7

TEXAS INSTRUMENTS

Improving Man’s Effectiveness Through Electronics

N

Model 990 Computer

"AMPL Microprocessor Prototyping
Laboratory System Operation Guide

MANUAL NO. 946244-9701
ORIGINAL ISSUE 1 AUGUST 1977
REVISED 15 JANUARY 1978

N

Digital Systems Division

=
)

‘OQ



(:) Texas Instruments Incorporated 1978

A1l Rights Reserved, Printed in U.S.A.

The information and/or drawings set forth in this document and all rights in and
to inventions disclosed herein and patents which might be granted thereon disclos-
ing or employing the materials, methods, techniques or apparatus described herein,
are the exclusive property of Texas Instruments Incorporated.

No copies of the information or drawings shall be made without the prior consent
of Texas Instruments Incorporated.

INSERT LATEST CHANGED PAGES DESTROY SUPERSEDED PAGES

LIST OF EFFECTIVE PAGES

Note: The portion of the text affected by the changes is

indicated by a vertical bar in the outer margins of
the page.

Model 990 Computer AMPL Microprocessor Prototyping Laboratory System
(AMPL) Operation Guide (946244-9701)

Original Issue . . . .. ... 1 August 1977
Changel........... e 1 November 1977 (ECN 990292)

Revised . . o o oot e e 15 January 1978 (ECN 419806)
Change 1 ... oot 15 March 1978 (ECN 419834)

Total number of pages in this publication is 342 consisting of the following:

PAGE CHANGE PAGE CHANGE PAGE CHANGE
NO. NO. NO. NO. NO. NO,
COVer . .o oo 1 Appendix BDiv ... ... .. 0 Appendix GDiv . . ... ... 0
Effective Pages . .. ...... 1 Bl ... 1 G1-G4............. 0
TS < B 0 B2-B8............. 0 Appendix HDiv . . . ... .. 0
1-1-16 ... 0 B9-B-18 ............ 1 H1-HS6............ 0
21-226 .. 0 Appendix CDiv .. ...... 0 Appendix IDiv ........ 0
3.1-328 . 0 C1-C4 ... ......... 0 F1-14 ... ... ...... 0
4.1-4-40 . ... ... .. ... 0 Appendix DDiv . .. ... .. 0 Alphabetical Index Div .. .0
5.1-558 . ... 0 D-1-D2............. 0 Index-1 - Index-10 . ... .. 0
6-1-6-18 . .. .. ... 0 Appendix EDiv . . ... ... 0 User’s Response .. ...... 0
T1-716 oo 0 E1-E2............. 0 Business Reply . . ....... 0
Appendix ADiv . ....... 0 Appendix FDiv . .. ... .. 0 CoverBlank........... 0

A1-A10. ... ........ 0 Fl1F4 .. ............ 0 Cover ............... 0




I

946244-9701

PREFACE

This manual describes the software of the AMPL* Microprocessor Prototyping Laboratory and
the hardware installation of the emulator and buffer module and the logic-state trace data
module which support the prototyping laboratory. The manual also describes the AMPL language
in detail, and includes examples of the use of the laboratory to debug hardware and software.
The manual is organized into seven sections and eight appendixes including:
I General Description — Provides a general description of the prototyping laboratory and
its hardware and software components. Also describes the prototype development
cycle.

I System Hardware Installation — Describes the hardware configuration of the laboratory
in detail, including interconnection information.

Il AMPL Applications — Describes the use of the AMPL language in development of the
hardware of a prototype system.

IV AMPL Microprocessor Prototyping Language — Describes the AMPL language in detail.

V  System Operation — Includes operating instructions for AMPL software and description
of the user commands.

VI Errors and Recovery — Describes the error and warning message formats and lists the
error messages and recovery procedures.

VII Examples — Includes examples of the use of the AMPL language in developing the
software of a prototype system.

A TX900 System Generation — Describes the generation of a custom TX990 for prototyp-
ing laboratory.

B DXI0 System Generation — Describes the generation of a custom DX10 for prototyping
laboratory.

C  AMPL Grammar — The formal definition of the AMPL grammer.

D  AMPL Statement Summary — A summary of the AMPL statements.

E  AMPL Reserved Words — A list of the reserved words of the AMPL language.
F  System Symbols — A list of the system variables of the AMPL system.

G  User Commands — A summary of the AMPL user commands.

*Trademark of Texas Instruments Incorporated

iii Digital Systems Division



9462449701

H

I

AMPL Procedure and Function Library — Descriptions of the procedures and functions
of the AMPL Procedure and Function Library.

Glossary — A glossary of terms used in tne manual.

Digital Systems Division




. Model 990 Computer DX10 Operating System Release 3 946250-9701, 9702
Reference Manual Vols. 1-6 9703, 9704
-970S, -9706
Model 990 Computer FS990 System 946254-9701
Installation and Operation Manual
Model 990 Computer DS990 System 946284-9701

{i@ 946244-9701

Title
990 Computer Family Systems Handbook

Model 990 Computer TMS 9900 Microprocessor
Assembly Language Programmer’s Guide

Model 990 Computer TX990 Operating System
Programmer’s Guide

Model 990 Computer Terminal Executive Development
System (TXDS) Programmer’s Guide

Installation and Operation Manual

Model 990/4 Computer System Hardware Reference
Manual

Model 990/10 Computer System Hardware Reference
Manual

Model 990/4 Computer System Depot Maintenance
Manual

Model 990/ 10 Computer System Depot Maintenance
Manual

Model 990 Logic-State Trace Data Module Installation
and Operation

Model 990 Computer AMPL Logic State Trace Data
Module Depot Maintenance Manual

Model 990 Emulator Module and TMS 9900/9980 Buffer
Module Installation and Operation

Model 990 Computer TMS 9900/ 9980 Emulator/ Buffer
Modules Depot Maintenance Manual

Model 990 Computer Model FD800 Floppy Disk System
Installation and Operation

Model 990 Computer Model DS10 Cartridge Disk System
Installation and Operation

The following documents contain additional information related to the prototyping laboratory:

Part Number

945250-9701

943441-9701

946259-9701

946258-9701

945251-9701

945417-9701

945403-9701

945404-9701

946241-9701

946242-9701

946245-9701

946239-9701

945253-9701

946261-9701

Digital Systems Division



) {@g} 946244-9701

\

Title

Model 990 Computer Model DS31/32 Disk Sysiem
Installation and Operation

Model 990 Computer Model DS25/ DS50 Disk System
Installation and Operation

Model 990 Computer Model 911 Video Display Terminal
Installation and Operation

Model 990 Computer Model 913 CRT Display Terminal
Installation and Operation

Model 990 Computer Model 810 Line Printer
Installation and Operation

Model 990 Computer TTY| EIA Terminal Interface
Module Installation and Operation

Model 990 Computer Model 733 ASR/ KSR Data Terminal
Installation and Operation

Model 990 Computer Model 804 Card Reader
Installation and Operation

AMPL Reference Card

Model 990 Computer AMPL System Tutorial

Part Number

945260-9701

946231-9701

945423-9701

943457-9701

939460-9701

946240-9701

945259-9701

945262-9701

946265-9701

949621-9701

vi

Digital Systems Division




3.1.1
‘ 3.1.2

&
|

Paragraph
1.1
1.2
o 1.3
14

. 2.1
2.1.1
2.1.2
2.2
2.2.1
2.2.2
223
23

3.1

3.2
3.2.1
322
323
324
33

® 3.4

35

4.1
4.2
4.2.1
4.2.2
s 4.2.3
4.2.4
4.2.5
4.3

4.5

4.5.1
4.5.2
453

TABLE OF CONTENTS

Title Page

SECTION I. GENERAL DESCRIPTION

Introduction. . . . . . ... 1-1
Typical Prototype Development Cycle. . . .. .. ... .. ... .. ... ... ... ... .. ....... 1-2
Operational Features . . . . ... ... .. ... 1-2
Software Configuration .. .. ... ... .. ... 1-5

SECTION II. SYSTEM HARDWARE INSTALLATION

General . . ... 2-1
System Configuration. . . . . ... ... ... e 2-1
System COomponents . . . .. ... ... e 2-1

System Installation . .. ... ... ... .. ... 2-1
Computer Chassis Options and Preparations . . . .. ........ ... ... ... ... ........ 2-1
Circuit Board Installation . .. . ... . .. ... .. ... .. .. . ... 212
Cable Connections. . . . . . . ...t 2-12

Peripheral Equipment for the Prototyping Laboratory .. ... ........................2-17

SECTION III. AMPL APPLICATION

Introduction to AMPL Language . . .. .. .. ... .. . . ... 3-1
Emulator Control Commands and Variables . . . . ...... ... ... ... .. .. .. .. ... ... 32
Trace Module Commands and Variables. . . .. ... ... ... ... ... .. ... ... ... ... .. 3-5

Prototyping Laboratory Initial Checks. . . ... ... ... ... .. . .. . .. 3-8
Buffer Module Checkout. . . . .. ... . 3-10
Target System Address and Data Bus Checkout. . . ... .. .. ... ... . ... ... ... ... 3-12
Target System Clock Checkout . ... .. ... . .. . . . . . 3-13
Target System Memory Checkout. . . .. ... ... ... . . . . L 3-14

Prototyping Laboratory Application Example. . . ... ....... ... ... ... ... ... .......315

Trace Probe Example . . . . . . ... .. .. 3223

TMS 9980 Examples . . . . . . oo 3-25

SECTION IV. AMPL MICROPROCESSOR PROTOTYPING LANGUAGE

Introduction. . . . .. ... 4-1
Language Element . . . . .. . ... 4-1
Character Set . . . .. . e e 4-1
CONSTANTS. . . . . o oot e e e e e e 4-2
Symbols . . . . 4-5
ATTAYS. . o 4-6
Character Strings. . . . . .o ot 4-7
Notation . . . . . 4-7
Format . . . .. 4-7
EXpressions . . . ... .. 4-8
SUBEXPIESSIONS . . . o o ot o 4-8
Arithmetic Operators. . . . . . . . 4-8
Logical Operators . . . . .. ... 4-8

vii Digital Systems Division



%

TABLE OF CONTENTS (Continued)

Paragraph Title Page

454 Relational OPerators . . . . .« oottt e 49

4.5.5 UNary OPEIAtorS . . . .o v v ettt e et 49

45.6 Expression Evaluation . ... ... ... ... 4-11

4.6 SHALEIIEIIES . © o & v e e e e e e e e e e e e e e e e e e e 4-12 .
4.6.1 ATTaY SEAtEMENES . . . o o oot oottt e e e 4-13 (
4.6.2 ASSIgN STAtEMENTS . . . . o oottt 4-14

463 Display StAatements . . . . . ..ottt 4-15

464 TE STALEIMENTS. .+« « v o o e e e e e e e e e e e e e 4-24 ¢
4.6.5 CASE Statements . . . o o v o et et et e e e e e e e 4-25

4.6.6 WHILE Statements . . . o o o o o e et e e e e e e e e e e e e e e e 4-26

4.6.7 REPEAT Statements . . . . o v v ot e e e e e e e e e e e et e e 4-27

468 FOR Statements . . . o o o v e e e e e e e e e e e e e e e e e e e e 4-28

4.69 Compound StatemMent . . . ... ...ttt e 4-30 .
4.6.10 ESCAPE Statement . . . o o o o ot o e e e e e e e e e e 4-32

4.6.11 NULL Statements . « . v v v oo e e e e e e e e e e e e e e e e e e e e e e 4-32

4.7 Procedures and FUNCLIONS . . . . . o o i i i i e e e e e e e e e e e e e 4-33

4.7.1 Procedure Definition Statement . . . . . . . . ot i e e 4-33

4.7.2 Function Definition Statement . . . . . . oot vt i vt i e e 4-33

4.7.3 ATGUMENES . . . o oottt it et e e e e e 4-3

474 LOCal STOTAZE . o o o o vt et e e e 4-35

4.7.5 RETURN Statement . . . . v v oo e e et et e e e e e e e e e e e e e e e e e 4-35

4.7.6 Calls to Procedures and Functions . . ... ... ..o 4-36

4.7.7 Procedure and Function Examples . . . ... ... 4-37

SECTION V.SYSTEM OPERATION

5.1 INETOAUCTION. & & v o e e e e e e e e e e e e e e e e e 5-1
5.2 Loading and Starting the System . . ... ... .. 5-1
5.2.1 TXO00 . o o o e e 5-1
5.3 Hardware Demonstration TeSt . . . . . o v oot e 5-§
5.4 Recovery Procedure. . .. . ..ot 59 .
5.5 linteringCommands...ﬂ.......,...4...4‘.........‘..4........4.........5-1()
5.6 ProgramCommands....‘,....‘................‘...........,....4.....4.5-10
5.6.1 L()ADC()mmund...‘..........4..............‘..‘....‘...‘........,5-10
56.2 DUMP Command . . . . oo oo e e e e e e e S-12
5.7 Utility Command . . . ..ottt S-12
5.7.1 De'fineConsole(‘,ommund,.‘.4‘..‘.........4.......4...4.‘...‘.....‘...5-13
5.7.2 De-fineListingDevice(\)mmund....‘..‘...4..............4....4....‘4....5-14
5.7.3 Multiply Command . . S PPN N
574 Devide Command . . o o o e SRS .
S7.5 DispluyRegistm(‘()mmandA.....A..‘...‘...........4..,....4...A....‘..S~l(\
5.7.6 DisplayUserSymbol"l'ublc('mnmand.,...........,.......‘..H.......‘.,..S-I(v
5.7.7 l)lspldyL<)ddi7 .
5.7.8 Delete LoudModulcSymbolTahlc(‘ommund.................‘.........HA.._S-I7
5.7.9 Display System Symbol Table Command . .. .. ... ST
5.7.10 Save Test Environment Command . ... ..o S-18
5.7.11 ClcurTcstlinvimnmcnlC()leﬂdﬂd.A........,.............‘.........A...”S-l‘)
5.7.12 Restore Test Environment Command . oo v o oo 5510

viii Digital Systems Division



)
Paragraph

5.7.13
5.7.14
5.7.15
5.7.16
5.7.17
5.7.18
5.7.19
5.8
5.8.1
5.8.2
583
5.84
59
59.1
59.2
593
594
5.10
5.10.1
5.10.2
5.10.3
5.104
5.10.5
5.10.6
5.10.7
5.10.8
5.11
5.11.1
5.11.2
5.11.3
5114
5.11.5
5.11.6
5.11.7
5.11.8
5.11.9

6.1
6.2

TABLE OF CONTENTS (Continued)

Title Page

Enter Text EditorCommand . . . .. ... ... ... i 5-20
Copy Input Command . . . ... ... e 5-21
Delete Command. . . . . ..o ittt it e e e 5-21
Delay AMPL Execution Command . . ... ... ... 5-22
Output New Line Command . . . .. ... ... i 5-22
Verify Command. . . . . ..ot e 5-22
Terminal AMPL Program Command . . .. ... ... ... .. .. 5-23
CRUCOMMANAS . . . . oottt e e e e e e e e e e e e e e e e e et e e e e e e 5-24
CRURead Commands . . . ..ot v i it et et e et et it et et et e et et e e e e 5-24
CRUWrite Command. . . . . ...ttt it it et e et it e et et e et 5-25
Host CRURead Command . . .. ... ..ottt ittt et 5-25
Host CRUWrite Command . . . . .. .. ..ottt it ettt ee e 5-26
DataInput Commands . . . ... ...ttt e 5-27
OPEN Command. . . ..ottt ettt et e e e et e e e e e e 5-27
READ Command . . .. ..ottt ittt e e e e e e e it et e e 5-27
EOF Command. . . . . . oottt et e et e e e e et e e et e e e e 5-28
Close Command . . . . . .. .. ittt e e e 5-29
Emulator Operation Commands. . . .. .. ... .ttt 5-29
Initialize Emulator Command . . .. .. ... ...t e 5-30
Define Breakpoint ConditionsCommand . . ... ... ... ... 5-31
Select Event Command. . . . . .. .. .. it e 5-32
Initialize Compare Logic Command . . .......... ... ... i 5-33
Initialize Trace Logic Command. . . .. ........ .. ...ttt 5-34
Start Microprocessor Command . . . ... ... ... 5-36
Stop Microprocessor Command . .. .......... ... 5-37
Read Trace Memory Command . ... ... ...ttt 5-38
Trace Module Operation Commands . . . . . ... ...t 5-39
Initialize Trace Module Command . . . . .. .ot vit e e i 543
Define Trace Breakpoint Command . ... ......... ... . 543
Select Trace Event Command . . ..« oo vt eee i 54
Initialize Trace Compare Logic Command P £
Initialize Trace Module Trace Logic Command . . . ... ..........................550
Start Trace COMMANA . .+« o v oot et e e e e e et e 552
Stop Trace Command. . . . ... ...ttt 553
Read Low-Order Trace Module Memory Command . . ... ........................5:54
Read High-Order Trace Module Memory Command . . .. ..................... . .5-56

SECTION VI. ERRORS AND RECOVERY

INtrodUCHION. © © .\ v e e e e e e e e e e e e e e 6-1

Error Message Formats

ix

Digital Systems Division



TABLE OF CONTENTS (Continued)

Paragraph Title Page

SECTION VII. EXAMPLES

7.1 INErOdUCHION. © o o o o ot e e e e e e e e e e 7-1
7.2 Example Program . . .. .. ... 7-1
7.3 Loading the Example Program. . .. ... ... ... 7-4
7.4 Initial Debugging. . . . . .. oo o 7-5
7.5 Using the EMUIator . ... ... 7-6
7.6 Tracing with the Emulator .. ... ... .. 7-7 »
7.7 Monitoring Program Execution . .. ... .. 7-8
7.8 Displaying Traced Address . . .. ... ... .ttt 7-9
7.9 Checking Program Results. . .. ... .. ... 7-11
7.10 Using the Trace Module . ... .. ... ... .. o 7-13
APPENDIXES
Appendix Title Page
A System GENeration . .. .. ... ...ttt A-1
B DX10 System Generation . . . . .. ... ..ottt B-1
C AMPL Grammar . . . o . o o e e e e e e e e e e e e e e C-1
D AMPL Statement SUMMATY . . . . . . oo ottt e e e D-1
E AMPL Reserved Words . . . o o ot oo e e e e e e e e E-1
F System Symbols . . . . ..o F-1
G User Commands . . . . o oo e e e e e e e G-1
H AMPL Procedure and Function Library . . . . ... ... . oo H-1
I GLOSSATY + o o e e e e e e e e e I-1

Figure Title Page
1-1 Typical Prototype Development Cycle. ... ... 1-3
1-2 AMPL Microprocessor Prototyping Laboratory Configuration ... ..o 14
2-1 Typical AMPL Microprocessor Prototyping Laboratory . ... 22
2-2 Typical Prototyping Laboratory Configuration . .. ... .. ... 25 »
2-3 Emulator/Buffer and Interconnect Cables ... ... ... .. . 24
24 Trace Module. Trace Data Probe. and Interconnect Cables. . ... ... .. .............. 25
2-5 Model 990/4 Computer 13-Slot Chassis. Standard Configuration.
TX990 with 911 VDT . . . . e 2-0 °
2-6 Model 990/10 Computer 13-Slot Chassis Configuration for TX990 with 911 VDT. . ... ... 2.7
2-7 Model 990/4 Computer 13-Slot Chassis Configuration for TX990 with 913 VDT. ... ... 27

X Digital Systems Division



LIST OF ILLUSTRATIONS (Continued)

Figure Title Page
2-8 Model 990/10 Computer 13-Slot Chassis Configuration for TX990 with 913 VDT . . . ... ... .. 2.8
29 Model 990/10 Computer 13-Slot Chassis Recommended DX 10 Configuration
without CRU Expansion Chassis. . . . ... .. ... .. .. 28
2-10 Model 990/10 Computer 13-Slot Chassis Recommended DX 10 Configuration
with CRU Expansion Chassis. . . . . ... 29
2-11 Model 990/10 Computer 13-Slot CRU Expansion Chassis Recommended
DXI10 Configuration . ... ... 29
2-12 Location of Interrupt Jumper Plugs (6- and 13-Slot Chassis) . ... .....................2-10
2-13 6- and 13-Slot Chassis Interrupt Jumper Plugs. . . .. .. ... ... . oo 2
2-14 Emulator/Buffer Cabling Diagram. . .. . ... ... ... ... .. . ... ... .. .. ... ... .23
2-15 Emulator Module .. ..o 2
2-16 Cable Connections at Emulator .. .. ... o o S
2-17 Installation of Buffer Cables and Connector at TMS 9900 Target System . . .. .. .. .........2-16
2-18 Installation of Buffer Cable and Connector at TMS 9900 Target System .. . ..............2-I8
2-19 Buffer Module ... .. 2k
2-20 Trace Module Cabling Diagram. . ... ... ... .. . . . . . 0220
2-21 Trace Data Probe Terminator Box and Leads .. .. .. .. ... ... ... .. ... ... ........221l
2-22 Typical Connections to Target System. . . .. ... ... . 22
2-23 Trace Module and Emulator Module Interconnecting Cable . .. .. ... ... ... ...... .222
2-24 Peripheral Devices Available for AMPL Microprocessor Prototyping Laboratory (TX990) . .. .. .2-23
2-25 Peripheral Devices Available for AMPL Microprocessor Prototyping Laboratory DX10. ... . .. .2-25
3-1 Setting Emulator Comparison Breakpoint with ECMP,EEVT,EBRK ... ... ... .......... 33
3-2 Setting Emulator Trace Breakpoint. .. .. .. ... .. oo 3S
3-3 Setting Trace Breakpoint in Trace Module . . . ... ... .o o o .37
3-4 Sample Library Procedure. . . .. .. 3-9
3-5 TDATA Printout for Prototyping Lab Example. . . .. .. ... ... . 3-19
3-6 Observed FIFOQ Counter Operation . .. .. .. 3-21
3-7 TEDUMP Printout for AMPL Example . ... .. .. . 322
3-8 Target System Front End . . . ..o o 0 L 3-24
3-9 Trace Probe Example . . ... 3-260
4-1 Target Memory Address Mapping . . . .. .. 4-11
-2 IF Statement EXecution . . . . . .. . . 4-25
4-3 WHILE Statement Execution. . . .. .. . 4-27
4-4 REPEAT Statement Execution . ... ... ... 4-28
4-5 Execution of FOR Statement . .. ... .. . e 4-29
5-1 Trace Module Connections . . . . ... . o050
5-2 Trace Memory Contents After Trace . . . . .. .. .. .. e )
5-3 Trace of Data Stored in Trace Module During Unqualified Trace of TMS 9080 . . .. .. ... ... .5-50
7-1 Example Program Listing . . . . ... 7-2

xi Digital Systems Division



Table

2-1

4-1
4.2
43
5-1
5-2
5-3
54

6-1

LIST OF TABLES

Title Page
AMPL Microprocessor Prototyping Laboratory . . .. ... .. o o o oL 2-6
Hierarchy of Operations in Expressions . . ... ... ... . . . 4-12
Format Specification Characters. . . .. .. ... . . . 4-17
Display and Modify Command Characters . . ... ... ... ... .. . .. . 4-22
Emulator Status . . . .. . ... e 8537
EventModes. . . ... ... .. 5T
Alternate Keywords for Qualifiers . ... ... ... ... ... .. .. .. 548
Trace Module Status . ... .. ... e85
Error and Warning Messages. . . . . ... ... L 6-3

Xii Digital Systems Division




946244-9701

SECTION 1

GENERAL DESCRIPTION

1.1 INTRODUCTION

The AMPL Microprocessor Prototyping Laboratory is a powerful tool for developing microprocessor
systems. The laboratory contributes significantly to the development of both software (or firmware)
and a hardware prototype. A prototyping laboratory includes the following:

¢ A Model 990 Computer and operating system with dual floppy disks ora moving-head disk.
¢ A hardware Emulator with TMS 9900 Buffer Module or TMS 9980 Buffer Module.

¢ A hardware Logic-State Trace Data module for the prototype system.

e A set of user commands for debugging the prototype system and its software.

] AMPL Microprocessor Prototyping Language to support user commands.

The operating system supplied for the Model 990 Computer equipped with floppy disks is the Terminal
Executive (TX990). It supports the Terminal Executive Development System (TXDS) that includes
the Text Editor, Assembler, and Link Utility. The computer, TX990, and floppy disks also support the
AMPL program which implements the user commands. Floppy disk units provide the user with a high-
speed, random access storage medium on which the user can develop programs using the Text Editor,
Assembler, and Link Utility. In addition, the debugging environment (including prototype programs)
can be saved on and restored from diskette files.

The operating system supplied with the DS990 disk system is the Disk Executive, DX10, Release 3. It
supports program development utilities including a text editor, a macro assembler, a FORTRAN
compiler, a COBOL language processor, a BASIC* interpreter, and a link editor. The computer,
DX10, and the disk system also support the AMPL program that implements the user commands. The
disk system provides the user with a high-speed, random access storage medium on which the user can
develop programs using the program development capabilities. In addition, the debugging
environment (including prototype programs) can be saved on and restored from disk files.

The emulator hardware includes a buffer module for the microprocessor to be used in the user’s
prototype system (target system). The emulator with the appropriate buffer module replaces the
microprocessor of the target system. The emulator also provides memory and control circuitry
required to execute software in the target system under control of the AMPL software. The emulator
memory consists of a 256-word trace memory and a 4K-word user memory. The control circuitry
allows the emulator to halt processing on specified program conditions (breakpoints) and to store
memory or instruction addresses in the trace memory. The host computer (Model 990 Computer in
which AMPL software executes) can halt the emulated microprocessor and access and modify
memory in the target system.

The trace module contains a 256 by 20-bit memory that stores up to 256 20-bit words that can be read
by the host computer. The 20 bits may be connected to the address or memory bus through the
emulator module or directly to test points in the target system using data probes. Four of the lines are
equipped with latches that can change state on fast pulses as narrow as approximately 10 ns duration.

—

*Trademark of Trustees of Dartmouth College. Hanover, NJH.

1-1 Digital Systems Division



{@5} 946244-9701
\J

Four qualifier lines select data words to be traced, and an event counter counts traced words that
match a specified data word. Both the qualifiers and the data are masked to allow the user to specity
any qualifiers and data bits to be used in the selection. The event counter, together with the delay
counter, generates a signal that may be used to terminate the trace. Alternatively, a signal that the trace
memory is full may be used to terminate the trace. Termination of the trace may either interrupt the
host computer or signal the emulator to halt the microprocessor.

1.2 TYPICAL PROTOTYPE DEVELOPMENT CYCLE °
Figure 1-1 shows the use of the laboratory during development of the software and integration of
software into the prototype system. First, the software development capabilities executing in the host
computer are used to obtain an object module. The source code is prepared and assembled using the
text editor and assembler. When assembler errors are detected, the text editor is used to correct the
source code and the source code is reassembled. When all errors that the assembler can detect have
been corrected, the resulting object module is linked with other required object modules. if any, to
obtain a linked object module. Source code for one or more modules may be corrected and
reassembled if the link utility detects an error. When the linking operation detects no errors, the linked .
object module is ready to be loaded into memory of the target system. Alternatively, the module may

be loaded into user memory or trace memory of the emulator module as appropriate.

The user may enter commands and AMPL statements to initialize trace and breakpoint conditions for
testing the software and prototype system, and to start the emulator. When a breakpoint halts the
emulator, the user may enter commands to inspect the results of the test. When the results are not
correct, the user may correct the source code, reassemble and relink. Or the user may make corrections
in the object code in target system memory. The user may also continue testing until the prototype
system is thoroughly tested, and all areas of the software have been executed. When the software has
been thoroughly tested, the user may execute the PROM Programmer Utility to manufacture
firmware.

1.3 OPERATIONAL FEATURES

Figure 1-2 shows an AMPL configuration consisting of a trace module and an emulator module under
control of a host computer connected to a target system by cables from the buffer module and from the
trace module. The buffer module cables connect to the microprocessor socket in the target system, and
the trace module cables connect to signals being traced in the target system.

The lab provides the following operational features: .

e  The user may load the target program into emulator memory or target memory or a
combination of both.

e  The user substitutes the emulator for the microprocessor in the target system, and thus
monitors the flow of execution of the target program in the target system.

e  The host processor monitors interrupts from both the emulator module and the trace
module(s). >

e  The user may inspect and modify the contents of memory and registers in the target system.
the emulator module, and the trace module(s).

e  The user may save and restore the environments of debug sessions to continue the debug
operation at a later time.

e  The user may enter user commands to control the debug operation.

1-2 Digital Systems Division



} 946244-9701

NO

FURTHER
TESTING
REQUIRED

SOFTWARE | |F’ROTOTYPING |
DEVELOPMENT l LABORATORY
I PRE PARE |
SOURCE LOAD |
SET BRKPT
| SR I OR TRACE : I
START
| EMULATOR |
EMULATOR
| ASSEMBLE | PG |
INSPECT l
| | o
EDIT PROGRAM l

]

PROM PROGRAMMER l
UTILITY I

GENERATE
FIRMWARE

- - - — =

(A)136521A

I
|

Figure 1-1. Typical Prototype Development Cycle

1-3 Digital Systems Division



' ) . ‘
@ . ‘

uoneinsiyuo) Aiojeroqe Surd£y0joig 10ss3001doIdIN TdNV T-1 angi g 2259€ 1 (v)

946244-9701

e}

(sLig 960v) 30VdS SS3¥AAV NHED W3LSAS

4444-0034

AHYOWIW 21907
30Vl TTOHLNOD
HOLVINW3 30vil
219071
TOH¥LNOD
HOLVYINW3 31NAOW
3ovil
HOLVTINNI 02X9s%2
AHOW3IW
31NAOW
IovHlL
Sayvosg
YOLVINW3

]

S3NIT 8314171IVND ANV S380¥d 3OVl
40ss30048d )
_OuDIW
W3ILSAS LSOH
C N /]
y3d4ng
m
=] | L3)D20s ¥0sSS3D
—oddOdDInW
———
3I18vo R‘%hmﬂm
NOS SHVYL
N noes™® - suzsn

W3ILSAS 130dV.L

Digital Systems Division

1-4




‘W) 946244-9701
e

1.4 SOFTWARE CONFIGURATION
. Software required for the laboratory system is as follows:

e  AMPL Software
® PROM Programmer Utilities

For a TX990 system, the additional software is:
® TX990 Operating System
e TXDS Development System
e TXMIRA Assembler

o e  TXEDIT Text Editor

e  TXLINK Link Utility
e TXLNK Link Editor Utility

For a DX10 system, the additional software is:
e  DXI0 Operating System
] SDSMAC Macro Assembler

‘ e SDSTIE Text Editor

e SDSLNK Link Editor

1-5/1-6 Digital Systems Division






o

%2[7 946244-9701

SECTION II

SYSTEM HARDWARE INSTALLATION

2.1 GENERAL

This section provides instructions for site planning, installation. and initial checkout of the
emulator/ buffer modules and the logic-state trace data module when emploved with either a FS990 or
DS990 system for TMS 9900 or TMS 9980 microprocessor hardware and software development.

2.1.1 SYSTEM CONFIGURATION. A typical AMPL Microprocessor Prototyping Laboratory is
shown in figure 2-1. Several options ot peripheral equipment are available for use with the system to
assist with checkout and debug of the target system. In all cases the trace module and the emulator
are installed in the Model 990 Computer chassis (990/4 or 990/10. or an expander chassis) and are
cabled in one of several alternate configurations to suit the target system under test. In figure 2-1.
the microprocessor connector from the buffer module is installed in the target system in place of
the microprocessor: the other cables from the buffer module are connected to the emulator module
installed in the 990 computer chassis.

2.1.2 SYSTEM COMPONENTS. Typical components of an AMPL Microprocessor Prototyping
Laboratory are shown in figure 2-2. The trace module and the emulator module are shown installed in
a Model 990 Computer chassis. Optional connections to the target system are:

I. From the emulator via the buffer module, target connect, and the interconnecting cables.
Components associated with the emulator are shown in figure 2-3.

2

From the trace module via the trace data probe cable. the terminator box, and the probe
leads equipped with either fema'e connector pins or IC test clips. Components associated
with the trace module are shown in figure 2-4.

A summary of the components shown in figures 2-3 and 2-4 are listed in table 2-1. along with the
associated part numbers for each.

2.2 SYSTEM INSTALLATION
2.2.1 COMPUTER CHASSIS OPTIONS AND PREPARATIONS
CAUTION

Before removing or installing circuit boards and cables, be sure power
is off since voltage transients can damage components parts.

The CRU base address that the software uses to address and control the prototyping laboratory system
is determined by the physical location of the emulator module and the trace module in the 990
computer chassis, or in a CRU expander chassis. Since there are several different combinations of
options for these installations, the user and programmer should decide upon the chassis slot locations.
the CRU base address, and the interrupt level for both of these modules before installing them.

2-1 Digital Systems Division



' ' . . '

A103e10qeT Surd£101014 10s53001d0ISIN TNV [21dAL “[-T 2inS1]

d3LNdNOD
066 13AON

0s1d AddO4d
avna

I1NAON
y3ddng

HJOLVIN3I
Ol I18vd

dOLO3INNOD
L3I9YVL 0066 SWL

AVNINWYIL
AVdsia Oo3diA

WILSAS
L139dVL IVOIdAL

? ) '

(8=02-LLL-1dNWY) L92LE} (V)

43 LNIdd
018 13A0ON

Digital Systems Division



I 0 946244-9701

— FLOPPY DISK

FDSOg /

R
DiISK UNIT
DS10

TRACE MODULE

USES EITHER TRACE PROBES
OR EMULATOR INTERFACE
CABLE .

TERMINATOR
r 80X

EMULATOR

BUFFER
MODULE

MODEL
99C

‘ COMPUTER *

. LsER"™
MICROFPROCE n50R

SOCK E T

USER'S MICROPROCESSOR
DEVELOPMENTAL PROTOTYPE

MODEL 810
PRINTER (TARGET “~YSTEM
(OPTIONAL)
L[
o
PROM/EPROM
N PROGRAMMER
(OPTIONAL)
DATA TERMINAL
MODEL 733 ASR (VIDEO DISPLAY TERMINAL)
- (OPTIONAL ) MODEL 911
(A)137446
. Figure 2-2. Typical Prototyping Laboratory Configuration
23 Digital Systems Division



{@? 946244-9701

R/TARGET BUFFER
S MODULE

TARGET SYSTEM
CONNECTOR
TMS9900

EMULATOR/
BUFFER
CABLES

P&

EMULATOR MODULE
CIRCUIT BOARD

(A)136523 (AMPL—377—35-5)

Figure 2-3. Emulator/Buffer and Interconnect Cables

There are four typical FS990 system configurations, two of which use the Model 911 Video Display
Terminal (VDT) and two of which use the Model 913 VDT. Figure 2-5 shows the standard
configuration, using a Model 990/4 Computer and the Model 911 VDT. Figure 2-6 shows the same
peripherals and a Model 990/ 10 Computer. Figure 2-7 shows the typical configuration using a Model
990/4 Computer and a Model 913 VDT. Figure 2-8 shows a similar configuration using a Model
990/ 10 Computer with the same peripherals. If the prototyping laboratory system is received with the
modules installed in the standard configurations, the CRU base addresses have been established at the
factory and are compatible with the software package. Also, in that case, the correct interrupt levels
have been determined and prewired in the interrupt jumper plugs for the peripherals. No alterations or
modifications of the 990 computer chassis is required. Other configurations are available from Texas
Instruments to modify existing FS990 systems to suit user requirements.

A DS990 system that supports the AMPL laboratory requires a Model 990/10 Computer 13-slot
chassis with a disc drive system. The Model 911 VDT controller, emulator, and trace module may be
installed in the main chassis as shown in figure 2-9, or in a CRU expansion chassis. The main chassis
configuration for use with an expansion chassis is shown in figure 2-10, and the expansion chassis is
shown in figure 2-11. A911 VDT for another work station may be connected to the controller board,
and the emulator and trace modules for the station may be installed in slots 12 and 13.

If the prototyping laboratory system is received with the modules installed in the recommended
computer configuration, the CRU base addresses for the modules in the computer chassis have been
established at the factory and are compatible with the software package. Also, in that case, the correct
interrupt levels have been determined and prewired in the interrupt jumper plugs. The CRU base
addresses of the modules in the expansion chassis are determined by the plug on the CRU expander
board to which the chassis is connected, and the slots into which the modules are connected. The
interrupt levels are prewired in the interrupt jumper plug.

2-4 Digital Systems Division




946244-9701

CONTROL
CABLE
9499361

DATA
CABLE

INDICATORS

LED

P5
EVENT

CIRCUIT
BOARD
949910—1

4
82
<0
O
2

P3

seeeesrses

CrIIEEE

s
%

R po i

Cxxpxpeces eovooos | axxMR "
W T ek s g

prsT

servans

FRRREE

e

TEIVLES

P TERINR R ERE

3)

(AMPL—377—~35—

E
E

949915~-1
CONNECTOR

TRACE
MODULE

<
-
<
[e]

oJ
om
<
0o

TERMINATOR

BOX

wuy
mQ
o<
orw
o

(A)136524 (AMPL—377—35-2)

Figure 2-4. Trace Module, Trace Data Probe, and Interconnect Cables

ision

Digital Systems Div

(]



| %p\ 946244-9701
W

Table 2-1. AMPL Microprocessor Prototyping Laboratory

Component Part Number

Emulator Module 949925-0001

TMS 9900 Buffer Assembly 949937-0001
Emulator/ Buffer Cable 949924-0001
Emulator/ Buffer Cable 949924-0002
Buffer/ Target Cable 949923-0001
Buffer/ Target Cable 949923-0002
Buffer/ Target Clock Cable 949945-0001
TMS 9900 Target Connector 949905-0001
TMS 9900 Buffer Module 949995-0001

TMS 9980 Buffer Assembly 949937-0002
Emulator Buffer Cable 949924-0001

Emulator/ Buffer Cable
Buffer/ Target Cable

949924-0002
949923-0003

Buffer/ Target Cable 949923-0004
TMS 9980 Target Connector 949955-0001
TMS 9980 Buffer Module 949940-0001
Trace Module 949910-0001
Emulator/ Trace Data Cable 949935-0001
Emulator/ Trace Control Cable 949936-0001
Trace Data Probe 949915-0001
P1 P2
CHASSIS CRU INTER— CRU INTER—
SLOT | BASE CIRCUIT BOARD RUPT BASE CIRCUIT BOARD RUPT
NUM BER ADDRESS LEVEL ADDRESS LEVEL
1 N/A $90/4 AU W8/K N/A N/A 990/4 AU W/8K N/A
40K 990 /4 MEMORY MOK 990/4 MEMORY
2 02E0 EXPANSION N/A 02C0 | EXPANSION N A
8K 990/4 MEMORY 8K 990/4 MEMORY
3 02A0 EXPANSION (OPT.) N/A 0280 EXPANSION (OPT.) N-A
4 0260 SPARE N/A 0240 SPARE N/A
5 0220 SPARE N/A 0200 SPARE N A
6 01EO SPARE N/A 01CO SPARE N’A
7 01A0 SPARE N/A 0180 SPARE NCA
EMULATOR EMULATOR
8 0160 MODUL.E 6 0140 MODULE 6
9 0120 TRACE MODULE 6 0100 TRACE MODULE 6
. 911 VDT 911 VDT
10 OOE O CONTROLLER 3 ooco CONTROLLER 3
FLOPPY DISC FLOPPY DISC
ti 00A0 CONTROLLER 7 0080 . CONTROLLER 7
- LINE PRINTER CARD READER
12 0060 (OPTIONAL) 6 0040 (OPTIONAL) 4
PROM PROGRAM-— 733 ASR
13 0020 MEF';“(QPTI’ONAL) 6 0000 (OPTIONAL) 6
(A)137447

Figure 2-5. Model 990/4 Computer 13-Slot Chassis, Standard Configuration,

TX990 with 911 VDT

2-6

Digital Systems Division




]

[}

946244-9701

P1 P2
Cgﬁg?"—:’ CRU INTER— CRU INTER—
NUM BER BASE CIRCUIT BOARD RUPT BASE CIRCUIT BOARD RUPT
ADDRESS LEVEL ADDRESS LEVEL
1 N/A 990/10/AU2 N/A N/A 990/10/AU2 N/A
2 02E0 990,/10/AU 1 N/A 02Co0 990/10/AU 1 N/A
16K MEMORY 16K MEMORY
3 02A0 EXPANSION N/A 0280 EXPANSION N/A
48K MEMORY 48K MEMORY"
4 0260 EXPANSION N/A 0240 EXPANSION N/A
5 0220 SPARE N/A 0200 SPARE N/A
6 01EOQ SPARE N/A 01Cco SPARE N/A
7 01A0 SPARE N/A 0180 SPARE N/A
EMULATOR 5 EMULATOR 5
8 0160 MODULE 0140 MODULE
9 0120 TRACE MODULE 6 0100 TRACE MODULE 6
911VDT 911 VDT
10 OOEO CONTROLLER 00CO CONTROLLER 3
FLOPPY DISC FLOPPY DISC
H 00A0 CONTROLLER 7 0oso CONTROLLER 7
LINE PRINTER CARD READER
12 0060 (BT IONAL ) 6 0040 (OPTIONAL) 4
PROM PROGRAM-— 6 733 ASR
13 0020 MER (OPTIONAL) 0000 (OPTIONAL) 6
(A)137448
Figure 2-6, Model 990/10 Computer 13-Slot Chassis Configuration for TX990 with 911 VDT
P1 P2
CHASSIS CRU INTER— CRU INTER—
SLOT BASE CIRCUIT BOARD RUPT BASE CIRCUIT BOARD RUPT
NUMBER ADDRESS LEVEL ADDRESS LEVEL
1 N/A 990/4 AU W/8K N/A N/A 990/4 AU W 8K N A
0K 990/4 MEMORY] 40K 990/4 MEMORY|
2 02E0 EXPANSION N/A 02co EXPANSION N A
8K 990/4 MEMORY ] 8K 990/4 MEMORY
3 02A0 EXPANSION (OPT.) N/A 0280  |[EXPANSION (OPT.) N oA
a 0260 SPARE N/A 0240 SPARE N/A
5 0220 SPARE N/A 0200 SPARE N A
6 O1EO SPARE N/A 01CO SPARE N A
7 0O1AO SPARE N/A 0180 SPARE N A
EMULATOR EMULATOR
8 0160 MODULE 4 0140 MODULE 4
9 0120 TRACE MODULE 4 0100 TRACE MODULE 4
913 VDT 913 VDT
10 OOEO CONTROLLER 3 0oco CONTROLLER 3
FLOPPY DISC FLOPPY DISC
" 00A0 CONTROLLER 7 0080 CONTROLLER 7
LINE PRINTER
12 0060 (OPTIONAL) 4 0040 SPARE 4
PROM PROGRAM— 733 ASR
13 0020 MER (OPTIONAL) N/A 0000 (OPTIONAL) 6
(A)137449

Figure 2-7, Model 990/4 Computer 13-Slot Chassis Configuration for TX990 with 913 VDT

2-7

Digital Systems Division




[
ha\

9462449701
P1 P2
CHtes'® CRU INTER- CRU INTE R—
NUM BER BASE CIRCUIT BOARD RUPT BASE CIRCUIT BOARD RUPT
ADDRESS LEVEL ADDRESS LEVEL
1 N/A 990/10/AU2 N/A N/A 990/10/AU2 N/A
2 02E0 990/10/AU1 N/A 02co 9950/10/AU 1 N/A
4 0260 425.:&5%”.%?’ N/A 0240 42§Pbgsgl%$ﬂY \ N/A
S 0220 SPARE N/A 0200 SPARE N/A
€ 01EOQ SPARE N/A 01CO SPARE N /A
7 01AQ SPARE N/A 0180 SPARE N/A
6 0160 EMobULE a 0140 EMoBULE a
g 0120 TRACE MODULE 4 0100 TRACE MODULE 4
e 00EO CONTROLLER > ooco CONTROLLER M
A 00A0 CONTROLLER 7 0080 CoNTROLLER 7
e [Cooso | USRI | | oo | camieager |
13 0020 MER (OPTIONAL) N/A 0000 (GPTIONAL) 6

(A)137450

Figure 2-8. Model 990/10 Computer 13-Slot Chassis Configuration for TX990 with 913 VDT

P1 P2
s
Cg"’:O?‘S CRU INTER- CRU INTER-
NUM BER BASE CIRCUIT BOARD RUPT BASE CIRCUIT BOARD RUPT
' ADDRESS LEVEL ADDRESS LEVEL
1 N/A 990/10/AU2 N/A N/A 990/10/AU2 N/A
2 02E0 990/10/AU ¢ N/A 02co 990/10/AU 1 N/A
1 6K MEMORY 16K MEMORY
3 02A0 EXP ANSION N/A 0280 EXPANSION N/A
48K MEMORY 48K MEMORY
4 0260 EXPANSION . N/A 0240 EXPANSION N/A
16K MEMORY 1 6K MEMORY
5 0220 EXPANSION N/A 0200 EXPANSION N/A
48K MEMORY 48K MEMORY
6 O1EOQ EXPANSION N/A o1co EXPANSION N/A
7 01A0 DISC CONTROLLER 13 0180 DISC CONTROLLER 13
MAG. TAPE_CONTR| MAG, TAPE_CONTR 9
8 0160 ORTILINE COUPLER 9 0140 OR TILINE'COUPLER
911 VDT o
9 0120 collr¥RT v 8 0100 CONTROLLER !
) EMULA
10 00EO EMoBuLE 12 00co MobULE '
11 00AOQ TRACE MODULE 3 0080 TRACE MODULE 7
LINE PRINTER CARD READER 4
12 0060 (OPTIONAL 4 0040 (OPTIONAL)
PROM PROGRAM-— 733 ASR
13 0020 MER (OPTIONAL) 15 0000 (OPTIONAL) 6
(A*137451

without CRU Expansion Chassis

Figure 2-9. Model 990/10 Computer 13-Slot Chassis Recommended DX 10 Configuration

2-8

Digital Systems Division




9462449701

P1 P2
CHASSIS CRU INTER— CRU INTER-
SLOT BASE CIRCUIT BOARD RUPT BASE CIRCUIT BOARD RUPT
NUMBER ADDRESS LEVEL ADDRESS LEVEL
1 N/A 990/10 AU2 N/A N/A 990/10 AU2 N/A
2 02EO0 990/10 AU1 N/A 02co 990/10 AU1 N/A
3 02 A0 16K MEMORY 16K MEMORY ,
EXPANSION N/A 0280 EXPANSION N/A
a > 48K MEMORY 48K MEMORY v
0260 8K MEMOR N/A 0240 8K MEMOR' N/A
T6K MEMORY T6K MEMORY .
5 0220 EXPANSION N/A 0200 EXPANSION N/A
6 o 48K MEMORY 01co 48K MEMORY ,
1E0 EXPANSION N/A EXPANSION N/A
- 01A0 DISK CONTROLLER 13 0186 DISK CONTROLLER 13
MAG. TAPE CONTR. MAG . TAPE CONTR.
0160  I6R TILINE COUPLER 9 0140 5% TILINE COUPLER 9
9 911 VDT 8 911 VDT
0120 CONTROLLER 0100 CONTROLLER 10
N 511 VDT 911 VDT
1 by CONTROLLER 12 00co CONTROLLER 1
11 00A0 CRU EXPANDER 3 0080 CRU EXPANDER 7
LINE PRINTER CARD READER:
12 0060 (OPTIONAL) 14 0040 (OPTIONAL) 4
13 0020 PROM PROGRAM- 733 ASR
MER (OPTIONAL) 15 0000 (OPTIONAL) 6
(A)137452
Figure 2-10. Model 990/10 Computer 13-Slot Chassis Recommended DX10 Configuration with
CRU Expansion Chassis
P1 P2
CHASSIS CRU INTER- CRU INTER -
SLOT BASE CIRCUIT BOARD RUPT BASE CIRCUIT BOARD RUPT
NUMBER ADDRESS LEVEL ADDRESS LEVEL
1 N, A CRU BUFFER N/A N/A CRU BUFFER N/A
TILINE COUPLER TILINE COUPLER N
2 06E0 (OPTIONAL) N/A 06co (OPTIONAL) ~
3 06A0 SPARE N/A 0680 SPARE N A
4 0660 SPARE N/A 0640 SPARE N/A
5 0620 SPARE N/A 0600 SPARE N/A
6 0S5EOQ SPARE N/A 05C0 SPARE N/A
DISK CONTROLLER DISK CONTR. OR 3
7 05A0 (OPTIONAL) 13 0580 | "\NE PRINTEROPT. !
MAGNETIC TAPE MAGNETIC TAPE
8 0560 CONTROLLER (OPT.) 9 0540 CONTROLLER (OPT. 9
911 VDT 911 VDT
9 0520 CONTROLLER 8 0500 CONTROLLER 10
EMULATOR EMULATOR
10 04EO MODULE 12 04co MODULE H
11 04A0 TRACE MODULE 3 0480 TRACE MODULE 7
EMULATOR EMULATOR
12 0460 MODULE 14 0440 MODU LE 4
13 0420 TRACE MODULE 15 0400 TRACE MODULE 6
NOTE: THE CRU BASE ADDRESSES SHOWN APPLY TO EXPANSION CHASSIS 1 (CONNECTED
TO P3 OF CRU EXPANDER BOARD). ADD (N-1) X 4004 TO THE ABOVE ADDRESSES
(A) 137453 FOR CRU BASE ADDRESSES IN EXPANSION CHASSIS N.

Figure 2-11. Model 990/10 Computer 13-Slot CRU Expansion Chassis Recommended DX 10 Configuration

29

Digital Systems Division




Iy

946244-9701

2.2.1.1 Interrupt Levels. If the trace and emulator modules are obtained as separate kits to be installed
in an existing computer system, new interrupt level connections must be made in the computer chassis
and in the expansion chassis for proper interrupt recognition by the program.

CAUTION

Ensure that ac power to the computer chassis has been disabled before
beginning this procedure.

2.2.1.2 Interrupt Connections and Modifications. Wiring in the backplane of the chassis connects
interrupt lines from each circuit board connector to a pair of jumper plugs located on the backplane
adjacent to slot number 1, as shown in figure 2-12. Jumper wires installed in these jumper plugs connect
the interrupt output lines from the circuit boards to the CRU interrupt inputs. In the expansion

chassis, similar plugs connect the interrupt output lines from the circuit boards to the interrupt inputs
of the CRU buffer module.

Figure 2-13 is an outline drawing of the jumper plugs for the 13-slot chassis and the 6-slot chassis.
Interrupt levels are shown at the right of each connector. The 990/4 computer does not recognize
interrupt levels 8 through 15. Two jumper positions are wired to each chassis interrupt line. This allows
multiple interrupts to be connected to one interrupt level. To make interrupt level modifications
perform the following steps:

1. Remove the circuit boards from the first five slots of the chassis to gain access to the
interrupt jumper plugs.

IN: ERRUPT JUMPER PLUGS

FRONT OF CHASSIS

1A13 1A142
P1 P2

Al

=

A1l

A2

-

A2

O =

A3

ms =l -

ASSY945010-REV()

ui r
AN s e—r; ji= s
\\ REMOVE CIRCUIT BOAFRIDS IN FIRST FIVE

LOCATIONS FOR ACCESS TO JUM_PER PLUGS

mim
]

[

(A)133096A

Figure 2-12, Location of Interrupt Jumper Plugs (6-- and 13— Slot Chassis)

2-10 Digital Systems Division




9462449701

6-SLOT 13-SLOT
CHASSIS INTERRUPT CHASSIS INTERRUPT
JUMPER PLUG JUMPER PLUG
LocaTion 2pt |0 O 1ATI3 LocaTioNn 2P1 | O AT
2t OO 2 |0 O
- spr |0 O e |10 0O
spr |03 ser |00 0O
ap1 |0 0O ap1 |0 0O
apt |0 O |LeveL 1 e |0 0O
. ser {00 2 spt 10 O3
spr |10 0O 3 sp1 |0 O
ep1 |0 O a ert |00 O
e B O ’ et |0 O BRETR A re
7P1 O 0 JUMPER PIN
CONFIGURATION
7P1 g0
@ nppes wine - oo o 5o e
1A102 sp1 |00 O 3p1 | o o | 3ps
sp2 O O 6 o1 |O IO aP1 o o | api
ep2 |00 O 7 ort |00 O 5P 1 o) o | sei
sp2 |00 O 8 opr (O O 6P1 O O | eP1
sp2 | O O 9 ort |0 O 7P 1 o o | 7ei
wr2 (OO 10 ver |00 3O 8P1 O 0O | &Pt
ap2 |10 0O 11 mrer |0 MO 9P 1 o o | op
sp2 |10 0O 12 12p1 |0 O 1op1 | o o | tops
sp2 |0 0O 13 12P1 O Ocever 1 11P1 (o] o O JLEVEL 1
2p2 |10 0O 14 131 (O O > 1ok o 0 0 |ievew o
LocaTioN 2p2 | O O |LeveL 15 13 1O 0O 3 13p1 o) 219: O |LeveL 3
. JUMPER WIRE EDGE VIEW
1A1J2
132 10 O 4 13P2 O 8’2 O |LEVEL 4
13P2 O O 5 12P2 o '9'2 o 5
12p2 O 0O 6 11P2 o :9-2 ©) 6
12P2 a0 7 1QP2 (o] ‘9" o 7
ez |0 O 8 9P2 o 9, © 8
ez O O 9 8pP2 o 9” o 9
. wop2 |0 O 10 72 | O O O 1
wopz O O 1 6P2 (0] Q, © 0
or2 |0 O 12 SP2 o Q, © 1o
9pP2 O 0O 13 4aP2 (o] 92 o 11
sp2 O O 14 3P2 o Q, © 14
sp2 | OJleever 1s 2P2 | O @, O JueveL s
ez |O O -
72 | O O
sp2 |0 O
ep2 |00 O
> SP2 D D
se2 |0 G
a2 10O 0O
ar2 |0 O
> ez (O )
sz |00 0O
2r2 |00 0O
(A)134179 2 10 U
‘ Figure 2-13. 6— and 13- Slot Chassis Interrupt Jumper Plugs

2-11 Digital Systems Division



M o
é 946244-9701

2. Use one of the following steps to connect the jumper wires.

a. Pluggable jumpers. Remove the jumper plugs from the chassis. Insert the specially-
constructed jumper wire to connect the interrupt level to the chassis slot interrupt pin.

b. Jumper pins. Connect a jumper wire from the interrupt level pin to the chassis slot
interrupt pin.

3. Reinstall the jumper plugs and then reinstall the circuit boards.

For additional information about interrupt connections, refer to the Model 990/4 Computer Sysiem
Hardware Reference Manual or the Model 990/ 10 Computer Sysitem Hardware Reference Manual.

2.2.2 CIRCUIT BOARD INSTALLATION. When the proper locations in the computer chassis for
the emulator and trace modules have been determined and the correct interrupt levels established,
install the modules in the computer chassis in the following manner:

1.  Ensure that computer power is off.

2. Insert the circuit board, component side up, into the selected slot so the board slides into the
card guides on either side of the slot.

3. Push the board straight in until the edge connector engages the connector in the backplane.
Verify that the guide slots in the circuit board mate properly with the alignment comb in the
chassis.

2.2.3 CABLE CONNECTIONS. When the circuit boards have been installed in the appropriate
chassis slot, install the cables for the particular configuration in which they are to be used. The AMPL
Microprocessor Prototyping Laboratory can utilize one emulator/buffer as shown in figure 2-14, or
one trace module as shown in figure 2-20, or both an emulator/ buffer and a trace module as shown in
figure 2-23. To install a plug/ receptacle, be sure that the embossed arrowhcads are aligned for correct
orientation before mating the pair together, then align the pins, match the connectors togetherevenly,
and press on the plug until it is firmly seated.

NOTE

Pin | of the connector is on the same side as the red stripe on the ribbon
cable.

2.2.3.1 Installing Emulator/Buffer Cables. The emulator works in conjunction with the buffer module
to replace the microprocessor and/or the program memory in the user’s target system. The buffer
module houses the microprocessor and completes the interface between the emulator and the target
system.

Two ribbon cables are routed from the buffer module to the emulator, and three other ribbon cables
(two for TMS 9980) are routed between the buffer module and the target connector. The configuration
of these cable connections is shown in View A and B of figure 2-14.

Install the cables from the buffer module to the emulator as shown in the illustration. The location of
the connectors on the emulator module are as shown in figure 2-15. When installing connectors, be sure
the embossed arrowheads on the plug and the receptacle have the same orientation, as shown in figure
2-16. Since one of the mating connectors is slightly inset on the emulator circuit board, these
connections should be made before the emulator board is fully inserted into the computer chassis

2-12 Digital Systems Division




949620-9701

S066V6

N
0066 SW.L \

HOLO3INNOD
W3LSAS

L3oHvL \
€266v6 S3T18VO

139dviL/¥4344N8

0866 SW.L
HOLOANNOD WIALSAS
\ L39¥VL S566V6

€266V6 \

$3N8vo
13syv.Ll
¥3d4ng

or66v6 I1NAOW \\\\

d3d44dNdg 0866 SNL

v266v6 sS3149vYD
¥4344N8/40LV11W3

S666v6 IT1NAOCW \\\\

¥344N8 0066 SW.L

wiesSerq Surjqe) I9jyng/1oienuwiy ‘-7 Ansi

vsvsei(a)
HOLV1INW3 0866 SINL
g M3IA
Z-v266V6
1-5566v76 |- 0V66V6 |-S266v76
€d sd id od
€d Sd id 9d
2d d zd Sd
2d 2 cd Sd
HOLDINNOD 31NAOW 3TNGOW
L3949V ¥344n8 HOLYI NI
0866 SWL 0866 SWL
SY66v6
318VD MO01D € -E266V6° £z66V6 |-y 266V6
13o8vi/¥ad4ng
I-SY66Y6 2-v266V6
1-S066¥6 1-S666V6 1-5266V6
vr €d
vd €d
er Sd bd 9d
€d sd i d 9d
zr vd cd Sd
ed vd 2d Sd
HYOLO3INNOD 31 NAOW ERDES
139uvL FEEENL: HOLYINWI
0066 SWL 0066 SWL
1-€266¥6 L _coceve | vzeeve
\ MOLV1NWI 0066 SA.L
vy 266¥6 S31AVD
Y M3IA

¥344N89/40LVYINWA

S2reve
31NAOW
HOLVINWN3

P

¥ILNAWOD 066

Digital Systems Division

2-13



946244-9701

%

TOdLNOD
FOVHL/HOLYINWA

s[npojy Jojenuwiy *S[-7 In3ig

v1iva aNY sSs3daayvy TOHULNOD
FOVHL/HOLYINNA ¥4344N8/40LYINNI

(1-g€-LLE

IdWY) L259€1(Y)

v.iva aNy ss3daayv LNdN1 LN3IAZ
y3d4Ng/¥0LvINAA *L1X3 Ld

Digital Systems Division

2-14



9462449701

CABLE TO
BUFFER MODULE

N

ALIGN
EMBOSSED ARRO
HEADS
EMULATOR
P5
EMULATOR/
BUFFER
CABLE
P6
EMULATOR/

BUFFER CABLE P5

HOLD ACKNOWLEDGE _— <®
INDICATOR

EMULATOR e
P6

CABLE TO
BUFFER MODULE

EMULATOR MODULE
BOARD EDGE

(A)136566

Figure 2-16. Cable Connections at Emulator

backplane connectors. Attach the emulator/buffer cable connectors, PS5 and P6. to the emulator
module connectors P5 and P6, respectively, then slide the emulator into the chassis backplane
connectors. When the backplane connectors are fully engaged, the two plastic ejectors on the outer
corners of the emulator board should settle in place against the frame.

2.2.3.2 Installing Target System Connectors. The three cables from the TMS 9900 buffer module are
installed in the target system connector as shown in figure 2-17. Connect P2 to J2, P3 to J3. and P4 to
J4. Be sure the orientation of the plugs is as shown in the illustration (i.e., the embossed arrowhead on
the plugs is adjacent to pin 1).

2-15 Digital Systems Division



946244-9701

z CABLES TO BUFFER
MODULE

J3
// Rl
-
. P EMBOSSED
- -~ / ARROWHEAD ,PIN 1
yZ OF PLUG P2 'AND
CONNECTOR J2

TARGET ‘

CONNECTOR
(SEE VIEW A)

PLUG
P2
PIN 1 OF
PLUG P4 AND
CONNECTOR P4
TARGET
ARROWHEAD SYSTEM
ON P4 BREADBOARD
GROUND
LEAD
L]
BEVELED — TARGE T
INDEX y MICROPROCESSOR
CORNER SOCKET
PIN 1 OF
TARGE T
CONNECTOR
TARGET GROUND
PIN 1 OF CONNECTION
TARGET SOCKET
J3
ARROWHEAD PIN 1 MARK ING
ON P4 \ OF P4 /
PIN 1\\\\\ o °
OF J3 I\
2 \ LR w— - J— P oo
?f .e - —_— ». ¢+ |33 _ARROW-
ARROW HEAD N Rl S HEAD P2
P3 T
I - o -
2 ¢ - - _ >
J2 MARKING N . o - - > l
. o
BEVELED _—" .
CORNER VIEW A
PIN 1 GROUND
OF J2 TIE POINT

(A)136567A

Figure 2-17. Installation of Buffer Cables and Connector at TMS 9900 Target System

2-16 Digital Systems Division



(@ 9462449701

The connections for the TMS 9980 Buffer are similar, as shown in figure 2-18. Connect the two cables
from the buffer module to the target system connector, P2 to P2, and P3 to P3. No clock cable or
separate ground connection is required. Be sure the orientation of the plugs is as shown in the
illustration (i.e., the embossed arrowhead on the plugs is adjacent to pin 1.

When the system cables have been installed in the target system connector, remove the microprocessor
chip from the target system breadboard and install the target connector in place of the chip. Be sure the
beveled index corner of the connector (which identifies pin | of the microprocessor chip) has the
correct orientation, as shown in figure 2-17 and 2-18.

Next, (TMS 9900 buffer only) connect the ground lead to a good target system ground, preferably near
the microprocessor socket.

When all of the connections have been made, insert a slot screwdriver into the cutout of the buffer
module cover and select either an INTERNAL prototyping system CLOCK or the TARGET SYS
external clock (figure 2-19).

2.2.3.3 Installing Trace Module Cables. If a trace module is to be used alone, install the trace data
probe as shown in figure 2-20. This general-purpose data probe is implemented on a 6-foot ribbon
cable with an edge connector on one end and a terminator box on the other end. Each of the 26 signal
channels in this cable (plus two ground leads) are extended from the terminator box via color-coded
probe leads, as shown in figure 2-21. Each probe lead has a female connector on its outboard end. sized
to fit a standard wire-wrap post. Special spring-loaded IC test clips thataccommodate the probe leads
are available from suppliers, and these IC test clips may be used for convenient attachment to any IC
element, as shown in figure 2-22.

2.2.3.4 Connecting Emulator and Trace Module. The emulator and trace modules are cabled together
as shown in figure 2-23. The interconnections consist of two, 4-inch jumper cables. The control cable is
connected P3 to P3, and the data cable is connected P4 to P4. Verify that the embossed arrowheads on
plugs P3 and P4 are aligned with pin 1 on connectors P3 and P4. Optionally, the jumper data cable may
be omitted, if it is desired to trace data patterns directly from the target system. In this case, the trace
data probe may be connected from the trace module to the target system as described in the preceding
paragraph.

2.3 PERIPHERAL EQUIPMENT FOR THE PROTOTYPING LABORATORY

Many various options of peripheral equipment are available for installation in the AMPL
Microprocessor Prototyping Laboratory. The most frequently used peripheralsina TX990 system are
shown in figure 2-24, along with the interface board or controller and the cables for each type of
equipment. Figure 2-25 shows similar information for a DX10 system.

2-17 Digital Systems Division



946244-9701

CONNECTOR P2

EMBOSSED
ARROWHEAD
P2

PIN 1 OF
PLUG P2 AND

BEVELED
INDE X
CORNER PIN 1 OF

CONNECTOR

PIN 1 OF
TMS 9980
TARGET
SOCKET

/ &ABLES TO BUFFER

ODULE

EMBOSSED

ARROWHEAD,

PIN 1 OF

PLUG P3 AND

CONNECTOR P3
TARGET
CONNECTOR

(SEE VIEW A)

PLUG P3
TARGET
SYSTEM
BREADBOARD
a
TARGET
MICROPROCESSOR

SOCKET

P2 MARKING

ARROWHEAD P3

PIN 1
OF P2 ~~_ °
\ o o €— __
GROUND * o4 -
TIE ~——0 —
POINT \‘Q

———— ————Pp e ol P3

GROUND
TIE
POINT

e

e

ARROWHEAD P2

BEVELED
CORNER
(A)137465

\\ P3 MARKING

PIN 1
OF P3

VIEW A

Figure 2-18. Installation of Buffer Cables and Connector at TMS 9900 Target System

2-18

Digital Systems Division




@ 9462449701

TO TARGET

(A)136528

+—

o)L

INTERNAL o TARGET
‘\_/1 SYS
cLOCK

TO EMULATOR
—

Figure 2-19. Buffer Module

Digital Systems Division



e 946244-9701

990 COMPUTER

TRACE MODULE
949910
949915

TRACE DATA
PROBE

949950
TERMINATOR 949920
BOX PROBE
LEADS

TARGET
ST \/

(AY136002

Figure 2-20. Trace Module Cabling Diagram

2-20 Digital Systems Division



Z] 946244-9701

* L =
R

TERMINATOR
BOX

GND BLACK T
DO BROWN
- D! RED
R D2 ORANGE
GND BLACK D3 YELLOW
DO e —— e, | 04 GREEN
D1H BROWN D5 BLUE
02 ——— D6 VIOLET
I3 D7 GREY
| 02 RED D8 WHITE
’\'QLD D9 BROWN 20 DATA
, D5 D10 RED fLEADS
D6 D11 ORANGE
o5 D12 YELLOW
D13 GREEN
D8 D14 BLUE
Do D15 VIOLET
D10 D16 GREY
D11 D17 BROWN
D12 D18 ORANGE
013 ° D19 YELLOW
oy 28 Q0 GREEN
15 @ REPLACEABLE Q11 BLUE
D16 LEADS Q2 VIOLET 4 QUALIFIERS
D17 Q3 GREY
Dis L4 CLOCK RED
b1o EVENT WHITE
GND BLACK
Qo
, @l
G2
Q
ELOCK
VENT
GND) BLACK
S—p
CABLE TRACE
DATA PROBE
(A)136006 \‘/
Figure 2-21. Trace Data Probe Terminator Box and Leads
. BUFFER/TARGET
CABLES IC ELEMENT TRACE DATA
CLIP PROBES

TARGET
CONNECTOR
TMS9900

TMS9900 MICRO—

(REMOVED FROM
R TARGET
ARGET SYSTEM) SYSTEM
(A)137455
‘ Figure 2-22, Typical Connections to Target System

TERMINATOR
BOX

2-21

Digital Systems Division



9462449701

IS

990 COMPUTER

EMULATOR
MODULE 949924 “
949925 EMULATOR/BUFFER

CABLE

BUFFER MODULE
9499137

949913

BUFFER

TARGET
CABLFES

CONTROL
_—— CABLE
9499136

e

TARGET
SYSTEM
CONNECTOR

\\\ 949915
TRACE
DATA

\ PROUBE

990 COMPUTER CABLE PROBE LEAOS

TERMINATOR
BOX

DATA FLOW VIA TRACE DATA PROBE

N s - e — — — — —_— —

EMULATOR ’

BUF FER TARGE T
EMULATOR MODUL.E CONNECTOR 949924
PS5 P2 P4 P2 EMULATOR/BUFFER
PS —~r> Pa J2 CABLFE
P6 P 1 P5 P3
P6 }_——Cp‘ PS5 :.__{ J3
BUFFER MODULE
paE2 _Pida . 949937
TRACE
~ MODULE
4
TMS 9900 \\\\i 9910
ONLY
P3 P3
PA 3
TRACE
P4 P4 MODULE
P4 [——{]Pa
-

DATA FLOW THROUGH EMULATOR
949935
DATA
CABLE

CONTROL
ABL
;ine;i TARGET
B 116568 SYSTEM
CONNECTOR

Figure 2-23, Trace Module and Emulator Module Interconnecting Cable

2-22 Digital Systems Division



946244-9701

e —— — — —

MODEL 990 COMPUTER CHASSIS 975067 .
3
13- sLov 913A VDT Ps Q124 vDT
DISPLAY KEYBOARD
I_ —_—— P4 97506H
BACKPANEL
| SLOT 1 CHASSIS SLOT 10
55077 | | 975243 974783
MICRO-
I EXTENDER CABLE ¥ I 4 913 voT 13 I
M coglol:\"r'aTDER CONTROLLER
Il [l m
(4K ]
MEMORY) | | '
944910 975195
l Ja | Pa
I I 911 voT [ | 911 vDT 911 VDT
I CONTROLLER | | T 1] bispLay KEYBOARD
I l I 1/2 CHASSIS SLOT 12 I
' e
sLoT 2 I I U +rveia R 1 MODEL 810
pr— . MODULE U L] Y PrRINTER
MEMORY ‘ L
EXPANS ION I
12 TO N "
I 26K) l | 945075
I 0421207 (pARITY) CHASSIS SLoT 11t |
I I STATUS CABLE 945958
sLoT 3 FLOPPY :} ! -
Isc
l I cowrnou.sn al § CONTROL CABLE 7
v S L
MEMORY DUAL 945951
PROGEAMMER e NENSR Y Iouak 922351
BOARD I 945940 |
ol } | o
11 A 1 FD80O FLOPPY DISC DRIVE
0_56‘6 % I (OPTIONAL ) I I 4 945830
SINGLE PHASE
NEUTRAL 1 l —
733 ASR
| | | DATA TERMINAL
( I
i I | L
E
I l 1/2 CHASSIS SLOT & 3
| |
226851 - | T A -
CHASSIS mogsle [)25esrems
EXTENDER < A T
BOARDS ]
| l l 945075 I
FULL-SIZE AC Al
EXTENDER POWER POWER l
BOARD CONVERTER SUPPLY 1 l
(
9751701 l
I______L__._.___.___] | I |
I I 1/2 CHASSIS SLOT 13 -
§:
l | 9 PROM | PROM
PROGRAMME R y
| e | e[ -
SUPPLY "MooLLE |
I Y EMULATOR/
944996 BUFFER 944924 BUFFER/TARGET
CABLE CABLES 949923
949924
' 945128 CHASSIS SLOT 8 P Pa pa IaRcET
———_———-—_——-———.‘ P6 1 CONNECTOR
[ 1 U BUFFER YMS 9900 949505
=
EMULATOR  P§ DATA MODULE s
I | MOBULE | casLE TMS 9900 S _ O TMS 93980 949555
Pa |J I 94992 oR
l I | n P3 P2 | TmMS 9980 P3
I U
949925
I I I OPTIONAL TMS 9900
CONNECTIONS
I l CHASSIS SLOT 9 ONLY
l l TRACE ITRACE DATA PROBE
MODULE I 29915
I I ——|————-1 PROBE/5$
CONTROL LEAD>
CABLE
I L _I 949910 9499136

TARGET SYSTEM

(B)136569

Figure 2-24. Peripheral Devices Available for AMPL
Microprocessor Prototyping Laboratory (TX990)

2-23/2-24 Digital Systems Division



946244-9701

= — = — ——— ——————

MODEL 990 COMPUTER CHASSIS
BACK PLANE

| I— - -I 1.2 CHASSIS SLOT 1.2
990/10 + l
AU1 | TTY/EIA ]J MODEL 810
| MODULE ——q LINE PRINTER
l 990/10 ! I
AU2 DISC
CONTROLLER oS3 L33 e
Y
I I 1/2 CHASSIS SLOT 13 —
TILINE 733 ASR
MEMORY DATA TERMINAL
EXPANSION I TTY/EIA 73 71
MODULE
1 =
I at |
PROGRAMMED | I
L
. AN TILINE
. 115 VAC \ MEMORY
50~60 HZ -0 G- EXPANSION I
SINGLE \ PROM '
PROGRAMMER PROM
PHASE /' | 1 | INTEgFﬁgE [—————— PROGRAMMER
MODU
AC l
POWER 944924
CONVERTER MAIN POWER
SUPPLY I I
l_ — — .I_ —_— | —_—_— | | lI
r — N e— — —— — am— ———
| ,
_ STANDBY CRU l
| ;’&‘{"’5_3{ | EXPANDER l |
2 ' BACKPLANE
| 6 € | c_J| —
\ ~ - P3
P3 I | 3 913A VDT :}mps 913A VDT
l l _I Sizaver P P41 DISPLAY 75068 KEYBOARD
1
_I l 975243 974783
r ———  cm—— o m——|  —— l
' | CHASSIS SLOT 2
I ' 9t1avoT |4 911 VDT 911 VDT |
CONTROLLER [} 2ldet®y  —— kEYBOARD
EXPANSION
I BUFFER Sy,
1 BUFFER/TARGET
OPERATOR | CABLE 949923
PANEL CHASSIS SLOT 4 I p1 P
115 VAC \ - P6 2 TARGET SYSTEM
50~60 HZ O- t l CONNECTOR
EMULATOR MODULE p P2 LY7¥ 300
SINGLE ~\ 1 P4
TMS 9900 OR TMS 9980
PHASE [ j I I MODULE p2] TMms 9980 [P3 949953
i
| AC POWER MgllJf*ll:,lf&\{NER l
CONVERTER OPTIONAL  TMS 9900
L CHASSIS SLOT 5 CONNECTORS ONLY
1
| l = V
TRACE MODULE X' TRACE DATA PROBE
Pa RMIN -
| | =5 | rages ™ JEoR™|
BOX
EXPANSION CHASSIS
(B)137456 l
— —_— —

Figure 2-25. Peripheral Devices Available for AMPL
Microprocessor Prototyping Laboratory (DX10)

2-25/2-26 Digital Systems Division



(ﬂ—@ﬁ 946244-9701
A

SECTION III

AMPL APPLICATIONS

3.1 INTRODUCTION TO AMPL LANGUAGE

Other parts of this manual describe in detail the syntax and usage of each clement in the AMPL
language. This section briefly outlines some of the capabilities of the language and describes
some actual applications to development problems.

The AMPL language is a complete test language which includes:

integer arithmetic

logical operators

arithmetic (two’s complement) and unsigned magnitude relation operators

execution control and branching structures

procedure and function declarations which facilitate design of routines and subroutines

library procedures and functions especially designed to facilitate the gathering and
display of test data

user-controlled display formats — binary, decimal, hexadecimal, octal, ASCII. and 9900
assembly language mnemonics

emulator/buffer control commands
trace module control commands

utility functions.

The AMPL language allows the user to initiate and control each test operation on an interactive
basis, or to design and store extensive monitoring and testing procedures which execute without
manual intervention.

The examples of AMPL applications in this section utilize the trace module control commands.
the emulator control commands, and some of the library procedures.

The emulator and trace module commands are intimately related to the module hardware and
the test connections (see Section Il before proceeding). Briefly, the emulator and buffer connect
a substitute microprocessor into the system under test (target system). The Emulator has access
to all the microprocessor input and output lines, including the CRU, address bus. data bus.
memory control, clock and hold lines. This gives the emulator control of the target system. and
access to the Program Counter (PC), Workspace Pointer (WP), and Status Register (ST).

3.1 Digital Systems Division



%@ 946244-9701

31.1 EMULATOR CONTROL COMMANDS AND VARIABLES. The emulator module must be
initialized before any type of emulator access may be exccuted. The EINT command initializes
the emulator, specifying by device name which emulator is active. The EINT command is entered
as follows:

EINT ('EMU') Initialize emulator EMU.
The example uses a TX990 device name. The proper command for a DX10 system is as follows:
EINT (CEMOI) Initialize emulator EMOL.

Selection gates, controlled by a system variable EUM., allow the microprocessor access to a 8K-byte
emulator user memory or to the target system memory. The emulator has a 512-byte memory which
may be assigned to the microprocessor or reserved for address tracing. as specified by a system variable
ETM.

The emulator has comparison logic which monitors the address bus. the Data Bus In (DBIN) line
and the Instruction Acquisition (IAQ) line and gives a comparison output when they mateh a
predetermined value. This predetermined value is controlled by the emulator compare (ECMP)
command. The ECMP command has an address field which selects the address to be checked,
and a type field which determines whether the compare should be issued for instruction
acquisitions only, write operations only. or all accesses to the specified address. The type ficld
can also be used to disable comparisons.

The following examples show how to use the ECMP command.

Command Compare Condition
ECMP (ADDR, 0040) Any access to (hex) address 0040.
ECMP (ADDR+IAQ, 0004) Instruction acquistion access to 0004.
or
ECMP (1AQ, 0004)
ECMP (ADDR-DBIN, 04EE) Write operation performed at 04EE.

or ‘

ECMP (-DBIN, 04EE)

ECMP (OFF) None. Emulator comparison disabled.
The emulator internal comparison can be sclected as the triggering cvent for a breakpoint. This
requires two instructions, one which defines the comparison as an “event” and one which selects
the event as a breakpoint and specifies action after the breakpoint occurs.

The emulator event (EEVT) command defines an event. To define the emulator comparison as
an event. enter EEVT (INT). If EXT is used as a modifier, an event signal connccted by the user -
is selected as the emulator event.

The emulator breakpoint (EBRK) command selects the breakpoint condition and the action to
be taken when the breakpoint condition occurs.

The breakpoint condition may be the event (EVT) defined by the EEVT command, or it may be
the emulator trace buffer full (FULL) condition, or whichever occurs first. Note that the trace
buffer full condition occurs when the number of samples specified in the ETRC command have
been taken. This number is between 1 and 256. The OFF keyword disables the breakpoint.

The breakpoint action may be either SELF (stop emulator) or OFF (do not stop emulator). Break- .
point action OFF causes the AMPL software to interrupt the host computer.

3-2 Digital Systems Division



I

946244-9701

The following examples show how to use the EBRK command:

Command

EBRK (EVT, SELF)

EBRK (FULL, OFF)
EBRK (EVT+FULL, SELF)
EBRK (OFF, OFF)

Breakpoint Condition Breakpoint Action
Event Stop Emulator
Trace Completion Interrupt Host Computer
Event or Trace Stop Emulator
None None

Figure 3-1 is a flowchart example which shows the steps in setting up an emulator comparison
breakpoint with the ECMP, EEVT, and EBRK commands.

SELECT
ADDRESS

b — —

l

ECMP(1AQ ,< ADDRESS> )

SELECT
ADDRESS
TYPE

e —

|

ECMP(IAQ ,< ADDRESS>)

DEF INE
COMPARISON
AS EVENT

e —

EEVT (INT)

SELECT
EVENT AS
BREAKPOINT

p e —

|

!

EBRK(EVT,SELF)

DEF INE
BREAKPOINT
AS HALT

e — —

(A)136530

l

EBRK(EVT ,SELF)

Figure 3-1. Setting Emulator Comparison Breakpoint with ECMP, EEVT, EBRK

3-3

Digital Systems Division



946244-9701

The emulator trace command allows selection of data samples to be stored in emulator trace
memory. The form of the command is similar to the ECMP command. .

The first operand field of ETRC allows recording of all addresses accessed by the microprocessor
(ADDR), only instruction acquisitions (ADDR+IAQ) or no trace (OFF). The second operand is a
count of the number of samples desired. The count is limited by the 256-word capacity of the
emulator trace memory. The third operand allows selection of internal clock from the buffer
board or external clock.

The following examples show how to use the ETRC command:
Command Trace Condition

ETRC (ADDR, 256, INT) Trace 256 memory bus addresses using
internal (target system) clock enable.

ETRC (ADDR+IAQ, 10, EXT) Trace 10 instruction addresses using .
external (trace module) clock enable.

ETRC (IAQ, 50, INT) Trace 50 instruction addresses using in-
ternal (target system) clock enable.

ETRC (OFF) Disable trace logic.

Figure 3-2 is a flowchart which shows how to set up the ETRC command and use the emulator
trace memory full as the breakpoint condition.

Note that the emulator trace memory stores memory addresses as they appear on the micro-

processor address bus. It does not store the data written to or read from these addresses. The ‘
trace module, when interconnected with the emulator by control and data cables, can store the

data read from or written to these addresses.

Addresses stored in trace memory are accessed as if they were elements in a single dimension

array (ETB) using an index in parentheses. Index zero corresponds to the most recently stored

address. Previously stored addresses are accessed using negative index values, for example,
ETB(—9). An index of —1 corresponds to the address of the instruction preceding the one at the ‘
most recently stored address. More negative index values correspond to previously stored
addresses, and the oldest address is accessible at the most negative index value. System variable

ETBO contains the index of the oldest address stored, and ETBN contains the index of the

newest address stored in the emulator trace memory.

The status of the emulator can be determined by entering EST. The resulting output is a
hexadecimal display. The least significant digit gives the status as tabulated in Section V of this
manual. There is a library procedure, ESTAT, which gives a plain text status printout.

The emulator trace, if any, and microprocessor operation are initiated and halted by the ERUN
and EHLT commands, respectively.

3-4 Digital Systems Division



946244-9701

SELECT |
ADDRESS - — — -4 ETRC(1AQ, 10 ,INT)
TYPE

l

HOW MANY - — — - ETRC(IAQ, 10,INT)

SELECT l
TRACE — — — —{ ETRC(1AQ, 10 ,INT)
cLoCK
SELECT |
E FUL
ADACE F - — — —| EBRK(FULL ,SELF)
BREAKPOINT
DE FINE |
BREAKPOINT  }__ — JEBRK(FULL ,SELF)

AS HALT

(A)136531

Figure 3-2. Setting Emulator Trace Breakpoint

3.1.2 TRACE MODULE COMMANDS AND VARIABLES. The trace module is also capable of
tracing a maximum of 256 items, each consisting of up to 20 bits. The module stores the traced
items in a 256 X 20 trace memory. The trace module can generate a signal when a specified
number of items have been traced. The trace module also compares specified bits of each item to
specified values, and generates an event signal when an equal comparison occurs. An event
counter counts these signals, and starts counting delays when a specified number of events has
occurred. Each item stored in trace memory after the events have been counted constitutes a
delay; when the specified number of delays has occurred, the logic generates an event and delay
completion signal. The breakpoint can stop the trace. signal the emulator to stop the micro-
processor, or interrupt the host computer without stopping either the trace or the microprocessor.

3-5 Digital Systems Division



946244-9701

The commands and system variables for the trace module closely parallel those which control the
emulator. The TINT command must be entered first to initialize the trace module. The following
is an example of a TINT command using the device name in the TX990 system supplied with
the prototyping laboratory:

TINT ('TRA') Initialize trace module TRA.

For a DX10 system, the proper command is as follows:

TINT (‘TMO0D) Initialize trace module TMOI.

Figure 3-3 is a flowchart of the steps in setting up a trace operation in the trace module.

The TTRC command in the flowchart specifies tracing all addresses that are instruction acquire
addresses (IAQ true), generating a completion signal when the count of addresses has been
traced. EXT specifies the external clock, which is target system clock from the emulator. The
OFF operand could have been omitted because it applies in default when no operand has been
entered previously. This operand controls latching the four high-order bits to store glitches, and
should be OFF when the data cable is connected to the emulator.

The following examples show how to use the TTRC command:

Command Trace Condition

TTRC(ADDR+IAQ, 14, EXT, OFF) Trace 14 memory bus addresses using external '
(target system) clock. Trace only instruction
addresses (IAQ true), and trace with latches
off.

TTRC (Q0+Q1, 256, INT, ON) Trace 256 items to which probe leads are
connected, using internal clock. Trace an item
only when signals to which probe leads QO .
and Q1 are connected are true. Enable latches
on DO — D3.

TTRC(DATA-DBIN, 25, EXT, OFF) Trace 25 memory data words using external
(target system) clock. Trace only data that
was written, and trace with latches off.

TTRC(OFF, 256, EXT, OFF) Trace 256 words from emulator using external

(target system) clock. Trace all data (qualifiers
masked off) and trace with latches off.

The TBRK command specifies that the trace completion signal is to be used to generate a
breakpoint, and to signal the emulator to halt at completion of the current instruction.

3-6 Digital Systems Division



_l' o

9462449701

SELECT
INPUT

SR ——

!

TTRC(ADDR+1AQ ,<COUNT > ,EXT ,OFF)

l

SELECT
ADDRESS
TYPE

|

TTRC(ADDR+IAQ ,< COUNT > ,EXT ,OFF)

l

HOW MANY

e —— —

l

TTRC(ADDR+IAQ , <COUNT> ,EXT ,OFF)

SELECT
TRACE
CLOCK

e — —

l

TTRC(ADDR+IAQ ,< COUNT > ,EXT ,OFF)

LATCH

e —— —

|

TTRC(ADDR+IAQ ,<COUNT> ,EXT ,OFF)

SELECT
TRACE FULL

AS
BREAKPOINT

b — —

TBRK (FULL ,EMU)

DEF INE
BREAKPOINT
AS HALT
EMULATOR

e — —

TBRK(FULL ,EMU)

(A)136532

Figure 3-3. Setting Trace Breakpoint in Trace Module

3-7 Digital Systems Division



946244-9701

The following examples show how to use the TBRK command:

Command Breakpoint Condition Breakpoint Action
TBRK(FULL, SELF) Trace Completion Stop tracing, interrupt host compu-
ter.
TBRK(EVT, EMU) Event and Delay Request emulator to halt.
Completion.
TBRK(EVT+FULL, SELF+EMU) Event and Delay Stop tracing and request emulator to
Completion or halt.

Trace Completion.

TBRK(FULL, OFF) Trace Completion Interrupt host computer.

Items are stored in trace memory in a manner similar to the manner in which addresses are stored in
the emulator trace memory. Items are accessed as if they are elements in a single dimension array
(TTB) using an index in parentheses. Two system variables, TTBO and TTBN, contain the index
values for the oldest and newest items traced, respectively.

Trace module status can be displayed by entering TST. The status value returned is a 4-digit
hexadecimal number. The TSTAT library procedure prints the status in plain text.

In order to save memory space in the host computer, the library procedures are not automatically
available when the AMPL system is called up. A COPY command with the file name of the library
procedure may be used to bring the procedure into memory. It remains available until the symbol table
is cleared by a CLR command. Each library procedure is accompanied by a short tutorial which
describes the use of the procedure and the values, if any, required in the procedure call. To print the
information, the user must enter a LIST command (paragraph 5.5.2) prior to entering the COPY
command. Figure 34 is a sample of a copy statement and the resulting printout. The printout may be
suppressed by a LIST (OFF) command. In the figure, the TDATA procedure has been copied.

This short section on emulator and trace module commands is intended to provide sufficient
background to follow some actual examples of AMPL system use in the development environ-
ment. Detailed descriptions of the AMPL commands are contained in Section V.

3.2 PROTOTYPING LABORATORY INITIAL CHECKS

When the buffer module is connected to a target system, it is possible for the target system to
interfere with proper operation of the AMPL system. The following initial checks identify these
types of troubles so that they may be corrected before proceeding with further testing ot the
target system:

e  Buffer module checkout
®  Target system address and data bus checkout
®  Target system clock checkout

®  Target system memory checkout.

3-8 Digital Systems Division



J_ o

946244-9701

? LIST ('LOG")
7 COPY(“:TOUMPS/PRC')

7 ...TITLE: TDATA: FRINT TRACE MODULE SAMPLES

7 e -REVISION: 03/24/77

? ...ABSTRALCT:

7T eea TDATA PRINTS A SPECIFIED RANGE OF SAMFLES FROM THE TRACE MODULE

...TRACE BUFFER. THE SAMPLES ARE
...FRINTED FOR EACH SAMPLE.

? e« ISAGE:

B TDATA HAS ONE REQUVIRED AND
...ARGUMENT IS THE STARTING INDEX
.. .ARGUMENT IS THE ENDING INDEX.

7 ...I3 THE STARTING INDEX PLUS 29,
? ...THAT MANY IN THE TRACE BUFFER.
...TRACE MODULE IS HALTED. !

? “DEFINING TDATA” NL

+ PROC TDATA(L,Z) BEGI

N
17 IF ARG O E& 2
17? THEN LOC 1 = ARG X
17 ELSE LOC 1 = ARG 1 + 293
17 IF LOC 1 53T TTBEN
17 THEN LOC 1 = TTENS
17 Loc 2 = 03
17 “ INDEX HIGH LOW
17 - HIGH LW s
17 WHILE ARG 1 LE LOC 1
17 DO BEGIN

IF LOC 2 MOD = EQ O
THEN BEGIN
ARG 1:NDV 7/
END
ELSE ~ ’
LoC 2 = LOoC 2 + 15
TTEH(ARG 1):Hs
TTE(ARG 1):1HAS
ARG 1 = ARG 1 + 13
EENID3
17 END

(A)136533

Figure 34

NOT INTERPRETED; ALL TWENTY BITS ARE

ONE OFTIONAL ARGUMENT. THE FIRST
T0 BE USED. THE OFTIONAL SECOND
IF IT IS OMITTED, THE ENDING INDEX
GIVING 20 SAMPLES. IF THERE ARE
TDATA MAY BE CALLED WHENEVER THE

. .ENDING INDEX WAS GIVEN
... NOT GIVEN

...LIMIT ENDING INDEX
...SET NEWLINE FLAG

HIGH LW s

.START A NEW LINE
...TAR TO NEXT COLUMN

...5TEF THE FLAG COUNTER
...DISPLAY SAMPLE

. Sample Library Procedure

3-9 Digital Systems Division



@ 9462449701

3.2.1 BUFFER MODULE CHECKOUT. The buffer module checkout procedure should be .
executed -before connecting the AMPL system to a target system to verify that the buffer

module is- operating satisfactorily. The procedure may also be executed at any time there is a

doubt of the proper operation of the buffer module. Perform the following steps:

1. Install the emulator and buffer modules and connect the cables as described in Section II.
If the trace module is to be used in testing the target system, connect the trace module as
required. Do not connect the target connector to the target system.

2. Set the CLOCK switch on the buffer module to the INTERNAL position.

3. Apply power to the AMPL system.

4. Load the AMPL program as described in paragraph 5.2.

NOTE
The emulator Halt Acknowledge indicator (figure 2-16) should be

on at this point. If not, perform maintenance on the emulator
module before continuing the test.

5. Enter the EINT command to select the emulator. The following is an example of an EINT
command. Substitute the device name of the emulator if EMU or EMDI is not the device

name.
? EINT (CEMU) Select emulator EMU (TX990).
?EINT (‘EMOI) Select emulator EMO01 (DX10).

6.  Enter the following statement to map emulator user memory into the address space:

7. Enter the following command to make library procedure ESTAT available:

? COPY (“.S#SYSLIB.AMPLSLIB.STAT>) For DX10.

8. Call library procedure ESTAT. The following is an example of the call and the
resulting display:

? ESTAT:
EMULATOR IS NOT EXECUTING.
EMULATOR TRACE BUFFER IS NOT FULL. -

EVENT CONDITIONS ARE NOT SATISFIED.
35 BREAKPOINTS COUNTED.
10 ADDRESSES TRACED: -9 ... 0 ,

9. The emulator should not be executing at this point. If the emulator is executing
perform maintenance on the emulator before proceeding.

3-10 Digital Systems Division



o
q'_@ 9462449701

10. Enter the following function definition to test target memory:

11.

12.

13.

14.

15.

? FUNC MEMTST(3,1) BEGIN
1?7 LOC 1 = ARG 1
1?7 WHILE LOC 1 LOE ARG 2 DO
1? BEGIN
2? @LOC 1 = ARG 3
2? LOC 1 =1L10C 1+ 2
27 END
17 LOC 1 = ARG 1
1?7 WHILE LOC 1 LOE ARG 2 DO
1? BEGIN
2? IF @LOC 1 NE ARG 3 THEN RETURN LOC 1
2? LOC1=1L1L0C1+ 2

27 END
1? RETURN -1
1? END

Enter the following function call to execute function MEMTST. The example shows
the return that is displayed by a successful test. If a hexadecimal address is displayed
instead of the —1, the test has failed, and maintenance should be. performed on the
emulator before continuing.

? MEMTST(@,>1FFE, >1QFF)
-1

Enter the following statement to set the program counter of the target system:
? PC = 0100

Enter the following command to start the emulator:
? ERUN;

Call procedure ESTAT again. The following is an example of the call and the resulting
display:

? ESTAT;
EMULATOR IS EXECUTING.
EMULATOR TRACE BUFFER IS NOT FULL.
EVENT CONDITIONS ARE NOT SATISFIED.
>P@P0 BREAKPOINTS COUNTED.

If the emulator is not running, perform maintenance on the emulator before pro-
ceeding. Otherwise, enter the following command:

? EHLT;

3-11 Digital Systems Division




O
é@ 946244-9701

16. Call procedure ESTAT again. The following is an example of the call and the resulting

display: '

? ESTAT;
EMULATOR IS NOT EXECUTING.
EMULATOR TRACE BUFFER IS NOT FULL.
EVENT CONDITIONS ARE NOT SATISFIED.
>@PPP BREAKPOINTS COUNTED.
@ ADDRESSES TRACED. }

If the display shows that the emulator is still executing, or if there have been error messages
other than those caused by entering a command or statement incorrectly, there is a problem
with the emulator or buffer module which must be corrected before performing any further

tests.

The following error message is typical of the error messages that indicate a buffer module problem: ‘

*** ERROR 205 0709 QpP1
EMULATOR DSR ERROR;

p2xx = ILLEGAL OPERATION,
@5XX = MEMORY WRITE ERROR,
@6XX = OPERATION TIMED OUT,
@7XX = DEVICE ERROR.

For a more thorough test of the emulator and buffer, perform the procedure in paragraph 5.3 to
execute the hardware demonstration test. The hardware demonstration test also tests the trace module ‘

as an option.

3.2.2 TARGET SYSTEM ADDRESS AND DATA BUS CHECKOUT. When the target connector
is plugged into a target system, faults on the address bus or data bus can cause improper buffer
module operation. To detect this type of fault, perform the following steps:

1. Verify that power to the target system is off, and plug the target connector into the '
target system. If the value of EUM has been altered, repeat step 6 of paragraph 3.2.1.

2. Apply power to the target system.

3. Enter the following function call to execute function MEMTST (if the buffer module
checkout has not been performed since the AMPL program was loaded, perform
steps 5 and 10 of paragraph 3.2.1 before performing this step):

? MEMTST(0,>1FFE,>10FF)
-1

4. If the return from function MEMTST is not —1 as in the example, check the address

bus and the data bus on the target system before proceeding. Otherwise. enter the
following statement to set the program counter of the target system:

? PC = 0100

3-12 Digital Systems Division



e}
(@ 9462449701

5. Enter the following command to start the emulator:
? ERUN;

6. Call procedure ESTAT again. The following is an example of the call and the resulting
display:

? ESTAT;
EMULATOR IS EXECUTING.
EMULATOR TRACE BUFFER IS NOT FULL.
EVENT CONDITIONS ARE NOT SATISFIED.
>PpPP BREAKPOINTS COUNTED.

7. If the emulator is not running, perform checks on the target system before proceeding.
Otherwise, enter the following command:

? EHLT

8. Call procedure ESTAT again. The following is an example of the call and the resulting
display:

? ESTAT;
EMULATOR IS NOT EXECUTING.
EMULATOR TRACE BUFFER IS NOT FULL.
EVENT CONDITIONS ARE NOT SATISFIED.
>0P@® BREAKPOINTS COUNTED.
¢ ADDRESSES TRACED

If the display shows that the emulator is still executing, or if there have been error messages
other than those caused by entering a command or statement incorrectly, there is a problem
with the target system; a cross, short, ground, or other improper connection on the target system
prevents proper operation of the emulator or proper memory access. Correct the problem before
attempting any further tests. Error messages shown in paragraph 3.2.1 are typical.

3.2.3 TARGET SYSTEM CLOCK CHECKOUT. After verifying that the emulator works
properly when connected to the target system, perform the following steps:

1.  Set the CLOCK switch on the buffer module to the TARGET SYS position.

2. Enter the EINT command as in step 5 of paragraph 3.2.1 to select the emulator. An EINT
command must be issued following each change of CLOCK switch setting.

3. Enter the following function call to execute function MEMTST. The example shows
the return that is displayed by a successful test. If a hexadecimal address is displayed
instead of the —1, the test has failed, and the target system clock circuitry should be
checked before continuing.

? MEMTST(®,>1FFE,>1QFF)
-1

4. Enter the following statement to set the program counter of the target system:

? PC = 0100

3-13 Digital Systems Division



@ 946244-9701

5.  Enter the following command to start the emulator:

? ERUN;

6. Call procedure ESTAT. The following is an example of the call and the resulting
display:

? ESTAT;
EMULATOR IS EXECUTING. -
EMULATOR TRACE BUFFER IS NOT FULL.
EVENT CONDITIONS ARE NOT SATISFIED.

®®0® BREAKPOINTS COUNTED.

7. If the emulator is not running, check the target system clock circuitry before con-
tinuing. Otherwise, enter the following command:

? EHLT;

8. Call procedure ESTAT again. The following is an example of the call and the resulting
display:

? ESTAT;
EMULATOR IS NOT EXECUTING.
EMULATOR TRACE BUFFER IS NOT FULL.
EVENT CONDITIONS ARE NOT SATISFIED.
>PP®® BREAKPOINTS COUNTED.
® ADDRESSES TRACED

[f the display shows that the emulator is still executing, or if there have been error messages
other than those caused by entering a command or statement incorrectly, there is a problem
with the target system clock. Correct the problem before attempting any further tests. Error
messages shown in paragraph 3.2.1 are typical.

3.2.4 TARGET SYSTEM MEMORY CHECKOUT. After verifyirz that the emulator works
properly when connected to the target system and clocked by the target system clock. verify
target system memory by performing the following steps:

. Enter the following statement to map target system memory into addresses O through .
1FFF ¢ :

?EMU=0

2. Enter a function call to execute function MEMTST. The arguments of the example shown
assume that addresses O through 1FFF ¢ are available as Random Access Memory (RAM)
in the target system. The first argument should be the lowest address available and the
second argument should be the highest address available within the range of 0 to FFFF ;.
The example shows the return that is displayed by a successful test. If a hexadecimal
address is displayed instead of the —1, the test has failed, and target system memory
should be checked before continuing.

? MEMTST(0,>1FFE,>10FF)
-1

3. Enter the following statement to set the program counter of the target system. The
value shown is consistent with the arguments of the call to MEMTST in the preceding

example. Use a value within the range of the first two arguments of the call to
MEMTST.

? PC = 0100 .

3-14 Digital Systems Division




(@ 946244-9701

4.  Enter the following command to start the emulator:

. ? ERUN;

5. Call procedure ESTAT. The following is an example of the call and the resulting
display:

? ESTAT;
- EMULATOR IS EXECUTING.
EMULATOR TRACE BUFFER IS NOT FULL.
EVENT CONDITIONS ARE NOT SATISFIED.
>0909 BREAKPOINTS COUNTED.

6. If the emulator is not running, check the target system memory before proceeding.
Otherwise, enter the following command:

.' ? EHLT;

7. Call procedure ESTAT again. The following is an example of the call and the resulting
display:

? ESTAT;
EMULATOR IS NOT EXECUTING.
EMULATOR TRACE BUFFER IS NOT FULL.
EVENT CONDITIONS ARE NOT SATISFIED.
® BREAKPOINTS COUNTED.
® ADDRESSES TRACED

. If the display shows that the emulator is still executing, or if there have been error messages
other than those caused by entering a command or statement incorrectly, there is a problem
with target system memory. Correct the problem before attempting any further tests of the
target system. Error messages shown in paragraph 3.2.1 are typical.

When the preceding tests of the target system have been performed successfully, the interface
.’ between the target system and the buffer module is working properly. Proceed with further tests
of the target system.

3.3 PROTOTYPING LABORATORY APPLICATION EXAMPLE

A real-life example of prototyping laboratory application to development problems may help bring
together many of the AMPL concepts in this book. This particular application uses only a very small
part of the AMPL capability to rapidly solve a problem which resists analysis by conventional
diagnostic program, oscilloscope, and logic analyzer techniques.

- The target system is a peripheral controller under development for use with the 990 family of
computers. The controller uses a TMS 9900 microprocessor and a 2K ROM program to control
data transfer to and from a bulk storage device. An onboard RAM provides a scratch pad for the
TMS 9900 and a data buffer between the 990 computer and the storage device. This data buffer
is managed as a ‘“‘software FIFO” (first in, first out) buffer by the TMS 9900 microprocessor.
The peripheral controller is installed in a 990 computer, and is exercised by a diagnostic program
running in the 990 computer.

An intermittent failure in data transfer and device control occurs as the diagnostic tests are
performed. This intermittent failure occurs once in 30 or 40 minutes of continuous operation.

.; The diagnostic test printouts indicate a data buffer underflow, which does not pinpoint the
problem, even with a conventional logic analyzer.

3-15 Digital Systems Division




e
Q'\J—@ 9462449701

The solution to the problem is complicated by the real-time operating environment required by
the peripheral device. It is not possible to insert breakpoints into the controller program and still
maintain control of the peripheral device. For the same reason. it is not possible to single-step
through the controller program.

The random nature of the failure indicates the possibility of a noise problem. An oscilloscope is used to

trace noise sources and noise sources are suppressed. The result of thiseffortisa noise-free board with

an intermittent failure. The problem s solved by the AMPL prototyping laboratory as described in the -
following paragraphs.

The trace and emulator modules are connected together in the emulator controland data mode (figure
5-1), and the target connector is plugged into the TMS 9900 socket on the peripheral controller under
test.

The TDATA. TEDUMP, TSTAT. and ESTAT procedures are copied from the AMPL system
diskette, using the procedures of Appendix H. The “canned” procedures and functions of Appendix H .
add significantly to ease of operation.

The fault is accompanied by an indication of data buffer underflow, so it seems reasonable to
install a breakpoint when underflow occurs. and then to examine the events leading up to the
undertlow.

Memory location 10D2,, in the peripheral controller is used as a counter which keeps track of
the number of words in the “‘software FIFO”. During a write operation to the bulk storage
device. this counter should increment as data is loaded into the FIFO, and decrement as data is
transferred out. Under normal control by the read/write program, the counter contents should
never go negative.

The emulator is set up to monitor and to give a compare each time an access is performed to
FIFO counter address 10D2 4. such as:

? ECMP (ADDR,>10D2)
The trace module is set up to trace data written into that address as follows:
? TTRC (DATA+EMU-DBIN, 256 ,EXT) .

This command traces data when the emulator compare is true (+EMU) and a write operation
(-DBIN) is performed. The emulator compare was previously set to occur at address 10D 2y,

The TTRC command is verified by entering:
?TTRC;
The response is:
+DATA-DBIN+EMU
256

+EXT
+QFF

3-16 Digital Systems Division



(e}
\J@ 946244-9701

This verifies that the TTRC command was accepted and displays the current values of the
‘ optional arguments which were not modified by the TTRC command. In the preceding case,
these are the default values.

The select trace event command TEVT is checked by entering:

?TEVT;
The response is:

1
0
+NORM+EACH+INT

These are the default parameters and are correct as is. They specify that 1 event will stop the
.i trace, that there will be no delay, triggering will be on the true level, each equal comparison will
be counted, and the internal trace module comparison will be used as the event.

The trace module will be set to give a compare when all the trace conditions are met, and the
FIFO counter goes negative. This command is entered as follows:

?TCMP (DATA+EMU-DBIN,OFFFF ,@FFFF)

The first 3 conditions are the same as used in the TTRC command; that is, when the emulator
compares (at address 10D2,¢), and a write operation is performed. The second entry is the value
FFFF,s. The mask (third entry, OFFFF) examines the least significant 16 bits of the 20-bit

‘ trace word. If address 10D2,¢ contains FFFF s, the FIFO counter has underflowed (gone
negative).

The breakpoints are set up with the EBRK and TBRK commands as follows:

?EBRK (OFF,SELF)
?TBRK (EVT,SELF)

.’ and the emulator and trace modules are started with:

?TRUN;
?ERUN;

Wait for a failure of the peripheral controller. Status of the trace can be checked periodically in
the TST variable with the TSTAT procedure. The TSTAT procedure gives a plain language status
printout. rather than a hexadeciimal code, as shown below:

2TSTAT;
TRACE MODULE IS NOT TRACING
TRACE BUFFER IS FULL
EVENT CONDITIONS ARE SATISFIED
00@1 BREAKPOINTS COUNTED
256 SAMPLES IN BUFFER: -255 ... ¢
®®d1 EVENTS COUNTED

3-17 Digital Systems Division



;—\ 9462449701

This status printout indicates that the event occurred. A trace dump procedure (TDATA) canbe used
to print all 256 data values in the trace buffer. as shown in figure 3-5. The INDEX column shows the
index into the trace buffer. with the oldest sample printed first. Three samples are printed in each row.
The values of interest are the hexadecimal values printed in the LOW columns. Each of these values
represents a 16-bit FIFO counter value written into location 10D2y.

The FIFO counter is at 13, when sample -255 is taken. The counter increments to a maximum value of
5014 (sample -194) as the FIFO fills. and decrements to 0 (sample -114) as the FIFO empties. The
pattern is shown in figure 3-6. An unexplained reset. from 310 to 0 occurs at sample -1, and the
underflow occurs on the next access.

This test with the prototyping laboratory shows that the underflow of the FIFO counter is. in
this case. apparently caused by a “phantom reset” of the FIFO counter in the middle of a data
transter.

Now investigation centers on the possible causes of this “phantom reset’”. Somehow. some
instruction is writing a zero value into address 10D2,. It might be a CLR instruction. a MOV,
or a number ot other instructions.

Reading the program listing shows several instructions capable of clearing address 10D2,. These
instructions are part of the normal program. but it may be that a code containing a clear
instruction is being executed out of sequence.

Set up the emulator module to trace addresses and the trace module to trace data as tollows:

?ETRC (ADDR,256,EXT)
?TTRC (DATA,256,EXT)

Define the emulator event as the internal compare. and the emulator breakpoint as the emulator
event, as follows:

2EEVT (INT)
?EBRK (EVT,SELF)

Set up the emulator compare to occur when the suspected instruction is executed. This is done
with an ECMP command:

7ECMP (IAQ,>hex address of suspected instruction)

Start the trace with the TRUN and ERUN commands, and wait for the failure to occur. It the
tailure occurs. but the emulator compare does not, the suspect instruction did not cause the
failure. If the emulator compare does occur and the failure does not. the instruction has
executed without causing the failure. The trace is repeated until the fatlure occurs, and if no
compare accompanies the failure. a new instruction is selected for examination.

If the failure is accompanied by a compare. the trace and emulator buffers are dumped via a
TEDUMP procedure. The TEDUMP procedure prints out the emulator trace indexes, the address.
the corresponding trace buffer index and the instruction. as shown in figure 3-7.

3-18 Digital Systems Division




946244-9701

? TDATA(TTBO, TTBN)

INDEX
-255
-252
-249
-244
-243
-240
-237
-234
-231
-228
-225
-222
-21%
-216
-213
-210
-207
-204
-201
-198
-195
-192
-189
-186
-183
-180
-177
-174
-171
-168
-165
-162
-159
-15¢&
-153
-150
-147
-144
-141
-138
-135
-132
-129
-126
-123
-120
-117
-114
-111

A N N N N N N N N T N N N T T e T T N N

(B)136534

HIGH
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
20001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001

(1/2)

LOW
>0013
20016
>0019
>001C
>001F
0022
0025
>0028
>002B
>00ZE
>00321
>00324
>0037
>003A
>003D
>0040
>0043
>0044
>0049
>004C
>004F
>004E
>004B
>0048
>0045
>0042
>003F
>003C
>003%9
>003&
>0033
>0030
>002D
>002A
>0027
>0024
>0021
>001E
>001B
>0018
>0015
>0012
>000F
>000C
20009
>0006
>0003
>0000

+ ~

WNMMIFTZOr=TNOBH =N

DWW~

k|

-

>0002*\<.

NORMAL
BUFFER
EMPTY

HIGH
>0001
>0001
>0001
>0001
0001
>0001
>0001
>0001
>0001
0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
0001
>0001
>0001
>0001
>0001

LOW
>0014
>0Q017
>001A
>001D
>0020
0023
0026
0027
>002C
>002F
>0032
>00235
>0033
>QO3B
>003E
>0041
>0044
>Q047
>004A
>004D
>0050
0040
>004A
>0047
>0044
>0041
>003E
>003B
>0038
>003S
>0032
>002F
>0020C
>0027
20026
>0023
>0020
>001D
>001A
>0017
>0014
>0011
>0O0Q0E
>000R
>0008
0005
>0002
>0000
>0003

.
- %

ve 0N RN

P NNANDVDODLITICDDOIDN

NORMAL
BUFFER
EMPTY

{

HIGH
0001
>0001
>0001
>0001
#0001
30001
30001
0001
0001
>0001
30001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
>0001
30001
30001
0001
>0001
>0001
>0001
>0001
>0001
>0001
0001
>0001
>0001
>0001
0001
0001
>0001
30001
20001
>0001
30001
>0001
30001
>0001
>0001
>0001
0001
>0001
>0001
>0001
30001

BUFFER
FuLL

LOW
>0015 ..
D018 ..
>001B ..
>001E ..
>0021 !
>0024 . %
>0027 L7
>00ZA .3

|

.0
>0033 .3
0036 .6
0039 .9
>002C . <
>003F .7
>0042 LR
>0045 L.E
>0048 .H
>004B .K BUFFER
>004E .N STARTS
SO04F .0 EMPTYING
>004C .L
>0049 .1
>00446 .F
>0043 .C
>0040 .e@
>003D .=
>O002A .t
>0037 .7
>00234 .4
>0031 .1
>002E ..
>002B .+
>0028 . (
>0025 %
>Q022 "
>001F ..
>001C ..
>001%9 ..
>0016 ..
>0013 ..
>0010 ..
>000D -
>000A ..
>0007 ..
>0004 ..
BUF FER

>0001 «n REFILL
>0001 .f///

>0004 ..

Figure 3-5. TDATA Printout for Prototyping Lab Example (Sheet 1 of 2)

3-19

Digital Systems Division



1 o
e 946244-9701

-105 /7 >0001 >Q008 .o >0001 >0009 .. >0001 >000A .-
-102 / 0001 >000R .. 0001 Z000C .. >0001 0000 ..
-2% / 20001 >000E P 0001 >0O00F .. 20001 >0010 .e
-94 / 0001 0011 .. >0001 0012 .. >0001 0013 ..
-23 / 20001 0014 .. >0001  2>00.5 .. >0001 20016 ..
-0 / 20001 20017 .. >0001 >0018 .. >0001 20019 ..
-87 / >0001 >001A .. >0001 Z0O01BR .. >0001 >001C ..
-34 / 20001 >001D .. >0001 ZO001E .. >0001 >001F ..
-31 / 0001 20020 . >0001 20021 . ! >0001 0022 . -
-78 / 20001 20023 .# >0001 20024 . % >0001 20025 .%
=75 7/ 20001 20026 .& >0001 >0027 . >0001 20028 . (
-72 7/ >0001 20029 .) >0001 2002 . # >0001 200ZB .+
-&9 / 20001 >002C . >0001 >002D .- >0001 >002E .
-66 / 0001 >002F ./ >0001 00230 .0 >0001 0031 .1 *
-6&3 / 0001 20032 .2 >0001 20033 .3 >0001 20034 .4
-60 / 20001 >003% .5 >0001 200346 .6 >0001 0037 .7
-87 / 20001 20038 .8 0001 0039 .9 >0001 >003A .:
-54 / >0001 >002B .3 >0001  2003C .< 20001 >0030 .=
-51 / 20001 2003E .= >0001 Z003F .7 >0001 20040 .e@ .
-48 / 20001 20041 A >0001 20042 .B >0001 0043 .C
-45 / >0001 2>0044 D >0001 20045 .E >0001 >0046 .F
-42 / 0001 >0047 .G >0001 0042 .H >0001 20049 .1
-39 / 20001 >004A ..U >0001 >004B .K >0001 >004C .L
-3& / 20001 004D .M >0001 >004E .N >0001 >004F .0
-33 / >0001 0050 .F ) >0001  Z004F .0 — >0001 >004E .N
-20 / 20001 >0040 .M >0001 >004C .L >0001 2>004E .K
=27 / 0001 2004A .J >0001 20049 .1 >0001 0048 .H Q—gl{_igig
-24 / >0001 0047 .G >0001 200446 .F >0001 20045 L E EMPTYING
-21 / >0001 20044 .D >0001 >0043 .C >0001 >0042 .B
-18 / >0001 20041 .A >0001 20040 .e >0001 2>003F .72
-15 /7 20001 >003E .2 >0001 003D .= >0001 2003C .<
-12 / 20001 >003B .3 >0001 >003A .3 >0001 >0039 .9
-9 7/ 20001 >0038 .8 >0001 20037 .7 >0001 20036 .6
-& / 20001 >003% .5 >0001 0034 .4 >0001 0033 .3
-3 7/ >0001 20032 .2 >0001  >0031 .1 >0001 >0000 ..
O 7/ >0001 >FFFF o \ /
2 T VvV
. DISCONTINUITY
) BUFFER BUFFER STARTS
UNDERFLOW FuLt {EMPTYING

(AY136534 (2/2) ’

Figure 3-5. TDATA Printout for Prototyping Lab Example (Sheet 2 of 2)

The 256 sample trace has been shortened in the figure. The emulator compare occurs at emulator index
-3. Prior history is checked by reading up the printout from index 0 toward -256. At -38, a level 7
interrupt (address 001Cye) is reported. However, the peripheral controller is not supposed to have an
interrupt on level 7. The lowest priority interrupt should be a 4 millisecond timer at level 4. The
interrupt priority assignments are at fault in this case. The valid level 4 interrupt is not being serviced in
time. It is causing an interrupt request, but by the time the priority encoder is tested, the valid interrupt
has disappeared, leaving a default hexadecimal 7 on the priority encoder output. The code associated ,
with level 7 interrupts is causing a FIFO underflow indication, and masking the real problem,
occasional failure to service the timing interrupt.

A reassignment of interrupt priorities assures that the timing interrupt could not be masked for an
excessive length of time, and completely cures the problem.

3-20 Digital Systems Division



946244-9701

uoneradQ 193uno) Q41 pPaAiasqQ "9-¢ 2angi g

cses9e 1(v)

(s62-31dWVS)

(0 3NdNVS)
MO 1443ANN
SNOILYY¥3dO
———————— 3L1EM 4444
AHOWIW
A~ °
/ / ALdW3
/ yaddng odid
\/ 1Y WHON
/ Hlvd \
/ y3doud LNNOD
\ odid
L3s3y
youu3
WNWIXY W
o414
v

Digital Systems Division

3-21




1o
§£ 946244-9701

? TSTAT
TRACE MODULE IS TRACING.
TRACE BUFFER IS FULL.
EVENT CONDITIONS ARE SATISFIED.
>0000 BREAKPOINTS COUNTED.
? ESTAT
EMULATOR IS NOT EXECUTING. -
EMULATOR TRACE BUFFER IS FULL.
EVENT CONDITIONS ARE SATISFIED.
>0001 BREAKPOINTS COUNTED.
256 ADDRESSES TRACED: -253 ... (o]

? TEDUMP(ETBO,ETBN)

EMt IHDE= ECMFY HDDE TFEA IHDEX DATAHE=«RZCY INTERFRETATION
-255 >102A -s5 SOSSS LU WRITE >0555 .
-254 >OCOE -S4 S1F0S L. TB 20005
-253 >1038 -53 SO0AD . REAE >00A0
-252 >0C10 -52 *160E .. JNE  $+43>0013
-251 >0C12 -51 SI0S 1. LDCR RS.4
-250 >102A -50 SOSSS LU READ >0355

-44 >1036 156 wOEEE .2 READ >oagz
_43 S0BB2 157 - prr-z AD  >0380
- (¢]
42 20BB2 158 . i READ >C406
-41 >103E 159 (
T i READ >0366
-40 >103C 140 BRI Y .F - -
S TR READ 31000
INTERRUPT -39 >1032A 161 =roo0 L.
OCCURS — -, . D READ >10A0
-38 >001C 162 S1O0AR0 . i
A WRITE >C40&
-37 >10BE 163 TS I T=S (N :
g S WRITE 20366
-36 >10BC 164 0386 LF :
-35 >10BA 165 1000 WRITE >1000
- ~ e .t READ >01CA
-34 >001E 166 O01CH L o
Cme LI  RS,>0000
-33 >01CA 167 SOE0S L. N
4 A READ 0047
-32 >01ccC 168 =004y N
g - WRITE 20047
-31 >10AA 169 e Y e B @>0000
-30 >01CE 170 O4ED - -
~ [ . READ 2>015C
o Joine 17t ol READ >06CS
-28 >015C 172 S0elS LE . - i
Z _ ek SWPB RS
-27 >015C 173 SOECS W E N
7 nnas o READ 0047
-26 >10AA 174 e .3
) 4= - WRITE >4700
-25 >10AA 175 e | I
LTpmne MOVB RS, @>0000
-24 >015E 176 SDEOS . ‘
~ AT - READ >4700
-23 >10AA 177 S4TO0 5. /
-~ 1 E - READ >10E3
-22 >01460 178 S10ES LI
-~ SO READ 20800 -
=21 >10E2 179 nEon .. 7€
-20 >10E2 180 1Sg T I UR}T; f0897_ ]
_19 20162 181 SZCR @>0000,@>0000

(A)136536 (1/2)

Figure 3-7, TEDUMP Printout for AMPL Example (Sheet 1 of 2) ‘

322 Digital Systems Division




—l' o

946244-9701

-18 >0164 182 FOOS3 L0 READ 0029 .)
-17 >0028 183 : F READ >5022 pP*
-16 30166 184 .E READ >10E2 .B
-15 >10E2 185 e READ 30847 .G
-14 >10E2 186 L3 WRITE >0847 .G
-13 >0168 187 . SOCB @>0000, @>0000
-12 >016A 188 0 . READ >002E ..
-11 >002E 189 3 (L U = READ >DO0OO P.
-10 >016C 190 *10EE L. E READ >10E2 .B
-9 >10E2 191 47 .5 READ 30847 .G
-8 >10€2 192 24T WG WRITE >DS47 Xi
-7 >016E 193 FO4ED L7 CLR @>0000

-6 >0170 194 SI0ED L3 READ >10E0 .e
-5 >10E0 195 Feoon P, READ >7000 P,
-4 >10E0 196 o000 ., WRITE >0000 ..
-3 *#ECMP >0172 197 =04EQD L7 CLR @3>0000

-2 >0174 198 =1oang LR READ >10D2 .R
-1 >10D2 199 ERULED B READ 0031 .1

0 >10D2 200 o0n .. WRITE >0000 ..

>
t

‘A)136536 (2/2)

Figure 3-7. TEDUMP Printout for AMPL Example (Sheet 2 of 2)

3.4 TRACE PROBE EXAMPLE

The trace module may be used independently of the emulator for general tracing operations. For
example, a tape cassette controller is experiencing data readback failures during diagnostic-testing.
The diagnostic shows that a hexadecimal “05” is being read back occasionally from a record of all
*“04” characters. The problem appears to be in the data, rather than in the operation of the periph-
eral controller program.

Figure 3-8 is a simplified diagram of the controller “front end”. If the error is present at the FIFO
output, the error must be ahead of (or in) the FIFO. This would eliminate the program and all the
logic downstream from the FIFO.

To determine if the error is present at the FIFO output, attach a DIP test adapter onto the 3341
FIFO device and attach the trace probe leads to the adapter pins corresponding to FIFOI, 2, 3,
and 4. Any 4 of the 20 trace data leads could be used but they should represent one hex character,
with LSB to MSB order preserved. For this example, the four least significant leads, D16-D19,
are used. The CLOCK lead is attached to the shift out clock pin. The GND lead is connected to
logic ground.

The other end of the trace probe cable is connected to the trace module, replacing the emulator/
trace data cable.

The emulator will only be used to supply a TMS9900 microprocessor to the target system.

3-23 Digital Systems Division



946244-9701

SHOLDO3NNOD
3&0dd
V.ivad 30Vl

21907

ONISS3D08d <&

d3HLO OL

<eia

sia
\61d

vo%q

€ odid

¢ odid

1 odid

pud juoij walsAg 1agie] g-¢ aindi g

. ) i

L€s9¢e1(v)

2 1 43LDVHVHD

103713s

Digital Systems Division

N
- 2 MOvyl
| R
XNW +
123713s V .P&On._umZ(m.r
MOvdL wod

MO01D NI Ld4IHS

el
4/4
viva 2
¢
viaay o
xUOJom
% LNO L4IHS
(sadom 431s193y
v9) 1LdIHS
odid
IvEE

/ - I MOVl

+
\
3-24

¢ 219071 INIL
%  ONITdWvs

IWIL ONITTdWYS Wou 4

L
MO01D LdIHS ?




946244-9701

Set up the trace as follows:

?TTRC (@FF,126,+EXT,+QFF)

The qualifiers, Q0-Q3, are not required, /26 samples are to be stored, and the rising edge of the
external (FIFO shift out) clock is used. The latch mode is disabled.

Set up a comparison to provide a breakpoint when the error occurs, as follows:

? TCMP(QFF,5,0F)
Specify 1 test event, and delay of 128 as follows:

?TEVT (1,128)

This puts the event in the middle of the 256-word trace buffer, so data on either side of the
event may be examined.

The trace breakpoint is defined as:

?TBRK (EVT,EMU)

and the trace is initiated by:

?TRUN;
?ERUN;

After the target system read operation is started, the status is checked and the trace module trace buffer
is printed out by TDATA. The printout, figure 3-, shows that the faulty data is appearing at the FIFO
output, so the fault is ahead of this point. The program and about 90% of the logic have been
exonerated by this quick test, which takes longer to describe than to perform.

3.5 TMS 9980 EXAMPLES

The application examples are for target systems that use the TMS 9900 microprocessor. They may be
used on a target system that uses a TMS 9980 microprocessor, but the addresses and data stored in the
memories of the emulator are different. To understand the difference, consider the difference in the
MICrOprocessors.

The most significant difference between the microprocessors is that the TMS 9900 has a 16-bit data
bus, and accesses a word of memory at each memory access, and the TMS 9980 has an 8-bit data bus
and accesses a byte of memory at each memory access. The TMS 9980 performs two memory accesses
for each word required. In the emulator (in which memory addresses are traced) a trace operation
stores the addresses of each byte stored. When the trace module is tracing data supplied by the
emulator, the data is supplied on a 16-bit bus. During a memory access of an even address, the most
significant byte of the bus contains the data being transferred to or from memory, and the least
significant byte contains random data. During a memory access of an odd address, the least significant
byte of the bus contains the data being transferred to or from memory, and the most significant byte
retains its previous contents. Thus the entire word as it is stored in memory is present on the 16-bit data
bus during a memory access to an odd address.

3-25

Digital Systems Division



Q{@Q 9462449701

TCMF(OFF, S, OF)
7 TRLUN
7 ERLN

T TETAT

TRACZE MODULE I
TRACE BUFFER I%
EVENT CONDITIONS ARE SATISFIELD.
BREAKFOINTS COUNTELD.
IN BUFFER:
COUNTED.

256 SAMPLES

0001 EVENTS

NOT TRACING.

FuLL.

? TDATACTTRO, TTBN)

INDEX
-127 7/
-124 /
-~-121 / 0000
/
/

HIGH

-118 DOOC
~-115
-112

-10% 0000
-106 0000
-103 alnlule

=100
-97
-4

NNNNNNN NN
.
2
-
=)
)

-1 0000
-22 /7 0000
—19 / Q000
-1 /20000
—-13 Q000

17 0000
20 0000

y Nk
NN N NN N NNNNNNNSN

00N

L
[ I S

oz L e
SN N

s

o]

-

-

-]

z OO0

= / 0000

= /7 0000
(A)136538

LOW
>0004

0004

=004
>0O004
>0004

=Q004

0004
>O0O0E

*QOO0A

Q004
>0004

>0O004

Q004

>0004
=0004

0004

>00082
>0004
>0004
>0004
0004
0004
=0004

0004
=0004

=0004
D004

0004

Figure 39,

=127 ...

=0000
Q000
0000
0000
>0000

>0000
=Q000
>0000
30000

Trace Probe Example

LOW
»0004
0004
>0004
0004
0004
0004
0000

>0000
=000A
>0004

>0004

>0004
0004
>0004
>0004
>0004
>000E
>0000C
=>0005

=000A

0004
>0004
>0004
>0004
0004
>0004
0004

0004
0004
0004
>0004

HIGH
0000
>0000
0000
>0000
0000
>0000
>0000
>0000
>0000
>0000
0000
>0000
>0000

>0000
>0000
>0000
0000
>0000
>0000
>0000
>0000
>0000
>0000
>0000
>0000
>0000
>0000
>0000
>0000

0000
>0000
>0000

LOW
0004
>0004
>0004
0004
>0004
>0004
>000A
>0000
>000C
>0002
0004
>0004

I

>0004
>0004
>0004
>0004
>0000
>000A
0000
>0000
>000A
>0004
>0004
>0004
>0004
>0004
0004
>0004

[

0004
>0004
>0004
>0004

3-26

Digital Systems Division




@ 946244-9701

When the examples as stated for the TMS 9900 microprocessor are executed in the TMS 9980
microprocessor, the emulator trace memory contains redundant addresses and the trace module
memory contains meaningful information in alternate words. Qualifier Q0 of the trace module is
connected to the least significant address bit, true on even memory addresses. By using qualifier
DATA-QO in the TTRC commands, the trace module memory stores only alternate words, when the
data stored consists of valid memory words. This data corresponds to the data traced in the TMS 9900
operation. By specifying EXT in the ETRC command, the clock for tracing in the emulator is enabled
by the trace module clock (qualified by Q0), and odd addresses are traced. Thus the capabilities of the
AMPL Microprocessor Prototyping Laboratory are as effective in developing TMS 9980 systems, but
the commands are somewhat different. Details of the differences in the commands are described in
Section V.

3-27/3-28 Digital Systems Division






[¢]
{@ 946244-9701

SECTION 1V
AMPL MICROPROCESSOR PROTOTYPING LANGUAGE

4.1 INTRODUCTION .
Statements entered by the user to control the emulator, trace module, and target system are
written in the AMPL Microprocessor Prototyping Language. AMPL elements are used as operands
of the user commands described in Section V.
Statements entered at the operator console are checked for syntax and translated into an
intermediate code. The intermediate code is processed by the AMPL Interpreter, which performs
the operation specified by the statement.
4.2 LANGUAGE ELEMENTS
The characters of the AMPL character set are combined to form the following language
elements:

®  (Constants

® Symbols
4.2.1 CHARACTER SET. The set of ASCII characters recognized by AMPL consists of the 26

letters (A- Z) the ten numerals (0-9), and the following special characters: space, ”, ’, (, ), *, /. +.
S s, <>, @ #.

NOTE
AMPL accepts only upper case characters. If a 911 VDT is being used

as the console, push the key labeled UPPER CASE LOCK. This key
is in the upper left corner of the keyboard.

These special characters are used as follows:

space To separate keywords and symbols
7 To enclose character constants
To enclose character strings
) To enclose argument lists and subexpressions
* 4= To indicate arithmetic operations

= To assign a value to a variable

To identify load module symbols

4-1 Digital Systems Division



946244-9701

To separate elements in argument lists

To identify the following characters as a comment

? To request user input, and to specify a display and modify operation
To concatenate a format specification to an expression to be displayed
To separate the expression from the statement in a CASE statement

; To terminate a display and modify operation, and (optionally) to separate .
statements within a procedure, function, or compound statement

To identify the following digits as a binary constant

To identify the following digits as a hexadecimal constant .
! »To identify the following digits as an octal constant
@ To indicate an indirect target memory access

# To enclose single source code lines for assembly

4.2.2 CONSTANTS. The user may specify a constant in any of the following formats:
° Decimal

o Hexadecimal

®  Octal

®  Binary

®  Character
® Instruction

The expressions required in AMPL statements may include one or more constants, alone or
combined with other elements by means of arithmetic or logical operators.

4.2.2.1 Decimal Integer Constants. A decimal integer constant is entered as a string of decimal
digits (O through 9), the first of which may not be 0. The range of values of decimal integers is 1
through 32767. The following are valid decimal constants:

Constant Value
1000 1000 or 3E8,¢
23 23 or 174

The following is an invalid decimal constant:

0250 First digit is zero.

4-2 Digital Systems Division



10
J 946244-9701

4.2.2.2 Hexadecimal Integer Constants. A hexadecimal integer constant is entered as a string of
hexadecimal digits (0 - 9, A - F). Either the first digit must be zero or the string must be
preceded by a greater-than character (>). The range of values of hexadecimal integers is O
through FFFF,,. The following are valid hexadecimal constants:

Constant Value
OF Figorl5
0250 250, or 592
0 0
>100 100, or 256
>28 28,6 or 40
>F3 F3,6 or 243

4.2.2.3 Octal Integer Constants. An octal integer constant is entered as a string of octal digits
(0 - 7) preceded by an exclamation point (!). The range of values of octal integers is zero through
1777774. The following are valid octal constants:

Constant Value
173 1735 or 7B ¢ or 123
12620 26205 or 590, ¢ or 1424
'14 145 or Cy¢ or 12

4.2.2.4 Binary Integer Constants. A binary integer constant is entered as a string of binary digits
(0 or 1) preceded by a less-than character (<). The range of values of binary integers is O through
1111111111111111,. The following are valid binary constants:

Constant Value
<101101 101101, or 2D, ¢ or 45
<100 100, or 4
<010011010010 10011010010, or 4D2,¢ or 1234

43

Digital Systems Division



if\ﬂ? 946244-9701

4.2.2.5 Character Constants. A character constant is entered as a string of one or two characters
enclosed in quotation marks. The characters are represented internally as eight-bit ASCII
characters with the leading bit set to zero. When a character constant consists of one character.
the character is right-justified and leading zeros are placed in the internal representation. The
following are valid character constants:

Constant Value
“AB” 4142, )
“C” 0043, ¢
“#” 232F 6

42.2.6 Instruction Constants. An instruction constant is entered as a source code instruction

line enclosed in pound signs (#). The source code line consists only of an operation field and an .
operand field. No label field is entered, and comments are not entered within the pound signs.
(Comments may be entered as in any AMPL statement as described in paragraph 4.2.6.) Only
instruction operation codes and pseudo-instruction operation codes RT and NOP may be used.
Workspace registers must be specified as RO through RIS, and the operand field of jump
instructions must be program-counter relative; i.e., $+4, $-2, etc.

The operand field of an instruction constant may not contain a label or a user symbol. It may containa
load module symbol. A load module symbol (paragraph4.2.3.3)isasymbolina program that has been
loaded into target system memory.

An instruction constant may be used in an assign statement (paragraph 4.6.2) or in the display and
modify mode (paragraph 4.6.3.5). In the first case, the internal form of an instruction constantisa 16-
bit word containing the machine instruction (or the first word of the machine instruction) derived from
the source code instruction. Two- and three-word instructions require that the literal value or address
or addresses be entered as integer constants or variables, even though the value or address has been
specified in the source code. The AMPL single line assembler requires the operands to correctly
assemble the addressing modes in the first instruction word, but does not assemble second and third
words of instructions.

When an instruction constant is used in the display and modify mode the complete instruction (one,
two or three 16-bit words) is assembled and placed in target system memory. Examples of use of
instruction constants in this mode are shown in paragraph 4.6.3.5.

The following are examples of instruction constants used other than in the display and modify mode:

#MOV *RQ+,*R1# A move instruction that moves the word at the ad-
dress in workspace register O to the address in work-
space register 1, and increments workspace register 0
by two. The value of the constant is C4706.

4-4 Digital Systems Division



@

\J@ 946244-9701

#LI RP, >FFFF# A load immediate instruction that places a value in
workspace register 0. The value of the instruction
constant is 0200, ¢. The value to be placed in work-
space register 0 is the contents of the word that
follows the instruction constant.

#MOV @0100,00300(R1)# A move instruction that moves the word at location
100, ¢ to location 300,, indexed by workspace
register R1. The value of the instruction constant is
C860, ¢. The actual addresses for the instruction are
the contents of the two words that follow the ad-
dress constant.

#IMP $-4# A jump instruction. The value of the instruction
constant is 10FD, ¢ .

The following are examples of invalid instruction constants:

#JMP N1pa# Invalid. Jump instructions may not specify addresses.
#L0O0P MOV *Rp+,*R1 Invalid. The label field may not be used.
#DEF BUFF,MSG1# - Invalid. Assembler directives may not be used.

4.2.3 SYMBOLS. The symbols used in AMPL may be of any of the following types:
®  User symbols
®  System symbols
o Load module symbols

The expressions required in AMPL statements may include one or more symbols, alone or
combined with other elements by means of arithmetic or logical operators.

4.2.3.1 User Symbols. A user symbol is a string of alphanumeric characters, the first ot which
must be alphabetic. If more than six characters are entered, the first six characters are stored
internally as the symbol and the remaining characters are ignored. The software prints a warning
message. The user defines a symbol to represent a location within a program, a mask. a counter,
a constant, a variable, a switch, or a flag. The following are valid user symbols:

LBL1
STOPHERE Internal representation of this symbol
consists of STOPHE (first six characters).

The following are not valid user symbols for the reasons indicated:

1L0C Begins with a numeral.
A'!BC Contains a special character.

User symbols are global symbols; i.e., they continue to apply until the symbol table is cleared.
User symbols must be unique with respect to each other and with respect to system symbols and
reserved words (Appendixes D and E).

4-5 Digital Systems Division



P@ 946244-9701
Q

4.2.3.2 System Symbols. A system symbol is a string of up to four alphanumeric characters that
is predefined in AMPL software. System symbols are assigned to the following: ‘

®  Workspace registers and PC. WP and ST of the target system
° I:mulator bits
®  Trace module constants -
L System values and masks
®  Names of user commands
o Keywords used as operands of user commands.
The user may not delete system symbols, nor add symbols to the set of system symbols. The ‘
user may alter the values of some system symbols. The system symbols, which are reserved
words, are listed in Appendix E. Use of specific system symbols is described with the AMPL
statements and user commands to which the symbols apply.
4.2.3.3 Load Module Symbols. Symbols from a source program may be defined when the object
module is loaded, and may be used in AMPL statements. Optionally. the following types of
source code symbols may be defined:

® The module identifier (operand of the IDT directive)

L] External definitions (operands ot DEF directives)

L Unresolved external references (operands of REF directives).

These load module symbols may be used until symbols from another module are loaded. or until

the symbol table is cleared by command. The assembly language allows up to eight characters for

the module identifier; the AMPL loader truncates the identifier to the first six characters. When

using a module identifier in an AMPL statement, enter a period following the identifier as .
tollows:

MYPROG.
SINTST.

When using either an external definition or an unresolved external reference in an AMPL
statement, precede the definition or reference with a period, as follows:

.START
. INBUFF

4.2.4 ARRAYS. The AMPL language supports one- and two-dimensional arrays (paragraph 4.6.1)
consisting of groups of elements that are referenced by the array name and one or two expressions
in parentheses. Each element of an array may be assigned a value and may be used as a variable in
an AMPL expression. A one-dimensioned array is a group of clements arranged in a row or list
and specified by their position in the row. A two-dimensioned array is a group of elements
arranged in rows and columns and specified by a row and column position. The following are

valid references to elements of arrays:

4-6 Digital Systems Division



@

946244-9701

NUM(4) The fourth element of array NUM.

VAL(I) An element of array VAL specified by the value of variable 1.
TABLE(4,6) The element of array TABLE in row 4 of column 6.

INPUT(A,B) The element of array INPUT in the row specified by the value of A

of the column specified by the value of B.

425 CHARACTER STRINGS. A character string is written as a string of up to 64 characters
enclosed in single quotes. When a single quote is required as a character of the character string,
two consecutive single quotes are entered to specify the single quote. The characters are
represented internally as eight-bit ASCII characters with the leading bit set to zero. Wllgrl a
character string is entered as a statement, it is displayed as a message or comment. This is
particularly useful when statements are written on a file to be entered with a COPY command
(paragraph 5.7.14). The following are valid character strings:

'MAIN'
"INFILE'
':QUTFIL/0BJ'

4.2.6 COMMENTS. A comment may either be added following an AMPL statement or entered
as a separate AMPL statement. In either case, two consecutive periods introduce the comment,
and a carriage return terminates the comment. The following are examples of valid comments:

.. TEST PROGRAM LOOP 1
ECMP (IAQ,>100).. SET BREAKPOINT FOR INSTRUCTION ACQUISITION AT ADDRESS >109

4.3 NOTATION
The notational conventions used in the syntax definitions in the manual are as follows:

® Words shown in capital letters are reserved words (keywords). Reserved words and
special characters must be entered as shown.

® Words enclosed in angle brackets represent constants, symbols, expressions, or charac-
ter strings supplied by the user.

° Items enclosed in brackets ([]) are optional.

®  Alternative items are enclosed in braces ({ } ). One must be chosen.
®  The ellipsis (. ..) indicates that the preceding item may be repeated.
® A slashed lower case b (b) represents a required space character.

In the examples, the b has the same meaning as in syntax definitions. Responses by AMPL
software are underlined.

44 FORMAT
AMPL software prints a question mark as a prompting character whenever it is ready to receive
an AMPL statement or command:

?

4-7 Digital Systems Division



\

&

R 946244-9701

In statements and commands. each reserved word, constant, or symbol must be followed by one

or more spaces to separate these AMPL elements. In this document, carriage return means the

operation associated with keys marked RETURN or NEW LINE on various devices. The user ‘
must enter a carriage return to terminate each line.

When a statement requires more than one line. either because of the length of the statement or
to show the statement structure more clearly, a compound statement must be used.

4.5 EXPRESSIONS

An expression consists of a constant, a symbol, a subexpression, an array element, or a series of
constants. symbols, subexpressions and/or array elements separated by arithmetic, logical, or
relational operators. Each constant, symbol, subexpression or array element may be preceded by
any of the unary operators.

4.5.1 SUBEXPRESSIONS. A subexpression is an expression enclosed in parentheses. A
subexpression is evaluated before evaluating the expression that contains the subexpression. '
Subexpressions may contain other subexpressions; the innermost subexpression is evaluated first.

4.52 ARITHMETIC OPERATORS. The arithmetic operators of AMPL perform integer arith-
metic. The operators are:

Operator Operation
+ Addition
Subtraction
* Multiplication
/ Division
MOD Remainder

The following are expressions using arithmetic operators:

2 * (START + 4) The product of 2 times the sum of START plus 4 ‘
LCN1/2 The quotient of LCN1 divided by 2

LCN1pMODp2 The remainder obtained by dividing LCN1 by 2

TABEND-TABST The difference of TABEND minus TABST

4.5.3 LOGICAL OPERATORS. The following logical operators are used in AMPL expressions:

Operator Operation
AND Logical product
OR Logical sum

The following are examples of expressions using logical operators:
CHARINPANDBMASK
LCHARBORBRCHAR ’

4-8 Digital Systems Division



{[@ 946244-9701

4.5.4 RELATIONAL OPERATORS. The following relational operators are used in AMPL

' expressions:

Operator

EQ
> NE
LT
LE
GT
.. GE
HI
HIE
LO

LOE

Relation
Equal to
Not equal to
Arithmetic less than
Arithmetic less than or equal to
Arithmetic greater than
Arithmetic greater than or equal to
Logical higher than
Logical higher than or equal to
Logical lower than

Logical lower than or equal to

The following are examples of expressions using relational operators:

‘ DAYBGEB340

HOURBLTP12
COUNT1BHIEBCOUNT2
" 4.5.5 UNARY OPERATORS. The following unary operators are used in AMPL expressions:
Operator Operation
+ Plus
Negation
NOT One’s complement

(@

Indirect

More than one unary operator may be used with a symbol, constant, or subexpression, and the

operators may appear in any order. The operations are described in the following paragraphs.

4.5.5.1 Plus. The unary operator + performs no operation on the constant, symbol. or sub-
expression to which it applies. It is included to provide uniformity.

Digital Systems Division



J 1@}} 946244-9701

4.5.5.2 Negation. The unary operator - specities negation ol the value of the symbol, constant.
or subexpression to which it applies. The negation is equivalent to the result of subtracting the
value trom zero. The following are examples of negation:

-248 The result is -248.
->FE The result is FF02,¢ (two’s complement) of -FE 4 .-254.

4.5.5.3 One’s Complement. The unary operator NOT specifies the onc’s complement of the
value of the symbol. constant. or subexpression. The one’s complement is equivalent to substi-
tuting zeros for ones and ones for zeros in the binary representation of the value. The tollowing
are examples of one’s complements: R

NOTB>F1FQ The result is OEOF ¢ .
NOTBFIVE Assuming symbol FIVE has been assigned the value 5. the
result is FFFA | ¢. .

4.5.5.4 Indirect. The unary operator @ accesses a location in target system memory using the
value of the symbol, constant, or subexpression as an address. The @ operator specifies “the
contents of”’. The following are examples of indirects:

@>100 The result is the value in location 100, ¢ of target mem-
ory.
@START The result is the value in a location in target system mem-

ory. The value assigned to user symbol START is the
target system memory address.

@GWRKSPC The result is the contents of the contents of a location in
target system memory. Assuming that WRKSPC has been
assigned the value of the workspace address, the result is
the contents of the location at the address in workspace

register 0.
Indirect Addressing Example. Assuming that LCN1 has been assigned the value 0106,6. and that '
target system memory contains the following values:

Target System Memory Address Contents
(Hexadecimal) (Hexadecimal)

0106 010C

0108 0001

010A 0002 }

o10C 0003

010E 0004

The values of the following expressions are:

GLCN1 010C,,
EELCNT 0003,
@(LCN1+4) 0002,

4-10 Digital Systems Division



946244-9701

Target System Memory Addressing. The emulator contains a 256-word trace memory and a
‘ 4K-word user memory. These memories are accessible at addresses in the target memory address
space under control of logic in the emulator. Figure 4-1 illustrates the mapping of the address
space to emulator or target system memory. System variable ETM maps addresses FEQO,
through FFFF¢ into emulator trace memory when it is set to one, and into target system
memory when it is set to zero. System variable EUM maps addresses 0000,, through 1FFF,,
into emulator user memory when it is set to one, and into target system memory when it is set

> to zero. References to target memory in this document may be either target memory or
emulator memory depending on the address and the current values of system variables EUM and
ETM.

4.5.6 EXPRESSION EVALUATION. Table 4-1 shows the hierarchy of the operators used in
AMPL expressions. In evaluating an expression, level 7 operations are performed first. followed
by operations at successively lower levels until the entire expression has been evaluated.
Operations at the same level are performed in left to right order.

.. The following is an example of an expression:
42+5*8/4

The hierarchical levels of the operations are 5, 6, and 6, from left to right. The leftmost level 6
operation, 5 * 8, is evaluted first, and the result is 40. The other level 6 operation becomes
40 / 4, or 10. The expression is now 42 + 10, or 52. Had the expression been:

(42+5)*8/4

the subexpression (42 + S) or 47 would have been evaluated first. The multiplication would be
‘ next, 47 * 8, or 376. The division would be last, 376 / 4, or 94.

TARGET MEMORY
ADDRESS MAPS INTO
(HE XADECIMAL.) -

0000
TARGET MEMORY EMULATOR USER MEMORY
(EUM = 0) (EUM = 1)
L |
1FFF
2000
TARGET MEMORY
L ~
~ P’
v FDFF
(3DFF)
(5588) TARGET MEMORY EMULATOR TRACE MEMORY
(ETM = 0) (ETM = 1)
v -~ Jv
" ~
FFFF
(3FFF)

(A)136539 NOTE: IN THE TARGET MEMORY ADDRESS COLUMN, TMS 9900 ADDRESSES ARE SHOWN.
ADDRESSES FOR THE TMS 9980 ARE SHOWN IN PARENTHESES WHERE TMS 9980
ADDRESSES DIFFER.

.’ Figure 4-1. Target Memory Address Mapping

4-11 Digital Systems Division



%@ 946244-9701

Table 4-1. Hierarchy of Operations in Expressions

Hierarchical Priority Operator Description
7 @ Indirect
7 + Unary plus
7 Unary minus (negation) -
6 * Multiplication
6 / Division
5 Subtraction ~
5 + Addition
4 LT Arithmetic less than
4 LE Arithmetic less than or equal
4 EQ Equal .
4 NE Not equal
4 GE Arithmetic greater than or equal
4 GT Arithmetic greater than
4 HI Logical high
4 LO Logical low
4 HIE Logical high or equal
4 LOE Logical low or equal
3 NOT One’s complement
2 AND Logical product
2 OR Logical sum

In evaluating an expression, the carry that can occur during a + or - operation is stored in system

variable MDR. The carry occurs when there is a carry out of the sign bit position of the 16-bit '
result of the operation. MDR is set to O during gither operation when no carry occurs, and to 1

when a carry occurs. To use the carry (as in double-precision arithmetic, for example) the user

must test the contents of MDR following each + or - operation, because the current contents of

MDR is the state of the carry bit resulting from the most recent operation.

4.6 STATEMENTS
The AMPL language supports the following statements:

® ARRAY statements .
®  Assign statements
o Display statements
e |l statements

° CASE statements

4-12 Digital Systems Division



946244-9701

e  WHILE statements

® REPEAT statements
® FOR statements

® Compound statements
®  ESCAPE statements

® NULL statements

4.6.1 ARRAY STATEMENTS. An ARRAY statement declares one or more arrays. The syntax
for an ARRAY statement is as follows:

2ARRAYp<array name>(<expr>[,<expr>])[,<array name>(<expr>[,<expr>])] ...

An array name is a user symbol that is to be the name of an array. It is followed by one or two
expressions within parentheses. One expression is entered for a one-dimensioned array. The value
of the expression is the number of elements in the array. Two expressions separated by a comma
are entered for a two-dimensioned array. The value of the first expression is the number of rows
of elements in the array. The value of the second element is the number of columns of elements
in the array. Several arrays may be declared in an ARRAY statement. The length of the line is
the limit of the number of arrays that may be defined in one statement.

An array must be declared in an ARRAY statement before any element of the array may be
referenced. Declaring an array causes the AMPL software to reserve space for the array and
assigns the value of zero to every element in the array. Once declared, an array is global,
applying to all programs being tested, until the symbol table is cleared. The space assigned to an
array may be made available for other purposes by deleting the array, but the array name may
only be used as the name of an array of the same number of dimensions until the symbol table
is cleared. Following deletion, a one-dimensioned array may be declared again with a different
number of elements, or a two-dimensioned array may be declared again with different numbers
of rows and columns.

The following are examples of ARRAY statements:

? ARRAY NUM (7) Declares array NUM consisting of
seven elements.

? ARRAY TABLE (5,10) Declares array TABLE consisting of
50 elements arranged in five rows and
ten columns.

? ARRAY VAL(8),INPUT (6, COLS) Declares array VAL consisting of eight
elements, and array INPUT consisting
of 6 rows. The value of variable COLS
is the number of columns in array
INPUT.

4-13 Digital Systems Division



946244-9701

4.6.2 ASSIGN STATEMENTS. An assign statement assigns a value to a user variable or a system
variable. The syntax for this type of assign statement is as follows:

2<symbol>=<expression>

The interpreter evaluates the expression and assigns the value to the symbol, a user symbol or a
system symbol. An assign statement defines a user symbol when it assigns a value to a user
symbol that has not been previously defined. An assign statement that assigns a value to a user
symbol that has been defined alters the value of the symbol. In either case, the value of the
expression is assigned to the symbol. The following are examples of this type of assign

statement: R
? LCN = >104 Assigns the value 104, ¢ to user sym-
- bol LCN. If LCN is not defined, also
defines LCN as a user symbol.
2 PC=LCN + 4 Assigns the sum of the value of LCN ‘

plus 4 to system variable PC (target
system program counter).

Another form of the assign statement assigns a value to a target system memory location. The
syntax for this form of the assign statement is as follows:

2 @<symbol>=<expression>

The @ sign identifies the value of the symbol as an indirect address. The symbol may be a user
symbol or a system symbol, and may be preceded by any of the unary operators. The following
are examples of this type of assign statement: '

? BLCN = 23 Assigns the value 23 to the target
system memory location specified in
LCN.

? GWP = 548 Assigns the value 548 to the target
system memory location contained in .
WP. This location is workspace regis-
ter 0.

A constant may be used to specify the target system memory address to which a value is
assigned. The syntax for this type of assign statement is as tollows:

? @<constant>=<expression>

The @ sign identifies the constant as an indirect address. The following are examples of this form B
of assign statement:

2 00100 = #INC RO# Assign the value corresponding to the
increment  workspace register 0 in-

struction to target system memory lo-
cation 100, 4.

2 G>EFPQ = 256 Assigns the value 2506 to target system

memory location EFFO0, 4. ‘

4-14 Digital Systems Division




@

946244-9701

An expression within parentheses may be used to specify a target system memory address to
which a value is assigned. The syntax for this type of assign statement is as follows:

? B(<expr 1>)=<expr2>

The @ sign identifies the value of the expression within parentheses as an indirect address. The
following are examples of this type of assign statement:

? @(LCN + 8) = GLCN Place the contents of target memory
location LCN in target memory loca-
tion LCN + 8.

2 @(WP + 16) = 345 Place the value 345 into target system

memory location corresponding to the
sum of the contents of the workspace
pointer register plus 16. This location
is workspace register 8.

2@(START+4) = #MOV  *RQ+,*R1# Assign the value of an instruction con-
stant to location START + 4 in target
system memory.

An assign statement may be used to assign a value to every element of an array by entering the
array name followed by the equal sign and the value to be assigned to the elements of the array.
The following are examples of this type of assignment statement:

?NUM = 25 Assign the value 25 (19,,) to all
- elements of array NUM.

2TABLE = 0100 Assign the value 100, 4 to all elements
of array TABLE.

The assign statement may be used to assign a value to an element of an array by entering the
array name with one or two expressions in parentheses to specify the element of the array. The
following are examples of this type of assign statement:

2NUM(3) = 0D Assign the value D, to the third
element of array NUM.

2TABLE(3,2)=0400 Assign the value 400, ¢ to the element
at row 3 of column 2 of array TABLE.

4.6.3 DISPLAY STATEMENTS. A display statement displays the value of an expression. The
syntax for a display statement using default display options is as follows:

2<expression>

4-15 Digital Systems Division



L@f} 9462449701

The value of the expression determines the variable or location to be displayed. The following
are examples of display statements using default options:

2LCN1 Prints value of user variable LCN1 as a hexa-
LCN1 = >0104 decimal number (default).
?PC Prints value of system variable PC (target sys-
PC ~ = >010C tem Program Counter).
_?_>2q)@ + 46 Prints the value of the expression.
>022F
_'_?_@>200 Prints value in location 200,, of target
>343A system memory.
2#INE $-8# Display the value of an instruction constant.
>16FA
;_?_NUM(Z) Display the value of element 2 of array NUM.
>0019

4.6.3.1 Format Specification. The display statement may include a format specification for the
display. The form of the display statement shown in the preceding paragraph uses the default
value. The following is the syntax for a display statement using format specification characters:

?<expression>:<format>...

The expression has the same significance as in the syntax previously described. The colon
indicates that one or more format specification characters follow.

The format specification characters are listed in table 4-2. An E specifies printing the displayed
symbol followed by an equal sign. When it is used. E should precede any other format character
hecause characters are effective in the order in which they are entered. When the expression to
be displayed is an expression other than a single symbol. format character E is ignored.

Format character B specifies a display in binary format, consisting of a less than character (<0)
followed by 16 binary digits (0 or 1) and two spaces. When the B is followed by an optional
digit 1 through 9. that number of binary digits (starting with the least significant digit) is
displayed. The specified number of digits is preceded by a less than character and tollowed by
two spaces. When the B is followed by the digit 0. the display consists of a less than character
and 16 binary digits with no spaces separating the display from the tollowing display.

Format character D specifies a display in decimal format, consisting of a space or minus sign.
one to five decimal digits (0 through 9). and two spaces. Leading zeros are replaced by spaces.
AMPL software converts the contents of the word as a two's complement value.

When the D is followed by an optional digit 1 through 5. that number of decimal digits (starting
with the least significant digit) is displayed. The specified number of digits is preceded by a
space Or a4 minus sign and tollowed by two spaces. When the D is followed by a digit 6 through
9. the normal display occurs. When the D is followed by a 0. the normal display occurs but the
two trailing spaces are omitted: no spaces separate the display from the following display.

4-16 Digital Systems Division




J'— o

946244-9701
Table 4-2. Format Specification Characters
Character Type of Display Note
E Symbol and equal sign
B Binary 1
D Decimal 1
U Unsigned decimal 1
H Hexadecimal 1
0] Octal 1
A ASCII
N Line feed and carriage return 2
X Space 2
I Instruction
S Symbolic address

Notes: |.  May optionally be followed by a single digit 0-9 to specify the
number of digits to be displayed.

2. May optionally be followed by a single digit 1-9 to specify the
number of repetitions of the operation, or a single 0 to specify ten
repetitions.

Format character U specifies a display in unsigned decimal format, consisting of one to five
decimal digits and two spaces. Leading zeros are replaced by spaces, and the word is converted as
an unsigned magnitude value. The U may be followed by a digit, which has the same significance
as for decimal displays.

Format character H specifies a display in hexadecimal format, consisting of a greater than
character (>) followed by four hexadecimal digits (O through 9. A through F) and two spaces.
The H may be followed by a single digit. When the digit is 1 through 4, the display consists of
the greater than character followed by the specified number of digits and two spaces. When the
digit is 5 through 9, the normal display occurs. A O results in a display consisting of a greater
than character and four hexadecimal digits, with no spaces separating the display from the
following display.

Format character O specifies a display in octal format, consisting of an exclamation point (!) followed
by six octal digits (0 through 7) and two spaces. When the O is followed by a digit | through 6, that
number of octal digits (starting with the least significant digit) is displayed. The digits are preceded by
an exclamation point and followed by two spaces. When the O is followed by a digit 7 through 9. the
normal display occurs. When the O is followed by a 0, the normal display occurs but the two trailing
spaces are omitted; no spaces separate the display from the following display.

Format character A specifies a display in ASCII format. The 16-bit value of the expression is
translated into two 8-bit ASCII characters. A period is printed for the contents of any byte that
does not contain a printable ASCII character.

4-17 Digital Systems Division



%ff) 946244-9701
AN

Format character N causes a line feed and carriage return between displays. When the optional
digit follows the N. the digit specifies a number of line feed and carriage return operations to be
performed. The digit O specifies ten operations.

Sim.ilarly..f(.)rmal character X provides an additional space between displaysand may be followed by a
decimal digit to provide up to ten spaces (a 0 specifies ten spaces).

The 1 format character specifies the instruction display. which decodes the value as a machine
instruction and displays the mnemonic operation code and operands as tiey could be specified in
an assembly language statement. Further explanation and examples of the instruction display are
included in the next paragraph.

The S format character specifies a display of a symbolic address when applicable. The symbolic
addresses are the module identifier., external definitions. external references, and addresses
relative to the module identifier. The module identifier. external definitions. and unresolved
external references are optionally loaded with the program.

The value of an expression to be displayed in the S mode is compared to the load module
symbols, and the symbol having the same value is printed. When the value of the expression is
not c¢qual to the value of any load module symbol. the module identifier is printed followed by
a plus sign and the hexadecimal address relative to the module identifier value (load address). In
any of the following instances. the S display is replaced by an H display because the S display 1s
not applicable:

e No module has been loaded.

° Module was loaded without defining load module symbols.

L Load module symbols have been deleted.

e  Expression value is below lowest address or above highest address loaded.

The initial default value of the format specification is EH. which specifies displaying the symbol.
the equal sign, and the value is hexadecimal format. The user may cnter one or more format
characters following the colon. When more than one format character follows the colon. the
characters apply in the order in which they are entered. The following are examples of display
statements with several format characters:

2>4154 : ANDHONB
AT
16724 >4154 1040524
<0100000101010100

2PC:EHX2EBX4ED
PC ~ = >Q10C PC = <0000000100001110 pc = 270

20199 : D303B9
256 1400 <100000000

2>FFFF:DU
-1 65535

20104:DUS Assuming load module MYPROG is loaded at location 100 4.
260 260 MYPROG.+ 0004

Digital Systems Division




946244-9701

4.6.3.2 Instruction Display. The I format character causes the AMPL software to decode the
value of the expression as a machine instruction. When the value decodes to an illegal operation
code. AMPL software interprets the value as data, and lists a DATA directive with the
hexadecimal equivalent of the value as the operand. When the value decodes to a two- or
three-word instruction, AMPL software supplies one or two words of zeros and displays the
result. The following are examples of display statements with I format characters:

2>C000: 1
MOV_ RO,RO

2>CFFF:1
MOV *R15+,*R15+

20E3:1
DATA_ >0E3

2>0802: 1
MOV_ R2,@>0000

The software computes and stores the source and destination addresses as it decodes a value
when the I character has been specified. System variable SRC contains the source address. and
system variable DST contains the destination address. When the instruction does not have a
source address, SRC is set to FFFF,4,, and when the instruction does not have a destination
address, DST is set to FFFF,¢. The contents of variables SRC and DST are derived from the
contents of the active workspace of the target system. and will only be valid when the
workspace contents are valid. When displaying an instruction independently of emulation of the
program, the user must check that the workspace registers contain the values that they will
contain when the program is executed. The following example displays a value in the instruction
mode, and then displays system variables SRC and DST:

2>C7CF:1
MOV R15,*R15

2SRC:H
>FFF8

2DST:H
>23FE

Memory address FFF8,, is workspace register 15, the source address. Workspace register 15
contains 23FE 4, the destination address.

AMPL software accumulates the total numbers of TMS 9900 clock cycles and TMS 9900 memory
accesses for each instruction decoded in the instruction mode. The totals are set to zero following cach
instruction that modifies the program counter (jump or branch). System variable TIME is a switch that
contols the dlspldy of these totals along with the display of each instruction. When TIME is set to one
(using an assign statement), two values are displayed to the right of the line that displays the
instruction. The leftmost of these values contains the total of clock cycles, and the rightmost value
contains the total of memory accesses. When a jump or branch is decoded, the totals are cleared
following the display and an asterisk is displayed to the right of the values. The clock cycle total may be
accessed as system variable CC and the memory access total may be accessed as system variable MC.

The totals may be cleared with assign statements. The totals may be translated into time values by

4-19 Digital Systems Division



_ %@5} 9462449701
\

multiplying the clock count total by the clock cycle time for the target system and the memory access
total by the memory access time for the portion of target memory in which the access occurs. There are
several cases for which the number of clock cycles and memory access cycles cannot be stated exactly.
The number of clock cycles for a shift instruction with a count of zero is a function of the contents of
workspace register 0, which is dynamic. The software uses the maximum clock cycle count (52) in this
case. Also. the conditional jump instructions require more clock cycles when the condition is true than
when the condition is false. The following are examples of statements to set TIME on, clear the totals,
and display timing data:

2TIME = ON -

C =10

e =0
2>CFFF:I

MOV_ *R15+,*R15+ 30
2>C000: I

MOV RO,RQ 44
2>1000:1

JMP__ $+>0002 54

|

— |
N

* @

The formula for translating the timing figures to total TMS 9900 execution times is as follows:

T=tc(¢) (C+W*M)
in which:
T = Execution Time

tc(d)) = Clock cycle time, typically 0.333 us.

C = Number of clock cycles (value of CC, left column of example)

W

Number of wait states per memory access (depends on type of memory)

M

Number of memory accesses (value of MC, right column of example)

For the set of instructions in the preceding example, assuming W = 0, the TMS 9900 execution time is:

T=0.333 * (54 +(0 * 13) =0.333 * 54 =17.982 us.

The formula for translating the timing figures to total TMS 9980 execution times is as follows:
T=t@((C+HW+1)2*M)

The symbols in the formula have the same meanings as in the TMS 9900 formula. For the set of
instructions in the preceding example, assuming W = 0, the TMS 9980 execution time is:

T=0333*054+ 0+ 1)*2*13)=26.64 us

4.6.3.3 Changing Default Format Specifications. The display statement examples in the pre-
ceding paragrapl include display specifications that apply only to the statement in which they
appear. To change the default value the user may enter a G between the colon and the first
character of the new format specification. The following are examples of statements that change
the default format specification:

4-20 Digital Systems Division



@

9462449701

2PC:GHN Change the default format specification to
>34DE display the value in hexadecimal format and
provide a carriage return.
?PC:GEH Change the default value, restoring the initial
PC = >34DE format specification.

4.6.3.4 Displaying Target Memory. An option of the display statement may be used to display
the contents of a range of locations in target system memory. The following is the syntax for
the display statement option:

2<addr>pT0p<addr>[:<format>...]?[:<format>...]

Each addr operand may be any valid expression; its value is interpreted as an address in target
memory. The first format specification applies to the display of the address; when it is omitted,
the default format specification applies. The question mark (?) causes the display of the value of
the expression to be followed by a display of the contents of the target system memory location
corresponding to the value. The second format specification applies to the contents of the target
system memory location; when it is omitted, the default format specification applies.

The initial default format specification for either the value or the contents is H (for hexadecimal
display). The user may change the default by entering a G and a new default format specifica-
tion for either the value or the contents. The following is an example of a display of target
system memory locations:

2START = >20A6 ..ASSIGN STARTING ADDRESS TO START
2FINI = >20AE  ..ASSIGN ENDING ADDRESS TO FINI
2STARTBTOBFINI?

>20A6 / >0420

>20A8 / >22A4

>20AA / >C807

>20AC / >21A6

>20AE / >C808

Any valid expression can be used in place of START and FINI: a similar display can be obtained
using system symbols. Assuming that the program counter contains 20A6,,. the following
example displays the same data with the I format character:

2PCPTOPPC+87:1
>20A6 / BLWP ©>22A4
>2PAA / MOV R7,0>21A6
>20AE / MOV R8,0>21A8

4.6.3.5 Display and Modify. When used in a display statement having a single expression. the
question mark allows the user to alter the contents of the target system memory location.
Alternatively. the user may specify another location to be displayed. The following is the syntax
for a display and modify statement:

? addr [:<format>...]?[:<format>.. .]

The addr operand and the format specification have the same significance as in the syntax
previously described. The difference is that following the display of the requested location. the
user may enter one of the command characters listed in table 4-3 or an expression in response to
the question mark printed by the software. The following is an example of a display and modity
statement which alters the contents of the target system memory location:

4-21 Digital Systems Division



S

f%@?} 9462449701
AN

Table 4-3. Display and Modify Command Characters

Character Meaning
= <expr> Evaluate the expression following the equal sign and
place the value in the location that was displayed. The
expression is restricted to consist of a variable, a .

constant, or a combination of variables and or
constants separated by arithmetic operators + or - only.

@ Display the location corresponding to the displayed N
contents. Displayed value is used as an indirect address.

+ Set the step mode to plus and display and modify the
next word, or the next instruction when the I format
character is in effect. '

Set the step mode to minus and display and modify the
preceding word.

Carriage When the step mode is plus, display and modify the next

Return word, or the next instruction when the I format charac-
ter is in effect. When the step mode is minus, display and
modify the preceding word.

:<format>. .. Alter the format specification for the contents of the
target memory location.

; Terminate the display and modify operation.

Note: When an expression is entered (not preceded by a command character), AMPL
software evaluates the expression and displays the target system memory loca-
tion that corresponds to that value. The user may modify that location as if it
had been entered in a display and modify statement. The expression may be a .
system symbol; e.g., SRC or DST when the I format character applies.

2PC?:H
>20A6 / >0420

? = >0460
>20A6 / >0460 ?

The result of this operation is to place 0460,, in location 20A6,, of target system memory.

Alternatively, the user could have entered an instruction constant, as follows:

2PC?:H
20A6 / 0420

? = #B @22A4+# .
20A6 / 0460 2

4-22 Digital Systems Division



946244-9701

The Instruction constant shown in the preceding example is that of a two-word instruction Frtered in
this mode, an instruction constant provides all words for multi-word instructions. [ niering a cairiage
return after the system displays the question mark causes a display of the second word. as follows:

20A8 /| >22A47

Alternatively, the user could have entered a + instead of the carriage return. The + sets the step mode
to plus and accesses the next word. The step mode is plus initially, however, and a carriage return also
accesses the next word. The + is required when the step mode has been set to minus, and it isdesired to
access the next word. The following example shows the result of entering the plus sign:

>20A6 / >0460 ? +
>20A8 / >22A4 7

The user may display the contents of address 22A4,¢ by entering an @. The tfollowing example
shows the result of entering an @:

>20A8 / >22A4 70
>20A4 / >22D8 ?

The user may change the format specification that applies to the target memory contents by
entering a colon and a new format specification. The new specification does not alter the default
values; it only applies to the current display. The following is an example:

>22A4 / 22D8 7 I
>22A4 / COC_*R8,R13 7

The user may display and modify any location in target system memory by entering an
expression the value of which is a location in target memory. The expression may only contain
variables, constants, or question marks. Only addition and subtraction operations may be used.
In this context, the question mark signifies the current target system memory location. The
following is an example of entering an expression:

>22A4 / COC *R8,R13 ? ? + >A
>22AE / >06A0 ?

User and system symbols are expressions also. When in the instruction mode it is frequently
useful to display the source address, as follows:

>22AE / >06A0 2 :I
>22AE / BL 0>0074 ? SRC
>0074 / >04C0 ?

The user may terminate the display and modify operation by entering a semicolon, as in the
following example:

>0074 / >04C0 ? ;

4-23 Digital Systems Division



;izﬂ 946244-9701
S

.Ustmg mst‘rlucuon constants in this mode is very effective because all words of the instruction are placed
lsrlljpzrl;ic:t r.:lyos::n\l(:rrxg:nt(})‘ry. t}l{]oweyer the user must be aware that entering an instruction constant that
supp th. e wor an the mst.ructl.on.that was pr;wous!y stored at the location requires the user to

¢ rest ol the program again. Similarly, entering an instruction that supplies fewer words than

the instruction it replaces requires * Pi -
quires the user to enter a NOP instruction or two, or t 0
. . A , ortoenter the res
program again. The following is an example of the problem: stofthe

2 06522:1
~0652 / MOV R7,0>0104 ? = #MOV R7, R12# . . NEW INSTRUCTION USES ONLY ONE WORD

>0652 / MOV R7, R12 7

>0654 / DATA >0104 ? = #MOV R8,00106# . . REENTER NEXT INSTRUCTION

>(0654 / MOV R8,8>0106 2 .

>0658 / DATA >0106 ? = #MOV eP4QC,0P4QE# . . OLD INSTRUCTION USED TWO WORDS

>0658 / MOV ©-040C,@>040E 2

>065E / BLWP @>0206 ? . . BACK IN PROPER SEQUENCE-RETURN TO AMPL

4.6.4 IF STATEMENTS. The IF statement contains one or two statements, one of which is
executed depending on the result of evaluating an expression. The syntax for the statement is as

follows:

?IF<expressi on>pTHENp<statement>[ BELSEP<statement>]

The expression is evaluated as a logical expression, yielding a true or false value. When the
arithmetic value of an expression is zero, the logical value is false. The logical value of the
expression is true when the arithmetic value is not zero. Execution of the statement depends on .
the evaluation. as shown in figure 4-2. When the logical value of the expression is true. the
statement following the word THEN is executed, and another statement is requested. When the

logical value of the expression is false, the statement following the word THEN is not executed.

If the optional statement following the word ELSE has been included, this statement is
executed; otherwise, another statement is requested.

The statements within the IF statement may be any of the AMPL statements described in this
section, including other IF statements. The statements may also be any of the user commands
described in Section V. .

4-24 Digital Systems Division



‘ 946244-9701
|
‘ ’ l 1
EVALUATE EVALUATE
EXPRESSION EXPRESSION
-
NO NO
" YES YES
EXECUTE EXECUTE EXECUTE
THEN THEN ELSE
STATEMENT STATEMENT STATEMENT

(A)136540 lk b

Figure 4-2. IF Statement Execution

The following is an example of an IF statement:
z_IFlSPC¢EQk5>1$65THENhSR® = >AAAA

The example statement executes the assign statement that sets RO to AAAA,¢ when PC contains
.' 106,¢. Otherwise, the assignment statement is not executed.

The following example shows an IF statement with the optional ELSE statement:

2IFBPCHNEB>10@BTHENBRPC: HIPELSEBWPBTOBWP+32:H? :HD

[n the example, the software displays the instruction at the address in the program counter in
hexadecimal and instruction format when the program counter contains a value other than
100,,. When the program counter contains 100,¢. the software displays the contents of the
target system workspace in hexadecimal and decimal format.

4.6.5 CASE STATEMENTS. The CASE statement provides selective execution of a statement
within a group of statements depending upon the value of an expression. The syntax for the
) CASE statement is as follows:

2CASEB<expr>BOFB<expr>: :<stmt>; [<expr>::<stmt>;].. . [BELSEB<stmt>] BEND

4-25 Digital Systems Division



{@9 946244-9701

The expression following the reserved word CASE is evaluated to use in selecting the statement
to be executed. Reserved word OF is followed by a group of expression and statement pairs
separated by two colons. When the value of the expression in one of these pairs is equal to the
value of the first expression, the statement of the pair is exccuted. When the value of the first
expression is not equal to the value of the expression in any pair. and the ELSE reserved word is
included. the statement following reserved word ELSLE is executed. When the optional ELSE
statement is omitted, and the value of the first expression is not equal to the value of the
expression in any pair, the CASE statement terminates. -

The expression and statement pairs and the ELSE statement may be entered on separate lines:
carriage return may be entered at any point following the reserved word OF. The following is an
example of a CASE statement:

2CASEBCOUNTPBMODBABOF Display COUNT in a position on a line
1?7 2::COUNT:X9D; according to the remainder when
1?7 3::COUNT:X9X9D; COUNT is divided by 4.
1?7 (::COUNT:X9X9X9D; .
1? ELSEBCOUNT:D
17END

The expressions may be entered in any order. An expression equal to 1 could be entered with
the decimal display of COUNT instead of the ELSE statement shown. It is not necessary that an
expression and statement be provided for each possible value of the first expression: normally,
the ELSE statement is executed for more than one value, as in the following example:

2CASEPVALUEPOF Set FLAG to one if VALUE is equal
1?7  25::FLAG = ON; to 25 or 30; set FLAG to zero for
1?  30::FLAG = ON; other values.

1?  ELSEPFLAG = OFF

1?7 END

4.6.6 WHILE STATEMENTS. The WHILE statement consists of an expression which is evalu-
ated as a logical expression and a statement that is executed conditionally. The syntax for the
WHILE statement is as follows:

2WHILEp<expression>pDOP<statement>

The expression is evaluted first, as shown in figure 4-3. When the value of the expression is false
(zero), the remainder of the statement is ignored, and the software requests another statement.
When the value of the expression is true (nonzero), the statement following the word DO is
executed and the expression is reevaluated. As long as the expression remains true, the execution
of the statement and the reevaluation of the expression are repeated. When the value of the
expression becomes false, the statement is not executed and the software requests another
statement.

The statement following the word DO may be any of the AMPL statements described in this
section, including another WHILE statement. The statement may also be any of the user
commands described in Section V. However, execution of the statement should change the value
of the expression; otherwise, the operation may never terminate. The following is an example of
a WHILE statement:

2WHILEBCOUNTBLEB1Q@PDOBCOUNT = COUNT + 2

4-26 Digital Systems Division



946244-9701

EVALUATE
EXPRESSION

NO

YES

EXECUTE
DO
STATEMENT

(A)136541

Figure 4-3. WHILE Statement Execution

If COUNT were greater than 100, initially, it would remain unaltered. If COUNT were less than
or equal to 100 initially, it would be incremented by 2 repeatedly until it became greater than
100. The final value of COUNT is either 101, 102, or its initial value (greater than 100).

4.6.7 REPEAT STATEMENTS. The REPEAT statement consists of a statement that is executed
at least once, and an expression which is evaluated as a logical expression. Subsequent execution
is conditioned on the logical value of the expression. The syntax for the REPEAT statement is as
follows:

2REPEATP<statement>BUNTILB<expression>

The statement is executed and the expression is evaluated, as shown in figure 4-4. When the
value of the expression is true (nonzero), the AMPL software requests another statement. When
the value of the expression is false (zero), the execution of the statement and the evaluation of
the expression is repeated. Execution of the statement continues until the value of the expres-
sion is true.

The statement following the word REPEAT may be any of the AMPL statements described in
this section, including another REPEAT statement. The statement may also be any of the user
commands described in Section V. However, execution of the statement should change the value
of the expression; otherwise, the operation may never terminate.

4-27 Digital Systems Division



O
:%F} 946244-9701

lk

EXECUTE
STATEMENT

|

EVALUATE
EXPRESSION

NO

YES
(A)136542

Figure 4-4. REPEAT Statement Execution

The following is an example of a REPEAT statement:

?REPEATPIFBTALLYBLEPOPTHENBTALLY = 24BELSEBTALLY = TALLY - 1BUNTILBTALLYBEQKO

The IF statement within the REPEAT statement is executed at least once. When TALLY has a
negative or zero value, TALLY is set to 24. Otherwise, TALLY is decremented by one. The
expression TALLY EQ O is evaluated. The IF statement is repeated, decrementing TALLY until .
TALLY equals zero (TALLY EQ O 1s true).

468 FOR STATEMENTS. A FOR statement assigns a value to a symbol and uses that symbol
to control repeated execution of a statement. The syntax of the FOR statement is as follows:

ZfOR¢<symbol>=<expr>¢T0b<expr>[bBYb<expr>]wDOb<stmt>

The symbol may be a user symbol or a system variable. It is assigned the value of the expression
that follows the equal sign, as shown in figure 4-5. Next, the software compares the value of the
symbol to the value of the expression following the reserved word TO. and executes the
statement following the reserved word DO if the values are not equal. The software then
increments the value of the symbol by the value of the expression that follows the reserved word ,
BY, or by one when the BY expression is omitted. The software repeats the comparison and
execution of the statement until the value of the symbol equals the value of the expression that
follows the reserved word TO, and then terminates the operation.

4-28 Digital Systems Division



J‘ c

946244-9701

INITIALIZE
SYMBOL

EXPRESSION

EXECUTE
STATEMENT

INCREMENT
SYMBOL

(A)136590

Figure 4-5. Execution of FOR Statement

The statement following the word DO may be any of the AMPL statements described in this
section, including another FOR statement. The statement may also be any of the user commands
described in Section V. When the BY expression is included, the difference of the terminal
expression minus the initial expression must be an exact multiple of the increment expression;
otherwise, the symbol will never be equal to the terminal value.

The following is an example of a FOR statement to initialize values in column one of a
two-dimensioned array:

2FORPINDEX = 1BTOP5PDOPMATRIX (INDEX,1)=INDEX

Execution of the example statement places values 1 to 5 in rows 1 to 5 of column | of array
MATRIX. The following is an example of a FOR statement that uses a BY expression:

2FORPN = PBTOPBPBYE2BDOPE (BUFF+N)=0

This example statement stores zeros in four words of target memory starting at address BUFF.

4-29 Digital Systems Division



\J.@? 946244-9701

4.6.9 COMPOUND STATEMENTS. A compound statement is a sequence of AMPL statements
treated as a single statement. The syntax for a compound statement is as follows:

?BEGINB<statement>[[;]<statement>] ... BEND

The statements following the word BEGIN may be any of the AMPL statements described in this
section. including other compound statements. The statements may also be user commands
described in Section V.

A compound statement may be used at any point to organize statements into a block of
statements that are executed after the reserved word END is entered. A compound statement
must be used when a statement cannot be entered on one line. The AMPL structure statements
(IF. CASE. WHILE, REPEAT, and FOR) provide control over execution of one or more
statements. By using compound statements within the structure statements a block of statements
is executed rather than a single statement as shown in the preceding examples.

The following is an example of a compound statement:

2BEGIN
1?2 CC = g;

1?2 MC = §;

17 TIME = ON;

17 PCETOBPC+20?:1;
17 TIME = OFF;
1?END

Execution of the statement begins when the END statement is entered. The compound statement
in the example clears the clock and memory cycle counts. sets the system variable TIME ON, ‘
displays a set of instructions, sets TIME OFF, and terminates. without user intervention.

The following is an example of the use of a compound statement with an IF statement:

21FBPCBEQK >1P6BTHENKBEGIN

7 CC= g

MC =

17 PCBTOBPC+>1p92:1 @
TZENDBELSEBPC : EH

—

—
~

This example tests system variable PC and executes a compound statement when PC is equal to
100,6. The compound statement contains two assign statements and a display statement. The
assign statements clear the clock cycle and memory cycle counts. The display statement displays
the contents of target system memory locations in instruction format. When PC is not equal to
106,,. the program counter contents is displayed in hexadecimal format.

4-30 Digital Systems Division




[e)
{_@@ 946244-9701

Compound statements may be used within a CASE statement, as in the following example:

2CASEBLINEPOF

1?7 1@::LINE:U ..DISPLAY LINE NUMBER ON
17 20::LINE:U ..LINES 10 AND 2

1?7 3¢::BEGIN

22 LINE:UN5 ..DISPLAY LINE NUMBER 30
27 LINE = 1 ..AND START NEW PAGE

27 PAGE = PAGE + 1

27 '"PAGE'; PAGE:U3N

27 END

1?  ELSER' ' ..BLANK LINE NUMBER COLUMN ON OTHER LINES
1?7 END

|\

The preceding example assumes that the CASE statement is executed repeatedly along with a
statement that displays a line of data and a statement that increments the line number. In that
environment, the statement displays a line number on every 10th line and starts a new page on
every 30th line.

Similarly, a WHILE statement may include a compound statement, as in the following example:

2MAIN = >100 ... INITIALIZE SYMBOL
N = 1] ... INITIALIZE COUNT
2WHILEPNBLTBBGBDOBBEGIN
17 @(MAIN + N) = >2020;

? N=N+2
?END

—

—
=)

The example stores ASCII spaces (20,¢) in 80 consecutive bytes in target system memory. The
first location is 1004.

A REPEAT statement may also include a compound statement, as in the following example:

IMAIN = >1¢¢ .. INITIALIZE SYMBOL
7BUFF = >329 .. INITIALIZE ADDRESS
N=9 .. INITIALIZE COUNT
7REPEATBBEGIN

17 @(MAIN + N) = @(BUFF + N)

T2 N=N+2

TZENDBUNT ILNBEQK 10

The example copies 5 words of target system memory from an area starting at location BUFF to
an area starting at the location addressed by variable MAIN.

The following is an example of a FOR statement that includes a compound statement:

?FORBN = @pTOB1@PBYP2PDOBBEGIN

17 IFp@( DATA+N ) PANDBP@@1BTHENK@ ( DATA+N) :H . .DISPLAY ODD NUMBERS IN TARGET MEMORY

7 ELSEB'EVEN NUMBER' . .ADDRESSES DATA THROUGH DATA + 1f.

1? @(DATA+N) = @(BUFF+N) ..DISPLAY "EVEN NUMBER" FOR EVEN NUMBERS
17 END ..MOVE VALUES FROM BUFF THROUGH BUFF + 1¢

..INTO DATA THROUGH DATA + 1.

o

4-31 Digital Systems Division



o

;J L@ﬁ) 946244-9701

“\(
The example tests the contents of 10 target system memory locations starting at address DATA
for odd numbers and displays the contents if odd, or a message if even. Then the example moves
the contents of the corresponding location in an area beginning at address BUFF into the

location.

4.6.10 ESCAPE STATEMENTS. The ESCAPE statement causes termination of execution of the
statements in a loop. The loop structures supported by AMPL software are the WHILE,
REPEAT, and FOR statements. The syntax of the ESCAPE statement is as follows: <

2ESCAPE
When an ESCAPE statement within a loop structure is executed, control passes to the statement

that would have been executed at normal compietion of the loop operation. When an ESCAPE
statement is entered other than in a WHILE, REPEAT, or FOR statement, the AMPL softwai.

issues an error message.

The following are examples of ESCAPE statements: .

?WHILEBNPLEBMPDOPBEGIN

17 IFBDATA+NBHIEB>1FFFBTHENBESCAPE  ..TEST FOR ADDRESS ABOVE 1FFF,..
17 @(DATA+N) = ¢ . .STORE ZERO IN ADDRESS
12 N = N2
17 END
7REPEATBBEGIN
17 1FP@(BUFF+N)BEQ¥>4148THENBESCAPE  ..TEST FOR AA IN BUFFER
17 N = N+2 . . INCREMENT N
T7 PTR = BUFF + N . .STORE NEXT ADDRESS IN PTR

~J

?ENDBUNTILBN=M

2FORBCNT = NPTOPMBDOBBEGIN

17  IFPADDRBHIEP FFFEPTHENBESCAPE ..TEST FOR ADDRESS ABOVE MEMORY ADDRESS SPACE
1?  @ADDR = FFFF ..STORE -1 INTO ADDR

1?2 ADDR = ADDR+2 .. INCREMENT ADDR

1?END

In each of the examples, the ESCAPE statement terminates the loop when a specified condition
other than the condition of the loop occurs.

4.6.11 NULL STATEMENTS. The NULL statement is a no operation statement. The syntax of
the NULL statement is as follows:

2NULL .

The NULL statement may be used at any time a no operation statement is appropriate. For
example, in a WHILE or REPEAT statement in which the expression depends on a signal from
hardware to terminate the operation, a NULL statement may be used following DO or REPEAT.

respectively.

4-32 Digital Systems Division



946244-9701

4.7 PROCEDURLS AND FUNCTIONS

AMPL supports procedures and functions written by the user. Procedures and functions are
subroutines available for use in AMPL statements. A procedure is called by a procedure call
statement and may define one or more arguments to be passed from the calling statement. A
procedure consists of a definition statement that includes a single executable statement, typically
a compound statement. A function call is used as a variable, the value of which is the value
returned by the function. A function may define one or more arguments to be passed from the
function call. A function consists of a definition statement that includes a single executable
statement, typically a compound statement. A function should contain at least one return
statement, either as the only statement, or as a statement within the compound statement.

The statement of a procedure or function is not executed at the time the procedure or function
is defined, but is executed each time the procedure or function is called. 1t is especially
important to realize that an ARRAY statement in a procedure or function is not executed until
the procedure or function is called. Any reference to an element of such an array is valid only
after the procedure or function that contains the ARRAY statement has been called.

4.7.1 PROCEDURE DEFINITION STATEMENT. The procedure definition (PROC) statement
defines the statement that follows as a procedure and specifies the required number of arguments
and optionally the number of words of local storage for the procedure. The syntax for the
PROC statement is as follows:

2PROCK<procedure name>[(<arguments>[,<local storage>] )] <statement>

The procedure name operand is the name used to call the procedure; it must meet the
requirements for user symbols listed in paragraph 4.2.3.1, and must be unique with respect to
other procedure names, function names, array names, and user symbols. The arguments operand
is an integer constant having a value from zero through 255 that specifies the minimum number
of arguments required by the procedure. When the procedure requires local storage, the local
storage operand specifies the number of words of local storage required. The local storage
operand is a positive integer constant less than 65,536. When the local storage operand is
omitted, no local storage is provided for the procedure. When both operands are omitted. the
value of zero is used for both operands.

The following are examples of PROC statements:

?PROCBHDSPLY (4,1¢) BEGIN Defines the compound statement as pro-
cedure DSPLY that requires at least four
arguments and ten words of local storage

?PROCBNAME (@) 'PROGRAM NAME IS' Defines procedure NAME to print a
message that identifies the program
name.

4.72 FUNCTION DEFINITION STATEMENT. The function definition (FUNC) statement
defines the statement that follows as a function, and specifies the required number of arguments
and optionally the number of words of local storage for the function. The syntax tor the FUNC
statement is as follows:

?FUNCB<function name>[(<arguments>[,<local storage>])]<statement>

4-33 Digital Systems Division



Zﬂ 946244-9701

The function name operand is the name used in the function call: it must meet the requirements
for user symbols listed in paragraph 4.2.3.1, and must be unique with respect to other function
names, procedure names, array names, and user symbols. The arguments operand is an integer
constant having a value from zero through 255 that specifies the minimum number of arguments
required by the function. When the function requires local storage. the local storage operand
specifies the number of words of local storage required. The local storage operand is a positive
integer constant less than 65,536. When the local storage operand is omitted, no local storage is
provided for the function. When both operands are omitted, the value of zero is used for both
operands.

The following are examples of FUNC statements:

?FUNCBLSUM (3,2) BEGIN Defines the compound statement as
- function LSUM that requires at least

three arguments and two words of local

storage. .

_?_FUNC;}A[)DIT(Z) BEGIN Defines the compound statement as
function ADDIT that requires at least
two arguments and no local storage.

4.7.3 ARGUMENTS. The arguments for procedures and functions are placed in the call
statement or function call. At least as many as are specified in the definition must be supplied.
The unary operator ARG is used within the procedure or function to determine the number of
arguments supplied in the call, and to access the arguments. The constant, variable, or sub-
expression to which the operator ARG applies must evaluate to a positive integer value or zero.
When the value is zero, the result is the number of arguments supplied in the call; when the
value is a positive value, the operator and its operand access the argument corresponding to the
value; i.e., ARG | accesses the first argument (leftmost argument) in the cail, ARG 2 the second,
etc. The value of the operand of the ARG operator must not exceed the value of ARG U. The
ARG operator may be used to access an argument either for reading or writing, unless the value
of the operand is zero; the value of ARG 0 may not be altered. A value stored in an argument is
local to the procedure or function, and is not returned to the calling statement.

The priority of unary operator ARG with respect to the operators listed in table 4-1 is 7 (highest .
priority). The following are examples of the use of unary operator ARG:

ARGE3 Accesses the third argument from the
left in the set of arguments of a call to a
procedure or function.

ARGEN When N has a value greater than zero,
and equal to or less than the number of
arguments, accesses the corresponding i
argument. When the value of N is nega-
tive or greater than the number of argu-
ments, the expression is invalid. When
the value of N is zero, accesses the
number of arguments entered.

4-34 Digital Systems Division




_l o

946244-9701

4.7.4 LOCAL STORAGE. A PROC or FUNC statement that has the optional local storage
operand causes the software to reserve memory for local storage for the procedure or function.
Local storage is provided each time the procedure or function is called. even though the call is
nested within another call, and becomes inaccessible when the procedure or function terminates.
Data cannot be passed between procedures and functions or between a procedure or tunction
and the calling statement through local storage.

The words of local storage are referenced by the unary operator LOC. The constant, variable, or
subexpression to which the operator LOC applies must evaluate to an integer value greater than
or equal to zero, and less than or equal to the number of words of lecal storage provided. When
the operand evaluates to zero, the result is the number of words of local storage provided. When
the value is a positive value, the operator and its operand access the word in local storage
corresponding to the value: i.e.. LOC 1 accesses the first word, LOC 2 the second, etc. The LOC
operator may be used to access a word for either reading or writing, except that the value of
LOC 0 may not be altered.

The priority of unary operator LOC with respect to the operators listed in table 4-1 is 7 (highest
priority). The following are examples of the use of unary operator LOC:

LOCp4 Accesses the fourth word of local storage
for the procedure or function.

LOCK (NUM+3) When subexpression NUM+3 has a value
greater than zero and less than or equal
to the number of words of local storage,
accesses the word of local storage that
corresponds to the value. When the value
of NUM+3 is negative or greater than
the number of words of local storage,
the expression is invalid. When the value
of NUM+3 is zero, accesses the number
of words of local storage allocated.

4.7.5 RETURN STATEMENT. The RETURN statement terminates the execution ot a function
or a procedure. The syntax for a RETURN statement is as follows:

2RETURN[p<expression>]

The expression is evaluated, and when the statement appears in a function, the value is assigned
to the function call. When the expression is omitted, and the RETURN statement is in a
function, the value of zero is returned. When the RETURN statement is in a procedure. the
expression is evaluated but the value is not returned.

The RETURN statement is valid in a function, either as the only statement in the function, or as
a part of the compound statement of the function. The RETURN statement is also valid in the
compound statement of a procedure. The following is an example of a function that contains
only a RETURN statement:

2FUNCBSUM(2) RETURNPARGB1 + ARGp2

This function returns the sum of the arguments as the value of the function call. Other examples
of RETURN statements appear in examples in paragraph 4.7.7.

4-35 Digital Systems Division



»\ll/_/f : 946244-9701

A function that returns 4 value other than sero to the function call must contain a RETURN
statement. Execution of o RETURN statement during execution of a procedure or function
terminates execution of the procedure or function. and returns control to the calling statement.
An implicit RETURN with an operand of 0 occurs following the executable statement of
procedure or function. A function that contains no explicit RETURN statement terminates at
that point and returns a value of zero for the function call.

476 CALLS TO PROCEDURES AND FUNCTIONS. A call to a procedure is an AMPL
statement consisting of the procedure name followed by arguments, if any, enclosed in paren-
theses. The syntax of a procedure call is as follows:

2<procedure name>[ (<argument>[ ,<argument>]...)]

The procedure name is a name that has previously been entered as the first operand of & PRO
statement. The user must enter the number of arguments specified in the PROC statement. and
may enter as many more as desired. Arguments must be entered in the sequence requited by the
procedure. Each argument is an expression.

A procedure call may be entered whenever the software requests a statement, or withinan 1. WHILE.
REPEAT. or compound statement. A call to a procedure may be included in the same procedure
(recursive call). in another procedure. or in a function.

The following is an example of a procedure cull:

?DSPL1 (LBL1,LBL1+8) Calls procedure DSPLT specifving two
- arguments, LBL1 and LBLI+&. ARG ¢
within the procedure returns 2. ARG |
accesses LBLI. and ARG 2 accesses
[ BL1+8.
A call to o function is used as @ variable i an expression. The value returned by the funcuion
becomes the satlue ol the variable. The function call consists of the function name tollowed by

arguments. i any. enclosed in parentheses. The syntax of a function call s as follows:

<function name: [{<argument>[,<argument-]...)]

The tunction name is u name that has previously been entered as the first oporand ot @ FUNC
ctatement. The user must cnter the number ot arguments speciticd in the FUNC statcment and

mav enter as many more o desired. Argunients must be entered the sequence required by the

tunction. Lach argument s oan o expression. The operand of the RETURN  statement that
terminates oxvecution ol the tunction becomes the value ot the tunction call,

A function cail may be used inoany AMPL expression. A function call may be used i the same

function (recursive call). in another function. or in 1 procedure. The following wre examples of
AMPL statements that contain function calls:

?STADD = SUM(BEGIN,OFSLT) \ariable STADD is set to the value of

- the SUM function of Bl GIN und
OFSET.

_?_SUM(BEGIN,OFSET) + 1¢:HD Displays the sum of the SUM tunction

of BEGIN and OFSET and 14 in hexa-
decimal and decimal tormat.

1-36 Digital Systems Division



946244-9701

4.7.7 PROCEDURE AND FUNCTION EXAMPLES. The following is an example of a procedure

‘ definition:

2PROCBDT (@,2) BEGIN .. DUMP EMULATOR TRACE BUFFER (@ ARGUMENTS, 2 LOCAL VARIABLES)
1?  LOCp1 = ETBO .. GET INDEX OF OLDEST STORED VALUE
1?7 LOCp2 = ETBN .. GET INDEX OF NEWEST STORED VALUE
1?7 WHILEBLOCB1PLEBLOCP2BDO
, 17 BEGIN
27 ETB(LOCP1):H ..DISPLAY TRACED VALUE
22 @ETB(LOCP1) :HIN ..DISPLAY CONTENTS OF TRACED VALUE
27 LOCB1 = LOCP1 + 1..INCREMENT INDEX
. 27 END
1?7  RETURN ..THIS STATEMENT MAY BE OMITTED
TZEND
.| Procedure DT displays the contents of the emulator trace memory. On the assumption that the

memory locations contain program counter values, the procedure also displays the contents of
these addresses. The procedure uses a command (ETB) and two system variables (ETBO and
ETBN) which are described in Section V. The command reads a value from the trace memory.
and the system variables contain the lower and upper index limits that define the portion of
trace memory into which trace values have been stored.

The PROC statement defines procedure DT with no arguments and two words of local storage.
The procedure consists of a compound statement that contains two assign statements, a WHILE
statement, and a RETURN statement. The first assign statement assigns the index value of the
oldest value in trace memory (system variable ETBO) to LOC 1. The second assign statement
assigns the index value of the newest value in memory (system variable ETBN) to LOC 2. The
. WHILE statement executes a compound statement repeatedly until local storage word 1 is greater
than local storage word 2. The compound statement contains two display statements and an
assign statement. The first display statement displays the contents of a trace memory location;
the second display statement displays the contents of the displayed address in hexadecimal and
instruction format. The assign statement increments the contents of local storage word 1.

The WHILE statement terminates when the values stored in trace memory have all been

‘) displayed. The RETURN statement terminates execution of the procedure. If the RETURN
statement is omitted, the implied RETURN provided at the end of every procedure terminates
the procedure. The call for the procedure is as follows:

20T

The call for a procedure or function can include more arguments than the required number
specified in the PROC or FUNC statement. Many procedures and functions, such as the
preceding example, would ignore any arguments (or additional arguments). The following is an
example of a procedure that requires one argument, but displays results (execution times) tor as
many arguments as the user enters.

4-37 Digital Systems Division



, 940244-9701

PROCHTIMEN (1,1) BEGIN

17 LOCKI = 1

17 TIME = OFF

17 WHILEBLOCB1BLEBARGEOBDO
17 BEGIN

27 MC = 0

27 cC=0

27 GARG (LOCB1):IXXXXX
27 333 * (CC + MC):DN
27 LOCB1 = LOCK1 + 1
27 END

17END

The example computes execution times of TMS 9900 instructions (other than branch or jump).

assuming a clock cycle time of 333 ns and a single wait cycle. T'he calling statement includes the

locations to be displayed for which time 1s to be computed.

Procedure TIMIEN contains a compound statement consisting of two assign statementsanda WHILE
statement. The first assign statement assigns the value of 1 to LOC 1 to be used as an index to the
arguments. The second assign statement sets system variable TiME OFF to inhibit printing of the
values of CC and MC in the display. The WHILE statement causcs a compound statement to be
executed for each argument. Within this compound statement. assign statements clear MC and CC.
and display statements display the contents of the memory location corresponding to the argument in
instruction format, and the computed execution time in decimal format. The last statement in the
compound statement increments the index to access the nextargument. The followingare examples ol
statements that call procedure TIMEN:

_?_TIMEN(START)
2TIMEN (MAIN+10,MAIN+24 ,COMP)
The following is an example of a function definition:

?FUNCEMEMTST (3,1) BEGIN .. MEMORY TESTER (3 ARGUMENTS, 1 LOCAL VARIABLE

17 LOCK1 = ARGEL .. SET LOCAL STORAGE WORD TC STARTING ADDRESS ARGUML'!T
17 WHILLBLOCB1ELOEBARGB2BDO .. WRITE PHASE

7 BEGIN

77 GLOCKL = ARGE3

7 LUCKL = LOCKL + 2

oTLND

17 LUCB] = ARGBL ..SET LOCAL STOKAGL wuki TO STARTING ADDRESS ARGUME!N
17 WHILEELOCK1PLOEBARGE2BD0 .. READ AND COMPAKE PHASC

17 BEGIN

T7  ITBELOCKIBNEBARGBIBTHENBRE TUPNBLUCK] .. LRECiC EXIT

7 LOCB1 = LOCKL + 2

27 LN

17 RCTURNE-1 .. NORMAL EXIT

17N

1-38 Digital Systems Division




o
{@ 946244-9701

‘ If the second argument for this function is equal to FFFF¢ or if
the first argument is an even address and the second argument is
FFFE . the function will not terminate properly, and will destroy
the contents of low order memory if allowed to execute indefi-
nitely. Incrementing FFFE,;q by 2 results in 00006, which is
' lower than either FFFE,;, or FFFF 4.

CAUTION

Function MEMTST tests an area of memory as specified in three arguments. The first argument
is the starting address in target system memory; the second argument is the ending address. The
third argument is the test data to be used in the test.

The FUNC statement defines function MEMTST with three arguments and a word of local
storage. The function consists of a compound statement that contains an assign statement and a
‘. WHILE statement for the write phase, an assign statement and a WHILE statement for the read
and compare phase, and a RETURN statement. The assign statement for the write phase sets the
local storage word to the starting address in the first argument. The WHILE statement executes a
compound statement repeatedly until the address in the local storage word is greater than the
ending address in argument 2. The compound statement consists of two assign statements. The
first writes the test data word into the target system memory location specified by the local
storage word. The second assign statement increments the contents of the local storage word by
two. The WHILE statement terminates when all words in the test area have been written. The
assign statement for the read and compare phase sets the local storage word to the starting
address. The WHILE statement executes a compound statement repeatedly until the address in
the local storage word is greater than the ending address in argument 2. The compound
statement consists of an IF statement and an assign statement. The IF statement executes a
‘ RETURN statement if the contents of memory are not equal to the test data in the third
argument; this constitutes a memory error, and the address in the local storage word (the address
that contains an error) is returned. When the contents of the memory location are correct, the
assign statement is executed, incrementing the contents of the local storage word by two. The
WHILE statement terminates when all words in the test area have been read and found to be
correct. The RETURN statement provides a normal return, returning a -1 to identify the normal
return.

The following are examples of AMPL statements that call MEMTST:

?TMTST = MEMTST (START,FINISH, >A5A5) .. TEST MEMORY

ZIFBTMTSTENE- 1B THENBTMTST : D .. DISPLAY ERROR ADDRESS IF ERROR RETURN
2BEGIN
17 TSTDAT = >A5A5 ..INITIALIZE DATA FOR TEST
17 TSTAD = >p100 ..INITIALIZE STARTING ADDRESS
17 TSTEND = >109@ ..INITIALIZE ENDING ADDRESS
; 17 WHILEBTSTADBLOBTSTENDEDOBBEGIN
27 TSTMEM = MEMTST (TSTAD,TSTEND,TSTDAT) .. TEST MEMORY
27 IFBTSTMEMBEQK- 1THEN
27 TSTAD = TSTEND .. TEST COMPLETE
. 27 ELSEBBEGIN
37 TSTMEM: H .. DISPLAY ERROR ADDRESS
37 TSTAD = TSTMEM + 2 .. CONTINUE TEST BEGINNING AT
37 END .. ADDRESS FOLLOWING ERROR
27 END
TZEND

4-39/4-40 Digital Systems Division






@

@ 946244-9701

SECTION V

SYSTEM OPERATION

5.1 INTRODUCTION

Prior toloading and operating the AMPL system, connect the target system to the host system through
the emulator/buffer module, the logic state trace data module, or both, as described in the installation
and operation manuals for these modules.

Operation of the system consists of loading the operating system, starting the AMPL program. and
entering AMPL statements and commands. This section includes the loading procedures for TX990
and for DX10 and descriptions of the user commands. User commands are described in the following
categories:

Target System Program Loading and Saving Commands
Utility Commands

CRU Commands

Data Input Commands

Emulator Operation Commands

Trace Module Operation Commands

5.2 LOADING AND STARTING THE SYSTEM
Loading and starting the system differs for TX990 and DX10 systems. The following paragraphs
describe the procedures for the two operating systems.

5.2.1 TX990. To load the AMPL system, perform the following steps:

1.

Place the AMPL system diskette in either floppy disk unit and place the unit in the Ready
mode.

NOTE
Place the system disc in floppy disc unit [ (left-hand unit), if possible.
When the system disc is in unit 2 a limited set of error messages is
printed (paragraph 6.2).
Press the HALT/SIE switch on the programmer panel of the computer.
Press the RESET switch on the programmer panel.

Press the LOAD switch on the programmer panel.

The computer should load TX990 from the diskette and print a message similar to the
following when the loading has completed:

TX990 SYSTEM
MEMORY SIZE (WORDS): 24576 AVAILABLE: 12923

5-1 Digital Systems Division



i %Zﬂ 946244-9701
\,\ /

6.  WhenaModel911 VDT is used as system console, verify that the UPPER CASE LOCK key
is in the upper case position for proper entry to TXDS and to the AMPL program.

7. Enter an exclamation point (!) to activate the Terminal Executive Development System
(TXDS). The computer prints a message similar to the following:

TXDS 936215 ** 1/0 0: 0

PROGRAM:

8. Place FS990 TXDS parts diskette in the other floppy disk unit (normally unit 2) and enter
the following information to execute utility SYSUTL to initialize time and date. (If time and N
date information is not required, steps 8 and 9 may be omitted.) The following example
shows entering data corresponding to 3:45 p.m., March 11, 1977:

PROGRAM: DSC2:SYSUTL,SYS

INPUT: ’

OUTPUT:
OPTIONS: ID,1977,3,11,15.,45.

9. SYSUTL executes the command, prints the following message, and returns control to
TXDS:

TX990 SYSTEM UTILITY 937544**

15:45:00 MAR 11, 1977

10. After executing the ID command, SYSUTL terminates. Control returns to TXDS, which
prints a message similar to the following:

TXDS 936215 ** 70/77 15:45
PROGRAM:

I1.  Enter the program name, followed by an asterisk. The asterisk specifies that the entry of
input, output and options is not required. Enter the name as follows: ‘

PROGRAM: :AMPL/SYS *

12. The program begins execution, and prints a question mark requesting entry of a user
command or an AMPL statement. The program is initialized to provide space for 30 user
symbols. The user may require more than 30 symbols, or may not require that many. When
fewer than 30 user symbols are required, specifying a smaller number allows more memory
for procedures and functions. When deciding on symbol table requirements, allow space for
module names and procedure and function names. The user may enter a CLR command
with a positive integer operand to specify user symbol table size. The following isan example
of a CLR command:

2 CLR (25) Reserve space for 25 symbols in the user symbol
table.

3. Enter commands and statements as required. The program prints a question mark
requesting entry at the completion of each command or statement:

.) ‘

5-2 Digital Systems Division




@

@)‘j} 9462449701

5.2.2 DX10. To load the AMPL system, perform the following steps:

1.

10.

1.

Place the disk cartridge containing the DX10 system and the AMPL program on system
disk unit 0, and place the unit in ready with write protection disabled.

At the programmer panel of the computer, press the HALT/SIE switch.

Press the RESET switch on the programmer panel.

Press the LOAD switch on the programmer panel.

When a Model 911 VDT is to be used as AMPL terminal, verify that the UPPER CASE
LOCK key is in the upper case position for proper entry of System Command Interpreter
commands and AMPL commands and statements.

Press the blank orange key (upper right of keyboard) on the Model 911 VDT.

Enter an exclamation point (!). The system displays a pair of brackets ([ ]) requesting entry
of a command.

Enter IS for an initialize system command. The system displays the following:
INITIALIZE SYSTEM
INITIALIZE SYSTEM LOG?:

Enter YES. The system displays the following request:
YEAR:

Enter the current year; e.g., 1977. The system displays the following request:
MONTH:

Enter the number of the month; e.g., 9 for September. The system displays the following
request:

DAY:
Enter the day of the month; e.g., 13. The system displays the following request:
HOUR:

Enter the hour (adding 12 to P.M. hours); e.g., 17 for 5 P.M. The system displays the
following message:

MINUTE:
Enter the minute; e.g., 35. The system displays the following request:

ATTENTION DEVICE:

5-3 Digital Systems Division



J_BO 946244-9701
!
Jg

15.

18.

21.

(S
ro

Enter the device name of a terminal on which the system displays attention messages, or ME
if the messages are to bedisplayed on the AMPL. terminal. The system displays the following
request:

LOGGING DEVICE:

Enter DUMY or the device name of a device to display system log messages. The system
displays the following request:

FILES?:
Enter YES. The system displays the following request:
PRIMARY FILE:
Enter 0. The system displays the following request:
INITIAL ALLOCATION:
Enter 100. The system displays a pair of brackets requesting another command.
Enter AMPL to activate the AMPL program. The system displays the following:

AMPL MICROPROCESSOR PROTOTYPING LAB
USER MEM (K) =

Either enter another number instead of 8 and press the RETURN key, or press the
RETURN key to specify 8. The number is the size in 1024 (1K) word blocks of memory
required for the AMPL system data and work area. The user may specify less than 8 when
the work to be done does not require many procedures or functions and other users and
other tasks require system resources. The user must specify more than 8 when the work to be
done requires many iong functions and procedures. The system displays the following (with
the applicable version number):

AMPL 3.0

‘)
It a symbol table size less than or greater than 30 symbols is required, enter a CLR command
similar to the following to specify a symbol table size. When few symbols are required, a
small symbol table provides more memory for procedures and functions. When deciding on
symbol table requirements allow space for load module symbols and for procedure and
function names. The CLLR command 1s as follows:

! CLR (45) Reserve space for45 symbols in the user symbol
table.

The AMPL system displays a question mark (?) to request a command or statement at the
complction of execution of cach command or statement. Enter commands and statements as
required.

5-4 Digital Systems Division




@]
@ 946244-9701

5.3 HARDWARE DEMONSTRATION TEST

The AMPL software includes a hardware demonstration test that verifies the installation of the
emulator and trace modules. It should be executed following the initial loading of the AMPL program.
The hardware demonstration test is not a diagnostic test of the emulator and trace modules. However,
it may be executed at any time you desire to exercise the emulator and trace modules. Perform the
following steps to execute the test immediately after loading and starting the AMPL program:

1.

Enter a COPY command to load the test. Use the applicable one of the following examples,
followed by a carriage return:

? COPY (“AMPHDT/PRC) For a TX990 system. or
2 COPY (“.S$SYSLIB.AMPLSLIB.AMPHDT’) For a DXI10 system.

When the AMPL program has loaded the procedures for the test, it displays operating
instructions. Follow the instructions in each display, entering the following as requested.

=C

When C is entered following the third group of instructions, the test begins. The first test
consists of displaying instructions for entering the EINT command to initialize the
emulator. Use the applicable one of the following examples:

2 EINT (EMU) TX990 system
2 EINT (‘EMOD) DX10 system

The AMPL software responds by displaying a question mark when the initialization
completes satisfactorily. The system displays an error message when initialization fails. A
typical error that might occur during an initialization attempt displays the following
message:

*** ERROR 205>0700 >0001
EMULATOR DSR ERROR:
>02XX = ILLEGAL OPERATION
>06XX = OPERATION TIMED OUT
>07XX = DEVICE ERROR

If any error message is displayed, verify the connections to the emulator, and verify that the
emulator module is firmly seated in the proper slot. Then repeat the command.

When the emulator has been successfully initialized, enter the following command to resume
the test:

? AMPHDT;

The second test displays the following title, and clears and sets the two system variables that
map target system memory addresses into emulator memory. Normally the test completes
with no further message.

-EMULATOR MEMORY SELECTION TEST-

5-5 Digital Systems Division



\.

I3

3

le)

J

)

946244-9701

Failure of the testisindicated by an error message; typically. the error message shown in step
4 is displayed. If an error message is displayed, verify that the microprocessor connector of
the buffer is not connected to anything, or is not contacting any electrically conductive
material. Should the microprocessor connector be connected to a target system. both the
emulator and the target system are being tested. Disconnect the microprocessor connector
to isolate the problem.

After successfully completing the second test, the software begins the third test by displaying
the following title:

-EMULATOR USER MEMORY TEST (4K WORDS)-

The test consists of writing the memory address into the addressed location, beginning at
address 0. The test then reads the tested address, and compares the contents to the address.
When the comparison is equal, the test continues by adding 32 to the tested address. and
repeating the test, until the range of addresses. 0 through 1FEQ,e, has been tested. When the
comparison is not equal, the test displays the following title:

*** ERROR: EMULATOR USER MEMORY ERROR

The test may be repeated by entering the following command. If the failure persists, refer the
problem to maintenance personnel.

2 AMPHDT;

After successfully completing the third test, the software begins the fourth test by displaying
the following title:

-EMULATOR TRACE BUFFER MEMORY TEST (256 WORDS)-

The test is similar to the user memory test, except that all even addresses from FE0O,,
through FFFE, are tested. If the test software detects an error. it displays the following
message:

*** ERROR: EMULATOR TRACE MEMORY FAILURE
Recover from the error as described in step 7.

After successtully completing the fourth test. the software begins the fifth test by displaving
the following title:

-EMULATOR RUN TEST-

The test writes a simple program into target memory. consisting of four instructions, the last
of which is an IDLE instruction. The test then sets up the emulator to execute with no
tracing or breakpoint, and issues a command to start the emulator. The program in memory
exccutes, placing the microprocessor in the idle mode. The test verifies that the
microprocessor is executing an IDLE instruction. If the status of the microprocessor
indicates that the microprocessor is not executing, or is not executing an IDLE instruction,
the test program displays the following message:

¥** ERROR: EMULATOR EXFCUTION FAILURI

5-6 Digital Systems Division




\J@ 9462449701

10.

If the test fails, refer the problem to maintenance personnel. Repeat the test by entering the
following:

? AMPHDT,;

After successfully completing the fifth test, the software begins the sixth test by displaying
the following title:

-EMULATOR HALT TEST-

The test executes an emulator command to halt the emulator, and verifies that the emulator
halts. If the status of the microprocessor indicates that the emulator did not halt, the test
displays the following message:

*** ERROR: EMULATOR FAILED TO HALT PROPERLY
Recover from the error as described in step 9.

After successfully completing the sixth test, the software begins the seventh test by
displaying the following title:

-EMULATOR TRACE TEST-

The test sets up a trace of the program in target memory, and a breakpoint at completion of
the trace operation. The test then re-executes the program in target memory, and verifies
that the trace operation traced properly and halted the operation. When the trace operation
fails, the test displays the following message:

*** ERROR: EMULATOR FAILED TRACE TEST
Recover from the error as described in step 9.

After successfully completing the seventh test, the software begins the eighth test by
displaying the following title:

-EMULATOR ADDRESS COMPARISON TEST-

The test sets up a breakpoint atan instruction address, and re-executes the program in target
memory. The test then verifies that the breakpoint stopped the emulator at the proper point.
When the breakpoint operation fails, the test displays the following message:

*** ERROR: EMULATOR FAILED PC BREAKPOINT
Recover from the error as described in step 9.

At this point, emulator tests have been completed, and the test displays the following
message:

*** EMULATOR PASSES HARDWARE DEMONSTRATION TEST ***
DO YOU WISH TO TEST A LOGIC STATE TRACE MODULE? (Y=YES,
N=NO)

If the system being tested includes a trace module, enter Y; otherwise, enter N, and skip
to step 20.

5-7 Digital Systems Division



R{\@}

946244-9701

14.

When the user requests testing a trace module. the test displays instructions for entering the
TINT command to initialize the trace module. Use the applicable one of the following
examples:

TINT (TRA") TX990 system
TINT ("TMO1") DX10 system

The software responds by displaying a question mark when the initialization is complete.
The software displays an error message when intialization fails. A typical error that might
occur during an initialization attempt displays the following message:

*** ERROR 219 0700 0001
TRACE MODULE DSR ERROR:
02XX = ILLEGAL WHILE TRACING,
06XX = OPERATION ABORTED
07XX = TRACE MODULE DEVICE ERROR

If any error message is displayed. verify the connections to the trace module, and verify that
the trace module is firmly seated in the proper slot. Then repeat the command.

When the trace module has been successfully initialized, enter the following command to
resume the test:

? AMPHDT;
The software begins the first trace module test by displaying the following title:
-TRACE MODULE INTERNAL CLOCK TEST-

The test sets up the emulator to execute with no breakpoints or tracing, and sets up the trace
module to trace using the internal clock, and to halt after tracing 10 items. The test then re-
executes the program in target memory, and verifies that the trace operation halted the trace
module. When the status of the trace module indicates that tracing did not stop or that
something other than completion of the trace operation halted the trace module. the test
displays the following message:

*** ERROR: TRACE MODULE FAILED INTERNAL CLOCK TEST
Recover from the error as described in step 9.

After successfully completing the first trace module test, the software begins the second test
by displaying the following title:

-TRACE MODULE DATA TRACE TEST-

The test sets up the trace module to trace data using external (emulator) clock. The testalso
sets the trace module to halt the emulator at the completion of the instruction that completes
the trace operation. The test then re-executes the program in target memory, and verifies
that the completion of the trace operation halted the emulator and the trace module. and
that the trace operation correctly traced the data. When the status of the emulator and trace
modules indicates that the test failed, the test displavs the following message:

*** ERROR: TRACE MODULE FAILED DATA TRACE

Recover from the ciror as deseribed in step 9

5-8 Digital Systems Division




946244-9701

17. After successfully completing the second trace module test, the software begins the third test
by displaying the following title:

-TRACE MODULE EVENT TEST-

The test sets up the trace module to breakpoint on the first instruction of the program in
target memory, and re-executes that program. The test then verifies that both the emulator
and trace modules halted, and that the breakpoint halted the modules. When the status of
the emulator and trace modules indicates that the breakpoint failed, the test displays the
following message:

*** ERROR: TRACE MODULE EVENT FAILURE
Recover from the error as described in step 9.

18.  After successfully completing the third trace module test, the software begins the fourth test
by displaying the following title:

-TRACE MODULE: TRACE DELAY TEST-

The test uses the same breakpoint set up for the preceding test, but sets up a delay of halting
the emulator and trace modules following the breakpoint. The test then re-executes the
program in target memory, and verifies that the breakpoint executed properly after the
specified delay. When the status of the emulator and trace modules indicates that the
breakpoint or delay failed, the test displays the following message:

*** ERROR: TRACE MODULE DELAY FAILURE
Recover from the error as described in step 9.

19. After successfully completing the fourth trace module test, the software displays the
following message:

*** TRACE MODULE PASSES HARDWARE DEMONSTRATION TEST ***
20. The test then displays the concluding message, as follows:
*** CONCLUSION OF AMPL HARDWARE DEMONSTRATION TEST ***

5.4 RECOVERY PROCEDURE

The buffer modules contain a switch that connects the clock source for the microprocessor to the clock
in the emulator or to the clock in the target system. Setting the CLOCK switch to a different position
during a debugging session requires a recovery procedure to be performed before continuing the test. A
similar recovery procedure is required when the power to the target system is disconnected and then
restored. When the TMS 9900 buffer module is in use, observe the following rules:

®  Avoid altering the CLOCK switch setting or interrupting power to the target system while
the emulator is running. Should this occur inadvertently, restart as described in paragraph
5.2.

L After switching clock sources or restoring power with the emulator halted, enter an EINT
command (paragraph 5.10.1) and restore contents of target system memory.

59 Digital Systems Division



946244-9701

When the TMS 9980 buffer module is in use, recovery is the same as described for the TMS 9900 buffer
except that a restart is not necessary. An EINT command must be entered to recover in all cases, and
target system memory contents must be restored.

5.5 ENTERING COMMANDS

The user may enter commands and AMPL statements interchangeably. However, when a compound
statement containsa CLR, RSTR, EDIT, or COPY command, execution of the compound statement
terminates at completion of the CLR, RSTR, EDIT, or COPY command. Any statement or command
following any of these commands within a compound statement is not executed.

Any command or statement may be terminated by a semicolon to promote clarity. There are several
instances in which semicolons are required to prevent ambiguity. It is good practice to place a
semicolon following each statement within a CASE statement. This prevents the expression that
follows from being interpreted as a continuation of the statement. It is also a good practice to place a
semicolon following each command that has no operands; otherwise an expression within parentheses
that follows the command is taken as a group of operands and ignored.

Execution of any command can be terminated and control returned to the AMPL program by pressing
a key on the system console. When the system console is a 913 VDT, press the HELP key; when the
console is the 911 VDT, press the CMD key; when the console is the 733 ASR, hold the CNTRL key
while pressing the X key.

System variables YR, DAY, HR, MIN, and SEC may be used to add time and date information in the
listings of AMPL statements, commands and results. These may be displayed but not assigned new
values. The following example shows the use of these variables:

?HR:D2 Hour of the day. Value shown corresponds
14 to 2 P.M.

IMIN:D2 Minutes past the hour.
43

ISEC:D2 Seconds past the minute.
23

’DAY:D3 Day of the year. Value shown corresponds
133 to May 13.

2YR:D4 Year.
1977

5.6 PROGRAM COMMANDS

AMPL software supports two commands to load and save programs in target memory. The LOAD
command loads a relocatable object module or an absolute module from a diskette file into target
system memory. Optionally, the command defines load module symbols. The DUMP command stores
a program from target system memory on a diskette file in absolute format.

5.6.1 LOAD COMMAND. The LOAD command loads a relocatable module in either standard or
compressed object format or an absolute module into target system memory. It performs relocation
functions for relocatable object modules using the bias value specified in the command. The syntax for
a LOAD command is as follows:

?LOAD(‘<access>T.<bias>[, [IDT] [+REF] [+ DEF] ]])

5-10 Digital Systems Division



9462449701

‘ The access name is a character string that contains the name of the module to be loaded. The name of
the module is a name that is acceptable to the operating system; e.g., a TX990 file name, or a DX10
pathname or synonym. The bias is the address in target memory into which the first word of a
relocatable object module is loaded. When the bias operand is omitted and a relocatable module is to
be loaded, the default value of A0 is used. When an absolute module is to be loaded, it is loaded at the
same locations from which it was stored, and the bias operand is ignored.

The third operand consists of one or more of the keywords IDT, REF, and DEF (separated by plus
signs) or the keyword OFF. When the operand is omitted, or when all keywords are entered, the load
module identifiers, external definitions, and unresolved external references are defined in the symbol
table as load module symbols. Keyword IDT causes the load module identifier to be defined; keyword
REF causes unresolved external references to be defined; and keyword DEF causes external
definitions to be defined. One, two, or all of these keywords may be used, or the keyword OFF may be
used to load a module without defining any load module symbols.

The user may display the values of any of the three types of load module symbols. The value of an
unresolved external reference is the target memory address of the end of a linked list of target memory
locations that require the value of the external reference. Procedure RESOLYV (Appendix G) may be
called to assign a value to these locations, and the external reference may also be assigned that value.
However, the user must supply the address of the end of the linked list, i.e., the initial value of the
reference, to procedure RESOLV. The user may not alter the values of external definitions or load
module identifiers.

The following are examples of LOAD commands using TX990 file names:

?LOAD (“MEMOBJ/OBJ’ >FE00) Load object file MEMOBJ/OBJ into

‘ target system memory starting at address
FE006, defining all load module symbols.

?LOAD (“MEMABS/ ABS’) Load absolute file MEMABS/ ABS into
target system memory at address supplied
in the file.

‘ ?LOAD (*MYPROG/OBJ’, 0100,IDT) Load an object file having a synonym of
FILEl MYPROG/OBJ into target
system memory starting at address 1006,
defining load module identifiers only.

The following are examples of LOAD commands using DX10 pathnames and synonyms:

? LOAD (‘VAMPL.OBJ.MEMOBJ’>FE00) Load object file VAMPL.OBJ. MEMOBJ
into target system memory starting at
address FE0O,¢, defining all load module
symbols.

? LOAD (‘VAMPL.ABS.MEMARBS”) Load absolute file VAMPL.ABS.
MEMARBS into target system memory at
address supplied in the file.

? LOAD (‘FILEI',0100,IDT) Load an ojbect file having the synonym
FILE]I into target system memory starting
at address 1006, defining load module
‘ identifiers only.

5-11 Digital Systems Division



{ép 946244-9701

The LOAD command does not support image files or segmentation tags. If the object code contains a
tag other than 0 through F or I, anerror occurs when the loader attempts to process the tag. The object
module may be link edited by either SDSLINK or TXSLNK to obtain a module that may be loaded by
the LOAD command. However, no load module symbols are defined unless the SYMT optionis used
both in assembly and link editing, and then only the module identifier is defined.

5.6.2 DUMP COMMAND. The DUMP command stores a program on a specified file from specified
locations in target system memory. Optionally, the command also stores a specified entry point. The
syntax for a DUMP command is as follows:

IDUMP (‘<access name>’.<start>,<end>[,<entry>])

The access name is a character string that contains the name of the file on which the program is to be
stored. The name of the file is a name that is acceptable to the operating system;e.g.,a TX990 file name,
ora DX10 pathname or synonym. When the files does not exist, AMPL software creates a file. When
the file contains data, the program replaces the previous contents of the file. The start operand is the
address of the first word to be stored, and the end operand is the address of the last word to be stored.
The entry operand is the address of the entry point of the stored program.

The DUMP command stores a program in absolute format. When the entry operand is specified, the
value is placed in the program counter of the emulator when the programisloaded. Files written by the
DUMP command may be reloaded by the LOAD command which restores the program in target
memory for further testing and debugging.

The following is an example of a DUMP command using a TX990 pathname:

? DUMP (*MEMABS/ABS’ >FE00,>FE46,>FE26) Store target memory contents
beginning at address FE00;
and ending at address FE46,¢
on file MEMABS/ABS, and
store FE26,¢ as the entry point
for the program.

The following is an example of a DUMP command using a DX10 pathname:

? DUMP (‘VAMPL.ABS.MEMABS’ >FE00,>FE46 >FE26) Stores  target memory
contents beginning at ad-
dress FE00,, and end-
ing at address FE46
on file VAMPL.ABS.
MEMABS, and  store

FE26,, as the entry point
5.7 UTILITY COMMANDS for the program.

AMPL software supports the following utility commands:
. Define Console (CNSL)
. Define Listing Device (LIST)
. Multiply (MPY)

U Divide (DIV)

5-12 Digital Systems Division



%‘—@p 946244-9701

L Display Register Contents (DR)

. Display User Symbol Table (USYM)

o Display Load Module Symbol Table (MSYM)

L Delete Load Module Symbol Table (MDEL)

° Display System Symbol Table (SSYM)

[ Save Test Environment (SAVE)

. Clear Test Environment (CLR)

o Restore Test Environment (RSTR)

. Enter Text Editor (EDIT)

e  Copy Input (COPY)

. Delete Procedure (DELE)

o Delay AMPL Execution (WAIT)

e  Output New Line (NL)

o Verify (VRFY)

e  Terminate AMPL Program (EXIT)
5.7.1 DEFINE CONSOLE COMMAND. The Define Console command (CNSL) defines an
alternate device to replace the device currently being used as system console, or switches the output to
the console on and off. The syntax for the CNSL command is as follows:

‘<device name>’
2CNSL ({OFF )
ON

The device name is a character string that contains the device name (as defined for the operating
system) of a console device to replace the current system console. The keyword OFF causes output to
the system console to be disabled. The keyword ON causes output to the system console to be
reenabled following entry of a CNSL command with the OFF keyword. When a CNSL command is
entered with a device name operand, the named device displays the question mark requesting a new
command at the completion of this command. When a CNSL command is entered with the keyword

ON the previously defined system console displays the question mark at the completion of this
comand. The following are examples of CNSL commands:

? CNSL (‘ASR?) The 733 ASR replaces the system console
(TX990).
? CNSL (‘ST07°) The terminal STO7 replaces the system-

assigned console terminal (DX10).

Execution ofa CNSL command ina DX 10 system does not affect the synonyms assigned to the AMPL
terminal. The synonyms defined at the terminal from which AMPL was called continue to apply.

5-13 Digital Systems Division



{@ 9462449701

5.7.2 DEFINE LISTING DEVICE COMMAND. The Define Listing Device command (LIST) .
defines a supplementary listing device or file, or stops or starts supplementary listing. While listing is

on, all data displayed on the system console is also displayed on the listing device or written to the

listing file. The following is the syntax for the LIST command:

'<access name>'
_?_LIST( OFF )
ON

The operand is a character string that contains a pathname or either of the reserved words OFF or ON.

A TX990 pathname may be that of a device or file; a DX10 pathname may be a device name, a file v
pathname, or a synonym. The pathname is that of a device or file to display or store the supplementary

listing. When the pathname is that of a file that does not exist, AMPL software creates the file. When

the file already contains data, the data in the file is replaced by the new data. When OFF is entered,
supplementary output is terminated. Reserved word ON is only valid when reserved word OFF has ‘
been entered ina previous LIST command, and restores supplementary output to the device or file that

was previously defined for supplementary output. A LIST command with a new pathname may be

entered at any time; the device or file previously defined is closed and the newly defined device or file is

opened and output begins.

The following is an example of a series of LIST commands using TX990 pathnames:

JLIST(:OFILE/LST’) Write supplementary output on file
DSC:OFILE/LST.

JLIST('LP?) Print supplementary output on Line
Printer instead of writing to
DSC:OFILE/LST.

2LIST(:OFILE/LST) Write supplementary output on file

DSC:OFILE/LST replacing previously
written output. Terminate output to Line
Printer.

ILIST(OFF) Terminate supplementary output, ‘
displaying output on system console only.

2LIST(ON) Resume supplementary output, adding it
to file DSC:OFILE/LST, following
previously written output.

The following is an example of a series of LIST commands using DX 10 pathnames:

2LISTCVAMPL.LST.OFILE) Write supplementary output on file
VAMPL.LST.OFILE.

MLIST('LPOI”) Print supplementary output on Line
Printer instead of writing to
VAMPL.LST.OFILE.

2LIST(VAMPL.LST.OFILE’) Write supplementary output on file
VAMPL.LST.OFILE replacing

previously written output. Terminate
output to Line Printer.

5-14 Digital Systems Division



@ 9462449701

?LIST(OFF) Terminate supplementary output,
displaying output on system console only.

ILIST(ON) Resume supplementary output, adding it
to file VAMPL.LST.OFILE following
previously written output.

5.7.3 MULTIPLY COMMAND. The Multiply command (MPY) is a system function that multiplies
two 16-bit unsigned numbers and returns the least significant 16 bits of the product. The most
significant 16 bits of the product are stored in system variable MDR. The syntax of the MPY command
is as follows:

IMPY(<multiplicand>,<multiplier>)

The operands are expressions, the 16-bit values of which are multipled as unsigned numbers. The
following is an example of an MPY command:

? MPY (24,10)

MPY "= >@0FaQ Multiply 24 times 10.
? MDR Obtain the most significant half of the
MDR ~= >0000 product. The complete product is

000000F0,6, or 240.

Alternatively, the command and its operands may be used as an expression in an AMPL statement.
The value of the expression is the 16 low-order bits of the product. Variable MDR contains the 16 high-
order bits of the product. The following is an example of an AMPL statement that contains an MPY
command:

?REPEATBN = N + TBUNTILBMPY (CNT,N)BGTE1@P@ Increment N by 1 until the least
significant half of the product is
greater than 1000. Unless the pro-
duct of the initial value of CNT
times N + 1 is greater than 65,535
MDR contains zero.

5.7.4 DIVIDE COMMAND. The Divide command (DIV) is a system function that divides a 32-bit
unsigned number by a 16-bit unsigned number, and returns the 16-bit quotient. The most significant 16
bits of the dividend must be placed in system variable MDR prior to executing the command. The
remainder is in MDR following the operation. The syntax of the DIV command is as follows:

IDIV(<divisor>,<dividend>>)

The operands are expressions. The 16-bit value of the dividend operand is combined with the value of
MDR and is divided by the 16-bit value of the divisor operand. The following is an example of an
assign statement that places the high-order portion of the dividend in MDR, and a DIV command:

2 MDR = @1 -
7 DIV (59,0) Divide 10000;6 (65,536) by 59.

DIV = >0456
? MDR : :
MDR ~= >Q02E Display remainder.
Alternatively, the command and its operands may be used as an expression in an AMPL statement.
The value of the expression is the quotient, and variable MDR contains the remainder. The following

is an example of an AMPL statement that contains DIV command:

5-15 Digital Systems Division



[e]
{@ 946244-9701

? DISP = DEST - PC + 2 Initialize DISP. o

? MDR = ¢ Set MDR to most significant half of

- dividend.

? DISP = DIV(2,DISP) Compute displacement for jump to DEST
when DEST is greater than contents of
PC.

? TFPMDRBNEBOBTHENK ' ERROR' Dilsplay ERROR if DEST has an odd
value.

5.7.5 DISPLAY REGISTER COMMAND. The Display Register command (DR) displays the
contents of the target system program counter, workspace pointer, and status register, the contents of -
the address in the program counter, and the contents o workspace registers 0 through 15 of the current
target system workspace. The contents are displayed in hexadecimal format and the contents of the
address in the program counter are also displayed in instruction format. The syntax for the command

1s as follows: .

IDR;

The following is an example of the DR command showing the resulting display:

? DR;
RO = >Q030 R8 = >@000 PC = >P12E / >06@1 DEC RI
RT = >QF98 R9 = >0000 WP = >(134
RZ = >FFFF R10  >0000 ST = >DQQQ
R3 = >FFFF R11T = >Q10E
RE__= SFFFF RI2 = >IFEQ
RE__= SFFFF R13 = >0000
R6__= >000¢ R14 = >0000 .
R7__= >0000 R15 = >0000

5.7.6 DISPLAY USERSYMBOL TABLE COMMAND. The Display User Symbol Table command
(USYM) displays a list of all user symbols, the symbol types, and the symbol values. The display
includes a count of the symbols also. The syntax for the command is as follows: ‘

2USYM;

The AMPL software prints one of the following symbol types after each symbol:

VAR Variable

PROC Procedure name
FUNC Function name
ARRAY Array name

The software prints the symbol value after the symbol type. For a variable, the value is the value of the
variable. For a procedure name, a function name, or an array name, the value is the host memory
address of the procedure, function, or array, respectively.

5-16 Digital Systems Division




(o]
{@? 9462449701

5.7.7 DISPLAY LOAD MODULE SYMBOL TABLE COMMAND. The Display Load Module
Symbol Table command (MSYM) displays a list of all load module symbols, the symbol types, and
the symbol values. The display includes a count of the symbols also. The syntax for the command
is as follows:

MYSM;

The AMPL software prints one of the following symbol types after each symbol:

IDT Module identifier
DEF External definition
REF Unresolved external reference

The software prints the symbol value after the symbol type. For the module identifier, the value
is the target system memory address into which the module was loaded. For an external definition,
the value is the target system memory address corresponding to the defined symbol. For an un-
resolved external reference, the value is either the most-recently assigned value, or the initial
value. if no value has been assigned. The initial value is the target system memory address of the
last location of a linked list of addresses into which the reference should be loaded.

The following is an example of the MSYM command showing the resulting display:

MSYM;
MAIN  IDT  >Q1pp
START DEF  >p12p
BUFF  DEF  >(43p

57.8 DELETE LOAD MODULE SYMBOL TABLE COMMAND. The Delete Load Module
Symbol Table command (MDEL) deletes all load module symbols in the load module symbol table.
The syntax for the command is as follows:

"MDEL;

It is possible to load a module without deleting the load module symbols of a previously loaded module
by using the OFF option in the LOAD command. The user may clear the load module symbol table
without clearing the other symbol tables by entering this command.

The following is an example of the MDEL command followed by an MSYM command:

YMDEL;
IMSYM;
0 ENTRIES IN TABLE

5.7.9 DISPLAY SYSTEM SYMBOL TABLE COMMAND. The Display System Symbol Table
command (SSYM) displays a list of system symbols, the symbol types, and the symbol values. The
display includes a count of the symbols, also. The syntax for the command is as follows:

2SSYM:;

5-17 Digital Systems Division



946244-9701

The AMPL software prints one of the following symbol types after each symbol:

VAR Variable

PROC Procedure name
FUNC Function name
ARRAY Array name

The software prints the symbol value after the symbol type. For a variable, the value is the value of the
variable. For a procedure name, a function name, or an array name, the value is the host memory
address of the procedure, function, or array, respectively.

5.7.10 SAVE TEST ENVIRONMENT COMMAND. The Save Test Environment command
(SAVE) stores the test environment and a program from specified locations in target system memory
on a specified file. The test environment includes a user symbol table, and user procedures and
functions. Optionally, the command also stores the specified entry point. The syntax for the SAVE
command is as follows:

7SAVE(‘<access name>’[ ,<start>,<end>[,<entry>]])

The access name is a character string that contains the name of the file on which the test environment
and program are to be stored. The name of the file is a name that is acceptable to the operating system;
e.g., a TX990 file name, or a DX10 pathname or synonym. When the file does not exist, AMPL
software creates the file. When the file contains data, the test environment and program replaces the
previous contents of the file. The start operand is the address of the first word to be stored, and the end
operand is the address of the last word to be stored. The entry operand is the address of the entry
point of the stored program. When the start and end operands are omitted, the program is not
saved; only the test environment is saved. When the entry operand is omitted, the RSTR command
does not alter the contents of the program counter. The file written by the SAVE command may
be read by the RSTR command to restore a test environment and a target system program to
resume a test.

The test environment stored by a SAVE command consists of currently defined user symbols, current
default format specifications, user procedures, and user functions. No device assignments or device
status are stored. The following is an example of a SAVE command using a TX990 file name:

?SAVE (':MYDBUG/SAV',>FE@0,>FE46,>FE26) Store test environment on file
o DSC:MYDBUG/;SAV. Also store the

contents of target memory starting at
address FE0O,, and ending at address
FE46,, and store FE26,, as the entry
point.

The following is an example of a SAVE command using a DX10 file name:

?SAVE ('VAMPL,SAV,MYDBUG,>FEPQ,>FE46,>FE26) Store test environment
on file VAMPL.SAV.
MYBUG. Also store the
contents of target memory
starting at address FE0O,q
and ending at address
FE406,¢, and store FE26,4
as the entry point.

5-18 Digital Systems Division



946244-9701

5.7.11 CLEAR TEST ENVIRONMENT COMMAND. The Clear Test Environment command
(CLR) clears the test environment, and optionally reserves space for a user symbol table for a specified
number of symbols. The syntax for the CLR command is as follows:

?CLR [(<symbols>)]

The CLR command deletes all user symbols, user procedures, and user functions. The optional
symbols operand is an expression having a positive integer value (greater than zero) which is the
number of user symbols that may be defined in the user symbol table. A CLR command allows
redefining a test environment. Followinga SAVE command, a CLR command prepares the working
storage for the start of another test. The user may change the size of the user symbol table with the
optional operand. Unless a previous CLR command has changed the symbol table, the capacity of the
user symbol table is 30 symbols. The user may reduce the size tc provide more memory space for
procedures and functions if few symbols are required. The user may increase the size to allow more
symbols to be defined. In deciding how large the table should be, the user should notice that LOAD
commands define module names as user symbols, PROC and FUNC statements define procedure and
function names that are placed in the table, and assign statements define user symbols unless the
symbol has previously been defined.

When a CLR command is entered in a compound statement, and the statement executed, completion
of execution of the CLR command terminates the compound statement. Any statements within the
compound statement following the CLR statement are not executed.

The following is an example of a CLR command:

2CLR (19) Clear the user symbol table, and delete
any user procedures and functions.
Provide a user symbol table having a
capacity of 19 user symbols.

5.7.12 RESTORE TEST ENVIRONMENT COMMAND. The Restore Test Environment command
(RSTR) restores the test environment in the host computer memory and a program in target system
memory. The test environment and program are obtained from a file written by a SAVE command.
When the SAVE command included an entry point operand, the RSTR command places the entry
point in the target system program counter. The following is the syntax for the RSTR command:

?RSTR(‘<access name>’)

The access name is a character string that contains a TX990 file name, or a DX10 pathname or
synonym. When the RSTR command completes, the user symbol table, user procedures, and user
functions are in the host computer memory in the state stored by the SAVE command, and the
program defined in the SAVE command has been loaded into target system memory. Device
assignments made in CNSL, LIST, or COPY commands prior to the RSTR command remain in
effect.

When an RSTR command is entered in a compound statement and the statement is executed,
completion of execution of the RSTR command terminates the compound statement. Any statements
within the compound statement following the RSTR command are not executed.

5-19 Digital Systems Division



@ 946244-9701

It is possible for there to be more than one TX990 operating system in which the AMPL program
executes; systems in which the program occupies different locations in memory. The SAVE and RSTR
commands use absolute memory addresses. An RSTR command will not correctly restore the test
environment when the SAVE command is executed by the AMPL program in different areas of
memory.

In a DX10 system, memory mapping allows the system to place the AMPL program anywhere in
memory. and the restriction of the SAVE and RSTR commands to the same system environment
does not apply. However, the memory size parameter (paragraph 5.2.2) in effect when the RSTR
command is executed must be large enough to accommodate the data stored by the SAVE
command.

The following is am example of a RSTR command using a TX990 file name:

?RSTR (':MYDBUG/SAV'") Restore lab test environment and program
- at point at which file DSC:MYDBUG/SAV

was written.
The following is an example of an RSTR command using a DX 10 pathname:

?RSTR (VAMPL.SAV.MYDBUG) Restore lab test environment and
program at point at which file
VAMPL.SAV.MYDBUG was written.

5.7.13 ENTER TEXT EDITOR COMMAND. The Enter Text Editor command (EDIT) saves the
test environment and terminates the AMPL program. The command also activates the Text Editor,
and returns control to the AMPL program at the end of the editing operation. Then the command
restores the stored test environment and resumes the test. The command is supported only ina TX990
system. The following is the syntax for the FDIT command:

TEDIT [(‘“<access name>’)]

The access name is a character string that contains the name of a file. The operand is a TX990 file name
of the file to be edited. When the access name is omitted, the file name is DSC:AMPL000/PRC.

The command stores the test environment on file DSC:AMPL000/SAYV and transfers control to the
program in a file named DSC:TXEDIT;SYS or DSC2:TXEDIT/SYS (on floppy disk unit | or 2,
respectively). The parameters passed to TXEDIT are the file name (the operand of the command) or
DSC:AMPLO000/PRC as the file to be edited, file DSC:AMPLO000/SCR as the scratch file, and M9000
as the memory size parameter. This allows about 150 lines of code in the editor’s buffer. When editing is
terminated. the data entered is in the scratch file. TXEDIT displays the message:

TEXT IN SCRATCH FILE
TRANSFER TO INPUT?

The user should enter a Y for yes to transfer the data to the file named inthe EDIT command or to file
DSC:AMPL000/PRC. If the user enters N for no, the data may only be accessed on file
DSC:AMPL000/SCR, where it will be replaced during the next editing performed with an EDIT
command. Control transfers to the program in file DSC:AMPL/SYS (on the left hand floppy disk
unit), and the environment is restored from file DSC:AMPL000/SAV.

If the transfer to TXEDIT or back is unsuccessful, the system displays the following message:

BATCH ABORTED

5-20 Digital Systems Division



@ 9462449701

The user may reactivate AMPL and enter a RSTR command that specifies file DSC:AMPL000/SAV
to recover from the error.

The following are examples of EDIT commands:

2 EDIT; Edit file DSC:AMPL000/PRC. Invalid in
a DX10 system.

2 EDIT ((\DSC2:MYPROJ/PRC) Edit file DSC2:MYPROJ/PRC. Invalid
in a DX10 system.

5.7.14 COPY INPUT COMMAND. The Copy Input command (COPY) changes the input source to
a specified file or device. The AMPL software reads commands and statements from the specified file
or device until it reads an end-of-file, then resumes input from the system console. The syntax for the
COPY command is as follows:

2COPY [(‘<access name>’)]

The access name is a character string that contains the name of a file or device. The name of the file or
device is a name that is acceptable to the operating system; e.g., a TX990 file or device name, ora DX10
device name or file pathname or synonym. When the operand is omitted ina TX990 system, the COPY
command copies the most recently edited file (edited by the Text Editor during execution of an EDIT
command). When an EDIT command has not been executed since the AMPL program was activated,
an error message is issued. The operand is required in a DX10 system.

When commands and statements are read as specified ina COPY command, they are not displayed on
the system console. When a LIST command is in effect, they are written to the list device or file.

A copy file may contain a COPY command that transfers the input to another device or file. This
provides chaining, rather than nesting; reading of statements from a file continues until either another
COPY statement or an end-of-file is read. When an end-of-file is read, the system console resumes
input. Any statements or commands that follow a COPY command on a copy file or ina compound
statement are not executed. There is no limit to the number of copy files that may be chained in this
way.

The following is an example of a COPY command using a TX990 file name:

2COPY (“AMPLEN/CPY’) - Execute the commands and statements
on file DSC:AMPLFN/CPY and return
input to the system console at end-of-file.

The following is an example of a COPY command using a DX10 pathname:

2COPY (‘VAMPL.CPY.AMPLFN’) Execute the commands and statements on
file VAMPL.CPY.AMPLFN and return
input to the AMPL terminal at end-of-
file.

5.7.15 DELETE COMMAND. The Delete command (DELE) deletes the specified user procedure,
function, or array from host memory. The syntax for the DELE command is as follows:

?DELE('<name>’,[*<name>’]. . .)

5-21 Digital Systems Division



9462449701

The operands are character strings that contain the names of user procedures, functions. or arrays to be
deleted. Deleting a procedure, function, or array makes its memory space available for redefinition of
the same procedure, function, or array, or for other purposes.

Executing a DELE command does not delete the name in the user symbol table. The name of a deleted
procedure may only be used in a PROC statement as a procedure name, and the name of a deleted
function may only be used ina FUNC statement as a function name. The name of a deleted array may
only be used inan ARRAY statement as the name of an array with the same number of dimensions. To
make these names available for other purposes, the user must execute a CLR command to clear the
symbol table.

The following is an example of a DELE command:

? DELE (‘TIMEN’, ‘MEMTST’, ‘NUM") Delete procedure TIMEN, function
MEMTST, and array NUM.

5.7.16 DELAY AMPL EXECUTION COMMAND. The Delay AMPL Execution command
(WAIT) delays execution of AMPL software for a specified number of 50 ms periods. The syntax of
the WAIT command is as follows:

2WAIT(<number>)

The operand is an expression that specifies the number of 50 ms periods of delay. During the delay
period, execution of AMPL software is suspended. At the end of the delay period the AMPL software
resumes execution and displays a question mark to request another command or statement. An
operand of 20 provides a delay of one second. The WAIT command is useful when displaying data on
the screen of a VDT. When displaying data continuously the data may not remain on the screen long
enough to be read by the user. The user may place a WAIT command following each display statement
to provide enough time to read the display. The WAIT command is not affected by pressing the key
that terminates execution of other commands as described in paragraph 5.3.

The following is an example of a WAIT command:

2 WAIT(200) Delay 10 seconds.
? .. TEN SECONDS LATER

5.7.17 OUTPUT NEW LINE COMMAND. The Output New Line command (NL) outputs a carriage
return and line feed to the system console and supplementary listing device, when a supplementary
listing device is active. The following is the syntax for the NL command:

INL;

No operand is required. The NL command is intended for use in a procedure, function, or compound
statement. It is equivalent to a display statement using the N format specification and displaying
spaces. The following is an example of an NL command:

2 NL;

5.7.18 VERIFY COMMAND. The Verify command (VRFY) verifies a program in target system
memory by comparing the contents of the specified file with the contents of memory starting at the
specified bias address. The software prints the contents of the addresses that do not contain the values
in the file. The syntax for a VRFY command is as follows:

IVRFY(‘*<access name>[,<bias>])

5-22 Digital Systems Division



946244-9701

The access name is a character string that contains a TX990 file name, or a DX10 pathname or
synonym. The bias operand is the address in memory at which the program to be verified was loaded.
When the specified file contains an absolute program, the software ignores the bias operand. When the
file contains a relocatable program and the bias operand is omitted, the default value of A0 1s used.

The VRFY command prints the address, file contents, and memory contents of every address that
contains data different from that in the file. The command may be used to verify the loading of a
program, or to identify locations within a program that have been altered from the values loaded. Data
areas that are reserved by the program using directives such as BSS and BSE cannot be verified with
the VRFY command. When the contents of every address agree with the contents of the file, no
message is printed.

The following is an example of a VRFY command using a TX990 file name and the messages that
identify locations that have been altered:

2VRFY('DSC:SINTST/0BJ',>1¢0@) Verify contents of locations loaded from
>0114 / >0000 >Q0OE file DSC:SINTST/OBJ at location 1000,
>Q15A / >0000 >3C00
>@15C / >0000 >€EDS8
>Q15E / >pop0 >4004

The following is an example of a VRFY command using a DX10 pathname:

2 VRFY('VAMPL.OBJ.SINTST') Verify contents of locations loaded from
filee VAMPL.OBJ.SINTST at location
100;6. Absence of a message indicates that
no location was altered.

5.7.19 TERMINATE AMPL PROGRAM COMMAND. The Terminate AMPL Program
command (EXIT) terminates the program and returns control to the operating system. The syntax for
the EXIT command is as follows:

?EXIT ('<access name>' ,<start>,<end> <entry> )

The operands apply only to DX10; if they are entered for TX990, they areignored. The access name is a
character string that contains the pathname of synonym of a file on which the test environment and
program are to be stored. When the file does not exist, AMPL software creates the file. When the file
contains data, the test environment and program replaces the previous contents of the file. The start
operand is the address of the first word of target system memory to be stored, and the end operand is
the address of the last word to be stored. The entry operand is the address of the entry point of the
stored program. When the EXIT command is entered without operands, the AMPL program
terminates. When the operands are included (in a DX10 system), the program performs a SAVE
command, assigns the access name operand as the value of synonym SAMPLSE, and terminates.
Refer to paragraph 5.7.10 for the effect of omitting the start and end operands or the entry
operand. The use of a synonym allows the AMPL SCI command (which activates the AMPL
program) to obtain the pathname of the save file and restore the environment and program when
the AMPL program is next activated. Use of synonym $AMPLSE for any other purpose, assigning
another value to it, or deteting it will prevent proper restoration of the test environment when the
AMPL program is next activated.

5-23 Digital Systems Division



{@? 9462449701

To resume execution of the AMPL program before loading another program into host memory (when
executing under TX990), it is not necessary to load the program again. The following is an example of
an EXIT command followed by the entry that restarts the program:

2EXIT; Terminate the AMPL program.
PROGRAM: >10* Restart the AMPL program.

When another program has been loaded into host system memory, the AMPL Program must be
restarted as follows (under TX990):

PROGRAM: :AMPL/SYS*

When executing under DX 10, perform the procedure in paragraph 5.2.2 beginning at step 20 to
restart the AMPL program. When the EXIT command specified a save file, a start address, and
an end address, the test environment and program are restored as the AMPL program begins
execution. If synonym SAMPLSE has been altered, the results are unpredictable.

The following is an example of an EXIT command with operands supported by DX10:

PEXIT ('VAMPL.SAV.MYDBUG',>FEQO,>FE46,>FE26) Terminate the AMPL pro-
gram, storing the test
environment on file
VAMPL.SAV.MYDBUG.
Also store the contents of
target memory at address
FE00,¢ and ending at ad-
dress FE46,¢, and store
FE26,¢ as the entry point.

The capability of storing the test environment with an EXIT command provides a capability under
DX 10 similar to that of the EDIT command under TX990. After the execution of the EXIT command,
the user may activate the Text Editor to write or edit a file. When the user restarts the AMPL program,
the program resumes at the point at which the EXIT command was executed.

5.8 CRU COMMANDS

AMPL software supports two sets of CRU commands. One set, CRUR and CRUW, reads from and
writes to a CRU device of the target system. System variable CRUB contains the CRU base address for
the read and write operations. The other set, HCRR and HCRW, reads from and writes to a CRU
device of the host system. System variable HCRB contains the CRU base address for the read and
write operations for the host system.

The user may check out any device on the CRU interface of the target system using CRUR and
CRUW. When the target system is a controller or similar device that interfaces with a Model 990
Computer via the CRU interface, it can be connected to the host system, and HCRR and HCRW can
be used to verify the CRU interface.

5.8.1 CRUREAD COMMAND. The CRU Read command (CRUR)is a system function that reads a
specified number of bits from a specified address in the target system CRU. System variable CRUB
contains the CRU base address and the command returns the value right-justified ina 16-bit word. The
syntax for the command is as follows:

CRUR(<displacement> <length>)

5-24 Digital Systems Division



@ 9462449701

The displacement operand is an expression, the value of which represents a number of CRU lines
(either positive or negative) by which the most significant bit read is displaced from the base address in
system variable CRUB. The length operand is an expression having a positive integer value in the range
of 1 through 16, which represents the number of bits to be read.

The software multiplies the value of the displacement operand by two and adds the product to the base
address algebraically. The software then reads the number of bits specified by the length operand, and
returns the value right-justified in a 16-bit word.

The following is an example of assigning a base address value and a CRUR command:

2CRUB = >0100 Assign value of 100, as CRU base
address.
2CRUR (8.8) Read 8 bits from target system CRU at

address derived from base address of 100,
plus 10, (CRU address 88.¢).

Alternatively, the command and its operands may be used as an expression in an AMPL statement.
The value of the expression is the data read from the target system CRU. The following is an example
of a CRUR command used in this way, assuming that CRUB remains unaltered from the preceding
example:

2CRUOUT = CRUR (0,8) Read 8 bits from target system CRU and
assign the value to user symbol CROUT.
The CRU address is derived from CRU
base address 100, (CRU address 80;s).

5.8.2 CRU WRITE COMMAND. The CRU Write command (CRUW) writes a specified value into a
specified number of bits of the target system CRU at a specified address. System variable CRUB
contains the CRU base address. The following is the syntax for the command:

2CRUW(<displacement>,<length>,<value>)

The displacement operand is an expression, the value of which represents a number of CRU lines
(either positive or negative) by which the most significant bit written is displaced from the base address
in system variable CRUB. The length operand is an expression having a positive integer value in the
range of | through 16, which represents the number of bits to be written. The value operand is an
expression, the value of which is written.

The software multiplies the value of the displacement operand by two and adds the product to the base
address algebraically. The software then writes the number of bits specified by the value of the length
operand. The rightmost bits of the value operand are written to the CRU. The followingis an example
of the CRUW command, which assumes that CRUB remains unaltered from the preceding example:

2CRUW (16,4,>A) Write the value 1010; into the target
system CRU at address derived from base
address of 100,6 plus 20;6 (CRU address
90|(,).

5.8.3 HOST CRU READ COMMAND. The Host CRU Read command (HCRR) is a system
function that reads a specified number of bits from a specified address in the host system CRU. System
variable HCRB contains the CRU base address and the command returns the value right-justified ina
16-bit word. The syntax for the command is as follows:

YHCRR(<displacement> <length>)

5-25 Digital Systems Division



946244-9701

The displacement operand is an expression, the value of which represents a number of CRU lines
(either positive or negative) by which the most significant bit read is displaced from the base address in
system variable HCRB. The length operand is an expression having a positive integer value in the
range of 1 through 16, which represents the number of bits to be read.

The software multiplies the value of the displacement operand by two and adds the product to the base
address algebraically. The software then reads the number of bits specified by the length operand, and

returns the value right-justified in a 16-bit word.

The following is an example of assigning a base value and an HCRR command:

7HCRB = >0200 Assign value of 200, as CRU base
address.
2HCRR(0,8) Read 8 bits from host system CRU at

address derived from base address of 200
plus 0 (CRU address 100;¢).

Alternatively, the command and its operands may be used as an expression in an AMPL statement.
The value of the expression is the data read from the host system CRU. The following is an example of
an HCRR command used in this way, assuming that HCRB remains unaltered from the preceding
example:

INUCHAR = HCRR(16,8) Read 8 bits from target system CRU and
assign the value to user symbol
NUCHAR. The CRU address is derived
from the base address of 2006 plus 20,6
(CRU address 1104).

5.8.4 HOST CRU WRITE COMMAND. The Host CRU Write command (HCRW) writes a
specified value into a specified number of bits of the host system CRU at a specified address. System
variable HCRB contains the CRU base address. The following is the syntax for the command:

PHCRW(<displacement>,<length>,<value>)

The displacement operand is an expression, the value of which represents a number of CRU lines
(either positive or negative) by which the most significant bit written is displaced from the base address
in system variable HCRB. The length operand is an expression having a positive integer value in the
range of 1 through 16, which represents the number of bits to be written. The value operand is an
expression, the value of which is written.

The software multiplies the value of the displacement operand by two and adds the product to the base
address algebraically. The software then writes the number of bits specified by the value of the length
operand. The rightmost bits of the value operand are written to the CRU. The following is an example
of the CRUW command, which assumes that HCRB remains unaltered from the preceding example:

THCRW (8,8,“BC”) Write the ASCII representation of C into
the host system CRU at the address
derived from base address of 200, plus
1016 (CRU address 108;¢).

5-26 Digital Systems Division



il»@) 946244-9701

. CAUTION

Use extreme care that the CRU base address in HCRBis correct before

executing an HCRW command. If an HCRW command is executed

with a value in HCRB that causes the command to address one or more

lines to the host system peripheral devices, normal operation of the
‘4 system is impaired.

5.9 DATA INPUT COMMANDS

The AMPL software supports reading a file of data into host or target memory. The file may be
prepared using the Text Editor, and must contain valid AMPL expressions separated by spaces. The
expressions in the file may contain variables and/or constants separated by arithmetic operators + and
- only. The Data Input commands are OPEN, READ, and CLSE. Another command, EOF, also
applies to read operations.

‘ 5.9.1 OPEN COMMAND. The OPEN command specifies the device to be used for data input. The
syntax for the OPEN command is as follows:

20PEN(‘<access name>’)

The operand is a character string that contains a pathname (as defined for the operating system) of a
data file or a device name of a data input device. An OPEN command must be executed prior to
rcading data from a file or device other than the AMPL terminal or if reading is to be resumed from a
file or device other than the AMPL terminal after a Close operation.

The following are examples of OPEN commands using TX990 file and device names:
‘ ? OPEN(“INPUT/DAT) Open file :INPUT/DAT for data input.
2 OPEN(‘ASR") Open 733 ASR terminal (not system
console) for data input. System console
does not require entry of an OPEN

command.

The following are examples of OPEN commands using DX10 pathnames and device names:

2 OPEN(‘VAMPL.DAT.INPUT’) Open file VAMPL.DAT.INPUT for data
input.
2 OPEN(‘ST09) Open terminal other than AMPL terminal

for data input. AMPL terminal does not
require entry of an OPEN command.

5.9.2 READ COMMAND. The READ command is a system function that returns the value of the
next expression from the data input file or device specified in the current OPEN command. or from the
AMPL terminal if an OPEN command is not in effect. The syntax for the READ command is as
follows:

? READ;

5-27 Digital Systems Division



946244-9701

The READ command may be entered as an AMPL statement to display the value of an expression
read from a file or device. Each record may contain only one expression. The typical use of the
command is in an assign statement, to assign the value of the expression to a variable or to a target
system location. The following are examples of assign statements using READ commands:

?DATIN = READ; Assign the next constant in the file to
DATIN.

?@(STARTH+48) = READ:; Assign the next constant in the file to
target system memory location START
+48.

When a READ command is executed with no OPEN command in effect (either no OPEN command
has been entered or a CLSE command has been entered since the most recent OPEN command), the
software requests the user to enter an expression as follows:

9

[l

The user enters an expression followed by a carriage return. The expression must be either a constant, a
variable, or a series of constants and/or variables connected by arithmetic operator + or -. Other
operators are invalid and result in an error message. Spaces may be entered as desired. The following
are examples of expressions that may be entered:

=?>23C0 The value of the expression is 23C0s.

=? MYVAR + 0A0 The value of the expression is the sum of
the value of variable MYVAR plus A0Q.

=? MYVAR -4 The value of the expression is the
difference of the value of variable
MYVAR minus 4.

When an OPEN command specifies a terminaland a READ command is entered, the AMPL program
does not display an equal sign and a question mark as in the preceding examples. The user may enter
expressions in the same manner as if the prompt had been displayed.

5.9.3 EOF COMMAND. The EOF command is a system function that returns the state of the end-of-
file flag for the file or device. The syntax for the command is as follows:

?EOF;

The EOF command performs a read operation to obtain the current state of the flag, and returns a
nonzero value (true) when end-of-file has been set, or a zero value (false) when end-of-file has not been
set. A subsequent READ command returns the data read in the read operation performed by an EOF
command. When a READ command follows one or more EOF commands in the order of execution,
the READ command returns the value obtained by the immediately preceding EOF command; when
more than one EOF command is executed prior to a READ command, data is lost.

The following is an example of the EOF command used in an IF statement:

?IFPNOTPEOFBTHENBDATA = READ

5-28 Digital Systems Division



946244-9701

5.9.4 CLOSE COMMAND. The Close command (CLSE) terminates data input. The syntax for the
CLSE command is as follows:

?CLSE;
A CLSE command may be used to terminate data input from a file or device in order to open a different
file or device for data input. The user may close a file and then open the file in order to rewind the file
and input the data again.
5.10 EMULATOR OPERATION COMMANDS
The emulator replaces the microprocessor of the target system and provides the interface between the
host system and the target system. This interface allows the host system to:

®  Start the microprocessor

®  Stop the microprocessor

U Display the current status of the emulator

e  Stop the microprocessor on an external signal

®  Stop the microprocessor when it accesses a specified address

¢  Stop the microprocessor when it writes into a specified address

J Stop the microprocessor when it executes the instruction at a specified address

®  Store a specified number of memory addresses accessed and stop the microprocessor when
the addresses have all been stored

®  Storea specified number of addresses of instructions executed and stop the microprocessor
when the addresses have all been stored

®  Substitute trace memory for the 512 high-order addresses of target system memory

° Substitute user memory for target system memory, addresses 0000,s through 1FFF .
The host computer communicates with the emulator through the CRU to control the emulator and
ultimately the target system. AMPL software supports the following commands to control the
emulator:

o Initialize Emulator (EINT)

. Define Breakpoint Conditions (EBRK)

. Select Event (EEVT)

e  Initialize Compare Logic (ECMP)

° Initialize Trace Logic (ETRC)

. Start Microprocessor (ERUN)

5-29 Digital Systems Division



946244-9701

®  Stop Microprocessor (EHLT)

° Read Trace Memory (ETB)

There are several system variables that relate to emulator operation. Where a system variable relates
directly to a command, the variable is discussed with the command. System variables ETM and EUM
control the mapping of the target system memory, and relate to all target system operations. These
variables may be displayed or changed. The following are examples of displaying ETM and EUM:

2ETM: B Display system variable ETM in binary
<0000000000000001 mode. Value of i indicates that target
i system memory addresses FE00,s through
FFFF,s (TMS 9900) or 3E00;s through
3FFFis (TMS 9980) are mapped into
Emulator trace memory (figure 4-1).

?2EUM:B Display system variable EUM in binary
<Q000000000000001 mode. Value of 1 indicates that target
system memory addresses 0 through
IFFF, are mapped into Emulator user
memory (figure 4-1).

To change the values of ETM and EUM to zero, mapping all target system memory addresses into
target system memory, use assign statements as follows:

ZETM =0 Set system variable ETM to zero.
EUM =0 Set system variable EUM to zero.

System variable EMT identifies the type of microprocessor being emulated. This variable may be
displayed and tested, but may not be altered by the user. System variable EMT has a value of zero when
a TMS 9980 buffer is connected to the emulator, and a value of one whkzn a TMS 9900 buffer is
connected to the emulator. The following are examples of the use of system variable EMT:

? EMT:B1 Display the value of system variable
1= EMT. The result indicates that a
- TMS 9900 microprocessor is being

emulated.

? IF EMT THEN 'TMS 99¢@' ELSE 'TMS 998p'

TMS 9980 Display message appropriate to type of

microprocessor being emulated.

5.10.1 INITIALIZE EMULATOR COMMAND. The Initialize Emulator command (EINT) selects
and initializes an emulator to execute subsequent emulator control commands. The syntax for the
command is as follows:

TEINT(‘*<device name>’)

The operand is the device name assigned during system generation. In the TX990 system supplied by
Texas Instruments, the device name is EMU. For a DX10 system, the device name is EMO1 (for the
first emulator). The EINT command must be entered prior to accessing target memory. Once the
command has been entered, it need not be entered again unless the AMPL program is reloaded or
unless there is more than one emulator in the system. When there is more than one emulator, an EINT
command must be entered prior to using a different emulator.

5-30 Digital Systems Division



946244-9701

The following are examples of EINT commands using TX990 device names:

’ itiali he active emulator.
I«EINTCEMU) ln!tfal%ze EMU ast /
E’_ElNTE‘EMUZ’) Initialize EMU?2 as the active emulator.

The following are examples of EINT commands using DX10 device names:

’ itializ he active emulator.
? EINT(CEMOI’) Initialize EMO1 as t . :
E EINTE‘EMOZ’) Initialize EMO02 as the active emulator.

D. The Define Breakpoint Conditions
5.10.2 DEFINE BREAKPOINT CONDITIONS COMMAN ! | :
command (EBRK) defines the conditions for breakpoints, and the action the emulator takes when a

breakpoint occurs. The syntax for the command is as follows:

EVT

FULL (. fSELF
2E8RKE (\eyrerui (U forF ik

OFF

The first operand specifies breakpoint conditions. When this operand is the keyword EVT, a
breakpoint occurs on an event as defined by the EEVT command. When the operand is the keyword
FULL, a breakpoint occurs when a specified number of trace addresses have been stored or when the
trace memory overflows. When the breakpoint condition operand is the keyword EVT+FULL, a
breakpoint occurs either when an event occurs or when the specified number of trace addresses have
been stored. When the operand is the keyword OFF, no breakpoint occurs.

The second operand specifies breakpoint action. When the operand is the keyword SELF, a
breakpoint consists of stopping the microprocessor (target system) at the completion of the currently
executing instruction. When the operand is the keyword OFF, a breakpoint consists of sending a
breakpoint signal to the trace module and incrementing the count in system variable ENI without
stopping the microprocessor. When the breakpoint action operand is omitted, whichever keyword was
entered most recently in an EBRK command remains in effect.

The EBRK command may be entered with no operands to display the breakpoint conditions and
action in effect. When this is done prior to entering an EBRK command with one or more operands,
the initial breakpoint conditions and action are displayed, as follows:

9EBRK;
1OFF +OFF
1OLFF

This indicates that the two breakpoint conditions are off and that the break point action is also off. The
first keyword on the first line is either + EVT or +OFF, and means that the breakpoint onaneventison
or off, respectively. The second keyword on that line is either + FULL or +OFF, and means that the
breakpoint on completion of a trace operation is either on or off, respectively. The keyword on the
second line is either SELF or OFF and means that the breakpoint action of stopping the
microprocessor is either on or off, respectively.

5-31 Digital Systems Division



Y 946244-9701

The following are examples of EBRK commands:

? EBRK(EVT) Enable breakpoint on event only. The
event is defined by an EEVT command.
Breakpoint action remains unchanged.

? EBRK(FULL) Enable breakpoint on completion of trace
only. Breakpoint action remains
unchanged.

2 EBRK(EVT+FULL) Enable breakpoint on event or on

completion of trace. Breakpoint action
remains unchanged.

? EBRK(OFF) Disable all breakpoints. Breakpoint
action (which would apply by defaultina
subsequent EBRK command) remains

unaltered.

? EBRK(EVT,SELF) Stop the microprocessor when an event
occurs.

? EBRK(FULL,OFF) Breakpoint on trace completion.

Breakpoint results in signal to trace
module and is counted, but does not stop
the target system.

5.10.2.1 System Variable ENI. System variable ENI maintains a count of emulator interrupts. An
emulator interrupt occurs at each breakpoint while the breakpoint action operand is set to OFF. The
count is set to zero when the target system is started. The user may display the contents of ENI, but may
not assign a value to this variable. The following is an example of a display of ENI:

2 ENL:D Display the value of system variable ENI.
25

5.10.3 SELECT EVENT COMMAND. The Select Event command (EEVT) selects the event for
breakpoints. The syntax for the EEVT command is as follows:

jﬁEVTL({é§$})]

When the user enters the keyword INT, the event that causes a breakpoint is the internal comparison
circuitry of the emulator. When the user enters the keyword EXT, an external signal is the event that
causes the breakpoint. The signal is connected to a terminal (P7) on the emulator module.

The user may enter an EEVT command with no operand to display the event selection in effect. When
this is done prior to entering an EEVT command with an operand, the initial event selection is
displayed as follows:

?EEVT;
+INT
This indicates that the internal comparison circuitry of the emulator triggers a breakpoint. When the
keyword EXT is displayed, the external breakpoint signal iriggers a breakpoint.

5-32 Digital Systems Division



946244-9701

When the EVT keyword of the EBRK command is in effect, an EEVT command that specifies key-
word EXT sets up a breakpoint on the external signal. When the external signal connected to P7
goes low the breakpoint is effective. An EEVT command that specifies keyword INT sets up a
breakpoint on an internal comparison defined in an ECMP command.

The following are examples of EEVT commands:
2 EEVT (INT) Select internal comparison signal as event.
2 EEVT (EXT) Select external signal as event.
5.10.4 INITIALIZE COMPARE LOGIC COMMAND. The Initialize Compare Logic command

(ECMP) initializes the emulator comparison logic to compare a specified type of address to a specified
address. The syntax for the ECMP command is as follows:

ADDR
[ADDR]-DBIN
[ADDR+JIAQ

OFF

2ECMP[( [,<address>])]

The first operand is the address type (qualifier) operand. When this operand is the keyword ADDR, all
addresses on the address bus (for read, write, or instruction acquisition accesses) are compared to a
specified value. When the operand is the keyword ADDR-DBIN the address on the address bus is
compared only when DBIN is false (write cycles only). When the address type operand is the keyword
ADDR+IAQ, the address on the address bus is compared only when IAQ (Instruction Acquisition) is
true (program counter address). When the operand is the keyword OFF, comparison is inhibited.

The second operand, the address operand, is the value to which the address bus value is compared.
When the target system uses a TMS 9900 microprocessor, the second operand may be any value in the
range of 0 through FFFFs. When the target system uses a TMS 9980 microprocessor the range of
valid addresses is 0 through 3FFF . No event can occur if the second operand is greater than 3FFFs.

The second operand has no significance when the first operand is the keyword OFF. When the address
operand is omitted, the address in the most recent ECMP command is used in the comparison. The
user may enter an ECMP command with no operands to display the address type and address value in
effect. When this is done prior to enteringan ECMP command with operands, the initial address type
and value are displayed as follows:

ECMP;

O

2
FF
0000

|

V

This indicates that the comparison logic is disabled and that the address operand is 0. The keyword on
the first line may be any of the four keywords used as the address type operand and identifies the type of
address being compared. The second line displays the current address operand.

For the comparison specified in an ECMP command to result in a breakpoint, an EEVT command
must set event to INT and an EBRK command must set the breakpoint condition to EVT or to
EVT+FULL.

5-33 Digital Systems Division



946244-9701

The following are examples of ECMP commands:

? ECMP (ADDR ,>FF46) Compare addresses of all memory
accesses to FF46,6.

?7 ECMP (-DBIN,>FF00) Compare addresses of all write memory
accesses to FF00;,.

7?2 ECMP (1AQ) Compare addresses of all instruction

- acquisition memory accesses to the most
recently entered address operand (FF001s,
if the preceding example is the most
recently entered ECMP command).

2 ECMP (OFF) Inhibit comparison.

5.10.5 INITIALIZE TRACE LOGIC COMMAND. The Initialize Trace Logic command (ETRC)
specifies the type of address to be stored, the number of addresses to be stored, and the clock for storing
the addresses. The syntax for the ETRC command is as follows:

ADDR
2ETRC ({ [Anglr_g;] IAQ} [,<count> [,{é';g}]] )]

The first operand specifies the type of addresses to be stored. When the operand is the keyword
ADDR, all addresses on the address bus (for read, write or instruction acquisition accesses) are stored.
When the operand is the keyword ADDR+1AQ or the keyword IAQ, addresses on the address bus are
stored only when IAQ (Instruction Acquisition) is true (program counter addresses). When the address
type operand is the keyword OFF, no addresses are stored.

The second operand is the count operand, which may be any valid expression having a value in the
range of | through 256. The count operand has meaning only when an EBRK command with a
condition operand of FULL or EVT+FULL and an action operand of SELF is in effect. Under these
conditions, the count operand specifies the number of values to be stored during the trace operation.
When breakpoint conditions and action is effect do not halt the target system, addresses are stored
until the target system is halted in some other manner, overwriting previously stored addresses when
the 256-word trace memory becomes full. When the count operand is omitted, the most recently
entered count operand applies.

The third operand selects the clock enable signal for storing the addresses. When the operand is the
keyword INT, the operation is clocked by the internal target system clock. When the operand is the
keyword EXT, the trace operation is clocked by an external enable signal, normally from the trace
module. When the clock operand is omitted, the most recent clock selection applies.

A trace operation consists of storing the specified type of addresses. When the breakpoint condition in
effect is either FULL or EVT+FULL and the breakpoint action in effect is SELF, the operation
completes a breakpoint occurs when the number of addresses specified as the count has been stored.
The stored data is accessible using the ETB command. The data is stored in the trace memory of the
emulator module. System variable ETM should be set to zero during a trace operation. If ETM is set to
one and if the target system accesses one or more addresses above FE00,¢, interference between the
target system and the trace operation occurs.

5-34 Digital Systems Division



9462449701

Whenever tracing is enabled, addresses are stored in trace memory. When the breakpoint action
operand of the EBRK command in effect is OFF, completion of a trace operation or overflow of trace
memory does not halt the target system. If the target system runs long enough, all 256 words of trace
memory will have been filled with stored addresses when the target system halts. The trace memory
contains up to 256 traced addresses or the most recently stored 256 traced addresses when it is halted.

The user may enter an ETRC command with no operands to display the address type, count, and clock
operands in effect. When this is done prior to entering an ETRC command with operands, the initial
address type, count, and clock are displayed as follows:

2ETRC;
F

'O
)

256
INT

_.|..

This indicates that the trace logic is disabled, the trace count is set to 256, and the trace is internally
clocked. The keyword on the first line may be any of the three keywords used as the address type
operand and identifies the type of addresses traced. The value on the second line is the count of
addresses to be traced. The keyword on the third line is either +INT or + EXT, and indicates internal or
external clock, respectively.

The following are examples of ETRC commands:

2 ETRC (ADDR,10,INT) Trace ten addresses, storing an address at
each memory access using internal clock.

2 ETRC (OFF) Turn trace off.

In using the ETRC command in a TMS 9980 system the count operand may be odd, but an even
number of addresses is always traced. This is because the TMS 9980 accesses two bytes for each word
accessed, and tracing does not stop until the currently executing instruction completes execution. The
following example traces one address in a TMS 9900 system, and two addresses in a TMS 9980
system:

? ETRC (IAQ,LINT) Trace one instruction, storing an address
at each memory access of the instruction
word. If the FULL and SELF options of
the EBRK command are in effect, this
results in execution of a single instruction
each time the microprocessor is started.

In a TMS 9900 system, emulator trace memory contains the instruction address at the completion of
the trace operation. In a TMS 9980 system, emulator trace memory contains the addresses of both
bytes of the instruction (or of the first word of the instruction). Storing of the address of the even byte
can be inhibited when the emulator and trace modules are set up to trace simultaneously, the clock
operand of the ETRC command is EXT, and the trace module is set up to trace only when the address is
odd. paragraph 5.9.5 describes the TTRC command for setting up tracing in the trace module.

5-35 Digital Systems Division



946244-9701

5.10.6 START MICROPROCESSOR COMMAND. The Start Microprocessor command (ERUN)
clears the Hold signal to the emulator, starting the microprocessor. Execution begins at the address in
system variable PC, with the target system workspace pointer set to the value in system variable WP
and the target system status register set to the value in system variable ST. The syntax for the command
is as follows:

2ERUN;

In many cases, a program would have been loaded into the target system memory. If an entry point
were not specified in the source code, the user would assign the entry address to variable PC. Similarly,
system variables WP and ST are set to the required values. The user could define a breakpoint usingan
EBRK command, and EEVT command, and an ECMP command. Alternatively, the user could define
a breakpoint on completion of a trace operation using an EBRK command and an ETRC command,
or define both breakpoints. Or the user may allow the program to execute to its normal termination or
stop it with an EHLT command.

The following is an example of a set of statements and commands to load and execute a program
consisting of a single instruction:

2@>100 = >10FF Single instruction loop into address 100;s.
PC = >100 Set PC.

IWP = >200 Set WP.

IST=0 Set ST.

2ERUN Start target system.

5.10.6.1 System Variable EST. The software maintains the current status of the emulator in system
variable EST. The user may display the value of EST at any time, but may not assign a value to this
variable. The following is an example of a display of EST:
EST; Display status of emulator in system
>0005 variable EST. Result indicates that the
target system is running and that the event
logic has generated a breakpoint.

INERN)

EST

The status value is returned in the least significant digit, as shown in table 5-1. System variable EST
may also be used with a mask value to test for a specific status condition, as in the following example:

? IFBESTPANDBTBTHENEB 'EMULATOR IS RUNNING' Print message if least significant
bit of system variable EST is true.

A mask value of 1 tests the status bit that is true when the emulator is running. A mask value of 2 tests
the status bit that is true when a trace overflow breakpoint has occurred. A mask value of 4 tests the
status bit that is true when an event breakpoint has occurred. A mask value of 8 tests the status bit that
is true when an Idle instruction is being executed.

5.10.7 STOP MICROPROCESSOR COMMAND. The Stop Microprocessor command (EHLT)
sends the Hold signal to the emulator, halting the microprocessor. The syntax for the EHLT command
is as follows:

JEHLT;

5-36 Digital Systems Division



9462449701

Table 5-1. Emulator Status
Contents of
Least Significant Digit
of System Variable EST
(Hexadecimal) Status

0 Target system is halted. Neither an event or trace overflow
has caused a breakpoint.

1 Target system is running and is not executing an Idle in-
struction. Neither an event or trace overflow has caused a
breakpoint.

2 Target system is halted, a trace overflow breakpoint has
occurred, and an event breakpoint has not occurred.

3 Target system is running and is not executing an Idle in-
struction. A trace overflow breakpoint has occurred and
an event breakpoint has not occurred.

4 Target system is halted. An event breakpoint has oc-
curred, and a trace overflow breakpoint has not occurred.

5 Target system is running and is not executing an Idle in-
struction. An event breakpoint has occurred, and a trace
overflow breakpoint has not occurred.

6 Target system is halted and both an event and a trace
overflow breakpoint have occurred.

7 Target system is running and is not executing an Idle in-
struction. Both an event and a trace overflow break-
point have occurred.

9 Target system is running, executing an Idle instruction.
Neither an event or trace overflow has caused a break-
point.

B Target system is running, executing an Idle instruction.
A trace overflow breakpoint has occurred, and an event
breakpoint has not occurred.

D Target system is running, executing an Idle instruction.
An event breakpoint has occurred, and a trace overflow
breakpoint has not occurred.

F Target system is running, executing an Idle instruction.
Both an event and a trace overflow breakpoint have oc-
curred.

5-37 Digital Systems Division



9462449701

When an expected breakpoint is never reached, or when no breakpoint is in effect, the microprocessor
may be stopped by executingan EHLT command. The command displays the emulator status (system
variable EST). Since the status is read after the microprocessor is halted, only the even numbers in
table 5-1 apply. The following is an example of an EHLT command:

2 EHLT Halt the microprocessor. The displayed

>0002 status indicates that the target system is
halted, an event breakpoint has not
occurred, and a trace cverflow breakpoint
has occurred.

5.10.8 READ TRACE MEMORY COMMAND. The Read Trace Memory command (ETB) is a
system function that reads the specified value from the emulator trace memory. The syntax for the
command is as follows:

?ETB(<index>)

The index operand may be any valid expression. When the value of the expression is a valid index to
the emulator trace memory, the command prints the value stored in the word corresponding to the
index value. The limits of valid index values can be determined by displaying the values of two system
variables. System variable ETBN contains the index value corresponding to the most recently stored
word. ETBN contains 0 at the completion of a trace operation. System variable ETBO contains the
index value corresponding to the first word stored (oldest word).

The emulator stores values in trace memory when tracingis initialized by an ETRC command, and the
target system is started. The last value stored during the trace operation is accessible using an index
value of 0. The values stored prior to the completion of the trace operation are accessed using negative
index values, with the most negative index value corresponding to the value first stored.

TMS 9900 addresses are 16-bit addresses, and occupy all 16 bits of the trace memory words. TMS 9980
addresses are 14-bit addresses; the trace memory stores these addresses in the least significant 14 bits of
trace memory words, with zeros in the two most significant bits. The TMS 9980 accesses two bytes for
each word accessed by the TMS 9900. Unless the trace module is used to inhibit tracing both addresses,
the trace memory in the emulator contains an even and an odd address for each word accessed.

Alternatively, an ETB command and its operand may be used as a variable in an expression in an
AMPL statement. The value stored in trace memory corresponding to the value of the operand
becomes the value of the command when used as a variable.

The user should enter an ETB command immediately following the trace operation. If an ERUN
command is entered following the trace operation and before the ETB command, traced values will be
lost unless the trace is turned off before starting the microprocessor. Also, if system variable ETM is set
to one following the trace, and if an ERUN command is entered, contents of the trace memory may be
altered if the microprocessor accesses target system memory addresses FE00,¢ through FFFF
(TMS 9900) or 3E00,s through 3FFFq, 7E00,¢ through 7FFF,s, BE0O,, through BFFF,4. or
FE0O,, through FFFF 4 (TMS 9980).

5-38 Digital Systems Division




o
e@ 946244-9701

The following are examples of ETB commands:

? ETB (@) Display the most recently stored address
>1056 P g ‘

? ETB (-1) Display the address stored prior to the
>1054 address displayed in the preceding
—_— example.

The following is an example of a series of AMPL statements that use the ETB command as a variable:

? N = ETBO Initialize variable N to the index of the
? WHILEBNBLEPETBNBDOBBEGIN oldest item stored. Display the stored
1? ETB(N):HN value and increment N. Perform display
1?2 N = N+1 until all traced values have been displayed.
1? END

When the user enters an index value greater than the value of ETBN or less than the value of ETBO, the
software prints an error message.

5.10.8.1 System Variable ETBO. System variable ETBO is set to the index value of the oldest value
stored in memory by the emulator module. ETBO may not be assigned a value by the user, but may be
displayed whenever the emulator is not running. The value of ETBO is the smallest (most negative)
value that may be used as an index in an ETBcommand. When this value is 1 and the value of ETBN is
0. no values have been stored and an ETB command cannot be executed. The following is an example
of a display statement to display ETBO:

? ETBO Display the index to the oldest address
ETBO= >FFFE stored in emulator trace memory.

5.10.8.2 System Variable ETBN. System variable ETBN is set to the index value of the most recently
stored value in memory by the emulator module. ETBN may not be assigned a value by the user, but
may be displayed whenever the emulator is not running. The value of ETBN is zero, the largest (most
positive) value that may be used as an index in an ETB command. The following is an example of a
display statement to display ETBN:

% ETBN Display the index to the newest address
ETBN=_>0000 stored in emulator trace memory.

5.11 TRACE MODULE OPERATION COMMANDS

The trace module stores and analyzes up to 256 20-bit values under control of the host computer and
optionally in conjunction with the emulator module. The clock used for storing and analyzing traced
values may be either an internal 10 MHz clock or an external clock up to 10 MHz. Four qualifiers may
be used to select a clock as a trigger for storing and analyzing a value. Analyzing a value consists of
comparing selected bits of the value to corresponding bits of a value stored in a comparison register.

The trace module may be connected in any of three modes as shown in figure 5-1. In the stand-alone
mode, the data cable with probe leads is connected to the trace module and no control cable is
connected. This allows tracing of up to 20 logic signals to which probe leads are connected, under
control of up to four qualifiers (logic signals to which other probe leads are connected). Two additional
probe leads may be connected to an external clock and an external event signal.

5-39 Digital Systems Division



946244-9701

—
DATA CABLE —
—— PROBE
EAD
o LEADS
TRACE —{
MODULE
STANDALONE MODE
—=
DATA CABLE —{ pRrROBE
L — ) LEADS
—
TRACE — I |
MODULE
CONTROL CABLE
EMULATOR

EMULATOR CONTROL — EXTERNAL DATA MODE

DATA CABLE

TRACE
MODULE

CONTROL CABLE

EMULATOR

(A)136543
EMULATOR CONTROL AND DATA MODE

Figure 5-1. Trace Module Connections

5-40 Digital Systems Division



946244-9701

In the emulator control-external data mode, the data cable with probe leads is connected to the trace
module to provide data and control input as in the stand-alone mode. A control cable connects the
trace module to the emulator module to synchronize tracing. In this mode, tracing does not begin until
the target system is started by the emulator, and the trace module may request the emulator to halt the
target system at the completion of the current instruction.

In the emulator control and data mode, both the input data cable and the control cable connect the
trace module to the emulator module. This allows tracing of either memory addresses or memory data
using qualifiers and external clock from the emulator module. When the target system uses a
TMS 9900 microprocessor, only three qualifiers are used. When the target system uses a TMS 9980
microprocessor, all four qualifiers are used. The qualifiers are connected to the following emulator
signals:

. The inversion of the least significant address bit, true when an even address is on the address
bus (TMS 9980); true at all times (TMS 9900).

e Instruction Acquisition (IAQ), true during a memory cycle that reads an instruction from
memory.

o Data Bus In (DBIN), true during memory read cycles.

e  Emulator Event (EMU), true during memory cycles in which comparison logic in the
emulator indicates an equal comparison.

When the data cable connects the trace module to the emulator module, the external event signal is
connected to the emulator event signal in the emulator, and the external clock signal is connected to the
emulator clock.

In the stand-alone mode, operation of the trace module begins when a Start Trace command is
executed. Otherwise, tracing begins when the target system is started following execution of a Start
Trace command.

The input data is stored on each selected clock. When the breakpoint is defined, tracing may be stopped
at the occurrence of a breakpoint. Otherwise, the user may stop tracing by executing a Stop Trace
command, or the emulator may halt the trace module (except in the stand-alone mode). Storing of data
continues until the module halts, overlaying previously stored data after 256 values have been stored.
Thus, when the module halts, the trace memory contains the 256 most recently stored values.

When the trace module is connected in the emulator control and data mode, either addresses or data
may be stored in the trace module. When the target system uses a TMS 9900 microprocessor, the
addresses and the data are both 16-bit words. When the target system uses a TMS 9980
microprocessor, the address is a 14-bit address and the data is accessed in 8-bit bytes. The 14-bit
address is placed on the address bus in the 14 least significant bits and the two most significant bits are
at logic zero. The 8-bit data bytes are combined to form a 16-bit word under control of the least
significant bit of the address. On an even address (least significant bit equals zero) the 8 data bits are
placed in the most significant half of the data bus. On an odd address (least significant bit equals one)
the 8 data bits are placed in the least significant half of the data bus, and the most significant half retains
its previous contents. Thus during memory accesses at even addresses the data bus only contains the
most significant half of the word. During memory accesses at odd addresses the data bus contains the
word at the next lower even address.

A trace operation may be defined in terms of a number of values to be stored, and a breakpoint may be
specified to occur when the trace operation completes.

5-41 Digital Systems Division



9462449701

g

The comparison logic of the trace module compares selected bits of the data being stored with the data
in the comparison register. An event occurs when the result of the comparison is equal. Alternatively.
an external signal identifies an event. The trace module contains both an event counter and a delay
counter. cach of which is set to a value supplied by the user. The event counter decrements when an
event occurs. When the event counter counts down to zero. the delay counter begins decrementing cach
time a value is stored in trace memory. When the delay count reaches zero, the event and delay
completion occurs, which may optionally cause a breakpoint.

When a breakpoint occurs at completion of a trace operation or of an event and delay, the trace module
may interrupt the host computer without stopping the trace or requesting the emulator to stop.
Optionally. the breakpoint may interrupt the host computer and stop the trace but not request the
emulator to stop. Another option is that of requesting the emulator to stop the target system at
completion of the currently executing instruction without interrupting the host computer. Tracing
continues until the emulator stops the target system in this case. A fourth option requests the emulator
to stop the target system at completion of the currently executing instruction and also stops the trace.
Only the first two options apply to the stand-alone mode.

When tracing is stopped by the emulator following a request from the trace module, it is possible for as
many as eight memory clock cycles to occur in the emulator between the time the request is issued and
the time the trace stops. If the trace module is following the emulator clock, there could be eight values
stored during this time depending on the qualifiers specified. When the trace module is internally
clocked, the number of values stored during this time is a function of the emulator clock period, the
qualifiers, and the currently executing instruction. When the sum of the number of additional clock

cycles plus the specified delay exceeds 255, the trace memory is filled with values stored after the last
event and previously stored values are lost.

The host computer communicates with the trace module through the CRU to define the addresses and
options for the trace. The AMPL software supports the following commands to control the trace
module:

[ Initialize Trace Module (TINT)

. Define Trace Breakpoints (TBRK)

J Select Trace Event (TEVT)

(] Initialize Trace Compare Logic (TCMP)

o Initialize Trace Module Trace Logic (TTRC)

o Start Trace (TRUN)

. Stop Trace (THLT)

. Read Low Order Trace Module Memory (TTB)

] Read High Order Trace Module Memory (TTBH)

5-42 Digital Systems Division



946244-9701

S.11.1 INITIALIZE TRACE MODULE COMMAND. The Initialize Trace Module command
(TINT) selects and initializes a trace module to execute subsequent trace module control commands.
The syntax for the command is as follows:

2TINT('<device rume>')

The operand is the device name assigned during system generation. In the TX990 system supplied by
Texas Instruments the device name is TRA. For a DX 10 system, the device naime is TMO1 (for the first
trace module). Once the command has been entered it need not be entered again unless the AMPL
program is reloaded or unless there is more than one trace module in the system. When there is more
than one trace module, a TINT command must be entered prior te using a ditferent trace module.

The following are examples of TINT commands using TX990 device names:
2TINT('TRA")

Initialize TR A as the active trace module.

PTINT('TRA2") [nitialize  TRA2 as the active trace
module.

The following are examples of TINT commands using DX10 device names:

?TINT('TMO1") Initialize  TMOI as the active trace
module.

? TINT("'TMO02) Initialize TMO02 as the active trace
module.

5.11.2 DEFINE TRACE BREAKPOINT COMMAND. The Define Trace Breakpoint command
(TBRK) defines the conditions that cause a breakpoint and the action that the breakpoint causes. The
syntax for the TBRK command is as follows:

EVT SELF 1
FULL EMU
ZTBRKLC\eyrepuLL (L

’ SELF+EMU'J)]
OFF OFF

The first operand specifies breakpoint conditions. When the keyword EVT is entered. a break point
consists of an event and delay completion. When the keyword FULL is entered, a breakpoint consists
of a trace completion. When the keyword EVT+FULL is entered, a breakpoint may be either an event
and delay completion or a trace completion. When the keyword OFF is entered. neither completion
causes a breakpoint.

The second operand specifies a breakpoint action. When the keyword SELF is entered, a breakpoint
causes the trace operation to stop and an interrupt to be sent to the host computer. When the keyword
EMU is entered, a break point causes the trace module to request the emulator to halt at the completion
of the currently executing instruction. When the keyword SELF+EMU is entered. a breakpoint causes
the trace operation to stop and requests the emulator to halt at the completion of the currently
executing instruction. When the keyword OFF is entered, a breakpoint causes the trace module to
interrupt the host computer. When the breakpoint action operand is omitted., the most recently entered
breakpoint action operand of a TBRK command continues to apply.

5-43 Digital Systems Division



946244-9701

All four keywords that may be used as the breakpoint condition operand apply to all connection
modes. However, when the keyword OFF is entered and the trace module is connected in the stand-
alone mode. a THLT command must be entered to stop the trace. When the keyword OFF is entered in
cither of the other connection modes. tracing stops whenever the emulator stops. When the EVT or
EVT+FULL keyword is entered, this command operates in conjunction with a TEVT and TCMP
command to breakpoint after a specified delay following a specified event. When the FULL or
EVT+FULL keyword is entered. this command operates in conjunction with a TTRC command to
breakpoint when a specified number of values have been stored in trace memory. System variable TNE
(described in a subsequent paragraph) maintains a count of events.

Keywords EMU and SELF+EMU are not relevant as the breakpoint action operand in the stand-
alone connection mode. All breakpoint action keywords are relevant in the other two connection
modes. When keywords EMU and SELF+EMU are used, a breakpoint causes the trace module to
request the emulator to halt the target system. Unless the SELF keyword of an EBRK command is in
effect as the breakpoint action operation for the emulator, the emulator will not halt the target system.
When the OFF keyword has been entered, the trace module interrupts the host computer when a
breakpoint occurs.

The TBRK command may be entered with no operands to display the breakpoint conditions and
action in effect. When this is done prior to enteringa TBRK command with one or more operands. the
initial breakpoint conditions and action are displayed., as follows:

2 TBRK:
F+OFF +0OFE
+OFF +OFF

This indicates that the two breakpoint conditions are off, and the two breakpoint actions are off. The
first keyword on the first line is either +EVT or +OFF and means that an event and delay completion
breakpoint is on or off, respectively. The second keyword on that line is either +FULL or +OFF, and
means that the breakpoint on completion of a trace is either on or off, respectively. The first keyword
on the second line is either +SELF or +OFF. and means that the stop trace breakpoint action is either
on or off, respectively. The second keyword on the second line is either +EMU or +OFF, and means
that the send request to emulator breakpoint action is either on or off, respectively.

The following are examples of TBRK commands:

2TBRK (EVI+FULL.SELF+EMU) Define a breakpoint to occur on
completion of an event and delay or of a
trace operation, and to stop the trace
operation immediately and request the
emulator to stop at completion of the
current instruction.

2 TBRK (FULL) Define a  breakpoint to occur on
completion of a trace operation only.
Breakpoint action is that defined in
previous command.

2 TBRK (EVT,OFF) Define breakpoint to occur on completion
of an event and delay operation only, and
to interrupt the host computer without
stopping the trace.

2 TBRK (OFF) Inhibit breakpoints.

5-44 Digital Systems Division



[e]
@ 946244-9701

5.11.2.1 System Variable TNE. System variable TNE is set to zero when the trace is started, and
counts events. TNE may not be assigned a value by the user, but may be displayed whenever the trace
module is not running. The following is an example of a display statement to display TNE:

? TNE Display the count of events that have

>000 occurred since the most recent TRUN
command.

Counting of events is independent of the count specified for a breakpoint, and does not stop until the
trace stops. When a delay is specified, events that occur during the delay period cause the final event
count to exceed the count specified as a breakpoint. The count is maintained as an unsigned number.

5.11.2.2 System Variable TNI. System variable TNI is set to zero when the trace is started, and counts
interrupts. TNI may not be assigned a value by the user, but may be displayed at any time. The
following is an example of a display statement to display TNI:

? TNI Display the count of interrupts that have
b occurred since the most recent TRUN
>0010
command.

The count in system variable TNI is maintained as an unsigned number.

5.11.3 SELECT TRACE EVENT COMMAND. The Select Trace Event command (TEVT) selects an
event by specifying an event count, a delay count, and the event mode. The syntax for the TEVT
command is as follows:

2TEVT[ (<events>[,<delays>[, [?SSM] + [EID\EE] + [é')\l({l 111

The first operand specifies the number of events. The operand may be any valid expression having a
value of zero through 65,535 to be placed in the event counter. Since the maximum positive value that
can be expressed as a decimal number is 32,767, values greater than this must be entered as
hexadecimal, octal, or binary values. A value of zero provides an event count of 65,536.

An event may be the equal comparison result of an internal comparison specified in a TCMP
command (paragraph 5.9.4) or an external signal to which the EVENT probe lead is connected,
determined by the mode operand described in a subsequent paragraph. The user specifies a number of
events to be counted before initiating the delay period. Thus the first event or a specific subsequent
event is the first condition for a potential breakpoint.

The second operand provides the delay value. It may be any expression having a value of zero through
255 to be placed in the delay counter. When the delay operand is omitted, the most recently entered
delay operand continues to apply.

The delay count specifies a number of items to be traced after the event count has been satisfied. The
potential breakpoint occurs after the specified items have been traced. The user specifies a delay to
obtain a trace of desired items immediately following the event.

5-45 Digital Systems Division



946244-9701

The third operand selects the event mode. The operand consists of a single keyword, the sum of two
keywords, or the sum of three keywords. Keyword NORM specities decrementing the event counter
when the selected event signal is true. Keyword INV specifies decrementing the counter on a false
signal. When neither NORM nor INV is specified. a true signal decrements the count. Keyword EACH
specifies decrementing the counter at each selected event signal. Keyword EDGE specifies
decrementing the counter only when the specified value of the specified event signal is different from
the value at the previous clock. When neither EACH nor EDGE is specified, the count is decremented
at each signal. Keyword INT selects the equal comparison result of the internal comparison logic as the
event. Keyword EXT selects the external event signal as the event. In the stand-alone and emulator
control (external data connection modes), the external event signal is connected by the user to an
appropriate logic signal. In the emulator control and data connection mode, the external event is the
emulator event signal. When neither INT or EXT is specified, the internal event is selected. When the
entire operand is omitted, the most recently entered event mode operand continues to apply.

The TEVT command may be entered with no operands to display the event count, delay count, and
event mode in effect. When this is done prior to enteringa TEVT command with one or more operands,
the initial event count, delay count, and event mode are displayed, as follows:

2 TEVT;
!

9
+tNORM+EACH+INT

This indicates that the event count is one, the delay count is zero, and the internal event signal true
constitutes an event at each clock. The event count is displayed on the first line and the delay count is
displayed on the second line. The event mode is displayed on the third line. Table 5-2 shows the eight
possible modes and the meaning of each.

The operands of a TEVT command specify a potential breakpoint after a delay specified as a number
of trace memory stores following an event that satisfies the event count.

The third operand defines the conditions for an event. A TBRK command that specifies EVT or
EVT+FULL must be in effect for an actual breakpoint to occur.

The following are examples of TEVT commands:

?TEVT (0,00NORM+EACH-+INT) Count at each selected clock when the

- internal comparison signal is true. Event
and delay completion occurs with no
delay after the 65,536th event.

?TEVT (1) Alter event count to 1, leaving previously
- entered delay and mode unaltered.

?TEVT (5,35) Alter event count to 5 and delay count to

B 35 leaving previously entered mode
unaltered.

2 TEVT (>8E4F) Alter event count to 8E4F,c (36431)

leaving previously entered delay and
mode unchanged.

5-46 Digital Systems Division




946244-9701

Table 5-2. Event Modes
Event Mode Meaning

+NORM+EACH+INT Decrement at each selected clock during which the internal event
signal is true.

+NORM+EACH+EXT Decrement at each selected clock during which the external event
signal is true.

+NORM+EDGE+INT Decrement at selected clock when the internal event signal has
changed from false to true since the preceding selected clock.

+NORM+EDGE+EXT Decrement at selected clock when the external event signal has
changed from false to true since the preceding clock.

+INVH+EACH+INT Decrement at each selected clock during which the internal event
signal is false.

+INVH+EACH+EXT Decrement at each selected clock during which the external event
signal is false.
+INV+EDGE+INT Decrement at selected clock when the internal event signal has

changed from true to false since the preceding selected clock.

+INV+EDGE+EXT Decrement at selected clock when the external event signal has
changed from true to false since the preceding selected clock.

Note: A selected clock is a clock signal selected for storing a value in trace memory. Specified
qualifiers in specified states select a clock pulse.

5.11.4 INITIALIZE TRACE COMPARE LOGIC COMMAND. The ln'itialize T.race Compare
Logic command (TCMP) specifies values to be placed in the comparison register and in the compare
mask register. The syntax for the TCMP command is as follows:

ADDR [H QO] [HQ]] m 02] Bf;(w]
AT [1 IAQ] [H DBIN] [m EMU]

OFF

The first operand specifies the mask and values for the high-order four bits of the compare register, and
optionally, the source of data to be compared. Optionally, the keyword ADDR or the keyword DATA
may be entered, specifying the type of data being supplied to the trace module in the emulator control
and data mode. The remainder of the operand is a series of one to four keywords to specify the mask
and values of the high-order bits. Keywords QO through Q3 denote the high order bits, with Q0 the
most significant bit. When a plus sign precedes a keyword, the corresponding bit in the compare
register is set to one. When a minus sign precedes a keyword, the corresponding bit in the compare
register is set to zero. The sign may be omitted preceding the first keyword; the plus sign applies. When
the keyword corresponding to a bit is omitted, that bit is masked off and does not participate in the
comparison. When the keyword OFF is entered, neither data source is specified, all four bits are
masked off and the four high-order bits of the compare register do not participate in the comparison.

[,<low 16 value>[,<low 16 mask>]])]

5-47 Digital Systems Division




946244-9701

When the target system uses a TMS 9980 microprocessor and keyword DATA is entered, the
appropriate state of keyword QO should be specified also. When DATA+QO is entered, an equal
comparison is possible only when an even memory address is being accessed. The data bus at this time
contains the byte at the even address in the most significant eight bits and random data in the least
significant eight bits. When DATA-QO is entered, an equal comparison is possible only when an odd
memory address is being accessed. The data bus at this time contains the two bytes of a memory word,
with the even-addressed byte in the most significant eight bits and the odd-addressed byte in the least
significant eight bits. Thus when emulating a TMS 9980 and comparing to data, DATA-QO0 should be
entered to avoid undesired equal comparisons.

The second operand is the value to be placed in the low-order 16 bits of the compare register. The
operand may be any valid expression. When the second operand is omitted, the most recently entered
value continues to apply.

The third operand is the value to be placed in the low-order 16 bits of the compare mask register. The
operand may be any valid expression.

When the target system uses a TMS 9980 microprocessor the mask value can be used to select the valid
bits. When the ADDR keyword is entered, the TMS 9980 address is in the 14 least significant bits with
the two most significant bits set to zero. By using a mask operand less than 40006, the user specifies a
comparison that ignores the two most significant bits and compares only valid address bits.

One bits in the mask register correspond to bits that are compared. When the third operand is omitted,
the most recently entered value is the low-order 16 bits of the compare mask register continue to apply.

In the emulator control and data connection mode, the four high-order bits of the data word and the
four qualifiers are common. When the target system uses a TMS 9900 microprocessor, Q0 and the
high-order bit are connected to logic one. When the target system uses a TMS 9980 microprocessor,
QO and the high-order bit are connected to the inversion of the least significant address bit. Q1, Q2, and
Q3 are connected to IAQ, DBIN, and EM.EVENT, respectively. Table 5-3 lists alternate keywords
that may be used in the first operand. When the trace module is connected in this manner, the first
operand of the TCMP command must contain a subset of the qualifiers specified in the TTRC
command. Otherwise, the comparison always fails because the comparison is made to qualified values.

Table 5-3. Alternate Keywords for Qualifiers
Keyword Connected To Alternate Keyword

Logic one (TMS 9900)

Q0 Inversion of A13 (TMS 9980) None
Ql Instruction Acquisition IAQ

Q2 Data Bus In DBIN
Q3 Emulator Event EMU

5-48 Digital Systems Division



e@ 9462449701

In the emulator control and data connection mode, the data input is supplied by the emulator. When
an ETRC command with either the keyword IAQ or the keyword ADDR is in effect, the emulator
supplies memory data to the trace module. When an ETRC command with the keyword OFF is in
effect, the emulator may supply either memory data or memory addresses to the trace module, as
specified by the TTRC command. Keywords ADDR and DATA in the TCMP command are checked
for compatibility with the current ETRC and TTRC commands.

In the stand-alone or emulator control external data connection mode, the four most significant bits of
the data word and the four qualifiers are separate probe leads and are connected by the user as the test
requires.

The TCMP command specifies an event to provide an event and delay breakpoint as defined in a
TEVT command that specifies INT in the event mode. A TBRK command that specifies either EVT or
EVT+FULL must be in effect for the breakpoint to occur.

The TCMP command may be entered with no operands to display the compare register and compare
mask register contents in effect. When this is done prior to entering a TCMP command with on or
more operands, the initial compare register contents and compare mask register contents are
displayed, as follows:

2 TCMP;
FF
FFFF
+0000

O

\/

This indicates that the high-order four bits are masked off, the low-order 16 bits of the compare register
contain FFFFs, and no low-order bits are compared. The first line is either OFF or is some
combination of keywords DO through D3, in which D0 through D3 specify the high-order four bits of
the compare and compare mask registers. The signs and the omission of a keyword have the same
significance as in the first operand of the command. The second line shows the contents of the 16 low-
order bits of the compare register. The third line shows the contents of the 16 low-order bits of the
compare mask register.

The following are examples of TCMP commands:

ITCMP (Q0+Q1+Q2+Q3),>4142 >FFFF) Set the comparison mask to compare all
20 bits, comparing to F4142¢.

2 TCMP (IAQ,>2FEQ) Set the comparison mask to compare only
bit 1 and the bits not masked off by the low
16 mask operand in effect. Compare data
to 2FEO;s and 1AQ true. (Emulator
control and data mode.)

2 TCMP (OFF) Set the comparison mask to ignore all four
high order bits, and compare the low
order 16 bits to the most recently entered
compare value and mask value.

5-49 Digital Systems Division




946244-9701

10FF,, (JMP $ instruction) when the

entire word has been accessed and placed

on the data bus (TMS 9980). If addresses

are being stored in emulator trace memory

simultaneously, the stored address is an

odd address, one greater than the address -
of the instruction.

2TCMP (DATA-QQ+IAQ >1Q0FF >FFFF) Compare instruction data on data bus to ‘

5.11.5 INITIALIZE TRACE MODULE TRACE LOGIC COMMAND. The Initialize Trace
Module Trace Logic command (TTRC) specifies the qualifiers, count. and clock for a trace operation.
The TTRC command also enables or disables the pulse-latching function. Optionally, the TTRC
command initializes the emulator module to provide the specified input data. The syntax for the
command is as follows:

(+) [+ f+) [+ '
ADDR [I-f Qﬂ] [HQl] [HQZ] [HQ3] INTy - fOF

) F
TR oamal [1 il ] I*1 [’\Counb[’{EXT}[’{ON}]J])J
I-f 1AQ] [I-J DBIN| | || EMU

OFF

The first operand specifies the mask and values for the qualifiers that select the clock for the trace
operation, and optionally, the source of data to be traced. When the keyword ADDR is entered as the
optional word, the memory address bus of the target system is selected for tracing. When the keyword
DATA is entered, the memory data bus is selected. The remainder of the operand is a series of one to
four keywords to specify the mask and values of the qualifiers. Keywords Q0 through Q3 denote the
qualifiers, with QO the most significant qualifier bit. When a plus sign precedes the keyword, the ‘
corresponding bit in the qualifier register is set to one. When a minus sign precedes the keyword, the
corresponding bit in the qualifier register is set to zero. The sign may be omitted preceding the first
keyword; the plus sign applies. When the keyword corresponding to a bit is omitted, that bit is masked
off and is not used as a qualifier. When the keyword corresponding to a bit is omitted, that bit is
masked off and is not used as a qualifier. When the keyword OFF is entered, neither data source is
specified, all four qualifiers are masked off and tracing occurs on every clock.

The second operand specifies the number of values to be stored during the trace operation. The '
operand may be any valid expression having a value in the range of 1 through 256. The second

operand is ignored unless the first operand of the TBRK in effect is either FULL or EVT+FULL

and the second operand of that command is SELF, EMU, or EMU + FULL. When the second

operand is omitted, the most recently entered value continues to apply.

The third operand selects the clock source for the trace operation. When the keyword INT is entered,
the internal clock is the clock for the trace operation. When the keyword EXT is entered, the external
clock is the clock for the trace operation. When neither keyword is entered, the most recent clock
selection continues to apply.

The fourth operand controls the latch mode of the trace module. When the keyword OFF is entered,
the latch mode is disabled. When the ON is entered, the latch mode is enabled. When neither keyword .
is entered, the most recent latch mode keyword continues to apply.

The choice of DATA or ADDR in the first operand applies only in the emulator control and data

mode. When either keyword is entered, AMPL software verifies that the data cable is connected to the

emulator. If an ETRC command with the keyword OFF is in effect, the software issues the necessary

control signal to the emulator to provide the specified data. Otherwise, the software verifies that the

specified data is being supplied by the emulator. When the cable is not connected, or when the other ‘
type of data has been selected by an ETRC command, the software prints a warning message.

5-50 Digital Systems Division



946244-9701

The qualifiers specified in the first operand must all be in the specified state at clock time in order to
select a clock for storing a traced value. When the trace module is connected in the emulator control
and data mode, the qualifiers are connected as shown in table 5-3, and the alternate keywords may be
used in the first operand.

When the target system uses the TMS 9980 microprocessor, and the keyword DATA is specified,
entering -QO as a qualifier results in more efficient use of the trace memory. The data stored in trace
memory when qualifier -QO is in effect consists of words that contain the bytes in the proper order. If
qualifier +QO is entered, the most significant byte of the addressed word is stored with random data in
the least significant byte. If the qualifier QO is omitted, two words are stored for each word in memory;
the first word contains the most significant byte of the addressed word with random data in the least
significant byte, and the second word contains the complete word.

The count operand is used to determine the completion of the trace operation (trace full condition).
The count is placed in the trace buffer counter, which is decremented as values are stored. When the
counter is at one and the memory stores a value, the trace full signal occurs which causes a breakpoint if
a TBRK command that specifies FULL or EVT+FULL is in effect.

The clock operand selects the clock for the trace operation. The internal clock isa 10 MHz clock in the
trace module. In the stand-alone and emulator control-external data modes, external clock is the signal
:0 which the probe lead designated CLOCK is connected. In the emulator control and data mode, the
~xternal clock is the emulator end-of-memory cycle clock.

The latch operand enables or disables the latch mode. The four most significant lines of data are
cquipped to latch narrow data pulses when the latch mode is enabled. They function like the other 16
lines when the latch mode is disabled. In the emulator control and data mode, the lines that are
equipped with latches are connected to the same signals as the qualifiers.

The TTRC command may be entered with no operands to display the qualifiers, count, clock, and
latch in effect. When this is done prior to enteringa TTRC command with one or more operands, the
initial qualifiers, count, clock, and latch are displayed, as follows:

2 TTRC;

OFF
256

+INT

¥OFF

This indicates that the qualifiers are masked off, and that the trace count is 256. Internal clock isto be
used, and the latch mode is disabled. The first line is either OFF or some combination of the keywords
used in the first operand. The secon dline displays the count in effect. The third line is either INT or
EXT, corresponding to internal or external clock, respectively. The fourth line is either ON or OFF,
indicating that the latch mode is enabled or disabled.

The following are examples of TTRC commands:

? TTRC (Q@-Q1-Q2+Q3,128,INT,0FF) Trace 128 wvalues that occur when
qualifiers 0 and 3 are true and qualifiers |

and 2 are false, using the internal clock.
Set latch mode OFF.

5-51 Digital Systems Division




@ 946244-9701

2 TTRC (DATA-DBIN) Set to trace memory data written during
write accesses using previously entered
additional operands (emulator control
and data mode).

2 TTRC (OFF,25,INT,ON) Trace 25 values on internal clock, ignoring
qualifiers with latch mode.

2 TTRC (DATA-Q0,256,EXT,OFF) Trace data words in trace memory, using
external clock with latch inhibited.
Generate the trace memory full signal
when 256 words have been stored. Store

when the entire memory word is on the
data bus (TMS 9980).

5.11.6 START TRACE COMMAND. The Start Trace command (TRUN) enables the trace
operation. The syntax for the TRUN command is as follows:

2 TRUN; Start the trace module.

In the stand-alone connection mode, the trace module starts when the TRUN command is executed. In
the emulator control external data mode or emulator control and data mode, the trace module starts
when a TRUN command has been executed and the emulator is started. System variable TST supplies
the state of the trace module as described in a subsequent paragraph.

The following is an example of a TRUN command used to start tracing when the emulator is
connected:

2 TRUN;
2 ERUN; Omit in stand-alone mode.

5.11.6.1 System Variable TST. System variable TST is set to the current state of the trace module by
the AMPL software. TST may not be assigned a value by the user, but may be displayed at any time.
The display contains the status in the least significant three bits, as shown in table 5-4. The following is
an example of a display statement to display TST:

? TST: Display trace module status. Trace is
>Wﬂ(ﬂ; ’ running and neither event and delay nor
—_— trace operation has completed.

5-52 Digital Systems Division



946244-9701

Table 5-4. Trace Module Status

Contents of Least

Significant Digit
Of System Variable TST Status
0 Trace module is halted. Neither event and delay nor trace operation
has completed.
1 Trace module is running. Neither event and delay nor trace opera-
tion has completed.
2 Trace module is halted and trace operation has completed. Event
and delay operation has not completed.
3 Trace module is running and trace operation has completed. Event
and delay operation has not completed.
4 Trace module is halted and event and delay operation has com-
pleted. Trace operation has not completed.
5 Trace module is running and event and delay operation has com-
pleted. Trace operation has not completed.
6 Trace module is halted, event and delay operation has completed,
and trace operation has completed.
7 Trace module is running, event and delay operation has completed,

and trace operation has completed.

System variable TST may also be used with a mask value to test for a specific status condition as in the
following example:

? IFBTSTBANDB2BTHENB' TRACE COMPLETED' Display the message if bit 14 of system
variable TST is true.

A mask value of 1 tests the status bit that is true when the trace module is running. A mask value of 2
tests the status bit that is true when a trace operation has completed. A mask value of 4 tests the status
bit that is true when an event and delay completion has occurred.

5.11.7 STOP TRACE COMMAND. The Stop Trace command (THLT) stops the trace module, and
returns the status in system variable TST. The syntax for the THLT command is as follows:

2THLT;

5-53 Digital Systems Division




946244-9701

When the trace module has been started and has not been stopped by the internal circuitry or by the
emulator, the THLT command stops the trace module. The command displays the trace module status
(system variable TST). Since the status is read after the trace module is halted, only the even numbers
in table 5-4 apply. The following is an example of the THLT command:

? THLT: Stop the trace module. Status indicates
>00a2 that the trace is stopped, the trace
- operation has completed and the event

and delay operation has not completed.

5.11.8 READ LOW-ORDER TRACE MODULE MEMORY COMMAND. The Read Low-Order
Trace Module Memory command (TTB) is a system function that reads the 16 low-order bits of the
specified stored value. The syntax for the command is as follows:

2TTB(<index>)

The index operand may be any valid expression. When the value of the expression is a valid index to
the trace memory, the command displays the value stored in the low-order 16 bits of the location
corresponding to the index value. Two system variables contain the limits of valid index values. System
variable TTBN contains the index value corresponding to the most recently stored value. System
variable TTBO contains the index value corresponding to the oldest value stored.

When the trace module is running, it stores a value in trace memory when the qualifiers have the
specified values and a clock occurs. The trace module may be stopped internally when a specified
number of values have been stored or when a specified number of events and a specified delay have
occurred. In these cases, or when the operation is stopped by the emulator or by command before the
event and delay have occurred or the trace operation has completed, the most recently stored value
correspond to an index of zero. When the event and delay operation has completed before the trace
module halts, the index value of zero corresponds to the value stored by the specified event, and values
stored during the delay period (and during the time required by the emulator to complete execution of
the current instruction) are accessed by positive index values. Values stored prior to the value
corresponding to index 0 are accessed by negative index values. Figure 5-2 shows an example of trace
memory contents, assuming that the fourth value traced was the specified event, and that a delay of two
was specified. The example also assumes that the completion signal stopped the trace; no additional
delay occurred. The index of -3 corresponds to the first value traced and negative values denote
successive values traced. The event value corresponds to index value 0. The values corresponding to
indexes 1 and 2 were stored at delay counts.

In the trace module, the delay count and a further delay while the currently executing instruction
completes, can cause additional values to be stored. When the total delay causes 256 or more additional
values to be stored, the value associated with the specified event is overlayed by another value. The
index value is also misleading. This problem can be avoided by limiting the magnitude of the value
placed in the delay register by a TEVT command, and entering TBRK and EBRK commands that
cause the trace module to stop.

When the trace module is connected in the emulator control and data mode, the 16 bits read by the TTB
command are either memory data or memory addresses, as selected by a TTRC command prior to the
operation. In the other two connection modes, the bits are signals to which the probe leads
corresponding to the 16 low-order bits (D4 through DI19) are connected.

5-54 Digital Systems Division



946244-9701

INDEX

-3 FIRST VALUE STORED

-2 SECQND VALUE STORED

-1 THIRD VALUE STORED
(o] FOURTH VALUE STORED—-EVENT
1 FIRST VALUE STORED AFTER EVENT
2 SECOND VALUE STORED AFTER EVENT

(A)137457

Figure 5-2. Trace Memory Contents After Trace

When the target system uses a TMS 9980 microprocessor, each memory access transfers a single byte.
Trace memory stores 16 data bits and four qualifier bits, when the trace module is connected in the
zmulator control and data mode. Figure 5-3 shows the contents of trace memory when data is traced
and qualifier QO is masked off (not specified in the TTRC command). The first memory access after
«tirting the emulator is one in which QO is true. Subsequent memory accesses show QO alternately false
and true. At each memory access during which QO is true, the most significant byte is the addressed
hyte and the least significant byte contains random data. At each memory access during which QO is
false the least significant byte is the addressed byte, and the most significant byte is unaltered. The
contents of trace memory when the trace is specified in this manner show the way in which the 8-bit
accesses are combined in a 16-bit word, and also show that tracing with qualifier QO false selects only
alternate memory accesses during which the word on the data bus coincides with the word as stored in
target system memory.

Alternatively, a TTB command and its operand may be used as a variableinan AMPL statement. The
stored value corresponding to the value of the operand becomes the value of the command when used

as a variable.

The following are examples of TTB commands:

R 2 TTB (@) Display the low order 16 bits of the value
>78E2 stored as the specified event.
\ FFF% TTB (25) Display the low order 16 bits of the value

stored at the 25th delay count following
the specified event.

? NUADD = TTB(@) + 10 Assign a value to user symbol NUADD.
The value is the sum of the value in the low
order 16 bits of the value stored as the
event plus 10.

5-55 Digital Systems Division



946244-9701

INDEX QO Q1 Q2 Q3 BITS 4 - 11 BITS 12 - 19
-3 1 XX | X BYTE O XX XXXXXX
-2 0| XX |X BYTE O BYTE 1
-1 1 X|X | X BYTE 2 XX XXXXXX

(o] 0| XX |X BYTE 2 BYTE 3

NOTE: BITS REPRESENTED BY X ARE BITS THAT MAY HAVE EITHER
VALUE. BYTES O THROUGH 3 ARE FOUR CONSECUTIVE BYTES
OF TARGET MEMORY, WITH BYTE O CORRESPONDING TO ANY
EVEN (WORD) ADDRESS.

(A)137458

Figure 5-3. Trace of Data Stored in Trace Module During Unqualified Trace of TMS 9980

5.11.8.1 System Variable TTBO. System variable TTBO is set to the index value of the oldest value
stored in memory by the trace module. TTBO may not be assigned a value by the user, but may be
displayed when the trace module is not running. The value of TTBO is the smallest (most negative)
value that may be used as an index ina TTB or TTBH command. When this value is greater than the
value of system variable TTBN, no values have been stored and a TTB or TTBH command cannot be
executed. The following is an example of a display statement to display TTBO:

? TTBO Display the most negative valid index to
>FFae trace memory.

5.11.8.2 System Variable TTBN. System variable TTBN is set by AMPL software to the index value
of the most recently stored value in trace memory. TTBN may not be assigned a value by the user, but
may be displayed whenever the trace module is not running. The value of TTBN is the largest (most
positive) value that may be used as an index ina TTBor TTBH command. When this value is less than
the value of system variable TTBO, no values have been stored anda TTB or TTBH command cannot
be executed. The following is an example of a display statement to display TTBN:

? TTBN Display the most positive valid index to
>@@5F trace memory.

5.11.9 READ HIGH-ORDER TRACE MODULE MEMORY COMMAND. The Read High-Order
Trace Module Memory command (TTBH) is a system function that reads the four high-order bits of
the specified stored value. The syntax for the command is as follows:

? TTBH(<index>)

5-56 Digital Systems Division




@ 946244-9701

The index operand may be any valid expression. When the value of the expression is a valid index to
the trace memory, the command displays the value of the four high-order bits in the location
corresponding to the index value. The bits are displayed right-justified in a 16-bit word, zero-filled to
the left. The limits of valid index values are the same as described for the TTB command. The four
high-order bits accessed are stored by the trace module along with the 16 low-order bits accessed by a
TTB command that specifies the same index. The description of index values in paragraph 5.11.8
applies to the TTBH command also.

An alternate form of the command displays a value of zero (false) or one (true), the result of comparing
specified bits of the four high-order bits with specified values. The syntax for this form of the TTBH

¢ommand is as follows:
ERIEATRIEN
[-§ Q@] L-1Q1f -1Q2] l-fQ3
f| (+] (+] ]
|-f 1AQ | ||-/ DBIN| |!-J EMU

The index operand has the same form and limits as in the other form of the command. The second
operand is a series of one to four keywords each preceded by a sign. The series denotes a value and a
mask for comparison with the four high-order bits. When a keyword is preceded by a plus sign the
value of the corresponding bit is one. When a keyword is preceded by a minus sign, the value for the
corresponding bit is zero. The sign may be omitted preceding the first keyword; the plus sign applies.
When a keyword is omitted, the bit is masked off, and is not used in the comparison. When the
specified bits have the specified values, the command returns one. Otherwise, the command returns
zero. The alternate keywords apply when the trace module is connected in the emulator control and
data mode.

2TTBH(<index>,

Either form of the TTBH command may be used as a variable in an AMPL statement.

The following are examples of TTBH commands:

? TTBH (@) Display the high order four bits of the
>P0@D value stored as the specified event.

? TTBH (@,Q0+Q1-Q2):B1 Display‘the same value as the result of a
<1 comparison.

? IFBTTBH(@,EMU)BTHEN TTB(@) Display the low order 16 bits of the value

stored as the event when the event was also
an emulator event (emulator control and
data mode).

5-57/5-58 Digital Systems Division






{@ 946244-9701

SECTION VI

ERRORS AND RECOVERY

6.1 INTRODUCTION
Error messages are printed on the system console when errors are detected. This section lists the
error messages and methods of recovery from errors.

6.2 ERROR MESSAGE FORMATS

AMPL software provides two categories of error messages. The warning messages are displayed
when conditions which do not necessarily require termination of the command are detected. The
error messages are displayed when error conditions are detected. The following is an example of
4 warning message:

*xx WARNING 204 Ppp@ 90p1
EMULATOR TRACING WITH TRACE/
CONTROL MEMORY SELECTED

The number 204 is the message number. The leftmost hexadecimal number is the contents of
workspace register zero, and the second hexadecimal number is the contents of workspace register
one. The error message on the next line identifies the warning as the result of an emulator trace
operation while the trace operation while the trace memory is available to the target system.

The contents of workspace registers zero and one are printed with all messages; in the case of
the example message, only the most significant byte oi workspace register zero is relevant. For
an emulator DSR error, the DSR error code is in that byte, and it identifies the error as a device
error; the emulator is unable to perform the operation required to read the target system
registers (WP, PC, and ST). The user must refer to the operating system manual for explanations
of DSR error codes other than the three listed in the message.

The following is an example of an error message:

*** ERROR 5 >9CC6 >2704
I/0 ERROR; UNABLE TO OPEN FILE

The number 5 is the message number; the leftmost hexadecimal number is the contents of
workspace register zero, and the second hexadecimal number is the contents of workspace
register one. The error message identifies the error as an /O error that occurs because the file
cannot be opened. The only relevant information is the most significant byte of workspace
register one, which contains the I/O error code (DSR error code) as listed in the operating
system manual. The code in the example, 27,¢, indicates that the file name is undefined.

Some types of errors display a symbol also, as follows:

*** ERROR 103 TSTP  =>AAA6 >0009
SPECIFIED SYMBOL HAS NOT BEEN DEFINED

6-1 Digital Systems Division




946244-9701

The number 103 is the message number, which is followed by the characters of a symbol, an
equal sign, the contents of workspace register zero, and the contents of workspace register one.
The error message on the next line identifies the error. The contents of the workspace registers
are not relevant in this case.

Only eight error messages are memory resident; these are error messages for errors that occur more
frequently. The messages for errors 1, S, 6, 7, 103, 113, 117, and 224 are memory resident and are
printed whenever these errors occur. Messages for the remainder of the errors are on an error message
file; when this file is available messages are printed for all errors. When this file is not available only the
first line (containing the error number, optionally a symbol, and the contents of workspace registers
zero and one) is printed when errors other than those for which the messages are resident occur. The
circumstances under which the error message file is available differ for different operating systems.

Under TX990 the error message file is on the system diskette. When the system diskette is on floppy
disk unit I (lefthand unit) the error message file is available. If the system diskette is on another floppy
disk unit, or if the error file has been deleted to provide more space on the system diskette for other
files, the error message file is not available.

Under DX10, the error message file is installed under the pathname .S$SYSLIB.AMPLSET1. When
this is done, error messages are available unless the error message file has been deleted or its pathname
changed, or the disk volume has been unloaded.

During initialization of AMPL software, immediately after loading the software, the error message file
is opened. If the file is not available, message number 5, UNABLE TO OPEN FILE, is displayed.
When errors for which error messages are not memory-resident occur, the user will have to look up the
error message from table 6-1.

If the user should remove the system diskette or unload the disk volume that contains the error message
file, and an error occurs (other than those for which the messages are memory-resident), the software
prints message 7, I/O ERROR; READ ERROR. Any further errors are identified as if the error file
had not been opened.

Table 6-1 lists the message numbers and their significance, and the possible ways of recovering
from the error. It also indicates which messages display a symbol, and which register contains
relevant information. Some message numbers may appear in either a warning message or an error
message, depending on the severity of the condition in the context within which it is detected.

6-2 Digital Systems Division



946244-9701

“JUSIDIEIS
10 pUBWWOD dY} dINOIXd
01 jdwene I9yjoue MEW

‘JUSWIdIR)S IO PUBWIWIOD 3y}
1noaxa 031 1dwalie Isyjoue
ojew  ‘esmIayyQ - Aerdsip
e 3uunp pessaid sem A9y DSH
a3 *91gQ st 9p0d 10113 /T JI

*indur 3091100
pue 9pod I01Id H03Y) "dUWIBU
oiy  peuyepun  ‘AqreordAf,

‘weidord TNV 1ieisel pue
peoey 'Io11d waisAs TIWV

*1181891 AQ paIeald a1e 35e103s
gupjiom pue 9[qel [0quAS
‘weidord  TJWNV  HEISOY
*10110 WiISAS TV 91918804

‘parmbair 198uo] ou are jeY)
a5yl Jo Aue 919[39(Q “SAEIIR
pue ‘suonjounj ‘sainpaooid
Jo [nj st afe10ls SUD{IOM

-weiford TNV MBSl pue
peOPY 9pPOd 10113 PI[BAU]

A13A009Y

JUBAJ[3I1 JON

914q jued
-y1udis Jsout ur
9p092 10113 Q]
914Aq jued
-1j1udis Jsoul Ut
apo9 10118 Q]

juBAS[RI JON

JUBAJ[21 JON

JUBAQ[OI JON

JUBAJ[3I JON

surejuo)
™

914q jued
-j1ugis jsout ut
apod 10118 Q]

1UBAR[AI JON

1UBAS[aI JON

JUBAJ[AI 10N

JUBAQ[I 10N

JUBAJ[OI JON

JUBAS[3I JON

surejuo)
0d

ON WOYYd avay ~Y0oddd 0/1

XX9¢ = 1¥ - A9¥ ddVvOSsd

ON WO ALIIM MOIdd O/1

ON 9714 N3dO OL FT4VYNN 0¥ ¥d O/]

iNOILVTOIA

ON INTNOFS 40T YT TYNILLNI

iAINIT-ANO

ON NIDFg OL FTAVNN 0¥ dd TVNULLNI

SAVIIV/SONNA

ON /S00¥d AWOS 4137dd ‘MOT d0VdSdddd

il 4odydd

ON QANIAAANN 0¥ dd TVNAILNI
(paung Jdesso

[oquIAS

sofessapy Suruwiepy pue 1017 [-9 3jqEL

nRqunN
afesso

Digital Systems Division

6-3



946244-9701

‘ ¢

*9ZIS 1By} Jo Alouraw
Ul 9INJ9X2 JOU [[IM WAISAS oY)
‘a1em1JOs TJIV JO uonezifen
-1ur SuLINp SINd00 SIY} UdYM
"an[eA I9J[BWS B UIIM puBW
-Wwod 9y} I9JUdAIl ‘puBWILIOD
1D & umofjoj panssi st oges
-sowI STy} UAYA, "9zIs pajsenb
-31 JO 9[qel [OqWIAS Idsn IpIA
-01d 0) Aloww JudLInSu]

*A[1921109 21ND
-9X?d jou Aew J[Mpow paIpeo!
AJ3uadal jsow ayl ueyl Isyjo
s[npow B JO S[OQWAS 3[npow
PeOJ seduaIgjal 1Byl uonouny
10 a1npadoid e JO uonNOAXyg
‘PUBWILIOD Y TD B ddUIS P2
-uirojiad uaaq sAey palsenbar
S[oqQuiAs s[npouwr Yim suon
-elado pEOJ U231J1] UBY] AIOW

*sa19[dwos uonjouny 1o ANPId
-01d 2y} uayM 9AI1193}J2 SI UOT}
-ounj 10 aInpadoid B uiym
PUBWIWOD THAW 10 3T4d V
"PUBIIOD (VT UT pIomAaY
J40 9sn 10 ‘panmnbar 133uoj
ou aie Jeyl sAele I0 ‘suop
-ounj ‘sainpaooid Aue 23afep
‘uree sInodo 10119 J| -ureSe
uonjerado peo[ 9y} A ‘pa
-peo] Sureq sjoquiks a[npow
PEO] Y} I0J WOOI 3ABY
jou soop aSeiols Jupjlopm

A19A003Y

JUBAJ[OI JON

JUBAJ[a1 JON

JUBAJ[RI JON

suiejuo)
&

JUBAQ[AI JON] ON
JUBAJ[3I JON ON
JUBAQ[AI JON ON
surejuo) (parung
oy Joquig

(panunuo)) safessafy Jururep pue 1ouy -

4Dd9VT 001
419V L TOGINAS d4SN d41SaN03d

1O LSVT dONIS
SAVOT ST NVHL 40N SHONTITITA
TOIWAS ITNAONW AI'TVANI 3T4ISSOd

dD0dVT 001 9419VL TOdWAS dTNAONW

JFessopy

[-9 3IqeL

(0

l_quny
3gessoy

ivision

tal Systems D

igi

D



946244-9701

‘[OquIASs 1091100 oY} I9IUd
¢A13991100Ul PAIAIUS UIDQ SBY
[oquIAs B UayAp\ ‘[OquIAS Y]}
I9]Uda1 PUR JI 919[9P ‘[OquIAS
oY) au1japal 0, *AelIe 10 ‘UOT}
-ounj ‘ernpadoid B jo sureu
ays o3 sordde ofessour styp

"JUSLUS)R)S 10 PUBWILLIOD
12)uda1 pue ‘paimnbar 193uof
ou oIt JBY) SARIIE 10 ‘suop
-ounj ‘samnpadoid Aue 9319[9Qq

‘oIBM
-pIBY UO JJUBUIIUTBWI WIOJ
-10d 10 weidoid TJWV peojal
‘sysis1od 10119 J] °IUSWIAIEIS
I0 PUBWIWIOd dY) I191Uddy
‘pieaut st 1asied 9y} Aq xap
-ur 9y} se paudIsse anjeA Y[

‘pauljap u9aq sey 18yl [0quuAs
® 19JUS 10 ‘JOQWAS oY) dulja(]

‘[OquIAs wia)
-sAs paj1oads a1} Jo anjea ay)

19118 01 paniuiiad jou s1 Iasp)

‘JoquiAs walsAs payydads ayl
peal 0} paytwiad 10U SI 19s[)

A1A000Y

JUBAS[AI JON

JUBAS[RI JON

Xapul 1asIeg

JUBAQ[I JON

JUBAS[I JON

JUBAQ[aI JON

surejuo)
8-

1UBAQ[0I JON

JUBA9[aI1 JION

JUBAJ[AI JON

1UBAS[AI JON

JUBAQ[AI JON

JUBAQ[AI JON

surejuo)
0d

SOX

ON

ON

SOA

SOA

SOA

ipayulid
[oquAS

AANIA3a3y
44 LONNVD TOGWAS ddI410ddS

INHWALVLS NVIDOUd
TVNYALINI 404 AYOWIW HONONH LON

JONVYH 40 LNO XdANI 4T19V.L
HONVYE NID3d0D “40¥dd TVNIILNI

daNIdad
Nd449 LON SVH TOGWAS dZ1410ddS

NALLIEM 39 LONNVD TOdNWAS AdI41DddS

avdd 39 LONNVO TOINWAS ddI4I0ddS

afessoy

(panunuo)) safessajy Suiwrep pue Jou1y "1-9 dqe]

° o

901

SOl

01

€01

01
101

JaquinN
afessopy

Digital Systems Division

6-5



946244-9701

. “

‘oIempIBY UO  9OUBUIIUIBW
unojied 10 ‘weiSoxd TJWNV
pEOJ9Y 10119 WoISAS TIWV
ue SI IOIId ‘OS J] ‘1091109
are siojerado Jeyl  Yooy)

*A[1991100 paId}
-U9 9I® SJURISUOD JBY} YO3Y)

"aIem
-PIBY UO 9OUBUSIUIBWL WIOJ
-1od 10 weifoid TJJWV peoJaI
‘sysistad 10119 J] JUSWIAIELS
I0 pUBWIWOD dY) INUFY
*PI[BAUL ST I9UUBOS 3} AQ Xop
-ur 9y} se paudisse anfeA oy

-gurnys 19308180
19)I0ys B Idjug ‘I19)ynq 8y}
SMOTJI9A0 SI9JOBIBYD {9 UBL}
arow jo Suins I9)0BIBYD Y

"s19)oBIBYD paimbar 1910
10 syuerq Sursstu  A(ddns
pue ‘Surfjadssit Aue 393110
‘sjuowiuiod  pue  ‘s3uins
‘s10je19do ‘s19)0BIRYD jBULIOJ
‘SJUBISUOD  ‘S[OQUIAS 09D

‘parmbai 193u0]
ou aIe jey} sAeire 10 ‘suon

-ouny ‘samnpadord Aue s19[e(g

K19A009Y

JUBA3[3I1 JON

JUBAS]AI 10N

JUBAQ[I JON

JUBAS[AI JON

JUBASJAI JON

JuBAQ[al JON

surejuo)
na

juBAQ[aI JON ON

JUBAS[AI JON ON

JuBAS[aI JON ON

JUBAR[RI JON ON

JUBAQ[RI JON ON

JUBAS[AI JON ON
surejuo) iparung
0 loquig

(penunuo)) sofessapy Sururepm pue souy

JOLVIddO
QANIAFANN “J0dYT TVNITLNI

NAMOL NVIS AI'TVANI

FONVY 40 LNO XdANI T14V.L
HONVIE JANNVYOS HOddd TVNAILNI

(XVIN SYALIVIVHD +9)
ONOT 00L ST NTIOL LNdNI

AI'TVANI
ATIVOIXdT ST LNHWALVLS LNdNI

NOILONNA/TINAIO0Ud
V 4LVAY0 OL AYOWdW HONONE LON

JBessay

1-9 d19eL

(48!

1Tl

oIt

601

801

LO1

quny
Jfessopy

Digital Systems Division

6-6



946244-9701

*IBMpIRY
uo sourudjurewr uuojied Io
‘weidoid TJWV peojey "Iol
-Io WalsAs TV Uue St siy],

*191Ud
-91 pue ‘JusWIdIR)S 10 puUBW
-wod Y} JO XBIUAS 9y} Yooy)

ad A3 119
10J 93ueI 9y} UTY}M dIe pue
ad£) 119y} 10j sioquinu pieA
oyl AJuUO UIBJUOD SJUBISUOD
1Y) Yoey) -I1e8ajur Areurq
11Q-9] B 01 1I9AU0D A[)091
-100 jOU S90p Ilaquinu AYJ

*pauljapal 9q Isnuu sAeire
pue ‘suopounj ‘saInpaooid
‘spoquiAs 19sn paiinbay ‘sqel
[oQuAs 9y} Ied[d O} puew
w09 YD ® 191U Isnur I1as))

‘JToquiAs Y}
SUIBIUOD J[npour ey} AJIIOA
‘popeO] Sem JBY} Impow
pue [oquis jo Surjads AJiIap

*Burssaooid ur pasn
pue ‘sIojoBIRYD XIS 01 PIIBd

-unI} ueaq SeY [OquAs oYL

A13A009Y

HLONAT ONIYLS
JUBAQ[I JON JUBAS[aI JON ON QIOMATY AVe “dOWIT TYNIILNI
JuBAd[aI JON JueAQ[aI JON ON JOWIT XVINAS

SLIg 91

JueAd[aI JON JUBA3[3I JON ON NVHL JALVIID ‘LNVISNOD AI'TVANI

TINAII0Ud

J10 dHL HLIM 319VL TOIWAS

JuBAI[RI JION juBAd[aI JON ON JHL IVITO T10d T19VL TOINAS JdsSN

TOIWAS TINAONW

JUBAJ[3I JON 1UBAd[AI JON ON V SV ANNO4 LON TOGIWAS ad14103dS

JUBAS[aI JON JuBAd[aI JON ON SYALOVIVHD 9 OL AILVONNYL TOINAS
surejuo) surejuo) (pajung Jdessopy

1 (i} [oqui4s

(panunuo)) saessajy Suruwrep pue Joury "1-9 JqeL

° ® ° .

8II

LT11

911

SIIT

148!

€Il

BET LI
Jesso

Digital Systems Division

6-7



946244-9701

"Pa19[op dIk ‘AUB J1I ‘pUBLIWIOD
3y} Ul S[OQWAS IdYIQ ‘P
-3[op 9q jouued SJOqUIAS 19s()
"Aelle 10 ‘uorjounj ‘aInpad
-01d ® JO SWeU © JOU SI PUBW

-wod g4 & ur puerado uy

'Po19]ap oIk ‘Aue JI ‘s[OQuIAS
YO "9[qe} [0qQuAS  Iasn
oy} ut 1eadde jou seop puewr
-wod gI9Q ® ul pueiado uy

*$921pUl JO Iaquinu
Jwies 9yl YIIM pauljepal aq
AJuo Aew sweu Aelie 9y} ‘pa}
-3]9p U93(q SBY ABIIR UB USUM

jusuIdlels YO 10 ‘LvaAdad
‘TTIHM ® uUlyim prjea Afuo
ST juswlels J4vOSd Uv

‘sosayjuared utyIIm
syduosqns  jJo requinu  }oal
-100 Y} 9ABY JOU S0P judW
-9]0 ABIIE UB 0] 20UdIRJAI Y

“Juels
-U0d> UONONIISUl Ay} I19jusal
PUB XBJUAS UOBONIISUI 3}
}O9YD °I0II3 XBJUAS B SUIE}
-uoo sudis punod 9y} usam}aq
JUQWIB)S 9POD 90INOS Y

A13A009Y

JUBAJ[aI JON

JUBAQ[AI JON

JUBAQ[AI JON

JUBAS[RI JON

JUBAS[I JON

JUBAS[AI JON

surejuo)
R |

10119
“ut pueiado
Jo requinN

Io119
ut puerado
Jo 1equinpN

JUBAQ[aI JON

JUBAQ[AI JON

JUBAJ[AI JON

JUBAJ[AI JON

surejuo))
1)

ON

ON

ON

ON

ON

ON

iparung
[oquig

ad1a1aa

49 AVIN SAVIUV/SNOLLONNA
/STINAID0Yd A'INO ‘adla1dda
d49 LONNVD TOGWAS ad14103dS

JT14VL TOINAS
NI dNNO4 LON d4d.137T4d 39 OL TOINAS

NOILINIA4d TVNIDIIO
NI ddSn SV SIOIANI 40 JF9NNN
JWVS 4S50 LSOW NOILINIJIddd AVIdV

LONYLSNOD
dOOT V NI 411200 LON dId ddvIOSd

SLdIgOSsdNsS
AVIIV Mdd 001 40 ANV OOL

SYALINITIA # #
NHIMLEG XVINAS M0dHO INIWALVLS
ATGIWASSV-ANIT-ANO NI 4Oddd XVINAS

3essopy

(panunjuo)) safessojy Suruwiep pue rouq “J-9 dqeL

coc

10¢

(44!

611

Rpquny
a8essoy

Digital Systems Division

6-8

bt .t o



946244-9701

"PIO}] Ul Uaym dunnol
PBOJ 21j3 Sf21U2 WaIsAs 10318}
J1oynsas ued> s[yp Cs19)stdan
waisAs 319318} 9yl peal jou
-UBD WIAISAS 31} USYM SINdO0
(tom1g 9omaq) 91,0 opod
10113 O/ P00 wdlsAs ja31e)
¥oou)y ploH ur paderd aq
JOUUEBD IOIB[NUWD UdYM SINOJ0
(1ng pauwir] uonerad) 9190
opod 10113 (/] ‘perdwisiie
SI SSOIppE  pIEAUI UB O}
$$900B  UYM SIN0J0 (10119
ojup Atowspy) 9Tgp apod
10112 /] Suruuni st 1o0ie]
-nwa dym pardwalie st A1o
-wrowr ja81e) JO UM IO peaI
v ueym sinddo (uoperadQ
1e3s1]) 910 9pod 10112 (/]
“JUSWAIE]S 10 PUBWILIOD IdJUD
-31 pue puewwod N[ Idjug

‘auo 01 138 WIg Wim Sul

-or1) Aniym °' 444 ySnonp
210094  wolj  sassaIppe
Alowaw $s3908 JOU ISnu Wa}

-sAs 19818 ] ‘AloWwow 90eI} 10
waIsAs 198Ie] pue I0jRINWI
U99M19Qq UOTIUIIU0D J[qISSOq

*JUSW)e)S I9JUSAI pUB UOH
-8o1J10ads JBULIOJ Y} }93110)

A19A003Y

914q
JuedIJIUSIS Jsow
JUBAQ[3I JON ur 9pod 10113 O/

JUBAQ[I JON JUBAS[RI JON

914q juedyjruds

Jsour uf 10119 uf

19]0BIRYD JBULIOJ

JUBAQ[AI JON 10J 9p09 [[DSV

surejuo) surejuo)
& 0d

ON

ON

ON

¢payutd
[oqQuIAS

FOYdd 401Add = XXLO

‘LNO A4WIL NOILVYddO = XX90

“YOYYUd d1LIAM AIOWIIN = XXSO

‘NOILVIAdO TVOdTTl = XXT0

‘@dZITVILINI LON dOLVINWNE = XXIO
40OYId 4SA JOLVINIWA

AdLOTTdS AYOWANW TOYLNOD
/AOVIL HLIM ONIOVIL YOLVINNWA

“DNIMOTTOA
JHIJIAON AV1dSIAd AI'TVANI

afessoy

(panunuo)) safessay Suruaepy pue 10Uy “[-9 qe]

® ‘

S0C

0C

€0C

RPqunN
a8essapy

Digital Systems Division

6-9



9462449701

~NMAAyV 10 v1vda Ayoads
10U S0P JBY} PUBWILIOD

JYLl Iejus 10 ‘pUBLILIOD
JYLL 191Ud3I puR I10}R[NUID
01 9[qEO BIEP }O9UU