g o R e o R 1

T B IMPORTANT NOTICES

Texas Inltruncnts rnsm- the right to make (.hanqus at aay time to

. jmprove dedign amd; to supply the hnlt polltbla product for the
.-gpect:un of users.

'rhc 9900 nevme Inde éndent File x./o Pm:kage is copyrighted by Texas
xnst.tuments .In¢dorporiited, and is sole property thereof. Use of this
product is defiged by -the license agreement SC~l between the customer
and: Texas Instruments. Phe 'software may not be- reproduted in any form
without written permission of Texas Instruments. Application packages

- generated w1th the Device Independent File I/O Package may, however,
tqp!od saie-exclu51vqu‘byp€hq auato-es ﬁﬂrchiaﬁﬁf the

08 ‘Dqvies Fadcpenbent Tiie 10 Pepkady "R

All manUalsi associated with the Device Ind;g;ndent File I/0 Pagfigg

th tates, of, Ansrica, elEB. . CRRY L ighte
*“”@%§k§5$?§§%%dﬂan ncoggzgateg A rights reserved. No part of these
publlca- onswmay be reproduced in any manner including storage in a

rotrisval 7 syat or transmittal via electronic means, or other

reproduction in any form or any method (electronic, mechanical,

2 PhotEeuYiNg . SSIRLAG: | of TR Bahe PRl . WEthOSE T prier riteesn

permission of Texas Instrumnnts Incorporated.

license is granted by 1mp11cat10n or otherw1se under any patent or

.-Patent right of Texas IRSEEUmeNtS,or OtREES. . . oo

PRI PSRN NDL. DPIIIIRRC R PR ik RPN . e R

S rea e ?‘9” e

W »“ n"' ‘y
iy .
.l -
i
Sy
Sy F
.
b *N .
.
RN . [0 -~
] E ;
- I i
e >

Redet e

ke:.

: TABLE. . CONT S
rIBLnAN &7 mqugéﬁggg%EW'

b
¥ ~ ?-“E e ?f,‘v‘ﬂ}:ﬂs S T o E " e -' V’..' s _:~: ‘,«';__.ﬂ A My S ., Gy . s e ,{i}.
i -SEéTION'I..ovERVIEW

T ey <, . e i e o R -
SR L giaan wEEL e o CES L T
.l O e GENERA . ‘ . L] . . e e e se e . . Q . o o0 ¢ L I) . . . o @ ‘ LB . L3 ’ o e a e . e 0 0 0 0, =

12 Sox‘TWAREQ.Ooatootnoocoiqoooo'ioI.oQ....gQQ....qq'v

2.1

,2‘2 TERMINOLOGY...Q.I..o..ooo....o.o-.oog’..oo"..ngqqc.
.3
4

1§ﬂ}hOST’)AND‘TARGET‘SYSTEMS...,.....-....-........4.“."’ .
14 DIF I/O PACKAGE ASACOMPONENT...Q.'...’.‘.........‘...,.1-2’

]-705 “ REQUIRED EXECUTIVE EWIRONMENT..-.0ngooq-q.-ouoocooo.lo-l-3
- LR ..4\ T 2 -

'Dﬁ

SECTION II DEVICE INDEPENDENT FILE I/O SUBSYSTEM STANDARDS
ﬂ' PR FURT S \‘. ’?‘Jv oo . i §
GﬁNE&D......"......‘.'.....‘0'.-"'.Q...QQDIQ'Q!"',..‘.z-%
I/o SC[;‘BSYSTEM RATIONALE . . . ' . . LN) . . L] . . . LN] , ® ® ® 9 ° 0 9 o ' L] 0 \ . U ‘ . 2 l
I/O MODEL.................‘......’.lQ"..I.’........l...z_z
2 4 l Flle I/o Decoder ® ® o 6 0.0 00 0 @ 0o . ® @ o Q Qe e . o e 0o . . l . L 2N IA .\{'2 3
2 4 2 I/O Subsystems. ®. ® & @ 0 600 5.0 0 9 0 000 . L] ’ e.0 Q . o o o0 . Q o e 00 02-5
2 4 3 Channels...................'....Q...Q..Q...Q’...OZ-G
2.4.2 Interface Handler.................,.,,...,.......2-6

2
2

SECTION III. FILE I/O DECODER' ROUTINES

1l GENERAL::cececcocecccoososccscscscnccnsscscsssssscscessseccesd—l
2 USER INTERFACE WITH THE FILE I/0 DECODER:ccsssccccacenssed=l
3 PARAMETER PASSING:.:eocsocccsscosnsssocenssssacseasasecsssed—l
4 FILE I/0 DECODER ENTRY POINTS:.cccccscscsacccccssonsssesss3=2

3¢4.]1 DSINIT .. eeeeeesocosoocccccansapasecccsoncccscccsessd=2
D$CONNECT......................,.......,,..,.,....3 3
DSCREATE...................,......................3 5
D$OPENoo.oooooo.¢-.ooooocno’.-o.ooooo~,_9g9voo>o--.o0.3-7
DSREAD e ceccosccssososcscsssasscccsncsasncscssosssss «.3-10

D$RDWAIT..--O......t.t..,’.t_.’!;'.p.o.p.'..l.pp...tooo3-13
DSWRWAIT cccececcecccccscccoanocncnposcsncnsnspssesned=l3
D$POSITION..........................,.....,,,.....3 -13
DSWAIT................................,,.,..,.....3-15
DSSTATUS . et veeeeocscecsessscnssonasranssncssanossss3d—lb
D$DSTATUS...o...o..ono.o.-..--...o.000000,090100003 16
D$VALID..................................,,,......3-17
DSABORTIO: cceeecccsaceoccccccccssascsssasspansosees—lB
D$CLOSE................................,.,.,..,...3 18
DSDELETE . e eeeecesccccsssscsssassnsccssssnsensneesisIm20
DSDISCONNECT.ccecoees,,......3-20
DSTERM: ¢ eoevoenccncacncocnconnencosasonsssansaesasd=2l

* o . .

Lo I I S g

. [] L] . L) L] . . o e e o e o

HHEHHHEEEPHRHEHEHEOOJIAU &WN

WJdoOoUTdWNMHO

~idii.

DSWRITEQO-OQQ.QOOO-CQ--.l..co.-.9__.0‘.n.oo.'gg/'..oo“.3_ll

‘-~ ‘- SECTION IV: THE INTERPROCESS COMMUNICATION SUBSYSTEM

4 1 GENERAL.faomooooooooo.oo-oopoopooboo..coo.ooo-coooooooo'o4-l
4.2 'IMPLEMENTATION OF THE IPC SUBSYSTEM.:.cessececcoccocsccceced=l
4.3 IPC ACCESS.VIA THE FILE I/O DECODER......................4-2w
4&3 YIRECT | USER ACCESS OF IPC SUBSYSTEM ENTRY POINTS:fecscceed=2"
IBCSINIT. e eeeenesonionnsnnsssnoosocssscsodanaasaada2r
IPCSCONNECT . cceececccasscsccscscecssacscscsccocdioessesnd=d’
IPCSCREATE.................................p......4-5;
'"IPC$OPEN..,...............................ma......4-8“

.1
4.2
.3
;4,
.5"IPC$WRITE..;.....................;........a.......4-10
.6
.7
.8
.9
~8Y

3
{

.
v

Ly oo
“

#

T = TUE SIVRRS
R
"3,‘2»,.,»
» 3

IPCSREAD . « s‘aevoscescssscssscnnsnasosascsneisossasadmll
TPCSWAIT . e eeeeeaeccsocccsnsoassnnsasssassaisesneeed=l2
IPCsCLOSE....ocoooo.oo-o.o.ooo-ooddooooo-oo.o-o-.c4-l3
IPCSDISCONNECT « « ¢ ecseescaseccccecseoanecaneionsaneed=ld
NCHRONIZATION..............................%y......4—11
1 *IPC$CREATE/IPCSOPEN INTERACTION.'ss:ceeesescitteess.d=15
2 IPC$OPEN/IPC$CLOSE INTERACTION..‘.-.........,.....4—15

T |
l“u| .

.....

'G-h-bhiw-h.husaan-huuasu

Ne-o IJoe o76°0 oio o.-0:0
_°Mtnuﬂ)¢-h4>anhasa~hds

!c] t.
oY

P

LT R T Y
i foie i
w o

LR

e .

. re e e SECTION V. ENCODE AND DECODE RO@TINES ;20 "5
R gy ‘ '

3

NERAL..oo..0-Q'o..00...ol........o....'.ooco...o;vionlios l'
NCODE ROUTINES....'l..‘.................:...'.....?.....5_2'7

A Ul'-'U'l‘{ “t
thsf%‘

‘G
E "

. ¢ 591 1"Encod1ng an Integer (ENCSIN) cceeifecscencocasapeceed=2
J;;f *5.2.2" * Encoding* a' Longint (ENC$LO)......ﬁl:........ﬁr....5-35
.57 77 5%.2.3 *Encdding Boolean (ENC$BO)...................ﬂ,....5-4m
7", 5.2.4 "Encoding a-Character (ENCSCR)....l...........,....S-G:
Jt 7r5.2,5 Encoding a String’ (ENC$ST).......;...........,....5-7-
: 5.2.6 Encoding- a‘ Real- (ENC$RE).........3;..........4....5-8?
5.3 - DECODE’ ROUTINES....................................¢,....5-9’
i -5 .5.3.1 * Decoding’ an’ Integer (DECSIN)..ceeiitocececedeneses5=9"
{> 5°.3.2 Decoding a Longint (DEC$LO).......-;........za....S -10
“J 7%5.3.3 Decoding Boolean (DEC$BO)..........;.........ﬁp...s-ll
b <5, 334"Decbd1ng a8 Character (DECSCH) ceevcetseocsccecnmpesesd=12
o 5 3.5 Decoding a- String- (DECSST).......:ﬁ..,........{...5-14
B : 3.6 Decoding: a Real: (DECSRE)...........;ﬂ;.......,,...5 -1
*l i‘..:.»;,_ N I I . B - A
; , ~?;.;ii o T:.s‘w:_rz“? 3 o -;; o
ﬂf%f‘l‘“}fk- SECTION VI-.« CONFIGURING AN APPLICATION T
éf;””‘i“¢2ﬂh : +TO INCLUDE DIF I/0 ROUTINES" i ”;g -
:b' L R L T R e NS LR ps :T; .

. 6'&4 GENERAL...oboooc.oooooo--oo.-Oouo'ocoo..‘oo.o-oo..lO:;:OQvsqr
+ 5692 INTTIALTZATION v v v e aeeeeeeeeseereneeeabitsesennn grness6-k
6?3*\FONFTGURATION MODULES: s ceeeecscosesansesdeiionianeasnnmassb=2
=4 6305« DIF I/O~Routlnes.................3..........’*14...6-3
6.3.2 Executive lerary............................t.....6-3
6.3. 3 CONFIG...6—
-6.3.3.1 Specification of the I/O Service
- D1rectory.................................6--
""':‘6’3‘3 2 Example CONFIG-o-o-nooo--ou'o--oooc-p¢ ‘ 6‘5
6 4 LINK EDITING............................a...‘........:ii..s-ll
6 4 1 L1nk Edltor.....................................-..6 11

iv

?Igure

7«=gugure
-"Figure
.« Figure

" Figure

. .«rPigure

el

§ -h

-

o
»

(T%f‘J'

&»F*“"“

Figure
Figure

"j:rtgure

' Figure
* Figure
* Figure
‘Figure

* Figure
“Figure
“*Figure
‘Figure
" *Figure
‘Eigure
i@gure
- Figure

l'"*‘Fﬁgure

- Figure
Figure
v Figure
Figure
Figure
Figure
“ Figure
~ Eigure
" Pigure
*'Fianre

"TJ

4 ,__
RN o
Rt S

o &u!i"""

" 44-”.-:,_

..a«pm"ﬂ‘"

% -

1-1
2-1
6-1
6-2
6-3
A-1
A-2
A-3
A-4
A-5
A-6
A-7
A-8
A-9
A-10
A-11
A-12
A-13
A-14
A-15
A-16
A-17
A-18
B-1
B-2
B-3
B-4
B-5
B-7
B-8
B-9
B-10

: "Ehhle c-1

Component
I/0 Model

%

6.4‘2H Link Edif CODtIOl Filgﬂowowof@fkif?;j?fowbjio}t{‘o}G;ii

Mﬁr i

aeemwprces .

. Y
- - IMPLEMENTING THE OPERATOR INTERFACE I/O SUBSYSTEM.......,..A-l
INITIALIZATION DATA STRUCTURES..oo.oooootcoooooc*uo.oooooooB-I
W STATUS AND ERROR MESSAGES......-..............-..........-.C-l
IMPLEMENTATION OF DUMMY I/O SUBSYSTEMS.....;...............D-l
FILE ATTRIBUTES FOR USE IN CALLING FILE SERVICE ROUTINES...E-l
GLOBAL DECLARATION FILES FOR DIF I/O PACKAGE...............F—l

LIST OF FIGURES

% Is

SOftware Representatlonotooo-oopo..oooool-§

0...'.....000.....0...0....0.0...00000002-3

Default Version of Procedure GHOST$........s......6-2
CONFIG......................B................0..006-5 :
Sample Link Edit Control Flle..............z......6-11
9902 Device DeSCriptOrecececececcsncsoavescscsissoeseshA=2

Procedure
Procedure
Procedure
Procedure
Procedure

. Procedure
An Example.............l..'.......'l..'."...
An Interface Handler.........................
~Subsystem
Procedure

Procedure
Procedure
Procedure
Procedure
Procedure

HozsoPEN.-oo-oo.oiooooooooooooooﬁo'oooooA-4
H02$WAIT.......;.....ﬁ....}...aca-....L.A-S
H02$IN000o.uo.ooo-oo'.o.-..oooo.;oo.oootA-ﬁ
H02$0UT-............--¢....s6.,...-..$..A—7
H02$GET.............-.........t.Q..;.S-.A-8
H02$PUT........o...-............... %ﬁooA-lo

Dependent Data TYPeS...;o.ooooo.oooﬁéoooA-ls
T02$INITQooooo..o.o.o..ooooooocoooooooooA—lG
T02$CONNECT.-.s...................a..%..A’17
TO2SREAD - e e e vcoeencccannccascboanesscessA=1B
TostRITEQooooopbooo-o-ooo-oooioooioooo.A‘le
TOZsWAITooooooooaocobbo-oooooo%oooo.ooo.h'lg
TOZsDISCONNEcT..--60-.00.000.....0Obo.o.A-ls

MOdUle T02$SDOooooo'oooo.ooooo-.oooo.ooo‘oooooooooA_lg
MOdule T09$PC...........-....................8....A-20
I/0 Service D1rectory..................m.....a....B-
I/0 Subsystem Service DireCtoryscsecescieiecéeisosB-4d
Port Constants ReCOrdec:cocesecccecsssseisissseiceesB6
Node Constants Record.....................a..;..:.B-7
File Indentification Record............se....e...;B-
IPC FID Variables Record..............a,........a.B-
IPC Port Variables ReCOrdeccccecciveceecds

IPC Pathname Record R R R RNy

e -ﬂ,;
SRR e Wiw .
A s BRI ¢

|
|

o

gy

PP Y

PREFACE

This ‘manual " documents the user -procedures for ‘the: 9900% Dévice=
Independent File I1/0-Package. The: manual -is organized as” follows.<. g

‘Section - I. prov1des a product overview of the Device Independent
File I/0O Package.

"Section: I1 provides an explanation of .the concepts. implemented-:
"in"thig ‘package. - g .

Seetion III describes ‘the File I/0 Decoder,elistsethe.entryf
- points into the decoder, and presents a 'Pascal and assembly
alanguage calling sequence ‘for each. :

Section IV descrlbes the Interprocess Communciation (IPCY I/Ou
Subsystem, defining the.routines that comprise . this subsystém
and .presenting Pascal and assembly language calllng sequences
for- these . routines. ,

‘Section V:'describes the Encode.and Decode Routines - 1ncluded
‘this ..package. Each routine is documented along = w1th 1ts
assembly language calling sequence.

Section VI describes configuration "of applications containing -
DIF I/0 routines. Initialization as well:as conflguratlon-
.information is presented.

TN,

S Appendix A describes the ‘Operator Interface (T02) I/0. Subsystem -
~demonstrating for .the .Pascal user how to-write hisvown?®I/O
.Subsystem.

Appendix B provides pictures ~-of data structures used’-during-
system initialization of 'DIF 1/0 applications. :

Appendix- C defines the status codes returned by the File+~I/O"

Apperidix D defines the Dummy 'I/O Subsystem .included ® in-: this -
.. package.

Appendix E describes the file attributes that are defined- ‘during -
acceéss of File I/0 Decoder routines.

. Appendix F presents 11st1ngs of global declaration flles for use
- by the-Pascal user in wcrking with this package.

‘The - ;folibﬁing; publications offer informational support’ to this
documentzand- to:users of this product. '

~
E
%

9706

.
.o
-
. i .
Pa e
PRI
“ »
DI
> 870
. s
* :I“-r-v
.o e, W
aQ” *

;946250-»9701

e .

IR
.

e A
N

" 949617-9701

e
Lt
e oa

. a;-,

-

e
K

r r

dre
_—
e
o

L
-
¢
» R
P
v s ox
&
e
+
s
Vo
.
=
.
N
B
»
.
. o
-

o e, e

'AMPLﬁg Softwaté“éyStem User”s Manual-

'Microprocessor: Pascal System User”s Manual.

Mlcroprocessor Pasca; Execut1

»

Model 990 Computer EXLO Qpera
ReferencezManual : a; R 3

. 'A, vﬁi ' PO .
"‘Model 990'Computer L1nk Edltor Reference
Manual

Model 990 Computer TMS9900 Mlcroprocessor
Assembly Language Programmer

LI ‘ . ‘"._‘.",”‘"‘.?‘” .' . mi‘-h;’i:
Realtlme Execut;ve Uger”s Manual - a3
3h P i . R T (r_ “u’r ‘,:,"‘x - .. ':'
P AroooLE gl
v v £y oA N ~‘:“’:-: il o ’a | e S‘ Lg‘l .:
. s . 4% N TAFA "‘:’X 1‘.. 2 é)_'y.:'\
e 8 aw < PR S .‘{Z MR ,\: -:4.,;.'
~—
TR : LoD

I ¢

e

v 7
e s Mad
T - »
P SN
¥ EEEERY g . Teed
Mgt . ~
< aae . Caee i L3
v = >
e e Lorow B D408
- .
PR TN v “ N A - -
A .
PR RN g 5 =y B
- 3 ~
. x "
ekt . . [
N ~ - 3 ‘- -
Ly [
- bid B Al
» S *) R
I N "o o
FREFSIIN \ 3 . 2N A
4 “n -
. Qs s - K 2 ,.n .l
- v - -~
s & - N v
B N » * Cd - b
AR T R -~
. < .o - 4 B “m
P - -
. v PR -
i + T 0
PR P . -
S - " u
- » . * - « . - Yo
- - .
M ’ i3
. ~ ™ e
< s .t . o
- v “ Vo v et
- - - J o
- I - Lot . -
v EPR)
& A .
Pk g
. ‘'

&qudg‘ -\:F'b-’\: ’

SECTION I

OVERVIEW

1.1 GENERAL

Texgs Instruments Device Independent File (DIF) I/o User”“s Manual
documents a collection of routines préviding I/0 services for the 9900
family of microprocessors. This software enables Pascal and assembly
1anguage users to perform device independent 1I/0 utilizing a
congistent file interface. Through the use of these routines, requests

:for file services are automat1cally translated into calls to
_1nd1v1dua1 subsystems dedicated to managing data resident on various

devxces such as CRTs, card readers, printers, etc.

jThe DIF I/O package is especially useful when the performance of inpﬁt

and®: output operatlons is required on any of several devices and the

'specific device is not identifiable until run-time. Use of the DIF 1/0

. _.Package also enables the user to access a variety of software

N

subsystems using a single interface.

'In. addition to documenting software supplied by Texas Instruments,

this manual presents standards that a user must follow to produce his
own: subsystems with the capability to interface with this package and_
be accessed in a device independent manner.

1.27 SOFTWARE

The: software routines described in the Device Independent File 1I/0
Package User“s Manual are listed below. The Pascal versions of these
routines are provided in the Microprocesor Pascal Executive contained
in - the Microprocessor Pascal System (TMSW753P and 754P). For the

;assembly language user, these routines are provided in the Device
- Independent File I/0 Package (TMSW360D)

® The File I/0O Decoder ©providing a device—indepen@ent
interface between the user and a variety of 1I/0 devices
(floppy diskette, tape reader, printer, CRT, etc.).

® The Interprocess Communication (IPC) 1I/0 Subsystem
implementing file-level message passing between processes.

® The Operator Interface I/O Subsystem (T02) implementing

data communication with terminals connected to a 9902
asynchronous communications controller.

“1-1

® Encode and Decode routines- performing data conversion from
the internal representation to printable format and
conversely from printable format to internal
representation. (These routines are used transparently in
the Microprocessor Pascal Executive. However, the assembly
language user calls these routines directly.)

T - e -

HR SRR e L2 m L eme

1.3 HOST AND TARGET SYSTEMS

Development capabilities for applications using DIF I/O routlnes are
provided by the following host systems:

® Single-<lser FS990/4 or /10 floppy disk minicomputer with
operating system software provided by the AMPLUS Software
System and development system software provided by AMPLUS
or the Microprocessor Pascal System.

® Multi-user DS990/10 or /12 hard disc minicomputer with
operating system software provided by the DX Operating: 2.
System and development system software provided by the DX

system or the Microprocessor Pascal System. CLeRT
o abey
Target systems include TMS9900 and TM990 Microprocessor systems. : : %

N > "TC -~
Device independent routines and data structures support I/O 1n\,thg
target system. I/O in the host system is provided for in the-hest

system”s operating system. S9 ey
: - £l
h s RE 3“_‘ >,
1.4 DIF I/0 PACKAGE AS A COMPONENT TREM
’)'" q\v

The DIF I/0 is a member of Texas Instruments” 9900 series of component
‘software. This series contains a variety of individual software

products that can be separately purchased and combined with an

application to produce a powerful software product. Because of the
modularity of the routines comprising this product (as well as other
Texas Instrument component software), the load module produced to run
on a target will include only those "pieces" of the component that are
required by the application. In this way, memory requirements are kept
to the minimum.

The Realtime Executive (see Subsection 1.5 below) acts as a software
link for an application written in one of several languages and
utilizing various "components". Figure 1l-1 pictures this concept. The
Device Independent File I/O Package component is present along with
two I/0 Subsystem components.

1-2

o - - s e
e User ' e T
- Application| - e e
Native Code Run Time Support
c g s DIF I/0 1/0 I/0. .-

Component Subsytem Subsystem
Component Component

FIGURE 1-1. COMPONENT SOFTWARE REPRESENTATION

1.5 REQUIRED EXECUTIVE ENVIRONMENT

Execution of the routines described in this document requires native
code run-~-time support of an executive. (The executive provides control
of the software execution in a computer system including control _.of
CPU usage, memory usage, routine calling conventions, data structures,
ete.) Run-time support 1is provided for the assembly language
programmer by Texas Instruments” Realtime Executive (TMSW33QR) and.for
the Pascal user by the Microprocessor Pascal Executive (contained in
the Microprocessor Pascal System - TMSW753P and 754P). These
executives are described in the the Realtime Executive User”s Manual
(MP373) and in the Microprocessor Pascal Executive User’s Manual
(MP385) respectively.)

CYREWT

-

R <

uy

' £ o e

-~

1-3

’ LR w\ - 9 ay s) 4 L
CI SR : R : a
o s T -3 O 2 B
R S & - Ly . LA &4
S *oA ’ o Nes
. L)
i
b
i
i
m i
i

/
N

SECTION II

DEVICE INDEPENDENT FILE I/0 SUBSYSTEM STANDARDS

— 2.1 GENERAL

This section of the manual discusses the concept of device independent
I/0 .as it is implemented by this software and the standards which,
when applied, allow the user to write his own subsystem to interface
with this software.

2.2 TERMINOLOGY

Device Independent I/0 refers to a mode of implementing input/output
requests on target devices without naming the specific target device
in the procedure call (a requirement when the appropriate device is
not identified until run time). As 1listed in Subsection 1.2, the
routines translating device independent I/0 requests into calls for a
particular device operation are contained in the File I1/0 Decoder. A
subsystem accessible to the File I/O Decoder and performing target I/0
operations on the device is an I/O Subsystem. The 1logical connection
between the CPU and the physical means of controlling a device is
called a Port. In most I/O Subsystems, the port identifies a
particular device controller such as a TM990/303 Floppy Disk
Controller. Each device controlled on the target is called a Node. The
Node associated with the Floppy Disk Controller is a floppy disk. 1I/0

_operations are executed sequentially in the order in which they are

received. If, when a command is received, the calling process is
suspended until all previously issued commands are completed, then
Executed I/0 is performed. Initiated I/O refers to instances when the
calling process is reactivated before the command is completed.

2.3 1I/0 SUBSYSTEM RATIONALE

The I/0 Subsytem Standards provide for the standardization of an T1/0
interface in the user application. This standarization enables the
user application to:

1) Realize a general file interface for 1I/0 requests to
various devices supported on the target system. Devices
are treated as files. Requests for I/0 services on the
device are made as requests for file services. In this
way, the Pascal wuser can use Pascal READLN and WRITELN
statements to perform device I/0. The assembly language

user can access the File I1/0 Decoder directly to perform
device I/0.

.2) Implement initiated I/O, a means of servicing I/0 requests
without blocking the requesting process.

2-1

P LI
3) Actlvate multlple 1nstances of the Interface Handler (I/F'. -3
Handler) manipulating the device on the target.

4) Add various Interfaee'Handlers and establish the means to
communicate with them. The user can commuinicate with as
many devices (of varying types) as he requires.

5) Access I/0 service routines at varying levels of logical
orgainzation (from the’"logical file level to the physical
device level).

2.4 I/0 MODEL

An "I/O Model" adherlng to the requlrements of the I/0 Subsystem
standards presented in this document is pictured in Figure 2-1 below.
This model is comprised of the following components:

@ The File I/O Decoder translating user I/0 requests to
procedure calls for specific device services. .

® Various I/O subsystems, each implementing the procedure
calls from the File I/0 Decoder for its specific device.
An I/0 Subsystem may be one of the component software
packages that can be obtained from Texas Instruments (the
File Manager and the Operator Interface I/0O Subsystem are
two examples), or can be written by the user to conform to
the standards oresented in this document.

® Channels created to handle the communication from the I/O
Subsystem to the Interface Handler software. ey

® The Interface Handler manipulating the device. fg,,

The components described above are ordered from a logical to. ;5
physical interface. This orderlng traces the flow of program controL
when device independent I/O is performed. The application generates
I/0 requests by invoking the File I/0 Decoder . The Decoder selects
the appropriate I/O Subsystem (File Manager, Operator Interface I/Q
packages, etc.) and passes control to that subsystem. The subsyste?
selects the appropriate device (floppy, printer, etc.) passing contro

to the associated Interface Handler. Movement of control between the
levels is transparent (invisible) to the user. Ca

The user may choose the level at which he requires the request to .he
executed. He may call the File I/O Decoder, the individual. I/Q
Subsystem, or even the appropriate interface handler from wh&a
application. However, it is only via the File I/O Decoder that cails
go .I/O routines can be performed without regard to a specific ta;ge;
evice.

vn-'f'

Entering the I/O model below the File I/O Decoder Level (i.e., at
I/O0 Subsystem Level, or at the Interface Handler level) requires

'J.‘
uomm.J

:
95D
ofRs

2-2

N

user to understand the requirements associated with that lower 1level

and to structure his code to meet those requ1rements.u‘ ’ bNya
!
APPLICATION;
! 1
FILE I/0)
DECODER :
I/O SUBSYSTEM" II/O SUBSYSTEM ' 1/0 SUBSYSTEMi
A NO. 1 ! : NO. 2 ! NO. 3 I
4 l L
I/F HANDLER [I /F HANDLER J' I/F HANDLER
L4
II/F HANDLER L,I/F HANDLER I/F HANDLER

FIGURE 2-1. I/0O MODEL

NOTE: . The above figure depicts more than one Interface Handler
attached to each I/0 Subsystem. In actuality, an 1I/0 Subsystem can
start a single Interface Handler several times to service different
devices of the same type (e.g., the File Manager interfacing with
éeveral floppy disk controllers) or different 1Interface Handlers
attached to different devices (e.g., the File Manager interfacing with
a floppy disk controller and to a bubble memory controller).

The remainder of this subsection describes each of the above
¢Srponents in detail. :

1

2.4.1 FILE I/0 DECODER

The File I/O Decoder provides the software capability for device
independent I/0. The Pascal programmer uses such Pascal statements as
ENAME, RESET, REWRITE, READ, and WRITE to perform file I/O. These
"pascal primitives" in turn automatically access the File I/0 Decoder
wfEhout any further user interface. The assembly language user
application accesses the File I/0 Decoder directly via file operation
e%try points (the Pascal user can also access these entry points
d% ectly). Each entry point corresponds to a device operation
supported on the target and is callable as a separate file service

routine. The Pascal and assembly language calllng sequences for, .the,
File. I/0 Décoder routines are presented in Section III. Among tHe
entry 901nts (callable routines) present are:

RS an

e DSINIT Initializes the File I/O Decoder and supporteéﬂbq

a I/0 Subsystems. Lo

. é DSCONNECT Connects a file pathname with an associated '+:;
‘ I/0 Subsystem and ultimately the physical R
device or node controlled by that subsystem. ~~

:0 DSCREATE Creates a file. pies

e DSOPEN Opens a file for access. i

e DS$SREAD Initiates reading of a file. Y

e DSWRITE Initiates writing to (or updating) a file. 5‘3

e DSRDWAIT Reads a file; but delays return of control to ¢

calling routine until read operation is completed.

[——

® DSWRWAIT Writes a file, but delays return of control to_ .
calling routine until write operation is completed.

® DSPOSITION Resets the internal subsystem”s pointer to p01n€
at the requested record.

e DSSTATUS Checks for status of oldest I/O request on the
specified file at the File I/O Decoder Level. "''27

e DSDSTATUS Checks for status of oldest I/0O request on the
specified file at the subsystem level.

e DSABORTIO Aborts all I/O requests outstanding on a file. -

® DSCLOSE Closes a file disallowing further access until
re-opened.

e DSDELETE Deletes a file.

® DSDISCONNECT Severs the connection between a f1le pathname and
physical device as controlled by an I/O Subsysteﬁ.

The operations requested via these entry points are viewed by the user
on the File I/O Decoder level. At the point that these routines are
called, the user need not associate the requested operation with* ‘a
particular device; the File I/0 Decoder makes that association E@g
him. In reality, each file service accesses an entry point intd“‘a

device dependent service managed by the appropriate I/O Subsystem.

o v

Two entry points in the File 1I/0 Decoder bear special mentionf&i
D$CONNECT and D$DISCONNECT. <

Ry w"'?“{) <

et
g

2-4

o

5$CONNECT must be the first File I/0 Decoder service requested (afteg
initialization) and is called to connect a specified file pathnamé
(passed to DSCONNECT as a calling parameter) w1th the appropriate I/0
Subsystem (and ultimately the device itself). "connect" time, the
File "I/0 Decoder will invoke each subsystem supported on the target in
succession until some subsystem recognizes the pathname parameter
passed with the call. Such recognition is made because of the meaning
attributed to the nodes making up the file pathname. For example, The
File Manager I/0 Subsystem recognizes the first node in the pathname
as the name of a volume it controls provided that wvolume has been
previously installed via the File Manager”s Install Volume command.

NOTE: The possibility exists that a single file pathname can be
claimed by more than one I/0 Subsystem. For this reason, the order in
which individual I/0 Subsystems are polled can be critical.

When the pathname is recognized, internal data structures are created
and maintained to sustain the connection between the file and the
physical node or device, enabling the user to perform subsequent
Qperatlons on the file. When no subsystem claims the pathname, an
érror condition is signalled.

L

_+A.call to DSDISCONNECT is performed to sever the association between

Ehe file and the physical device. At "disconnect" time, the memory
allocated for the data structures used to 1link the file to the
Physical node are returned to the System heap.

The internal data structures referred to abovz are illustrated in
Appendix B. Each routine accessed in the File I/0 Decoder is discussed
in detail in Section III.

2.4.2 1/0 Subsystems

An I/0O Subsystem is a collection of procedures managing a logically
similar set of I/0 resources. Accessed through the File I/0 Decoder,
these resources are made available to file level users in a consistant
manner invisible to the user. Examples of I/0 Subsystems created by
Texas Instruments are the 9900 File Manager (TMSW340F), the
Interprocess Communication (IPC) Subsystem, and the Operator Interface
(T02) I/O Subsystem.

The File I/0 Decoder accesses I/0 Subsystem routines via entry points
present in the I/0 Subsystem. These entry points correspond to entry
Peints present in the File I/O Decoder (i.e., the DS$routines described
above in Subsection 2.4.1). The I/O Subsystem entry points are formed
by attachlng a prefix (unlque to the particular subsystem) to the
gener1c names of the file services. For example, READ is FMS$READ . in
the File Manager and TO2SREAD in the Operator Interface I/0 Subsystem.

Because of its purpose, a particular I/O Subsystem may not support
every file service for which it posseses entry points. For example,
DELETE does not make sense in an 1I/0 Subsystem managing a line
Printer. These entry points are connected to stub (or dummy) routines.

2-5

If the user wishes, he can bypass the File I/O Decoder and can
directly access the 1I/0 Subsystem entry points. The I/O Subsystem
reaction when each particular entry point is accessed (i.e., each file
request is made) is general to all subsystems (with the exception of
those file services that are not supported in a particular subsystem
as mentioned above). Thus the parameterization for a given entry point
type is the same across all subsystems.

2.4.3 Channels

Channels can be conceptualized as data structures over which messages

(data) can be sent and received. In the context of the I/O Subsystem

Standards, channels are initialized to handle message passing between.

two processes: the I/0 Subsystem Manager and the approprlate

Interface Handler. The tasks that are executed to initialize the
channel, construct the message, and synchronize the message transfer

are all performed transparently to the user.

It is possible for the user himself to create and pass messages to 2
selected Interface Handler. However, to .do this, the user must.

identify the channel associated with the selected Interface Handler

and construct the message according to the requirements of the

Interface Handler.

Information on the routines that implement interprocess communication

via channels wusing native code run-time support is presented in the.

Realtime Executive’s User”s Manual (MP373). Channel routines are
documented for Microprocessor Pascal Executive wusers in the
Microprocessor Pascal Executive User”s Manual. i

2.4.4 1Interface Handler

The Interface Handler provides the lowest level of interface with the
actual physical device. The handler enables requests for logical
services made in the user®s code to be translated to requests for
physical services on the actual device.

By entering the I/O system at the File I/0 Decoder or at the I/0
Subsystem levels, the user need not be concerned with the requirements
for accessing the Interface Handler. However, it is possible for the

user to <call the Interface Handler directly or invoke the Interface

Handler via messages sent across channels as described 1in Subsection
2.4.3. The user should refer to the user”’s manual for the specific I/0
Subsystem when directly accessing the Interface Handler.

2-6

TN

e, SECTION III
FILE I/0 DECODER ROUTINES

3.1 GENERAL

This section documents the entry points into the File I/O Decoder. The
individual routines associated with these entry points are examined
and the parameters passed when each routine is accessed are defined.’
Pascal and assembly language calling sequences are presented for each.
The assembly language programmer must be familiar with the assemblyﬂ
language programmlng standards and the conventions governing reglster
usage documented in the Realtime Executive User”s Manual (MP373) to
understand the assembly language code and register usage.

Prlor to the description of these entry points, general information on
USer interface with the File 1I/0 Decoder and parameter passing is
pPresented.

PR

3.2 USER INTERFACE WITH THE FILE I/0O DECODER

As established previously, the user application interfaces with the
File 1I/0 Decoder to perform device independent I/0 on the target
system. The means by which the user achieves this interface is
described below for Pascal and assembly language users.

® The Pascal User merely uses Pascal statements supported in
the Microprocessor Pascal System to perform file I/O
operations. These Pascal statements, RESET, REWRITE, READ,
READLN, WRITE, and WRITELN, in turn invoke File 1I/0
Decoder entry points invisibly to the user. Information on
these Pascal statements is contained in the Microprocessor
Pascal System User”s Manual (MP35l1l). The Pascal user can
also invoke the File I/O Decoder entry points directly as
demonstrated in the calling sequences below.

® The assembly 1language user must invoke the File I/0
Decoder entry points directly in order to perform device
independenii I/0. The assembly language calling sequences
are presented below in Subsection 3.4.

3.3 PARAMETER PASSING

In order to understand the calling sequences presented below, the user
should be aware of the conventions governing the way parameters are
passed. These conventions apply to both Pascal and assembly.language
users as decribed below.

* . w.ves . . Y B
RV A R . et e

T A
Tk i

e When parameters are passed by reference, the address of

- the data required by, the called routine is passed. The "¢

address is passed in one word. Parameters passed by f
reference can be changed by the called procedure. These % #*
parameters include variables.

® When parameters are passed by value, the actual data -
required by the called routine is passed. This data can be
passed as one or two words (e.g., Long Integers are passed
as two words). -

® Pointers are passed by value. However, the value passed is
an address of some data (or data structure).

® Records and arrays are passed by reference (though the
Pascal calling sequence may indicate that they are passed
by value). In other words, the address of the record/array
and not the data structure itself is passed to the called

- procedure.

-

Detailed information concerning parameter passing is presented in the
Microprocessor Pascal System User”s Manual (MP351l) for the Pascal user

and the Realtime Executive User”s Manual (MP373) for the assembly
language user.

.o

3.4 FILE I/0 DECODER ENTRY POINTS

The File I/O Decoder entry points are discussed below 1in detail.
Because of system conventions, the order in which several specific
routines may be invoked is fixed (e.g., the call to Connect must
precede any other call to a file service, a file must be opened before
accessed, etc.). This order is reflected in the descriptions below.

In addition to the entry points presented here, other entry points are

present for internal use. As such, these entry points will not be

called by the user and are thus not documented below.

NOTE: 1In writing his code to access these various entry points, thée
user must be careful that the sharing of variables among processes is

synchronized (one method of achieving this synchronization is through-

the use of semaphores). FIDs can be shared among processes within

scope; however the restrictions of the specific I/O Subsystem invoked
must be considered in any such attempt.

3.4.1 System Initialization (D$INIT)

Initialization of the File I/O Decoder and all I/O Subsystems with
which it is linked occurs automatically at power-up time. The Ghost$
procedure present in the native code run-time support contains a call
to the DSINIT routine in the File I/O Decoder. As a result of DSINIT

TN

being accessed, each of the supported I/O Subsystems are entered at
their respective initialization entry points. In this manner, system
initialization takes place transparently to the user.

In fact, invoking the DS$INIT entry point leads to initiating the
devices, characteristics tables, and configuration data associated
with the File I/O Decoder and with each supported subsystem. Appendix
'B: presents pictures of the various data structures. Section VI
describes how a system is configured.

Pascal Calling Sequence:
PROCEDURE DSINIT
Assembly Language Calling Sequence:

DATA CALLS
DATA DSINIT

3.4.2 Connecting the File to an I/0 Subsystem (D$CONNECT)

DSCONNECT must be the first file service requested and is called to
connect a specified file pathname with the appropriate I/0 Subsystem.
At "CONNECT" time, the file decoder will invoke each subsystem
supported on the target in succession until some subsystem recognizes
the pathname parameter passed with the call. If no subsystem
recognizes the pathname, an error condition is signaled (the naming
conventions applicable to the file pathname are specific to the I/O
Subsystem being invoked). When the file is recognized, internal data
structures are created and maintained to sustain the connection
between the file and the physical node (or device). Also, the File
Identifier (FID) is initialized. The FID connects the user with the
associated I/0 Subsystem enabling the user to perform subsequent file
operations on the file.

NOTE: The Pascal user must do a type override to enable the pathname
pointer to point to a buffer of sufficient size to hold the pathname.

After connect, legal file requests are DSCREATE, DSOPEN, DS$DELETE, and
‘DSDISCONNECT.

The calling parameters for DSCONNECT are defined below.

Parameter Definition
Pathname Pointer to buffer con-
Pointer taining pathname of
file to be serviced.
This pathname is
subsystem dependent.
Number Number of characters
of Char- contained in the
acters pathname.
File Value returned by -
Identifier DSCONNECT enabling

the I/0 Subsystem to
associate a specific
file with a specific
user.

Pascal Calling Sequence:

PROCEDURE DSCONNECT (Pathname

No_of_char
VAR My fid

Assembly Language Calling Sequence:

Input/Output

Limits

Pointer: Input ~ !
Word address. T
Buffer: - o
Character array &

length of which

depends on the ~r |
subsystem. The

pathname is left-

justified in the

buffer.

Integer Input

3

Integer Output

DUMMY_BUFFER_PTR;
INTEGER;
FID);

Assume: The parameters for this procedure are stored at the
following displacements into the calling procedure”s
local frame:

Pathname Pointer at 0

Number of Characters at 2

My Fid at 4
MOV *LF,*SP+ PASSING PATHNAME POINTER
MOV @2 (LF) ,*SP+ PASSING NUMBER OF CHARACTERS
MOV LF,*SP PASSING FILE IDENTIFIER
A @FOUR (CODE) , *SP+
DATA CALLS
DATA DS$CONNECT

where the following sequence is in the user”s prologue:

MOD EQU $
DATA PRO-MOD

FOUR EQU $-MOD

3-4

MOD LABELS BEGINNING OF LOCAL DATA
PRO LABELS BEGINNING OF EXECUTABLE CODE

TN
)

- DATA 4

3.4.3 DSCREATE

The entry point DSCREATE creates a file by invoking the appropriate
I/0 Subsystem. The attributes of the file that is created are defined
by the calling parameters passed to the D$SCREATE command. The meaning
of these attributes are discussed in detail in Appendix E.

The parameterization for DSCREATE pertains to I/0 Subsyétems managing
multifile devices. These parameters are ignored by I/0 Subsystems not

supporting multifile devices. The Create function leaves the file in a-

closed condition so that the only 1legal operations are DSOPEN,
DSDELETE, -and D$DISCONNECT.

The calling parameters passed to DSCREATE are described below.

Parameter Definition Limits Input/Output

File Value returned by Integer Input
Identifier DSCONNECT enabling

the I/0 Subsystem to

associate a specific

file with a specific

user.
~ Password Pointer to record struc- Pointer: Input
/7 . List ture containing Creator Word address;
: Pointer and User Passwords Record Fields:
Creator Password:
character array;
User Password:
character array.
Protection Record defining access Read (Bits 0-3): Input
Code protection. This record #1 thru #4;
has four fields each Write (Bits 4-7):
defining the level of #1 thru #4;
access protection for Modify (Bits 8-1l):
a separate access activ- #1 thru #4;

ity. These fields are: Exec. (Bits 12-15):
Read, Write, Modify, and $#1 thru #4.
Execute. The levels of .
protection assigned are

specified as #1 Any Ac-

cess; #2 User Password;

#3 Creator Password; and

#4 No Access. See Appen-

dix E for details.

File Type

Logical
‘Record
Length

Primary
Allocation

Secondary
Allocation

A record containing four File Type (Bits Input
fields defining the 0-3):
physical and logical or- Contig.=1;
ganization of the file. Non-contig.= 2;
These file attributes Record Type (Bits
are discussed in Appen- 4-7)
dix E. Free Len.=1;
Var. Len.=2;
Fixed Len.=3;
Usage (Bits 8-11):
Data File=1;
Compression (Bits
12-15):
Uncompress.=1;
Compress.=2.
Length in bytes of the Any positive Input
records contained in integer.
a file. For Fixed
Length record files,
the actual record
length is used. For
Variable Length record
files, the maximum length
is used. For Free Region
record files, a record
length of 1 byte is used.
The minimum storage space Any non-negative Input
(number of records) to be Long Integer
allocated to the file (two words).
(represents maximum number
in a contiguous file).
Default is indicated by
blank or zero. Free Length
default = 800; Non-Free
Length Default = 50.
The increment (number of Any non-negative Input
records) by which a non- Long Integer
contiguous file is allowed (two words) .
to grow per expansion (up
to 16 expansion steps are
allowed for non-contiguous
files. Default is indicated
by blank or zero. Default =
Primary Allocation.

Pascal Calling Sequence:

3-6

i

i

i Ay
[T

R B
.

PROCEDURE D$CREATE (My_fid : FID;
Pass_code_list: PASSWORD_LIST PTR;
Protect : .PROT;
FT : FILE_TYPE
Log_rec_len : INTEGER;
Pa_log_rec : LONGINT;

Sa_log_rec LONGINT) ; -

1 .

Assembly Language Calling Sedquence:

Assume: The parameters are stored at the following
displacements into the calling procedure”s
local frame (records are passed by address):

My Fid at 0
Passcode List Pointer at 2
Protection Code at 4
File Type at 6
Logical Record Length ~at 8
Primary Allocation at 10
Secondary Allocation at 14
MOV *LF,*SP+ PASSING MY FID
MOV @2 (LF) ,*SP+ PASSING PASS CODE LIST POINTER
MOV LF,*SP PASSING ACCESS PROTHECTION ADDRESS
A @FOUR (CODE) , *SP+
MOV LF,*SP PASSING FILE TYPE ADDRESS
A @SIX (CODE) ,*SP+
MOV @8 (LF) ,*SP+ PASSING LOGICAL RECORD LENGTH
MOV @10 (LF) ,*SP+ PASSING PRIMARY ALLOCATION (2 WORDS)
MOV @12 (LF) ,*SP+
MOV @14 (LF) ,*SP+ PASSING SECONDARY ALLOCATION (2 WORDS)

MOV @16 (LF) ,*SP+
DATA CALLS
DATA DSCREATE

Where the following sequence appears in the user”s prologue:

MOD EQU $ MOD LABELS BEGINNING OF LOCAL DATA
DATA PRO-MOD PRO LABELS BEGINNING OF EXECUTABLE CODE

FOUR EQU $-MOD

DATA 4
SIX EQU $-MOD
DATA 6

3.4.4 DSOPEN

DSOPEN is called to prepare a file for reading, writing, or both
depending on the access type specified by the Access Type parameter

passed to this procedure. If the passwords passed to this command do -

not match the
identifed when the file was created, the Open will fail. If the

passwords

required for

the

I
!
access type desired as |

Open

is successful, the type of of the file opened along with its number of =/
logical records and record length (if appropriate) are returned to the

user. Once DSOPEN has been called, all file services with the.
exception of DSCONNECT, DSCREATE, DSDELETE, and DSDISCONNECT are Z
allowed until the file is closed. i
The parameters passed to the DSOPEN command are defined below. i
|
Parameter Definition Limits Input/Output .
File Value returned by Integer Input ;
Identifier DSCONNECT enabling |
the I/O Subsystem
to associate a specific
file with a specific
user.
Password Pointer to an array Pointer: Input
Pointer containing the Creator Word address; ;
or User Password. Array: ;
An array four !
characters in
length. }
Access Indication of the type Byte Relative Input J
Type of access in which I/0 = 1; B E
is executed. Access type Sequential M
remains effective until = 2; 5
the file is closed. Ac- Direct = 3. {
cess types are defined |
in Appendix E.
Access Relationship between user Exclusion, Read, Input
Privilege and the file which de- Write, Execute,
fines the user”s activity and Extend:
and precludes other user False = 0;
access. The user can True = 1.
specify True or False
for each of five fields:
Exclusion, Read, Write,
Execute or Extend. For
more information, see
Appendix E. (Note: this
record is packed to use
bits 0,1,2,3, and 15 of
the word.)
. e 1
File Type Record to which the File Pointer: Output
Type defined when the Word Address.
file was created is re-
turned. 5
4

3-8

Logical Integer to which the log- Integer. Output

/- Record ical record length defined
" 'Length when file was created is
returned.
Number of Integer to which number Integer. Output
Logical of logical records in the
Records file is returned. 1In

files of variable length
records, an end of file re-
cord is present and coun-
ted as an extra record.

Pascal Calling Sequence:

PROCEDURE D$SOPEN (My fid FID

Passwords : PASSWORD_PTR;
Access_type : FILE_ACCESS_MODE;
Access_priv : FILE_ACCESS_PRIVILEGE;

VAR Ft : FILE_TYPE;

VAR Logical_rec_length : INTEGER;

VAR Number_log_rec : LONGINT) ;

Assembly Language Calling Sequence:

Assume: The parameters are stored at the following
displacements into the calling procedure’s
local frame (records passed by address):

My Fid at 0
Password Pointer at 2
Access Type at 4
Access Privilege ‘ at 6
File Type at 8
Logical Record Length at 10
Number of Logical Records at 12
MOV *LF,*SP + PASSING MY FID
MOV @2 (LF) ,*SP+ PASSING PASSWORD POINTER
MOV @4 (LF) ,*SP+ PASSING ACCESS TYPE
MOV LF,*SP PASSING ACCESS PRIVILEGE ADDRESS
A @SIX (CODE) ,*SP +
Mov LF,*SP PASSING FILE TYPE ADDRESS
A @EIGHT (CODE) ,*SP+
MOV LF,*SP PASSING LOGICAL RECORD LENGTH ADDRESS.
A @QTEN (CODE) ,*SP+
MOV LF,*SP PASSING NUM. OF LOG RECORDS ADDRESS
A @TWELVE (CODE) , *SP+

DATA CALLS
DATA DSOFEN

where the following sequence appears in the user”s prologue:
A
(O

MOD EQU $ MOD LABELS BEGINNING OF LOCAL DATA

DATA PRO-MOD PRO LABELS BEGINNING OF EXECUTABLE CODE
SIX EQU $-MOD
DATA 6
EIGHT EQU $-MOD
DATA 8
TEN EQU $-MOD
DATA 10
TWELVE EQU $-MOD
DATA 12

3.4.5 D$READ -

The call to DSREAD initiates a read operation on a file. The calling

process begins the read and can (if appropriate) continue to execute

without delaying until the read operation is complete.

DSREAD provides for record organized data transfer. If the file is not
organized into logical records, the buffer will be filled in physical
record length increments until no further physical record can be held.
Data transfer begins at the current file position. At the end of the
read operation, the file position 1is 1left pointing at the next
available unit of data (record or byte, as appropriate).

The variable parameter Count is not set until I/O is complete. To be
sure that this parameter is set correctly, the user should call DSWAIT
after the call to DSREAD.

The parameters passed to DSREAD are described below.

Parameter Definition : Limits Input/Output

File Value returned by Integer Input
Identifier DSCONNECT enabling

the I/O Subsystem

to associate a specific

file with a specific

user.
Buffer Pointer to an array in Pointer: Input
Pointer RAM into which the data Word Address

read is transerred. Array:

Ram-resident data
area large enough
to accomodate the
number of bytes
in the read.

3-10

Read Count Number of bytes to be Positive Integer Input
read; input lesser of
the number requested
and the logical record
length.

Count Integer to which the Integer. Output
actual number of bytes
read is transferred.

Pascal Calling Sequence:

PROCEDURE DS$READ (My fid : FID;
Buffer : DUMMY_BUFFER_PTR;
Read_count : INTEGER;
VAR Count : INTEGER) ;

Assembly Language Calling Segquence:

Assume: The parameters are stored at the following
displacements into the calling procedure’s
local frame (records are passed by address):

Fid at 0

Buffer Pointer at 2

Read Count at 4

Count at 6
MOV *LF,*SP+ PASSING FID
MOV @2 (LF) ,*SP+ PASSING BUFFER POINTER
MOV @4 (LF) ,*SP+ PASSING READ COUNT
MOV LF,*SP PASSING COUNT
A @SIX (CODE) ,*SP+

DATA CALLS
DATA DS$SREAD

where the following sequence aonears in the user”s prologue:

MOD EQU $ MOD LABELS BEGINNING OF 1, 0CAL DATA
DATA PRO-MOD PRO LABELS BEGINNING OF EXECUTABLE CODE

SIX EQU $-MOD
DATA 6

3.4.6 DSWRITE

The call to D$WRITE initiates a write operation on a file. The calling
process begins the write and can (if appropriate) continue to execute
"without delaying until the write operation is complete.

DSWRITE provides for record organized data transfer. If the file 1is
not organized into 1logical records, the buffer will be filled in

3-11

physical record length increments until no further physical record can
be held. At the end of the write operation, the file is positioned to

be ready to store the next unit of data (record or byte as R

appropriate). Type of access permited (byte-relative, sequential, or
direct) 1is a function of the device itself and the access type for
"which the file was opened (see DSOPEN above). Access protection and
privilege are functions of the parameters passed to the DSCREATE and
DSOPEN routines respectively.

The parameters passed to DSWRITE are described below.
Parameter Definition Limits Input/Output

File Value returned by Integer _ Input
Identifier DSCONNECT enabling

the I/O Subsystem

to associate a specific

file with a specific

user.
Buffer Pointer to an array in Pointer: Input
Pointer RAM from which data is Word Address
to be transferred. Array:
Ram~-resident array
size of which large
enough to accomodate
data transfer (as spe-
cified in Write Count
below) .
Write Count The number of bytes Positive Integer Input
: to be written.
Pascal Calling Sequence:
PROCEDURE DSWRITE (My_fid FID;

Buffer
Write_count

DUMMY_BUFFER_PTR;
INTEGER) ;

«

Assembly Language Calling Sequence:
Assume: The parameters are stored at the following

displacements into the calling procedure”s
local frame (records are passed by address):

3-12

R

My Fid at 0 -

Buffer Pointer at 2

Write Count at 4
MOV *LF,*SP+ PASSING MY FID
MOV @2 (LF) ,*SP+ PASSING BUFFER POINTER
MOV @4 (LF) ,*SP+ PASSING WRITE COUNT

DATA CALLS
DATA DSWRITE

3.4.7 DSRDWAIT

D$SRDWAIT is called to execute (as oppossed to initiate) a read
operation. Unlike the action of DSREAD, the calling process begins the
read and is then suspended until the read is completed. In other
words, a call to DSRDWAIT results in the same action as a call to
DSREAD followed by a call to DSWAIT. The parameterization of DSRDWAIT
is the same as for DSREAD.

3.4.8 DSWRWAIT

DSWRWAIT is called to execute (as oppossed to initiate) a write
operation. Unlike the action of DSWRITE, the calling process begins
the write and is then suspended until the write is completed. In other
words, a call to DSWRWAIT results in the same action as a call to
- DSWRITE followed by a call to DSWAIT. The parameterization of DSWRWAIT
is the same as for DSWRITE. '

3.4.9 DSPOSITION

DSPOSITION is called to move the file position forward or backward
prior to the next 1I/0O attempt. The Relative parameter specifies
whether the change in file position will be relative to the current
file position or absolute (relative to the start of the file). If this
boolean parameter is passed as True, the Record parameter indicates
the number of records by which the file position will change from the
current position (the sign of this value indicates whether movement is
forward or backward). If Relative is passed as False, the Record
parameter specifies the absolute record number at which the file will
be positioned. An error condition results if an attempt is made to
position the file beyond the end of file mark or prior to the
beginning of file mark. Errors may also occur if the device does not
support record number.

The parameters passed to DSPOSITION are described below.

‘Parameter Definition Limits Input/Output

-~ File Value returned by Integer ’ Input

3-13

Identifier DSCONNECT enabling
the I/O Subsystem |

to associate a specific : 5’> |
file with a specific ' L ‘
user. L

Relative Boolean parameter by False = 0; Input f
which .user specifies if True = 1.

repositioning of file
will take place in re-
lation to current file
position (true) or ab-
solute. See explana- -
tion above.

Record Depending on value of Long Integer Input T

Number Relative parameter, the (two words) :
number of records the
file will be moved from
the current position, or
the record number at
which the file will be
newly positioned. See
explanation above.

Pascal Calling Sequence:
FID;

BOOLEAN; T
LONGINT) ; L

PROCEDURE DSPOSITION (My_fid
Relative
Record No.

- Assembly Language Calling Sequence:

Assume: The parameters are stored at the following
displacements into the calling procedure”s

local frame (records are passed by address): '

My fid at 0 e | |
Relative at 2
Record No. at 4

3-14

MoV *LF,*SP+ PASSING MY FID

MOV @2 (LF) ,*SP+ PASSING RELATIVE
MOV @4 (LF) ,*SP+ ' PASSING FIRST WORD OF RECORD NO.
MOV @6 (LF) ,*SP+ PASSING SECOND WORD OF RECORD NO.

DATA CALLS
DATA DS$POSI

3.4.10 DSWAIT

By calling DSWAIT, a user requires the process to wait for the
completion of the I/0 service he previously initiated for that file
(FID) . Regardless, a wait will automatically occur on a user’s
initiate I/0 request if he has a current request outstanding on that
gaTe file (FID). The calling parameters passed to DSWAIT are described
elow.

Parameter Definition Limits Input/Output

File Value returned by Integer Input
Identifier DSCONNECT enabling ‘

the I/0 Subsystem to

associate a specific

file with a specific

user.

Pascal Calling S=2dguence:
PROCEDURE DSWAIT (My fid : FID);
Assembly Language Calling Sequence:

Assume: The parameters are stored at the following
displacements into the calling procedure’s
local frame (records are passed by address):

FID 7 at 0

MOV *LF,*SP+ PASSING FID
DATA CALLS
DATA DSWAIT

3.4.11 DSSTATUS

The function D$STATUS can be called once a file has been CONNECTED to
check on the current status (success or failure) of the user”“s oldest
outstanding request on a file (the oldest request on the FID). In the
File Identifier Record itself (see Appendix B for illustration), a
“status field 1is present to capture status information. This function
enables the user to inspect this information. Appendix C details the
various status messages and provides some suggestions for corrective
actions when appropriate.

3-15

Parameter Definition ~ Limits Input/Output

S

File Value returned by Integer Input
Identifier DSCONNECT enabling '

I/0 Subsystem to

associate a specific

file with a specific

user.

Pascal Calling Sequence:

FUNCTION DSSTATUS (My_ Fid : FID) : INTEGER;
Assembly Language Calling Sequence:

Assume: The parameters are stored at the

following displacements in the
calling procedure”s local frame.

My Fid _ at 0
Result will be saved at 2
MOV *LF, *SP+ PASSING FID
DATA CALLS
DATA D$STAT
MOV *SP,@2 (LF) SAVING RESULT

3.4.12 DSDSTATUS

DSDSTATUS enables the user to examine status information on the 1I/0
Subsystem level (compare'to D$SSTATUS which returns a status message at
the FID 1level). Because the meanings of the status messages returned
by DSDSTATUS are I/0 Subsystem dependent, the user must refer to the
user”s manual dedicated to the specific I/O Subsystem for message
definitions and corrective actions. The only parameter passed to
DSDSTATUS is the FID.

Parameter Definition Limits Input/Output
File Value returned by Integer Input
Identifier DSCONNECT enabling the
I/0 Subsystem to asso-
ciate a specific file
with a specific user.
Pascal Calling Sequence:
FUNCTION D$DSTATUS (My_Fid : FID): INTEGER

Assembly Language Calling Sequence:

3-16

Assume:

The parameters are stored at the

following displacements in the
calling procedure”s local frame.

My Fid
Result will be saved

MOV *LF, *SP+
DATA CALLS
DATA DS$SDSTA
MOV *SP,Q2(LF)

3.4.13 DSVALID

DSVALID is

PASSING FID

SAVING RESULT

at 0
at 2

a Boolean function that may be called to check for valid

state transitions for the FID. State refers to the FID condition such

as Connected,

DSVALID are defined below.

Parameter Definition
File Value returned by
Identifier DSCONNECT enabling
the I/0 Subsystem
to associate a
specific file with
a specific user.
Opcode Operation attempted on

the FID.

Pascal Calling Sequence:

FUNCTION DSVALID(My_fid
Op

Assembly Language Calling Sequence:

Assume:

Created, Open for Access, etc (refer to Appendix C for
information regarding valid state changes). The parameters

passed to

Limits Input/Output

Integer Input

Scheck = 0
Sopen = 1;
$Sread = 2;
Swrite = 3
S$close = 4
$disconnec
S$create =
$delete =
Sposition

: Input

fl JO\(t ~e ~o

FID;
FID_OPERATION) :BOOLEAN;

The parameters are stored at the following

displacements into the calling procedure”s
local frame (records are passed by address):

3-17

My Fid at 0

Fid Operation - at 2

Result will be saved at 4
MOV *LF,*SP+ PASSING FID POINTER
MOV @2 (LF) ,*SP+ PASSING FID OPERATION
DATA CALLS
DATA DS$SVALI
MOV *SP,@4 (LF) SAVING RESULT

3.4.14 DSABORTIO

DSABORTIO is called to abort all outstanding read/write operations a
user has requested on a file (i.e, all outstanding read/write requests
on a FID). The only parameter passed to DSABORTIO is the FID.

Parameter Definition Limits Input/Output
File Value returned by Integer. Input
Identifier DSCONNECT enabling

the I/0 Subsystem

to associate a
specific file with a
specific user.

Pascal Calling Sequence:
PROCEDURE D$ABORTIO (My_fid : FID);

Assembly Language Calling Sequence:

Assume: The parameters are stored at the following
displacements into the calling procedure”s
local frame (records are passed by address):

My Fid at 0
MOV *LF,*SP+ PASSING MY FID

DATA CALLS$
DATA D$ABOR

3.4.15 DS$CLOSE

DSCLOSE is accessed to enable the user to close the file (FID) when no
more outstanding I/O requests are present. The Close EOF parameter (a
BOOLEAN parameter) enables the file to be closed with the End-of-File
mark being placed at the current file position (if response is True).
Otherwise (False), the End-of-File mark is left unchanged (i.e., the

3-18

e E L

last record in the file remains the same). The user who closes with
End of File must be careful to avoid inadvertently placing an EOF
prior to the last record. This is especially true if the wuser had
written to the file using random access. The user who had opened a
file for reading only should always close without EOF to avoid an
error.

After a call to DSCLOSE, the only valid file requests are DSOPEN,
DSDELETE, or DSDISCONNECT.

The parameters passed to DSCLOSE are described below.
Parameter Definition . ' Limits Input/Output

File Value returned by Integer Input
Identifier DSCONNECT enabling

the I/0 Subsystem

to associate a

specific file with

a specific user.

Close End BOOLEAN parameter by False = 0
of File which user specifies True = 1
whether he wishes to

close with EOF. A
true response means
that an EOF mark
should follow the
last record accessed.
False indicates that
EOF remains unchanged.

H Input

Pascal Calling Sequence:

PROCEDURE DSCLOSE (My fid : FID;
Close_With_EOF : BOOLEAN);

Assembly Language Calling Sequence:
Assume: The parameters are stored at the following

displacements into the calling procedure’s
local frame (records are passed by address):

My Fid at 0
Close With EOF at 2
MOV *LF,*SP+ PASSING FID

MOV @2 (LF) , *SP+ PASSING CLOSE WITH EOF
DATA CALLS -

DATA DSCLOSE

3-19

3.4.16 DS$DELETE

DSDELETE is called to delete a file that has been closed for access,

thus preventing all further requests except for DSDISCONNECT or
DSCREATE. The calling parameters passed to D$DELETE are defined below.
Parameter Defihition Limits Input/Output
File Value returned by Integer Input
Identifier DSCONNECT enabling

the I/O Subsystem

to associate a specific

file with a specific

user.
Password Pointer to a data struc- Pointer: Input
Pointer ture containing the crea- Word Address.

tor or user password.
Required password speci-
fied in Modify field of
Protection record defined
when file was created.

Passwords:
Character arrays,
each four charac-
ters in length
(either Creator

or User).
Pascal Calling Sequence:

PROCEDURE DSDELETE (My Fid

Pass

FID;
PW_PTR) ;

Assembly Language Calling Sequence:

Assume: Thé parameters are stored at the following
displacements into the calling procedure”’s
local frame (records are passed by address):
My Fid at 0
Password Pointer at 2

MOV *LF,*SP+ PASSING FID

MOV Q2 (LF) ,*SP+ PASSING PASSING POINTER
DATA CALLS

DATA DSDELE

3.4.17 DSDISCONNECT

The last operation performed on the file (FID) by a user is
DSDISCONNECT. The call to D$DISCONNECT severs the connection between
the file and the physical node (or device) on the target. As a result
of this procedure, the memory allocated to hold the File Identifier
Record (FID) is returned to the heap.

The only parameter passed to DSDISCONNECT, the File Identifier is

passed by address on input.

3-20

v
P

Parameter Definition - Limits Input/Output

File Value returned by Integer Input
Identifier DSCONNECT enabling

the I/0 Subsystem to

file with a specific

user.

Pascal Calling Sequence:

PROCEDURE D$DISCONNECT (VAR My fid : FID);
Assembly Language Calling Sequence:

MOV *LF,*SP+ PASSING FID

DATA CALLS

DATA DS$DISC

3.4.18 DSTERM

At process termination, the user may call DSTERM to deallocate memory
resources holding the remaining file data structures (including all

- FIDs currently outstanding). DSTERM provides the means to terminate

all user connections with I/0O Subsystems using one line of code. Thus,
the call to DSTERM makes calls to D$SDISCONNECT for individual
subsystems unnecessary. DSTERM has no calling parameters.

3-21

SECTION IV

THE INTERPROCESS COMMUNICATION SUBSYSTEM

4.1 GENERAL

This section of the manual presents a specific I/0 Subsystem, the
Interprocess Communication (IPC) Subsystem. This subsystem is supplied
to the Pascal user in the Microprocessor Pascal Executive (MPX) and
provided for the assembly language user in the Device Independent File
I/0 Package. The purpose of this subsystem is to implement file-level
communication between processes within a 9900 target system. This is
accomplished by passing data from process to process via channels
using in-memory buffers.

Interprocess Communication (IPC) Subsystem routines can be invoked via
the File 1I/0 Decoder or directly by the user. Subsection 4.3 below
describes the former mode; Subsection 4.4 the latter.

Interface with the IPC Subsystem is consistent with the standards
governing interface with all other I/0 Subsystems (as described in
this manual) that may be accessed by the File I/0 Decoder. This is
gru§ even though the IPC Subsystem is concerned with processes and not
evices. :

4.2 IMPLEMENTATION OF THE IPC SUBSYSTEM

Before describing the methods of invoking the IPC Subsystem, it is
necessary to discuss its implementation.

I/0 between processes is managed through files. An IPC file may be
thought of as a path of information between processes. A port can be
viewed as providing a sending and receiving process with access to the
path. Each process can be viewed as a node. Ports are defined for
input and output by the invocation of special IPC routines.

Information 1is passed over the path in the form of messages (the
structure of messages along with other IPC data structures are
presented in Appendix B)

A file (comprising a message path) is implemented by a data structure
called the Pathname -Record The Pathname Record contains data
structures required to synchronize and control the message flow
between processes. Message flow is actually implemented over channels
The Channel Record is used to implement channels. 'Both the Pathname
Record and the Channel Record are system global data structures.

Ports are implemented by the File Identifier (FID), the File Variable
Record, and the Message Record. The latter data structures are local
to the user’s implementation of the IPC I/0O Subsystem. The IPC data

} structures are illustrated and described in Appendix B.

4-1

4.3 IPC ACCESS VIA THE FILE I/0 DECODER

Like other 1I/0 Subsystems, the IPC Subsystem has a general set of
entry points corresponding to the file service entry points present in
the File I/O Decoder (File I/0 Decoder entry points have been
described in detail in Section III of this manual). By way of these
I/0 Subsystem entry points, the device independent file services
requested in the File I/O Decoder are translated into service requests
of the 1IPC Subsystem. When accessing the IPC Subsystem in this way,
the user is oblivious of its entry points and their calling sequences.
I/0 Subsystem initalization takes place via the File I/O Decoder entry
point for initialization and all access to IPC is transparent to the
user.

4.4 DIRECT USER ACCESS OF IPC SUBSYSTEM ENTRY POINTS

The paragraphs that follow describe how Pascal and assembly 1anguage‘

users may directly access the entry points into the IPC Subsystem.
Each entry point definiton is presented in terms of its meaning within
this particular I/0 Subsystem. However, the entry points into this I/0
Subsystem are general to all I/O Subsystems. Thus, the parameter
definitons and calling sequences presented below have a general
relevance to all I/0 Subsystems.

For the definitions of the file service routines (accessed via the -
File I/0 Decoder) corresponding to these I/O Subsystem entry points,

refer to Section III of this manual.

The entry point names for this subsystem are formed by adding the
prefix "IPCS$" to the generic name of the file serivce (connect, open,
read, etc.). The rules and conventions governing parameter passing in
the calling sequences presented below are the same as those described
in Subsection 3.1.

4.4.1 IPCSINIT

IPCSINIT is called to initialize the data structures used within the
IPC Subsystem and set up synchronization and system access to all
files. This routine initializes a mutual exclusion guard for the list
of all pathnames connected to the IPC Subsystem and 1links the

subsystem ra2cord (see below) with the list of all subsystem records.’

IPCSINIT must be called once prior to the calling of any other IPC
routines. '

The parameters passed to IPCSINIT are defined below. .

42

Parameter

Service
Directory

Port
Constants
Record
Pointer

Subsystem
Record

Definition

Pointer to the Service
Directory for the IPC

Subsystem.

Pointer to the Port

Constants Record. Not

Limits Input/Output

Integer. Input
(Addltlonal detail

can be found fol-

lowing the calling
sequences.)

used by this subsystem.

¢

Pointer to Subsystem

Ignored by this Ignored
subsystem.
Integer. Output

related data structures.

This pointer must be
supplied in each call

to

the IPC CONNECT routine.

Pascal Calling Sequence:

PROCEDURE IPCSINIT(Service

Port_cons
VAR Subsys

Assembly Language Calling Sequence:

Assume:

MOV
Mov

MOV
A

DATA
DATA

where the following sequence

The parameters for this
following displacements
local frame:

: Service d1rectory_ptr~
: Port_constants_ptr;
: Subsystem_ptr);

procedure are stored at the
into the calling procedure’s

Service directory Pointer at 0

Port Constants Pointer at 2

Subsystem Record Pointer at 4

*LF,*SP+ PASSING SERVICE DIRECTORY POINTER

@2 (LF) ,*SP+ PASSING PORT CONSTANTS RECORD POINTER
LF,*SP PASSING SUBSYSTEM RECORD POINTER
@FOUR (CODE) ,*SP+
CALLS
IPCSIN

appears in the user”s code:

MOD EQU $ MOD LABLES BEGINNING OF LOCAL DATA
DATA PRO-MOD PRO LABELS BEGINNING OF EXECUTABLE CODE

FOUR EQU $-MOD
DATA 4

Service Directory, the data structure passed as the first parameter to
this procedure, is supplied in the IPC Subsystem. The Pascal user can
declare the procedure containing this directory (IPC$SD) as EXTERNAL
and pass IPC$SD”s location as the Service Directory parameter. This is
accomplished by making Service Directory an 1Integer via a type
override and setting the parameter Service Directory to the 1location
of IPCSSD:

SERVICE: : INTEGER := LOCATION (IPCS$SD)
The assembly language programmer REF”s IPC$SSD and sets the Service
Directory to the location of IPC$SD using a DATA instruction.
4.4.2 TIPCSCONNECT
IPCSCONNECT searches the list of all pathnames connected to the 1IPC

Subsystem to determine if there is a path corresponding to the input
parameter Pathname (this parameter is passed by address even though

this is not indicated in the Pascal calling sequence). If not, a path

is constructed by allocating a pathname record and associated message
channel. :

NOTE: IPC accepts any pathname. Since the I/0 decoder presents
pathnames to I/0 subsystems for connection in the order in which the
subsystems are enumerated in the I/O subsystem directory present in
CONFIG, the entry for IPC must be last if other subsystems are to have
a chance to accept the pathname.

Once a pathname record is obtained, IPCSCONNECT creates 1local data

structures defining a path and returns the identifier of the

associated file as the FID parameter which must be used to make

subsequent I/0 service requests.

The parameters passed to IPCSCONNECT are described below.

Parameter Definition Limits : Input/Output
Subsystem Pointer to Subsystem Integer. Input
Record related data structures.

This pointer is supplied
by the IPCSINIT routine.

al

- Pathname

Length

File
Identifier

Memory data structure
holding file pathname
specifying name of path
over which messages will
be sent.

Character length of the
above pathname.

Value returned by IPCS$-
CONNECT enabling the
IPC Subsystem to relate
a specific file to a
specific user.

Pascal Calling Sequence:

PROCEDURE IPC$CONNECT (

Sub

Length
VAR F

Assembly Language Calling Sequence:

Assume: The parameters for this
following displacements
local frame:

Subsystem Record Pointer
Pathname Address
Length
FID

MOV *L,F,*SP+

MOV LF,*SP

INCT *SP+

MOV @4 (LF) ,*SP+

MOV LF,*SP

A @SIX (CODE) ,*SP+

DATA CALLS

DATA IPCS$SCO

VAR Pathname

Character array
large enough to
accomodate path-
name being passed.
(Pascal user will
need to do a type
override.)

- Input

Integer. Input

Integer. Output.

SUBSYSTEM_PTR;
DUMMY_BUFFER;
INTEGER;

FID);

procedure are stored at the
into the calling procedure’s

at 0
at 2
at 4
at 6

PASSING SUBSYSTEM RECORD POINTER
PASSING PATHNAME ADDRESS

PASSING LENGTH
PASSING FID VARIABLE

where the following sequence appears in the user”s code:

MOD EQU $
DATA PRO-MOD

SIX EQU $-MOD
DATA 6

MOD LABLES BEGINNING OF LOCAL DATA
PRO LABELS BEGINNING OF EXECUTABLE CODE

4.4.3

Routine

IPCSCREATE

IPCSCREATE must be called by a process connected to a path 1n'7

order to define the characteristics of that path.

The parameters File Type and Logical Record Length (see below)
characteristics of the

file

serving

define

as the path. The parameters

Password, Protect, Primary Allocation, and Secondary Allocation are
included for compatibility with the "Create" service routines of other
I/0 subsystems but are ignored by the IPC Subsystem.

The parameters passed to IPCSCREATE are defined below.

Parameter

File
Identifier

Password
Pointer

Protection
Code

File Type

Logical
Record
Length

Primary
Allocation

Definition

Value returned by IPCS$-
CONNECT enabling the
IPC Subsystem to relate
a specific file to a
specific user.

Pointer to record struc-
ture containing Creator
and User Passwords.

Record defining access -
protection.

A record containing four
fields defining the
physical and logical or-
ganization of the file.
These file attributes
are discussed in Appen-
dix E.

The actual (fixed length)
or maximum allowable
(variable length) byte
length of the records in
the file.

Minimum storage space
in the file.

Limits Input/Output

Integer. Input

Ignored by this Ignored

subsystem.

Ignored by this
subsystem.

Ignored

File Type (Bits
0-3):

Contig.=1;
Non-contig.= 2;
Record Type (Bits

4-7) :

Free Len.=1;

Var. Len.=2;
Fixed Len.=3;
Usage (Bits 8-11):
Data File=1l;
Compression (Bits
12-15):
Uncompress.=1;
Compress.=2.

Input

Any positive
integer.

Input

This two-word
parameter is
ignored.

Ignored

Secondary
Allocation

Pascal Calling ééquénce:

PROCEDURE IPCSCREATE (

Incremental storage . This two-word Ignored
space in the file. parameter is
ignored.

My fid : FID;

Pass_code_list : PASSWORD_LIST_ POINTER;

Protect : PROT;

Ft ' : FILE_TYPE;

Log_rec_len : INTEGER;

Pa_log_rec : LONGINT;

Sa_log_rec

LONGINT) ;

Assembly Language Calling Sequence:

Assume:

MOV
CLR
CLR
MOV
A
MOV
MOV
MOV
MoV
MOV
DATA
DATA

The parameters are
displacements into

stored at the following .
the calling procedure’s

local f:ame (records are passed by address):

My Fid at 0

Passcode List Pointer at 2

Protection Code at 4

File Type at 6

Logical Record Length at 8

Primary Allocation at 10

Secondary Allocation at 14

*LF,*SP+ PASSING FID

*SP+ PASS CODE PARAMETER IGNORED
*SP+ ACCESS PROTECTION PARAMETER IGNORED
LF,*SP PASSING FILE TYPE ADDRESS

@SIX (CODE) ,*SP+
@8 (LF) ,*SP+

@10 (LF) ,*SP+
@12 (LF) ,*SP+
@14 (LF) ,*SP+
@16 (LF) ,*SP+
CALLS

IPCSCR

PASSING LOGICAL RECORD LENGTH
PASSING PRIMARY ALLOCATION (2 WORDS)

PASSING SECONDARY ALLOCATION (2 WORDS)

Where the following sequence appears in the prologue of the application

MOD

SIX

EQU
DATA

EQU
DATA

$
PRO-MOD

$-MOD
6

MOD LABELS BEGINNING OF LOCAL DATA

PRO LABELS BEGINNING OF EXECUTABLE CODE

4.4.4

After the

characteristics

IPCSOPEN

of a path have been defined, each process

that is connected to the path must call IPCSOPEN to open the port for

communication.

The Privilege parameter specifies whether the port will be a producer
(writer) or a consumer (reader). Note that a port cannot be both. The
Password and Access Type parameters are not used by the IPC Subsystem.

The parameters

of Records parameter is set to 0.

Parameter

File
Identifier

Password
Pointer

Access
Type

Access
Privilege

File Type

Logical
Record
Length

Number of
Logical
Records

Definition

Value returned by IPCS$-
CONNECT enabling the
IPC Subsystem to relate
a specific file to a
specific user.

Pointer to an array con-

taining Creator or User
Password.

Indication of the type
of access by which I/0
is performed.

This parameter defines
whether port will be
usad for input or out-
put. Port cannot be
used for both.

Variable to which File
Type record, defined
when file was created,
is returned.

Integer to which Log-
ical Record Length,

defined when file was
created, is returned.

Long Integer to which
the number of logical
records is returned.
This number is always
zZero.

File Type and Logical Record Length are returned with
the values that were specified when IPCSCREATE was called. The

number
Limits Input/Output
Integer. Input
Ignored by this Ignored
subsystem.
Ignored by this Ignored
subsystem.
Read Access (Bit 1): Input
False = 0;
True = 1;
Write Access (Bit 2):
False = 0;
True = 1;
Execute Access
(Bit 3):
Must be False.
Defined above Output.
IPCSCREATE.
Integer. Output
Long Integer. Output

—

)

-

fascal Calling Sequence:

PROCEDURE IPCSOPEN (

VAR
VAR
VAR

Assembly Language Calling

Assume:

MoV
CLR
CLR
MOV
A
MOV
A
MOV
A
MOV
A
DATA
CALL

My fid
Password
Access_type
Access_priv

FID;

PASSWORD_PTR;
FILE_ACCESS_MODE;

FILE _ACCESS_PRIVILEGE;

FT FILE TYPE;
Logical_rec_length : INTEGER;
Number_log_rec LONGINT) ;

Sequence:

The parameters are stored at the follow1ng
displacements into the calling procedure’s
local frame (records passed by address):

My Fid at 0
Password Pointer at 2
Access Type at 4
Access Privilege at 6
File Type at 8
Logical Record Length at 10
Number of Logical Records at 12
*LF,*SP + PASSING FID
*SP+ PASSWORD POINTER IS IGNORED
*SP+ ACCESS TYPE PARAMETER IS IGNORED
LF,*SP PASSING ACCESS PRIVILEGE ADDRESS
@SIX (CODE) ,*SP +
LF,*SP PASSING FILE TYPE ADDRESS
@QEIGHT (CODE) , *SP+
LF,*SP PASSING LOGICAL RECORD LENGTH ADDRESS
@TEN (CODE) , *SP+
LF,*SP PASSING NUM. OF LOG RECORDS ADDRESS
@TWELVE (CODE) , *SP+
CALLS
IPCSOP

where the following sequence appears in the user”s code:

MOD

SIX

EIGHT

TEN

LVE

EQU
DATA

EQU
DATA
EQU
DATA
EQU
DATA
EQU
DATA

$
PRO-MOD

$-MOD
6
$-MOD
8
$-MOD
10
$-MOD
12

MOD LABELS BEGINNING OF LOCAL DATA
PRO LABELS BEGINNING OF EXECUTABLE CODE

4.4.5 IPCSWRITE

Following the call to IPCSOPEN, a process can begin transmitting or
receiving data from the file depending upon its I/O mode. If a process
opens a file as a writer, it can transmit data to the file by calling
IPCSWRITE.

NOTE: The Pascal user can do a type override to enable the buffer
pointer to point to a buffer of sufflcent size to accomodate the data
transfer.

The parameters passed to IPCSWRITE are defined below.
Parameter Definition Limits Input/Output

File Value returned by IPCS$- Integer. Output
Identifier CONNECT enabling the

IPC Subsystem to relate

a specific file to a

specific user.

Buffer Pointer to a character Pointer: Input
Pointer array in RAM from which Word Address
data is written. Array:

Ram-resident data
area containing data
for transfer.

Write Count The number of bytes Positive Integer Input
to be written.

Pascal Calling Sequence:

PROCEDURE IPCSWRITE (My fid : FID;
Buffer : DUMMY_BUFFER_PTR;
Write_count : INTEGER);

Assembly Languagde Calling Sequence:
Assume: The parameters are stored at the follow1ng

- displacements into the calling procedure”s
local frame (records are passed by address):

4-10

&

My Fid at 0

Buffer Pointer - at 2

Write Count at 4
MOV *LF,*SP+ PASSING FID ,
MOV @2 (LF) ,*SP+ PASSING BUFFER POINTER
MOV @4 (LF) ,*SP+ PASSING WRITE COUNT

DATA CALLS
. DATA IPCSWR

4.4.6 IPCSREAD

If a process opens a file as a reader, it can receive data from the
file by calling IPCSREAD.

The count parameter (below) is not set until I/0 is complete. To be
sure that this parameter 1is set correctly, the user should call
IPCSWAIT after the call to IPCSREAD. The parameters passed to IPCSREAD
are defined below.

Parameter Definition Limits Input/Output
File Value returned by IPCS- Integer. Input
Identifier CONNECT enabling the

IPC Subsystem to relate
a specific file to a
specific user.

Buffer Pointer to a character Pointer: Input
Pointer array in RAM into which Word Address

the data read is trans- Array:

ferred. Ram-resident data

area large enough
to accomodate the
number of characters

read.
Read Count Number of bytes to be Positive Integer Input
read.
Count Number of bytes that Positive Integer Output
were actually transfer-
red.
Pascal Calling Sequence:
PROCEDURE IPCSREAD (My_ Fid : FID;
' Buffer : DUMMY_BUFFER_PTR;
Read_count : INTEGER;
VAR Count : INTEGER) ;

4-11

Assembly Language Calling Sequence:

Assume: The parameters are stored at the following
displacements into the calling procedure”s
local frame (records are passed by address):

My Fid at 0

Buffer Pointer at 2

Read Count at 4

Count at 6
MOV *LF,*SP+ PASSING FID
MOV @2 (LF) ,*SP+ PASSING BUFFER POINTER
MOV @4 (LF) ,*SP+ PASSING READ COUNT
MOV LF,*SP PASSING COUNT
A @SIX (CODE) , *SP+

DATA CALLS
DATA IPCSRE

where the following sequence appears in the user”’s code:

MOD EQU $ MOD LABELS BEGINNING OF LOCAL DATA
DATA PRO-MOD PRO LABELS BEGINNING OF EXECUTABLE CODE

SIX EQU $-MOD
DATA 6

4.4.7 T1IPCSWAIT

Following a call to either IPC$READ or IPCSWRITE, a process should
call IPCSWAIT. This routine will wait for the completion of all
outstanding requests on the specified FID. Until this routine has been
called, a process cannot be sure that all of the data has been
transmitted or received.

The parameters passed to IPCSWAIT are defined below.

Parameter Definition Limits Input/Output
File Value returned by IPCS$- Integer. Input
Identifier CONNECT enabling the

IPC Subsystem to relate
a specific file to a
specific user.
Pascal Calling Sequence:
PROCEDURE I:I ' 'WAIT (1y_fid : FID);

Assembiy Language Calling Sequence:

4-12

Fa

TN

Assume: The parameters are stored at the following
' displacements into the calling procedure”s
local frame:

My Fid at 0

MOV *LF,*SP+ ' PASSING FID
DATA CALLS
DATA IPCSWA

4.4.8 1IPCSCLOSE

Once all data has been written or no more data is to be read from a
file, IPCSCLOSE should be called to mark the file as having stopped
data communication. IPC$CLOSE shuts down a port without disassociating
it from the path to which it is connected. The parameter Close With
EOF (see below) is not used by the IPC Subsystem. If a port is closed,
it may be reopened with the same or different I/0 characteristics (see
IPCSOPEN above).

The parameters passed to IPCSCLOSE are defined below.

Parameter Definition Limits Input/Output

File Value returned by IPCS$- Integer. Input
Identifier CONNECT enabling the

IPC Subsystem to relate

a specific file to a

specific user.

Close With Boolean parameter Ignored by this Ignored
End of File by which user speci- subsystem.
- fies whether or not
he wishes to close
with the same end
of file.

Pascal Calling Sequence:

PROCEDURE IPCSCLOSE (My fid
Close_With_EOF

FID; .
BOOLEAN) ;

Assembly Language Calling Sequence:
Assume: The parameters are stored at the following

displacements into the calling procedure”’s
local frame (records are passed by address):

4-13

My Fid at 0

Close With EOF at 2
MOV *LF,*SP+ PASSING FID)
CLR *SP+ CLOSE WITH EOF PARAMETER IGNORED
DATA CALL$

DATA IPCSCL

4.4.9 IPC$SDISCONNECT

When a process no longer needs access to a particular path (and the
associated file 1is <closed), IPC$SDISCONNECT should be called to
deallocate the data structures associated with the file and disconnect
the process from the path. If no more processes remain connected to
the path, the data structures associated with the path will also be
deallocated.

The only parameter passed to IPCSDISCONNECT 1is the FID passed

oy
address on input.
Parameter Definition Limits Input/Output
File Value returned by IPCS$- Integer Input
Identifier CONNECT enabling the (set to nil
IPC Subsystem to relate on return to
a specific file to a callér).

specific user.
PROCEDURE IPCSDISCONNECT (VAR My_Fid : FID);
Assembly Language Calling Sedquence:

Assume: The parameters are stored at the following
displacements into the calling procedure’s
local frame:

My Fid at 0
MOV *LF,*SP+ PASSING FID
DATA CALLS
DATA IPCSDI
4.5 1IPC SYNCHRONIZATION

This subsection details special interactions among processes calling
certain IPC routines.

4-14

4.5.1 TIPCSCREATE/IPCS$OPEN Interaction

A path for communicating among processes is established by the first
process to call IPCSCONNECT with a given pathname. Each process must
call IPCSOPEN to begin communicating over the path. All processes
calling IPCSOPEN for a path are suspended until some process calls
IPCSCREATE to specify the characteristics of the path; all calls to
IPCSCREATE for a pathname that already exists will be ignored. ’

4.5.2 IPCSOPEN/IPCSCLOSE Interaction

Before a file (FID) can be reopened, it must be closed. Following a
close operation on a file, it can be reopened in either read or write
mode. It is possible for a process to read or write from a file, close
the file, and reopen it in a write or read mode.

Suppose a path has several producers and consumers connected to it and
is in an open state. If all producers close, then the consumers will
receive an end-of-file status once all buffered data has been
consumed. To clear this end-of-file status, each consumer must
acknowledge its receipt by entering a closed state. Any process
attempting to open a file connected to a path at end-of-transmission
will be suspended until all consumers have closed.

If all consumers connected to a path enter a closed state, producers
are not required to close. In general, they will_become suspended due
unconsumed buffers of data and will not be able to proceed until a
consumer opens and begins processing buffers.

If a file that 1is consuming data is closed before reaching
end-of-file, it is possible that some transmissions will be discarded.
This will occur if the last producer connected to a path has closed
after transmitting data and the last consumer decides to close without
processing the data. In such a situation IPCSCLOSE must assume that no
other consumer will connect to the path and as a consequence must
discard all unreceived data so buffers can be reclaimed.

4.6 USE OF DUMMY SUBSYSTEM ENTRY POINTS

The following file service requests are not meaningful in the 1IPC
Subsystem:

ABORTIO
DELETE
POSITION
STATUS

Dummy or "NO-OP" routines are provided for these services to conform
to I/0 Subsystem interface requirements. The dummy entry points are
placed in the I/O Service Directory in place of the entry points for
the above services.

4-15

Refer to Appendix D for more
Dummy Subsystem entry points.

information on

4-16

implementation of

the

-

AN

SECTION V
ENCODE AND DECODE ROUTINES

5.1 . GENERAL

Encode and decode routines are supplied in the Device Independent File
I/0 Package to enable the assembly 1language user to perform data
conversions from the internal representation to printable format and
conversely from the printable format to internal representation (these
routines are executed transparently for the Pascal user in the
Microprocessor Pascal Executive). This capability is useful when
primitive data is to be printed or data is to be input via a keyboard.

For each of the routines described, the calling parameters generally
fit into a convenient template (with some exceptions that are noted in
the individual procedure descriptions). This template is presented
below. The user should refer to this template to understand the
procedure definitions and calling sequences.

Parameter Definition Limits Input/Output
String Pointer to the output Integer Input
Pointer string array (Encode)

and the input string array

Decode) .
String The number of bytes in Integer Input
Length the “String” parameter. ‘
Index The starting position Integer Input/Output

of output field (for
Encode routines) or

input field (for Decode
routines). Upon return,
this field will contain
the position of the char-
acter following the output
field (Encode) or follow-
ing the input field (De-
code). This facilitates
encoding or decoding mul-
tiple numbers into one
string. This parameter

is always passed by ad-
dress.

5-1

Status An integer containing a Integer Output
status message. Upon
return, this integer con- -
tains a zero if the enco-
ding or decoding was suc-
cessful; a non-zero status
indicates that the input
parameters are contradic-
tory or the result will
not fit into the speci-
fied output field. This
parameter is always passed
by address. '

Input Data The address of the data Integer Input
or Result being encoded or the re-

sult of a decode (passed

by address)

Width The width in bytes of ‘Integer : Input
the output field in
Encode and of the input
field in Decode.

5.2 ENCODE ROUTINES
Encoding 1is the process of converting from an internal format to a
character string. Routines accomplishing this are defined below.

5.2.1 Encoding an Integer (ENCSIN)

ENCSIN is used to convert from an integer to character format. One
additional parameter is passed to ENCSIN: Hex which is a Boolean

value. If Hex is True, a hexadecimal value is generated. When Hex is
False, a decimal results.

The assembly language calling sequence follows:
Assume: The parameters for this procedure are stored at the

following displacements into the calling procedure’s
local frame:

String Pointer at 0
String Length at 2
Index at 4
Status at 6
Input Data Address at 8
width at 10
12

Hex at

5-2

MOV *LF,*SP+ PASSING STRING POINTER

MOV @2(LF) ,*SP+ PASSING STRING LENGTH
MOV LF,*SP ' PASSING INDEX

A @FOUR (LF) , *SP+ :

MOV LF,*SP PASSING STATUS

A @SIX (CODE) ,*SP+

MOV LF,*SP PASSING INPUT DATA ADDRESS
A @EIGHT (CODE) , *SP+

MOV @1lO0(LF) ,*SP+ PASSING WIDTH

MOV @l2(LF) ,*SP+ PASSING HEX

DATA CALLS
DATA ENCSIN

where the following sequence is in the user”s code:

MOD EQU $ MOD LABELS BEGINNING OF LOCAL DATA
DATA PRO-MOD PRO LABELS BEGINNING OF EXECUTABLE CODE

FOUR EQU $-MOD

DATA 4
SIX EQU $-MOD
DATA 6
EIGHT EQU $-MOD
DATA 8

EXCEPTIONS AND CONDITIONS:
Possible errors resulting (by error code):
(1) Bad parameter passed to routine. An example 1is the Index
parameter exceeding the parameter for String Length.
(2) Field width too large. This occurs when Index plus Width minus
one byte exceeds String Length.
5.2.2 Encoding a Longint (ENCSLO)
ENCSLO is called to convert from an extended integer to character
format. As in ENCSIN (above) a Hex parameter .is passed to ENCSLO
indicating if the result 1is to be hex (parameter value is True) or
decimal (parameter value is false).
The assembly language calling sequence follows:
Assume: The parameters for this procedure are stored at the

following displacements into the calling procedure’s
1pga1 frame:

String Pointer - at 0
String Length , at 2
Index at 4
Status at 6
Input Data Address at 8
width at 10
Hex - at 12
MOV *LF,*SP+ PASSING STRING POINTER
MOV @2 (LF) ,*SP+ PASSING MAXIMUM NUMBER
MOV LF,*SP PASSING INDEX
A @FOUR (LF) , *SP+
MOV LF,*SP PASSING STATUS
A @SIX (CODE) ,*SP+
MOV LF,*SP PASSING INPUT DATA ADDRESS
A @QEIGHT (CODE) , *SP+
MOV @10 (LF) ,*SpP+ PASSING WIDTH
MOV @l2 (LF) ,*SP+ PASSING HEX
DATA CALLS

DATA ENCSLO
where the following sequence is in the user”s prologue:

MOD EQU $ MOD LABLES BEGINNING OF LOCAL DATA
DATA PRO-MOD PRO LABELS BEGINNING OF EXECUTABLE CODE

”

FOUR EQU $-MOD

DATA 4
SIX EQU $-MOD
DATA 6
EIGHT EQU $-MOD
DATA 8

EXCEPTIONS AND CONDITIONS:
Possible errors resulting (by error code):
(1) Bad parameter passed to routine. An example is the 1Index

parameter exceeding the parameter for String Length.

(2) Field width too large. This occurs when Index plus Width minus
one byte exceeds String Length.

5.2.3 Encoding Boolean (ENCS$BO)

The ENC$BO routine is called to convert from the internal Boolean to
character format. If the byte width of the output field is less than
five, then TRUE is encoded as "T" and FALSE as "F"; otherwise, TRUE
and FALSE are spelled out.

5-4

-~ MOD EQU $: MOD LABELS BEGINNING OF LOCAL DATA

The assembly language calling sequence follows:

Assume: The parameters for this procedure are stored at the
following displacements into the calling procedure’s
local frame:

String Pointer at 0

String Length at 2

Index at 4

Status at 6

Input Data Address at 8

width at 10
MOV *LF,*SP+ PASSING STRING POINTER
MOV @2 (LF) ,*SP+ PASSING STRING LENGTH
MOV LF,*SP PASSING INDEX
A @FOUR (LF) ,*SP+
MOV LF,*SP PASSING STATUS
A @SIX (CODE) ,*SP+
MOV LF,*SP PASSING INPUT DATA ADDRESS
A @QEIGHT (CODE) , *SP+
MOV @10 (LF) ,*SP+ PASSING WIDTH

DATA CALLS
DATA ENCSBO

where the following sequence is in the user”s prologue:

DATA PRO-MOD PRO LABELS BEGINNING OF EXECUTABLE CODE

FOUR EQU $-MOD

DATA 4
SIX EQU $-MOD

DATA 6
EIGHT EQU $-MOD

DATA 8

EXCEPTIONS AND CONDITIONS:
Possible errors resulting (by error code):
(1) Bad parameter passed to routine. An example is the Index

parameter exceeding the parameter for String Length.

(2) Field width too large. This occurs when Index plus Width minus
one byte exceeds String Length.

5.2.4 Encoding a Character (ENCSCR) l

ENCSCR is called to store a single character (padded with blanks onlf\>

the left) in a string. The character is right justified in the output
field. _

The assembly language calling sequence follows:

Assume: The parameters for this proceduré are stored at the

following displacements into the calling procedure’s
local frame:

String Pointer o at 0
String Length at 2
Index at 4
Status at 6
Input Data Address at 8
width at 10
MOV *LF,*SP+ PASSING STRING POINTER
MOV @2 (LF) ,*SP+ PASSING STRING LENGTH
MOV LF,*SP PASSING INDEX
A @FOUR(LF) ,*SP+
MOV LF,*SP ’ PASSING STATUS
A @SIX (CODE) ,*SP+
MoV LF,*SP PASSING INPUT DATA ADDRESS
A QEIGHT (CODE) , *SP+
MOV @10 (LF) ,*SP+ PASSING WIDTH S
DATA CALL$)

DATA ENCSCR

where the following sequence is in the prologue of the user”s code:

MOD EQU $ MOD LABELS BEGINNING OF LOCAL DATA
DATA PRO-MOD PRO LABELS BEGINNING OF EXECUTABLE CODE
FOUR EQU $-MOD
DATA 4
SIX EQU $-MOD
DATA 6

EXCEPTIONS AND CONDITIONS:

Possible errors resulting (by error code):

(1) Bad parameter passed to routine. An example 1is the Index
parameter exceeding the parameter for String Length.

(2) Field width too large. This occurs when Index plus Width minus
. one byte exceeds String Length.

5.2.5 Encoding a String (ENCSST)

The routine ENCSST is called to store a character string in a field
within another character string. One additional parameter passed to
this routine is the width in bytes of the input field. The assembly
language calling sequence follows:

Assume: The parameters for this procedure are stored at the
following displacements into the calling procedure”’s
local frame:

String Pointer at 0

String Length - at 2

Index at 4

Status at 6

Input Data Address at 8

Input Width at 10

Output wWidth at 12
MOV *LF,*SP+ PASSING STRING POINTER
MOV @2 (LF) ,*SP+ PASSING STRING LENGTH
MOV LF,*SP PASSING INDEX
A @FOUR (LF) , *SP+
MOV LF,*SP PASSING STATUS
A @SIX (CODE) ,*SP+ ' .
MOV LF,*SP PASSING INPUT DATA ADDRESS
A @QEIGHT (CODE) , *SP+
MOV @10 (LF) ,*SP+ PASSING INPUT WIDTH
MOV @12 (LF) ,*SP+ PASSING OUTPUT WIDTH

DATA CALLS
DATA ENCSST

where the following sequence is in the user”“s prologue:

MOD EQU $ MOD LABELS BEGINNING OF LOCAL DATA
DATA PRO-MOD PRO LABELS BEGINNING OF EXECUTABLE CODE

FOUR EQU $-MOD

DATA 4
SIX EQU $-MOD
DATA 6
EIGHT EQU $-MOD
DATA 8

EXCEPTIONS AND CONDITIONS:
Possible errors resulting (by error code):
(1) Bad parameter passed to routine. An example is the -Index

parameter exceeding the parameter for String Length.

(2) Field width too large. This occurs when Index plus width minus

one byte exceeds String Length.

5.2.6 Encoding a Real (ENCSRE)

ENCSRE is called to convert from the internal representation of a real

to its corresponding character format. One additional parameter is -

passed to this routine. This parameter, F, represents the number of
digits falling to the right of the decimal. If F < 0, then the output
is in floating point format. To generate output in fixed point format,
set F to the number of digits to the right of the decimal point (i.e.,
number of decimal places). Otherwise, set F less than 0 for floating
point format. :

Assume: The parameters for this procedure are stored at thg
following displacements into the calling procedure’s
local frame:

String Pointer at 0
String Length at 2
Index at 4
Status at 6
Input Data Address at 8
Output Width at 10
F at 12
MOV *LF,*SP+ " PASSING STRING POINTER
MOV @2 (LF) ,*SP+ PASSING STRING LENGTH
MOV LF,*SP PASSING INDEX
A @FOUR (LF) , *SP+
MOV LF,*SP PASSING STATUS
A @SIX (CODE) ,*SP+
MOV LF,*SP PASSING INPUT DATA
A @EIGHT (CODE) ,*SP+
MOV @10 (LF),*SP+ PASSING OUTPUT WIDTH
MOV @12 (LF) ,*SP+ PASSING F
DATA CALLS

DATA ENCSRE

4where the following sequence is in the user”s prologue:

- MOD EQU $ MOD LABELS BEGINNING OF LOCAL DATA
DATA PRO-MOD PRO LABELS BEGINNING OF EXECUTABLE CODE

FOUR EQU $-MOD

DATA 4
SIX EQU $-MOD
DATA 6
EIGHT EQU $-MOD
DATA 8

EXCEPTIONS AND CONDITIONS:

5-8

1“ '\
]

Any error in the parameters will result in status being set'to 1.' In
this event, the output field will be set to all asterisks (“***...7).

5.3 DECODE ROUTINES

Decoding 1is the process of converting from a character string to an
internal format.

5.3.1 Decoding an Integer (DECSIN)

DECSIN is called to convert a field in a character string to an
integer. If the number is preceded by a “#”, it is interpreted as a
hexadecimal number, otherwise decimal is assumed. The assembly
language calling sequence follows:

Assume: The parameters for this procedure are stored at thg
following displacements into the calling procedure’s
local frame:

String Pointer at 0

String Length at 2

Index at 4

Status at 6

Address of Result at 8

Input width at 10
MOV *LF,*SP+ PASSING STRING POINTER .
MOV @2 (LF) ,*SP+ PASSING STRING LENGTH
MOV LF,*SP PASSING INDEX
A @FOUR (LF) ,*SP+
MOV LF,*SP PASSING STATUS
A @SIX (CODE) ,*SP+
MOV LF,*SP PASSING RESULT ADDRESS
A @EIGHT (CODE) , *SP+ '
MOV @10 (LF) ,*SP+ PASSING INPUT WIDTH

DATA CALLS
DATA DECSIN

where the following sequence is in the user’s code:

MOD EQU $ MOD LABELS BEGINNING OF LOCAL DATA
DATA PRO-MOD PRO LABELS BEGINNING OF EXECUTABLE CODE

FOUR EQU $-MOD

DATA 4
SIX EQU $-MOD
DATA 6
EIGHT EQU $-MOD
DATA 8

EXCEPTIONS AND CONDITIONS:

Possible errors resulting (by error code):

(1) Bad parameter passed to routine. An example ' is the Index

(2)

(3)

(4)

(5)

5.3.2

parameter exceeding the parameter for String Length.
Field width too 1arge; This occurs when Index plus Width minus
one byte exceeds String Length.

Incomplete Data. An example 1is a plus sign without digits
following. ’

Invalid character in field. This happens when a non-numeric
character is found in a number.

Data value too large. This occurs when a number is too large to
be stored in the given variable (e.g., 32768 is an integer).

Decoding a Longint (DECSLO)

The procedure DECSLO 1is <called to convert a field in a character
string to an extended integer. If the number is preceded by a “#°, it
is interpreted as a hexadecimal number, otherwise decimal is assumed.
The assembly language calling sequence follows:

Assume: The parameters for this procedure are stored at the

following displacements into the calling procedure”’s
local frame:

String Pointer at 0
String Length at 2
Index at 4
Status at 6
Address of Result at 8
Input Width at 10

5-10

MOV *LF,*SP+ PASSING STRING POINTER

MOV @2 (LF) ,*SP+ PASSING STRING LENGTH
MoV LF,*SP ' PASSING INDEX

A @FOUR (LF) ,*SP+

MOV LF,*SP PASSING STATUS

A @SIX (CODE) ,*SP+

MoV LF,*SP PASSING ADDRESS OF RESULT
A @EIGHT (CODE) ,*SP+

MOV @10 (LF) ,*SP+ PASSING INPUT WIDTH

DATA CALLS
DATA DECSLO

where the following sequence is in the user”s code:

MOD EQU $ MOD LABELS BEGINNING OF LOCAL DATA
DATA PRO-MOD PRO LABELS BEGINNING OF EXECUTABLE CODE

FOUR EQU $-MOD

DATA 4
SIX EQU $-MOD
DATA 6
EIGHT EQU $-MOD
DATA 8

EXCEPTIONS AND CONDITIONS:
Possible errors resulting (by error code):

(1) Bad parameter passed to routine. An example is the 1Index
parameter exceeding the parameter for String Length.

(2) Field width too large. This occurs when Index plus Width minus
one byte exceeds String Length. A

(3) Incomplete Data. An example is a plus sign without digits
following.

(4) Invalid character in field. This happens when a non-numeric
character is found in a number. ,

(5) Data value too large. This occurs when a number is too large to
be stored in the given variable (e.g., decoding a number larger
than #7FFFFFFF) . ’

5.3.3 Decoding Boolean (DECSBO)

The procedure DEC$SBO is called to convert a field in a Boolean
character string to an integer. Valid boolean strings are °“T“, “TRUE”,
“F*, and °‘FALSE”. No conversion of lower to upper case is done. The
assembly language calling sequence follows.

5-11

Assume: The parameters for this procedure are stored at the

following displacements into the calling procedure”s
; local frame:

String Pointer : at 0

String Length at 2

Index at 4

Status at 6

Address of Result at 8

Input Width at 10
MOV *LF,*SP+ PASSING STRING POINTER
MOV Q2 (LF) ,*SP+ PASSING MAXIMUM NUMBER
MoV LF,*SP PASSING NUMBER
A Q@FOUR(LF) ,*SP+
MOV LF,*SP PASSING STATUS
A @SIX (CODE) ,*SP+
MOV LF,*SP PASSING ADDRESS OF RESULT
A QEIGHT (CODE) ,*SP+
MOV @10 (LF) ,*SP+ PASSING INPUT WIDTH

DATA CALLS
DATA DECS$BO

where

MOD

FOUR
SIX

EIGHT

the following sequence is in the user”s code:

EQU $ MOD LABELS BEGINNING OF LOCAL DATA
DATA PRO-MOD PRO LABELS BEGINNING OF EXECUTABLE CODE

EQU $-MOD
DATA 4
EQU $-MOD
DATA 6
EQU $-MOD
DATA 8

EXCEPTIONS AND CONDITIONS:

Possible errors resulting (by error code):

(1)

(2)

(3)

5.3.4

Bad parameter passed to routine. An example 1is the Index

parameter exceeding the parameter for String Length.

Field width too large. This occurs when Index plus Width minus
one byte exceeds String Length.

Invalid character in field. This happens when an invalid
separator is found.

Decoding a Character (DECSCH)

The procedure DECSCH is called to convert a field in a character

5-12

.\//‘

string to an integer. In passing the byte width of the input field

(W),

if w > 0, the first non-blank character in the next W characters

is returned. If the field is all blanks, a blank is returned. 1If
W = 0, a blank is returned. If W < 0, the field width is assumed to be
1l (i.e. the next character is returned, blank or not).

The assembly language calling sequence follows:

Assume: The parameters for this procedure are stored at the

following displacements into the calling procedure’s
local frame:

String Pointer at 0
String Length at 2
Index at 4
: Status at 6
Address of Result at 8
Input Width at 10
MOV *LF,*SP+ + PASSING STRING POINTER
MOV @2 (LF) ,*SP+ PASSING STRING LENGTH
MOV LF,*SP PASSING INDEX
A @FOUR (LF) ,*SP+
MOV LF,*SP PASSING STATUS
A @SIX (CODE) ,*SP+
MOV LF,*SP PASSING ADDRESS OF RESULT
A QEIGHT (CODE) ,*SP+
MOV @10 (LF) ,*SP+ PASSING INPUT WIDTH

DATA CALLS ;
DATA DECSCH

where

MOD

FOUR
- SIX

EIGHT

the following sequence is in the user”s code:

EQU $ MOD LABELS BEGINNING OF LOCAL DATA

DATA PRO-MOD PRO LABELS BEGINNING OF EXECUTABLE CODE
EQU $-MOD

DATA 4

EQU $-MOD

DATA 6

EQU $-MOD

DATA 8

EXCEPTIONS AND CONDITIONS:

Possible errors resulting (by error code):

(1) Bad parameter passed to routine. An example is the Index.

parameter exceeding the parameter for String Length.

(2) Field width too large. This occurs. when Index plus Width minus

one byte exceeds String Length.

5-13

5.3.5 Decoding a String (DECSST)

DECSST

The assembly language calling sequence follows:

Assume:

is called to move a field in a character string to another
character string. One additional parameter is passed to DEC$ST: the
length of the result string.

MOV
MOV

MoV
A
MOV
A
MOV
A
MoV
MoV

DATA
DATA

The parameters for this procedure are stored at the
following displacements into the calling procedure”s

local frame:

String Pointer
String Length
Index

Status

Address of Result
Output Length
Input Field width

*LF,*SP+

Q@2 (LF) ,*SP+
LF,*SP
@FOUR (LF) , *SP+
LF,*SP

@SIX (CODE) ,*SP+
LF,*SP

@EIGHT (CODE) , *SP+
@10 (LF) ,*SP+
@12 (LF) ,*SP+
CALLS

DECS$ST

at
at
at
at
at
at 10
at 12

QO A NNO

PASSING STRING POINTER

PASSING STRING LENGTH
PASSING INDEX

PASSING STATUS

PASSING RESULT ADDRESS

PASSING OUTPUT LENGTH
PASSING INPUT WIDTH

where the following sequence is in the user”s code:

MOD

FOUR

SIX

EIGHT

EQU

DATA PRO-MOD

EQU

$ MOD LABELS BEGINNING OF LOCAL DATA
PRO LABELS BEGINNING OF EXECUTABLE

$-MOD

DATA 4

EQU

$-MOD

DATA 6

EQU

$-MOD

DATA 8

EXCEPTIONS AND CONDITIONS:

Possible errors resulting (by error code):

(1) Bad parameter

passed to routine.

An

example

is

parameter exceeding the parameter for String Length.

5-14

CODE

the Index

(2) Field width too large. This occurs when Index plus Width minus
one byte exceeds String Length.

5.3.6 Decoding a Real (DECSRE)
The DECSRE routine 1is called to convert from a character str;ng
providing the printable representation of a Real number to its
internal floating point format.
The assembly language calling sequence follows:

Assume: The parameters for this procedure are stored at the

following displacements into the calling procedure”s
local frame:

String Pointer at 0
String Length at 2
Index : at 4
Status - at 6
Address of Result at 8
width at 10
MOV *LF,*SP+ PASSING STRING POINTER
MOV @2 (LF) ,*SP+ PASSING STRING LENGTH
MOV LF,*SP PASSING INDEX
A @FOUR (LF) ,*SP+
MOV LF,*SP PASSING STATUS
A @SIX (CODE) ,*SP+
MOV LF,*SP PASSING RESULT ADDRESS
A @EIGHT (CODE) , *SP+
MOV @10 (LF) ,*SP+ - PASSING WIDTH

DATA CALLS
DATA DECSRE

where the following sequence is in the user”’s code:

MOD EQU $ MOD LABELS BEGINNING OF LOCAL DATA
DATA PRO-MOD PRO LABELS BEGINNING OF EXECUTABLE CODE

FOUR EQU $-MOD
DATA 4

SIX EQU $-MOD
DATA 6

5-15

EXCEPTIONS AND CONDITIONS:

If the input parameters are contradictory, the status will be
one. A

If the field specified is not contained in the array (i.e., the
width is too 1arge).the status is set to two.

If the field does not contain a valid real number, the status
to three.

5-16

set to

field

is set

oy
\‘\J

N

SECTION VI
CONFIGURING AN APPLICATION TO INCLUDE DIF I/O ROUTINES

6.1 GENERAL

The paragraphs that follow provide information on initializing and
configuring an application containing the File I/0 Decoder and various
I/0 Subsystems. The main points presented include a description of
system initialization, detail on the various object modules used to
build the target application, and an overview of the link editing
process. The default version of the GHOSTS$ process, a sample CONFIG
module, and an example Link Edit Control File are also presented. :

The 1link editor present in the user”s development system provides the
means for generating the target application (or load module). The user
specifies a link edit control file as input for the link editor. The
link editor resolves all of the application’s external references via
the libraries specified in the link edit control file.

Detailed information regarding configuring a load module for native
code execution . is. presented in the Realtime Executive User”s Manual
(MP373) for the assembly language user and the Microprocessor Pascal
Executive User”s Manual (MP385) for the Pascal user.

6.2 INITIALIZATION

Initialization of applications configured with one or more 1I/0
Subsystems and the File I/O Decoder takes place automatically at power
up time. The GHOST$ process supplied by the run-time support contains
a call to DSINIT, the entry point for initialization present in the
File I/0 Decoder. In turn, each of the I/0 Subsystems present on the
target system is initialized wvia DS$INIT. If the user wishes to
activate the File I/0 Decoder and the suported I/0 Subsystems directly
from his application, he can remove the call to D$INIT from GHOSTS.

In addition, GHOSTS$ contains a call to MSGS$INIT which identifies the
‘name of the device acting as the destination of the standard procedure
MESSAGE. The statement:

MESSAGE(“Execution begins.”);

can be inserted after the START statement in the user application to
signal the "Operator" (specified in the default version 'of GHOSTS)
that execution has begun. To implement this call, the node name
"Operator" must be present in a Port Contstants Record associated with
some I/0 Subsystem on the target ("Operator" is the node name assigned
to a device in a Port Constants Record in the Operator Interface 1I/0
Subsystem--see Appendix A). If this node name is not so specified, its
reference must be removed from GHOSTS. Note also that IPC Subsystem
will always claim the name “Operator” if that name is not claimed by

any other subsystem.

For most applications the default version of GHOSTvaill be adequate. |

s

If certain initialization must be performed for a <class of
applications (e.g. special devices must be initialized), it is

appropriate that it be performed in the ghost procedure so it need not-

be repeated in each application. If it is known that the File 1I/O
Decoder will not be used, then a slight savings in code space can be
made by removing the calls to DS$INIT in GHOSTS. If the standard
procedure MESSAGE will not be used, the call to MSGSINIT can also be
removed from GHOSTS. If the File I/O Decoder is not specified at 1link
edit time, DSINIT will be resolved by a "dummy" routine (present in
the Rx Sequential Library RXOBJ) that performs no processing.:

The default version of GHOSTS$ 1is displayed below (the source for
GHOSTS is written in assembly language).
system ghost$system;

const
dont_care = 2;

type _ '
dummy_buffer = packed array[l..dont_care] of char;

procedure d$init; external;

procedure msg$init(var pathname: dummy_buffer; length: integer);

external;
program systm$; external;

procedure ghost$;
var
pathname: packed array[1..8] of char;
begin
d$init;
pathname := “OPERATOR”;
msg$init (pathname: :dummy_ buffer, size(pathname));
start systm$;
end { ghost$ };

begin
$ nullbody.}
end.

FIGURE 6-1. DEFAULT VERSION OF PROCEDURE GHOSTS

6.3 CONFIGURATION MODULES
The object modules required to configure an application with the File
I/0 Decoder and the I/0O Subsystems provided in MPX and in the Device

Independent File I/0 Package are described below.

6.3.1 DIF I/0 Routines

The File I/0O Decoder, the Operator 1Interface 1I/0 Subsystem, the
Interprocess Communication I/0 Subsystem, and the Encode and Decode
routines are packaged as sequential 1libraries as described below.
These libraries are supplied for the Pascal user in the Microprocessor
Pascal Executive and for the assembly 1language user in the Device
Independent File I/0 Package.

e DS$SOBJ containing object modules to support the File I/0
Decoder level of device-independent 1I/0 (described in
Section 1III). This 1library also contains the dummy I/O
Subsystem (described in Appendix D) used when a specific
file service is not supported on the target.

® IPCSOBJ containing object modules comprising the
Interprocess Communication I/O Subsystem (described in
Section 1IV). IPCSOBJ uses routines from the libraries
C$OBJ (supplied in MPX or Rx) and D$OBJ. Because IPCS$SOBJ
accepts any pathname passed at Connect time, it should be
the last I/0 Subsystem referenced in the I/0 Subsystem
Service Directory (IODIR) specified in CONFIG (see
Subsection 6.3.3 below).

e TO02$0BJ containing object modules comprising the Operator
Interface I/0 Subsystem (described in Appendix A). These
routines support communication with a variety of terminals
connected to a 9902 interface. Routines from the libraries
CSOBJ and DSOBJ are also required by the T02$OBJ library.

e DESOBJ containing object modules that implement Decode and
Encode routines (described in Section V).

NOTE: The run-time support 1library MPP$SOBJ providing data types
routines is supplied to the assembly language programmer in the DIF
I1/0 package. The Pascal user can find this library in the
Microprocessor Pascal Executive.

6.3.2 The Executive Library

The 1libraries providing native code run-time support consist of the
sequential library RX$OBJ and the random 1library RXSLIB, each
containing miscellaneous Rx routines; and the sequential libraries
CSOBJ, CLK$OBJ, and MPPS$SOBJ containing channel routines, clock
routines, and Data Types routines respectively. With the exception of
CLKSOBJ, the above run-time support libraries are required in most
aplications utilizing DIF I/0 software. The Microprocessor Pascal
Executive supplies these libraries to the Pascal user. The assembly
language user obtains all native code libraries except for the library

6-3

MPPSOBJ from the Realtime Executive (Rx). MPPSOBJ is supplied to the
assembly language programmer in the DIF I/O package.

6.3.3 CONFIG

CONFIG is provided in the native code run-time support (MPX and RX).
The default version of this module must be customized to fit the
user”s application. Information regarding this module is contained 1in
the Microprocessor Pascal Executive User”s Manual and in the Realtime
Executive User”s Manual. The Information below describes data required
in CONFIG when the load module will contain DIF I/O routines.

6.3.3.1 Specification of the I/O Service Directory. The default

version of CONFIG provides for the specification of the I/O Service
Directory used during system initialization at power up time. In this
directory, the user specifies the address of an 1I/0 Subsystem
Directory and the address of an initial Port Constants Record for each
I/0 Subsystem supported on the target. The I/0O Subsystem Directory
contains the entry points for the routines making up the 1I/0
~ Subsystem. These entry points are standard from I/O Subsystem to I/O
Subsystem (see Subsection 2.4.2 for information on the derivation of
entry point names and Appendix B for a picture of the 1I/0O Subsystem
Directory). The Port Constants Record contains fixed data describing
the port associated with an I/0 Subsystem. The port provides the
logical connection between the I/0 Subsystem and the CPU; in many I/0
Subsystems the port is associated with some device controller (see
Appendix B for more information regarding the Port Constants Record).
Wwhile it is not required, the Port Constants Record(s) and the Node
Constants Record it points to can be conveniently placed in the CONFIG
module. ‘

The end of the I/0 Directory is marked by a null entry.

Sample code used in the I/0 Directory in CONFIG is presented below. In
the example, entries are present for two I/O Subsystems: the Operator
Interface (T02) I/O Subsystem described in Appendix A and the
Interprocess Communication (IPC) I/O Subsystem described in Section
IV. Note that the pointer to the Port Constants Record for the
Interprocess Communication I/O Subsystem is set to nil. The sample
CONFIG module below also contains the Port Constants Record and Node
Constants Records required by the Operator Interface I/0 Subsystem.

IODIR EQU $§ I/0 DIRECTORY
*

REF TO02S$SD, :
DATA TO02$SD,T02$PC T02 SERVICE DIR. AND PORT CONSTANTS REC.

REF IPCSSD IPC SERVICE DIRECTORY)
DATA IPCS$SD,O0

*
DATA 0 LIST TERMINATOR

6.3.3.2 Example CONFIG. An example CONFIG is presented below. Two I/0

Subsystems are specified in the I/O Service Directory: the Operator
Interface I/0 Subsystem and the Interprocess Communication 1I/O
Subsystem.

*

IDT

PSEG

LOWRAM EQU
* MODULE VARIABLES:

*

*

IWPSO
IWPS1
DBSWP
IWPS2
IWPS3
IWPS4
IWPS5
IWPS6
IWPS7

IWPS8

DORG

DEF
DEF
DEF
DEF
DEF
BSS
BSS
EQU
EQU
BSS
EQU
BSS
EQU
BSS
EQU
BSS
EQU
BSS
EQU
BSS
EQU
BSS

“CONFIG” SPECIFY CONFIGURATION

* REVISION: 08/01/80 1.00 ORIGINAL FOR RX 2.0
* ROUTINE LIST: CONFIG, IWP$SO0 .. IWPS1l5, BADSWP,
* $RAMTB, $RESTA,. SLREX, $SYSCR,

* $DEFAU, SFILL, $STKSZ, $BOOTP,

* S$IODIR, DBSWP

* COPY MODULES:

* NONE.

* MACRO DEFINITIONS:

* NONE .

* EXTERNAL ROUTINES:

* NONE.

*

EXTERNAL DATA:

MODULE CONSTANTS:
IWPSZ EQU 24
*

EXAMPLE SIZE OF AN INTERRUPT
WORKSPACE (R4-R15)
>8000 LOW BOUNDARY OF RAM

LOWRAM

IWPSO0,IWPS1l,IWPS2,IWPS3
IWPS$S4,IWPS5,IWPS6,IWPST
IWPS8,IWPS$9,IWPS10,IWPS1l
IWPS$12,IWPS13,IWPS$14,IWPS15
BADSWP,DBSWP

32

32

IWPS1

$-32+IWPSZ

IWPSZ

$-32+IWPSZ

IWPSZ

$-32+IWPSZ

IWPSZ

$-32+IWPSZ

IWPSZ

$-32+IWPS2Z

IWPSZ

$-32+IWPSZ

IWPSZ

$-32+IWPSZ

IWPSZ

FIGURE 6-2. CONFIG (Sheet 1 of 5)

SPECIFY CONFIGURATION”

SPECIFY CERTAIN SYSTEM PARAMETERS, THE RAM
CONFIGURATION, AND THE I/0 SUBSYSTEM

IWPS$S9 EQU $-32+IWPSZ
BSS IWPSZ

IWPS10 EQU $-32+IWPSZ
BSS 1IWPS2Z

IWPS1ll EQU $-32+IWPSZ
BSS 1IWPSZ

IWP$12 EQU $-32+IWPSZ
BSS IWPSZ

IWPS13 EQU $-32+IWPS2Z
BSS 1IWPSZ

IWP$1l4 EQU $-32+IWPS2Z
BSS IWPSZ

IWPS15 EQU $-32+IWPSZ
BSS IWPSZ

BADSWP BSS 32

*

LOWHP EQU $

*
RORG
TITL “CONFIG:
PAGE

* ABSTRACT:

*

*

* DIRECTORY.

* CALLING SEQUENCE:

* NONE.

* EXCEPTIONS AND CONDITIONS:

* NONE.

* L,OCAL DATA:

* NONE.

* ENTRY POINT:

*

NONE.

khkkkhhhhkhkhkhkhhhhhhkhkhkhhhhhhkhkhhhhhhkhhhhhhkhkhkhhhhhhkhhhkkhkhkhhk
* ADDRESS OF THE "BLWP" VECTOR FOR RESTARTS; USE "0" FOR

* LEVEL 0 INTERRUPT,

">FFFC" FOR THE "LREX" VECTOR, OR

* THE ADDRESS OF A USER-DEFINED VECTOR.
khkkkkhhdhhkkhhhhhhhhhhdhhhhhhhdhhhdhhdhhhhhhhhhhhhkhkhhkhhhhhhhk

DEF

SRESTA

SRESTA DATA 0

FIGURE 6-2. CONFIG (Sheet 2 of 5)

kkdkhhkhkhkhkhkhhkkkhhkhkkhhhkhhhkhhhkhkhhhkhkkhkdehhhhkhhkhhkkkhkhkhkhkhhkkihk

* ADDRESS OF THE "BLWP" VECTOR FOR THE "LREX" INSTRUCTION;

* USE "0" IF THERE IS TO BE NO "LREX" VECTOR OR IF HIGH

* MEMORY IS ROM.

: DEF S$LREX

SLREX DATA 0

khkkhkkhkhhhkhkhkhkhkkhkhkhkhkhkhkkkhhkhkhkhhhhkhhkhkhkhhkhhhkhkhkhkhhkhkhkhkhikkkkkk

* ADDRESS OF THE USER-DEFINED ROUTINE TO BE INVOKED IN CASE

* OF A SYSTEM CRASH; USE "0" FOR THE SYSTEM DEFAULT WHICH

* IS TO MASK INTERRUPTS AND IDLE THE PROCESSOR.

khkkdhhddhkhddhhkkhhkhkhhkhkhkhhkhkhkhkhkkkhhkhhkhkhkhkhhkhhkhkkhkhhhkhkhkhkkkkikikkk

DEF $SYSCR

$SYSCR DATA 0
o Je Je Jo & e K de do de Je o Fo e de ke g de de de e K K K Je Jo de g ek de K K Fe K d Je de e K K d dod J ke e g K K d d de ok ok kk

~* ADDRESS OF THE MPP ROUTINE TO BE INVOKED IF AN EXCEPTION

* OCCURS BUT NO EXCEPTION HANDLER HAS BEEN SPECIFIED; USE

* "Q" FOR THE SYSTEM DEFAULT WHICH IS A "NO EXCEPTION

* HANDLER" SYSTEM CRASH. '

khkkhhkhkhhkkhhhkhkhhhkkhhkhkhhhhhhkhhkhhkhkhhkhkhkhkhkhhkhhhhhkkhkhhhhhhkddkikhikk
DEF $DEFAU

$DEFAU DATA 0
hhkhhkhhhkhkhhhhhhhdkhhhhhkhkhkkkhkkhhhhhkhkhkhhhhkhkhkhkkkhhhkkhkkikhhhhkkk

-* THIS IS THE VALUE WITH WHICH THE HEAP WILL BE

* INITIALIZED AT POWER-UP. :
khkhhkkkhkhhhhhhhkkkhhhhhhhhhhhkhhhhhhhhhhhhhhhhhhhhdhhhhhkhhdhsk

DEF S$FILL '
$FILL JMP $

khkkkhkhhkhkkhkkhhkhhkhhhkhhkkhhkhkhkhkkhkhkhkhkkhkhhhhhhkkkhkkkhhkhhkhkhkkkkkkkh

* THIS IS THE DEFAULT STACK SIZE (IN WORDS) THAT IS USED

* IF A "STACKSIZE" CONCURRENT PARAMETER IS NOT SPECIFIED.
khhkkkkkhkhhhhhhkhhhhrkkkhhhhhhhhkhkkhhkhkhhhhhhkkhhhrhkhhhhn

DEF $STKSZ

$STKSZ DATA >100
kkkkhkhkhhkkhhhhhhkhkhkhkkxhhhkhhhdhhhkhhhhhhhkhhrrcrt thkhkhkhhkkrrrrk
* THE PARAMETER LIST FOR THE CALL TO "S$PRCS" TO START THE
* "BOOT" PROGRAM.
kkkkhkhkhhkhkhkhhhhhkhhhkhkhkkhhhdhhhhhhhhhhhhkkkhkhhhkhhrhhkrkhhhdhkr

DEF $BOOTP

$BOOTP DATA >0000 FRAME SIZE
DATA >0000 LEXICAL NESTING LEVEL
DATA >0000 PRIORITY
DATA >0100 STACK SIZE
DATA >0000 HEAP SIZE

FIGURE 6-2. CONFIG (Sheet 3 of 5)

6-8

N

dkdkkhhkhdhhkdkkhdkhkhhkhdkhhkhkhkhihdkhhhhkhdkhhhhhhhhkhhhkhkhhhkhhkrhhhdrk

* ADDRESS OF THE "RAM TABLE," THE TABLE THAT DESCRIBES THE

* REGIONS OF READ-WRITE MEMORY TO BE COLLECTED INTO THE

* HEAP.

khkhkhkhhkhkhkhkhkhkkhkhkhkhkkkhkhkhkhkhhkhkhhkhkhhkhkkkhkhkhkhkkhkhkhhkhhhkhkhkhkhkhkhkdhkhkkhkikk
DEF $RAMTB

SRAMTB DATA RAMTB

khkkkhhkkkhkhhkhkhkkhkhhhkhkhkhkhhhhhkhkhkkhkhkhkhkhkhkhkhhkhkhkhhkhkhkhkhkkrrhkhkhkhkkkkk

* ADDRESS OF THE DIRECTORY OF I/0 SUBSYSTEMS.

khkkhkkhkhkhkkhhkkhkhkhkhkkhkhkkhkkkhkhkkhkhkhkhkkhkkhkkkhkkhhkdkhkhkkkhkhkdkhkhkkhhkkhkhkkkk
DEF S$IODIR

S$IODIR DATA IODIR

khkkkkkhkkkkhkkkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhhkkhkhkkhkkkkhkkkkkhkhkhhkkhkkkhkkkkkk

* THE FOLLOWING TABLE IS A LIST OF "LENGTH_IN_BYTES,

* STARTING_ADDRESS" PAIRS THAT DEFINE THE RAM TO BE USED

* BY THE EXECUTIVE; A WORD OF "0" TERMINATES THE LIST.

~* THE RAM REGIONS MUST BE IN ASCENDING ORDER AND MUST NOT

* OVERLAP.

khkdkkhkkhkhhkdkkhkhhkkkkhkkkkkhkhkhkkhkkhkhkhkhkhhkhkhkhkhkkhkhkhkhkkhkhkhkkkhkkhkkhkkk

RAMTB DATA >FFFE-LOWHP,LOWHP .
DATA 0 LIST TERMINATOR

dhkhkdhkhkkkhhdhkhhhkhkhkhkhkhkhkkhkhkkkhkkhkhkhkhkhkhkhkhkhkkhkkhkkhkhhkkkkhkhkhkkkkk

* THE FOLLOWING TABLE IS A LIST OF "SERVICE_DIRECTORY,

* PORT_CONSTANTS" PAIRS THAT DEFINE THE I/O SUBSYSTEM TO

* BE INITIALIZED WHEN ROUTINE "DSINIT" IS CALLED;

* A WORD OF "0" TERMINATES THE LIST.

khkkhkhkhkhkhkhkhkkkhkkkhkhkhkhkhkkkhkhkhkhkkhkhkhkhkhkhkkkhkkkhkhkkhkkkkkkkkkkkkkkkk

IODIR EQU $
*

REF TO02$SD,T02SPC

DATA T02$SD,T02$PC TO02 SERVICE DIR. AND PORT CONSTANTS REC.

REF 1IPCSSD IPC SERVICE DIRECTORY
DATA IPCSSD,0

DATA 0 LIST TERMINATOR

FIGURE 6-2. CONFIG (Sheet 4 of 5)

khkkkhhkdkhkkkhhhkhkhhkhhhkhhkhkhhkhhkhhhhhhdhhkhhkkhhkhhhhkkhkhkhkkhkkkkh®

* THE FOLLOWING IS A PORT CONSTANTS RECORD FOR THE

* OPERATOR INTERFACE I/O SUBSYSTEM
khkkkhhhhhhkhkhhhhhkhhhhkhkhhhhhhkhhhhkhkhkhkhhkhhkhhhhkhkkhrhhhkhkhhhhkk

TO02SPC EQU $
*

NODE1

NODE?2

*
*

NAMEO
LNGTHO

*

NAME1
LNGTH1

*

NAME2
LNGTH2

END

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

DATA
DATA
DATA
DATA
DATA

DATA
DATA
DATA
DATA
DATA

TEXT
EQU
EVEN

TEXT
EQU
EVEN

TEXT
EQU
EVEN

0 LINK

4 INTERRUPT LEVEL

>0080 CRU ADDRESS

0 BAUD RATE; 0 => ADJUSTABLE
0 HEAP SIZE

0 INTERFACE HANDLER

NAMEO PORT NAME
LNGTHO PORT NAME LENGTH
NODE1 NODE HEADER POINTER

NODE2 LINK
0 NODE TYPE
NAME1l NODE NAME

LNGTHL NODE NAME LENGTH

>8001 OPTIONS = (ECHO, CR/LF AFTER WRITE)
0 . LINK

0 NODE TYPE

NAME2 NODE NAME

LNGTH2 NODE NAME LENGTH

>A001 OPTIONS = (ECHO, CR/LF AFTER READ,
CR/LF AFTER WRITE)

s

29902 AT >080“
$-NAMEO

“OPERATOR”
S$-NAME1

“vpT” .
$-NAME2

FIGURE 6-2. CONFIG (Sheet 5 of 5)

6-10

!
N~

6.4 LINK EDITING

Link editing enables the user to link together the user application,
the File I/0 Decoder, the desired 1I/0 Subsystems, and required
run-time support. The link editor in the user”s development system
provides the necessary software tools to carry out the configuration
process. The link editor requires as input a link edit control file.
The paragraphs that follow describe the link editor and link edit
control files. .

6.4.1 Link Editor

For information on initializing and executing the link editor, refer
to the Model 990 Computer Link Editor Reference Manual (949617-9701)
or to the 9900 AMPLUS Software System User®s Manual (MP375).

6.4.2 Link Edit Control File

The user must create a link edit control file to input to the Link
Editor. This file is generated using the text editor and is specified
when the link editor is brought up. The link edit control file defines
which modules are to be linked into the load module and in which order
they are to be linked.

A sample 1link edit control file 1is presented below. Detailed
information concerning the format and instructions used can be found
in the user manuals for the respective link editors.

NOTE: The file names used below are merely examples. The actual file
names used may change depending on their user-assigned locations.

TASK SAMPLE { PROGRAM NAME

LIBRARY MPX.RXSLIB !RX RANDOM LIBRARY

INCLUDE (RXKERNEL) !RX KERNEL

INCLUDE <CONFIG> IUSER”S CONFIG

INCLUDE VOL1l.APPL 1USER”S APPLICATION

SEARCH !RESOLVE ALL REFERENCES TO HERE
FIND MPX .DE$OBJ 1ENCODE AND DECODE

FIND MPX.T02SOBJ !OPERATOR INTERFACE

FIND MPX.IPCSOBJ !INTERPROCESS COMMUNICATION
FIND MPX .DSOBJ IFILE I/0 DECODER

FIND MPX .CSOBJ 1CHANNEL ROUTINES

FIND MPX .MPPSOBJ !DATA TYPES FROM MPX OR DIF I/0
FIND MPX .RX$SOBJ IRX SEQUENTIAL LIBRARY

END

©6-3. SAMPLE LINK EDIT CONTROL FILE
The above example can either be used with a DX or AMPLUS development

system. If AMPLUS is used, the drive location (e.g., DSOl or DS02)
can be substituted for the volume name.

6-11

If the user does not place the tables required by an I/O Subsystem
in the CONFIG module, he must create a separate module to contain
these records (these records include the Port Constants Records and
the Node Constants Record, as well as any other required data.
Should he do this, the user must "Include" the name of this module
in his Link Edit Control File. '

NOTE: Both the IPC and TO2 subsystem sequential object libraries
contain service directories. The names of these service directory
modules are REF“ed in the example Config (above). These modules will
be automatically included in the load module when thelink editor
encounters the appropriate REF in the CONFIG module.

6-12

U

.

APPENDIX A
IMPLEMENTING THE OPERATOR INTERFACE I/O SUBSYSTEM‘

A.l GENERAL

This section presents a detailed example of the application of the
tools introduced in this manual. Routines are developed to permit
interrupt-driven interactions with most terminals that can be
connected to a 9902 asynchronous communications controller. The
approach presented in building this subsystem may be adopted by a
user in the construction of his own subsystem. Subsection A.2
describes fundamental routines that permits low-level interface to a
—terminal; they manipulate an abstract representation of a terminal
(a device record) and may be called from and execute within the
user’s application process. Subsection A.3 describes an interface
handler, a separate process that is implemented with the routines of
Subsection A.2. It executes concurrently with user processes and
accepts requests for service via message channels. An I/0 subsystem
is constructed around the interface handler in Subsection A.4 to
provide a media-independent collection of I/O services. These
services are based on an abtraction called a file ID and are
implemented through commands sent to the interface handler.

The software in this section is discussed in terms of excerpts from
the source text that is delivered in library MPX.TO02SLIB.

A.2 INTERFACE VIA EMBEDDED ROUTINES

This section describes routines with which the user can perform
~direct I/O to a 9902 at the character or logical record 1level. The
9902 provides three concurrent functions: transmission and reception
of a character via a serial interface and interval timing. In this
application the 9902 will be configured to interrupt the host 9900
processor whenever one of these functions completes; since the same
interrupt is used for each function, interrupt demultiplexing must
be provided. The routines of this package are

HO2$RATE Initialize the 9902 including optional
measurement of the transmission rate

HO2$SOPEN Allocate and initialize the device descriptor

HO2SWAIT Wait for and demultiplex an interrupt

HO2$IN Read a character
HO2S0UT Write a character
HO2$GET Read a logical record
HO2SPUT Write a logical record

and will be discussed in the following subsections.

Access to each 9902 is made through 32 bits of the CRU address

A-1

L S

spaée. The input bits that will be used are

const
receiver_interrupt = 16;
transmitter _interrupt = 17;
timer 1nterrupt = 19;

Each of these bits is set to one when the corresponding function
completes. The output bits are

const
request_to_send on = 16;
receiver_interrupt_enable = 18;
transmitter _interrupt_enable = 19;
timer 1nterrupt enable = 20; ' .

"Request to send" is wused to activate the transmitter. Writing a
zero or one to the other bits disables or enables, respectively,
interrupts at the completion of the corresponding function; in
either case a pending interrupt 1is cleared. The eight CRU bits
beginning at displacement zero are used to move data to and from the
9902. (More information on the 9902 can be found in the TMS9902
Asynchronous Communications Controller Data Manual.)

The interface to a particular 9902 will be represented by the device
descriptor shown in Figure A-1l. Variable BASE coatains the CRU base

of the particular 9902 that is associated with the record; RATE is

the baud rate at which (both) transmission and reception occur.
CHARACTER_SENT and TIMER_ELAPSED are flags that are set by the 2
interrupt” demultiplexer to indicate the completion of the
corresponding function. KEYBOARD_BUFFER, NEXT_IN, NEXT_QUT, and
NUMBER OF CHARACTERS comprise a circular buffer into which
characters are placed as they are received from the 9902; if the
buffer is full when a character arrives, the flag CHARACTER LOST is
set. ATTENTION is the semaphore to which the 9902 interrupt is
connected.

const
circular_buffer_size = 16;

type ‘ g
device_9902 = record
base, rate: integer;
character _sent, timer_elapsed: boolean;
character 1ost boolean;
attention: semaphore;
keyboard_buffer:
packed array [l..circular buffer size] of char;
next_in, next_out, number_ of characters: integer;
end;

device_ptr = @device_9902;

FIGURE A-1l. 9902 DEVICE DESCRIPTOR

A.2.1 Procedure HO2SRATE
This procedure has calling sequence
procedure h02$rate(base: integer; var rate: integer)

and is used to initialize the 9902 at CRU base BASE. If RATE is not
zero and has an acceptable value (110, 300, 600, 1200, 2400, 4800,
9600, or 19200 baud), then both the transmitter and receiver are
initialized for that communication rate. Otherwise, the start bit of
the first character that is entered is timed, and the transmission
rate is calculated; the least significant bit of the first character
must be "1" (e.g., a carriage return). The interval timer is set to
16.32 milliseconds. o

A.2.2 Procedure HO02$SOPEN

The first routine 1in this package that is called must be HO02$SOPEN
(Figure A-2), the routine that initializes the 9902 interface. The
device record for the 9902 is allocated and initialized. The
parameter LEVEL is used to associate the semaphore ATTENTION with
the appropriate interrupt level and enable that interrupt through a
TMS9901 programmable systems interface (which is assumed to be at
gRU db?se #0100, as 1is the case for the TM990 family of computer
oards) .

procedure h02Sopen(base, level, rate: integer;
var d: device_ptr);
const
base 9901 = #100;
begin :
new(d); ‘
with dv = d@ do begin
dv.base := base;
hO02$rate(base, rate);
dv.rate := rate;
dv.character_sent := true;
dv.timer_elapsed := false;
dv.character_lost := false;
initsemaphore (dv.attention, 0);
externalevent (dv.attention, level);
dv.next_in := 1;
dv.next_out := 1;
dv.number _of_characters := 0;
" crubase (base 9901);
sbz(0);
crubase (base_9901 + 2*level);
sbo(0);
crubase(base);
sbo(receiver_interrupt_enable);
end;
end { h02$open };

FIGURE A-2. PROCEDURE HO02$OPEN

A.2.3 Procedure HO2SWAIT

This procedure (Figure A-3) waits until an interrupt is generated by
the 9902 which is specified by the device record that is its
parameter. The CRU bits TRANSMITTER INTERRUPT, RECEIVER INTERRUPT,
and TIMER_INTERRUPT are examined to determine which interrupts have
occurred. The response for transmitter and timer interrupts is to
clear the interrupt and set the appropriate flag to be examined by
the caller of HO02SWAIT. If a receiver interrupt occurs, a character
is read from the 9902 and stored in the keyboard buffer;
NUMBER_OF_CHARACTERS is incremented to indicate that keyboard
characters are available. (The keyboard is buffered so characters
can be entered while output is taking place.)

procedure h02$wait(d: device_ptr);
var
ch: char;
begin
with 4@ do begin
crubase (base);
wait(attention);

if tb(transmitter_interrupt) then begin

sbz(transmitter _interrupt_enable);
character_sent := true;
end;

if tb(receiver_interrupt) then begin
sbz (receiver_interrupt_enable);

if number_of characters < circular buffer _size then begin

stcr (8, ch::integer);
keyboard_buffer [next_in] := ch;

if next_in = circular_buffer_size then

next_ in := 0;
next_ in := next_ in + 1;

number_of_characters := number_of_characters + 1;

end
else
character_lost := true;
sbo(receiver_interrupt_enable);
end;
if tb(timer_interrupt) then begin
sbz (timer_interrupt_enable);
timer elapsed := true;
end;
end;
end { hO2swait };

FIGURE A-3. PROCEDURE HO2$WAIT

A.2.4 Procedure HO2SIN

This function (Figure A-4) returns the

next character from the

keyboard buffer. Note that HO2$SWAIT is

NUMBER_OF_CHARACTERS is zero since the calling program must wait

until a character arrives.

called

if

function h028in(4d: deV1ce_ptr): char ;
begin
with d@ do begin
while number_ of characters
h02Swait(d)3
h02§in := keyboard buffer[next _out],
if next_out = circular buffer 51ze then
next out := 0; ’
next out := next out + 1;
number _of characters := number_of characters -1;
end;
end { h02$in };

0 do

Figure A-4. PROCEDURE HO02SIN

A.2.5 Procedure H0250UT

This procedure (Figure A-5) sends a character to 9902 for
transmission. If the transmission of the last character has not
completed, HO2SWAIT is called until the - TRANSMITTER INTERRUPT
occurs. After the character has been sent to the 9902, the
transmission rate is examined. If it is 1200 baud, the output device
is assumed to be a mechanical printer and delays are inserted to
compensate for movement of the print mechanism of a TI Model 733
terminal. That is, characters are accepted at 1290 baud but printed
at 300 baud; a .carriage return requires as much time as 23
characters at 1200 baud. If the transmission rate is less than 1200
baud, then a delay is inserted only for a carriage return. Thus the
delavs per carriage return and per 1200 baud character are the
number of 16.32 millisecond intervals required to transmit 23 and 3
characters, respectlvely, at 1200 baud. (Note that, since the
interval timer is free-running, the delay loop beglns at 0, not 1,
to ensure that the proper number of full intervals 1s delayed.)

const

delay per 1200_baud_character = 2;

12;
23 char. delay per cr at 1200 baud
* 10 bits per character

div 1200 bits per sec

div .01632 seconds per interval

+ 1 to round up

delay per_cr

3 char. delay per 1200 baud char.
* 10 bits per character

div 1200 bits per second

div .01632 seconds per 1nterval
+ 1 to round up

procedure h02$out(d: device_ptr; ch: char);
var

delay: integer;

begin

e

with 4@ do begin
crubase (base);
while not character_sent do
h02Swait(d):
character_sent := false;
sbo (request_to_send_on);
ldcr(8, ch::integer);
sbz (request_to_send_on);
sbo(transmitter 1nterrupt enable);
if rate <= 1200 then
delay_block: begin
if ch = cr then
delay := delay_per_cr
else
if rate = 1200 then
delay := delay_per_1200 baud_character
else escape delay_block;
while not character_sent do
h02$wait(4);
for i := 0 to delay do begin
sbo (timer_interrupt_enable);
while not timer elapsed do
h02Swait(d)
timer_elapsed := false;
end;
end;
end;
nd { h02Sout };

FIGURE A-5.- PROCEDURE H02S$OUT

A.2.6 Procedure HO2SGET

R ihi

s procedure (Figure A-6) permits a logical record (terminated by

A-7

a carriage return) to be read from the 9902. The option parameter
OPTIONS controls whether the record will be echoed as it is entered
and whether a carriage return / line feed sequence will be emitted
before the record, after the record, or not at all. If the first
character that 1is entered is a DC3 (control-S), then "-1" is
returned as the number of characters read (COUNT) to indicate that
end-of-file has occurred. Otherwise, up to MAX_LENGTH characters are
read into the buffer B. The back space (control-H) may be used to
edit a line as it is entered.

type

option_record = packed record
echo while reading: boolean;
cr lf before read: boolean;
cr lf _after read boolean;
cr 1f before _write: boolean;
cr lf after wrlte- boolean;
end;

procedure h02$get(4d: device_ptr; b: dummy buffer_ ptr;
max_length: integer;
options: option_record;
var count: integer);

FIGURE A-6. PROCEDURE HO02$GET (SHEET 1 OF 2)

var
ch: char;
i: integer;
echo: boolean;
begin
with d@ do begin
ch := h028in(4);
if ch = dc3 then count := -1
else begin
echo := options.echo_while_reading;
if echo and options.cr_1lf_ before_read then begin
h02Sout (4, cr);
h02$out (4, 1f);
end;
i := 0;
loop: while true do begin
i =1+ 1;
if ch = bs then begin
if echo then h02Sout(4, 1f);
repeat
if i > 1 then begin
iec=1-1;
if echo then h02Sout(4, bs);
end;
ch := h02$in(4);
until ch <> bs;
end;
if ch = cr then begin
count := i-1;
escape loop;
end
else begin
if echo then h02Sout(4, ch);
be[i] := ch;
~if i < max_length then ch := h02$in(4)
else begin
count := i;
escape loop;
end;
end;
end;
if echo and options.cr_l1f_after_read then begin
h02Sout (d, cr);
h02Sout (4, 1f);
end;
end;
end; '
end { h02$get };

FIGURE A-6. PROCEDURE H02$GET (SHEET 2 of 2)

A-9

O S U A PO S 0 A A i el e e

A.2.7 Procedure HO02$PUT

This procedure (Figure A-7) writes a record to the 9902 interface
with carriage control as specified by the option parameter OPTIONS.

procedure h02$%put (d: device_ptr; b: dummy_buffer_ ptr;
count: 1nteger- opt10n5° option_record);
var
cmd: command_ptr;
begin
with 4@ do begin
if options.cr_1f before_write then begin
h02Sout(4, cr);
h02$out(4, 1f);
end;
for i := 1 to count do
h02Sout(4, b@[i 1); ‘
if options.cr_1f after_write then begin
h02Sout(d, cr);
h02Sout(4, 1f);
end;
end;
end { h02$put };

FIGURE A-7. PROCEDURE HO02$PUT

A.2.8 An Example

Figure A-8 shows the skeleton of an operator communications program
that communicates with the user by reading a command from the same
line on which a prompt has been written. The 9902 is configured for
the primary port of a TM990/101 board with CRU base of #080 and
interrupt level 4; the interface routines will measure the

transmission rate. Note that the operator program must have a.

priority that 1is consistent with the interrupt level of the 9902
since the program will be waiting on an interrupt semaphore.

A-10

‘Q,j

system example;

type
buffer = packed array[1..80] of char;
buffer_ptr = @buffer; '

device_ptr = @device_ptr;

option_record = packed record
echo_while_reading: boolean;
cr_1f before_read: boolean;
cr_lf after_read: boolean;
cr_1f before_write: boolean;
cr_1f after_write: boolean;
end;

procedure h02Sopen(base, level, rate: integer;
var d: device_ptr); -
external;
procedure h02$get(d: device_ptr; b: buffer_ ptr;
© max_length: integer;
options: option_record;
var count: integer):;
external;
procedure h02$put(d: device_ptr; b: buffer_ ptc;
count: integer; options: option_record);
external;

FIGURE A-8 AN EXAMPLE (SHEET 1 OF 2)

A-11

program operator;
var
d: device_ptr;
count: integer; .
input_buffer, output_buffer: buffer_ptr-
optlons- optlon record;
begin
{# priority = 4 }
hO02$open(#080, 4, 0, 4);
new (input_buffer);
new (output buffer);
with options do begin
echo_while_reading := true;
cr lf before _read := false;
cr 1f _after read := false;
cr lf before _write := true;
cr lf after wrlte := false;
end;
while true do begin
Fill the output_buffer with a prompt. }
h02$put (d, output_buffer, 80, options);
h02¢get(4, input_buffer, 80, options, count);
Process the command in input_buffer.}
end;
end { operator }

be?in

end { example }.
FIGURE A-8. AN EXAMPLE (SHEET 2 OF 2)

A.3 INTERFACE VIA MESSAGE CHANNELS

The previous section presents routines that may be executed within
the user”s process to communicate with a serial-device. The primary
advantage of this level of interface is that there is a minimum data
space overhead. It is particularly appropriate for applications that
have a single user process. If several processes require access to a
device, it is desirable to produce an interface handler, a process
that services a dqueue of requests from application processes and
communicates with the device that it controls. With this approach it
is possible for application processes to overlap computation with
input and output.

Figure A-9 shows HO2$HANDLER, an interface handler constructed from
the routines described in Subsection A.2. BASE, LEVEL, and RATE are

parameters to HO2SHANDLER which are required by HO02SOPEN to
initialize a 9902. KEYBOARD and PRINTER are messade channels upon
which input and output requests, respectively, will arrive. Each
request to the handler is a record of type COMMAND. BUFF is a
pointer to a buffer of size LENGTH characters. COUNT is set by the

A-12

user to indicate the number of characters to be sent and is set by
the handler to indicate the number of characters received. OPTIONS
is the option record described in Section A.2.6.

The calls to the routine C$NOTIFY cause the device interrupt
semaphore to be signaled whenever a command is sent to the KEYBOARD
or PRINTER channel, thus simulating an interrupt. Note that the code
for HO2$WAIT in Section A.2.3 waits for any signal to ATTENTION,
whether it be generated by an interrupt or by a software signal. The
processing in the handler occurs within an infinite loop that is
traversed whenever there is a state change (signal to ATTENTION). If
a keyboard or printer command is not pending, CSCRECEIVE is called
to accept a command if one has arrived. If a character has been
entered (the keyboard buffer is not empty) and a keyboard command is
present, the HO2$GET is called to input a logical record, and
CSACRKNOWLEDGE is called to signal the requestor that his command has
been processed. If there 1is no keyboard activity and a printer
command is present, then HO2S$PUT is called to output a record. 1If
neither keyboard nor printer activity is pending, HO2$WAIT is called
to await a change of state.

Note that a printer command is not processed unless there is no
keyboard activity pending. If a series of printer commands is queued
for output and a character is entered at the keyboard, printer
activity will be suppended at the end of the current record until
the keyboard record has been completely entered. Since HO2$GET is
not called unless the printer is 1idle, there 1is no need to
synchronize access to the printer in order to echo keyboard
characters. With this implementation characters will not be echoed
unless a keyboard request is pending. Note also that HO2$WAIT is not
called following the processing of a keyboard or printer command
unless all tests for pending activity fail. These tests must all be
made since it is possible that a change of state (e.g., arrival of a
keyboard command) occurred when HO2SWAIT had been called by a
routine (e.g., HO02$OUT) that could not recognize the simulus.

type
command = record
buff: dummy buffer_ ptr;
length, count: integer;
options: option_record;
end;
command_ptr = @command;

program hO2$handler (base, level, rate: integer; -
keyboard, printer: cid);
var
d: device_ptr;
keyboard_cmd, printer_cmd: command_ptr;
begin
{# stacksize = 100; priority = level }
h02Sopen (base, level, rate, d);
with 4@ do begin
- keyboard_cmd := nil;

A-13

printer_cmd := nil;
cSnotify(keyboard, attention);
cS$notify(printer, attentlon);
while true do begin
if keyboard_cmd = nil then
c$creceive (keyboard, keyboard_cmd);
if printer_cmd = nil then
c$creceive (printer, printer_cmd);

if number_of characters > 0 and keyboard_cmd <> nil then begin

h02$get(4, keyboard cmd@.buff, keyboard cmd@.length,
keyboard_ cmd@.options, keyboard_ “cmd@.count);
c$acknowledge (keyboard _cmd);
keyboard cmd := nil;
end
else
if printer_cmd <> nil then begin
h02$put (" 4, printer_cmd@.buff, printer_cmd@.count,
printer_. cmd@.options) ;
c$acknowledge (printer_cmd);
printer_cmd := nil;
end
else h02Swait(d);
end;
end;
end { h02$handler };

Figure A-9. AN INTERFACE HANDLER

A.4 INTERFACE VIA FILE I/O SUBSYSTEM

In this section a file I/O subsystem conforming to the conventions
of Section 6.3 1is constructed that permits media-independent
communication with the interface handler HO2$SHANDLER that was
described in Section 7.3. Of the services that must be provided by

an I/0 subsystem (Subsection 2.4.2), only INIT, CONNECT, READ,

- WRITE, WAIT, and DISCONNECT require special versions; the remaining

services are provided by entries of the "dummy" subsystem
(documented in Appendix D).

Figure A-10 presents the data structures that are device dependent.
The command record is the same as that described in Subsection A.3.
TO2$FID_VARIABLES RECORD contains. the variable data that are
associated with each file that is connected to the subsystem.
COMMAND is a pointer to the command record that is used to request
services for the file. READ_LENGTH_PTR is used to remember the
address of the parameter ACTUAL_LENGTH that must be set when a read
request completes. OPTIONS contains the formatting options for the
file (Subsection A.2.6). TO02$SNODE HEADER_RECORD specifies one
pathname that will be serviced by this subsystem and the format
options for that file. TO2$PORT_CONSTANTS RECORD is standard with
the exception of the usage of the I/0 address double word; in this
application it contains the CRU base and transmission rate of the
port. The two fields in TO2$PORT VARIABLES_RECORD contain the

A-14

message channel IDs of the keyboard and printer (input and output
devices) of the port.. (Computing WAITING as #7FFF + 1 yields a
one-word constant with value #8000; entering #8000 directly results
in a LONGINT constant.)

const . ..
= #0000;

wa1t1ng $7FFF + 1 { = #8000 };

type

command_record = packed record
buffer: dummy_ buffer_ptr;
length: integer;
count: integer;
options: option_record;
end;

command_ptr = @command_record;

t02$fid_variables_record = record
subsystem dependent structure }
command: command_ptr;
read_length_ptr: @integer;
options: option_record;
end;

t02Snode_header_record = record
link: node header_ptr-
node_type: integer;
node_name: dummy_ buffer_ ptr;
node _name_length: integer;
[subsystem dependent fields }
options: option_record;
end;

t028port_constants_record = record
link: port constants_ptr,
interrupt_level: integer;
base, rate: integer;
heap_size: integer;
interface_handler: address;
port_. name: dummy buffer_ptr,
port name_length: integer;
node_header: node_header_ptr;
{ subsystem dependent fields
end;

t02$port_ varlables _record = record
{ subsystem dependent structure
keyboard: cid;
printer: cid;
end;

FIGURE A-10. SUBSYSTEM DEPENDENT DATA TYPES

A-15

A.4.1 Procedure TO2$INIT

This procedure (Figure A-11l) 1initializes the 9902 terminal
subsystem. The port variable record is allocated from the heap and
is 1initialized with (unique) channel 1IDs for the keyboard and
printer devices. The interface handler program HO2$HANDLER is
activated using parameters from the port constants record.

procedure t028init{ serv: service_directory_ptr;
port_cons: port_constants_ptr;
var sub: subsystem_ptr |;
var
port_vars: port_variables_ptr;
begin

new(port_vars);
with port_vars@ do begin { initialize port variables }
c$init(0, keyboard);
c$init(0, printer);
start h02Shandler (port_cons@.base,
port_cons@.interrupt_level,
port_cons@.rate,
keyboard,
printer);
end;
d$subsystem(serv, port_cons, port_vars, sub);
end { t02$init };

FIGURE A-1l. PROCEDURE TO2$INIT

A.4.2 Procedure TO02$CONNECT

This procedure (Figure A-12) is called to determine if a pathname
corresponds to a node of this subsystem; utility function EQSNAMES
is used to compare pathnames with node names. If the pathname is
recognized, then a file ID variable record is created, and D$FID is
called to allocate and initialize a file ID record.

A-16 .

procedure t02$connect { _sub: subsystem_ptr;
var pathname: dummy_buffer;
length: integer;
var f: fid
var
found: boolean;
node: node_header_ptr;
fid_vars: fid_variables_ptr;

function egSnames(var pathnamel: dummy buffer; lengthl: integer;

pathname2: dummy buffer_ptr; length2: integer):

boolean; external;

begin
node := sub@.port_constants@.node_header;
search:
repeat
found := egS$names(pathname, length,

node@.node_name, '
node@.node_name_length);
if found then escape search
else node := node@.link:
until node = nil;
if found then begin
new(fid_vars);
with fid vars@ do begin { initialize fid vars }
c$allocate (size (command_record), command) ;

read_length_ptr := nil;
options := nodel.options;
end;

d$fid(sub, fid_vars, £);

f@.status := ok;

f@.state := closed;

end

else £ := nil;
end { t02$connect }s

FIGURE A-12. PROCEDURE TO2SCONNECT

A.4.3 Procedure TO02SREAD

- This procedure (Figure A-13) initiates input from the 9902 by
sending a keyboard command to the interface handler. Since this

procedure does not wait for the input to complete, the address of
ACTUAL_LENGTH is saved in the FID variable record so the result can
be returned by TO02$SWAIT.

A-17

procedure t02$read{ f: fid;
b: dummy_buffer_ptr;
max_length: integer;
var actual _length: integer }s
begin
if d$valid(£, Sread) then begin
with vars = f@.fid_variables@, cmd = vars.command@ do begin
cmd.buffer := b;
cmd.length := max_length;
cmd.count := 0;
cmd.options := vars.options;
c$send(f@.subsystem@.port_variables@.keyboard, vars.command);
vars.read_length_ptr::address := location(actual_length);
f@.status := waiting;
end;
end;
end { t02$read };

Figure A-13. PROCEDURE TO02$READ

A.4.4 Procedure TO2SWRITE

This procedure (Figure 7-14) initiates output to the 9902 by sending
a printer command to the interface handler.

procedure t02$write{ f£: fid;
b: dummy_ buffer ptr;
length: integer }l;
begin
if ds$valid(£, Swrite) then begin
with vars = f@.fid_variables@, cmd = vars.command@ do begin
cmd.buffer := b;
cmd.length := 80;
cmd.count := length;
cmd.options := vars.options;
cS$send(f@.subsystem@.port variables@.printer, vars. command);
vars.read_length ptr := nil; ‘
f@.status := waiting;
end;
end;
end { t02$write };

FIGURE A-14. PROCEDURE TO02$WRITE

A.4.5 Procedure TO2SWAIT

This procedure (Figure A-15) waits for a keyboard or printer request
to be completed. If READ_LENGTH_PTR is not NIL, then the command was

to the keyboard, and the number of characters that were transferred
is returned as the result ACTUAL_LENTGH of T2$READ.

A-18

procedure t02$wait{ f: fid };
begin
if f@.status < ok then
with f@.fid variables@ do begin
c$wait(command);
f@.status := ok;
if read_length_ptr <> nil then begin
if command@.count < 0 then f@.status := eof_encountered;
read_length _ptr@ := command@.count;
read_length_ptr := nil;
end;
end;
end { t02$wait };

FIGURE A-15. PROCEDURE TO02$WAIT

A.4.6 Procedure T02$DISCONNECT

This procedure (Figure A-16) disconnects a file ID by deallocating
the command and file ID varaiables records and calling DSRELEASE the
release the file ID record.

procedure t02$disconnect{ var f: fid };
begin
if d$valid(£, $disconnect) then begin
c$dispose(f@.fid_variables@.command);
dispose(f@.fid_variables);
ds$fidrelease(£);
end;
end { t02$disconnect };

FIGURE A-16. PROCEDURE T02$DISCONNECT

A.4.7 Module T02$SD

This module (Figure A-17) declares the service directory for the
9902 terminal interface subsystem. Services OPEN, CLOSE, DSTATUS,
ABORTIO, CREATE, DELETE, and POSITION are provided by the "dummy"
subsystem (Appendix D).

REF TO02S$IN,T02$CO,DUMSOP,T02$RE,T02$WR,DUMSCL
REF DUMSDS,T02$DI,DUMSAB,DUMSCR,DUMSDE,DUMSPO,T02SWA

TO2$SD EQU § *k***ENTRY***#*

DEF T02S$SD
*

DATA DIRSZ,T02$IN,T02$SCO,DUMSOP,TO02SRE,T02$WR,DUMSCL
DATA DUMSDS,T02$DI,DUMSAB,DUMSCR,DUMSDE,DUMSPO,TO2SWA

. FIGURE A-17. MODULE TO02$SD

A-19

A.4.8 Module T02SPC

This module (Figure A-18) is a sample port constants structure for
the 9902 subsystem. The port 1is the primary 9902 on a TM990/101
board (CRU base >0080 and interrupt level 4) and the transmission
rate will be determined by the first character received. Two nodes
are provided, OPERATOR and VDT; they differ only with respect to the
carriage control options: OPERATOR permits a prompt to be written to
the line from which keyboard input will be read. (OPERATOR is the
node to which the default ghost procedure directs the output of the
standard procedure MESSAGE.)

TO02SPC EQU $ *kkkRENTRY*** %%

. DEF T02$PC
DATA 0 LINK
DATA 4 INTERRUPT LEVEL
DATA >0080 CRU ADDRESS
DATA 0 BAUD RATE; 0 => ADJUSTABLE
DATA O HEAP SIZE (CURRENTLY UNUSED)
DATA 0 INTERFACE HANDLER

DATA NAMEO PORT NAME
DATA LNGTHO PORT NAME LENGTH
DATA NODEl NODE HEADER POINTER. CANNOT BE NIL.

NODE1l DATA NODE2 LINK
DATA 0 NODE TYPE
DATA NAMEl NODE NAME
DATA LNGTHL NODE NAME LENGTH
DATA >9000 OPTIONS = (ECHO, CR/LF BEFORE WRITE)

NODE2 DATA 0 LINK
DATA O NODE TYPE
DATA NAME2 NODE NAME ,
DATA LNGTH2 NODE NAME LENGTH
DATA >D0QO OPTIONS = (ECHO, CR/LF BEFORE READ,
* ’ CR/LF BHFORE WRITE)
%*
NAMEO TEXT “9902 AT >080"
LNGTHO EQU $-NAMEO
‘ EVEN
*
NAMEl1 TEXT “OPERATOR”
LNGTH1 EQU $-NAMEL

EVEN
*

NAME2 TEXT “vDT”
LNGTH2 EQU $-NAME2
EVEN ‘

FIGURE A-18. MODULE TO02$PC

A-20

R

. APPENDIX B
INITIALIZATION DATA STRUCTURES

B.1l GENERAL

The information that follows presents the data structures included in
the configuration of systems with I/0 Subsystem components and used in
their initialization. Also presented in this appendix are those data
structures associated with the IPC Subsystem described in Section IV.

Prior to presenting this material, the requirements affecting the way
in which initialization must work are listed.

B.2 INITIALIZATION REQUIRMENTS

Listed below are the Device 1Independent File 1I/0 initialization
requirements. These requirements affect the data structures used by
the device independent file I/O routines.

e I/O Subsystems are members of TI“s family of component
software (see Subsection 1.4 for a description of TI
component software). As such, they may not be bound to a
specific system configuration until power up. Therefore
the data structures that define the system configuration
must be part of the initialization code.

® The call to system initialization can occur at any of the
various 1levels of entry into the I/0 model (File I/O
Decoder level, I/O Subsystem 1level, interface handler
level). Therefore, the data must be structured into
hierarchical levels.

® Many users will require the configuration code to be
specified in ROM. Therefore, the data must be partitioned

into ROM (for constant and default values), and RAM (for:
variable or dynamic values).

B.3 INITIALIZATION DATA STRUCTURES

The data structures required for system initialization are described
in the subsections that follow. These data structures are constructed

and organized to meet the initialization requirments listed above in
_ Subsection B.2.
B.3.1 1I/0 Service Directory (DS$IODIR).

The I/0 Service Directory (D$IODIR) is the top-level data structure
required for system initialization. This directory contains a two-word

entry for each of the I/O Subsystems in the target system that can be

accessed via the File I/0 Decoder. The end of this directory is marked

by a null entry.

Each word in the two-word entry contains a pointer to a data structure
containing information required by its associated I/O Subsystem. The
first word points to the service directory for the I/0 Subsystem. The
second word points to a Port Constants Record (for the first I/O port
managed by that subsystem). Information on these data structures is
presented in Subsections B.3.2 and B.3.3 respectively.

Figure B-1 depicts the I/0 Service Directory.

#00
IOSVCDIR@
$#02 e Entry for First I/0
PORTCONS@ Subsystem on Target
#04
IOSVCDIR@
#06 Entry for SECOND I/0
PORTCONS@ Subsystem on Target
#08
etc Remaining I/0 Subsystems
: on Target
0

Null entry marking
End of table"

FIGURE B-1l. 1I/0 SERVICE DIRECTORY

B.3.2 1I/0 Subsystem Service Directory (IOSVCDR).

As stated above, the first word in each of the two-word entries haking

up the I/0 Service Directory is a pointer to the I/O Subsystem Service
Directory (IOSVCDR). The I/0 Subsystem Service Directory contains the
entry points to the specific procedures within the I/O Subsystem which
must be invoked to perform the file level services requested via the
File I/0 Decoder (i.e., via calls to the D$routines listed in
Subsection 2.3.1). As previously stated, these I/O Subsystem entry
points are formed by attaching a prefix (unique to the particular
subsystem) to the generic names of the file services (connect, open,
read, write, etc.). '

The I/0 Subsystem Service Directory is normally packaged in one of the
libraries supplied with an I/0 Subsystem. The directory itself is
pulled into the load module at link ;edit ;time

The first entry in the I/O Subsystem Service Directory specifies the

B-2

N4

“T

length of the directory. This entry is required because the user has

the capability of adding additional entry points as warrented by the
I/0 Subsystem.

Figure B-2 depicts the I/0O Subsystem Service Directory. The entries
listed below are the minimum entries that each such directory must
contain. (As noted previously, even if a particular I/0 Subsystem does
not contain a procedure to implement a file 1level service requested
via the File I/O Decoder, it still contains a corresponding entry
point. However, in this case, the entry point is associated with a
dummy routine. Note that the order of the entry points in the table is
gixed and specified by the 1I/0 standards, as shown in the figure
elow.

B-3

#00

#02

#04

#06

#08

#0A

#0C

#0E

#10

#12

#14

#16

#18

#1a

#1C

length

$init

Sconnect

$open

Sread

Swrite

$Sclose

Sdstatus

$disconnect

$abort io

Screate

Sdelete

$position

Swait

FIGURE B-2.

Total size
used)

Address of
Address of
Address of
Address of
Address of
Address of
Address of
Address of
Address of
Address of
Address of

Address of

Address of

B-4

of this record (Currently not

xxx$init routine
xxx$connect routine
xxx$open routine
xxx$read routine
xxx$write routine
xxx$close routine
xxx$dstatus routine
xxx$disconnect routine
xngabortio routine
xxx$create routine
xxx$delete routine
xxx$position routine

xxxSwait routine

I/0 SUBSYSTEM SERVICE DIRECTORY

N

~ B.3.3 Port Constant Record (PORTCONS)

The second word in each two-word entry contained in the I/O Service
Directory contains a pointer to a Port Contstants Record (PORTCONS). A
Port Constants Record contains constant information describing the
physical characteristics of an I/0 port associated with a given I/O
Subsystem (port refers to the connection between the system and the
- I1/0 device or node). The Port Constants Record may contain only fixed
information because in many cases, Port Constant information will be
accessed from read-only memory during normal program execution. The
user can build his Port Constants Record in the CONFIG module or can
place it in a separate module. If he chooses the latter, the user will
have to "include" this module in his link edit control file.

More than one port may be accessible to an I/O Subsystem; a separate
Port Constants Record exists for each port. All the Port Constant
Records associated with a single subystem are joined together in a
forward 1linked 1list. The pointer present in the I/0 Directory begins
the list. Each Port Constants Record in turn points to the Port
Constants Record for another associated Port. The last Port Constants
Record in the list contains a null pointer.

The required format of the Port Constants Record is displayed below in
Figure B-3 (note that the last part of this structure is reserved for
I/0 Subsystem-dependent information).

#00

#02

#04

#06

#08

#0A

#0C

#0E

#10

#12

link

Pointer to next port constants record

interrupt level Indicates the interrupt level of a device

io address

1l Port address 1 (used when appropriate to
specify a memory mapped I/O port)

io address

2 Port address 2 (used when appropriate to
specify a memory mapped I/0 port)

heap size

Size of the heap packet allocated to the
subsystem (may be nil)

handler

Address of interface handler (must be
specified)

port name

Address of the string containing the port”s
name (may be undefined)

port name
length

Length of the port®s name (may be 0)

node consta
record poin

nt Pointer to the associated Node Constants
ter Record (may be nil)

*
*

*

Subsystem dependent fields
e.g. Baud Rates, etc.

FIGURE B-3. PORT CONSTANTS RECORD

B.3.4 Node Constants Record

The Node Constants Record (also called Node Header Record) provides a
desciption of a terminal node accessible through a port. In essence,
node refers to the actual physical device (contrast with file which is
a logical entity). Each terminal node accessible through the port has
a separate Node Constants Record associated with it. A forward 1link
list connects all of the Node Constants Records associated with a
given port.

The format of the Node Header Record is presented below in Figure B-4.
As for the Port Zonstants Record, the Node Constants Record must
contain only fixed information. As such, the user should build this
record in ROM.

#00 .
link Points to the next node header record
$02
node type Indicates the type of the node
(currently not used)
404
node name Pointer to the string containing the node’s
name (must be specified)
$06
node name Length of the node”s name (cannot be 0)
length
$#08
* Subsystem dependent fields
*
*

FIGURE B-4. NODE CONSTANTS RECORD

B.3.5 File Identification Record (FIDRCD).

When an I/O Subsystem begins execution, it calls a procedure to
~allocate memory for and link in a File Identification Record (FIDRCD).
The File Identification Record thus created provides for the
association of a file (passed to the I/O Subsystem by the Connect
procedures) with the device controlled by that I/0 Subsystem. In
addition, The FIDRCD provides for the return of I/0 "status"™ and file
"state" information and associates the specific user with the specific
file. Subsegeunt to the "Connect", the FIDRCD is used to identify the
file being manipulated to the I/0 Subsystem. All FIDRCDs associated
with a single process are connected in a forward link list. The
pointer on the last FIDRCD is set to nil. The format of the FIDRCD is
fixed as displayed below in Figure B-5.

#00

#02

#04

#06

#08

#0A

#0C

B.4

These

link

subsystem

status

state

variables

global frame

FIGURE B-5

Pointer to next FID in the linked list
Pointer to the subsystem record
associated with the file

Status of the file
State of the file

Pointer to the subsystem dependent
variable record (FID Variables Record)

Address of the global frame of the

process in which this file identifier
was created

. FILE IDENTIFICATION RECORD

IPC I/0 SUBSYSTEM DATA STRUCTURES

data structures

are used exclusively to implement the

interprocess communication (IPC) I/O subsystem. The following data
structures allow data
channels.

to be transferred via messages passed through

B-8

v

'B.4.1 IPC FID Variables Record

fhis record 1is accessed through a FID record. It contains the
addresses of parameters used to read data, the file”“s message buffer,

and a pointer to the pathname record.

$00 :
read length Address of the word into which the
pointer number of characters transferred
is to be stored at the completion
of a read request
#02
maximum Indicates the maximum number of characters
. length that can be read into a buffer
04
read Address of the buffer into which
buffer data are to be read
#06
pathname Address of the unique pathname record for
node the file
- #08
command Address of the message record
used to transmit data
#0A ‘

FIGURE B-7. 1IPC FID VARIABLES RECORD

B.4.2 1IPC Port Variables Record

This record is accessed through an IPC-subsystem record. It points_ to
a linked 1list of pathname records, each containing the unique
characteristics of a particular file.

$#00 ' «
mutex Address of the semaphore used to ensure
mutual exclusion when accessing the list
$#02
' pathname node Address of the first pathname in the list
$04 |

FIGURE B-8. IPC PORT VARIABLES RECORD

B-9

B.4.3 Pathname Record ' ‘

This record is accessed through either the pathname node field of tho~\
process IPC FID variable record or the IPC port variables record. Tk
pathname record contains characteristics unique to a given file. Also
contained are values used to access and synchronize access to the
file”s channel.

#00
mutex ‘Address of the semaphore used to ensure
exclusive access to the pathname record
#02
link Address of next pathname in linked list
#04
length Number of characters in the file”“s name
#06 ‘
name Address of the string containing the file“s
name
#08
type Packed record defining file format, record
format, file usage, and file compression
#0A
record size Maximum number of characters in a logical
record
#0C '
end of Boolean indicates if all producers have
. production closed on a channel
) Create called Boolean indicates file creation L
OE '
end of Points to a semaphore used to synchronize
£10 consumption the closing of producers
waiting Points to a semaphore used to synchronlze
, for create the creation of a file
#12
number of The number of processes writing to a file .
producers
#14 .
number of The number of processes reading a file
consumers "
#16 .
number connected The number of processes connected to a file
#18 .
channel Address of the unique channel associated
with this pathname
#1A

FIGURE B-9. 1IPC PATHNAME RECORD

B-10

B.4.4 Message Record

Interprocess communication data is transmitted through a message

" record.

#00

buffer
#02

length
#04

count
#06

Address of the data to be sent via
IPC or of the buffer into which data
is to be received

Number of total bytes in the message
field

Number of bytes actually sent in the
message field

FIGURE B-10. IPC MESSAGE RECORD

B.5 INITIALIZATION OVERVIEW

The figure that follows presents an overview of system initialization
via DSINIT. The purpose of this illustration is to tie together many
of the above data structures.

B-11

DSINIT

IOSVCDIR@ (#1)

PORTCONS@ (#1)] =mmm—

—
PORTCONS@ (#2)

IOSVCDIR@ (#2)

. < i

STARTED BY GHOST$ PROCESS AT
POWER UP.

I/0 SERVICE DIRECTORY PRESENT
IN CONFIG.

>
length X link
INIT@ I/0 SUBSYSTEM
CONNECT@ SERVICE DIRECTORY int. level RECORD
OPEN@
READ@ heapsize
WRITE@ ’
CLOSE@ i ifhndlre@
STATUS@ I
DISCONNECT®@ * portname@
ABORTIO® |
CREATE@ length
DELETER :
POSITIONE | pe— | nOdehdr @
pa |
I0SS
dependent
ﬁ info
<
link
NODE CONSTANTS
node type RECORD
nodename@
length |
I0Sss
dependent
info.

B-12

PORT CONSTANTS

/

APPENDIX C
STATUS AND ERROR MESSAGES

C.l GENERAL

This section presents error messages generated during execution of the
File I/O Decoder. These error messages are at the level of the File
Identifier Record (FID) denoting error information relative to
operations on the FID. Three categories of messages are described:
"Status"™ information captured in the STATUS field of the FID record
and returned by the function D$STATUS, "State" information captured in
the STATE field of the FID and returned by a call to the function
DSVALID, and process information which may be examined in the Process
Descriptor Record.

Error messages denerated during execution of the individual 1I/0
Subsystems are unique to each I/0 Subsystem. In many instances, a user
who 1is returned a FID level error messade will need to inspect error
messages returned by the specific I/0 Subsystem. Two ways of obtaining
this error information are available. If more than one 1I/O Subsystem
is operating on the target and the user is unaware of the particular
I/0 Subsystem to be accessed, a call to D$DSTATUS should be made. 1If
the appropriate I/O Subsystem is known, a call to the Status function
in that subsystem can be made. Information on the Status messages at
the I/O Subsystem 1level can be obtained from the user manuals
dedicated to the various I/0 Subsystems. '

C.2 STATUS

The current status maintained in the FID record field "Status" is
returned to the user when the File I/O Decoder function D$STATUS is
called. This status information is subsystem independent, defining the
success or failure of the oldest outstanding request on the FID.

In general, a status value of 0 indicates that no error condition
currently exists and no activity is in progress. A non-zero value
indicates the current status of an outstanding request or the
existence of an exception condition. Values for the following -
conditions are standarized (device/subsystem independent):

~ CODE CONDITION
0000 Idle or last request complete. Nb exception
condition. ,
8xxx Request in progress.
0101 End of File encountered.

0102 End of information encountered. No more | \
information is present on the medium.

0103 ' | End of medium encountered. fj}

NOTE: The 0lxx messages defined above are not exclusive but rather may
occur together.

02x0 File error condition aé follows:

Unsuccessful open
Unsuccessful read
Unsuccessful write
Unsuccessful close
Unsuccessful disconnect
Unsuccessful create
Unsuccessful delete
Unsuccessful position
Unsuccessful abortio

odoun &~WNH

The user may need to examine the error messages generated at the I/O
Subsystem level to determine the cause of the 02x0 messages above.

04x0 Physical data link error on last request as
defined by subclassifications 1 through 9 above.

08xy Illegal state change: x = 0..6 and defines
present state of FID; y = 0..9 and defines

operation on FID that was requested but failed .)

(y values specify same conditions as x values o
above). For additional information on State,
refer to Subsection C.3 below.

C.3 VALID STATE CHANGES

State information defines the condition of the FID (e.g., Connected,
Open, Closed, etc.). By calling the File I/O Decoder function D$VALID,
the user may check for valid state changes. The function returns a
value of True or False based upon the attempted operation on the FID
(the <call to D$VALID is described in Subsection 3.12.13). If False is
returned, a call to D$SSTATUS should be performed in order to check for
the specific error (#08xy will be returned as described above).

Valid State changes are presented in table format belbw.

-

TABLE C-1. STATE TABLE FOR FILE I/0 DECODER

State Operation on FID
F?g Conn Create Open Read Posit Write Close Delete Disc
0. Initial 1
1 conn/Close 2 4,5,6 3
2 Created 4,5,6 3
3 Deleted 2
4 Open for R4 4 4 1
5 Open for Wt 5 1
6 Open for R/W 6 6 6 1

In the above table, the FID states are listed vertically and numbered
0 thru 6. Operations that can be attempted on the FID are indicated to

the right of each FID state. The numbers to the right of each FID
state identify the subsequent state of the FID (as idenitified by the
vertical numbers) after the corresponding FID operation is performed.
For example, After the FID is connected the FID state changes from O

(Initial) to 1 (Connect/Close). After the connected FID is Opened, the
FID state is 4, 5, or 6.

NOTE: the 1Initial state (assigned 0) is not a true state but rather
exists merely for documentation purposes. Prior to connection, the FID
does not exist. Also, after disconnection, the FID does not exist.

C.4 RUN-TIME SUPPORT ERROR MESSAGES

The following error messages concerned with the File I/O Decoder .and
I/0 Subsystems are generated by the RTS during program execution.

These errors are captured in the process record of the active process.

I/0 Decoder Errors - Class Code = B

1 empty file identifier list
2 file identifier not found
3 file identifier not released

Interprocess Communication Errors - Class Code = C
1 no heap for pathname record
2 no heap for name field
3 no heap for file variable record
4 no heap for port variables

3

a

APPENDIX D
IMPLEMENTATION OF DUMMY I/O SUBSYSTEMS

D.l1 GENERAL

The Dummy I/O Subsystem is comprised of a set of dummy routines that
serve two purposes:

1) Certain services are not meaningful in some subsystems due
to the nature of the medium associated with the subsystem.
Often the corresponding service routine in the dummy
subsystem may be used to provide a "dummy" or "no-op"
routine that conforms to I/0 subsystem interface
requirements. This substitution is made in the routine
list of the I/0 Service Directory (Appendix B) of the
subsystem. For example, IPCSDELETE is not implemented in
the IPC subsystem (Section IV) since there is no physical
media to be deleted. If a process references a delete
routine through the I/0O Service Directory, then the dummy
subsystem routine DUMSDELETE will be invoked.

2) The Dummy Subsystem also allows producer and consumer
processes to create and access specific files on which
most file operations are suppressed. Such a system .is
useful to define "dummy files"™ 1in processes. In these
systems, the messages written to dummy files are consumed
but. not passed along to other processes. Processes which
try to read from such files receive end-of-file status.
This subsystem can be used to "dummy" out file access in
user applications.

Routines comprising the dummy subsystem may be invoked as all other
I/O Subsystem routines (via the File I/O Decoder). Thus, the calling
sequence for each dummy routine is compatible with the calling
sequence for the corresponding routine found in any other subsystem.
Also, the definition of the use of the parameters in the dummy
routines is consistent with their definition in all other

corresponding subsystem routines. '

The data structures (records) used in the dummy subsystem contain the
same fields as illustrated in Appendix B (describing all I/O Subsystem
data structures). :

D.2 Dummy Routine Descriptions

The routines comprising the dummy subsystem are described below. The
routines are considered alphabetically; no calling sequences are
Presented as they are the same as for other I/0 Subsystems. The Pascal
source for each routine is supplied with ;the product.

D.2.1 Procedure DUMSABORTIO

This routine will call a wait routine through the I/0 Decoder. The I/O-

Decoder will then reference the appropriate subsystem”s wait routine

as configured. If the FID is a dummy subsystem file, then the Decoder
will call DUMSWAIT, which does nothing.

D.2.2 Procedure DUMSCLOSE

This routine checks that a file is in a valid state for a call to a
close routine. If the file is in a valid state, then a wait routine is
called through the I/O Decoder to insure that all impending 1I/0
operations have completed. DUMSCLOSE then updates the status and state
of the file and returns. The parameter "with_eof" is not used in this
system.

D.2.3 Procedure DUMSCONNECT

This routine searches the port node records associated with the dummy
subsystem to determine if the pathname parameters of this routine is
one that should be connected to the dummy subsystem. If it is, a file
identifier record is constructed and returned to the caller.

D.2.4 Procedure DUMSCREATE

This routine checks that a file is in a valid state for a call to a
create routine. If the state is valid, then routine will update the
status and state of the file. DUMSCREATE performs no create operation
on the file but was included to provide the dummy subsystem with a
create routine which has a calling sequence conforming with the create
call of other I/0 subsystems (the only meaningful parameter is the
FID).

D.2.5 Procedure DUMSDELETE

This routine checks that a file is in a valid state for a call to a
delete routine. If the state is valid, then routine will update the
status and state of the file. DUMSDELETE performs no delete operation
on the file but was included to provide the dummy subsystem with a
delete routine which has a calling sequence conforming with the delete
call of other I/O subsystems.

D.2.6 Procedure DUM$DISCONNECT

This routine checks that a file is in a valid state for a call to a
disconnect routine and then deallocates those data structures that are
associated with a file identifier record. Note that this routine can
be used by other subsystems if they allocate "fid_variables" using NEW

D-2

1‘ Unﬂ
R
\-\.-“'_,/

d

and if the fid variable record contains no substructures that require
special processing to be deallocated.

D.2.7 Function DUM$DSTATUS

This function always returns a normal status for the file. DUMSDSTATUS
performs no status check on the file but was included to provide the
dummy subsystem with a status routine which has a calling sequence
conforming with the status call of other I/O subsystems.

D.2.8 Procedure DUMSINIT

This routine initializes the subsystem record.

D.2.9 Procedure DUM$0PEN

This routine checks that a file is in a valid state for a call to an
open routine. If the state is valid, then the file 1is' opened for
reading, writing, or both as specified in the parameter "priv". The
parameters "ft", "logical_record_length" and "number_of_records" are
then initialized to be compatible with a file of variable length
records with typical length of 80 bytes.

D.2.10 Procedure DUMSPOSITION

This routine checks that a file is in a valid state for a call to a
position routine. If the state is valid, then the routine will update
the status of the file. DUMSPOSITION performs no position operation on
the file but was included to provide the dummy subsystem with a
position routine which has a calling sequence conforming with the
position call of other I/O subsystems.

D.2.11 Procedure DUMSREAD

This routine checks that a file is in a valid state for a call to a
read routine. If the &state is valid, then the routine will set the

read parameter "Actual Length" to a default value, and update the
status of the file. No actual read will occur and an end-of-file
status will always be returned.

D.2.12 Procedure DUMSWAIT

This routine performs no wait operation on a file. DUMSWAIT performs
no wait operation on the file but was included to provide the dummy
subsystem with a wait routine which has a calling sequence conforming
with the wait call of other I/O subsystems.

D.2.13 Procedure DUMSWRITE

This routine checks that a file is in a valid state for a call to a :fiy
write routine. If the state is valid, then the routine will update the >
status of the file. No message is written to a file.

N

APPENDIX E

'FILE ATTRIBUTES FOR USE IN CALLING FILE SERVICE ROUTINES

E.1 GENERAL

This appendix contains a discussion of the file attributes described
by the parameters passed to the File I/O Decoder entry points DSCREATE
and DSOPEN (detailed in Section III). These entry points are accessed
(whether directly or via the Pascal primitves) to create and open a
file for access.

The file attributes discussed below include file format, record
format, file compression, access type, access privilege and
protection, and file names.

NOTE: Some parameters passed at the file 1level to define these
attributes are ignored at the I/0 Subsystem 1level because they are

2aningless to the node being controlled. (e.g., DSCREATE”s parameter
Protection Code is ignored by the IPC Subsytem”®s Create routine).

E.2 FILE FORMAT

File format describes the physical organization of a file and is
specified at the time the file is created. Contiguous files have a
fixed file extent. Non-contiguous files have no such fixed length and
are allowed to grow dynamically up to a maximum of 16 secondary

-allocations. Contiguous and non-contiguous files and how they are

allocated to bulk memory storage are described below.

E.2.1 Contiguous Files

When a contiguous file 1is «created, the user specifies the maximum
number of records to be written in the file and the length in bytes of
2ach logical record. The number of records is multiplied by 1logical
_ecord length to arrive at file extent.

E.2.2 Non-Contiguous Files

When ‘a non-contiguous file is created, the user specifies a logical
record length, an initial number of records to be written in the file,
and an incremental number of records to expand the file. The primary
allocation is the product of the primanry number of records and the
logical record length both rounded up to the nearest multiple of AUs.
The secondary allocation is the product of the incremental number of
records and the logical record length.

The non-contiguous file format allows files to grow dynamically.
Non-contiguous files can be created small and can be allowed to grow
as needed.

E.3 RECORD FORMATS

Record format describes the logical organization of the file and is

specified by the user at the time of file creation. Three record -

formats are defined:

e Variable length
® Fixed length
e Free length

Each of these formats is examined below.

E.3.1 Variable Length

Variable length records making up a file are logical data structures
in which the individual record length is not fixed. A variable length
record format provides an economical way to use file space in
applications that must record data structures of unpredictable
lengths. Since the length of the records is a variable, the length of
each individual record must be recorded along with the record data
itself. Record headers and trailers are used to contain 1length
information and provide record boundaries. The format of variable
lezgth records supports file compression as discussed in Subsection
E.4.

E.3.2 Fixed Length

A file of fixed length records consists of copies of logical data
structures all of which are exactly the same length. Fixed 1length
records facilitate random access; the command to change a file“s
access position functions more easily on files of fixed length
records. :

E.3.3 Free Length

The free region format allows the user to conceptuall subdivide an
unformatted array of bytes into a structure of his own choosing. In a

file of free region records, the logical record length is one.

E.4 FILE COMPRESSION

File compression 1is achieved via the surpression of nulls in the
recording of data contained in files with variable 1length records.
Information stored in the record header and trailer results in the
automatic restoration of nulls when the file“s records are accessed.
Because of the necessity of header and trailer information, and
because of the varying record 1lengths that can result from file
compression, file compression cannot be used on files of fixed length
(or free length) records.

E.5 ACCESS METHODS

Access methods pertain to the action of recording and retrieving data
in a file. Access via the DSREAD and DSWRITE routines takes place
sequentially. Records are processed in order of their increasin
record numbers on the medium. Random access (processing of a recor
regardless of its location) can occur by using the DSPOSITION command
to reposition the file to the desired location. Because of the nature
of variable and fixed length records, random access proceeds slower on
the former.

E.6 ACCESS PRIVILEGE

Access privilege is requested at the time the file 1is opened for
access and establishes a relationship between a user and a data file.
This relationship specifies what activities the user can perform on
the file (read, write, execute, and extend as described below) and
whether or not any other user will be allowed to access the file. The
user specifies True or False as defined below.

Exclusion By specifying True, the user gains
exclusive access to the file or is
denied access if the file is being
accessed by another user.

Reading By specifying True, the user requests
the capability to read. Whether or
not others may access depends on the
"Exclusion" field above.

Writing By specifying True, the user requests
the capability to write. If the user
will be writing to a variable length
record file, he must specify True to
the "Exclusion" field. ‘

Rmxecute By specifying True, the user requests
the capability to execute a program
file. This option is for possible
use by operating systems and is not
currently supported.

Extend By specifying True, the user wishes to
extend the file.

For each of the above access activities 1listed, the appropriate
password is also required to allow user access as describe in the
following subsection.

"~ E.7 ACCESS PROTECTION

At create time, the user can assign a level of password protection to
the access activities that can be performed on a file. The parameter
Protection code defines this protection. For each of four access
activities, read, write, modify, and execute, a level of password
proctection can be assigned as follows:

#1 Unrestricted Access

#2 User Password needed to access

#3 Creator password needed to access
#4 No access

where user and creator passwords are defined at the time the file is
opened. It is possible to access a file with level 2 protection by
using a Creator Password, since Creator access is a special form of

User access.

E.8 FILE NAME

A special file attribute defined when the file is first connected to
an I/0 Subsystem is the file pathname. While this name is I/0

Subsystem denpendent, the general naming convention is as follows:

1) A pathname consists of one or more node names.

2) Each node name consists of up to eight wvalid ASCII
characters; a character may be an upper-case alphabetic, a
numeral, or a dollar sign (“$°).

3) The first character in each node name must be alphabetic.

4) Each node name is separated from other nodes by an ASCII
period.

{ protection type }
1l
2

T

APPENDIX F

GLOBAL DECLARATION.FILES FOR DIF 1I/0 PACKAGE

F.l1l GENERAL

Global Declaration Files for the Pascal programmer using DIF I/0
routines are listed below. Two Global Declaration Files are presented.
The first is used for Pascal applications requiring the File I/0
Decoder. The second is used for Pascal applications utilizing the
Interprocess Communication I/0 Subsystem.

F.2 FILE I/0 DECODER GLOBAL DECLARATION FILE
program d$declarations;
const

dont_care = 2;

any_access = 1;
user_password = 2;
creator_password = 3;
no_access = 4;

max_protection_type = 4;

{ file format |
contiguous = 1;
noncontiguous = 2;
max_file format = 2;

{ record format }
free_length = 1;
variable_length = 2;
fixed_length = 3;
max_record_format = 3;

{ file usage }

data = 1;
directory = 2;
allocation_map = 3
max_file_usage = 3;
}

[file compression
uncompressed = 1;
compressed = 2;
max_file compression = 2;

[£file access mode }
byte_relative = 1;

sequential = 2;
direct = 3;
max_file_ access_mode

1]
w
~e

type

address = integer;

byte = 0..#FF;

dummy_index range = l..dont care;

dummy_| “buffer = packed arrayl dummy index_range] of char;
dummy buffer_ptr = @dummy_buffer;

fid = @fid; :

hex_digit = 0..#F;

file access_mode = l..max_file_access_mode;

file access_privilege = packed record
exclusive_access: boolean;
read_access: boolean;
write_access: boolean;
execute_access: boolean;
extend_access: boolean;
end;

file_type = packed record
f11e format: hex digit;
record format: hex _digit;
file usage' hex d1g1t,
file compression: hex_digit;
end;

password_list = record
{ to be determined
end;
password_list ptr = @password_list;

protection = packed record
read_protect: hex_digit;
write protect: hex_digit;
modify protect: hex _digit;
execute protect: hex digit;
end;

F-2

{**}

procedure d$abortio(f: fid); external;
procedure d$close(f: fid; with_eof: boolean); external;

procedure d$connect(var pathname: dummy_ buffer;
length: integer;

var f: fid); external;
procedure d$create(f: fid;
passwords: password_list_ptr;
" protect: protection;
ft: file_type:
logical_record_length: integer;
initial_allocation: longint;

extension_allocation: longint); external;
procedure d$delete(f: f£fid); external;
procedure d$disconnect(var f£: fid); external;

procedure d$init; external;

procedure d$open(= f: fid;
passwords: password_list_ptr;
mode: file_access_mode;
priv: file_access_privilege;
var ft: file_type;
var logical_record_length: integer;
var number_of_records: longint); external;
procedure dS$position(f: fid;

relative: boolean;
number : longint); external;

procedure dS$rdwait(f: fid;
var b: dummy_buffer;
max_length: integer;

var actual_length: integer); external;

procedure dS$read (f: £id;
var b: dummy_buffer;
max_length: integer;

var actual_length: integer); external;

function d$status(f: f£fid): integer; external;

procedure d$wait(f: fid); external:;

procedure dSwrite(] fid;
var b: dummy_buffer; ,
length: integer); external;

procedure d$wrwait (f: f£id;

var b: dummy_buffer;
length: integer); external;

{**i"i ’w

begin
?$ nullbody }
end.

F.3 GLOBAL DECLARATION FILE FOR INTERPROCESS COMMUNICATION SUBSYSTEM

{$ statmap, map }
program dummy$subsystem;

const

bytes_per_word = 2;
dont_care = 2;

{ protection type }
any_access = 1;
user_password = 2;
creator_password = 3;
no_access = 4;
max_protection_type = 4;

{ file format } -
contiguous = 1;
noncontiguous =
max_file format

/

2;) o
=2;

{ record format }
free_length = 1;
variable_length = 2;
fixed_length = 3;
max_record_format = 3;

[file usage }
data = 1;
directory = 2;
allocation_map
max_file usage

nn
e ww
~e “wo

{ file compression
uncompressed = 1;
compressed = 2;
max_file_compression = 2;

{'file access mode }
byte_relative = 1;
sequential = 2;

direct = 3;
max_file access_mode = 3;

. { £id state }
closed = 1;
created 2
deleted 3
open_for_reading =
open_ “for _writing =
open__ ~ for both = 6;

.
’
.
’

{ £id operations }
Sopen = 1;
Sread =

Swrite = 3;
$close = 4;
Sdisconnect = 5;

Screate = 6
$delete = 7;

$position = R; .
max_fid_operation = 8;

-e

S$abortio = 9;
eof_encountered = #0101;

file error = #0200;

unsuccessful _open = file error + #10 * Sopen;
unsuccessful read = file error + #10 * Sread;
unsuccessful write = file error + #10 * Swrite;
unsuccessful close = file error + #10 * $close;
unsuccessful_disconnect = file error + #10 * $disconnect;
unsuccessful create = file_error + #10 * Screate;
unsuccessful_delete = file error + #10° * $delete;
unsuccessful position = file_error + #10 * $position;
unsuccessful_abortio = file_error + #10 * Sabortio;

fid_illegal_operation_error = #0800 { + £id operation };

normal = 0;
waiting = #8000 ;

c ipcSerr = 12;
no_heap_for_pathname_record
no_heap_for name_field

no heap for f11e varlable record
no_heap_for_ port_variables_record

wmnoun
o w N

.l W WO wO

type
rt_type = (noneS, err$, £$S, hp$$, ins$s, P$$l cS$$, sm$S,
ipc$$, ct$$, iodss);
address = integer;
byte = 0..#FF;
dummy_index_range = l..dont_care;

&

dummy buffer = packed array[dummy_index range] of char;
dummy_buffer_ptr— @dummy buffer;

fid operatlon = l..max_ fid _operation;

hex_digit = 0..#F;

file_access_mode = l..max_file_access_mode;

fid = @fid_record;

fid_variables_ptr = @Qipc$fid_variables_record;
port constants_ptr = @1pc$port constants _record;
port varlables_ptr = @1pc$port variables record;
service_directory_ptr = @service dlrectory record°
subsystem_ptr = @subsystem_ptr;

-memptr = @memptr;

hp$ = @hp$;
byte _length = 0 .. 32767;

semaphorestate = (awaited, zero, signaled);

cid = @cid;

command_ptr = @command_record;
passcode_ptr = @passcode_ptr;
pathname_node_ptr = @pathname_node;
parameters_ptr = @1pc$parameters-

file access_pr1v1lege = packed record
exclusive_access: boolean;
read_access: boolean;
write_access: boolean;
execute_access: boolean;
extend_access: boolean;
end;

file_type = packed record
file format: hex_digit;
record _format: hex _digit;
file_usage: hex _digit;
file _compression: hex_digit;
end,

password = packed array [l..4] of char;
password_ptr = @password;
password_list = record
user_password: password;
Creator_password: password;
end;
pPassword_list_ptr = @password_list;

protection = packed record
read_protect: hex_digit;

write_protect: hex_digit;
modify protect: hex digit;
execute_protect: hex_digit;
end;

fid_record = record
link: £id;
subsystem: subsystem_ptr;
status: integer;
state: integer;
fid variables: fid_variables_ptr;
global_frame: address;
end;

service_directory_record = record
length: integer;
$init: address;
Sconnect: address;
$open: address;
Sread: address;
Swrite: address;
$Sclose: address;
$status: address;
Sdisconnect: address;
$abortio: address;
Screate: address;
$delete: address;
Sposition: address;
$wait: address;
end;

ipc$port_constants_record = record
unused by ipc$ T
end;

ipc$port_variables_record = record
mutex: semaphore;
pathname_node: pathname_node_ptr;
end;

command_record = record
buffer: dummy_buffer_ptr;
length: integer;
count: integer;
end;

ipc$fid_variables_record = record
read_length_ptr: @integer;
read_maxlength: integer;
read_buffer ptr: dummy_buffer_ ptr;
pathname_node: pathname_node_ptr;
command: command_ptr;
end;

pathname_node = packed record
node_mutex: semaphore;
link: pathname_node_ptr;
length: integer;
name: dummy_buffer_ ptr;
ft: file_type; '
logical_record_length: integer;
end of_productlon, create_called: boolean;
end_of_ consumption, wa1t1ng for_create: semaphore;
number _of_producers, number —of_consumers,
number_connected: integer;
channel: cid;
end;

ipc$parameters = record
base: integer; :
level: integer;
rate: integer;
length: integer;
name: dummy_ buffer;
end;

common
msg: fid;

procedure d$fid (sub: subsystem_ptr;
fid_vars: fid_variables_ptr;
var f: fid); external;

procedure d$fidrelease(var f: fid); external;

procedure d$subsystem (serv: service_directory_ptr;
port_cons: port_constants_ptr;
port_vars: port_variables ptr;

var sub: subsystem_ptr); external;

‘function d$valid(£: £id;
op: fid_operation): boolean; external;

procedure ipcS$close(f: fid; close_with_eofi boolean); forward;
procedure ipc$connect (sub: subsystem ptr;

var pathname: dummy_buffer;
length: integer;

~var f: fid); forward;

procedure ipc$create(f: fid;
passwords: password_list_ptr;
Protect: protection;
ft: file_ type;
logical_record_length: integer;
initial allocatlon- longint;

N

e

procedure

procedure

procedure

procedure

procedure

procedure

extension_allocation: longint); forward;

ipcSdisconnect(var f£: fid); forward;

ipc$init(serv: service_directory ptr;
port_cons: port_constants_ptr;

var sub: subsystem_ptr); forward;

f:

password:

mode:

priv:

ft:

logical_record_length:

number_of records:

fid;

password_ptr;
file_access_mode;
file_access_privilege;
file_type;

integer;

longint); forward;

ipc$open (

var
var
var
ipcSread (f: fid;
b: dummy_buffer_ ptr;
max_length: integer;
var actual_length: integer); forward;

ipcSwait(£: £id); forward;
£id;

dummy_buffer_ptr;
integer); forward;

ipcSwrite(f:
b:
length:

procedure cwait(s: semaphore; var received: boolean); external;
function cksemaphore(s: semaphore): boolean; external;

procedure initsemaphore(var s: semaphore; count: integer); external;
procedure signal(s: semaphore); external;

function semastate(sema: semaphore): semaphorestate; external; .

procedure
procedure
procedure

procedure

procedure
Procedure

termsemaphore(var s: semaphore); external;
wait(s: semaphore); external;
waitsignal (waitfor, signalthe : semaphore); external;
exception(classcode, reasoncode: integer); external;
rtSenter (typ: rt_type; abstract_object: address); external;
rtSexit; external;

function eg$names (var namel: dummy_ buffer; lengthl: integer;
name2: dummy_buffer_ptr; length2: integer): boolean; external;

procedure hp$free (heap: hp$; var ptr: memptr); forward;

procedure hpS$new (heap: hp$; var ptr: memptr; length: byte_length);
forward;

function hp$system: hp$; forward;

procedure cS$acknowledge(cmd: command_ptr); external;

procedure c$allocate(msg_size: integer; var cmd: command_ptr);
external;.

Procedure cScreceive(c: cid; var cmd: command ptr); external;

procedure cS$dispose(var cmd: command_ptr); external;

procedure c$init(i: integer; var c: cid); external;

procedure c$receive(c: cid; var cmd: command_ptr); external;

F-9

procedure c$send(c: cid; cmd: command_ptr); external;
procedure cS$term(var c: cid); external;
procedure cS$wait(cmd: command_ptr); external;

begin ‘
T$ nullbody }
end.

F-10

g e

L

\

_ENCSST

INDEX

AMPLUS DEVELOPMENT SYSTEM 1-2,6-11
CHANNEL ROUTINES . .

COMPONENT SOFTWARE .

COMPRESSION
CONFIG . .

CONFIGURATION MODULES

CONFIGURING
DSABORTIO .
DSCLOSE . .

DSCONNECT .

SCREATE .
DSDELETE .

D$SDISCONNECT

DSDSTATUS .
DSINIT . .
DSOBJ . . .
DSOPEN . .
DSPOSITION
DSRDWAIT .

i \')sREAD] .
.. JSROUTINES

D$SSTATUS
DSTERM .
DSVALID .
DSWAIT .
DSWRITE .
DSWRWAIT
DESOBJ . .
NECONH

DECODING
DECODING
DECODING
DECODING

DECODING AN

ROUTINE

AN APPLICA

S

A CHARACTER
A LONGINT .
A REAL . . .
A STRING . .

INTEGER .~

DEVICE INDEPENDENT I/O

DIF I/O PACKAGE .
DIF I/0 ROUTINES
DUMMY SUBSYSTEM

ENCS$BO
ENCSCR
ENCSIN
ENCSLO
ENCSRE

°

é o o o o o
e o o o o

.
[L[] L] L[] L[] L[] . [L]

© o 0 o e o 0 o ° o o o & o ¢ o 6 o o o * o FJle o o o

I

2-6,6-3,
6-11
1-2,1-3,2-2
3-6,4-6 :
6-4

6-2

ON 6-1
2-4,3-18
2-4,3-18
2-4,3-3
2-4,3-5
2-4,3-20
2-4,3-20
2-4,3-16
2-4,3-2,6-1
6-3,6-11
2-4,3-17
2-4,3-13
2-4,3-13
2-4,3-10
2-5
2-4,3-15
3-21

3-17
3-10,3-13
2-4,3-11
2-4,3-13
6-3,6-11
1-2'5'1'
5-9 '6-2
5-12

5-10

5-15

5-14

5-9

1-1,2-1
1-1,6-3
1-2'6—176-3
D-1

5-4

ENCODE AND DECODE ROUTINES

ENCODE ROUTINES . .

ENCODING A CHARACTER

ENCODING A LONGINT

ENCODING A REAL . .
ENCODING A STRING .
ENCODING AN INTEGER
ENCODING BOOLEAN .
END-OF-FILE
ENTRY POINTS . . .

EOF « ¢ ¢ ¢ o o« &
ERROR MESSAGES .
EXECUTIVE LIBRARY
FID ¢« ¢ ¢ ¢ o o &
FILE ATTRIBUTES .
FILE I O DECODER

FILE-LEVEL . .

FUNCTION D$DSTATUS
FUNCTION D$STATUS .
GHOSTS$ PROCESS . .

e o 0 o o o

GLOBAL DECLARATION FILE

HEAP [[o . L] [[

HOST AND TARGET SYSTEMS

I/O MODEL . . .

I/0 SERVICE DIRECTORY .

I/0O SUBSYSTEM . . .

1-2,
5-1,6-3
5-1,6-3
5-6 : ‘
5-3
5-8
5-7
5-2
5-4
3-18,4-15
2-3,3-1,
4-2,6-4
3-19,4-13
c-1

6-3
3-3,13-1
E-1
1-1,2-1,
2-3,3-1
1-1
3-16
3-15
6-1

F-1
2-5,3-20,
6-8

1-2
2-2
4-15,6
1-1,2-

I/0 SUBSYSTEM DATA STRUCTURES
IMPLEMENTATION OF THE IPC 4-1

INITIALIZATION . .

INITIATED I/0 . . .
INTERFACE HANDLER .

3-2,6-1
2-1
2-2,6-10

INTERPROCESS COMMUNICATION 1-1,

IODIR . L . Ld . L] L]
IPC ¢ ¢ ¢« ¢ o o o &
IPC ACCESS
IPCS . ¢ « o o o &
IPCSCLOSE .
IPCSCONNECT
IPCSCREATE .
IPCSDISCONNECT
IPCSINIT . . .
IPCSOBJ . . «

Index-1

2'5’4—
6-3
1-1’2"'

. 4_2

. [] [} []

4-2

4-13

4-4
4-6,4-15
4-14

4-2

6-3

IPCSOPEN
IPC$READ

IPCSSD .
IPCSWAIT

IPCSWRITE
LIBRARIES

LINK EDIT

LINK EDITING

e o o o o o
[. e o

% e e e o o
L[] L[] L] L[] L[] .
[L] o o . L]
e o o o o o
e o o o o o

CONTROL FILE

LINK EDITOR « o « o « &

MESSAGES

MICROPROCESSOR PASCAL

MPPSOBJ .
MPX . . .
MSGSINIT

EX

4-8,4-15
4-11
4-4,6-4
4-11
4-10
6-1,6-3,
6-12
6-1,6-11
6-1,6-11
6-1,6-11
2-6,3-15,
4-1,4-5
ECUTIVE
1-2,6-3
6-3

6-3

6-1

NATIVE CODE RUN-TIME SUPPORT 1-3,

NODE . .

. [. . . . [

NODE CONSTANTS RECORD .
OPERATOR INTERFACE I/O SUBSYSTEM

PARAMETER

PASCAL PRIMITIVES

PASSWORDS
PATHNAMES
PORT . .

PROCEDURE
 PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

PORT CONSTANTS RECORD

PASSING

L] [] L] L] L[]
A

DSABORTIO . .
DSCLOSE . . .
DSCONNECT . .

DSCREATE . .
DSDELETE . .
D$DISCONNECT
DSINIT . . .
DSOPEN . . .
DSPOSITION .
DSREAD . . .
DSWAIT . . .
DSWRITE . . .
IPCSCLOSE . .
IPCSCONNECT .
IPCSCREATE .
IPCSDISCONNECT
IPCSINIT .
IPCSOPEN .
IPCSREAD .

IPC$WAIT
IPC$WRITE
MESSAGE .

2-6’6_3
2-1,6-12
6-12,B-1

1-1,2-2,
A-1
3-1
3-1
E-1
2-5,E-1
2-1,4-1,6-1
4-3,6-1,
6-4,6-10,
B-1
3-18
3-19
3-4
3-7
3-20
3-21
3-3,6-2
ITg——
3-14
3-11
3-15
3-12
4-13
4-5
4-7

4-14
4-3
4-9
4-11
4-12
4-10
6-1

READ . « « « « « « «
READLN . « « « « « .
REALTIME EXECUTIVE .
REPOSITIONING
RESET
REWRITE . .
RXSLIB . .

RX$OBJ . . .

RXKERNEL .

SCOPE . Ll Ll
SERVICE DIRECTOR

Ke o o o o

SETNAME . . .
STACK

STACKSIZE
SUBSYSTEM STANDARDS .
SUBSYSTEM PTR
SYSTEM INITIALIZATION
TARGET .« ¢ « o « o

TERMINOLOGY
T02 SUBSYSTEM
USE OF DUMMY SUBSYSTEM
USER INTERFACE . . .
WAIT =« ¢ o ¢ o o o &
WRITE ¢ ¢ ¢ o o o o
WRITELN « « ¢« « « &

Index-2

>
WWil N> IthkJ?Jhlod\mtda\wth

w

I
o

Ir'b)w
w
-
(=)
|
w

el
>

AW wWwWw
[O T O A I I |
- t—l\\
H o O\
w 10
| =
=] T

RO v
YT

.- . WS-
-

=1 [
HHUOWHE HFWNDNNMDWHOOHWONHWW

(]

|
.~ ~
=5
=

I =1

\

D

-

INCORPORATED

TEXAS INSTRUMENTS

uln

Post Office Box 1443. / Houston, Texas 77007

Semiconductor Group

MP 386

