
4P

PROGRAMMING GUIDE

LEVEL ONE SOFTWARE
FOR THE

MODEL 980 COM PUTER

VOLUME I

LEVEL ONE SOFTWARE
MANUAL NO. 214851-9701 -----

REVISED 30 JUNE 1970

TEXAS INSTRUMENTS
INCORPORATED
DIGITAL .yllT DIYI.ION

".0. BOX eeoa7 HOUSTON. TEXAS 7700e

Copyright 1970

By

Texas Instruments Incorporated

All Rights Reserved

..... ,. .. . " -.'

The information ancJ/ or drawings set forth in this document
and all rights in and to inventions disclosed herein and patents
which might be granted thereon disclosing or employing the
materials, methods, techniques or apparatus described herein
are the exclusive property of Texas Instruments Incorporated.

No disclosure of the information or drawings shall be made
to any other person or organization without the prior consent
of Texas Instruments Incorporated.

TABLE OF CONTENTS

Section Page

II

GENERAL INFORMATION
1-1 Scope of Programming Guide 1-1
1-2 Computer Characteristics 1-1
1-3 Computer Control Panel 1-2
1-4 Software 1-3
1-4.1 Monitor 1-3
1-4.2 Assemblers 1-4
1-4.3 FORTRAN 1-4
1-4.4 Link Edit 1-4
1-4.5 Utilities 1-4
1-4.6 Debug Package 1-4
1-5 Standard Device Addresses 1-4
1-5.1 Monitor Controlled

Software 1-4
1-5.2 Stand Alone Software 1-5

SYMBOLIC CODING IN ASSEMBLY
LANGUAGE
2-1 Introduction 2-1
2-2 Purpose of Assemblies 2-1
2-3 The Assembly Process 2-1
2-4 Symbolic Coding 2-3
2-4.1 Location Counter 2-5
2-4.2 Symbol Table 2-5
2-4.3 Coding Summary 2-6
2-5 Symbolic Line Format 2-6
2-5.1 Comment Lines 2-6
2-5.2 Name Field 2-6
2-5.3 Operation Field 2-7
2-5.4 Operand Field 2-7
2-5.5 Comment Field 2-7
2-6 Machine Instruction

Formats 2-7
2-6.1 Register-to-Memory (RM) ... 2-7
2-6.2 Register-to-Register

(RR) 2-10
2-6.3 Shift (S) 2-10
2-6.4 Register Skip (RS) 2-10
2-6.5 Status Indicator Skip (SS) 2-11
2-6.6 Sense Switch Skip (SS) 2-11
2-6.7 Direct Memory Access

Channel (DM) 2-11
2-6.8 Data Bus Input/Output

(DB) 2-11
2-6.9 Fixed (F) 2-12
2-7 Data Generation 2-12
2-8 Assembler Directives 2-12
2-8.1 BRS 2-12
2-8.2 BRR 2-13
2-8.3 BSS 2-13
2-8.4 BES 2-14
2-8.5 ORG 2-14

iii

Section Page

III

2-8.6 DEF 2-14
2-8.7 REF 2-14
2-8.8 IDT 2-15
2-8.9 HED 2-15
2-8.10 PEl 2-15
2-8.11 LIS 2-15
2-8.12 UNL 2-15
2-8.13 EQU 2-15
2-8.14 FRM 2-15
2-8.15 IF 2-15
2-8.16 END 2-15
2-8.17 OPD 2-16
2-8.18 COMM 2-16
2-9 Object Formats
2-9.1 Object Paper Tape Format ..
2-9.2 Object Card Deck Format ...
2-10 Listing Diagnostics for

SAP-I
2-11 SAP-I Operating

Procedures
2-12 Model 980 SAP-IOn IBM

System/360
2-12.1 Error Diagnostics
2-12.2 Table Sizes
2-12.3 Loading and Operating

FORTRAN LANGUAGE
PROGRAMMING
3-1 Introduction
3-2 Program Preparation
3-3 Arithmetic and Data
3-3.1 Numerical Arithmetic
3-3.2 Arithmetic Expressions
3-3.3 Logical Arithmetic
3-3.4 Summary of Operator

Precedence
3-3.5 Arithmetic Statements
3-3.6 Use of Hollerith Data
3-4 Control
3-4.1 Introduction
3-4.2 Unconditional GO TO

Statement
3-4.3 Computed GO TO

Statement
3-4.4 Assign and Assigned GO TO

Statement
3-4.5 Arithmetic IF Statement
3-4.6 Logical IF Statement
3-4.7 00 Statement
3-4.8 CONTINUE Statement
3-4.9 CALL Statement
3-4.10 RETURN Statement

2-16
2-16
2-17

2-17

2-20

2-20
2-21
2-21
2-21

3-1
3-1
3-1
3-1
3-4
3-6

3-7
3-7
3-8
3-8
3-8

3-8

3-8

3-9
3-9
3-10
3-10
3-13
3-13
3-14

Section

IV

T ABLE OF CONTENTS (Continued)

3-4.11 PAUSE Statement
3-4.12 STOP Statement
3-4.13 END Statement
3-5 Input/Output
3-5.1 Transmission Statements
3-5.2 Format Statement
3-5.3 Auxiliary Input/Output

Statements
3-5.4 Logical Units •..........
3-6 Declarations
3-6.1 Dimension Statements
3-6.2 Type Declarations
3-6.3 External Statement
3-6.4 Common Statement
3-6.5 Equivalent Statement
3-6.6 Equivalence and Common
3-6.7 Subprogram Definitions
3-6.8 Subroutine Subprograms
3-6.9 Data Specifications
3-7 FORTRAN Output Listing .. .
3-7.1 Listing Elements
3-7.2 Statement Error

Diagnostics
3-7.3 Program Error Diagnostics
3-7.4 Pass Two Error

Diagnostics
3-8 Object Paper Tape Formats .. .
3-8.1 Group 1 Output Format
3-8.2 Group 2 Output Format
3-9 Library Subroutines
3-9.1 Arithmetic Conventions
3-9.2 Power Routines
3-9.3 Mode Conversion Routines ..
3-9.4 Complex Arithmetic
3-9.5 Floating Point Arithmetic .. .
3-9.6 Double Precision

Page

3-14
3-14
3-14
3-14
3-14
3-17

3-22
3-22
3-23
3-23
3-23
3-24
3-24
3-26
3-26
3-27
3-28
3-29
3-29
3-29

3-30
3-30

3-31
3-31
3-31
3-31
3-32
3-32
3-32
3-32
3-33
3-33

Arithmetic 3-33
3-9.7 FORTRAN Basic External

Functions 3-34
3-9.8 FORTRAN Intrinsic

Functions 3-34
3-9.9 FORTRAN Format Editor .. 3-34
3-10 FORTRAN Operating

Procedures 3-37

REAL TIME MONITOR-I
4-1 Introduction 4-1
4-1.1 Supervisor 4-1
4-1.2 Service Subprograms 4-1
4-1.3 Background Job Control 4-1
4-1.4 The Disc Initialization

Programs 4-1

Section

V

IV

4-2 The Supervisor
4-2.1 X-Level
4-2.2 F-Level
4-2.3 B-Level
4-3 Service Subprograms
4-3.1 I/O Service
4-3.2 I/O Service Device

Tables
4-3.3 I/O Service Requests
4-3.4 I/O Service General Flow

and Linkage
4-3.5 Control Function Service .. .
4-3.6 Non-System Illegal

Instruction Traps
4-4 Foreground Tasks
4-5 Standard Service Requests
4-5.1 Basic Control Functions
4-5.2 Teletypewriter I/O

Requests
4-5.3 Disc I/O Requests
4-5.4 High Speed Paper Tape

Reader I/O Requests
4-5.5 High Speed Paper Tape

Punch I/O Requests
4-5.6 Card Reader I/O Requests
4-5.7 Line Printer I/O

Requests
4-5.8 Magnetic Tape I/O

Requests
4-6 SPEX
4-7 BATCH
4-7.1 Control Cards
4-7.2 System Disc
4-7.3 Batch Initialization
4-8 System Generation
4-9 Restore Disc

SPEX OPERATING PROCEDURES

Page

4-1
4-1
4-4
6-6
4-6
4-6

4-6
4-8

4-8
4-8

4-11
4-12
4-12
4-12

4-13
4-13

4-14

4-14
4-15

4-15

4-16
4-16
4-17
4-17
4-17
4-17
4-18
4-18

5-1 General Procedures 5-1
5-2 Symbolic Assembly Program .. 5-1
5-2.1 Use of the Card Reader to

Specify Options 5-1
5-2.2 Use of the Teletypewriter

to Specify Options 5-2
5-2.3 Operating Procedure 5-2
5-3 FORTRAN 5-2
5-4 Link Edit 5-2
5-4.1 Use of the Card Reader to

Specify Options 5-2
5-4.2 Use of Teletypewriter to

Specify Options 5-3
5-4.3 Operating Information 5-3

TABLE OF CONTENTS (Continued)

Section Page Section

5-4.4 Operating Procedure 5-3
5-5 Correct Source 5-4
5-5.1 Program Options 5-4
5-5.2 Operating Information 5-4
5-5.3 Operating Procedure 5-4
5-6 List Source 5-5
5-6.1 Use of the Card Reader to

Specify Options 5-5
5-6.2 Use of the Teletypewriter to

Specify Options 5-5
5-6.3 Operating Procedure 5-5
5-7 User Program Execution 5-5

VI BATCH OPERATING PROCEDURES
6-1 General Procedures 6-1
6-2 SAP-I 6-1
6-2.1 Control Card 6-1
6-2.2 Operating Information 6-2 VII

6-2.3 Operating Procedure 6-2
6-3 FORTRAN 6-2
6-4 Link Edit 6-2
6-4.1 Control Card 6-2
6-4.2 Operating Information 6-3
6-4.3 Operating Procedure 6-4
6-5 Correct Source 6-4
6-5.1 Control Card 6-4
6-5.2 Operating Information 6-4
6-5.3 Operating Procedure 6-5
6-6 List Source 6-5 VIII
6-6.1 Control Card 6-5
6-6.2 Operating Information 6-6
6-6.3 Operating Procedure 6-6
6-7 Copy Source 6-6
6-7.1 Control Card 6-6
6-7.2 Operating Information 6-7
6-7.3 Operating Procedure 6-7
6-8 Copy Object 6-7
6-8.1 Control Card 6-7
6-8.2 Operating Information I 6-7
6-9 Install 6-7
6-9.1 Cuntrol Card 6-7
6-9.2 Operating Information 6-8
6-9.3 Operating Procedure 6-8
6-10 Delete 6-8

v

6-10.1 Control Card
6-10.2 Operating Information
6-11 Compress
6-11.1 Control Card
6-11.2 Operating Information
6-12 List Catalog
6-12.1 Control Card
6-12.2 Operating Information
6-13 Save Disc
6-14 System Control Cards
6-14.1 JOB Card
6-14.2 EOB Card
6-14.3 EXEC Card
6-15 Interface between BATCH

Page

6-8
6-8
6-8
6-8
6-8
6-8
6-8
6-8
6-8
6-9
6-9
6-9
6-9

and the Task Processor 6-9
6-16 Sequence of Tasks 6-10

BOOTSTRAPS AND LOADERS
7-1 Introduction 7-1
7-2 Loading Procedures 7-1
7-3 Bootstraps 7-2
7-4 Reloading from Disc 7-2
7-4.1 Loading from Disc 7-2
7-4.2 Manually Loading and

Executing Disc Bootstrap ... 7-2
7-4.3 Restoring the Disc 7-3
7-5 Disc Bootstrap 7-3

DEBUG PACKAGE
8-1 Introduction 8-1
8-2 Program Options 8-1
8-3 General Operating

Procedures 8-1
8-3.1 Loading a User Program 8-1
8-3.2 Inspect and Change Core 8-2
8-3.3 Store Masked Constant in

Memory 8-2
8-3.4 Search for Masked

Constant 8-3
8-3.5 Hexadecimal Dump 8-3
8-3.6 Punch Object Tape 8-3
8-3.7 Correction Load 8-4
8-3.8 Move Debug Package 8-5
8-3.9 Running a User Program 8-5

Figure

1-1

1-2
2-1
2-2
2-3

2-4
4-1

Table

2-1
2-2

2-3
2-4
2-5
2-6
2-7
2-8

LIST OF ILLUSTRATIONS

Page

Model 980 Computer Block
Diagram 1-2
Control Panel d 1-3
Example of Symbolic Coding 2-2
The Assembly Process 2-3
Assembly Listing Produced
by Assembly of the Program 2-4
Line Terminating Codes 2-6
RTM Basic Structure 4-2

Figure

4-2
4-3

4-4

4-5
4-6
7-1

LIST OF TABLES

Page Table

IXB Usage 2-8 2-9
RM Format Symbolic
Interpretation 2-9 3-1
Example for Data 2-13 3-2
Assembler Directives 2-13
Object Format 2-18 3-3
Object Card Deck Format 2-19 3-4
To Go from Object Deck 2-21 4-1
To Catalog the Object Deck 4-2
Into the IBM System 1360 2-21

vi

Page

Supervisor Priority Levels 4-3
I/O Service Request
General Flow 4-9
Supervisor Flow Relative
to I/O Request 4-10
Device Table Set Up 4-19
Work List Set Up 4-19
Bootstrap and Loader 7-1

Page

To Go from a Catalogued
Version 2-21
Group 2 Output Format 3-31
FORTRAN Basic External
Functions 3-35
FORTRAN Intrinsic Functions 3-36
FORTRAN Format Editor 3-37
X-Level Return 4-4
Worker Task List 4-5

INDEX

Subject Page

Addressing Modes 1-1
Alphanumeric Fields .. 3-20
Arithmetic and Data .. 3-1
Arithmetic, Complex 3-35
Arithmetic Function Definition Statement 3-27
Arithmetic Statements 3-7
Arrays and Subscripts 3-4
Assemblers 1-10
Assembly Process .. 2-1
Assign and Assigned GO TO Statements 3-9
Auxiliary Input/Output Statements 3-22
B-Level . 4-6
Background Job Control 4-1
BACKSPACE Statement 3-22
Basic Control Functions 4-12
BATCH 4-17
BATCH Operating Procedures 6-1
BES Directive 2-14
Bootstraps 7-1
BRR Directive 2-13
BRS Directive 2-12
BSS Directive 2-13
Card Reader Characteristics 1-5
Coding in Assembly Language, Symbolic 2-1
Coding Summary 2-6
COMM Directive 2-16
Comment Field 2-7
Commen t Lines .. 2-6
Complex Arithmetic .. 3-35
Complex Constants. .. 3-3
Compress 6-8
Computed GO TO Statement 3-8
Computer Characteristics 1-1
Common Statement 3-24
Constants .. 3-2
CONTINUE Statement 3-13
Control Cards 4-17
Control Features 1-2
Control (FORTRAN) 3-8
Control Panel 1-2
Correction Load . 8-4
Data Bus Input/Output (DB) Instruction Format ... 2-11
Data Generation. .. 2-12
Data Specifications .. 3-29
D-Conversion .. 3-20
Debug Package. .. 1-10,8-1
Debug Program Caution. 8-4
Declarations 3-23
DEF Directive 2-14
Delete 6-8
Device Tables, I/O Service 4-6
Direct Memory Access Channel (DM) Instruction

Format 2-11

vii

Subject Page

Disc Initialization .. 4-1
Disc I/O Requests 4-13
Dimension Statement 3-23
Double Precision Arithmetic 3-35
Double Precision Constants 3-2
Double Precision Statement 3-24
Dummy Identifiers .. 3-27
E-Conversion .. 3-19
END Directive .. 2-15
END FILE Statement .. 3-22
EQU Directive 2-15
Equivalence Statement 3-26
Error Diagnostics (TI980SIM) 2-20
Execution Times for Direct Operands. 1-1
Explicit Specification 3-4
Evaluation of Arithmetic Expressions. 3-5
F-Conversion .. 3-18
Fixed Head Disc Drive Characteristics 1-9
Fixed (F) Instruction Format 2-12
Foreground Tasks 4-12
Format Fields, Alphanumeric 3-20
Formation of Logical Expressions 3-6
Formats Stored as Data 3-21
Formatted Read Statement 3-15
Formatted Write Statement 3-16
FORTRAN 1-10
FORTRAN Basic External Functions 3-36
FORTRAN Format Editor 3-36
FORTRAN Intrinsic Functions 3-36
FORTRAN Output Listing 3-29
FRM Directive .. 2-15
Function Reference 3-4
Function Statement 3-28
Function Subprograms 3-28
G-Conversion 3-19
General Information 1-1
General Flow and Linkage, I/O Service 4-8
GO TO Statements .. 3-8
Group 1 Output Format 3-31
Group 2 Output Format 3-34
HED Directive 2-15
Hexadecimal Dump 8-3
High Speed Punch I/O Requests 4-14
High Speed Punch Tape Reader Characteristics 1-4
High Speed Reader I/O Requests 4-14
High Speed Tape Punch Characteristics. 1-5
Hollerith Data, Use of 3-8
I-Conversions 3-18
IDT Directive 2-15
IF Directive. .. 2-15
IF Statement .. 3-9
Implicit Specification 3-3

INDEX (Continued)

Subject Page

Input/Output 3-14
Input/Output Characteristics 1-1
Input/Output Lists . 3-15
Interface Between BATCH and the Task

Processor 6-9
Integer Constants " 3-2
Integer Statement. .. 3-24
I/O Service 4-6
IXB Usage " 2-8
Library Subroutines 3-33
Line Printer Characteristics 1-6
Line Printer I/O Requests 4-15
Link Edit 1-10
LIS Directive " 2-15
List Catalog . 6-8
Listing Diagnostics for SAP-I 2-17
Listing Elements 3-29
Loaders 7-1
Loading and Operation (TI980SIM) 2-21
Loading a User Program 8-1
Loading Procedures 7-1
Location Counter .. 2-5
Logical Arithmetic .. 3-6
Logical Fields 3-20
Logical IF Statement 3-9
Machine Instruction Formats 2-7
Magnetic Tape I/O Requests 4-16
Magnetic Tape Transport Characteristics 1-9
Mixed Fields , 3-20
Move Debug Package 8-5
Mode Conversion Routines , 3-33
Model 980 SAP-Ion IBM System/360 2-20
Model 980 Software 1-9
Monitor 1-9
Monitor Controlled Software 1-10
Monitor, Real Time 4-1
Multiple Record Formats 3-21
Name Field , 2-6
Non-System Illegal Instruction Traps .. , 4-11
Numerical Arithmetic , 3-1
Numerical Fields 3-17
Object Card Deck Output 2-17
Object Formats 2-16
Object Paper Tape Format 2-16,3-31
OPD Directive 2-16
Operand Field " 2-7
Operating Procedures (SAP-I) 2-20
Operation Field .. 2-7
Options for Batch , 6-1
Options for SPEX , 5-1
ORG Directive , 2-14

viii

Subject Page

Output Format, Group 1 " 3-31
Output Format, Group 2 3-34
PEJ Directive 2-15
Power Routines " 3-33
Program Error Diagnostics " 3-30
Program Options 8-1
Program Preparation .. 3-1
Punch Object Tape . 8-3
Program Caution (Debug) 8-4
Purpose of Assemblers 2-1
Real Constants " 3-2
Real Statement 3-24
Real Time Monitor 4-1
REF Directive " 2-14
Register Skip (RS) Instruction Format 2-10
Register-to-Memory (RM) Instruction Format 2-7
Register-to-Register (RR) Instruction Format 2-10
Reloading from Disc . 7-2
Repetition of Field Specifications " 3-20
Request, I/O Service " 4-8
Restore Disc " 4-18
RETURN Statement " 3-14
REWIND Statement . 3-22
RM Format Symbolic Interpretation 2-9
RTM-J Basic Structure 4-2
Running a User Program 8-5
Save Disc 6-8
Scale Factors 3-18
Scope of User's Guide " 1-1
Search for Masked Constant 8-2
Sense Switch Skip (SX) Instruction Format 2-11
Sequence of Tasks 6-10
Service Subprograms , 4-1,4-6
Shift (S) Instruction Format 2-10
SPEX 4-16,5-1
Stand Alone Software 1-11
Standard Device Addresses , 1-10
Standard Service Requests 4-12
Statement Error Diagnostics 3-30
Statements, Format 3-17
Status Indicator Skip (SS) Instruction

Format 2-11
Store Masked Constant in Memory 8-2
Subroutine Statement 3-28
Subroutine Subprograms 3-28
Subscripted Variables 3-4
Summary of Operator Precedence 3-7
Supervisor 4-1
Supervisor Flow Relative to I/O Request 4-10
Supervisor Priority Levels 4-3
Symbol Table 2-5

INDEX (Continued)

Subject Page

Symbolic Coding 2-3
Symbolic Coding Summary 2-6
Symbolic Line Format 2-6
SystemDisc 4-17
System Generation 4-18
Table Sizes (TI980SIM) 2-21
Teletypewriter Characteristics. 1-3
Teletypewriter I/O Requests. 4-13
Unconditional GO TO Statement 3-8

ix

Subject Page

UNL Directive .. 2-15
Use of Hollerith Data 3-8
User Program, Loading 8-1
Utilities 1-10
Variables, Logical .. 3-6
Variables (FORTRAN) 3-3
Worker Task List 4-5
X-Level 4-1

SECTION I

GENERAL INFORMATION

SECTION I

GENERAL INFORMATION

1-1 SCOPE OF PROGRAMMING GUIDE.
The Texas Instruments Model 980 Computer User's Guide
is divided into three volumes:

a.

b.

Volume I contains the level one Real Time
Monitor and related software description.

Volume II contains the performance assurance
test descriptions.

c. Volume III contains the library routine
descriptions.

Revisions and additions will be published whenever they are
justified. Users who are on the authorized distribution list
will receive published revisions and additions automatically.

The Programming Guide is broken into several sections
according to subject. Refer to the Table of Contents to
quickly locate a desired subject.

The user is given a general orientation to the Model 980
Computer in this section. Details of programming may be
located also in the Model 980 Computer Programmer's
Reference Manual. Detail information about the computer
itself may be found in the Model 980 Computer
Maintenance Manual.

1-2 COMPUTER CHARACTERISTICS.
The Texas Instruments Model 980 General Purpose
Computer is used for data processing and system control
applications. The computer is functionally organized into a
central processing unit (CPU), an input/output (I/O) unit,
and a power supply (Figure 1-1)

a. General characteristics

Parallel operation

Single address logic

Two's complement arithmetic

Eight 16-bit addressable registers

16-bit data word plus parity

16-bit or 32-bit instruction word

85 basic instructions

1-1

b.

c.

d.

Execution times for direct operands

ADD
SUBTRACT
MULTIPLY
DIVIDE

Memory

2.00 microseconds
2.00 microseconds
6.50 microseconds
8.00 microseconds

I-microsecond cycle time

4096 words minimum capacity

65,536 words maximum capacity

400 nanoseconds access time (internal
data access)

1.0-microsecond direct memory access
time (I/O data access)

All of memory can be directly addressed.

Power failure protection

Input/Output

One Direct Memory Access Channel
(DMAC), expandable to eight

17 -bit parallel transfer including
parity comparison

I-million words per second burst
rate

One processor-controlled I/O bus, 16-bit
parallel transfer

One (or more) teletypewriter or
electronic printer I/O channels

Three priority interrupts

e. Addressing Modes

Direct addressing

Program Counter relative addressing

Base Register relative addressing

~I --------------~~~~;~----------------------------~I
BUS

CENTRAL

I CORE PROCESSING I
MEMORY UNIT

1-- I
I I
II MEMORY DATA BUS CPU CONTROLLED I

I/O BUS POWER

I ~~~ I
I DMA CHANNEL I

L-----------. ..Jr--------,ot-----.-r-------1

PERIPHERAL
DEVICE OR
DMA EXPANDER

PERIPHERAL
DEVICE OR
EXPANDER

TELETYPE OR
ELECTRONIC
PRINTER

Figure 1-1 Model 980 Computer Block Diagram

f.

Single-level indirect addressing

Direct indexing

Pre-indexing and post-indexing with
indirect addressing

Immediate operands

Peripherals

Nine track magnetic tape

Silent 700 electronic data terminal

ASR-33 teletypewriter

Fixed head disc

High speed paper tape reader

High speed paper tape punch

Line printer

Card reader

Card punch

1-3 COMPUTER CONTROL PANEL.
The control panel is shown in Figure 1-2. Indicators and

1-2

pushbuttons on the control panel allow the operator and
the computer to establish basic communications. It
facilitates the loading of programs, system checkout,
maintenance, and software debugging. The address and
contents of the memory instruction registers are constantly
displayed. Any of the following data words may be
observed on the DISPLAY lights by pressing the
corresponding DISPLAY SELECT pushbuttons.

PC
MR
A
B
E
L
M
S
X
SR

Program Counter
Memory Data
Primary Arithmetic Register
Base Register
Secondary (Extension) Arithmetic Register
Link Register
Maintenance Register
Storage Register
Index Register
Status Register

The 16 DATA pushbuttons may be used to enter data into
the register indicated by the DISPLAY SELECT using the
LOAD pushbutton. Each data bit may be reset by pressing
it a second time. All data bits may be reset by pressing the
CLEAR pushbutton.

When loading or reading memory data, the memory word
referenced will be the word at the location contained in the
program counter. The data is entered into memory by
loading into the MR.

INSTRUCTION
0 0 0 0 0 0 0 01 0 0 0 0 0 0 0 0

MEMORY ADDRESS
0 0 0 0 0 0 0 01 0 0 0 0 0 0 0 0

DISPLAY
0 0 0 0 0 0 0 01 0 0 0 0 0 0 0 0

DATA
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CLEAR o I SPLAY SEL ECT LOAD

0 0 0 0 0 0 0 0 0 0 0 0
PC MR A 8 E L M S X SR

0 0 0 0 0 0 0 0 00
SENSE MODE

0 0 0 0 0 SYSTEM 0 0 0 0 0 0
2 3 4 PARITY RESET IDLE STEP SCAN SIE BKPT RUN

0 0 0 0 0 00 0 0 0

Figure 1-2. Control Panel

Four SENSE pushbuttons are provided and displayed at all
times. These may be sensed by the program.

A PARITY ERROR indicator is illuminated when the
parity error stop bit has been enabled in the status register
and a memory parity error is detected.

The SYSTEM RESET pushbutton clears the status register,
sense switches, and program counter.

The IDLE light is illuminated when an IDLE instruction is
encountered in the program. It indicates that the CPU is in
a waiting state.

Electronically interlocked MODE pushbuttons are provided
and displayed which a1l0w the operator to perform the
following functions:

STEP - The first time the STEP pushbutton is
pushed it inhibits the system clock. Each time
thereafter it provides a single clock pulse to the
system.

SIE - The first push halts the CPU. Each subsequent
push frees the CPU until the next instruction has
been executed.

1-3

SCAN - The first push halts the CPU. Each
subsequent push increments the Program Counter and
reads the memory at that address. Memory at that
address may be altered by using the DATA and
WAD pushbuttons.

BKPT - Pressing the BKPT pushbutton causes the
CPU to retain the address given in the console data
switches. In and RUN mode the CPU will halt when
that memory address is referenced as an instruction
or data.

RUN - Frees the CPU to operate.

1-4 SOFTWARE.

1-4.1 MONITOR. The Real Time Monitor (RTM-I) is a
multi-programming operating system utilizing an
executive/worker method for program control and a
multilevel priority scheme for program execution. It
handles all software input and output, and schedules
worker programs based upon real time input. RTM-I
options include either sequential background job execution
(BATCH) or background execution upon request (Single
Program EXecution - SPEX).

1-4.2 ASSEMBLERS. Two distinct assemblers are
provided for the Model 980. The SAP-I (Symbolic
Assembly Program-I) assembler executes on the Model 980
Computer. The second assembler (TI980SIM) is an IBM
System/360 program.

Several versions of SAP-I are available. These differ
primarily in the particular configuration of computer
peripherals which they assume, the mode of operation
(BATCH, SPEX, or stand alone), and the number of
physical passes through the input source statements which
are required.

TI980SIM accepts the same source input as SAP-I.
Likewise, the object output is fully compatible with the
Model 980 link editor and relocating loader.

1-4.3 FORTRAN. A FORTRAN compiler is available with
the Model 980 Computer. This compiler accepts ANSI
standard FORTRAN X-3.9-1966 (commonly called
FORTRAN IV). It additionally allows certain extensions,
for example, general integer expressions for indexes.

The library supplied includes those routines required to
support ANSI standard FORTRAN.

1-4-.4 LINK EDIT. Several separately assembled or
compiled programs can be merged into one program. All
external references from one routine to symbolic locations
in another routine and COMMON references are resolved
through use of the Link Editor. An object program is
produced in the format described in Section II. This object
may be punched or left on some other media such as disc.

1-4.5 UTILITIES. Various utility programs are included in
the Model 980 software. These are useful in manipulating
source and object programs. The utility package includes
several programs intended only for BATCH processor
execution. These BATCH programs facilitate editing of disc
storage.

The utility functions performed are:

Correct - insert corrections in a source program

Copy - copy a program from one media to another

List - produce a listing of a source program

Install - catalog a program on the disc for BATCH
processing

Delete - flag a catalogued program as deleted

1-4

Compress - remove all deleted programs from the
BATCH disc file

List Catalog - produce a listing of the contents of the
BATCH disc file

Save Disc - copy the BATCH disc files on another
media

1-4.6 DEBUG PACKAGE. The debug package is a compact
stand-alone program intended to aid programmers in
debugging their programs. It performs the following
functions:

a. Inspect consecutive words of memory and
change them if desired

b. Store a masked constant in memory

c.

d.

Search memory for a masked constant

Execute a hexadecimal dump of a specified area
of memory

e. Punch an object tape of a specified area of
memory

f. Load changes in memory as specified on a
punched tape or deck of cards

g. Move the debug package to another area of
memory.

All necessary parameters are manually entered into registers
through the computer console.

1-5 STANDARD DEVICE ADDRESSES.

1-5.1 MONITOR CONTROLLED SOFTWARE. Software
running under control of RTM-I and using the RTM-I
supplied I/O programs will address their I/O requests to
logical rather than physical devices. The actual
correspondence between logical devices and physical device
addresses is established as part of system generation. The
standard logical device numbers are as follows:

1 - Teletypewriter output (punch or type)
2 - Teletypewriter input (reader or keyboard)
3 - High speed paper tape punch
4 - High speed paper tape reader
5 - Card reader
6 - Line printer
7 - Magnetic tapes
8 - Disc

Any deviations from these assumed logical device numbers
requires re-assembly of the programs involved.

1-5.2 STAND ALONE SOFTWARE. Stand alone programs
performing their own I/O functions directly address the
physical devices. Software in this category includes:

Stand Alone Assemblers
Stand Alone FORTRAN Compilers
Debug Package
Bootstraps and Loaders
Restore Disc Program
Monitor Initialization
Performance Assurance Tests (described in Volume
II)

These programs assume certain standard device addresses. If
the computer system uses non-standard addresses the
programs involved must be reassembled to reflect the new
device addresses. The assumed data bus addresses
(hexadecimal) are:

1-5

Control Data
Device Register Register

teletypewriter OA 02
card reader 1F 1F
high speed paper tape reader 10 18
high speed paper tape punch 10 18

The assumed direct memory access channel Jevice numbers
are:

Device

disc
magnetic tapes
line printer

Number

o
1
5

SECTION II

SYMBOLIC CODING IN ASSEMBLY LANGUAGE

SECTION II

SYMBOLIC CODING IN ASSEMBLY LANGUAGE

2-1 INTRODUCTION.
The first portion of this section discusses symbolic coding
in detail. If the user is already familiar with symbolic
coding techniques, he may proceed directly to paragraph
2-4.3 for a summary of the first portion. Explanation of the
Model 980 Computer assembly language begins with
paragraph 2-5.

The programmers job is to:

a.

b.

c.

Arrange input and output of data.

Establish "work areas" in storage.

Create constants or text values used in
calculations and printed output.

d. Choose and write the instructions that move
data, perform appropriate tests and
calculations, handle exceptional conditions, and
arrange data in a format specified for output.

Assembly language with symbolic notation is one method
by which this work is done.

2-2 PURPOSE OF ASSEMBLERS.
Programming in a symbolic language offers important
advantages over programming in the actual language of the
computer.

a. Mnemonic operation codes are more
meaningful than machine language. For
instance, the actual machine language for the
instruction Store Register A (in hexadecimal) is
80. The mnemonic operation code in the
assembly language is STA.

h.

c.

Addresses of data and instructions can be
written in symbolic form. The programmer is
thereby relieved of problems in the effective
allocation of storage, and the resulting program
is far easier to modify. Furthermore, the use of
symbolic addresses reduces the clerical aspects
of programming and eliminates many
programming errors. If the symbols chosen are
meaningful, the program is also much easier to
read and understand than if written with
numerical addresses.

Symbolic assembly directives and data
generation statements permit the introduction

2-1

of constants, reservation of space for results,
definition of instructions, control of the
assembly process, introduction of base address
values, and other items.

The sum effect of these advantages is so great that it is
virtually out of the question to program in actual machine
language; that is, to write actual operation codes and
numerical address displacements.

2-3 THE ASSEMBLY PROCESS.
An assembly language program cannot be executed directly
by the computer. The mnemonic operation codes and
symbolic addresses must be translated into machine
language. This is the function of the Symbolic Assembly
Program (SAP-I).

The assembly process begins with a source program which is
written by the programmer. Ordinarily, a special coding
form is used (Figure 2-1). Cards or paper tape are punched
to correspond with the data on this form. This source
program becomes the primary input to the assembly
process. The Symbolic Assembly Program (SAP-I) controls
the assembly process in the Model 980 Computer (Figure
2-2).

SAP-I generates two outputs. The first is an object program.
Actual machine instructions in the object program
correspond to the source program statements written by
the programmer. The object program can be output on
punched cards, paper tape, or disc. The second output is an
assembly listing. This important document shows the
original source program statements side by side with the
object program instructions created from them. Refer to
Figure 2-3.

Note the following in the example:

a. The items listed under A should be exactly the
same as the handwritten entries on the coding
sheet. This provides a good check on the
accuracy of the keypunching.

b. The items under B are a hexadecimal
representation of the corresponding
instructions and constants.

c. The items under C show the hexadecimal
addresses of the instructions, constants, and
areas of storage specified by the programmer.

PROBLEM ________________________ __

SYMBOLIC CODING FOR

PROGRAMMER I I I I I I (t f

73 Identification 80

NAME OPERATION OPERAND COMMENTS

Figure 2-1. Example of Symbolic Coding

2-2

PROGRAMMER'S
STATEMENTS

PUNCH
TAPE

PUNCHED
CARDS

SAP-I

ASSEMBLY
LISTING

OBJECT DECK
OR TAPE

Figure 2-2. The Assembly Process

d. The items under D show the decimal line or
sequence number of the source statements. It is
printed to assist the programmer when
correcting his source program. It has no effect
on the object program.

2-4 SYMBOLIC CODING.
Each line of the coding sheet represents one symbolic
statement. Each symbolic statement is used to tell SAP-I to
assemble a machine language instruction, a data constant,
or to do something during assembly time. Since most
programs contain hundreds of instructions, several coding
sheets are used to write a complete program.

All instructions have a location in memory which they will
occupy when the object program is being executed.
Instructions also have an operation code and usually one or
more operands. For instance, take the case of an instruction
which adds the content of one register to that of another.
This instruction would have a hexadecimal operation code
of C08, and contain the addresses of two registers. The
address of an instruction, its operation code, and the data
addresses correspond respectively to the following fields on
the coding sheet: Name, Operation, Operand. The entries
on the coding sheet are made symbolically, rather than in
machine language.

2-3

The first six columns of the coding sheet are called the
name field. This field gives symbolic names to the locations
referred to by the program. For instance, if the program
contains a routine to handle division overflows, it would be
simpler if the machine address of the routine did not have
to be remembered. After assigning a name to the first
instruction in this routine, a symbolic branch instruction
referring to that name can be written. Then SAP-I, in
converting the program to machine language, will remember
the machine address of the symbolic name and will use it in
the object program whenever the programmer refers to it.

Symbolic names are also called symbols or labels. Some of
the characteristics of symbolic names are:

a.

b.

Symbolic names are usually given to
instructions or data fields referred to in
programs.

A symbol cannot be used in the operand field
unless it also appears in the name field of one
of the symbolic statements. That is, a symbol in
the program cannot be referenced unless it is
used as the name of one of the instructions,
directives, or data fields.

MODEL 980 ILLUSTRATIVE PROGPAM 01/09/70 0001

~ ~ ,-----.... -"'--
(\

C B 0 A

0001 HED MODEL 980 ILLUSTRATIVE PROGRAM

0008 0002 ORG 8

0008 0003 BRS 8

0008 0009 ~00LL START LOA DATA PUT DATA IN THE A

0009 20~9 0005 ADD NUMBER ADD NU~1BER TO A

000A 8009 0006 STA RESULT SAVE RESULT

09'07 ... THIS LINE IS A cnM~E~T

000B 0009 0008 LOA LOGIC GET LOGIC PATTERN

000C 3007 0009 IClR RESULT OR IN RESULT

0000 7001 09'10 BRL 00 PERFORM SUBROUTINE

000E CE00 0011 IDL PAUSE

000F ccqll 0012 DO SEV A SKIP IF LSB=0

0010 C8C2 0013 LLA 2 LEFT SHIFT 2

0011 C557 0014 RMO L,P EXIT FROM 00

0012 01FA 0015 DATA DATA 506 DECIMAL VALUE

0013 05F3 0016 NUMBER DATA 1523

0014 0017 RESULT BSS 1 RESERVE 1 LOCATION

0015 FA62 0018 LOGIC DATA >FA62 HEX CONSTANT

0000 0019 A EOU 0

0005 0020 L EQU 5

0007 0021 P EOU 7

0000 0022 END START

Figure 2-3. Assembly Listing Produced By Assembly Of The Program

2-4

c.

d.

Symbols are restricted in length to SIX

characters or less and may not contain blanks
or special characters. They must begin with a
letter.

Within the preceding limitations, any symbol
may be used.

Each line on a coding sheet is one symbolic statement. A
symbolic statement can be a machine instruction, a data
definition, or an assembly directive which gives some
information to SAP-I for use during the assembly process.
The operation field on the coding sheet tells the processor
the type of the statement. Although the name field of a
symbolic statement may be left blank, the operation field
must contain a symbol that can be recognized by SAP-I. If
the symbolic statement is an instruction, the symbol
represents one of the computer's operation codes.

For example, by writing LDX, the processor is caused to
assemble a Load Register X instruction. The mnemonic for
the instruction is placed in the operation field of the coding
sheet. Each Model 980 Computer instruction has its own
unique mnemonic which is given in the Programmer's
Reference Manual.

The operand field on the coding sheet contains the
remainder of the instruction. The data required in the
operand field is dependent upon the operation specified.
For each SAP-I operation the required operands are
described in later paragraphs of this section.

The operand may be followed by a comment. This has no
effect on the assembly.

The program coded using the assembly language symbology
is called the source program.

The sole function of the source program is to provide input
data for the assembly program. None of the instructions in
the source program is executed during the assembly
(translation) process. One output of the assembler will be
the object deck or tape. The object deck or tape is the
program converted into machine language. It can be loaded,
either now or later, into the computer for execution. There
is no need to reassemble the program each time it is
executed. The object deck or tape can be used over and
over again until changes are made in the program.

To obtain a machine language object program from the
symbolic source program, SAP-I must first be loaded into
the computer's main storage. As the assembler is being
executed, it will read the source program and convert it to
the machine language that will be the object program.

2-4.1 LOCATION COUNTER. The computer, while
executing the assembly program, acts as a clerk. One of the
clerical tasks of the assembler is to assign machine addresses

2-5

to symbolic names, and to remember these addresses and
use them in the object program whenever the symbol is
used in the operand of the source statement.

For instance, when the assembler encounters the following
source statement, it must assign a machine address to the
symbol BEGIN.

NAME OPERATION

BEGIN STE

The assembler must remember
that it can insert that address
following branch instruction.

NAME OPERATION

@BRU

OPERAND

THERE

the address of BEGIN so
when it encounters the

OPERAND

BEGIN

To be able to assign a machine address to a symbol, SAP-I
contains an internal counter. This counter is called the
location counter, and keeps track of the addresses in the
source program, as it is being assembled. The location
counter is incremented as each symbolic statement is
processed. The length (in words) of main storage area
required by each statement determines how much the
location counter is incremented. For instance, assume that
the location counter is set to decimal 1000 when the
following symbolic statement is read by the assembler.

NAME OPERATION OPERAND

BEGIN STE THERE

When the assembler encounters this statement it will assign
the address of decimal 1000 to the symbol BEGIN, and
step the location counter to decimal 1001.

Whenever the assembler finds an entry in the name field, it
assigns the setting of the location counter to that name. It
then increments the counter by the number of words
required by the statement. The STE instruction in the
example requires only one word. Hence, the location
counter is stepped from 1000 to 1001.

2-4.2 SYMBOL TABLE. The assembler uses the location
counter to assign addresses to symbols. However, the
assembler needs to retain the address it assigns to each
symbol. These are stored in another data area within the
assembly program. This area is referred to as the symbol
table. When a symbol is encountered in the name field of a
symbolic statement, that symbol as well as the location
counter setting is placed in the symbol table. The area of
storage used for the symbol table is limited. It is for this
reason that SAP-I puts a limit on the length of symbols and
how many symbols may be used in a program.

Whenever the assembler finds a symbol in the operand field,
it locates the symbol in the symbol table. When it locates
the symbol, it obtains its machine address and uses it in
computing the assembled instruction. Of course, the
symbol must appear somewhere in the source program, in
the name field.

SAP-I is a two-pass assembler. The first pass of a two-pass
assembler does not produce an object program. Its purpose
is to build up a complete symbol table.

If bulk storage is available, some versions of SAP-I have an
intermediate output. The intermediate output from the
first pass is used as input data for the second pass. This
eliminates the requirement to manually enter the source
data twice.

During the second pass, the assembler program uses the
symbol table to complete the assembly of the statements.
The output of the second pass is the object tape (or card
deck) and assembly listing.

2-4.3 CODING SUMMARY.

a. During assembly time, the assembly program is
executed using a source program as input data.

b. The output data from the assembler consists of
an object tape (or card deck) and its assembly
listing.

c.

d.

e.

A location counter in the assembler is used to
keep track of the storage locations that will be
used by the object program.

When a source statement contains a name, the
current setting of the location counter is given
to the label.

Each label and the address assigned to it is
placed in the assembler's symbol table.

f. SAP-I is a two-pass assembler.

g.

h.

During the first pass, the source program is read
and the symbol table is generated.

During the second pass, the symbol table is
used to complete the assembly, and produce
the object tape (or card deck) with its assembly
listing.

2-5 SYMBOLIC LINE FORMAT.
The symbolic input line accepted by the assembler may
contain a name field, operation field, operand field, and a
comment field ~ or the entire line may be a comment. An
input line is the first 72 characters read from a card or in
the case of paper tape, an input line is a string of characters

2-6

READER OFF­

LINE FEED-

• ••• -CARRIAGE RETURN • • •• •••••••• -RUB OUT •• •

Figure 2-4. Line Terminating Codes

the last of which are carriage return, reader off, rub out and
line feed (Figure 2-4). The input line must not exceed 72
characters not including the terminal characters. Input lines
are free form within the limits described below.

2-5.1 COMMENT LINES. Comment lines provide the user
with the ability to annotate program listings. They are
indicated by an initial character which is either a period (.)
or an asterisk (*). The remaining characters are arbitrary.
The comment line in no way affects the assembly process.
The line is merely reproduced in the printed output.

2-5.2 NAME FIELD. Names (also called symbols or labels)
are provided for symbolic references to instructions, values,
and data. A label is composed of from one to six characters,
none of which may be any of the special characters listed
below. The first character of a label should be alphabetic
(A-Z).

Plus +
Minus
Asterisk *
Slash I
Greater than >
Right Parenthesis)
Left Parenthesis (
Comma

If a label is used, the first character must begin the input
line. The label is terminated by the first space.

2-5.3 OPERATION FIELD. The operation field describes
the required action. It may be a mnemonic operation code,
assembler directive, or data generation directive. The field
consists of from one to four characters followed by a space
or carriage return. The first character of the operation field
must be preceded by at least one space.

2-5.4 OPERAND FIELD. The operand field consists of a
sequence of expressions separated by commas and is
terminated by a space or carriage return.

EXPRS 1 ,EXPRS 2,EXPRS 3

If two commas appear successively, the value of the missing
expression will be taken to be zero. If fewer than the
required number of expressions appear in a source line, the
missing expressions will be assumed to be zero. If the
currency symbol ($) appears as an element in an expression,
the current value of the assembler's location counter will be
used as its numeric equivalent.

Expressions are strings of items separated by arithmetic
operators and terminated by a space, comma, or carriage
return. The arithmetic operators are:

Addition
Subtraction
Multiplication
Division

+

*

If two operators appear in succession, a zero item is
assumed.

An item consists of a symbolic address, currency symbol
($), or a numeric value. If the first character of an item is
not numeric, $, or >, it is assumed to be symbolic. Numeric
items may be octal, decimal, or hexadecimal. An octal
item is a string of octal characters (0-7), the first of which is
zero. A decimal item is a string of numeric characters (0-9),
the first of which is non-zero. A hexadecimal item i~ a
greater than symbol (» followed by a string of
hexadecimal digits (0-9, A-F). When using paper tape input,
the back slash (\) may be used in place of > to indicate
hexadecimal.

Expressions are evaluated left to right using normal
arithmetic precedence; i.e., all multiplications and divisions
are performed in order of occurrence. The additions and
subtractions are then performed in order of occurrence.

All quantities are treated as integers. In division only the
quotient is retained and any remainder is discarded.
Division by zero is performed as division by one and is not
considered as an error.

2-7

Sample expressions are:

JOE+TOM* 3/BOB
$+5
LEA-6
5034
XYZ+>F4

2-5.5 COMMENT FIELD. Comments may optionally be
written on any line. Any characters which appear between
the space which terminates the operand field and the
carriage return or card column 73 are treated as
commentary. The comment field has no effect on the
assembly process.

2-6 MACHINE INSTRUCTION FORMATS.

2-6.1 REGISTER-TO-MEMORY (RM) INSTRUCTION
FORMAT. The Register-to-Memory (RM) instructions
modify register contents based upon the effective operand
and the function called for by the operation code. The
instruction format is:

o 4 5

OP

MSB

Field Destination

OP
I
X
B
D

6 7 8 15

D

LSB

Operation Code
Indirect addressing
Index usage
Base Register usage
Displacement

Addressing can be either program counter relative or base
register relative. The normal mode is program counter
relative. However, the programmer can specify base relative
addressing by setting bit 7 in the instruction. The assembler
can also perform this function if it has been informed of
the value residing in the base register by a Base Register Set
assembler directive (paragraph 2-8.1).

The addressing mode is determined by the I, X, B, and D
fields as shown in Table 2-1. SD indicates that the
displacement field is used as a signed two's complement
number. D indicates an unsigned positive displacement
quantity. Thus, -128~Srx;127,0~255. P is the address
of the next sequential instruction. The symbol X denotes
the number contained in the Index Register, while B
denotes the number contained in the Base Register. If
immediate addressing is specified on a load, add, subtract,
or algebraic compare instruction, D is treated as an eight-bit
signed quantity and bit eight will be extended through bits

TABLE 2-1

IXB USAGE

Effective
IXB Operand Description

000 (P+SD) Program Counter Relative

001 (B+D) Base Register Relative

010 (P+SD+X) Program Counter Relative, Indexed

011 (B+X+D) Base Register Relative, Indexed

100 ((P+SD)) Indirect, Program Counter Relative

101 ((B+D)) Indirect, Base Register Relative

110 ((P+SD)+X) Indirect, Program Counter Relative, Post-indexed

110 ((P+SD+X)) Indirect, Program Counter Relative, Pre-indexed

111 D or SD Immediate Addressing. D or SD is the operand

o through 7 to give a 16-bit operand. If immediate
addressing is specified on a store instruction, D is treated as
the effective operand address. The notation (m) means the
contents of core location m.

The index control bit in the Status Register permits
optional Pre-indexing or Post-indexing. This controls the
relation of indexing to indirect addressing. If the index
control bit is one, indexing precedes indirect addressing. If
the index control bit is zero, indexing follows indirect
addressing. If indirect addressing is not involved, the two
modes are equivalent.

If the B bit in the IXB field is zero and the displacement
field contains zeros, the program counter will be
incremented again during instruction execution. In this
event, the next location in memory is referenced as either
data or as an indirect address, but is skipped over in the
instruction sequence. Thus, data or indirect addresses and
instructions may be interspersed. When this feature is used,
the instruction is referred to as an extended format
instruction.

The general symbolic format of a RM instruction is:

NAME

LABEL

OPERATION

@OP

OPERAND

=*DISP,MODE

2-8

The name field, the asterisk which denotes indirect
addressing, the @ which denotes extended format, and the
= which denotes immediate operand, are optional. The =
and * may not both be present. The MODE item indicates
the addressing mode and may have a value of 0 through 7.
It consists of the IXB bits of the object instruction. DISP
and MODE are symbolic expressions. Typical symbolic
statements are:

NAME OPERATION OPERAND

PTl LDA BUFFER+2
STA *ADDR

PT2 LDX =-5
@STA ANS,X

BIX $-2

Table 2-2 defines the transliteration process performed by
the assembler for RM instructions. Table 2-2 uses symbolic
indicators for the mode expressions. The user must actually
write equivalence statements himself for the assembler to
interpret any such symbolism.

The assembler will translate the operand address expression
in RM format instructions by first evaluating the expression
as a 16-bit number. One of the following operations will be
executed:

TABLE 2-2

RM FORMAT SYMBOLIC INTERPRETATION

Base Register
Mode In Range In Range Assumed Value

@ = * Expression P-Relative B-Relative Given by Pseudo-Op Assembler Action

NO NO NO NONE YES N/A N/A IXB=O, D=P relative
NO NO NO X YES N/A N/A IXB=2, D=P relative
NO NO NO I YES N/A N/A IXB=4, D=P relative
NO NO YES NONE or I YES N/A N/A IXB=4, D=P relative

NO NO NO NONE NO YES YES IXB=l, D=B relative
NO NO NO X NO YES YES IXB=3, D=B relative
NO NO NO I NO YES YES IXB=5, D=B relative
NO NO YES NONE or I NO YES YES IXB=5, D=B relative

NO NO NO B N/A N/A NO IXB=l, D = absolute
NO NO NO XB N/A N/A NO IXB=3, D = absolute

N
,:0 NO NO NO IB N/A N/A NO IXB=5, D = absolute

NO NO YES BoriB N/A N/A NO IXB=5, D = absolute

NO NO NO B N/A YES YES IXB=l, D=B relative
NO NO NO XB N/A YES YES IXB=3, D=B relative
NO NO NO IB N/A YES YES IXB=5, D=B relative
NO NO YES B or IB N/A YES YES IXB=5, D=B relative

NO NO NO IX YES N/A N/A IXB=6, D=P relative
NO NO YES X or IX YES N/A N/A IXB=6, D=P relative

NO NO NO M N/A N/A N/A IXB=7, D = absolute
NO NO YES XBorM N/A N/A N/A IXB=7, D = absolute
NO YES N/A N/A N/A N/A N/A IXB=7, D = absolute

YES YES N/A NONE N/A N/A N/A IXB=O, D=O, 2nd word = immediate value
YES NO N/A NONE N/A N/A N/A IXB=4, D=O, 2nd word = indirect address
YES NO N/A X N/A N/A N/A IXB=6, D=O, 2nd word = indirect address

Values given symbolically in the MODE expression NONE = ° X =2 I =4 IX = 6
column have the following values: B = 1 XB= 3 IB = 5 M =7

a. Subtract a number one greater than the
location counter. This will make the address
Program Counter Relative.

b. Subtract a number given by a BRS directive.
This will make the address Base Relative.

c. Use the number as is. This is done in extended
format.

d.

e.

Truncate the number to an 8-bit value. This is
done for single length immediate value
references, and for base relative addressing
under a base register reset (BRR) condition
(paragraph 2-8.2).

Indicate a field size error if the resulting address
is unattainable under the defined conditions.

RM instructions use the following mnemonics:

ADD DIV LDM
AND DLD LDE
BIX DMT LDX
BRL DSB MPY
BRU DST STA
CPA IMO STE
CPL lOR STX
DAD LDA SUB

2-6.2 REGISTER-TO-REGISTER (RR) INSTRUCTION
FORMAT. The format of the Register-to-Register
instruction is:

o 8 9

OP SR

OP - Operation Code
SR - Source Register
DR - Destination Register

11 12 13 15

DR I

Register-to-Register instructions modify the contents of the
destination register according to the operation code and
using the source register.

The symbolic format of the RR instruction is:

NAME OPERATION OPERAND

LABEL OP S,D

The label field is optional. Sand D are expressions which,
when evaluated, denote the source and destination registers,
respectively.

RR instruction mnemonics are:

RAD RCO RIN

2-10

RAN RDE RIV
RCA REO RMO
RCL REX

2-6.3 SHIFT (S) INSTRUCTION FORMAT. Shift
instructions have the format:

0 10 11 15

OP C

OP - Operation Code
C - Shift Count Oq:~31

Shift instructions move data laterally within the registers.

Shift instructions have the symbolic format:

NAME OPERATION OPERAND

LABEL OP COUNT

The label field is optional. COUNT is an expression which is
evaluated and used for the shift count.

S instructions use the following mnemonics:

ALA CRD LLD
ALD CRE LRA
ARA CRL LRD
ARD CRM LTO
CLD CRS LTZ
CRA CRX RTO
CRB LLA RTZ

2-6.4 REGISTER SKIP (RS) INSTRUCTION FORMAT.
The format of register skip instructions is:

o

OP

OP - Operation Code
R - Register Number

10 11 12 13

~
:::::::::::::::::::J :.:.:.:.:.:.:.:.:.:
"." .. ",

15

R

Register skip instructions cause the next instruction in
sequence to be omitted if a specific condition exists in the
referenced register.

The symbolic format of RS instructions is:

NAME OPERATION OPERAND

LABEL OP REG

The label field is optional. REG is an expression for the
number of the register involved.

RS instruction mnemonics are:

SEV
SMI
SND
SNZ

SOD
sao
SPL
SZE

2-6.5 STATUS INDICATOR SKIP (SS) INSTRUCTION
FORMAT. These instructions do not require an operand.
Their format is:

o 10 11 15

OP

OP - Operation Code

Indicator skips omit the next instruction in sequence if a
specific condition exists in the status register.

The SS instruction symbolic format is:

NAME OPERATION

LABEL OP

where the label field is optional.

SS instruction mnemonics are:

SEQ
SGE
SGT
SLE

SLT
SNC
SNE

OPERAND

SNV
SOC
SOY

2-6.6 SENSE SWITCH SKIP (SX) INSTRUCTION FORMAT.

o 11 12 15

OP s

S = Switch Indicators

These instructions omit the next instruction in sequence
depending upon the setting of the indicated sense switches.

The symbolic format of the SX instructions is:

NAME OPERATION OPERAND

LABEL OP S

where the label field is optional.

The SX instructions are SSE and SSN.

2-11

2-6.7 DIRECT MEMORY ACCESS CHANNEL (DM)
INSTRUCTION FORMAT. These instructions have the
format:

o 7 8 12 13 15

I OP * DEV I
cw or

OP - Operation Code
* - Device Dependent
DEV - Device Address
MA - Memory Address
CW - Control Word

MA

These two word instructions initiate direct memory access
channel input and output.

The mnemonic code provided for the DMAC input/output
has the symbolic format:

NAME

LABEL
LABEL

OPERATION

ATI
DATA

The labels are optional.

OPERAND

DEV/CA
CW or MA

2-6.8 DATA BUS INPUT/OUTPUT (DB) INSTRUCTION
FORMAT. The format of a data bus I/O instruction is:

o 4 5 6 7 8 9 10 11

OP

o 1 2 3 7 8 9 10 1112 13

o 0 0 +I!~!H+I
B - Sense Busy Designator
I - Increment Designator
D - Decrement Designator
A - Address Mode Designator
R - Register Number
G - External Device Group
E - External Register

15

15

R

These instructions transfer data between registers and
external devices.

The symbolic format of DB instructions is:

NAME

LABEL
LABEL

OPERATION

OP
DATA

OPERAND

DEV
BIDAR

The label fields are optional. DEV is an expression the value
of which specifies register and group. The value is treated as
a 16 bit number. It is tested for ones in bits 0-4, 7, 8 and
10. If there are none it is logically ored with the OP code.

BIDAR is an expression the value of which will define the
B, I, D, A, and R bits.

The DB mnemonics are RDS and WDS.

2-6.9 FIXED (F) INSTRUCTION FORMAT. Certain
single-word or double-word instructions have a full 16-bit
(fixed) operation code.

WORD1
o 15

I OP CODE I
WORD2
o

I MEMORY

15

ADDRESS

The second word is not applicable to single word
instructions.

The symbolic format for F instruction is:

NAME OPERATION OPERAND

LABEL DISP

All fields are optional except the OP field. The @ preceding
the OP and DISP field are always used together and cause a
double word F format instruction to be generated.

The mnemonics for F format instructions are NRM, IDL,
LSB, and SSB.

2-7 DATA GENERATION.
A single operation is provided for data generation. Its
format is:

NAME OPERATION OPERAND

LABEL DATA D1,D2,--,Dn

where LABEL is optional. Dl,D2,--,Dn are expressions or
strings. Expressions are evaluated and assigned to successive
memory locations.

2-12

The DATA statement is used to define alphanumeric strings
using following format:

NAME OPERATION OPERAND

LABEL DATA STRING

where STRING is a string of characters enclosed in single
quotes. The string will be produced (ASCII code) two
characters per word packed left to right. If there is an odd
number of characters in the string, the last word will
contain a space code in the last character position.

If a label is used, it will be assigned to the first core location
involved.

2-8 ASSEMBLER DIRECTIVES.
Assembler directives have formats similar to symbolic
instructions but do not directly cause code generation.
Instead they are directives to the assembler itself and are
provided for storage allocation, program identification,
format control, and other similar functions. If labels are
used with assembler directives, they will be assigned the
current location counter value unless otherwise specified.
Assembler directives are listed in Table 2-4.

2-8.1 BRS. The BRS directive informs the assembler of the
current value in the Base Register. The operand field of the
BRS directive itself is assumed to define a 16-bit value
supposedly placed in the B Register by the programmer.
When used, subsequent RM format instructions which
would produce field size errors if Program Counter relative
are generated Base Register relative, if possible. In this case,
if D is an unsigned 16-bit evaluation of the displacement
expression and B is the value assumed in the Base Register,
then 0~-B';:;;255 or else a field size error will occur.

An example of BRS usage follows:

*

*

*
*

CAT

BRS CA1' DEFINE BASE VALUE
TO SAP-I

@LDA =CAT PUT ADDRESS OF CAT
IN BASE REGISTER

RMO A,B

STA

BES
BSS

CAT+3 ASSEMBLER USES BASE
RELATIVE
ADDRESSING

350
10

CAT IS DEFINED

TABLE 2-3

EXAMPLE FOR DATA

9JApt3 9J9JPl1 ~997 CAT

9JA04 9J00C 9J998

9JA~5 09J9JA 9'999

9JA~6 0012 19J9J9J

f/JApt7 B1B2 1001

9JApt8 0A9J3 P 10~2

9JA09 9J9J9'9J 19J03

9JAptf!. 0Af/JA P 19Jf/J4

TABLE 2-4

ASSEMBLER DIRECTIVES

BRS
BRR
BSS
BES
ORG
DEF
REF
IDT
HED
PEJ
LIS
UNL
EQU
FRM
IF
END
OPD
COMM

Base Register Set
Base Register Reset
Block Starting With Symbol
Block Ending With Symbol
Origin
Define Entry Point
External Reference
Identification
Heading
Page Eject
List
Unlist
Equate
Format
If (conditional assembly)
End of source input
Operation Define
Common Storage Allocation

3-8.2 BRR. BRR informs the assembler that the base
register is not available to the assembler for addressing
purposes. The programmer can still specify base register
addressing in the mode field. The BRR directive informs
the assembler to use the base register for addressing
purposes only in the event the the mode field specifies that
type of addressing. (This is the initial condition of

2-13

O,LI.T A 1,12,9J 12, > 12, I 12 I , CAT" $ COMMENT

assembly.) Under BRR directive control, if D is the
unsigned displacement in RM instructions, then 0~~255
when the mode field contains B = 1 or else a field size error
will occur.

2-8.3 BSS. BSS stands for BLOCK STARTED WITH
SYMBOL. It reserves an area of memory. The first location
in the reserved area is associated with the label given on the
name field of the BSS directive. The location of the area
reserved is that defined by the location counter, which is
then advanced past the reserved area. Note that no object
code is generated by the BSS directive. If the programmer
desires some value(s) to be assembled in the reserved area
he must do so by other means.

An example of the BSS directive is given below:

BRU
AREA BSS
TOM LDA

TOM BRANCH AROUND AREA
40 RESERVE AREA
AREA REFERENCE AREA

It is possible to back up (or subtract from) the location
counter by placing a negative operand in a BSS directive.
For example the programmer may wish to let two or more
symbols refer to the same core location. The following
sequence will cause the names TOM, DICK, and HARRY to
all reference the same location.

TOM BSS 0

DICK LDA $+5

HARRY BSS 0

Note that any symbol used as the operand of a BSS must be
previously defined.

A common usage of symbols in a BSS operand is an
expression which defines the length of a reserved area. In
the following example, if the length of TABA is likely to
change but TABB must be the same length, it may be
symbolically stated.

TABA BSS 50 MIGHT CHANGE
TABB BSS TABB-TABA ALWAYS SAME AS TABA

BSS 1

2-8.4 BES. This evaluates the operand field and advances
the location counter by that amount. If a label is present, it
is assigned to the new value of the location counter. BES
stands for BLOCK END SYMBOL and is similar to BSS,
except the label is applied to the first location past the
reserved area.

2-8.5 ORG. This sets the value of the location counter to
the value of the expression in the operand field.

Any symbol in the expression must be previously defined.
If the operand field is invalid, the ORG directive will not be
used. The ORG directive is commonly used to force loading
of a program in specified core locations but may be used to
perform other operations. For example

ORG $+500

increases the Location Counter by 500.

Therefore, the ORG directive provides an alternate way to
reserve storage areas. The preferred way to reserve a storage
area is with the BSS and BES assembler directives.
However, where a storage area cannot be conveniently
defined with the BSS directive, the ORG directive can be
used.

NOTE
Use of the ORG directive causes the
assembler to produce an absolute object
program if the operand field is not a
relocatable expression. Hence, the ORG
directive should be used with care.

2-8.6 DEF. The program linking assembler directives DEF
and REF allow the programmer to symbolically link
independently assembled programs which are to be loaded
and executed together. Symbolic linkages between
programs are created by means of symbols defined in one
program and used as operands in another program. Such

2-14

symbols are termed linkage symbols. A linkage symbol is
called a defined entry point symbol in the program in
which it is defined; it is a referenced external symbol in the
program in which it is used as an operand.

Every linkage symbol must be properly identified as such in
the source program. A linkage symbol used as an external
symbol is identified in each using program by the REF
directive. A linkage symbol used as an entry point must be
identified in the defining program by the DEF directive.

NAME OPERATION OPERAND

DEF A list of symbols

The relocatable symbols (separated by commas) in the
operand field are defined elsewhere in the program and may
be used as an entry point by other programs. A symbol that
is not defined in the program is flagged in the listing as an
error.

In the following sequence, SQRT IS identified as an
entry-point symbol.

SUBRO

SQRT

BSS
DEF

STA

10
SQRT

SAVE

2-8.7 REF. The REF directive i~entifies a linkage symbol
as an external symbol that is referenced in this program.
Each such external symbol must be identified in a REF
directive. The format of the REF statement is:

NAME OPERATION

REF

OPERAND

A list of external

symbols

The external symbols (separated by commas) in the
operand field must be defined in another program and
identified in that program as an entry-point symbol by the
DEF directive.

As an example, if MTPL Y is an entry point symbol in
another program, the using program identifies it as an
external symbol, thus:

REF MTPLY

The only wayan external symbol may be referenced is as a
full 16-bit address. The external symbol may not be used in

an arithmetic calculation. In particular use of MTPL Y+2 is
an example of illegal usage. To link to a program named
SINE, the following coding might be used:

PROGA

ADSINE

BSS
REF

@BRL

Use of SINE-2 would be illegal.

2
SINE

SINE

2-8.8 IDT. The symbol appearing in the operand field is
reproduced in the object program as the program name
section (Refer to paragraph 2-9).

2-8.9 HED. The remaining characters in the line are printed
as page headings on the output listing. The first HED is
used as the heading of the page on which it appears and
subsequent pages until another HED is encountered.
Subsequent HED's appear as page headings on the first page
following the one on which the HED appears and
subsequent pages until another HED is encountered.

2-8.10 PE]. The remainder of the current listing page is
ejected. The assembler begins a new page headed by the
current HED. The PEl itself will be printed as the first line
on the new page.

2-8.11 LIS. Print the assembly listing. If it is desired to
produce a complete listing, no LIS directive is required.

2-8.12 UNL. Suppress assembly listing except for error
conditions and symbol table. Listing can be resumed by a
LIS directive.

2-8.13 EQU. The EQU directive is used to define a symbol
by assigning to it the value of an expression in the operand
field. The format of the EQU instruction statement is:

NAME OPERATION OPERAND

SYMBOL EQU EXPRESSION

The symbol in the name field is given the same value as the
expression. The expres~ion in the operand field can be
relocatable or absolute, and the symbol will be similarly
defined. Any symbols in the expression must be previously
defined.

If the expression in the operand field or the symbol in the
name field, or both, are invalid, or are not present, the EQU
statement will be flagged as in error in the listing and will
not be used.

The EQU directive is the usual way of equating symbols to
register numbers, input/output unit numbers, immediate
data, actual addresses, and other arbitrary values. The
examples below illustrate how this might be done:

2-15

REGX
10125
TEST
TIMER

EQU
EQU
EQU
EQU

2
125
>3F
80

REGISTER X
INPUT /OUTPUT DATA
IMMEDIATE DATA
ACTUAL ADDRESS

To reduce programming time, the programmer can equate
symbols to frequently used compound expressions and then
use the symbols as operands in place of the expressions.
Thus, in the statement

FIELD EQU ALPHA-BETA+GAMMA

FIELD will be defined as ALPHA-BETA+GAMMA and may
be used in place of it. Note, however, that ALPHA, BETA,
and GAMMA must all be previously defined.

2-8.14 FRM. Assign the label as an operation code. The
operand field is of the form El,E2,oo.,En, where the E
expression values are positive and the sum is 16. When the
label is used as an op code, n fields are evaluated, truncated
to the length specified by the corresponding En and placed
in the output word.

Example: 1006 PDQ FRM 3,4,1,8
OAOB 32A7 1007 PDQ 1,9" >A7

2-8.15 IF. The assembly process is altered in accordance
with the results of a conditional test. The operand field
consists of two expressions and an optional symbol. The
two expressions are evaluated and compared. If they are
not equal, the assembly process continues with the next
line. If the values are equal, the assembly process is
suspended. If only two expressions are contained in the
operand field, assembly is suspended for one line. If three
expressions occur, the third is a label following the IF
statement. The assembly process is suspended until the
input line is detected with this symbol in its name field.

All lines suspended from the assembly process are treated as
comments; i.e., they are printed but no code is generated.
Two or more IF statements may have overlapping ranges.

This directive allows assembly-time modification of a
program.

2-8.16 END. The END directive terminates the assembly of
a program. It also supplies a point in the program to which
control is transferred after the program is loaded.

The END directive must always be the last statement in the
source program.

The format of the END directive statement is:

NAME OPERATION OPERAND

END An expression or blank.

The expression in the operand field specifies the point to
which control is transferred when loading is complete. If
the operand field is invalid, the statement will be flagged as
a possible error. If the operand field is blank, the first word
of the program is taken as the point for transfer of control.

The point to which control usually is transferred is the first
instruction in the program, as shown in this sequence:

NAME

AREA
BEGIN

OPERATION

ORG
BSS
LDA

END

OPERAND

2000
50
=3

BEGIN

When several object programs are joined by link editing one
will be specified as the main program. Its transfer point is
taken as the transfer point for the link edited program.

2-8.17 OPD. The label is assigned as an operation code
mnemonic. The first item in the operand field is evaluated
as a 16-bit number and stored as the corresponding
operation code. The second item in the operand field
indicates the format type for the object instruction. When
this label appears as an operation code mnemonic, it is
assembled in the appropriate format with the assigned
operation code and output in the object program. Any
defined operation takes precedence over the standard
symbolic operation codes. Format type codes are as
follows:

SPACE - Register to Memory (RM)
0- Register to Memory (RM)
1 - Register to Memory (RM)
2 - Register to Register (RR)
3 - Shift (S)
4 - Register Skip (RS)
5 - Status Indicator Skip (SS)
6 - Data Bus Input/Output (DB)
7 - Sense Switch Skip (SX)
8 - Direct Memory Access Channel (DM)

The final merging of the operation code and the operand
fields is performed using a logical or. Thus the operation
code may be used to force setting of any bit to one.

EXAMPLE
OAOC 9AFF

1009 XYZ OPD >9800,1
1010 JOE XYZ JOE,2 COMMENT

2-8.18 COMM. COMM directs allocation to common
storage of the number of words indicated by the value of
the expression in the operand field. If a label appears, it is

assigned a value corresponding to the first word of the
block.

Common storage is an area of memory the location of
which is not known until load time. The area is common
because separately assembled programs may share the same
common storage. Unlike the BSS directive, COMM does not
reserve area at the current location counter position.

COMM is used in a manner similar to FORTRAN
COMMON. If a FORTRAN program and assembly language
program are merged via link edit, any references in the
FORTRAN program to blank COMMON and references in
the assembly language program to COMM defined storage
will be references to the same area of memory. In many
applications this simplifies communications between the
two programs.

2-9 OBJECT FORMATS.
The object program may be produced on either paper tape
or cards or output in the paper tape format on disc.

2-9.1 OBJECT PAPER TAPE FORMATS. The object
paper tape format is shown in Table 2-5.

All data on the object tape are punched as 16-bit words:
four frames per word. The four low order channels of each
frame contain one hexadecimal digit. Channel 5 is punched
to produce an odd parity tape. Channels 6, 7, and 8 are
always blank. The following table contains the hexadecimal
digits and the hexadecimal codes corresponding to the eight
channels on the tape.

Program Object Program Object
Hex Digit Hex Code Hex Digit Hex Code

0 10 8 08
1 01 9 19
2 02 A 1A
3 13 B OB
4 04 C 1C
5 15 D OD
6 16 E OE
7 07 F IF

For an assembler generated object tape, the program name
is the name specified in the IDT assembly directive. Names
less than six characters will have trailing blanks. If the IDT
directive is not present, the name will consist of six blanks.

The format code specifies an absolute or relocatable
assembly. Any assembly which contains an ORG statement
with an absolute value in the operand field will be
assembled as absolute. Otherwise, the assembly is
relocatable. The format codes are 3 for absolute object and
5 for relocatable object. For absolute programs the program
length is defined to be the highest numbered core location
to be filled plus one.

Assembler generated object tapes will have no common
reference or one common reference, depending upon
whether the COMM assembler directive is used in the
program. If a common reference exists, it is identified by

2-16

the symbol ~ BLANK, where ~ represents an ASCII blank.

Check sums are the negative of all data preceding the check
sum and following the last check sum (or start of the tape).
Thus, the sum of all data after one check sum up to and
including the next check sum is always zero.

The stop code is the hexadecimal word 0030. When reading
the tape with the teletypewriter reader, the reader will stop
after reading this code.

A relocation block consists of a relocation word followed
by up to sixteen text words. Relocation blocks are
repeated, as required, to give the number of program words
in the load block word count.

Successive load blocks appear until the end of the program.
This is indicated by a dummy load block starting with a
zero word count. The following word (four frames) is taken
as the transfer location, or execution entry point.

The relocation properties of each word are specified by two
bits of the relocation word which precedes the program
text words in a relocation block. The high order two bits of
the relocation word correspond to the first one or two of
the following program words, etc. The two bits specify
relocation as follows.

Relocation
Bits

00
01
10
11

Meaning

Absolute - no relocation
Common Relocatable
Program Relocatable
External Reference

Listing
Identifier

Blank
C
P
X

At load time, relocatable items will be modified by addition
of the program base as required. External and common
references must be satisfied by the Link Editor. External
references which have not been resolved via link edit are
treated as absolute data by the loader.

Each relocation block may contain up to 16 words of data
determined as follows: for each external and common data
item, two words are contained in the relocation block. For
each absolute and program relocatable data item one word
is contained in the relocation block.

Each external and common data item determines only one
word of the object program even though two words are
required on the object tape to describe the data item. The
two words are as follows:

WORD 1
Common - reference number of common area
External - reference number of external variable

WORD 2
Common - displacement within that area
External - displacement from the external variable

2-9.2 OBJECT CARD DECK FORMAT. The object card
deck format is shown in table 2-6. For object card output
the format codes used are 0 - absolute, 1 - relocatable.

2-17

The group 2 and group 3 cards (if any) are required when
using object cards as input to the link editor. They must
not be present when object cards are read by the card
reader loader.

Successive load blocks will appear until the end of the
program. A maximum of 16 program words per card exists.
Fewer words are possible and will be designated by blank
columns.

The last card contains four special punches (12-punch) in
the load address field. The next four characters of that card
(cc.5-8) will be the transfer location in coded hex.

In the case of common and external data in the relocation
blocks only one word appears. That word is the
displacement into blank common (for common data) or
reference number of the external variable (for external
data).

2-10 LISTING DIAGNOSTICS FOR SAP-I.
The various versions of the assembler may detect certain
syntax errors in the source program. When this occurs, a
diagnostic comment will appear in the listing produced by
SAP-I. Listed below are the phrases which may appear
adjacent to the line, in the listing, which contains the error
indicated. These phrases apply only to those versions of
SAP-I which operate in the Model 980 Computer. The IBM
System/360 SAP-I produces error phrases which are slightly
different, and are given in paragraph 2-12.

Comment Meaning

UNDFOP Undefined Operation Code

LONG SYM Symbol> 6 Characters

MDFO/F OPD or FRM Multiply defined

FRM> 16 FRM Fields contain more than 16 Bits

CAD> 10 Address Expression has >10 Elements

UNDFSYM Symbol Not Defined

MDF SYM Symbol Multiply Defined

RELOC A relocation error

SYMOVF Too Many Symbols Have Been Defined

BADNUM Numeric Element Not Valid

NO END No END Assembler Directive Found

LN>n Paper Tape Source Line is too Long

IMP RID A REF or DEF Symbol Has Been Used
Improperly

X RF USE A REF Symbol Has Appeared Invalidly In
An Unrelocatable Expression

FIELD SZ Address Beyond Reach

IXB ERR Address Made Error

OPDERR No Such Format Number

H
E
A
D
E
R

C
0 R
M E
M F
0 S
N

E P

N 0

T I

R N

Y T
S

E
X
T

R
E

E
E

R
F

N
S

A
L

L
0
A
D

B
L
0
C
K

1

L B
L 0
0 A

D C
K

B
E L
N 0
D C

K

TABLE 2-5

OBJECT FORMAT

PROGRAM NAME

PROGRAM - LENGTH IN WORDS

FORMAT CODE

COMMON COUNT

ENTRY POINT COUNT

EXTERNAL REFERENCE COUNT

STOP CODE

COMMON SYMBOL 1

COMMON LENGTH 1

COMMON SYMBOL 2

COMMON LENGTH 2

STOP CODE

ENTRY POINT SYMBOL 1

ENTRY POINT ADDRESS 1

ENTRY POINT SYMBOL 2

ENTRY POINT ADDRESS 2

STOP CODE

EXTERNAL REFERENCE SYMBOL 1

ZERO

EXTERNAL REFERENCE SYMBOL 2

ZERO

:

CHECKSUM

STOP CODE

WORD COUNT

LOAD ADDRESS

RELOCATION WORD

UP TO 16 TEXT WORDS

CHECKSUM

STOP CODE

RELOCATION WORD

UP TO 16 TEXT WORDS

CHECKSUM

STOP CODE

WORD COUNT

LOAD ADDRESS

ZERO

ENTRY ADDRESS

CHECKSUM

STOP CODE

2-18

12 Frames

4 Frames

4 Frames

4 Frames

4 Frames

4 Frames

4 Frames

12 Frames

4 Frame

12 Frames

4 Frames

4 Frames

12 Frames

4 Frames

12 Frames

4 Frames

4 Frames

12 Frames

4 Frames

12 Frames

4 Frames

4 Frames

4 Frames

4 Frames

4 Frames

4 Frames

4 Frames Each

4 Frames

4 Frames

4 Frames

4 Frames Each

4 Frames

4 Frames

4 Frames

4 Frames

4 Frames

4 Frames

4 Frames

4 Frames

Group 1

Group 2

Group 3

Group 4

TABLE 2-6

OBJECT CARD DECK FORMAT

Card Column

1-6

7

8-11

12-15

16-18

19-21

77-80

1-6

7-10

77-80

1-6

77-80

1-4

5-8

9-40

41-44

45-76

77-80

IDENTIFICATION & CONTROL

Program Name

Format Code

Program Length (coded Hex)

Common Length (coded Hex)

Entry Point Count (Decimal)

External Reference Count (Decimal)

Card Number (Decimal)

ENTRY POINT

Entry Point Symboll

Entry Point Value ~
(repeated as per Entry
Point Count).
Maximum 7 per card.
Columns 1-70.

Card Number

EXTERNAL REFERENCE

External Reference Symbol (repeated 12 to
a card (Column 1-72) as per count).

Card Number

LOADBLQCK

Load Address (coded Hex)

Relocation Word (coded Hex)

Eight Program Words @four columns each
(coded Hex)

Relocation Word (coded Hex)

Eight Program Words @four columns each
(coded Hex)

Card Number

2-19

2-11 SAP-I OPERATING PROCEDURES.
There are several versions of SAP-I, depending on
equipment configuration and the operating system. The
version which operates on an IBM System/360 is
documented separately in paragraph 2-12. When SAP-I is
run under control of RTM-I and either SPEX or BATCH,
the operating procedures are as given in Sections V and VI.

The operating sequences given here apply to the versions of
SAP-I which operate on a Model 980 Computer and are not
supported by RTM-I. The following versions are available:

Source Listing Object
Device Device Device

TTY orTI780
H.S.Reader
Card Reader
H.S.Reader
Card Reader

TTY orTInO
TTY orTinO
TTY orTinO
Line Printer
Line Printer

TTY or TI780
H.S.Punch
H.S.Punch
H.S.Punch
H.S.Punch

OPERATION:

a. Load program

b.

c.

d.

e.

Results: Program is ready for execution.

Push RESET button and then push the RUN
button.

Results: A message is printed on the
teletypewriter as follows: READY ASSEMBLY
SOURCE AND HIT RUN.

Ready the source and push the RUN button.

Results: The first pass is made. First pass errors,
if any, are printed followed by a repeat of the
above teletypewriter message.

Repeat step c until all source has been input to
the first pass.

Results: The assembler is ready for the second
pass. The same message is printed on the
teletypewriter, and the object media will be
turned on.

Repeat steps c and d for second pass of
assembly.

Results: During this pass an assembled listing is
printed and the object is punched. Assembly is
completed. The same message is printed on the
teletypewriter and the assembler is ready for
the next assembly.

NOTE
Sense Switch 2, if on, will suppress the
listing. Sense Switch 3, if on, will
suppress object generation.

NOTE
All assembly source paper tapes should
either have an equal (=) sign as the first
character of a terminating line meaning
there are more physical source reels of
tape, or an END statement as the last
line. If the above is not the case, the
assembler will treat blank tape as an END
statement, and cause the pass to come to
an end, and print a NO END error
message.

2-12 MODEL 980 SAP-ION IBM SYSTEM/360.
TI980SIM is an IBM System/360 program to perform the
functions of the Symbolic Assembly Program (SAP-I) of
the Model 980 Computer. This assembler is written COBOL
and operates on an IBM System/360 with a minimum
configuration of:

65K bytes core memory for background
Card Reader
Card Punch
One Magnetic Tape
Printer

Input to TI980SIM is SAP-I source language statements on
punched cards, one statement per card. Several such source
programs may be batched in one assembly run with no IBM
System/360 operator intervention or requirement for]CL
between assemblies.

Output of TI980SIM consists of an assembly listing of the
program, and a punched card object deck. Although the
input is free form, the symbolic output will appear in fixed
form with the label beginning in position 1, operation code
in position 8, and operand field in position 13.

2-12.1 ERROR DIAGNOSTICS. Error diagnostics
produced by TI 980 SIM consist of short descriptive
phrases printed on the assembly listing immediately
preceding the line containing the error. The messages,
shown below, are self-explanatory.

2-20

UNDEFINED REFERENCE
ADDRESS ERROR
DUPLICATE TAG
FORMAT ERROR
ILLEGAL OP CODE
EXPRESSION ERROR
SYNTAX ERROR

MODE ERROR
NO ENTRY POINT VALUE
SHIFT COUNT ERROR
REGISTER NO. ERROR
ILLEGAL 1/0 DEVICE
ILLEGAL SENSE SWITCH

In addition to the above, there are two errors that, if
encountered, will terminate the assembly process for the
current program. The messages SYMBOL TBL OVFLO and
WORD TBL OVFLO will be typed upon the system
console. In the one case the symbol table has exceeded the
maximum, and in the other case either the external
reference table or the entry point table has been filled. In
both cases the assembly process is terminated for the
current source program and will continue with the next
assembly in the batch stream (if any).

2-12.2 TABLE SIZES.

a. Symbol Table
Holds all symbols encountered in the label field
of the program, the address at which they were
found, and a code as to their attribute (such as
a ICI for a label in a Common statement). Size
is 512 symbols.

b. External Reference Table

c.

d.

Holds all external labels and their ordinal value,
as defined by REF directives. Size is 32 entries.

Entry Point Table
Holds all labels described as being entry points
into the program by DEF directives. Size is 32
entries.

FORMAT Structure Table (Format-Statement)
Holds the label (maximum of four characters)
described as a future op code by an OPD or
FRM directive. Size is 32 entries.

2-12.3 LOADING AND OPERATION. To load and
operate TI980SIM, specific job control cards must be
prepared. Tables 2-7, 2-8 and 2-9 demonstrate ways in
which the user might wish to perform the operation on a
DOS system. Regardless of the method used, the following
must be taken into consideration. The 1/0 devices have
been given definite assignments. The Card Reader has been
assigned to 'SYS0041, the Tape has been assigned to
ISYS0101, the Card Punch has been assigned to ISYS006 1,
and the Printer has been assigned to ISYS007 1. If these
assignments are not standard on the system on which
TI980SIM is being run, II ASSGN cards must be prepared
for the job control stream.

2-21

TABLE 2-7

TO GO FROM OBJECT DECK

/I JOB Jobname
/I ASSGN SYS010,X 12801

/I ASSGN SYS006,X1006 1

/I ASSGN SYS007,X10041
/I ASSGN SYS004,X10021
II OPTION LINK

1*

INCLUDE
(IBM System/360 COBOL Object

Deck ofTI980SIM)

II EXEC LNKEDT
/I EXEC

(980 Source Deck(s))
1*
1&

TABLE 2-8

TO CATALOG THE OBJECT DECK
INTO THE IBM SYSTEM/360

/I JOB Jobname
/I OPTION CATAL

PHASE TI980SIM, *
INCLUDE

1*

(IBM System/360 Object Deck
of TI980SIM)

I I EXEC LNKEDT
1&

TABLE 2-9

TO GO FROM A CATALOGUED VERSION

II Job Jobname
II ASSGN SYS010,X1280 1

II ASSGN SYS006,X1006 1
II ASSGN SYS007,X10041
II ASSGN SYS004,X 10021
I I EXEC TI980SIM

(980 Source Deck(s))
1*
1&

SECTION III

FORTRAN LANGUAGE PROGRAMMING

SECTION III

FORTRAN LANGUAGE PROGRAMMING

3-1 INTRODUCTION.
FORTRAN (FORmula TRANslation) is a language that
closely resembles the language of mathematics; it is
designed primarily for scientific and engineering
computations. Since the language is problem-oriented
rather than machine-oriented, it provides scientists and
engineers with a way to communicate with a computer.
FORTRAN is more familiar, easier to learn, and easier to
use than assembly language for those problems for which it
is suited.

A FORTRAN program IS written as a sequence of
statements.

ARITHMETIC statements which specify numerical or
logical calculations.

CONTROL statements which specify the flow of
control in the program.

INPUT -OUTPUT statements which govern the
transmission of data between computer memory and
various input-output units.

DECLARATION statements which supply descriptive
information about the program.

3-2 PROGRAM PREPARATION.
The statements of a FORTRAN program are written on a
coding form. Each statement is written on a separate line. If
more than one line is required for a statement, as many as
nineteen continuation lines may be used. Each line of the
coding form is divided into 72 columns, each of which may
contain one character. Each line is punched in paper tape
followed by the line terminating characters (carriage return,
reader off, rub-out and line feed).

Columns 1 through 5 of the first line of a statement may be
used for the statement number. Statement numbers serve as
statement identifiers for cross references.

The statement number consists of 1-5 digits of any value.
Leading zeros are ignored, however, zero may not be a
statement number. Statement numbers may appear
anywhere in the statement number field but must not
contain any non-numeric characters. The statement
numbers may be assigned in any order; the sequence of
operations is always dependent upon the order of the
statements in the program, not on the value of the
statement numbers.

Superfluous statement numbers may decrease efficiency

3-1

during compilation and should, therefore, be avoided.

A non-zero, non-blank character in column 6 indicates that
the line is a continuation line.

The statement proper is written in columns 7 through 72 of
the initial and continuation lines. Excepting certain
alphanumeric fields, blanks are ignored in these columns
and may be used freely to aid readability.

Columns 73-80 are not used by the FORTRAN Compiler
and may, therefore, be used for program identification,
sequencing, or any other purpose.

Comments to explain the program may be written m
columns 2-72 of a line if the character C is placed in
column 1. Comments may appear anywhere except before a
continuation line or after an END statement. The
comments are not processed by the FORTRAN Compiler.

Every program must physically terminate with an END line.

A FORTRAN program is written using the following
characters: A, B, C, D, E, F, G, H, I, J, K, L, M, N, 0, P, Q,
R, S, T, U, V, W, X, Y, Z, 0,1,2,3,4,5,6,7,8,9, and:

Character

+

*

$

Name of Character

Blank
Equals
Plus
Minus
Asterisk
Slash
Left Parenthesis
Right Parenthesis
Comma
Decimal Point
Currency Symbol

3-3 ARITHMETIC AND DATA.
In Model 980 FORTRAN both numerical and logical
arithmetic are available to the programmer. The meaning
and use of six distinct types of data (integer, real, double
precision, complex, logical, and Hollerith) are described in
the following paragraphs.

3-3.1 NUMERICAL ARITHMETIC.

BASIC ELEMENTS. There are three basic elements used in
Model 980 FORTRAN numerical arithmetic: constants,

variables, and function references. All of these basic
elements represent numerical quantities. There are four
distinct types of numerical quantities: integer, real, double
precision, and complex.

Integer quantities are used to represent the integers. They
are represented in the machine in binary integer form and
occupy one word.

Real quantities are used to represent the real numbers.
They are represented in the machine in binary floating
point form and occupy two words.

Double precision quantities represent the real numbers to
greater precision than real quantities. Double precision
quantities occupy three words.

Complex quantities represent the complex numbers. They
consist of an ordered pair of real numbers representing
respectively the real and imaginary parts of the complex
number. Complex quantities occupy four words ordered
thus:

Real part (two words)
Imaginary part (two words)

INTEGER CONSTANTS. An integer constant is a number
written without a decimal point. An integer constant may
have any value in the range -32767 (_2 15 +1) to 32767
(2 1S _1), including zero.

Commas are not permitted within integer constants. A
preceding plus sign is optional for positive numbers. Any
unsigned constant is assumed to be positive.

The following examples are valid integer constants:

o
91
-173
+327

The following are not valid integer constants:

3.2 (contains a decimal point)
27. (contains a decimal point)
31459036 (exceeds the magnitude permitted by the
compiler)
5,496 (contains a comma)

REAL CONSTANTS. A real constant is a number written
with a decimal point and consisting of 1-6 significant
decimal digits.

3-2

Single precision (real) constants provide up to 23 significant
bits of precision (six significant digits) stored in memory as
showrJ below:

1st WORD 15 MOST SIGNIFICANT BITS OF MANTISSA

15

2nd WORD 8 LEAST SIGNIFICANT
BITS OF MANTISSA CHARACTERISTIC

7 8 15

The magnitude of a real constant must not be greater than
2127 nor less than T I28 (approximately 1038 and 10--39)

except that it may be zero.

A real constant may be followed by a decimal exponent
written as the letter E followed by an integer constant
(signed or unsigned) indicating the power of 10.

The following examples are valid real constants:

105.
3.14159
5.E3
5.0E3
-5.0E03
5.0E-3
5.0E1
5E3

(5.0x103)
(5.0 x 103)
(-5.0 x 103)
(5.0 x 10-3

)

(5.0 x 10)
(5.xl03)

The decimal point may be omitted when using E notation.

The following are not valid real constants:

325

5.0E

(no decimal
however, this is
integer constant)
(no exponent)

point;
a valid

DOUBLE PRECISION CONSTANTS. Double precision
constants provide up to 30 significant bits of precision (9
significant decimal digits) stored in core storage as shown
below:

1st WORD S MANTISSA

o 15

2nd WORD S MANTISSA

o 15

3rd WORD ALL ZERO'S CHARACTERISTIC

o 7 8 15

Double precislOn constants are written the same as real
constants except that the scale factor is specified by using a
D instead of an E. The scale factor must be present.

Examples:

lD-15
2.718281828 DO

COMPLEX CONSTANTS. Complex constants are written
as an ordered pair of real constants separated by a comma
and enclosed in parentheses.

Examples:

(.70712,-.70712)
(-2E3,3E-5)

The first constant of the pair represents the real part of the
complex number, and the second constant represents the
imaginary part. The real and imaginary parts may each be
signed. The enclosing parentheses are part of the constant
and always appear, regardless of context.

VARIABLES. A FORTRAN variable is a symbolic
representation of a quantity that may assume different
values. The value of a variable may change either for
different executions of a program or at different stages
within the program. For example, in the statement:

A = 5.0+ B

both A and B are variables. The value of B is determined by
some previous statement and may change from time to
time. The value of A varies whenever this computation is
performed with a new value for B.

VARIABLE NAMES. A variable name consists of one or
more alphanumeric characters, excluding special characters,
the first of which must be alphabetic. Blanks in a variable
name will be ignored by the compiler. The string may be of
any length but only the first 6 characters are used.

3-3

Examples:

X15
PERMUTATION
STRAIN

The rules for naming variables allow for extensive
selectivity. In general, it is easier to follow the flow of a
program if meaningful symbols are used wherever possible.
For example, to compute distance it would be possible to
use the statement:

X = Y*Z (Asterisk denotes multiplication)

but it would be more meaningful to write:

D=R*T

or:

DIST = RATE*TIME

Similarly, if the computation were to be performed using
integers, it would be possible to write:

1= J*K

but it would be more meaningful to write:

ID = IR*IT

or

IDIST = IRATE*ITIME

In other words, variables can often be written in a
meaningful manner by using an initial character to indicate
whether the variable represents an integer or real value and
by using succeeding characters as an aid to the user's
memory.

VARIABLE TYPES. The type of a variable corresponds to
the type of data the variable represents (i.e., integer, real
double precision, or complex). Variables can be specified in
two ways: implicitly or explicitly.

IMPLICIT SPECIFICATION. Implicit specification of a
variable is made as follows:

a.

b.

If the first character of the variable name is I, J,
K, L, M, or N, the variable is an integer variable.

If the first character of the variable name is not
I, J, K, L, M, or N, the variable is a real variable.

EXPLICIT SPECIFICATION. Explicit specification of a
variable type is made by using the Type statement (see
Paragraph 3-6.2). The explicit specification overrides the
implicit specification. For example, if a variable name is
ITEM and a Type specification statement indicates that this
variable is real, the variable is handled as a real variable,
even though its initial letter is I.

SUBSCRIPTED VARIABLES. A subscripted variable
represents a single element of an array of quantities. The
variable is denoted by the array name followed by a
subscript list enclosed in parentheses. The subscript list is a
sequence of integer expressions separated by commas. Each
expression corresponds to a subscript and the values of the
expressions determine which element of the array is
referenced. The value of a subscript must lie within the
limits specified for the array. The number of subscripts
must equal the dimension specified for the array. Arrays
may have any number of dimensions.

Examples:

Y(1)
STATION (K)
Q(LINE(N,X)+RH,N)

ARRAYS AND SUBSCRIPTS. An array is an ordered set of
data that is referred to by a single name. Each individual
element in the set is referred to in terms of its position in
the set. For example, assume that the following is an array
named NEXT:

15
12
18
42
19

To refer to the second element in the group in ordinary
mathematical notation, the form NEXT 2 would be used. In
FORTRAN the form would be NEXT(2). The quantity 2 is
called a subscript. Thus, NEXT(2) has the value 12 and
NEXT(4) has the value 42.

Similarly, an ordinary mathematical notation might use
NEXTi to represent any element of the array NEXT. In
FORTRAN, this is written as NEXT(I) where I equals 1, 2,
3,4, or 5.

The array could be two dimensional. For example, assume
the following is the array LIST:

3-4

ROW1
ROW2
ROW 3
ROW4
ROWS

COLUMN 1

82
12
91
24

2

COLUMN 2 COLUMN3

4 7
13 14

1 31
16 10

8 2

To refer to the number in row 2, column 3, LIST2,3 would
be used in ordinary mathematical notation. In FORTRAN,
the form LIST(2,3) would be used where 2 and 3 are the
subscripts. Thus, LIST(2,3) has the value 14 and LIST(4,1)
has the value 24.

Ordinary mathematical notation uses LISTi,j to represent
any element of the two-dimensional array LIST. In
FORTRAN, this is written as LIST(I,J) where I equals 1, 2,
3, 4, or 5, and J equals 1, 2, or 3. This indexing convention
extends in a similar manner for any number of dimensions.

FUNCTION REFERENCE. A numerical function is a
subprogram which acts upon one or more quantities called
arguments, and produces a single numerical quantity called
the function value. Function references are denoted by the
identifier which names the function followed by an
argument list enclosed in parentheses:

iden tifier (argument ,argumen t, ... argument)

At least one argument must be present. An argument may
be an expression, an array identifier, or a subprogram
identifier.

A function reference represents a quantity, namely the
function value, and acts as a basic element. The type of the
function value is given by the type of the identifier which
names the function.

The type of the function is independent of the types of its
arguments.

Examples:

COS (THETA)
ZETA (S+SQRT(S))

3-3.2 ARITHMETIC EXPRESSIONS. An arithmetic
expression is a sequence of basic elements separated by
numerical operators and parentheses in accordance with
mathematical convention and the rules given below. An
arithmetic expression has a single numerical value, namely,

the result of the calculations specified by the quantities and
operators comprising the expression.

The numerical operators are +, -, *, /, **, denoting,
respectively, addition or unary plus, subtraction or unary
minus, multiplication, division, and exponentiation.

An expression may consist of a single element (constant,
variable, or function reference):

2.71828
Z(N)
TAN (THETA)

Compound expressions may be formed by using operators
to combine basic elements:

X+3
TOTAL/POINTS
TAN (PI*M)

Any expression may be enclosed ill parentheses and
considered to be a basic element:

(X+Y)/2
(ZETA)
COS (SIN(PI*M)+X)

Expressions may be preceded by a + or - (unary plus or
unary min us) :

+X
-(ALPHA*BETA)
-SQRT (-GAMMA)

However, no two operators may appear in sequence. For
instance:

X*-Y

is improper. Use of parentheses yields the correct form:

X*(-Y)

If the precedence of operations is not given explicitly by
parentheses, it is understood to be the following (in order
of decreasing precedence):

Operator

**
* and /
+ and-

Operation

Unary minus
Numerical exponentiation
Numerical multiplication and division
Numerical addition and subtraction

3-5

For example the expression

A*B+C/D**E

is taken to be

(A *B)+(C/(D**E))

Sequences of operations of equal precedence can result in
ambiguous expressions such as:

A**B**C
X/VIZ

In Model 980 FORTRAN such ambiguous sequences are
understood to be grouped from the left. For instance, the
two sequences above are interpreted:

(A**B)**C
(X/Y)/Z

NOTE
Parentheses may not be used to imply
multiplication. The asterisk arithmetic
operator must always be used for this
purpose. Therefore, the algebraic
expression:

(AxB) (-CD)
must be written as:

(A*B) * (-C**D)

EVALUATION OF ARITHMETIC EXPRESSIONS. The
value of an arithmetic expression may be of integer, real,
double precision, or complex type. The type of the
expression is determined by the types of its elements
according to the rules which follow.

The numerical types are ranked as follows:

Rank

1
2
3
4

Type

Integer
Real
Double Precision
Complex

The type of an expression is the type of the highest ranking
element in the expression. The type of a subscripted
expression is determined solely by the type of the variable.

An expression is evaluated by converting all elements to the
expression type and performing all arithmetic according to
this type. For example, an expression containing integer
and complex elements is evaluated by converting all integer
elements to complex elements and performing complex
arithmetic throughout.

An integer expression is evaluated using binary integer
arithmetic throughout, giving an integer value as the result.
In integer arithmetic fractional parts arising in division are
truncated, not rounded. For example:

7/3 yields 2; 6/7 yields o.

In exponentiation (**), the types of the base and exponent
are restricted as follows:

a. Complex exponents are not allowed.

b. Only integer exponents may be used with
complex bases.

3-3.3 LOGICAL ARITHMETIC.

BASIC ELEMENTS. There are four basic elements used in
Model 980 FORTRAN logical arithmetic: constants,
variables, functional references, and relations. All of these
basic elements represent logical quantities, the fifth type of
arithmetic quantity.

A logical quantity may have either of two values; true or
false. Logical quantities occupy only one word.

LOGICAL CONSTANTS. There are two logical constants
written thus:

.TRUE.

. FALSE.

representing the values true and false, respectively. The
enclosing periods are part of the constant and always
appear, regardless of context.

LOGICAL IDENTIFIERS. Logical identifiers are written in
the same way as numerical identifiers. They must be
explicitly declared to be of logical type.

LOGICAL VARIABLES. Logical variables are written in
the same way as numerical variables. The identifiers used to
name the variables must be logical identifiers.

LOGICAL FUNCTION REFERENCES. References to
logical functions are written in the same way as references
to numerical functions. The identifier used to name the
function must be a logical identifier. The function
arguments may be expressions (logical or numerical), array
identifiers, or subprogram identifiers.

3-6

RELATIONS. Relations are constructed from numerical
expressions of integer, real, or double precision type
through use of relational operators. The relational operators
are:

Operator

.GT.

.GE.
.LT.
.LE.
.EQ.
.NE.

Relation

greater than
greater than or equal to
less than
less than or equal to
equal to
not equal to

The enclosing periods are part of the operator and must be
present.

Two expressions of integer, real, or double precision type
separated by a relational operator form a relation. For
example:

X+2.LE.3*Y

is a relation. The entire relation constitutes a basic logical
element.

The value of such an element is true if the relation
expressed is true; otherwise, the value is false. In the
example above, the element has the value true if X is 2 and
Y is 2, and the value false if X is 2 and Y is 1.

Relational operators have lower precedence than arithmetic
operators .

FORMATION OF LOGICAL EXPRESSIONS. A logical
expression is a sequence of logical elements separated by
logical operators and parentheses in accordance with the
rules given below. A logical expression has a single value,
true or false. This value is the result of the calculations
specified by the quantities and operators comprising the
expression.

The logical operators are .NOT., .AND., and .OR. denoting
respectively logical negation, logical multiplication, and
logical addition. The enclosing periods are part of the
operators and must be present. The logical operators are
defined as follows (where P and Q are logical expressions):

.NOT.P

P.AND.Q

P.OR.Q

true if P is false
false if P is true

true if P and Q are both true,
otherwise false

false if P and Q are both false,
otherwise true

A logical expression may consist of a single logical element.
For example:

.TRUE.
BOOL (N)
X.GE.3.14159

Single elements may be combined through use of the logical
operators .AND. and .OR. to form compound expressions,
such as:

TVAL.AND.INDEX
BOOL (M).OR.K.EQ.LIMIT

Any logical .expression may be enclosed in parentheses and
regarded as an element:

(T.OR.S).AND.(R.OR.Q)
(BOOL(M))
PARITY((2.GT.Y.OR.X.GE.Y).AND.NEVER)

Any logical expression may be preceded by the operator
.NOT. as in:

.NOT.T

. NOT.X+7.GT.Y+Z
BOOL(K).AND .. NOT.(TVAL.OR.R)

When the precedence of operations is not given by
parentheses, it is understood to be the following (in
decreasing order of precedence):

Operator

.NOT.

.AND.
.OR.

Thus the expression

Operation

logical negation
logical multiplication
logical addition

T.AND .. NOT.S.OR .. NOT.P.AND.R

is interpreted

(T.AND.(.NOT.S)).OR.((.NOT.P).AND.R)

3-3.4 SUMMARY OF OPERATOR PRECEDENCE. When
the precedence of operators is not given explicitly by
parentheses, it is understood to be as follows (in order of
decreasing precedence):

Operator

**

Operation

negation
exponential

3-7

*,/
+,-
.GT.,.GE.,
.LT.,.LE.,
.EQ.,.NE.
.NOT.
.AND.
.OR.

multiply, divide
add, subtract

relational

logical negation
logical multiply
logical add

any remaining ambiguities are resolved by evaluating
left-to-right.

For example, the logical expression

.NOT.ZETA * *2+ Y*MASS.GT.K-2.0R

.PARITY.AND.X.EQ.Y

is interpreted

(.NOT.(((ZETA**2)+(Y*MASS)).GT.(K-2))).OR
.(PARITY.AND(X.EQ.Y))

3-3.5 ARITHMETIC STATEMENTS. The Arithmetic
statement is similar to a mathematical equation .

General Form:
A=B

where:

A is any variable (subscripted or nonsubscripted), and
B is an arithmetic expression.

In an Arithmetic statement the equal sign means is to be
replaced by rather than is equal to. This distinction is
important; for example, suppose the integer variable I has
the value 3. Then, the statement

I = 1+1

would give I the value 4. This technique enables the
programmer to keep counts and perform other required
operations in the solution of a problem. .

Examples:

Y = 2*Y
P= .TRUE.
X(N) = N*ZETA(ALPHA*M/PI)+(1.0,-1.0)

In evaluating arithmetic statements, the five arithmetic
types are separated into the following sets:

SET

Set 1

Set 2

Set 3

TYPES

integer
real
double precision

complex

logical

Combinations of statement variable type and expression
value type are subject to the following rules:

a. Any assignment between types of the same set
is permitted.

b. No assignment from one set to another set is
allowed.

Thus, for example, the combinations

integer = integer
integer = double precision
double precision = integer

are allowed. But neither

complex = real

nor

real = complex

are permitted.

For permissible combinations the expression value is made
to agree in type with the statement variable before
replacement takes place. For instance, in the statement

THETA = W*/ZETA+E)

if THETA is integer and the expression is real, the
expression value is truncated to an integer before replacing
THETA.

3-3.6 USE OF HOLLERITH DATA. A Hollerith datum is a
string of characters. This string may contain any ASCII
characters and need not be restricted to the FORTRAN
character set defined in 3-2. The blank character is
significant in Hollerith data.

A Hollerith constant is written as an integer n followed by
the letter H followed by n ASCII characters.

A Hollerith constant may be written only in the argument
list of a CALL statement or in a DATA statement. By use
of the DATA statement a variable may be made to carry a

3-8

Hollerith datum. Note that this implies at most 2 characters
may be stored in an integer datum, 4 in a real datum, etc. If
less than the maximum are specified, the characters are left
justified.

3-4 CONTROL.

3-4.1 INTRODUCTION. The second class of FORTRAN
statements is composed of control statements that enable
the programmer to control the course of the program.
Normally, statements are executed sequentially. That is,
after one statement has been executed, the statement
immediately following it is executed. However, it is often
undesirable to proceed in this manner.

3-4.2 UNCONDITIONAL GO TO STATEMENT. This
statement interrupts the sequential execution of
statements, and specifies the number of the next statement
to be performed.

General Form:
GOTOn

where

n is a statement number.

This statement transfers control to the statement numbered
n.

Examples:

GO TO 25
GO TO 63468

The first example causes control to be transferred to the
statement numbered 25; the second example causes control
to be transferred to the statement numbered 63468.

3-4.3 COMPUTED GO TO STATEMENT. This statement
also indicates the statement that is to be executed next.
However, the statement number that the- program is
transferred to can be altered during execution of the
program.

General Form:
GO TO (n" n2, ... , nm), i

where

n" n2, ... , nm are statement numbers and i is a
non-subscripted integer variable whose value is greater than
or equal to 1 and less than or equal to the number of
statement numbers within the parentheses.

This statement causes control to be transferred to
statement n" n2, ... , nm, respectively.

Example:

GO TO (10, 20, 30, 40), ITEM

In this example, if the value of ITEM is 3 at the time of
execution, a transfer occurs to the statement whose number
is third in the series (30). If the value of ITEM is 4, a
transfer occurs to the statement whose number is fourth in
the series (40), etc.

3-4.4 ASSIGN AND ASSIGNED GO TO STATEMENTS.

If the current assignment of the integer variable N is
statement number 8, then the statement numbered 8 is
executed. If the current assignment of N is statement
number 10, then the statement numbered 10 is executed
next. If N is assigned statement number 25, statement 25 is
executed next.

Example 3:

General Form: ASSIGN 10 TO ITEM
ASSIGN i to variable

GO TO variable
GO TO variable, (n\, n2 , n3, ... , nk)

where i is an executable statement number. Variable is a
non-subscripted integer variable.

The second form of the assigned GO TO is allowed for
compatibility with other FORTRAN's only; the labels n\,
... , nk are not used.

This statement transfers control to the statement whose
number was assigned to the variable. The assignment must
take place in a previously executed ASSIGN statement.

The variable is a control variable, having a label as a value,
not a numerical quantity. At the time of execution of an
assigned GO TO statement, the current value of variable
must have been defined by the previous execution of an
ASSIGN statement. The value of the integer variable is not
the integer statement number; ASSIGN 10 TO I is not the
same as I = 10.

Example 1:

ASSIGN 40 TO ERROR

GO TO ERROR

In example 1, control is transferred to the statement
numbered 40.

Example 2:

GO TO N, (10,25,8)

3-9

13 GO TO ITEM, (8,12,25,50,10)

8 A=B+C

10 B = C + D
ASSIGN 25 TO ITEM
GO TO 13

25 C = E**2

In example 3, the first time statement 13 is executed,
control is transferred to statement 10. On the second
execution of statement 13, control is transferred to
statement 25.

3-4.5 ARITHMETIC IF STATEMENT. The simple GO TO
statement causes an unconditional transfer of control to the
statement having the statement number written after the
GO TO. That is, execution of the transfer does not depend
on any condition of the data, status of the machine, or
anything else. The unconditional GO TO is important and
heavily used, but by itself it would permit little work to be
done. It is also necessary to be able to transfer if some
condition is met during program execution. This is the
function of the arithmetic IF statement.

The arithmetic IF statement has the form

in which e stands for any expression and nl, n2, and n3 are
statement numbers. The operation of the statement is as
follows: if the value of the expression within parentheses is

negative, the statement having statement number nl is
executed next; if the value of the expression is zero,
statement n2 is executed next; if the expression is positive
n3 is executed next.

Example:

IF (A(J,K)**3-B) 10,4,30

4 D=B+C

30 C = (D + C)**2

10 E = (F*B)/(D+-1)

In this example, if the value of the expression
(A(J,K)**3-B) is negative, statement number 10 is executed
next. If the value of the expression is zero, statement
number 4 is executed next. If the value of the expression is
positive, statement number 30 is executed next.

3-4.6 LOGICAL IF STATEMENT. Another tool for
transfer of control is the logical IF statement, which has the
general form

IF (e) S

where e is a logical expression and S is any other statement
except another logical IF or a DO (discussed later). The
commonest form of logical expression in this context is one
that asks a question about two arithmetic expressions. We
write such relational expressions by using the six relational
operators:

Relational
Operator

.LT.

.LE.
.EQ.
.NE.
.GT.
.GE.

Meaning

less than
less than or equal to
equal to
not equal to
greater than
greater than or equal to

The action of the logical IF is as follows: if the logical
expression is true, statement S is executed; if the logical
expression is false, statement S is not executed. Either way,
the next statement executed is the one following the logical
IF, unless S was a GO TO and the expression was true.

3-10

Example 1:

IF (A.LE.O) GO TO 25
C=D+E

25 W=X**Z

If the value of the first expression is .TRUE. (i.e., A is less
than or equal to 0), the statement GO TO 25 is executed
next and control is passed to statement number 25. If the
value of the expression is .FALSE. (i.e., A is greater than
0), the statement GO TO 25 is ignored and control is passed
to the next sequential instruction.

Example 2:

Assume that P and Q are logical variables.

IF (P.OR .. NOT.Q) A = B
C = B**2

In the first statement, if the value of the expression is
.TRUE., the value of A is replaced by the value of B and
the second statement is executed next. If the value of the
expression is .F ALSE., the statement A = B is skipped and
the second statement is executed.

3-4.7 DO STATEMENT. The ability of a computer to
repeat the same operations using different data is a
powerful tool that greatly reduces programming effort.
There are several ways to accomplish this when using the
FORTRAN language. For example, assume that a
manufacturer carries 1,000 different parts in inventory.
Periodically, it is necessary to compute the stock on hand
of each item (STOCK) by subtracting stock withdrawals of
that item (OUT) from the previous stock on hand. These
results could be achieved by the following statements:

5 1=0
10 1=1 + 1
25 STOCK (I) = STOCK (I) - OUT (I)
15 IF (1-1000) 10,30,30

The three statements (5, 10, 15) required to control this
loop could be replaced by a single DO statement.

DO 25 I = 1, 1000, 1
STOCK(I) = (STOCK(I) - OUT(I))

General Form:

DOni= ml, m2
or
DO ni = ml, m2, m3

where:

n is a statement number.

i is a non-subscripted integer variable.

ml, m2, m3 are unsigned integer constants or
non-subscripted integer variables. If m3 is not stated
(it is optional), its value is assumed to be 1. In this
case, the preceding comma must also be omitted.

The DO statement is a command to repeatedly execute the
statements that follow, up to and including the statement
n. The first time the statements are executed, i has the
value ml, and each succeeding time, i is increased by the
value of m3' After the statements have been executed with
i equal to the highest value that does not exceed m2,
control passes to the statement following statement number
n. This is called a normal exit from the DO statement.

The range limit (n) defines the range of the DO. The range
is the series of statements to be executed repeatedly. It
consists of all statements following the DO, up to and
including statement n. The range can consist of any number
of statements.

The index (i) is an integer variable that is incremented for
each execution of the range of statements. Throughout the
range of the DO, the index is available for use either as a
subscript or as an ordinary integer variable. However, the
index may not be changed by a statement within the range
of the DO. When transferring out of the range of a DO, the
index is available for use and is equal to the last value it
attained.

The initial value (mJ) is the value of the index for the first
execution of the range. The initial value cannot be zero or
negative.

The test value (m2) is the value that the index must not
exceed. After the range has been executed with the highest
value of the index that does not exceed the test value, the
DO is completed and the program continues with the first
statement following the range limit. The test value is
compared with the index value at the end of the range;
therefore, a DO loop will always be executed at least once.

3-11

The value m2 must be greater than or equal to mi'

The increment (m3) is the amount by which the value of
the index will be increased after each execution of the
range. The increment may be omitted, in which case it is
assumed to be 1. If used, m3 must be greater than o.

Example 1:

5
10
15
20

00 25 1=1,10

25 A=B+C
26

This example shows a DO statement that will execute
statements 5, 10, 15, 20, and 25 ten times. Upon each
execution, the value of I will be incremented by 1. After
completion of the 00, statement 26 is executed.

Example 2:

00 25 1= 1,1000
25 STOCK(I) = STOCK(I)-OUT(I)

A=B+C

In example 2, the DO variable, I, is set to the initial value of
1. Before the second execution of statement 25, I is
increased by the increment, 1, and statement 25 is again
executed. After 1000 executions of the DO loop, I equals
1000. Since I is now equal to the highest value that does
not exceed the test value, 1000, control passes out of the
DO loop and the third statement is executed next. Note
that the DO variable I is now undefined; its value is not
necessarily 1000 or 1001.

Example 3:

00 25 1=1, 10, 2
J = I+K

25 ARRA YO) = BRA YO)
A=B+C

In example 3, statement 25 is the end of the range of the
DO loop. The DO variable, I, is set to the initial value of 1.
Before the second execution of the DO loop, I is increased
by the increment, 2, and the second and third statements
are executed a second time. After the fifth execution of the
00 loop, I equals 9. Since I is now equal to the highest
value that does not exceed the test value, 10, control passes
out of the DO loop and the fourth statement is executed
next. Note that the DO variable I is now undefined; its
value is not necessarily 9 or 11.

PROGRAMMING CONSIDERATIONS IN USING A 00
LOOP.

a. The indexing parameters of a DO statement (i,
ml, m2, m3) should not be changed by a
statement within the range of the DO loop.

b. There may be other DO statements within the
range of a DO statement. All statements in the
range of the inner DO must be in the range of
the outer DO. A set of DO statements satisfying
this rule is called a nest of DO's.

Example 1:

DO 50 I = 1,4
A(I) = B(I)**2
DO 50 J=l, 5

50 C(J+l)=A(I)
}

Range of

}
Rang. e of Outer DO
Inner DO

Example 2:

15
10

00 10 INDEX = L, M
N = INDEX+K Range of

Outer DO 00 15 J = 1, 100, 2 }
TABLEO) = SUM(J,N)-l
(B(N) = A(N)

Range of
Inner DO

c. A transfer out of the range of any DO loop is
permissible at any time.

d. The extended range of a DO is defined as those
statements in the program unit containing the
DO statement that are executed between the
transfer out of the innermost DO of a nest of
DO's and the transfer back into the range of
this innermost DO. The following restrictions
apply:

Transfer into the range of a DO is
permitted only if such a transfer is from
the extended range of the DO.

3-12

The extended range of a DO statement
must not contain another DO statement
that has an extended range if the second
DO is within the same program as the-'
first.

The indexing parameters (i, ml, m2, m3)
cannot be changed in the extended range
of the DO.

Note that a statement that is the end of the
range of more than one DO statement is within
the innermost DO. The statement label of such
a terminal statement may not be used in any
GO TO or arithmetic IF statement that occurs
anywhere but in the range of the most deeply
contained DO with that terminal statement.

EXAMPLE:
DO

DO

)
) 2

)
3

DO

DO)

DO 4

5

e.

f.

g.

In the preceding example, the transfers
specified by the numbers 1, 2, and 3 are
permissible, whereas those specified by 4, 5, 6,
and 7 are not.

The indexing parameters (i, ml, m2, m3) may
be changed by statements outside the range of
the DO statement only if no transfer is made
back into the range of the DO statement that
uses those parameters.

The last statement in the range of a 00 loop
must be an executable statement. It cannot be a
GO TO statement of any form, or a PAUSE,
STOP, RETURN, arithmetic IF statement,
another DO statement, or a logical IF statement
containing any of these forms.

The use of, and return from, a subprogram
from within any 00 loop in a nest of DO's is
permitted.

3-4.8 CONTINUE STATEMENT. The CONTINUE
statement is a dummy statement that does not produce any
executable instructions. It can be inserted anywhere into a
program. It simply indicates that the normal execution
sequence continues with the statement following.

General Form:

CONTINUE

The CONTINUE statement is principally used as the range
limit of DO loops in which the last statement would
otherwise be a GO TO, IF, PAUSE, STOP, or RETURN
statement. It also serves as a transfer point for IF and GO
TO statements within the DO loop that are intended to
begin another repetition of the loop.

Example 1:

DO 30 I = 1, 20
7 IF (A(I)-B(I)) 5,30,30
5 A(I) = A(I) +1.0

B(I) = B(I) -2.0

GO TO 7
30 CONTINUE

C = A(3) + B(7)

3-13

In example 1, the CONTINUE statement is used as the last
statement in the range of the DO in order to avoid ending
the DO loop with the statement GO TO 7.

Example 2:

DO 30 1=1,20
IF (A(I)-B(I)) 5,40,40

5 A(I) = C(I)
GO TO 30

40 A(I) = 0.0
30 CONTINUE

In example 2, the CONTINUE statement provides a branch
point enabling the programmer to bypass the execution of
statement 40.

3-4.9 CALL STATEMENT. The CALL statement is used
only to call a SUBROUTINE subprogram.

General Form:

where

name is the symbolic name of a SUBROUTINE
subprogram.

ai, a2, a3 , ... an are the actual arguments that are being
supplied to the SUBROUTINE subprogram.

Example 1:

CALL MATMP (X,5,40,Y,7,2)
CALL QDRTI (X,Y,Z,ROOTl,ROOT2)

The call statement transfers control to the SUBROUTINE
subprogram and replaces the dummy variables with the
values of the actual arguments that appear in the CALL
statement. The arguments in a CALL statement may be any
of the following: any type of constant, any type of
subscripted, or non-subscripted variable, any other kind of
arithmetic expression, or a subprogram name (except that
they may not be statement function names).

Note that the constants should not be used as parameters in
a CALL statement if the subroutine is returning a value
through that parameter.

Example 1:

Calling
Program

CALL JOE (5,6)

100 C = 5

SUBROUTINE
Subprogram

SUBROUTINE JOE (A,B)
A = B + 10
RETURN
END

In this case the constant 5 in the calling program is replaced
by the value of A as computed in the subroutine (A = B +
10). Subsequent execution of statement 100 in the calling
program results in the variable C being assigned a value
other than 5.

3-4.10 RETURN STATEMENT.

Form:

RETURN

This statement returns control from a subprogram to the
calling program. Normally, the last statement executed in a
subprogram is a RETURN statement. It need not be
physically the last statement of the program. Any number
of RETURN statements may be used. RETURN may
appear only in subprograms.

3-4.11 PAUSE STATEMENT.

Forms:

PAUSE
PAUSE n

where n is a string of five or less octal digits.

This statement is included for compatability with other
FORTRAN's. The octal digits or zero (first form) are typed
on the teletypewriter and execution continues. This
statement is sometimes useful in program debugging.

3-4.12 STOP STATEMENT.

Forms:

STOP
STOPn

where n is a string of five or less octal digits.

3-14

This statement terminates the program. It does not stop the
machine and may be used to transfer control to RTM-I. The
octal digits inform RTM-I of the status of the program
execution. If the octal digits are not listed, a status word of
all zeros is returned to the monitor. The use of this status
word is explained in paragraph 6-15.

3-4.13 END STATEMENT.

Form:

END

The END statement is a non-executable statement that
defines the end of a source program or source subprogram
for the compiler. Physically, it must be the last statement
of each program or subprogram. It may not have a
statement number, and it may not be continued. If program
execution reaches the END statement, the effect is exactly
as if a STOP statement had been executed.

3-5 INPUT -OUTPUT.
The input/output (I/O) statements control the transmission
of information between the computer and the I/O units.

I/O statements are classified as follows:

TRANSMISSION STATEMENTS. READ and WRITE
are statements which specify transmission of
information between computer memory and various
input-output devices.

FORMAT STATEMENT. The FORMAT statement is
a non-executable statement which specifies the
conversions required between internal and external
data forms.

AUXILIARY STATEMENTS. REWIND,
BACKSPACE and END FILE provide positioning and
file termination for magnetic tape and disc I/O.

3-5.1 TRANSMISSION STATEMENTS. In general, a
transmission input-output statement provides:

a.

b.

c.

S P e cification of the operation required;
whether input or output and the particulu
device involved by using the verbs READ or
WRITE.

Reference to a data format which specifies the
sort of conversions required between internal
and external data forms. The reference is either
the number of a FORMAT statement or the
identifier of an array which contains a data
format.

A list of the variables the values of which are to
be transmitted in the order in which the

information exists on the input medium or will
exist on the output medium.

For example, the statement
WRITE(1,5)A,X,K

specifies that the values of A, X, and K, in that
order, are to be written on logical I/O unit 1
according to the format given in the FORMAT
statement numbered 5.

Transmission statements designate the logical input/output
unit to be used by an expression. The correspondence
between the logical unit and the actual I/O device is
determined by the data supplied at system generation.

All FORTRAN input from or output to a given unit is with
respect to a single sequential file. A single sequential file on
a given unit has the following characteristics:

a.

b.

c.

d.

e.

If the file contains one or more records, those
records exist as a totally ordered set.

There exists a unique position of the file called
its initial point. If a file contains no records, the
unit is positioned (physically or logically) to
write starting at the initial point. If the unit is
positioned at the initial point and the file
contains records, the first record of the file is
defined as the next record. No record precedes
the initial point.

If a unit is not positioned at the initial point of
the file, there exists a unique preceding record
and next record associated with that position.

Upon completion of execution of a WRITE or
ENDFILE statement, there exist no records
following the records created by that
statement.

When the next record is transmitted, the
position of the unit is changed so the record
just transmitted becomes the preceding record.

The READ and WRITE statements specify transfer of
information. Each such statement may include a list of the
names of variables, arrays, and array elements. The named
elements are assigned values on input and have their values
transferred on output.

Records may be formatted or unformatted. A formatted
record consists of a string of the characters that are
permissible in alphanumeric constants. The transfer of such
a record requires that a FORMAT statement be referenced
to supply the necessary positioning and conversion
specifications. The number of records transferred by the

3-15

execution of a formatted READ or WRITE is dependent
upon the list and referenced format specification. An
unformatted record consists of a string of values. When an
unformatted or formatted READ statement is executed,
the required records on the identified unit must be,
respectively, unformatted or formatted records.

INPUT/OUTPUT LISTS. The list of a transmlssIOn
statement specifies the order of transmission of the variable
values. During input, the new values of listed variables may
be used in subscript or control expressions for variables
appearing later in the list. For example

READ(2,3)L,A(L),B(L+ 1)

reads a new value of L and uses this value in the subscripts
of A and B.

The transmission of array variables may be controlled by
indexing similar to that used in the DO statement. The list
of controlled variables, followed by the index control, is
enclosed in parentheses and the whole acts as a single
element of the list. For example

READ(7 ,23)(X(K),K=1,4)

is equivalent to

READ(7 ,23)X(1),X(2),X(3),X(4)

As in the 00 statement the initial limit, and increment
values may be given expressions, as in:

READ(4,2)N,(GAIN(K),K=1,M+N+1,M)

The indexing may be compounded as in the following

READ(2,13)((MASS(K,L),K=1,5),L=1,4)

This statement reads in the elements of array MASS in the
order

MASS(1,1),MASS(2,l), ... ,MASS(S,1),MASS(1,2), ... ,MASS(S,4)

If an entire array is to be transmitted, the indexing may be
omitted and only the array identifier written. The array is
transmitted in order of increasing subscripts with the first
subscript varying most rapidly. Thus, the example above
can be written

READ(2,13)MASS

FORMATTED READ STATEMENT. The READ statement
is used to transfer information from any input unit to the
computer. Two forms of the formatted READ statement
may be used, as follows:

READ (a,b) List
or

READ (a,b)

where:

a is an unsigned integer constant or integer variable
that specifies the logical unit number to be used for
input data.

b is the statement number of the FORMAT statement
describing the type of data conversion or the name of
an array containing FORMAT data.

List is a list of variable names, separated by commas,
for the input data.

The READ (a,b) List form is used to read a number of
items (corresponding to the variable names in the list) from
the me on unit a, using FORMAT statement b to specify
the external representation of the data (see FORMAT
Statement).

The List specifies the number of items to be read and the
locations into which the items are to be placed.

If the formatted data to be read is punched onto paper
tape, the following conventions apply. Each record termi­
nates with a carriage return, transmitter off, rub out and
line feed.

If the formatted data is punched on cards each card is one
record.

For example, assume that an input card IS punched as
follows:

Columns

1-2
5-7

61-64
70-71

80

Contents

25
102

-101
10

5

If the following statements appear in the source program:

READ (5,25) I,J,K,L,M,
25 FORMAT(I2,2x,I3,53x,I4,5x,I2,8x,Il)

the record is read and the program operates as though the
following statements had been written:

3-16

I

J
K
L
M

25
102
-101
10
5

If the READ statement is executed again, I,J ,K,L, and M
will have new values, depending upon what is punched in
the next card read.

Any number of quantities may appear in a single list.

If there are more quantities in an input record than there
are items in the list, only the number of quantities equal to
the number of items in the list are transmitted; remaining
quantities are ignored. Thus, if a record contains three
quantities and a list contains two, the third quantity is lost.
Conversely, if a list contains more quantities than the
number of quantities in an input record, succeeding input
records are read until all the items specified in the list have
been transmitted.

The READ (a,b) form may be used in conjunction with a
FORMAT statement to read H-type alphanumeric data into
an existing H-type field in core storage. The size of the data
field determines the amount of data to be read. For
example, the statements:

10 FORMAT(25HTHIS IS ALPHANUMERIC DATA)

READ (INPUT, 10)

cause the next 25 characters to be read from the file on the
unit named INPUT and placed into the H-type
alphanumeric field whose contents were:

THIS IS ALPHANUMERIC DATA

FORMATTED WRITE STATEMENT. The WRITE
statement is used to transfer information from the
computer to any of the output units. Two forms of the
formatted WRITE statement may be used, as follows:

WRITE (a,b) List
or

WRITE (a,b)

where:

a is an unsigned integer constant or integer variable
that specifies the logical unit number to be used for
output data.

b is the statement number of the FORMAT statement
describing the data conversion or the name of an
array containing FORMAT data. For unformatted
transmission the format reference is omitted.

List is a list of variable names separated by commas
for the output data.

The WRITE (a,b) List form of the WRITE statement is used
to write the data specified in the list onto the me on unit a,
using FORMAT statement b to specify the data format (see
FORMAT Statement). The same conventions as described
in the previous paragraph define an output record.

The WRITE (a,b) form is used to write alphanumeric data.
The actual data to be written is specified within the
FORMAT statement; therefore, an I/O list is not required.
The following statements illustrate the use of this form:

25 FORMAT (24HWRITE ANY DATA IN H TYPE)

WRITE (1,25)

UNFORMATTED READ AND WRITE STATEMENTS.
The READ and WRITE statements for unformatted I/O,
i.e., I/O without data conversion, appear as:

READ (a) List
READ (a)
WRITE (a) List

where:

a is an unsigned integer constant or integer variable
that specifies the logical unit number to be used.

List is a list of variable names, separated by commas.

The READ (a) List form is used to read a binary core-image
record, without data conversion, into core storage from
unit a. No FORMAT statement is required; the amount of
data that is read corresponds to the number of list items.
The total length of the list of variable names must not be
longer than the logical record length. If the length of the
list is equal to the logical record length, the entire record is
read. If the length of the list is shorter than the logical
record length, the unread items in the record are skipped.

The READ (a) form is used to skip a record on unit a.

The WRITE (a) List form is used to write a binary
core-image record, without data conversion, on unit a.

3-17

3-5.2 FORMAT STATEMENT. All formatted input or
output requires the use of a data format specifying the
external format of the data and the type of conversion to
be used. The data format is given in a FORMAT statement
or as an alphanumeric string in a data array.

Form:

where S is a data field specification.

NUMERICAL FIELDS. Conversion of numerical data may
be one of five types:

a. type-D

b.

c.

d.

e.

internal form - binary floating point (double
precision)
external form - decimal floating point (double
precision)

type-E

internal form - binary floating point
external form - decimal floating point

type-F

internal form - binary floating point
external form - decimal fixed point

type-G

internal form - binary floating point
external form - decimal fixed point or floating
point

type-I

internal form - binary integer
external form - decimal integer

These types of conversion are specified by the forms:

a. Dw.d
b. Ew.d
c. Fw.d
d. Gw.d
e. Iw

The letter D,E,F,G, or I designates the conversion type; w is
an integer specifying the field width, which includes any
preceding blanks, minus sign, decimal point, and exponent;
d is an integer specifying the number of decimal places to
the right of the decimal point. For example, the statement

FORMAT (15,F10.2,D25.8)

could be used to output the line

32 -17.60 .59625476D+03

on the output listing.

The type of conversion used must correspond to the type
of the variable in the input/output list. I conversion is used
for integer variables; E, F, or G conversion is used for real
variables; and D conversion is used for double precision
variables.

SCALE FACTORS. Scale factors may be specified for D, E,
and F type conversions. A scale factor is written n P where
P is the identifying character and n is a signed or unsigned
integer specifying the scale factor.

For F type conversions the scale factor specifies a power of
ten such that

external number = (internal number)*(power of ten)

For D and E type conversions the scale factor multiplies the
number by a power of ten but the exponent is changed
accordingly, leaving the number unchanged except in form.
For example if the statement

FORMAT (F8.3,E16.5)

corresponds to the line

26.451 -0.41321E-01

then the statement

FORMAT (-1PF8.3,2PE16.5)

corresponds to the line

2.645 -41.32100E-03

When no scale factor is given, it is understood to be O.
However, once a scale factor is given, it holds for all
following D, E, and F type conversions within the same
format. The scale factor is reset to zero by giving a scale
factor of zero.

Scale factors have no effect on I conversions.

I-CONVERSION (Iw). The specification Iw may be used to
output a number in integer form; w positions are reserved
for the number. It is output in this w-position field
right-justified (that is, the units position is at the extreme

3-18

right). If the number to be converted is greater than w
positions, an error condition will exist. If the number is
negative, an error condition exists if the converted number
requires more than w-1 positions. A position must be
reserved for the sign if negative values are output, but
positive values do not require a position for the sign. If the
number has less than w digits, the leftmost positions are
filled with blanks. If the quantity is negative, the position
preceding the leftmost digit contains a minus sign.

The following examples show how each of the quantities on
the left is printed, according to the specification 13:

Internal Value

721
-721

-12
8114

o
-5
9

Printed

721

-12

o
-5
9

All error fields are filled in with asterisks.

F-CONVERSION (Fw.d). For F-type conversion, w is the
total field length reserved and d is the number of places to
the right of the decimal point (the fractional portion). For
output, the total field length reserved must include
sufficient positions for a sign, if any, a digit to the left of
the decimal point, and a decimal point. The sign, if
negative, is printed. In general w should be at least equal to
d + 3 for output.

If insufficient positions are reserved by d, the fractional
portion is truncated from the right. If excessive positions
are reserved by d, zeros are filled in from the right to the
extent of the specified precision. The integer portion of the
number is handled in the same fashion as numbers
converted by I-type conversion on input and output.

The following examples show how each of the quantities on
the left is printed according to the specification F5.2:

Internal Value Printed

12.17 12.17
-41.16 *****

-.2 -0.20
7.3542 7.35t

-1. -1.00
9.03 9.03

187.64 *****

t Last two digits of accuracy lost due to insufficient
specification.

a.

b.

c.

d.

NOTES
All error fields are fllied with asterisks.

Numbers for F-conversion input need not
have their decimal points appearing in the
input field. If no decimal point appears,
space need not be allocated for it. The
decimal point will be supplied when the
number is converted to an internal
equivalent; the position of the decimal
point will be determined by the format
specification. However, if the decimal
point does appear within the field and it
is different from the format specification,
this posltIOn overrides the position
indicated in the format specification.

Fractional numbers for which F-type
output conversion is specified are
normally printed with a leading zero. If
F-conversion is used and zero decimal
width is specified (for example, F5.0), a
fractional value is printed as a sign, a
zero, and a decimal point. A zero value is
printed with a zero preceding the decimal
point.

F-conversion will accept input data in
E-type format.

E-CONVERSION (Ew.d). For E-conversion, the fractional
portion is again indicated by d. For output, the w includes
the field d, a space for a sign, space for a digit preceding the
decimal point, a decimal point, and four spaces for the
exponent. Space must be reserved for each of these on
output. An output error condition will result if ~d+5. For
input, it is not necessary to reserve all of these positions. In
general, w should be at least equal to d+7.

The exponent is a signed or unsigned one- or two-digit
integer constant not greater than 38 and preceded by the
letter E. Ten (10) raised to the power of the exponent is
multiplied by the number to obtain its true internal value.

The following examples show how each of the quantities on
the left is printed, according to the specification E9.3:

Internal Value

238.
-.002

.00000000004
-21.0057

Printed

0.238E 03

0.400E-10

If the last example above has been printed with a
specification of E10.3, it would appear as:

-0.21 E 02

3-19

a.

b.

c.

d.

e.

NOTES
All error fields are filled with asterisks.

For input, the start of the exponent field
must be marked by an E, or, if that is
omitted, by a + or - sign (not blank).
Thus, E2, E+2, +2, +02, E02, and E+02
are all permissible exponent fields for
input.

For input, the exponent field may be
omitted entirely (i.e., E-conversion will
accept input data in F-type format).

Numbers for E-conversion input need not
have their decimal points appearing in the
input field. If no decimal point appears,
space need not be allocated for it. The
decimal point will be supplied when the
number is converted to an internal
equivalent; the position of the decimal
point will be determined by the format
specification. However, if the decimal
point does appear within the field and it
is different from the format specification,
this position overrides the position
indicated in the format specification.

A leading zero is always printed to the
left of the decimal point.

G-CONVERSION (Gw.d). The numeric field descriptor
Gw.d indicates that the external field occupies w positions
with d significant digits. The value of the list item appears,
or is to appear, internally as a real datum.

Input processing is the same as for the F conversion.

The method of representation in the external output string
is a function of the magnitude of the real datum being
converted. Let N be the magnitude of the internal datum.
The following tabulation exhibits a correspondence
between N and the equivalent method of conversion thai:
will be effected:

Magnitude
of

Datum

0.1~<1

1~<10

10d-2~<lOd-1
10d-1~<10d
Otherwise

Equivalent
Conversion

Effected

F(w-4).d,4X
F(w-4).(d-1),4X

F(w-4).1,4X
F(w-4).0,4X
sEw.d

Note that the effect of the scale factor is suspended unless
the magnitude of the datum to be converted is outside of
the range that permits effective use of F conversion.

D-CONVERSION (Dw.d). The numeric field descriptor
Dw.d indicates that the external field occupies w positions,
the fractional part of which consists of d digits. The value
of the list item appears, or is to appear, internally as a
double precision datum.

The basic form of the external input field is the same as for
real conversions.

The external output field is the same as for the E
conversion, except that the character D will replace the
character E in the exponent.

LOGICAL FIELDS. Logical data can be transmitted in a
manner similar to numeric data by use of the form:

Lw

Where L is the control character and w is an integer
specifying the field width.

Data is transmitted as the value of a logical variable in the
input/output list.

On input, the first non-blank character in the data field
must be T or F, and the value of the logical variable will be
stored as true or false, respectively. The remainder of the
field is ignored. If the entire data field is blank, a value of
false will be stored.

On output, W-1 blanks followed by T or F will be output if
the value of the logical variable is true or false, respectively.

ALPHANUMERIC FIELDS. Alphanumeric data can be
transmitted in a manner similar to numeric data by use of
the form Aw; A is the control character and w is the
number of characters in the field. The alphanumeric
characters are transmitted as the value of a variable in an
input/output list. The variable may be of any type. For
example, the sequence

5
READ (2,5)V
FORMAT (A2)

causes two characters to be read and placed in memory as
the value of the variable V.

The number of characters transmitted is limited by the
maximum number of characters which can be stored in the
space allotted for the variable. If w exceeds the available

3-20

space, leading characters are lost on input and replaced with
blanks on output. When w is less than the available space,
blanks are filled in after the given characters until the
maximum is reached.

ALPHANUMERIC FORMAT FIELDS. An alphanumeric
field may be specified within a format by preceding the
alphanumeric string by the form n H. H is the control
character and n is the number of characters in the string,
counting blanks. For example, the statement

FORMAT (17H PROGRAM COMPLETE)

can be used to output

PROGRAM COMPLETE

on the output listing.

On input the external characters are stored in the format
itself.

MIXED FIELDS. An alphanumeric format field may be
placed among other fields of the format. For example, the
statement

FORMAT (I5,8H FORCE = F10.5)

can be used to output the line

22 FORCE = 17.68901

The separating comma may be omitted after an
alphanumeric format field.

BLANK OR SKIP FIELDS. Blanks may be introduced into
an output record or characters skipped in an input record
by use of the specification n X. The control character is X,
n is the number of blanks or characters skipped. n must be
greater than zero. For example, the statement

FORMAT (5H STEPI5,10X,3HY = F7.3)

may be used to output the line

STEP 28 Y = -3.872

where ten blanks separate the two quantities.

REPETITION OF FIELD SPECIFICATIONS. Repetition
of a field specification may be performed by preceding the
control character D, E, F, G, I, or A by an unsigned integer
giving the number of repetitions desired. For example,

FORMAT (2E12.4,3I5)

is equivalent to

FORMAT (E12.4,E12.4,15,15,15)

REPETITION OF GROUPS. A group of field specifications
may be repeated by enclosing the group in parentheses and
preceding the whole with the repetition number. For
example,

FORMAT (218,2(E15.5,2F8.3))

is equivalent to

FORMAT (218,E15.5,2F8.3,E15.5,2F8.3)

Up to two levels of parentheses are allowed in group
repetition, in addition to those enclosing the entire format.
For example, the statement

FORMAT (15,2(E15.5,2(F8.3)))

exhibits the maximum level of nesting. The outermost
parenthesis pair is termed level zero, the next level one, and
the innermost level two.

COMPLEX FIELDS. Complex quantities are transmitted as
two independent real quantities. The format specification is
given as two successive real specifications or one repeated
real specification. For instance the statement

FORMAT (2E15.4,2(F8.3,F8.5))

could be used in the transmission of three complex
quantities.

MULTIPLE RECORD FORMATS. To handle a group of
input/output records where different records have different
field specifications, a slash "I" is used to indicate a new
record. For example, the statement

FORMAT (318/15,2F8.4)

is equivalent to

FORMAT (318)

for the first record and

FORMAT (15,2F8.4)

for the second record.

The separating comma may be omitted when a slash is used.

3-21

Blank records may be written on output or records skipped
on input by using consecutive slashes.

Both the slash and the closing parentheses at the end of the
format indicate the termination of a record. If the list of an
input/output statement dictates that transmission of data is
to continue after the closing parentheses of the format is
reached, the format is repeated from the last open
parentheses of level one or zero. Thus, the statement

FORMAT (F7.2,2(E15.5,E15.4),I7)

causes the format

F7.2,2(E15.5,E15.4),17

to be used on succeeding records.

As a further example, consider

FORMAT (F7.2/2(E15.5,E15.4),17)

The first record has the format

F7.2

successive records have the format

2(E15.5,E15.4),17

FORMATS STORED AS DATA. The alphanumeric string
comprising a format specification may be stored as the
values of an array. Input/output statements may reference
the format by giving the array name rather than the
statement number of a FORMAT statement. The stored
format has the same form as a FORMAT statement
excluding the word "FORMAT". The enclosing
parentheses are included.

As an example, consider the sequence

1

DIMENSION SKELETON(6)
READ (5,1),(SKELETON(I),1=1,6)
FORMAT (6A2)
READ (5,SKELETON),K,X

The first READ statement enters the character string into
the array SKELETON. In the second READ statement,
SKELETON is referenced as the format governing
conversion of K and X.

CARRIAGE CONTROL. If a record is to be printed, the
first character in that record is used for carriage control.
Normally, the character is specified at the beginning of the

format specification for the unit record as IHx, where x is a
blank, 0, 1, or +. This character is not printed; it only
controls character spacing as follows:

blank

°

1

+

A single space before the record is
printed.

A double space before the record is
printed.

A skip to form top before the record is
printed.

All spacing or skipping to be suppressed
before the record is printed.

3-5.3 AUXILIARY INPUT/OUTPUT STATEMENTS.
There are three types of auxiliary input/output statements.
Use of these statements is limited to magnetic tape and disc
applications. They are REWIND, BACKSPACE, and
ENDFILE.

REWIND STATEMENT.

Form:

REWIND u

where u is an I/O unit designation.

This statement directs the I/O unit designated to reposition
to the first record of the fust me. The unit designation is
given as an integer expression.

Examples:

REWIND 7
REWIND K-MIO

BACKSPACE STATEMENT.

Form:

BACKSPACE u

where u is an I/O unit designation.

This statement directs the I/O unit designated to backspace
one record. The unit designation is given as an integer
expression. This is applicable to magnetic tape records only.

3-22

Examples:

BACKSPACE 7
BACKSPACE N(2)

END FILE STATEMENT.

Form:

END FILE u

where u is an I/O unit designation.

The statement directs the I/O unit designated to terminate
the me being written.

The unit designation is given as an integer expression.

Examples:

END FILE 4
END FILE T(K)

3-5.4 LOGICAL UNITS. The logical unit assignments
assumed by FORTRAN are

1 teletypewriter output

2 teletypewriter input

3 high speed paper tape punch output

4 high speed paper tape reader input

5 card reader input

6 line printer output

7 magnetic tape drive one input/output

8 disc foreground work area input/output
(BATCH only) or entire disc (SPEX only)

9 magnetic tape drive two input/output

10 magnetic tape drive three input/output

11 disc background work area input/output
(BATCH only)

The first six assignments are identical to those assumed by
the system software. The last five are included to allow the
FORTRAN programmer to specify which magnetic tape
drive or which disc work area is to be used. The FORTRAN

I/O programs will convert I/O requests to these logical units
to I/O requests to the assumed system logical I/O devices.

Up to four files may be written in the disc background area.
This is discussed further in Sections IV and VI. Thus the
END FILE instruction may reference logical units 7, 9, 10,
and 11. REWIND may be used with logical units 7,8,9,10,
and 11. When referencing units 8 and 11, it causes reading
or writing to commence at the initial sector of that disc
area. BACKSPACE may be used with the magnetic tape
drives only, logical units 7, 9, and 10.

3-6 DECLARATIONS.
Declarations are used to supply descriptive information
about the program rather than to specify computation or
other action. This descriptive information primarily
concerns the interpretation of source program identifiers
and object program storage allocation.

The following declaration statements must all appear in the
program prior to any non-declarative statements, arithmetic
function definition statements, or DATA statements:

DIMENSION statement
EXTERNAL statement
COMMON statement
EQUIVALENCE statement
Type declaration statements.

DATA statements must appear before arithmetic function
definition statements. Both must appear in the program
prior to any non-declarative statements.

3-6.1 DIMENSION STATEMENT. The DIMENSION
statement is used to declare identifiers to be array
identifiers and to specify the number and bounds of the
array subscripts. The information supplied in a
DIMENSION statement is required for the allocation of
memory for arrays. Any number of arrays may be declared
in a single DIMENSION statement.

Form:

DIMENSION Sl ,S2 , ... ,Sk

where S is an array specification.

Each array variable appearing in the program must
represent an element of an array declared in a DIMENSION
statement, unless the dimension information is given in
another statement. When the dimension information is
provided in a COMMON or type declaration statement, it
may not appear in a DIMENSION statement.

Each array specification gives the array identifier and the
maximum values each of its subscripts may assume, thus:

identifier(maxl ,maX2 , ... ,maxn)

3-23

The maxima must be integers. An array may have any
number of dimensions.

For example, the statement

DIMENSION EDGE (10,8)

specifies EDGE to be a two dimensional array the first
subscript of which may vary from 1 to 10 inclusive, and the
second from 1 to 8 inclusive.

Example:

DIMENSION PLACE (3,3,3),HI(2,4),K(256)

Arrays may also be declared in the COMMON or type
declaration statements in the same way:

COMMON X(10,4),Y,Z
INTEGER A(7,32),B
DOUBLE PRECISION K(6,10)
LOGICAL TREE(2,2,2,2,2)

Note that each element of an integer or logical array
requires one word of storage. Each element of a real array
requires two, double precision three and complex four.

Within a subprogram, array specifications may use integer
variables instead of constants, provided that the array name
and variable dimensions are dummy arguments of the
subprogram. The actual array name and values of the
dummy variables are given by the calling program when the
subprogram is called.

Example:

DIMENSION BETA(L,M,G),B(20)

The identifiers BETA, L, M, and G must all be dummy
arguments.

3-6.2 TYPE DECLARATIONS. The type statements
INTEGER, REAL, DOUBLE PRECISION, COMPLEX, and
LOGICAL are used to explicitly specify the type of the
identifiers appearing in the program. An identifier may
appear in only one type statement. Type statements may be
used to declare arrays that are not dimensioned in
DIMENSION or COMMON statements.

Identifiers whose type is not explicitly declared are
implicitly typed as follows:

a. Identifiers beginning with I, J, K, L, M, or N are
assigned integer type.

b. Identifiers not assigned integer type are
assigned real type.

INTEGER STATEMENT.

Form:

INTEGER identifier,idenrifier , ... ,identifier

This statement declares the listed identifiers to be of integer
type.

Example:

INTEGER ALPHA,P ,LAMBDA

Notice that LAMBDA need not appear, since it would be
implicitly declared integer.

REAL STATEMENT.

Form:

REAL identifier ,identifier , ... ,identifier

This statement declares the listed identifiers to be of real
type.

Example:

REAL LOGX,KAPPA,MASS(lO,4)

MASS is also declared to be an array in this example.

DOUBLE PRECISION STATEMENT.

Form:

DOUBLE PRECISION identifier ,identifier , ... ,identifier

This statement declares the listed identifiers to be of double
precision type.

Example:

DOUBLE PRECISION RATE,Y,FLOW

COMPLEX STATEMENT.

Form:

COMPLEX identifier ,identifier , ... ,identifier

3-24

This statement declares the listed identifiers to be of
complex type.

Example:

COMPLEX ZETA,W,ROOT

LOGICAL STATEMENT.

Form:

LOG ICAL identifier ,identifier , ... ,iden rifier

This statement declares the listed identifiers to be oflogical
type.

Example:

LOGICAL BOOL,P,Q,ANSWER

3-6.3 EXTERNAL STATEMENT.

Form:

EXTERNAL identifier ,identifier , ... ,identifier

This statement declares the listed identifiers to be
subprogram names. Any subprogram name given as an
argument to another subprogram must appear in an
EXTERNAL declaration in the calling program.

Example:

EXTERNAL SIN,COS

3-6.4 COMMON STATEMENT.

Form:

COMMON block-list

The COMMON statement specifies that certain variables or
arrays are to be stored in an area also available to other
programs. By means of COMMON statements, a program
and its subprograms may share a common storage area.

The common area may be divided into separate blocks
identified by block names. A block is specified thus:

/identifier /identifier ,identifier , ... ,identifier

The identifier enclosed in slashes is the block name. The
identifiers which follow are the names of the variables or
arrays assigned to the block. These elements are placed in
the block in the order in which they appear in the block
specification.

The block list of the COMMON statement consists of a
sequence of one or more block specifications. For example,
the statement

COMMON /R/X,Y,T/C/U,V,W,Z

indicates that the elements X, Y and T, in that order, are to
be placed in block R and that U, v, Wand Z are to be
placed in block C.

Block entries concatenate throughout the program,
beginning with the first COMMON statement. For example,
the statements

COMMON /D/ALPHA/R/A,B/C/S
COMMON /C/X,Y /R/U,V,W

have the same effect as the statement

COMMON /D/ALPHA/R/A,B,U,V,W/C/S,X,Y

One block of common storage may be left unlabeled; blank
common. Blank common is indicated by two consecutive
slashes. For instance,

COMMON /R/X,YI/B,C,D

indicates that B, C, and D are placed in blank common.

The slashes may be omitted when blank common is the first
block of the statement.

COMMON B,C,D

Array names appearing in COMMON statements may have
dimension information appended, as in a DIMENSION
statement. For example,

COMMON ALPHA, T(15,10,5),GAMMA

specifies the dimensions of the array T while entering T in
blank common.

3-25

a.

b.

NOTES
Dummy arguments for SUBROUTINE or
FUNCTION statements cannot appear in
COMMON statements.

A single COMMON statement may
contain variable names, array names, and
dimensioned array names. For example,
the following are valid:

DIMENSION B(5,15)
COMMON A, B, C(9,9,9)

Variables or arrays that appear in the main program or a
subprogram may be made to share the same storage
locations with variables or arrays of the same type and size
in other subprograms, by use of the COMMON statement.
For example, if one program contains the statement:

COMMON T ABLE,A,B,C

and a second program contains the statement:

COMMON LIST

the variable names TABLE and LIST refer to the same
storage locations (assuming the data associated with the
names TABLE and LIST are equal in length and type).

If the main program contains the statement:

COMMON A,B,C

and a subprogram contains the statement:

COMMON X,Y ,Z,XX,YY ,ZZ

and A, B, and C are equal in length to X, Y, and Z,
respectively, then A and X refer to the same storage
locations, as do Band Y, and C and Z.

Within a specific program or subprogram, variables and
arrays are assigned storage locations in the sequence in
which their names appear in a COMMON statement.
Subsequent sequential storage assignments within the same
program or subprogram are made with additional
COMMON statements.

A dummy variable can be used in a COMMON statement to
establish shared locations for variables that would otherwise

occupy different locations. For example, the variable Z of
the previous example will share storage with S if the
following statement is used:

COMMON Q,R,S

where Q and R are dummy names that are not used
elsewhere in the program.

Redundant COMMON entries are not allowed. For
example, the following is invalid:

COMMON A, B, C, A

The assembler directive COMM can be used to access blank
common from an assembly language program. Any data
stored in the region defined by COMM will share storage
with FORTRAN variables in blank common.

3-6.5 EQUIVALENCE STATEMENT. The equivalence
statement allows more than one identifier to represent the
same quantity.

Form:

The references of an EQUIVALENCE statement may be
variables or array identifiers or array element references.
The subscripts of an array element must be integer
constants. The number of subscripts must be equal to the
array dimension or must be one.

Example:

EQUIVALENCE (A,B,C(3)),(T(4),S(1,1,2))

The inclusion of two or more references in a parenthesis
pair indicates that the quantities referenced are to share the
same memory locations. For example

EQUIVALENCE (RED,BLUE)

specifies that the quantities RED and BLUE are stored in
the same locations.

When no array subscript is given, it is taken to be 1, thus

EQUIVALENCE (X,Y)

is the same as

EQUIVALENCE (X,Y(l))

3-26

Elements of multiply dimensional arrays may be referenced
with a single subscript by use of the element successor
function. For example in the three-dimensional array
specified by

the position of element ALPHA (K, ,K2 ,K3) is given by

Thus the sequence

DIMENSION BETA(4),ALPHA(2,3,4)
EQUIVALENCE (BETA(2),ALPHA(8))

specifies that BETA(2) and ALPHA(2,1,2) are stored in the
same place.

NOTE
Conversion to
permitted only
statements.

single subscripts is
in EQUIVALENCE

Since the entire arrays are shifted to satisfy the equivalence,
only the relative positions of the references are important.
In the example above

EQUIVALENCE (BETA(1),ALPHA(7))
or EQUIVALENCE (BETA,ALPHA(7))

will do as well.

Note that the relation of equivalence is transitive, e.g., the
two statements

EQUIVALENCE (A,B),(B,C)
EQUIVALENCE (A,B,C)

have the same effect.

3-6.6 EQUIVALENCE AND COMMON. Identifiers may
appear in both COMMON and EQUIVALENCE statements
provided the following rules are observed.

No two quantities in common may be set equivalent to one
another.

Quantities placed in a common block by means of
equivalences may cause the end of the common block to be
extended. For example, the statements

COMMON /R/X,Y,Z
DIMENSION A(4)
EQUIVALENCE (A,Y)

cause the common block R to extend from X to A(4),
arranged as follows:

X
Y A(l)
Z A(2)

A(3)
A(4)

Equivalence which cause extension of the start of a
common block are not allowed. For example, the sequence

COMMON /R/X,Y,Z
DIMENSION A(4)
EQUIVALENCE (X,A(3»

is not permitted since it requires block R to be arranged

A(l)
A(2)

X A(3)
Y A(4)
Z

A(l) and A(2) extend the start of block R.

3-6.7 SUBPROGRAM DEFINITIONS. FORTRAN
subprograms may be internal or external.

Internal subprograms are defined within the program which
calls them. They are defined within a single statement; the
arithmetic function definition statement. Internal
subprograms are defined and may be used only within the
program containing the definition.

External subprograms are defmed separately from (external
to) the program which calls them and are complete
programs conforming to all the rules of FORTRAN
programs. They are compiled independently.

Two types of external subprograms may be defined:
FUNCTION subprograms and SUBROUTINE subprograms.
The use of the declarations FUNCTION and SUBROUTINE
in the definition of these subprograms is described below.

Intrinsic functions are external subprograms which are
predefined as part of the FORTRAN language. The
function identifiers, definitions, and types are given in
paragraph 3-7. These definitions are overridden by using the
function identifier in any context other than a function
reference.

Any subprogram, internal or external may call other
subprograms; however, recursion is not allowed.

3-27

DUMMY IDENTIFIERS.

Subprogram definition statements declare certain identifiers
to be dummies representing the arguments of the
subprogram. They are used as ordinary identifiers within
the subprogram definition and indicate what sort of
arguments may appear and how the arguments are used.
The dummy identifiers are replaced by the actual
arguments when the subprogram is executed.

Dummy identifiers may not appear in COMMON,
EQUIVALENCE, or DATA statements.

ARITHMETIC FUNCTION DEFINITION STATEMENT.

Form:

ide n tifier (identifier ,iden tifier , ...) =ex pre ssion

This statement defines an internal subprogram. The entire
definition is contained in the single statement. The first
identifier is the name of the subprogram being defined.

Arithmetic function subprograms are functions; they are
single-valued and must have at least one argument. The type
of the function is determined by the type of the function
iden tifier .

The identifiers enclosed in parentheses represent the
arguments of the function. These are dummy identifiers
and have meaning and must be unique only within the
statement. They may be identical to identifiers of the same
type appearing elsewhere in the program. These identifiers
must agree in order, number, and type with the actual
arguments given at execution time.

The use of an argument in the defining expression is
specified by the use of its dummy identifier. Expressions
are the only permissible arguments of internal functions;
hence the dummy identifiers may appear only as scalar
variables in the defining expression. They may not appear
as array identifiers.

Identifiers appearing in the defining expression which do
not represent arguments are treated as ordinary variables.

The defining expression may include references to external
functions or other previously defined internal functions.

The defining expression may not contain array element
references.

All arithmetic function statements must precede the fust
executable statement of the program.

Examples:

SSQR(K) = K*(K+l)*(2K+l)/6
NOR(T,S) = .NOT.(T.OR.S)
ACOSH(X) = (EXP(X/A)+EXP(-X/A))/2

In the last example above, X is a dummy identifier and A is
an ordinary identifier. At execution the function is
evaluated using the current value of the quantity
represented by A.

FUNCTION SUBPROGRAMS.

A FUNCTION subprogram is a function; single-valued and
referenced as a basic element in an expression. A
FUNCTION subprogram begins with a FUNCTION
declaration and returns control to the calling program by
means of one or more RETURN statements.

FUNCTION STATEMENT.

Forms:

FUNCTION identifier(identifier ,identifier , ...)
t FUNCTION identifier(identifier ,identifier , ...)

This statement declares the program which follows to be a
function subprogram. The first identifier is the name of the
function being defined. This identifier must appear as a
scalar variable and be assigned a value during execution of
the subprogram. This value is the function value.

Example:

FUNCTION ROOT (A,B,C)
ROOT = (-B+SQRT(B**2-4.0*A*C))/(2.0*A)
RETURN
END

Identifiers appearing on the list enclosed in parentheses are
dummy identifiers representing the function arguments.
They must agree in number, order, and type with the actual
arguments given at run time. FUNCTION subprogram
arguments may be expressions, array names or subprogram
names. Dummy identifiers may appear in the subprogram as
scalar identifiers, array identifiers or subprogram identifiers.

Dummy identifiers representing array names must appear
within the subprogram DIMENSION, or type statements
giving dimension information. Dimensions given as
constants must equal the dimensions of the actual arrays
given at run time. In a DIMENSION or type statement,
dummy identifiers may be used to specify variable
dimensions for array name arguments. For example, in the
statement sequence

3-28

FUNCTION TABLE (A,M,N,B,X,Y)

DIMENSION A(M,N),B(lO),C(SO)

the dimensions of array A are specified by the dummies
M,N and the dimension of array B is given as a constant.
The values given for M,N at run time must be those of the
actual array given for A.

Dummy dimensions may be given only for dummy arrays.
In the example above the array C must be given absolute
dimensions, since C is not a dummy identifier.

The type of the function is the type of the identifier which
names the function. The identifier may be typed implicitly
integer or real by use of the first form. The identifier is
explicitly typed by using the second form with t replaced
with INTEGER, REAL, DOUBLE PRECISION,
COMPLEX, or LOGICAL.

Examples:

FUNCTION MAY(RANGE,XP,YP,ZP)
REAL FUNCTION COT(ARG)
COMPLEX FUNCTION HPME(S,N)

3-6.8 SUBROUTINE SUBPROGRAMS. A SUBROUTINE
subprogram is not a function; it may be multi-valued and
can be referred to only by a CALL statement. A
SUBROUTINE subprogram begins with a SUBROUTINE
declaration and returns control to the calling program by
means of one or more RETURN statements.

SUBROUTINE STATEMENT.

Forms:

SUBROUTINE identifier
SUBROUTINE identifier(identifier ,identifier , ...)

This statement declares the program which follows to be a
SUBROUTINE subprogram. The first identifier is the
subroutine name. The identifiers in the list enclosed in
parentheses are dummy identifiers representing the
arguments of the subprogram. These identifiers must agree
in number, order, and type with the actual arguments given
to the subprogram at run time.

SUBROUTINE subprograms may have expressions,
alphanumeric strings, array names, and subprogram names

as arguments. The dummy identifiers may appear as scalar,
array, or subprogram identifiers within the subprogram.

Dummy identifiers which represent array names must be
dimensioned within the subprogram by a DIMENSION, or
type statement. As in the case of a FUNCTION
subprogram, either constants or dummy identifiers may be
used to specify dimensions in a DIMENSION or type
statement.

A SUBROUTINE subprogram may use one or more of its
dummy identifiers to represent results. The subprogram
name is not used for return of results.

A SUBROUTINE subprogram need not have any arguments
at all.

Examples:

SUBROUTINE EXIT
SUBROUTINE FACTOR (COEF,N,ROOTS)
SUBROUTINE RESIDU (NUM,D,DEN,M,RES)

3-6.9 DATA SPECIFICATION. The data specification
statements DATA and BLOCK DATA are used to specify
initial values for variables. These values are compiled into
the object program. They become the values assumed by
the variables when execution begins.

DATA STATEMENT.

Form:

DATA v/d/,v/d/, ...

where v is a variable list and d is a data list.

The variable lists in a DATA statement consist of scalar
variables and array elements separated by commas.

Variables in common may appear in the lists only if the
DATA statement occurs in a BLOCK DATA subprogram.

The data items of each data list must correspond in total
storage units with the variables of each variable list. Each
data item specifies the value given to its corresponding
variable.

Data items may be numerical constants or alphanumeric
strings. For example

DATA ALPHA,BETA/S,16.E-2/

specifies the value 5 for ALPHA and the value .16 for
BETA.

Alphanumeric data is packed into words two per word as in
the case of A conversion. Excess characters are not
permitted.

Example:

DATA NOTE/2HNO/

Any data item may be preceded by an integer and an
asterisk. The integer indicates the number of times the item
is to be repeated. For example

DATA A(1),A(2),A(3),A(4),A(S)/61E2,4* 32E1/

specifies 5 values for the array A; the value 6100 for A(1)
and the value 320 for A(2) through A(S).

BLOCK DATA STATEMENT.

Form:

BLOCK DATA

This statement declares the program which follows to be a
data specification subprogram. Data specification for
variables in common blocks require the use of a BLOCK
DATA subprogram.

The first statement of the subprogram must be the BLOCK
DATA statement. The subprogram may contain only the
declarative statements associated with the data being
defined.

Example:

BLOCK DATA
COMMON /R/X,Y/C/Z,W,V
DIMENSION Y(3)
COMPLEXZ
DOUBLE PRECISION X
DATA Y(1),Y(2),Y(3) /1E-1,2*3E2/
DATA X,Z/11.877DO,(-1.41421,1.41421)/
END

Data may be entered into more than one block of common
in one subprogram. However, any common block
mentioned must be listed in full. In the example above, W
and V are listed in block C although no data values are

. defined for them.

3-29

3-7 FORTRAN OUTPUT LISTING.

3-7.1 LISTING ELEMENTS. The output listing of the
FORTRAN compiler consists of the following elements (if
required).

a. Source Program with error messages (if any)

b. Common Allocation - Blank and/or Labeled

c. Required Subroutines

d. Equivalence Allocation

e. Program Allocation

Program allocation lists all variables not appearing in
COMMON or EQUIVALENCE statements. The listing is
produced during first pass execution. Except for error
comments no printed output is produced in pass two.

3-7.2 STATEMENT ERROR DIAGNOSTICS. During pass
one, statements which violate the syntactic or semantic
rules of the language are discarded and an error indication is
output on the listing. Compilation proceeds as if the
statement was never encountered. The statement label, if
any, remains defined with the error statement executing as
a CONTINUE.

One character of the statement is marked with an arrow (t)
output directly beneath the erroneous character, for
example:

ZETA = X + Y * -A
t

The character "-" is marked as an error.

In the case of a syntax error, the marker character itself was
unacceptable, as in the example above. In the case of a
semantic error, an identifier or other construct is in error,
the mark indicating the last character of the construct. For
example, in the line:

COMMON ALPHA ,BET A,ALPHA,GAMMA
t

The mark indicates that the identifier ALPHA is misused.

The compiler attempts all interpretations of statement type
before discarding a statement. The marked position
indicates the greatest amount of correct information found
under the most logical assumption of statement type.

A comment specifying the reason for the failure is output
directly after the marked line.

The possible comments are:

SYNTAX. Erroneous punctuation or illegally constructed
arithmetic expression.

3-30

NUMBER. A constant or label is too large or is incorrectly
constructed.

ID CONFLICf. The identifier marked is being used in a
context which contradicts a previous explicit or implicit
declaration.

TYPE CONFLICT. The identifier or expression marked is
in conflict with another identifier or expression.

MODE. The identifier or expression marked has a type in
conflict with the context.

SUBSCRIPTS. The number of subscript expressions used in
an array variable does not equal the number declared for
the array.

ALLOCATION. A non-dummy variable has been given as
an adjustable dimension, or a variable has been placed in
COMMON more than once, or a dummy variable appears in
a COMMON or EQUIVALENCE statement.

ORDER. The statement appears in the program at a point
in violation to the stated rules governing the order or
appearance of statements in the program.

MISSING LABEL. The statement must have a label in order
to be reached or referenced.

DATA COUNT. The number of items in the data list of a
DATA statement is not equal to the number of items in the
variable list.

BLOCK DATA. An executable statement appears in a
BLOCK DATA subprogram.

OVERFLOW. The statement caused the compiler capacity
to be exceeded. Compilation does not continue.

During pass two the following error comments may occur
INCORRECT FORMAT - tape not identified as a Fortran
pass one output tape.

OVERFLOW - the program exceeds the capacity of the
second pass.

INVALID CODE - the tape contains a code not recognized
by the second pass.

3-7.3 PROGRAM ERROR DIAGNOSTICS. The comment
LABELING ERRORS is output at the end of compilation
to indicate any labeling or DO loop structure errors. The
comment is followed by a list of statement numbers which
may fall into anyone of the following categories:

The statement number has been used within the
program but has never appeared as the number of a
statement.

The statement number appeared as the number of
more than one statement.

The statement number is the number of a statement
which closes the range of a DO statement, and:

The closing statement was never reached; or

The range ended with a transfer statement; or
The loop was illegally nested.

The label list is followed by the title ALLOCATION
ERRORS and a list of identifiers which cannot be allocated
memory. This may be because of violation of the rules of
common or equivalence, because of multiple inconsistent
allocations, or because no classification was ever established
for the identifier.

3-7.4 PASS TWO ERROR DIAGNOSTICS

3-8 OBJECT PAPER TAPE FORMATS.
Programs which are compiled by Model 980 FORTRAN
may be placed in two groups. Function subprograms,
subroutine subprograms, and main programs are part of
group 1, and block data programs make up group 2.

A different object output format is used for the two
groups.

3-8.1 GROUP 1 OUTPUT FORMAT. The object paper
tape produced by the FORTRAN second pass, for group 1
programs has the same format as assembler object output
(see 2-9.1). All FORTRAN compliations are relocatable.

The PROGRAM ID is taken from the name of the Function
or Subroutine-subprogram. The compiler allows
six-character names for these subprograms. When the name
is less than six characters long, the rightmost vacant
characters are replaced with spaces. Thus a FORTRAN
program heading SUBROUTINE SORT (A,N) will yield a
subprogram named SORTM where /::, signifies space or
blank. When the program name exceeds six characters, only
the first six are used to identify the program; those
programs which are not identified as Functions or
Subroutines are automatically named /::,MAIN/::'. Since the
programmer can not generate a name with a leading space,
this name is unique.

Labeled common names are derived in the same way. That
common area which the programmer does not name is
named /::,BLANK by the compiler.

3-8.2 GROUP 2 OUTPUT FORMAT. The object paper
tape produced by FORTRAN for group 2 programs has the
format shown in table 3-1.

3-31

H
E
A
D
E
R

C
0
M
M
0
N

R
E
F
S

D
A
T
A

B
L
0
C
K

1

D B
A L

T
0
C

A K

E B
L

N 0
D C

K

TABLE 3-1

GROUP 2 OUTPUT FORMAT

PROGRAM NAME 12 Frames

ZERO 4 Frames

FORMAT CODE 4 Frames

COMMON COUNT 4 Frames

STOP CODE 4 Frames

COMMON SYMBOL 1 12 Frames

COMMON LENGTH 1 4 Frames

COMMON SYMBOL 2 12 Frames

COMMON LENGTH 2 4 Frames

CHECK SUM 4 Frames

STOP CODE 4 Frames

COMMON NUMBER 4 Frames

RELATIVE LOCATION 4 Frames

DATA COUNT 4 Frames

DATA WORD 1 4 Frames

DATA WORD 2 4 Frames

CHECK SUM 4 Frames

STOP CODE 4 Frames

COMMON NUMBER 4 Frames

RELATIVE LOCATION 4 Frames

MINUS ONE 4 Frames

STOP CODE 4 Frames

The program name is always 6 BLOCK. The format code is
always 5.

All data on the object tape is punched as 16-bit words; four
frames per word. The four low order channels of each
frame contain one hexadecimal digit. Channel 5 is punched
to produce an odd parity tape. The following table contains
the hexadecimal digits and the hexadecimal codes corre­
sponding to the eight channels of the tape.

Program Object
Hex Digit Hex Digit

0 10
1 01
2 02
3 13
4 04
5 15
6 16
7 07
8 08
9 19
A 1A
B OB
C lC
D OD
E OE
F IF

Check sums are the negative of all data preceding the check
sum and following the last check sum (or start of the tape).
Thus the sum of all data after one check sum up to and
including the next check sum is always zero.

The stop code is the hexadecimal word 0030. When reading
the tape with the teletypewriter reader, the reader will stop
after reading this code.

The data in each data block will be loaded starting at the
relative location noted in the specified common block.
Since the variables to be initialized in each common block
are not necessarily contiguous, several data blocks may be
required to initialize one common block.

3-9 LIBRARY SUBROUTINES.

3-9.1 ARITHMETIC CONVENTIONS. A number of
library subroutines used by the FORTRAN compiler are
a vailable for incorporation into assembly language
programs. These subroutines include those for the
performance of arithmetic.

At the completion of any arithmetic operation on real,
double precision, or complex data, the results will be
located in the floating point accumulator or complex
accumulator. Likewise input to arithmetic routines is often
assumed to be in one or the other of these pseudo-registers.

3-32

They are actually memory locations within the floating
point arithmetic package. They are symbolically identified
by the names ACC$ and EXP$ for the mantissa and
exponent of real and double precision numbers and CACC$
and CACC2$ for the real and imaginary portions of
complex numbers. The location MODE$ is used to set the
mode of the floating point arithmetic as described in
paragraph 3-9.5.

3-9.2 POWER ROUTINES. A series of power routines are
available for computing

BASE ** EXP

The mode of the result will be the same as the mode of the
base. The result will be returned in the appropriate
hardware or software register as below.

Base

Integer
Real
Double Precision
Complex

The calling sequence is

BRL
DATA
DATA
DATA

Result in

A-Register
ACC$, EXP$
ACC$, EXP$
CACC$, CACC2$

*$+1
Subroutine Name
BASE
EXP

The following routines are available.

Name

$F4IIP
$F4RIP
$F4DIP
$F4CIP
$F4IRP
$F4RRP
$F4DRP
$F4IDP
$F4RDP
$F4DDP

Base

Integer
Real
Double
Complex
Integer
Real
Double
Integer
Real
Double

Exponent

Integer
Integer
Integer
Integer
Real
Real
Real
Double
Double
Double

3-9.3 MODE CONVERSION ROUTINES. Mode
conversion routines are available for conversions between
various arithmetic modes. These routines assume that the
argument is in the hardware or software register appropriate
to the mode of the argument. The result will be returned in
the hardware/software register appropriate to the mode of
the function. The registers and associated modes are as
follows.

Mode

Integer
Real
Double
Complex

Register

A-Register
ACC$, EXP$
ACC$, EXP$
CACC$, CACC2$

Since arguments are assumed to be in an appropriate
register, the calling sequence consists only of a call to the
appropriate routine. For example:

BRL
DATA

*$+1
$F4IRC

The routines available are listed below.

Name

$F4IRC
$F4IDC
$F4ICC
$F4RIC
$F4RDC
$F4RCC
$F4DIC
$F4DRC
$F4DCC
$F4CIC
$F4CRC
$F4CDC

Function

Integer to Real Conversion
Integer to Double Conversion
Integer to Complex Conversion
Real to Integer Conversion
Real to Double Conversion
Real to Complex Conversion
Double to Integer Conversion
Double to Real Conversion
Double to Complex Conversion
Complex to Integer Conversion
Complex to Real Conversion
Complex to Double Conversion

3-9.4 COMPLEX ARlnIMETIC. Complex arithmetic
operations are performed by the sequence of routines listed
below. The results of complex operations are stored in
locations denoted symbolically by CACC$ and CACC2$.
The calling sequence is

BRL
DATA
DATA

*$+1
Subroutine Name
Argument

Name

$F4CLD
$F4CST
$F4CAD
$F4CSB
$F4CMP
$F4CDV
$F4CSC

Function

Complex Load
Complex Store
Complex Add
Complex Subtract
Complex Multiply
Complex Divide
Complex Change Sign (Negate CACC$,
CACC2$)

3-9.5 FLOATING POINT ARInIMETIC. Floating point
arithmetic is performed by the use of the illegal instruction
trap. The mode of operation is determined by the value in
the location denoted symbolically as MODE$.

3-33

MODE $ Operation Mode

o Real - Program Counter Relative
1 Real - Base Register Relative
2 Double Precision - Program Counter Relative

MODE$ is initially set to 1; therefore the user must reset
MODE$ for the required mode if this mode is not to be
used.

The addressing mode is determined by the I and X fields as
in the example below for MODE$ = 1.

IX Addressing

00 B+D
10 (B+D)
01 B+D+X
11 Illegal

Note that base register addressing is not specified through
use of the B bit. It can be selected only by use of the mode
word MODE$.

In any of the above modes, the following op codes are used.
They may be defined by an OPD by the user.

FLD OPD >DOOO Floating Load
FLN OPD >D100 Floating Load Negative
FST OPD >EOOO Floating Store
FAD OPD >E800 Floating Add
FSB OPD >E900 Floating Subtract
FMP OPD >FOOO Floating Multiply
MDV OPD >F100 Floating Divide
FNG OPD >CloO Floating Negate
FCP OPD >E100 Floating Compare

The codes thus defined are used in the same fashion as
normal operation codes.

3-9.6 DOUBLE PRECISION ARInIMETIC. For
convenience in code generation in FORTRAN, double
precision arithmetic can also be performed by subroutines
in addition to the illegal instruction traps described in
3-9.5. The calling sequence is

BRL
DATA
DATA

*$+1
Subroutine Name
Argument

The routines available are listed below.

Name

$F4DLD
$F4DST
$F4DAD

Function

Double Precision Load
Double Precision Store
Double Precision Add

Name Function

Double Precision Subtract
Double Precision Multiply
Double Precision Divide
Double Precision Compare

$F4DSB
$F4DMP
$F4DDV
$F4DCP
$F4DCS Double Precision Change Sign of Accumulator

3-9.7 FORTRAN BASIC EXTERNAL FUNCTIONS. The
basic FORTRAN external functions are available for
incorporation into assembly language programs. They are
called by the standard calling sequence. See Table 3-2.

BRL
DATA
DATA
DATA

DATA

*$+1
Function Name
Number of arguments
ARG 1 - First Argument

ARGN - Last Argument

The function value is returned in the hardware/software
register corresponding to the function type.

3-9.8 FORTRAN INTRINSIC FUNCTIONS. The FOR­
TRAN intrinsic functions are called by the standard calling
sequence.

BRL
DATA
DATA
DATA

DATA

*$+1
Function Name
Number of arguments
ARG 1 - First Argument

ARGN - Last Argument

The value of the function is returned in the
hardware/software register corresponding to the function
type shown in Table 3-3.

3-9.9 FORTRAN FORMAT EDITOR. The FORTRAN
format editor is available as a relocatable library subroutine
for use in assembly language programs. Formats must be
provided by the user in the form of data statements, viz.

FMT1 DATA '(2HA = F10.S)'

The portion enclosed between single quotes must be in
accordance with the usual syntax of FORTRAN format
statements.

There are 18 entry points to the FORTRAN format editor
as shown in Table 3-4.

3-34

Calling sequences for the non-I/O functions are as shown
below.

BRL *$+1 End File
DATA $F4EFI
DATA UNIT NO.

BRL *$+1 Rewind
DATA $F4RWD
DATA UNIT NO.

BRL *$+1 Stop
DATA $F4STP
DATA N

BRL *$+1 Pause
DATA $F4PAU
DATA N

BRJ- *$+1 Back Space
DATA $F4BSP
DATA UNIT NO.

All Input/Output operations are initiated by a call to one of
$F4WBN, $F4WBD, $F4RBN, or $F4RBD. The calling
sequence is illustrated below.

BRL
DATA
DATA
DATA

*$+1
$F4WBD
FMT1
UNIT NO.

For each element of the argument list, there must be a call
to an iriput/output routine. The last call in an I/O operation
must be to the stop I/O ($F4SI0) routine.

To illustrate.
BRL *$+1 Initiate Output
DATA $F4WBD Operation on unit
DATA FMT21 3 using FMT21
DATA 3
BRL *$+1 Output I
DATA $F4I10
DATA I
BRL *$+1 Output A
DATA $F4RIO
DATA A
BRL *$+1 Stop I/O
DATA $F4S10

FMT21 DATA '(I4,F10.S)'

TABLE 3-2

FORTRAN BASIC EXTERNAL FUNCTIONS

No. Arg. Function
Function Defmition Arguments Name Type Type

Exponential ea 1 EXP Real Real
DEXP Double Double
CEXP Complex Complex

Natural Log loge (a) 1 ALOG Real Real
DLOG Double Double
CLOG Complex Complex

Common Log loglo (a) 1 ALOG10 Real Real
DLOG10 Double Double

Sine sin(a) 1 SIN Real Real
DSIN Double Double
CSIN Complex Complex

Cosine cos (a) 1 COS Real Real
DCOS Double Double
CCOS Complex Complex

Hyperbolic Tan tanh(a) 1 TANH Real Real

Square Root (a)Yz 1 SQRT Real Real
DSQRT Double Double
CSQRT Complex Complex

Arctangent arctan(a) 1 ATAN Real Real
1 DATAN Double Double

arctan(al /az) 2 ATAN2 Real Real
2 DATAN2 Double Double

Remaindering* al (mod az) 2 DMOD Double Double

Modulus lal +azl 1 CABS Complex Real

*The function DMOD(aba2) is defined as ad al/a21 a2 when [al/a21 is the integer whose magnitude
does not exceed (at!a2) and whose sign is the same as (at!a2)'

3-35

TABLE 3-3

FORTRAN INTRINSIC FUNCTIONS

No. Arg. Function
Function Definition Args. Name Type Type

Absolute Value lal 1 ABS Real Real
lABS Integer Integer
DABS Double Double

Truncation Sign of a times I AINT Real Real
largest integer ~Ial INT Real Integer

DINT Double Integer

Remaindering* al (mod a2) 2 AMOD Real Real
MOD Integer Integer

Choose Largest Value Max(al ,a2 , ... ,an) ;;;'2 AMAXO Integer Real
AMAXI Real Real
MAXO Integer Integer
MAXI Real Integer
DMAXI Double Double

Choose Smallest Value MIN(al ,a2 , ... ,an) ;;;'2 AMINO Integer Real
AMINI Real Real
MINO Integer Integer
MINI Real Integer
DMINI Double Double

Float Convert Integer to Real I FLOAT Integer Real

Fix Convert Real to Integer I IFIX Real Integer

Transfer of Sign Sign a2 times lal I 2 SIGN Real Real
ISIGN Integer Integer
DSIGN Double Double

Positive Difference al-MIN(al ,a2) 2 DIM Real Real
IDIM Integer Integer

Double to Real I SNGL Double Real

Real Part of Complex I REAL Complex Real

Imaginary Part of Complex I AIMAG Complex Real

Real to Double I DBLE Real Double

Two Reals to Complex al+a2~ 2 CMPLX Real Complex

Complex Conjugate a-ib I CON] Complex Complex

*See footnote at bottom of Table 3-2.

3-36

Entry

TABLE 3-4

FORTRAN FORMAT EDITOR

End File
Rewind
Stop
Pause
Stop Input/Output
Read - Binary
Read -ASCII
Write - Binary
Write - ASCII

Function

Integer/Logical Input/Output
Real Input/Output
Complex Input/Output

$F4EFI
$F4RWD
$F4STP
$F4PAU
$F4SIO
$F4RBN
$F4RBD
$F4WBN
$F4WBD
$F4IIO
$F4RIO
$F4CIO
$F4DIO
$F4IUA
$F4RUA
$F4CUA
$F4DUA
$F4BSP

Double Precision Input/Output
Integer/Logical Unsubscripted Array Input/Output
Real Unsubscripted Array Input/Output
Complex Unsubscripted Array Input/Output
Double Precision Unsubscripted Array Input/Output
Back Space

The following example illustrates the input of a 3X4 integer
array.

BRL *$+1
DATA $F4RBD
DATA FORMAT
DATA 1
BRL *$+1
DATA $F4IUA
DATA 12

DATA
BRL *$+1
DATA $F4SIO

FORMAT DATA '(14)'

3-10 FORTRAN OPERATING PROCEDURES
The only version of FORTRAN which will be available
initially will execute stand alone. It will use the high speed
paper tape reader for source input and the high speed paper
tape punch for object output. The listing is printed on the
teletypewriter. Other stand alone and monitor controlled
versions of the FORTRAN compiler are planned for future
release. All code generated by the compiler is compatible
with the RTM-I monitor.

The procedure for executing the compiler is as follows:

3-37

OPERATION:

a. Load program FTNPS 1.

Results: Program is ready for execution.

b. Push RESET button and then push the
RUN button.

c.

Results: A message is printed on the
teletypewriter as follows: READY
FORTRAN SOURCE AND HIT RUN.

Ready the source and push the RUN
button.

Result: Compilation begins. The source
tape is read, a source listing is produced
on the teletypewriter (with appropriate
error messages as required), and a pass 1
object tape is produced on the high speed
paper tape punch. Compilation continues
until the line PROGRAM END is printed
on the teletypewriter. A trailer is punch­
ed on the object tape and the computer
idles, and the FORTRAN first pass is
ready for the next compilation. To exe­
cute the next first-pass compilation, re­
peat steps b. and c. To complete the

d.

e.

second pass of the compilation, continue
with step d.

Load program FTNPSZ.

Results: Program is ready for execution.

Push RESET button and then push the
RUN button.

Results: A message is printed on the
teletypewriter as follows: READY PASS

f.

3-38

ONE OUTPUT FOR INPUT TO PASS
1WO AND HIT RUN.

Ready the input and push the RUN
button.

Results: The object is punched. At the
completion of pass two the line COM­
PILATION COMPLETE is printed on the
teletypewriter. The computer idles and
the FORTRAN second pass is ready for
the next input. To execute another pass
two repeat steps e. and f.

SECTION IV

REAL TIME MONITOR - I

SECTION IV

REAL TIME MONITOR - I

4-1 INTRODUCTION.
The Real Time Monitor System-Version I, abbreviated
RTM-I:

a.

b.

c.

d.

Provides continuous operation of the Model
980 Computer and its peripheral equipments
with a minimum loss of computation time.

Provides software control of all inputs and
outputs.

Schedules multiprogrammed foreground worker
programs based upon real time input stimuli.

Schedules background batch processing tasks
on a demand basis.

e. Facilitates use of program development tools
which are available as background batch task
processors.

RTM-I has four distinct but interdependent segments which
are described in more detail in paragraphs 4-1.1 through
4-1.4.

4-1.1 SUPERVISOR. The supervisor is the heart of the
monitor. It provides interrupt processing and delegates
computer time to other program segments on a priority
basis.

4-1.2 SERVICE SUBPROGRAMS. Service subprograms
perform the work requested by the executive calls within
the user programs. These service subprograms generally fall
into two categories:

a. In p u t/ output handlers which police the
transmission of data between user programs and
peripheral equipment

b. Control function handlers which perform
housekeeping functions, such as user task
termination.

4-1.3 BACKGROUND JOB CONTROL. This segment
optionally has one of two program elements. Both elements
provide a program interface between background program
jobs and the supervisor.

4-1

The Background job control program SPEX (Single Pro­
gram Executive) is the simplest option. SPEX allows a
single background program to be loaded into core and
executed.

The more complex option is called BATCH. BATCH
accepts and interprets a job control input, and selects
appropriate disc resident programs for background
execution.

4-1.4 THE DISC INITIALIZATION PROGRAMS. This last
segment consists of two self-contained programs. These
programs load the disc for use in a BATCH environment.
One restores the disc from object media to a state which
existed when it was preserved. The second performs the
more complex buildup of the disc from scratch.

Figure 4-1 shows the basic RTM-I structure. Dashed lines
enclose elements unique to RTM-I with BATCH. The
illustration also shows how user-generated programs relate
to the basic RTM-I structure. The terms foreground and
background refer to relative levels of priority.

4-2 THE SUPERVISOR.

The Supervisor is the nucleus of RTM-I, a multiprogram
operating system utilizing an executive/worker method for
program control and a multilevel priority scheme for
program execution. MUltiprogramming as used here implies
the continuous coexistence of a number of worker pro­
grams in memory in varying stages of execution. The term
multilevel priority refers to the technique used by the
Supervisor to schedule and execute worker tasks based
upon their relative urgency.

Tasks are divided between three major program levels:
X-level (interrupt programs), F-level (foreground control
and foreground worker task programs), and B-level
(background batch processing). The interrelationship of
these levels is shown in Figure 4-2.

4-2.1 X-LEVEL. The highest priority programs are those
which directly answer hardware generated interrupts.
Programs at this level are activated by:

a. Internal interrupts including power failure and
undefined instruction detection.

,------------------------1
I I
I I
I I
L_ _J

I 7 / () DISK
SYSTEM SYSTEM INITIALIZATION . .

DISK BUILDING PROGRAM
DECK 1/ \ 1

-

SUPERVISOR

I

USER FURNISHED STANDARD STANDARD
I/O AND CONTROL I/O FUNCTIONS CONTROL FUNCTIONS

FUNCTIONS

SERVICE SUBPROGRAMS

r
FOREGROUND

BACKGROUND JOB TASK
CONTROL PROGRAM PROGRAMS

BATCH/SPEX
USER FURNISHED

,.
r--------,
I / //

I
I JOB CONTROL I

I STREAM I
USER I

I FURNISHED 1/ I L _______ J

BACKGROUND TASK PROCESSORS

USER
SApo' FORTRAN ••• FURNISHED • ••

PROGRAMS

Figure 4-1. RTM Basic Structure

4-2

X-LEVEL

DATA BUS
INTERRUPT
ANSWERING

DMAC
INTERRUPT
ANSWERING

INTERNAL
INTERRUPT
ANSWERING

--------------r.-------------
B-LEVEL

BACKGROUND

Figure 4-2. Supervisor Priority Levels

4-3

TABLE 4-1

X-LEVEL RETURN

,-------,-----1------1
I Control Prior I Type of I I I To Interrupt Interrupt Control Return Point I ______ ~ ______ L ______ ~
I Any Pow" Fm Pow" Fm Shut D~n i
I X-Level Data Bus DMAC Point Interrupted I

I F-Level Control or Data Bus or DMAC Point Interrupted I
Service Subprogram

I F-Level Foreground Data Bus, DMAC, Restart F-Ievel Control I I Task Undefined Op-Code I
I B-Level Data Bus, DMAC, Restart F-Level Control I I Undefined Op-Code

I Any Except Foreground Undefined Op-Code Catastrophic Failure II
or Background Task L ___________________ ~

b.

c.

DMAC interrupts, including disc, magnetic tape
and line printer.

Data Bus interrupts including the teletype­
writer, paper tape equipment, and card reader.

X-level programs operate completely within time-islands
bounded by the inhibit of interrupts, which occur at
interrupt answering, and the enabling of further interrupts
at the end of each X-level sequence. Therefore, X-level
subprograms must operate within the smallest practical
time-frame.

Additional priority stratification is used within the X-level.
Internal interrupts, being of highest priority, can actually
interrupt the processing of DMAC and Data Bus interrupts.
DMAC interrupts can occur during the processing of a Data
Bus interrupt.

In general only minimum processing is done at the X-level.
The primary purpose is to pass pertinent information to the
F-Ievel.

When an interrupt occurs, the X-level is executed. The
previous operating level could have been the X-level,
F-Ievel, or B-Ievel. Within the F-Ievel, operation may have
been within the control portion, or within a foreground

4-4

task. When the X-level sequence is complete, control is
yielded to varying points within the supervisor, depending
upon which level was originally interrupted. This
relationship is shown in Table 4-1.

4-2.2 F-LEVEL. The foreground level contains the resident
worker programs and service subprograms.

The F-Ievel is divided into two sections: the foreground
control section (part of the supervisor) and the foreground
worker tasks and service subprograms (external to the
supervisor). The purpose of the control section is to
schedule and execute the F-Ievel worker tasks and service
subprograms on a priority basis. The foreground worker
tasks are supplied by the user and perform application
functions. Service subprograms may also be user supplied.

The F-Ievel gains control from the X-level whenever its
tasks are complete. Any service request which may have
occurred will have been placed in a queue (waiting list) at
the X-level for subsequent activation of the appropriate
service subprogram. The service requests (including I/O,
control functions, and user service subprograms) and service
subprogram status are checked to determine if an event has
occurred that should cause them to operate. If any service
subprogram execution is thus enabled it may either initiate
processing of the next service request in its queue, or it may
continue or terminate the processing of a previous request.

TABLE 4-2 WORKER TASK LIST

HIGHEST
PRIORITY

LOWEST
PRIORITY

FOREGROUND 1
QPACKET

FOREGROUND 2
QPACKET

•
•
•

•
•
•

FOREGROUND N
QPACKET

BACKGROUND
QPACKET

WORKER TASK LIST

When all service subprograms have completed whatever
processing can be accomplished without undue delays, the
control portion of the F-Ievel supervisor starts scanning the
F-Ievel worker task list to determine the next foreground
worker to be executed. This is done by sequentially
examining Q Packets. A typical Q Packet is shown in Table
4-2. The program executed will be the first one in the string
of Q Packets which is enabled, queued (or requested to be
made active), and is not awaiting completion of a service
request.

The foreground program being executed retains control
until a hardware interrupt occurs or until it returns control
to the supervisor via a service request. The service requests

4-5

QUEUE FLAG
= O. NOT QUEUED
~ O. QUEUED

o

SERVICE REQUEST
= O. NOT BUSY
~ O. BUSY

= 0 DISABLED
ENABLE

~ 0 ENABLED 2

RETURN ADDRESS 3

RESTART ADDRESS 4

A
5

E
X
M REGISTER
S STORAGE
L
B
SR 12

ADDRESS OF ILLEGAL
INSTRUCTION INTERPRETATION 13
PROGRAM

EQUIPMENT ASSIGNMENT 14

SPARE 15

Q PACKET FORMAT

available to the foreground task program can be categorized
as follows:

a. Execute I/O Service. These cause an I/O request
to be queued for one of the I/O service
subprograms. In this case, execution of the
worker is suspended until completion of the
requested I/O action.

b. Perform Control Function. These are
housekeeping function requests such as a
request to assign a peripheral device, to activate
(or queue) another foreground task, or to
terminate the task.

If an illegal service request is encountered or an
irrecoverable I/O condition occurs, the appropriate worker
is removed from the foreground scan (disabled).

4-2.3 B-LEVEL. The B-Ievel consists of a job control
program (BATCH or ·SPEX) and various task processors
which are considered external to RTM-I.

The function of BATCH is to schedule and load task
processors as directed by job control statements input via
the card reader. Once loaded the task processor is
performed like any foreground program, i.e., control is
retained until an interrupt occurs or a service request is
encountered. SPEX will load and execute a program upon
receipt of an operator request. It will use a teletypewriter,
high speed paper tape reader, or card reader to read the
object.

If an illegal service request or an irrecoverable I/O condition
occurs in a background task processor, the task processor
execution is terminated. BATCH or SPEX resume
monitoring for background task requests.

4-3 SERVICE SUBPROGRAMS.
Service Subprograms generally fall into two categories:

a. those that respond to control function requests

b. those that respond to input/output service
requests.

A library of System Service Subprograms is furnished with
RTM-1. The user, however, may elect to add to this library
or to replace a portion of the System Service Subprograms
with his own. This portion of the User's Guide is devoted to
acquainting the user with the interface which exists
between Service Subprograms and the remainder of the
system.

4-3.1 I/O SERVICE. RTM-I allows for a total of 80 Service
Subprograms to be resident in core. Of these, 48 may
respond to I/O service requests. A table of 48 address
constants is resident in the supervisor in table X.DVTB.
This table contains the following sequence of names, each
defined (with respect to the supervisor) as an external
reference:

X.DVTB DATA D.VOlA
DATA D.VOlB
DATAD.V02A
DATAD.V02B
DATAD.V03A
DATAD.V03B

DATAD.V24A
DATA D.V24B

4-6

These addresses act as pointers. Each address may point to
a twelve-word device table which is supplied externally to
the supervisor.

4-3.2 I/O SERVICE DEVICE TABLES. The names
D.VOlA, D.VOlB, ... , D.V08B refer to device tables dealing
with the eight potential DMAC ports. The digits 1 to 8 refer
to ports 0 through 7 respectively. The A and B allow two
tables per port. The two tables are used commonly by the
input and output functions respectively if the device
performs both input and output. However, there is no
system requirement that the two tables be used this way.

The names D.V09A, D.V09B, ... , D.V24B refer to device
tables dealing with the 16 potential bit positions on the
Data Bus interrupt expander. The A and B allow two tables
per interrupt expander bit position. Again they commonly,
but do not necessarily, refer to the input and output
functions. The numbers 09 to 24 refer to bit positions 0
tlirough 15 respectively.

Each device controller attached to the system must have a
twelve-word device table bearing the appropriate name
D.VxxA (where xx is a number from 01 to 24). It may
optionally have a second device table named D.VxxB. The
twelve words within the device table contain information
which interfaces an I/O service subprogram with the
supervisor.

WORD ONE. This word contains the address where the
supervisor and the service subprogram may either find or
put the status word received from the device controller.
With the DMAC, the addresses begin with 0098 16 and
continue through OOA 716 at two words per port. Usually,
the device controller will automatically deposit status in the
first word of the pair for the port. It is possible to use the
second word in conjunction with device table D.VxxB,
provided the controller is built to operate that way.

With the Data Bus, the supervisor will read the status from
the device at interrupt response time. The status is obtained
from an external device address given in Word Twelve of
the device table and is stored in the location given by Word
One. If both D.VxxA and D.VxxB are defined, then both
status words are stored in response to a single interrupt. If
D.VxxA is not defined for a given interrupt expander bit
position, then no status is stored.

WORD TWO. Word Two contains a static bit value which
could never be attained as a legal status word. Usually, it is
all zeros or all ones. When initiating an I/O activity, the
service subprogram will be directed to an address by Word
One. The value of the data at that address should be set
equal to the value of Word Two by the service subprogram.

When determining which service subprograms to execute,
the supervisor will go to the address which is given by Word
One and compare the value of the .::ontent of that location

with the value of Word Two. If they are the same, the
supervisor assumes the device has not completed the I/O
activity or does not require service. If the values differ, then
the supervisor will execute the service subprogram for
device service.

WORD THREE. Word Three contains all zeros except for
possibly a single one bit. The bit position of the one bit
corresponds to the position for this device in an equipment
assignment word. Bit position 0 is illegal for this purpose.
Up to 15 devices can be assigned. That is, they may be
requested for assignment by a F-Ievel or B-Ievel task prior
to use. Once assigned, no other task may use the device
until it is released. Word Three may be set to zero. If Word
Three is set to zero, then the device may be used by any
task on a first come, first serve basis. Standard equipment
assignments follow:

Bit 9 Card reader
Bit 10 Line printer
Bit 11 Magnetic tape
Bit 12 Disc
Bit 13 High speed tape reader
Bit 14 High speed tape punch
Bit 15 Teletypewriter

WORD FOUR. Word Four contains the address of a block
of memory which the service subprogram may use for data
storage. This feature allows the same service subprogram to
be used for more than one similar device. The amount of
storage required is dependent upon the individual service
subprogram.

WORD FIVE. This word contains the address of the I/O
service subprogram.

WORD SIX. Word Six is the address of a flag for
communication between the service subprogram and the
supervisor. If the flag is zero, the service subprogram is
telling the supervisor there is no current activity with the
device and the service subprogram is in a condition to
process a new service request.

If the flag is set not zero by the service subprogram, then
activity with the device is assumed, and the supervisor will
return to the service subprogram only when the status word
becomes different from tae static value in Word 2.

WORD SEVEN. Word Seven is the queue starting address
for the stacking of service requests for this device. Items are
placed in the stack when a task performs a service request.
The queue is composed of one-word entries.

4-7

The queue format follows:

NUMBER OF WORDS/ENTRY (=1)

NEXT "PUT" POINT ENTRY NUMBER

NEXT "GET" POINT ENTRY NUMBER

CURRENT NUMBER OF ENTRIES QUEUED

MAX NUMBER OF ENTRIES ALLOWED

AREA FOR ENTRIES
AS DEFINED

WORD EIGHT. Word Eight is the service request call
address. The service subprogram uses this address to locate
the arguments for the request to be processed. The
supervisor obtains this address from the queue defined in
Word Seven. It places a new address in Word Eight
whenever the flag addressed by Word Six is zero and the
queue is not empty.

WORD NINE. This word is reserved for future expansion to
the supervisor.

WORD TEN. This word serves as a flag to the supervisor
and denotes the relative urgency of response to change in
status value from the device. If zero, the supervisor will
wait until the next Service Request Scan before entering
the service subprogram. Normally this will be adequate. The
service subprogram would then be entered in its turn as the
supervisor scans the device tables in order. If Word Ten is
not zero, the supervisor will enter the service subprogram
directly from the X-Level. The Service Subprogram may, of
course, vary its response urgency by altering the value of
this flag between zero and not zero. Word Ten, however,
only applies to Data Bus devices; that is D. V09A through
D.V24B. This flag must always be zero for DMAC devices.

WORD ELEVEN. This word contains the logical device
number for the peripheral to which this device table refers.
Each device must have a unique logical device number.

WORD TWELVE. This word applies to Data Bus devices
only and contains the group and external address number
for obtaining device status and the group and external
address number for obtaining data. The values correspond
to the rightmost seven bits of an RDS or WDS instruction.
The value for addressing the device status is contained in
the least significant eight bits and the value for addressing
data in the most significant bits.

4-3.3 I/O SERVICE REQUESTS. Service requests by a
task program use the undefmed operation interrupt feature
to link to the supervisor. The op-code (11111h is used for
I/O Service Requests. A call takes the general form:

TRAPS TO SUPERVISOR

11111 5 SERVICE SUBPROGRAM
OEPENDENT BITS

ARGUMENT 1

ARGUMENT 2

LOGICAL DEVICE NUMBER

4-8

The request is queued for the device corresponding to the
logical unit specified in the least significant six bits of the
word containing the (11111 hop-code.

4-3.4 I/O SERVICE GENERAL FLOW AND LINKAGE.
Figures 4-3 and 4-4 are general flow diagrams showing the
structure of an I/O service subprogram and the
corresponding supervisor segments.

The I/O Service Subprograms are entered at either of two
sequential locations depending upon the purpose of entry.
Entry at START implies the flag addressed by Word Six in
the device table is zero, the device is not currently busy,
and a new service request address has been placed in Word
Eight of the device table. Entry at START +1 implies
that a change in status word has occurred, and the device
has been busy.

In any event the address of the device table is put in register
M by the supervisor at entry. Entry is by Branch and Link.
The service subprogram may use registers at will without
the necessity to save and restore them. The service
subprogram itself may not make any service request calls.

The service subprogram returns control to the supervisor at
either of the two sequential locations following the branch
and link instruction.

The first return is provided for unrecoverable error
conditions, the second for normal returns. The error return
causes the supervisor to disable the calling F-Ievel or B-Ievel
task, and to unassign its equipment pending operator
intervention.

The service subprogram, prior to return, must make
appropriate adjustments to the device table. This includes
updating Word Eight to now point immediately past the
last argument of the call. The service subprogram must do
this since it alone knows the length of the argument list.

4-3.5 CONTROL FUNCTION SERVICE. ~TM-I inter­
faces with up to 32 service subprograms which respond to
control function service requests. Certain of these belong to
the basic system service subprogram library and are
necessary for system integrity.

Each control function service subprogram bears the name
"C.Fxx", where xx is a number from 01 to 32. Each such
subprogram supplied by the user should be separately
assembled and linked with the supervisor at system
generation time. It should define its name, C.Fxx, as an
entry point.

.j:.

-0

AT START

OBTAIN ARGUMENTS
OF REQUEST

VALID

SET FLAG ADDRESSED BY
WORD 6 =1= 0 OR "BUSY"

INITIATE I/O
ACTION

NORMAL
RETURN

INVALID

OK
FINISH

RETRY OR
CONTINUE

EXAMINE STATUS

SAME REQUEST~ __ ...a..... __,

UPDATE WORD 8
PAST ARGUMENTS

SET FLAG

ADDRESSED BY
WORD 6=OOR

"NOT BUSY"

START NEXT
I/O

Figure 4-3. I/O Service Request General Flow

FINAL
BAD

X·LEVEl

OBTAIN STATUS

SERVICE REQUEST SCAN

DEQUEUE NEXT
REQUEST

SET STATUS

-WO~D2

YES

(NEED NEW REQUEST}

NO (STIll BUSY}

Figure 4-4. Supervisor Flow Relative To I/O Request

4-10

The routines C.V01 through C.F07 are predefined as part
of the monitor. They accomplish the control functions
outlined below:

C.F01 Terminates and dequeues calling task and
returns control to supervisor. Releases its
assigned equipment.

C.F02 Requests that another task, as specified, be
made active.

C.F03 Releases control momentarily to supervisor
for a scan of the work list deleting the calling
task for one scan only (allows next lower
priority program momentary access).

C.F04 Assigns indicated equipment.

Bits 1-8 - non standard equipment
Bit 9 - card reader
Bit 10 -line printer
Bit 11 - magnetic tape
Bit 12 - disc
Bit 13 - high speed tape reader
Bit 14 - high speed tape punch
Bit 15 - teletypewriter

C.F05 Terminates calling BATCH background task.
Releases its assigned equipment. The next
task in the input stream may now to
processed.

C.F06 Requests a background task processor to be
loaded and executed. This control function
may be used by BATCH background task
processors only. Through use of this function
a large background program may be broken
into several smaller programs and the smaller
programs executed sequentially. Data is
passed from one program to another via disc
or magnetic tape or may be left in the hi~h
numbered core locations. If the last option is
selected it is the programmer's responsibility
to assure that the incoming program does not
overlay its data. This technique is called
chaining.

C.F07 Used to pass to the monitor the address of a
program which will interpret any non-system
illegal operation codes. This service request
must be used before any non-system ilJegal
operation codes are used. If not R TM-I will
assume the illegal instructions are not valid
and will disable the program using the illegal
instruction. The floating point arithmetic
package is the most commonly used program
in this category.

4-11

User supplied control functions should be numbered C.F32,
C.F31, ... , as low numbered control functions will be used
as future additions are made to the system service
subroutine library.

Control function service subprograms work in much the
same manner as I/O service subprograms. The supervisor
will enter them with the address of a table (similar to a
device table) in register M.

The following sequence represents a supervisor entry into a
control function service subprogram:

Communication Table Address ~ M
BRL C.Fxx
error return
normal return.

The error return will occur if the arguments of the service
request call are invalid. In this event the supervisor will
disable the offending task.

The communication table is an eight-word table within the
supervisor. The address is in register M at entry to the
service subprogram. The format is as follows:

Words 1-7 Reserved for supervisor use.

Word 8 Address of service request call. Must be
advanced past arguments by the handler
before exit.

Control function service requests in a task program use the
undefined operation code (11111 h for linkage to the
supervisor. A call appears as follows:

11111 5 BIT SERVICE
SUBPROGRAM No.

ARGUMENT 1

ARGUMENT2

00000o

The five-bit number correspondence is: (OOOOOh to C.F01,
(OOOOlh to C.F02, ... , (11111h to C.F32.

4-3.6 NON-SYSTEM ILLEGAL INSTRUCTION TRAPS.
By use of the control function C.F07 the user may
interface a program with the monitor to do additional
interpretation of illegal instruction traps. If such a service
request has been made the monitor will test illegal

instructions for all ones in bits 0-4. If these bits are all ones
it will proceed to process the trap as a service request. If
not the illegal instruction will be passed to the user supplied
program for further interpretation.

RTM-I calls the illegal instruction program as follows. In
location START is stored the address of the illegal
instruction + 1. In location START+1 is stored the contents
of the status register at the time the illegal instruction was
encountered. The L register contains an address to which
control is returned if an error condition is detected. RTM-I
will transfer control to location START+2. The illegal
instruction interpretation program should return control
directly to the instruction immediately after the illegal
instruction for normal returns. This may be done by
executing an @LSB START instruction. All interrupts are
locked out during execution of the illegal instruction
interpretation routine.

One such program is the Floating Point Arithmetic Package.
This is discussed in more detail in Section III.

4-4 FOREGROUND TASKS.
Foreground task programs are supplied by the user. They
perform the application oriented functions of the total
system. Foreground task programs are assembled
independently and linked to the supervisor at system
generation time.

The load time linkage with the supervisor is through the
worker task list (Table 4-2). During execution a foreground
task calls upon the supervisor with service requests. These
are outlined in paragraphs 4-3.4, 4-3.5, and 4-5.

Foreground tasks are priority oriented by their relative
position in the worker task list. The user establishes this
priority at system generation time.

Foreground tasks should not use any storage space not
explicitly allocated to them through use of such statements
as SAP-I BSS and COMM, or FORTRAN variable
definition. In particular high numbered core locations are
not necessarily unused. These locations are allocated to
background task processors.

4-5 STANDARD SERVICE REQUESTS.
Each service request has three fields: the operation code in
bits 0-4, the call code in bits 5-9 and the logical device
number in bits 10-15. The service request may be followed
by any number of arguments to be used by the service
subprogram. The number of arguments is unique for each
service subprogram.

The operation code used is the undefined operation code
111112 .

4-12

The call codes are unique for each service subprogram.
They generally correspond to the major functions which
the user may wish the service subprogram to perform.

The logical device numbers are 0 for control functions and
01-48 for I/O service requests.

The service request may be assembled in the user program
through use of a DATA statement or through use of an
operation defined by a FRM directive. In the following it is
assumed that a FRM has been used to define the operation
SVR as follows:

SVR FRM 5,5,6

The logical units indicated are the standard logical unit
assignments listed in Section I.

Magnetic tape I/O Requests specify a unit number as part
of the call code. This may be handled by use of an FRM
assembler directive as follows:

SVT FRM 5,2,3,6

In the following the tape unit number is indicated
symbolically as UNIT.

4-5.1 BASIC CONTROL FUNCTIONS.

Terminate Task

SVR >IF,O,O

Remove this task from foreground. Terminates program
and unassigns its equipment.

Queue a Task

SVR
DATA

>IF,l,O
number

Activate (or queue) the foreground task associated with Q
packet number N in the worker task list.

Momentarily Release Control

SVR >IF,2,O

No operation. Releases control momentarily to supervisor
for a single scan of the work list - deleting the calling task
for one scan only. Allows the next lower priority program
momentary access.

Assign Equipment

SVR
DATA

>IF,3,O
bits

Requests assignment of the equipments represented by ones
in the least significant 15 bits of the argument word.

Return Control to BATCH

SVR >IF,4,O

Terminates execution of a BATCH background task
processor. Unassigns its equipment.

Chain Tasks

SVR
DATA

>IF,5,O
card address

Use the "control card" pointed to for requesting a new
program to overlay the current background task. The
"control card" will have the same format as a physical
control card except that the card image need not
necessarily be a full 80 columns. Only as many columns as
contain useful information need be used. The card format
uses 2-character per word ASCII code.

Initialize Illegal Instruction Interpretation

SVR
DATA

>IF,6,O
address

The program pointed to is to be used to perform additional
interpretation of illegal instruction traps as described in
paragraph 4-3.7.

4-5.2 TELETYPEWRITER I/O REQUESTS.

Print - One Character per Word

SVR
DATA
DATA

>IF,O,l
buffer address
number of characters

Print N characters, stored one per word right justified, on
the teleprinter.

Print - Two Characters per Word

SVR
DATA

>IF,l,l
buffer address

4-13

Print characters from the buffer, stored two per word left
to right, on the teleprinter until encountering a terminating
character of all binary zeros.

Input - One Character Per Word

SVR
DATA
DATA
DATA

>IF,O,2
buffer address
terminating character
number ot characters

Input a maximum of N characters or until the terminating
character is found. Characters are stored right justified one
per word in the buffer. At return the A-register contains the
actual character count.

Input - Two Characters per Word

SVR
DATA
DATA
DATA

>IF,1,2
buffer address
terminatin~ character
number ot characters

Input a maximum of N characters or until the terminating
character is found. Characters are stored left-to-right two
per word in the buffer. At return the A-register contains the
actual character count.

4-5.3 DISC I/O REQUESTS.

Read N Sectors

SVR
DATA
DATA
DATA

>IF,O,8
disc track-sector address
buffer address
number of sectors

Read N sectors from disc into the buffer.

Write N Sectors

SVR
DATA
DATA
DATA

>IF,1,8
disc track-sector address
buffer address
number of sectors

Write N sectors from buffer onto the disc.

Open Background Work Area File

SVR
DATA
DATA

>IF,2,8
file number F
relative track-sector address

Open a disc file number F .;;;; 4. The file is located in the
BATCH Work Area at the address given. The address is
relative to the start of the Work Area. This call is available
only if BATCH is present. The file start remains defined
until a new open is issued for that me number. The
definition carries forward to the next job in the job stream.
Thus mes in the disc Work Area may be used to pass
information from one job to the next.

Write on Background Work Area File

SVR
DATA
DATA
DATA

>IF,3,8
file number F
buffer address
number of sectors

Write N sectors onto disc me F starting at the next available
sector in the me. The data is obtained from the buffer in
core. This call is available only if BATCH is present. The
disc file is treated as a sequential me. Each request adds
more data to the me. At return the A-register will contain
the next available track-sector address relative to the start
of the Work Area. This may be used in building an
XDOPEN for a subsequent me.

Read from Background Work Area File

SVR
DATA
DATA
DATA

>IF,4,8
file number F
buffer address
number of sectors

Read N sectors from disc file F starting with the next
sequential sector in the me. The data is placed in the buffer
in core. This call is available only if BATCH is present. The
disc file is treated as a sequential me. Each request reads
more data from the me. At return the A-register will
contain the next sequential track-sector address relative to
the start of the Work Area. This may be useful in opening a
subsequent file.

Reset to Start of File

SVR
DATA

>IF,5,8
file number F

Reset file F to the start of the file. This call resets both the
read and write pointers for the me.

4-14

4-5.4 HIGH SPEED PAPER TAPE READER I/O
REQUESTS.

Read in Object Format

SVR
DATA
DATA
DATA

>IF,O,4
buffer address
number of words
terminating character

Read paper tape in object format. Store data beginning at
the buffer address. Read up to N words or until a
terminating character is read. At return the A-register
contains the actual word count.

Read - One Character per Word

SVR
DATA
DATA
DATA

>IF,1,4
buffer address
number of characters
terminating character

Read up to N frames of paper tape. Store 2 characters per
word left-to-right in the buffer. Stops after N characters or
when the terminating character is read. Actual character
count returned in the A-register.

Read - Two Characters per Word

SVR
DATA
DATA
DATA

>IF,2,4
buffer address
number of characters
terminating character

Read up to N frames of paper tape. Store 2 characters per
word left-to-right in buffer. Stops after N characters or
when the terminating character is read. Actual character
count returned in the A-register.

4-5.5 HIGH SPEED PAPER TAPE PUNCH I/O
REQUESTS. On return the A register contains punch
status. The status values are zero-normal and non zeroclow
tape.

Turn Punch Motor On

SVR >IF,O,3

Turn punch motor on.

Turn Punch Motor Off

SVR >IF,1,3

Turn punch motor off. .

Punch One Character

SVR >IF,2,3

Punch character in 8 least significant bits of the A-register.

Punch in Object Format

SVR
DATA
DATA

>IF,3,3
buffer address
number of words

Punch N words from buffer in object format.

Punch - One Character per Word

SVR
DATA
DATA

>IF,4,3
buffer address
number of characters

Punch N Characters, stored 1 per word in the 8 least
significant bits.

Punch - Two Characters per Word

SVR
DATA
DATA

>IF,5,3
buffer address
number of characters

Punch N characters, stored 2 per word left-to-right.

Punch Leader /Trailer

SVR >IF,6,3

Punch 120 blank frames.

4-5.6 CARD READER I/O REQUESTS. The card reader
service subprogram tests for $ in column 1 of any card it
reads. If found it uses an alternate return. The user program
should determine if a control card was actually read. If so
the end of the input cards has been reached. Do not read
further.

4-15

Read in Binary

SVR
DATA
DATA

>IF,O,5
buffer address
number of columns
control card format return
normal return

Read N columns from the card reader. Store the data as a
binary card image (1 column per word), 9's row through
12's row in bits 4-15 respectively.

Read - One Character per Word

SVR
DATA
DATA

>IF,l,5
buffer address
number of columns
control card format return
normal return

Read N columns, convert to ASCII, store 1 per word right
justified.

Read - Two Characters per Word

SVR
DATA
DATA

>IF,2,5
bufter address
number of columns
control card format return
normal return

Read N columns, convert to ASCII, store 2 per word,
left-to-right.

4-5.7 LINE PRINTER I/O REQUESTS.

Print on Next Line

SVR
DATA
DATA

>IF,O,6
buffer address
number of characters

Advance form one line and print N characters stored 2 per
word left-to-right.

Print at Top of Form

SVR
DATA
DATA

>IF,1,6
buffer address
number of characters

Advance to form top and print N characters stored 2 per
word left-to-right.

Print on Current Line

SVR
DATA
DATA

>IF,2,6
buffer address
number of characters

Suppress form control and print N characters stored 2 per
word left-to-right. Note this appends data to a partially
completed line. Neither a carriage return nor a line feed are
output unless present in the user's buffer.

4-5.8 MAGNETIC TAPE I/O REQUESTS. For all tape
service requests, at return the A-register contains the
following status word:

zeros
bit 0
bit 1
bit 2
bit 3
bits 4-15

Normal
End of Record (EOR)
End of File (EOF)
End of Tape (EOT)
Beginning of Tape (BOT)
Number of records not skipped
or characters not read

All tape service requests contain an extra 2-bit parameter
which specifies unit number. The call code is reduced to its
rightmost 3 bits to make room for the unit number.

Unload Tape

SVT >IF,UNIT,O,7

Unload tape unit.

Rewind Tape

SVT >IF,UNIT,1,7

Rewind tape unit.

Write End-of-File

SVT >IF,UNIT,2,7

Write end of file mark.

Backspace

SVT
DATA

>IF,UNIT,3,7
number of records

Backspace N records or until detecting an EOF or BOT
whichever occurs first. Can be used to backspace file by
setting N to a large number.

4-16

Write

SVT
DATA
DATA

>IF,UNIT,4,7
buffer address
number of characters

Writes N characters, packed left-to-right 2 per word, as a
tape record.

Read

SVT
DATA
DATA

>IF,UNIT,5,7
buffer address
number of characters

Read N characters or until EOR, EOF, or EOT whichever
occurs first. Stores data packed 2 characters per word
left-to-right.

Skip

SVT
DATA

>IF,UNIT,6,7
number of records

Skips forward N records or until detecting an EOF or EOT
whichever occurs first. Can be used to forward space file by
setting N to a large number.

4-6 SPEX.
SPEX is a background job control program for those users
who do not require the disc capabilities of the BATCH
processor. SPEX will load and execute a program upon
request from the user. Upon completion of the program
execution no further background processing will take place
until the next request is received.

A SPEX load request is made by depressing the CONTROL
button on the teletypewriter and typing N or 0 on the
teletypewriter. Use of N or 0 determines the point at which
loading commences. .

If CONTROL N is typed no overlay will occur. The
program will be loaded immediately following the last
foreground task program. Foreground processing is
suspended while the program is being loaded. SPEX restores
foreground processing automatically after completion of
loading.

If CONTROL 0 is typed, overlay will be used. SPEX will
dequeue all foreground tasks, delay until any I/O in process
is completed, and then load the program over the
foreground Q packets and foreground task programs.

If overlay is used, the user will typically take whatever steps
are necessary to terminate and disconnect any ?rocesses

being controlled by the foreground workers before
lnlt1a ting SPEX loading. To reinitiate foreground
processing, the core resident monitor and foreground
workers must be reloaded.

Overlay is useful to those whose computer memory is not
large enough to allow background programs to be loaded
after the foreground workers. Overlay may also be desirable
when the user does not want a non-debugged program
executing in the background to possibly interfere with
foreground processing.

SPEX uses the loader program which loaded the monitor
and workers. RTM-I and SPEX allow a background program
to use all of the memory from the last location occupied by
the background program to the highest numbered core
location possible. Several of the background task programs
discussed in Section V make use of this feature.

4-7 BATCH.
BATCH will process a job stream input as a background
operation, using whatever CPU time the real time
foreground programs do not require. BATCH will read each
control card from the card reader and retrieve and execute
the Task Processor named on the card. BATCH does not
overlay any foreground programs. As with SPEX, BATCH
task processors may use high numbered core locations for
data storage.

Batch processing is initiated by depressing the CONTROL
button on the teletypewriter and typing B on the
teletypewriter. BATCH will then attach the card reader and
disc and begin execution. BATCH execution is terminated
by a card with $ EOB in columns 1-5 or by execution of
the Terminate Task control function by some task
processor. At this time, the card reader and disc are
released.

NOTE
Most task processors will use the Return
Control to BATCH control function to
terminate their execution. The Terminate
Task and Return Control to BATCH
options are discussed further in Section
VI.

4-7.1 CONTROL CARDS. Control cards have the
following format:

Column 1 $

Column 2 Blank

Column 3-8 The name of the program on the disc to
be retrieved and executed (left adjusted)

Column 13-71 The options, if any for the retrieved
programs.

4-7.2 THE SYSTEM DISC. The disc memory is subdivided
logically in RTM-I/BATCH operation into the following
areas:

a. RTM-I Core Image

b. Work Area reserved for Foreground Tasks

c. Catalog of Background Task Processors

d. Task Processors for BATCH Background

e. Work Area reserved for Background Tasks.

The boundaries between areas a, b, c, and d are initially set
at system generation time. The boundary between areas d
and e changes dynamically as the INSTAL, DELET, and
COMPRS task processors are used to add and remove user
programs in area d.

Areas a, c, and d are protected from access by non-system
routines by the disc I/O service subprogram. If more than
one foreground task is using the area b, it is the users
responsibility to resolve any conflicts in the use of the
available storage area. Area b is accessed using call codes 0
and 1.

Area e is accessed by the use of any of the call codes of the
disc I/O. Call codes 2 through 5 allow logical partitioning of
area e into four files.

4-7.3 BATCH INITIALIZATION. The BATCH object
includes three separate but interrelated programs:

a. The BATCH processor itself

b. The INSTAL task processor

c. The system disc initialization program.

Only the BATCH processor is core resident. The other two
programs are overlaid by background task processors.

The disc initialization program will perform initializations
of the areas a, c, and d as described in paragraph 4-7.2. It
will then initiate normal monitor processing.

The first thing which should be done on any RTM-I/
BATCH system after loading and initiating execution of the
monitor is to install background task processors on the disc.
This is done with the $ INSTAL control card as described
in Section VI. After installing all desired background task
processors, systems which include magnetic tape drives
should save a copy of the disc by use of the $ SAVED
control card. After completion of this operation normal
processing may begin.

4-17

4-8 SYSTEM GENERATION.
The basic monitor will be supplied with external references

so that the monitor can be linked to the users foreground

task programs, the IQI packets, the I/O device tables and

Service Request Subprograms.

The linkage sequence is defined below:

a. Supervisor Object; required.

b.

c.

Device Table Definition Objects for Each
Device. These objects result from an assembly
of the input given in Figure 4-5. Only devices
actually used need be defined.

Service Request Subprogram Objects; as
required.

d. SPEX Object; optional.

e.

f.

g.

Work List Definition Object. This object results
from an assembly of the input given in Figure
4-6. Each foreground task must be defined in
priority order. Background is not listed.

Foreground Task Objects. Each task should
indicate its name (entry point) in a DEF
statement.

BATCH Object; optional. SPEX and BATCH
cannot both be included although both can be
left out.

h. Block Data for Foreground COMMON Areas;
optional.

The link editor will require the name of the main program
to be specified as a parameter. For system generation of a
SPEX system, the name R.TMX must be used. For system
generation of a BATCH system the name R.TMB must be
used.

At the completion of the system generation link edit several
symbols will be noted as unresolved external references by
the link editor. Some of the symbols which may appear and
their interpretation are noted below. If any other symbol
appears the system generation is faulty. The elements
linked to form the system should be checked for accuracy.

The symbols noted below mayor may not be valid
unresolved external references. The validity is a function of
what is included in the system being generated. The
appearance of any unexpected symbol in the list of
unresolved external references is ::n indication of a faulty
system generation.

The possibly valid undefined external references are:

D.VxxA
xx = 01-24

D.VxxB

Device xxA or xxB not present in system.

C.Fxx xx = 08-32

Control function xx not in system.

N.PQ

X.PQ1

No workers in system.

N.DS

Workers require no DISC area.

D.MAP

B.ATCH

BATCH option not in system.

S.PEX

SPEX option not in system.

4-9 RESTORE DISC.
The restore disc program is a stand-alone program for
regenerating the BATCH disc from a previously generated
copy of the disc contents.

The save disc utility should be used anytime a permanent
disc content has been built. This utility will save the disc
contents except for the background work area on magnetic
tape.

If, at some future time, the disc contents are destroyed,
they may be restored using the restore disc program
without the necessity of performing a system generation.
This step may be followed by the reload from disc
operation. The restore disc program is coded to execute
stand-alone on the assumption that, if the disc contents
have been destroyed, the monitor has probably also been
destroyed.

The following procedure is used:

a. Load and execute the restore disc program.

4-18

NAME OPERATION OPERAND ITEM

PEF D. V c::J -FILL IN XXA ~R XXB -XX=Ol T~ 24 DEVICE NUMBER
D. V c::J EQU $ -SAME AS AB~VE. 01A-OBB=DMAC.09A-24B=DATA BUS

REF I -HANDLER NAME
DATA I I -ADDRESS F~R STATUS W~RD. DMAC> 98- > A7. BUS=ANY
DATA > c::::::l -HEX VALUE F~R IMP0SSIBLE STATUS. LIKELY FFFF
DATA > c::::::::J -EQUIPMNT ASSGNMNT BIT- > 1.2.4. B. 10 •...• 4000

BOOO ILLEGAL. USE 0 F0R N~ ASSGNMNT
DATA DATAS -ADDRESS F~R DATA ST0RAGE BY HANDLER
DATA -NAME ~F USER HANDLER
DATA FLAG -ADDRESS ~F DEVICE BUSY FLAG
DATA STACK -ADDRESS ~F REQUEST QUEUE C~NTR~LS
DATA 0 -SL0T F0R ADDRESS ~F TASK'S SERVICE REQUEST
DATA 0 -RESERVED F0R FUTURE
DATA 0 -O=CALL HANDLER FR0M SRVC RQST SCAN. l=ALS~ X-LEVEL
DATA c::J -L~GICAL DEVICE NUMBER F0R THIS DEVICE
DATA >1 -USE 0 F~R DMAC DEVICE. DEVICE ADDR F~R DATA BUS

STACK DATA 1 .0.0.0 QUEUE C~NTR~LS
DATA 0 -DECIMAL SIZE F0R REQST STACK IN ENTRIES
BSS 0 -DECIMAL SIZE F0R REQST STACK IN ENTRIES

DATAS BSS 0 -DECIMAL SIZE 0F DATA ST~RAGE F0R HANDLER
FLAG DATA 0 -DEVICE BUSY FLAG

END

Figure 4-5. Device Table Set Up

NAME OPERATION OPERAND ITEM

DEF N.PQ.X.PQ1,N.DS
N.PQ DATA [J -NUMBER 0F Q-PACKETS IN LIST
N.DS DATA [J -NUMBER 0F DISC SECT~RS RESERVED F0R F~REGR0UND
X.PQ1 EQU $
·*REPEAT NEXT SECTIf/lN F0R EACH Ff/lREGRf/lUND Q-PACKET************************

*
REF c:::::J -FILL IN TASK PRf/lGRAM NAME *
DATA 0,0.1 IN EACH Pf/lSITI0N *
DATA *
DATA *
DATA 0.0"" •• ,.,0 *

*
.***

END

Figure 4-6. Work List Set Up

4-19

b.

c.

The program will type a message requesting the
disc copy to be placed on the magnetic tape
drive.

The program will transfer the contents of the
tape to the disc.

4-20

d.

e.

The program will idle. If it is desired to load the
core resident programs from the disc, press the
RUN pushbutton.

After loading core memory, control is trans­
ferred to the monitor.

SECTION V

SPEX OPERATING PROCEDURES

SECTION V

SPEX OPERATING PROCEDURES

5-1 GENERAL PROCEDURES.
SPEX (Single Program Executive) is an optional
background control program supplied with RTM-I. It
executes a single background task processor. SPEX is used
on Model 980 systems which do not have a disc memory
and a card reader.

All background task processors supplied by Texas
Instruments and run under control of RTM-I/SPEX input
program options similarly. Once the program is loaded, it
will typewrite a request for appropriate option
specifications. If a card reader is part of the computer
system, the options are entered by placing a card in the
format of a BATCH control card in the card reader (refer to
Section VI). If no card reader is available, the
teletypewriter is used.

Most options are specified by single alphanumeric
characters. The characters used and their meanings are:

1 Magnetic tape drive No.1
2 Magnetic tape drive No.2
3 Magnetic tape drive No.3
C Cards
D Disc
E End of Task
G Load and go
L Line printer
N Not used or None
P High speed paper tape
T Teletypewriter

When the input is read from cards, the options may be
specified by a card using the BATCH control format.
Columns 13, 15, 17, ... , 79 are used for single letter
options. The columns between option letters are usually
punched with a comma to aid readability. However, the
task processors do not interpret these columns nor do they
interpret columns 1 - 12. If an option specification requires
more than one column, the specification will always start in
a specific column (refer to paragraph 5-2).

When the input is read from the teletypewriter unit, the
options are always separated by commas and terminated by
a carriage return. Do not use any characters other than the
option specifiers, commas, and the carriage return. Blanks
are disallowed, except to specify a default option.

Options may be omitted. If omitted, the various task
processors will select a default option automatically. If an

5-1

invalid option is specified, the task processor will
automatically use the default option as if no option had
been specified.

The default options for any of the task processors are
defined by a "default sequence." The default sequences
are:

Input
Cards
Paper Tape - High Speed Reader

Paper Tape - Teletypewriter

Punched Output
Paper Tape - High Speed Punch
Paper Tape - Teletypewriter

Printed Output
Line Printer
Teletypewriter

These sequences are used as follows: Input is read from
cards if a card reader is available. If not the high speed
paper tape reader is used. If a high speed paper tape reader
is not available the teletypewriter is used. Punched output
and printed output are treated in a similar manner.

Any input/output devices required by the task processor
will be attached as they are needed. All attached
input/output devices are released when execution is
complete.

5-2 SYMBOLIC ASSEMBLY PROGRAM (SAP-I).

5-2.1 USE OF THE CARD READER TO SPECIFY
OPTIONS. SAP-I options are as follows:

Source (Card Column 13)
C Cards
P Paper Tape - High Speed Reader
T Paper Tape - Teletypewriter
E End of Assemblies

Object (Card Column 15)
P Paper Tape - High Speed Punch
T Paper Tape - Teletypewriter
N No Object Output

N No Listing

Listing (Card Column 17)
L Line Printer
T Teletypewriter

Additional options will become available in the future. Card
columns 18 - 80 are not interpreted by SAP-I.

Example of SAP-I Option Cards:

$ SAP 1

00
12 J" 5' 7 8 9 10111'13141f1161718192021222J24:m211127282130Jl:J23334l5l137l1.<IO.,4243

11

22

Card I will produce the default options.

$ 5 A P I p , P , N

ODOO
12 J .. 5 e 7 8 g 101lT2Il' .. '5111171810202122233425211127:ma30313233343111.:n •• eo41cza

11

22

Card II will produce the following:

Source
Object
List

$ SAP I T,P,L

High Speed Paper Tape
High Speed Paper Tape
None

00
123 .. 5 e 78 9 I011121314Hi 161711!11920,,22232"ZS28 1728213031323334l13131 •• 4041,q"'

11

22

Card III will produce the following:

Source
Object
List

Teletypewriter
High Speed Paper Tape
Line Printer

5-2.2 USE OF THE TELETYPEWRITER TO SPECIFY
OPTIONS. If a card readp.r is not available, then the options
are entered on the teletypewriter. The same results as noted
in paragraph 5-2.1 would be produced by the following:

Example I
Example II
Example III

C/R
P,M,NC/R
T,P,L,NC/R

5-2.3 OPERATING PROCEDURE. Take the following
steps to perform a SPEX assembly.

a. Load SAP-I.

5-2

b.

c.

d.

e.

Result: ENTER OPTIONS is printed on the
teletypewriter.

Enter the program control card if the card
reader is available. If not, type options on the
teletypewriter followed by a C/R.

Result: The following message is printed on the
teletypewriter: READY ASSEMBLY SOURCE
AND HITC/R.

Ready the source and hit carriage return.

Result: Pass one is made. If there are pass one
errors, they are printed. The above message is
printed again.

Ready source and hit carriage return.

Result: ENTER OPTIONS is printed upon
completion of the assembly.

If more assemblies are desired, enter options
and continue with step b, otherwise, enter the
end option.

Result: After completion of all assemblies,
control is returned to RTM-I/SPEX.

5-3 FORTRAN.
A FORTRAN compiler running under RTM-I control is not
available as part of the initial release of RTM-I but will be
available in a later release.

5-4 LINK EDIT.

5-4.1 USE OF THE CARD READER TO SPECIFY
OPTIONS. Link edit options are as follows:

Input Object Programs (Card Column 13)
C Cards
P Paper Tape - High Speed Reader

. T Teletypewriter
E End of Link Editing

Output Object Programs (Card Column 15)
P Paper Tape - High Speed Punch
T Teletypewriter
N No Object Output

Load Map Output (Card Column 17)
T Teletypewriter

Load and Go (Card Column 19)
N No Load and Go.
G Load and Go: Execute the Link Edited

Program

Additional options will become available in the future.

No load and go will be a default option for the link editor.

In addition to the options, three items are required. The
number of programs being link edited must be listed in card
columns 25-26. The name of the main program of the set of
programs being link edited must be listed in card columns
31-36. The execution entry address of this program is used
as the execution entry address of the link edited program.
The name of the output object program must be listed in
card columns 41-46. If the required items do not occupy all
the columns allotted, they must be left justified in their
field, i.e., start in columns 25, 31, or 41. Other columns of
the card are not interpreted by the link editor. FORTRAN
main programs have the name MAIN.

Examples of link editor cards:

$ LINKED MAl N 1 K A I • 2

00
12 J 4!i e 78 91011121314151eI11.'920212223242!!1:ze'l1:m2l3031:JZ133t35313731314041C10

11

2 ·2 2 2 2 2 2 2 2 2 2

Card I specifies all default options. The name of the main
program is MAIN1. The name of the link edited program is
MAIN2.

$ L I If KED p • P • T , G M A I I' 1 KAIB2

00
1234 !i II 7 8 91011121314151fiI718192021222J'l.4~2115V'282130313Z333431.lJ'313140414243

11

22

Card II uses the following options:

Input
Output
Load Map
Load and Go

$ LINKED T , P • T

High Speed Paper Tape
High Speed Paper Tape
Teletypewriter
Used

MAl N 1 M A I N 2

00000000000000000000000001)00000000000000000000
I :2 3 4 5 6 7 B.g to 11121314 1~ 16171819 2021 n 23242521 V 282930 31 J23334353l1 373131140.,424344415'-

11

2222.2222222222.22222222222222222222222222222222

Card III uses the following options:

Input
Output
Load Map
Load and Go

Teletypewriter
High Speed Paper Tape
Teletypewriter
Default, i.e., No Load and Go

5-3

5-4.2 USE OF TELETYPEWRITER TO SPECIFY
0P110NS. If a card reader is not available, the options are
typed on the teletypewriter. The same results as before
would be produced by the following:

a. 5,MAIN1,MAIN2C/R
b. 5,MAIN1,MAIN2,P,P,T,GC/R
c. 5,MAIN1,MAIN2,T,P,TC/R

5-4.3 OPERATING INFORMATION. Object programs
may be used in any order as input, subject only to the
following restrictions.

Absolute object programs must be read into the link editor
ahead of any relocatable object programs. The programmer
is responsible to assure that absolute programs do not
require the same core locations. If both absolute and
relocatable programs are link edited together, the
relocatable programs will be located after the absolute
program using the highest numbered core locations. The
output program will be absolute if one or more absolute
programs are included in the link edit. If no input programs
are absolute, the output will be relocatable.

A program with undefined external references may be
loaded and executed if the undefined external references
are not used.

During execution of the link editor first pass the load
blocks are not read. The only required information is
obtained from the tape or cards preceeding the load blocks.
During pass two the complete object program input is read.

If the load and go option is used, the link editor builds a
relocated program in core and transfers control to this
program. This program is restricted as follows. The
program, link editor, core resident programs, and the link
editor generated tables must be loaded simultaneously. The
link editor uses the area immediately following itself for
symbol tables. The program for execution must be loadable
into the area following the link editor which is not used for
tables.

No more link edits may be performed after execution of a
link edit with load and go. It is the responsibility of the
program executed via load and go to return control to
RTM-I by use of the Terminate Task control service request
(code = 0).

Before transferring control to the program being executed,
the link editor will release all peripherals it has assigned.

5-4.4 OPERATING PROCEDURE. The following steps are
taken to perform a SPEX link edit.

a. Load the link editor.

b.

c.

d.

e.

f.

Result: ENTER OPTIONS is printed with the
teletypewriter.

Enter the program control card if the card
reader is available. If not, type options on the
teletypewriter followed by a carriage return.

Result: The following message is printed on the
teletypewriter: READY LINK EDIT INPUT
AND HITC/R.

Ready input and hit C/R.

Result: The input is read and again the message
READY INPUT AND HIT C/R is typed. This
step is repeated until all input object programs
have been read. At that time, step d is
executed.

Ready input and hit C/R. All input to pass two
must be in the same order as input to pass one.

Result: The input is read and again the message
READY INPUT AND HIT C/R is typed. This
step is repeated until all input object programs
have been read. If mass storage is used, this step
is omitted.

Ready the last input object program and hit
carriage return.

Result: After reading the last input object
program, ENTER OPTIONS is again printed on
the teletypewriter if the load and go option was
not selected. If it was, the message STARTING
EXECUTION is typed and step f is omitted.

If more link edits are desired, enter options and
continue with step b. Otherwise, enter the end
option.

Result: After completion of all (non load and
go) lin k edits control is returned to
RTM-I/SPEX.

5-5 CORRECT SOURCE.

5-5.1 PROGRAM OPTIONS. No options are available
currently for the Correct Source Task Processor. The only
version available reads input source on the high speed paper
tape reader and corrections on the same device. Output
source is punched on the high speed paper tape punch.
Additional options will become available in the future.

5-4

5-5.2 OPERATING INFORMATION. The corrections
consist of a series of insert and delete commands plus lines
for insertion. Insert commands have the format

+NUM1,NUM2

where NUMDNUM1 are integer line numbers. An insert
command causes all lines from the current line to NUMl,
including NUMl, to be copied. All lines from NUMI to
NUM2, not including NUM2, are deleted. All lines
following the insert command until the next command line
will be inserted. After completion of processing the insert
command, NUM2 becomes the current line number.

Delete commands have the format

-NUM1,NUM2

where NUM2>NUMl are integer line numbers. The delete
is the same as insert except no insertions are made.

Initially, the current line number is set to line 1. All
correction commands must be in numerical order. After the
last command, the remaining source is copied.

The correct source utility may be used to copy by inputing
one insert command where N"UMl=l and NUM2=2.

5-5.3 OPERATING PROCEDURE. The following steps are
taken in order to perform a tape correction under SPEX.

a. Load correct program.

Result: READY CORRECTIONS AND HIT
C/R is typed on the teletypewriter.

b. Ready correction tape and hit carriage return.

c.

Result: The correction tape is read and READY
SOURCE FOR CORRECTION AND HIT C/R
is typed on the teletypewriter.

Ready source and hit carriage return ..

Result: The corrected tape is output. The
message READY CORRECTIONS AND HIT
C/R is again typed on the teletypewriter and
another source tape may be corrected starting
with step b. To terminate the correction
process, type E followed by a carriage return on
the teletypewriter.

5-6 LIST SOURCE.

5-6.1 USE OF THE CARD READER TO SPECIFY
OPTIONS. Listing options are as follows:

Source (Card Column 13)
C Cards
P Paper Tape - High Speed Reader
E End of Listing Task

Output Listing (Card Column 15)
L Line Printer
T Teletypewriter

Additional options will become available in the future. Card
columns 16-80 are not interpreted by the listing program.

Examples of listing option cards.

$ LISTS

00
1:1 3 4!'" 0 1011121l1.'511171'Tl2I:IJ1Zln2<t2l2l71 .• 2I30313:233".3137 •• 40.'~a"'45"
11

222222222.2222222222222222222222222222222222222

Card I will produce the default options.

$ LISTS P,T

00
1 2345.,.tl011121314151"718Ig~2InU~~.V.2I~31n»~.31~ •• 404IG a
11

2.222

Card II will produce the following:

Source
Listing

Paper Tape
Teletypewriter

5-6.2 USE OF THE TELETYPEWRITER TO SPECIFY
OPTIONS. If a card reader is not available, the options are
typed on the teletypewriter. The same results as above
would be produced by the following:

a. C/R
b. P,TC/R

5-6.3 OPERATING PROCEDURE. The following steps are
taken in order to obtain a listing under SPEX:

5-5

a.

b.

c.

d.

Load the listing program.

Result: ENTER OPTIONS is printed on the
teletypewriter.

Enter the program control card if the card
reader is available. If not, type options on the
teletypewriter followed by a carriage return.

Result: The following message is printed on the
teletypewriter: READY LISTING SOURCE
AND HITC/R.

Ready source and hit carriage return.

Result: The listing is produced. At the
completion, the ENTER OPTIONS message is
again printed.

If more listings are desired, enter options and
continue with step b. Otherwise, enter the end
of listing option.

Result: After completion of all listings desired
control is returned to RTM-I.

5-7 USER PROGRAM EXECUTION.
Any user program may be loaded and executed by SPEX.
To load and execute any program using the SPEX
background processor, place the object program in the
appropriate reader, depress the CONTROL key on the
teletypewriter, and type N or 0 on the teletypewriter.
SPEX uses the loader program which was used to load the
monitor. The optKlns CONTROL N or CONTROL 0
specify no overlay or overlay (see Section IV).

The user program may use all of memory from the last
instruction in itself to the highest numbered core location
available. The size of memory may be obtained by reading
core location 001A16 •

Any input/output devices required by the program should
be attached before use (refer to Section IV). The
FO R TRAN in pu t/ outpu t programs perform this
automatically if they are used.

The Terminate Task control service request (Code = 0) will
return control to the monitor. From FORTRAN programs,
control is returned by the STOP command.

SECTION VI

BATCH OPERATING PROCEDURES

SECTION VI

BATCH OPERATING PROCEDURES

6-1 GENERAL PROCEDURES.
BATCH is an optional background control program
supplied with RTM-I. BATCH reads a job control language
input from the card reader. It then calls and executes the
appropriate processor programs from the system disc.

All Texas Instruments supplied background task processors
which run under RTM-I/BATCH use the same general
approach for specifying program options. Options are
specified in columns 13-80 of the control card which
requests execution of the background task processor.

Most options are specified by single alphanumeric
characters. The characters used and their meanings are:

1

2

3

4

C

D

Background Work Area File 1 or Magnetic Tape
Drive 1

Background Work Area File 2 or Magnetic Tape
Drive 2

Background Work Area File 3 or Magnetic Tape
Drive 3

Background Work Area File 4

Cards

Disc

L Line Printer

N Not Used or None

P High Speed Paper Tape

T Teletype

If single letter options are used they are in columns
13.15.17 •...• 79 of the card. Typically the columns between
option letters are punched with a comma to aid readability.
however the background task processors do not interpret
these columns. If an option specification requires more
than one column. the specification will always start in a
given column.

Options may be omitted. If omitted. the various task
processors will select a default option automatically. If an
option is specified but found to be invalid. the task
processor will automatically use the default option as if no
option had been specified.

6-1

The default options for the various task procressors are:

Input
Cards

Punched Output
High Speed Paper Tape

Printed Outout
Line Printer if available. otherwise. Teletype­
writer

Any I/O devices required by the task processor will be
attached as they are needed. At the completion of
execution all attached I/O devices are released.

The task processors for BATCH will complete one task and
return control to the monitor. This allows several tasks to
operate sequentially. For example a job might consist of
the following tasks: correct source. assemble corrected
source. link edit the assembly with previous assemblies. and
execute the link edited program. This differs from the
approach used by SPEX task processors which are designed -
to repeat the same task as many times as required before
the next task processor is loaded.

The following subsections describe the usage of each
background task processor in an RTM-I/BATCH
environment.

6-2 SAP-I.

6-2.1 CONTROL CARD. The program control card input
to BATCH contains the following:

Card Column 1 $
2 blank
3 S
4 A
5 P
6 I
7-12 blank
13 source option
15 object option
17 list option

SAP-I options are as follows:

Source (Card Column 13)
C Cards
P Paper Tape - High Speed Reader
D Disc

Object (Card Column 15)
P Paper Tape High Speed Punch (and

Disc)
D Disc (only)

List Option (Card Column 17)
L Line Printer
T Teletypewriter
N No List

Additional options will become available in the future. Card
columns 18-80 are not interpreted by SAP-I.

Examples of control cards:

$ SAP 1

00
1234 S 67 8 91011121J141516T718192<l21 2:l23242S2621282930JI323334353637 18JD404'4241-..45 ..

1111111 I 1111 I! 1 III 11111 1111111111 1 1 11 11 1 111111

22

Card I will produce the default options.

$ 5 A P I P • N

00
12 J 45 e 7 8 910111213141518171819202122232.25282728293031323331;153837.3140414243&44541

1111 III 111111 111111111111111111111111111111111

22

Card II will produce the following:

Source
Object
List

$ SAPI C,P,L

Default
High Speed Paper Tape
None

00
1234587 8 91011121]1415181718192(121222311252027282130313233343531137313140414243444541

1111111 II 1111111111111111111111111111111111111

22

Card III will produce the default options.

6-2.2 OPERATING INFORMATION. If the card reader or
disc is specified as the source input device, SAP-I will
proceed immediately to read from these devices. If the high
speed paper tape reader is used, the program will delay to
allow the operator to ready the tape.

If the disc is the source input device, SAP-I will expect to
find the input in disc file 2 of the background task work
area. This file is used as the output file by the source
correct and source copy utility programs.

6-2

If the disc is not the source input device, SAP-I will copy
the source onto disc file 2 as part of the assembler first
pass. Pass two of the assembler therefore always gets its
input from disc me 2 of the background task work area.

The assembler always outputs the object program to disc
me 3. If the high speed paper tape punch is listed as the
object option, this output is in addition to the disc output.

6-2.3 OPERATING PROCEDURE. When using disc as the
source input device the control card is placed in the cards
for BATCH processing in the appropriate position.
Similarly when using the card reader as the source input
device except that the source cards must immediately
follow the control card.

When using the high speed paper tape reader as the source
input device the following procedure is used:

a.

b.

Enter control card through the card reader.

Result: Program is loaded from disc and
executed. A message is printed on the
teletypewriter READY ASSEMBLY SOURCE
AND HITC/R.

Ready source and type a carriage return.

Result: The assembly is performed.

6-3 FORTRAN.
A FORTRAN compiler running under RTM-I/BATCH
control is not available as part of the initial release of
RTM~I. It is planned for a later release.

6-4 LINK EDIT.

6-4.1 CONTROL CARD. The program control card input
to the Link Editor contains the following:

Card Column 1
2
3
4
5
6
7-12
13
15
17
19
25-26

31-36
41-46

$
blank
L
K
E
D
blank
input option
output option
load map option
link with disc option
number of programs
being link edited
name of main program
name of output object
program.

Link editor options are as follows:

Input Object Programs (Card Column 13)
C Cards
P Paper Tape - High Speed Reader

Output Object Programs (Card Column 15)
P Paper Tape - High Speed Punch (and

Disc)
D Disc (only)

Load Map Output (Card Column 17)
T Teletype

Link with Disc (Card Column 19)
D Include program in disc me 3 in the link

edit
N Do not include disc me 3 in the link edit

Additional options will become available in the future.

No link with disc is a default option when link editing.

In addition to the options, three items are required. Card
columns 25-26 must contain the number of programs being
link edited. In card columns 31-36 must be listed the name
of the main program of the set of programs being link
edited. The execution entry address of this program will be
used as the execution entry address of the link edited
program. In card columns 41-46 must be listed the name of
the output object program. If the required items do not
occupy all the columns allotted, they must be left justified
in their field, i.e., start in columns 25, 31, or 41. Other
columns of the card are not interpreted by the link editor.
Note that FORTRAN main programs have the name MAIN.

Examples of link editor control cards.

$ LINKED M A I N 1 It A I N 2

00
'2 J .. 587 8 .,Ol',2131415'SI71.,t202122232421212721a.313123334 •• 3l' 4taa
11

22

Card I will use all default options. The name of the main
program is MAIN 1. The name of the link edited program is
MAIN2. Five programs are to be link edited.

$ LINI(ED P • T M A I R 1 M A I • 2

00
1 IJ4e.7 •• MI112t3141eMI71.'.Z~DD~ •• D.2I.~.»M •• ~ ••• ~GO •••
11

22

Card II will use the following options:

Input
Output
Load Map
Link With Disc

$ LINK!D C f D • T • 0

Default, i.e., Cards
Disc and High Speed Paper Tape
Teletypewriter
Default, i.e., No Link With Disc

M AlII 1 "A I .2

00
'2J4S87 •• ,0111213'41.MI71.,.z~DD~aaD ••• ~ ••••• ~ ••• ~Ga •••
11

2222222222222222222222222222222212222222222222

Card III will use the following options:

Input
Output
Load Map
Link With Disc

Cards
Disc (only)
Teletypewriter
Used

6-4.2 OPERATING INFORMATION. Object programs
may be used in any order as input subject only to the
following restrictions:

If there are any absolute object programs input to the link
editor, they must be input before any relocatable object
programs. It is the programmer's responsibility to assure
that absolute programs do not require the same core
locations. If both absolute and relocatable programs are
link edited together, the relocatable programs will be
located after the program using the highest numbered core
locations. The output program will be absolute if one or
more absolute programs are included in the link edit. If no
input programs are absolute, the output will be relocatable.

A program with undefined external references may be
loaded and executed provided the undefmed external
references are not used.

If the card reader is specified as the input device, the link
editor will proceed immediately to read from this device. If
the high speed paper tape reader is used, the program will
pause for each input tape to allow the operator to ready the
input.

6-3

If the link with disc option is used, the link editor will
expect to find one object program in disc file 3 of the
background work area. In any case all input object
programs are added to disc file 3 as part of the link editor
first pass. Thus pass 2 of the link editor will use only the
disc for input.

The link editor always outputs to disc file 4 of the
background work area. If the high speed paper tape punch
is listed as the output option, this output is in addition to
the disc output.

6-4.3 OPERATING PROCEDURE. When using the card
reader as the input device the input object program cards
must immediately follow the control card. When using the
high speed paper tape reader as the source input device the
following procedure is used:

a. Enter control card through the card reader.

b.

Result: Program is loaded from disc and
executed. A message is printed on the
teletypewriter READY LINK EDIT INPUT
AND HITC/R.

Ready input and type a carriage return.

Result: The input is read and saved on disc.
Step b is repeated until all tapes have been
input.

6-5 CORRECT SOURCE.

6-5.1 CONTROL CARD. The program control card input
to BATCH contains the following:

Card Column 1
2
3
4
5
6
7
8-12
13
15
17

$
blank
C
o
R
C
T
blank
input option
output option
corrections option

The correct source options are as follows:

Input (Card Column 13)
C Cards
P Paper Tape - High Speed Reader
1 Magnetic Tape Drive 1
2 Magnetic Tape Drive 2
3 Magnetic Tape Drive 3

Output (Card Column 15)
P Paper Tape High Speed Punch (and

Disc)
D Disc (only)
1 Magnetic Tape Drive 1 (and Disc)
2 Magnetic Tape Drive 2 (and Disc)
3 Magnetic Tape Drive 3 (and Disc)

Corrections (Card Column 17)
C Cards
P Paper Tape - High Speed Reader

Additional options will become available in the future. Card
columns 18-80 are not interpreted by the correct source
program.

Examples of control cards:

$ CORer

00
12'] oS 5678 9 10"1;21:] 141 516171819201t22232'2528272821JO:]132J3:J.t353837 31l11,,,4'C243M45 ..

1 I 1 1 1 I 1 11 I 1111 I 11 1 1111111111111111111111111111

22

Card I specifies all default options.

$ CORCT

o 0.0
1:2 3" SIS' • II 101lt"lt3141!5UI171819202.12223l42121Z728213031323334Ja.37 •• 4041012430&4 ••

11

22

Card II will produce the following:

Input
Output
Corrections

$ CORCT 1 • 2 • C

Default
High Speed Paper Tape (and Disc)
Default

COOO
12 J 4!5 e 7 891011121J141!511i17181'202122231tl!52f!V28283G313233,.3I3IIJ7:M3IoI0414243&441i ..

11

22

6-4

Card III will produce the following:

Input
Output
Corrections

Magnetic Tape Drive 1
Magnetic Tape Drive 2 (and Disc)
Cards

6-5.2 OPERATING INFORMATION. The corrections
consist of a series of insert and delete commands plus
source lines for insertion.

Insert commands have the format

+NUMl,NUM2

where NUM2>NUMI are integer line numbers. An insert
command causes all lines from the current line to NUMl,
including NUMl, to be copied. All lines from NUMI to
NUM2, not including NUM2 are deleted. All lines following
the insert command until the next command line will be
inserted. After completion of processing the insert
command, NUM2 becomes the current line number.

Delete commands have the format

-NUMl,NUM2

where NUM2>NUMI are integer line numbers. The delete
is the same as insert except no insertions are made.

Initially the current line number is set to line 1. All
correction commands must be in numerical order. After the
last command the remaining source is copied.

Corrections are read by the correct source program first.
These are stored on disc file 1 of the background work area.
The source program to be corrected is read next and the
corrected source program stored on disc file 2 of the
background work area.

If corrections are on cards the correct source program will
proceed immediately to read these cards. If corrections are
on paper tape the program will delay to allow the operator
to ready the tape.

If the program to be corrected is on cards the correct
source program will proceed to read these cards after
finishing reading the corrections. If not it will delay to
allow the operator to ready the tape.

The correct source program always leaves the corrected
source program on disc file 2. If specified it will produce a
second output on the high speed paper tape punch or
magnetic tape.

If both corrections and source to be corrected are on cards
it is necessary to place a separator card between the two
input card decks. The separator card should have the
currency symbol ($) punched in column 1. The remainder
of the card is ignored by the correct program.

If the output device is the high speed paper tape punch, the
program will monitor the tape status for low tape. This
status indicates approximately 50 feet of tape remain on
the reel. The program will punch an additional 40 feet of
tape and then punch a line with an equals (=) in column
one. This indicates the program is continued on another
reel of tape. The program will then pause to allow the
operator to mount a new tape reel.

6-5

6-5.3 OPERATING PROCEDURE. If corrections or the
source program to be corrected are on cards these should
immediately follow the control card. The corrections
precede the source program if both are on cards. No special
procedure is required in this case. If not the following
procedure is used:

a. Enter control card through the card reader.

b.

c.

d.

Result: Program is loaded from disc and
executed. If corrections are not on cards the
message READY CORRECTIONS AND HIT
C/R is typed. If corrections are on cards they
are read and step c is the next step.

Ready corrections and type carriage return.

Result: The corrections are read.

The program is now ready for the input source.

Result: If the input source program is on cards
they are read and the output generated. If not
the message READY SOURCE FOR
CORRECTION AND HIT C/R is typed.

Ready source for correction and hit carriage
return.

Result: The remainder of the processing is
performed.

6-6 LIST SOURCE.

6-6.1 CONTROL CARD. The program control card input
to BATCH contains the following:

Card Column 1 $
2 blank
3 L
4 I
5 S
6 T
7 S
8-12 blank
13 source option
15 list option

The list source options are as follows:

Source (Card Column 13)
C Cards
P Paper Tape - High Speed Reader
D Disc
1 Magnetic Tape Drive 1
2 Magnetic Tape Drive 2
3 Magnetic Tape Drive 3

List (Card Column 15)
L Line Printer
T Teletypewriter

Additional options wi11.become available in the future. Card
columns 16-80 are not interpreted by the listing program.

Examples of control cards:

$ LISTS

00
1234'5 II 1 I 9 HI1I12131415,1I17181920212223242532721213031323331131313731»404,42434445_

11

22

Card I will produce the default options.

$ LIS T 5 C • T

00
1 2 3 4 5 e 7 8 II 10" 1213 U 151& 171819 20 21 22 232t252e 21282V3D 31 3233:M 35 3131383140 41 0124344 ••

11

22

Card II will produce the following:

Source
Listing

Cards
Teletypewriter

6-6.2 OPERATING INFORMATION. If the card reader or
disc is specified as the source input device, the listing
program will proceed immediately to read from these
devices. If not, the program will delay to allow the operator
to ready the tape.

If the disc is specified as the source input device, the
program will expect to find the source program on disc me
2 in the background work area.

6-6.3 OPERATING PROCEDURE. When using the disc as
the source input device the control card is placed in the
cards for BATCH input in the appropriate position.
Similarly when using the card reader as the source input
device except the source cards must immediately follow the
control card.

When source input is not on cards or disc the following
procedure is used:

a. Enter control card through the card reader.

Result: Program is loaded from disc and
executed. A message is typed on the
teletypewriter, READY LISTING INPUT AND
HIT C/R.

b. Ready listing input and type carriage return.

Result: The listing is produced.

6-7 COPY SOURCE.

6-7.1 CONTROL CARD. The program control card input
to BATCH contains the following:

Card Column 1
2
3
4
5
6
7
8-12
13
15

S
blank
C
o
P
Y
S
blank
input source option
output source option

The copy source options are as follows:

Input Source (Card Column 13)
C Cards
P Paper Tape - High Speed Reader
D Disc
1 Magnetic Tape Drive 1
2 Magnetic Tape Drive 2
3 Magnetic Tape Drive 3

Output Source (Card Column 15)
P Paper Tape - High Speed Punch (and

Disc)
D Disc (only)
1 Magnetic Tape Drive 1 (and Disc)
2 Magnetic Tape Drive 2 (and Disc)
3 Magnetic Tape Drive 3 (and Disc)

Additional options will become available in the future. Card
columns 16-80 are not interpreted by the copy source
program.

Examples of control cards:

$ CDPYS

00
I Z J" I II 1 e g 10 11 121:J14151111118192021222324252t1728211130313213343153137 •• 40414243444S,.

11

22

Card I will produce the default options.

6-6

$ COPYS I,D

QOOOOOOOO()OOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooe
I 2 3 4 5 IS 1 8 9 1011 1213 I~ 15 16 17 18 19 20 2122232425:ze 2128 29 30 31 32 33 3C)!IlS 37J8l11<10 .. 1 ~2 .3 "501&

I I 1 1 11 I 1 1 1 11 I 1 I I 11 I 1 11 1 111 1 1 111 1 1111111 I 11111 1

222Z2222222222l2222222222222222222222222222222

Card II will produce the following:

Input Source
Output Source

Magnetic Tape Drive 1
Disc

6-7.2 OPERATING INS1RUCfIONS. If the card reader or
disc is specified as the source input device, the copy source
program will proceed immediately to read from these
devices. If not the program will delay to allow the operator
to ready the tape.

The copy source program always leaves the source program
on disc file 2 of the background work area. If specified it
will produce a second output on the high speed paper tape
punch or magnetic tape.

Note that specifying disc as both the source input and
ou tpu t device is illegal.

If the output device is the high speed paper tape punch, the
program will monitor the tape status for low tape. This
status indicates approximately 50 feet of tape remain on
the reel. The program will punch an additional 40 feet of
tape and then punch a line with an equals (=) in column
one. This indicates the program is continued on another
tape. The program will then pause to allow the operator to
mount a new tape reel.

I 6-7.3 OPERATING PROCEDURE. When using the disc as
the source input device the control card is placed in the
cards for input to BATCH in the appropriate position.
Similarly when using the card reader as the source input
device except the source cards must immediately follow the
control card.

When source input is not on cards or disc the following
procedure is used:

a. Enter control card through the card reader.

Result: Program is loaded
executed. A message is
teletypewriter, READY
COPYING AND HIT C/R.

from disc and
typed on the
SOURCE FOR

b. Ready source for copying and hit carriage
return.

Result: The copy is produced.

6-7

6-8 COpy OBJECT.

6-8.1 CONTROL CARD. The program control card input
to BATCH contains the following:

Card Column 1
2
3
4
5
6
7
8-12
13
15

$
blank
C
o
P
Y
o
blank
input object option
output object option

Only one option is provided in the initial release. The copy
object program will copy from the high speed paper tape
reader to the high speed paper tape punch. Thus columns
13 and 15 may contain either the character P or blank.

Additional options will become available in the future. Card
columns 16-80 are not interpreted by the copy object
program.

6-8.2 OPERATING PROCEDURE. The following steps are
taken in order to copy object tape:

a. Enter control card through the card reader.

b.

Result: Program is loaded from disc and
executed. A message is typed on the
teletypewriter, READY OBJECT TAPE FOR
COPYING AND HIT C/R.

Ready object tape for copying and type
carriage return.

Result: The copy is produced.

6-9 INSTALL.

6-9.1 CONTROL CARD. The program control card input
to BATCH contains the following:

Card Column 1 $
2 blank
3 I
4 N
5 S
6 T
7 A
8 L
9-12 blank
13 input option

Only one option is provided in the initial release. The install
program will use the high speed paper tape reader as an
input device. Thus column 13 may contain either the
character P or blank.

6-9.2 OPERATING INFORMATION. The install program
is used to catalog a program for use by the BATCH
processor. When catalogued the program is stored on dis:::
with the other task processors for background BATCH
processing. Its name is recorded in the catalog of task
processors. It may then be executed by placing a card in the
BATCH card input containing $ in column 1, blank in
column 2 and the program name in columns 3-8.

6-9.3 OPERATING PROCEDURE. The following steps are
taken in order to install a program in the BATCH
background task processor disc file:

a. Enter control card through the card reader.

Result: Program is loaded from disc and
• executed. A message is typed on the

teletypewriter, READY OBJECT TAPE FOR
INSTALLATION AND HIT C/R.

b. Ready object tape for installation and type
carriage return.

Result: The program is installed and
catalogued.

6-10 DELETE.

6-10.1 CONTROL CARD. The program control card input
to BATCH contains the following:

Card Column 1
2
3
4
5
6
7
8
9-12
13-18

$
blank
D
E
L
E
T
E
blank
name of program to be
deleted.

6-10.2 OPERATING INSTRUCTIONS. Delete will cause a
previously installed program to be flagged for removal from
the background task processor file. Delete does not remove
the program from the disc. In order to remove the program
from the disc the compress program must be executed.
Once flagged by the delete program a task processor may
not be used. An exception to this occurs if the deleted
pCC'gram is the last one currently catalogued. In this case
the compress program need not be used.

6-8

The name of the program to be deleted must start in
column 13 of the control card.

6-11 COMPRESS.

6-11.1 CONTROL CARD. The program control card input
to BATCH contains the following:

Card Column 1 $
2 blank
3 C
4 0
5 M
6 P
7 R
8 S
9-12 blank

6-11.2 OPERATING INSTRUCTIONS. Compress will
physically remove from the disc any background task
processors flagged by Delete. The remaining programs will
be placed starting in adjacent disc sectors such that a
minimum disc area is used for storage of these programs .
The catalog and disc map are updated to reflect the new
disc content.

6-12 LIST CATALOG.

6-12.1 CONTROL CARD. The program control card input
to BATCH contains the following:

Card Column 1 $
2 blank
3 L
4 I
5 S
6 T
7 C
8-12 blank
13 list option

The list options are as follows:

L Line Printer
T Teletypewriter

Card columns 14-80 are not interpreted by the list catalog
program.

6-12.2 OPERATING INSTRUCTIONS. The list catalog
program produces a printout of the names of those
programs included in the background task processor file.
Deleted programs are not listed. The presence of deleted
programs on the disc is however noted on the listing.

6-13 SAVE DISC.

The program control card input to BATCH contains the
following:

Card Column 1 $
2 blank
3 S
4 A
5 V
6 E
7 D
8-12 blank
13 output option

Only one option is provided in the initial release. The save
disc program will copy the contents of the disc (except for
the background work area) onto magnetic tape drive l.
Thus column 13 may contain either the character 1 or
blank.

Additional options will become available in the future. Card
columns 14-80 are not interpreted by the copy object
program.

6-14 SYSTEM CONTROL CARDS.
In addition to those control cards used to load and execute
background task processors from the disc, certain control
cards are interpreted and processed directly by BATCH.

6-14.1 JOB CARD. This card contains the following:

Card Column 1 $
2 Blank
3 J
4 0
5 B
6-12 blank

The $ JOB Card is used to logically separate tasks into
related groups. Columns 13-80 are not interpreted and may
contain information identifying the group of tasks which
follow.

6-14.2 EOB CARD. This card contains the following:

Card Column 1 $
2 blank
3 E
4 0
5 B
6-12 blank

The $ EOB Card marks the end of the input on the card
reader. Upon reading this card BATCH will release the disc
and card reader and terminate.

6-14.3 EXEC CARD. This card contains the following:

Card Column 1
2
3
4

$
blank
E
X

6-9

5
6
7-12
13
15-80

E
C
blank
me option
user option

The possible me options are:

3 execute the program in disc me 3
4 execute the program in disc me 4

Upon detecting the $ EXEC card the BATCH processor will
load and execute a program from the background work
area. If the program to be executed was generated by an
assembly, disc me 3 should be specified. If generated by a
link edit, disc me 4.

The program executed in this manner interfaces with
RTM-I/BATCH exactly like a program catalogued by the
install program and loaded from the background task
processor me. If the program executed by use of a $ EXEC
card requires input read from cards, the cards should be
placed immediately after the $ EXEC card.

6-15 INTERFACE BETWEEN BATCH AND THE
TASK PROCESSOR.
Background task processors receive as input a 16 bit status
word and the core image of that portion of the control card
containing their options. Upon entry the L register contains
the address of the following 3 words:

DATA 2
DATA address of status word
DATA address of control card options

When exiting by use of the Terminate Batch Processing
Task control function the task processor must load a 16 bit
status word in the M register.

If the background task processor is coded in FORTRAN it
may communicate with the BATCH processor as follows:

a.

b.

The main program may be coded as a
subroutine with two arguments, the status word
and option string. For example

SUBROUTINE MAIN(ISTAT,IOP)
DIMENSION IOP(34)

If the FORTRAN program does not require
these arguments it need not be coded as a
subroutine.

Status may be returned to the monitor by use
of the statement

STOPn
The number n is returned to the monitor as a
status value. If n is omitted a status word of all
zeroes is returned.

The status word is used to pass information from one task
to the next. Its purpose is to direct the mode of processing
employed by the next task. One common use is to inform a
subsequent task of a situation in which processing by a
subsequent task is to be aborted.

The BATCH processor tests for a status word with bit 15
set. This means unconditional abort. The BATCH processor
will read cards until a card with $ JOB or $ EOB in columns
1-5 is encountered. Upon detection of the $ JOB card the
BATCH processor returns to its normal mode of operation,
execution of the task processor corresponding to each
control card. Thus an unconditional abort status causes all
following tasks up to the $ JOB card to be automatically
aborted.

Bit 14 of the status word is set if a FORTRAN program
terminates by reading through an end-of-file. Bits 8-13 are
available for use by user programs. Bits 0-7 are reserved for
system use.

6-16 SEQUENCES OF TASKS.
The background work area on the disc is logically divided
into four files. This structure is useful in performing

6-10

sequences of tasks. For example, consider the following
common sequence.

a. Correct a source program. The correct program
will read corrections into file one and place the
corrected source program in file two.

b.

c.

d.

e.

Assemble the corrected source program. The
SAP-I assembler will assemble the source
program in file two and place the object
program in file three.

Link edit the object program with other object
programs. The link edit will add other object
programs to file three and then place the link
edited program in file four.

Execute the link edited program. The BATCH
processor will load the progr.am in file four into
the computer memory and initiate execution.

Copy the corrected source onto magnetic tape.
The copy program will copy the source in file
two onto magnetic tape. This magnetic tape
may then be used as input to repeat this
sequence.

SECTION VII

BOOTSTRAPS AND LOADERS

SECTION VII

BOOTSTRAPS AND LOADERS

7-1 INTRODUCTION.
Bootstraps and loaders are used to load the monitor and
initiate execution. These programs remain core resident and
are used by the background job control program SPEX to
load task processors. They may be used also to load stand
alone programs.

A bootstrap is a short sequence of instructions which must
b~ manually entered into the computer. The bootstrap,
when executed, causes the computer to read a more
sophisticated loader program from a specific peripheral
device. There is a separate bootstrap and loader program set
for each peripheral input device. The loader program loads
an object program in the assembly format from the same
input device from which the loader itself was loaded
(Figure 7-1). Once loaded into memory, the bootstrap and
loader programs need not be reloaded. They may be used
repeatedly, provided they are not overwritten by some user
task program.

The loaders do not resolve COMMON references. All pro­
grams containing a reference to COMMON must be link
edited in order to allocate space for the COMMON
variables. Likewise the loaders do not accept BLOCK
DATA input. Unresolved external references are not con­
sidered errors.

The loaders detect' the 'follo~ing error conditions:

a. COMMON references SI

b. Parity errors on tape

c. Blank cards

d. Check-sum errors

e. Programs larger than the available core.

Any of these conditions will cause loading to stop, and the
M-register will be set to non-zero.

7-2 LOADING PROCEDURE.

a. Press the SCAN mode pushbutton. This halts
computer execution.

b. Enter the hexadecimal value 0008 in the
Program Counter.

c.

d.

e.

f.

g.

7-1

Press the MR pushbutton.

Enter each word of the bootstrap (refer to
paragraph 7-3) as follows:

Press the CLEAR pushbutton.

Set the DATA buttons to correspond
with the word of the bootstrap being
entered.

Press the LOAD pushbutton.

Press the SCAN pushbutton.

Press the SIE and SYSTEM RESET
pushbuttons.

Make sure the BKPT light is not illuminated.

Enter the hexadecimal value 0008 in the
Program Counter.

BOOTSTRAP

Keyed In.

C Loads Loader.

0
R
E LOADER

M Bootstrap Reads.

E
M Loads User Object.

0
R OBJECT PROGRAM
Y

Loader Reads.

Performs User Tasks.

Figure 7-1. Bootstrap and Loader

h. Load the loader tape or card deck into the
appropriate input reader and make sure the
reader is ready.

i. Press the RUN mode pushbutton. The loader
will now load.

j. place the program to be loaded in the
appropriate reader.

k. Enter the hexadecimal value 0018 in the
Program Counter.

1. Press the RUN pushbutton. The program will
idle. At this time, the load point and core size
may be entered according to the following
steps.

m. If the program is to be loaded immediately
after the loader skip this step. If a load point is
to be specified, place it in the A register at this
time. If an absolute program is to be loaded,
the load point used will be that obtained from
the program itself and this step may be skipped.

n. If the assumed default core size is incorrect,
enter the core size in the E register. This feature
may be used to protect an area of upper
memory from being loaded into or used by
background programs

o. Press the RUN pushbutton. The object program
will now load.

p. Press the RUN pushbutton to start execution of
the object program.

If it is desired to manually perform the load again to load
another program, press the SCAN pushbutton to halt the
computer and perform steps j through p. If it is desired to
reload the loader using a previously entered bootstrap, press
the SCAN pushbutton and perform steps e through i.

NOTE
RTM-I/BATCH will load a disc bootstrap
over the manually entered bootstrap as
part of its initialization procedure
(paragraph 7-4).

7-3 BOOTSTRAPS.
The following sequences of hexadecimal instructions must
be manually loaded to load the indicated loaders.

7-2

High Speed
Paper Tape

Location Teletypewriter Reader Card Reader

8 7802 7802 1781
9 OOA8 OOA8 IFOI
A FF6E FF6E D83F
B 0791 0701 2003
C D822 D830 C574
D 2000 2000 D81F
E 10FB 10FB 2080
F C574 C574 78FD

10 D802 D818 C868
11 2080 2080 C845
12 78FD 78FD CCCO
13 C868 C968 78F5
14 C7C7 C7C7 C7C7
15 8EF3 8EF3 8A7F

7-4 RELOADING FROM DISC.
Systems using the BATCH background processor will save a
copy of the core resident programs on disc as part of the
system initialization procedure. Core resident programs
which are accidentally destroyed may be restored from the
disc copy.

74.1 LOADING FROM DISC. The following procedure is
used to load from disc.

a. Press the SCAN pushbutton to halt the
computer.

b.

c.

Enter the hexadecimal value 0008 in the
Program Counter.

Press the RUN pushbutton. This will execute a
core resident disc bootstrap and loader program
included as part of the supervisor.

d. If the core resident programs fail to load and
execute properly, the bootstrap program itself
has been altered. The disc bootstrap should be
manually loaded and executed.

7-4.2 MANUALLY LOADING AND EXECUTING DISC
BOOTSTRAP. To manually load and execute the disc
bootstrap, the following procedure is used:

a. Press the SCAN pushbutton to halt the
computer.

b.

c.

d.

e.

Enter the hexadecimal value 0008 in the
Program Counter.

Press the MR pushbutton.

Enter each word of the bootstrap as described
in paragraph 7-5.

Press the SIE and SYSTEM RESET
pushbuttons.

f. Make sure the BKPT light is not illuminated.

g. Enter the hexadecimal value 0008 in the
Program Counter.

h. Press the RUN mode pushbutton.

1. If the core resident programs fail to load and
execute properly, the copy of the monitor on
disc has also been destroyed. The disc content
must also be restored.

7-4.3 RESTORING THE DISC. To restore the disc, the
following procedure is used:

a. Load the restore disc program using the
procedure of paragraph 7-2.

7-3

b.

c.

Execute the restore disc program using a
previously generated copy of the disc. This
copy is made using the save disc program. This
procedure is described in Section IV.

If a copy of the disc has not been made using
the save disc program, the core resident
programs must be reloaded and the disc
contents regenerated as described in Section IV.

7-5 DISC BOOTSTRAP.
The following sequence of hexadecimal instructions may be
manually loaded and executed to initiate reloading from
the disc.

Location Instruction

8 D900
9 OOOD
A 1700
B 40FF
C 7804
D 0000
E 0000
F 1007

SECTION VIII

DEBUG PACKAGE

SECTION VIII

DEBUG PACKAGE

8-1 INTRODUCTION.
The Debug Package consists of seven function programs:

a. Inspect and change core (IC)

b. Store masked constant (ST)

c. Search for masked constant (SR)

d. Hexadecimal dump (HD)

e. Punch object tape (PT)

f. Correction load (CL)

g. Move debug program (MV).

8-2 PROGRAM OPTIONS.
The debug package for any particular installation may use
the high-speed reader, card reader, or teletypewriter tape
reader for input; line printer or teletypewriter for printed
output; and high-speed punch or teletypewriter for
punched output. The user should know which options are
present in the debug package before attempting to use the
program.

Each function program will be assigned a unique program
number. This program number is used to select the function
program for execution. Hence, it will be necessary to know
the program number assignments assumed to use a
particular debug function. The program number
assignments are as follows:

IC
ST
SR
HD
PT
CL
MV

1
2
3
4
5
6
7

8-3 GENERAL OPERATING PROCEDURES.
Each program is addressed by entering the sum of the
starting address of the debug package and the program
number in the program counter. Data is entered in a register
in the following manner:

a. Press the CLEAR pushbutton.

b. Enter data by pressing each DATA pushbutton
which should correspond to a one-bit. If the

8-1

c.

d.

light above a DATA pushbutton shows that a
one-bit has been set, which should have been
left as a zero-bit, press the pushbutton again to
reset it to a zero (ligh tout).

Select the correct register by pressing the
corresponding pushbutton in the DISPLAY
SELECT. Refer to Section I for an explanation
of the DISPLAY SELECT panel.

Press the LOAD pushbutton.

If, after completing this instruction sequence, wrong data
has been entered, repeat the sequence until the correct data
has been entered. Data in a register is examined in the
following manner:

a.

b.

c.

Press the SIE mode pushbutton.

Select the correct register by pressing the
corresponding pushbutton in the DISPLAY
SELECT.

The contents of the register may be seen in the
DISPLAY lights.

d. To examine another register before continuing,
repeat instructions band c.

Parameters for each function program should be entered
only in the registers specified by its operating procedure
and only at the points indicated.

After execution of the Move Debug Package operation
(MV), the program counter must be reset to whatever
program is to be run next and its parameters entered. After
execution of any of the other function programs, a new set
of parameters may be entered to re-execute the program.
To enter any other program, the program counter must be
reset.

8-3.1 LOADING A USER PROGRAM. When loading a
user program after loading the debug program, the starting
address must be greater than or equal to 0095, if DMAC is
not attached to the computer, and greater than or equal to
00A8 if DMAC is attached to the computer. Be sure that
the program will not destroy any part of the debug
program. If the exact limits of the debug program are not
definitely known, execute the MV instruction sequence
through the examination of the registers to obtain the
boundaries of the debug program.

If the tape is absolute rather than relocatable, the program
will be loaded at the point of origin as indicated on the tape
and the starting address does not have to be loaded by
hand. However, the restrictions noted above on starting
addresses and program limits are still applicable.

8-3.2 INSPECf AND CHANGE CORE. The Inspect and
Change Core (IC) operation permits examination of
consecutive memory words, starting wherever desired, and
chaRges to these words, if desired. The inputs required for
this operation are:

a.

b.

The sum of the starting address and program
number (DEBUG+1) entered into the Program
Counter

The hexadecimal address of the first word of
memory to be inspected entered into the A
register.

Once the program has been addressed, the computer will
continuously execute the program until the Program
Counter is reset. Each time through the loop, the program
will idle twice. During the first idle, the contents of the
address specified in the A register may be examined and
changed in the E register. During the second idle, the next
address may be examined and changed. The operating
procedure is as follows:

a.

b.

c.

Press the SIE and SYSTEM RESET
pushbuttons. Enter the first address to be
inspected in the A register. Enter the value
DEBUG + 1 in the Program Counter. Press the
RUN mode pushbutton.

Examine the contents (of the address specified
in the A register) in the E register. Change the
contents if desired by entering the new con­
tents in the E register. Press the RUN push­
button.

Examine the next address to be inspected in the
A register. Change the address if desired by
entering the new address in the A register. Press
the RUN pushbutton.

d. Repeat steps band c.

8-3.3 STORE MASKEU CONSTANT IN MEMORY. The
Store Masked Constant (ST) routine calculates and stores a
value using the following Boolean equation:

Value = (Y and M') or (K and M),

where:

Y = the contents of a memory word
M' = the one's complement of the mask
K = the constant
M = the mask.

The inputs required by this operation are:

8-2

a. A mask word in the M register

b. A constant in the S register

c.

d.

e.

The address of the first location to be changed
in the A register

The address of the last location to be changed
in the E register

The starting address of the function program
(DEBUG + 2) in the Program Counter.

When the program has calculated and stored the new values
within the limits defined in the A register and the E
register, new values for parameters a through d may be
entered to repeat the program.

Do not include any part of the Debug Package within the
limits entered into the A and E registers.

This routine may be used for such operations as setting an
area to zero or altering a table of eight-channel ASCII codes
to seven-channel ASCII codes.

The operating procedures are as follows:

a.

b.

c.

d.

e.

f.

g.

h.

Press the SIE and SYSTEM RESET
pushbuttons.

Enter the mask value in the M register.

Enter the constant value in the S register.

Enter the first address in the A register.

Enter the last address in the E register.

Enter the value DEBUG + 2 in the Program
Counter.

Press the RUN pushbutton.

To execute the program again with different
parameters, press the SIE pushbutton and
repeat steps b through g but do not reset the
Program Counter.

8-3.4 SEARCH FOR MASKED CONSTANT. The Search
for Masked Constant (SR) routine calculates and performs
the following comparison:

(Y and M) = (K and M),

where:

Y = the contents of a memory word

M = the mask
K = the constant.

The inputs to this operation are:

a. A mask word in the M register

b. A constant in the S register

c.

d.

e.

A starting address in the A register

The last consecutive address to be treated in the
E register

The starting address of the program (DEBUG +
3) in the Program Counter.

An output to the print device occurs when a value (Y and
M) matches the value (K and M). The output consists of the
four-digit hexadecimal address and the four-digit
hexadecimal representation of the contents of that
location. For example: a printout of 'lAOO=FFFF'
indicates that the value oflocation lAOO is FFFF.

This routine may be used to find a particular instruction
(such as a branch unconditional (BRU) instruction) or find
a particular value (such as zero). Any word in memory may
be tested by this operation.

The operating procedure is:

a.

b.

c.

d.

e.

f.

g.

Depress the SIE and SYSTEM RESET buttons.

Enter the mask value in the M register.

Enter the constant in the S register.

Enter the first address in the A register.

Enter the last address in the E register.

Enter the value DEBUG + 3 in the Program
Counter.

Make sure the printing device IS on-line and
ready to go.

h. Depress the RUN pushbutton.

1. To execute again with different parameters,
wait until printing has ceased. Then depress the
SIE pushbutton and repeat steps b through h
but do not reset the Program Counter.

8-3.5 HEXADECIMAL DUMP. The Hexadecimal Dump
(HD) routine dumps the contents of the specified area of
memory as four hexadecimal digits per memory word and
eight words per printed line, with the first word in each line
on a multiple-of-eight boundary (ending in zero or eight).

8-3

The inputs to this operation are:

a.

b.

c.

The address of first word to be dumped in the
A register

The address of the last consecutive word to be
dumped in the E register

The program address (DEBUG + 4) in the
Program Counter.

The output to the print device consists of one or more lines
in the following format:

AAAA = CCCC CCCC CCCC CCCC CCCC CCCC CCCC CCCC,

where AAAA is the address of the first CCCC in the line,
and each CCCC is the hexadecimal representation of the
contents of a memory word. The eight CCCC's then
represent eight consecutive words of memory. Any word in
memory may be dumped to the print device.

The operating procedure is:

a.

b.

c.

d.

e.

f.

Press the SIE and SYSTEM RESET
pushbuttons.

Enter the first address in the A register.

Enter the last address in the E register.

Enter the value DEBUG + 4 in the Program
Counter.

Make sure the pnntmg device is on-line and
ready to go. Press the RUN pushbutton.

To execute again with different addresses, wait
until printing has ceased. Then press the SIE
pushbutton and repeat steps b through e but do
~ot reset the Program Counter.

8-3.6 PUNCH OBJECT TAPE. The Punch Object Tape
(PT) routine outputs the specified area of memory as an
absolute object tape. (Refer to Section II for the format).

The inputs to this operation include:

a. The first address to be output in the A register

b. The last address to be output in the E register

c.

d.

The entry point address in the X register

The address of the punch tape program
(DEBUG + 5) in the Program Counter.

The operating procedure is as follows:

a. Press the SIE and
pushbuttons.

SYSTEM RESET

b.

c.

d.

e.

f.

Enter the first address in the A register.

Enter the last address in the E register.

Enter the entry point address in the X register.

Enter the value DEBUG + 5 in the Program
Counter.

Make sure there is sufficient tape loaded in the
tape punch and that it is on-line and ready.

g. Press the RUN pushbutton.

h. To execute the program again with different
limits, wait until the punch motor has stopped.
Then press the SIE pushbutton, and then repeat
steps b through g but do not reset Program
Counter.

8-3.7 CORRECTION LOAD. The Correction Load (CL)
routine loads a large number of memory corrections
without having to enter each data word through the IC
routine. The corrections are entered in a specific format on
cards or punched tape.

The basic rules for the input format are as follows:

a.

b.

c.

d.

e.

Both addresses and contents must be in the
form of one to four hexadecimal digits,
right-justified. If more than four digits are used
to represent either address or contents, the last
four digits of the number will be used by the
program.

An equal sign (=) indicates that the number to
the left of the equal sign is the next address to
be changed (called the current address).

A comma (,) indicates that the number to the
left of the comma shall be stored at the current
address, after which the current address shall be
incremented by one.

An exclamation point (!) indicates the end of
the corrections and signals the end of program
execution. It also results in the storage of the
number to the left of the exclamation point in
the current address.

If the corrections are on paper tape, a carriage
return has exactly the same effect as a comma.

8-4

f.

All characters except the digits 0-9, the letters
A-F, and four punctuation marks (comma,
equals, exclamation point, and carriage return)
are ignored by the program.

If the corrections are on cards, all characters
except the digits 0-9, the letters A-F, and three
p U:1.ctuation marks (comma, equals, and
exclamation point) are ignored. If the program
discovers an end-of-card status when scanning
for a punctuation mark, it will read and scan
cards until it does find a punctuation mark.

PROGRAM CAUTION

Any of the following sequences of legal characters will
result in the designation of the zero location as the current
location, a condition which would result in destroying the
bootstrap: comma-equals; carriage return-equals;
equals-equals.

Any of the following sequences of characters will result in
the storage of a zero in the current address: comma-carriage
return; comma-exclamation point; comma-comma; carriage
return-comma; carriage return-exclamation point; carriage
return-carriage return.

If an exclamation point is not present in the corrections,
the program will keep trying to read until the SIE
pushbutton is pressed to halt the machine. To re-enter the
program in such a case, press the SYSTEM RESET
pushbutton and reset the Program Counter.

Do not alter any portion of the Debug Package.

The operating procedure is as follows:

a.

b.

c.

d.

e.

f.

Punch the card deck or tape off-line. Do not
forget to put in the end character (exclamation
point). If the corrections are on cards, do not
forget to end cards with a comma before
proceeding to the next card.

Press the SIE and SYSTEM RESET
pushbuttons.

Load the corrections into the reading device.

Make sure the reading device is on-line and
ready to read.

Enter the value DEBUG + 6 in the Program
Counter.

Press the RUN pushbutton.

g. After the reading device has stopped, the
program may be re-entered by pressing the SIE
pushbutton and repeating steps c through f. Do
not reset the Program Counter.

8-3.8 MOVE DEBUG PACKAGE. The Move Debug
Package (MV) routine permits the Debug Programs as a
whole (excluding the bootstrap and loader) to be moved to
a different memory location.

The inputs to the program are:

a.

b.

The starting address of the program (DEBUG +
7) in the Program Counter

The new starting address (the new value of
DEBUG) in the A register.

When the MV program is addressed, it will provide the
present starting and ending addresses of the Debug Program
and the bias length for a move to the left of the present
location. It is the user's responsibility when deciding upon
the new starting address to make sure of the following
items:

a. that the new address conforms to the
restrictions for the minimum value of the
address, as explained in paragraph 8-3.1.

b. that the new DEBUG value is at least (DEBUG
+ total length of the Debug Programs) or less
than (DEBUG - bias).

At the end of execution, control is transferred to the idle
command at the new DEBUG location. To perform any of
the functions, simply repeat the normal procedures, using
the new value of DEBUG in calculating the Program
Counter value.

The operating procedure is as follows:

8-5

a.

b.

c.

d.

e.

f.

Press the SIE and SYSTEM RESET
pushbuttons.

Enter the value DEBUG + 7 in the Program
Counter.

Press the RUN pushbutton.

Examine the starting address of the Debug
Package (the value DEBUG) in the E register.

Examine the address of the last word of the
Debug Package in the X register.

Examine the bias of the program for a move to
the left in the A register.

g. Enter the new value for DEBUG in the A
register, complying with the rules stated above.

h. Press the RUN pushbutton.

i. To enter this or any other function program of
the DEBUG package, perform the appropriate
operating procedure.

8-3.9 RUNNING A USER PROGRAM. After a user
program has been loaded it may be executed as follows:

a.

b.

c.

d.

Make sure any input/output devices the
program requires are on-line and ready.

Press the SIE and SYSTEM RESET
pushbuttons.

Enter the absolute starting address of the
program in the Program Counter.

Press the RUN pushbutton.

	00-00
	00-01
	00-02
	00-03
	00-04
	00-05
	00-06
	00-07
	00-08
	01-00
	01-01
	01-02
	01-03
	01-04
	01-05
	02-00
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	03-00
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	04-00
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	05-00
	05-01
	05-02
	05-03
	05-04
	05-05
	06-00
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	07-00
	07-01
	07-02
	07-03
	08-00
	08-01
	08-02
	08-03
	08-04
	08-05

