"", IT SENDS THE MESSAGE, WAITS FOR ACKNOW­
LEDGEMENT, AND.TERMINATES. THE CONSUMER WILL ~
ALSO TERMINATE WHEN IT RECEIVES A ""Z"". J

·* CALLS: TISET, TICIN, TICOT, TIMSG "'1

* * ***~
DEF PRODUC

**
* -- EXTERNAL REFERENCES --- *
**

REF CALL$
REF S$PRCS
REF E$PRCS
REF EXIT$P
REF C$INIT
REF C$TERM
REF C$ALLO
REF C$SEND
REF C$WAIT
REF TI$SET
REF TI$CIN
REF TI$COT
REF TI$MSG

E-5

CALL SYMBOL
START PROCESS
END PROCESS
EXIT
ALLOCATE A CHANNEL
FREE A CHANNEL
ALLOCATE A MESSAGE BUFFER
SEND A MESSAGE
WAIT FOR ACKNOWLEDGEMENT
SET BAUD RATE
READ. CHARACTER
WRITE CHARACTER
WRITE STRING

PRODUC
PRODUC

0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056 0000
0057
0058 0000
0059 0002
0060 0004
0061
0062
0063
0064
0065
0066 0000
0067
0068 0000
0069 0002
0070
0071
0072
0073
0074
0075 0000
0076
0077 0000
0078 0002
0079 0004
0080 0006
0081 0008
0082 OOOA
0083 oooc
0084 OOOE
:>085 0010

SDSMAC 3.3.0 79.312 10:08:10 THURSDAY, MAY 07, 1981.
PAGE 0003.) PRODUCER PROCESS FOR DEMONSTRATION

**
* -- REGISTERS -- *
***************************•********************************

0001 ' MP
0002' TEMP

EQU 1
EQU 2

POINTER TO MESSAGE BUFFER
USED TO CALCULATE ADDRESS OF VARIABLES

0007
0008
0009
OOOA

*
PR EQU 7 REGISTER 7 POINTS TO PROCESS RECORD
CODE EQU 8 REGISTER 8 POINTS TO CODE BASE
LF EQU 9 REGISTER 9 POINTS TO LOCAL FRAME
SP EQU 10 REGISTER 10 IS STACK POINTER
**
* -- MAPPING FOR LOCAL FRAME --- *
**

DORG 0

*
BAUD BSS 2
CHNLID -BSS 2
MSGBUF BSS 2

OFFSET FROM LF (R9) _

BAUD RATE FLAG FROM TI$SET
CHANNEL ID (PTR TO CHANNEL)
POINTER TO MESSAGE BUFFER

0006 LFLEN EQU $

0004

0000 ...
00A4
OlBE
0000
0000
0006
0001
0100
0100
0000

*
**
* -- MAPPING FOR MESSAGE BUFFER -- *
**

*
CS LOT
BS LOT
MB LEN
*

DORG 0

BSS
BSS
EQU

2
2
$

OFFSET FROM MSGBUF

LOW ORDER BYTE IS ONE CHARACTER MESSAGE
ONE WORD FOR BAUD RATE FLAG

**
* -- PROCESS DESCRIPTOR *
**

PRODUC

FRMSIZ
LEXLVL
PRIORI
STKSIZ
HPSIZE

PSEG
EQU
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

$
PROLOG-PRODUC
EPILOG-PRODUC
0
>0000
LFLEN
>0001
>0100
>0100
>0000

E-6

OFFSET TO FIRST STATEMENT
OFFSET TO TERMINATION CODE
ZERO FOR PROCESSES
SIZE OF ARGUMENTS (BYTES)
TOTAL FRAME SIZE (BYTES)
LEXICAL LEVEL
PROCESS PRIORITY
PROCESS STACKSIZE (WORDS)
PROCESS HEAPSIZE (WORDS)

..?RODUC SDSMAC 3.3.0 79.312 10:08:10 THURSDAY, MAY 07, 1981.
PRODUC PRODUCER PROCESS FOR DEMONSTRATION PAGE 0004

0087 **'
0088 * -- USER DATA -- ·*
0089 **
0090 0012 CHNAME EQU $-PRODUC
0091 0012 0001 DATA 1 USE CHANNEL 1
0092 0014 MSGLEN EQU $-PRODUC
0093 0014 0004 DATA MBLEN LENGTH OF MESSAGE BUFFER
0094 0016 PORTO! EQU $-PRODUC
0095 0016 0080 DATA >0080 CRU BASE OF PORT NUMBER 1
0096 0018 z EQU $-PRODUC
0097 0018 OOSA DATA >SA Z IN ASCII
0098 *
0099 001A HELLO EQU $-PROD UC
0100 001A OD BYTE >OD, >OA, >OA · <CR><LF><LF>

OOlB OA
OOlC OA

0101 001D 52 "TEXT ~RX 2.0 DEMONSTRATION PROGRAM~
0102 0039 OD BYTE >0D,>0A,>0A <CR><LF><LF>

003A OA
003B OA

0103 003C 00 BYTE 0 <NOL> TO TERMINATE STRING
0104 *
0105 003D SENDMS EQU $-PRODUC

(
.. 0106 003D 50 TEXT ~PRODUCER SENDS ~

0107 004C 00 BYTE 0
0108 *
0109 004D ACKMSG EQU $-PRODUC
0110 004D 50 TEXT ~PRODUCER RECEIVES ACKNOWLEDGEMENT OF ~
0111 0072 00 BYTE 0
0112 *
0113 0073 GOODBY EQU $-PRODUC
0114 0073 50 TEXT ~PRODUCER TERMINATES~
0115 0086 OD BYTE >0D,>0A,>0A <CR><LF><LF>

0087 OA
0088 OA

0116 0089 45 TEXT ~END OF DEMONSTRATION~
0117 009D OD BYTE >0D,>0A,>0A <CR><LF><LF>

009E OA
009F OA

0118 OOAO 00 BYTE 0 <NOL> TO TERMINATE STRING
0119 *
0120 00Al CRLF EQU $.. PRODUC
0121 OOAl OD BYTE >OD,>OA,>00 <CR><LF><NUL>

00A2 OA
00A3 00

0122 00A4 EVEN CODE MUST START ON WORD BNDRY

E-7

PRODUC
PRODUC

0124
0125
0126
0127
012B

SDSMAC 3.3.0 79.312 lO:OB:lO THURSDAY, MAY 07, 19Bl.
·.~

•;; i)

0129

0130

0131

0132

0133

0134
0135
0136
0137

013B
0139

0140
0141

0142
0143
0144
0145

0146

0147
014B

0149
0150

0151
0152
0153
0154

0155
0156

0157
015B

PRODUCER PROCESS FOR DEMONSTRATION PAGE 000':...j

00A4""
00A4 CEAB
00A6 000.B
OOAB CEAB
OOAA OOOA
00AC CEAB
OOAE OOOC
OOBO CEAB
00B2 OOOE
00B4 CEAB
00B6 0010
OOBB 0000
OOBA 0000

OOBC CEAB
OOBE 0016
OOCO C0B9
00C2 0222
00C4 0000
00C6 CEB2
oocB OOBB""
00CA 0000

oocc CEAB
OOCE 0016
OODO CEA9
00D2 0000
00D4 COBB
00D6 0222
00D8 001A
00DA CEB2
OOoc OOCB""
00DE 0000

OOEO CEAB
00E2 0012
00E4 C0B9
00E6 0222
OOEB 0002
OOEA CEB2
OOEc OODc""
OOEE 0000

**
* -- PROCESS START CODE -- *
**
PROLOG EQU $

MOV @FRMSIZ-PRODUC(CODE),*SP+ PUSH FRAME SIZE, BYTES

MOV @LEXLVL-PRODUC(CODE),*SP+ PUSH ·LEXICAL LEVEL

MOV @PRIORI-PRODUC(CODE) ,*SP+ PUSH PRIORITY

MOV @STKSIZ-PRODUC(CODE),*SP+ PUSH STACKSIZE, WORDS

MOV @HPSIZE-PRODUC(CODE),*SP+ PUSH HEAPSIZE, WORDS

DATA CALL$,S$PRCS START THIS PROCESS

**
* SET BAUD RATE FLAG '"BAUD"" *
**

MOV @PORTOl(CODE),*SP+ PUSH CRU BASE OF PORT 1

MOV LF,TEMP
AI TEMP,BAUD

MOV TEMP,*SP+
DATA CALL$,TI$SET

PUSH PTR TO BAUD RATE FLAG
: (LOCAL FRAME+OFFSET)

. .
AUTO-BAUD THE TERMINAL

**
* WRITE '"RX 2.0 DEMONSTRATION PROGRAMtODtOAtOAtOA"" *
**

MOV @PORTOl(CODE),*SP+ PUSH CRU BASE OF PORT 1

MOV @BAUD(LF),*SP+ PUSH BAUD RATE FLAG

MOV CODE,TEMP PUSH PTR TO MESSAGE
AI TEMP,HELLO : (CODE BASE+OFFSET) .

MOV TEMP,*SP+ . .
DATA CALL$,TI$MSG WRITE THE STRING

**
*ALLOCATE CHANNEL ""CHNAME"", PUT RESUL~ IN ""CHNLID"" *
**

MOV @CHNAME(CODE) ,*SP+ PUSH NAME OF CHANNEL (1)

MOV LF,TEMP PUSH PTR TO CHANNEL ID
AI TEMP,CHNLID . (LOCAL FRAME+OFFSET) .
MOV TEMP,*SP+ . .
DATA CALL$,C$INIT ALLOCATE THE CHANNEL

E-B

/

PRODUC
PRODUC

0160
0161
0162

SDSMAC 3.3.0 79.312 10:08:10 THURSDAY, MAY 07, 1981.
PRODUCER PROCESS FOR DEMONSTRATION PAGE ooq

**~

0163 OOFO
00F2

0164 00F4
0165 00F6

00F8

CEAB
0014
C089
0222
0004
CE82
OOEC'"
0000

0166 OOFA
0167 OOFC

OOFE
0168
0169
0170
0171 0100

0102
0172 0104

0106
0108

C069
0004
C869
0000
0002

0173
0174
0175
0176 OlOA CEA8

OlOC 0016
0177 OlOE. C081
0178 0110 0222

0112 0000
,.0179 0114 CE82

0180 0116 OOFC'"
0118 0000

0181
0182
0183
0184 OllA CEA9

OllC 0002
0185 OllE CE81
0186 0120 0116'"

0122 0000

* ALLOCATE MESSAGE BUFFER '"MSGBUF'"
'

**~
MOV @MSGLEN(CODE),*SP+ PUSH LENGTH OF BUFFER .

MOV LF,TEMP
AI TEMP,MSGBUF

MOV TEMP,*SP+
DATA CALL$,C$ALLO

PUSH PTR TO MSGBUF
: (LOCAL FRAME+OFFSET)

. .

***!
* @(BSLOT+MSGBUF) := '"BAUD'" I
***: I

MOV @MSGBUF(LF),MP MOVE VALUE TO REGISTER MP

MOV @BAOD(LF) ,@BSLOT(MP) PUT BAUD RATE INTO MESSAGEi

i
***: I
* UNTIL '"CHAR'" EQ '"Z'" READ CHARACTER '"CHAR'" i
***!
SENDLP MOV @PORT01(CODE),*SP+ PUSH CRU BASE OF PORT 1 !

MOV
AI

MP,TEMP
TEMP,CSLOT

MOV TEMP,*SP+
DATA CALL$,TI$CIN

PUSH PTR TO CHARACTER
: (MSG BUF PTR+OFFSET)

. .
READ A CHARACTER

* SEND '"MSGBUF'" OVER '"CHNLID'"

MOV @CHNLID(LF),*SP+

MOV MP,*SP+
DATA CALL$,C$SEND

E-9

PUSH CHANNEL ID

PUSH MSG BUFFER PTR
SEND MESSAGE

PRODUC
PRODUC

0188
0189
0190
0191

SDSMAC 3.3.0 79.312 10:08:10 THURSDAY, MAY 07, 1981. -~

PRODUCER PROCESS FOR DEMONSTRATION PAGE 0007

0192

0193
0194

0195
0196

0124 CEA8
0126 0016
0128 CEA9
012A 0000
012C C088
012E 0222
0130 003D
0132 CE82
0134 0120~
0136 OODE~

** ** ********* * * * * * * *·* ****** ** **** ******* * ** * * * *** * * * * * * * * * * *
* WRITE ~PRODUCER SENDS c~ *
**

MOV @PORT01(CODE),*SP+ PUSH CRU BASE OF PO~~ 1

MOV @BAUD(LF),°*SP+

MOV CODE,TEMP
AI TEMP,SENDMS

MOV TEMP,*SP+
DATA CALL$,TI$MSG

PUSH BAUD RATE FLAG

PUSH PTR TO MESSAGE
: (CODE BASE+OFFSET)

. .
WRITE THE STRING

0197 *
0198 0138 CEA8

013A 0016
0199 013C CEA9

013E 0000
0200 0140 CEAl

0142 0000
0201 0144 0134~

0146 0000

MOV @PORT01(CODE) ,*SP+ PUSH CRU BASE OF PORT 1

·MOV @BAUD(LF),*SP+

MOV @CSLOT(MP) ,*SP+

DATA CALL$,TI$COT

PUSH BAUD RATE FLAG

PUSH THE CHARACTER

WRITE THE CHARACTER

0202 *
0203 0148 CEA8

014A 0016
0204 014C CEA9

014E 0000
0205 0150 co00
0206 0152 0222

0154 00Al
0207 0156 CE82
0208 0158 0144~

015A 0136~
0209
0210
0211
0212 015C CE81
0213 OISE 0158~

0160 0000

MOV @PORT01(CODE) ,*SP+ PUSH CRU BASE OF PORT 1

MOV @BAUD(LF),*SP+

MOV CODE,TEMP
AI TEMP, CRLF

MOV TEMP,*SP+
DATA CALL$,TI$MSG

PUSH BAUD RATE FLAG

PUSH PTR TO MESSAGE
: (CODE BASE+OFFSET)

:
WRITE THE STRING

** i

* WAIT FOR ACKNOWLEDGEMENT OF ~MSGBUF~ *
**

MOV MP,*SP+
DATA CALL$,C$WAIT

E-10

PUSH MSH BUFFER PTR
WAIT FOR ACKNOWLEDGMENT

, I
j

. PRODUC
· PRODUC

0215
0216
0217
0218

SDSMAC 3.3.0 79.312 10:08:10 THURSDAY, MAY 07, 1981 •

I
'"-.._-

PRODUCER PROCESS FOR DEMONSTRATION PAGE 0008

0162 CEA8
0164 0016

0219 0166 CEA9
0168 0000

0220 016A C088
0221 016C 0222

016E 004D
0222 0170 CE82
0223 0172 OlSE"'

0174 015A"'

**
* WRITE "'PRODUCER RECEIVES ACKNOWLEDGEMENT OF c"' *
**

MOV @PORT0l(CODE),*SP+ PUSH CRU BASE OF PORT 1

MOV

MOV
AI

@BAUD(LF),*SP+

CODE,TEMP
TEMP,ACKMSG

MOV TEMP,*SP+
DATA CALL$,TI$MSG

PUSH BAUD RATE FLAG

PUSH PTR TO MESSAGE
: (CODE BASE+OFFSET)

WRITE THE STRING

0224 *
0225 0176 CEA8

0178 0016
0226 017A CEA9

017C 0000
0227 017E CEAl

0180 0000
0228 0182 0172"'

0184 0146"'
0229 *
0230 0186 CEA8

0188 0016
0231 018A CEA9

018C 0000
0232 018E C088
0233 0190 0222

0192 00Al
0234 0194 CE82
0235 0196 0182"'

0198 0174""

MOV @PORT01(CODE) ,*SP+ PUSH CRU BASE OF PORT 1

MOV @BAUD(LF),*SP+

MOV @CSLOT(MP),*SP+

DATA CALL$,TI$COT

PUSH BAUD RATE FLAG

PUSH THE CHARACTER

WRITE THE CHARACTER

MOV @PORT0l(CODE) ,*SP+ PUSH CRU BASE OF PORT 1

MOV @BAUD(LF),*SP+

"10V CODE,TEMP
AI TEMP,CRLF

MOV TEMP,*SP+
DATA CALL$,TI$MSG

E-11

PUSH BAUD RATE FLAG

PUSH PTR TO MESSAGE
: (CODE BASE+OFFSET)

:
WRITE THE STRING

PRODUC
PRODUC

0237
0238
0239
0240

SDSMAC 3.3.0 79.312 10:08:10 THURSDAY, MAY 07, 1981.
PAGE oocEJ PRODUCER PROCESS FOR DEMONSTRATION

**
* END { UNTIL 'CHAR' EQ 'Z' } *
**

0241
0242
0243
0244
0245

0246

019A 8A21
019C 0000
019E 0018
OlAO 16B4

01A2
01A4
01A6
01A8

CEA9
0002
0196'
0000

c @CSLOT(MP) ,.z (CODE) IS CHARACTER 'Z'?

JNE SENDLP NO: LOOP
**
* FREE 'CHNLID' (AUTOMATICALLY FREES 'MSGBUF') *
**

MOV @CHNLID(LF) ,*SP+ PUSH CHANNEL ID

DATA CALL$,C$TERM FREE THE CHANNEL

0247 **
0248 * WRITE 'PRODUCER TERMINATES'
0249 **
0250 OlAA CEA8

OlAC 0016
0251 -OlAE CEA9

OlBO 0000
0252 OlB2 coae
0253 01B4 0222

01B6 0073
0254 01B8 CE82
0255 OlBA 01A6'

OlBC 0198'
0256
0257
0258
0259 OlBE'
0260 OlBE CEA8

01co OOOA
0261 01C2 OlBA'

01C4 0000
0262 01C6 0460

01ca 0000

MOV @PORTOl(CODE),*SP+ PUSH CRU BASE OF PORT 1

MOV @BAUD(LF),*SP+ PUSH BAUD RATE FLAG

MOV CODE,TEMP PUSH PTR TO MESSAGE
AI TEMP,GOODBY : (CODE BASE+OFFSET)

MOV TEMP,*SP+ :
DATA CALL$,TI$MSG WRITE THE STRING

**
* -- PROCESS TERMINATION CODE -- *
**
EPILOG EQU

MOV
$
@LEXLVL-PRODUC(CODE) ,*SP+

DATA CALL$,E$PRCS

B @EXIT$P

PUSH LEXICAL LEVEL

TERMINATE THIS PRCS

EXIT

0263
NO ERRORS,

END
NO WARNINGS

E-12

-··~

)
/

CONS UM
CONS UM

0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025

(0026
,_ 0027

0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041

SDSMAC 3.3.0 79.312 10:09:00 THURSDAY, MAY 07, 1981.
CONSUMER PROCESS FOR DEMONSTRATION

IDT "'CONSUM"'
PAGE 000

0001
0002

0007
0008
0009
OOOA

*
*
*
*
*
*
*
*
*
*

PURPOSE:

CONSUM: THE CONSUMER PROCESS

THIS PROCESS FIRST ALLOCATES CHANNEL 1, AND
THEN WAITS FOR A MESSAGE TO APPEAR ON THE
CHANNEL. WHEN IT RECEIVES A MESSAGE, IT TAKES
THE CHARACTER AND BAUD RATE FROM THE MESSAGE
AND PRINTS THE CHARACTER ON THE USR TERMINAL.
WHEN THE CONSUMER RECEIVES A "'Z"', IT PRINTS
THE CHARACTER AND TERMINATES. I

: CALLS: TICOT, TIMSG l
***]!

DEF CONSUM
***!
* . -- EXTERNAL REFERENCES -- I
***i

REF CALL$ CALL SYMBOL
REF S$PRCS START PROCESS
REF E$PRCS END PROCESS
REF EXIT$P EXIT
REF C$INIT ALLOCATE A CHANNEL
REF C$TERM FREE A CHANNEL
REF C$RECE RECEIVE A MESSAGE
REF C$ACKN ACKNOWLEDGE A MESSAGE
REF TI$COT WRITE CHARACTER
REF TI$MSG WRITE STRING

* -- REGISTERS --

MP EQU
TEMP EQU
*
PR EQU
CODE EQU
LF EQU
SP EQU

1
2

7
8
9
10

E-13

POINTER TO MESSAGE BUFFER
USED TO CALCULATE ADDRESS OF VARIABLES

REGISTER 7 POINTS TO PROCESS RECORD
REGISTER 8 POINTS TO CODE BASE
REGISTER 9 POINTS TO LOCAL FRAME
REGISTER 10 IS STACK POINTER

:ONSUM
:ONSUM
0043
0044
0045

SDSMAC 3.3.0 79.312 10:09:00 THURSDAY, MAY 07, 1981.
CONSUMER PROCESS FOR DEMONSTRATION PAGE 0003

0046 0000
0047
0048 0000
0049 0002
0050
0051
0052
0053
0054
0055 0000
0056
0057 0000
0058 0002
0059
0060
0061
0062
0063
0064 0000

0004

0004

0065
0066
0067
0068
0069
0070
0071
0072
0073
0074

0000 ...
0000 0046
0002 00E4
0004 0000
0006 0000
0008 0004
OOOA 0001
oooc 0100
OOOE 0100
0010 0000

**
* -- MAPPING FOR LOCAL FRAME --- *
**

DORG 0
*
CHNLID BSS
MSGBUF BSS
LFLEN EQU

*

2
2
$

OFFSET FROM LF (R9)

CHANNEL ID (PTR TO CHANNEL)
POINTER TO MESSAGE BUFFER

**
* -- MAPPING FOR MESSAGE BUFFER -- *
**

DORG 0

BSS 2
BSS 2
EQU · $

OFFSET FROM MSGBUF
*
CS LOT
BS LOT
MB LEN
*

LOW ORDER BYTE IS ONE CHARACTER MESSAGE
ONE WORD FOR BAUD RATE FLAG

**
* -- PROCESS DESCRIPTOR *
**

PSEG
CONSUM EQU

DATA
DATA
DATA

FRMSIZ
LEXLVL
PRIORI
STKSIZ
HPSIZE

DATA
DATA
DATA
DATA
DATA
DATA

$
PROLOG-CONSUM
EPILOG-CONSUM
0
>0000
LFLEN
>0001
>0100
>0100
>0000

E-14

OFFSET TO FIRST STATEMENT
OFFSET TO TERMINATION CODE
ZERO FOR PROCESSES
SIZE OF ARGUMENTS (BYTES)
TOTAL FRAME SIZE (BYTES)
LEXICAL LEVEL
PROCESS PRIORITY
PROCESS STACKSIZE (WORDS)
PROCESS HEAPSIZE (WORDS)

--~
, ..)

. ~ '-___ ; .. -

__ ./

"'.ONSUM
CONS UM

0076
0077

SDSMAC 3.3.0 79.312 10:09:00 THURSDAY, MAY 07, 1981.
CONSUMER PROCESS FOR DEMONSTRATION PAGE 0004

0078
0079
0080 0012
0081 0012 0001
0082
0083 0014
0084 0014 0004
0085
0086 0016
0087 0016 0080
0088
0089 0018
0090 0018 OOSA
0091
0092
0093 001A
0094 002C
0095
0096
0097 002D
0098 0040

0041
0099 0042
0100
0101
0102 0043

0044
0045

0103 0046

001A
43
00

002D
43
on
OA
00

0043
OD
OA
00

** !
* -- USER DATA -- *
**
*
CHNAME EQU $-CONSUM

DATA 1
*
MSGLEN EQU $-CONSUM

DATA MBLEN
*
PORT01 EQU $-CONSUM

DATA >0080
* z

*

EQU $-CONSUM
DATA >SA

RECMSG EQU $-CONSUM

USE CHANNEL 1

LENGTH OF MESSAGE BUFFER

CRU BASE OF PORT NUMBER 1

Z IN ASCII

TEXT 'CONSUMER RECEIVES '
BYTE 0

*
TERMSG EQU $-CONSUM

*
CRLF

TEXT 'CONSUMER TERMINATES'
BYTE >OD,>OA <CR><LF>

BYTE 0

EQU $-CONSUM
BYTE >OD,>OA,>00

EVEN

E-15

<NUL> TO TERMINATE STRING

<CR><LF><NUL>

CODE MUST START ON WORD BNDRY

CONS UM
CONS OM

0105
0106
0107
0108
0109

SDSMAC 3.3.0 79.312 10:09:00 THURSDAY, MAY 07, 1981.
.~·~

} PAGE OOOj CONSUMER PROCESS FOR DEMONSTRATION

0110

0111

0112

0113

0114

0115
0116
0117

0046"'
0046 CEA8
0048 0008
004A CEA8
004C OOOA
004E CEA8
0050 oooc
0052 CEA8
0054 OOOE
0056 CEA8
0058 0010
005A 0000
005C .0000

0118 005E CEA8
0060 0012

0119 0062 C089
0120 0064 0222

0066 0000
0121 0068 CE82
0122 006A 005A"'

006C 0000

**
* -- PROCESS START CODE -- *
**
PROLOG EQU $

MOV @FRMSIZ-CONSUM(CODE) ,*SP+ PUSH FRAME SIZE, BYTES

MOV @LEXLVL-CONSUM(CODE) ,*SP+ PUSH LEXICAL LEVEL

MOV @PRIORI-CONSUM(CODE) ,*SP+ PUSH PRIORITY

MOV @STKSIZ-CONSUM(CODE) ,*SP+ PUSH STACKSIZE, WORDS

MOV @HPSIZE-CONSUM(CODE) ,*SP+ PUSH HEAPSIZE, WORDS

DATA CALL$,S$PRCS START THIS PROCESS

**
*ALLOCATE CHANNEL "'CHNAME"', PUT RESULT IN "'CHNLID"' *
**

MOV @CHNAME(CODE) ,*SP+ PUSH NAME OF CHANNEL (1)

MOV LF,TEMP
AI TEMP,CHNLID

MOV TEMP,*SP+
DATA CALL$,C$INIT

E-16

•pusH PTR TO CHANNEL ID
: (LOCAL FRAME+OFFSET)

. .
ALLOCATE THE CHANNEL

CONS UM
CONS UM

0124
0125
0126
0127

SDSMAC 3.3.0 79.312 10:09:00 THURSDAY, MAY 07, 1981.
CONSUMER PROCESS FOR DEMONSTRATION PAGE 000

0128
0129

0130
0131

0132
0133
0134

006E CEA9
0070 0000
0072 C089
0074 0222
0076 0002
0078 CE82
007A 006A'"
007C 0000

0135 007E C069
0080 0002

0136 OOB2 CEAB
OOB4 0016

0137 0086 CEA!
0088 0002

013B ooeA·coBa
0139 ooBc 0222

OOBE 001A
0140 0090 CEB2
0141 0092 007A'"

0994 0000

* UNTIL '"CHAR'" EQ '"Z'" RECEIVE CHARACTER MESSAGE

WAITLP MOV

MOV
AI

@CHNLID(LF),*SP+

LF,TEMP
TEMP,MSGBUF

MOV TEMP,*SP+
DATA CALL$,C$RECE

PUSH CHANNEL ID

PUSH PTR TO MSGBUF
: (LOCAL FRAME+OFFSET)

. .
WAIT FOR MESSAGE

* WRITE '"CONSUMER RECEIVES c'"

MOV @MSGBUF(LF),MP MOVE VALUE TO REGISTER MP

MOV @PORT0l(CODE),*SP+ PUSH CRU BASE OF PORT 1

MOV @BSLOT(MP) ,*SP+

MOV CODE,TEMP
AI TEMP,RECMSG

MOV TEMP,*SP+
DATA CALL$,TI$MSG

PUSH BAUD RATE FLAG

PUSH PTR TO MESSAGE
: (CODE BASE+OFFSET)

. .
WRITE THE STRING

0142 *
0143 0096 CEAB

.009B 0016
0144 009A CEA!

009C 0002
0145 009E CEA!

OOAO 0000
0146 00A2 0092'"

00A4 0000

MOV @PORT0l(CODE),*SP+ PUSH CRU BASE OF PORT 1

MOV @BSLOT(MP) ,*SP+

MOV @CSLOT(MP) ,*SP+

DATA CALL$,TI$COT

PUSH BAUD RATE FLAG

PUSH THE CHARACTER

WRITE THE CHARACTER

0147 *
0148 00A6 CEAB

00A8 0016
0149 OOAA CEA!

OOAC 0002
0150 OOAE COBB
0151 OOBO 0222

00B2 0043
0152 00B4 CEB2
0153 00B6 00A2'"

OOBB 0094'"
0154
0155
0156
0157 OOBA CEBl
·01sB OOBC 00B6'"

OOBE 0000

MOV @PORT01(CODE),*SP+ PUSH CRU BASE OF PORT 1

MOV @BSLOT(MP) ,*SP+

MOV CODE,TEMP
AI TEMP,CRLF

MOV TEMP,*SP+
DATA CALL$,TI$MSG

PUSH BAUD RATE FLAG

PUSH PTR TO MESSAGE
: (CODE BASE+OFFSET)

. .
WRITE THE STRING

**
* ACKNOWLEDGE RECEIPT OF THE MESSAGE *
**

MOV MP,*SP+
DATA CALL$,C$ACKN

E-17

PUSH MESSAGE BUFFER PTR'
ACKNOWLEDGE THE MESSAGE

0159
0160
0161

** .. ··.~ * END { UNTIL ,. CHAR,. E0 ,. Z,. } * · ;.)
** 0162 ooco 8A21

00C2 0000
C @CSLOT(MP),Z(CODE) IS CHARACTER ,.Z,.?

00C4 0018
0163 00C6 1603 JNE WAITLP NO: LOOP

E-18

.'.:ONSUM
CONS UM

0165
0166
0167
0168

SDSMAC 3.3.0 79.312 10:09:00 THURSDAY, MAY 07, 1981 •
CONSUMER PROCESS FOR DEMONSTRATION PAGE 00071

0169

0170
0171
0172
0173

0174

0175
0176

0177
0178

ooc0 cEAO
OOCA 0000
OOCC OOBC'
OOCE 0000

DODO CEA8
00D2 0016
00D4 CEAl
00D6 0002
00D8 C088
OODA 0222
OODC 002D
DODE CE82
OOEO oocc'
00E2 00B8'

0179
0180
0181
0182
0183

00E4'
00E4 CEA8
00E6 OOOA

0184 00E8 OOEO'
OOEA 0000

0185 OOEC 0460
OOEE 0000

** !

* FREE 'CHNLID' *
**

MOV @CHNLID,*SP+ PUSH CHANNEL ID

DATA CALL$,C$TERM FREE THE CHANNEL

**
* WRITE 'CONSUMER TERMINATES' *
**

MOV @PORT01(CODE),*SP+ PUSH CRU BASE OF PORT 1

MOV @BSLOT(MP) ,*SP+ PUSH BAUD RATE FLAG

MOV CODE,TEMP PUSH PTR TO MESSAGE
AI TEMP,TERMSG . (CODE BASE+OFFSET) .
MOV TEMP,*SP+
DATA CALL$,TI$MSG WRITE THE STRING

**
* -- PROCESS TERMINATION CODE -- *
**
EPILOG EQU $

MOV @LEXLVL-CONSUM(CODE) ,*SP+ PUSH LEXICAL LEVEL

DATA CALL$,E$PRCS TERMINATE THIS PRCS

B @EXIT$P EXIT

0186
NO ERRORS,

END
NO WARNINGS

E-19

WAITIO
TI$LIB

0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
·OOZ8
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053

SDSMAC 3.3.0 79.312
WAIT LOOP DRIVEN I/O

IDT
DEF
DEF
DEF
DEF

09:59:39
-- 6/25/80
... WAITIO ... I

THURSDAY, MAY 07, 1981. ;<~I
PAGE .OOt;~: J

*

TI$SET
TI$CIN
TI$COT
TI$MSG

**
* *

TI$SET: SET THE BAUD RATE OF A TERMINAL *
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

PURPOSE: THIS ROUTINE AUTO-BAUDS A TERMINAL ATTACHED *
TO A 9902 INTERFACE. WHEN CALLED, IT INPUTS *
A CHARACTER (EITHER AN ... A ... OR A <CR>) AND *
TESTS THE LENGTH OF THE START BIT TO FIND *
THE BAUD RATE. THE 9901 TIMER IS USED TO
TIME THE START BIT.

CALLING SEQUENCE:
- PUSH CRU ADDRESS OF PORT

PUSH POINTER TO BAUD RATE FLAG
CALL TI$SET

MOV @<CRU ADDRESS>,*SP+
MOV @<ADDRESS OF BAUD RATE FLAG>,*SP+
DATA CALL$,TI$SET

* INPUTS: THE CRU ADDRESS OF THE PORT IS USUALLY >80
* FOR PORT ONE AND >180 FOR PORT '!WO.
*
* OUTPUTS: TI$SET INITIALIZES THE 9902 PORT AND SETS
* THE BAUD RATE. THE BAUD RATE FLAG (THE
* SECOND PARAMETER) IS SET TO THE PROPER
* VALUE WITH WHICH TO SET THE XOR AND RDR
* VALUES OF THE 9902. VALUES USED ARE:
*
*
*
*
*
*
*
*
*
*
*

BAUD:
19200

9600
4800
2400
1200

600
300
110

* EXCEPTIONS: NONE.
*
*
*

CALLS: NONE.

INIT CHAR (12 BITS)
>OlA
>034
>068
>ODO
>AlO
>340
>400
>638

* REFERENCES: TMS 9901 PROGRAMMABLE SYSTEMS INTERFACE
* COPYRIGHT 1978 BY TI INC., NUMBER MP003

E-20

*
*
*
*
*
*
*
*
*·· .-
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*·
*

'

/

0054
0055
0056
0057
0058
0059

*
*
*
*
*

TMS 9902 ASYNCHRONOUS COMMUNICATIONS
CONTROLLER DATA MANUAL,

COPYRIGHT 1978 BY TI INC., NUMBER MP004

**

E-21

~AITIO SDSMAC 3.3.0 79.312 09:59:39 THURSDAY, MAY 07- "981. :',\
- . I

~I$LIB WAIT LOOP DRIVEN I/O 6/25/80 PAGE 0003· - ./
0061 * ROUTINE LIST:
0062 * TI$SET
0063 *
0064 *
0065 * EQUATES
0066 * 0067 OOOD LDIR EQU 13 9902 - LOAD INTERVAL REGISTER
0068 OOOF RIN EQU 15 9902 - RECEIVE INPUT.BIT
0069 0010 RTSON EQU 16 9902 - REQUEST TO SEND ON
0070 0012 RIENB EQU 18 9902 - RECEIVER INTERRUPT ENABLE
0071 0015 RBRL EQU 21 9902 - RECEIVER BUFFER REGISTER LOADED
0072 0016. XBRE EQU 22 9902 - TRANSMIT BUFFER REGISTER EMPTY
0073 001F RESET EQU 31 9902 - RESET BIT
0074 0100 CB9901 EQU >100 9901 CRU BASE
0075 * 0076 0001 BA UDP EQU 1
0077 0002 COUNT ·EQU 2
0078 0003 TBLPTR EQU 3
0079 0004 TIMVAL EQU 4
0080 *
0081 0007 PR EQU 7
0082 0008 CODE EQU 8
0083 0009 LF EQU 9
0084 OOOA SP EQU 10
0085 *)
0086 oooc CRUBAS EQU 12
0087 *

E-22

\ITIO SDSMAC 3.3.0 79.312 09:59:39 THURSDAY, MAY 07, 1981.
~!$LIB WAIT LOOP DRIVEN I/O -- 6/25/80 PAGE 0004

0089 0000 PSEG
0090 0000"" TI$SET EQU $
0091 0000 0000 DATA 0 OPTIMIZED LINKAGE
0092 **
0093 * GET ARGUMENTS *
0094 **
0095

0096

0097

0098
0099

I JlOO
0101
0102

0002 C2AD
0004 0014
0006 022A
0008 FFFC
OOOA CB4A
oooc 0014
OOOE C31A
0010 C06A
0012 0002

0103 0014 lDlF
0104 0016 3220

0018 005C""
0105 001A lEOD
0106
0107

MOV @SP*2(Rl3),SP GET CALLER""S SP

AI SP,-4 RESET SP

MOV SP,@SP*2(Rl3) RESTORE CALLER""S SP

MOV *SP,CRUBAS SET CRU BASE OF PORT
MOV @2(SP),BAUDP SET BAUD POINTER

**
* INITIALIZE THE 9902 *
**

SBO
LDCR

SBZ

RESET
@CONTRL,8

LDIR

RESET THE 9902
LOAD CONTROL REGISTER

DISABLE INTERVAL TIMER

1· "108
I

**
* WAIT FOR CHARACTER *
**

. Jl09 001C 04C2
0110 OOlE lFOF
0111 0020 13FE
0112
0113
0114
0115

"116
..1117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128

0129
0130
0131

0022 020C
0024 0100
0026 0704

0028 lEOO
002A 33C4
002C lEOO

002E 1000
0030 1000

0032 C31A
0034 lFOF
0036 16FE
0038 020C
003A 0102
003C lDFF
003E 3782
0040 lEFF

CLR COUNT CLEAR TIMER COUNT
TESTSP TB RIN SPACE?

JEQ TESTSP NO: TEST AGAIN
**
* INITIALIZE 9901 AND TIME SPACE BIT *
**

LI

SETO
*

SBZ
LDCR
SBZ

*
NOP.
NOP

*
MOV

TIMELP TB
JNE
LI

SBO
STCR
SBZ

CRUBAS,CB9901

TIMVAL

0
TIMVAL,15
0

*SP,CRUBAS
RIN
TIME LP
CRUBAS ,CB9901+2

-1
COUNT,14
-1

E-23

SET CRUBASE AT '!MS9901

INITIAL TIMER VALUE >3FFF
: CONTROL BIT IS GETS 1

SET 9901. TO INT. MODE
LOAD AND START 9901 TIMER
CONTROL BIT = ~' SET TO 0

: TO TURN INT. ON
DELAY WHILE 9902 SETS BIT

: (FOR 1481) MUST WAIT
: BEFORE CHANGING BASES.

SET CRU BASE TO 9902 PORT
STILL SPACE?
FALL OUT ON MARK
BASE OF 9901+<1 BIT>

SET 9901 TO CLOCK MODE
STORE 9901 COUNT VALUE
SET 9901 TO INT. MODE

WAITIO
TI$LIB

0133
0134
0135

SDSMAC 3.3.0 79.312 09:59:39 THURSDAY, MAY 07, 1981.
PAGE 000~) WAIT LOOP DRIVEN I/O -- 6/25/80

**
* RESET FOR 9902 PORT AND IGNORE THE AUTO-BAUD CHARACTER *
**

0136 0042
0137 0044
0138 0046
0139 0048
0140

C31A
1F15
16FE
1El2

0141
0142
0143

0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169

0170

0171

0172

0173

0174

0175

0176

004A 0203
004C 005E~
004E 8CC2
0050 1402
0052 05C3
0054 10FC
0056 3313

0058 C453

005A 0380

005C 62

005E 3FFD
0060 001A
0062 3FF8
0064 0034
0066 3FF0
0068 0068
006A 3FE1
006C OODO
006E 3FC1
0070 OlAO
0072 3F82
0074 0340
0076 3EC9
0078 04D0
007A 0000

MOV *SP,CRUBAS SET CRU BASE TO 9902 PORT
LOADLP TB RBRL CHARACTER FINISHED?

JNE LOADLP NO: CHECK AGAIN
SBZ RIENB RESET RBRL

**
* LOOK UP COUNT IN BAUD TABLE *
**

LI

BAUDLP C

MATCH
*

JHE
INCT
JMP
LDCR

TBLPTR,BAUDTB

COUNT, .*TBLPTR+
MATCH
TBLPTR
BAUD LP
*TBLPTR,12

GET ADDRESS OF BAUD TABLE

MATCH IF HIGH OR EQUAL
YES, SET BAUD RATE
NO, UPDATE TABLE PTR

INITIALIZE RDR,XDR,
RESET LRDR,LXDR

MOV *TBLPTR,*BAUDP SET RETURNED BAUD RATE
**
* ---- END OF CODE ---- *
**

RTWP
**
* --- DATA SECTION --- •
**
*
CONTRL BYTE
*
*
*
*

>62 9902 CONTROL
SPECIFIES:

REGISTER VALUE
TWO STOP BITS
EVEN PARITY
7 BITS/CHAR

*
*
*

9901 TIMER VALUE (14 BITS) 9902 BAUD RATE FLAG
I

+--------------------+
* I
* v v
BAUDTB DATA >3FFD,>01A BAUD = 19200

DATA >3FF8,>034 BAUD = 9600

DATA >3FF0,>068 BAUD = 4800

DATA >3FE1,>0D0 BAUD = 2400

DATA >3FC1,>1A0 BAUD = 1200

DATA >3F82,>340 BAUD = 600

DATA >3EC9,>4D0 BAUD = 300

DATA >0000,>638 BAUD = 110

E-24

·./

007C 0638

E-25

WAIT IO
TI$LIB

0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209

SDSMAC 3.3.0 79.312 09:59:39 THURSDAY, MAY 07, 1981.
WAIT LOOP DRIVEN I/O -- 6/25/80 PAGE 0006

**
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

TI$CIN:

PURPOSE:

INPUT A CHARACTER

THIS ROUTINE INPUTS A CHARACTER FROM A PORT
OF A 9902. THE.CHARACTER IS NOT ECHOED.

CALLING SEQUENCE:
- PUSH CRU ADDRESS OF PORT

PUSH ADDRESS OF WORD TO RECEIVE CHARACTER
CALL TI$CIN

MOV @<CRU ADDRESS>,*SP+
MOV @<POINTER TO WORD>,*SP+
DATA CALL$,TI$CIN

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

INPUTS: THE CRU ADDRESS OF THE PORT IS USUALLY >80 *
FOR PORT NUMBER ONE, AND >180 FOR PORT '!WO. *

OUTPUTS: THE CHARACTER IS STORED IN THE LOW 7 BITS
OF THE WORD POINTED TO BY ARGUMENT '!WO.

EXCEPTIONS: NONE.

CALLS: NONE.

REFERENCES: TMS 9902 ASYNCHRONOUS COMMUNICATIONS
CONTROLLER DATA MANUAL,

COPYRIGHT 1978 BY TI INC, NUMBER MP004

*
*
*
*
*
* * -
*
*
*
*
*

**

E-26

)

WAI TIO
TI$LIB

0211
0212
0213
0214
0215
0216
0217

SDSMAC 3.3.0 79.312 09:59:39 THURSDAY, MAY 07, 1981.
WAIT LOOP DRIVEN I/O -- 6/25/80 PAGE 0007

0218 007E
0219
0220 007E
0221
0222
0223

0001

007E"'
0000

0224 0080 C2AD
0082 0014

0225 0084 022A
0086 FFFC

0226 0088 CB4A
008A 0014

0221 oo8c c31A
0228 008E C06A

0090 0002
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240

0092
0094
0096
0098
009A
009C

1Fl5
16FE
04Dl
35Dl
06Dl
1E12

0241 009E 0380

*
* EQUATES
*
CHARP EQU 1
*
* PROGRAM SEGMENT
*

PSEG
TI$CIN EQU $

DATA 0 OPTIMIZED LINKAGE
**
* GET ARGUMENTS *
**

MOV

AI

MOV

MOV
MOV

@SP*2(R13),SP

SP,-4

SP,@SP*2(Rl3)

*SP,R12
@2(SP),CHARP

GET CALLER"'S SP

RESET SP

RESTORE CALLER"'S SP

SET CRU BASE OF PORT
SET BAUD POINTER

*********.**
* WAIT FOR CHARACTER AND STORE IT *
**
WAITLP TB RBRL BUFFER FULL?

JNE WAITLP NO: WAIT
CLR *CHARP YES: STORE IN LOW BYTE
STCR *CHARP,7 : OF WORD POINTED TO
SWPB *CHARP : BY CHARP
SBZ RIENB RESET RBRL

**
* ---- END OF CODE ---- *
**

RTWP

E-27

WAITIO
TI$LIB

0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283

SDSMAC 3.3.0 79.312 09:59:39 THURSDAY, MAY 07, 1981. c~
WAIT LOOP DRIVEN I/O -- 6/25/80 PAGE OOll .. /'

***************************~********************************

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

TI$COT: OUTPUT A CHARACTER

PURPOSE: THIS ROUTINE OUTPUTS A CHARACTER TO A PORT
OF A 9902. IF THE TERMINAL IS A 1200 BAUD
PORT THE CHARACTER IS PADDED WITH 3 NULLS.
IF THE CHARACTER WAS A <CR>, IT IS PADDED
WITH 3· TO 23 NULLS, DEPENDING ON THE BAUD
RATE, TO GIVE A 200MS DELAY.

CALLING SEQUENCE:

INPUTS:

- PUSH CRU ADDRESS OF PORT
POSH BAUD RATE FLAG
PUSH WORD, RIGHTMOST BYTE OF WHICH IS CHAR
CALL TI$COT

MOV @<CRO ADDRESS OF PORT>,*SP+
MOV @<BAUD RATE FLAG>,*SP+
MOV @<WORD>,*SP+
DATA CALL$,TI$COT

PORT: CRO ADDRESS OF USER PORT, USUALLY
>80 FOR PORT 1, AND >180 FOR PORT 2.

BAUD: BAUD RATE FLAG SET BY TI$SET
WORD: LOW 7 BITS OF WORD ARE OUTPUT CHAR.

*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*

*
*

* OUTPUTS: WRITES CHAR TO PORT, PADDED WITH 3 NULLS IF *
* 1200 BAUD. PADS <CR> WITH NULLS TO GIVE A *
* 200MS DELAY. *
*
*
*
*
*
*
*
*
*

EXCEPTIONS: NONE.

CALLS: TI$COT

REFERENCES: TMS 9902 ASYNCHRONOUS COMMUNICATIONS
CONTROLLER DATA MANUAL,

COPYRIGHT 1978 BY TI INC, NUMBER MP004

*
*
*
*
*
*
*
*

**

E-28

\

)

WAIT IO
TI$LIB

0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296

SDSMAC 3.3.0 79.312 09:59:39 THURSDAY, MAY 07, 1981.
WAIT LOOP DRIVEN I/O -- 6/25/80

0001
0002
0003
0004
0005
0006

*
* EQUATES
*
BAUD FL
TABLEP
CHR
PADNLS
CRNULS
NUMNUL
*

EQU
EQU
EQU
EQU
EQU
EQU

1
2
3
4
5
6

* PROGRAM SEGMENT
*

PAGE 000

0297 OOAO PSEG
OOAO~ TI$COT EQU $ 0298

·0299
0300
0301
0302
0303

0304

0305

0306
0307

0308

0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320

0321
0322
0323

0324
0325
0326

OOAO 0000 DATA 0 OPTIMIZED LINKAGE

00A2 C2AD
00A4 0014
00A6 022A
00A8 FFFA
OOAA CB4A
OOAC 0014
OOAE C31A
OOBO C06A
00B2 0002
00B4 COEA
00B6 0004
00B8 06C3

OOBA 1D10
OOBC 1F16
OOBE 16FE
ooco 3203

00C2 0202
00C4 00F6~

00C6 8C81
ooc8 1203
OOCA 0222
oocc 0004
OOCE 10FB
OODO C132
00D2 C152

***!
* ---- GET ARGUMENTS ----
~**************!

MOV

AI

MOV

MOV
MOV

MOV

@SP*2(R13),SP

SP,-6

SP,@SP*2(R13)

*SP,R12
@2(SP),BAUDFL

@4(SP),CHR

GET CALLER~S SP

RESET SP

RESTORE CALLER~S SP

SET CRU BASE OF PORT
BAUDFL := SECOND ARG

CHR : = THIRD ARG

SWPB CHR PUT CHR INTO TOP BYTE

* --- SEND CHARACTER ---

SBO
WTLP$1 TB

JNE
LDCR

RTSON
XBRE
WTLP$1
CHR,8

SET REQUEST TO SEND
TRANSMIT BUFFER EMPTY?
NO: CHECK AGAIN
YES: SEND CHARACTER

* --- LOOK UP NULLS IN BAUDFL RATE TABLE ---

TBLLP

FOUND

LI

c
JLE
AI

JMP
MOV
MOV

TABLEP,TABLE

BAUDFL,*TABLEP+
FOUND
TABLEP,4

TBLLP
*TABLEP+,PADNLS
*TABLEP,CRNULS

E-29

LOAD TABLE POINTER

MATCH?
YES: GET NUMBER OF NULLS
NO: UPDATE TABLE POINTE

LOOP
NUMBER OF NULLS PADDED
NUMBER OF NULLS.AFTER CR

N'AITIO
TI$LIB
0328
0329
0330
0331

SDSMAC 3.3.0 79.312 09:59:39 THURSDAY, MAY 07, 1981.
WAIT LOOP DRIVEN .1/0 -- 6/25/80 PAGE 0010

0332
0333
0334
0335
0336
0337
0338

00D4 9803
00D6 00F5~
00D8 1302
OODA C184
00DC 1001
OOOE C185

0339 _O{)EO C186
0340 00E2 1306
0341 00E4 1F16 .
0342 00E6 16FE
0343 00E8 3220

0344
0345
0346
0347
0348

OOEA 00F4~
OOEC 0606
OOEE 10F8

0349, OOFO lElO
)350
J351
)352
)353
)354 00F2 0380

**
* --- SET NUMBER OF NULLS TO PAD --- *
**

CB CHR,@CR CARRIAGE RETURN?

JEQ PADCR YES: PAD CR
MOV PADNLS,NUMNUL NO: PAD REGULAR CHR
JMP PAD JMP TO PAD CODE

PADCR MOV CRNULS,NUMNUL PAD REGULAR CHR
**
* --- PAD WITH NUMNUL NULLS --- *
**
PAD MOV NUMNUL,NUMNUL IS NUMNUL ZERO?

JEQ SENOOF YES: EXIT
WTLP$2 TB XBRE TRANSMIT BUFFER EMPTY?

JNE WTLP$2 NO: CHECK AGAIN
LDCR @NULLCH,8 SEND CHARACTER

DEC NUMNUL DECREMENT NUMBER NULLS
JMP PAD PAD AGAIN

**
* --- DONE, TURN OFF REQUEST TO SEND --- *
**
SENDOF SBZ RTSON BRING RTS HIGH AFTER -
* : CHARACTER HAS FINISHED
**
* ---- END OF CODE ---- *
**

RTWP

E-30

PTAITIO SDSMAC 3.3.0 79.312 09:59:39 THURSDAY, MAY 07, 1981 •. . "d

TI$LIB WAIT LOOP DRIVEN I/O -- 6/25/80 t PAGE ooif
0356 *** * ** * ** ** ***** ** * * * * * * * * * * * * * ** * * ** * *** * * * * * * * * * * **** * * ·~:· 0357 * --- DATA --- \}*
0358 ** '.
0359 * 0360 00F4 00 NULLCH BYTE >00
0361 00F5 OD CR BYTE >OD
0362 * .,t

0363 00F6"' TABLE EQU $
0364 * J

0365 * BAUD FL RATE FLAG, NULLS AFTER CHR, NULLS AFTER CR1
'

I I
,,

0366 * c I"';

0367 * +-------------+ 0368 * I +-----------------------------+ 0369 * I
0370 * v vv
0371 00F6 001A DATA >OlA,0,0 BAUD FL = 19200 . ',

00F8 0000
OOFA 0000

:i 0372 OOFC 0034 DATA >034,0,0 BAUD FL = 9600 ,.
OOFE 0000
0100 0000 ,,

0373 0102 0068 DATA >068,0,0 BAUD FL = 4800 ,.. ...

0104 0000
0106 0000 -(0374 0108 OODO DATA >ODO,O,O BAUD FL = 2400
OlOA 0000
OlOC 0000

0375 OlOE OlAO DATA >lA0,3,23 BAUD FL = 1200
0110 0003
0112 0017

0376 0114 0340 DATA >340,0,11 BAUD FL = 600
0116 0000
0118 OOOB

0377 OllA 04D0 DATA >4D0,0,7 BAUD FL = 300
OllC 0000
OllE 0007

0.,78 0120 0638 DATA >638,0,3 BAUD FL = 110
0122 0000
0124 0003

E-31

WAITIO
,·;TI$LIB
- 0380

0381
·~-- 0382

0383
0384
·0385
0386
0387
0388
0389
0390
0391
0392
0393

.0394
0395
0396
0397
0398
0399
.0400
0401
0402
0403
0404
0405
0406
0407
0408
0409
0410
.0411
0412
0413
0414
0415
0416
0417
0418
0419
0420
0421
0422
0423
0424

: SDSMAC 3. 3. 0 79. 312 09: 59: 39 THURSDAY I MAY 07 I 1981. ·.~
WAIT LOOP DRIVEN I/O -- 6/25/80 PAGE OOL. ~)

0000
0002
0004

**
* *
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

TI$MSG: OUTPUT A STRING, DELIMITED BY A NULL

PURPOSE: OUTPUT A STRING TO A 9902 PORT. THE STRING
IS COMPOSED OF CONSECUTIVE BYTES POINTED
TO BY THE THIRD ARGUMENT, AND DELIMITED BY
A ZERO BYTE.

CALLING SEQUENCE:

INPUTS:

- PUSH CRU ADDRESS OF PORT
PUSH BAUD RATE FLAG FROM TI$SET
PUSH POINTER TO MESSAGE STRING

MOV @<CRU ADDRESS>,*SP+
MOV @<BAUD RATE FLAG>,*SP+
MOV @<PTR TO MSG>,*SP+
DATA CALL$,TI$MSG

PORT: CRU BASE OF OUTPUT PORT
BAUD: BAUD RATE FLAG FROM TI$SET
MSGP: POINTER TO MESSAGE STRING

OUTPUTS: OUTPUT IS SENT TO PORT.

EXCEPTIONS: NONE.

CALLS: TI$COT

*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
* ,..,

*
*
*
*

**
*
* REFERENCES
*

REF CALL$
REF EXIT$P

*
* EQUATES
*
PORTOF EQU
BAUDOF EQU
MSGP EQU
*

>0000
>0002
>0004

ADDRESS 2
INTEGER 2
POINTER 2

0001 MSGPTR EQU 1
0002 WORD EQU 2

E-32

WAITIO SDSMAC 3.3.0 79.312 09:59:39
TI$LIB WAIT LOOP DRIVEN I/O -- 6/25/80 ..;, fc \•

0426 0126 PSEG
0427 0126' TI$MSG EQU $
0428 0126 0008 DATA
0429 0128 0024 DATA
0430 012A 0000 DATA
0431 012C 0006 DATA

MSGENT-TI$MSG
MSGEXI-TI$MSG
0
6+0

OFFSET TO EXECUTABLE CO
OFFSET TO TERMINATION C
LOCAL VARIABLE SIZE
LOCAt FRAME SIZE .

WAIT IO
TI$LIB

0433
0434
0435
0436
0437

SDSMAC 3.3.0. 79.312 09:59:39 THURSDAY, MAY 07, 1981.

0438
0439
0440
0441

0442

0443
0444
0445

0446
0447
0448
0449
0450

. 0451

0452

WAIT LOOP DRIVEN I/O -- 6/25/80 . PAGE OOl
012E' MSGENT EQU $ MSGENT POINT OF PROCESS

012E C069
0130 0004
0132 04C2
0134 D0Bl
0136 1309
0138 CEA9
013A 0000
013C CEA9
013E 0002
0140 06C2
0142 CE82
0144 0000
0146 OOAO'
0148 10F4

**,
* ---- MAIN BODY OF CODE ----
**,

MOV @MSGP(LF),MSGPTR GET POINTER TO MESSAGE

CBARLP CLR WORD ZERO.BOTH BYTES
MOVB *MSGPTR+,WORD CHR ~N HIGH BYTE OF WO~
JEQ MSGEXI YES:. QUIT
MOV @PORTOF(LF),*SP+ PUSH PORTOF

MOV @BAUDOF(LF),*SP+ PUSH BAUDOF RATE FLAG

SWPB WORD CHR IN LOW BYTE OF WORD
MOV WORD,*SP+ PUSH WORD ON STACK
DATA CALL$,TI$COT SEND CHR

JMP CHARLP
**
* ---- END OF CODE ----
**

014A' MSGEXI EQU $
@EXIT$P

EXIT CODE
014A 0460 B
014C 0000

NO ERRORS,
END

NO WARNINGS

E-.33

\

SDSMAC 3.3.0 79.312 16:57:27 WEDNESDAY, MAY 06, 1981.
.--"')

CONPIG , ;
:)';;,

PAGE 0002
0001 IDT "'CONFIG"' SPECIFY CONFIGURATION
0002 * REVISION: 08/01/80 1.00 ORIGINAL FOR RX 2.0
0003 * ROUTINE LIST: CONFIG, IWP$0 •• IWP$15, BAD$WP,
0004 * $RAMTB, $RESTA, $LREX, $SYSCR,
0005 * $DEFAU, $FILL, $STKSZ, $BOOTP,
0006 * $IODIR, DB$WP
0007 * COPY MODULES:
0008 * NONE.
0009 * MACRO DEFINITIONS:
0010 * NONE.
0011 * EXTERNAL ROUTINES:
0012- ·. *' NONE.
0013 * EXTERNAL DATA:
0014 0000 PSEG
0015 * MODULE CONSTANTS:
0016 0018 IWPSZ EQU 24 SIZE OF AN INTERRUPT
0017 * WORKSPACE (R4-R15)
0018 5000 LOWRAM EQU >5000- LOW BOUNDARY OF RAM
0019 * MODULE VARIABLES:
0020 *
0021 5000 DORG LOWRAM
0022 *
0023 DEF IWP$0,IWP$1,IWP$2,IWP$3
0024 DEF IWP$4,IWP$5,IWP$6,IWP$7
0025 DEF IWP$8,IWP$9,IWP$10,IWP$11)
0026 DEF IWP$12,IWP$13,IWP$14,IWP$15

_/

0027 DEF BADWP,DBWP
0028 5000 IWP$0 BSS 32
0029 5020 IWP$1 BSS 32
0030 5020 DB$WP EQU IWP$1
0031 5038 IWP$2 EQU $-32+IWPSZ
0032 5040 BSS IWPSZ
0033 5050 IWP$3 EQU $-32+IWPSZ
0034 5058 BSS IWPSZ
0035 5068 IWP$4 EQU $-32+IWPSZ
0036 5070 BSS IWPSZ
0037 SOSO IWP$S EQU $-32+IWPSZ
0038 S088 BSS IWPSZ
0039 S098 IWP$6 EQU $-32+IWPSZ
0040 SOAO BSS IWPSZ
0041 SOBO IWP$7 EQU $-32+IWPSZ
0042 SOBS BSS IWPSZ
0043 socs IWP$8 EQU $-32+IWPSZ
0044 SODO BSS IWPSZ
004S SOEO IWP$9 EQU $-32+IWPSZ
0046 SOE8 BSS IWPSZ
0047 SOF8 IWP$10 EQU $-32+IWPSZ
0048 SlOO BSS IWPSZ
0049 SllO IWP$11 EQU $-32+IWPSZ -
0050 5118 BSS IWPSZ
0051 - S128 IWP$12 EQU $-32+IWPSZ _j

0052 Sl30 BSS IWPSZ

E-34

,t

0053 5140 IWP$13 EQU $-32+IWPSZ
., ~.! ,,.l.~ .. -,; i~~ 0054 5148 BSS IWPSZ

0055 5158 IWP$14 EQU $-32+IWPSZ
0056 5160 BSS IWPSZ i"" ",'

0057 5170 IWP$15 EQU $-32+IWPSZ ' :r-·~. <-_1 'i
0058 5178 BSS IWPSZ
0059 5190· BAD$WP BSS 32
0060 *

• ··~ Ii_

CONFIG SDSMAC 3.3.0 79.312 16:57:27 WEDNESDAY, MAY.06,. 1981.

0061 51BO LOWHP EQU $
0062 *

.l)J 0063 0000 RORG

(. '

.. r~'-

(, .. \

') _.,.-
' ~. ~'~ • .L

E-35

Y.1.-.J~>

,: .. i·

,'

' '

"

PAGE 0003

.~ ('·' \.... J.. .

' .,

I·'

·. ;.- (~ G
•" :·,' -~;- f)

' (

('

l '

