TEKTEONX

Tektronix, Inc.
P.O. Box 500

The TEKTRONIX 4010A01 PLOT 10 Terminal Control System is the sole property of TEKTRONIX, Inc. The System, or any part thereof, may not be reproduced or used outside the Buyer's organization in any manner without the express written consent of TEKTRONIX, Inc.

Copyright © 1977, TEKTRONIX, Inc., Beaverton, Oregon. Printed in the United States of America. All rights reserved. Contents of this publication may not be reproduced in any form without permission of the copyright owner.
U.S.A. and foreign TEKTRONIX products covered by U.S. and foreign patents and/or patents pending.

TERMINAL CONTROL SYSTEM REFERENCE MATERIAL

The 4010A01 PLOT 10 Terminal Control System (TCS) Manual supports the following PLOT 10 packages. Please place all orders through your Tektronix Sales Engineer.

4010A01 PLOT 10 Terminal Control System

4010A10 PLOT 10 Terminal Control System for IBM with TSO

4010A11 PLOT 10 Terminal Control System for CDC SCOPE/Intercom with Opt. 20

4010A12 PLOT 10 Terminal Control System for DEC PDP-11 with DOS

PREFACE

This manual is organized as a continuation of the 4010A01 PLOT 10 Terminal Control System User Manual. Routines described in the User Manual are not discussed in detail here. This format is based on the assumption that anyone using the System Manual has access to a User Manual.

This manual supports Release 3.0 or later of TCS. If you have been using Release 2.0 of TCS, see the Appendix of this manual for information on updating your programs to run with Release 3.0 or later, including Level 1.
Section Page
Terminal Control System Reference Material i
Preface i

1. Introduction 1-1
2. Terminal Control System Structure
2.1 Flow Chart of Subroutine Groups 2-1
2.2 Subroutine Group Descriptions 2-2
2.2.1 Graphics Routines 2-2
2.2.2 Alphanumerics Routines 2-5
2.2.3 Utility Routines 2-6
2.2.4 System I/O Routines 2-8
3. System Subroutine Descriptions
3.1 ALFMOD 3-1
3.2 BUFFPK 3-2
3.3 CLIPT 3-2
3.4 CWSEND 3-5
3.5 DSHMOD 3-5
3.6 GENFLG 3-5
3.7 IOWAIT 3-5
3.8 IPMOD 3-6
3.9 LVLCHT 3-6
3.10 PARCLT 3-6
3.11 PCLIPT 3-7
3.12 PLTCHR 3-7
313 PNTMOD 3-7
3.14 PSCAL 3-8
3.15 REL2AB 3-8
3.16 RESCAL 3-8
3.17 REVCOT 3-9
3.18 TKDASH 3-9
3.19 TKPNT 3-11
3.20 TSEND 3-11
3.21 V2ST 3-11
3.22 VECMOD 3-12
3.23 WINCOT 3-12
3.24 XYCNVT 3-12

TABLE OF CONTENTS (cont)

Section Page
4. Modifying the System
4.1 Changing I/O and Translate Parameters 4-1
4.2 Adding User-Written Transformations 4-2
4.3 Reducing Package Size 4-7
4.3.1 Removing Unused Routines 4-7
4.3.2 A-Level Pruning 4-8
4.3.3 B-Level Pruñing 4-9
5. Status Variables
5.1 Description of Variables 5-1
5.2 Status Variable Setting and Reference Charts 5-4
5.2.1 Variables 5-4
5.2.2 Routines Which Set and Reference Variables 5-10
6. Subroutine Calling and Reference Charts
6.1 TCS Routines 6-1
6.2 Standard FORTRAN Routines Called by TCS 6-8
APPENDIX A
System-Dependent Features A-1
Terminal Control System I/O Structure A-1
User Written I/O Subroutines A- 2
User Written Translation Subroutines A-3
Interline Characters A-5
Compatibility With Other Tektronix Software A-7
4006 Terminal A-7
Changes Necessary in Orograms Using Release 2.0 A-7
TCS Flow Chart A-9
INDEX
USASCII Code Functions Charts INDEX 1

SECTION 1

INTRODUCTION

This manual describes all the 4010A01, 4010A10, 4010A11, and 4010A12 PLOT 10 Terminal Control System routines not covered in the User Manual. These are the internal subroutines, which in most cases need not be called by the user. Flow diagrams are provided for the package as a whole and individually for the more complicated routines.

This manual also describes the Terminal Status Area, a common block of variables named /TKTRNX/, which represents the current state of the Terminal.

For user who wish to modify the system, this manual provides discussions of parameter modifications, user-written transformation routines and deletion of unwanted features.

SECTION 2 TERMINAL CONTROL SYSTEM STRUCTURE

2.1. Flowchart of Subroutine Groups

The Terminal Control System contains 115 routines which can be divided into 4 functional groups:

1. Graphics Routines
A. Screen Routines
B. Virtual Routines
C. General Routines
2. Alphanumerics Routines
3. Utility Routines

4. System Input/Output Routines

The following flowchart shows the functional relationships of the 4 groups. The relationships of all individual routines are shown in the TCS Flow Chart, Section A4 of this manual.

Subroutine Group Structure Flow Chart.

2.2 Subroutine Group Descriptions

This section provides a brief description of each of the routines in the 4 functional groups, including those described in detail in the TCS User Manual.

2.2.1 Graphics Routines

The graphics routines can be subdivided into 3 groups:
A. Screen Routines
B. Virtual Routines
C. General Routines

A. SCREEN ROUTINES

These routines allow the user to perform screen-level graphics. Each routine places the Terminal in the proper mode and sends the character(s) necessary to perform the desired operation with a minimum of overhead.

THE FOLLOWING ROUTINES ARE DESCRIBED IN THE TCS USER'S MANUAL:

Graphic Output Routines

DRWABS performs a screen level draw to absolute coordinates.
DRWREL performs a draw to coordinates relative to the current beam position.
DSHABS draws a dashed line to absolute coordinates.
DSHREL draws a dashed line to coordinates relative to the current beam position.
*INCPLT plots points incrementally in the desired direction.
MOVABS performs a screen level move to absolute coordinates.
MOVREL performs a move to coordinates relative to the current beam position.
PNTABS draws a point at absolute coordinates.
PNTREL draws a point at coordinates relative to the current beam position.

Graphic Input Routines

** DCURSR activates the crosshair for screen graphic input and accepts graphic input characters.
** SCURSR performs the same function as DCURSR.

Measurement Conversion Routines

KCM function which converts centimeters to raster units.
KIN function which converts inches to raster units.

[^0]
THE FOLLOWING ROUTINE IS DESCRIBED IN THE SYSTEM MANUAL:

*IPMOD places the Terminal in incremental plot mode.

B. VIRTUAL ROUTINES

The following routines allow the user to specify moves and draws in any given coordinate system. The Terminal Control System converts these moves and draws into screen coordinates. The virtual routines also include those routines which establish the data to screen relationship and those which access the previously established relationship. THESE ROUTINES ARE DESCRIBED IN THE USER MANUAL:

Graphic Output Routines

DASHA draws a dashed line in absolute, virtual coordinates.
DASHR draws a dashed line in virtual coordinates, relative to the current beam position.
DASHSA draws a segmented dashed line to absolute coordinates defined by a polar transformation.
DASHSR draws a segmented dashed line to relative coordinates defined by a polar transformation.
DRAWA draws to absolute, virtual coordinates.
DRAWR draws to relative, virtual coordinates.
DRAWSA draws a segmented line to absolute coordinates defined by a polar transformation.
DRAWSR draws a segmented line to relative coordinates defined by a polar transformation.
MOVEA moves to absolute, virtual coordinates.
MOVER moves to relative, virtual coordinates.
POINTA draws a point at absolute, virtual coordinates.
POINTR draws a point at relative, virtual coordinates.

Relationship Establishing Routines

DWINDO sets the corners of the virtual window. Performs the same function as VWINDO.
LINTRN sets the transformation to linear.
LOGTRN sets the transformation to log or semi-log.
POLTRN sets the transformation to polar.
RROTAT sets the rotation factor for relative virtual graphics.
RSCALE sets the scaling factor for relative virtual graphics.
SWINDO sets the corners of the screen window. Performs the same function as TWINDO.
TWINDO sets the corners of the screen window. Performs the same function as SWINDO.
VWINDO sets the corners of the virtual window. Performs the same function as DWINDO.

[^1]
Graphic Input Routines

* VCURSR activates the crosshair cursor for virtual graphic input and accepts graphic input characters.

THESE ROUTINES ARE DESCRIBED IN THE TCS SYSTEM MANUAL:

Scaling Routines

RESCAL calculates all transformation parameters.
PSCAL called by RESCAL to calculate the polar transformation parameters.

Conversion and Clipping Routines

CLIPT checks for the need to clip vectors in virtual space; clips the vectors or calls PARCLT.
LVLCHT
PARCLT
PCLIPT determines whether coordinates are inside or outside the virtual window.
REL2AB converts relative coordinates to absolute coordinates.
REVCOT transforms screen coordinates into virtual coordinates.
V2ST converts virtual coordinates to screen coordinates and moves to the clipped starting coordinate if necessary.
WINCOT transforms virtual coordinates into screen coordinates.

C. GENERAL ROUTINES

The following routines are used by the screen and virtual routines to set Status Variables, place the Terminal in a particular mode and/or output appropriate graphics.

THESE ROUTINES ARE DESCRIBED IN THE TCS SYSTEM MANUAL:
DSHMOD sets the Terminal for outputting a dashed line.
PLTCHR computes the ADE characters needed to address a screen location.
**PNTMOD places the Terminal in point plot mode.
TKDASH constructs and outputs dashed lines.
TKPNT outputs a point.
VECMOD places the Terminal in vector mode.
XYCNVT produces an optimized set of plot characters.
*Does not apply to the 4006 Terminal. See Appendix for more information.
** Applies only to the 4014 or 4015 Terminal with Enhanced Graphics Module.

2.2.2. Alphanumerics Routines

These routines control and execute alphanumeric input and output in one of three formats:

A1 FORTRAN format;

Am FORTRAN format, where m is the number of characters per word available on a particular system, as defined at implementation;

ADE (ASCII Decimal Equivalent) format, where each ASCII character is represented by an integer from 0 to 127 (see the USASCII Code Functions Charts at the end of this manual).

THE FOLLOWING ROUTINES ARE DESCRIBED IN THE TCS USER MANUAL:

Input/Output Routines

A1IN allows the user to input an array in A1 FORTRAN format.
AINST accepts an array in Am FORTRAN format.
A1OUT outputs an array of characters in A1 FORTRAN format.
ANCHO outputs a non-control ADE (ASCII Decimal Equivalent) character.
ANSTR outputs an array of non-control ADE characters.
AOUTST outputs an array of characters in Am FORTRAN format.

Terminal Controlling Routines

ANMODE places the Terminal in alphanumeric mode and dumps the output buffer.
BAKSP causes the A / N cursor to move back one space.
CARTN moves the A / N cursor to the left margin.
*CHRSIZ changes the current character size.
HOME returns the cursor to the Home position $(0,767)$.
LINEF moves the A / N cursor down one line (line feed).
NEWLIN calls CARTN and LINEF.
RSTTAB selectively removes tabs.
SETMRG sets the Terminal screen margins.
SETTAB sets tabs in user-defined tab tables.
TABHOR moves to the next value in the horizontal tab table.
TABVER moves to the next value in the vertical tab table.
TTBLSZ notifies Terminal Status Area of the user-defined dimensions of a tab table.

Information Returning Routines

*CSIZE provides the current character height and width in raster units.
LEFTIO function which returns the remaining space in the output buffer or the number of characters remaining in the input buffer.
*Applies only to the 4014 or 4015 Terminal.

LINWDT function which returns in raster units the width of a given number of adjacent characters. LINHGT function which returns in raster units the height of a given number of lines.

THE FOLLOWING ROUTINES ARE DESCRIBED IN THE TCS SYSTEM MANUAL:

FORTRAN-ADE Translation Routines**

KA12AS converts A1 characters to ADE characters.
KAM2AS converts Am characters to ADE characters.
KAS2A1 converts ADE characters to A1 characters.
KAS2AM converts ADE characters to Am characters.

Terminal Controlling Routines

ALFMOD places the Terminal in alphanumeric mode.

2.2.3. Utility Routines

These routines allow the user to have direct control of features of the Terminal and the Terminal Control System not related to graphics or alphanumerics.

THE FOLLOWING ROUTINES ARE DESCRIBED IN THE TCS USER MANUAL:

Terminal Controlling Routines

BELL causes the Terminal bell to ring.
*CZAXIS changes the Z-Axis mode.
ERASE erases the Terminal screen without changing the beam position.
FINITT terminates the program in which it appears.
HDCOPY causes a hardcopy to be generated.
INITT initializes the Terminal Control System.
NEWPAG erases the screen and returns the cursor to the Home position.
RECOVR updates the Terminal hardware to match the Status Variables.
RESET initializes the Terminal Control System without a page erase.
RESTAT restores the Status Variable values which were saved by SVSTAT.
**See page 2-5 for an explanation of terms.
*Applies only to the 4014 or 4015 Terminal.

$$
\begin{array}{ll}
\text { SETBUF } & \text { specifies an output buffer type. } \\
\text { SVSTAT } & \text { saves the current Status Variable values. } \\
\text { *TERM } & \text { specifies the Terminal type and addressing (1024 or 4096 addressable points) in use. }
\end{array}
$$

Information Returning Routines

SEEBUF returns the current format of the output buffer.
SEEDW returns the current values of the virtual window limits.
SEELOC returns the last position of the graphic beam.
*SEEMOD returns the current hardware dash type, Z-Axis mode and Terminal mode.
SEEMRG returns the values of the current screen margins.
SEEREL returns the scaling and rotation variable values.
SEETRM returns the type of Terminal and addressing which has been specified.
SEETRN returns the type of transformation in use.
SEETW returns the current values of the screen window limits.

Input/Output Routines
TINPUT accepts an input of one ADE character.
TINSTR accepts an array of ADE characters.
TOUTPT outputs a single ADE character.
TOUTST outputs an array of ADE characters.

THE FOLLOWING ROUTINES ARE DESCRIBED IN THE TCS SYSTEM MANUAL:

Terminal Controlling Routines

IOWAIT causes the system to wait while the Terminal is busy.
*CWSEND sets the hardware dash type and Z-Axis mode.

Information Returning Routines

GENFLG checks the general condition flag, KGNFLG.
TCSLEV returns the software release number and the date of the last modification.
*Applies only to the 4014 or 4015 Terminal.

2.2.4. System I/O Routines

These routines provide the I/O interface between the Terminal Control System and the user's computer system.

THE FOLLOWING ROUTINES ARE DESCRIBED IN THE TCS SYSTEM MANUAL:

Output Buffering Routines

BUFFPK packs the TCS output buffer.
TSEND dumps the output buffer.

User-Written I/O Routines*

**ADEIN accepts input, usually from the Terminal, in system-dependent format and converts it to an array in ADE format.
**ADEOUT converts characters from ADE to system-dependent format and outputs them, usually to the Terminal.

[^2]
SECTION 3 SYSTEM SUBROUTINE DESCRIPTIONS

The subroutines described in this section are NOT described in the TCS User Manual. They are system routines which in most cases need not be called by the user. Flow charts are included for the more complex routines. The following routines are described in alphabetical order:

ALFMOD	PNTMOD
BUFFPK	PSCAL
CLIPT	REL2AB
CWSEND	RESCAL
DSHMOD	REVCOT
GENFLG	TKDASH
IOWAIT	TKPNT
IPMOD	TSEND
LVLCHT	V2ST
PARCLT	VECMOD
PCLIPT	WINCOT
PLTCHR	XYCNVT

See the Appendix for descriptions of the six user-written, system-dependent subroutines:*

ADEIN

ADEOUT
KA12AS
KAM2AS
KAS2A1
KAS2AM

3.1. ALFMOD - Enter Alphanumeric Mode

ALFMOD outputs an ASCII US character which places the Terminal in alphanumeric mode. Subsequent data sent to the Terminal will be interpreted as alphanumeric characters rather than as graphic vectors. This routine always sends a US, since the Terminal mode is not checked. ALFMOD is different from ANMODE in that it does not dump the output buffer.

Calling Sequence:
CALL ALFMOD

[^3]
3.2. BUFFPK - Pack the Buffer

BUFFPK loads the ADE characters it receives into an output buffer. When the buffer is filled or when a buffer dump is requested, BUFFPK calls ADEOUT to perform the output. For buffer types 1, 2, or 3 , if NCHAR is larger than MAXLEN, the size of the buffer (see page A2), the extra characters are truncated and lost. Buffer type 4 assumes ADEOUT can handle any size buffer array. If the buffer is type 1 or 2, extra characters are added to counteract the effects of CR, LF, etc. between outputs. (For more information, see SETBUF in the User Manual and page A2 of this System Manual.)

Calling Sequence:
CALL BUFFPK (NCHAR,IARRAY)
Parameters Entered:
NCHAR The number of characters to be added to the buffer. NCHAR $=0$ is a request to dump the buffer.

IARRAY The array containing the characters to be added to the buffer in ADE format.

3.3. CLIPT - Clip Virtual Vectors

CLIPT checks for the need to clip virtual vectors and clips those in need before they are converted to screen coordinates. Horizontal and vertical lines are handled separately. Calling this routine will affect the Status Variable KGNFLG in the Terminal Status Area as follows:

$$
\begin{aligned}
\text { KGNFLG } & =0 & & \text { if any part of the vector is inside the window } \\
& =1 & & \text { if the vector is entirely outside the window }
\end{aligned}
$$

Calling sequence:

CALL CLIPT(BUFIN,BUFOUT)

Parameter Entered:
BUFIN An array containing the end points of the line segment (vector) before clipping.

Parameter Returned:
BUFOUT An array containing the endpoints of the clipped line segment.

NOTE
The format of both the above arrays is:

1. beginning X
2. beginning Y
3. ending X
4. ending Y

BUFFPK

3.4. CWSEND - Send a Control Word

CWSEND* is called when the user changes the Status Variables KLINE and KZAXIS through CZAXIS or any of the dashed line routines. CWSEND outputs the ESC sequence necessary to compensate for interline characters and sets the hardware dash type and Z-Axis mode.

Calling Sequence:

CALL CWSEND

3.5. DSHMOD - Enter Dashed Line Mode

DSHMOD outputs a US to reset the Terminal, then a GS to place the Terminal in graphics mode if the Terminal is not already in dashed line mode. DSHMOD enters the dash type into the Status Variable KDASHT and cancels graphic output optimization.

Calling Sequence:
CALL DSHMOD (L)

Parameter Entered:

$\mathrm{L} \quad$ The dash type for the next dashed line (see the User Manual, Section 3.12).

3.6. GENFLG - Check the General Condition Flag

GENFLG allows the user to reference Status Variable KGNFLG in the Terminal Status Area. (See Section 5.1 for a list of KGNFLG values.) This variable is set in CLIPT, PCLIPT, SETTAB and RESCAL. The user may call GENFLG with no effect on the Terminal Status Area.

Calling Sequence:
K = GENFLG (ITEM)

Parameter Entered:

ITEM The value (0 or 1) for which the user is checking.
Parameter Returned:
K True if ITEM = KGNFLG; otherwise false.

3.7. IOWAIT - Wait During I/O

IOWAIT sends a series of SYN characters so that no data will be sent while the Terminal is busy. The number of SYN characters sent is determined by multiplying the desired wait time (ITIME) by the number of characters transmitted per second (as determined by INITT). The user may call IOWAIT with no effect on the Terminal Status Area.
*Applies only to the 4014 or 4015 Terminal with Enhanced Graphics Module.

Calling Sequence:

CALL IOWAIT (ITIME)

Parameter Entered:

ITIME The wait time in tenths of a second.

3.8. IPMOD - Enter Increment Mode

IPMOD* outputs as US to cancel any previous mode and sets the Terminal to alphanumeric mode. It then outputs an RS to put the Terminal in incremental plot mode.

Calling Sequence:
CALL IPMOD

3.9. LVLCHT - Check Graphic Level

LVLCHT checks the Status Variable KGRAFL to determine whether it is necessary to update the virtual coordinates to match the screen coordinates. An update is needed when KGRAFL has been set to \mathbf{O} by any screen level graphic routine. LVLCHT calls subroutine REVCOT to update the virtual coordinates.

Calling Sequence:
CALL LVLCHT

3.10. PARCLT - Clip Lines Parallel to Window Edge

PARCLT is used to clip a line which is parallel to the window edge. The routine checks to see if the end points of the clipped line are within the range of a pair of given limits (usually the window limits). It returns a pair of values inside the limit range. The user may call PARCLT with no effect on the Terminal Status Area.

Calling Sequence:

CALL PARCLT (RL1,RL2,RM1,RM2,RN1,RN2)

Parameters Entered:

RL1 The variable No. 1 to be checked.
RL2 The variable No. 2 to be checked.
RM1 The minimum limit of the desired range.
RM 2 The maximum limit of the desired range.

Parameters Returned:

RN1 The variable No. 1 with a value inside the desired range.
RN2 The variable No. 2 with a value inside the desired range.

[^4]
3.11. PCLIPT - Clip a Point Outside the Virtual Window

PCLIPT determines whether a given point is inside the virtual window. The routine sets Status Variable KGNFLG to $=0$ if the point is inside.

Calling Sequence:

CALL PCLIPT(X,Y)

Parameters Entered:

$\mathrm{X} \quad$ The virtual X coordinate being checked.
$\mathrm{Y} \quad$ The virtual Y coordinate being checked.

3.12. PLTCHR - Convert X,Y Plot Characters

PLTCHR returns an array containing the ADE (ASCII Decimal Equivalent) characters which are needed to address a given point on the Terminal screen. The order in which this array is returned is:
HiY, LSBYX*, LoY, HiX, LoX.

This routine sets variable KPADV in the Terminal Status Area. KPADV contains the number of timing SYN characters needed.
Calling Sequence:
CALL PLTCHR(IX,IY,ICHAR)

Parameters Entered:

IX The X-coordinate of the point.
IY The Y-coordinate of the point.

Parameter Returned:
ICHAR The array containing the plot characters.

3.13. PNTMOD - Enter Point Plot Mode

PNTMOD outputs a US to set the Terminal to alphanumeric mode, without checking for the previous Terminal mode. It then cancels the optimization of plot characters and sets Status Variable KKMODE to 2 . If the Terminal is a 4014 or 4015 with Enhanced Graphics Module, PNTMOD also outputs an FS to place the Terminal in hardware point plot mode.

Calling Sequence:

CALL PNTMOD

[^5]
3.14. PSCAL - Scale the Polar Transformation

PSCAL calculates the information needed for a polar transformation. The limits of a polar window of the shape requested are determined from the angle minimum (TRPAR1), angle maximum (TRPAR2), radius suppression (TRPAR5), and the virtual radius minimum and maximum (TMINVX and TMAXVX). The calculated limits are used to determine the angle scale factor (TRFACY), the X and Y screen offsets (TRPAR3 and TRPAR4), and the angle offset (TRPAR6).

Calling Sequence:

CALL PSCAL

3.15. REL2AB - Convert Relative to Absolute

REL2AB computes and returns an absolute virtual coordinate specified by the displacement requested, scale and rotation factors (supplied by RSCALE and RROTAT stored in the Terminal Status Area) and the present virtual location stored in the Terminal Status Area. The present virtual location is used as the origin for rotation and scaling. REL2AB calls LVLCHT to update the virtual coordinates before performing the calculation.

Calling Sequence:

CALL REL2AB (XIN, YIN,XOUT,YOUT)
Parameters Entered:
XIN \quad The virtual X displacement.
YIN The virtual Y displacement.

Parameters Returned:

XOUT The updated X absolute coordinate.
YOUT The updated Y absolute coordinate.

3.16. RESCAL - Set the Transformation Scale

RESCAL calculates the linear and logarithmic transformation parameters used by REVCOT and WINCOT. RESCAL uses the Status Variables set by VWINDO, SWINDO, DWINDO and TWINDO and the transformation routines POLTRN, LINTRN and LOGTRN. After the calculation, the transformation parameters are stored in the Terminal Status Area. RESCAL calls PSCAL to calculate polar transformation.

RESCAL sets KGNFLG $=1$ if the transformation requested is an invalid one, such as a logarithmic transformation on an axis with negative limits. Otherwise, KGNFLG $=0$.

Provision for a user-defined transformation is included (see Section 4.2).

Calling Sequence;
CALL RESCAL

3.17. REVCOT - Transform Window Coordinates

REVCOT transforms screen coordinates into virtual coordinates. The transformation parameters have different meanings depending on whether linear, logarithmic or polar transformation is in effect. The routine branches to a different section for each type of transformation. Provision for a user-defined transformation is included (see Section 4.2). Calling REVOCT has no effect on the Terminal Status Area.

Calling Sequence:

> CALL REVCOT(IX,IY,X,Y)

Parameters Entered:
$I X \quad$ The screen X coordinate.
IY The screen Y coordinate.
Parameters Returned:
$X \quad$ The virtual X coordinate.
$Y \quad$ The virtual Y coordinate.

3.18. TKDASH

TKDASH constructs and outputs dashed lines. The dash type is determined by the Status Variable KDASHT set by subroutine DSHMOD. If the dash type is a software type, TKDASH constructs a table which gives the length of each segment in raster units. This table is used to determine the destination of each light or dark segment drawn until the end point of the line is reached. If the starting point of this line is the same as the end point of the last line drawn and the dash type is the same, the pattern is continued and not restarted.

If the dash type is $1,2,3$ or 4 and the Terminal is a 4014 or 4015 with Enhanced Graphic Module, the dash type is set in the Terminal Status Area and CWSEND is called to output the control sequence needed to place the Terminal in the correct state. A vector to the destination is then output.

If another model Terminal is used, the hardware dash types are simulated by software dash types (see the User Manual, Section 3.12).

Calling Sequence:
CALL TKDASH(IX,IY)

Parameters Entered:

IX The X screen coordinate of the dashed line destination.
IY The Y screen coordinate of the dashed line destination.

TKDASH

3.19. TKPNT - Output a Point

TKPNT plots the point specified in hardware point plot mode, for a 4014 or 4015 Terminal with Enhanced Graphics Module. If the Terminal does not have the hardware capabilities, the routine causes a move to the point and the drawing of the point to simulate point plot mode. The user can set the Terminal type in subroutine TERM.

Calling Sequence:
CALL TKPNT(IX,IY)

Parameters Entered:

$I X \quad$ The X coordinate of the point.
IY The Y coordinate of the point.

3.20. TSEND - Dump the Buffer

TSEND calls BUFFPK with the length parameter $=0$, causing the output buffer to be dumped.
Calling Sequence:
CALL TSEND

3.21. V2ST - Transform Virtual to Screen Coordinates

V2ST converts coordinates from virtual space to screen space and creates a move to the clipped starting coordinates if it is appropriate. This routine returns the screen coordinates for subroutines MOVEA, DRAWA, POINTA or DASHA. V2ST updates both the graphic and imaginary beams. The imaginary beam accounts for a point addressed in virtual space which cannot be represented on the terminal screen. V2ST references the Status Variable KGNFLG; if KGNFLG $=1$, the entire line is outside the window, and neither V2ST nor the four virtual absolute routines take any action.

Calling Sequence:
CALL V2ST(I,X,Y,IX,IY)

Parameters Entered:

$1 \quad$ An integer flag which equals 0 if the routine is called for a move or a point plot and does not equal 0 if the routine is called for a draw or a dashed line.
$X \quad$ The virtual space X coordinate.
$\mathrm{Y} \quad$ The virtual space Y coordinate.
Parameters Returned:
IX The screen X coordinate.
IY The screen Y coordinate.

3.22. VECMOD - Enter Graphics Mode

VECMOD outputs a US to set the Terminal to alphanumeric mode, if the Terminal is not already in graphics mode. The routine then replaces the plot characters with an invalid value (-1) so that they will be updated by the next vector. The routine then outputs a GS to place the Terminal in graphics mode and cause the next vector to be dark.

Calling Sequence:
CALL VECMOD

3.23. WINCOT - Transform Window Coordinates

WINCOT transforms virtual coordinates into the appropriate screen coordinates. A branch is made to a different section of the routine, depending on whether the transformation in effect is linear, logarithmic or polar. The user can define his own transformation (see Section 4.2). Calling this routine does not affect the Terminal Status Area.

Calling Sequence:
CALL WINCOT(X,Y,IX,IY)
Parameters Entered:
$\mathrm{X} \quad$ The virtual X coordinate.
$\mathrm{Y} \quad$ The virtual Y coordinate.
Parameters Returned:
$I X \quad$ The screen X coordinate.
IY The screen Y coordinate.

3.24. XYCNVT - Convert and Output X,Y

XYCNVT compares the plot characters needed to draw to a specified location with the last set of plot characters sent. It then produces an optimized set of plot characters to draw the vector. Reducing the number of plot characters has two advantages:

1. There is less chance of transmission errors.
2. Less transmission time is required to draw the vector.

The routine is designed so that bright vectors are not drawn repeatedly to the same screen location. This saves time and avoids damaging the screen. A vector is drawn if any one of the following conditions is true:

1. The endpoint of the vector is different from that of the last vector drawn.
2. The previous vector was a dark vector to the same location.
3. The desired vector is dark (i.e., a move).

Calling Sequence:
CALL XYCNVT(IX,IY)
Parameters Entered:
$I X \quad$ The screen X coordinate.
IY The screen Y coordinate.

SECTION 4 MODIFYING THE SYSTEM

This section describes ways in which the Terminal Control System can be modified. Three types of changes are described:

1. Changing the I/O and translate parameters to fit individual computer system requirements.
2. Adding user-written transformation routines.
3. Reducing the size of the package. The user can eliminate:
. unused routines;
. polar and/or logarithmic transformations;
. unnecessary I/O routines.
The actual "pruning" of the package can occur on either of two levels:
A-LEVEL PRUNING removes unused routines. Internally called routines are replaced by smaller dummy routines.

B-LEVEL PRUNING removes all the code which supports unused features.

Routines should be eliminated from the system only after careful consideration. Removal should be well documented by the user. If the software is pruned as indicated, however, it will be fully supported by Tektronix.

4.1. Changing I/O and Translate Parameters

The input and output buffers and translate arrays of the Terminal Control System are based on a line length of 72 characters (the longest line possible on some computer systems*). The user can change these values to the limits allowed by his computer system.

Routine	Parameter	Use	Present Value
A1IN	IADE	Translate array	Dimensioned to 72
	MAXLEN	Maximum data length	72 characters
A1OUT	IADE	Translate array	Dimensioned to 72
AINST	IADE	Translate array	Dimensioned to 72
	MAXLEN	Maximum data length	72 characters
ANSTR	MAXLEN	Maximum characters sent to	Set in KACHAR
		TOUTST	
AOUTST	IADE	Translate array	Dimensioned to 72
	MAXLEN	Maximum data length	72 characters
BUFFPK	IDATA	Data array	Dimensioned to 72
	MAXLEN	Maximum size of data array	72 characters

[^6]| Routine | Parameter | Use | Present Value |
| :--- | :--- | :--- | :--- |
| INITT | Common default assignments; see Section 5. | Be very careful when making | |
| RESET | changes. | | |
| TINSTR | INBUFF | Input data array | Dimensioned to 72 |
| TOUTST | IUSE | Data transfer array | Dimensioned to 72 |
| | MAXLEN | Maximum data length | 72 characters |

4.2. Adding User-Written Transformations

In addition to linear, logarithmic and polar transformations, the Terminal Control System allows the user to add his own transformation. To do this, he must write the following four routines:

Subroutine USETRN

This routine allows the program to perform a user-defined transformation. Status Variable KEYCON should be set to 4 . The routine should also set any other Status Variables necessary for the transformation calculations (see Section 5).

Calling Sequence:
CALL USETRN [user-defined arguments]

Subroutine URSCAL

This routine uses the Status Variables set by USETRN to calculate the parameters needed to perform the transformation.

Calling Sequence:
CALL URSCAL

Subroutine USECOT

This routine converts virtual coordinates (X, Y) into screen coordinates (IX,IY) through the use of the Status Variables set by URSCAL.

Calling Sequence:
CALL USECOT(X,Y,IX,IY)

Subroutine UREVCT

This routine converts screen coordinates (IX,IY) into virtual coordinates (X,Y).
Calling Sequence:
CALL UREVCT(IX,IY,X,Y)

In addition to writing the above routines，the user must change subroutine RESCAL to allow the calling of URSCAL when KEYCON $=4$ ．Similar changes should be made to allow the calling of UREVCT from subroutine REVCOT and USECOT from subroutine WINCOT．

If the user wishes to define segmented vectors for his transformation，he should write subroutine USDRAW (X, Y) and subroutine $\operatorname{USDASH}(X, Y, L)$ to perform these functions．Subroutines DRAWSA and DASHSA should be modified accordingly to allow the calling of USDRAW and USDASH．The parameters of USDRAW and USDASH should correspond respectiveiy to those of DRAWSA and DASHSA．The following is an example of a user－written transformation：

```
C SAMRLE PROGRAM YO USE USER TRANSFORMATION
    CALL INITT(30)
    CALL DWINDO(0.,1昌,㫙,10.)
    CALL MOVEA(O,0,O.)
    OD 10 1=1,10
C * SHOW THE dEFAULT TRANSFORMATION
    CALLL DRAWA(FLOAT(I),FLOAT(I))
1* CONTINUE
C * INVOKE TME USER TRANSFORMATION
    CALL USETRN
    CALL MOVEA(0.,0.)
    DO 20 I=1.10
C * SHOW THE USER PRANSFORMATION
    CALL DASHA(FLOAT(I),FLDAT(I),Z)
2A CONTINUE
    CALL MOVEA(日,.0.)
    DO 30 I=1.10
C * SHOW THE USER SFGMENTED AND TRANSFORMED LINE
    CALL DRAWSA(FLOAT(I),FLOAT(I))
3^ CONTINUE
    CALL FINITT(0,100)
    END
C * SUBROUTINE TO inVOKE USER TRANSFORMATION*
    SUBROUTINE USETRN
    COMMON /TKTRNX/ PMINVX,TMINVY,TMAXVX,TMAXVY,TREALX,TREALY,
    1 TIMAGX, TIMAGY, PRCOSF, TRSINF, TRSCAL,TRFACX,TRFACY,
    2 TRPARI, PRPARZ,TRPAR3, PRPAR4, PRPAR5,TRPARG,KMOFLG(8),KPADZ.
    3 KBAUDR,KGNFLG,KGRAFL,KHOMFY,KKMODE,KHORSZ,KVERSZ,KTBLSZZ.
    4 KSIZEF,KLMRGN,KRMRGN,KFACTR,KTERM,KLINE,KZAXIS,KBEAMX,KBEAMY,
    S KMOVEF,KPCHAK(S),KDASMT,KMINSX,KMINSY,KMAXSX,KMAXSY,KEYCUN,
    6 KINLFT,KOPLFT,KUNIT
            KEYCONSA
            CALL RESC,AL
            RETURN
            END
C
C * bubroutinf to calculate user fransformation parameters
            SUBROUTINE URSCAL
            COMMON /TKTRNX/ PMINVX,TMINVY,TMAXVX,TMAXVY,TREALX,TREALY,
    1 TIMAGX, TIMAGY,TRCOSF,TRSINF,THSCAL,TRFACX,TRFACY,
    2 TRPARI, TRPARZ, TRPAR3,TRPAR4, TRPARS,TRPARG,KMOFLG(B),KPADZ,
```

```
    3 KBAUDR,KGNFLG,KGRAF G,KHOMEY,KKMODE,KHORSZ,KVERSZ,KTBLSZZ,
    4 KSIZEF,KLMRGN,KRMRGN,KFACTR,KTERM,KLINE,KZAXIS,KBEAMX,KBEAMY,
    S KMOVEF,KPCHAR(5), KDASHT, KMINSX,KMINSY,KMAXSX,KMAXSY,KEYCON,
    6 KINLET,KOTLFT,KIINIT
C * calculate the minimum transformed value of x and y
            TRPARIETMINVX**3
            TRPAR2=TMINVY**5
C * CALCULATE SCALE FACTORS X AND Y AS SCREEN RANGE / TRANSFORMED RANGE
            TRFACX=FLOAT(KMAXSX-KMINSX)/(TMAXVX**3-TKPARI)
            TRFACY=FLOAT(KMAXSY-KMINSY)/(TMAXVY**5-IRPAR2)
            RETURN
            END
C
C SUBROUTINE TO CALCULATE USER TRANSFORMATION SCREEN COURUINATES
        SUBROUTINE USECOT(X,Y,IX,IY)
            COMMON /TKTRNX/ TMINVX,TMINVY,TMAXVX,TMAXVY,TREALX,TREALY,
            1 TIMAGX,TIMAGY,TRCOSF,TRSINF,THSCAL,TKFACX,TRFACY,
            2 TRPAR1,TRPAR2,TRPAR3,TRPAR4,TRPAR5,TKPAR6,KMOFLG(8),KPAD2,
            3 KBAUJOR,KGNFLG,KGRAFL,KHOMEY,KKMODE,KHORSZ,KVERSZ,KTBLSZ,
            4 KSIZEF,KLMRGN,KRMRGN,KFACTR,KTERM,KLINE,KZAXIS,KBEAMX,KBEAMY,
            5 KMOVEF,KPCHAR(5), KDASHT,KMINSX,KMINSY,KMAXSX,KMAXSY,KEYCON,
            6 KINLFT,KOTLFT,KUNIT
C * TRANSFORM X AND Y
    XPEMP = X**3
    YTEMP=Y**S
C * SUBTRACT TME MINIMUM TRANSFDRMEO VALUES
    XTEMP=XTEMPGTRPARI
    YTEMP = YTEMP-TRPARZ
C * SCALE TO FIT SCGEEN WINOOW
            XTEMP=XTEMP*TRFACX
            YTEMP=YTEMP*TRFACY
C * ADD THE SCREEN ORIGIN
    IX=KMINSX+IFIX(XIEMP)
    IYEKMINSY+IFIX(YTEMF)
    RETURN
    END
C * Subroutine to usfr segment lines
            SUBROUTINF USCRAW(X,Y)
            COMMON /TKTRNX/ TMINVX,TMINVY,TMAXVX,TMAXVY,THEALX,TREALY,
            1 TIMAGX,TIMAGY,TRCOSF,TRSINF,TRSCAL,TRFACX,TRFACY,
            2 TRPAR1, TRPARZ,TRPAR 3,TRPAR4, TRPAR5,TRPAHG,KMOFLG(8),KPADZ,
            3 KBAUDDR,KGNFLG,KGRAFL,KHOMEY,KKMODE,KHORSZ,KVERSZ,KTBLSZ,
            4 KSILEF,KLMRGN,KRMRGN,KFACTK,KTEKM,KLINE,KZAXIS,KBEAMX,KBEAMY,
            5 KMOVEF,KPCHAR(S),KDASHT,KMINSX,KMINSY,KMAXSX,KMAXSY,KEYCON,
            6 KINLFT,KUTLFT,KUNIT
C * MAKE SURE CIDRRANT VIRTUAL BEAM IS CORRECT
            CALL LVLCHT
C * DRAW HORIZONAL
            CALL DRAWA(X,IIMAGY)
C * VERTICAL DRAW TO FND POINT WILL BE DONE IN DRAWSA
            RETURN
            END
```

The " C " which indicates a comment line is then removed from the appropriate CALL statements in DRAWSA, RESCAL and WINCOT, as marked by an arrow at the left margin.

DRAWSA
C * USER SEGMENTATION
4DO CONTINIJE
CALL USORAW (X, Y) GO 10 100
END

RESCAL

```
    C * USER fuNCTION
    GUA CONTINUE
        CALL URSCAL
        go TO gox
    C * NO SCALE
    50日 TRFACX=1
        TRFACY=1,
    GNU RETURN
        END
```


WINCOT

C * user transformation in use
70 CONTINUE
CALLL USECOT $(X, Y, I X, I Y)$
C * EXIT POINT
RAB RETURN
ENO

This program produces the following graph:

USETRN

4.3. Reducing Package Size

4.3.1. Removing Unused Routines

NOTE

The savings resulting from the removal of routines will vary from system to system. If the user's linkload process does not load unused routines, savings in storage costs from the deletion of these routines may be negligible.

Routines may be removed from the Terminal Control System if two conditions are met by ALL programs using TCS:

1. None of the programs directly calls the routine to be removed.
2. None of the programs accesses any code that calls the routine.

The deletion process may extend to routines called only by previously deleted routines. The Subroutine Calling Reference Chart in Section 6 of this manual will help to determine which routines may be deleted.

Before deleting any routine, however, check to be sure it is not needed by other Tektronix software and that no other user intends to use it. The removal of any routine should be documented for future reference.

Routines Not Called Internally By The Terminal Control System

A1IN	DRWREL	LOGTRN	SEETRM
A1OUT	DSHREL	MOVER	SEETRN
AINST	DWINDO	MOVREL	SEETW
ANCHO	ERASE	PNTREL	SETBUF
ANMODE	FINITT	POINTR	SETMRG
AOUTST	GENFLG	POLTRN	SETTAB
BAKSP	HDCOPY	RESTAT	SVSTAT
BELL	HOME	RROTAT	SWINDO
CARTN	INCPLT	RSCALE	TABHOR
CSIZE	INITT	RSTTAB	TABVER
CZAXIS	KCM	SEEBUF	TERM
DASHR	KIN	SEEDW	TINPUT
DASHSR	LINEF	SEELOC	TTBLSZ
DCURSR	LINTRN	SEEMOD	TWINDO
DRAWR	LINHGT	SEEMRG	VCURSR
DRAWSR	LINWDT	SEEREL	VWINDO

4.3.2. A-Level Pruning

A-level pruning is the removal of features through the deletion of the user-called routines supporting those features. Internally called routines must be replaced by dummy routines having the same name and arguments as the routines they replace. A dummy routine must contain an executable statement, a RETURN statement and an END statement (on some computer systems the executable statement may be omitted). See the Subroutine Calling Reference Chart in Section 6 of this manual for the arguments of each subroutine.

A dummy function needs an assignment statement: [function name] $=0$.

Feature Eliminated	Routines Elim
4014/4015 Support	CHRSIZ*
Changing Character Size	
Enhanced Graphics Option	INCPLT
Incremental Plotting	IPMOD
	CZAXIS
Hardware Dashed Lines \&	CWSEND*
Z-Axis Control	
Special Vector Types	INCPLT
Incremental Plotting	IPMOD
	PNTABS
Software or Hardware Produced Point Plotting	PNTREL
Plotting	POINTA
	POINTR
	TKPNT
	PNTMOD*
Dash Plotting	DASHSA
	DASHSR
	TKDASH
	DSHABS
	DSHREL
	DSHMOD
	DASHA
Segmented Vectors	DASHR
	DRAWSA
	DRAWSR
	DASHSA
	DASHSR

[^7]| Relative Vectors | |
| :---: | :---: |
| Relative Virtual Vectors | DRAWR |
| | POINTR |
| | DASHR |
| | MOVER |
| | DASHSR |
| | DRAWSR |
| | REL2AB |
| | RSCALE |
| | RROTAT |
| Relative Screen Vectors | DRWREL |
| | DSHREL |
| | PNTREL |
| | MOVREL |
| User Alphanumeric Output | A10UT |
| | AOUTST |
| | ANCHO |
| | ANSTR |
| User Input | |
| Crosshair | DCURSR |
| | SCURSR |
| | VCURSR |
| Keyboard | A1IN |
| | AINST |
| | TINPUT |
| | TINSTR* |
| Transformation Support | |
| Polar Plotting | POLTRN |
| | PSCALL** |
| | PSCAL |

*Warning: TINSTR must be present for any input through the Terminal Control System.
${ }^{* *} A$ dummy routine replacement is required.

4.3.3. B-Level Pruning

B-level pruning is the removal of all code used by an unwanted feature. Entire routines which support that feature are eliminated; in other routines, statements which support that feature are removed or modified.

If a feature is eliminated by B-level pruning, comparable changes need not be made at the A level.

B-level pruning may be used to eliminate the following features from the Terminal Control System:

1. Polar Plotting
2. Logarithmic Plotting
3. Multiple Character Sizes
4. Point Plotting
5. Hardware Point Plotting
6. Z-Axis Mode Changes AND Hardware Dashed Lines
7. Z-Axis Mode Changes
8. Hardware Dashed Lines
9. Interline Character Effect Supression
10. Software Dashed Lines*

Code to be modified or removed is marked at the left margin.
Each feature is described separately. If the same line is to be changed for several features, the changes should be made accumulatively.

Eliminate only that code which is truly unnecessary for your operation. Document all changes for future reference.

[^8]Feature 1. Polar Plotting
Remove: POLTRN
Modify: DASHSA
PSCAL

DRAWSA WINCOT

DASHSA

```
        C * LINEAR LOG POLAR USER ERROR
        GO TO (100, 100, 200, 400, 100),KEY
        C * ERROR LINEAR LOG
        10M CALL DASHA(X,Y,L)
        XOLDEX Change 200 to 100
        YOLDEY
        RETURN
        C & POLAR
        ?O# DX=X=XOLD
        DYEY-YOLD
        YSTEP=SIGN(5,O/TRFACY,DY)
        IF(ABS(DY*.75) ,LT. ABS(YSTEP)) GO TO 100
        FRACEDX/DY
        NSFGE(DY/YSTEP) +.9999
        YOUTEYOLD
    300 IF(NSEG .LT. 2) GO TO 1H0
            YOUTEYOUT+YSTEP
            XOUT=XOLD+(YOUT-YOLD)*FRAC
            CALL DASHA(XOUT,YOUT,L)
            NSEGENSEG-I
            GO TO 300
        C * USER SEGMENTATION
        4BO CONTINUE
        C CALL USDASH(X,Y,L)
            GO TO IOA
            END
```

```
    C * LINEAR LOG POLAR USER ERROR
    GO TO (100, 100, 200, 400, 100),KEY
    C * ERROR LINEAR LOG
    100 CALL DRAWA(X,Y)
        XOLDEX
        YOLD=Y
        RETURN
        C * POLAR
        200 DX=X-XOLD
            DY=Y-YOLD
            YSTEP=SIGN(5,G/TRFACY,DY)
            IF(ABS(DY*.75).LT. ABS(YSTEP)) GO TO 100
            FRAC=DX/DY
            NSFGE(DY/YSTEP)+.9999
            YOUT=YOLD
    300 IF(NSEG .LT, 2) G0 TO 100
            YOUTEYOUT$YSTEP
            XOUTEXOLD+(YOUT-YOLD)*FRAC
            CALL DRANA(XOUT, YOUT)
            NSEG&NSEG-1
            fO TO 300
        C * USER SEGMENTATION
        MOA CONTINUE
        C CALL USDRAW(X,Y)
            GO TO 100
            END
```

RESCAL
C * BRANCH TO PROPER SECTION AND RETURN
C linear log polar user errdir
GO TO (100,200,300.400,500), KEY
C BOTH AXES LINEAR
10日 TRPARI=0.
C SEMI LOG OR LOG LOG
200 KEYLETRPARI+1.0日I
Change $\mathbf{3 0 0}$ to 100


```
    C * BRANCH TO PROPER SECTION
    C * LINEAR LOG POLAR USER ERROR
        GO TO(500,300,600,700,100), KEY
        C ERRROR
        100 IXEX
        IY=Y
        Change 600 to 500
        GOTO 800
    C * CONVERT LINEAR
    5@g IX=IFIX(DX*TRFACX+,5)+KMINSX
        IYEIFIX(DY*TRFACY+,5)+KMINSY
    C GOTO EXIT
        GO TO BGO
        C POLAR TRANSFORMATION
        6ब0 A= (Y-TRPARG)*TRFACY
        R=(X-TRPARS)*TRFACX
        IX=R*COS(A*DE2RAD) +TRPAR3
        IYER*SIN(A*DEZRAD)+TRPAR4
        C GOTO EXIT
        60 10 800
        C * USER TRANSFORMATION IN USE
        7@@ CONTINUE
        C CALL USECOT (X,Y,IX,IY)
    C EXIT POINT
    8RO RETURN
        END
```

REVCOT

REVCOT (cont)

```
    C POLAR
    500 DXZFLOAT(IX)-TRPAR3
        DYFFLOAT (IY) -TRPAR4
        Y=ATANZ(DY, DX) 5 57.295779513!
        \(X \equiv S Q R T(D Y \notin D Y+D X * D X\) )/TRFACX + TRPARS
    C * ADJUST ANGLE MOD 2 PI TO VALUE WITHIN WINDOW
        DECE,FALSE,
    510 IF(Y.GT. TRPAR1) 60 TO 530
    C * INCREMENT ANGLE
Remove
        \(Y=Y+360,0\)
        60 TO 510
    530 IF(Y ULE. TRPAR2) GO TO 550
    C * DECREMENT ANGLE
        \(Y=Y=360.0\)
        DEC:, TRUE.
        GO TO 530
    550 IFCDEC AND. Y .LT: TRPARI)YEY+360, 0
        IF(TMINVX,GE, G.)GO TO 560
        TRIAEAMOD (TRPAR1+180.,360.)
        PR2A=AMOD (TRPAR2+180, 360,)
        IF (Y,GT,AMAXI(TR!A,TRZA),OR,Y,LT,AMINI(TRIA,TR2A))GO TO 360
        \(Y\) FAMOD (Y+180., 360.)
        \(X=X\)
    \(560 \quad Y E Y / T R F A C Y+T R P A R 6\)
        GO PO 700
    C * USER CONVERSION
    600 CONTINUE
```

Feature 2. Logarithmic Transformations
Remove: LOGTRN
Modify: RESCAL
WINCOT
REVCOT

RESCAL

WINCOT

REVCOT

Feature 3. Multiple Character Sizes

Remove: CHRSIZ
Modify: RESET
RESTAT

RESET

```
        C * SET 4014 ENHANCED FOR SOLID LINES
                                    IF(KTERM GE. 3)CALL CWSEND
Remove \(C\) * PLACE 4014 IN LARGE CHARACTER SIZE
        IF(KTERM, GE, 2)CALL CHRSIZ(1)
        C* PLACE THE TERMINAL IN A/N MODE
            CALL ALFMOD
                        RETURN
                        ENO
```


RESTAT

100 RB(I)=RARRAY(I) DO 101 IE1,4!
101 IB(I)=RARRAY(I+19)
C * RESTORE CHARACTER SILE
Remove IF(KTERM, GT, I)CALL CHRSIZ(KSIZEF)
C * RESTORE ZAXIS AND DASH LINE IF (KTERM GT, 2)CALL CWSEND
C * call po recover position and more
CALL RECOVR
RETURN
END

Feature 4. Point Plotting

Remove:	PNTABS POINTA	PNTREL POINTR	PNTMOD
Modify:	RECOVR	BUFFPK	
RECOVR			

```
    C * PLACE IN THE PROPER MODE
                IF(MODE .LT. 1)MODEE&
                IF(MODE GT,5)MODE=5
                GO TO (100,200,120,100,200),MODE
            100 CALL ALFMOD
            GO TO 200
                120 CALL PNTMOD
                C * RESTORE TME GRAPHIC LEVEL FLAG Change 120 to 200
                    RETURN
                    END
```


BUFFPK

```
    C * MODE IS A/N,VEC,PNT,INC,DSH
            GO TO (21, 22, ?3, 24, 22),KEY
    C * ENTER A/N MODE.
21 TOATA(LENOUT)=31
            GO TO 50
                                Change 23 to 22
C * IF REAOY FOR A MOVE, THEN REMOVE FIXUP CHARS
22 IF(KMOVEF .EQ. 1) LENOUT=2
    LENOUT=LENOUT-1
C * CHECK IF DASHED LINE OR Z AXIS MUST GE RESTORED
            IF(KLINE .EQ. C..AND. KZAXIS .EQ. O) GO TO 50
            IOATA(LENOUT+1)=27
            LENOUT=LENOUT+2
            IOATA(LENOUT)=96+KZAXIS*8+KLINE
            GO TO 50
C * enter point mode
```


Feature 5. Hardware Point Plotting
Modify: TKPNT PNTMOD BUFFPK

TKPNT

PNTMOD

BUFFPK

```
C * MODE IS A/N,VEC,PNT,INC,DSH
GO TO (21, 22, 23, 24, 22), KEY
C. ENTER A/N MODE.
21 IOATA(LENOUT)=31
    GO TO 50 Change 23 to 22
C * IF REAOY FOR A MOVE, THEN REMOVE. FIXUP CHARS
22 IF(KMOVEF .EQ. 1) LENOUT=2
        LENOUT=LENOUT-1
C CHECK IF DASHED LINE OR Z AXIS MUST SE RESTOREO
    IF(KLINE .EQ. C.ANO. KZAXIS .EQ. O) GO TO 50
            IOATA(LENOUT+1)=27
            LENOUT=LENOUT +2
            IOATA(LENOUT) = 96 +KZAXIS*8 +KLINE
            GO TO 50
C F ENTER POINT MODE
```


Feature 6. Z-Axis Mode Changes AND Hardware Dashed Lines

Remove: CWSEND CZAXIS

| Modify: | RESET | CARTN* | DRAWA** |
| :--- | :--- | :--- | :--- | TKDASH**

RESET

RESTAT
Remove RESTORE ZAXIS AND DASH LINE
IF(KTERM GT, Q)CALL CWSEND
C*CALLTORECOVER POSITION AND MODE
CALL RFCOVR
RETURN
END
*Described in Feature 7
** Described in Feature 8

Feature 7. Z-Axis Mode Changes
Remove: CZAXIS*
Modify: CARTN LINEF CWSEND*

CARTN

LINEF

Remove 20Ω IF(KTERM,GE, 2)CALL CWSEND RETURN
 END

CWSEND*	
$\begin{gathered} \text { Delete } \\ \text { KZAXIS*8 } \end{gathered}$	DIMENSION ICDDE (2)
	DATA ICODE (1)/27/
	ICODE (2) $=96+$ KZAXIS* $8+$ KLINE
	CALL TOUTST(2,ICOOE)
	RETURN
	FND

[^9]Feature 8. Hardware Dashed Lines
Modify: DRAWA DRWABS TKDASH CWSEND*

DRAWA

DRWABS

TKDASH

CWSEND*

OATA ICODE(1)/271
Delete +KLINE \quad ICDDE $(2)=96+K Z A \times 13 * 8+K$ IINE CALL TOUTST(2,ICODE) RETURN END

[^10]Feature 9. Interline Character Effect Suppression
Remove: SETBUF
Modify: INITT BUFFPK
INITT

```
C \& SET THE OUTPUT BUFFER FORMAT
            KUNITEI~
            KINLFTEO
            KOTLFTE&
                                    Change 1 to 3 or 4
            CALL RESET
            CALL NEWPAG
            RETURN
            END
```


BUFFPK

10 IF(NODATA .EQ, 1)GOTO 50 NODATAE1
C - DETERMINE THE FORMAT THE USER WANTS BUFFER DUMPED IN
GO TO $(20,30,40,45)$, KUNIT
C * OUTPIUT BUFFER FORMAT IS (GS), PLTEHES, DATA, (US)
23 LENOUT=LENOUT +1
C * APDEND (USI TO END DF BUFFER
Remove
IDATA (LENOUT) $=31$
CALL ADEOUT(LENOUT, IMATA)
r. * RESTIRE THE BEAM DOSITION AT FIRST OF THE NEXT BUFFEP

ISUR=1
IF (KTERM •OE. 3) ISUB=?
CALL PLTCHR(KZEAMX, KREAMY, IDATA (ISUR))
IOATA(2) = IDATA(ICUB)
LENOUT $=5+$ ISUB
IDATA(1) $=29$
C * an n now the mode before the output was askej for.
On $19 \mathrm{I}=\mathrm{Z}, \mathrm{KPAOP}$
IDATA (LENOUT) $=$? 2
10. LENOUT=LENOUT +1
$K E Y=K K M O D E+1$
IF (KFY •LT. 1)KEY=1
IF (KEY . GT. 5)KEY=1
C * NOUE IS A/N,VES,PVT,INC,JSH
GO TO (21, 22, 23, 24, 22), KEY
C. ENTER A/N MOJF.
?1 TDATA(LENOUT) $=31$
GO TO 50
C * TF READY FOR A MOVE, THEN REMOVE FIXUP CHARS
22 IF (KMOVEF •EO. 1) LFVOUT=?
LEMOUT = LENOUT-1
C * CHECK IF DASHED LINE OR 2 AXIS MUST उE RESTJRED
IF(KLINE •EQ. G .ANJ. KTAXIS .ED. J) GO TO 50
ITATA(LENOHT +1$)=27$
LENOUT=LENOUT+?
IOATA(LENOUT) $=95+$ KZAXIS*3+KLTME
GO TO 50
C * ENTER POINT MODE

BUFFPK (cont)

Feature 10. Software Dashed Lines*

Modify: TKDASH
Remove all but the following lines:

```
    SUBROUTINE TKDASH(IX,IY)
    COMMON /TKTRNX/ TMINVX,TMINVY,TMAXVX,TMAXVY,TREALX,TREALY,
1 TIMAGX,TIMAGY,TRCOSF,TRSINF,TRSCAL,TRFACX,TRFACY,
2 TRPAR1,TRPARZ,TRPAR3,TRPAR4,TRPARS,TRPARG,KMOFLG(8),KPADZ,
3 KBAUDR,KERROR,KGRAFL,KHNMEY,KKMODE,KHORSZ,KVERSZ,KTBLSZ, 
4 KSIZEF,KLMRGN,KRMRGN,KFACTR,KTERM,KLINE,KZAXIS,KBEAMX,KBEAMY,
5 KMOVEF,KPCHAR(5),KDASHT,KMINSX,KMINSY,KMAXSX,KMAXSY,KEYCON,
6 KINLFT,KOTLFT,KUNIT
    IF(KDASHT .LT. Q)GO TO 32,
    IF(KDASHT GT, 4)GO TO 141
    IF(KTERM.GE. 3)GO TO 1O3
C * PHIS SECTION IS ALSO FOR 4OIL ENHANCED
101 IF(KLINE,EQ. D)GOTO 104——Change 104 to 330
    KLINE#O
        CALL CWSENID
                                    Change 104 to 330
    GO TO 104
C S SET AND TRANSMIT HAKDWARE DASH CODE
103 IF(KLINE ,EQ. KDASHT)GO TO 330
    KLINE=KCASHT
    CALL CWSEND
    GO TO 330
320 CALL TOUTPT(29)
    KMDVEF=1
330 CALL. XYCNVT(IX,IY)
340 RETURN
        END
```

*If you have the four hardware dash types of the Enhanced Graphics Module, you may wish to eliminate software dashes to save storage.

SECTION 5 STATUS VARIABLES

5.1. Description of Variables

The Terminal Status Area is the common area named /TKTRNX/. It allows routines in the Terminal Control System a quick reference to the current condition of both the software and the Terminal. This reduces the number of control characters and routine linkages necessary to place the Terminal in the user requested condition. The following Status Variables comprise the Terminal Status Area:
KACHAR The number of characters available to the user in the input buffer.
KBAUDR The number of characters transmitted per second.
KBEAMX The beam X coordinate.
KBEAMY The beam Y coordinate.
KDASHT User requested dashed line type:
1 through 4 hardware dash or software-simulated hardware dash
10 or greater a software dash
KEYCON The transformation type:
1 linear
2 logarithmic
3 polar
4 user-defined
KFACTR The addressing factor:
14096 addressable points
41024 addressable points
KGNFLG The general condition flag:

Routine	Meaning of KGNFLG Value	
	0 Action Completed	1 Action Cannot Be Completed
SETTAB	all OK	no room in tab table
PCLIPT	point inside virtual window limits	point outside virtual window limits
CLIPT	line partly inside window limits	line entirely outside window limits
RESCAL	valid transformation	requested transformation has a negative window limit

KGNMOD The graphic crosshair cursor flag:
0 not set
1 set
KGRAFL The graphic level flag:
0 screen level graphics
1 virtual graphics

KTBLSZ	The tab table size.
KTERM	The type of Terminal in use: 1 4006-1 Releases 2.0 through 3.3 require modification to BAKSP 4010, 4012, 4013 2 4014, 4015, 4014EGM or 4015EGM 34014 EGM or 4015EGM only
KTRAIL	The number of system character positions needed at the end of output buffer for interline characters.
KUNIT	The output buffer format (see SETBUF, User's Manual, Section 7.11.1.).
KVERSZ	The height of a character in 4096-space raster units.
KZAXIS	The Z-Axis mode type: 0 normal 1 defocused 2 write-through
$\left.\begin{array}{l} \text { TIMAGX } \\ \text { TIMAGY } \end{array}\right\}$	The position of the imaginary beam anywhere in virtual space (may be outside the virtual window and screen limits).
$\left.\begin{array}{l} \text { TMAXVX } \\ \text { TMAXVY } \\ \text { TMINVX } \\ \text { TMINVY } \end{array}\right\}$	The virtual window limits; used for clipping routines.
TRCOSF	The cosine for the relative virtual vector rotation.
$\left.\begin{array}{l} \text { TREALX } \\ \text { TREALY } \end{array}\right\}$	The position of the real beam in virtual coordinates (must be inside the virtual window).
$\left.\begin{array}{l} \text { TRFACX } \\ \text { TRFACY } \end{array}\right\}$	The scale factors used in converting virtual to screen coordinates.
TRSCAL	The scale factor used in converting relative virtual to absolute virtual coordinates.
TRSINF	The sine for relative virtual vector rotation.
	Logarithmic Transformation
TRPAR1	The axis type in effect:
	Value X Axis Y Axis
	0 linear linear
	1 log linear
	2 linear log
	$3 \mid \log \quad 10$
TRPAR2	The log of minimum virtual X.
TRPAR3	The log of minimum virtual Y .
Polar Transformation	
TRPAR1	The beginning screen angle.
TRPAR2	The ending screen angle.
TRPAR3	The screen X coordinate of the virtual origin.
TRPAR4	The screen Y coordinate of the virtual origin.
TRPAR5	The radius suppression sum; to be subtracted from the virtual radius (X coordinate) before transformation.
TRPAR6	The virtual screen angle offset.

5.2. Status Variable Setting and Reference Charts

5.2.1. Variables

Status Variable	Initial Setting (INITT)	Set By	Referenced By
KACHAR	*	SETBUF	ANSTR TOUTST
KBAUDR	*	INITT	INITT IOWAIT SEETRM
KBEAMX	0	ANSTR ANCHO BAKSP CARTN INCPLT NEWPAG RESET XYCNVT	ANCHO ANSTR BAKSP BUFFPK DRAWA DRWABS DRWREL DSHMOD DSHREL INCPLT LINEF LVLCHT MOVREL PLTCHR PNTREL SEELOC TABHOR TABVER TKDASH RECOVR
KBEAMY	767	ALFMOD INCPLT LINEF NEWPAG RESET XYCNVT	ALFMOD BUFFPK CARTN DRAWA DRWABS DRWREL DSHMOD DSHREL INCPLT LINEF LVLCHT MOVREL BAKSP

*Depends on the Baud rate entered.

Status Variable	Initial Setting (INITT)	Set By	Referenced By
			PLTCHR
			PNTREL
			RECOVR
			SEELOC
			TABHOR
			TABVER
			TKDASH
KDASHT		DSHMOD	TKDASH
		TKDASH	
KEYCON	1	LINTRN	DRAWSA
		LOGTRN	DASHSA
		POLTRN	RESCAL
		RESET	REVCOT
			SEETRN
			WINCOT
KFACTR	4	INITT	ANCHO
		TERM	ANSTR
			BAKSP
			CSIZE
			KCM
			KIN
			LINEF
			LINHGT
			LINWDT
			PLTCHR
			RESET
			SCURSR
			SEETRM
KGNFLG	0	CLIPT	DASHA
		PCLIPT	DRAWA
		RESCAL	GENFLG
		SETTAB	MOVEA
			POINTA
			V2ST
KGNMOD	0	INITT	BUFFPK
		SCURSR	
KGRAFL	0	ALFMOD	LVLCHT
		DRWABS	RECOVR
		DSHABS	
		IPMOD	
	-	LVLCHT	
		MOVABS	

Status Variable	Initial Setting (INITT)	Set By	Referenced By
		PNTABS	
		PSCAL	
		RECOVR	
		RESCAL	
KHOMEY	767	RESET	ALFMOD
			ANSTR
			HOME
			LINEF
			NEWPAG
			RESET
KHORSZ	56	CHRSIZ	ANCHO
		RESET	ANSTR
			BAKSP
			CSIZE
			LINWDT
KINLFT	0	INITT	LEFTIO
		SCURSR	
		TINSTR	
KKMODE	0	ALFMOD	ANCHO
		DSHMOD	ANSTR
		IPMOD	BAKSP
		PNTMOD	BUFFPK
		V2ST	CARTN
		VECMOD	DRAWA
			DRWABS
			DSHMOD
			INCPLT
			LINEF
			NEWPAG
			POINTA
			PNTABS
			RECOVR
			SEEMOD
			VECMOD
			V2ST
KLINE	0	DRAWA	CWSEND
		DRWABS	DRAWA
		RESET	DRWABS
		TKDASH	SEEMOD
			TKDASH

Status Variable	Initial Setting (INITT)	Set By	Referenced By
KLMRGN	0	RESET	ANSTR
		SETMRG	CARTN
			HOME
			NEWPAG
			RESET
			SEEMRG
KMAXSX	1023)	RESET	PSCAL
KMAXSY	780	SWINDO	RESCAL
		TWINDO	SEETW
KMINSX	0)	RESET	PSCAL
KMINSY	0)	SWINDO	RESCAL
		TWINDO	REVCOT
			SEETW
			WINCOT
KMOFLG			SUSTAT
			RESTAT
KMOVEF	0	BELL	BUFFPK
		DSHMOD	DRAWA
		INCPLT	DRWABS
		RECOVR	XYCNVT
		TKDASH	
		TKPNT	
		VECMOD	
		XYCNVT	
KOBLEN	72	INITT	SETBUF
KOTLFT	*	BUFFPK	BUFFPK
		INITT	LEFTIO
KPAD2	*	INITT	BUFFPK
			PLTCHR
			SETBUF
KPADV		BUFFPK	BUFFPK
		INITT	
		PLTCHR	
KPCHAR	55,0,127,32,64	DSHMOD	XYCNVT
		PNTMOD	
		VECMOD	
		XYCNVT	
KRMRGN	1022	RESET	ANCHO
		SETMRG	ANSTR
			SEEMRG
			TABHOR

*Depends on the Baud rate entered.

Status Variable	Initial Setting (INITT)	Set By	Referenced By

| Status
 Variable | Initial Setting
 (INITT) | Set By |
| :--- | :--- | :--- |\quad Referenced By | VWINDO |
| :--- |
| |

5.2.2 Routines Which Set and Reference Variables

Routine	Sets	References
ALFMOD	KBEAMY	KbEAMY
	KGRFL	KHOMEY
	KKMODE	
ANCHO	KBEAMX	KKMODE
		KbEAMX
		KHORSZ
		KFACTR
		KRMRGN
ANSTR	KBEAMX	KACHAR*
	KBEAMY	KKMODE
		KBEAMX
		KBEAMY
		KFACTR
		KLMRGN
		KRMRGN
		KHORSZ
		KVERSZ
BAKSP	KbEAMX	KbEAMX
		KHORSZ
		KFACTR
		KKMODE
		KTERM
		KBEAMY
BELL	KMOVEF	
BUFFPK **	KOTLFT	KOTLFT
	KPADV	KUNIT
		KbEAMX
		KBEAMY
		KKMODE
		KMOVEF
		KTERM
		KGNMOD
		KLINE
		KPAD2
		KPADV
		KTRAIL
		KZAXIS

*Not used in the TSO version of TCS.
**Not present in PDP-11 version of TCS.

Routine	Sets	References
CARTN	KBEAMX	KLMRGN
		KBEAMY
		KKMODE
		KTERM
CHRSIZ	KHORSZ	KTERM
	KSIZEF	
	KVERSZ	
CLIPT	KGNFLG	TMAXVX
		TMAXVY
		TMINVX
		TMINVY
CSIZE		KHORSZ
		KVERSZ
		KFACTR
CWSEND		KZAXIS
		KLINE
CZAXIS	KZAXIS	KTERM
DASHA		KGNFLG
DASHSA		TIMAGX
		TIMAGY
		KEYCON
		TRFACY
DRAWA	KLINE	KLINE
		KGNFLG
		KKMODE
		KMOVEF
		KBEAMX
		KBEAMY
DRAWSA		KEYCON
		TIMAGX
		TIMAGY
		TRFACY
DRWABS	KLINE	KLINE
	KGRAFL	KKMODE
		KMOVEF
		KBEAMX
		KBEAMY
DRWREL		KBEAMX
		KBEAMY
DSHABS	KGRAFL	

Routine	Sets	References
DSHMOD	KKMODE	KKMODE
	KMOVEF	KBEAMX
	KDASHT	KBEAMY
	KPCHAR	
DSHREL		KBEAMX
		KBEAMY
DWINDO	TMAXVX	
	TMAXVY	
	TMINVX	
GENFLG		KGINVY

Routine	Sets	References
LINHGT		KFACTR
		KVERSZ
LINTRN	KEYCON	
LINWDT		KFACTR
		KHORSZ
LOGTRN	KEYCON	
	TRPAR1	
LVLCHT	TIMAGX	KGRAFL
	TIMAGY	KBEAMX
	KGRAFL	KbEAMY
		TREALX
		TREALY
MOVABS	KGRAFL	
MOVEA		KGNFLG
MOVREL		KBEAMX
		KBEAMY
NEWPAG	KBEAMX	KKMODE
	KBEAMY	KLMRGN
		KHOMEY
PCLIPT	KGNFLG	TMAXVX
		TMAXVY
		TMINVX
		TMINVY
PLTCHR	KPADV	KBAUDR
		KBEAMX
		KBEAMY
		KFACTR
		KPAD2
		KTERM
PNTABS	KGRAFL	KKMODE
PNTMOD	KKMODE	KTERM
	KPCHAR	
PNTREL		KBEAMX
		KBEAMY
POINTA		KGNFLG
		KKMODE
POLTRN	KEYCON	
	TRPAR1	
	TRPAR2	
	TRPAR5	

Routine	Sets	References
PSCAL	KGRAFL	TMAXVX
	KTRFACX	TMAXVY
	KTRFACY	TMINVX
	TRPAR3	TMINVY
	TRPAR4	TRFACX
	TRPAR6	TRFACY
		TRPAR1
		TRPAR2
		KMINSX
		KMINSY
		KMAXSX
		KMAXSY
RECOVR	KMOVEF	KGRAFL
	KGRAFL	KKMODE
		KBEAMS
		KBEAMY
		KTERM
REL2AB		TRCOSF
		TRSINF
		TRSCAL
		TIMAGX
		TIMAGY
RESCAL	KGRAFL	KEYCON
	KGNFLG	KMAXSX
	TRPAR1	KMAXSY
	TRFACX	KMINSX
	TRFACY	KMINSY
	TRPAR2	TMINVX
	TRPAR3	TMINVY
		TMAXVX
		TMAXVY
		TRPAR1
		TRPAR2
		TRPAR3
RESET	KEYCON	KFACTR
	TRFACX	KHOMEY
	TRFACY	KLMRGN
	KBEAMX	KTERM
	KBEAMY	KMAXSX
	KHOMEY	KMAXSY
	KMINSX	
	KMAXSX	
	KMINSY	
	KMAXSY	
	KHORSZ	

Routine	Sets	References
	KLINE	
	KZAXIS	
	KLMRGN	
	KRMRGN	
	KSIZEF	
	KTBLSZ	
	KVERSZ	
	TMINVX	
	TMINVY	
	TMAXVX	
	TMAXVY	
	TRCOSF	
	TRSINF	
	TRSCAL	
RESTAT		ALL COMMON VARIABLES
REVCOT		KMINSX
		KMINSY
		TRFACX
		TRFACY
		KEYCON
		TMINVX
		TMINVY
		TRPAR1
		TRPAR2
		TRPAR3
		TRPAR4
		TRPAR5
		TRPAR6
RROTAT	TRSINF	
	TRCOSF	
RSCALE	TRSCAL	
RSTTAB	KTBLSZ	
SCURSR	KGNMOD	KFACTR
	KINLFT	KTERM
SEEBUF		KUNIT
SEEDW		TMAXVX
		TMAXVY
		TMINVX
		TMINVY
SEELOC		KBEAMX
		KBEAMY

Routine	Sets	References
SEEMOD	KLINE	
		KZAXIS
		KKMODE
SEEMRG	KLMRGN	
		KRMRGN
SEEREL	TRCOSF	
		TRSINF
		TRSCAL
SEETRM		KBAUDR
		KTERM
		KSIZEF
		KFACTR
SEETRN		TRFACX
		TRFACY
		KEYCON
SEETW		KMAXSX
		KMAXSY
		KMINSX
		KMINSY
SETBUF		KUNIT
		KTRAIL*

[^11]| Routine | Sets | References |
| :---: | :---: | :---: |
| TERM | KTERM | |
| | KFACTR | |
| TINSTR | KINLFT | KINLFT |
| TKDASH | KDASHT | KDASHT |
| | KLINE | KLINE |
| | KMOVEF | KTERM |
| | | KBEAMX |
| | | KBEAMY |
| TKPNT | KMOVEF | KTERM |
| TOUTST | | KACHAR |
| TTBLSZ | KTBLSZ | |
| TWINDO | KMINSX | |
| | KMINSY | |
| | KMAXSX | |
| | KMAXSY | |
| V2ST | KKMODE | TIMAGX |
| | TREALX | TIMAGY |
| | TREALY | KGNFLG |
| | TIMAGX | TREALX |
| | TIMAGY | TREALY |
| | | KKMODE |
| VECMOD | KKMODE | KKMODE |
| | KMOVEF | |
| | KPCHAR | |
| VWINDO | TMAXVX | |
| | TMAXVY | |
| | TMINVX | |
| | TMINVY | |
| WINCOT | | TMINVX |
| | | TMINVY |
| | | KEYCON |
| | | KMINSX |
| | | KMINSY |
| | | TRPAR1 |
| | | TRPAR2 |
| | | TRPAR3 |
| | | TRPAR4 |
| | | TRPAR5 |
| | | TRPAR6 |
| | | TRFACX |
| | | TRFACY |
| XYCNVT | KPCHAR | KPCHAR |
| | KMOVEF | KTERM |
| | KBEAMX | KMOVEF |
| | KBEAMY | |

SECTION 6 SUBROUTINE CALLING REFERENCE CHARTS

6.1. TCS Routines

Routine	Arguments	Called By	Calls
A1IN	NCHAR, IARRAY	KAS2A1	
			TINSTR
A1OUT	NCHAR, IARRAY	ANSTR	
			KA12AS
ADEIN	NCHAR, IARRAY	TINSTR	
ADEOUT	NCHAR, IARRAY	BUFFPK	
AINST	NCHAR, IARRAY		KAS2AM
			TINSTR
ALFMOD		ANCHO	TOUTPT
		ANMODE	
		BAKSP	
		CARTN	
		FINITT	
		HOME	
		LINEF	
		REWPAG	
		RECOVR	
		TABHOR	
			TABVER

Routine	Arguments	Called By	Calls
CARTN		NEWLIN	ALFMOD
			CWSEND
			MOVABS
			TOUTPT
CHRSIZ	ICODE	RESET	TOUTST
		RESTAT	
CLIPT	BUFIN, BUFOUT	V2ST	PARCLT
CSIZE	IHORZ, IVERT		
CWSEND		CARTN	TOUTST
		CZAXIS	
		DRAWA	
		DRWABS	
		LINEF	
		RESET	
		RESTAT	
		TKDASH	
		RECOVR	
CZAXIS	ICODE		CWSEND
DASHA	X, Y, L	DASHR	DSHMOD
		DASHSA	LVLCHT
			TKDASH
			V2ST
DASHR	X, Y, L		DASHA
			REL2AB
DASHSA	X, Y, L	DASHSR	DASHA
			LVLCHT
DASHSR	X, Y, L		DASHSA
			REL2AB
DCURSR	ICHAR, IX, IY		SCURSR
DRAWA	X, Y	DRAWR	CWSEND
		DRAWSA	LVLCHT
			V2ST
			VECMOD
			XYCNVT
DRAWR	X, Y		DRAWA
			REL2AB
DRAWSA	X, Y	DRAWSR	DRAWA
			LVLCHT
DRAWSR	X, Y		DRAWSA
			REL2AB

Routine	Arguments	Called By	Calls
DRWABS	IX, IY	DRWREL	CWSEND
			VECMOD
			XYCNVT
DRWREL	IX, IY		DRWABS
DSHABS	IX, IY, L	DSHREL	DSHMOD
			TKDASH
DSHMOD	L	DASHA	TOUTPT
		DSHABS	XYCNVT
DSHREL	IX, IY, L		DSHABS
DWINDO	XMIN, XMAX,		RESCAL
	YMIN, YMAX		
ERASE			IOWAIT
			RECOVR
			TOUTST
FINITT	IX, IY		ALFMOD
			MOVABS
			TSEND
GENFLG	ITEM		
HDCOPY			IOWAIT
			TOUTST
HOME			ALFMOD
			MOVABS
INCPLT	IONOFF, IDIR, NO		IPMOD
			TOUTPT
INITT	IBAUD		NEWPAG
			RESET
			SETBUF
IOWAIT	ITIME	ERASE	TOUTPT
		BELL	
		HDCOPY	
		NEWPAG	
IPMOD		INCPLT	TOUTST
KA12AS	NCHAR, KA1, KADE	A10UT	
KAM2AS	NCHAR, KAM, KADE	AOUTST	
KAS2A1	NCHAR, KADE, KA1	A1IN	
KAS2AM	NCHAR, KADE, KAM	AINST	
KCM	RCM		
KIN	RIN		
LEFTIO	IOBUFF		

Routine	Arguments	Called By	Calls
LINEF		NEWLIN	ALFMOD
			CWSEND
			MOVABS
			TOUTPT
LINHGT	NUMLIN		
LINTRN			RESCAL
LINWDT	NUMCHR		
LOGTRN	KEY		RESCAL
LVLCHT		DASHA	REVCOT
		DASHSA	
		DRAWA	
		DRAWSA	
		MOVEA	
		POINTA	
		REL2AB	
MOVABS	IX, IY	CARTN	VECMOD
		FINITT	XYCNVT
		HOME	
		LINEF	
		MOVREL	
		BAKSP	
		NEWPAG	
		RECOVR	
		RESET	
		TABHOR	
		TABVER	
MOVEA	X, Y	MOVER	LVLCHT
			V2ST
			VECMOD
			XYCNVT
MOVER	X, Y		MOVEA
			REL2AB
MOVREL	IX, IY		MOVABS
NEWLIN		ANCHO	CARTN
		ANSTR	LINEF
		TABHOR	
NEWPAG		INITT	ALFMOD
			IOWAIT
			MOVABS
			TOUTST
PARCLT	RL1, RL2, RM1, RM2, RN1, RN2	CLIPT	

Routine	Arguments	Called By	Calls
PCLIPT	X, Y	$\begin{aligned} & \hline \text { REVCOT } \\ & \text { V2ST } \end{aligned}$	
PLTCHR	IX, IY, ICHAR	BUFFPK XYCNVT	
PNTABS	IX, IY	PNTREL	PNTMOD TKPNT
PNTMOD		PNTABS POINTA RECOVR	TOUTPT
PNTREL	IX, IY		PNTABS
POINTA	X, Y	POINTR	LVLCHT PNTMOD TKPNT V2ST
POINTR	X, Y		POINTA REL2AB
POLTRN	ANGMIN, ANGMAX, RSUPRS		PSCAL
PSCAL		PLTRN RESCAL	WINCOT
RECOVR		ERASE RESTAT SCURSR	ALFMOD MOVABS PNTMOD CWSEND
REL2AB	XIN, YIN, XOUT, YOUT	DASHR DASHSR DRAWR DRAWSR MOVER POINTR	LVLCHT
RESCAL		DWINDO LINTRN LOGTRN SWINDO TWINDO VWINDO	PSCAL
RESET		$\begin{aligned} & \text { INITT } \\ & \text { TERM } \end{aligned}$	ALFMOD CHRSIZ CWSEND MOVABS

Routine	Arguments	Called By	Calls
RESTAT	RARRAY		CHRSIZ CWSEND RECOVR
REVCOT	IX, IY, X, Y	LVLCHT VCURSR	PCLIPT
RROTAT	DEG		
RSCALE	FACTOR		
RSTTAB	ITAB, ITABLE		
SCURSR		DCURSR VCURSR	RECOVR TINSTR TOUTST
SEEBUF	KFORM		
SEEDW	XMIN, XMAX, YMIN, YMAX		
SEELOC	IX, IY		
SEEMOD	LINE, IZAXIS, MODE		
SEEMRG	MLEFT, MRIGHT		
SEEREL	RCOS, RSIN, SCALE		
SEETRM	ISPEED, ITERM, KHRSIZ, MAXADR		
SEETRN	XFAC, YFAC, KEY		
SEETW	MINX, MAXX, MINY, MAXY		
SETBUF	KFORM	INITT	
SETMRG	MLEFT, MRIGHT		
SETTAB	ITAB, ITABLE		
SVSTAT	RARRAY		
SWINDO	MINX, LENX, MINY, LENY		RESCAL
TABHOR	ITABLE		ALFMOD MOVABS NEWLIN
TABVER	ITABLE		ALFMOD MOVABS
TCSLEV	LEVEL		
TERM	ITERM, MAXADR		RESET
TINPUT	ICHAR		TINSTR
TINSTR	NCHAR, IARRAY	A1IN AINST SCURSR TINPUT	ADEIN TSEND
TKDASH	IX, IY	DASHA DSHABS	CWSEND TOUTPT XYCNVT

Routine	Arguments	Called By	Calls
TKPNT	IX, IY	PNTABS	TOUTPT
		POINTA	XYCNVT
TOUTPT	ICHAR	ANCHO	TOUTST
		ALFMOD	
		BAKSP	
		BELL	
		CARTN	
		DSHMOD	
		INCPLT	
		IOWAIT	
		LINEF	
		PNTMOD	
		TKDASH	
		TKPNT	
		VECMOD	
TOUTST	NCHAR, IARRAY	ANSTR	BUFFPK
		CHRSIZ	
		CWSEND	
		ERASE	
		HDCOPY	
		IPMOD	
		NEWPAG	
		SCURSR	
		TOUTPT	
		XYCNVT	
TSEND		ANMODE	BUFFPK
		FINITT	
		TINSTR	
TTBLSZ	ITBLSZ		
TWINDO	MINX, MAXX, MINY, MAXY		RESCAL
V2ST	I, X, Y, IX, IY	DASHA	CLIPT
		DRAWA	PCLIPT
		MOVEA	VECMOD
		POINTA	WINCOT
			XYCNVT
VCURSR	ICHAR, X, Y		SCURSR
			REVCOT
VECMOD		DRAWA	TOUTPT
		DRWABS	
		MOVABS	
		MOVEA	
		V2ST	

Routine	Arguments	Called By	Calls
VWINDO	XMIN, XRANGE,		RESCAL
	YMIN, YRANGE		
WINCOT	X, Y, IX, IY	PSCAL	
		V2ST	
XYCNVT	IX, IY	DRAWA	PLTCHR
		DRWABS	TOUTST
		DSHMOD	
		MOVABS	
		MOVEA	
		TKDASH	
			TKPNT

6.2. Standard FORTRAN Routines Called By TCS

FORTRAN

Routine	Called By
ABS	DASHSA
	DRAWSA
	PSCAL
	TKDASH
ALOG	RESCAL
	WINCOT
AMAX1	PSCAL
	REVCOT
AMIN1	PSCAL
	REVCOT
AMOD	REVCOT
ATAN2	REVCOT
COS	RROTAT
	WINCOT
FLOAT	KCM
	KIN

LOGTRN
PSCAL
RESCAL
RESET
REVCOT
SVSTAT
TKDASH

FORTRAN Routine	Called By
IABS	INCPLT
IFIX	DASHSA
	DRAWSA
	PLTCHR
	PSCAL
	RESCAL
	REVCOT
	TKDASH
	RESTAT
	WINCOT
	KIN
	KCM
MAX0	PSCAL
MINO	BUFFPK
	PSCAL
MOD	INCPLT
	PLTCHR
	SCURSR
	TKDASH
SIGN	DASHSA
	DRAWSA
	PSCAL
SIN	RROTAT
	WINCOT
SORT	REVCOT
	TKDASH

APPENDIX SYSTEM-DEPENDENT FEATURES

A 1. Terminal Control System I/O Structure

Six subroutines, ADEIN, ADEOUT, KAM2AS, KA12AS, KAS2AM and KAS2A1, are not included with the standard TCS source code and must be provided by the implementer. These routines are included in versions of TCS for TSO, PDP-11 and CDC-Synchronous systems.

If alphanumeric formatted I / O is not required, the latter four subroutines may be omitted and the subroutines that call them removed from the source file (see the TCS System Manual, Section 4.3).

The structure chart below shows the relationship of these six subroutines to the other TCS I/O subroutines. Full descriptions follow.

I/O Structure Chart

A 1.1. User-Written I/O Subroutines

ADEOUT

The routine BUFFPK assembles all the characters to be output in a buffer, takes care of any recovery needed (see below for buffer formats) and calls ADEOUT to send the contents of the buffer to the Terminal. The calling sequence for ADEOUT is:

CALL ADEOUT (NCHAR,IARRAY)
where NCHAR is the number of characters to be sent from the buffer, and IARRAY is the buffer, an integer array of ADE characters. The maximum number of characters which ADEOUT can handle should be determined by the size of the system output buffer. TCS was written with a maximum buffer size of 72, which the implementer may change to match his system's output buffer at the following locations: dimension and data statements in BUFFPK, A1OUT, and AOUTST and in the code of A1OUT and INITT.

IARRAY comes out of BUFFPK in one of four formats, depending on the Status Variable KUNIT found in /TKTRNX/ Terminal Status Area. The subroutine INITT calls SETBUF(1) and thereby sets KUNIT to 1 , but the implementer may change this to 2,3 , or 4 in the source code, and the user may change KUNIT through his own call to subroutine SETBUF. The relation of IARRAY and KUNIT is as follows:

KUNIT	IARRAY
1	Recovered output, which is pure output preceded and followed by the necessary characters to return the Terminal to the condition (mode and beam position) it was in prior to the last interline sequence.
2	4014 Terminal output, which is pure output preceded by one SYN and followed by one ESC.
4	Pure output, which is only the characters given to BUFFPK by TOUTST and which assumes that interline characters are suppressed.
Pure output, unbuffered by BUFFPK.	

BUFFPK may add some timing characters to pure output.
Output of the following ASCII characters is not required by the Terminal Control System:*
NUL, SOH, STX, ETX, EOT, ENQ, ACK, HT, VT, SO, SI, DLE, DC1, DC2, DC3, DC4, NAK, CAN, EM.
However, other Tektronix software packages make use of the Terminal Control System I/O section and require the transmission of some of these characters, so ADEOUT should translate and output as much of the standard 128 ASCII character set as possible. The implementer may wish to use the translation subroutine KAS2A1 or KAS2AM to handle the translations required by ADEOUT.

[^12]How ADEOUT is written partly determines whether interline characters will cause any problems (see Section A 2 for more information).

ADEIN

Input to the Terminal Control System subroutines is through TINSTR, which calls ADEIN when it needs more input and buffers it for use by the other input subroutines (see the I/O Structure Chart on page A1 of this manual and the I/O Section of the User Manual). The calling sequence is:

CALL ADEIN (NCHAR,IARRAY)

where IARRAY is the integer array of the ADE characters received in the last line of input terminated by a CR but not including the CR, and NCHAR is the number of meaningful characters* in IARRAY. Since NCHAR should be limited only by the system input buffer size, and TCS was written with a maximum input buffer size of 72 , the implementer should change the number 72 to match his system's input buffer size in the dimension statements of these subroutines: TINSTR, A1IN and AINST.

ADEIN should perform four functions:

1. Accept characters from the terminal
2. Translate these characters to ADE format
3. Place them into IARRAY
4. Compute NCHAR to be the number of meaningful characters returned.

As a minimum, the TTY character set should be accepted and translated, but the entire ASCII set is most desirable. The routine KA12AS or KAM2AS could be used for this translation.

ADEIN input should be essentially the same as normal monitor mode input, with identical echo and editing features. For example, when FORTRAN I/O is performed, if a Control-U is used to delete a character, ADEIN should allow for this. Note that the graphic input (GIN) mode characters, ADE 32 through 63 , should not be used as editing characters.

A 1.2. User Written Translation Subroutines

The implementer must provide four simple translation subroutines, KA12AS, KAM2AS, KAS2A1, and KAS2AM, to support the alphanumeric subroutines A1OUT, AOUTST, A1IN, and AINST, respectively. The following discussion assumes that A1 and Am formats are used by the implementer in these routines, but any alphanumeric format which works is satisfactory. The " m " referred to is the number of characters per word the system supports (4 on GE and IBM, 5 on DEC PDP-10, 2 on many mini-computers, etc). A4 is recommended for compatibility with IGP.

[^13]
KA12AS and KAM2AS

These routines translate characters from alphanumeric format into ADE integers. They should handle the character set required for ADEIN. KA12AS translates the first NCHAR characters from an A1 format array into an ADE integer array, while KAM2AS translates the first NCHAR characters from an Am format array into an ADE integer array. For example, an alphanumeric " A " should be translated to the integer 65_{10}. The calling sequences are:

CALL KA12AS (NCHAR,KA1,KADE)
CALL KAM2AS (NCHAR,KAM,KADE)
where NCHAR is the number of characters to be translated, KA1 and KAM are the alphanumeric arrays to be translated, and KADE is the integer array for the translated ADE characters.

KAS2A1 and KAS2AM

These routines translate characters from ADE integer form into alphanumeric format. They should handle the character set required for ADEOUT. KAS2A1 translates the first NCHAR characters from an ADE integer array into an A1 format array, while KAS2AM translates the first NCHAR characters from an ADE integer array into an Am format array. For example, the integer 66_{10} should be translated to the alphanumeric character " B ". The calling sequences are:

```
CALL KAS2A1 (NCHAR,KADE,KA1)
CALL KAS2AM (NCHAR,KADE,KAM)
```

where NCHAR is the number of characters to be translated, KADE is the integer array containing the ADE characters to be translated, and KA1 and KAM are the arrays for the A1 and Am translated characters.

A 2. Interline Characters

Most computer systems are oriented to non-graphic-display teletypewriter terminals, and this causes problems for software written to drive the Tektronix graphic display terminals. The teletypewriter requires CR's, LF's and certain characters (NUL, SYN or RUBOUT) between each line of output to reposition the typing head and advance the paper. Many computer systems insert these characters automatically if they have not appeared in the last 72 (or 80 or 132) characters of the output stream to ensure that the teletypewriter does not lose data by overstriking. The interline characters CR and LF have the following effects on Tektronix graphic display terminals:

1. A CR puts the terminal into alphanumeric mode and moves the alphanumeric cursor to the left margin.
2. A LF moves the alphanumeric cursor or graphic beam position down one line height.
3. If the terminal is in graphic input (GIN) mode, a CR puts the terminal into alphanumeric mode without sending the crosshair cursor coordinates.

The 4014/4015 Terminals were designed to allow the programmer to get around these problems. No action occurs if these Terminals receive an ESC followed by one or more of these characters: CR, LF, NUL, RUBOUT. TCS takes advantage of this feature if buffer type 2 (see page A2) is chosen on 4014/ 4015 Terminals. A type 2 buffer ends with an ESC, so that the CR and LF which normally follow a line of output are ignored by the Terminal. This buffer begins with a SYN, otherwise a no-op character, which causes the Terminal to pay attention again. Thus interline characters cause no problem if buffer type $\mathbf{2}$ is used on a 4014 or 4015 Terminal.

For systems where all CR's and LF's can be suppressed both between lines of output and where the computer system would otherwise automatically insert them, use buffer type 3 or 4 . Most systems allow the suppression of CR's and LF's between lines of program-controlled output (with carriage control characters in FORTRAN, for example), and many systems allow the suppression of the automatically inserted CR's and LF's through monitor commands (TYPE 6 on GE Mark III, TTY NO CRLF on DEC PDP-10).

For those systems which cannot suppress the automatically inserted interline characters, the interline characters between lines of output should not be suppressed, for they come at predictable times. Buffer type 1 is designed for use with 4006-1, 4010, 4012 and 4013 terminals on those systems which cannot otherwise overcome the interline character problems. Graphic input mode cannot be used in this case, however, because of effect 3 above.

For those systems which do suppress interline characters but in doing so suppress all CR's and LF's, including those placed in the TCS buffer for line control, the subroutines CARTN and LINEF may be changed to move the alphanumeric cursor graphically. These changes include deleting lines of code from these routines so they appear as follows:

A 3. Compatibility With Other Tektronix Software

A11 PLOT 10 packages of Level 1 or later are internally compatible with each other. The products listed below were originally compatible with Release 2.0 of TCS and must be updated as indicated to work properly with Level 1 TCS.

CHARACTER GENERATION SYSTEM: (all releases through 1.1)

Routine RROTAT and RSCALE in the Character Generation System contain the old TCS Release 2.0 /TKTRNX/ Terminal Status Area. Since both RROTAT and RSCALE are contained in TCS Release 3.0 through Level 1, they must be removed from the Character Generation System.

PREVIEW ROUTINES FOR CALCOMP PLOTTER: (all releases through 1.1)

Routine WHERE in the Preview package contains a reference to the old version of /TKTRNX/ Terminal Status Area. This version of /TKTRNX/ must be replaced by a copy identical to that in TCS Level 1. No other changes are required.

ADVANCED GRAPHING II: (all releases through 1.2)
The TCS extension, TCSEXT, should be deleted. See the Implementation Notes for AG-II Release 1.2 for a precise definition of TCSEXT.
One subroutine in AG-II, SETWIN, needs modification. See AG-II Implementation Notes for Release 1.2 for details.

The 4006-1 Terminal

Because the 4006-1 terminal does not generate a hardware backspace or use the GIN mode, you may wish to modify subroutine BAKSP so that it will accomplish this task. Refer to the 4010A01 PLOT 10 Terminal Control System Installation Guide.

Changes Necessary in Programs Using Release 2.0

Any program referencing Status Variables in the Release 2.0 Terminal Status Area will not run with Level 1 without modification, since this common area has been changed. However, all the functions which required the Release 2.0 user to access this area are now supported by Level 1 subroutines, so conversion of these programs if fairly simple. To convert these programs, delete the /TKTRNX/ common area and change the code lines which reference the Status Variables to call the appropriate subroutines, as follows:

Release 2.0 Status Variables
TRSINF, TRCOSF
TRSCAL
KLMRGN, KRMRGN

Level 1 Subroutines

RROTAT
RSCALE
SETMRG

Since the tab tables KVERTT and KHORZT are not carried in the Release 3.3 Terminal Status Area, the user must provide a dimension statement for KHORZT and KVERTT in his program using the tab routines.

NOTE

Access to other variables in the /TKTRNX/ Terminal Status Area was not supported in Release 2.0, so it will be necessary for the user who accessed them to locate the correct subroutine or function in Release 3.3 to replace references to them.

ASCII CODE CHART

CONTROL		HIGH X \& Y GRAPHIC INPUT		LOW X		LOW Y	
NUL \quad ¢	DLE 16	$S P^{32}$	\% 48	64	$\text { p } 8 \phi$	196	p^{112}
SOH 1	DC1 17	! 33	149	A^{65}	81	97	113
Six 2	DC 218	1.34	$25 \$$	B^{66}	$\begin{aligned} & 82 \\ & R \quad \end{aligned}$	98	r^{114}
ETX 3	DC3 19	年35	$3{ }^{51}$	C^{67}	S^{83}	$\text { c } 99$	S^{115}
EOT 4	DC4 2¢	$\$ 30$	$4{ }^{52}$	68	$\begin{array}{r} 84 \\ T \end{array}$	$\text { d } 100$	116
ENQ 5	NAK 21	\% 37	5^{53}	E^{69}	U^{85}	$e^{1 \varnothing 1}$	v^{117}
ACK 6	SYN 22	$8{ }^{38}$	654	$F^{7 \phi}$	V^{80}	192	118
BEL BEIL	ETB 23	- 39	$7{ }^{55}$	G^{71}	W^{87}	9^{103}	w^{119}
BS 8 BACK SPACE HTY	CAN 24	(4\%	8^{56}	H^{72}	\times^{88}	$h^{1 \not 04}$	x^{129}
HT 9	EM 25) 41	$9 \quad 57$	73	Y^{89}	i 195	y^{121}
LF 1ϕ LINE FEED	SUB 26	χ^{42}	58	74	z^{98}	$1 \varnothing 6$	$z \begin{array}{r} 122 \\ z \end{array}$
VT 11	ESC 27	143	$\text { . } 59$	K^{75}	$\left[\begin{array}{l} 91 \\ \hline \end{array}\right.$	k^{197}	$\left\{^{123}\right.$
FF 12	FS 28	244	$<0 \%$	$\begin{array}{r} 76 \\ \hline \end{array}$	92	198	124
CR	GS 29	- 45	$=\quad 61$	M^{77}	$\begin{aligned} & 93 \\ & \hline \end{aligned}$	m^{109}	$\}^{125}$
SO 14	RS 3¢	46	$>\quad 62$	\mathbf{N}^{78}	\wedge^{94}	n^{118}	\sim^{120}
SI 15	$\text { us } 31$	147	$? \quad 63$		$\begin{array}{r} 95 \\ -\quad \\ \hline \end{array}$	0^{111}	$\begin{gathered} 127 \\ \text { RUBOUT } \\ \text { (DEL) } \\ \hline \end{gathered}$

SUBJECT INDEX

A Absolute Co-ordinates 3-8
ADE (ASCII Decimal Equivalent) Format 2-8, 3-2, 3-7, A-3, A-4
Alphanumeric Mode 3-1, 3-6, 3-7, 3-12, A-5
Alphanumerics Routines 2-1, 2-5
C Clipping 3-2, 3-6, 3-11
Compatibility with Other Tektronix Software A-7
Conversion to Raster Units 2-2
D Dashed Lines 3-5, 3-9, 3-11
Hardware, Eliminating 4-8, 4-20, 4-22
Software, Eliminating 4-10, 4-25
Drawing2-2, 2-3, 3-11, 3-12
Dummy Function 4-8
Dummy Routine 4-1, 4-8, 4-9
F FORTRAN Routines Called by TCS 6-6, 6-7
G Graphic Input (GIN) Mode A-3, A-5
Graphics Mode 3-5, 3-12
Graphic Routines 2-1, 2-2
Screen 2-2, 3-6
Virtual 2-3
General 2-4
I Imaginary Beam 3-11, 5-3
Incremental Plotting 3-6
Eliminating 4-8
Interline Characters 3-2, 3-5, 3-6, A-3, A-5Suppression, Eliminating4-8, 4-23, 4-24
I/O and Translate Parameters, Changing 1-1, 4-1, 4-2, A-2, A-3
I/O Routines, Eliminating 4-1, 4-9
I/O Structure Chart A-1
L Linear Transformation3-8, 3-9, 3-12, 4-2
Logarithmic Transformation 3-8, 3-9, 3-12, 4-2
Eliminating

Moving
3-11
Multiple Character Sizes, Eliminating
4-9, 4-17
O Output Buffer
Types 1 thru 4
P Plot Character Optimization
Point Plot Mode
Hardware
Eliminating
Software (Simulated)2-8, 3-1, 3-2, 3-11, A-23-2, 3-3, A-2, A-5
Eliminating 4-8
Polar Transformation
Eliminating
Pruning, A-Level3-7, 3-12
3-11, 4-18, 5-2
3-7, 3-11
4-8, 4-10, 4-19
3-113-8, 3-9, 3-12, 4-2
4-1, 4-9, 4-11 to 4-14
4-8
B-Level 4-9
Unused Routines 4-7
R Reference Material, TCS i
Relative Coordinates 2-4
Routines Not Called Internally by TCS 4-7
S Screen Co-ordinates 3-6, 3-7, 3-9, 3-11, 3-12, 3-13
Status Variables 2-4, 3-5 to 3-9, 3-11
Description
5-4 to 5-9
Reference Charts
Subroutine Calling Reference Charts
Structure Flow Chart 5-4 to 5-16
5-17, 6-1 to 6-5
SYN Characters 3-5, 3-10
System I/O Routines 2-1
T Terminal Status Area, /TKTRNX/
TCS Flow Chart1-1, 5-1, A-2, A-7
2-1, A-9
U Unused Routines, Eliminating4-1, 4-7
User-Writter I/O Routines For TSO, PDP-11, CDC Systems Eliminating

2-8, A-1, A-2, A-3

2-8, A-1

User-Writter Transformations

Adding

Utility Routines
V Vectors
3-9, 3-12, 3-13, 4-8, 4-9Virtual Coordinates
3-6, 3-7, 3-8, 3-9, 3-11, 3-12, 4-2
W Wait During I/O 3-5
Z Z-Axis Modes 3-5
Eliminating 4-8, 4-9, 4-20, 4-21
SUBROUTINE AND VARIABLE INDEX
Status Variables Referenced in Text*
KDASHT 3-5, 3-9
KEYCON 4-2, 4-3
KGNFLG 3-2, 3-5, 3-7, 3-8, 3-11
KGRAFL 3-6
KKMCDE 3-7
KLINE 3-5
KUNIT A-2
KZAXIS 3-5
TRFACY 3-8
TRPAP 1 thru 6 3-8
System Subroutines
ADEIN (NCHAR,IARRAY) 3-1, A-1, A-2, A-3
ADEOUT (NCHAR,IARRAY)
ALFMOD
BUFFPK (NCHAR,IARRAY)
CLIPT (BUFIN,BUFOUT) 3-2, A-1, A-4
3-1
3-2, 3-3, 3-11, 4-1, 4-18, 4-19, 4-23, 4-24, A-1, A-2
3-2, 3-4, 3-5 CWSEND
*For a complete list, see Section 5.
DSHMOD (L)3-5, 3-9
GENFLG (ITEM) 3-5
IOWAIT (ITIME) 3-5
IPMOD 3-6
KA12AS (NCHAR, KA1, KADE) A-1, A-3, A-4
KAS2A1 (NCHAR,KADE,KA1)
KAM2AS (NCHAR,KAM,KADE)A-1, A-3, A-4KAS2AM (NCHAR,KADE,KAM)A-1, A-3, A-4
A-1, A-3, A-4
LVLCHT 3-6
PARCLT (RL1,RL2,RM1,RM2,RN1,RN2) 3-6
PCLIPT (X,Y)3-5, 3-7
PLTCHR (IX,IY,ICHAR) 3-7
PNTMOD 3-7, 4-19
PSCAL 3-8, 4-11
REL2AB (XIN,YIN,XOUT,YOUT) 3-8
RESCAL3-5, 3-8, 4-3, 4-5, 4-12, 4-15
REVCOT (IX,IY,X,Y) 3-6, 3-8, 3-9, 4-3, 4-13, 4-14, 4-16
TKDASH (KX,IY)
TKPNT (IX,IY)
TSENDUREVECT (IX,IY,X,Y)
3-9, 3-10, 4-20, 4-22, 4-25
3-11, 4-18, 4-19
3-11, A-1
URSCAL4-2, 4-3USDASH (X,Y,L)4-2, 4-3
4-3USDRAW (X,Y)USECOT (X,Y,IX,IY)4-3
USETRN [user-defined arguments]4-2, 4-3
V2ST (I,X,Y,IX,IY) 3-11
VECMOD 3-12
WINCOT (X,Y,IX,IY)XYCNVT (IX,IY)
3-8, 3-12, 4-3, 4-5, 4-13, 4-163-12
User Subroutines Referenced in Text*
A1IN 4-1, A-1, A-3
A10UT
AINST 4-1, A-1, A-2
ANCHO A-1
ANMODE 3-1
ANSTR 4-1, A-1, A-2
AOUTST
CARTN 4-20, 4-21, A-6
CHRSIZ 4-17
CZAXIS 4-20, 4-21
DASHA 3-11
DASHSA 4-3, 4-11

[^14]DRAWA 3-11, 4-20, 4-22
DRAWSA
DRWABS
DWINDO
INITT
LINEF
LINTRN
LOGTRN 3-8
4-3, 4-5, 4-12
4-20, 4-223-83-5, 3-12, 4-2, 5-4 to 5-94-20, 4-21, A-63-8
MOVEA 3-11PNTABS4-18
PNTMOD 4-18
PNTREL 4-18
POINTA 3-11, 4-18
POINTR 4-18
POLTRN 3-8
RECOVR 4-18
RESET 4-2, 4-17, 4-20
RESTAT 4-17, 4-20RROTAT
RSCALE
SETBUF
3-8, A-7, A-8
3-8, A-7, A-8
SETMRG4-23, A-2SETTABA-8SWINDO3-5
3-8TERM3-11
TINPUT
TINPUT A-1
TINSTR 4-2, A-1, A-3
TOUTPT A-1TOUTSTTWINDO4-2, A-1, A-23-8
VWINDO 3-8

| CHANGE: | DESCRIPTION |
| :---: | :---: | :---: |

The following changes should be made to the chart on pages $5-10$ through 5-17:

Page	Routine	Sets
$* * 5-10$	AlOUT	References
$* * 5-10$	AOUTST	KOBLEN
$* 5-17$	TOUTST	KOBLEN

**Add this line to chart.
*Amend this line as shown.
KOBLEN should be added to the list of references listed with BUFFPK on page 5-10. Also, the footnote on page 5-12 is no longer applicable.

With the $360 / 370$ version of TCS subroutine FINITT calls ANMODE and with Option 22 ADEIN calls ADEOUT. These differences require the following changes to the subroutine charts on pages 6-1 through 6-9:

Page	Routine	Arguments	Called By	Calls
$6-1$	ADEIN	NCHAR, IARRAY	TINSTR	ADEOUT
$6-1$	ADEOUT	NCHAR, IARRAY	BUFFPK	
$6-1$	ANMODE		ADEIN	
$6-3$	FINITT		FINITT	ALFMOD
				TSEND
$6-7$	TSEND			ANMODE
			TINSTR	MOVABS

On page 6-1 FINITT should be deleted from the 1 ist of routines which call ALFMOD.

The $I / 0$ structure chart on page $A-1$ and the flowchart on page A-8 should show that ADEIN makes a call to ADEOUT. -- if Option 22 is implemented.

The last sentence in the first paragraph on page A-2 should be changed to read: "TCS was written with a maximum buffer size of 89 , which the implementer may change to match his system's output at the following locations: dimension statement in BUFFPK, A1OUT, and AOUTST and in the code of INITT." Note, however, that it is not recommended that the change be made.

The last sentence in the first paragraph describing ADEIN on page A-3 should be changed to read:
"...and TCS was written with a maximum input buffer size of 89 , the implementer should change the number 89 to match his system's input buffer size in the dimension and data statements of these subroutines: TINSTR, A1IN and AINST."

Again, it is not recommended that this change be made.

The flowchart on page A-8 should show that FINITT does not call TSEND or ALFMOD, but does call MOVABS and ANMODE.

Again, note that the above changes apply only to TCS implementations for IBM 360/370. They do not effect other versions of TCS.

		MANUAL CHANGEINFORMATION		
1 -		PRODUCT PLOT 10 4010A01	CHANGE REFERENCE	C2/379
committ	lence	($\mathrm{A} 10, \mathrm{Al1}, \mathrm{A12)}$	DATE	3-12-79
CHANGE:		070-2242-00 DESCRIPTION		

TEXT ADDITION

AFTER APPENDIX A

ADD:

SUBROUTINES WHICH RETAIN HISTORY

The following list shows variables within the code which retain the original values through subsequent executions.

SUBROUTINE	$\frac{\text { VARIABLES }}{\text { IDREW }}$
XYCWUT	LEWOUT
BUFFPK	NODATA
	ITEMP
	KSYWCS

[^0]: *Applies only to the 4014 or 4015 Terminal with Enhanced Graphics Module.
 ** Does not apply to the 4006 Terminal. See the Appendix for more information

[^1]: *Applies only to the 4014 or 4015 Terminal with Enhanced Graphics Module.

[^2]: *Supplied by Tektronix for TSO, PDP-11 and CDC-Synchronous versions of TCS.
 **ADE (ASCII Decimal Equivalent) is the ASCII character set represented in integers from 0 to 127. See the USASCII Functions Charts at the end of this manual.

[^3]: *Supplied by Tektronix for TSO, PDP-11 and CDC-Synchronous versions of TCS.

[^4]: *This routine applies only to the $4014 / 4015$ Terminals with Enhanced Graphics Module.

[^5]: *Least Significant Bit(Y,X); this bit is used for 12-bit (4096) addressing on the 4014 or 4015 Terminal with the Enhanced Graphics Module. For other terminals or for regular 10-bit (1024) addressing, this character is ignored.

[^6]: *132 on TSO and PDP-11 systems; 80 on CDC-Synchronous systems.

[^7]: *A dummy routine replacement is required.

[^8]: *If you have the four hardware dash types of the Enhanced Graphics Module, you may wish to eliminate software dashes to save storage.

[^9]: *Not required if Feature 6 has been eliminated.

[^10]: *Not required if Feature 6 has been eliminated.

[^11]: * Not used in the TSO version of TCS.

[^12]: *RUBOUT (ADE 127_{10}) is used by TCS as a graphic addressing character, so if it cannot be handled, whenever 127_{10} is found in IARRAY change it to 12610 .

[^13]: *Trailing blanks, including any spaces entered from the keyboard immediately before the CR, are not meaningful and should not be included when computing NCHAR. TINSTR adds trailing blanks as needed when the array it is filling is longer than NCHAR.

[^14]: * For a complete list, see Section 2

