TeleVideo ${ }^{\circ}$

Video Display Terminal Maintenance Manual

TeleVideo Systems, Inc.

ATTENTTION

TO RECEIVE UPDATES TO THIS MANUAL, CHECK THE APPROPRIATE BOX ON THE ENCLOSED READER COMMENT CARD AND RETURN IT TO TELEVIDEO. YOU MAY ALSO CALL TELEVIDEO TECHNICAL PUBLICATIONS AT 408/745-7760, EXIPENSION 460. INTERNATIONAI CUSTOMERS MAY TELEX 474-5041 TVISYS.

TABLE OF CONTENTS

1. Troubleshooting Guide 1-1
Overview 1-1
Description of the Modules 1-2
Logic Board 1-2
Power Supply 1-3
Video Module 1-3
Keyboard 1-3
Removing the Modules 1-4
Opening the Case 1-4
Removing the Power Supply 1-6
Replacing the Power Supply 1-6
Removing the Video Module 1-8
Replacing the Video Module 1-9
Removing the Logic Board and Shroud 1-10
Replacing the Logic Board and Shroud 1-? 0
Closing the Case 1-11
Opening the Keyboard Case 1-12
Removing the Keyboard Circuit 1-12
Visual Inspection 1-12
Terminal and Keyboard Exterior 1-12
Terminal and Keyboard Interior 1-13
Fault Isolation at the Module Level 1-13
Troubleshooting the Logic Board and Keyboard 1-16
Troubleshooting the Video Module 1-19
Visual Inspection 1-19
Adjustments 1-19
2. Schematics 2-1
3. Ordering Spare Parts 3-1
9220 Parts List 3-2
PCB Assembly 9220 Logic Board 3-2
PCB Assembly Video Monitor Board 3-5
PCB Assembly Power Supply 3-6
Additional Parts 3-7
Keycaps Parts List 3-9
Recommender Spare Parts 3-12
4. Theory of Operation 4-1
Overview 4-1
Display Fundamentals 4-1
Communications 4-3
Keyboard 4-4
Character Generation 4-5
MPU Memory Allocation 4-5
Operating Clocks 4-7
5. Service and Warranty Information 5-1
Regional Sales Offices 5-2
Statement of Limited Warranty 5-3
6. Operator's Manual
7. Addenda
Specifications
Bulletins
Repairs Price List
Commercial Price List
Terminal Division Spare Part Price List
LIST OF TABLES
1-1 Fault Isolation Guide 1-13
1-2 Logic Board and Keyboard Troubleshooting Guide 1-16
2-1 IC Reference by Board Location 2-1
3-1 9220 Parts List 3-2
3-2 9220 Keycaps Parts List 3-9
3-3 9220 Terminal Recommended Spare Parts 3-12
LIST OF FIGURES
1-1 9220 Terminal, Front View 1-1
1-2 9220 Terminal, Rear View 1-2
1-3 Discharging Voltages 1-4
1-4 Opening the Case 1-5
1-5 Removing the Power Supply 1-7
1-6 Removing the Video Module 1-9
1-7 Removing the Logic Board and Shroud 1-11
4-1 9220 Block Diagram 4-2
7-1 Keycap Layout 7-10

rROUBLESHOOTING GUIDE

This troubleshooting guide was designed for qualified repair personnel. Using this guide, the schematics, and an Operator's Manual, you can repair most failures quickly.

STOPI Do not open the case as described in this manual unless you are a qualified service technician. The components exposed during this procedure retain hazardous voltages that are present even after the power cord has been disconnected.

OVERVIEW

TeleVideo's 9220, a general-purpose ANSI terminal, is fully codecompatible with our 922 terminal. The main element in the system is a $65 \mathrm{CO} 2 \mathrm{microprocessor} .\mathrm{For} \mathrm{CRT} \mathrm{control}$,the 9220 uses an advanced alphanumeric VLSI CRT controller chip.

Figures 1-1 and 1-2 show front and rear views of the terminal. Ports, switches and connectors are marked.

Figure 1-1
9220 Terminal, Front View

Figure 1-2
9220 Terminal, Rear View

Terminal hardware is divided into four main modules:
Main logic board
Power supply
Video module
Keyboard
This design permits fast fault isolation and keeps repair time to a minimum. To isolate a faulty module, swap a suspected module with a known-good one.

DESCRIPTION OF THE MODULES

Logic Board

The logic board fits inside a tray that slides into the base of the terminal. It is easily reached by removing two screws from the base.

The 65C02 microprocessor-based control circuitry on the logic board, acting on its own internal system program, stores and processes data received and data to be transmitted. The circuitry also generates the video and sync signals needed to display data on the screen.

The logic board has four distinct interconnected divisions which are discussed in this manual's Theory of Operation section. They are:

Main processor

Display circuitry-processor
Random Access Memory (RAM)
Interface for external input/output

Power Supply

A switching power supply is located in the pedestal below the CRT. It provides the following voltages for the terminal's electronic circuitry:
$+5 V$ for the logic board
$+12 V$ for the line drivers/receivers and the current loop circuit on the logic board; for the video module and the keyboard
$-12 V$ for the line drivers/receivers and current loop circuit on the logic board

Two user-replaceable fuses--Fl on the power supply and a line fuse in back of the terminal--protect the circuitry.

Video Module

The video module is located behind the CRT. It contains horizontal and vertical sweep and video amplification circuitry. This circuitry produces a television-type noninterlaced raster display. The video signals generated by the display circuitry cause pixels to appear at designated positions across scan lines. These pixels form a character when selectively combined in a 7 X 9 dot matrix.

Keyboard

The 9220 has a detachable keyboard that is connected to the terminal by a coiled keyboard cable.

The keyboard consists of an array of keyswitches mounted on a printed circuit board with an 8049 microcomputer and other IC's.

The 8049 microcomputer on the keyboard scans the keyboard matrix, encodes the data and transmits two bytes per character requested. Data is sent through a 6-wire coiled cable over an asynchronous serial channel at 9600 baud to the main logic board.

This design effectively eliminates the need for a ribbon-type or other bulky cable. On the main logic board, the serial data is converted to parallel data and decoded by the main microprocessor and its firmware. The keyboard microprocessor also activates an audio transducer for the bell and the simulated keyclick.

REMOVING THE MODULES

Opening the Case

STOP! The CRT and capacitors retain high voltages even after power has been turned off. As soon as you open the case, discharge the CRT by connecting one end of a grounding lead to the metal chassis and the other end to a screwdriver with an insulated handle. Slip the metal end of the screwdriver under the plastic cap of the anode, as shown in Figure 1-3. Be careful not to touch the metal portion of the screwdriver or the ground lead.

Figure 1-3
Discharging Voltages

Use Figure 1-4 as reference for opening the case.

1. Turn off the terminal.
2. Disconnect the power cord and data cable(s) from the back of the terminal; disconnect the keyboard cable from the front of the terminal.
3. Turn the terminal so the screen faces away from you.
4. Remove the three screws that secure the monitor rear housing to the case (remove the screw under the power cord first, then remove the two screws near the top of the housing).

NOTE: Remove the screws completely. If necessary, tip the unit backwards slightly.
5. To release the clamp holding the bezel and monitor rear housing together (See Figure l-4):
a. Grasp the housing with your left hand.
b. Sharply tap the right side of the housing with the heel of your right hand.
6. Lift off the monitor rear housing.

Figure 1-4
Opening the Case

Removing the Power Supply

STOP! The CRT retains high voltages, even after the power has been turned off, and poses a potential shock hazard. Follow the CRT discharge procedure on page 1-4 of this section before removing and replacing the power supply.

Use Figure 1-5 as reference for removing and replacing the power supply.

1. Turn off the terminal and open the case (See page 1-4).
2. With the screen facing away from you, remove the two Phillips screws that secure the bezel to the case (the screws are located inside the case, one on each side of the power supply).
3. Disconnect the Ground connector, the power connector (P4) and the DC connectors (P1, P2 and/or P3) from the power supply.

NOTE: Only two connectors are attached at P1, P2 and P3. Pay close attention to the polarity for reference during reassembly.
4. Turn the unit so the screen faces you and remove the two Phillips screws (one on each side of the power supply) that secure the power supply to the case.
5. Slide the power supply toward you to remove it from the case.

Replacing the Power Supply

1. With the screen facing you, slide the power supply into the terminal until it locks into the plastic support bracket.
2. Reconnect the Ground connector, the power connector (P4) and the DC connectors (P1, P2 and P3).

NOTE: Any of the three connectors may be used. For example, you may take the connectors off P1 and P2 and replace them on P2 and P3.
3. Insert and tighten the two Phillips screws that secure the power supply to the case.
4. Replace the bezel and close the case (See page 1-11).

Figure 1-5
Removing the Power Supply

FRONT VIEW

Removing the Video Module

STOP! The CRT retains high voltages, even after the power has been turned off, and poses a potential shock hazard. Follow the CRT discharge procedure on page 1-4 of this section before removing and replacing the video module.

Use Figure 1-6 as reference for removing and replacing the video module.

1. Turn off the terminal and open the case (See page 1-4).
2. Turn the unit so the screen faces away from you.
3. Disconnect the voltage lead at the anode by gently lifting the rubber cap and unhinging the metal lead.
4. Carefully remove the CRT connector (small PCB at the back of the CRT).
5. Remove the power connector (red), the video connector (white) and the yoke connector (blue) from the video board.
6. Loosen the four Phillips screws (one on each support bracket) that secure the video module base.
7. Remove the four Phillips screws that hold the video board to its base and slide the board out of the terminal.

Figure 1-6
Removing the Video Module

Replacing the Video Module

1. Turn the terminal so the screen faces away from you.
2. Slide the video module onto its base (See Figure 1-6) until the four screw holes in the board line up with the four screw holes in the base.
3. Insert and tighten the four Phillips screws that hold the video module to its base.
4. Reconnect the power connector (red), the video connector (white) and the yoke connector (blue) on the video module.
5. Carefully replace the CRT connector (small PCB at the back of the CRT).
6. Replace the anode cap:
a. Pull back the rubber portion of the anode cap, exposing the metal leads.
b. Pinch the two leads together and insert them into the opening for the anode cap in the CRT. Release the leads.
c. Secure the rubber portion of the anode cap.
7. Tighten the four Phillips screws (one on each support bracket) that secure the video module base.
8. Replace the bezel and close the case (See page 1-11).

Removing the Logic Board and Shroud

Use Figure 1-7 as reference for removing and replacing the logic board and shroud.

1. Turn off the terminal. Disconnect the power cord and data cable(s) from the back of the terminal; disconnect the keyboard cable from the front of the terminal.
2. Rotate the complete unit so the back faces you. Remove the two Phillips screws (in the base) that hold the logic board tray in place.
3. Grasp the logic board tray by its center tab and pull the tray toward you to remove it. Disconnect the red (P5) and white (P2) logic board connectors to slide the tray completely out of the terminal.
4. Remove the four brass screws securing the shroud to the logic board; remove the six Phillips screws securing the logic board to the tray.
5. Lift the logic board out of the tray.

Replacing the Logic Board and Shroud

1. Align the six screw holes in the logic board with the screw holes in the tray.
2. Loosely mount the six Phillips screws that hold the logic board in place; insert and tighten the four brass screws that hold the shroud to the logic board, then tighten the six Phillips screws securing the logic board.
3. Replace the logic board tray in the base:
a. Fit the metal flanges on the logic board tray into the guides at the back of the terminal. Hold the connector cables up so they do not interfere as you replace the tray.
b. Reattach the red connector (P5) and the white connector (P2) on the logic board.
c. Align the keyboard connector with the opening in the front of the terminal.
4. Insert and tighten the two Phillips screws that hold the logic board tray in the base.

Figure 1-7
Removing the Logic Board and Shroud

Closing the Case

1. Replace the bezel:
a. Place the bezel face down in front of the terminal. Raise the bezel slightly and hook its two bottom tabs into the openings (one under the contrast adjustor: one under the ON/OFF switch) in the lower case.
b. Swing the bezel up to frame the screen, matching the ON/OFF switch and contrast adjustor with the openings in the bezel.
c. Carefully turn the screen away from you while holding the bezel in place. Insert and tighten the two Phillips screws (located inside the case, one on each side of the power supply) that secure the bezel to the case.
2. Replace the monitor rear housing:
a. Position the monitor rear housing on the case, as shown in Figure 1-4.
b. Align the screw hole under the power cord with the lower screw hole in the housing.
c. Fit the four tabs in the housing over the edge of the lower case.
d. Fit the tab in the top of the bezel into the slot in the top of the monitor rear housing. Squeeze the bezel and housing together.
e. Insert and tighten the Phillips screw under the power cord and the two Phillips screws near the top of the housing.

Opening the Keyboard Case

1. Turn off the terminal.
2. Disconnect the coiled keyboard cable from the front of the terminal.
3. Turn the keyboard upside down and remove the six Phillips screws.
4. Turn the keyboard rightside up and remove the top cover.

Removing the Keyboard Circuit

1. Remove the four Phillips screws securing the keyboard circuit.
2. Lift the entire assembly out of the keyboard case.

VISUAL INSPECTION
A thorough visual inspection often makes the difference between success and failure in a repair attempt. Often a problem can be located just by close visual examination.

Terminal and Keyboard Exterior
Look for signs of accidental damage, abuse, or neglect. Keyboard failures are often caused by spilled liquids, sprayed cleaning solvents, staples, or paperclips.

Are there any dents or deep scratches on the exterior of the terminal or keyboard? If so, ask the user how and when the damage occurred. It may contribute to the problem with the unit.

Terminal and Keyboard Interior

Open the cases and inspect the keyboard and terminal interiors.
Keyboard: Check for signs of spilled liquids, foreign objects, unplugged devices, defective traces, and signs of overheating and burning. Check the telephone-style connectors (located on the back of the keyboard case and on the front of the terminal).

Wiring Harness: Check the condition of the wires and look for crushed insulation, exposed wires, and loose or broken connectors. Unplug the connectors and check that the pins are intact.

Logic Board: Check for loose chips, bent pins on chips, defective chip sockets, signs of overheating and burning, defective traces, and poor solder joints. Check that devices are properly installed.

Power Supply: Check for open fuses, defective components, and signs of overheating and burning.

Video Module: Check for defective components, signs of overheating, and defective traces.

Remove all defective modules for closer inspection and repair. When you finish the repairs, replace the module(s) and test them.

FAULT ISOLATION AT THE MODULE LEVEL
Televideo's modular terminal design makes isolating a problem to a particular module easy. You can either follow Table l-l, Fault Isolation Guide, or replace each module in turn until the fault is corrected.

To use Table l-1, find the description that resembles the problem in the terminal. Then refer to the troubleshooting guide for the suspected module.

Table 1-1
Fault Isolation Guide

Symptom

No beep on power up

Suspected Module

Logic board
Line fuse Power supply Keyboard
Table 1-1 (Continued)
Fault Isolation Guide

Symptom

No video, no cursor

No external communication
Incorrect characters
Incorrect attributes
No keyboard communication

No baud-rate selection
Power supply fuses blowing

High-pitched whine
Distorted video

Characters missing dots

Display too dim/can't adjust

Online communication problem

Jittery screen

Wavy screen

Incorrect voltages

Suspected Module

Logic board Power supply Video module

Cable to host Logic board

Logic board Keyboard

Logic board
Logic board Keyboard cable

Logic board
Video module Power supply

Video module
Video module Power supply Logic board Deflection coil

Logic board Defective CRT

Video module Power supply

Logic board Cable to host Host

Video module Hertz setting

Video module External interference

Power supply Short in other modules

Symptom	Suspected Module
No light at cathode filament	Video module Power supply Defective CRT
Display not equal to key entry	Logic board Keyboard cable Cable to host Host
Visible retrace scanlines	Brightness adjustment Video module Logic board
Keyboard locked up	Keyboard and cable Logic board Software command
Fails self test	Logic board Keyboard Power supply
Some keys inoperative	Keyboard Logic board
Horizontal bar across screen	Logic board Video module
Poor linearity	Video module
Cursor moves, no characters	Logic board
Vertical line across screen	Logic board Video module
Crackling sound with distorted video	Logic board Video module

TROUBLESHOOTING THE LOGIC BOARD AND KEYBOARD

This section is a guide to component-level repair of the logic board and keyboard modules. Find the symptoms in Table l-2 that resemble the problems in the terminal you are repairing. Then locate the suspected defective components. If you are not sure that a component is satisfactory, replace it before proceeding to the next test point. Before replacing a chip or component, check its inputs and outputs for proper levels and signal quality:

NOTE: Before referring to Table l-2, test and/or swap the power supply, CRT and video module with their associated circuitry to eliminate these modules as the source of the problem.

Table 1-2
Logic Board and Keyboard Troubleshooting Guide

Symptom	Component	Location	Schem Page
Display/Video			
No display, no beep, fails self test	65 CO 2	U3	2
	$G / A-B$	U12	2
	G/A-A	U31	3
	2674	U2	3
	Sys. Eprom	U5, U7	2
Distorted video	2674	U2	3
	2732	U30	4
	6116	U21	3
	6116	U22	3
	74LS157	U1, 14, 16	3
	G/A-B	U12	2
	2675	U34	4
Incorrect characters	2732	U30	4
	8049	U2 on Kybd	KYBD
	G/A-B	U12	2
	6116	U21	3
	6116	U22	3
	2675	U34	4
	Sys. Eprom	U5, U7	2
Horizontal bar across screen	2674		3
	2675	U34	4
	74LSO4	U20	4
	2N2222	Q2	4
No vertical sync	2674	U2	3
	74LSO4	U20	2, 4
	G/A-B	U12	2
	65 CO 2	U3	2
	FPLA	U25	3
	2N2222	Q2	4

Table 1-2 (Continued)
Logic Board and Troubleshooting Guide

Symptom	Component	Location	Schematic Page
Display/Video			
No cursor	2674	U2	3
	65 CO 2	U3	2
	2675	U34	4
	2N2222	Q2	4
Loss of attributes	2674	U2	3
	G/A-A	U31	3
	G/A-B	U12	2
		U5, U7	2
	$65 \mathrm{CO} 2$	U3	2
Communications			
No full-duplex communication (FDX) at P3	2681	U13	5
	9636	U40	5
	9639	U26	5
No full-duplex communication (FDX) at P4	2681	U13	5
	9639	U32	5
	9639	U33	5
No status signal transmitted (DSR, DCD, CTS, DTR)	9636	U32	5
	2681	U13	5
No status signal received	9639	U33	5
(DCD, CTS)	2681	U13	5
(RTS, DSR, DTR)	9639	U26	5
Keyboard			
All keys inoperative	8049	U2 on Kybd	KYBD
	7414	Ul on Kybd	KYBD
	74LSO8	U38	2, 4, 5
	G/A-A	U31	3
One or more row of	8049	U2 on Kybd.	KYBD
keys inoperative	74LSl45	U3,4 on Kybd	KYBD
One key inoperative	$\begin{aligned} & 8049 \\ & \text { Keyswitch } \end{aligned}$	U2 on Kybd	KYBD

Table 1-2 (Continued)
Logic Board and Keyboard Troubleshooting Guide

Symptom	Component	Location	Schem Page
Keyboard			
SHIFT, CTRL, ALPHA LOCK, and	8049	U2 on Kybd	KYBD
function keys inoperative	$74 \mathrm{LS145}$	U3,4 on Kybd	KYBD
No keyclick/no beep	Transducer	LSl on Kybd	KYBD
	2N4401	Q1 on Kybd	KYBD
	MC14040	U5 on Kybd	KYBD
	8049	U2 on Kybd	KYBD

TROUBLESHOOTING THE VIDEO MODULE

STOP! HIGH VOLTAGES ARE PRESENT ON THE VIDEO MODULE. USE EXTREME CARE DURING TROUBLESHOOTING.

Visual Inspection

Turn the terminal off and remove the monitor rear housing, as described in Section 1 of this manual (Removing the Modules). Check the following possible problem areas before removing the video module from the terminal.
a. Connectors: check for loose or damaged connectors, dirty contacts or bad crimps.
b. Wires: check for any broken, loose or frayed wires.
c. Components: check for any deformed, leaking or discolored components.

Correct any defects, then retest the terminal before continuing.
Remove the video module from the terminal, as described on page l-8. Inspect the video module for:
a. Deformed, leaking, or discolored components.
b. Damaged components.
c. Cracked or lifted traces.
d. Poor solder joints (loose solder lumps, solder bridges, or cold solder joints).

Adjustments

Four adjustments can be made to the video module: height, linearity, brightness and focus. The controls for height, linearity and brightness are labeled on the back of the video module; the control for focus (VR2) is on the front of the video module. Use the following chart to determine the proper control to adjust.

Symptom

Character intensity too bright or too dim

Whole screen is too tall or too short

Characters are not even in height from the top to the bottom of the screen

Characters are not in focus

Control

Brightness

Height

Linearity
Focus

This section is a guide to component-level repair of the video module. When in doubt regarding the proper operation of a component, replace it before proceeding to the next test point. Before replacing a chip or component, check its inputs and outputs for proper levels and signal quality.

Symptom: No vertical deflection

1. Check $I C-1$ for vertical sync at $I C l$ pin 8.
2. If the signal is improper or missing, trace back to PlO for vertical sync at pin 5 .
3. If the signal is good, trace forward to IC-1 (pin 4) for deflection drive, and related components up to the vertical yoke.

Symptom: No horizontal deflection

1. Check the base of Q301 or the cathode of D301 for horizontal sync.
2. If the signal is improper or missing, trace back to plo for horizontal sync at pin 1 .
3. If the signal is good, check the output of the horizontal drive transformer T301 and the base of Q302. Trace for the presence of horizontal deflection through Q302, C306, L301, and L302 up to the horizontal yoke.

Symptom: Audible high-pitched whine

1. Check coils L301, L302, and flyback transformer.

SCHEMATICS

Table 2-1 gives a brief description of the chip at each location on the logic board. Refer to Table 3-1 for the part number of components at each location.

Table 2-1
IC Reference by Board Location

Location	Schematic Page	Type/Description
U1	3	IC 74LS157 4X 2-IN DATA SELECT MULTIPLEXER
U2	3	IC 2674 ADVANCED VIDEO DISPLAY CONTROLLER (AVDC) 4-MHZ
U3	2	IC $65 \mathrm{CO2}$ MICROPROCESSOR $3-\mathrm{MHZ}$
U5	2	IC EPROM SYSTEM 9220
U7	2	IC EPROM SYSTEM 9220
U8	2	IC $2 \mathrm{~K} \times 8$ CMOS STATIC RAM
U9	4	IC 74LS374 8X D-TYPE FLIP-FLOP
U10	2	IC STATIC RAM $2 \mathrm{~K} \times 8$ loons
U11	4	IC 74LS245
Ul2	2	IC GATE ARRAY PKG B
U13	5	IC 2681 DUAL ASYNCHRONOUS RECEIVER/ TRANSMITTER (DUART)
U14	3	IC 74LS157 4X 2-IN DATA SELECT MULTIPLEXER
U15	4	IC 74LS244 8X BUFFER/L DRIVER/L
Ul6	3	IC 74LS157 4X 2-IN DATA SELECT MULTIPLEXER
U17	4	IC 74LS374 8X D-TYPE FLIP-FLOP
U18	4	IC 74LS244 8X BUFFER/L DRIVER/L
U19	3	IC 74LSI57 4X 2-IN DATA SELECT MULTIPLEXER
U20	1,2,4	IC 74LSO4 6X INVERTER
U21	3	IC Static Ram $2 \mathrm{~K} \times 8$ l 100 ns
U22	3	IC STATIC RAM $2 \mathrm{~K} \times 8$ loons
U23	3	IC STATIC RAM 2 K X 8 l 100 ns
U24	3	IC STATIC RAM $2 \mathrm{~K} \times 8$ loons
U25	3	IC FIELD PROGRAMMABLE LOGIC ARRAY 82S153A
U26	5	IC 9639 DUAL LINE RECEIVER
U27	5	IC 9639 DUAL LINE RECEIVER
U28	1	IC 4 N 38 OPTO COUPLER
U29	4	IC STATIC RAM $2 \mathrm{~K} \times 8$ loons
U30	4	IC ROM 9220 CHARACTER GENERATOR
U31	3	IC GATE ARRAY PKG A
U32	5	IC 9639 DUAL LINE RECEIVER
U33	5	IC 9639 DUAL LINE RECEIVER
U34	4	IC COLOR/MONO ATTRIBUTE CONTROLLER (CMAC)
U35	4	IC 74LSl63 SYN 4-BIT COUNTER
U36	4	IC 74LS374 8X D-TYPE FLIP-FLOP
U38	2,4,5	IC 74LSO8 4X 2-IN AND GATE
U39	4	IC 74LS174 6X D-FLIP FLOP
U40	5	IC 9636 DUAL LINE DRIVER
U41	4	IC 74LS51 2X AND-OR-INVERTER GATE
U42	4,5	IC 74S04 6X INVERTER
U45	1	IC 4 N 38 OPTO COUPLER

Table 2-1 (Continued)
IC Reference by Board Location
Schematic

NOTES : UNLESS OTHERWISE SPECIFIED

1. ALL RESISTORS ARE $1 / 4 \mathrm{~W}, \pm 5 \%$, RESISTANCE IS IN OHMS.

ORDERING SPARE PARTS

You can order spare parts by telephone*, telex or by written purchase order. To place an order, contact the Televideo Regional Sales Office in your area, or contact our Corporate Spare Parts Order Entry Department at the following address:

TeleVideo Systems, Inc.
1170 Morse Avenue
P.O. BOX 3568

Sunnyvale, CA 94088-3568
or call
Sunnyvale: 408-745-7760
Telex: 474-5041 TVISYS
Fax: 408-734-1927
TWX 910-338-7633

All orders are shipped F.O.B. our designated site.

TERMINALS SPARE PARTS PRICE LIST

For spare part prices, refer to the Terminals Spare Parts Price List in Section 7 (Addenda) of this manual.
*All telephone orders must be followed by a confirming purchase order clearly marked "Confirming Purchase Order".

Table 3-1
9220 Parts List
PCB ASSEMBLY LOGIC BOARD - PART NUMBER 132270-00
Part Number Description Location

Integrated Circuits
$120274-00$
$130234-00$
$130236-00$
$180002-82$
$180002-81$
$121387-00$
$120290-00$
$131615-00$
$120362-00$
$130180-00$
$130222-00$
$120442-00$
$120248-00$
$130920-00$
$131636-00$
$120350-00$
$180002-90$
$130170-00$
$130238-00$
$120276-00$
$120252-00$
$120282-00$
$131635-00$
$120262-00$
$120246-00$
$120258-00$
$120272-00$
$131614-00$
$120348-00$
$120242-00$

IC 74LS157 4X 2-IN DATA SEL/MLT
IC 2674 AVDC $4-\mathrm{MHZ}$
IC 65CO2 MICROPROCESSOR 3-MHZ U3
IC EPROM SYS 9220 COOO U5
IC ERROM SYS 92204000 U7
IC 2 K X8 CMOS STATIC RAM U8
IC 74LS374 8X D-TYPE FF U9, 17, 36
IC STAT RAM 2K X 8 loons UlO, 21-24, 29
IC 74LS245, N8T245N
IC GATE ARRAY PKG B
IC 2681 DUAL UART
IC 74LS244 8X BFR/L DRVR/L RCV
IC 74LSO4 6X INVTR
IC FPLA 82S153A
IC 9639 DUAL LINE RECEIVER
IC 4 N 38 OPTO CPLR
IC ROM 9220 CHAR GEN
IC GATE ARRAY PKG A
IC COLOR/MONO AT CONT (CMAC)
IC 74LSI63 SYN 4-BIT CNTR
IC $74 \mathrm{LSO} 8 \mathrm{XX} 2-\mathrm{IN}$ AND GATE
IC 74LS174 6X D-FLIP FLOP
IC 9636 DUAL IIINE DRIVER
IC 74 LS 512 X AND-OR-INVTR GATE
IC 74 SO 46 X INVTR
IC 74LS32 4X 2-IN OR GATE
IC 74LSI39 2X 1 OF 4 DECODER
IC 8211 PROG VOLT REG
IC 7406 6X INVTR BFR/DRVR
IC 74LSOO 4X 2-IN NAND GATE

Ul, 14, 16, 19
U2

U7

Ull
U1 2
U1 3
U15, 18
U20
U25
U26, 27, 32, 33
U28, 45
U30
U31
U34
U35
U38, 53, 56
U39
U40, 46, 48, 54
U41
U42
U47, 55
U49
U50
U51
U5 2

Resistors and Pots

Table 3-1 (Continued) - 9220 Parts List
PCB ASSEMBLY LOGIC BOARD - PART NUMBER 132270-00

Miscellaneous

$120475-00$	DIODE 1N914
$122070-00$	DIODE ZENER 3.6V
$131551-00$	TRAN 2N4264 NPN
$120459-00$	TRAN 2N2222A NPN/SILICON
$120459-00$	TRAN 2N2907A PNP/SILICON
$120455-00$	TRAN 2N4401/2SCl166 NPN/SIL

CR1, 3,
4-11, 14
CR2
Q1, 7
Q2, 3, 9
Q4, 6, 8
Q5

Part Number	Description	Location
121262-00	VOLT REG 79LO5AC	VR1
131386-00	BATTERY LITHIUM CYLINDER	B1
270667-00	CRY 17.2414-MHZ	Y1
122168-00	CRY 3.6864-MHZ	Y2
270721-00	CRY 24.8618 MHZ CLOCK OSC	U37
122084-00	CONN 6P MOD JACK RJI2 RT-ANG	P1
120988-02	CONN 4P HDR WT (5P W/\#2P OUT)	P2
121653-01	CONN 25P D-SUB FEM THRD	P3, 4
122639-00	CONN 4P HDR RED (5P W/\#2P OUT)	P5
120988-00	CONN 2P STR WAF	P10
120984-02	SOCKET 40P IC DIP	$\begin{aligned} & \mathrm{U} 2,3,12,13, \\ & 31,34 \end{aligned}$
120984-04	SOCKET 28P IC DIP	$\begin{aligned} & \text { U5, 7, 22, 23, } \\ & 30 \end{aligned}$
120984-01	SOCKET 24P IC DIP	$\begin{aligned} & \text { U8, 10, 21, 24, } \\ & 29 \end{aligned}$
120984-06	SOCKET 20P IC DIP	U25
120017-00	SCREW JACK 4-40 . 125 PNL BRS	P3, 4

Table 3-1 (Continued) - 9220 Parts List
PCB ASSEMBLY VIDEO MONITOR - PART NUMBER 247726-00

Part Number	Description	Location
270884-00	TRAN KTC2235(0)	Q301
270883-00	TRAN BU406	Q302
120485-00	DIODE IN4148 SWITCH	D301
241301-00	DIODE MR856	D302, 303
241300-00	DIODE BA159	D502-504, 506
270882-00	DIODE 1N4755	D505
122022-00	DIODE IN4004 MOT	D60 1
120441-00	POT TRIM 100K OHM TOP-ADJ PCMT	SFRI, 2, 4
121801-00	POT FOCUS 2M OHM	VR2
242817-00	TRANS H DRIVE HDT	T301
130746-00	TRANSFORMER FLYBACK	T302
130134-00	COIL LINEARITY 52-MHZ	L301
130838-00	COIL WIDTH $10 \mathrm{uH}+40 \%$	L302
242000-00	IC VERT AMP TDA-1170N	ICl
120377-00	RES CF 47 OHM 1/4W +/- 5\%	R301, 501
121768-00	RES CF 1OK OHM 1/2W 5\%	R504
120403-00	RES CF 220 OHM 1/4W	R512
120531-00	RES CF 4700 OHM 1/4W 5\%	R601, 611
131582-00	RES CF 200K OHM 1/4W	R602
240102-00	RES CF 180K OHM 1/4W	R603
240103-00	RES CF 390K OHM 1/4W	R604
120337-00	RES CF 47K OHM 1/4W 5\%	R605
240104-00	RES CF 220 K OHM 1/4W	R606
240108-00	RES MF 1.0 OHM 1W	R607
131502-00	RES CF 68KOHM 1/4W 5\%	R608
249700-01	RES CF 33K OHM 1/4W	R609
240105-00	RES CF 56 K OHM 1/4W	R610
240106-00	RES CF 3.3K OHM 1/4W	R613
240107-00	RES CF 3.3 OHM 1/2W	R614
121967-00	CAP ELEC 4.7uF 16V	C301
249017-00	CAP PF 0.01uF 50V	C302
241124-00	CAP POLYPRO O.033uF 630V	C304
130127-00	CAP ELEC 220uF 25V	C305
122800-00	CAP ELEC l 6 UF 25V ($\mathrm{NON-P}$)	C306
240907-00	CAP PF O.luF 50V	$\begin{aligned} & \text { C307, 601, 603, } \\ & 604,611 \end{aligned}$
130827-00	CAP ELEC 100uF 100 RADIAL LDS	C502
130186-00	CAP CER .02uF 50V	C503
270880-00	CAP MF . OluF 800V 10\% RAD	C504
130126-00	CAP MYL . O33uF 400 V	C507
240908-00	CAP PF 0.15uF 50V	C602
249015-00	CAP ELEC 2200uF 16V 16x25MM	C605
249003-00	CAP ELECT 100uF 25V 8X11.5MM	C606
121959-00	CAP CER 220pF 50V	C607
121962-00	CAP ELEC 2200uF lov	C608
249027-00	CAP ELECT 47uF 25v 6.3X11MM	C609
240700-00	CAP CER 470pF 50V	C612

```
Table 3-1 (Continued) - }9220\mathrm{ Parts List
PCB ASSEMBLY VIDEO MONITOR - PART NUMBER 247726-00
Part Number Description Location
122174-01 CONN 4P HDR W/LOCK WHITE
122173-01 CONN 4P HDR W/LOCK BLUE
122172-01 CONN 4P HDR W/LOCK RED
123059-01 SCREW M3X8MM SELF TAP PH PHL
132329-00 CVR SHIELD FBT
131862-00 PCB ASY SOCKET 9220
249078-00 SCREW M3X6 BH
121078-00 WASHER M3 FLAT ST ZN
123107-00 WASHER M3 STAR EXT LOCK ST ZN
PCB ASSEMBLY POWER SUPPLY - PART NUMBER 132324-00
```

Table 3-1 (Continued) - 9220 Parts List

ADDITIONAL PARTS

Keyboard

130932-00
130936-00
130935-00
130175-00
130178-00
120265-00
120245-00
120986-01
122450-00
121700-00
121390-00
120354-00
120373-00
120319-00
120527-00
270846-00
122151-00
120455-00
120475-00
121261-00
131159-00
131158-00
131157-00
122161-00
122084-00
121063-10
121074-00
121752-03

Case

131853-00
131747-00
122187-00
132337-00
132165-00
132166-00
132155-00
132148-00
132147-00
132146-00
121076-07
121074-00
121074-09
121074-02
121074-03
123059-00

CASE ASSEMBLY
TUBE CRT 14" AMBER
TUBE CRT 14" GREEN
CBL BRAIDED EMI
BEZEL
HSG REAR
BASE MONITOR
GUIDE DISH
PIVOT
NUT PIVOT
SCREW M5 X 12MM PH PHL ST ZN
SCREW M3 X 6MM PH PHL ST ZN
SCREW M3 X 7MM PH PHL ST ZN
SCREW M3 X IOMM PH PHL ST ZN
SCREW M3 X l6MM PH PHL ST ZN
SCREW M3 X 6MM SELF TAP PH PHL.
Part Number Description Location

KEYBOARD ASSEMBLY		
HSG KYBD BotTOM		
HSG KYBD TOP		
CAP ELECT 22uF 16V +80\%	C1, 4	
CAP CER . OluF 50V +/- 10\%	C3, 5	5, 8, 9
CAP ELEC 2.2uF 25V 10\%	C2	
CAP MICA 20pF 50V 2\%	C6, 7	
CRYSTAL 5.7143 MHz	Y1	
IC 14040B 12-BIT BINARY COUNTR	U5	
IC 74LSl45 BCD TO DECI DECODER	U3, 4	
IC 8049 MICROCOMPUTER	U2	
IC 7414 6X SCHMITT TRIG	U1	
RES CF 27 K OHM 1/4W 5\%	R8	
RES CF 1200 OHM l/4W 5\%	R1	
RES CF 3300 OHM 1/4W 5\%	R2-7	
RES PK 6.8K OHM 10P SIP	RP1	
TRANSDUCER AUDIO	LS1	
TRAN 2N4401/2SCl166 NPN/SIL	Q1	
DIODE 1N914	CR1,	2
VOLT REG 78 M05	VR1	
KEYSWITCH NONLOCKING MAR		
KEYSWITCH NONLOCKING		
KEYSWITCH LOCKING		
CBL ASY 6 CONDUCTOR RJI2		
CONN 6P MOD JACK RJJ12 RT-ANG	J2	
SCREW 6-32x 1/4" PH PHL ST ZN		
SCREW M3 X 6MM PH PHL ST ZN		
NUT 6-32 HEX ST ZN		

Location

Cl, 4
C3, 5, 8, 9
C2
C6, 7
Y1
U5
U3, 4
U2
R8
R1
RP1
LS1
Q1
2
VRI

J2
SCREW 6-32x 1/4" PH PHL ST ZN
NUT 6-32 HEX ST ZN
Table 3-1 (Continued) - 9220 Parts List
ADDITIONAL PARTS
Part Number Description Location

| $121078-00$ | WASHER M3 FLAT ST ZN |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $121079-01$ | WASHER M4 LOCK ST ZN |
| $121078-02$ | WASHER M5 FLAT ST ZN |

Chassis

$122985-01$	FUSE .75 AMP 250V SLOW-BLOW (230V ONLY)
$122985-03$	FUSE 1.5 AMP 250 V SLOW-BLOW (115V ONLY)
$132195-00$	FUSE HOLDER
$132172-00$	POT CONTRAST
$132167-00$	KNOB BRIGHTNESS
$132541-00$	GUIDE PWR SPLY BD
$121074-00$	SCREW M3 X 6MM PH PHL ST ZN
$121080-02$	NUT M5 HEX ST ZN
$121078-02$	WASHER M5 FLAT ST ZN
$123107-02$	WASHER M5 STAR EXT LOCK ST ZN

Pedestal

| $132159-00$ | HSG PEDESTAL | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $132157-00$ | SHIELD PEDESTAL | | |
| $132149-00$ | GUIDE LOGIC BD | | |
| $132184-00$ | FOOT RUBBER | | |
| $121074-00$ | SCREW M3 X 6MM PH PHL ST ZN | | |
| $122156-02$ | SCREW M3 X 8MM FH PHL ST ZN | | |
| $121074-05$ | SCREW M3 X 12MM PH PHL ST ZN | | |

Rear Panel

$132156-00$	BASE PEDESTAL
$131854-00$	PANEL REAR
$131593-00$	BUMPER PLASTIC
$120017-00$	SCREW JACK 4-40
$121074-00$	SCREW M3 X 6MM PH PHL ST ZN
$123114-00$	SCREW M3 X 6MM PH PHL ST BLK
$121080-00$	NUT M3 HEX ST ZN

Miscellaneous

131977-00 OPERATOR'S MANUAL 9220
131979-00 MAINTENANCE MANUAL 9220
131165-00 SHIPPING CARTON OUTER
131166-00 SHIPPING CARTON STYROFOAM RIGHT 131167-00 SHIPPING CARTON STYROFOAM LEFT 122911-00 POWER CORD 6 FT

Table 3-2
9220 Keycaps Parts List

Description
1X1 BRN Fl
1X1 BRN F2
1XI BRN F3
1×1 BRN F4
1XI BRN F5
1X1 BRN F6
1X1 BRN F7
1 XI BRN F8
1X1 BRN F9
1 XI BRN F1O
1X1 BRN Fll
1 Xl BRN Fl2
1 Xl BRN Fl3
1 X1 BRN Fl4
1×1 BRN HELP
1×2 BRN DO
1XI BRN RESET
1 XI BRN F17
1X1 BRN F18
1 XI BRN F19
1 XI BRN F2O
1XI BRN LOC/ESC/LINE/ESC
1XI WHT !/l
1 XI WHT @/2
1X1 WHT \#/3
1XI WHT \$/4
1XI WHT \%/5
1 XI WHT ~/6
1X1 WHT \& / 7
1 XI WHT */8
1×1 WHT (/9
1XI WHT)/0
1X1 WHT _/-
1X1 WHT $\mp /=$
1X1 WHT ~/•
1×1.5 BRN BACK/SPACE
1×1 BRN FIND
1 XI BRN INSERT/HERE
IXI BRN REMOVE
1XI BRN SEND
1XI BRN PFl
1 XI BRN PF2
1XI BRN PF3
1 XI BRN PF4
$1 \mathrm{X1.5}$ BRN TAB
1X1 WHT Q
1XI WHT W
1×1 WHT E
1XI WHT R
1X1 WHT T
Printed Blank

130703-13 0
130703-14 0
130703-15 0
130703-16 0
130703-17 0
130703-18 0
130703-19 0
130703-20 0
130703-21 0
130703-22 0
130703-23 0
130703-24 0
130703-25 0
130703-26 0
130703-33 0
130711-01 0
130703-11 0
130703-29 0
130703-30 0
130703-31 0
130703-32 0
130703-12
130702-01 0
130702-02 0
130702-03 0
130702-04 0
130702-05 0
130702-06 0
130702-07 0
130702-08 0
130702-09 0
130702-10 0
130702-11 0
130702-12 0
130702-13 0
130707-01 0
130703-35 0
130703-34 0
130703-36 0
130703-06 0
130703-37 0
130703-38 0
130703-39 0
$130703-400$
130708-01 5
130701-12 5
130701-11 5
130701-10 5
130701-09 5
130701-08 5

Table 3-2 (Continued) - 9220 Keycaps Parts List

Description	Printed	Blank Degree
1X1 WHT Y	130701-07	5
1X1 WHT U	130701-06	5
1X1 WHT	130701-05	5
1 XI WHT 0	130701-04	5
1X1 WHT P	130701-03	5
1 X1 WHT (/[130701-17	5
1X1 WHT \}/]	130701-18	5
1 XI BRN DELETE	130704-05	5
1X1 BRN SELECT	130704-02	5
1XI BRN PREV/SCREEN	130704-03	5
1XI BRN NEXT/SCREEN	130704-04	5
1 XI WHT 7	130701-13	5
1X1 WHT 8	130701-14	5
1 XI WHT 9	130701-15	5
1 XI BRN	130704-06	5
1 XI BRN CTRL	130705-02	10
1 XI .5 BRN LOCK	130709-01	10
1X1 WHT A	130700-08	10
1X1 WHT S	130700-09	10
1 XI WHT D	130700-10	10
1X1 WHT F	130700-11	10
1X1 WHT G	130700-07	10
1X1 WHT H	130700-06	10
1X1 WHT J	130700-05	10
1X1 WHT K	130700-04	10
1X1 WHT L	130700-03	10
1X1 WHT :/;	130700-02	10
1 X1 WHT "/'	130700-01	10
BRN RETURN L-SHAPED	130717-01	
1 XI BRN \|/	130705-01	10
IXI BRN ARROW (WD) UP	130705-04	10
2XI BRN TAB	130716-01	10
1X1 WHT 4	130700-16	10
1X1 WHT 5	130700-15	10
1X1 WHT 6	130700-14	10
1 XI BRN	130705-05	10
1 Xl BRN BACK/TAB	130706-02	18
1 X 2 BRN SHIFT	130712-01	18
1X1 WHT z	130699-12	18
1X1 WHT X	130699-11	18
1X1 WHT C	130699-10	18
1 Xl WHT V	130699-09	18
1X1 WHT B	130699-08	18
1 Xl WHT N	130699-07	18
1X1 WHT M	130699-06	18
1 XI WHT </,	130699-05	18
1XI WHT >/.	130699-04	18
1X1 WHT ?//	130699-03	18

Table 3-2 (Continued) - 9220 Keycaps Parts List

Description	Printed	Blank	Degree	
1X1 BRN LINE/FEED				
1X1 BRN ARROW (WD) LFT	$130706-14$		18	
1X1 BRN ARROW (WD) DWN	$130706-13$		18	
1X1 BRN ARROW (WD) RT	$130706-12$		18	
1X1 BRN CE	$130706-11$		18	
1X1 WHT 1	$130706-10$		18	
1X1 WHT 2	$130699-16$		18	
1X1 WHT 3	$130699-15$		18	
1X2 BRN COMPOSE/CHARACTER	$130699-14$		18	
WHT SPACEBAR	$130712-02$			
1X1 WHT OO		$130699-01$		18
1X2 WHT O	$130713-01$		18	
1X1 WHT		$130699-13$		18
2X1 BRN ENTER		$130714-01$	18	

THEORY OF OPERATION

OVERVIEW

The 9220 terminal logic is based on a 650028 -bit CMOS microprocessor operating at 3 MHz , capable of addressing 65 K bytes of memory. Figure 4-1 shows a block diagram of the 9220.

Refer to the schematic diagram in Section 2 while reading the Theory of Operation that follows.

DISPLAY FUNDAMENTALS

2674 Advanced Video Display Controller (AVDC), Board Location U2

A 2674 Advanced Video Display Controller (AVDC) is used for video display timing. The AVDC generates programmable horizontal and vertical sync signals necessary for data display, timing and character address generation for up to l6K of display RAM.

A character clock (CCLK) sent from the 2675 Color/Mono Attribute Controller (CMAC - U34) to the AVDC is used to count the programmable number of characters per row. Refresh addresses for the display and attribute RAMs are generated while the AVDC counts the CCLK transitions. At the end of each scan line, the AVDC generates a horizontal sync pulse.

The number of scan lines per character row, the number of character rows per frame, and the vertical sync pulse position and duration are all programmable. Cursor output and video blanking are also provided.

2675 Color/Mono Attribute Controller (CMAC), Board Location U34

Cursor and video blanking signals are sent to the CMAC to be combined with character and attribute data. The CMAC takes this data on a character-by-character basis and produces the video drive for the video module.

The address lines from the AVDC and the 65002 are multiplexed, allowing both devices to access the display and attribute RAMs without wait states or bus contention problems. This feature results in maximum display RAM update speed without undesirable screen effects.

Gate Array A, Board Location U31

The character and attribute data lines are routed through gate array A (U31), allowing the microprocessor to read the character and address RAMs separately although they occupy the same space in the memory map.

This gate array also enables the microprocessor to write different data into the two RAMs during a write-to-display-RAM operation. Essentially, the 8-bit microprocessor is writing

16-bit wide words. Speed is increased becaúse there is no need to write to two locations for each character on the screen.

The microprocessor and the AVDC address the character and attribute RAMs during alternate phases of the clock.

Data at the selected location is output as a l6-bit word containing 8 bits of character data and 8 bits of attribute data. The character data is routed through gate array A (U31) to the character latch (U36). The attribute data is routed to the CMAC.

The AVDC's address lines are always enabled in the READ condition.

Gate Array B, Board Location Ul2

Ul2 decodes the microprocessor's address bus to provide sufficient chip selects for all the memory chips and the programmable AVDC, CMAC and Dual Asynchronous Receiver/Transmitter (DUART - Ul3) support cnips.

One of the two 8-bit system control registers resides in this gate array chip. The other register is a hex D-type flip-flop at location U39.

These additional registers are used by the system program to control switches that determine the direction of the serial data paths for the various communications modes, screen background and screen intensity modes.

COMMUNICATIONS

2681 Dual Asynchronous Receiver/Transmitter (DUART), Board Location Ul3

The 2681 DUART is a single MOS-LSI chip with two programmable, independent, full duplex channels for asynchronous data communications.

The 2681 also contains a parallel input port and latched output port. Four of the input port lines can be used to detect changes (low to high or high to low transitions). In addition, a change detection can be programmed to automatically generate an interrupt through the 2681's interrupt output. This effectively uses the DUART as a programmable interrupt controller and a dual serial port.

The 2681 monitors DSR (Data Set Ready) and CTS (Clear To Send) on the host port (P3), as well as DTR (Data Terminal Ready) on the printer port and the keyboard interrupt from gate array A (U31).

One of the 2681 's latched outputs is also used to select the proper clock for $80-$ column or $132-$ column mode.

There are only two serial channels on the DUART and three sources must be accommodated. One of the two channels serves a dual purpose. The programmed assignments are:

Channel A receiver always receives from the computer.
Channel B receiver always receives from the printer.
Channel A transmitter only transmits to the computer.
Channel B transmitter normally sends data to the printer, but is also used to send to the keyboard via gate array B (Ul2) whenever the bell must sound, and to enable or disable the keyclick. Program control assigns the destinations.

Data from the keyboard is received through gate array B (Ul2), which contains a fixed baud rate receiver channel. Communication between the keyboard and the main logic is serial asynchronous at 9600 baud, half-duplex.

KEYBOARD

Keyboard Encoder 8049, Keyboard Location U2

The keyboard encoder is an 8049 single-chip microcomputer that can scan an 8×16 keyboard matrix and perform keyswitch debouncing and $N-k e y$ rollover. Thus, any number of keys can be pressed in rapid succession and the encoder will recognize all of them.

The keyswitch circuitry is arranged in an $X-Y$ matrix, with each keyswitch having its own unique position. The keyboard encoder on the keyboard circuit scans the matrix by sending a low level to each line on the Y axis during a scan routine.

By reading the X lines, a depressed keyswitch is detected coincidentally because a low level is routed back to the encoder. The encoder scans each Y line in turn by this method.

The encoder validates that a key has been pressed by detecting a keyswitch for three scan routines. The mechanical keyswitches are debounced when the encoder determines that a key is NOT pressed for three scan routines after a key has been validated.

When a key is validated, a short pulse is sent to the speaker drive to simulate a keyclick. Also, two codes are sent to the control board; one code indicates whether or not any modifier keys (Control, Shift, Alpha-lock) are depressed; the second code indicates which key on the matrix is held down.

CHARACTER GENERATION

The 9220 uses a raster scan technique to create its display. The data fromeither U30 or U29 is loaded into a shift register within the 2675 CMAC (U34) and shifted out one pixel at a time to produce the characters as the electron beam sweeps the face of the CRT.

Character cells, rather than a full bit-map, are used to produce characters on the screen. Instead of the display processor defining each pixel on the screen, the pixels are prearranged in blocks (character cells 10 wide by 10 high) that reside in the character generator ROM.

The entire display is composed of 25 rows of either 80 or 132 character cells.

The display processor (65C02 - U3) can change the display by defining which character will be displayed within each character cell. This allows the most efficient handling of alpha-numeric data, as well as easily providing special video effects, such as video attributes and smooth data scrolling.

A total of 384 different characters can be displayed simultaneously on the screen. Two hundred and fifty-six of these characters reside in an EPROM or ROM (U3O). The remainder of the characters reside in RAM (U29), which provides the "soft font" feature.

In normal operation, $U 29$ is an extension of the character generator, and is accessed when bit 6 (AD6) from the attribute RAMs is high.

Unlike data in U30, which is fixed, the data in $U 29$ can be modified under firmware control to produce special characters. The VT220 emulation mode provides an escape sequence to do this.

The 65 CO 2 accesses U 29 through tri-state buffers (Ull, Ul5 and Ul8). When the 65 CO 2 is accessing U29, the outputs from the character address latch (U36), the scan line address latch (U9), and the character generator ROM (U3O) are disabled.

MPU MEMORY ALLOCATION

The 65CO2's address decoder divides the internal memory into four l6K blocks. Following is the basic memory layout, starting with the highest 16 K block:

System ROM A; 16K
Soft Font 8K; screen RAM 8K System ROM B; l6K
Peripherals and system control 8K; system RAM 8K
Total memory including options: 65 K

System EPROMS, Board Locations U5 and U7

System ROM consists of two EPROMs with a total capacity of 32 K bytes.

System firmware subsections are initialization, main program loop, and two interrupt routines.

Initialization Routine

On power up, the stack pointer is set, scratch pad and display memories are cleared, and set-up memory is tested for initialization.

If not initialized, the terminal configuration and function keys are set to factory default values. The CRT controller and DUART are initialized, and the interrupts are enabled.

Main Program

The main program is a loop routine that processes data transfers from the computer or the keyboard.

Data to be displayedis written into the display RAM at the cursor position along with the current video attribute. A function is performed if the input data is a control character or an ESC character. Then, the cursor position is updated.

This routine also performs transparent and copy print by fetching data from the terminal buffer and loading it into the printer buffer.

Interrupt Routines

Interrupt requests (IRQs) originate from the keyboard, host computer or the printer when data is transmitted or received.

The high priority device is the keyboard, and the low priority device is the printer. The interrupt routines check the status of the DUART to determine the interrupt source.

If the interrupt source is the host computer, a routine further checks to see whether it is a receive or transmit interrupt. During a receive interrupt from the host computer, it checks the receive buffer.

Depending on the protocol selected, it sends $X-O F F$ to the host or lowers DTR (Data Terminal Ready), instructing the host to halt data transmission until the almost full condition of the buffer (224 bytes out of 256 bytes) reverses.

The printer interrupt also checks for receive or transmit mode. Depending on the protocol selected (X-ON or DTR), X-ON/X-OFF is sent or DTR is raised or lowered to accommodate the full receive buffer.

The keyboard sends two bytes for each key stroke: the control byte and the data byte. Each byte generates an interrupt, using the DUART input port.

Non-maskable interrupts (NMIs) come from the 2674 AVDC (U2). They occur at the beginning of a new character row and are used by the firmware to manipulate the AVDC to produce smooth scrolling, line inserts and deletes, and double-wide/double-high character rows.

OPERATING CLOCKS

There are two basic modes of operation: 80-column and l32column. Two dot clocks, which are switched under firmware control, accommodate these modes (see sheet 4 of the schematic).

The output of $U 41$ (pin 6) is fed into pin 32 of the CMAC, where it is divided by eight and output at pin 33 as CCLK BAR*.

This clock is inverted by U42 and applied to pin 23 of gate array A (U31), where it is used to generate a select input for the character and attribute RAM address multiplexers and to produce phase 0 , which is the system clock for the 65002 .

CCLK BAR is also connected directly to the 2674 AVDC where it is used as a character clock.

For communications, the 2681 DUART needs only a crystal connected to its internal oscillator. The keyboard receive channel within U3l needs a l.7-MHz clock which is provided by U35, which divides the 80 -column dot clock by eight (see sheet 4 of the schematic).

[^0]
Warranty

STATEMENT OF LIMITED WARRANTY

TeleVideo Systems, Inc. ("TeleVideo") warrants to its distributors, systems houses, end users, and OEMs ("Buyer"), that products manufactured by TeleVideo are free from defects in materials and workmanship. TeleVideo's obligations under this warranty are limited to repairing or replacing, at TeleVideo's option, the part or parts of the products which prove defective in material or workmanship within 15 months after shipment by TeleVideo. Buyer must pass along to its initial customer or user ("Customer") a minimum of 12 months' coverage within this 15 -month warranty period, provided that Buyer gives TeleVideo prompt notice of any defect and satisfactory proof thereof.

Products may be returned by Buyer only after a Return Material Authorization number ("RMA") has been obtained from TeleVideo by telephone or in writing. Buyer will prepay all freight charges to return any products to the repair facility designated by TeleVideo and include the RMA number on the shipping container. TeleVideo will, at its option, either repair the defective products or parts or deliver replacements for defective products or parts on an exchange basis to Buyer, freight prepaid to the Buyer. Products returned to TeleVideo under this warranty will become the property of TeleVideo. With respect to any product or part thereof not manufactured by TeleVideo, only the warranty, if any, given by the manufacturer thereof, applies.

Exclusions

This limited warranty does not cover losses or damage which occur in shipment to or from Buyer, or are due to, (l) improper installation or maintenance, misuse, neglect, or any cause other than ordinary commercial or industrial application, or (2) adjustment, repair, or modifications by other than TeleVideoauthorized personnel, or (3) improper environment, excessive or inadequate heating or air conditioning and electrical power failures, surges, or other irregularities, or (4) any statements made about TeleVideo's products by salesmen, dealers, distributors or agents, unless confirmed in writing by a TeleVideo officer.

If the firmware or hardware is altered or modified by the Buyer, this firmware and hardware is not covered within this limited warranty and the Buyer bears sole responsibility and liability for that firmware and hardware.

SPECIFICATIONS

I. Physical

```
VDT Dimension:
    Height: }\quad38.10\textrm{cm}(15.0 in.
    Width : }\quad32.55\textrm{cm}(12.8 in.
    Depth : }\quad32.55\textrm{cm}(12.8 in.
VDT Net Weight: }30\mathrm{ lbs.
Case Foot Print: 12.5 in. by ll.5 in. max.
Case Features:
    Tilt: -5 to +l5 degrees
    Swivel: 270 degrees left and right
    Cooling: Convection system
    Connectors: One RS423 communication port (25-pin)
    One 8-pin 20 mA communication port
    One RS423 printer port (25-pin)
    One RJl2 keyboard port
    One BNC (composite video out)
    One AC receptacle-type quick disconnect
    Matsushita 340CXB(QA)N
    or Samsung l4BBY(LA)N type B
    Diagonal
    Measure: }\quad35.56 cm (14 in.)
    Fluorescence: Orange
    Phosphor: Orange
    Bulb: EIAJ No. J340Dl Samsung
    EIAJ No. BCQA Matsushita
    Implosion protection type
    Face-plate: Filterglass
    Screen: Aluminized
    Persistence: Medium short
        300ns decay time
```

II. Electrical

AC Supply

Frequency: \quad 50/60 Hertz +/- 3. Hz
Source Current:
l15V Line: $\quad 420 \mathrm{~mA}$ (typical)
230V Line: $\quad 210 \mathrm{~mA}$
Phase: Single phase, 3-wire
Wattage: $\quad 40$ DC max.
Power Cord: Gray, detachable, straight connect, 3-conductor, ground Kawasaki KS-16A 7A 125 V

DC Supply:

$5 \mathrm{~V}:$	$+/-.1$ volt at 3.0 Amp (1.3A typical)
$12 \mathrm{~V}:$	$+/-.2$ volt at 2.0 Amp (1.2A typical)
$-12 \mathrm{~V}:$	$+/-.5$ volt at $200 \mathrm{~mA}(15 \mathrm{~mA}$ typical)

Ripple and
Spike Noise: $\quad 100 \mathrm{mV}$ peak to peak all DC outputs
III. Display

Horizontal

Scanning Frequency: 16.2 Khz
Horizontal Drive: TTL pos. Width: 8 to 10 micro sec.

Horizontal Blanking: $\quad 15.08 \mathrm{us}, 13.764 \mathrm{us}$ (132)
Vertical Scanning Frequency:

50/60 Hertz
Vertical Drive:
TTL neg. Width: 185 micro sec.

Vertical Blanking:
1.29 ms

21 scan lines
Columns per line:
80/132

```
Cell Size (Character
Block): Dot Matrix
    Wiath: 10 (80), 9 (132)
    Height: . }1
Video Amplifier Input: TTL, white pos.
Video Amplifier
Overshoot: 10% max.
Video Amplifier
Output at 28V Swing:
    Rise and Fall Time
    Measured at 10 and
    90 Percent Points: 30 nanosec. max.
Video Amplifier
Output Capability: 28V pp min.
Video Amplifier Gain: 8
High Voltage
(at Dark Screen): 13.5 KV +/- 500V
High Voltage
Regulation (from Dark
Screen to Full Bright): 500V
Picture Brightness
at Maximum Contrast
at Video HIGH LIGHT: }30\mathrm{ Foot Lamberts +/- 3
(No Retrace to be at ll5V Line Voltage
Visible at Normal
Video)
Retrace Time:
    Vertical
    Retrace Time: }1300\mathrm{ micro sec. max.
    Horizontal
    Retrace Time: }15\mathrm{ micro sec. max.
    Geometric Distortion
    (Deviation from
    Straight Line. Pin
    Cushion or Barrel
    Distortion): +/- 1.5 mm max. Negative for
                                    pin cushion; positive for barrel
```

Trapezoidal Distortion: 2 mm max.
ParallelogramDistortion (Skewing): 2 mm max.Linearity:
Vertical: $+/-3 \% \max$.
Horizontal: $+/-3 \% \max$.
Picture Size (Active
Display):

Format:
Width:
Height:
Picture Size Adjustment Range:

Spot Size at Maximum Brightness:

Spot Growth Center to Corners:

Contrast Ratio:
Levels of Gray:

Flyback Transformer Ringing Ratio:

Brightness Variation of Picture Area at 18 Foot Lamberts Reference:
IV. Keyboard

Style:
Height:
Home Row DIN std.:
Width:
Depth:
Net Weight:
+/- 10% max.
25 lines of 80 characters
$235 \mathrm{~mm}+/-2 \mathrm{~mm}$ (80 char/line)
$180 \mathrm{~mm}+/-3 \mathrm{~mm}$
+/- 5\% of size min.
.25 mm
$+30 \% \max$.
1:10 min.
Dark, Half Bright, Full Bright, Highlight

1:10 min.
+

Low Profile
4.699 cm (1.85 in.)

30 mm untilled
$53.3 \mathrm{~cm}(21 \mathrm{in}$.
18.5 cm (7.3 in.)

2 Kg . (4.5 lbs.)
Keyswitch Pressure: 60 g.
Microcontroller: 8049
Layout: Included in this section, followingspecifications
Tilt: Normal 8 or tilted 14 degreesfrom horizontal level
10 million keystrokes min.
V. Environmental
Operating:
Temperature: 0 to 45 degrees C(32 to 113 degrees F)
Humidity: 10 to 85\% non-condensing
Altitude: $3,000 \mathrm{~m} . /(10,000 \mathrm{ft}$.
Non-operating:
Temperature: -40 to 60 degrees C
Humidity: 10 to 85\%
Altitude: $5,000 \mathrm{~m} . /(10,000 \mathrm{ft}$.
MTBF:10,000 hours min.
MTTR:30 minutes
Vibration:
$0.3 G \quad 5$ to 100 Hz operational
VI. CRT Controller Format
80 132

1. Dot Frequency 17.2414 MHz 24.8618 MHz
2. Character Cell
2.1 Number of Dots per Character 10 9
2.2 Number of Scan Lines per Character 10 10
80 132
3. Character Frequency
(Dot Freq/Step 2.1) 1.72414 MHz 2.762422 MHz
4. Screen Format
4.1 Number of Characters per Row 80 132
4.2 Number of Rows per Screen 25 25
5. Character Time
(1/Step 3) 580 nSec 362 nSec
6. Horizontal Blank
Characters 2638
Horizontal Front Porch (char.) 7 7
Horizontal Sync Width (char.) 16 24
Horizontal Back Porch (char.) 3 7
7. Total Characters per Line (add 4.1 \& 6) 106 170
8. Horizontal Scan
Rate (Step 3/Step 7)16.265 KHz16.249 KHz
Horizontal Time(1/Step 8)61.480 uSec61.54 uSec
Horizontal Active Time 46.400 uSec 47.780 uSec
Horizontal Front
Porch Time 9.28 uSec 8.69 uSec
Horizontal Sync
Width Time9.28 uSec9.28 uSec
Horizontal Back
Porch Time 1.74 uSec 1.74 uSec
9. Vertical Active Scan Lines 250 250
10. Vertical Blank Scan Lines 21 132 21
Vertical Front Porch Scan Lines 4 4
Vertical Sync Porch
Scan Lines 3
Vertical Back Porch Scan Lines 14 14
11. Vertical Total
Scan Lines (add Step 9 \& l0) 271 271
12. Vertical Scan Rate (Step 8/Step 11) 60.02 Hz 59.96 Hz
Total Vertical Time16.6611 ms16.6772 ms
Vertical Active
Time (Step
3.1 x Step 9)15.370 mSec15.385 mSec
Vertical FrontPorch Time $\quad 0.2459 \mathrm{mSec} \quad 0.2462 \mathrm{mSec}$Vertical SyncWidth Time $\quad 0.184 \mathrm{mSec} \quad 0.1846 \mathrm{mSec}$Vertical BackPorch Time1.2911 mSec1.2923 mSec
CRTC Registers:
80 132
Scan Lines per
Character Row (RO) CA DA
EqualizingConstant (RI) 1424
Horizontal Sync
Pulse Width (R2) 39
Horizontal Back and Front Porch (R3) 05 05
Character Rows per
Screen (R4) 1818
Active Characters per Row (R5) $4 F$ 83
First and Last Scan
Lines of Cursor (R6) 09 09
Vertical Sync Pulse Width (R7) 29 29
Display Buffer First Address (R8) (R9) FC FC
VII. Control Board
Type
2-sided, includes powerand ground
10.95 in. (27.8 cm) 10.95 in. (27.8 cm)
Length:
Width: 8.25 in. (21.0 cm)
Thickness:1.54 mm (. 062 in.$)$
Signal Trace Size: 0.304 mm (. 012 in.)
Microprocessor: 65 CO 2
Advanced Video DisplayController (AVDC):2674BC4N4O (4 MHz)
Color/Monochrome
Attribute Controller(CMAC):2675BC5N4O (25 MHz)
Gate Array: Part number 130180-00Part Number 130170-00
Battery:
3V min, Lithium
Current Loop:
Built-in 20mA (P6)
Graphics BoardConnector:26-pin (Pll)
Current Load (std.): 1.3 Amp
Current Load withOptions:
2.5 Amp
Printer Port: RS423 (P4)
Main Port: RS423 (P3)

Baud Rate:	$50 / 19.2 \mathrm{~K} \mathrm{bit/sec}$
Parity:	None, Odd, Even, Mark, Space, Check, No Check
Data Bits:	7 or 8 bits
Handshaking:	No, X-on/X-off, DTR, Both
System ROM:	32 K bytes
System RAM:	$2 K$ to 8 K bytes
Display RAM:	$4 K$ to 8 K bytes

Service Bulletin

TESTING THE 6502 ADDRESS LINE

With a 6502 address line tester, you can test all address lines on any logic board that uses a 6502 chip.

When the 6502 receives instruction hex EA (a NOP), it does nothing except increment the program counter and read the next instruction. If the next instruction is also a NOP, the microprocessor is forced to count through all 65,536 possible addresses on its l6-bit address bus.

If you then monitor the address bus lines with an oscilloscope, each address line will display a square wave, with a period twice that of the next lower address line. This gives you a predictable set of signals to trace.

TOOLS REQOIRED

1. Wire cutters
2. Soldering iron
3. Solder

PARTS REQUIRED

1. 40-pin wire wrap socket (not available from TeleVideo)
2. 6502 microprocessor (Part No. 2049600)
3. Jumper wire

PROCEDURE

Construction of test assembly:

1. Cut pins 26 through 33 on the bottom of the wire wrap socket by about $1 / 4$ inch. This will prevent them from making contact with the pins in the socket of the pob (see Figure 24-1).
2. Wire pins 29, 31, and 33 to pin 1 (ground), and pins 26, 27, 28,30 , and 32 to pin $8(+5 \mathrm{~V})$ to force the hex EA instruction on the data bus (see Figure 24-1).
3. Plug the 6502 into the wire wrap socket. Make sure that its notch faces in the same direction as the notch on the wire wrap socket (see Figure 24-1).

TeleVideo

Operation of test assembly:

1. Remove the 6502 CPU from the board to be tested and set it aside.
2. Install the test assembly (with a known good 6502) in the wire wrap socket. Make sure that the notch faces in the same direction as that on the other chips.
3. Apply power to the logic board.
4. Inspect the address lines for the wave forms listed in Table $24-1$.
5. If you do not detect any pulses on the address lines, check for the following signals:
```
Pin }2\mathrm{ Ready (should be high)
    8 +5V
```

 37 Phase 0 clock
 38 Set overflow (should be high)
 40 Reset (should be high)
 If any of these inputs are held in an incorrect state, the microprocessor will not work. Before continuing, correct any problems with these lines.

Figure 24-1 shows a top and a bottom view of the wire wrap socket.

Wire Wrap Socket
Top View

NOTCH	$\overline{R E S}$
RDY	02
01	SO
$\overline{\text { IRQ }}$	00
NC	N.C.
NTII	N.C.
SYNC	R/W
Vec	DBO
ABO	D81
AB1	DB2
AB2	DB3
AB3	D84
AB4	D85
AB5	DB6
AB6	DB7
AB7	AB15
AB8	AB14
A89	AB13
AB10	AB12
AB11	Yes

Wire Wrap Socket
Bottom View

Figure 24-1 Wire Wrap Socket

Table ${ }^{2} \pm-1$

Expected Wave Forms

Pin No	Name	Wave form
1	Vss	Ground
2	RDY	+5V
3	Ol (out)	.6u second period square wave
4	IRQ	+5v noisy
5	N.C.	Ground
6	NMI	+5V noisy
7	SYNC	1.2u second period square wave
8	Vcc	+5V
9	ABO	2.4u second period square wave
10	ABl	4.8u second period square wave
11	AB2	9.6 u second period square wave
12	AB3	19.2u second period square wave
13	AB4	38.4 u second period square wave
14	AB5	76.8 u second period square wave
15	AB6	150u second period square wave
16	AB7	.3m second period square wave
17	AB8	.6m second period square wave
18	AB9	1.2m second period square wave
19	AB10	2.4m second period square wave
20	ABll	4.8m second period square wave
21	Vss	Ground
22	AB12	9.6m second period square wave
23	AB13	19.2 second period square wave
24	AB14	38.4m second period square wave
25	AB15	76.8 m second period square wave
26	DB7	Tied high
27	DB6	Tied high
28	DB5	Tied high
29	DB4	Tied low
30	DB3	Tied low
31	DB2	Tied low
32	DB1	Tied high
33	DB0	Tied low
34	R/W	4 V to 4.5V noisy
35	N.C.	Ground noisy
36	N.C.	Ground noisy
37	00 (in)	.6u second period square wave with ringing
38	S.O.	+5V noisy
39	02 (out)	.6u second period square wave
40	RES	+5 V noisy

Service Bulletin

WAS THAT CBIP DEFECTIVE, OR JUST A VICTIM OF ESD?

Is your normally reliable terminal suddenly suffering from mysterious glitches and component failures? If so, electrostatic discharge (ESD) could be the culprit.

ESD is by far the most common cause of component failure. The released static charge can damage or destroy circuitry both before and after you install a component. And while some electronic components are less susceptible to ESD than others, most can be affected. ESD can even
 damage input-protected devices such as EPROMS.

ESD does not always cause instant failure. Because it often causes miniscule degradations of a circuit, a component may function for some time before it mysteriously fails or causes glitches.

Even small amounts of voltage can affect components. A l00-volt charge is enough to damage EPROMs, but you probably would not realize ESD was causing any damage. Most people can not hear or feel ESD unless it's above 3,000 volts. You can generate and hold a charge ten times that amount just by walking across a synthetic carpet.

Avoid ESD damage by setting up your workstation to minimize static build-up. We recommend the following precautions:

1. Wear a wrist grounding strap, grounded through a l-megohm resistor, when handling components. Be sure it's attached to a metal conduit, pipe, or building frame.
2. Hold boards by their edges to avoid touching pins, traces, connectors, etc. Never slide or throw boards or components.
3. Wear antistatic smocks and cotton gloves. Keep clothing (especially synthetic clothing) away from static-sensitive devices.
4. Use equipment that helps prevent static charge build-up-conductive table mats, for example. Use only staticprotective bags and containers.
5. Avoid using parts you know have been mishandled or improperly stored.

SB032 032784

TeleVideo

1170 Morse Avenue P.O. Box 3568
Sunnyvale, CA 94088-3568

Service Bulletin

REMOVING AND REPLACING THE 955 CASE-STYLE LOGIC BOARD

This procedure explains how you can remove and replace the 955 case-style logic board.

TOOLS REQUIRED

1. Phillips screwdriver

PROCEDURE

WARNINGI When you open the terminal case you expose components that are potential shock hazards (even after the terminal has been disconnected from the wall outlet). DO NOT ATTEMPT TO REMOVE THE LOGIC BOARD UNLESS YOU ARE A QUALIFIED TECHNICIAN.

CAUTION: To protect against electrostatic discharge (ESD) damage, wear a wrist grounding strap and handle the logic board and components in a static-free environment. IF YOU DAMAGE THE LOGIC BOARD OR COMPONENTS, FACTORY REPAIR OR REPLACEMENT COULD BE EXPENSIVE. For more information about avoiding ESD damage, see Service Bulletin 32.

Removing the Logic Board Tray

1. Turn off the terminal.
2. Disconnect the power cord and data cable(s) from the rear of the terminal. Disconnect the keyboard cable from the front of the terminal.
3. Turn the terminal so the screen faces away from you. Remove the two Phillips screws that hold the logic board tray in place. The screws are located at the rear of the terminal. The logic board tray slides into the base.
4. Carefully pull the logic board tray toward you to remove it. You must disconnect the red (P5) and white (P2) logic board connectors to slide the tray completely out of the terminal.

Replacing the Logic Board Tray

1. Fit the metal flanges on the logic board tray into the guides at the rear of the terminal. Hold the connector cables up so they do not interfere with replacing the tray.
2. Reconnect the red connector (P5) and the white connector (P2) on the logic board.

TeleVideo

1170 Morse Avenue P.O. Box 3568
Sunnyvale, CA 94088-3568
3. Align the keyboard connector with the opening in the front of the terminal.
4. Replace the two Phillips screws in the rear of the terminal.
5. Reconnect the power cord, data cable(s) and the keyboard cable.

ServiceBulletin

REMOVING THE MONITOR REAR HOUSING AND BEZEL ON THE 955 CASE-STYLE TERMINAL

This bulletin tells you how to remove the monitor rear housing and bezel on the 955 case-style terminal.

TOOLS REQUIRED

1. Phillips screwdriver

WARNING! When you open the terminal case you expose components that are potential shock hazards (even when the terminal is unplugged from the wall outlet). DO NOT ATTEMPT TO OPEN THE TERMINAL'S CASE UNLESS YOU ARE A QUALIFIED TECHNICIAN.

Opening the Case

See Figure 61-1 as reference for opening the case.

1. Turn off the terminal.
2. Disconnect the power cord and data cable(s) from the back of the terminal. Disconnect the keyboard cable from the front of the terminal.
3. Turn the terminal so the screen faces away from you.
4. Remove the three screws that secure the monitor rear housing to the case, (remove the screw under the power cord first, then remove the two screws near the top of the housing).

NOTE! Remove the screws completely. If necessary, tip the unit backwards slightly.
5. To release the clamp holding the bezel and monitor rear housing together (See Figure 6l-l):
a. Grasp the housing with your left hand.
b. Sharply tap the right side of the housing with the heel of your right hand.
6. Lift off the monitor rear housing.
7. Carefully turn the screen away from you while holding the bezel in place. Remove the two Phillips screws (located inside the case, one on each side of the power supply) securing the bezel to the case.

Closing the Case

1. Replace the bezel:
a. Place the bezel face down in front of the terminal. Raise the bezel slightly and hook its two bottom tabs into the openings (one under the contrast adjustor; one under the ON/OFF switch) in the lower case.
b. Swing the bezel up to frame the screen, matching the ON/OFF switch and contrast adjustor with the openings in the bezel.
c. Carefully turn the screen away from you while holding the bezel in place. Insert and tighten the two Phillips screws (located inside the case, one on each side of the power supply) securing the bezel to the case.
2. a. Position the monitor rear housing on the case, as shown in Figure 61-1.
b. Align the screw hole under the power cord with the lower screw hole in the housing.
c. Fit the four tabs in the housing over the edge of the lower case.
d. Fit the tab in the top of the bezel into the slot in the top of the monitor rear housing. Squeeze the bezel and housing together.
e. Insert and tighten the Phillips screw under the power cord and the two Phillips screws near the top of the housing.

Figure 61-1
Opening the Case

ServiceBulletin

CORRECTING KEYBOARD RESET IN 905, 955 and 922 TERMINALS

In some 905, 955 and/or 922 terminals the keyboard microcomputer fails to reset properly when CTRL RESET is pressed. To correct this problem, short out $R 1$ resistor on the keyboard printed circuit board, as described in this bulletin.

TOOLS REQUIRED

1. 25-watt soldering iron, solder and solder vacuum
2. Small pair of needle-nose pliers
3. Wire cutters (diagonals)
4. Flux remover

PARTS REQUIRED

1. Jumper wire (min. size, 36 gauge; max. size, 26 gauge)

PROCEDORE

WARNING! DO NOT OPEN THE CASE UNLESS YOU ARE A QUALIPIED TECHNICIAN. OPENING THE CASE EXPOSES YOU TO POTENTIAL SHOCK HAZARDS, EVEN AFTER POWER HAS BEEN TORNED OFF AND THE POWER CORD DISCONNECTED.

BE CAREFUL WHEN YOU REMOVE AND MODIFY THE KEYBOARD CIRCUITRY. ANY DAMAGE INCURRED WHILE PERFORMING THIS MODIFICATION MAY RESULT IN EXPENSIVE FACTORY REPAIR.

NEVER DISCONNECT OR ATTACH THE KEYBOARD CABLE WHILE THE POWER IS ON: THE VOLTAGE TRANSIENTS CREATED MAY CAUSE A COMPONENT FAILURE.

1. Turn off the terminal and disconnect the keyboard cable.
2. Turn the keyboard upside down and remove the six recessed Phillips screws.
3. Turn the keyboard rightside up and remove the ton cover.
4. Ioocate resistor R 1 on the keyboard printed circuit board (5 and 1/2 inches from the upper left corner).
5. Short out R1 by laying the jumper wire across the body of the resistor; connect one end of the wire to each lead on the resistor. Be sure the wire does not touch the circuit board.
6. Solder the wire in place, making sure that the solder buildup does not touch the printed circuit board and short out. Remove the solder flux.
7. Replace the top cover. Turn the keyboard upside down; replace and tighten the six recessed phillins screws that secure the top and bottom covers.
010786 SB65

[^0]: *Signals referred to as "SIGNAL BAR" appear on the schematic as SIGNAL.

