MODEL 990 COMPUTER
REFERENCE MANUAL

PRELIMINARY

T1 CLASSIFIED

TIINTERNAL DATA

PROPERTY OF TEXAS INSTRUMENTS ONL.Y!

TEXAS INSTRUMENTS

INCORPORATED

MODEL 990 COMPUTER
REFERENCE MANUAL

PRELIMINARY

MANUAL NO, 943442-9701
ORIGINAL ISSUE 15 JUNE 1974
REVISED AND REISSUED 1 OCTOBER 1974

TEXAS INSTRUMENTS

INCORPORATED

(:) Texas Instruments Incorporated 1974
A1l Rights Reserved

The information and/or drawings set forth in this document and all rights in and
to inventions disclosed herein and patents which might be granted thereon disclos-
ing or employing the materials, methods, techniques or apparatus described herein
are the exclusive property of Texas Instruments Incorporated.

No disclosure of the information or drawings shall be made to any other person or
organization without the prior consent of Texas Instruments Incorporated.

INSERT LATEST CHANGED PAGES DESTROY SUPERSEDED PAGES

LIST OF EFFECTIVE PAGES

Note: The portion of the text affected by the changes 1is

indicated by a vertical bar in the outer margins of
the page.
Model 990 Computer Reference Manual, Preliminary (943442-9701)

OriginalIssue + « v s ¢ o s s e s s s s0seas 15 JTJune 1974
Revised and Reissued . « v v v v v v e s s o » 1 October 1974

Total number of pages in this publication is 355 consisting of the following:

PAGE CHANGE PAGE CHANGE PAGE CHANGE

NO. NO, NO. NO. NO, NO,
Title « v v s v e 0. 0 AppBDiv,..... 0 AppGDiv.0
ii-%xiveeousseo..0 B-1-B-4......0 G-1-G-2.......0
1-1 -1-16......0 AppC Div...... 0 AppHDiv.......0
2-1-2-62......0 C-1-C-4......0 H-1-H-8.......0
3-1 -3-50......0 AppDDiv...... 0 ApplDiv.......0
4-1 - 4-68......0 D-1-D-12.....0 I-1-1-10.......0
5-1 - 5-46,.....0 AppE Div......0 User's Resp 0
6-1-6-4.,.....0 E-1-E-12.....0 Bus. Reply......0
7-1-7-10......0 App F Div......0 Cover Blank , 0
AppADiv......0 F-1-F-4......0 Cover0
A-1-A-16.....0

{@? 943442-9701

TABLE OF CONTENTS

Paragraph Title Page

SECTION I. SYSTEM INTRODUCTION

1.1 Model 990 Computer . « « v v v v v v o v v b o o v v o e 1-1
1.2 System Components " oo v v v v v v e e e 1-2
1.2.1 TILINE Interface v v v v v it o e ettt eus 1-2
1.2.2 CRU Interface . .« ¢« v v v v v v vt vt et vt e e e e 1-2
1.2.3 Arithmetic Unit e e e e e e e e 1-4
1.2.4 Memory and Controller. e e e e e e 1-4
1.2.5 Expansion Memory. Ve e e e e e 1-4
1.2.6 Power Supply.o v e e e e e e e 1-5
1.2.7 Chassis and Backpanel 1-6
1.2.8 913 Video Display and Keyboard e e e 1-7
1.2.9 TI Model 733 ASR. . . . v v v i i i it it v e vt e v o 1-7
1.2.10 ' TTY/EIA Interface Module. . . v v v v v v v v v v v 1-8
1.2.11 Input/Output Data Module. 1-9
1.2.12 Modem . . . v v v i i i it e e e e e .. 1-9
1.2.13 Maintenance Console, v v v vt v v v v 1-9
1.3 Hardware Implementation 1-9
1.3.1 Double-Connector Circuit Boards 1-10
1.3. Single Connector Circuit Boards., 1-11
1.4 System Applications oo i e ce e 1-11
1.4.1 Processor Terminal. v 1-11
1.4. Industrial Process Controller. 1-12
1.4.3 Software Development Computer 1-14
SECTION II. MAINFRAME HARDWARE

2.1 Introduction. « v v v v v e e e e e .. 2-1
2.2 Arithmetic Unit « v v v v v v v v v v e et o e e e oo e v 2-1
2,2.1 AU Control & v v v v v i e v et e s e e e e e e e 2-1
2.2.2 Instruction Register oo v v v v v v oo v 2-1
2.2.3 General Registers ¢ o v v v v vt v v v v v v o 2-3
2.2.4 Workspace . v v v v v vt i e e e e e e e e e e e 2-3
2.2.5 Workspace Pointer oo v v v . 2-3
2.2.6 Context Switching e e e e e 2-5
2.2.7 Arithmetic Logic Unit (ALU) 2-5
2.2.8 Byte Processing. . . v v v v v e v v v v v i it e 2-5
2.2.9 Program Counter (PC) . . v v v v v v v v e v v v v o . 2-6
2.2.10 Address Definition Code Register (ADC). 2-6

iii Digital Systems Division

2

Paragraph

043442 -9701

NN NNNNNNNNDNNMNNNNNNNNNNNNDNNDNDNNDNDNNDNDNDNDNDDNDDNDDNDDN

W wwwwww

NN OO OO ONUTUI UG UL R R WD W LW WWWWWWLWwNDNNDN

NV DN -

11
.12
.13
.14

0 ~JO0NUl b W=

N

B W N

O~ hWIN

(2 T NN OV N I

TABLE OF CONTENTS (Continued)
Title Page
ILoader ROM . . v v v v v v v v v oo ot v e v v v s . 2-8
Status Register oo v v vt v oot v v .. 2-9
Interrupts « + v v v v o v vt e e e e e e 2-10
Arithmetic Unit Clock. . . . v ¢« ¢ v 0 v v v v v v o v v 2-13
TILINE., « v v e o v v v s o s s o o s o s oo s ot oo s s oo 2-14
Master-Slave Concept. « « v v v v v v« e e e e e 2-14
Interface Signals e e e e e e e .o 2-14
TILINE Priority. « « v o o v v v v 0 v o o v o o v s 0o o 2-14
Priority Determination . « . v .« v v v v v v v v v . 2-18
TILINE Write Cycle+ ot s e e e e e e 2-19
TILINE Read Cycle e e s e e e e e . 2-20
TILINE Time Out. et e e e e e e e e e 2-23
Design Characteristics e e e e 2-23
Hardware XOP Interface « « v v v v v v v v 0 v v 0 v 0 o . 2-24
XOP Interface Signals 2-24
Hardware XOP Operation. « « « ¢ v v v v v v v v v v a 2-25
MEMOTY o v o o ¢ v o v o s o ot o o o s s s o s o s s oo o .. 2-29
Memory Chip. et et e e e e 2-30
Controls and Indicators . « « « v v v v v v v v 0 v 0 v 0 2-30
Memory Interface. . .« . v v« v v v v v ot . 2-32
Memory Controller Operation.o 2-33
Communications Register Unit (CRU) Interface 2-40
CRU Applications . « « v v v v v v v v v v o v 0 v 0 v v . 2-40
Interface Signals e e e e e e e e e . 2-41
Interface Timing e e e e e e e e ee e 2-41
CRU Addressing. « « v v v v o v ¢ v v v v s s o s s 0 s o 2-41
Single-Bit CRU Operations. « « .+« « e v v v v v v v 2-47
Multiple -Bit CRU Operations . « . . .« c v v v v 0 v 2-47
CRU Modules. « . et e e e s e e e s c e 2-50
Electrical Requirements o0 v v oo . 2-52
Maintenance Console., « « v ¢« ¢« v v v v v v v v v e e . 2-53
Controls and Indicators . « « v v « v ¢ v 0 v v v v v e s . 2-53
SECTION III. 990 COMPUTER PERIPHERAL DEVICES
Introduction. + « « v v o v v v v b it et e e e v e e 3-1
TI Model 913 CRT Display Terminal 3-1
General et v e e e e e e e e e e e . 3-1
Description. .« « v v v v v v v v vt o v o v o o v o v s 0o 3-1
Operating Controls, Display, and Keyboard 3-3
Capabilities. . « o« . v v v v v v o v v v v e e e e 3-4
CRT Display Specifications 3-4

iv

Digital Systems Division

Q
(_r@@ 943442 -9701

TABLE OF CONTENTS (Continued)

Paragraph Title Page
3.2.6 Installation . v v v v v v v v v v v v vt e e e e 3-9
3.2.7 Peripheral Kit Options (Kit part number

QT4T08) v v v v v v v v s v vt e v e Ce e e e s 3-13
3.3 TT Model 733 ASR Data Terminal Ce e e e e e . 3-13
3.3.1 General . v . v v v i i i i e e e e e e e e e e 3-13
3.3.2 Description. « « v v v v v v v v v v e e e e e e e . 3-13
3.3.3 Operating Controls, Indicators, and Kerv-board

Characters. « . « « v v v v v o v e e e e e .o 3-15
3.3.4 Capabilities. « « v v v v v v v v v v v B . 3-17
3.3.5 Terminal Specifications. e e e e e 3-18
3.3.6 Installation .« « v v v v v v v v v v v v v e e e e e . 3-19
3.3.7 Peripheral Kit Options (Kit part number

OT4TOT) v v v v ot e e ettt oo oot s s e a s o s 3-21
3.4 Model 33 ASR Teletypewrlter Data Terminal. 3-21
3.4.1 General ¢ v v i vt 3-21
3.4.2 Description. e e e e e e e e e e e e e e e 3-21
3.4.3 Operating Controls.« v e e e e e . 3-23
3.4.4 Capabilities. . . v . v v v e v v v v v v v v e e e e e 3-25
3.4.5 Terminal Specifications. « v v oo v v v v o 3-25
3.4.6 Installation « v v v v v v v v v v v e v e oo e ce e 3-26
3.4.7 Peripheral Kit Options (Kit part number

OTATO4) v v v v v vt e e v e v bt o s s o e ma oo o s 3-30
3.5 Modem Controller Communication I/O Moédule. 3-30
3.5.1 General i i i it e e e e e e e e e 3-30
3.5.2 Description. e e e e e e e e e e e 3-30
3.5.3 Capabilities. . . « « . o v o v v v v o0 o e oo a e .. 3-33
3.5.4 Modem Controller Specifications. 3-33
3.5.5 Installation e e e e e e . 3-33
3.5.6 Peripheral Kit Options (Kit part number

974709) . . . v v .. e e e e e e e e e e e 3-38
3.6 Asynchronous TTY/EIA Communications

Interface Module. v e v v v v v € r e e e e e 3-39

3.6.1 General . . v v v v v v vttt e e e e . 3-39
3.6.2 Description. . « « v v v v v e v v v v s T 3-39
3.6.3 Operation e e e e e ke ey e . 3-40
3.6.4 Capabilities. « v v v v v v v v v v v v o0 o o oo o s e 3-40
3.6.5 Module Specifications e e e e s 3-40
3.6.6 Installation « « v v v v v v v v v v et e e e e e 3-40
3.7 Data Module, 16 Input/16 Qutput. 3-44
3.7.1 General v i vttt e e e e .. 3-44
3.7.2 Description. « « v v o v v v v v v v 0 v v o P s e e e e 3-44
3.7.3 Operation C e e e e e e e e 3-44

v : Digital Systems Division

‘ o]
%@ 943442-9701

TABLE OF CONTENTS (Continued)

Paragraph Title Page
3.7.4 Capabilities. 3-44
3.7.5 Module Specifications . « « v v v v v v v v e e e s e 0 3-45
3.7.6 Installation . « v v v v v v v v v v v v e e e ee e 3-46
3.8 Prototype Development Cards. « « v v v v v ¢ v o o 0 s o 3-47
3.8.1 Single-Connector Development Card 3-47
3.8.2 Double -Connector Development Card. 3-48

SECTION IV. ASSEMBLY LANGUAGE MACHINE INSTRUCTIONS

4.1 General .. v v v v v b vt e e e e e ot e e e e e e e e e 4-1

4.1.1 Word and Byte Descriptions . « v « v v v v ¢ .. e 4-1

4,1.2 Memory Map and Memory Allocation. 4-2

4.1.3 Hardware Registers . « « « v ¢ v e ¢ s v v v 0 0 0 0 o . 4-2

4.1.4 Workspace Registers « . . v v v v v v v v v v v v v v . 4-4

4.1.5 Machine Instruction Descriptions ., 4-4

4.1.6 Format I Instructions . .« . « « v« v ¢ v v o o ¢ o s e e 4-8

4,1.7 Format Il Instructions. « « + « v ¢ v o ¢ o ¢ v o e o o & . 4-10
4,1.8 Format III Instructions . . « v ¢« ¢ ¢ v o 0 0 v s v o o s . 4-11
4,1.9 Format IV Instructions . .« « ¢« v v v v v v v v 00 v s . 4-11
4.1.10 Format Vinstructions. « « « « « v ¢ v v ¢ o v s 0 s s o 4-12
4.1.11 Format VI Instructions . + « « « v ¢ o ¢ v 0 0 ¢ v ¢ v o 4-12
4,1.12 Format VII Instructions. e e e e e e 4-13
4,1.13 Format VIII Instructions . . .« « « v v ¢ o s o & e e 4-13
4.1.14 Format IX Instructions « « « « « v ¢ o ¢ v s s v o o s o . 4-14
4.1.15 Determining Op Codes. e r e e e 4-14
4.2 Arithmetic Instructions. G r e e e e e e e . 4-15
4.2.1 A (Add Words). v v v v v v v o s e e e e e e e .. 4-16
4.2.2 AB (Add BYtes) v v v v v v v v s v s o s v 0 0 u s C e e e 4-16
4.2.3 ABS (Absolute Value) . « ¢« « ¢ ¢« v ¢ v o 0 s o ¢ o v o .. 4-17
4,2.4 Al (Add Immediate). « « « ¢ ¢ o ¢ o s o 0 o 6 o 0 v oo . o 4-18
4,2.5 DEC (Decrement) v ¢ v o o ¢« o ¢ o 0 a0 o o 0 s s 050 0 4-19
4.2.6 DECT (Decrement by TWO): v o v ¢ o v o s o s 0 5 o o o 4-19
4.2.7 DIV (Divide) « .+« v o o . e e e e e e e e e e s e e 4-20
4.2.8 INC (Increment by One) « « v v v v v o v v 0 o v o s oo 4-21
4,2.9 INCT (Increment by Two) e v e b e e e e e e 4-22
4.2.10 MPY (Multiply) 4-23
4.2.11 NEG (Negate). o v v v v v v v v v v v e e e e e e e 4-24
4.2,.12 S (Subtract) . . v v v v o vt b b et e e e e e e . 4-25
4.2,13 SB (Subtract Byte) « v v v ¢ v v s v v vt 00 e e e e e 4-26
4.3 Branch (Transfer of Control) Instructions. . « + « . + & 4-27
4.3.1 B (Branch) o o v v v v o v v o v o o o s 0 s 6 0o o 00 os . 4-27
4,.3.2 BL (Branch and Link) . « v v v ¢ v 6 v v o v 0 00 o .o 4-28

vi Digital Systems Division

[e]
{i@@ 943442-9701

TABLE OF CONTENTS (Continued)

Paragraph Title Page
4.3.3 BLWP (Branch and Load Workspace Pointer) . .. 4-29
4,3.4 JEQ (Jump if Equal) « ¢ v v v v v o v v o0 v v v e e 4-29
4.3.5 JGT (Jump if Greater Than). . « ¢ ¢ ¢« v v v v v v v o 4-30
4,3.6 JHE (Jump if Highor Equal). . . . v v v v v v u o - 4-30
4.3.7 JH (Jump if Logical High) « e v v v v v v e v v nneon 4-31
4,3.8 JL (Jump if Logical Low). e e e e e 4-31
4,3.9 JLE (Jump if Low or Equal). e e e 4-32
4,3.10 JLT (Jump if Less Than) . . « ¢ v v ¢ v v v v v 00 0 v 4-32
4.3.11 JMP (Jump Unconditional) . « v v v v v v 0 v v v v 0 v 4-33
4,3.12 JNC (Jump if No Carry). « . « . . e e e e e e e e e e 4-33
4,3,13 JNE (Jump if Not Equal) et e e e e e s 4.34
4,3,14 JNO (Jump if No Overflow). « « e o v v e« v v o v v o 4-34
4,3,15 JOP (Jump if Odd Parity). « v o o ¢ v 0 v a0 v v v o o 4.35
4,3.16 JOC (Jump OnCarry) ¢ v e v o o oo o 0 o a0 o s o0 4-35
4,3,17 RTWP (Return with Workspace Pointer). 4-36
4,3,18 X (EXECULE) e v o o ¢ o o 0 s s s o o o s o e s a v s a0 oo 4.36
4.4 Compare Instructions « « o v v o v v v o v v vt v o v v v o 4-37
4, 4,1 C (Compare Words). « v o o o o v 6 6 6 6 6 a0 o s oo o 4-37
4.4.2 B (Compare Bytes). « ¢ « « + e e e 4 s e e e e e 4-38
4,4.3 Cl (Compare Immediate) . « v ¢« v v v v o 0 v 0 v v v v 4-39
4.4.4 COC (Compare Ones Corresponding) . + « « « v+ « . 4-40
4.4.5 CZC (Compare Zeros Corresponding) « .« « « o 4 . 4-40
4.5 Control and CRU Instructions . « « o o ¢ o s ¢ s ¢ ¢ ¢ o o o 4-41
4,5.1 CKOF (Clock Off) s v v o 6 0 v s 6 o 00 o S e e e e s e 4-41
4,5,2 CKON (Clock On) v o v v s e o 0 e o s v 0 e v oo 0000 4-42
4,5,3 LLDCR (Load Communications Register Unit). . .. 4-42
4.5.4 IDLE (Idle) v v ¢« o v o o s 0 o s s o s o o o o g oo oo 4-43
4.5.5 RSET (ReSet)s « ¢ o v o oo 0o 0 s v 0 s oo Ch e e e e e 4-44
4,5.6 SBO (Set Bit to Logic One). v v v v v v e v o o v 0 o o s 4-44
4,5.7 SBZ (Set Bit to Logic ZeTo) « « v o v s s s o s o s s u s 4-45
4,5.8 STCR (Store Communications Register Unit). . .. 4-45
4.5.9 B (Test Bit)e o o o o o v s e e et e e s e s . 4-46
4.6 Load and Move Instructions . « ¢+ ¢« ¢ ... b e e s e e e 4-47
4,6.1 LI (Load Immediate). . + « .+ . . e e e r e e e e . 4.47
4.6.2 LIMI (Load Interrupt Mask Immediate), « . « « « . & 4-48
4,6.3 LREX (Load ROM and Execute). « « v « 4 ¢ ¢ o v o o« 4-49
4,6.4 LWPI (Load Workspace Pointer Immediate) 4-50
4.6.5 MOV (Move WordsS)e ¢« o ¢ o s o o s o0 0o o5 s o 0 00 o 4-50
4.6.6 MOVB (Move Bytes) « v v v v o o v v v o e e e e e e 4-51
4.6.7 STST (Store Status)e v « ¢ o o s o ¢ ¢ o« & e e e e e 4.52
4.6.8 STWP (Store Workspace Pointer Immedlate) e 4-52
4.6.9 SWPB (Swap Bytes). « v v v v v e o v o0 o o o o 4-53

vii Digital Systems Division

(o]
("—‘z\'[‘]@ 943442-9701

TABLE OF CONTENTS (Continued)

Paragraph Title Page
4,7 Logical Instructions « v v v v 4 « 4 ¢ s o 6 0 0 0 a0 0 s o0 4-54
4,7.1 ANDI (AndImmediate). « o ¢« ¢ o o ¢ o o o o ¢ 0 ¢ s o o 4-54
4.7.2 CLR (Clear) o v v o o v oo o v o s o o v o s s o o a s oo 4-55
4.7.3 INV (InVert)e o v o o v o v o v s s o s 0 s o o0 a s oo o 4-56
4,7.4 ORI (OrImmediate) v v v o o v o o o s o s s o s o o oo 4-56
4,.7.5 SETO (SettoOne)e v ¢« v o & 4-58
4,7.6 SOC (Set Ones Correspondmg) e e st e e e e s e 4-58
4.7.7 SOCB (Set Ones Corresponding, Byte) . . . ¢« v v 4 4-59
4.7.8 SZC (Set Zeros Corresponding)e o « o o s o s ¢ « s o » 4-60
4.7.9 SZCB (Set Zeros Corresponding, Byte) + ...« . . 4-61
4,7.10 XOR (Exclusive OT) &t v v v o v et v 0 0 s 0 s o0 o o0 4-62
4.8 Workspace Register Shift Instructions 4-63
4,8.1 SRA (Shift Right Arlthmetlc). e e et e s et e e e e 4-63
4.8.2 SRL (Shift Right Logical) s v « v v v ¢ v 0 v v v 0o v e n s 4-64
4,8.3 SLA (Shift Left Arithmetic) « v ¢ v ¢« ¢ o ¢ o o 0 o 0 o s 4-65
4.8.4 SRC (Shift Right Circular) . . « v v ¢ v v o s 0 s s s oo 4-65
4.9 XOP (Extended Operation Instruction) 4-66
SECTION V. PROGRAMMING CONVENTIONS
5.1 General00 v 000 5-1
5.2 Sample Program Forms e ot v oo 0 v o0t 0o 5-1
5.2.1 Procedure. s « v v v v v o v o i e e e e e e e e 5-1
5.2.2 WoOrkSpace « o v o v o v o o oo o 0 v s 0 o0 e s 0 s 0 s s 5-2
5.2.3 B - 5-3
5.3 Programming in Assembly Language 5-3
5.3.1 Assembly Language .+ . « o o o s ¢« s 0 66 0 0 0 s s a o 5-3
5.3.2 Language Requirements. . « v « v v ¢ v v v v v o s s o s 5-3
5.4 Assembler Directives and Pseudo-Operations, 5-4
5.5 Addressing Modes « « o ¢ ¢ v ¢ ¢ o o s 0 0 0 0 0 0000 5-4
5.6 Testing and JuUMPINg . o « o ¢ ¢ o o o s s s 6 0 60 00000 5-4
5.7 Shifting Instructions .« ¢« v v « o s ¢ o ¢ ¢ o 0o 0 0 0 s s s 0o 5-8
5.7.1 Shift Left Arithmetic (SLA) . v e v e v 0 v v 0 0 0 0 o 5-8
5.7.2 Shift Right Arithmetic (SRA): 4 ¢ ¢« ¢ ¢ s ¢ ¢ 0 0 s 0 ¢ s 5-9
5.7.3 Shift Right Circular (SRC) . v v s s ¢ s ¢ 0 s o0 s 00 5-10
5.7.4 Shift Right Logical (SRL)u ¢ ¢ v ¢ s ¢ 0 s o a0 00 s 0 5-10
5.8 Incrementing and Decrementing . . v o ¢ ¢« o o ¢ ¢ ¢ ¢ o » 5-11
5.8.1 Increment Instruction Example .+« ¢ 000000 v a 5-11
5.8.2 Decrement Instruction Example 5-11
5.8.3 Decrement by Two Example Instruction....... 5-13
5.9 Subroutines ¢« o v v ¢« e v vt b e e o b e e e e e 5-14
5.9.1 BL Subroutine Call Example. . « ¢ ¢« ¢ v ¢ e v v o0t 5-14

viii Digital Systems Division

o}
(I"@? 943442-9701

TABLE OF CONTENTS (Continued)

Paragraph Title Page
5.9.2 BLWP Subroutine Call Example 4. .0, 5-16
5.9.3 BLWP Programming Notes . . s v s o v o v o0 0 s 0 5-19
5.10 Interrupts. . . o ¢ o v i i vt it e e e e e e 5-20
5.10.1 General Interrupt Structure oo v v v v 0oL 5-20
5.10.2 Interrupt Sequence D 5-20
5.10.3 Internal Interrupts « o v v ¢« o v v v v 0 v s 0 s 0 s 0 00 5-23
. 5.10.4 External Interrupts. o o v v v o v o v 0 v v v v v v oo u 5-24
5.10.5 Interrupt Processing Example 5-24
5.11 Extended Operations. « « ¢« o o ¢ v v e v o o e v 0 v v 00 s 5-24
5.12 Special Control Instructions. . . ¢ v v v v v v v v 0 e s v 5-30
5.12,1 LREX Applications . « ¢ « o s o ot v 00 0 v o v v ew o 5-30
5.12.2 CKON/CKOF Applications « « v v s o s v 0 0 0 v v n o 5-30
5.12.3 RSET Applications « v e v o v s ¢ ¢ o s o s 60 s 0 600 5-30
5.12.4 X Applications . v v v v o v o o v o 0 ot 0o v 6 0 v s o n s 5-30
5.13 CRU Programmed Input/Outpute + ¢« « ¢ ¢ o s 0 ¢ v o0 o 5-31
5.13.1 CRUI/O InstructioNs « . v v v v o v e o s s o s o s s oo 5-31
5.13,2 CRUI/O ExampleS. v v o t o s o o s s oot oo ooans 5-32
5.14 TILINE Input/Output. e v v v e v v v o v v o et e e e e 5-36
5.15 Re-entrant Programming .« « « « o « o o v o 0 o0 o o0 o 5-37
5.16 Creating a Source Program Using TSE990 5-39
5.17 Assembling Source Programs Using MIRA 990 5-40
5.18 Example Program « ..o v v o v vt o o a0 o v o oo s 5-40
SECTION VI. SOFTWARE PACKAGES
6.1 General . v v v v v v v oo s b b e e e e e e e e 6-1
6.2 MIRA9Q90 Assembler. « ¢ v v o ¢ s v o0 e o 0 v s 0o oo 6-1
6.3 MIRA990/360 Cross Assembler o « o « o o s 0 0 s s s o 6-2
6.4 Link and Load (LAL990) & ¢ v ¢ ¢ ¢ ¢ ¢ o 0 s 0 s 0 0 o s o 6-2
6.5 Terminal Source Editor (TSE990) . v v v ¢ 4 ¢ ¢ ¢ ¢ ¢ o « 6-3
6.6 Input/Output Package for the 990 Computer. 6-3
6.7 Hexadecimal Debug Package (XDB990). v ¢ ¢ v ¢ v v « & 6-4
SECTION VII, INSTALL ATION
7.1 General v v vt i et e b e s e e e 7-1
7.2 Site Preparation. « « v v ¢ s ¢ o o o 0 o oo o0 s s 00000 7-1
7.3 Unpacking . v o v v v v v v o v o v v o0 o 0 0 0 60 0o 7-2
7.4 Chassis Configuration, P 7-2
7.4.1 Module LocationS . v o o o ¢« o o o v 6o 6 s 0 s 000 00 7-2
Te4.2 Module Interrupt Levels . v v o ¢« o v v o s o v v v o o 7-4
7.4.3 Interrupt Installation. « « ¢ o v v v v 0o v v s v o 0 v v o 7-6

ix Digital Systems Division

Q
(f\%g? 943442-9701

Paragraph

NN~
e =
S o w;

Appendix

FnQEMEUO® R

TABLE OF CONTENTS (Continued)
Title

Mounting. e 8 ® 6 ¢ 0 @ @& © v e o 0 3 & o 0 o & 0
Cablingl e o o & & 0 » o 8 @ ® 9 9 @ 5 & 5 s @ o °
Power Application « .« v o e v v o v e v oo

APPENDIXES

Title

Instruction Execution Times, Model 990

Hexadecimal Instruction Index « + ¢ ¢« ¢ ¢«
Alphabetical Instruction Index ..+ .«
CRU Interface Example. « ¢« « ¢ v ¢ ¢ o 0 ¢ o s
TILINE Interface Example. . « ¢« ¢ ¢ 4 s s o @
Character Set v ¢ v ¢ ¢ ¢ 00 s 0000000 eas
Back Panel Connectors + ¢ « « o o ¢ s s o s o s

Language Requirements and Relocatability .

Assembler Directives and Psuedo-Ops ..

Page

.

-~
]

o © ~J

Y

)
Q

o

11 | I U B |
[o e

EQ"IH.;IJUOUJ:>

.
.
.
.
.
.
L]
1

Digital Systems Division

@@ 943442-9701

LIST OF ILLUSTRATIONS

Figure Title Page
1-1 Texas Instruments Model 990 Computer. 1-1

1-2 Model 990 Computer System Block Diagram « 1-3

1-3 Power Supply Circuit Board. v v v v v o v o v o 0 v o o 0 o 1-5

1-4 Fuse and Switch Panel.-. . v v v v v v v v v v v v vt v v o w 1-7

1-5 Computer Front Panel. O 1-8

1-6 Double Connector Circuit Board . . v v v v v v v v v v v v 1-10
1-7 Single Connector Circuit Board. « v v v v v ¢ v v v v v v s v 1-12
1-8 Model 990 Processor Terminal Application, + 1-13
1-9 Model 990 Industrial Control Application ., 1-14
1-10 Model 990 Software Development Conflguratwn e e e e 1-15
2-1 Arithmetic Unit Block Diagram. . « v v v v ¢ v « » o o a e 2-2

2-2 Workspace Pointer and Registers . v o v v v v v v v . oo 2-4

2-3 Odd Address Byte Switching . v v v v v v ¢ v v o v e s 00 o s 2-6

2-4 CRU Address Bit Assignments ¢« v « v v v o o o o2 0 0 0 0 s s 2-7

2-5 AU Loader ROM Chip Locations v« v v s v o o o v s v v v o 0 2-8

2-6 Status Register Bit Assignments. . « v v o v o ¢ o s o 0 s o & 2-9

2-7 TILINE Interface Signals. . ¢« v v v ¢ v o o ¢ 0 o 6 v o o v s oo 2-15
2-8 TILINE Priority Connections « ¢« v v v ¢« o ¢ o v o v o 0 s o o 2-19
2-9 TILINE Access Request Timing « v v v v o 0 ¢ v v v 0 v 0 v 2-20
2-10 TILINE Write Cycle Timing . . v v v o v o ¢ v e v v v 0 “ e 2-21
2-11 TILINE Read Cycle Timing + . v v v v ¢« v 6 v s v v o v o o v 2-22
2-12 TILINE Termination Circuits. « v v ¢ ¢« ¢ o ¢ 0 v 0 o 0 o s o s 2-23
2-13 Hardware XOP Interface Signals .. « v o o v o o o o0 o v s s 2-25
2-14 XOP Interface Timing Diagram. « v v « o o ¢ o o e 6 o o o o & 2-28
2-15 Memory Controller Controls and Indicators 2-31
2-16 Memory Expansion to Memory Controller Interface . . . 2-33
2-17 Memory System Block Diagram « . e v ¢ ¢ o ¢ ¢ v o 0 0 o o« 2-37
2-18 Error Correcting Code Bit Patterns « .« v« v v v e v o v s o & 2-38
2-19 CRU Interface Signals. v v v v v v v v v v oo oo v o v nnnns 2-42
2-20 CRU Interface Timing . « v o o ¢ v v o o v 0 o 0 o v 0o 0o o s o 2-46
2-21 CRU Address Field AssignmentS. « « o v ¢ o v v 0 o ¢ o 0 o & 2-46
2-22 CRU Bit Address Development « v v v v o ¢ o ¢ v0 o 0 0 o o 2-48
2-23 LDCR/STCR Data Handling « v v o v v v v o o o v v o o 0 0 o 2-49
2-24 CRU Module Block Diagram s ¢« « o o ¢ « e 6 ¢ o o 0 o o o o o & 2-51
2-25 990 Maintenance Panel . . . v v vt vt vt v et v v o 00 v 2-55
3-1 CRT Display and Controller. . . v v v v v v e vt v 00 v s o 3-2

3.2 CRT DataOutput to CRU . v v v v v v 6 v o 0 v 0 0 s 0t 0 s o 3-10
3-3 CRT Cursor Position « . v v v v v v v e v v v 0 v ou P 3-10
3-4 CRT INPUt. v v v o i i it et ettt ettt ot s e e v 3-11
3-5 Keyboard Data Output o + v v v 4 v v o ¢ 0 v 00 0 s o0 0 0o 3-12

xi Digital Systems Division

{@ 943442-9701

Figure

-10
1
3-12
3-13
3-14
3-15
3-16

W Wwwwww
] 1 LI |

6
7
-8
9
1
1

3-17
3-18
3-19
3-20

]
[sV]
ot

1 1
=0 000 U1 h WDN M~DN+~

o

S 0NS WS B, BT, NG WS, G G, BT) B A O
1

(9]
]

ot
—

5-12

EOEPSEPS BES B BT |
| JE I R |
Pt

B W

1
B W N =

1.IST OF ILLUSTRATIONS (C
Title

Keyboard Data Input « « + ¢ ¢ 0 0 ¢« v o
733 ASR Data Terminal. .« ¢+« .+
Space Requirements « .« « e v v v oo
33 ASR Teletypewriter « .« s o o ¢ o o
Paper Tape Punch Controls
Paper Tape Reader Controls
Capacitor and Inductor Installation .
Answer Back and WRU Function Bar
Modem Controller and Modem
CRU Input/Output Bit Assignments .

ontinued)

e e et a o
Removal.

Asynchronous TTY /EIA Communications

Interface Module, « « « ¢« ¢ ¢ o ¢ o o «

Module to CRU INputs « « o o« + o s ¢ o o «

CRU to Module Output Signals.
16 I/O Data Module. ¢ @ . L L o o L

Single-Connector Development Board.

e o 5 o o s »

® o o o o o

Double-Connector Development Board

Memory Map and Assignments
Workspace Map « ¢« o o s ¢ 0 0 0o 0 0 0 s
990 Programming Environment. . . .
Example Subroutine Call (BL)e ¢ 4 o
Status After BL Execution « « « + « « .

e o & ¢ 90 o o

BLWP Subroutine Call Before Execution. . . « . .
BLWP Subroutine Call After BLWP 5 Execution.
BLWP Subroutine Call After RTWP Execution. .

Example Memory Prior to Interrupt

Memory Contents After Interrupt Occurs

Memory Prior to XOP Instruction Ex
Memory After XOP Instruction Prior
Routine Execution « « o ¢ ¢« s ¢ o s o o

ecution. .
to XOP

990 Re-entrant Procedure Environment

Sample Program .« .« ¢« oo oo 0o o
Sample Program Assembly
Sample Program Execution
Computer Shipping Packaging.

e s 0 & o o o

Possible Chassis Location Assignments.

Module Interrupt Installation
Peripheral Cabling Technique.

e o o o e o 9

Page
3-12
3-14
3-20
3-22
3.23
3-24
o v e e e 3.28
3-29
3-31
3-36
e e e 3-39
PP 3-41
PR 3-43
3-45
3-48
3-49
e e e e 4-3
oo e s 4-5
¢ oo oo 5-2
5-15
5-15
5-16
5-17
5-18
5-25
5-26
5-28
o e e 5-29
s e s e 5-38
oo s e 5-41
5-45
5-46
7-3
7-4
7=
e s e 7-9

xii

Digital Systems Division

Q
{@Jp 943442-9701

LIST OF TABLES

Table Title Page
2-1 Dedicated Workspace Registerso v v v v v v oo 2-4
2-2 Interrupt Level Data. 2-12
2-3 TILINE Signal Definitions . « « v v v o ¢ o v v a0 s o o o s o s 2-16
2-4 TILINE Design Characteristics. « o v ¢« v ¢ v 0 v v v 0 v v vt 2-24
2-5 Hardware XOP Interface Signals. e s i e e u e e 2-26
2-6 Memory Board Address Settings. . « v v v v o v o v v o v v 2-32
2-7 Memory Controller to Memory Expansion

Interface Signals. . v v v o o o o e v o v s 0 s s 0 s a0 oo oo 2-34
2-8 CRU Interface Signals. . « v v v c o v o 0 s 0 s s s 0 0 s 0 s o 2-43
2-9 Electrical Interface Requirements. . « « v v o v ¢ 0 s v o 2-53
2-10 990 Maintenance Console Controls and Indicators. 2-56
3-1 Character Set as Read from Refresh Memory and

Displayed on the CRT Screen. « « « o o v e 0 ¢ 0 v v o 0o 3-5
3-2 USASCII Code Systems and Character Set. . . .« . o o4 3-16
3-3 Printer Specifications. .« . ¢ ¢« v v o e e e s r e e e e e 3-18
3-4 Tape Transport Specifications v v v v v v ve . 3-19
3-5 Teletypewriter Specifications. e s e e e 3-25
3-6 Modem Controller Specifications. « « « v o ¢ o 0 v 0 s s o 0 s 3-34
3-7 Modem /ACU to DAA Line Connections, .o« ¢ o 3-36
3-8 Controller to Modem/ACU Interface . .« v v v oo o0 o s 3-37
3-9 Input Signals ¢« v v v v v o v o v v ot oot 3-41
3.10 Signals from CRU to Module. v v v v v o v v a0 v v 3-43
3-11 16 INPUT Circuit Connections . .« . .« .« .. e e e e e e 3-46
3-12 16 OUTPUT Circuit Connections . « « v v v v o s ¢ 0 0 o s o« 3-47
4-1 Workspace Register Utilization. .« . v v v v v v v v v 000t 4-5
4-2 Assembly Language Format and Execution

Result Conventions .« « « o o s o o s ¢ o o 0 6 o b o s 6 o o o0 4-7
5-1 Assembler DirectiVesS « v o s o v o v s s o s s o o3 0 v v 00 0 5-5
5-2 Interrupt Vector Addresses « « « « v v v v o v o s v oo 00 o 5-21
5-3 IntezruptMask........................... 5-22
5-4 XOP Vectors. ...« ... 5-26
7-1 Model 990 Computer Physmal and Electrical

Requirements .. « v v v o s a0 v o v 0 0 st e e e e e e e e 7-1
7-2 System Chassis Configuration (to be completed

during installation) « ¢ ¢ o o o o s 0 ot o0 oo e e e e 7-5
7-3 CRU Module Select Signals. . « v v v e v 0 o o v ot 0 v v v o s 7-6
7-4 Module Interrupt Pin Assignments. . « « ¢ o oo o o v 0 0 0 e 7-6
7-5 Interrupt Level Input Pin Assignments. . . « .« ¢« ¢ 0o o 7-8

xiii/xiv Digital Systems Division

943442-9701

SECTION 1
SYSTEM INTRODUCTION

1.1 MODEL 990 COMPUTER

The Texas Instruments Model 990 Computer (figure 1-1) is a powerful pro-
cessing unit featuring byte, bit, and word handling capability as an integral
component of its comprehensive instruction set. Within its single chassis,
the Model 990 houses its own power supply, a battery power pack to main-
tain data in memory during external power failures, a micro-programmable

Figure 1-1. Texas Instruments Model 990 Computer

1-1 Digital Systems Division

o]
{@ 943442-9701

Arithmetic Unit, an error correcting memory controller with up to 32K (4K
standard) words of MOS Random Access Memory, a 256-word Read Only
Memory for use during start-up operations, plus interface connectors to
accomodate a host of optional equipment controllers or interface circuit
boards. The Model 990's speed, optional equipment, and competitive price
adapt the computer to a wide range of mini-computer applications.

1.2 SYSTEM COMPONENTS

The Model 990 Computer system offers several components to satisfy ex-
.acting requirements of particular applications. Included in the standard
Central Processing Unit (CPU) are the chassis and backpanel connections, a
power supply and battery, the Arithmetic Unit, and a memory controller fea-
turing error correction and 4K words of memory. Interface circuit boards
and their corresponding peripheral equipment are offered as optional com-
ponents, as are additional memory increments up to a total of 32K words.
Figure 1-2 illustrates the components of the computer system. The follow-
ing paragraphs outline the features of these components. Detailed explana-
tion of these components and their operation within the system is supplied in
Sections II and III of this manual.

1.2.1 TILINE INTERFACE

The direct memory access channel of the 990 computer is a 16-bit parallel
data bus called the TILINE, TILINE links memory, the Arithmetic Unit
(AU), and the peripheral devices with a bidirectional, asynchronous data bus
whose speed is limited only by that of the devices involved in the transfer

(3 million words per second maximum). All devices connected to the TILINE
that respond to Read or Write commands are addressed using the same ad-
dress lines as those used for memory, so that data input from a peripheral
device is as simple as fetching data from memory. TILINE automatically
resolves conflicts between controllers for access to the TILINE through a
positional priority system.

1.2.2 CRU INTERFACE

The Communications Register Unit (CRU) interface provides a bit-addressable
input/output channel between the AU and external equipment. The interface
transfers serial data by individually sensing each input bit and individually
sending each output bit., With this arrangement, the CRU communicates
with peripheral I/O equipment through a series of bit transfers, and enables
the AU to monitor and control digital processes by sampling individual
status bits and generating discrete control signals under program control,
All TILINE chassis locations in the computer are also wired for CRU inter-
face cards. By using all of these locations to accept CRU modules containing
16 input and 16 output lines each, the chassis can accommodate up to 256 in-
put and 256 output lines to external equipment. Further expansion of up to
4096 input and 4096 output lines is available through the use of additional

1-2 Digital Systems Division

uoysialg swelsAs (eybia

ARITHMETIC
UNIT

MEMORY EXPANSIO MAINTE—
AND - MEMORY NANCE
con- K- T T PANEL

TROLLER

>
il
Y

TILINE

CRU _INTERFACE

POWER
SUAPPLY

BATTERY

LOGIC
LTAGES

TO OTHER
TILINE DEVICES

- TO OTHER CRU

TO DATA
ACCESS -)——j

ARRANGEMENT

TO oM
DIGITAL
PERIPHERAL
DEVICE

(A)128638A

! N—,

16 INPUTS

-
-

. 16 OUTPUTS
.

NOTE . DOTTED CONNECTIONS

DENOTE OPTIONAL
EQUIPMENT

Figure 1-2.

¥

FULL
DUPLEX
TTY/EIA
MODULE

A

MODELO7RBS ASR
MODEL 33 ASR

CRT
CON—
TROLLER

A

DEVICES

MODEL 913

Model 990 Computer System Block Diagram

.

KEYBOARD

10L6-2%PEP6

o
4@ 943442-9701

chassis equipment. The expansion capability of this interface and its bit-
addressability, make the CRU interface adaptable to many applications.

1.2.3 ARITHMETIC UNIT

The AU is a single circuit board that is the main control and processing unit
of the computer. The AU fetches instructions and operands from memory,
operates on those instructions, coordinates input and output through either
the TILINE or the CRU interface, performs basic arithmetic and logic func-
tions, and stores results into memory for future recall, Primary features
built into the AU include: an interface for capability expansion using an
additional hardware module to process extended operations, a prioritized,
vectored interrupt arrangement; byte addressing and processing; a 256-word
ROM loader; and a workspace register concept that improves efficiency over
conventional register file arrangements., The AU circuit board must be in-
serted into chassis location 2 (next to power supply circuit board).

1.2.4 MEMORY AND CONTROLLER

The memory and memory controller for the computer is a single circuit
board containing control logic plus either 4K or 8K words of memory. The
heart of the memory is a Texas Instruments Metal Oxide Semiconductor
(MOS) memory that allows random access to any of 4096 bits within a single
package. To ensure data accuracy, the memory controller employs a 6-bit
error correcting and detecting code that corrects 1-bit errors, and detects
multiple-bit errors. In addition, the controller contains interface logic for
expansion memory, enabling the controller to access up to 32K words of
memory. The memory circuit board is a TILINE device that responds to ad-
dresses generated by any TILINE master device. The memory circuit board
can be placed in any TILINE chassis location.

1.2.5 EXPANSION MEMORY

The computer expansion memory is a single circuit board containing from
8K to 24K words (in 8K increments) of memory in addition to that contained
on the memory controller circuit board. The expansion memory circuit
board occupies the chassis location next to the memory controller circuit
board and derives its logic and refresh voltages from the chassis connector.
However, all data and control for the expansion memory enter the board
through an interface connection with the memory controller circuit board.
Like the memory controller, the expansion memory also employs the 4K
Random Access Memory (RAM) integrated circuit as the building block of
the memory system.

1-4 Digital Systems Division

943442-9701

1.2,6 POWER SUPPLY

The power supply is implemented on a single, metal-encased circuit board
(figure 1-3) that plugs into chassis connector Al. The module receives

115 Vac, 50 or 60 Hz, power and develops all the voltages required to oper-
ate the computer (+12 volts and 5 volts). In addition, the power supply gen=-
erates logic signals to inform the AU of an imminent power failure and to
control operation of the computer during power transitiors. The power sup-
ply also removes power from the computer if the temperature within the
chassis becomes too high, and restarts the computer when the temperature
returns to safe operating levels,

120639 (200674-6-4) .

Figure 1-3. Power Supply'Circuit Board

1-5 Digital Systems Division

(o]
{%\[’7@ 943442-9701

1.2,7 CHASSIS AND BACKPANEL

The chassis and backpanel assembly unifies the computer components into a
processing system. The backpanel consists of a printed circuit board for
fixed interconnections between the components, plus wire-wrap pins to allow
individualized interconnections for specific system applications. Mounted to
the backpanel are 22 female connectors that accept 80-contact printed circuit
board edge connectors. The connectors are arranged in eleven pairs on the
backpanel so that they may accept either single or double connector circuit
boards. In addition to housing the backpanel, the chassis also contains the
reserve power battery, a cooling fan, a fuse and switch panel, and the com-
puter front panel,

1.2.7.1 STANDBY BATTERY. In the event of a momentary or prolonged
loss of primary power, the computer switches power source from the power
supply circuit board to a +6 volt battery within the chassis. The battery then
supplies power to the memory and memory controller circuits to maintain
data within memory for the duration of the power failure (to a maximum of
14 hours at room temperature with 4K words of memory). When primary
power returns, the power supply recharges the battery pack so that it will be
ready in case of another failure. The standby battery powers only the mem-
ory and associated circuitry, and is not used to operate the computer for
processing.

1.2.7.2 FAN., Mounted behind the circuit boards within the computer
chassis, a fan circulates ambient temperature air over the circuit boards to

carry away excess heat generated during operation. A filter element behind
the fan ensures that the circulated air is free of particles. The fan is
powered directly from the main ac power source so that it is running when-
ever power is applied to the computer.

1.2.7.3 FUSE AND SWITCH PANEL. Mounted to the rear of the computer
chassis are two toggle switches and three fuse holders, as illustrated in fig-
ure 1-4. When set to ON, the BATTERY toggle switch enables the standby
battery to supply power to the unit during a primary power failure or to re-
ceive a charge during normal operation. The OFF position of this switch
disables battery operation. When set to ON, the POWER toggle switch ap-
plies ac power to the computer. The OFF position of this switch removes
ac power from the computer. Fuse F1l is a 0.5 amp fuse that protects the
battery charging circuit from overload. Fuse F2 is a 5 amp fuse for the
main ac power input line. Fuse F3 is not used.

1.2.7.4 FRONT PANEL. The computer front panel contains a power-on
indicator and a Load switch, as illustrated in figure 1-5. When lighted, the
Power indicator designates that ac power is on within the chassis. The Load
switch is a pushbutton that when pressed loads the contents of the 256 -word
ROM into memory for system initialization. The Load switch is recessed
behind the front panel to avoid accidental actuation.

1-6 Digital Systems Division

943442-9701

128640 (990-674-6-17)

Figure 1-4, Fuse and Switch Panel

1.2.8 913 VIDEO DISPLAY AND KEYBOARD

For high-speed interaction between operator and computer system, the Model
990 computer offers the TI 913 Video Display package. The controller for
the display unit is a double-connector circuit board that ¢onnects to any CRU
chassis location within the computer. A cable attached to the top of the cir-
cuit board connects the controller to the display and keyboard units. The 913
is an adaptable display featuring completely programmahle cursor position-
ing, an extra control bit that allows protected display fields, inverted video
cursor, and its own refresh memory to relieve the computer from replenish-
ing the contents of the display. The computer fills the refresh memory,

and thereby the display screen, at CRU transfer speeds, replacing the con-
tents of the entire screen in less than 20 milliseconds. ""he computer can
also read the contents of the refresh memory at high speed. The display
screen provides a legible display. The detachable keyboard features single-
function, programmable keys.

1.2.9 TI MODEL 733 ASR

The TI Model 733 Automatic Send-Receive (ASR) Teleprinter provides opera-
tor keyboard entry capability as well as automatic input through prerecorded
magnetic tape cassettes. The 733 ASR is a twin cassette I/O device that
provides superior speed, low noise level and simplicity of operation in an

1-7 Digital Systems Division

943442-9701

LOAD SWITCH
(RECESSED)

POWER INDICATOR

128641 (990-674~6-11)

Figure 1-5, Computer Front Panel

easily affordable package. Integrated with the cassette I/O is the TI "Silent
700" keyboard and electronic printer to provide absolutely silent operator in-
teraction with the computer system. The 733 ASR expands the 990 Computer
system into a powerful software development tool, as well as a versatile pro-
cessing system.

1.2.10 TTY/EIA INTERFACE MODULE

The Teletypewriter (TTY)/Electronic Industries Association (EIA) Interface
module provides a communication path for the 990, through the CRU inter-
face, to peripheral devices that operate through an interface that conforms
to EIA document RS232C., The TTY/EIA module may also be wired for TTY
current loop interfaces. Typical devices that interface through this module

1-8 Digital Systems Division

(o]
(@ 943442-9701

include: data sets for telephone line data transmission, video display ter-
minals, and teleprinter terminals. The TI Model 733 ASR terminal, used
for software loading and interchange with the computer system, interfaces
with the 990 through this module. The interface logic is implemented on a
single-connector circuit board that, with the accompanying adapter connector,
plugs into any connector location that is wired for the CRU interface,

1.2.11 INPUT/OUTPUT DATA MODULE

The Input/Output Data module provides 16 individually addressable digital in-
put bits and 16 individually addressable digital output bits as an extension of
the CRU interface. The module is a single-connector circuit board that may
be inserted into any connector in the computer chassis that has been wired
for the CRU interface, An adapter card must be plugged into the chassis
connector before the module is placed in the computer., An edge connector
on the top of the module allows attachment of the interface cable to the ex-
ternal signal source. The external device may be a sinpgle, 16-bit oriented
device such as a card reader, or may be several independent sense lines and
output signals. The module also provides an interrupt cption.

1.2,.12 MODEM

The 990 Computer offers an optional half/full-duplex, 1200 Baud, asynchro-
nous MOdulator-DEModulator (MODEM) with controller logic to interface
with the computer CRU interface. The modem unit is compatible with a
Bell System CBS 1001A Data Access Arrangement for data transmission over
the switched telephone network. Also included is an automatic call, answer
and termination circuit that can be compatible with either impulse or touch-
tone dialing systems. The modem controller is mounted on a double-
connector circuit board that plugs into any CRU chassis 'location. The mo-
dem and auto-call circuitry is implemented on a second, smaller circuit
board that is fastened to the controller circuit board, and interfaces to the
controller through a cable and edge-connector assembly. This '"piggy-
backed'' arrangement prevents the adjacent chassis location from being used
when the modem assembly is installed in the computer..

1.2.13 MAINTENANCE CONSOLE

To aid in fault isolation within the computer, a detachahble maintenance con-
sole and interface board are offered as an option. The maintenance console
allows the technician to exercise and display the internal registers of the
computer or a specific memory location. The console is also a useful pro-
gram debugging tool. The maintenance panel interface board plugs into the
chassis location adjacent to the AU circuit board.

1.3 HARDWARE IMPLEMENTATION

The computer chassis contains eleven pairs of 80-contact connectors for in-
 sertion of logic modules with printed contact (card edge) connectors. Each

I-9 Digital Systems Division

943442-9701

pair of chassis connectors is assigned a desighator beginning with Al (the
bottom pair) through All (the top pair). The connectors receive double-
connector circuit boards or, using an adapter, single-connector circuit
boards that contain the functional modules of the computer system.

1.3.1 DOUBLE-CONNECTOR CIRCUIT BOARDS

Double-connector circuit boards are double-sided or multi-layer printed
wiring boards that are approximately 14-3/8 inches wide and 10-1/4 inches
high (see figure 1-6). Two connectors, Pl and P2, are formed along the
bottom edge of the board by printed conductor contacts. The contacts are

“preRBIBIN

128642 (990-674-6-5)

Figure 1-6. Double Connector Circuit Board

1-10 Digital Systems Division

(o]
Vﬁ\@ 943442-9701

from 1 through 80 with the even numbered contacts on the component side of
the circuit board., An additional tab, slightly offset fromr center along the
bottom edge of the board, prevents the circuit board frorn being inserted into
the chassis connectors when the board is backwards. Ag an additional re-
minder, one of the ejector tabs on the top edge of the card is colored, while
the other tab is white. The colored tab should always be toward the front of
the computer chassis. Included in those modules implemented on double-
connector circuit boards are; the AU, memory and expansion memory, the
power supply, and interface boards for the modem and GRT.)

1.3.2 SINGLE CONNECTOR CIRCUIT BOARDS

Single-connector circuit boards are doubled-sided printed wiring boards that
are approximately seven inches wide and eight inches high (figure 1-7).
These circuit boards mount CRU interface modules and typically contain ap-
proximately thirty integrated circuit packages plus associated discrete com-
ponents. The single connector along the bottom edge is ‘an 80-contact,
printed conductor connector with the even-numbered contacts on the compo-
nent side of the board. No provision is made to guarantee that the circuit
board is inserted in the proper orientation. However, when inserted into the
chassis, the colored ejector tab on the top edge of the card should be toward
the front of the chassis.

1.4 SYSTEM APPLICATIONS

The Model 990 Computer's versatile CRU interface and powerful TILINE bus
adapt the computer for use in systems of varying complexity from a basic
software development processor, through order entry ard communications
network systems, to intricate systems involving processor redundancy or
parallel operations. A variety of practical applications of the computer sys-
tem is easily implemented. The following paragraphs describe some basic
applications. These systems may be combined, altered and expanded to meet
the requirements of a particular task.

1.4.1 PROCESSOR TERMINAL

Combining the Model 990 Computer with up to eight 913 CRT Display units
together with the modem controller and interface transforms the computer
into an intelligent terminal controller with the computation power and expan-
sion capabilities of a larger computer (figure 1-8). Each display unit oper-
ates independently rather than in a slave mode to other ¢isplays, so that use
of one display unit is not restricted by a process occurring at another unit.
The use of a fully expanded memory system with this configuration and the
addition of a bulk storage unit through the TILINE interface develop a polled
terminal for on-site editing and batching of information to a central com-
puter.

1-11 Digital Systems Division

943442 -9701

128643 (990-674-6-1)

Figure 1-7. Single Connector Circuit Board

1.4.2 INDUSTRIAL PROCESS CONTROLLER

When fully implemented with 16 input/output data modules, the Model 990
Computer supplies 256 input lines and 256 output lines for industrial process
monitoring and control (see figure 1-9), The input lines can feed to the com-
puter status information such as temperature deviations, pressure levels,
presence or absence of a piece-part at a particular station, or exact position
of a tool bit. The computer can then process these inputs and respond by
issuing control signals over the output lines to perform such functions as
turning a valve on or off, initiating a machine process, or guiding a machine ~
tool to the precise position required. Use of the computer in this mode en-
sures rapid response to changing conditions and therefore, more accurate

1-12 Digital Systems Division

cli-1

uoysiaIg swelsAs jeybia

128644 (990-674-10-2)

Figure 1-8.

Model 990 Processor Terminal Application

0L6-2¥¥ET6

1

o]
{@ 943442-9701

1610 : W

1610 .
MODEL UP TO 256 INPUT AND
p oS es O EBE GRIEEEIR o,
ICOMPUTER lDATA MODULES SO ONI TORING

1610 .
| L]
1610 :

/

(A)128645

Figure 1-9. Model 990 Industrial Control Application

and dependable process results. For larger industrial applications, the
Model 990 Computer CRU interface may be expanded through add-on chass1s
to provide up to 4096 input lines and 4096 output lines.

1.4,3 SOFTWARE DEVELOPMENT COMPUTER

Combining the Model 990 Computer with a Texas Instruments Model 733 ASR
terminal creates a software development tool (figure 1-10) that leaves the
larger portion of processor time for other operations. The 733 ASR allows
easy loading of programs or recording of results using twin magnetic tape
cassette input/output devices. Operating at 120 characters per second, the
cassette system offers an easy-to-use alternative to bulky tape reel systems

or inefficient paper tape input systems, Listings and printouts at a quick,
silent 30 characters per second provide a convenient hard copy of resulting
programs. The operator, using the 733 ASR keyboard, can easily enter any
changes or corrections to his program, and respond in an interactive mode
to events that occur during the program.,

1-14 Digital Systems Division

943442-9701

Figure 1-10. Model 990 Software Development Configuration

1-15/1-16 Digital Systems Division

o
{7(7\@? 943442-9701

SECTION II
MAINFRAME HARDWARE

2.1 INTRODUCTION

This section discusses the theory of operation, design criteria, and interface
specifications of the Model 990 Computer. It describes the operation of the
Arithmetic Unit, memory, extended operation feature, TILINE and Commun-
ications Register Unit (CRU) interfaces, and the optional maintenance con-
sole. This information, together with the interface examples in Appendixes
D and E of this manual, provides an essential backgrountd of the machine's
capabilities and requirements.

2,2 ARITHMETIC UNIT

The Arithmetic Unit (AU) of the Model 990 Computer provides a wide range of
computer functions in a compact, single circuit board configuration. It
achieves its high function density through a mixture of multi-purpose regis-
ters, read-only-memory (ROM) control circuits and a workspace concept that

substitutes memory locations for hardware register filee. The single AU
circuit board contains interface logic for both TILINE and CRU device, inter-
rupt detection and priority logic, data handling registers, an arithmetic logic
unit (ALU), plus three ROM networks, Figure 2-1 illustrates the interrela-
tion of these internal components,

2.2.1 AU CONTROL

Much of the AU's functional density results from micro-pnrogrammed control
circuits for data transfer and manipulation within the AU. Two ROM circuits
generate all control signals required for the AU to respend to the 990 instruc-
tion set. Instructions from memory enter the basic function ROM (BFR),
where they are decoded into a starting address for the ifstruction micro-
sequence. The control ROM (256 x 64) receives the output from BFR. The
control ROM, together with its associated next address selection circuitry,
is the central control mechanism in the AU. Output bits from the control
ROM select the function of the ALU, gate data through the AU data paths, and
help select the next control word in the ROM to continue execution of the cur-
rent instruction, New instructions in the program will produce a new start-
ing address from BFR as they are read from memory.

2.2.2 INSTRUCTION REGISTER

Although instructions entering the AU are routed to the BFR for instruction
decoding, the word is only available on the memory lines for one clock cycle.
Since much of the instruction word is required during later clock cycles, a

2-1 Digital Systems Division

uoIsinIg swejsAs 18ibig

TILINE DATA IN

>

CONTROL
} (ROM)
P IR ~
ADDRESih\/‘FDDRESS
s WP
‘ PC
DATA
- —
MD " ALU
—P»
CMUX
N\\\ TILINE DATA OUT
DATA Yy ’//,
| DATA /]
—3»{ URB
LOADER
ADC t ROM
. STATUS
TILINE ADDRESS
ST »
STATUS
URA
MASK
INTERRUPT | TRAP - CRU TO CRU DEVICES
PRIORITY [Z00R e —® INTERFACE ———5
INTERRUPTS
-
(A)128647
Figure 2-1. Arithmetic Unit Block Diagram

10L6-2%PET6

o]
\{@ 943442-9701

12-bit instruction register (IR) saves the most significant 12 bits of the in-
struction. The contents of IR then determine such parameters as addressing
mode (TS/TD fields), operand length (byte indicator), shift lengths (C field),
and result destination address (D field) of the instruction being executed (op
code). The data remains in IR until a new instruction word enters from
memory.

2.2.3 GENERAL REGISTERS

The AU contains three 16-bit general registers for data handling. Two of
these registers, the memory data (MD) and universal register B (URB), re-
ceive inputs directly from memory and serve as the data staging area for in-
put to the ALU. The MD register also has a selectable byte input for swap
byte (SWPB) operations and for relocating the valid type to the most signifi-
cant halfword position during byte operand functions. These operands return
to their normal orientation before being stored into memory. The URB reg-
ister also has a right or left shift capability for use durihg simple shift in-
structions, for shifting operands during multiply and divide instructions, and
for parallel-to-serial conversion during CRU operations.

The third general register, universal register A (URA), receives results
from the ALU after each operation. The contents of URA are then used for
logical and arithmetic comparisons to control bits 0, 1, 2 and 5 of the status
register. URA also has a selectable right or left shift capability that is used
during multiply and divide instructions.

2.2.4 WORKSPACE

As an improvement over the undesirable consequences of a multi-register
architecture, the 990 Computer uses a block of memory words, called a
workspace, for instruction operand manipulation. The workspace occupies

16 contiguous memory words in any part of memory that is not reserved for
other use. The individual workspace registers may contain data or addresses,
and are used as operand registers, accumulators, addréss registers, or in-
dex registers. Some workspace registers take on specizl significance during
execution of certain instructions. Table 2-1 lists each of these dedicated
workspace registers and the instructions that use them.

2.2.5 WORKSPACE POINTER

To locate the workspace in memory, the AU has one hardware register called
the workspace pointer (WP). The workspace pointer is & 15-bit register that
contains the memory address of the first word in the workspace. The AU can
then access any register in the workspace by adding the register number to
the contents of the workspace pointer and initiating a maeamory request for

that word., Figure 2-2 illustrates the relationship between the workspace
pointer and its corresponding workspace in memory. ‘

2-3 Digital Systems Division

[o]
{@@ 943442-9701

Table 2-1. Dedicated Workspace Registers

Register No.

Contents

Used During

0

11

12

13

14

15

Shift count
(optional)

Return address

Effective address

CRU base address

WP register
contents

Return address

ST register
contents

Shift instructions (SLA, SRA, SRC
and SRL)

Branch and Link Instruction (BL)

Software implemented Extended
Operation (XOP)

CRU instructions (SBO, SBZ, TB,
LDCR and STCR)

Context switching (BLWP, RTWP,
software XOP, and recognized in-
terrupt)

Context switching (BLWP, RTWP,
software XOP, and recognized in-
terrupt)

Context switching (BLWP, RTWP,
software XOP, and recognized in-
terrupt)

WORKSPACE POINTER MEMORY WORKSPACE
(WP) ADDRESS REGISTER NO,

Ix Y (0] ol_ X Y O © 0

~ X Y O 2 1

X Y o0 4 2

X Y o0 6 3

X Y o0 &8 4

X Y 0 A 5

TEAuanowang | 0 L -

Ty QM ’

TO ADDRESS THES

REGISTERS X vy 1 2 9

X Y 1 4 10

X Y 1 6 11

X Y 1 8 12

NOTE. ALL MEMORY WORD ADDRESSES

ARE EVEN, X Y 1 A 13

X v 1 C 14

N X Y 1 E 15

(A)128648A

Figure 2-2. Workspace Pointer and Registers

2-4

Digital Systems Division

/]

943442-9701

2.2.6 CONTEXT SWITCHING

The workspace concept is particularly valuable during operations that re-
quire a context switch, or a change from one program to another or to a sub-
routine. Such an operation using a conventional multi-register arrangement
requires that the entire contents of the register file, the program counter,
and the status register be stored and reloaded using a memory cycle to store
or fetch each word. The workspace concept accomplishes this operation in
only three store cycles and three fetch cycles (program counter, status reg-
ister and workspace pointer), producing a time savings of 15 store cycles
and 15 fetch cycles. After the switch, the workspace pointer contains the
starting address of a new 16-word workspace in memory for use in the new
routine. A corresponding time saving occurs when the original context is
restored, Not all context switching operations in the computer affect the
status register. However, instructions that result in either a full or partial
context switch include: Branch and Load Workspace Pointer (BLWP), Re-
turn from Interrupt Subroutine (RTWP), and an Extended Operation (XOP) in-
struction that is software implemented, Device interrupts also cause a con-
text switch by forcing the AU to trap to a service subroutine.

2.2.7 ARITHMETIC LOGIC UNIT (ALU)

The arithmetic logic unit (ALU) is the computational component of the AU. It
performs all arithmetic and logic functions required to execute 990 instruc-
tions. These functions include addition, subtraction, multiplication, division,
AND, OR, exclusive OR, NAND, NOR and complement, A separate com-
parison circuit performs the logical and arithmetic comparisons to control
bits 0 through 2 of the status register. '

2.2.8 BYTE PROCESSING

The ALU is arranged in two halves to accommodate byte operations. Each
half of the ALU operates on one byte of the operand. During word operand
operations, both halves of the ALU function in conjunction with each other.
However, during byte operand processing, the least significant half of the
ALU operates in a passive mode, performing no operation on the data that it
handles. The most significant half of the ALU performs all operations on
byte operands so that the overflow circuitry used in word operations can also
be used in byte operations. Because of this shift in functional halves of the
ALU during byte operation, the AU inspects the address of each byte operand
before transferring it from the TILINE bus to MD, the input register to the
ALU. If bit 15 of the address is set, then the selected byte is in the least
significant half of the memory word. The AU switches the position of the
bytes within the incoming word as it enters MD. If bit 15 is not set, then the
selected byte is in the most significant half of the memory word and no switch
is required. If the bytes have been switched at the input to the ALU, they
must be restored to their proper orientation before the word is returned to
memory. A selectable gate (CMUX) allows the AU to perform any required

2-5 Digital Systems Division

{iﬁ? 943442-9701

reorientation of bytes before placing the word on the TILINE bus to memory.
Figure 2-3 illustrates the handling of an odd addressed (bit 15 set) byte op-
erand as it passes through the AU.

2.2,9 PROGRAM COUNTER (PC)

The program counter is a 15-bit register-counter that contains an address
that is one greater than the word address of the instruction currently execut-
ing in the AU. The AU references this address to fetch the next instruction
from memory and increments the address in PC when the new instruction be-
gins executing. PC does not, however, always contain the address of the
next instruction to be processed. If the current instruction in the AU alters
the contents of PC, then a program branch occurs to the location specified by
the altered contents of PC., All context switching instructions plus simple
branch instructions affect the contents of PC,

2.2,10 ADDRESS DEFINITION CODE REGISTER (ADC)

The address definition code (ADC) register is a 16-bit register that can be
incremented by two without using the ALU. The 16 bits in the register re-
present an addressing capability to the byte level, so that an increment by
two actually produces consecutive word addresses. The contents of the

0 8 : 8 0
BYTE BYTE ﬂ SELECTED ByTE
‘ OPERATION
N N+1 BYTE N+1% N
15 15 71
8
BYTE BYTE BYTE
N+1 N PASS
THROUGH
BYTE N
15 7 7 15
MEMORY MD ALU
REGISTER cMUX
WORD WORD TO
MEMORY

* INDICATES MODIFIED BYTE

(A)128649

Figure 2-3. 0Odd Address Byte Switching

2-6 Digital Systems Division

\J‘—@Zﬂ; 943442-9701

register are not used as a pure address, however. Portions of the code,
combined with other parameters, form the actual addresses for computer
usage. The ADC output performs three major functions‘in the AU: develop-
ment of TILINE address, CRU bit selection, and loader ROM sequencing.

2.2.10.1 TILINE ADDRESS. The TILINE interface produces a 20-bit ad-
dress to memory and other TILINE devices, providing the capability for ad-
dressing up to one million words of memory and TILINE device data. How-
ever, only 32K words of this addressing power are currently used. Since all
TILINE addresses are word addresses, ADC bit 15 (byté address) is not re-
quired for TILINE addresses., This bitis used internal to the AU during byte
operations. To produce the TILINE address, the AU transfers the 15-bit
word address (most significant 15 bits) from ADC to the.least significant 15
bits of the TILINE address (bits 5-19). The remaining 5 most significant
bits of the TILINE address are forced to zeros except when the ADC bits ex-
ceed a value of approximately 31K. At that point, the AU forces the most
significant 5 bits to ones, producing an address that memory cannot recog-
nize. These last 1K words allow the AU to address TILJNE device con-
trollers without conflict with memory addresses.

2.2.10.2 CRU BIT SELECT. The output from ADC also selects a bit in
the Communications Register Unit (CRU) network for CRU operations. The
CRU base address is stored in workspace register 12. At the start of a CRU
operation, the AU fetches the base address, modifies it as required, and
loads it into ADC. Bits 3-14 of ADC then select a CRU bit based upon the ad-
dress bit assignments illustrated in figure 2-4. The ingrement by two feature
of ADC allows the AU to sequence through consecutive GRU bit addresses to
manipulate a series of CRU bits (bit 15 is not used in the CRU interface ad-
dress, so that an increment of ADC by two corresponds to an increment by
one of the CRU address). The CRU interface is explained in detail later in
this manual.

o 2 3 6 7 10 i gz 14 15 k\dkm

NOT USED CHASSIS MODULE BYTE BIT NOT ADC REGISTER

USED
i a gy r .1
1 OF 16 EXPANSION CHASSIS g

{ OF 16 MODULES IN CHASSIS

~rwnd QF 2 MODULE BYTES

- .1-OF 8 CRU BITS

(A)128650

Figure 2-4. CRU Address Bit Assignments

2-17 Digital Systems Division

943442-9701

2.2.11 LOADER ROM

Integral to the AU circuit board is a 256-word ROM that is preprogrammed
with initialization data for the 990 Computer. Alternately, an external cir-
cuit board containing up to 1024 words of initialization data may be inserted
into any TILINE slot in the 990 chassis. The presence of this external ROM
board disables operation of the internal AU loader ROM. Pressing the Load
switch on the front panel or execution of an LREX instruction transfers the
contents of the ROM into active memory. Figure 2-5 illustrates the location
of the four ROM packages on the AU circuit board. The packages are socket-
mounted to the board for easy replacement,

2.2.11.1 DATA TRANSFERS. When the load operation begins, the AU ex-
amines the TILINE interface to determine if the external ROM board is pres-
ent before enabling the internal ROM. Regardless of the number of initiali-
zation words in the ROM circuits, the AU then begins a sequential store op-
eration into the first 4K words of memory. If the 256-word AU ROM provides
the initialization data, this data is repeated sixteen times to fill the space in
memory. An option is available for software development that only loads into
the first 256 words of memory.

2.2.11.2 ROM SEQUENCING. The ADC register generates the addresses
required to load the ROM data into memory. When the operation begins,

BB Y R

T & AN .
HEFSED RPLOLBY £

Figure 2-5, AU Loader ROM Chip Locations

2-8 Digital Systems Division

[e]
{@ 943442-9701

ADC contains an address of zero. Each succeeding clock then increments
the word address in ADC until it reaches a count of 4095, (255 with software
development option). The next clock clears ADC and begins loading WP and
PC with values from the initialization data in memory. As each address is
generated during the load procedure, it is placed on the TILINE address bus
and bits 7-14 are routed to the AU loader ROM. If enabled, the AU ROM will
place the addressed word on the TILINE data bus to be stored in memory at
the location indicated by the TILINE address. If the external ROM is used,
the TILINE address bus defines both the memory storage address and the
ROM address on the external board that will supply the data.

2.2.12 STATUS REGISTER

The status register is a 16-bit register that reports the results of program
comparisons, indicates program status conditions, and supplies an interrupt
mask level to the interrupt priority circuits. Each bit position in the regis-
ter signifies a particular function or condition that exists in the AU. Figure
2-6 illustrates the bit position assignments. Some instructions use the status
register to check for a prerequisite condition, others affect the values of the
bits in the register, and others load the entire status register with a new set
of parameters. The description of the instruction set later in this manual -
details the effect of each instruction on the status register.

2.2.12,1 LOGICAL GREATER THAN (BIT 0)., When set, bit 0 indicates
that an instruction produced a 'logical greater than' result. When clear,
bit 0 indicates that the instruction yielded a ''not greater than' result.

2.2.12.2 ARITHMETIC GREATER THAN (BIT 1). When set, bit 1 indi-

cates that an instruction produced an arithmetic '"greater than'' result. When
clear, bit 1 indicates that the instruction yielded a ''not greater than' result.

(8] 1 2 3 4 S 6 7 11 12 (L]

L> A> £Q c ov or X RESERVED FOR INTERRUPT
FUTURE USE MASK

LOGICAL GREATER THAN ————]

ARITHMETIC GREATER THAN

EQUAL/TE INDICATOR

CARRY OUT

OVERFLOW

PARITY (ODD NO, OF BITS)
XOP IN PROGRESS

(A)128651.

Figure 2-6., Status Register Bit Assignments

2-9 Digital Systems Division

]
{—%\Qgp 943442-9701

2.2.12.3 EQUAL (BIT 2). When set, bit 2 indicates that an instruction
produced an ''equal' result. When clear, the instruction yielded a ''not equal
result. This bit is also used during test bit instructions to indicate the value
of the CRU bit tested, and during compare corresponding instructions to in-
dicate the outcome of that comparison.

2.2.12.4 CARRY (BIT 3). Bit 3 sets when a carry out from the most sig-
nificant bit position occurs during an arithmetic operation. The bit resets
when no carry out of the most significant bit position occurs. The arithme-
tic operations that affect the carry bit are addition, subtraction, increment,
and decrement. The carry bit also stores the value of the last bit shifted out
of the operand during shift instructions.

2.2.12.5 OVERFLOW (BIT 4). Bit 4 sets when the result of an arithmetic
operation is too large or too small to be correctly represented in two's com-
plement form within the number of bits used for the result. The bit resets
when the result is correctly represented. The arithmetic operations that
affect the overflow bit are addition, subtraction, increment, and decrement.
A division operation sets the overflow bit when the most significant sixteen
bits of the dividend are greater than or equal to the divisor. During an arith-
metic left-shift, the overflow bit sets if the sign bit changes and clears if the
sign bit does not change.

2.2.12.6 ODD PARITY (BIT 5). Bit 5 is affected only by byte operations.
This bit sets to indicate that the number of one bits in the resultant byte is
an odd number; this bit clears when the number of one bits in the resultant
byte is an even number.

2.2.12.7 EXTENDED OPERATION IN PROGRESS (BIT 6). Bit 6 sets when
a software implemented XOP instruction is encountered in the program se-
quence. If the XOP is to be executed by an external hardware module, bit 6
remains clear. If the XOP is implemented by a software subroutine, bit 6
sets until the subroutine completes and the resulting context switch restores
the previous contents of the status register.

2.2,12.8 INTERRUPT MASK (BITS 12-15), The interrupt mask contains
a 4-bit value that indicates which interrupt levels will be recognized by the
AU interrupt priority logic. The value in the interrupt mask enables that in-
terrupt level and all interrupt levels below it (those having higher priority).
For example, a mask value of ''4" (0100) enables interrupt level 4 (TILINE
Time Out) and also levels 0 through 3.

2.2.13 INTERRUPTS

The 990 Computer employs sixteen interrupt levels. A priority ranking sys-
tem assigns numbers from 0 (highest priority) to 15 (lowest priority) to the
levels so that interrupt conflicts can be resolved. The six highest priority
levels are used for internal interrupts and the remaining ten levels (6 through

2-10 Digital Systems Division

o]
{@ 943442-9701

15) are available for external device interrupts. The interrupt levels are
vectored for rapid reaction to recognized interrupts. That is, corresponding
to each interrupt level is a 2-word vector located in low~order memory (ad-
dresses 00 through 3F). When the AU recognizes an interrupt, it loads the
vector for that level into WP (first vector word) and PC (second vector word)
to define the new workspace and program starting point for the interrupt ser-
vicing routine. When the interrupt routine is complete, the AU returns to
the program that was executing when the interrupt occurred.

2.2.13,1 MASKING. The AU uses a 4-bit field in the status register to
determine the lowest priority interrupt that will be recognized during a pro-
gram operation, and also to ensure that an interrupt service routine will not
be halted due to another interrupt of equal or lower priority. At the start of
a program the mask field in the status register is loaded with the mask value.
The AU compares this value continuously with any interrupts that occur. If
the level of the interrupt is equal to or less than the mask value (equal or
greater priority), then the AU recognizes the interrupt and calls the service
routine for that interrupt level. When the AU sets up the service routine, it
loads a value into the mask field that is one less than the interrupt level being
serviced, thereby disabling interrupts from devices of equal or less priority.
Table 2-2 lists the interrupt levels, assignments, vector location and mask
information.

2.2.13,2 LEVEL 0 - POWER ON., Whenever ac power is applied to the
computer, it issues a level 0 interrupt, setting the interrupt mask to 0.

2.2.13.3 LEVEL 1 - POWER FAILING. When ac power begins to fail, a
sensor in the power supply generates a level 1 interrupt. At that point the
computer has one millisecond of program time before a power supply reset
halts operation, This interrupt sets the interrupt mask to 0.

2.2.13.4 LEVEL 2 - MEMORY ERROR. When a non-recoverable memory
error occurs, the memory controller generates a level 2 interrupt. This in-
terrupt sets the interrupt mask to 1.

2.2.13.5 LEVEL 3 - ILLEGAL OPERATION. When the AU acquires an
instruction from memory that cannot be executed, it generates a level 3 in-
terrupt. If level 3 interrupts are disabled, the AU increments PC by two
and attempts to execute the instruction at that address., When the interrupt
is recognized, the AU sets the interrupt mask to 2. Illegal operation codes
are within the following ranges:

0000 through O1FF
0780 through O07FF
0CO00 through OFFF

2-11 Digital Systems Division

le]
@ 943442-9701

Table 2-2. Interrupt Level Data

Inizl;rrelipt -\(/Tei:(;rALc‘l?ii-a::Z? Device Assignment | Enabling Mask Values
0 00 Power on 0 through F
1 04 Power failing 1 through F
2 08 Memory error 2 through F
3 0C Illegal operation 3 through F
4 10 TILINE time out 4 through F
5 14 Real time clock 5 through F
6 18 External device 6 through F
7 1C External device 7 through F
8 20 External device 8 through F
9 24 External device 9 through F

10 28 External device A through F
11 2C External device B through F
12 30 External device C through F
13 34 External device D through F
14 38 External device E and F

15 3C External device F only

2.2.13.6 LEVEL 4 - TILINE TIME OUT. If the AU issues a request for
data from memory or for communication with another TILINE device and
fails to receive a response within 10 microseconds, the AU issues a level 4
interrupt. This interrupt sets the interrupt mask to 3.

2.2.13.7 LINE FREQUENCY CLOCK. The power supply contains a line
frequency synchronized clock. The clock frequency is 120 Hz. A signal is
generated every 8.33 ms to provide a level 5 interrupt request. The clock
is started and stopped by execution of control instructions. The initial inter-
rupt request following the starting of the clock may occur between 1 us and
8.33 ms later., Timing by the clock is only as accurate as the power line
frequency to which it is synchronized, When the interrupt is taken, the AU
sets the interrupt mask to 4,

2-12 Digital Systems Division

o
{@ 943442-9701

2.2.13.8 EXTERNAL INTERRUPTS. Interruptlevels 6 through 15 are
available for assignment to CRU or TILINE devices. The external levels
may be shared by several device interrupts depending upon system require-
ments. All interrupt requests must remain active until recognized by the
interrupt service routine. The individual service routines must reset the
interrupts before the routine is complete.

2.2.13.9 INTERRUPT TRANSFERS. The AU continudusly compares the
highest priority outstanding interrupt with the interrupt ma sk, When the
level of the pending interrupt is less than or equal to the mask level (higher
or equal priority), the AU recognizes the interrupt and initiates a context
switch following completion of the currently executing instruction. The AU
first fetches the interrupt vector corresponding to the interrupt level recog-
nized, and loads the first word into WP and the second word into URB. Con-
currently, the AU saves the previous WP value by transferring it to URA.
The AU then stores the old program parameters, WP, (how in URA) PC and
status register into registers 13, 14 and 15 of the new workspace. Having
saved the old program, the AU enters the service routine starting point (now
in URB) into PC and ADC to begin the service routine. No interrupts are
permitted to disturb the initiation of the service routine until the first instruc-
tion has been executed, so that the program parameters. are firmly estab-
lished.

2.2.13.10 INTERRUPT ROUTINES. When the service routine begins, the
AU forces the interrupt mask to a value that is one less than the level of the
interrupt being serviced. This allows only interrupts of higher priority to
interrupt a service routine. If a higher priority interrupt occurs, a second
context switch ensues to begin servicing the higher priority interrupt. When
that routine is complete, a return instruction (RTWP) restores the first ser-
vice routine parameters to the AU to complete processing of the lower pri-
ority interrupt. All interrupt subroutines should terminate with some return
instruction that restores program parameters to continuve operation.

2.2.14 ARITHMETIC UNIT CLOCK

The AU clock signal is a 60 nanosecond, low active pulse that regulates all
activities within the AU. When the AU is processing data internally, the clock
pulse occurs with a period of 260 nanoseconds (3.8 MHz). However, when
the AU is processing data using TILINE read cycles, the clock becomes de-
pendent upon the response from the TILINE slave device (memory complete).
Under these conditions, the period is never less than 260 nanoseconds, but it
may be greater depending upon the speed of the memory device. This allows
the AU to wait for the required instruction from memory through the asyn-
chronous TILINE interface.

2-13 Digital Systems Division

[o]
@@ 943442-9701

2.3 TILINE

The Model 990 Computer employs a high-speed, bidirectional data bus,
termed the TILINE, for data exchange between the AU, memory and other
rapid transfer peripheral devices connected to the computer. The TILINE
bus operates asynchronously, so that the interaction rate of specific devices
is the only factor limiting TILINE's transfer speed. Each TILINE device ap-
pears to the AU as if it were additional memory, since device interfaces are
addressed using the same address lines as those used for memory, The
similarity of function for each TILINE device allows standardization of the
controller-to- TILINE interface to greatly reduce design effort for new inter-
face controllers (refer to Appendix E of this manual for sample interface
diagrams), TILINE, therefore, ensures maximum transfer rate with mini-
mum interface complications,

2.3.1 MASTER-SLAVE CONCEPT

TILINE interfaces may assume one of two roles during a data transfer:
master or slave. The master device controls the data transfer whether send
ing or receiving data. The slave interface performs the actions required by
the master interface to effect the data transfer and acts only under the direc-
tion of some master interface. The AU is an example of a master device
that generates addresses and the required control signals to perform both
data storage and retrieval operations. Memory, however, is always a slave
interface that is incapable of initiating a data transfer and can only respond
to requests by the AU or other master devices. Peripheral device interfaces
may be solely master, always slave, or more typically, both master and
slave interfaces. In the latter case, the slave interface allows the AU to es-
tablish transfer parameters in the master interface registers. The AU then
relinquishes control of the TILINE to the master interface, freeing the AU
for other operations while the peripheral master interface performs a block
transfer,

2.3.2 INTERFACE SIGNALS

Forty-seven signal lines perform the addressing, data transfer and control
functions of the TILINE data bus. Each device connected to the bus monitors
these signals and reacts when it receives a command addressed to it. Fig-
ure 2-7 illustrates and table 2-3 defines the TILINE interface signals and
their assigned connector pin numbers within the computer backplane.

2.3.3 TILINE PRIORITY

The TILINE interface resolves conflicts for access to the data bus through a
positional priority system. The circuit board in chassis location All re-
ceives the highest priority. Priority ranking decreases with each chassis
location through A02 (the AU circuit board), which is the lowest priority posi-
tion. The power supply circuit board (location A0l) receives no ranking,

2-14 Digital Systems Division

943442-9701

GROUND
o Alal_ 2‘&]{35& LOGIC VOL.TAGES POWER
MASTER OR — SUPPLY
REVICES TLPRES—.
TLPFWP
TLGO—
TLREAD
TLADR(0—19) —
TLDAT(0—15)—
- (0—15)
TLTM-
-
TLMER-
TILINE
MASTER
TLAG (OUT) TL.GO—
3>
TLAG (IN TLREAD
< e —
TLAK= TLADR(0> 19
l—— () = . TLLAlNE:
TLAV “LDAT(0~ 15 SLAV
B AIT - :) >
TLWAIT™ TLTM=
gt
TLIORES— TLMER—
-
FROM CPU TLIORES— TLGO—
CONSOL '
TLREAD
>
TLADR(Q-19) -
> TILINE
FROM TLWAIT- TLDAT(Q-15) - SLAVE
COUPLERS
OR MEMORY TLTM—
TLMER™

TLGO—

TLREAD
TLADR(0—19) -
TLDAT(0—15)-

-

TILINE
MASTER
TLAG (OUT)
TLAG (IN
< (IN)
TLAK=—
< K
TLAV
TLWAIT—
TO OTHER TILINE
TLIORES— DEVICES
(A)128652A P

Figure 2-7. TILINE Interface Signals

2-15 Digital Systems Division

[o]
(‘r@b) 943442-9701

Table 2-3. TILINE Signal Definitions

Signature Pin No. Definition
TLGO- P1-25 TILINE Go: Initiates all data transfers when
transition from high (3. 0V) to low (1.0V) oc-
curs. ‘
TLREAD Pl-11 TILINE Read: When high (3.0V) designates a
read from slave operation; when low (1.0V)
designates a write to slave operation.
TLADROO- P2-55 TILINE Address to define the location of data
0l- P2-44 during a fetch or store operation. When high
02 - P2-51 (3.0V) the corresponding address bit is a
03- P2-53 zero; when low (1.0V) the corresponding ad-
04- P2-57 dress bit is a one.
05- P2-59 '
06 - P2-47
07- P2-49
08- P2-17
09- P2-19
10- P2-10
11- P2-12
12 - P2-11
13- P2-15
14- P2-8
15- P2-9
16- P2-29
17- P2-27
18- P2-25
TILLADRI19- P2-31
TLDATO0O- P2-67 TILINE Data: Bidirectional data lines that
01- P2-69 when high (3.0V) represent zero data bits,
02 - P2-35 and when low (1.0V) represent one data bits.
03- P2-37
04- P2-61
05- P2-63
06 - P2-43
07- P2-45
08- P2-21
09- P2-33
10- P2-23
11- P2-20
12- P1-27
13- P1-28
14- P1-30
TLDATI15~ P1-31

2-16 Digital Systems Division

o]
{\%é]{? 943442-9701

Table 2-3. TILINE Signal Definitions (Continued)

Signature Pin No, Definition

TLTM- P1-20 TILINE Terminate: When low (1.0V) indi-
cates that the slave device has completed
the requested operation.

TLMER- P1-55 TILINE Memory Error: When low (1.0V)
indicates that a nonrecoverable error has
occurred during a memory read operation.

TLAG (in) P2-6 TILINE Access Granted: When high (2.4V),
this signal indicates that no higher priority
device has requested use of the TILINE., When
low (0.4V), this signal prevents the receiving
device from using the TILINE bus.

TLAG (out) P2-5 TILINE Access Granted: When high (2.4V),
this signal indicates that neither the sending
device nor any higher priority device has re-
quested use of the TILINE. When low (0.4V),
this signal indicates that either the sending
device or some higher priority device has re-
quested use of the TILINE Lus and prevents
all lower priority devices from using the bus.

TLAK- P1-71 TILINE Acknowledge: When high (3.0V), this
signal indicates that no TILINE device has
been recognized as the next device to use the
TILINE. When low (1.0V), this signal indi-
cates that some TILINE device has requested
access, has been recognized, and is waiting
for the bus to become available.

TLAV P1-58 TILINE Available: When high (3.0V), this
signal indicates that no TILINE device is using
the bus. When low (1.0V), this signal indi-
cates that the TILINE bus is busy.

TLWAIT- P1-63 TILINE Wait: A normally kigh (3.0V) signal
that when low (1.0V), temporarily suspends
all TILINE master devicesirom using the
TILINE bus. This signal is generated by bus
couplers to allow them to use the bus as the
highest priority user.

2-17 Digital Systems Division

o]
KI\IZ]? 943443-9701

Table 2-3. TILINE Signal Definitions (Continued)

Signature Pin No. Definition
TLIORES- Pl-14 TILINE I/O Reset. A normally high (3.0V)
P2-14 signal that when low (1.0V), halts and resets

all TILINE I/O devices. This signal is a 250
nanosecond pulse generated by the RESET
switch on the control console or by the execu-
tion of a Reset (RSET) instruction in the AU.

TLPRES- P1-13 TILINE Power Reset: A normally high (2.4V)
P2-13 signal that goes low (0.4V) to reset all TILINE
devices and inhibit critical lines to external
equipment. The signal is generated by the
power supply at least 10 microseconds before
dc voltages begin to fail during power-down,
and until dc voltages are stable during power-

up.
TLPFWP P1-16 TILINE Power Failure Warning Pulse: A 1,0
P2-16 millisecond pulse preceding -TLPRES. When

high (3.0V), this signal indicates that a power-
down sequence is in progress, allowing the

AU to perform its power failure interrupt sub-
routine,

since it is not a TILINE user. Only master devices can initiate TILINE re-
quests. Therefore, only master devices participate in the priority circuits.

2.3.,4 PRIORITY DETERMINATION

Figure 2-8 illustrates the connections between TILINE master controllers
that establish the priority system. When a controller requires access to the
bus, it examines Access Granted (TLAG) to determine if a higher priority
device has also requested access. Access Granted establishes priority rank-
ing within the chassis by passing through each circuit board in series. This
arrangement allows a circuit board to reserve the TILINE bus by disabling
TLAG to the lower priority circuits in the chassis if no higher priority de-
vice has already reserved it. Although slave interfaces do not participate in
priority determination, they must transfer the TLAG signal from the input
pin to the output pin in their connector location. Access Granted also enables
the controller to issue a request. If Access Granted is high and the Acknowl-
edge (TLAK-) signal is also high, the controller may reserve the next trans-
fer period on the bus by pulling TLAK- low. The controller then has exclu-
sive rights to the next transfer period and may not be removed from this
position by a request of any priority., When the controller gains control of

2-18 Digital Systems Division

S o

TLAV TILINE
(TILINE AVAILABLE) wgt— —
TLAK-
(tiLINE & —
ACKNOWLEDGE)
'ru;c
TILINE ACCESS «g—— — — -
(GRANTED) [> l—-.
ENABLE ENABLE ENABLE ENABLE
> REQUEST > REQUEST —»REQUEST —P»REQUEST
| REQUEST- REQUEST— REQUEST-
3
2 2 l
vee vce vce vce
MASTER MASTER,, MAST MASTER
DEVICE "0 nzvnczz‘ﬁ 4 Dswcsq‘}q” DEVICE ‘E:PU"
- HIGHEST PRIORITY LOWEST PRIORITY
(A)128633

Figure 2-8, TILINE Priority Connections

the bus (after the current user relinquishes it), the controller pulls TLAV
low to indicate a busy condition until it finishes its transfer. At that time it
also enables TLAG to other master controllers to allow them to vie for the
next access to the bus. TILINE masters other than the AU usually perform
one memory cycle and then relinquish TILINE access. However, certain
master interfaces may maintain TILINE access for several memory cycles,
The AU maintains TILINE access unless another master device wants access.
When Access Granted goes low at the AU input, the AU relinquishes TILINE
access until Access Granted goes high following completion of the TLAK-
and TLAV sequence, Figure 2-9 illustrates the timing relationships of the
signals during a TILINE request.

2.3.5 TILINE WRITE CYCLE

A TILINE Write operation transfers 16 bits of data from a master device to

a slave device. The timing of this operation is asynchronous and depends
solely on the response time of the respective device controllers. Figure 2-10
illustrates the relationship of the signals involved in the write operation.

2,3.5.1 WRITE INITIATION. To begin a write operation, a master con-
troller generates a 16-bit data word (TLDAT-) to be stored in a slave de-
vice, produces a 20-bit address (TLADR-) to select the proper slave device,
drops the read signal (TLREAD) to indicate a write operation, and indicates
to the slave devices that an operation is beginning by activating the go signal

2-19 Digital Systems Division

{i@ 943442-9701

255838
U
STATE ~/

~~

TLAG (IN)

~N

TLAG (OUT) | 1pS

| _ (UNDER CONTROL OF

1 [—I 7Y OTHER MASTERS)

o
TLAK— TRANSFER PERIOD
"—-——- ONE OR MORE MEMORY CYCLES ———.l
' r ------------------ q—_—'
r '
) 1 d C
TLAV - o

(A)128634A

Figure 2-9., TILINE Access Request Timing

(TLGO-). All slave devices receive the go signal (after a transmission de-
lay) and decode the address lines to determine which device is selected. To
ensure that the address lines are valid, the slave device delays the effect of
the go signal within its circuitry to allow for worst cases of address trans-
mission skew (50 nanoseconds typical) and propagation delay during address
decode (dependent on circuitry: 50 nanoseconds typical). The selected slave
then transfers the data, address and write indication from the TILINE bus
into registers, and generates a terminate signal (TLTM-) to the master con-
troller.

2.3.5.2 WRITE TERMINATION. When the master controller receives the
terminate signal from the slave, it releases those signals that it produced to
initiate the transfer (TLGO-, TLREAD, TLADR-, and TLDAT-). Dropping
TLGO- to the slave causes it to drop its terminate signal, which releases
the master controller to begin another read or write cycle or allow access to
another master controller.

2.3.6 TILINE READ CYCLE

A TILINE read operation transfers 16 bits of data from a slave device to a
master device. The timing of this operation is asynchronous and depends
solely on the response time of the respective device controllers. Figure
2_11 illustrates the relationship of the signals involved in the read operation.

2=-20 Digital Systems Division

(o}
{@ 943442-9701

INITIATION TERMINATIO — — NEW
AT MASTER , eYOLE

r- —e|T, /-.JIT "...'TD .—iTD l‘_

TLGO~- l I I i _1_
— =
| 1 |
TLTM- [; . | i ! ! Ik_/ i l
TLREAD “—k . | [l/ i : ' i
o™ ' .r" 1 -
TLADR- '—*(T) |_vALIo i ! /1 | - -i' —
TLDAT— —_ﬁ ' VALID | I I/ ! i Ir_ L
— ——t—————
- S |
| | ' I
AT SLAVE l l | | | I | o
!
TLGO— '—'—p | ’ .I | i l N
TLTM- _;{ | ! l ! | -
TLREAD I : |/ — | I\
TLADR- "'l —\ VALID | v
| | | | ll | | ~--
TLOAT- T ——\ vALiD | Y/ J v
| | ——+ | | ==
R—
THME | I
(0 = reavmes TN
TD = TILINE TRANSMISSION DELAY \’B
(EXAGGERATED FOR CLARITY)
(A)128655A

Figure 2-10. TILINE Write Cycle Timing

2.3.6.1 READ INITIATION. To begin a read operation, the master con-
troller generates a 20-bit address to select the slave device, holds the read
signal (TLREAD) high to indicate a read operation, and generates a go signal
(TLGO-). All slave devices receive the go signal and decode the 20 address
bits to determine which of the slave devices has been designated. To allow
for transmission skew and address decoding time, the slave device delays
the go signal internally so that the address is stable when the decoder re-
sults are checked., The selected slave device then initiates a read cycle to
produce data for the master device.

2.3.6.2 READ TRANSFER. When the slave device has completed its read
cycle and the data is stable on the TILINE, the slave controller issues a
termination indication (TLTM-) to the master device. If a read error was

2-21 Digital Systems Division

943442-9701

INITIATION TERM INATION
AT MASTER I - AND TRANSFER * —.{

- ™ je— o k;"y”’!"’! o[-
(1")l t } 1 ' | fl-—-

e , —_ o

- = —+
TLADR- W VALID | l I/ i ' i i i'\. .i. o e o

5 L L L

TLDAT T] (Rﬂ[VALID o

| N | ||

TLMER- | — TV ERROR 7 s

(R)
| IR)
AT SLAVE | l

AT SLAVE | B i I

i S |
| ()] = 1 r | | l\- —

TLTM - K [(T)l | | [[1

. [| o — ||

LREAD I I 1 | I | | |

i | - |1
TLADR —m VALID . ‘ ! i ! IV o I -

TLDAT- l i T\ | ! VALID | f— : !

TLMER- N Ty — ERRIO I y l : | I

] b e el ety N B B

(T) = TRANSMITTED A = A RESULTS IN B
(R) = RECEIVED B
TD = TILINE TRANSMISSION DELAY .

(A)t28656 A (EXAGGERATED FOR CLARITY)

Figure 2-11, TILINE Read Cycle Timing

detected during the read cycle, the slave generates a read error signal-
(TLMER-) concurrent with the termination signal, and with the same timing
that the read data lines would have, :

2.3.6.3 READ TERMINATION., When the master device receives the ter-
mination signal from the slave device, it allows for worst case transmission
skew. The master then captures read data into a register and disables the
go indication and the address lines. The slave responds to the loss of TLGO
by dropping the termination indication and the data on the read lines. Drop-
ping terminate allows the master to issue another data transfer operation or
relinquish the data bus to another master device. -

2-22 Digital Systems Division

943442-9701

2,3.7 TILINE TIME OUT

If a TILINE master has access to the bus and does not transfer data within
10 microseconds, or if the master addresses a nonexistent slave device, the
master generates an internal time out signal. The time out function auto-
matically returns the master to an idle state to initiate its access once more.

2.3,8 DESIGN CHARACTERISTICS

Figure 2-12 illustrates the termination circuits required to stabilize the sig-
nals on the TILINE., Table 2-4 presents other design characteristics for the
bus, Refer to Appendix E of this mianual for sample interface circuits of
both a master and slave TILINE device,

+5V
USED FOR. TLGO-
150 OHMS TLGO-
TLAV
TLIORES—
TLWAIT—
TEREAD
OHMS T -
399 TLAK-
== LOCATION. IN BACKPLANE
+5Vv
390 OHMS USED FOR, TLADROO— THROUGH TLADR19—
TLDATOO— THROUGH TLDAT15—
LOCATION. IN BACKPLANE
+5V
1K OHMS USED FOR. TLAG
LOCATION, ON EACH TILINE MASTER TLAG(IN)
+SVv
USED FOR, TLPRES—
270 OHMS :
LOCATION,. IN POWER SUPPLY
+5V
USED FOR:, TLPFWP
270 OHMS

LOCATION, IN POWER SUPPLY

(A)128657

Figure 2-12, TILINE Termination Circuits

2-23 Digital Systems Division

(o)
Q]@ 943442-9701

Table 2-4, TILINE Design Characteristics

Characteristic Requirement

Length of signal path 20 inches (max) including routing on
circuit boards.

Propagation delay Less than signal rise and fall times.
Location of termination Any place along the motherboard sig-
resistors. nal path. '

Driver/receiver specification

Circuit type SN 75138 (typical)
Driver circuit Open collector sinking 50 ma
Receiver circuit Less than 50 microamps input cur-
rent (typical) 2,0V to 3.0V input
threshold
Control to data or address 50 nanoseconds maximum
skew
Master access switching time Approximately 60 nanoseconds

2.4 HARDWARE XOP INTERFACE

To reduce programming complexity, the Model 990 Computer offers an in-
terface that allows more efficient hardware modules to perform complex
arithmetic and logical operations while the AU waits for the result. This ex-
tended operation (XOP) feature is an integral component of the software XOP
instruction. When the AU reads an XOP instruction, it checks first to deter-
mine if the hardware module for that function is included in the chassis.

Only if the hardware module is not included does the AU call the software
subroutine for that function from memory. The following paragraphs de-
scribe the operation of the XOP interface as an aid to the design of special-
ized modules and as a guide to the capabilities of the computer.

2.4.1 XOP INTERFACE SIGNALS

The hardware XOP interface employs six exclusive signals, plus five signal
types used by TILINE and other devices, to control actions of an XOP cir-
cuit board. Figure 2-13 illustrates the interface lines connecting the XOP
module to the AU, Table 2-5 defines these signals and lists the AU circuit
board pin numbers for each signal, XOP signals are wired throughout the
computer chassis, so that if an XOP circuit board is to be used, it may be
inserted into any TILINE connector location in the chassis. Refer to the con-
nector diagrams in Appendix G of this manual to determine the pin assign-
ments of these signals,

2-.24 Digital Systems Division

{r\'%[l@ 943442-9701

XOPIAQCK—
-
L‘ XOPTHERE-
XOPSTB—
ENXOPQ—
XOPCOM P~
- —_

AU jg XQEABORT™ —] HARDWARE
CIRCUIT XOP
BOARD PINTQ- CIRCUIT BOARD

- -
TLTERM~—
-
(20) TLADROO— 19—
lg_(16)) : TLDATOO- 15~
w TILCLK—
i t -
TO/FROM
MEMORY OR
OTHER TILINE
v
(A)128658

Figure 2-13., Hardware XOP Interface Signals

2.4.2 HARDWARE XOP OPERATION

Each XOP module processes a set of data to produce an end product that is
either stored in memory as data, reported to the AU through status bits, or

a combination of the two methods. In addition, the module continuously moni-
tors the instructions sent to the AU when the module is rot active. An ex-
tended operation cycle begins when the AU reads an XOF instruction from
memory. Figure 2-14 illustrates the timing of interface signals during the
entire XOP cycle using a hardware module. The following pargraphs de-
scribe the processes that occur during the operation.

2.4.2.1 INSTRUCTION MONITORING AND ACQUISITION., Each time that
the AU fetches a new instruction from memory and receives the termination
indication from memory, the AU produces a clock pulse (XOPIAQCK-) to the
XOP module, allowing the module to capture the op code and D field portions
of the instruction from the TILINE data bus. The module then decodes that
portion of the instruction to determine if the module can process that instruc-
tion. If the module cannot perform the requested functicn, the module does
nothing and waits for another instruction to be entered. However, if the mod-
ule can perform the operation, it activates XOPTHERE- to indicate to the AU
that the hardware module is present and active. This signal must be active
within 200 nanoseconds of the instruction acquisition cloctk and must remain
active until the AU recognizes its presence by transmitting the operand ad-
dress to the XOP module.

2-25 Digital Systems Division

(o]
@ 943442-9701

Table 2-5. Hardware XOP Interface Signals

Signature Pin No. Definition

XOPIAQCK- P2-43 XOP Instruction Acquisition Clock: a
60 nanosecond low active pulse that en-
ables the XOP circuit boards to capture
the data currently on the TILINE data
lines. That data is an instruction to be
inspected by the XOP module.

XOPTHERE- P2-29 XOP Hardware Present: a low active
signal generated by the XOP module
within 200 nanoseconds following
XOPIAQCK-. This signal indicates to
the AU that a hardware module is avail-
able to perform the indicated XOP func-
tion and that no software subroutine need
be started. This signal must be present
until acknowledged by XOPSTB-.

XOPSTB- P2-30 XOP Strobe: a low active enable signal
generated by the AU to the XOP board at
least 500 nanoseconds following
XOPIAQCK-., This signal indicates to the
XOP module that the effective address has
been calculated and is available on the
TLADR lines.

ENXOPQ- P2-26 Enable XOP: a low active signal gener-
ated by the AU to allow the XOP module
to begin processing. The signal remains
active during the entire process and is
cleared when the AU receives status at
the completion of the XOP.

XOPCOMP- P2-53 XOP Complete: a low active signal that
is issued by the XOP module to indicate
that it has successfully completed the
required operation. While this signal is
active, the TLDAT lines contain status
bits from the completion of the operation
for transfer to the AU status register.

XOPABORT- P2-54 XOP Aborted: a low active signal from
the XOP module to indicate that an in-
terrupt from the AU has terminated the
operation before the operation was com-
plete. While this signal is active, the

2-26 ' Digital Systems Division

(o]
{@ 943442-9701

Table 2-5. Hardware XOP Interface Signals (Continued)

Signature Pin No. Definition
XOPABORT- P2-54 TLDAT lines contain status bits from
(Cont.) the module to indicate the condition at

time of termination.

PINTQ- P2-25 Processor Interrupt: n low active signal
from the AU that, if implemented, halts
an extended operation in progress in an
XOP module. The module then returns
an XOPABORT- signal to the AU,

TLTERM- Pl-14 TILINE Terminate: a low active signal
from any TILINE devi¢e or the XOP
module to indicate the end of a particular
data transfer. The XOP module uses
TLTERM- to indicate receipt of the ef-
fective address from the AU,

TLADROO- See TILINE TILINE Address: a 20-bit address from
to description the AU to the XOP module that desig-
TLADRI19- nates the starting address of the data

for the extended operation. This ad-
dress transfers to the XOP module at
the start of the XOP routine. The cir-
cuit board must store the address until

completion of the routine. "1'' = 1,0V;
"o" = 3,0V
TLDATOO0- See TILINE TILINE Data: bidirectional data lines
to description that carry the XOP instruction to the
TLDATI15- XOP module, the XOP result from the

module, and the status bits from the
module to the AU. '"'1" = 1,0V;
"o = 3,0V

2.4.2.2 ADDRESS TRANSFER. The XOP instruction may use the TS field
to modify the source address for the XOP data. In this case, the S field of
the instruction does not contain the true, effective address of the XOP data,
and the AU must modify that value before it can be used by the XOP module.
For this reason the XOP module does not capture the TS and S fields during
the instruction acquisition phase. Instead, the module holds XOPTHERE-
active until the AU has determined the effective address, At that point (500
nanoseconds minimum delay), the AU issues XOPSTB- and places the effec-
tive address on the TILINE address lines. The address remains on the lines

2-27 Digital Systems Division

o
{@? 943422-9701

-
™

CPUCLK— U U U U {
I |
—» j@&———— 60ns |
I
XOPIAQCK— U I /
K |
—-Tl WARE j— |
| y;
XOPTHERE— | I l 4
|| |
I h—_— ?ﬁol‘g‘ns ———" I
XOPSTB— | 4
| |
||
| o

VALID

(EFF. ADDR) ADDR

|
|
TLADRO—19 I
I
I

—-ﬂ ja§——— APPROX 50ns

R _f
TLTERM~— I I /4_' ’
FRO FROM XOP
N Ry HDWR (ADDR) I
(INSTRUCTION RCVD)
ETCH) |
ENXOPQ— ’
/L
4 r I
Y gy |
XOPCOMP— 7T ‘ 7
OR
XOPABORT—
Y l_____/
TLDAT- VALID
STATUS

(A)128659A

Figure 2-14, XOP Interface Timing Diagram

2-28 Digital Systems Division

i

943442-9701

and the strobe remains active until the XOP module returns TLTERM- to in-
dicate that it has captured the address in its address register. The AU's
time out function clears the address and strobe lines if the XOP module fails

to respond.

2.4.2.3 OPERATION EXECUTION. When the AU has received TLTERM-
from the XOP module, it generates an enable signal to the module (ENXOPQ-)
to initiate execution of the prescribed operation. This signal remains active
until the module completes or terminates the operation. The hardware within
the module must be able to function independently to fetch operands from
memory, perform the required manipulations, and return the operands to
memory in the location specified by the effective address stored in its ad-
dress register. Operand size and length of operation are a function of the
XOP module design.

2.4.2.4 OPERATION COMPLETION, When the XOP 1nodule has completed
its operation and stored the results in the specified memory location, it
issues a signal to the AU to indicate that the operation hes completed normal-
ly (XOPCOMP-), and places status information on the TILINE data lines.
When the AU has received the status information, it loads it into the status
register for program monitoring, and responds to the XOP module by deac-
tivating ENXOPQ-. The XOP module then removes the 2XOPCOMP- indicator
and status information from the interface lines. The extended operation is
complete.

2.4.2.5 OPERATION ABORTED. The XOP module muy respond to an AU
interrupt by terminating the extended operation before cempletion, The AU
generates a processor interrupt signal (PINTQ-) when it receives an inter-
rupt from one of the peripheral TILINE or CRU devices. Since the operation
being performed in the XOP module may continue for a long time, the user
may choose to terminate that operation so that the AU nuy service the inter-
rupt. If the XOP module is designed to accept a processor interrupt, it ter-
minates the operation in progress and returns XOPABORT- to the AU. Con-
current with the abort signal, the XOP module places its status information
on the TILINE data bus for sampling by the AU. After tte AU stores the sta-
tus in the status register, it drops ENXOPQ- to the XOP module to end the
operation, If the extended operation is terminated abnormally, the AU does
not increment the address in the program counter, so that when the AU re-
turns from servicing the interrupt, it initiates the extended operation again.

2.5 MEMORY

The 990 Computer offers high-speed metal oxide semiconductor (MOS) mem-
ory in increments of 4096 words from a minimum configuration containing
4096 words to a maximum capacity of 32, 768 words. Th: memory controller
interfaces with the TILINE as a slave device, and in addition to memory con-
trol logic contains logic that corrects single-bit errors i1 a word read from

2-29 Digital Systems Division

(o]
q_lﬁ\@ 943442-9701

memory, and detects multi-bit errors, The storage word is 22 bits long.
Sixteen bits are data bits and the remaining six bits contain the error cor-
recting code used to ensure data accuracy. Memory may be implemented on
one or two double-connector circuit boards depending upon the size of mem-
ory required, The memory controller board can provide up to 8K words of
memory, Iflarger configurations of memory are required, an expansion
memory board, connected to the memory controller board through a top edge
connector and cable, provides up to 24K additional words of memory. Both
types of memory boards contain two light-emitting diodes (LED's) mounted
on the outside edge of the circuit board to indicate an error on that board. In
addition, the memory controller board contains two dual-in-line switch pack-
ages for disabling the memory correction feature and for selecting the start-
ing address of the memory board.

2.5.1 MEMORY CHIP

The heart of the 990 memory is the TMS 4030 NL random access memory
(RAM) integrated circuit. This device is a high-speed, MOS circuit provid-
ing a 1 x 4096 storage capacity in a package that is 1.2 inches long and 0.4
inches wide, Twelve address input lines allow selectability of any of the
4096 bits in the storage matrix for either a read or a write operation. The
six most significant bits of the address are also used during refresh cycle to
refresh 1/64th of the chip during a cycle. In addition to the standard 5 volt
TTL logic levels, the chip requires +12 volts and -3 volts bias inputs and a
+12 volt clock pulse to initiate the store or read operation. The circuitry
within the chip decodes an address to select the storage location and executes
its memory cycle in less than one microsecond.

2.5.2 CONTROLS AND INDICATORS

The 990 memory circuit board contains two LED indicators and two dual-in-
line switch packages to aid in setting up and maintaining the system. Figure
2-15 illustrates the location of these components on the memory controller
circuit board.

2.5.2.1 ERROR INDICATORS. Two light-emitting diodes, mounted next to
the ejector tab on all memory circuit boards, light to indicate errors that
occur during a memory cycle. The Correctable Error indicator lights when
the error correcting logic detects and corrects an error in data read from
memory. This indicator is not operational if the error correcting logic is
disabled. The Non-correctable Error indicator lights when the error detect-
ing logic senses a data error that either cannot be corrected (2 or more bits
in error), or is not corrected because the correcting logic has been disabled.

2-30 Digital Systems Division

943442-9701

@

g

ECC

ENABLE

SWITCHES

SRR B!

Memory Controller Controls and Indicators

m ,
o g
L
b % .
g8 3
14 Nw 1
m - N
18 y
O B
Z I o
o
S

§ 2

E P
u
S & = ~
<3 o $
5E a4 2
- Qug a
RS @& R
24 £ = (=]
§ & 8% @

2-31 Digital Systems Division

Q]@ . 943442-9701

2.5.2.2 ECC ENABLE SWITCHES. A dual- ix;;line package (DIP) contain-
ing four single-pole, single-throw switches allows the user to select or dis-
able the error correcting logic, Switches 3 and 4 in this package perform
no function. Switches 1 and 2 enable the error correcting logic when both
switches are set to the ON position. These switches disable the error cor-
recting logic when both switches are set to the OFF position. In no case
should one switch be ON while the other switch is.OFF, since this cond1t1on
produces erroneous indications to the memory controller,

2.5.2.3 BOARD ADDRESS SWITCHES., A dual-in-line package containing
eight single-pole, single-throw switches allows the user to set the starting
address of the memory locations within the control of a particular memory
controller board, The address switches correspond to the eight most sig-
nificant bits of the 20-bit TILINE address, and allow board address selection
in 4K-word increments., Switch 1 is the most significant bit of the address;
switch 8 is the least significant bit of the address group. All Model 990 Com-
puter systems must have memory locations from 0 to 4096, since the ROM
loader for the computer is always loaded into the lowest 4K of memory.
Therefore, in systems containing only one memory controller board, the
board address switches must all be OFF, Table 2- 6 lists the required switch
settings for some memory board addresses up to 64K. Addresses greater
than 64K can be represented in a similar manner using the eight switches

to represent the binary number desired.

2.5.3 MEMORY INTERFACE

The memory controller interfaces with the TILINE as a slave device, As
such it conforms to all signal specifications and timing requirements pre-
viously defined for the TILINE slave interface. In addition to the TILINE

Table 2-6. Memory Board Address Settings

TILINE Address Switch Setting Addresses on
Addre3516 1-4 -5 6 _ 7 8 Board (4K)

00000 OFF OFF OFF OFF OFF 0 to 4095
01000 OFF OFF OFF OFF ON 4096 to 8191
02000 - OFF OFF OFF ON OFF 8192 to 12,287
03000 OFF OFF OFF ON ON 12,288 to 16, 383.
04000 OFF OFF. ON OFF OFF 16,384 to 20,479
05000 OFF = OFF ON OFF ON | 20,480 to 24,575
0F 000 OFF ON ON ON ON 61,440 to 65,535

2-32 | Digital Systems Division

v
\J‘—@ 943442-9701

interface, the memory controller also interfaces with an additional memory
expansion board if greater than 8K words of memory are required. The ex-
pansion board derives its voltage and ground levels from a 990 chassis con-
nector, but receives data, address and control from the memory controller
through a top edge connector and cable. Figure 2-16 illustrates the signals
that interface the memory controller to the expansion board. Table 2-7 de-
fines these signals and their connector pin assignments.

2.5.4 MEMORY CONTROLLER OPERATION

The memory controller monitors the TILINE, decodes addresses on the bus,
and directs the memory to perform store, fetch and refresh cycles as re-
quired by a TILINE master device. Figure 2-17 illustrates the major coms-
ponents of the 990 Computer memory system. The following paragraphs de-
scribe the actions of the controller during major functions of the memory.

2.5.4.1 ADDRESS EXAMINATION, When the memory controller senses a
TLGO- pulse on the TILINE, it inspects the address on the TLADR lines to
determine if the operation is internded for a memory address under its con-
trol, To make this determination, the controller reads the lower bound ad-
dress from the board address switches and compares thal with the TILINE

MDOOO— TO MDO 15—

I " COOUT TO C50UT

MDIOO TO MDI1S

|

COIN— TO CSIN—

ADRO8 TO ADRI19

EER

DECODE A,B,C

XMEM 4— ,8—,16—

E SLAVE START
TILIN MEMORY
CONTROLLER

MEMORY
EXPANSION

RFACC—

—_——————
INTERFACE READ

PWRON

PWRONA

ERROR—

DECENB

'EERERRE

CERR—

(A)128661

Figure 2-16. Memory Expansion to Memory Controller Interface

2-33 Digital Systems Division

% 943442-9701

Table 2-7. Memory Controller to Memory Expansion Interface Signals

Signature Pin No. Definition
MDO000- P4-51 Memory read data output from memory expan-
MDO001- 43 sion to memory controller.
MDO002 - 35

MODO03- 27

MD004 - 19

MDO005- 13

MDO006 - 09

MDO007- 05

MDO008- P4-04

MDO009- P3-75

MDO010- 71

MDO11- 63

MDO012- 55

MDO13- 47

MDO14- 39

MDO15- P3-31

CoOUT- P3-23 Error correcting code outputs from memory
ClOoUT- 17 expansion during read operation
C20UT- P3-13 '

C30UT- 09

C40UT- 05

C50UT- P3-04

MDIO00 P4-53 Memory write data input from memory control-
MDIO1 45 ler to memory expansion,
MDIO02 37

MDI03 29

MDI04 21

MDIO5 15

MDIO06 11

MDIO7 07

MDIOS8 P4-03

MDI09 P3-77

MDI10 73

MDI11 65

MDI12 57

MDI13 49

MDI1l4 41

MDI15 P3-33

2-34 Digital Systems Division

[s]
‘%7? 943442 -9701

Table 2-7. Memory Controller to Memory Expansion
Interface Signals (Continued)

Signature Pin No. Definition

COIN P3-25 Error correcting code inputs to memory expan-

CIlIN 19 sion during write operation.

C2IN 15

C3IN 11

C4IN 07

C5IN P3-03

ADROS P4-67 Least significant 12 bits of address from

ADRO9 61 TILINE bus used as a store or fetch address

ADRI10 69 when accessing a memory location, The most

ADRI11 73 significant 6 bits of this address can also be

ADRI12 77 generated internal to the controller for use

ADRI13 75 during refresh cycles.

ADR14 57

ADRI15 55

ADRI16 59

ADR17 65

ADR18 63

ADRI9 P4-71

DECODEA P4-78 A 3-bit code that indicates which bank (0-7) of

DECODEB P4-76 memory chips is to be cycled. DECODEA is

DECODEC P4-74 the least significant and DECODEC is the most
significant bit of the code.

XMEM4 - P3-27 A 3-bit complement code, hardwired in the ex-

XMEMS8- P3-29 pansion board, that designates to the memory

XMEM16- P3-21 controller the size of the memory contained on

the expansion memory board. Valid codes are:

1 0 1 8K memory
0 1 1 16K memory
0 O 1 24K memory

START P4-70 Initiates a memory cycle in the expansion
board.
RFACC- P4-68 When coincident with START, this signal initi-

ates a refresh cycle in the memory expansion.

READ P4-64 When a logic one, this signal indicates that a
read cycle is to be performed from the address
on the ADR__ lines. When this line is a logic
zero, the expansion memory performs a write
operation,

2-35 Digital Systems Division

(_ri@ﬁ; 943442-9701

Table 2-7. Memory Controller to Memory Expansion
Interface Signals (Continued)

Signature Pin No, Definition

PWRON P4-64 When a logic one, this signal applies +5 Vdc to
the memory expansion logic; when a logic zero,
this signal removes power from the expansion
logic.

PWRONA P3-37 This signal is a logic zero during power on or
off transitions and disables the clock input to
the memory chips to prevent voltage spikes
from affecting the memory chips. During nor-
mal power conditions, this signal is a logic
one.

ERROR- P3-67 A low active signal that indicates a non-
correctable error in data from the memory ex-
pansion board 'and lights an LED on the mem-
ory expansion board to indicate that condition.

CERR- P3-43 A low active signal that indicates a corrected
error in data from the memory expansion board.
This signal also lights an LED on the memory
expansion board to indicate that condition.

DECENB P4-72 A high active signal that enables memory ex-
pansion to decode the DECODEA, B, C lines to
select a 4K bank of memory on the expansion
board.

address to determine if the TILINE address is greater than the lower bound
address. If the TILINE address is greater, the controller determines the
size of its memory. The memory size is hard-wired into each memory
board. If a memory expansion board is included, the controller must moni-
tor the XMEM bits to determine the size of the expansion memory., The con-
troller then adds these two figures to the lower bound address and compares
the result with the TILINE address to determine if the TILINE address is
less than the calculated upper bound address. If the TILINE address is with-
in the specified bounds, the controller initiates the memory cycle requested,
The 12 least significant bits of the TILINE address are sent directly to the
memory chips as the address inputs. The controller decodes the eight most
significant bits of the address to generate a bank select signal to designate
one of the 4K-word banks of memory chips to receive the 12-bit address.,

2-36 Digital Systems Division

Le=1¢

161a

1g swejsAs Jeyl

UoISIA

TILINE

e

(B)128662

Figure 2-17. Memory System Block Diagram

ADDRO-19 ADDR14-19
I ADDR
I 8-13
AB2AR2s 305
TLADROO- 19~
- SWITCHES REFRESH RFADR8~13
| COUNTER
TLGO™ : RELIEI-Il\;‘EERS ADDRE™19
EREEE— —
I oriVERS A A CONTROLLER
DRIVERS TROLL
TLREAD ADDRESS BANK SELECT MEMORY
——lb DECODE L . 0]
TLTM—
————————— POWER OFF ————3 N
l ADDROK
SELECT
DAT
| TLGO CLx ouT
TLREAD—
I -1 TIMING TIMER —— 3
TLTM AND ENABLED
CONTROL PRIORITY REFRESH
TLAG OUTPUT DRIVER ENABLE ACCESS jgg——| OSCILLATOR
REFRESH
TLAG START *
MEMORY
POWER OFF/STB L g 5]
I /sT8Y READ/CLOCK . EXoARD
L g (24K)
I RFACC— >
TLPRES— STANDBY PWRONA
EEEEe— WER PWRON
) CONTROL >
DATA
+5V TA OUT
SWITCHED PWRON CrROR »lin
| FLAG —————————3®P» TO ERROR iNDICATORS
' POWER
SWITCH |—
* ERROR CO-C5(GENERATED) y
CODE
I GENERATOR N
' . L W i
TLIORES- > TLIORES DATA DATA
TILINE 0-15 -15 i
TLDATO- 15— RECEIVERS WRITE DATA 0—15 |
= > AND
‘TLMER‘ DRIVERS READ DATA 0-15
CO—C5(READ)
I READ ERROR ERROR %%'B"ER
' DATA CORRECTION ‘————BIT COMPARE g2 C5(GEN)
' TLMER J

/]

10L6-2%%E¥6

(o]

%."‘Z\[ZQ 943442-9701

2.5.4.2 WRITE CYCLE. If the TLREAD- signal line is high, the control-
ler initiates a write cycle by holding the READ line low to the memory banks.
The controller then passes the address from the TLADR lines to the inputs of
the selected memory bank, and transfers the data bits from the TILINE to
the memory chips for storage, The 16 data bits also pass through the error
code generation logic., This circuit produces a 6-bit error detection and
correction code that is stored in the six least significant bits of the 22-bit
memory word,

2.5.4.3 ERROR CORRECTING CODE, The error code generation logic
produces a 6-bit, modified hamming code that identifies the bit in, error for
1-bit errors occurring in the 16-bit data word. Each bit in the code is an
odd parity bit for selected bits within the data word, such that each bit in the
data word participates in either three or five of the parity bits. If an error
occurs in data read from memory, then the code generated from the read
data will not match the code stored with the data. Examination of the bits
that vary isolates the bit in error in the data word. Data errors produce
three or five mismatched bits. If only one bit is mismatched, the code bit is
in error. Figure 2-18 illustrates the bit patterns for each of the error code.
bits.

2.5.4.4 READ CYCLE. If the TLREAD signal line is high after the con-
troller has determined the address, the controller initiates a read cycle by
raising the READ line to the memory chips. The memory responds with a
22-bit word that enters the error checking and correcting (ECC) logic of the
controller., The ECC logic generates a new error code for the 16 data bits
of the memory word and compares it with the 6-bit error code that was
stored with the data bits. If the two codes correspond, no error has occurred
and the data is placed on the TILINE, If the codes do not compare, an error
has occurred., The controller then corrects the inaccurate bit if it is a
single-bit error and places the corrected data on the TILINE, The data in
memory is not corrected. The controller also energizes the correctable
error LED on the memory board to indicate the occurrence of the error, If

DATA
BIT
CHECK
15| 14l13]12|(11|10|l 9|8 | 7|6 | 5| a]|l3]z2]1]o0 BIT
X | x | x| x x* x| x| co
X X X x| x| x X x*k X c1
x| x x| x x | x x¥ x cz
x| x| x| x x | x| x| x c3
x| x | xp x| x| x| x| x x| ca
X X x | x X X x| x| x|cs
*BITS C0,C1, AND C2 MISMATCHED INDICATES
(A)128663 DATA BIT 3 IN ERROR.

Figure 2-18, Error Correcting Code Bit Patterns

2-38 Digital Systems Division

943442-9701

the error detected involved more than one bit, the logic cannot correct the
error. For an even number of bits in error, the controller activates
TLMER- to the TILINE device to indicate the error, ant energizes the non-
correctable error LED on the memory board. An odd number of errors
greater than 1, though uncorrectable, is treated identically to a single bit
error, If the ECC logic is disabled, any error generates TLMER- and
energizes the non-correctable error LED,

2.5.4.5 REFRESH CYCLE. The memory controller initiates one refresh
cycle every 31 microseconds to reinforce the data in 1/64th of the storage
area in memory. This process ensures that the entire memory is refreshed
within approximately 2 milliseconds. A refresh cycle tekes precedence over
memory requests from TILINE users, but does not interrupt a cycle in pro-
gress. A 6-bit counter within the controller increments each time a cycle
is performed. The output of this counter is used during the refresh cycle as
the six most significant bits of the 12-bit address sent to the memory chips.
When clocked, these address bits enable the controller to refresh 1/64th of
each memory chip.

2.5.4,6 STANDBY. If main power begins to fail, the memory controller
resets the refresh counter and, following completion of i memory cycle in
progress, begins a series of 64 refresh cycles in succession to ensure that
memory data is maintained. When the last refresh cycle is complete, the
controller sets a timer and turns off power to all memory control logic to
conserve battery power. The timer is temperature-dependent such that at
higher temperatures the time span is shorter than at lower (room) tempera-
tures. When the timer times-out, it switches power back to the control cir-
cuits, resetting the refresh counter. The controller then initiates another
64 memory refresh cycles, sets the timer at the completion of the refresh
period, and shuts power off to the control logic. This process continues until
main power returns. When main power returns, the memory control logic is
off and the controller is not aware of the power. When the timer times-out,
the controller performs 64 refresh cycles. However, TLPRES- from the
power supply is now high, indicating that power has beer restored. This sig-
nal prevents the controller from switching logic power aff, so that the con-
troller remains active and ready for the first memory request. The
temperature-sensitive timer spaces the refresh cycles ¢uring standby to en-
sure that the memory is maintained without needless refresh cycles (decay
rate of the memory is also temperature-dependent in a ratio similar to the
timer). The refresh rate decreases from approximately 2 milliseconds at
70°C to about 20 milliseconds at room temperature to ccnserve the standby
battery.

2-39 Digital Systems Division

@ 943442-9701

2.6 COMMUNICATIONS REGISTER UNIT (CRU) INTERFACE

The Communications Register Unit (CRU) interface is the direct command
driven input/output interface for the Model 990 Computer. The interface
provides up to 4096 directly addressable input bits and up to 4096 directly
addressable output bits. Input and output operations can address each of the
bits individually or in fields of from one to sixteen bits. The computer in-
structions that drive the CRU interface can set, reset or test any bit in the
CRU array, or move data between memory and the CRU data fields.

The AU circuit board ¢ontrols the interface data and control lines. These
lines are available to all computer chassis locations except those used for
the power supply and the AU circuit board. The AU decodes sixteen module
select signals and supplies them to eight chassis locations for CRU modules.
Each chassis location accommodates one double-connector circuit board or
two single-connector circuit boards. .If all available chassis locations con-
tain 16-bit data modules, the maximum internal CRU bit capacity is achieved
(256 bits input, 256 bits output) . Through the use of external chassis, the
maximum expansion of the CRU can be realized (4096 bits input, 4096 bits
output).

2.6.1 CRU APPLICATIONS

Because of its extremely flexible data format, the CRU interface can be used
effectively for a wide range of control and data transaction operations. These
applications can be divided into two broad categories: those involving a single
control bit transfer, and those requiring input or output of several data or
status bits.

2.6.1.1 SINGLE-BIT OPERATIONS. Single-bit operations typically in-
volve the computer sampling a status bit. When the status bit sets, the com-
puter responds by setting a control bit or by transferring to a different set

of instructions. This operation is exemplified by a communications interface
that generates a single interrupt for one of several reasons: output complete,
input complete, or line status change. The output or input complete requires
a transfer to instructions that perform another output or input operation. A
line status change might require the setting of a control output or the trans-
fer to instructions that handle the change in other ways.

2.6.1.2 MULTIPLE-BIT OPERATIONS. Multiple-bit operations typically
involve a data input device such as a keyboard or card reader, or an output
device such as a display or card punch. An interrupt from the device causes
the AU to perform an STCR instruction to read data from the CRU device and
store it into memory. Similarly, to output data to the device the AU exe-
cutes an LDCR instruction to fetch data from memory and transfer it to the
CRU device.

2-40 Digital Systems Division

[o]
{@@ 943442-9701

2.6.2 INTERFACE SIGNALS

Figure 2-19 illustrates the signals required to pass data to and from the CRU
modules. Certain signals from the TILINE interface are common to the CRU
modules since they pertain to power and master clear functions that affect the
entire computer system. Table 2-8 defines each of the signals for the CRU
interface and lists the connector pin numbers for these signals within the
computer chassis. All CRU signals appear on the same pin number for both
Pl and P2 of each chassis location in the computer except those locations
occupied by the AU or a power supply. This duplicity allows two single-
connector CRU modules to use a single chassis location if the module select
and interrupt lines have been individually wired for that configuration. Since
the small card adapter may be used when designing single-connector circuit
boards, the table also includes the pin numbers of the CRU signals at the
output of the small card adapter.

2.6.3 INTERFACE TIMING

Figure 2-20 illustrates the timing relationships between data and control
signals on the CRU within the computer chassis. All CRU modules must re-
spond within the times illustrated. To ensure reliability of data to the CRU
device, the module should sample the CRUBITOUT on the positive-going
edge of the STORECLK- pulse.

2.6.4 CRU ADDRESSING

The AU issues a 12-bit address (CRUBIT4-15) to address up to 4096 individ-
ual bits. KEach address may be used for two purposes: once for an output bit
operation and once for an input bit operation; therefore the AU can select a
total of 8192 input and output lines using the 12-bit address. The main com-
puter chassis receives addresses for 256 individual bits.. The remaining
address capability selects CRU bits from external expansion chassis and is
not currently used.

2.6.4.1 ADDRESS FORMAT. Figure 2-21 illustrates the field assignments
for the 12-bit CRU address. The four least significant bits select one of six-
teen possible bits from a particular CRU module. The next four bits select
one of sixteen possible modules from a particular chassis. The four most
significant bits identify the desired chassis. The chassis select bits are al-
ways zeros when addressing a module within the compute:" chassis. The AU
decodes the module select bits internally to produce sixtden individual select
signals (IMODSELO- through IMODSELI15-) that are routed to connectors
within the computer chassis (either pin 46 or 48). Therefore, the bit select
field (CRUBIT12-15) is the only portion of the CRU address that the module
actually uses., When enabled by its hard-wired module seélect line, the
module must decode the bit select field to determine which of its bits is af-
fected by the operation. A particular CRU circuit board may employ more

2-41 Digital Systems Division

Zv-2

g swejsAs |eubig

UoISIAl

TO EXTERNAL

EXPANSION CHASSIS

"

CRUBIT4-7

CRUBIT8—11

€RUBITOUT

CRUBIT12-15

AU
CRU —
INTERFACE IMODSELO— 15
STORECLK-
CRUBITIN
CRUINTA /B~
TLPFWP

TILINE SIGNALS ~

FROM TLPRES—
TILINE
BUS TLIORES—
FOLTAGES *GND , £5V , 12V
(A)128664

Figure 2-19,

\

—————
CRUBITOUT
/ ® UP TO 16
DISCRETE
/CRUB'T‘ 2715 ® SUTPUT LINES
°
IMODSELO/1~
/ CRU S
v MODULE
STORECLK— o
-—————
/CRUBITIN ® ur To 16
L e DISCRETE
CRUINTA/B INPUT LINES
v ®
CRUBITOUT mm—]
°
CRUBIT12-15 Py
‘/mooszl.z/a— ®
CRU F——
\\STORECLK— MODULE
-————
N\ CRUBITIN °
N CRUINTA/8 bt
®

~_CRUBITOUT

® (UP TO 16 CRU
ONNECTORS
@ IN MAIN CHASSIS)

CRUBIT12—15

IMODSELN/n+1—

STORECLK—

N\ _CRUBITIN

\CRUINTA/B

T
®

®
CRU
MODULE ®

N
(NL15)

CRU Interface Signals

DIGITAL (ON/OFF)
SIGNALS 'TO CRU
DEVICES (DATA,
CONTROL. STATUS ,
ETC,

256 INPUTS

256 OUTPUTS
MAXIMUM

/)

10L6-2PPETO

o

(o]
{@ 943442-9701

Connector (P1/P2) | Adapter (P1/P2)

Table 2-8. CRU Interface Signals

Signature Pin Number Pin Number Definition
CRUBIT4 56% - Address bits generated
CRUBITS5 543k - by the AU to select a
CRUBIT6 52% - particular expansion
CRUBIT?7 50% - chassis (bits 4-7),a 16-
CRUBITS 62% - bit module within that
CRUBIT9 64 - chassis (bits 8-11), and
CRUBITI10 68% - a particular bit from
CRUBITI11 70% - that module (bits 12-
CRUBITI12 36 42 15). Only bits 12-15
CRUBITI13 32 39,40 are used within the
CRUBIT14 38 37,38 computer chassis.
CRUBITI15 34 33, 34 "M = 2,4v; "0 = 0.4v.
CRUBITOUT 18 15,16 Serial data line for

transfer of data from
the AU to the addressed
CRU bit(s). This line
i& active only when
STORECLK- goes low.
T = 2.4v; '""0" - 0.4v.

CRUBITIN 60 59,60 Serial data line for
transfer of data from
the addressed CRU
bit(s) to the AU. This
line must be driven by
an open collector gate
and only when the
module is selected.
Y = 2,.4v; '"0" = 0.4v.

IMODSELO- 46 or 48 46 or 48 Module select signals
IMODSEL1 - 46 or 48 46 or 48 generated by the AU
IMODSEL2- 46 or 48 46 or 48 from address bits 8-11
IMODSELS3- 46 or 48 46 or 48 (CRUBITS8-11) for use
IMODSEL4 - 46 or 48 46 or 48 within the main chassis.
IMODSELS5- 46 or 48 46 or 48 Each select signal is
IMODSEL6- 46 or 48 46 or 48 wired to a different
IMODSEL7- 46 or 48 46 or 48 CRU connector in the
IMODSELS- 46 or 48 46 or 48 computer chassis to
IMODSEL9- 46 or 48 46 or 48 enable the circuitry
IMODSEL10- 46 or 48 46 or 48 of the circuit board in

*#*Connector Pl only,

2-43 Digital Systems Division

(o]
(_r@f; 943442-9701

Table 2-8, CRU Interface Signals (Continued)

Connector (P1/P2) | Adapter (P1/P2)

Signature Pin Number Pin Number Definition
IMODSELIl]- 46 or 48 46 or 48 that connector, When
IMODSEL12- 46 or 48 : 46 or 48 low (0.4v), the module
TMODSEL13- 46 or 48 46 or 48 is selected, Pin 48 is
ITMODSEL14- 46 or 48 46 or 48 IMODSELA on CRU
IMODSEL15- 46 or 48 46 or 48 Circuit Boards; Pin 46

' is IMODSELB,

STORECLK- 22 21,22 A 50 nanosecond low
(0.4v) pulse that indi-
cates to the selected
CRU module that the
operation is a write
(Set Bit or LDCR)
operation. This pulse
transfers the data on
the CRUBITOUT line
into a holding flip-flop
that is the CRU bit.

CRUINTB- 65 - Low active (0.4v) inter-

CRUINTA- 66 - rupts generated by the

particular CRU module
to indicate to the AU
that the module re-
quires servicing., The
priority of an interrupt
is dependent upon the
chassis location oc-
cupied by the module
and the backpanel wir-
ing of a particular unit.
Interrupts must be open
collector driven and
must remain low until
cleared by software,

T LPFWP 16 - TILINE Power Failure
Warning Pulse: A +5
volt, one millisecond
pulse that indicates
that a power failure

is immainent.

2-44 Digital Systems Division

(o]
{@ 943442-9701

Table 2-8.

CRU Interface Signals (Continued)

Signature

Connector (P1/P2)| Adapter (P1/P2)
Pin Number

Pin Number

Definition

TLPRES-

TIIORES-

11, 123%

75, 76%

TILINE Power Reset:
A normally high (2.4v)
signal that goes low
(C.4v) to reset con-
nected devices at least
10 microseconds before
dc voltages begin to
fail during power-down.
During power-up, this
signal is low until all
power voltages are
stable. CRU circuit
boards may choose this
pulse for a master re-
set signal,

TiLINE I/O Reset: A
nermally high (3. 0v)
signal that, when low
(0.4v), resets all con-
nected devices. This
signal is a 250 nano-
second pulse that is
generated by the RESET
switch on the control
censole or by the exe-
cution of a reset
(RSET) instruction in
the AU. This signal is
also low until dc power
is stable. This signal
is normally imple-
meanted as the master
reset signal for CRU
modules.

*NOTE: Adapter allows selection of either TLPRES- or TLIORES- to pins

75 and 76 for master reset.

TLIORES- is standard.

2-45

Digital Systems Division

943442-9701

Table 2-8. CRU Interface Signals (Continued)

) Connector (P1/P2) | Adapter (P1/P2) Definiti
Signature Pin Number Pin Number, ctinition .
+12v 40 53, 54 Logic voltages. Pro-
-12v 42 55, 56 vides up to 1 amp of
+12v Ground - 57,58 +12V and up to 10 amps
+5v 3,4,77,78 77,78 of +5V total power for
Ground 1,2,79,80 79, 80 use by all modules in

' the chassis,
b— SYSTEM CLOCK PERIOD = 260 NSEC —ﬁ
SYSTEM CLOCK / \ ’

(TILCLK=) =™
MODULE SELECT

(IMODSEL —_ —) _—__. \\
LY

/e J

ADDRESS
SETTLED

LINE ADDRESS
(CRUBIT12=CRUBITI1S)

LT

[\

“\
\

OUTPUT DATA

(CRUBITOUT) -

OUTPUT CLOCK

/—7- DATA SETTLED —
pa——

MAY BE ONE OR ZERO—\-—-\A_

(STORECLK—) -

\:__/’ 4
4w,

/————TDATA SETTLED - MAY BE ONE OR ZERQ———-\-———\\—
(CRUBITIN) |

DATA INPUT

] 100 200 200 400

TIME — NANOSECONDS

NOTE, SOLID WAVEFORMS ILLUSTRATE TYPICAL PROPAGATION DELAYS,
(A)128665 DASHED WAVEFORMS ILLUSTRATE WORST CASE PROPAGATION DELAY,
Figure 2-20. CRU Interface Timing
CRUBIT
a 5 6 7 8 9 10 11 12 13 14 15

I 1 T T 1 L] 1 T T

CHASSIS SELECT MODULE SELECT CRU BIT SELECT
1 1 1 1 1 | | i l

(A)128666

Figure 2-21. CRU Address Field Assignments

2-46 Digital Systems Division

(e}
{@ 943442-9701

than 16 CRU addresses, but to enable a second group of 16 additional bits, a
new IMODSEL signal must be assigned to that connector position. The num-
ber of selectable bits on one module is limited to 32.

2.6.4.2 BIT ADDRESS DEVELOPMENT, The AU develops a CRU bit ad-
dress from the CRU base address contained in workspace register 12, and
the signed displacement count contained in bits 8 through 15 of the Format 2
instruction. The displacement allows two's complement addressing from
base minus 128 through base plus 127 (bit 8 is a sign bitj. Figure 2-22 il-
lustrates the AU development of the final CRU address. | The base address

is transferred from W12 to the MD register, added to tle signed displacement
contained in URB (after left-shifting the displacement ore bit), and the result
is loaded into ADC. The output of ADC supplies the address to the CRUBIT
lines. Bit 15 of the address is not used, and the address extracted from ADC
is right-justified so that bit 14 of ADC corresponds to bit 15 of the CRU ad-
dress. This adjustment allows the CRU address to be incremented using the
increment-by-two circuitry built into ADC, Therefore, the base address
when entered into W12 must also allow for this shift, so that a base address
of 1, for example, would be stored in W12 as an address of 2.

2.6.4.3 REGISTER ADDRESSING. CRU addresses for register operations
(STCR, LDCR) are taken directly from W12 and loaded into ADC. The field
length (C field) of the instruction is loaded into the SC céunter. Each suc-
cessive bit required for the operation increments the address in ADC and
increments the count in SC. When SC equals a count of ¥'j¢, the CRU trans-
fer is complete.

2,6.5 SINGLE-BIT CRU OPERATIONS

The AU performs three single-bit CRU functions: Test Bit (TB), Set Bit to
One (SBO) and Set Bit to Zero (SBZ). To identify the bit to be operated upon,
the AU develops the bit address as described previously and places it on the
CRUBIT lines to the CRU devices., For the two write operations (SBO, SBZ),
the AU also generates a STORECLK- pulse, indicating a write operation to
the CRU device, and places bit 7 of the instruction wordion the CRUBITOUT
line to accomplish the specified operation (bit 7 is a 1 far SBO and a 0 for
SBZ). If the transfer is a Test Bit instruction, the AU gates the addressed
CRU bit from the CRUBITIN input line to bit 2 of the status register, and
"STORECLK- is not generated.)

2,6.6 MULTIPLE-BIT CRU OPERATIONS

The AU performs two multiple-bit CRU operations: Store Communications
Register (STCR) and Load Communications Register (LDCR). Both opera-
tions require a parallel-to-serial or serial-to-parallel conversion, as il-
lustrated in figure 2-23, Although the figure illustrates a full 16-bit transfer

2-47 Digital Systems Division

S

943442-9701

MEMORY WORD ADC
(W12)
MO N
BIT O
BASE
ADDRESS CRUBIT4
. ADC 03 5 T
BIT 3 BIT 3 / Py >°Eﬁ§2$”
[] [] 04 6 B
L
—_ L os / ,
/ L
site [I° " 06 PN
N DEVELOPED
- CRU BIT - 07 5
7 ADDRESS > MODULE
B B 08 / 10 > SELECT
&
] "] 09 / 11
BIT 9 -
— ALU . 10 / ia /
__
_ > . .1 / ‘s
SUM — BIT
[[] 12 1ag, > SELECT
] [13 /CRUBIT15
&)
— L
14 BIT 14 pApc 14~
e
BIT 15 / E :
URB
N\
: *
BIT 8 [q
-
>SIGNED
T DISPLACEMENT
FOR BIT
- INSTRUCTIONS
. *5B = SIGN BIT (+ = 0;—=1)
BIT 15
/

(A)128667A

Figure 2-22. CRU Bit Address Development

2-48 Digital Systems Division

6¥-1¢

uoIsIAIg swelsAs [eybia

URA

(RIGHT SHIFT)

v

MEMORY DATA

IN
(PARALLEL)

FROM ALU -

(A)128668A

BIT ASSIGNMENTS

WORD/BYTE OPERATION

\

CRU REGISTER
ADDRESS
XXX~

CRU REGISTER

SERIAL DATA IN

ADDRESS
XXX

I ——
0

I——
1

—
2

—
3

——
a

—
5

OUT < B BITS

BIT 15

BIT 7
OR
SERIAL DATA

| SERIAL DATA OUT
> 8 BITS

LDCR

Figure 2-23,

10

11

12

13

14

LDCR/STCR Data Handling

15 b —~

CRUBITIN—p
URBRTIN

n»”

Y

BIT O

DATA OUT
—

PARALLEL TO
MEMORY
THROUGH ALU

BIT {5

URB
(RIGHT SHIFT)

STCR

10L6-2%¥E¥6

[0}
{@ 943442-9701

operation, any number of bits from 1 through 16 may be involved. The LDCR
instruction fetches a word from memory, loads it into URA, and right-shifts
URA to perform the parallel-to-serial conversion. If the load involves eight
or fewer bits, those bits must be right-justified within the addressed byte of
the memory word. This byte becomes the most significant byte of URA so
that bit 7 of URA supplies the output bit to the CRU interface following each
successive shift, If the load involves nine or more bits, those bits must be
right-justified within the whole memory word. Bit 15 then supplies the output
bit to the CRU interface following each successive shift., When transferred to
the CRU interface, each successive bit from URA receives an address that is
sequentially greater than the address for the previous bit, This addressing
mechanism results in an order reversal of the bits; that is, bit 15 (or bit 7)
becomes the lowest addressed bit in the CRU (most significant) and bit 0 of
URA becomes the highest addressed bit in the CRU array (least significant).

An STCR instruction retrieves information from a CRU array and uses URB
to perform the serial-to-parallel data conversion., If the operation involves
a byte or less transfer, the valid information will be right-justified in the
most significant byte of URB, with all leading bits set to zero. If the opera-
tion involves from 9 to 16 bits, the valid data is right-justified in the entire
register with leading bits set to zero. When the input from the CRU device

is complete, the first bit from the CRU is in bit 15 or bit 7 of URB, depend-
ing upon the number of bits transferred. A word operation result is stored
directly into memory at the location specified by the instruction. To perform
the byte store operation, the AU fetches the contents of the memory location,
exchanges the new byte of information for the corresponding byte in the mem-
ory word, and stores the altered word into memory.

2.6.7 CRU MODULES

CRU modules are circuit boards that may be connected into any location in
the computer chassis (either Pl or P2) to fan-in or branch-out the CRU data
line from the AU to external control devices that operate from, or generate,
two-level (on/off) electrical signals. The external devices may be process
control devices such as valves (open or close), temperature or pressure
monitors, photocell gates, or counters, or the external units may be low-
speed digital input devices such as modems, card readers or keyboard de-
vices. The line levels to and from these devices may be adjusted to corre-
spond to the needs of the particular device being used. However, the com-
ponents within each interface module, as illustrated in figure 2-24, remain
constant with any end-use device,

2.6.7.1 OUTPUT. Output modules for CRU devices require a data input
from the AU (CRUBITOUT), an address decoder to select the proper output
line to receive the AU output (CRUBIT12-15), and a clocked flip-flop to re-
ceive and hold the signal from the CRUBITOUT line when STORECLK- be-
comes active. The flip-flop holds the signal for use by the external device

2-50 Digital Systems Division

S3o

943442-9701
, CRUINTA— DEVICE INTERRUPT /
~ AN
N CRUBITOUT
>
\ RESET— [
7
__CRUSELO— |>
>
CLR
« STORECLK- »———0 B Sao louTo N
Ve — 7
®sn7a .
_CRUBIT13 N . A%° .
Ve a2
{ crusiT14 L7 N
)r— At gy| ouT? \
{_crueiTis N L7 2
> > AQ
-0 CLR ouTs \
Qo —>
; CRUBIT12 .
' Az L]
A1 o | _ouTis N
AD 7
N Eo iINO <
8]
€ sN74 L4
150
~ CRUBITIN e ®
&S IN15 P
aw E15 —Q
b
CRU SAMPLE A
7
, CRUINTA— DEVICE INTERRUPT
&
 RESET-
>
_CRuBITOUT
)" o
SN74
STORECLOCK- 74
> Gt o b c 3 ouUTOo N
{ cRruseLo- CLR V4
7 - .
SN74
 CRUBITI2 154
> A
__CRUBIT13 s .
{ crusiT14 c
2
_ _CRUBIT1S5 D PY
e D 15 P— SN7 4
74
c & OUT15 3
INO
A EO <
e .
o .
‘ SN74
2 CRUBITIN q ‘ 150 .
—Qw INI5
(B)128669A E15 J\

CRU SAMPLE B

Figure 2-24. CRU Module Block Diagram

2-51

Digital Systems Division

o]
i‘?\@? 943442-9701

until the AU addresses that bit again. Level conversion circuits may be added
to the output of the flip-flop to make the TTL signal compatible with the re-
quirements of the external device.

2.6.7.2 INPUT. Input lines from the external CRU devices are fed into a
selectable multiplexer so that the bit address and module select lines from
the AU may choose the input line to be transferred to the AU over the
CRUBITIN line. Whenever the AU generates an address, whether it is a
read or a write operation, the selected module produces an input on the
CRUBITIN line to the AU, The AU will ignore this input line unless it is
performing a read. The CRUBITIN lines from all modules are bussed on
one line to the AU. The module select signal from the AU, however, pre-
vents more than one module from using the CRUBITIN line at one time.

2.6.7.3 AVAILABLE CRU MODULES. Four versatile CRU modules are
offered as options with the computer to expand its capabilities, Other
modules are under development and will be available shortly. In addition,
modules can be specially designed for any stated purpose consistant with
efficient use of the CRU interface. The four currently available CRU mod-
ules are outlined below. Refer to Section III of this manual for detailed
descriptions of the available peripheral interfaces:

e Modem - A double-connector circuit board that provides a 1200
Baud, asynchronous interface for transmission and receipt of
data over telephone lines. This circuit board enables the com-
puter to function as a remote terminal processor to provide
data to a larger computer system.

913 CRT Controller - A double-connector circuit board that inter-
faces the 913 display and keyboard with the computer. This
circuit board offers its own refresh memory to the display, and
enables the display to operate at computer speeds to fill the
screen instantly with requested data,

e EIA Interface - A single-connector circuit board that provides a 16-
bit input/output interface that is compatible with EIA Standard
RS232C. This module requires an adapter card for insertion
into either Pl or P2 connectors of any CRU slot,

° Data Module - A single-connector circuit board that interfaces 16
input bits and 16 output bits to the computer CRU interface.
This module requires an adapter card for insertion into either
Pl or P2 connectors of any CRU slot.

2.6.8 ELECTRICAL REQUIREMENTS

Since the CRU data and control paths are within one chassis and the line
length is short, the signal lines do not need to be considered as transmission

2-52 Digital Systems Division

(o)
{@ 943442-9701

lines. Instead they behave as if they were mounted on one printed circuit
board. Other electrical considerations must be allowed for, however, All
signals operate at TTL logic levels ('"0'"' = 0.4v; "1'' = 2.4v). Table 2-9 lists
the interface signals and the electrical characteristics of the circuit on the
CRU module that uses that signal,

Table 2-9. Electrical Interface Requirements

Signal Active Level ;:ziirégir‘:}llii“gjaf‘)dn Driver Circuit Type
CRUBIT n High true 2 TTL loads per bit | -
CRUBITOUT High true 2 TTL loads
CRUBITIN High true - Open collector
IMODSEL n- Low true 10 TTL loads per bit , -
STORECLK- Low true 2 TTL loads -

CRUINT - Low true - Open collector
TLPFWP High true 2 TTL loads -
TLPRES- Low true 10 TTL loads -
TLIORES- Low true 2 TTL loads -

2,7 MAINTENANCE CONSOLE

The 990 Computer system offers an optional maintenance console to aid the
maintenance or checkout technician in fault isolation. The console allows
the operator to enter data or addresses into any of the 990 internal registers
or memory, to step through instruction sequences one instruction at a time,
to monitor the contents of the 990 internal registers, or to perform many
other functions to exercise the computer for diagnosis of problem areas.

The console connects to the computer through a cable and interface card as-
sembly that inserts into the TILINE interface connector adjacent to the AU
circuit board. Packaged in a rugged, lightweight, metal case, the 990 main-
tenance console can be easily and safely transported between sites for remote
terminal repairs, or can be used in an OEM quality assurance function for
performance verification on the computer. The 990 maintenance console is
an extremely valuable maintenance and checkout tool.

2,7.1 CONTROLS AND INDICATORS

Light-emitting diodes mounted on the maintenance panel provide the light
sources for the panel indicators. The operator controls are implemented
with momentary pushbuttons, 2-position toggle switches, and three types of

2-53 Digital Systems Division

{E\@? 943442-9701

3-position toggle switches (On-Off-On, On-Off-Momentary, and Momentary-
Off-Momentary). Ground reference and sync pulse test points are also pro-
vided. Figure 2-25 illustrates the location and nomenclature of the controls
and indicators on the maintenance panel. Table 2-10 defines the functions
for each of these devices.

2-54 Digital Systems Division

q6-¢

uoysing swesAs [eybl1a

128670 (990-674—10—1}

290 HAiﬂT;mQE CONBOLE ﬁ
THINE ADORESS /B
$ " @ 2 ST TS T Y b4 i %
d..odﬁoodaondooodtcc
’ é 7&%&0 9 1 : 3 3 0 i 2 13 %
ood.ocdooodooonQOO
i : B 5\ i 3 7] w0 H i &3 i1 "

.’.0.'.0
reieesieces

Figure 2-24. 990 Maintenance Panel

T0L6-2¥PEF6

Table 2-10.

990 Maintenance Console Controls and Indicators

Nomenclature

Device

Function

96-¢

TILINE ADDRESS/PC
0-19

TILINE DATA

0-15

DISPLAY DATA
0-15

TLGO

TLTERM

Indicators

Indicators

Indicators

Pushbuttons
(momentary)

Indicator

Indicator

These indicators display the binary contents of either the
TILINE address bus or the program counter (PC), depend-
ing upon the position of the PC/MA toggle switch. A
lighted indicator represents a binary '1'; an extinguished
indicator represents a binary ''0'".

These indicators display the binary value that is cur rently
on the TILINE data bus. A lighted indicator represents a

binary "1"; an extinguished indicator represents a binary

IIOH.

These indicators display either data entered by the oper-
ator through the corresponding DISPLAY DATA push-
buttons, or the contents of a selected area of the 990 AU
as determined by the DISPLAY CONTROL switches. A
lighted indicator represents a binary "1"; an extinguished
indicator represents a binary "0".

These pushbuttons enter data into the DISPLAY DATA in-
dicators. Pressing and releasing a pushbutton changes
the state of the corresponding DISPLAY DATA indicator.

This indicator lights to indicate that the TILINE go pulse
is active. The indicator is useful only during clock step
mode since the pulse is too brief during normal opera-
tion.

This indicator lights to indicate that the TILINE term pulse
is active. The indicator is useful only during clock step
mode since the pulse is too brief during normal operation.

uoysinig sweisAg 1eybia

10L6-2v¥ET6

Lg-¢

uojsialg swesAs |enbia

Table 2-10.

990 Maintenance Console Controls and Indicators (Continued)

Nomenclature Device Function
TLREAD Indicator This indicator lights to indicate that the TILINE read line
is active, designating that a read operation is being per-
formed on some TILINE device, or that the bus is not
performing a write operation.
PC/MA Toggle switch This switch controls the function of the TILINE ADDRESS/
(2-position) PC indicators. When set to PC, this switch displays the
contents of the program counter (PC), bits 0-14, in the
TILINE ADDRESS/PC indicators 5 through 19. When set
to MA, this switch displays the TILINE address bus, bits
0 through 19, in the TILINE ADDRESS/PC indicators.
CLR Pushbutton Pressing this pushbutton resets the DISPLAY DATA indi-
(momentary) cators.
DISPLAY CONTROL The Display Control switches operate only when the com-
puter is halted.
PC Pushbutton Pressing this pushbutton displays the contents of the pro-
(momentary) gram counter (PC) in the DISPLAY DATA indicators.
Indicator This indicator lights when the data in the DISPLAY DATA
indicators represents the contents of the program counter.
WP Pushbutton Pressing this pushbutton displays the contents of the
(momentary) workspace pointer (WP) register in the DISPLAY DATA
indicators.
Indicator This indicator lights when the data in the DISPLAY DATA

indicators represents the contents of the workspace
pointer register.

10L6-2%FET6

8a-¢

uoising swejsAg jeybia

Table 2-10. 990 Maintenance Console Controls and Indicators (Continued)
Nomenclature Device Function
DISPLAY CONTROL
(Continued)
ST Pushbutton Pressing this pushbutton displays the contents of the status

(momentary) register (ST) in the DISPLAY DATA indicators.

Indicator This indicator lights when the data in the DISPLAY DATA
indicators represents the contents of the status register.

MA Pushbutton Pressing this pushbutton displays the 16 least significant

(momentary) bits of the address currently being requested from mem-
ory in the DISPLAY DATA indicators.

Indicator This indicator lights when the data in the DISPLAY DATA
indicators represents the memory address.

MD Pushbutton Pressing this pushbutton displays the contents of the

(momentary) memory data (MD) register in the DISPLAY DATA indi-
cators.

Indicator This indicator lights when the data in the DISPLAY DATA
indicators represents the contents of the memory data
register.

MA+2 Pushbutton Pressing this pushbutton increments the current memory

(momentary) address by two, displays the contents of that memory
location in the DISPLAY DATA indicators, and lights the
MD indicator.

ENTER Pushbutton Pressing this pushbutton concurrently with pressing one

(momentary) of the other DISPLLAY CONTROL pushbuttons enters data
from the DISPLAY DATA indicators into the computer area
indicated by the concurrently pressed pushbutton. For
example, pressing ENTER and WP transfers the data from

10L6-2FPET6

66-¢

uorsia|g sweisAs |eybig

Table 2-10. 990 Maintenance Console Controls and Indicators (Continued)
Nomenclature Device Function

DISPLAY CONTROL

(Continued)

ENTER Pushbutton the DISPLAY DATA indicators to the workspace pointer
(Continued) (momentary) register, and lights the WP indicator.

BKPT Indicator When lighted, this indicator designates that the current
value on the TILINE ADDRESS/PC indicators matches the
value set in the DISPLAY DATA indicators. When ex-
tinguished, this indicator designates that no breakpoint
compare has been reached since the ENABLE/CLR switch
was last moved to CLR or since the computer entered the
run mode (RUN/HALT/SIE switch in RUN position).

ENABLE/CLR Toggle switch The center (rest) position of this switch is the normal

3-position operation position for the switch, and enables the com-

(On-Off -Moment) puter to operate without stopping at a breakpoint. When
set to the ENABLE (up) position, this switch stops the
computer when the value on the TILINE ADDRESS/PC in-
dicators matches the value in the DISPLAY DATA indica-
tors (stop on breakpoint), When moved to the CLR
(momentary) position, the switch clears the BKPT indica-
tor. ‘ '

IDLE Indicator This indicator lights to indicate that the computer is ex-

ecuting an IDLE instruction. The computer remains in
the run mode but will not continue processing until the
RUN/HALT/SIE switch is set to HALT and then set back
to the RUN position, or until a recognized interrupt places
the computer into a service routine. When extinguished,
this indicator designates that the computer is not execut-
ing an IDLE instruction,

T0L6-2FPET6

09-¢

uoysia|g sweisAs jeybia

Table 2-10.

990 Maintenance Console Controls and Indicators (Continued)

Nomenclature

Device

Function

RUN/HALT/SIE

RUN/HALT/SIE

CLOCK

HI VOLT/LO VOLT

Indicator

Toggle switch
3-position
(Mom-Off-Mom)

Toggle switch
3-position
(On-Off -Moment)

Toggle switch
3-position
(On-Off-On)

This indicator lights to indicate that the computer is in the
run mode. When this indicator is extinguished, the com-
puter is in the halt mode.

When in the center (rest) position, this switch allows the
CPU to operate in its currently selected mode. When
moved to RUN (up-momentary), this switch places the
CPU in the run mode, allowing continuous instruction ex-
ecution, and lights the RUN/HALT/SIE indicator. When
this switch is moved to HALT/SIE (down-momentary)
while in the run mode, the CPU executes the current in-
struction and terminates program execution. When this
switch is moved to HALT /SIE while in the halt mode, the
CPU executes one instruction from the program sequence
(Single Instruction Execution).

When set to the ON position (up), this switch enables nor-
mal system operation with a free-running clock signal.
When set to the center position (off), this switch stops the
system clock. When moved to the STEP position (down-
momentary), this switch enables the system to generate
a single clock pulse.

When set to HI VOLT (up), this switch raises the 12 volt
supply line to memory to its upper margin (12.6 volts).
When set to LO VOLT (down), this switch lowers the 12
volt supply line to memory to its lower margin (11.4
volts)., When set to the center position, this switch allows
the memory supply voltage to operate at its normal level.

/)

10L6-2%¥E¥6

19-¢

uorsing swelsAs [eubig

Table 2-10.

990 Maintenance

Console Controls and Indicators (Continued)

Nomenclature

Device

Function

MRSET/I/ORSET

LOADEXT - LOADINT

RA 0 through 7

NRA 0 through 7

RA SYNC 0 through 7

Toggle switch
3-position
(Mom-0Off-Mom)

Toggle switch
3-position
(Mom-0Off- Mom)

Indicators

Indicators

Toggle switches
2-position

When in the center (rest) position, this switch is inactive.
When moved to the MRSET position (up-momentary) while
the CLOCK switch is set to ON, this switch produces a

master reset that clears the interrupt mask, pending

A2l 1 €S0 Lilgl Lieal s PR SRS N AN ALIG DR, pTiiliiig

interrupts and the 120 Hz clock, places the computer in
the run mode, and initiates a power-up sequence. When
moved to I/ORSET (down-momentary) while the CPU is
in the halt mode, this switch issues an I/O Reset signal
that masks all interrupts, clears pending interrupts, and
resets the 120 Hz clock.

When in the center (rest) position, this switch is inactive.
When moved to LOADEXT (up-momentary), this switch
initiates an operation that loads 256 words from a ROM

in the maintenance panel repeatedly into the first 4K words
of memory. When moved to LOADINT (down-momentary),
this switch loads the 256 ROM loader from the AU circuit
board repeatedly into the first 4K words of memory.

These indicators display the current control ROM address.
A lighted indicator represents a ''1'" bit; an extinguished
indicator represents a ''0' bit.

These indicators display the next control ROM address to
be executed in the control sequence. A lighted indicator
represents a ''l'" bit; an extinguished indicator represents
a '""0" bit.

These switches allow the operator to set an 8-bit value
that generates a sync pulse when the current ROM address
corresponds to that value. (Up = "1"; Down = '"0"). The
operation of these switches is controlled by the SYNC
SELECT toggle switches.

10L6-2P¥EF6

29-¢

Table 2-10.

990 Maintenance Console Controls and Indicators (Continued)

Nomenclature

Device

Function

SYNC SELECT

GND - LATCHED

GND - UNLATCHED

SYNC - LATCHED

SYNC - UNLATCHED

Toggle switches
2-position

Test point

Test point

Test point or
BNC connector

Test point or
BNC connector

These switches select the function that will generate a
sync pulse for monitoring on the BNC connector and test
points. The function code for the switches is as follows
(Up = 11" Down = "'0"): .

00 - Sync pulse generated when the current ROM address
matches the value set in the RA SYNC switches.

01 - Sync pulse generated when the current address on the
TILINE ADDRESS/PC indicators matches the value
set in the DISPLAY DATA switches.

10 - Sync pulse generated when both codes '00'" and "o1"
are satisfied simultaneously.

11 - Sync pulse on test point and BNC connector labeled
LATCHED is the system clock pulse; sync pulse on
the UNLATCHED test point and connector is the
TLGO- pulse.

Provides a reference ground potential for use with the
SYNC - LATCHED test point.

Provides a reference ground potential for use with the
SYNC - UNLATCHED test point.

Provides a sync pulse as defined by the SYNC SELECT
switches after the generating signal has been clocked
through a synchronizing flip-flop to isolate the signal from
transient pulses.

Provides a sync pulse that is the raw output of the com-
parison circuit defined by the SYNC SELECT switches,
and is therefore, not delayed as is the LATCHED output.

uojsing swelsAs [eibia

10L6-2¥PE¥6

[e]
;‘_@? 943442-9701
SECTION III

990 COMPUTER PERIPHERAL DEVICES

3.1 INTRODUCTION

This section contains pertinent information about the peripherals available
with the Model 990 Computer. These peripherals are:

° TI Model 913 CRT Display Terminal

s TI Model 733 ASR Data Terminal*

° Model 33 ASR Teletypewriter Data Terminal*

e Modem Controller Communication I/O Module

° Asynchronous TTY/EIA Communications Interfice Module
° 16 I/O Data Module

° Prototype Development Cards

Descriptions of these peripherals include use operations, programming re-
quirements, interconnect information, and power requirements. Where
these peripherals are offered as kits, the various kit options are described.

3.2 TI MODEL 913 CRT DISPLAY TERMINAL

3.2.1 GENERAL

The 913 CRT display terminal is an interactive data terminal connected to
the CRU in the Model 990 Computer to provide a fully-programmable data
terminal to satisfy a dynamic-interface user requirement. Hard copies of
the display may be made on an optional print-only printer attached to the CRT.

3.2.2 DESCRIPTION

The 913 CRT display (figure 3-1) is a stand-alone 12-inch (diagonal measure)
television monitor with a non-reflective, high-resolution screen. CRT driv-
ing circuitry consists of all solid- state components mounted on a single
printed-circuit (PC) board next to the CRT tube. Character generation, video
generation, buffer memory, and other control circuitry consists of all solid-
state components mounted on the CRU interface board, which resides in the
CPU chassis. The keyboard is remote from the CRT chassis and consists of
the keys shown below, made of '"double shot" molded, non-glare-finish plastic,

*Either of these two data terminals may be used for input/output for software
development systems.

3-1 Digital Systems Division

943442-9701

126684 (990-474-8-7)

Figure 3-1. CRT Display and Controller

3.2 Digital Systems Division

o
QJ:@@ 943442-9701

mounted in the keyboard case., Each key of the keyboard is a single-function
key designed for single-handed operation. The numeric keys are arranged in
a 10-key numeric pad for ease of operation.
3.2.3 OPERATING CONTROLS, DISPLAY, AND KEYBOARD
The following items are used to input data from the CRT and display output
from the 990 Computer.
3.2.3.1 CONTROLS. The controls for the CRT display terminal are:

° Display - Brightness, Contrast, Horizontal/Vertical Hold
° Cursor - [, , , ", Home

° Format - Tab, Space, Repeat
° Control - 14 Special User defined keys.

3.2.3.,2 DISPLAY. The display characters are formead as follows:
° Character shape - 5 x 7 dot matrix
° Cursor field - 7 x 9 dot matrix

° Character field - 7 x 16 dot matrix

1o o o0 0 0 o
0|0 0o 0 0 0}0
CHARACTER
FIELD ~__lo]lo o0 o0 o olo
T
0Jj0 O 0 0 OO
0|0 0 0 0 o]0
0jo 0 0 0 olo
0|0 0 0 0 olo
cursor —| 0|0 0 o o ofo
FIELD
0O 0 0 0 0 0 o
O 00 0 0 0 0)
O 0 0 0 0 0 O
O 0 0 0 0 0 O
© 000000 VERTICAL CHARACTER
© 0000 0 o ? SPACING
0O 0 0 0 0 0 o
0O 0 0 0 0 0 o
© 000 00O oJ

(A)128678

° Screen capacity - 12 horizontal lines and 80 characters per line.

3-3 Digital Systems Division

[e]
@ 943442-9701

3.2.3.3 KEYBOARD CHARACTERS., The following characters are avail-
able on the keyboard of the Model 913 CRT Display terminal: :

° Upper Case USASCII Keyboard - 57 display characters and 32 con-
trol keys in the following arrangement (Note that the USASCII hexa-
decimal value generated by each key is shown below the dotted line
and the character is indicated above the dotted line):

RESET FO F1 F2 F3 Fa FS Fé& F7 HELP ROLL UP JROLL DOWN| SEND PRINT
7046 | 7he | 7% 306 | 7416 | 7316 | 7016 | 76 | 7Bis | o1 A 7816 Cie 7Dyg
t INSERT| BACK [DELET
I I N OO TN N O NGNS LCTNN N NN SO R -4 o0 - N RN S
6‘16 52(6 63‘6 6"6 55‘6 GGIS 6716 6616 59‘6 GDIG SAlG 55‘5 3F'6 '55‘6 5C|G 50‘6 3715 3615 39'5
N
Q w 3 R T v u [o 3 + |New LINE WeERT v RSRR. 4 5 6 -
| e J w I fE | |- —]==]==]==]==|-=-=-4 E—= — |SHAR: = =]
48 2 4 =9 55 49 4F 50 24 oD 1) 1A 3E 34 5
5“5 57‘5 16 s 16 i 16 16 16 16 16 16 . 16 16 16 16 16 16 3 16 35‘8 20'5
F G H E K L ; M / - HOME - 1 2 3
Al Ll e = = = = = — | == — —_ | = - e]+
“'6 53|5 44‘5 46|s 47‘6 4816 4A‘6 dﬂ's AC'S SA‘G 23‘6 26|6 Dals °2|S |C'6 3"6 32|6 33'5
TAB z x c v -] N Y] . . ? REPEAT SET t {cLEARr o .
Tae oz 1 x| L]l —=- === I S (TN
09'6 5“5 56‘6 ‘3‘6 56‘6 42,6 ‘Els ‘DIG 25‘6 25!6 ZF|6 SEIG 33‘6 OA‘G SC‘S 3016 ZE‘G
'sPACE!
(A)129505 2016

3.2.4 CAPABILITIES

The 913 CRT display has the following capabilities:
e Instant Display - Screen filled in less than 20 milliseconds.
° Programmable Cursor Positioning |
° Processor Controlled Functions

. Screen Refresh at 60 frames per second from CRT controller
memory

. Programmable Editing

. Protected Display Fields - Programmable,

3.2.5 CRT DISPLAY SPECIFICATIONS

3.2.5.1 TRANSMISSION CODE AND CHARACTER SET. The transmission
code and character set is shown in the keyboard illustration,

3-4 Digital Systems Division

%@ 943442-9701

The CRU output byte from the 990 memory is stored in the CRT refresh
memory as follows:

990 MEMORY CRU INTERFACE REFRESH MEMORY

&= 0 (WRITE PROTECT)
&1 (MSB)

o 2

o 3

o 4

-5

o6 (LSB)

G U h W N = O

N\

7
(A)129506

The second most significant bit (CRU Bit 1) is dropped in the refresh mem-
ory store operation., When this byte is read from the rafresh memory for
either CRT refresh or a CRU read operation (STCR machine instruction),

bit 1 is restored as the complement of bit 2, This results in the USASCII
hexadecimal codes of 004 through 0F ¢, 1014 through 1F ¢, 60;¢ through
6F16’ and 70, through 7F ;. being changed to 40, through 4F ;,, 50,
through 5F ¢, 20,4 through 2F,, and 304 through 3F (respectively. This
character alteration is shown in table 3-1 for each keytap of the CRT key-

board.
Table 3-1, Character Set as Read from Refresh Memory
and Displayed on the CRT Screen
Keyboard Refresh Memory Display
USASCII Code Character Character Read | Character

02 HOME 42 B

08 ~ 48 H

09 TAB 49 I

0A | 4A J

oD NEW LINE 4D M

1A t 5A z

1C - 5C \

20 space : 20 space
23 : 23 #

24 + 24 $

3-5 Digital Systems Division

o
%@ 943442-9701

Table 3-1, Character Set as Read from Refresh Memory
and Displayed on the CRT Screen (Continued)

Keyboard Refresh Memory Display
USASCII Code Character Character Read | Character
26 / 26 &

2B + 2B

2C o, 2C ,

2D’ - 2D -
2E . 2E .

2F ? 2F /
30 0 30 0
31 1 31 1
32 2 32 2
33 3 33 3
34 4 34 4
35 5 35 5
36 6 36 6
37 7 37 7
38 8 38 8
39 9 39 9
3A ; 3A

3B SET 3B ;

3C CLEAR 3C <
3D INSERT CHAR 3D =
3E DELETE CHAR 3E >
3F A 3F ?
41 A 41 A
42 B 42 B
43 C 43 C
44 D 44 D

3-6 Digltal Systems Division

T

943442-9701

Table 3-1. Character Set as Read from Refresh Memory
and Displayed on the CRT Screen (Continued)
Keyboard Refresh Memory Display
USASCII Code Character Character Read | Character

45
46

47 -

48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E

K XM 8 <« a3 0" Oo Z g P X< 2 @0 "H

V4

INSERT LINE
BACK TAB
DELETE LINE

REPEAT

45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E

>— o T N KX £ < aH® O RWOoZEHERS S DO A H

h]

Digital Systems Division

%@ 943442-9701

Table 3-1. Character Set as Read from Refresh Memory
and Displayed on the CRT Screen (Continued)

Keyboard Refresh Memory Display
USASCII Code Character Character Read | Character
60 @ 20 space
61 ! f 21 !
62 o 22 "
63 # 23 #
64 $ 24 $
65 %o 25 %
66 & 26 &
67 : 27 '
68 (28 (
69) 29)
6A * 2A *
6B - 2B +
70 RESET 30 0
71 FoO 31 1
72 Fl 32 2
73 F2 33 3
74 F3 34 4
75 F4 35 5
76 F5 36 6
7 Fé 37 7
78 F7 38 8
79 HELP 39 9
TA ROLL UP 3A
7B ROLL DOWN 3B ;
7C SEND 3C <
7D PRINT 3D =

3-8 Digital Systems Division

{@ 943442-9701

3.2.5.2 DISPLAY RATE. Each character requires 6 microseconds to be
displayed and less than 20 milliseconds are required to fill the screen.

3,2.6 INSTALLATION

3.2.6.1 CONNECTION INFORMATION. The CRT controller mounts in any
chassis CRU slot. A cable supplied as part of the peripheral kit connects the
controller to the CRT monitor and another cable connects the keyboard to the
CRT monitor. '

3.2.6.2 PROGRAMMING INFORMATION. Figure 3-2 shows the CRU in-
put as read from t_he refresh memory of the CRT controller when enabled
by the IMODSELA signal from the CRU. Figure 3-3 shows the CRU input
from the cursor position circuits of the CRT controller. This input is en-
abled by the IMODSELB signal from the CRU. Bits 0 through 3 indicate
cursor position in a row as follows: ‘

BIT Hexadecimal Value Row
01 2 3 -
000 0 0 0 (Top)
0 0 01 1 1
0 010 2 2
1 0 0 O 8 8
1.0 01 9 9
1T 010 A 10
1 0 1 1 B 11 (Bottom)

3-9 Digital Systems Division

943442-9701

CRU INPUT

] CRT DATA OUTPUT BIT O (LsB)

! CRT DATA OUTPUT BIT 1

2 CRT DATA OUTPUT BIT 2

3 CRT DATA OUTPUT BIT 3

4 CRT DATA OUTPUT BIT 4

5 CRT DATA OUTPUT BIT 5

6 CRT DATA OUTPUT BIT 6 (MSB)

7 CRT DATA OUTPUT BIT 7 (WRITE PROTECT)
(A)128686 A

Figure 3-2, CRT Data Output to CRU

CRU INPUT
0 CRT CURSOR ROW 0 (LsB)
1 CRT CURSOR ROW 1
2 CRT CURSOR ROW 2
3 CRT CURSOR ROW 3 (MSB)
4 CRT CURSOR COLUMN O (LSB)
5 CRT CURSOR COLUMN 1
6 CRT CURSOR COLUMN 2
7 CRT CURSOR COLUMN 3
8 CRT CURSOR COLUMN 4
9 CRT CURSOR COLUMN 5
10 CRT CURSOR COLUMN 6 (MSB)
11 LOGIC ZERO
(A)128687A

Figure 3-3, CRT Cursor Position

Bits 4 through 10 indicate cursor column position as follows:

BIT Hexadecimal Value Row
4 5 6 7 8 910 (Leading zero assumed) _
0 00 OO 00 0 (Left)
0 000 O0O01 01 1
0 000 01O 02 2
100110 4D 77
1 0 0 1 1 0 AE 78
1 o1 1 11 4F 79 (Right)

3-10 Digital Systems Division

T

/]

943442-9701

Figure 3-4 shows the output from the CRU which is CRT controller input.
Bits O through 7 are the data bits that are stored in the refresh memory.
(Note that table 3-1 shows the relationship of the data stored in the refresh
memory and the data read from the refresh memory.) Bit 8 is the line that
when strobed, indicates the data in bits 0 through 7 is the data byte to store
in the refresh memory. Bits 9 through 14 are the cursor control signals
that control cursor position according to the program being executed. Fig-
ure 3-5 shows the arrangement of the bits that represent the data placed on
the CRU when a key on the keyboard is pressed. The USASCII hexadecimal
character generated when a key is pressed is shown in table 3-1 and on the
standard keyboard diagram. Figure 3-6 shows the keyboard signals output
by the CRU which are used to acknowledge a keyboard entry and to enable
the keyboard interrupt feature,

3.2.6.3 POWER REQUIREMENTS. The power requirements for the CRT
display and keyboard are as follows:

e CRT - 115 VAC, 50-60 Hz, 130 watts

e Keyboard - +5 Vdc @ 0.5A

° CRU Interface Board - +12 Vdc
+5 Vdec @ 2.7A

CRU OUTPUT
0 CRT DATA IN O (LSB)
1 CRT DATA IN 1
2 CRT DATA IN 2
3 CRT DATA IN 3
a CRT DATA IN 4
5 CRT DATA IN 5
6 CRT DATA IN 6 (MsB)
7 CRT DATA IN 7 (WRITE FROTECT)
8 CRT DATA IN STROBE
9 CRT CURSOR DOWN
10 CRT CURSOR RIGHT
11 CRT CURSOR UP
12 CRT CURSOR LEFT
13 CRT CURSOR ZERO LINE
14 CRT CURSOR ZERO COLUMN
15 ENABLE BEEP
(A)1286884A

Figure 3-4, CRT Input

3-11 Digital Systems Division

[e]
% 943442-9701

3.2.6.4 SPACE REQUIREMENTS.

CRU INPUT

8

9

10

100 I

12 -

———

13

14"

15 .

NOTE .

(A)128689A

Figure 3-

KEYBOARD

KEYBOARD

KEYBOARD

KEYBOARD

KEYBOARD

KEYBOARD

KEYBOARD

KEYBOARD

THIS DATA IS THE REMAINDER OF THE
16 LINE BUS SHOWN IN FIGURE 3—2,

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

4

5

6
READY

(LSB)

(MsB)

5. Keyboard Data Output

CRU OUTPUT

9

10

(A)128690A

Figure 3-6,

KEYBOARD ACKNOWLEDGE

KEYBOARD INTERRUPT ENABLE

Keyboard Data Input

Space requirements for the CRT dis-

play and keyboard are as follows (note, dimensions are in inches):
Display - - 15,5(H) x 12.8(D) x 19.0(W)
4,0(H) x 9.0(D) x 18.75(W)

Keyboard -

Digital Systems Division

o]
{@ 943442-9701

3.2.7 PERIPHERAL KIT OPTIONS (Kit part number 974708)

The following list identifies the various options available with the 913 CRT
Display peripheral kit:

Kit Part Number Description of Kit Chntents

974708-0001 CRT Peripheral Kit, Model ¢13, 960-character
This kit includes the 913 CCRT, CRT control-
ler, 15-foot cable, and standard keyboard.

974708-0002 CRT Peripheral Kit, Model ¢13, 960-character,
Long Cable
This kit contains the same items as the -0001
kit except the cable is 100 feet in length.

974708-0003 CRT Peripheral Kit, Model 913, 960-character,
CRT
This kit contains only the CRT display and
controller board with a 15 foot cable.

974708-0991 CRT Peripheral Kit, Model 913, 960-character,
Documentation, Cassette
This kit contains the kit dé.cumentation and
peripheral PAT on cassette.

974708-0992 CRT Peripheral Kit, Model 913, 960-character,
Documentation, Paper Tape
This kit contains the same items as does the
-0991 kit except the PAT is on paper tape.

3.3 TI MODEL 733 ASR DATA TERMINAL

3.3.1 GENERAL

The MODEL 733 ASR Data Terminal may be used as the system keyboard/
printer and principal input/output device for the 990 Computer. Printed
output from the CPU appears on this data terminal. Input/output media
is magnetic cassette for this data terminal,

3.3.2 DESCRIPTION

The TI Model 733 ASR Data Terminal (figure 3-7) is a USASCII data ter-
minal and can be used as a system input/ output device for the 990 Computer.
The 733 is modular in design with a keyboard, printer mechanism, transmit/
receive electronics, record/playback units, and associated controls.

° The standard 733 USASCII keyboard permits manual typing opera-
tions and transmission of printable characters and operational
codes in 7-level USASCII code. Full uppercase and lowercase
capability is available as an option.

3-13 Digital Systems Division

uois|ng sweisAs 18yBig

ST ——————

osenonppRenss

Figure 3-7., 733 ASR Data Terminal

T10L6-2F¥ET6

943442-9701

° The 733 printer mechanism features a solid-state printhead that
prints characters through the use of a five-by-seven dot matrix of
heating elements, paper handling mechanics, and printhead move-
ment devices,

° The transmit/receive electronics control communications with the
990 Computer,

° The record section controls recording of local (from the keyboard)
or remote (from the computer) messages on magnetic tape.

° The playback section controls playback of messages that were pre-
viously recorded on magnetic cassettes for local use (printed by the
printing mechanism) and/or transmission to the computer.

3.3.3 OPERATING CONTROLS, INDICATORS, AND KEYBOARD
CHARACTERS

The following controls and indicators are used to control the 733 ASR Data
Terminal and the 990 Computer. For more detailed information, refer to
The Silent 700* Electronic Data Terminals manual,

3.3.3.1 CONTROLS. The controls for the data terminal are:

° Terminal - Power-On/Off, Speed-Low/Medium/High, Transmission
Mode-Half/ Full Duplex, Parity Select-Odd/Even/Mark, Terminal
Status-On- Line/Off- Line, and Speed Status-Low/High (with 1200
baud option)

™ Printer - Print Contrast, Line Space-Single/Double, Control-

Line /Off/Local

® Cassette 1/Cassette 2 - Control-Record/Playback, Tape-Rewind/
Stop and Load/Fast Forward/Stop

° Record Control - Control-Line/Off/Local and On/Off, Tape-Erase/
Print, Tape Format-Line/Continuous

e Playback Control - Control-Line/Off/Local, Tape-Continuous/
Start/Stop, Block Forward/Reverse, and Character Forward

° Keyboard - REPEAT, PAPER ADVANCE, LINE FEED, HERE IS,
BREAK, CARRIAGE RETURN, TAPE, TAPE Keys, Control-Line/
Off/Local

*Trademark of Texas Instruments Incorporated

3-15 Digital Systems Division

{@J’? 943442-9701

3.3.3.2 INDICATORS. The following indicators show the status of the 733
Data Terminal:

° Terminal - "Power On'' light

™ Cassette 1 /Cassette 2 - "READY'", "END'", "RECORD", and
"PLLAYBACK!'" lights.,

e Record Control - "RECORD ON'' light and CHARACTER display
e Playback Control - "PLAYBACK ON'" light and "PLAYBACK ERROR"
light '

3.3.3,3 KEYBOARD CHARACTERS. The following characters are avail-
able on the keyboard of the Model 733 ASR Data Terminal (see table 3-2 for
USASCII code set):

Table 3-2, USASCII Code Systems and Character Set

0 1 1 1 1
1 0 0 1 1
by by b, b, 1 0 1 0 1
0000 0 e P .
0001 1 A Q a
0010 2 B R b r
0011 3 c s c s
0100 4 D T d t
0101 5 E u e u
0110 6 F v t v
0111 7 G w 9 w
1000 8 H x h x
1001 9 | Y i y
1010 J z i z
1011 : K [K {
1100 < L \ | H
1101 . M 1 ™ Y
1110 > N A n .
111 1 ? 0 - o [@ DEL
[]eminTABLE CHARACTER
B -~ R conTROL CHARACTER
//////////] AUXILIARY DEVICE CONTROL CHARACTER
CODES GENERATED BY KEYBOARD, BUT NO ACTION TAKEN
(A)128680

3-16 Digital Systems Division

o

943442-9701

e Standard USASCII Keyboard - 68 printable characters and 33 con-
trol characters in the following arrangement:

' - # s % & ' q) . = HERE PAPER

1 2 3 4 5 6 7 8 9 0 : _ 18 ADV

X-ON wru } [7are | [Fare TAB —_ @ l LINE
Esc a w E R T Y U | 0 P reep | [RETURN BREAK
sor | [xorr] [eor BEL vt) [7eF " RUB
crru || "a s > . . " S K L ' out | [repeAT TAPE
ETX STX A (< > ’
SHIFT ; « p v . N " ' ' . I SHIFT TAPE
(SPACE BAR)
(A)128682

. Optional Full USASCII Keyboard - 95 printable characters and 33

control characters in the following arrangement (see table 3-2 for
USASCII code set):

UPPER !
CASE 1

ESC

—
~

w &
—
>N
e
o ®
——
|cn@
< -
<—
|a,,\
© -
—

~ RS i rs B Here . PAPER
0 \ 1S ADVANCE
ENQ pc2 DCa EM NAK HT s oce f|\nur B iesc us LINE RETURN
€ R T \ u ! 0 @ I . FEE
T_F '] }Gls DEL l REPEATI BREAK
SHIET sus CAN ETX SYN STX SO CR < > ’ SHIFT Tare i TAPE
Z X C \ [:] N M . . / - -

(SPACE BAR)

L

-
[

SHIFT
CTAL I LocK

— | 2
w
>0
3
| o
=R
Lo
m
[SXe]
3
>
no
=
@
om
m
h—
-
T o
-5
h—
<
IL

E

L

L

LEGEND: I
SOH = Control Character
_A = Alphabetic character (SHIFT for uppercase)
!] = Shifted character
h—‘ = Unshifted character
~RS = Shifted character, control character
_/\ = Graphic unshifted
(A)128681

3.3.4 CAPABILITIES

The 733 ASR Data Terminal permits the programmer to input/output system
development software, application programs, and control information for the
990 Computer,

3-17 Digital Systems Division

943442-9701

'3,3.5 TERMINAL SPECIFICATIONS

3.3.5.1 TRANSMISSION CODE AND CHARACTER SET. The transmission
code is USASCII, 7-level, 10 bits per character that include 7 data bits, a
parity bit, a start bit, and a stop bit. The 733 has 95 printable characters,
four print control characters, one terminal control character, and four ad-
ditional terminal control characters, DCIl through DC4, which are optional.
Communication between the 990 Computer and the 733 ASR Data Terminal
occurs at 1200 bits per second., When operating the printer, the computer
sends the delete (DEL) character between printable characters to effectively
match the 300-bit-per-second printer rate of the data terminal,

3,3.5.2 DATA FORMAT AND TRANSMISSION. Data is routed within the

terminal via a single data bus. The data is sent serially by bit with eight
bits per character. The eight bits include a 7-bit USASCII character and an
end-of-block indicator in the ASR unit. Transmission speed is 1200 Baud.

3.3.5.3 PRINTER. Refer to table 3-3 for the printer specifications.
Table.3-3, Printer Specifications
Specification Value

Printing method

Line length
Character spacing

Line spacing

Paper (TI part number
213714-0001 or
953167-0001)

Platen
Carriage return time

Line feed time
Audible alarm time
Printable characters

Carriage return and
line feed (CR/LF)

Visibility of printed lines

Print contrast

5 x 7 dot matrix, electronically heated, on
heat-sensitive paper

7.9 inches, 80 characters
0.1 inch, character center to center

Six or three lines per inch (single or double
spaced) '

Roll, 8.5 inches wide by 3,625 inches maxi-
mum diameter (300 feet), heat-sensitive

Friction feed
195 milliseconds maximum

33 milliseconds maximum (single space),
66 milliseconds maximum (double space)

250 (£50) milliseconds on receipt of the BEL
character 4

95

Automatic at column 81, no code is trans-
mitted

At least 50 previous lines of print (including
line and character being printed) are visible
and unobstructed

Operator adjustable

Digital Systems Division

{i@? 943442-9701

3.3.5.4 COMMUNICATION LINE INTERFACE. The standard line inter-
face conforms to the EIA standard RS232C. The terminal can receive, with-
out error, signals with mark and space distortion of up to 45 percent. The
minimum stop bit time for error-free reception at any speed is 0.6 of a
normal bit time,

3.3.5.5 TAPE TRANSPORT. Refer to table 3-4 for the tape transport
specifications.

Table 3-4. Tape Transport Specifications

Specification Description
Recording speed 8 inches per second
Recording method Phase-encoding

Recording density’ | 800 bits per inch (1600 flux changes per inch)

Rewind time 60 seconds maximum

Playback speed 120 characters per second (to communication line
or printer) or 250 characters per second (duplica-
tion)

Tape drive Capstan drive for recording or playback

Error rate One in 1016 maximum, using certified cassette

tapes and proper head cleaning procedures; one
in 107 typical

Interchangeability Any tape recorded on any 733 ASR transport oper-
ating within specifications may be read on any
other 733 ASR of the same model operating within
specifications

Sensors EOT, BOT, cassette in place, write tab, and
transport door closed

Media Improved Philips type cassette containing 275 tc
300 feet of digital grade magnetic tape with ap-
proximately 20 inches of transparent tape joined
to each end,

3.3.6 INSTALLATION

3.3.6.1 ADAPTER CARD INFORMATION. The 733 AS$R data terminal re-
quires a TTY/EIA Module (TI part number 961642-0003) and an adapter card
(TI part number 975200-0001) for interface connections an the CRU of the 990
Computer.

3-19 Digital Systems Division

943442-9701

3.3.6.2 POWER REQUIREMENTS. The power requirements for the 733
ASR are as follows:

) Frequency - Normal operation with primary input frequencies in
the band of 48 to 62 Hz.

e Voltage - 115 (+10%, -15%) volts RMS

° Power - Required primary input power at maximum rated volt-
age is 200 VA maximum

3.3.6.3 SPACE REQUIREMENTS., Space requirements for the 733 ASR
are shown in figure 3-8,

NOTE: ALL DIMENSIONS IN INCHES.

N 21.18 > T~
o~

(A)128692

Figure 3-8, Space Requirements

3-20 Digital Systems Division

Q]’? 943442-9701

3.3.7 PERIPHERAL KIT OPTIONS (Kit part number 974707)

The following list identifies the various options available with the 733 ASR
peripheral kit:

Kit Part Number Description of Kit Contents

974707-0001 733 ASR Peripheral Kit, 110 Vac, 60 Hz
This kit includes the 733 ASR, Model 960 TTY/
EIA card, interface cable, and adapter card

974707-0002 733 ASR Peripheral Kit, Interface
This kit includes the Model 960 TTY/EIA
card interface cable, and adapter card

974707-0003 733 ASR Peripheral Kit, ASE
This kit contains only the: 733 ASR.

974707-0990 733 ASR Peripheral Kit, Documentation
This kit includes pertinent documentation,
including PAT, for the 733 ASR.

3.4 MODEL 33 ASR TELETYPEWRITER DATA TERMINAL

3.4,1 GENERAL

The Model 33 ASR Teletypewriter Data Terminal may be used as system
keyboard/printer and principal input/output device for the 990 Computer.
Input/output media for this configuration is paper tape. Printed output
from the 990 Computer appears on this terminal,

3,.4,2 DESCRIPTION

The Model 33 ASR Teletypewriter (figure 3-9) is a USASCII data terminal
used as an I/O device for the 990 Computer, The functions of the 33 ASR
teletypewriter are:

° The 33 ASR keyboard provides manual typing operations and trans-
mission of printable characters and operational codes in 7-level
USASCII code. Only uppercase alphanumeric characters are printed.

° The printer mechanism uses impact printing of all printable char-
acters on teletypewriter paper or on multiple copy business forms.

. Transmission from the data terminal to the 990 Computer is from
either the keyboard or the paper tape reader,

e Reception from the 990 Computer is routed to the printing mechan-
ism and to the paper tape punch. Tape is punched only when the
punch is on.

Note that in the off-line mode, paper tape may be read by the reader or
punched on the punch, or paper tape may be printed by the printing mechan-
ism.

3-21 Digital Systems Division

943442-9701

128693 (990-674-6-16)

Figure 3-9. 33 ASR Teletypewriter

3-22 Digital Systems Division

(o}

943442-9701

3.4.3 OPERATING CONTROLS

The controls and indicators described in the following paragraphs are used
to control the 33 ASR Teletypewriter and the 990 Computer. For more de-
tailed information on the Model 33 ASR Teletypewriter, refer to the supplied
vendor manual.
3.4.3,1 CONTROLS. The controls for the data terminal are:

. Terminal - LOCAL/OFF/LINE

e Punch - ON/OFF/B.SP./REL (figure 3-10)

® Reader - MANUAL START/AUTO/MANUAL STOP/FREE (figure
3-11)

. Keyboard - HERE IS/LINE FEED/REPT/BREAK

PUSHBUTTONS TRIANGULAR
TEAR POINT

ROLLERS

ROLLER {' TAPE PUNCH
1 LID

TAPE PUNCH
QOVER

(A)128694

Figure 3-10, Paper Tape Punch Controis

3-23 Digital Systems Division

(o]
{—@? 943442-9701

FEED WHEEL

(A)128695

Figure 3-11.

3.4.3,.2 KEYBOARD.

TAPE LID
LATCH HANDLE

TAPE LID

Paper Tape Reader Controls

The following characters are available on the key-

board for USASCII Teletype models (see table 3-2 for the USASCII code set):

POSITION

SHIFT

NU Typewheel Character Set

UNSHIFT ABCDEFGHIJKLMNOPQRSTUVWNXYZ12

{yv]t. e v

C)

ODOOLOOOLLOLOLOOO®
OEOEEOOOOOO®E®
ODEREOE®OOOOO®®®
HDEOOOO®OOOOO®

(A)128683

3-24

Digital Systems Division

[e)
Q]@ 943442-9701

3.4.4 CAPABILITIES

The 33 ASR Data Terminal permits the programmer to input/output system
development software, application programs, and control information for the
990 Computer,

3.4.5 TERMINAL SPECIFICATIONS

3.4.5.1 TRANSMISSION CODE AND CHARACTER SET. The transmission
code and character set is the same as shown in paragraph 3.3.5,

3.4.5.2 DATA FORMAT AND TRANSMISSION. The 7-level USASCII code
is transmitted to the 990 Computer interface in the full duplex mode. The
Baud rate available with the Model 33 ASR Teletypewriter is 110,

3.4.5.3 PRINTER. Refer to table 3-5 for the printer specifications.

Table 3-5., Teletypewriter Specifications

Item Description
Page copy

Rolled paper

Outside diarmeter 5 in. maximum

Page width 8.453 +0.031 in.

Length per roll (approx.) | 400 ft.

Core diameter I.D. lin., + 0.1 - 0.05 in.
Ribbon Ink-impregnated nylon
Paper tape

Type paper Oiled stock, rolled

Width 1 in.

Thickness 0.004 in.

Maximum roll diameter 8 in,

Length per roll (approx.) 1000 ft

Roll core diameter 2 in.

Environmental requirements

Operating 40° to 110°F ambient measured outside of
terminal cover
Storage 40° to 150°F
Relative humidity 90% maximum at 100° F rnaximum
Maintenance interval Initial lubrication is required after 100 to

200 hours of operation. Thereafter, lubri-
cate every 750 operating hours or every
6 months, whichever occurs first.

3-25 Digital Systems Division

0 .
(@? 943442-9701 -

3.4.5.4 COMMUNICATIONS LINE INTERFACE. The 33 ASR Teletype-
writer interfaces via a current 1oop that is a wirable option on the EIA com-
munications module. :

3.4.6 INSTALLATIG)N

3.4.6.1 CONNECTION INFORM,ATION The 33 ASR Teletypewriter re-
quires a TTY/EIA module (TI part number 961642-0003) and a small card
adapter (TI part number 975200~ 0001) for interface to the 990 CRU. Cables
are supplied with the perlpheral k1ts to 1nterconnect the TTY/EIA card and
the 33 ASR Tele’cypewuter

3.4.6.2 POWER REQUIREMENTS The po.vver requirements for the Model
33 ASR Teletypewrtter are: e . - ~

° Frequency Normal operation thh prlmary input power at either
50 or 60 Hz.
° Voltage - 115+ 10% Vac gingle phase.

e Power '~ - 250 Watts (hominal), starting surge current 15A maxi-
mum, operatmg current 3A nominal (5A max1mum)

3.4.6.3 TELETYPEW'RITER MODIFICATION (Model 3320/5JE). If the
data terminal is a teletypewriter purchased from Texas Instruments Incor-
porated, the teletypewriter is modified for improved noise suppression, full
duplex communications, 20 ma neutral signaling, removal of answer back
functions, parity generation disabled, and automatic carriage return and line
feed enabled. The following procedures completely define the modifications
for user-supplied terminals. :

1. Use the following procedures to remove the top cover from the
teletypewriter for access to the area for the remaining modifica-
tions.

a. Rernove the paper roll ahd paper tape (if installed).
b. Remove the paper advance (platen) knob,

c. Remove the knob from the LINE/OFF/LOCAL sthch

d. Remove the teletypewmter nameplate strip by pulhng it
down and out,

e. Remove the 4 screws uncovered by the removal of the name-
plate strip.

f, Remove the 3 thumhscrews from the rear of the cover,

g. Remove the screw located on the left rear corner of the
tape reader cover,

h, Lift off the cover top.

3-26 Digital Systems Division

('i@@ 943442-9701

2.

Use the following procedure to modify the teletypewriter for full
duplex operation.

a. Locate the '"X' terminal board at the left rear (viewed from the
rear) of the machine.

b. Move the white/blue wire from terminal 4 to terminal 5 on the
'X'" terminal block,

c. Move the brown/yellow wire from terminal 3 to terminal 5 on
the 'X' terminal block,

Use the following procedures to modify the teletypewriter for 20 ma
neutral signaling.

a. Move the purple wire from terminal 8 to terminal 9 on the ' X'
terminal block.

b. Move the blue wire from terminal 3 to terminal 4 on the 'X!
terminal block,

Use the following procedure to modify the teletypewriter for im-
proved noise suppression,

a. Remove the green/black wire from terminal 8 of the 'X' ter-
minal block, insulate the wire end to prevent inadvertant
electrical connections, and tie the wire end back out of the way.

b. Move the 2 black wires from terminal 2 to terminal 8 of the 'X!
terminal block.

c. Move the two white wires from terminal 1 tc terminal 2 of the
'X' terminal block.

d. Install the capacitor and inductor as shown in figure 3-12.

Use figure 3-13 to remove the answer back and WRU function bars
from the teletypewriter,

Use the following procedure and figure 3-13 to disable the parity
generation function and enable the automatic carriage return and
line feed functions.

a. Remove the white/blue wire from the left-hand terminal of the
terminal block located on the right side of the teletypewriter
below the keyboard, insulate the end of the wire, and tie back
out of the way.

b. Remove the copper-colored clip from the "A' position on the
code bar. The clip is located below the print mechanism.

Re-install the carrier top by performing the procedure in step 1
in reverse order (installing where removed and in reverse order,
h through a).

3-27 Digital Systems Division

[e]
{@ 943442-9701

/1l 3 348 678 9\

D)

O]ojojejojojotofo)

"‘
—t

TERMINAL BOARD *x”

(A)128696

‘Figure 3-12.

-
-
-

== CAPACITOR
1 . ouf

INDUCTOR
1 mh

——
. —
~—
-~
~—
—~—
- —

__ —SPADE LUGS (3EA)

INDUCTOR/CAPACITOR ASSY

Capacitor and Inductor Installation

3.4.6.4 DIMENSIONS AND WEIGHT.

Terminal:
Width. .
Depth. .
Height .
Weight .

Stand:
Width. .

Height ...

Depth (at top

.

of en-

closure}. « o o o

Length of Feet, , .

Weight.......-

. 22 inches

. 18-1/2 inches
. 8-3/8 inches
. 44 pounds

. 17-3/4 inches
., 24-1/2 inches

. 6-1/2 inches
. 17-3/4 inches
. 12 pounds

3-28

Digital Systems Division

943442-9701

FUNCTION PA'NLS

UNHOOK AND
REMOVE SPRING

REMOVE FUNCTION PAWLS ,
PAWLS , POSITIONS

*N” AND “12°, BY
UNHOOKING WITH A DOWN
AND BACK MOTION,

(2ND AND 3RD PAWLS FROM
THE RIGHT)

« #
POSITION 15
(REF)

ANSWER—BACK FUNCTION

LEVER ACTUATED BY HERE—IS

KEY WRU LEVER ACTUATED
“E

BY CONTROL

POSITION
POSITION

) CODEBAR

PRINT
MECHANISM T————.

l]

L
>
()

00 -

00

0o 0o

o

TE;&L BLOCK

(A)128697

Figure 3-13, Answer Back and WRU Function Bar Removal

3-29 Digital Systems Division

[e]
{@ 943442-9701

3.4.7 PERIPHERAL KIT OPTIONS (Kit part number 974704)

The following list identifies the various options available with the 33 ASR
peripheral kit:

Kit Part Number Description of Kit Contents

974704-0001 Teletype Peripheral Kit, 33 ASR - 3320/5JE,
60 Hz
This kit includes a modified teletype, a
TTY/EIA card, interface cable, test pro-
cedure, a documentation kit (for refer-
ence only), and an adapter card,

974704-0002 Teletype Peripheral Kit, ASR 3320/5JE,
Interface
This kit includes the TTY/EIA card,
interface cable, and adapter card,

974704-0003 Teletype peripheral Kit, ASR 3320/5JE, TTY
This kit includes only the modified TTY.
974704-0990 Teletype Peripheral Kit, ASR-3320/5JE,
Documentation

This kit includes pertinent documentation,
including PAT, for the 33 ASR.

3.5 MODEM CONTROLLER COMMUNICATION I/O MODULE

3.5.1 GENERAL

The modem controller interfaces the 990 Computer to the switched telephone
(DDD) network via a Bell Systems CBS 1001A Data Access Arrangement
(DAA) in order to provide automatic call origination, termination, and an-
swer functions. The modem can also function with a 4-wire full duplex leased

line network.

3.5.2 DESCRIPTION

There are three functional sections of the modem controller (figure 3-14)
that provide the functions listed above; modem, automatic call unit (ACU),

and the cyclic redundancy check (CRC).

3-30 Digital Systems Division

943442-9701

Modem Controller and Modem

Figure 3-14,

3-31 Digital Systems Division

O

943442-9701

3.5.2.1 MODEM. The modem provides data transmission capabilities that
are functionally compatible with Bell System 202 type modems. The functions
provided are:

. Auto answer with CBS 1001A DAA

. Call turnaround delay

® Receive mark-hold with carrier off

° Enable local copy

. 200 milliseconds clear-to-send delay

In order for these functions to operate correctly, the 990 Computer must be
programmed to handle the following:

. Auto answer control via DTR
. Maintaining mark-hold with clear-to-send off

e Ignoring local copy except for diagnostic purposes

3.5.2.2 AUTOMATIC CALL UNIT (ACU). If the terminal is intended for
automatic call origination via the Bell CBS DAA, the ACU control circuits
incorporated as part of the modem provide the following functions:

° Dial tone detection

° BCD - pulse or BCD - touch tone transmission
e Interdigit interval timing

. Busy tone detection

] Line monitor control

° Tandem dial control

To provide these functions, the 990 Computer must be programmed to ac-
complish the following:

. Proper control sequences
. Digit presentation in BCD form
° Abandon call and retry timing
. Successive call separation
3.5.2.3 CYCLIC REDUNDANCY CHECK (CRC). The CRC module permits

the generation of the transmitting, receiving, and decoding of a 16-bit block
check character when enabled.

3-32 Digital Systems Division

(e}
Q]@ 943442-9701

3.5.3 CAPABILITIES

The modem controller is capable of automatic call origination, call termina-
tion, and automatic call answer functions when the 990 Ccmputer is pro-
grammed to accomplish these requirements.

3.5.4 MODEM CONTROLLER SPECIFICATIONS

The specification of the three parts of the modem controlier are shown in
table 3"6'

3.5.5 INSTALLATION

3.5.5.1 CABLE CONNECTION INFORMATION. The modem controller in-
terconnections to the CRU in the 990 Computer are shown in figure 3-15,
those to the DAA interface are contained in table 3-7, and those from the con-
troller to the modem/ACTU are contained in table 3-8.

3.5.5.2 POWER REQUIREMENTS. The power requirements for the modem
controller are as follows:

° +5Vde @ 1.0 A, +3%

. +12Vdec @ 60 ma, +5%

° -12Vdc @ 110 ma, +5%

3-33 Digital Systems Division

uoys|alg sweisAs eyb|q

Table 3-6. Modem Controller Specifications

ve-¢

Module - Item Specification
Modem Data Binary, serial, asynchronous
Data rate 0 to 1200 bits per second
Transmitter Frequency: Stability: *5%
Transmit Level: 0 to -12 dbm in 2 db steps
Transmit impedence: 600 + 10% ohms resistive between
500 - 3500 Hz
Timing REQUEST-TO-SEND/CLEAR-TO-SEND:
200 ms * 20 ms
Delay Turnaround: Receiver squelched for 110 ms + 25 ms
after REQUEST-TO-SEND goes off
Receiver sensitivity -45 dbm + 3 db
Carrier detection 40 ms + 10 ms of received carrier to turn DATA-
CARRIER-DETECT on 10 ms +2 ms of no carrier to
turn DATA-CARRIER-DETECT off
Modulation Phase coherent, amplitude stable FSK
Data frequencies: Mark = 1200 Hz; Space = 2200 Hz
accurate to +0.5%
Control Auto answer tone 2025 Hz +25 Hz
Answer tone transmit time | 3.0 £ 1 second
Auto answer control Data terminal ready
Data set ready Follows CCT in answer, requires at least 100 ms of
answer back tone in originator
Data coupler required Bell CBS (1001A) or equivalent
Automatic Line monitor Turned off and on by dialing control digits, also turned
Call unit off when data terminal ready is turned off

Dial tone detect
Tone detect delay

200 to 800 Hz, 0 to -25 dbm
700 * 200 ms for standard dial tone between -10 and
-25 dbm

10L6=2%¥%¢%6

ge-¢

Table 3-6. Modem Controller Specifications (Continued)

Module Item Specification
Busy Signals 7 + standard line busy tones or 14 + standard line busy
tones at -32 dbm
Pulse dial requirements Pulse width: 100 ms + 10%
Duty cycle: 61% * 3%
Interdigit interval: 600 to 1700 ms
Touch tone dial rqmts Tones on: At least 50 ms
Tones off: At least 45 ms
Cycle time: 100 ms minimum
Transmit level: within +1, -2 db of the average data
signal power
Cyclic Block check character 16 bits
Redundancy Polynomial generator x16 4 x15 4 x2 4+ 1
Check Control

Enabled by CRU bits

uoJsIAIg swelsAs elbiag

10L6=2%7E¥6

943442-9701

CRU BIT OUTPUT BIT ASSIGNMENTS INPUT BIT ASSIGNMENTS
.
] DATA BIT O DATA BIT 0
1 DATA BIT 1 DATA BIT 1
2 DATA BIT 2 DATA BIT 2
3 DATA BIT 3 DATA BIT 3
4 DATA BIT 4 DATA BIT 4
5 DATA BIT 5 DATA BIT §
6 DATA BIT 6 DATA BIT 6
7 DATA BIT 7 DATA BIT 7
MODSELO <
8 TEST REQUEST RING INDICATOR
9 LOAD DATA DATA CARRIER DETECT
10 LOAD NUMBER DATA SET READY
11 ENABLE INPUT SWITCH-HOOK STATUS
12 DATA TERMINAL READY BUSY SIGNAL
13 REQUEST TO SEND CLEAR TO SEND
14 CALL REQUEST TIMING ERROR
~ 15 CLEAR CRC DECODER CRC ERROR
r o ENABLE CRC DECODER AUXILIARY TEST INPUT 1t
| ENABLE CRC GENERATOR INPUT AUXILIARY TEST INPUT 2
2 ENABLE CRC GENERATOR OQUTPUT AUXILIARY TEST INPUT 3
3 'CLEAR NEW STATUS FLAG NEW STATUS FLAG
MODSEL1 <
4 CLEAR DIGIT REQUEST DIGIT REQUEST
L] CLEAR WRITE REQUEST WRITE REQUEST
L CLEAR READ REQUEST READ REQUEST
" 7 DISABLE INTERRUPT INTERRUPT ID

(A)128699A
Figure 3-15. CRU Input/Output Bit Assignments

Table 3-7., Modem/ACU to DAA Line Connections

)) Level .
Signal Mnemonic On Off Pin Number
Off Hook OH +8 -8 P2-1,A
Data Transmission DA +8 -8 P2-2,B
Coupler Cut Through CCT +8 -8 P2-7,H
Ring Indicator RI +8 -8 P2-8,7
Data Tip DT P2-5,E
3-36 Digital Systems Division

943442-9701

Table 3-7, Modem/ACU to DAA Line Connectiong (Continued)

Signal Mnemonic OnLevei)ff Pin Number

Data Ring DR P2-9,K
Switch Hook SH +8 -8 P2-6,F
Signal Ground SG P2-3,C
Transmit Line (4-wire) H P2-10

L P2-L
Receive Line (4-wire) H P2-4

L P2-D

Table 3-8. Controller to Modem/ACTU Interface
Signal Mnemonic P(iznﬁzzgzr
Transmit Data TDATA Pl-h, 29
Call Request CRQ Pl-E,5
Request To Send RTS Pl-b, 24
Test Request TRQ Pl-D, 4
Data Terminal Ready DTR Pl-v,21
+5v P1-j, 30
Digit Present DPR P1-7,8
+12v Pl-1, 32
Digit Number Bit 1 NB1 P1-U, 17
-12v Pl-m, 33
Digit Number Bit 2 NB2 P1-1, 10
Common GND Pl-K, 31
Digit Number Bit 4 NB4 P1-R, 14
Digit Number Bit 8 NBS§ Pl-k,9
Received Data RDATA Pl-F,6
Line Monitor Output MH Pl1-M, 11
3-37 Digital Systems Division

(o]
{—i@? 943422-9701

Table 3-8, Controller to Modem/ACU Interface (Continued)

Signal Mnemonic PC1 zn§32}2 : -
Clear-To-Send CTS P1-f, 28
Switch-Hook Status SH Pl-c, 25
Data Carrier Detect DCD Pl1-v, 18
Data Set Ready ' DSR Pl1-Z,22
Ring Indicator RI Pl-d, 26
Present Next Digit PND Pl-p, 13
Busy Signal BSY Pl-w, 19

3.5.6 PERIPHERAL KIT OPTIONS (Kit Part Number 974709)

The following list identifies the various options available with the Modem Con-
troller Peripheral Kit:

Kit Part Number Description of Kit Contents

974709-0001 Modem Peripheral Kit, Asynchronous,
1200 Baud Pulse Dialer, 2-Wire.
This kit contains a pulse dialer, 2-wire
modem, controller, and the DAA inter-
face cable.

974709-0002 Modem Peripheral Kit, Asynchronous,
1200 Baud, Touch Tone Dialer, 2-Wire.
This kit contains the same part as does
the -0001 kit but contains a touch tone
dialer instead of a pulse dialer.

974709-0003 Modem Peripheral Kit, Asynchronous,
" 1200 Baud, 4-Wire Leased Line.
This kit contains a 4-wire leased line
modem, controller, and DAA interface
cable.

974709-0990 Modem Peripheral Kit, Documentation
This kit contains pertinent documentation
for the modem controller peripheral kit.

3-38 Digital Systems Division

943422-9701

3.6 ASYNCHRONOUS TTY/EIA COMMUNICATIONS INITERFACE MODULE

3.6.1 GENERAL

The full duplex asynchronous TTY/EIA communications nterface module in-
terfaces the 990 Computer to a variety of RS232C compa ible equipment via
the CRU.

3.6.2 DESCRIPTION

The TTY/EIA module (figure 3-16) is operated under program control to
send and receive character data and data terminal contrcl signals. Full du-
plex communications is via a voltage interface compatible with EIA standard

]
&
T
*
*
&

E
*

Figure 3-16. Asynchronous TTY/EIA Communication: Interface Module

3-39 Digital Systems Division

[e]
iﬂ{\@ﬁ? 943442-9701

RS232C. Available as an option is 20 ma neutral signaling. Input from the
data terminal is converted to CRU interface signals by the module and the
signals are used by the 990 Computer to determine terminal status, activity
requirements, and user input requirements of the data terminal. The mod-
ule may be wired to generate interrupts to the 990 Computer. Interrupts are
generated for each character sent, each character received, and when
(RS232C only) the status of the attached device changes.

3.6.3 OPERATION

Operation of the TTY/EIA module is programmed to accommodate the device
actually connected to the module.

3.6.4 CAPABILITIES

The TTY/EIA module permits the connection of TTY compatible or EIA com-
patible devices to the 990 Computer CRU for communication interaction be-
tween the attached devices and the computer.

3.6.5 MODULE SPECIFICATIONS

Wirable options on the module permit the selection of the Baud rate of the
device and the selection of the type of interface from either TTY compatible
or EIA compatible specifications. The Baud rate may be selected from sev-
eral rates that begin at 110 Baud and extend through 9600 Baud. An 11-bit
code is used with the 110 Baud rate while 10-bit codes are used with higher
Baud rates.

3.6.6 INSTALILATION

3.6.6.1 PROGRAMMING INFORMATION, Figure 3-17 shows the module-
to-CRU signal requirements and table 3-9 defines these input signals. Fig-
ure 3-18 shows the CRU-to-module signals and table 3-10 defines these output
signals.

3.6.6.2 POWER REQUIREMENTS. The EIA module requires the following
dc power:

[+5 Vdec 0.7 amp

e 12 Vdc 0.06 amp (EIA option, line driver)

3.6.6.3 ADAPTER CARD INFORMATION. The EIA module requires the
small card adapter, TI part number 975200-0001.

3-40 Digital Systems Division

943442-9701

"MEMORY WORD (BYTE)

(i 5 6|7 8‘9 1011 1213|1415

X

MODULE INTERNAL BIT ADDRESS
0 LSB)
1
2
TRUE DATA 3
" » RECEIVED CHARACTER
5
6
7 mMss |
(8 XMTING (TRANSMIT IN PROGRESS))
9 TIMERR (TIMING ERROR) S
1 = TRUE STATUS 10 | RCR (REVERSE CHANNEL RECEIVE) T
) 11 | wRQ (WRITE REQUEST) A
12 | RRQ (READ REQUEST) ¢ T
0 = FALSE STATUS 13 |, BCD tDATA CARRIER DETECT) U
14 | "0s® (DATA SET READY) s
(A)128701A > 15 INT (INTERRUPT)

Figure 3-17. Module to CRU Inputs

Table 3-9, Input Signals

Signal Description

True Data In Eight bits of data from teleprinter form-
ing the last character received from tele-
printer. A STCR (bits 0 through 7) of
teleprinter interface places character in
memory.

Transmit In Progress Status bit from interface to CPU indicat-
ing that interface is transmitting a char-
acter to teleprinter, THis bit is set to a
1 when interface receives the eight data
bit from CPU and is resect to a 0 when in-
terface has completed transmission of the
character. This bit may be tested by
CPU by a TB instruction addressing bit 8
of the teleprinter interface,

3-41 Digital Systems Division

(o]
{_@@ 943442-9701

Signal Description

Table 3-9, Input Signals (Continued)

Timing Error Status bit from interface indicating that a
timing error occurred while receiving last
character from teleprinter. It indicates
that the true data in above may be in
error. This bit may be tested by a TB in-
struction addressing bit 9 of the tele-
printer interface,

Reverse Channel Receive Bit 10 of teleprinter interface. It is
used with modems equipped with a re-
verse channel.

Write Request flag Status bit from interface indicating that
the interface is ready to transmit another
character. This bit is set to a 1 and gen-
erates an interrupt when the interface has
finished its last transmission to tele-
printer. This bit may be tested by CPU
by a TB instruction addressing bit 11 of
the teleprinter interface, The write re-
quest flag and the interrupt generated by
write request flag may be cleared by
issuing a Clear Write Request.

Read Request flag Status bit from interface indicating that a
character has been received from tele-
printer and is ready to be read by CPU,
This signal and the interrupt line go to a
1 and remain until Clear Read Request is
issued by the CPU. This bit may be
tested by a TB instruction addressing bit
12 of the teleprinter interface,

Data Carrier Used with modem equipment.
Data Set Ready Used with modem equipment.
Interrupt CRU interrupt bit from the data terminal

interface. The interrupt line will be a 1
when Write Request or Read Request is a
1, or when Data Carrier Detect or Data
Set Ready change states (new status flag).
The interrupt will be reset to a 0 by clear-
ing the flag (or flags) that generated the
interrupt.

3-42 Digital Systems Division

SZRo

943442-9701

MEMORY WORD (BYTE)

&5 6|7]1e|o]1o]11]12f13}1a]15
I.MODULE INTERNAL BIT ADDRESS
o LSB
1
2
3
TRUE DATA \ CHARACTER TO BE
4 TRANSMITTED
5
6
— 7 MSB 3
8 NOT USED c
1 = ON, 0 = OFF-- 9 DTR (DATA TERMOVAL READY) o
1 = ON, O = OFF=— 10 RTS (REQUEST TO SEND) M
11 CLRWRQ (CLEAR WRITE REQUEST) A ™M
BIT VALUE DON'T CARE 12 |{ CLRRRQ (CLEAR READ REQUEST) A
13 | CLRNSF (CLEAR NEW STATUS FLAG) | n
14 NOT USED D
(A)128702A 15 NOT USED

Figure 3-18,

Table 3-10.

CRU to Module Output Signals

Signals from CRU to Module

Signal

Description

True Data Out

Data Terminal Ready
Request To Send

Clear Write Request

Clear Read Request

Eight bits of data from the CPU. CRU
output bits 0 through 7 form the character
to be sent to the teleprinter. A LDCR
(bits 0 through 7) loads the character into
the interface and initiates transmission
to the teleprinter,

Used with modems.
Used with modems.

CPU command to clear write request flag.
Flag is cleared by a LDICR or SBZ in-
struction that addresses CRU bit 11 of
teleprinter interface,

CPU command to clear read request flag.
Flag is cleared by a LLDICR or SBZ in-
struction that addresses CRU bit 12 of
teleprinter interface,

3-43 ' Digital Systems Division

(o]
Q]}? 943442-9701

Table 3-10, Signals from CRU to Module (Continued)

Signal Description

Clear New Status Flag CPU command to clear new status flag in-
terrupt (Data Set Ready and Data Carrier
Detect). This command is not normally
used with teleprinter except to clear
possible interrupt at power turn on. Flag
is cleared by SB or LDCR instruction that
addresses bit 13 of teleprinter inter-
face.

3.7 DATA MODULE, 16 INPUT/16 OUTPUT

3.7.1 GENERAL

The 16 I/O data module connects low-speed single/multiple bit peripherals to
the 990 Computer.

3.7.2 DESCRIPTION

A data module (figure 3-19) provides 16 inputs and 16 outputs. FEach line
(input or output) can be addressed as a single independent line or as a member
of a group of lines from 2 to 16 total. Each output circuit contains a storage
flip-flop that maintains the output until changed by the 990 Computer. An al-
ternate version of the data module permits 15 normal inputs, 14 normal out-
puts, and 3 interrupt lines for interrupt input, mask, and clear. In addition,
each output contains an open-collector output transistor that may be attached
to an external pull-up resistor and power supply for signal levels up to 30 Vdc
@50 ma.

3.7.3 OPERATION

The operation of the 16 I/O module depends entirely upon what peripheral is
connected to the interface. Output lines may be connected to non-computer

or computer peripherals for control applications and input lines may be used
for data input from these peripherals. The only restriction to the type of
peripheral connected to the 16 I/O module is that the input/output signal levels
must be representative of two discrete signal levels for a logic one or a logic
zero. These levels are mutually exclusive.

3.7.4 CAPABILITIES

The 16 I/O data module may be used to interface low-speed non-computer
peripherals, or slow to medium speed computer peripherals to the 990 Com-
puter.

3-44 Digital Systems Division

943442-9701

128703 (990-674-6~1)

Figure 3-19. 16 I/O Data Module

3.7.5 MODULE SPECIFICATIONS

The input and output specifications are as follows:

16 inputs - Emitter follower transistor inputs at TTL levels.

‘Ov to 1. 0v = Logic "1'", 3,0v to 5.0v = Logic "0"

16 outputs - Transistor collector with optional ¢xternal pull up.
Ov to 0.4v = Logic '"'1", open = Logic '"0"

Optionaallinterrupt - 15 inputs, 1 interrupt input.

14 outputs, 1 interrupt mask and 1 interrupt clear.

Interrupt input will operate on either positive or negative transition
of the input,

3-45 Digital Systems Division

o]
{i@ 943442-9701

3.7.6 INSTALLATION

3.7.6.1 CONNECTION INFORMATION. Connections to the input circuits
are contained in table 3-11., Connection to the output circuits are contained
in table 3-12,

3.7.6.2 POWER REQUIREMENTS. The 16 I/O module requires +5 Vdc
@ 0.5 amp maximum.

3.7.6.3 ADAPTER CARD REQUIREMENTS. The 16 I/O module requires
the card adapter, TI part number 975200-0001.

Table 3-11, 16 INPUT Circuit Connections

Function Mnemonic Pin Number
Bit 0 Input INO P2-M
Bit 1 Input IN1 P2-H
Bit 2 Input IN2 P2-C
Bit 3 Input IN3 P2-Y
Bit 4 Input IN4 P2-U
Bit 5 Input IN5 ’ P2-P
Bit 6 Input ' IN6 P2-K
Bit 7 Input IN7 P2-E
Bit 8 Input IN8 P2-33
Bit 9 Input IN9 P2-29
Bit 10 Input IN10 P2-25
Bit 11 Input IN11 P2-21
Bit 12 Input IN12 P2-17
Bit 13 Input IN13 P2-13
Bit 14 Input IN14 P2-9
Bit 15 Input IN15 P2-5

3-46 Digital Systems Division

¢}
{@ 943442-9701

Table 3-12. 16 OUTPUT Circuit Connections

Function Menmonic Pin Number
Bit 0 Output OuUTo P2-1L
Bit 1 Output OUT1 P2-F
Bit 2 Output ouT2 P2-B
Bit 3 Output QOUT3 P2-X
Bit 4 Output OouUT4 P2-T
Bit 5 Output OuUT5 P2-N
Bit 6 Output OuUTé6 P2-7J
Bit 7 Output ouT? P2-D
Bit 8 Output ouTs8 pP2-32
Bit 9 Output ouT9 P2-28
Bit 10 Output OUTI10 P2-24
Bit 11 Output OUTI11 p2-20
Bit 12 Output ouT12 P2-16
Bit 13 Output OUT13 P2-12
Bit 14 Output OUT14 P2-38
Bit 15 Output OUT15 P2-4

3.8 PROTOTYFE DEVELOPMENT CARDS

As an aid to design of new interface circuit boards for either the TILINE or
CRU interface, two types of blank circuit boards are available for the

Model 990 Computer. Each type of circuit board uses wire-wrap connections
to tie together the logic circuits mounted on them., Printed circuit ground
and VCC planes are supplied on the board,

3.8.1 SINGLE-CONNECTOR DEVELOPMENT CARD

The single-connector development card, part number 217863-0001, (figure
3-20) conforms to the circuit board size specifications for a single-connector
circuit board described in Section I of this manual. The board contains four
rows of seven locations for mounting 14 pin dual-in-line package (DIP) inte-
grated circuits (ICs), four rows of six locations for mounting 14 or 16 pin
ICs, and two rows of four locations for mounting 24 pin IGs, Wire-wrap pins
on the reverse side of the circuit board allow interconnection of the circuits
in any required configuration, In order to gain cable access to the circuit

3-47 Digital Systems Division

943442-9701

Figure 3-20. Single-Connector Development Board

board and to support the center of the board when mounted in the chassis, the
single-connector development board must be used with the small card adapter.

3.8.2 DOUBLE-CONNECTOR DEVELOPMENT CARD

The double-connector development card, part number 974651-0001, (figure
3-21) conforms to the circuit board size specifications for a double-connector
circuit board described in Section I of this manual, The board contains thir-
teen rows of fifteen locations for mounting either 14 or 16 pin ICs, two rows
of ten locations for mounting 24 pin ICs, and ample space for associated dis-
crete components, Other DIP formats on 0,3 or 0.5 inch wide packages can
also be accommodated., Wire-wrap pins on the reverse side of the circuit
board allow interconnection of the circuits in any required configuration.

3-48 Digital Systems Division

043442-9701

Double-Connector Development Board

Figure 3-21.

ivision

tal Systems D

.

igi

D

3-49/3-50

(o]
{@? 943442-9701
SECTION IV

ASSEMBLY LANGUAGE MACHINE INSTRUC TIONS

4.1 GENERAL

This section of the manual contains information about the set of machine in-
structions available with the 990 Computer. These instructions are grouped
according to function in the paragraphs that follow this introduction.

4.1.1 WORD AND BYTE DESCRIPTIONS

A word in the 990 Computer consists of 16 bits. The most significant bit
(MSB) is bit zero of the memory word and the least signii’icant bit (LSB) is
bit 15. The following diagram illustrates a memory wort.

Memory Word :
(MSB) (L.SB)

0 1 2 3 4 S 6 7 8 9 10 11 12113 J14 |15

(Word Boundary)

Word boundaries are assigned to even-numbered addresses in memory. The
even address byte is bits 0 through 7 and the odd address byte is bits 8
through 15. A word cannot begin on an odd byte address. If word instruc-
tions address an odd byte, the word operand is taken from the memory word
that contains the addressed byte. This is the memory address that corre-
sponds to the odd byte address minus one. For example: A memory address
of 102314 is effectively an address of 102216 when used ir a word instruction.

A byte consists of eight bits of memory that may be either bits 0 through 7
or bits 8 through 15 of the memory word. The following diagram illustrates
the byte address concept.
Memory Word .
(MSB) (LSB)(MSB) (LSB)

o 1 2 3 4 5 6 7

8 9 10 11 12113 |14 J15

[}
]
]
|
(Even address byte) (Odd address byte)

Byte instructions may address either byte as necessary. Byte instructions
that address a workspace register operate on the most significant byte (even
address) of the workspace register and the least significant byte (odd address)
is not changed. Since the workspace is also addressable as a memory ad-
dress, the least significant byte may be directly addressed if desired.

4-1 : Digital Systems Division

{@? 943442-9701

CRU instructions may operate on a single bit of a word if necessary. If the
CRU instruction operates on eight or less bits in a word, the byte may be
addressed as either even or odd. If the CRU instruction operates nine or
more bits in a word, the specified address is a word address,

The MSB of the byte or word is the sign bit when the word/byte contains a
value. The remaining bits in the word/byte represent the magnitude of the
value. The seven remaining bits of the byte may represent a number from
-128 to +127. The value of the remaining 15 bits of a word may represent
from -32,768 to +32, 767. Multiply and divide instructions operate on a 16-
bit word as an unsigned magnitude value from 0 to 65,535, If the MSB is
equal to one, the word/byte is a negative value. To determine the magnitude
of that value, invert the individual bits in the word and add a value of one to
the word. This converted value is the magnitude represented by the two's
complement word/byte contents.

4,1.2 MEMORY MAP AND MEMORY ALLOCATION

Refer to Section II for a description of the memory hardware. As previously
described, memory consists of one or two printed circuit cards, which to-
gether may contain from 4096 to 32, 768 words, each having 16 bits and a
parity bit. A group of 128 bytes is dedicated for use by the priority interrupts
and the software implemented extended operations, as shown in figure 4-1.
Another group of words in memory is dedicated for use by the CPU as TILINE
addresses. (Refer to Section II for a description of the TILINE address gen-
eration.) The memory map (figure 4-1) shows the locations of interrupt
vectors, extended operation vectors, and TILINE addresses.

4.1.3 HARDWARE REGISTERS

There are three dedicated hardware registers in the 990 Computer that de-
termine the programming environment. These registers are the workspace
pointer (WP), the program counter (PC), and the status register (ST).

The contents of the WP register locate the 16-word area of memory that is
the active workspace, and each word in the workspace is called a workspace
register. A program may use more than one workspace. The WP is a 15-
bit register whose contents represent the 16-bit (unsigned integer) word ad-
dress of the first word of the workspace, with the right-most bit (the least
significant bit) truncated. The PC contains the address of the next instruc-
tion to be executed. Instructions always reside on word boundaries. The
PC is changed to the address of the next instruction during the execution of
the present instruction so that the PC contains the address of the next instruc-
tion at all times. The PC is a 15-bit register that represents a 16-bit (un-
signed integer) word address, with the right-most bit truncated. '

4-2 Digital Systems Division

o}

/f 943442-9701

AREA
DEFINITION

INTERNAL INTERRUPTS
(0 THRU 5)

EXTERNAL INTERRUPTS
(6 THRU 15)

SOFTWARE IMPLEMENTED
XOP TRAP L.OCATIONS

GENERAL MEMORY FOR
PROGRAM AND DATA

FRONT PANEL /CONSOLE
(B)128612A DATA REGISTER

Figure 4-1,

MEMORY TILINE
ADDRESS MEMORY CONTENT ADDRESS
0000 1¢ WP LEVEL 0 INTERRUPT 000004¢
0002¢ PC LEVEL 0 INTERRUPT 000014¢g
0004 16 WP LEVEL 1 INTERRUPT 00002, ¢
000'516 PC LEVEL { INTERRUPT 00003!6
000816 WP LEVEL 2 INTERRUPT 0000416
0004 PC LEVEL 2 INTERRUPT 00005 ¢
000C; ¢ WP LEVEL 3 INTERRUPT 00006

A L]
L]
~ : 25
> :
L]
L
003Cg WP LEVEL 15 INTERRUPT 0001E
003E;g PC LEVEL 15 INTERRUPT 0001F ;¢
004016 WP XOP 0 00020, ¢
0042IG PC XOP 0 00021 ¢
’J .
L]
./ . ~N
nr_, . "’u
.
007A ¢ PC XOP 14 0003D ¢
007C g WP XOP 15 0003E 1¢
007E, ¢ PC XOP 15 0003F y¢g
0080.|fj GENERAL MEMORY AREA 00040 ¢
la
ﬁ;': ~
F7FEg AS REQUIRED 07B|=F16
F800¢g RESERVED FFCO00¢g
F802¢ RESERVED _ FFCO14g
A, RESERVED FOR DEVICE CONTROLLERS L
~nY o
~ I
. M
L4 —
FF'FA16 RESERVED FFFFDg
FFFCyg RESERVED FFFFE g
FFFE;q RESERVED FFFFF1g

Memory Map and Assignments

4-3

Digital Systems Division

o]
{i@? 943442-9701

The ST register‘is a 16-bit register that contains three parts:
° Bits zero through six - Status
. Bits seven through eleven - Reserved
. Bits twelve through fifteen - Interrupt mask

During and immediately after instruction execution, the status of execution
is determined. This status is maintained in the first seven bits of the status
register.

4,1.4 WORKSPACE REGISTERS

The Model 990 Computer uses a workspace that consists of 16 memory words
called workspace registers. The address contained in the workspace pointer
(WP) register is the address of a memory word addressed as workspace reg-
ister 0. Workspace registers 1 through 15 are the 15 memory words follow-
ing the memory word addressed as workspace register 0. The Branch and
Load Workspace Pointer instruction, the Return from Interrupt Subroutine
instructions, and the Load Workspace Pointer Immediate instruction alter
the contents of the WP register. Occurrence of an interrupt and initiation of
a software-implemented extended operation also alter the contents of the WP
register. This results in activation of a new workspace, which is referred
to as a context switch. The active workspace is addressed by those instruc-
tions that specify workspace registers.

Workspace registers may contain data or addresses. They are used as
operand registers, accumulators, address registers, or index registers.
Several workspace registers are used for special purposes by certain in-
structions. Figure 4-2 shows a workspace map, and table 4-1 lists the
utilized workspace registers, with appropriate instruction mnemonics that
alter the workspace. The indicated workspace utilization is only true for
the instruction listed, When that instruction is used, the contents of the
workspace must be appropriate for the application. When that instruction
is not used, the workspace may be used for any other application shown.
4.1.5 MACHINE INSTRUCTION DESCRIPTIONS ‘
Each description contains the following information about the instruction:

. Instruction mnemonic with the mnemonic definition

. Instruction op code

. Instruction word format as stored in memory

. Instruction word addressing mode

° Status bits affected by the execution of the instruction

° Execution results of the machine instruction

4-4 Digital Systems Division

943442-9701

_.__r_
T
DATA
OR
ADDRESSES
INDEX

(A)128613

CAPABILITY

] |

NOTE: THE WP REGISTER CONTAINS THE ADDRESS OF WORKS5PACE ZERO,
REFER TO TABLIZ 4-1 FORSPECIAL-PURPOSE UTILIZATION. WORKSPACE

Figure 4-2.

REGISTER ZERO MAY NOT BE USED FOR INDEXING,

Workspace Map

Table 4-1. Workspace Register Utilization

Workspace

Instruction Mnemonic

Register Operation Code Purpose
0 SLLA, SRA, SRC, SRL Shift count (optional)
11 BL Return address
11 XOP (Software) Effective address
12 SBO, SBZ, TB, LDCR, STCR CRU base address
13 BLWP, RTWP, XOP (Software) WP register contents
14 BLWP, RTWP, XOP (Software) Return address
15 BLWP, RTWP, XOP (Software) ST register contents

Execution of an interrupt uses workspace repisters
13, 14, and 15 for the same purposes as a BLWP
instruction. (Refer to the remainder of Section IV
for the instructions that utilize WR.)

NOTE

Digital Systems Division

(IT%\[_]@ 943442-9701

° Application notes that include appropriate examples and the results
of execution of the example

. Assembly language format of the machine instruction

The status bits affected by the execution of an instruction refer to the first
seven bits of the status register, bits zero through six. The contents of the
status register are arranged as follows:

0O ! 2 3 4 S5 6 7 8 9 10 11 12 13 14 15
1 //////////

L> JA> |EQ] C JOV]|OP Xﬁ%reserved// interrupt mask
' LLLLLLLLL

If the status bit is set by the instruction execution, the bit is equal to a logic
one. If the status bit is reset, it'is equal to a logic zero. The definitions of
the status bits are as follows:

. L> - Logical greater than

° A> - Arithmetic greater than

° EQ - Equal

° C - Carry

° OV - Overflow

° OP - Odd parity

° X - XOP (Extended operation, software-implemented)

Note that the OP status bit sets/resets for byte instructions only. OP sets
when the bits in the byte affected by the instruction establish odd parity. Odd
parity is established when the sum of the logic one bits is an odd number.
The combinations of bits that establish odd or even parity are as follows:

Byte Contents OP Status Bit

00000001 (Any of the 8 positions) ‘ 1 |
00000011 (Any 2 of the 8 positions) 0
00000111 (Any 3 of the 8 positions) 1
00001111 (Any 4 of the 8 positions) 0
00011111 (Any 5 of the 8 positions) 1
00 111111 (Any 6 of the 8 positions) 0
01111111 (Any 7 of the 8 positions) 1
11111111 (A118 positions) 0

4-6 Digital Systems Division

Q]@ 943442-9701

The execution results of the various instructions are presented with the con-
vention shown in table 4-2. Refer to this table to determine what occurs
during instruction execution.

Table 4-2, Assembly Language Format and
Execution Result Conventions

Symbol Definition Description of Use

[] Brackets Indicates that the item enclosed may be
used at the option of the programmer.

<> Angle Brackets |Indicates that the item enclosed is to be
supplied by the user.

lower case | - Indicates the location of the item supplied
alphabetic by the user.
characters |

¥ Blank Indicates the only area within the assembly
language statement where a blank may be
inserted. Furthermore, when one ¥ is
shown in the general formzat, at least one
blank (or other terminating character)
must be included in the statement.

ga General ad- Indicates that the user must supply a gen-
dress source eral address for this operand. Refer to
paragraph 4. 1.6.

gay General Indicates that the user must supply a gen-
address eral address for the destination operand.
Was/d Workspace Indicates that the user must supply an in-
register put that represents a workspace register
address from 0 through 15. '
iop Immediate Indicates that the user must supply an in-
operand put for the immediate operand.
disp Displacement Indicates that the user must supply a dis-
placement* value in the range of -128 to
+127.
cnt Count Indicates that the bit count supplied by the

user must be in the range of -128 to +127.

scnt Shift Count Indicates that the user supplied shift count
must be in the range of 0:to +15.

*For jump instructions, the displacement is in the form oi a byte address
that occurs within the range limits relative to the present location +2.

4-7 Digital Systems Division

o]
{@? 943442-9701

Table 4-2. Assembly Language Format and Execution
Result Conventions (Continued)

Symbol Definition Description of Use

Replaces Indicates the replacement of an operand by
the results of the operation.

() Contents of Indicates that this represents a value con-
tained in a memory word/byte.

\ \ Absolute value |Indicates that the value within the two
vertical lines is the absolute value oper-
and.

The assembly language formats of the various machine instructions are pre-
sented with the conventions shown in table 4-2. Refer to this table to deter-
mine what is required to code the instructions for input to the assembler.

When reading the application examples (where provided), pay particular at-
tention to the methods of addressing and operand definition. These examples
will provide the user with additional information about the actual methods
involved in coding in assembly language.

Since the instructions are grouped according to function, the formats of the
instructions as they appear in memory are shown in the following paragraphs.
Each instruction contains a reference, by format type, to one of the para-
graphs titled Format I through Format IX,

4.,1.6 FORMAT I INSTRUCTIONS

Format I instructions are two address instructions in which either address
may appear in one of five addressing modes. These instructions may operate
on bytes or words, and the available operations include arithmetic and bit
manipulation. The format of these instructions is as follows:

4] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Op Code | B Tq D Ts S

Where
Op Code - Indicates the bits defining the operation code

B - Byte indicator when equal to one and word indicator when
equal to zero

Td - Addressing mode of the destination operand

4-8 Digital Systems Division

{@ 943442-9701

D - Workspace register of the destination operand
TS - Addressing mode of the source operand
S - Workspace register of the source operand

The five addressing modes of the operands are:

T Field Description
00 Workspace register
01 Workspace register indirect
10 Indexed memory
10 Symbolic memory
11 Workspace register indirect auto-increment

A workspace register address is written as a term having a value in the range
of 0 to 15, An indirect workspace register address is written as a term pre-
ceded by an asterisk (*). A symbolic memory address is written as an ex-
pression preceded by an at sign (@). An indexed memory address is written
as an expression preceded by an at sign (@) and followed by a term enclosed
in parentheses. The workspace register specified by the term in parenthe-
ses is the index register, Workspace register 0 may not be specified as an
index register., A workspace register autoincrement addréss is written as a
term preceded by an asterisk (*) and followed by a plus sign (+). Refer to
Appendix H for definitions of term and expression, The following examples
show the various methods of addressing using a MOV (move word) machine
instruction:

MOV 4,8 (workspace register)
MOV *2,%7 (workspace register indirect)
MOV @TABLE,@LIST (symbolic memory)
MOV @TABLE(3),@LIST(4) (indexed memory)
MOV *2+,*7+ (workspace register indirect autoincrement)
In the workspace register mode, the contents of thé workspace register spec-

ified in either the D or S operand is the destination or source operand, re-
spectively. This address may be specified by a value from zero to fifteen.

NOTE

When byte operations are performed in the work-
space register mode, the left-most byte (bits 0-7)
is the operand and the right-most byte (bits 8+15)
is unchanged.

4-9 Digital Systems Division

{_@@ 943442-9701

In the indirect workspace register mode, the contents of the workspace reg-
ister specified in the D or S field is a memory address for the destination or
source operand respectively,

In the indexed memory addressing modes, the specified workspace register
in the D or S field is used as an index register. An additional word is re-
quired for each operand in the indexed memory or symbolic memory address-
ing modes. When the indexed mode is required for either operand (one
only), the instruction requires two words in memory, and the contents of the
second word are added to the workspace register contents to obtain a mem-
ory address. When the D or S field contains zero, the contents of the sec-
ond word are used without modification as a memory address, The contents
of the specified memory address are the operand. When the indexed mode is
required for both operands, the instruction occupies three words of memory.
The second word is used with the workspace register specified in the S field
and the contents of the third word are used with the workspace register
specified in the D field. When the address is used as a symbolic memory
address, no index is specified and the contents of the symbolic memory ad-
dress are the operand,

The indirect workspace register auto-increment mode is similar to the in-
direct workspace register mode in that the workspace register contains the
operand address, After the operand has been accessed, the workspace reg-
ister is incremented and the incremented value is placed in the workspace
register. The workspace register increment is two when the B field contains
zero (word operands) or one when the B field contains one (byte operand).

4,1.7 FORMAT II INSTRUCTIONS

Format II instructions derive an address from a signed displacement that is
algebraically added to the contents of the program counter (jump instructions)
or to the contents of workspace register 12, bits 3 - 14 (CRU instructions).
The format of the instruction word for Format II instructions is:

] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Op Code Displacement

Where
Op Code - Indicates the bits defining the operation code
Displacement - Defines the signed displacement value

The signed displacement is an 8-bit, two's complement value representing
words in jump instructions and representing bits for bit instructions. This
set of eight bits provides a range of -128 to +127. This range is relative to
the program counter for jump instructions and relative to the Communica-
tion Register Unit (CRU) base address in workspace register 12 for CRU bit
instructions,

4-10 Digital Systems Division

Q%@ 943442-9701

4,1.8 FORMAT III INSTRUCTIONS

Format III instructions perform logical operations on twa operands. The
format of the instruction word for Format III instructions is as follows:

(] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Op Code - D Tg S

Where
Op Code - Indicates the bits defining the operation code
D - Workspace register of the destination operand
TS - Addressing mode of the source operand
S - Workspace register of the source operand

The five addressing modes defined for Format I instructions are permitted
for the source operand of this format. The workspace register mode of ad-
dressing is the only mode permitted for the destination operand. When the
auto-increment mode is used for the source operand, the increment value is
two.

4,1.9 FORMAT IV INSTRUCTIONS

Format IV instructions transfer data between memory and the Communica-
tion Register Unit (CRU). One to sixteen bits may be transferred by these
instructions. When fewer than nine bits are specified (1--8), the memory
address of the source operand is effectively a byte address. When more
than eight bits are specified (9-16, a zero specifies 16), the memory address
is effectively a word address. Bits three through fourteen of workspace reg-
ister 12 contain the CRU base address. The format of the instruction word
for a Format IV instruction is as follows:

0 1 2 3 4 5 6 7 8 9 fo 11 12 13 14 15
Op Code | C Ts S
Where
Op Code - Indicates the bits defining the operation code
C - Indicates the bits defining the bit count
TS - Addressing mode of the source operand
S - Workspace register that contains the source operand

4-11 Digital Systems Division

o
%@ 943442-9701

The C field contains the number of bits to be transferred, specified by a
value from 0 to 15. The value 0 specifies 16 bits. The five addressing
modes defined for Format I instructions apply to the source operand. The
value in the C field determines whether the source operand is a byte or a
word. When the C field contains 1 through 8, the source address is a byte
address and the workspace register increment for the indirect workspace
register auto-increment mode is one. When the C field contains 9 through
15, or 0, the source address is a word address and the workspace register
increment is two. The source operand for Format IV instructions is the
memory operand. It is called the source operand for uniformity, but is the
destination of the Store Communication Register operation.

4.1.10 FORMAT V INSTRUCTIONS

Format V instructions perform shifting operations on the contents of a work-
space register. The format of the instruction word for Format V instruc-
tions is as follows:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Op Code C w

Where
Op Code - Indicates the bits defining the operation code
C - Indicates the bits defining the shift count
W - Indicates the bits defining the workspace register to be shifted

The workspace register may only be addressed in the workspace register
mode. The C field contains the shift count, which must be an integer value
from 0 to 15. When the C field contains zero, the shift count is in bits 12
through 15 of workspace register zero. When the C field contains zero and
bits 12 through 15 of workspace register zero are equal to zero, the shift
count is 16,

4.1.11 FORMAT VI INSTR UCTIONS

Format VI instructions are single address instructions, where the address
may be in any of the five addressing modes specified for Format I instruc-
tions. The format of the instruction word for Format VI instructions is as
follows:

4-12 Digital Systems Division

{@5 943442-9701

Where
Op Code - Indicates the bits defining the operations code

TS - Indicates the bits defining the addressing mode of the source
operand

S - Indicates the bits defining the source operand workspace
register

The five addressing modes defined for Format I instructions apply to the
source operand of Format VI instructions. The workspace register incre-
ment for the auto-increment mode is two. This single operand is called the
source operand for uniformity and may also be the destination operand for
Format VI instructions.

4,1,12 FORMAT VII INSTRUCTIONS

Format VII instructions are control instructions that require no operands.
The format of the instruction word for Format VII instructions is as follows:

o] 1 2 3 A S 6 7 8 9 10 11 127 13 14 15

Op Code N

Where
Op Code - Indicates the bits defining the operation code

N - Indicates an unused field of the instruction word
(Programmers should set this field to zero)

4,1.13 FORMAT VIII INSTRUCTIONS

Format VIII instructions are immediate instructions that may use the word
of memory immediately following the instruction word as an operand. On
instructions that require another operand, the operand is specified as a
workspace register. The format of the instruction word for Format VIII
instructions is as follows:

(] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Op Code N w

Where
Op Code - Indicates the bits defining the operation code

N - Unused bit of the instruction word, may be either 0 or 1
(Programmers should set this bit to zero)
w - Indicates the bits defining the workspace register for the

second operand

4.13 Digital Systems Division

[e]
q_‘_@@ 943442-9701

The immediate operand is the contents of the word immediately following the
instruction in memory. When the workspace register operand is not re-
quired by the instruction, bits 12 through 15 of the instruction word may con-
tain any value. The store immediate instructions (store status, store work-
space pointer) do not use the immediate operand. '

4.1.14 FORMAT IX INSTRUCTIONS

Format IX instructions are the extended instructions; extended operation,
multiply, divide. The extended operation instruction is a means of extend-
ing the instruction set to include additional instructions that may be either
software or hardware implemented, The multiply and divide instructions use
the same instruction word format. The source operand may be addressed in
any of the five addressing modes defined for Format I instructions, and the
destination operand is an adjacent pair of workspace registers. The format
of Format IX instructions is as follows:

] 1 2 3 4 5 6 7 8 9 10 11 12 13 .14 15

"Op Code D Tg S

Where
Op Code - Indicates the bits defining the operation code
D - The workspace register address of two adjacent workspace
' registers for the destination operand of multiply and divide

instructions or specifies a predefined operation for the ex-
tended operation instruction

TvS - The addressing mode of the source operand

S - The workspace register of the source operand

The five addressing modes defined for Format I instructions apply to the
source operand of Format IX instructions. The workspace register incre-
ment for the auto-increment function is two. For multiply and divide in-
structions, when the workspace register of the D field is specified as 15,
the word in memory immediately following workspace register 15 is the
second word of the destination operand.

4,1.15 DETERMINING OP CODES

To determine the op code of an instruction, arbitrarily divide the entire
memory word into four bit areas as follows:

0 1 2 3 4 5 6 7.8 9 10 11 12 13 14 15

AREA 1 AREA 2 AREA 3 AREA 4

(A)129507

4-14 Digital Systems Division

/]

943442-9701

Fill in any bit position not indicated as either a logic zero or logic one with
a logic zero (trailing zeros). Convert each four bit area to a hexadecimal
value. The value obtained is the instruction op code. For example: The A
(Add words) machine instruction has the following specified bits for bit posi-

tions 0 through 3:
1010

Add trailing zeros to fill in all 16 bit positions as follows:
10100O0O0O0OO0OOOO0OOOOO

Divide this into four bit areas as foilows:

1010000000O0O0O0O0O0DO
/ / /

Determine the hexadecimal value for each area to determine the op code for

the instruction as follows:

1010000O0OO0OO0OO0OO0OO0OOOO

/ / /
A 0 0 0 -- Op Code

4,2 ARITHMETIC INSTRUCTIONS

Arithmetic instructions included are:

Ex_s_‘gructibn Mnemonic Faragraph
Add Words A 4.2.1
Add Bytes ~ AB 4,2,2
Absolute Value ABS 4,2.3
Add Immediate Al 4.2.4
Decrement DEC 4.2.5
Decrement By Two DECT 4.2.6
Divide DIV 4.2.7
Increment INC - 4,2.8
Increment By Two INCT 4.2.9
Multiply MPY 4.2.10
Negate | NEG 4.2.11
Subtract Words S 4.2,12
Subtract Bytes SB 4,2.13

Digital Systems Division

@ 943442-9701

4.2,1 A (ADD WORDS)
Op Code: A000
Format:

(o] 1 2 3 4 .5 6 7 8 9 10 11 12 13 14 13

1ol o] T4 D T

Definition: Add a copy of the source operand (word) to a copy of the destina-
tion operand (word) and replace the destination operand with the sum. The
AU compares the sum to zero and sets/resets the status bits to indicate the
result of the comparison. When there is a carry out of bit zero, the carry
status bit sets, When there is an overflow (the sum cannot be represented
as a 16-bit, two's complement value), the overflow status bit sets.

Addressing Mode: Format I instructions

Status Affected: Logical greater than, arithmetic greater than, equal, carry,
and overflow.

Execution results: (gas) + (gad) — (gad)

Application Notes: A is used to add signed integer words. For example, if
the address labeled TABLE contains 312414 and workspace register 5 con-
tains 8;¢, then the instruction

A 5,@TABLE

results in the contents of TABLE changing to 312Cj¢ and the contents of
workspace register 5 not changing. The logical and arithmetic greater than
status bits set and the equal, carry, and overflow status bits reset.

Assembly language format: [<label>]¥ A B < ga_>,<ga,> [< comment >]

4.2.2 AB (ADD BYTES)
Op Code: BO000O

Format:

(o] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 18

1lofi]l1] T4 D T

Definition: Add a copy of the source operand (byte) to the destination oper-
and (byte), and replace the destination operand with the 'sum. When the
destination operand is addressed in the workspace register mode, the right-
most byte (bits 8-15) of the addressed workspace register is unchanged. The

4-16 Digital Systems Division

. .
{@Q 943442-9701 A, AB, ABS

AU compares the sum to zero and sets/resets the status bits to indicate the
results of the comparison. When there is a carry out of the most significant
bit of the byte, the carry status bit sets. When there is an overflow (the sum
cannot be represented within a byte as an 8-bit two's comiplement value), the
overflow status bit sets, The odd parity bit sets when the bits in the sum
(destination operand) establish odd parity and resets when the bits in the sum
establish even parity.

Addressing mode: Format I instructions

Status affected: Logical greater than, arithmetic greater than, equal, carry,
overflow, and odd parity.

Execution results: (gas) + (gad)—>(gad)

Application notes: AB is used to add signed integer bytes. For example, if
the contents of workspace register 3 is 740014, the contents of memory loca-
tion 21221¢ is F3187¢, and the contents of workspace register 2 is 21237¢,
then the instruction

AB 3, %2+

changes the contents of memory location 21224 to F38Cy(and the contents
of workspace register 2 to 21241¢, while the contents of workspace register
3 remain unchanged. The logical greater than, overflow. and odd parity
status bits set, while the arithmetic greater than, equal, and carry status
bits reset.

Assembly language formadt: [< label >] b AB B < ga_>,< ga, > [16< comment >]

4.2.3 ABS (ABSOLUTE VALUE)

Op code: 0740

Format:

o 1 =2 3 4 5 6 7 B8 9 10 11 12 13 14 15
ojJojojojojlrjpirjyl1y]yoj}l1 Tg S

Definition: Compute the absolute value of the source operand and replace the
source operand with the result, The absolute value is thz two's complement
of the source operand when the sign bit (bit zero) is equal to one. When the
sign bit is equal to zero, the source operand is unchanged. The AU com-
pares the original source operand to zero and sets/resets the status bits to
indicate the results of the comparison.

Addressing mode: Format VI instructions

Status affected: Logical greater than, arithmetic greater than, and equal.

4-17 Digital Systems Division

(o]
% 943442-9701

Execution results: l(gas)l—“(gas)

Application notes: Use the ABS instruction to take the absolute value of an
operand. For example, if the third word in array LIST contains the value
FF3C1¢ and workspace register seven contains the value 44, then the in-
struction

ABS @LIST(7)

changes the contents of the third word in array LIST to 00C4;¢. The logical
greater than status bit sets while the arithmetic greater than and equal status
bits reset, Refer to Section V for additional application notes.

Assembly language format: [<label >] B ABS ¥ < ga_> [¥ < comment >]

4.2.4 Al (ADD IMMEDIATE)

Op code: 0240

Format:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

oljojojojojojrjojojojl|N w

Definition: Add the immediate operand, the contents of the word following
the instruction word in memory, to the contents of the workspace register
specified in the W field and replace the contents of the workspace register
with the results., The AU compares the sum to zero and sets/resets the
status bits to indicate the result of the comparison. When there is a carry
out of bit zero, the carry status bit sets. When there is an overflow (the
result cannot be represented within a word as a two's complement value), the
overflow status bit sets,

Addressing mode: Format VIII instructions

Status affected: Logical greater than, arithmetic greater than, equal, carry,
and overflow,

Execution results: (wa) + iop—(wa)

Application notes: Use the Al instruction to add an immediate vaiue to the
contents of a workspace register. For example, if workspace register 6
contains a zero, then the instruction 2

Al 6,>C

changes the contents of workspace register 6 to 000C1¢4. The logical greater
than and arithmetic greater than status bits are set while the equal, carry,
and overflow status bits reset.

Assembly language format: [< label>] B AI Y < wa >,< iop> [B < comment >]

4-18 Digital Systems Division

[e]
KJ—@ 943442-9701 AI, DEC, DECT

4.2.5 DEC (DECREMENT)

Op code: 0600

Format:

0 1 2 3 4 5 6 7 8 9 10 t1 12 13 14 15

0 Ojo0ojJo0¢to 1 1J]ojoflo Tg S

Definition: Subtract a value of one from the source operand and replace the
source operand with the result. The AU compares the rasult to zero and
sets/resets the status bits to indicate the result of the comparison. When
there is a carry out of bit zero, the carry status bit sets. When there is an
overflow (the difference cannot be represented in a word as a two's comple-
ment value), the overflow status bit sets.

Addressing mode: Format VI instructions

Execution results: (gas) - 1~—*(gas)

Status affected: Logical greater than, arithmetic greater than, equal, carry,
and overflow,

Application notes: Use the DEC instruction to subtract a value of one from
any addressable operand. The DEC instruction is also useful in counting and
indexing byte arrays. For example, if COUNT contains a2 value of 114, then

DEC @COUNT

results in a value of zero in location COUNT and sets the equal and carry
status bits while reseting the logical greater than, arithroetic greater than,
and overflow status bits. Refer to Section V for additional application notes,

Assembly language format: [<1abe1>] B DEC B < ga_ > [¥ <comment >]

4,2,6 DECT (DECREMENT BY TWO)

Op code: 0640

Format:

(o] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0]0O}JO0]}O 0 111 01011 Tg S

Definition: Subtract two from the source operand and replace the source
operand with the result. The AU compares the result to wero and sets/resets
the status bits to indicate the result of the comparison. When there is a
carry out of bit zero, the carry status bit sets. When there is an overflow
(the result cannot be represented in a word as a two's complement value),

the overflow status bit sets.

4-19 Digital Systems Division

o]
{i@? 943442-9701

Addressing mode: Format VI instructions

Status affected: ILogical greater than, arithmetic greater than, equal, carry,
and overflow,

Execution results: (gas) - 2——»(gas)

Application notes: The DECT instruction is useful in counting and indexing
word arrays. Also, use the DECT instruction to subtract a value of two from
any addressable operand. For example, if workspace register PRT (PRT
equals 3) contains a value of 2C107¢, then the instruction

DECT PRT

changes the contents of workspace register 3 to 2C0E;,. The logical greater
than, arithmetic greater than and carry status bits set while the equal and
overflow status bits reset. Refer to Section V for additional application notes,

Assembly language format: [<label>] ¥ DECT ¥ < ga_> [¥ < comment >]

4.2.7 DIV (DIVIDE)

Op code: 3C00

Format:

(4] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ofol1]1]1]1 D T s

Definition: Divide the destination operand (a consecutive 2-word area of
workspace) by the source operand (one word), using integer rules, and place
the quotient in the first of the 2-word destination operand area and place the
remainder in the second word of that same area. This division is graphically
represented as follows:

Destination operand workspace registers

Workspace register (n) Workspace register (n+l)
o 1s}o 15

K R

Source operand

Addressable Memory

o 15

4-20 Digital Systems Division

(o]
{@@ 943442-9701 DIV, INC

The first of the destination operand workspace registers, shown above, is
addressed by the contents of the D field. The dividend is located right-
justified in this 2-word area. When the division is complete, the quotient
(result) is placed in the first workspace register of the destination operand
(represented by n above) and the remainder is placed in the second word of
the destination operand (represented by nt+l above).

When the source operand is greater than the first word of the destination
operand, normal division occurs. If the source operand is less than or equal
to the first word of the destination operand, normal division will result in a
quotient that cannot be represented in a 16-bit word. In this case, the AU
sets the overflow status bit, leaves the destination operand unchanged, and
aborts the division operation,

If the destination operand is specified as workspace register 15, the first
word of the destination operand is workspace register 15 and the second word
of the destination operand is the word in memory immediately following the
workspace area,

Addressing modes: Format IX instructions

Status affected: Overflow

Execution results: ((wa(n and ntl)g) + (gas) ——(wa(n)q) quotient
——(wa(nt1l)y remainder

Application notes: Use the DIV instruction to perform a rnagnitude division.
For example, if workspace register 2 contains a zero and workspace register
3 contains 000C1‘6’ and the contents of LOC is 00057¢, then the instruction

DIV @LOC, 2

results in a 000214 in workspace register 2 and a 000216 in workspace regis-
ter 3. The overflow status bit resets. If workspace register 2 contained the
value 0005;¢, the magnitude contained in the destination operand would equal
327, 692 and division by the value 5 would result in a quotient of 65,538, which
cannot be represented in a 16-bit word. This attempted division would set
the overflow status bit and the AU would abort the operation.

Assembly language format:
[< label>] ¥ DIV lz$<gas >, <wa > [B< comment>]

4,2,8 INC (INCREMENT BY ONE)

Op code: 0580

Format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

01]0 0Jojojl 0 1 1 0 Tg S

4-21 Digital Systems Division

(o]
§£E@?} 943442-9701

Definition: Add one to the source operand and replace the source operand
with the result. The AU compares the sum to zero and sets/resets the status
bits to indicate the result of the comparison. When there is a carry out of
bit zero, the carry status bit sets. When there is an overflow (the sum
cannot be represented in a 16-bit, two's complement value), the overflow
status bit sets,

Addressihg mode: Format VI instructions

Status affected: Logical greater than, arithmetic greater than, equal, carry,
and overflow.

Execution results: (ga) + 1-——-(ga)

Application notes: Use the INC instruction to count and index byte arrays,
add a value of one to an addressable memory location, or occasionally set
flags. For example, if COUNT contains a zero, the instruction

INC @COUNT

places a 00014 in COUNT and sets the logical greater than and arithmetic
greater than status bits, while the equal, carry, and overflow status bits
reset. Refer to Section V for additional application notes,

Assembly language format: [<label>] ¥ INC ¥ < ga_> [¥ < comment >]

4.2.9 INCT (INCREMENT BY TWO)
Op code: 05CO

Format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0JojojJotol]i1 0 1 1 1 Tg S

Definition: Add a value of two to the source operand and replace the source
operand with the sum, The AU compares the sum to zero and sets/resets

the status bits to indicate the result of the comparison. When there is a
carry out of bit zero, the carry status bit sets. When there is an overflow,
(the sum cannot be represented in a 16-bit word as a two's complement value),
the overflow status bit sets.

Addressing mode: Format VI instructions

Status affected: Logical greater than, arithmetic greater than, equal, carry,
and overflow.

4-22 Digital Systems Division

[e]
{@ 943442-9701 INCT, MPY

Execution results: (gas) + 2———>(gas)

Application notes: Use the INCT instruction to count and index word arrays,
and add the value of two to an addressable memory location. For example,
if workspace register 5 contains the address of the fifteenth word of array
FIX located at address 2100 the instruction

16’
INCT 5

changes workspace register 5 to 21024, which points to the sixteenth word
of the array. The logical greater than and arithmetic greater than status
bits are set while the equal, carry, and overflow status bits are reset.
Refer to Section V for additional application notes,

Assembly language format: [< 1abe1>] B INCT B < ga_> [le <comment >]

4,2.10 MPY (MULTIPLY)

Op code: 3800

Format:

Definition: Multiply the destination operand (a consecutive 2-word area in

workspace) by the source operand and replace the destination operand with

the result. The multiplication operation may be graphically represented as
follows:

Destination operand workspace registers

Workspace register (n) Workspace register (n+1)
o 1s]o 15

‘

Source operand

Addressable memory

o 15

The first word of the destination operand shown above is addressed by the
contents of the D field., The multiplicand (unsighed magnitude value of 16
bits) is located right-justified in the workspace register addressed by the D
field (represented by workspace n above). The 16-bit, unsigned multiplier

4-23 Digital Systems Division

O
([i@? 943442-9701

is located in the source operand, When the multiplication operation is com-
plete, the product appears right-justified in the entire 2-word area addressed
by the D field as a 32-bit unsigned magnitude value. The maximum value of

either input operand is FFFFj¢ and the maximum value of the unsigned pro-
duct is (168 - 2(164) + 1) or FFFE 000174.

If the destination operand is specified as workspace register 15, the first
word of the destination operand is workspace register 15 and the second word
of the destination operand is the memory word immediately following the
workspace memory area.

Addressing modes: Format IX instructions

Status affected: None

Execution results: (wa(n),) * (gas)—»(wa(n and n+1l)

d d)

Application notes: Use the MPY instruction to perform a magnitude multipli-
cation. For example, if workspace register 5 contains 0012,¢, workspace
register 6 contains 1B31;,, and memory location NEW contains 00054, then
the instruction

MPY @NEW, 5

changes the contents of workspace register 5 to 00004 and workspace regis-
ter 6 to 005A14. The source operand is unchanged. The status register
is not affected by this instruction.

Assembly language format:
[< label>] ¥ MPY 17$<gas> y<wa > [< comment >]

4.2.11 NEG (NEGATE)

Op code: 0500

Format:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ojojfojojojlrjojirjojo] Tg S

Definition: Replace the source operand with the two's complement of the
source operand. The AU determines the two's complement value by invert-
ing all bits of the source operand and adding one to the resulting word. The
AU then compares the result to zero and sets/resets the status bits to indi-
cate the result of the comparison.

Addressing mode: Format VI instructions

Status affected: Logical greater than, arithmetic greater than, and equal.

Execution results: -(gas) ———'(gas)

4-24 Digital Systems Division

o]
Q]@ 943442-9701 NEG, S

Application notes: Use the NEG instruction to make the contents of an ad-
dressable memory location its additive inverse. For example, if workspace
register 5 contains the value A3421¢, then the instruction

NEG 5

changes the contents of workspace register 5 to SCBE;jy. The logical greater
than and arithmetic greater than status bits set while the equal status bit re-
sets.

Assembly language format: [<label>] B NEG ¥ < ga_> [# < comment >]

4.2,12 S (SUBTRACT)

Op code: 6000

Format:

(o) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ol1]1jo] T4 D Ts S

Definition: Subtract a copy of the source operand from the destination oper-
and and place the difference in the destination operand. The AU compares
the difference to zero and sets/resets the status bits to indicate the result
of the comparison. When there is a carry out of bit zern, the carry status
bit sets. When there is an overflow (the difference cannot be represented
within a word as a two's complement value), the overflow status bit sets.
The source operand remains unchanged.

Addressing modes: Format I instructions

Status affected: Logical greater than, arithmetic greater than, equal, carry,
and overflow.

Execution results: (gad) - (gas)—*(gad)

Application notes: Use the S instruction to subtract signed integer values.
For example, if memory location OLDVAL contains a value of 1225, and
memory location NEWVAL contains a value of 82234, then the instruction

S @OLDVAL, @NEWVAL

results in the contents of NEWVAL changing to 6FFE16.- The logical greater
than, arithmetic greater than, carry, and overflow statiis bits set while the
equal status bit resets.

Assembly language format: [<label>] B S# < ga_>,< ga > [$ <comment >]

4.25 Digital Systems Division

q{i@?} 943442-9701

4.2.13 SB (SUBTRACT BYTE)

Op code: 7000

Format:

[s) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

o1 |1]1] T4 D T, s

Definition: Subtract a copy of the source operand (byte) from the destination
operand (byte) and replace the destination operand byte with the difference.
When the destination operand byte is addressed in the workspace register
mode, the right-most byte (bits 8-15) in the workspace register is unchanged.
The AU compares the result byte to zero and sets/resets the status bits ac-
cordingly. When there is a carry out of the most significant bit of the byte,
the carry status bit sets. When there is an overflow (the difference cannot
be represented as an 8-bit, two's complement value in a byte), the overflow
status bit sets. If the result byte establishes odd parity (an odd number of
logic one bits in the byte), the odd parity status bit sets.

Addressing modes: Format I instructions

Status affected: Logical greater than, arithmetic greater than, equal, carry,
overflow, and odd parity.

Execution results: (gad) - (gas)————(gad)

Application notes: Use the SB instruction to subtract signed integer bytes.
For example, if workspace register 6 contains the value 121Cy¢, memory
location 121Cy¢ contains the value 233114, and workspace register 1 con-

tains the value 1344,,, then the instruction

SB %6+, 1

results in the contents of workspace register 6 changing to 121Dj¢ and the
contents of workspace register 1 changing to F044;¢4. The logical greater
than status bit sets while the other status bits affected by this instruction
reset.

Assem‘bly language format: [< label>] B SB ¥ < ga >,< ga > [16<comment>]

4-26 Digital Systems Division

SB, B

@7@ 943442-9701

4,3

BRANCH (TRANSFER OF CONTROL) INSTRUCTIONS

Branch instructions transfer control either unconditionaliy or conditionally,

according to the state of one or more status bits of the status register.

instructions included in this paragraph are:

Instruction
Branch
Branch and Link
Branch and Load WP
Jump if Equal
Jump if Greater Than
Jump if High or Equal
Jump if Logical High
Jump if lLogical Low
Jump if Low or Equal
Jump if L.ess Than
Unconditional Jump
Jump if No Carry
Jump if Not Equal
Jump if No Overflow
Jump if Odd Parity
Jump On Carry
Return WP

Execute

Mnemonic

B

BL
BLWP
JEQ
JGT
JHE
JH

JL
JLE
JLT
JMP
JNC
JNE
JNO
JOP
JOC
RTWP
X

The

Paragraph
4.3.1

4.3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.3.7
4.3.8
4.3.9
4.3.10
4.3.11
4.3.12
4,3.13
4,3.14
4.3.15
4.3.16
4.3.17
4.3.18

Note that for all jump instructions, if the displacement is equal to zero, the
transfer is equal to a (PC) + 2——(PC) execution result.

4.3.1 B (BRANCH)
Op code: 0440
Format:
o 1 2 3 a4 s 8 9 10 11 12 13 14 15
0 0 0 0 O}l1 0 011 Tgq S
4-27 Digital Systems Division

@ 943442-9701

Definition: Replace the PC contents with the source address and transfer
control to the instruction at that location.

Addressing mode:; Format VI instructions

Status affected: None

Execution results: gas—— (PC)

Application notes: Use the B instruction to transfer control to another sec-
tion of code to change the linear flow of the program. For example, if the
contents of workspace register 3 is 21CC¢, then the instruction

B %3

causes the word at location 21CCj¢ to be used as the next instruction, be-
cause this value replaces the contents of the PC when this instruction is ex-
ecuted.

Assembly language format: [<label>] ¥ B ¥ < ga_> [¥ < comment >]

4.3.2 BL (BRANCH AND LINK)

Op code: 0680

Format:

o] 1 2 3 4 S 6 7 8 9 10 11 12 13 14 15

ojojojotol]1 1 ojl1j}o Tg S

Definition: Place the source address in the program counter, place the ad-
dress of the instruction following the BL instruction (in memory) in work-
space register 11, and transfer control to the new PC contents.

Addressing modes: Format VI instructions

Status affected: None

Workspace registers affected: 11

(WR11) and gas——(PC)

Execution results: (PC)

Application notes: Use the BL instruction when return linkage is required.
For example, if the instruction

BL @TRAN

occurs at memory location (PC count) 04BCj¢, then this instruction has the
effect of placing memory location TRAN in the PC and placing the value
04C0 ¢ in workspace register 11. Refer to Section V for additional applica-
tion notes,

Assembly language format: [< label >] BPBLY< ga_ > [}6 <comment >]

4-28 Digital Systems Division

[e]
il_@ 943442-9701 BL, BLWP, JEQ

4.3.3 BLWP (BRANCH AND LOAD WORKSPACE POINTER)
Op code: 0400

Format:

0 1 2 3 4 S 6 7 8 9 10 11 12 13 14 15

0 0ojJojoqgo l11j01o0jojo Tg S

Definition: Place the source operand in the WP and the word immediately
following the source operand in the PC. Place the previous contents of the
WP in the new workspace register 13, place the previous contents of the PC
(address of the instruction following BLLWP) in the new workspace register
14, and place the contents of the ST register in the new workspace register
15. When all store operations are complete, the AU transfers control to
the new PC.

Addressing modes: Format VI instructions

Status affected: None

Workspace registers affected: WRI13, WR14, and WR15

Execution results: (gag)——(WP)
(gag + 2)—(PC)
(original WP)——(WR13)
(original PC)——(WR14)
(original ST)——(WR15)

Application notes: Use the BLWP instruction for linkage to subroutines,
program modules, or other program that do not necessarily share the call-
ing program workspace. Refer to Section V for a detailed explanation and
example.

Assembly language format: [< label >] P BLWP B < ga_ > [M< comment >]

4.3.4 JEQ (JUMP IF EQUAL)

Op code: 1300

Format:

o] 1 2 3 4 5 5 7 8 9 10 11 12 13 14 15

0Ojojojl1}jojotl 1 Displacement

Definition: When the equal status bit is set, transfer control by adding the
signed displacement in the instruction word to the program counter and then
place the sum inthe PC to transfer control.

4-.29 Digital Systems Division

(o]
Q]@ 943442-9701

Addressing mode: Format II instructions

Status affected: None

Execution results: (PC) + (displacement)—(PC) if EQ = 1
(PC) + 2—(PC) if EQ=0

Application notes: Use the JEQ instruction to transfer control when the equal
status bit is set and to test CRU bits.

Assembly language format: [<label>] B JEQ ¥ < disp > [B <comment >]

4,3.5 JGT (JUMP IF GREATER THAN)
Op code: 1500

Format:

0o 1 2 3 4 5 5 7 8 9 10 11 12 13 14 15

ocojoj1oftl1jofjl1jol1l Displacement

Definition: When the arithmetic greater than status bit is set, add the signed
displacement in the instruction word to the PC and place the sum in the PC,
Transfer control to the new PC location.

Addressing mode: Format II instructions

Status affected: None

Execution results: (PC) + (displacement) (PC) if A>=1
(PC) + 2 (PC) if A>=0

Application notes: Transfers control if the arithmetic greater than status bit
is set,

Assembly language format: [<label>] ¥ JGT ¥ < disp > [<comment>]

4,3,6 JHE (JUMP IF HIGH OR EQUAL)

Op code: 1300

Format:

(o] 1 2 3 4 5 5 7 8 9 10 11 12 13 14 15

ojofjoti1jojl1jo}jo Displacement

Definition: When the equal status bit or the logical greater than status bit is
set, add the signed displacement in the instruction word to the PC and replace
the contents of the PC with the sum.

4-30 Digital Systems Division

(e}
@ 943442-9701 JGT, JHE, JH, JL

Addressing mode: Format II instructions

Status affected: None

Execution results: (PC) + (displacement)— (PC) if L>or EQ = 1
(PC) + 2——(PC) if L>and EQ =0

Application notes: Use the JHE instruction to transfer control when either the
logical greater than or equal status bit is set.

Assembly language format: [< 1abe1>] b JHE B < disp > [16< comment >]

4,3.7 JH (JUMP IF LOGICAL HIGH)
Op code: 1BO00O

Format:

0 1 2 3 4 5 5 7 8 9 10 11 12 13 14 15

0 0jo0111}1 o11]1 Displacement

Definition: When the equal status bit is reset and the logical greater than
status bit is set, add the signed displacement in the instiruction word to the
contents of the PC and replace the PC with the sum. '

Addressing mode: Format II instructions

Status affected: None

Execution results: (PC) + (displacement)— (PC) if L>= 1 and EQ = 0
(PC) + 2—(PC) if L>=0o0r EQ=1

Application notes: Use the JH instruction to transfer control when the equal
status bit is reset and the logical status bit is set.

Assembly language format: [< label>] ¥ JHY < disp > [B < comment >]

4.3.8 JL (JUMPIF LOGICAL LOW)

Op code: 1AO00

Format:

(0] 1 2 3 4 5

(5]
~

8 9 10 11 12 13 14 15

0]J]01071%1 1J]oj1}]o Displacement

Definition: When the equal and logical greater than status bits are reset,
add the signed displacement in the instruction word to the PC contents and
replace the PC with the sum.

4-.31 Digital Systems Division

o]
q@ 943442-9701

Addressing mode: Format II instructions

Status affected: None

Execution results: (PC) + (displacement)— (PC) if L>and EQ = 0
(PC) + 2——(PC) if L>or EQ=1

Application notes: Use the JL instruction to transfer control when the equal
and logical greater than status bits are reset.

Assembly language format: [<label >] BILW < disp > [< comment >]

4.3.9 JLE (JUMP IF LOW OR EQUAL)
Op code: 1200

Format:

o 1 2 3 4 5 5 7 8 9 10 11 12 13 14 15

ojojotl1jojojl 0 Displacement

Definition: When the equal status bit is set or the logical greater than
status bit is reset, add the signed displacement in the instruction word to
the contents of the PC and replace the PC with the sum.

Addressing mode: Format II instructions

Status affected: None

Execution results: (PC) + (Displacement)—(PC)if LL>= 0 or EQ = 1
(PC) + 2——(PC) if L>=1and EQ =0

Application notes: Use the JLE instruction to transfer control when the equal
status bit is set or the logical greater than status bit is reset.

Assembly language format: [<label >] B ILE ¥ < disp > [¥ <comment >]

4,3.10 JLT (JUMP IF LESS THAN)
Op code: 1100

Format:

(o] 1 2 3 4 5 5 7 8 9 10 11 12 13 14 15

01]o 0Ojljojojojl Displacement

Definition: When the equal and arithmetic greater than status bits are re-
set, add the signed displacement in the instruction word to the PC and re-
place the PC contents with the sum.

4-32 Digital Systems Division

[e]
{@5‘(} 943442-9701 JLE, JLT, JMP, JNC

Addressing mode: Format II instructions

Status affected: None

Execution results: (PC) + (displacement)— (PC) if A>and EQ =0
(PC) + 2——(PC) if A>or EQ =1

Application notes: Use the JLT instruction to transfer control when the
equal and arithmetic greater than status bits are reset. .

Assembly language format: [<label>] B JLT B<disp > { b <comment >]

4,3,11 JMP (JUMP UNCONDITIONAL)

Op code: 1000

Format:

(o] 1 2 3 4 5 5 7 8 '9 10 11 12 13 14 15

0]010 1 0jojojto Displacement

Definition: Add the signed displacement in the instruction word to the PC and
replace the PC with the sum.

Addressing mode: Format II instructions

Status affected: None

Execution results: (PC) + (displacement)—(PC)

Application notes: Use the JMP instruction to transfer control to another
section of the program module.

Assembly language format: [< labe1>] B IMP B < disp > [¥ < comment >]

4.3.12 JNC (JUMP IF NO CARRY)
Op code: 1700

Format:

0 1 2 3 4 5 5 7 8 9 10 11 12 13 14 15

01]o0 oY1jJo}1]}1 1 Displacement

Definition: When the carry status bit is reset, add the signed displacement
in the instruction word to the PC and replace the PC with the sum.

Addressing mode: Format II instructions

Status affected: None

4-33 Digital Systems Division

[e]
@ 943442-9701

Execution results: (PC) + (displacement)—(PC) if C
(PC) + 2——(PC) if C

1

Application notes: Use the JNC instruction to transfer control when the carry
status bit is reset.

Assembly language format: [<label>] ¥ JNC ¥ < disp > [B < comment >]

4.3.13 JNE (JUMP IF NOT EQUAL)
Op code: 1600

Format:

o] 1 2 3 4 5 5 7 8 9 to 11 12 13 14 15

oJojotrirjoj1l1p1y}jo Displacement

Definition: When the equal status bit is reset, add the signed displacement in
the instruction word to the PC and replace the PC with the sum.

Addressing mode: Format II instructions

Status affected: None

Execution results: (PC) + (displacement)——(PC) if EQ = 0
(PC) + 2 —(PC) if EQ=1

Application notes: Use the JNE instruction to transfer control when-the equal
status bit is reset. The JNE instruction is also useful in testing CRU bits.

Assembly language format: [< label>] B JNE ¥ < disp > [¥ < comment >]

4.3.14 JNO (JUMP IF NO OVERFLOW)

Op code: 1900

Format:

o 1 2 3 4 5 3 7 8 9 10 11 12 13 14 15

01}]o 011 1 o0jo}]1 Displacement

Definition: When the overflow status bit is reset, add the signed displace-
ment in the instruction word to the PC and replace the PC with the sum.

Addressing mode: Format II instructions

Status affected: None

Execution results: (PC) + (Displacement)—(PC) if OV
(PC) + 2— (PC) if OV =1

4-34 Digital Systems Division

o]
(r\'}g@ 943442-9701 JNE, JNO, JOP, JOG

Application notes: Use the JNO instruction to transfer control when the over-
flow status bit is reset. Refer to Section V for additional application notes.

Assembly language format: [<label>] B JNO ¥ < disp > [B <comment >]

4.3.15 JOP (JUMP IF ODD PARITY)

Op code: 1C00

Format:

0 1 2 3 4 5 5 -7 8 9 10 11 12 13 14 15

0Ojoj1o1t1l 1 1o} o Displacement

Definition: When the odd parity status bit is set, add the signed displacement
in the instruction word to the PC and replace the PC with the sum.

Addressing mode: Format II instructions

Status affected: None

Execution results: (PC) + (Displacement)—(PC) if OP = 1
(PC) + 2—(PC) if OP = 0

Application notes: Use the JOP instruction to transfer control when there is
odd parity. Odd parity indicates that there is an odd numrber of logic one bits
in the byte tested, Refer to Section V for additional application notes.

Assembly language format: [< label >] b JOP ¥ <disp > QB < comment >]

4.3.16 JOC (JUMP ON CARRY)
Op code: 1800

Format:

(o] 1 2 3 4 5 5 7 8 9 10 11 12 13 14 15

ojfojojyl1jl1jojofjo Displacement

Definition: ~When the carry status bit is set, add the signed displacement in
the instruction word to the PC and replace the PC with the sum.

Addressing mode: Format II instructions

Status affected: None

Execution results: (PC) + (Displacement)—(PC) if C
(PC) + 2—(PC) if C

It
€y

4-35 Digital Systems Division

Q\@ 943442-9701

Application notes: Use the JOC instruction to transfer control when the carry
status bit is set.

Assembly language format: [<label >] ¥ JOC ¥ < disp > [B <comment >]

4.3.17 RTWP (RETURN WITH WORKSPACE POINTER)

Op code: 0380

Format:

(o) 1 2 3 4 3 6 7 8 9 1o 11 12 13 14 15

ojojojojojpogjlj}l 110160 N

Definition: Replace the contents of the WP register with the contents of the
current workspace register 13. Replace the contents of the PC with the con-
tents of the current workspace register 14. Replace the contents of the ST
register with the contents of the current workspace register 15. The effect
of this instruction is to restore the execution environment that existed prior
to an interrupt, a BLWP instruction, or an XOP instruction.

Addressing mode: Format VII instructions

Status affected: Restores all status bits to the value contained in workspace
register 15.

Execution results: (WR13) —(WP)
(WR14) —(PC)
(WR15)—(ST)

Application notes: Use the RTWP instruction to restore the execution envi-
ronment after the completion of execution of an interrupt, a BLWP instruc-
tion, or an XOP instruction. Refer to Section V for additional information.

Assembly language format: [<label >] ¥ RTWP [¥ < comment>]

4.3.18 X (EXECUTE)

Op code: 0480

Format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

olojlojojoj1r1jojoj]l}o Tg S

Definition: Execute the source operand as an instruction. When the source
operand is not a singleword instruction, the word or words following the ex-
ecute instruction are used with the source operand as a 2-word or 3-word

4-36 Digital Systems Division

o]
(fi[z@ 943442-9701 RTWP, X, G

instruction. The source operand, when executed as an instruction, may affect
the contents of the status register. The PC increments by either one, two,
or three words depending upon the source operand.

Addressing modes: Format VI instructions

Status affected: None (execute instruction only)

Execution results: Dependent upon the source operand.

Application notes: Use the X instruction to execute the source operand as an
instruction. This is primarily useful when the instruction to be executed is
dependent upon a variable factor. Refer to Section V for additional applica-
tion notes.,

Assembly language format: [<label>] ¥ X ¥ <ga_ >[¥ < comment >]

4.4 COMPARE INSTRUCTIONS

Compare instructions have no effect other than the setting/resetting of ap-
propriate status bits in the status register. The compare instructions per-
form both arithmetic and logic comparisons. The arithmetic comparison is
on the two operands as two's complement values and the.logical comparison
is on the two operands as unsigned magnitude values. The instructions in-
cluded are:

Instruction Mnemonic Paragraph
Compare Words C 4.4.1
Compare Bytes CB 4.4.2
Compare Immediate CI 4.4.3
Compare Ones Corresponding CoC 4.4.4
Compare Zeros Corresponding CzcC 4.4.5

4.4.1 C (COMPARE WORDS)

Op code: 8000

Format:

1Jolojo} Tg D T S

Definition: Compare the source operand (word) with the destination operand
(word) and set/reset the status bits to indicate the resulfs of the comparison.
The arithmetic and equal comparisons compare the operand as signed, two's
complement values. The logical comparison compares the two operands as
unsigned, 16-bit magnitude values.

4-37 Digital Systems Division

e]
é@ 943442-9701

Addressing modes: Format I instructions

Status affected: Logical greater than, arithmetic greater than, and equal.

Execution results: Comparison and status bits set/reset.

Application notes: C compares the two operands as signed, two's comple-
ment values and as unsigned integers. Some examples are:

Source Destination Logical Arithmetic Equal
FFFF 0000 1 0 0
7FFF 0000 1 1 0
8000 0000 1 0 0
8000 TFFF i 0 0
7FFF TFFF 0 0 1
7FFF 8000 0 1 0

Assembly language format: [<label >] ¥ C¥< ga >,<ga,> (¥ < comment >]

4,4,2 CB (COMPARE BYTES)

Op code: 9000

Format:

(o] 1 2 3 4 S 6 7 8 9 10 11 12 13 14 15

1 lofjo]l1] T4 D Ts S

Definition: Compare the source operand (byte) with the destination operand
(byte) and set/reset the status bits according to the result of the comparison.
CB uses the same comparison basis as does C. If the source operand con-
tains an odd number of logic one bits, the odd parity status bit sets. The
operands remain unchanged.

Addressing modes: Format I instructions

Status affected: Logic greater than, arithmetic greater than, equal, and odd
parity.,

Execution results: Comparison and set/reset status bits.

e

4-38 Digital Systems Division

e}
{@ 943442-9701 CB, CI

Application notes: CB compares the two operands as signed, two's comple-
ment values or as unsigned integers. Some examples are:

Source Destination Logical Arithmetic Equal Odd Parity

FF 00 1 0 0 0
7F 00 1 1 0 1
80 00 1 0 0 1
80 TF 1 0 0 1
7F TF 0 0 1 1
TF 80 0 1 0 1

Assembly language format: [< label >] B CB WB< ga_>,<ga, >[lz$ <comment >]

4.4.3 CI (COMPARE IMMEDIATE)

Op code: 0280

Format:

Definition: Compare the contents of the specified workspace register with
the word in memory immediately following the instruction. Set/reset the
status bits according to the comparison. CI makes the same type of com-
parison as does C.

Addressing mode: Format VIII instructions

Status affected: Logical greater than, arithmetic greater than, and equal.

Execution results: Comparison and set/reset status bits.

Application notes: Use the CI instruction to compare the workspace register
to an immediate operand. For example, if the contents of workspace register

9 is 218316’ then the instruction

CI 9,>F330

results in the arithmetic greater than status bit set and tae logical greater
than and equal status bits reset. ’

Assembly language format: [< label >] ¥ Cl¥<was,<iop >[# < comment >]

4-39 Digital Systems Division

o]
{@; 943442-9701

4.4.4 COC (COMPARE ONES CORRESPONDING)

Op code: 2000

Format:

Definition: When the bits in the destination operand workspace register that
correspond to the logic one bits in the source operand are equal to logic one,
set the equal status bit. The source and destination operands are unchanged.

Addressing modes: Format III instructions

Status affected: Equal

Execution results: Compare logic one and set/reset the equal status bit.

Application notes: Use the COC instruction to test single/multiple bits within
a word in a workspace register. For example, if TESTBI contains the word
C1021¢ and workspace register 8 contains the value E306;¢, then the instruc-
tion

cocC @TESTBITS, 8

results in setting the equal status bit. If workspace register 8 were to con-
tain E30171¢, the equal status bit would reset.

Assembly language format: [< label >] ¥ COC ¥ <ga >,<wa > [B < comment >]

4,4.,5 CZC (COMPARE ZEROS CORRESPONDING)

Op code: 2400

Format:

(+] 1 2 3 4 5 6 7 8 = 10 11 12 13 14 15

olofl1fjofo]1 D Ty S

Definition: When the bits in the destination operand workspace register that
correspond to the one bits in the source operand are all equal to a logic zero,
set the equal status bit. The source and destination operands are unchanged.

Addressing modes: Format III instructions

Status affected: Equal

Execution results: Compare for logic zero and set/reset equal status bit.

4-40 Digital Systems Division

o)
,Jig@ 943442-9701 COC, CZC, CKOF

Application notes: Use the CZC instruction to test single/multiple bits within

a word in a workspace register, For example, if the memory location labeled
TESTBI contains the value C102;¢4, and workspace register 8 contains 23017¢,
then the instruction

CzZcC @TESTBIT, 8

results in the equal status bit reset. If workspace register 8 contained the
value 2201 ¢, then the equal status bit would set. '

Assembly language format: [<label >] B Cczcy <ga>,<wa, >[¥ < comment>]

4.5 CONTROL AND CRU INSTRUCTIONS

Control instructions affect the operation of the AU and associated portions of
the CPU. CRU instructions affect the modules connected to the communica-
tion register unit., The instructions included in this paragraph are:

Instruction Mnemonic Paragraph
Clock Off CKOF 4.5.1
Clock On CKON 4.5.2
Load CRU LDCR 4.5.3
Idle IDLE 4.5.4
Reset RSET 4.5.5
Set Bit to Logic One SBO 4.5.6
Set Bit to Logic Zero SBZ 4.5.7
Store CRU STCR 4.5.8
Test Bit TB 4.5.9

4,5,1 CKOF (CLOCK OFF)
Op code: 03CO

Format:

(4] 1 2 3 4 3 6 7 8 9 10 11 12 13 14 15

oJojojojojo 1 111 1 0 N

Definition: Stop the line frequency clock (120 Hz). No status bits are
changed and the clock interrupt will not occur as long as the clock is off.

4-41 Digital Systems Division

(o]
@ 943442-9701

Addressing mode: Format VII instructions

Status affected: None

Execution results: The line frequency clock is turned off

Application notes: Refer to Section V

Assembly language format: [< label >] B CKOF [b < comment >]

4.5,2 CKON (CLOCK ON)
Op code: 03A0

Format:

4] 1 2 3 4 3 6 7 8 9 10 11 12 13 14 15

0jo0ojojojo}]o}l 1 1011 N

Definition: Enable the line frequency clock. If interrupt level five is en-
abled, an interrupt will occur every 8.33 ms after the initial interrupt,
which may occur from lus to 8,33 ms after the clock is turned on. Interrupt
five may be enabled/disabled by the interrupt mask as necessary.

Addressing mode: Format VII instructions

Status affected: None

Execution results: The line frequency clock is turned on

Application notes: Refer to Section V

Assembly language format: [< label >] h CKON [P < comment > |

4,5.3 LDCR (LOAD COMMUNICATIONS REGISTER UNIT)
Op code: 3000

Format:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

oJof1]1fo]o C T S

Definition: Transfer the number of bits specified in the C field from the
source operand to the CRU. The transfer begins with the least significant
bit of the source operand. The CRU address is contained in bits 3 through
14 of workspace register 12. When the C field contains zero, the number
of bits transferred is 16. If the number of bits to be transferred is from
one to eight, the source operand address is a byte address. If the number
of bits to be transferred is from 9 to 16, the source operand address is a

4-42 Digital Systems Division

o
@ 943442-9701 CKON, LDCR, IDLE

word address, If the source operand address is odd, thé word used for out-
put is byte-reversed after memory read and before transfer to the CRU.
When the number of bits transferred is a byte or less, the source operand
is compared to zero and the status bits are set/reset, according to the re-
sults of the comparison. The odd parity status bit sets when the bits in a
byte (or less) to be transferred establish odd parity.

Addressing modes: Format IV instructions

Status affected: Logical greater than, arithmetic greater than, equal, and
odd parity (only when the number of bits to transfer is less than nine).

Execution results: The number of bits specified by the C field are trans-
ferred to the CRU.

Application notes: Use the LDCR instruction to transfer a specific number
of bits from memory to the CRU at the address contained in bits 3 through
14 of workspace register 12. Refer to Section V for a detailed example and
explanation of the LDCR instruction.

Assembly language format:
[<label>] ¥ LDCR lz$<gas> ,<cnt> [B<comment>]

4.5.4 IDLE (IDLE)

Op code: 0340

Format:

(o] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0O0jo0ojojojo]1l 1 011 0 N

Definition: Place the computer in the idle state. Note that the PC is incre-
mented prior to the execution of this instruction and the contents of the PC
point to the instruction word in memory immediately following the IDLE in-
struction. The computer will remain in the IDLE state until an interrupt or
start signal occurs, An idle with an interrupt level of 4 (or level 5 with

the line frequency clock off) is a lock-up. Only power failure or the load
switch pressed can interrupt to recover because level 3 and 4 (level 5 with
clock off) cannot occur. These interrupts cannot occur when the AU is not
executiong instructions.

Addressing mode: Format VII instructions

Status affected: None

Execution results: The computer is idle.

4-43 Digital Systems Division

(o]
@ 943442-9701

Application notes: Use the IDLE instruction to place the computer in the
idle state, This instruction is useful in timing delays using the clock or
in waiting for interrupt signals.

Assembly language format: [< label >] b IDLE [b < comment > |

4.5.5 RSET (RESET)

Op code: 0360

Format:

] 1 2 3 4 -] 6 7 8 9 10 11t 12 13 14 15

0]01}0O ojojoytjilij]i1l 0p11]1 N

Definition: The RSET instruction clears the interrupt mask, which disables
all except level 0 interrupts. It also resets all directly connected input/
output devices and those CRU devices that provide for reset in the interface
with the CRU. RSET also resets all pending interrupts and turns the clock
off.

Addressing modes: Format VII instructions

Status affected: Resets all bits of the interrupt mask.

Execution results: See definition above.

Application notes: Use the reset instruction to reset the interrupt mask to
zero, turn off the clock, and (depending on the device and interface) clear
any pending interrupt and reset interface electronics.

Assembly language format: [< label >] ¥ RSET [§ < comment >]

4.5.6 SBO (SET BIT TO LOGIC ONE)

Op code: 1DO00
Format:

(o] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0j01]1 1 1101 Displacement

Definition: Set the digital output bit to a logic one on the CRU at the address
derived from this instruction. The derived address is the sum of the user
supplied signed displacement and the contents of workspace register 12, bits
3 through 14. The execution of this instruction does not affect the status
register or the contents of workspace register 12.

4-44 Digital Systems Division

943442-9701 RSET, SBO, SBZ, STCR

Addressing mode: Format II instructions

Workspace register accessed: WRI12

Status affected: None

Execution results: 1—— CRUbit

WR12+displacement

Application notes: Use the SBO instruction to set a CRU bit to a logic one.
Refer to Section V for additional application notes.

Assembly language format: [< label >] B SBO ¥ < disp > [< comment >]

4.5.7 SBZ (SET BIT TO LOGIC ZERO)
Op code: 1E00

Format:

] 1 2 3 4 5 6 7 8 9 to 11 12 13 14 15

cJjojo]1 1 1111]o0 Displacement

Definition: Set the digital output bit to a logic zero on the CRU at the ad-
dress derived from this instruction. The derived address is the sum of the
user supplied signed displacement and the contents of workspace register 12,
bits 3 through 14. The execution of this instruction does not affect the status
register or the contents of workspace register 12.

Addressing mode: Format II instructions

Status affected: None

Execution results: 0——CRUbit

WR12+displacement

Workspace register accessed: WR12

Application notes: Use the SBZ instruction to set a CRU bit to a logic zero.
Refer to Section V for additional application notes.

Assembly language format: [< label >] B SBZ B < disp > [h< comment > |

4.5.8 STCR (STORE COMMUNICATIONS REGISTER UNIT)
Op code: 3400

Format:

(] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

oJo|1]|1]o0]1 C T, S

4-45 Digital Systems Division

Qﬂ@ 943442-9701

Definition: Transfer the number of bits specified in the C field from the CRU
to the source operand. The transfer begins from the CRU address specified
in bits 3 through 14 of workspace register 12 to the least significant bit of
the source operand and fills the source operand toward the most significant
bit. When the C field contains a zero, the number of bits to transfer is 16,
If the number of bits to transfer is from one to eight, the source operand
address is a byte address. Any bit in the memory byte not filled by the
transfer is reset to a zero. When the number of bits to transfer is from 9
to 16, the source operand address is a word address. If the source operand
address is odd, the word used for input is byte-reversed after transfer from
the CRU and before memory write. If the transfer does not fill the entire
memory word, unfilled bits are reset to zero. When the number of bits to
transfer is a byte or less, the bits transferred are compared to zero and the
status bits set/reset to indicate the results of the comparison. Also, when
the bits to be transferred are a byte or less, the odd parity bit sets when
the bits establish odd parity.

Addressing modes: Format IV instructions

Status affected: Logical greater than, arithmetic greater than, equal, and
odd parity (only when the bits to be transferred total less than nine).

Execution results: The number of bits specified by the C field are trans-
ferred to the source operand from the CRU.

Application notes: Use the STCR instruction to transfer a specified number
of CRU bits from the CRU to the memory location supplied by the user as
the source operand. Note that the CRU base address must be in workspace
register 12 prior to the execution of this instruction. Refer to Section V for
a detailed explanation and examples of the use of the STCR instruction.

Assembly language format:
[<label>] B STCR lé<gas >,<disp> [B<comment>]

4,5,9 TB (TEST BIT)
Op code: 1F00

Format:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ojJojoq1 1 1 1]1 Displacement

Definition: Read the digital input bit on the CRU at the address specified by
the sum of the user supplied signed displacement and the contents of work-
space register 12, bits 3 through 14 and set the equal status bit to the logic
value read. The digital input bit and the contents of workspace register 12
are unchanged.

4-46 Digital Systems Division

943442-9701 TB, LI

Addressing modes: Format II instructions

Status affected: Equal

Execution results: Equal status bit set to CRU bit.

Application notes: Refer to Section V for a detailed explanation and example
of the use of the TB instruction.

Assembly language format: [< label >] % TB b <disp > [B < comment > |

4.6 LOAD AND MOVE INSTRUCTIONS

Load and move instructions permit the user to establish the execution envir-
onment and the execution results. The instructions included in this para-
graph are:

Instruction Mnemonic Paragraph
Load Immediate LI 4.6.1
Load Interrupt Mask LIMI 4.6.2
Immediate

Load ROM and Exe- LREX 4,6.3

cute

Load Workspace LWPI 4.6.4

Pointer Immediate

Move Words MOV 4.6.5
Move Bytes MOVB 4.6.6
Store Status STST 4.6.7
Store Workspace STWP 4.6.8

Pointer Immediate

Swap Bytes SWPB 4.6.9

4.6.1 LI (LOAD IMMEDIATE)
Op code: 0200

Format:

o] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0]O0 0jJoqo0}o 1 0OJO0O}jOoO}JoOo | N w

4-47 Digital Systems Division

@? 943442-9701

Definition: Place the immediate operand (the word of memory immediately
following the instruction) in the user specified workspace register (W field).
The immediate operand and the status register are not affected by the exe-

cution of this instruction.

Addressing mode: Format VIII instructions

Status affected: None

Execution results: iop——(wa)

Application notes: Use the LI instruction to place an immediate operand in
a specified workspace register. This is useful for initializing a workspace
register as a loop counter. For example, the instruction

LI 7,5

initializes workspace register 7 with the value 000516' No status bits are
affected.

Assembly language format: [< label >] B LI b < wa >,< iop> [P < comment > |

4.6.2 LIMI (LOAD INTERRUPT MASK IMMEDIATE)

Op code: 0300

Format:

Definition: Place the low order four bits of the contents of the immediate
operand (bits 12 through 15) in the interrupt mask of the status register.
The remaining bits of the status register (0 through 11) are not affected.
The W field of this instruction is not used and may contain any value.

Addressing mode: Format VIII instructions

Status affected: None

Execution results: —— (interrupt mask)

1%Phits 12-15

Application notes: Use the LIMI instruction to initialize the interrupt mask
for a particular level of interrupt to be accepted. For example, if

LIMI 3

4-48 Digital Systems Division

o
@ 943442-9701 LIMI, LREX

is input, the interrupt mask is set at level three and the following interrupts
are accepted:

Power On

Power Fail

Memory Parity Error
Illegal Instruction

Assembly language format: [< label >] ¥ LIMI b < iop > [B < comment >]

4.6.3 LREX (LOAD ROM AND EXECUTE)

Op code: 03EO0

Format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OoJjojojojoj}jo 1 111¢}1 1 N

Definition: Load the ROM contents into memory beginning at location zero.
Clear the interrupt mask, disabling all except level zero interrupts. Place
the first word in memory into the WP register and the second word in mem-
ory in the PC register. The computer begins execution at the instruction
indicated by the PC. Note that the execution of an LREX instruction over-
lays memory addresses zero through 255.

Addressing mode: Format VII instructions

Status affected: None

Execution results: (memory word 0000l)— (WP)
(memory word 00021¢)——(PC)
(old WP)——(new WR13)
(old PC) ——(new WR14)
(old ST)——(new WR15) (Interrupt maek = 0000)

Application notes: Use the LREX instruction to load the ROM contents into
memory and execute the set of instructions indicated by the first two words
that are loaded into memory. Refer to Section V for additional application
notes,

Assembly language format: [< label>] ¥ LREX [b < comment >]

4-49 Digital Systems Division

(o]
%@ 943442-9701

4.6.4 LWPI (LOAD WORKSPACE POINTER IMMEDIATE)

Op code: 02EO0

Format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ojfojojpojpopogj1l1jo 1 11| N w

Definition: Replace the contents of the WP register with the immediate op-
erand. The immediate operand is the word of memory immediately follow-
ing the instruction LWPI, The W field is not used and may contain any value.

Addressing mode: Format VIII instructions

Status affected: None

Execution results: iop——(WP)

Application notes: Use the LWPI instruction to initialize or change the WP
register to alter the workspace environment of the program module. The
user should use either a BLWP or a LWPI instruction prior to the use of
any workspace register in a program module.

Assembly language format: [< label>] b LWPI B < iop > [< comment >]

4,.6.5 MOV (MOVE WORDS)
Op code: CO000

Format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

11]ofo] T4 D Ts S

Definition: Replace the destination operand with a copy of the source op-
erand. The AU compares the resulting destination operand to zero and sets/
resets the status bits according to the comparison.

Addressing modes: Format I instructions

Status affected: Logical greater than, arithmetic greater than, and equal.

Execution results: (gas)__.(gad)

4-50 Digital Systems Division

(e}
{%\@ 943442-9701 LWPI, MOV, MOVB

Application notes: MOV is used to move 16-bit words as follows:

Memory-to-memory (non register)
Load register (memory-to-register)
Register-to-register
Register-to-memory
MOV may also be used to compare a memory location to zero by the use of

MOV 7,7
JNE TEST

which would move register 7 to itself and compare the contents of register

7 to zero. If the contents are not equal to zero, the equal status bit is reset
and control transfers to TEST. Another use of MOV, for example, is if
workspace register 9 contains 341616 and location ONES contains FFFF1

6’
then

MOV @ONES, 9

changes the contents of workspace register 9 to FFFF | while the contents
of location ONES is not changed. For this example, the logical greater than
status bit sets and the arithmetic greater than and equal status bits reset.

Assembly language format:
[<label>] B MOV bﬁ<gas>, <ga

a> [h<comment>]

4.6.6 MOVB (MOVE BYTES)
Op code: D000

Format:

1o | 74 D Ty s

Definition: Replace the destination operand (byte) with a copy of the source
operand (byte). If the destination operand is addressed in the workspace
register mode, the byte addressed is the most significant byte of the word
(bits 0-7) and the least significant byte (bits 8-15) is not ‘affected by this in-
struction. The AU compares the destination operand to zero and sets/resets
the status bits to indicate the result of the comparison. The odd parity bit
sets when the bits in the destination operand establish odd parity.

4-51 Digital Systems Division

[e]

< 4] 943442-9701

Addressing modes: Format I instructions

Status affected: Logical greater than, arithmetic greater than, equal, and
odd parity. '

Execution results: (gas)—(gad)

Application notes: MOVB is used to move bytes in the same combinations as
does the MOV instruction. For example, if memory location 1C14; ¢ contains
a value of 201614 and TEMP is located at 1C15,,, and if workspace register
3 contains 542B16, then the instruction

MOVB @TEMP, 3

changes the contents of workspace register 3 to 162B16. The logical greater
than, arithmetic greater than, and odd parity status bits set while the equal
status bit resets.

Assembly language format:
[<label>] ¥ MOVB 175<gas >, <8ay> [B<comment>]

4,6,7 STST (STORE STATUS)
Op code: 02CO

Format:

Definition: Store the status register contents in the specified workspace
register. '

Addressing mode: Format VIII instructions

Statu s affected: None

Execution results: (ST)—(wa)

Application notes: Use the STST instruction to store the ST register con-
tents when applicable.

Assembly language format: [< label>] b STST B < wa >[b < comment >]

4.6.8 STWP (STORE WORKSPACE POINTER IMMEDIATE)

Op code: 02A0

Format:
o 1 2 3 4 5 6 - 7 8 9 10 11 12 13 14 15
0 0 0 0 0 0 1 0 1 011 N w

4-52 Digital Systems Division

10
q[@@ 943442-9701 STST, STWP, SWPB

Definition: Place a copy of the workspace pointer contenis in the specified
workspace register,

Addressing mode: Format VIII instructions

Status affected: None

Execution results: (WP)—- (wa)

Application notes: Use the STWP instruction to store the contents of the WP
register as applicable. :

Assembly language format: [< label >] b STWP b < wa> | b < comment >]

4.6.9 SWPB (SWAP BYTES)

Op code: 06CO

Format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0010 0jo0]1 1 0 111 Tg S

Definition: Replace the most significant byte (bits 0-7) of the source operand
with a copy of the least significant byte (bits 8-15) of the source operand and
replace the least significant byte with a copy of the most significant byte.

Addressing modes: Format VI instructions

Status affected: None

Execution results: (

£%s byte 1)——»(gas byte 2)

(g) — (g)

%s byte 2 %s byte 1

Application notes: Use the SWPB instruction to interchange bytes of an op-
erand prior to executing various byte instructions. For example, if work-
space register 0 contains 2144, and memory location 2144, , contains the
value F3121¢, then the instruction

SWPB *0+

changes the contents of workspace register 0 to 2146 ¢ and the contents of
memory location 2144,/ to 12F316' The status register remains unchanged.

Assembly language format: [<label>] B SWPB b < ga > [h < comment >]

4-53 Digital Systems Division

o}
i‘r@@ 943442-9701

4.7 LOGICAL INSTRUCTIONS

The set of available logical instructions permits the user to perform various
logical operations on memory locations and/or workspace registers. The
instructions included in this paragraph are:

Instruction Mnemonic Paragraph
AND Immediate ANDI 4.7.1
Clear , CLR 4.7.2
Invert INV 4,7.3
OR Immediate ORI 4.7.4
Set to One SETO 4.7.5
Set Ones Corre- SOC 4,7.6
sponding

Set Ones Corre- SOCB 4.7.7
sponding, Byte

Set Zeros Corre- SZC 4.7.8
sponding

Set Zeros Corre- SZCB 4.7.9
sponding, Byte

Exclusive OR XOR 4,.7.10

4.7.1 ANDI (AND IMMEDIATE)

Op code: 0240

Format:

o 1 2 3 4 S 6 7 8 9 10 11 12 13 14 15

ocJojojojojoj1jojlo}]1jo0]N W

Definition: Perform a bit-by-bit AND operation of the 16 bits in the imme-
diate operand and the corresponding bits of the source operand. The imme-
diate operand is the word in memory immediately following the instruction
word. Place the result in the workspace register specified in the W field.
The AU compares the resulting AND to zero and sets/resets the status bits
according to the results of the comparison.

Addressing mode: Format VIII instructions

Status affected: Logical greater than, arithmetic greater than, and equal.

4-54 Digital Systems Division

Q
{@ 943442-9701 ANDI, CLR

Execution results: (wa)AND iop—(wa)

Application notes: Use the ANDI instruction to perform-a logical AND with
an immediate operand and a workspace register. Each bit of the 16-bit word
of both operands follows the truth table

Immediate Workspace AND
Operand Bit Register Bit Result
0 0 0
0 | 1 0
1 0 0
1 1 1

For example, if workspace register 0 contains DZAB16, the instruction
ANDI 0,>6D03

results in workspace register O changing to 400316. This AND operation on
a bit-by-bit basis is

0110110100000011 (Immediate operand)
1101001010101011 (Workspace register 0)
0100000000000011 (Workspace register 0 result)

For this example, the logical greater than and arithmetic greater than status
bits set while the equal status bit resets. ANDI is also useful for masking
out bits of a workspace register.

Assembly language format: [<label>] B ANDI b < wa>, <iop> [h<comment>]

4.7.2 CLR (CLEAR)

Op code: 04CO0

Format:
4] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 0 0 0 1 oo 1 1 Ts - S

Definition: Replace the source operand with a full, 16-bit word of zeros.

Addressing modes: Format VI instructions

Status affected: None

Execution results: 0 -—~(gas)

4-55 Digital Systems Division

o
e’—@f} 943442-9701

Application notes: Use the CLR instruction to set a full, 16-bit, memory
addressable word to zero. For example, if workspace register 11 contains
the value 200116, then the instruction

CLR *>B

results in the contents of memory location 200016 set to 0. Workspace reg-
ister 11 and the status register are unchanged.

Assembly language format: [< label>] b CLR b < ga_ > [b < comment >]

4.7.3 INV (INVERT)

Op code: 0540

Format:

Definition: Replace the source operand with the one's complement of the
source operand. The one's complement is equivalent to changing each zero
in the source operand to a logic one and each logic one in the source oper-
and to a logic zero. The AU compares the result to zero and sets/resets
the status bits to indicate the result of the comparison.

Addressing modes: Format VI instructions

Status affected: Logical greater than, arithmetic greater than, and equal.

Execution results: Refer to the definition-above.

Application notes: INV changes each logic zero in the source operand to a
logic one and each logic one to a logic zero. For example, if workspace
register 11 contains A54B16, then the instruction

INV 11

changes the contents of workspace register 11 to 5AB4,,. The logical
greater than and arithmetic greater than status bits set and the equal status
bit resets.

Assembly language format: [<label>] ¥ INV b <ga > [b < comment>]

4.7.4 ORI (OR IMMEDIATE)

Op code: 0260

Format:

(o] 1 2 3 4 5 6 7 8 9 io0 11 12 13 14 15

0Ojojojojojo 1]0]0O 1 1IN w

4-56 Digital Systems Division

(e}
%‘_@? 943442-9701 INV, ORI

Definition: Perform an OR operation of the 16-bit immediate operand and
the corresponding bits of the workspace register specified in the W field.
The immediate operand is the memory word immediately following the ORI
instruction. Place the result in the workspace register. The AU compares
the result to zero and sets/resets the status bits to indicate the result of the
comparison.

Addressing modes: Format VIII instructions

Status affected: Logical greater than, arithmetic greater than, and equal.

Execution results: iop OR(wa)— (wa)

Application notes: Use the ORI instruction to perform a logical OR with the
immediate operand and a specified workspace register. Fach bit of the
16-bit word of both operands is OR'd using the truth table

Immediate Workspace OR
operand register Result
0 0 0
1 0 1
0 1 1
1 1 1

For example, if workspace register 5 contains DZAB16, then the instruction
ORI 5,>6D03

results in workspace register 5 changing to FFAB, . This OR operation on
a bit-by-bit basis is

0110110100000011 (Immediate operand)
1101001010101011 (Workspace register 5)

1111111110101011 (Workspace register 5 result)
For this example, the logical greater than status bit sets, and the arithmetic
greater than and equal status bits reset.

Assembly language format:
[<label>] ¥ ORI B<wa > ,<iop > [< comment>]

4-57 Digital Systems Division

{\@Jp 943442-9701

4,7.5 SETO (SET TO ONE)

Op code: 0700

Format:

Definition: Replace the source operand with a 16-bit word of logic one values.

Addressing modes: Format VI instructions

Status affected: None

Execution results: FFFFlé———>(gas)

Application notes: Use the SETO instruction to initialize an addressable
memory to a -1 value. For example, the instruction

SETO 3

initializes workspace register 3 to a value of FFFF 4. The contents of the
status register is unchanged. This is a useful means of setting flag words.

Assembly language format: [< label >] ¥ SETO p < ga_> [h < comment>]

4.7.6 SOC (SET ONES CORRESPONDING)

Op code: EO000

Format:

1{1l1]o} Tg D Ts S

Definition: Set to a logic one the bits in the destination operand that corre-
spond to any logic one bit in the source operand. ILeave unchanged the bits
in the destination operand that are in the same bit positions as the logic zero
bits in the source operand. The changed destination operand replaces the
original destination operand. This operation is effectively an OR of the

two operands. The AU compares the result to zero and sets/resets the
status bits to indicate the result of the comparison.

Addressing modes: Format I instructions

Status affected: Logical greater than, arithmetic greater than, and equal.

Execution results: (gas)OR(gad)——»(gad)

4-58 Digital Systems Division

o
K’P{\/]@ 943442-9701 SETO, SOC, SOCB

Application notes: Use the SOC instruction to OR the 16-bit contents of two
operands. For example, if workspace register 3 contains FF0016 and loca-
tion NEW contains AAAA16, then the instruction

SOC 3, @NEW

changes the contents of location NEW to FFAA . while the contents of work
space register 3 is unchanged. This is shown as

1111111100000000 (Source operand)

1010101010101010 (Destination operand):

1111111110101010 (Destination operand result)
For this example, the logical greater than status bit sets and the arithmetic
greater than and equal status bits reset.

Assembly language format:
[<label>] ¥ SOC h$<gas>,< ga, > [B<comment >]

4.7.7 SOCB (SET ONES CORRESPONDING, BYTE)

Op code: F000

Format:

10 U S I O I D T

Definition: Set to a logic one the bits in the destination operand byte that
correspond to any logic one in the source operand byte. Leave unchanged
the bits in the destination operand that are in the same bit positions as the
logic zero bits in the source operand byte. The changed destination operand
byte replaces the original destination operand byte. This operation is also
effectively an OR of the two operand bytes. The AU compares the resulting
destination operand byte to zero and sets/resets the statvs bits to indicate
the results of the comparison. The odd parity status bit sets when the bits
in the resulting byte establish odd parity.

Addressing modes: Format I instructions

Status affected: Logical greater than, arithmetic greater than, equal and

odd parity.
Execution results: (gas)OR(gad)——*(gad)

4-59 Digital Systems Division

e}
{_@@ 943442-9701

Application notes: Use the SOCB instruction to OR two byte operands. For
example, if workspace register 5 contains the value F013;, and workspace
register 8 contains the value AA24,,, then the instruction

SOCB 5,8

changes the contents of workspace register 8 to FA24;,, while the contents
of workspace register 5 is unchanged. This is shown as

1111000000010011 (Source operand)
1010101000100100 (Destination operand)

1111101000100100 (Destination operand result)

(Unchanged)

For this example, the logical greater than status bit sets while the arith-
metic greater than, equal, and odd parity status bits reset.

Assembly language format:
[<label>] ¥ SOCB lzﬁ<gas>) < gad>[b <comment >]

4.7.8 SZC (SET ZEROS CORRESPONDING)

Op code: 4000

Format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ol1lolo] T4 D Ty S

Definition: Set to a logic zero the bits in the destination operand that corre-
spond to the bit positions equal to a logic one in the source operand. This
operation is effectively an AND operation of the one's complement of the
source operand and the destination operand. The AU compares the resulting
destination operand to zero and sets/resets the status bits to indicate the re-
sults of the comparison,

Addressing modes: Format I instructions

Status affected: Logical greater than, arithmetic greater than, and equal.

Execution results: (INV (gas))AND(gad)—(gad)

Application notes: Use the SZC instruction to turn off flag bits or AND the
contents of the one's complement of the source operand and the destination
operand. For example, if workspace register 5 contains 6D0316 and work-
space register 3 contains D2AA16, then the instruction

SZC 5,3

4-60 Digital Systems Division

943442-9701 SZC, SZCB

changes the contents of workspace register 3 to 92A8,, while the contents
of workspace register 5 remain unchanged. This is shown as

0110110100000011 (Source operand)
1101001010101010 (Destination operand)

1001001010101000 (Destination operand result)
For this example, the logical greater than status bit sets while the arith-
metic greater than and equal status bits reset.

Assembly language format:
[<label>] B SZC ¥<ga >,< gad>[B<comment >|
S

4,7.9 SZCB (SET ZEROS CORRESPONDING, BYTE)

Op code: 5000

Format:

ol1]lol1] Tq D T s

Definition: Set to a logic zero the bits in the destination vperand byte that
correspond to the bit positions equal to a logic one in the source operand
byte. This operation is effectively an AND operation of the one's comple-
ment of the source operand byte and the destination operand byte. The AU
compares the r esulting destination operand byte to zero and sets/resets the
status bits to indicate the result of the comparison. The odd parity status
bit sets when the bits in the resulting destination operand byte establish odd
parity. When the destination operand is addressed in the workspace regis-
ter mode, the least significant byte (bits 8-15) is unchanged.

Addressing modes: Format I instructions

Status affected: Logical greater than, arithmetic greater than, equal, and
odd parity.

Execution results: (INV(gaS))AND(gad) _ (gad) (Byte, bits 0-7 or 8-15)

Application notes: The SZCB instruction is used for the same applications,
except for bytes instead of words. For example, if location BITS contains
the value F01816, and location TESTVA contains the value AA2,416, then

SZCB @BITS, CTESTVAL

changes the contents of TESTVA to 0A2416 while BITS remains unchanged.
This is shown as

4-61 Digital Systems Division

[e]
@ 943442-9701

1111000000011000 (Source operand)
1010101000100100 (Destination operand)

0000101000100100 (Destination operand result)

(Unchanged)

For this example, the logical greater than and arithmetic greater than status
bits set while the equal and odd parity status bits reset.

Assembly language format:
[<label>] B SZCB 1;6<gas >, < gad>[B < comment >]

4.7.10 XOR (EXCLUSIVE OR)

Op code: 2800

Format:

(o] 1 2 3 4 S5 6 7 8 9 10 11 12 13 14 15

ojfol1]lo}1]o D T, S

Definition: Perform a bit-by-bit exclusive OR of the source and destination
operands, and replace the destination operand with the result, This exclu-
sive OR is accomplished by setting the bits in the resultant destination op-
erand to a logic one when the corresponding bits of the two operands are not
equal. The bits in the resultant destination operand are reset to zero when
the corresponding bits of the two operands are equal. The AU compares the
resultant destination operand to zero and sets/resets the status bits to in-
dicate the result of the comparison.

Addressing modes: Format III instructions

Status affected: Logical greater than, arithmetic greater than, and equal.

Execution results: (gaS)XOR (wa.d)—-(wad)

Application notes: Use the XOR instruction to perform an exclusive OR on
two word operands. For example, if workspace register 2 contains D2AA,
and location CHANGE contains the value 6D03 then the instruction

16’
XOR @CHANGE, 2

results in the contents of workspace register 2 changing to BFA916. Loca-
tion CHANGE remains 6D0316' This is shown as

4-62 Digital Systems Division

(o]
%@ 943442-9701 XOR, SRA

0110110100000011 (Source operand)

1101001010101010 (Destination operand)

1011111110101001 (Destination operand result)

For this example, the logical greater than status bit sets while the arith-
metic greater than and equal status bits reset.

Assembly language format:

[<label >] B XOR ¥B< ga_>,<wa,> [B<comment >]

4.8 WORKSPACE REGISTER SHIFT INSTRUCTIONS

Workspace register shift instructions permit the shifting of the contents of
a specified workspace register from one to sixteen bits. The shifting in-
structions included in this paragraph are:

Instruction Mnemonic Paragraph
Shift Right Arithmetic SRA 4,8.1
Shift Right Logical SR L 4,.8.2
Shift Left Arithmetic SLA 4,8.3
Shift Right Circular SRC 4.8.4

For each of these instructions, if the shift count in the instruction is zero,
the shift count is taken from workspace register 0, bits 12 through 15. If
the four bits of workspace register 0 are then equal to zero, the shift count
is 16 bits. The logic value of the last bit shifted out of the workspace reg-
ister is placed in the carry status bit position, bit 3 of the status register.
The shifted value is always compared to zero and the results of this com-
parison are shown in status bits logical greater than, arithmetic greater
than, and equal (bits O through 2 of the status register).

4.8.1 SRA (SHIFT RIGHT ARITHMETIC)

Op code: 0800

Format:

4-63 Digital Systems Division

@ 943442-9701

Definition: Shift the contents of the specified workspace register to the right
for the specified number of bit positions, filling vacated bit positions with
the sign bit. (Refer to paragraph 4.8 for restrictions and results.)

Addressing mode: Format V instructions

Status affected: Logical greater than, arithmetic greater than, equal, and
carry.

Application notes: An example of an arithmetic right shift is: If workspace
register 5 contains the value 822416’ and workspace register O contains the
value F32616, then the instruction

SRA 5,0

changes the contents of workspace register 5 to FE081¢. The logical greater
than and carry status bits set while the arithmetic greater than and equal
status bits reset. Additional examples are shown in Section V.

Assembly language format:
[<label>] b SRA b<wa>, <scnt>[b<comment>]

4.8.2 SRL (SHIFT RIGHT LOGICAL)

Op code: 0900

Format:

Definition: Shift the contents of the specified workspace register to the right
for the specified number of bits while filling the vacated bit positions with
logic zero values. (Refer to paragraph 4.8 for restrictions and results.)

Addressing modes: Format V instructions

Status affected: Logical greater than, arithmetic greater than, equal, and
carry.

Application notes: An example of a logical right shift is: If workspace reg-
ister zero contains the value FFEF16, then the instruction

SRL 0,3

changes the contents of workspace register 0 to 1FFD;¢. The logical
greater than, arithmetic greater than and carry status bits set while the
equal status bit resets. Additional examples are shown in Section V,

Assembly language format:
[<label>] b SRL b<wa>, <scnt>[b<comment>]

4- 64 Digital Systems Division

(o]
{@ 943442-9701 SRL, SLA, SRC

4.8.3 SLA (SHIFT LEFT ARITHMETIC)
Op code: 0A0O

Format:

(o] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 1 011 0 C w

Definition: Shift the contents of the specified workspace.register to the left
for the specified number of bit positions while filling the vacated bit posi-
tions with logic zero values. (Refer to paragraph 4.8 for execution restric-
tions and results.) Note that the overflow status bit sets when the sign of
the word changes during the shifting operation.

Addressing mode: Format V instructions

Status affected: Logical greater than, arithmetic greater than, equal, and
carry and overflow.

Application notes: An example of an arithmetic left shift is: If workspace
register 10 contains the value 135716’ then the instructicon

SLA 10, 5

changes the contents of workspace register 10 to 6AE016. The logical
greater than, arithmetic greater than, and overflow statuis bits set while the
equal and carry status bits reset. Refer to Section V for additional examples.

Assembly language format:
[<label>] b SLA b<wa>,<scnt>] b<comment>]

4.8.4 SRC (SHIFT RIGHT CIRCULAR)

Op code: 0BOO

Format:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 0 0 1 0 1 1 C w

Definition: Shift the specified workspace register to the right for the speci-
fied number of bit positions while filling vacated bit positions with the bit
shifted out of position 15. (Refer to paragraph 4.8 for execution restrictions
and results.)

Addressing mode: Format V instruction

4-65 Digital Systems Division

(o]
{@? 943442-9701

Status affected: Logical greater than, arithmetic greater than, equal, and
carry.

Application notes: An example of a circular right shift is: If workspace
reigster 2 contains the value FFEF ¢, then the instruction

SRC 2,7

changes the contents of workspace register 2 to DFFF .. The logical greater
than and carry status bits set while the arithmetic greater than and equal
status bits reset. Refer to Section V for additional application notes.

Assembly language format:
[<label>] b SRC b<wa>, <scnt>[b<comment>]

4.9 XOP (EXTENDED OPERATION INSTRUCTION)

Op code: 2C00

Format:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-t

ofol1lofl1]1 D T, S

Definition: Refer to Section II for a definition of a hardware implemented
XOP instruction.

When the XOP is software implemented, the D field specifies the extended
operation trap location in memory. The two memory words at that location
contain the WP contents and PC contents for the software implemented XOP
instruction subroutine. The memory location for these two words is de-
rived by multiplying the D field contents by four and adding the product to
0040;¢. Note that the two memory words at this location must contain the
necessary WP and PC values prior to the XOP instruction execution for soft-
ware implemented instructions.

The effective address of the source operand is placed in workspace register
11 of the XOP workspace. The WP contents are placed in workspace regis-
ter 13 of the XOP workspace. The PC contents are placed in workspace reg-
ister 14 of the XOP workspace. The ST contents are placed in workspace
register 15 of the XOP workspace. Control is transferred to the new PC ad-
dress and the software implemented XOP is executed. (XOP execution of
software implemented XOP instruction is similar to an interrupt trap exe-
cution.)

Addressing modes: Format IX instructions

4-66 Digital Systems Division

o
{@ 943442-9701 , <OP

Status affected: XOP (bit 6). (The remaining status bit$ may or may not be
affected by the execution of the sequence of executable code called the soft-
ware implemented XOP,)

Execution results: (gas)—ﬂ(WRl 1) (Of new XOP workspace)
(WP)—(WR13) (Of new XOP workspace)
(PC)——(WR 14) (Of new XOP workspace)
(ST) — (WR15) (Of new XOP workspace)
(0040

16 + (Wad)'*élc) —(WP)
(0040, + (wa)¥4 + 2)—(PC)

Application notes: Refer to Section V for a detailed example of the execu-
tion of a software implemented XOP instruction.

Assembly Language format:
[<label>] B XOP B<gas>,< wa

4 > [h<comment >]

4-67/4-68 Digital Systems Division

(o]
@ 943442-9701

SECTION V

PROGRAMMING CONVENTIONS

5.1 GENERAL

The contents of this section include various descriptions and examples of the
programming conventions of the Model 990 Computer. The descriptions con-
tain pertinent information about programming in 990 assembly language.
Where a description may be confusing, specific coding examples and memory
diagrams are included for additional information. Wheré memory or word
diagrams are shown, any remaining memory not specifically included in the
diagram is assumed to be contiguous to that shown. Also, the diagrams that
include specific memory addresses do not limit the use of memory to that
shown in the diagram. Any available memory may be used at the discretion
of the programmer.

5.2 SAMPLE PROGRAM FORMS

There are three types of elements in a program for the Model 990 Computer.
These are the procedure, the workspace, and the data. The procedure con-
tains the computer instructions. The workspace contains program linkage,
high activity data, and addresses. As many workspaces ns convenient may
be allocated for a program. Data areas may be allocated as required.

The three previously described hardware registers - WP, PC, and ST - con-
trol program execution. The workspace pointer contains the address of the
first word of a 16-word area of memory called the workspace. Note that the
program workspace may be changed by changing the contents of the WP reg-
ister. The PC contains the address of the next instruction to execute. The
status register contains condition bits set by instructions: already performed
and the interrupt level mask. (Refer to Section IV for another description of
these registers.) These three registers then, completely control and define
the context of a program.,

The general environment of the 990 Computer is shown in figure 5-1, This
arrangement of workspace, procedure, and data is the siinplest approach to
990 programming. However, though many application programs may be
written in this manner, a more segregated approach, with possibly several
workspaces, data areas, and connected simple procedures, would provide
increased flexibility and applicability.

5.2,1 PROCEDURE

A procedure is the main body of a program and contains ¢omputer instruc-
tions. It is the action part of a program. A procedure rray also be used as
the body of a subroutine. Procedures could be coded to solve an equation,
run a motor, determine status of a process, or condition a set of data that

5-1 Digital Systems Division

943442-9701

MEM ORY
MEMORY
ADDRESS MEMORY
HARDWARE REGISTERS USE
WP 0100 -— — — —% 0100 WRO
0102 WR1
PC 0220 - = 0104 WR2
|
|
. ’JJ "L/
| [a'V] ﬁr,
sT |
|
| 011C WR14
|
| 0H1E WRI15
I L n
! Y v
! 0200 PROGRAM
' ~ ~
~J ~
| 021E (INSTRUCTION IN EXECUTION) PROCEDURE
L —» 0220 (NEXT INSTRUCTION) AREA
CONTAINING
~s ~N
~no AJMACHINE
04CO INSTRUCTIONS
Fa
¥ G
IOO(LL PROGRAM
a
VA
1120 DATA AREA
(A)128614

Figure 5-1. 990 Programming Environment

is to be processed by another procedure. Procedures in the 990 Computer
may have workspaces and data as an integral part of the coding or may use
workspaces and data passed from another procedure.

5.2.2 WORKSPACE

The Model 990 Computer uses workspaces that may be anywhere in memory
and that consist of sixteen consecutive memory words. Refer to Section II
and Section IV for additional information about the workspaces.

5-2 Digital Systems Division

(e}
{@Jp 943442-9701

5.2.3 DATA

Data for a procedure may appear in many forms. In assembly language,
there are three instructions available to the programmer. to initialize data
within a program module. These instructions are:

° DATA - Initializes one or more consecutive wortds of memory to
specific values that are input on this statement.

° BYTE - Initializes one or more consecutive bytds of memory as
does the DATA statement, except that bytes are’initialized.

° TEXT - Initializes a textual string of characters in consecutive bytes
of memory. The characters are represented in:USASCII code.

Also, data input from the data terminal or device attached to the CRU or
TILINE is available to procedures in the 990 Computer.

5.3 PROGRAMMING IN ASSEMBLY LANGUAGE

5.3.1 ASSEMBLY LANGUAGE

Use of an assembly language permits the programmer to.express a task or
problem in a symbolic notation (mnemonic) rather than a more cumbersome
binary machine code, This symbolic notation permits the assembler to cre-
ate machine binary coded instructions, which relieves the programmer of
most of the clerical work required to determine the binary machine code and
binary addressing information, Additional symbolic notation permits the pro-
grammer to include modules that are not part of the main program module,
The assembler then determines the necessary addressing and control infor-
mation, An example of this symbolic notation follows:

Operation Mnemonic Op-Code
Addition A A000
Move MOV 000
Increment By Two INCT 05C0

As can be seen from these examples, symbolic notation more closely re-
sembles the normal means of communication than does the Op-Code notation.
Also, the use of symbolic notation permits references between parts of a
program module and references to other program modules to be expressed
symbolicly rather than by binary machine code.

5.3.2 LANGUAGE REQUIREMENTS

To properly code a source program to be processed by tHe assembler, sev-
eral requirements must be adhered to. These requiremaents are listed in the
Appendix H.

5-3 Digital Systems Division

(o]
i@[]@ 943442-9701

Texas Instruments suggests that source programs
be created in a sequence that is logical. This se-
quence would include flowcharting the problem,
coding the source statements on a coding form for
convenience, inputting the source statements (from
cassette, or punched paper tape), and then assem-
bling the program using the MIRA assembler.

NOTE

5.4 ASSEMBLER DIRECTIVES AND PSUEDO-OPERATIONS

Appendix I defines the assembler directives that are available with the 990
Computer, Table 5-1 summarizes these directives. Also described are
the two pseudo-instructions available with the 990 Computer. Assembler
directives are grouped in the following categories:

. Directives that affect the location counter
° Directives that affect assembler output

° Directives that initialize constants

° Directives that link programs

° Miscellaneous directives

. Psuedo-operation directives

Each assembler directive contains the following fields that must be separated
by one or more blanks (1).

<label>p<operator>¥<operand>B<comment>

5.5 ADDRESSING MODES

There are eight addressing modes available with the 990 machine instructions
and the exact mode used depends upon the format of the particular machine
instruction, Five addressing modes are described in Section IV, The three
additional addressing modes are defined as the immediate mode, the dis-
placement mode, and the shift count mode. The immediate mode is simply
placing the immediate operand in the memory word immediately following the
instruction, The displacement mode is a displacement value supplied in the
instruction. The shift count is supplied in the instruction for shifts,

5.6 TESTING AND JUMPING

The set of testing and jumping instructions permits the programmer to vary
the execution path of the program module according to a particular status
condition or to a particular CRU line logic level. (Refer to Section IV for a

5-4 Digital Systems Division

g-=g

uojsialg sweisAs (enbig

Table 5-1. Assembler Directives
Title Label Operator Field Contents Operand Comment
Absolute origin Optional AORG Well defined expression Optional
Relocatable origin Optional RORG Optional, relocatable expression with de- Optional3
fined symbols
Block starting with Required! BSS Well defined expression Optional
symbol)
Block ending with Required1 BES Well defined expression Optional
symbol
Word boundary Optional EVEN Not used Optional
Program identifier Optional IDT Program name, 8-character string Optional
Page title Optional2 TITLZ 50-character string (max) Optional2
List source Opt:iona,l2 LIST? Not used Optional?
No source list Optional2 UNLZ Not used Optiona,l2
Page eject Opl:ional2 PAGEZ Not used Optional?
Initialize byte Optional BYTE One or more expressions, separated by Optional
commas, with previously defined symbols
Initialize wora Optional DATA One or more expressions, separated by Onptional

commas, with previously defined symbols

NOTES: 1.

2. Not printed.
3. Used only if operand field used.

If required, must be symbol.

See Appendix I for complete definitions of these directives.

!}

10L6-27PE¥6

o

9-g

uoISIAIg swelsAs renbig

Table 5-1. Assembler Directives (Continued)

Title Label Operator Field Contents Operand Comment
Initialize text Optional TEXT Character string of not more than 52 char- Optional
acters
Define assembly- Required! EQU Expression that contains no symbol that is Optional
time constant not previously defined
External definition Optional DEF One or more symbols that are separated by Optional
commas
External reference Optional REF One or more symbols that are separated by Optional
‘ commas
Define extended Optional DXOP Symbol and a term separated by commas Optional
operation
Program end Optional END Optional, contains symbol that specifies Optional3

program entry point

NOTES: 1. If required, must be symbol.
2. Not printed.
3. Used only if operand field used.

See Appendix I for complete definitions of these directives.

10L6-2%%CH6

\J’—i[’]p 943442-9701

discussion of the machine instructions involved.) Several of these instruc-
tions may be used for other than the obvious purposes which are described
in the following paragraphs.

TB (Test Bit) CRU line logic level test transfers the logic level from the
indicated CRU line to the equal status bit without modification. If the CRU
line tested is set to a logic one, the equal status bit sets'to a logic one and
if the line is zero, sets to a zero. JEQ will then transfer control when the
CRU line is a logic one and will not transfer control when the line is a logic
zero. In addition, JNE will transfer control under the exact opposite condi-
tions.

JOP (Jump Odd Parity) transfers control if the byte testéd contains an odd
number (sum) of logic one bits. This factor may be used in data transmis-
sions where the parity of the transmitted byte is used to ensure the validity
of the received character at the point of reception.

JNO (Jump No Overflow) normally will transfer control during arithmetic
sequences where addition, subtraction, incrementing, and decrementing may
cause an overflow condition. JNO may also be used during an SLA (Shift Left
Arithmetic) operation., If, during the SLA execution, the sign of the work-
space register being shifted changes (+ to -, - to +), the:overflow status bit
sets. This feature permits transfer, after a sign change, to error correction
routines or to another functional code sequence.

A feature of the ABS (Absolute) machine instruction that . may be used as a
switch testing function is that the status bits are set/reset according to the
value of the operand prior to the execution of ABS when that operand is com-
pared to zero. The following example program sequence illustrates this
capability implemented as an entrance condition switch for a subroutine.

PROBLEM: There exists a subroutine that can only be used by one program
module at a time. A flag is maintained to indicate whenithe subroutine is in
use. A method is required to test the flag and reset it if required. The test
must be insensitive to program interruption because the .interrupt may alter
the sequence in which the program modules are executed. The following
sequence of generalized code illustrates the problem solution.

SETO @SWITCH INITIALIZE SWITCH NEGATIVEL

TEST ABS @SWITCH TEST SWITCH?
JLT CALL IF NEGATIVE, TRANSFER?3
IDLE IF NOT, WAIT#
IMP TEST TEST AGAIN

5-7 Digital Systems Division

[e]
%@ 943442-9701

CALL BL @SUBR USE SUBROUTINE
SETO @SWITCH RESET SWITCH5

SUBR e SUBROUTINE ENTRY
B %11 SUBROUTINE RETURN
SWITCH DATA 0 STORAGE AREA FOR SWITCH
NOTE

1. Set SWITCH to all ones, making it negative.

2. If SWITCH negative, set to positive value to
prevent subsequent entry,

3. If value in SWITCH was negative, the JLT
instruction transfers control.

4, Used to wait for the next interrupt point.
(Refer to Section IV.)

5. Upon return, reset SWITCH to negative value
to permit future use.

5.7 SHIFTING INSTRUCTIONS

There are 4 shifting instructions available with the 990 Computer that permit
the user to shift the contents of a specified workspace register from one to
sixteen consecutive bit positions.

- The four shifting instructions are:
° Shift Left Arithmetic (SLA)
° Shift Right Arithmetic (SRA)
° Shift Right Circular (SRC)
. Shift Right Logical (SRL)

5.7.1 SHIFT LEFT ARITHMETIC (SLA)

This shifting instruction shifts the indicated workspace register a specified
number of bits to the left. For example, the instruction

SLA 5, 1

would shift the contents of register five one bit to the left. The carry status
bit contains the value shifted out of bit position zero and the jump instructions
JOC and JNC permit the user to test the shifted bit., The overflow status bit

5-8 Digital Systems Division

%@fp 943442-9701

sets when the sign of the contents of the register being shifted changes during
the shift operation. If register five contained

© 0100111100000111

before the above instruction, the results of the instructicn execution would be
1001111000001110

and the carry status bit would contain a zero and the overflow status bit would
set because the contents changed from positive to negative (bit zero equal to
zero changed to equal to one). If this shift sign change is important, the user
could insert a JNO instruction to test the overflow condition. If there is no
overflow, control transfers to the normal program sequence. Otherwise, the
next instruction is then executed.

It is possible to construct double-length shifts with the SI.A instruction, which
could shift two or more words in a workspace. The following code will shift
two consecutive workspace registers,

° Assumptions:
1. Workspace register one and two are shifted.
2. If overflow, transfer to ERR (error routine:.

3. There must be some additional method of determining when the
shift is complete, so additional control code should be included.

° Code:
SLA 1,1 SHIFT W1 ONE BIT
SLA 2,1 SHIFT W2 ONE BIT
JNC $+4 TRANSFER IF NO CARRY
INC 1 TRANSFER BIT FROM W2 TO W1

5.7.2 SHIFT RIGHT ARITHMETIC (SRA)

This shifting instruction shifts the contents of a workspace register a spec-
ified number of bits and extends the sign bit (bit zero) at the logic level that
existed prior to the shift. The carry status bit contains the last bit shifted
out of bit 15 of the workspace register. For example, thz instruction

SRA 5,3

5-9 Digital Systems Division

o]
%@ 943442-9701

would shift the contents of workspace register five three bits to the right.
If workspace register five contained '

1100000011110000
prior to the shift, the results of this instruction would be
1111100000011110

and the carry status bit would contain a logic zero for the last shifted bit.

5.7.3 SHIFT RIGHT CIRCULAR (SRC)

The SRC instruction shifts the contents of a workspace register a specified
number of bits to the right and transfers the bits shifted off the right end of
the workspace to the left end of the workspace. The carry status bit con-
tains the last bit shifted out of bit 15 of the workspace register. For ex-
ample, the instruction

SRC 5,5

would shift the contents of register five five bits to the right and transfer the
five bits shifted off the right end to the first five bits of workspace register
five. For this example, if workspace register five contained

1100110011110101

before this instruction was executed, workspace register five would contain
1010111001100111

and the carry status bit would contain a logic one from the last bit shifted in
workspace register five.

5.7.4 SHIFT RIGHT LOGICAL (SRL)

The SRL instruction shifts the contents of a specified workspace register to
the right for a specified number of bits and fills the vacated bit positions on
the left end of the workspace with zeros., The carry status bit contains the
last bit shifted out of bit 15 of the workspace register. For example, the
instruction

SRL 5,8

would shift the contents of workspace register five eight bits to the right and
would fill the fir st eight bits of the word with zeros. If the workspace regis-
ter contained

1000100011111000
prior to the SRL instruction, the contents of workspace register five would be

0000000010001000

5-10 Digital Systems Division

{@ 943442-9701

and the carry status bit would contain a logic one for the last bit shifted off
the right end of workspace register five.

5.8 INCREMENTING AND DECREMENTING

There are two decrement and two increment instructions that may be used
for various types of control when passing through a loop, indexing through an
array, or operating within a group of instructions.

The four incrementing and decrementing instructions available for use with
the 990 Computer are:

° Decrement (DEC)

° Decrement By Two (DECT)
. Increment (INC)

° Increment By Two (INCT)

The increment and decrement instructions are useful for indexing byte ar-
rays and for counting byte operations., The increment and decrement by two
instructions are useful for indexing word arrays and for counting word oper -
ations. The following paragraphs provide some examples of these operations.

5.8.1 INCREMENT INSTRUCTION EXAMPLE

Since the INC instruction is useful in byte operations, an.example problem
would be to search a character array for a character with odd parity. Begin
the search at the lowest address of the array and maintain an index in a work-
space register, The character array for this example is called Al (also the
relocatable address of the array). The last character in the array will always
be a binary zero. The sample code for this problem is: -

LI 1, FFFF CLEAR COUNTER INDEX
SEARCH INC 1 . INCREMENT INDEX

MOVB @A1(1),2 GET CHARACTER

JOP ODDP JUMP IF FOUND

JNE SEARCH CONTINUE SEARCH IF NOT ZERO

ODDP

5.8.2 DECREMENT INSTRUCTION EXAMPLE

Since the DEC instruction is useful in byte operations, this example problem
inverts a byte array and places the results in another array of the same size.

5-11 Digital Systems Division

@@ 943442-9701

This example inverts a 26-character array called Al (also the relocatable ad-
dress of the array) and places the results in an A2 array (A2 also the relo-
catable address). The contents of Al are defined with a data TEXT statement

to be as follows:

Al TEXT 'ABCDEFGHIJKLMNOPQRSTUVWXYZ!
Array A2 is defined with the BSS statement as follows:

A2 BSS 26

The sample code for the solution is:

LI 5,25 COUNTER AND INDEX FOR Al
LI 4, A2 ADDRESS OF A2
INVRT MOVB @A1(5), x4+ INVERT ARRAY!
DEC 5 REDUCE COUNTER
JOC INVRT CONTINUE IF NOT COMPLETE?2
NOTE

1. @A1l(5) addresses elements of array Al in
descending order as workspace register five
is decremented. *4+ addresses array A2 in
ascending order as workspace register four
is incremented.

2. A carry occurs except when the count in
workspace register five is decremented
from zero to a minus one, which occurs on
the 26th decrement,

Array AZ would contain the following as a result of executing this sequence
of code:

A2 ZYXWVUTSRQPONMLKJIJIHGFEDCBA

Even though the result of this sequence of code is trivial, the example use of
the MOVB instruction, with indexing by workspace register five, and the re-
sult incrementally placed into A2 with the auto-increment function can be
useful in other applications,

5-12 Digital Systems Division

{A@;} 943442-9701

5.8.3 DECREMENT BY TWO EXAMPLE INSTRUCTION

Since the DECT instruction is useful in word operations, the example problem
chosen adds the contents of a word array to another word array and places the
results in the second array. The contents of the two arrays are initialized

as follows:

Al DATA 500, 300, 800, 1000, 1200, 498, 650, 3,27, 0
A2 DATA 36,192,517, 29, 315,807, 290, 40, 130, 1320

The sample code that adds the two arrays is as follows:

LI 4,18 INITIALIZE COUNTER!
SUMS A @A1(4),@A2(4) ADD ARRAYSZ
DECT 4 DECREMENT COUNTER BY TWO
JOC SUMS REPEAT ADDITION?
NOTE
1. Counter is initialized to 18 so that when the

addition process is complete, there will be a
negative value of two in the counter and the
carry status bit will not be set,

2. Addressing of the two arrays through the use
of the @ sign is indexed by the counter, which
is decremented after each addition.

3. There is a carry status bit set when the
counter changes from a zero to a negative
two and the JNC instruction will not be
taken when the addition process is com-
plete.

The contents of the A2 array after the addition process is as follows:
A2 536,492,1317,1029, 1515, 1305, 940,43, 157, 1320

There is another method by which this addition process may be accomlpliShed.
This method is shown in the following code:

LI 4,10 INITIALIZE COUNTER!

LI 5, Al LOAD ADDRESS OF Al2

LI 6, A2 LOAD ADDRESS OF A22
SUMS A #54, %6+ ADD ARRAYS3

DEC 4 DECREMENT COUNTER

JGT SUMS REPEAT ADDITION#4

5-13 Digital Systéms Division

[e]
{@? 943442-9701

NOTE

1. Counter preset to 10 (the number of elements
in the array).

2. This address will be incremented each time
an addition takes place., The increment is via
the auto-increment function (+).

3., The * indicates that the contents of the register
is to be used as an address and the + indicates
that it will be automatically incremented by two
each time the instruction is executed.

4, Workspace register four will only be greater
than zero for ten executions of the DEC in-
struction and control will be transferred to
SUMS nine times after the initial execution.

The second method is not as efficient as the first, but it is available to the
user., It is not as efficient because it takes more instructions to accomplish
the same result and it requires two more workspace registers than the first.
The contents of array A2 are the same for this method as for the first.

5.9 SUBROUTINES

There are two types of subroutine linkage available with the 990 Computer.
The primary difference is in workspace allocation. The BL instruction simply
saves the present contents of the PC in the current workspace register 11

and transfers control to the address specified by the instruction. This is
illustrated in figure 5-2, The BLWP instruction is used to store linkage and
switch context in one operation. This instruction saves the WP in workspace
register 13 of the subroutine, the PC in workspace register 14 of the subrou-
tine, and the ST in workspace register 15 of the subroutine. This is shown

in figure 5-4,

To return from a subroutine entered by a BL instruction, the user may use
either the RT psuedo-instruction or a B *11 (branch to the address in work-
space register 11), To return from a subroutine entered by a BLWP instruc-
tion and restore the original environment, use the RTWDP instruction.

5.9.1 BL SUBROUTINE CALL EXAMPLE

Figure 5-2 shows an example of memory contents prior to a BL call to a sub-
routine. Note that the content of workspace register 11 is not important to
the main routine. When the BL instruction is executed, the CPU stores the
contents of the PC in workspace register 11 of the main routine and transfers
control to the instruction located at the address indicated by the operand of the
BL instruction. This type of subroutine uses the main program workspace.
Figure 5-3 shows the memory contents after the call to the subroutine with
the BL instruction.

5-14 Digital Systems Division

943442-9701

MEMORY MEMORY
ADDRESS
HARDWARE #0100 MAIN PROGRAM WORKSPAGCE (WRO)
REGISTERS |
”v LA XN] ﬂL’
o v N
WP 0100 -—--
(WR11)
9 ~
Fa LELXE] ﬁ
PC 1134 === ~ o
I .
y - 1020 A, MAIN PROGRAM A,
| M~ i
EXECUTION |
ST . 1130 BL @RAD
STATUS lom 1134 A, JINE FIX A
(Y] H N~
L]
2220 RAD oo
,_L SUBROUTINE AREA ~
~y . ~
L]
L]
B *11
(A)128615A
Figure 5-2. Example Subroutine Call (BL)
MEMORY MEMORY
ADDRESS
HARDWARE #0100 (WRO)
REGISTER |
~N ~N
WP 0100 R N~ e e ~
1134 (WR11)
?" o o0 o
PC 2220 ==
I 1020 MAIN PROGRAN
EXECUTION |I 1130 BL_@RAD
ST - | 1134 JNE FIX
STATUS | ~A,
|

L..ZZZC RAD , 4. e

SUBROUTINE AREA

B *11

_e
~lvavavel ol

AR

(A)128616A

Figure 5-3, Status After BL Executioa

5-15 Digital Systems Division

o
@ 943442-9701

When the instruction at location 113074 is executed (BL @RAD), the present
contents of the PC, which point to the next instruction, are saved in work-
space register 11. WRI1 would then contain an address of 1134;,. The PC
is then loaded with the address where the label RAD appears, which is ad-
dress 222074+ This example subroutine returns to the main program with a
branch to the address in WR11 (B *11).

5.9.2 BLWP SUBROUTINE CALL EXAMPLE

Figure 5-4 shows the example memory contents prior to the call to the sub-
routine. Note that the contents of workspace registers 13, 14, and 15 are not

MEMORY

MEMORY
ADDRESS) P
(#0100 (WRO0)
|
' ﬁ: oo o o ﬂ:
|
l 0220 (WRS)
|
' 0700 (WRS6)
|
| :: e e o0 ::
: 0220 (WRO)S
|
ﬂu ﬂv
HARDWARE : VY e 2]
REGISTERS -: WR19)S
] _
WP 0100 WRIDS
(WR15)S
Pc 0300 T jI :: o0 00 ATJ
| o260 MAIN PROGRAM AREA ’_L
o EXECUTING I oA : ~n
|
STATUS “g»» 0300 BLWP 5
.
~N L4 ﬂ.’
L]
(WRn)=WORKSPACE REGISTER W : Vv
OF MAIN PROGRAM 4700 peppe
(WRn)S = WORKSPACE REGISTER .
OF SUBROUTINE A SUBROUTINE AREA A
f‘v [’\u
[]
o
RTWP

(A)128617A

Figure 5-4, BLWP Subroutine Call Before Execution

5-16 Digital Systems Division

e

/]

943442-9701

presently used. When the BLWP instruction is executed at location 0300,
there is a context switch from the main program to the subroutine. The con-
text switch then places the main program PC, WP, and ST register contents
in workspace registers 13, 14, and 15 of the subroutine. ' This saves the
environment of the main program for return. This type of subroutine main-
tains a workspace that is possibly not the same as the workspace of the main
program.

After the instruction at location 0300 is executed, the merory contents are
shown in figure 5-5. This illustration shows the subroutine in control, with
the WP pointing to the subroutine workspace and the PC pointing to the first
instruction of the subroutine. The contents of the status register are not

MEMORY MEMORY
ADDRESS ?
0100 (WRO)
n
2: oo 00 :
0220 (WRS)
0700 (WRE6)
A ~Nr
N, ~
@ 0220 (WRO)S
|
| Y A
HARDWARE | qJ oo e qv
REGISTERS I
| 0100 (WR13)S
WP 0220 - — —
0302 (WR14)S
EXECUTING STATUS (WR15)S
PC 0700 - — — pu
1 A o0 o0 LJ
| W i o
: ozao,L MAIN PROGRAM AREA ,.L
ST EXECUTING | :
STATUS | 0300 BLWP 5
®
} .
| L[]
L]
I i
L—Do7oo

(A)128618A

START es 00
.

SUBROUTINE AREA
.

RTWP

93
|49

Figure 5-5. BLWP Subroutine Call After BLWP 5 Execution

5-17

Digital Systems Division

(o]
%@ 943442-9701

reset prior to the execution of the first instruction of the subroutine, so the
status indicated will actually be the status of the main program execution.

A subroutine may then execute in accordance with the status of the main pro-
gram.

This example subroutine contains a RTWP return from the subroutine. The
results of executing the RTWP instruction are shown in figure 5-6. Control
is transferred to the main program at the instruction following the BLWP to
the subroutine. The status register is restored from workspace register 15
and the workspace pointer points to the workspace of the main program,

MEMORY MEMORY
ADDRESS?
r —8»0100 (WRO)
I ’-u LE N N] s
| N~ o
| 0220 (WR5)
HARDWARE |
REGISTERS | 0700 (WRS6) |
wP 0100 I -~ - ~ cose ~
~ 0200 (WR0)S
~
— — 9 a ~
PC 0302 N 1 ~ ¥ cece A
~ L
™~ - ™ 0100 (WR13)S
ST EXECUTING I ~
STATUS g < 0302 (WR14)S
I T —
I EXECUTING STATUS (WR15)S
~N
| ﬁ: ee 00 f}',
I 026%, MAIN PROGRAM AREA
| ~no e nr_,
L .
- 0300 BLWP 5
[)
A . A
'Tra . ~
0700 START.. .o
. A
q-z SUBROUTINE AREA A
i : i
L]
[4
[]
RTWP
(A)128619A e

Figure 5-6. BLWP Subroutine Call After RTWP Execution

5-18 Digital Systems Division

o
{@p 943442-9701

5.9.3 BLWP PROGRAMMING NOTES

Workspace register 13 of the subroutine contains the meinory address of the
calling program's workspace. WR14 of the subroutine contains the memory
address of the next memory cell following the BLWP instruction. This
particular memory cell may contain instructions or data at the discretion of
the programmer. For example:

PROBLEM: Call a subroutine that uses three local variables of the main
program module. The following sample code could be used to accomplish
this objective.

BLWP @SUB SUBROUTINE CALL
DATA Vi
DATA V2
DATA V3
JEQ ERROR TEST FOR ERROR (Subrou-
. tine sets the EQUAL status
. bit to one for error.)
SUB DATA SUBWS, SUBPRG ENTRY POINT FOR SUB
. AND SUB WRKSPCE
SUBWS BSS 32
SUBPRG MOV *14+, 1 FETCH V1 PLACED IN WR1
MOV #14+, 2 FETCH V2 PLACED IN WR2
MOV *144, 3 FETCH V3 PLACED IN WR3
RTWP RETURN FROM SUBROUTINE

The three MOV instructions retrieve the variables from the main program
module and place them in workspace registers one, two, and three of the
subroutine.

When the BLWP instruction is executed, the main program module status is
stored in workspace register 15 of the subroutine, If the subroutine returns
with a RTWP instruction, this status is placed in the status register after
the RTWP instruction is executed. This feature.is useful in returning single
bits of information to the calling program. The calling program can then
test the appropriate bit of the status word with jump instructions.

5-19 Digital Systems Division

o]
@@ 943442-9701

Variables may also be passed to a subroutine in the workspace of the calling
program module., In this case, workspace register 13 of the subroutine con-
tains the memory address of the calling program workspace, Variable pick-
up may be accomplished by using the indexed addressing mode with WRI13 as
the index. An example of this code is

MOV @10(13), 10

which will move the contents of workspace register 5 (10 bytes) of the calling
program to workspace register 10 of the subroutine, indexed by workspace
register 13 of the subroutine., Re-entrant procedures will typically use this
method of indexed workspace register addressing for data access.

5.10 INTERRUPTS

Sixteen priority vectored interrupt levels are implemented in the Model 990
Computer; six are used for internal interrupts and ten are used for external
interrupts. The contents of the interrupt mask in the status register define
the interrupt level, Low-order memory, address 0 through 3F, is reserved
for addresses used by the interrupts (table 5-2), When an interrupt request
at an enable level occurs, the contents of the reserved memory words cor-
responding to the level are used to enter a subroutine to serve the interrupt.

The reserved memory locations are shown on the memory map (refer to
Section IV)., Two memory words are reserved for each interrupt level, The
first of the two words for a given level contains an address that is placed in
the WP register when the interrupt is requested and enabled. The second
contains the entry point of the interrupt subroutine for that level; its con-
tents are placed in the PC. The user must load the reserved memory loca-
tions corresponding to the interrupts defined for the program. The user
must also load an interrupt subroutine for these interrupts.

5.10.1 GENERAL INTERRUPT STRUCTURE

The interrupt levels, numbered 0 through 15, determine the interrupt prior-
ity. Level 0 has the highest priority and level 15 the lowest. The contents
of the interrupt mask, bits 12 through 15 of the ST register, determine the
enabled interrupt levels., Table 5-3 shows the interrupt levels enabled by
the contents of the interrupt mask. Note that level 0 cannot be disabled since
the level contained in the mask is always enabled. ‘

5.10.2 INTERRUPT SEQUENCE

The level of the highest priority pending interrupt request is continually com-
pared with the interrupt mask contents. When the level of the pending request
is equal to or less than the mask contents (equal or higher priority) the inter-
rupt is taken after the currently executing instruction has completed.

5-20 Digital Systems Division

[e]
{@ 943442-9701

Table 5-2, Interrupt Vector Addresses

Memory Address Interrupt Vector Vector Contents
0000 0 WP address for interrupt 0
0002 0 PC address for interrupt 0
0004 1 WP address for interrupt 1
0006 1 PC address for interrupt 1
0008 2 WP address for interrupt 2
000A 2 PC address for interrupt 2
000C 3 WP address for interrupt 3
000E 3 PC address for interrupt 3
0010 4 WP address for interrupt 4
0012 4 PC address for interrupt 4
0014 5 WP address for interrupt 5
0016 5 PC address for interrupt 5
0018 6 WP address for interrupt 6
001A 6 PC address for interrupt 6
001C 7 WP addrees for interrupt 7
001E 7 PC address for interrupt 7
0020 8 WP address for interrupt 8
0022 8 PC address for interrupt 8
0024 9 WP address for interrupt 9
0026 9 PC address for interrupt 9
0028 10 WP address for interrupt 10
002A 10 PC address for interrupt 10
002C 11 WP address for interrupt 11
00ZE 11 PC address for interrupt 11
0030 12 WP address for interrupt 12
0032 12 PC address for interrupt 12
0034 13 WP address for interrupt 13
0036 13 PC address for interrupt 13

5-21 Digital Systems Division

3

943442-9701

Table 5-2. Interrupt Vector Addresses (Continued)
Memory Address Interrupt Vector Vector Contents
0038 14 WP address for interrupt 14
003A 14 PC address for interrupt 14
003C 15 WP address for interrupt 15
003E 15 PC address for interrupt 15
Table 5-3. Interrupt Mask
STATUS REGISTER MASK SET
BIT BIT BIT BIT INTERRUPT LEVELS ENABLED BY INTERRUPT
12 13 14 15 LEVEL
0 0 0 0 0 0,1
) 0) 1 0,1 2
0) 1 0 0,1,2 3
0 0 1 1 0,1,2,3 4
0 1 0 0 0,1,2,3,4 5
0 1 0 1 0,1,2,3,4,5 6
0 1 1 0 0,1,2,3,4,5,6 7
0 1 1 1 0,1,2,3,4,5,6,7 8
1 0 0 0 0,1,2,3,4,5,6,7,8 9
1 (o] (o) 1 0,1,2,3,4,5,6,7,8,9 10
1 [o] 1 (o] 0,1,2,3,4,5,6,7,8,9,10 11
0,1,2,3,4,5,6,7,8,
1 o ! ! 9,10,11 12
0,1,2,3,4,5,6,7,8,
1 1 0 o
9,10,11,12 13
051!2)3‘4l576’7i8,
! ! 0 ! 9,10 11,12,13 14
0’1!2’374’5'6’7!8'
1 1 1)
9,10,11,12,13,14 15
1 011!273'4151617’81
1 1
! 9,10,11,12,13,14,15 -
(A)128630

5-22

Digital Systems Division

(o]
{@ 943442-9701

The workspace defined for the interrupt subroutine becomes active and the
entry point is placed in the program counter. The CPU also stores the pre-
vious contents of the WP register in the new workspace register 13, the
previous contents of the program counter in the new workspace register 14,
and the contents of the ST register in the new workspace register 15, This
preserves the program environment existing when the interrupt is taken. No
additional interrupt is taken until the first instruction of the interrupt sub-
routine is completed. Thereafter, interrupts of higher priority can interrupt
processing of the current interrupt.

After storing the ST register contents, the CPU subtracts one from the level
of the interrupt taken and places the result in the interrupt mask, disabling
the current interrupt level, and leaving only higher priority levels enabled.
Should a higher priority level interrupt be taken, and the original interrupt
request remain active when the return from the higher priority level inter-
rupt subroutine occurs, the original interrupt remains disabled and is not
taken again. Control returns to the interrupt subroutine at the point at which
the higher priority interrupt occurred.

5.10.3 INTERNAL INTERRUPTS
Levels O through 5 are assigned to internal interrupts, as follows:

° Level 0 - Power restored. Whenever ac power is restored to the
computer, a level 0 interrupt occurs, The interrupt mask is set
to 0.

° Level 1 - Power failure imminent. When the power supply senses
that ac power is failing, a level 1 interrupt request occurs. Follow-
ing the interrupt request, 1.5 ms of program time is available be-
fore a power supply reset occurs. When the interrupt is taken, the
interrupt mask is set to 0.

. Level 2 - Memory error., When the data read from memory does
not match the error correction data, a level 2 interrupt request oc-
curs, The instruction being executed when the error is detected is
the instruction preceding the instruction at the address stored in
workspace register 14, When the interrupt is taken, the interrupt
mask is set to 1,

. Level 3 - Illegal operation code. When the CPU acquires an instruc-
tion from memory that cannot be executed, a level 3 interrupt re-
quest occurs. If level 3 is disabled, the Program Counter is incre-
mented by two and execution of the instruction at that address is at-
tempted. The interrupt request remains active until the interrupt
is taken. When the interrupt is taken, the interrupt mask is set to
2.

5-23 Digital Systems Division

@ 943442-9701

o Level 4 - TILINE timeout., When the CPU attempts a memory access
or communication with a device on the TILINE, and receives no re-
sponse within 10 pusec, a level 4 interrupt request occurs. When the
interrupt is taken, the interrupt mask is set to 3. '

° Level 5 - Real time clock. When the real time clock supplies a
- signal, a level 5 interrupt request occurs. The interrupt request
remains active until the interrupt is taken. When the interrupt is
taken, the interrupt mask is set to 4.

5.10.4 EXTERNAL INTERRUPTS

Levels 6 through 15 are available for assignment to devices on the CRU or
the TILINE. Several interrupt lines may be combined at one level, Assign-
ment and grouping are determined by system considerations. Any interrupt
request must remain active until the interrupt is taken, and must be reset
before the interrupt subroutine is completed. The interrupt sequence, pri-
ority, and modification of the interrupt mask are the same as for internal
interrupts.

5.10.5 INTERRUPT PROCESSING EXAMPLE

Refer to figure 5-7 for the following discussion. Prior to the example
interrupt (eight for this example), the PC contains 1022 for the executing
program, the WP contains 780 for the executing program workspace, and the
ST register contains the executing program status. At this point, the ex-
ample external interrupt, number eight, occurs and there is a context switch
from the executing program to the interrupt subroutine. As shown in the
memory map in Section IV, the two words of memory required for external
interrupt eight are found in memory locations 0020 and 0022. Figure 5-7°
shows that these two words of memory contain 0270 and 0290, respectively,
for the WP and PC that are to be used by the interrupt subroutine.

At the point of interrupt, the CPU transfers the present WP, PC, and ST
register contents to the interrupt routine workspace in workspace registers
13, 14, and 15, respectively. Once these are stored, the CPU transfers the
interrupt subroutine WP and PC into the WP and PC registers, When these
actions are completed, the contents of memory and the registers are as
shown in the figure 5-8,

After the completion of the interrupt subroutine, the CPU restores the execut-
ing program WP, PC, and ST registers. Completion of the interrupt subrou-
tine occurs when the RTWP instruction in the interrupt subroutine is executed.

5.11 EXTENDED OPERATIONS

Extended operation instructions permit the extension of the existing instruc-
tion set to include additional instructions that may be either hardware or
software implemented.

5-24 Digital Systems Division

3o

943442-9701

MEMORY
ADDRESS é MEMORY é
0020 027¢
0022 029¢
g; X ﬂ:
HARDWARE
REGISTERS ’
0270 INTERRUPT SUUBROUTINE
wp 0780 -
| WORKSPACE
: 0290 INTERRUPT SUUBROUTINE
PC 1024
i | A A
| Lemo780
| EXECUTING PROGRAM
sT | ExECUTING sTATUS || WORKSPACE
|
|
} 0800 EXECUTING PROGRAM
|
|
L sm1022 INC 1
NOTE $ lNTEF!@rUSVTLIYI_AﬁgT=é|£ 11
THE INTERRUP ‘
TAKEN UNTIL THE INSTRUCTION AT EXECUTING PROGRAM
ADDRESS 1022 HAS COMPLETED, DATA
~,
Y @ @ ?

(A)128620A

Figure 5-7. Example Memory Prior to Interrupt

Memory locations 004074 through 007E;¢ are used for XOP vectors for soft-

ware implemented XOPs. Vector contents are user supplied WP and PC ad-

dresses for the XOP routine workspace and starting address. Table 5-4 con-
tains the addresses and contents of the 16 XOP vectors. Note that these vec-
tors must be supplied and loaded prior to the XOP instruction execution.

When the program module contains an XOP instruction that is software im-
plemented, the AU locates the XOP workspace pointer and PC words in the
XOP reserved memory locations and loads the WP and PC., When the WP
and PC are loaded, the AU transfers control to the XOP "nstruction set
through a context switch. When the context switch is comiplete, the XOP
workspace contains the calling routine return data in WRs 13, 14, and 15.

5-25 Digital Systems Division

{@Jp 943442-9701

MEM OR
MORY MEMORY
ADDREssé ‘5
0020 0270
pa
0022 / 0290
Z /l
/
ﬂu e o o o ~N
-V / 7"
HARDWARE 7 /
0270 WRO
REGISTERS |r' 5 INTERRUPT ()
we | 0270 I 4 A, susrouTme A
/T ¥
WORKSPAGE
07 (WR13
PC 0290 K_l 80)
| 1024 (WR14)
|
EXECUTING STATU
ST INTERRUPT STATUS | S (WR15)
| dL" e o o o g:
NOTE: INTERRUPT MASK = 0110 : r
lew0290 INTERRUPT SUBROUTINE
.
[]
L]
RTWP

(A)128621A

Figure 5-8. Memory Contents After Interrupt Occurs

Table 5-4. XOP Vectors

Memory Address XOP Number Vector Contents

0040 0 WP address for XOP workspace
0042 0 PC address for XOP routine
0044 1 WP address for XOP workspace
0046 1 PC address for XOP routine

5-26 Digital Systems Division

q‘r@@ 943442-9701

Table 5-4. XOP Vectors (Continued)

Memory Address XOP Number Vector Contents
0048 2 WP address for XOP workspace
004 A 2 PC address for XOP routine
004C 3 WP address for XOP workspace
004 E 3 PC address for XOP routine
0050 4 WP address for XOP workspace
0052 4 PC address for XOP routine
0054 5 WP address for XOP workspace
0056 5 PC address for XOP routine
0058 6 WP address for XOP workspace
005A 6 PC address for XOP routine
005C 7 WP address for XOP workspace
005E 7 PC address for XOP routine
0060 8 WP address for XOP workspace
0062 8 PC address for XOP routine
0064 9 WP address fer XOP workspace
0066 9 PC address for XOP routine
0068 10 WP address for XOP workspace
006 A 10 PC address for XOP routine
006C 11 WP address for XOP workspace
006E 11 PC address far XOP routine
0070 12 WP address fer XOP workspace
0072 12 PC address far XOP routine
0074 13 WP address for XOP workspace
0076 13 PC address far XOP routine
0078 14 WP address for XOP workspace
007A 14 PC address far XOP routine
007C 15 WP address for XOP workspace
007E 15 PC address for XOP routine

5-27 Digital Systems Division

o]
%} 943442 -9701

Also, the XOP instruction passes one operand to the XOP (input to the XOP
routine in WR11 of the XOP workspace). At the completion of the software
XOP, the XOP routine should return to the calling routine with an RTWP in-
struction that will restore the execution environment of the calling routine to
that in existence at the call to the XOP,

An example of a software implemented XOP, shown in figure 5-9, causes
XOP number two to be executed on the data stored at the address contained
in WRI1 of the calling program module. Prior to the execution of the XOP,
the PC contains the address of the XOP *1, 2 instruction and the WP contains
the address of the calling program workspace. At this point, the PC incre-
ments by two, to 922, and the XOP is executed, This execution is a context
switch in which the XOP routine gains control of the execution sequence.

MEMORY

ADDRESS MEMORY
0048 0220
004A 0240
XOP 3-15
)
A ~
HARDWARE
REGISTERS 0220 XOP WORKSPACE
wpP 0700 1 o240 XOP SUBROUTINE

b
D)

| L L

PC 0920 ol W v/

I

| l. PROBLEM PROGRAM

| 0700 WORKSPACE (WR0)
ST enceoe l 0750

|

| > VA

|

| PROBLEM PROGRAM

0750 DATA

|

I 0800 PROBLEM PROGRAM

|

|—bogzo XOP *1,2

(A)128622A

Figure 5-9, Memory Prior to XOP Instruction Execution

5-28 Digital Systems Division

943442-9701

50

Note that WRI1 of the calling program module contains the data address for
the operand that is passed to the XOP routine.

After the context switch was complete and the XOP subréutine is in control
(figure 5-10), the PC contains the starting address of the XOP subroutine
and the WP contains the address of the XOP subroutine workspace. WRI11

of the XOP subroutine contains the effective address of the data to be used

as an operand. Workspace registers 13, 14, and 15 contain the return con-
trol information, which is used to return control to the main program module
when the XOP subroutine completes execution.

MEMORY MEMORY
ADDRESS
0048 | 0220
004A 0240
A ~
f': [NF
HARDWARE [.0220 XOP WORKSPACE
REGISTERS |
0750 (WR11)
WP 0220 |
(WR12)
0700 (WR13)
PC 0240
| 0922 (WR14)
: EXECUTION STATUS | (WRI15)
ST [XX]
Lgm 0240 | XOP SUBROUTINE 2
RTWP
0700 | PROBLEM PROGRAM WORKSPACE
0750 | PROBLEM PROGRAM [IATA
0800 | PROBLEM PROGRAM
0920 | XOP *1,2
(A)128623A Q' f

Figure 5-10. Memory After XOP Instruction Prior to
XOP Routine Execution

5-29 Digital Systems Division

%@ 943442-9701

5.12 SPECIAL CONTROL INSTRUCTIONS

There are five special control instructions that permit the programmer to
control the state of the execution process of the 990 Computer. These in-
structions are:

- Instruction Mnemonic Paragraph
Load ROM And Execute LREX 5.12.1
Clock On and Clock Off CKON/CKOF 5.12.2
Reset RSET 5.12.3
Execute X 5.12.4

5.12.1 LREX APPLICATIONS

The use of the LREX instruction is dependent upon the contents of the ROM
that is installed in the computer. Most systems contain (at least) a warm
start load capability so that LREX can be used under all systems as a restart
function. This capability may then be used to halt runaway programs or to
end a program. Other ROMs may provide capabilities for debug operations
or overlay applications.

5.12.2 CKON/CKOF APPLICATIONS

These two instructions are used to turn on and turn off the clock, respec-
tively. Through the use of these two instructions, the programmer may use
the clock for timing operations. As an example, the clock may be used to
time-out I/O procedures by turning the clock on, counting the clock interrupts
until the desired time is passed, and turning the clock off. This is possible
only if the interrupt level 5 for the real time clock has previously been en-
abled.

5.12.3 RSET APPLICATIONS

RSET is primarily used to initialize the state of the computer before perform-
ing an interrupt mask change to a lower interrupt level, i.e. change the in-
terrupt level from 3 to 5. This instruction has the effect of clearing any
pending interrupts that should not be taken when the interrupt level is changed.
This instruction is also useful at the start of a program to clear the state in
existence so that the new application will not be adversely affected by the pre-
vious state of the computer.

5.12.4 X APPLICATIONS

The execute instruction may be used to execute one of a table of instructions
dependent upon the computed value, which represents an index into the table
of instructions.

5-30 Digital Systems Division

o]
{@ 943442-9701

5.13 CRU PROGRAMMED INPUT/OUTPUT

The communications register unit (CRU) performs single and multiple bit
programmed input/output in the Model 990 Computer. All input consists of
reading CRU line logic levels into memory and output consists of setting CRU
output lines to bit values from a word or byte of memory. The CRU provides
a maximum of 4096 input and output lines that may be individually selected by
a 12-bit address. The 12-bit address is located in bits 2 through 14 of work-
space register 12 and is the base address for all CRU communications.

(Each workspace may have a different base address.)

5.13.1 CRU I/O INSTRUCTIONS
There are five instructions for communications with CRU lines. They are:

. SBO - Set Bit To One. This instruction sets a CRU output line to
a logic one. If the device on the CRU line is a data module, SBO
results in zero volts at the data module terminal corresponding to
the addressed bit.

° SBZ - Set Bit To Zero. This instruction sets a CRU output line
to a logic zero. If the device on the CRU line is a data module, SBZ
results in a float (no signal applied) at the data 1nodule terminal
corresponding to the addressed bit,

° TB - Test Bit. This instruction reads the digital input bit and sets
the equal status bit (bit 2) to the value of the dig:tal input bit.

NOTE

The CRU address of the SBO, SBZ, and TB in-
structions is determined as follows:

Bits 3-14 of workspace register 12
equal the CRU base address

+

The user supplied displacement in
the instruction with sign bit extended

Effective CRU address

° LDCR - Load Communications Register. This instruction transfers
the number of bits specified by the C field of the instruction onto the
CRU from the source operand. When less than nine bits are spec-
ified, the source operand address is effectively 1 byte address.

5-31 Digital Systems Division

[e]
q_r@?} 943442-9701

When more than eight bits are specified, the source operand is
effectively a word address. The CRU address is the address of
the first CRU digital output affected. The CRU address is deter-
mined by the contents of workspace register 12, bits 3 through 14.

° STCR - Store Communications Register. This instruction transfers
-the number of bits specified by the C field of the instruction from
the CRU to the memory address specified by the S and T fields of
the instruction. When less than nine bits are specified, the source
operand address is effectively a byte address. When there are nine
or more bits specified, the source operand address is effectively a
word address. The CRU address is determined by workspace reg-
ister 12, bits 3 through 14.

5.13.2 CRUI/O EXAMPLES
The following examples further define the input/output characteristics.
5.13.2.1 SBO. Problem - Set communications register line 215 to one

(turn on a motor, for example). Workspace register 12 contains the base
address of 02007¢4. One instruction that would accomplish this objective is

SBO 15

where CRU line 215 is set to one by the SBO instruction., Note that no other
output line if affected. This operation is shown as follows:

CRU Line 1
CRU Line 2

Logic One -----=---- » CRU Line 215

5.13.2.2 SBZ. Problem - Set communications register line 2 to a logic
zero to turn off a sensor. Workspace register 12 contains the base address
of 00007¢. Note that no other output line is affected. One instruction that
would accomplish this objective is

SBZ 2

where CRU line 2 is set to zero by the SBZ instruction. This operation is
shown as follows:

CRU Line 1
Logic Zero -------- » CRU Line 2

® e e s 000 e

5-32 Digital Systems Division

ul

[e]

/]

943442-9701

5.13.2.3 TB. Problem - Determine if the CRU line is set to a logic one
or to a logic zero for CRU line 704. Workspace register 12 contains the base
address of 070074. The following instructions test the CRU line indicated
and go to a particular instruction if the bit is set to a logic one or continue
with another instruction if the bit is set to a logic zero.

TB 4 CRU LINE 704

JEQ RUN IF ON, GO TO RUN

, ELSE, CONTINUE
RUN ...

If the CRU input line is set to a logic one (zero volts for a data module), the
JEQ instruction transfers control to the instruction labeled RUN. If the CRU
line is set to a logic zero (+5 volts for a data module), the equal status bit is
reset and control does not transfer to the instruction labeled RUN but to the
instruction in sequence,

5.13.2.4 LDCR. Problem - Transfer six bits from the location labeled
TOM (even address) to the CRU lines that are twelve lines below the address
in workspace register 12, One set of instructions that would accomplish
this objective is

Al 12, 24 Increment the Base Address by i2
(Least significant bit not used)

LDCR @TOM, 6 Transfer six bit from TOM
AT -24 Restore Base Address In WR12
The following diagram illustrates the bit transfer from TOM to the CRU lines.

01 2 3 4 5 6 7 8 9 10 11 12 13 14 1%
MEMORY CRU LINES
ADDRESSxx1lotooxxxxxxxx.—-\r_”
TOM
[| o 12
I o 13
2) 1 14
: o 15
o 1 16
| 17
X = NOT USED.
- ~ 18

(A)128631A

5-33 Digital Systems Division

943442-9701

If the LDCR instruction were changed as follows
LDCR @TOM, 9

there would be a transfer of nine bits from TOM to the same address. This
instruction would result in the following diagram.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
pEMory [T T« X x x1 0 1o 1 0 1 11 U R

TOM

I___. 1 12

L 1 13

—— 1 14

| 0 15

% 1 16

Ll 17

Ll IR 18

— 0 19

X=NOT USED L 20

21

(A)128632A

If the memory address of location TOM is an odd address, the following
transfer takes place between the memory and the CRU:

X=NOT USED 21

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Jl’lfdl?l%)l\'g('ggxs’liooooo1xxxxxxxx o SNES

TOM y 11

l . 1 12

- 0 13

&> o 14

- 15

L 0 16

- o 17

L 1 18

L 1 19

> o] 20

d

(A)128633A

5-34 Digital Systems Division

[e]
@ 943442-9701

5.13.2.5 STCR. Problem - Transfer two bits from the CRU lines that
are 25 lines below the base address in workspace register 12 to the address
specified by the contents of workspace register 2. One &et of instructions
that would accomplish this objective is

Al 12, 50 SET CR BASE ADDRESS
STCR *2, 2 TWO BITS INTO ADDRESS IN WR2
Al 12, -50 RESTORE WRI12

The following diagram illustrates the transfer of two bits from the CRU lines
to the address in workspace register 2.

01 2345 6 7 8 9 1011 12 13 14 15
: GRU LINES
oo0oo000:0 1T 0 x xXx X X X X X x] ~ 24
1] =26
X - NOT USED BITS 0-5 SET TO ZERO, S 5

(A)128634 A

If the STCR instruction is changed to
STCR *2,0

sixteen bits would be transferred from the CRU lines specified by workspace
register 12 to the address that is specified by the contents of workspace reg-
ister 2 and would result in the following diagram:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 CRU LINES

ll 1 1 1 0 0 o 1 1 1 0 0o o 1 1 1] T) 24

-
=

25

26

27

28

o |o |= |=-

29

30

31

32

33

34

Q |= |= [~ jO

35

36

37

38

39

mla |= = O |O

40
(A)128635 A .

5-35 Digital Systems Division

943442-9701

When a zero is specified for the number of bits to transfer, there is a com-
plete word transfer of sixteen bits from the memory word to the CRU or
from the CRU to the memory word.

If the STCR instruction is changed to
STCR *2,9

then nine bits would be stored from the address in workspace register 2, If
the address in workspace register 2 is an odd address, the following transfer
takes place:

o t 2 3 4 5 6 7 8 9 10 1112 13 14 15

CRU LINES
o 0 {+ 1+ 1 0 01 O O O O O 0o o0 1] A 24
A 4 4 3 [Y a 1 | o2s
0 26
0 27
1 28
1 29
1 30
0 31
0 32
BITS 8 THRU 14 SET TO ZERO — 1 33
"’_V

(A)128636A

5.14 TILINE INPUT/OUTPUT

The set of assembly language machine instructions (Section IV) that commu-
nicate with memory may also be used to communicate with devices connected
to the TILINE, To communicate with the TILINE, these instructions must
be coded with appropriate addresses for the TILINE, Refer to Section II for
TILINE address definitions.

In addition to appropriate addresses, the instructions must comply with the
requirements of the device actually connected to the TILINE. These devices
are fixed-head disc controllers, moving-head disc controllers, line printer
controllers, or other high-speed peripheral controllers.

The possible instructions are:
° Format I instructions

° Format III instructions

5-36 Digital Systems Division

[e]
([@ 943442-9701

° Format VI instructions

° Format IX instructions
Actual applicability of any of these instructions depends upon the peripheral
connected to the TILINE,

5.15 RE-ENTRANT PROGRAMMING

A re-entrant procedure will typically have one procedure and multiple work-
space and data areas to perform the same operation on multiple sets of data.
The design of re-entrant procedure requires the following considerations:

° The procedure should not modify any of its instructions.

] The procedure should not directly address any data that is not general
in application to the various tasks.

° User data that applies to a particular task and is passed to a re-
entrant procedure should be symbolicly addressed by a workspace
register. Data addresses in instructions should not be modified by
the procedure so that the data may be subsequently addressed when
that task is re-executed.

. If there is data that is general in application to all tasks for the pro-
cedure, that data may be directly addressed.

The general environment of a re-entrant procedure is shown in figure 5-11.
This environment illustrates a single procedure and sixteen tasks that use
the procedure. Note that the workspace for each task and the data for each
task are separately located in memory. If this re-entrant procedure oper-
ates equipment connected to sixteen CRU interfaces, thén WR12 for each task
would contain the base address for that task's CRU interface.

An example of re-entrant programming is as follows:

The task to be performed is to search a byte character array for a carriage
return and if the carriage return is not found before the end of the array is
located (the last word in the array is filled with zeros), proceed to another
section of code that performs another set of instructions. Workspace regis-
ter nine contains the address of the data array.

The following code is considered re-entrant:

ENTER MOV *14+, 3 GET BUFFER SIZE FROM USER
MOV 9,8 GET START ADDRESS
A 3,8 POINT TO END OF BUFFER

5-37 Digital Systems Division

(_F@@ 943442-9701

LOOK C 9,8 CHECK FOR AN END ADDRESS
JH NOTFND BRANCH WHEN END
CB *9+, @QCARRET CHARACTER CHECK
JNE LOOK BRANCH WHEN NOT FOUND
FOUND . CHARACTER FOUND
CARRET BYTE > D SEARCH CHARACTER
INITIALIZATION
CRU
MEMORY BUS
’ > o
TASK 0 WORKSPACE CRU
>/' (o]

TASK 0 DATA
CRU

1
~
é MEMORY TASK 1 WORKSPACE CZRU

TASK 1 DATA
J CRU
SHARED PROCEDURE 3
FOR
TASKS 0 - F .
~ A ~
~ . ds N S
< ¢ .
CRU
14
TASK F WORKSPACE
TASK F DATA 15

(A)128624A

Figure 5-11., 990 Re-entrant Procedure Environment

5-38 Digital Systems Division

o
{%\[‘7@ 943442-9701

The following code is considered non-re-entrant becausa of suggested re-
striction violation:

ENTER MOV MOV %14+, @ADDLOC
MOV 9,8
Al 8, $-%

ADDLOC EQU $-2

LOOK C 9,8
TH NOTFND
CB %9+, @CARRRET
INE LOOK

FOUND .

CARRET BYTE > D

5.16 CREATING A SOURCE PROGRAM USING TSE990

Prior to an operation involving the use of TSE990, ensure that all operation
characteristics and procedures for TSE990 are understood, Once the pro-
grammer is familiar with TSE990, the following sequence of steps permits
creation of a source program on paper tape or on a cassette,

1. Load TSE990 according to the loading procedures in the System Op-
eration Guide.

2. Cassette: Place the scratch cassette in the object output position
and place the 733 ASR in the Ready and Record mode.
Paper Tape: Place the paper tape in the punch station and place
the 33 ASR in the On-Line mode.

3. Type the instruction I0 (Insert After Zero).
4., Type each line of symbolic instructions ended with a carriage return.
Use the sample program in figure 5-12 for an example.

NOTE

If the available memory fills up while typing in
the program, use the K (Keep) command to scroll
out lines on the output media. Scrolling out lines
frees memory for more input symbolic lines.

5-39 Digital Systems Division

([@ 943442-9701

5. When the entire program has been entered, enter the Q0 (Quit-
Zero) command, which scrolls out the remaining symbolic lines"
in memory and then terminates TSE990.

NOTE

To maintain horizontal spacing in a particular
column format, and to conserve space in the
source symbolic lines, use the tab feature,
which will automatically space the four fields
of the source program.

5.17 ASSEMBLING SOURCE PROGRAMS USING MIRA 990
To assemble source programs using MIRA 990, use the following sequence
of steps:

1. Load the MIRA assembler according to the loading procedures in
the System Operation Guide.

2, When MIRA is properly loaded and ready to accept a source program,
a question mark (?) is printed on the teleprinter.

3. When the input file is ready (cassette loaded or paper tape placed in
the read station), press any character on the keyboard except the
carriage return and MIRA will assemble the program. A carriage
return will terminate MIRA,

4. When the assembly process is complete, the MIRA assembler prints
another ? on the teleprinter, which indicates that the MIRA assem-
bler will accept another program if necessary. To terminate MIRA
at this point in the sequence, press the carriage return.

5.18 EXAMPLE PROGRAM

The example program in figure 5-13 was assembled using MIRA, and exe-
cuted on the 990 Computer. Figure 5-14 shows the results of the execution

of this sample program.

'5-40 Digital Systems Division

Iv-9

uoysiAlg swejsAs (eibig

123456 7 8 910111213141516 1718 1920 21 222324 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

TITL ‘HELLG! [PROGRAM’
¥ THIS PRPGRAM PRINTS ‘HELL@!‘| gN THE TELEPRINTER.

DTR €aW 13 | DATA [TERWINAL READY.

WRaQ EQu 11 | WRITE| REQUEST. |

RTS EQY 10 | REQUEST T§ SEND.

ASRID EQu 10 ~ ASRT3I3/33 ID.
¥

HELLP

LWPT REGS | INITIALIZE WBRKSPACE PYINTER.

LIMI 0 | DISARLE INTERRUPTS BEL@W [ZERE.

TI | 12,7100 INITIALIZE CRU |[BASE.
LI| 2, TARLE| LAAD TARLE ADDRESS.

i

LAPP

MOVR %Z+,8 | GET A CHARACTER.

JLT LAST | LAST [CWARACTER?

(A)128625 (1/4)

Figure 5-12. Sample Program (Sheet 1 of 4)

£h

T0LE-ZVFETE

(4 4"

uoysja|g swejsAs elbig

12345678 91011121314151617 181920 21222324 252627 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 48 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

BL

. @PUTQ | NB, PUT IT AuT.

(5)128625 (2/4)

Figure 5-12. Sample Program (Sheet 2 of 4)

T0L6-2¥FET6

uoysing sweysAs 1enbia

£y-9

1234586 78 910 1112131415161718 1920 21 222324 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 69 60 61
BL @guT
SR RTS
R %5 "RETURN T@ CALLER.
%
guTt
TR DTR ASR PN LINE?
JNE $-2 CNAIT UNTIL IT IS.
LpojR B, % *WUTPuT_QuAggaiaR.
Ta| wRa waTT [pu TT.
JNE $-2 v
seg| wRQ
B 11 RETURN Tp CALLER.
*
X MESSAGE |[TARLE.
TARLE

(A)128625 (3/4)

Figure 5-12,

Sample Program (Sheet 3 of 4)

10L6-2¥¥<¥6

14 40

uoysjalg swesAs [eybig

123456 78910111213

141516171819 20 21

222324 25 26 27 28 29 30 31 32 33 34 35 36 37 38 30 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

TEX

T VHELL@

(A)128625 (4/4)

Figure 5-12,

Sample Program (Sheet 4 of 4)

| A :'fi:'v;'rej‘ %:\“gg"{) BO | %g,ET PA;QITY BIT T
i T v : i
: o ' o ; P A T
Rees Bsy 32| | wiRKSPGE AREA.| T
,M.t “End : ;uEL\fi - i -

T0L6-2¥FEVO

943442-9701

HELLO! PROGRAM PAGE 0001
agoz # + THIS PROGRAM PRINTS -“HELLO!- ON _THE TELEPRINTER..
0003 gonD DTR EQU 13 DATA TERMINAL REARDY.
0004 NDO0B - WRE EGU 11 ~ WRITE REQUEST.
2003 Do0R RTS e 10 RERAUEST TO SEND.
oQoe 000R ASRID EQU 10 RIR?23-332 1D.
0007 QT . *
goosz HELLO
oogoe 0000 D2ED LWFI RERE INITIARLIZE WORKSPACE POINTER.
0Qoe ---- :
o010 0004 0200 LIMI 1] DISABLE INTERUPTS.
0005 Q000 ’
no11 aoo2 0200 LI 123100 INITIALIZE CRU BRSE.
oooR 0100
poie oooc o208 LI 2» TABLE LOAD TABLE HADDRESS.
OQQE ~——=—-—
o013 : Loor : .
no14 o0 D232 MOVEB *2+2 8 GET A CHARACTER.
pols onlz t1-- JLT LAST LAST CHARALCTER?
oole 0014 OBAD BL JPUTC NOs PUT IT OUT.
onle ——--
noiy¥ 0018 10FB JMP - Loap
onis LRST
nni2eei iz :)
no1s 001R 05A0 BL JPUTC PUT IT OUT.
uoic ----
gozo Q01E 0240 IDLE 5TOP.
IIITCH | *
gonze +« OQUTPUT ROUTINE.
Nz PUTC
D01seeili20”
0o1Cee 0207
oos4 0020 1FOR TB AZRID CHECK RSR ID.
nozs ogRe 13-- JE@ ‘auT 60 FOR TTY.
no2e 0024 C14B mMay 11,5 SAVE RETLUEN.
QuEy 002e 08AD BL 20UT SEND CHARGLCTER.
0028 —----
goes o002A 1EOH 3BZ RTS TIMING FOR ASR733.
0029 002C 06RO BL 20UT
D0E -—-—-——.
0030 0030 06RO BL J0UT
o322 ----]
0021 0024 06RO BL 20UT
0g3s ----
o032 00323 1DOA - EBO RTS]
0033 003" 0455 B *3 RETURN TO CALLER.
0n34 *
0035 ouT
g022ee130C
Qo226 003C”
002Eee003C”
003cee 003"
0035ee003C"
0035 003C 1FOD TE ODTR RZR ONLINET
o037 Q03E 16FE JHE -2 WAIT “TILL IT IS,
003= o040 3202 LDCE S8 guUTPUT CHRARRCTER.

Figure 5-13. Sample Program Assembly (Sheet 1 of 2)

5-45 Digital Systems Division

943442-9701

HELLO! PROGRAM FRAGE 0002
o0z 004 1FOR TB WRE WRIT OM IT.
nud0 0044 1EFE JHE -2
0u41 0045 1DOR =B0 bR
G042 0048 045B B «i1 RETURN TO CHLLER.
L % L)
0044 + MESZAGE TRBLE.
non4s TABLE
D00Ee«+D04A "
ond4e Q04R 43 TEXT “HELLO”
aN4B 435
o4C 4
004D 4
DO4E 4F
o047 004F A1 BYTE “8$7+>80) SET PARITY BRIT.
onas EVYEN .
and4 0050 REG= BES 32 WORKSPACE RRERA.
0002ee0N30" .
aoso EMD HELLD
a0 ERZ

Figure 5-13. Sample Program Assembly (Sheet 2 of 2)

HELLO!

Figure 5-14, Sample Program Execution

5-46 Digital Systems Division

{@@ 943442-9701

SECTION VI
SOFTWARE PACKAGES

6.1 GENERAL

This section of the manual contains information about the various software
packages available with the 990 Computer. The available packages are:

° MIRA990 - Assembler that assembles object code from assembly
language statements, This assembler executes in the 990 Com-
puter.

° MIRA990/360 - This version of the assembler executes on the IBM
System/3x0 family of machines.

° LLALL990 - Link And I.oad module that provides external reference
definitions and loading instructions to the loader to load any linked
object programs into memory.

e ASR I/O - Automatic Send/Receive Input/Output software package
that permits the 990 Computer to communicate with peripheral
devices that are described in Section III.

. TSE990 - Terminal Source Editor software package that permits the
programmer to edit programs using the avilable terminal peripher-
als.

° XDB990 - A hexadecimal debug package that permits the programmer
to debug programs in the stand-alone mode.

These descriptions are general in nature and leave specific information and
descriptions to the particular User's Guide.

6.2 MIRA990 ASSEMBLER

MIRA990 is a one-pass assembler designed to assemble absolute and/or
relocatable assembly language source code (in the same program module,
if desired) in a minimum memory configuration of 4K (4096) words. This
same assembler may be loaded at higher memory locations in larger mem-
ory configurations to utilize this ""extra' memory space for more symbols
without resorting to a ''new'' assembler version. Operational control of the
assembly process is via either the TI Model 733 ASR Teleprinter or the
Model 33 ASR Teletypewriter., In addition to operational control, these two
terminals provide printed outputs from the assembly process in the form of
assembly listings and error codes. MIRA also provides for a minimum

of 125 6-character symbols in the symbol table. If less than six characters
are used per symbol, the assembler will accept more than 125 symbols.
Programmers that use this assembler may batch more than one module if
desired. The object output from the MIRA assembler is in USASCII code.

6-1 Digital Systems Division

o]
%@ 943442-9701

There are several features related to the USASCII code object output that im-
prove patching options. The RORG (relocatable origin) assembler directive
permits over-patching of source code by the programmer that will overlay
previously detected error code at the time of loading. Since the object out-
put is in USASCII code, this object may be patched directly without passing
the module through the assembly process again. In effect, scatter loading of
object code permits this method of over-patching the source code or directly
patching the USASCII object whenever the corrected code appears in the load
sequence subsequent to the error code. Also, load addresses need not be in
consecutive order as long as any IDT, DEF, or REF record appears in the
specified positions and as long as a load address precedes new or changed
records, if necessary.

6.3 MIRA990/360 CROSS ASSEMBLER

The MIRA990/360 Cross Assembler is designed to execute on the IBM
System/3x0 family of machines under OS control. MIRA 990/360 is a two-
pass assembler that requires a minimum of 250K bytes of memory on the
System/3x0. All of the other features described for the MIRA assembler
are available with this cross assembler, with some additions. Output list-
ings are on the line printer and more information descriptive messages ap-
pear in place of the error codes. Operational control is via the punched card
media and all options must be specified at the time of assembly. Options in-
cluded with MIRA 990/360 are:

° Batching of assemblies
° Variable symbol table size (150 symbols default)

USASCII object code is also the output from this cross assembler, which
permits the same types of patching of object output as with the 990 MIRA
Assembler.

6.4 LINK AND LOAD (L AL990)

LAL990 is designed to resolve linking requirements from previously refer-
enced symbols (REF assembler directives) and to load both the absolute and
relocatable object output, generated by the assembler, from the source code
inputs. During the linking and loading process, LAL990 maintains a dynamic
symbol table size to react to the load module requirements, LAL990 will
load both absolute and relocatable object code in one process and will overlay
code previously loaded if directed by identical load addresses, thus imple-
menting the scatter loading and object patching features, LAL990 also ac-
cepts user provided relocatable load bias for any or all load modules, If no
bias is provided, LAL990 loads at a default address of 200,,. If required,
LAL990 will accept load modules, from physically separate media, of the
same primary media required for input. This feature permits loading of
several modules from several cassettes or from several different pieces of
paper tape object. LAL990 outputs to the terminal device any appropriate
message, the entry address, a list of undefined references, and a list of all

6-2 Digital Systems Division

[¢]
% 943442-9701

loaded modules with appropriate relocatable load bias at which the modules
were loaded. When loading of modules is complete and there are no fatal
errors, execution may begin at the specified entry address.

6.5 TERMINAL SOURCE EDITOR (TSE990)

TSE990 is an interactive, terminal oriented program that runs stand-alone
on the 990 Computer., TSE990 will store 2900 characters from a module to
be edited in the minimum memory configuration of 4K, If additional mem-
ory is available, TSE990 will utilize all additional memory without modifica-
tion, TSE990 accepts either sourcé or object code from either the keyboard,
the cassette, or the paper tape reader. Editing commands are input by the
user from the teleprinter terminal, These editing commands are self-
explanatory and easy to use or remember, In addition to a standard char-
acter editing feature, TSE990 permits string editing that replaces the entire
string, a portion of the string, or one character of the string. During the
editing process, TSE990 provides informative/warning messages about the
status of the edit and error messages for syntax errors., Operational com-
mands permit scrolling in and out of the editing source module. If a module
contains more than 2900 characters and the computer has a 4K memory, por-
tions of the source module may be scrolled in for editing, scrolled out after
editing to save the edited source and scrolling in of the subsequent character
block., When an editing process is complete, TSE990 is reusable without
having to be re-loaded,

6.6 INPUT/OUTPUT PACKAGE FOR THE 990 COMPUTER

This input/output package permits the user to input and/or output characters
and/or records on the Model 33 Teletypewriter and the TI Model 733 ASR
Teleprinter. Input/output to/from the 733 ASR may be either the keyboard
or the cassette. Input/output to/from the Model 33 ASR may be either the
paper tape reader/punch or the keyboard. Character I/O routines are as
follows:

° IN - Inputs the character in the left half of workspace register 8.

° OUT - Outputs the character in the left half of workspace register
8, at a 1200 baud rate, to the 733 ASR.

° OUTP - This subroutine calls OUT and outputs the character in the
left half of workspace register 8, at a 300 baud rate, to the 733 ASR.

Record 1/0O routines are as follows:
° KEY - Reads a record from the keyboard.

° READ - Reads a record from the cassette (733 ASR) or from the
paper tape reader (33 ASR).

° PUNCH - Punches a record to tape (paper tape 33 ASR and cassette
733 ASR).

6-3 Digital Systems Division

(o]
q@ 943442-9701

] PRINT - Prints a record on the teleprinter print device.
° LEADER - Punches a paper tape leader (Ignored on 733 ASR).
® ENDFIL - Writes and end-of-file character at the end of the record.

° CONRET - Control Return., When the control character is encoun-
-tered, control returns to the specified address.

The print routines for the printing device on the teleprinter permit format
control similar to other existing format control characters. These charac-
ters control the printing device for top-of-form, single/double spacing, car-
riage return, and print from present position. All other printing is single-
spaced automatically. When the terminal in control is a 733 ASR, cassette
operations in the form of rewind, unload, block reverse, place in record
mode and check status are permitted.

This I/0 package is a non-interrupt driven set of subroutines that may be
linked into the user's program module to perform any input/output operation
required by that module. If required by application, this I/O package will
write from one buffer while reading from another buffer, thereby permitting
simultaneous read/write operations. This I/O package will operate in either
the 33 ASR or the 733 ASR environment, without modification, whenever the
cassette operation subroutines are included when using the 733 ASR.

6.7 HEXADECIMAL DEBUG PACKAGE (XDB990)

XDB990 is a hexadecimal debug that does not simulate execution of the mod-
ule being debugged, Since execution is not being simulated, XDB990 does

not keep control of the execution process, The module being debugged actually
executes under its own control, Operational control of the debugging process
is via the teleprinter and all communication between XDB990 and the user is
in the form of symbolic mnemonics and hexadecimal memory addresses.
XDB990 provides several options to check out particular executable portions
of any module., The user may inspect, or inspect and change, single memory
locations or consecutive memory locations (either forward or reverse),
Memory dumps of sequential memory locations are permitted for any one or
all memory locations of the module being debugged. The user may inspect
the workspace pointer and the contents of the status register and, if neces-
sary, alter the contents of either register, Load operations are permitted
from a cassette or paper tape. Execution of the module is permitted from
the load end vector or from a particular memory address within the extent

of the module being debugged. There is also a breakpoint option that permits
setting of a breakpoint to stop execution, altering of the breakpoint, execute
from the breakpoint (continuation of the stopped execution), and clearing of
the breakpoint previously set, For breakpoint operations, XDB990 uses an
illegal operation trap.

6-4 Digital Systems Division

o]
<Jzz§} 943442-9701

7.1 GENERAL

SECTION VII ..

INSTALLATION

This section defines the steps required to prepare for installation and to in-
stall the Model 990 Computer for a shelf or cabinet mounted configuration.
It includes instructions for wiring backpanel interrupts as well as cable rout-

ing examples.

7.2 SITE PREPARATION

The installation site for the Model 990 Computer should allow for the size,
weight and electrical requirements of the computer chassis.
planning prior to delivery of the computer,’ table 7-1 lists the physical and
electrical requirements of the computer.

To aid in site

Table 7-1. Model 990 Computer Physical and
'Electrical Requirements
Characteristic Requirement

Chassis size

Mounting space
Rack
Shelf

Weight
Temperature

Operating

Storage

Humidity
Operating or
Storage

Cooling

Shock limits
Operating
Shipping

12-1/4 inches high
19 inches wide

12-1/4 inches vertical rack

of supporting chassis weight

grees F)

degrees F)

sation

Force of 1 G to chassis
Force of 15 G's to carton

21-1/4 inches deep (plus cabling room)

25 inches wide by 26 inches deep; capable
Less than 75 pounds fully implemented

0 to 50 degrees Centigrade (32 to 122 de-

-40 to 65 degrees Centigrade (-40 to 149

0% to 95% relative humidity without conden-

Free flow of air to computer chassis

space

Digital Systems Division

[e]
Qﬂ? 943442-9701

Table 7-1. Model 990 Computer Physical and
Electrical Requirements (Continued)

Characteristic : : Requirement
Voltage 115 Vac + 10%
Line frequency 50 Hz or 60 Hz
Current 5 amps (maximum)

7.3 TUNPACKING

The computer is shipped in 2 corrugated cardboard container together with
the circuit boards and interconnecting cables required to install the system.
Upon receipt of the container, inspect to ensure that no signs of physical
damage are present. Following preliminary inspection, perform the follow-
ing steps to remove the computer from its container and ready it for opera-
tion. Figure 7-1 illustrates the required steps.

1. Position container so that the address label is right-side up.

2. Open top of container and remove polyfoam cushioning material
from corners.

3. Remove plastic bag containing cables from between side of container
and cardboard inner shroud.

4. Remove cardboard inner shroud and foam block that cushions cir-
cuit boards. '

5. Remove computer and attached shipping pallet from container.
Place computer on a convenient work surface.

6. Shipping pallet is held to computer by four screws and flat washers
that are accessible from the underside of the shipping pallet. Re-
move these screws and washers.

7.4 CHASSIS CONFIGURATION

To adapt the hardware chassis to specific system requirements, the external
interrupts from interface modules are not connected when the computer is
delivered to the installation site. This allows the user to configure the in-
terrupt assignments to best suit his needs. These connections must be made
during the installation procedure. Before making these connections, how-
ever, each module in the system must be assigned a permanent chassis loca-
tion.

7.4.1 MODULE LOCATIONS

Figure 7-2 illustrates the chassis locations within the computer and the types
of circuit modules that may be used in each of these locations. Notice that
some chassis locations are preassigned to the power supply, arithmetic

7-2 Digital Systems Division

o
Q@ 943442-9701

< (NNER
/\ $HROUD

SHIPPING

.W PALLET

.

¢

\ CUSHIONING
MATERIAL

(4 PLACES)

SHIPPING
CONTAINER

(A)128626

Figure 7-1. Computer Shipping Packaging

7-3 Digital Systems Division

943442-9701

TOP OF CHASSIS

P2

RESERVED

TILINE OR CRU

RESERVED

TILINE OR CRU

TILINE OR CRU

AB

TILINE OR CRU

TILINE OR CRU

A7

TILINE OR CRU

TILINE OR CRU

A6

TILINE OR CRU

TILINE OR CRU

AS

EXPANSION MEMORY , TILINE OR CRU

TILINE OR CRU

A4

MEMORY/CONTROLLER

EXPANSION MEMORY, TILINE OR CRU

A3

MAINT PANEL, TILINE OR CRU

MEMORY/CONTROLLER

A2

ARITHMETIC UNIT

MAINT PANEL, TILINE OR CRU

POWER SUPPLY

ARITHMETIC UNIT

POWER SUPPLY

(A)128627 A

Figure 7-2. Possible Chassis Location Assignments

unit and memory controller modules. In addition, if expansion memory is
included in the system it must be in location A5, next to the memory con-
troller. Each chassis location is prewired with specific CRU addresses
(module select lines). Therefore, each CRU module must be placed in the
chassis location corresponding to its assigned address. Within these re-
strictions, assign each module in the system a specific chassis location.

To aid in this process, table 7-2 tabulates the chassis locations,.the corre-
sponding CRU addresses, and the modules with preassigned locations and
table 7-3 lists each standard CRU module and its module select assignments.
Table 7-2 also provides space to record the location of each device within

the system. Complete the Pl Device and P2 Device columns of this table with
the modules for the system being installed. Remember that double-connector
devices occupy both Pl and P2 connectors.

7.4.2 MODULE INTERRUPT LEVELS

The system software defines the levels of the external interrupts generated
by the interface modules. If required, several modules may share the same
interrupt level if the service routine for that level determines which of the
modules generated an interrupt. Interrupt levels 6 through 15 are used for
external interrupts. Level 6 is the highest priority and level 15 is the low-
est priority. In general, mass storage devices on the TILINE interface
should receive the highest priority, followed by time dependent CRU devices

7-4 Digital Systems Division

Table 7-2.

System Chassis Configuration (to be completed during installation)

§-L

CRU 1 CRU 1 2
. Base Address TILINE . Base Address TILINE Interrupt
Loc P1 Device IMODSELB/ Address P2 Device IMODSELB/ Address A/B
" IMODSELA IMODSELA
All Not Not ' Not Not /
wired/wired wired/wired
Al0 1E0/1C0 / 1C0/1E0 /
A9 1A0/180 / 180/1A0 /
A8 160/140 / 140/160 /
A7 120/100 / 100/120 /
Ab 0EO0/0CO / 0CO0/0E0 /
A5 0A0/080 / 080/0A0 /
A4 Memory/ 060/040 0-0BFF Memory/ 040/060 0-0BFF (Internal
Controller or Controller or 2)
0-0FFF 0-0FFF
A3 020/000 000/020 /
A2 Arithmetic -/ - - Arithmetic -/ - - (Internal
Unit Unit 3, 4)
Al Power -/ - - Power -/ - - (Internal
Supply Supply 0, 1, 5

uolsiAIg swejisAs |eybia

NOTES: 1

CRU Base Address A uses pin 48 for module selection.

CRU Base Address B uses pin 46 for module selection,

Note that P1 is different from P2.

2 Interrupt A generated on pin 66,
Interrupt B generated on pin 65,

10L6-2%%EV6

1’@2 943442-9701

Table 7-3. CRU Module Select Signals

Module Module Select Pin Function
Modem and Controller B Pl-46 Read status
' A P1-48 Read data status
913 CRT and Controller B P2-46 Position/status
input
Printer data out-
put
A P2-48 CRT data input/
"~ | output
Full Duplex TTY/EIA A Pl or P2-48 Data input/output
Module '
Data Module (16 1/0) A Pl or P2-48 Data input/output

and then lower speed TILINE devices. This interrupt order may be altered
to accomodate specific applications. Determine the interrupt levels assigned
to each of the modules in the computer system and enter those values in the
INTERRUPT column of table 7-2. To aid in this process, table 7-4 lists the
interrupt pin assignments for standard modules offered with the computer

system.
Table 7-4. Module Interrupt Pin Assignments
Module Interrupt Pin Function
Model 913 CRT B P2-65 Keyboard inter-
rupt ‘
P2-66 Printer interrupt
Modem and Controller P1-66 Input interrupt

Full Duplex TTY/EIA Pl or P2-66 |Input interrupt

> > > B

16 I/O Data Module Pl or P2-66 |[Input interrupt

7.4.3 INTERRUPT INSTALLATION

Included in the cable package is a kit of jumper wires used to connect inter-
rupts between module connectors and the AU circuit board connector. Per-
form the following procedure to install the interrupt lines required to imple-
ment the configuration for the particular system as outlined in table 7-2.

1. ©Position computer chassis such that the left side is easily accessi-
ble.

7-6 Digital Systems Division

943442-9701

2. Remove four screws and metal plate from left side of chassis to
expose wire-wrap connections (see figure 7-3).

3. Determine the chassis location and connector that has been assigned
interrupt level 6.

4. Push one end of a jumper wire on the wire-wrap pin corresponding
to P1-25 of the arithmetic unit chassis connector and connect the
other end of the wire to the connector pin generating the interrupt
for level 6. If more than one module is assigned to this level, con-
nect the AU pin to each of the pins generating an interrupt for that
level. Multiple connections may be daisy-chained from connector
to connector to avoid overloading the AU wire-wrap pin.

5. Repeat steps 3 and 4 for the remaining interrupt levels. Refer to
table 7-5 for the AU connector pin numbers of each of the interrupt
level inputs.

6. Reinstall metal plate and four screws removed in step 2 of this pro-
cedure.

7.5 MOUNTING

After the computer has been removed from its shipping container and the de-
sired interrupt signals installed, the unit can be mounted for operation.
Four rubber feet, included in the parts kit with the cables, screw into the

Figure 7-3. Module Interrupt Installation

7-7 Digital Systems Division

q_’—%\[z‘? 943442-9701

Table 7-5. Interrupt Level Input Pin Assignments

Level AU Connector Pin Number Level AU Connector Pin Number
6 P1-25 11 Pil-16
7 P1-27 12 P1-73
8 P1-22 13 P1-15
9 P1-23 14 P1-12
10 P1-18 15 P1-11

holes used to secure the computer to the shipping pallet. These feet ensure
that the shelf surface that mounts the computer will not be marred by the
computer. The computer may then be placed on a shelf or table, or within
a cabinet, that will support the weight of the chassis. Ample room must be
provided for free air flow to cool the computer logic, and for cable connec-
tions to exterior equipment.

7.6 CABLING

Ensure that all required circuit boards are in the computer chassis in the
orientation prescribed in table 7-2, and that each circuit board is firmly
seated in the chassis connector. Connect the interface cables to the top edge
connector of the proper interface circuit board for that device (refer to Sec-
tion III of this manual for part numbers of particular cables within the periph-
eral device interconnection kit). Connector on the cable must be oriented so
that the cable feeds out through the rear of the chassis. Secure the cable
within the plastic cable clamps mounted to the computer chassis and connect
the other end of the cable to the peripheral equipment or other input device.
Figure 7-4 illustrates the cabling technique for each of the standard pe riph-
eral units described in Section III of this manual.

7.7 POWER APPLICATION

When all cables have been installed in the computer, ensure that the memory
address switches on the memory controller board are all OFF (see memory
description in Section II of this manual). When all circuit boards are in
place in the chassis, the unit may be powered up. Perform the following
steps to apply power to the computer:

1. Ensure that the main power connector within the computer chassis
is connected to the power supply circuit board.

2. Connect power cord to a source of suitable ac power for the system '
being installed (115 Vac 50 Hz, or 115 Vac 60 Hz),

3. Set BATTERY toggle switch on the rear of the chassis to ON.

7-8 Digital Systems Division

943442-9701

4. Set POWER toggle switch on the rear of the chassis to ON.

Indica-
tor on front panel of the computer should light.

Press the Load switch on thé front panel of the computer to load the

system bootstrap from the internal ROM, to enable system genera-
tion with the specified I/O device.

CABLES TO

EXTERNAL EQUIPMENT

CABLE CLAMPS (3)

AC POWER CONNECH ION
TOPOWER SUPPLY;

1268629 {(990-674-6-12)

Figure 7-4. Peripheral Cabling Technique

7-9/7-10 Digital Systems Division

o
%@ 943442-9701

APPENDIX A
INSTRUCTION EXECUTION TIMES, MODEL 990

Digital Systems Division

o]
{@ 943442-9701

INSTRUCTION EXECUTION TIMES, MODEL 990

APPENDIX A

A.1 GENERAL

This appendix contains the information neces sary to cale¢ulate the instruction
execution times for the various instructions in the instruction set. These ex-
ecution times are contained in tables in this appendix and the table number
corresponds to the format number of the instruction. There are two types of
memory elements available with the 990 Computer. The principal type of
memory element is the MOS 4K array. An optional meri’a,ory element of 1K
(maximum) additional memory is 120 ns compatible. The MOS memory ele-
ment contains the error correction logic while the 120 ns memory does not
provide any additional bits with the 16-bit words that are used in the 990
Computer,

The following conventions are used in the tables for MOS error correcting
memory:

° Clock cycle (C) = 0.250 to 0.270 ps (0.255 used as the base number
for the calculation shown in the tables.)

° Read cycle (R) = 0.820 us
® Delayed read cycle (DR) = 0.960 us
° Write cycle (W) = 0,895 us

The following conventions are used in the instruction execution tables for

120 ns memory. (Note that for mixed memory, both MOS and 120 ns, the

120 ns memory could be used for workspace and the MOS memory for general
data storage. For 120 ns execution time to be utilized, all data must be res-
ident in the 120 ns memory. Any data accessed from MOS memory will de-
grade the 120 ns execution time accordingly.)

° Clock cycle (C) = Same as MOS memory
. Read cycle (R) = 0.320 ps |

™ Delayed read cycle (DR) = 0.460 Ks

° Write cycle (W) = 0,415 s

Instruction execution depends upon the number of different cycles required by
the addressing mode of the operand, the format of the ingtruction, the PC in-
crement, and the instruction acquisition time. Each table contains the vari-
ous combinations of times required by the format and addressing mode(s) of
the instruction. Also included are example instruction times for the MOS
and 120 ns memories.

A-1 Digital Systems Division

{_@@ 943442-9701

The MOS memory requires a refresh cycle once every 31 pus. This cycle is
0.600 ps in length. Since the duration of the refresh cycle is only two per-
cent of the active memory time (0.600/31=.02), the competition for refresh
with memory access is not a significant factor. If, for example, memory
refresh competed with a constant read cycle for access to memory, the read
cycle time would only be degraded by the refresh cycle for an effective aver-
age of 6 nanoseconds for each read cycle,

A-2 Digital Systems Division

€=V

uorsing swelsAs 1eybig

Table A-1.

Format I Instruction Execution Times

Total Total
W/MOS Memory Memory
Instruction acquisition 1 0. 340 0.960 0.460
Source operand acquisition
TS = 00 1 0.200 0. 820 0.320
= 01 1 1 0. 540 1.780 0.780
= 10 (S#0) 2 1 0.740 2.600 1.100
= 10 (5=0) 1 1 1 0.795 2.035 1.035
=11 1 2 1 0.950 2.830 1.310
Destination operand acquisition
Td = 00 1 0. 340 0.960 0.460
= 01 2 0.680 1.920 0.920
= 10 (D+#0) 1 2 0. 880 2.740 1.240
= 10 (D=0) 2 1 0.935 2.175 1.175
=11 1 1 1 1 1.090 2.970 1. 450
Instruction execution
SCZ,SZCB, SOC 1 0.295 0.935 0.415
SOCB, MOV, MOVB 1 0.295 0.935 0.415

10L6-2%%CH6

-V

uoysia|q swejsAg |eybia

Table A-1. Format I Instruction Execution Times (Continued)
Total
T
Operation Number and Type of Cycles CPU T?rtr?: Time
i w/12
w R DR C Time W/MOS Memory /120 ns
Memory
Instruction execution
(Cont.)
A, AB, S, SB 1 0.295 0.935 0.415
C, CB 2 0.510 0.510 0.510
Program counter increment 1 0.255 0.255 0.255

Example instruction

MOS Memory

MOV 5,9
Instruction acquisition 0.960
Source operand 0. 820
Destination operand 0.960
Instruction execution 0.935
Program counter increment 0.255
Total time for example 3.930

120 ns Memory
AB *2, @GRAD (4)

0.460
0.780
1. 240
0.415
0.255
3.150

10L6-2FPEP6

=V

uojs|A|IQ swelsAs eibig

Table A-2. Format II Instruction Execution Times
Total Total
Operation Number and Type of Cycles CPU Time Time
W D i 2
R R C Time W /MOS Memory W/120 ns
Memory
Instruction acquisition 1 0. 340 0. 960 0.460
Instruction execution
JUMP (All) 2 0.510 0.510 0.510
SBO, SBZ 1 3 0.965 1.585 1.085
TB 1 4 1.220 1. 840 1. 340

Example instructions

Instruction acquisition
Instruction execution

Total time for example

MOS Memory

JMP

$+8

0.960
0.510
1.470

120 ns Memory
SBO 3

0.460
1.085
1.545

10L6-2%PEF0

9=V

uoysjAIg swejsAs [8y6iq

Table A-3. Format III Instruction Execution Times
Total Total
. Number and Type of Cycles CPU . Time
Operation W R Time Time W /120 ns
W /MOS Memory
Memory
Instruction acquisition 0. 340 0.960 0.460
Source operand acquisition
T_ =00 ' 1 0.200 0.820 0.320
= 01 1 0.540 1.780 0.780
= 10 (S#0) 2 0. 740 2.600 1.100
= 10 (S=0) 2 0.400 1.640 0. 640
=11 1 1 0. 750 2.010 0.990
Instruction execution
COC, czcC 0.595 1.215 0.715
XOR 1 1 0. 750 2.010 0.990
Program counter increment 0.255 0.255 0.255

MOS Memory

Example instructions:

Instruction acquisition
Source operand acquisition

Instruction execution

Program counter increment

Total time for example

CzC

*3, 7
0. 960
1.780

1.215
0.255

4,210

120 ns Memory
XOR @RAD, 9

0.460
0. 640

0.990
0.255

2.345

/]

10L6-2%%CT6

(o]

L=V

uojsIAIg swesAs 1eubia

Table A-4. Format IV Instruction Execution Times
Total Total
Operation Number and Type of Cycles CPU Tin?e Time
W R DR C Time W /MOS Memory W /120 ns
Memory

Instruction acquisition 1 0. 340 0.960 0.460

Source operand acquisition
T =00 1 0.200 0. 820 0.320

s
=01 1 1 0.540 1.780 0.780
= 10 (S#0) 2 1 0. 740 2.600 1.100
= 10 (S=0) 1 1 1 0.795 2.035 1.035
= 11 (Byte or word) 1 2 1 0.950 2.830 1.310
Instruction execution

LDCR (Setup) 1 2 0. 850 1.470 0.970
LDCR (Output per bit) 1 0.255 0.255 0.255
STCR (Byte) 1 1 11 3.440 4.700 3.680
STCR (Byte, input per pit) 1 0.255 0.255 0.255
STCR (Word) 1 1 18 5.225 6.485 5.465
STCR (Word, input per bit) 1 0.255 0.255 0.255
Program counter increment 1 0.255 0.255 0.255

T T e o e e e o e = = = e e e 8 e e G e e e S e e e e e . e S S Su e e e o= e e o . e = e

/]

10L6-2%PE¥6

[¢]

uoysialg swejsAs 1ebig

Table A-4, Format IV Instruction Execution Times (Continued)

Operation

Total Total
Number and Type of Cycles CPU ' Time

Time
i 20
w R DR C Time W /MOS Memory W/120 ns
Memory

Example instructions:

Instruction acquisition
Source operand acquisition
Instruction execution

Bit transfer

Program counter increment

Total time for example

MOS Memory 120 ns Memory

LDCR *7,8 STCR @RAD(3), 0
0.960 0. 460
1.780 1.100
1.470 5.465
2.040
0.255 0.255
6.505 7.280

10L6-2%%¢¥6

uojsiA|g swejsAs jeybig

Table A-5. Format V Instruction Execution Times
Total Total
Operation Number and Type of Cycles CPU Time Time
. W/MOS W/120 ns
w R DR C Time
Memory Memory
Instruction acquisition 1 0. 340 0.960 0.460
Instruction execution
Any shift (C#0) 1 1 1/Bit 0.495+ 1.755+ 0. 735+
0.255/Bit 0.255/Bit 0.255/Bit
Any shift (C=0) 1 1 1 1/Bit 0. 835+ 2.715+ 1.195+
0.255/Bit 0.255/Bit 0.255/Bit
Program counter increment 1 0.255 0.255 0.255

Example instructions:

Instruction acquisition
Instruction execution
Instruction bit count
Program counter increment

Total time for example

MOS Memory
SRA 3,9

0.960
1.755
9 = 2,295
0.255
5.265

120 ns Memory
SRL 5,0

0.460
1.195
16 = 4.080
0.255
5.990

10L6-2%%<H6

01-V

uoysja|g swejsAs 18)b|g

Table A-6. Format VI Instruction Execution Times

Total Total
Number 3nd Typoof Cycler | SEU . mme B
W /MOS Memory Memory
Instruction acquisition 1 0. 340 0.960 0. 460
Source operand acquisition
Ts = 00 (Notes 1,2)
= 00 (Note 3) 1 0. 340 0.960 0.460
= 01 (Notes 1, 2) 1 0. 340 0.960 0.460
= 01 (Note 3) 2 0.680 1.920 0.920
= 10 (S#0) (Notes 1, 2) 1 1 0.540 1.780 0.780
= 10 (S#0) (Note 3) 1 2 0. 880 2.740 1.240
= 10 (S=0) (Notes 1, 2) 1 1 0.595 1.215 0.715
= 10 (S=0) (Note 3) 2 1 0.935 1.555 1.175
= 11 (Note 1) 1 1 1 0.750 2.010 0.990
= 11 (Note 2) 1 | 2 0. 805 1.445 0.925
= 11 (Note 3) 1 1 1 1 1.090 2.970 1.450
Notes: For source operand acquisition, the following instructions are:
1. B, BL, CLR, SETO.
2. BLWP, X, SWPB.
3. NEG, INV, ABS, INC, INCT, DEC, DECT.
4. NEG, INV, ABS, X, DEC, DECT, INC, INCT only.

@

10L6-2¥Pc¥o

11-V

uoysiAg sweisAs 1eybia

Table A-6. Format VI Instruction Execution Times (Continued)

Total Total
jumber s T etCstas SO EL | mime
W /MOS Memory Memory
Instruction execution
B 1 0.255 0.255 0.255
CLR, SETO | 1 1 0.550 1.190 0.670
BL 1 2 0. 805 1,445 0.925
BLWP 3 2 1 1.540 4,700 2.140
X
SWPB 1 1 1 0.890 2.150 1.130
NEG, INV : 1 0.295 0.935 0.415
ABS (+) 2 0.255 0.255 0.255
ABS (-) 1 2 0. 805 1,445 0.925
DEC, DECT, INC, INCT 1 0.295 0.935 0. 415
Program counter increment (Note 4) 1 0.255 0.255 0.255

Note: For source operand acquisition, the following instruction is:

4. NEG, INV, ABS, X, DEC, DECT, INC, INCT only.

I}

10L6-2F%¥%¢€P6

o

2=V

uoysing swejsAs 18ybig

Table A-6. Format VI Instruction Execution Times (Continued)

Operation

Number and Type of Cycles

w

R

DR

C

CPU Total
Time Time
W/MOS Memory

Total
Time
W/120 ns
Memory

Example instructions:

Instruction acquisition
Source operand acquisition
Instruction execution
Program counter increment

Total time for example

MOS Memory

B

@RAD
0.960
1.215
0.255
0.000
2.430

120 ns Memory
NEG 3

0.460
0. 460
0.415
0.255
1.590

/)

10L6-2%%CP6

€1~V

uossiaig sweisAs 1eybia

Table A-7. Format VII Instruction Execution Times

Total Total
Operation Number and Type of Cycles CPU Time Time
W D i
R R C Time W /MOS Memory W /120 ns
Memory
Instruction acquisition 1 0. 340 0.960 0.460
Instruction execution
IDLE
RSET 3 0. 765 0. 765 0. 756
RTWP 2 1 1 0.995 3.475 1.355
CKON, CKOF 1 0.255 0.255 0.255
LREX (Note)
Program counter increment 1 0.255 0.255 0. 255

Note: The execution time of the LREX instruction depends upon the amount of memory written
by the ROM loader installed in the CPU. If the ROM loader writes 256 words of memory,
the time is 241,765 psec. If the ROM loader writes 4096 words of memory, the
time is 3832.165 p sec.

Example instruction executions: MOS Memory 120 ns Memory
RTWP CKON
Instruction acquisition 0.960 0. 460
Instruction execution 3.475 0.255
Program counter increment 0.255 0.255
Total time for example 4.690 0.970

/)

10L6-2%%ET6

[e]

Pi-V

uojs|AIg sweisAg [eibia

Table A-8, Format VIII Instruction Execution Times

Total Total
. Number and Type of Cycles CPU . Time

Operation W R C Time Time W/120 ns

W /MOS Memory

Memory

Instruction acquisition 0. 340 0.960 0.460
Instruction execution

LI 1 1 2 1. 005 2.265 1.245
AlI, ANDI, ORI 1 1 2 1. 345 3.225 1.705
CI 1 1 0.795 2.035 1.035
STWP, STST 1 1 0.550 1.190 0.670
LwPI, LIMI 1 2 0.710 1.330 0.830
1 0.255 0.255 0.255

Program counter increment

- e o . e e e S Em M A P S G e G SR MR e SN e S S S D G AN NN SN W S S M e S M M M M M e M G M e M G o M S W W G M M MR G SR e RD S S e G D e em G G R R NS RS M S S e ER Re ED W S e e T mp e e

Example instruction executions:

Instruction acquisition
Instruction execution
Program counter increment

Total time for example

MOS Memory

LI

3,>ADD
0.960
2.265
0.255
3.480

120 ns Memory
LIMI > 256

0.460
0. 830
0.255
1.545

10L6-2F%CEP0O

S1-V

uoysIAIg sSwelsAs [ebia

Table A-9. Format IX Instruction Execution Times
Total Total
b T Ctes GFU G mme
W/MOS Memory Memory
Instruction acquisition 1 0. 340 0.960 0.460
Source operand acquisition
XOP
TS = 00 1 0.255 0.255 0.255
= 01 1 0.340 0.960 0.460
= 10 (S#0) 1 1 0. 540 1.780 0. 780
= 10 (S=0) 1 1 0.595 1.215 0.715
=11 1 1 1 0. 750 2.010 0.990
MPY, DIV
TS = 00 1 0.200 0. 820 0.320
= 01 1 1 0. 540 | 1.780 © 0.780
= 10 (540) 2 1 0. 740 2.600 1.1Q0
= 10 (S=0) 2 1 0.655 1.895 0.895
=11 1 1 2 1. 005 2.265 1.245
Instruction execution |
XOP (Software only) 4 3 1 5 3.395 8.435 4. 355

£n

10L6-2¥¥EV6

91 -V

uoysja|g swejsAs 1e)bia

Table A-9. Format IX Instruction Execution Times (Continued)

Total Total
Operation Number and Type of Cycles CPU Time Time

w R DR C Time W /MOS Memory W/120 ns

Memory
MPY 2 1 33 9. 165 11.025 9.525
DIV (Normal) 2 1 1 48 13,330 15,81 13,810
(Overflow) 1 1 3 1.305 2.545 1,545
Program counter increment 1 0.255 0.255 0.255

Example instruction execution:

Instruction acquisition
Source operand acquisition
Instruction execution

Program counter increment

MOS Memory
XOP *4,2

0.960
0.960
8.435
0.255
10.610

120 ns Memory
XOP *4,2

0. 460
0. 460
4,355
0.255
5.530

/]

10L6 -2F¥EY6

(o]

(o]
ir@? 943442-9701

APPENDIX B
HEXADECIMAL INSTRUCTION INDEX

Digital Systems Division

%@ 943442-9701

APPENDIX B

HEXADECIMAL INSTRUCTION INDEX

Hexadecimal | Mnemonic
Operation Operation Name Format |Paragraph
Code Code :
0200 LI Load Immediate VIII 4,6.1
0220 Al Add Immediate VIII 4,2.4
0240 ANDI AND Immediate VIII 4,7.1
0260 ORI OR Immediate VIIiI 4,7.4
0280 CI Compare Immediate VIII 4.4.3
02A0 STWP Store Workspace Pointer VIII 4,6.8
02C0 STST Store Status VIII 4,6.7
02E0 LWPI Load Workspace Pointer - VIII 4.6.4
Immediate
0300 LIMI Load Interrupt Mask VIII 4.6.2
' Immediate
0340 IDLE Computer Idle VII 4.5.4
0360 RSET Computer Reset VIL 4.5.5
0380 RTWP Return From Interrupt VII 4.3.17
Subroutine
03A0 CKON Clock On VII 4,5.2
03CO CKOF Clock Off VII 4.5.1
03E0 LREX Load ROM And Execute VII 4.6.3
0400 BLWP Branch And Load Work- VI 4.3.3
space Pointer
0440 B Branch VI 4,.3.1
0480 X Execute VI 4.3.18
04CO CLR Clear Operand VI 4,7.2
0500 NEG Negate VI 4,2,.11
0540 INV Invert VI 4.7.3
0580 INC Increment By One VI 4,2.8
05CO0 INCT Increment By Two VI 4,2.9

Digital Systems Division

Q
@ 943442-9701

Hexadecimal Instruction Index (Continued)

Hexadecimal | Mnemonic
Operation Operation Name Format |Paragraph

Cnde Code

0600 DEC Decrement By One VI 4,2.5
0640 DECT Decrement By Two vi 4.2.6
0680 BL , Branch and Link VI 4.3.2
06CO SWPB Swap Bytes VI 4.6.9
0700 SETO Set Ones VI 4.7.5
0740 ABS Absolute Value VI 4.2.3
0800 SRA Shift Right Arithmetic \Y 4.8.1
0900 SRL Shift Right Logical \% 4,8.2
0A00 SLA Shift Left Arithmetic \% 4.8.3
0BOO SRC Shift Right Circular v 4.8.4
1000 IMP Jump Unconditional II 4,3.11
1100 JLT (A | Jump Less Than I 4.3.10
1200 JLE (0 | Jump Low Or Equal I 4.3.9
1300 JEQ Jump Equal II 4.3.4
1400 JHE (o) | Jump High Or Equal II 4.3.6
1500 JGT (N | Jump Greater Than I 4.3.5
1600 JNE Jump Not Equal II 4.3.13
1700 JNC Jump No Carry II 4.3.12
1800 JOC Jump On Carry II 4.3.16
1900 JNO Jump No Overflow I 4.3.14
1A00 JL (O | Jump Low I 4.3.8
1B0O JH { | Jump High II 4.3.7
1C00 JOP Jump Odd Parity II 4.3.15
1D00 SBO Set Bit To One I 4.5.6
1E00 SBZ Set Bit To Zero II 4.5.7
1F00 TB Test Bit II 4.5.9
2000 COC Compare Ones Corre- III 4.4.4

sponding

B-2 Digital Systems Division

o]
{@ 943442-9701

Hexadecimal Instruction Index (Continued)

Hexadecimal | Mnemonic
Operation Operation Name Format | Paragraph

Code Code

2400 CzZC Compare Zeros Corre-- III 4.4.5
sponding

2800 XOR Exclusive OR III 4.7.10

2C00 XOP Extended Operation IX 4.9

3000 LDCR Load Communication v 4.5.3
Register

3400 STCR Store Communication v 4.5.8
Register

3800 MPY Multiply IX 4.2,10

3C00 DIV Divide IX 4.2.7 \

4000 SZC Set Zeros Corresponding, I 4.7.8
Word

5000 SZCB Set Zeros Corresponding, I 4.7.9
Byte

6000 S Subtract Word I 4.2.12

7000 SB Subtract Byte I 4.2.13

8000 C Compare Words I 4.4.1

9000 CB Compare Bytes 1 4.4.2

A000 A Add Words I 4.2.1

B00O AB Add Bytes I 4,2,2

C000 MOV Move Word I 4.6.5

D000 MOVB Move Byte I 4.6.6

E000 SOC Set Ones Corresponding, I 4.7.6 .
Word

F000 SOCB Set Ones Corresponding, I 4.7.7
Byte

B-3/B-4

Digital Systems Division

@2 943442-9701

APPENDIX C
ALPHABETICAL INSTRUCTION INDEX

Digital Systems Division

(o]
{@ 943442-9701
APPENDIX C

ALPHABETICAL INSTRUCTION INDEX

Mnemonic | Hexadecimal
Operation Operation Name Format | Paragraph
Code Code ‘
A AOOO Add Words I 4.2.1
AB B000 Add Bytes I 4,2.2
ABS 0740 Absolute Value VI 4,2.3
Al 0220 Add Immediate VIII 4,2.4
ANDI 0240 AND Immediate VIII 4.7.1
B 0440 Branch A2 4,3.1
BL 0680 Branch and Link VI 4.3.2
BLWP 0400 Branch and Load Work- VI 4.3.3
space Pointer
C 8000 Compare Words I 4.4.1
CB 9000 Compare Bytes I 4.4.2
CI 0280 Compare Immediate VIII 4.4.3
CKOF 03CO Clock Off VII 4.5.1
CKON 03A0 Clock On VII 4.5.2
CLR 04CO Clear Operand VI 4.7.2
COC 2000 Compare Ones Corre- III 4,.4.4
sponding
CZC 2400 Compare Zeros Corre- III 4.4.5
sponding
DEC 0600 Decrement By One VI 4.2.5
DECT 0640 Decrement By Two VI 4.2.6
DIV 3C00 Divide IX 4.2.7
IDLE 0340 Computer Idle VII 4.5.4
INC 0580 Increment By One VI 4.2.8
INCT 05C0 Increment By Two VI 4,2.9
INV 0540 Invert VI 4,7.3

C-1 Digital Systems Division

o]
\J‘_@? 943442-9701

Alphabetical Instruction Index (Continued)

Mnemonic | Hexadecimal
Operation Operation Name Format | Paragraph
Code Code
JEQ 1300 Jump Equal I 4,3, 4
JGT 1500 Jump Greater Than II 4,3.5
TH 1B00 | Jump High | o 4.3.7
THE 1400 Jump High Or Equal | o 4.3.6
JL 1A00 Jump Low I 4.3.8
JLE 1200 Jump Low Or Equal II 4.3.9
JLT 1100 | Jump Less Than I 4.3.10
JMP 1000 Jump Unconditional II 4,3,11
JNC 1700 Jump No Carry I 4,3,12
INE 1600 Jump Not Equal II 4,3,13
JINO 1900 Jump No Overflow II 4,3,14
JOC 1800 Jump On Carry II 4.3.16
JOP 1C00 Jump Odd Parity II 4,3,15
LDCR 3000 Loaci Communication v 4,5,3
Register
LI 0200 Load Immediate VIII 4,6.1
LIMI 0300 Load Interrupt Mask VIII 4,6.2
Immediate
LREX 03 E0 Load ROM And Execute VII 4.6.3
LWPI 02E0 Load Workspace Pointer VIII 4.6.4
Immediate
MOV C000 Move Word I 4,6.5
MOVB D000 Move Byte I 4.6.6
MPY 3800 Multiply IX 4,2.10
NEG 0500 Negate VI 4.2.11
ORI 0260 OR Immediate VIII 4.7.4
RSET 0360 Computer Reset VII 4.5.5
RTWP 0380 Return From Interrupt VII 4.3.17
Subroutine

Cc-2 Digital Systems Division

[o]
&\,@Q 943442-9701

Alphabetical Instruction Index (Continued)

Mnemonic | Hexadecimal
Operation Operation Name Format | Paragraph
Code Code o

S 6000 Subtract Word I 4.2.12

SB 7000 Subtract Byte I 4,2.13

SBO 1D00 Set Bit To One I 4.5.6

SBZ 1E00 Set Bit' To Zero I 4.5.7

SETO 0700 Set Ones VI 4.7.5

SLA 0A00 Shift Left Arithmetic v 4.8.3

SOC E000 Set Ones Corresponding, I 4.7.6
Word

SOCB F000 Set Ones Corresponding, I 4.7.7
Byte

SRA 0800 Shift Right Arithmetic A% 4.8.1

SRC 0B0O Shift Right Circular A 4.8.4

SRL 0900 - Shift Right Logical \% 4.8.2

STCR ‘ 3400 Store Communication v 4.5.8
Register

STST 02CO Store Status VIII 4.6.7

STWP 02A0 Store Workspace Pointer VIII 4.6.8

SWPB 06CO Swap Bytes _ VI 4.6.9

SZC 4000 Set Zeros Corresponding, I 4.7.8

' Word

SZCB 5000 Set Zeros Corresponding, I 4.7.9
Byte

B 1F00 Test Bit II 4.5.9

X 0480 Execute VI 4.3,18

XOP 2C00 Extended Operation IX 4.9

XOR 2800 Exclusive OR III 4.7.10

C-3/C-4 Digital Systems Division

Q
{@? 943442-9701

APPENDIX D
CRU INTERFACE EXAMPLE

Digital Systems Division

O
4@? 943442-9701

APPENDIX D
CRU INTERFACE EXAMPLE

D.1 GENERAL

This appendix supplies information to aid users of the Model 990 Computer
to design and implement peripheral controllers that interface with the CRU.
Included in this appendix is a description of the interface unit and sample
logic diagrams for the CRU interface unit, followed by a sample program for
a typical device. Refer to the main body of this manual for a description of
the CRU and its general requirements. Specifically, this appendix contains a
description of the necessary requirements to interface a medium-speed line
printer to the CRU. The line printer has the characteristics listed in table

D-1.
Table D-1. Medium-Speed Line Printer Characteristics
Function Description

Print line length 80 characters maximum

Paper width Variable, up to 9-1/2 inches, sprocket fed

Character format 5x7 dot matrix, 10 characters per inch (horiz)
6 lines per inch (vertical)

Printer speed 60 lines per minute for 80 character lines or
150 lines per minute for 20 character lines

Printer input buffer 80 characters

Buffer data rate 75, 000 characters per second (8-bit characters
supplied in parallel) maximum

D.2 HARDWARE INTERFACE REQUIREMENTS

To interface with the CRU and the line printer, the interface device must be
able to receive serial data from the CRU and convert the data to parallel
lines for interconnections to the printer. In addition to the data lines, the in=
terface device must supply the necessary control signals to actuate the
printer mechanisms when required for the printing format. The control sig-
nals are shown in table D-2.

D.2.1 INTERFACE TIMING

Refer to figure D-1 for the following discussion, The interface device must
enable the data on the lines to the printer prior to any other operation. Once

D-1 Digital Systems Division

(o]
@ 943442-9701

Table D-2. Printer Control and Response Signals

Signal Definition Hexadecimal Value

Control Characters

LF Line Feed 0A

CR Carriage Return ODiZ
TOF - Top of Form OE16
PS Printer Strobe 1116
PP Printer Prime FFlé
PD Printer De-select 1316

Discrete Signals

PL Paper Low

PSD Printer Selected ~——
PF Printer Fault

BSY Printer Busy~———

IM Interrupt Mask

IR Interrupt Reset
ACK Acknowledge —

#*——Signal from printer
—Signal to printer

the data has been applied to the printer, the interface device then applies the
data strobe to the printer. This strobe may remain on the line for a period
of from 0.5 psec to 500 usec. After the strobe is removed from the line, the
printer must respond with the acknowledge signal from 2.5 psec to 10 psec
later. This acknowledge signal must remain on the line from 2.5 psec to

5.0 psec. After the acknowledge signal is removed from the line by the
printer, the overall process may then be repeated,

D.2.2 INTERFACE MODULE HARDWARE

The user may design and implement a special interface card that will con-
nect the line printer to the 990 Computer CRU. However, for purposes of
this example, the 16 I/O data module (Section III) is used as the interface
device.

D-2 Digital Systems Division

‘Lr@’) 943442-9701

1=+2.4 TO +5,5 VOLTS
0=0 TO +0.4 VOLTS

|

| : ————— TO PRINTER
! —o»l jug— 0. SHS
| MIN I
| | |
|

DATA STROBE 1 [1' TO PRINTER

0 | !

|
005“5 _'_ I
|

ACKNOWLEDGE 1 FROM PRINTER
o]

(A)128674

Figure D-1. Interface Timing for Data Transfer

D.2.2.1 INPUT CIRCUITS. A logic diagram of the input circuits on the

16 I/O data module is shown in figure D-2. Input signals on the bit input
lines are selected by the bit address applied to the Z3 multiplexer. Single or
multiple input lines may be selected under program control.

D.2.2.2 OUTPUT CIRCUITS. A logic diagram of the output circuits is
shown in figure D-3, Output signals on the output lines remain on these lines
until changed by the CRU signals. Decode logic (Z13) permits the address-
ing of one or more of these output lines according to program requirements.
Note that it is possible for the output circuits to be loaded into an external
power source through external load resistors.

D.2.2.3 INTERRUPT CIRCUITS. A logic diagram of the interrupt cir-
cuitry is shown in figure D-4, Note that the interrupt signal may be wired to
interrupt on either the positive or negative transition of the interrupt signal.

D.2.2.4 PRINTER LOGIC CIRCUITS. The printer contains input logic to
decode the input control signals to operate the appropriate printer mecha-
nism.

D.2.2.5 PRINTER/16 1/O DATA MODULE INTERCONNECTIONS. A cable
may easily be constructed that will interconnect the 16 I/O data module and
the printer. Specific printer connections may be found in printer documen-
tation,

D-3 Digital Systems Division

uojsinIg sweisAg jeybiqg

P1 P2 P1 1P2
I CRUBIT12-15 2 |cruBITI2-15
36, 42,
32,33,34 40,38,34
MODSELO- as | CRUSELO-
a8 s 2N2222 $36082
TO/FROM 390 ™ o-
CRU CHASIS CRUBITIN - N
LOCATION 60 S BIT 0 INPUT
cz2
1,2, GND
>
79.80 3360Q
* -—
N GND
77, +5 vDC r
78 SN74150 L =
. (MULTIPLEXER)
[/ — l/‘J . . °
®
-
ADAPTER
E15
w B
Qio 33600
SN7401 5 IN15—
CRUDATAIN BIT 15 INPUT
60 | c26
4
. SN740 $ 36082
28 ' L +5vbc e eND
1.2, GND
79,80 =
.
/
I "— 250 TO 500ns DATA MODULE
i | IN— | IN— | GND
1'* f U; PUT | PIN | PIN
990 SYSTEM CLOCK | ' 1 A 1
| | | 2 c D
CRUSELO—
(MODULE SELECT) I \ | /I 3 Y z
; | \ . 4 u v
| ! - s P R
l * - 6 K L
CRUBIT12-15 | | CASE OF INPUT = HIGH (LOGIC 0)
(ADDRESS SELECTS I | : 7 E F
INPUT M) | |
* | I ' I 8 33 34
INM— / \
(PERIPHERAL INPUT) | | | s 20 |30
10 | 25 26
CRUDATAIN l
(INPUT TO 990) ' l y—— " 21 22
' I | 1 12 17 18
ls— SYSTEM CLOCK > | 13 |13 | 14
ERIOD 260ns
(8)128675A PERIOD = ' o |10

Figure D-2. Data Module Input Logic and Timing

/)

o

10L6-2V%E¥6

uoisialg swesAg [eubia

TO/FROM
990 CRU
CHASSIS
LOCA—
TION

F

P1 P2 P1
F7.)78 [77.] 78 v
+5vDC o +svDC £ <<
I] SN7400
E3 | SN7400 —\
| | \ | I
£ 3
13 £a N ET 76] | _j
TLPRES— |>—*—-o- - I CRUMR-
T 3
< 0
L
PRE P2
I 14 I : I I 16 I o
TLIORES— RUDATAOUT
, E2 T CRU e g T [sN7474 RS4 _
| I I I ' SN7400 \rr) I
18 ‘ 2N2222 oUTO
CRUBITOUT | I | SN7404 cLK Q)
| "o | - |
22 I 1 | 22 . . o
STORECLK- I {®' sTorEcLocKk- .
l .
|45 I I l‘a I m 1
_ - s dro o .
MODSEL.O I CRUSELO L PRE
| | l l SN74154 .
I 36,32,38,34 I . (DECODE), . ISN7 47 4]
CRUBIT12-15 >——-———i—’ CRUBIT12~15 >#2.40,38,34 151, (FF)
14]o . SN7400
| | | | E : -
1,2,79,80 1,2,79,80 cLk @
GND | >t > GND 2fa 1245 15 D—%
I._.l I-—-l L—l SN7404
. /
N
ADAPTER
=/
|-— 250ns ——.1 DATA MODULE
t
990 / I [
SYSTEM CLOCK ouT— ouT— GND
| I PUT | PIN | PIN
CRUSELO- |
(MODULE SELECT) [1 F £
N — _
T 2 B A
| |) s | x| w
coUn T AT o ! . I : N Ny
(990 OUTPUT DATA) = l l A —— : T ;1
STORECLOCK— .
(WRITE GATE) ! XNOTE . ; 302 3c‘
| Wns E1 TO E2 — TILINE 1/0 RESET 9 28 27
oUTM— | E1 TO E3 - +5VDC RESET DISABLE 10 24 23
(OUTPUT M TO + t { _ e 11 20 19
L e hAL 1 T E1 TO E4 — TILINE POWER RESET 12 16 15
PREVIOUSLY HIGH) 13 12 11
14 8 7

(B)128676A

Figure

D-3.

Data Module Output Logic and Timing

10L6-2VPET0

161G

a swejsAg |ej

UoJSIAL

Pi P2
66 § INTERRUPTE- ,
"Za

TO/FROM

cru 4 78} ysvnc

LOCATION
18} crusiTouT
>

ADAPTER

IN1
(PERIPHERAL
INTERRUPT)

—0002
VERSION

—0003
VERSION

(B)12B677A

—

E13=
CLR OF 210

15DQ—

—

UNTIL RESET
8Y 990

E13=
CLR OF Z10

15DQ— l

UNTIL RESET
BY 990

SN7401
SN7404
661 cRUINT-
S INTERRUPT) =,< }
77,
78] +svoc
N
INTERRUPT SN74130
N MASK
sN7400 READ ES__E8
MULTI- EI1S}— & o—]
16| crRUDATA- o PLEXER)
ouT
INTERRUPT SN7474
AL DATA) (FF14)
L/
(WRITE GATE
(eeLECT 14} CLk Q
INTERRUPT
SN7400
E9 _E10 3K
15DQ- —0 b—— WA
3K
A .
< S
$4.7k 4.7k SN7401
2Nz222 |5
Et1 <
sv 1000p; o
EZ E13 , E12
ov SN7401
~) cz26
2.5V (R38=R6B=3K) 3K 3
=2 3600 § 6
ov "
sv = y \
ov
2.5v DATA MODULE
ov
* NOTE:
sv E6 TO E12 — INTERRUPT SENSED ON NEGATIVE
ov TRANSITION (-0002 VERSION)

Figure D-4.

E11 TO E12 — INTERRUPT SENSED ON POSITIVE
TRANSITION (-0003 VERSION)

Data Module Interrupt Logic and Timing

INTS—
PERIPHERAL
NTERRUPT)

10L6-2PFEFH6

=

043442-9701

D.3 SOFTWARE INTERFACE REQUIREMENTS

An arbitrary CRU signal arrangement has been selected for this example, as
shown in figure D-5.

D.3.1 ASSEMBLY LANGUAGE INSTRUCTIONS

The available assembly language instructions that may be used to cause data
transfers between the CRU and the printer are:

° SBO

Set Bit to Logic One
) SBZ

Set Bit to Logic Zero
o LDCR - Load Communications Register
° B - Test Bit
Refer to Section IV for detailed descriptions of these instructions and Sec-

tion V for examples of usage of these instructions.

D.3.2 SOFTWARE ROUTINES REQUIRED

To properly operate the medium-speed line printer, software routines must
provide initialization, character transfer, and end-of-data reporting. The

following paragraphs define these operations and provide specific program-
ming examples.

CRU BITS CRU OUTPUTS PRINTER OUTPUYS (CRU INPUTS)
[o] DATA BIT 0 (LSB) BUSY
1 DATA BIT 1 FAULT
2 DATA BIT 2 SELECTED
3 DATA BIT 3 NOT USED
4 DATA BIT 4 NOT USEL
5 DATA BIT 5 NOT USEL
6 DATA BIT 6 NOT USELC
7 DATA BIT 7 (MSB) NOT USEL
8 STROBE NOT USEL
9 PRIME NOT USEL
10 NOT USED NOT USEE:
11 NOT USED NOT USEL:
12 NOT USED NOT USED
13 NOT USED NOT USELD
14 INTERRUPT MASK NOT USED
15 INTERRUPT RESET ACKNOWLEDGE =

(A)128706

Figure D-5. CRU Bit Assignments

D-7

Digital Systems Division

[o]
(_r@ip 943442-9701

D.3.2.1 INITIALIZATION. Initialization should occur when power is ap-
plied to the system. A generalized approach to initialization with specific
printer initialization follows:

AORG 0

DATA PWRONW INITIALIZE POWER ON

DATA PWRONP INTERRUPT VECTOR

' ' OTHER VECTORS
PWRONP EQU $ POWER ON INITIALIZATION
OTHER INITIALIZATIONS

PRBASE EQU > 120 USE MODULE SELECT 9
PRIME EQU 9 OUTPUT - RESET PRINTER
STROBE EQU 8 OUTPUT - TAKE DATA
MASK EQU 14 OUTPUT - INTERRUPT MASK

*PRINTER INITIALIZATION

LI 12,PRBASE INITIALIZE CRU BASE ADDRESS
SBZ PRIME PRIME = +5V

SBZ STROBE STROBE = +5V

SBZ MASK INTERRUPT IS MASKED

D.3.2.2 CHARACTER TRANSFER. Character transfer can be accom-
plished as follows by the use of a subroutine call. The assumptions for this
code are:

) Workspace register 8 (WR8) contains the address of the data to be
printed.

° Workspace register 9 (WR9) is used for temporary storage.

D-8 Digital Systems Division

[e]
\J@ 943442-9701

° Workspace register 10 (WR10) contains the number of characters to
transfer,

° Workspace register 12 (WR12) contains the CRU base address.
The following code is one method to provide character transfers.
PRINTR EQU $ PRINT SUBROUTINE

* SET UP INTERRUPTS

sle

SBZ INT RESET INTERRUPT
LIMI 15 ENABLE LEVEL 1%
SBO MASK UNMASK INTERRUPT

ol
b

* TEST FOR PRINTER BUSY, PRINT IF
% NOT BUSY, WAIT FOR ANY INTERRUPT!
% IF BUSY AND RETRY TEST.

TSTBSY TB BUSY SAMPLE BUSY BIT
JEQ PRINT IF NOT BUSY
IDLE WAIT IF BUSY

JMP TSTBSY RETRY TEST

* CHARACTER PRINT SUBROUTINE

PRINT EQU $ START
MOVB *8+,9 WR9 CONTAINS PRINT CHAR
INV 9 INVERT BITS (FALSE DATA)
ILDCR 9,38 OUTPUT TO PRINTER
SBO STROBE PULSE STROBE LINE

Note 1. Refer to the discussion on the interrupt routine.

D-9 Digital Systems Division

\J@ 943442-9701

SBZ STROBE ABOUT 1.5 MICROSECONDS

DEC 10 DECREMENT CHARACTER COUNT
JEQ EXIT EXIT IF COMPLETE

JMP TSTBSY GO FOR NEXT CHARACTER

* EXIT CODE
EXIT SBZ MASK MASK INTERRUPT
RTWP RETURN TO CALLER
INT EQU 15 OUTPUT - INTERRUPT RESET
BUSY EQU 0 INPUT - PRINTER BUSY

D.3.2.3 END-OF-DATA REPORTING. End-of-data reporting in the ex-
ample code for character transfer is determined by the input character count
in WR8. When this count is depleted, the required amount of character data
has been sent to the printer. The end-of-data reporting is accomplished by
returning to the calling program.

D.3.2.4 INTERRUPT ROUTINE. During the printer busy test in the char-
acter transfer routine, if the printer is busy, the CPU enters an idle state.
The only possible exit from this state is via any enabled interrupt. For this
example, the LIMI 15 instruction enables the interrupt level for the printer.
When this interrupt occurs, the following interrupt routine may be used to
reset the interrupt and cause the JMP BUSY instruction to be executed.

AORG >3C INTERRUPT LEVEL 15
DATA PRIWP WORKSPACE ADDRESS
DATA PRIPC PROGRAM ADDRESS

PRIWP RORG $-24 WORKSPACE POINTER
DATA PRBASE CRU BASE ADDRESS
RORG $+6

D-10 Digital Systems Division

1 55
_@ 943442-9701

PRIPC EQU $ INTERRUPT ROUTINE
SBZ INT RESET INTERRUPT
RTWP RETURN

D.3.3 PROGRAMMING NOTES

Sophisticated techniques for operation of the printer may be designed and im-
plemented. Examples presented here are fundamental to the operation of the
printer and do not include error routines for printer faults or printer status
changes., Error recovery routines may be used when desgired to overcome
printer error conditions.

D-11/D-12 Digital Systems Division

([@? 943442-9701

APPENDIX E
TILINE INTERFACE EXAMPLE

Digital Systems Division

(o]
{@@ 943442-9701

APPENDIX E
TILINE INTERFACE EXAMPLE

E.1 INTRODUCTION

This appendix supplies information to aid users of the Model 990 Computer

to design and implement peripheral controllers that interface with the TILINE
data bus. Included in this appendix are description and sample logic diagrams
for both a master and a slave interface, followed by a sample program and
description of a typical service routine for a TILINE device. Refer to the
main body of this manual for description of the interface and its general re-
quirements.

E.2 TILINE SAMPLE INTERFACES

Peripheral device controllers used with the TILINE must perform both as a
master and as a slave device, The slave part of the device controller re-
ceives or sends data at the instruction of the AU or another master device.
The AU may use this part of the controller to set up a controller-to-controller
transfer, in which one of the controllers becomes the master, to initiate a
transfer to the other controller. The master part of the controller can
transfer data to or from its corresponding device from or to memory (or
some other slave interface). This appendix contains a sample logic diagram
and description of both a master and a slave interface to.be used as a guide
in designing new device controllers. The master interface is standardized,
and should be implemented as described in this appendix to ensure compati-
bility. The slave interface may be varied to match the criterion of the slave
device, but may not deviate fromthe general requirements for a slave inter-
face (signals required, time delays, etc.) outlined in this appendix and in the
main body of the manual.

E.2.1 MASTER INTERFACE

The master interface for a peripheral device controller must be compatible
with the TILINE requirements as outlined in the main portion of this manual,
Use of the standard implementation for the master interface ensures com-
patibility and simplifies design of peripheral controllers, The logic within
the interface is completely asynchronous and consists of three major func-
tional areas: TILINE access control, data access and system clock., Figure
E-1 illustrates the interrelationship of these three areas and the signals that
tie them together. Table E-1 defines those signals that are not a part of the
TILINE interface, TILINE signals are defined in the main body of the manual.
The controller-to-interface signals require addition of a top-edge connector
if the controller is implemented on a separate circuit board from the inter-
face.

E-1 Digital Systems Division

(AC}

g swejsAs eybig

UOISIA]

MASTER INTERFACE

TILINE BUS

' DMER l TLADR(0—19)-
-
I SDT™ . TLDAT(0-15)-
| MDREAD—
i SDGO" & TLGO—
g v —
SDATEN— DATA TLREAD
i —8» ACCESS —
DWDAT(0—15)
l LRSS TLMER-
DRDAT(0—15
| MDADR((O- 1 9)) TLTM
¥ ~——— .
SDADR 0—1 TLWAIT—
- f (0-19)
I MDMS .
' l
PERIPHERAL I
DEVICE
CONTROLLER
l MDTR-
SYSTEM
CLOCK SIGNAL l CLK— CLOCK MDGO
TO FANOUT 4 .
I g MOT™
I [| MDAR—
TLTM
TILINE TIMING ERROR DTER- TLPRES—
| '
SYSTEM CLOCK L DCLK— l
FROM FANOUT l — g‘gff,fg,_ +TLAG (1N)
LAST CYCLE DLCY TLAG (0OUT)
| — —
H TLAK-
2
SYNCHRONOUS LOGIC I ASYNCHRONOUS LOGIC TLAV
(A)128671A

Figure E-1.

Master Interface Signals

10L6-2¥¥%€E¥76

943442-9701

Table E-1. Peripheral Device Controller - Master Interface Signal
Signature Definition

DMER Memory Error: When high*, this signal indicates that a
non-recoverable error occurred during a memory read
cycle.

SDTM Slave Device Terminate: When high, this signal indicates
the completion of a slave data transfer.

MDREAD- Device Read: When high, this signal indicates a write
operation (data transfer from device to:TILINE); when
low, this signal indicates a read operation (data from
TILINE to device).

SDGO Slave Device Go: Initiates a data transfer from the slave
portion of the device controller.

SDATEN- Slave Data Enable: When low, this signal enables data

DWDAT(0-15)

DRDAT(0-15)

MDADR(0-19)

SDADR(0-19)

MDMS

CLK-

DTER-

DCLK-

DLCY

MDTR-

MDAR-

transfer from the slave device to the TILINE,

Write data from device to TILINE,

Read data from TILINE to device.

Address lines from master portion of device to TILINE,
Address lines from TILINE to slave portion of device.

Master Device Memory State: When high, this signal
indicates to the master interface that the device control-
ler requires a memory cycle in its current control state.

Device System Clock: Asynchronous pulse for data and
state coordination.

Timeout Error: An asynchronous 50 nanosecond pulse
that indicates that the device has failed to transfer data
or has addressed a nonexistent device.

System clock pulse from fanout circuits.

Device Last Cycle: When high, this signal indicates that
the current memory cycle is the last cycle in a burst.

Device Timer Running: Indicates that the timer circuit

is in operation,

Master Device Access Request: When low, this signal
initiates an access request to the TILINE bus priority
circuits.

*For all signals:

High >2.4V
Low £ 0,4V

Digital Systems Division

(o}
@ 943442-9701

Figure E-2 provides a detailed logic diagram of the recommended master
interface. This interface conforms to the master interface description con-
tained in the main body of the manual. In addition, the master interface con-
tains a clock circuit to synchronize operation of the controller with the re-
sponse time of the selected slave device.

E.2.1.1 SYSTEM CLOCK. The system clock circuit provides an asynchro-
nous clock signal for use in data transfer through the interface and within the
peripheral controller. When the interface is not performing a memory trans-
fer operation, the clock runs synchronously with a period of 260 nanoseconds.
However, when the interface is performing a memory transfer, the clock
becomes asynchronous and depends upon receipt of memory complete indica-
tions (MDTM). The period can never be less than 260 nanoseconds, however.
Figure E-3 illustrates the timing relationship of the signals within the system
clock circuit. Delay T1 in the circuit determines the pulse width of the clock
pulse; delay T2 determines the timing of MDGO following the clock pulse. T1
plus T2 plus T3 determines the overall clock period.

E.2.2 SLAVE INTERFACE

Slave devices respond to assigned memory addresses that are within the
highest 1K addresses of the 20-bit TILINE address bus. The address for a
particular slave interface is normally set using dual inline package rocker
switches, so that the particular address of a board may be changed easily.
Although the actual configuration of a slave device interface will vary due to
the nature of the device, the interface must conform to the timing and signal
criteria prescribed in the description of TILINE interfaces in the main body
of the manual., As an aid to slave interface design, figure E-4 illustrates
the slave interface used by a 16-bit data register.

E-4 Digital Systems Division

943442-9701

NOTE: UNLESS OTHERWISE SPECIFIED vai‘x "
1. ALL DEVICE TYPES PREFIXED WITH SN74 mg ((cl::ln ;
— _ K 3 P25
PRE DEVICE
Vet~ ACCESS vee it SNTT38 |
ACCESS CONTROL H74 REQUEST DEVICE ACKNOWLEDGE Mﬁ TLAK- 7"1'
Le 3 30 5 [. N
P1-130R _TLPRES Car?f T o Ho4 T P Q 3
- TLPRES- AL = 15009
213> 1 ® = H74 02
® O, 0 L
H P
AR cROM DEVICE | -DLCY (DEVICE LAST CYCLE) 0
T3 Ho4 CONTROLLER | SRCLK (SYSTEM CLOCK FANDUT) s SNT5138 TAV-
H [-<|>—— .
i 51 L = \ TLAV gsl
) >— T € _4>__l D> =Y
= 7 470yt ¥ L
e~ T
’—lﬂﬁ/ TIAV- - — e
' vee Maore-o- ~ B TLDATIO-15)-
vee J | [Brfpz]e] pz]airl52] BIT P2[EiT P2 |BIT]P1
. ol slutelel (ol slalela
1
oo Lo Losee m_Q) AR R
prsdio Rl I Hos ‘ﬂmD' ST T o A EEAEE il |
nm e - 20 DJER-_TODEVICE | 2|9 |13[15 5163
c i controuer | [6147 |14] 8 6|43
__DT ar TILINE TIMEOUT 5 [17]e]s)e 7 (4
02
e T |
® TILINE ADDRESS
e e e e e] f—_t— - ————— e —— e ——— = J RCVRS/DRIVERS ADDR-19 spapRrioo-19)
. TDATA ACUSS (20) SN75138 TO SLAVE
_ ADDRESS TLADR(0-19)- N
_] TILINE ADDRESS BUS i
SEE TABLE
< vee
LpRES- TLPRE —
|
HA0
MDTM- TILINE DATA DRDAT(00-15) MASTER READ OR
MOTM RCVRS/DRIVERS ™ SLAVE WRITE DATA
- {16) SN75138 0-15)
o MASTER WRITE
OR SLAVE « DWDAT(00-15) 1/ TLDAT(G-15)-
READ DATAID-15) : L_| | /TILINE DATA BUS
MDAR (MASTER DEVICE ACCESS REQUEST) D—] MOTM - ! B> see Tanie
ATl | OUTPUT DATA | SDATEN-
MEMORY STATE ENABLE FROM :j >
INDICATION FROM D DEVICE CONTROLLER 08 SDG0 10 DEVICE
DEVICE CONTROLLER m , SN75138 CONTROLLER
MOTR- I
PI-
H10 n PRE Q MDGO TLGO- 525
DEVICE 6O H4
= 1
i,_Jc ol ‘ f MER MEMORY READ i FYen |
i WERRUR G Otvic STAVE MEMORY ERROR) SKN7513 ;
_________________ S S SN L
MASTER SYSTEM CLOCK 1 ® CONTROLLER SDMER >————— TMER- o PI-
E a 10 | L 5
] FANOUT | READAWRITE TLREAD _ PI-
o INDEVICE) Feom ey SMRREAD: 1
11 Iz L CONTROL- CONTROLLER ® SNT5138
60ns | wmpric- 100ns MDTR- 100ns HOO LER l
(TYP) YRy e Ll | FROM DEVICE . SDIM B N L PI
DELAY e | DELAY T CONTROLLER m 220
HO0]
>+ mpco I
fo4 | [moTM !
DTER- [y] SNT5138
H20 l | Ho4 TLWAIT Pl
LMOMS a0 | Fm 763
| <

(D)128384A

Figure E-2. TILINE Master Interface

E-5/E-6 Digital Systems Division

943442-9701

{ C
CLK— =] Nt [I_f \ 4
MDTIC— == [—§
{ C
MDTR- e S 1 77 Y S N R
MDGO e { §
J.__.
MDTM 5 § SISIIIITA
L C
MDMS 777777 ' ALAANNNY
T | T3 | T T2 | T3 i P | T T2 | T3 | T
RUN STATE MEMORY STATE RUN STATE
NOTE: A '\/’ B
= A RISULTS IN B
(A)128672A
Figure E-3. System Clock Timing

E-7/E-8

Digital Systems Division

943442-9701

TLAD ROO-
MSB) ot t I_—_I] YT mse
TLADROL- Hl . 41,/¥|I
ne—t i I
TLADRO2- | _11>|l S
NCL;-——:D)J il [aoo0 MRS
) {_ADO] DECODE
TLADRO3 |] Lo |
NC I = | I T ADB SN7430 ‘
P vcc__.[>_4' T ADO4
TADRos- ENmBLE | L ——— — Jli [I ADoS]
NC SN75138 {_ADOS |
TLADROS- — [|_ADOT |
NC—— i I
TLADROG- i —— e -
NC | I [Ticme oaTa orivers?)
TLADRO7- 1 | | | RECEIVERS x(16 BITS) |
ne 1] i | : TLDATO0-THROUGH TLDATIS- | SNTS138 > |
vee L I | . | (16 BITS) |) | |
TLADROS- ENABLE t 1 i
SN75138 i . > !
TLAD RS- ne—L] | | EXTERNAL INPUT INTERFACE | i
| | (16 BITS) —_————
ne—l | |
TLADR10- , | ADGR i
1
ne—1 ADO9 —_———
R TLADRIT- % AD10 l [stave oaa
NC 1| I Iapu SN0 ! | reciser |
VEC — | |_ADI2 | x16BITS) |
TLADRIZ- ENABLE | 03 | |
Ne_1 SN75138 | AD14 | v | EXTERNAL OUTPUT
TLADRI3- |_ADI5 | b Q > INTERFACE
TLADRI4- NC— | | | ! | (16 BITS)
Ne L ! I ADDRESS | | I
TLADRI5 I] | OPTION | CIR]
Ne L] | JUMPERS TLPRES- ! 7 |
vee — | SN7404's I | I |
TLADRI6- ENABLE | f I |
i SNT5138 I
TLADRI7- NC— | ' | ADDRESS VALID (-FrFra) ENABLE
1
TLADRIS- NC— | :
TLADRIY- Ne —.L— I |
LSB) NG | lisey |
vee L] I N
ENABLE —_———_— I
[SLAVE ConTROLTOGIC e |
. o » MM { oNrans '
wLou i G0 330:: SN74132 !
n SNT5138 b QL SLAVESTART |
& £ —Ne SN75138 T SN7404 |
TLREAD ! - —NC DELAYED GO I :
- ENABLE 100ns R
ENABLE | = | L 1
= l I
| SLAVE START
I SN7474 SN7408 :
: READ - READ- pCLR o] WRITE |)————I
Ltr-———————-——- - === === L SNT40 |
| L_oetavep co ¢ glReA LD—l—
(D)128383A L - = __ —_d
Figure E-4. TILINE Slave Interface
E-9/E-10 Digital Systems Division

1 o
{@@ 943442-9701

E.3 PERIPHERAL CONTROLLER APPLICATION

Controllers for peripheral devices connected to the TILINE use the master
interface to fetch or deposit data in the system memory. The slave inter-
face is used to receive commands and to make status data available. A
simplified block diagram for a disc controller is shown in figure E-5,

Typical use of control registers accessed via the slave interface is also
shown in figure E-5. In a system, the programmed address FFEO;¢ might

be assigned to the controller. This corresponds to TILINE address FFFFO014.
A program would operate the disc controller by moving the appropriate
parameters into the control registérs and selecting the activation bit as fol-

lows:
% TEST FOR DISC CONTROLLER BUSY
LI 7,>7TFFF WR7=BUSY TEST MASK
COC @>FFEE,7 TEST FOR BUSY
JNE BUSY IF NOT
%* TRANSFER DISC PARAMETER LIST FROM MEMORY TO
% DISC CONTROLLER
LI 8, PARAMS WR8=PARAMETER LIST ADDRESS
LI 9,>FFE2 WR9=DISC CONTROLLER ADDRESS
FILL MOV %8+, %9+ MOVE PARAMETER LIST TO CONTROLLER
CI 9, FFEE STOP WHEN WR9=CONT. STATUS ADDR
JNE FILL
INV 7 WR7=>8000
SOC 7, #8 SET ACTIVATE BIT

The disc controller will perform the action requested in.the "COMMAND"
register. During the time the controller is active, the busy flag will be on.
When the operation is complete the busy flag will be turned off and an inter-
rupt signal will be generated. The interrupt can be connected via chassis
backpanel wiring to an arithmetic unit external interrupt. The choice of
interrupt used is left to the system designer.

E-11 Digital Systems Division

943442-9701

INTERRUPT

‘ N

 pm————— ===

AU ju—@ MASTER ' '
' MASTER DISC |
CONTROLLER

: |

Tt ae el =l T osse
t

SLAVE H | '
\/—|_ —_—d IUNIT um'r um'r UNIT

TILINE L _l

aN
Y \

CONTROL REGISTERS

0 78 15 TILINE ADDRESS C USED BY PROGRAM -

[¢] DISC STATUS FFFFO FFEO

1 COMMAND FORMAT FFFFI1 FFE?2

2 SECTOR SURFACE FFFF2 FFEA4

3 CYLINDER ADDRESS FFFF3 FFEG®6

4 WORD COUNT FFFF A4 E 8

5 MEMORY ADDRESS FFFFS FFEA

6 EXT. MA l SELECTION FFFFE6 FFEC

7 CONTROLLER STATUS FFFF7 FFEE
BSACTIVATE

(A)128673A

Figure E-5. Sample Disc Peripheral Controller Block Diagram

E-12 Digital Systems Division

(o]
(@ 943442-9701

APPENDIX F
CHARACTER SET

Digital Systems Division

943442-9701

QO
APPENDIX F
CHARACTER SET

The Model 990 Assembly Language Uses the USASCII characters listed in
table FF-1. The table includes the USASCII code for each character, repre-
sented as a hexadecimal value and as a decimal value. The table also shows
the corresponding Hollerith code. In addition to the characters listed in
table F-1, Model 990 Assembly Language defines six characters that are
undefined in USASCII. Table F-2 lists these characters, hexadecimal and
decimal representations, corresponding Hollerith codes, and the correspond-
ing character on the Model 29 keypunch.

Table F-1. Character Set
USASCII Decimal | Printable | Hollerith
Hexadecimal
Value Character Code
Value

20 32 Space Blank
21 33 ! 11-8-2
22 34 " 8-7
23 35 # 8-3
24 36 $ 11-8-3
25 37 %o 0-8-4
26 38 & 12
27 39 ' 8-5
28 40 (12-8-5
29 41) 11-8-5
2A 42 * 11-8-4
2B 43 + 12-8-6
2C 44 , 0-8-3
2D 45 - 11
2E 46 . 12-&-3
2F 47 / 0-1
30 48 0 0
31 49 1 1
32 50 2 2
33 51 3 3
34 52 4 4
35 53 5 5
36 54 6 6
37 55 7 7
38 56 8 8
39 57 9 9
3A 58 : 8-2
3B 59 ; 11-6-6

F-1 Digital Systems Division

%@ 943442-9701

Table F-1. Character Set (Continued)

USASC.H Decimal Printable Hollerith
Hexadecimal
Value Character Code
Value
3C 60 12-8-4
3D 61 = 8-6
3E 62 > 0-8-6
3F 63 ? 0-8-7
40 64 @ 8-4
41 65 A 12-1
42 66 B 12-2
43 67 C 12-3
44 68 D 12-4
45 69 E 12-5
46 70 F 12-6
47 71 G 12-7
48 72 H 12-8
49 73 I 12-9
4A 74 J 11-1
4B 75 K 11-2
4C 76 L 11-3
4D 77 M 11-4
4E 78 N 11-5
4F 79 O 11-6
50 80 P 11-7
51 81 Q 11-8
52 82 R 11-9
53 83 S 0-2
54 84 T 0-3
55 85 U 0-4
56 86 \"% 0-5
57 87 w 0-6
58 88 X 0-7
59 89 Y 0-8
5A 90 4 0-9

F-2 Digital Systems Division

I,

o

[P 943442-9701
Table F-2. Additional Characters
u US‘CA{SC?H 1 Decimal Printable Hollerith Kevounch Ch ¢
exadecima Value Character Code yp aracter
Value
5B 91 [12-2-8 ¢
5C 92 \ 0-8-2 0-8-2
5D 93] 12-7-8 | (vertical bar)
5E 94 n 11-7-8 — (logical NOT)
5F 95 _ 0-5-8 B (underscore)
00 00 Null
09 09 Tab
F-3/F-4 Digital Systems Division

[e]
{@jp 943442-9701

APPENDIX G
BACK PANEL CONNECTORS

Digital Systems Division

Jof

943442-9701

ARITHMETIC UNIT CONNECTOR ASSIGNMENTS

P2 i1
GND 1] 2 GND GND | 1] 2] GND
_ +5 V 3| a +5 Vv +5 Vv [3] 4 +5 V
TLADR 14— 5| 6 TLADR 13— +12v* | 5] 6 12 v
TLDATOO~ 7 TLADROO— +sv¥ | 7] 8 +5 v*
. TLDATO3— gf10 TLADRO3— -5 v X alio -5 v¥
TLADR 12— 11|12 TLADR15- INTREQ15— 1112 INTREQ1 4—
OPEN 13|14 OPEN CRUBITIN 1314 —;LTERM—
OPEN 1516 TLADRO 1— _ INTREQ1 3 15|16 INTREQ1 1—
o TLDATO2-— 17|18 TLDATO 1— o OPEN i7{18 INTREQ1 0~
TLADRO 2— 19|20 TLDATOS- OPEN 19|20 FPCLKENBL~—
OPEN 21)22 TLDAT11— FRCNRA— T2t |22 INTREQO 8~
TLADRO 8- 23 {24 TLADR{ 1— . INTREQO9— 23] 24 POFF
PINTQ— 25|26 ENXOPQ—- INTREQO6~ 26 TLGO-
TLGRNTDIN 27 {28 TLADRO7— INTREQO7— :—8-1 cruBITIO
XOPTHERE—- 29 |30 XOPSTB- TLWAIT- 29130 CRUBIT11
TLADRO9— 31 |32 TLDATO9— TLACKD— 31 32 EXTLOADER-
TLDAT 10— 33 |34 TLADR10- TLDAT13— 33|34 TLBUSY-
TLADR 19— 35 |36 TLADR 16— CRUBITO7 | 35]36 TLWRITE—
TLDATO4— 37' 38 TLDATO7— TLCPUAC— 37 | 38 CRUBIT09
+12 Vv 39|40 +12 Vv +12 v 19| 40 +12 Vv
-12 v a1 | a2 -12 Vv —-12 v 41 | a2 -12 v
XOPIAQCK— 43 | aa TLADR 17— CRUBITOS 43| 44 TLDAT 14—
s
TLADRO6— 45 | a6 TLDATO6~ MPE— | 45 | 46 TLDAT12—
TLDATOS5— 47 |48 TLADR1 8- CRUBITO8 47 | 48 CRUBITO6
TLADRO 5— 49 | s0 IMODSEL 08— _ TILCLK- 49 150 CONSNRAO
IMODSEL.09~ 51 |52 IMODSEL.10— CRUBIT15 ,"31 52 CRUBITO4
XOPCOMP— 53 |54 XOPABORT- CRUBIT13 53 | 54 TLDAT15-
IMODSEL.1 1~ 55|56 IMODSEL.1 2— CRUBITOUT »-;5 56 STORECLK—
120HZ— 57 | s8 IMODSEL 13— CRUBIT14 | 57 | 58 CONSNRA3
IMODSEL 14— 59 |60 IMODSEL.06~ CONSNRA2 P39 60 CRUBIT12
IMODSEL 07~ 61 |62 TLGRNTDOUT MRESET— | 51 | 62 EXTLOADGO-
’ IMODSEL 135~ 63 |64 IMODSEL 0O~ CONSNRAT1 53|64 CONSNRA7
TLADRO 4~ 65 |66 IMODSELO1—~ CONSNRAS 55)66 IORESET-
IMODSEL.0 2~ 67 |68 IMODSEL O3~ CONSNRA4 57| 68 EOIQ—
IMODSEL 04— 69 |70 IMODSELOS— IDLE- 59|70 RESTART—
-5 vy * 71|72 -5 v* CONSNRA6 71)72 ENTER
+5 v X 73|74 +5 v¥ INTREQ1 2 13|74 RESTART—
+12 v* 75 {76 +12 v* OPEN 75|76 OPEN
+5 Vv 77|78 +5 V +5 Vv 77{78 +5 Vv
GND 79 | 80 GND GND .79 | 80 GND

* STANDBY POWER MAINTAINED BY BATTERY DURING

(B) 128626 A (1/2) MAIN POWER FAILURE,

Digital Systems Division

943442-9701

TILINE CONNECTOR ASSIGNMENTS

P2 P1
GND 1] 2 GND GND 1] 2 GND
+5 VOLTS 3l a +5 VOLTS +5 VOLTS 3] a +5 VOLTS
TLAG (OUT) s|e TLAG (IN) +12 voLTs* sl e +12 voLTS *
" GND 7]e TLADR14— +5 voLTs * 71 8 +5 voLTS *
TLADR 15— 9 {10 TLADR 10~ -5 VOLTS * 9 |10 -5 VOLTS*
TLADR12— 11 |12 TLADR11— TLREAD 11 |12 GND
TLPRES— 13 [ha TLIORES— TLPRES— 13|14 TLIORES—
TLADR13— 15 |is TLPFWP GND 15 |16 TLPFWP
TLADROS8— 17 |18 CRUBITOUT GND 17 |18 CRUBITOUT
TLADRO9— 19 |20 TLDAT11= GND 19 |20 TLTM—|
TLDATO8— 21 |22 STORECLK— GND 21 |22 STORECLK—
TLDAT10— 23 OPEN EXTLLOADER— 23 124 GND
TLADRiIB8— 25 126 OPEN TLGO— 25 |26 GND
TLADR17- 27 |28 OPEN TLDAT12~ 27 |28 TLDAT13~
TLADR 16~ 29 |30 OPEN OPEN 29 |30 TLDAT14—
TLADR19~ 31 |32 CRUBIT13 TLDAT 15~ 31 |32 CRUBIT13
TLDATO9— 33 |34 CRUBITIS OPEN 33 |34 CRUBIT1S5
TLDATO2— 35 |36 CRUBITI2 OPEN 35 136 CRUBIT12
TLDATO3— 37 |3s CRUBIT14 CPUAC - 37 |38 CRUBIT14
+12 VOLTS 39 |40 +12 VOLTS +12 VOLTS 39 |40 +12 VOLTS
—12 VOLTS 41 |az -12 VOLTS - 12 VOLTS a1 |42 -12 VOLTS
TLDATO6— 43 44 TLADRO1— OPEN 43 |44 OPEN
TLOATO7 = as |46 IMODSELB ¢ OPEN 4s | 46 IMODSELB
TLADRO6— 47 |ase IMODSELA OPEN 47 | a8 IMODSELA
TLADRO7— 49 |so XOPIAQCK— CPUCLK— 49 | S0 CRUBITY?
TLADRO2 — s1 |52 XOPTHERE— OPEN 51 |52 CRUBITE
TLADRO3— 53 |54 XOPSTB— OPEN 53154 CRUBITS
TLADROO— 55 |56 ENXOPQ—! TLMER- 55 | 56 CRUBIT4
TLADRO4-— 57 |58 OPEN GND 57 |58 TLAV
TLADROS5— 59 |60 CRUBITIN GND 59160 CRUBITIN
TLDATO 4~ 61 |62 PINTQ— EXTLOADGO~ 61|62 GRURITS
TLDATOS— 6364 XOPABORT— TLWAIT- 63|64 CRUBIT9
INTERRUPT B 65166 INTERRUPT A . INTERRUPT B 6566 INTERRUPT A
TLDATOO— 67 |68 XOPCOM P~ OPEN 67|68 CRUBIT10
TLDATO 1~ 69 |70 OPEN OPEN 69|70 CRUBIT11
-svoLts * |71]72 -5 voLTs * TLAK— 71|72 GND
+5 voLTS * 73|74 +5 voLTs ¥ OPEN 73] 74 GND
+12voLts * |7s5]7s +12 voLTs * OPEN 75| 76 OPEN
+5 VOLTS 77178 +5 VOLTS +5 VOL.TS 77178 +5 VOLTS
GND 79 | 80 GND GND 79| 80 GND

(B)128626 (2/2)

X STANDBY POWER MAINTAINED BY BATTERY DURING

MAIN POWER FAILURE,

Digital Systems Division

Mo
{@ 943442 -9701

APPENDIX H
LANGUAGE REQUIREMENTS AND RELOCATABILITY

Digital Systems Division

[o]
@ 943442-9701
APPENDIX H

LANGUAGE REQUIREMENTS AND RELOCATABILITY

H.1 SOURCE STATEMENT FORMAT

An assembly language source program consists of source statements which
may contain assembler directives, machine instructions, pseudo-instructions,
or comments. Each source statement is a source record as defined for the
source medium. With the exceptien of comment statements, each statement
may have as many as four fields: the label field, the operator field, the op-
erand field, and the comment field. The fields are separated by one or more
blanks; and no field, with the exception of the comment fﬁeld, may contain
embedded blanks. A tab character (CTRL I) may be used in place of a blank
to separate fields on the ASR733 and the ASR33. Two acceptable formats of
source statements are shown in figure H-1. The first four lines show the
fields aligned on arbitrarily chosen character positions to produce aligned

fields in the source listing. The next four lines show the fields separated
by tab characters.

Comment statements consist of a single field starting with an asterisk (%) in
the first character position followed by any ASCII character including a blank
in each succeeding character position. Comment statements are listed in

the source portion of the assembly listing and have no other effect on the as-
sembly.

The maximum length of source records is 60 characters. However, only
the first 52 characters will be printed on the ASR733 or the ASR33. The
end-of-record for the source medium is placed following the last field used.
H.1.1 CHARACTER SET

The Model 990 Assembler recognizes ASCII characters as follows:

° The alphabet (capital letters only) and space character

° The numerals

° Twenty-two special characters

° Five undefined characters

. The null character

° The t.ab character
Appendix F contains tables that list all 66 characters and show the ASCII and
Hollerith codes for each.

H.1l.2 LABEL FIELD

The label field begins in character position one of the source record and ex-
tends to the first blank. The label field contains a symbol (paragraph H.4)

H-1 Digital Systems Division

Z-H

uossInIg sweisAs jeybia

(A)128440

12 3456 7 8 9 101112131415161718 1920 21222324 252627 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

o [k CONVENTIBNAL SPURCE STATEMENT FORMAT

:z START L1 3,725 L#AD W R 3

- A | 5.3 ADD W R 5

- RT RETURN T0 CALLING PROGRAM
o [& PACKED SBURCE STATEMENT FBRMAT USING TABS

. STARTSLTI 3, 7257L6AD W R 3

o [*A%5.3%800 W R &

. ["RTERETURM T6 CALLTVG PREGRAM

Figure H-1. Source Statement Formats

E£n

10L6-2¥PEP6

(o)
{@@ 943442-9701

supplied by the programmer. A label is optional for machine instructions
and pseudo-instructions, and for many assembler directives. When the label
is omitted, the first character position must contain a blank. A source state-
ment consisting of a label field only is a valid statement that has the effect of
an EQU directive with the same label and with a dollar s:gn ($) in the operand
field (paragraph H. 4.1).

CAUTION

When the location counter contains an odd loca-
tion, and a source statement consisting only of
a label is followed by a machine instruction or
a DATA directive, the machine instruction or
data word does not have the same location as
the label.

H.1.3 OPERATOR FIELD

The operator field begins following the blank that terminates the label field,

or in the first non-blank character position after the first character position
when the label is omitted. The operator field is terminated by one or more

blanks, and may not extend past character position 60 of the source record.

The operator field contains a symbol that defines the o peration, which may

be a machine instruction, a pseudo-instruction, or an assembler directive.

The operator field may contain a user-defined extended operation symbol.

H.1.4 OPERAND FIELD

The operand field begins following the blank that terminates the operator
field, and may not extend past character position 60 of the source record.
The operand field may contain one or more expressions, terms, or con-
stants, according to the requirements of the operation specified in the oper-
ator field. The operand field is terminated by one or more blanks.

H.1,5 COMMENT FIELD

The comment field begins following the blank that terminates the operand
field, and may extend to the end of the source record if required. The com-
ment field may contain any ASCII character, including biank. The contents
of the comment field are listed in the source portion of the assembly listing
and have no other effect on the assembly.

H.2 EXPRESSIONS

Expressions are used in the operand fields of assembler directives and ma-
chine instructions.

H-3 Digital Systems Division

o]
{%\[z@ 943442-9701

H.2.1 DEFINITION

An expression is a constant or symbol, or a series of constants, a series of
symbols, or a series of constants and symbols separated by arithmetic op-
erators. Each constant or symbol may be preceded by a minus sign (unary
minus). The expression may contain no embedded blanks. The symbols may
not be symbols that are defined as extended operations. Symbols that are
defined as external references may not be operands of arithmetic operations.
Only one symbol in an expression may be subsequently defined in the pro-
gram, but that symbol must not be part of an operand in a multiplication or
division operation within the expression. An expression that contains a re-
locatable symbol or constant immediately following a multiplication or divi-
sion operator is an illegal expression. Also, when the result of evaluating
an expression up to a multiplication or division operator is relocatable, the
expression is illegal. An expression in which the number of relocatable sym-
bols or constants added to the expression minus the number of relocatable
symbols or constants subtracted from the expression is not equal to zero or
one is an illegal expression. Refer to paragraph H.7 for definition of relo-
catability.

The following are examples of valid expressions:
BLUE+1
GREEN-4
2*%16+RED
440/2-RED

H.2.2 WELL-DEFINED EXPRESSIONS

Some assembler directives require well-defined expressions in the operand
fields. A well-defined expression must not contain any symbols or assembly-
time constants that are not previously defined. No character constant may
be placed in a well-defined expression. The evaluation of the entire ex-
pression must be absolute.

H.2.3 ARITHMETIC OPERATORS AND ORDER OF EVALUATION
The arithmetic operators in expressions are as follows:

° + for addition

° - for subtraction
° * for multiplication
° / for division

In evaluating an expression, the assembler first negates any constant or
symbol preceded by a unary minus, then performs the arithmetic operations
from left to right. The assembler does not assign precedence to any opera-
tion other than unary minus.

H-4 Digital Systems Division

(o]
{@ 943442-9701

For example, the expression 4+5%2 would be evaluated 18, not 14. Also, the
expression 7+1/2 would be evaluated 4, not 7.

H.3 CONSTANTS

Constants are used in expressions. The assembler recognizes four types of
constants: decimal integer constants, hexadecimal integer constants, char-
acter constants, and assembly-time constants.

H.3.1 DECIMAL INTEGER CONSTANTS

A decimal integer constant is written as a string of numerals, When a deci-
mal integer constant represents data, the range of values is -32, 768 to

+65, 535, Positive decimal integer constants greater than 32, 767 are consid-
ered negative when used as operands of addition and subtraction instructions.

The following are valid decimal constants:
1000
-32768 .
25

H.3.2 HEXADECIMAL INTEGER CONSTANTS

A hexadecimal integer constant is written as a string of up to four hexadeci-
mal numerals preceded by a greater than (>) character. Hexadecimal num-
erals include the decimal values 0 through 9 and the letters A through F,

The following are valid hexadecimal constants:
| >78
>F
>37AC

H.3.3 CHARACTER CONSTANTS

A character constant is written as a string of one or two characters enclosed
in single quotes. For each single quote required within a character constant,
two consecutive single quotes are required to represent the quote. The char-
acters are represented internally as eight-bit ASCII characters, with leading
bit equal to zero. A character constant consisting only of two single quotes
(no character) is valid, and is assigned the value 000016.

The following are valid character constants:

Constant Value
'AB' 4142,

c! 00431¢

'N' 004E ;¢
e 27441 ¢

H-5 Digital Systems Division

[o]
{iﬂ@ 943442-9701

H.3.4 ASSEMBLY-TIME CONSTANTS

An assembly-time constant is written as an expression in the operand field
of an EQU directive. Any symbol in the expression must have been previ-
ously defined. The value of the label is determined at assembly time, and is
absolute or relocatable as defined in paragraph H. 7.

H.4 SYMBOLS

Symbols are used in the label field, the operator field, and the operand field.
A symbol is a string of alphanumeric characters, the first of which must be
an alphabetic character, and none of which may be a blank., When more than
six characters are used in a symbol, the assembler prints all the characters,
but accepts only the first six characters for processing. User-defined sym-
bols are valid only during the assembly in which they are defined.

When a symbol is used in the label field, it is associated with a location in
the program, and must not be used as a label in any other statement. The
mnemonic operation codes and the assembler directive names are valid
user-defined symbols when placed in the label field.

The DXOP directive defines a symbol to be used in the operator field. No
other user-defined symbol may be used in the operator field. Any symbol
that is used in the operand field must be placed in the label field of a state-
ment, or in the operand field of a REF directive with two exceptions. One
exception is the operand field of the DXOP directive. The other exception is
the dollar sign character ($) used in expressions to represent the current lo-
cation within the program (HERE).

The following are examples of valid symbols:
START
Al
OPERATION
$

H.5 TERMS

Terms are used in the operand fields of machine instructions and an assem-
bler directive. A term is a decimal or hexadecimal constant, an absolute
assembly-time constant, or an absolute label.

The following are examples of valid terms:
12
>C

WR2

H-6 Digital Systems Division

(o]
{@ 943442-9701

Note that WR2 is valid as a term only if it has an absolute value. If START
were a relocatable symbol and WR2 were defined as follows, WR2 would be
relocatable, and not a valid term:

WR2 EQU START+4

H.6 CHARACTER STRINGS

Several assembler directives require character strings in the operand field.
A character string is written as a string of characters enclosed in single
quotes. For each single quote in a character string, two consecutive single
quotes are required to represent the single quote within the character string.
The maximum length of the string is defined for each directive that requires
a character string. The characters are represented internally as eight-bit
ASCII characters.

The following are valid character strings:
'SAMPLE PROGRAM'
lPLAN lICIII
'OPERATOR MESSAGE * PRESS START SWITCH'

H.7 RELOCATABILITY

H.7.1 RELOCATION OF CODE

The Model 990 Assembler assembles both absolute and relocatable object
code. Absolute object code is code that must be placed in specified memory
locations and is appropriate for programs that occupy dedicated areas of
memory. Relocatable object code is code that may be placed in any available
locations. All relocatable address information must be modified for the ac-
tual memory locations in which the program is placed. Relocatability allows
programs to share memory in many possible combinations.

H.7.2 RELOCATABILITY OF SOURCE STATEMENT ELEMENTS

Elements of source statements are expressions, constants, symbols, and
terms. Terms are absolute in all cases; the other elements may be either
absolute or relocatable,.

The relocatability of an expression is a function of the relocatability of the
symbols and constants that make up the expression. An expression is re-
locatable when it contains one or more relocatable constants or symbols, and
the number of relocatable symbols or constants added to the expression is
one greater than the number of relocatable symbols or constants subtracted
from the expression. (All other valid expressions are absolute). When the
first symbol or constant is unsigned, it is considered to be added to the ex-
pression. When a unary minus follows an addition operator in an expression,

H-7 Digital Systems Division

[e]
| (l:@@ 943442-9701

the effective operation is subtraction. When a unary minus follows a sub-
traction operator, the effective operation is addition. For example, when

all symbols in the following expressions are relocatable, the expressions
are relocatable:

LABEL--1
LABEL+TABLE+-INC
-LABEL+TABLE+INC

Decimal, hexadecimal, and character constants are absolute. Assembly-
time constants defined by absolute expressions are absolute, and assembly-
time constants defined by relocatable expressions are relocatable,

Any symbol that appears in the label field of a source statement other than
an EQU directive is absolute when the statement is in an absolute block of the
program. Any symbol that appears in the label field of a source statement

other than an EQU directive is relocatable when the statement is in a relo-
catable block of the program.

A location may be defined as absolute or as relocatable. The location may
contain either an absolute or relocatable values.

Digital Systems Division

{@? 943442-9701

APPENDIX I
ASSEMBLER DIRECTIVES AND PSEUDO-OPS

Digital Systems Division

[e]
{@@ 943442-9701
APPENDIX I

ASSEMBLER DIRECTIVES AND PSEUDO-OPS

I.1 DIRECTIVES AFFECTING THE LOCATION COUNTER

Five assembler directives affect only the location counter of the assembler.
Two of these also define the succeeding block of the program as absolute or
relocatable. The location counter is a component of the issembler that con-
tains the present location. '

Until an Absolute Origin directive is processed by the assembler, the loca-
tion counter contents are relocatable. Subsequent Relocatable Origin direc-
tives cause the location counter to be set to the specified relocatable value,
and to continue assembling relocatable object code. This concatenates all
relocatable blocks within an assembly into a single relocatable segment.
The total length of this segment is the length of the relocatable code assem-
bled.

The Block Starting with Symbol and Block Ending with Symmbol directives ad-
vance the location counter, forming an area for storage of data. The Word
Boundary directive aligns the location counter to a word houndary (even ad-
dress).

I.1.1 ABSOLUTE ORIGIN (AQRG)

AORG places a value in the location counter and defines the succeeding loca-
tions as absolute. Use of the label field is optional. When a label is used,
it is assigned the value that the directive places in the location counter. The
operator field contains AORG. The operand field contains a well-defined ex-
pression. The assembler places the value of the well-defined expression in
the location counter. Use of the comment field is optional.

The following example shows an AORG directive:
AORG >1000+X

Symbol X must be absolute and must have been previously defined. If X has
a value of 6, the location counter is set to 100616 by this directive. Had a
label been included, the label would have been assigned the value 1006]¢.

I.1.2 RELOCATABLE ORIGIN (RORG)

RORG places a value in the location counter and defines the succeeding loca-
tions as relocatable. Use of the label field is optional. When a label is used,
it is assigned the value that the directive places in the location counter. The
operator field contains RORG. The operand field is optional , and when the
operand field is not used, zero or the value that was in the location counter
following assembly of the preceding relocatable location is placed in the loca-
tion counter. When the operand field is used, a relocatable expression that

I-1 Digital Systems Division

o)
@@ 943442-9701

contains no symbols not previously defined is placed in the operand field.
The comment field may be used only when the operand field is used.

The following example shows an RORG directive:
RORG $-20 OVERLAY TEN WORDS

The $ symbol refers to the location following the preceding relocatable loca-
tion of the program. This has the effect of backing up the location counter
ten words. The instructions and directives following the RORG directive re-
place the ten previously assembled words of relocatable code, permitting
correction of the program without removing source records. Had a label
been included, the label would have been assigned the value placed in the lo-
cation counter. An example of a RORG directive with no operand field is as
follows:

SEG2 RORG

Assume that after defining data for a program, which occupied 44,¢ bytes, an
AORG directive initiated an absolute block of code. The absolute block is
followed by the RORG directive in the above example, which places 0044,

in the location counter and defines the location counter as relocatable. Sym-
bol SEG2 is a relocatable value, 0044;¢. The RORG directive in the above
example would have no effect except at the end of an absolute block.

I.1.3 BLOCK STARTING WITH SYMBOL (BSS)

BSS assigns the value in the location counter to the symbol in the label field
and advances the location counter according to the value in the operand field.
The label field contains the label of the first byte in the block. The operator
field contains BSS. The operand field contains a well-defined expression
that represents the number of bytes to be added to the location counter. The
comment field is optional,

The following example shows a BSS directive:
BUFF1 BSS 80 CARD INPUT BUFFER
This directive reserves an 80-byte buffer at location BUFF1.

I.1.4 BLOCK ENDING WITH SYMBOL (BES)

BES advances the location counter according to the value in the operand field
and assigns the new location counter value to the symbol in the label field.
The label field contains the label of the location following the block. The
operator field contains BES. The operand field contains a well-defined ex-
pression that represents the number of bytes to be added to the location
counter. The comment field is optional.

The following example shows a BES directive:

BUFF2 BES >10

I-2 Digital Systems Division

[o]
qf@ 943442-9701

The directive reserves a l6-byte buffer. Had the locatién counter contained
1001¢ when the assembler processed this directive, BUFF2 would have been
assigned the value 110,¢.

I.1.5 WORD BOUNDARY (EVEN)

EVEN places the location counter on the next word boundary (even) byte ad-
dress. When the location counter is already on a word boundary, the loca-
tion counter is not altered. Use of the label field is optipnal. When a label
is used, the value in the location counter after processing the directive is
assigned to the label. The operator field contains EVEN. The operand field
is not used,; and the comment field is optional.

The following example shows an EVEN directive:
WRF1 EVEN WORKSPACE REGISTER FILE ONE

The directive assures that the location counter contains a word boundary
address, and assigns that address to label WRF1., Use 6f an EVEN direc-
tive preceding or following a machine instruction or a DATA directive is re-
dundant. The assembler advances the location counter to an even address
when it processes a machine instruction or a DATA directive.

I.2 DIRECTIVES AFFECTING ASSEMBLER OUTPUT

Five assembler directives affect assembler output. One affects the object
code output of the assembler and the remaining four affect the source listing
output of the assembler.

The Program Identifier directive supplies a program name, which is placed
in the object code for use by the linking loader.

The Page Title directive supplies a title to be printed atithe top of each page
of the source listing. The List Source directive restores printing of the
source listing when printing has been inhibited by a No Source List directive.
The Page Eject directive causes the assembler to print 2 heading and con-
tinue the source listing on a new page.

I.2.1 PROGRAM IDENTIFIER (IDT)

IDT assigns a name to the program. An IDT directive must precede any
machine instruction or assembler directive that results in object code. Use
of the label field is optional. When a label is used, the ¢urrent value of the
location counter is assigned to the label. The operator field contains IDT.
The operand field contains the program name, a charactier string of up to
eight characters. When a character string of more than eight characters is
entered, the assembler prints a truncation error message, and retains the
first eight characters as the program name. The comment field is optional.

I-3 Digital Systems Division

(o]
Q]@ 943442-9701

The following example shows an IDT directive:
IDT 'CONVERT!

The directive assigns the name CONVERT to the program to be assembled.
The program name is printed in the source listing as the operand of the IDT
directive, but does not appear in the page heading of the source listing. The
program name is placed in the object code, but serves no purpose during the
assembly,

I.2.2 PAGE TITLE (TITL)

TITL supplies a title to be printed in the heading of each page of the source
listing. When a title is desired in the heading of the first page of the source
listing, a TITL directive must be the first source statement submitted to the
assembler. This directive is not printed in the source listing. Use of the
label field is optional. When a label is used, the current value of the loca-
tion counter is assigned to the label. The operator field contains TITL. The
operand field contains the title, a character string of up to 50 characters.
When more than 50 characters are entered, the assembler retains the first
50 characters as the title, and prints a truncation error message, The com-
ment field is optional, but the assembler does not print the comment.

The following example shows a TITL directive:
TITL '+« REPORT GENERATOR k!

The directive causes the title ** REPORT GENERATOR ** to be printed

in the page headings of the source listing. When a TITL directive is the first
source statement in a program, the title is printed on all pages until another
TITL directive is processed. Otherwise, the title is printed on the next page
after the directive is processed, and on subsequent pages until another TITL
directive is processed.

I.2.3 LIST SOURCE (LIST)

LIST restores printing of the source listing. This directive is required only
when a No Source List directive is in effect, to cause the assembler to re-
sume listing. This directive is not printed in the source listing., Use of the
label field is optional. When a label is used, the current value of the loca-
tion counter is assigned to the label. The operator field contains LIST. The
operand field is not used. Use of the comment field is optional, but the as-
sembler does not print the comment.

The following example shows a LIST directive:

LIST

The directive causes the source listing to be resumed with the next source
statement.

I-4 Digital Systems Division

Q
{@@ 943442-9701

I.2.4 NO SOURCE LIST (UNL)

UNL inhibits printing of the source listing. The UNL directive is not printed
in the source listing. Use of the label field is optional. When a label is
used, the current value of the location counter is assigned to the label. The
operator field contains UNL. The operand field is not used. Use of the com-
ment field is optional, but the assembler does not print the comment.

The following example shows UNL directive:
UNL

The directive inhibits printing of the source listing. Use of the UNL direc-
tive to inhibit printing reduces assembly time and the size of the source list-
ing.

1.2.5 PAGE EJECT (PAGE)

PAGE causes the assembler to continue the source program listing on a new
page. The PAGE directive is not printed in the source listing. Use of the
label field is optional. When a label is used, the current value of the loca-
tion counter is assigned to the label. The operator field contains PAGE.
The operand field is not used. Use of the comment field is optional, but the
assembler does not print the comment.

The following example shows a PAGE directive:
PAGE

The directive causes the assembler to begin a new page of the source listing.
The next source statement is the first statement listed on the new page, Use
of the Page directive to begin new pages of the source listing at the logical
divisions of the program improves documentation of the program.

1.3 DIRECTIVES THAT INITIALIZE CONSTANTS

Four assembler directives assign initial values to constants. The Initialize
Byte directive initializes one or more bytes of memory with eight-bit two's
complement numbers. The Initialize Word directive initializes one or more
words of memory with 16-bit two's complement numbers. The Initialize Text
directive places ASCII characters in successive bytes of memory. The De-
fine Assembly-Time Constant directive assigns a value to a symbol.

I.3.1 INITIALIZE BYTE (BYTE)

BYTE places one or more values in one or more successive bytes of memory.
Use of the label field is optional. When a label is used, the location at which
the assembler places the first byte is assigned to the label. The operator
field contains BYTE. The operand field contains one or more expressions
separated by commas. The expressions must contain nc symbols that are

I-5 Digital Systems Division

(o)
@ 943442-9701

not previously defined and no external references. The assembler evaluates
each expression and places the value in a byte as an eight-bit two's comple-
ment number. When truncation is required, the assembler prints a trunca-
tion error message and places the rightmost portion of the value in the byte.
The comment field is optional.

The following example shows a BYTE directive:
KONS BYTE >F+l1,-1,'D'-'=',0,'AB'-"AA'

The directive initializes five bytes, starting with a byte at location KONS.
The contents of the resulting bytes is 00010000, 11111111, 00000111,
00000000, and 00000001.

I1.3.2 INITIALIZE WORD (DATA)

DATA places one or more values in one or more successive words of mem-
ory. The assembler advances the location counter to a word boundary (even)
address. Use of the label field is optional. When a label is used, the loca-
tion at which the assembler places the first word is assigned to the label.
The operator field contains DATA. The operand field contains one or more
expressions separated by commas. The assembler evaluates each express-
ion and places the value in a word as a sixteen-bit two's complement number.
The comment field is optional.

The following example shows a DATA directive:
KONS1 DATA 3200, 1+'AB', -'AF',>F4A0,'A’

The directive initializes five words, starting with a word at location KONS1.
The contents of the resulting words are 0(380 6 4143 BEBAlé, F4A016,
and 0041,,. Had the location counter contents been 0 8F16 prior to
processing this directive, the value assigned to KONSI1 would be 0110,.

1.3.3 INITIALIZE TEXT (TEXT)

TEXT places one or more characters in successive bytes of memory. The
assembler negates the last character of the string when the string is pre-
ceded by a minus (-) sign (unary minus). Use of the label field is optional.
When a label is used, the location at which the assembler places the first
character is assigned to the label, The operator field contains TEXT. The
operand field contains a character string of up to 52 characters, which may
be preceded by a unary minus sign. The comment field is optional.

The following example shows a TEXT directive:
MSG1 TEXT 'EXAMPLE' MESSAGE HEADING

‘The directive places the eight-bit ASCII representations of the characters in
successive bytes, When the location counter is on an even address, the re-
sult, in hexadecimal representation, is 4558, 414D, 504C, and 45XX. XX
represents the contents of the rightmost byte of the fourth word, which are

I-6 Digital Systems Division

o]
%@ 943442-9701

determined by the next source statement. The label MSGI is assigned the
value of the first byte address in which 45 is placed. Another example,

showing the use of a unary minus, is as follows:

MSG2 TEXT -"NUMBER"

When the location counter is on an even address, the result, in hexadecimal
representation, is 4E55, 4D42, and 45AE. The label MSG2 is assigned the
value of the byte address in which 4E is placed.

I.3.4 DEFINE ASSEMBLY-TIME CONSTANT (EQU)

EQU assigns a value to a symbol. The label field contains the symbol. The
operator field contains EQU. The operand field contains an expression in

which all symbols have been previously defined. Use of the comment field
is optional.

The following example shows an EQU directive:
RO EQU 0 WORKSPACE REGISTER 0

The directive assigns an absolute value to the symbol RO, making RO avail-

able to use as a workspace register address. Another example of an EQU
directive is:

TIME EQU HOURS

The directive assigns the value of previously defined symbol HOURS to sym-
bol TIME. When HOURS appears in the label field of a machine instruction
in a relocatable block of the program, the value is a relocatable value. The
two symbols may be used interchangeably.

1.4 DIRECTIVES THAT LINK PROGRAMS

Two assembler directives provide links between programs that are assembled
separately. The External Definition directive makes one or more symbols

in a program available to other programs. The External Reference directive
provides access to one or more symbols from other programs for use in a
program. The programs may be linked and executed as one program.

I.4.1 EXTERNAL DEFINITION (DEF)

DEF makes one or more symbols available to other programs for reference.
The use of the label field is optional. When a label is used, the current value
of the location counter is assigned to the label. The operator field contains
DEF. The operand field contains one or more symbols, separated by commas,
to be defined in the program being assembled. The comment field is optional.

The following example shows a DEF directive:

DEF ENTER, ANS

I-7 Digital Systems Division

o]
{@? 943442-9701

The directive causes the assembler to include symbols ENTER and ANS in
the object code so that these symbols are available to other programs., When
the DEF directive does not precede the source statements that contain the
symbols, the assembler identifies the symbols as multiply defined symbols,

I.4.2 EXTERNAL REFERENCE (REF)

REF provides access to one or more symbols defined in other programs,
The use of the label field is optional. When a label is used, the current
value of the location counter is assigned to the label. The operator field
contains REF. The operand field contains one or more symbols, separated
by commas,® to be used in the operand field of a subsequent source statement.
The comment field is optional.

The following example shows a REF directive:
REF ARGI1, ARG2

The directive causes the assembler to include symbols ARGI1 and ARG2 in
the object code so that the corresponding addresses may be obtained from
other programs.

NOTE

An external reference will not be inserted
by the loader at absolute location 0.

I.5 MISCELLANEOUS DIRECTIVES

Two miscellaneous directives are available. The Define Extended Operation
directive assigns a symbol for an extended operation. The Program End
directive terminates the source program.

1.5.1 DEFINE EXTENDED OPERATION (DXOP)

DXOP assigns a symbol to be used in the operator field to specify an extended
operation. The use of the label field is optional. When a label is used, the
current value in the location counter is assigned to the label. The operator
field contains DXOP. The operand field contains a symbol followed by a
comma and a term. The symbol assigned to an extended operation must not
be used in the label or operand field of any other statement. The assembler
assigns the symbol to an extended operation specified by the term, which
must have a value in the range of 0 to 15. The comment field is optional.

The following example shows a DXOP directive:
DXOP DADD, 13

The directive defines DADD as extended operation 13. When the assembler
recognizes the symbol DADD in the operator field, it assembles an XOP

I-8 Digital Systems Division

[o]
ggiig} 943442-9701

instruction that specifies extended operation 13. The XOP instruction is de-
scribed in the Model 990 Reference Manual., The following example shows
the use of the symbol DADD in a source statement:

DADD G@LABEL1(4)

The assembler places the operand field contents in the T, and S fields of an
XOP instruction, and places 13 in the D field.

I.5.2 PROGRAM END (END)

END terminates the assembly. The last source statement of a program is
the END directive. When any source statements follow the END directive,
they are ignored. Use of the label field is optional. When a label is used,
the current value in the location counter is assigned to the symbol. The
operator field contains END. Use of the operand field is optional. When the
operand field is used, it contains a symbol that specifies the entry point of
the program. When the operand field is not used, no entry point is placed in
the object code. The comment field may be used only when the operand field
is used.

The following example shows an END directive:

END START

The directive causes the assembler to terminate the assembly of this pro-
gram. The assembler also places the value of START in the object code as
an entry point,

When a program executes in a stand-alone mode, and is loaded by the ROM
loader, it must supply an entry point to the loader. When no operand is in-
cluded in the END directive, and that program is loaded by the ROM loader,
the loader transfers control to the entry point of the loader, and attempts to
load another object program.

When a program is to be loaded by the Linking Loader (LAL990) the END
directive does not require an operand unless the program is to be loaded and
linked to other programs and contains the entry point for the resulting linked
program. LAIL990 returns control to the first relocatable location when the
program or programs loaded do not specify entry points. When LAL990
loads a set of programs, and more than one of these programs specifies an
entry point, LLAI990 transfers control to the last entry point it receives.

I.6 PSEUDO-INSTRUCTIONS

The Model 990 Assembly LLanguage includes two pseudo-instructions, which
are predefined symbols that cause the assembler to assemble certain ma-
chine instructions with specific operands. A pseudo-instruction is a conven-
ient way to code an operation that is actually performed by a machine instruc-
tion. The pseudo-instructions are the No Operation and the Return instruc-
tions.

I-9 Digital Systems Division

o -
% 943442-9701

1.6.1 |INO OPERATION (NOP)

NOP places a machine instruction in the object code which has no effect on
execution of the program. Use of the label field is optional. When the label
field is used, the label is assigned the location of the instruction, The oper-
ator field contains NOP. The operand field is not used. Use of the comment
field is optional.

Enter the NOP pseudo-instruction as shown in the following example:
MOD NOP

Location MOD contains a NOP pseudo-instruction when the program is loaded.
Another instruction may be placed in location MOD during execution to im-
plement a program option. The assembler supplies the same object code as
if the source statement had contained the following:

MOD JMP $+2

I.6.2 \RETURN (RT)

RT places a machine instruction in the object code to return control to a
calling routine from a subroutine, Use of the label field is optional. When
the label field is used, the label is assigned the location of the instruction.
The operator field contains RT. The operand field is not used.

Use of the comment field is optional. Enter the RT pseudo-instruction as
shown in the following example:

RT

The assembler supplies the same object code as if the source statement had
contained the following:

B *11

When control is transferred to a subroutine by execution of a BL instruction,
the link to the calling routine is stored in workspace register 11.. An RT
pseudo-instruction returns control to the instruction following the BL instruc-
tion in the calling routine,

I-10 Digltal Systems Division

CUT ALONG LINE

USER’'S RESPONSE SHEET

Model 990 Computer Reference Manual,
Manual Title: Preliminary (943442-9701)

Date of Manual: 1 October 1974 Date of This Letter:
User: Office/Dept. No.:
Company:

Street Address:

City/State/Zip:

Please list any discrepancy found in this manual by page, paragraph, figure,
or table nurmber in the following space. If there are any other suggestions
that you wish to make, feel free to include them. hank you,

Location Comment/Suggestion
in Manual ‘

NO POSTAGE NECESSARY IF MAILED IN U.S.A.
FOLD ON TWO LINES (LOCATED ON REVERSE SIDE), STAPLE AND MAIL

First Class

PERMIT NO. 3135
Austin, Texas

BUSINESS REPLY MAIL
No Postage Necessary if Mailed in the United States

Postage Will Be Paid by

TEXAS INSTRUMENTS INCORPORATED
DIGITAL SYSTEMS DIVISION

PO. BOX 2909 - AUSTIN, TEXAS 78767
Attn: TECHNICAL PUBLICATIONS, MS 2146

Sales and Service Offices of Texas Instruments are located
throughout the United States and in major countries
overseas. Contact the Digital Systems Division, o
Texas Instruments Incorporated, P.O. Box 1444,
Houston, Texas 77001, or call (713) 494-5115,

for the location of the office nearest to you.

Texas Instruments reserves the right to make changes at any time to
improve design and supply the best product possible.

TEXAS INSTRUMENTS

INCORPORATED

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	2-55
	2-56
	2-57
	2-58
	2-59
	2-60
	2-61
	2-62
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	4-56
	4-57
	4-58
	4-59
	4-60
	4-61
	4-62
	4-63
	4-64
	4-65
	4-66
	4-67
	4-68
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	6-01
	6-02
	6-03
	6-04
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	B-00
	B-01
	B-02
	B-03
	B-04
	C-00
	C-01
	C-02
	C-03
	C-04
	D-00
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	E-00
	E-01
	E-02
	E-03
	E-04
	E-05
	E-07
	E-08
	E-09
	E-11
	E-12
	F-00
	F-01
	F-02
	F-03
	F-04
	G-00
	G-01
	G-02
	H-00
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	H-07
	H-08
	I-00
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	replyA
	replyB
	xBack

