
The
Connection Machine
System

Scientific Subroutines

Version 5.1
June 1989

Thinking Machines Corporation
Cambridge, Massachusetts

First printing. June 1989

The information in this document is subject to change without notice and should not be
construed as a commitment by Thinking Machines Corporation. Thinking Machines
Corporation reserves the right to make changes to any products described herein to
improve functioning or design. Although the information in this document has been
reviewed and is believed to be reliable. Thinking Machines Corporation does not assume
responsibility or liability for any errors that may appear in this document. Thinking
Machines Corporation does not assume any liability arising from the application or use of
any information or product described herein.

Connection Machlne is a registered trademark of Thinking Machines Corporation.
CM-I, CM-2. CM. and DataVault are trademarks of Thinking Machines Corporation.
Paris, -Lisp. C·. and CM Fortran are trademarks of Thinking Machines Corporation.
VAX, ULTRIX. and V AXBI are trademarks of Digital Equipment Corporation.
Symbolics. Symbolics 3600, and Genera are trademarks of Symbolics. Inc.
Sun and Sun-4 are trademarks of Sun Microsystems, Inc.
UNIX is a trademark of AT&T Bell Laboratories.

Copyright © 1989 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation
245 First Street
Cambridge, Massachusetts 02142-1214
(617) 876-1111

Contents

About the Connection Machine Scientific Software Library v

Introducing the CM Scientific Software Library. .. v

CMSSL Naming Conventions. v

Supplement Overview .. vi

Known Restrictions .. vii

No Back-Compatibility Mode vii

Floating-Point Hardware Required for FFI' vii

No CM Fortran Complex Matrix Multiply. .. vii

Documentation Discrepancies ... viii
CMSSL:deallocate-fft-setup .. viii
FFI' Constant Types .. viii

CMSSL Dictionary

DEALLOCATE-FFT -SETUP 1
C-C-FFT ... 2

C-FFT -SETUP ... 7
C-MATRIX-MULTIPLY .. 8
S-MATRIX-MULTIPLY .. 15

iii

About the Connection Machine
Scientific Software Library

Introducing the CM Scientific Software Library

The CM Scientific Software Ubrary is a collection of routines that support scientific
computing, especially numerical analysis. Two routines from the planned library are
included as part of Paris, version 5.1. These are Fast Fourier Transformation (FFr) for
complex numbers and matrix multiplication for either real or complex numbers. This
supplement describes these two routines.

As more numerical and scientific Connection Machine software routines become
available, they will be released as a library. It will then be possible optionally to link
this library with Paris or with any of the high-level Connection Machine languages, C*,
*Usp, and CM Fortran. At that time, these routines will no longer be incorporated into
Paris proper.

CMSSL Naming Conventions

All Paris-level operations destined to become part of the CMSSL are given the prefIX
CMSSL: in place of the standard CM: Paris instruction prefix.

Following the CMSSL: library prefix, a set of operation prefIXes identifies the types of
operands expected by each routine. In order to conform to standard math library con
ventions, these prefIXes are slightly different from those used for normal Paris instruc
tions.

v

vi CMSSL Version 5.1

Data Type Name Prefixes

Prefix

s
d
c
z

Meaning

single-precision floating point
double-precision floating point
single complex (single-precision real and imaginary parts)
double complex (double-precision real and imaginary parts)

For example, s-matrix-multiply takes single-precision operands while c-matrix-multi

ply takes single complex operands.

If it is possible for a particular kind of routine to yield a result different in data type
from its operand(s), then an additional operation prefIX (the first) identifies the result
type. For example, c-s-fft (not yet available) yields a single real result but expects a
single complex operand. In contrast, c-c-fft yields a single complex result from a single
complex operand.

As with Paris proper, instruction names and the names of constants are documented
in lisp syntax. To convert an instruction name to e or Fortran, change any colon or
hyphen to an underscore. For example, CMSSL:fft-setup becomes CMSSL_fft_setup
in the e or Fortran interface. To convert a predefined constant operand name to e or
Fortran, change any leading colon to CMSSL_. For example :send-order becomes
CMSSL_send_order. .

Supplement Overview

This supplement is organized as is the Paris Dictionary. Entries describing each rou
tine are ordered alphabetically, first by primary operation name and second by the
type prefix.

CMSSL: deallocate-fft-setup
This frees front-end and eM memory used by an FFT setup descriptor.

CMSSL: c-c-fft
This calculates the discrete Fourier transform of a complex number and
returns a complex result. A Fast Fourier Transform (FFf) algorithm is
used.

CMSSL Version 5.1 vii

CMSSL: c-fft-setup
This computes information needed to perform a complex FFf.

CMSSL:c-matrix-multiply
This performs matrix multiplication over three single-precision complex
numbers.

CMSSL: s-matrix-multiply
This performs matrix multiplication over three single-precision floating
point numbers.

Known Restrictions

The Scientific Software routines included in Paris Version 5.1 bear the following re
strictions.

No Back-Compatibility Mode

The CM Scientific Software does not support back-compatibility mode. Conse
quently, no CMSSL routines may be called from C*, Version 5.1 or earlier, because
these C* versions must be run in back-compatibility mode.

Floating-Point Hardware Required for FFT

The FFf routines are designed exclusively for Model CM2 Connection Machines with
floating-point hardware.

No CM Fortran Complex Matrix Multiply

In the current release, the CMSSL:c-matrix-multiply routine is not available when call
ing Paris from CM Fortran. CM Fortran does not yet support complex numbers.

viii CMSSL Version 5.1

Documentation Discrepancies

One routine and a set of constants are, in Version 5.1, implemented under names dif
ferent from those documented in this supplement. The implementation of Version 5.2
will match the current documentation.

CMSSL:dealiocate-fft-setup

This is currently implemented as CMSSL:deallocate-setup. In Version 5.2, the imple
mented name will match the documented name, CMSSL: deallocate-fft-setup.

FFT Constant Types

The names of the ClParis constants defined as allowable values to the setup, ops,
source-bit-order, dest-bit-order, source-cm-order, dest-cm-order, and scale argu
ments to CMSSL:c-c-fft are all documented to begin with CMSSL_. In Version 5.1,
they instead begin with FFT _. For example the ops vector is documented to expect ele
ments named CMSSL_Cxform, CMSSLJ_xform, and CMSSL_"op. In fact, valid values
are FFT _f_xform, FFT -'_xform, and FFT _MOp. In Version 5.2 these constant names will
all begin with CMSSL_.

The CMSSL:c-c-fft dest-bit-order and source-bit-order vector arguments are docu
mented to take a value of CMSSL_default to specify default ordering for the corre
sponding axis. In fact, the implementation requires that the constant name
FFT _ default_124 be used. This will not be the case in the implementation of Version
5.2.

CMSSL Dictionary

DEALLOCATE-FFT -SETUP

D EALL 0 CATE-FFT -S ETU P

Deallocates a front-end setup descriptor that has been used to prepare information for
execution of an FFT routine.

In a future release, this will be part of a Scientific Software Library. For this reason, it is
given the prefix CMSSL: in place of the standard CM: Paris instruction prefix.

Formats CMSSL: deallocate-fft-setup setup-id

Operands setup-id The id of the FFT setup descriptor to be deallocated.

Context This is a front-end operation. It does not depend on the value of the context
flag·

This routine may be used to remove an FFT setup descriptor when it is no longer needed.
The setup-id argument must have been obtained by a call to one of the CMSSL:fft-setup
routines.

An fft setup descriptor occupies memory both on the front end and on the Connection
Machine. It is therefore wise to free this space by calling CMSSL: deallocate-fft-setup after
completion of all FFT routines that use the specified setup descriptor.

1

FFT

C-C-FFT

The Discrete Fourier Transform of the complex source field is calculated using a Fast Fourier
Transform (FFT) algorithm. The complex result is stored in the destination field.

A Fourier transform routine converts (possibly multidimensional) sequences between the
time or space domain and the frequency domain. This type of transform has a v8.1'iety
of useful applications. For example, an FFT can be used to filter discrete signals, to
smooth input data or output images, to interpolate or extrapolate from a given data set,
to measure the correlation between two samples, or to multiply polynomials and extremely
l8.1'ge integers.

The Fast Fourier Transform is called a fast transform because it exhibits O(N log N) com
plexity, where 0 is the order of complexity and N is the length of the input sequence. By
comparison, the Discrete Fourier Transform exhibits only O(N2) complexity.

In a future release, this routine will be part of the Connection Machine Scientific Softw8.1'e
Library. For this reason, it is given the prefix CMSSL: in place of the stand8.1'd CM: P8.1'is
instruction prefix.

Formats CMSSL: c-c-fft dest, source, setup, ops, source-hit-order, dest-hit-order,
source-em-order, dest-cm-order, scale

Operands dest The complex destination field.

The complex source field. source

setup

ops

The setup-ide This must be a setup-id returned by CMSSL: c:-fft
setup. The geometry information of the setup must be identical to
that of the source and destination fields.

A front-end vector of operation identifiers. Each element spec
ifies whether the corresponding source axis is transformed and,
if so, by what method. Valid vector element values 8.1'e :f-xform
(CMSSLf..xform in C; 1 in Fortran) for a forward transform, : i
xform (CMSSLJ..xfrom in Cj 2 in Fortran) for an inverse transform,
and : nop (CMSSL..nop in C; 0 in Fortran) for no transform.

source-bit-order A front-end vector of input bit orderings. Each element iden
tifies the bit ordering of the corresponding source axis and must
be either : normal or : bit-reversed. (The corresponding values are
8.1'e CMSSL..normal and CMSSL..bitJeversed in C, and 0 and 1 in
Fortran, respectively.)

dest-bit-order A front-end vector of output bit orderings. Each element
identifies the bit ordering of the corresponding destination axis
and must be either : normal or : bit-reversed. (The corresponding

2

FFT

values are are CMSSLnormal and CMSSL..biLreversed in C, and 0
and 1 in Fortran, respectively.)

source-em-order A front-end vector of input orderings. Each ele-
ment declares the addressing mode of the corresponding source
axis and must be one of the following: : send-order, : news-order,
or : default. (The corresponding values are CMSSL..send_order,
CMSSLnews..order, and CMSSL.default in C, and 1, 2, and 0 in
Fortran, respectively.)

A value of : default causes the current ordering of an axis to be
used.

dest-em-order A front-end vector of output orderings. Each element
declares the addressing mode of the corresponding destination
axis and must be one of the following: :send-order, :news-order,
or : default. (The corresponding values are CMSSL..send_order,
CMSSL.J1ews..order, and CMSSL.default in C, and 1, 2, and 0 in
Fortran, respectively.)

A value of :default causes the current ordering of an axis to be
used.

scale A front-end vector of output scaling methods. Each element spec
ifies whether the corresponding destination axis is rescaled and,
if so, by what method. Valid values are : noscale for no rescaling,
: scale-sqrt for scaling by the inverse square root of the FFT, and
: scale-n for scaling by the inverse of the size of the FFT. (The
corresponding values are CMSSL.J1oscale, CMSSL..scale..sqrt, and
CMSSL..scale.J1 in C, and 0, 1, and 2 in Fortran, respectively.)

Overlap The source field must be either disjoint from or identical to the dest field.
Two complex fields are identical if they have the same address and the same
format. FFT performance is slightly better if the two fields are identical.

Context This operation is unconditional. It does not depend on the context-flag.

Definition For every virtual processor k in the eurrent-vp-set do
dest[k] - FFT(source[kD

The Discrete Fourier Transform of the source field is stored in the dest field. A multi
dimensional transform is computed by performing the transform across each dimension in
sequence.

The source and destination fields must either belong to the same VP set or to VP sets of
identical shape and size.

3

FFT

The ops, source-bit-order, dest-bit-order, source-em-order, dest-em-order, and scale argu
ments are one-dimensional front-end arrays. The length of each is equal to the rank of the
setup geometry.

By convention, a Fast Fourier Transform operation reverses the order of the data bits when
storing the result in the destination. The vectors source-bit-order and dest-bit-order specify
whether the source and destination data are treated as normal or as bit-reversed.

Along any given dimension of the data's geometry, the Connection Machine FFT instruction
is most efficient for data arranged in send order. Many FFT applications do not depend
on the order of the data elements. The dest-em-order and source-em-order arguments are
therefore provided to permit the most efficient execution possible along each dimension.

For further details see the Thinking Machines technical report number NA87-3 entitled
"Computing Fast Fourier Transforms on Boolean Cubes and Related Networks" and the
upcoming Thinking Machines technical report entitled" A Cooley Tukey FFT on the Con
nection Machine."

4

FFT

The following example code demonstrates invocation of eM: c-c-fFt from *Lisp and may be
found on line in the directory /cm/examples/cmssl.

II This example code is designed to illustrate the calling requirements
II of the FFT initialization routines and of the FFT itself.
I I

II Notice that the FFT routines are a part of the CMSSL package.
I I

;: The example problem is a two dimensional FFT (1024 by 1024)
I. The data is assumed to be a front-end array

(in-package '*lisp)
(defun fft_example()

;; Set up various FFT parameters from a geometry description.
;: Create the geometry. Call c-fft-setup to intialize the setup structure ,
II using fft-geometry as input.

(let* ((fft-geometry (cm:create-geometry '(1024 1024»)
(fft-vpset (cm:declare-vp-set fft-geometry»
(fft-setup (CMSSL::c-fft-setup fft-geometry»)

(declare (type cmssl::fft~setup fft-setup»

:: The initial pattern is specified by the data. ! forward FFT transform
:: will be performed along the second dimension. Neither axis is scaled.
:: The bit-orders are :normal and the em-orders are the default.

(let* «rank (cm:geometry-rank fft-geometry»
(ops (vector :nop :f-xform»
(source-bit-orders (vector :normal :normal»
(dest-bit-orders (vector :normal :normal»
(send-em-orders (vector :default :default»
(noscales (vector :noscale :noscale»)

I. The FFT must be computed within the fft-vpset.

(*with-vp-set fft-vpset
(*let «data»
(declare (type (pvar (complex-float» data»
(let «data-loc (pvar-location data»)

:: Input the data on which the fft will be performed.
;: Exchange any initialization routine for my-initialize-data.

(my-initialize-data data)

5

FFT

· . • •
::Iow perform FFT on data. using data as the destination too.
· . • •

(CMSSL:c-c-fft data-loc data-loc fft-setup ops
source-bit-orders dest-bit-orders
send-em-orders send-em-orders noscales)

):end let
):end .let

):end .vith-vp-set
):end let.

):end let.
):end defun

6

FFT-SETUP

C-FFT -SETUP

Allocates a front-end setup descriptor for use with the CMSSL:fft Fast Fourier Transform
routines and returns a setup-id.

In a future release, this will be part of a Scientific Software Library. For this reason, it is
given the prefix CMSSL: in place of the standard CM: Paris instruction prefix.

Formats result 4- CMSSL: c-fft-setup geometry-id

Operands geometry A geometry-id.

Result

Context

The id of the newly created FFT setup descriptor.

This is a front-end operation. It does not depend on the value of the contezt
flag·

This routine computes information needed to perform a Fast Fourier Transform (FFT),
stores it in an FFT setup descriptor, and return the setup-id.

In Lisp/Paris, a setup-id is a structure of type CMSSL:fft-setup. In C/Paris, it is a pointer
to a structure of type CMSSLfft..setup_t. In Fortran/Paris it is an integer.

The geometry argument must be a geometry-id returned by a call to CM: create-geometry,
CM: create-detailed-geometry, intern-geometry, or intern-detailed-geometry.

The returned setup-id is a valid value for the setup argument to any CMSSL FFT routine
if the following requirement is obeyed. The geometries of the FFT source and destination
fields must be identical to that of the setup geometry.

This routine must be reinvoked whenever the geometry of an FFT source field VP set is
changed. CMSSL:c-fft-setup allocates memory both on the front end and on the eM. To
free this memory, use CMSSL:dealiocate-fft-setup.

See the description of CM: c-c-fft for a code example demonstrating how to call CM: c-fft
setup.

7

MATRIX-M ULTIPLY

C-MATRIX-MULTIPLY

Computes matrix multiplication using three single-precision complex operands and stores
the result in the last.

In a future release, this routine will be part of a Scientific Software Library. For this reason,
it is given the prefix CMSSL: in place of the standard CM: Paris instruction prefix.

Formats CMSSL: c:-matrix-multiply souree1, source~, destlsouree3

Operands dest The complex destination field.

source 1 The complex first source field.

source~ The complex second source field.

source3 The complex third source field.

Overlap The fields source1, souree~, and dest/souree3must not overlap in any manner.

Context This operation is unconditional. It does not depend on the contezt-jlag.

The calculation dest +- source3 + souree1 x souree~ is performed on three conforming
matrices, represented as eM fields.

The operands soured, souree~, and dest/souree3 must be fields of 64-bit single-precision
complex values whose real and imaginary parts are 32-bit floating-point values.

All three operands may belong to separate VP sets if the geometries of those VP sets obey
the following rule:

• The souree1 dimensions are n X m

• The source2 dimensions are m X p

• The dest/source3 dimensions are n X p

where n, m, and p are each powers of two. Otherwise, all three operands must belong to
the same square VP set.

The matrix multiply is performed using Cannon's systolic algorithm, which can be summa
rized in three steps:

1. The souree1 and source~ matrices are aligned so the elements in each processor have
conforming indices for matrix multiplication. In terms of data motion, this implies
aligning the diagonal entries of the souree1 matrix to the first column and aligning
the diagonal entries of the source~ matrix to the first row.

8

MATRIX-MULTIPLY

2. The systolic part of the algorithm involves local multiplication of souree1 and source2
elements followed by nearest neighbor data moves that simulate the inner product.

3. The souree1 and source2 matrices are aligned back to the original form supplied by
the calling program.

In order to exploit the full potential of the floating-point hardware, a block version of the
algorithm is implemented. See the Thinking Machines technical report entitled "Matrix
Multiplication on the Connection Machirie" for details.

The eM matrix multiplication operation performs best for square matrices and at high VP
ratios.

The following code examples demonstrate invocation of CM:e-matrix-multiply from C/Paris,
from Fortran/Paris, and from *Lisp. These may be found on line in the directory
/ em / examples / emssl.

/* Example C/Paris matrix multiply code */
.include <stdio.h>
'include <math.h>
'include <cm/paris.h>

CM_S8ometry_id_t
CM_geometry_id_t
CM_geometry_id_t

CM_vp_set_id_t
CM_vp_set_id_t
CM_vp_set_id_t

CM_field_id-t
CM_field_id-t
CM_field_id-t

CM_field_id-t
CM_field_id-t
CM_field_id-t

int idim[2];
int length=64;
int 8=23;
int e=8;
int n;
int m;
int p;

A_geom;
B_geom;
C_geom;

'_vpset;
B_vpset;
C_vpset;

a;
b;

c;

a2;
b2;
c2;

9

MATRIX-M ULTIPLY

main(ac, av)
int ac.
char **av.

{

double cmin;
double CJDa%;

1* Dimensions of matrices are user input. *1
1* source1 (1) is n times m, source2 (B) is m times r *1
1* and dest/source3 (C) is n times p *1

printf("\\n Enter n, m, p\\n");
scanf(lI~d ~d ~d", tn, til, tp);

idim[O] = n;
idim[1] • m;

printf("\\n Creatins vp set for 1 of size ~d ~d", n. m);

l_,eom • CM_create_seometry(idim, 2);
l_vpset = CM_allocate_vp_set(l_seom);
CM_set_vp_set(l_vpset)i
a • CM_allocate_stack_field(lensth);
a2 • CM_add_offset_to_field_id(a, 32);

1* Initialize 1 *1

CM_f_move_const_always_1L(a, 2.0, s, e);
CM_f_move_const_always_1L(a2. 2.0, s, e);

printf("\\n Creatins vp set for B of size ~d ~d",m, pl.

idim[O] = m;
idim[1] = p;

B_seom = CM_create_,eometry(idim, 2);
B_vpset = CM_a1locate_vp_set(B_seom);
CM_set_vp_set(B_vpset);
b = CM_a1locate_stack_field(length);
b2 = CM_add_offset_to_field_id(b, 32);

10

M"ATRIX-MULTIPLY

1* Initializa B *1

CM_f_mova_const_always_1L{b, 1.0, s, a):
CM_f_mova_const_always_1L{b2, 1.0, s, a):

printf{"\\n Craating vp sat for C of siza Xd Xd", n, p):

idim[O] = n:
idim[1] • p:

C_gaom • CM_craata_gaomatry{idim, 2):
C_vpsat = CM_allocata_vp_sat{C_gaom):
CM_sat_vp_sat{C_vpsat):
c • CM_allocata_stack_fiald{langth):
c2 = CM_add_offsat_to_fiald_id{c, 32):

1* Initiliza C *1

}

CM_f_mova_const_always_1L{c, 0.0, s, a):
CM_f_mova_const_always_1L{c2, 0.0, s, a):

cmin = CM_global_f_min_1L{c, s, a):
cmax • CM_global_f_mAX_1L{c, s, a):

printf{"\ \n minimum valua =Xg maximum valua.Xg \ \n", cmin, emax):

cmin • CM_global_f_min_1L{c2, s, a):
cmax • CM_global_f_mAX_1L{c2, s, a):

printf{"\ \n minimum valua =Xg maximum valua=Xg \ \n", cmin, cmax):

CM_deallocate_stack_through{c):
CM_daallocata_gaomatry{A_gaom):
CM_daallocata_gaomatry{B_gaom):
CM_daallocata_gaomatry{C_gaom):

11

MATRIX-MULTIPLY

c ** Example Fortran/Paris matrix multiply code
program matrix

integer a_loc. b_loc, c_loc, n, m. p
integer a_loc2, b_loc2. c_loc2
integer A_geom, B_geom, C_geom, idim(2)
integer A_vpset, B_vpset, C_vpset. send

include '/usr/include/cm/paris-configuration-fort.h'

data length /64/
data 1S1g /2!/
data iexp /8/

c ** Dimensions of the matrices are user input.
c ** Source1 (A) is n times m, source2 (B) is m times r,
c ** and dest/source! (C) is n times p.

vrite(*,*) , Please enter n, m, p'
read(*.*) n, m, p

c ** initialize the CM.
call CM_ini to

c ** A's vp set.
print *. ' creating vp set for A of size',n,m

idim(1) • n
idim(2) • m
'_geom • CM_create_geometry(idim, 2)
'_vpset = CM_allocate_vp_set('_geom)
call CM_set_vp_set(A_vpset)
a_loc • CM_allocate_stack_field(length)
a_loc2 • CM_add_offset_to_field_id(a_loc.!2)

c ** Initialize A
call CM_f_move_const_alvays_1l(a_loc, 2.0, isig, iexp)
call CM_f_move_const_alvays_1l(a_loc2, 2.0, isig, iexp)

c ** B's vp set.
print *. ' creating vp set for B of size',m,p

idim(1) • m
idim(2) = p
B_geom = CM_create_geometry(idim, 2)

12

B_Ypset = CM_alloeate_Yp_set(B_geom)
call CM_s.t_Yp_s.t(B_Yps.t)
b_loe = CM_alloeat._staek_fi.ld(length)
b_loe2 = CM_add_offset_to_fi.ld_id(b_loe,32)

e ** Initializ. B
call CM_f_move_eonst_always_1l(b_loe, 1.0, isig, i.xp)
call CM_f_mov._eonst_always_1l(b_loe2, 1.0, isig, i.xp)

e ** C's Yp s.t.
print *, ' er.ating Yp set for C of size',n,p

idim(1) .. n
idim(2) = p
C_g.om .. CM_ereat._g.om.try(idim, 2)
C_vpset = CM_alloeate_Yp_s.t(C_g.om)
call CM_set_Yp_s.t(C_Yps.t)
c_loc .. CM_allocat._staek_fi.ld(l.ngth)
e_loe2 .. CM_add_offset_to_fi.ld_id(e_loe,32)

e ** Initializ. ~
call CM_f_move_eonst_always_1l(e_loc, 0.0, isig, i.xp)
call CM_f_move_eonst_always_1l(e_loe2, 0.0, isig, iexp)

print *, ' finally the r.sult •.•.. '

emin • CM_global_f_min_1l(c_loe, isig, iexp)
emax .. CM_global_f_m&X_1l(e_loe, isig, i.xp)

print *, ' emin =',emin, ' emax =',emax

emin = CM_global_f_min_1l(e_loe2, isig, i.xp)
emax = CM_global_f_m&X_1l(c_loe2, isig, i.xp)

print *, ' cmin =',emin, ' cmax =',emax

e ** the el.anup phas •.
call CM_dealloeate_staek_through(C_loe)
call CM_dealloeat._g.ometry(A_g.om)
call CM_d.alloeate_g.om.try(B_g.om)
call CM_d.allocat._g.om.try(C_g.om)
stop
end

13

MATRIX-MU.LTIPLY

MATRIX-MULTIPLY

;;; *Lisp/Paris matrix multiply code fragment

(defun test-complex-from-paris (ax ay by)

; Multiply -> A(ax. ay) I B(ay. by) + C(ax. by) - C

(format t II (format t "A is a by a. B is a by a and C is s by s"
ax ay ay by ax by)

(let* ((A-geom (cm:create-geometry (vector ax ay) 2»
(B-geom (cm:create-geometry (vector ay by) 2»
(C-geom (cm:create-geometry (vector ax by) 2»
(A-vp-set (cm:a1locate-vp-set A-geom»
(B-vp-aet (cm:allocate-vp-set B-geom»
(C-vp-aet (cm:allocate-vp-set C-geom»
(old-vp-set cm:*current-vp-set*)
(length 64) (s 23) (e 8) abc)

(cm:set-vp-set A-vp-set)
(setq a (cm:a1locate-stack-field length»
(cm:c-move-const-1l a (complex 2.0 1.0) s e)

(cm:aet-vp-set B-vp-set)
(setq b (cm:a1locate-stack-field length»
(cm:c-move-const-1l b (complex 1.0 6.0) s e)

(cm:set-vp-.et C-vp-set)
(setq c (cm:a1locate-stack-field length»
(cm:c-move-const-11 c (complex 0.0 0.0) s e)

(cmssl::c-matrix-multiply A B C)

j clean up phase.

(cm:dea1locate-stack-through c)
(cm:dea1locate-geometry a)
(cm:dea1locate-geometry b)
(cm:deallocate-geometry c)

) ; end let*.
) j end defun.

14

MATRIX-MULTIPLY

S-MATRIX-MULTIPLY

Computes matrix multiplication using three single-precision floating-point operands and
stores the result in the last.

In a future release, this instruction will be part of a Scientific Software Library. For this
reason, it is given the prefix CMSSL: in place of the standard CM: Paris instruction prefix.

Formats CMSSL: s-matrix-multiply source1, source2, dest/ sourceS

Operands dest The floating-point destination field.

source1 The floating-point first source field.

source2 The floating-point second source field.

sourceS The floating-point third source field.

Overlap The fields source1, source2, and dest/sourceSmust not overlap in any manner.

Context This operation is unconditional. It does not depend on the conte:lt-flag.

The calculation dest +- sourceS + source1 X source2 is performed on three conforming
matrices, represented as CM fields.

The operands source1, source2, and dest/sourceS must be fields of 32-bit single-precision
floating-point values.

All three operands may belong to separate VP sets if the geometries of those VP sets obey
the following rule:

• The source1 dimensions are n X m

• The source2 dimensions are m X p

• The dest/sourceS dimensions are n X p

where n, m, and p are each powers of two. Otherwise, all three operands must belong to
the same square VP set.

The matrix multiply is performed using Cannon's systolic algorithm, which can be summa
rized in three steps:

1. The source1 and source2 matrices are aligned so the elements in each processor have
conforming indices for matrix multiplication. In terms of data motion, this implies
aligning the diagonal entries of the source1 matrix to the first column and aligning
the diagonal entries of the source2 matrix to the first row.

15

MATRIX-M ULTIPLY

2. The systolic part of the algorithm involves local multiplication of source1 and souTce2
elements, followed by nearest neighbor data moves that simulate the inner product.

3. The souree1 and source2 matrices are aligned back to the original fonn supplied by
the calling program.

In order to exploit the full potential of the floating-point hardware, a block version of the
algorithm is implemented. See the Thinking Machines technical report entitled "Matrix
Multiplication on the Connection Machine" for details.

The CM matrix multiplication routine performs best for square matrices and at high VP
ratios.

The following code examples demonstrate invocation of eM: s-matrix-multiply from C /Paris,
from Fortran/Paris, and from *Lisp. These examples may be found on line in the directory
/ cm/ examples/ cmssl.

/* Example C/Paris matrix multiply code */
#include <stdio.h>
#include <math.h>
#include <cm/paris.h>

CM_geometry_id_t
CM_geometry_id_t
CM_geometry_id_t

CM_vp_set_id_t
CM_vp_set_id_t
CM_vp_set_id_t

CM_field_i~t

CM_field_i~t

CM_field_i~t

int idim[2];
int length=32;
int s=23.
int e=8;
int n.
int m;
int p;

main(ac, av)
int aCt
char **av.

A_geom.
B_geom;
C_geom.

,_vpset;
B_vpset.
C_vpset;

a;
b;
c;

16

-(

double cmin;
double cmax;

,* Dimensions of matrices are user input. *,
,* Source1 (A) is n times m. source2 (B) is m times p. *,
,* and dest/source3 (C) is n times p */

printf(tI\\n Enter n. m. p\\ntl);
scanf(tlXd Xd Xdtl • b. tin. i:p);

idim[OJ .. n;
idim[1J • m;

MATRIX-MULTIPLY

printf(tI\\n Creating vp set for A of size Xd Xdtl • n. m);

A_geom .. CM_create_geometry(idim, 2);
'_vpset = CM_allocate_vp_set(A_geom);
CM_set_vp_set(A_vpset):
a .. CM_allocate_stack_field(length);
CM_f_move_const_alvays_1L(a. 2.0, s, e);

printf(tI\\n Creating vp set for B of size Xd Xdtl,m. p):

idim[OJ = m:
idim[1J = p:

B_geom .. CM_create_geometry(idim, 2);
B_vpset .. CM_allocate_vp_set(B_geom):
CM_set_vp_set(B_vpset):
b = CM_allocate_stack_field(length):
CM_f_move_const_alvays_1L(b, 1.0, s. e):

.printf(tI\\n Creating vp set for C of size Xd Xdtl • n. p):

idim[OJ = n;
idim[1J = p:

C_geom .. CM_create_geometry(idim, 2):
C_vpset = CM_allocate_vp_set(C_geom);
CM_set_vp_set(C_vpset);
c .. CM_allocate_stack_field(length);

17

MATRIX·MULTIPLY

}

emin • CM_global_f_min_1L(e, s, e);
em&: = CM_global_f_m&:_1L(e, s, e);

printf("\\n minimum value =Xg maximum value=Xg \\n", emin, cmax);

CM_dealloeate_stack_through(c);
CM_dealloeate_geometry(A_geom);
CM_dealloeate_geometry(B_geom);
CM_dea1locate_geometry(C_geom);

18

c ** Example Fortran/Paris matrix multiply code
program matrix

integer a_loc. b_loc. c_loc. n. m. p
integer A_geom. B_geom. C_geom. idim(2)
integer A_vpset. B_vpset. C_vpset. send

include '/usr/include/cm/paris-configuration-tort.h'

data length /32/
data 1S1g /23/
data iexp /8/

c ** Dimensions ot the matrices are user input.
c ** Source1 (A) is n time m. source2 (B) is m times r.
c ** and de.t/source3 (C) is n times r.

write(*.*) , Please enter n. m. p'
read(*.*) n. m. p

c ** initialize the CM.

c ** A'. vp set.

print *. I creating vp set tor A ot size'.n.m

idim(1) • n
idim(2) • m
'_geom • CM_create_geometry(idim. 2)
'_vpset • CM_allocate_vp_set(A_geom)
call CM_set_vp_set(A_vpset)
a_lac = CM_allocate_stack_tield(length)
call CM_t_move_const_alvays_1l(a_loc. 2.0. isig. iexp)

c ** B's vp set.

print *. ' creating vp set tor B ot size'.m.p

idim(1) • m
idim(2) = p
B_geom • CM_create_geometry(idim. 2)
B_vpset = CM_allocate_vp_set(B_geom)
call CM_set_vp_set(B_vpset)

19

MATRIX-MULTIPLY

MATRIX-M ULTIPLY

b_loc • CM_allocate_stack_field{length)
call CM_f_move_const_always_1l{b_loc. 1.0. isig. iexp)

c ** C's vp .et.

print *. I creating vp set for C of size'.n.p

idim(1) • n
idim(2) • p
C_geom • CM_create_geometry{idim. 2)
C_vp.et • CM_allocat._vp_s.t{C_g.om)
call CM_.et_vp_s.t{C_vpset)
c_loc • CM_allocat._stack_fi.ld{l.ngth)
call CM_f_move_const_alway._1l{c_loc. 0.0. isig. iexp)

print *. ' finally the r •• ult .••.. '

cmin • CM_global_f_min_1l{c_loc. isig, iexp)
cmax • CM_global_f_m&X_1l{c_loc, isig. i.xp)

print *, I cmin =',cmin. I cmax =',cmax

c ** the cl.anup phase.

call CM_deallocate_stack_through{C_loc)
call CM_d.allocat._geom.try{A_geom)
call CM_deallocate_geometry{B_g.om)
call CM_d.allocate_geometry{C_geom)
stop
end

20

MATRIX-MULTIPLY

;;; *Lisp/Paris matrix multiply code fragment

(defun test-real-from-paris (ax ay by)

; Multiply => A(ax, ay) X B(ay, by) + C(ax, by) = C

(format t II (format t "A is s by s, B is s by sand C is s by s"
ax ay ay by ax by)

(let* ((A-geom (cm:create-geometry (vector ax ay) 2»
(B-geom (cm:create-geometry (vector ay by) 2»
(C-geom (cm:create-geometry (vector ax by) 2»
(A-vp-set (cm:allocate-vp-set A-geom»
(B-vp-set (cm:allocate-vp-set B-geom»
(C-vp-set (cm:allocate-vp-set C-geom»
(old-vp-set cm:*current-vp-set*)
(length 32) (s 23) (e 8) abc)

(cm:set-vp-set A-vp-set)
(setq a (cm:allocate-stack-field length»
(cm:f-move-const-alvays-1l a 2.0 s e)

(cm:set-vp-set B-vp-set)
(setq b (cm:alloeate-stack-field length»
(cm:f-move-eonst-alvays-1l b 1.0 s e)

(cm:set-vp-set C-vp-set)
(setq c (cm:allocate-stack-field length»
(cm:f-move~eonst-alvays-1l e 0.0 s e)

(cmssl::s-matrix-multiply A B C)

; clean up phase.

(cm:deallocate-stack-through e)
(cm:deallocate-geomatry a)
(cm:deallocate-geometry b)
(cm:deallocate-geomatry c)

) ; end let*.
) : end defun.

21

