
(M5

Connection
Machine CM-5
Technical
Summary

Corporation

-lrrlrll S llY~r =ir-~Ur

Connection
Machine CM-5
Technical
Summary

November 1993

EMImtm~ t NUMBI-RUIS~~Rn;

-

First printing, October 1991
Revised, November 1992
Revised, November 1993

The information in this document is subject to change without notice and should not be construed as a
commitment by Thinking Machines Corporati. Thining Machines reserves the right to make changes to any

product described herein.

Although the informanation in this document has been reviewed and is believed to be reliable, Thinking Machines
Corpotioa assumes no liability for emrs in this document. Thinking Machines does not assume any liability
arising from the application or use of any information or product described herein

Connection Machine is a registered trademark of Thinking Machines Corporation.
CM, CM-2, CM-200, CM-5, CM-5 Scale 3, and DataVault are trademarks of Thinking Machines Corporation.
CMos; CMAX, and Prism are trademarks of Thinking Machines Corporation.
C * is a registered trademark of Thinking Machines Corporation.
Paris, *Lisp, and CM Fortran are trademarks of Thinking Machines Corporation.
CMMD, CMSSL, and CMX11 are trademarks of Thinking Machines Corporation.
CMview is a trademark of Thinking Machines Corporation.
FastGraph is a trademark of Thinking Machines Corporation. FastGraphU.S. Patent No. 5,247,694
Scalable Computing (SC) is a trademark of Thinking Machines Corporation.
Scalable Disk Array (SDA) is a trademark of Thinking Machines Corporation.
Thinking Machines® is a registered trademark of Thinking Machines Corporation.
AVS is a trademark of Advanced Visualization Systems, Inc.
Ethernet is a trademark of Xerox Corporation.
IBM is a trademark of International Business Machines Corporation.
Motif is a trademark of The Open Software Foundation, Inc.
NFS and UNIX are trademarks of UNIX System Laboratories.
SPARC and SPARstation are trademarks of SPARC International, Inc. Products bearing a SPARC trademark

are based upon an architecture developed by Sun Microsystems, Inc. SPARCstation is licensed exclusively
to Sun Microsystems, Inc.

Sun, Sun-4, and Sun Workstation are trademarks of Sun Microsystems, Inc.
VMEbus is a trademark oif Motorola Corporation
The X Window System is a trademark of the Massachusetts Institute of Technology.

Copyright C 1991-1993 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation
245 First Street
Cambridge, Massachusetts 02142-1264
(617) 234-1000

Contents
iAs. _sli~--

Part I Introduction

Chapter 1 Supercomputing and Parallelism

1.1 Parallelism..........................

1.2 Parallel Programming

1.3 Advantages of a Universal Architecture .

1.4 Looking Ahead

Chapter 2

2.1

2.2

2.3

2.4

Chapter 3

3.1

3.2

3.3

3.4

3.5

The Basic Components of the CM-5

Processors
Networks
I/O
A Universal Architecture

Data Parallel Programming..............

Data Sets and Distributed Memory

Interconnected Data Structures

Interprocessor Communications

Conditionals
In Summary

3.6 More Information to Come

Novemer 1993
Coppight @ 1993 Thining Machines Coporation

3

4

5

9

11

13

13

15

17

18

19

19

21

21

27

28

29

iii

.. .. .

.........
....

..........

...............

...............
................
................

...............
................
................
...............
................

................

................

................
...............
................

Connection Machine CM-5 Technical Summary
% B ~~~~Psss~~~~~%........ ... 81M MI111a - ----- ------ ----- ---- .-------

Part II CM-S Software

Connection Machine Software

Base System Software

Languages and Libraries

CM Software Summarized

The Operating System: CMOST

CMOST and the CM-5 Architecture

CMOST and the Users

CMOST and the Administrator
I/O and File Systems

The Programming Environment: Prism ...

Using Prism

Analyzing Program Performance

Visualizing Data

Using Prism with CMAX

On-Line Documentation and Help

The Program Execution Environment .

Batch Utilities

Timers
Timesharing
Checkpointing

37

38

40

41

41

.......... 45

.......... 46

.......... .47
48

49

50

...... . .53

........... 54
........... 57
........... 57
........... 58

Chapter 8 The CMAX Converter 59

Chapter 9 The CM Fortran Programming Language 63

9.1 Structuring Parallel Data 63
9.2 Computing in Parallel .. 65

9.3 Communicating in Parallel 66

9.4 Eransforming Parallel Data 68

November 1993
Copyght 0 1993 ThirlngMachines Corm ioniv

Chapter 4

4.1

4.2

4.3

33

33

33

35

Chapter 5

5.1

5.2

5.3

5.4

Chapter 6

6.1

6.2

6.3

6.4

6.5

Chapter 7

7.1

7.2

7.3

7.4

- -

....................
...................
.........

....................

...

...

...............

...............
..............
...............

....................
.....................
....................

..........

..........
.........
..........

Contents
,8g(m·

Chapter 10

10.1

10.2

10.3

10.4

The C* Programming Language..

Structuring Parallel Data

Computing in Parallel

Communicating in Parallel

¶Iransforming Parallel Data

........................ 71

........................ 71
.e . ..e 73
........................ 75
........................ 76

Chapter 11

11.1

11.2

113

11.4

Chapte

1

Chaptel

The *Lisp Programming Language ..

Structuring Parallel Data

Computing in Parallel

Communicating in Parallel

'Iansforming Parallel Data

r 12 CM Scientific Software Library

12.1 Overview

12.2 Multiple Instances

12.3 Matrix Operations

12.4 Linear Algebraic Equations

12.5 Eigensystem Analysis

12.6 Fourier ransforms

12.7 Ordinary Differential Equations

12.8 Optimization

12.9 Random Number Generation

L2.10 Statistical Analysis

2.11 Communication Functions

r 13 Data Visualization

13.1 A Distributed Graphics Strategy

13.2 An Integrated Environment

13.3 The X11 Protocol

13.4 The CMX11 Library

79

80

82

84

85

87

87

88

92

94

97

98

99

99

100

100

101

........... 105

........... 105

........... 106

........... 107

........... 107
13.5 Visualization Environments - CM/AVS 108

Novembr 1993
CopyrWt 1993 Thinkgachins Coporation v

....

.....

..............
..............
.............
..............

........

........
........
........
........
........
........
........
........
........
........

.................
.................
................
.................
.................
................
.................
.................
.................
.................
.................

.............

..............

..............

..............

Connection Machine CM-5 Technical Summary

Chapter 14

14.1

14.2

14.3

14.4

CMMD , . ..
Node-Level Programming with CMMD

Programming Models

Message-Passing Protocols

I/O ..

Part HII CM-5 Architecture

Chapter 15

15.1

15.2

15.3

Chapter 16

16.1

16.2

16.3

Chapter 17

17.1

17.2

17.3

Chapter 18

18.1

18.2

18.3

Architecture Overview

Processors
Networks and VO

Further Information

The User-Level Virtual Machine

Communications Facilities

Data Parallel Computations

Low-Level User Programming

Local Architecture

Control Processor Architecture

Processing Node Architecture

Vector Unit Architecture

.............................. 125

.............................. 125

.............................. 127
.............................. 129

.............................. 131

.............................. 132
.............................. 134

.............................. 137

.............................. 139
.............................. 139
.............................. 140
.............................. 143

Global Architecture ..

The Network Interface..

The Control Network ...

The Data Network

.......... 155

.......... 155

.......... 158
.......... 162

Chapter 19

19.1

19.2

19.3

System Architecture and Administration 165

The System Console .. 165

Allocation of Resources 166

Partitions and Networks 167

November1993
Copyright 0 1993 Thinking Machines Corporation

... 111

... 112

... 112

... 113

... 119

vi

.......

..

..

.....
...

..............................

Network Implementation

Resource Allocation and Management

Accounting, Monitoring, and Error Reporting

Physical Monitoring Systems

Fault Detection and Recovery

Chapter 20

20.1

20.2

20.3

20.4

Input/Output Subsystem

/VO Architecture ...

File System Environment

CM-5 I/O Interfaces and Device Implementation

CMIO Bus Device Implementation

November 1993
Copyght 0 1993 Thing Machnes Coporaton

Contents
1 1 1, ll ll11 -- - - - . - -- -- -- -- --- -- -- -- --·-- .. -- -- -- -- -- -

19.4

19.5

19.6

19.7

19.8

169

175

176

176

176

...... 181

...... 182
..... 183

...... 186

...... 192

.........

.........

.........

.........
.........

vi

Part I

Introduction

November 1993
Copyright (1993 Thinking Machines Corporation 1

_ �

___ l _I II I

Chapter 1

Supercomputing and Parallelism

The Connection Machine system CM-5 provides high performance plus ease of
use for large, complex, data-intensive applications. Its architecture is designed
to scale to teraflops or teraops performance for terabyte-size problems. It
features

* independent scalability of processing, communication, and IVO

* extremely high floating-point and integer execution rates

* high processor-memory bandwidth

* efficient execution of high-level languages

* multiple job execution, both timeshared and partitioned

* multi-user network access

* security between users

* flexible high-bandwidth 110

* balanced scalar and parallel execution

* balanced I/0, processing, and memory

* high reliability and high availability

The CM-5 continues and extends support for the parallel programming model
that has proved so successful in the CM-2 and CM-200. To achieve its goals, the
CM-5 takes advantage of the latest developments in high-speed VLSI, new com-
piling technologies, RISC microprocessors, operating systems, and networking.
It combines the best features of existing parallel architectures - including fine-
and coarse-grained concurrence, MIMD and SIMD control, and fault tolerance -
in a single, integrated, "universal" architecture.

November 1993
Copyright 0 1993 ThndngMauhins Corporaton 3

Connection Machine CM-5 Technical Summary

1.1 Parallelism

One of the most notable advances in computing technology over the past decade
has been in the use of parallelism, or concurrent processing, in high-performance
computing. Of the many types of parallelism, two are most frequently cited as
important to modem programming:

control parallelism, which allows two or more operations to be performed
simultaneously. (Two well-known types of control parallelism are
pipelining, in which different processors, or groups of processors, operate
simultaneously on consecutive stages of a program, and functional
parallelism, in which different functions are handled simultaneously by
different parts of the computer. One part of the system, for example, may
execute an 1/0 instruction while another does computation, or separate
addition and multiplication units may operate concurrently. Functional
parallelism frequently is handled in the hardware; programmers need take
no special actions to invoke it.)

c data parallelism, in which more or less the same operation is performed
on many data elements by many processors simultaneously.

While both control and data parallelism can be used to advantage, in practice the
greatest rewards have come from data parallelism. There are two reasons for this.

First, data parallelism offers the highest potential for concurrency. Each type of
parallelism is limited by the number of items that allow concurrent handling: the
number of steps that can be pipelined before dependencies come into play, the
number of different functions to be performed, the number of data items to be
handled. Since in practice the last of these three limits is almost inevitably the
highest (being frequently in the thousands, millions, or more), and since data par-
allelism exploits parallelism in proportion to the quantity of data involved, the
largest performance gains can be achieved by this technique.

Second, data parallel code is easier to write, understand, and debug than control
parallel code.

The reasons for this are straightforward. Data parallel languages (such as the
Connection Machine system's CM Fortran, C*, and *Lisp) are nearly identical
to standard serial programming languages. Each provides some method for
defining parallel data structures: CM Fortran uses the Fortran 90 array features,
while the other two languages add a new data type. Once the data sets (arrays,
matrices, structures, etc.) are defined, a single sequence of instructions, as in
serial code, causes operations to be performed concurrently either on the full data
sets or on selected sections thereof. Very little new syntax is added: the power

November 1993
4 Copyright © 1993 ThinkingMachines Corporation

Chapter 1. Supercomputing and Parallelim
...................... - - - --- ------ . .--- -- - - - --------------------------------- ---- -....---

of parallelism arises simply from extending the meaning of existing program
syntax when applied to parallel data.

The flow of control in a data parallel language is also nearly identical to that of
its serial counterpart. Since this control flow, rather than processor speed, deter-
mines the order of execution, race conditions and deadlock cannot develop. The
programmer does not have to add extra code to ensure synchronization within a
program; the compilers and other system software maintain synchronization
automatically. Moreover, the order of events, being essentially identical to that
in a serial program, is always known to the programmer, which eases debugging
and program analysis considerably.

1.2 Parallel Programming

Prior to the CM-5, the most successful implementation of the data parallel
programming model was the so-called SIMD (Single Instruction, Multiple Data)
architecture. As implemented on the Connection Machine models CM-2 and
CM-200, the SIMD architecture has shown itself to be extremely efficient and
powerful. Arrays that are hundreds or thousands of elements in size are laid out
across hundreds or thousands of processors, one element per processor, in a
format whose logical structure matches that of the data set itself and the
operations to be performed on it. (See Figure 1.) When there are more array
elements than processors, the processors subdivide themselves into "virtual
processors" and give each element its own virtual processor. Instructions are then
executed upon each element simultaneously. For example, given three 400 x 400
arrays, A, B, and c, the statement c A + B is a single statement - and is
executed as such - in data parallel programming.

But "data parallel" and "SIMD" are not necessarily synonymous terms. Consider,
for example, finite difference codes. Boundary elements in these codes usually
require special treatment, which means conditional branching. In data parallel
languages, such branching is frequently coded along the lines of

where (boundary_elements)

do a
elsewhere

do b
end where

November 1993
Copyight 0 1993 Thinkng Machine. Corporation S

Connection Machine CM-5 Technical Summary
P~~rslblsll~~~~~~s~~ssllllss------------- ----------

Aii.1.k 2g'.-1,1 +l,
i' El - L, k-i

A Ai-1l, J.

L- J, k-l

1I

A-1,j-1, I

4
I I '- - - - -

1+1 ,j+, k

. .
/j Ai+Ij, k+l

+1 j,k-1

I
/ A- l.i-

/

A.k,
A, k

14 k-i

I
AL 1-.

/ i, j-1, k (i+l,J-I, k
AI+l,J-, k-I

Figure 1. Examples of data sets.

Some problems involve data sets organized as multidimensional grids. The calculation for each data
point relies on the values of neighboring data pieces. The pattern of interaction is both local and regu-
lar. Finite difference methods are typical of this category.

Other problems, exemplified by finite element methods, operate on data that is less rigidly structured.
The calculation for each data point again relies on the values of nearby data points, but the pattern
of interaction is irregular. In some cases the pattern of interaction may change over time, as dictated
by the content of the data (for example, to make the mesh finer in regions of interest).

For tasks such as sorting, the manner in which data points interact depends greatly on the data values;
the pattern of communication will be both nonlocal and irregular.

The communications networks of the CM-5 are designed to support both regular and irregular pat-
terns of communication. Patterns'that are predominantly local are rewarded with higher throughput.

November 1993
6 Copyigt 1993 ThinkingMachines Corporation

_ . - .~~~~~~~~~~~~~~

AA~i-tw-v~A LAk i w-"iA I+1w w-u ki

I w7

A . -. -

A

w - _ . ._ _

- . .· ..

, -

/ /
ii

I

jr
tAi+lj-ll.

I *A.... - A. _ _

Ai-Ij-lk- A+i~k-I

Chapter 1. Supercomputing and Parallelismn
-M W § . - ,

A pure SIMD implementation of such code will execute the where branch for all
boundary elements, and then execute the elsewhere branch for all interior
elements. A MIMD (Multiple Instructions, Multiple Data) implementation will
execute both branches simultaneously, with each processor making its own
decision whether to fetch and execute instructions for the where branch or for
the elsewhere branch for each element. When all processors have finished
execution, the program will proceed to the next statement. Note that both
implementations use the same code; both are undoubtedly data parallel
programming. The only externally visible difference will be in performance; the
second implementation, by using functional parallelism in support of data
parallelism, can run faster than the first.

Note that the order of events in either case is identical to the order that would
obtain for serial code. Even if the where branch takes several times as long as
the elsewhere branch to execute, no processors will proceed to the subsequent
statement until all have finished executing the where block. System software
implements this control; the programmer does not have to worry about it. Only
where events have no dependencies on each other, so that their order does not
matter, will the order be unknown. (Figure 2 illustrates the combined indepen-
dence and synchronization of program execution in this MIMD implementation
of the data parallel programming model.)

Extensions to the Data Parallel Model

Although data parallel programming provides the biggest gains among known
techniques of parallelism, it may sometimes be usefully extended by mixing in
other parallel techniques. For example, some applications may perform best
when divided into sections, each section making use of data parallel program-
ming and all sections together acting as a pipeline. Thus, one process might
gather data and do some preliminary selecting or compacting; it would then pass
its results to a second process, which would do more intense computing on the
smaller data set; and that process would then pass its results to a third process,
which would perform some visualization or reporting function. On the CM-5, all
three processes can run in parallel, either timesharing on a single partition or
perhaps each having exclusive use of a separate partition. In the latter case, each
process has its own physical computing resources; I/O for the first process and
computation for the second occur simultaneously, with no impact on each other
or on the third process.

November 1993
Copyright 1993 Thinking Machines Corporation 7

Connection Machine CM-5 Technical Summary
-- -p~··I·_ _

Figure 2. Code running on a CM-5.

A partition manager loads identical code onto every processing node in a partition. Data is distributed
across the nodes: Given an array of m values and a partition of n nodes, each node handles min values.

Each node executes its program independently, branching according to its own data values. As long
as computation remains local, no synchroniation or communication is needed.

When data needs to be tranferred among processors - for example, when processors must each con-
tribute values to a global sum - the communications networks carry the data and enforce the neces-
sary synchronization. (For global combining operations such as sum, the Control Network performs
the reduction.)

November 1993
8 Copyght O 1993 Thinking Machines Coporation

DataCode

endent
iutaton
nchroni-
needed)

ve
on
ration

- -

Chapter 1. Supercomputing and Parallelism
---- ------ I_

The CM-5 thus extends the data parallel programming model developed for the
CM-2 and CM-200 to incorporate an even broader and more widely useful mix of
parallel techniques. Optimized for data parallelism, the CM-5 nonetheless sup-
ports other forms of parallelism that can either enhance data parallelism or allow
the porting of programs from other architectures. This extended model, which we
may call coordinatedparallelism, represents the best that is known about parallel
programming today.

1.3 Advantages of a Universal Architecture

In the past, programmers of supercomputers were forced to choose between
MIMD machines, which were good at independent branching but bad at syn-
chronization and communication, and SIMD machines, which were good at
synchronization and communication but poor at branching. The CM-5 supports
the full data parallel model by providing high performance for branching and
synchronization alike - and, indeed, for all aspects of both SIMD-style and
MIMD-style architectures.

Scalable Computing

The CM-S is the first architecture to offer truly scalable computing. It does this
by combining its universal architecture with completely scalable hardware and
scalable programming models. An application that runs on a small CM-5 can be
run without change on a larger CM-5, and will see its performance increase
accordingly. That same application may also be run on a workstation, mainframe,
or shared-memory multiprocessor.

Figure 3 shows some of the ways in which applications originally written for
other systems can run on the CM-5. (The illustration is based on the Fortran lan-
guage, but the CM-5 supports C and Lisp as well.)

* Existing CM-2 and CM-200 Fortran programs can be moved directly onto
the CM-5; recompiling is all that is needed.

· In some cases, partial recoding of CM-2 and CM-200 programs can bring
better performance by taking advantage of new compiler features.

November 1993
Cojright O 1993 Thinking Machines Corporation 9

Connection Machine CM-5 Technical Summary
_ I ----- - .I .. II

Message-
passing
codes

Port usin
CM-5
communi
libraries

sections
for
improved
efficiency

Figure 3. Transporting programs to the CM-5.

CM Fortran programs written for the CM-2 and CM-200, and Tortran 77 programs written for
execution on serial computers, and message-passing programs designed to run on MIMD-only archi-
tectures are all easily ported to the universal architecture of the CM-5.

November 1993
10 Copyright @ 1993 ThinkingMachines Corporation

--

--

I

Chapter 1. Supercomputing and Parallelism i~.mannm ium m
* Applications written using a message-passing programming model for

distributed memory computers can run on the CM-5 by substituting calls
to a CM-5 message-passing library for the original calls.

* With some additional recoding, message-passing programs can be tuned
to take advantage of the superior hardware facilities for cooperative com-
putation offered by the CM-5.

* Existing Fortran 77 codes can be migrated to Fortran 90, using CMAX, and
then compiled by the CM Fortran compiler. This allows many widely used
codes to function effectively on the CM-5.

1.4 Looking Ahead

The next two chapters explain further what coordinated parallelism on the CM-5
offers. Chapter 2 shows how the CM-5 hardware is optimized to support coordi-
nated parallelism, while Chapter 3 provides further explanation of the features
to be found in data parallel languages.

November 1993
Copyight 0 1993 Thinking Machines Corporation 11

Chapter 2

The Basic Components of the CM-5

At its best, parallel processing brings many processors, working in close coor-
dination, to bear on large quantities of data. An effective parallel-processing
system must provide a large amount of memory to hold this data and must pro-
vide effective access to the data for hundreds or thousands of processors. The
CM-5 system meets this goal. Moreover, it allows its memory and processor
resources to be applied equally effectively to a single large problem or to job
requests from dozens of simultaneous users.

Traditional computer architectures, such as the generic system diagrammed in
Figure 4, link one or a few processors to a shared memory via a system bus. This
worked well when processing speeds were slower and the number of processors
was small. Nowadays it is much more cost-effective to use many processors than
to try to make the processors faster. With many processors, a simple bus is a
bottleneck, and the complex switches that can provide fast access to a shared
memory for every memory reference are both expensive and complicated. Two
more changes to the early model are therefore needed to balance communication
speed with processing speed: memory must be distributed, rather than shared;
and a high-bandwidth network, rather than a bus, must be used. Figure 5 dia-
grams this second architecture as it appears in the CM-5.

2.1 Processors

A CM-5 system may contain tens, hundreds, or thousands of parallel processing
nodes. Each node has its own memory. Nodes can fetch from the same address
in their respective memories to execute the same (SIMD-style) instruction, or
from individually chosen addresses to execute independent (MIMD-style)
instructions.

November 1993
Copyight 1993 ThinkngMachines Corporation 13

Connection Machine CM-5 Technical Summary
_ _ _is.

Figure 4. Organization of a traditional computer.

The processing nodes are supervised by a control processor, which runs an
enhanced version of the UNIX operating system. Program loading begins on the
control processor; it broadcasts blocks of instructions to the parallel processing
nodes and then initiates execution. When all nodes are operating on a single
control thread, the processing nodes are kept closely synchronized and blocks are
broadcast as needed. When the nodes take different branches, they fetch instruc-
tions independently and synchronize only as required by the algorithm under
program control.

To maximize system usefulness, a system administrator may divide the parallel
processing nodes into groups, known as partitions. There is a separate control
processor, known as a partition manager, for each partition. Each user process
executes on a single partition, but may exchange data with processes on other
partitions. Since all partitions utilize UNIX timesharing and security features,
each allows multiple users to access the partition while ensuring that no user's
program interferes with another's.

Other control processors in the CM-5 system manage the system's I/O devices
and interfaces. This organization allows a process on any partition to access any
1/O device, and ensures that access to one device does not impede access to other

November 1993
Copynright 0 1993 ThindngMachinae Corporation14

- 4fE,. -.

Output

Chapter 2 The Basic Components of the CM-S
~~~S~~~g~~~ao~~~~~a g ~ ----- ----------

Figure 5. Organization of the Connection Machine system.

devices. (Figure 6 shows how this distributed control works with the CM-S's
interprocessor communication networks to enhance system efficiency.)

2.2 Networks

Every control processor and parallel processing node in the CM-5 is connected
to two scalable interprocessor communication networks, designed to give low
latency combined with high bandwidth in any possible configuration a user may
wish to apply to a problem. Any node may present information, tagged with its
logical destination, for delivery via an optimal route. The network design pro-
vides low latency for transmissions to near neighboring addresses, while
preserving a high, predictable bandwidth for more distant communications.

The two interprocessor communications networks are the Data Network and the
Control Network. In general, the Control Network is used for operations that
involve all the nodes at once, such as synchronization operations and broadcasting;

November 1993
Copyright 0 1993 Thinking Machines Corporation 15

Hundreds or thousands
nodes, each with its own

a min -iration o administration Outut



Connection Machine CM-5 Technical Summary
.................................

Partitions

Partition n

Partltio

Pa

/110

· UNIX OS services
* Code management
* Partition services

· Multiple copies of
user code

* In-use data sets

* File systems,
device drivers,
interfaces

* SDA, DataVault,
HIPPI, Ethernet

a Users' data store

Figure 6. Distributed control on the CM-5.

Functionally, the CM-5 is divided into three major areas. The first contains some number of partitions,
which manage and execute user applications; the second contains some number of 110 devices and
interfaces; and the third contains the two interprocessor communications networks that connect all
parts of the first two areas. (A fourth functional area, covering system management and diagnostics,
is handled by a third interprocessor network and is not shown in this drawing.)

Because all areas of the system are connected by the Data Network and the Control Network, all can
exchange information efficiently. The two networks provide high bandwidth transfer of messages of
all sorts: downloading code from a control processor to its nodes, passing 1/0 requests and acknowl-
edgments between control processors, and transferring data, either among nodes (whether in a single
partition or in different partitions) or between nodes and 1O devices.

Novembe 1993
16 Copyight @ 1993 Thinking Machines Corporation

. - --
_~~~~~~~~~~~~~~~~~~~~~~- -- _ -_



Chapter 2. The Basic Components of the CM-5~g~B~la. .cn p111..................................

the Data Network is used for bulk data transfers where each item has a single
source and destination.

A third network, the Diagnostics Network, is visible only to the system
administrator; it keeps tabs on the physical well-being of the system.

External networks, such as Ethernet and FDDI, may also be connected to a CM-5
system via the control processors.

2.3 1/O

The CM-5 runs a UNIX-based operating system; it provides its own high-speed
parallel file system, and also allows full access to ordinary NFPS file systems. It
supports both HIPPI (HIgh-Performance Parallel Interface) and VME interfaces,
thus allowing connections to a wide range of computers and I/O devices, while
using standard UNIX commands and programming techniques throughout. A
CMIO interface supports mass storage devices such as the DataVault and enables
sharing of data with CM-2 and CM-200 systems.

IO capacity may be scaled independently of the number of computational
processors. A CM-5 system of any size can have the I/O capacity it needs,
whether that be measured in local storage, in bandwidth, or in access to a variety
of remote data sources. Communications capacity scales both with processors
and with I/O. Customers may choose both the processing power and the I/O capa-
bilities that meet their needs, and the CM's communications capacity is
automatically scaled to match.

Just as every partition is managed by a control processor, every I/O device is
managed by an input/output control processor (IOCP), which provides the soft-
ware that supports the file system, device driver, and communications protocols.
Like partitions, 1/0 devices and interfaces use the Data Network and the Control
Network to communicate with processes running in other parts of the machine.
If greater bandwidth is desired, files can be spread across multiple 1/0 devices:
a striped set of eight DataVaults, for example, can provide eight times the 1/0
bandwidth of a single DataVault.

The same hardware and software mechanisms that transfer data between a parti-
tion and an I/O device can also transfer data from one partition to another
(through a named UNIX pipe) or from one 1/0 device to another.

November 1993
Copyright @ 1993 Thinking Machines Corporation 17



Connection Machine CM-5 Technical Summarya_3~aa a a r s--------..

2.4 A Universal Architecture

The architecture of the CM-5 is optimized for data parallel processing of large,
complex problems. The Data Network and Control Network support fully gen-
eral patterns of point-to-point and multiway communication, yet reward patterns
that exhibit good locality (such as nearest-neighbor communications) with
reduced latency and increased throughput. Specific hardware and software sup-
port improve the speed of many common special cases. Chapter 3 outlines the
nature of this support, which is discussed in even greater detail in later chapters.

Two more key facts should be noted about the CM-5 architecture. First, it
depends on no specific types of processors. As new technological advances
arrive, they can be moved with ease into the architecture. Second, it builds a
seamlessly integrated system from a small number of basic types of modules.
This creates a system that is thoroughly scalable and allows for great flexibility
in configuration.

November 1993
Copyriglt 1993 ThindkingMachines Corporation18



Chapter 3

Data Parallel Programming

Connection Machine systems are designed to operate on large amounts of data.
These data sets may be richly interconnected or totally autonomous. A scientific
simulation data set, such as a finite-element grid, is highly interconnected, with
every node value connected to several element values and vice versa. Disparate
values are continually being brought together, computed on, and redispersed. A
document database, on the other hand, may be totally autonomous. The search
of any one document proceeds entirely without reference to any of the others.
There is no need to repeatedly combine information from multiple documents in
a single computation.

The Connection Machine system is made up of large numbers of processors,
each with its own local memory. From the programming perspective, it is pos-
sible to think of the memory in either of two ways. When computing on
interconnected data sets, it is easiest to think of the memory as a single multi-
gigabyte data space. When computing on autonomous data, it is easiest to think
of it as many local memories.

Efficient Connection Machine algorithms invariably combine both points of
view. When gathering data, one regards it as global. When computing on the
gathered data, one thinks of it as local data, and of the computations themselves
as being carried out in multiple local memories.

3.1. Data Sets and Distributed Memory

Data parallel programs can be expressed in terms of the same data structures used
in serial programs. Emphasis is on the use of large, uniform data structures, such
as arrays, whose elements can be processed all at once. A statement such as
A - B + c, which in a serial language adds a single number B to a single num-

November 1993
Copyright C 1993 Thinking Machines Corporation 19



Connection Machine CM-5 Technical Summary
asla IIg l _ -S 

ber c and stores the result in A, can equally well indicate thousands of
simultaneous addition operations if A, B, and c are declared to be arrays.

In fact, the basic unit of data in a Connection Machine system is the array, or
some other form of parallel variable. Arrays are spread across the distributed
memory of the CM so that each element is in the memory of a separate processor.
If the number of elements in the array matches the number of physical proces-
sors, then each local memory receives one element. If the number of elements
in the array exceeds the number of physical processors, then several elements are
placed in the memory of each processor. The elements remain distinct. Each is
considered to have its own "virtual processor" and is handled accordingly.

The choice of parallel data structures is perhaps the most important aspect of data
parallel programming. Once data has been properly allocated, executable code
follows naturally. It is not necessary to use different operation names for differ-
ent cases. Parallel code can look just like serial code, in the same way that
floating-point arithmetic looks like integer arithmetic. A conventional compiler
examines the declarations of variables B and c to determine whether the expres-
sion B + C requires an integer or floating-point add instruction. In the same
way, a compiler for a data parallel language determines whether B c requires
a single addition operation or thousands.

Array Layout

A user program runs within a partition of a CM-5. Defined by the administrator,
a partition may represent part or all of the CM-5 system. In order to allow a pro-
gram compiled with a CM compiler to run on a partition of any size, the precise
mapping of data elements to processors occurs at run time; the run-time system
lays out the array for best efficiency. Compiler directives in each language allow.
programmers to request that the mapping be optimized for particular purposes.

Local Computation

Unless the programmer has specified otherwise, arrays of equal size and shape
will have identical layouts. Thus, identical elements of each such array will share
the memory of a particular processor. When a computational statement such as
C - A + B is executed, each processor locates and stores the needed data in its
own memory; no interprocessor data movement is required, and the operation
proceeds very quickly.

November 1993
Copy7ight © 1993 Thinking Machines Corporation20



Chapter 3. Data Parallel Programming
................

3.2 Interconnected Data Structures

or The inherent structure of most data sets links each data element to some, but not
.d all, other elements. Often the linkages are to neighboring elements, in which case
r. the structure is said to be localized.

s A matrix, for example, is generally thought of as having row and column struc-
ture. Elements that share one subscript are used in a connected way. If the matrix
is used as part of a finite-difference calculation, then the horizontal and vertical
neighbors are continually brought together for computation. If a data structure
is converted from the spatial domain to the frequency domain, then a butterfly
pattern may be required during the course of a Fast Fourier Transform (FFr).

It is not possible to arrange interconnected data so that all the pieces of data will
reside in the processors that need to use them, because the same piece of data
may be used in more than one part of the computation, by more than one proces-
sor. Interprocessor communication is required. Computations on data structures
have a definite rhythm: first data elements are brought together, then computa-
tions are performed. Once the data elements have been brought together, the
computations are local. Even on very complex data structures, it is possible to
have most of the interacting elements located in the same processor memory.
Typically, only a few need to be brought in from another processor's memory.

Establishing Linkages among Data Elements

Data parallel languages use pointers or array subscripts to establish connections
between processors and hence between their data elements. If the required pat-
terns are regular and local, such as processors sharing data with their nearest
neighbors, then each processor can easily calculate the address of its neighbors
as needed. For irregular arrays, an array of pointers, itself a parallel data struc-
ture, establishes an arbitrary pattern of intercommunication.

3.3 Interprocessor Communications

There are four important categories of interprocessor communications:

* replication

* reduction

November 1993
Copyright 0 1993 Thinking Machines Corporation 21



Connection Machine CM-5 Technical Summary
4%6PXs~:'i3:i^bur ,;Z.<~

* permutation

* parallel prefix

Each of these four types of data transfer can be applied to regular or irregular
data sets: to vectors, matrices, multidimensional arrays, variable-length vectors,
linked lists, and completely irregular patterns. All these combinations are sup-
ported by data parallel software within the CM-5. In addition, the most common
or otherwise important cases are supported directly by special hardware built into
the Control Network In all cases, the CM-5's high performance is a result of hav-
ing all the processors act cooperatively to achieve the needed data transfers.

Replication

Replication consists of taking some data values and making a larger number of
data values by copying them. (See Figure 7.) A single value, for example, may
be broadcast to all processors for use in a computation. A vector may be copied
into each column of a matrix, or into each row. (The general case of making
many copies of an array to fill a higher-dimensional array is called spreading.)
A less regular pattern is the division of a collection into arbitrary subsets of vary-
ing size, and one may wish to broadcast a different value within each subset. If
the subsets are ordered and not interleaved, one may regard them as a collection
of vectors of various sizes; this common case can be implemented more effi-
ciently than the general case.

Most data parallel programming languages support broadcasting implicitly; if A
and B are arrays and x is a scalar quantity, the statement A = B + x implicitly
broadcasts x to all processors so that the value of x can be added to every element
of B. The general case of replication is typically supported through parallel array
indexing, that is, indexing the same array with many index values. If some of the
index values are the same, then the same array element will be copied to many
places. Intrinsic functions (such as SPREAiD in Fortran) cover important special
cases.

November 1993
Copyright © 1993 Thinking Machines Corporation22



Chapter 3. Data Parallel Programming
............ ~a a s aa-- ,- -. ...............-- . ....................... . ............. ..

Im 1 1 1 

7 7 7 7 7 7 774

Broadcasting Spreading

[
I

_]4

VaLl Completely irregular
tors Completely irregular

1 12 16 14

1 11 2_ 2 1 6 8 6 8 14 4 4, 4~~~~~~--

Figure 7. Replication.

Reduction

Reduction is the opposite of replication: Reduction consists of taking some data
values and making a smaller number of data values by combining them. (See
Figure 8. Note that it is similar to Figure 7 except that the arrows all point the
other way.) A single value, for example, may be produced by computing the sum
of a set of values; here the combining operation is addition. Other important
reduction operations include taking largest or smallest value (maximum or mini-
mum), logical AND (are all results true?), and logical OR (is any result true?). All
these start with a large collection of values and reduce them to a single result.

More complex patterns of reduction mirror related patterns of replication. The
rows of a matrix may be summed to produce the elements of a column-vector
result; this is the opposite of a sPREAD operation. A collection of variable-length
vectors may be reduced, producing a separate sum for each vector. Completely
general patterns may be specified by index values or pointers.

November 1993
Copyright 0 1993 ThiangMachines Corporation 23



Connection Machine CM-5 Technical Summary~,, . ,l~,~,~-o~,~..· z~.~ V

Most data parallel languages provide a collection of operators or intrinsic func-
tions for expressing various patterns of reduction. For example, the Fortran
statement X - sUM (A) sums all the elements of the array A and places the scalar
result in x. The same computation can be expressed in C* as

x = (+= a);

and if the old value of x is to be included in the sum one may simply write

X += a;

(which says that every element of a is to be added into x).

I II I I I I12547635
G1lobal reduction1 4 7 1 6 
Global reduction

10

2

22

I1

10012 3 4
1 0 0 1

6 5 9 2
4 2 4 5

Row/column reduc-
tion

3 6 1 5 2 0 2-4 6 5 2 6 41

10 I 7 9 112

Variable-length vec-
tors Completely irregular

Figure 8. Reduction.

Permutation

Permutation rearranges its inputs to produce the same number of results; every
data value comes from one place and goes to one place. (See Figure 9.) Trans-

ANovember 1993
Copyright © 1993 Thinkng Machines Corporation24

- - -- - - - - - - -

I - - - - - -- - I- I- -



Chapter 3. Data Parallel Programming

posing a matrix, reversing a vector, shifting a multidimensional grid, and FFT
butterfly patterns are all examples of permutation.

Data parallel languages usually express permutation through parallel array
indexing and special-purpose intrinsic functions. A typical example of use might
be a finite-difference grid used in the discretization of Laplace's Equation, in
which the average of four nearest neighbors is iteratively computed:

C - 0.25 * ( CSHIFT(A,I,+I)
& + CSHIFT (A, 1, -1)
& + CSHIFT (A, 2, +1)
& + CSHIFT(A,2,-1) )

Here csHxT is a Fortran intrinsic that shifts (or rotates) an array with periodic
boundary conditions. Elements shifted off one edge are circularly shifted into the
opposite edge; thus no elements are lost in this operation. In contrast, EOSH'IFT
performs an end-off shift that discards shifted-out elements and introduces a pad
value, usually zero, into vacated positions; this operation is thus technically a
hybrid of permutation (of array elements) and replication (of the pad value).

112151417161315

25476351
1-D nearest neighbor (shift)

541123576
Butterflies

1 0 0 1
6592 
412 4 T

0

95

2 4
2

5

2-D row/column shift

E nrWLb0

I'i
Completely irregular

Figure 9. Permutation.

November 1993
Colp t O 1993 Thinlng Machins Crportion

32 1

1

6

4

4

- _
i

O 1

25



Connection Machine CM-5 Technical Summaryg § Sosi~~-- --
Parallel Prefix

A parallel prefix operation is a very specific compound operation; it produces as
many results as inputs, but each result may be a reduction of many inputs, and
each input may contribute to many results. There happens to be a rapid and effi-
cient parallel method for performing this complex compound operation; the
CM-5 supports it with a combination of hardware and library software. It is of
particular use in parallel computations because it permits rapid parallel execution
of operations that at first glance appear to be inherently sequential.

The simplest example of a parallel prefix operation is computing the running
totals of a list of numbers. The kth result is the sum of the first k inputs. (See
Figure 10.) There is a simple sequential implementation of such a computation:

RUNNING TOTAL = 0.0

DO J 1,1000
RUNNING TOTAL RUNNING TOTAL + B (J)
A(J) = RUNNING TOTAL

END DO

This would appear to be an inherently sequential process, scanning the array B
from one end to the other, but by bringing many processors to bear in parallel,
one can perform this computation in 10 steps instead of 1000 steps (10 is approx-
imately the base-2 logarithm of 1000).

November 1993
Copyfgt 1993 Thinking Machines Corporation26



Chapter 3. Data Prallel Programming
I 11 I~~~~_

1 3 8 12 19125128133

1-D sum-prefix

3 6 1 5 2 0 2-4 6 5 2 6 4

3 9 1015 7 0 2-2 4 9 2 8 12

Variable-length vec-
tors

1 2 3 4

1 87JI 4FEE
71ffl7

L17li15

1

206

4

11

6 10

2-D row/column sum-prefix

Linked lists

Figure 10. Parallel prefix.

3.4 Conditionals

Conditional operations are an essential part of data parallel programming, as of
serial programming. Some of the control constructs (IF, CASE) are identical; oth-
ers (w uE, FORALL) are specific to parallel usage.

Data parallel programs implement conditionals by limiting the impact of opera-
tions to a certain subset of the data elements of a parallel data structure. A
conditional operation first tests a specified condition in all elements of a parallel
data structure. The specified operation is then performed only on elements for
which the condition is true, while either an alternate operation, or no operation,
is performed on the other elements. As in serial programs, conditionals may be
nested in very general ways.

November 1993
Copyrigt 0 1993 T7inking Machines Corporation 27

3
I-

Il 10

2

22

15

6

_ _ ._ l _

1 1



Connection Machine CM-5 Technical Summary

3.5 In Summary

The data parallel model of computation makes it easy to program massively par-
allel computers. The model is also suitable for use on sequential computers,
including vector processors, and on shared-memory parallel computers. High-
level data parallel languages support the data parallel style. The CM-5 architec-
ture is specifically designed for efficient execution of data parallel programs on
large data sets.

Data parallel programming provides a practical framework for organizing inter-
processor communication. An analogy may be drawn with the way "structured
programming" has provided a practical framework for organizing control flow
in sequential programs. Each model begins with primitive computations and uses
a fixed set of standard combining forms to impose structure on the program.

Structured programming begins with simple assignment statements and observes
that most patterns of control flow can be expressed in terms of sequencing
(BEGZN-MrD), conditional branching (IF-THEN-ELSE), and looping (WHILE-
DO). If these structures are conventionally used wherever appropriate, then use
of a low-level construct such as a GOTO is a strong indication, and a useful one,
that something unusual is going on; maintenance programmers should pay spe-
cial attention, and language designers should ask whether the situation represents
a class of problems that could be addressed more generally. Conventional syntax
has evolved for certain frequently used compound patterns, such as CASE state-
ments and DO loops.

Similarly, data parallel programming begins with local computations and
observes that most patterns of interprocessor communication can be expressed
in terms of replication, reduction, permutation, and parallel prefix. If these struc-
tures are conventionally used wherever appropriate, then use of a low-level
construct such as explicit message-passing is a strong indication, and a useful
one, that something unusual is going on; maintenance programmers should pay
special attention, and language designers should ask whether the situation repre-
sents a class of problems that could be addressed more generally. Conventional
syntax has evolved for certain frequently used compound patterns, such as shift-
ing of regular grids, sorting, and fast transforms such as FFT.

As Figure 11 suggests, the data parallel model simplifies the programmer's job
by providing for parallel programs the conventional structure and discipline that
structured programming provides for sequential programs. Indeed, the data par-
allel model is the only programming methodology yet put forward that provides
a coherent global organization for structuring programs that operate on thou-
sands of processors.

November 1993
Copyright D 1993 Thinking Machines Corporation28



Chapter 3. Data Parallel Programming
- - - - - -- - - -- - - - - -- - -- -- -- --- -- --- --- -- - -- ---- -

Figure 11. Structuring programs

3.6 More Information to Come

This introduction barely begins to present the features and capabilities of the
CM-5. The remainder of this book presents them in somewhat more detail
(although still at a summary level). Part H discusses the software that supports
applications programming on the CM-5. Part m discusses the various aspects of
the system's architecture.

For information beyond this, you can turn to technical reports on Connection
Machine programming, and to the CM-2-CM-200 and CM-5 documentation sets.
Especially recommended for new users are the manuals Getting Started in C*
and Getting Started in CM Fortran.

November 1993
Copyright 0 1993 Thinking Machines Corporation 29

Data Parallel
Structured Programming Programming

Primitive
oPrimitisve assignment statements local computationsComputations

replicationBEGIN... ENDBasicBEGIN... END reductionPasen |IF ... THEN... ELSE... reductionPatterns I... ... permutation
parallel prefix

Common DO loops regular grids, stencils
Compound CASE statements fetch-with-add
Patterns REPEAT... UNTIL... sorting, fast transforms

Low-Level
Mehnss GOTO message passingMechanisms





Part II

CM-5 Software

November 1993
Copyright © 1993 Thinking Mactunes Corporation

_____ __ _ __ __

- -- .- ---

31



I



Chapter 4

Connection Machine Software

The Connection Machine system provides a well-designed, thoroughly inte-
grated software environment to facilitate applications programming. The
environment seamlessly blends industry standards with data parallel enhance-
ments to provide both high performance and ease of use.

4.1 Base System Software

The use of industry standards begins with the UNIX operating system and its net-
work file system (NFS). Full Xll support provides windowing capability; the
NQS batch system allows submission of batch jobs locally or across a network.
Networking support includes Ethernet and FDDI for local area networking, and
VME and HIPPI for high-performance networking.

Ease of use, meanwhile, is enhanced by Prism, the windowed, integrated devel-
opment environment for program editing, debugging, and performance analysis.
Another CM enhancement, a parallel, high-performance file system, provides
excellent I/O performance and allows use of extremely large files.

4.2 Languages and Libraries

For programming, users choose among the popular languages C, Fortran, and
Lisp. The CM offers data parallel versions of each language, extending the lan-
guages' own constructs in intuitive ways to support the data parallel model.

November 1993
Copyright @ 1993 Thinking Machines Corporation 33

-- ------------------------ ---------------- ----- ------ ---I N N N --- ----------- ----1 -_ I --i l l m . ------.-- --- --- --- ------



Connection Machine CM-5 Technical Summary
inmm mmm min _--.

In addition, specialized libraries offer support for graphics, communications, and
mathematical and scientific programming. All are available from the high-level
languages; low-level programming is not required to achieve high performance
on the Connection Machine supercomputer.

Figure 12. Layered software of the Connection Machine system.

November 1993
Copyright 0 1993 ThinkingMachins Corporation34



Chapter 4. Connection Machine Software
_Beg~gs~eeajeggs~8aa~i~ aeIO

4.3 CM Software Summarized

Figure 12 summarizes the layered software of the Connection Machine system.
This software is discussed in the following chapters:

Operating system, file systems, I/O programming ..........

Prism (the development environment) ....................

NQS batch system, checkpointing,
the execution environment .............................

CMAX converter .....................................

CM Fortran programming language ......................

C* programming language .............................

*Lisp programming language ...........................

CM Scientific Software Library
(linear algebra, Fast Fourier Transforms,
random number generation, histograms) ................

Visualization ........................................

CMMD (message-passing communications library) ..........

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Chapter 14

November 1993
Copyright 0 1993 Thining Machines Corporation 35



T



Chapter 5

The Operating System: CMOST

The CM-5 operating system, CMosT, is an enhanced version of the UNIX operat-
ing system. The enhancements optimize computation, communication, and
I/O perfrmance within the CM-5 system itself, while the adherence to UNIX
standards allows the CM-5 to interact efficiently with other computers in a heter-
ogeneous, networked environment.

Because the CMOST operating system is built upon standard UNIX, it can provide
all the services that any standard network server provides:

* timesharing and batch processing

· standard UNIX protection, security, and user interfaces

* support for all standard UNIX-based communications protocols

· exchange of data with other systems in an open, seamless fashion

* the ability to access files on other systems via NFS protocols and to supply
data to other systems by acting as an NFS server

* the Network Queuing System (NQS) and other standard network-oriented
programs

* for scalar programs, binary compatibility with SunOS

Enhancements provide higher-performance services and expanded functionality
for users within the CM-5 system:

· high-speed file access

* fast parallel inerpcessor communications capabilities

* other parallel perations for optimal utilization of CM-S hardware

November 1993 ·
Copryt 01993 Th/nkngMachine Corpmlon 37



Connection Machine CM-5 Technical Summary
~g3~8~ssss __

· central administration and resource management for all CM-5 computa-
tional and 1/0 facilities

* support for extended models of data parallel programming, such as data
parallel pipes

* support for other parallel programming models

* checkpointing

5.1 CMosT and the CM-5 Architecture

The computational nodes on a CM-5 are grouped into partitions. A partition can
be as small as 32 processors, or as large as the entire machine. The partitioning
is flexible and is controlled by the system administrator, who can create and alter
partitions as needed to meet site requirements. Each partition operates indepen-
dently under a control processor acting as a partition manager (PM). Users log
in to (or rsh on to) the PM and, once logged in, have full access to the PM itself,
to all the computational nodes it controls, and--through the operating sys-
tem-to all the 1/0 resources, partitions, and network connections of the CM-5
system. Figure 13 shows a user's-eye view of the CM-5.

Each partition manager runs a full version of the CMOST operating system. The
PM makes all operating system resource allocation decisions and all swapping
decisions for its partition, as well as most system calls for process execution,
memory management, and I/O.

Each processing node runs an operating system microkernel, which supports the
mechanisms required to implement the policy decisions made in the partition
manager. All operating system code operates in supervisor mode, allowing it to
access any network address and memory address in the machine.

When a user process begins running, its partition manager downloads code to the
processing nodes and broadcasts identical memory maps to each node. The nodes
then execute the provided code, each acting on its own data and executing com-
putations and branches accordingly.

All nodes in a partition operate on the same process at the same time. Intexpro-
cessor communication between nodes within an application is handled

November 1993
38 Copyright 0 1993 Thinng Machinmes Corporation



Chapter 5. The Operating System: CMosT
_____9~~a

Figure 13. A user's view of a CM-5.

Users access a CM-5 system by running rlogin or rsh commands on a specific partition manager.
A user program begins execution on the PM, downloads code to the nodes, then runs on nodes and PM
both, passing data as needed among processors.

If a program needs to exchange data with an /0 device or with another process, the PM arranges the
transfer, via system calls to other control processors. Data then flows directly between the nodes and
the 1/O device, nodes of another partition, or external network interface, thus ensuring that a parallel
process gets the full benefit of the CM-5 Data Network bandwidth.

November 1993
Copyright © 1993 Thinking Machines Corporation 39

"My" Partition
(timeshared)

- -- -- - -· --- -- -- I -- -- -

z -- - .....

- --- -- - -- -------



Connection Machine CM-5 Technical Summary
11 1 1.1 .. I..... .Ig ....11g lg n ...... g .. 1.111.1 0 1i

entirely by user code, without any operating system overhead. For external com-
munications the user process calls on the operating system, which requests and
supervises the transfer on behalf of the user process. Data may be transferred
between two processes running timeshared in the same partition or between two
processes running concurrently in different partitions.

Interprocess communication is based on parallel extensions to UNIX sockets and
pipes and is managed by the operating system. I/O transfers are handled in the
same manner as transfers between partitions.

5.2 CMOST and the Users

Users typically access the CM-5 through an external network, either in batch
mode, via the NQS qgub command, or interactively, via rlogin or rsh com-
mands.

Each PM and IOCP within the CM-5 is a separate host on the network. Users can
log in to any PM or IOCP for which they have appropriate privileges. Once
logged in, a user has access to the full resources controlled by that control proces-
sor and to both local and networked file systems; the user can then run processes
that use a control processor alone or a full partition of PM plus processing nodes.
Since the set of control processors (PMs and IOCPs) within a CM-5 form a loosely
coupled network of UNIX computers, a user with appropriate privileges can also
run programs on any processor within the CM-5 using the normal UNIX network-
ing commands.

The Program Development Environment

The program development environment available to CM users offers the full
capabilities of UNIX and the X Window System. In addition, it offers enhance-
ments specific to CM parallel programming: parallel languages, specialized
libraries, and tools for parallel debugging and performance analysis. Prism, the
CM-S's integrated programming environment, facilitates programmers' use of
the machine (see Chapter 6).

November 1993
40 Copytight C0 1993 Thining Machines Corporation



Chapter 5. The Operating System: CMosr____es~g~ I _ _I

The Program Execution Environment

The program execution environment on the CM-5 supports both interactive, time-
shared program execution and batch execution using the NQS batch system.

Several facilities, such as automatic checkpointing and Prism, the CM program-
ming environment, aid program development and robustness during execution.
(See Chapter 7.)

5.3 CMOST and the Administrator

CMoST provides the administrator with tools for efficient and flexible resource
management. It allows the administrator to partition the CM-5 for spacesharing
among users, to set up the NQS batch system and the accounting system, and to
monitor system usage, error logging, and power and environmental concerns. In
addition, it provides all the standard UNIX capabilities, such as setting process
priorities for use with process scheduling, setting disk quotas to control disk
space usage, backing up and restoring user data, and setting up user permissions.

CM-5 administration is centralized at a system console, using commands that are
modeled on SunOS 4.1 commands. The commands execute through a set of dae-
mon processes that run (depending on their tasks) on the system console
processor, the diagnostic console processor, or the partition managers.

5.4 1/0 and File Systems

I/O programming on the CM-5 uses standard UNIX mechanisms, including sock-
ets, pipes, character devices, block devices, and serial files. All 110 operations are
modeled as reads and writes to files, regardless of the type of device used for
storage.

CMosT extends the UNIX I/O environment to support parallel reads and writes
and to support very large files, including files above the size supported in most
current UNIX implementations. The virtual file system interface supports device-
independent file behavior and supports many different file system types,
including the standard UNIX file system, the Network File System (NFS), and
two CM file systems: CMFS, which is supported on all Connection Machine sys-
tems and which allows the CM-5, the CM-2, and the CM-200 to share files, file

November 1993
Copyright @ 1993 Thinking Machines Corporation 41



Connection Machine CM-S Technical Summary
~~~8~~~s~~~~e s~~~~9~~~~sfi~~~~~

systems, and /O peripherals; and a high-performance file system, SFS, that is
supported only on the CM-5.

The CM-5 arranges communications to allow maximum simultaneous perfor-
mance of computation and I/O. Transfers from one partition do not affect the
performance of other partitions. Simultaneous transfers from several partitions
see minimal interactions unless they require access to the same I/O device. Direct
I/O-to-I/O transfers allow direct movement of data between a remote machine
and a CM-5 I/O device, or between primary and secondary I/O devices on a CM-5,
without affecting activities in partitions.

The CM-5 File System

The Connection Machine file systems manage the CM's high-speed disk storage

(Scalable Disk Arrays or DataVaults), and other I/O peripherals.

Within CM-5 files, data is stored in canonical (serial UNIX) ordering, thus allow-
ing its use by both serial and parallel systems and processes. When a serial
process does I/O, data remains in canonical order throughout; for parallel IO,

data moves between the canonical order and the ordering required by the
computational nodes.

This reordering serves two important purposes. First, it allows a program to run
on partitions of any size without affecting its I/O: a file written by a process run-
ning on a partition of one size may be read with equal ease by a process running
on a partition of a different size. Second, it allows the same file to be read by
parallel or serial processes. A serial process may read a file written by a parallel
process, and vice versa.

For further information on the CM-5 file systems and I/O, see Chapter 20.

Network Communications

Data can travel through sockets directly between CM-5 processes and other
machines on the network. A user process can create a socket, send parallel data
to it, and have that data received as a serial stream by a serial or vector computer.
The same socket can carry serial data from control processors; as with file I/O,
network communication uses standard protocols and data ordering for transmis-
sion, and uses parallel ordering only within the parallel computational nodes.

November 1993
Copyright 0 1993 Thinking Machines Corporation42

Chapter 5. The Operating System: CMosT
....

The User's View

From the user's point of view, data from any file system, on any device, appears
the same and is handled in the same manner. A CM-5 control processor, accessing
data over the Data Network, sees no difference between data stored on any CM-S
I/O device and data stored on any other UNIX file system.

Similarly, user processes are not concerned with the storage media on the CM.
Whether data is stored on a single device or striped across multiple devices, the
process accesses it as a single file. The only user-visible difference is in perfor-
mance.

November 1993
Copyright @ 1993 Thinking Machines Corporation 43

Or

Chapter 6

The Programming Environment: Prism

The Prism programming environment is an integrated Motif-based graphical
environment within which users can develop, execute, debug, and analyze the
performance of programs written for the Connection Machine system. It pro-
vides an easy-to-use, flexible, and comprehensive set of tools for performing all
aspects of Connection Machine programming.

Separate versions of Prism are available for working with data parallel and mes-
sage-passing programs. Most of the functionality is the same; some features are
implemented differently, however, taking into account the requirements of the
different programming styles.

Users can either load an executable program into Prism, or start from scratch by
calling up an editor and a UNIX shell within Prism and using them to write and
compile the program.

Once an executable program is loaded into Prism, users can (among other
things):

* Execute the program. Users can simply start the program running or
single-step through it. Execution can be interrupted at any time.

* Debug the program. Users can perform standard dbx-like debugging
operations such as setting breakpoints and traces, printing the value of a
variable or expression, and displaying and moving through the call stack.

* Analyze the program's performance. Data on execution time, broken
down by procedures or by lines of source code, may be displayed as histo-
grams. See Section 6.2.

* Visualize data. The values of interactively specified variables or expres-
sions may be displayed in a variety of textual and graphical formats. See
Section 6.3.

November 1993
Copyright 0 1993 ThinkngMachines Corporation 45

Connection Machine CM-5 Technical Summary
M ii i 'i....- -- - - - . 0 I o . .

In debugging message-passing programs, users can work with PN sets. PN sets
are predefined or user-created groups of nodes that can be viewed and operated
on as a single entity. For example, the predefined PN set error contains all
nodes in the error state; Prism updates the contents of this set as the program
executes. A user could also define a PN set whose nodes fulfill a specified condi-
tion - for example, all nodes in which the value of x is greater than 0.
Commands can then be applied to a specific PN set. For example, the user could
have the nodes in the set execute the next line of code, or could display the value
of a variable in the nodes.

Prism operates on terminals or workstations running the X Window System. A
commands-only version is also available for users without access to X. Another
option lets X users operate with the familiar commands interface, but send cer-
tain output, such as performance data, to X windows.

6.1 Using Prism

Figure 14 shows the main window of Prism, with a data parallel program loaded.
It is within this window that users debug and analyze their programs. Users can
operate with a mouse, use keyboard equivalents of mouse actions, or issue text
commands.

Clicking on items in the menu bar along the top of the window displays pulldown
menus that provide access to most of Prism's functionality.

Frequently used menu items can be moved to the tear-off region, below the menu
bar, to make them more accessible.

The status region displays messages about the program's status.

The source window displays the source code for the executable program. The
user can scroll through this source code or display a different source file. When
a program stops execution, the source window is automatically updated to show
the code currently being executed. The user can click on variables or expressions
in the source code to print their values. The source window can also be split, with
the assembly code corresponding to the source code appearing in the bottom
pane.

The line-number region is associated with the source window. Clicking to the
right of the line number sets a breakpoint at that line.

November 1993
46 Copyright © 1993 ThinkingMachines Corporation

Chapter 6. The Programming Environment: Prism
__aa ep

The command window at the bottom of the main window displays messages and
output from Prism. The user can also type commands in the command window,
rather than use the graphical interface.

11

lumber
an

nand
ow

a Pfrsm @ uWldo.thln*cm

.File CM Execute Debug Performance Events Utilities Doc Help

PLoad.. IRun prnt.. Iontinue -pl Ne Interrupt Up ownl o

'rogram: prlmesix - Status: notstarted
Source File: prlmesl.fcm

program findprimes
implicit none
integer i, n. nextprime i
parameter (n s 70000)
logical primes(n), candid(n)
integer dentit(n)

CI
C Initialization
C

identity = tl:n3
primes = false.
candid = true.
candid(l) = false.
call loop(n, identity, primes, candid)
call results(n primes)
end

subroutine loop(n. identity, primes, candid)
logical primes(n), candid(n)
integer identity(n)
integer I n nextprime

C
C Loop: Find next valid candidate, mark it as a prime.
C invalidate all multiples as candidates, repeat.
C

nextprime = 2
do while (nextprime Ie. sqrt(real(n)))

primes(nextprime) true.
candid(nextprime: n:nextprime) = false.
nextprime = minval(identity, 1, candid)

(1) stop at "primesl.fcm":34 ii

I

tear-off
region

- source
window

Figure 14. Prism's main window.

6.2 Analyzing Program Performance

In cooperation with the compilers and run-time library routines, Prism provides
the performance data essential for effectively analyzing and tuning programs.
For data parallel programs, the data includes:

· control processor user and system time

a processing time

November 1993
Copyright (1993 Thinking Machines Corporation 47

ine
I >
2
3
4
5
6

1
7

8
9

10
1ii
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
29
29
30
31
32
33
34 9
35
36

men
bar

status
regia

line-r
regioa

comi
wind

ill

I@

Connection Machine CM-5 Technical Summary
~~~i~~~g~~~ii~~~~i~~~ :~ . f:~:; . ' gY: ~".-:".,;:,*'::"'':"~ ~'~v.:.x::.'~.

:: :
~'"'::-~'¥z"P~~::::.~5'~~.:.::"', '::':. :.:..:::

* time spent transferring data between control processor and nodes

* time spent in general Data Network communication

• time spent doing specific patterns of Data Network communications, such
as nearest-neighbor on a grid

• time spent doing reductions and parallel prefix operations

For message-passing programs, Prism provides performance data separately for
each node. The data includes processing time for both the scalar microprocessor
and the vector units, as well as time spent performing 10O and various array
operations.

The performance data is displayed as histograms and percentages. For each type
of time measurement, the user can also see the data broken down for each proce-
dure and each source line in the program. The data on procedures is available in
two versions. One gives a flat per-procedure view of the utilization of the re-
source; the other shows utilization using the dynamic call graph of the program.

6.3 Visualizing Data

When operating on large arrays or parallel variables, it is often important to
obtain a visual representation of its data elements. In Prism, the user can create
visualizers to provide this representation. A wide range of formats is available,
including:

* Text, where the data is shown as numbers or characters

* Dither; where values are displayed as a shading from black to white

* Colormap, where each data element is mapped to a single color pixel,
based on a range specified by the user

* Threshold, where each data element is mapped to a single pixel, either
black or white, based on a cutoff value specified by the user

* Graph, where values are displayed as a graph, with the index of each data
element plotted on the horizontal axis and its value on the vertical axis

* Surface, which renders the 3-dimensional contours of a 2-dimensional
slice of data

* Vector, which displays complex data as vectors

November 1993
48 Copyright © 1993 Thinking Machines Corporation

J



Chapter 6. The Programming Environment: Prism
_B~a~~p~e~·"---·"P'46bB~~~~

A data navigator allows manipulation of the display window relative to the data
being visualized. If a parallel array is multidimensional, the visualizer displays
a slice through the array; the data navigator provides controls for selecting the
array axes to be displayed and the position of the slice. The user can update a
visualizer or save a snapshot of it.

Figure 15 shows a surface visualizer.

Figure 15. A visualizer.

For message-passing programs, Prism provides an extra dimension for the visu-
alizer; this dimension represents the nodes in a PN set. By moving along this
dimension, the user can display in turn the visualizer for each node in the set.

6.4 Using Prism with CMAX

Prism can be used with programs that have been converted from Fortran 77 to
CM Fortran via the CMAX Converter. See Chapter 8 for more information on
CMAX. Prism provides a split-screen option that lets the user view both the CM
Fortran source code and the corresponding Fortran 77 source code simulta-
neously. See Figure 16.

November 1993
Copyight 0 1993 ThinkingMachines Corporation 49



Connection Machine CM-5 Technical Summary
s s_ a _a~ d 6~

Figure 16. CM Fortran and Fortran 77 source code in a split screen.

Users can debug, visualize data, or obtain performance data in terms of either the
CM Fortran or the Fortran 77 source code.

6.5 On-Line Documentation and Help

The CM-5 provides complete on-line documentation for its software. CMview,
Thinking Machines Corporation's on-line documentation product, lets users dis-
play any CM manual in a format optimized for on-line viewing. Figure 17 shows
a sample Table of Contents page from a manual.

November 1993
50 Copyright C 1993 Thinking Machines Corporation

Line iSource File: tmp_mnt/userscmsg7ltiteforgeg200.fm 

C# x77: rversion O.1A.33
C* x77:
C* x77: Transformation of TEST from i200.f
C* x77:
C# x77: TransForm DO/ENDDO (1) J
C* x77: Transform DO/ENDDO (3) J
C* x77: Transform DO/ENDDO (5) J

1 program test
2-
3 include 'test-parameters.znc'
4
5 real a2(sizel,size2), b2(sizelisize2), c2(sizel,size2)
6 logical p2(sizel,size2)

CMF$ LAYOUT a2(:HEWS,:NEWS)
CMF$ LAYOUT b2(:NEWS,:NEWS)
CMFS LAYOUT c2(:NEWS,:NEWS)

1 I end do
2 - do = 1,size2
3 do i = ,sizel
4 p2(i,J) = (mod(i,2).eq.mod(J.3))
5 end do
6 end do
7 call i200(a2, b2, c2, p2, sizel, sze2)
8 print 10 a2

10 include 'test-formats.inc'
11
12 stop
13 tnd
14
15 Item 200, Priorit 3 
16 C MERGE:
17 FC ortran-77 source:



Chapter 6. The Programming Environment: Prism
_ss s pl " -----

in ottng Sarted hi CM Forran Contents: CM-1

Eile Edit Klu Swrch ookrks Help

Page ±I 3l lI .IM 0 e

Getting Started in CM Fortran:
Contents

Qoa 1 W . I CM F ?afa .............................. +
L1 Array Processng in CM Fortran ..................... ,

Fortrn 90 Arr Reences .... ................
Daa Parallel Processing .........................

.2 The Connecton Maha ne m ..... ...............

2.3 CM Forta on the CM Rstem ......................
Memory Management ......................... 4
CM army Operations ...........................

Oapt2 ASfPIurpm .................... 2............ y
2Z1 Darations ......................................

2Z2 ArryOperations ...............................
y Constructors ................... 4....... ..

Conformable Arrs ................................ 
23 Input tput ..................................... 2

24 Proceduraes .... ..............................
Dearng Dummy Aay ................... 2.................
Passng CM Ar A ments .................... ...............

IW...-
cp~mc*.9 *nanas onrghae ....

Figre 17. A Table of Contents page displayed on-line via CMview. Users can
click on a hypertext marker to display the desired section.

In addition, CMview lets users:

· Follow hypertext links from table of contents and index entries, cross-ref-
erences, and specially entered hypertext markers.

* Search through the entire collection of manuals for a word or phrase.

* Print all or part of any manual on a laser printer.

* Put their own bookmarks (like dog-earing a page) and notes (like scrib-
bling in the margin) on any page of any manual.

November 1993
Copyright 1993 Thinig Machines Corporation 51

0



Connection Machine CM-5 Technical Summary
a_~~~~~~~~~~~~~~~~~~~~~~~~~~~ ... 111i.1i~.Ii~...i. ilgI

CMview is accessible by a menu selection from within Prism. It is also available
by issuing the command cmvieW from an xterm within the X Window System.

Prism's own comprehensive help system is based on the same technology. Help
is available for each pulldown menu and dialog box. Users in search of more
information can follow the hypertext link within the help file to display the sec-
tion of the on-line Prism manual in which the topic is discussed in detail.

November 1993
Copyrinht 0) 1993 Thinking Machines Corporation52



Chapter 7

The Program Execution Environment

The program execution environment on a CM-5 partition supports both interac-
tive program executive and batch execution. In either case, the program executes
on the partition manager and accesses the associated set of processing nodes,
plus I/O devices and other devices (such as graphics workstations) as needed.

Two job control systems are available. The Distributed Job Manager (DJM) pro-
vides job control and load balancing for both interactive and batch execution.
Alternatively, the Network Queueing System (NQS) can be used to execute batch
jobs.

Access to the interactive environment, therefore, can be achieved through remote
login or remote shell commands, or through DJM's j run command. Access to
the batch environment can be achieved through either DJM's j sub command or
NQS's qsub command.

The interactive environment is, by default, a timeshared environment. DJM,
however, can be used to create a dedicated (single-user) interactive environment
at chosen times. In addition, an administrator may limit access to any given parti-
tion by setting UNIX permissions to grant access only to certain users or
projects. The administrator can similarly tailor batch queues to the needs of par-
ticular groups of users or types of jobs, and can define times for dedicated batch
access. The system administrator thus has power, not only to partition the system
optimally for the site's users, but also to choose the type of environment avail-
able on each partition at any given time: timeshared or dedicated, interactive or
batch or both.

To further enhance the program execution environment, the CM-5 offers the
Prism programming environment (discussed in the previous chapter), with its
suite of tools for debugging and for performance analysis of both data-parallel
and message-passing programs. Additional tools, such as the CM timers and the

November 1993
Copyright 0 1993 Thindng Machines Corporation 53



Connection Machine CM-5 Technical Summary
_ _ _ _: ...

checkpointing facility are also provided, and are discussed at the end of this
chapter.

7.1 Batch Utilities

The CM-5 offers two batch subsystems:

* NQS (Network Queueing System), batch system for UNIX.

· DJM (Distributed Job Manager), which provides both job management
and load balancing for Connection Machines.

7.1.1 DJM

The Distributed Job Manager (DJM) was initially developed at the Minnesota
Supercomputer Center. It is designed to

* manage the flow of jobs through a Connection Machine system

* avoid resource conflicts

* provide a load-balancing capability among the various control processors
of a CM-5 system

In order to balance system load, DJM handles all application processes running
on the CM-5, interactive jobs as well as batch jobs. It allows jobs for which there
are sufficient resources to execute immediately; it queues all other jobs for later
execution.

DJM ensures that it handles all jobs by trapping jobs submitted directly, rather
than via its own job-submission commands. It has the ability to impose limits
upon such jobs, or even to kill them when appropriate.

DJM allows users and administrators alike a great deal of flexibility. Users can
request either dedicated time or multi-user access. They can specify many
parameters for their job, or only a few - or, they can accept DJM's default
parameters. They can ask that DJM send them mail when a job begins or ends
execution. They can move a job from interactive execution ("the foreground")
to batch execution ("the background"), or vice versa.

November 1993
54 Copyright 3 1993 Thinking Machines Corporation



Chapter 7. The Program Execution Environment
a_~fi P- -- -- --

Administrators can choose how many queues to set up and what restrictions to
put on various queues (which users can use the queue, what resource limits are
placed on jobs using this queue, etc.). They can choose whether to allow dedi-
cated access to the system, and when to allow it. They can determine how
"foreign" jobs (jobs not submitted via DJM commands) are to be handled.

DJM does not necessarily perform strict FIFO queueing (although it can do so,
if so configured). Instead, it sets job priorities by calculating a "score" for each
running job and for each queued job. Assuming available resources, jobs with
higher scores execute before jobs with lower scores.

Scores are recalculated at regular intervals. This allows, for instance, "amount of
time spent waiting in queue" to raise a job's score, and "job has exceeded its
expected CPU usage" to lower a job's score.

Users submitting jobs via DJM must specify at least three facts about their jobs:

· the number of processors required

* the CPU time the job is expected to require

* the amount of memory the job is expected to require

DJM treats this information as "soft limits" to help it allocate resources and
schedule jobs. Jobs that overrun their estimates become vulnerable and may be
replaced by jobs with higher priority, ifany such jobs are queued and waiting to
run. The administrator sets both hard and soft limits for queues, and also provides
values for the parameters used to construct scores for queues and running jobs.
Thus, the administrator has great control over DJM's handling of jobs.

The handling of dedicated access is also flexible. The administrator can choose
when to put a partition into dedicated mode; whether timeshared jobs executing
at the changeover time can continue to execute or not; whether the changeover
will happen automatically, or whether it requires the presence of a job in the
"dedicated queue" to trigger it; and so on. All these elements of flexibility make
DJM particularly useful for sites where the CM-5 gets heavy and/or varied usage.

7.1.2 NQS

The Connection Machine supports the Network Queueing System (NQS) batch
system. This batch system supports two types of queues: batch queues, which are
directed to a specific PM, and which run on the partition that is controlled by that
PM at the time the job is submitted; and pipe queues, which feed jobs (via batch

November 1993
Copyrigt @ 1993 Thinking Machines Corporation 55



Connection Machine CM-5 Technical Summary
iaa~Blreks----- --------

queues) to any suitable batch queue that is available to run them. The pipe queue
can be directed to any batch queue, or only to batch queues that meet specified
minimal resources. NQS queries current partitions to find one suitable for run-
ning jobs from these queues.

NQS allows the administrator to control the number and characteristics of queues
at a site and to define the hours during which each queue will accept and execute
jobs. Note that the two sets of hours are not necessarily identical: a queue might
accept jobs from 8 am till midnight, but execute jobs between 8 pm and 8 am.
(A queue that accepts jobs is said to be enabled; one that executes jobs is said
to be started.)

Creating and Configuring Queues

An NQS manager decides how many queues to create and what characteristics
each queue will have, thus tailoring the batch system to the needs of the particu-
lar site. The administrator uses the qmgx utility to create each queue, naming and
describing the queue and defining

* the hours during which the queue operates (queues with restricted hours
start and stop automatically at designated times)

* the priority of this queue in relation to other queues

* the users or groups of users who can submit jobs to the queue

* time and size limitations for jobs executing from the queue

* the CM system resources available to jobs executing from the queue

Submitting Batch Requests

Frequently, the NQS manager defines a number of queues with different charac-
teristics. Users can then choose the queue most suitable for each program. In
addition, users can further define the execution environment for a program by
using options to the job submittal command that

· request that execution be delayed until a particular time

* request the use of a specified shell

a request that all environment variables be exported with the job

November 1993
Copyright 1993 7hinkig Machines Corporation56



Chapter 7 The Program Execution Environment
.--- -- -- -- --- - I II

* direct the method by which output is to be handled

· set various per-process limits

· assign a priority to the job

Users can also ask for notification by electronic mail of a job's progress, and can
query the system for information on the characteristics and availability of queues
and on the status of queued requests.

Controlling Batch Queues

NQS operators can start and stop queues, enable and disable queues, and shut
down NQS. When necessary, they can also remove waiting and executing jobs
from queues.

7.2 Timers

The CM-5 offers two sets of timers: the global CM timers (which time parallel
actions across an entire partition) and the single-node CMMD timers. Both sets
can calculate, with microsecond precision, both the total elapsed time for a pro-
gram or routine and the amount of time during which the nodes are active.

Calls to CM timers or CMMD timers can be inserted anywhere in a program. A
program can use (and nest) up to 64 timers for simultaneous coarse-grain and
fine-grain timing.

7.3 Timesharing

The Connection Machine system uses the UNIX timesharing mechanisms, with
all the administrative flexibility they provide. Each partition manager controls
timesharing on its partition, switching processes in and out as necessary.
(Because a data parallel process running on the PM plus the nodes is a single
process, it is switching as a single entity.)

November 1993
CopygW:t 1993 ThinkingMachines Corporaotin 57



Connection Machine CM-5 Technical Summary
0111-0- ing-g-gli 1111111101111.....

7.4 Checkpointing

Many applications that run on the Connection Machine system require extended
execution time. Users may need to be able to interrupt and later restart such a
program for any number of reasons: to allow it to run only when the system is
not needed for other use, to allow for scheduled machine downtime, to protect
against unscheduled halts, or simply to allow for restarting the program from
some intermediate state during debugging. The Connection Machine system sup-
ports this need with a checkpointing facility.

Checkpointing a program lets the user save (and later restart) an executable copy
of a program's state. This includes the program's state on the partition manager
(PM) and nodes, a list of the files that the program has open at the time of the
checkpoint, and a stored copy of the checkpointed program.

The CM checkpointing facility offers three basic methods of checkpointing:

· inserting checkpoints at particular points in a program

· having checkpoints occur periodically

* having a checkpoint occur when a program is sent a particular signal, such
as the signal sent during a planned shutdown of the system

Checkpointing can be used from within batch jobs and interactive jobs, including
those running under cmdbx and Prism. It can be used on programs that execute
on the PM only, as well as those that use both the PM and the nodes.

November 1993
58 Copyright O 1993 Thinking Machines Corporation



Chapter 8

The CMAX Converter

CMAX - the "CM Automated X-lator" - is a tool that converts standard
Fortran 77 into CM Fortran. CMAX provides a convenient migration path for
serial programs onto the massively parallel Connection Machine system, both
for data parallel applications and for CM Fortran/CMMD message-passing
applications.

In addition, CMAX gives users the option of maintaining their software in For-
tran 77 for maximum portability to multiple platforms. Users in a heterogeneous
computer environment and third-party software developers can use the converter
as a "preprocessor" for routine Fortran compilation for CM systems. In this
sense, CMAX provides a migration path onto and off of the Connection Machine
system.

The major difference between serial and data parallel Fortran programs is the
substitution of array operations for loop iterations, and the concomitant need to
lay out some arrays across the processing nodes. These are the tasks performed
by the CMAX converter.

November 1993
Copyright @ 1993 Thinking Machines Corporation 59

I

-:Lrojmarr



Connection Machine CM-5 Technical Summary
I.I.- I Ing.

CMAX is a DO loop vectorizer; it analyzes loop constructs and translates them
into CM Fortran array operations. For greatest efficacy, the converter performs
an interprocedural dependence analysis of the whole program and applies vecto-
rization techniques such as loop fissioning, scalar promotion, and loop pushing
to the input code. CMAX also recognizes the intent of numerous programming
idioms, such as structured data interactions and dynamic array allocation. When
translating code, it makes full use of powerful Fortran 90 features such as array-
processing intrinsic functions and dynamic allocation statements, as well as the
FORALL statement defined by High Performance Fortran. CMAX thus provides
entree both to the Connection Machine system and to the emerging HPF standard.

CMAX provides a convenient interface to the user. The Prism development envi-
ronment provides facilities for examining CMAX output and comparing it
line-by-line with the input program. CMAX command options and in-line direc-
tives allow the user to control the converter's actions and decision rules. The
CMAX library provides canonical, portable - and translatable- Fortran 77
utilities for expressing common operations like dynamic array allocation and
circular array element shifts. The converter generates detailed notes of a conver-
sion, explaining all the changes it has made.

Although CMAX is designed primarily to assist in the creation of new applica-
tions, it accepts as input any program that is written in standard Fortran 77 and
follows standard guidelines for scalability. These simple guidelines guarantee
that a program runs efficiently on any size data set, large or small, and on any
number of processors, from one to thousands. The combination of guidelines
plus converter can assist substantially the task of upgrading "dusty deck" pro-
grams to take advantage of moden architectures and language features.

., 1[i[- Scalable 
ANW U11 . __ Iu Fnortran 77 

November 1993
Copyright © 1993 ThinkingMachines Corportion60



Chapter 8. The CMAX Converter
i- -_-I I I I -I 

The conventions of scalable Fortran programming express three basic objectives:

• Make it easy for a compiler to recognize how data and computations may
be split up for independent or coordinated processing. For example: loop
over as many array axes as possible in a single operation; use standard
idioms to express common, well-structured data dependences.

• Avoid constructions that rely on a particular memory organization, such
as linearizing multidimensional arrays or changing array size or shape
across program boundaries.

* Use data layout directives and library procedures (with some conditiona-
lizing convention) to take advantage of the specific performance
characteristics of each target platform. For example, Fortran 77 programs
targeted to the CM system can use compiler directives to fine-tune data
layout and access the CM libraries for procedures that are specially tuned
for performance on the CM system.

November 1993
Copynrht @ 1993 Thinking Machines Corporation 61





Chapter 9

The CM Fortran
Programming Language
a Q~_ _

Fortran for the Connection Machine system is standard Fortran 77 supplemented
with the array-processing extensions of the ANSI and ISO (draft) standard For-
tran 90. These extensions provide convenient syntax and numerous intrinsic
functions for manipulating arrays.

Newly written Fortran programs can use the array extensions to express efficient
data parallel algorithms for the CM. These programs will also run on any other
system, serial or parallel, that implements Fortran 90. CM Fortran also offers
several extensions beyond Fortran 90, such as the FORALL statement and some
additional intrinsic functions. These features are well known in the Fortran com-
munity and are particularly useful in data parallel programming.

9.1 Structuring Parallel Data

Fortran 90 allows an array to be treated either as a set of scalars or as a first-class
object. As a set of scalars, array elements must be referenced explicitly in a DO

construct. In contrast, a reference to an array object is an implicit reference to all
its elements (in unspecified order). For example, to increment the elements of the
100-element array A by 1, a program can reference the array either way:

A as a set
of scalars

A as an
object

A = A + 1

November 1993
Copyright 0 1993 Thinking Machines Corporation

DO I1,100
A(I) A(I) + 1

END DO

63



Connection Machine CM-5 Technical Summary
-11 ---- 10 81 ....

To operate on multidimensional arrays, DO loops must be nested to reference
each element explicitly. In the statement A = A + 1, however, A could be a scalar,
a vector, a matrix, or a higher-dimensional array.

CM Fortran takes advantage of this standard feature when allocating arrays on the
CM system. An array that is used only as a set of scalars is stored and processed
on the partition manager in the normal serial manner. Any array that is referenced
as an object is stored in node memory, one element per processor, and processed
in parallel. In essence, the partition manager executes all of CM Fortran that is
Fortran 77, and the nodes execute all the array extensions drawn from Fortran 90.
No new data structure is required to express parallelism.

Partition Manager

Scalar data _ Processing Nodes' - . - ] 
suscripte 
arrays I I

* Array objects

Fortran 90 operations

JL I L LL

The simple array reference A may be written more explicitly using a triplet sub-
script, A (1:100:1), which resembles the control specification of a DO loop.

Using triplet subscripts, you can replace one or more DO loops with an array ref-
erence that indicates all the elements of interest - and thereby cause the array
to be processed in parallel.

An implicit triplet - that is, the array name alone - is usually used for whole
arrays. You can, however, explicitly specify any of the index variables, just as in
a DO loop, to indicate a section of the array. For example, some sections of array
B(4,6) are:

B(1:2,1) B(3:4,4:6) B(:,2:6:2) B(3, :)

H I I I I I I I I I I

i m--' M i v
1 N 4N 6 6 

November 1993
64 Copyright 0 1993 Thinking Machines Corporation

A

I

Fortran 77

I i 

I FM W -M 1~~8~



Chapter 9. The CM Fortran Programming Language
_N.. 111m 111m 1 -----------------

Array sections can be used anywhere that whole arrays are used - in expres-
sions and assignments and as arguments to procedures.

9.2 Computing in Parallel

The most straightforward form of data parallel computing is elemental comput-
ing, that is, operating on array elements all at the same time, each independently
of the others. An assignment statement where the entire array is referenced as an
object has this effect. For example, consider the following assignment statement
for an 8 x 8 x 8 array c:

C = C**2

The CM system allocates one element of c in each of 512 processors, and all the
processors operate on their respective elements of c at the same time.

An expression or assignment can involve any number of arrays or array sections,
as long as they are all of the same shape. Scalars can be intermixed freely in array
operations, since Fortran 90 specifies that a scalar is effectively replicated to
match any array. For example, the following statement assumes that D and E are
10 x 10 matrices and F is a 10 x 100 x 100 array:

D = E*2.0 + 1.0 + F(:,1:10,3)

Another form of array operation uses an elemental intrinsic function. Fortran 90
extends most of the intrinsic functions of Fortran 77 so that they can take either

a scalar or an array as an argument. If o is an array, this statement operates ele-

mentally:

G SIN(G)

An array assignment can be performed conditionally if it is constrained by a
wzmzm statement. This statement includes a logical mask; it behaves like a Do

loop with an embedded IF' statement (except that the order in which elements are
processed is unspecified). For example, to avoid division by zero in an array
assinment, one might say:

WHERE (D.NE.0) E = E/D

November 1993
Copyright 1993 ThinkingMachines Corporation 65



Connection Machine CM-5 Technical Summary
-- -- -- .....

Finally, CM Fortran offers a form of elemental array assignment, the FORALL

statement, whose action is position-dependent. The syntax of a FORALL state-
ment resembles a DO construct, but the assignments can be executed in parallel.
For example, to initialize H as a Hilbert matrix of size N:

FORALL (II1:N, J=1:N) H(I,J) = 1.0 / REAL( I+J-1 )

FORALL can use a mask to make its action dependent on either the value or the
position of the individual array elements. For example, to clear matrix H below
the diagonal, one can set a mask to select those positions where row index is
greater than column index J:

FORALL (I=1:N, J:N, I.GT.J ) H(I,J) - 0.0

To initialize a table of integer logarithms:

FORALL (I = 1:10) LG (2** (I -1): 2**I - 1) = I- 1

9.3 Communicating in Parallel

A second form of data parallel computing requires processors to access each oth-
er's memories, all at the same time. The pattern of interprocessor communication
can be either regular (grid-based) or arbitrary. Fortran 90 defines a number of
features that move data from one array position to another; these features map
naturally onto the communication mechanisms implemented in CM hardware.

Grid-Based Communication

Many applications, such as convolutions and image rotation, need to move data
in regular grid patterns. One way to specify such motion in Fortran 90 is by
assigning array sections. For example, to shift vector values to the left:

V(1:9) V(210)

_ V(2:10)

/ (-- .VC1:9)

November 1993
Copyright 0 1993 Thinking Machines Corporation66



Chapter 9. The CM Fortran Programming Language
i_-4l~lllasd

To shift data on more than one dimension:

A(1:3,3s6) - A(2t4,1:4)

I I I I I I

I I I I I 

Fortran 90 also defines intrinsic functions that perform grid-based data motion.

The function CSHIFT performs a circular shift of array elements, and ZOSHIF.

performs an end-off shift. For example, the following statement shifts the ele-

ments on the second dimension of A by one position to the left and assigns the

result to B. (Che SHIFT argument can also be an array, which shifts the rows by
different offsets.)

B = CSHIFT( A, DIM-2, SHIFT-1 )

One notable use of CSHIFT is in so-called "stencils," array expressions that

compute a weighted sum of neighboring points of a specific grid point. A simple

example would be

A - C3*B + C1*CSHIFT (B,DIM-1,SHIFT--1) + C2*CSHIFT (B,DIM-2, SHIFT-1)

The CM Fortran compiler includes optimizations that provide particularly high

performance for stencils.

General Communication

Processors must communicate in arbitrary patterns to map an unstructured prob-

lem onto a grid or to index into arbitrary locations of an array. To perform these

operations in parallel, CM Fortran provides vector-valued subscripts and FOR-

ALL.

A vector-valued subscript is a form of array section that uses a vector of index

values as a subscript. If A is a vector of length 10 and P is an array containing
a permutation of the integers from 1 to 10, then A - A (P) applies this permuta-

tion to the values in A. The statement A (P) - A applies the inverse permutation.

The index values can be repeated, which causes element values to be repeated

in the section. For example, if v is the vector (/2,6,4, 9, 9/), then A (V) is a

November 1993
Copyght 0 1993 ThinkingMachines Corporation 67

'4�
`111�

I I



Connection Machine CM-5 Technical Summary

five-element vector whose values are A(2), A(6), A(4), A(9), and A(9), in
that order:

A (V)

The FORALL statement provides the same arbitrary indexing into an array of any
rank For example, the following statement uses the two-dimensional index
arrays x and Y to permute the values of a two-dimensional array B:

FORALL (Iil:N, J=:M) C(I,J) = B( X(I,J), Y(I,J) )

9.4 Transforming Parallel Data

Fortran 90 defines a rich set of intrinsic functions that take an array argument and
construct a new array (or scalar). All these transformational functions take only
array objects (not arrays subscripted in the Fortran 77 manner), and all are there-
fore computed in parallel on the CM.

One set of transformational functions is the reduction intrinsics, such as SUM or
CmXVAL. These functions apply a combining operator to the elements of an array

(or array section) and return the result as a scalar. For example, given a 100 x 500
matrix D, the following expression returns the sum of the elements in the upper
left quadrant:

SUM( D(1:50,1:250) )

These functions can take a mask argument to make the reduction conditional. If
applied only to a specified dimension, they return an array of rank one less than
the argument array. For example, given the 100 x 500 matrix D, the following
expression returns a 100-element vector containing the sums of the positive ele-
ments in each row.

SUM( D, DIM=2, MASK=D.GT.O )

A parallel prefix, or scan, operation applies a combining operator cumulatively
along a grid dimension, giving each element the combination of itself and all
previous elements. These operations, which are useful in such algorithms as
line-of-sight and convex-hull, can be expressed with the FORALL statement and

November 1993
68 Copyight c 1993 ThinkingMachines Corporation



Chapter 9. The CMFortran Programming LanguageAsma------
a reduction function. For example, in the following add-scan (or sum-prefix)
operation, each element of B gets the sum of all elements up to and including the
corresponding element of A:

FORALL (I=1:N) B(I) = SUM( A(1:I) )

The array construction functions transform arrays in a wide variety of ways. For
example, TRANSPOSE performs matrix transposition; RESHAPE constructs a new
array with the same elements as the argument but a different shape; PACK and
IJNPACX behave as gather/scatter operations; and SPREAD replicates an array
along a new dimension. CM Fortran also provides the Fortran 90 array multi-
plication functions, DOTPRODUCT and MATMUL In addition to the standard
Fortran 90 intrinsics, CM Fortran also offers the functions DIAGONAL,

REPLICATE, RAEK, PROJECT, FIRSTLOC, and LASTLOC.

November 1993
Copyright 0 1993 ThinldgMachin es Corporation 69





Chapter 10

The C* Programming Language

C* is an extension of the C programming language designed to support data par-
allel programming.

The C* language is based on the standard version of C specified by the American
National Standards Institute (ANSI). C programmers will find most aspects of C*
code familiar to them. C language constructs such as data types, operators, struc-
tures, pointers, and functions are all maintained in C*; new features of Standard
C such as function prototyping are also supported. C* extends C with a small set
of new features that allow programmers to use the Connection Machine system
efficiently.

C* is well suited for applications that require dynamic behavior, since it allows
the size and shape of parallel data to be determined at run time. In addition, it
provides programmers with all the standard benefits of C, such as block struc-
ture, access to low-level facilities, string manipulation, and recursion. C* also
provides a straightforward method for calling CM Fortran subroutines from a C*
program.

10.1 Structuring Parallel Data

In C*, data is allocated on the processing nodes only when it is tagged with a
shape. A shape is a way of logically configuring parallel data. C* includes a new
construct called left indexing that is used in declaring a shape. The left index
specifies the number of dimensions (or axes) in the shape and the number of
positions along each dimension. Positions correspond to processors (or virtual
processors). For example,

shape [25] [51]s;

November 1993
Copyright 0 1993 ThinkingMachines Corporation 71



Connection Machine CM-5 Technical Summary~iaa86·pe- U ----gs

declares a shape s that is laid out as a 25 x 51 grid on the processing nodes.

This shape is considered to be fully specified, since the number of dimensions
and positions are provided at compile time. Shapes may also be partially speci-
fied or fully unspecified. C* lets the programmer dynamically allocate and
specify shapes, thus providing flexibility in the way they can be used.

Once a shape has been fully specified, one can declare parallel variables of that
shape. Parallel variables have both a Standard C data type and a shape. For exam-
ple, the code

shape [16384]t;

int:t parallel_int, parallel_int2;

float:t parallel_floatl;

declares three parallel variables of shape t; each consists of 16384 elements, laid
out along one dimension. Parallel variables interact most efficiently when they
are of the same shape. In addition to the above method, parallel variables can also
be allocated dynamically.

C* also provides parallel versions of arrays and structures. For example, the code

shape [16384]t;
int:t parray[16];

declares a parallel array, parray, which consists of 16 parallel ints of shape t.
The code

shape [16384]t;
struct scalar struct {

int a;

float b;

};
struct scalar struct:t pstruct;

declares a parallel structure, pstruct, that consists of the Standard C structure
scalaxrtruct replicated in each of the 16384 positions of shape t.

C* includes pointers to both shapes and parallel variables. As in Standard C, C*
pointers are fast and powerful.

November 1993
Copy ight e0 1993 Thinking Machines Corporation72



Chapter 10. The C* Programming Language

10.2 Computing in Parallel

Parallel Use of Standard C Operators

C* extends the use of Standard C operators, through overloading, to apply to
parallel data as well as scalar data. For example, if pI, p2, and p3 are all parallel
variables of the same shape, the statement

p3 = p2 + p1;

performs a separate addition of the values of pa and p2 in each position of the
shape and assigns the result to the element of p3 in that position. The additions
take place in parallel. If pa or p2 were not a parallel variable, it would first be
promoted to parallel, with its value replicated in every element. Note that this
line of code looks exactly like Standard C; the result differs, however, depending
on whether the variables are parallel or scalar.

The with and where Statements

C* adds new statements to Standard C that allow operations on parallel data.

The with statement selects a current shape. In general, parallel variables must
be of the current shape before parallel operations can take place on them. For
example, code like the following is actually required to perform a parallel addi-
tion like the one shown above:

shape [16384]t;
int:t p, p2, p3;

with (t)

p3 - p2 + p;
C* also adds a where statement to restrict the set of positions on which opera-
tions are to take place; the positions to be operated on are called active. Selecting
the active positions of a shape is known as setting the context. The where state-
ment in the following example ensures that division by 0 is not attempted:

with (t)

where (p !- 0)
p3 = p2 / pl;

Serial code always executes, no matter what the context.

November 1993
Copyght D 1993 Thinking Machines Corporation 73



Connection Machine CM-5 Technical Summary
..... z ' - -gg

Programs may contain nested where statements; these cumulatively shrink the
set of active positions. The context is passed into functions called within the
scope of a where statement and is correctly reestablished when returning to an
outer level as a result of a break, continue, goto, or return statement. Note
that the context does not affect the flow of control of a program. One can still
use Standard C statements such as if and while to manipulate flow of control.

C* extends the Standard C else statement for use in conjunction with the where
statement; using else after a where reverses the set of active positions. The new
everywhere statement makes all positions active.

New Operators

C* adds a few new operators to Standard C. For example, the <? and >? opera-
tors are available to obtain the minimum and maximum of two variables (either
scalar or parallel). The corresponding compound assignment operators c?- and
> ?= are also included. The operator %% provides a true modulus operation (as
compared to the remainder operator %).

Parallel Functions

Functions in C* can pass and return parallel variables and shapes. If it is not
known what the current shape will be when the function is called, you can use
the new keyword current in place of a specific shape name within the function
declaration; current always means the current shape.

A useful feature of C* is overloading of functions. C* allows you to declare more
than one version of a function with the same name - for example, one version
for scalar data and another for parallel data. The compiler automatically chooses
the right version.

November 1993
Copyright 0 1993 ThinkingMachines Corporation74



Chapter 10. The C* Programming Language
... I.........-~...........

10.3 Communicating in Parallel

C* provides two methods of parallel communication: as part of the syntax of the
language and via an extensive library of functions. Both allow communication
in regular patterns within shapes and in irregular patterns both within and
between shapes.

Regular Communication

C* uses the intrinsic function pcoord to provide a self-index for a parallel vari-
able along a specified axis of its shape. For example, if p 1 is of a
one-dimensional shape with 16384 positions (and the shape is current), pcoord
initializes pa as shown in Figure 18.

Figure 18. The use of pcoord with a one-dimensional shape.

The pcoord function is typically used to provide regular communication -
called grid communication in C* - along the axes of a shape. For example, the
following code sends values of source to the elements of dest that are one
coordinate higher along axis 0:

[pcoord(O) + ldest = source;

In the common case where pcoord is called within a left index expression, and
the argument to pcoord specifies the axis indexed by the left index, C* allows
a shortcut: the call to pcoord can be replaced by a period. Thus, for a two-di-
mensional shape, the following provides grid communication along both axis 0
and axis 1:

[.+1] [.-2]dest = source;

November 1993
Copyight @ 1993 Thnking Machines Corporation

(A chess knight's move)

75

pi - pcoord(0);
Positions

0 1 2 3 4 5 6 7 8 16383

pI O0 1 2 3 4 5 6 7 8 ... 



Connection Machine CM-5 Technical Summary----____--------1

Wrapping from one end of an axis to the other is provided by a Standard C*
programming idiom that involves the use of pcoord along with the new modu-
lus operator %% and the dimof intrinsic function, which returns the number of
positions along an axis of a shape.

Library functions are also available to perform grid communication. For exam-
ple, the to_grid_dim and to_grid functions can be used in place of the
statements above.

Irregular Communication

C* uses the concept of left indexing to provide communication between different
shapes, as well as within-shape communication that does not necessarily occur
in regular patterns.

A left index can be applied to a parallel variable. If the index itself is a parallel
variable, the result is a rearrangement of the values of the parallel variable being
indexed, based on the values in the index. If the index is of one shape and the
parallel variable being indexed is of another shape, the result is a remapping of
the parallel variable into the shape of the index. Thus, in the assignment

dest = [index]source;

the parallel variable dest gets values from source; the values in index indi-
cate which element of source is to go to which element of dent. The variables
dest and index must be of the current shape; source can be of any shape. This
is known as a get operation. Putting the index variable on the left-hand side spec-
ifies a send operation. Sends are roughly twice as fast as gets. The operations can
also be performed with the send and get functions in the C* communication
library.

10.4 Transforming Parallel Data

C* provides operators and library functions that enable programmers to easily
perform common transformations of parallel data.

C* overloads the meaning of several Standard C compound assignment operators
to provide a succinct way of expressing global reductions of parallel data. For
example, +-, when applied as a unary operator to a parallel variable, sums the

November 1993
76 Copyright 0 1993 Thinking Machines Corporation



Chapter 10. The C* Programming Language _~ps~ a r r t~e.. - -

values of all active elements of the parallel variable. The resulting value can be
treated the same way as the result of a serial operation. Similarly, the I = operator
performs a bitwise OR of all elements of a parallel variable. The reduce and
global library functions provide similar capabilities for various operations.

The C* communication library contains many functions that perform other trans-
formations of parallel data. For example:

* The scan function calculates running results for various operations on a
parallel variable.

* The spread function spreads the result of a parallel operation into ele-
ments of a parallel variable.

* The rank function produces a numerical ranking of the values of parallel
variable elements; this ranking can be used to rearrange the elements into
sorted order.

November 1993
Copyright 0 1993 ThinkidngMachines Corporation 77



-...



Chapter 11

The *Lisp Programming Language

The *Lisp language is a high-level programming language for the Connection
Machine system. Based on the Common Lisp programming language, *Lisp
allows you to write data parallel programs for the CM using the data types, pro-
gramming constructs, and programming style of Lisp. Programs written in *Lisp
make full use of CM hardware, yet at the same time retain the clarity, expressive-
ness, and flexibility of Lisp.

The *Lisp language extends the Common Lisp language by providing parallel
equivalents for the basic operations of Common Lisp, along with operations that
are unique to data parallel programming, such as processor selection, parallel
prefix calculations, interprocessor communication, and data shape specification.

A *Lisp program is simply a Common Lisp program that includes calls to *Lisp
operators. A call to a *Lisp operator causes all active CM processors to execute
that operation in parallel. Thus, *Lisp is fully compatible with Common Lisp;
programs written in Common Lisp will run unmodified in *Lisp.

*Lisp functions and macros are defined via defun and defmacro, just as in
Common Lisp. *Lisp programs are compiled by the *Lisp compiler, which
includes (and is invoked in the same ways as) the Common Lisp compiler. This
means that programs in *Lisp and Common Lisp can be written, compiled, and
tested with the same editors and debuggers.

November 1993
Copyright 0 1993 Thinking Machines Corporation 79



Connection Machine CM-5 Technical Summary
a~~~~s988~~~~-- m llg 111 §i

11.1 Structuring Parallel Data

Scalar and Parallel Data

*Lisp is an extension of Common Lisp and therefore includes all the standard
Common Lisp data types. These data types are collectively referred to as scalar
data. *Lisp also supports an additional parallel data type, called a pvar. A pvar
is a parallel variable, that is, a single variable with a separate, modifiable value
in each processor of the CM. Operations performed on a pvar are performed
simultaneously by all active CM processors, with each processor modifying only
its own value for the pvar. Many of the scalar data types in Common Lisp have
corresponding pvar equivalents. The eight basic pvar data types are boolean,
integer, floating-point, complex, character, array, structure, and front-end value.

Creating Pvars in *Lisp

There are three basic ways to create, or allocate, a pvar in *Lisp, each designed
to serve a specific purpose, as shown in the examples below:

(!! 5) ;; Allocating a temporary pvar

(defpvar my-five-pvar 5) ;; Allocating a permanent pvar

(*let ((my-pi!! pi)) ;; Allocating a local pvar
(*!! 2 my-pi!!))

As these examples show, *Lisp supports temporary, permanent, and local pvars.

* Temporary pvars are allocated by the (bang-bang) function, which
takes a single scalar value as its argument and returns a temporary pvar
with that value in every processor.

* Local pvars are allocated by the *let and *let* functions. They exist for
the duration of a body of *Lisp code.

* Permanent pvars are allocated by the defpvar function. They remain in
existence until specifically deallocated.

November 1993
80 Copyright 1993 Thinking Machines Corporation



Chapter 11. The *Lisp Programming Language
NO W - -- - - _ ~

Defining the Shape of the Data

The shape of the data stored in a pvar is determined by a grid of processors that
the CM is currently simulating. The defining property of a processor grid is its
geometry: the rank of the simulated grid and the sizes of its dimensions.

The combination of a particular grid geometry and a set of pvars that share that
geometry is called a virtual processor set (VP set). For example, the expression

(def-vp-set my-vp-set '(64 64)

:*defvars ((x 1 nil fixnum-pvar)
(y 1.0 nil single-float-pvar)))

defines a VP set named my-vg-set with 64 x 64 processors and associates two
permanent pvars with it: an integer pvar x and a single-precision floating-point
pvar y.

Because the CM can simulate many grids within a single program, *Lisp uses the
concept of a current VP set to determine which VP set is active. Unless otherwise
specified, all pvar operations take place within the current VP set. If no VP set
has been defined, all pvar operations occur within a default VP set that is auto-
matically defined whenever *Lisp starts up.

Processor Addressing

An important feature of the simulated grids defined by VP sets is that they permit
the assignment of addresses to processors. There are two basic methods used to
assign addresses to processors on the CM: send addressing and grid addressing.

Each processor has a unique numeric send address based upon its location within
the physical hardware, accessible via the *Lisp operation (self-address I ).

Each processor also has a grid address, a sequence of coordinates that defines its
position in the n-dimensional grid of processors the CM is currently simulating.
The *Lisp operation (self-address-gridl n) returns a pvar whose value
in each processor is the coordinate of that processor along the nth dimension of
the current grid.

November 1993
Copyright 1993 Thinking Machines Corpoation 81



Connection Machine CM-5 Technical Summary

Accessing and Copying Parallel Data

*Lisp allows you to access pvar values on a per-processor basis, to copy the
value of one pvar into another, and to display the elements of a pvar over a range
of processors. For example:

* (pref my-pvar 10) returns the value of my-pvar in processor 10.

* (*setf (pref my-pvar 10) 123) stores the quantity 123 into proces-
sor 10 of my-pvar.

* (*setf (pref my-pvar (cube-from-grid-address 5 7)) 111)
stores 111 into my-pvar at grid location (5,7).

* (*set pvarl pvar2) copies the contents of pvar2 into pvarl in all
active processors.

* (*set pvarl 5) stores the value 5 into pvarl in all active processors.

The *Lisp operation ppp (short for pretty-print-pvar) displays the values
of a pvar. For example, the expression

(ppp (self-address! !) :end 20)

displays the send addresses of the first 20 processors:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

11.2 Computing in Parallel

The parallel operations supplied by *Lisp are modeled very closely on the exist-
ing scalar operations of Common Lisp and include parallel equivalents for most
Common Lisp functions and macros. These parallel operations typically have the
same name as their scalar Common Lisp counterparts, with either the characters
" i" added to the end or an asterisk "*" appended to the front. The characters
" i i" are meant to resemble the mathematical symbol 11, which means parallel.
The asterisk similarly denotes the concept of an operation taking place in paral-
lel. For example, the parallel version of the Common Lisp mod function is
mod I , and the Common Lisp if operator has two *Lisp equivalents, if ! i and
*if.

November 1993
82 Copyright © 1993 Thinking Machines Corporation



Chapter 11. The *Lisp Programming Language........................................

Most *Lisp operators take pvars as arguments and return a pvar result. In general,
if a Common Lisp operation takes arguments of a specific data type, the *Lisp
equivalent for that operation takes pvars of that data type as arguments and
returns an appropriately typed pvar result.

For example, the functions + I , - I, * i, and / perform the same operations
as the Common Lisp functions +, -, *, and /, but take numeric pvars as argu-
ments and perform the appropriate arithmetic operation in parallel. The *Lisp
expression

(*set pvar2 (+!! pvarl (*!! pvarl pvar2)))

multiplies the values of pvar and pvar2 in all active processors, adds the value
of pvari, then stores the result in pvar2.

*Lisp includes parallel versions of Common Lisp functions for many data types,
including operations for complex and character pvars. *Lisp also includes an
extensive selection of operators for manipulating array, vector, string, sequence,
and structure pvars. There are even operations that allow you to create pvars that
reference front-end data structures (such as symbols and lists).

In addition, *Lisp redefines many Common Lisp operations so that they will
accept pvar arguments and will call the appropriate *Lisp operations to compute
the result. This means that the above *set example can be rewritten as:

(*set pvar2 (+ pvarl (* pvarl pvar2)))

Selection of Active Sets of Processors

Parallel computations can be performed in all processors simultaneously, or in
a specific subset of active processors selected by the user. Pvar values in inactive
processors are not changed. *Lisp provides several macros for selecting the
current set of active processors (sometimes referred to as the currently selected
set).

The most basic processor selection operators are *when and *unless. Similar
to their Common Lisp counterparts, these operators conditionally evaluate a
body of code based on the result of a test. The difference is that the test controls
which processors will evaluate the code, not whether the code will be evaluated
at all. In the following code sample, *when is used to select all processors with
odd send addresses. The value of my-pvar in those processors is then negated.

November 1993
Copyrght 0 1993 ThinkingMachines Corporation 83



Connection Machine CM-5 Technical Summary
ipppgs(sI~B8

(*set my-pvar (self-address!!))

(*when (oddp!! (self-address!!))
(*set my-pvar (-!! my-pvar)))

(ppp my-pvar :end 19)

0 -1 2 -3 4 -5 6 -7 8 -9 10 -11 12 -13 14 -15 16 -17 18

The *all construct unconditionally selects all processors for the duration of a
body of *Lisp code. For example, evaluating the expression

(*all (*set my-pvar 10))

ensures that the value of my-pvar in all processors is 10, regardless of the state
of the currently selected set.

11.3 Communicating in Parallel

Like all CM languages, *Lisp supports both regular and irregular communica-
tion. For example:

* news I I causes each active processor to get a value from another proces-
sor a fixed distance away on the grid.

* *news causes each active processor to send a value to another processor
a fixed distance away on the grid.

· pref i allows each active processor to get a value from any other proces-
sor in the grid.

* *pset allows each active processor to send a value to any other processor
in the grid

If two or more processors attempt to read the data of a single processor, they all
receive the same correct data. If two or more processors attempt to write to the
same address, the user can specify how they are to be combined (for instance, by
summing the values).

November 1993
Copyright @ 1993 ThinkingMachins Corporation84



Chapter 11. The *Lisp Programming Language

11.4 Transforming Parallel Data

*Lisp contains many functions to help perform transformations on data. These
include operators computing parallel prefixes (scanning) of data, spreading data
across the processors of the CM, and sorting and enumeration of pvar values.
Some examples:

• scan I I and segment-set-scan I I permit the selection of many kinds
of scanning operations, such as addition/multiplication of values; taking
the maximum and minimum of values; taking the logical/arithmetic AND,
OR, and XOR of values; and even simply copying values across the proces-
sor grid.

The scantl I operation accepts a segmentation argument for simple uses
of this feature. The segment-set-scan I I operation uses a special type
of pvar, a segment set pvar, to allow much finer control over the segmenta-
tion of processors than scan i provides.

* spread I replicates the value of a pvar at a given coordinate to all pro-
cessors along a selected dimension of the currently selected grid. A related
operation, reduce-and-spreadl , combines the operations of scan-
ning and spreading.

* The sort i i operator reorders the values of a numeric pvar into ascending
order.

* The enumerate operator assigns to each currently active processor a
distinct integer between 0 (inclusive) and the number of active processors
(exclusive).

November 1993
Copright K) 2993 Thinking Machines Corporation 85



�I�i



Chapter 12

CM Scientific Software Library

The Connection Machine Scientific Software Library (CMSSL) is a rapidly
growing set of numerical routines that support computational applications while
exploiting the massive parallelism of the Connection Machine system. The
CMSSL provides data parallel implementations of familiar numerical routines,
offering new solutions for performance optimization, algorithm choice, and
application design. CMSSL routines have been designed for users of languages
with array syntax (for example, CM Fortran, High Performance Fortran, and C*).

The CMSSL includes routines for solving linear algebraic equations, solving
ordinary and partial differential equations, signal processing, statistical analysis,
and optimization. The library also provides a set of communication functions
that offer a strong base for the development of computational tools. These func-
tions support computations on problems represented by both structured and
unstructured grids. For computations on unstructured grids, the CMSSL offers
routines for efficient load balancing of both arithmetic and communication.

12.1 Overview

The current version of the CMSSL concentrates on six critical areas of scientific
programming:

numerical linear algebra

· matrix operations on dense, grid sparse, and arbitrary sparse
matrices

· linear equation solvers for dense, banded, and sparse systems of
equations

November 1993
Copyright © 1993 ThinkingMachines Corporaon 87



Connection Machine CM-5 Technical Summary
..................

eigensystem analysis of dense symmetric, tridiagonal, and sparse
systems

· Fourier Transforms (complex-to-complex, real-to-complex, and complex-
to-real)

* ordinary differential equations

· optimization

* random number generation

* statistical analysis

The library also includes optimized communication functions important to struc-
tured and unstructured grid computations for the solution of partial differential
equations and optimization problems:

· polyshift

* all-to-all broadcast and reduction

· matrix transpose

· gather and scatter

E partitioning

· communication compiler

12.2 Multiple Instances

Most CMSSL linear algebra routines are designed to support multiple instances.
They allow multiple independent matrices to be solved, transformed, or multi-
plied concurrently. In addition, they allow multiple vectors or multiple
right-hand sides, where relevant, to be associated with each matrix to be multi-
plied or solved. The difference between invoking computation on a single
instance and on multiple instances lies only in the dimensionality and layout of
the data structures used as parameters to the particular CMSSL routine.

As an example, consider the linear equation solvers for banded systems. For the
tridiagonal case, the parameters to these routines include three vectors that con-
tain the upper, main, and lower diagonals of a tridiagonal system, and a fourth
vector that contains the right-hand-side values for the system. Upon completion

November 1993
88 Copyright 0 1993 ThinkingMachines Corporation



Chapter 12. CM Scientific Software Library
iB~S~....... ------; ------

the solution overwrites the right-hand side. One routine interface supports four
different degrees of computational concurrency:

* A single system may be solved.

0 A single system may be solved for multiple right-hand sides.

* Multiple systems may be solved for a single right-hand side each.

* Multiple systems may be solved, each for multiple right-hand sides.

To solve a single system, one specifies the upper, main, and lower diagonal argu-
ments as one-dimensional (see Figure 19).

Figure 19. A single tridiagonal system with a single right-hand side.

To solve for multiple right-hand sides, one gives the right-hand-side argument
(which will be replaced by the solutions) an in-processor (serial) dimension
equal to the number of right-hand sides (nrhs) (see Figure 20).

November 1993
Copynght 0 1993 ThinkingMachines Corporation 89

X

x bA

matrix solution right-hand side



Connection Machine CM-5 Technical Summary
_ m g~~~~~~~~~~~~~~~_~I

nrhs nrhs
XC 0- -

X

A X B

matrix solu- right-hand sides
tions

Figure 20. Single tridiagonal system with multiple right-hand sides and solutions.

To solve multiple systems, one specifies the upper, main, and lower arguments
with two dimensions: one for the coefficients of the system and one to specify
how many systems are represented. The right-hand side (solution) argument is
similarly specified in two dimensions (see Figure 21).

I

X B

solu- right-hand sides
tions

Figure 21. Multiple tridiagonal systems with single right-hand side for each system.

To solve multiple systems each with multiple right-hand sides, one specifies the
right-hand-side (solution) argument in three dimensions: one is the length of the

November 1993
Copvright © 1993 ThinkingMachines Corporation

x(O).hs.)
(nrhs-1)

matrices

90

111 1 - - - ----- - -- II-�---- - - -

- -- - -- -- --

I-I - - - - -- - - -- -

- - - --- - - -- - -



Chapter 12. CM Scientific Software Libraryt~~~~~~s~~~~~~ a~~~~~~ aa s------____
vector, and along this dimension lie the right-hand-side values; one is the number
of systems (n); and one is the number of right-hand sides (nrhs) per system (see
Figure 22).

matrices

nrhs 
nrhs

X B

solu- right-hand sides
tions

Figure 22. Multiple tridiagonal systems with multiple right-hand sides for each system.

The benefit of using CMSSL routines to solve a single instance of a linear prob-
lem lies in the speed gained by exploiting the parallel architecture of the
Connection Machine system. Computations on matrices require numerous repet-
itive calculations along one or both axes. On a serial machine, these must be done
one at a time, but on a parallel machine they can be done all at once.

Using CMSSL to solve multiple instances of a linear problem offers similar, but
perhaps greater, benefits. For applications that require solving many systems or
decomposing many matrices, it is no longer necessary to iterate over the set of
systems; the solutions can be computed concurrently.

November 1993
Copyright 0 1993 hinking Machines Corporation 91

nrhs nrhs
-. 0-



Connection Machine CM-5 Technical Summary
- - - - 11 11 11 11 _i l 

12.3 Matrix Operations

Basic Linear Algebra Routines for Dense Matrices

The basic linear algebra routines for dense matrices perform the operations listed
below. For some operations (inner product, outer product, matrix vector multi-
plication, vector matrix multiplication, and matrix multiplication), the library
includes a family of related routines, each performing a variation on the basic
operation. For example, some routines overwrite the supplied destination with
the results of the operation; others add the results to values you supply; and some
take the transpose, conjugate, or Hermitian of one or more operands.

* Inner Product Routines. Compute the inner products of one or more pairs
of vectors, or the global inner product over all axes of two arrays. For
complex data, you can conjugate the first operand vector.

* 2-Norm Routine. Computes the 2-norms of one or more real or complex
vectors, or the global 2-norm of a real or complex array.

* Outer Product Routines. Compute the outer products of one or more pairs
of vectors. For complex data, you can conjugate the second operand vec-
tor.

* Matrix Vector and Vector Matrix Multiplication Routines. Compute one or
more matrix vector (or vector matrix) products. For complex data, you can
conjugate the matrix.

* Matrix Multiplication Routines. Compute one or more matrix products.
Variants of the basic routines take the transpose of one or both operand
matrices before computing the product; for complex data, you can take the
Hermitian of either operand.

* Infinity Norm Routine. Estimates the infinity norms of one or more
matrices.

* Matrix Multiplication Routine with External Storage. Computes a matrix
product, where one matrix is too large to fit into core memory and is stored
in a file.

Novembr 1993
92 Copyi gh 1993 ThilngMachbws Corportion



Chapter 12. CM Scientifc Software Library
_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-

Basic Linear Algebra Routines for Sparse Matrices

The CMSSL provides routines for basic linear algebra operations on sparse
matrices representing structured and unstructured grids. Both elementwise and
block sparse matrices are supported. The following operations are provided in
each of these categories:

* Sparse matrix x vector

* Vector x sparse matrix

* Sparse matrix x dense matrix

* Dense matrix x sparse matrix

Future versions of the CMSSL will introduce most of the other basic linear alge-
bra operations for arbitrary and grid sparse matrices.

The primary intent of the arbitrary sparse matrix operations is to provide the
basic building blocks for more complex sparse applications - for example, a
sparse iterative solver, or computation of the eigenvalues of sparse matrices by
the Lanczos or the Arnoldi method.

For applications that do not perform explicit sparse linear algebra operations, but
want to make use of some communication primitives used by the sparse basic
linear algebra functions, the CMSSL provides two utility functions: the sparse
gather utility and the sparse scatter utility (described in Section 12.11). These
utilities are intended for use in applications such as the solution of partial differ-
ential equations on unstructured discretizations, and optimization problems
represented by sparse matrices occurring in network flow problems. A commu-
nication compiler and a partitioning routine are also provided (see Section
12.11).

Two separate storage representations of arbitrary sparse matrices are supported.
These data mappings are referred to as the elementwise sparse matrix mapping
and the block sparse matrix mapping. In the elementwise data mapping, the zero
data values of the matrix are ignored and the non-zero data values are stored row-
wise. In the block sparse mapping, the sparse matrix is stored as a collection of
dense block matrices. In its full matrix representation, this block matrix storage
scheme is extremely flexible. The dense blocks need not be composed of contig-
uous rows and columns, and may overlap in any way. One possible application
for the block sparse representation is the finite element method. Structured finite
element grids lead to a grid block sparse data layout; unstructured grids result in
arbitrary block sparse layout.

November 1993
Copyright © 1993 Thinking Machines Corporation 93



Connection Machine CM-S Technical Summary~B~BP~P~israP~p~a... _.

The grid sparse matrix routines operate on data from grid-based applications.
Coefficient matrix elements residing at each grid point P are multiplied by vector
or matrix elements residing at point P and its nearest-neighbor points. The result
is placed in product vector or matrix elements residing at point P. These routines
support multiple instances and block matrices.

The arbitrary and grid sparse matrix functions provide performance optimiza-
tions based on the premise that applications will use these sparse functions
repeatedly. A marginal setup cost can be incurred before the first call to the
sparse functions. The setup cost is then amortized over several calls to the sparse
matrix functions.

12.4 Linear Algebraic Equations

Dense Systems of Equations

The CMSSL includes both the LU and the QR factorization methods for the solu-
tion of one or more instances of dense linear algebraic equations:

* LU Factorization. These routines use Gaussian elimination (with or with-
out partial pivoting) to factor one or more instances of an n X n matrix A
into a lower triangular matrix L and an upper triangular matrix U, A=LU.

* LU Solution Routines. These routines use the triangular factors L and U
produced by the LU factorization routines to produce solutions to the sys-
tems LUX=B or (LU)TX=B. B may represent one or more right-hand sides
for each instance of the systems of equations.

i QR Factorization. These routines use Householder transformations (with
or without pivoting) to factor one or more instances of an m x n matrix A,
m > n, into a trapezoidal matrix Q and an upper triangular matrix R, A=QR.

* QR Solution Routines. These routines use the Q and R factors produced by
the QR factorization routines to solve one or more instances of the systems
of equations QRX=B or (QR)TX=B. B may represent one or more right-
hand sides for each instance of the systems of equations.

* iangular System Solvers. These routines use the factors produced by the
LU and QR factorization routines to solve triangular systems of equations
(trapezoidal systems for Q). Thus, the CMSSL includes routines for solu-
tion of one or more instances of triangular systems of equations of the

November 1993
94 Copyight C 1993 ThinkingMachins Corporation



Chapter 12. CM Scientific Software Library . .... U >

form LX=B, LTX=B, UX=B, UTX=B, RX=B, and RTX=B. B may represent
one or more right-hand sides for each instance of the systems of equations.

The CMSSL also contains routines for the solution of one or more
instances of trapezoidal systems of equations QX=B or QTX-=B, where
again B represents one or more right-hand sides for each instance of the
systems of equations.

• Gauss-Jordan System Solver. This routine solves (with partial or total
pivoting) a system of equations of the form AX=B using a version of
Gauss-Jordan elimination. B represents one or more right-hand sides.

* Matrix Inversion. This routine inverts a square matrix A using the Gauss-
Jordan routine.

* Utility Routines. The CMSSL also provides a set of utility routines
associated with the factorization routines. For example, there are routines
that explicitly compute L, U, and R from the representation used internally
in the factorization routines. For QR factorization there are also routines
for extracting the diagonal and computing the infinity norm.

* LU Factorization and Solution with External Storage. These routines use
block Gaussian elimination with partial pivoting to reduce a matrix A to
triangular form and solve the system AX=B, where A is too large to fit into
core memory and is stored in a file.

* QR Factorization and Solution with External Storage. These routines use
block Householder reflections to perform the factorization A=QR and
solve the system AX=B, where A is too large to fit into core memory and
is stored in a file.

Banded Systems of Equations

Banded linear system solvers solve systems of equations in which the non-zero
elements of the coefficient matrix lie in a narrow band around the diagonal. The
CMSSL provides routines for solving tridiagonal, pentadiagonal, block tridiag-
onal, and block pentadiagonal systems of equations. Each routine solves multiple
systems of equations, each with one or more right-hand sides, for both real and
complex data types. A choice of algorithms is offered.

The multiple-instance capability of the banded system routines in CMSSL is par-
ticularly useful in connection with Alternating Direction Methods. You can

November 1993
Copyright @ 1993 Thinking Machines Corporation 95



Connection Machine CM-5 Technical Summary
3ESogx`3~~'t>,&w~0:102.R>8.a'*.#g

specify the axis along which the systems are to be solved. No data reordering or
transposition is necessary for the solution of systems along any axis.

The CMSSL includes three types of routines for the solution of banded systems
of equations using direct methods:

• Factorization of Banded Systems. These routines support five different
techniques for the factorization of one or more instances of tridiagonal,
block tridiagonal, pentadiagonal, or block pentadiagonal matrices A:

· pipelined Gaussian elimination (with or without partial pivoting)

* substructuring with pipelined Gaussian elimination

* substructuring with cyclic reduction

* substructuring with balanced cyclic reduction

* substructuring with transpose

* Solution of Factored Banded Systems. These routines use the factors pro-
duced by the factorization routines to solve one or more instances of
systems of equations of the form LUX=B, where L and U are lower and
upper (respectively) bidiagonal or block bidiagonal, or lower and upper
(respectively) tridiagonal or block tridiagonal matrices, or permutations
thereof. B represents one or more right-hand sides for each system of
equations.

* Factorization and Solution of Banded Systems. These routines support the
same techniques as above for the solution of one or more instances of
tridiagonal, block tridiagonal, pentadiagonal, or block pentadiagonal
systems of equations AX=B. B represents one or more right-hand sides for
each system of equations.

Sparse Systems of Equations

The CMSSL includes routines for the solution of sparse systems of equations by
iterative techniques. Included are several standard sparse iterative solvers,
including Conjugate Gradient (CG), Bi-Conjugate Gradient with Stabilization
(BI-CG-STAB), Quasi-Minimum Residual (QMR), and restarted General-Mini-
mum Residual (GMRES).

November 1993
Copyright © 1993 ThinkingMachines Corporation96



Chapter 12. CM Scientific Software Librarys~~~~~~~~~~~~ a~~~~~~~~~~~p~~~~~~~~~~~y~ ~ ~~ ~~~ 11

12.5 Eigensystem Analysis

Dense Systems

The CMSSL provides a variety of routines for performing eigensystem analysis
of dense systems:

* Eigensystem Analysis of Dense Hermitian Matrices. Computes the eigen-
values and eigenvectors of one or more dense real symmetric or complex
Hermitian matrices.

* Eigensystem Analysis using Jacobi Rotations. Computes the eigenvalues
and eigenvectors of one or more dense real symmetric matrices using
Jacobi rotations.

* Selected Eigenvalue and Eigenvector Analysis Using a k-Step Lanczos
Method. Finds selected solutions ({, x} to the real standard or generalized
eigenvalue problem Lx -= Bx. B can be positive semi-definite and is the
identity for the standard eigenproblem. The operator L is dense, real, and
symmetric with respect to B; that is, BL - L-lB. The algorithm used is a
k-step Lanczos algorithm with implicit restart.

* Selected Eigenvalue and Eigenvector Analysis Using a k-Step Arnoldi
Method. Finds selected solutions {X, x} to the real standard or generalized
eigenvalue problem Lx - XBx. B can be positive semi-definite and is the
identity for the standard eigenproblem. The operator L is dense and real.
The algorithm used is a k-step Amoldi algorithm with implicit restart.

* Generalized Eigensystem Analysis of Dense Symmetric Matrices. Solves
the generalized eigenvalue problem Ax =3 Bx, where A is dense, real, and
symmetric, and B is positive definite.

* Reduction to Tridiagonal Form and Corresponding Basis Transformation.
These routines reduce one or more dense real symmetric or complex Her-
mitian matrices to real symmetric tridiagonal form using Householder
transformations. After this reduction occurs, for each instance, you can
transform the coordinates of an arbitrary set of vectors from the basis
of the original Hermitian matrix to that of the tridiagonal matrix, or vice
versa.

November 1993
Copright 0 1993 Thinkng Machines Corporation 97



Connection Machine CM-5 Technical Summary
A_-- ----- --- -I- - ---- --- -

Tridlagonal Systems

The CMSSL also includes routines for performing eigensystem analysis of real
symmetric tridiagonal systems:

* Eigenvalues of Real Symmetric Tridiagonal Matrices. Computes the
eigenvalues of one or more real symmetric tridiagonal matrices using a
parallel bisection algorithm.

• Eigenvectors of Real Symmetric Tridiagonal Matrices. Computes the
eigenvectors corresponding to a given set of eigenvalues for one or more
real symmetric tridiagonal matrices, using an inverse iteration algorithm.

Sparse Systems

The Lanczos and Arnoldi eigensystem analysis routines described above also
apply to sparse systems.

12.6 Fourier Transforms

The CMSSL offers routines for the computation of Fourier Transforms by
Cooley-Tukey type algorithms on one or more axes of arrays with an arbitrary
number of axes. Fast Fourier Transforms (FFI) have a wide range of scientific
and engineering applications including digital filtering of discrete signals,
smoothing and decomposition of optical images, correlation and autocorrelation
of data series, numerical solution of partial differential equations such as Pois-
son's equation, and polynomial multiplication.

The CMSSL provides the following FFT routines:

· Simple Complex-to-Complex FFT Performs a complex-to-complex Fast
Fourier Transform in the same direction along all axes of a data set.

* Detailed Complex-to-Complex FFT. Allows separate specification of the
transform direction, scaling factor, and addressing mode along each data
axis in a complex-to-complex FIT. Supports multiple instances.

Nomb 1993
98 Copynght 0 1993 Thinking Machine Copomration



Chapter 12. CM Scientific Software Library
-c- --------- __-------'_ .......

* Detailed Real-to-Complex and Complex-to-Real FF&2. The real-to-com-
plex FFT computes the Fourier transform of real data; the complex-to-real
FFT transforms conjugate symmetric sequences. These operations allow
separate specification of the transform direction, scaling factor, and
addressing mode along each data axis; they also support multiple
instances.

* Array Conversion Utilities. These utilities convert real arrays into com-
plex arrays suitable for input to the real-to-complex FFT, and convert
complex arrays (supplied in the format produced by the complex-to-real
FFT) to real arrays.

12.7 Ordinary Differential Equations

The initial value problem for a system of N coupled first-order ordinary differen-
tial equations (ODEs)

dyi(x)dx = f,(xy....Nv) i, ..., N (1)

consists of finding the values yi(xl) at some value xl of the independent variable
x, given the values yi(xo) of the variables at xo. The CMSSL provides a routine
that solves the initial value problem by integrating explicitly the set of equations
(1) using a fifth-order Runge-Kutta-Fehlberg formula. The control of the step
size during the integration is automatic. The evaluation of the right-hand side and
possibly the scaling array for accuracy control are provided by the user through
a reverse communication interface.

12.8 Optimization

The CMSSL provides a routine that solves multidimensional minimization prob-
lems using the simplex linear programming method. The goal is to find the
minimum of a linear function of multiple independent variables. In the standard
formulation, the problem is to minimize the inner product cTx subject to the
conditionAx - b, 0 < x < u, where A is a matrix, c is a coefficient vector, and cTx
is referred to as the cost. The upper bound vector u may be infinity in one or more
components.

November 1993
Copyright 0 1993 Thinking Machines Cororation 99



Connection Machine CM-5 Technical Summary
Iggwaginu" a _ IN 

The simplex routine's reverse communication interface allows you to reinvert
(reset the matrix values and restart the routine) when numerical errors accumu-
late. You can fine-tune the frequency of reinversion and set a tolerance for
degeneracy using input arguments.

12.9 Random Number Generation

Two varieties of random number generators (RNG) are included in the CMSSL:

· Fast RNG

* VPRNG

These random number generators use a lagged-Fibonacci algorithm to produce
a uniform distribution of random values. This implementation has been subjected
to a battery of statistical tests, both on the stream of values within each processor
and for cross-processor correlation. The only test that the CMSSL RNGs fail is the
Birthday Spacings Test, as predicted by Marsaglia. Despite this failure, these
lagged-Fibonacci RNGs are recommended for the most rigorous applications,
such as Monte Carlo simulations of lattice gases.

To construct pseudo-random values, the CMSSL random number generators use
state tables. The Fast RNG allocates one state table per physical Connection
Machine node. The VP RNG allocates one state table per array position. The Fast
RNG thus consumes substantially less memory than the VP RNG. The VP RNG
can produce identical results on differently sized partitions.

Either CMSSL RNG may be reinitialized for reproducible results and check-
pointed to guard against the effects of forced interruption.

12.10 Statistical Analysis

The CMSSL statistical analysis routines currently include two histogramming
operations. Histograms provide a statistical mechanism for simplifying data.
They are generally used in applications that need to display or extract summary
information, especially in cases when the raw data sets are too large to fit into
the Connection Machine system. Two routines are provided: one that tallies the
occurrences of each value in a CM array, and one that counts the occurrences of
values within specified value ranges. For particularly large data sets, the range

November 1993
100 Corght C 1993 ThinkingMachines Corporation



Chapter 12 CM Scientific Software Library~~~a~~~~~s s apeaa~---I_-___. --------- ---

histogram operation facilitates breaking data down into subranges, perhaps as a
preliminary step before doing more detailed analysis of interesting areas.

Histograms have many applications in image analysis and computer vision. For
example, a technique known as histogram equalization computes a histogram of
pixel intensity values in an image and uses it to rescale the original picture.

The CMSSL histogram operations treat the elements of a front-end array as a
series of bins. In each bin a tally of CM field values or value ranges is stored. The
number of histogram bins varies widely with the application, from a dozen tallies
on a large process or a few dozen markers on a probability distribution to a few
hundred intensity values in an image or a few thousand instruction codes in a
performance analysis.

12.11 Communication Functions

The CMSSL includes routines for efficient data motion for nearest-neighbor
operations on regular grids, for all-to-all communication on segmented arrays,
and for gather and scatter operations on unstructured grids. The library also pro-
vides utilities for data distribution for load balancing of communication.

Polyshift

Many scientific applications make extensive use of array shifts in more than one
direction and/or dimension in an array geometry. One well-known example is
"stencils" used in solving partial differential equations (PDEs) by explicit finite
difference methods. Similar communication patterns are encountered in other
applications. For example, in quantum chromodynamics one needs to send
(3 x n) complex matrices in each direction of a four-dimensional lattice. Mult-
iple array shifts are also useful in many molecular dynamics codes. In the
CMSSL, such multiple array shifts are called "polyshifts" (PSHIFTs). They can
be recognized in CM Fortran code by a sequence of CSHIFT and/or EOSHIFT calls
in multiple directions of multiple dimensions, with no data dependencies among
the arguments and the results of the shifts. There is a potential performance gain
in recognizing a polyshift communications pattern, and calling specially devel-
oped routines for doing the shifts. In addition, application programs that utilize
calls to polyshift routines can benefit from enhanced readability and maintain-

November 1993
Copyrigt 1993 Thinking Machines Corporation 101



Connection Machine CM-5 Technical Summary.,,,~ .'-4C~s~~~~ " '~~. ~~ .. .~~'~ '~~ '5'~'~ '~~

ability. The CMSSL includes a high-level interface for calling polyshift routines
from CM Fortran.

All-to-All Broadcast

All-to-all broadcasting is often used to implement data interactions of the type
occurring in many so-called N-body computations, in which every particle inter-
acts with every other particle. With an array distributed over a number of
memory modules, each of which is associated with a parallel processing node,
every module must receive the data from every other module. Another example
of an application of all-to-all broadcasting is matrix-vector multiplication with
the matrix distributed with entire rows per processor, and the vector distributed
evenly over the processors. Every processor must gather all the elements of the
vector in order to perform the required multiplication.

The CMSSL supports two versions of all-to-all broadcast. One version is intended
for applications in which memory requirements are at a premium. For these
applications, the all-to-all broadcast can be performed in a stepwise manner in
place. The CMSSL also supports such operations for applications in which the
all-to-all broadcast can be performed at once.

All-to-All Reduction

In all-to-all reduction, reduction operations such as sum, max, and min are per-
formed concurrently on different data sets, each of which is distributed over all
processing nodes; the results of the different reductions are evenly distributed
over all nodes. In effect, an all-to-all reduction is the reverse operation of a
broadcast, where sum, max, or min replaces the copy operation.

Matrix Transpose

The matrix transpose routine transposes two axes of a multidimensional array.
This routine is designed specifically to provide enhanced performance when one
of the axes to be exchanged is local (resides within a single processing node or
vector unit) and the other is non-local (spans multiple nodes or vector units).

November 1993
Copyright © 1993 ThinkingMachines Corporaomtion



Chapter 12 CM Scientific Software Library
~_~P~L~C~--~-',-,,--~- _-'¥CC'~,-'C~,CC~C ...- ,-¥,,7:~~CC~CP-

Gather and Scatter

The CMSSL includes several gather and scatter utilities:

* Sparse Gather and Scatter Utilities. These communication primitives are
used by the CMSSL basic linear algebra routines for arbitrary sparse
matrices. They are intended for applications that do not do explicit sparse
linear algebra operations, but want to make use of some of the primitives
commonly used in these operations. The gather utility gathers elements of
a vector into an array using pointers supplied by the application; the scat-
ter utility scatters elements of an array to a vector using pointers supplied
by the application. Pre-processing is performed by associated setup
routines.

* Enhanced Gather and Scatter Utilities. These utilities are used in conjunc-
tion with the partitioning routine described in the next section. Because
the partitioning routine maximizes data locality, the enhanced utilities are
significantly faster than the original ones. (The pre-processing time
includes the time used to run the partitioning routine, and can be substan-
tial.)

* Block Gather and Scatter Utilities. These routines move a block of data
elements from a source CM array into a destination CM array. The gather
or scatter operation occurs along a single, specified serial axis.

* Vector Block Gather and Scatter Utilities. These routines are similar to the
block gather and scatter routines, but each index element represents a vec-
tor of data items rather than a single data item.

Partitioning of an Unstructured Mesh

The CMSSL provides a routine that allows you to reorder the elements of an
unstructured mesh to form discrete partitions. Given an array describing an
unstructured mesh, the routine returns a permutation of the mesh elements, the
number of resulting partitions, and the number of elements per partition. You can
use the permutation to reorder the data you supply to the preprocessor of the
enhanced gather and scatter routines (described above). This strategy minimizes
the off-vector-unit (or off-processing-node, for machines without vector units)
communication required by the gather or scatter operation, since each partition
resides within a vector unit (or processing node).

November 1993
Cohk 0 1993 ThinkingMachines Corporaton 103



Connection Machine CM-5 Technical Summary11 1 1 1 l -- ---- ----- - ---- --I- ---- ----0 ------ - 1 - - -- --- -- ----- ----- ----- --- ----- i II i l -

Communication Complier

The CMSSL communication compiler is a set of routines that compute and use
message delivery optimizations for basic data motion and combining operations
(get, send, send with overwrite, and send with combining). The communication
compiler allows you to compute an optimization (or trace) just once, and then
use the trace many times in subsequent data motion and combining operations.
This feature can yield significant time savings in applications that perform the
same communication operation repeatedly. A variety of methods for computing
a trace are available.

Noember 1993
Copyright 0 1993 ThinkingMachines Corporation104



Chapter 13

Data Visualization

Visualization, the graphic representation of data, has come to be an essential
component of scientific computing. Visualization techniques range from a sim-
ple plotting of data points to sophisticated interactive simulations, but all allow
researchers to analyze the results of their computations visually. One can literally
"look at" the data to identify special areas of interest, anomalies, or errors that
may not be apparent when scanning raw numbers. Visualization is often the only
way to interpret the large data sets and complex problems common to the
applications run on the Connection Machine system.

13.1 A Distributed Graphics Strategy

In keeping with its role as a network resource, the CM-5 uses a distributed graph-
ics strategy to support a wide range of user applications. The key items in this
strategy are

• the parallel processing power of the Connection Machine supercomputer

* the specialized power and interactive visualization environments, such as
AVS, provided by dedicated graphics display stations

• the use of standard protocols, such as Xll, to allow communication among
a variety of hardware and software

A full range of interconnections is supported, from high-speed HIPPI interfaces
through FDDI and Ethernet for longer-distance communications, to allow fast
communication between the CM and graphics display stations.

Basically, the pattern is as follows: Computations carried out by the CM's parallel
processing nodes manipulate data to create graphics primitives, which can then

November 1993
Copyright 0 1993 ThinkingMachines Corpomion 105



Connection Machine CM-5 Technical Summary___ 111O g _~-
be sent to a graphics display station anywhere on the network. This strategy lets
users maximize the value of existing hardware and software, while taking advan-
tage of the computational speed and power of the CM, the high bandwidth of CM
I/O, and the rendering power and speed of graphics workstations (such as those
from Silicon Graphics and Sun), which implement many advanced rendering
techniques in hardware and offer extensive visualization environments to make
interactive rendering easy for the user.

Following this strategy, for example, a scientific visualization program can use
the CM to compute image geometry (including, for example, polygon coordi-
nates and color information) and then send it from the CM directly to local
memory on the graphics workstation, where the results of simulations done on
the CM can be displayed and analyzed interactively.

At the workstation, users benefit from the ability to create and use graphical user
interfaces (GUIs). GUIs are widely used today and growing in popularity, as their
use enhances productivity for applications programmers and users alike, allows
tighter coupling of simulation and visualization, and allows such activities as
simulation steering. Many tools exist for the creation of such interfaces, and all
are now available to the CM programmer.

Protocol
Client Server

Figure 23. Distributed graphics using X.

13.2 An Integrated Environment

By using the distributed graphics strategy described above, together with an
underlying protocol such as Xll or an existing GUI, such as AVS, programmers
can create and use a wide variety of integrated environments for their computa-
tional and visualization tasks. Connection Machine software provides an

November 1993
106 Copyright 0 1993 Thinking Machines CorporationI



Chapter 13. Data Visualization
_~·p······--····----·····l

environment that permits the exchange of very large data sets between the CM
and framebuffers, workstations, or X window terminals.

13.3 The X11 Protocol

Support for the network-based X graphics protocol is integral to the CM distrib-
uted graphics strategy, since use of this protocol facilitates both data transfer and
the use of GUIs, and allows considerable portability: data from a CM can be dis-
played on any X workstation.

But simple portability is not the only issue involved. As useful as graphics work-
stations are, the extra-large data sets typically used in CM applications frequently
provide more data than such workstations can readily handle. The solution to this
problem lies partly in using the CM's power to reduce the volume of information
contained in the data sets so that the workstations can handle it rapidly, and partly
in the successful integration of visualization environments, workstations, and
high-speed framebuffers into a coherent system for rendering scientific data.

13.4 The CMX11 Library

The CMXll1 library provides routines that allow the transfer of parallel data
between the CM and any Xll terminal or workstation. The library is callable
from CM Fortran and C*. It contains routines that draw text strings, polygons,
and image-text strings; draw and fill points, lines, rectangles, and arcs; and draw
and get images. The CMXll library thus extends the X11 libraries by providing
parallel network calls that use parallel variables instead of serial arrays. For
example, where the X library offers an XDrawPoint routine, the CMX library
offers CMXDrawPoint:

CMXDrawPoint(Display *display, Drawable *d,

GC gc, int x, int y)

where x and y are pointers to parallel variables, and all other arguments are iden-
tical to the serial call.

Similarly, the CMX version of the Xll xPutmage routine uses the arguments
and semantics of the original to provide a parallel transfer of an image that exists
as a parallel array:

November 1993
Copyight 0 1993 ThinkingMachines Corporation 107



Connection Machine CM-5 Technical Summary
~s s ;~i~i~I s %

CMXPutlmage(display, d, gc, data, depth,

src_x, src_y, dest_x, dest_y,
width, height)

Note that no X protocol extensions are necessary, since the underlying CM socket
mechanism makes the data source entirely transparent to the server. In most
cases, the user simply makes the parallel version of the normal call, and the par-
allel data is inserted into the data stream in the same format and position as it
would have been in the equivalent serial call. This greatly facilitates the user's
task.

13.5 Visualization Environments - CM/AVS

CM/AVS is the first of the GUIs available on the CM-5. Other GUIs are expected
to be adapted to the CM-5 in the future.

CM/AVS adapts and extends the Application Visualization System (AVS, from
Advanced Visualization Systems, Inc.) to the realm of the CM-5. AVS provides
a rich graphic programming environment in which a user builds a distributed
visualization application. An application may involve diverse operations such as
filtering, graphing, volume rendering, polygon rendering, image processing, and
animation.

CM/AVS enables an application to operate on data that is distributed on CM-5
processing nodes and to interoperate with data from other sources. A user runms
AVS normally on a local workstation and uses the modules and functions that
CM/AVS provides to process data on the CM-5. That way, the advantages of user-
interface-intensive workstation visualization are combined with the power of
data-intensive CM-5 applications.

November 1993
108 Copyright © 1993 Th7ikingMachines Corporation



Chapter 13. Data Vzsuai~zation
~~~~~~~__ -- -- 0 11

Figure 24. Distributed visualization.

The building blocks of an AVS application program are small, packaged units of
code, called modules. Most modules process a set of inputs into a set of outputs.
They provide functions such as volume rendering, isosurfacing, image proces-
sing, polygon rendering, fluid-flow visualization, graphing, statistical analysis,
file I/O, and many others. Hundreds of visualization modules are available from
AVS and Thinking Machines and in the public domain.

Modules are connected to form larger applications, called networks. In a net-
work, information is passed between the modules using a small number of
standard data types such as arrays and geometric objects. The small number of
data types allows a wide variety of modules to be interconnected, allowing rich,
custom environments to be created.

CM/AVS provides a parallel version of the AVS -field" data type. AVS fields are
used to represent arbitrary arrays of data. CM/AVS's parallel field data is allo-
cated on the CM-5 processing nodes as CM Fortran arrays or C* parallel
variables.

In the AVS network, parallel fields appear identical to regular serial fields; the
two may be used interchangeably. When CM/AVS modules that operate on paral-
lel data are connected with AVS modules that operate on serial data, CM/AVS
routines convert the data between parallel and serial fields as required. The con-

version is transparent to the user and to the module writer.

Novmber 1993
CopyfghNt 1993 Thing Machines Corporation 109

I i

L |i EE.i
AVS Module CM/AVS Module
Execution Execution

-. d

Chapter 14

CMMD

The Connection Machine communication library, CMMD, is an advanced, user-
extensible communication library.

* For portability, the CMMD library provides traditional message-passing
functions that facilitate the porting of MIMD-style codes to the CM-5 and
the design and creation, on the CM-5, of applications intended for execu-
tion on a variety of machines.

* For users designing applications specifically for the CM-5, it offers a wide
variety of communication functions that supplement the CM-5's data par-
allel software, allowing the use of multiple programming models and
techniques.

* For users with an experimental bent, it offers primitives with which they
can design and construct new communication protocols.

* For all users, it offers great versatility. Based on active messages, CMMD
provides synchronous and asynchronous functions, heavy-weight and
light-weight functions, and global operations - allowing users to make
the most effective use of CM communications for their applications' per-
formance and efficiency.

Applications using CMMD take advantage of the level of programming control
offered by node-level programming. This type of programming is particularly
well suited to applications that demand dynamic allocation of tasks or data
among processors.

November 1993
Copyriht 0 1993 ThinkdngMachines Corporation 111

Connection Machine CM-5 Technical Summary

14.1 Node-Level Programming with CMMD

In node-level programming, a single program executes independently on each
node; the nodes communicate only through explicit communication functions.
CMMD provides for both synchronous and asynchronous communications func-
tions; it thus provides interprocessor communication that falls outside the range
of the data parallel languages.

CMMD permits concurrent processing in which synchronization occurs only

• between matched sending and receiving nodes, during the execution of
cooperative communication functions

* among all nodes, during the execution of global communication or I/O
functions

* when explicitly requested by a CMMD synchronization function

At all other times, computing on each node proceeds asynchronously.

CMMD can be called from applications written in Fortran 77, CM Fortran, C,
C++, and C*. It handles both serial and parallel data.

In addition, CMMD offers both serial and parallel I/O facilities, based on UNIX
I/O. In serial I/O, each node reads and writes files independently. (Opening and
closing files may be done either independently or cooperatively.) In parallel I/O,
the nodes cooperate to open, close, read, and write files: reading a file may send
the same data to all nodes, or may distribute data across all nodes.

14.2 Programming Models

CMMD supports a variety of programming models.

14.2.1 Hostless and Host-Node Models

CMMD supports both the host/node programming model and the hostless pro-
gramming model. In host/node programming, the user writes two programs: one
nms on the host (a CM-5 partition manager), while independent copies of the

node program run on each of the processing nodes. The host may have little
involvement aside from initially invoking the node program and providing user

November 1993
112 Copyight D 1993 ThinldngMachmns Copormdon

Chapter 14. CMMD
. .__ - -

interface services. In the hostless programming model, the user writes a single
program, independent copies of which run on every node. The host, meanwhile,
acts as a server (usually an I/O server), executing a CMMD-supplied server pro-
gram. (Users may customize this program, if they choose to do so.)

These two generic models allow the use of a wide variety of more specific pro-
gramming models, from the highly asynchronous (such as many master-worker
programs and programs using tree-based algorithms) to the highly synchronized.

14.2.2 The Global-Local Model

CMMD also supports the global-local programming model. In this model, the
main program is written in CM Fortran and executes globally, laying out parallel
arrays across all processing nodes. The global program calls user-written "local
routines," written either in CM Fortran or in C plus DPEAC. The local routines
perform node-level computations and use CMMD for inter-node communica-
tions. (In essence, they are hostless CMMD programs.) When they finish, they
return control to the global program.

During the execution of local routines, each node operates on its own subgrid of
a global parallel array as if that subgrid were a complete nodal array. Informa-
tional functions allow the node to locate the position its "subarray" within the
global array. Local routines can also create arrays, common blocks, etc., of their
own. These are completely local and are accessible only within the scope of the
local routines.

The global-local model is thus useful for applications that can benefit from both
global data parallel and local data parallel and control parallel techniques. It is
one more example of the flexibility that marks Connection Machine program-
ming.

14.3 Message-Passing Protocols

Message-passing protocols coordinate and control communications between two
processors, operating either synchronously or asynchronously. Message passing
can occur in cases in which each processor has no a priori knowledge of the data
layout on other processors and cannot read or write remote memory location
without "permission" from the remote node. It can also occur in more well-

November 1993
Copytiga 1993 ThinkngMachun Coporadton 113

Connection Machine CM-5 Technical Summaryjg l ._

defined environments, where communication patterns are relatively static or
where nodes have knowledge of remote memory layouts.

CMMD offers both functions that can handle the general case, where the proces-
sors have no knowledge, and functions that take advantage of well-defined
situations. In all, the library offers four classes of functions:

* Point-to-point functions, which use an initial handshake (RTS/ACK) proto-
col to coordinate subsequent data transmissions.

* Functions that create and use long-lived virtual communication channels
to support low-latency operations on messages of all sizes.

* Functions that support active messages and active message handlers; these
provide an easily extensible mechanism for invoking functions on remote
nodes via the transmission of an interrupting Data Network packet.

* Functions that use "receive ports" for low-latency transfer of arrays from
one node to another.

14.3.1 Point-to-Point Functions

Point-to-point message-passing functions require coordination only between the
sender and receiver. Both blocking and non-blocking functions are supplied.
Blocking functions are "cooperative": they do not complete until the
corresponding function has been called on the destination processor. (If the
second processor is not ready, the first processor waits for it.) Thus, they provide
synchronization as well as communication. Non-blocking functions are
asynchronous: they return as soon as the processor has announced its readiness
either to send or to receive. The processor can then perform other work, while
waiting for the destination processor to announce its readiness. When both
processors have signaled readiness, they receive interrupt messages telling them
to begin transmission.

Point-to-point data transfers are performed in memory order. A transfer contin-
ues until either the entire source array is sent, or until the destination array is
filled up.

On CM-5 systems equipped with vector units, CMMD point-to-point functions
can transfer data from either microprocessor memory or vector unit memory.
Consider this as the act of transmitting arrays of data from one processor to
another. The functions operate on three types of arrays:

November 1993
114 Copyright 0 1993 Thinking Machines Corporation

Chapter 14. CMMD
A----- --- I_

* Serial arrays. Stored in microprocessor memory, serial arrays are
specified simply by a starting address plus a length. (These are very
standard-appearing function calls, in which the programmer merely
supplies the array's name plus a "buffer descriptor" argument that gives
the array length, in bytes.)

* Strided serial arrays. Like serial arrays, these are stored in microprocessor
memory. They are defined by a starting address, an element size, a stride,
and an element-count (specifying the number of elements to be trans-
ferred).

The stride is the distance (in bytes) between the starting point of one ele-
ment and the starting point of the next element.

* Parallel arrays. Parallel arrays are CM Fortran or C* arrays, and are
defined by the usual CMRT array descriptor data structures for such arrays.
These reside in the memory of the vector units, usually spanning the
memories of all four VUs. (The CMMD program does not specify this data
structure; it merely supplies the array's name plus a "buffer descriptor"
argument indicating that the array is parallel rather than serial.)

Serial transfers can mix serial arrays and strided serial arrays, to provide scatter-
gather behavior. (See Figure 25.) Parallel transfers always transfer data between
identically laid-out arrays. Programmers may use CM Fortran or C* functions to
reshape arrays, or to change serial to parallel arrays, or vice versa, if they wish
to send data between parallel and serial arrays, or between unlike parallel arrays.

November 1993
Copyright 0 1993 Thinking Machines Corporation 115

Connection Machine CM-5 Technical Summary
f3gR~BsEi~'·"d~"""" _ _X _ _ {_ _

send 4 bytes 0 1 2 3

receive 4 bytes 0 1 2

sendv 4 elements:
stride-2, elem_len 1 0 2L 4 6

receivev 4 elements: I I
stride-2,elem_len-1 1 21 = 4 1

send 4 bytes 0 1 2 3

receive v 4 elements: 2 3 3 _
stride - 2, elem_len - 1 1 3

send v 4 elements:
stride - 2, elemlen - 1 2

receive 4 bytes 1012 141 I I I

Figure 25. Sending and receiving data.

Global Operations

November 1993
Copyright @ 1993 Thinking Machines Coporation116

Chapter 14. CMMD
_-tSfbE9gE:"~"88~i- _ z, ___

The CMMD library also provides a number of global functions that operate under
the same general protocols as the point-to-point functions. Global functions per-
form their operations over all the nodes, and require participation from all nodes
in the call. Some include and some exclude the host. Some perform a single
operation and return their result as a return value; others operate on vectors of
data and write their results into destination buffers.

Global functions include

* broadcasting data or instructions from the host or from one node to all
nodes

* reducing data from all nodes to all nodes or to the host

* performing scans (parallel prefix operations) across the nodes

* performing segmented parallel prefix operations

* concatenation of elements into a buffer on all nodes, or into a buffer on the
host.

14.3.2 Virtual Channels

Communication patterns frequently remain constant over time. CMMD provides
functions for opening, closing, and transmitting data via software communica-
tion "channels" for these cases. These channels are uni-directional connections
between specific processors. When one is opened, the two processors that
opened it exchange information about the relative array shapes at each end of the
channel.

The channel remains active through as many uses as desired, allowing data to be
transmitted without incurring the handshake overhead associated with traditional
message-passing systems. By thus amortizing the overhead of establishing a
channel over multiple uses, these functions allow programmers to efficiently
operate on static communication patterns and to send both small and large
amounts of data repeatedly between nodes with low latency.

Channels provide an implicit ordering or sequencing to transactions. Thus, they
guarantee that messages are received in the order in which they are sent.

November 1993
Copyight @ 1993 ThinkingMachines Corporation 117

Connection Machine CM-5 Technical Summary
mamm _mumumm i.

14.3.3 Active Messages

Drawing on results of the TAM project at the University of California at
Berkeley, active messages provide an easily extensible mechanism for invoking
functions on remote nodes via the transmission of an interrupting Data Network
packet.

The format of an active message consists of one word containing the address of
a "handler function" to be invoked on the destination processor, followed by n
words (with n defined in the function call itself) making up the argument list to
be passed to that function.

Upon receipt of an active message, the destination processor invokes the speci-
fied "handler function," passing to it as arguments the contents of the message.

CMMD makes use of active messages to perform protocol-processing functions.
In addition, it provides a set of primitives that allow users to create their own
communication functions according to their own application requirements.

14.3.4 CMAML Array Transfers

In addition to active messages themselves, CMAML (the CMMD Active Mes-
sage Layer) also supports the transfers of blocks of data (usually arrays) from
node to node. Either serial or parallel data can be transferred from the source
node into a receive port on the destination node. When the transport operation
completes, the source and/or destination node may invoke an attached handler
function.

Users familiar with the CMAML machinery will find it easy to construct a vari-
ety of additional communication and memory exchange functions, such as
remote memory store and fetch, send-to-queue, store-with-op, and compare-and-
swap.

As with most transport layers, CMAML functions assume that some higher layer
of software is providing any needed protocol, and that (for example) receiving
nodes know what to do with any data sent to them. Users must ensure that their
applications provide such protocol.

November 1993
118 Copyright 0 1993 Thinking Machines Corporation

Chapter 14. CMMD
I'l 11 1 111 1. 1 .- ..--- ------------------ ----- ---- i g lggs ... JE

14.4 1/0

CMMD provides the node-level programmer with I/O routines for opening, read-
ing, and writing files using both standard UNIX I/O semantics and extensions that
provide for parallel I/0. Support for UNIX functions is provided by linking an I/0
server routine into the host program. A standard host program including the
server is provided by the cammd-ld link utility for users not wishing to write a
host program.

Parallel extensions provided by CMMD apply to those UNIX I/O functions that
take a file descriptor or stream as an argument, such as read(), write (), etc.
These extensions coordinate the actions of nodes acting in concert so that the
potential of CM-S parallel I/O devices may be realized. UNIX calls that do not
take a file descriptor, such as mkdir (), chdir (), chmod(), etc., do not syn-
chronize and may be called by any node.

14.4.1 Support for Extra-Large Files

Since UNIX uses only a 32-bit integer file pointer, seek operations on very large
files are limited. CMMD therefore supplements the standard UNIX operations
with functions that take an argument of type double, indicating a position within
an extra-large file.

14.4.2 I/O Modes

In order to support UNIX functionality while simultaneously extending it to sup-
port parallel operations, CMMD creates new file descriptors and introduces new
I/O modes.

The I/O modes defined by CMMD are as follows (see Figure 26):

• local independent

· global independent

· global synchronous broadcast

· global synchronous sequential

November 1993
Co pyright 1993 ThinkingMachines Corporation 119

Connection Machine CM-5 Technical Summary
mmmmmummuinininina............

File

Reading in
local I/O mode

Nodes Li L 17
0 1 2 3

File
Reading in
indenendent

/O mode Nodes I U D D
0 1 2 3

Reading in File
synchronous- l lbroadcast i i i i
I/O mode Nodes

0 1 2 3

Reading in File
synchronous-

_eq1("itil

I/0 mode Nodes

0 1 2 3

Figure 26. Four patterns for reading a file.

November 1993
Copyight @ 1993 ThinkingMachins Corporation120

I I
I I

_ w .rrr

0~ 2 ~~~~~~~

Chapter 14. CMMD
_--- I................................

Local Mode

Local mode supports completely independent I/O operations. In this mode,
individual nodes can read and write different files independently, without having
to coordinate activities with other nodes. Nodes maintain their own local file
descriptors and file pointers.

Global Independent Mode

Global independent mode allows all nodes to access a single file for independent
reading and writing. Files opened in this mode create only a single entry in the
process's table of file descriptors. Every node, however, maintains its own
pointer to the file, and can move that pointer about at will, reading or writing the
file in an independent manner.

Local and global independent modes are used primarily to read ordinary files on
UNIX file servers. The major reasons for choosing global independent mode over
local mode are, first, the conservation of file descriptors, and second, the ability
to change the mode of global independent files to one of the global synchronous
modes, thereby achieving high-performance I/O.

Global Synchronous Broadcast Mode

Global synchronous broadcast mode allows nodes to simultaneously read the
same data from a file or stream. Data, as it is read in, is broadcast to all the nodes.
This is particularly useful for having all nodes read the same input from the
user's terminal or read in the same header information from a file. On output,
global broadcast mode acts as if only processor 0 contributed data. A file or
stream in synchronous broadcast mode must be written or read by all nodes in
the partition.

Global Synchronous Sequential Mode

Global synchronous sequential mode is similar to global synchronous broadcast
mode, except that in the sequential case, data is distributed across the nodes
instead of broadcast. Again, all nodes must participate in the I/O call.

For reads, each node issues a request for a buffer of a specified length. The data
is read into the nodes as if node 0 first read, with all successive nodes following.
For writes, each node contributes a buffer to be written, and the data is written
as if node 0 first wrote its buffer, with each successive node's data immediately

November 1993
Copyright 1993 Thinking Machines Corporation 121

Connection Machine CM-5 Technical Summary
· 9~4~5

following. Note that the amount of data read or written may be different for each
node. Nodes not having any data to contribute may set their buffer length to be
zero.

Establishing and Changing Modes

Each file descriptor, when created, starts out in one of these modes. The mode
can be changed by CMMD function calls as the program progresses. File descrip-
tors for local files are created when an individual node opens a file; file
descriptors for global files are created when all nodes open a file synchronously.

All UNIX functions that take a file descriptor or stream as an argument are sensi-
tive to the associated I/O mode. The major difference concerns synchronization
across nodes. In either of the independent modes, operations on file descriptors
proceed independently. In either of the synchronous modes, operations on
file descriptors synchronize across all nodes in the process of performing the
operation.

November 1993
Copyright 0 1993 Thinking Machines Corporation122

Part II

CM-5 Architecture

November .1993
Copyright cO 1993 Thinking Machines Corporation 123

_ �I �I�__I

� ___� _�

Chapter 15

Architecture Overview

A Connection Machine CM-5 system contains thousands of computational pro-
cessing nodes, one or more control processors, and 1/0 units that support mass
storage, graphic display devices, and VME and HIPPI peripherals. These are con-
nected by the Control Network and the Data Network. (For a high-level sketch
of these components, see Figure 27.)

15.1 Processors

Every processing node is a general-purpose computer that can fetch and interpret
its own instruction stream, execute arithmetic and logical instructions, calculate
memory addresses, and perform interprocessor communication. The processing
nodes in a CM-5 system can perform independent tasks or collaborate on a single
problem. Each processing node has 8, 16, or 32 Mbytes of memory; with the
high-performance arithmetic accelerator, it has 32 or 128 Mbytes of memory and
delivers up to 160 Mops or 160 Mflops.

The control processors are responsible for administrative actions such as sched-
uling user tasks, allocating resources, servicing I/YO requests, accounting,
enforcing security, and diagnosing component failures. In addition, they may
also execute some of the code for a user program. Control processors have the
same general capabilities as processing nodes but are specialized for performing
managerial functions rather than computational fctions. For example, control
processors have additional /O connections and lack the high-performance arith-
metic accelerator. (See Figure 28.)

In a small system, one control processor may play a number of roles. In larger
systems, individual control processors are often dedicated to particular tasks and

November 1993
COpVht @ 1993 ThinkingMachins Compopion 125

Connection Machine CM-5 Technical Summary
- - -- - - - - - - --- - - - - -

referred to by names that reflect those tasks. Thus, a control processor that man-
ages a partition and initiates execution of applications on that partition is referred
to as a partition manager (PM), while a processor that controls an I/O device is
called an I/O control processor (IOCP).

Figure 27. System components.

A CM-5 system contains tens, hundreds, or thousands of processing nodes, each with up to
160 Mflops of 64-bit floating-point performance. It also contains a number of I/O devices
(disk storage nodes or tape storage nodes) and external connections (such as FDDI or
HIPPI). The number of 1/0 devices and external connections is independent of the number
of processing nodes. Both processing and I/O resources are managed by a relatively small
set of control processors. All these components are uniformly integrated into the system by
two internal communications networks, the Control Network and the Data Network. The
Control Network provides multiway operations that can coordinate thousands of partici-
pants, while the Data Network supports high-bandwidth bulk data transfers The capacity
of each network scales up with the size of the system; every processing node or O0 device
gets the network capacity it needs.

November 1993
Copyright 1993 ThinidngMachines Corporation126

al

MEE-

Chapter 15. Architecture Overview
mamaaa~muuit~mmmimau~a a

15.2 Networks and 1/0

The Control Network provides tightly coupled communications services. It is
optimized for fast response (ow latency). Its functions include synchronizing the
processing nodes, broadcasting a single value to every node, combining a value
from every node to produce a single result, and computing certain parallel prefix
operations.

Figure 28. Control processor.

The basic CM-S control processor consists of a RISC microprocessor, memory subsystem,
110 (including local disks and Ethernet connections), and a CM-S Network Interface, all
connected to a standard 64-bit bus. Except for the Network Interface, this is a standard
off-the-shelf workstation-class computer system. The Network Interface connects the con-
trol processor to the rest of the system through the Control Network and Data Network.
Each control processor runs CMOsT, a UNIX-based operating system with extensions for
managing the parallel-processing resources of the CM-S. Some control processors are used
to manage computational resources and some are used to manage I/0 resources.

The Data Network provides loosely coupled communications services. It is opti-
mized for high bandwidth and excellent price/performance at any machine size.

November 1993
Copyight O 1993 Thinkidg Machines Corporation 127

Data NetworkControl Network

LAN Connection

Connection Machine CM-5 Technical Summary
------------ --- ---

Its basic function is to provide point-to-point data delivery for tens of thousands
of items simultaneously. Special cases of this functionality include nearest-
neighbor communication and FFT butterflies. Communications requests and data
delivery need not be synchronized. Once the Data Network has accepted a mes-
sage, it takes on all responsibility for its eventual delivery; the sending processor
can then perform other computations while the message is in transit. Recipients
may poll for messages or be notified by interrupt on arrival. The Data Network
also transmits data between the processing nodes and I/O units.

A standard Network Interface (NI) connects each node or control processor to the
Control Network and Data Network This is a memory-mapped control unit;
reading or writing particular memory addresses will access network control reg-
isters or trigger communication operations.

The I/O units are connected to the Control Network and Data Network in exactly
the same way as the processors, using the same Network Interface. Many I/O
devices require more data bandwidth than a single NI can provide; in such cases
multiple NI units are ganged. For example, a CM5-HIPPI channel interface con-
tains 6 NI units, which provide access to 6 Data Network ports, covering 24
network addresses. (At 20 Mbytes/sec apiece, 6 NI units provide enough band-
width for a 100 Mbyte/sec HIPPI interface with some to spare.)

Individual I/O devices are controlled by dedicated I/O control processors (IOCP).
Some I/O devices are interfaces to external buses or networks; these include
interfaces to VME buses and HIPPI channels. Noteworthy features of the I/O
architecture are that I/O and computation can proceed independently and in par-
allel, that data may be transferred between I/O devices without involving the
processing nodes, and that the number of I/O devices may be increased com-
pletely independently of the number of processing nodes.

Hiding in the background is a third network, the Diagnostic Network. It can be
used to isolate any hardware component and to test both the component itself and
all connections to other components. The Diagnostic Network pervades the hard-
ware system but is completely invisible to the user, indeed, it is invisible to most
of the control processors. A small number of the control processors include com-
mand interfaces for the Diagnostic Network at any given time, one of these
control processors provides the System Console function

November 1993
Copyright 0 1993 ThinkingMachines Corporation128

Chapter 15. Architecture Overview
28~a ao~3pl~BBi.... _ fil

15.3 Further Information

The following chapters discuss the CM-5 architecture in more detail.

Chapter 16 contains a sketch of the user-level virtual machine, the programming
model that is visible to a single user job. This virtual machine is supported by a
combination of hardware, operating system, and run-time libraries.

In Chapter 17, local architecture is considered: the structure of individual pro-
cessors and associated memory. This is the view seen from any single processor
in the system; it is the level of architecture where program code is executed.

Chapter 18 discusses global architecture. This specifies how various compo-
nents of the system operate together to solve a single problem. This level of
architectural specification provides a framework for understanding the flow of
control and the management of data in a massively parallel application.

Chapter 19 describes the system architecture, which addresses support of mult-
iple user jobs, communication between jobs, /O transfers, fault diagnosis and
repair, and system administration.

Chapter 20 presents the i/O architecture, including the design of individual 1/0
devices and how they fit into the system structure.

November 1993
Copyight 0 1993 ThiningMachines Corporation 129

Chapter 16

The User-Level Virtual Machine

The virtual machine provided by the hardware and operating system to a single

user task consists of a control processor acting as a partition manager (PM), a set

of processing nodes, and facilities for interprocessor communication. Each node

is an ordinary general-purpose microprocessor capable of executing code written
in C, Fortran, or assembly language. The processing nodes may also have
optional vector units for high arithmetic performance.

The operating system is CMOST, a version of SunOS enhanced to manage CM-5

processor, I/O, and network resources. The PM provides full UNIX services
through standard UNIX system calls. Each processing node provides a limited set
of UNIX services.

A user task consists of a standard UNIX process running on the PM and a process
running on each of the processing nodes. Under timesharing, all processors are

scheduled en masse, so that all are processing the same user task at the same

time. Each process of the user task, whether on the PM or on a processing node,

may execute completely independently of the rest during their common time
slice.

The Control Network and Data Network allow the various processes to synchro-
nize and transfer data among themselves. The unprivileged control registers of

the Network Interface hardware are mapped into the memory space of each user

process, so that user programs on the various processors may communicate with-

out incurring any operating system overhead

November 1993
Copyright 0 1993 ThinkingMachines Corporation 131

Connection Machine CM-5 Technical Summary
i__a~ sfb.

16.1 Communications Facilities

Each process of a user task can read and write messages directly to the Control
Network and the Data Network The network used depends on the task to be
performed.

The Control Network (CN) is responsible for communications patterns in which
many processors may be involved in the processing of each datum. One example
is broadcasting, where one processor provides a value and all other processors
receive a copy. Another is reduction, where every processor provides a value and
all values are combined to produce a single result Values may be combined by
summing them, finding the maximum input value, or taking the logical OR or
exclusive OR of all input values; the combined result may be delivered to a single
processor or to all processors. (Software provides minimum-value and logical
AND operations by inverting the inputs, applying the hardware maximum-value
or logical OR operation, then inverting the result.) Note that the control processor
does not play a privileged role in these operations; a value may be broadcast
from, or received by, the control processor or any processing node with equal
facility.

The Control Network contains integer and logical arithmetic hardware for
carrying out reduction operations. This hardware is distinct from the arithmetic
hardware of the processing nodes; CN operations may be overlapped with
arithmetic processing by the processors themselves. The arithmetic hardware of
the Control Network can also compute various forms of parallel prefix
operations, where every processor provides a value and receives a result; the nth
result is produced by combining the first n input values. Segmented parallel
prefix operations are also supported in hardware.

The Control Network provides a form of two-phase barrier synchronization (also
known as "fuzzy" or "soft" barriers). A processor can indicate to the Control
Network that it is ready to enter the barrier. When all processors have checked
in, the Control Network relays this fact to all processors. A processor can thus
overlap unrelated processing with the possible waiting period between the time
it has checked in and the time it has been determined that all processors have
checked in. This allows thousands of processors to guarantee the ordering of
certain of their operations without ever requiring that they all be exactly synchro-
nized at one given instant.

The Data Network is responsible for reliable, deadlock-free point-to-point
transmision of tens of thousands of messages at once. Neither the senders nor
the receivers of messages need be globally synchronized. At any time, any
processor may send a message to any processor in the user task. This is done by

November 1993
132 Copyrigt 0 1993 ThLdngMachines Corporation

Chapter 16. The User-Level Virtual Machine
ilP1 B II,(L 1lla .11Ie1

writing first the destination processor number, and then the data to be sent, to
control registers in the Network Interface (NI). Once the Data Network has
accepted the message, it assumes all responsibility for eventual delivery of the
message to its destination. In order for a message to be delivered, the processor
to which it was sent must accept the message from the Data Network. However,
processor resources are not required for forwarding messages. The operation of
the Data Network is independent of the processing nodes, which may carry out
unrelated computations while messages are in transit.

There is no separate interface for special patterns of point-to-point communica-
tion, such as nearest neighbors within a grid. The Data Network presents a
uniform interface to the software. The hardware implementation, however, has
been tuned to exploit the locality found in commonly used communication pat-
terns.

There are two mechanisms for notifying a receiver that a message is available.
The arrival of a message sets a status flag in a Network Interface control register;
a user program can poll this flag to determine whether an incoming message is
available. The arrival of a message can also optionally signal an interrupt. Inter-
rupt handling is a privileged operation, but the operating system converts an
arrived-message interrupt into a signal to the user process. Every message bears
a four-bit tag; under operating system control, some tags cause message-arrival
interrupts and others do not. (The operating system reserves certain of the tag
numbers for its own use; the hardware signals an invalid-operation interrupt to
the operating system if a user program attempts to use a reserved message tag.)

The Control Network and Data Network provide flow control autonomously. In
addition, two mechanisms exist for notifying a sender that the network is tempo-
rarily clogged. Failure of the network to accept a message sets a status flag in a
Network Interface control register; a user program can poll this flag to determine
whether a retry is required. Failure to accept a message can also optionally signal
an interrupt.

Data can also be transferred from one user task to another, or to and from I/O
devices. Both kinds of transfer are managed by the operating system using a
common mechanism. An intertask data transfer is simply an I/O transfer through
a named UNIX pipe.

November 1993
Copyight 0 1993 ThinkingMachines Corporation 133

Connection Machine CM-5 Technical Summary

16.2 Data Parallel Computations

While the user may code arbitrary programs for the various processors and put
the general capabilities of the Network Interface to any desired use, the CM-5
architecture is designed to support especially well the data parallel model of
programming. Parallel programs are often structured as alternating phases of
local computation and global communication. Local computation consists of
operations by each processor on the data in its own memory. Global communica-
tion includes any transfer of data between or among processors, possibly with
arithmetic or logical computation on the data as it is transferred. By managing
data transfers globally and coherently rather than piecemeal, the data parallel
model often realizes economies of scale, reducing the overhead of synchro-
nization for interprocessor communication. Frequently used patterns of
communication are captured in carefully tuned compiler code generators and
run-time library routines; they are presented as primitive operators or intrinsic
functions in high-level languages so that the programmer need not constantly
reinvent them.

The following sections discuss various aspects of the data parallel programming
model and sketch the ways in which each is supported by the CM-5 architecture
and communications structure.

Elemental and Conditional Computations

Elemental computations, which involve operating on corresponding elements of
arrays, are purely local computations if the arrays are divided in the same way
among the processors. If two such matrices are to be added together, for example,
every pair of numbers to be added reside together in the memory of a single
processing node, and that node takes responsibility for performing the addition.

Because each processing node executes its own instruction stream as well as
processing its own local data, conditional operations are easily accommodated.
For example, one processing node might contain an element on the boundary of
an array while another might contain an interior element; certain filtering opera-
tions, while allowing all elements to be processed at once, require differing
computations for boundary elements and interior elements. In the CM-5 data
parallel architecture, some processors can take one branch of a conditional and
others can take a different branch simultaneously with no loss of efficiency.

November 1993
134 Copyright) 1993 ThinkingMachines Corporation

Chapter 16. The User-Level Virtual Machine
------ a- _---------

Replication

Replication consists of making copies of data. The most important special case
is broadcasting, in which copies of a single item are sent to all processors. This
is supported directly in hardware by the Control Network.

Another common case is spreading, in which copies of elements of a lower-
dimensional array are used to fill out the additional dimensions of a high-dimen-
sional array. For example, a column vector might be spread into a matrix, so that
each element of the vector is copied to every element of the corresponding row
of the matrix. This case is handled by a combination of hardware mechanisms.

If the processors are partitioned into clusters of differing size, such that the net-
work addresses within each cluster are contiguous, then one or two parallel-
prefix operations by the Control Network can copy a value from one processor
in each cluster to all others in that cluster with particular speed.

Reduction

Reduction consists of combining many data elements to produce a smaller num-
ber of results. The most important special case is global reduction, in which
every processor contributes a value and a single result is produced. The opera-
tions of integer summation, finding the integer maximum, logical OR, and logical
exclusive OR are supported directly in hardware by the Control Network. Float-
ing-point reduction operations are carried out by the nodes with the help of the
Control Network and Data Network.

A common operation sequence is a global reduction immediately followed by a
broadcast of the resulting value. The Control Network supports this combination
as a single step, carrying it out in no more time than a simple reduction.

The cases of reduction along the axes of a multidimensional array correspond to
the cases of spreading into a multidimensional array and have similar solutions.
The rows of a matrix might be summed, for example, to form a column matrix.
This case is handled by a combination of hardware mechanisms.

If the processors are partitioned into clusters of differing size, such that the
network addresses within each cluster are contiguous, then one or two parallel-
prefix operations by the Control Network can reduce values from all processors
within each cluster and optionally redistribute the result for that cluster to all
processors in that cluster.

Noveber 1993
Copyright 0 1993 Thrinng Machines Corporation 135

Connection Machine CM-5 Technical Summary
.......................................

Permutation

The Data Network is specifically designed to handle all cases of permutation,
where each input value contributes to one result and each result is simply a copy
of one input value. The Data Network has a single, uniform hardware interface
and a structure designed to provide especially good performance when the pat-
tern of exchange exhibits reasonable locality. Both nearest-neighbor and
nearest-but-one-neighbor communication within a grid are examples of patterns
with good locality. These particular patterns also exhibit regularity, but regularity
is not a requirement for good Data Network performance. The irregular polygo-
nal tesselations of a surface or a volume that are typical of finite-element
methods lead to communications patterns that are irregular but local. The Data
Network performs as well for such patterns as for regular grids.

Parallel Prefix

Parallel prefix operations embody a very specific, complex yet regular, combina-
tion of replication and reduction operations. A parallel prefix operation produces
as many results as there are inputs, but each input contributes to many results and
each result is produced by combining multiple inputs. Specifically, the inputs and
results are linearly ordered; suppose there are n of them. Then result j is the
reduction of the firstj inputs; it follows that inputj contributes to the last n-j+ 1
results. (For a reverse parallel prefix operation - also called a parallel suffix
operation - these are reversed: result j is the reduction of the last n-j+ 1 inputs,
and input j contributes to the first j results.)

The Control Network handles parallel prefix (and parallel suffix) operations
directly, in the same manner and at the same speed as reduction operations, for
integer and logical combining operations. The input values and the results are
linearly ordered by network address.

The Control Network also directly supports segmented parallel prefix operations.
If the processors are partitioned into clusters of differing size, such that the net-
work addresses within each cluster are contiguous, then a single Control
Network operation can compute a separate parallel prefix or suffix within each
cluster.

More complex cases of parallel prefix operations, such as on the rows or columns
of a matrix or on linked lists, are variously handled through the Control Network
or Data Network in cooperation with the nodes.

November 1993
Copyaght 0 1993 ThinkingMachines Corporation136

Chapter 16. The User-Level Viwtual MachineXo~n~pI_~l~lls~... ?-Z --- -.

Virtual Processors

Data parallel programming provides the high-level programmer with the illusion

of as many processors as necessary; one programs as if there were a processor
for every data element to be processed. These are often described as virtualpro-
cessors, by analogy with conventional virtual memory, which provides the
illusion of having more main memory than is physically present.

The CM-5 architecture, rather than implementing virtual processors entirely in

firmware, relies primarily on software technology to support virtual processors.
CM-5 compilers for high-level data parallel languages generate control-loop code
and run-time library calls to be executed by the processing nodes. This provides
the same virtual-processor functionality made available by the Paris instruction
set on the Connection Machine models CM-2 and CM-200, but adds further
opportunities for compile-time optimization.

16.3 Low-Level User Programming

Low-level programs may be written for the CM-5 in C or Fortan 77. Assembly
language is also available, though C should be adequate for most low-level
purposes; all hardware facilities are directly accessible to the C programmer. A
special assembler allows hand-coding of individual vector instructions for the
processing nodes. Such instructions may be assembled separately or inserted
directly into C code.

One writes low-level programs as two pieces of code: one piece is executed in
the control processor, and the other is replicated at program start-up and executed
by each processing node. One speaks of writing a program in "C & C" (a C pro-
gram for the control processor and a C program for the nodes); one may also
write in "Fortran & Fortran" ("F & F"), in "C & assembler," etc.

A package of macros and run-time functions supports common communications
operations within a message-passing framework (see Chapter 14). Such low-
level communications access allows the user to experiment with program
organizations other than data parallel, to port programs easily from MIMD
architectures, and to implement new primitives for use in high-level programs.

Novemnber 1993
Cq psht 01993 ThinkingMachin Corporaion 137

,,""a

Chapter 17

Local Architecture

17.1 Control Processor Architecture

A control processor (CP) is essentially like a standard high-performance work-
station computer. It consists of a standard RISC microprocessor, associated
memory and memory interface, and perhaps /O devices such as local disks and
Ethernet connections. It also includes a CM-5 Network Interface, providing
access to the Control Network and Data Network.

A control processor acting as a partition manager (PM) controls each partition
and communicates with the rest of the CM-5 system through the Control Network
and Data Network. For example, a PM initiates I/O by sending a request through
the Data Network to a second CP, an I/O control processor. A PM initiates task-
switching by using the Control Network to send a broadcast interrupt to all
processing nodes; privileged operating-system support code in each node then
carries out the bulk of the work. To access the Control Network and Data Net-
work, each CP uses its Network Interface, a memory-mapped device in the
memory address space of its microprocessor.

The microprocessor supports the customary distinction between user and super-
visor code. User code can run in the control processor at the same time that user
code for the same job is running in the processing nodes. Protection of the super-
visor, and of one user from another, is supported by the same mechanisms used
in workstations and single-processor timeshared computers, namely memory
address mapping and protection and the suppression of privileged operations in
user mode. In particular, the operating system prevents a user process from per-
forming privileged Network Interface operations; the privileged control registers
simply are not mapped into the user address space.

November 1993
Copyrgt 0 1993 Thinking Machines Corporation 139

Connection Machine CM-5 Technical Summary
a_~ise s~ n a a-------

Current implementations of the CM-5 control processor use either SPARC or
SuperSparc microprocessors. It is expected that, over time, the implementation of
the CP will track the RISC microprocessor technology curve to provide the best
possible functionality and performance at any given point in time; therefore it
is recommended that low-level programming be carried out in C as much as pos-
sible, rather than in assembly language.

17.2 Processing Node Architecture

The CM-5 processing node is designed to deliver very good cost-performance
when used in large numbers for data parallel applications. Like the control pro-
cessor, the node makes use of industry-standard RISC microprocessor
technology. This microprocessor may optionally be augmented with a special
high-performance hardware arithmetic accelerator that uses wide data paths,
deep pipelines, and large register files to improve peak computational perfor-
mance.

The node design is centered around a standard 64-bit bus. To this node bus are
attached a RISC microprocessor, a CM-5 Network Interface, and memory. Note
that all logical connections to the rest of the system pass through the Network
Interface.

The node memory consists of standard DRAM chips and an 8-Kbyte boot ROM;
the microprocessor also has a 64-Kbyte cache that holds both instructions and
data. All DRAM memory is protected by ECC checking, which corrects single-bit
failure and detects two-bit errors and DRAM chip failures. The boot ROM con-
tains code to be executed following a system reset, including local processor and
memory verification and the communications code needed to download further
diagnostics or operating system code.

The memory configuration depends on whether the optional high-performance
arithmetic hardware is included. Without the arithmetic hardware, the memory
is connected by a 72-bit path (64 data bits plus 8 ECC bits) to a memory control-
ler that in turn is attached to the node bus. (See Figure 29.) In this configuration
the memory size can be 8, 16, or 32 Mbytes. (This assumes 4-Mbit DRAM
technology. Future improvements in DRAM technology will permit increases in
memory size. The CM-5 architecture and chip implementations anticipate these
future improvements.)

November 1993
140 Copyight 0 1993 ThinkingMachinc Corporation

Chapter 17. Local Architecture
~~e~~~Blae-------- ------ -------

Figure 29. Processing node.

The basic CM-5 processing node consists of a RISC microprocessor, memory subsystem, and
a CM-S Network Interface all connected to a standard 64-bit bus. The RISC microprocessor
is responsible for instruction fetch, instruction execution, processing data, and controlling
the Network Interface. The memory subsystem consists of a memory controller and either
8 Mbytes, 16 Mbytes, or 32 Mbytes of DRAM memory. The path from each memory back
to the memory controller is 72 bits wide, consisting of 64 data bits and 8 bits of ECC code.
The ECC circuits in the memory controller can correct single-bit errors and detect double-
bit errors as well as failure of any single DRAM chip. The Network Interface connects the
node to the rest of the system through the Control Network and Data Network.

November 1993
Copight 1993 Thinking Machines Corporation 141

T T T T 64-bit paths
(plus ECC)

64-bit bus

t t

Control Network Data Network

AL IL

Connection Machine CM-5 Technical Summary
.......3 An V.< .: i:o ; z ;

If the high-performance arithmetic hardware is included, then the node memory
is divided into four independent banks, each with a 72-bit (64 data bits plus
8 ECC bits) access path. (See Figure 30.)

Figure 30. Processing node with vector units.

A CM-S processing node may optionally contain an arithmetic accelerator. In this con-
figuration the node has 32 or 128 Mbytes of memory, four banks of 8 or 32 Mbytes each.
The memory controller is replaced by four vector units. Each vector unit has a dedicated
72-bit path to its associated memory bank, providing peak memory bandwidth of 160
Mbytes/sec per vector unit, and performs all the functions of a memory controller, includ-
ing generation and checking of ECC bits. Each vector unit has 40 Mflops peak 64-bit float-
ing-point performance and 40 Mops peak 64-bit integer performance. The vector units
execute vector instructions issued to them by the RISC microprocessor. Each vector
instruction may be issued to a specific vector unit (or pair of units), or broadcast to all four
vector units at once. The microprocessor takes care of such "housekeeping" computations
as address calculation and loop control, overlapping them with vector instruction execu-
tion. Together, the vector units provide 640 Mbytes/sec memory bandwidth and 160 Mflops
peak 64-bit floating-point performance. A single CM-5 node with vector units is a super-
computer in itself.

November 1993
Copyright © 1993 Thinking Machines Corporation

64-bit paths
(plus ECC)

&AA'J4. I6-

iRtsc: I r NetworMkt$¢r~ - Hnterf.tc
processor

Control Network Data Network

142

-- -- L

- -- --- -- - --

-- I- I--- -- - -

Chapter 17. LocalArchitecture
.................................

The special arithmetic hardware consists of four vector units (VUs), one for each
memory bank, connected separately to the node bus. In this configuration the
memory size is either 8 or 32 Mbytes per VU for a total of 32 or 128 Mbytes per
node. (This figure assumes either 4-Mbit or 16-Mbit DRAM technology and will
increase as industry-standard memories are improved.) Each VU also imple-
ments all memory controller functions, including ECC checking, so that the
entire memory appears to be in the address space of the microprocessor exactly
as if the arithmetic hardware were not present.

The memory controller or vector unit also provides a word-based interface to the
system Diagnostics Network (see Section 19.8). This provides an extra commu-
nications path to the node; it is designed to be slow but reliable and is used
primarily for hardware fault diagnosis.

As with the control processors, the implementation of the CM-5 processing node
is expected to track the RISC microprocessor technology curve to provide the
best possible functionality and performance at any given point in time; therefore
it is recommended that low-level programming be carried out in C as much as
possible, rather than in assembly language. Current implementations of the CM-5
processing node use SPARC or SuperSparc microprocessors.

17.3 Vector Unit Architecture

Each vector unit (VU) is a memory controller and computational engine con-
trolled by a memory-mapped control-register interface. (See Figure 31.) When
a read or write operation on the node bus addresses a VU, the memory address
is further decoded. High-order bits indicate the operation type:

• For an ordinary memory transaction, the low-order address bits indicate
a location in the memory bank associated with the VU, which acts as a
memory controller and performs the requested memory read or write
operation.

* For a control register access, the low-order address bits indicate a control
register to be read or written.

* For a data register access, the low-order address bits indicate a data regis-
ter to be read or written.

November 1993
Coppiht 0 1993 Tinkng Machnes Corporation 143

Connection Machine CM-5 Technical Summary

* For a vector-unit instruction, the node memory bus operation must be
wr ite (an attempt to read from this part of the address space results in
a bus error). The data on the memory bus is not written to memory but is
interpreted as an instruction to be executed by the vector execution portion
of the VU. The low-order address bits indicate a location in the memory
bank associated with the VU; the instruction uses this address if it includes
operations on memory. A vector-unit instruction may be addressed to any
single VU (in which case the other three VUs ignore it), to a pair of VUs,
or to all four VUs simultaneously.

Figure 31. Vector unit functional architecture

The first two types of operation are identical to those performed by the memory
controller when vector units are absent. The third type permits the microproces-
sor to read or write the register file of any vector unit. The fourth type
of operation initiates high-performance arithmetic computation. This computa-

November 1993
Copyight 0 1993 Thinking Machines Corporaion144

MBus

I

I

Chapter 17. LocalArchitecture
911NM --- a_ -

tion has both vector and parallel characteristics: each VU can perform vector
operations, and a single instruction may be issued simultaneously to all four.
If the vector length is 16, then issuing a single instruction can result in as many
as 64 individual arithmetic instructions (16 for each of the four VUs), or even
128 operations if the instruction specifies a compound operation such as multi -
ply-add.

Vector units cannot fetch their own instructions; they merely react to instructions
issued to them by the microprocessor. The instruction format, instruction set, and
maximum vector length have been chosen so that the microprocessor can keep
the vector units busy while having time of its own to fetch instructions (both its
own and those for the vector units), calculate addresses, execute loop and branch
instructions, and carry out other algorithmic bookkeeping.

Each vector unit has 64 64-bit registers, which can also be addressed as 128
32-bit registers. Other control registers worth noting are the 16-bit vector mask
(VM) and the 4-bit vector length (VL) registers. The vector mask register controls
certain conditional operations and optionally receives single-bit status results for
each vector element processed. The vector length register specifies the number
of elements to be processed by each vector instruction.

The vector unit actually processes both vector and scalar instructions; a scalar-
mode instruction is handled as if it were a vector-mode instruction of length 1.
Thus scalar-mode instructions always operate on single registers; vector-mode
instructions operate on sequences of registers. Each register operand is specified
by a 7-bit starting register number and a 7-bit stride. The first element for that
vector operand is taken from the starting register; thereafter the register number
is incremented by the stride to produce a new register number indicating the next
element to be processed. Using a large stride has the same effect as using a
negative stride, so it is possible to process a vector in reverse order. Most instruc-
tion formats use a default stride of 1 for 32-bit operands or 2 for 64-bit operands,
so as to process successive registers, but one instruction format allows arbitrary
strides to be specified for all operands, and another allows one vector operand
to take its elements from an arbitrary pattern of registers by means of a mecha-
nism for indirect addressing of the register file.

Each vector unit includes an adder, a multiplier, memory load/store, indirect reg-
ister addressing, indirect memory addressing, and population count. Every
vector-unit instruction can specify at least one arithmetic operation and an inde-
pendent memory operation. Every instruction also has four register-address
fields: three for the arithmetic operation and one for the memory operation. All
binary arithmetic operations are fully three-address; an addition, for example,
can read two source registers and write into a third destination register. The

November1993
Copyngh t 0 1993 ThinkingMachines Corporation 145

Connection Machine CM-5 Technical Summary

memory operation can address a completely independent register. If, however, a
load operation addresses a register that is also a source for the arithmetic opera-
tion, then load-chaining occurs, so that the loaded memory data is used as an
arithmetic operand in the same instruction. Indirect memory addressing supports
scatter/gather operations and vectorized pointer indirection.

Two mechanisms provide for conditional processing of vector elements within
each processing node. Each vector unit contains a vector mask register; vector
elements are not processed in positions where the corresponding vector mask bit
is zero. Alternatively, a vector-mask enumeration mechanism may be used in
conjunction with the scatter/gather facility to pack vector elements that require
similar processing; after bulk application of unconditional vector operations, the
results are then unpacked and scattered to their originally intended destinations.

Vector-unit instructions come in five formats. (See Figure 32.) The 32-bit short
format allows many common scalar and vector operations to be expressed suc-
cinctly. The four 64-bit long formats extend the basic 32-bit format to allow
additional information to be specified: a 32-bit immediate operand, a signed
memory stride, a set of register strides, or additional control fields (some of
which can update certain control registers with no additional overhead).

The short format includes an arithmetic opcode (8 bits), a load/store opcode (3
bits), a vector/scalar mode specifier (2 bits), and four register fields called rLS,
rD, rS 1, and rS2 that designate the starting registers for the load/store operation
and for the arithmetic destination, first source, and second source, respectively.
The vector/scalar specifier indicates whether the instruction is to be executed
once (scalar mode) or many times (vector mode). It also governs the expansion
of the 4-bit register specifiers into full 7-bit register addresses. The short format
is designed to support a conventional division of the uniform register file into
vector registers of length 16, 8, or (for 64-bit operands only) 4, with scalar quan-
tities kept in the first 16 registers. For a scalar-mode instruction, the 4-bit register
field provides the low-order bits of the register number (which is then multiplied
by 2 for 64-bit operands); for a vector-mode instruction, it provides the high-
order bits of the register number. The rS 1 field is 7 bits wide; in some cases these
specify a full 7-bit register number for arithmetic source 1 and in other cases 4
bits specify a vector register and the other 3 bits convey stride information.

November 1993
146 Copyright © 1993 Thinking Machines Corporatio

Chapter 1 7. LocalArchitecture
~ ~ " ~ '~ ..' ,: 3 ~

~
x4~ ~ / ~:.~.::.' :.' e - : ' ~ :~,.W:: '

Figure 32. Vector unit instruction formats.

Each instruction issued by the RISC microprocessor to the vector units is 32 bits or 64 bits wide. The
32-bit format is designed to cover the operations and register access patterns most likely to arise in
high-performance compiled code. The 32 high-order bits of the 64-bit format are identical to the 32-bit
format. The 32 low-order bits provide an immediate operand, a signed memory stride, or specifica-
tions for more complex or less frequent operations.

A short scalar-mode instruction can therefore access the first 16 32-bit or 64-bit
elements of the register file, simultaneously performing an arithmetic operation
and loading or storing a register. (The memory address that accompanies the
issued instruction indicates the memory location to be accessed.) One of the
arithmetic operands (S1) may be in any of the 128 registers in the register file.

A short vector-mode instruction can conveniently treat the register file as a set
of vector registers:

16 4- x 64-bit vector registers

8 8- x 64-bit vector registers

4 16- x 64-bit vector registers

16 8- x 32-bit vector registers

8 16- x 32-bit vector registers

November 1993
Copyright O 1993 Thinking Machines Corporation 147

LS-F| rS ALU-F rSl rS2 I rD

LS-F rLS ALU-F rS1 O0 rD 32-bit mmediate operand

LS-FI rlS ALU-F rS1 rS2 rD or signed memory stride

' LS-F rS AL rS rS2 rD 10S2 rS2-S rD rD-S rLS-O rLS-S

SFrS1 rS r01 VL A rS rtA r-S IND ________________i~i~~ i~> ~t V

- -I -- I I

-- -- ---- -- ---- - -- --

Connection Machine CM-5 Technical Summary
-- a __-

Many options are available for vector-mode instructions. These include a choice
between a default memory stride and the last explicitly specified memory stride,
as well as a choice of register stride for the S1 operand (last specified, 1, or
0 - stride 0 treats the S1 operand as a scalar to be combined with every element
of a vector).

The long instruction formats are all compatible extensions of the short format:
the most significant 32 bits of a 64-bit instruction are decoded as a 32-bit instruc-
tion, and the least significant 32 bits specify additional operations or operands.
If the rS2 field of a long instruction is zero, then the low-order 32 bits of the
instruction constitute an immediate scalar value to be used as the S2 operand. If
the arithmetic operation requires a 64-bit operand, then the immediate value is
zero-extended left if an unsigned integer is required, sign-extended left for a
signed integer, or zero-extended right for a floating-point number.

If the rS2 field of a long instruction is not zero, then the two high-order bits of
the low 32 are decoded. If the two bits match, then the low-order 32 bits are an
explicit signed memory stride. (Note that it is possible to specify such a stride
even in a scalar-mode long instruction, in order to latch the stride in preparation
for a following vector-mode instruction that might need to use another of the
long formats.) Code 10 indicates additional register number and register stride
information, allowing specification of complete 7-bit register numbers and regis-
ter strides for the rLS, rD, and rS2 operands. This enables complex regular
patterns of register access. Code 01 indicates a variety of control fields for such
mechanisms as changing the vector length, controlling use of the vector mask,
indirect addressing, S1 operand register striding, and population count.

The arithmetic operations that can be specified by the ALU-F instruction field are
summarized in Table 1. Note the large set of three-operand multiply-add instruc-
tions. These come in three different addressing patterns: accumulative, which
adds a product into a destination register (useful for dot products); inverted,
which multiplies the destination by one source and then adds in the other (useful
for polynomial evaluation and integer subscript computations); and full triadic,
which takes one operand from the load/store register so that the destination regis-
ter may be distinct from all three sources. The triadic multiply-add operations are
provided for signed and unsigned integers as well as for floating-point operands,
in both 32-bit and 64-bit sizes. Unsigned 64-bit multiply-boolean operations are
also provided. (Note that multiplying by a power of two has the effect of a shift.)

Novembe 1993
Copyright 0 1993 ThinkingMachins Corporation148

Chapter 7. Local Architecture

Table 1. Summary of vector unit arithmetic instructions (Part I).

imove

itest

icmp

iadd

isub
isubr
imul

ineg

iabs
iaddc
isubc

isbrc

dimove

ditest

dicmp

diadd

disub

disubr

dimul

dimulh

dineg

diabs

diaddc

disubc

disbrc

umove

utest

ucmp

uadd

usub

usubr
umul

dumove

dutest

ducmp

duadd

dusub

dusubr

dumul

dumulh

fmove

ftest

fcmp

fadd

fsub

fsubr

fmul

fdiv

finv

fsqrt

fisqt

fneg

fabs

uaddc

usubc

usbrc

ushl

ushlri

ushr

ushrr

dfmove

dftest

dfcmp

dfadd

dfsub

dfsubr

dfmul

dfdiv

dfinv

dfsqrt

dfisqt

dfneg

dfabs

duaddc

dusubc

dusbrc

dushl

dushlr

dushr

dushrr

ishr dishr

ishrr dishrr

uand

uandc

unand

uor

unor

Uxor

unot

umzg

uffb

duand

duandc

dunand

duor

dunor

duxor

dunot

dumr g

duffb

Move: D = S1 + 0

Move and generate status

Compare

Add

Subtract

Subtract reversed

Multiply (low 64 bits for integers)

Integer multiply (high 64 bits)

Divide

Invert: D = 1.0/SI

Square root

Inverse square root: D - 1.0/SQRT(S2)

Negate

Absolute value

Integer add with carry

Integer subtract with borrow

Integer subtract reversed with borrow

Integer shift left

Integer shift left reversed

Integer shift right logical

Integer shift right logical reversed

Integer shift right arithmetic

Integer shift right arithmetic reversed

Bitwise logical AND

Bitwise logical AND with complement

Bitwise logical NAND

Bitwise logical OR

Bitwise logical NOR

Bitwise logical XOR

Bitwise logical NOT

Merge: D - (if mask then S2 else S1)

Find first 1-bit

November 1993
Copyight 1993 Thinking Machines Corporation

- ---- - -- --- -s

--- -- I-

149

Connection Machine CM-5 Technical Summary
----------- ---a_ w

Table 1. Summary of vector unit arithmetic instructions (Part II).

imada

imsba

imsra

inmaa

imadi

imsbi

imsri

inmai

imadt

imsbt

imsrt

dimada

dimsba

dimsra

dinmaa

dimadi

dimsbi

dimsri

dinmai

dimadt

dimsbt

dimsrt

umada

umsba

umsra

unmaa

umadi

umsbi

umsri

unmai

umadt

umsbt

umsr t

inmat dinmat unmat

dumada

dumsba

dums a

dunmaa

dumadi

dumsbi

dumszi

dunmai

dumadt

dumsbt

dumsr t

dunmat

dumsa

dumhsa

dumma

dumhma

dumoa

dumhoa

dumxa

dumhxa

dumsi

dumhsi

dummi

dumhmi

dumoi

dumhoi

dumxi

dumhxi

dumst

dumhst

dummt

dumhmt

dumot

dumhot

dumxt

dumhxt

fmada

fmsba

fmsra

fnmaa

fmadi

fmsbi

fmsri

fnmai

fmadt

fmsbt

fmsrt

fnmat

dfmada

dfmsba

dfmsra

dfnmaa

dfmadi

dfmsbi

dfmsri

dfnmai

dfmadt

dfmsbt

dfmsrt

dfnmat

rD = (rS1 * rS2) + rD

rD = (rSl * rS2) - rD
rD = - (rS1 * rS2) + rD
rD = - (rSl * rS2) - rD
rD = (rS2 * rD) + rSl

rD = (rS2 * rD) - rS1
rD = - (rS2 * rD) + rSl
rD = - (rS2 * rD) - rSl
rD = (rSl * rLS) + rS2
rD = (rSl * rLS) - rS2
rD = - (rSl * rLS) + rS2
rD = - (rSl * rLS) - rS2
rD = lower(rS 1 * rS2) AND rD
rD = upper(rSl * rS2) AND rD
rD = lower(rS1 * rS2) AND NOT rD
rD = upper(rS 1 * rS2) AND NOT rD

rD = lower(rSl * rS2) OR rD
rD = upper(rSl * rS2) OR rD

rD = lower(rS1 * rS2) XOR rD
rD = upper(rS I * rS2) XOR rD

rD = lower(rS2 * rD) AND rSl
rD - upper(rS2 * rD) AND rSl

rD = lower(rS2 * rD) AND NOT rSl
rD = upper(rS2 * rD) AND NOT rSl

rD = lower(rS2 * rD) OR rSl
rD = upper(rS2 * rD) OR rS1

rD = lower(rS2 * rD) XOR rSl
rD = upper(rS2 * rD) XOR rSl

rD - upper(rS1 * rLS) AND rS2
rD = upper(rS1 * rLS) AND rS2

rD = lower(rSl * rLS) AND NOT rS2
rD = upper(rSl * rLS) AND NOT rS2

rD = lower(rSl * rLS) OR rS2
rD = upper(rS1 * rLS) OR rS2

rD = lower(rSl * rLS) XOR rS2
rD - upper(rS1 * rLS) XOR rS2

November 1993
Copynght © 1993 Thinking Machines Corporation150

Chapter 17. LocalArchitecture
_-- --- - -- --

Table 1. Summary of vector unit arithmetic instructions (Part lm).

uenc duenc

cvtfi

cvtf

cvtiz

cvti

trap

etrap

ldvm

stvm

fclas dfclas Classify operand

fexp dfexp Extract exponent

fmant dfmant Extract mantissa with hidden bit

Make float from exponent (S1) and

mantissa (S2)

fnop No arithmetic operation

Convert integer to float*

Convert float to float*

Convert float to integer (round)*

Convert float to integer (truncate)*

Generate debug trap

Generate trap on enabled exception

Load vector mask

Store vector mask

* The rS2 field encodes the source and result sizes and formats for these instructons.

The LS-F instruction field specifies one of 5 load/store operations:

* no operation

* 32-bit load

* 64-bit load

r 32-bit store

* 64-bit store

The load/store size (32 or 64 bits) need not be the same as the arithmetic operand
size. They should be the same, however, if load chaining is used. There is no
distinction between integer and floating-point loads and stores. A 64-bit load or
store may be used to load or store an even-odd 32-bit register pair.

Executing Vector Code

All instruction fetching and control decisions for the vector units are made by the
node microprocessor. When vector units are present, all instructions and data
reside in the memory banks associated with the vector units. A portion of each
memory bank is conventionally reserved for instruction and data areas for the

November 993
Copyright @ 1993 Thinidng Machines Corporation 151

Connection Machine CM-5 Technical Summary
Ig~B I 1- - - - - -- -

microprocessor. The memory management hardware of the microprocessor is
used to map pages from the four memory banks so as to make them appear con-
tiguous to the microprocessor.

While the microprocessor does not have its own memory, it does have a local
cache that is used for both instruction and data references. Thus, the micropro-
cessor and vector units can execute concurrently so long as no cache misses
occur.

When a cache block must be fetched from memory, the associated vector unit
may be in one of three states. If it is not performing any local operations, then
the cache block is fetched immediately. If it is performing a local load or store
operation, then the block fetch is delayed until the operation completes. If the
vector unit is doing an operation that does not require the memory bus, then the
block fetch proceeds immediately, concurrently with the executing vector
operation

The microprocessor issues VU instructions by storing to a specially constructed
address: the microprocessor fetches the instruction itself from its data memory,
calculates the special vector-unit destination address for issuing the instruction,
and executes the store. The time it takes the microprocessor to do this is generally
less than the time it takes a vector unit to execute an instruction with a vector
length of 4. Moreover, the tail end of one vector instruction may be overlapped
in time with the beginning of the next, thus eliminating memory latency and vec-
tor start-up overhead. With careful programming, therefore, the microprocessor
can sustain delivery of vector instructions so as to keep the vector units continu-
ously busy.

The vector unit is optimally suited for a vector length of 8; with vectors this long,
the timing requirements are not so critical, and the microprocessor has time to
spare for bookkeeping operations. The short vector-unit instruction format sup-
ports addressing of length-8 register blocks for either 32-bit or 64-bit operands.
This provides 8 vector registers for 64-bit elements or 16 vector registers for
32-bit elements, with the first two such register blocks also addressable as 16
scalar registers. This is only a conventional arrangement, however; long-format
instructions can address the registers in arbitrary patterns.

Flow control of instructions to the vector units is managed using the hardware
protocol of the node bus. When a vector instruction is issued by the microproces-
sor, any addressed vector unit may stall the bus if it is busy. A small write buffer
and independent bus controller within the microprocessor allows it to continue
local execution of its own instructions while the bus is stalled by a vector unit.

November 1993
Copyright D 1993 Thinaing Machins Corporation152

Chapter 17. Local Architecture
~UI*B~e19sles-------L

If the microprocessor gets far enough ahead, the small write buffer becomes full,
causing the microprocessor to stall until the vector unit(s) catch up.

Each vector instruction either completes successfully or terminates in a hard
error condition. Exceptions and other non-fatal conditions are signaled in sticky
status registers that may be either polled or enabled to signal interrupts. Hard
errors and enabled exception conditions are signaled to the microprocessor as
interrupts via the Network Interface.

The memory addresses on the node bus are physical addresses resulting from
memory-map translation in the microprocessor. The memory map provides the
necessary protection to ensure that the addressed location itself is in fact within
a user's permitted address space, but cannot prevent accesses to other locations
by execution of vector instructions that use indirect addressing or memory
strides. Additional protection is provided in each vector unit by bounds-checking
hardware that signals an interrupt if specified physical address bounds are
exceeded.

Certain privileged vector unit operations are reserved for supervisor use. These
include the interrupt management and memory management features. The super-
visor can interrupt a user task at any time for task-switching purposes and can
save the state of each vector unit for transparent restoration at a later time.

November 1993
Copylgut 0 1993 Thbdng Mach Oes Corporaion 153

url

Chapter 18

Global Architecture

A single user process (as shown in Chapter 16) "views" the CM-S system as a set
of processing nodes plus a partition manager, with I/O and other extra-partitional
activities being provided by the operating system.

Supporting such processes, however, requires that the underlying system soft-
ware make appropriate use of the global architecture provided by the CM-S's
communications networks.

All the computational and I/O components of a CM-5 system interact through two
networks, the Control Network and the Data Network Every such component is
connected through a standard CM-5 Network Interface. The NI presents a simple,
synchronous 64-bit bus interface to a node or I/O processor, decoupling it both
logically and electrically from the details of the network implementation.

The Control Network supports communication patterns that may involve all the
processors in a single operation; these include broadcasting, reduction, parallel
prefix, synchronization, and error signaling. The Data Network supports point-
to-point communications among the processors, with many independent
messages in transit at once.

18.1 The Network Interface

The CM-5 Network Interface provides a memory-mapped control-register inter-
face to a 64-bit processor memory bus. All network operations are initiated by
writing data to specific addresses in the bus address space.

Many of the control registers appear to be at more than one location in the physi-
cal address space. When a control register is accessed, additional information is
conveyed by the choice of which of its physical addresses was used for the

November 1993
Copyright © 1993 Thinking Machines Corporation 155

Connection Machine CM-5 Technical Summary
A_~S~g1;~~'~ ·'~"

access; in other words, information is encoded in the address bits. For example,
when the Control Network is to be used for a combining operation, the
first - and perhaps only - bus transaction writes the data to be combined, and
the choice of address indicates which combining operation is to be used. One of
the address bits indicates whether the access has supervisor privileges; an error
is signaled on an attempt to perform a privileged access using an unprivileged
address. (Normally the operating system maps the unprivileged addresses into
the address space of the user process, thereby giving the user program zero-over-
head access to the network hardware while prohibiting user access to privileged
features.)

The logical interface is divided into a number of functional interfaces. See
Figure 33. Each functional interface presents two FIFO interfaces, one for outgo-
ing data and one for incoming data. A processor writes messages to the outgoing
FIFO and pulls messages from the incoming FIFO, using the same basic protocol
for each functional interface. Different functional interfaces, however, respond
in different ways to these messages. For example, a Data Network interface treats

Figure 33. CM-5 Network Interface.

The Network Interface contains several functional interfaces. Each is a pair of FFO buffers at partic-
ular memory locations. Through memory mapping, the Data Network and Control Network are
directly accessible by user code.

November 1993
156 Copyright © 1993 ThinkingMachines Corporation

to Control Network

to node bus

- I - ---�--- -� I------ - --� -� -- -

-'- ------ --------- --

to Data Network

Chapter 18. GlobalArchitecture
-------- ImilaxIII-11_11v --

the first 32 bits of a message as a destination address to which to send the
remainder of the message; a Control Network combining interface forwards the
message to be summed (or otherwise combined) with similar messages from all
the other processors.

Data is kept in each FIFO in 32-bit chunks. The memory-bus interface accepts
both 32-bit and 64-bit bus transactions. Writing 64 bits thus pushes two 32-bit
chunks onto an output FIFO; reading 64 bits pulls two chunks from an input FIFO.

For outgoing data, there are two control registers called send and send first.
Writing data to the send first register initiates an outgoing message; address
bits encode the intended total length of the message (measured in 32-bit chunks).
Any additional data for that message is then written to the send register. After
all the data for that message has been written, the program can test the send ok
bit in a third control register. If the bit is 1, then the network has accepted the
message and bears all further responsibility for handling it. If the bit is 0, then
the data was not accepted (because the FIFO overflowed) and the entire message
must be re-pushed into the FIFO at a later time. The send_space control register
may be checked before starting a message to see whether there is enough space
in the FIFO to hold the entire message; this should be treated only as a hint, how-
ever, because supervisor operations (such as task switching) might invalidate it.
In many situations throughput is improved by pushing without checking first, in
the expectation that the FIFO will empty out as fast as new data is being pushed.
It is also permissible to check the sendok bit before all the data words for the
message have been pushed; if it is 0, the message may be retried immediately.

For incoming data, a processor can poll the receive_ok bit until it becomes 1,
indicating that a message has arrived; alternatively, it can request that certain
types of messages trigger an interrupt on arrival. In either case, the program can
then check the receivelength left field to find out how long the message
is and then read the appropriate number of data words from the receive control
register.

The supervisor can always interrupt a user program and send its own message;
this is done by deleting any partial user message, sending the supervisor mes-
sage, and then forcing the send ok bit for that unit to 0 before resuming the user
program. To the user program it merely appears that the FIFO was temporarily
full; the user program should then retry sending the message. The supervisor can
also lock a send-FIFO, in which case it appears always to be full, or disable it,
in which case user access will cause an interrupt. The supervisor can save and
transparently restore the contents of any receive-FIFO.

November 1993
Copyright 0 1993 ThinkingMachines Coporation 157

Connection Machine CM-5 Technical Summary
ae~~~~c

Each Network Interface records interrupt signals and error conditions generated
within its associated processor, exchanges error and interrupt information with
the Control Network, and forwards interrupt and reset signals to its associated
processor.

18.2 The Control Network

Each Network Interface contains an assortment of functional interfaces
associated with the Control Network All have the same dual-FIFO organization
but differ in detailed function.

Every Control Network operation potentially involves every processor. A pro-
cessor may push a message into one of its functional interfaces at any time;
shortly after all processors have pushed messages, the result becomes available
to all processors. Messages of each type may be pipelined; a number of messages
may be sent before any results are received and removed. (The exact depth of the
pipeline varies from one functional interface to another.) The general idea is that
every processor should send the same kinds of messages in the same order. The
Control Network, however, makes no restrictions about when each processor
sends or receives messages. In other words. processors need not be exactly syn-
chronized to the Control Network; rather, the Control Network is the very means
by which processors conduct synchronized communication en masse.

There are exceptions to the rule that every processor must participate. The func-
tional interfaces contain mode bits for abstaining. A processor may set the
appropriate mode bit in its Network Interface in order to abstain from a particular
type of operation; each operation of that type will then proceed without input
from that processor or without delivering a result to that processor. Aparticipat-
ing processor is one that is not abstaining from a particular kind of Control
Network operation.

Broadcasting

The broadcast interface handles broadcasting operations. There are actually
three distinct broadcasting interfaces: one for user broadcast, one for supervisor
broadcast, and one for interrupt broadcast. Access to the supervisor broadcast
interface or interrupt broadcast interface is a privileged operation.

November 1993
158 Copyrit 0 1993 TdnkingMachines Corporation

Chapter 18. Global Architecture
-- ----. 0 , _ -' _ _ . 1 ------ --- ---

Only one processor may broadcast at a time. If another processor attempts to
send a broadcast message before completion of a previous broadcast operation,
the Control Network signals an error.

A broadcast message is one to fifteen 32-bit words long. Shortly after a message
is pushed into the broadcast send-FIFO, copies of the message are delivered to
all participating processors. The user broadcast and supervisor broadcast inter-
faces are identical in function except that the latter is reserved for supervisor use.

An interrupt broadcast message causes every processor to receive an interrupt or
reset signal. A processor can abstain from receiving interrupts, in which case it
ignores interrupt messages when it receives them; but a processor cannot abstain
from a reset signal (which causes the receiving NI and its associated processor
to be reset).

As an example of the use of broadcast interrupts, consider a partition manager
coordinating the task-switching of user processes. When it is time to switch
tasks, the PM uses the Control Network to send a broadcast interrupt to all nodes
in the partition. This transfers control in each node to supervisor code, which can
then read additional supervisor broadcast information about the task-switch
operation (such as which task is up next).

Combining

The combine interface handles reduction and parallel prefix operations. A com-
bine message is 32 to 128 bits long and is treated as a single integer value. There
are four possible message types: reduction, parallel prefix, parallel suffix, and
router-done. The router-done operation is simply a specialized logical OR reduc-
tion that assists the processors in a protocol to determine whether Data Network
communications are complete. Reduction, parallel prefix, and parallel suffix may
combine the messages using any one of five operators: bitwise logical OR, bit-
wise logical XOR, signed maximum, signed integer addition, and unsigned
integer addition. (The only difference between signed and unsigned addition is
in the reporting of overflow.) The message type and desired combining operation
are encoded by address bits when writing the destination address to the
send_first register.

As an example, every processor might write a 64-bit integer to the combine inter-
face, specifying signed integer addition reduction. Shortly after the last
participating processors write their input values, the signed sum is delivered to

November 1993
Copyght 0 1993 ThinAking Machines Copormtion 159

Connection Machine CM-5 Technical Summary
-.-_ . . . - . . . _ . 7 - . - - _._

every participating processor, along with an indication of whether overflow
occurred at any intennediate step.

As another example, every processor might write a 32-bit integer to the combine
interface, specifying signed maximum parallel prefix. Shortly after the last par-
ticipating processors write their input values, every participating processor
receives the largest among the values provided by itself and all lower-numbered
processors.

The combine interface also supports segmented parallel prefix (and parallel suf-
fix) operations. Each combine interface contains a scanstart flag; when this
flag is 1, that NI is considered to begin a new segment for purposes of parallel
prefix operations.

Every participating processor must specify the same message type and combin-
ing operation. If, in the course of processing combine requests in order, the
Control Network encounters different combine requests at the same time, it sig-
nals an error.

Global Operations

Global bit operations produce the logical OR of one bit from every participating
processor. There are three independent global operation interfaces, one synchro-
nous and two asynchronous, which may be used completely independently of
each other and of other Control Network functions. This makes them useful for
signaling conditions and exceptions.

The synchronous global interface is similar to the combine interface except that
the operation is always a logical OR reduction and each message consists of a
single bit. Processors may provide their values at any time; shortly after the last
participating processors have written their input bits, the logical OR is delivered
as a single-bit message to every participating processor.

Each asynchronous global interface produces a new value any time the value of
any input is changed. Input values are continually transported, combined, and
delivered throughout the Control Network without waiting for all processors to
participate. Processors may alter their input bits at any time. These interfaces are
best used to detect the transition from 0 to 1 in any processor or to detect the
transition from 1 to 0 in all processors. (The NI signals an interrupt, if enabled,
whenever a transition froin 0 to I is observed.)

Novenmba 1993
Copyrigt 0 1993 Thinlng Machins Corporaion160

Chapter 18. GlobalArchitecture

There are two asynchronous global interfaces, one for the user and one for the
supervisor. Access to the supervisor asynchronous global interface is a privileged
operation.

Synchronization

Both the synchronous global interface and the combine interface may be used to
implement barrier synchronization: if every processor writes a message and then
waits for the result, no processor passes the barrier until every processor has
reached the barrier. The hardware implementation of this function provides
extremely rapid synchronization of thousands of processors at once. Note that the
router-done combine operation is designed specifically to support barrier syn-
chronization during a Data Network operation, so that no processor abandons its
effort to receive messages until all processors have indicated that they are no
longer sending messages.

Flushing the Control Network

There is a special functional interface for clearing the intermediate state of com-
bine messages, which may be required if an error or task switch occurs in the
middle of a combine operation. A flush message behaves very much like a broad-
cast message: shortly after one processor has sent such a message, all processors
are notified that the flush operation has completed. Access to the flush functional
interface is a privileged operation.

Error Handling

The Control Network is responsible for detecting certain kinds of communica-
tions errors, such as an attempt to specify different combining operations at the
same time. More important, it is responsible for distributing error signals
throughout the system. Hard error signals are collected from the Data Network
and all Network Interfaces; these error signals are combined by logical OR opera-
tions and the result is redistributed to every Network Interface.

November 1993
Copyight O 1993 Thinking Machines Corporation 161

Connection Machine CM-5 Technical Summary
99Sm 9~~~~_

18.3 The Data Network

Each Network Interface contains one Data Network functional interface. The
first 32-bit chunk of a message is treated as a destination address; it must be fol-
lowed by one to five additional 32-bit chunks of data. This data is sent through
the Data Network and delivered to the receive-FIFO of the Network Interface at
the specified destination address. Each message also bears a 4-bit tag, which is
encoded by address bits when writing the destination address to the
send_first register. The tag provides a cheap way to differentiate among a
small number of message types. The supervisor can reserve certain tags for its
own use; any attempt by the user to send a message with a reserved tag signals
an error. The supervisor also controls a 16-bit interrupt mask register; when a
message arrives, an interrupt is signaled to the destination processor if the mask
bit corresponding to the message's tag value is 1.

A destination address may be physical or relative. A physical address specifies
a particular Network Interface that may be anywhere in the system and is not
checked for validity. Using a physical address is a privileged operation. A rela-
tive address is bounds-checked, passed through a translation table, and added to
a base register. A relative destination address is thus very much like a virtual
memory address: it provides to a user program the illusion of a contiguous
address space for the nodes running from 0 to one less than the number of pro-
cessing elements. Access to the bounds register, translation table, or base register
is a privileged operation; thus the supervisor can confine user messages within
a partition.

While programs may use an interrupt protocol to process received messages, data
parallel programs usually use a receiver-polls protocol in which all processors
participate. In the general case, each processor has some number of messages to
send (possibly none). Each processor alternates between pushing outgoing mes-
sages onto its Data Network send-FIFO and checking its Data Network
receive-FIFO. If any attempt to send a message fails, that processor should then
check the receive-FIFO for incoming messages. Once a processor has sent all its
outgoing messages, it uses the Control Network combine interface to assert this
fact; it then alternates between receiving incoming messages and checking the
Control Network When all processors have asserted that they are done sending
messages and all outstanding messages have been received, the Control Network
asserts the router-done signal to indicate to all the processors that the commu-
nications step is complete and they may proceed.

For task-switching purposes, the supervisor can put the Data Network into All
Fall Down (APD) mode. Instead of trying to route messages to their intended
destinations, the Data Network drops each one into the nearest node. The advan-

November 1993
Copyright 1993 ThinakingMachines Corporation162

Chapter 18. GlobalArchitecture~ai~II~-
tage of this strategy is that no node receives more than a few hundred bytes of
AFD messages, even if they were all originally intended for a single destination.
The supervisor can then read them from the Data Network receive-FIFO and save
them in memory as part of the user task state, re-sending them when that user
task is resumed.

November 1993
Copyrit 1993 Thinking Machines Corporation 163

Chapter 19

System Architecture
and Administration

The CM-5 system architecture provides for multiple task execution partitions, 1/0
devices, and fault detection and recovery. It supports a centralized system admin-
istration facility that gives the administrator flexibility to optimize the use of
system resources. All these tasks are handled through various extended capabili-
ties and privileged features of the Control Network and Data Network, with the
assistance of a third network, the Diagnostic Network.

19.1 The System Console

Administration is managed from a System Console, a process executing on a
control processor that has a Diagnostics Network interface. Large CM-5 systems
will typically have a dedicated processor for administation; on small CM-S sys-
tems, the administration process may run on a control processor that also has
other tasks.

The System Console processor has a Diagnostics Network connection that
allows it to address the entire system. It is responsible for configuring the system
on power-up, for partitioning the system, and for managing the system as it
changes due to repartitioning and hardware failures. A database containing the
status of the overall system, kept up to date by the Diagnostics Network, helps
it perform these tasks.

November 1993
Copyri 1993 ThinngMachins opoudon 165

Connection Machine CM-5 Technical Summary
______________11-1--- -1

19.2 Allocation of Resources

The CM-5 system provides flexible allocation of computational resources. The
administrator can subset processing nodes into partitions; the administrator can
also allocate control processors to single or multiple I/O devices.

Partitions

The set of computational and network resources in use at any given instant by
a single user task is called a partition. Each partition constitutes a complete task
execution system that may be used for timesharing, batch processing, or both.

The system administrator creates partitions dynamically, to best accommodate
the site's workload. Some administrators may use a partitioning strategy that
involves changing the partitioning two or three times during the course of a day.
Other sites may stick with a single set of partitions for several days at a time.

An administrator might, for example, create three partitions on a system: one
dedicated to a production run of a single large application, a second one used for
timeshared program development by day and scheduled batch processing by
night, and a third small one dedicated to around-the-clock timeshared access.

All partitions are joined by the Control Network and Data Network in a single
integrated system. Resources can therefore be reallocated from one partition to
another when necessary. For example, all partitions might be joined to form one
giant partition in order to tackle a single giant application. As another example,
if processors were to fail in the partition dedicated to a production run, they could
be replaced (by reconfiguring the networks) with processors borrowed from
another partition. The production run could then be rolled back to a prior check-
point and resumed with minimal disruption, while the failed processors were
powered down and, at a convenient time, physically replaced.

I/O

I/O devices and interfaces, like processing nodes, reside in specific areas of the
network address space and are managed by control processors. The I/O resources
they control are available to processes running on any partition. The Data Net-
work transfers data between I/O devices and partitions, while the Control

166 November 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 19. System Architecture andAdministration
is~ a~ e~a~-....

Network is used by the operating system to monitor the transfers and signal
errors.

19.3 Partitions and Networks

From a system view, the Control Network and Data Network are designed to
provide

* the capability for flexible partitioning of computing resources

the isolation of each partition's network activity

* high throughput for all cases of data transfer

To see how this works, we look at the way in which the address space on these
two networks is managed.

Figure 34 shows a simplified view of address space management in the net-
works. As this figure suggests, each of the superficially homogeneous networks
is logically split by hardware-supported, software-configured mechanisms so as
to devote a portion to each partition or I/O resource. Additional network capacity
is dedicated to carrying traffic between the various partitions and devices that
make up the system at any given time. Network resources allotted to one parti-
tion do not overlap those associated with another. Moreover, traffic from one
partition to another, or between a partition and an 1/0 device, consumes no net-
work resources belonging to any intervening partition. The network design thus
guarantees that network traffic within one partition cannot affect the behavior or

the performance of traffic in another partition. (The only exception occurs when
processors fail and are logically replaced for the nonce by more distant proces-
sors from another partition.) The design also allows the Data Network to
guarantee each processing node at least 5 Mbytes/sec of 1/0 bandwidth, no matter

where it is in the network. However the nodes are divided into partitions, there
is always enough Data Network to serve each partition and enough left over to
guarantee the stated O rate.

When a CM-5 system is first powered up, reset, and bootstrapped, the networks

form a single partition that spans the entire system. The operating system then
creates a temporary partition for initializing the nodes. It also initializes the I/O
devices. After the startup procedures have been completed, administration soft-
ware establishes one or more operating partitions.

November 1993
Copight 0 1993 Thinking Machines Corporation 167

Connection Machine CM-5 Technical Summary
· ,~ ~P~i9.~~. ~. :

Within each partition, the Network Interfaces are assigned virtual network
addresses starting at zero. User programs use virtual network addresses; they are
translated by hardware into physical network addresses wherever necessary, in
exactly the same way that a memory management unit translates virtual memory
addresses to physical memory addresses. Therefore, a user program need not
concern itself with the physical network addresses of the partition being used to
execute it.

Figure 34. Network support for multiple partitions.

The processing nodes of a CM-S system can be configured into two or more partitions. Each partition
is assigned to a partition manager, a control processor that bears the responsibility for managing the
processes executing in that partition. The operating system configures the Control Network and Data
Network to match the partition structure. Each partition has a dedicated portion of each network
sufficient to provide that partition with the guaranteed minimum network bandwidth of 5 Mbytes/sec
for the Control Network and 5 Mbytes/sec per node for the Data Network, regardless of destination.
No matter how the partitions are configured, there is always additional network capacity for carrying
data between partitions and I/O devices or from one partition to another. Therefore, system-wide data
traffic does not interfere with or impede traffic that stays within a partition,

168
November 1993

Copyright © 1993 Thinking Machines Corporation

VME HIPPI

- ------- -- --- -- '-

Chapter 19. System Architecture and Administration

The translation of virtual network addresses includes protection checking that
prevents a user process from sending messages to destinations outside its parti-
tion. The supervisor can send messages from one partition to another; the
mechanism is identical except that it is not subject to the same protection checks
because for this purpose the supervisor uses absolute physical network addresses.

I/O is coordinated by the operating system. User processes may transfer data to
and from I/O devices, or to and from other user processes (through the facility
of UNIX named pipes). In both cases, the operating system breaks up the data
into messages and sends the messages through the Data Network. If the two user
processes happen to be in the same partition, the message traffic is confined to
that partition, not because of protection (the supervisor is responsible for sending
the messages in this case) but simply as a consequence of the structure of the
Data Network.

19.4 Network Implementation

The topology of the CM-5 Data Network is a fat tree, so called because some
branches are "fatter" (of higher bandwidth) than others. See Figure 35. This kind
of tree is actually more like a biological tree than the computer scientist's usual
notion of a tree. A biological tree has skinny twigs, but the limbs are merely
slender, the branches are stout, and the trunk is truly fat. Even though there are
a thousand twigs and only one trunk, the trunk still has the bandwidth to carry
sap for all the twigs because it is fat. (Maybe a computer scientist's tree really
ought to be called a "skinny tree" - but of course it's too late now to change the
terminology. Computer scientists are also in the habit of drawing trees upside
down, with the root at the top and the leaves at the bottom, and we follow this
unnatural convention in drawing fat trees here.)

The fat tree structure has a number of distinct advantages over two other topolo-
gies, the hypercube and the 2D mesh, used in many other parallel computer
systems (including the Connection Machine models CM-1 and CM-2). Like the
mesh and hypercube, it can be divided into smaller pieces of the same topology:
a mesh can be carved up into smaller meshes; the two halves of a hypercube are
themselves hypercubes; and the subtrees of a fat tree are themselves fat trees.
This allows the processors to be partitioned in a way that naturally partitions the
network, so that each group of processors has its own dedicated portion of the
network Traffic among the processors in one partition does not compete for
bandwidth with traffic within another partition.

November 1993
Copyright © 1993 Thinking Machines Corporation 169

Connection Machine CM-5 Technical Summary
..........................

Figure 35. CM-S Data Network.

The fat tree, however, has an additional property not shared by the other two:
traffic between two partitions does not interfere with traffic internal to a third

partition. Consider I/O traffic, for example, between partition 1 and the I/O
devices in Figure 35. The I/O messages will travel through the upper part of the

fat tree, passing over partition 2 rather than through it, as might happen in a mesh
or hypercube topology.

Figure 35 shows only an abstract binary fat tree. The CM-5 Data Network is actu-
ally a 4-ary fat tree, where each node has four children. The size of a CM-5 Data
Network is often described by its height, which is the base-4 logarithm of the
number of network addresses spanned. (Put another way, the height of the net-
work equals one-half the number of bits in a processor address.) A CM-5 Scale
3 system, for example, contains a height-3 fat tree, which spans 43 -64 network
addresses, enough for 32 processing nodes plus control processors and I/O.

Each internal node of the fat tree is implemented as a set of Data Network
switches, each a separate VLSI chip. The number of switches per node depends
on where it is in the tree; the closer to the root, the fewer nodes and the more
switches per node. Each switch has four children and either two or four parents.
See Figure 36, which illustrates a fat tree with 16 leaves. Each leaf represents one
Network Interface. The level-l nodes have two switches each; the level-2 nodes

November 1993
Copyright 1993 Thining Machines Corporation170

Partition 2- --- I/0 --- - Partition 1 --

Chapter 19. System Architecture and Administration
-- - --- ------ -... __ I......... . .

Figure 36. CM-5 fat tree.

have four switches each. As shown in the figure, each level-I or level-2 switch
has two parents. Switches at higher levels have four parents each; at every level
above level 2, there are four links going up for every four links coming in from
below, thus maintaining constant bandwidth per Network Interface no matter
how large the network grows.

The routing algorithm for the Data Network is very simple. The Network Inter-
face compares the physical destination address to its own and determines how far
up the tree the message must travel. The message can then take any path up the
tree. This allows the switches to perform load balancing on the fly. Once the mes-
sage has reached the necessary height in the tree, it must then follow a particular
path down - but the path has the same description no matter what upward path
was taken. For example, if a message that has reached height 2 is destined for
the tenth processor in Figure 36, then no matter which of the four height-2
switches it has reached, it must travel to the third child (which might be either
of two height-l switches) and then to that child's second child.

Figure 37 is a simplification of Figure 36, showing only the links connecting the
switches (and the 16 leaves). Figure 38 then shows how 64 nodes are connected
by taking four copies of the 16-node network and adding switches at height 3.
Then 256 nodes may be connected by using switches at height 4 to connect four
copies of the 64-node network, and so on; see Figure 39, which shows a few
height-4 switches and a few wires going up toward height 5.

November 1993
Copyright 0 1993 ThinkingMachines Corporation 171

Connection Machine CM-5 Technical Summary
_~..... e m _.

Figure 37. Data Network with 16 nodes.

The CM-5 Data Network has one other good property in addition to scalability,
partitionability, and non-interference: it can continue to operate even when one
or more switches have failed. See Figure 40. If a link breaks or a switch fails,

Figure 38. Data Network with 64 nodes.

November 1993
Copynght © 1993 ThinkingMachines Corporation172

4 5 6 7 8 9 10 11 12 13 14 150 1 2 3

- --

Chapter 19. System Architecture and Administration

once the problem has been diagnosed then the Diagnostic Network can configure
neighboring Data Network chips to ignore the failed components. The switch
indicated by the arrow will then have one parent instead of two, so traffic through
that switch will see only half the usual bandwidth. However, load balancing at
lower levels will react by sending proportionately less traffic through that switch,
so that messages soon share seven upgoing wires equally where before they had
eight. The result is that the fat tree continues to function with slightly reduced
bandwidth.

A mesh with a switch missing is a mesh with a hole in it. In principle traffic could
be routed around the missing switch, but the usual routing algorithms for a com-
plete mesh are insufficient; moreover, oblivious routing algorithms, which use

Figure 39. Data Network with 256 nodes.

November 1993
Copyright © 1993 ThinkingMachines Corporation 173

Connection Machine CM-5 Technical Summary
__e~re~assaa' _

Figure 40. Data Network redundancy.

fixed routing paths rather than reacting on the fly to dynamic network load or
configuration, simply haven't a chance. Similarly, a hypercube with a broken
switch is a hypercube with a corner missing, and the usual hypercube routing
algorithms break down. But a fat tree with missing switches is still a fat tree -
it just happens to be a little skinnier in some places - so the standard message
routing strategy continues to work.

The Control Network may be thought of as a binary "skinny tree," at least as far
as a single user program is concerned. (It is actually a little bit fat, which pro-
vides the switching capability necessary to allow any control processor to
manage any partition and provides the same ability to function in the face of
hardware failures as that of the Data Network.) Each switch in the tree has a

November 1993
Copyright 0 1993 Thinking Machines Corporation174

Chapter 19. System Architecture and Administration
_e s 8p~. -1

controller, connections to two children and one or two parents, and a small inte-
ger arithmetic processor.

Every Control Network operation sends information up the tree to the root
(remember, computer scientists draw trees upside down) and then back down
from the root to the leaves. There are separate links going up and down, so the
Control Network can continuously pipeline information up and down the tree.

To broadcast a message, the Control Network conveys the data from a single
Network Interface up the tree to the root; as the data travels back down the tree,
it is copied to both children at every switch.

To reduce a set of numbers, each switch waits until both its children have pro-
vided inputs; the switch then sends the combined result to its parent. When the
root has computed the final combined result, it is then broadcast back to the
leaves. Parallel prefix operations are similar but more complicated, with different
results traveling back down the tree to different leaves.

The Diagnostic Network is also tree-shaped, with the ability to broadcast diag-
nostic commands throughout the system and to combine the results of diagnostic
tests. Switching at each level of the tree allows selection of arbitrary subsets of
chips for diagnosis in parallel. The chips that implement the Diagnostic Network
are themselves subject to diagnostic commands; chips lower in the tree may be
tested by chips higher in the tree.

19.5 Resource Allocation and Management

CM-5 administration uses standard UNIX mechanisms to control the usage of var-
ious resources (disk usage, CPU usage, memory usage, and so on). These are
enhanced for the CM-5 when necessary: for instance, stack and heap management
can be set for the nodes in a partition as well as for the control processors.

Similarly, standard UNIX procedures govern the mounting and maintenance of
file systems.

November 1993
Copyright C 1993 Thinking Machines Corporation 175

Connection Machine CM-5 Technical Summary

19.6 Accounting, Monitoring, and Error Reporting

Standard UNIX kernel and device drivers collect information on system activity.
Accounting information is collected by ordinary UNIX tools, including NQS, and
is logged to a central facility on the System Console.

Errors occurring during normal operation of the CM system are detected by the
operating system, collected and distributed by the Control Network.

Hard error signals are collected from the Data Network and from every Network
Interface. These signals are combined and distributed according to the current
partitioning. Errors detected within a partition are signaled to every Network
Interface in that partition, and are reported if appropriate to the user process
running at the time of the error. Errors detected in portions of the network outside
any partition may be optionally signaled into any designated partition.

The operating system notifies the system administrator of errors by sending a
message to the System Console processor. It also logs error information in a cen-
tral system error log, from which it is available both to the administrator and to
diagnostic utilities. System failures and transient hardware errors are also logged
to central logging facilities on the System Console.

19.7 Physical Monitoring Systems

The CM-5 system includes extensive power and temperature monitoring systems,
designed for early detection of problems that might cause physical damage to the
system. The monitoring system reports electronic danger signals, such as detec-
tion of an overheating cabinet, to the System Console.

19.8 Fault Detection and Recovery

The CM-5 system is designed to provide high system availability. An important
aspect of this design is rapid diagnosis and smooth degradation in the face of
component failures. An integrated part of the administration system, the CM-5
diagnostic system is notable for its completeness, its speed, and the high degree
of fault isolation it provides. If a failure should occur in a running partition, the
administrator can interrogate all items in parallel, isolate the failing item, reparti-
tion around the failure, and have the partition up and running again quickly.

November 1993
176 Copyright © 1993 Thinking Machines Corporation

Chapter 19. System Architecture and Administration

In addition, the CM-5 provides hardware and software support for checkpointing,
either at specified time intervals or by explicit program request. The goal is to
allow user applications to be restarted with full system capabilities, even in the
presence of failed components.

The Diagnostic Network

The Diagnostic Network, which can probe and control the rest of the system,
handles diagnostics. This network is designed to be simple and reliable. It is not
particularly fast compared to the Control Network or Data Network, but testing
and diagnostic procedures are nevertheless speedy because the Diagnostics Net-
work can operate on all parts of the system in parallel.

The Diagnostic Library

The CM-5 diagnostic library includes a wide variety of tests. Particularly
noteworthy among these are the JTAG diagnostics. Based on the IEEE Standard
1149.1, these scan-based vectors both test chips with a very high level of fault
coverage and provide connectivity tests between chips (known as boundary scan
checking). JTAG diagnostics exist for all CM-5 components; they provide
extremely precise isolation of faults. This precision, in turn, allows rapid
identification and replacement of failed components, and provides the data
necessary for the administration database to exclude failed components when
configuring partitions.

Diagnostics are run by partition: thus, one partition can be running diagnostics
while others are running user programs. Within the partition, the administrator
can choose to run diagnostics on

the entire partition

* a single subsystem, such as the Control Network

a single type of component, such as the nodes

Parallel processing provides speed. In the last example, all nodes are tested in
parallel and report their status in parallel. In the first example, diagnostic tests
on all components of the partition are run in parallel. The Diagnostics Network
can address test vectors to the entire system or to any subsystem, such as a
backplane, that is believed to be broken. The status of multiple chips or boards

November 1993
Copyright Q 1993 Thinking Machines Corporation 177

Connection Machine CM-5 Technical Summary
_saB~eB~k8~

of the same type is read out in parallel, and components whose values differ from
an expected value are quickly isolated.

Diagnostics and Components

All CM-5 components are designed to be testable when in place in the system.
Nearly all data paths are protected by parity or full CRC. All dynamic memory
is protected by full ECC that corrects single-bit errors and detects double-bit
errors and DRAM chip failures. Transfers through the Control Network and Data
Network are checked by hardware, not merely end-to-end but on every link, so
that network component failures can be located precisely.

Failed components can be logically and electrically isolated from the rest of the
system under control of the Diagnostics Network. Surrounding components are
instructed to ignore any and all signals from failed components. The failed sec-
tion of the system can then independently execute diagnostic tests or be powered
down for repair or replacement, while the rest of the system continues normal
operation.

All major CM-5 system components use either redundant or spare component
schemes. If a processing node fails, its local group of nodes is taken out of ser-
vice and can be logically replaced by any other such group from anywhere in the
system. All control processors are logically interchangeable; any control proces-
sor can manage any partition.

If a Control Network component fails, the consequences depend on the location
of the failure within the network. It may be necessary to give up the use of 1/64
of the Network Interfaces in that partition and whatever they are connected to.
In this case, spare processors may be logically mapped in to replace them. In
other cases, the failure implies the loss of one partition. For example, if a CM-5
system supports up to 8 different partitions, then a Control Network failure might
reduce the maximum number of partitions to 7- but the processing resources
in the failed partition could be reallocated to other partitions.

If a Data Network component fails, the consequences similarly depend on the
location of the failure. It may be necessary to give up the use of 1/64 of the Net-
work Interfaces in that partition and whatever they are connected to. In other
cases, no Network Interface need be abandoned; the total global bandwidth of the
Data Network is diminished, but never by more than about 6 percent for each
failure.

November 1993
Copynight 0 1993 ThinkingMachines Corporation178

Chapter 19. System Architecture andAdministration
a_~a~8·ss~8-

I/0 devices are also designed to tolerate failures; disk arrays, for example, are
designed to tolerate the failure of one or more disk units without loss of data. See
the descriptions of individual /0O devices for details.

November 1993
Copyright @ 1993 Thinking Machines Corporation 179

I

Chapter 20

Input/Output Subsystem

The CM-5 system achieves true I/O scalability by connecting I/O devices directly
to the CM-5 Data Network, achieving three important goals of the 1/O system:

* Any 1/0 device, or collection of 110 devices, has the bandwidth needed to
achieve high throughput. If a device needs more bandwidth than one Data
Network connection can supply, it is given multiple connections.

* A system's I/O storage capacity is independent of the system's computa-
tional capacity: I/O capacity is expanded merely by adding Data Network
connections. Since the bandwidth of the CM-5 Data Network grows in-
early with the number of connections, the performance of the Data
Network expands to meet the needs of the additional 1/ devices.

* 1/ resources are shared equally. Any partition or any computer connected
to the CM-5 by a LAN may access all CM-5 I/O devices. O0 devices may
also communicate directly with one another, facilitating, for example,
direct disk-to-tape copies without the use of partition resources. In addi-
tion, the Data Network allows multiple partitions to perform I/O
operations simultaneously, without affecting each other's performance or
data integrity.

In addition to scalable bandwidth, the CM-5 I/O system supports industry soft-
ware standards, such as UNIX file system access and TCP/IP networking with
other machines. The CM-5 operating system (CMosT) provides straightforward,
consistent methods for performing I/O and accommodates a wide range of 1/O
devices, such as the Scalable Disk Array, Integrated Tape System, HIPPI and
FDDI network connections, and Thinking Machines' CMIO bus devices. These
CMIO bus devices, such as the DataVault mass storage system, are supported
both on the CM-5 and on the CM-2 and CM-200. They thus allow multiple Con-
nection Machine systems to share I/O devices and to have direct access to the
data in those devices.

Novbr 1993
Coyrght 0 1993 ThinkingMachines Corporation 181

Connection Machine CM-5 Technical Summary
_ _sa~~p

To a user application, the CM-5 I/O system consists of a collection of virtual I/O
devices, any of which can be home to a file system. File formatting and physical
characteristics of the devices are invisible to the application code. Implementa-
tion details for each I/O device are hidden by a combination of hardware and
software interface modules.

20.1 I/O Architecture

Every I/O device is connected to the CM-5 through the Data Network, with each
I/O interface occupying a block of Data Network address space. By convention,
all /O devices occupy the upper region of that address space. (See Figure 41.)
An I/O interface attaches to the Data Network through one or more Network
Interfaces - the same type of interface that connects processing nodes to the
Data Network.

An important consideration in any I/O scheme is matching the system's internal
bandwidth to the I/O rates of peripheral devices attached to the system. Here, the
Data Network's intrinsic scalability plays a critical role. The number of Network
Interfaces used to attach an I/O device to the Data Network determines how much
of the network's bandwidth is made available to the device. The more ports an
interface has into the Data Network, the greater its potential bandwidth.

An I/O interface with a single Network Interface provides a nominal bandwidth
of 20 Mbytes/sec across the Data Network. This capacity can easily accommo-
date low- and medium-speed I/O devices. Interfaces for high-performance
peripherals are implemented with as many Network Interfaces as are needed to
support the transfer rates required by the particular device. The Scalable Disk
Array, for example, has one Network Interface for each Disk Storage Node;
when a Storage Node is added for increased capacity, a Network Interface is
added also, increasing the device's aggregate transfer rate. The CM5-HPPI,
which can provide 160 Mbytes aggregate bandwidth, has eight Network Inter-
faces.

November 1993
182 Copyriht 1993 Thinkng Machines Corporation

Chapter 20. Input/Output Subsystem
~ a~a~6~~ _

Figure 41. CM-5 I/O subsystem block diagram.

Each I/O interface requires a control processor to act as its file server and super-
vise all I/O operations for that device. For the Scalable Disk Array, the processor
is known as an I/O control processor (IOCP). The IOCP has the same capabilities
as other CM-5 control processors, and so may be used for other functions, as well
as for file server functions. For the Integrated Tape System, the Connection
Machine HIPPI devices, and the CMIO bus devices, the file server is embedded
within the device itself.

20.2 File System Environment

The CM-5 system can access three file systems: SFS, CMFS, and UNIX. SFS (Scal-
able File System) and CMFS (Connection Machine File System), both
proprietary to Thinking Machines Corporation, exploit the great speed and mas-
sive storage capabilities of the Connection Machine I/O systems. The UNIX file
system further enhances system usability. All three file systems organize files
into directories, use pathnames to identify them, and treat all I/O devices as files.
Following is a brief description of each file system:

SFS is NFS-mounted on an IOCP and manages the files stored on a Scal-
able Disk Array or Integrated Tape System. The SFS file system is a fully
compatible enhancement of the UNIX file system, with extensions to sup-

November 1993
Copy'ight 0 1993 Thinking Machines Corporation 183

Data Net-

Highest
Address

Lowest
Addres

s

Partitions I/O Devices

_ ,

iicl
Partitions

Connection Machine CM-5 Technical Summary
.... · U iI 'p "_ : 3 w;

port parallel I/O and much larger files than most UNIX implementations
can accommodate. A CM-5 program can access the SFS file system via CM
Fortran, C*, the CMMD library, a subset of the CMFS library and the CMFS
commands, and standard UNIX routines and commands.

From a user's perspective, the SFS file system behaves like a UNIX file
system: for example, it stores each file's data in canonical serial order.

CMFIS is a UNIX-like file system that can reside on the CMIO-bus data-
storage devices. Like the SFS file system, the CMPS file system has
extensions to support parallel I/O and very large files. A CM-5 program
can access the CMFS file system via the same interfaces that are used for
the SFS file system (to use the UNIX commands and calls, however, the
CMFS file system must be NFS-mounted).

From a user's perspective, although the CMFS file system is similar to the
UNIX file system, there are some differences in its appearance and behav-
ior. For example, there are special environment variables that apply only
to the CMFS file system.

* The standard implementation of the UNIX file system can reside on all
CM-5 control processors and on all other serial computers in Connection
Machine systems.

Each file system is completely separate from all others, having a separate direc-
tory tree and its own current working directory.

Regardless of which file system is being accessed, all I/O transactions are mod-
eled as reads and writes to files. UNIX-style open () and close () requests go
to the file server and thus are independent of the file system data storage imple-
mentation. Requests for other file system operations, such as reading and writing
files, also go to the file server, which then directs the transfer of data. In these
cases, data may be transferred in parallel directly from the source to the destina-
tion, without passing through the file server. For the SFS file system, data and
control information travel separately through the Data Network. (See Figure 42.)
For the CMFS file system, data travels through the Data Network, while control
information travels over the Ethernet. For the UNIX file system, data and control
information both travel over the Ethernet.

November 1993
Copyight B 1993 Thinking Machines Corporation184

Chapter 20. Input/Output Subsystem
------ _~ -------------- _-. INE W'l~

Data Network

Processing Nodes PM

Partition

IOCP 1/0 Interface

1/0

Figure 42. Independent control and data paths through the Data Network.

When an application program requires I/O services, the partition on which the
application is nuing initiates the file transfer with an appropriate read or write
command. It directs the I/O request to the appropriate file server, which assumes
control of the transfer.

For a read () operation, the file is retrieved from the I/O device, encapsulated
in message packets, and sent through the Data Network to the partition that
requested the data. File order information embedded in the message packets
enables the receiving partition to arrange the file data in correct sequence within
each processor. A write () operation is similar but reverses the flow of data.

Different versions of read () and write () are used, depending on whether an
application is running on a single processor or on a set of parallel processing
nodes. A serial application uses the conventional UNIX read () and write ()
commands. Parallel applications use parallel read and parallel write routines.

Multiple I/O devices may be logically ganged for striped operation as a single file
system. The SFS file system automatically routes data between requesting pro-
cessors and individual I/O devices so that all striping is transparent. This same
facility makes SFS file structure independent of the number of computational
processors that read or write the data and transparent to programmers.

November 1993
Copyrght @ 1993 ThinkingMachines Corporation 185

Connection Machine CM-5 Technical Summary

20.3 CM-5 I/0 Interfaces and Device Implementation

This section describes the SDA, ITS, and CM5-HIPPI, the key elements of the
CM-5 I/O subsystem implementation. The CMIO bus peripherals and the two
standard bus interfaces (SVME and SBA) are described in Section 20.4.

20.3.1 Scalable Disk Array

The Scalable Disk Array (SDA) is an extremely high performance, highly
expandable RAID-3 disk storage system composed of Disk Storage Nodes pack-
aged within CM-5 cabinetry. The basic Disk Storage Node - providing 9.2
Gbytes of storage, a peak bandwidth over 17 Mbytes/sec, and 25 Mips of proces-
sing power - comprises a controller built on a SPARC processor, a Network
Interface, a large disk buffer, four advanced SCSI controllers, and eight 3.51" hard
disk drives. (See Figure 43.) The drives are mounted in removable modules that
facilitate installation and removal during servicing operations. These parts are
widely available and represent mature high-volume technologies, thereby con-
tributing to the high reliability of the SDA system. Additional custom hardware
is provided to augment the transfer of data directly between the disks, the buffer,
and the Data Network.

The SDA Disk Storage Nodes - analogous to the computational processing
nodes offered with the CM-5 architecture - are directly connected to the CM-5's
Data Network. The direct connection to the Data Network enables each Disk
Storage Node to contribute not only to storage capacity but also to I/O perfor-
mance; the number of the Disk Storage Nodes in an SDA system can be increased
or decreased, thereby achieving an I/O system matched to the performance and
capacity needs of the CM-5 applications.

For example, a single Disk Array Module comprising 3 Disk Storage Nodes pro-
vides 25 Gbytes of storage at I/O bandwidths of up to 33 Mbytes/sec sustained.
Adding one more Disk Storage Node increases capacity to over 33 Gbytes and

o/0 bandwidth to 44 Mbytes/sec sustained

The number of Disk Array Modules that can be installed in a CM-5 system is
limited only by the number of address spaces the system contains. A full cabi-
net's worth of SDA - eight Disk Array Modules - uses 256 Data Network
addresses and provides 200 Gbytes of storage capacity.

November 1993
186 Copyright Q 1993 Thinking Machines Corporation

Chapter 20. Input/Output SubsystemimmmuiAmmmag '- A.Ir-

Figure 43. Block diagram of a Disk Storage Node.

Data Storage

Data stored on the Disk Storage Nodes is always available in serial order. The
CM-5 stripes the data across all the Disk Storage Nodes in the system, so that
each node contributes to the overall transfer rate available to the user. All disks
in the SDA act together, in conjunction with the operating system, to transfer data
simultaneously. In fulfilling a read request, for example, the operating system
knows how an array is spread across the processors, and automatically distributes
the data coming from the SDA to the correct locations. From the application's
perspective, the SDA appears to be a single, high-capacity, high-performance
disk.

Special-purpose hardware on the Disk Storage Node controller assists the operat-
ing system in handling data-ordering issues, providing a seamless mechanism for
moving data between the Disk Storage Nodes, partitions of processing nodes,
other CM-5 1/0 devices, other serial computers, and 1/0 devices connected to
them. This combination of hardware and software support relieves the applica-

November 1993
Copyrght 1993 Thinking Machines Corporahion 187

Connection Machine CM-5 Technical Summary
1 - ----- -- --

tions programmer from the burden of dealing with data ordering, without
compromising performance.

Availability and Serviceability

In addition to 22 data-storage disks, a Disk Array Module contains 1 parity disk
and 1 spare disk. The parity disk stores redundant information - used to recre-
ate the data should a disk fail - automatically generated by the operating system
as a simple parity sunming operation:

· On disk writes, parity is generated in the processing nodes and transferred
with the data to the parity disk.

* On disk reads, all the data, including that from the parity disk, is sent to
the processing nodes, which calculate and check the parity.

In the event of a drive failure, a sparing and healing operation is performed.
Sparing is a software procedure that logically replaces the failed drive with the
SDA's spare drive (provided for that purpose); healing is the process that recon-
structs the corrupted data using the parity information and stores it on the spare
drive. The entire operation takes about one hour, each phase of which is signaled
by the LEDs.

The sparing and healing utilities, as well as utilities that facilitate other adminis-
trative tasks such as running SDA diagnostics and controlling the error-logging
and -reporting mechanism, are provided through the SDA Command Center
(SDACC). The SDACC is a menu-driven program that runs on the SDA's IOCP,
allowing the system administrator to maintain the SDA in a directed manner with
minimal down-time and no guess-work.

Failure Detection

Essential to maintaining high availability is the detection of failures in the data
paths. Failures are detected by parity checking circuits located in all the major
data paths and in all the controller and processor buffers. In addition, internal to
the disk drives, extensive use of error-correcting codes provide for complete
correction of bit-error bursts up to 48 bits in length, and detection of error bursts
as long as 120 bits.

November 1993
Copyright 0 1993 Thining Machines Corporation188

Chapter 20. Input/Output Subsystem
_18rs~88~8~1~8111168~19888~1--

20.3.2 Integrated Tape System

The Integrated Tape System (IrS) is an industry standard-compliant tape-con-
troller system that, like the SDA, is integrated into the CM-5 cabinetry, with direct
connections to the Data Network The ITS offers the same unlimited scalability
as the other parts of the CM-5 system: dozens or even hundreds of ITS modules
can be connected to a single CM-5, each accommodating, for example, two
IBM 3480-compatible tape drives or eight 8mm drives. The drives can be located
as far as 20 meters away from the CM-5 cabinet.

The ITS tape controller, shown in Figure 44, is built on a SPARC processor, a
Network Interface, an 8-Mbyte data buffer, and two advanced 16-bit SCSI-2
channels. The ITS supports industry-standard tape formats such as 3480 square
tapes (200 or 400 Mbytes per tape) and 8-mm cartridges (5 Gbytes per tape). The
ITS tape controller can sustain a maximum throughput of 15 Mbytes/sec and can
burst at up to 20 Mbytes/sec.

Figure 44. An ITS system. The tape devices can be located
up to 20 meters away from the CM-5.

November 1993
CopYght 0 1993 T ngMachines Corporation

uTWV #a,
8 mm Tapes

--

- -

189

Connection Machine CM-5 Technical Summary
AIB~~~~gg~~~~~~l~~~~B~~~~QBBB~~~~~~~~~881j~~~~~~~~~!~~~.

The ITS tape controllers are backplane-compatible with the SDA Disk Storage
Nodes: ITS tape controllers and Disk Storage Nodes can be intermixed. The total
number of each type of board installed in a system is limited only by available
address space.

All software needed to control the ITS tape drives and negotiate the data transfers
is included in a Cl~Mpe software package that includes standard UNIX tape faci-
lities as well as CM system-specific functionality. Users gain access to the ITS
either through CMTape commands executed from a UNIX shell or through
CMTape utilities callable from applications. Included in the CMTape package are
functions for performing:

· disk back-ups and restores

* label processing of IBM- and ANSI-standard label tapes

* common format conversions (for example, between EBCDIC and ASCII)

All these functions support file sizes greater than the 2-Gbyte restriction imposed
by UNIX. In addition, applications for the Connection Machine models CM-2 and
CM-200 CM-IOPG (CM I/O processor) can be run on the ITS with only minimal
changes.

The SDA is used to stage data as it is written to the ITS from the CM-5 or read
from the ITS to the CM-5. Transfers between disk and tape occur directly - no
CM-5 partition resources are involved in the transfer.

20.3.3 Connection Machine HIPPI Interfaces

CM-HIPPI and CM5-HIPPI are bus interface controllers that are designed to trans-
fer data at a high speed according to the ANSI HIPPI draft standard. The
interfaces are primarily intended to link the CM-5 and its storage devices to other
supercomputer systems. See Figure 45.

CM-HIPPI is a complete, integrated system that receives CMFS file system com-
mands from a CM control processor over an Ethernet cable. The CM-HIPPI
contains a CPU, disk drives, a VMEbus, and HIPPI input and output interface
modules. The modules provide a full-duplex I/O interface between a pair of
external HIPPI buses and a pair of internal buses, one each for incoming and out-
going data. The internal buses connect the input and output interface modules to
up to eight HIPPI-to-CMIO interface modules via a set of multiplexing switches.
Using an /O bus adaptor backplane in the CM-5, the switches establish and break

November 1993
190 Copyright) 1993 Thinkdng Machines Corporation

Chapter 20. Input/Output Subsystem
~~~~t s~~~~~~~~~~ .o I oli..,' .. 0 .. I ----- -

links between a CMIO bus and the HIPPI input and output ports. The peak aggre-
gate I/O bandwidth of this configuration is 25 Mbytes/sec.

CM-HIPPI supports

* HIPPI-PH and HIPPI-FP

· Multiplexed access to a HIPPI connection

Figure 45. Typical HIPPI network with Connection Machine systems.

CMS-HIPPI occupies 1/8 of a standard CM-5 cabinet and provides a 32-bit source
and destination interface to the I/O bulkhead of the machine. The CM5-HIPPI
connects directly to the CM-5 Data Network to provide 160 Mbytes/sec aggre-

November 1993
Copyright 0 1993 Thinking Machines Corporation 191

Ethernet

i I1 r I I rrlI

Framebuffer Framebuffer



Connection Machine CM-5 Technical Summary
~ar~eJi__

gate bandwidth. There is an on-board diagnostic loopback between source and
destination. In addition to the CM-HIPPI features, CM5-HIPPI supports

* Users' HIPPI framing protocols

* TCP/IP

20.4. CMIO Bus Device Implementation

For application portability, the family of CM-2 and CM-200 peripherals continues
to be supported on the CM-5 system. These devices reside on Thinking
Machines' proprietary CMIO bus, which is connected to the Data Network via
the IOBA (/O bus adapter). The CMIO bus peripherals are:

a DataVault. This is a high-performance, disk-based mass storage system.
It allows applications running on a CM-5 to access as much as 60 gigabytes
of random access storage per DataVault at I/O bandwidths of up to 25
Mbytes/sec.

* CM-IOPG. This I/O controller provides 4 ports for
based devices, such as cartridge tape drives.

Figure 46 shows a CM-5 system that includes a DataVault.

connection to SCSI-

Figure 46. A sample CM I/O system for the CM-5.

November 1993
Copyright 0 1993 Thinking Machines Corporation192



Chapter 20. Input/Output Subsystem
_ - - - - -- - -.

The CM-5 also supports I/O for standard VMEbus and SBus devices. The VMEbus
and SBus interfaces allow the CM-5 to be connected to external control proces-
sors and peripheral device controllers that implement these popular buses. These
links make available to CM-5 applications a variety of other forms of 1/0, includ-
ing framebuffers, tertiary storage devices, and FDDI networks.

20.4.1 DataVault

The DataVault system is available in various storage capacities, ranging from
20 to 60 gigabytes. Each of these configurations is capable of transferring data
at a sustained rate of 25 Mbytes/sec.

The basic DataVault storage configuration, used in the 20- and 30-gigabyte sys-
tems, employs an array of 42 5 1/4 -inch Winchester disk drives, of which 39 are
active and 3 are spares. (See Figure 47.) Of the 39 active drives, 32 hold data and
7 hold error correction code (ECC) bits. The ECC bits allow the DataVault to cor-
rect single-bit errors and to flag multiple-bit errors in each 32-bit value retrieved
from the disks.

The double-capacity DataVault configuration (40 or 60 gigabytes) has 84 drives,
of which 64 hold data, 14 hold ECC bits, and 6 are spares.

In all DataVault configurations, each 32-bit data word is spread across 39 data
and ECC drives, one bit per drive. Each 64-bit data chunk received from the
CMIO bus is first split into two 32-bit words. After verifying parity from the /O
bus, the DataVault controller adds 7 ECC bits and stores the resulting 39 bits on
39 individual drives. Subsequent failure of any one of the 39 drives does not
impair reading of the data, since the ECC data allows any single-bit error to be
detected and corrected for every data word. The ECC data permits 100% recov-
ery of the contents of a failed disk, allowing a new copy of this data to be
reconstructed and written onto a spare disk. Once this recovery is complete, the
database is healed.

The File Server

All /O transactions in a DataVault /O interface are controlled by an IOCP run-
ning a file server process. The file server manages the DataVault's UNIX-based
hierarchical directory structure, handling the allocation of physical disk space
and matching file names and logical read/write requests to the physical locations
of data on the DataVault disks.

November 1993
Copyight 0 1993 Thinking Machines CoWporation 193



Connection Machine CM-5 Technical Summary
I__~3~ 8~ 8 8~II

Iillli
---

CMIO Bus
tnlfrnm !M.-S-

Micro-
controller

I

II a~~~~~~

Figure 47. Inside the DataVault.

Internally, the file server represents a file as a series of extents, or areas of contig-
uous disk surface. Each extent starts at a logical offset within the file, has a
physical disk address, and has a length. This representation allows a file to have
arbitrarily large physically contiguous blocks of the disks holding data for log-
ically contiguous segments of the file. As a result, positioning of the read/write
heads is more efficient, yielding faster file transfer.

Writing and Reading Data

Data transfers move information between a CM-5 partition and the DataVault.
The principal events involved in writing a file to the DataVault are summarized
below. Reading a file from the DataVault into Connection Machine memory is
very similar but the flow of data is reversed.

A DataVault write operation is typically initiated by a partition manager, which
issues a write command to the IOCP that is acting as the DataVault's file server.
When the file server receives the logical file request, it translates the request into
a series of physical disk addresses. Assuming that the request parameters satisfy
the necessary validity checks (for example, that there is sufficient space), the file
server returns a message to the requesting partition indicating the DataVault's

November 1993
Copyright 0 1993 ThinkingMachines Corporation194

_ __�

I i

.- J, .. - . . _... 



Chapter 20. Input/Output Subsystem
.............

availability. If the request cannot be fulfilled, the file server returns a failure
report instead.

Data from the partition's memory is moved, via the Data Network, to /O buffers
in the CMIO interface and then across the ClMO bus to the DataVault. A micro-
controller within the DataVault controls the distribution of data onto the disk
array. State machines at each end of the CMIO bus ensure reliable transfer of
large volumes of data across the bus. Parity checking is performed on all data as
it is received from the CMIO bus to ensure data integrity.

Data being read from the DataVault follows the same path as for writing, but in
reverse order: across the CMIO bus, through the CMIO interface, and across the
Data Network. The data coming off the disks is checked by ECC circuits. Single-
bit errors are corrected and logged and the data is written with parity to the CMIO
bus. As with write operations, parity checking is performed on data received
from the CMIO bus.

Data Protection

The transfer status may indicate that a single disk drive is failing and that the ECC
was required to correct data. This will most often be discovered when the error
logs are checked. At that point, the faulty drive can be physically replaced with
an external spare. If the site does not currently have any spares available in stor-
age, other than the three (or six) spare drives contained in the DataVault, one of
these internal spares can be logically substituted for the failing drive.

This logical substitution uses a software procedure, called sparing, that recon-
structs the corrupted data, using the ECC circuits to correct the failing bit, and
stores it on one of the spare drives provided for the purpose. The sparing program
redirects the path followed by the faulty bit from the failing drive to the spare.
Regeneration of this data takes two minutes per gigabyte, after which the data is
again protected against the failure of another drive.

When the failed drive is physically replaced, the files are reconstructed using the
same technique as is used when sparing the failed drive.

November 1993
Copyight 0 1993 Thinking Machines Corporation 195



Connection Machine CM-5 Technical Summaryi~s e s e s epn11.i _ .

20.4.2 Standard Protocol I/O Interfaces

Two CM-5 standard bus interfaces, called SVME and SBA, enable the CM-5 oper-
ating system to access external VMEbus or SBus computers and their associated
I/O resources using standard communications protocols. These I/O paths link the
CM-5 to external networks of computing and I/O server resources.

They are connected by cable to a VMBbus- or SBus-based external control pro-
cessor, which manages the file system and other I/O functions. An adapter board,
installed in the control processor, provides an interface between the VMBbus and
the CM-5 Data Network (and Control Network).

The SBus interface consists of an adapter board, called the SBA, that plugs into
the SBus of an external control processor. This adapter board is connected by
cable to an interface module, called the control processor interface (CPI), that is
plugged into the CM-5 Data Network and Control Network. The external control
processor, running file server code, serves as the file system processor. This
arrangement allows applications running on the CM-5 to exploit any I/O
resources, such as a tape storage system, that are attached to the external control
processor's SBus.

In a similar fashion, the VMEbus interface uses a VME adapter board, called the
SVME, to connect a control processor's VMEbus to the CM-5 Data Network and
Control Network. Apart from this difference, the VMEbus interface employs the
same design features as the SBus interface.

November 1993
196 Co right C) 1993 Thinkng Machincs Corporation


