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About This Manual 

Objectives of This Manual 

This manual is intended to help you learn how to program in the C* data parallel programming 
language. 

Intended Audience 

Readers are assumed to have a working knowledgeofC programming and a general understanding of 
the components of the Connection Machine system. 

Revision Information 

This is a new manual. 

Organization of This Manual 

Part I Getting Started 

These two chapters introduce C* and data parallel programming on the Connection 
Machine system and provide a step-by-step explanation of a simple program. 

Part n Programming in C* 

These eight chapters describe how to write programs in C*. 

Part m C* CommDDication Functions 

Data parallel programming lets you operate on large multi-dimensional sets of data 
at the same time. These four chapters describe C*libraryfunctions that you can use 
to transfer values among items in the data set and to perform cumulative opemtions 
along any of the dimensions of the data set. 

Appendix A Impromag Performance 

This appendix suggests ways of increasing the performance of a C* program. 

There is also a glossary that defines technical terms used in the manual. 

xiii 
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Associated Documents 

The following document about c· appears in the same volume as this programming guide: 

• C· User's Guide 

In addition, a technical report is available that provides a reference description of the c· language. 

Information aboutreIated aspects of programming the Connection Machine system is contained in the 
following volumes of the Connection Machine documentation set: 

• Connection Machine Front-End Systems 

• Connection Machine UO Programming 

• Connection Machine Graphics Programming 

• Connection Machine Parallel Instruction Set 

• Connection Machine Programming in C/Paris 

C· is based on the standard version of the C programming language proposed by the X3111 committee 
of the American National Standards Institute; this version is referred to as standard C in this manual. 
The standard is available from: 

X3 Secretariat 
Computer and Business Equipment Manufacturers Association 
311 First Street, N. W. 
Suite 500 
Washington, DC 20001-2178 

Related books about standard C include the following: 

• Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, 2nd edition 
(Englewood Cliffs, New Jersey: Prentice-Hall, 1988) 

• Samuel P. Harbison and Guy L. Steele Jr., C: A Reference Manual, 2nd edition (Englewood 
Cliffs, New Jersey: Prentice-Hall, 1987) 
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Notation Conventions 

The table below displays the notation conventions used in this manual: 

Convention 

bold typewriter 

italics 

typewriter 

% bold typewriter 
typewriter 

Meaning 

C· and C language elements, such as keywords, operators, and 
fimctionnames, when they appear embedded in text Also UNIX 
and CM System Software commands, command options, and file 
names. 

Parameter names andp1aceholders infimction and command for­
mats. 

Code examples and code fragments. 

In interactive examples, user input is shown in bold type­
writer and system output is shown in regular typewri ter 
font. 



Customer Support 

Thinking Machines Customer Support encourages customers to report errors in Connection Machine 
operation and to suggest improvements in our products. 

When reporting an error, please provide as much information as possible to help us identify and 
correct the problem. A code example that failed to execute, a session transcript, the record of aback­
trace, or other such information can greatly reduce the time it takes Thinking Machines to respond 
to the report. 

To contact Thinking Machines Customer Support: 

u.s. Mail: 

Internet 
Electronic Mail: 

Usenet 
Electronic Mail: 

Telephone: 

For Symbolics Users Only 

Thinking Machines Corporation 
Customer Support 
245 First Street 
Cambridge, Massachusetts 02142-1264 

customer-support@think.com 

ames!think!customer-support 

(617) 234-4000 
(617) 876-1111 

The Symbolics Lisp machine, when connected to the Internet network, provides a special mail facil­
ity for automatic reporting of Connection Machine system errors. When such an error occurs, simply 
press Ctrl-M to create a report. In the mail window that appears, the To: field should be addressed 
as follows: 

To: customer-support@think.com 

Please supplement the automatic report with any further pertinent information. 
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Chapter 1 

What Is C*? 

C· (pronounced "sea-star'J is an extension of the C programming language designed for 
the Connection Machine data parallel computing system. This chapter introduces C· and 
data parallel computing on the Connection Machine system. 

1.1 Data Parallel Computing 

In the data parallel computing model, there are many small processors, each with some 
associated memory, and all acting under the direction of a serial computer called the front 
end. Each processor stores the information for one data point in its local memory; all proc­
essors can then perform the same operation on all the data points at the same time. 

Here are some examples of how data parallel computing can be used: 

• 

• 

• 

A graphics program might store pixels one-per-processor and then have each proc­
essor calculate the color value for its pixel, all at the same time. 

A text retrieval program might store articles one-per-processor and then have each 
processor search its article for a keyword. 

A modeling program (for example, one that simulates fluid flow) might create a 
large number of individual cells, stored one-per-processor. Each cell might have 
a small number of possible states, which are simultaneously Updated at each ''tick'' 
of a clock according to a set of rules that are applied to each cell. 

Data parallel programming also has the following features: 

1 
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• A programmer can specify that only a particular subset of the processors is to carry 
out an operation. In the text re1rieval program, for example, the processors that find 
the initial keyword might be instructed to search further for another keyword, 
while those that did not find the initial keyword remain idle. 

• Processors can pass messages to each other. For example, color shading in a graph­
ic image requires that each processor obtain surface information from surrounding 
processors to calculate the result for its pixel. 

1.2 The Connection Machine System 

In the Connection Machine system, the front end is a standard serial computer, such as a 
Sun-4 or certain models of VAX. A bus interface connects the front end to the CM itself. 
Programs for the CM reside on and run from the front end Serial code within a program 
is executed on the front end in the usual manner; parallel code is executed by the CM proc­
essors. 

~O:ta 
,~ 

results 

M M M M 

CM Processors 

M ••• M Processor 
Memory 

Figure 1. Interactions between front end and CM 
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1.2.1 Virtual Processors 

Different CM models have different numbers of processors. This does not limit the size of 
the data set that a program. can use, however, since the CM system supports virtual proces­
sors. The CM can divide up the memory associated with each physical processor to create 
power-of-2 multiples of the entire set of processors. A CM with 16K physical processors, 
for example, can operate as if it has 32K processors, 64K processors, and so on. The time 
required to do each operation increases as the number of virtual processors increases. 

1.2.2 Communication 

CM processors are interconnected by a high-speed communication device called a router. 
The router allows each processor to send a message to ~y other processor, all at the same 
time. In addition, the CM system has a faster form of communication called grid communi­
cation, which allows processors to communicate with their neighbors. 

1.2.3 1/0 

Different devices can be used to perform 110 to and from CM memory: 

• 

• 

• 

A mass storage system called the Data Vault can be attached to the CM via a 64-bit 
110 bus. The Data Vault provides permanent disk storage for CM data. 

Other 110 devices can be connected to the CM via this same 110 bus or through an 
interface to a computer with a VMEbus. 

The graphic display system and associated software provides 110 from the CM to 
a display monitor. 

Various user commands and system calls are available to perform Connection Machine 110. 
For more information, see the volume Connection Machine DO Programming. In addition, 
data can be moved between the CM and the front end using C· and calls to Paris, the CM's 
parallel instruction set For more information, see the C· User s Guide. 
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1.3 C· and C 

C* implements the ANSI standard C language; programs written in standard C compile and 
run correctly under C* (except when they use one of the words that are newly reserved in 
C*). In addition, C* provides new features that make possible the kind of data parallel com­
puting described in Section 1.1. These features include the following: 

• 

• 

• 

• 

• 

• 

• 

1.3.1 

A method for describing the size and shape of parallel data and for creating parallel 
variables. Shapes and parallel variables are discussed in Chapters 3, 4, and 9. 

New operators and expressions for parallel data, and new meanings for standard 
operators that allow them to work with parallel data. Operators are discussed in 
Chapter 5. 

Methods for choosing the parallel variables, and the specific data points within 
parallel variables, upon which C* code is to act. These features are discussed in 
Chapters 4 and 6. 

New kinds of pointers that point to parallel data and to shapes. C* pointers are 
discussed in Chapter 7. 

Changes to the way functions work so that, for example, a parallel variable can be 
used as an argument. Chapter 8 describes C* functions. 

Methods for communication among parallel variables. See Chapter 10. 

Library functions that also allow communication among parallel variables. Chap­
ters 11-14 describe these functions. 

Program Development Facilities 

C* uses its own compiler, run-time libraries, and header fIles. The compiler translates a C* 
program into a serial C program made up of standard serial C code and calls to Paris. This 
code is then passed to the front end's C compiler, which handles it in the normal way to 
produce an executable load module. The serial C code is executed on the front end; the 
Paris instructions are executed on the CM. 

C* can use standard UNIXprogramming tools such as dbx, gprof, and make. The C· com­
piler and related program development facilities are described more fully in the C· User s 
Guide. 
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1.4 C* and the CM 

Although c· is designed for the CM system, it is not necessary to understand the details 
of the CM hardware in order to use the language. For example, when the size of the data 
set requires it, C· automatically takes advantage of the virtual processor mechanism de­
scribed above; the programmer need not be aware of the details. If you do understand the 
CM hardware, however, the relationship between the language and the system may some­
times be clear: for example, "positions" in C· are implemented in the CM on physical 
processors or on virtual processors. 

If you are familiar with Paris, the CM's parallel instruction set, you will probably find it 
helpful to consult Chapter 2 of the C· User:S- Guide. A section in this chapter describes the 
relationship between C· concepts such as shapes and parallel variables and Paris concepts 
such as VP sets and field IDs. 
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This chapter presents a simple C· program that illustrates some basic features of the lan­
guage. At this point we are not going to describe these features in detail; the purpose is 
simply to give a feel for what C· is like. After the program has been presented, we describe 
how to compile and execute it. 

The program sets up three parallel variables, each of which consists of 65,536 individual 
data points called elements. (This is, by the way, a typical use of the CM, with parallel 
variables having tens of thousands of elements.) It then assigns integer constants to each 
element of these parallel variables and performs simple arithmetic on them. 

Example 1. A simple C* program: add. cs 

*include <stdio.h> 

/* 
============================================================== 

* 1. Declare the shape and the variables 
*/ 

shape [2] [32768]ShapeA; 
int:ShapeA p1, p2, p3; 
int sum = 0; 

main () 
{ 

/* 
============================================================== 

* 2. Select the shape 

7 
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*/ 
with (ShapeA){ 

/* 
=-===-====-=========-=======-==-=-=======-=====-==-===-==-=== 

* 
*/ 

/* 

3. Assign values to the parallel variables 

p1 = 1; 
p2 = 2; 

===============================-==============-=====-===-==== 

* 4. Add them 
*/ 

p3 = p1 + p2; 

/* 
=============================-====--========================-

* 5. Print the sum in one element of p3 
*/ 

printf ("The sum in one element is %d.\n", [0] [1]p3); 

/* 
===-=-====-===--====-==============-======-====-============= 

* 6. Calculate and print the sum in all elements of p3 
*/ 

sum += p3; 
printf ("The sum in all elements is %d.\n", sum); 

} 

Example 1. Output 

The sum in one element is 3. 
The sum in all elements is 196608. 
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Before we go through the program, notice the file extension, . cs, in the program's name. 
C* source files must have this . cs extension. 

2.1 Step 1: Declaring Shapes and Parallel Variables 

2.1.1 Shapes 

The initial step in dealing with parallel data in a C* program is to declare its shape-that 
is, the way the data is to be organized. In Step 1 of add.. cs, the line 

shape [2] [32768]ShapeA; 

declares a shape called ShapeA. ShapeA consists of 65,536 positions, as shown in 
Figure 2. 

ShapeA 

o 1 2 32767 

:EEE B 
Position 

Figure 2. The shape ShapeA 

ShapeA has two dimensions; you can also declare shapes with other numbers of dimen­
sions. The choice of two dimensions here is arbitrary. The appropriate shape depends on 
the data with which your program will be dealing. 
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2.1.2 Parallel Variables 

Once you have declared a shape, you can declare parallel variables of that shape. In 
add. cs, the line 

int:ShapeA pi, p2, p3i 

declares three parallel variables: pl, p2, and p3. They are of type int and of shape 
ShapeA. This declaration means that each parallel variable is laid out using ShapaA as a 
template, with memory allocated for one element of the variable in each of the 65,536 posi­
tions specified by ShapeA. Figure 3 shows the three parallel variables of shape ShapeA. 

0 1 2 32767 

0 EE8 Ei pl 
1 

Elements 

p2 EE8 Ef 
p3 EE8 B 
Figure 3. Three parallel variables of shape ShapaA 

With C·, you can perform. operations on all elements of a parallel variable at the same time, 
on a subset of these elements, or on an individual element 

( 
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2.1.3 Scalar Variables 

In Step 1, the line 

int sum = 0; 

is standard C code that declares and initializes a standard C variable. These C variables are 
called scalar in this guide to distinguish them from C· parallel variables. Memory for stan­
dard C variables is allocated on the front end rather than on the CM. 

2.2 Step 2: Selecting a Shape 

In add.cs, the line 

with (ShapeA) /* Step 2 */ 

tells C· to use ShapeA in executing the code that follows. In other words, the with state­
ment specifies that only the 65,536 positions defined by ShapeA are active. In C· 
terminology, this makes ShapeA the current shape. With some exceptions, the code fol­
lowing the with statement can operate only on parallel variables that are of the current 
shape, and a program can execute most parallel code only within the body of a with state­
ment. 

2.3 Step 3: Assigning Values to Parallel Variables 

Once a shape has been selected to be the current shape, the program can include statements 
that perform operations on parallel variables of that shape. Step 3 in add. cs is a simple 
example of this: 

p1 
p2 

1; 
2; 

/* Step 3 */ 
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The fIrst statement assigns the constant 1 to each element of p1; the second statement as­
signs 2 to each element of p2. After these two statements have been executed, p1 and p2 

are initialized as shown in Figure 4. 

p1 = 1; 
p2 = 2; 0 1 2 32'6' 

pi · tffi1B tB 1 1 1 1 

p2 tffi1B ... rE 222 

Figure 4. Initialized parallel variables 

Note that the statements in Step 3 look like simple C assignment statementst but the results 
are different (although probably what you would expect) because p1 and p2 are parallel 
variables. Instead of one constant being assigned to one scalar variablet one constant is 
assigned simultaneously to each element of a parallel variable. 

2.4 Step 4: Performing Computations Using 
Parallel Variables 

Step 4 in add.c. is a simple addition of parallel variables: 

p3 = pl + p2; 

In this statementt each element of p1 is added to the element of p2 that is in the same posi­
tio~ and the result is placed in the element of p3 that is also in the same position. Figure 5 
shows the result of this statement. 

( 
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p3 - pI + p2; 
0 1 2 327f11 

· tB:EfB tB pI + 
1 111 

tB:EfB tB p2 -222 

p3 tB:EfB 333 tB 
Figure S. Addition of parallel variables 

Like C· assignment statements, C· parallel arithmetic operators look the same as the stan­
dard C arithmetic operators, but work differently because they use parallel variables. 

2.5 Step 5: Choosing an Individual Element of a 
Parallel Variable 

In step 5 of add. C8 we print the sum in one element of p3. Step 5 looks like a standard 
C printf statement, except for the variable whose value is to be printed: 

[0] [1]p3 

[0] [1] specifies an individual element of the parallel variable p3. Elements are numbered 
starting with 0, and you must include subscripts for each dimension of the parallel variable. 
Thus, [0] [1] p3 specifies the element in row 0, column 1 of p3, and the printf statement 
prints the value contained in this element. 
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o 1 2 32'6' 

o 
p3 

1 

Figure 6. Element [0][1] ofp3 

Note that the following printf statement would be incorrect: 

printf ("The sum in one element is %d.\n", p3); /* wrong */ 

Different elements of p3 could have different values (even though they are all the same in 
the sample program), so printf would not know which one to print. 

2.6 Step 6: Performing a Reduction Assignment of a 
Parallel Variable 

So far, add. cs has demonstrated assignments to parallel variables and addition of parallel 
variables. The following line in the program: 

sum += p3; /* Step 6 */ 

is an example of a reduction assignment of a parallel variable. In a reduction assignment, 
the variable on the right-hand side must be parallel, and the variable on the left-hand side 
must be scalar. The += reduction assignment operator sums the values in all elements of 
the parallel variable (in this case, p3) and adds this sum to the value in the scalar variable 
(in this case, sum); see Figure 7. (Note that the value of the scalar variable on the left-hand 
side is included in the addition; that is why add. cs initializes sum to 0 in Step 1.) 

c 
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\ 
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sum += p3i 

Front End 

sum <---19_6_60_8---,1 ~ 

p3 

o 1 % 

O~ 
1~ 

Figure 7. The reduction assignment of parallel variable p3 

3%767 

The final statement of the program simply prints in standard C fashion the value contained 
in sum. 

Note the first closing brace, on the line after the final printf statement. This brace ends 
the block of statements within the scope of the with statement in Step 2. 

2.7 Compiling and Executing the Program 

2.7.1 Compiling 

You compile a C· program using the compiler command cs on the front end. To compile 
the program add. cs, type the following: 

% es add.cs 

As with the C compiler command cc, this command produces an executable load module, 
placed by default in the file a. out. 
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2.7.2 Executing 

To execute the resulting load module, you can use the CM System Software command 
cmattach, as in the following example: 

% cmattach a.out 

Issuing this command for the executable version of add. cs produces a response from the 
system like the following (provided that CM resources are available): 

Attaching the Connection Machine system [name] ..• 
cold booting ... done. 
Attached to 8192 physical processors on sequencer 0, microcode 
version 6002 
Paris safety is off. 

The sum in one element is 3. 
The sum in all elements is 196608. 

Detaching ••. done. 
% 

For more information on how to compile and execute a C· program, see the C· User:S­
Guide. 
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The sample C· program in Chapter 2 began by declaring a shape and several parallel 
variables. Shapes and parallel variables are the two most important additions of C· to 
standard C. This chapter introduces these topics; Chapter 9 discusses them in more detail. 

3.1 What Is a Shape? 

A shape is a template for parallel data, a way oflogically configuring data. In C·, you must 
defme the shape of the data before you can operate on it. A shape is defmed by the 
following: 

• The number of its dimensions. This is referred to as the shape's ranlc. For example, 
a shape of rank 2 has two dimensions. A shape can have from 1 to 31 dimensions. 
A dimension is also referred to as an axis. 

• The number of positions in each of its dimensions. A position is an area that can 
contain individual values of parallel data. 

The total number of positions in a shape is the product of the number of positions in each 
of its dimensions. Thus, a 2-dimensional shape with 4 positions in axis 0 (the first dimen­
sion) and 8 positions in axis 1 (the second dimension) has 32 total positions, organized as 
shown in Figure 8. (By convention in this guide, axis 0 denotes the row number, and axis 
1 denotes the column number.) 

19 
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~~_O-.r-l-r_2-._3-._4-.r-5-r_'-._7-, 
~,O 
~~--~--+-~---r--+-~~~ 

1 

2 

3 

Figure 8. A 4-by-8 shape 

The CM system currently imposes the following restrictions on shapes in C*: 

• The number of positions in each dimension of a shape must be a power of two. 

• The total number of positions in the shape must be some multiple of the number 
of physical processors in the section of the CM that the C* program is using. 

For example, if the program is running in a CM section with 8192 physical processors, it 
can have shapes with 8192 positions, 16384 positions, and so on. You can arrange them 2 
by 4096,4 by 4 by 512, and so on. 

3.2 Choosing a Shape 

The choice of a shape depends on the data that the C* program is going to be using. The 
shape typically reflects the natural organization of the data. For example: 

• A database program for the employee records of a large company might use a 1-
dimensional shape, with the number of positions equaling the number of 
employees. 

• A graphics program might use a shape representing the 2-dimensional images that 
the program is to process. If the images have 256 pixels in the vertical dimension 
and 256 pixels in the horizontal dimension, a shape of rank 2 with 256 positions 

/ 
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in each dimension would be appropriate. This would let each position represent a 
pixel in an image. 

• A program to analyze stress in a solid object might use a 3-dimensional shape, with 
each axis representing a dimension of the object, and each position representing 
some portion of the volume of the object. 

3.3 Declaring a Shape 

Here is a declaration of a shape in C*: 

shape [16384]ernp!oyees; 

This statement declares a shape called employees. It has one dimension (a rank of 1) and 
16384 positions. 

Let's take a closer look at the components of the statement: 

• 

• 

• 

shape is a new keyword that C* adds to standard C. 

[16384] specifies the number of positions in the shape. If the shape is declared 
at file scope, or as an extern or static at block scope, the value in brackets must 
be a constant expression. Otherwise, it can be any expression that can be evaluated 
to an integer. This follows the ANSI C standard. 

employ_s is the name of the shape. Shape names follow standard C naming 
rules. They are in the same name space as variables, functions, typedef names, 
and enumeration constants. 

Figure 9 shows this shape. 
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shape employees 

o 1 3 16383 

D 

Figure 9. The shape employees 

A 2-dimensional shape adds another number, in brackets, to the right of the first set of 
brackets. This number represents the number of positions in the second dimension. For 
example: 

shape [256] [512] image; 

This shape has 256 positions along axis 0 and 512 positions along axis 1. Each additional 
dimension is represented by another number in brackets, to the right of the previous dimen­
sions. 

Individual positions within a shape can be identified using bracketed numbers as coordi­
nates. For example, position [4] of shape employees is the fifth position in the shape 
(numbering starts with 0, as in C). Position [47][112] of shape image is the position at 
coordinate 47 along axis 0 and 112 along axis 1. 

3.3.1 Declaring More Than One Shape 

A program can include many shapes. You can use a single shape statement to declare more 
than one shape. For example: 

shape [16384] employees, [256] [512] image; 

/ 
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3.3.2 The Scope of a Shape 

A shape's scope is the same as that of any identifier in standard C. For example, a shape 
declared within a function or block is local to that function or block. A shape declared at 
global scope can be referenced anywhere in the source file after its declaration. 

NOTE: If a block contains a shape declaration, you should not branch into it (for example, 
with a 8wi tab or goto statement); the behavior is undefined. 

3.4 Obtaining Information about a Shape 

You can obtain information about a shape by using the C* intrinsic functions 
p08i tion8of, rankof, and dimof. (Intrinsic functions are new in C*; they have 
function-like syntax, but they must be known to the compiler-for example, because they 
don't follow all ANSI C rules for functions.) 

• p08i tion8of takes a shape as an argument and returns the total number of posi­
tions in the shape. 

• rankof takes a shape as an argument and returns the shape's rank. 

• dimof takes two arguments: a shape and an axis number. It returns the number of 
positions along that axis. 

The simple C* program in Example 2 displays information about a shape. 
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Example 2. Obtaining information about a shape: 8hape. C8 

*include <stdio.h> 

shape [16384] employees, [256] [512] image; 

main () 
{ 

printf ("Shape 'employees' has rank %d and %d positions.\n", 
rankof(employees), positionsof(employees»; 

printf ("Shape 'image' has rank %d and %d positions.\n", 
ranKof(image), positionsof(image»; 

printf ("Axis ° has %d positions; axis 1 has %d positions.\n", 
dimof(image,O), dimof(image,1»; 

Example 2. Output 

Shape 'employees' has rank 1 and 16384 positions. 
Shape 'image' has rank 2 and 131072 positions. 
Axis ° has 256 positions; axis 1 has 512 positions. 

These intrinsic functions can be used in other, more interesting contexts, as we discuss 
later. 

3.5 More about Shapes 

So far, we have covered the basics about shapes in C·. Chapter 9 discusses more advanced 
aspects of shapes. For example: 
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• 
• 
• 

3.6 

Partially specifying a shape 

Copying shapes 

Dynamically allocating a shape 

What Is a Parallel Variable? 

Once a program has declared a shape, it can declare variables of that shape. These variables 
are called parallel variables. 

3.6.1 Parallel and Scalar Variables 

A good way to understand parallel variables is to compare them with standard C variables. 
As we mentioned in Chapter 2, standard C variables are referred to in this guide as scalar 
to distinguish them from parallel variables. A scalar variable contains only one 
"item"-<>ne number, one character, and so on. A parallel variable contains many items. 
(Note that ANSI C uses the term scalar in a slightly different way, to refer collectively to 
arithmetic and pointer types. We consider a standard C array or structure, for example, to 
be scalar because it contains only one array or structure.) 

A scalar variable has the following associated with it: 

• 

• 

A type, along with its modifiers and qualifiers, (for example, char, unsigned 
int, long double) that defmes how much memory is to be allocated for the vari­
able and how operators deal with it 

A storage class (for example, auto, static) that defmes the manner in which the 
memory is to be allocated 

Like a scalar variable, a parallel variable has a type and a storage class, but in addition it 
has a shape. The shape defines how many elements of a parallel variable exist, and how 
they are organized. Each element exists in a position in the shape and contains a single 
value for the parallel variable. If a shape has 16384 positions, a parallel variable of that 
shape has 16384 elements, one for each position. 

Each element of a parallel variable can be thought of as a single scalar variable. But the 
advantage of a parallel variable is that C· allows a program to carry out operations on all 
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elements (or any subset of elements) of a parallel variable at the same time. As the sample 
program in Chapter 2 demonstrated, you can: 

• 

• 

• 

• 

Assign a constant to all elements of a parallel variable at the same time. 

Declare multiple parallel variables of the same shape. 

Perform an arithmetic operation on all elements of a parallel variable at the same 
time. 

Do reduction assignments of data in all elements of a parallel variable. 

As we explain later in this manual, parallel variables that have different shapes can interact, 
but interactions between parallel variables are more efficient if the parallel variables are of 
the same shape. 

3.7 Declaring a Parallel Variable 

Before declaring a parallel variable, you must define the shape that the parallel variable is 
to take. For example, assume that the following shape has been defined: 

shape [16384] employees; 

You can then declare parallel variables of this shape. For example: 

unsigned int employee_id:employees; 

Interpret the colon in this syntax to mean "of shape shapename." Thus, this statement 
declares a parallel variable called employee _ id that is of shape employee •. UIl.i9D8d 
int specifies the type of the parallel variable amployee_id. Parallel variable names, like 
shape names, follow standard C naming rules. 

Figure 10 shows this parallel variable. 

( 

\ 

( 
\ 
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shape employees 

o 1 2 3 16383 

employee-id I~~ __ ~ __ ~~ O} int 

Figure 10. A parallel variable of shape employees 

3.7.1 Declaring More Than One Parallel Variable 

27 
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You can declare more than one parallel variable in the same statement, if they are of the 
same type. For example: 

unsigned int employee_id:employees, age:employees; 

The parallel variables need not be of the same shape. For example: 

unsigned int employee_id:employees, fieldl:image; 

A Shortcut for Declaring More Than One Parallel Variable 

If parallel variables have the same type and same ~pe, C· provides a more concise 
method for declaring them. Put the ": shapename' after the type rather than after each par­
allel variable. For example: 

unsigned int:employees employee_id, age, salary; 

The parallel variables employee _ id, age, and salary are all UDsigned ints of shape 
employees. This syntax is generally used except when parallel variables of different 
shapes are being declared. 

Figure 11 shows the three parallel variables that this statement creates. 
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employee-id 

age 

salary 
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shape employee. 

o 1 2 3 16383 

O} int 

o 
o 

Figure 11. Three parallel variables of shape -.ploy ... 

3.7.2 Positions and Elements 

As we have mentioned, a shape is a template for the creation of parallel variables. It is 
important to keep in mind the distinction between positions of a shape and elements of 
parallel variables that have been declared to be of that shape. As shown in Figure 12, 
elements with the same coordinates can be considered to occupy the same position in the 
shape. For example, the third elements of employee-id, age, and salary are all at posi­
tion [2] of shape employ •••. These elements are referred to as corresponding elements. 
Corresponding elements are an important concept in C·. 

/ 

\ 

" 
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shape employ ... 

employea-id 

age 

.alary 

16383 

D 
D 
D 

eonespODdiDg elements 

Figure 12. Corresponding elements 

3.7.3 The Scope of Parallel Variables 

Parallel variables follow the same scoping rules as standard scalar variables (and shapes). 
For example, a parallel variable declared within a ftmction or block is local to that ftmction 
or block. 

NOTE: As with shape declarations, if a block contains a parallel variable declaration, you 
should not branch into it (for example, with a •• i tch or goto statement); the behavior is 
undefined 

3.8 Declaring a Parallel Structure 

You can declare an entire structure as a parallel variable. For example: 

shape [16384] employees; 
struct date { 
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int month; 
int day; 
int year; 
}; 

struct date:employees birthday; 
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The final line of code defines a parallel variable called birthday. It is of shape 
employee. and of type .truct date. This parallel s1ructure is shown in Figure 13. 

shape employee. 

o 1 2 3 

{
month 

structure 
birthday day 

year 

Figure 13. A parallel structure of shape employee. 

Each element of the parallel structure contains a scalar structure, which in turn will contain 
the birthday of an employee. 

As with non-structured variables, you can declare more than one parallel structure in a 
single statement. For example: 

struct date:employees birthday, date_of_hire; 

You can declare parallel structures of different shapes. For example: 

struct date birthday:employees, date_of-purchase:equipment; 

Note the different syntax, with ": shapenamtl' coming after each parallel variable. 

You can also use the following syntax for declaring a parallel structure: 
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struct date { 
int month; 
int day; 
int year; 
}:employees birthday; 

31 
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Accessing a member of a parallel structure is the same as accessing a member of a scalar 
structure. For example~ birthday. day specifies all elements of structure member day in 
the parallel structure birthday. 

Some additional points about structures: 

• Only scalar (that is, non-parallel) variables are allowed within parallel or scalar 
structures. 

• Shapes are not allowed within parallel or scalar structures; a pointer to a shape is 
allowed within a scalar structure. (pointers to shapes are discussed in Chapter 7.) 

• You can include a scalar array within a parallel structure; you cannot include 
pointers of any kind. 

• C·, like standard C, allows structures to be nested. 

3.9 Declaring a Parallel Array 

You can declare an array of parallel variables. For example, 

shape [16384] employees; 
int:employees ratings[3]; 

declares an array of three parallel ints of shape employe.s, as shown in Figure 14. 
ratings [0] specifies the first of these parallel variables, ratings [1] the second, and 
ratings [2] the third. 
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array 
ratinqs 

shape employees 

o 1 2 3 

{

ratinqs [0] 

ratinqs[l] 
1----+--+--+---1 

ratinqs[2] 
I...----L_--'-_-'------' 

Figure 14. A parallel array of shape employe.s 

Please note the difference between an element of a parallel array and an element of a par­
allel variable: 

• An element of a parallel array, like ratinqs [0] in Figure 14, is a parallel vari­
able. It has values for each position of its shape. 

• An element of a parallel variable is scalar, and exists in only one position. 
ratinqs [0] consists of 16384 separate parallel variable elements. 

You can also use the alternative syntax for declaring a parallel array. For example: 

int ratings[3]:employees; 

We discuss parallel arrays further in Chapter 7, where we explain their relationship to 
pointers. 

3.10 Initializing Parallel Variables 

You can initialize a parallel variable when you declare it. The initializer must be a single 
scalar value. Each element of the parallel variable is set to that value. For example, 

( 

\. 
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shape [65536]ShapeA; 
int:ShapeA p1 = 6; 

sets each element of parallel variable pl to 6. 

::mI!;:-: :! 
33 
!:!I:::: 

If the variable is an automatic, the initializer can be an expression that can be evaluated at 
the variable's scope. For example: 

main () 
{ 

int i = 12; 
shape [65536]ShapeA; 
int:ShapeA p1 = (6+i); 

sets each element of pl to 18. 

If there is no initializer in a parallel variable declaration, and the variable has static storage 
duration, each element of the parallel variable is set to 0; this follows the ANSI C standard. 

3.10.1 Initializing Parallel Structures and Parallel Arrays 

Members of parallel structures and elements of parallel arrays can be initialized only to 
scalar constants; this too follows the ANSI standard. 

3.11 Obtaining Information about Parallel Variables 

Once you have declared a parallel variable in a program, you can obtain information about 
it, just as you can for a shape. 
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3.11.1 The positionsof, rankof, and dimof Intrinsic Functions 

The positionsof, rankof, and dimof intrinsic functions described in Section 3.4 can 
be applied to parallel variables as well as to shapes. For example, if age is a parallel vari­
able of shape employ .. s: 

• 

• 

• 

3.11.2 

rankof (ag.) returns the rank of employ .. s. 

posi tioDsof (ag.) returns the total number of elements of age (and any other 
parallel variable of shape employe.s). Note that the number of elements of a par­
allel variable is the same as the number of positions in the parallel variable's shape. 

dimof(age,O) returns the number of instances in axis 0 ofaqe (and any other 
parallel variable of shape employ •• s). 

The shapeof Intrinsic Function 

C'" includes another intrinsic function that applies only to a parallel variable. The sbapeof 
intrinsic function takes a parallel variable as an argument and returns the shape of the paral­
lel variable. For example, if a program contains the following declarations: 

shape [16384] employees; 
unsigned int:employees age; 

.hap.of (ag.) returns the shape employ •••. 

• hapeof (ag.) is a shape-valued expression; it can be used anywhere the shape name 
employ •• s is used. For example, once ag. is declared, a subsequent declaration of a par­
allel variable: 

unsigned int:employees salary; 

could also be written: 

unsigned int:shapeof(age) salary; 

Similarly, a parallel structure like the one shown in Section 3.8 could be declared as 
follows: 

( 

( 
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struct date:shapeof(age) birthday; 

3.12 Choosing an Individual Element of a Parallel Variable 

As we described earlier, an individual position can be described by its coordinates along 
the axes of the shape. These coordinates are also used in specifying an individual element 
of a parallel variable. As with a shape declaration, the coordinates appear in brackets to the 
left of the variable name, starting with the coordinate for axis O. These coordinates are also 
referred to as a left index. 

Thus, if age is a parallel variable of a l-dim.ensional shape named employees, [0] age 
specifies the first element of age, and [4] age specifies the fifth element of age. 

For a 2-dimensional parallel variable called pvar, 

• [0] [O]pvar specifies the element in row 0, column O. 

• [1] [O]pvar specifies the element in row 1, column O . 

• [0] [1] pvar specifies the element in row 0, column 1. 

and so on. Recall that axis 0 refers to the rows, and axis I refers to the columns. 

A left index must be 0 or greater. The behavior of an operation that includes a negative left 
index is undefmed. 

You can use a left index with an element of a parallel array. For example: 

[77]Al [4] 

specifies the seventy-eighth parallel variable element of A1 [4], which is the fifth array 
element of the parallel array AI. 

You can use scalar variables or expressions in place of numbers in the left index. For 
example, if a program contains the following declaration: 

int j = 4; 

the expression [j] age specifies the fifth instance of age. 
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It is also possible to use parallel variables or expressions in the left index. We leave that 
topic, however, for Chapter 10. 

( 
I 

\ 

" 
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In Chapter 3 we described how to declare a shape, which is used as a way of organizing 
parallel data. You can declare more than one shape in a C· program. However, a program 
can in general operate on parallel data from only one shape at a time. That shape is known 
as the current shape. You designate a shape to be the current shape by using the wi th state­
ment, which C· has added to standard C. 

4.1 The with Statement 

Assume a program contains the following declarations for a shape and three parallel vari­
ables of that shape: 

shape [16384]employees; 
unsigned int:employees employee_id, age, salary; 

Before operations can be performed on these parallel variables, employees must become 
the current shape. 

To make employee. the current shape, use the with statement as follows: 

wi th (employees) 

Any statement (or block of declarations and statements) following with (employee.) 
can operate on parallel variables of shape employees. For example, 

with (employees) 
age = 0; 

37 
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initializes all elements of the parallel variable age to O. (We discuss parallel assignment 
statements in the next chapter.) If each element of salary has been initialized to each em­
ployee's current salary, the following code: 

unsigned int:employees new_salary; 
with (employees) 

new_salary = salary*2; 

stores twice each employee's salary in the elements of new_salary. (Once again, we 
cover arithmetic with parallel variables in the next chapter.) 

You can also include operations on scalar variables inside a with statement. For example, 
you can declare a scalar variable called sample_salary and assign one of the values of 
salary to it: 

with (employees) 
unsigned int sample_salary; 
sample_salary = [O]salary; 

Here is what you can t do inside a wi th statement: 

shape [16384] employees, [8192] equipment; 
unsigned int employee_id:employees, date_of-purchase:equipment; 

main () 
{ 

with (employees) 
date_of-purchase = 0; /* This is wrong */ 

The program cannot perform this operation on dat&_of"'purchase, since this parallel 
variable is not of the current shape. However, the following is legal: 

shape [16384] employees, [8192] equipment; 
unsigned int employee_id:employees, date_of-purchase:equipment; 

main () 
{ 

} 

with (employees) 
[6]date_of-purchase = 0; /* This is legal */ 

( 

\ 

( 
\ 
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In this case, [6]date_ofJ>Urchase is scalar, since it refers to a single element. Scalar 
operations are allowed on parallel variables that are not of the current shape. 

See Section 4.4 for a list of the situations in which a program can operate on parallel vari­
ables that are not of the current shape. 

4.1.1 Default Shape 

Note that the sample program in Chapter 2 included a with statement, even though only 
one shape was declared. You must include a with statement to perform parallel operations 
on parallel data, even if only one shape has been declared. 

NOTE: There is no default shape in C·. However, an implementation can define a default 
shape. See the C· User:SO Guide for more information on default shapes. 

4.1.2 Using a Shape-Valued Expression 

You can use a shape-valued expression instead of a shape name to specify the current 
shape. For example: 

shape [16384]emp!oyees; 
unsigned int:employees age, salary; 

main () 
{ 

with (shapeof(age» 
salary = 200; 

The current shape is employees, because shapeof (age) returns the shape of the parallel 
variable age. 
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4.2 Nesting with Statements 

Consider the following wi th statement: 

with (employees) 
add_salaries (); 

where add_salaries is a function defined elsewhere in the program. Clearly, 
employees remains the current shape while executing the code within add_salaries. 
But what if add _ salaries contains its own with statement? The new with statement 
then takes effect, and the shape it specifies becomes current When the with statement's 
scope is completed, employees once again becomes the current shape. 

You can therefore nest with statements. The current shape is determined by following the 
chain of function calls to the innermost with statement. Returning to an outer level resets 
the current shape to what it was at that outer level. For example: 

shape [16384]ShapeA, [32768]ShapeB; 
int:ShapeA p1, p2; 
int:ShapeB q1; 

main () 
{ 

} 

wi th (ShapeA) { 
p1 ... 6; 
with (ShapeB) 

q1 = 12; 
p2 = 18; 

Once the code in this example leaves the scope of the nested with statement, ShapeA once 
again becomes the current shape. The assignment to p2 is therefore legal. 

The break, goto, continue, and return statements also reset the current shape when 
they branch to an outer level. For example, the following code is legal: 

wi th (ShapeA) 
loop: 
/* C* code in ShapeA ••• */ 
with (ShapeB) { 

/* C* code in ShapeB • • • */ 
goto loop; 

( 
I 

\ 
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When the qoto statement is executed and the program returns to loopt ShapeA once again 
becomes the current shape. 

c· does not defme the behavior when a program branches into the body of a nested wi th 

statement, however. For example, the following code results in undefined behavior: 

goto loop; 
wi th (ShapeA) 

loop: /* This is wrong */ 

4.3 Initializing a Variable at Block Scope 

Section 3.10 described how to initialize parallel variables; it stated that you can initialize 
an automatic variable with an expression that can be evaluated at the variable's scope. Note 
that if the expression contains a parallel variablet the parallel variable must therefore be of 
the current shape. In the following codet p2 is initialized to the values ofpl; pl must there­
fore be of the current shape. 

shape [l63B4]ShapeA; 
int:ShapeA pl = 6; 

main () 
{ 

wi th (ShapeA) { 
int:ShapeA p2 = pl; 
/* •.• */ 
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4.4 Parallel Variables Not of the Current Shape 

As we mentioned above, there are certain situations in which a program can operate on a 
parallel variable that is not of the current shape. They are as follows: 

• You can declare a parallel variable of a shape that is not the current shape. You 
cannot initialize the parallel variable using another parallel variable, however (be­
cause that involves performing an operation on the parallel variable being 
declared). 

• As we discussed in Section 4.1, a parallel variable that is not of the current shape 
can be operated on if it is left-indexed by a scalar or scalars, because it is treated 
as a scalar variable. 

• You can left-index any valid C· expression with a parallel variable of the current 
shape, in order to produce an Ivalue or rvalue of the current shape. This topic is 
discussed in detail in Chapter 10. 

• You can apply an intrinsic function like c:limof and shapeof to a parallel variable 
that is not of the current shape. 

• You can use the, operator to take the address ofa parallel variable that is not of 
the current shape. See Chapter 7. 

• You can right-index a parallel array that is not of the current shape with a scalar 
expression. 

• You can use the "dot" operator to select a field of a parallel structure or union that 
is not of the current shap~provided that the field is not an aggregate type (for 
example, another structure or union). 

You can also perform these operations (except for left-indexing by a parallel variable) even 
if there is no current shape--that is, outside the scope of any with statement. 

/ 

( 
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C· uses all the standard C operators, plus a few new operators of its own. In addition, C· 
provides new meanings for the standard C operators when they are used with parallel vari­
ables. Sections 5.1-5.3 of this chapter describe C· operators and how to use them. 

C· also provides a new data type, boo1, which it adds to the standard C data types. Section 
SA describes boo1s. 

Section 5.5 discusses parallel unions. 

Throughout the chapter, variables beginning with Ii (for example, 81, 82) are scalar; vari­
ables beginning with p (pl, p2) are parallel. 

5.1 Standard C Operators 

5.1.1 With Scalar Operands 

If all the operands in an operation are scalar, c· code performs exactly like standard C 
code. Recall that scalar variables are allocated on the front end, not on the CM. Therefore, 
code like this: 

int sl=O, s2; 
s2 = sl « 2; 
sl++; 
sl += s2; 

allocates scalar variables on the front end and carries out the specified operations on them, 
just as in standard C. 

43 



44 C· Programming Guide 
1111111111111 1 1111111m!1 11111 111111111111 ;: I 1111111 iiI 111111111 111111 [III I II 111111111111 !illli!!!III!l!ii!i!l!lilllilililililililllllll 

The more interesting situations occur when a parallel operand is involved in an operation. 
The rest of this section considers these situations. 

5.1.2 With a Scalar Operand and a Parallel Operand 

You can use standard C binary operators when one of the operands is parallel and one is 
scalar. 

Assignment with a Parallel LHS and a Scalar RHS 

We have already shown examples of a parallel left-hand side (LHS) and a scalar right-hand 
side (RHS) with simple assignment statements, where a scalar constant is assigned to a par­
allel variable. For example: 

p1 = 6; 

In this statement, 6 is assigned to every element of the parallel variable pl. Technically, the 
scalar value is first promoted to a parallel value of the shape of the parallel operand, and 
this parallel value is what is assigned to the elements on the left-hand side. 

Similarly, 

p1 = 81; 

causes the scalar variable 81 to be promoted to a parallel variable, and its value is assigned 
to every element of parallel variable pl. Thus, a scalar-to-parallel assignment produces a 
parallel result; see Figure 15. 

/ , 
~ 

/ 
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pl = 81; 

Front End 

81 I 18 I~ 
0 1 1 3 II 

pl I 18 18 18 18 ~ 

Figure 15. Promotion of a scalar variable to a parallel variable 

Other binary operators work in the same way. For example, 

p1 + 81 

adds the value of 81 to each element of pl. 

p1 == 81 

tests each element of pl for equality to the value of 81. For each element, it returns 1 if 
the values are equal, 0 if they are not equal. 

p1 « 81 

shifts the value of each element ofpl to the left by the number of bits given by the value 
of 81. 

(p1 > 2) && (81 == 4) 

for each element of pl, returns 1 if pl is greater than 2 and 81 equals 4; otherwise the 
expression returns 0 for that element See Chapter 6 for a :further discussion of the " oper­
ator when one or both of its operands is parallel. 
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Assignment with a Scalar LHS .nd a Parallel RHS 

In an assignment statement, promotion occurs only when the scalar variable is on the right­
hand side and the parallel variable is on the left-hand side. A scalar variable on the 
left-hand side is not promoted, and the following statement generates a compile-time error: 

sl = p1; /* This is wrong */ 

You can, however, explicitly demote the parallel variable to a scalar variable, by casting the 
parallel variable to the type of the scalar variable. For example: 

int sl; 
int:ShapeA pl; 

sl = (int)pl; /* This works */ 

(Parallel-to-scalar casts are discussed in more detail in Chapter 9.) But what value does C· 
assign, when the parallel variable could have thousands of different values? 

In the case of a simple parallel-ta-scalar assignment, with the parallel variable cast to the 
type of the scalar, C· simply chooses one value of the parallel variable and assigns that 
value to the scalar variable; see Figure 16. The value that is chosen is defined by the imple­
mentation. 

81 - (int)pl; 

Front End 

81 47 

Figure 16. Selection of a value in a parallel-to-scalar assignment 

What is the point of obtaining the value of an element of a parallel variable, if the language 
doesn't specify which value it will be? One use of demoting a parallel variable to a scalar 

/ 
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is to cycle through all elements of a parallel variable and operate on each in turn individual­
ly; Chapter 6 has an example of this. 

Note that the issues discussed here do not affect a statement like the following: 

81 = [2]p1; 

This is a scalar operation. In it, an individual element of p1 has been selected by using the 
left index [2]. Since only one element is selected, there is no possibility of a collision, and 
the value of the element can be assigned to 81 without a problem. 

81 = [2]p1; 

Front End 

81 12 

Figure 17. Assignment of a single element of a parallel variable to a scalar variable 

The C compound assignment operators (for example, += and -=) have a special use with 
a parallel RHS and a scalar LHS; they are discussed in Section 5.3. 

5.1.3 With Two Parallel Operands 

Standard binary C operators can work with two parallel operands, ifboth are of the current 
shape. For example, 

p2 = p1; 

assigns the value in each element of p1 to the element of p2 that is at the same position­
that is, to the corresponding element ofp2; see Figure 18. 
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p2 = pl; 
0 1 2 3 II 

pl cr cr 
p2 18 47 12 G ... 0 

Figure 18. Assignmeni of a parallel variable to a parallel variable 

pI * p2 

multiplies each element of pl by the corresponding element of p2. 

pI >= p2 

returns, for each element of pl, 1 if it is greater than or equal to the corresponding element 
of p2, and 0 if it is not. 

(pI > 2) I I (p2 < 4) 

returns, for each element, 1 if pl is greater than 2 or p2 is less than 4, and 0 otherwise. Both 
operands are evaluated if either is parallel. See Chapter 6, however, for a further discussion 
of this operator and the && operator. 

5.1.4 Unary Operators for Parallel Variables 

Standard C unary operators can be applied to parallel variables. For example: 

pl++ 

increments the value in every element of the parallel variable pl. 

!pl 

( 
\'-, 

( 
, 
\" 

( 
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provides the logical negation of each element of pl. If the value of the element is 0, the 
expression returns 1; if the value of the element is nonzero, the expression returns O. 

5.1.5 The Conditional Expression 

The ternary conditional expression?: operates in slightly different ways depending on the 
mix of parallel and scalar variables in the expression. 

For example, in the following statement: 

p1 = (51 < 5) ? p2 : p3; 

the fIrst operand is scalar, and the other two operands are parallel. The interpretation of this 
statement is relatively straightforward: if the scalar variable.l is less than 5, the value in 
each element of the parallel variablep2 is assigned to the corresponding element ofpl; if 
81 is 5 or greater, the value in each element of p3 is assigned to pl. All the parallel vari­
ables must be of the current shape. 

In the following statement: 

p1 = (51 < 5) ? p2 : 52; 

the fIrst operand and one of the other operands are scalar. In this case, 82 is promoted to 
a parallel variable of the current shape, and the expression is evaluated in the same way as 
the previous example. 

What happens if the fIrst operand is parallel? For example: 

p1 = (p2 < 5) ? p3 : p4; 

In this case, each element of p2 is evaluated separately. If the value in p2 is less than 5 in 
a particular element, the value of p3 is assigned to pl for the corresponding element. 
Otherwise, the value of p4 is assigned to pl. Figure 19 gives an example of this; the arrows 
in the fIgure show examples of the data movement, based on the value of p2. 
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pl = (p2<S)?p3:p4; 

0 1 1 3 " 
p2 3 4 5 6 I ... [?J 
p3 ... G 
p4 I-~ 
pl ••• 25 

Figure 19. Use of the conditional operator with parallel variables 

If either or both of the operands (other than the first) were scalar in this example, they 
would be promoted to parallel in the current shape, and the expression would be evaluated 
in the same way. 

Both operands are evaluated if the condition is parallel. 

See Chapter 6 for a further discussion of this operator. 

5.2 New C* Operators 

C· adds several new operators to standard C. 

5.2.1 The <1 and >1 Operators 

The <? and >? operators provide, respectively, the minimum and maximum of two vari­
ables. These operators are typically expressed as macros in standard C. For example, the 
Cmacro 
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( «a) < (b» 7 (a) (b» 

is similar to 

a <7 b; 

in C· ~ except that C· evaluates the operands only once. 

There are also assignment operator versions of <? and >? For example, 

81 >7= 82; 

assigns the value of s2 to sl if the value is greater than the value of sl; otherwise sl is 
unchanged. 

The minimum and maximum operators follow standard C rules for type conversions and 
compatibility. For example~ if one operand is a float and the other is an int, the int is 
promoted to a float. 

These operators can be used with parallel as well as scalar variables. For example~ 

pI <7= p2; 

assigns the lesser of p1 and p2 to p1, for every pair of corresponding elements of these 
parallel variables. 

The minimum and maximum operators are discussed further in Section 5.3. 

5.2.2 The % % Operator 

The new"" operator provides the modulus of its operands: It is patterned after the standard 
C " operator; for example, it has the same precedence and associativity, accepts and returns 
the same types, and performs the same conversions. It also gives the same answer when 
both of its operands are positiv~the answer is the remainder when the first operand (the 
numerator) is divided by the second operand (the denominator). For example~ the follow­
ing statements are both true: 

(8 % 6) == 2 
(8 %% 6) == 2 
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The difference between the two occurs when one or both of the operands is negative. In that 
case, different implementations of % can give different answers. For example, the sign of 
the answer can be either positive or negative. 

%% does the following when one or both of the operands is negative: 

• 

• 

• 

It divides the first operand by the second operand. If the result is not an integer, it 
converts this result to the next lower integer. For example, the result of dividing 
17 by -4 is -4.25, so %% converts this to -5, because -5 is smaller than -4. 

It multiplies the second operand by this result. In the above example, -5 • -4 is 20. 

It subtracts that result from the first operand. The answer is the result of the opera­
tion. In our example, 17 minus 20 is -3. Therefore: 

(1 7 %% - 4) == - 3 

A consequence of this procedure is that the result always has the same sign as that of the 
second operand. For example: 

(-17 %% 4) == 3 
(17 %% 4) == 1 
(-17 %% -4) == -1 

The %% operator is discussed further in Section 10.3.2. 

5.3 Reduction Operators 

Standard C has several compound assignment operators, such as +=, that perform a binary 
operation and assign the result to the LHS. Many of these operators can be used with paral­
lel variables in C· to perform reductions-that is, they reduce the values of all elements 
of a parallel variable to a single scalar value. C· reduction operators provide a quick way 
of performing operations on all elements of a parallel variable. 

The following code presents a parallel-to-scalar reduction assignment. 

.! 

~. 

/ 
\ 
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#include <stdio.h> 

shape [16384] employees; 
unsigned int:employees salary; 

main () 
{ 

unsigned int payroll=O; 

/* Initialization of salary omitted */ 

with (employees) 
payroll += salary; 

printf ("Total payroll is $%d.\n", payroll); 

In this code, the += operator sums the value in each element of salary and adds this sum 
to the scalar variable payroll, as shown in Figure 20. Note that the scalar variable on the 
left-hand side is included in the operation; that is why payroll must be initialized to O. 

payroll += salary; 

Front End 

I :::£&1 I ~~ payroll 

~012345 
salary 1396194215161164212121660 I 

Figure 20. A reduction assignment 

16383 

~ 
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5.3.1 Unary Reduction 

As the sample code shows, binary reduction assignment operators include the left-hand 
side as one of their operands, so you must initialize the variable on the left-hand side appro­
priately. You can also use any of these operators as a unary operator with a parallel operand. 
We can therefore simplify the sample code by eliminating the scalar variable and revising 
the printf statement as follows: 

printf("Total weekly payroll is $%d.\n", +=salary); 

5.3.2 Parallel-to-Parallel Reduction Assignment 

The left-hand side of a reduction assignment can be an individual element of a parallel 
variable, instead of a front-end scalar variable. For example, 

shape [16384]employees; 
unsigned int:employees salary, payroll=O; 

main () 
{ 

/* Initialization of salary omitted */ 

with (employees) 
[O]payroll += salary; 

declares payroll to be a parallel variable, and puts the total of the salary values into 
element [0] of payroll. 

5.3.3 List of Reduction Operators 

Table I lists the C· reduction operators. All can be used for parallel-to-scalar reduction 
assignment, parallel-to-parallel reduction assignment, and unary reduction. 

( 
\ 
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Operator 

+= 
-= 
&= 

1= 
<?= 
>?= 

Table 1. Reduction assignment operators 

Meaning 

Sum of values of parallel variable elements 
Negative of the sum of values 
Bitwise AND of values 
Bitwise XOR of values 
Bitwise OR of values 
Minimum of values 
Maximum of values 

55 

Note that simple parallel-to-scalar assignment using a cast is also a fonn of reduction as­
signment; see page 46 .. 

Note also that the C compound operators *=, /=, %=, «=, and >>= cannot be used as C· 
reduction assignment operators. 

We have already discussed the += operator; now let's look at the other reduction operators. 

5.3.4 The -= Reduction Operator 

When used as a binary operator, -= subtracts the sum of the parallel RHS's values from the 
scalar LHS, and assigns the result to the LHS. Therefore, 

sl -= pI; 

is equivalent to the following: 

sl = (sl - (+=pl»; 

Initialize the scalar LHS to 0 to obtain the negative of the sum of the parallel variable's 
values. 
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5.3.5 Minimum and Maximum Reduction Operators 

The <?= and >?= operators can be used as unary operators to obtain the minimum and 
maximum values in all elements of a parallel variable. To find out the lowest and highest 
salaries in the parallel variable salary, for example, add the following printf statements 
to the code eXample shown on page 53: 

printf ("The lowest salary is $%d.\n", <?=salary); 
printf ("The highest salary is $%d.\n", >?=salary); 

Note once again that, when used as binary operators, <?- and >?- include the left-hand 
side as an operator. To assign the lowest value of a parallel variable to a scalar variable, 
therefore, 

sl <?= pI; 

might not work, since sl might be the lowest value. Instead, use <?= as a unary operator, 
and use = to assign the result to the scalar variable. For example: 

sl = <?=pl; ! 

5.3.6 Bitwise Reduction Operators 

The bitwise reduction assignment operators mask all elements of a parallel variable, as de­
scribed in the subsections below. 

Bitwise OR 

The 1- operator performs a bitwise OR of all elements of a parallel variable. For example, 
in this statement: 

sl 1:== pI; 

all elements ofp1 are:first bitwise OR'd; if a particular bit is a 1 in any element, that bit 
is a 1 in the result. This result is then bitwise OR'd with sl, and the result is assigned to 
sl. 

Bitwise OR is particularly useful in testing if any elements of a parallel variable meet a 
condition. The if statement in C· works in the same way as the if statement in standard 

/ 

( 
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c: if the condition expression evaluates to 0, then the statement following is not executed; 
if the condition expression is non-zero, the statement is executed. In the following code, 

if (I = (p1 > 5)) 

p2 = 10; 

if there are any elements of pl greater than 5, the condition expression is non-zero, and 10 
is assigned to each element of p2. If there are no elements of pl greater than 5, the bitwise 
OR evaluates to 0, and the following statement is not executed. 

Bitwise AND 

In a bitwise AND, if a particular bit is a 0 in any element of the specified parallel variable, 
that bit is a 0 in the result. Bitwise AND provides a way to test whether all elements of a 
parallel variable meet a condition. In the following code: 

if (&= (p1 > 5» 

p2 = 10; 

each element of p2 is set to 10 only if all elements of pl have values greater than 5. 

Bitwise Exclusive OR 

You can view the bitwise exclusive OR operator as operating pair-wise on elements of a 
parallel variable. For example, if three parallel bit-fields each contain a 1, bitwise exclusive 
OR first operates on two of them: the two I bits yield a 0 bit. This 0 bit is then exclusive 
OR'd with the remaining 1 bit, and the result is a 1 bit. In general, the result of a bitwise 
exclusive OR operation is 1 if the corresponding bit is 1 in an odd number of elements; it 
is 0 if the corresponding bit is 1 in an even number of elements. Note that in a reduction 
assignment the scalar LHS is included in this calculation. 

5.3.7 Reduction Assignment Operators with a Parallel LHS 

Reduction assignment operators can be used with a parallel LHS when the parallel variable 
is left-indexed with a parallel subscript. This topic is discussed in Section 10.1.5. 
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5.4 The boo I Data Type 

In addition to parallelism, the CM has one other major difference from other computers: 
it aligns data on bit, rather than byte, boundaries. C· introduces a new data type, bool, that 
allows you to take advantage of this in allocating CM memory. 1Y.Pically, bools are used 
as parallel variables to store flags. 

The bool is an unsigned single-bit integral data type. The actual size and alignment of a 
bool are implementation-dependent: on the CM-2 it occupies one bit of memory and is 
aligned on a bit boundary; on the front end it is stored as a char. It behaves as a single-bit 
quantity, however, no matter what its actual size is. 

When you cast a variable of a larger data type to a bool, the expression has logical (rather 
than arithmetic) behavior. That is, if the value of the larger data type is 0, 0 is the result; 
if the value is non-zero, I is the result. Thus: 

int i=O, j=4; 
printf("%d\n", (bool)i); /* prints "0" */ 
printf("%d\n", (bool)j); /* prints "1" */ 

Also note the following behavior: 

int i, j=l, k=l; 
bool:current b; 
i = j + k; /* i=2 */ 
b = j + k; /* b=l */ 

All elements ofb are assigned the value I because the value of the expression (j + k) 

is non-zero. 

A bool, like a char, is promoted to an int when used as an operand of most operators. 
Thus, performing operations on bools could be slower than performing the same opera­
tions on larger data types. The compiler in some cases avoids this promotion, however, by 
following this rule: An expression is evaulated at the precision of the variable to which it 
is assigned, as long as the results are the same as if standard ANSI promotion rules had been 
followed. For example, if a, b, and c are all bools, this statement: 

a = b I c; 

is evaluated at bool precision, because the expression is assigned to a bool. However, in 
the following code: 

( 
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where (b leO) { 

/* ••. */ 

the expression is evaluated at int precision, because it is not explicitly stored anywhere. 

5.4.1 The boolsizeof Operator 

To obtain the exact size of a variable or data type in units ofboolS, use the new C· operator 
bo01sizeof. 

With a Parallel Variable or Data Type 

When a parallel variable is used as the operand, bo01sizeof returns the number of bits 
a single element of the variable occupies in CM memory. For a parallel data type, 
bo01sizeof returns the number of bits that must be allocated for a single instance of the 
data type. For example, 

boolsizeof(int:ShapeA); /* Size in bools of a parallel int */ 

returns 32 in the current implementation. 

With a Scalar Variable or Data Type 

When a scalar variable is used as the operand, bo01sizeof returns the number of bytes 
that the variable occupies in front-end memory (because a bo01 is stored as a char on the 
front end). It therefore gives the same result as the sizeof operator when applied to a 
scalar operand. For example, 

boolsizeof(int); /* Size in bytes of a front-end int */ 

returns 4 in the current implementation. 

Note the difference in result between bo01sizeof when applied to a parallel operand and 
boolsizeof when applied to a scalar operand. 
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5.5 Parallel Unions 

You can create parallel unions. Like parallel structures, they can only contain scalar vari­
ables. For example, the following code: 

union ptype { 
int i; 
float f; 

} ; 

union ptype:ShapeA p1; 

defmes a parallel variable pl of shape ShapeA and of the union type ptype. The following 
initializes pl as an integer: 

pl.i = 50; 

Each element ofpl is an int containing the value 50. 

The following initializes pl as a float containing the value 89.7: 

pl.f = 89.7; 

Unions can also appear within structures, as in standard C. 

5.5.1 Limitations 

The current implementation of parallel unions has the following limitations: 

• 

• 

• 

• 

You cannot use an initializer to initialize a parallel union or any object containing 
a parallel union. 

You cannot assign a scalar union to a parallel union. 

You cannot promote a scalar union to be parallel (for example, by a scalar-to-paral­
leI cast; see Chapter 9). 

You cannot demote a parallel union to be scalar. 

( 
I 
\ 
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In Chapter 4, we discussed how to use the wi th statement to select a current shape. Once 
there is a current shape, a program can perform operations on parallel variables that have 
been declared to be of that shape. 

But what if you want an operation to be performed only on certain elements of a parallel 
variable? For example, you have a database containing the physical characteristics of a 
population, and you want to know the average height of people who weigh over 150 
pounds. To do this, specify which positions are active by using a where statement, which 
C· has added to standard C. Code in the body of a where statement operates only on 
elements in active positions. Using where to specify active positions is known as setting 
the context. 

6.1 The where Statement 

When a wi th statement first selects a shape, all positions of that shape are active; code in 
the body of the wi th statement operates on every element of a parallel variable. A where 
statement selects a subset of these positions to remain active. For example, the following 
code: 

with (population) 
where (weight> 150.0) { 

/* ... * / 
} 

selects only those positions of shape population in which the value of parallel variable 
weight is greater than 150. (This assumes that the elements of weight have previously 

61 
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been initialized to some values.) Parallel code in the body of the where statement applies 
only to those positions. Figure 21 shows the effect of the where statement. 

where (weight> 150.0) 

o 1 Z 345 32767 

G;J 

Figure 2l. Using where to restrict the context 

D active 

~ inactive 

In the figure, positions 0, 1, and 4 become inactive in the body of the where statement; 
positions 2,3,5, and 32767, all of which have weights over 150, remain active. 

The controlling expression that where evaluates to set the context must operate on a paral­
lel operand of the current shape. (Other controlling expressions-for example, for the 
while and if statements-operate only on scalar variables.) Like other controlling 
expressions, it evaluates to 0 or non-zero, but it does so separately for each parallel variable 
element that is currently active. 

The following code calculates the average height of people weighing over 150 pounds 
(asswning that the values of height and weight have been initialized): 

shape [32768]population; 
float:population weight, height; 
unsigned int:population count; 
float avg_height; 

main () 
{ 

} 

/* Code to initialize height and weight omitted. */ 

with (population) { 
count = 1; 
where (weight> 150.0) 

avg_height (+=height / +=count); 

( 
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NOTE: There is a slightly easier way of obtaining the number of active positions than the 
one shown in in this code fragment; it involves a scalar-ta-parallel cast. For example: 

(int:population)1 

promotes I to a parallel variable of shape population. Using the += operator on this vari­
able produces the number of active positions. Scalar-to-parallel casts are discussed in 
Section 9.6.1. 

Like the with statement, a where statement can include scalar as well as parallel code 
within its body, and there are the same restrictions on operating on parallel variables that 
are not of the current shape; see Section 6.S for a discussion of what happens to scalar and 
parallel code when a where statement causes no positions to remain active. 

The context set by the where statement remains in effect for any procedures called within 
its body. Once the body of the where statement has been exited, however, the context is 
reset to what it was before the where statement. For example, ifwe add two statements to 
the code fragment above: 

with (population) 
float avg_weight; 
count = 1; 
where (weight> 150.0) 

avg_height = (+=height / +=count); 
avg_weight = (+=weight / +=count); 

avg_weight is assigned the average weight for all positions of shape population, not 
just for the positions where weight is greater than ISO. 

6.1.1 The else Clause 

Like if statements in standard C, where statements can include an .l.e clause. The el •• 
following an if says: Perform the following operations if the if condition is not met. The 
el.e following a where says: Peiform the following operations on positions that were 
made inactive by the where condition. It ''turns on" all of the positions that were ''turned 
off" by the where condition, and turns off all the positions that the where condition left 
on. Figure 22 shows the effect of an el.e clause on the set of active positions in Figure 21. 



64 C· Programming Guide 
III!! ill!1111111111111111111 11111111 I11I 1111111II1I1 I II Ii III II I 11111 IIIIII!I! I I 11111illlllllllllll! 1111111111111111111 IIIII!! 1111111111111 

32767 

weight 

Figure 22. The effect of else on the context shown in Figure 21 

The following code calculates separate average heights for those weighing more than 150 
poundst and for those weighing 150 pounds or less: 

shape [32768]population; 
float:population weight, height; 
unsigned int:population count; 
float avg_height_heavy, avg_height_light; 

main () 
{ 

with (population) { 
count = 1; 

} 

where (weight> 150.0) 
avg_height_heavy (+=height / +=count); 

else 
avg_height_light (+=height / +=count); 

6.1.2 The where Statement and positionsof 

Using "here to restrict the context does not affect the value returned by the posi tioDsof 
intrinsic function. posi tioDsof returns the total number of positions in a shapet not the 
number of active positions. 
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6.1.3 The where Statement and Parallel-to-Scalar Assignment 

In Chapter 5 we discussed assigning a parallel variable to a scalar variable: you must cast 
the parallel variable to the type of the scalar variable. The operation then chooses (in an 
implementation-ciefined way) one value of the parallel variable and assigns it to the scalar 
variable. If a where statement restricts the context, however, the value chosen is from one 
of the active positions. 

6.2 The where Statement and Scalar Code 

As we noted above, you can include scalar code within the scope of a where statement. So, 
for example, the following is legal: 

shape [32768]population; 
float:population weight; 
float avg_height; 

main () 
{ 

with (population) { 
where (weight> 150.0) 

avg_height = 0; 

Recall that an element of a parallel variable is considered to be scalar. That means you can 
perform operations on an element even ifits position is inactive. For example, if position 
o becomes inactive when we choose positions where weight is over ISO, we can still do 
the following: 

shape [32768]population; 
float:population weight; 
unsigned int:population count; 

main () 
{ 

with (population) { 
count = 1; 
where (weight> 150.0) 
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[O]weight = 225; /* These are all legal. */ 
[O]weight = [l]weight; 
[O]count += count; 

} 

Note the final statement in this code fragment In it, the values of the active elements of 
count are summed; this sum does not include the value of [0] COUDt, because position 
[0] became inactive as a result of the where statement However, the result of the sum can 
be placed in [0] COUDt, because [0] COUDt is scalar. Thus: 

• You can read from or write to an individual parallel variable element in an inactive 
position. 

• An element in an inactive position is not included in operations on the parallel vari­
able as a whole. 

6.3 Nesting where and with Statements 

6.3.1 Nesting where Statements 

You can nest where statements. The effect is to continually shrink the set of active posi­
tions. For example, we might want to calculate average heights separately for males and 
females weighing over 150 pounds in the population data base. Let's add a parallel vari­
able called sex, therefore, and assume that it has been initialized: 0 for females and 1 for 
males. The following code would then produce the desired results. 

shape [32768]population; 
float:population weight, height; 
unsigned int:population count, sex; 
float avg_male_height, avg_female_height; 

main () 
{ 

with (population) { 
count = 1; 
where (weight> 150.0) { 

where (sex) 

c 

( 

" 
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avg_male_height = (+=height / +=count); 
else 

avg_female_height = (+=height / +=count); 

6.3.2 Nesting with Statements 

It is also possible to choose another shape within the body of a wh.re statement For 
example: 

shape [32768}population, [16384] employees; 
int:employees salary; 
int payroll; 
float:population weight, height; 
unsigned int:population count, sex; 
float avg_male_height, avg_female_height; 

main () 
{ 

with (population) { 
count = 1; 

} 

where (weight> 150.0) 
where (sex) 

avg_male_height = (+=height / +=count); 
with (employees) 

payroll += salary; 

Since each shape has a different set of positions, the context established by a where state­
ment for one shape has no effect on the context of expressions in another shape. Therefore, 
the statement 

payroll += salary; 

in the code example above uses the entire set of positions of shape employ •••. Of course, 
we could add another where statement to set the context for the nested with statement 
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Once control leaves the body of the nested with statement, the context returns to whatever 
it was before the with statement was executed. For example: 

with (population) { 
count = 1; 
where (weight> 150.0) 

where (sex) { 
avg_male_height = (+=height / +=count); 
with (employees) 

payroll += salary; 

else 
avg_female_height (+=height / +=count); 

When population becomes the current shape for the second time, the context is once 
again the positions where weight is greater than 150 and sex is O. 

With nesting, it is therefore possible to switch back and forth between shapes and maintain 
separate contexts for each. 

6.3.3 The break, goto, continue, and return Statements 

Section 4.2 described the behavior of break, goto, continue, and return statements 
in nested with statements. They behave similarly for nested where statements. Specifi­
cally: 

• Branching to an outer-level where statement resets the context to what it was at 
that level. 

• The behavior of branching into a nested where statement is not defined. Don't do 
it 

The behavior of functions that contain nested where statements is discussed in Section 
8.1.2. 

I 

~ 

( 
\ 
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6.4 The everywhere Statement 

A where statement can never increase the number of active positions for a given shape; 
nesting where statements has the effect of creating smaller and smaller subsets of the origi­
nal set of active positions. C· does, however, provide an everywhere statement that 
allows operations on all positions of the current shape, no matter what context has been set 
by previous where statements. 

For example, in the following code: 

shape [32768]population; 
float:population weight, height; 
unsigned int:population count, sex; 
float avg_male_height, avg_female_height, avg_height; 

main () 
{ 

with (population) { 
count = 1; 
where (weight> 150.0) 

where (sex) 
avg_male_height = (+=height / +=count); 

else 
avg_female_height = (+=height / +=count); 

everywhere 
avg_height (+=height / +=count); 

the scalar variable avq_ height is assigned the average height for all positions of shape 
popula tion, even though this average is calculated within the body of a where statement 
that deactivates some positions of population. 

After the everywhere statement, the context returns to what it was before everywhere 
was called. In this case, once again only positions where weight is greater than 150 are 
active. 

Note that if avg_ height had been calculated after the body of the where statement, the 
everywhere statement would not have been needed, since the context reverts to what it 
was before the where statement. In this case, all positions of shape population become 
active once again. 
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As with the where statement, branching from an everywhere statement to an outer level 
via a break, goto, continue, or return statement resets the context to what it was at 
the outer level. The behavior of branching into an everywhere statement is not defined. 

6.5 When There Are No Active Positions 

What happens when the controlling expression of the where statement leaves no positions 
active? Consider the situation shown in Figure 23. 

o 1 2 3 4 5 32'6' 
weight 114811091100 1 98 111611221 ~ 

Figure 23. A shape where all weights are less than 150 

If population is initialized entirely with values of 150 and below, the following code 
makes all positions inactive, since no position bas weight greater than ISO: 

with (population) 
where (weight> 150.0) { 

/* ... */ 
} 

Code is still executed in this situation, but an operation on a parallel variable of the current 
shape bas no result. For example, 

weight++; 

does not increment any of the values of weight, because no elements of weight are 
active. 

, 
I 

\ 
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But note that operations on individual elements do have results, since they are scalar. For 
example, 

[O]weight = 225; 

assigns 225 to element [0] of weight, even though no positions are active. 

The result of a parallel-to-scalar assignment using .. is undefined when no positions are 
active. 

The results of reduction assignment operations are discussed below. 

6.5.1 When There Is a Reduction Assignment Operator 

Unary Reduction Operators 

Consider the following code fragment, where maximum is a scalar variable, and weight 
is a parallel variable: 

where (weight> 150.0) 
maximum = (>?=weight); 

If there are no active positions, what gets assigned to maximum? 

C· provides default values for unary reduction operators when there are no active posi­
tions. These values are listed in Table 2. 

The values in Table 2 are basically identities for the operations. For example, the result of 
a +- operation (when no positions are active) added to the result of another += operation 
gives the result of the other operation. 
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Table 2. Values ofunary reduction operators when there are 
no active positions 

Unary Reduction 
Operator 

+= 
-= 

&= 

"= 
1= 

<?= 
>?= 

Value 

o 
o 
-0 (all one bits) 
o 
o 
maximum value representable 
minimum value representable 

Binary Reduction Assignment Operators 

Recall that the left-hand side is included in binary reduction assignments. When there are 
no active positions, and a binary reduction assignment operator is used, the LHS remains 
unchanged. 

6.5.2 Preventing Code from Executing 

Of course, you might not want scalar code, or code in another shape, to execute if there are 
no positions active. To keep the code from executing, use an if statement with a bitwise 
OR reduction operator to conditionalize the entire where statement For example: 

if (I=(weight > 150.0» 
where (weight> 150.0) 

float avg_height = 0; 
/* ••• * / 

In this code fragment, the scalar variable aVCJ_height is declared and initialized only if 
there are any positions with weight greater than 150. See Section 5.3.6 for a discussion 
of using the bitwise OR reduction operator in an if condition. 

( 
\ 

'"-

/ 
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If the condition in the if statement has side effects, more code is required to ensure that 
the condition is evaluated only once. Do the following: 

1. Create a temporary parallel variable of the current shape. 

2. In the if condition, assign to this temporary variable the results of the parallel 
expression you would otherwise have evaluated in the where statement, and per­
form a bitwise OR reduction of the temporary variable. 

3. Have where evaluate the temporary variable. 

For example: 

with (population) 
unsigned int:population temporary = 0; 
if (I=(temporary = (++weight> 150.0))) 

where (temporary) { 
float avg_height = 0; 
/* .•• */ 

6.6 Looping through All Positions 

Some of the C· features we have discussed so far can be used to loop through all positions 
of a shape, allowing operations to be performed on each position separately. 

For example, consider a database initialized as shown in Figure 24. Note that each position 
has a unique identifier, case_no. 
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shape population 

o 12345 327((1 

o 
132761 

weight 11481109110012121200 11221 ~ 

height I 62 I 58 I 60 1 72 1 751 68 I··· 0 

Figure 24. A database 

The following code picks a case of shape population, prints the weight and height of its 
corresponding elements, then picks another case, until all cases have been chosen. 

tinclude <stdio.h> 

shape [32768]population; 
unsigned int:population case_no, weight, height; 
unsigned int index; 

/* Code to initialize parallel variables omitted. */ 

main () 
{ 

with (population) { 
bool:population active; 
active = 1; 
while (1= active) { 

where (active) { 

} 

index = (unsigned int)case no; 
where (index == case_no) { 

printf ("Height is %d; weight is %d. \n", 
[index] height, [index]weight); 

active = 0; 

/' 
( 

( 
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In this program, a while loop with a bitwise OR reduction controls the selection of posi­
tions. The = operator chooses a value of case_DO and stores it in indez (note the use of 
the cast to explicitly demote the parallel variable to a scalar variable). The inner where 
expression then selects the position that contains this value for ca •• _DO. (There will only 
be onet because each value of cas. _DO is unique.) Since each value of ca •• _ DO corre­
sponds to the coordinate of its positio~ we can use that value (now assigned to index) as 
a left index for the other parallel variables in order to choose an element of them for 
printing. 

At the end of the where statemen~ acti va is set to 0 for the active positio~ turning it off 
for the next iteration of the loop. When all the positions have been selec~ all the positions 
will have been turned off. At this point the controlling expression of the while loop evalu­
ates to falset and the program completes. 

NOTE: A more efficient way of doing this is to use the pcoord functio~ which is described 
in Section 10.2. 

6.7 Context and the II, &&, and 1: Operators 

6.7.1 II and && 

The I I and" operators perform implicit contextualization when one or both of their oper­
ands are parallel. (Recall that if one operand is parallel and the other is scalar, the scalar 
operand is promoted to parallel.) 

Consider the following statementt in which all variables are parallel: 

p3 = (pi> 5) && (p2++); 

Since at least one of the "operands is parallelt we get the parallel version of the operator. 
This statement does two things: 

• F~ in each positi()~ it assigns a I to the corresponding element of p3 if both 
operands evaluate to non-zero ("TRUEit and assigns a 0 otherwise. 
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.• Second, it increments p2 in each position where pl is greater than 5--that is, 
where the left operand evaluates to TRUE. In positions where the left operand eval­
uates to 0, p2 is unchanged. 

Figure 2S shows how the statement works with some sample values. 

p3 = (pl > 5) " (p2++); 

0 1 2 3 4 32767 

pl 1 7 -2 13 6 I GJ 
Before 

I ... GJ p2 1 2 0 4 5 

p3 ~O ___ ~l ___ ~O ___ ~l ___ ~l~1 ~ 
After 

p2 ~1 ___ ~3 ___ ~O ___ ~5 ___ ~6~1 ... Q 

Figure 25. An example of the "operator with parallel operands 

Note that the left operand of the " operator in this example effectively sets the context for 
the right operand. This is the "implicit contex.tualization'· mentioned at the beginning of the 
section. That is, the operation above is equivalent to 

where (pI > 5) 
p2++; 

except that the operation additionally returns the result (0 or 1) of the logical AND in each 
position. 

After the operation,· the context returns to what it was before the operator was called. 

The I I operator works similarly when one or both of its operands are parallel--except that 
the context for the right operand consists of those positions that evaluate to 0 for the left 
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operand. In addition, the operator returns a 1 if either operand evaluates to TRUE, and 0 
otherwise. For example, 

p3 = (p1 > 5) I I (p2++); 

gives the results shown in Figure 26. 

p3 = (pl > 5) II (p2++); 

0 1 2 3 4 32767 

pl 1 7 -2 13 6 I [!J 
Before 

GJ p2 1 2 0 4 5 
1 

... 

p3 

After 

p2 

~l __ ~l __ ~O __ ~l __ ~l~1 ~ 
0.....-2 __ ,--2 __ ,--1 __ ,--4 __ ,--5--11 .. . GJ 

Figure 26. An example of the I I operator with parallel operands 

Notice the difference in the results between Figure 25 and Figure 26: 

• With the I I operator, p2 is incremented only in the positions where pl is not great­
erthan 5. 

• With I I, the corresponding element of p3 receives the logical OR of the operands 
for each position. 
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The?: operator provides implicit contextualization of its second and third operands when 
its f11'St operand is parallel. For example, when pI is parallel, 

(pl > 5) ? p2++ : p3++; 

is equivalent to: 

where (pl > 5) 
p2++; 

else 
p3++; 

See Section S.l.S for an example and for further discussion of this operator. 

Appendix A discusses some efficiency considerations regarding C· operators that perform 
implicit contextualization. 

( 

,/ 
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Pointers 

C· has three kinds of pointers: 

• The standard C pointer 

• A scalar pointer to a shape 

• A scalar pointer to a parallel variable 

As in C, C· pointers are fast and powerful. 

7.1 Scalar-to-Scalar Pointers 

C· supports the standard C pointer. For example, 

int *ptr; 

declares ptr to be a pointer to an int; ptr is allocated on the front end If al is a scalar 
variable, 

ptr = &sl; 

puts the address of al (on the front end) in ptr, and 

s2 = *ptr; 

puts the value of al into a2. The CM is not involved in any of these operations. 

79 
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7.2 Scalar Pointers to Shapes 

C· introduces a new kind of scalar pointer that points to a shape. For example, 

shape *ptr; 

declares the scalar variable ptr to be a pointer to a shape, and 

ptr = &ShapeA; 

makes ptr point to ShapeA. ptr is allocated on the front end. 

A dereferenced pointer to a shape can be used as a shape-valued expression. For example, 
if ptr points to ShapeA, 

with (*ptr) 

makes ShapaA the current shape. 

Scalar pointers to shapes are discussed in more detail in Section 9.1.1, when we introduce 
arrays of shapes. 

7.3 Scalar Pointers to Parallel Variables 

C'" introduces a new kind of scalar pointer that points to a parallel variable. For example, 

int:ShapeA *ptr; 

declares a scalar pointerptr that points to a parallel int of shape ShapeA. ptr is allocated 
on the front end. 

How can a scalar pointer point to a parallel variable? Clearly the mechanism must be differ­
ent from that used in standard C pointers, which store the memory address of the object to 
which it points; each element of a parallel variable would have a different address on the 
CM. In fact, a pointer to a parallel variable in C ... does not store a physical address on the 
CM, but a value that uniquely identifies the entire set of elements of the parallel variable. 

If pI is a parallel variable of shape ShapeA, 

( 

\ 

( 
\ 
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ptr = &pl; 

stores this value for pl in the scalar pointer ptr. pl need not be of the current shape. 

ptr .. &pl; 

Front End 

ptr I-_&P_l----'I '" 

~ 0 1 2 3 

pl r-, ....;.18---,.~...,..;ft;;,..~..,.,:::::::j,---.;;;5 5~-1;;....5....., 
• ~ II t. 

Figure 27. A scalar-to-parallel pointer 

D active 

1771 :_ft""':ve lL:...d IIICMoiIol 

Once the above statement has been executed, a program. can reference the parallel variable 
pl via the pointer stored in ptr. For example, 

(*ptr)++; 

increments the value in each active element ofpl, as shown in Figure 28. 

(*ptr)++; 

ptr 

Front End 

&pl 

D active 

177'1 :--.....:. ~ J.UA\,oIuve 

Figure 28. Dereferencing the scalar-to-parallel pointer shown in Figure 27 
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If 81 is-a scalar variable, 

s1 +- *ptr; 

sums the values of the active elements of pi, and adds the result to 81. 

The constraints that apply to dealing directly with a parallel variable also apply to dealing 
with it via a scalar pointer. For example, ShapeA must be the current shape for the above 
statement to be executed. 

7.3.1 Alternative Declaration Syntax Not Allowed 

Recall from Chapter 3 that there are two ways of declaring a parallel variable: 

int:ShapeA p1; 

and 

int p1: ShapeA; 

C· does not allow the latter syntax for declaring sca1ar-to-parallel pointers, however: 

int *ptr:ShapeA; /* This is wrong */ 

In this case, the compiler interprets the shape name as applying to the pointer, and parallel­
to-scalar pointers do not exist in the language. 

7.3.2 Arrays 

The close relationship between mays and pointers is maintained in C·. For example, 

int:ShapeA A1(40); 

declares a parallel may of 40 ints of shape ShapeA, and A1 points to the first element of 
the may. (Recall that an element of a parallel may is a parallel variable.) 

c 

/' 
\ 
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7.3.3 Pointer Arithmetic 

C· allows arithmetic on scalar pointers to parallel variables; it is similar to the standard C 
arithmetic on pointers to scalar variables. For example, given the following declarations, 

shape [65536]ShapeA; 
int:ShapeA AI[40], *ptrl, *ptr2; 

we can do the following: 

ptrl = &AI [7] ; 

ptr2 = ptrl + 2; 
printf("%d\n", ptr2 - ptrl); 

• The first statement sets ptrl equal to the address of the eighth element of the par­
allel array. 

• The second statement puts the address of the tenth element of the array into ptr2. 

• The printf statement prints 2, the result of subtracting ptrl from ptr2. 

Note that these statements do not have to be within the body of a wi th statement, since the 
pointers are scalar variables. 

As described above, we don't need to declare separate pointers into the array. We can also 
do the following: 

shape [65536]ShapeA; 
int:ShapeA AI[40], p2, p3; 

main () 
{ 

wi th (ShapeA) { 
p2 = * (AI + 9); 
p3 = AI[9]; /* These two statements are equivalent. */ 

Each parallel variable element of both p2 and p3 is assigned the value of the corresponding 
parallel variable element of the tenth array element of Al. 

Here is something we can t do: 



84 
1111Ii!ml!!!!I!!!!!!!!I!I!!111 !II!I!I 1111 II!I : 

C· Programming Guide 
II i II!IIIIII:I!: I Ii! II II !!I1111 1I!11I1i 11111 1111111111I 1!:liilillilllllliil!ll!!II!IIIIIIII!lil!I:lIiillilllllllililll1111111111111 

shape [65536]ShapeA; 
int:ShapeA Al[40], p2, p3, *ptrl, *ptr2; 

ptrl = &Al [7]; 
ptr2 = ptrl + p2; 
p3 = *(ptrl / p2); 

/* This is wrong */ 
/* This is wrong too */ 

It is illegal to perform arithmetic operations with a parallel variable and a scalar-to-parallel 
pointer as operands-except as discussed below. 

7.3.4 Parallel Indexes Into Parallel Arrays 

C· lets you use a parallel index into a parallel array. The result is essentially a new parallel 
variable that contains elements from the existing parallel variables that make up the array. 
This is referred to as parallel right indexing. 

Consider the data shown in Figure 29. A parallel array, A, and a parallel variable, i, have 
been allocated in a I-dimensional shape, S. 

shape S 

0 1 1 3 4 " 
A[O] 

array A 
A[l] 

A[2] 

A[3] 

i 3 2 0 1 3 0 

Figure 29. A parallel array and an index parallel variable 

/ 

\ 
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C'" allows the expression A [i]. The expression says: In each position, use the value of i 
as an index for choosing a parallel variable element. For example, in position [0] the value 
of i is 3; therefore, the element of parallel variable A[3] in that position is chosen. In posi­
tion [1], the value of i is 2; therefore, the element OfA[2] in that position is chosen. The 
result is a "jagged" parallel variable consisting of parallel variable elements taken from the 
different parallel variables that make up the parallel array. Figure 30 shows the results. 

- selected 

shape S D not selected 

0 1 1 3 4 " 
A[O] 

array A 
A[l] 

A[2] 

A[3] 

il 3 2 0 1 3 0 
A[i] 

Figure 30. Indexing a parallel array by a parallel variable 

The values of the index parallel variable should be less than the number of parallel vari­
ables in the parallel array; otherwise, the index chooses an element outside the array, and 
the result is undefined. For example, if an element of i had a value of 17, the result would 
be undefined, because i is indexing an array of four parallel variables. 

Adding a Parallel Variable to a Pointer to a Parallel Variable 

The equivalence between arrays and pointers holds for parallel right indexing as well. In 
other words, A[i] is equivalent to * (A+i). Note that * (A+i) is a legal example of an 
arithmetic operation involving a parallel variable and a scalar pointer to a parallel variable. 

You can also subtract a parallel variable from a pointer to a parallel variable. For example, 
you might have a pointer point to the end of an array rather than the beginning. You could 
then subtract a parallel index from that pointer to choose parallel variable elements within 
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the array. Once again, such an index must cause elements to be chosen from within an 
array; otherwise, the result is undefined. 

Limitations 

C· limits what you can do with parallel right indexing. You can dereference these expres­
sions, but you cannot take their address. You can add a parallel variable to a pointer to a 
parallel variable, or subtract it from the pointer, but in each case the expression is legal only 
if it is immediately dereferenced. (The problem is that otherwise the expression would rep­
resent a parallel pointer to a parallel variable, and this kind of pointer does not exist in the 
language.) Thus, given the following declarations: 

shape [8192]8; 
int:8 A[4], i, p1, p2, *ptr; 
int sl; 

the following statements are legal: 

p1 == A[i]; /* In all cases, i should index parallel 
variable elements within the array */ 

A[i]++; 
p1 - *(A+i); 
p1 = * (ptr - i); /* Pointer should point into an array */ 

and the following statements are illegal: 

sl == & (A[i)); /* Can't take the address */ 
sl == &(A+i); /* Can't take the address */ 
p1 == ptr + p2; /* Can't perform an operation without 

dereferencinq */ 

p1 - * (ptr / i); /* Can only add or subtract */ 

( 

I" 
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C· adds support for parallel variables and shapes to standard C functions. Specifically: 

• 

• 

• 

C· functions can take parallel variables and shapes as arguments. 

C· functions can return parallel variables and shapes. 

C· adds a new keyword current. which you can use to specify that a variable is 
of the current shape. 

• C· includes a void predeclared shape name so that you can declare an argument 
to be a pointer to a parallel variable of any shape. 

• C· supports overloading offunctions. so that (for example) functions operating on 
scalar and on parallel data can have the same name. 

8.1 Using Parallel Variables with Functions 

8.1.1 Passing a Parallel Variable as an Argument 

C· functions accept parallel variables as arguments only if they are of the current shape. 
As in standard C. variables are passed by value; but see Section 8.2 for a discussion of 
passing by value versus passing by reference. 

The following simple function takes a parallel variable of type int and shape ShapeA as 
an argument: 

87 
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void print_sum(int:ShapeA x) 
{ 

printf ("The sum of the parallel variable is %d.\n", +=x); 

(Note that C· supports the new ANSI C function prototyping, in addition to the older 
method. The ANSI method is preferred.) There is actually a better way of writing this func­
tion; we describe it in Section 8.4.1. 

Ifpl is a parallel variable of type int and shape ShapeA, you could call print_sum as 
follows: 

print_sum (pI) ; 

provided that ShapeA is the current shape. If ShapeA were not the current shape, passing 
pI to the function would violate the rule that a program can operate only on parallel vari­
ables of the current shape. 

NOTE: If a function expects a scalar variable and you pass it a parallel variable instead, you 
receive a compile-time error. 

If the Parallel Variable Is Not of the Current Shape 

If you want to pass a parallel variable that is not of the current shape to a function, use a 
pointer to the parallel variable. Note, though, that if the function is to operate on the parallel 
variable, the function must include its own nested with statement, and the parallel variable 
that is passed must be of that shape. For example: 

void print_sum(int:ShapeA *x) 
{ 

wi th (ShapeA) 
printf ("The sum of the parallel variable is %d.\n", +=*x); 

} 

Ifpl is a parallel variable of type illt and shape ShapeA, you could call print_sum as 
follows, no matter what the current shape is: 

print_sum (&pl) ; 

Section 8.4.2 discusses a more general way of passing parallel variables that are not of the 
current shape. 
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8.1.2 Returning a Parallel Variable 

c· functions can return parallel values. For example, the following function: 

float:ShapeA increment(float:ShapeA x) 
{ 

return (x + 1.); 

takes as an argument a parallel variable of type float and shape ShapeA, and returns, for 
each active element of the variable, . the value of the element plus 1. Assuming that pl and 
p2 are parallel floats of shape ShapeA, and ShapaA is the current shape, you could call 
increment as follows: 

p2 = increment(p1); 

Note that when a function is to return a parallel variable, you must specify both the type 
and the shape of the variable. The header of the function increment could also have been 
written with the shape after the parameter list: 

float increment(float:ShapeA x) :ShapeA 

You could also use a shape-valued expression. For example: 

float increment(float:ShapeA x):shapeof(x) 

See Chapter 3 for a discussion of the intrinsic function shapeof. 

In a Nested Context 

Consider a slightly different version of increment: 

float:ShapeA increment_if_over_5(float:ShapeA x, 
float: ShapeA y) 

where (y > 5.) 
return (x + 1.); 

Figure 31 shows some sample results of a call to this new function. 



90 C· Programming Guide 
1I111II11111111111I111I11111111I11111111 111111111111111111111111111111111111111111111111111111111111I111111111111 II II IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII!IIIIII!IIIIIIIII illllllill I I III! II 

wi th (ShapeA) 
p3 = increment_if_over_5(pl, p2); 

shapeShapeA 

pl 

p2 

p3 

Figure 31. Three parallel variables after a function call 

Here is the way things are upon return from increment_if_ovar_S: 

• All positions have once again become active, as we discussed in Chapter 6. 

• In every position where p2 is greater than S, the corresponding element of p3 has 
been assigned the value of the corresponding element of pl plus I. 

• The values of all other elements of p3 are undefined. 

8.2 Passing by Value and Passing by Reference 

You can pass parallel variables by value or by reference, just as you can scalar variables. 
However, in deciding whether to pass by value or pass by reference, you must take into 
account the effect of inactive positions. 

When you pass a variable by value, the compiler makes a copy of it for use in the function. 
If the variable is parallel, and positions are inactive, elements in those positions have unde­
fined values in the copy. This is not a problem if the function does not operate on the 

( 
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inactive positions; if it does, however, passing by value can produce unexpected results. 
The function can operate on the inactive positions in the following situations: 

• 

• 

• 

If the function contains an everywhere statement to widen the context, and then 
operates on the parallel variable you pass. 

If it operates on an individual element of a parallel variable; see Section 6.2. 

If it performs send or get operations involving the parallel variable you pass; send 
and get operations are described in Chapter 10. 

As an example of the first situation, consider the following function: 

float:ShapeA f(float:ShapeA x) 
{ 

everywhere 
return (8. / x); 

What happens if we pass in a parallel variable with an inactive element? Figure 32 gives 
an example. 

where (pl != 1.0) 
p2 = f(pl); 

pl 

p2 

shapeShapeA 

... GJ 

o active 

~ inactive 

Figure 32. Passing by value when the function contains an everywhere statement 

The copy made of pl contains an undefined value, rather than 4.0, in the inactive position; 
therefore, the value in [1]p2 is also undefined. Note also that you would want to avoid 
dividing by an undefined value. 
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To avoid this situation, define the function so that it passes by reference rather than by 
value. 

8.3 Using Shapes with Functions 

8.3.1 Passing a Shape as an Argument 

C· functions accept shapes as arguments. The following function takes a shape as an argu­
ment and allocates a local variable of that shape. 

int number_of_active-positions(shape x) 
{ 

with (x) { 
int:x local = 1; 
return (+= local); 

The shape that you pass need not be the current shape. 

If the function also returns a parallel variable that is of the shape specified in the parameter 
list, its shape must be declared after the parameter list, to avoid a forward reference. For 
example: 

float raise(shape employees, float:employees salary):employees 
{ 

return (1.1 * salary); 

This format is not especially useful in this case, since employees must be the current 
shape. The format becomes more useful when you pass more than one shape, and data is 
passing between the shapes. For information on communicating between shapes, see the 
discussion of parallel left indexing in Chapter 10 and the discussion of general communica­
tion in Chapter 14. 

/ 
\ 

( 
\ 
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8.3.2 Returning a Shape 

93 
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c· functions can also return a shape. For example: 

shape choose_shape(shape ShapeA, shape ShapeB, int n) 
{ 

if (n) 

return ShapeA; 
else 

return ShapeB; 

This function returns ShapeA or ShapeS, depending on the value of n. 

A function that returns a shape can be used as a shape-valued expression-that is, you can 
use it in place of a shape name. For example: 

with (choose_shape (shape1, shape2, s1» 
/* ... */ 

See Section 9.7, however, for limitations on the use of a function as a shape-valued expres­
sion when you are declaring a parallel variable. 

8.4 When You Don't Know What the Shape Will Be 

Some functions you write may be general enough that they can accept a parallel variable 
of any shape as an argument For example, the print_sUDl function used as an example 
in Section 8.1 could work with any parallel variable. To allow this, C· introduces two new 
''predeclared'' shape names: current and voicl. A predeclared shape name is provided as 
part of the language; you do not declare it in your program. 

8.4.1 The current Predeclared Shape Name 

The predeclared shape name current always equates to the current shape; current is a 
new keyword that C· adds to standard C. You can use current to declare a parallel vari­
able as follows: 
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int:current variablel; 

If employee. is the current shape when this statement is executed, variable1 is of shape 
employee.; if image is the current shape, variable1 is of shape image. 

NOTE: Since current is dynamic, you cannot use it with a parallel variable of static stor­
age duration. 

Thus, we can generalize print sum as follows to let it take any parallel int of whatever 
. -

shape is current when the function is called: 

void print_sum(int:current x) 
{ 

printf (liThe sum of the parallel variable is %d.\n", +=x); 

In fact, this version of the function is more efficient than the version that specifies a particu­
lar shape name in the parameter list. If the function specifies a shape name (and you have 
turned safety on), the compiler has to first make sure that the shape is current, and that the 
parallel variable is of the current shape. If the function uses current, the compiler has to 
make sure only that the parallel variable is in fact of the current shape. 

8.4.2 The void Predeclared Shape Name 

c· extends the use of the ANSI C keyword void. In addition to the standard use, it can be 
used as the shape modifier for a scalar-to-parallel pointer; it specifies a shape without indi­
cating what the shape's name is. c· does no type checking of a void shape. 

Use void instead of a shape name in a function's parameter list to specify that any shape 
is acceptable as an argument to the function. If you are specifying a parallel variable that 
can be of any shape, a type specifier (for example, int, float) is still required. Since you 
cannot pass a parallel variable that is not of the current shape, void must be the shape 
modifier of a scalar-to-parallel pointer. For example, the following function sums the val­
ues of the active elements of a parallel int of any shape: 

int sum(int:void *x) 
{ 

} 

with (shapeof(*x» 
return (+= *x); 

./ 

( 

\ 

/ 
\ 
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You can also use void outside a parameter list to declare a scalar pointer to a parallel vari­
able. For example: 

int:void *ptr; 

This declares ptr to be a pointer to a parallel int of an undetermined shape. The shape 
is determined by the parallel variable whose address is ultimately assigned to the pointer. 
For example, if ptr points to p1: 

ptr = &pl; 

then ptr is a pointer to an int of shape ahapeof (p1) . But note that a parallel variable 
of another shape could subsequently be assigned to ptr, and the C· compiler would not 
complain; ptr would then simply point to the new parallel variable. 

Using shapeof with the void Shape 

While convenient, using the void shape slows down a program if run-time safety is en­
abled. It is therefore preferable to use void only for the first parameter of a function. For 
subsequent parameters of the same shape, use the ahapeof intrinsic function; ahapaof 
provides more information to the compiler, thereby allowing the compiler to generate 
better. code. Also use ahapaof in the controlling expression of the with statement to 
choose the current shape. 

For example: 

int sum_of_two_vars(int:void *x, int:shapeof(*x) *y) 

with (shapeof(*x» 
return (+= (*x + *y»; 

For parameters declared locally within the function, use current: 
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float average(int:void *x) 
{ 

} 

.with (shapeof(*x» { 
int:current y = 1; 
return (+=*x / +=y); 

Using void when Returning a Pointer 

Consider the following function, which is passed a shape and retums a pointer to a parallel 
variable of that shape: 

int *f(shape ShapeA):ShapeA 
{ 

/* ••• * / 
} 

/* This is wrong */ 

The shape of the return value must come after the parameter list, to avoid a forward refer­
ence. However, C· doesn't allow this alternative syntax for a function returning a pointer. 
The problem is the same as that discussed in Section 7.3.1; the compiler interprets the re­
turn value incorrectly as "a parallel pointer of shape ShapeA to a scalar int," and 
parallel-to-scalar pointers do not exist in C·. 

Use void instead of the shape name for the return value in this situation. For example: 

int:void *f(shape ShapeA) 
{ 

/* ... * / 

Note that this causes an unavoidable loss of some type-checking, since the compiler cannot 
check. for the correct use of the shape of the variable pointed to. 

( 

\ 



/ 

Chapter 8: Functions 97 
mlm!I::1 ;][ III :Iil I: :11!::um:II:!!II!!Im::: Ii; i :1[ : : iIE![!!i i j II iJ il!! III I II 

8.5 Overloading Functions 

It may be convenient for you to have more than one version of a function with the same 
name-for example, one version for scalar data and another for parallel data. This is known 
as overloading. C· allows overloading of functions, provided that the functions differ in 
the type of at least one of their arguments or in the total number of arguments. For example, 
the following versions of function f can be overloaded: 

void f (int x); 
void f(int x, int y); 
void f(int:current x); 

Use the overload statement to specifY the names of the functions to be overloaded. For 
example, the following statement specifies that there may be more than one version of the 
increment function: 

overload increment; 

Put the overload statement at the beginning of the file that contains the declarations of 
the functions. The statement must appear before the declaration of the second version of 
the function, and it must appear in the same relative order with respect to the function dec­
larations in all compilation units. Thus, if it appears first in one compilation unit, it must 
appear first in all compilation units. If you use a header file for your function declarations, 
this happens by default. 

If you have different versions of more than one function, separate the function names by 
commas in the overload statement. For example: 

overload increment, average; 

NOTE: The current implementation of C· restricts the shapes you can specifY in parameters 
to an overloaded function. Only current and void can be used in overloaded functions. 





Chapter 9 

More on Shapes 
and Parallel Variables 

Chapter 3 introduced C· shapes and parallel variables. This chapter discusses more aspects 
of tQese important topics. Specifically: 

• Partially specifying a shape; see Section 9.1. 

• Creating copies of shapes; see Section 9.2. 

• Dynamically allocating and deallocating a shape; see Sections 9.3 and 9.4. 

• Using the C· h"brary function palloc to explicitly allocate storage for a parallel 
variable; see Section 9.S. 

• Casting to a shape, and casting to or from a parallel data type; see Section 9.6. 

9.1 Partially Specifying a Shape 

It is possible to declare a shape without fully specifying its rank and dimensions. You might 
do this, for example, if the number of positions in the shape is to be determined from user 
input. For example, 

shape ShapeA; 

declares a shape ShapeA but does not specify its rank or dimensions. Such a shape is folly 
unspecified. 

shape [] ShapeB; 

99 
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specifies that ShapeS has a rank of 1, but does not specify the number of positions. Such 
a shape is partially specified. 

You must fully specify a shape before using it (for example, before allocating parallel vari­
ables of that shape). Sections 9.2 and 9.3 describe ways of fully specifying a partially 
specified or fully unspecified shape. 

The ranko:f intrinsic function returns 0 for a fully unspecified shape. For a partially speci­
fied shape, it returns the negative of the rank. For example, given the following shapes: 

shape s, [] [] t, [8092]u; 

The following statements are true: 

rankof(s) == 0; 
rankof(t) == -2; 
rankof(u) == 1; 

This information can be used if you don't know whether or not a shape is fully specified­
for example, in a function, where the function can fully specify a shape only if necessary. 

9.1.1 Partially Specifying an Array of Shapes 

You can also create an array of shapes that is partially specified. For example, 

shape ShapeC[10]; 

declares that ShapeC is an array of 10 shapes, but does not specify the rank or dimensions 
of any of them. 

shape [] []ShapeD[10]; 

declares that ShapeD is an array of 10 shapes, each of rank 2, but does not specify the 
number of positions in any of them. 

A shape within such an array is specified with a right index in the standard manner. For 
example, 

with (ShapeD[O]) 

( 
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makes the first shape in the array the current shape. Note that the shape must become fully 
specified before you can use it in this way. 

You cannot use a parallel variable as an index into an array of shapes. 

Arrays and Pointers 

The standard C equivalence of arrays and pointers is maintained in C· with arrays of 
shapes and pointers to shapes. For example, if we declare a scalar pointer to Sarray: 

shape *ptr; 
ptr = Sarray; 

then *ptr is equivalent to Sarray [0] and to *Sarray. Similarly, 

Sarray[3] 

is equivalent to 

* (ptr + 3) 

and to 

* (Sarray + 3) 

9.1.2 Limitations 

You cannot partially specify the dimensions of a shape. The following is incorrect: 

shape [] [4]ShapeE; /* This is wrong */ 

Also, you cannot partially specify the rank: of a shape. The following is incorrect, if you 
later want to specify the shape as having a rank: of 2: 

shape [ ] ShapeF; 
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A program cannot call the posi tionsof or dimof intrinsic functions if the information 
they require has not yet been specified. If it is known when the program is being compiled 
that an error will result from such a call, the compiler reports an error. Otherwise, a run­
time error is reported. 

A shape must be :fully specified before you can declare a parallel variable to be of that 
shape. You generally receive a compiler error if you try to declare a parallel variable to be 
of a shape that is not :fully specified. A couple of exceptions: 

• If the parallel variable is declared as an automatic in a nested scope. For example: 

shape ShapeA; 

main () 
{ 

int:ShapeA pl; 

In this case, the compiler assumes that ShapeA is :fully specified elsewhere in the 
program. If it is not, a run-time error may be generated, depending on the safety 
level you choose. 

• If the shape has a storage class of extern. For example: 

extern shape ShapeB; 
int:ShapeB p2; 

In this case, the compiler assumes that ShapeS is :fully specified in some other 
compilation unit, and a run-time error may be generated if it is not. 

The next section describes how to, in effect, create copies of shapes. The section after that 
describes how to :fully specify a partially specified or :fully unspecified shape using the C· 
intrinsic function allocate shape. 

9.2 Creating Copies of Shapes 

One way to :fully specify a shape is by using the assignment operator to copy a :fully speci­
fied shape to a partially specified one. For example: 

/ 

\ 
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shape ShapeA; 
shape [256] [256]ShapeB; 
ShapeA = ShapeB; 

In this case, both ShapeA and ShapeB refer to the same shape. You can use either one in 
a wi th statement to make this shape the current shape. This is different from what would 
happen ifboth were declared separately, but with the same dimensions. For example: 

shape [256] [256]ShapeA; 
shape [256] [256]ShapeB; 

In this case, ShapeA and ShapeB refer to two separate physical shapes that happen to have 
the same rank and dimensions. 

You can also fully specify a shape by using a shape-valued expression as the RHS of the 
assignment. For example: 

ShapeA = shapeof(p1); /* p1 is a parallel variable of some 
other shape */ 

ShapeB = (new_shape () ) ; /* new_shape returns a shape */ 
ShapeC *ptr; /* ptr is a pointer to a shape */ 

9.2.1 Assigning a Local Shape to a Global Shape 

Be careful when assigning a fully specified shape in local scope to a partially specified 
shape in file scope. The following code illustrates the problem: 

shape ShapeA; 

void f (void) 
{ 

shape [1024] [512]ShapeB; 

ShapeA = ShapeB; 

main () 
{ 

fO; 
{ 

/* Unspecified shape ShapeA */ 

/* Fully specified shape ShapeB 
in local scope */ 

/* ShapeB assigned to ShapeA */ 
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int:ShapeA p1; 

} 

1* This allocation fails because 
ShapeA's shape was deallocated 
when function f exited. */. 

In this case, the actual physical shape that ShapeA refers to is allocated in local scope. 
When function f exits in the sample code, this shape is deallocated. When the code subse­
quently 1ries to declare a parallel variable of shape ShapeA, it gets an error, because the 
shape no longer exists. 

The situation is analogous to what happens when a local pointer is assigned to a global 
pointer in standard C. 

9.3 Dynamically Allocating a Shape 

Another way to fully specify a partially specified or fully unspecified shape is to use the 
C· intrinsic function allocate_shape. allocate_shape's first argument is a pointer 
to a shape; its second argument is the rank of this shape; subsequent arguments are the 
number of positions in each rank. The function returns the shape it points to. For example, 

shape []ShapeB; 
ShapeB = allocate_shape(&ShapeB, 1, 65536); 

complete the specification of the partially specified one-dimensional shape ShapeS. 

You needn't partially specify a shape before calling allocate_shape. For example, 

allocate_shape (&new_shape, 3, 2, 2, 4096); 

returns a three-dimensional shape called new_shape. 

allocate_shape can also fully specifY elements of an array of shapes. For example: 

ShapeD[O] = allocate_shape(&ShapeD[O], 2, 4, 16384); 

Alternatively, you can use an array to specifY the number of positions in each rank. This 
format is useful if the program will not know the rank until run time, and therefore can't 
use the variable number of arguments required by the previous syntax. The following ex-

( 

\ 
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ample reads the rank and dimensions in from a file named shape info and uses these 
values as arguments to allocate_shape. 

#define MAX AXES 31 
#include <stdio.h> 

main () 
{ 

FILE *f; 
int axes[MAX_AXES], i, rank; 
shape ShapeA; 

f = fopen("shape_info", "r"); 

fscanf(f, "%d", &rank); 
if (rank > MAX_AXES) { 

fprintf (stderr, "Rank bigger than maximum allowed.\n"); 
exit(1); 

for (i = 0; i < rank; i++) 
fscanf(f, "%d", &axes[i]); 

ShapeA = allocate_shape(&ShapeA, rank, axes); 

Note that axes is initialized as an array of 31 elements, since the CM restricts shapes to 
a maximum of 31 dimensions. Of course, the fIle shape_info could contain fewer than 
the maximum number of dimensions. 

NOTE: For certain programs you may be able to improve performance by using the intrin­
sic function allocate detailed shape instead of allocate shape; see - - -
AppendixA. 

9.4 Deallocating a Shape 

Use the C'" library function deallocate_shape to deallocate a shape that was allocated 
using the allocate_shape function. Its argument is a pointer to a shape. Include the 
header file <stdlib. h> if you call deallocate_shape. Note that this is not required for 
allocate_shape, which is an intrinsic function. 
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There are two reasons you might deallocate a shape: 

• If you have reached the limit on the number of shapes imposed by your eM system 

• If you want to reuse a partially specified shape 

As an example of the latter, consider the following code: 

'include <stdlib.h> 

shape [lSi 
int positions = 4096; 

main () 
{ 

while (positions<=65536) { 
S = allocate_shape(&S, 1, positions); 

{ 

int:S p1, p2, p3; 
/* Parallel code omitted ..• */ 

deallocate_shape(&S); 
positions *= 2; 

In this code, shape s is allocated every time it goes through the while loop, and deallo­
cated at the end of the loop. This lets it have a different number of positions each time 
through the loop. 

The results of dea1locating a shape that was fully specified at compile time are undefined; 
the compiler generates an error when it notices a program doing this, but it doesn't guaran­
tee that it will catch all cases. 

You should not deallocate a shape that contains parallel variables; if you do, the behavior 
of these parallel variables is undefined. Note that in the code fragment above, the parallel 
variables declared to be of shape s go away when you leave the block. 

As discussed in Section 9.2, you can create copies of shapes by assigning one shape to 
another. If you have created copies of shapes in this way and you deallocate one, the effect 
on the others is undefined. 

\ 
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9.5 Dynamically Allocating a Parallel Variable 

The c· library routine palloc is the parallel equivalent of C library routines like malloc 
and calloc. Use it to explicitly allocate storage for a parallel variable. It can be called 
whether or not the parallel variable's shape is dynamically allocated. Include the file 
<atdlib. h> if you call palloc or its companion function pfrae. 

palloc takes two arguments: a shape, and a size (in boolS). It allocates space of that size 
and shape, and returns a scalar pointer to the beginning of the allocated space. The shape 
passed as an argument must be fully specified before palloc is called. 

palloc returns 0 if it cannot allocate the memory. 

To allocate space for a parallel variable of shape ShapeA, for example, you could do the 
following: 

tinclude <stdlib.h> 

shape [16384]ShapeA; 
int:ShapeA *ptr; 

main () 
{ 

ptr = palloc(ShapeA, boolsizeof(int:ShapeA»; 

The scalar variable ptr now contains a pointer to an int-sized parallel variable of shape 
ShapeA. You can reference this parallel variable by using *ptr. The contents of the paral­
lel variable are undefined. 

Use pfr •• to deallocate storage you allocated with palloc. pfree takes as its argument 
. the pointer returned by palloc. For example, to deallocate the storage allocated by the call 
to palloc above, call pfr •• as follows: 

pfree(ptr); 

The palloc and pfrae calls can also be used with a dynamically allocated shape, as in 
the following example: 

tinclude <stdlib.h> 

shape S; 
double:S *p; 
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main () 
{ 

S = allocate_shape(&S, 2, 4, 8192); 
p = palloc(S, boolsizeof(double:S»; 
/* ... * / 
pfree(p); 
deallocate_shape(&S); 

Note that you can declare a scalar pointer to a shape that is not fully specified, even though 
you cannot declare a parallel variable of that shape. 

9.6 Casting with Shapes and Parallel Variables 

Use the C·· cast operator to cast an expression to a particular shape and type. For example, 

(char:employees) 

specifies that the expression following it is to be formed into a char of shape employeea. 
A data type is required as well as a shape in a parallel cast. 

9.6.1 Scalar-to-Parallel Casts 

Using a parallel cast is a quick way to })romote a scalar value. The following code stores 
in scalar variable a1 the number of active positions of the current shape: 

sl = +=(int:current) 1; 

In the statement, I is cast to a parallel int of the current shape. The += reduction operator 
sums the resulting parallel variable for all active positions, and the result is assigned to the 
scalar variable al. 

( 

\ 
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9.6.2 Parallel-to-Parallel Casts 

Parallel-to-parallel casts are also permitted. 

Casts to a Different Type 

You can cast a parallel variable so that it has a different type. For example: 

int:ShapeA pI; 
sqrt«double:ShapeA)pl); 

The parallel version of sqrt requires a float or a double; therefore, we must cast the 
parallel int pl before we can pass it to this function. 

Casts to a Different Shape 

Casting of a parallel variable to a different shape is limited to the situation in which the 
same shape can be referenced by more than one name. In this case, a cast may sometimes 
be necessary to ensure that the compiler recognizes that two parallel variables are supposed 
to be of the same shape. For example: 

shape [256) [256)ShapeB, ShapeA; 

main () 
{ 

} 

ShapeA = ShapeB; 
{ 

int a:ShapeA, b:ShapeB; 
with (ShapeB) { 

b = a; 

b = (int:ShapeB)a; 
} 

/* This gets a compile-time error */ 
/* This works */ 

The cast is required so that the compiler is made aware that ShapaA and ShapeB refer to 
the same shape. 

No movement of data is implied in a parallel-to-parallel cast. 
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The effects of casting an expression between two shapes that are different (for example, 
with a different rank or number of positions) are undefined. 

9.6.3 With a Shape-Valued Expression 

You can use a shape-valued expression with a scalar-to-parallel or parallel-to-parallel cast. 
The expression must be enclosed in parentheses unless it is an intrinsic function. For 
example, 

sl = +=(int: (shape_array[3]»1; 

casts 1 to be an int of the fourth shape in the array shape_array. 

9.6.4 Parallel-to-Scalar Casts 

You can cast a parallel variable to a scalar type. The result is similar to a demotion of a 
parallel variable when assigning it to a scalar (see Chapter 5); the operation picks one of 
the active values of the parallel variable and returns that as the result. If no positions are 
active, the result of the cast is undefined. If you choose the appropriate safety level, you 
receive a run-time error if no positions are active. 

9.7 Declaring a Parallel Variable with a 
Shape-Valued Expression 

A shape-valued expression, as we have described earlier, is an expression that can be used 
in place of a shape name. You can therefore use a shape-valued expression in declaring a 
parallel variable. The expression must be enclosed in parentheses unless it is the ahapeof 
intrinsic function. For example: 

shape [256] [256]matrix; 
int:matrix p1; 
int:shapeof(p1) p2; /* p2 is of shape matrix */ 
int: (get_a_shape(» p3; /* get_a_shape returns a shape */ 

I 
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However, if the declaration appears at file scope, or is static or extern, the shape-val­
ued expression must be a constant This means that the expression must be one of the 
following: 

• 

• 

A simple shape that is fully specified at compile time, or that has a'storage class 
of extern. For example, shapeo~ in the example above refers to a fully speci­
fied shape. 

An array of shapes that is fully specified at compile time and whose right index is 
a constant expression. For example: 

shape [256] [512]Sarray[40]; 
int:(Sarray[17]) p1; 
int:(Sarray[4-3]) p2; 

• An indirection of an array of shapes that is fully specified at compile time, with a 
constant expression added to it For example: 

shape [512] [256]Sarray[40]; 
~ int: (*(Sarray + 17» p1; 

int: (*(Sarray + 4 - 3» p2; 

The following are illegal: 

shape Sarray1[40]; 
int: (Sarray1[17]) p1; /* This is wrong */ 

Sarrayi is not fully specified; therefore, you can't declare pi to be a parallel variable of 
any of the elements of it. 

shape [512] [256]Sarray[40]; 
int: (Sarray[f(x)]) p1; /* This is wrong */ 

In this case, Sarray is fully specified, but f (x) is not a constant expression, since it 
invokes a function whose result is not known until run time. 

shape *ptr; 
int:(*ptr) p1; /* This is wrong */ 

In this case, ptr does not point to a fully specified shape. 
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9.8 The physical Shape 

C· contains the predeclared shape name physical; physical is a new keyword that C· 
adds to standard C. The shape physical is always ofrank 1; its number of positions is the 
number of physical processors to which the program is attached when it runs on a Connec­
tion Machine system. Note, therefore, that the number of positions in the shape is not 
known until run time. You can use physical as you would any other shape. 

For example, 

positionsof(physical); 

returns the number of positions in shape physical, which is equal to the number of physi­
cal processors on which the program is running. 

(int:physical) pi 

casts pl to be an int of shape physical. 

( 
\. 
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This chapter describes methods you can use to perform communication among parallel 
data. For example: 

• Sending values of parallel variable elements to other elements of the same or a 
different shape. 

• Getting values of parallel variable elements that are of the same or a different 
shape. 

c· provides two methods of communication: 

• General communication, in which the value of any element of a parallel variable 
can be sent to any other element, whether or not the parallel variables are of the 
same shape. You can use parallel left indexing to perform general communication. 
Parallel left indexing is described in Section to.1. 

• Grid communication, in which parallel variables of the same shape can communi­
cate in regular patterns by using their coordinates. We use the term "grid 
communication" since the coordinates can be thought of as locating positions on 
an n-dimensional grid. Grid communication is faster than general communication. 
You can use the pcoord function, combined with parallel left indexing, to perform 
grid communication. The pcoord function is described in Sections 10.2 and 10.3. 

In addition to the methods described in this chapter, C· includes a library of functions that 
provide an alternative way of performing grid and general communication; these functions 
are discussed in Part ill of this manual. There are some differences in what you can accom­
plish using the different methods. but for most purposes the choice between the methods 
depends on individual preference. 

113 
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1 0.1 Using a Parallel Left Index for a Parallel Variable 

By now you should be familiar with the left indexing of a parallel variable to specify an 
individual element. For example, [O]pl specifies the :first element of the I-dimensional 
parallel variable pl. Similarly, if al and a2 are scalar variables, their values determine 
which element is specified by the 2-dimensional parallel variable [al] [a2] ell. But we 
have not yet covered the case in which a parallel variable is used as a left index for another 
parallel variable. If pO and pI are both I-dimensional parallel variables, what does [pO] pI 

mean? If dO, dl, and d2 are all2-dimensional parallel variables, what does [dO] [dl] d2 

mean? 

Basically, a parallel left index rearranges the elements of the parallel variable, based on the 
values stored in the elements of the index; the index must be of the current shape. The 
example discussed below will help show how this works. (Note that this and other 
examples in this chapter do not represent valid shapes, because there are too few positions; 
we use these small shapes to make it easier to visualize what happens when you use a 
parallel left index.) 

o 1 2 3 4 

aource o 10 20 30 40 

index 1 3 0 4 2 

deat 

Figure 33. Three parallel variables 

10.1.1 A Get Operation 

Given the situation shown in Figure 33, what is the result of the following statement? 

( 
I 

'" 

/ 
\ 

/ 

\ 
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dest = [index] source; 

Let's look flISt at what goes into element 0 of dest. The value in element [0] of index is 
1. This value is used as an index into the elements of source. The value in element 1 of 
source is 10. Therefore, element 0 of dest gets assigned the value 10. The way to think 
of this is that the LHS variable gets a value of the RHS variable, based on the value of the 
corresponding element of the index variable; we refer to this as a get operation. In C· code, 
what happens is this: 

[Oldest = [1] source; 

For element 1 of dest, the value of the index variable is 3. Therefore, element 1 of deat 
gets the value of element 3 of source, which is 30. In C~ code: 

[l]dest = [3] source; 

And for the remainjng elements: 

[2]dest 
[3]dest = 
[4] dest 

[0] source; 
[4] source; 
[2] source; 

It's important to note the difference between parallel left indexing and these serial state­
ments. Parallel left indexing causes these assignments to occur at the same time, in parallel. 
In the serial statements, the result of an earlier statement could affect the result of a later 
one; this does not happen when all the statements are executed at the same time. 

Figure 34 shows the results of the assignment statement for all elements of dest; the 
arrows show the process by which a value is assigned to [0] dest. The value of [0] index 

is 1, which causes [0] dest to get the value in [1] source. 
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o 

source 

indez 

dast 
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1 2 3 4 

Figure 34. Parallel left indexing of a parallel variable-a get operation 

10.1.2 A Send Operation 

Here is another assignment statement that uses the data in Figure 33: 

[index]dest = source; 

In this case, index is being used as an index for dest. In statements oftbis form, the RHS 
variable sends a value to the LHS variable, based on the value of the corresponding element 
of the index variable; we refer to this as a send operation. 

Let's look at element 0 of source. The value in element 0 of the index variable index is 
1; this value is used as an index into dest. The value in element 0 of source, 0, is sent 
to element 1 of deat. In C· code: 

[l]dest = [0] source; 

For element 1 of source, in the corresponding element, the value of indez is 3; therefore, 
the value in element 1 of source, 10, is sent to element 3 of deat. In C· code: 

[3]dest = [l]source; 

The serial C· statements for the rest of the elements are: 

/ 

I", 
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[Oldest = [2]source; 
[4]dest [3]sourcei 
[2]dest = [4]source; 

117 
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Note once again, however, that parallel left indexing causes all these statements to be exe­
cuted at the same time. The results are shown in Figure 35; the arrows show the process 
by which the value in [0] source is assigned to an element of des t. The value in 
[0] index is 1; therefore, [0] source sends its value to [l]dest. 

[index]dest - source; 

source 

index 

dest 

Figure 35. Parallel left indexing of a parallel variable-a send operation 

10.1.3 Use of the Index Variable 

The index variable would typically contain values that cause a meaningful rearrangement 
of the parallel variable it indexes. For example, if we use the values shown in Figure 36, 

dest = [index]sourcei 

causes dest to contain the source values in reverse order; the arrows show the process 
by which [Oldest gets its value, based on the index in index. 

The index variable cannot reference nonexistent elements of a parallel variable. For exam­
ple, an index value of 5 in Figure 36 creates an error. If you choose the appropriate level 
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of safety, you get a run-time error when you program tries to do this. Otherwise, the results 
are unpredictable. 

[illdex] dest • source; 

source 

clest 

Figure 36. An index that reverses the order of a parallel variable 

10.1.4 If the Shape Has More Than One Dimension 

Parallel left indexing can be used if the parallel variable is of a shape with more than one 
dimension. In this case, however, you need to specify a left index for each axis of the shape. 
For example: 

shape [128] [S12]ShapeA; 
int:ShapeA dest, indexO, index1, source; 

main () 
{ 

with (ShapeA) 
dest = [indexO] [index1] source; 

} 

In this case, source is of the 2-dimensional shape ShapeA. Therefore, it requires two left 
indexes to specify the values to be assigned to deat. indexO is used as the index for axis 
o of source, and indexl is used as the index for axis 1 of source. 
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If one of the indexes is parallel and one or more are scalar, the scalar indexes are promoted 
to parallel in the current shape. 

10.1.5 When There Are Potential Collisions 

In the examples of parallel left indexing shown so far, the index variable, index, has had 
different variables in each element. Let's consider a situation, shown in Figure 37, where 
this is not true. 

o 1 3 4 

source o 10 20 30 40 

index 1 1 1 1 1 

dest 

Figure 37. An index with the same value in each element 

For a Get Operation 

Using the data in Figure 37. the result of the following get operation is straightforward: 

dest = [index]source; 

For each element of dest, the index index into source is 1. This means that the value 
in element 1 of source. 10. is assigned to each element of dest, as shown in Figure 38. 
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dest == [index] source; 

o 1 3 4 

source o 10 20 30 40 

1 1 111 

dest 10 10 10 10 10 

Figure 38. A get operation where the index bas the same value in each element 

It is equivalent to the following C· code: 

[Oldest = [l]source; 
[l]dest = [1] source; 
[2]dest - [l]source; /* ••. and so on */ 

except that all operations are canied out at the same timet in parallel. There are no potential 
collisions in get operations. 

For a Send Operation 

If we try the followingt however: 

[index]dest = source; 

we have a problem. For each element of sourcet the index into clest is 1. This means that 
all the values of all the elements of source attempt to write into element 1 of dest. In 
serial C· code: 

[l]dest = [O]source; 
[l]dest. = [l]source; 
[l]dest [2] source; /* ••• and so on */ 

/ 

\ 
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This is an example of potential collisions, which could occur when more than one element 
tries to write into the same element at the same time. To avoid the collisions, C· chooses 
one of the source elements to assign to [1] dest. How it chooses the element is dermed 
by the implementation. 

You can use any C· reduction assignment operator in this situation. For example, we could 
specify the following: 

[index]dest += source; 

This statement says: If there is going to be a collision of source values assigned to any 
of the elements of dest.. add the values of the source elements that would otherwise 
collide, then add this result to the value of the dest element. 

In cases where there are no collisions, the value of the source element is simply added to 
the value of the des t element. In the example, all the values of source are summed, and 
the result is assigned to element 1 of dest, as shown in Figure 39. (Note that if you /mew 
all the index values were the same, it would be more efficient to use a simple unary 
reduction operator instead of doing parallel left indexing.) 

[index]dest += source; 

o 

source o 

index 1 

dest 

1 2 3 4 

10 20 30 40 

1 111 

1 100 I 

Figure 39. A reduction assignment when the parallel left index is on the LHS 

The kind of reduction assignment operator you use specifies the way the colliding elements 
are combined. For example, the >?= operator selects the maximum value of the elements. 
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Note that the reduction occurs only for elements that would otherwise collide. Given the 
examples shown in the previous section, for example, the type of reduction assi~ent you 
use would not matter, because there are no possible collisions. This is consistent with the 
way parallel-to-scalar reduction operators work, because all values of the parallel variable 
will collide when they are assigned to a scalar variable; therefore, all must be included in 
the specified reduction operation. 

To sum up: 

• In a get operation, you don't have to consider using a reduction assignment opera­
tor, because there are no potential collisions. 

• In a send operation, there may be potential collisions. If you simply use - instead 
of a reduction assignment operator, and there is a potential collision, C· picks one 
of the colliding values and assigns it to the element. 

10.1.6 When There Are Inactive Positions 

The examples of parallel left indexing shown so far have assumed that all positions are 
active. What happens when a where statement makes some positions inactive? 

For a Get Operation 

Consider the following get operation: 

where (source < 30) 
dest = [index]source; 

In this situation, the where statement deselects positions [3] and [4], using the data shown 
in Figure 40, but it deselects them only for getting purposes. Parallel variable elements in 
these positions cannot get values; however, elements in active positions can obtain values 
from them. The serial C· code would therefore be: 

[Oldest = [l]source; 
[l]dest = [3]source; 
[2]dest [O]source; 

( 
\ 
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except that all operations occur at the same time. Figure 40 shows the results; the mows 
show how [1] clest gets its value. 

wbare 'source < 30) 
clest=[index] source; 

source 

index 

clest 

Figure 40. A get operation with inactive positions 

Note these results: 

o active 

f<.<1 inactive 

• 
• 

[1] clest gets a value from [3] source, even though position [3] is inactive . 

[4] clest does not get a value from [2] source, because position [4] is inactive . 

For a Send Operation 

Send operations work similarly: 

where (source < 30) 
[index]dest = source; 

The where statement "turns off" positions 3 and 4, as shown in Figure 41. But it turns them 
off only for sending purposes. Elements in inactive positions cannot send values, but they 
can receive values from elements in active positions. Thus, the serial C· version of this 
statement would be: 
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[l]dest [0] source; 
[3]dest = [l]source; 
[Oldest = [2] source; 

The results are shown in Figure 41; the arrows show how the value in [1) source is sent 
to [3)dest. 

where (source> 30) 
[index)dest=source; 

source 

index 

dest 

Figure 41. A send operation with inactive positions 

D active 

o inactive 

Note these results: 

• [1) source sends its value to [3) dest, even though position [3] is inactive, be­
cause position [1] is still active. 

• [4) source does not send its value to [2) dest because position [4] is inactive. 

One way to look at the concept of inactive positions in these situations is that the parallel 
variable without the parallel left index is the one doing the work (sending or getting). When 
a position is made inactive, it can't do work, but it can have work done to it. Thus: 

• 

• 

In a send operation, the inactive position can't send, but other positions can send 
to it. 

In a get operation, the inactive position can't get, but other positions can get 
from it. 

/ 

( 
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Send and Get Operations in Function CaUs 

As we mentioned in Section 8.2, you should be careful about passing a parallel variable by 
value to a function that involves the parallel variable in a send or get operation. If there are 
inactive positions when the function is called, the results may not be what you expected. 

For example, suppose we defme the following function: 

int:current get_op(int:current source, int:current index) 
{ 

return ([index]source); 

If we use the data and the context from Figure 40, we get the results shown in Figure 42. 

where (source < 30) 
dest = qet_op(source, index); 

o 1 1 3 4 

source o 

inclez 

dest 10 

Figure 42. A function that includes a get operation 

o 
II? u::.d 

active 

inactive 

Note the difference in results between Figure 40 and Figure 42: In Figure 40, [1] d.est got 
its value from [3] source, even though position [3] was inactive. In Figure 42, [1] dest 
receives an undefined value. This happens because the compiler makes a copy of a parallel 
variable when it is passed by value, and elements at inactive positions receive undefined 
values. 
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The solution is to pass source by reference. In that case, the compiler does not make a 
copy of the parallel variable, and the function can gain access to values at inactive posi­
tions. 

Note that in send operations it is the dest parallel variable that should be passed by refer­
ence, since positions can send to an inactive destination. 

10.1.7 Mapping a Parallel Variable to Another Shape 

One use of the parallel left index is to map a parallel variable into another shape. Consider 
the situation shown in Figure 43. 

shape ShapeD 

o 1 1 

o 0 1 2 shape ShapeP 
index 

1 3 4 5 o 1 1 3 4 5 

source 10 11 12 13 14 15 

dest 

Figure 43. 'I\vo shapes 

The statement: 

dest = [index]source; 

has the same interpretation as before: Elements of dest get values of source, based on 
the value in the corresponding element of index. But in this situation, we are essentially 
mapping source into shape ShapeD, based on index. ShapeD must be the current shape. 

( 

\ 
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Since the values in index are the same as the coordinates for ShapeP, the assignment is 
straightforward: the value of index for position [0][0] is 0; this value is used as an index 
into the elements of source. The value of element [0] of source is 10; therefore, 10 is 
assigned to element [0][0] of dest. 

The mapping occurs only for the specified operation; it does not permanently affect the 
parallel variable being mapped. For example, source remains of shape ShapeP after the 
operation above. 

shape ShapeD 

o o 1 2 shape ShapeP 
index 

1 3 4 5 

10 11 12 
dest 

13 14 15 

Figure 44. Mapping a parallel variable to another shape 

If a parallel variable is not of the current shape, you can use a parallel left index to map it 
to the current shape and then operate on it. For example: 

shape [64] [64] ShapeD; 
int:ShapeD index, dest; 
shape [16384]ShapeP; 
int:ShapeP source; 

/* Code to initialize variables omitted. */ 

main () 
{ 

with (ShapeD) 
[0] [Oldest += source; 

[0] [1]dest += [index] source; 

/* This doesn't work--source 
is the wrong shape. */ 

/* This does work. */ 
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Only active elements of a parallel left index participate in the indexing. Ifwe add a where 
statement to the code example above and assume the data shown in Figure 43: 

/* ... */ 
wi th (ShapeD) 

where (index != 0) 
[0] [Oldest += [index]source; 

the value of element [0] of source is not included in the summation. 

10.1.8 Limitation of Using Parallel Variables with a 
Parallel Left Index 

A parallel variable with a parallel left index is a modifiable lvalue; therefore, it can appear 
as the left operand of assignment operators, as the operand of prefix or postfix ++ or --, 
and in all cases where an rvalue is needed. You cannot, however, take the address of it using 
the , operator. (In general, this would require a parallel pointer handle, which isn't sup­
ported in C·.) 

10.1.9 What Can Be Left-Indexed 

Parallel left indexing follows the general rules about performing parallel operations within 
the current shape; see Section 4.4. Specifically: 

• If an expression is of the current shape, you can always left-index it. 

• If an expression is not of the current shape, you can left-index it if it is any of the 
following: 

• A simple identifier. 

• A per-processor array that is not of the current shape, if it is right-indexed 
by a scalar value. (You cannot left-index an array that is not of the current 
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shape if it has a parallel right index, because that would require a parallel 
operation on a variable not of the current shape.) 

• A parallel variable with the , operator applied to it to take its address. 

• A member of a parallel structure or union that is not of the current shape 
(so long as the member is not an aggregate type, such as another structure 
or union). 

10.1.10 An Example: Adding Diagonals In a Matrix 

The example in this section uses a parallel left index and the +- reduction assignment 
operator to add diagonals in a matrix. It uses the data shown in Figure 45. 

shape ShapeA 

o 1 :& 3 

o 0 1 2 3 

1 4 5 6 7 
source 

:& 8 9 10 11 

3 12 13 14 15 

3 4 5 6 

2 3 4 5 
index 

1 2 3 4 

0 1 2 3 

Figure 45. Two 4-by-4 parallel variables 

The task is to add the values of source in the diagonals of the matrix. The following code 
accomplishes this. 
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shape [4] [4]ShapeA; 
shape [7]ShapeB; /* Not legal shapes-for example purposes 

only */ 
int:ShapeA source, index; 
int:ShapeB dest = 0; 

/* Code to initialize the parallel variables omitted */ 

main () 
{ 

with (ShapeA) 
[index]dest += source; 

As you can seet the actual computation is quite simplet once the data has been set up prop­
erly. Lefs look in detail at the statement: 

[index]dest += source; 

First, note that the statement is legal, even though clest is not of shape ShapeA, since clest 
is left-indexed by a parallel variable that is of that shape. The statement says: Use index 
as an index into dest for sending values of source; if there are potential collisions, add 
the values of source. SOt for examplet element [0][0] of parallel variable source is as­
signed to element [3] of destt because the value of the corresponding element of index 
is 3. Element [l][n element [2][2]t and element [3][3] are also assigned to element [3] 
of clest. They are all adde~ thus avoiding collisions. 

The other elements of source are also assigned to des~ based on the value of the corre­
sponding elements of index. The result is the addition of the diagonals. Figure 46 shows 
the resultst highlighting the values that go into [3] cleat. 

( 

I 

" 
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wi th (ShapeA) 
[index]dest +=source; 

shape ShapeA 

o 1 2 3 

o 

1 
source 

2 

3 

3 4 5 6 

2 3 4 5 
index 

1 2 3 4 

0 1 2 3 

shape ShapeP 

clast 

Figure 46. Using parallelleft indexing to add the diagonals of a matrix 

10.2 Using the pcoord Function 

6 

C· includes a new library function called pcoord, which is especially useful when 
combined with parallel left indexing. Use pcoord to create a parallel variable in the 
current shape; each element in this variable is initialized to its coordinate along the axis you 
specify. For example, 

shape [65536]ShapeA; 
int:ShapeA pI: 

main () 
{ 
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wi th (ShapeA) 
pl = pcoord(O); 

} 

initializes pl as shown in Figure 47. 

pl • pcoord(O); 

shape ShapeA 

0 1 2 3 4 5 6 7 8 

pl 0 1 2 3 4 5 6 7 8 

Figure 47. The use ofpcoord with a l-dimensional shape 

Likewise, for a 2-dimensional shape, 

shape [4] [4096]ShapeB; 
int:ShapeB p2; 

main () 
{ 

with (ShapeB) 
p2 = pcoord(l); 

initializes p2 as shown in Figure 48. 

65535 

1655351 

( 
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p2 = pcoord(l); 

o 1 

o 0 1 

1 0 1 
p2 

2 0 1 

3 0 1 

2 

2 

2 

2 

2 

i !J11:::Ii!!I!IDJj:rJ..m::::.~ 

3 

3 

3 

3 

3 

4095 

4095 

4095 

4095 

iii 

Figure 48. The use of pcoord with axis 1 of a 2-dimensional shape 

Similarly, 

with (ShapeB) 
p2 = pcoord(O); 

initializes p2 as shown in Figure 49. 

p2 = pcoord(O); 

o 1 

o 0 0 

1 1 1 
p2 

2 2 2 

3 3 3 

2 

0 

1 

2 

3 

3 

0 

1 

2 

3 

o 
1 

2 

3 

Figure 49. The use ofpcoord with axis 0 ofa 2-dimensional shape 

133 
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The pcoord function provides a quick way of creating a parallel left index for mapping 
a parallel variable into another shape. For example: 
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shape [16384] ShapeA, [16384] [4] ShapeB; 
int:ShapeA source; 

/* Code to initialize source omitted. */ 

main () 
{ 

with (ShapeB) { 
int:ShapeB index, dest; 
index = pcoord(O); 
dest = [index]source; 

Rather than assign the results of pcoord to a parallel variable, you can simply use it as the 
parallel left index itself: 

dest = [pcoord(O)]source; 

The index of the specified axis of the current shape is generated by pcoord. This index is 
used as an index for selecting elements of a parallel variable of another shape. The values 
of these elements are assigned to elements of a parallel variable of the current shape. 

10.2.1 An Example 

This example uses pcoord to transpose a matrix:-in other words, to tum its rows into 
columns and its columns into rows. For example, consider the simple 3-by-3 parallel vari­
able called matrix shown on the left in Figure SO. (Note that this is an illegal parallel 
variable; we use it simply because it's easy to visualize.) The task is to tum it into the new 
matrix shown on the right 

\. 
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o 

matrix 1 

2 

o 

0 

3 

6 

1 

1 2 

4 5 

7 8 

Figure 50. Transposing a 3-by-3 matrix. 

0 3 6 

1 4 7 

2 5 8 

This can be done by reversing the axes for the parallel variable matrix. For example, 
[0] [1] matrix (which contains the value 1) becomes element [1] [0] of a new parallel 
variable. To do this for a 256-by-256 matrix, use pcoord as follows: 

Shape [256] [256]ShapeA; 
int:ShapeA matrix, new_matrix; 

main () 
{ 

with (ShapeA) 
[pcoord(l)] [pcoord(O)]new_matrix = matrix; 

The statement 

[pcoord(l)] [pcoord(O)]new_matrix = matrix; 

says: Assign each element o/matrix to new_matrix, but reverse the axis numbering. 
Thus, in serial C· code: 

[0] [0] new_matrix = [O)[O]rnatrix; 
[0) [l]new_matrix = (1) [O]rnatrix; 
[0] [2]new_matrix = [2] [O]matrix; 
[1] [O]new_matrix = [0] [l]matrix; /* And so on */ 

except that all operations take place at the same time. This algorithm can be generalized 
for use in a function with any 2-dimensional parallel variable: 
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void transpose(float:current *matrixp, 
float:void *new_matrixp) 

[pcoord(l)] [pcoord(O)]*new_matrixp = *matrixp; 

Note the following about transpose: 

• It passes two pointers to parallel variables. matrixp is a pointer to a parallel vari­
able of the current shape; we pass a pointer rather than the parallel variable itself 
to avoid having to make a copy of the variable. ll8W_matrixp is a pointer to a 
parallel variable of a new shape; we must pass a pointer in this case because we will 
be modifying the variable-therefore, it can't be passed by value. 

• We use a second shape so that the function can work with a matrix that isn't square. 
For example, if the current shape is 256 by 512, make new_matrixp a pointer to 
a parallel variable of a shape that is 512 by 256. 

• The variable pointed to by matrixp is assigned to the variable pointed to by 
new_matrixp, and this variable has its coordinates reversed. 

10.3 The pcoord Function and Grid Communication 

When used with parallel left indexing, pcoord provides the grid communication capa­
bilities we discussed at the beginning of this chapter. 

Consider .the following statement: 

dest = [pcoord(O) + l]source; 

This statement says: Each active element of clast is to get the value of source that is in 
the position one coordinate higher along axis O. You can either add or subtract a scalar 
value from pcoord in the left index. Which operation you choose determines the direction 
of the communication; the value added or subtracted specifies how many positions along 
the axis the values are to travel. Note, however, that the values must stay within the border 
of the grid; the behavior is undefmed if des t tries to get a nonexistent element of 
source. 

( 
\ 
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You can use pcoord for a send operation as well as for a get operation; send and get opera­
tions are discussed in Section 10.1. For example: 

[pcoord(O) + l]dest = source; 

This statement says: Send the value o/the source element to the dest element that is one 
position higher along axis O. 

You can use pcoord to specify movement along more than one dimension. For example: 

dest = [pcoord(O) - 2] [pcoord(l) + l]source; 

Note that specifying the axes in this kind of statement provides redundant information. By 
definition, the first pair of brackets contains the value for axis 0, the next pair of brackets 
contains the value for axis 1, and so on. c· therefore lets you simplify the expression by 
substituting a period for pcoord(axis-number). Thus, the following is equivalent to the 
above statement: 

dest = [. - 2] [. + l]source; 

10.3.1 Grid Communication without Wrapping 

As we noted above, behavior is undefined when elements try to get or send beyond the 
border of the grid This means that the statements shown so far are not especially useful, 
because they do not solve this problem. What happens to the elements of deat in row 0 
when they try to get from [pcoord (0) -1] -that is, from beyond the border of the grid? 

For this kind of statement to work, you must first use a where statement to turn off posi­
tions that would otherwise get or send beyond the border of the grid. For example, if you 
want elements to get from elements two coordinates lower along axis 0 (that is, position 
2 gets from position 0, position 3 gets from position 1, and so on), you must turn offposi­
tions 0 and 1, because elements in these positions would otherwise attempt to get 
nonexistent values. The following code accomplishes this: 

where (pcoord (0) > 1), 
dest = [. - 2]source; 
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If you want to get from a parallel variable two coordinates higher along axis 0 (position 0 
gets from position 2, and so on), you can use the dimof intrinsic function to determine the 
number of positions along the axis. For example: 

where (pcoord (0) < (dimof (ShapeA, 0) - 2» 
dest = [. + 2]source; 

Note that you must subtract 2 from the result returned by dimof to tum. off the correct 
number of positions. If dimof returns 1024, the positions are numbered 0 through 1023. 
To tum. off positions 1022 and 1023, you must subtract 2 from 1024 and specify that the 
result of calling pcoord is to be less than this. 

10.3.2 Grid Communication with Wrapping 

To perform grid communication in which the values ''wrap'' back to the other side of the 
grid, we once again need to use the dimof intrinsic function. Consider the following state­
ment: 

dest = [C. + 2) %% dimof(ShapeA, O)]source; 

The expression in brackets does the following: 

1. It adds 2 to the coordinate index returned by pcoord. 

2. For each value returned, it returns the modulus of this number and the number of 
positions along the axis. 

Step 2 does not affect the results as long as step 1 returns a value that is less than the num­
ber of coordinates along the axis. For example, if (. + 2) is 502 in a 1024-position axis, 
the result of (502 " 1000) is 502. When step 1 returns a value equal to or greater than 
the number of coordinates along the axis, step 2 achieves the desired wrapping. For exam­
ple, element [1022] of dest attempts to get from element [1024] of source, which is 
beyond the border of the grid. But (1024 " 1024) is 0, so instead [1022]dest gets 
from [0] source. Thus, the " operator provides the wrapping back to the low end of the 
axis. 

dest = [C. - 2) %% dimof(ShapeA, O)]source; 
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provides wrapping to the high end of the axis. For this statement, let's look at the case 
where [0 1 dest tries to get a value from the element of source that is two lower along 
axis O.lfthere are 1024 coordinates along the axis, this produces the expression (-2 " 
1024) for the left index of source. Following the procedure for" shown on page 52, 
we find that the result of this expression is 1022. This is the element of source from which 
[Oldest gets its value . 

. Note that you cannot use the standard C operator' to perform these operations, because 
different implementations of' can give different answers when one or both of its operands 
is negative. The " operator guarantees that the sign of the answer is the same as the sign 
of the denominator, which is what is required. 
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Chapter 11 

Introduction to the 
C* Communication Library 

Part ill of this guide describes a set of C· library functions that provide different kinds of 
communication. For example, these functions allow you to: 

• 
• 

• 

• 

• 

Send values of parallel variable elements to other elements of the same shape. 

Send values of parallel variable elements of one shape to elements of another 
shape. 

Perform different kinds of computation on values while sending them to elements 
of the same or a different shape. 

Send data from parallel variable elements to a front-end variable, and from a front­
end variable to a parallel variable element. 

Send data from a parallel variable to a front-end array, or from a front-end array 
to a parallel variable. 

Of course, you can perform similar kinds of communication using features of C· itself; see 
Chapter 10. These library functions supplement, and in many cases overlap, the communi­
cation features contained in the language itself. Several of them are particularly useful 
when the rank of a shape is not known until run time; in that situation, you cannot use left 
indexing to specify a parallel variable element, because you cannot specify values for all 
the axes when you write the program. The functions, however, provide a way to manipulate 
such data. 

This chapter introduces the methods of communication available using C· library func­
tions, and gives an overview of these functions. 

143 
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Include the header file <CSCODD.h> in programs that call any of the functions discussed 
in Part ID. The functions are part of the C* run-time system, and are linked in to your pro­
gram by default. 

11.1 Two Kinds of Communication 

There are two different kinds of communication in C*: grid and general. 

11.1.1 Grid Communication 

In grid communication, elements of parallel variables in the same shape communicate in 
regular patterns by using their coordinates. In other words, values of all elements in a paral­
lel variable move the same number of positions in the same direction-for example, each 
element sends its value to the the element of another parallel variable that is two coordi­
nates higher along axis O. 

The following functions implement grid communication: 

• 
• 
• 
• 
• 
• 
• 
• 

from_grid 

from_grid_dim 

from_torus 

from torus dim 

to_grid 

to_grid_dim 

to torus 

In addition, the pcoord function, which we discussed in Chapter 10, can be used in certain 
kinds of grid communication. 

Grid communication is discussed in Chapter 12. 

\ 
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11.1.2 General Communication 

General communication allows any parallel variable element to send its value to any other 
element, whether or not they are of the same shape, and whether or not the pattern of com­
munication is regular. It also allows the front end to read values from and write values to 
parallel variables. This kind of communication uses a position's send address rather than 
its coordinates. The send address is a combination of a position's shape and coordinates 
that uniquely identifies the position among all positions in all shapes. General communica­
tion is more versatile than grid communication, but it is also slower. It achieves the same 
result as parallel left-indexing a parallel variable; see Chapter 10. 

General communication is implemented by the following C· functions: 

• make_send_address 

• send 

• get 

• read_from-position 

• read _ from..,.pvar 

• .rita_to-position 

• .rita_to..,.PVar 

• make_DNlti_coord 

These functions are discussed in Chapter 14. 

11.2 Communication and Computation 

Many C· functions perform computations or combining operations on the parallel values 
they transmit. Most of these functions involve grid communication. For example, the 
scan function lets you combine values of specified elements of a parallel variable along 
an axis of a shape. You can add these values, for example, multiply them, or take the mini­
mum or maximum. The following C· library functions provide communication and 
computation: 

• scan 

• 
• 
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• mul tispreac1 

• copy_multiapreac1 

• enumerate 

• rank 

• reduce 

• copy_reduce 

• global 

These functions are discussed in Chapter 13. 

( 
\, 
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As we mentioned in the previous chapter, there are two ways for data to be communicated 
from one position to another within a shape: by using the absolute address (called the send 
address) of the position, or by using the position's coordinates within the shape. Within­
shape communication in regular patterns that uses positions' coordinates is referred to as 
grid communication, since the coordinates can be thought of as locating positions on an 
n-dimensional grid. 

This chapter describes C· library functions that provide grid communication. These func­
tions are faster than the general communication functions described in Chapter 14. If you 
use any of the functions discussed in this chapter, include the file <CSCOIIIIII.. h> in your 
program. You can also achieve grid communication by using the pcoord function, as de­
scribed in Chapter 10. 

All grid communication functions are overloaded so that they can be used with any arith­
metic or aggregate data type. 

12.1 Aspects of Grid Communication 

There are several aspects to grid communication to consider before using these functions: 

• Axis 

• Direction 

• Distance 

• Border Behavior 

• Behavior of Inactive Positions 
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12.1.1 Axis 

Grid communication functions let parallel variable elements communicate along any axis 
of a shape. In a two-dimensional shape like Figure 51, for example, you can specify that 
elements communicate along axis 0 or along axis 1. 

~r 0 1 1 3 16383 

0 

1 

1 

3 

Figure 51. A two-dimensional shape 

The functions frollUJrid, to_grid, frOlll_ torus, and to_torus allow communica­
tion along more than one axis-for example, an element could transmit a value to another 
element by sending it down axis 0, then across axis 1. 

12.1.2 Direction 

Parallel variable elements can also communicate in either direction along an axis using grid 
communication. In Figure 51, for example, parallel variable elements at position [0][2] can 
communicate along axis 1 with elements to the right (position [0][3]) or to the left (position 
[0][1]). 

\ 

'-

\ 
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12.1.3 Distance 

Parallel variables can communicate at any distance along an axis. For examplet parallel 
variable elements at position [0][0] in Figure 51 can communicate with elements at posi­
tion [0][16383]. 

12.1.4 Border Behavior 

What happens when a parallel variable element at position [0][16383] in Figure 51 tries to 
get a value from the right-offthe border of the grid? The behavior of grid communication 
at the border is handled in different ways by different functions. Specifically: 

• 

• 

12.1.5 

In the functions from gri~ from grid ~ to gri~ and to grid ~ - - - - --
you can specify a value that the element is to receive when it tries to get a value 
from beyond the border. This value is referred to as the fill value. 

In the functions from_torust from_torus_di~ to_torust and 
to_torus _ ~ the element receives the value from the opposite border of the 
grid--in this caset the element at position [0][16383] gets its value from position 
[0][0]. This is known as wrapping. 

Behavior of Inactive Positions 

What happens when positions in the grid are inactive? For example. a parallel variable 
element at position [0][0] tries to get the value of an element at position [O][I]t but position 
[0][1] is inactive. 

Different functions handle inactive positions in different waYSt depending on whether 
parallel variables are seen as sending their values to other positionst or getting values from 
other positions. The distinction is the same one made for parallel left indexing; see Section 
10.1.6. Specifically: 

• In a get operatio~ a parallel variable element in an active position can get a value 
from an element in an inactive positiont but an element in an inactive position can­
not get a value from any position. The functions from _qri~ from _qrid _ ~ 
from_torus, and from_torus _dim use get operations. . 
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In a send operation, a parallel variable element in an active position can send a 
value to an element in an inactive position, but an element in an inactive position 
cannot send its value. The functions to_grid, to_grid _ dim, to_torus, and 
to_torus _dim use send operations. 

Note that the issue of getting from or sending to inactive positions requires passing 
some parallel variables in the grid communication functions by reference, rather 
than by value. See Chapter 10 for a discussion of this issue. 

Table 3 summarizes the features of the grid communication functions. 

Table 3. Features of grid communication functions 

Function Multiple Axes? Wrapping? Get or Send? 

from_grid Yes No Get 
from_grid_dim No No Get 
from torus Yes Yes Get 
from torus dim No Yes Get - -
to_grid Yes No Send 
to_grid_dim No No Send 
to_torus Yes Yes Send 
to _ torus_dim No Yes Send 

12.2 The from_grid_dim Function 

Use the from_grid _dim function to communicate along one axis of a grid, without wrap­
ping. from_grid_dim is a get operation, as described in Chapter 10. 

12.2.1 With Arithmetic Types 

Like all grid communication functions, from_grid _dim can be used with arithmetic data 
types, as well as with parallel structures and parallel arrays. The version of 
from_grid _dim for arithmetic data types has the following definition: 
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type:current from_grid_dim 
type:current *sourcep, 
type:current value, 

where: 

int axis, 
int distance); 

sourcep is a scalar pointer to the parallel variable from which values are to be 
obtained. The parallel variable can be of any arithmetic type; it must 
be of the current shape. 

value is a parallel variable of the current shape whose values are to be used 
when elements try to get values from beyond the border of the grid. 
The parallel variable must be of the same arithmetic type as the paral­
lel variable pointed to by sourcep. 

axis specifies the axis along which the communication is to take place. 

distance specifies how many positions along the axis the values are to travel. 
For example, if distance is 2, each parallel variable element gets a 
value from an element whose position is two greater along the speci­
fied axis. distance can be a negative number, which reverses the 
direction in which the data is to travel. 

from_C1rid_dim returns the source values in their new positions. You can assign these 
values to a parallel variable of the current shape and of the same arithmetic type as the 
source parallel variable; this parallel variable can be viewed as the parallel variable that is 
doing the "getting." 

Note the difference between from_C1rid_dim and the corresponding use ofpcoord de­
scribed in Chapter 10: pcoord does not provide a fill value when an element tries to get 
from beyond the border. 

Examples 

Figure 52 shows three parallel variables of the same shape (their shape, like others shown 
in the chapter, is smaller than would be legal in C·, so that it's easier to visualize what is 
happening). 
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o 1 1 3 

o 10 11 12 13 1 2 3 4 

1 20 21 22 23 1 2 3 4 

30 31 32 33 1 2 3 4 

3 40 41 42 43 1 2 3 4 

source dest fill 

Figure 52. Three parallel variables of shape ShapeA 

The goal is for dest to get values of the parallel variable pointed to by sourcep that are 
one position lower along axis O. This is equivalent to scalar C· statements like the follow­
ing (except that all operations happen at the same time): 

[1] [0] dest = 

[2] [0] dest 
[3] [0] dest = 
[1] [1] dest = 

[0] [0] source; 
[1] [0] source; 
[2] [0] source; 
[0] [1] source; 1* . . . and so on */ 

In the case where dest tries to get a value of source from beyond the border (for 
example, the dest element at position [0](0)), it is to use the value from the corresponding 
element of fill. 

The following code accomplishes this (for a shape of legal size): 

*include <cscomm.h> 

shape. [256] [256] ShapeA; 
int:ShapeA source, dest, fill; 

1* Code to initialize parallel variables omitted. *1 

main () 
{ 

wi th (ShapeA) 
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dest frorn_grid_dirn(&source, fill, 0, -1); 

Figure S3 shows the results. 

Note that we use-1 for the diatance argument, even though the values move to higher­
numbered positions along the axis. As mentioned above, from_grid_dim is a get 
operation; in this case, the element in the higher-numbered position is viewed as getting the 
data from the lower-numbered position, and that is why a negative distance is used. 

Note also the values of fill that are used when deat attempts to get from beyond the 
border of the grid. 

deat = fram_grid_dim(&aource, fill, 0, -1); 

o 1 2 3 

o 

1 1 2 3 4 

2 1 2 3 4 

3 1 2 3 4 

aource deat fill 

Figure 53. An example of the fram_grid_dim function 

Now let's take the data in Figure S3 and move the values in deat two positions lower along 
axis 1, but leaving them in deat. In scalar C· code: 

[0] [Oldest = 
[0] [l]dest 
[1] [Oldest = 

[0] [2]dest; 
[0] [3]dest; 
[1] [2]dest; /* • • • and so on */ 

In this case, the source parallel variable is the same as the destination parallel variable. This 
is legal. The following statement does the job: 



154 C· Programming Guide 
11111111111111111111111 illllllllllllllllllllllllllllllllllIlllllllllllllll!1111111111111111111111I111111111111111 ill illllll!! 11111111111111 IlIIlilli!l11111 11111 II 11111111111111111111111 

dest = from_grid_dim(&dest, fill, 1, 2); 

A positive integer is used for the distance, because the elements in the lower-numbered 
positions along the axis are getting data from the elements in the higher-numbered posi­
tions. 

Figure 54 shows the results. 

Note that the elements ofdest at positions [nU2] and [n][3] (where n is any axis 0 coordi­
nate) are assigned the values :from the corresponding elements of fill, because they 
attempt to get values from beyond the border of the grid. 

dest • fram_9rid_d±m(&dest, fill, 1, 2); 

0 1 

0 1 2 

1 10 11 

2 20 21 

3 30 31 

dest (before) dest (after) fill 

Figure 54. Another example of the fram _9rid _ d±m function 

When Positions Are Inactive 

Finally, let's see what happens when positions in a shape are inactive. The following code 
fragment makes position [2] inactive, using the simple data in Figure 55, and then calls 
fram_9rid_d±m: 

where (source != 7) 
dest = from_grid_dim(&source, fill, 0, -1); 

Figure 55 shows the results. 
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where (source ! = 7) 
dest = from_qrid_~(&source, fill, 0, -1); 

source 

dest 

fill 

ISS 
I: lliI!I!I! III 1llllilllill:lllllli!:1 Iii IE! 

D active 

II? inactive t:..LJ 

Figure 5S. An example of from_grid _ ~ when a position is inactive 

Since from_grid_~ is a get operation, the following rules apply: 

• Elements at active positions can get values from elements at inactive positions. 

• Elements at inactive positions cannot perform any gets at all. 

Note how these rules are applied in Figure 55: 

• Position [2] is inactive, so it doesn't get a value from position [1]. (It keeps the 
value it had before the operation.) 

• Position [3] gets a value from position [2], even though position [2] is inactive. 

12.2.2 With Parallel Data of Any Length 

The definition of from_grid_~ for parallel data of any length is as follows: 

void from_grid_dim ( 
void:current *destp, 
void:current *sourcep, 
void:current *valuep, 
int length, 
int axis, 
int distance); 
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In this version, the location pointed to by destp gets values from the location pointed to 
by sourcep, using the axis and distance arguments to determine the axis for the com­
munication and how many positions along the axis the values are to travel. If destp tries 
to get from beyond the border of the grid, it gets values from the corresponding location 
pointed to by valuep instead. The locations pointed to by destp, sourcep, and valuep 
are all length bits long. 

You can use this version of from grid dim to transfer data that is larger than the standard - -
data types-typically, this data would be in a parallel array or parallel structure. Note that 
there is no return value, and the destination is specified as the first argument to the function. 

For example, in the following code, dest_struct gets the values of source_struct 
that are four coordinates higher along axis O. When this takes dest_struct beyond the 
border of the grid, it gets the corresponding values ofvalue_struct. 

tinclude <cscomm.h> 

shape [65536]ShapeA; 
struct S { 

int a; 
int b; 

} ; 

struct S:ShapeA source_struct, dest_struct, value_struct; 

main () 
( 

wi th (ShapeA) 
from_grid_dim(&dest_struct, &source_struct, 

&value_stru.ct,boolsizeof (source_struct), 0, 4); 

12.3 The from_grid Function 

The from_grid lets data travel along more than one axis of the grid. Like 
from_grid _dim, it is a get operation. 

\ 
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12.3.1 With Arithmetic Types 

The defmition of from_grid (for the version that takes arithmetic types) is: 

type:current from_grid ( 
type:current *sourcep, 
type:current value, 
int distance_along_axis_O, •.. ); 

where .oureep, value, and the return value are defined as they were for 
from_qrid_dim. 

The argument distaDee_alonq_axis_O specifies how many positions along this axis 
the data is to travel. As with from_grid _ dim, the sign of the integer (positive or negative) 
indicates the direction of travel along the axis. The ellipsis ( ... ) indicates a variable num­
ber of arguments. Each argument is an int that represents the distance along succeeding 
axes that the data is to travel. You must include as many arguments as there are axes in the 
current shape. If the data is not to move along an axis, specify the distance for that axis as 
o. 

from _qrid lets you combine movement along different axes. For example, in the previous 
section we used two calls to from qrid dim so that each dest element got the value - -from the source element that was one position lower along axis 0 and two positions higher 
along axis 1. The following call to from _qrid accomplishes the same thing: 

dest = from_grid(&source, fill, -1, 2); 

The -1 argument specifies the direction and distance of the communication along axis 0; 
the 2 argument specifies the direction and distance of the communication along axis 1. The 
movement along axis 1 takes place after the movement along axis O. That is, the dest 
elements first get the source elements one position lower along axis 0; the dest elements 
that are two positions lower along axis 1 then gets these values from these other dest 
elements. 

Note an important difference between the single from_qrid call and the two 
from grid dim calls, however. With from grid, the fill value is inserted only after all - - -
data movement is completed. No fill values are inserted when elements try to get from 
beyond the border in intermediate steps. This ensures that elements of the destination paral­
lel variable receive fill values from corresponding elements of the fill parallel variable. But 
it yields a different result from consecutive from_grid_dim calls, where the fill value is 
inserted for each call. 
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Figure 56 shows the results of the from grid call shown above on the data in Figure 52. 
Compare these results with those for the two from_grid _dim calls shown in Figure 54 
(the arrow on the left shows that [0] [2] source ends up at [1] [Oldest). 

dest. from_grid(&source, fill, -1, 2); 

o 1 2 3 

o 

1 1 2 3 4 

2 1 2 3 4 

3 1 2 3 4 

source clest fill 

Figure 56. An example of the from_grid function 

from_grid handles inactive positions in the same way that from_grid_dim does. 

12.3.2 With Parallel Data of Any Length 

Like from grid dim, from grid has an overloaded version that can be used with - - -
parallel data of any length. Its definition is: 

void from_grid ( 
void:current *destp, 
void:current *sourcep, 
void:current *valuep, 
int length, 
int distance_along_axis_O, •.. ); 

Once again, destp, sourcep, and valuep are pointers to parallel locations that are 
length bits long. Specify the data movement for each axis in the arguments 

/ 
( 
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distance_along_azi.s_n. destp gets the value of sourcep based on these arguments, 
unless this brings it beyond the border of the grid, in which case it gets a value from the 
corresponding location pointed to by valuep. 

12.4 The to-'lrid and to-'lrid_dim Functions 

The to_grid and to_grid_dim functions are similar to from_grid and 
from_grid _ dim, except that they are send operations instead of get operations. Both pairs 
of functions provide grid communication, with substitution of a fill value when the com­
munication would otherwise go beyond the boundary of the grid. Both provide 
overloadings for arithmetic and aggregate types. The differences between the get opera­
tions and the send operations are: 

• In the way the distance argument is interpreted 

• In the way inactive positions behave 

These differences are described in more detail below. 

12.4.1 With Arithmetic Types 

The deftnitions of to_grid and to_grid_dim (for the versions that take arithmetic 
types) are as follows: 

void to_grid ( 
type:current *destp, 
type:current source, 
type:current *valuep, 
int distance_along_axis_O, .•• ); 

void to_grid_dim 
type:current *destp 
type:current source, 
type:current *valuep, 
int axis, 
int distance); 
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where: 

destp is a scalar pointer to the parallel variable to which values are to be sent. 
This parallel variable can be of any arithmetic type; it must be of the 
current shape. 

source is the parallel variable that is to send its values. It can be of any arith­
metic type; it must be of the current shape and of the same type as the 
parallel variable pointed to by destp. 

valuep is a scalar pointer to a fill parallel variable whose values are to be used 
when elements of source try to send values to destinations beyond 
the border of the grid. It must be of the current shape and have the 
same type as source. 

distance_alon9_axis_ O 
(for to _9rid) specifies how many positions along axis 0 the values 
are to travel. For example, if distance_alon9_axis_O is 2, each 
parallel variable element of source sends a value to an element of the 
parallel variable pointed to by clestp whose position is two greater 
along axis O. Include a distance argument for each dimension in the 
current shape. If the data is not to move along an axis, specify the dis­
tance for that axis as O. The distance can be a negative number, which 
reverses the direction in which the data is· to travel. 

axis (for to_9rid_dim) specifies the axis for the communication. 

distance (for to_grid_dim) specifies how many positions along axis the 
values are to travel, as discussed in the description of 
distance _ along_axis _ O. 

There is no return value. 

Note the way that the distance argument is interpreted in send operations like to _9rid 
and to _9rid_ dim. Specifying a positive integer for the distance sends values to higher­
numbered positions. This is different from the behavior for get operations like from _9rid 
and frollL9rid_ clim, where specifying a positive integer for the distance gets values from 
higher-numbered positions. 

When Positions Are Inactive 

Since to _9rid and to _9rid _ dim are send operations, the following rules apply when 
positions are inactive: 
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• Elements at active positions can send values to elements at inactive positions. 

• Elements at inactive positions cannot send their values. 

• Elements at border positions receive fill values even if they are inactive. This fol­
lows the general behavior of send operationst in which elements at inactive 
positions can be sent values. 

Examples 

The first example uses to_grid_dim to achieve the same result as the use of 
from_grid_dim shown in Figure 53. The goal is for source to send values to elements 
of dest that are one position higher along axis O. When the sending goes beyond the bor­
der of the gridt values of the corresponding elements of fill are used instead. The 
following code accomplishes this: 

to_grid_dim(&dest, source, &fill, 0, 1); 

The results are shown in Figure 57. 

o 

1 

2 

3 

to_grid_dim(&dest, source, 'fill, 0, 1); 

o 1 2 3 

source dest 

1 2 3 4 

1 2 3 4 

1 2 3 4 

fill 

Figure 57. An example of the to_grid _dim function 

SimilarlYt to obtain the same results as those shown in Figure 54 for for_grid _ ~ use 
the following code: 
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to_qrid_dim(&dest, dest, &fill, 1, -2); 

These two calls to to_grid _ dim are similar to the following call to to_grid: 

to_qrid(&dest, source, &fill, 1, -2); 

Note, however, that, as with fro1lLgrid, the fill values for to_grid are inserted only 
after all data movement has occuned. In this case, this produces a slightly different result 
for the single to_grid call; see Figure 56. 

In aIr cases, note that the difference from the corresponding from_grid or 
from_grid_dim call is that the sign of each distance argument is reversed. 

The final example makes positions [0] and [2] inactive and then calls to_grid_dim: 

where (source != 7) 
to_qrid_dim(&dest, source, &fill, 0, 1); 

Figure 58 shows the results. 

"here (source ! - 7) o active 
to_grid_dim(&dast, source, &fill, 0, 1); o inactive 

o 1 2 3 

source 

clest 

fill 

Figure 58. An example of to_grid _dim when position are inactive 

Note how the rules for inactive positions and send operations are applied in Figure 58: 

( 
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• [0] source and [2] source are at inactive positionst so they don't send their val­
ues to [l]dest and [3]dest. 

• [1] source sends its value to [2] da.~ even though position [2] is inactive. 

• [0] fill sends its value to [0] destt even though position [0] is inactive. 

12.4.2 With Parallel Data of Any Length 

The definitions of to_grid and to_grid _dim for parallel data of any length are as fol­
lows: 

void to_grid ( 
void:current *destp, 
void:current *sourcep, 
void:current *valuep, 
int length, 
int distance_along_axis_O, ••• ); 

void to_grid_dirn 
void:current *destp, 
void:current *sourcep, 
void:current *valuep, 
int length, 
int axis, 
int distance); 

These versions are useful if you want to transfer data in a parallel array or parallel structure. 
As with the corresponding versions of from_grid and from_grid_~ the length ar­
gument specifies the length of the locations pointed to by dastpt sourcep, and valuep. 
There is no return valuet and the destination is specified as the first argument to the func­

tion. 
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12.5 The from torus and from torus_dim Functions 

A torus is a doughnut-shaped surface. The C· ''torus'' functions (two more are discussed 
in the next section) use the grid as if it were wrapped into a torus, with the opposite borders 
of the grid connected. If a value is required from beyond the border, it comes from the other 
side of the grid. Thus, these functions don't need the fill value used in the "grid" functions, 
since there is never a case where an element will not be able to obtain a value because it 
is beyond the border. 

Except for this difference, from_torus and from_torus_dim are equivalent to 
frOlll_qrid and frOlll_qrid_dim. As with the other grid functions, there are overloaded 
versions for use with all arithmetic and aggregate types. 

12.5.1 With Arithmetic Types 

The definitions of frOlll_ torus and frOlll_ torus_dim (for the versions that take arith­
metic types) are as follows: 

type:current from_torus 
type:current *sourcep, 
int distance_along_axis_O, ... ); 

type:current from_torus_dim 
type:current *sourcep, 
int axis, 
int distance); 

Let's look at how the results change when we use these functions on data from previous 
sections. 

For example, let's take the data from Figure 52 and use frOlll_torus_dim instead of 
frOlll_qrid_dim. The goal is the same: clest elements are to get the values of source 
elements that are one position lower along axis 0: 

dest = from_torus_dim(&source, 0, -1); 

Note that frOlll_ torus_dim does not require a valuep argument, since values wrap from 
the other side of the grid The results of this statement are shown in Figure 59. The arrows 

( 

\ 
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in the figure show the movement for two elements of source: [0] (0) clest wraps around 
to get the value of [3] [0] source, and [2] [3] clest gets the value of [1] [3] source. 

clest - from_torus_dim('source, 0, -1); 

o 1 2 3 

o 

1 

2 

3 

source clest 

Compare the results shown in Figure 59 with those for the equivalent from_gricl_dim 
call, shown in Figure 53. The differences are only in the clest elements that are at position 
[O][n]. from_9ricl_clim puts the value of the corresponding element of fill into the 
clest element. from_torus _dim wraps around to the other side of the grid and has the 
clest elements get the values of the source elements at position [3][n]. 

Similarly, using the same source data, the following from_torus call: 

dest = from_torus(&source, -1, 2); 

produces the results shown in Figure 60. Compare these results with those shown in 
Figure 54, which are the results for the two from _9ricl_ dim calls. Once again, dest ele­
ments that previously were assigned values of fill now get values of source elements 
from the other side of the grid. In Figure 60, the arrows show where the value of 
[0] [3] source ends up: after the movement along axis 0 (1) [3] clest gets it, and after 
the movement along axis 1 it ends up wrapping around to [1] [l]clest. 
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dest • from_torus('source, -1, 2); 

source 

clast 
(before) 

o 

1 

2 

3 

o 1 2 3 

dest 

Figure 60. An example of the from_torus function 

Step 1: 
Movement 
along axis 0 

Step 2: 
Movement 
along axis 1 

from_torus and from_torus _dim are both get operations, so their handling of inactive 
positions is the same as that of from _9'rid and frOlll_9'rid _dim. 

12.5.2 With Parallel Data of Any Length 

The from_torus and from_torus _dim functions also have overloaded versions that can 
be used with parallel data of any length. Their definitions are: 

void from_torus( 
void:current *destp, 
void:current *sourcep, 
int length, 
int distance_along_axis_O, 000 ); 

( 

\ 
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void from_torus_dim ( 
void:current *destp, 
void:current *sourcep, 
int length, 
int axis, 
int distance); 

Note that these defmitions are the same as those for from gric1 and from gric1 c1im, - --except that a valuep argument is not required, since values wrap when they go beyond the 
border of the grid. 

12.6 The to_torus and to_torus_dim Functions 

The to_torus and to_torus _ clim functions are send operations that provide grid com­
munication with wrapping to the other side of the grid. As with the other grid 
communication functionst the _ clim version provides communication along one axis only, 
while the more general version provides communication along all axes. Both functions 
have overloaded versions for all arithmetic and aggregate types. 

12.6.1 With Arithmetic Types 

The to torus and to torus clim functions have the following definitions when used - --
with an arithmetic type: 

void to_torus ( 
type:current *destp, 
type:current source, 
int distance_along_axis_O, ••• ); 

void to_torus_dim ( 
type:current *destp, 
type:current source, 
int axis, 
int distance); 

where: 
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de8tp is a scalar pointer to the parallel variable to which values are to be sent. 
This parallel variable can be of any arithmetic type; it must be of the 
current shape. 

80urce is a parallel variable from which values are to be sent; it must be of the 
current shape and have the same arithmetic type as the parallel vari­
able pointed to by de8tp. 

di8tance_along_axi8_0 
(for to _ toru8) specifies how many positions along axis 0 the values 
of 80urce are to travel. If the distance is 2, for example, 80urce 
sends its value to the destination element whose position is two greater 
along axis O. Include a distance argument for each dimension in the 
current shape. If the data is not to move along an axis, specify the dis­
tance for that axis as O. The distance can be a negative number, which 
reverses the direction in which the data is to travel. 

axi8 (for to _ tOru8 _ dim) specifies the number of the axis along which the 
values of 80urce are to be sent. 

di8tance (for to _ toru8 _dim) specifies how many positions along the axis the 
values of 80urce are to be sent, as discussed in the description of 
di8tance_along_axi8_ o. 

The behavior of inactive positions for to_torus and to_torus _ dim is the same as it is 
for to_grid and to_grid_dim: elements of 80urce at inactive positions cannot send 
values, but 80urce can send values to elements at inactive positions. 

Examples 

The following code uses the 80urce data also used in previous figures; it sends values of 
source to de8t elements that are one position lower along axis 0: 

to_torus_dim(&dest, source, 0, -1); 

The results are shown in Figure 61. Compare these results to those for the comparable call 
to from_toru8_dim, shown in Figure 59. The arrows in the figure show the movement 
of two elements of 8ource: [0] [3] 80urce wraps around and sends its value to 
[3] [3]de8t; [3] [0] 80urce sends its value to [2] [O]de8t. 
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to_torus_dim('dest, source, 0, -1); 

o 1 1 3 

source clest 

to_torus is similar to to_torus _dim, except that you must specify the data movement 
for each axis, as you do for from_torus and from_grid. The following code uses the 
same source data used in previous figures: 

to_torus (&dest, source, -1, 2); 

The results are shown in Figure 62. Compare these results to those for the comparable call 
to from_torus, shown in Figure 60. The arrows in the figure show where 
(0] (3] source ends up after the movement along axis 0 and axis 1. 
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to_torus ('c:lest, source, -1, 2); 

source 

dest 
(before) 

o 

o 

1 

2 

3 

1 2 l 

Figure 62. An example of the to_torus function 

Step 1: 
Movement 
along axis 0 

Step 2: 
Movement 
along axis 1 

In the following example, we make a position inactive and call to_torus _ dim: 

where (source 1= 7) 
to_torus_dim(&dest, source, 0, 1); 

Figure 63 shows the results for some sample data. 

\ 
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where (source !- 7) 
to_torus_dimC&dest, source, 0, 1); 

o 1 2 3 

source 

clest 

D active 

1771 :..A...+:.·e L!J IU&M.iUY· 

Figure 63. An example of to_torus _dim when a position is inactive 
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Note how the rules for send operations with inactive positions are applied in Figure 63: 

• [1] source sends a value to [2] clest, even though position [2] is inactive. 

• Position [2] is inactive, so [2] source doesn't send a value to [3]dest, which 
keeps its original value from before the call. 

12.6.2 With Parallel Data of Any Length 

The to torus and to torus dim functions also have overloaded versions that can be - --
used with parallel arrays or parallel structures. Their definitions are: 

void to_torus( 
void:current *destp, 
void:current *sourcep, 
int length, 
int distance_along_axis_O, ..• ); 

void to_torus_dim ( 
void:current *destp, 
void:current *sourcep, 
int length, 
int axis, 
int distance); 
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Note that these definitions are the same as those for from_torus and from_torus _dim. 
But, as with the versions that use arithmetic types, the distance arguments are interpreted 
differently, and the behavior of inactive positions is different. 

( 

! 
" 
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This chapter discusses C· library functions that let you perform computations on parallel 
values that are being transmitted. Most of these functions use grid communication. The 
functions differ in the following ways: 

• The kinds of computation that are available for each jimction. See Section 13.1. 

• The way in which parallel variable elements are selected. For example, some func­
tions let you divide the parallel variable elements into groups called scan classes. 
You can then operate on each scan class independently. See Section 13.2. 

• The way in which the function reports the results of the computation. For example, 
scan provides a running total of its computations; spread provides only the final 
result. 

Include the file <cscomm. h> when calling any of the functions discussed in this chapter. 

13.1 What Kinds of Computation? 

The scan, reduce, spread, mul tispraad, and global functions let you specify a com­
biner type that indicates the kind of computation or combining you want carried out on the 
parallel data. Each of these functions is overloaded for some subset of the following com­
biner types: 

173 
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Table 4. Combiner types 

Combiner 

CIIC combiner min - -
CIIC_combiner_aclcl 
CIIC_combiner_copy 
CMC_combiner_multiply 
CMC_combiner_logior 

Meaning 

Take the largest value among the specified 
parallel variable elements. 
Take the smallest value among the specified 
elements. 
Add the values of the specified elements. 
Copy the values of the specified elements. 
Multiply the values of the specified elements. 
Perform a bitwise logical inclusive OR on 
the specified elements. 
Perform a bitwise logical exclusive OR on 
the specified elements. 
Perform a bitwise logical AND on the 
specified elements. 

These combiner types are also used by the send function, which is described in the next 
chapter. 

13.2 Choosing Elements 

Several of the C· functions discussed in this chapter provide methods for choosing the 
subsets of parallel variable elements on which they are to operate. The terminology we use 
in referring to these subsets of elements comes from scan, which is the most general of 
the functions that use these methods. 

13.2.1 The Scan Class 

Two positions belong to the same scan class if their coordinates differ only along a speci­
fied axis. The following functions use the concept of a scan class: scan, reduce, 
copy_reduce, spread, copy_spread, enumerate, rank, and mulUspread. 

( 

\; 
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To see how scan classes work, consider the 2-dimensional shape shown in Figure 64. (This 
and other shapes in this chapter are smaller than legal size in C·, so that they are easy to 
visualize.) 

~r· 1 2 3 

0 

1 

2 

3 

Figure 64. A 4-by-4 shape 

If you specify axis 0 as an argument to one of the functions listed above, you get the scan 
. classes shown in Figure 65. Positions [0][0], [1][0], [2][0], and [3][0] differ only in their 
coordinates for axis 0; therefore, they belong to the same scan class. Position [0][1] does 
not belong to this scan class, because it has a different axis 1 coordinate; it belongs to a scan 
class with positions [1][1], [2][1], and [3][1]. 

Thus, specifying axis 0 for this shape creates four separate scan classes, each of which is 
a column of positions through axis 0 in the shape. Functions like scan operate on each of 
these scan classes independently. 

scan class 

Figure 6S. Scan classes for axis 0 of a 2-dimensional shape 



176 C· Programming Guide 
11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 111111111111111111111 

Specifying axis 1, on the other hand, creates four different scan classes, each one consisting 
of a row of positions through axis 1 in the shape, as shown in Figure 66. 

scan class 

Figure 66. Scan classes for axis 1 of a 2-dimensional shape 

If you have a I-dimensional shape, there is, of course, only one axis you can specify, and 
only one scan class for the shape. You can, however, subdivide a scan class, as we discuss 
below. 

If you have a 3-dimensional shape, specifying an axis once again gives you a set of scan 
classes consisting of the rows of positions that cross this axis. For example, in a 
2-by-2-by-2 shape, specifying axis 0 creates the following four scan classes: 

[0][0][0] and [1][0][0] 

[0][1][0] and [1][1][0] 

[0][0][1] and [1][0][1] 

[0[[1][1] and [1][1][1] 

To operate on more than one dimension in a multi-dimensional shape (for example, on 
planes of positions instead of rows of positions), you must use the mul Uspraad or 
copy_multiapraad function; these functions are discussed in Section 13.8. 

( 
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The Scan Subclass 

Only active positions participate in computations within a scan class. The active positions 
within a scan class are referred to as the scan subclass. 

13.2.2 The Scan Set 

There may be times when you want a function to operate independently on different parts 
of a scan subclass. The scan, enumera ta, and rank functions let you do this by subdivid­
ing a scan subclass into scan sets. 

To create scan sets, declare a bool-sized parallel variable of the shape on which the func­
tion is to operate, and initialize it to O. This parallel variable is referred to as the sbit, it is 
used as the shit argument to the functions listed above. Assign a 1 to an element of this 
parallel variable to mark the beginning of a scan set at that element's position. In the sim­
plest case, the scan set for each position starts either at the beginning of the scan subclass, 
or at the nearest position below it in the scan subclass that has its sbit set to 1. 

Figure 67 shows a I-dimensional shape divided into scan sets. In the figure, the scan set 
for position 1, for example, consists of positions 0 and 1 (the scan subclass starts at position 
0, so the scan set starts there also, even if the sbit for that position isn't set to 1). The scan 
set for position 7 consists of positions 5,6, and 7, since [5] shit is set to 1, thus starting 
a new scan set. 

0 1 2 3 4 5 , 7 

shit 0 0 0 1 0 1 0 0 

--... 
scan sets for 

~ 

each position • 
ofashape --... 

~ --... 
• 

~ 

Figure 67. Scan sets in a I-dimensional shape 
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Note than scan sets include only active positions; see Section 13.2.3, however, for a more 
in-depth discussion of inactive positions and scan sets. 

To show how scan sets work, let's use an example in which we keep a running total of the 
values in the parallel variable data (this is a scan operation, as discussed in Section 13.3). 
The results are shown in Figure 68. 

o 1 2 3 4 5 6 7 

mit o o o 1 o 1 o o 

data o 1 2 3 4 5 6 7 

Figure 68. An operation that provides a running total, using scan sets 

In the example, [1 ] running_total contains the sum of [0] data and [1] data, since 
o and 1 are the positions in its scan set [3] running_total contains only the value in 
[3] data, since [3] abi t is set to I, thus starting a new scan set in this position. 

You actually have more flexibility than this in how you can divide up scan subclasses: 

• Whether an operation is inclusive or exclusive affects the way scan sets are inter­
preted; see "Inclusive and Exclusive Operations," below. The example in 
Figure 68 shows an inclusive operation. 

• There are two ways of interpreting the sbit; see Section 13.2.3. In particular, this 
affects the way scan classes are divided when there are inactive positions, and 
when an operation proceedG in a downward direction. The example in Figure 68 
shows an operation that proceeds in an upward direction. 
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Inclusive and Exclusive Operations 

The way in which scan sets work when you are performing a particular operation depends 
on whether the operation is inclusive or exclusive. (NOTE: In this section, we are ignoring 
the effect of segment bits and start bits; these are discussed in the next section.) 

In an inclusive operation (specified by Ole_inclusive), an element participates in the 
operation for its position-in other words, the scan set for a position contains that position. 
As we mentioned, Figure 68 shows the results of an inclusive operation. 

In an exclusive operation (specified by CX!_exclusive), the scan set for an element does 
not contain the element itself-in other words, it does not participate in the operation for 
its position. Figure 69 shows the results of an exclusive operation, using the same data as 
that shown in Figure 68. 

o 1 3 .. 5 6 7 

&bit o o o 1 o 1 o o 

data o 1 2 3 4 5 6 7 

running_total I~O __ 4-_0~ __ 1~~O __ ~3 __ ~_O~ __ 5 __ ~1_1~ 

Figure 69. An exclusive operation on scan sets 

Note the difference between the two results. In the inclusive operation, for example, 
[2] running_total receives the running total for [0] data, [1] data, and [2] data; in 
the exclusive operation, [2 ] running_total receives the running total only for [0] data 
and [1] data. When there are no preceding elements in the scan set (for example, in 
[3 ] running_total), the element receives the identity for the operation. 
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13.2.3 Segment Bits and Start Bits 

There are two different kinds of sbits: segment bits and start bits. Use the smode argument 
to the scan, eDUIII8ra te, or rank function to specify which kind of sbit you want, as dis­
cussed below. 

If the value of the smode argument is CMC _segment _ bi t, the sbit is considered a segment 
bit, and it divides a scan subclass into segments, as follows: 

• An sbit element set to 1 starts a new segment, whether or not the element appears 
in an active position. 

• The way in which the segment bit divides the scan subclass is not affected by the 
direction of the operation. 

• Operations in one segment never affect values of elements in another segment. 

If the value of the smode argument is CMC_start_bit, the sbitis considered a start bit, 
and scan classes are divided as follows: 

• An sbit element set to 1 divides a scan subclass only if its position is active. 

• The division is affected by the direction of the operation. When the direction is 
downward, the division occurs from the higher coordinate to the lower coordinate. 

• When an operation is exclusive, the position whose sbit element is set to 1 will 
receive a value from the preceding scan set. 

These differences between segment bits and start bits are discussed below. 

Inactive Positions 

When the sbit is a segment bit, a new scan set is created, even though the position where 
it starts is inactive. Figure 70 shows an example (the scan sets displayed are for positions 
[2], [4], and [7]). 
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0 1 1 3 4 5 , 7 

segment_hit I 0 0 0 I:::::::::~:>::::I 0 1 0 0 

~ ~ ~ 

data 0 1 2 r"""""'/"~ ","':""j,/> 
{':' .... ":: .. ,/.,,1 

4 5 6 7 

runn.iD9_ total 

Figure 70. An inclusive operation in an upward direction 
on segment-bit scan sets, with an inactive position 
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o active 

1:2) inactive 

scan sets 

Note that position [3] does not participate in the operation, even though it starts a new scan 
set. 

A start bit does not start a scan set if its position is inactive. Figure 71 is an example. Note 
that the scan set for position [4] begins at position [O]J not at position [3]J as in Figure 70. 

start hit 

data 

running_total 

0 1 1 3 4 5 , 7 

0 0 0 I:::.::::::~~;:j 0 1 0 0 

~ ~ 

0 1 2 "'/", ,"'"",,: J ""I , ........ 1 
::>':7'::>': 4 5 6 7 

I 0 1 3 "'"","'"","'",: I"""'/''''j 111,:II,'I:::,f"~.l" 7 5 11 18 

Figure 71. An inclusive operation in an upward direction 
on start-bit scan sets. with an inactive position 

0 active 

EZJ inactive 

scan sets 
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The Direction of the Operation 

When the direction of the operation is upward, it proceeds from lower-numbered positions 
to higher-numbered positions along the scan subclass. Both kinds of sbits divide the scan 
subclass in the same way when the direction is upward (provided that all positions are ac­
tive); see Figure 67 for an example. You specify an upward direction with the argument 
CIIC_ upward. 

When the direction of the operation is downward (specified by the argument 
CIIC _ clownward), the operation proceeds from higher-numbered positions to lower-num­
bered positions along the scan subclass. In this case, segment bits divide the scan subclass 
in the same way as the sbits shown in Figure 67; however, since the operation proceeds in 
a downward direction, this means that a segment bit ends a scan set, and the operation be­
gins again in the position with the next lowest coordinate. Figure 72 is an example; it shows 
the scan sets for positions [0], [3], and [5]. 

0 1 % 3 4 5 , 7 

segment_bit 0 0 0 1 0 1 0 0 

04 ~ ~ 

data 0 1 2 3 4 5 6 7 

runni.nc~L total I 3 3 2 7 4 18 13 7 

Figure 72. An inclusive operation in a downward direction 
on segment-bit scan sets 

scan sets 

Start-bit scan sets, however, follow the downward direction; in other words, start bits start 
scan sets, rather than ending them. Figure 73 is an example; it shows the scan sets for posi­
tions [0], [4], and [6]. 
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0 1 1 3 4 5 6 7 

.tart_bit 0 0 0 1 0 1 0 0 

~ ~ 04 

data 0 1 2 3 4 5 6 7 

rwmiD9'_total I 6 6 5 3 9 5 13 7 

Figure 73. An inclusive operation in a downward direction 
on start-bit scan sets 

Data from Another Scan Set 

scan sets 

In exclusive operations on start-bit scan sets, the first position in a scan set receives the 
result of the operation for the preceding scan set, if there is one. Figure 74 is an example. 

o 1 1 3 4 5 

.tart bit o o o 1 o 1 o 

data o 1 2 3 4 5 6 

Figure 74. An exclusive operation in an upward direction 
with start bits 

7 

o 

7 
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Compare these results with those shown in Figure 69, which assumes that the sbit is a seg­
merit bit. [3] rwming_ total and [5] rwmin9_ total receive the results from the 
preceding scan set, rather than O. [0] rwmin9_ total still receives 0 (the identity for the 
operation) because there is no preceding scan set. 

What constitutes a "preceding" scan set depends on the direction of the operation, of 
course. In a downward direction, scan sets with higher-numbered coordinates along the 
axis precede scan sets with lower-numbered coordinates. 

13.3 The scan Function 

Use the SCaD function to provide running results for operations on the scan sets you 
specify. 

The definition of SCaD is as follows: 

type:current scan ( 
type:current source, 
int axis, 

where: 

CMC_combiner_t combiner, 
CMC_communication_direction_t direction, 
CMC_segment_mode_t smode, 
bool:current *sbitp, 
CMC_scan_inclusion_t inclusion); 

source is the parallel variable whose values are to be used in the operation. It 
must be of the current shape, and it can have any arithmetic type. 

axis specifies the axis along which the scan class or classes are to be cre­
ated; see Section 12.2. 

combiner specifies the type of operation that scan is to carry out. Possible val­
ues are listed in Section 12.1. 

direction specifies the direction of the operation. Possible values are 
CIIC _ upwaz:cl and (X:Ulowm.az:cl. 
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smode specifies whether the sbit is a segment bit or a start bit; see Section 
13.2.3. Possible values are CMC_start_hit, CNC_segment_hit, 
and CMC _none. Specify CMC _none if there is no sbit. 

shi tp is a scalar pointer to a bool-sized parallel variable of the current 
shape. This parallel variable is the sbit, which creates scan sets for the 
operation. Specify CNC _ no_field ifthere is no sbit. 

inclusioll specifies whether the operation is exclusive or inclusive; see "Inclu­
sive and Exclusive Operations," above. Possible values are 
CMC_8Xclusive and CNC_inclusive. 

The function returns the result of the scan in a parallel variable of the current shape and 
with the same type as source. 

The typescMC_combiner_t, CMC_communicatioll_directioll_t, CMC_seg­
ment_DlOde_t, and CNC_scaD_inclusion_t are defined by the compiler. 

The SCaD function provides a running result of the operation you specify on the parallel 
variable you specify. If you assign this result to a parallel variable of the current shape, each 
element of the parallel variable receives the running result for its position. The operation 
is carried out independently for each scan set. 

13.3.1 Examples 

The following example adds the values of data in an upward direction and assigns the 
running result to running_total; there is no sbit, and the operation is inclusive. The 
results are shown in Figure 75. 

running_total = scan(data, 0, CMC_combiner_add, 
CMC_upward, CMC_none, CMC_no_field, CMC~inclusive); 
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rwmin9'_ total - scan(data, 0, OI::_combiner_add, 
CMCLupward., OI::_none, CNC_no_field., CNC_inclusive); 

0 1 2 3 4 5 6 7 

data 4 7 9 5 3 5 9 6 

runnin9'_total 4 11 20 25 28 33 42 48 

Figure 7S. An example of the scan function with no sbit 

The following example assigns the minimum value of d.a ta in the scan set to 
running_min. The direction is downward, the operation is inclusive, and the sbit is a start 
bit The results are shown in Figure 76. 

runninq~in = scan(data, 0, CMC combiner_min, CMC_downward, 
CMC_start_bit, &start_bit, CMC_inc!usive); 

runnin9'_min - scan(data, 0, ClICLcombiner_min, 
CIICL clown.ard., CNC _start _ bi t, 'start _ bi t, 
CNC_inclusive) ; 

0 1 :z 3 4 5 6 7 

start_bit 0 0 0 0 1 0 0 I 0 

data 4 7 9 5 3 5 9 I 6 

running_min 3 3 3 3 3 5 6 I 6 

Figure 76. An example of the scan function with a start bit and a downward direction 
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Note that you would get a different result in this example if the sbit were a segment bit, 
since segment bits and start bits behave differently when the direction is downward. 

The following example multiplies the values of data in the scan set and assigns the prod­
uct to rwmin9J>roduct. The direction is upward, the operation is exclusive, and the sbit 
is a segment bit. The results are shown in Figure 77. 

running-product = scan(data, 0, CMC_combiner_multiply, 
CMC_upward, CMC_segment_bit, & segment_bit, CMC_exclusive); 

rwmin9J>roduct - scan (data, 0, 
CMC_combiner_DNltiply, CMC_upward, Ole_segment _bi t, 
'segment_bit, OICLexclusive); 

0 1 2 3 4 5 , 7 

segment_bit 0 0 0 0 1 0 0 0 

data 4 7 9 5 3 5 9 6 

runnin9J>roduct 1 4 28 
1252 1 

1 3 15 
1135 1 

Figure 77. An example of the scan function using a segment bit and an exclusive operation 

These examples are of a l-dimensional shape, which by definition has only one scan class. 
If a shape has more than one dimension, more than one scan class is created, and scan 

carries out the operation on all scan subclasses (or scan sets, if the sbit is used) at the same 
time. 

The destination parallel variable can be the same as the source parallel variable. In other 
words, a statement like the following is legal: 

data = scan(data, 0, CMC_combiner_add, CMC_upward, CMC_none, 
CMC_no_field, CMC_inclusive); 

In this case, the elements of data are overwritten with the results of the operation. 
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13.4 The reduce and copy_reduce Functions 

13.4.1 The reduce Function 

Use the reduce function to put the result of an operation into a single parallel variable 
element in each scan subclass. 

The reduce function has the following definition: 

void reduce ( 
type:current *destp 
type:current source, 
int axis, 
CMC combiner t combiner, 
int to_coord); 

where: 

destp is a scalar pointer to a parallel variable, of the current shape and of any 
arithmetic type. One element of each scan subclass of this parallel 
variable receives the result of the operation. 

source is a parallel variable (of the current shape) whose values are to be used 
in the operation. It must be of the same type as the parallel variable 
pointed to bydestp. 

axis specifies the axis along which the scan class or classes are to be 
created; see Section 12.2. 

combiner specifies the type of operation that reduce is to carry out. Possible 
values are CNC_ combiner_max, CNC_ combiner_min, CNC _ com­
biner_ad~ CNC_combiner_logior, CNC_combiner_logxor, 
andCNC_combiner_logand 

to coord specifies the coordinate of the parallel variable pointed to by destp 
that is to receive the result of the operation. 

Note the following differences between reduce and scan: 

• :reduce puts the final result of the operation into a single parallel variable element 
of the scan subclass; it does not produce a running result. 

( 
\ 
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• reduce does not use scan sets; therefore, it does not have the argmnents amoc:Ie 

and ab~t. 

• Copying with reduction is handled as a separate function, which is discussed 
below. 

Elements of source that are at inactive positions do not participate in the operation. If a 
position specified by to_coord is inactive, that element of cSest does not receive the 
result 

clest can be the same parallel variable as source; the result simply overwrites the value(s) 
in the specified element(s). 

An Example 

The following statement puts the maximum value of data into element 0 of maz. The re­
sults are shown in Figure 78. 

reduce (&max, data, 0, CMC_combiner_max, 0); 

reduce (bIax, data, 0, OIC_combiner_max, 0); 

o 1 2 3 4 5 , 7 

data 4 7 9 5 3 5 9 6 

max 9 

Figure 78. An example of the reduce function 

Incidentally, this statement is virtually equivalent to the following C· statement: 

[O]max = >1= data; 
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But note the following: 

• If position [0] were inactive, the assignment statement above would work; if you 
used reduce, the reduction would not take place. 

• The equivalence holds only for l-dimensional shapes. In shapes with more dimen­
sions, reduce carries out its operation separately for each scan subclass, whereas 
the reduction assignment carries out its operation once for all elements of the 
parallel variable. 

13.4.2 The copy_reduce Function 

Use the copy_reduce function to copy a value:from one parallel·variable element ofa 
scan subclass to another parallel variable element. 

The definition of copy_reduce is as follows: 

void copy_reduce 
type:current *destp 
type:current source, 
int axis, 
int to_coord, 
int from_coord); 

The arguments are the same as for the reduce function, except that there is a ~roa _coord 
argument instead of a combiner. ~roa _coord specify the element of 80urce from which 
the value is to be copied. It is copied into the to_coord element of the parallel variable 
pointed to by de8tp for each scan subclass. If either ~roa _coord or to_coord specifies 
an inactive position, the copying does not take place for that scan subclass. 

An Example 

The following example copies the values of elements in row 1 of data into elements of 
row 0 of copy. 

copy_reduce (&copy, data, 0, 0, 1); 

The results ~or some sample values are shown in Figure 79. 

( 
\ , 
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copy_reduce ('copy, data, 0, 0, 1); 

o 1 2 3 

o 0 1 2 3 10 11 12 13 

data 1 10 11 12 13 copy 

20 21 22 23 

Figure 79. An example oftbe copy_reduce function 

If the example of copy_reduce shown in Figure 79 were applied to a l-dimensional 
shape, it would be equivalent to: 

[0] copy = [l]data; 

Ifposition [0] were inactive, however, the results would be different. [0] copy would get 
the result from [1] data if you used the assignment statement above; it would not get the 
value if you used copy_reduce. 

13.5 The spread and copy_spread Functions 

13.5.1 The spread Function 

Use the spread function to place the result of an operation into all the elements of a 
specified parallel variable in a scan subclass. 

The spread function has the following defmition: 

type:current spread ( 
type:current source, 
int axis, 
CMC_combiner_t combiner); 
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where: 

source is a parallel variable (of the current shape) whose values are to be used 
in the operation. It can have any arithmetic type. 

axis specifies the axis along which the scan class or classes are to be cre­
ated; see Section 13.2. 

combiner specifies the type of operation that spread is to cany out. Possible 
values are CMC_ combiner_max, Ole_combiner _min, Ole _ com­
biner_add, CMC_combiner_logior, CMC_combiner_logxor, 
and OIe_combiner_logand. See Section 13.1. 

spread returns its re~t in a parallel variable of the current shape; the parallel variable has 
the same type as source. This destination parallel variable can be the same as the source 
parallel variable, in which case the elements of the source parallel variable are overwritten 
with the result. 

The spread function "spreads" the result of an operation into all active elements of the 
destination parallel variable in a scan subclass. Like reduce, spread does not use scan 
sets, and it does not have a CMC _combiner_copy operation; copying is handled by the 
copy_spread function, as discussed below. 

Inactive positions do not participate in the operation. 

An Example 

The following code adds the values of the elements in data in the scan subclasses of axis 
1, and assigns the result to total. The results for sample data are shown in Figure 80. 

total = spread (data, 1, CMC_combiner_add); 

I 
( 

\ 



\ 
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total == spread (data, 1, OCC_combiner_add); 

o 1 :z 3 

o 0 1 2 3 6 6 6 6 

data 1 10 11 12 13 total 46 46 46 46 

:z 20 21 22 23 86 86 86 86 

Figure 80. An example of the spread function 

13.5.2 The copy_spread Function 

Use the copy_spread function to copy a value from an element of a parallel variable in 
a scan subclass to all elements of a parallel variable in the scan subclass. 

The copy_spread function has the following defInition: 

type:current copy_spread ( 
type:current *sourcep, 
int axis, 
int coordinate); 

where: 

sourcep 

axis 

is a scalar pointer to a parallel variable, one value of which is to be 
copied. 

specifIes the axis along which the scan class or classes are to be 
created. 

coordina te is the coordinate along axis that specifIes the source parallel variable 
element whose value is to be copied. 

The function returns a parallel variable of the current shape and the same arithmetic type 
as the parallel variable pointed to by sourcep, containing the results of the operation. 
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If a specified element of the source parallel variable is inactive, its value is copied. Howev­
er, inactive positions of the destination parallel variable do not receive a result. 

\ 

An Example 

The following code copies the value from element [n][l] of data to elements of copy in 
the same scan subclass along axis 1. The results are shown in Figure 81. 

copy = copy_spread(&data, 1, 1); 

copy =- copy_apreacl(&data, 1, 1); 

o 1 2 3 

o 0 1 2 3 1 1 1 1 

data 1 10 11 12 13 copy 11 11 11 11 

2 20 21 22 23 21 21 21 21 

Figure 81. An example of the copy_ apreacl function 

Note that, for a l-dimensional shape, the above statement is equivalent to this statement: 

copy = [1] data; 

unless position [I] is inactive. In that case, the assignment statement works; 
copy_apread, however, would not copy [1) data. 

13.6 The enumerate Function 

Use the enumerate function to place in each active element of a parallel variable the size 
of its scan set As we discuss in more detail below, enumerate is a generalized version of 
the pcoorcl function. 

( 

\ 
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The enumerate function has the following definition: 

unsigned int:current enumerate ( 
int axis, 
CMC_communication_direction_t direction, 
CMC_scan_inclusion_t inclusion, 
CMC_segment_mode_t smode, 
bool:current *sbitp); 

All the parameters for enumerate have the same meanings and take the same values as 
the corresponding parameters for the scan function; see Section 13.3. Like scan, 
enumerate lets you specify a direction, an shit, and whether the operation is to be exclu­
sive or inclusive. Note, however, that the return value is an unsigned int of the current 
shape. 

If you specify eKe=-inclusive, enumerate includes each position in calculating the size 
of the scan set for that position. If you specify CMC_8Xclusive, enumerate does not 
include the position in calculating the size of its scan set. 

An inactive position does not receive a value and is not included in the calculation of values 
for other positions; see the third example, below. 

13.6.1 Examples 

The first example does an exclusive enumerate in an upward direction, ignoring the shit, 
and assigning the result to number. The results are shown in Figure 82. 

nUmber = enumerate(O, CMC_upward, CMC_exclusive, CMC_none, 
CMC_no_field); 
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number = enumarate(O, ClICLupward, CIIC_ezclusive, CIIC_none, 
ClICLno_field) ; 

o 1 3 4 5 , 7 

number o 1 2 3 4 5 6 7 

Figure 82. An example of the enumerate function without an sbit 

This is exactly equivalent to the following use of pcoord: 

number = pcoord(O); 

Both functions initialize each parallel variable element to its coordinate along the axis. The 
enumera t. function, however, is more versatile than pcoorcL In the next example, 
enumerate uses the sbit as a start bit and proceeds in a downward direction, using the 
inclusive mode: 

number = enumerate(O, CMC_downward, CMC_inclusive, 
CMC_start_bit, &start_bit); 

The results are shown in Figure 83. 

number .. enumerate (0, CIIC _downward, 
CIIC_inclusive, CIIC_start_bit, aistart_bit); 

0 1 2 3 4 5 , 7 

start_bit I ° 0 0 0 1 0 0 0 

number I 5 4 3 2 1 3 2 1 

Figure 83. An example of the enumerate function with a start bit and a downward direction 
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In the following example, the sbit is a segment bit, the enumerate is exclusive, the direction 
is upward, and position 2 is inactive. The results are shown in Figure 84. 

where (pI != 9) 
number = enumerate (0, CMC_upward, CMC_exclusive, 

CMC_segment_bit, &segment_bit); 

where (pl ! =- 9) 
number = 8numerate(O, CIIC_upward, CNC_elCclusive, 

CIIC_segment_bit, 'segment_bit); 

o 4 5 7 

o I o o o 

7 I::::::::::~:::.::::;:j 5 
~ "I " .,1 _ 

pl 4 3 5 8 6 

number o o I 2 3 

o active 

I?':.l l_a"';ve LL.J JUa.\,iW 

Figure 84. An example of the enumerate function using a segment bit 
and an exclusive operation, with an inactive position 

Note that the inactive position is not included in the enumeration. 

13.7 The rank Function 

Use the rank function to produce a numerical ranking of the values of parallel variable 
elements in a scan set. 

The definition of rank is as follows: 
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unsigned int:current rank 
type:current source, 
int axis, 
CMC_communication_direction_t direction, 
CMC_segment_mode_t smode, 
bool:current *sbitp); 

The parameters for rank have the same meanings and take the same values as the corre­
sponding parameters for the scan function; see Section 13.3. Like scan and enumerate, 
rank lets you specify a direction and an sbit. It does not, however, let you specify that its 
operation is exclusive; the operation is inclusive by default. Like the enumerate function, 
rank returns an unsigned iDt of the current shape. 

The rank function returns, for each active position, the rank of the value of the specified 
p~el variable at that position in its scan set. Inactive positions are not included in the 
determination of the rank for other positions, and they do not receive a rank themselves. 
The ranking is from 0 to n-l, where 11 is the total number of positions in the scan set. The 
ranks are assigned as follows: 

• When the direction is upward, the lowest value is assigned rank o. 

• When the direction is downward, the highest value is assigned rank o. 

• If more than one element has the same value, their ranks are assigned arbitrarily 
within the range of ranks they represent. 

13.7.1 Examples 

The first example has no sbit and ranks the values of data in a upward direction; it assigns 
the ranks to data_rank. The results are shown in Figure 85. 

data rank = rank(data, 0, CMC_upward, CMC_none, CMC_no_field); 
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data_rank = rank(data, 0, OIC_ upward, OIC_ none, 
OIC_no_~ield); 

0 1 1 3 4 5 6 7 

data 4 7 9 5 3 5 9 6 

data_rank 1 5 6 2 0 3 7 4 

Figure 85. An example of the rank function with no sbit 

In the next example, the sbit is a segment bit, the direction is downward, and position 1 is 
inactive. The results are shown in Figure 86. 

where (data != 7) 
data_rank = rank(data, 0, CMC_downward, CMC_segment_bit, 

&segment_bit) ; 

where (data !- 7) 
data_rank - rank (data, 0, Ole_downward, 

CNC_8egment_bit, &8egment_bit); 

o 1 1 3 4 5 

data 

data rank 

D active 
P':7I :_ft ..... · L!A ......... ve 

6 7 

Figure 86. An example of the rank function using a segment bit 
and a downward direction, with an inactive position 
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The final example uses rank along with parallel left indexing to actually reorder parallel 
variable elements according to their rank: 

[rank (data, 0, CMC_upward, CMC_none, CMC_no_field)]sorted = 
data; 

In this example, data sends values to sorted, using the return values from rank as an 
index. The key here is to have rank operate on the parallel variable that is doing the send­
ing. The results are shown in Figure 87. 

[rank (data, 0, CIIC_upward, CMCLnone, 
CMC_no_~1eld)]sorted - data; 

o 1 :z 3 4 

data 4 7 9 5 3 

sorted 3 4 5 5 6 

5 6 7 

5 9 6 

1 9 9 

Figure 87. Using rank as a parallel left index to reorder parallel 
variable elements according to their ranks 

Note how values move in the example: [0] data, for example, has a rank of 1; therefore, 
its value (4) is sent to [1] sorted. 

You can also achieve the same result using the make_send _address and send functions 
along with rank; see Section 14.3.3. 

13.8 The multispread Function 

The mul tispread function is like the spread function, except that you can use it to 
spread the result of an operation along more than one axis at the same time. This is useful 
in shapes that have more than two dimensions. For example, in a 3-dimensional shape, you 
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can use spread to spread results along anyone of the dimensions; mul tispread lets you 
spread results through entire planes of positions instead of along a single dimension. 

To see how this works, consider the simple 8-position 2-by-2-by-2 shape shown in 
Figure 88. 

.. 0 1 

o 

1 

1 

o 

Figure 88. A 3-dimensional shape 

As we mentioned in Section 12.2, specifying axis 0 creates four scan classes for this shape: 

[0][0][0] and [1][0][0] 

[0][1][0] and [1][1][0] 

[0][0][1] and [1][0][1] 

[0][1][1] and [1][1][1] 

In each scan class, the positions differ only along axis O. These scan classes are shown in 
Figure 89. 
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sean 
class 

Figure 89. Scan classes in a 3-dimensional shape 

For the mul tiapreac:t function, you can specify more than one axis along which the posi­
tions can differ. In this case, let the positions differ along axes 0 and I; axis 2 is fixed This 
results in two sets of positions: 

and: 

[0] [0] [0] 
[1] [0] [0] 
[0] [1] [0] 
[1] [1] [0] 

[0] [0] [1] 

[1] [0] [1] 

[0] [1] [1] 

[1] [1] [1] 

Figure 90 shows these two sets of positions. The sets of positions in which the positions are 
allowed to differ along more than one axis are called hyperplanes. Scan classes are there­
fore a subset of hyperplanes; in this subset, the positions can differ along only one axis. The 
mul tiapread function operates on any kind of hyperplane. 

( 
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hyperplane 

o 

Figure 90. Hyperplanes in a 3-dimensional shape 

The mul tispread function has the following definition: 

type:current multispread 
type:current source, 
int axis_mask, 
CMC_combiner_t combiner); 

The only difference in this definition from that of spread is the axis_mask parameter. 
The axis_mask parameter is a bit mask that specifies the axes along which the positions 
in a hyperplane are allowed to differ. For example, use a bit mask of 3 to specify axes 0 
and 1; use 6 to specify axes 1 and 2. 

The following example assumes a 3-dimensional shape like the one shown above. In it, the 
values of source in the hyperplanes described by axes 0 and 1 are added, and the results 
are spread to all elements of dest in the same hyperplane. 

dest = multispread(source, 3, CMC_combiner_add); 
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13.8.1 The copy_multlspread Function 

There is also a copy_ mul tispread function, comparable to the copy_spread function, 
but available for use on hyperplanes instead of scan classes. Using copy_multispread, 
however, requires an understanding of send addresses, which are discussed in the next 
chapter. We therefore defer discussion of this function until Section 14.5. 

13.9 The global Function 

Use the global function to perform reduction operations on a parallel variable and assign 
the result to a variable on the front end. 

The global function has the following defmition: 

type global ( 
type:current source, 
CMC combiner t combiner); 

where: 

source is a parallel variable (of the current shape and any arithmetic type) 
upon whose values the reduction operation is to be performed. 

combiner specifies the reduction operation. Possible values are 
CNC_ combiner_max, CIIC _combiner_min, CMC_ combiner_add, 
CIIC_combiner_logior, CNC_combiner_logxor, andCIIC_com­
biner_loqand; see Section 13.1 for definitions of these values. 

The function returns a scalar variable of the same type as source. 

The global function provides an alternative method for performing certain reduction op­
erations. For example, the following two statements are equivalent (where sl is a scalar 
variable and pl is a parallel variable of the same type): 

sl = 1= pI; 

and: 

sl = global(pl, CMC_combiner_logior); 

/ 
I 
\ 
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Both do a bitwise inclusive OR of pl and assign the result to sl. 

Note that global does not have a combiner value for the reduction assignment operator 
-= (negative of the sum of the parallel values). 

The global function operates only on active positions. 
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The C· communications functions we have discussed so far have required that the source 
and destination parallel variables be of the current shape (except for global, where the 
destination is a scalar variable), and that the communication be in regular patterns-that 
is, all elements transfer their values the same number of positions in the same direction. In 
this chapter, we introduce functions that allow communication in which: 

• One of the parallel variables need not be of the current shape, and 

• The communication need not be in a regular pattern . 

The get and sand functions described in this chapter provide communication comparable 
to that offered by parallel left indexing; see Chapter 10. 

The read_from -POsi tion function described in this chapter provide communication 
comparable to that offered by assigning a scalar-indexed parallel variable to a front-end 
variable; write_to -POsi tion is comparable to assigning a front-end variable to a sca­
lar-indexed parallel variable. The read_from JWar function reads data from a parallel 
variable into a front-end array; write_to JWar writes data from a front-end array to a 
parallel variable. 

Include the header file <CSCODIIIl. h> when calling any of the functions discussed in this 
chapter. 

14.1 The make_send_address Function 

Grid communication requires knowing the coordinates of parallel variable elements in the 
shape. More information is required for general communication. Specifically, you need to 
supply a send address for a parallel variable element's position. This send address, along 
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with a position's shape, uniquely identifies a position among all positions in all shapes; 
thus, you can use this address when an element of the current shape is communicating with 
an element that is of a different shape. 

Use the make_send _ addr.ss function to obtain a send address for one or more positions. 
make _ s.nd _ addr.ss is an overloaded function that has different versions depending on 
the following: 

• Whether you want to return a single address or multiple addresses. Multiple ad­
dresses are returned as a parallel variable of the current shape. 

• Whether you specify axis coordinates for the position in a varargs list or in an ar­
ray. The choice is the same as that for the allocate_shape function, which we 
discussed in Chapter 9. If you know the rank of the position's shape, it is easier to 
use the varargs version. If the rank will not be known until run time, you must use 
an array. 

14.1.1 Obtaining a Single Send Address 

To obtain a send address for a single position, use make_sand _address with one of the 
following formats: 

or: 

CMC sendaddr t make_send_address 
shape s, 
int axis_O_coord, ... ); 

CMC sendaddr t make send address - - --
shape s, 
int axes[]); 

where: 

s is the shape to which the position whose address you are obtaining 
belongs. 

axis_O_coord 
(in the first version) specifies the position's coordinate along axis O. 
Specify as many coordinates as there are axes in the shape. 
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axes [ ] (in the second version) is an array that contains the position's 
coordinates. 

The function returns a scalar value (of type ate _ sendaddr _ t) that is the send address of 
the position. This address is returned even if the position is inactive. 

Note that the shape you specify in the parameter list need not be the current shape. 

An Example 

The following code calculates the send address of position [77][44] in shape image and 
assigns this address to the variable addr on the front end: 

CMC_sendaddr_t addr; 
addr = make_send_address(image, 77, 44); 

14.1.2 Obtaining Multiple Send Addresses 

To obtain send addresses for more than one position, use make_send_address with one 
of the following formats: 

or: 

CMC sendaddr t:current make_send_address( 
shape s, 
int:current axis_O_coord, ..• ); 

CMC sendaddr t:current make send address - - -
shape s, 
int:current axes[]); 

These formats are the same as the ones shown in Section 14.1.1, except that the 
axis _ n _coord arguments take parallel ints of the current shape, and the function returns 

a parallel variable of the current shape. 

The value in each element of the parallel variable you specify for an axis of shape s repre­
sents a coordinate along that axis. The corresponding elements of the parallel variables that 
represent all the axes of the shape therefore fully specify a position in shape s. The func-



C· Programming Guide 210 
1111111111111111111111111111111111111111111111111111111111111111 III lIillllllllillli1IIIIIIIIilllllili111111 11111 1 1IIIII1I 1111Ii111lllillllllllllilllllllllillllllllllllilllllilll!1111111111111111I1I11111111111 11111111 

tion returns the send address for each position specified in this way. These send addresses 
are returned as the values of elements of a parallel variable that is of the current shape. 

For example, if you specify pl as the axia argument for a I-dimensional shape a, and 
[O]pl contains the value 4, then the send address of position [4] of shape B is returned in 
element [0] of a parallel variable of the current shape. 

You cannot mix scalar values and parallel values in the argument list. If you want to use 
a scalar value (for example, because you only want the send addresses of positions whose 
coordinate for axis 1 is 3), do one of the following: 

• Use a separate assignment statement to assign 3 to a parallel variable; or 

• Use a cast in the argument list to explicitly promote 3 to a parallel value. 

When Positions Are Inactive 

If a position in the CUlTent shape is inactive, that position does not participate in the opera­
tion. In other words, the function does not return the send address specified by that 
position's parallel variable elements. 

If elements specify a position in shape a that is inactive, the send address for that position 
is returned. 

An Example 

Figure 91 shows an example of make_Band_addreaa, using parallel variables of the 
I-dimensional shape t to map parallel variables of the 2-dimensional shape B. 
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shapet 

1 2 
r----.---,~ ~~--~ 

azis 0 

address 

Figure 9l. An example of the make_send _address function 

Note the following in Figure 91: 

• lWo elements contain the same send address; this is legal. 

o active 

E2l inactive 

• Position [2] is inactive; therefore, element [2] of address does not obtain the send 
address specified by the values in [2] axis_O and [2] azis_l. 

The values of the elements that specify coordinates for an axis must be within the range of 
these coordinates. If, for example, shape s has 256 positions along axis 0, a value of 256 
or greater in an element of axis _ ° would produce a run-time error, depending on the 
safety level. 

14.2 Getting Parallel Data: The get Function 

Use the get function to get values from a parallel variable when grid communication is not 
possible-that is, when communicating between shapes, or when the communication is not 
in a regular pattern. The get function is overloaded for both arithmetic and aggregate 
types. 
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14.2.1 Getting Parallel Variables 

The get function has the following definition when used with arithmetic types: 

type:current get ( 
CMC_sendaddr_t:current send_address, 
type:void *sourcep, 
CMC_collision_mode_t collision_mode); 

where: 

send addz:ess 
is a parallel variable of the current shape. The parallel variable con­
tains send addresses for positions in a shape that need not be the 
current shape; see Section 14.1. They must, howevert be of the same 
shape as the parallel variable pointed to by sourcep. 

sourcep is a scalar pointer to a parallel variable (of any shape) from which val­
ues are to be returned. The parallel variable pointed to by 
send _ addz:ess specifies which values are to be returned and where 
they are to be assigned. 

collision mode 
specifies what to do if more than one destination parallel variable ele­
ment tries to get from the same element of the source parallel variable. 
Possible values are CHC_collisionst CMC_no_collisionst 
CMC_few_collisionst and CMC_many_collisions. See "Colli­
sions in Get Operations/t below. 

The get function returns a parallel variable of the current shape. It has the same arithmetic 
type as the parallel variable pointed to by sourcept and it contains the values of the paral­
lel variable pointed to by sourcep in the positions specified by send _ addz:ess. 

The get function works like a get operation using a parallel left index; see Chapter 10. A 
destination parallel variable obtains values of the source parallel variablet using the parallel 
variable send _ addz:ess as an index. Thust given the following: 

tinclude <cscomm.h> 

shape [65536]ShapeA; 
shape [512] [128]ShapeB; 
int:ShapeA axis_O, axis_1, dest; 
int:ShapeB source; 

(~ 

( 
\ 



Chapter 14: General Communication 213 
!!I !IE: r ! !. I i :::mUiii iii !iii! II I I ELi! I : j I I i :::III: 11I1I111111 I: iiliI!I!: 

The following two code fragments have the same results: 

with (ShapeA) { 
CMC_sendaddr_t:ShapeA address; 

and: 

address = make_send_address(ShapeB; axis 0, axis_I); 
dest = get(address, &source, CMC_collisions); 

wi th (ShapeA) 
dest = [axis_OJ [axis_l] source; 

The get function is more general, however: 

• You can use get even if the rank of the shape from which you want to get values 
is not known until run time. Parallel left indexing requires that you know the rank 
of the shape when you write the program.. 

• The get function lets you control how collisions are handled; see below. 

• The get function also lets you get parallel arrays. See Section 14.2.2, below. 

If there are inactive positions in ShapeA in the first example above, elements of dest at 
these positions do not get values from source. The status of the positions in ShapeS does 
not matter; the active elements of dest get the values from the positions for which 
address has send addresses, whether or not these positions are active. Once again, this 
behavior is the same as that for get operations with parallel left indexing. 

Collisions In Get Operations 

The collisions we have talked about in previous chapters occur when two elements try to 
send to the same element at the same time. Get operations also have collisions, however; 
these occur when more than one parallel variable element tries to get a value from the same 
element at the same time. Unlike send collisions, get collisions are permitted in C*; they 
are handled automatically by get operations in the language. The get function and its 
collision_mode argument, however, gives you some control over how collisions are 
handled. 
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We recommend using the CMC _collisions option of coll.ision _mode for most appli­
cations. This is the method used by get operations in the language itself. The other options 
may be useful in special circumstances: 

• 

• 

14.2.2 

If there is no possibility of collisions, you can specify CMC _ no_collisions; cur­
rently, this option uses the same code as CMC _collisions. However, future 
implementations of the ge t function may increase the performance of 
CMC no collisions. 

CMC_many_collisions and CMC_fe._collisions can be useful if your 
application is memory-intensive and risks running out of storage (you can tell this 
if, for example, your program doesn't run with 4K physical processors, but does 
run with 8K processors). CMC_collisions requires memory for two aspects of 
its operation: to store the paths it takes in doing gets for each position, and to store 
colliding addresses. If it runs out of memory, it switches over and tries the algo­
rithm used by CIIC_many_collisions, which is slower but requires less 
memory. Under these circumstances, the operation would be faster if you specified 
CNCL many_collisions to begin with, thus avoiding the time spent trying the 
CMC_ collisions algorithm. 

If CMC _collisions takes a long time due to memory limitations and the get has 
few collisions, CMC _ fe. _collisions may be faster. In this case, the get opera­
tion iterates separately over each collision, saving the memory required to store the 
colliding addresses. 

Getting Parallel Data of Any Length 

You can also use the get function to obtain values from parallel locations of any length­
typically, parallel structures or parallel arrays. 

This version of the get function has the following definition: 

void get ( 

where: 

void:current *destp, 
CMC_sendaddr_t:current *send_addressp, 
void:void *sourcep, 
CMC_collision_mode_t collision_mode, 
int length); 

/ 
\ 
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destp is a scalar pointer to a parallel location of the current shape. This loca­
tion obtains values from sourcep, based on the index in the parallel 
variable pointed to by send _ addressp. 

send_addres8p 
is a scalar pointer to a parallel variable of the current shape. The paral­
lel variable contains send addresses for positions in a shape that need 
not be the current shape. See Section 14.1. 

sourcep is a scalar pointer to a parallel location; it need not be of the current 
shape. The parallel variable pointed to by send_addressp specifies 
positions of this location. Data is to be gotten from these positions. 

collision mode 
specifies what to do if more than one destination parallel variable ele­
ment tries to get from the same element of the source parallel variable. 
Possible values are eNe_collisions, eNe_no_collisions, 
CNC_faw_collisions, and OIC_many_collisions. See "Colli­
sions in Get Operations," above. 

length specifies the length in bits of the parallel location pointed to by 
sourcep. 

This version of the qat function lets you obtain data that is larger than the standard data 
types; typically, this data would be in a parallel structure or parallel array. For example: 

'include <cscomm.h> 

shape [65536]ShapeA; 
shape [512] [128]ShapeB; 
struct S { 

} ; 

int a; 
int b; 

int:ShapeA axis_O, axis 1; 
struct S:ShapeA dest_struct; 
struct S:ShapeB source_struct; 

main () 
{ 

with (ShapeA) { 
CMC_sendaddr_t:ShapeA address; 
address = make_send_address(ShapeB, axis_O, axis_1); 
get (&dest_struct, &address, &source_struct, 
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CMC_collisions, boolsizeof(source_struct»; 

dest_stzouct, of shape ShapeA, gets data from individual positions of the structure 
source _ stzouct, of shape ShapeS, based on the send addresses stored in address. Note 
the use of the intrinsic function bools1zeof to obtain the length, in bits, of 
source_stzouct. 

14.3 Sending Parallel Data: The send Function 

Use the send. function to send parallel data when grid communication is not possible-that 
is, when communicating between shapes, or when the communication is not in a regular 
pattern. The send function is overloaded for both arithmetic and aggregate types. 

14.3.1 Sending Parallel Variables 

The s.nd function has the following definition when used with arithmetic types: 

type:current send ( 

where: 

type:void *destp, 
CMC_sendaddr_t:current send_address, 
type:current source, 
CMC_combiner_t combiner, 
bool:void *notifyp); 

destp is a scalar pointer to a parallel variable to which values are to be sent. 
It can be of any arithmetic type and any shape. 

s.nd_acldress 
is a parallel variable of the current shape. The parallel variable con­
tains send addresses for positions in the shape of the parallel variable 
pointed to by destp. This shape need not be the current shape; see 
Section 14.1. 
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source is a scalar pointer to a parallel variable from which values are to be 
sent. It must be of the current shape, and it must have the same type 
as the parallel variable pointed to by clestp. 

combiner specifies how send is to handle collisions. Possible values are 
CNC _combiner_max, CNC _combiner_min, CNC _combiner_add, 
CMC_combiner_loqio~ CMC_combiner_loqzor, CMC_com­
biner_loqand, and CHC_combiner_overvrite. All of these are 
defined in Section 13.1 except CMC_combiner_overvrite. If you 
specify CMC _combiner _ overvri te and more than one value is sent 
to a parallel variable element, one of the values is chosen arbitrarily 
and stored in the element, and the rest of the values are discarded. 

notifyp is a scalar pointer to a baol-sized parallel variable of the same shape 
as the parallel variable pointed to by destp. Initialize it to 0 before 
using it. When an element of the clestp parallel variable receives a 
value, the corresponding element of the parallel variable pointed to by 
notifyp is set to 1. If you do not want to use a notify bit, specify 
CNC _ no_field for this argument. 

send returns the source. 

Using the send function is roughly equivalent to performing a send operation with parallel 
left indexing; see Chapter 10. The source parallel variable sends values to the destp par­
allel variable, using send_address as an index. The combiners are equivalent to 
reduction assignment operators. CMC_combiner_overvrit8 has the same effect as the 
.. operator, when the parallel right-hand side is cast to the type of the scalar left-hand side. 

There are some differences, however, between the send function and send operations with 
parallel left indexing: 

• The send function can be used when the rank of the shape of the destination paral­
lel variable is not known until run time. 

• The send function lets you include a notify bit, which provides notification that 
a value has been received by an element of the destination parallel variable. 

• There is not a complete correspondence between the combiners and the reduction 
assignment operators. For example, there is no combiner that is equivalent to the 
- reduction assignment operator. 

• The send function has an overloaded version that lets you send parallel arrays; see 
Section 14.3.2, below. 
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Inactive Positions 

Inactive positions are treated in the same way they are treated by send operations with par­
allelleft indexes: 

• 

• 

An element in an inactive position in the current shape does not send a value . 

Destination parallel variable elements receive values even if they are in inactive 
positions. 

In addition, the notify bit can be set even in an inactive position. 

An Example 

The following code sends values from elements of source to elements of dest. 

*include <cscomm.h> 

shape [16384]ShapeA; 
shape [2] [16384]ShapeB; 
int:ShapeA axis_O, axis_I, source; 
int:ShapeB dest; 
bool:ShapeB notify_bit - 0; 

/* Code to initialize parallel variables omitted. *1 

main () 
{ 

wi th (ShapeA) ( 
CMC_sendaddr_t:ShapeA address; 

} 

} 

address = make_send_address(ShapeB, axis_O, axis_I); 

where (source < 9) 
send (&dest, address, source, CMC_combiner_min, 

&notify_bit); 

Some sample results are shown in Figure 92. The mows show what happens to the value 
at [3] source, based on the send address in [3] address. 

Note the following points in these results: 
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• Position [2] of ShapeA is inactive; therefore, [2] source does not send its value. 

• The ClICL combiner_min combiner causes the 3 from [0] source, rather than 
the 5 from [1] source, to be sent to [1] [0] dest. 

• The notify bit is set in the two positions that receive values. 

where (source < 9) 

addre •• 

• ource 

send ('dest, address, source, 
OMC_combiner_min, 'Dotify_hit); 

ShapeA 

o 

Figure 92. An example of the send function 

14.3.2 Sending Parallel Data of Any Length 

o active 

o inactive 

ShapeS 

1 2 3 

7 

You can also use the send function to send parallel data of any length-typically a parallel 
structure or parallel array. 

This version of the send function has the following definition: 
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void:current * send ( 
void:void *destp, 

where: 

CMC sendaddr t:current *send_addressp, 
void:current *sourcep, 
int length, 
bool:void *notifyp); 

destp is a scalar pointer to a parallel location to which data is to be sent. 
void:void specifies that destp points to a location that can be of 
any type and of any shape. 

send_addressp 
is a scalar pointer to a parallel variable of the current shape. The paral­
lel variable contains send addresses for positions in the shape of the 
parallel variable pointed to by destp. 

sourcep is a scalar pointer to a parallel location from which data is to be sent. 
It must be of the current shape. 

length specifies the length in bits of the location whose beginning is pointed 
to by sourcep. 

notifyp is a scalar pointer to a bool-sized parallel variable of the same shape 
as the location pointed to by destp. When data is written to a position 
pointed to by destp, the corresponding element of the parallel vari­
able pointed to by notifyp is set to 1. If you do not want to use a 
notify bit, specify CNC_no_field for this argument. 

send returns a pointer to the source. 

This version of the send function lets you send data that is larger than the standard data 
types; typically, this data would be in a parallel structure or parallel array. The data is sent 
from the source location to the destination location, using the parallel variable pointed to 
by send_addressp as an index to determine the destination. 

Note that this version of send does not include a combiner argument. This version uses 
the CNC _combiner _ overwri te option, and arbitrarily chooses a position of the array or 
structure if there would otherwise be a collision. 

For example: 

( 

\ 



Chapter J 4: General Communication 221 
illiilllil!l!!lllilil!lilli.lllllilllllll II ilm Iii ]i!Iiiillii li!11 I111I !IIII III 111111111 1I111I lilllilllllll!111 II I 11111111111111111111111111 11111111111111111111 1111iIIll!111 ! 111111 

tinclude <cscomm.h> 

shape [65536]ShapeA; 
shape [512] [128]ShapeB; 
struct S { 

} ; 

int a; 
int b; 

int:ShapeA axis 0, axis 1; 
bool:ShapeB notify_bit = 0; 
struct S source_struct:ShapeA, dest_struct:Shape_B; 

main () 
{ 

with (ShapeA) { 
CMC_sendaddr_t:ShapeA address; 
address = make_send_address(ShapeB, axis_O, axis_1); 
send (&dest_struct, &address, &source_struct, 

boolsizeof(source_struct), &notify_bit); 

The values of individual positions of the parallel structure source_struct, of shape 
ShapeA, are sent to clest _ struct, of shape ShapeS, based on the send addresses stored 
in address. Note the use of the intrinsic function boolsizeof to obtain the length. in 
bits, of source_struct. 

14.3.3 Sorting Elements by Their Ranks 

You can use send, along with the make_send_address and rank functions, to reorder 
elements of a parallel variable by the ranks of their values. Note that this is also possible 
with parallel left indexing, as described in Section 13.7.1. 

In the following example, we rearrange salary data for employees: 

#include <cscomm.h> 

shape [16384] employees; 
struct employee { 

int id; 
int salary; 
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} ; 

struct employee:employees staff; 

main () 
{ 

/* Code to initialize salaries and ids omitted. */ 

with (employees) { 
int:employees order; 
CMC_sendaddr_t:employees address; 

/* Determine ranks of salary values. */ 

order = rank(staff.salary, 0, CMC_upward, CMC_none, 
CMC_no_field) ; 

/* Create send addresses, using salary ranks as 
the index. */ 

address = make_send_address(employees, order); 

/* Send employee data for each employee to new 
positions, based on the salary ranks. */ 

send (&staff, &address, &staff, boolsizeof(staff), 
CMC_no_field) ; 

The cOde proceeds as follows: 

1. It declares the shape, and declares and initializes the parallel structure. (The initial­
ization of staff. salary and staff. id is omitted.) 

2. It calls rank to return the ranks of the elements of staff. salary. The results 
(assuming only a S-position shape) are shown in Figure 93. 

3. It calls make_send_address to return send addresses, using the salary ranks as 
the index. Upon return, [0] address contains the send address of position [1] of 
shape employees, [1] address contains the send address of position [0] of 
employees, and so on. 
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4. It then calls send to send the variables in the parallel structure to new positions, 
based on the send addresses. The result is that the values are rearranged as shown 
in Figure 94. " 

order == rank(staff.salary, 0, CIIC_upward, CNtLnone, 
CNC_Do_field) ; 

shape employees 
o 1 134 

staff.id 50 1 51 1 52 1 53 1 54 

staff. salary 1530 1230 161616141800 1 

order 1 o 3 2 4 

Figure 93. Using the rank function to rank elements of a parallel variable 

address = make_send_address(employees, order); 
send ('staff, 'address, 'staff, boolsizeof(staff), 

CIIC _ no_field) ; 

shape employees 

0 1 Z 3 4 

staff.id 51 1 50 1 53 1 52 1 54 

staff. salary 1220 1530 161416161800 I 
order 1 0 3 2 4 

Figure 94. Using make_sand_address and send to reorder 
the elements of parallel variables by rank 
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14.4 Communicating with the Front End 

This section discusses c· communication functions that provide general communication 
between the front end and parallel variables on the CM 

14.4.1 From the eM to the Front End 

The read_from.J)osltion Function 

Use the read_from.,.POsition function to read a value from a parallel variable element 
(not necessarily of the current shape) and assign it to a front-end variable. This function is 
overloaded for any arithmetic type. 

The read_from.,.POsition function has the following definition: 

type read_frorn-position ( 
CMC_sendaddr_t send_address, 
type:void *sourcep); 

where: 

send_address 
is the send address of a position from which a value is to be read. 

sourcep is a scalar pointer to the parallel variable from which a value is to be 
read; the parallel variable can be of any shape and any arithmetic type. 

Before calling read_fromJ>osition (or as part of the read_fromJ>osition call), 
you must use the single-address version of make_send _address to store a send address 
on the front end; see Section 14.1. The read_fromJ>osition function uses this send 
address to specify the position, and it uses sourcep to specify the parallel variable. It re­
turns the value obtained from the parallel variable element at that position. The value is 
returned even if the position is inactive. 

Since read_fromJ>osition deals with a scalar value, it does not have to be called 
within the scope of a wi th statement, and the source parallel variable does not have to be 
of the current shape. 

This function, in combination with make_send _address, produces the same result as as­
signing a scalar-indexed parallel variable to a front-end variable. For example: 
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scalar = [7]p1; 
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You can use read_ fromJ>Osi tion even when the rank of the shape is not known until 
run time, however. 

The following example reads the value from element [16][4] of parallel variable pl, which 
is of shape image. It assigns the value to the scalar variable sl. 

tinclude <cscornrn.h> 

shape [256] [256] image; 
float:image pI; 
CMC_sendaddr_t address; 
float sl; 

main () 
{ 

address = make_send_addres8(image, 16, 4); 
81 = read_from-po8ition(address, &p1); 

Note that the call to make_send_address can also be made from within 
read_from"position's argument list: 

81 = read_from-position(make_send_address(image, 16, 4), &pl); 

The read_fromJ)var Function 

Use the read_from J>Var function to read the values of active elements of a parallel vari­
able and assign them to a front-end array. This function is overloaded for any arithmetic 
type. It has the following definition: 

void read_from-pvar ( 
type *destp, 
type:current source) 

where: 

destp is a pointer to the scalar array to which values are to be written. 
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source is a parallel variable of the current shape from which values are to be 
read. Both source and the array pointed to by destp must have the 
same aritbmetic type. 

The values in source are written into the specified front-end array. Values in inactive ele­
ments are not copied; array elements that correspond to inactive positions receive 
undefined values. 1YPically, the front-end array will have the same number of elements and 
dimensions as the source parallel variable. It cannot have fewer elements than the source 
parallel variable. 

The following example copies the values in pl to the front-end array fe_array: 

finclude <cscomm.h> 

shape [16384]ShapeA; 
int:ShapeA pi; 
int fe_array[16384]; 

main () 
{ 

/* Initialization of pi omitted */ 

wi th (ShapeA) 
read_from-pvar(fe_array, pi); 

14.4.2 From the Front End to the eM 

The wrlte_toJ)osition Function 

Use the writ8_toJ>Osition function to write a value from the front end to a parallel 
variable element (not necessarily of the current shape). The writ8_toJ>Osition func­
tion has the following definition: 

type write_to-position 
CMC_sendaddr_t send_address, 
type:void *destp, 
type source); 

where: 

I 
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send address 
is the send address of the position to which a value is to be written. 

destp is a scalar pointer to the parallel variable to which a value is to be writ­
ten; the parallel variable can be of any shape and any arithmetic type. 

source is the front-end variable whose value is to be sent to the destination 
parallel variable element. Both source and the parallel variable 
pointed to by destp must have the same arithmetic type. 

The function returns the value of source. 

As with read_from_posi tioD, you must use the single-address version of 
make_send_address to store a send address on the front end; see Section 14.1. 
wri te _ to .j)Osi tion uses this send address to specify the position, and it uses destp to 
specify the parallel variable. It sends the value in source to the element specified by these 
arguments. The value is written into this element even if the element's position is inactive. 

write_to .j)Osi tion does not have to be called within the scope of a with statement, 
and the destination parallel variable does not have to be of the current shape. 

This function, when used along with make_send_address, produces the same result as 
assigning a front-end variable to a scalar-indexed parallel variable. For example: 

[7]p1 = scalar; 

You can use wri te _ to -position even when the rank of the shape is not known until run 
time, however. 

The following example reverses the example for read_from .j)Osi tion in the previous 
section. It assigns the value of the scalar variable sl to element [16][4] of parallel variable 
pl, which is of shape image. 

tinclude <cscomm.h> 

shape [256] [256] image; 
float: image p1; 
CMC_sendaddr_t address; 
float sl; 

main () 
{ 

address = make_send_address(image, 16, 4); 
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write_to-position(address, &pl, sl); 

The wrlte_to.J)var Function 

Use the writ8_toJWar function to write data from a front-end array to a parallel vari­
able of the current shape. The function is overloaded for any arithmetic type. It has the 
following definition: 

type:current write_to-pvar 
type *sourcep) 

where sourcep is a pointer to a scalar array from which data is to be written. 

The function returns a parallel variable of the current shape containing the values in the 
front-end array. If there are inactive positions in the shape at the time the function is called, 
the values in these inactive positions are not overwritten. The front-end array typically has 
the same number of elements and dimensions as the current shape; it cannot have fewer 
elements. 

The following example reverses the example for read_from JWar shown in the previous 
section. The front-end array fe_array writes its values to the parallel variable pl: 

finclude <cscomm.h> 

shape [16384]ShapeA; 
int:ShapeA pI; 
int fe_array[16384]; 

main () 
{ 

/* Initialization of fe_array omitted */ 

wi th (ShapeA) 
pI = write_to-pvar(fe_array); 

} 
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14.5 The make_multi_coord and 
, copy_multispread Functions 

As we mentioned at the end of Chapter 13, the copy_multispread function is compara­
ble to the copy_spread function, except that you use it on hyperplanes instead of scan 
classes. 

copy_ mul tispread takes as one of its arguments a multicoordinate. The multicoordinate 
specifies which element of the parallel variable is to be spread through each hyperplane. 
For example, in the discussion of mul tispread in Chapter 13, we saw that, if we allowed 
positions to differ along axes 0 and 1 while keeping axis 2 fixed, we created the following 
two hyperplanes (for a 2-by-2-by-2 shape): 

and: 

[0] [0] [0] 

[1] [0] [0] 

[0] [1] [0] 

[1] [1] [0] 

[0] [0] [1] 

[1] [0] [1] 

[0] [1] [1] 

[1] [1] [1] 

Choosing an individual element in these hyperplanes requires that you specify only two of 
the three coordinates, since the third (the coordinate for axis 2) is fixed (it is [0] in the first 
hyperplane, [1] in the second). The multicoordinate specifies what the coordinates are 
along the axes that are not fixed. If the multicoordinate specifies [0] for axis 0 and [0] for 
axis 1, for example, then position [0][0][0] is chosen for the first hyperplane, and [0][0][1] 
is chosen for the second hyperplane. 

To obtain this multicoordinate for a position, use the make_MUlti_coord function. You 
can then use the multicoordinate in the call to copy_ mu1 tispread. The multicoordinate 
specifies the desired position in each hyperplane. 

make _ mul ti _coord is an overloaded function. It provides three different ways of speci­
fying a position: 

• By including the position's coordinates as arguments to the function. 
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• By specifYing an array that contains these coordinates. Use this version if the 
shape's rank will not be known until run time. 

• By specifYing the position's send address. 

The three versions of make _ mul ti _coord have the following definitions: 

or: 

or: 

CMC_multicoord_t make_multi_coord 
shape s, 
unsigned int axis_mask, 
int axis_O_coord, ... ); 

CMC multicoord t make multi coord - -
shape s, 
unsigned int axis_mask, 
int axes[]); 

CMC multicoord t make multi coord - - -
shape s, 
unsigned int axis_mask, 
CMC sendaddr t send_address); 

where: 

• specifies the shape for which the multicoordinate is to be obtained. 

axi. ma.k is a bit mask that specifies the axis or axes along which positions in 
a hyperplane are allowed to differ. Bit 1 corresponds to axis 0, bit 2 to 
axis 1, and so on. For example, use a bit mask of 3 to specify axes 0 
and 1; use 6 to specify axes I and 2; use 5 to specify axes 0 and 2. 

&Xi. 0 coord 

axe.[] 

(in the :first version) specifies the coordinates of a position in shape • 
along axis O. Specify as many coordinates as there are axes in the 
shape. 

(in the second version) is an array that contains the position's coordi­
nates. Specify as many coordinates as there are axes in the shape. 

( 
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send address 
(in the third version) is the send address for a position in shape s. 
Any position will do. 

In all versions, the function returns the multi coordinate for the specified position with the 
specified axis mask. 

The definition of copy_multispread is as follows: 

type:current copy_multispread 
type:current *sourcep, 
unsigned int axis_mask, 
CMC_multicoord_t multi_coord); 

where: 

sourcep is a scalar pointer to a parallel variable from which values are to be 
copied. The parallel variable can be of any arithmetic type; it must be 
of the current shape. 

axis_mask is a bit mask that specifies the axis or axes along which positions in 
a hyperplane are allowed to differ. 

multi_coord 
specifies the coordinates that determine the elements of the source 
parallel variable from which values are to be copied. 

The function copies the value from each specified element to each active position in that 
element's hyperplane. It returns a parallel variable containing these values; the parallel 
variable is of the current shape and has the same arithmetic type as source. Values of 
inactive elements are copied. 

14.5.1 An Example 

For example, given the following declarations: 

tinclude <cscomm.h> 

CMC_sendaddr_t address; 
CMC_multicoord_t multi_coord; 
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shape [128] [128] [128]ShapeA; 
int:ShapeA source, dest; 

then: 

address = make_send_address(ShapeA, 0, 0, 1); 

obtains the send address for position [0][0][1] in shape ShapeA and assigns it to the scalar 
int address. 

multi coord = make_multi_coord(ShapeA, 3, address); 

obtains the multicoordinate for this position along axes 0 and 1 (specified by the value 3 
for the axis_mask argument) and assigns it to the multi_coord. 

wi th (ShapeA) 
dest = copy_multispread(&source, 3, multi_coord); 

takes each element of parallel variable source specified by the axis mask (3) and the mul­
ticoordinate (multi_coord) and copies its value into the elements of parallel variable 
dest in the same hyperplane. In other words (for a 2-by-2-by-2 shape): 

• The value in [0] [0] [O]source is assigned to [0] [0] [Oldest, 
[1] [0] [Oldest, [0] [1] [Oldest, and [1] (1] [Oldest. 

• The value in [0] [0] [l]source is assigned to [0] [0] [l]dest, 

[1] [0] [1] dest, [0 [1] [1] dest, and [1] [1] [1] dest. 

( 
\.. 

\ 
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Appendix A 

Improving Performance 
I i lliiilll: 

This appendix describes ways to improve the performance of C· programs. In some cases, 
it repeats information included in the body of this guide; in other cases (for example, the 
discussion of allocate_detailed _shape), it presents information not discussed else­
where in the guide. Other performance information may be included in the release notes. 

A.1 Declarations 

A.1.1 Use Scalar Data Types 

If data is scalar, declare it as a regular C variable, so that it is stored on the front end. In 
other words, do not store constants in parallel variables. 

A.1.2 Use the Smallest Data Type Possible 

To save storage on the CM, use the smallest data types possible for parallel variables. For 
example, if the parallel variable is a flag, declare it as a bool. If it is to have values only 
from -4 to 17, declare it as a signed cha:r:. 

235 



236 C· Programming Guide 
1111111111111111111111 II 1111111111111111 1111 1111111 !lllllllIiII I 1111111I III 1III!Ii IIIIIIUIIIII!! III! J; lililillllill 111I111111111111111111 I 

A.1.3 Declare float constants as floats 

Declaring float constants as floats (that is, with the finalj) reduces the number of 
conversions that the compiler must make, thereby speeding up the program. For example, 

float:ShapeA pI, p2; 
pI = p2 * 4.0f; 

is better than writing the code with just "4.0". 

A.2 Functions 

A.2.1 Prototype Functions 

Using ANSI function prototyping speeds up a program by reducing the number of conver­
sions. For example, a call to an unprototyped function with a char will promote the 
argument to an into The called function must then convert the int back to a char. 

A.2.2 Use current instead of a Shape Name 

If a program is to be run with safety on, it is more efficient to define a function to take a 
parallel variable of the current shape as an argument, rather than a parallel variable of a 
specified shape. In the latter case, the compiler must take the additional step of determining 
that the specified shape is current. 

A.2.3 Use everywhere when All Positions Are Active 

If a function contains statements that are to operate on all positions, regardless of the con­
text in which they are called, you may be able to increase performance by enclosing the 
function's statements in an everywhere statement. The explicit use of everywhere lets 
the compiler use faster instructions that ignore the context. 

NOTE: This technique can also work with a program's main function. 

/ 
( 

\. 

( 
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A.2.4 Pass Parallel Variables by Reference 

In function calls, pass a parallel variable by reference (that is, take its address and pass the 
pointer) if passing the parallel variable by value is not required. 

A.3 Operators 

A.3.1 Avoid Parallel &&, II, and 1: Operators Where 
Contextualization Is Not Necessary 

As discussed in Chapter 5, the parallel versions of the &&, I I, and ?: operators perform 
implicit contextualization. If you do not require this aspect of the operators' behavior, your 
code will run faster if you can avoid using them. 

For example, ifpl and f (pl) are known to be 0- or I-valued, then 

p2 = pl & f(pl): 

is much more efficient than 

p2 = pl && f(pl); 

The former statement avoids contextualization, and it avoids doing a logical conversion of 
its operands, because it assumes that the two operands have logical values. 

Similarly, 

where (pl < p2) & (p2 < p3) ) 

is more efficient than a version that uses the logical AND operator. The "less-than" relation­
al expressions have logical values; therefore, the use of the logical AND (and the resulting 
contextualization) is not required. 
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A.3.2 Avoid Promotion to Ints by Assigning 
to a Smaller Data Type 

As discussed in Chapter 5, the compiler evaluates an expression at the precision of the vari­
able to which the expression is assigned, provided that the results are the same as if 
standard ANSI promotion rules were followed. Otherwise, smaller data types such as 
bools and chars are promoted to ints when used in expressions. Therefore, explicitly 
assigning the result of an expression involving these data types to a variable of the same 
data type will increase performance. 

A.3.3 Assign a "where" Test to a bool 

When using the where statement, it is more efficient to first store the test in a bool, and 
then use the bool in the whare. This is a notable case of the situation discussed in Section 
A.3.2. For example, the following code: 

int:current x, y; 
where ((x>l) && (y<2» { 

/* ••• * /} 

is more efficient when it is rewritten as follows: 

int:current x,y; 
bool:current b; 

b = (x>l) && (y<2); 
where (b) { 

/* ... * /} 

A.4 Communication 

To get the best performance in programs in which parallel variables send values to and 
receive values from other parallel variables, do the following: 

1. If possible, put parallel variables that are to communicate in the same shape. 
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2. Use grid communication functions instead of general communication functions or 
the language features (like parallel left indexing) that are the equivalent of general 
communication functions. 

3. Use send operations instead of get operations for general communication. 

4. If the program has known, stable patterns of communication that use one axis 
more than another, use allocate_detailed_shape to weight the axes. 

Some of these points are covered in more detail below. 

A.4.1 Use Grid Communication Functions Instead of 
General Communication Functions 

As mentioned in Part ill of this guide, grid communication is faster than general communi­
cation. Therefore, your program will run faster if parallel variables that are to communicate 
are in the same shape, and you use the grid communication functions for send and get 
operations. 

A.4.2 Use Send Operations instead of Get Operations 

For general communication, send operations are up to twice as fast as get operations, and 
use less storage. If possible, use communication functions and C· code that perform send 
operations rather than get operations. 

In grid communication, send operations and get operations have the same cost 

A.4.3 The allocate_detailed_shape Function 

Typically, programs use the C· intrinsic function allocate_shape to dynamically allo­
cate shapes. If, however, your program has known, stable patterns of communication, you 
may be able to improve the performance of your program by using the intrinsic function 
allocate_d.etailed_shape instead; this function lets you weight the axes of the shape 
according to the relative frequency of communication along the axes. C· can then layout 
the shape on the CM to optimize performance based on these weights. 
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Like allocate_shape, allocate_detAiled_shape is overloaded. In one version, 
you use a variable arguments list to specify each dimension of the shape. In the other, the 
information about the dimensions is included in an array that is passed as an argument to 
the function; this format is useful if the program will not know the rank until run time. 

Include the header file <eml emtypes . h> when you call allocate_detAiled_shape. 

The variable-arguments format of the function is as follows: 

CMC_Shape_t allocate_detailed_shape 
shape *shapep, 

where: 

int rank, 
unsigned long length, 
unsigned long weight, 
CM_axis_order_t ordering, 
unsigned long on_chip_bits, 
unsigned long off_chip_bits, 

ahapep is a pointer to a shape. The remaining arguments specify this shape, 
and the function returns this shape. 

rank specifies the number of dimensions in the shape. 

length is the number of positions along axis O. 

weight is a number that indicates the relative frequency of communication 
along the axis. For example, weights of 1 for axis 0 and 2 for axis I 
specify that communication occurs about half as often along axis O. 
Only the relative values of the weight arguments for the different 
axes matter; for example, weights of 5 for axis 0 and 10 for axis 1 
specify the same communication as weights of 1 and 2, or 3 and 6. 
Specifying the same values for different axes indicates that they have 
the same level of communication. 

ordering specifies how coordinates are mapped onto physical CM processors 
for the axis. There are three possible values: ell_neva_order, 
CH _ aend_ order, and CH_ fb_ order. 

The value CH _neva_order specifies the usual mapping, in which po­
sitions with adjacent coordinates are in fact represented in neighboring 
processors on the CM. Specifying any other order slows down grid 
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communication considerably. 

The value eM_send _order specifies that a position with a lower 
coordinate than another position also has a smaller send address. This 
ordering is rare, but it is used in certain applications. 

Use the value eM _ fb _order only if your shape is an image buffer and 
is to be moved to a fcamebuffer. For details, see Chapter 1 of the Ge­
neric Display Interface Reference Manual. 

You can specify a different ordering for each axis. 

on_chip_bits 
off_chip_bits 

can be used to specify the mapping of positions to physical processors 
only if the values of the weight argument for all axes are the same. 
Specify 0 for the value of each of these arguments if you use different 
values for the weight argument. For information on how to specify 
other values for on chip bits and off chip bits, consult the - - --
description of the create-datailaci-geometry instruction in the 
Paris Reference Manual. 

Include values for length, weight, ordering, on chip bits, and off chip bits - - --
for as many axes as are specified by rank. 

The array format of allocated detailed shape is as follows: - -
CMC_Shape_t allocate_detailed_shape 

shape *shape-ptr 
int rank, 
CM~axis_descriptor_t axes[] 

where axes is an array that contains descriptors for each axis in the shape to be allocated. 
You can fill in the information about each axis by calling the C· library function 
fill_axis_descriptor, which is defined as follows: 

void fill_axis_descriptor ( 
CM_axis_descriptor_t axis, 
unsigned long length, 
unsigned long weight, 
CM_axis_order_t ordering, 
unsigned long on_chip_bits, 
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where axis is an array element that corresponds to the axis being described, and the re­
maining arguments are defined as above. 

As an intrinsic functimlt allocate detailed shape can be used as an initializer at file - -scope. Thus, you can do the following: 

finclude <crn/cmtypes.h> 

shape s = allocate_detailed_shape(&s, 2, 256, 2, CM_news_order, 
0, 0, 512, 1, CM_news_order, 0, 0); 

This statement fully specifies a 256-by-512 shape s, for which you expect communication 
to occur twice as often along axis 0 as along axis 1. 

A.5 Parallel Right Indexing 

Parallel right indexing, as described in Chapter 7, becomes less efficient as the range of the 
array indexes increases. 

For users familiar with Paris: The performance of parallel right indexing is comparable to 
aref and aset calls, rather than aref32 and asat32 calls. 

A.6 Paris 

Although generally not necessary, it may be possible to improve performance by calling 
Paris, the CM parallel instruction set, from within a C· program. For details on how to do 
this, see Chapter 2 of the C· User s Guide. 

/ 
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Glossary 

active 

axis 

bool 

collision 

combiner type 

context 

coordinate 

Of elements and positions: Participating in parallel operations. Parallel 
operations within a where statement are carried out only on parallel vari­
able elements left active by the where statement. 

A dimension of a shape. Axes are numbered starting with 0 and are read 
from left to right in a left index. For example, if a shape is declared as 
"(256)[512]ShapeA", shape ShapeA bas 256 positions along axis 0 and 
512 positions along axis 1. 

An unsigned single-bit integer data type. 

An attempt by more than one parallel variable element to send values to or 
get a value from. the same element at the same time. C· provides mecha­
nisms for avoiding collisions. 

In communication functions: The type of operation to be carried out by the 
function-for example, add values, multiply them, or perform a bitwise 
logical AND. 

The active positions of a shape as set by a where statement 

A number that identifies a position or an element along an axis. For ex­
ample, the coordinates of parallel variable element [6][14]p1 are 6 for axis 
o and 14 for axis 1. 

corresponding elements Elements of different parallel variables that are at the same position. 

current shape 

Corresponding elements have the same coordinates and the same shape. 

The shape on whose parallel variables parallel operations can be per­
formed. The with statement selects the current shape. 

243 
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current predeclared shape name A shape name that C· equates to the current shape. Vari-
ables declared to be of shape current (for example, in a function) are of 
the shape that is current when the declaration is made. 

direction In communication functions: The direction along an axis in which a 
function is to perform its operation. An upward direction is from lower­
numbered coordinates to higher; a downward direction is from higher­
numbered coordinates to lower. 

element An individual data point of a parallel variable. A parallel variable has one 
element at each position in its shape. 

exclusive operation In communication functions: An operation that excludes the first position 
of a segment-bit scan set. and that includes the first position of a start-bit 
scan set in the operation for the preceding scan set. Compare inclusive 
operation. 

general communication Communication in which any parallel variable element can send a 
value to or get a value :from any other element. whether or not their posi­
tions are in the same shape. Compare grid communication. 

get operation An operation in which a parallel variable gets values :from another parallel 
variable. For example: "dest • [Index]source;". 

grid communication Communication in which a parallel variable sends values to or gets values 
from another parallel variable in the same shape, using the coordinates of 
the parallel variable's elements. Compare general communication. 

hyperplane In communication functions: A set of positions whose coordinates are 
allowed to differ along more than one axis. Compare scan class. 

inactive Of elements and positions: Not participating in parallel operations. 

inclusive operation In communication functions: An operation that includes the first position 
of the scan set. Compare exclusive operation. 
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intrinsic function A function that is defined as part of the language. 

left indexing A method of specifying an element or elements of a parallel variable, or 
the dimension(s) of a shape, using values in brackets to the left of the vari­
able or shape's name. 

multicoordinate A value obtained by the make_multCcoordlnate function that specifies 
which element of a parallel variable is to be spread through each hyper­
plane for the copy_multispread function. 

notify bit In the send function: a bool-sized parallel variable, each element of which 
can be set when the corresponding element of the destination parallel vari­
able receives a value. 

parallel operation An operation carried out on more than one element of a parallel variable at 
the same time. 

parallel variable A variable consisting of multiple data points, called elements, arranged in a 
specified shape. The declaration "lnt:ShapeA p1;" declares p1 to be an 
Int-Iength parallel variable of shape ShapeA. Compare scalar variable. 

pcoord function An intrinsic function that returns a parallel variable whose elements are 
initialized to their coordinates along a specified axis. 

physical shape A shape predeclared by C·. It is a I-dimensional shape, with the number 
of positions equal to the number of physical processors allocated to the 
program at run time. 

position An area of a shape that can contain parallel variable elements. A shape 
declared as [8192]ShapeB contains 8192 positions, arranged along one 
dimension. A parallel variable of a given shape has an element in each 
position of that shape. 

predeclared shape name A shape name provided as part of the language. The three predeclared 
shape names are current, physical, and void. 
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promotion Changing a scalar variable into a parallel variable by replicating the value 
of the scalar variable in each position of the shape. 

rank The number of dimensions of a shape. A shape declared as 
[S12][256]ShapeA has rank 2. A shape can have up to 31 dimensions. 

reduction operator An operator that reduces a parallel variable to a single scalar value by per­
forming a combining operation. For example, the reduction operator += 
adds the values of active elements of a parallel variable. 

region In C· debugging: A specified subset of a shape's positions on which cer­
tain debugging functions are to operate. 

sbit In communication functions: A bool-sized parallel variable. An element of 
an sbit, when set to 1, marks the beginning of a scan set at the element's 
position. An sbit can be interpreted as a segment bit or as a start bit, 
depending on the value of the smode argument to the function. 

scalar variable A standard C variable, having only one value. Compare parallel variable. 

scan class In communication functions: A set of positions whose coordinates differ 
only along a specified axis. Compare hyperplane, scan set. 

scan set In communication functions: A subset of a scan class, the beginning of 
which is marked by an sbit. 

segment bit In communication functions: The interpretation of an sbit when the value 
of the smode argument is eM_segment_bit. When an sbit is a segment 
bit: 1) the sbit starts a scan set when the value of its element is 1, whether 
or not it is in an active position; 2) scan sets are not affected by the direc­
tion of the operation; and 3) operations in one scan set never affect values 
of elements in another scan set. Compare start bit. 

send address An address that, along with a position's coordinates, uniquely identifies 
that position among all positions in all shapes. 
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An operation in which a parallel variable element sends a value to another 
element. For example: "[lndex]dest = sourcej". 

A template for parallel data. A shape is declared in a shape statement and 
consists of a number of positions organized in up to 31 dimensions. All 
parallel variables must have a shape, and no parallel operations can be 
carried out unless a shape is made current by a with statement. 

shape-valued expression An expression that can be resolved to a shape name, and can be used 
anywhere a shape name is used. For example, "shapeof(p1)" returns the 
name of the parallel variable p1 's shape and can be used in place of that 
shape's name. 

start bit 

torus 

In communication functions: The interpretation of an sbit when the value 
of the smode argument is CM_starCblt. When an sbit is a start bit: 1) an 
sbit starts a scan set only when the value of its element is 1 and the ele­
ment's position is active; 2) when the direction is downward, scan sets are 
created from the higher coordinate to the lower coordinate; and 3) in an 
exclusive operation, the position whose sbit element is 1 receives a value 
from the preceding scan set, if there is one. Compare segment bit. 

A doughnut-shaped surface. C· ''torus'' communication functions use a 
grid as if it were wrapped into a torus, with the opposite borders of the 
grid connected. An element that requires a value from beyond the border 
gets it from the other side of the grid. 

void predeclared shape name An extension of the ANSI keyword void. It specifies a shape with­
out indicating what the shape's name is. The void predeclared shape name 
can be used only as the taIget shape of a scalar-to-parallel pointer. 

where statement A statement that sets the context for parallel operations within its body. For 
example, ''where (p1 = 4)" causes parallel operations to be carried out only 
on elements in positions where the parallel variable p1 is equal to 4. 
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with statement 

wrapping 

A statement that chooses the current shape. Parallel operations within the 
body of a with statement must (with some exceptions) be canied out on 
parallel variables of the current shape. 

In communication functions: Obtaining values from the other side of the 
grid. 
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-=,55 
"'_,57 
11,48,75 
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A 
active positions, 11,61 

See also positions 
and scan sets, 180-181 
obtaining the number of, 108 
using cast to obtain number of, 108 
when shape first selected, 61 
when there are no, 70-73 

allocate_detailed _shape, 239-241 
allocate_shape, 104-108,208,239 
ANSI, 4 
arrays 

See also parallel arrays 
and parallel structures, 31 
and pointers, 82 
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arrays of shapes, III 
and pointers, 101 
partially specifying, 100-101 

axis, 19, 148 
axis_mask, 203, 230 

B 
bitwise AND, 57,174 
bitwise exclusive OR, 57,174 
bitwise OR, 56-57, 75, 174 

used to prevent code from executing, 72 
bitwise reduction operators, 56-57 
block scope, branching into, 23, 29 
bools, 58,107 
boolsizeof, 59, 221 
border behavior, 149 

and pcoord, 137 
break, 40 

and everywhere, 70 
behavior in nested where statement, 68 

c 
C operators 

with scalar and parallel operands, 44-47 
with scalar LHS and parallel RHS, 46-47 
with scalar operands, 43-44 
with two parallel operands, 47-48 

C· 
andC,4 
andtheCM, 5 
program development facilities of, 4 

C·program 
compiling, 15-16 
executing, 16 

casts, 108-110 
parallel-to-sca1ar, 46, 110 
sca1ar-to-parallel, 108 
to a different shape, 109 
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<eml emtypes. h>, 240 
cmattach, 16 
CIIC _combiner_add, 174 
CNC _combiner_copy, 174 
CNC_combiner _logand, 174 
CNC_combiner_logior,174 
CNC_ combiner _logzor, 174 
CIIC_combiner_DlaZ,174 
CNC_combiner_min,174 
CIIC_combiner_maltiply,174 
CNC_combiner_overwrite,217,220 
CNC_ combiner _ t, 185 
CNC_cammunication_direction_t, 

185 
CMC _downward, 182 
CMC_exclusive, 179 
CNC_inclusive, 179 
CNC_no_field, 185,220 
CNC_none, 185 
CNC_scan_inclusion_t,185 
CNC_ segment_hi t, 180-185 
CNC_segment_mode_t,185 
CNC_sen~_t,209 

CNC_start_hit,180-185 
CNC_upward, 182 
collision_mode, 213 
collisions, 121 

in get operations, 213-214 
with parallel left indexing, 119-122 

combiner, types of, 173-174 
conditional expression, 49-50 
conditional operator, 75 
Connection Machine system, 2-3 

communication in, 3 
I/O in, 3 

context, 61 
See also where 
effect on other contexts, 67 
resetting, 63, 68 

continue, 40 
and everywhere, 70 
behavior in nested where statement, 68 

coordEnates, 22, 75, 145, 147 
copy_mal tispread, 176, 204, 229-232 
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copy_reduce, 190-191 
copy_spread, 193-194,229 
<cscODD.h>,I44 
current, 87, 93-94, 236 
CUlTCIlt shape, 11, 37, 61, 92 

and pointers, 81, 82 

D 
data parallel computing, 1 
DataVault, 3 
dbx,4 
deallocate_shape, 105-106 
demotion, parallel-to-scalar, 46 
dimensions, 99 

maximum number of, 105 
partiulyspec~g,101 

~f,23,34, 102,138 
andpcoord, 138-139 

direction. See upward direction, downward 
direction 

downward direction, 184 
and scan sets, 182 

E 
elements, 7, 10,25,114 

and positions, 28-29 
choosing, 174-184 
corresponding, 28, 47 
operations on, 65 
sorting by rank, 221-223 

else clause, 6~ 
enu:merate, 194-197 
ennarywhere,69-70,236 

in functions, 91 
exclusive operation, 179 
extern, and shapes, 102 

F 
fill_axis_descriptor,241 
float constants, 236 
framebuffer,241 
from_grid, 156-159 
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from_grid_dim, 150-156 
from_torus, 164-167 
from_torus_dim, 164-167 
front end, 1, 2 

communicating with, 224-228 
function prototyping, 88, 236 
functions 

G 

and shapes, 92-93 
as shape-valued expressions, 93 
intrinsic, 23 
overloading, 97 
passing by reference, 90 
use of everywhere in, 236 
using parallel variables with, 87-90 

general communication, 145,239 
use grid communication in preference to, 

239 
get function, 211-216 

and parallel structures or parallel arrays, 
214 

and parallel variables, 216-219 
collisions in, 213-214 

get operation, 114-116,212 
and collisions, 119-120,213-214 
in functions, 91, 125 
inactive positions in, 122-123 
use send operation in preference to, 239 

global, 204-205, 207 
goto, 40 

and everywhere, 70 
behavior in nested where statement, 68 
branching into block containing shape 

declaration, 23 
branching into block with parallel 

variable declaration, 29 
gprof,4 
graphic display system, 3 
grid communication, 3, 144, 145, 173,239 

and inactive positions, 149-150 
and pcoord, 136-139 
aspects of, 147-150 
direction of, 148 

H 

distance of, 149 
use in preference to general 

communication, 239 

hype£oplane, 202, 229 

if, 56, 72 
image buffer, 241 
inactive positions, 66 

See also positions 
and parallel left indexing, 122-126 
and scan sets, 180 
and send operations, 218 
behavior in grid communication, 149-150 

index variable, use of, 117-118 
initializing, using parallel variables, 41 

L 
left index, 35, 42 

and scalar variables, 35 
parallel, 114-131 

and pcoord, 136 
limitations of, 128 
what can be indexed, 128 

local shape, assigning to a global shape, 
103-108 

logical AND operator, 45, 75 
logical OR operator, 75 
loOping through all positions, 73-75 

M 
main, 236 
make,4 
make _lIlUl ti _coord, 229-232 
make_send_address, 207-211, 221, 

224,227 
matrix 

multiplying diagonals in, 129-131 
~sing, 134-137 

maximum operator, 50-51 
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maximum reduction operator, 56 
minimum operator, 50-51 
minimum reduction operator, 56 
modulus operator, 51-52 
multicoor~te,229 

obUUn[ng, 229-230 
aul tispread, 176, 200-203 

N 
news order, 240 

notify bit, 217, 220 

o 
overload, 97 
overloading, 87, 97 

p 

palloc, 99, 107-108 
parallel arrays 

declaring, 31-32 
elements of, 32 
getting, 214 
initializing, 33 
parallel indexes into, 84-86 
sending, 219-221 

parallel right indexing, 84 
performance of, 242 

parallel structures 
declaring, 29-31 
getting, 214 
injtiaJizing. 33 
sending, 219-221 

parallel variables, 10 
allocating storage for, 107-108 
choosing an individual element of, 13-14, 

35 
compared with scalar, 25-26 
declaring, 26-29 
declaring multiple. 27-29 
declaring with a shape-valued expression. 

110-111 
getting,!216-219 

initializing,32-33,41,42 
mapping to another shape, 126-128 
not of current shape, 42 
obUUn[ng information about, 33-35 
passing as argument to function, 87-88 
returning from function, 89-90 
scope of, 29 
unary operators for, 48-49 

parallel-to-scalar assignment, 46-47 
when no positions are active, 71 

Paris,3,4,242 
passing by value, 90 
pcoord, 75, 131-136 

and enumerate, 194 
and grid communication. 136-139 

pfree, 107 
physical, 112 
pointer arithmetic, 83-84 
pointers 

scalar-tO-parallel, 80-82 
adding a parallel variable to, 85-86 
and parallel structures, 31 
as arguments to a function, 88 

scaJar-to-scalar. 79 
to shapes, 80 

positions, 5, 9 
See also active positions, inactive 

positions 
and elements, 28-29 
definition of, 19 
looping tbrough all, 73 

positionsof, 23. 34, 102 
and where, 64 

promotion 
bool to int, 58 
scalar to parallel, 44, 46, 108, 119 

R 
rank, 19.99, 104, 143 

sorting elements by, 221-223 
rank function, 197-200,221 
rankof. 23, 34 

and a partially specified shape, 100 
and fully unspecified shape, 100 
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read_from "'posi tion, 224-226 
read_from-pyar, 225 
reduce, 188-190 
reduction assignment, 14 

and global, 204 
parallel-to-parallel, 54 
parallel-to-scalar, 52 
when no positions are active, 71-72 
with a parallel LHS, 57 
with send operation, 121 

reduction operators, 52-57 
list of, 54-55 
unary,54 

return, 40 
and everywhere, 70 
behavior in nested where statement, 68 

router, 3 

s 
sbit, 177, 180, 187 
scalar variables, 11, 43 

contrasted with ANSI definition, 25 
in left index, 35 
promoted to parallel, 44 
use in preference to parallel variables, 235 

scan, 174, 184-187 
difference from reduce, 188-189 

scan class, 174-177, 187 
subset of hyperplane, 202 

scan set, 177-179 
scan subclass, 177,187 
scan subset, 187 
scope 

of parallel variables, 29 
of shapes, 23-25 

segment bit, 180 
send address, 145, 147,207 

obtaining a single, 208-209 
obtaining more than one, 209-211 

send function, 216, 221 
and parallel arrays or parallel structures, 

219-221 
differences from send operation, 217 

send operation, 11 &-117 
and collisions, 120-122 
and send function, 217 
comparing parallel left indexing and 

send, 217 
in functions, 91,125 
inactive positions in, 123-126 
use in preference to get operation, 239 
with parallel left indexing, 217 

send order, 241 
shape names, predeclared, 93, ll2 
shape selection, 11 
shape-valued expression, 34, 39 

declaring parallel variable with, II O-lll 
incasts,110 
in function header, 89 

shapeof,34-35 
used with void shape, 95-96 

shapes, 9 
See also current shape 
as arguments to functions, 92 
choosing, 20-21 
creating copies of, 102, 106 
deallocating, 105-106 
declaring, 21-23 
declaring multiple, 22 
default, 39 
definition of, 19 
dynamically allocating, 104-105 
equivalence of, 102-103 
fully unspecified, 99-100 
maximum number of dimensions in, 19 
not allowed in structures, 31 
obtaining information about, 23-24 
partially specified, 99-102 
restrictions on the size of, 20 
returned by functions, 93 
scope of,23 
switching between, 68 

smode,180 
spread, 191-193,200 
start bit, 180 
<stdlib.h>,105,107 
structures. See parallel structures 
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Sun-4,2 
awitch 

T 

branching into block containing shape 
declaration, 23 

branching into block with parallel 
variable declaration, 29 

to_9rid., 159 
to_9rid_dim, 159 
to_to~a, 167-172 
to_to~a_dim, 167-172 
torus,l64 

u 
unary operators and parallel variables, 48-49 
utUODS,parallel,60 
upward direction, and scan sets, 182 

V 
variables. See parallel variables, scalar 

variables 

VAX, 2 
virtual processors, 3, 5 
VMEbus,3 
void predeclared shape name, 87, 94-96 

used when returning a pointer, 96 

w 

where, 61-65, 137 
and parallel-to-scalar assignment, 65 
and poai tionaof, 64 
and scalar code, 65-66 
controlling expression of, 62 
nesting, 66-67 

while, 75 
wi~11,37-39,61,224,227 

nesting, 40-41,67-68 
using a shape-valued expression with, 39 

wrapping, 149 
writ8_to-POaition, 226-228 
writ8_to-fVar,228 
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