

'IMPc-.rANT NOTICBS
• •,i. •. ;, ~. ' :

ftua :f rustrum•t•; re-.•ne~· the rig.ht · t.o uke chanci•• at ny time to :i'Cj
, µ.prove delign. 8114~.' 't,o suptly the be•t Po••tble product for the
~~r\11111 ?f users•, ,.
! -t·:_ .'".-. .) ~· ~~ • .

The ?900 D•vice''I~dePert~ent File t/0_ Package is copyrighted by 'l'exas
J;nattU11en~s ,Inc:tot~oia't:ed, and ia:sole property thereof .. oae of this
:p&oduct ia def.i.pd by ···t~ lia••ll• a4reaent sc-l betqea the customer
an4 Te••··<t1t1t~UIMRt;1t. .f!t•;·software;11ay:·not be·rePt"odtte@t! in any fo·rm
without written permission of Texas Instruments. Application packages
generated with the Device Independent File I/O Package may, however·,
!f!'""i~ptod~···.t~.l, c,t~e,,.-e. xclusiv,ly J>1,.,t)e. , .. .culstQll1!5·., j,liir~~sJ~- the
fi()b ~fvifjf J•detef#•nt . .,:tl,.e ~/P ~~~0·«· · : · ,:; "".. . .".'.' · · y ._,,

.~

•
•

.,
All manuals associated with the Device Independent File I/O Package 1

... ,..:~ti·ta;~t'~~~~j~f!~!~~Aih~t;~~~·~~~r~~~,~N~;~~~-;~·. "~--I
p~t;>l,,.~g":µo~s ,. ~Yt be reproduce~ in any. manner including storage in a
t'8t.ttlnal · s19'tetn or transmittal via electronic means, or other
reproduction in any form or any method (electronic, mechanical,

.,,,;~,·:~!~!~r· T~::S:!~t~n~i'~==~~".~ · .:1f1ft!ttMtc~~ptte. :9\oft~· .. '· · : 'J< I

... :·r· ~:.,~ ;.,.,, · .. ; ..

',~~,_~;;t~Y". t· ,~, <

<·~·::r:..~;:,;;".r. :;fi~ : .. ·, .·

. '· .. ·.,,,'\.,,_:

. / •·~~~~:.:; ... ~)~~~~~.
~, .

.....
-h

,-,f.'

·"' .•..

-~· ...

. "?~t~~S~: t>. ·. ~::1 .

. "'\:

'•

. · .. ,·; ,. ..
~ .,,. .

. ... c ... ,

'·:

any patent or
·.·J''.·. '~.

,.,. • j

. : -·~ :

. . ,.

··,"

-.~· ..•• ·1 ·.

..

...
·,,.· . ~. ·.... ~ ' -~2. ;, ·,, ...

.)

, ..

L

(
\._,_,

: ;i;"It~~:.: ':tG'ENEh~·:" • .:.·~~. ~· .•••.• ~ :~-' r~~r:~':: ~-.··.··'• ." .. , ,. ~ .. 5~s.~.~·1~1
·1_ .. _ .. 2 ;SO,l·TW~-·-· •••• • _.,• • •-.-~··.~ •.••. • •. ·~· •••••. I!~.~. ~, t\ ~ •• _·-..... -~-1-1
l..;9~ ~~: hds'i-'·AN!f TkRGE'1';.·:9·ySTEMS; •.• , • • • • • • • • • • • .' .~~ ••• ~ ... 1 '~ 1';;\.'·~ ~::.·;". :·:1;,2
1 4 DIF I/O PACKAGE AS A GOMPONENT7.".-·~ ... ·• , • ". • .·.:, .1.:.:2
L.; 5 REQUIRED EXECUTIVE ENV1'RO~MEN~ ••••• ~ " ~ • , • •• • •••••• ~· •••• .;.1'7~3

«•! i• ·~·::·::·;{ ·1. ; . .- ~ · .. '.· ' I·::.:;;--·,.',_;,.~·_.~ ·· ,, : · • -~),,' -~·;.\-!. •

.SECTION II. DEVICE INDEPENDENT·FILE.I/O.SUB$YSTEM .S~A~D.ARDS
~_'.I,~~-;~:-.~{. ·-~i"' ·~- .:; ~~- -. \:-· ·:r!::,. ; ·, ·: ,_ <:),~ :·. - -. <\>:, -:.)-· ~> , ·r: , .. ·~ - -· - •• ~~'1\~~~ : -F t , . -~

~2...;.1 · <1E1N·l!AA.r.-. ~ .~. · -~: .. ~- ~ ~ ;.-~· -· ~----.- .~~~. • . .- J : • •••••• ~ •• ., .•• •: , • , -~- _ •• _. ~:. ~- i
;z.·.2 TERMINOLOGY..... • • • • • • • • • • • • , ••••• , • • ••. ,_,., • •. ~: ~.~:2-I
2.·3 ~I/O' ~SYSTEM ·rutTIONALE:.• .• ;.. •'•. • ••••••••••• , •• : .. ~~·<·~·27 1
2 .• 4 I/Q M:ODEL. ~............. • •.•• , ••• •.•....... •.• -~~~~-2

3 .• 1.
3.2
,3 .3
. 3. 4

2.4.1 File I/O Decoder.. ·--·····••·P••••• ;~~:~
2. 4. 2 I/O Subsystems....... • ••••••••• , • • • • • •,!.. • ...
2 .. 4.3 Channels•.••..•....... ~·· .,, .. -.2~.6
2.4.2 Interface Handler•.. • •,•.·•..... • • , •.. •,• ••.••••••• 276

SECTION III. FILE I/O DECODER ROQTINES

GENERAL ••••••••••••• • • • • • • • • • • • ·-··· • "!'.• ••• • .• ... 3-1
USE~ INTERFACE WITH THE FILE I/O DECODER.
PARAMETER PASSING. • • • • • • • • • • • • • • •••••

••• • ••• 3-1
. . • .•. ·-• 3-1

FILE I/O DECODER ENTRY POINTS ••••• . • •• 3 ... 2

. ·- -· - p • "··· •• •.._!,. •. • .•• ' ••• ' ••• 3- 2 .. ~ •.- • o O ~ • • 11. • • •. 9• ·•. ,,, •. • • o 3~ 3
3.4.1 D$INIT ••••
3.4.2 D$CONNECT.
3.4,3 D$CREATE. " . •,• .. ~, •, . .3.:..s
3.4.4 D$0PEN •••••••••
3. 4. 5 D$REAP ••••••••• •
3.4.6 D$WRITE ••
3.4.7 D$RDWAIT.
3.4.8 D$WRWAIT
3.4.9 D$POSITION ••
3.4.10 !)$WAIT •••••
3.4.11 D$STATUS ••
3.4.12 D$DSTATUS.
3.4.13 D$VALID ••••
3.4.14 D$ABORTIO ••
3~4.15 D$CLOSE ••••
3.4.16 D$DELETE ••
3.4.17 D$DISCONNECT.
3.4.18 D$TER11.1. •••••••••••••

..

iii

. •,• ·-"3-7 •, • ••••• 3-10

. . . . , .. ~ ~ . • • 3-11
•• 3-13

• !I . ••• .. ~ •••••!t.!'.f•••·3~13
• "· •• I!" !I' ~; ~ ~ • !I_ P,,. ~ tt • o • ~ ~--3~ 13

• • • '~ P •Po•.•"~~-•••• o 3~15
.3-l.5 ~ . . ~ . . ~ . . ~ . •,. -~ •. ~'~

. ~,.. ~··--~--·· ... 3-16
•• 3-17

... •. ~ , ,_ ~- ··- ~-

~-I;• • • 3-18
• 3.:..1a • •••••••••.•••• fl ": ~ • ~ ~·· ~-· ~- ••

~ • • • ~ 3..,, 2 0
• ~ ~ ••••.•.• 3- 2 0

•••••••••• !9 .• ••

• • '!' ...

•- •••• fl' • ~ ... • .••. • ••. • ~- 2-1

>

' ' -SECT! ON . IV.; THE·· INTERPROCESS COMMUNICA~.ION SUBSYSTEM.

4.1
4.2

~· t, I q, •;•

GENERAL •• · ... ·• ••••••••••••. • •• _ •••.••• ·• •••••• • •••••••• -•••••••• 4-1
'IMPLEMENTATION OF THE IPC SUBSYSTEM •••• r.; • • .;_ •••••••.••••••• 4-1

4.-3 IPC ACCESSV:IA THE.FILE I/O DECODER ••••••••••••••• ~ •••••• 4-2 ..
4~4. 't>tRECT ·uSER ACCESS OF IPC SUBSYSTEM ENTRY POINTS •l,•. l". ,; •• 4-2:~
~ "'.-." ·4.4.1' 'IPC$!NIT .• ~~-· ••••• ~r ••••••• ~· •••••••• ~·~·· •••••••• s· •.••• ~.:~4-2:·
:.<~ ... ~ :· 4 ~ 4.~ 2 tPC$CONNECT •••••.•••••• ~ •.•••••••• rf •• ~ ••• l" ••• ~ 4-4 :,

4. 4. 3~~ .. I.PC$CRE~TE ••• · ~ •:•· ••••••••••••••••• · '!' •••••••• •'.'~ •••••• 4-6 ~
·4. 4 ·• 4 ···I:.PC$0PEN. ~ ~. ~,_ ••••.••••• ~ •• · •••••• .' •' ~ •••••• e. •'.'-!• •••••• 4-8 ~.

i:.: .~.
~ifi ' .• • . 1 . ,',f.•

~4 ·: 4····5 ~ -IPC$WRITE • ;·~ ; •· ••• ; •· •• · ••••••••• .' ~· ••••••••. ~ ••••• ~. 4-l<J
. :~ .··4. f;j IPC$READ ••• ~ ••••••••••••••••••••• ~: -~ ~ ••••••• ; ~~ •••••• 4-11
·4·.4.7 IPC$WAIT ••••••••••••••••••••••••• ·~·· •••••••• ~ ••••••• 4-12
4 ~: 4. 8 IPC$CLOSE ••••••••••••••••••••••• : ~· • ••••••• " • e·· ._ •. • ••• 4-13

r __ · 4. 4. 9 IPC$DISCONNECT •••••••••••••••••• ~ ~; • ~ ••••• ;·~· •••.••• 4-1.4
j. 5 .. IPC·· SYNCHRONIZATION ••••••••••••••••••••• ~·; •••••• ~ ·~··:• ••••• 4-Ii
f· ::~ · · 4. 5 ~ l- "IPC$CREATE/IPC$0PEN INTERACTION •. :.·,_;;~~ •••••• ~~ •••••• 4-fS
°7- : ' 4 ~ 5: 2 . IPC$0PEN/IPC$CLOSE INTERACTION •• !~;'~~ ••••••• :.~ ••• •. 4-1~

.t!!~: ~us~~~~~~~·· ~~~~YS:f~ ,E~TRY POINTS ••• ·'~·f.; ~. ~ ,:.~ ... ~. 4-15
' ' ~ ·- - ' :' - ' ..
~i-~~l .. ,, ' ·~, ~ ,i , ;r ,

\ ,_ -"l; ~ : .. ,,. '

~· SECTION V~'ENCODE AND DECODE RO~'tNES ~;
.'~ - '~-: N .~' ". • f • 3 ~ ~ II> t- i ~ I j r •" .. " ' ;. •' _i"i~-

~s~~ 1 ' G~NERAL '. ~ ~ •• ~ ~ ••• ~ •• ~ ~ • ·~ •••••••••••••••• · ~· :.,~ ~ •••••• ~ ~· ~ ••• 5-1'-:'
? • i'}i ··ENCODE· ROUTINES~._ •• ~• ~.·~ •••.•••• -·~~· •••• 5-2~

,. -~ :• " . S·. 2". l' "E_neodin9· an Integer (ENC$IN) •••• ~,. : .. ~ ••••••• ~;:e;_ •••• 5-2:~
''S'. 2·. 2· 'Encoding• a' Long int (ENC$LO) •••••• '~ ~'~ ••••••• '.:.,; ••••• 5-3 ~

- J -;: ' S•. 2. 3• • Encoding Boolean (ENC$BO) ••••••• ~~. ~· •••••••• ~;.; •••• 5-4:~ ;-l ?'·~ s~. 2~. '4 "Encoding a· Character (ENC$CR) •••• ;: ~ ~ ••••••• -~ :.;:; •••• 5-6 •
•• ' r '5'. '2'. 5' Encoding· a Str ing1 (ENC$ST) ••••••• :~ ~ •••••••• ~ -~_; •••• 5-7
,~;~··· 5·.2·.6· Encoding· a· Real ·(ENC$RE) ••••••••• ~ ~ •••••••• ;J;· 5-8"
~-~5."~ .. DECODE\r ROUTINES.:~.•'···~·.·.· •••••••••••••••• ~-:: ••••• ~.~-:.:~ •••• s-9· .. ~
~ / ;'.. ~ '. S' •. 3·.·1· • Decoding an· Integer (DEC$IN) ••••• ~ ~· ~ ••••••• : .,°': •••• 5-9'

·5·. "3". 2 Decoain~ a Lon~int (DEC$LO) •••••• : ~·: ••• ;. • ••• -;_..;~ ••• 5-19
-:'.I ~-~ , '5._3··. 3' Decoding· Boolean (DEC$B0)' •••••••• ~ .~·; .•••••••• ·:·?- ••• 5-11
1. .. · -.?.0

•• 'S~.3'.,'4*. DeC'odin9: ~·Character (DEC$CH) ••••• ~,~ .•••••••• ..,,~ ••• 5-12
.y~:;:~'.' · ~-s·.·3·.·5· Decoding a· String· '(DEC$ST) ••••••• ~?~ ~> ~ ~ .. 't ••• 5-14
c; ·:·. -: •. •5·.·.J·. 6· D~coding· a Real· ·'.(DEC$RE) •••••••••• ~ : 11~ ~ •••••• ~:" ••• 5-lS

.:.~· .,,._) -. • ... ~ ~ ~ \ l ~ -; - f l ,. • ·~ ,. ·.~ .) l,, ~ '.. .. : .• : .- ,1-.
~j-' J • " ••• ·" ~ ~.} • -</'
-.,, ~ ·~ ?. • ~ •' ., .•• :~~ :).J~-!.·~:-~"' ~ '1.

·~· ·~'# · .. ·~ -~ · · ~ '- ~ ? '6-EC-TION· VI·.t CONFIGURING AN APPLICA'l'tON
; ... :~ • • • • • • · t • ... , ~, ; i TO: 'INC~?D~ DI'.F· I/O ROUTINES. '.~t~ .
b ~· :~~: : : . ~ ~ ~ • . :· ~ • 1 ~ • ~ • : . . ~ . - -. ' .. ! ? (~ ~ ·' ~

. 0 .. :-.r GENERA"tl •••••••••••• ~ ••••• -. ••••••••••••••• ~ ••.••••••••• ·~ 6-,I
". ;..:'.&- :2- · ·I"N·I·TIAL.,I,,,ATION·· - · -. • · ;{'.·•· "' ! '!;;.." . 6· 1·· ·t '.f •• ·:.- •i . • ' "'I.I • - • • . • • • • • • • • • • • • • • • • • • •. • • • • • • • • ', •• • • • • .• • • • . ~~ ~·~ '• • • -
·.-.-.e-.~ • <,ON· 'Cl!>TG"'""'°"''mION ·MODULES ,,. '.:.. . .J~~ t:i ,., o. ::t ,, ..,, ·s: i ·u~i · · - •••••••••••••••••••. ..,.. •·•. •:• ••••• e ,."9. ·•• u-~

J...1.-:...·~ .-.&.-3.·I· '· DI-F· ·I/?" ·Rou~ines •••••••••••••••• • :s;~-~:- • • ·~f~~-· .Ei.::.3
6.3.2· Executive Library •••••••••••••••• ·•:··········••:······6-3
6.3.3 CONFIG ••••••••••••••••••••••••••••••• · ••••••••• ~.· ••.•• 6'-4

· 6. 3. 3~1 Specif'fcation of the I/O ·service

6 .• 4

Directory •••••••••••••••••••••••••••••••• ~6-4
•••. _,6.·3 .·3. 2- '.Example CONFIG ••••••••••• ·.-•• · ••• ~ ••• ·r...f:i± •• :6~1s

LINK EDITING •••••••••••••••••••••••••••• ; ••• • ••.••••• -: -6-1.1
~.4.1 L,i_nk .. ~_q:i,~ .. ~r •••••••••••••••••••••••• , ••• ' ••• -~ ••.• :.t - .. , •. 6-11

iv

)
<J

. '· .,,,·~

6.4 .. 2 Link Edit Control Fi le .. ··· . -· ... , •.. ·• .-. ~ ... ~ .•.. ~\ ..•. -. \ .. ·. --. .- . ·• ... -. ;~ . '• 6~ i-1 . . ,
• ~I

·~·: -

~PPENDI.CES ..

. · .. ~t,;,: .. :· '. J~· · IMPLEMENTING THE \'
OPERATOR INTERFACE 1/.0 SUBSYSTEM~.;.• .••• ~! •• A..:.J_

. .

',:
.• ~ ~.D;.:

.-:·.~ .. .,..
: . b~,
.... E;.
' . .,_

·1:" . .J!,'

"" ~"
' ... Ji..,.

I It•'~-. ' .. ~ ~
I •'-*""...-.. '

I~ITIALIZATION DATA STRUCTURES., ••••••••. ~~ •• ~ •• ·····~.· ••• o.. ~ ••• B-1
STATUS AND ERROR MESSAGES •••••••.•••••• ~.~.; •• · •• ·• •••• · •••• ~ ••• C-1
IMPLEMENTATION OF DUMMY I/O SUBSYS·TEMS ~ ~ ~ ••••• ,. ·: ~ ·~ ••••••••• D•l
FILE ATTRIBUTES FOR USE IN CALLING FILE SERV.ICE ROUTINES .••• E~l
GLOBAL DECLARATION FILES FOR, DIF I/O'' PACKAGE •••••••••• ~• ••• F;..l

LIST OF FIGURES
·, 4. • •. 1 .. 11:. 11 jt *

Component Software Representation.".~·.•·· •• ;e .;~ •. ~ : 1~3
' . '

:; ' ' '

, · T.igur e .. ~ "
. • ~ f'i·9ure
· : ~ F1'9ure
.. ·:.figure

Figure
$. , ... p.~9ure

Figure
irigure

· ~ :F.tgur e
·. ~i,gure

· ' .:FJ'.gure
., P'J.~gure
· F~~gure
' Figure l .· "Figure

· ·Figure
·:rigµre

· · <F~9ure
"i;gure

· · ~~ure
, · 'f:t~ure

· '' ' · · · : F.'i;~ur e
·· · ·' • · ·· figure

,,, '

L

Figure
; ... ,. 'P'lgure

Figure
Figure
Figure

·" l!'i.lj~re
.. ~i.t;Nt:e

• ·· PS:.9:ur e
···'f1q.tJ,~e
I\ ,I- ~-f- t ..f" ,.,.·

-~ ---. ~

'

1-1
2-1
6-1
6-2
6-3
A-1
A-2
A-3
A"'."4
A-5
A-6
A-7
A-8
A-9
A-10
A-11
A-12
A-13
A-14
A-15
A-16
A-17
A-18
B-1
B-2
B-3
B-4
B-5
B-7
B-8
B-9
B-10

t ·~- ~ ... ~-'-::" ""-.·- •.
;.. , ~-- __ ,. .. ~ -.. ..~ •\

: ·- '" .'J'ab1'e . C7 l
-~ I ·; ;·,. 1'll "' ,,; •

' . ·. -~ '~~_-,.,. -~ -- '
:: -· dt ···~- ~jli; _: -~ , • -·

(" c'

I/O Model •••••.• •·•·• •••••••••••••• -~:_ .••• ·~ •• t-.~- •.• .. • -.2'.~3
Default Version of Procedure GHOST$.~ •• , •• ··.'- •••••• 6;;..2
CONFIG • ••.• ~ •••••••••• ,. .••••• !-~ • -~ • ·• ••. • • • :-. •.• ~ ~ • ,, .~ .•• • • ;:• •• 1..-6---~
Sample Link Edit Control File >.;'~• .. ; •. 6~1.1
9902 Device Descriptor •••••••••••••• ~······~·····~A~2
Procedure H02$0PEN " •• ·~ ••.• ~. • • ••• :;A-4
Procedure HO 2$WAIT ••••••• ~ ••••• ~· ••••• : •••• ~· ••••• I. .A-5
Procedure H02$I-N •••••••••••••••• ' •· ••••••••• •· •••.•• ,.A-.6
Procedure H02$0UT •••••• · ••••••• .". • • •••• ,· ~·.· •• · •• · •. 1. ·., .A.;.._7
Procedure H02$GET.· ••••.••••••••••••••••• ~·· .•• .' •• ~;:'I. •• :A-8

. Procedure H02$PUT •••••••• g •••••••• ; •••••• : •• - :.~; •• ·A-10
~n Example ...••..••••• _.·~.· ••. ,•~ .• •~-~ .• _._-• •• ~• •f· .. ~~-~::::;. • •·•:A-11
An Interface Handler.'!' .;; •••••••••• :~ ••• "' •.• ·•· .. ;; • •• A•l3

. Subsystem Dependent Data Types •••••••••• • ••.• .;_,~;. a• .A-l~
Procedure T02$INIT •• ~ ••••••••••.•• .; •••• ~ •••• · ••••••• A-l6
Procedure T02$CONNECT -' •• A•.l7

- . - .· ' : t_

Procedure T02$READ ·•· •• ~ A~l8
Procedure T02$WRITE ••• · ••• ···• • ••••• -. •. • ••.• •·· • ... · .A~:l8
Procedure T02$WAIT ~ •••• • •••• ~-•• ··• ... ; .. : • .;~~ •• A•l9
Procedure T02$DISCONNECT •• · • .- • ••••••• .' ••• .; ••.• · ·.-~ .. _. •. A-16 - ~ ' ,_ . ' - -~ ~ .

Module T02$SD •••••••• • _ ••• e c~. ·.,, __ .• .·-· _."~ .• :.".~:-· .. ~ • .; .~A-..;;1·9'
Module T0?$PC •••••••••••• ~ .• •. '."O • • _ •. , •.• _ •••• ~-_e:,·• • • -~--~~··i •• A~20
I/O Service Directory '~! • .; ••• • •.••• •.:.•.; •• • .13...:2
I/O Subsystem Service Directory •·••.~-'.'•.• .S-~
Port Constants Record ·;llf'•·•~·•···"•••·B~6.
Node Constants Record ••• •· ••••••••• ~ ~ • • ~ • -~;.. • i ~B;i;. 7
File Indentif ication Record •••••• ." ••••• , i ... •. ·~. •, iB..;;q
IPC Fro· Variables Record •••••••••••••• , ~ .• • .••. ~ .• , • • ~ .B~9
IPC Port Variables Record •••••••••.•• < ••• ,;:",..:~.·~·~.~.• .. i~:-:-9 ,
IPC Pathname Record ••••••••••• ~ ••••• ,.p_.-.-. ~: .•• ~:~· •.• • .~B~.llJ
IPC Message Record ••••••••••••••• ~,·'··· •J:• • is.;;.11

LIST OF TABLES ·

v

~

. '
'

. •·

, . .--.

,.,

: .

...... -
I .,.-

........ _ ...
•. ·~ :

·~J:;=~01r·

.'; ::~:l~~~::r: 1~ -.~--·--
.-: .. ~·,.;~;.:J

-~-,;if~!~··~;(-:~-~
'~-:~;~t:(-:.:~ -

'>-·':~·-·,

·. -.,. ';J/c ·'[_ .;
-~-~~::t/·:,

, :,.

~·t~;<L.
~-;-~,.(,~.:;

~'~~~ ;';("9"

.~"/,~n:,,

:-,, :;
..:.\t>: r!j

4.
.'.t"H''(

,j .. ;i~~-'~ (:;
-~-·C·

.-f~tt\·t~~
l?'i;:>

~l!.'01
; '; · 1

_: ~~~'.; .s
~!~:"V -

r:'

PREFA,CE

'!'his 'JRanual .: ~9µm~nts the us;:er .. procedures for 'the: 99000 De•1¢j!"'
Independ~nt Flle -I/O:··Package. 'The,: manual .is O'r9anized as ·fo~lo~ts: ·

·se~_tion '-I .provides a product overview of the. Device Independent.
File .. I/i)". Package. -~.· · ·

· Sec,tion: .Il :·provid_es an. explana.tion_ of .the concepts - i~pl~Jl!t!ftt~a-::'.
· · in'·th'iS'. ~pao-kage. :. ·

Seetfo.n .l:.It desror ibes "the File. · I/O Decoder, ... lists .. the -entry~
poi.nts into th~- dec:oder, c:and ·presents a -"Pascal and - assembly : ·

-: la.tt9ua9e ca~li~ sequence 'for, each.

Se.ction ... ·:tv .;;de_s.eribes the Interp.roce-ss Cop,linunciation (IPCl I/O.:J
Subsy.&~t'el!L·, ... defining· the. :c:ou.tine.s.· that. compr.ise .. this· subsystem· · ·
a,nd · .pr-e.s..enting Pascal· and: assembly language. calliil.g ·· sequene)•S··
_for'- the$-e.:_J;"o~tines.

· s·ection _ \t:.·descr ibes the ··Encode. and Decode Routines - included< · irt'
this . -pa<:kage. Each routi•ne is documented · along . w:h:Jl' its . :;
asRmbly · 1anguage .calling sequence. ·

Section .VI describe.s configuration ·of ~pplications contai.ni:ng ·
-~"PU' IJO routines. Initialization . as · we_ll :as co.nfigurati.On
· ... informll~ion is pres.e __ nted.

ApPendix· A describes the -Operator Interface (T02) .I/O. Subsystem ..
-_ demon~trating for ,the . Pascal user »how to:wri te hi:s r·own·:·I/O .
.. . Subsy~t-em.

Appendi'x B provides pictures --of data structures used; ·dlir·iri9 :·
·-system i-ni tialization · of<:DIF I/O applications.

App.endix· C defines the status ·cc;>des returned by· the File "'I/O;~
. :: :E>e:eode r •

AppendiX"D .<aefines the Dummy :·I/O Subsystem .inclµc:3ed ~ in: this ..
. ·. pac.ka,ge •

Appe_rtdix· E describes the file. attributes that· are defin~d .:·:auting ·
_:access of File .. i/O Decoder routines.. ·· ·

. ~PP.en-clix F presents listings of global declaration files for use'·
by ·.t_be 'Pasca:.. user in wcrking with this package.

'Tbe_ · .fol.:-tt>wing~ public.ations offer informational support/- to this
d0¢ttmentz.,a~a.- to.':. users of - this pr:oduqt.

i

.,_-~·:-~~-,, ~, . .,_ .-, -.••-· •- ,_.,_ -~-....,. "•".!''"·" -:.;.:w "•_·~ ,;'',"':-,• .. -• -~ '"• '• -·-·-·.··--: ·-· - -••• ·..-·:~":". .:·.: .-- -.~ .•- ' • ~ • •
- "' ·-. .

--- ·- ~ ···---~- -·-·-- ------. --- -- - --·--· --~- .• ,,. -------. -·---~----:----....... -------:c ~

··:--· .· -

MP375

MP35.7

·· KP385
~ ~ ·~·.:. ~ ·..- .: ' -_ ~ . "'

.. <;·_-..·.f+·-, ·,' --: .. : '1'.-',. .. : ., • , -~
·,. · r946250,...,9701
· :·· - ·, · ;_9·7'o·t; , · ·
'1 ~·'ll'·• .. ~ ~'

·..:. ,.,

- i:
~--~ .. ,£

.... -f ·.,

c ...

:"I ~

"'·

·- .. :.

.:

l '-1:.
. ..i ..

-t.:.

. .

..
l '~ I• I'

.. ' ' ~

' .. ,,·

.. -~ ·,_ .;

'·

..,._:. ...

...

.;..·.;. ..

M-Jcit;9pr-aces~p.r_'· i'!ascal Sys tern User .. s Manual.
.:' ••. - I,_·-· • t ·.' f ~ ' '~ _-. - -'' .. •

.t .• M~c;~pr~~e~S?f. ~asc~;L, Ex!!clit.iy;!I~·~:!.~s ~~!'.l.~al
,, .

Model 990 coinPute''r
Refe;re'nce; Mani1a1

. . . .' ., ~ ~- ' __ r;·:.Ji~ :.~i1~.-~:. ?.~ -~:;· .•. :.,J.
· E>J,t'10·_,"§>p~raj;~{l?~·~y~te!_I!~ ;· 0

' ~ ... ,J . ' ·-.. ' '. · •. _ i:··· ., ' ~ ~~--- ,

·" ModeY 99d 'db~k~~er
Manual

: '.'

.. _. . • ~ · .J .:.J q • ~-" :~r1~~~ ., ·~1 J.. :
Edi tor Ref'erence .

---~- \--~=~ , f ·-· ·~- .. :·:;:~~ ·:1 •. J\:_l - r : ; . . ,.. i.i(~ .. ~. ~:-~~~-~:

Model 990 Computer TMS9900 Microprocessor
,_, ,Assemb,l'y La~,g;u,age Pr.a.gr amm.er '".~..:.:-@!~l~tt_.

. ,.
..... ,. . \..;.

·~··.t- I"",,.

r . . ,.,.,Mr-

..;.: ~ ,,...,.~

· " -~
~ .. ~(·; ;i_{~- ~·~)

~. ~ :~ 1 ... I.,, t "'
'- .

I - .. i :_, '

., ~ •. ~ ~. '!. ·.
-f,,,~-.~ 'J.~: ~

' .. -........ ,.,,_ .,

. . . .,. ;; -.
"' -, -.

... ·'t.,-t.· ·

, '., ;

' .
J

.,_,.... ,. .

ii

....
"''''

-- .~1"- ~~ \
,._ "';'._ I - • • "':"" '1:.,.

1.

"::' -.

'\ ·• :' .

. -:;:
..; r, ·• ~

>..:it.
"-°'· >-
.,; 114',

)

,,
'

_ .· ..

.... ··~

SECTION I

OVERVIEW

L l: GENERAL

T'ex.~: Instruments Device Independent File {DIF) I/O User's Manual
do¢NHnents a collectidn of routines providing I/O services for the 9900
fam,ily of microprocessors. This software enables Pascal and assembly
lan~age users to perform device independent I/O utilizing a·
con!:ristent file interface. Through the use of these routines, requests
for.·.. file services are automatically translated into calls to

· in4ividual subsystems dedicated to managing data resident on various·
devi.c~s such as CRTs, card readers, pr inters, etc.

'Th$ DIF I/O package is especially useful when the performance of input
artd~ output operations is required on any of several devices and the
s~ecific device is not identifiable until run-time. Use of the DIF I/O

.. pa~kage also enables the user to access a variety of software
srib~ystems using a single interface.

'Ip. addition to documenting software supplied by Texas Instruments,
this manual presents standards that a user must follow to produce his
own· subsystems with the capability to interface with this package and
be accessed in a device independent manner.

l~2·. SOFTWARE

Ttre,software routines described in the Device Independent File I/O
Pa:.c·kage User ... s Manual are listed below. The Pascal versions of these
rbutines are provided in the Microprocesor Pascal Executive contained
.in · the Microprocessor Pascal System {TMSW753P and 754P) • For the

• ~ssembly language user, these routines are provided in the Device
Independent File I/O Package {TMSW360D)

' "'' • The File I/O Decoder providing a device-independent
interface between the user and a variety of I/O devices
{floppy diskette, tape reader, printer, CRT, etc.).

• The Interprocess Communication {IPC) I/O Subsystem
implementing file-level message passing between processes.

• The Operator Interface I/O Subsystem (T02) implementing
data communication with terminals connected to a 9902
asynchronous communications controller.

·1-1

• Encode and Decode routines.'·pe·rforming data conversion from
the internal representation to printable format and
conversely from printable format to internal
representation. (These routines are used transparently in
the Microprocessor Pascal Executive. However, the assembly
language user calls these routines directly.)

1. 3 HOST AND TARGET SYSTEMS .. ·

Development capabilities for applications using DIF I/O routines are
provided by the following host systems:

• Single.;.1lser FS990/4 or /10 floppy disk
operating system software provided by
System ar:id development system software
or the Microprocessor Pascal System.

minicomputer with
the AMPLUS Software
provided by AMPLUS

• Multi-user DS990/10 or /12 hard disc minicomputer with
qperating system software provided by the DX Operatin~ 2._
System and development system software provided by the DX
~ystem or the Microprocessor Pascal System. ·.~x~

Ta~get s~stems include TMS9900 and TM990 Microprocessor systems. ~·j ~'
.- '.'1C'"'

Device independent routines and data structures support I/O in~.f~•
~arget system. I/O in the host system is provided for in the ··~Q~t
s:y?tein .. s operating system. .~q , ,"'..1

1.4 '' DIF I/O PACKAGE AS A COMPONENT
Sf'{V·

The DIF I/O is a member of Texas Instruments .. 9900 series of component
software. This series contains a variety of individual software
products that can be separately purchased and combined with an·
application to produce a powerful software product. Because of the
modularity of the routines comprising this product (as well as other
Texas Instrument component software), the load module pro<luced to run
on a target will include only those "pieces" of the component that are
required by the application. In this way, memory requirements are kept
to the minimum.

.,

The Realtime Executive (see Subsection 1.5 below) acts as a software , ,
link for an application written in one of several languages and
utilizing various "components". Figure 1-1 pictures this concept. The
Device Independent File I/O Package component is present along with
two I/O Subsystem components.

/

(

1-2

:. ··,

I

I

I
I

I

I I -
I

!

r:
~· ···

','.

I

User
Application . ',•'

Native Code Run Time Support

DIF I/O
Component

FIGURE 1-1.

I/O
Subsytem
Component

I/O __ ..
subsystem
Component

COMPONENT SOFTWARE REPRESENTATION

1.5 REQUIRED EXECUTIVE ENVIRONMENT
'

-~ ,, . ·,.

') ,- ..

i',·

Execution of the routines described in this document requir~s· native
code run-time support of an executive. (The executive provides control
of the software execution in a computer system including control .of
CPU usage, memory usage, routine calling conventions, data structures,
etc.) Run-time support is provided for the assembly .language
ptocjramrner by Texas Instruments"" Realtime Executive (TMSW33QR)-and.for
the Pascal user by the Microprocessor Pascal Executive (cortain~d , in
the Microprocessor Pascal System TMSW753P and 754P). These
executives are described in the the Realtime Executive User""s Manual
(MP373} and in the Microprocessor Pascal Executive user""s Manual
(MP38 5} respectively. '-· ·-

,. .l f., h' !

t' -· .. ::

. > ·., f; .:~

.. _,; . ~
,.· J. ""

1-3

·~··,-

. ..,
:::i

-i

j[•

71 .. :· :

':'~;:;«1;il

S".?Z l.

..

J

SECTION II

DEVICE INDEPENDENT FILE I/O SUBSYSTEM STANDARDS

- 2 .·1 GENERAL

Th~s section of the manual discusses the concept of device independent
I/O .as it is implemented by this software and the standards which,
whe·n applied, allow the user to write his own subsystem to interface
wi'th this software.

2.::2 TERMINOLOGY

Device Independent I/O refers to a mode of implementing input/output
requests on target devices without naming the specific target device
in the procedure call (a requirement when the appropriate device is

.not identified until run time). As listed in Subsection 1.2, the
routines translating device independent I/O requests into calls for a
particular device operation are contained in the File I/O Decoder. A
Bubsystem accessible to the File I/O Decoder and performing target I/O
operations on the device is an I/O Subsystem. The logical connection
between the CPU and the physical means of controlling a device is
called a Port. In most I/O Subsystems, the port identifies a
particular device controller such as a TM990/303 Floppy Disk
Controller. Each device controlled on the target is called a Node. The

- Node associated with the Floppy Disk Controller is a floppy disk. I/O l _operations are executed sequentially in the order in which they are
· received. If, when a command is received, the calling process is

suspended until all previously issued commands are completed, then
Executed I/O is performed. Initiated I/O refers to instances when the
aal1ing process is reactivated before the command is completed.

:'2 • .3 I/O SUBSYSTEM RATIONALE

~he I/O Subsytem Standards provide for the standardization of an 1/0
:i:nt'erface in the user application. This standarization enables the
user application to:

l) Realize a general file interface for I/O requests to
various devices supported on the target system. Devices
are treated as files. Requests for I/O services on the
device are made as requests for file services. In this
way, the Pascal user can use Pascal READLN and WRITELN
statements to perform device I/O. The assembly language
user can access the File I/O Decoder directly to perform
device I/O.

2) Implement initiated I/O, a means of serv1c1ng I/O requests
without blocking the requesting process.

2-1

··- .:.
3)

. ·•,

:· _r:. ~ :' : .: . . ' ··"

Activate mult,iple instances of the Interface Handler
Handler) manipulating the device on the target.

- .. --· -· -· ___ ._._

5. ~ ;/J' ~

(I/F: .. · .. ,:;

4) Add various Interface Handlers and establish the means to
communicate with them •. The user can commuinicate with as
many devices (of varying types) as he requires.

····~.
~- ~ ... ·,; }

5) Access I/O service ro~tines at varying levels of logical
orgainzation (from the·· logical file level to the physical
device level) •

2.4 I/O MODEL

An "I/O Model" adhering to the requirements of the I/O Subsystem
standards presented in this document is pictured in Figure 2-1 below.

.. /

This model is comprised of the following components: ~

• The File I/O Decoder translating user I/O requests to
procedure calls for specific device services.

• Various I/O subsystems, each implementing the procedure
calls from the File I/O Decoder for its specific device.
An I/O Subsystem may be one of the component software
packages that can be obtained from Texas Instruments (the
File Manager and the Operator Interface I/O Subsystem are
two examples), or can be written by the user to conform to
the standards. presented in this document.

• Channels created to handle the communication from the I/O
Subsystem to the Interface Handler software.

• The Interface Handler manipulating the device.

•:-r ·~r
. - io

' ,:. .:~ .~

c:fj
The components described above are ordered from a logical to. ~~
physical interface. This ordering traces the flow of program contcqt
when device independent I/O is performed. The application generate~
I/O requests by invoking the File I/O Decoder • The Decoder selects·
the appropriate I/O Subsystem (File Manager, Operator Interface l~Q
packages, etc.) and passes control to that subsystem. The subsyat.e.P\ r

selects the appropriate device (floppy, printer, etc.) passing contro!
to the associated Interface Handler. Movement of control between the
levels is transparent (invisible) to the user.

'!'he user may choose the level at which he requires the request to ._'"be-.
executed. He may call the File I/O Decoder, the individual ~.t../.q
Subsystem, or even the appropriate interface handler from ;i~s
application. However, it is only via the File I/O Decoder that c~!~&
to I/O routines can be performed without regard to a specific t_a,f.;i~:t;
device.

Entering the I/O model below the File I/O Decoder Level (i.e., at ~~~ii~
I/O Subsystem Level, or at the Interface Handler level) requires_q.~~~

2-2

.)
j

user to understand the requirements associated with that lower level
and to structure his code to meet those requirement~ .• ..:· J. t

i;,~· • we _______ _

I/O SUBSYSTEM 1!
NO. 1

I/F HANDLER

I/F HANDLER

r APPLICATION J

FILE I/O
DECODER

I/O SUBSYSTEM
NO. 2

l I /F HANDLER ;

i I /F HANDLER I

I I/O SUBSYSTEM
I NO. 3

I/F HANDLER

I/F HANDLER

FIGURE 2-1. I/O MODEL

· 1 ...
;,. ... '.

NOTE: _ The above figure depicts more than one Interface Handler
attached to each I/O Subsystem. In actuality, an I/O Subsystem can
start a single Interface Handler several times to service different
devices of the same type (e.g., the File Manager interfacing with
~everal floppy disk controllers) or different Interface Handlers
~f~ached to different devices (e.g., the File Manager interfacing with f ~~loppy disk controller and to a bubble memory controller).

f'he remainder of this subsection describes each of the
6o~ponents in detail.

2.4.1 FILE I/O DECODER

above

~~ File I/O Decoder provides the software capability for device
independent I/O. The Pascal programmer uses such Pascal statements as
S:$i:eNAME, RESET, REWRITE, READ, and T\fRITE to perform file I/O. These
"Pascal Primitives" in turn automatically access the File I/O Decoder
.. (.'·!" -

wi'thout any further user interface. The assembly language user
application accesses the File I/O Decoder directly via file operation
el)r~ry points (the Pascal user can also access these entry points
4~tectly). Each entry point corresponds to a device operation
supported on the target and is callable as a separate file service

2-3

:r;out;.~ne !' Th~ Pascal and assembly language calling sequences for, ... :tA~
'filer I/O Decoder routines are presented in Section III. Among:t~€
~ntry poin~s (callable routines) present are: · -.;.oqf

• O$INIT Initializes the File I/O Decoder and support~d:Sti~ :,. ~
I/O Subsystems. --'- · ~)

·:.::.112

.. "'f"' • D$CONNECT

• D$CREATE

• D$0PEN

• D$READ

• D$WRITE

• D$RDWAIT

• D$WRWAIT

• D$POSITION

• D$STATUS

• D$DSTATUS

• D$ABORTIO

• D$CLOSE

• D$DELETE

.... ·-
Connects a file pathname with an associated
I/O Subsystem and ultimately the physical
device or node controlled by that subsystem.

:' .. ·~ ; .

Creates a file •

Opens a file for access •

Initiates reading of a file.

Initiates writing to (or updating) a file •

nc: Reads a file: but delays return of control to
calling routine until read operation is complet~<f.

- ... ::.:

Writes a file, but delays return of control to_ l

calling routine until write operation is compl·et.~d.

Resets the internal subsystem~s pointer to
at the requested r~cord.

poin:e

Checks for status of oldest I/O request on the. · ,
specif ie? file at the File I/O Decoder Level. •;,~_,.

Checks for status of oldest I/O request on the
specified file at the subsystem level.

Aborts all I/O requests outstanding on a file.

Closes a file disallowing further access until
re-opened.

Deletes a file.

J ·- ·-~

• D$DISCONNECT Severs the connection between a file pathname an~
physical device as controlled by an I/O Subsystem.

~'· ~(:r

The operations requeste1 via these entry points are viewed by the usei
on the File I/O D2coder level. At the point that these routines a:f~
called, the user need not associate the requested ope ration with ':a
particular device: the File I/O Decoder makes that association "f8.t.
him. In reality, each file service accesses an entry point intd~a
device dependent service managed by the appropriate I/O Subsystem. _.

:: ~~?. .. :

Two entry points in the File
D$CONNECT and D$DISCONNECT.

I/O Decoder

2-4

bear
; ::"t:·· ,c-..

special mentioninq.f~
.. U.u .~

. 1 :ft~

_)

q~GO!iNECT must be the first File I/O Decoder service. requeste,d:. '<afte(
fnitialization) and is called to connect a specified file p4tpJ.la~~
(passed to D$CONNECT as a calling parameter) with the appropriate I/O
Sub~ystem (and ultimately the device itself). At nconnectn time, the
File~I/O Decoder will invoke each subsystem supported on the target in
succession until some subsystem recognizes the pathname parameter
passed with the call. Such recognition is made because of the m~aning
attributed to the nodes making up the file pathname. For example, The
File Manager I/O Subsystem recognizes the first node in the pathname
as the name of a volume it controls provided that volume has been
previously installed via the File Manager~s Install Volume command.

NOTE: The possibility exists that a single file pathname can be
claimed by more than one I/O Subsystem. For this reason, the order in
which individual I/O Subsystems are polled can be critical.

When the pathname is recognized, internal data structures are created
and maintained to sustain the connection between the file and the
physical node or device, enabling the user to perform subsequent
~perations on the file. When no subsystem claims the pathname, an

·•iror condition is signalled.

;J} .:Call to D$DISCONNECT is performed to sever the association between
'fhe file and the physical device. At ndisconnectn time, the memory
qllocated for the data structures used to link the file to the
physical node are returned to the System heap.

The internal data structures referred to abov~ are illustrated in
Appendix B. Each routine accessed in the File I/O Decoder is discussed
in detail in Section III.

2.4.2 I/O Subsystems

An I/O Subsystem is a collection of procedures managing a logically
similar set of I/O resources. Accessed through the File I/O Decoder,
these resources are made available to file level users in a consistant
manner invisible to the user. Examples of I/O Subsystems created by
Texas Instruments are the 9900 File Manager (TMSW340F) , the
Interprocess Communication (IPC) Subsystem, and the Operator Interface
(T02) I/O Subsystem.
:. r.
~e File I/O Decoder accesses I/O Subsystem routines via entry points

· pi:.esent in the I/O Subsystem. These entry points correspond to entry
points present in the File I/O Decoder (i.e., the D$routines described
a~ove in Subsection 2.4.1). The I/O Subsystem entry points are formed
QY attaching a pref ix (unique to the particular subsystem) to the
9'.~0r:ler~c names of the file services. For example, READ is FM$READ ... in
1:.h~_.File Manager and T02$READ in the Operator Interface I/O Subsystem.

Because of its purpose, a particular I/O Subsystem may not support
~!e;r.Y file service for which it l?osseses. entry points. For. examp~e,
n~tETE does not make sense in an I/O Subsystem managing a line
printer. These entry points are connected to stub (or dummy) routines.

2-5

If the user wishes, he can bypass the File I/O Decoder and can
directly access the I/O Subsystem entry points. The I/O Subsystem
reaction when each particular entry point is accessed (i.e., each file
request is made) is general to all subsystems (with the exception of
those file services that are not supported in a particular subsystem
as mentioned above). Thus the parameterization for a given entry point
type is the same across all subsystems.

2.4.3 Channels
'l :

Channels can be conceptualized as data structures over which messag,es.
(data) can be sent and received. In the context of the I/O Subsyste:Pl
Standards, channels are initialized to handle message passing betwe.~i;i;
two processes: the I/O Subsystem Manager and the appropr iat'e'
Interface Handler. The tasks that are executed to initialize th'.e;
channel, construct the message, and synchronize the message transfei-"

- . ~ .l

are all performed transparently to the user.
::J. :;

It is possible for the user himself to create and pass messages to ~
selected Interface Handler. However, to do this, the user mus.t'.
identify the channel associated with the selected Interface Handler
and construct the message according to the requirements of the
Interface Handler.

Information on the routines that implement interprocess communication
via channels using native code run-ti:ne support is presented in the
Realtime Executive~s User~s Manual (MP373). Channel routines are
documented for Microprocessor Pascal Executive users in t~e
Microprocessor Pascal Executive User~s Manual.

2.4.4 Interface Handler

The Interface Handler provides the lowest level of interface with the
actual physical device. The handler enables requests for logical
services made in the user~s code to be translated to requests for
physical services on the actual device.

By entering the I/O system at the File I/O Decoder or at the I/O
Subsystem levels, the user need not be concerned with the requirements
for accessing the Interface Handler. However, it is possible for the
user to call the Interface Handler directly or invoke the Interface
Handler via messages sent across channels as described in Subsection
2.4.3. The user should refer to the user~s manual for the specific I/O
Subsystem when directly accessing the Interface Handler.

' ,,,...., ::: ... - _

2-6

i

_)

~ ' .

3 (
!!' '.. '•

3.1 GENERAL

SECTION III

FILE I/0 DECODER ROUTINES

~ ~ .. ,

. "

This section documents the entry points into the File I/O Decoder. The
individual routines associated with these entry points are examin~.d
ana~- the parameters passed when each routine is accessed are defined~·-·
Pascal and assembly language calling sequences are presented for each.;
TJi~.-· assembly language programmer must be familiar with the assembly.
ra~guage programming standards and the conventions governing register.
us'age documented in the Realtime Executive User""s Manual (MP373) to
un~erstand the assembly language code and register usage.

Prior to the description of these entry points, general information on
u~er interface with the File I/O Decoder and parameter passing is
p_i:_esented.

3.2 USER INTERFACE WITH THE FILE I/O DECODER

A.s. established previously, the user application interfaces with the
File I/O Decoder to perform device independent I/0 on the target
system. The means by which the user achieves this interface is
described below for Pascal and assembly language users.

•

~; i

•

The Pascal User merely uses Pascal statements supported in
the Microprocessor Pascal System to perform file I/O
opP-rations. These Pascal statements, RESET, REWRITE, READ,
READLN, WRITE, and WRITELN, in turn invoke File I/O
Decoder entry points invisibly to the user. Information on
these Pascal statements is contained in the Microprocessor
Pascal System User""s Manual (MP351). The Pascal user can
also invoke the File I/O Decoder entry points directly as
demonstrated in the calling sequences below.

The assembly language user must invoke the File I/O
Decoder entry points directly in order to perform device
independe:-d: I/O. The assembly language calling sequences
are presented below in Subsection 3.4.

3.3 PARAMETER PASSING

In order to understand the calling sequences presented below, the user
should be aware of the conventions governing the way parameters are
passed. These conventions apply to both Pascal and assembly,-language
users as decribed below.

3-1

.1·:·1 • When parameters are
the data required
address is passed
reference can be
parameters include

passed by reference, the address of
by, the called routine is passed. The

in one word. Parameters passed by
changed by the called procedure. These

variables.

, '.} ·-

'.' ~ .

. '· .· .. ,
1.";: ,C..: .1

• When parameters are passed by value, the actual data . ..,
required by the called routine is passed. This data can be
passed as one or two words (e.g., Long Integers are passed
as two words).

• Pointers are passed by value. However, the value passed is
an address of some data (or data structure).

• Records and arrays are passed by reference (though the
Pascal calling sequence may indicate that they are passed
by value). In other words, the address of the record/array
and not the data structure itself is passed to the called
procedure.

:
Detailed information concerning parameter passing is presented in th~
Microprocessor Pascal System User~s Manual (MP351) for the Pascal user
and the Realtime Executive User~s Manual (MP373) for the assembly
language user.

3.4 FILE I/O DECODER ENTRY POINTS

The File I/O Decoder entry points are discussed below in detail.
Because of system conventions, the order in which several specifi~
routines may be invoked is fixed (e.g., the call to Connect must
precede any other call to a file service, a file must be opened before
accessed, etc.). This order is reflected in the descriptions below. A

In addition to the entry points presented here, other entry points are
present for internal use. As such, these entry points will not be
called by the user and are thus not documented below. -

NOTE: In writing his code to access these various entry points, the
user must be careful that the sharing of variables among processes is
synchronized (one method of achieving this synchronization is through
the use of semaphores). FIDs can be shared among processes within
scope: however the restrictions of the specific I/O Subsystem invoked
must be considered in any such attempt.

3.4.1 System Initialization (D$INIT)

Initialization of the File I/O Decoder and all I/O Subsystems wif~
which it is linked <?ccurs automatically at power-up time. The Ghost$'
procedure present in the native code run-time support contains a call
to the D$INIT routine in the File I/O Decoder. As a result of D$INIT

3-2

··~

)

- ·-,.·_.::-....-----

being accessed, each of the supported I/O Subsystems are entered at
their respective initialization entry points. In this manner, system
initialization takes place transparently to the user.

In fact, invoking the D$INIT entry point leads to initiating the
devices, characteristics tables, and configuration data associated
w;ith the File I/O Decoder and with each supported subsystem. Appendix
'B,'. presents pictures of the various data structures. Section VI
describes how a system is configured.

Pascal Calling Sequence:

PROCEDURE D$INIT

Assembly Language Calling Sequence:

DATA CALL$
DATA D$INIT

3.4.2 Connecting the File to an I/O Subsystem (D$CONNECT)

D$CONNECT must be the first file service requested and is called to
connect a specified file pathname with the appropriate I/O Subsystem.
At "CONNECT" time, the file decoder will invoke each subsystem
supported on the target in succession until some subsystem recognizes
the pathname parameter passed with the call. If no subsystem
recognizes the pathname, an error condition is signaled (the naming

r conventions applicable to the file pathname are specific to the I/O
\, Subsystem being invoked). When the file is recognized, internal data

structures are created and maintained to sustain the connection
between the file and the physical node (or device). Also, the File
Identifier (FID) is initialized. The FID connects the user with t~e
associated I/O Subsystem enabling the user to perform subsequent f iLe
operations on the file.

(
·~·

NOTE: The Pascal user must do a type override to enable the pathname
pointer to point to a buffer of sufficient size to hold the pathname.

After connect, legal file requests are D$CREATE, D$0PEN, D$DELETE, and
:D$DISCONNECT.

~he calling parameters_ for D$CONNECT are defined below.

~· _-; :.:J;_

,J.',~.~~

.L .. -~- f ·

3-3

Parameter Definition Limits Input/Output 1

Pathname
Pointer

Number
of Char
acters

File
Identifier

Pointer to buffer con
taining pathname of
file to be serviced.
This pathname is
subsystem dependent.

Number of characters
contained in the
pathname.

Value returned by
D$CONNECT enabling
the I/O Subsystem to
associate a specific
file with a specific
user.

Pascal Calling Sequence:

PROCEDURE D$CONNECT(Pathname
No of char

VAR My=fid

Assembly Language Calling Sequence:

Pointer:
word address.

Buffer:
Character array,
length of which
depends on the
subsystem. The
pathname is left-
justified in the
buffer.

Integer

Integer

DUMMY BUFFER_PTR;
INTEGER;
FID };

Input

,,.

Input

Output

Assume: The parameters for this procedure are stored at the
following displacements into the calling procedure's
local frame:

MOV
MOV
MOV
A
DATA
DATA

Pathname Pointer
Number of Characters
My Fid

*LF,*SP+
@2(LF} ,*SP+
LF,*SP
@FOUR(CODE} ,*SP+
CALL$
D$CONNECT

at O
at 2
at 4

PASSING PATHNAME POINTER
PASSING NUMBER OF CHARACTERS
PASSING FILE IDENTIFIER

where the following sequence is in the user's prologue:

MOD EQU $ MOD LABELS BEGINNING OF LOCAL DATA
DATA PRO-MOD PRO LABELS BEGINNING OF EXECUTABLE CODE

FOUR EQU $-MOD

3-4

-

' '

1

~
;!

)

. DATA 4

3.4.3 D$CREATE

The entry point D$CREATE creates a file by invoking the appropriate
I/O Subsystem. The attributes of the file that is created are defined
by the calling parameters passed to the D$CREATE command. The meaning
of these attributes are discussed in detail in Appendix E.

The parameterization for D$CREATE pertains to I/O Subsystems managing
multifile devices. These parameters are ignored by I/O Subsystems not
supporting multifile d~vices. The Create function leaves the file in a·
closed condition so that the only legal operations are D$0PEN,
D$DELETE, and D$DISCONNECT.

The calling parameters passed to D$CREATE are described below.

Parameter

File
Identifier

Password
List
Pointer

Protection
Code

Definition

Value returned by
D$CONNECT enabling
the I/O Subsystem to
associate a specific
file with a specific
user.

Pointer to record struc
ture containing Creator
and User Passwords

Record defining access
protection. This record
has four fields each
defining the level of
access protection for
a separate access activ
ity. These fields are:
Read, Write, Modify, and
Execute. The levels of
protection assigned are
specified as #1 Any Ac
cess; #2 User Password;
#3 Creator Password; and
#4 No Access. See Appen
dix E for details.

3-5

Limits

Integer

Pointer:
Word address;

Record Fields:
Creator Password:
character array;

User Password:
character array.

Read (Bits 0-3):
#1 thru #4;

Write (Bits 4-7):
#1 thru #4;

Modify (Bits 8-11):
#1 thru #4;

Exec. (Bi ts 12-15) :
#1 thru #4.

Input/Output

Input

Input

Input

. -. . -_,

File Type

Logical
·Record
Length

Primary
" Allocation

Secondary
Allocation

·. . . ·~ - -
• -. • •V -- - ·-

A record containing four
fields defining the
physical and logical or
ganization of the file.
These file attributes
are discussed in Appen
dix E.

File Type (Bits
0-3):
Contig.=l:
Non-contig.= 2:

Record Type (Bits
4-7):
Free Len.=1:
Var. Len.=2:
Fixed Len.=3:

Usage (Bits 8-11):

Length in bytes of the
records contained in
a file. For Fixed
Length record files~
the actual record
length is used. For
Variable Length record
files, the maximum leng~h
is used. For Free Region
record files, a record
length of 1 byte is used.

The minimum storage space
(number of records) to be
allocated to the file
(represents maximum number
in a contiguous file).
Default is indicated by
blank or zero. Free Length
default = 800: Non-Free
Length Default = SO.

The increment (number of
records) by which a non
contiguous file is allowed
to grow per expansion (up

Data File=l:
Comoression (Bits
12-iS):
Uncompress.=!:
Compress.=2.

Any positive
integer.

Any non-negative
Long Integer
(two words).

Any non-negative
Long Integer

(two words).

to 16 expansion steps are
allowed for non-contiguous
files. Default is indicated
by blank or zero. Default =
Primary Allocation.

Pascal Calling Sequence:

3-6

.. ,•'

Input

Input

Input
)

Input

... ·-

2.1

)

PROCEDURE D$CREATE (My f id FID;
Pass code list: PASSWORD_LIST_PTR;
Protect
FT
Log_rec_len
Pa log rec
sa=:log=rec

.PROT;
FILE TYPE
INTEGER;
LONGINT;
LONGINT);

Assembly Language Calling Sequence:

Assume: The parameters are stored at the following
displacements into the calling procedure~s
local frame (records are passed by address):

My Fid at 0
Passcode List Pointer at 2
Protection Code at 4
File Type at 6
Logical Record Length at 8
Primary Allocation at 10
Secondary Allocation at 14

MOV *LF,*SP+ PASSING MY FID
MOV @2(LF) ,*SP+ PASSING PASS CODE LIST POINTER
MOV LF,*SP PASSING ACCESS PROT~CTION ADDRESS
A @FOUR(CODE) ,*SP+
MOV LF,*SP PASSING FILE TYPE ADDRESS
A @SIX(CODE) ,*SP+
MOV @8 (LF) , *SP+ PASSING LOGICAL RECORD LENGTH
MOV @lO(LF) ,*SP+ PASSING PRIMARY ALLOCATION (2 WORDS)
MOV @12(LF) ,*SP+
MOV @14(LF) ,*SP+ PASSING SECONDARY ALLOCATION (2 WORDS)
MOV @16(LF) ,*SP+
DATA CALL$
DATA D$CREATE

Where the following sequence appears in the user~s prologue:

MOD

FOUR

SIX

EQU $
DATA PRO-MOD

EQU
DATA
EQU
DATA

$-MOD
4
$-MOD
6

3.4.4 D$0PEN

MOD LABELS BEGINNING OF LOCAL DAT~
PRO LABELS BEGINNING OF EXECU~ABLE CODE

D$0PEN is called to prepare a file for reading, writing, or both
depending on the access type specified by the Access Type parameter

3-7

passed to this procedure. If the passwords passed to this command do
not match the passwords required for the access type desired as
identifed when the file was created, the Open will fail. If the Open ··~
is successful, the type of of the file opened along with its number of
logical records and record length (if appropriate) are returned to the
user. Once D$0PEN has been called, all file services with the
exception of D$CONNECT, D$CREATE, D$DELETE, and D$DISCONNECT are
allowed until the file is closed.

The parameters passed to the D$0PEN command are defined below.

Parameter

File
Identifier

Password
Pointer

Access
Type

Access
Privilege

File Type

Definition

Value returned by
D$CONNECT enabling
the I/O Subsystem
to associate a specific
file with a specific
user.

Pointer to an array
containing the Creator
or User Password.

Indication of the type
of access in which I/O
is executed. Access type
remains effective until
the file is closed. Ac
cess types are defined
in Appendix E.

Relationship between user
and the file which de
fines the user~s activity
and precludes other user
access. The user can
specify True or False
for each of five fields:
Exclusion, Read, Write,
Execute or Extend. For
more information, see
Appendix E. (Note: this
record is packed to use
bits 0,1,2,3, and 15 of
the word.)

Record to which the File
Type defined when the
file was created is re
turned.

3-8

Limits

Integer

Pointer:
word address;

Array:
A.n array four
characters in
length.

Byte Relative
= l;

Sequential
= 2;

Direct = 3.

Exclusion, Read,
Write, Execute,
and Extend:

False = O;
True = 1.

Pointer:
Word Address.

Input/Output

Input

Input

Input

Input

Output

)

.. -· - -.~ -·, ""-".~....---·-.-....

Logical
/.---· Record

·Length

Integer to which the log
ical record length defined
when file was created is
returned.

Integer. Output

.....
r.
I;. ,_ ..

Number of
Logical
Records

Integer to which number Integer.
of logical records in the

Output

file is returned. In
files of variable length
records, an end of file re-
cord is present and coun-
ted as an extra record.

Pascal Calling Sequence:

PROCEDURE D$0PEN (My fid
Passwords
Access type
Access_priv

VAR Ft
VAR Logical rec length
VAR Number_log_rec

Assembly Language Calling Sequence:

: FID
: PASSWORD PTR7

FILE ACCESS MODE7
FILE-ACCESS-PRIVILEGE7

: FILE-TYPE7 -
INTEGER7
LONGINT) 7

Assume: The parameters are stored at the following
displacements into the calling procedure~s
local frame (records passed by address):

MOV
MOV
MOV

My Fid
Password Pointer
Access Type
Access Privilege
File Type

at 0
at 2
at 4
at 6
at 8

Logical Record Length
Number of Logical Records

at 10
at 12

*LF,*SP + PASSING MY FID
@2(LF) ,*SP+ PASSING PASSWORD POINTER
@4(LF) ,*SP+ PASSING ACCESS TYPE

MOV LF,*SP PASSING ACCESS P~IVILEGE ADDRESS
A @SIX(CODE),*SP +
MOV LF,*SP PASSING FILE TYPE ADDRESS
A @EIGHT(CODE),*SP+
MOV LF,*SP PASSING LOGICAL RECORD LENGTH ADDRESS
A @TEN(CODE),*SP+
MOV LF,*SP PASSING NUM. OF LOG RECORDS ADDRESS
A @TWELVE(CODE) ,*SP+
DATA CALL$
DATA D$0FEN

where the following sequence appears in the user~s prologue:

3-9

--,-·

MOD EQU $ MOD LABELS BEGINNING OF LOCAL DATA
DATA PRO-MOD PRO LABELS BEGINNING OF EXECUTABLE CODE_~

SIX EQU $-MOD
DATA 6

EIGHT EQU $-MOD
DATA 8

TEN EQU $-MOD
DATA 10

TWELVE EQU $-MOD
DATA 12

3.4.5 D$READ

The call to D$READ initiates a read operation on a file. The calling
process begins the read and can (if appropriate) continue to execute
without delaying until the read operation is complete.

D$READ provides for record organized data transfer. If the file is not
organized into logical records, the buffer will be filled in physical
record length increments until no further physical record can be held.
Data transfer begins at the current file position. At the end of the
read operation, the file position is left pointing at the next
available unit of data (record or byte, as appropriate).

The variable parameter Count is not set until I/O is complete. To be
sure that this parameter is set correctly, the user should call D$WAIT
after the call to D$READ.

The parameters passed to D$READ are described below.

Parameter

File
Identifier

Buffer
Pointer

Definition

Value returned by
D$CONNECT enabling
the I/O Subsystem
to associate a specific
file with a specific
user.

Pointer to an array in
RAM into which the data
read is transerred.

3-10

Limits

Integer

Pointer:
Word Address

Array:
Ram-resident data
area large enough
to accomodate the
number of bytes
in the read.

Input/Output

Input

Input

---- ..

Read Count

Count

Number of bytes to be
read: input lesser of
the number requested
and the logical record
length.

Integer to which the
actual number of bytes
read is transferred.

Positive Integer

Integer.

Pascal Calling Sequence:

PROCEDURE D$READ My f id : FID:
Buffer
Read count

VAR Count

: DUMMY_BUFFER_PTR:
INTEGER:
INTEGER):

Assembly Language Call~ng Seguence:

Assume: The parameters are stored at the following
displacements into the callin9 procedure""s
local frame (records are passed by address):

MOV
MOV
MOV
MOV
A
DATA
DATA

Fid
Buffer Pointer
Read Count
Count

*LF,*SP+
@2(LF) ,*SP+
@4(LF) ,*SP+
LF,*SP
@SIX(CODE) ,*SP+
CALL$
D$READ

at O
at 2
at 4
at 6

PASSING FID
PASSING BUFFER POINTER
PASSING READ COUNT
PASSING COUNT

where the following sequencis appe:;i.rs in the user""s prologue:

Input

Output

MOD EQU $ MOD LABELS BEGINNING OF :LOCAL DATA
DATA PRO-MOD

SIX EQU $-MOD
DATA 6

3.4.6 D$WRITE

PRO LABELS BEGINNING OF EXECUTABLE CODE

The call to D$WRITE initiates a write operation on a file. The calling
process begins the write and can (if appropriate) continue to execute

· without delaying until the write operation is complete.

D$WRITE provides for record organized data transfer. If the file is
not organized into logical records, the buffer will be filled in

3-11

can physical record length increments until no further physical record
be held. At the end of the write operation, the file is positioned
be ready to store the next unit of data (record or byte
appropriate). Type of access permited (byte-relative, sequential,
direct) is a function of the device itself and the access type

~~ ')
or

for
which the file was opened (see D$0PEN above). Access protection
privilege are functions of the parameters passed to the D$CREATE
D$0PEN routines respectively.

The parameters passed to D$WRITE are described below.

and
and

Parameter

File
Identifier

Definition

Value returned by
D$CONNECT enabling
the I/O Subsystem

Limits

Integer

Input/Output

Input

to associate a specific
file with a specific
user.

Buffer
Pointer

Pointer to an array in
RAM from which data is
to be transferred.

Pointer: Input

Write Count The number of bytes
to be written.

Pascal Calling Sequence:

PROCEDURE D$WRITE (My_fid
Buffer
Write count

Assembly Language Calling Sequence:

Word Address
Array:

Ram-resident array
size of which large
enough to accomodate
data transfer (as spe
cified in Write Count
below) •

Positive Integer

FID;
DUMMY_BUFFER PTR;
INTEGER);

Assume: The parameters are stored at the following
displacements into the calling procedure's
local frame (records are passed by address):

3-12

Input

)

MOV
MOV
MOV
DATA
DATA

My Fid
Buffer Pointer
Write Count

*LF,*SP+
@2(LF) ,*SP+
@4(LF) ,*SP+
CALL$
D$WRITE

3.4.7 D$RDWAIT

at 0
at 2
at 4

PASSING MY FID
PASSING BUFFER POINTER
PASSING WRITE COUNT

'~ T

D$RDWAIT is called to execute (as oppossed to initiate) a read
operation. Unlike the action of D$READ, the calling process begins the
read and is then suspended until the read is completed. In other
words, a call to D$RDWAIT results in the same action as a call to
D$READ followed by a call to D$WAIT. The parameterization of D$RDWAIT
is the same as for D$READ.

3.4.8 D$WRWAIT

D$WRWAIT is called to execute (as oppossed to initiate) a write
operation. Unlike the action of D$WRITE, the calling process begins
the write and is then suspended until the write is completed. In other
words, a call to D$WRWAIT results in the same action as a call to
D$WRITE followed by a call to D$WAIT. The parameterization of D$WRWAIT
is the same as for D$WRITE.

3.4.9 D$POSITION

D$POSITION is called to move the file position forward or backward
prior to the next I/O attempt. The Relative parameter specifies
whether the change in file position will be relative to the current
file po·sition or absolute (relative to the start of the file). If this
boolean parameter is passed as True, the Record parameter indicates
the number of records by which the file position will change from the
current position (the sign of this value indicates whether movement is
forward or backward). If Relative is passed as False, the Record
parameter specifies the absolute record number at which the'file will
be positioned. An error condition results if an attempt is made to
position the file beyond the end of file mark · or prior to the
beginning of file mark. Errors may also occur if th~ device does not
support record number.

The parameters passed to D$POSITION are described below.

Parameter Definition Limits Input/Output

File Value returned by Integer Input

3-13

Identifier

Relative

Record
Number

D$CONNECT enabling
the I/O Subsystem
to associate ~ specific
file with a specific
user.

Boolean parameter by
which,~ser specifies if
repositioning of file
will take place in re
lation to current file
position (true) or ab
solute. See explana
tion above.

Depending on value of
Relative parameter, the
number of records the
file will be moved from
the current position, or
the record number at
which the file will be
newly positioned. See
explanation above.

Pascal Calling Sequence:

PROCEDURE D$POSITION(My f id
Relative
Record No.

Assembly Language Calling Sequence:

False = 0:
True = 1.

Long Integer
(two words)

FID:
BOOLEAN:
LONGINT):

Assume: The parameters are stored at the following
displacements into the calling procedure~s
local frame (records are passed by address):

My f id
Relative
Record No.

3-14

at 0
at 2
at 4

,-':).·
- .

Input

Input

I

)

_j

PASSING MY FID
PASSING RELATIVE

MOV
MOV
MOV
MOV
DATA
DATA

*LF,*SP+
@2(LF) ,*SP+
@4(LF) ,*SP+
@6{LF) ,*SP+
CALL$
D$POSI

PASSING FIRST WORD OF RECORD NO.
PASSING SECOND WORD OF RECORD NO.

3.4.10 D$WAIT

By calling D$WAIT, a user requires the process to wait for the
completion of the I/O service he previously initiated for that file
(FID). Regardless, a wait will automatically occur on a user's
initiate I/O request if he has a current request outstanding on that
same file (FID). The calling parameters passed to D$WAIT are described
below.

Parameter

File
Identifier

Definition

Value returned by
D$CONNECT enabling
the I/O Subsystem to
associate a specific
file with a specific
user.

Pascal Calling Sequence:

PROCEDURE D$WAIT (My_fid

Assembly Language Calling Sequence:

Limits

Integer

: FID):

Assume: The parameters are stored at the following
displacements into the calling procedure's
local frame (records are passed by address):

FID

MOV *LF,*SP+
DATA CALL$
DATA D$WAIT

3.4.11 D$STATUS

at 0

PASSING FID

Input/Output

Input

The function D$STATUS can be called once a file has been CONNECTED to
check on the current status (success or failure) of the user's oldest
outstanding request on a file (the oldest request on the FID). In the
File Identifier Record itself (see Appendix B for illustration), a

·status field is present to capture status information. This function
enables the user to inspect this information. Appendix C details the
various status messages and provides some suggestions for corrective
actions when appropriate.

3-15

Parameter Definition Limits Input/Output '

File
Identifier

Value returned by
D$CONNECT enabling
I/O Subsystem to
associate a specific
file with a specific
user.

Pascal Calling Sequence:

Integer

FUNCTION D$STATUS (My_Fid : FID):INTEGER~

Assembly Language Calling Sequence:

Assume: The parameters are stored at the
following displacements in the
calling procedure~s local frame.

My Fid
Result will be saved

MOV *LF, *SP+
DATA CALL$
DATA D$STAT
MOV *SP,@2(LF)

3.4.12 D$DSTATUS

PASSING FID

SAVING RESULT

at O
at 2

Input

D$DSTATUS enables the user to examine status information on the I/O
Subsystem level (compare· to D$STATUS which returns a status message at
the FID level). Because the meanings of the status messages returned
by D$DSTATUS are I/O Subsystem dependent, the user must refer to the
user~s manual dedicated to the specific I/O Subsystem for message
definitions and corrective actions. The only parameter passed to
D$DSTATUS is the FID.

Parameter

File
Identifier

Definition

Value returned by
D$CONNECT enabling the
I/O Subsystem to asso
ciate a specific file
with a specific user.

Pascal Calling Sequence:

Limits

Integer

FUNCTION D$DSTATUS (My_Fid : FID): INTEGER

Assembly Language Calling Sequence:

3-16

Input/Output

Input

.... ··~

l

~ I

Assume: The parameters are stored at the
following displacements in the
calling procedure~s local frame.

My Fid
Result will be saved

MOV *LF, *SP+
DATA CALL$
DATA D$DSTA
MOV *SP,@2(LF)

3.4.13 D$VALID

PASSING FID

SAVING RESULT

at 0
at 2

D$VALID is a Boolean function that may be called to check for valid
state transitions for the FID. State refers to the FID condition such
as Connected, Created, Open for Access, etc (refer to Appendix C for
information regarding valid state changes). The parameters passed to
D$VALID are defined below.

Parameter

File
Identifier

Opcode

Definition

Value returned by
D$CONNECT enabling
the I/O Subsystem
to associate a
specific file with
a specific user.

Operation attempted on
the FID.

Pascal Calling Sequence:

Limits

Integer

$check = 0:
$open = 1:
$read = 2:
$write = 3:
$close = 4:
$disconnect = 5:
$create = 6:
$delete = 1:
$position = a.

FID:

Input/Output

Input

Input

FUNCTION D$VALID(My fid
-Op FID_OPERATION):BOOLEAN:

Assembly Language Calling Sequence:

Assume: The parameters are stored at the following
displacements into the calling procedure~s
local frame (records are passed by address):

3-17

My Fid at 0
Fid Operation at 2
Result will be saved at 4

MOV *LF,*SP+ PASSING FID POINTER
MOV @2(LF) ,*SP+ PASSING FID OPERATION
DATA CALL$
DATA D$VALI
MOV *SP,@4(LF) SAVING RESULT

3.4.14 D$ABORTIO

D$ABORTIO is called to abort all outstanding read/write operations a
user has requested on a file (i.e, all outstanding read/write requests
on a FID). The only parameter passed to D$ABORTIO is the FID.

Parameter

File
Identifier

Definition

Value returned by
D$CONNECT enabling
the I/O Subsystem
to associate a
specific file with a
specific user.

Pascal Calling Sequence:

PROCEDURE D$ABORTIO(My_fid

Assembly Language Calling Sequence:

Limits

Integer.

FID)~

Assume: The parameters are stored at the following
displacements into the calling procedure~s
local frame (records are passed by address):

MOV
DATA
DATA

My Fid

*LF,*SP+
CALL$
D$ABOR

3.4.15 D$CLOSE

at 0

PASSING MY FID

Input/Output

Input

D$CLOSE is accessed to enable the user to close the file (FID) when no
more outstanding I/O requests are present. The Close EOF parameter (a
BOOLEAN parameter) enables the file to be closed with the End-of-File
mark being placed at the current file position (if response is True).
Otherwise (False), the End-of-File mark is left unchanged (i.e., the

3-18

- ~-- ~-\·. -

.·-"\

last record in the file remains the same). The user who closes with
End of File must be careful to avoid inadvertently placing an EOF
prior to the last record. This is especially true if the user had
written to the file using random access. The user who had opened a
file for reading only should always close without EOF to avoid an
error.

After a call to D$CLOSE, the only valid file requests are D$0PEN,
D$DELETE, or D$DISCONNECT.

The parameters passed to D$CLOSE are described below.

Parameter

File
Identifier

Close End
of File

Definition

Value returned by
D$CONNECT enabling
the I/O Subsystem
to associate a
specific file with
a specific user.

BOOLEAN parameter by
which user specifies
whether he wishes to
close with EOF. A
true response means
that an EOF mark
should follow the
last record accessed.
False indicates that
EOF remains unchanged.

Pascal Calling Sequence:

Limits

Integer

False = 01
True = 1.

PROCEDURE D$CLOSE My f id : FID1
Close_Wi th_EOF : BOOLEAN) 1

Assembly Language C~lling Sequence:

Assume: The parameters are stored at the following
displacements into the calling procedure"'s
local frame (records are passed by address):

MOV
MOV
DATA
DATA

My Fid
Close With EOF

*LF,*SP+
@2(LF),*SP+
CALL$
D$CLOSE

3-19

at 0
at 2

PASSING FID
PASSING CLOSE WITH EOF

Input/Output

Input

Input

3.4.16 D$DELETE

D$DELETE is called to delete a file that has been closed for access, .~·.·· .. •
thus preventing all further requests except · for D$DISCONNECT or .
D$CREATE. The calling parameters passed to D$DELETE are defined below.

Parameter Definition Limits Input/Output

File
Identifier

Value returned by
D$CONNECT enabling
the I/O Subsystem
to associate a specific
file with a specific
user.

Integer Input

Password
Pointer

Pointer to a data struc
ture containing the crea
tor or user password.
Required password speci
fied in Modify field of
Protection record defined
when file was created.

Pointer: Input

Pascal Calling Sequence:

PROCEDURE D$DELETE (My Fid
Pass

Assembly Language Calling Sequence:

Word Address.
Passwords:
Character arrays,
each four charac
ters in length
(either Creator

FID;
PW_PTR);

or User).

Assume: The parameters are stored at the following
displacements into the calling procedure~s
local frame (records are passed by address):

MOV
MOV
DATA
DATA

My Fid
Password Pointer

*LF,*SP+
@2(LF),*SP+
CALL$
D$DELE

3.4.17 D$DISCONNECT

at O
at 2

PASSING FID
PASSING PASSING POINTER

The last operation performed on the file (FID) by a user is
D$DISCONNECT. The call to D$DISCONNECT severs the connection between
the file and the physical node (or device) on the target. As a result
of this procedure, the memory allocated to hold the File Identifier
Record (FID) is returned to the heap.

The only parameter passed to D$DISCONNECT, the File Identifier is
passed py address on input.

3-20

·-~---.-~.

Parameter Definition

File Value returned by
Identifier D$CONNECT enabling

the I/O Subsystem to
file with a specific
user.

Pascal Calling Sequence:

PROCEDURE D$DISCONNECT (VAR My_f id

Assembly Language Calling Sequence:

MOV
DATA
DATA

*LF,*SP+
CALL$
D$DISC

3.4.18 D$TERM

PASSING FID

Limits Input/Output

Integer Input

FID};

At process termination, the user may call D$TERM to deallocate memory
resources holding the remaining file data structures (including all
FIDs currently outstanding) • D$TERM provides the means to terminate
all user connections with I/O Subsystems using one line of code. Thus,
the call to D$TERM makes calls to D$DISCONNECT for individual
subsystems unnecessary. D$TERM has no calling parameters.

3-21

_)

SECTION IV

THE INTERPROCESS COMMUNICATION SUBSYSTEM

4.1 GENERAL

This section of the manual presents a specific I/O Subsystem, the
Interprocess Communication (IPC) Subsystem. This subsystem is supplied
to the Pascal user in the Microprocessor Pascal Executive (MPX) and
provided for the assembly language user in the Device Independent File
I/O Package. The purpose of this subsystem is to implement file-level
communication between processes within a 9900 target system. This is
accomplished by passing data from process to process via channels
using in-memory buffers.

Interprocess Communication (IPC) Subsystem routines can be invoked via
the File I/O Decoder or directly by the user. Subsection 4.3 below
describes the former mode; Subsection 4.4 the latter.

Interface with the IPC Subsystem is consistent with the standards
governing interface with all other I/O Subsystems (as described in
this manual) that may be accessed by the File I/O Decoder. This is
true even though the IPC Subsystem is concerned with processes and not
devices.

4.2 IMPLEMENTATION OF THE IPC SUBSYSTEM

Before describing the methods of invoking the IPC Subsystem, it is
necessary to discuss its implementation.

I/O between processes is managed through files. An IPC file may be
thought of as a path of information between processes. A port can be
viewed as providing a sending and receiving process with access to the
path. Each process can be viewed as a node. Ports are defined for
input and output by the invocation of special IPC routines.

Information is passed over the path in the form of messages (the
structure of messages along with other IPC data structures are
presented in Appendix B)

A file (comprising a message path) is implemented by a data structure
called the Pathname -Record The Pathname Record contains data
structures required to synchronize and control the message flow
between processes. Message flow is actually implemented over channels
The Channel Record is .used to implement channels. ·Both the Pathname
Record and the Channel Record are system global data structures.

Ports are implemented by the File Identifier (FID) , the File
Record, and the Message Record. The latter data structures
to the user's implementation of the IPC I/O Subsystem. The
structures are illustrated and described in Appendix B.

4-1

Variable
are local
IPC data

4.3 IPC ACCESS VIA THE FILE I/O DECODER

Like other I/O Subsystems, the IPC Subsystem has a general set of
entry points corresponding to the file service entry points present in
the File I/O Decoder (File I/O Decoder entry points have been
described in detail in Section III of this manual). By way of these
I/O Subsystem entry points, the device independent file services
requested in the File I/O Decoder are translated into service requests
of the IPC Subsystem. When accessing the IPC Subsystem in this way,
the user is oblivious of its entry points and their calling sequences.
I/O Subsystem initalization takes place via the File I/O Decoder entry
point for initialization and all access to IPC is transparent to the
user.

4.4 DIRECT USER ACCESS OF IPC SUBSYSTEM ENTRY POINTS

The paragraphs that follow describe how Pascal and assembly language
users may directly access the entry points into the IPC Subsystem.
Each entry point definiton is presented in terms of its meaning within
this particular I/O Subsystem. However, the entry points into this I/O
Subsystem are general to all I/O Subsystems. Thus, the parameter
definitons and calling sequences presented beloW' have a general
relevance to all I/O Subsystems.

For the definitions of the file service routines (accessed via the
File I/O Decoder) corresponding to these I/O Subsystem entry points,
refer to Section III of this manual.

The entry point names for this subsystem are formed by adding the
prefix "IPC$" to the generic name of the file serivce (connect, open,
read, etc.). The rules and conventions governing parameter passing in
the calling sequences presented below are the same as those described
in Subsection 3.1.

4.4.1 IPC$INIT

IPC$INIT is called to initialize the data structures used within the
IPC Subsystem and se~ up synchronization and system access to all
files. This routine initializes a mutual exclusion guard for the list
of all pathnames connected to the IPC Subsystem and links the
subsystem r~cord (see below) with the list of all subsystem records.·
IPC$INIT must be called once prior to the calling of any other !PC
routines.

The parameters passed to IPC$INIT are defined below ..

4-2

\
)

" '

Parameter

Service
Directory

Port
Constants
Record
Pointer

Subsystem
Record

Definition

Pointer to the Service
Directory for the IPC
Subsystem.

Pointer to the Port
Constants Record. Not
used by this subsystem.

Pointer to Subsystem
related data structures.
This pointer must be
supplied in each call to
the IPC CONNECT routine.

Limits Input/Output

Integer. Input
(Additional detail

· can be found fol
lowing the calling
sequences •)

Ignored by this Ignored
subsystem.

Integer. Output

Pascal Calling Sequence:

PROCEDURE IPC$INIT.(: Service
Port cons :

Service_directory_ptr1
Port_constants_ptr1
Subsystem_ptr)1 VAR Subsys . .

Assembly Language Calling Sequence:

Assume: The parameters for this procedure are stored at the
following displacements into the calling procedure~s
local frame:

MOV
MOV
MOV
A
DATA
DATA

Service directory Pointer at 0
Port Constants Pointer at 2
Subsystem Record Pointer at 4

*LF,*SP+
@2(LF) ,*SP+
LF,*SP
@FOUR(CODE) ,*SP+
CALL$
IPC$IN

PASSING SERVICE DIRECTORY POINTER
PASSING PORT CONSTANTS RECORD POINTER
PASSING SUBSYSTEM RECORD POINTER

where the following sequence appears in the user~s code:

4-3

MOD EQU $
DATA PRO-MOD

FOUR EQU $-MOD
DATA 4

MOD LABLES BEGINNING OF LOCAL DATA
PRO LABELS BEGINNING OF EXECUTABLE CODE

Service Directory, the data structure passed as the first parameter to
this procedure, is supplied in the IPC Subsystem. The Pascal user can
declare the procedure containing this directory (IPC$SD) as EXTERNAL
and pass IPC$SD~s location as the Service Directory parameter. This is
accomplished by making Service Directory an Integer via a type
override. and setting the parameter Service Directory to the location
of IPC$SD:

SERVICE::INTEGER :=LOCATION (IPC$SD)

The assembly language programmer REF~s IPC$SD and sets.the Service
Directory to the location of IPC$SD using a DATA instruction.

4.4.2 IPC$CONNECT

IPC$CONNECT searches the list of all pathnames connected to the IPC
Subsystem to determine if there is a path corresponding to the input
parameter Pathname (this parameter is passed by address even though

::'\
)

•;:L_ .• 6"

this is not indicated in the Pascal calling sequence). If not, a path ___ ')·
is constructed by allocating a pathname record and associated message
channel.

NOTE: IPC accepts any pathname. Since the I/O decoder presents
pathnames to I/O subsystems for connection in the order in which the
subsystems are enumerated in the I/O subsystem directory present in
CONFIG, the entry for IPC must be last if other subsystems are to have
a chance to accept the pathname.

Once a pathname record
structures defining
associated file as the
subsequent I/O service

is obtained, IPC$CONNECT
a path and returns the
FID parameter which must
requests.

creates local
identifier of
be used to

The parameters passed to IPC$CONNECT are described below.

data
the

make

Parameter Definition Limits Input/Output

Subsystem
Record

Pointer to Subsystem
related data structures.
This pointer is supplied
by the IPC$INIT routine.

4-4

Integer. Input

. .._ __ ... /
I

Pathname

Length

File
Identifier

Memory data structure
holding file pathname
specifying name of path
over which messages will
be sent.

Character length of the
above pathname.

Value returned by IPC$
CONNECT enabling the
IPC Subsystem to relate
a specific file to a
specific user.

Pascal Calling Sequence:

Character array
large enough to
accomodate path
name being passed.
(Pascal user will
need to do a type
override.)

Integer.

Integer.

PROCEDURE IPC$CONNECT(
VAR

Sub
Pathname :

SUBSYSTEM PTR:
DUMMY_BUFFER:

VAR
Length
F

Assembly Language Calling Sequence:

. . . . INTEGER:
FID):

/ Assume: The parameters for this procedure are stored at the

Input

Input

Output.

following displacements into the calling procedure""s
local frame:

MOV
MOV
INCT
MOV
MOV
A
DATA
DATA

Subsystem Record Pointer at 0
Pathname Address at 2
Length at 4
FID at 6

*LF,*SP+
LF,*SP
*SP+
@4(LF) ,*SP+
LF,*SP
@SIX(CODE) ,*SP+
CALL$
IPC$CO

PASSING SUBSYSTEM RECORD POINTER
PASSING PATHNAME ADDRESS

PASSING LENGTH
PASSING FID VARIABLE

where the following sequence appears in the user""s code:

MOD EQU $
DATA PRO-MOD

SIX EQµ $-MOD
DATA 6

MOD LABLES BEGINNING OF LOCAL DATA
PRO LABELS BEGINNING OF EXECUTABLE CODE

4-5

The parameters File Type and Logical Record Length (see below) define
characteristics of the file serving as the path. The parameters
Password, Protect, Primary Allocation, and Secondary Allocation are
included for compatibility with the "Create" service routines of other
I/O subsystems but are ignored by the IPC Subsystem.

The parameters passed to IPC$CREATE are defined below.

Parameter

File
Identifier

Password
Pointer

Protection
Code

File Type

Logical
Record
Length

Primary
Allocation

Definition

Value returned by IPC$
CONNECT enabling the
IPC Subsystem to relate
a specific file to a
specific user.

Pointer to record struc
ture containing Creator
and User Passwords.

Record defining access
protection.

A record containing four
fields defining the
physical and logical or
ganization of the file.
These file attributes
are discussed in Appen
dix E.

The actual (fixed length)
or maximum allowable
(variable length) byte
length of the records in
the file.

Minimum storage space
in the file.

4-6

Limits

Integer.

Ignored by this
subsystem.

Ignored by this
subsystem.

Input/Output

Input

Ignored

Ignored

File Type (Bits Input
0-3) :
Contig.=l:
Non-contig.= 2:

Record Type (Bits
4-7):
Free Len.=l:
Var. Len.=2:
Fixed Len.=3:

Usage (Bits 8-11):
Data File=l:

Compression (Bits
12-15):
Uncompress.=1:
Compress.=2.

Any positive Input
integer.

This two-word
parameter is
ignored.

Ignored

"")

)

_,, I
i
I
I

Secondary
Allocation

Incremental storage
space in the file.

This two-word
parameter is
ignored.

Ignored

Pascal Calling Sequence:

PROCEDURE IPC$CREATE { My f id : FID-1
Pass code list : PASSWORD_LIST_POINTER;
Protect
Ft
Log rec len
Pa log rec
Sa_log rec

PROT;
: FILE_TYPE;
: INTEGERJ

LONGINT;
: LONGINT);

Assembly Language Calling Sequence:

Assume: The parameters are stored at the following
displacements into the calling procedure~s
local frame {records are passed by address):

MOV
CLR
CLR
MOV
A
MOV
MOV
MOV
MOV
MOV
DATA
DATA

My Fid at 0
Passcode List Pointer at 2
Protection Code at 4
File Type at 6
Logical Record Length at 8
Primary Allocation at 10
Secondary Allocation at 14

*LF,*SP+
*SP+
*SP+
LF,*SP
@SIX{CODE) ,*SP+
@8(LF) ,*SP+
@lO{LF) ,*SP+
@12(LF) ,*SP+
@14(LF) ,*SP+
@16(LF) ,*SP+
CALL$
IPC$CR

PASSING FID
PASS CODE PARAMETER IGNORED
ACCESS PROTECTION PARAMETER IGNORED
PASSING FILE TYPE ADDRESS

PASSING LOGICAL RECORD LENGTH
PASSING PRIMARY ALLOCATION {2 WORDS)

PASSING SECONDARY ALLOCATION {2 WORDS)

Where the following sequence appears in the prologue of the application

MOD EQU $
DATA PRO-MOD

SIX EQU $-MOD
DATA 6

MOD LABELS BEGINNING OF LOCAL DATA
PRO LABELS BEGINNING OF EXECUTABLE CODE

4-7

4.4.4 IPC$0PEN

After the characteristics of a path have been defined, each process
that is connected to the path must call IPC$0PEN to open the port for
communication.

The Privilege parameter specifies whether the port will be a producer
(writer} or a consumer (reader). Note that a port cannot be both. The
Password and Access Type parameters are not used by the IPC Subsystem.
The parameters File Type and Logical Record Length are returned with
the values that were specified when IPC$CREATE was called. The number
of Records parameter is set to 0.

Parameter

File
Identifier

Password
Pointer

Access
Type

Access
Privilege

File Type

Logical
Record
Length

Number of
Logical
Records

Definition

Value returned by IPC$
CONNECT enabling the
IPC Subsystem to relate
a specific file to a
specific user.

Pointer to an array con
taining Creator or User
Password.

Indication of the type
of access by which I/O
is performed.

This parameter defines
whether port will be
used for input or out
put. Port cannot be
used for both.

Variable to which File
Type record, defined
when file was created,
is returned.

Integer to which Log
ical Record Length,
defined when file was
created, is returned.

Long Integer to which
the number of logical
records is returned.
This number is always
zero.

4-8

Limits

Integer.

Ignored by this
subsystem.

Ignored by this
subsystem.

Read Access (Bit 1):
False = 0:
True = 1:

Input/Output

Input

Ignored

Ignored

Input

Write Access (Bit 2):
False = 0:
True = 1:

Execute Access
(Bit 3):
Must be False.

Defined above
IPC$CREATE.

Integer.

Long Integer.

Output

Output

Output

~ascal Calling Sequence:

PROCEDURE IPC$0PEN (My f id
Password
Access_type
Access priv

VAR FT -

FID:
PASSWORD PTR:
FILE ACCESS MODE~
FILE ACCESS-PRIVILEGE:

VAR Logical rec length
VAR Number_log_rec

FILE TYPE:
INTEGER:
LONGINT):

Assembly Language Calling Sequence:

Assume: The parameters are stored at the following
displacements into the calling procedure~s
local frame (records passed by address) :

MOV
CLR
CLR
MOV
A
MOV
A
MOV
A
MOV
A
DATA
CALL

My Fid at 0
Password Pointer at 2
Access Type at 4
Access Privilege at 6
File Type at 8
Logical Record Length at 10
Number of Logical Records at 12

*LF,*SP +
*SP+
*SP+
LF,*SP
@SIX(CODE) ,*SP+
LF,*SP
@EIGHT(CODE) ,*SP+
LF,*SP
@TEN(CODE) ,*SP+
LF ,*SP
@TWELVE(CODE) ,*SP+
CALL$
IPC$0P

PASSING FID
PASSWORD POINTER IS IGNORED
ACCESS TYPE PARAMETER IS IGNORED
PASSING ACCESS PRIVILEGE ADDRESS

PASSING FILE TYPE ADDRESS

PASSING LOGICAL RECORD LENGTH ADDRESS

PASSING NUM. OF LOG RECORDS ADDRESS

where the following sequence appears in the user~s code:

MOD EQU $ MOD LABELS BEGINNING OF LOCAL DATA
DATA PRO-MOD PRO LABELS BEGINNING OF EXECUTABLE CODE

SIX EQU $-MOD
DATA 6

EIGHT EQU $-MOD
DATA 8

TEN EQU $-MOD
DATA 10

TWELVE EQU $-MOD
DATA 12

4-9

·I

4.4.5 IPC$WRITE

Following the call to IPC$0PEN, a process can begin transmitting or
r.ece1v1ng data from the file depending upon its I/O mode. If a process
opens a file as a writer, it can transmit data to the file by calling
IPC$WRITE. .

NOTE: The Pascal user can do a type override to enable the buffer
pointer to point to a buffer of sufficent size to accomodate the data
transfer.

The parameters passed to IPC$WRITE are defined below.

Parameter

File
Identifier

Buffer
Pointer

Definition

Value returned by IPC$
CONNECT enabling the
IPC Subsystem to relate
a specific file to a
specific user.

Pointer to a character
array in RAi.~ from which
data is written.

Limits Input/Output

Integer. Output

Pointer: Input
Word Address

Array:
Ram-resident data
afrea containing data)
or transfer. · .. ./

Write Count The number of bytes
to be written.

Pascal Calling Sequence:

PROCEDURE IPC$WRITE(My f id
Buffer·
Write count

Assembly Language Calling Sequence:

Positive Integer

FID:
DUMMY BUFFER PTR:
INTEGER):

Assume: The parameters are stored at the following
displacements into the calling procedure~s
local frame (records are passed by address):

4-10

Input

I

_)

My Fid
Buffer Pointe}~
Write Count

at 0
at 2
at 4

MOV
MOV
MOV
DATA

*LF,*SP+
@2(LF) ,*SP+
@4(LF) ,*SP+
CALL$
IPC$WR

PASSING FID
PASSING BUFFER POINTER
PASSING WRITE COUNT

' .

. DATA

4.4.6 IPC$READ

If a process opens a file as a reader, it can receive data from the
file by calling IPC$READ.

The count parameter (below) is not set until I/O is complete. To be
sure that this parameter is set correctly, the user should call
IPC$WAIT after the call to IPC$READ. The parameters passed to IPC$READ
are defined below.

Parameter

File
Identifier

Buffer
Pointer

Read Count

Count

Definition

Value returned by IPC$
CONNECT enabling the
IPC Subsystem to relate
a specific file to a
specific user.

Pointer to a character
array in RAM into which
the data read is trans
fer red.

Number of bytes to be
read.

Number of bytes that
were actually transfer
red.

Pascal Calling Sequence:

PROCEDURE IPC$READ (My Fid
Buffer
Read count

VAR Count

4-11

Limits

Integer.

Input/Output

Input

Pointer: Input
Word Address

Array:
Ram-resident data
area large enough
to accomodate the
number of characters
read.

Positive Integer Input

Positive Integer Output

FID:
: DUMMY_BUFFER PTR:

INTEGER:
: INTEGER):

Assembly Language Calling Sequence:

Assume: The parameters are stored at the following
displacements into the calling procedure~s
local frame {records are passed by address) :

where

MOV
MOV
MOV
MOV
A
DATA
DATA

My Fid
Buffer Pointer
Read Count
Count

*LF,*SP+
@2{LF) ,*SP+
@4{LF) ,*SP+
LF,*SP
@SIX{CODE) ,*SP+
CALL$
IPC$RE

the following sequence

PASSING
PASSING
PASSING
PASSING

appears in

at O
at 2
at 4
at 6

FID
BUFFER POINTER
READ COUNT
COUNT

the user~s code:

MOD EQU $ MOD LABELS BEGINNING OF LOCAL DATA
DATA PRO-MOD PRO LABELS BEGINNING OF EXECUTABLE CODE

SIX EQU $-MOD
DATA 6

4.4.7 IPC$WAIT

Following a call to either IPC$READ or IPC$WRITE, a· process should
call IPC$WAIT. This routine will wait for the completion of all
outstanding requests on the specified FID. Until this routine has been
called, a process cannot be sure that all of the data has been
t~ansmitted or received.

The parameters passed to IPC$WAIT are defined below.

Parameter

File
Identifier

Definition

Value returned by IPC$
CONNECT enabling the
IPC Subsystem to relate
a specific file to a
specific user.

Pascal Calling Sequence:

PROCEDURE E . 7N'AIT (11y_fid

Assembly Language Calling Sequence:

4-12

Limits

Integer.

FID);

Input/Output

Input

.-)

j

f.'

/"

Assume: The parameters are stored at the following
displacements into the calling procedure~s
local frame:

MOV
DATA
DATA

My Fid

*LF,*SP+
CALL$
IPC$WA

4.4.8 IPC$CLOSE

at 0

PASSING FID

Once all data has been written or no more data is to be read from a
file, IPC$CLOSE should be called to mark the file as having stopped
data communication. IPC$CLOSE shuts down a port without disassociating
it from the path to which it is connected. The parameter Close With
EOF (see below) is not used by the IPC Subsystem. If a port is closed,
it may be reopened with the same or different I/O characteristics (see
IPC$0PEN above).

The parameters passed to IPC$CLOSE are defined below.

Parameter Definition Limits

File Integer.

Input/~utput

Input
r' Identifier
__

Value returned by IPC$
CONNECT enabling the
IPC Subsystem to relate
a specific file to a
specific user.

(;
..

'~

Close With
End of File

Boolean parameter
by which user speci
fies whether or not
he wishes to close
with the same end
of file.

Pascal Calling Sequence:

Ignored by this
subsystem.

PROCEDURE IPC$CLOS~ (My fid FIDJ
Close With EOF: BOOLEAN)J

Assembly Language Calling Sequence:

Assume: The parameters are stored at the following
displacements into the calling procedure~s
local frame (records are passed by address):

4-13

Ignored

MOV
CLR
DATA
DATA

My Fid
Close With EOF

*LF,*SP+
*SP+
CALL$
IPC$CL

4.4.9 IPC$DISCONNECT

at 0
at 2

PASSING FID
CLOSE WITH EOF PARAMETER IGNORED

When a process no longer needs access to a particular path (and the
associated file is closed) , IPC$DISCONNECT should be called to ~
deallocate the data structures associated with the file and disconnect
the process from the path. If no more processes remain connected to
the path, the data structures associated with the path will also be
deallocated.

The only parameter passed to IPC$DISCONNECT is the FID passed by
address on input.

Parameter

File
Identifier

Definition

Value returned by IPC$
CONNECT enabling the
IPC Subsystem to relate
a specific file to a
specific user.

Limits

Integer
(set to nil
on return to
caller).

PROCEDURE IPC$DISCONNECT (VAR My_Fid : FID) :

Assembly Language Calling Sequence:

Assume: The parameters are stored at the following
displacements into the calling procedure~s
local frame:

MOV
DATA
DATA

My Fid

*LF,*SP+
CALL$
IPC$DI

4.5 !PC SYNCHRONIZATION

at O

PASSING FID

Input/Output

Input

This subsection details special interactions among processes calling
certain IPC routines.

4-14

,._

4.5.1 IPC$CREATE/IPC$0PEN Interaction

A path for communicating among processes is established by the first
process to call IPC$CONNECT with a given pathname. Each process must
call IPC$0PEN to begin communicating over the path. All processes
calling IPC$0PEN for a path are suspended until some process calls
IPC$CREATE to specify the characteristics of the path: all calls to
IPC$CREATE for a pathname that already exists will be ignored.

4.5.2 IPC$0PEN/IPC$CLOSE Interaction

Before a file (FID) can be reopened, it must be closed. Following a
close operation on a file, it can be reopened in either read or write
mode. It is possible for a process to read or write from a file, close
the file, and reopen it in a write or read mode.

Suppose a path has several producers and consumers connected to it and
is in an open state. If all producers close, then the consumers will
receive an end-of-file status once all buffered data has been
consumed. To clear this end-of-file status, each consumer must
acknowledge its receipt by entering a closed state. Any process
attempting to open a file connected to a path at end-of-transmission
will be suspended until all consumers have closed.

If all consumers connected to a path enter a closed state, producers
are not required to close. In general, they will become suspended due
unconsumed buffers of data and will not be able to proceed until a
consumer opens and begins processing buffers.

If a file that is consuming data is closed before reaching
end-of-file, it is possible that some transmissions will be discarded.
This will occur if the last producer connected to a path has closed
after transmitting data and the last consumer decides to close without
processing the data. In such a situation IPC$CLOSE must assume that no
other consumer will connect to the path and as a consequence must
discard all unreceived data so buffers can be reclaimed.

4.6 USE OF DUMMY SUBSYSTEM ENTRY POINTS

The following file service requests are not meaningful in the IPC
Subsystem:

• ABORTIO
e DELETE
• POSITION
• STATUS

Dummy or "NO-OP" routines are provided for these services to conform
to I/O Subsystem interface requirements. The dummy entry points are
placed in the I/O Service Directory in place of the entry points for
the above services.

4-15

Refer to Appendix D for more information on
Dummy Subsystem entry points.

4-16

implementation of the

'j.

SECTION V

ENCODE AND DECODE ROUTINES

5.1 ·GENERAL

Encode and decode routines are supplied in the Device Independent File
I/O Package to enable the assembly language user to perform data
conversions from the internal representation to printable format and
conversely from the printable format to internal representation (these
routines are executed transparently for the Pascal user in the
Microprocessor Pascal Executive). This capability is useful when
primitive data is to be printed or data is to be input via a keyboard.

For each of the routines described, the calling parameters generally
fit into a convenient template (with some exceptions that are noted in
the individual procedure descriptions). This template is presented
below. The user should refer to this template to understand the
procedure definitions and calling sequences.

Parameter

String
Pointer

String
Length .
Index

Definition Limits

Pointer to the output Integer
string array (Encode}
and the input string array
D~code}.

The number of bytes in Integer
the >string> parameter.

The starting position Integer
of output field (for
Encode routines) or
input field (for Decode
routines). Upon return,
this field will contain
the position of the char-
acter following the output
field (Encode) or follow-
ing the input field (De-
code). This facilitates
encoding or decoding mul-
tiple numbers into one
string. This parameter
is always passed by ad-
dress.

5-1

Input/Output

Input

Input

Input/Output

Status

Input Data
or Result

An integer containing a Integer
status message. Upon
return, this integer con- ·
tains a zero if the enco-
ding or decoding was suc-
cessful 1 a non-zero status
indicates that the input
parameters are contradic-
tory or the result will
not fit into the speci-
fied output field. This
parameter is always passed
by address. ·

The address of the data Integer
being encoded or the re-
sult of a decode (passed
by address)

Output '

Input

Width The width in bytes of Integer Input
the output field in
Encode and of the input
field in Decode.

5.2 ENCODE ROUTINES

Encoding is the process of converting from an internal format to a J
character string. Routines accomplishing this are defined below.

5.2.1 Encoding an Integer (ENC$IN)

ENC$IN is used to convert from an integer to character format. One
additional parameter is passed to ENC$IN: Hex which is a Boolean
value. If Hex is True, a hexadecimal value is generated. When Hex is
False, a decimal results.

The assembly language calling sequence follows:

Assume: The parameters for this procedure are stored at the
following displacements into the calling procedure ... s
local frame:

String Pointer at 0
String Length at 2
Index at 4
Status at 6
Input Data Address at 8
Width at 10
Hex at 12

5-2

MOV
MOV
MOV
A
MOV
A
MOV
A
MOV
MOV
DATA
DATA

*LF,*SP+
@2(LF) ,*SP+
LF,*SP
@FOUR(LF),*SP+
LF,*SP
@SIX(CODE) ,*SP+
LF,*SP
@EIGHT(CODE) ,*SP+
@lO(LF) ,*SP+
@12(LF) ,*SP+
CALL$
ENC$IN

PASSING STRING POINTER
PASSING STRING LENGTH
PASSING INDEX

PASSING STATUS

PASSING INPUT DATA ADDRESS

PASSING WIDTH
PASSING HEX

where the following sequence is in the user's code:

MOD EQU $ MOD LABELS BEGINNING OF LOCAL DATA
DATA PRO-MOD PRO LABELS BEGINNING OF EXECUTABLE CODE

FOUR EQU $-MOD
DATA 4

SIX EQU $-MOD
DATA 6

EIGHT EQU $-MOD
DATA 8

EXCEPTIONS AND CONDITIONS:

Possible errors resulting (by error code):

(1) Bad parameter passed to routine. An example is the Index
parameter exceeding the parameter for String Length.

(2) Field width too large. This occurs when Index plus Width minus
one byte exceeds String Length.

5.2.2 Encoding a Longint (ENC$LO)

ENC$LO is called to convert from an extended integer to character
format. As in ENC$IN (above) a Hex parameter is passed to ENC$LO
indicating if the result is to be hex (parameter value is True) or
decimal (parameter v.alue is false) •

The assembly language calling sequence follows:

Assume: The parameters for this procedure are stored at the
following displacements into the calling procedure's
local frame:

5-3

String Pointer at 0
String Length at 2
Index at 4
Status at 6
Input Data Address at 8
Width at 10
Hex at 12

MOV *LF,*SP+ PASSING STRING POINTER
MOV @2(LF) ,*SP+ PASSING MAXIMUM NUMBER
MOV LF,*SP PASSING INDEX
A @FOUR(LF) ,*SP+
MOV LF,*SP PASSING STATUS
A @SIX(CODE) ,*SP+
MOV LF,*SP PASSING INPUT DATA ADDRESS
A @EIGHT(CODE) ,*SP+
MOV @lO(LF) ,*SP+ PASSING WIDTH
MOV @12(LF) ,*SP+ PASSING HEX
DATA CALL$
DATA ENC$LO

where the following sequence is in the user~s prologue:

MOD EQU $ MOD LABLES BEGINNING OF LOCAL DATA
DATA PRO-MOD PRO LABELS BEGINNING OF EXECUTABLE CODE

FOUR EQU $-MOD
DATA 4

SIX EQU $-MOD
DATA 6

EIGHT EQU $-MOD
DATA 8

EXCEPTIONS AND CONDITIONS:

Possible errors resulting (by error code):

(1) Bad parameter passed to routine. An example is the Index
parameter exceeding the parameter for String Length.

(2) Field width too large. This occurs when Index plus Width minus
one byte exceeds String Length.

5.2.3 Encoding Boolean (ENC$BO)

The ENC$BO routine is called to convert from the internal Boolean to
character format. If the byte width of the output field is less than
five, then TRUE is encoded as "T" and FALSE as "F"~ otherwise, TRUE
and FALSE are spelled out.

5-4

)
_./

The assembly language calling sequence follows:

Assume: The parameters for this procedure are stored at the
following displacements into the calling procedure""s
local frame:

String Pointer at 0
String Length at 2
Index at 4
Status at 6
Input Data Address at 8
Width at 10

MOV *LF,*SP+ PASSING STRING POINTER
MOV @2(LF),*SP+ PASSING STRING LENGTH
MOV LF,*SP PASSING INDEX
A @FOUR(LF) ,*SP+
MOV LF,*SP PASSING STATUS
A @SIX(CODE),*SP+
MOV LF,*SP PASSING INPUT DATA ADDRESS
A @EIGHT(CODE) ,*SP+
MOV @lO(LF) ,*SP+ PASSING WIDTH
DATA CALL$
DATA ENC$BO

where the following sequence is in the user""s prologue:

~· MOD EQU $
DATA PRO-MOD

MOD LABELS BEGINNING OF LOCAL DATA
PRO LABELS BEGINNING OF EXECUTABLE CODE

FOUR EQU $-MOD
DATA 4

SIX EQU $-MOD
DATA 6

EIGHT EQU $-MOD
DATA 8

EXCEPTIONS AND CONDITIONS:

Possible errors resulting (by error code):

(1) Bad parameter passed to routine. An example is the Index
parameter exceeding the parameter for String Length.

(2) Field width too large. This occurs when Index plus Width minus
one byte exceeds String Length.

5-5

5.2.4 Encoding a Character (ENC$CR)

ENC$CR is called to store a single character (padded with blanks on_-0
the left) in a string. The character is right justified.in the output /
field.

The assembly language calling sequence follows:

Assume: The parameters for this procedure are stored at the
following displacements into the calling procedure""s
local frame:

String Pointer at 0
String Length at 2
Index at 4
Status at 6
Input Data Address at 8
Width at 10

MOV *LF,*SP+ PASSING STRING POINTER
MOV @2(LF) ,*SP+ PASSING STRING LENGTH
MOV LF,*SP PASSING INDEX
A @FOUR(LF) ,*SP+
MOV LF,*SP PASSING STATUS
A @SIX(CODE) ,*SP+
MOV LF,*SP PASSING INPUT DATA ADDRESS
A @EIGHT(CODE) ,*SP+
MOV @lO(LF) ,*SP+ PASSING WIDTH
DATA CALL$
DATA ENC$CR

where the following sequence is in the prologue of the user""s code:

MOD EQU $
DATA PRO-MOD

FOUR EQU
DATA

SIX EQU
DATA

$-MOD
4
$-MOD
6

EXCEPTIONS AND COND~TIONS:

MOD LABELS BEGINNING OF LOCAL DATA
PRO LABELS BEGINNING OF EXECUTABLE CODE

Possible errors resulting (by error code):

(1) Bad parameter passed to routine. An example is the Index
parameter exceeding the parameter for String Length.

(2) Field width too large. This occurs when Index plus Width minus
one byte exceeds String Length.

5-6

l
j

.- -<~~-- .. ·-· ·-. -::-.· .,, ··-- ·-

5.2.5 Encoding a String (ENC$ST)

The routine ENC$ST is c·alled to store a character string in a field
within another character string. One additional parameter passed to
this routine is the width in bytes of the input field. The assembly
language calling sequence follows:

Assume: The parameters for this procedure are stored at the
following displacements into the calling procedure's
local frame:

String Pointer at 0
String Length at 2
Index at 4
Status at 6
Input Data Address at 8
Input Width at 10
Output Width at 12

MOV *LF,*SP+ PASSING STRING POINTER
MOV @2(LF) ,*SP+ PASS.ING . STRING LENGTH
MOV LF,*SP PASSING INDEX
A @FOUR(LF) ,*SP+
MOV LF,*SP PASSING STATUS
A @SIX(CODE),*SP+
MOV LF,*SP PASSING INPUT DATA ADDRESS
A @EIGHT(CODE) ,*SP+
MOV @lO(LF) ,*SP+ PASSING INPUT WIDTH
MOV @12(LF),*SP+ PASSING OUTPUT WIDTH
DATA CALL$
DATA ENC$ST

where the following sequence is in the user's prologue:

MOD EQU $ MOD LABELS BEGINNING OF LOCAL DATA
DATA PRO-MOD PRO LABELS BEGINNING OF EXECUTABLE CODE

FOUR EQU $-MOD
DATA 4

SIX EQU $-MOD
DATA 6

EIGHT EQU $-MOD
DATA 8

EXCEPTIONS AND CONDITIONS:

Possible errors resulting (by error code):

(1) Bad parameter passed to routine. An example is the ··Index
parameter exceeding the parameter for String Length.

(2) Field width too large. This occurs when Index plus Width minus

5-7

.:·. -·-.

one byte exceeds String Length.

5.2.6 Encoding a Real (ENC$RE)

ENC$RE is called to convert from the internal representation of a real
to its corresponding character format. One additional parameter is
passed to this routine. This parameter, F, represents the number of
digits falling to the right of the decimal. If F < 0 '· then the output
is in floating point format. To generate output in fixed point format,
set F to the number of digits to the right of the decimal point (i.e.,
number of decimal places). Otherwise, set F less than. 0 for floating
point format.

Assume: The parameters for this procedure are stored at the
following displacements into the calling procedure~s
local frame:

String Pointer at 0
String Length at 2
Index at 4
Status at 6
Input Data Address at 8
Output Width at 10
F' at 12

MOV *LF,*SP+ PASSING STRING POINTER
MOV @2(LF) ,*SP+ PASSING STRING LENGTH
MOV LF ,*SP PASSING INDEX
A @FOUR(LF) ,*SP+
MOV LF,*SP PASSING STATUS
A @SIX(CODE) ,*SP+
MOV LF,*SP PASSING INPUT DATA
A @EIGHT(CODE),*SP+
MOV @.10 (LF) ,*SP+ PASSING OUTPUT WIDTH
MOV @12 (LF) , *SP+ PASSING F
DATA CALL$
DATA ENC$RE

where the following sequence is in the user~s prologue:

MOD EQU $ MOD LABELS BEGINNING OF LOCAL DATA
DATA PRO-MOD PRO LABELS BEGINNING OF EXECUTABLE CODE

FOUR EQU $-MOD
DATA 4

SIX EQU $-MOD·
DATA 6

EIGHT EQU $-MOD
DATA 8

EXCEPTIONS AND CONDITIONS:

5-8

\,..:__ _:>

~ny error in the parameters will result in status being set to 1. In
this event, the output field will be set to all asterisks ('*** ••• ') •

5.3 DECODE ROUTINES

Decoding is the process of -converting from a character string to an
internal format.

5.3.1 Decoding an Integer (DEC$IN)

DEC$IN is called to convert a field in a character string to an
integer. If the number is preceded by a'#', it is interpreted as a
hexadecimal number, otherwise decimal is assumed. The assembly
language calling sequence follows:

Assume: The parameters for this procedure are stored at the
following displacements into the calling procedure's
local frame:

MOV
MOV
MOV
A
MOV
A
MOV
A
MOV
DATA
DATA

String Pointer
String Length
Index
Status
Address of Result
,Input Width

*LF,*SP+
@2(LF) ,*SP+
LF,*SP
@FOUR(LF) ,*SP+
LF,*SP
@SIX(CODE) ,*SP+
LF,*SP
@EIGHT(CODE) ,*SP+
@lO(LF) ,*SP+
CALL$
DEC$IN

at O
at 2
at 4
at 6
at 8
at 10

PASSING STRING POINTER
PASSING STRING LENGTH
PASSING INDEX

PASSING STATUS

PASSING RESULT ADDRESS

PASSING INPUT WIDTH

where the following sequence is in the user's code:

MOD EQU $ MOD LABELS BEGINNING OF LOCAL DATA
DATA PRO-MOD PRO LABELS BEGINNING OF EXECUTABLE CODE

FOUR EQU $-MOD
DATA 4

SIX EQU $-MOD
DATA 6

EIGHT EQU $-MOD
DATA 8

5-9

EXCEPTIONS AND CONDITIONS:

Possible errors resulting "(by error code):

(1) Bad parameter passed to routine. An example is the Index
parameter exceeding the parameter for String Length.

(2) Field width too large. This occurs when Index plus Width minus
one byte exceeds String Length.

(3) Incomplete Data. An example is a plus sign without digits
following.

(4) Invalid character in field. This happens when a non-numeric
character is found in a number.

(5) Data value too large. This occurs when a number is too large to
be stored in the given variable (e.g., 32768 is an integer).

5.3.2 Decoding a Longint (DEC$LO)

The procedure DEC$LO is called to convert a field in a character
string to an extended integer. If the number is preceded by a "':ft"', it
is interpreted as a hexadecimal number, otherwise decimal is assumed.
The assembly language calling sequence follows:

Assume: The parameters for this procedure are stored at the
following displacements into the calling procedure"'s
local frame:

String Pointer at 0
S.tr ing Length at 2
Index at 4
Status at 6
Address of Result at 8
Input Width at 10

5-10

' _)

, __ _

MOV
MOV
MOV
A
MOV
A
MOV
A
MOV
DATA
DATA

*LF,*SP+
@2(LF),*SP+
LF,*SP
@FOUR(LF) ,*SP+
LF,*SP
@SIX(CODE) ,*SP+
LF,*SP
@EIGHT(CODE) ,*SP+
@lO(LF) ,*SP+
CALL$
DEC$LO

PASSING STRING POINTER
PASSING STRING LENGTH
PASSING INDEX

PASSING STATUS

PASSING ADDRESS OF RESULT

PASSING INPUT WIDTH

where the following sequence is in the user's code:

MOD EQU $ MOD LABELS BEGINNING OF LOCAL DATA
DATA PRO-MOD PRO LABELS BEGINNING OF EXECUTABLE CODE

FOUR EQU $-MOD
DATA 4

SIX EQU $-MOD
DATA 6

EIGHT EQU $-MOD
DATA 8

EXCEPTIONS AND CONDITIONS:

Possible errors resulting (by error code) :

(1) Bad parameter passed to routine. An example is the Index
parameter exceeding the parameter for String Length.

(2) Field width too large. This occurs when Index plus Width minus
one byte exceeds String Length.

(3) Incomplete Data. An example is a plus sign without digits
following.

(4) Invalid character in field. This happens when a non-numeric
character is found in a number.

(5) Data value too large. This occurs when a number is too large to
be stored in the given variable (e.g., decoding a number larger
than #7FFFFFFF) •

5.3.3 Decoding Boolean (DEC$BO)

The procedure DEC$BO is called to convert a field in a Boolean
character string to an integer. Valid boolean strings are 'T', 'TRUE',
'F', and 'FALSE'. No conversion of lower to upper case is done. The
assembly language calling sequence follows.

5-11

Assume: The parameters for this procedure are stored at the
following displacements into the calling procedure~s
local frame:

String Pointer at 0
String Length at 2
Index at 4
Status at 6
Address of Result at 8
Input Width at 10

MOV *LF,*SP+ PASSING STRING POINTER
MOV @2(LF),*SP+ PASSING MAXIMUM NUMBER

_MOV LF,*SP PASSING NUMBER
A @FOUR(LF),*SP+
MOV LF,*SP PASSING STATUS
A @SIX(CODE) ,*SP+
MOV LF,*SP PASSING ADDRESS OF RESULT
A @EIGHT(CODE) ,*SP+
MOV @lO(LF) ,*SP+ PASSING INPUT WIDTH
DATA CALL$
DATA DEC$BO

where the following sequence is in the user~s code:

MOD EQU $ MOD LABELS BEGINNING OF LOCAL DATA
DATA PRO-MOD PRO LABELS BEGINNING OF EXECUTABLE CODE

FOUR EQU $-MOD
DATA 4

SIX EQU $-MOD
DATA 6

EIGHT EQU $-MOD
DATA 8

EXCEPTIONS AND CONDITIONS:

Possible errors resulting (by error code):

(1) Bad parameter passed to routine. An example is the Index
parameter exceeding the parameter for String Length.

(2) Field width too large. This occurs when Index plus Width minus
one byte exceeds String Length.

(3) Invalid character in field. This happens when an invalid
separator is found.

5.3.4 Decoding a Character (DEC$CH)

)

The procedure DEC$CH is called to convert a field in a character _)

5-12

"'· ., -

\' .
~::-

string to an integer. In passing the byte width .of the input field
(W), if w > O, the first non-blank character in .the next W characters
is returned. If the field is all blanks, a blank is returned. If
w = O, a blank is returned. If W < O, the field width is assumed to be
1 (i.e. the next character is returned, blank or not).

The assembly language calling sequence follows:

Assume: The parameters for this procedure are stored at the
following displacements into the calling procedure~s
local frame:

String Pointer at 0
String Length at 2
Index at 4
Status at 6
Address of Result at 8
Input Width at 10

MOV *LF,*SP+ PASSING STRING POINTER
MOV @2(LF),*SP+ PASSING STRING LENGTH
MOV LF,*SP PASSING INDEX
A @FOUR(LF) ,*SP+
MOV LF,*SP PASSING STATUS
A @SIX(CODE),*SP+
MOV LF,*SP PASSING ADDRESS OF RESULT
A @EIGHT(CODE) ,*SP+
MOV @lO(LF) ,*SP+ PASSING INPUT WIDTH
DATA CALL$
DATA DEC$CH

where the foliowing sequence is in the user~s code:

MOD EQU $ MOD LABELS BEGINNING OF LOCAL DATA
DATA PRO-MOD PRO LABELS BEGINNING OF EXECUTABLE CODE

FOUR EQU $-MOD
DATA 4

. SIX EQU $-MOD
DATA 6

EIGHT EQU $-MOD
DATA 8

EXCEPTIONS AND CONDITIONS:

Possible errors resulting (by error code):

(1) Bad parameter passed to routine. An example is the Index ...
parameter exceeding the parameter for String Length.

(2) Field width too large. This occurs.when Index plus Width minus
one byte exceeds String Length. '

5-13

5.3.S Decoding a String (DEC$ST}

DEC$ST is called to move a field in a character string to another
character string. One additional parameter is passed to DEC$ST: the
length of the result string.

The assembly language calling sequence follows:

Assume: The parameters for this procedure are stored at the
following displacements into the calling procedure~s
local frame: ·

String Pointer at 0
String Length at 2
Index at 4
Status at 6
Address of Result at 8
Output Length at 10
Input Field Width at 12

MOV *LF,*SP+ PASSING STRING POINTER
MOV @2 (LF} , *SP+ PASSING STRING LENGTH
MOV LF,*SP PASSING INDEX
A @FOUR(LF),*SP+
MOV LF,*SP PASSING STATUS
A @SIX(CODE} ,*SP+
MOV LF,*SP PASSING RESULT ADDRESS
A @EIGHT(CODE) ,*SP+
MOV @lO(LF) ,*SP+ PASSING OUTPUT LENGTH
MOV @12(LF) ,*SP+ PASSING INPUT WIDTH
DATA CALL$
DATA DEC$ST

where the following sequence is in the user~s code:

MOD EQU $ MOD LABELS BEGINNING OF LOCAL DATA
DATA PRO-MOD PRO LABELS BEGINNING OF EXECUTABLE CODE

FOUR EQU $-MOD
DATA 4

SIX EQU $-MOD
DATA 6

EIGHT EQU $-MOD
DATA 8

EXCEPTIONS AND CONDITIONS:

Possible errors resulting (by error code):

)

(1) Bad parameter passed to routine. An example is the Index
parameter exceeding the parameter for String Length.)

5-14

/
I

<L-

(2) Field width too large. This occurs when Index plus Width minus
one byte exceeds String Length.

5.3.6 Decoding a Real (DEC$RE)

The DEC$RE routine is called to convert from a character string
providing the printable representation of a Real number to its
internal floating point format.

The assembly language calling sequence follows:

Assume: The parameters for this procedure are stored at the
following displacements into the calling procedure~s
local frame:

MOV
MOV
MOV
A
MOV
A
MOV
A
MOV
DATA
DATA

String Pointer
String Length
Index
Status
Address of Result
Width

*LF,*SP+
@2(LF) ,*SP+
LF,*SP
@FOUR(LF),*SP+
LF,*SP
@SIX(CODE) ,*SP+
LF,*SP
@EIGHT(CODE) ,*SP+
@lO(LF) ,*SP+
CALL$
DEC$RE

at 0
at 2
at 4
at 6
at 8
at 10

PASSING STRING POINTER
PASSING STRING LENGTH
PASSING INDEX

PASSING STATUS

PASSING RESULT ADDRESS

PASSING WIDTH

where the following sequence is in the user~s code:

MOD EQU $ MOD LABELS BEGINNING OF LOCAL DATA
DATA PRO-MOD PRO LABELS BEGINNING OF EXECUTABLE CODE

FOUR EQU $-MOD
DATA 4

SIX EQU $-MOD
DATA 6

5-15

EXCEPTIONS AND CONDITIONS:

If the
one.

input parameters are contradictory, the status will ,be set to

If the field specified is not contained in the array (i.e., the field
width is too large) the status is set to two.

If the field does not contain a valid real number, the status is set
to three.

5-16

)

\
)

_ __/

SECTION VI

CONFIGURING AN APPLICATION TO INCLUDE DIF I/O ROUTINES

6.1 GENERAL

The paragraphs that follow provide information on initializing and
configuring an application containing the File I/O Decoder and various
I/O Subsystems. The main points presented include a description of
system initialization, detail on the various object modules used to
build the target application, and an overview of the link editing
process. The default version of the GHOST$ process, a sample CONFIG
module, and an example Link Edit Control File are also presented.

The link editor present in the user's development system provides the
means for generating the target application (or load module). The user
specifies a link edit control file as input for the link editor. The
link editor resolves all of the application's external references via
the libraries specified in the link edit control file.

Detailed information regarding configuring a load module for native
code execution is. presented in the Realtime Executive User's Manual
(MP373) for the assembly language user and the Microprocessor Pascal
Executive User's Manual (MP385) for the Pascal user.

6.2 INITIALIZATION

Initialization of applications configured with one or more I/O
Subsystems and the File I/O Decoder takes place automatically at power
up time. The GHOST$ process supplied by the run-time support contains
a call to D$INIT, the entry point for initialization present in the
File I/O Decoder. In turn, each of the I/O Subsystems present on the
target system is initialized via D$INIT. If the user wishes to
activate the File I/O Decoder and the suported I/O Subsystems directly
from his application, he can remove the call to D$INIT from GHOST$.

In addition, GHOST$ contains a call to MSG$INIT which identifies the
name of the device acting as the destination of the standard procedure
MESSAGE. The statement:

MESSAGE('Execution begins.')~

can be· inserted after the START statement in the user application to
signal the "Operator" (specified in the default version ·of GHOST$)
that execution has begun. To implement this call, the node name
"Operator" must be present in a Port Contstants Record associated with
some I/O Subsystem on the target ("Operator" is the node name assigned
to a device in a Port Constants Record in the Operator Interface I/O
Subsystem--see Appendix A) 9 If this node name is not so specified, its
reference must be removed from GHOST$. Note also that IPC Subsystem
will always claim the name 'Operator' if that name is not claimed by

6-1

any other subsystem.

For most applications the default version of GHOST$ will be adequate.
If certain initialization must be performed for a class of
applications (e.g. special devices must be initialized), it is ·\
appropriate that it be performed in the ghost procedure so it need not u)
be repeated in each application. If it is known that the File I/O
Decoder will not be used, then a slight savings in code space can be
made by removing the calls to D$INIT in GHOST$. If the standard
procedure MESSAGE will not be used, the call to MSG$INIT can also be
removed from GHOST$. If the File I/O Decoder is not specified at link
edit time, D$INIT will be resolved by a "dummy" routine (present in
the Rx Sequential Library RXOBJ) that performs no processing.

The default version of GHOST$ is displayed below (the source for
GHOST$ is written in assembly language).

system ghost$system1

canst
dont_care = 2;

type
dummy_buffer =packed array[l •• dont care] of char;

procedure d$init; external1

procedure msg$init(var pathname: dummy_buffer; length: integer) ;
external;

program systm$; external;

procedure ghost$;
var

pathname: packed array[1 •• 8] of char;
begin

d$init;
pathname := ~OPERATOR~;
msg$init(pathname::dummy buffer, size(pathname)) ;
start systm$; -

end {ghost$ };

be9in
t $ nullbody. }

end.

FIGURE 6-1. DEFAULT VERSION OF PROCEDURE GHOST$

6.3 CONFIGURATION MODULES

The object modules required to configure an application with the File
I/O Decoder and the I/O Subsystems provided in MPX and in the Device

6-2

', _ _,,/

Independent File I/O Package are described below.

6.3.1 DIF I/O Routines

The File I/O Decoder, the Operator Interface I/O Subsystem, the
Interprocess Communication I/O Subsystem, and the Encode and Decode
routines are packaged as sequential libraries as described below.
These libraries are supplied for the Pascal user in the Microprocessor
Pascal Executive and for the assembly language user in the Device
Independent File I/O Package.

• D$0BJ containing object modules to support the File I/O
Decoder level of device-independent I/O (described in
Section III). This library also contains the dummy I/O
Subsystem (described in Appendix D) used when a specific
file service is not supported on the target.

• IPC$OBJ containing object modules comprising the
Interprocess Communication I/O Subsystem (described in
Section IV) • IPC$OBJ uses routines from the libraries
C$0BJ (supplied in MPX or RX) and D$0BJ. Because IPC$0BJ
accepts any pathname passed at Connect time, it should be
the last I/O Subsystem referenced in the I/O Subsystem
Service Directory (IODIR) specified in CONFIG (see
Subsection 6.3.3 below).

• T02$0BJ containing object modules comprising the
Interface I/O Subsystem (described in Appendix
routines support communication with a variety of
connected to a 9902 interface. Routines from the
C$0BJ and D$OBJ are also required by the T02$0BJ

Operator
A) • These
terminals
libraries
library.

• DE$0BJ containing object modules that implement Decode and
Encode routines (described in Section V).

NOTE: The run-time support library MPP$0BJ providing data types
routines is supplied to the assembly language programmer in the DIF
I/O package. The Pascal user can find this library in the
Microprocessor Pascal Executive.

6.3.2 The Executive Library

The libraries providing native code run-time support consist of the
sequential library RX$0BJ and the random library RX$LIB, each
containing miscellaneous Rx routines; and the sequential libraries
C$0BJ, CLK$0BJ, and MPP$0BJ containing channel routines, clock
routines, and Data Types routines respectively. With the exception of
CLK$0BJ, the above run-time support libraries are required in most
aplications utilizing DIF I/O software. The Microprocessor Pascal
Executive supplies these libraries to the Pascal user. The assembly
language user obtains all native code libraries except for the library

6-3

MPP$0BJ from the Realtime Executive (RX). MPP$OBJ is supplied to the 1

assembly language programmer in the DIF I/O package.

6.3.3 CONFIG

CONFIG is provided in the native code run-time support (MPX and RX).
The default version of this module must be customized to fit the
user~s application. Information regarding this module is contained in
the Microprocessor Pascal Executive User~s Manual and in the Realtime
Executive User~s Manual. The Information below describes data required
in CONFIG when the load module will contain DIF I/O routines.

6.3.3.1 Specification of the I/O Service Directory. The default
version of CONFIG provides for the specification of the I/O Service
Directory used during system initialization at power up time. In this
directory, the user specifies the address of an I/O Subsystem
Directory and the address of an initial Port Constants Record for each
I/O Subsystem supported on the target. The I/O Subsystem Directory
contains the entry points for the routines making up the I/O
Subsystem. These entry points are standard from I/O Subsystem to I/O
Subsystem (see Subsection 2.4.2 for information on the derivation of
entry point names and Appendix B for a picture of the I/O Subsystem
Directory). The Port Constants Record contains fixed data describing

,··.~~-· ,

, .
···"'

the port associated with an I/O Subsystem. The port provides the
logical connection between the I/O Subsystem and the CPU~ in many I/O
Subsystems the port is associated with some device controller (see
Appendix B for more information regarding the Port Constants Record) • j'
While it is not required, the Port Constants Record(s) and the Node
Constants Record it points to can be conveniently placed in the CONFIG
module.

The end of the I/O Directory is marked by a null entry.

Sample code used in the I/O Directory in CONFIG is presented below. In
the example, entries are present for two I/O Subsystems: the Operator
Interface (T02) I/O Subsystem described in Appendix A and the
Interprocess Communication (IPC) I/O Subsystem described in Section
IV. Note that the pointer to the Port Constants Record for the
Interprocess Communication I/O Subsystem is set to nil. The sample
CONFIG module below also contains the Port Constants Record and Node
Constants Records required by the Operator Interface I/O Subsystem.

6-4

I OD IR EQU $ I/O DIRECTORY
*

REF T02$SD,
DATA T02$SD,T02$PC T02 SERVICE DIR. AND PORT CONSTANTS REC.

*
REF IPC$SD IPC SERVICE DIRECTORY
DATA IPC$SD,0

*
DATA 0 LIST TERMINATOR

6.3.3.2 Example CONFIG. An example CONFIG is presented below. Two I/O
Subsystems are specified in the I/O Service Directory: the Operator
Interface I/O Subsystem and the Interprocess Communication I/O
Subsystem.

6--s

IDT ~CONFIG~ SPECIFY CONFIGURATION
*REVISION: 08/01/80 1.00 ORIGINAL.FOR RX 2.0
*ROUTINE LIST: CONFIG, IWP$0 •• IWP$15, BAD$WP,
* $RAMTB, $RESTA,_ $LREX, $SYSCR,
* $DEFAU, $FILL, $STKSZ, $BOOTP,
* $IODIR, DB$WP
* COPY MODULES:
* NONE.
* MACRO DEFINITIONS:
* NONE.
* EXTERNAL ROUTINES:
* NONE.
* EXTERNAL DATA:

PSEG
* MODULE CONSTANTS:
IWPSZ EQU 24

*
LOWRAM EQU >8000
* MODULE VARIABLES:
*

DORG LOWRAM
*

EXAMPLE SIZE OF AN INTERRUPT
WORKSPACE (R4-R15)

LOW BOUNDARY OF RAM

DEF IWP$0,IWP$1,IWP$2,IWP$3
DEF IWP$4,IWP$5,IWP$6,IWP$7
DEF IWP$8,IWP$9,IWP$10,IWP$11
DEF IWP$12,IWP$13,IWP$14,IWP$15
DEF BADWP,DBWP

IWP$0 BSS 32
IWP$1 BSS 32
DB$WP EQU IWP$1
IWP$2 EQU $-32+IWPSZ

BSS IWPSZ
IWP$3 EQU $-32+IWPSZ

BSS IWPSZ
IWP$4 EQU $-32+IWPSZ

BSS IWPSZ
IWP$5 EQU $-32+IWPSZ

BSS IWPSZ
1WP$6 EQU $-32+IWPSZ

BSS IWPSZ
IWP$7 EQU $-32+IWPSZ

BSS IWPSZ
IWP$8 EQU $-32+IWPSZ

BSS IWPSZ

FIGURE 6-2. CONFIG (Sheet 1 of 5)

6-6

' j

• I

I

"--.

IWP$9 EQU $-32+IWPSZ
BSS IWPSZ

IWP$10 EQU $-32+IWPSZ
BSS IWPSZ

IWP$11 EQU $-32+IWPSZ
BSS IWPSZ

IWP$12 EQU $-32+IWPSZ
BSS IWPSZ

IWP$13 EQU $-32+IWPSZ
BSS IWPSZ

IWP$14 EQU $-32+IWPSZ
BSS IWPSZ

IWP$15 EQU $-32+IWPSZ
BSS IWPSZ

BAD$WP BSS 32

*
LOWHP EQU $
*

RORG
TITL ~CONFIG: SPECIFY CONFIGURATION~
PAGE

* ABSTRACT:
* SPECIFY CERTAIN SYSTEM PARAMETERSr THE RAM
* CONFIGURATION, AND THE I/O SUBSYSTEM
* DIRECTORY.
* CALLING SEQUENCE:
* NONE.
* EXCEPTIONS AND CONDITIONS:
* NONE.
* LOCAL DATA:
* NONE. ,
* ENTRY POINT:
* NONE.

* ADDRESS OF THE nBLWPn VECTOR FOR RESTARTS: USE non FOR
* LEVEL 0 INTERRUPT, n>FFFCn FOR THE nLREXn VECTOR, OR
* THE ADDRESS OF A USER-DEFINED VECTOR.

DEF $RESTA
$RESTA DATA 0

FIGURE 6-2. CONFIG (Sheet 2 of 5)

6-7

* ADDRESS OF THE nBLWPn VECTOR FOR THE nLREXn INSTRUCTION;
* USE non IF THERE IS TO BE NO nLREXn VECTOR OR IF HIGH
* MEMORY IS ROM.

DEF $LREX
$LREX DATA 0

* ADDRESS OF THE USER-DEFINED ROUTINE TO BE INVOKED IN CASE
* OF A SYSTEM CRASH; USE non FOR THE SYSTEM DEFAULT WHICH
* IS TO MASK INTERRUPTS AND IDLE THE PROCESSOR.

DEF $SYSCR
$SYSCR DATA 0
~
* ADDRESS OF THE MPP ROUTINE TO BE INVOKED IF AN EXCEPTION
* OCCURS· BUT NO EXCEPTION HANDLER HAS BEEN SPECIFIED; USE
* non FOR THE SYSTEM DEFAULT WHICH IS A "NO EXCEPTION
* HANDLERn SYSTEM CRASH.

DEF $DEFAU
$DEFAU DATA 0

* THIS IS THE VALUE WITH WHICH THE HEAP WILL BE
* INITIALIZED AT POWER-UP.

DEF $FILL
$FILL JMP $

* THIS IS THE DEFAULT STACK SIZE (IN WORDS) THAT IS USED
* IF A nsTACKSIZE" CONCURRENT PARAMETER IS NOT SPECIFIED.

DEF $STKSZ
$STKSZ DATA >100
~~~~***********
* THE PARAMETER LIST FOR THE CALL TO ns$PRCSn TO START THE
* nBOOTn PROGRAM.

DEF $BOOTP
$BOOTP DATA >0000 FRAME SIZE

DATA >0000 LEXICAL NESTING LEVEL
DATA >0000 PRIORITY
DATA >0100 STACK SIZE
DATA >0000 HEAP SIZE

FIGURE 6-2. CONFIG (Sheet 3 of 5)

6-8

·.~ . ,,/

'-- -

************************~**********************************
* ADDRESS OF THE "RAM TABLE," THE TABLE THAT DESCRIBES THE
* REGIONS OF READ-WRITE MEMORY TO BE COLLECTED INTO THE
* HEAP.

DEF $RAMTB
$RAMTB DATA RAMTB

* ADDRESS OF THE DIRECTORY OF I/O SUBSYSTEMS.

DEF $IODIR
$IODIR DATA IODIR

* THE FOLLOWING TABLE IS A LIST OF "LENGTH IN BYTES,
* STARTING ADDRESS" PAIRS THAT DEFINE THE RAM-TO BE USED
* BY THE EXECUTIVE: A WORD OF "0" TERMINATES THE LIST.
* THE RAM REGIONS MUST BE IN ASCENDING ORDER AND MUST NOT
* OVERLAP.

RAMTB DATA >FFFE-LOWHP,LOWHP

DATA 0 LIST TERMINATOR

* THE FOLLOWING TABLE IS A LIST OF "SERVICE DIRECTORY,
* PORT CONSTANTS" PAIRS THAT DEFINE THE I/0-SUBSYSTEM TO
* BE INITIALIZED WHEN ROUTINE "D$INIT" IS CALLED:
* A WORD OF "0" TERMINATES THE LIST.

I OD IR EQU $
*

REF T02$SD,T02$PC
DATA T02$SD,T02$PC T02 SERVICE DIR. AND PORT CONSTANTS REC.

*
REF IPC$SD IPC SERVICE DIRECTORY
DATA IPC$SD,0

*
DATA 0 LIST TERMINATOR

*

FIGURE 6-2. CONFIG (Sheet 4 of 5)

6-9

* THE FOLLOWING IS A PORT CONSTANTS RECORD FOR THE
* OPERATOR INTERFACE I/O SUBSYSTEM

T02$PC
*

*
NODEl

*
NODE2

*
*
NAMEO
LNGTHO

*
NAME!
LNGTHl

*
NAME2
LNGTH2

END

EQU $

DATA 0
DATA 4
DATA >0080
DATA 0
DATA 0
DATA 0
DATA NAMEO
DATA LNGTHO
DATA NODEl

DATA NODE2
DATA 0
DATA NAMEl
DATA LNGTHl
DATA >8001

DATA 0
DATA 0
DATA NAME2
DATA LNGTH2
DATA >AOOl

LINK
INTERRUPT LEVEL
CRU ADDRESS
BAUD RATE~ 0 => ADJUSTABLE
HEAP SIZE
INTERFACE HANDLER
PORT NAME
PORT NAME LENGTH
NODE HEADER POINTER

LINK
NODE TYPE
NODE NAME
NODE NAME
OPTIONS =

LINK
NODE TYPE
NODE NAME
NODE NAME
OPTIONS-=

LENGTH
(ECHO, CR/LF AFTER WRITE)

LENGTH
(ECHO, CR/LF AFTER READ,

CR/LF AFTER WRITE

TEXT
EQU

"'9902 AT >080"'
$-NAMEO

EVEN

TEXT
EQU
EVEN

TEXT
EQU
EVEN

"'OPERATOR"'
$-NAME!

"'VDT"'
$-NAME2

FIGURE 6-2. CONFIG (Sheet 5 of 5)

6-10

,_ .. -·~ ..)

6.4 LINK EDITING

Link editing enables the user to link together the user application,
the File I/O Decoder, the desired I/O Subsystems, and required
run-time support. The link editor in the user""s development system
provides the necessary software tools to carry out the configuration
process. The link editor requires as input a link edit control file.
The paragraphs that follow describe the link editor and link edit
control files.

6.4.1 Link Editor

For information on initializing and executing the link editor, refer
to the Model 990 Computer Link Editor Reference Manual (949617-9701)
or to the 9900 AMPLUS Software System User""s Manual (MP375).

6.4.2 Link Edit Control File

The user must create a link edit control file to input to the Link
Editor. This file is generated using the text editor and is specified
when the link editor is brought up. The link edit control file defines
which modules are to be linked into the load module and in which order
they are to be linked.

A sample link edit control file is presented below. Detailed
information concerning the format and instructions used can be found
in the user manuals for the respective link editors.

NOTE: The file names used below are merely examples. The actual file
names used may change depending on their user-assigned locations.

TASK
LIBRARY
INCLUDE
INCLUDE
INCLUDE
SEARCH
FIND
FIND
FIND
FIND
FIND
FIND
FIND
END

SAMPLE
MPX.RX$LIB
(RXKERNEL)
<CONFIG>
VOLl.APPL

MPX.DE$0BJ
MPX.T02$0BJ
MPX.IPC$0BJ
MPX.D$0BJ
MPX.C$0BJ
MP~.MPP$0BJ
MPX.RX$0BJ

PROGRAM NAME
RX RANDOM LIBRARY
RX KERNEL
USER""S CONFIG
USER""S APPLICATION
RESOLVE ALL REFERENCES TO HERE

.ENCODE AND DECODE
!OPERATOR INTERFACE
!INTERPROCESS COMMUNICATION
!FILE I/O DECODER.
!CHANNEL ROUTINES
!DATA TYPES FROM MPX OR DIF I/O
!RX SEQUENTIAL LIBRARY

6-3. SAMPLE LINK EDIT CONTROL FILE

The above example can either be used with a DX or AMPLUS development
system. If AMPLUS is used, the drive location (e.g., DSOl or DS02)
can be substituted for the volume name.

6-11

. -·- -· - - --::.~:::-..... __ ,,

If the user does not place the tables required by an I/O Subsystem
in the CONFIG module, he must create a separate module to contain
these records (these records include.the Port Constants Records and
the Node Constants Record, as well as any other required data. .· ·~
Should he do this, the user must "Include" the name of this module)
in his Link Edit Control File.

NOTE: Both the IPC and T02 subsystem sequential object libraries
contain service directories. The names of these service directory
modules are REF~ed in the example Config (above): These modules will
be automatically included in the load module when thelink editor
encounters the appropriate REF in the CONFIG module.

6-12

/

APPENDIX A

IMPLEMENTING THE OPERATOR INTERFACE I/O SUBSYSTEM

A.l GENERAL

This section presents a detailed example of the application of the
tools introduced in this manual. Routines are developed to permit
interrupt-driven interactions with most terminals that can be
connected to a 9902 asynchronous communications controller. The
approach presented in building this subsystem may be adopted by a
user in the construction of his own subsystem. Subsection A.2
describes fundamental routines that permits low-level interface to a

----terminal1 they manipulate an abstract representation of a terminal
(a device record) and may be called from and execute within the
user's application process. Subsection A.3 describes an interface
handler, a separate process that is implemented with the routines of
Subsection A.2. It executes concurrently with user processes and
accepts requests for service via message channels. An I/O subsystem
is constructed around the interface handler in Subsection A.4 to
provide a media-independent collection of I/O services. These
services are based on an abtraction called a file ID and are
implemented through commands sent to the interface handler.

The software in this section is discussed in terms of excerpts from
the source text that is delivered in library MPX.T02$LIB.

A.2 INTERFACE VIA EMBEDDED ROUTINES

This section describes routines with which the user can perform
direct I/O to a 9902 at the character or logical record level. The
9902 provides three concurrent functions: transmission and reception
of a character via a serial interface and interval timing. In this
application the 9902 will be configured to interrupt the host 9900
processor whenever one of these functions completes1 since the same
interrupt is used for each function, interrupt demultiplexing must
be provided. The routines of this package are

H02$RATE

H02$0PEN
H02$WAIT
H02$IN
H02$0UT
H02$GET
H02$PUT

Initialize the 9902 including optional
measurement of the transmission rate

Allocate and initialize the device -descriptor
wait for and demultiplex an interrupt
Read a character
Write a character
Read a logical record
Write a logical record

and will be discussed in the following subsections.

Access to each 9902 is made through 32 bits of the CRU address

A-1

space. The input bits that will be used are

con st
receiver interrupt = 16;
transmitter interrupt = 17;
timer_interrupt = 19;

Each of these bits is set to one when the correspondfng function
completes. The output bits are

const
request to send on = 16;
receiver interrupt enable = 18;
transmitter interrupt enable = 19;
timer_interrupt_enable = 20;

"Request to send" is used to activate the transmitter. Writing a
zero or one to the other bits disables or enables, respectively,
interrupts at the completion of the corresponding function; in
either case a pending interrupt is cleared. The eight CRU bits
beginning at displacement zero are used to move data to and from the
9902. (More information on the 9902 can be found in the TMS9902
Asynchronous Communications Controller Data Manual.)

The interface to a particular 9902 will be represented by the device
descriptor shown in Figure A-1. Variable BASE co~tains the CRU base
of the particular 9902 that is associated with the record; RATE is
the baud rate at which (both) transmission and reception occur.
CHARACTER SENT and TIMER ELAPSED are flags that are set by the
interrupt- demultiplexer to indicate the completion of the
corresponding function. KEYBOARD BUFFER, NEXT IN, NEXT OUT, and
NUMBER OF CHARACTERS comprise a - circular buffer into which
characters are placed as they are received from the 9902; if the
buffer is full when a character arrives, the flag CHARACTER LOST is
set. ATTENTION is the semaphore to which the 9902 interrupt is
connected.

const
circular buffer size = 16;

type
device 9902 = record

base, rate: integer;
character sent, timer elapsed: boolean;
character-lost: boolean;
attention: semaphore;
keyboard buffer:

packed-array [! .. circular buffer size] of char;
next in, next out, number of-characters: integer;
end;- - - -

device_ptr = @device_9902;

FIGURE A-1. 9902 DEVICE DESCRIPTOR

A-2

I

A.2.1 Procedure H02$RATE

This procedure has calling sequence

procedure h02$rate(base: integer1 var rate: integer)

and is used to initialize the 9902 at CRU base BASE. If RATE is not
zero and has an acceptable value (110, 300, 600, 1200, 2400, 4800,
9600, or 19200 baud), then both the transmitter and .receiver are
initialized for that communication rate. Otherwise, the start bit of
the first character that is entered is timed, and the transmission
rate is calculated1 the least significant bit of the first character
must be "l" (e.g., a carriage return). The interval timer is set to
16.32 milliseconds. ·

A.2.2 Procedure H02$0PEN

The first routine in this package that is called must be H02$0PEN
(Figure A-2), the routine that initializes the 9902 interface. The
device record for the 9902 is allocated and initialized. The
parameter LEVEL is used to associate the semaphore ATTENTION with
the appropriate interrupt level and enable that interrupt through a
TMS9901 programmable systems interface (which is assumed to be at
CRU base #0100, as is the case for the TM990 family of computer
boards).

A-3

----.-~ --·: ~.---- _____ .. .,_. -

• .. , . .-

procedure h02$open(base, level, rate: integer;
var d: device_ptr);

const
base 9901 = #100;

begin
new (d) ;
with dv = d@ do begin

av.base := base;
h02$rate(base, rate) ;
av.rate := rate;
dv.character sent := true;
av.timer elapsed := false;
av.character lost := false;
initsemaphore(av.attention, 0) ;
externalevent(av.attention, level) ;
av.next in := l;
av.next-out := l;
av.number of characters := O;
crubase(base 9901);
sbz (0) ; -
crubase(base 9901 + 2*level) ;
sbo (0) ; -
crubase(base) ;
sbo(receiver interrupt enable) ;
end; - -

end { h02$open };

FIGURE A-2. PROCEDURE H02$0PEN

A.2.3 Procedure H02$WAIT

This procedure (Figure A-3) waits until an interrupt is generated by
the 9902 which is specified by the device record that is its
parameter. The CRU bits TRANSMITTER INTERRUPT, RECEIVER INTERRUPT,
and TIMER INTERRUPT are examined to determine which interrupts have
occurred. The response for transmitter and timer interrupts is to
clear the interrupt and set the appropriate flag to be examined by
the caller of H02$WAIT. If a receiver interrupt occurs, a character
is read from the 9902 and stored in the keyboard buffer;
NUMBER OF CHARACTERS is incremented to indicate that keyboard
characters are available. (The keyboard is buffered so characters
can be entered while output is taking place.)

A-4

:

j

procedure h02$wait(d: device_ptr);
var

ch: char;
begin

with d@ do begin
crubase(base);
wait(attention);
if tb(transmitter interrupt) then begin

sbz(transmitter-interrupt enable) ;
character sent :~ true; -
end; -

if tb(receiver interrupt) then begin
sbz(receiver-interrupt enable); ·
if number of characters-< circular buffer size then begin

stcr(8~ ch::integer);
keyboard buffer[next in] :=ch;
if next in = circular-buffer size then

next in := O; - -
next in := next in + l;
number of characters := number of characters + l;
end

else
character lost := true;

sbo(receiver interrupt enable);
end; - -

if tb(timer_interrupt) then begin
sbz(timer interruot enable);
timer elapsed := true;
end; -

end;
end { h02$wait };

FIGURE A-3. PROCEDURE H02$WAIT

A.2.4 Procedure H02$IN

This function (Figure A-4) returns the next character from the
keyboard buffer. Note that H02$WAIT is called if
NUMBER OF CHARACTERS is zero since the calling program must wait
until a character arrives.

A-5

function h02$in(d: device_ptr): char
begin

with d@ do begin
while number of characters = 0 do

h02$wait(d >T
h02$in :=keyboard buffer[next out];
if next out = circular buffer sTze then

next_out := o1 -
next out := next out + 1;
number of characters := number of characters - l;
end;

end { h02$in };

Figure A-4. PROCEDURE H02$IN

A.2.5 Procedure H02$0UT

This procedure (Figure A-5) sends a character to 9902 for
transmission. If the transmission of the last character has not
completed, H02$WAIT is called until the TRANSMITTER INTERRUPT
occurs. After the character has been sent to the ~902, the
transmission rate is examined. If it is 1200 baud, the output device
is assumed to be a mechanic~! printer and delays are inserted to
compensate for movement of the print mechanism of a TI Model 733
terminal. That is, characters are accepted at 1200 baud but printed
at 300 baud; a . carriage return requires as much time as 23
characters at 1200 baud. If the transmission rate is less than 1200)
baud, then a delay is inserted only for a carriage return. Thus the
delays per carriage return and per 1200 baud character are the
number of 16.32 millisecond intervals required to transmit 23 and 3
characters, respectively, at 1200 baud. (Note that, since the
interval timer is free-running, the delay loop begins at O, not 1,
to ensure that the proper number of full intervals is delayed.)

A-6

!.

/"'

const

n

n

n

n

II

n

n

n

II

n

delay_J>er_cr = 12;
= 23 char. delay per er at 12-00 baud

* 10 bits per character
div 1200 bits per sec
div .01632 seconds per interval
+ 1 to round up

delay_per_l200_baud_character = 2;
= 3 char. delay per 1200 baud char.

* 10 bits per character
div 1200 bits per second
div .01632 seconds per interval
+ 1 to round up

procedure h02$out(d: device_ptr; ch: char);
var

delay: integer;
begin

with d@ do begin
crubase(base);
while not character sent do

h02$wait(d);
character sent := false;
sbo(request to send on);
ldcr(B, ch::integer-);
sbz(request to send on);
sbo(transmitter interrupt enable) ;
if rate <= 1200 th'en -

delay block: begin
if ch = er then

delay := delay_per_cr
else

if rate = 1200 then
delay := delay_per_l200_baud_character

else escape delay block;
while not character-sent do

h02$wait(d);
for i := 0 to delay do begin

sbo(timer interrupt enable)~
while not timer elapsed do
h02$wait(d); -
timer elapsed := false~
end; -

end;
end;

end { h02$out };

FIGURE A-5.· PROCEDURE H02$0UT

A.2.6 Procedure H02$GET

\~ This procedure (Figure A-6) permits a logical record (terminated by

A-7

a carriage return) to be read from the 9902. The option parameter
OPTIONS controls whether the record will be echoed as it is entered
and whether a carriage return / line feed sequence will be emitted
before the record, after the record, or not at all. If the first
character that is entered is a DC3 (control-S), then "-1" is
returned as the number of characters read (COUNT) to indicate that
end-of-file has occurred. Otherwise, up to MAX LENGTH characters are
read into the buffer B. The back space (control-ff) may be used to
edit a line as it is entered.

type
option record = packed record

echo-while reading: boolean:
er lf before read: boolean:
cr-lf-after read: boolean:
cr-lf-before write: boolean:
cr-lf-after write: boolean:
end: - -

procedure h02$get(d: device_ptr: b: dummy_buffer_ptr:
max length: integer:
options: option record:
var count: integer):

FIGURE A-6. PROCEDURE H02$GET (SHEET 1 OF 2)

A-8

/

~

~-- >'

var
ch: char;
i: integer;
echo: boolean;

begin
with d@ do begin

ch:= h02$in(d);
if ch = dc3 then count := -1
else begin

echo := options.echo while reading;
if echo and options.er lf before read then begin

h02$out(d, er); - - -
h02$out(d, lf)1
end;

i : = ·O;
loop: while true do begin

i := i + l;
if ch = bs then begin

if echo then h02$out(d, lf);
repeat

if i > 1 then begin
i := i - 1;
if echo then h02$out(d, bs);
end;

ch:= h02$in(d);
until ch <> bs;
end;

if ch = er then begin
count := i-1;
escape loop;
end

else begin
if echo then h02$out(d, ch) ;
b@ (i] : = ch:
if i <max length then ch := h02$in(d)
else begin-

count := i;
escape loop;
end;

end;
end;

if echo and options.er lf after read then begin
h02$out(d, er); - - -
h02$out(d, lf);
end;

end;
end;

end { h02$get };

FIGURE A-6. PROCEDURE H02$GET (SHEET 2 of 2)

A-9

A.2.7 Procedure H02$PUT

This procedure (Figure A-7) writes a r~cord to the 9902 interface
with carriage control as specified by the option parameter OPTIONS.

procedure h02$put(d: device_ptr: b: dummy_buffer_ptr:
count: integer: options: option_record):

var
cmd: command_ptr:

begin
with d@ do begin

if options.er lf before write then begin
h02$out(d,-cr-): -
h02$out(d, lf):
end:

for i := 1 to count do
h02$out (d, b@ [i 1) :

if options.er lf after write then begin
h02$out(d,-cr-):
h02$out(d, lf):
end:

end:
end { h02$put }:

FIGURE A-7. PROCEDURE H02$PUT

A.2.8 An Example

Figure A-8 shows the skeleton of an operator communications program
that communicates with the user by reading a command from the same
line on which a prompt has been written. The 9902 is configured for
the primary port of a TM990/101 board with CRU base of #080 and
interrupt level 4: the interface routines will measure the
transmission rate. Note that the operator program must have a.
priority that is consistent with the interrupt level of the 9902
since the program will be waiting on an interrupt semaphore.

A-10

-~
/

)

. .. /

(
system example;

type
buffer= packed array[1 •• 80] of char;
buffer_ptr = @buffer;

device_ptr = @device_ptr;

option record = packed record
echo-while reading: boolean;
er lf before read: boolean;
cr-lf-after read: boolean;
cr-lf-before write: boolean;
cr-lf-after write: boolean;
end;

procedure h02$open(base, level, rate: integer;
var d: device_ptr); •

external;
procedure h02$get(d: device_ptr; b: buffer_ptr;

max lengtn: integer;
options: option record;
var count: integer);

external;
procedure h02$put(d: device_ptr; b: buffer_pt£;

count: integer; options: option record);
external;

FIGURE A-8 AN EXAMPLE (SHEET 1 OF 2)

A-11

program operator;
var

d: device_ptr;
count: integer;
input buffer, output buffer: buffer_ptr;
options: option record;

begin -
{t priority = 4 }

h02$open(i080, 4, O, d);
new(input buffer) ;
new(output buffer);
with options do begin

echo while reading := true;
er lf before read := false;
er-If-after read := false;
er-If-before write := true;
er-If-after write := false;
end;

while true do begin
{ Fill the output buffer with a prompt. }
h02$put(d, output buffer, 80, options) ;
h02$get(d, input buffer, 80, options, count);
{ Process the command in input buffer.}
end; -

end { operator };

be9in
t • • • }

end { example }.

FIGURE A-8. AN EXAMPLE (SHEET 2 OF 2)

A.3 INTERFACE VIA MESSAGE CHANNELS

The previous section presents routines that may be executed within
the user~s process to communicate with a serial-device. The primary
advantage of this level of interface is that there is a minimum data
space overhead. It is particularly appropriate for applications that
have a single user process. If several processes require access to a
device, it is desirable to produce an interface handler, a process
that services a queue of requests from application processes and
communicates with the device that it controls. With this approach it
is possible for application. processes to overlap -computation with
input and output.

Figure A-9 shows H02$HANDLER, an interface handler constructed from
the routines described in Subsection A.2. BASE, LEVEL, and RATE are
parameters to H02$HANDLER which are required by H02$0PEN to
initialize a 9902. KEYBOARD and PRINTER are message channels upon
which input and output requests, respectively, will arrive. Each
request to the handler is a record of type COMMAND. BUFF is a
pointer to a buffer of size LENGTH characters. COUNT is set by the

A-12

~

J
/

'
_/

user to indicate the number of characters to be sent and is set by
the handler to indicate the number of characters received. OPTIONS
is the option record described in Section A.2.6.

The calls to the routine C$NOTIFY cause the device interrupt
semaphore to be signaled whenever a command is sent to the KEYBOARD
or PRINTER channel, thus simulating an interrupt. Note that the code
for H02$WAIT in Section A.2.3 waits for any signal to ATTENTION,
whether it be generated by an interrupt or by a software signal. The
processing in the handler occurs within an infinite loop that is
traversed whenever there is a state change (signal to ATTENTION). If
a keyboard or printer command is not pending, C$CRECEIVE is called
to accept a command if one has arrived. If a character has been
entered (the keyboard buffer is not empty) and a keyboard command is
present, the H02$GET is called to input a logical record, and·
C$ACKNOWLEDGE is called to signal the requester that his command has
been processed. If there is no keyboard activity and a printer
command is present, then H02$PUT is called to output a record. If
neither keyboard nor printer activity is .Pending, H02$WAIT is called
to await a change of state.

Note that a printer command is not processed unless there is no
keyboard activity pending. If a series of printer commands is queued
for output and a character is entered at the keyboard, printer
activity will be suppended at the end of the current record until
the keyboard record has been completely entered. Since ij02$GET is
not called unless the printer is idle, there is no need to
synchronize access to the printer in order to echo keyboard
characters. With this implementation characters will not be echoed
unless a keyboard request is pending. Note also that H02$WAIT is ·not
called following the processing of a keyboard or printer command
unless all tests for pending activity fail. These tests must all be
made since it is possible that a change of state (e.g., arrival of a
keyboard command) occurred when H02$WAIT had been called by a
routine (e.g., H02$0UT) that could not recognize the simulus.

type
command = record

buff: dummy_buffer_ptr:
length, count: integer;
options: option record:
end: -

command_ptr = @command:

program h02$handler(base, level, rate: integer:
keyboard, printer: cid):

var
d: devic.e _ptr :
keyboard cmd, printer cmd: command_ptr:

begin - -
{t stacksize = 100: priority = level }

h02$open(base, level, rate, d '):
with d@ do begin
· keyboard_cmd := nil:

A-13

printer cmd := nil:
c$notify (keyboard., attention) :
c$notify(printer, attention) : ·
while true do begin

if keyboard cmd = nil then
c$creceive(keyboard, keyboard cmd):

if printer cmd = nil then -
c$creceive(printer, printer cmd):

if number of characters > 0 and keyboard cmd <> nil then
h02$get(d~ keyboard cmd@.buff, keyboard cmd@.length,

keyboard cmd@.options, keyboard-cmd@.count) :
c$acknowledge(keyboard cmd): -
keyboard cmd := nil: -
end -

else
if printer cmd <> nil then begin

h02$put(-d, printer cmd@.buff, printer cmd@.count,
printer cmd@.options): -

c$acknowledge(printer cmd):
printer cmd := nil: -
end -

else h02$wait(d) :
end:

end:
end { h02$handler }:

Figure A-9. AN INTERFACE HANDLER

A.4 INTERFACE VIA 'FILE I/O SUBSYSTEM

begin

In this section a file I/O subsystem conforming to the conventions
of Section 6.3 is constructed that permits media-independent
communication with the interface handler H02$HANDLER that was
described in Section 7.3. Of the services that must be provided by
an I/O subsystem (Subsection 2.4.2), only- INIT, CONNECT, READ,

- WRITE, WAIT·, and DISCONNECT require special versions: the remaining
services are provided by entries of the "dummy" subsystem
(documented in Appendix D) •

Figure A-10 presents the data structures that ~re device dependent.
The command record is the same as that described in Subsection A.3.
T02$FID VARIABLES RECORD contains the variable data that are
associated with -each file that is connected to the subsystem.
COMMAND is a pointer to the command record that is used to request
services for the file. READ LENGTH PTR is used to remember the
addrP.ss of the parameter ACTUAL-LENGTH-that must be set when a read
request completes. OPTIONS contains the formatting options for the
file (Subsection A.2.6). T02$NODE HEADER RECORD specifies one
pathnam~ that will be serviced by this-subsystem and the format
options for that file. T02$PORT CONSTANTS RECORD is standard with
the exception of the usage of-the I/O aadress double word: in this
application it contains the CRU base and transmission rate of the
port. The two fields in T02$PORT_VARIABLES_RECORD contain the

A-14

message channel IDs of the keyboard and printer (input and output
devices) of the port •. (Computing WAITING as t7FFF + 1 yields a
one-word constant with value #8000: entering 18000 directly results
in a LONGINT constant.)

const
ok = #0000:
waiting= i7FFF + 1 { = #8000 }:

type
command record = packed record

buffer: dummy_buffer_ptr:
length: integer:
count: integer1
options: option record1
end1 -

command_ptr = @command_record:

t02$f id variables record = record
{ subsystem dependent structure }.
command: command_ptr;
read_length_ptr: @integer:
options: option record1
end1 -

t02$node header record = record
link: node header_ptr1
node type:-integer1
node name: dummy_buffer_ptr1
node name length: integer1
{ subsystem dependent fields }
options: option record1
end1 -

t02$port_constants_record = record
link: port constants_ptr:
interrupt level: integer1
base, rate: integer:
heap size: integer:
interface handler: address:
port_name: dummy_buffer_ptr:
port name length: integer:
node header: ·node_header_ptr;
f subsystem dependent fields }
end:

t02$port variables record = record
{ subsystem dependent structure }
keyboard: cid:
printer: cid;
end1

FIGURE A-10. SUBSYSTEM DEPENDENT DATA TYPES

A-15

A.4.1 Procedure T02$INIT

This procedure (Figure A-11) initializes the 9902 terminal
subsystem. The port variable record is allocated from the heap and
is initialized with (unique) channel IDs for the keyboard and
printer devices. The interface handler program H02$HANDLER is
activated using parameters from the port constants record.

procedure t02$init{ serv: service_directory_ptr;
port cons: port_constants..._Ptr;

var sub:- subsystem_ptr T;
var

port vars: port_variables_ptr;
begin -

new(port vars);
with port-vars@ do begin { initialize port variables }

c$init(-0, keyboard);
c$init(O, printer) ;
start h02$handler(port~cons@.base,

port cons@.interrupt level,
port-cons@.rate, -
keyboard,
printer) ;

end;
d$subsystem(serv, port_cons, port_vars, sub);

end { t02$init };

FIGURE A-11. PROCEDURE T02$INIT

A.4.2 Procedure T02$CONNECT

This procedure (Figure A-12) is called to determine if a pathname
corresponds to a node of this subsystem; utility function EQ$NAMES
is used to compare pathnames with node names. If the pathname is
recognized, then a file ID variable record is created, and D$FID is
called to allocate and initialize a file ID record.

A-16 ,

,

procedure t02$connect{ sub:

var
found: boolean;

var pathname:
length:

var f:

node: node_header_ptr;
fid_vars: fid_variables_ptr;

subsystem_ptr;
dummy buffer;
inte~er;
fid J;

function eq$names{ var pathnamel: dummy buffer; lengthl: integer;
pathname2: dummy_buffer_ptr; length2: integer) :

boolean; external;

begin
node := sub@.port_constants@.node_header;

search:
repeat

found := eq$names{ pathname, length,
node@enode name,
node@.node-name length);

if found then escape search - -
else node := node@.link:

until node = nil;
if found then begin

new (f id vars) ;
with fid-vars@ do begin { initialize fid vars }

c$allocate{ size{command record), command) ;
read length ptr := nil; -
options := node@.options;
end;

d$fid{ sub, fid vars, f);
f@.status := ok:
£@.state := closed;
end

else f := nil;
end { t02$connect };

FIGURE A-12. PROCEDURE T02$CONNECT

~.4.3 Procedure T02$READ

· This procedure {Figure A-13) initiates input from the 9902 by
sending a keyboard command to the interface handler. Since this
procedure does not wait for the input to complete, the address of
ACTUAL LENGTH is saved in the FID variable record so the result can
be returned by T02$WAIT.

A-17

procedure t02$read{ f:
b:

begin

max length:
var actual_length:

if d$valid(f, $read) then begin

fid;
dummy_buffer_ptr;
integer;
integer };

with vars = f@.fid variables@, cmd = vars.command@ do begin
cmd.buffer := b;
cmd.length := max length;
cmd.count := O; -
cmd.options := vars.options;
c$send(f@.subsystem@.port variables@.keyboard, vars.command) ;
vars.read_length_ptr::address :=location(actual_length) ;
f@.status := waiting;
end;

end;
end { t02$read };

Figure A-13. PROCEDURE T02$READ

A.4.4 Procedure T02$WRITE

This procedure (Figure 7-14) initiates output to the 9902 by sending
a printer command to the interface handler.

procedure t02$write{ f: fid;
b: dummy_buffer_ptr;
length: integer };

begin
if d$valid(f, $write) then begin

with vars = f@.fid variables@, cmd = vars.command@ do begin
cmd.buffer := b;
cmd.length := 80;
cmd.count := length;
cmd.options := vars.options;
c$send(f@.subsystem@.port variables@.printer, vars.command) ;
vars.read_length_ptr := nil;
f@.status := waiting;
end;

end;
end { t02$write }; .

FIGURE A-14. PROCEDURE T02$WRITE

A.4.5 Procedure T02$WAIT

This procedure (Figure A-15) waits for a keyboard or printer request
to be completed. If READ LENGTH PTR is not NIL, then the command was
to the keyboard, and the number of characters that were transferred
is returned as the result ACTUAL LENTGH of T2$READ.

A-18

\
~-·)

(.··

\--

procedure t02$wait{ f: fid }7
begin

if £@.status < ok then
with f@.fid variables@ do begin

c$wait(c0mmand)1
£@.status := ok1
if read_length_ptr <> nil then begin

if command@.count < 0 then £@.status := eof_encountered1
read length ptr@ := command@.count1
read:length:r>tr := nil1 .
end1

end1
end { t02$wait }7

FIGURE A-15. PROCEDURE; T02$WAIT

A.4.6 Procedure T02$DISCONNECT

This procedure (Figure A-16) disconnects a file ID by deallocating
the com.~and and file ID varaiables records and calling D$RELEASE the
release the file ID record.

procedure t02$disconnect1 var f: fid }7
begin

if d$valid(f, $disconnect) then begin
c$dispose(f@.fid variables@.command)1
dispose(f@.fid variables)1
d$fidrelease(f-) 1
end1

end { t02$disconnect }7

FIGURE A-16. PROCEDURE T02$DISCONNECT

A.4.7 Module T02$SD

This module (Figure A-17) declares the service directory for the
9902 terminal interface subsystem. Services OPEN, CLOSE, DSTATUS,
ABORTIO, CREATE, DELETE, and POSITION are provided by the "dummy"
subsystem (Appendix D) •

" :, : __

REF T02$IN;T02$CO,DUM$0P,T02$RE,T02WR,DUMCL
REF DUM$DS,T02$DI,DUMAB,DUMCR,DUMDE,DUMPO,T02$WA

T02$SD EQU
DEF

$
T02$SD

*****ENTRY*****

*
DATA DIRSZ,T02$IN,T02$CO,DUM$0P,T02$RE,T02WR,DUMCL
DATA DUM$DS,T02$DI,DUMAB,DUMCR,DUMDE,DUMPO,T02$WA

. FIGURE A-17. MODULE T02$SD

A-19

A.4.8 Module T02$PC

This module (Figure A-18) is a sample port constants structure for
the 9902 subsystem. The port is the primary 9902 on a TM990/101
board (CRU base >0080 and interrupt level 4) and the transmission
rate will be determined by the first character received. Two nodes
are provided, OPERATOR and VDT; they differ only with respect to the
carriage control options: OPERATOR permits a prompt to be written to
the line from which keyboard input will be read. (OPERATOR is the
node to which the default ghost procedure directs the output of the
standard procedure MESSAGE.)

T02$PC EQU $

*

*
NOD El

*
NODE2

*
*

DEF T02$PC

DATA 0
DATA 4
DATA >0080
DATA 0
DATA 0
DATA 0
DATA NAMEO
DATA LNGTHO
DATA NODE!

DATA NODF.:2
DATA 0
DATA NAMEl
DATA LNGTHl
DATA >9000

DATA 0
DATA 0
DATA NAME2
DA'rA LNGTH2
DATA >DOOO

*****ENTRY*****

LINK
INTERRUPT LEVEL
CRU ADDRESS
BAUD RATE; 0 => ADJUSTABLE
HEAP SIZE (CURRENTLY UNUSED)
INTERFACE HANDLER
PORT NAME
PORT NAME LENGTH
NODE HEADER POINTER. CANNOT BE NIL.

LINK
NODE TYPE
NODE NAME
NODE NAME LENGTH
OPTIONS = (ECHO, CR/LF BEFORE WRITE

LINK
NODE TYPE
NODE NAME
NODE ~AME LENGTH
OPTIONS = (ECHO, CR/LF BEFORE READ,

CR/LF Bl:!!H'ORE: WRITE)

NAMEO TEXT ~9902 AT >080~
LNGTHO EQU $-NAMEO

EVEN
*
NAMEl TEXT ~OPERATOR~
LNGTHl EQU $-NAMEl

EVEN
*
NAME2 TEXT ~VDT~

LNGTH2 EQU $-NAME2
EVEN

FIGURE A-18. MODULE T02$PC

A-20

..

)

~ I

. '

.' ,. ;. -

-c~-~"··1~;!1,.::~~~~?~r~fi·~"r;rct~~n~~~'.ttz~~sr~r;~~~!fBi!10:~~;'~·tGk·~~~~~~~§~fI~~~S'.:¥~:~~,~ff·t'.(~~::i
·; :·,,:· '_;:,,.: :'"'--' -·-;~-.' . - :~-·;. -,.-

··--'•" -·_ .•

. ·(·.

·,.·

··-.--,_

_ APPENDIX B

INITIALIZATION DATA STRUCTURES

B.l GENERAL

The information that follows presents the data structures included in
the configuration of systems with I/O Subsystem components and used in
their initialization. Also presented in this appendix are those data
structures associated with the IPC Subsystem described in Section IV.

Prior to presenting this material, the requirements affecting the way
in which initialization must work are listed.

B.2 INITIALIZATION REQUIRMENTS

Listed below are the Device Independent File I/O initialization
requirements. These requirements affect the data structures used by
the device independent file I/O routines.

• I/O Subsystems are members of TI's family of component
software (see Subsection 1.4 for a description of TI
component software}. As such, they may not be bound to a
specific system configuration until power up. Therefore
the data structures that define the system configuration
must be part of the initialization code.

• The call to system initialization can occur at any of the
various levels of entry into the I/O model (File I/O
Decoder level, I/O Subsystem level, interface handler
level}. Therefore, the data must be structured into
hierarchical levels.

• Many users will require the configuration code to be
specified in ROM. Therefore, the data must be partitioned
into ROM (for constant and default values}, and RAM (for
variable or dynamic values}.

B.3 INITIALIZATION DATA STRUCTURES

The data structures required for system initialization are described
in the subsections that follow. These data structures are constructed
and organized to meet the initialization requirments listed above in
Subsection B.2.

B.3.1 I/O Service Directory (D$IODIR}.

The I/O Service Directory (D$IODIR} is the top-level data structure
required for system initialization. This directory contains a two-word

B-1

entry for each of the I/O Subsystems in the target system that can be
accessed via the File I/O Decoder. The end of this directory is marked
by a null entry.

Each word in the two-word entry contains a pointer to a data structure
containing information required by its associated I/O Sub~ystem. The
first word points to the service directory for the I/O Subsystem. The
second word points to a Port Constants Record (for the first I/O port
managed by that subsystem) • Information on these data structures is
presented in Subsections B.3.2 and B.3.3 respectively.

Figure B-1 depicts the I/O Service Directory.

too
#02

#04

#06

#08

IOSVCDIR@
.......

PORTCONS@

IOSVCDIR@ ,__
PORTCONS@

. .
etc . .

0

Entry for First I/O
Subsystem on Target

Entry for SECOND I/O
Subsystem on Target

Remaining I/O Subsystems
on Target

Null entry marking
End of table ·

FIGURE B-1. I/O SERVICE DIRECTORY

B.3.2 I/O Subsystem Service Directory (IOSVCDR).

As stated above, the first word in each of the two-word entries making
up the I/O Service Directory is a pointer to the I/O Subsystem Service
Directory (IOSVCDR). The I/O Subsystem Service Directory contains the
entry points to the specific procedures within the I/O Subsystem which
must be invoked to perform the file level services requested via the
File I/O Decoder (i.e., via calls to the D$routines listed in
Subsection 2.3.1). As previously stated, these I/O Subsystem entry
points are formed by attaching a pref ix (unique to the particular
subsystem) to the generic names of the file services (connect, open,
read, write, etc.).

I

The I/O Subsystem Service Directory is normally
libraries supplied with an I/O Subsystem. The
pulled into the load. module at link :edit :time

packaged in one of the
directory itself is

The first entry in the I/O Subsystem Service Directory specifies the

B-2

.·c·.~· .. ·. .)
c',;;;._'/

length of the directory. This entry is required because the user has
the capability of adding additional entry points as warrented by the
I/O Subsystem.

Figure B-2 depicts the I/O Subsystem Service Directory. The entries
listed below are the minimum entries that each such directory must
contain. (As noted previously, even if a particular I/O Subsystem does
not contain a procedure to implement a file level service requested
via the File I/O Decoder, it still contains a corresponding entry
point. However, in this case, the entry point is associated with a
dummy routine. Note that the order of the entry points in the table is
fixed and specified by the I/O standards, as shown in the figure
below.

B-3

too
length Total size of this record (Currently not ,,~

used) . ;,/
102

$init Address of xxx$init routine

f 04
$connect Address of xxx$connect routine

#06
$open Address of xxx$open routine

#08
$read Address of xxx$read routine

#OA
$write Address of xxx$write routine

#OC
$close Address of xxx$close routine

tOE
$dstatus Address of xxx$dstatus routine

#10
$disconnect Address of xxx$disconnect routine

#12
$abort io Address of xxx$abortio routine / __ ,, ..

#14
$create Address of xxx$create routine

#16
$delete Address of xxx$delete routine

#18
$position Address of xxx$position routine

#lA
$wait Address of xxx$wait routine

#le

FIGURE B-2. I/O SUBSYSTEM SERVICE DIRECTORY

B-4

B.3.3 Port Constant Record (PORTCONS)

rhe second word in each two-word entry contained in the I/O Service
Directory contains a pointer to a Port Contstants Record (PORTCONS) • A
Port Constants Record contains constant information describing the
physical characteristics of an I/O port associated with a given I/O
Subsystem (port refers to the connection between the system and the

· I/O device or node). The Port Constants Record may contain only fixed
information because in many cases, Port Constant information will be
accessed from read-only memory during normal program execution. The
user can build his Port Constants Record in the CONFIG module or can
place it in a separate module. If he chooses the latter, the user will
have to "include" this module in his link edit control file.

More than one port may be accessible to an I/O Subsystem; a separate
Port Constants Record exists for each port. All the Port Constant
Records associated with a single subystem are joined together in a
forward linked list. The pointer present in the I/O Directory begins
the list. Each Port Constants Record in turn points to the Port
Constants Record for another associated Port. The last Port Constants
Record in the list contains a null pointer.

The required format of the Port Constants Record is displayed below in
Figure B-3 (note that the last part of this structure is reserved for
I/O Subsystem-dependent information) •

B-5

#00

#02

#04

#06

#08

#OA

#OC

#OE

#10

#12

link

interrupt level

io address 1

io address 2

heap size

handler

port name

port name
length

node constant
record pointer

*
*
*

Pointer to next port constants record

Indicates the interrupt level of a device

Port address 1 (used when appropriate to
specify a memory mapped I/O port)

Port address 2 (used when appropriate to
specify a memory mapped I/O port)

Size of the heap packet allocated to the
subsystem (may be nil)

Address of interface handler (must be
specified)

Address of the string containing the port~s
name (may be undefined)

Length of the port~s name (may be 0)

Pointer to the associated Node Constants
Record (may be nil)

Subsystem dependent fields
e.g. Baud Rates, etc.

FIGURE B-3. PORT CONSTANTS RECORD

B-6

)

~ ..

\

B.3.4 Node Constants Record

The Node Constants Record (also called Node Header Record) provides a
desciption of a terminal node accessible through a port. In essence,
node refers to the actual physical device (contrast with file which is
a logical entity). Each terminal node accessible through the port has
a separate Node Constants Record associated with it. A forward link
list connects all of the Node Constants Records associated with a
given port.

The format of the Node Header Record is presented below in Figure
As for the Port Constants Record, -the Node Constants Record
contain only fixed information. As such, the user should build
record in ROM.

#00

#02

·t04

link

node type

Points to the next node header record

Indicates the type of the node
(currently not used)

B-4.
must
this

node name Pointer to the string containing the node~s
name (must be specified)

#06
node name Length of the node~s name (cannot be 0)
length

#08

* Subsystem dependent fields
*
*

FIGURE B-4. NODE CONSTANTS RECORD

B.3.5 File Id~ntification Record (FIDRCD).

When an I/O Subsystem begins execution, it calls a procedure to
allocate memory for and link in a File Identification Record (FIDRCD) •
The File Identification Record thus created provides for the
association of a file· (passed to the I/O Subsystem by the Connect
procedures) with the device controlled by that I/O Subsystem. In
addition, The FIDRCD provides for the return of I/O "status" and file
"state" information and associates the specific user with the specific
file. Subseqeunt to the "Connect", the FIDRCD is used to identify the
file being manipulated to the I/O Subsystem. All FIDRCDs associated
with a single process are connected in a forward link list. The
pointer on the last FIDRCD is set to nil. The format of the FIDRCD is
fixed as displayed below in Figure B-5.

B-7

• !
' i

#00

#02

#04

#06

#08

#OA

#OC

link

subsystem

status

state

variables

global frame

Pointer to next FID in the linked list

Pointer to the subsystem record
associated with the file

Status of the file

State of the file

Pointer to the subsystem dependent
variable record (FID Variables Record)

Address of the global frame of the
process in which this file identifier
was created

FIGURE B-5. FILE IDENTIFICATION RECORD

B.4 IPC I/O SUBSYSTEM DATA STRUCTURES

These data structures are used exclusively to implement the ~
interprocess communication (IPC) I/O subsystem. The following data ~J
structures allow data to be transferred via messages passed through
channels.

) _,

B-8

B.4.1 IPC FID Variables Record

rhis record is accessed through a FID record. It contains the
addresses of parameters used to read data, the file~s message buffer,
and a pointer to the pathname record.

#00

#02

#04

#06

#08

#OA

read length
pointer

maximum
length

read
buffer

pathname
node

command

Address of the word into which the
number of characters transferred
is to be stored at the completion
of a read request

Indicates the maximum number of characters
that can be read into a buffer

Address of the buffer into which
data are to be read

Address of the unique pathname record for
the file

Address of the message record
used to transmit data

FIGURE B-7. IPC FID VARIABLES RECORD

B.4.2 IPC Port Variables Record

This record is accessed through an !PC-subsystem record. It points to
a linked list of pathname records, each containing the unique
characteristics of a particular file.

#00

#02

#04

mutex

pathname node

Address of the semaphore used to ensure
mutual exclusion when accessing the list

Address of the first pathname in the list

FIGURE B-8. IPC PORT VARIABLES RECORD

B-9

B.4.3 Pathname Record

This record is accessed through either.the pathname node field of th~
process IPC FID variable record or the IPC port variables record. Tl'_ :)
pathname record contains characteristics unique to a given file. Also··
contained are values used to access and synchronize access to the
file ... s channel.

#00

#02

#04

#06

#08

#OA

#OC

#OE

#10

#12

#14

#16

#18

#lA

mutex

link

length

name

type

record size

end of
production

create called

end of
consumption

waiting
for create

number of
producers

number of
consumers

number connected

channel

Address of the semaphore used to ensure
exclusive access to the pathname record

Address of next pathname in linked list

Number of characters in the f ile ... s name

Address of the string containing the file ... s
name

Packed record defining file format, record
format, file usage, and file compression

Maximum number of characters in a logical
record

Boolean indicates if all producers have
closed on a channel

Boolean indicates file creation

Points to a semaphore used to synchronize
the closing of producers

Points to a semaphore used to synchronize
the creation of a file

The number of processes writing to a file

The number of processes reading a file

The number of processes connected to a file

Address of the unique channel associated
with this pathname

FIGURE B-9. IPC PATHNAME RECORD

_j

B-10

(

B.4.4 Message Record -,
Interprocess communication data is transmitted through a message

- record.

#00

#02

#04

#06

buffer

length

count

Address of the data to be sent via
IPC or of the buffer into which data
is to be received

Number of total bytes in the message
field

Number of bytes actually sent in the
message field

FIGURE B-10. IPC MESSAGE RECORD

B.5 INITIALIZATION OVERVIEW

The figure that follows presents an overview of system initialization
via D$INIT. The purpose of this illustration is to tie together many
of the above data structures.

B-11

.--

->

I D$INIT I

IOSVCDIR@(#l)

PORTCONS@ (#1)

IOSVCDIR@ (#2)

PORTCONS@ (#2)

length

STARTED BY GHOST$ PROCESS AT
POWER UP.

I/O SERVICE DIRECTORY PRESENT
IN CONFIG.

link
INIT@ I/O SUBSYSTEM PORT CONSTANTS

RECORD CONNECT@ SERVICE DIRECTORY
OPEN@
READ@
WRITE@
CLOSE@ 1

STATUS@ I·
DISCONNECT@ ~
ABORT IO@ f
CREATE@
DELETE@
POSITION@

link ~

I

node type

node name@
l

:
length '
IOSS
dependent
info.

NODE CONSTANTS
RECORD

B-12

int. level

heapsize

ifhndlr@

portname@

length

nodehdr@

IOSS
dependent

~ info

:)

.. -~)

. _/
)

/~-

APPENDIX C

STATUS AND ERROR MESSAGES

C.l GENERAL

This section presents error messages generated during execution of the
File I/O Decoder. These error messages are at the level of the File
Identifier Record (FID) denoting error information relative to
operations on the FID. Three categories of messages are described:
nstatusn information captured in the STATUS field of th~ FID record
and returned by the function D$STATUS, nstaten information captured in
the STATE field of the FID and returned by a call to the function
D$VALID, and process information which may be examined in the Process
Descriptor Record.

Error messages generated during execution of the individual I/O
Subsystems are unique to each I/O Subsystem. In many instances, a user
who is returned a FID level error message will need to inspect error
messages returned by the specific I/O Subsystem. Two ways of obtaining
this error information are available. If more than one I/O Subsystem
is operating on the target and the user is unaware of the particular
I/O Subsystem to be accessed, a call to D$DSTATUS should be made. If
the appropriate I/O Subsystem is known, a call to the Status function
in that subsystem can be made. Information on the Status messages at
the I/O Subsystem level can be obtained from the user manuals
dedicated to the various I/O Subsystems.

C.2 STATUS

The current status maintained in the FID record field nstatusn is
returned to the user when the File I/O Decoder function D$STATUS is
called. This status information is subsystem independent, defining the
success or failure of the oldest outstanding request on the FID.

In general, a status value of 0 indicates that no error condition
currently exists and no activity is in progress. A non-zero value
indicates the current status of an outstanding request or the
existence of an exception condition. Values for the following
conditions are standarized (device/subsystem independent):

CODE

0000

Bxxx

0101.

CONDITION

Idle or last request complete~ No exception
condition.

Request in progress.

End of .File encountered.

C-1

0102

0103

End of information encountered. No more
information is present on the medium.

End of medium encountered.

NOTE: The Olxx messages defined above are not exclusive but rather may
occur together.

02x0

1
2
3
4
5
6
7
8
9

File error condition as follows:

Unsuccessful open
Unsuccessful read
Unsuccessful write
Unsuccessful close
Unsuccessful disconnect
Unsuccessful create
Unsuccessful delete
Unsuccessful position
Unsuccessful abortio

The user may need to examine the error messages generated at the I/O
Subsystem level to determine the cause of the 02x0 messages above.

04x0

08xy

Physical data link error on last request as
defined by subclassifications 1 through 9 above.

Illegal state change: x = 0 •• 6 and defines

-}

present state of FID; y = 0 •• 9 and defines
operation on FID that was requested but failed)
(y values specify same conditions as x values -
above). For additional information on State,
refer to Subsection c.3 below.

C.3 VALID STATE CHANGES

State information defines the condition of the FID (e.g., Connected,
Open, Closed, etc.). By calling the File I/O Decoder function D$VALID,
the user may check for valid state changes. The function returns a
value of True or False based upon the attempted operation on the FID
(the call to D$VALID is described in Subsection 3.12.13). If False is
returned, a call to D$STATUS should be performed in order to check for
the specific error CiPBxy will be returned as described above).

Valid State changes are presented in table format below.

C-2

' .

-~

TABLE C-1. STATE TABLE FOR FILE I/O DECODER

State Operation on FID
of

FID Conn Create Open Read Posit Write Close Delete Disc

o. Initial 1

1 Conn/Close 2 4,5,6 3

2 Created 4,5,6 3

3 Deleted 2

4 Open for Rd 4 4 1

5 Open for Wt 5 1

6 Open for R/W 6 6 6 1

In the above table, the FID states are listed vertically and numbered
0 thru 6. Operations that can be attempted on the FID are indicated to
the right of each FID state. The numbers to the right of each FID
state identify the subsequent state of the FID (as idenitified by the
vertical numbers) after the corresponding FID operation is performed.
For example, After the FID is connected the FID state changes from 0
(Initial) to 1 (Connect/Close). After the connected FID is Opened, the
FID state is 4, 5, or 6.

NOTE: the Initial state (assigned 0) is not a true state but rather
exists merely for documentation purposes. Prior to connection, the FID
does not exist. Also, after disconnection, the FID does not exist.

C.4 RUN-TIME SUPPORT ERROR MESSAGES

The following error messages concerned with the File I/O Decoder and
I/O Subsystems are generated by the RTS during program execution.
These errors are captrired in the process record of the active process.

I/O Decoder Errors - Class Code = B

1 empty file identifier list
2 file identifier not found
3 file identifier not released

Interprocess Communication Errors - Class Code = C

1 no heap for pathname record
2 no heap for name field
3 no heap for file variable record
4 no he-ap for port variables

C-3

0

0

0

APPENDIX D

IMPLEMENTATION OF DUMMY I/O SUBSYSTEMS

D.l GENERAL

The Dummy I/O Subsystem is comprised of a set of dummy routines that
serve two purposes:

l} Certain services are not meaningful in some subsystems due
to the nature of the medium associated with the subsystem.
Often the corresponding service routine in the dummy
subsystem may be used to provide a "dummy" or "no-op"
routine that conforms to I/O subsystem interface
requirements. This substitution is made in the routine
list of the I/O Service Directory (Appendix B} of the
subsystem. For example, IPC$DELETE is not implemented in
the IPC subsystem (Section IV} since there is no physical
media to be deleted. If a process references a delete
routine through the I/O Service Directory, then the dummy
subsystem routine DUM$DELETE will be invoked.

2} The Dummy Subsystem also allows producer and consumer
processes to create and access specific files on which
most file operations are suppressed. Such a system ,is
useful to define "dummy files" in processes. In these
systems, the messages written to dummy files are consumed
but. not passed along to other processes. Processes which
try to read from such files receive end-of-file status.
This subsystem can be used to "dummy" out file access in
user applications.

Routines comprising the dummy subsystem may be invoked as all other
I/O Subsystem routines (via the File I/O Decoder}. Thus, the calling
sequence for each dummy routine is compatible with the calling
sequence for the corresponding routine found in any other subsystem.
Also, the definition of the use of the parameters in the dummy
routines is consistent with their definition in all other
corresponding subsystem routines.

The data structures (records} used in the dummy subsystem contain the
same fields as illustrated in Appendix B (describing all I/O Subsystem
data structures}.

D.2 Dummy Routine Descriptions

The routines comprising the dummy subsystem are described below. The
routines are considered alphabetically: no calling sequences are
presented as they are the same as for othe~ I/O Subsystems. The Pascal
source for each routine is supplied with :the product.

D-1

D.2.1 Procedure DUM$ABORTIO

This routine will call a wait routine through the I/O Decoder.
Decoder will then reference the appropriate subsystem~s wait
as configured. If the FID is a dummy subsystem file, then the
will call DUM$WAIT, which does nothing.

D.2.2 Procedure DUM$CLOSE

The I/O
routine
Decoder

This routine checks that a file is in a valid state for a call to a
close routine. If the file is in a valid state, then a wait routine is
called through the I/O Decoder to insure that all impending I/O
operations have completed. DUM$CLOSE then updates the status and state
of the file and returns. The parameter "with eof" is not used in this
system.

D.2.3 Procedure DUM$CONNECT

This routine searches the port node records associated with the dummy
subsystem to determine if the pathname parameters of this routine is
one that sho~ld be connected to the dummy subsystem. If it is, a file
identifier record is constructed and returned to the caller.

D.2.4 Procedure DUM$CREATE

This routine checks that a file is in a valid state for a call to a
create routine. If the state is valid, then routine will update the
status and state of the file. DUM$CREATE performs no create operation
on the file but was included to provide the dummy subsystem with a
create routine which has a calling sequence conforming with the create
call of other I/O subsystems (the only ~eaningful parameter is the
FID).

D.2.5 Procedure DUM$DELETE

This routine checks that a file is in a valid state for a call to a
delete routine. If the state is valid, then routine will update the
status and state of the file. DUM$DELETE performs no delete operation
on the file but was included to provide the dummy subsystem with a
delete routine which has a calling sequence conforming with the delete
call of other I/O subsystems.

D.2.6 Procedure DUM$DISCONNECT

This routine checks that a file is in a valid state for a call to a
disconnect routine and then deallocates those data structures that are
associated with a file identifier record. Note that this routine can
be used by other subsystems if they allocate "fid variables" using NEW

D-2

j

/

and if the f id variable record contains no substructures that require
special processing to be deallocated.

D.2.7 Function DUM$DSTATUS

This function always returns a ndrmal status for the rile. DUM$DSTATUS
performs no status check on the file but was included to provide the
dummy subsystem with a status routine which has a calling sequence
conforming with the status call of other I/O subsystems.

D.2.8 Procedure DUM$INIT

This routine initializes the subsystem record.

D.2.9 Procedure DUM$0PEN

This routine checks that a file is in a valid state for a call to an
open routine. If the state is valid, then the file is' opened for
reading, writing, or both as specified in the parameter •priv". The
parameters "ft", "logical_record_length" and "number_of_records" are
then initialized to be compatible with a file of variable length
records with typical length of 80 bytes.

D.2.10 Procedure DUM$POSITION

This routine checks that a file is in a valid state for a call to a
position routine. If the state is valid, then the routine will update
the status of the file. DUM$POSITION performs no position operation on
the file but was included to provide the dummy subsystem with a
position routine which has a calling sequence conforming with the
position call of other I/O subsystems. ·

D.2.11 Procedure DUM$READ

This routine checks that a file is in a valid
read routine. If the state is valid, then
read parameter "Actual Length" to a default
status of the f il~. No actual read will
status will always be returned.

D.2.12 Procedure DUM$WAIT

state for a call to a
the routine will set the
value, and update the
occur and an end-of-file

This routine performs no wait operation on a file. DUM$WAIT performs
,-Vi wait operation on the file but was included to provide the dummy
subsystem with a wait routine which has a calling sequence conforming
with the wait call of other I/O subsystems.

D-3

D.2.13 Procedure DUM$WRITE

This routine checks that a file is in a valid state for a call to a .··)
write routine. If the state is valid, then the routine will update the '~
status of the file. No message is written to a file.

D-4

APPENDIX E

FILE ATTRIBUTES FOR USE IN CALLING FILE SERVICE ROUTINES

E.l GENERAL

This appendix contains a discussion of the file attributes described
by the parameters passed to the File I/O Decoder entry points D$CREATE
and D$0PEN (detailed in Section III). These entry points are accessed
(whether directly or via the Pascal primitves) to create and open a
file for access.

The file attributes discussed below include file
format, file compression, access type, access
protection, and file names.

format, record
privilege and

NOTE: Some parameters passed at the file level to define these
attributes are ignored at the I/O Subsystem level because they are

aaningless to the node being controlled. (e.g., D$CREATE~s parameter
Protection Code is ignored by the IPC Subsytem~s Create routine).

E.2 FILE FORMAT

File format describes the physical organization of a file and is
specified at the time the file is created. Contiguous files have a
fixed file extent. Non-contiguous files have no such fixed length and

r are allowed to grow dynamically up to a maximum of 16 secondary
allocations. Contiguous and non-contiguous files and how they are
allocated to bulk memory storage are described below.

E.2.1 Contiguous Files

When a contiguous file is created, the user specifies the maximum
number of records to be written in the file and the length in bytes of
0 ach logical record. The number of records is multiplied by logical
_ecord length to arrive at file extent.

E.2.2 Non-Contiguous Files

When ·a non-contiguous file is created, the user specifies a logical
record length, an initial number of records to be written in the file,
and an incremental number of records to expand the file. The primary
allocation is the product of the primanry number of records and the
logical record length both rounded up to the nearest multiple of Aus.
The secondary allocation is the product of the incremental number of
records and the logical record length.

The non-contiguous file format allows files to grow dynamically.
Non-contiguous files can be created small and can be allowed to grow
as needed.

E-1

. ~-; .. -. .,_- ;c:,....:-~· -·- - --- - . --- -~

E.3 RECORD FORMATS

Record format describes the-logical organization of the file and is
specified by the user at the time of file creation. Three record
formats are defined:

• Variable length
• Fixed length
• Free length

Each of these formats is examined below.

E.3.1 Variable Length

Variable length records making up a file are logical data structures ''
in which the individual record length is not fixed. A variable length
record format provides an economical way to use file space in
applications that must record data structures of unpredictable
lengths. Since the length of the records is a variable, the length of
each individual record must be recorded along with the record data
itself. Record headers and trailers are used to contain length
information and provide record boundaries. The format of variable
length records supports file compression as discussed in Subsection
E.4.

E.3.2 Fixed Length

A file of fixed length
structures all of which are
records facilitate random
access position functions
records.

E.3.3 Free Length

records consists of copies of logical data
exactly the same length. Fixed length
access~ the command to change a file~s

more easily on files of fixed length

The free region format allows the user to conceptually subdivide an
unformatted array of bytes into a structure of his own choosing. In a
file of free region records, the logical record length is one.

E.4 FILE COMPRESSION

File compression is achieved via the surpression of nulls in the
recording of data contained in files with variable length records.
Information stored in the record header and trailer results in the
automatic restoration of nulls when the file~s records are accessed.
Because of the necessity of header and trailer information,. and
because of the varying record lengths that can result from file
compression, file compression cannot be used on files of fixed length
(or free length) records.

E-2

E.5 ACCESS METHODS

Access methods pertain to the action of recording and retrieving data
in a file. Access via the D$READ and D$WRITE routines takes place
sequentially. Records are processed in order of their increasing
record numbers on the medium. Random access (processing of a record
regardless of its location) can occur by using the D$POSITION command
to reposition the file to the desired location. Because of the nature
of variable and fixed length records, random access proceeds slower on
the former.

E.6 ACCESS PRIVILEGE

Access privilege is requested at the time the file is opened for
access and establisnes a relationship between a user and a data file.
This relationship specifies what activities the user can perform on
the· file (read, write, execute, and extend as described below) and
whether or not any other user will be allowed to acc~ss the file. The
user specifies True or False as defined below.

Exclusion

Reading

Writing

Execute

Extend·

By specifying True, the user gains
exclusive access to the file or is
denied access if the file is being
accessed by another user.

By specifying True, the user requests
the capability to read. Whether or
not others may access depends on the
"Exclusion" field above.

By specifying True, the user requests
the capability to write. If the user
will be writing to a variable length
record file, he must specify True to
the "Exclusion" field. ·

By specifying True, the user requests
the capability to execute a program
file. This option is for possible
use by operating systems and is not
currently supported.

By specifying True, the user wishes to
extend the file.

For each of the above access activities listed, the appropriate
password is also required to allow user access as described in the
following subsection.

E.7 ACCESS PROTECTION

E-3

At create
the access
Protection
activities,
proctection

time, the user can assign a level of password protection to
activities that can be performed on a file. The parameter
code defines this protection. For each of four access
read, write, modify, and execute, a level of password
can be assigned as follows:

#1 Unrestricted Access
#2 User Password needed to access
#3 Creator password needed to access
i4 No access

where user and creator passwords are defined at the time the file is
opened. It is possible to access a file with level 2 protection by
using a Creator Password, since Creator access is a special form of
User access.

E.8 FILE NAME

A special file attribute defined when the file is first connected to
an I/O Subsystem is the file pathname. While this name is I/0
Subsystem denpendent, the general naming convention is as follows:

1) A pathname consists of one or more node names.

2) Each node name consists of up to eight valid ASCII
characters; a character may be an upper-case alphabetic, a
numeral, or a dollar sign (~$~).

3) The first character in each node name must be alphabetic.

4) Each node name is separated from other nodes by an ASCII
period.

E-4

l

)

APPENDIX F

GLOBAL DECLARATION FILES FOR DIF I/O PACKAGE

F.l GENERAL

Global Declaration Files for the Pascal programmer using DIF I/O
routines are listed below. Two Global Declaration Files are presented.
The first is used for Pascal applications requiring the File I/O
Decoder. The second is used for Pascal applications utilizing the
Interprocess Communication I/O Subsystem.

F.2 _FiiE I/O DECODER GLOBAL DECLARATION FILE

program d$declarations;

const

dont care = 2;

_ { protection type }
any access = l;
user password = 2;
creator_password = 3;
no access = 4;
max_protection_type = 4;

{ file format l
contiguous = l;
noncontiguous = 2;
max file format = 2;

{ record format }
free length = l;
variable length = 2;
fixed length = 3;
ma.x record format = 3;

. { file usage }
data = l;
directory = 2;
allocation map = 3;
max_file_usage = 3;

{ file compression }
uncompressed = l;
compressed = 2;
max_file_compression = 2;

{ file access mode }
byte_relative = l;

F-1

sequential = 2 ,·
direct = 31

"•'

. :. ;

max file access mode = - - -
type

address = integer1
byte= O •• tFFJ

3· , .

dummy index range = l •• dont care1
dummy-buffer = packed array1 dummy index range] of char1
dummy bu~fer_ptr = @dummy_buffer1 - -
fid = @f1d1
hex_digit = O •• tFJ

file_access_mode = l •• max_file_access_mode1

file_access_privilege = packed
exclusive access: boolean1
read access: boolean1
write access: boolean1
execute access: boolean1
extend access: boolean1
endJ -

file type = packed record
file format: hex digitJ
record format: hex digit1
file usage: hex digitJ
file-compression: hex digitJ
endJ- -

password list = record
{·to be determined }
end1

record

password_list_p.tr = @password~list1

protection = packed record
read_protect: hex_digitJ
write_protect: hex_digitJ
modify_protect: hex digitJ
execute_protect: hex_digitJ
end1

F-2

,_, ____ :·.- .. ··-

.,,,_/

(

(

l.

{**}

procedure d$abortio(f: fid)1 external1

procedure d$close(f: fid1 with_eof: boolean)1 external1

procedure d$connect(var pathname: dummy_buffer1
length: integer:

var f: fid)1 external1

procedure d$create(f:
passwords:

·protect:
ft:
logical record length:
initial-allocation:
extension allocation:

f id1
password_list_ptr1
protection1
file type1
integer1
longint1
longint)1 external1

procedure d$delete(f~ fid)J external1

procedure d$disconnect(var f: fid)1 external1

procedure d$init1 external1

procedure d$open(f:
passwords:
mode:
pr iv:

var ft:

fid:
password_list_ptr1
file access mode:
file access_privilege1
file type1

var logical record length:
var number of records:

integer1
longint)J external1

procedure d$position(f: fidJ
relative: boolean1
number: longint)J external:

procedure d$rdwait(f: fid1
var b: dummy buffer:

max length: ·integer:
var actual_length: integer)1 external:

procedure d$read(f: fid1
var b:

max length:
var actual_length:

dummy buffer1
integer:
integer }J external:

function d$status(f: fid): integer: external~

procedure d$wait(f: fid)1 external:

procedure d$write(f: fidJ
var b: dummy buffer:

length: integer)1 external1

F-3

procedure d$wrwait(f: fid;
var b: dummy buffer;

length: integ~r); external;

{ **'.)
be9in

t$ nullbody }
end.

F.3 GLOBAL DECLARATION FILE FOR INTERPROCESS COMMUNICATION SUBSYSTEM

{$ statmap, map }
program dummy$subsystem;

const

bytes_per_word = 2;
dont_care = 2;

{ protection type }
any access = l;
user password = 2;
creator_password = 3;
no access = 4;
max_protection_type = 4;

{ file format }
contiguous = l;
noncontiguous =
max file format

{ record format }

2· ,
= 2;

free lengtl;l = l;
variable length = 2;
fixed length = 3;
max record format = 3;

{ file usage }
data = l;
directory = 2;
allocation map = 3;
max_file_usage = 3;

{ file compression }
uncompressed = l;
compressed = 2;
max_file_compression = 2;

{'file access mode'}
byte relative = l;
sequential = 2;

F-4

_)

direct = 3;
max_file_access mode = 3;

{ f id state }
closed = l;
created = 2;
deleted = 3;
open for reading = 4;
open-for-writing = 5;
open:for:both = 6;

{ f id operations }
$open = l;
$read = 2;
$write = 3;
$close = 4;
$disconnect = 5;
$create = 6;
$delete = 7;
$position = A;
max_fid_operation = 8;

$abortio = 9;

eof encountered = #0101;

file error = #0200;
unsuccessful open = file error + #10 * $open;
unsuccessful-read = file-error + #10 * $read;
unsuccessful-write = file error + #10 * $write;
unsuccessful-close = file-error + tlO * $close;
unsuccessful-disconnect =-file error + #10 * $disconnect;
unsuccessful-create = file error + #10 * $create;
unsuccessful-delete = file-error + #l<Y * $delete;
unsuccessful_position = file_error + #10 * $position;
unsuccessful_abortio = f ile_error + #10 * $abortio;

fid_illegal_operation_error = #0800 { + fid operation };

normal = O;
waiting = #8000 ;

ipc$err = 12;
no_heap_for_pathname record
no heap for name f ieTd
no-heap-for-file-variable record = 3;
no heap:for_port variables_record = 4;

type
rt_type = (none$$, err$, f$$, hp$$, in$$, p$$, c$$, sm$$,

ipc$$, ct$$, iod$$);
address = integer;
byte= O •• tFF;
dummy_index_range = l •• dont_care;

F-5

dummy buffer =packed array[dummy_index_range] of char;
dummyt>uffer__ptr= @dununy_buffer;
fid operation= l •• max fid operation;
hex digit= O •• tF; - -

file_a~cess_mode = l •• max_file_access_mode;

fid = @fid record;
fid variables ptr = @ipc$fid variables record;
port_constants__ptr = @ipc$port_constants_record;
port_variables__ptr = @ipc$port_variables_record;
service_directory__ptr = @service_directory_record;
subsystem__ptr = @subsystem__ptr;

· memptr = @memptr ; ·
hp$ = @hp$;
byte_length = 0 •• 32767;

semaphorestate = (awaited, zero, signaled) ;

cid = @cid;
command__ptr = @command_record;
passcode__ptr = @passcode__ptr;
pathname_node__ptr = @pathname_node;
parameters__ptr = @ipc$parameters;

file_access__privilege = packed record
exclusive access: boolean;
read access: boolean;
write access: boolean;
execute access: boolean;
extend access: boolean;
end; -

file type = packed record
file format: hex digit;
record format: hex digit;
file usage: hex digit;
file compression: hex_digit;
end;

password= packed array [1 •• 4] of char;

password_ptr = @password;

password list = record
user__password: password;
creator__password: password;
end;

password_list_ptr = @password_list;

protection = packed record
read__protect: hex_digit;

F-6

:J

1.

write_protect: hex_digit1
modify_protect: hex_di~i~1
execute_protect: hex_d1g1t1
end1

f id record = record
link: fid1
subsystem: subsystem_ptr1
status: integer1
state: integer1
fid_variables: fid_variables_ptr1
global frame: address1
end1 -

service directory record = rec6rd
length: integer1
$init: address1
$connect: address1
$open: address1
$read: address1
$write: address1
$close: address1
$status: address1
$disconnect: address1
$abortio: address1
$create: address1
$delete: address1
$position: address1
$wait: address1
end1

ipc$port constants ~ecord =
{ unused by ipc$-J
end1

record

ipc$port variables record = record
mutex:-semaphore1
pathname_node: pathname_node_ptr;
end1

command record = record
buffer: dummy_buffer_ptr;
length: integer1
count: integer;
end;

ipc$f id variables record = record
read_length_ptr7 @integer1
read_maxlength: integer1
read_buffer_ptr: dummy_buffer_ptr;
pathname_node: pathname_node_ptr1
command: command_ptr1
end;

F-7

.-·-· ~- -"-·----·--·-~- ·- ~-.. :::

pathname node = packed record
node mutex: semaphore;
link: pathname_node_ptr;
length: integer;
name: dummy_buffer_ptr;
ft: file type;
logical record length: integer;
end_of_production, create_called: boolean;
end of consumption, waiting for create: semaphore;
number_of_producers, number_of_consumers,
number connected: integer;
channel: cid;
end;

ipc$parameters = record
base: integer;
level: integeq
rate: integer;
length: integer;
name: dummy_buffer;
end;

common
msg: fid;

procedure d$fid(sub: subsystem_ptr;
fid vars: fid_variables_ptr;

var f: fid) ; external;

procedure d$fidrelease(var f: fid); external;

procedure d$subsystem(serv:
port cons:
port-vars:

var sub:-

'function d$valid(f: fid;

service_directory_ptr;
port constants_ptr;
port-variables_ptr;
subsystem_ptr) ; external;·

op: fid_operation) : boolean; external;

procedure ipc$close(f: fid; close_with_eof: boolean) ; forward;

procedure ipc$connect(sub:
var pathname:

length:
. var f:

procedure ipc$create(f:
passwords:
protect:
ft:

subsystem ptr;
dummy buf'rer;
integer;
fid) ; forward;

f id;

logical record length:
initial-allocation:

password list ptr;
protection; -
file_.:..type;
integer;
longint;

F-8

J

(

extension allocation: longint); forward;

procedure ipc$disconnect(var f: fid); forward;

procedure ipc$init(serv; service_directory_ptr;
port cons: port_constants_ptr;

var sub:- subsystem_ptr); forward;

procedure ipc$open(f:
password:
mode:
pr iv:

var ft:
var logical record length:
var number of records:

fid;
password ptr;
file access mode;
file_access_privilege;
file type;
integer;
longint); forward;

procedure ipc$read(f:
b:
max length:

var actual_length:

f id;
dummy_buffer_ptr;
integer;
integer); forward;

procedure ipc$wait(f: fid) ; forward;

procedure ipc$write(f: fid;
b: dummy_buffer_ptr;
length: integer) ; forward;

procedure cwait(s: semaphore; var received: boolean) ; external;
function cksemaphore(s: semaphore) : boolean; external;
procedure initsemaphore(var s: semaphore; count: integer) ; external;
procedure signal(s: semaphore) ; external;
function semastate(sema: semaphore) : semaphorestate; external;.
procedure termsemaphore(var s: semaphore) ; external;
procedure wait(s: semaphore); external;
procedure waitsignal(waitfor, signalthe : semaphore); external;

procedure exception(classcode, reasoncode: integer); external;
procedure rt$enter(typ: rt_type; abstract_object: address) ; external;
procedure rt$exit; external;
function eq$names(var namel: dummy buffer; lengthl: integer;

name2: dummy_buffer_ptr; length2: integer): boolean; external;

procedure hp$free(heap: hp$; var ptr: memptr); forward;
procedure hp$new(heap: hp$; var ptr: memptr; length: byte length);

forward; -
function hp$system: hp$; forward;

procedure c$acknowledge(cmd: command_ptr) ; external;
procedure c$allocate(msg_size: integer; var cmd: command_ptr);

external; .
. procedure c$creceive (c: cid; var cmd: command ptr) ; external;
procedure c$dispose(var cmd: command ptr); external;
procedure c$init(i: integer; var c: ~id); external;
procedure c$receive(c: cid; var cmd: command_ptr); external;

F-9

·~ ~---: -·'--.-----·--- _ . .-.,

procedure c$send(c: cid: cmd: command_ptr): external:
procedure c$term(var c: cid): external:
procedure c$wait(cmd: command_ptr): external:

b~gin
t$ nullbody }

end.

F-10

\
)

_./

.)

INDEX

AMPLUS DEVELOPMENT SYSTEM 1-2,6-11 ENCODE AND DECODE ROUTINES 1-2,
CHANNEL ROUTINES . 2-6,6-3, 5-1, 6-3

6-11 ENCODE ROUTINES . . 5-1, 6-3
COMPONENT SOFTWARE . . 1-2, 1-3, 2-2 ENCODING A CHARACTER . 5-6
COMPRESSION 3-6,4-6 ENCODING A LONGINT . . 5-3
CONFIG 6-4 ENCODING A REAL . . 5-8
CONFIGURATION MODULES . 6-2 ENCODING A STRING . . . 5-7

/' CONFIGURING AN APPLICATION 6-1 ENCODING AN INTEGER 5-2
D$ABORTIO 2-4,3-18 ENCODING BOOLEAN . . 5-4
D$CLOSE 2-4,3-18 END-OF-FILE 3-18,4-15
D$CONNECT 2-4,3-3 ENTRY POINTS 2-3, 3-1,

?CREATE 2-4, 3-5 4-2,6-4
D$DELETE 2-4,3-20 EOF 3-19, 4-13
D$DISCONNECT . 2-4,3-20 ERROR MESSAGES . . C-1
D$DSTATUS 2-4, 3-16 EXECUTIVE LIBRARY . . . 6-3
D$INIT 2-4,3-2,6-1 FID 3-3, 13-1
D$0BJ 6-3,6-11 FILE ATTRIBUTES E-1
D$0PEN . . 2-4,3-7 FILE I 0 DECODER . . . 1-1, 2-1,
D$POSITION 2-4,3-13 2-3, 3-1
D$RDWAIT 2-4,3-13 FILE-LEVEL 1-1

(- "1 $READ 2-4,3-10 FUNCTION D$DSTATUS . . 3-16
, ...>$ROUTINES 2-5 FUNCTION D$STATUS . . . 3-15

D$STATUS 2-4,3-15 GHOST$ PROCESS . . 6-1
D$TERM 3-21 GLOBAL DECLARATION FILE F-1
D$VALID 3-17 HEAP 2-5, 3-20,
D$WAIT . . 3-10, 3-13 6-8
D$WRITE 2-4,3-11 HOST AND TARGET SYSTEMS 1-2
D$WRWAIT 2-4,3-13 I/O MODEL 2-2
DE$0BJ 6-3,6-11 I/O SERVICE DIRECTORY . 4-15, 6
T)ECOD_t<; ROUTINES 1-2, 5-1, I/O SUBSYSTEM 1-1, 2-

5-9, 6-2 I/O SUBSYSTEM DATA STRUCTURES
DECODING A CHARACTER . 5-12 IMPLEMENTATION OF THE IPC 4-1
DECODING A LONGINT 5-10 INITIALIZATION 3-2,6-1
DECODING A REAL . . . 5-15 INITIATED I/O 2-1
DECODING A STRING . . 5-14 INTERFACE HANDLER . . . 2-2,6-10
DECODING AN INTEGER . . 5-9 INTERPROCESS COMMUNICATION 1-1,
DEVICE INDEPENDENT I/O 1-1,2-1 2-5, 4-
DIF I/O PACKAGE 1-1,6-3 I OD IR 6-3
DIF I/O ROUTINES . . . 1-2,6-1,6-3 IPC 1-1, 2-
DUMMY SUBSYSTEM D-1 IPC ACCESS 4-2
ENC$BO 5-4 IPC$. . . 4-2
ENC$CR ' 5-6 IPC$CLOSE 4-13
ENC$IN 5-2 IPC$CONNECT 4-4
ENC$LO 5-3 IPC$CREATE 4-6,4-15
ENC$RE 5-8 IPC$DISCONNECT 4-14

-:e::NC$ST . . 5-7 IPC$INIT 4-2
(,~, IPC$0BJ 6-3

Index-I

-
- •- ·r--~'····-·· ' ·- -

IPC$0PEN •••
IPC$READ •••
IPC$SD • • •
IPC$WAIT • • •
IPC$WRITE • • •

• • • • 4-8, 4-15
• • • • 4-11 .

••• 4-4,6-4
• • 4-11
•• 4-10

LIBRARIES ••••••• 6-1,6-3,
6-12

LINK EDIT CONTROL FILE 6-1,6-11
LINK EDITING ••• 6-1,6-11
LINK EDITOR • • • • 6-1,6-11
MESSAGES • • • • • 2-6,3-15,

4-1,4-5
MICROPROCESSOR PASCAL EXECUTIVE

1-2,6-3
MPP$0BJ • • • • • • • • 6-3
MPX • • • • • • • • • • 6-3
MSG$INIT • • • • • • • 6-1
NATIVE CODE RUN-TIME SUPPORT 1-3,

2-6,6-3
NODE ••••••••• 2-1,6-12
NODE CONSTANTS RECORD • 6-12,B-1
OPERATOR INTERFACE I/O SUBSYSTEM

1-1, 2-2,
A-1

PARAMETER PASSING • 3-1
PASCAL PRIMITIVES • 3-1
PASSWORDS ••••••.• E-1
PATHNAMES ••••••• 2-5,E-l
PORT ••••••••• 2-1,4-1,6-1
PORT CONSTANTS RECORD 4-3,6-1,

6-4,6-10,
B-1

PROCEDURE D$ABORTIO • • 3-18
PROCEDURE D$CLOSE • • • 3-19
PROCEDURE D$CONNECT • • 3-4
PROCEDURE D$CREATE •• 3-7
PROCEDURE D$DELETE • • 3-20
PROCEDURE D$DISCONNECT 3-21
PROCEDURE D$INIT • 3-3,6-2
PROCEDURE D$0PEN • • • 3-9 -
PROCEDURE D$POSITION • 3-14
PROCEDURE D$READ • • • 3-11
PROCEDURE D$WAIT • • • 3-15
PROCEDURE D$WRITE • • • 3-12
PROCEDURE IPC$CLOSE • 4-13
PROCEDURE IPC$CONNECT • 4-5
PROCEDURE IPC$CREATE • 4-7
PROCEDURE IPC$DISCONNEc·r 4-14
PROCEDURE IPC$INIT 4-3
PROCEDURE IPC$0PEN 4-9
PROCEDURE IPC$READ • • 4-11
PROCEDURE IPC$WAIT 4-12
PROCEDURE IPC$WRITE • • 4-10
PROCEDURE MESSAGE • • • 6-1

READ
READLN
REALTIME EXECUTIVE .
REPOSITIONING .
RESET
REWRITE
RX$LIB
RX$0BJ .
RXKERNEL
SCOPE
SERVICE DIRECTORY . .
SETNAME
STACK
STACKSIZE
SUBSYSTEM STANDARDS .
SUBSYSTEM PTR
SYSTEM INITIALIZATION
TARGET
TERMINOLOGY

T02 SUBSYSTEM
USE OF DUMMY SUBSYSTEM
USER INTERFACE . . .

WAIT
WRITE
WRITELN

Index-2

I

• -3-1 . 3-1 --1 . 1-3,6-3 , .. /

3-14 . 3-1 . 3-1 . 6-3, 6-11 . 6-3,6-11 . 6-11 . 3-2 . 6-9,13-1
3-1 -. . 6-8 . 6-8 . 2-1 ~ I

. 4-3,4-5 . 3-2, 6-1 . 1-2,6-1,
6-3, 6-4 . 2-1

A-1
4-15 . 2-3, 3-1

3-15, 4 . 3-1 . 3-1

I

_)

~·

I

•

MP 386

TEXASlNSTRUMENTS
l'NCORPORATED

Post Office Box 1443- I Houston, Texas 7700c1
5emiconductor Group Printecl in U.SA.

