
This manual supports the
following TEKTRONIX products:

8300E04 Option 01
8300P04
8002F18
8002F33
8001F03

Tektronix, Inc.
P.O. Box 500
Beaverton, Oregon 97077

070-3964-01
Product Group 61

COMMITTED TO EXCELLENCE

This manual supports a software/firmware
module that is compatible with:

DOS/50 Version 2 (8550)
OS/40 Version 1 (8540)

PLEASE CHECK FOR CHANGE INFORMATION
AT THE REAR OF THIS MANUAL

8550
MODULAR MDL SERIES

zao
EMULATOR SPECIFICS

USERS MANUAL

INSTRUCTION MANUAL

Serial Number _____ _

First Printing SEP 1981
Revised FEB 1984

LIMITED RIGHTS LEGEND

Soft\/\/are License l'Jo. ______________ _

Contractor: Tektronix, Inc.
Explanation of Limited Rights Data Identification Method
Used: Entire document subject to limited rights.

Those portions of this technical data indicated as limited rights data shall not,
without the written permission of the above Tektronix, be either (a) used,
released or disclosed in whole or in part outside the Customer, (b) used in whole
or in part by the Customer for manufacture or, in the case of computer software
documentation, for preparing the same or similar computer software, or (c) used
by a party other than the Customer, except for: (i) emergency repair or overhaul
work only, by or for the Customer, where the item or process concerned is not
otherwise reasonably available to enable timely performance of the work,
provided that the release or disclosure hereof outside the Customer shall be
made subject to a prohibition against further use, release or disclosure; or (ii)
release to a foreign government, as the interest of the United States may
require, only for information or evaluation within such government or for
emergency repair or overhaul work by or for such government under the
conditions of (i) above. This legend, together with the indications of the portions
of this data which are subject to such limitations shall be included on any
reproduction hereof which includes any part of the portions subject to such
limitations.

RESTRICTED RIGHTS IN SOFTWARE

The software described in this document is licensed software and subject to
restricted rights. The software may be used with the computer for which or with
which it was acquired. The software may be used with a backup computer if the
computer for which or with which it was acquired is inoperative. The software
may be copied for archive or backup purposes. The software may be modified or
combined with other software, subject to the provision that those portions of the
derivative software incorporating restricted rights software are subject to the
same restricted rights.

Copyrightc 1981, 1982 Tektronix, Inc. All rights reserved. Contents of this publication
may not be reproduced in any form without the written permission of Tektronix, Inc.

Products of Tektronix, Inc. and its subsidiaries are covered by U.S. and foreign patents
and/or pending patents.

~
TEKTRONIX, TEK, SCOPE-MOBILE, and ~ are registered trademarks of Tektronix,
Inc. TELEQUIPMENT is a registered trademark of Tektronix U.K. Limited.

Printed in U.S.A. Specification and price change privileges are reserved.

Printed in U.S.A. Specification and price change privileges are reserved.

lao Emulator Specifics Users

Section 7C

CONTENTS

zao EMULATOR SPECIFICS

Introduction .. .

General Information .. .
Emulator Hardware Configuration .. .
Microprocessors Supported .. .
Emulation Modes
Z80A Clock Rate
Z80B Clock Rate
Symbolic Debug

Emulator-Specific Commands, Parameters, and Displays
SEL-Selecting an Emulator
Byte/Word Parameter
MAP-Mapping Memory .. .
Setting Breakpoints
Memory Allocation Commands .. .
Port Commands
CONS Command Modes .. .
Register Designators .. .
BUS and EVE-Bus Operation Designators
OS-Sample Z80 Emulator Status Display .. .
RESET-Resetting Z80 Emulator Status .. .
DI-Sample Z80 Disassembled Code .. .
TRA-Sample Z80 TRAce Display

Service Calls
SVCs in Modes 1 and 2
SRB Format .. .
SVC Demonstration .. .

laO Special Considerations

laOA Jumpers .. .
Z80A Emulator Board
Z80A Driver/Receiver Board .. .
laOe Jumpers .. .
Z80B Emulator Board
Z80B Driver/Receiver Board .. .
laOA Emulator Timing .. .

Reducing Delay Through The Prototype Control Probe (laOe Only)

laOe Emulator Timing .. .

laOA Probe/Prototype Interface Diagram

laOe Probe/Prototype Interface Diagram .. .

REV AUG 1982

Page
7C-1

7C-1
7C-1
7C-1
7C-1
7C-2
7C-2
7C-2

7C-2
7C-2
7C-2
7C-2
7C-3
7C-3
7C-3
7C-3
7C-3
7C-5
7C-6
7C-6
7C-7
7C-7

7C-9
7C-9
7C-9
7C-9

7C-13

7C-13
7C-13
7C-13
7C-14
7C-14
7e-15
7C-16

7C-16

7C-19

7C-22

7C-22

7C-i

zao Emulator Specifics Users

7C-ii

CONTENTS (cont)

Installing Your zao Emulator Software .. .
8540 Firmware Installation Procedure .. .
8550 Software Installation Procedure

zao Demonstation Run
Introduction
Examine the Demonstration Program
Assemble and Load the Demonstration Program
Case 1: Assemble and Load on the 8550
Case 2: Assemble on the 8560; Download to the 8540
Case 3: Download from Your Host to the 8540
Case 4: Patch the Program into Memory
Run the Demonstration Program .. .
Monitor Program Execution .. .
Summary of Z80 Emulator Demonstration Run

Fig.
No.
7C-1.
7C-2.
7C-3.
7C-4.
7C-5.
7C-6.
7C-7.
7C-8.
7C-9.
7C-10.

Table
No.
7C-1.
7C-2.
7C-3.
7C-4.
7C-5.
7C-6.

ILLUSTRATIONS

Flag register bit configuration in the Z80 emulator
Z80 SVC demonstration program listing , .. , ... "',. . .. ,' .. ' ,.",
Connecting the prototype clock input directly to the Prototype Control Probe
Z80 microprocessor bus timing
Siock diagram of Z80A emulator/prototype interface
Siock diagram of Z80S emulator/prototype interface
System configurations .. .
Demonstration program .. .
Demonstration program: Extended Tekhex format
Host computer commands for preparing demonstration program

TABLES

Z80 Registers and Flags .. .
Z80 Sus Operation Designators .. .
Z80 Service Calls
Z80A Emulator/Z80A Microprocessor Timing Differences
Z80S Emulator/Z80S Microprocessor Timing Differences
Sasic 8560 Editing Commands

7C-25
7C-25
7C-25

7C-29
7C-29
7C-32
7C-33
7C-33
7C-37
7C-42
7C-44
7C-46
7C-49
7C-54

Page

7C-5
7C-11
7C-16
7C-21
7C-23
7C-24
7C-29
7C-30
7C-31
7C-43

Page

7C-4
7C-5
7C-10
7C-17
7C-19
7C-39

REV AUG 1982

Section 7C
zao EMULATOR SPECIFICS

INTRODUCTION

This section supports the Z80A Emulator Processor and Prototype Control Probe as well as the newer Z808
Emuiator Processor and Probe. While the Z80A Emulator Processor can emulate only Z80 and Z80A
microprocessors, the Z808 Emulator Processor can emulate the Z80, Z80A, and Z808 microprocessors.

In this section, the term "Z80 emulator" is used in presenting information that applies to both the older Z80A
emulator and the newer Z808 emulator. The term "Z80A emulator" is used for information that applies only
to the Z80A Emulator Processor. The term "Z808 emulator" is used for information that applies only to the
newer Z808 Emulator Processor.

This Emulator Specifics section is to be inserted into Section 7 of the 8550 System Users Manual (DOS/50
Version 2) or the 8540 System Users Manual. It explains the features of the 8550 and 8540 systems that are
unique to the Z80A and Z808 Emulators. Throughout the section, "your System Users Manual" refers to the
8550 System Users Manual or 8540 System Users Manual. The Z80 Demonstration Run is designed to be
used with Section 1 (the Learning Guide) of your System Users Manual; the rest of this section contains
reference material.

GENERAL INFORMATION

Emulator Hardware Configuration

Throughout this Emulator Specifics section, the term "Z80 emulator" refers to a Z80 Emulator Processor
boad configured with a Z80 Prototype Control Probe or mobile microprocessor. In emulation Mode 0, the
mobile microprocessor may be inserted directly into the emulator board. In Modes 1 and 2, the mobile
microprocessor must be installed in the prototype control probe and the prototype control probe must be
connected to both the emulator and your prototype. For instruction on installing the emulator board, mobile
microprocessor, and probe, refer to the Z80 Emulator Processor and Prototype Control Probe Installation
Service Manual.

Microprocessors Supported

The Z80A emulator emUlates the Zilog, Z80 and Z80A microprocessors. The Z808 emulator emulates the
Zilog Z80, Z80A, and Z808 microprocessors.

Emulation Modes

The Z80 emulator supports Emulation Modes 0, 1, and 2, as described in the Emulation section of your
System Users Manual. The Z80 emulator supports service calls (SVCs) in all three modes.

REV AUG 1982 7C-1

General Information zao Emulator Specifics Users

7C-2

zaOA Clock Rate

In Mode 0 emulation, the emulator clock rate is 2 or 4 MHz, depending on the setting of jumper J1. In Mode
1 emulation, the maximum recommended rate for the prototype clock is 4 MHz.

zaOB Clock Rate

In Mode 0 emulation, the emulator clock rate is 4 or 6 MHz, depending on the setting of jumper J3002. In
Mode 1 emulation, the clock rate of 6 MHz may be used only with 8500-series systems. At this 6 MHz rate,
one wait state will be inserted.

NOTE

When used with the Trigger- Trace Analyzer (TTA) or the Real-Time Prototype Analyzer (RTPA), the
ZaOB Emulator Processor provides an output that is one-half of the emulator operating clock rate.
Therefore, the clock count stored in the TTA or RTPA buffers will be one-half of the actual emulator
clock count.

Symbolic Debug

The l80 emulator supports the use of symbolic debug.

EMULATOR-SPECIFIC COMMANDS, PARAMETERS, AND
DISPLAYS

SEL-Selecting an Emulator

The SEL (SELect) command allows you to select the emulator you want to use with your system. The
following command line selects the l80 emulator and assembler:

> SEL zao

Byte/Word Parameter

Several commands offer you the choice of operating on memory on a byte-oriented or word-oriented basis.
In affected commands, this choice is represented by the -B or -W parameter. For the l80 emulator, the
default value is -B (Byte).

MAP-Mapping Memory

The l80 addresses a 64 K memory space, arranged in 512 blocks of 128 bytes each. The MAP command
enables you to assign blocks of memory to either program memory or prototype memory, and to designate
blocks of program memory as read-only. Refer to the Command Dictionary for details on the syntax. param
eters. and use of the MAP command.

REV AUG 1982

zao Emulator Specifics Users Commands and Displays

Setting Breakpoints

The zao emulator allows you to specify up to two breakpoints with the BK command.

Memory Allocation Commands

The Memory Allocation Controller (MAC) option cannot be used with the zao emulator. The zao does not
use the MEMSP command, and does not support memory space qualifiers or expressions. The zao emula
tor supports the AL (Allocate) command, as described in the Command Dictionary of your System Users
Manual. The DEAL, MEM, and NOMEM commands are not supported.

Port Commands

The zao emulator does not support the RD or WRT commands.

CONS Command Modes

The zao emulator supports the FET mode of the CONS command of the Trigger Trace Analyzer. The zao
does not support the EMU mode of the CONS command.

Register Designators

Table 7C-1 alphabetically lists the symbols used by DOS/50 and OS/40 to designate the registers and flags
used by the zao. The table provides the following information for each symbol:

• a description of the register or flag that the symbol represents;

• the size of the register or flag;

• the value assigned to the register or flag by the RESET command;

• whether the register or flag can be assigned a value by the S (Set) command.

Figure 7C-1 shows the contents of the zao flag register.

REV AUG 1982 7C-3

Commands and Displays zao Emulator Specifics Users

Table 7C-1
zao Registers and Flags

Size in Value After Alterable
Bits RESETa by S

Symbol Description Command?

A Register A 8 NC yes
AA Alternate register A 8 NC yes
AB Alternate register B 8 NC yes
ABC Alternate registers B & C 16 NC yes
AC Alternate register C 8 NC yes
AD Alternate register D 8 NC yes
ADE Alternate registers D & E 16 NC yes
AE Alternate register E 8 NC yes
AF Alternate flag register 8 NC yes
AH Alternate register H 8 NC yes
AHL Alternate registers H & L 16 NC yes
AL Alternate register L 8 NC yes
B Register B 8 NC yes
BC Registers B & C 16 NC yes
C Register C 8 NC yes
CY Carry flag b 1 NC yes
D Register D 8 NC yes
DE Registers D & E 16 NC yes
E Register E 8 NC yes
F Flag register b 8 NC yes
H Register H 8 NC yes
HC Auxiliary carry flag b 1 NC yes
HL Registers H & L 16 NC yes

Interrupt page address register 8 00 yes
IFF1 Interrupt flip-flop 1 0 yes C

IFF2 Interrupt flip-flop 2 0 yes C

1M Interrupt mode 0 yes
IX Index register X 16 NC yes
IY Index register Y 16 NC yes
L Register L 8 NC yes
N Subtract flag b NC yes
a Overflow flag b NC yes
P Parity flag b 1 NC yes
PC Program counter 16 0000 no
R Memory refresh register 8 00 yes
S Sign flag b 1 NC yes
SP Stack pointer 16 NC yes
Z Zero flag b NC yes

a NC = not changed by RESET

b The flag register is illustrated in Fig. 7C-1.

C The S command performed on either IFF1 or IFF2 sets both.

7C-4 REV AUG 1982

zao Emulator Specifics Users Commands and Displays

"--- carry bit = 1 if carry

"-----subtract bit = 1 if subtract

'--------- parity / overflow bit = 1 if even
parity or overflow condition

L-_________ not used

'--___________ auxiliary-carry bit = 1
if auxiliary-carry

'--------------- not used

L-_______________ zero bit = 1 if zero

L...-_________________ sign bit = 1 if negative

Fig. 7C-1. Flag register bit configuration in the zao emulator.

BUS and EVE-Bus Operation Designators

3964-1

Table 7C-2 lists the zao bus operation designators recognized by the Trigger Trace Analyzer's BUS com
mand, and for the B parameter of the EVE command.

REV AUG 1982

Symbol

CLR
F
NF

M

RD
WT

I

Table 7C-2
zao Bus Operation Designators

Bus Operation Type

All types
Instruction Fetches

Non-fetches

Memory accesses
Reads

Writes

I/O operations

7C-S

Commands and Displays zao Emulator Specifics Users

7C-6

OS-Sample ZSO Emulator Status Display

The DS (Display Status) command displays the status and register contents of the zao. All numbers in the
OS display line are hexadecimal.

Here is an example of a OS display line for the zao emulator:
> DS

PC=OOOO SP=5645
1X=llll 1Y=2222

F=43 A=C3 B=02 C=04 D=04 E=24 H=Ol 1=32
AF=OO AA=OO AB=20 AC=30 AD=40 AE=50 AH=60 A1=70

1FF1=0 1FF2=0 1M=O 1=00 R=OO

Table 7C-1 explains the symbols displayed by the OS command.

For the zao emulator, the short and long forms of the OS display are the same: OS gives the same display
as OS -l.

RESET-Resetting ZSO Emulator Status

The RESET command produces a hardware reset signal to the zao microprocessor. The zao registers are
reset to the values indicated in Table 7C-1.

Example. Suppose the DS command returns the following emulation status:

> DS

PC=OlOO SP=5645 F=43 A=C3 B=02 C=04 D=04 E=24 H=Ol 1=32
1X=llll 1Y=2222 AF=OO AA=OO AB=20 AC=30 AD=40 AE=50 AH=60 A1=70
1FF1=1 1FF2=1 1M=l 1=01 R=Ol

Enter the RESET command. Then check the status again with the OS command:
> RESET

> DS

t
PC=OOOO SP=5645 F=43 A=C3 B=02 C=04 D=04 E=24 H=Ol 1=32
1X=llll 1Y=2222 AF=OO AA=OO AB=20 AC=30 AD=40 AE=50 AH=60 A1=70
1FF1=0 1FF2=0 1M=O 1=00 R=OO

t t t t
The arrows show the changed registers.

REV AUG 1982

zao Emulator Specifics Users Commands and Displays

DI-Sample ZSO Disassembled Code

The 01 (Disassemble) command translates object code in memory into assembly language instructions. 01
displays object code, assembly language mnemonics, and operands. Use the 01 command to verify that the
values in memory correspond to the assembly language instructions of your program.

Here is an example of zao 01 command output:
> DI 100 10E

LOC
000100
000103
000105
000106
000107
000108
000109
00010C
00010E

•

INST
210005
0605
AF
86
23
05
C20601
D3F7
00
1

MNEM
LD
LD
XOR
ADD
INC
DEC
JP
OUT
NOP

1
1
1
1
1
1
1
1
1
1

OPER
HL,0500
B,05
A
A, (HL)
HL
B
NZ,0106
(F7) ,A

• I
1 1------ operand (s): address, register, or data

being operated on

1 ______________ instruction mnemonic

--------------------- machine language instruction

.--------------------------- address of the instruction

TRA-Sample ZSO TRAce Display

The TRA (TRAce) command selects the range and type of instructions to be displayed as your program
executes. With the zao emulator, the TRA -N format is the same as the TRA -L format.

NOTE

When TRAce conditions have been set, the emulator runs at slower than normal processing speeds
and RTPA breakpoints are suppressed.

REV AUG 1982 7C-7

Commands and Displays

7C-8

Here is an example of zao TRA command output:
> TRA ALL
> G 100

LOC INST
000100 210005
000103 0605
000105 AF
000106 86
000107 23
000108 05
000109 C20601
000106 86
000107 23
000108 05
000109 C20601

MNEM
I-,D

LD
XOR
ADD
INC
DEC
JP
ADD
INC
DEC
JP

I
I
I

OPER
HL,0500
B,05
A
A, (HL)
HL
B
NZ,0106
A, (HL)
HL
B
NZ,0106

I
I

SP F A B C D E
0000 06 OF 01 00 00 00
0000 06 OF 05 00 00 00
0000 46 00 05 00 00 00
0000 02 01 05 00 00 00
0000 02 01 05 00 00 00
0000 12 01 04 00 00 00
0000 12 01 04 00 00 00
0000 06 03 04 00 00 00
0000 06 03 04 00 00 00
0000 16 03 03 00 00 00
0000 16 03 03 00 00 00

i
I
I
I
I
I
I

A C 0 E I
I
I contents of registers
I
I
I
I

---- flag register contents I
I
I
I
L _______ . stack pointer contents

'-------------------operand of the instruction

H
05
05
05
05
05
05
05
05
05
05
05

H

I
I
I
I
I
I
I

'------------------------- mnemonic of the instruction

I
I
I
I
I
I

-------------------------------- machine language instruction

-- address of the instruction

zao Emuiator Specifics Users

L IX IY
00 0000 0000
00 0000 0000
00 0000 0000
00 0000 0000
01 0000 0000
01 0000 0000
01 0000 0000
01 0000 0000
02 0000 0000
02 0000 0000
02 0000 0000

I
I
I
I
index

register
y

-----index

register

X

REV AUG 1982

zao Emulator Specifics Users Service Calls

SERVICE CALLS

Service calls (SVCs) enable your program to use many system capabilities of your 8540, 8550, or 8560.

An SVC is invoked with a Z80 OUT instruction. The operand of the OUT instruction directs the system to a
specified memory address called the SRB pointer (which pOints to the SRB-the Service Request Block).
The SRB pOinter tells the system where to find the data (stored in the SRB) that informs the system which
function to perform. Refer to the Service Calls section of your System Users Manual for an explanation of
service calls, service request blocks, and SRB pOinters.

Your program can point to eight SRBs at anyone time. As your program executes, it can store new
addresses in the SRB vector. Table 7C-3 shows the default addresses for the eight SRB pOinters. These
addresses and their associated port numbers can be altered with the SVC command to suit your program
requirements. See the Command Dictionary section of your System Users Manual for syntax and use of the
SVC command.

SVCs in Modes 1 and 2

The Z80 emulator supports SVCs in Emulation Modes 1 and 2, as described in the Service Calls section of
your System Users Manual. In Mode 2, all parts of the SVC must reside in prototype memory.

NOTE

In Mode 0 and 1, use one Nap instruction immediately following the OUT instruction. In Mode 2, use
two Nap instructions immediately following the OUT instruction; this allows time for the SVC to occur.

SRB Format

The Z80 emulator uses the SAS (Small Address Space) format for SRBs and the SRB vector. This format is
described in the Service Calls section of your System Users Manual.

SVC Demonstration

Figure 7C-2 lists a Z80 program that uses four SVC functions: Assign Channel, Read ASCII, Write ASCII,
and Abort. The program's algorithm is explained in the Service Calls section of your System Users Manual,
which demonstrates a version of the program written in 8085A assembly language. You can perform a
parallel demonstration with the Z80 emulator and Z80 A Series Assembler using the program in Fig. 7C-2.

REV AUG 1982 7C-9

Service Calls zao Emulator Specifics Users

7C-10

SVC Number

1

2

3

4

5

6

7

8

Table 7C-3
ZSO Service Calls

zao Service Calls

mnemonic8 hexadecimal

OUT (OF7H),A Nap D3F700

OUT (OF6H),A Nap D3F600

OUT (OF5H),A Nap D3F500

OUT (OF4H),A Nap D3F400

OUT (OF3H),A Nap D3F300

OUT (OF2H),A Nap D3F2 QO

OUT (OF1 H),A Nap D3F1 00

OUT (OFOH),A Nap D3FO 00

Default Address of

SRB pointer

40, 41

42,43

44,45

46,47

48,49

4A,48

4C,4D

4E, 4F

ayou can use an IN instruction (opcode DB) in place of each OUT instruction given in Table 7C-3.

NOTE

The program shown in Fig. 7C-2 is written for an A Series assembler (as provided for the 8550). To
make this acceptable for a B Series assembler (as provided for the 8560), change each double quote
t) to a single quote (J This program shows the use of four service calls. The program's algorithm is
explained in the Service Calls section of your System Users Manual. The program accepts a line of
ASCII characters from the system terminal; then, when it receives a RETURN character, the program
writes the line to the line printer and accepts another line. (On the 8550, output to the line printer is
buffered. No text is printed until the line printer buffer in the 8501 becomes full or the program ends.)
To terminate the program, enter a CTRL-Z while the program is waiting for input.

REV AUG 1982

zao Emulator Specifics Users

REV AUG 1982

SSSSS V V CCCCC
S V V C
SSSSS V V C DEMONSTRATION. Z80 EMULATOR

S V V C
SSSSS V CCCCC

ORG 40H ; BEGINNING OF SRB VECTOR
BYTE HI(SRB1FN),LO(SRB1FN)
BYTE HI(SRB2FN),LO(SRB2FN)
BYTE HI(SRB3FN),LO(SRB3FN)
BYTE HI(SRB4FN);10(SRB4FN)
BYTE HI(SRB5FN),LO(SRB5FN)
END OF SRB VECTOR
ORG 100H ; SET UP SRB AREAS
SRB1 ASSIGN "CONI" TO CHANNEL 0

SRB1FN BYTE 10H ASSIGN
BYTE OOH TO CHANNEL 0

SRB1ST BLOCK 01H STATUS RETURNED HERE

SRB2FN

SRB2ST

SRB3FN

SRB3ST

SRB4FN

SRB4ST

BLOCK 02H BYTES 4 AND 5 NOT USED
BYTE 05H LENGTH OF "CONI"+<CR)
BYTE HI(CONI) POINTER TO
B YT E L 0 (CON I) " CON I " + < C R)
END OF SRB1
SRB2
BYTE
BYTE
BLOCK
BLOCK
BYTE
BYTE
BYTE
END OF
SRB3
BYTE
BYTE
BLOCK
BLOCK
BLOCK
BYTE
BYTE
BYTE
END OF
SRB4
BYTE
BYTE
BLOCK
BLOCK
BLOCK

ASSIGN "LPT"
1 OH

TO CHANNEL 1

01H
01H
02H
04H
HI (LPT)
LO (LPT)

SRB2
READ ASCII LINE

01H
OOH
01H
01H
01H
OOH
HI(BUFFER)
LO(BUFFER)

SRB3
WRITE ASCII LINE

02H
01H
01H
01H
01H

BYTE OOH
BYTE HI(BUFFER)
BYTE LO(BUFFER)
END OF SRB4

ASSIGN
TO CHANNEL
STATUS RETURNED HERE
BYTES 4 AND 5 NOT USED
LENGTH OF "LPT"+<CR)
POINTER TO
"LPT "+ <CR)

FROM CONI (CHANNEL 0)
READ ASCII
FROM CHANNEL 0
STATUS RETURNED HERE
BYTE 4 NOT USED
BYTE COUNT RETURNED HERE
256 BYTES IN OUR BUFFER
POINTER TO
OUR BUFFER

TO LPT (CHANNEL 1)
WRITE ASCII
TO CHANNEL 1
STATUS RETURNED HERE
BYTE 4 NOT USED
BYTE COUNT RETURNED HERE
256 BYTES IN OUR BUFFER
POINTER TO
OUR BUFFER

Fig. 7C-2. ZSO SVC demonstration program listing (part 1 of 2).

Service Calls

7C-11

Service Calls zao Emulator Specifics Users

7C-12

SRB5 = ABORT (CLOSE ALL CHANNELS AND TERMINATE)
SRB5FN BYTE 1FH ABORT

BLOCK 07H BYTES 2 THROUGH 8 NOT USED

BUFFER
CONI

LPT

START

END OF SRB5

BLOCK
ASCII
BYTE

100H
"CONI"
ODH

ASCII "LPT"
BYTE ODH
END OF DATA DEFINITIONS

BEGINNING OF EXECUTABLE
ORG 1000H
OUT (OF7H), A
NOP
LD A,(SRB1ST)
CP OOH
JP NZ,ABORT
OUT (OF6H),A
NOP
LD A,(SRB2ST)
CP OOH
JP

LOOP OUT
NZ,ABORT
(OF 5H) , A

NOP
LD
CP
JP
OUT
NOP
LD
CP
JP

ABORT OUT
Nap
H.t..Lr:!:
END

A" (SRB3ST)
OOH
NZ,ABORT
(OF4H) ,A

A,(SRB4ST)
OOH
Z,LOOP

(OF3H) ,A

START

OUR I/O AREA
ASCII OF "CONI"
+ <CR>
ASCII OF "LPT"
+ <CR>

CODE
ENTRY POINT INTO PROGRAM
CALL SVC1
TO ASSIGN "CONI"
CHECK THE STATUS TO SEE
IF ALL WENT WELL
NO? STOP EVERYTHING
YES? CALL SVC2
TO ASSIGN "LPT"
CHECK THE STATUS TO SEE
IF ALL WENT WELL
NO? STOP EVERYTHING
CALL SVC3
TO READ A "CONI" LINE
INTO "BUFFER"
ALL OK?
NO? STOP EVERYTHING
CALL SVC4
TO WRITE TO "LPT"
CHECK TO SEE IF
ALL IS OK
YES? BACK TO READ ANOTHER LINE
NO? FALL THROUGH TO TERMINATION
CALL SVC5
TO DO THE ABORT
SHOULD NEVER REACH HERE

Fig. 7C-2. zao SVC demonstration program listing (part 2 of 2).

REV FEB 1983

ZSO Emulator Specifics Users Special Considerations

zao SPECIAL CONSIDERATIONS

The zao emulator behaves like the zao microprocessor, with the following exceptions

• Interrupts are detected only when user code is being executed.

• When TRAce is enabled, there is a maximum 153 ns delay on the IORO signal.

• During TRAce sequences, the emulator performs the auxiliary memory refresh operations between exe
cution of user code instructions.

Z80A JUMPERS

Z80A Emulator Board

The ZaOA Emulator board contains two jumpers, J1 and J3. Jumper J1 selects between 2 MHz and 4 MHz
as the system clock speed for Emulation Mode O. Jumper J3 is used to delete wait states in Emulation Mode
1.

Z80A Driver/Receiver Board

The ZaOA Driver/Receiver contains two jumpers, J1041 and J3051. In Emulation Mode 1, MREO is unavail
able to the prototype when jumper J1041 is in the right-most position. When J1041 is in the left-most
position, MREQ is available to the prototype whenever HOLDA is not asserted.

When jumper J3051 is in the right-most position, data fetched from program memory (in Mode 1) does not
appear at the probe tip. When jumper J3051 is in the left-most position, data from program memory is driven
to the prototype. If jumper J3051 is in the left-most position, jumper J1041 must also be in the left-most
position.

NOTE

With jumper J3051 in the left-most position, prototype bus contentions may occur.

Both jumpers J1041 and J3051 are shipped in the right-most position.

REV AUG 1982 7C-13

Special Considerations ZSO Emulator Specifics Users

7C-14

zaoe JUMPERS

zaOB Emulator Board

The Z80B emulator board contains four jumpers: J3003, J1059, J1 061, and J1 081.

Jumper J3003 selects a clock speed of either 4 MHz or 6 MHz for Emulation Mode O. A clock speed of
6 MHz must not be used with a 8002A system. J1059 is placed in the normal position when the Z80B
processor is in interrupt modes 1 and 2 or mode 0 single-byte vectors.

J1059 is placed in the 1M 0 MULTI position when the processor is in interrupt Mode 0 and there is a
possibility of multi-byte instruction vectors. In this position, the interrupt data is gated in from the probe tip
by the INTA line, which is asserted and disabled by the stack write associated with the interrupt or the next
fetch. The INTA line is asserted during a mask able interrupt shortly after MI and IOREQ are asserted by the
emulator processor. In Emulation Mode 1, and with the stack pOinter mapped to program memory, it is
possible to get an additional short MEMREQ pulse at the probe tip during the first part of the stack write.

J1061 controls the number of wait states. (The function selected with J1 061 may interact with the function
selected by J1082. See the discussion, "4 MHz and Below", later in this section.) J1061 has three positions:

• The WAITS position selects no wait state and should be used only with 8540 and 8550 systems at
4 MHz and below.

• The 85XX position selects one wait state and should be used only with 8540 or 8550 systems.

• The 800X position selects two wait states and should be used only with 8001 or 8002A systems.

J1081 controls the modes of operation under which wait states are inserted. The positions required for
various configurations of the systems are described in the following text.

8001/8002A Systems Jumper Considerations

• When J1081 is in the SLOW position, J1061 shouid be in the 800X position and J3003 should be in the
4 MHz position.

• Two wait states are inserted each time the program memory is accessed, or when running in emulation
Mode 1.

• No wait states are inserted in Mode 2 except when operating in debug mode, or memswitch mode during
the jump sequence. Two wait states are inserted in these modes.

REV AUG 1982

zao Emulator Specifics Users Special Considerations

8500-Series Systems Jumper Considerations

• 4 MHz and Below. With J1081 placed in the SLOW position and J1061 placed in the WAITS position, no
wait states are inserted in Emulation Modes 0, 1, or 2. One wait state is inserted during a forced jump
sequence.

• 4 MHz to 6 MHz. When operating between 4 and 6 MHz, the following wait states may be selected
(J1061 in 85XX position). (If operating is Emulation Mode 1 and all memory is mapped to program
memory, J1 061 can be placed in WAITS position with no wait states in Modes 0, 1, or 2.)

NOTE

You can generate additional wait states in Emulation Mode 1 or 2 when memory is mapped to the
prototype.

1. J1081 in SLOW Position (used with 670-6542-00 and up memory boards).

a. One wait state inserted in Emulation Modes 0 and 1.

b. No wait states inserted in Emulation Mode 2 except during memswitch and forced jump operations
when one wait state is inserted.

2. J1081 in FAST Position (not used with 670-6542-00 and up memory boards).

a. No wait states inserted in Emulation Modes 0 and 2.

b. One wait state is added during forced jump, memswitch operations, and Mode 1.

zaOB Driver/Receiver Board

The Z80S Driver/Receiver contains two jumpers: J1041 and J3051. When memory is mapped to the system
in Emulation Mode 1, MREQ is unavailable to the prototype when J1041 is in the right-most position. When
J1041 is in the left-most position, MREQ is available to the prototype whenever HOLDA is not asserted.

When jumper J3051 is in the right-most position, data fetched from program memory (Mode 1 only) does not
appear at the probe tip. When J3051 is in the left-most position, data from program memory is driven to the
prototype. If jumper J3051 is in the left-hand position, jumper J1 041 must also be in the left-most position.

NOTE

With jumper J3051 in the left-most position, prototype bus contentions may occur.

Soth jumpers J1 041 and J3051 are shipped in the right-most position.

REV AUG 1982 7C-15

Emulator Timing zao Emulator Specifics Users

7C-16

Z80A EMULATOR TIMING

In Emulation Modes 1 and 2, the emulating microprocessor resides in the Prototype Control Probe, and the
signals between the prototype and the emulating microprocessor are buffered. Therefore, some timing
differences exist between the Z80A emulator and a Z80A microprocessor that has been inserted directly into
the prototype. Table 7C-4 lists these differences. Figure 7C-4 is a timing diagram corresponding to the
signals present on the Z80A emulator.

PROTOTYPE
CLOCK -

PROBE INTERFACE
ASSEMBLY

j

CLOCK
LINE

zaOB
PROBE PLUG

PROTOTYPE
CLOCK -

PROBE INTERFACE
ASSEMBLY

j~

CLOCK
LINE

zaOB
PROBE PLUG

ClK
TEST
POINT

USER
~----~-~PROTOTYPE

CIRCUITRY

~k ________ \

(

(ADD THIS LINE)

USER
L--_---JI-...I-~ PROTOTYPE

\ CIRCUITRY

STANDARD
CONFIGURATION

(BREAK THIS LINE)

ADAPTED
CONFIGURATION

Fig. 7C-3. Connecting the prototype clock input directly to the Prototype Control Probe.

REDUCING DELAY THROUGH THE PROTOTYPE CONTROL PROBE
(ZaOB ONLY)

3665-14

The clock test point (on the Driver/Receiver board) can be used to obtain more accurate emulator timing
under worst-case conditions above 4 MHz operation. In order to use the clock test point, you must discon
nect the prototype clock input pin from the prototype logic, and reconnect it directly to the clock test point in
the Prototype Control Probe using a plug-on connector.

The clock test paint is located on the output of U1050 (pin 18 through a 68 n resistor in series), and the
output is within 10 ns of the actual CPU clock. When the prototype clock is connected directly to the clock
source in the Prototype Control Probe, the 20 ns delay through probe circuitry is circumvented. Figure 7C-3
illustrates the standard configuration and the adapted configuration for the prototype circuitry when imple
menting this clock test point user adaptation.

REV AUG 1982

zao Emulator Specifics Users Emulator Timing

Table 7C-4
Representative ZaOA Emulator/ZaOA Microprocessor Timing Differences

Symbol Parameter Processor Emulator Units
Min. Max. Min. Max.

t(c) Clock period 250 a 250 a ns

t(w(1>H)) Clock pulse width, clock high 110 b 110 b ns

t(w(ct>L)) Ciock pulse width, clock low 110 2000 110 2000 ns

t(r, f) Clock rise and fall time 30 c 30 ns

t(D(AD)) Address output delay 110 130 ns

t(F(AD)) Delay to float 85d ns

t(D(D)) Data output delay 150 170 ns

t(F(F)) Delay to float during write cycle 90 110e ns

t(S1>(D)) Data setup time to rising edge of clock 50 70t ns
during M 1 cycle

t(S1>(D)) Data setup time of falling edge of clock 60 80t ns
during M2 to M5

t(DL1>(MR)) MREQ delay from falling edge of clock, 20 85 359 1009 ns
MREQ low

t(DH1>(MR)) MREQ delay from rising edge of clock, 85 1009 ns
MREQ high

t(DH1>(MR)) MREQ delay from falling edge of clock, 85 1009 ns
MREQ high

t(DL1>(IR)) IORQ delay from rising edge of clock, 75 909 ns
IORQ low

t(DL1>(1 R)) IORQ delay from falling edge of clock, 85 1009,h ns
IORQ low

t(DH1>(1 R)) IORQ delay from rising edge of clock, 85 1009 ns
IORQ high

t(DH1>(IR)) IORQ delay from falling edge of clock, 85 1009 ns

IORQ high

t(DL1>(RD)) RD delay from rising edge of clock, 85 959 ns

RD low

t(DL1>(RD)) RD delay from falling edge of clock, 95 1059 ns

RD low

t(DH1>(RD)) RD delay from rising edge of clock, 85 959 ns

I
RD high

I

t(DH1>(RD)) RD delay from falling edge of clock, 85 959 ns

RD high

t(DL1>(WR)) WR delay from rising edge of clock, 65 759 ns

WR low

REV AUG 1982 7C-17

Emulator Timing zao Emulator Specifics Users

7C-18

Table 7C-4 (cont)
Representative ZaOA Emulator/ZaOA Microprocessor Timing Differences

Symbol Parameter Processor Emulator
I Min. Max. Min. Max.

t(DLcf>(WR)) WR delay from falling edge of clock, 80
WRlow

t(DHcf>(WR)) WR delay from falling edge of clock, 80
WR high

t(DL(M1)) M1 delay from rising edge of clock, 100
M110w

t(DH(M1)) M1 delay from rising edge of clock, 100
M1 high

t(DL(RF)) RFSH delay from rising edge of clock, 130
RFSHlow

t(DH(RF)) RFSH delay from rising edge of clock, 120
RFSH high

t(S(WT)) WAIT setup time to falling edge of clock 70

t(D(HT)) HAL T delay time from falling edge of clock 300

t(s(IT)) I NT setup time to rising edge of clock 80

t(s(BO)) BUSRO setup time to rising edge of clock 50

t(DL(BA)) BUSAK delay from rising edge of clock, 100
BUSAK low

t(DH(BA)) BUSAK delay from falling edge of clock, 100
BUSAK high

t(s(RS)) RESET setup time to rising edge of clock 60

t(F(C)) Delay to/from float (MREO, IORO, 80
RD, and WR)

t(mr) M1 stable prior to IORO Interrupt Ack.) I

St(c) = t(w(cf>H» + t(w(cf>L» + t(r) + t(f)
bAlthough static by design, testing guarantees a t(w(4>H» of 200 IlS maximum.

cClock delay from the prototype to emulator CPU is 20 ns maximum.

dDelay measured from BUSAK asserted at CPU.

909

909

1109

1109

1409

1309

90'

3159

125'

85'

1109

1109

105'

1159

h,1

eData will go to an indeterminate state, but will not tri-state unless BUSREQ is asserted.

Units

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

'Timing reference is to CPU clock. To reference prototype clock, subtract propagation delay through
driver/receiver buffers (10 ns maximum).

gTiming reference to CPU clock. To reference prototype clock, add propagation delay through
driver/receiver buffers (20 ns maximum.)

hlORQ can be delayed to maximum of 153 ns during INT A cycles while the Debug TRA MODE is active.

it(mr) = 2 * t(c) + t(w(4>H)) + t(f) -65

CPU timing reference: Mostek Microcomputer Z8D Data Book; Mostek Corporation. (1978).

REV AUG 1982

zao Emulator Specifics Users Emulator Timing

zaoe EMULATOR TIMING

In Emulation Modes 1 and 2, the emulating microprocessor resides in the Prototype Control Probe, and the
signals between the prototype and the emulating microprocessor are buffered. Therefore, some timing
differences exist between the Z80S emulator and a Z80S microprocessor which has been inserted directly
into the prototype. Table 7C-5 lists these differences. Figure 7C-4 is a timing diagram corresponding to the
signals present on the Z80S emulator.

Table 7C-5
Representative zaoe Emulator/ZaOe Microprocessor Timing Differences

Symbol Parameter Processor Emulator Units
Min. Max. Min. Max.

t(c) Clock period 165 a 165 a ns

t(w(<t>H)) Clock pulse width, clock high 70 b 70 b ns

t(w(<t>L)) Clock pulse width, clock low 70 2000 70 2000 ns

t(r,f) Clock rise and fall time 30 c 30 ns

t(D(AD)) Address output delay 80 100 ns

t(F(AD)) Delay to float 33d ns

t(D(D)) Data output delay 120 140 ns

t(F(F)) Delay to float during write cycle 60 80e ns

t(S<t>(D)) Data setup time to rising edge of clock 25 4.5d ns
during M 1 cycle

t(S<f>(D)) Data setup time to falling edge of clock 30 5.0t ns
during M2 to M5

t(DL<t>(MR)) MREO delay from falling edge of clock, 20 60 359 759,h ns
MREO low

t(DH<t>(MR)) MREO delay from rising edge of clock, 60 759 ns
MREO high

t(DH<t>(MR)) MREO delay from falling edge of clock, 60 759 ns
MREO high

t(DL<t>(IR)) IORO delay from rising edge of clock, 60 759,h ns
IORO low

t(DL<t>(1 R)) IORO delay from falling edge of clock, 60 759 ns
IORO low

t(DH<t>(IR)) IORO delay from rising edge of clock, 60 759 ns
IORO high

+/nu ... /IO\\ 1("\0("\ rial",,, frnrn f",lIinn orlno nf "1",,,1.- ~n 7~9 nC' ,
IORO high I I

t(DL<t>(RD)) RD delay from rising edge of clock, RD low 60 709 ns

t(DL<f>(RD)) RD delay from falling edge of clock, RD low 70 809 ns

REV AUG 1982 7C-19

Emulator Timing zao Emulator Specifics Users

7C-20

Table 7C-5 (cont)
Representative zaos Emulator/ZaOS Microprocessor Timing Differences

Symbol Parameter Processor
Min. Max.

t(DH1>(RD)) RD delay from rising edge of clock, RD high 60

t(DH1>(RD)) RD delay from falling edge of clock, RD high 70

t(DL1>(WR)) WR delay from rising edge of clock, WR low 60

t(DL1>(WR}) WR delay from falling edge of clock, WR low 55

t(DH1>(WR)) WR delay from falling edge of clock, WR high 55

t(DL(M1)) M1 delay from rising edge of clock, M1 low 80

t(DH(M1)) M1 delay from rising edge of clock, M1 high 80

t(DL(RF)) RFSH delay from rising edge of clock, 100
RFSH low

t(DH(RF)) RFSH delay from rising edge of clock, 100
RFSH high

t(S(WT)) WAIT setup time to falling edge of clock 40

t(D(HT)) HAL T delay time from falling edge of clock 200

t(s(IT)) INT setup time to rising edge of clock 45

t(s(BO)) BUSRO setup time to rising edge of clock 40

t(DL(BA)) BUSAK delay from rising edge of clock, 65
BUSAK low

t(DH(BA)) BUSAK delay from falling edge of clock, 55
BUSAK high

t(s(RS)) RESET setup time to rising edge of clock 45

t(F(C)) Delay to/from float (MREO, IORO, RD, 60
and WR)

t(mr) M1 stable prior to IORO (Interrupt Ack.) i

8 t(C) = t(w(¢H» + t(w(¢L» + t(r) + t(f).
bAlthough static by design, tesing guarantees a t(w(¢H» of 200 J,LS maximum.

cClock delay from prototype to emulator CPU is 20 ns maximum.

dDelay measured from BUSAK asserted at CPU.

Emulator
Min. Max.

709

809

709

659

659

909

909

1109

1109

60t

2159

90t

75f

759

659

90t

959

i,j

eData will go to an indeterminate state, but will not tri-state unless BUSREO is asserted.

Units

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

'Timing reference is to CPU clock. To reference prototype clock, subtract propagation delay through
Driver/Receiver Buffers (10 ns maximum).

gTiming reference to CPU clock. To reference prototype clock, add propagation delay through Driver/Receiver
Buffers (20 ns maximum).

hEmulation Mode 1, on a memory change from system to prototype, MREO or IORO would be delayed up to 184 ns.

it(mr) = 2 * t(c) + t(w(¢H» + t(f) -50.

jlORO can be delayed a maximum of 153 ns during INTA cycles while the Debug TRA MODE is active.

REV AUG 1982

zao Emulator Specifics Users

AO-A15

AO-A15

{

IN

DO 7 OUT

M1

RFSH

MREO

RD

WR

IORO

RD

WR

WAIT

HALT

INT

NMI

BUSAK

RESET

REV AUG 1982

Emulator Timing

,

tea

ted!

I

"t~ _____ ~ICI
,·-t~
"-rJ

:'1-~
' .. _/

-~

7- 1

,d '" I . 1

y------~~L 5-___ J/~ ¥', __
lDHIBAI

lDlBA ~
[i

II

~~~ 
----~~,--------

Fig. 7C-4. zao microprocessor bus timing. 

7C-21 



Emulator Timing zao Emulator Specifics Users 

7C-22 

zaOA PROBE/PROTOTYPE INTERFACE DIAGRAM 

Figure 7C-5 is a block diagram of the interface between the prototype and the emulating microprocessor in 
the Prototype Control Probe. This figure provides a functional overview of emulator buffering. Signal buffers 
labeled with a generic chip type (i.e., LS244) represent single level buffering. Non-labeled blocks represent 
possible multi-level buffering. A more detailed circuit description can be found in the zao Emulator Processor 
Service Manual. 

zaOB PROBE/PROTOTYPE INTERFACE DIAGRAM 

Figure 7C-6 is a block diagram of the interface between the prototype and the emulating microprocessor in 
the Prototype Control Probe. This figure provides a functional overview of emulator buffering. Signal buffers 
labeled with a generic chip type (i.e., LS241) represent single level buffering. Non-labeled blocks represent 
possible multi-level buffering. A more detailed circuit description can be found in the zao Emulator Processor 
Service Manual. 

REV AUG 1982 



ZSO Emulator Specifics Users 

REV AUG 1982 

AO-A15 

00-07 

Emulator 
Processor 

Control 

Control 

Z80A Microprocessor 

Receiver ..... I-------i 
Logic 

o 
<}-

8T97 

Fig. 7C-S. Block diagram of Z80A emulator/prototype interface. 

Emulator Timing 

AO-A15 

00-07 

Prototype 

HALT 

MREO 

IORO 

RFSH 

M1 

WR 

RQ 

INT 

NMI 

RESET 

BUSRO 

WAIT 

(3564-6}3964 4. I 

7C-23 



Emulator Timing 

7C·24 

AO-A15 

00-07 

Emulator 
Processor 

Control 

zaos Microprocessor 

74LS241 

-<} 

74LS241 

74LS245 

74LS241 

Receiver 
Logic 

o 
-<} 

Clock I Shaping 04 

Logic . 

zao Emulator Specifics Users 

AO-A15 

00-07 

Prototype 

HALT 

MREQ 

IORQ 

RFSH 

M1 

WR 

RQ 

INT 

NMI 

RESET 

BUSRQ 

WAIT 

Fig. 7e-S. Block diagram of ZaOB emulator/prototype interface. 

REV AUG 1982 



zao Emulator Specifics Users Emulator Timing 

INSTALLING YOUR zao EMULATOR SOFTWARE 

8540 FIRMWARE INSTALLATION PROCEDURE 

The ROM devices that contain the control software for your Z80 emulator must be installed in your 8540's 
System ROM board. Refer to your Emulator Installation Manual for instructions on installing these ROM. 

8550 SOFTWARE INSTALLATION PROCEDURE 

Your emulator installation software consists of two disks: 

• a disk that contains emulator control software, which you install onto your DOS/50 system disk so that 
DOSI50 can control your emulator hardware. 

• a disk that contains Z80 emulator diagnostic software. For a Z80A emulator, you must install this disk 
onto your 8550 system diagnostic disk so that diagnostic tests can be run on your emulator as well as 
other 8550 system hardware. For a Z80S emulator, the diagnostic disk can be used directly. 

This subsection describes how to install the emulator control software for a Z80 emulator. 

To complete this installation procedure you need the following items: 

• an 8550 system (with or without a Z80 emulator); 

• a DOSI50 system disk with a write-enable tab over the write-protect slot; 

• a Z80 emulator software installation disk with no write-enable tab; and 

• (for installation of Z80A diagnostic software) an 8550 system diagnostic disk with a write-enable tab over 
the write-protect slot. 

This installation procedure takes about five minutes. 

Start Up and Set the Date 

Turn on your 8550 system. (For start-up instructions, refer to the Learning Guide of your 8550 System Users 
Manual.) Place your system disk in drive 0 and shut the drive 0 door. When you see the> prompt on your 
system terminal, place your installation disk in drive 1 and shut the drive 1 door. 

Use the OAT command to set the date and time. For example, if it is 11 :05 am on October 30; 1983, type: 
> DAT 30-0CT-83!11:05 <CR> 

The system uses this information when it sets the CREATION time attribute of each file copied from your 
installation disk. 

REV AUG 1982 7C-25 



Emulator Timing zao Emulator Specifics Users 

7C-26 

Install the Emulator Control Software 

The command file INST ALL2, which installs the emulator control software, resides on the installation disk. 

NOTE 

If your system disk contains DOS/50 Version 1, use the command file INSTALL instead of INS TA LL2. 

To execute the command file, simply type its filespec: 
>VOL/EMU.Z80/INSTALL2 <CR> 

DOS/50 responds with the following message: 
During this installation procedure, one or more of the 
following messages may appear. IGNORE THESE MESSAGES: 

Error 6E--Directory alteration invalid 
Error 7E--Error in command execution 
Error lD--File not found 

If any OTHER error message appears, see your 
Users Manual for further instructions. 

If no other error message appears, you'll receive a 
message when the installation procedure is complete. 

T, OFF 

In this installation procedure, you may disregard error messages 6E, 7E, and 1 D; these messages have no 
bearing on the success of the installation. However, if a message other than 6E, 7E, or 1 D appears, take the 
following steps: 

1. Make sure you are using the right disks. 

2. Make sure your system disk has a write-enable tab. 

3. Make sure there are at least three files and 20 free blocks on your system disk. 

4. Begin the installation procedure again. 

If the installation procedure fails again, copy down the error message and contact your Tektronix service 
representative. 

The T, OFF command suppresses subsequent output to your system terminal (except error messages) until 
INSTALL2 finishes executing. Within about five minutes, INSTALL2 will finish and your system terminal will 
display the following message: 

Your installation has been successfully completed. 

REV AUG 1982 



zao Emulator Specifics Users Emulator Timing 

Install the Emulator Diagnostic Software 

If you are using a Z80A emulator, you can now install the emulator diagnostic software. If you are using a 
Z80S emulator, you can use the emulator diagnostic software disk as provided. 

Note the Name of Your Diagnostic Disk. In order to install the emulator diagnostic software, you must 
know the name of your 8550 system diagnostic disk. Remove your emulator installation disk from drive 1 
and insert the diagnostic disk. Enter the following command to list the names of the two disks mounted in 
your 8550: 

> ATT IVOL/* WHERE <CR> 
sysvol WHERE=FLXO ~ DOS/50 system disk 
8550DIAGx.x WHERE=FLXl-4-- 8550 system diagnostic disk 

Note the name of your diagnostic disk. (It should be something like 8550DIAG2.0.) 

Insert Your Emulator Installation Disk into Drive 1. INSTALLDIAGS, the command file that installs the 
diagnostics, resides on the installation disk. Remove your diagnostic disk from drive 1 and insert your 
installation disk. Invoke the INSTALLDIAGS command file and pass it the name of your diagnostic disk, 
which you just noted: 

> IVOL/EMU.Z80/INSTALLDIAGS 8550DIAGx.x <CR> 

DOS/SO responds with the following messages: 

T,OFF 
COP: 

DIAGNOSTIC INSTALLATION PROCEDURE 

During this installation procedure, the following error 
message will appear once. IGNORE THIS MESSAGE: 

Error 2A Parameter required 

If any OTHER error message appears or this appears more 
than once, see your Users Manual for further instructions. 

If no other error message appears, you'll receive a message 
when the installation is complete. 

Error 2A Parameter required 

• ----.. Remove the DOS/50 System Disc 
• ----.. Insert the 8550 System Diagnostic Disc 
* ----.. Type CO -A 

SUSP, -A 

» 

REV AUG 1982 7C-27 



Emulator Timing zao Emulator Specifics Users 

7C-28 

Insert Your Diagnostic Disk into Drive O. Remove your 8550 system disk from drive 0 and insert your 8550 
system diagnostic disk, Then enter the command CO -A to continue execution of the command file: 

> co --A <CR> 

After a few minutes, the following message is displayed: 
COP, -BN,/VOL/EMU.Z80/DIAGS/Z80.TST,/VOL/8550DIAGx.x/Z80.TST 
* --.. Remove 8550 System Diagnostic Disc 
* --.. Insert DOS/50 System Disc 
* ~ Press CTRL-C 
* ---.. Type CO -A 

SUSP, --A 

Insert Your DOS/50 System Disk into Drive O. Remove your diagnostic disk from drive 0 and insert your 
DOS/50 system disk. Then enter the CO -A command again: 

> co --A <CR> 

The command file finishes with the following message: 
USER"NO.NAME 
******************************************** 

DIAGNOSTIC INSTALLATION COMPLETE 
******************************************** 
> 

In this installation procedure, error message 2A should appear once. If any other error message appears, 
check your disks and begin the diagnostic installation procedure again. If the installation procedure fails 
again, copy down the error message and contact your Tektronix service representative. 

Once your software is installed, you can: 

• remove your disks and turn off your 8550 system, or 

• install more software, or 

• continue with the Z80 Emulator Demonstration Run that follows in this section. If you do this, you do not 
have to restart the system or reset the date and time. 

NOTE 

At this point No.NAME is the current user. To change the current user back to yourname, enter 
USER"yourname. 

REV AUG 1982 



ZSO Emulator Specifics Users 

zao DEMONSTRATION RUN 

INTRODUCTION 
This demonstration run shows you how to 
load, execute, and monitor a simple l80 as
sembly language program on your 8540 or 
8550. In order to perform this demonstration, 
your laO emulator hardware and control 
software must be installed in your 8540 or 
8550. 

Figure 7C-8 shows the source and object 
code for the demonstration program. 

If you have an 8550 (as in Fig. 7C-7, Case 1), 
the source code and object code for the dem
onstration program are provided on the in
stallation disk that contains your l80 
emulator control software. This demonstra
tion shows you how to assemble the pro
gram on your 8550. (If your system disk does 
not contain a l80 assembler, you will have to 
skip that part of the demonstration.) 

If you have an 8540/8560 system (See Fig. 
7C-7, Case 2), and your 8560 has a l80 as
sembler installed, you can create and assem
ble the program on the 8560 and then 
download it to the 8540. This demonstration 
shows how. 

If you have an 8540 (Fig. 7C-7, Case 3) that 
is connected to a host computer other than 
an 8560, we can't give you a specific list of 
commands for creating and assembling the 
program on your host (since we don't know 
what host you're using). However, Fig. 7C-9 
gives the object code for the program in Ex
tended T ekhex format. You can create the 
Tekhex file using your host's assembler or 
text editor, and then download the file to the 
8540 via the 8540's optional COM interface. 

If none of these cases applies to you, you 
can patch the program into memory by using 

REV AUG 1982 

ZSO Demonstration Run 

the P command. This demonstration shows 
how. 

Once the program is loaded or patched into 
memory, you can execute the program on 
your emulator. 

Case 1:.! 

Case 2: 
must have Z8'O 
assembler 

Case 3: 

? 
• 

8540 + other host 

, Case 4: any other configuration 

39645A 

Fig. 7C-7. System configurations. 

7C-29 



zao Demonstration Run zao Emulator Specifics Users 

01 
02 
0:5 
04 
05 
06 
07 
08 
09 
1 0 
1 1 
1 2 
1 :5 
1 4 
1 5 
1 6 
1 7 
1 5 
1 9 
20 
21 
22 
2:5 

NOTE 

The 8540 commands shown in this demonstration can a/so be used for an 8550 that is connected to 
an 8560 or other host computer. 

;Z80 DEI"IONSTRATION RUN PROGRAM 
SECTION DEMO 
ORG 100H ;START PROGRAN CODE AT ADDRESS 

000100 210005 START LD HL,TABLE ;SET TABLE POINTER 
000103 0605 LD B,TSIZE ;SET PASS COUNTER 
000105 AF XOR A ;CLEAR ACCUMULATOR 
000106 86 LOOP ADD A,(HL) ;ADD BYTE FROM TABLE 
000107 23 INC HL ;POINT TO NEXT BYTE 
000108 05 DEC B ;DECREMENT PASS COUNTER 
000109 C20601 JP NZ,LOOP ;LOOP IF NOT FIVE PASSES YET 
00010C D3F7 OUT (OF7H) ,A ;OTHERWISE CALL EXIT SVC 
00010E 00 NOP TO END PROGRAM EXECUTION 

;SRB POINTER 
ORG 40H ;STORE SRB POINTER AT ADDRESS 

000040 000042 BYTE 00,42H ;POINT TO SRB FOR EXIT SVC 
;SRB FOR EXIT SVC 

000042 1A BYTE 1AH ; 1 AH = FUNCTION CODE FOR EXIT 
;TABLE OF NUI"IBERS TO BE ADDED 
TSIZE EQU :5 ;TABLE SIZE = 5 

ORG 500H ;SET UP TABLE AT ADDRESS SOO 
TABLE BLOCK TSIZE 

LIST DBG 
END START 

I 
I 

source code comments 

+-- object code 

+-------- address 

100 

40 

SVC 

+-------------- source code line number 

Fig. 7C-S. Demonstration program. 

7C-30 REV AUG 1982 



ZSO Emulator Specifics Users ZSO Demonstration Run 

REV AUG 1982 

(A) 

%2769231002100050605AF862305C20601D3F700 
%OE62B24000421A 
%3A3494DEM0010350514LOOP310615START310015TABLE350025TSIZE15 
%098153100 

( B) 

FIRST DATA BLOCK: object code for addresses 100--10E 

header 
: load address 
I I 

object code 
I 

I I I 

%2769231002100050605AF862305C20601D3F700 

SECOND DATA BLOCK: object code for addresses 40--42 

header 
load 

address 
I 
I 

o bj ec t 
code 
I 
I 

=====:---====== 

~~OE62B24000421 A 

SYMBOL BLOC K 

header 
section 

name 
I 
I 

section 
definition 
field 

I 
I 

symbol definition fields 
I 
I 

======-----=:=====-----------------------------------------
%3A3494DEM0010350514LOOP310615START310015TABLE350025TSIZE15 

TERMINATION BLOCK 

header 
transfer 
address 

I 
I 

======----

~b09 81 5 j 1 00 

Fig. 7C-9. Demonstration program: Extended Tekhex format. 

7C-31 



zao Demonstration Run zao Emulator Specifics Users 

7C-32 

Figure 7C-9A shows an Extended Tekhex load module that contains the object code and program symbols 
for the demonstration program. Figure 7C-9B labels the different fields in the message blocks. If you have a 
host computer other than an 8560, you can create this load module and download it to your 8540 or 8550. 

EXAMINE THE DEMONSTRATION PROGRAM 

The demonstration program adds five numbers from a table stored in locations 500 to 504 in program 
memory and leaves the sum in register A. (You will place values in the table later in this demonstration.) The 
8085A emulator demonstration run in the Learning Guide of your System Users Manua! contains a flowchart 
that illustrates the steps of the Program. 

The source code contains two kinds of statements: assembler directives (such as ORG and BYTE) and Z80 
assembly language instructions. The assembler directives are microprocessor-independent and are ex
plained in the 8085A emulator demonstration run. The Z80 assembly language instructions are discussed in 
the following paragraphs. 

Set Table Pointer. The LD HL, TABLE instruction loads the address of the table (500) into the H-L register 
pair. As a result, the H-L pair pOints to the first element of the table. The lable START is used by the END di
rective to specify that the LD HL, TABLE instruction is the first to be executed. 

Set Pass Counter. Register B is used as the pass counter. The LD B, TSIZE instruction loads the value 5 
into register B. This step sets the number of passes to 5. 

Clear Accumulator. The XOR A instruction zeros the accumulator (register A) so you can start adding 
numbers from the table. 

Add Byte from Table. The ADD A, (HL) instruction adds the byte addressed by the H-L register pair into the 
accumulator. The label LOOP represents the address of this instruction; this label is used by the JP NZ 
instruction. 

Point to Next Byte. The INC HL instruction increments the address contained by the H-L register pair; the H
L register pair then pOints to the next byte in the table. For example, the H-L register pair is initialized to 
contain 500. After the INC HL instruction is first executed, the H-L register pair will contain 501, the address 
of the second byte in the table. 

Decrement Pass Counter. The DEC B instruction decrements register B, the pass counter. In this program, 
B is decremented each time a number is added to the accumulator. 

loop If Not Five Passes Yet. The JP NZ, LOOP instruction checks the contents of register B and jumps to 
the LOOP label if B does not contain zero. If B contains zero, the program proceeds to the next instruction, 
OUT (OF7H),A. 

Exit. The OUT (OF7H).A and NOP instructions constitute a service call (SVC) that causes an exit from the 
program. For more information on SVCs, refer to the Service Calls section of your System Users Manual. 

REV AUG 1982 



Z80 Emulator Specifics Users Z80 Demonstration Run 

ASSEMBLE AND LOAD THE DEMONSTRATION PROGRAM 

Now it's time to create the program so you can run it on your emulator. One of the following discussions 
describes the set of steps that is appropriate for your hardware configuration: 

• For 8550 users-Case 1: Assemble and Load on the 8550 

• For 8540/8560 users-Case 2: Assemble on the 8560; Download to the 8540 

• For 8540 users with a host computer other than the 8560-Case 3: Download from Your Host to the 
8540 

• For other hardware configurations-Case 4: Patch the Program into Memory 

Go ahead and work through the discussion that's appropriate for you. Once you've put the program into 
program memory, turn to the heading Run the Demonstration Program, later in this section. 

CASE 1: ASSEMBLE AND LOAD ON THE 8550 

This discussion shown you how to copy the demonstration program from your l80 emulator software 
instal!ation disk, assemble the program, and load it into 8550 program memory. 

Start Up and Log On 

Turn on your 8550 system. (For start-up instructions, refer to the paragraph Start Up the 8550 and Its 
Peripherals in the Learning Guide of your System Users Manual.) Place your system disk in drive 0 and shut 
the drive 0 door. When your system displays the> prompt, place your l80 emulator software installation 
disk in drive 1 and shut the drive 1 door. 

Use the OAT command to set the current date and time. For example, if it is 2:30 pm on October 31, 1981, 
enter the following command line: 

> DAT 31-0CT-81/2:30 PM <CR> 

Use the SEL command to tell DOS/50 to use the assembler and emulator software designed for the l80: 
> SEL Z80 <CR> 

The SEL command automatically sets the emulation mode to O. 

Copy the Demonstration Run Program from the Installation Disk 

Enter the following command lines to create an empty directory called DEMO on your system disk and make 
DEMO the current directory. The BR command creates a brief name, ROOT, to mark the oid current 
directory. At the end of this demonstration, you will return to this ROOT directory and delete the DEMO 
directory and its contents. 

> BR ROOT/USR <CR> 
> CREATE DEMO <CR> 
> USER DEMO <CR> 

REV AUG 1982 7C-33 



zao Demonstration Run zao Emulator Specifics Users 

7C-34 

Now use the COP command to copy all the files in the DEM02 directory on the installation disk to the DEMO 
directory you just created: 

> COP IVOL/EMU.Z80/DEM02/* * <CR> 

Remove your installation disk from drive 1 and put it away. 

Now list the files you have just copied to the current directory: 
> L <CR> 
FILENAME 

ASM 
LOAD 

Files used 124 
Free files 132 
Free blocks 821 
Bad blocks a 

The file named ASM contains the assembly language source code for this demonstration program, and the 
file named LOAD contains the executable object code. This copy of LOAD will be used in the demonstration 
only if you do not have a zao assembler (and thus cannot create your own object file and load file from the 
source file.) 

Examine the Demonstration Program 

Enter the following command line to display the source file ASM on the system terminal: 
> CON ASM <CR> 
;Z80 DEMONSTRATION RUN PROGRAM 

SECTION DEMO 
ORG 

START LD 
LD 
XOR 

LOOP ADD 
INC 
DEC 

100H 
HL,TABLE 
B,TSIZE 
A 

A, (HL) 
HL 
B 

;START PROGRAM CODE AT ADDRESS 100 
;SET TABLE POINTER 
;SET PASS COUNTER 
;CLEAR ACCUMULATOR 
;ADD BYTE FROM TABLE 
;POINT TO NEXT BYTE 
;DECREMENT PASS COUNTER 

JP NZ,LOOP ;LOOP IF NOT FIVE PASSES YET 
OUT (OF7H),A ;OTHERWISE CALL EXIT SVC 
NOP 

;SRB POINTER 
ORG 40H 
BYTE 00,42H 

;SRB FOR EXIT SVC 

;TO END PROGRAM EXECUTION 

;STORE SRB POINTER AT ADDRESS 40 
;POINT TO SRB FOR EXIT SVC 

BYTE lAH ;lAH = FUNCTION CODE FOR EXIT SVC 
;TABLE OF NUMBERS TO BE ADDED 
TSIZE EQU 5 ;TABLE SIZE = 5 

ORG 500H 
TABLE BLOCK TSIZE 

LIST DBG 
END START 

;SET UP TABLE AT ADDRESS 500 

REV AUG 1982 



zao Emulator Specifics Users zao Demonstration Run 

Assemble the Source Code 

If you do not have a Z80 assembler on your system disk, you cannot perform this step, so skip the next four 
commands (ASM, COP, LINK, and L). 

The ASM (AsSeMble) command translates assembly language (source code) into binary machine language 
(object code). The ASM command also creates an assembler listing that can be used to correlate the object 
code with the source code. Enter the following command line to assemble the source code in the file ASM 
and create the listing the object files ASML and OBJ: 

> ASM OBJ ASML ASM <CR> 

• • • 1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 

1 
1 
1- - - - source file 

1- _______ assembler listing file 

1 ____________ object file 

Tektronix 
**** Pass 2 

Z80 ASM Vx.x 

23 Source Lines 23 Assembled Lines xxxxx Bytes Available 
»> No assembly errors detected «< 

Make sure your line printer is turned on and properly connected, then enter the following command to copy 
the assembler listing onto the printer: 

> COP ASML LPT <CR> 

Refer to Fig. 7C-8 for an explanation of the different fields in your assembler listing. For a more detailed 
explanation, consult your Assembler Users Manual. 

Link the Object Code. The linker creates an executable load file from one or more object files. Enter the 
LINK command to invoke the linker: 

> LINK <CR> 
8550 LINKER Vx.x 

Now enter the following linker commands to create a load file called LOAD from your object file, OBJ: 
'LINK OBJ <CR> 
'LOAD LOAD <CR> 
'DEBUG <CR> 
'END <CR> 

The linker commands LINK and LOAD specify the object file and load file, respectively. The DEBUG com
mand causes the linker to pass the program symbols from the object file to the load file, for use in program 
riQhllf"lf"linf"l AftQr \I()II t\lnQ thQ I=Nn ('()mm~nri thQ link~r ~Y~rllt~c::. th~ r()mm~nrlc::. V()ll h~v~ ~nt~r~rl ~nrl th~ 
~~~~~~ ••• ~ .... ,~. ,~~ "r-~ , .. ~ _. -- ~~ ...... _ .. _, •.. ~ ...... ~. ~ .. ~~-.~- •.. - -_ ...... _ .. -~ ,-- .. _. ~ ~ ..• _. --, _ .. - •.. -

following information is displayed:
NO ERRORS NO UNDEFINED SYMBOLS
1 MODULE 1 SECTIONS
TRANSFER ADDRESS IS 0100

REV AUG 1982 7C-35

zao Demonstration Run zao Emulator Specifics Users

7C-36

The files generated by the ASM and LINK commands should now be on your disk. Enter the following
command to list the files in your current directory:

> L <CR>

FILENAME

ASM
LOAD
OBJ
ASML

Files used 126
Free files 130
Free blocks 811
Bad blocks 0

Notice that there are now four files listed in your directory. OBJ and ASML were created by the assembler,
and LOAD was created by the linker.

Load the Program into Memory

Now it's time to load the object code from the load file LOAD into program memory. Once you've loaded the
object code, you execute the program.

Zero Out Memory. Before you load any code, use the F (Fill) command to fill program memory with zeros.
Later. when you examine memory, the zeros make it easy to identify the beginning and end of your code.
(Zeroing out memory has no affect on how the program is loaded.) Enter the following command line to fill
memory addresses 40 to 11 F with zeros:

> F 4('\ 11F 00 <CR>

Check That Memory Was Filled with Zeros. Check the contents of memory with the D (Dump) command.
The D command's display shows the data (in hexadecimal format) and also shows the corresponding ASCII
characters. Display the contents of memory addresses 40 to 11 F with the following command line:

> D 40 11F <CR>
0 1 2 3 4 5 6 7 8 9 A B C D E F

000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 •••••••• e •••••••

000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOAO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOBO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOCO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOEO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOFO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

REV AUG 1982

zao Emulator Specifics Users zao Demonstration Run

Load the Object Code into Memory. Enter the following command line to load the object code for the
demonstration program into program memory:

> LO <LOAD <CR>

I

load file

Load the Program Symbols. The source code for the demonstration program contained the directive LIST
DBG. Because of this directive, the object file contains a jist of the symbols that appeared in the source
code, and the values associated with those symbols. Because you included the DEBUG command when you
invoked the linker, those symbols were passed to the load file. Use the SYMLO command to load those
symbols into the symbol table in 8550 system memory.

> SYMLO-S <LOAD <CR>

The -S option means that both addresses and scalars are loaded. If you omit the -S, only addresses are
loaded. (A scalar is a number that is not an address - for example, TSIZE, the length of the table.)

Later in this demonstration, whenever you use a symbol in a command line, DOS/50 refers to the symbol
table to find the value that the symbol represents.

You've assembled and linked the demonstration program and loaded it into memory. Now skip ahead to the
heading Run the Demonstration Program.

CASE 2: ASSEMBLE ON THE 8560; DOWNLOAD TO THE 8540

This discussion shows you how to create the demonstration program source code and assemble it on the
8560, then download it to 8540 (or 8550) program memory. If your 8560 does not have a Z80 assembler,
you cannot complete this part of the demonstration, so skip ahead to the heading CASE 4: Patch the
Program into Memory.

Start Up and Log In

Start up your 8540, make sure it's in TERM mode, and log in to the 8560 operating system, TNIX. See your
8560 System Users Manual for details.

Since you're logged in to TNIX, your system prompt is $. (Later in the demonstration, we'll show the system
prompt as >, in deference to people using 8540s and 8550s in LOCAL mode.) Every command you enter is
processed by TNIX. If you enter an OS/40 command, TNIX passes it to the 8540.

Enter the following commands to select the Z80 assembler on the 8560 and the Z80 emUlator on the 8540:

$ uP =z80; export UP <CR>

$ sel Z80 <CR>

The sel command automatically sets thE:; emulation mode to O.

REV FEB 1983 7C-37

zao Demonstration Run zao Emulator Specifics Users

Create the Demonstration Program

Enter the following TNIX command lines to create an empty directory called demo and make demo the
working directory. You' /I create your source file and related files in this demo directory.

$ mkdir demo <CR>
$ C'd demo <CR>

Now use the TNIX editor ed, to create the demonstration program source file. The following command line
invokes the editor and specifies that you want to create a file called asm:

$ ed asm <CR>
?asm

The editor responds ?asm to remind you that asm does not already exist. Notice that the editor does not
give a prompt to let you know that it's ready for input.

Enter the Text. Now enter the editor command a (append text) and type in the program. Use the BACK
SPACE key to erase any typing mistakes.

a <CR>
column column column

8 6 24

;Z80 DEJONSTRATtON RUN tROGRAM <CR>
SECTION DEMO <CR>
ORG 100H ;START PROGRAM CODE AT ADDRESS 100 <CR>

START LD HL,TABLE ;SET TABLE POINTER <CR>
.LD B,TSIZE ;SET PASS COUNTER <CR>
XOR A ;CLEAR ACCUMULATOR <CR>

LOOP ADD A, (HL) ;ADD BYTE FROM TABLE <CR>
INC HL ;POINT TO NEXT BYTE <CR>
DEC B ;DECREMENT PASS COUNTER <CR>
JP NZ,LOOP ;LOOP IF NOT FIVE PASSES YET <CR>
OUT {OF7H} ,A ;OTHERWISE CALL EXIT SVC <CR>
Nap TO END PROGRAM EXECUTION <CR>

;SRB POINTER <CR>
ORG 40H ;STORE SRB POINTER AT ADDRESS 40 <CR>
BYTE 00,42H ;POINT TO SRB FOR EXIT SVC <CR>

;SRB FOR EXIT SVC <CR>
BYTE lAH ;lAH = FUNCTION CODE FOR EXIT SVC <CR>

;TABLE OF NUMBERS TO BE ADDED <CR>
TSIZE EQU 5 ;TABLE SIZE = 5 <CR>

ORG 500H ;SET UP TABLE AT ADDRESS 500 <CR>
TABLE BLOCK TSIZE <CR>

LIST DBG <....CR->
END START <CR>

~ <CR>

At the end of your text, enter a period on a line by itself. The editor will now accept new commands.

7C-38 REV AUG 1982

Z80 Emulator Specifics Users Z80 Demonstration Run

Check for Errors. Type the following editor command to display the text you have entered. Check for typing
mistakes.

l,$p <CR>

t t+
1 1 I. - - - - print command: displays the lines
1 1
1 1 in the designated range
1 1

: I------designates last line in file
1

I·-------designates first line in file

If you made any mistakes, fix them now. In case you're not familiar with the editor, Table 7C-6 lists the
commands you need in order to add, delete, or replace a line. For more information on the TNIX editor, refer
to your 8560 System Users Manual.

Command

mm,nnp<CR>

nn<CR>

d<CR>

a<CR>
<Iine(s) of text>
.<CR>

c<CR>
<line{s) of text>
.<CR>

Table 7C-6
Basic 8560 Editing Commands

Function

Displays lines mm through nn

Makes line nn the current line

Deletes the current line

Adds text below the current line

Replaces the current line with the text
you type in

Once your text is correct, enter the w command to write the text to the source file, a5m:
w <CR>
902

The editor responds with the number of characters written to the file.

Finally, enter the q command to quit the editor and return to TNIX:
q <CR>
$" - - - T~~IX prompt

REV AUG 1982 7C-39

zao Demonstration Run zao Emulator Specifics Users

7C-40

Assemble the Source Code.

The TNIX asm (assemble) command translates assembly language (source code) into binary machine lan
guage (object code). The asm command also creates an assembler listing that you can use to correlate the
object code with the source code. Enter the following command line to assemble the source code in the file
asm and create the listing and object files asml and obj:

$ asm obj asml asm <CR> . . ,
1
1

1
1
1
1
I
1
1
1

1
1
1
1

L - - - _. source file

1- ________ assembler listing file

Tektronix ASM Z80
Vxx.xx-xx (8560)
*****Pass 2

23 Lines Read
23 Lines Processed
o Errors

object file

Enter the following command to print the assembler listing on the 8560's line printer:
$ lplr asml <CR>

Examine page 1 of your listing. Did the assembler issue any error messages? There should be none. If your
source code contains errors, take the following steps.

1. Refer to your Assembler Users Manual to find out what the error messages mean.

2. Enter the command ed asm to get back into the editor and fix the mistakes in your source code. Exit the
editor with the wand q commands, as before.

3. Enter the command asm obj asml asm to re-assemble your source code.

Link the Object Code

The linker creates an executable load file from one or more object files. Enter the following command to
create a load file called load from your object file, obj. Be sure to enter all parameters exactly as shown.

$ link -d -0 obj -0 load <CR>

The -d option causes the linker to pass the program symbols from the object file to the load file, for use in
program debugging.

The files generated by the asm and link commands should now be in your working directory, demo. Enter the
following command to list the files in your working directory:

$ Is <CR>
asm
asml
load
obj

REV AUG 1982

ZSO Emulator Specifics Users ZSO Demonstration Run

Notice that there are now four files listed in your directory: obj and asml were created by the assembler, and
load was created by the linker.

Download the Program to the 8540

Now it's time to download the object code produced by the 8560's linker into 8540 program memory.

Zero Out Memory. Before you download any code, use the 08/40 F (Fill) command to fiii 8540 program
memory with zeros. Later, when you examine memory, the zeros make it easy to identify the beginning and
end of your code. (Zeroing out memory has no effect on how the program is loaded.) Enter the following
command line to fill memory addresses 40 to 11 F with zeros:

$ f 40 Ilf 00 <CR>

Check That Memory Was Filled with Zeros. Check the contents of memory with the OS/40 D (dump)
command. The D command's display shows the data in hexadecimal format, and also shows the corre
sponding ASCII characters. Display the contents of memory addresses 40 to 11 F with the following com
mand line:

$ d 40 llf <CR>
o 1 2 345 6 7 8 9 ABC D E F

000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOAO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOBO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOCO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOODO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOEO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOFO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Download the Object Code. Enter the following command line to download the object code from the 8560
file load to 8540 program memory:

$ 10 <load <LCR>

• I
load file

Download the Program Symbols. The source code for the demonstration program contains the directive
LIST DBG. Because of this directive, the object file contains a list of the symbols that appear in the source
code and the values associated with those symbols. Because you included the -d option in the link com
mand line, those symbols were passed to the load file. Use the OS/40 SYMLO command to download those
symbols into the symbol table in 8540 system memory.

$ symlo -s <load <CR>

The -s option means that both addresses and scalars are downloaded. If you omit the -S, only addresses
are downloaded. (A scalar is a number that is not an address - for example, TSIZE, the length of the table.)

REV AUG 1982 7C-41

zao Demonstration Run zao Emulator Specifics Users

7C-42

Later in this demonstration, whenever you use a symbol in an OS/40 command line, OS/40 refers to the
symbol table to find the value that the symbol represents.

You've assembled and linked the demonstration program and downloaded it into memory. Now skip ahead
to the heading Run the Demonstraion Program.

CASE 3: DOWNLOAD FROM YOUR HOST TO THE 8540

This discussion gives some general instructions for downloading the demonstration program from a host
computer other than the 8550 or 8560 to 8540 (or 8550) program memory. If your 8540 is not equipped with
the optional COM Interface Package, you cannot complete this part of the demonstration, so skip ahead to
the heading Case 4: Patch the Program into Memory for instructions. COM Interface software is standard
on the 8550.

Since we don't know what host computer you're using, we can only provide a general outline for creating the
demonstration program and downloading it to the 8540. Once you have determined the command sequence
that is appropriate for your host, record this information in the space provided in Fig. 7C-10.

Create the Extended Tekhex Load Module

In order for object code to be downloaded to the 8540, it must be in Extended Tekhex format, as shown in
Fig. 7C-9. You can create the load module in one of two ways:

1. using your host computer's text editor, key the load module in by hand; or

2. using your host computer's Z80 assembler to

a. translate the demonstration program into the language of your host's Z80 assembler;

b. create and assemble the source file;

c. link the object code, if necessary; and

d. translate the object code produced by the assembler or linker into Extended Tekhex format. The
Intersystem Communication section of your System Users Manual provides a general algorithm for
conversion to Extended T ekhex format.

Prepare the 8540

Start up your 8540 and enter the following command to select the Z80 emulator:
> SEL Z80 <CR>

The SEL command automatically sets the emulation mode to O.

REV AUG 1982

zao Emulator Specifics Users zao Demonstration Run

Create the Extended Tekhex Load Module

Prepare the 8540

(Start up the 8540.)
> SEL Z80 <CR>
> F 40 11F 00 <CR>
> D 40 11 F < C R >

Establish Communication

Download the Load Module

Terminate Communication

Fig. 7C-10. Host computer commands for preparing demonstration program.

Zero Out Memory. Before you download any code, use the 05/40 F (Fill) command to fill 8540 program
memory with zeros. Later, when you examine memory, the zeros make it easy to identify the beginning and
end of your code. (Zeroing out memory has no affect on how the program is loaded.) Enter the following
command line to fill memory addresses 40-11 F with zeros:

> F 40 llF 00 <CR>

REV AUG 1982 7C-43

zao Demonstration Run zao Emulator Specifics Users

7C-44

Check That Memory Was Filled with Zeros. Check the contents of memory with the OS/40 0 (Dump)
command. The 0 command's display shows the data (in hexadecimal format) and the corresponding ASCII
characters. Display the contents of memory addresses 40 to 11 F with the following command line:

> D 40 llF <CR>
0 1 2 3 4 5 6 7 8 9 A B C D E F

000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ••• e ••••••••••••

000060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOAO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOBO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOCO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOODO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOEO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOFO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Download the Load Module to the 8540

Be sure that your 8540 and your host computer are connected via an RS-232-C compatible communication
link. Refer to the Intersystem Communication section of your System Users Manual to determine the com-
mands and parameters that are appropriate for your host computer. Then perform the following steps to
download the T ekhex load module to 8540 program memory.

1. Enter the 8540 COM command to establish communication. (The parameters of the COM command are
host-specific.) Log on to your host and execute any necessary host initialization commands.

2. Enter the command line that downloads the Tekhex load module to the 8540. This command line consists
of the host computer command that performs the download, followed by a null character (CTRL-@ on
most terminals) and a carriage return. COM places the object code in 8540 program memory, and puts
the program symbols into the symbol table in 8540 system memory.

3. Log off from your host, and then terminate COM command execution by entering the null character, then
pressing the ESC key.

Once you·ve downloaded the program to the 8540, skip ahead to the heading Run the Demonstration
Program.

CASE 4: PATCH THE PROGRAM INTO MEMORY

This discussion shows you how to patch the demonstration program into 8540 (or 8550) program memory
using the P command, and then add the program symbols into the symbol table using the ADDS command.

Ordinarily, you would load the object code and symbols from a binary or hexadecimal load file, as illustrated
for Cases 1. 2, and 3. The procedure presented here is not normally used for preparing a program for
execution. Use this procedure only if you have no standard means for preparing the program, but would still
like to tryout your emulator.

REV AUG 1982

zao Emulator Specifics Users zao Demonstration Run

Start Up the 8540

Start up your 8540 and enter the following command to select the Z80 emulator:
> SEL Z80 <CR>

The SEL command automatically sets the emulation mode to O.

Zero Out Memory

Before you patch in any code, use the OS/40 F (Fill) command to fill 8540 program memory with zeros.
Later, when you examine memory, the zeros make it easy to identify the beginning and end of your code.
Enter the following command line to fill memory from addresses 40 to 11 F with zeros:

> F 40 IlF 00 <CR>

Check That Memory Was Filled with Zeros. Check the contents of memory with the OS/40 D (Dump)
command. The D command's display shows the data (in hexadecimal format) and the corresponding ASCII
characters. Display the contents of memory addresses 40 to 11 F with the following command line:

> D 40 IlF <CR>
a 1 2 3 4 5 6 7 8 9 A B C D E F

000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOAO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOBO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOCO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOODO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOEO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOFO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Patch the Object Code into Memory

The OS/40 P (Patch) command stores a sequence of bytes into memory, replacing the previous memory
contents. Enter the following command to store the object code for the first three instructions in the program
(LD HL, LD B, and XOR A) starting at location 100:

> p 100 210005 0605 AF <CR>
--- ------ ----

• • • • I I
I I
I

XOR A ! I
I I
I LD B,TSIZE I
I

LD HL,TABLE

patch address

Now patch in the next four instructions (ADD A, INC HL, DEC B, and JP NZ,LOOP) ...
> P 106 86 23 05 C20601 <CR>

REV AUG 1982 7C-4S

zao Demonstration Run zao Emulator Specifics Users

7C-46

... and now the last two instructions (OUT and NOP):
> P 10C D3F7 00 <CR>

Finally, patch in the Exit SVC information at address 40:
> P 40 00421A <CR>

You'll examine the contents of memory later in this demonstration.

Put Symbols into the Symbol Table

Later in this demonstration, you will use symbols from the demonstration program (START, LOOP, TSIZE,
AND TABLE) when communicating with OS/40. Whenever you use a symbol in a command, OS/40 consults
a symbol table in 8540 system memory to find the value the symbol represents. Enter the following com
mand line to add the program symbols to the symbol table, along with their values:

> ADDS START=lOO LOOP=106-S TSIZE=5 TABLE=500 <CR>

The ADDS command cannot provide all the symbol-related information that is provided by the SYMLO
command (as in Cases 1 and 2) or the COM command (as in Case 3). Because this information is missing,
some of the displays you produce later in this demonstration will not match the symbolic displays shown in
this manual. For more information on the ADDS command, refer to the Command Dictionary of your System
Users Manual.

You've patched the demonstration program into program memory and placed the program symbols in the
symbol table. Now it's time to run the program.

RUN THE DEMONSTRATION PROGRAM

From now until the end of the demonstration, the commands you are to enter are shown in lowercase. If you
are not logged into an 8560, you may enter commands in either lowercase or uppercase. If you are using an
8560, you must enter the name of every command in lowercase (and your system prompt is $, not>).

Now that you've loaded the program into memory, you need to:

• verify that the program was loaded correctly; and

• put values into the table in memory, for the program to add.

REV AUG 1982

ZSO Emulator Specifics Users ZSO Demonstration Run

Check Memory Contents Again. Before you loaded the program, you filled memory locations 40 to 11 F
with zeros. Look at the same memory area again with the following command line:

> d 40 11f <CR>
o 1 2 345 6 7 8 9 ABC D E F

000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOAO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOBO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOCO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOODO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOEO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOFO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000100 00 00 00 00 00. 00 00 00 00 00 00 00 00 00 00 00
000110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

The object code is loaded in two different blocks:

• The Z80 machine instructions are loaded at address 100 (specified by the first ORG directive in the
source code).

• The information for the Exit SVC is loaded at address 40 (specified by the second ORG directive).

The contents of the table at address 500 are still undefined, but you'll put some values into the table in just a
few minutes.

Turn On Symbolic Debug. Enter the following command to turn on symbolic debug:
> symd on <CR>

Disassemble the Object Code. The DI (Disassemble) command displays memory contents both in hexa
decimal notation and in assembly language mnemonics. You can use the DI command to verify that the
object code in memory corresponds to your source code. Enter the following command to disassemble the
area of memory occupied by the executable part of your program:

> di 100 10e <CR>
LOC INST MNEM OPER
SECTION (DEMO)
START 210005 LD HL,0500
t000103 0605 LD B,05
t000105 AF
LOOP 86
tOOOl07 23
t000108 05
+000109 C20601
tOOOl0C D3F7

XOR A

ADD !J. I J.JT. \ ... , \ _,
INC HL
DEC B
JP NZ,0106
OUT (F7) ,A

+00010E 00 NOP

Compare the DI display with the assembler listing you generated earlier, or refer back to Fig. 7C-8.

REV AUG 1982 7C-47

zao Demonstration Run zao Emulator Specifics Users

7C-48

The line SECTION (DEMO) in the 01 display indicates that the object code being disassembled comes from
the program section called DEMO. In fact, the entire memory area used by your program (location 0 through
the end of the table - location 504) belongs to section DEMO. This section was declared by the SECTION
directive in the source code.

The LOC (location) column of the 01 display contains information that enables you to correlate the display
with your assembler listing. The symbols START and LOOP in the 01 display correspond to the labels
START and LOOP in the source code. In the display, when a location does not correspond to a label in the
symbol table, 01 substitutes the address of the instruction relative to the beginning of the section, as
shown in the address field of your assembler listing. If you haven't loaded the pertinent symbols and related
information into the symbol table (using a command such as SYMLO), the 01 command supplies absolute
(actual) addresses in the LOC column. (Since section DEMO begins at address 0, the relative address, or
offset, is the same as the absolute address in this display. This offset feature is much more useful for
sections that don't start at address 0.)

Now you've seen that your system can use the symbol table to translate numbers into symbols to make a
display easier to read. Your system can also translate a symbol in a command line into an address. For
example, since your system knows that the symbol START is equivalent to the address 100, you could have
entered the 01 command in any of the following ways:

di 100 10E
di START 10E
di start start+Oe
di 100 START+OE

Notice that a symbol can be entered in either lowercase or uppercase.

The feature that enables DOS/50 and OS/40 to correlate symbols from your program with the numbers they
represent is termed symbolic debug.

Put Values into the Table in Memory. The demonstration program sums five numbers from a table in
memory. Use the P (Patch) command to place the numbers 1, 2, 3, 4, and 5 in the table. Do you remember
what the address of the table is? It doesn't matter, as long as you remember that the symbol TABLE
represents that address.

> p table 0102030405 <CR>

===.== =====f===
address of string of bytes to be stored
table: 500 at addresses 500 to 504

Check the Contents of the Table. Use the 0 command to display the contents of the table. (When you
don't specify an upper boundary for the area to be dumped, the 0 command dumps 16 bytes.)

1- - - - - - - - lower address: 500
I
I
I
I , I - - - - upper address: omitted

, (defaults to lower address + OF)

> d t~bl: == <CR>
o 1 2 3 4 5 6 7 8 9 ABC D E F

000500 01 02 03 04 05 27 EB CF C3 BC EB B6 9D AB AF DB

REV AUG 1982

zao Emulator Specifics Users zao Demonstration Run

Notice that bytes 500 to 504 (the table) contain the values you patched in. Bytes 505 to 50F contain random
data left over from previous system operations.

The following command dumps only the contents of the table:
> d table table+tsize-l <CR>

o 1 2 345 6 7 8 9 ABC D E F
000500 01 02 03 04 05

Start Program Execution

Now enter the G (Go) command to start program execution at location 100, the transfer address specified by
the END directive in the source code. (If you followed Case 4: Patch the Program into Memory, you must
enter G START instead.)

> g <CR>
LOC INST MNEM OPER
OOOlOF 00 NOP
OOOlOF 00 <BREAK >

SP F ABC D E H L IX IY
0000 42 OF 00 00 00 00 05 05 0000 0000

The program executes, and when the Exit SVC occurs, the program breaks (stops), and the contents of the
emulator registers are displayed. The accumulator contains the sum of the numbers in the memory table:
1 +2+3+4+5=OF.

MONITOR PROGRAM EXECUTION

You have assembled, loaded, and executed the demonstration program. The rest of this demonstration
shows you some commands for monitoring program execution. You can watch the changes in the emula
tor's registers and observe the effect of each instruction as the program proceeds.

Trace All Instructions. The TRA (TRAce) command lets you observe the changes in the zao registers as
the program proceeds. When you enter a TRA command and then start execution with the G command,
display lines are sent to the system terminal. As each instruction executes, the display line shows the
instruction (as in the Disassemble display) and the contents of the registers after that instruction has execut
ed. Enter the following command to trace all of the program's instructions:

> tra all <CR>

Enter the command G START (or G 100) to resume program execution at the begining of the program:
> g start <CR>

REV AUG 1982 7C-49

zao Demonstration Run zao Emulator Specifics Users

7C-50

As the program executes, the following trace is displayed. Remember that you can type CTRL-S to suspend
the display and CTRL-Q to resume the display.

LOC INST
SECTION (DEMO)
START 210005
+000103 0605
+000105 AF
LOOP 86
+000107 23
+000108 05
+000109 C20601
LOOP 86
+000107 23
+000108 05
t000109 C20601
LOOP 86
+000107 23
+000108 05
+000109 C20601
LOOP 86
+000107 23
+000108 05
+000109 C20601
LOOP 86
+000107 23
+000108 05
+000109 C20601

LaC INST
+00010C D3F7

MNEM OPER

LD HL,0500
LD B,05
XOR A
ADD A, (HL)
INC HL
DEC B
JP NZ,0106
ADD A, (HL)
INC HL
DEC B
JP NZ,0106
ADD A, (HL)
INC HL
DEC B
JP NZ,0106
ADD A, (HL)
INC HL
DEC B
JP NZ,0106
ADD A, (HL)
INC HL
DEC B
JP NZ,0106

MNEM OPER
OUT (F7) ,A

+00010C D3F <BREAK TRACE>

SP F ABC D E H L IX IY

FFFF 42 OF 00 00 00 00 05 00 0000 0000
FFFF 42 OF 05 00 00 00 05 00 0000 0000
FFFF 44 00 05 00 00 00 05 00 0000 0000
FFFF 00 01 05 00 00 00 05 00 0000 0000
FFFF 00 01 05 00 00 00 05 01 0000 0000
FFFF 02 01 04 00 00 00 05 01 0000 0000
FFFF 02 01 04 00 00 00 05 01 0000 0000
FFFF 00 03 04 00 00 00 05 01 0000 0000
FFFF 00 03 04 00 00 00 05 02 0000 0000
FFFF 02 03 03 00 00 00 05 02 0000 0000
FFFF 02 03 03 00 00 00 05 02 0000 0000
FFFF 00 06 03 00 00 00 05 02 0000 0000
FFFF 00 06 03 00 00 00 05 03 0000 0000
FFFF 02 06 02 00 00 00 05 03 0000 0000
FFFF 02 06 02 00 00 00 05 03 0000 0000
FFFF 08 OA 02 00 00 00 05 03 0000 0000
FFFF 08 OA 02 00 00 00 05 04 0000 0000
FFFF 02 OA 01 00 00 00 05 04 0000 0000
FFFF 02 OA 01 00 00 00 05 04 0000 0000
FFFF 08 OF 01 00 00 00 05 04 0000 0000
FFFF 08 OF 01 00 00 00 05 05 0000 0000
FFFF 42 OF 00 00 00 00 05 05 0000 0000
FFFF 42 OF 00 00 00 00 05 05 0000 0000

SP F ABC D E H L IX IY
FFFF 42 OF 00 00 00 00 05 05 0000 0000

After the accumulator is cleared, it begins to store the sum of the numbers being added. The ADD A
instruction adds a number from the table into the accumulator. At the end of the program, the accumulator
contains the sum of the numbers you put into the table.

Register B, the pass counter, is set to contain 5 (TSIZE) at the beginning of the program. It decreases by one
(because of the DEC B instruction) each time a number is added into the accumulator. The program ends
after register B reaches zero.

The H-L register pair, set to contain 500 (TABLE) at the start of the program, increases by one each time a
number is added to the accumulator. At the end of the program, the H-L register pair has been incremented
five times and contains 505.

Trace to the Line Printer. By adding the parameter> LPT to a command, you can direct that command's
output to the line printer instead of to the system terminal. First, verify that your line printer is properly
connected and powered up. Then enter the following command to execute the program with trace output
directed to the line printer:

> g start >LPT <CR>

NOTE
If you're operating in TERM mode with an 8560, use one of the following commands in place of the
command shown:

REV AUG 1982

zao Emulator Specifics Users zao Demonstration Run

• g start 11p1r sends the display to the 8560 line printer.

• g start \>LPT sends the display to the line printer on the 8540 or 8550.

Trace Jump Instructions Only_ Another way to monitor the program's execution is to look only at the jump
instructions. By tracing the jump instructions, you can still observe the changes in the registers, but you save
time and space by not tracing the instructions within the loop. Enter the following command to trace only the
jump instructions when the loop is being executed:

> tra jmp loop 109 <CR>

• 1--
1
1
1
1
1

1
1- _ _ upper address

I - - - - - - lower address

(106)

Within this range,

only jump instructions

are traced.

Again, start your program with the G command. The following trace is displayed:
> g start <CR>
LOC INST MNEM OPER SP F A B C D E H L IX
SECTION (DEMO)
START 210005 LD HL,0500 FFFF 42 OF 00 00 00 00 05 00 0000
+000103 0605 LD B,05 FFFF 42 OF 05 00 00 00 05 00 0000
-"-000105 AF XOR A FFFF 44 00 05 00 00 00 05 00 0000
-+-000109 C20601 JP NZ,0106 FFFF 02 01 04 00 00 00 05 01 0000
-'-000109 C20601 JP NZ,0106 FFFF 02 03 03 00 00 00 05 02 0000
+000109 C20601 JP NZ,0106 FFFF 02 06 02 00 00 00 05 03 0000
-1-000109 C20601 JP NZ,0106 FFFF 02 OA 01 00 00 00 05 04 0000
+00010C D3F7 OUT (F7) ,A FFFF 42 OF 00 00 00 00 05 05 0000
-I-00010C D3F <BREAK TRACE>

IY

0000
0000
0000
0000
0000
0000
0000
0000

As with the TRA ALL display, observe that register B (the pass counter) is decremented, the H-L register
pair (the table pointer) is incremented, and the accumulator stores the sum of the numbers from the table.
With the TRA JMP selection in effect, the instructions within the loop are not displayed.

Check the Status of the Trace. The TRA command without any parameters displays the trace conditions
that are currently set. Because you can have up to three trace selections in effect at the same time, it is
useful to be able to see which selections are active. Check your trace status with the following command
line:

> tra <CR>
TRACE ALL,OOOOOO,OOFFFF
TRACE JMP,LOOP,000109

As you've specified, TRA ALL is in effect fOi addiesses 0 to 105, TRA JMP is in effect for addresses 106 to
109, and TRA ALL is again in effect for addresses 10A to FFFF.

REV AUG 1982 7C-S1

zao Demonstration Run zao Emulator Specifics Users

7C-S2

Set a Breakpoint after a Specific Instruction. Now that you've seen how the program adds the numbers
together; here's a new task: to add only the third and fourth numbers from the table. To perform this task,
you want the pass counter to contain 2, and the table painter to contain 502 (the address of the third number
in the table). You can accomplish these changes without altering the object code in memory. First, stop
program execution after the pass counter and the table pOinter have been set. Next, while the program is
stopped, enter new values for the pass counter and table pOinter. When execution resumes, the program
treats the new values as if they were the original programmed value.

Enter the following command line to trace all of the instructions as the program executes:
> tra all <CR>

Check the status of the trace with the following command line:
> tra <CR>
TRACE ALL,OOOOOO,OOFFFF

The TRA ALL command just entered makes the earlier TRA selections obsolete.

Now you set a breakpoint so that the program stops after the table pOinter and pass counter have been set.
The following command causes the program to stop after it executes the LD 8 instruction at address 103:

> bk 1 103 <CR>
- ---
• • I I

: 1- - - - - breakpoint address
1
1- _______ breakpoint number

(can be 1 or 2)

Use the G command to start program execution:
> g start <CR>
LOC INST MNEM OPER SP F A B C D E H L IX IY
SECTION (DEMO)
START 210005 LD HL,0500 FFFF 42 OF 00 00 00 00 05 00 0000 0000
+000103 0605 LD B,05 FFFF 42 OF 05 00 00 00 05 00 0000 0000
+000103 060 <BREAK TRACE, BKPT1 >

The TRA ALL command enabled display of all instructions up to and including the instruction at the
breakpoint.

Set New Values in Pass Counter and Table Pointer; Check Results. Now that you've reached the break
point, you can change the contents of the registers while execution is stopped. The break display shows that
register 8 (the pass counter) contains 5, and the H-L register pair (the table pointer) contains the address
500. Use the S (Set) command to set the number of passes to two and set the table pOinter to 502:

> s B =2 L =2 <CR>

REV AUG 1982

Z80 Emulator Specifics Users Z80 Demonstration Run

The S command does not produce a display, but you can use the OS (Display Status) command to check the
values in the registers you changed. OS displays the contents of each emulator register and status flag.
Check the result of the previous S command with the following command line:

> ds <CR>
PC=0105 SP=FFFF F=42 A=OF B=02 c=oo D=OO E=OO H=05 L=02
IX=OOOO IY=OOOO AF=OO AA=OO AB=OO AC=OO AD=OO AE=OO AH=OO AL=OO
IFF1=0 IFF2=0 IM=O 1=00 R=37

The OS display shows that the pass counter and table painter now contain· the new values.

Resume Program Execution. If you enter the G command with no parameters, program execution starts
where it left off. Resume program execution after the breakpoint with the following command:

> ~ <CR>
LOC INST MNEM OPER SP F A B C D E H L IX IY
SECTION (DEMO)
+000105 AF XOR A FFFF 44 00 02 00 00 00 05 02 0000 0000
LOOP 86 ADD A, (HL) FFFF 00 03 02 00 00 00 05 02 0000 0000
+000107 23 INC HL FFFF 00 03 02 00 00 00 05 03 0000 0000
+000108 05 DEC B FFFF 02 03 01 00 00 00 05 03 0000 0000
+000109 C20601 JP NZ,0106 FFFF 02 03 01 00 00 00 05 03 0000 0000
LOOP 86 ADD A, (HL) FFFF 00 07 01 00 00 00 05 03 0000 0000
+000107 23 INC HL FFFF 00 07 01 00 00 00 05 04 0000 0000
+000108 05 DEC B FFFF 42 07 00 00 00 00 05 04 0000 0000
+000109 C20601 JP NZ,0106 FFFF 42 07 00 00 00 00 05 04 0000 0000
+00010C D3F7 OUT (F7) ,A FFFF 42 07 00 00 00 00 05 04 0000 0000
+00010C D3F <BREAK TRACE>

Notice that the program performed two passes through the loop, and that the program added the third and
fourth numbers in the table: 3+4= 7.

Delete the Demonstration Run Files

Now that you've finishd the demonstration run, you can delete the source file, object file, listing file, and load
file. If you're using an 8550, the source and load files are still available to you on the Z80 emulator installation
disk. If you're using an 8560, remember that once you delete the source file (asm) , there is no way of
recovering it.

Delete 8550 Files. If your files are on the 8550, use the following procedure to delete them. First use the
USER command to move from the DEMO directory back in to the directory you were in at the start of the
demonstration. Recall that you marked that directory with the brief name IROOT.

> USER IROOT <CR>

Now enter the following command to delete the DEMO directory and the files it contains:
> DEL DEMO /. DEMO <CR>
Delete ASM y <CR>
Delete LOAD Y <CR>
Delete OBJ ? 'i <CR>
Delete ASML 'i <CR>
Delete DEMO ! <CR>

REV AUG 1982 7C-53

Z80 Demonstration Run Z80 Emulator Specifics Users

7C-S4

Before deleting each file, DOS/50 asks you whether you really want to delete it. You type Y for yes.

Delete 8560 Files. If your files are on the 8560, use the following procedure to delete them. Enter the
following command to remove all files in the working directory, including the source file:

$ rm * <CR>

Now move from the demo directory back into the parent directory and remove the demo directory itself:

$ ~ <CR>
$ rmdir demo <CR>

Turn Off Your System

For instructions on turning off your 8540 or 8550, refer to the Learning Guide of your System Users Manual.

SUMMARY OF ZSO EMULATOR DEMONSTRATION RUN

You have assembled, loaded, executed, and monitored the demonstration run program. You have used the
following commands:

• SEL - selects the Z80 assembler and emulator

• ASM - creates object code from an assembly language program

• LINK - links object code into a load module

• F - fills an area of memory with a specified value

• 0 - displays memory contents in ASCII and hexadecimal format

• LO - loads object code into memory

• SYMLO - loads program symbols for use in symbolic debug

• 01 - translates memory contents into assembly language mnemonics

• P - patches a string of bytes into memory

• SYMO - turns on symbolic debug displays

• G - begins or resumes program execution

• TRA - selects instructions to be traced during program execution

• BK - sets a breakpoint

• S - modifies emulator registers

• OS - displays emulator registers

REV AUG 1982

	001
	002
	7C_001
	7C_002
	7C_01
	7C_02
	7C_03
	7C_04
	7C_05
	7C_06
	7C_07
	7C_08
	7C_09
	7C_10
	7C_11
	7C_12
	7C_13
	7C_14
	7C_15
	7C_16
	7C_17
	7C_18
	7C_19
	7C_20
	7C_21
	7C_22
	7C_23
	7C_24
	7C_25
	7C_26
	7C_27
	7C_28
	7C_29
	7C_30
	7C_31
	7C_32
	7C_33
	7C_34
	7C_35
	7C_36
	7C_37
	7C_38
	7C_39
	7C_40
	7C_41
	7C_42
	7C_43
	7C_44
	7C_45
	7C_46
	7C_47
	7C_48
	7C_49
	7C_50
	7C_51
	7C_52
	7C_53
	7C_54

