
This manual supports the
following TEKTRONIX products:

8550
Options

1A
18
1C
10
1E
1F
1G
1H
1J
1K
1L
1M

Tektronix, Inc.
P.O. Box 500

Products

8300A01
8300A02
8300A04
8300A05
8300A07
8300A09
8300A10
8300A14
8300A15
8300A20
8300A26
8300A28

Beaverton, Oregon 97077

070-3575-01
Product Group 61

COMMITTED TO EXCELLENCE

This manual supports the following
software modules:

TEKTRONIX Assembler Version 4.X
TEKTRONIX Linker Version 4.X
TEKTRONIX LibGen Version 2.X

These software modules are compatible with:

DOSI50 Version 1.X

PLEASE CHECK FOR CHANGE INFORMATION
AT THE REAR OF THIS MANUAL.

8500
MICROCOMPUTER

DEVELOPMENT LAB SERIES

ASSEMBLER
CORE USERS MANUAL

A Series Assemblers

Serial Number ________ _

First Printing JUL 1980
Revised MAY 1983

LIMITED RIGHTS LEGEND

Software License No. _____________ _

Contractor: Tektronix, Inc.
Explanation of Limited Rights Data Identification Method
Used: Entire document subject to limited rights.

Those portions of this technical data indicated as limited rights data shall not,
without the written permission of the above Tektronix, be either (a) used,
released or disclosed in whole or in part outside the Customer, (b) used in whole
or in part by the Customer for manufacture or, in the case of computer software
documentation, for preparing the same or similar computer software, or (c) used
by a party other than the Customer, except for: (i) emergency repair or overhaul
work only, by or for the Customer, where the item or process concerned is not
otherwise reasonably available to enable timely performance of the work,
provided that the release or disclosure hereof outside the Customer shall be
made subject to a prohibition against further use, release or disclosure; or (ii)
release to a foreign government, as the interest of the United States may
require, only for information or evaluation within such government or for
emergency repair or overhaul work by or for such government under the
conditions of (i) above. This legend, together with the indications ofthe portions
of this data which are subject to such limitations shall be included on any
reproduction hereof which includes any part of the portions subject to such
limitations.

RESTRICTED RIGHTS IN SOFTWARE

The software described in this document is licensed software and subject to
restricted rights. The software may be used with the computer for which or with
which it was acquired. The software may be used with a backup computer ifthe
computer for which or with which it was acquired is inoperative. The software
may be copied for archive or backup purposes. The software may be modified or
combined with other software, subject to the provision that those portions of the
derivative software incorporating restricted rights software are subject to the
same restricted rights.

Copyright © 1980 Tektronix, Inc. All rights reserved. Contents ofthis publication
may not be reproduced in any form without the written permission of Tektronix,
Inc.

Products of Tektronix, Inc. and its subsidiaries are covered by U.S. and foreign
patents and/or pending patents.

TEKTRONIX, TEK, SCOPE-MOBILE, and ~ are registered trademarks of
Tektronix, Inc. TELEQUIPMENT is a registered trademark of Tektronix U.K.
Limited.

Printed in U.S.A. Specification and price change privileges are reserved.

8500 MOL A Series Assembler Users

TABLE OF CONTENTS

Page Page

SECTION 1: LEARNING GUIDE SECTION 5: ASSEMBLER DIRECTIVES

Introduction .. 1-1 Introduction 5-1
About This Manual 1-1 Labels .. 5-2
System Overview 1-2 The Assembler Directive Dictionary .. 5-3
Assembler Features 1-4

Linker Features ... 1-5

Library Generator Features 1-5
SECTION 6: MACROS

!nstallation ... 1-6 Introduction .. 6-1

Demonstration Run 1-8 Macro Expansion Process -................ 6-2

Using This Manual With Version 1 . 1-30 Macro Definition .. 6-3

For Continued Learning 1-30 The MACRO Directive 6-3

The Macro Body 6-3

Macro Body Operators 6-3
SECTION 2: PROCEDURES The ENDM Directive 6-6

Introduction .. 2-1 Macro Invocation 6-6

Assembling Your Program 2-2 Parameters ... 6-6

Linking Your Program 2-4 Macro Parameter Conventions 6-6

Building and Maintaining a Library 2-10 Macro Examples .. 6-9

SECTION 7: THE LINKER
SECTION 3: ASSEMBLER INTRODUCTION

Introduction .. 3-1 Introduction .. 7-1
Syntax Notation .. 3-1 Linker Invocation 7-1
Assembler Invocation 3-3 Simple Invocation 7-2
Assembler Input .. 3-4 Interactive Invocation 7-3
Assembler Execution 3-5 Command File Invocation 7-4
Assembler Output 3-6 Linker Execution .. 7-5

Object Module " 3-6 Linker Output .. 7-8
Assembler Listing 3-6 Listing File ... 7-8
Sample Source Program 3-11 Error Messages 7-11

Linker _Commands 7-14

SECTION 4: LANGUAGE ELEMENTS
Linker Command Dictionary 7-15

Command Processing Errors 7-27
Introduction .. 4-1

Statement Fields 4-1

Symbols .. 4-6 SECTION 8: THE LIBRARY GENERATOR

Values ... 4-7 Introduction .. 8-1
Numeric Values 4-7 LibGen Invocation 8-1
String Values ... 4-9 Interactive Invocation 8-2
Conversion ____ , 4-10 Command File Invocation 8-4

Text Substitution 4-11 LibGen Execution 8-5
E)(pressio~s 4 12 LibGen O"",tput .. 8-6

Introduction ... 4-1 2 The New Library File 8-6
Hierarchy .. 4-13 The Listing ... 8-6
Operators ... 4-13 Error Messages , 8-7
Functions .. 4-19 LibGen Commands 8-9

REV FEB 1983

Contents-8500 MOL A Series Assembler Users

Page Page

SECTION 9: PROGRAMMING EXAMPLES SECTION 10: TABLES

Introduction .. 9-1 Source Module Character Set 10-1

Using a Simple Assembler Macro 9-2 Assembler Directives 10-3

Creating and Using a Subroutine Library 9-6 ASCII Codes (Hexadecimal) 10-5

DOS/50 SVC Generation 9-27 Decimal-Hexadecimal-Binary Equivalents 10-6

Creating Service Request Blocks 9-27 Hexadecimal Addition 10-7

Generating Service Calls 9-31 Hexadecimal Multiplication 10-8

Creating Constant Values 9-32

Save-and-Restore Macro 9-36 SECTION 11: TECHNICAL NOTES

Conditional Assembly 9-38
SECTION 12: ASSEMBLER SPECIFICS

Using the '@' Construct within Macros 9-41

The Assembler INCLUDE Directive 9-42 SECTION 13: ERROR MESSAGES

SECTION 14: GLOSSARY

SECTION 15: INDEX

ii REV A FEB 1981

8500 MOL A Series Assembler Users

Section 1
LEARNING GUIDE

Page

Introduction .. 1-1

About This Manual... 1-1

System Overview .. 1-2

Assembler Features .. 1-4

Linker Features... 1-5

Library Generator Features .. 1-5

Installation ... 1-6
Start Up and Set the Date .. 1-6
Check the Number of Free Files and Blocks."", ... ,.,", .. , 1-6
Install the Software (DOS/50 Version 2 Procedure) 1-7
Install the Software (DOS/50 Version 1 Procedure) ,", ,..... 1-8

Demonstration Run .. 1-8
Introduction ... 1-8
Preparation ... 1-8
Examine the Sample Subroutine and Main Program 1-10

Assembly Language Statements .. 1-10
Explanation of the Subroutine Source Code 1-11
Explanation of the Main Program Source Code 1-12

Naming Files .. 1-13
Create the Subroutine Source File ... 1-14
Assemble the Subroutine and Examine Any Errors 1-16
Correct the Error in the Subroutine Source Code 1-17
Re-assembie the Subroutine .. 1-18
Examine the Subroutine Listing .. 1-19
Create the Main Program Source File .. 1-21
Assemble the Main Program ... 1-22
Examine the Main Program Listing ... 1 -23
Link the Object Modules ... i -25
Examine the Linker Listing ... 1-25
Load the Executable Object Code into Memory 1-28
Summary of Demonstration Run ... 1 -29

Using This Manual with Version 1 1-30

For Continued Learning ... 1 -30

FIg.
No.

1 -1

1-2

1-3

1-4

1-5

REV FEB 1983

ILLUSTRATIONS

Assembler programming process 1-3

Source code for the sample subroutine and program 1-10

Assembler listing for the sample subroutine 1 -19

Assembler listing for the sample main program 1-23

Linker listing .. 1-26

1-i

8500 MOL A Series Assembler Users

Section 1

LEARNING GUIDE

INTRODUCTION
This Learning Guide gives an overview of features and functions of the TEKTRONIX
Assembler, Linker, and Library Generator. It also presents a simple demonstration for hands
on experience. The Learning Guide is divided into the following topics:

• About This Manual. Explains how to use this manual with your assembler.

• System Overview. Describes the functions of the assembler, linker, and library
generator. Shows how these system programs interact with each other and with other
programs in the operating system.

• Features of the Assembler, Linker, and library Generator. Lists features of these
programs that make them especially useful and powerful.

• Installation. Shows how to install the software for your 8080A/8085A assembler from the
installation disk to your DOS/50 Version 2 system disk.

• Demonstration Run. Shows how to enter and assemble a simple program and
subroutine, and how to prepare the resulting object modules for loading into memory.

• For Continued learning. Helps you decide where to go next in this manual to
accomplish your own tasks.

ABOUT THIS MANUAL

NOTE

This manual supports DOS/50 Version 2. If you must use DOS/50 Version 1, then you
must convert this manual to support DOS/50 Version 1. Refer to the discussion, "Us
ing This Manual with DOS/50 Version 1 ", at the end of this section.

The TEKTRONIX Assembler, Linker, and Library Generator are fundamentally the same for
every microprocessor supported. Each assembler recognizes a different instruction set,
different registers, and different addressing modes; however, you may use the same
assembler directives, operand expressions, symbols, constants, and advanced programming
features with any assembler provided.

The Assembler Specifics section of this manual gives the instruction set and other processor
dependent information for your microprocessor. The information in the rest of this manuai
applies to all microprocessors supported. Once you have used one version of the TEKTRONIX
Assembler, linKer, ana Library Generator, you can program for any microprocessor
supported, as soon as you learn that microprocessor's instruction set.

The Demonstration Run in this Learning Guide demonstrates the 8080A/8085A assembler.
Demonstration Runs for microprocessors other than the 8080A/8085A are found in the
Assembler Specifics section.

REV FEB 1983 1-1

System Overview Learning Guide-8500 MOL A Series Assembler Users

1-2

Examples in the Demonstration Run and elsewhere in this manual were created using DOS/50
Version 2, the operating system of the 8550 Microcomputer Development Lab.

Programming examples in the Learning Guide and Assembler Specifics sections are specific
to each microprocessor. All examples in other sections of this manual are completely
processor-independent. Some examples use aOaOA instructions, but similar instructions for
any other microprocessor may be substituted without changing the validity of any example.

SYSTEM OVERVIEW

Figure 1-1 shows how an executable program is produced from assembly language source
files.

An assembly language source program may be written by a programmer or may be produced
by a high-level language compiler.

The assembler translates assembly language statements (source code) into machine
instructions (object code) and stores the resulting object module in a file called an object
file.

The linker collects object modules from specified files and determines where in memory each
section of object code will reside. The load file produced by the linker contains the executable
program, which you may copy into memory using the operating system LO command. (Under
certain conditions you may load object modules without linking them. See the Assembler Intro
duction section of this manual.)

Commonly used subroutines can be developed and assembled separately. Their object code
can then be stored with other useful object modules in a library file. When you include calls
to library routines in your source program, the linker inserts the necessary object modules
into the load file. The library generator creates and modifies library files.

REV FEB 1983

Learning Guide-8500 MOL A Series Assembler Users System Overview

REV MAY 1983

library Generator --

library J
File -

Assembly
language
Source
Files

~ ~

Assembler

1

~

Object
Files

linker

•

load
File

I

Program
Memory

,

~

Fig. 1-1. Assembler programming process.

(3454-1)3575-20

The assembler translates assembly language programs (source code) into relocatable machine lanquaqe (obiect
coae). Commonly usee Object modules may be stored together in library files created by the library generator.
The linker combines object modules from specified object files and library files into a load file of executable object
code. The operating system LO command copies object code from load files into program memory.

1-3

Assembler Features Learning Guide-8500 MOL A Series Assembler Users

1-4

ASSEMBLER FEATURES
Here are some important features of the assembler:

• Macros provide a convenient and powerful means for inserting and modifying
frequently used segments of source code.

• Conditional assembly allows a sequence of source code to produce object code that
varies according to specified conditions. This feature reinforces the assembler's macro
capabilities.

• Linker-related assembler directives allow you to specify in your source code how the
object code will be arranged in memory.

• Operand expressions may contain bit and string manipulations and special assembler
functions as well as the standard arithmetic operations.

• Data constants may be entered as numbers in binary, octal, decimal, or hexadecimal
notation, or as strings of ASCII characters enclosed in quotes.

• Each error message contains a brief description of the error, plus an error number that
helps you refer to this manual for more information. You may also write your own error
messages for use in conditional assembly.

• The assembler listing shows your source code, and the object code, error messages,
and symbol table produced by the assembler. Listing directives allow you to select
which segments of code or types of code are listed.

REV A FEB 1981

Learning Guide-8500 MOL A Series Assembler Users Linker Features

LINKER FEATURES
Here are some important features of the linker:

• You may link object modules from any number of object files or library files.

• You may define or change any of the following attributes at link time:

- the relocation type of a section of object code;

- the exact or approximate location of a section in memory;

- the values assigned to global symbols;

- the address of the first instruction to be executed.

• You may specify simple linking operations with a single LINK command line. Special or
complex operations can be specified with linker commands entered from the system
terminal or from a command file.

• Each error message contains a brief description of the error and gives the severity of the
error (WARNING, ERROR, or FATAL ERROR). When you enter an illegal command, the
linker indicates which word or parameter is erroneous.

• The linker listing gives a detailed account of linker activity, showing the commands
executed, local and global symbols, memory maps, and statistics.

LIBRARY GENERATOR FEATURES
Here are some important features of the library generator:

• You may create libraries of up to 100 modules from any number of object files.

• You may modify libraries by inserting, deleting, or replacing object modules.

• You may extract individual object modules into files.

• You may enter library generator commands from the system terminai or from a
command file.

• Each error message contains a brief description of the error. When you enter an i"egal
command, the library generator indicates which word or parameter is erroneous.

• The library generator listing shows the commands executed, global symbols, and a
summary of library generator activity.

REV A FEB 1981 1-5

Installation Learning Guide-8500 MOL A Series Assembler Users

INSTALLATION
This procedure describes how to copy the software for the 8080A/8085A assembler from
the installation disc to your DOS/50 system disc. To complete this installation procedure you
need the following items:

• an 8550 Microcomputer Development Lab;

• a DOS/50 Version 2 system disk with a write-enable tab over the write protect slot; and

• an 8080A/8085A assembler software installation disc.

You will need about 5 minutes to complete this installation procedure.

Start Up and Set the Date
Turn on your 8550 system, place your system disc in drive 0, and shut the drive door. When
you see the> prompt on your system terminal, place your installation disc in drive 1 and shut
the drive door.

Use the OAT command to set the date and time. For example, if it is 10:55 AM on Nov. 2,1980,
type:

> DAT 02-NOV-80/10:55:00 AM <CR>

The system will use this information when it sets the CREATION TIME attribute of each file
copied to your system disc.

Check the Number of Free Files and Blocks

This procedure adds about 5 files, consisting of 100 blocks, to your system disc. Enter the L
command to check the number of free files and free blocks on your system disc.

> !!. <CR>

li;.IL£NAM~

list of files in your system volume directory

Files used aaa
Free files bbb _ ___ must be at least 5
Free blocks ccc,. must be at least 100
Bad blocks 0

If you have fewer than 5 free files or 100 free blocks, you must delete some files from your
system disc or get a new system disc and start the installation procedure over again.

Install the Software (DOS/50 Version 2 Procedure)

To install the assembler software on your DOS/50 Version 2 system disk, simp!y type the filespec
of the installation command file:

> IVOL/ASM.8080IINSTALL2 <CR>

1-6 REV FEB 1983

Learning Guide-8500 MOL A Series Assembler Users Installation

If this command does not work, you must create the INSTALL2 installation command file:

[Step 1: Copy file INSTALL to INSTALL2.]

> cOP IVOL/ASM.8080/INSTALL IVOL/ASM.8080/INSTALL2 <CR>

[Step 2: Use the command file converter (cfcv) program to convert INSTALL2 into the proper
DOS/50 Version 2 format. Before converting, the cfcv program copies INSTALL2 to IN
STALL2# for backup purposes.]

> cfcv IVOL/ASM.8080IINSTALL2 <CR>

[Step 3: Remove INSTALL2# from the directory.]

> DEL IVOL/ASM.8080IINSTALL2# <CR>
Delete IVOL/ASM.8080/INSTALL2#

[Step 4: Invoke the DOS/50 Editor, and prepend the t,ON command line to INSTALL2.]

> EDIT IVOL/ASM.8080/INSTALL2 <CR>

** EDIT VERSION x.x
*GET 99 <CR>
** EOF
*BEGIN <CR>
*During this installation procedure, one or more of the
*INPUT <CR>
INPUT:
t ,ON <CR>
<CR>
*FILE <CR>
** END OF TEXT
** EOF

>

You may now install the assembler software on your DOS/50 Version 2 disk by typing the
filespec of the installation command file:

> IVOL/ASM.8080IINSTALL2 <CR>

Now proceed to the heading, "Operating System Response".

Instaii the Software (DOSi50 Version 1 Procedure)

To install the assembler software on a DOS/50 Version 1 disk, type:

> IVOL/ASM.8080IINSTALL <CR>

Now proceed to the following discussion, "Operating System Response".

REV FEB 1983 1-7

Demonstration: Preparation Learning Guide-8500 MOL A Series Assembler Users

1-8

Operating System Response

The operating system responds with the following message:

* During this installation procedure, one or more of the
* following messages may appear. IGNORE THESE MESSAGES:
* * Error 6E - Directory alteration invalid
* Error 7E - Error in command execution
* Error 1D - File not found
* * If any OTHER error message appears, see your
* Users Manual for further instructions.
* * If no other error message appears, you'll receive a
* message when the installation procedure is complete.
*
t,OFF

The installation process generates a number of error messages that do not affect the success
of the installation. However, if any message OTHER than 6E, 7E, or 1 D appears: check that
you are using the correct discs, that a write-enable tab is present on your system disc, and
that there are at least 100 free blocks and 5 free files on your system disc; then, begin the
installation procedure again. If the error message appears again, copy down the error and
contact your local Tektronix Field Office.

"t,OFF" is the first command in the installation command file and is displayed before it is execut
ed. This command suppresses subsequent output to your system terminal (except error mes
sages) until the installation command file finishes executing.

Within about 5 minutes, the installation command file will finish and your system termi
nal will display the following message:

* * Your installation has been successfully completed.
>

Your software is now installed, and you can:

• remove your discs and turn off your 8550 system, or

• install more software on your system disc, or

• continue with the 8080A/8085A Assembler Demonstration Run that follows in this
section. If you do so, you do not have to restart the system or reset the date.

You can install more than one assembler on your DOS/50 system disc. To tell the operating
system which software to use at the time of assembly, use the SEL command. For example:

> SEL 8080 <CR>

selects the 8080A software.

NOTE

The BOBOA/BOB5A assembler supports both the BOBOA and BOB5A emulators. SEL
BOBO or SEL BOB5 will specify the BOBOA/BOB5A assembler software.

REV FEB 1983

Learning Guide-8500 MOL A Series Assembler Users Demonstration: Preparation

DEMONSTRATION RUN

Introduction
This Demonstration Run shows you how to enter, modify, assemble, link, and load a simple
program and subroutine. This demonstration uses the 8080A/8085A assembler. If you have
an assembler other than the 8080A/8085A, refer to the Assembler Specifics section of this
manual for a Demonstration Run that is parallel to this one.

The purpose of this demonstration is to give you the basic infoimation and experience you
will need to begin using the assembler, linker, and library generator.

For your convenience, the sample program and subroutine are short and trivial. Only a few
features of the assembler and linker are demonstrated, and the library generator is not
discussed.

This Demonstration Run uses the following conventions:

1. Underlined-Underlined characters in a command line must be entered from your
system terminal. Those characters not underlined are system output.

2. <CR>-Each command line ends with an end-of-line character. The end-of-line character
for the 8550 is a carriage return (ASCII code 13). When a carriage return is to be entered,
the symbol <CR> is used.

Preparation
To do this Demonstration Run you should have a basic understanding of the 8550 Microcom
puter Development Lab and the DOS/50 Editor. If you need to review how the 8550 and its
editor work, refer to the Learning Guide in the 8550 System Users Manual (DOS/50 Version 2)
and the 8550 Editor Users Manual.

You will need about 60 minutes to complete this Demonstration Run.

Start up your 8550 system. Make sure your system disc has the 8080A/8085A assembler
software installed and a write-enable tab over the write-protect slot. Insert the system disc
into drive O.

Use the OAT command to set the date and time. For example, if it is 11: 05 AM on Nov. 3, 1980,
enter:

> DAT 03-NOV-80/11:05:00 AM <CR>

Next, enter the USER command to establish ME as the owner of the files you will create:

> USER, ,ME <CR>

REV FEB 1983 1-9

Demonstration: Examine Program Learning Guide-8500 MOL A Series Assembler Users

1-10

Use the SEL command to tell DOS/50 to use the 8080A/808SA assembler software:

> SEL 8080 <CR>

(Notice that the A in 8080A is not included in the SEL command line.)

SEL 8085 also specifies the 8080A/808SA assembler software.

Examine your disc directory to make sure you have at least 25 blocks available for the files
created during this demonstration:

> !!. <CR>

FILENAME

list of files in your system volume directory

Files used aaa
Free files bbb ... 4 ... --
Free blocks ccc --
Bad blocks 0

must be at least 20
must be at least 25

If there are not at least 25 blocks or 20 free files available on your system disc, you must
make some room by copying some of your non-system files to another disc.

Enter the following commands to create an empty directory ASM.DEMO and make it the
current directory:

> CREATE ASM.DEMO <CR>

> USER ASM.DEMO <CR>

Examine the Sample Subroutine and Main Program
Figure 1-2 lists the subroutine and program you will enter, assemble, link, and load in this
Demonstration Run.

The subroutine performs a trivial task: it outputs the ASCII character stored in the
accumulator to the port whose number is specified by the symbol PORTN.

The main program stores a character in the accumulator, calls the subroutine to output the
character, and then halts.

You can think of the subroutine as a carefully prepared component of a major programming
project. The main program can be viewed as a quickly written test for the subroutine.

REV FEB 1983

Learning Guide-8500 MOL A Series Assembler Users Demonstration: Examine Program

Subroutine OUTSUB:

TITLE "SAMPLE SUBROUTINE"
NAME SUBSMOD
GLOBAL PORTN,OUTSUB
SECTION SUBS1

; SUBROUTINE OUTSUB -- OUTPUTS A CHARACTER.
OUTSUB OUT PORTN; OUTSUB STARTS HERE.

RET ; RETURN TO PROGRAM.
END

Main Program:

GLOBAL
PORTN EQU
START MVI

CALL
HLT
END

PORTN,OUTSUB
15 PORT = 15
A,"?" CHARACTER = "?"
OUTSUB SEND "?" TO PORT 15 ...

... AND STOP.
START

Fig. 1-2. Source code for the sample subroutine and program.

3454-2

Subroutine OUTSUB outputs a single ASCII character to port number PORTN. The main program
specifies a port number and a character and calls OUTSUB to output the character. The subroutine and
main program are discussed in more detail later in this section.

Assembly Language Statements

An assembler source module is made up of assembly language statements. There are three
types of assembly language statements:

• An assembly language instruction is translated by the assembler into an 8080A
machine instruction.

• An assembler directive indicates a special action to be taken by the assembler.
Assembler directives define data items, constants, and variables; provide information to
the linker; control macros and conditional assembly; and specify options for the
assembler and linker listings.

• A macro invocation is replaced by the statements of the macro it invokes. (Macro
invocations are not discussed in this demonstration.)

Each assembly language statement has four fields. Each field may vary in width, and certain
fields may be blank. However, the fields always occur in the following order:

REV FEB 1983

1. The label field. The label field always begins in co!umn 1 of the statement. The !abe!
allows the statement to be referenced by othc'" statements. The label usually
represents the addreSS of the instruction or data lten, represented by the statement.

2. The operation field. The word in the operation field indicates the type of action to be
taken by the assembler. The word may be an assembler directive, an 8080A
mnemonic, or the name of a macro. If the word is an 8080A mnemonic, the assembler
translates the statement into a machine instruction.

3. The operand field. The operand field completes the assembly language statement.
Most assembler directives and 8080A instructions contain one or more operand
expressions. The type and number of operands depend on the operation.

1-11

Demonstration: Examine Program Learning Guide-8500 MOL A Series Assembler Users

1-12

4. The comment field. Comments are used for program documentation only; they are
ignored by the assembler. A semicolon (;) indicates that the remainder of the line is a
comment. A comment may follow the operand field, or may begin with a semicolon in
column 1 and take up an entire source line.

Explanation of the Subroutine Source Code

The following text explains each statement in the sample subroutine (shown in Fig. 1-2). The
two statements preceding the END statement are 8080A instructions. The rest of the
statements are assembler directives.

TITLE "SAMPLE SUBROUTINE"

The phrase "SAMPLE SUBROUTINE" will appear in the heading on each page of the
assembler source listing.

NAM E S UBSM OD

When the subroutine is assembled, the resulting object module will be named "SUBSMOD".

GLOBAL PORTN,OUTSUB

PORTN and OUTSUB are declared as global symbols, since each symbol is given a value in
one module and referred to in another module. For example, OUTSUB is defined in the
subroutine and referred to in the main program. PORTN is called an unbound global because
it is not defined anywhere in this module. OUTSUB is a bound global.

SECTION SUBS1

Each object module is composed of one or more sections. The linker treats each section as a
separate unit: sections from the same module may be placed in different ends of memory.
The one section in object module SUBSMOD will be called SUBS 1. (If you were to add other
sections to this source module, they might be called SUBS2, SUBS3, and so on.)

The assernbier directives SECTiON, COMMON, and RESERVE each deciare a different type of
section, and may also specify restrictions on the relocatability of the section. When no
restriction is specified, the section is byte-relocatable; that is, the section may begin at any
byte in memory. The Linker section of this manual contains an explanation of the five
attributes of a section: name, section type, relocation type, size, and memory location.

; SUBROUTINE OUTSUB -- OUTPUTS A CHARACTER.

This is a comment.

OUTSUB OUT PORTN ; OUTSUB STARTS HERE.

This 8080A instruction outputs the contents of the accumulator to port number PORTN. The
symbol OUTSUB becomes defined as the address of this instruction, which is the first
instruction in the subroutine. A program that contains the instruction CALL OUTSUB can
execute this subroutine.

RET RETURN TO PROGRAM.

REV FEB 1983

Learning Guide-8500 MOL A Series Assembler Users Demonstration: Naming Files

This 8080A instruction returns control to the calling program.

END

This assembler directive marks the end of the source module.

Explanation of the Main Program Source Code

The following text explains each statement in the sample main program (shown in Fig. 1-2).
The program contains three assembler directives (GLOBAL, EQU, and END) and three 8080A
instructions (MVI, CALL, and HL T).

GLOBAL PORTN,OUTSUB

As in the subroutine, PORTN and OUTSUB are global symbols. However, in this module
PORTN is a bound (defined) global while OUTSUB is an unbound (undefined) global. The
GLOBAL statements allow the two modules to share the number of the port and the address
of the subroutine.

PORTN EQU 15 ; PORT = 15

This assembler directive assigns the value 15 to the symbol PORTN. "PORTN" becomes
synonymous with the constant "15".

START MVI A II?II , . CHARACTER = "?"

This 8080A instruction stores the hexadecimal value 3F (the ASCII code for question mark) in
the accumulator. This statement is given a label, "START", so the END statement may refer
to it.

CALL OUTSUB SEND n?n TO PORT 15 ...

This 8080A instruction transfers control to the instruction labeled OUTSUB in the subroutine
module. The subroutine sends the question mark to port 15.

HLT ... AND STOP.

Control returns from the subroutine to this 8080A instruction. The HLT instruction halts
program execution.

END START

This assembler directive terminates the source module and indicates that program exe
cution should begin with the instruction labeled "START". START is called the trans
fer address. The transfer address is passed through the assembler and linker to the
operating system LO (Load) and G (Go) commands.

Notice that this program source module does not contain a TITLE, NAME, or SECTION
directive. The following default conditions result:

• No special title will appear in the page heading of the source listing .

• The object module will be called *NONAME*.

REV FEB 1983 1-13

Demonstration: Create Subroutine Learning Guide-8500 MOL A Series Assembler Users

• The one section in *NONAME* will be given a default name, section type, and
relocation type.

Naming Files

This Demonstration Run produces several files. To give each file a name that reflects its contents
and importance, we will use the file naming standards described in the Files section of the 8550
(DOS/50 Version 2) System Users Manual:

• The first part of the file name is an optional descriptive name followed by a period.

• The last part of the file name is a 3- or 4-character identifier that reflects the file type.

The following files will be produced:

File Name

SUB.ASM

SUB.OBJ

SUB.ASML

PROG.ASM

PROG.OBJ

PROG.ASML

LOAD

LNKL I

Description

SUBroutine ASseMbler source file

SUBroutine OBject file

SUBroutine ASseMbler List file

PROGram ASseMbler source file

PROGram OBject file

PROGram ASseMbler Listing file

Program LOAD file

Program liNKer Listing file

Create the Subroutine Source File

How Created

by you

by assembler

by assembler

by you

by assembler

by assembler

by linker

by linker

The DOS/50 Editor helps create and modify source files. The Editor Users Manual contains a
complete explanation of the editor.

How to Correct Typing Mistakes in the Editor
If you notice a mistake in your command line. you have two ways of correcting it before you
enter a carriage return: delete the entire line and start again, or correct the characters one

by-one .

• To delete the entire line, press your terminal's ESC (escape) key once. You may then
reenter the line .

• To delete characters one-by-one, press the BACKSPACE or RUBOUT key. Either key will
backspace the cursor and erase the deleted character.

Start Editing
The EDIT command invokes the DOS/50 Editor. The file name in the EDIT command
indicates the file to be edited. Enter the following line to begin the editing session that
creates SUB.ASM, the subroutine source file:

> EDIT SUB.ASM (CR>

*

** EDIT VERSION X.x
** NEW FILE

1-14 REV FEB 1983

Learning Guide-8500 MOL A Series Assembler Users Demonstration: Create Subroutine

The asterisk (*) is the editor prompt character. \/Vhen you see the asterisk, you may enter the
next editor command.

An assembly language program is easier to read if the statement fields are aligned as in Fig.
1-2. The editor has tab stops at columns 8, 16, 24, 32. 40, 48, 56, and 64, which are
convenient for aligning assembly language text. For example, in Fig. 1-2, the operation field
begins in column 8, the operand field begins in column 16, and the comment field begins in
column 24.

Enter the following command line to declare the dollar sign as the editor tab character, and
to enable the spaces created by the tab to be output:

*TAB $:XTABS ON <CR>

The editor will interpret every dollar sign you enter as a skip to the next tab stop.

Enter input mode and type in the subroutine. Be sure to misspell "GLOBAL" in the third line
of text. This deliberate typing error will be used to illustrate features of the assembler and
editor.

*INPUT <CR>
INPUT:
$TITLE$"SAMPLE SUBROUTINE" <CR>
$NAME$SUBSMOD <CR>
$GLOABL$PORTN,OUTSUB <CR>
$SECTION$SUBS1 <CR>
; SOBROOtINE OUTSUB -- OUTPUTS A CHARACTER. <CR>
OUTSUBOUTPORTN$; OUTSUB STARTS HERE. <CR>
$RET$$; RETURN TO PROGRAM. <CH>
$END <CR>
<CR>
*

When you enter the carriage return on the empty line, input mode is terminated and the
editor prompt (*) appears.

The text you entered is stored in the editor workspace. To display the workspace contents
from beginning to end, enter the following command:

*TYPE B-E <CR>
TITLE "SAMPLE SUBROUTINE"
NAME SUBSMOD
GLOABL PORTN,OUTSUB
SECTION SUBS1

; SUBROUTINE OUTSUB -- OUTPUTS A CHARACTER.
OUTSUB OUT PORTN OUTSUB STARTS HERE

RET ; RETURN TO PROGRAM.
END

*
Now enter the FILE command to copy the text in the workspace out to the new source file
and end the editing session:

*FILE <CR>
lnrEN D OF TE XT

>
The system prompt (» indicates that you are out of the editor and may enter another
DOS/50 command.

REV FEB 1983 1-15

Demonstration: Assemble Subroutine Learning Guide-8500 MOL A Series Assembler Users

1-16

Assemble the Subroutine and Examine Any Errors
The operating system command ASM invokes the assembler and specifies the source file(s)
to be assembled and the object and listing files to be produced. The ASM command has the
following format:

ASM, objfile, lisfile, soufile [, soufile] ...

objfile-filespec of object file to be produced
lisfile-filespec of listing file to be produced
soufile-filespec(s) of source file(s) to be assembled

To scan source file SUB.ASM for errors, enter the following command:

> ASM",SUB.ASM <CR>

Omitting the filespecs of the object and listing files has two advantages:

1. The assembler runs faster because it produces no object code or listing.

2. The ASM command line is shorter.

You may want to omit these filespecs from your ASM command line whenever you suspect
that your source code contains errors.

The assembler responds as follows on your system terminal:

Tektronix 8080/8085 ASM Vx.x
**** Pass 2
00003 0000 000000 GLOABL PORTN,OUTSUB
***** ERROR 039: Invalid operation code
00006 0000 D300 OUTSUB OUT PORTN; OUTSUB STARTS HERE.
***** ERROR 074: Undefined symbol

8 Source Lines 8 Assembled Lines 47415 Bytes available
2 ERRORS 2 UNDEFINED SYMBOLS

>

The assembler's response can be interpreted as follows:

Tektronix 8080/8085 ASM Vx.x

The assembler announces itself as it begins executing. The assembler reads through your
source file twice. The first time through (Pass 1), the assembler makes a list of symbols that
appear in the source code and tries to assign an address or other value to each symbol.

**** Pass 2

The assembler begins its second pass through your source file. During Pass 2, the assembler
produces the object and listing files and displays error messages and statistics.

REV A FEB 1981

Learning Guide-8500 MOL A Series Assembler Users Demonstration: Correct Subroutine

00003 0000 000000 GLOABL PORTN,OUTSUB
***** ERROR 039: Invalid operation code

The assembler cannot translate the above statement because "GLOABL" is not an 8080A
mnemonic, an assembler directive word, or the name of a macro. The erroneous source line
and the error message would appear in the listing (if any) just as they appear on the system
terminal. The three numbers to the left of the statement will be explained when you examine
an assembler listing later in this demonstration run.

00006 0000 D300 OUTSUB OUT
***** ERROR 074: Undefined symbol

PORTN OUTSUB STARTS HERE.

Because the assembler did not understand the GLOBAL statement, it does not know that
PORTN is a global symbol. The assembler expects PORTN to be defined in this module.

8 Source Lines
2 ERRORS

8 Assembled Lines 47718 Bytes available
2 UNDEFINED SYMBOLS

These lines summarize the assembler's activities. There are eight lines of code in your
source file. The number of assembled lines differs from the number of source lines only in
programs that contain macros or conditional assembly.

The "Bytes available" message indicates the amount of Program Memory not used by the
assembler. If the "Bytes available" figure is ever less than 1 000 or so, you may need to divide
your source module into smaller modules before you add any more statements.

The two errors, already discussed, produced the two undefined symbols GLOABL and
PORTN.

Correct the Error in the Subroutine Source Code
Both errors detected by the assembler arose from the misspelling of "GLOBAL" in line 3 of
the source file, SUB.ASM. Invoke the editor so that you may correct the misspelling:

) EDIT SUB.ASM <CR)

** EDIT VERSION x.x
*

The editor command GET brings text into the workspace from the file being edited. Specify a
large number of lines (99) to assure that the entire file is brought into the workspace:

*GET 99 <CR>
ii EOF

*
The message **EOF** indicates that the end of the input file has been reached.

Enter the following command line to find the line that contains the misspelling.

*BEGIN.:FIND IGLOI <CR)
GLoABL PORTN,OUTSUB

The BEGIN command moves the workspace pointer to line 1. Starting at that line, the FIND
command searches for the character string "GLO" and moves the pointer to the first line that
contains the string.

REV A FEB 1981 1-17

Demonstration: Correct Subroutine Learning Guide-8500 MOL A Series Assembler Users

Now the workspace pointer is at the line you want to modify. Use the SUBSTITUTE command
to reverse the letters "A" and "B" in "GLOABL'"

*SUB IAB/BAI <CR>
GLOBAL PORTN,OUTSUB

The modified line is displayed.

As before, the FILE command copies the edited source code to the source file and closes the
editing session:

*FILE <CR>
Tr""END OF TEXT
** EOF

>

Re-Assemble the Subroutine
Enter the following command to create an object file (SUB.OBJ) and an assembler listing file
(SUB.ASML) from the subroutine source file:

> ASM SUB.OBJ SUB.ASML SUB.ASM <CR>

Tektronix 8080/8085 ASM Vx.x
**** Pass 2

8 Source Lines 8 Assembled ~ines 47UJ" 3y~es avai:ab:e
»> No assembly errors detected «<

>

This time the assembler finds no errors.

REV t, FEB 1981

Learning Guide-8500 MOL A Series Assembler Users Demonstration: Subroutine Listing

Examine the Subroutine listing
In order to examine the assembler listing stored on file SUB.ASML, copy the file to your line
printer:

> COP SUB. ASM1 1PT <CR>

If you have no line printer, enter the following command to list the file on your system
terminal. (Remember that you may use CTRL-S to suspend display and CTRL-Q to resume
display on a CRT terminal.)

> CON SUB. ASM1 <CR>

Figure 1-3 shows the listing of the sample subroutine.

assembler

identification

~----.. --~--~----------~
user-defined

title
~

source
listing

symbol
table

statistics {

Tektronix 8080/8085 ASM Vx.x SAMPLE SUBROUTINE

NAME SUBSMOD
GLOBAL PORTN,OUTSUB
SECTION SUBS1

Page

00002
00003
00004
00005 SUBROUTINE OUTSUB -- OUTPUTS A CHARACTER.
00006 0000 D300
00007 0002 C9
00008

> OUTSUB OUT PORTN; OUTSUB STARTS HERE.
RET ; RETURN TO PROGRAM.
END

'-v--'T'-v-' ~ ---------------source object source code
file code
line
number

address

Tektronix 8080/8085 ASM Vx.x Symbol Table

Sc al ars

A ----- 0007
H ----- 0004

B
L

SUBS1 Section (0003)

OUTSUB - 0000 G

PORTN Unbound Global

a .so urce Llnes

0000
0005

C
M

6 Assemoiea Llnes

0001
0006

»> No assembly errors detected «<

comments

Page

D ----- 0002
PSW --- 0006

Fig. 1-3. Assembler listing for the sample subroutine.

2

E ----- 0003
SP ---- 0006

3454-3

The command ASM SUB.OBJ SUB.ASML SUB.ASM produces this listing file from the subroutine source file. The
command COP SUB.ASML LPT copies the listing file to the line printer.

REV FEB 1983 1-19

Demonstration: Subroutine listing Learning Guide-8500 MOL A Series Assembler Users

1-20

Every assembler listing has two parts: the source listing and the symbol table. Each page of
the listing begins with a standard page heading.

The Source listing

Page 1 of your assembler listing contains the source listing. The heading includes the words
"SAMPLE SUBROUTINE", which you supplied with the TITLE directive.

Each line of the source listing contains the following information:

1. the line number (decimal);

2. the memory location (hexadecimal) of the object code generated (if any);

3. the assembled object code (hexadecimal);

4. a relocation indicator (» if the object code may be adjusted by the linker;

5. a text substitution indicator (+) if the assembler has modified the source statement
(this demonstration gives no examples of text substitution);

6. the source statement.

If any statement contains an error, the appropriate error message appears directly after the
statement.

Examine each line of your source listing:

• Line 1 (the TITLE directive) is not printed because it is a listing control directive.

• Lines 2, 3, 4, and 8 are assembler directives that produce no object code. The
information they provide is stored in special areas of the object module.

• Line 5 is a comment.

• Lines 6 and 7 are 8080A assembly language instructions:

- The 8080A instruction OUT PORTN produces the two-byte machine instruction 0300.
03 is the hexadecimal operation code for the OUT instruction. The dummy value 00
will be used for the port number until the linker supplies a value for PORTN. The
machine instruction 0300 is stored in bytes 0000 and 0001 of section SUBS 1.

- The 8080A instruction RET produces the one-byte machine instruction C9, which is
stored in byte 0002 of section SUBS 1.

The Symbol Table

Page 2 of your listing contains the symbol table, which indicates the value and type of each
symbol in your source code.

The assembler symbol table is divided into the following categories:

1. Strings and macros

2. Scalars (numeric values other than addresses; includes undefined symbols)

3. Sections (and addresses within each section)

4. Unbound globals

REV A FEB 1981

Learning Guide-8500 MOL A Series Assembler Users Demonstration: Create Program

Examine the symbol table in your listing:

1. The strings and macros table is omitted, since the sample subroutine uses neither
string variables nor macros.

2. The scalars table lists every scalar in the symbol list and the value associated with
each scalar. The sample subroutine defines no scalars, but the names of the 8080A
registers are pre-defined symbols and thus always appear in the symbol list.

3. SUBS1 is the only section in the sample subroutine. The line

SUBS1 Section (0003)

tells you the following attributes of section SUBS 1 :

• its name: SUBS 1;

• its section type: SECTION (as opposed to COMMON or RESERVE);

• its relocation type: byte-relocatable (the default relocation type is implied when no
other relocation type is specified);

• its length: 3 bytes

OUTSUB has the value 0000 because OUTSUB is the address of the first byte in section
SUBS 1. The letter "G" indicates that OUTSUB is a global symbol.

4. PORTN is the only unbound (undefined) global symbol in the subroutine.

The statistics at the bottom of the symbol table are the same statistics that appeared on the
system terminal when the assembler finished execution.

When there are errors in your source code, the two most useful parts of your listing are the
source listing and the scalars table. The source listing contains the error messages ·and
shows the erroneous lines in context with the rest of the program. The scalars table flags
undefined symbols with the value "****,,

Create the Main Program Source File
Now that you have created, corrected, and assembled the sample subroutine, it is time to
create the main program that uses the subroutine. Enter the following command to begin the
editing session that creates the main program source file, PROG.ASM:

> EDIT PROG.ASM <CR>

** EDIT VERSION x.x
** NE\·! FILE

*

REV A FEB 1981 1-21

Demonstration: Assemble Program Learning Guide-8500 MOL A Series Assembler Users

1-22

Declare the editor tab character and type in the source code, just as you did for the
subroutine. (This time, however, don't include any typing errors.)

*TAB $:XTABS ON <CR>
*INPUT <CR>
INPUT:
$GLOBAL$PORTN,OUTSUB <CR>
PORTNEQU15$; PORT = 15 <CR>
STARTMVIA,"?"$; CHARACTER = "?" <CR>
$CALL$OUTSUB$; SEND "?" TO PORT 15 ... <CR>
$HLT$$; ... AND STOP. <CR>
ENDSTART <CR>
<CR>
*

The editor interprets every dollar sign as a skip to the next tab stop. Inspect the text you have
entered to be sure there are no errors:

*TYPE B-E <CR>
GLOBAL

PORTN EQU
START MVI

CALL
HLT
END

*

PORTN,OUTSUB
15 PORT = 15
A,"?" CHARACTER = "?"
OUTSUB SEND "?" TO PORT 15 ...

... AND STOP.
START

Enter the FILE command to save the text onto the source file and return to 005/50:

*FILE <CR>
lflrEN D OF TE XT

>

Assemble the Main Program
Enter the following command line to create an object file (PROG.OBJ) and a listing file
(PROG.ASML) from the main program source file:

> ASM PROG.OBJ PROG.ASML PROG.ASM <CR>

Tektronix 8080/8085 ASH Vx.x
**** Pass 2

6 Source Lines 6 Assembled Lines 47424 Bytes available
»> No assembly errors detected «<

>

The main program contains no errors.

REV A FEB 1981

Learning Guide-8500 MOL A Series Assembler Users Demonstration: Program Listing

Examine the Main Program Listing
Copy the assembler listing to the line printer or to the system terminal:

or

> COP PROG.ASML LPT <CR>

> CON PROG. ASML <CR>

Tektron ix 8080/8085

00001
source 00002 OOOF
listing 00003 0000 3E3F

00004 0002 CDOOOO >
00005 0005 76
00006 0000 >

ASM Vx.x

GLOBAL
PORTN EQU
START MVI

CALL
HLT
END

Page

PORTN,OUTSUB
15 PORT = 15
A,"?" CHARACTER = "?"
OUTSUB SEND "?" TO PORT 15 ...

... AND STOP.
START

Tektronix 8080/8085 ASM Vx.x Symbol Table Page

Sc al ars

2

symbol
table

A ----- 0007
H ----- 0004
SP ---- 0006

B
L

0000
0005

C
M

0001
0006

D ----- 0002 E ----- 0003
PORTN - OOOF G PSW --- 0006

%PROGOB (default) Section (0006)

START -- 0000

OUTSUB Unbound Global

I (
statistics i 6 Source Lines 6 Assembled Lines 47424 Bytes available

»> No assembly errors detected «<

Fig. 1-4. Assembler listing for the sample main program.

The command ASM PROG.OBJ PROG.ASML PROG.ASM produces this listing file from the main program source
file. The command COP PROG.ASML LPT copies the listing file to the line printer.

3454-4

Compare the listing of the sample main program (Fig. 1-4) with the listing of the sample
subroutine (Fig. 1-3).

The Source Listing

Page 1 of your assembler listing contains the source listing. Notice that there is no user
defined title for the program listing: the source code contains no TITLE directive.

Examine each line of the program source listing.

1. As in the subroutine, the GLOBAL statement produces no object code.

REV FEB 1983 1-23

Demonstration: Program Listing Learning Guide-8500 MOL A Series Assembler Users

1-24

2. The EQU statement assigns the value 15 (OOOF hexadecimal) to the symbol PORTN.
The symbol PORTN and its value are stored in the global symbol block of the program
object module. At link time, the value of PORTN will be substituted into the OUT
instruction in the subroutine.

3. The 8080A assembly language instruction MVI A,"?" generates the machine
instruction 3E3F. 3E is the operation code for MVI A and 3F is the ASCII code for the
question mark. The machine instruction 3E3F is stored in bytes 0000 and 0001 of the
main program.

4. The 8080A assembly language instruction CALL OUTSUB generates the machine
instruction CDOOOO in bytes 0002 through 0004. CD is the operation code for the
CALL instruction. 0000 is a dummy value: the address of OUTSUB will be provided at
link time.

5. The 8080A assembly language instruction HLT produces the one-byte machine
instruction 76 in byte 0005 of the main program.

6. The END statement specifies that the transfer address is 0000, the address of the MVI
instruction. The transfer address will be adjusted if this section of object code is not
loaded at the beginning of memory.

The Symbol Table
1. The strings and macros table is again omitted because it is empty.

2. The scalars table lists the usual pre-defined scalars, plus the symbol PORTN. The
value of PORTN is OOOF hexadecimal. The "G" indicates that PORTN is a global
symbol.

3. Because the main program source code contains no SECTION directive, the section
produced by this assembler run is given the following default attributes:

• name: %PROGOB (derived from the name of the object file);

• section type: SECTION;

• relocation type: byte-relocatable.

Section %PROGOB contains six bytes of code. START is the address of the first byte of
the section.

4. OUTSUB is the only unbound (undefined) ,global symbol in the main program.

The statistics at the bottom of the symbol table are the same statistics that appeared on the
system terminal when the assembler finished execution.

REV A FEB 1981

Learning Guide-8500 MOL A Series Assembler Users Demonstration: Linker Listing

Link the Object Modules
Now both the subroutine and the main program have been translated into machine language.
In order for the subroutine and main program object modules to communicate with each
other, they must be linked. The linker performs the following tasks in creating a load file of
executable object code:

• It finds a block of memory for each section in the specified object files.

• it adjusts addresses to reflect relocation of sections.

• It provides values for unbound globals.

Enter the following command to create a load file (LOAD) and a linker listing file (LNKL) from
your two object files:

> LINK LOAD LNKL PROG.OBJ SUB.OBJ (CR>

The linker responds as follows:

8550 LINKER Vx.x

NO ERRORS NO UNDEFINED SYMBOLS
2 MODULES 2 SECTIONS
TRANSFER ADDRESS IS 0000

>

Examine the Linker Listing
Copy the linker listing file to the line printer or system terminal:

> COP 1NK1 1PT <CR>

or

> CON 1NK1 <CR>

Figure 1-5 shows the linker listing.

REV FEB 1983 1-25

Demonstration: Linker Listing Learning Guide-8500 MOL A Series Assembler Users -

1-26

statistics {

TEKTRONIX 8080/8085 LINKER V x.x

%PROGOB 0000 OUTSUB 0006 PORTN

TEKTRONIX 8080/8085 LINKER V x.x

FILE: PROG.OBJ

MODULE: *NONAME*
%PROGOB SECTION BYTE 0000-0005

FILE: SUB.OBJ

MODULE:
SUBS1
OUTSUB

SUBSMOD
SECTION BYTE 0006-0008
0006

TEKTRONIX 8080/8085 LINKER V x.x

0000-0005 %PROGOB SECTION BYTE
0006-0008 SUBS1 SECTION BYTE

NO ERRORS NO UNDEFINED SYMBOLS
2 MODULES 2 SECTIONS
TRANSFER ADDRESS IS 0000

GLOBAL SYMBOL LIST

OOOF SUBS1

MODULE MAP

MEMORY MAP

Fig. 1-5. Linker listing.

PAGE

0006

PAGE 2

PAGE 3

3454-5

The command LINK LOAD LNKL PROG.OBJ SUB.OBJ produces this linker listing file. The command COP LNKL
LPT copies the listing file to the line printer.

The linker listing contains three parts:

1. The global symbol iist (page i of your itsting) lists the value assigned to each giobai
symbol. The name and starting address of each section are included. Undefined
globals are flagged with the value "****".

2. The module map (page 2) provides the following information for each object module
being linked:

• the name of the object file or library file supplying the object module;

• the name and attributes of each section in the module. Any entry points (addresses
declared as global symbols) for each section are also listed.

The module map allows you to verify that each section of your program has been
assigned a place in memory.

3. The memory map (page 3) lists the sections in the order they occur in memory.
Conflicting (overlapping) memory allocations are indicated with an asterisk (*).

Linker statistics appear at the bottom of the memory map.

REV FEB 1983

Learning Guide-8500 MOL A Series Assembler Users Demonstration: Linker Listing

An optional feature of the linker listing, the internal symbol list, is useful for program
debugging. The internal symbol list is not demonstrated here but is discussed in the Linker
section.

The Memory Map

The memory map (page 3 of your listing) provides the most concise summary of the load file
produced by the linker.

The memory map shoV''Vs that bytes ("\("\("\("\ +h ... ", h ("\("\("\t:: ",,f: n-\'-,""V""'''''' ,,,,ill
VVVV ll"VU~11 vVVoJ VI IIICIIIVIY VVIII contain section

%PROGOB (the main program) pnd that bytes 0006 through 0008 will contain section
SUBS1 (the subroutine).

The memory map also gives the section type (SECTION) and relocation type (byte-relocatable)
for each section.

Notice that the transfer address remains unchanged because the section containing the
transfer address is located at the beginning of memory.

The Module Map

The module map (page 2) shows much the same information as the memory map. The
module map, however, reports the sections by module rather than by memory location.

The first object file, PROG.OBJ, contains the object module called *NONAME*. (Recall that
the main program source code contains no NAME directive.) The main program consists of
the single section %PROGOB, whose attributes you already know from the memory map.

The second object file, SUB"OBJ, contains the subroutine object module, SUBSMOD.
SUBSMOD consists of the single section SUBS1. The single entry point to SUBS1 is
OUTSUB, whose adjusted address (after relocation) is 0006.

The Global Symbols List

The global symbols list (page 1) shows the two symbols declared in GLOBAL statements
(OUTSUB and PORTN) and the two section names (%PROGOB and SUBS1).

REV A FEB 1981 1-27

Demonstration: load learning Guide-8500 MOL A Series Assembler Users

1-28

Load the Executable Object Code into Memory

Before you load the object code, use the DOS/50 command F to fill the beginning of program
memory with zeros. Later, when you examine memory, the zeros make it easy to identify the end
of your code. Enter the following command to fill memory locations 0000 through OOOF with
zeros:

> F 0 OF 00 <CR>

Now copy the executable object code from the load file into program memory:

> 10 <LOAD <CR>

Bytes 0000 through 0008 of program memory now contain the nine bytes of machine
language that form the executable program.

The DOS/50 command D displays the contents of a specified section of memory. Each byte is
displayed as a two-digit hexadecimal number and as the ASCII character it represents (if any).
Enter the following command to display the contents of memory locations 0000 through OOOF:

> D 0 OF <CR>

0 1 2 3
0000003E 3F CD 06
~'--

address of v
first byte main
displayed program

F
00 >? ••• V ••••••••••

corresponding
ASCII characters

Compare the relocatable object code produced by the assembler with the executable object
code produced by the linker. (The addresses and object bytes adjusted by the linker are
underlined.)

iI

RELOCATABLE OBJECT CODE EXECUTABLE OBJECT CODE
(from assembler listings) (from DISPLAY output)

Object Source I Object Source
Address Code Code Address Code Code

0000 3E3F MVI A,"?" 0000 13E3F MVIA,"?"

0002 COOOOO CALL OUTSUB 0002 I COQ§QQ CALL OUTSUB

0005 76 HLT 0005 76 HLT

0000 0300 OUT PORTN 0006 030F OUT PORTN

0002 C9 RET 0008 C9 RET

REV FEB 1983

Learning Guide-8500 MOL A Series Assembler Users Demonstration: Summary

Note the adjustments made by the iinker:

• The subroutine is relocated from byte 0000 to byte 0006.

• The address of the subroutine is substituted into the CALL instruction.

• The port number is substituted into the OUT instruction.

Enter the following command to reestablish the system volume as the current directory_
(Enter your system volume name in place of sysvol.)

) USER Ivr)T Ic:::vc:::uAl , . --, -,,- .. -- <CR)

L"svsvo," represents the
name of your system volume

Summary of Demonstration Run

Enter the L command to list the files you have created:

> L ASM.DEMO <CR>

FILENAME

SUB.ASMII
SUB.ASM
SUB.OBJ
SUB.ASML
PROG.ASM
PROG.OBJ
PROG. ASML
T A 1\ T\
L..Vl'1U

LNKL

FILES USED
FREE FILES
FREE BLOCKS
BAD BLOCKS

aaa
bbb

cee
o

Recall the eight files you have created in this Demonstration Run:

• the two source files (SUB.ASM and PROG.ASM) you created using the editor;

• the two object files (SUB.OBJ and PROG.OBJ) and the two listing files (SUB.ASML and
PROG.ASML) generated by the assembler;

• the load file (LOAD) and the listing file (LNKL) generated by the linker.

When you corrected the misspelling of GLOBAL in your source file, the editor retained the
original file SUB.ASM as a backup file named SUB.ASM#.

REV FEB 1983 1-29

For Continued Learning Learning Guide-8500 MOL A Series Assembler Users

1-30

You have now finished the Demonstration Run. It emphasized how to:

• create a source file, using the editor;

• create an object file from a source file, using the assembler;

• create a load file from object files, using the linker;

• copy the load file into memory, using the LOAD command;

• interpret listings generated by the assembler and linker.

The Demonstration Run in the Learning Guide of the 8550 System Users Manual (DOS/50 Ver
sion 2) shows you how to execute and monitor the program you have loaded into memory.

> DEL -N ASM. DEMOI * ASM.DEMO <CR>

Using This Manual With DOS/50 Version 1

To convert this manual for use with DOS/50 Version 1, you must perform the following steps:

1. Throughout this manual, change all instances of the "CON" command to "COPY", so that
the manual will reflect DOS/50 Version 1 syntax.

2. In the "Summary of Demonstration Run", earlier in this section, change the first operating
system command line to:

> LDIR IVOL/sysvol/ASM.DEMO <CR>
~

name of your system volume

3. At the end of the "Summary of Demonstration Run", change the operating system com
mand line to:

> DELETE:N iVOLisysVOliASM.V.I!.:M.OI "',/VUL/sysvol/ASM.DEMO <CR>
~ ~

name of your system volume

4. Throughout this manual, change all references of "Version 2" to "Version 1".

8550 System Users Manual (DOS/50 Version 2). Describes how to use the 8550 Microcomputer
Development Lab and its operating system, DOS/50 Version 2.

FOR CONTINUED LEARNING
This Learning Guide explained the basic concepts needed to use the assembler and linker.
These same concepts will help you learn to use the library generator. For a more detailed
explanation of how to use these system programs, refer to the following sections:

Section 2, Procedures. Gives you step-by-step instructions for accomplishing common tasks
in assembling, linking, and library maintenance.

REV FEB 1983

Learning Guide-8500 MOL A Series Assembler Users For Continued Learning

Section 3, Assembler Introduction. Shows the use of the operating system command ASM.
Reviews the notational conventions used throughout this manual. Explains the assembler
listing in more detail.

Section 4, Assembly Language Elements. Describes the fundamental elements of an
assembly language statement. Gives rules for creating symbols, constants, and expressions.
Describes special characters and assembler functions.

Section 5, Assembler Directives. Describes the function and use of each assembler
directive. Each description is accompanied by one or more examples. Directives are arranged
in alphabetical order.

Section 6, Macros. Shows how to create and use assembler macros. Demonstrates the
macro features of the TEKTRONIX Assembler.

Section 7, The Linker. Describes the function and use of the operating system command
LINK, and of each command in the linker subsystem. Explains the linker listing in more detail.

Section 8, The Library Generator. Describes the function and use of the operating system
command LlBGEN, and of each command in the library generator subsystem. Explains the
library generator listing.

Section 9, Programming Examples. Demonstrates and explains useful applications of the
assembler, linker, and library generator.

Section 10, Tables. Summarizes reference information in tabular form.

Section 11, Technical Notes. Provides information on special applications of the assembler,
linker. and library generator.

Section 12, Assembler Specifics. Provides information that varies with each
microprocessor: registers, instruction sets, special error messages, etc. Section 12 also
contains Demonstration Runs for microprocessors other than the 8080A. An Irregularities
paragraph for each microprocessor lists exceptions to the standard reference material in this
manual.

Section 13, Error Messages. Lists the error messages for the assembler, linker, and library
generator. Each error message is accompanied by a description of the problem and possible
solutions.

Section 14. Glossary. Defines special terms used in this manual.

8550 System. Users Manual (DOS/50 Version 2). Describes how to use the 8550 Miciocom
puter Development Lab and its operating system, DOS/50 Version 2.

8550 Editor Users Manual. Describes how to use the 8550 Microcomputer Development
Lab Editor.

REV FEB 1983 1-31

8500 MOL A Series Assembler Users

Section 2
PROCEDURES

Page

Introduction 2-1

Assembling Your Program .. 2-2
Invoking the Assembler ... 2-2
Combining Source Files During Assembly ... 2-2
Dispiaying iniernai Symbois in ihe Linker Listing 2-3

linking Your Program .. 2-4
Invoking the Linker (Simple Invocation) .. 2-4
Invoking the Linker (Interactive Invocation) ... 2-5
Assigning Object Code to an Address Range 2-7
Reserving an Area of Memory .. 2-8

Building and Maintaining a library .. 2-10
Invoking LibGen .. 2-10
Creating a User-Defined Library .. 2-11
Adding a New Library Module ... 2-12
Extracting a Library Module .. 2-13
Replacing a Library Module .. 2-13
Combining Libraries .. 2-14

REV A FEB 1981 2-i

8500 MOL A Series Assembler Users

Section 2

PROCEDURES

INTRODUCTION
In the previous section, the Learning Guide, you were presented with the basic concepts of
the Tektronix Assembler and Linker. In this section. Procedures. you are shown procedures
for using the assembler, the linker, and the library generator.

Each procedure in this section is simply a series of one or more command entries or actions
for you to perform. Most of the procedures contain parameters (places for values) that you
will supply when you perform the procedure.

Each procedure is presented in the following format:

Description:

Procedure:

Parameters:

Comments:

Examples:

See Also:

A summary of the operation(s) performed by the procedure.

The information entered or displayed at the system terminal. The
following conventions are used in the procedure description:

Underlined: The character sequence that you will enter. The sequence
may consist of the exact characters to be entered, or parameters for
which you must substitute your values.

No underline: A character sequence that is displayed by the operating
system.

UPPERCASE: An exact character sequence; if these characters are
underlined, enter them exactly as shown. (If they are not underlined,
you will see these characters displayed by the operating system.)

lowercase: A parameter for which you will supply a value when you
perform the procedure.

(Parentheses): A comment, or an action for you to perform at the
indicated time.

The filespecs or options that you provide.

The operating limits and options fOi this procedure.

One or more demonstrations of the correct entry format.

Cross-references to related procedures.

For a full description of any given command, refer to Assembler Directives, Linker, or Library
Generator section in this manual, as appropriate.

REV A FEB 1981 2-1

Assembling Your Program Procedures-8500 MOL A Series Assembler Users

2-2

ASSEMBLiNG YOUR PROGRAM

Invoking the Assembler

Description:

Procedure:

Parameters:

Examples:

See also:

This procedure generates an object file (in machine language) from an
assembly language source file.

> ASM object listing source

object-The filespec of the resulting object code.

listing-The filespec of the listing file or device.

source-The filespec of the assembly source code for the program.

> ASM OBJ ASML ASM

This command line assembles the source code present in the file ASM.
The resulting object code is placed in the file OBJ. The assembler also
produces a program listing and a list of defined symbols. This listing is
placed in the file ASML. All the files in this example reside in the
current directory .

• Invoking the Linker

• Displaying Internal Symbols in the Linker Listing

Combining Source Files During Assembly

Description:

Procedure:

Parameters:

Comments:

This procedure assembles code from several source files into a single
object module.

> ASM object listing asrc bsrc csrc

object-The filespec of the resulting object code.

listing-The filespec of the listing file or device.

asrc-The filespec of the first source file to be assembled.

bsrc-The filespec of the second source file to be assembled.

csrc-The filespec of the third source file to be assembled.

The command line assembles the source files in left-to-right order. An
END statement should appear only in the last source file to be
assembled (in this case, csrc).

REV A FEB 1981

Procedures-8500 MOL A Series Assembler Users Assembling Your Program

Examp!e:

See also:

> ASM OBJ LPT A.ASM B.ASM C.ASM

The three source files are assembled left-to-right: A.ASM, then B.ASM,
and then C.ASM. The object code is placed in the file OBJ. All of the
files reside in the current directory. The program listing is output on the
line printer (LPT).

• Invoking the Assembler

Displaying Internal Symbols in the Linker Listing

Description:

Procedure:

REV A FEB 1981

This procedure adds the internal symbol list to the linker listing. The
internal symbol list contains all of the symbols in the source file and
their final values. These internal symbols include: scalars, section
labels, and labels for unbound globals. This listing is useful for
debugging high-level and assembly language programs.

(Invoke the editor and include the LIST DBG option at the beginning of
the assembler source file.)

> EDIT~~rfile

** EDIT VER X.X
*INPUT
INPUT:
tLISTtDBG <cr>
<cr>---

(t represents a tab or contro!-! key)

*FILE

EDIT EOJ

(Assemble the yourfile source file)

> ASM object"yourfile

(Link the assembled object file)

> LINK load listing object

(The load may now be LOADed into program memory. The linker listing
will show the memory addresses and the values of all symbols used in
the program.)

2-3

Linking Your Program Procedures-8500 MOL A Series Assembler Users

2-4

Parameters:

Comments:

See also:

object-The filespec of the assembled object code.

yourfile-The filespec of the assembly source file that will have the LIST
DBG option added.

load-The filespec of the resulting load file.

listing-The filespec of the listing file or device. This listing includes a
global symbol list and optional internal symbol or map listings. Refer to
the Linker section of this manual for more information on the listing
options.

When you insert this listing control directive at the beginning of your
assembly code the linker will list the values assigned to the internal
symbol table. You may then examine or modify the program by using the
linker listing to find the memory locations of symbols.

• Invoking the Assembler

• Invoking the Linker (Simple Invocation)

LINKING YOUR PROGRAM

Invoking the Linker (Simple Invocation)

Description:

Procedure:

Parameters:

Comments:

This procedure converts the contents of object files (produced by the
assembler) into a single file that is suitable for loading.

> LINK load listing object LIB(library)

load-The filespec of the resulting load file.

li~ ... inn_ Thc filccncl""' nf thc lictinn filc nr rlc\lil""'Q Thic lictinn inl""'lt .rlcc ,;:, •• ..., •••• ::J III...., .11"-1 ,..,"-'_....,1 ILII""" .I....,.ILI'.~ III...., '-'I _"'v.v"""'. 1111..., 'I"""LII'::1 ••• _1""'_"""-" IIo.A

global symbol list and optional internal symbol or map listings. Refer to
the Linker section of this manual for more information on the listing
options.

object-The filespec of the object file from which the load file is
generated.

library-The filespec of a library file to be linked. You may omit this
parameter.

Additional object files may be linked by entering additional object
parameters.

REV A FEB 1981

Procedures-8500 MOL A Series Assembler Users Linking Your Program

Examples:

See also:

> LINK LOAD LNKL OBJ LIB(YOUR.LIB)

This command uses the object code stored in the file OBJ and any object
modules selected from the YOUR.LlB library file to generate a load file
LOAD. The linker also produces a listing file LNKL. All files are located
in the current directory.

> LINK LOAD LNKL HER.OBJ HIS.OBJ ITS.OBJ

The object code stored in the file HER.OBJ is linked first, then the file
HIS.OBJ, then iast of aii the fiie iTS.OBJ. The resuiting ioad file is
named LOAD. The linker also produces a listing file named LNKL. All
files are located in the current directory.

• Invoking the Assembler

• invoking the Linker (Interactive Invocation)

• Displaying Internal Symbols in the Linker Listing

Invoking the Linker (Interactive Invocation)

Description:

Procedure:

Parameters:

REV A FEB 1981

This procedure converts the contents of object files (produced by the
assembler) into a single file that is suitable for loading. This form of
invocation also permits a series of additional commands to be given to
the linker.

> LINK
*L~
*~1AP
*D5AD load
*LIST listing
*ITNKOb}" ec t
*LINK LIB(library)
* (Ente;:-one linker command per line)

*END

load-The filespec of the resulting load file.

listing-The filespec of the listing file or device. This listing includes a
global symbol list and op~ional internal symbol or map listings. Refer to
the Linker section of this manual for more information on the listing

object-The filespec of the object file from which the load file is
generated.

library-The filespec of a library file to be linked.

2-5

linking Your Program

Comments:

Example:

See also:

2-6

Procedures-8500 MOL A Series Assembler Users

This form of linker invocation allows you to enter commands line-by-line
to specify: the listing format, the output file, the listing device or file, the
input file, and several other options. These optional commands LOCATE
sections, provide TRANSFER addresses for modules, and DEFINE values
for symbols. If you wish to link more than one file, repeat the LINK
command on the following line with the additional file as its parameter.
The END command begins linker execution. For more information about
linker invocation, see the linker section of this manual.

> LINK
*Loc.;
*MAP
*[()jfD LOA D
*LIST LPT
*LINK MY.OBJ
*LINK YR.OBJ
*LINK LIB(COMMON.LIB)
*DEFINE INITSP=8000
*END

The object code stored in the two files MY.OBJ and YR.OBJ is linked
with selected object modules from the library file COMMON. LIB. The
global symbol INITSP is assigned a hexadecimal value of 8000 and the
linked body of code is placed in a load file named LOAD. The line printer
(lPT) records the linker commands, the values of symbols, and the
locations of sections.

> LINK
*L~
*MAP
*[()jfD OUT. LOA D
*LIST LST.LNKL
*LINK IN.OBJ
*LOCATE SECTNAME,BASE(O)
*END

The input file IN.OBJ contains a section named SECTNAM. The BASE
attribute of the lOCATE command positions the starting address of this
section at address O. The resulting load file is named OUT.lOAD. The
list file lST.lNKl records the linker commands, the vaiues of symbols,
and the locations of sections.

• Assigning Object Code to an Address Range

• Reserving an Area of Memory

REV A FEB 1981

Procedures-8500 MOL A Series Assembler Users Linking Your Program

Assigning Object Code to an Address Range

Description:

Procedure:

Parameters:

Comments:

REV A FEB 1981

This procedure assigns an object code section to a specified address
range.

> LINK
*Lcm-
*MAP
*D5AD load
*LIST listing
*T TNJ(I"'Ih;o(">t '1 ... a. __ ...,) __

*LOCATE sectionname,RANGE(startaddr,endaddr)
*END

load-The filespec of the resulting load file.

listing-The filespec of the listing file or device. This listing includes a
global symbol list and optional internal symbol or map listings. Refer to
the Linker section of this manual for more information on the listing
options.

object-The filespec of the object file from which the load file is
generated. Repeat this line for each additional object file to be linked.

sectionname-The name of the object section that is relocated into the
specified address range.

startaddr-The lower bound of the allowed relocation range. This
address is specified in hexadecimal.

endaddr-The upper bound of the allowed relocation range. This
address is specified in hexadecimal.

The object files to be LINKed are scanned for the section name specified
by the LOCATE command. This object section is relocated within a
RANGE bounded by the specified starting and ending addresses. All
other object sections may be relocated anywhere within the processor's
address range (this includes the specified RANGE). The LOAD command
specifies the name of the load file. The listing may be sent to either a file
or device.

2-7

linking Your Program

Example:

See also:

> LINK
*L~
*MAP
*I"OAD LOA D
*LIST LNKL
*LINK IN.OBJ

Procedures-8500 MOL A Series Assembler Users

*LOCATE SECTNAM,RANGE(O,FF)
*END

The input file IN.OBJ contains an object section named SECTNAM. The
LOCATE command assigns the object section SECTNAM within a range
of addresses 0 to FF. This range is specified by the RANGE parameter.
Any object sections remaining in IN.OBJ are relocated within the
address range of the processor. The resulting linked object code is sent
to the load file LOAD. The linker commands are recorded in the file
LNKL, along with the values of symbols and the locations of sections.

• Reserving an Area of Memory

• Invoking the Linker (Interactive Invocation)

Reserving an Area of Memory

Description:

Procedure:

Parameters:

2-8

This procedure prevents relocation within a predefined address range.

Label Operation

SECTION
ORG
BLOCK
END

Operand

dummyname,ABSOLUTE
startaddr
areasize

(Assemble an object file from the dummy source file:)

> ASM skipobject"skipsource

(Link skipobject and your object file:)

> LINK load listing skipo?ject yourobject

dummyname-The name of the dummy section. The SECTION
statement includes an ABSOLUTE option. This option directs the linker
to use the address specified by the ORG directive as the starting address
in memory. The operand of the BLOCK directive specifies the size of the
reserved block of memory.

startaddr-The starting address of the reserved area.

areasize-The size of the reserved area,

REV A FEB 1981

Procedures-8500 MOL A Series Assembler Users linking Your Program

Comments:

Example:

See also:

REV A FEB 1981

skipsource-The filespec of the dummy source file.

skipobject-The filespec of the assembled dummy file.

yourobject-The filespec of the object file containing your program.

listing-The filespec of the listing file or device. This listing includes a
global symbol list and optional internal symbol or map listings. Refer to
the Linker section of this manual for more information on the listing
options.

load-The filespec of the resulting load file.

A dummy file is linked with the object file containing your program. The
ABSOLUTE option within the dummy section directs the linker to start
the section at the address specified by the ORG directive. The BLOCK
directive specifies the size of the reserved area. The object sections of
your program are then relocated around the reserved area occupied by
the dummy section. This reserved area may be used for ROM storage or
memory-mapped 1/0.

Label Operation Operand Comment

SECTION
ORG
BLOCK
END

SKIPSEC,ABSOLUTEj
o jBase Address
100H jReserved Memory

(Assemble the source file SKIP.ASM:)

> ASM SKIP.OBJ"SKIP.ASM

(Link SKIP.OBJ and your object file)

> LINK LOAD LPT SKIP.OBJ YR.OBJ

The dummy file SKIP.ASM is assembled and stored in SKIP.OBJ. This
object file is linked with the object file YR.OBJ. The ABSOLUTE option
within the dummy section SKIPSEC directs the linker to start the section
at address a (as specified by the ORG directive). The BLOCK directive
then reserves a specified area of 100 (hexadecimal) bytes.

The linker relocates the remaining object sections around the SKIPSEC
dummy section, leaving the first 256 bytes of memory unused by this
program. The resulting load file is named LOAD. The listing device is the
line printer (LPT).

• Invoking the Linker (Interactive Invocation)

2-9

Building and Maintaining a Library Procedures-8500 MOL A Series Assembler Users

2-10

BUILDING AND MAINTAINING A LIBRARY

Invoking LibGen

Description:

Procedure:

Parameters:

Comments:

Example:

See also:

This procedure shows the general format for invoking the library
generator (LibGen).

> LIBGEN newlib listing oldlib
* (Enter one LibGen command per line)

*END

newlib-The filespec of the new version of the library.

listing-The filespec of the listing file or device.

oldlib-The filespec of the old library file.

When you invoke LibGen you may use one or more commands to
INSERT, EXTRACT, REPLACE, or DELETE library modules. If these
commands are not entered, oldlib will be copied into newlib without
modification. The END command must always terminate the invocation.
For more information, see the Library Generator section of this manual.

> LIBGEN BIG.LIB LBGL SML.LIB
*INSERT BIG.OBJ
*END

The library file SML.L1B is copied into a new library file named BIG.L1B.
The object module in file BIG.OBJ is inserted at the beginning of the
BiG.LiB iibrary fiie. The LBGL fiie iists the moduies within the output
library, the global symbols within each each module, and the actions
performed by the library generator.

> LIBGEN"LBGL AD.LIB
*END

The module names in the library file AD.L1B are sent to the listing file
LBGL. This file may be copied to the system terminal (CDND) or a line
printer (LPT).

• Creating a User-Defined Library

• Adding a New Library Module

• Examining a Library Modu!e

• Replacing a Library Module

• Combining Libraries

REV A FEB 1981

Procedures-8500 MOL A Series Assembler Users Building and Maintaining a Library

Creating a User-Defined Library

Description:

Procedure:

Parameters:

Comments:

Example:

See also:

REV A FEB 1981

This procedure creates a new library from object modules.

> LIBGEN newlib listing
*INSERT obj ect (repeat as necessary)

*END

newlib-The filespec of the new library file.

listing-The filespec of the listing file or device.

object-The filespec of one of the files containing the object modules to
be included in the library. Enter one INSERT command for each object
file to be inserted.

Each object module in the library should be uniquely named (with the
NAME directive) at assembly time. If you do not name the object
modules, you will not be able to modify or maintain the library.

For more information about naming modules, refer to the NAME
directive in the Assembler Directives section of this manual.

> LIBGEN MY.LIB LBGL
*INSERT A.OBJ
*INSERT B.OBJ
*~TC.OB.J
*INSERT Z.OBJ
*END

The library file MY.LlB is created in the current directory. The library file
contains object modules from files A.OBJ, B.OBJ, C.OBJ, and Z.OBJ.
The LBGL file lists the modules within the new library, the global
symbols within each each module, and the actions performed by the
library generator.

• Adding a New Library Module

• Combining Libraries

2-11

Building and Maintaining a Library Procedures-8500 MOL A Series Assembler Users

2-12

Adding a New Library Module

Description:

Procedure:

Parameters:

Comments:

Example:

See also:

This procedure copies a library and inserts an object module from a file
into the new library.

> LIBGEN newlib listing oldlib
*INSERT addobj
*END

newlib-The filespec of the new library version.

listing-The filespec of the listing file or device.

oldlib-The filespec of the old library file.

addobj-The filespec of the file containing the object module that is
added to the library.

Each object module in the library should have a unique name given at
assembly time. If you do not name the object modules, you will not be
able to modify or maintain the library.

> LIBGEN AD.LIB LPT MY.LIB
*INSERT D.OBJ
*~---

The MY.LlB library is copied into AD.LlB. The object module within
D.OBJ is inserted at the beginning of the library. The list of the modules
within the output library, the global symbols within each each module,
and the actions performed by the library generator are listed on the line
rrinter

• Examining a New Library Module

• Replacing a Library Module

REV A FEB 1981

Procedures-8500 MOL A Series Assembler Users Building and Maintaining a Library

Extracting a Library Module

Description:

Procedure:

Parameters:

Comments:

Example:

See also:

This procedure copies a library module into an object file.

> LIBGEN"listing lib
*EXTRACT modlib TO newfile
*END

listing-The filespec of the listing file or device.

lib-The filespec of the library file.

modlib-The name of the library module that will be copied into a new
file.

newfile-A filespec of the new file used to store the extiacted library
module.

The library lib and the newfile both contain the object module modlib
after this procedure is complete.

> LIBGEN"LPT AD.LIB
*EXTRACT AMOD TO X.OBJ
*EXTRACT BMOD TO Y.OBJ
*END

Two modules are copied from the library file AD.L1B into two object files.
AMOD is copied into the object file X.OBJ; BMOD is copied into the
object file Y.OBJ. The line printer (LPT) lists the modules within the
library, the global symbols within each each module, and the actions
performed by the library generator.

• Adding a New Library Module

• Repiacing a Library Module

Replacing a Library Module

Description:

Procedure:

Parameters:

REV A FEB 1981

This procedure replaces an existing library module with a new one.

> LIBGEN newlib 1;C';-;n« ,,1rll;h
....... ..L t.J V 1 ... 0 'V..L.\,."l...L....L...,

*REPLACE modlib BY newfile
*END

newlib-The filespec of the new version of the library.

listing-The filespec of the listing file or device.

oldlib-The filespec of the old library file.

2-13

Building and Maintaining a Library Procedures-8500 MOL A Series Assembler Users

2-14

Comments:

Example:

See also:

modlib-The name of the library module that will be replaced by the
new module.

newfile-The filespec of the new module.

The old library is scanned for modlib, which is then deleted and replaced by
the object module within newfile.

Each object module in the library should have a unique name given at
assembly time. If you do not name the object modules, you will not be
able to modify or maintain the library. For more information about
naming modules, refer to the NAME directive in the Assembler
Directives section of this manual.

> LIBGEN NU.LIB LBGL AD.LIB
*REPLACE AMOD BY X.OBJ
*REPLACE BMOD BY Y.OBJ
*END

The AD.LlB library is copied into NU.LlB. The object moduie within
X.OBJ replaces AMOD, and the object module within Y.OBJ replaces
BMOD. The listing file LBGL lists the contents of the new library and the
actions performed by the library generator.

• Examining a Library Module

• Adding a New Library Module

Combining Libraries

Description:

Procedure:

This procedure adds the contents of a small library to a larger library.

> LIBGEN"oldlisting smallib
*EXTRACT mod1 TO file1
*EXTRACT mod2 TO file2

*EXTRACT modx TO filex --.---------
*END

(All of the modules in the smaller library have been copied into
individual files.)

> LIBGEN newlib newlisting biglib
*INSERT file (------------.-------
* INS E R T'rITe2

*INSERT filex
*~------

REV F~ FEB 1981

Procedures-8500 MOL A Series Asembler Users Building and Maintaining a Library

Parameters:

Comments:

Example:

See also:

REV A FEB 1981

oldlisting-The filespec of the listing file or device that shows the
contents of the old library.

smallib-The filespec of the smaller library file.

mod1, mod2, ... , modx-The library modules extracted out of the
smaller library.

file1, file2, ... ,filex-The filespecs designating the individual files used
to store the modules extracted from sma!!ib.

newlib-The filespec of the new library created from the combination of
smallib and biglib.

newlisting-The filespec of the listing file or device that shows the
contents of the new library.

biglib-The filespec of the larger library file.

This procedure copies all of the modules mod1, mod2, ... , modx from
the smallib library into individual object files file1, file2, ... , filex. The
biglib library is copied into the new library file newlib. The files file1,
file2, ... , filex are then inserted into the beginning of the newlib library.
The first listing shows the contents of the smallib library and the second
listing shows the contents of the newlib combined library.

> LIBGEN"OLD.LBGL MY.LIB
*EXTRACT AMOD TO A.OBJ
*EXTRACT BMOD TO B.OBJ
*EXTRACT CMOD TO C.OBJ
*END

> LIBGEN NU.LIB NEW.LBGL YR. LIB
*INSERT A.OBJ
*INSERT B.OBJ
*INSERT C.OBJ
*END

Modules AMOD, BMOD, and CMOD are copied from the MY.LlB library
into intermediate object files A.OBJ, B.OBJ, and C.OBJ. The YR.LlB
library is copied into a new library named NU.LlB. The intermediate files
are then inserted at the beginning of the NU.LlB library. The listing file
OLD.LBGL lists the contents of the old library and the actions of the first
LlBGEN command; the listing file NEW.LBGL lists the contents of the
new library and the actions of the second LlBGEN command.

• Examining a Library Module

• Adding a New Library Module

• Invoking LlBGEN

2-15

8500 MOL A Series Assembler Users

Section 3
ASSEMBLER INTRODUCTION

Page

Introduction .. 3-1

Syntax Notation .. 3-1
Introduction ... 3-1
Command Name .. 3-2
Parameters ... 3-2

Assembler Invocation... 3-3

Assembler Input .. 3-4

Assembler Execution .. 3-5
Two Passes ... 3-5
Forward Referencing .. 3-5
Execution Sequence ... 3-5

Assembler Output .. 3-6
Object Module .. 3-6
Assembler Listing ... 3-6

Source Listing .. 3-6
Symbol Table ... 3-7

Sample Source Program ... 3-11
Sample Source Listing ... 3-12
Sample Symbol Table .. 3-18

ILLUSTRATIONS

Fig.
No.
3-1 Sample syntax block .. 3-1

3-2 Sample assembler listing (Part 1 of 3) 3-8

3-3 Sample assembier iisting (Part 2 of 3) 3-9

3-4 Sample assembler listing (Part 3 of 3) 3-10

3-5 Sample 8080A source program , 3-11

REV A FEB 1981 3-i

8500 MOL A Series Assembler Users

Section 3

ASSEMBLER INTRODUCTION

INTRODUCTION
The assembler translates assembly language statements (source code) into machine
instructions (object code). The resulting object module, stored in a file, is suitable for input to the
linker or to the library generator (LibGen).

This section describes the Tektronix Assembler, and is divided into the following subsections:

• Syntax Notation. Describes the syntax conventions used throughout this manual.

• Assemb!er Invocation. Describes how to invoke the assembler with the operating system
ASM command.

• Assembler Input. Describes how the source module is used as input to the assembler.

• Assembler Execution. Describes the operations performed by the assembler.

• Assembler Output. Describes the output of the assembler: the object module and the
assembler listing. Includes an annotated assembler listing of a sample program.

SYNTAX NOTATION
Introduction
This manual uses syntax blocks to present:

• operating system commands,

• linker commands,

• LibGen commands,

• assembler directives, and

• assembler functions.

The conventions used in the syntax blocks are described in this subsection. Figure 3-1
illustrates a sa mple syntax block.

SYNTAX

r PAl (p:u~rT'I? 1
COMMAND param1 [/par-one] LPB J lp;;;~:;3l .. ·

3454-6
Fig. 3-1. Sample syntax block.

This figure illustrates a syntax block for a sample command line.

REV A FEB 1981 3-1

Syntax Notation Assembler Introduction-8500 MDL A Series Assembler Users

3-2

In this fictitious example, COMMAND represents a command name. PA, PS, param1,
param2, param3, and par-one represent the command parameters.

Delimiters (usually spaces or commas) separate the parameters from the command name
and from each other.

Command Name
A command name is a word that represents a command or assembler directive. Uppercase
characters in the command name must be entered exactly as shown. When part of the command
name is underlined, you may enter that shortened form. In Fig. 3-1, the short form of the
command is COM.

Parameters
Parameters specify or modify how the command is executed. Parameters may be names,
addresses, devices, numbers, characters, or symbols. Capitalized parameters and any special
characters, such as the comma, parentheses, "at" sign (@), slash (/), and equals sign (=),

must be entered exactly as they appear in the syntax block.

Lowercase parameters are descriptive terms that identify the type of information to be
entered. Allowable entries appear in the PARAMETERS explanation for each command. In
this manual, parameters are sometimes represented in a syntax block by two words, joined
with a hyphen. The hyphen shows that they are not two separate parameters. In the
example, "par-one" represents one parameter.

Parameters may be required or optional in the command line. Required parameters appear in
the command line without braces or brackets. For example, "param1" is a required
parameter.

Optional Parameters

Optional parameters are enclosed in brackets [] in the syntax block. In Fig. 3-1 "/par-one" is
an optional parameter. The special character slash (/) is required if "par-one" is used.

Choice of Parameters

Parameters are stacked one above another when there is a choice of two or more
parameters. If the parameters are stacked within braces {}, one of the parameters must be
selected. In the example, either "param2" or "param3" must be selected. If the parameters
are stacked within brackets [], the selection is optional. In the example, you may select either
"PA" or "PS" or neither. Notice that if either "PA" or "PS" is selected, it must be preceded by
a comma.

REV A FEB 1981

Assembler Introduction-8500 MOL A Series Assembler Users Assembler Invocation

Repeated Parameters

When three dots follow a parameter, the parameter may be repeated any number of times up
to the end of the current line. The choice of "param2" or "param3" may be repeated as many
times as the line permits.

ASSEMBLER INVOCATION
The assembler is invoked by the operating system command ASM.

SYNTAX

ASM [object] [listing] source ...

object

listing

source

PARAMETERS

The filespec where the object module is written. If this parameter is
omitted, no object module is created.

The filespec where the assembler listing is to be written. If this parameter
is omitted, no listing is created. The listing can be printed directly to the line
printer, by specifying LPT as the listing device.

The filespec of the source code.

EXPLANATION

The ASM command invokes the Tektronix Assembler. The source code residing on one or
more files is translated into object code (machine language), which is stored on the specified
object file or device. An assembler listing is generated and written on the specified file or
device. If either the object or listing is omitted, you must enter two commas. If both are
omitted, you must enter three commas. (See the Examples.)

The assembler makes !\NO passes through the source code. (See the Assembler Execution
subsection in this section.) If you are entering the source code from a device, you must enter
the source code twice, once for each assembler pass.

REV A FEB 1981 3-3

Assembler Input Assembler Introduction-8500 MOL A Series Assembler Users

3-4

EXAMPLES

ASM OBJ ASML ASM

This example assembles the source file ASM, creating the object file OBJ. The assembler listing
is stored in the file ASML. All files reside in the current directory.

ASM, ,LPT MY.ASM

This example assembles the source file MY.ASM but does not generate an object file. The
assembler listing is output to the line printer.

ASM" ,MY.ASM

This example assembles the source file MY.ASM that resides in the current directory, but does
not generate an object file or an assembler listing. This form of invocation might be used when
errors are suspected in the source file. The errors are listed on the system terminal.

ASSEMBLER INPUT
Assembler input consists of assembly language statements, as defined in the Language
Elements section of this manual. There are three types of assembler language statements:

• assembly language instructions,

• assembler directives, and

• macro invocations.

Blank lines and comment lines (lines beginning with a semicolon) may be included in the
input, but have no effect on the assembler. Any other assembler input will cause an error.

If the assembler input resides in one or more source files, each filespec must be specified in the
ASM command line. If the input is read from a device, the statements must be entered twice.
When the assembler is ready to read the source code a second time, it displays the following
message on the system terminal:

**** Pass 2

If the statements entered on the second pass are not identical to those entered on the first
pass, assembly errors will result.

Assembler Introduction-8500 MOL A Series Assembler Users Assembler Execution

ASSEMBLER EXECUTION
Two Passes
The assembler makes two passes over the input. During the first pass, the assembler:

• eXoamines each statement, records any symbol it encounters in a symbol table, and
assigns a value to each symbol. That value is used in the second pass.

When the END statement or the end of the last source file is encountered, the assembler
reads the input again. During the second pass, the assembler:

• generates an object module,

• generates a listing file, and

• lists on the terminal any error messages generated. (See the LIST directive in the
Assembler Directives section of this manual.)

Forward Referencing
Since the assembler generates a symbol table on the first pass, your programs can include
forward referencing. For example:

JMP DOWN

DOWN CALL OUTS

The symbol DOWN can be referenced before it is defined. If any symbol has a different value
during the second pass, a phase error results.

Execution Sequence
As the assembler reads each statement of the source program, it performs the following
steps:

1. Makes any necessary text substitution. The assembler replaces any text substitution
construct, such as '1', '@', or 'VARNAME', with the parameter, symbol, or string that
the construct stands for. (See the Language Elements section of this manual.)

2. Performs the indicated action according to the type of statement:

REV A FEB 1981

a. assembly language instruction-The assembler translates each assembly
language instruction into the corresponding machine instruction.

b. assembler directives-Performs the action specified by the directive. Not all
assembler directives produce object code. (See the Assembler Directives section
of this manual for the effect of individual directives.)

For example, some directives may simply define assembler symbols, while some
may alter the processing order of the statements, An IF direr.tive r.auses a block
of code to be assembled or skipped depending on the true/false value of the IF
condition. When a MACRO directive is encountered, the assembler simply stores
the macro definition.

3-5

Assembler Output Assembler Introduction-8500 MOL A Series Assembler Users

3-6

c. macro invocation-The assembler processes each statement within the
previously defined macro. (See the Macros section of this manual.)

The REPEAT directive within a macro causes a block of statements to be
assembled more than once. (See the REPEAT directive in the Assembler
Directives section of this manual.)

ASSEMBLER OUTPUT
The assembler generates an object module and an assembler listing. Any assembler errors
are displayed to the system terminal.

Object Module
The assembler generates an object module which is stored in binary format. This assembler
created object module is suitable for one of the following uses:

• It may be linked with other modules to form an executable load file. (See the Linker
section of this manual.)

• It may be inserted into a library file. (See the Library Generator section of this manual.)

• It may be loaded into program memory and executed provided that the module does not
contain any unbound global symbols and does not contain any sections that must be
relocated. (See the Linker section of this manual for information on relocatable
sections.)

Assembler Listing
The assembler generates an assembler listing consisting of two parts: the source listing, and the
symbol table. Figures 3-2, 3-3, and 3-4 show the assembler listing of a sample program. Both
the listing and the sample program that generates it are examined in more detail later in this
section.

The assembler listing shown in this section consists of three pages: pages 1 (Fig. 3-2) and 2 (Fig.
3-3) show the source listing, which includes the source program and the object code generated
for each statement; page 3 (Fig. 3-4) shows the symbol table. Refer to Figs. 3-2, 3-3, and 3-4 as
you read the following descriptions.

Source Listing

Each line of the source listing contains the following information:

1. the line number (decimal).

2. the memory location (hexadecimal) of the object code generated (if any).

3. the assembled object code (hexadecimal).

4. a relocation indicator (» if the object code is to be adjusted by the linker.

5. a text substitution indicator (+) if the assembler has modified the source statement.

6. the source statement.

If any statement contains an error, the appropriate error message appears directly after the
statement.

REV A FEB 1981

Assembler Introduction-8500 MOL A Series Assembler Users Assembler Output

Symbol Table

The assembler symbol table displays the value and type of each symbol. The symbol table is
divided into the following groups:

1. Strings and Macros-Symbols that are declared as string variables or defined as
macro names are listed in this group. The letter "S" after the symbol indicates a string
variable and "M" indicates a macro. A number (in hexadecimal) follows each symbol.
That number represents the number of bytes required by the assembler to store the
character string or macro definition.

2. Scalars-Scalar symbols are listed in this group. The letter "G" following the symbol
indicates a giobai symboL The ietter ::V:: indicates a variabie defined with the SET
directive. The number that follows the symbol is the value assigned to the symbol. The
value for each variable is the last value assigned to the variable during assembly.
"****,, indicates an undefined symbol.

3. Sections-Each section of the program is listed alphabetically in this group. The
following information appears with each section:

• Section type-SECTION, RESERVE, or COMMON. See the Linker section of this
manual for the definition of section types.

• Relocation type-PAGE, INPAGE, ABSOLUTE, or, if not specified, byte-relocatable.

• Length of section-the number of bytes of object code generated (in hexadecimal).

• All address symbols within the section-each with its address relative to the
beginning of the section. "E" indicates that the ENDOF function is used to
determine the address. "H" indicates that the HI function is used and "L" indicates
that the LO function is used.

4. Unbound Globals-Symbols used in this module but defined elsewhere are listed in
this group. Any symbols based on an unbound global are listed below that global.

5. Statistics-Two summary lines of statistics appear at the end of the symbol table. The
first line shows the number of source lines, the number of assembled lines, and the
number of available bytes. The number of available bytes indicates the amount of
space remaining in the assembler for storage of string variables, macros, and labels.
The second line indicates the number of errors and undefined symbols, if any. These
lines of statistics also appear on the system terminal at the end of the assembly
process.

REV A FEB 1981 3-7

Assembler Output Assembler Introduction-8500 MOL A Series Assembler Users

3-8

Tektronix 8080/8085 ASM Vx.x SAMPLE PROGRAM Page

object
code

memorVl relocation
location indicator (»

line ~ number text substitution source I indicator (+) statements

~ I (-------------~-------------\
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011

00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
ca029

03E8

00c6

FFFF

ERROR 001:
01F4

ceco 000000
ERROR 039:

0008
0001

0000 CDOOOO
0003 CDOOOO
0006 C30100

0100
0100 0080

LIST TRM
STRING VOTERS(20),MYSELF(20)
STRING SENTENCE(40)

SEATS SET 1000
MYSELF SET "KEN DEDATE"
VOTERS SET "ENGINEERS"
CONTRIB SET 198
; DEFINE RESERVE SECTION "SEATING".

IF HI(CONTRIB) = 0
WARNING CONTRIBUTION TOO SMALL

SEATS SET SEATS - 500
ENDIF
RESERVE SEATING, SEATS

DEFINE MACRO "PROMISE".
MACRO PROMISE

THIS MACRO CONCATENATES ALL
; A SINGLE SENTENCE.

PARAMETERS INTO

SENTENCE SET
PARAM SET

REPEAT
SENTENCE SET

1 ; POINT TO FIRST PHRASE.
PARAM <= 'II' REPEAT
SENTENCE:" ": 'PARAM' FOR

P ARAM SET
ENDR

PARAM + 1 EACH

ASCII
ENDM

"'SENTENCE'"

DELIBERATE ERROR
Invalid operation code

: DEFINE PROGRAM SECTION "CAMPAIGN".

ELECTION
NEXTBABY
FIRST
THEN
LAST
; DEFINE

GLOBAL SPEAK,KISSBABY
SECTION CAMPAIGN
EQU ENDOF(CAMPAIGN)
EQU KISSBABY + 1
CALL SPEAK
CALL KISSBABY
JMP NEXTBABY
COMMON SECTION "SPEECH".

<:p •• ru ~tl<:(11 11'1'.
100H-··'··~~-~v.~

COMMON

80H

PHRASE.

macro
definition

)0030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043

0180

ORG
APPLAUSE BLOCK
MESSAGE EQU

PROMISE
ASCII

$ macro
VOTERS,"WILL ALWAYS HAVE" ------. .

0180 20454E47 +
0184 494E4545
0188 52532057
018C 494C4C20
0190 414C5741
0194 59532048
0198 415645

00044
019B 20412046 +

PROMISE
ASCII

" ENGINEERS WILL ALWAYS HAVE" invocation

"A FRIEND IN",MYSELF,"."
" A FRIEND IN KEN DEDATE

Fig. 3-2. Sample assembler listing (Part 1 of 3),

3575-1

This sample assembler listing, and the source program that generated it. are discussed in the text.

REV A FEB 1981

Assembler Introduction-8500 MOL A Series Assembler Users

Tektronix

019F
01A3
01A7
01AB
OlAF
01B3

00045
01B4
01B8
01BC
01CO
01C4
01C8
01CC

00046
00047

01 CF
01D3
01D7
01DB
01DF
01£3
01E7

00048

8080/8085 ASM Vx. x

5249454E
4420494E
204B454E
20444544
41544520
2E

2054454C +
4C20594F
55522046
454C4C4F
5720454E
47494E45
455253

SENTENCE
0001 PARAH
FFFF +

+ SENTENCE
0002 PARAM

FFFF +
+ SENTENCE

0003 PARAM

FFFF +
+ SENTENCE

0004 PARAM

20544F20 +
564F5445
20464F52
204B454E
20444544
41544520
2E

SAMPLE PROGRAM Page 2

PROMISE
ASCII

LIST
PROMISE
SET
SET
REPEAT
SET
SET
ENDR
REPEAT
SET
SET
ENDR
REPEAT
SET
SET
ENDR
ASCII

END

"TELL YOUR FELLOW",VOTERS
" TELL YOUR FELLOW ENGINEERS"

ME ; SHOW FULL MACRO EXPANSION
"TO VOTE FOR",MYSELF,"."

; POINT TO FIRST PHRASE.
PARAM <= 00003 ; REPEAT
SENTENCE:" ":"TO VOTE FOR" ; FO
PARAM + 1 ; EACH

; PHRASE.
PARAM <= 00003 ; REPEAT
SENTENCE:" ":MYSELF ; FOR
PARA~ + 1 EACH

PARAM <= 00003
SENTENCE:" ":"."
PARAM + 1

FOR

PHRASE.
; REPEAT

EACH
; PHRASE.

" TO VOTE FOR KEN DE DATE ."

Fig. 3-3. Sample assembler listing (Part 2 of 3).

Assembler Output

complete
macro expansion
listed

3575-2

This sample assembler listing, and the source program that generated it, are discussed in the text

REV A FEB 1981 3-9

Assembler Output Assembler Introduction-8500 MOL A Series Assembler Users

3-10

Tektronix 8080/8085 ASM Vx.x Symbol Table

Strings and Macros

MYSELF - 0014 S
VOTERS - 0014 S

Scalars

A ------ 0007
CONTRIB 00C6 V
E ------ 0003
M ------ 0006
SEATS -- 01F4 V

% (default) Section (0003)

CAMPAIGN Section (0009)

ELECTION 0008 E
THEN --- 0003

SEATING Reserve (01F4)

PROMISE 0135 M

B ------ 0000
D ------ 0002
H ------ 0004
PARAM -- 0004 V
SP ----- 0006

FIRST -- 0000

SPEECH Common Absolute (01E8)

APPLAUSE 0100 MESSAGE 0180

KISSBABY Unbound Global

NEXTBABY 0001

SPEAK Unbound Global

Page

SENTENCE 0028 S

C ------ 0001
DELIBERA ***11
L ------ 0005
PSW ---- 0006

LAST --- 0006

48 Source Lines 108 Assembled Lines 47025 Bytes available

2 ERRORS UNDEFINED SYMBOLS

Fig. 3-4. Sample assembler listing (Part 3 of 3).

)
strings
and macros

) scalars

sections

)

unbound
globals

~ statistics

)
3575-3

This sample assembier listing, and the source program that generated it, are discussed in the text.

REV A FEB 1981

Assembler Introduction-8500 MOL A Series Assembler Users Sample Source Program

Sample Source Program
Figure 3-5 shows the sample source program that generated the assembler listing shown in
Figs. 3-2, 3-3, and 3-4. The program has no practical application, but is purposely contrived to
illustrate a variety of listing features.

TITLE "SAMPLE PROGRAM"
LIST TRM
STRING VOTERS(20),MYSELF(20)
STRING SENTENCE(40)

SEATS SET 1000
MYSELF SET "KEN DEDATE"
VOTERS SET "ENGINEERS"
CONTRIB SET 198
; DEFINE RESERVE SECTION "SEATING".

IF HI(CONTRIB) = 0
WARNING CONTRIBUTION TOO SMALL

SEATS SET SEATS - 500
ENDIF
RESERVE SEATING,SEATS

DEFINE MACRO "PROMISE".
MACRO PROMISE

THIS MACRO CONCATENATES ALL PARAMETERS INTO
; A SINGLE SENTENCE.
SENTENCE SET ""
PARAM SET 1; POINT TO FIRST PHRASE.

REPEAT PARAM <= 'H' REPEAT
SENTENCE SET SENTENCE:" ":'PARAM' FOR
PARAM SET PARAM + 1 EACH

; DEFINE

ELECTION
NEXTBABY
FIRST
THEN
LAST
; DEFINE

APPLAUSE
MESSAGE

ENDR PH RASE.
ASCII "'SENTENCE'"
ENDM

DELIBERATE ERROR
PROGRAM SECTION "CAMPAIGN".
GLOBAL SPEAK,KISSBABY
SECTION CAMPAIGN
EQU ENDOF(CAMPAIGN)
EQU KISSBABY + 1
CALL SPEAK
CALL KISSBABY
JMP NEXTBABY
COMMON SECTION "SPEECH".
COMMON SPEECH, ABSOLUTE
ORG 100H
BLOCK 80H
EQU $
PROMISE VOTERS,"WILL ALWAYS HAVE"
PROMISE "A FRIEND IN",MYSELF,"."
PROMISE "TELL YOUR FELLOW",VOTERS
LIST ME; SHOW FULL MACRO EXPANSION. I PROMISE "TO VOTE FOR",MYSELF,"."
END

3515-41

REV A FEB 1981

Fig. 3-5. Sample 8080A source program.

This source program generated the sample assembler listing that was shown in Figs. 3-2,3-3, and 3-4. The
text discusses each line in this source program, and the object code that it generates.

3-11

Sample Source Program Assembler Introduction-8500 MOL A Series Assembler Users

3-12

Sample Source Listing

Let's compare the source program (Fig. 3-5) with the assembler listing (Figs. 3-2, 3-3, and 3-4).
The first line of the source program is:

TITLE "SAMPLE PROGRAM"

The TITLE directive creates a title on each page of the assembler program listing. The TITLE
directive itself does not appear on the program listing and does not generate any object code.

Tektronix 8080/8085 ASM Vx.x SAMPLE PROGRAM Page 1
v

title

The next statement in the source program is:

LIST TRM

The LIST directive controls various features of the assembler listing. This particular use, with
the TRM option, prints the assembler listing in a 72-character width instead of the default
132-character width. Although this line appears in the assembler listing, it does not generate
object code.

STRING
STRING

VOTERS(20),MYSELF(20)
SENTENCE(40)

The next two lines of source code declare the symbols VOTERS, MYSELF, and SENTENCE as
string variables. These lines do not generate object code. The variables appear in the symbol
table of the assembler listing code. The variables appear in the symbol table of the assembler
listing (Fig. 3-4). The "S" following each symbol indicates a string variable.

SEATS SET 1000
MYSELF SET "KEN DEDATE"
VOTERS SET "ENGINEERS"
CONTRIB SET 198

The SET directive assigns a value to a variable. In the first of these four SET statements, a
numeric vaiue is assigned to the numeric variabie SEATS. r he value 1000 (decimal) appears
in the object code column (line 00005 in the assembler listing) as 03E8 hexadecimal. No
memory location appears on the line because the value is not stored in the object program.
MYSELF and VOTERS require string values enclosed in double quotes (" ") since they are
string variables. The numeric value 198 (00C6H) is assigned to the numeric variable
CONTRIB.

DEFINE RESERVE SECTION "SEATING".

The semicolon (;) designates this line as a comment line. Comment lines appear in the
assembler listing, but have no effect on the object code.

REV A FEB 1981

Assembler Introduction-8500 MOL A Series Assembler Users Sample Source Program

SEATS

IF
11'iARNING
SET
ENDIF

HI(CONTRIB) = 0
CONTRIBUTION TOO SMALL
SEATS - 500

These four statements are a conditional assembly block. The IF directive causes the block of
statements between the IF and ENDIF to be assembled if the condition is true. In this case,
the condition "HI(CONTRIB) = a" is evaluated. The current value of the variable CONTRIB is:

00C6H (198 decimal)

high byte

The function HI(CONTRIB) returns the high byte of CONTRIB (00). Since the condition value
of the IF statement is true, the block is assembled and the statements appear on the
assembler listing. The WARNING directive generates a user-defined error message. This
message appears both on the terminal display during assembly and in the assembler listing.

The SET directive changes the value of the symbol SEATS from 03E8H (1000 decimal) to
01 F4H (1000-500 decimal). See line 00012 of the assembler listing.

RESERVE SEATING,SEATS

This statement is an assembler directive that reserves a section in memory. The section is
named "SEATING" and has 01 F4H bytes (the current value of SEATS). The section SEATING
appears in the symbol table (Fig. 3-4), with the word "Reserve" identifying the type of section.

Next, notice the blank line in the sample program. A blank line has no effect on the object
code, but it does generate a line in the source listing.

; DEFINE MACRO "PROMISE".

Aithough this comment iine appears in the assembier iisting, it has no effect on the object
code.

MACRO PROMISE
; THIS MACRO CONCATENATES ALL
; A SINGLE SENTENCE.

PARAMETERS INTO

SENTENCE SET ""
PARAM SET

REPEAT
SENTENCE SET
PARAM SET

ENDR
ASCII
ENDivi

POINT TO FIRST PHRASE.
PARAM <= 'H' REPEAT
SENTENCE:" ": 'PARAM' FOR
PARAM + 1 EACH

PHRASE.
"'SENTENCE'"

This block of source code is a macro definition. The statements in a macro definition (with
the exception of full comment lines) are stored by the assembler. When the macro is invoked,
the statements within the macro are assembled, generating any indicated object code. The
macro will be explained later, when it is invoked.

REV A FEB 1981 3-13

Sample Source Program Assembler Introduction-8500 MOL A Series Assembler Users

3-14

Another blank line in the program code improves the readability of the program, setting the
macro definition apart, but has no effect on the assembler.

DELIBERATE ERROR

This line is an invalid statement because DELIBERATE, which appears in the operation field,
is not an assembly language instruction, an assembler directive, or a macro invocation. An
error message is printed on the terminal and listed in the assembler listing.

; DEFINE PROGRAM SECTION "CAMPAIGN".

This line is another comment line and has no effect on the object code.

GLOBAL SPEAK,KISSBABY

The assembler directive GLOBAL declares SPEAK and KISSBABY to be global symbols. They
are unbound globals. That is, they are used in this module, although they are defined
elsewhere. No object code is produced.

SECTION CAMPAIGN

The assembler directive SECTION begins the definition of program section CAMPAIGN. The
lines of source code following this statement define the section.

ELECTION EQU ENDOF(CAMPAIGN)

The assembler directive EQU assigns a value to the symbol ELECTION. The ENDOF function
returns the address of the last byte of a section. The assembler listing for this source line is:

00033 0008 > ELECTION EQU ENDOF(CAMPAIGN)
I

relocation indicator

The relocation indicator (» shows that the object code for this source line (an address) will be
adjusted by the linker at link time. Since the section CAMPAIGN is relocatable, the address of
the last byte is undetermined until link time. The 0008, which is the value assigned to
ELECTION, tells us that there are nine bytes (0000 through 0008) in the section. (The
beginning Clddres~ uf every reiU(;CllCluie ~e(;iion is 0000 at assembiy time.;

NEXTBABY EQU KISSBABY + 1

The assembler directive EQU assigns a value to the symbol NEXTBABY. The value assigned
(KISS BABY + 1) is dependent on the address value of the unbound global KISSBABY. In the
assembler listing (Fig. 3-2, line 00034), the relocation indicator again shows that the object
code will be adjusted by the linker. The 0001 indicates that the adjusted address will be +1
relative to the address of KISSBABY.

REV A FEB 1981

Assembler Introduction-8500 MOL A Series Assembler Users Sample Source Program

FIRST CALL SPEAK

This statement is an 8080A assembly language instruction which calls the subroutine
SPEAK. The assembler listing shows the object code that is generated:

00035 0000 CDOOOO > FIRST CALL SPEAK

T 1 L address of subroutine SPEAK

I OP code of the instruction CALL

I memory location

Since this is the first statement in section CAMPAIGN that produces object code, the memory
location assigned is 0000. CD is the OP code for the instruction CALL. Since SPEAK is an
unbound global variable, it does not have an address in this module. (The dummy value 0000
appears in the object code.) The ">" indicates that the object code (the address of the
subroutine SPEAK) will be adjusted by the linker.

THEN CALL KISSBABY

This statement calls the subroutine KISSBABY, another unbound global. In the listing of this
statement (line 00036), the memory location is 0003, since the previous instruction (CALL
SPEAK) occupies bytes 0000-0002.

LAST JMP NEXTBABY

This statement is an 8080A assembly language instruction. The object code generated is
"C30100". (See line 00037 in the assembler listing.) C3 is the OP code for the instruction
JMP. NEXTBABY has the value 0001 (the 8080A stores two-byte numbers in low-byte/high
byte order). This value will be adjusted by the linker, depending on the address of the section
KISSBABY.

; DEFINE COMMON SECTION "SPEECH".

This is anothei comment line.

COMMON
ORG

SPEECH,ABSOLUTE
100H

The assembler directive COMMON declares the next biock of statements to be a new section
of type COMMON. The name of the section is SPEECH and it is an absolute section. The
location of the first byte of the section is defined to be 100H by the ORG statement.

APPLAUSE BLOCK 80H

This statement generates the first byte of the common section SPEECH. The memory location
of the first byte is 0100H.

00041 0100 0080 APPLAUSE BLOCK 80H

memory location

This BLOCK directive reserves a block of 80H bytes. The symbol APPLAUSE represents the
address of the first byte of the block (0100).

REV A FEB 1981 3-15

Sample Source Program Assembler Introduction-8500 MOL A Series Assembler Users

3-16

MESSAGE EQU $

This statement is an assembler directive that assigns a value to the symbol MESSAGE. The
dollar sign ($) in the operation field returns the value of the location counter. The assembler
listing shows that the value 0180 was assigned to MESSAGE.

00042 0180 MESSAGE EQU $

The location counter was advanced to 0180H when the directive "BLOCK 80H" was
assembled. MESSAGE represents the address of the next byte of object code to be
generated.

PROMISE VOTERS,"WILL ALWAYS HAVE"

This statement invokes the macro PROMISE, which was previously defined. There are two
macro parameters: (1) the symbol VOTERS and (2) the character string "WILL ALWAYS
HAVE". This single source line generates eight lines in the assembler listing:

00043 PROMISE VOTERS,"WILL ALWAYS HAVE"
0180
0184
0188
018C
0190
0194
0198

20454E47 + ASCII" ENGINEERS WILL ALWAYS HAVE"
494E4545 ""
52532057 ""
494C4C20 ~
41 4 C 574 1 text substitution indicator
59532048
415645

-eASell representation of " ENGINEERS WILL ALWAYS HAVE"

When the macro is invoked, the assembler processes the lines of the macro definition. The
assembler listing shows us only the one source line that generates object code, namely:

ASCII " ENGINEERS WILL ALWAYS HAVE"

Let's look at the other statements in the macro definition:

SENTENCE SET ""

This SET directive assigns the null string ("") to SENTENCE.

PARAM SET POINT TO FIRST PHRASE.

This SET directive assigns the value 1 to the numeric variable PARAM.

REPEAT
SENTENCE SET
PARAM SET

ENDR

PARAM <= 'II'
SENTENCE:" ":'PARAM'
PARAM + 1

REPEAT
FOR
EACH
PHRASE.

This block of statements (a repeat block) is assembled repeatedly until the REPEAT operand
(PARAM <= '#') is false. When a macro is assembled, the '#' is replaced with the number of
parameters passed from the macro invocation. In this statement, the '#' is replaced with 2
(two parameters). so the block of statements is repeated twice. (See "Determining Parameter
Count" in the Macros section of this manual.)

REV A FEB 1981

Assembler Introduction-8500 MOL A Series Assembler Users Sample Source Program

The first time the block is assembled 'PARAM' is replaced with VOTERS, since PARAM has
the value 1 and VOTERS is the first parameter. The second statement in the block
concatenates the current value of the string variable SENTENCE (""), a space (" "), and the
value of VOTERS ("ENGINEERS"); the resulting string is assigned to SENTENCE. SENTENCE
now has the value of:

" ENGINEERS"

The next statement increments the current value of PARAM by one. PARAM now holds the
value 2. Since the repeat condition (PARAM <= '#') is still true, the block of statements is
repeated. This time, 'PARA!V!' is replaced with "\lV!LL ALVVAYS HAVE", the second
parameter. The statement concatenates the current value of SENTENCE (" ENGINEERS"), a
space (" "), and the character string "WILL ALWAYS HAVE". SENTENCE now has the value
of:

" ENGINEERS WILL ALWAYS HAVE"

PARAM is incremented to 3. The repeat condition is no longer true, so the assembly
continues with the statement following the ENDR:

ASC II "'SENTENCE'"

This statement generates object code and is therefore listed in the assembler listing. The
object code generated is the ASCII representation of each character of the string in the
operand field. The assembler first makes the text substitution indicated by the single quotes
("). "SENTENCE" is replaced with "ENGINEERS WILL ALWAYS HAVE". Notice that the text
substitution is shown on the source listing, along with the text substitution indicator (+).

Assembly continues with the statement following the macro invocation.

PROMISE "A FRIEND IN", MYSELF,"."

This statement invokes the macro PROMISE again. This invocation has three parameters: (1)
the character string "A FRIEND IN", (2) the symbol MYSELF, and (3) the string ii.". The
resulting object code is the ASCII representation of " A FRIEND IN KEN DEDATE ."

PROMISE "TELL YOUR FELLOW", VOTERS

This next statement invokes the macro PROMISE with two parameters, the string "TELL
YOUR FELLOW" and the symbol VOTERS. The resulting object code is the ASCII
representation of:

" TELL YOUR FELLOW ENGINEERS"

The next statement in the sample program is:

LIST ME; SHOW FULL MACRO EXP~NSION.

The LIST directive turns on various features of the assembler listing. This statement sets the
ME/MEG option to the ME setting: When a macro is invoked, the assembler listing shows all
of the assembled statements of the macro expansion. (Comment lines within a macro are not
listed because they are not saved with the macro definition.)

REV A FEB 1981 3-17

Sample Source Program Assembler Introduction-8500 MOL A Series Assembler Users

3-18

PROMISE "TO VOTE FOR",MYSELF,"."

This macro invocation returns the ASCII representation of " TO VOTE FOR KEN DEDATE ."
Notice in the assembler listing (following line 00047) that the text substitution indicator
appears on seven lines. The '#' is replaced by "00003" and 'PARAM' is replaced by the
appropriate parameter.

Also notice in the assembler listing that a character is missing from the end of the line:

+ SENTENCE SET SENTENCE:" ":"TO VOTE FOR" ; FO

In the source program, the comment was If; FOR". The "R" does not appear on the source
listing because the LIST TRM directive had previously trimmed the listing to 72 characters.

The last statement of the source code is:

END

This statement marks the end of the source program.

Sample Symbol Table

Now let's examine the symbol table for the sample program (Fig. 3-4). Listed under Strings and
Macros are four symbols: MYSELF, PROMISE, SENTENCE, and VOTERS. The "s" indicates that
MYSELF, SENTENCE, and VOTERS are string variables. The "M" indicates that PROMISE is a
macro. The number of bytes required to store the macro definition is 0135H.

Listed under Scalars are not only the numeric symbols used in the program (CONTRIB,
PARAM, and SEATS), but also 8080A register names, since they are also symbols with
scalar values. Each variable is listed with the last value assigned to it.

"DELIBERA" is listed in this section of the table. The four stars (****) flag it as an undefined
symbol. When the assembler examined the statement "DELIBERATE ERROR", the word was
treated as an undefined symbol since it was not an assembly language instruction, an
assemb!er directive, or a defined macro. (On!y the first eight characters of a symbol are
recognized.) This error also explains the next line of ,the symbol table:

% (default) Section (0003)

When there are statements in an undefined section, the assembler assigns them to the
default section. (See the SECTION directive, in the Assembler Directives section of this
manual, for a description of the default section.) In our sample program, the assembler
generated three bytes of zeros in response to the "DELIBERATE ERROR" line and created a
default section.

REV A FEB 1981

Assembler Introduction-8500 MOL A Series Assembler Users Sample Source Program

There are four Sections in our program: the default section, CAMPAIGN, SEATING, and
SPEECH.

CAMPAIGN Section (0009)

ELECTION 0008 E
THEN --- 0003

FIRST -- 0000 LAST --- 0006

In this section summary, the name of the section is CAMPAIGN, which is of type "Section".
The section is 0009 bytes long. The addresses of the four symbols, ELECTION, FIRST, LAST,
and THEN, are relative to the base address of the section and are subject to relocation, since
the section is byte-relocatable. The "E" that follows the symbol "ELECTION" indicates that
the ENDOF function is used to determine the value.

Section SEATING is a "Reserve" section that is 01 F4 (hexadecimal) bytes long. Section
SPEECH is a "Common" section that is not relocatable (absolute) and is 01 E8H bytes long,
including the 1 ~OH-byte gap at the beginning of the section.

In our sample program, the symbols KISSBABY and SPEAK are the only unbound globals.

Let's look at the lines of statistics:

48 Source Lines 108 Assembled Lines 47025 Bytes available

2 ERRORS UNDEFINED SYMBOLS

There are more Assembled Lines (108) then Source Lines (48) because the macro
invocations and REPEAT block cause some of the source lines to be assembled more than
once.

The statistics also include the number of Bytes Available in the assembler for further
storage of labels, string variables, and macros.

There are two Errors listed for this sample program: (1) the user-defined warning, and (2) the
error generated by the line "DELIBERATE ERROR". "DELIBERA" is the Undefined Symbol.

REV A FEB 1981 3-19

8500 MOL A Series Assembler Users

Section 4

LANGUAGE ELEMENTS

Page Page

Introduction .. 4-1 Functions .. 4-19

Statement Fields....................................... 4- 1
Label Field ... 4-2
Operation Field ... 4-3
Operand Fie!d , .. , , , , .. , , , , , , , , , , , , , , .. 4-4
Comment Field ... 4-5

Logical Functions
BASE-Determines whether two values have common
base .. 4-20
DEF-Determines if symbol is defined 4-22
ENDOF-Returns end address of section 4-23

Numeric Functions
Symbols ... 4-6 HI-Returns high byte 4-24
User-defined Symbols 4-6 LO-Returns low byte 4-25
Predefined Symbols 4-7 SCALAR-Converts address to scalar 4-27

Values ... 4-7 String Functions

Numeric Values 4-7 NCHR-Returns number of characters in string .. 4-26

Scalar Values 4-7 SEG-Returns substring 4-28

Address Values 4-8 STRING-Converts scalar to String 4-29

Numeric Constants 4-8
Numeric Variabies 4-9 TABLES

String Values ... 4-9 Table No. Page
Stnng Constants 4-9
String Variables 4-10

Conversion .. 4-10

4-1 Expression Operators and Functions 4-12

4-2 Hierarchy of Operators 4-13

Text Substitution 4-11
4-3 Types of Comparisons with Relational Operators 4-18

Expressions ... 4- 1 2
Introduction ... 4-12

ILLUSTRATIONS

Hierarchy .. 4-13
Operators ... 4- 13

Arithmetic Operators 4-14

Fig. No. Page

4-1 Formatted Source File 4-1

Logical Operators 4-16
Relational Operators 4-17
String Operator 4-19

REV A FEB 1981 4-i

8500 MOL A Series Assembler Users

Section 4

LANGUAGE ELEMENTS

INTRODUCTION
This section provides reference information about the Tektronix ,L\ssemb!er language
elements. The section discusses the following topics:

• Statement Fields-Explains the four fields in an assembler source statement: label,
operation, operand, and comment.

• Symbols-Explains how symbols are used in assembler source programs.

• Values-Describes numeric and string values used by the assembler.

• Text Substitution-Describes the use of text substitution.

• Expressions-Describes the type of permitted expressions, and their required formats.
Describes the use of operators in expressions. Defines and gives the results of
assembler functions. The functions are listed alphabetically for reference.

STATEMENT FIELDS
An assembly language source program consists of statements. Each statement occupies one
line of text. Each statement may contain up to 127 characters; the line ends with a return
character (ASCII code 13). Blank lines can be used within the program for readability and
have no effect on the assembly.

A statement consists of four fields. Each field may vary in width, and certain fields may be
omitted, but the fields always occur in the following order:

LABEL OPERATION OPERAND COMMENT

Readability is improved when each field has a constant width on each line. This columnar
format can be implemented with tab settings. Fig. 4-1 is an example of a formatted 8080A
source file.

Label Operation Operand Corrment

GLOBAL PORTN,OUTSUB
PORTN EQU 15 PORT = 15
~""'-~"T" \,~l'T . I,,,,. CHARAC7ER = """ ..)lh.fil j'!Ii.l. n,

CALL OUTSUB SEND "?" TO PORT 15 .••
HLT ... AND STOP.
END START

3575-5

Fig. 4-1. Formatted Source File.

Each field has a constant width in this 8080A source program, making it easier to read.

REV A FEB 1981 4-1

Statement Fields Language Elements-8500 MOL A Series Assembler Users

4-2

Label Field
The label field, when used, must begin in the first character position of a line. A space or tab
terminates the label field. A statement's label allows the statement to be referenced by other
statements.

The label is a user-defined symbol. The symbol must follow the rules for constructing
symbols (described later in this section). Embedded spaces are not permitted within a symbol.
Every label must be unique within each assembler source program. The assembler generates
an error message when duplicate labels are used.

A label is permissible in all statements, including assembler directives, assembly language
instructions, and macro invocations.

The meaning of the label in an assembler directive statement depends upon the particular
directive. For most directives the label is optional and not always meaningful. However,
labels are always required with the EQU and SET directives. See the Assembler Directives
section of this manual for the specific meaning in each directive.

Label Operation Operand Comnent

PORTN EQU 15 ; PORT = 15

In this example, the constant symbol PORTN is given the value 15.

A label used in an assembly language instruction or macro invocation represents the
memory address of the first byte of the instruction.

Label Operation Operand Comnent

START MVI A "?" , . ; CHARACTER = "?"

In this line, the label START represents the address of the first byte of the MVI instruction.

An address is relative to the base address (beginning address) of the section in which it
appears. At link time, relocatable sections are assigned a new base address. Therefore, any
symbol representing an address is relocated relative to its base address at link time. (See the
Address Values discussion in this section for more information on relative addresses.)

REV A FEB 1981

Language Elements-8500 MOL A Series Assembler Users Statement Fields

Operation Field
The operation field begins immediately after the label field. If the label is omitted, the
operation field may begin anywhere after the first character position in the line. The
operation field is terminated by a space, a tab, a return character, or a semicolon (indicating
the beginning of a comment field).

The word in the operation field indicates the type of action to be taken by the assembler. The
word may be an assembly language instruction mnemonic, an assembler directive, or a
macro invocation.

If the word in the operation field is an assembly language instruction, the assembler
translates the statement into a machine instruction.

Label Operation Operand Corrment

START MVI A n?n , . ; CHARACTER = n?n

MVI (an 8080A mnemonic) is translated into a machine instruction by the assembler.

An assembler directive in the operation field specifies certain actions to be performed during
assembly. Assembler directives mayor may not generate object code.

Label Operation Operand Corrment

GLOBAL PORTN,OUTSUB

In this example, the assembler directive GLOBAL in the operation field declares PORTN and
OUTSUB as global symbols.

REV A FEB 1981

NOTE

The name of an assembly language instruction for a particular
microprocessor may be identical to an assembler directive. In this case, the
name of that assembler directive is changed. A list of any changed assembler
directive names are found in the appropriate Assembler Specifics section for
your microprocessor.

4-3

Statement Fields Language Elements-8500 MOL A Series Assembler Users

4-4

A macro name in the operation field specifies the macro definition block to be expanded.

Label Operation Operand Corrment

MACRO QQQ ; MACRO QQQ DEFINED

ENDM

QQQ ; INVOCATION OF MACRO QQQ

In this example, the macro 000 is invoked when 000 appears in the operation field.

If the operation field does not contain an assembly language instruction, an assembler
directive, or a macro name, the assembler rejects the entire statement and prints an error
message. See the Assembler Specifics section of this manual for a list of your processor's
instruction mnemonics. Assembler directives are presented alphabetically in the Assembler
Directives section of this manual. Macros are described in the Macros section of this manual.

Operand Field
The operand field specifies values required by the assembly language instruction, the
assembler directive, or the macro invocation in the operation field. The word in the operation
field determines the required type, number, and order of operands. For example:

Label Operation Operand Corrment

START MVI A "?" , . ; CHARACTER = "?"

The aOaOA MVI instruction requires two operands: a register, followed by a value. In this
example, register A (a predefined symbol) and a string value are used.

The value in the operand field m;:)y be represented by an expression. (See the Expression
discussion in this section.) An expression may consist of the following:

• a numeric or string constant,

• a symbol, or

• a combination of constants and symbols with operators and functions.

Symbols appearing in the operand field may be predefined or user-defined. (See the Symbols
discussion in this section.) If a symbol appearing in the operand field is not predefined, it
must be defined in one of the following ways:

• the symbol must appear in the label field of an assembly language instruction, or of an
ASCII, BLOCK, BYTE, EOU, SET, or WORD directive; or

• the symbol must appear in the operand field of a GLOBAL, STRiNG, SECTiON,
COMMON, or RESERVE directive.

REV A FEB 1981

Language Elements-8500 MOL A Series Assembler Users Statement Fields

The operand field may contain spaces to improve program readability. The spaces must not
be within symbols.

Label Operation Operand

BYTE 5,35,45,55

BYTE 5, 35, 45, 55

Both of the above statement lines produce identical results.

Comment Field
The comment field is optional, but may be included in any statement line. The comment field
begins with a semicolon (;) and ends with a return. All characters following the semicolon
are considered a part of the comment. Comments are used for program documentation and
have no effect on the object code produced by the assembler. If no other fields are used, the
comment field may begin anywhere in the statement line.

Label Operation Operand Comnent

; SUBROUTINE OUTSUB -- OUTPUTS A CHARACTER
OUTSUB OUT PORTN ; OUTSUB STARTS HERE

In this example, the first statement has no effect on the object code produced, because the
semicolon (;) in the first column causes the entire line to be treated as a comment. In the
next line, the semicolon causes "QUTSUB STARTS HERE" to be treated as a comment.

Text substitution is the only type of action performed by the assembler within the comment
field. Text substitution is discussed later in this section. The single quote (') signals
substitution. Therefore, to include a single quote (') character within a comment, you must
precede the ' character with an up-arrow (;\) character.

REV A FEB 1981

NOTE

The up-arrow (;\) character cancels the special significance of the
immediately fol/owing character.

4-5

Symbols

4-6

Language Elements-8500 MOL A Series Assembler Users

SYMBOLS
A symbol is a user-defined or predefined word that represents a value or an instruction.
Symbols make a program easier to read, and reduce the risk of error when the program is
modified.

User-defined Symbols
A user-defined symbol is a word or mnemonic that you create to represent a numeric value
(scalar or address), a string value, or a macro name. By using symbols you can refer to a data
value or a memory address without using the specific value.

For example, if you need to refer to a data value frequently within a program, that value can
be assigned to a symbol. Then, if you need to change that value, you only need to modify the
defining statement, rather than modify each statement that references the value.

PORTN EQU 1')

In this statement the symbol PORTN is defined by the EQU directive to have the value of 15.
PORTN can be used throughout the program.

Constructing Symbols

A symbol consists of one or more characters beginning with a letter and containing only
letters, digits, periods, underscores, or dollar signs. Only the first eight characters are
considered significant; any additional characters are discarded. Some examples of valid user
defined symbols are:

PORTN
OUTSUB
LOOP
LOOP. 5
A123456$
TO DO
AVERY1.,ONGSYHBOL (S8f1ie i::I~ AVERYLON)

Defining Symbols

User-defined symbols are defined when they appear in: (1) the label field of assembly
lanugage instructions, macro invocations, and assembler directives, or (2) the operand field
of GLOBAL, SECTION, COMMON, RESERVE, MACRO, or STRING directives. User-defined
symbols are assigned values during the assembler's first pass. When the symbols are
encountered in the second pass, they are replaced by the assigned values.

REV A FEB 1981

Language Elements-8500 MOL A Series Assembler Users Numeric Values

A symbol in the iabei field of an assembiy ianguage instruction represents the address of the
first byte of that instruction. A label symbol allows you to transfer control to an instruction
without knowing its absolute address. For example, a destination address for a jump
instruction (JMP in 8080A) can be represented with a symbol.

LOOP INC A

JMP LOOP

LOOP is a user-defined symbol representing the address of the instruction INC (Increment).

When a symbol is used in the label field of an assembler directive, its meaning depends upon
the directive. Generally, the symbol represents a data constant or the memory address of
data. See the Assembler Directives section of this manual for the specific meaning in each
directive.

Generally, a symbol may not be redefined within a program. However, the SET directive may
be used to redefine a symbol previously defined by the SET directive. This allows you to
temporarily assign a value to an assembler variable during assembly.

Predefined Symbols
Predefined symbols include:

• assembler directives and options,

• assembly language instruction mnemonics, and

• processor register names and symbols.

The assembler directives and options are listed in the Assembler Directives section of this
manuaL See the Assembier Specifics section of this manual for the list of instruction
mnemonics and reserved words for your processor.

VALUES
The assembler recognizes two kinds of values: numeric and string.

Numeric Values
The assembler uses two types of numeric values: scalars and addresses. All numeric values
are treated as 16-bit (2-byte) numbers. Scalars are signed values. Addresses are unsigned
values

Scalar Values

Scalar values are signed integers ranging from -32768 to 32767. (The two's complement of
a positive number represents the corresponding negative integer.) Scalar values can be used
as numeric data within an assembly language program.

REV A FEB 1981 4-7

Numeric Values Language Elements-8500 MOL A Series Assembler Users

4-8

Address Values
An address value specifies a memory location. An unsigned 16-bit address takes a value in
the range 0 to 65535.

An address is defined relative to the beginning of the section in which it appears. The
assembler generates an object module (made up of one or more sections) with address
values relative to the beginning of each section. At assembly time, the beginning (base
address) of each relocatable section is zero. At link time, the linker relocates the individual
sections. (See the Linker section of this manual for a discussion on section relocation.) The
base address of each section is then redefined by the linker. The actual address of a byte is
unknown until after the linking process is complete.

During assembly, a location counter (which simulates the processor program counter) holds
the address of the object code being generated. The dollar sign ($), when used in the operand
field, represents the current value of the location counter (the address of the machine
instruction or data item currently being generated). For example:

Label Operation Operand

IF $ > OFFH

In this statement the current value of the location counter is compared with the value OFFH.

Numeric Constants

Numeric constants may be entered in decimal, binary, octal, or hexadecimal notation. The
assembler assumes that a number is in decimal unless a suffix letter identifies it as binary,
octal or hexadecimal. The following suffix letters are used:

• B denotes binary numbers.

1010B and 11111111B are binary numbers

• 0 (capital letter 0, not zero) or Q denotes octal numbers.

377Q and 1777770 are octal numbers

• H denotes hexadecimal numbers.

1A2CH and OFFFFH are hexadecimal numbers.

NOTE

Numeric constants must begin with a numeric character. Any hexadecimal
number that has an alphabetic character in the first digit must be preceded
with a zero.

A numeric constant may be assigned to a symbol with the EQU directive.

REV A FEB 1981

Language Elements-8500 MOL A Series Assembler Users String Values

PORTN EQU 15

In this example, PORTN is made synonymous with the constant 15.

Numeric Variables
During assembly, a numeric value may be assigned to an assembler variable with the SET
directive. An assembler variable allows temporary assignments to be made to a symbol.
When the variable is encountered, the current value is used. Rules for creating an assembler
vaiiable follow the rules for creating a user-defined symbol. (See User-defined Symbols in
this section.) A symbol used as an assembler variable must not have been previously defined.

COUNT SET

In this example, the symbol COUNT is an assembler variable and may be assigned various
numeric values with the SET directive. When the symbol COUNT is encountered by the
assembler, the current value is used. If anothei SET directive ieassigns another value to
COUNT, the reassigned value is used.

String Values
Character strings are accepted by the assembler. Individual characters are translated into
their ASCII representation (8 bits).

String Constants
String values entered as constants in an assembler program are enclosed in double quotes
("):

"STRINGS"

The null string ("") contains zero characters. Any ASCII character, with the exception of the
return character, may be included in a string constant. To include special characters, such as
a double quote (") or a single quote ('), precede the special character with an up-arrow (!\).

REV A FEB 1981

NOTE

The up-arrow character (!\) cancels the special significance of the
immediately fol/owing character.

4-9

String Values Language Elements-8500 MOL A Series Assembler Users

4-10

String Variables

A character string may be assigned to a string variable with the SET directive. The symbol to
be used as the string variable must be declared with the STRING directive before being used.
The STRING directive specifies the maximum length of the string variable. The maximum
length (which defaults to 8) is enclosed in parentheses. For example:

STRING STVAR(10)
STVAR SET' "CHARACTERS"

In this example, the symbol STVAR is a string variable. The maximum length for any string
assigned to the variable STVAR is ten.

The length of the string variable is the length of the character string currently assigned to the
variable. If the length of the character string is longer than the declared length of the
variable, the character string is truncated and an error message is generated.

Conversions
A string constant may be assigned to a symbol with the EQU directive.

Label Operation Operand

SYM1 EQU "AB"

The string is converted to a two-byte numeric value. The numeric value is the ASCII
representation of the string. If the string is longer than two characters, the first two
characters are converted and an error message is generated. If the string length is one
character, the high-order byte of the resulting value is zero. The value of the null string ("") is
zero, For example:

Character String

"A"

"?"
"AB"

"ABC"

"12"

OOOOH
0041H

003FH

4i42H

Numeric Value

4142H (error message 085 is generated)

3132H

For an ASCII-to-hexadecimal conversion table, see the Tables section of this manual.

If a numeric value is assigned to a string variable, the numeric value is converted to its string
representation. The string representation is six characters long. The first character is a zero
or minus (-) depending on the sign of the number. The remaining five characters are the
decimal representation of the value, padded with leading zeros (if necessary). The following
table shows how values are converted to their string representation,

REV A FEB 1981

Language Elements-8500 MOL A Series Assembler Users Text Substitution

Value

o
-1

400

200H

For example:

STRING
STRVAR SET

String

"000000"

"-00001"

"000400"

"000512"

STRVAR (10)
-1

STRVAR now has the value "-00001".

TEXT SUBSTITUTION
String values can be substituted within a statement line during assembly by the use of string
variables. The single quote (') is the substitution delimiter. When the assembler encounters a
string variable enclosed within single quotes ('variable'), the variable is replaced by the
current string value assigned to that string variable.

When processing a statement, the assembler first performs all indicated text substitutions.
For example:

Label Operation Operand Comment

OP
STRING
SET

'OPt

OP
"WORD"

1,2,3 ; DO tOP' TO 1,2,3

When the assembler scans the line "'OP' 1,2,3", it first performs the following substitution:

WORD 1,2,3 ; DO WORD TO 1,2,3

The statement line then contains the assembler directive WORD.

During assembly, the percent sign (%) represents the current section name. With the use of
text substitution, the current section name can be inserted into the assembly language
program. For example:

Label Operation Operand Comment

STRING
SECNAME SET

SECTION

RESUME

SECNAME(S)
" '% ' " SAVE CURRENT SECTION Nh. ~E:
QQ SWITCH TO NEw SECTION

'SECNAME' ; SWITCH BACK TO PREVIOUS SECTION

Parameter substitution performed during macro expansion is a form of text substitution. See
the Macros section for information on parameters.

REV A FEB 1981 4-11

Expressions Language Elements-8500 MOL A Series Assembler Users

4-12

EXPRESSIONS
I ntrod uction
An expression is a combination of constants, variables, or functions connected by operators
that yields a numeric or string value. The assembler accepts expressions in the operand field.
An operand expression is evaluated at assembly time, and the numeric or string value is
used. Table 4-1 lists the operators and functions that can be used in expressions.

Type

Unary Arithmetic

Binary Arithmetic

Unary Logical

Binary Logical

Relational

String

Logical Functions

Numeric Functions

String Functions

Table 4-1
Expression Operators and Functions

Operator / Function

+

"*
/
+

MOD
SHL
SHR

\

&

!!

=
< >
>
>=
<
<=

BASE
DEF

ENDOF
HI
LO
SCALAR

NCHR
SEG
STRING

Meaning

Identity
Sign inversion

Multiplication
Division
Addition
Subtraction
Remainder
Left shift
Right shift

NOT (bit inversion)

AND
I ncl usive OR
Exclusive OR

Equal
Not equal
Greater tha n
Greater than or equal
Less than
Less than or equal

Concatenation

Base address comparison
Symbol definition

End of section
High byte
Low byte
Conversion to scalar

Number of characters
Substring
Conversion to string

REV A FEB 1981

Language Elements-8500 MOL A Series Assembler Users Operators

Hierarchy
In an expression involving more than one operator, the operators are performed according to
a predefined order of precedence. Table 4-2 shows the operator hierarchy.

Precedence 0 perators

Table 4-2
Hierarchy of Operators

1. BASE DEF ENDOF HI LO NCHR SCALAR SEG STRING (functions)

2. : (concatenation)

3. + - (unary plus and minus) \ (logical NOT)

4. * / MOD SHL SHR (multiplication, division, shifts)

5. + - (addition, subtraction)

6. = < > > >= < <= (relational)

7. & (logical AND)

8. l !! (logical OR, exclusive OR)

Expression operators at the top of the table have the highest precedence and are performed
first. Operators at the bottom have the lowest precedence and are performed last. Operators
on the same line have equal precedence, and are performed from left to right within the
expression.

Parentheses may be used to override the order of precedence. The most deeply nested
subexpressions are evaluated first. It is possible to create an expression that is too complex
for the assembler to evaluate. If the expression entered is too complex, an expression error
message is displayed.

Operators
An operator within an expression acts upon one or more terms. The operators and types of
terms permitted for each operator are discussed in the following paragraphs.

If an operator requires a numeric operand and a string operand is provided, the string
operand is converted to a numeric value, as described in String Conversions (earlier in this
section).

REV A FEB 1981 4-13

Operators Language Elements-8500 MOL A Series Assembler Users

Arithmetic Operators

Arithmetic operators act on numeric values.

+ Unary plus

Unary negative

* Multiplication

/ Division

+ Addition

Subtraction

MOD Remainder

4-14

Identity operator: does not change the value of the term. May be
applied to scalar or address values.

Indicates sign inversion. (Two's complement.) May be applied to
scalar values only.

Multiplies two scalar values.

Divides two scalar values.

Adds two terms (scalar or address), as follows:

Scalar + Scalar = Scalar
Scalar + Address = Address
Address + Scalar = Address
Address + Address = error

Subtracts two terms (scalar or address), as follows:

Scalar - Scalar = Scalar
Address - Scalar = Address
Address - Address = Scalar (addresses must have same base)
Scalar - Address = error

The remainder that results from dividing the first term by the
second. The sign of the returned value is determined by the sign of
the second term. For example:

x y X MOD Y

2 2 0
5 2 1
5 -2 -1

-5 2 1
-5 -2 -1

REV A FEB 1981

Language Elements-8500 MOL A Series Assembler Users Operators

SHL Left shift

SHR Right shift

REV A FEB 1981

The first term is shifted to the left the number of bit positions
specified by the second term. Both terms must be scalar values.
The second term (the number of bits to be shifted) must be a non
negative scalar value. For example:

1 SHL 1 results in 2

1010101010101 0101 010101010101011 I
101010101010101010101010101011101

When the bits are shifted, the leftmost bits are discarded; the
vacated bit positions on the right become zeros. For example:

OFOFOH SHL 1 results in OE1 EOH

\1111111101010101111111110101010 I
I 1 11 11 I 01 0 1 01011 11 11 11 10 I 0 10 10 10 I

If the second term is greater than 16, the result is zero, and an
error message is generated.

The first term is shifted to the right the number of bit positions
specified by the second term. Both terms must be scalar values.
The second term (the number of bits to be shifted) must be a non
negative scalar value. For example:

2 SHR 1 results in 1

101010101010101010101010101011/0 I

When the bits are shifted, the rightmost bits are discarded; the
vacated bit positions on the left become zeros. If the second term is
greater than 16, the result is zero, and an error message is
generated.

4-15

Operators Language Elements-8500 MOL A Series Assembler Users

4·16

Logical Operators
The logical operators, NOT (\), AND (&), OR (!), and exclusive-OR (1I), correspond to their
Boolean algebra equivalents, as shown in the following truth table.

x
0
0

\ NOT

& AND

OR

V \X X&V X!V X!!V

0 1 0 0 0
1 0 1

0 0 0 1

0 0

Returns the one's complement of the following term by complementing
each bit in the term. (Returns a 1 if the bit is 0, and returns a 0 if the bit
is 1.)

\OFOFH results in OFOFOH

10101010111111111010101011111111 I
11111111101010101111111110101010 I

Returns the logical AND of two terms. Compares the terms bit-by-bit,
returning a 1 if both bits are 1; otherwise returns a O.

Example:

DVAL EOU OFOFOH & OCCCOH

1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0

DVAL is assigned OCOCOH

Returns the logical OR of two terms. Compares terms bit-by-bit; returns
a 1 if either bit is 1, returns a 0 if both bits are O.

Example:

RVAL EOU OFOFOH ! OCCCOH

1 1 1 1 o 0 0 0 1 1 1 1 0 0 0 0

1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0

RVAL is assigned OFCFOH

REV A FEB 1981

Language Elements-8500 MOL A Series Assembler Users Operators

!! Exclusive-OR Returns the logical exclusive-OR of two terms. Compares terms bit-by
bit and returns a 1 when the bits are different, and a 0 when the bits are
the same.

Example:

ERVAL EQU OFOFOH !! OCCCOH

ERVAL is assigned 5A50H

Relational Operators
Relational operators compare two terms and return the value -1 for a true expression and 0
for a false expression.

= Equal

<> Not equal

> Greater than

>= Greater than or equal

< Less than

<= Less than or equal

Relational operators allow comparison of scalar values, address values, and string values.

Scalar values are compared as signed numeric values. For example:

Label Operation Operand

COUNT SET
IF
IF

F EQU

1
COUNT < 5
COUNT> -1

7 = COUNT

The relational operators in this example compare signed numeric (scalar) values.

REV A FEB 1981 4-17

Operators Language Elements-8500 MOL A Series Assembler Users

Address values are compared as unsigned numeric values. Address values are compared as
offsets from their base address. Address values from different sections cannot be compared.

START MVI A,"?"

NEXT MVI H,OOOO
T EQU START < NEXT

The less than «) operator in this example compares two unsigned numeric (address) values
within the same section.

If only one term is an address, a relational operator performs an unsigned numeric
comparison between the scalar and the address offset.

String values are compared numerically according to the ASCII collating sequence. (See the
Tables section of this manual.) Comparison proceeds left to right, character-by-character.
Two strings are considered equal if they have the same length and contain identical
character sequences. If they are identical in sequence but one string is longer than the other,
the longer string is considered greater. The following examples show the results of various
string comparisons:

"AB" = "AB" results in

"A" > "B" results in

"ABC" > "ABC" results in

"ACB" > "ABC" results in

-1 (true)

a (false) A less than B

a (false) the right term is longer

-1 (true) C greater than B

If only one term is a string, the first two characters of the string are converted to a scalar
value and a numeric comparison is performed.

The types of comparisons are summarized in Table 4-3.

Left Operand

STRING

SCALAR

ADDRESS

Table 4-3
Types of Comparisons with Relational Operators

String

String
Comparison

Signed Numeric
Comparison
Unsigned Numeric
Comparison

Right Operand

Scalar

Signed Numeric
Comparison

Signed Numeric
Comparison
Unsigned Numeric
Comparison

Address

Unsigned Numeric
Comparison

Unsigned Numeric
Comparison
Unsigned Numeric
Comparison

REV A FEB 1981

Language Elements-8500 MOL A Series Assembler Users Functions

String Operator

Concatenation Combines two strings into a single string. For example:

Label

STR1
STR2
STR3

Operation

STRING
SET
SET
SET

Operand

STR1(5),STR2(6),STR3(11)
"HELLO"
" THERE"
STR1 : STR2

STR3 now is "HELLO THERE".

If the resulting string is assigned to a variable, the length of the
resulting string must not exceed the length specified for that variable by
the STRING directive.

Numeric values may not be concatenated.

Functions
The following predefined functions return a value when used in an expression:

• Logical Functions

BASE-Determines whether two values have a common base.

DEF-Determines if a symbol has been defined .

• Numeric Functions

ENDOF-Returns the address of the last byte of a section.
HI-Returns the high byte of an address.
LO-Returns the low byte of an address.
SCAU\.R-Converts an address value to a scalar value,

• String Functions

NCHR-Returns the current length of a string variable.
SEG-Returns a substring of a string.
STRING-Converts a scalar value to a string.

Each of these functions is described in detail in the following pages. The same conventions
as described in the Assembler Introduction section of this manual are used in these
descriptions.

REV A FEB 1981 4-19

Function: BASE Language Elements-8500 MOL A Series Assembler Users
Determines whether two values have common base

4-20

SYNTAX

BASE(numvalue1.numvalue2)

numvalue

PARAMETERS

Any expression that evaluates to a numeric value. Usually a label
symbol.

EXPLANATION

The BASE function compares two numeric values to see if they have the same base. The
BASE function returns a -1 (true) if the values have the same base. The BASE function
returns a 0 (false) if the values do not have the same base.

All addresses within a section share the same base. All scalar values share the same base.
Scalar values and address values do not have the same base. Each SECTION, COMMON, and
RESERVE directive defines a new address base. The default section (any statements not
preceded by a SECTION or COMMON directive) has a separate base. All unbound globals are
assumed to have unique bases.

The BASE function is typically used to compare label symbols in a conditional assembly
statement.

EXAMPLES

T _\..._, ,, ____ 01-.; __
,,~----~ LaUC.L V}J'=I aLvlI VtJCI aliU

Q EQU 5 I both scalars

R EQU 15
IF BASE(Q,R)

}
Statements assembled
because Q and R share
common base

ENDIF

In this example, the two scalar values 0 and R are compared. Since both 0 and R represent
scalar values, they share a common base. The function BASE(O,R) returns a -1 (true) and the
statement lines between IF and ENDIF are assembled.

REV A FEB 1981

Language Elements-8500 MOL A Series Assembler Users Function: BASE
Determines whether two values have common base

Label Operation Operand

SECTION
HERE BLOCK
THERE BLOCK

IF

ENDIF

SEC 1
100H
100H
BASE(HERE,lliERE)

}

Statements assembled
because HERE and THERE
are in the same section

In this example, the statements between !F and END!F are assembled because HERE and
THERE share the same base.

Label Operation

SECTION
HERE BLOCK

COMMON
THERE BLOCK

IF

ENDIF

Operand

SEC2
100H
WKSPACE
100H

BASE(HERE,THERE)

}

Not assembled
bec~use HERE a.nd THERE
not In same section

In this example, the statements between IF and ENDIF are not assembled because HERE and
THERE do not share the same base.

Label

THERE

Operation

nr ArtT'
DL\.JIvI\.

IF

ENDIF

Operand

100H

BASE ($,THERE)
l Only assembled if
~ THERE is in the
J current section

In this example, the statements between IF and ENDIF are assembled if THERE is in the
current section. The dollar sign ($) represents the current value of the location counter.

REV A FEB 1981 4-21

Function: DEF Language Elements-8500 MOL A Series Assembler Users
Determines if symbol is defined

4-22

SYNTAX

DEF(symbol}

PARAMETERS

symbol Any user-defined symbol.

EXPLANATION

The DEF function tests whether a symbol has been defined during the current assembler
pass. (See the Assembler Introduction section of this manual for a description of the two
passes of the assembler.) A value of -1 (true) is returned if the symbol is defined. A value of 0
(false) is returned if the symbol is not defined.

Label Operation Operand

; Q EQU a

IF
WORD
BITE
ENDIF

DEF(Q)
15
5

EXAMPLES

In this example, the semi-colon (;) in the first line flags the line as a comment and the line is
not assembled. Therefore, the statements after the IF directive are not assembled, since Q
has not been defined in the current assembler pass. If the semicolon is removed, the IF
condition becomes true and the statements are assembled.

REV A FEB 1981

Language Elements-8500 MOL A Series Assembler Users Function: ENDOF
Returns end address of section

SYNTAX

ENDOF(section-name)

PARAMETERS

section-name The name of a section defined in the assembler source program.

EXPLANATION

The ENDOF function returns the address of the last byte of a section. The linker may relocate
the individual sections during linking. Therefore, the ENDOF function is evaluated at link
time. (The Linker section of this manual discusses how sections are relocated.) Further
arithmetic operations may not be performed on the result of an ENDOF function.

Label Operation Operand

RESERVE
LXI

STACK, 100
SP,ENDOF(STACK)

EXAMPLES

This 8080A example reserves 100 bytes for the stack (STACK) and loads the stack pointer
register (SP) with the address of the end of the stack. The stack pointer register holds the
address of the high byte of memory reserved for STACK.

REV A FEB 1981 4-23

Function: HI Language Elements-8500 MOL A Series Assembler Users
Returns high byte of numeric value

4-24

SYNTAX

HI (numeric-ex pression)

PARAMETERS

numeric-expression Any expression that returns a numeric value, either scalar or address.

EXPLANATION

The HI function returns the most significant byte of a numeric expression. The result is a
one-byte numeric value. The numeric expression may be either an address or a scalar value.
If the expression is an address, further operations may not be performed on the result.

Label Operation

SECTION
Q BLOCK
R BLOCK

SECTION
MVI

Operand

TABLE, IN PAGE
50
50
MAIN
H,HI(TABLE)

MVI L.LO(O)
MOV A:M·
MVI L,LO(R)
MOV M,A

EXAMPLES

In this 8080A example, the high byte of the beginning address of the section TABLE is loaded
into the H register. Both Q and R will have the same high byte because INPAGE defines the
section to be within one page. (See the Assembler Directives section for more information on
the INPAGE relocation-option for sections.) The low byte of the addresses for Q and R is
loaded into the L register. Data can be transferred without changing the H register.

REV A FEB 1981

Language Elements-8500 MOL A Series Assembler Users Function: LO
Returns low byte of numeric value

SYNTAX

LO(numeric-expression)

PARAMETERS

numeric-expression Any expression that results in a numeric value, either scalar or
address.

EXPLANATION

The LO function returns the least significant byte of a numeric expression. The result is a
one-byte numeric value. The numeric expression may be either an address or a scalar value.
If the expression is an address, further operations may not be performed on the result.

EXAMPLES

See the HI function example.

REV A FEB 1981 4-25

Function: NCHR Language Elements-8500 MOL A Series Assembler Users
Returfls flumber of characters in string

4-26

SYNTAX

NCHR(string-expression)

PARAMETERS

string-expression Any expression that returns a string.

EXPLANATION

The NCHR function returns the current number of characters in the specified string. The
result is a numeric value.

NOTE

The current length of a character string is not necessarily the same as the
maximum length of a string symbol as declared with the STRING directive.
See the Assembler Directives section of this manual for information on the
STRING directive.

EXAMPLES

The following example shows one use of the NCHR function within a macro repeat block:

Label Operation Operand

STRING STR(5)
STR SET "HELLO"
Q SET 1

REPEAT Q <= NCHR(STR)
ASCII SEG(STR,Q,l)," "

Q SET Q + 1
ENDR

The repeat loop is repeated for Q = 1, 2, 3, 4, and 5. When Q = 6, the REPEAT condition is
false and the assembly continues with the statement following ENDR. The ASCII
respresentation of the individual characters "H ELL 0 " are stored in consecutive bytes.

REV A. FEB 1981

Language Elements-8500 MOL A Series Assembler Users Function: SCALAR
Converts address to scalar

SYNTAX

SCALAR (address)

PARAMETERS

address Any expression that returns an address value.

EXPLANATION

The SCALAR function converts an address (unsigned numeric) value into a scalar (signed
numeric) value.

The only arithmetic operations that can be performed directly on address values are: addition
with a scalar value, and subtraction. To perform any other operations on address values, you
must first convert the addresses to scalar values with the SCALAR function.

EXAMPLES

Label Operation Operand

TABLE BLOCK 100
XXX EQU SCALAR(TABLE) / 2 + TABLE

This example shows an arithemetic operation (division by 2) performed on an address value.
The address value is converted to a scalar value by the SCALAR function.

REV A FEB 1981 4-27

Function: SEG Language Elements-8500 MOL A Series Assembler Users
Returns substring

4-28

SYNTAX

SEG(string.start-position.char-count)

PARAMETERS

string Any expression that returns a character string.

start-position A numeric expression that indicates the position in the string of the first
character of the substring.

char-count Any numeric expression that evaluates to the number of characters to
be returned.

EXPLANATION

The SEG function returns a substring of a character string. The first character in the
substring is the character in the start-position. Each successive character is included until
char-count characters are included or the end of the string is encountered.

The following table shows various substrings returned by the SEG function:

Expression

SEG("ABCDE",2,2)

SEG("ABCDE",4,3)

SEG("ABCDE",6,1)

SEG("ABCDE",1,6)

Substring

"BC"

"DE"

"ABCDE"

EXA!\.IIPLES

Label Operation Operand

STRING
STR SET
LST SET

STR (12), LST (1)
"CHARACTERS"
SEG(STR,NCHR(STR),1)

1 '-I L ~~~eb::t~!~::racters
L first character of substring

(NCHR function returns the
number of characters in STR)

-- character string

Although the character string STR has a maximum length of 12, NCHR(STR) returns the
current length which is 10. The start-position of the substring is the tenth character. The
char-count is 1. Thus, the tenth character "S" is assigned to the string variable LST.

REV A FEB 1981

Language Elements-8500 MOL A Series Assembler Users Function: STRING
Converts scalar to string

SYNTAX

STRING(scalar)

PARAMETERS

scalar Any expression that evaluates to a scalar value.

EXPLANATION

The STRING function converts a scalar value to its string representation. The string
representation is six characters iong. The first character is a zero or minus (-) depending on
the sign of the number. The remaining five characters are the decimal representation of the
value, padded with leading zeros (if necessary). The following table shows how values are
converted to their string representation.

Value String

0 "000000"

-1 "-00001 "

400 "000400"

200H "000512"

EXAMPLES

Label Operation Operand

STRING
XVAL SET
¥VAL SET

MATSIZE SET
DIGIT4 SET

MATSIZE(6), DIGIT4(1)
4
50

STRING(XVAL * ¥VAL)
SEG(MATSIZE,4,1)

This example converts the value of XVAL times YVAL (4 * 50 = 200) to the string "000200".
DIGIT4 is defined to be the fourth character in the string MATSIZE ("2")

REV A FEB 1981 4-29

8500 MDL A Series Assembler Users

Section 5

ASSEMBLER DIRECTIVES

ASSEMBLER DIRECTIVE INDEX

Page

Listing Control Directives
LIST-Turns on listing options 5-23
NOLIST -Turns off listing options 5-29
PAGE-Skips to a new page in the listing. - - - - _ - . __ .. _ 5-33
SPACE-Inserts blank lines into the listing 5-45
STITLE-Creates a listing page subtitle 5-46
TITLE-Creates a listing page title 5-49
WARNING-Displays a warning message 5-50

Symbol Definition Directives
EQU-Assigns a value to a symbol 5-15
SET-Assigns a value to a variable 5-42
STRING-Declares a symbol to be a string variable 5-48

Data Storage Directives
ASCII-Generates ASCII data 5-3
BLOCK-Reserves a data block 5-4
BYTE-Generates byte(s) of data 5-5
WORD-Generates word(s) of data 5-51

Macro Definition Directives
ENDM-Marks the end of a macro definition 5-13
ENDR-Marks the end of a repetitive assembly block .. 5-14
EXITM-Stops macro expansion 5-16
MACRO-Begins a macro definition 5-27
REPEAT-Begins a repetitive assembly block 5-34

REV A FEB 1981

Page

File Inclusion Directive
INCLUDE-Assembles source code from another file .. , 5-22

Conditional Assembly Directives
ELSE-Begins an aiternate conditionai biock 5- i 0
ENDIF-Ends a conditional assembly block 5-12
IF-Begins a conditional assembly block 5-19

Module Definition Directives

COMMON-Declares a common section 5-6
END-Marks the end of the source module 5-11
GLOBAL-Declares giobai symbol(s) 5-17
NAME-Names the object module 5-28
ORG-Assigns an address to the location counter 5-30
RESERVE-Reserves a section of memory , 5-37
RESUME-Resumes the definition of a section 5-39
SECTION-Declares a program section. 5-40

Fig.
No.

5-1

5-2

ILLUSTRATIONS

Page

Allowed Forms of IF Block Nesting 5-20

Allowed Forms of REPEAT Block Nesting 5-35

5-i

8500 MOL A Series Assembler Users

Section 5

ASSEMBLER DIRECTIVES

INTRODUCTION
This section describes the directives you malt use 'vvhen programming for the Tektronix
Assembler. The directives are arranged in alphabetical order for easy reference. A functional
index appears at the front of this section to help you when you do not know a directive by
name.

Each assembler directive description consists of the following parts: a syntax block,
parameter definitions, an explanation of the use and limits of the directive, and one or more
examples of its use.

The syntax block shows the required format of the directive. Assembler directive statements
may contain information in any of the four fields: label, operation, operand, and comment.
Since the comment field is strictly optional for any directive, it does not appear in the syntax
block.

The syntax blocks in this section use the notation conventions explained in the Assembler
Introduction section of this manual.

Label Operation Operand

[symbol] DIRECT stri ng -expressio n[, string -ex pression] ...

The above example shows the syntax for DIRECT, a fictional directive. You may interpret this
syntax block as follows:

• A label is optional for this directive.

• The operation field must contain the word "DIRECT".

• The operand field must contain at least one string expression. If two or more string
expressions are entered, they must be separated by commas. The number of string
expressions is limited only by the maximum line length (127 characters).

REV A FEB 1981 5-1

Labels

5-2

Assembler Oirectives-8500 MOL A Series Assembler Users

LABELS
For each assembler directive, a label may be required, optional, or prohibited, depending on
the directive.

• Only the EOU and SET directives require labels. EOU and SET each assign the value in
the operand field to the symbol in the label field.

• Only the ENDM directive must not have a label.

• The following directives generate object code and therefore often have labels. The label
is assigned the address of the first byte of code generated.

ASCII BLOCK BYTE WORD

• The following directives affect the location counter but do not generate object code, so
they do not normally have labels. The value assigned to the label depends on the
directive.

COMMON ORG RESERVE RESUME SECTION

• All other directives (listed below) do not even affect the location counter and so do not
normally have labels. The label, if any, takes the current value of the location counter.
In the dictionary entry for each of these directives, the label is shown as optional but is
not discussed as a parameter.

ELSE
END
ENDIF
ENDR

EXITM
GLOBAL
IF
INCLUDE

LIST
MACRO
NAME
NOLIST

PAGE
REPEAT
SPACE
STITLE

STRING
TITLE
WARNING

REV A FEB 1981

Assembler Oirectives-8500 MOL A Series Assembler Users ASCII
Generates ASCII data

THE ASSEMBLER DIRECTIVE DICTIONARY

Label Operation

[symbol] ASCII

SYNTAX

Operand

string-expression[,string-expression] ...

PARAMETERS

symbol A user-defined label representing the address of the first character in
the string.

string-expression Any expression that yields a string value.

EXPLANATION

The ASCII directive stores the ASCII codes for the characters of the specified string(s) in
consecutive bytes of the object program. Refer to the Tables section of this manual for an
ASCII conversion table.

Label

CHESSMEN

EXAMPLES

Operation Operand

ASCII
ASCII

"PAWN ROOK KNIGHT"
"BISHOP","QUEEN ","KING "

These two statements generate 36 consecutive bytes of ASCII code: one 18-character string
and three 6-character strings, stored as a single 36-character sequence. CHESSMEN is the
address of the first character from the first string. The following hexadecimal object code is
generated:

source: P A W N R 0 0 K K N G H T
_L: __ +. 50 41 57 4E 20 20 52 4F 4F 4B 20 20 4B 4E 49 47 48 54 UUJC"L.

source: B I S H 0 P Q u E E N K i\l G
object: 42 49 53 48 4F 50 51 55 45 45 4E 20 4B 49 4E 47 20 20

REV A FEB 1981 5-3

BLOCK Assembler Oirectives-8500 MOL A Series Assembler Users
Reserves block of memory

5-4

SYNTAX

Label Operation Operand

byte-count [symbol] BLOCK

symbol

byte-count

PARAMETERS

A user-defined label that represents the address of the first byte of the
block.

The number of bytes to be reserved: any positive scalar expression.

EXPLANATION

The BLOCK directive reserves a specified number of bytes. BLOCK is used primarily to
allocate memory for data that may change during program execution.

The byte-count expression must yield a positive scalar value. Every symbol in the expression
must have been defined previously.

Label

LASTNAME
SSN
AGE
SALARY

EXAMPLES

Operation Operand

BLOCK 20
BLOCK 11
BLOCK 1
BLOCK 2

These statements allocate space for a 20-character name, an 11-character social security
number, an age in the range 0 to 255, and a salary in the range 0 to 65535.

REV A FEB 1981

Assembler Oirectives-8500 MOL A Series Assembler Users BYTE
Generates byte(s) of data

SYNTAX

Label Operation

[symbol] BYTE

Operand

byte-value[,byte-value] ...

PARAMETERS

symbol A user-defined label that represents the address of the first byte of data.

byte-value Any expression that yields a scalar in the range -128 to 255.

EXPLANATION

The BYTE directive stores the specified values in consecutive bytes of the object program. If a
value is outside the range -128 to 255, it is truncated to 8 bits and the following message is
displayed:

***** ERROR 035: Value truncated to byte

EXAMPLES

Label Operation Operand

MONTHS BYTE 31,28,31,30,31,30
BYTE 31,31,30,31,30,31

Twelve bytes of object code are generated. The Nth byte contains the number of days in the
Nth month. MONTHS is the address of the first byte.

REV A FEB 1981 5-5

COMMON Assembler Oirectives-8500 MOL A Series Assembler Users
Declares common section

5-6

SYNTAX

Label Operation Operand

section-name[,relocation-type] [symbol] COMMON

symbol

section-name

relocation-type

PARAMETERS

A user-defined label (usually omitted) that represents the address of the
first byte of the common section.

The name assigned to the section.

An option to direct the relocation of the section at link time. You may
specify one of the following relocation types:

PAGE-The common section is relocated to the beginning of a page of
memory. See the Assembler Specifics section of this manual for the
page size for your microprocessor.

INPAGE-The common section may be relocated to any address, so
long as the entire section lies within one page of memory.

ABSOLUTE-The section is not relocated.

If you do not specify PAGE, INPAGE, or ABSOLUTE, the relocation type
defaults to byte-relocatable: the relocated common section may begin at
any byte in memory.

EXPLANATION

The COMMON directive declares a section of type COMMON and defines the name and
relocation type of the section. The contents of the section are defined by the statements
following the COMMON directive, up to the next SECTION, COMMON, RESERVE, or
RESUME directive.

Different source modules may declare the same common section, and thus share the
contents of that section. (See Example 1.) The relocation type of the section must be the
same in every module in which the section is declared.

The linker assigns the same starting address to all common sections with the same name.
Memory is allocated for the largest section with that name. (See Example 2.)

You may use the directives ASCII, BYTE, or WORD to initialize values in a common section.
(See Example 3.) If two or more modules specify values for the same iocation in a common
section, the module linked last takes precedence; neither· the linker nor the LOAD command
flags the error.

REV A FEB 1981

Assembler Oirectives-8500 MOL A Series Assembler Users COMMON
Declares common section

The name of a common section is a global symbol whose value is the address of the first byte
of the section. A section name should not be declared with a GLOBAL directive in any
module in which the section is defined with a COMMON directive.

EXAMPLES

COMMON Examp!e 1

This example illustrates how program modules can communicate with each other through
values stored in a common section.

Assume that source modules A, B, and C each contain the following common section
definition:

Label

CNAME
ADDRESS
CITY
STATE

Operation

COMMON
BLOCK
BLOCK
BLOCK
BLOCK

Operand

CUSTOMER
30
30
16
2

During program execution, module A might define the customer's name, module B might
define the address, and module C might define the city and state. All 78 bytes of customer
information in the common section may be used or changed by any of the three modules.

REV A FEB 1981 5-7

COMMON Assembler Oirectives-8500 MOL A Series Assembler Users
Declares common section

5-8

COMMON Example 2
A common section may also be used as a scratch area. Some subroutines use blocks of
memory for temporary storage. If all modules use the same common section for temporary
storage, less memory is required than if each module uses a different block of memory.

This example illustrates:

• how a common section may be used as a scratch area by one or more modules; and

• how the linker treats common sections with the same name but different lengths.

In source module A, the following statements define common section SCRATCH:

Label

X1
X2

Operation

COMMON
BLOCK
BLOCK

Operand

SCRATCH
4
6

In source module 8, SCRATCH is defined as follows:

Y1
Y2

COMMON
BLOCK
BLOCK

SCRATCH
5
10

At link time, one area of memory is allocated to section SCRATCH. The size of the area is 15
bytes, which is the length of the larger section named SCRATCH. Both subroutines may use
this area of memory.

A B

b~e~ ([m 11 ~ytes
5

6
bytes

AL ./

6 Y2

7

8

9

10

11

12

13

14

15

10
bytes

3575-6

REV A FEB 1981

Assembler Directives-8500 MDL A Series Assembler Users COMMON
Declares common section

COMMON Example 3
This example demonstrates how you may initialize data in a common section.

Source module A defines common section CALENDAR and provides text for array DAYS:

Label Operation Operand

COMMON CALENDAR
MONTHS BLOCK 36
DAYS ASCII "SUNMONTUEWED"

ASCII "THUFRISAT"

Source module B also defines CALENDAR and provides text for array MONTHS:

MONTHS

DAYS

COMMON
ASCII
ASCII
ASCII
BLOCK

CALENDAR
"JANFEBMARAPR"
"MAYJUNJULAUG"
"SEPOCTNOVDEC"
21

A and B both specify the same length for common section CALENDAR (57

When the section is loaded into memory, its contents will be as follows:

bytes source: J A N F E B M A R A P R M A Y J U
1-18 object: 4A 41 4E 46 45 42 40 41 52 41 50 52 40 41 59 4A 55

bytes source: J U L A U G S E P 0 C T N 0 V 0 E
19-36 object: 4A 55 4C 41 55 47 53 45 50 4F 43 54 4E 4F 56 44 45

bytes source: S U N M 0 N T U E W E 0 T H U F R
37-54 object: 53 55 4E 40 4F 4E 54 55 45 57 45 44 54 48 55 46 52

bytes source: S A T
55-57 object: 53 41 54

REV A FEB 1981

bytes).

N }
4E

C MONTHS

43

I t DAYS

49

J

5-9

ELSE Assembler Directives-8500 MOL A Series Assembler Users
Begins alternate conditional block

5-10

SYNTAX

Label Operation Operand

[symbol] ELSE

EXPLANATION

The ELSE directive separates the branches of an IF ... ELSE ... ENDIF block.

If the conditional expression in the IF directive is nonzero (true), the statements between the
IF directive and the ELSE directive are assembled. Otherwise, the statements between the
ELSE directive and the ENDIF directive are assembled.

Label Operation

IF
NDAYS EQU

ELSE
NDAYS EQU

ENDIF

EXAMPLES

Operand Comment

YEAR MOD 4 = 0
366 LE A P YE A R -4---- Assembled if YEAR is

365

divisible by 4.

NOT LEAP YEAR _-4II ___ Assembled if YEAR is
not divisible by 4.

If the value of YEAR is evenly divisible by 4, the first EOU directive is assembled and the
symbol NDAYS is assigned the value 366. Otherwise the second EOU directive is assembled
and NDAYS takes the value 365.

REV A FEB 1981

Assembler Oirectives-8500 MOL A Series Assembler Users END
Ends source module

Label Operation

[symbol] END

SYNTAX

Operand

[transfer-address]

PARAMETERS

transfer-address The address of the first instruction to be executed.

EXPLANATION

The END directive marks the end of the source moduie. if the source moduie contains no
END directive, assembly continues to the end of the last source file named in the ASM
command line.

The transfer address, if present, is the address of the first instruction to be executed when
the program is run. The transfer address is usually specified in a source module, often in the
module that contains the main program. However, the transfer address can also be defined
or changed at link time. (See the TRANSFER command in the Linker section of this manual.)
If more than one module contains a transfer address, the transfer address in the first module
linked is used.

EXAMPLES

Label Operation Operand

START XRA A

END START

In this example, END is the last statement in the main program source module. START is the
transfer address: program execution starts with the 8080A instruction XRA A.

REV A FEB 1981 5-11

ENDIF Assembler Oirectives-8500 MOL A Series Assembler Users
Ends conditional assembly block

SYNTAX

Label Operation Operand

[symbol] ENDIF

EXPLANATION

The ENOIF directive marks the end of an IF ... ENDIF or IF ... ELSE ... EN01F biock of statements.
See the IF directive.

5-12 REV A FEB 1981

Assembler Directives-8500 MDL A Series Assembler Users ENDM
Ends macro definition

SYNTAX

Label Operation Operand

ENDM

EXPLANATION

The ENDM directive marks the end of a macro definition. See the MACRO directive.

The ENDM directive must not have a label.

REV A FEB 1981 5-13

ENDR
Ends REPEAT block

Assembler Oirectives-8500 MOL A Series Assembler Users

SYNTAX

Label Operation Operand

[symbol] ENDR

EXPLANATION

The ENDR directive marks the end of a REPEAT. .. ENDR block of statements. See the REPEAT
directive.

5-14 REV A FEB 1981

Eau Assembler Directives-8500 MDL A Series Assembler Users
Assigns value to symbol

SYNTAX

Label Operation Operand

symbol EQU numeric-value

PARAMETERS

symbol A user-defined symbol to be assigned a value by this statement.

numeric-value Any numeric expression. Each symbol in the expression must have been
defined previously.

EXPLANATION

The EOU directive assigns a value to a symbol. The symbol cannot be redefined in the same
source module.

A symbol defined in an EOU directive may be used by any statement in the module, with the
following restriction: a BLOCK, EOU, IF, ORG, REPEAT, SET, or STRING directive that refers
to the symbol must not precede the EOU directive that defines the symbol.

EXAMPLES

Label Operation Operand Comment

MVI B,ROWS NUMBER OF ROWS TO,B REGISTER.
MVI C,COLS NUMBER OF COLUMNS TO C REGISTER.

ROWS EQU 10 DEFINE NUMBER OF ROWS ...
COLS EQU 3 ... AND NUMBER OF COLUMNS.

TABLE BLOCK ROWS*COLS ALLOT SPACE FOR A 3D-BYTE TABLE.

The symbol ROWS is assigned the value 10 and the symbol COLS is assigned the value 3.
Note that the two 8080A MVI instructions may refer to ROWS and COLS, even though the
symbols are not defined until later in the module. On the other hand, the BLOCK directive
that refers to the symbols must follow the EOU directives that define the symbols.

REV A FEB 1981 5-15

EXITM Assembler Directives-8500 MDL A Series Assembler Users
Stops macro expansion

5-16

SYNTAX

Label Operation Operand

[symbol] EXITM

EXPLANATION

The EXITM directive terminates the current macro expansion; EXITM does not mark the end
of a macro definition.

EXITM is valid only in.macros. It is generally used to stop macro expansion in the middle of
an IF block or REPEAT block.

Label

PARAM

PARAM

EXAMPLES

Operation Operand

MACRO TESTBYTE
SET 1
REPEAT PARAM <= 'I'

IF 'PARAM' < °
WARNING ; NEGATIVE
EXITM

ELSE
BYTE 'PARAM'

ENDIF
SET PARAM +

ENDR
ENDM

Comment

; POINT TO FIRST PARAMETER.
; DO FOR EVERY PARAMETER:
; IF PARAMETER IS BAD ...

PARAMETER
... ABORT MACRO EXPANSION.
OTHERWISE STORE THE VALUE.

INCREMENT PARAMETER POINTER ...
.•. AND REPEAT.

Macro TESTBYTE generates one BYTE directive for each parameter in the macro invocation.
The variable PARAM counts from 1 to the number of parameters passed ('#'). The construct
'PARAM' is replaced by the parameter pointed to by PARAM. If a negcHive porameter is
encountered, the WARNING and EXITM directives are assembled and macro expansion ends
before all parameters have been processed.

The macro invocation

TESTBYTE 10,20,-1,-2,30

yields the following macro expansion:

BYTE 10
BYTE 20
WARNING ; NEGATIVE PARAMETER

If the EXITM statement were omitted, macro expansion would continue until all parameters
were processed:

BYTE 10
BYTE 20
WARNING ; NEGATIVE PARAMETER
WARNING ; NEGATIVE PARAMETER
BYTE 30

REV A FEB 1981

Assembler Oirectives-8500 MOL A Series Assembler Users GLOBAL
Declares global symbol(s)

Label Operation

[symbol] GLOBAL

SYNTAX

Operand

global-sym[,global-sym] ...

PARAMETERS

global-sym A symbol to be declared global.

EXPLANATION

The GLOBAL directive declares one or more symbols to be global. A global symbol defined in
one module may be referred to by other modules. Both the module that defines the symbol
and the module that refers to it must declare the symbol to be global. The linker will make
the value of the global symbol available to all modules that declare it.

The GLOBAL directive that declares a symbol must precede the statement that defines that
symbol. The symbol may not be defined more than once in any group of modules to be linked.

A global symbol that is given a value in the current module is called a bound global. A bound
global that is also an address is called an entry point, since it often represents an instruction
that is jumped to from outside the module.

A giobai symbol that is not defined in the current module is called an unbound global; its
value must be provided at link time, either by another module or by the linker command
DEFINE.

A section name (defined by a COMMON, RESERVE, or SECTION directive) is a global symbol;
it should not be declared with a GLOBAL directive in the same module in which the section
is defined.

REV A FEB 1981 5-17

GLOBAL Assembler Oirectives-8500 MOL A Series Assembler Users
Declares g!obal symbol(s)

5-18

EXAMPLES

This example demonstrates the use of global symbols in three modules: MYMOD, HISMOD,
and HERMOD.

Label

VALUE

MYSELF

Operation Operand

NAME
GLOBAL

EQU
CALL
CALL
CALL

XRA

MYMOD
HIM,HER,VALUE

3
HIM
HER
MYSELF

A

In module MYMOD, HIM and HER are unbound globals, but VALUE is a bound global, since it
is assigned a value by the EQU directive. MYSELF does not need to be declared global. since
it is defined in MYMOD (as the address of the 8080A XRA instruction) and is not used in any
other module.

HIM

NAME
GLOBAL
MVI

HISMOD
HIM,VALUE
A,VALUE

In module HISMOD, VALUE is an unbound global. HIM is defined as the address of the MVI
instruction, so HIM is an entry point (a bound global address).

HER

NAME
GLOBAL
CALL

HERMOD
HER, HIM
HIM

In module HERMOD, HIM is an unbound global. HER is defined as the address of the CALL
instruction, so HER is an entry point.

In summary:

• HIM is defined in HISMOD and used in MYMOD and HERMOD;

• HER is defined in HERMOD and used in MYMOD;

• VALUE is defined in MYMOD and used in HISMOD.

Each symbol is declared to be global wherever it is defined or used. Since MYSELF is defined
in MYMOD and used oniy in MYMOD, it does not need to be declared global

REV A FEB 1981

Assembler Directives-8500 MDL A Series Assembler Users IF
Begins conditional assembly block

La bel 0 peration

[symbol] IF

Operand

condition-value

SYNTAX

PARAMETERS

condition-value Any expression that yields a numeric value. The condition is considered
faise if the vaiue is zero and true if the vaiue is nonzero.

EXPLANATION

The IF directive marks the beginning of an IF ... ENDIF or IF ... ELSE ... ENDIF block of statements.
The value of the expression in the IF directive determines which statements (if any) in the
block are assembled.

IF ... ENDIF

An IF ... ENDIF block has the following structure:
IF condition-value

(statements to be assembled if condition-value is true)
ENDIF

If the condition-value is true (nonzero), the statements between the IF directive and the
ENDIF directive are assembled. If the condition-value is false (zero), those statements are
skipped. (See Example 1.)

IF. " E lS E. , . END I F
An IF ... ELSE ... ENDIF block has the following structure:

IF condition-value
(statements to be assembled if condition-value is true)
ELSE
(statements to be assembled if condition-value is false)
ENDIF

If the condition-value is true (nonzero), the statements between the IF directive and the ELSE
directive are assembled. Otherwise, the statements between the ELSE directive and the
ENDIF directive are assembled. (See Example 2.)

REV A FEB 1981

NOTE

A relational expression (for example, J < 0) yield:; the value -1 (16 1-bits)
when true ana the vaiue 0 (16 O-bilS) when false. Thus the bil manipulation
operators &, /, and / / ma y be used as the conjunctions AND, OR, and
exclusive-OR, respectively, in complex relational expressions. (See Example
3.) The Language Elements section of this manual explains expressions and
operators in detail.

5-19

IF Assembler Directives-8500 MDL A Series Assembler Users
Begins conditional assembly block

5-20

Each IF directive must have a corresponding ENDIF directive and may have one
corresponding ELSE directive.

An IF block may be nested inside a REPEAT block or another IF block. Blocks may be nested
as deep as available memory in the assembler permits. An IF block may not lie partially inside
and partially outside a REPEAT block, another IF block, a macro expansion, or statements
from an INCLUDE file. See Fig. 5-', which illustrates the allowed forms of nesting for IF
blocks.

Q
REPEAT

ilF

L-ENDIF

ENDR

start of. macro
I expansion Q

IF

L- end of macro
expansion

ENDIF

start of
, INCLUDE file O

IF

L- end of
INCLUDE file

ENDIF

Allowed

IF

,REPEAT

L-ENDR

ELSE

,IF

L- ENDIF

ENDIF

O
!~a~~~~:acro

,IF

L-ENDIF

end of macro
expansion

start of

O
INCLUDE file

,IF

L-ENDIF

end of
INCLUDE file

Fig. 5-1. Allowed forms of IF block nesting.

NOT Allowed

CE
EPEAT

IF

ENDR

ENDIF

start of. macro
expansion Cf

F

ENDIF

end of macro
expansion

start of
INCLUDE file Cf

F

ENDIF

end of
INCLUDE file

3575-7

An IF block may not lie partially inside and partially outside a REPEAT block, another IF block, a macro
expansion, or statements from an INCLUDE file

REV A FEB 1981

Assembler Directives-8500 MDL A Series Assembler Users IF
Begins conditional assembly block

EXAMPLES

IF Example 1
In this example, a warning is displayed at assembly time if the object code for section ASEC
occupies more than one page of memory. The dollar sign represents the current value of the
location counter.

Label

PAGESIZE

IF Example 2

Operation Operand

EQU 100H
SECTION

IF
WARNING
ENDIF

ASEC,INPAGE

$ >= PAGESIZE
SECTION ASEC TOO LONG

This example shows the use of an IF ... ELSE ... ENDIF block in a macro.

Label Operation

MACRO

IF
WORD

ELSE
WORD

ENDIF

ENDM

Operand

WORDS

" , 1 ' " =
0

' 1 '

""

Comment

IF FIRST PARAMETER IS ABSENT .•.
... STORE A WORD OF ZEROS.

OTHERWISE STORE FIRST PARAMETER.

The construct '1' is replaced by the first parameter. If there is no first parameter, '1' is
replaced with the null string (nothing); since the expression "" = "" is true, the statement
WORD 0 is assembled and the statement WORD '1' is skipped. On the other hand, if the
parameter exists, the second WORD directive is assembled, taking the parameter as its
operand.

IF Example 3
Label Operation Operand

IF M)N & N(P & P=Q
WARNING ; TROUBLE
ENDIF

In this example, the conditional expression of the IF statement contains three relational
subexpressions: "iv1>N", "N<P", and "P=Q". Each subexpression yields the value -1 (true) Gr

o (false). The three"subexpression values are ANDed together to yield the value (-1 or 0) to be
used by the IF directive. (& is the logical AND operator.) Thus the WARNING directive is
assembled only if:

• M is greater than N, and

• N is less than P, and

• P is equal to Q.

REV A FEB 1981 5-21

INCLUDE Assembler Oirectives-8500 MOL A Series Assembler Users
Assembles source code from another file

5-22

Label Operation

[symbol] INCLUDE

Operand

filespec-string

SYNTAX

PARAMETERS

filespec-string An expression that yields a string representing a filespec.

EXPLANATION

The INCLUDE directive causes the assembler to process the statements in the specified file
as if they were part of the current source file.

The INCLUDE file may not contain an INCLUDE directive.

If the INCLUDE directive is contained in a macro, the file is included at macro expansion time.
However, statements in the INCLUDE file cannot use the special text substitution constructs
usually allowed in macros ('N' for the Nth parameter, '#' for the number of parameters, '@'
for a unique label). See the Macros section for information about these constructs.

Label

EXAMPLES

Operation Operand Comment

NAME
INCLUDE
INCLUDE

MAINMOD
"MACR.ASM" ; DEFINE STANDARD MACROS.
"/SYS/COM.ASM" ; DEFINE COMMON BLOCK.

In this example, the statements in file MACR.ASM in the current directory (lUSR) and file
COM.ASM in the system directory are assembled at the beginning of module MAINMOD.
MACR.ASM contains macro definition blocks; COM .ASM defines a common section.

REV ,A, FEB 1981

LIST Assembler Directives-8500 MDL A Series Assembler Users
Turns on listing options

SYNTAX

Label Operation Operand

[symbol] LIST

listing-option

[\isting-option[, listing-option] ...]

PARAMETERS

One of the following listing options:

eND-Lists statements that are not assembled because of unsatisfied
IF or REPEAT conditions. Defaults to OFF: only those statements that are
actually assembled are listed.

CON-Lists assembly enors on the system terminal as well as in the
source listing. Defaults to ON.

DBG-Causes the linker listing to include an internal symbols list for
this module at link time. Defaults to OFF.

ME-Sets the ME/MEG option to the ME setting: lists all macro
expansion statements that are assembled. The ME/MEG option defaults
to MEG.

MEG-Sets the ME/MEG option to its default setting, MEG: lists only
those macro expansion statements that generate object code.

SYM-Lists the symbol table. Defaults to ON.

TRM-Trims the assembier iisting to 72 characters. The iisting width
defaults to 72 characters wide if the listing device is CONO; otherwise
the width defaults to 132 characters.

If no option is specified, the source listing is turned ON.

EXPLANATION

The LIST directive turns on the listing option(s) named in the operand field. If no option is
named, the master option (which controls the source listing) is turned on. The NOLIST
directive may be used to turn any of these options off.

Each option controls a different listing feature and may be turned on or off anywhere in the
source module. if an option is changed during a macro expansion, iTs previous setting is
restored when the expansion ends.

REV A FEB 1981 5-23

LIST Assembler Oirectives-8500 MOL A Series Assembler Users
Turns on listing options

5-24

An assembler listing contains two parts: the source listing, which shows the source code
and object code for each statement assembled; and the symbol table, which lists the
symbols used in the source module. The master option, CND option, and ME/MEG option
determine which lines of code appear in the source listing, and are discussed in the following
paragraphs. The SYM option controls display of the symbol table, and is discussed with the
CON, DBG, and TRM options under the heading Other Options.

Source Listing

Master Option. The master option is normally ON. The directive NOLIST (without operands)
turns the master option OFF, suppressing display of all statements except erroneous ones.
When the master option is OFF, PAGE and SPACE directives are suppressed and the CND
and ME/MEG options are overridden. The directive LIST (without operands) turns the master
option back ON.

CND. Normally the CND option is OFF, and any statement that is not assembled because of
an unsatisfied IF or REPEAT condition is not listed. When the CND option is ON, even
unassembled statements are listed.

ME/MEG. The ME/MEG option controls the display of statements in macro expansions. It
has three settings: ME, MEG, and OFF. At the default setting, MEG, only those statements
that generate object code (assembly language instructions and ASCII, BLOCK, BYTE, and
WORD directives) are listed. Note that other directives that directly affect the object module
(COMMON, EOU, GLOBAL, NAME, ORG, RESERVE, RESUME, SECTION) are not listed.

The directive LIST ME changes the ME/MEG setting to ME, causing every assembled
statement in a macro expansion to be listed. The directive NOLIST ME or NOLIST MEG turns
the ME/MEG option OFF, suppressing display of all macro expansion statements except
erroneous ones. The directive LIST MEG returns the ME/MEG option to its default setting.

Summary. The foiiowing tabie shows how the master option and Ci\jO option controi the
display of statements outside macro expansions.

Option Settings

Master CN D Type of Statements Listed

OFF
ON
ON

adon't care

a

OFF
ON

errors
assembled statements (default)
all statements

REV A FEB 1981

LIST Assembler Oirectives-8500 MOL A Series Assembler Users
Turns on listing options

The following table shows how the master option, ME/MEG option, and CND option control
the display of statements in a macro expansion.

Option Settings

Master ME/MEG eND Type of Statements Listed

OFF a a errors
ON OFF a errors
ON MEG a statements that generate object code (default)
ON ME OFF assembled statements
ON ME ON all statements

adon't care

Other Options

CON. Normally the CON option is ON, and every erroneous statement and its accompanying
error message are displayed on the system terminal (CONO) as well as in the source listing.
When the CON option is OFF, erroneous statements and their error messages appear only in
the source listing.

DBG. If the DBG option is left at its default setting (OFF), the linker listing will contain no
internal symbols list for the current module when the module is linked. If the DBG option is
ON when assembly ends, an internal symbols list will be created, and it will list all symbols
in the module. The internal symbols list is described in the Linker section of this manual.

SYM. If the SYM option is left at its default setting (ON), the assembler listing will contain
the symbol table as well as the source listing. If the SYM option is OFF when assembly ends,
no symbol table is listed. The symbol table is described in the Assembler Introduction section.

TRM. Normally, the TRM option is OFF, and the assembler listing contains lines of up to 132
characters. When the TRM option is ON, all lines are truncated to 72 characters. (Source
lines that contain more than about 50 characters are truncated, since the source listing
displays 20 to 25 characters of information-depending on your microprocessor-to the left
of each source line.) If TRM is ON when assembly ends, the symbol table is rearranged to fit
a 72-character format

V'Jhe;l the !:sting devise :s the system tarmina! (CONO), the TRM option ;s automaticall'y
turned ON before assembly starts. The directive NOLIST TRM restores the 132-character
format.

REV A FEB 1981 5-25

LIST Assembler Oirectives-8500 MOL A Series Assembler Users
Turns on listing options

5-26

EXAMPLES

Label Operation Operand

LIST DBG

This statement causes the linker to display an internal symbols list for this module when it is
linked.

LIST CND,ME

This directive causes all statements (assembled and unassembled, mainline statements and
macro expansion statements) to appear in the source listing.

NOLIST

LIST

The NOLIST directive turns off the source listing and the LIST directive turns it back on.
While the source listing is suppressed, the settings of other options may be changed;
however, changes to the eND and ME/MEG options do not become apparent until the listing
is turned back on.

NOLIST SYM
This statement suppresses display of the symbol table.

REV A FEB 1981

Assembler Directives-8500 MDL A Series Assembler Users MACRO
Begins macro definition

SYNTAX

Label Operation Operand

[symbol] MACRO macro-name

PARAMETERS

macro-name The name of the macro being defined.

EXPLANATION

The MACRO directive marks the beginning of a macro definition block. The macro consists of
all statements between, but not including, the MACRO directive and the next ENDM
directive.

The Macros section of this manual describes macros in detail.

EXAMPLES

The following macro converts the number in the specified 8080A register to its two's
complement:

Label Operation Operand

MACRO NEGATE
SUB A
SUB ' 1 '
MOV ' 1 ' ,A
ENDM

The macro Invocation

NEGATE B

yields the following macro expansion:

SUB A
SUB B
MOV B,A

Comment

SET A TO ZERO.
SUBTRACT ' 1 ' FROM ZERO.
STORE RESULT BACK INTO

; SET A TO ZERO.
SUBTRACT B FROM ZERO.
STORE RESULT BACK INTO B.

' 1 ' •

Every occurrence of the first formal parameter ('1 ') is replaced by the first actual parameter
(B). The 8080A instruction SUB A clears the A register; SUB B subtracts the contents of the
B register from the A register; MOV B,A moves the result back into the B register.

REV A FEB 1981 5-27

NAME Assembler Oirectives-8500 MOL A Series Assembler Users
Declares object module name

5-28

Label Operation

[symbol] NAME

Operand

module-name

SYNTAX

PARAMETERS

module-name A name for the object module being created: any symbol.

EXPLANATION

The NAME directive gives a name to the object module created by this assembly. If more than
one NAME directive appears in a modult, only the first name specified is used. If the source
module contains no NAME directive, the default name *NONAME* is assigned to the object
module.

The library generator (LibGen) requires that each module in a library file have a unique
name.

EXAMPLES

Label Operation Operand

NAME SUBSMOD

This statement assigns the name SUBSMOD to the object module being created.

REV A FEB 1981

Assembler Oirectives-8500 MOL A Series Assembler Users NOllST
Turns off listing ul--t'ons

SYNTAX

Label Operation Operand

[listing-option[,listing-option] ...] [symbol] NOLIST

listing-option

PARAMETERS

One of the following listing options:

CND-Suppresses listing of statements that are not assembled because
of unsatisfied IF or REPEAT conditions.

CON-Suppresses displav of assembly errors on the system terminal.

DBG-Suppresses the internal symbols list for this module at link time.

ME-Suppresses display of all macro expansion statements.

MEG-Suppresses display of all macro expansion statements.

SYM-Suppresses listing of the symbol table.

TRM-Changes the listing width from 72 characters to 132 characters.

If no option is specified, the source listing is turned off.

EXPLANATION

The NOLIST directive turns off the listing option(s) named in the operand field. These options
aie explained in detail under the LIST directive.

REV A FEB 1981 5-29

ORG Assembler Oirectives-8500 MOL A Series Assembler Users
Sets location counter

5-30

SYNTAX

label Operation Operand

[symbol] ORG

symbol

address

address-mod

(
address }
/ add ress-mod

PARAMETERS

A user-defined label (usually omitted) that is assigned the value of the
updated location counter.

A new value for the location counter: any expression that yields an
address. Each symbol in the expression must have been defined
previously.

Any numeric expression. The location counter is advanced to the next
address that is a mUltiple of the address-mod. Each symbol in the
expression must have been defined previously.

EXPLANATION

The ORG directive sets the location counter to the specified address.

If the / (slash) operator is used, the location counter is set to the next address that is a
mUltiple of the address-mod. If the current value of the location counter is already a multiple
of the address-mod, the location counter is unaffected. If the address-mod is zero and the
value in the location counter is even, the location counter is set to the next odd value.

The location counter is an internal counter maintained by the assembler that holds the
address, relative to the beginning of the current section, of the next byte of code to be
assembled. The location counter starts at zero for each section and is automatically updated
as object code is generated.

The ORG directive is generally used to initialize the program counter for an absolute section,
or to begin the next block of object code on a new page of memory. Avoid using ORG in a
byte-relocatable or inpage-relocatable section, since the conditions you use ORG to create
are likely to be lost when the section is relocated.

If, through use of the ORG directive, you break your section into noncontiguous blocks of
code, the linker may place other sections in the gaps between these blocks. (See Example 1.)
Every byte in a section retains its position relative to the beginning of the section even if the
section is relocated.

If you use ORG incorrectly, you may end up specifying more than one value for the same byte
of object code. (See Example 2.) Such a situation is not detected by the assembler, linker, or
LOAD command.

REV A FEB 1981

Assembler Oirectives-8500 MOL A Series Assembler Users ORG
Sets location counter

EXAMPLES

ORG Example 1
Label Operation Operand Comment

; DEFINE SECTION ABS (AN ABSOLUTE SECTION).
SECTION ABS,ABSOLUTE
ORG 100H START ON PAGE 1.

ABS1 BLOCK 80H 128 BYTES OF MEMORY
ORG 1100H GO TO BEGINNING OF NEXT PAGE.

ABS2 BLOCK 40H 64 BYTES
ORG 400H GO TO PAGE 4.

ABS3 BLOCK 80H ; 128 BYTES
; DEFINE SECTION REL (A BYTE-RELOCATABLE SECTION).

SECTION REL
REL1 BLOCK 40H 64 BYTES

ORG 1100H GO TO BEGINNING OF NEXT PAGE (?)
REL2 BLOCK 80H 128 BYTES

In the example above, two sections of object code are generated. Section ABS is divided into
three blocks and section REL is divided into two blocks. The layout of the two sections is
shown below.

ASS
0000 r-----....

0100~----t

0200[j
ABS2

0300

0400 t-------t

ABS3

REV A FEB 1981

REL
0000 r------,

REL1

0100 1-----==4

REL2

3575-8

5-31

ORG Assembler Directives-8500 MOL A Series Assembler Users
Sets location counter

5-32

The linker will arrange the two sections as shown below.

0000

0100

0200

0300

0400

ABS1

ABS2

REL1

REL2

ABS3

Section REL is relocated as a whole
to the first gap of sufficient size.

3575-9

Notice that section REL is placed between blocks ABS2 and ABS3 of section ABS. Notice also
that block REL2 began on a page boundary before it was relocated, but not 8fteL

ORG Example 2

Label Operation Operand

ORG 400H
ASCII "A LINE OF TEXT"
ORG 405H
ASCII " "

yields the same object code as:

ORG 400H
ASCII "A LIN·····TEXT"

REV A FEB 1981

Assembler Directives-8500 MDL A Series Assembler Users PAGE
Skips to new page in listing

SYNTAX

Label Operation Operand

[symbol] PAGE

EXPLANATION

A PAGE directive causes the next source iine iisted to appear at the top of a new page. The
PAGE directive itself is not listed.

If the source listing is suppressed by a NOLIST directive, the PAGE directive has no effect.

EXAMPLES

Label Operation Operand Comment

TITLE

PAGE
SECTION

"THIS IS THE TITLE"

MAIN
SKIP TO A NEW PAGE TO
BEGIN CODE FOR MAIN.

These statements cause the source code for section MAIN to begin on a new page. The top of
the new page looks like this:

Tektronix xxxxxxxxx ASH Vx.x THIS IS THE TITLE Page x

xxxxx SECTION MAIN BEGIN CODE FOR MAIN.

REV A FEB 1981 5-33

REPEAT Assembler Oirectives-8500 MOL A Series Assembler Users
Begins repetitive assembly

5-34

SYNTAX

Label Operation Operand

condition-value[, limit] [symbol] REPEAT

cond it ion -va I u e

limit

PARAMETERS

Any expression that yields a numeric value. The condition is considered
false if the value is zero and true if the value is nonzero.

The maximum number of times the block may repeat: any non-negative
scalar expression. Defaults to 255.

EXPLANATION

The statements between a REPEAT directive and its matching ENDR directive are assembled
repeatedly until the condition-value becomes false (zero). A REPEAT. .. ENDR block is valid
only within a macro.

If the condition-value is still true (nonzero) after the repetition limit has been reached, the
assembler responds

••••• ERROR 017: Iteration limit exceeded

and skips to the statement following the EN DR directive.

If the condition-value is false before the first repetition, the REPEAT ... ENDR block is not
assembled at all

The condition-value may be a relational expression (for example, J < 0). See the IF directive
for a note on the relationship between numeric and relational expressions.

A REPEAT block may be nested inside an IF block or another REPEAT block. Blocks may be
nested as deep as available memory in the assembler permits. A REPEAT block may not lie
partially inside and partially outside an IF block, another REPEAT block, a macro expansion,
or statements from an INCLUDE file. See Fig. 5-2, which illustrates the allowed forms of
nesting for REPEAT blocks.

REV A FEB 1981

Assembler Directives-8500 MDL A Series Assembler Users REPEAT
Begins repetitive assembly

I:
REPEAT

,IF

L-ENDIF

r-- REPEAT

I LENDR

LENDR

O
~~;!~~:acro

,REPEAT

L-ENDR

end of macro
expansion

r-REPEAT

I start of

~
,.-- INCLUDE file

L- end of
INCLUDE file

ENDR

Allowed

O
IF

,REPEAT

L-ENDR

ENDIF

start of macro I expansion

~
RE::o::er

macro
expansion

ENDR

end of macro
expansion

start of
ilNCLUDE file

~
,REPEAT

L- EN DR

end of
INCLUDE file

NOT Allowed

CE
EPEAT

IF

ENDR

ENDIF

r-- REPEAT

I start o~ macro

LE
expansion

ENDR

end of macro
expansion

r---- REPEAT

I start of

4:
INCLUDE file

EN DR

end of
INCLUDE file

3575-10

Fig. 5-2. Allowed forms of REPEAT block nesting.

REV A FEB 1981

A REPEAT block may not lie partially inside and partially outside an IF block, another REPEAT block, a
macro expansion, or statements from an INCLUDE file.

5-35

REPEAT Assembler Directives-8500 MOL A Series Assembler Users
Begins repetitive assembly

5-36

Label

COUNT

COUNT

The statement

Operation

MACRO
SET
REPEAT
BYTE
SET
ENDR
ENDM

Operand

LOOP
1

EXAMPLES

COUNT <= '1'
'2 '
COUNT + 1

LOOP 3,0

invokes the above macro and produces the following expansion:

COUNT SET 1
REPEAT COUNT <= 3
BYTE 0

COUNT SET COUNT + 1 (COUNT is incremented to 2.)
ENDR
REPEAT COUNT <= 3
BYTE 0

COUNT SET COUNT + 1 (COUNT is incremented to 3.)
ENDR
REPEAT COUNT <= 3
BYTE 0

COUNT SET COUNT + 1 (COUNT is incremented to 4.)
ENDR

This sequence generates three bytes of zeros. Note that with the listing options at their
default settings, only the BYTE directives would appear in the listing:

BYTE 0
BYTE 0
BYTE 0

See the L!ST direct!\/e fer mare in.fnt'"'r"r"\".:lI+il""'\r"\ .1""\
IfIlVIIIJUl.'VII VII

REV A FEB 1981

Assembler Directives-8500 MDL A Series Assembler Users RESERVE
Reserves section of memory

SYNTAX

label Operation

[symbol] RESERVE

Operand

section-name,section-Iength[,relocation-type]

symbol

section-name

section-length

relocation-type

PARAMETERS

A user-defined iabei (usuaiiy omitted) that represents the first byte of
the relocated reserve section.

The name assigned to the section.

The number of bytes in the section: any non-negative scalar expression.

An option to direct the relocation of the section at link time. You may
specify one of the following relocation types:

PAGE-The section is relocated to the beginning of a page of memory.
See the Assembler Specifics section of this manual for the page size for
your microprocessor.

INPAGE-The section may be relocated to any address, so long as the
entire section lies within one page of memory.

If you do not specify PAGE or INPAGE, the relocation type defaults to
byte-relocatable: the relocated section may begin at any byte in
memory.

EXPLANATION

The RESERVE directive creates a section with the specified name, length, and relocation
type. Different modules may allocate space for the same reserve section; the linker
concatenates all reserve sections with the same name into a single section.

Since you can specify the length, but not the contents, of a reserve section, RESERVE is used
chiefly to set aside memory for a workspace or stack.

A reserve section may not have the relocation type ABSOLUTE; however, you may use the
linker command LOCATE to place the section at the desired position in memory. See the
Linker section of this manual.

The RESERVE directive has no effect on the section currently being defined.

The relocation type of a reserve section must be the same everywhere the section is
declared. A section must not be declared more than once in the same module.

The name of a section is a global symbol whose value is the address of the first byte of the
section. A section name should not be declared with a GLOBAL directive in any module in
which the section is defined with a RESERVE directive.

REV A FEB 1981 5-37

RESERVE Assembler Oirectives-8500 MOL A Series Assembler Users
Reserves section of memory

5-38

Label Operation Operand

NAME
SECTION

RESERVE

MOD1
SEC1

STACK,40

EXAMPLES

Comment

BEGIN DEFINITION OF SEC1.

SET ASIDE 40 BYTES FOR STACK.
RESUME DEFINITION OF SEC1.

In the above example, 40 bytes are allocated to a byte-relocatable reserve section called
STACK. The statements on either side of the RESERVE directive refer to section SEC 1.

NAME MOD2

RESERVE STACK,20 ; SET ASIDE 20 BYTES FOR STACK.

VVhen modules MOD1 and MOD2 are linked, reserve section STACK wiii occupy 60 bytes of
memory: 40 bytes from MOD 1 and 20 bytes from MOD2.

REV A FEB 1981

Assembler Directives-8500 M DL A Series Assembler Users RESUME
Resumes definition of section

SYNTAX

Label Operation

[symbol] RESUME

Operand

[section-name]

symbol

section-name

PARAMETERS

A user-defined label (usually omitted) that is assigned the current value
of the location counter of the resumed section.

The name of the section to be resumed. If no name is given, the default
section is resumed.

EXPLANATION

The RESUME directive stops definition of the current section and resumes the definition of
the specified section.

If no section name is given, the definition of the default section is continued. The default
section is described under the SECTION directive.

Once a section is defined, it may be resumed any number of times.

Label

TEMP

Operation Operand

SECTION

STA
SECTION
BLOCK
RESUME

MAINPROG

TEMP
RAM
1
MAINPROG

EXAMPLES

Comment

BEGIN DEFINITION OF MAINPROG.

USE A TEMPORARY LOCATION.
SWITCH TO RAM ..•
... TO ALLOT SPACE FOR TEMP.
GO BACK TO ORIGINAL SECTION.

in this example, the definition of section MAINPROG is interrupted to reserve one byte for
temporary storage. The RESUME directive continues the definition of section MAINPROG.

REV A FEB 1981 5-39

SECTION Assembler Oirectives-8500 MOL A Series Assembler Users
Declares program section

5-40

SYNTAX

label Operation Operand

[symbol] SECTION section -name[, relocation -type]

symbol

PARAMETERS

A user-defined label (usually omitted) that represents the address of the
first byte of the section.

section-name The name assigned to the section.

relocation-type An option to direct the relocation of the section at link time. You may
specify one of the following relocation types:

PAGE-The section is relocated to the beginning of a page of memory.
See the Assembler Specifics section of this manual for the page size for
your microprocessor.

INPAGE-The section may be relocated to any address, so long as the
entire section lies within one page of memory.

ABSOLUTE-The section is not relocated.

If you do not specify PAGE, INPAGE, or ABSOLUTE, the relocation type
defaults to byte-relocatable: the relocated section may begin at any byte
in memory.

EXPLANATION

The SECTION directive declares a section of type SECTION and defines the name and
relocation type of the section. The contents of the section are defined by the statements
following the SECTION directive, up to the next SECTION, COMMON, or RESUME directive.

Any section that contains instructions (as opposed to data) should be of type SECTION.

NOTE

In this discussion, the word "SECT/ON" (al/ uppercase) refers to a section
declared with a SECT/ON directive, rather than with a COMMON or RESERVE
directive.

REV A FEB 1981

Assembler Oirectives-8500 MOL A Series Assembler Users SECTION
Declares program section

Unlike a common or reserve section, a SECTION must be defined entirely in one module. Use
the RESUME directive to add code to a section that has already been defined in the current
module. If the linker encounters more than one SECTION with the same name, the linker
issues an error message and links only the first SECTION with that name.

The name of a section is a global symbol whose value is the address of the first byte of the
section. A section name should not be declared with a GLOBAL directive in the same module
in which the section is defined with a SECTION directive.

The default section of a module contains all object code generated before the first SECTION
or COMMON directive is assembled. The default section is a byte-relocatable SECTION; its
name is derived as follows:

1. Take the first seven characters of the name of the object file.

2. Eliminate all characters except letters and digits.

3. Add the prefix "%".

For example, the default section for object file MY.OBJ is %MYOBJ. When no object file is
generated, the default section is called %.

EXAMPLES

Label Operation Operand

SECTION MAINPROG
(source code for section MAINPROG)

SECTION TABLE.INPAGE
(source code for section TABLE)

SECTION
ORG

INTERRUP , ABSOLUTE
100H

(source code for section iNTERRUP)

In this example, section MAINPROG may be relocated by the linker to any address. TABLE is
relocatable to any address, so long as the entire section lies within one page of memory.
INTERRUP, which is not relocatable, begins at address 1 DOH.

REV A FEB 1981 5-41

SET
Assigns value to variable

Assembler Directives-8500 MDL A Series Assembler Users

5-42

SYNTAX

Label Operation Operand

string-variable SET string-expression

or
numeric-variable SET numeric-expression

PARAMETERS

string-variable A user-defined label for a string variable.

numeric-variable A user-defined label for a numeric variable.

string-expression Any expression that yields a character string.

numeric-expression Any expression that yields a numeric value.

EXPLANATION

The SET directive assigns a value to a symbol. The symbol is called a variable because it may
be assigned a new value with a subsequent SET directive. A variable may be used anywhere
the value it represents is permitted.

A variable must not be a global symbol. SET may not redefine a symbol unless that symbol
was originally defined with a SET directive.

There are two types of variables: string and numeric.

• A string variable represents a character string. A string variable must be declared with
a STRING directive before it may be assigned a value.

• A numeric variable represents a scalar or address. A numeric variable need not be
declared; it becomes defined the first time a SET directive assigns it a value.

If the type of the variable does not match the type of the value assigned to it, the value is
converted to match the type of the variable.

• If you assign a string value to a numeric variable, the variable takes the 16-bit value
formed by the first two bytes of the string. If the string exceeds two characters, the
assembler responds

***** ERROR 085: String value too large

If the string contains only one character, its ASCII code is copied to the low-order byte
of the variable and the high-order byte is set to zero.

• If you assign a numeric value to a string variable, the STRING function is automatically
invoked to convert the number to a six-digit string.

REV A FEB 1981

Assembler Directives-8500 MDL A Series Assembler Users SET
Assigns value to variable

Text substitution (signaled by single quotes' ') often involves variables. A string variable in
single quotes (e.g., 'STV AR') is replaced by the string the variable represents. The substituted
string is not enclosed in quotes. A numeric variable in quotes (e.g., 'N') is legal only in
macros, and is replaced by the Nth parameter in the macro invocation.

Label

N

N

Operation

MACRO
SET
REPEAT
BYTE
SET
ENDR
ENDM

Operand

BYTES
1
N <= I II I

'N' ,- 'N I

N+1

EXAMPLES

Comment

SET POINTER TO FIRST PARAMETER.
REPEAT FOR EACH PARAMETER:
ALLOCATE TWO BYTES FOR THE NTH PARAM.
INCREMENT PARAMETER POINTER.

In this example, N is a numeric variable that counts from 1 to the number of parameters in
the macro invocation ('#'). The construct 'N' is replaced by the Nth parameter. The invocation

BYTES 10,20,MAX

yields the macro expansion

BYTE 10,-10
BYTE 20,-20
BYTE MAX,-MAX

ALLOCATE TWO BYTES FOR THE NTH PARAM.
ALLOCATE TWO BYTES FOR THE NTH PARAM.
ALLOCATE TWO BYTES FOR THE NTH PARAM.

In the example below, string variables VOL and FILE are assigned values and then
concatenated to form the filespec of an INCLUDE file.

Label Operation Operand

STRING VOL(S),FILE(S)

VOL SET "/SYS"

FILE SET "INC.ASM"

INCLUDE VOL:"/":FILE

The statements from file INC.ASM in the system directory are assembled following the
INCLUDE directive.

REV A FEB 1981 5-43

SET Assembler Directives-8500 MDL A Series Assembler Users
Assigns value to variable

544

In the following example, the name of the current section ('%') is stored in string variable
SECNAME and is later substituted into the RESUME directive.

Label Operation Operand

STRING SECNAME(8)
SECTION MAINPROG

SEC NAME SET '" ~ It,

RESUME 'SECNAME'

The above lines are assembled as follows:

STRING SECNAME(8)
SECTION MA INPROG

SEC NAME SET "MAINPROG"

RESUME MAINPROG

REV A FEB 1981

Assembler Oirectives-8500 MOL A Series Assembler Users

label Operation

[symbol] SPACE

Operand

[line-count]

SYNTAX

PARAMETERS

SPACE
Inserts blank lines into listing

line-count The number of blank lines to be generated: any expression that yields a
scalar in the range 0 to 255. Defaults to 1.

EXPLANATION

The SPACE directive generates the specified number of blank lines in the source listing. If no
line count is given, one line is generated. The SPACE directive itself is not listed.

If the line count exceeds the number of lines left on the current page, the SPACE directive
merely skips to the top of the next page.

If the source listing is suppressed by a NOLIST directive, the SPACE directive has no effect.

EXAMPLES

Label Operation Operand

.
END OF SECTION AAAA.

SPACE 5
SECTION BBBB

BEGIN SECTION BBBB.

These lines of code will be listed as follows:

; END OF SECTION AAAA.

} 5 blank lines

SECTION BBBB
BEGIN SECTION BBBB.

REV A FEB 1981 5-45

STITlE Assembler Directives-8500 MDL A Series Assembler Users
Creates listing subtitle

5-46

SYNTAX

label Operation Operand

subtitle-string [symbol] STITlE

subtitle-string

PARAMETERS

The subtitle for the source listing: any expression that yields a string of
up to 72 characters.

EXPLANATION

The STITlE directive creates a subtitle of up to 72 characters. The subtitle is printed below
the title line at the top of each page of the source listing. The STITlE directive itself is not
listed.

Each subsequent STITlE directive redefines the subtitle. If the STITlE directive precedes the
first source line listed on the current page, the new subtitle appears on the current page;
otherwise it first appears on the next page. Thus, if a STITlE directive immediately precedes
or follows a PAGE directive, the designated subtitle appears at the top of the new page.

If the subtitle string exceeds 72 characters, only the first 72 are used.

The STITlE directive is used for program documentation only. You may choose to change the
subtitle to reflect each new section of code.

REV A FEB 1981

Assembler Oirectives-8500 MOL A Series Assembler Users

EXAMPLES

Label Operation Operand Comment

TITLE "THIS IS THE TITLE"
STITLE "SUBTITLE FOR PAGES 1 AND 2"

THIS IS THE FIRST LISTABLE LINE.

PAGE

PAGE
STITLE

SKIP TO PAGE 2.

; SKIP TO PAGE 3.
"SUBTITLE FOR PAGE 3"

STITLE
Creates listing subtitle

The above statements produce the following page headings in the source listing:

Tektronix xxxxxxxxx ASM Vx.x THIS IS THE TITLE
SUBTITLE FOR PAGES 1 AND 2

00003 ; THIS IS THE FIRST LISTABLE LINE.

Tektronix xxxxxxxxx ASM Vx.x THIS IS THE TITLE
SUBTITLE FOR PAGES 1 AND 2

Tektronix xxxxxxxxx ASM Vx.x THIS IS THE TITLE
SUBTITLE FOR PAGE 3

REV A FEB 1981

Page

Page 2

Page 3

5-47

STRING Assembler Oirecfives-8500 MOL A Series Assembler Users
Deciares string variable(s)

5-48

SYNTAX

Label Operation Operand

string-variable[(length)][,string-variable[(length)]] ... [symbol] STRING

string-variable

length

PARAMETERS

A symbol to be used as a string variable.

The length of the longest string that may be assigned to string-variable:
any expression that yields a positive scalar value. Defaults to 8.

EXPLANATION

The STRING directive declares each symbol in the operand field to be a string variable. Each
symbol may be followed by a non-negative value indicating the length of the longest string
that may be assigned to that variable. If a maximum length is not specified, it defaults to
eight cha"racters.

A symbol must be declared with a STRING directive before it can be used as a string variable.
When a string variable is declared, its value is the null string (zero characters). Use the SET
directive to assign a value to a variable.

EXAMPLES

Label Operation Operand

STRING CITY(10),STATE,HOMETOWN(20)

CITY SET "BEAVERTON"

STATE SET "OREGON"

HOMETOWN SET CITY:", ":STATE

In this example, the STRING directive declares CITY, STATE, and HOMETOWN as string
variables with maximum lengths of 1 0, 8, and 20, respectively. Subsequently, CITY is
assigned a 9-character string ("BEAVERTON"),STATE is assigned a 6-character string
("OREGON"), and HOMETOWN is assigned a 17-character string ("BEAVERTON, OREGON").

REV A FEB 1981

Assembler Directives-8500 MDL A Series Assembler Users TITLE
Creates listing title

Label Operation

[symbol] TITLE

Operand

title-string

SYNTAX

PARAMETERS

title-string The title for the source listing: any expression that yields a string of up
to 30 characters.

EXPLANATION

The TITLE directive creates a title of up to 30 characters to be printed at the top of each page
of the source listing. The TITLE directive itself is not listed.

Each subsequent TITLE directive redefines the title. If the T!TLE directive precedes the first
source line listed on the current page, the new title appears on the current page; otherwise it
first appears on the next page. Thus, if the TITLE directive immediately precedes or follows a
PAGE directive, the new title appears at the top of the new page.

If the title string exceeds 30 characters, only the first 30 are used.

The TITLE directive is used for program documentation only. You may choose to use the
same title throughout the module, or you may change the title or subtitle as often as you
want.

Label

EXAMPLES

Operation Operand Comment

TITLE
STITLE

PAGE

PAGE
TITLE

"THE SAME OLD TITLE"
"THE SAME OLD SUBTITLE"

SKIP TO PAGE 2.

; SKIP TO PAGE 3.
"A NEW TITLE"

The above statements produce the following page headings in the source listing:

Tektronix xxxxxxxxx ASM Vx.x THE SAME OLD TITLE
THE SAME OLD SUBTITLE

Tektronix xxxxxxxxx ASM Vx.x THE SAME OLD TITLE
THE SAME OLD SUBTITLE

Tektronix xxxxxxxxx ASM Vx.x A NEW TITLE
THE SAME OLD SUBTITLE

REV A FEB 1981

Page

Page

Page

2

3

5-49

WARNING Assembler Oirectives-8500 MOL A Series Assembler Users
Displays warning

5-50

Label Operation

[symbol] WARNING

Operand

[;message]

SYNTAX

PARAMETERS

message Any user-defined error message.

EXPLANATION

When a WARNING directive is assembled, it is treated as an erroneous statement: the
WARNING line and the message

***** ERROR 001:

are displayed on the system terminal and in the source listing.

You may use the WARNING directive to detect unexpected conditions in your program.

Label

PAGESIZE

EXAMPLES

Operation Operand

SET 1 DOH
SECTION SEC1,INPAGE

IF
WARNING
ENDIF

$ >= PAGESIZE
SECTION '%' TOO LONG

In this example, section SEC1 must not exceed one page in length. If the location counter ($)
has exceeded its maximum when the IF directive is assembled, the WARNING is assembled
and the following message is displayed:

xxxxx WARNING ; SECTION SEC1 TOO LONG
***** ERROR 001:

The construct '%' is replaced by the name of the current section.

R'::V A FEB 1981

Assembler Oirectives-8500 MOL A Series Assembler Users WORD
Generates word(s) of data

SYNTAX

Label Operation

[symbol] WORD

Operand

word-value[,word-value] ...

PARAMETERS

symbol A user-defined label that represents the address of the first byte of data.

word-value Any expression that yields a number in the range -32768 to 65535.

EXPLANATION

The WORD directive stores the specified values in consecutive words of the object program.
Each word consists of two bytes. The low-order byte of the word may precede or follow the
high-order byte, depending on the convention for your microprocessor.

Each value may be a scalar in the range -32768 to +32767 or an address in the range 0 to
65535. Any value outside the range -32768 to 65535 is truncated to 16 bits without notice.

Label

YEARS
POINTER

TABLE

EXAMPLES

Operation Operand

WORD 1775,1812,1861
WORD TABLE

BLOCK 12

In this example, the first statement stores three two-byte numbers: 1775, 1812, and 1861.
YEARS is the address of the first byte of 1775.

The second statement stores the address of a i 2-byte tabie. POiNTER is the address of the
address stored. A microprocessor with indirect addres!:i~ng can refer to the table by its
address (TABLE) or by its Indirect address (POINTER).

REV A FEB 1981 5-51

8500 MOL A Series Assembler Users

Section 6
MACROS

Page

Introduction .. " 6-1

Macro Expansion Process .. 6-2

Macro Definition .. 6-3
The ~v1acio Directive .. 6-3
The Macro Body' ... 6-3
Macro Body Operators .. 6-3

Parameter Access .. 6-4
Unique Label Generation (the @ Character) 6-4
Determining Parameter Count (the # Character) 6-4
Determining Current Section Name (the % Character) 6-5
Disabling Special Character Significance (the 1\ Character) 6-5

The ENDM Directive .. 6-6

Macro Invocation ... 6-6
Parameters ... 6-6
Macro Parameter Conventions ... 6-6

The Square Brackets ... 6-6
Double Quote Characters ... 6-7
Null Parameters .. 6-8
The Up-arrow Character in Macro Invocations 6-8

Macro Examples ... 6-9
Example 1: Simple Macro Invocation .. 6-9
Example 2: Nested Macro Invocations ... 6-9
Example 3: Conditional Macro Expansion ... 6-10
Exampie 4: Repetitive Macro Expansion .. 6- i i

Fig.
No.
6-1

REV A FEB 1981

Illustration

Sample macro usage ... 6-2

6-i

8500 MOL A Series Assembler Users

Section 6

MACROS

INTRODUCTION
A macro is a frequently used sequence of assembler statements. Once a group of statements
is defined as a macro in the beginning of your assembly language program, the macro can be
invoked many times.

A macro is invoked with a single line, which generates zero or more lines of assembler
statements. This invocation is called the macro expansion process. The macro can make use
of parameters given in the macro invocation line; with conditional assembly, the macro may
expand differently with each invocation.

This section describes macro definition, invocation, and expansion. An overview of the entire
process is given, followed by a detailed description of each phase of the process. The last part
of this section gives examples of macro usage.

REV A FEB 1981 6-1

Macro Expansion Process Macros-8500 MOL A Series Assembler Users

6-2

MACRO EXPANSION PROCESS
The macro expansion process is illustrated in Fig. 6-1.

MACRO macname e_------..,
vvvv
wwww
xxxx
yyyy
zzzz
ENDM

macname
vvvv
wwww
xxxx
yyyy
zzzz

I
Macro Body Macro Definition

~

parm1, parm2, parm3 ~ Macro Invocation ..
I

Macro Expansion .. I

Fig. 6-1. Sample macro usage.

The three phases of macro usage are definition, invocation, and expansion.

3575-11

Definition. A macro is defined with the MACRO directive. The macro is given a name ("macname" in
the figure) that is used later to invoke the macro. The sequence of assembler statements that make up
the macro follows the MACRO directive ("vvvv". "WVIfV\!\!I!", "xxxx", "yyyy" ::tnd "7777" in the figure) This
sequence of statements is sometimes called the body of the macro. An EN OM directive terminates the
definition.

The assembler saves the macro name and its associated body for later invocation. The contents of the
body are ignored until expansion time.

Invocation. The macro is invoked when the macro name appears in the operation field of an assembly
language statement. One or more parameters may follow the macro name ("parm1", "parm2", and
"parm3" in the example). These parameters may be used by the body of the macro to control the
expansion process.

Expansion, Each line from the macro body is inserted into your assembler source program, as if the
program were cut apart at the macro invocation and the invocation line replaced with the entire macro
body. The assembler then interprets the statements within the body as if they were part of the original
source program. Any line of the body may reference the parameters passed to the macro at invocation
time; these references can be used to alter the contents of each assembler line.

REV A FEB 1981

Macros-8500 MOL A Series Assembler Users Macro Definition

MACRO DEFINITION
You define a macro once in your program-before its first use. The macro definition consists
of three parts:

• the MACRO assembler directive, which gives the name of the macro,

• the sequence of statements constituting the body of the macro,

• the ENDM assembler directive, which terminates the macro definition.

You must define any macro prior to its first invocation. You cannot define a macro within
another macro definition.

The MACRO Directive
The MACRO assembler directive begins a macro definition. The format of the MACRO
directive is:

MACRO name ; comments here (optional)

The name is a standard assembler symbol: a letter, optionally followed by one to seven
alphabetic, numeric, dollar sign, underscore, or period characters. Since you use this name
to invoke the macro, it is wise to choose a name that indicates the macro's function.

The symbol chosen as the macro's name must be unique-it cannot be identical with any
other symbol used within the assembler source file.

The Macro Body
The macro body is a sequence of assembler statements. Any statements, except th~ MACRO,
ENDM, and END directives, may be included in the body. The statements can include
processor instructions; assembler directives, invocations of other macros, or even
invocations of the given macro.

Comments and blank lines within the macro body are discarded, since they do not affect
macro expansion.

Macro Body Operators
The macro body can contain special operators not available outside of macro definitions.
These special operators give the macro access to assembler values, such as:

• each parameter passed to the macro,

• a unique character sequence for each macro invocation,

• the number of parameters passed to the macro, and

• the current section name.

The following paragraphs describe these operators in detail.

REV A FEB 1981 6-3

Macro Definition Macros-8500 MOL A Series Assembler Users

6-4

Parameter Access ('1', '2', ...)

The macro can access any parameter given when the macro is invoked. Parameters are
identified with consecutive positive integers, starting at 1 for the leftmost parameter. Within
the body of the macro, any number enclosed within single quotes is replaced with the
corresponding parameter from the macro invocation line. For example, during macro
expansion, any occurrence of '1' in the macro body is replaced with the first parameter.

Text substitution can occur anywhere on the line, including text within the comment field. If
text substitution causes the line to exceed 127 characters, an error is generated and the line
truncated. Examples of text substitution can be found in the Macro Invocation subsection
later in this section.

The value within single quotes may be either a constant or a numeric-valued SET variable.
Refer to the description of the SET directive in the Assembler Directives section of this
manual for further information on numeric assembler variables.

If the value within quotes is greater than the number of parameters actually provided, a null
string is substituted at the time of expansion.

Unique label Generation (the @ Character)

The "at" character, when enclosed within single quotes ('@'), is used to provide unique
labels for each macro expansion. Each time a macro is invoked, the '@' construct is replaced
with a unique four-character value. When this value is appended to a one-to-four character
symbol within the macro body, a unique five-to-eight character label is created for each
invocation, In the following example, a unique seven-character label is generated each time
the macro is invoked. That label is used as the destination of a processor jump instruction:

MACRO Q

LAB' @' EQU $

ENDM

If "LAB" had not been followed by the '@' construct in this example, the first invocation of
macro Q would have defined the location of LAB. Any subsequent invocations would attempt
to redefine the location of LAB, resulting in an error.

Determining Parameter Count (the # Character)

The "pound" character, when enclosed within single quotes ('#'), is replaced at time of
expansion with a five-digit number. This number represents the total number of parameters
passed to the current macro expansion, For example, if three parameters are passed to the
macro, '#' is replaced with 00003 during macro expansion.

REV A FEB 1981

Macros-8500 MOL A Series Assembler Users Macro Definition

You can use the '#' in an assembler IF or REPEAT directive to cause conditional expansion of
the macro to depend on the number of parameters passed. Examples of '#' usage are given in
the Macro Examples subsection, at the end of this section.

Determining Current Section Name (the % Character)

The "percent" character, when enclosed within single quotes ('%'), is replaced by the name
of the current section (as defined with the SECTION or COMMON assembler directives). The
section name is given as a sequence of characters. If the current section is the default
section, '%' is replaced with a null string.

The '%' construct is usually used when the macro must define instructions or data in a new,
distinct section, and then return back to the original section definition. To accomplish this
task, the macro must save the name into an assembler string variable, change section
names, give the deciarations for the new section, and then use a RESUME directive to return
to the original section, as illustrated in the following example:

STRING SECNAME(S)

MACRO o

SECNAME SET '" % ' "
SECTION 00

RESUME 'SECNAME'

ENDri

Defines SECNAME as a string of up to
S characters

Beginning of macro definition

Save current section name in SECNAME
Switch to new section COO)

Switch back to previous section

; End macro definition

In the above example, the '%' construct is enclosed within double quotes. The SET directive
expects a string expression, but the '%' construct is replaced with a sequence of characters.
When this sequence of characters is enclosed within double quotes, it becomes a string
literal, which is an acceptable string expression.

Disabling Special Character Significance (the A Character)

The up-arrow character (A), when immediately preceeding any special character, disables
the special meaning of that character, and causes the character to be interpreted as part of
the text. In the following example, the up-arrow charactel removes the special significance of
[he single-quote character:

ASCII "That~'s all, folks!"

REV A FEB 1981 6-5

Macro Invocation Macros-8500 MOL A Series Assembler Users

6-6

When the macro is expanded, the following text string is generated in the program:

That's all, folks!

The ENDM Directive
The macro definition is terminated with the ENDM directive. This directive should not have a
label field.

MACRO INVOCATION
A macro is invoked when its name appears in the operation field of an assembler line. For
example, the macro 000 is invoked by the following assembler statement:

QQQ ; Comments (if used) go out here

Parameters
The macro body can make use of information given to the macro at the time of invocation.
This information is given as a series of one or more parameters in the operand field of the
macro invocation. Each parameter is a sequence of characters separated from other
parameters by commas. For example, the following assembler statement invokes macro 000
with parameters of 123 and ABC:

QQQ 123,ABC Invokes macro QQQ
with parameters 123 and ABC

As 000 is expanded, any occurrence of '1' within the macro body is replaced with 123, and
any occurrence of '2' is replaced with ABC.

Any number of parameters can be passed to a macro, so long as the invocation line
(including the comment) does not exceed 128 characters. Any parameters given in the
invocation that are not examined within the body of the macro are simply ignored. Any
parameter requested within the body but not given in the invocation is replaced with the null
string.

Macro Parameter Conventions
The Square Brackets

Any leading or trailing spaces surrounding a macro parameter are removed upon macro
expansion. You may, however, force the spaces to be retained by placing the parameter
within square brackets ([]). The square brackets group together all text within them as one
parameter. The brackets themselves are removed during macro invocation. For example,
invoking 000 with the following assembler line defines the parameters listed below:

QQQ ABC, DEF , [GHI] , [JKL J, MNO PQR

REV A FEB 1981

Macros-8500 MOL A Series Assembler Users Macro Invocation

The parameters are listed below, surrounded by asterisks. The asterisks are not part of the
text, however, but are used here to show the leading and trailing spaces.

Parameter ' 1 ' = *ABC*
Parameter '2' = *DEF*
Parameter '3 ' = *GHI*
Parameter '4 ' = * JKL *
Par arne ter '5 ' = *MNO POR*

A parameter containing a comma must also be surrounded by brackets, or the parameter will
be separated into t'vAJO distinct parameters. For example, the invocation:

000 ABC,DEF,[GHI,JKL]

generates the following parameters (again, the asterisks are not part of the parameters):

Parameter '1' = *ABC*
Parameter '2' = *DEF*
Parameter '3' = *GHI,JKL*

Square brackets may not be nested.

Double Quote Characters

All text enclosed within double quote marks ("") is considered to be a single parameter. The
quote marks are not removed from the text during macro expansion, but are considered as
part of the parameter. For example, 000 invoked with the assembler line:

000 II ABC" ," DEF ,GH I" , " JKL" "MNO"

generates the following parameters (again, the asterisks are not part of the parameters):

Par ameter ' 1 ' = *"ABC"*
Parameter '2 ' = *"DEF,GHI"*
Parameter '3 ' = *" JKL "*
Parameter '4 ' = *"MNO"*

Square brackets can appear within parameters enclosed in quote marks; the brackets in this
case are treated as normal text characters. Double quote marks can appear within a
parameter surrounded by square brackets; the quote marks are then treated as normal text
characters. For example, the macro invocation line:

QOO "A[B", [cnD], ["], "]"

generates the following parameters upon expansion (again, the asterisks are not part of the
parameters):

Parameter ' 1 ' = *"A[B"*
Parameter ! 2! = *C"D*
Parameter ,., ,

= J * " *
Parameter '4 ' = *"]11*

REV A FEB 1981 6-7

Macro Invocation Macros-8500 MOL A Series Assembler Users

6-8

Null Parameters

Two consecutive commas, or two commas separated only by blanks, define a null parameter.
The parameter is counted in the total parameter count (for '#'), and returns a null string if
requested in the body of the macro. For example, the macro invocation line:

QQQ

ABC t DEF T' GH IT JKL Null parameters

generates the following parameters:

Parame ter ' 1 ' = *ABC*
Parameter '2' = ** (Null parameter)

Parameter '3 ' = *DEF*
Parameter '4 ' = ** (Null parameter)

Parameter '5 ' = *GHI*
Parameter '6 ' = ** (Null parameter)
Parameter '7 ' = *JKL *

Leading and trailing commas in the parameter list also generate null parameters, as in the
following example:

QQQ "ABC, ,

T T Null parameters

Parameter ' 1 ' = ** (Null parameter)
Parameter '2 ' = ** (Null parameter)
Par ameter '3 ' = * ABC*
Parameter '4 ' = ** (Null parameter)
Parameter '5 ' = ** (Null parameter)

The Up-Arrow Character in Macro Invocations

To include a special character in a macro parameter, the character must be immediately
preceded by an up-arrow (!\) character. The up-arrow character disables the special
significance of any character, and is removed before the macro is expanded. For example,
invoking QQQ with the assembler line:

QQQ A ,B, [CD] , "EF, G H, r 'J, K 'L

generates the following parameters:

Parameter ' 1 ' = *A,B*
Parameter ' 2' = *[CD]*
Parameter '3 ' = *"EF*
Parameter '4 ' = *G H*
Par ameter '5 ' = *I'J*
Parameter '6 ' = *K 'L *

REV A FEB 1981

Macros-8500 MOL A Series Assembler Users Macro Examples

MACRO EXAMPLES
The examples in this subsection illustrate macro usage through typical macro definitions and
expansions.

Example 1: Simple Macro Invocation
In this example, macro QQQ is defined. QQQ contains two assembler statements: a BYTE
directive and a WORD directive. The operands for these assembler statements are obtained
from the parameters given with each invocation of QQQ.

MACRO 000

BYTE 5, '1'

WORD '2 '

ENDM

Beginning of definition

BYTE directive, with a fixed operand
of 5, and an operand provided by the first
parameter of 000 at invocation

WORD directive, with operand provided by
second parameter of 000 at invocation

End of macro definition

Invoking this macro with the following assembler statement:

000 35, 40

produces the following sequence of assembler statments upon macro expansion:

BYTE 5, 35
WORD 40

During expansion, each occurrence of '1' is replaced with 35 before the assembler statement
is processed. Each occurrence of '2' is similarly replaced with 40. The resulting BYTE and
\NORD directives are then processed as if the assembler statements h~rI hoon n~rt I"\f tho

IIU"-A,.....,"" •• t'UI .. 'VI 110..'"

original source text.

Example 2: Nested Macro Invocations
In this example, an assembler statement in the body of one macro invokes another macro.

MACRO 01 Beginning of 01 definition

WORD ' 1 ' , 0 Generate a word containing
the first parameter, and a
second word containing zero

ENDM End of Q1 definition

MACRO 02 Beginning of 02 definition

01 ' 1 ' Invoke 01 with first parameter
01 '2 I and again with second par ameter

ENDM End of 02 definition

REV A FEB 1981 6-9

Macro Examples Macros-8500 MOL A Series Assembler Users

6-10

Invoking 02 with the following assembler statement:

Q2 3, 5

generates the following equivalent assembler source statements during the expansion
process:

WORD 3, 0
WORD 5, 0

The assembler performs the following steps during evaluation of the 02 invocation line given
above:

• 02 is invoked, with parameters of 3 and 5.

• The first statement in the body of 02 is examined. This statement contains a reference
to the first parameter, so the appropriate parameter (the number 3) is substituted before
proceeding.

• The statement invokes macro 01, with a parameter of 3.

• 01 is invoked, and the first (and only) statement of 01 is examined. This statement
contains a parameter reference, so the appropriate parameter (3) is substituted.

• The resulting as~embler statement (WORD 3, 0) is processed, generating two words of
memory.

• Expansion of 01 terminates, and expansion of 02 resumes with the second line in its
body.

• This line of 02 has a reference to the second parameter, so the appropriate parameter
(5) is substituted before further processing.

• The assembler statement invokes 01, with a parameter of 5.

• 01 is invoked as described above, resulting in the assembler statement" WORD 5,0".

• When the expansion of 01 is completed, expansion of 02 resumes.

• 02 contains no further statements in its body, so expansion of 02 also terminates.

Example 3: Conditional Macro Expansion
In this example, a macro expands one of two different ways, depending on whether one of its
parameters is present of absent. Macro 00 generates three WORDs of its first parameter,
followed by one WORD of its second parameter. If the second parameter does not exist (or is
null), one word of 13 (decimal) follows the first three words.

MACRO QQ Beginning of definition

WORD , 1 " '1', '1' Generate three words of the first parameter

IF '" 2' ": "" If the second parameter is null:

WORD 1 3 generate a word of 13

ELSE Else, (if the second parameter is not null):

WORD '2 ' generate a word of the second parameter.

ENDIF Terminate the conditional assembly block

ENDM Terminate the macro definition

R.EV A FEB 1981

Macros-8500 MOL A Series Assembler Users Macro Examples

Invoking this macro with the following assembler statement:

QQ 5, 24

generates the following assembler statements:

WORD 5, 5, 5
WORD 24

Invoking this macro with the following assembler statement:

produces the following sequence of assembler statements:

WORD 7, 7, 7
WORD 13

In the first invocation, both parameters are specified. During the expansion of 00, the IF
directive substitutes the appropriate parameter and evaluates the expression "24"="". This
expression is false, and the statements between the IF statement and the ELSE statement
are skipped.

In the second invocation, the expression at the IF statement reduces to ""="". This
expression is true, so the assembler statements between the IF and ELSE are processed, and
the statement between the ELSE and ENDIF is skipped.

Example 4: Repetitive Macro Expansion
In this example, a macro performs a single operation on each of its parameters. The macro
contains a REPEAT..ENDR loop that is controlled by the '#' value.

MACRO BACK

PARMCNT SET

REPEAT PARMCNT<='#'

BYTE HI('PARMCNT')
BYTE LO('PARMCNT')

PARMCNT SET PARMCNT+1

ENDR

ENDM

REV A FEB 1981

Beginning of macro definition

Initialize the parameter counter

Repeat the following group of
assembler statements while the
current parameter count is less
than or equal to the total number
of parameters

Store the high byte
followed by the low byte of the
selected parameter

Advance to the next parameter

and repeat as necessary

End of BACK definition

6-11

Macro Examples Macros-8500 MOL A Series Assembler Users

6·12

Macro BACK takes each of its parameters (one at a time), and generates two bytes for that
parameter: the most significant byte of the parameter, followed by the the least significant
byte. For example, the assembler statement:

BACK 25, 26, 27, LAB

generates the following assembler statements during the expansion of BACK:

BYTE HI(25)
BYTE LO (25)
BYTE HI(26)
BYTE LO(26)
BYTE HI(27)
BYTE LO (27)
BYTE HI(LAB)
BYTE LO (LAB)

The assembler performs the following operations during this expansion of BACK:

• BACK is invoked with the indicated parameters.

• The assembler variable PARMCNT is initialized to 1. PARMCNT always contains the
number of the parameter currently being processed.

• The REPEAT loop is entered. The expression PARMCNT <='#, is expanded to
PARMCNT<=4, since the total parameter number is 4. This expression is true (1 is less
than 4), so the body of the REPEAT loop is evaluated.

• The assembler directive BYTE HI(,PARMCNT') is expanded to BYTE HI(25). PARMCNT
contains 1, so the first parameter is substituted for 'PARMCNT'. This assembler
directive is then processed.

• In a similar manner, BYTE LO('PARMCNT') is expanded and processed.

• To select the second parameter, PARMCNT is incremented by one.

• The REPEAT loop is processed again, with PARMCNT equal to 2 (selecting the second
parameter of 26). At the end of the loop, PARMCNT is incremented once again to 3.

• The REPEAT loop is processed once again, generating bytes for the third parameter (27).
PARMCNT is again incremented.

• The REPEAT loop is processed once more, generating bytes for the fourth (and last)
parameter, LAB. PARMCNT is incremented, and now contains the value 5.

• The expression of the REPEAT loop, PARMCNT<='#', is no longer true, since PARMCNT
(5) is now greater than 4 (the total parameter count). The statements within the REPEAT
loop are skipped, and processing continues after the EN DR statement.

• Expansion of BACK terminates, because no more statements remain to be processed.

REV A FEB 1981

8500 MOL A Series Assembler Users

Section 7
THE LINKER

Page

Introduction .. 7-1

Linker Invocation ... 7-1
Simple Invocation ... 7-2
Int6racti'J8 Invocation .. 7-3
Command File Invocation .. 7-4

Linker Execution ... 7-5
Section Attributes... 7-5
Allocation of Sections... 7-6
ENDREL .. 7-7
Linking a Library File ... 7-7

Linker Output .. 7-8
Listing File ... 7-8

Global Symbol List .. 7-9
Internal Symbol List .. 7-9
Map ... 7-10
Linker Statistics .. 7-11

Error Messages .. 7-11

Linker Commands ... 7 -14
Input/Output File Specifications:

@filespec-Invokes a linker command file .. 7-15
LiNK-Designates input file(s) .. 7-18
LIST-Designates listing file .. 7-19
LOAD-Designates load file .. 7-20

Relocation Commands:
DEFINE-Gives value to global symbol .. 7-16
END-Signals end of linker command sequence 7-17
LOCATE-Changes section attributes ... 7-21
TRANSFER-Specifies program start address 7-26

Listing Options:
LOG-Enables command recording ... 7-22
MAP-Includes map in listing .. 7-23
NOLOG-Disables command recording .. 7-24
NOMAP-Does not include map in listing 7-25

Command Processing Errors .. 7-27

REV A FEB 1981 7-i

8500 MOL A Series Assembler Users

Section 7

THE LINKER

INTRODUCTION

NOTE

The information in this section supports DOS/50 Version 1 and DOS/50 Version 2.

The linker merges one or more independently-assembled object files into a load file, suitable
for loading into memory. Linker input may come from the assembler, or from library files.
(See the Library Generator section of this manual for further information on library files.)

This section describes the operations and use of the linker, and is divided into the following
subsections:

• Linker Invocation. Describes how you invoke the linker, using the operating system LINK
command.

• Linker Execution. Describes operations performed by the linker.

• Linker Output. Describes the listing file generated by the linker.

• Linker Commands. Presents a detailed description of each command used to control
the operation of the linker.

Some typical uses of the linker are presented in the Operating Procedures and Programming
Examples sections of this manual.

LINKER INVOCATION

NOTE

The linker must know what the target processor is in order to operate properly. Thus,
you must use the DOS/50 command SEL prior to invoking the linker.

You may invoke the linker by one of the following three methods:

REV FEB 1983

• Simple Invocation: Requires you to specify only the input and output filespecs. Other
linker parameters are set to default values. This method is adequate for most linking
situations.

• Interactive Invocation: .L\IIovvs you to contra! the linker more precisely using a series of
commands. These commands define global symbols, listing content, and linker
parameters, and specify section attributes and location. The commands used in
interactive invocation are given later in this section.

• Command File Invocation: Allows you to place commands normally given in interactive
invocation into a file. You can then direct the linker to process those commands when
you specify only the filespec of that file.

7-1

Linker Invocation (simple) Linker-8500 MOL A Series Assembler Users

7-2

Command file invocation is helpful whenever a particular sequence of linker commands
must be used more than once. The sequence of commands can be entered once to a file,
then processed many times by the linker. If you invoke the linker from an operating system
command file, and simple invocation of the linker is not sufficient, then linker command file
invocation can be used. In this case, interactive invocation requires you to be present
during the linker's execution; this is generally not true in normal use of the operating
system command files.

The method of invocation that you choose will depend on the linking situation. Each type of
invocation is described in detail in the following pages.

Simple Invocation

SYNTAX

LINK [load] { LI~(library)}
[list] object

load The filespec of the linker-created load file.

list The filespec of the file or device that receives the linker listing file.

object The filespec of an object file to be linked.

library The filespec of a library file to be linked.

EXPLANATION

In simple linker invocation, you specify all input and output files in a single command line.
The one or more object and library files are linked together to produce the load file. The
linker's listing can be directed to a device or file, also specified in the command line.

Filespecs m8y not p.xcp.p.d 64 characters in length. If the completp. filespp.c is longer th8n 64
characters, you may use a brief name for a portion of the filespec.

The load filespec may not begin with the "@" character, which would cause the filespec to
be interpreted as a command file invocation. To prevent misinterpretation, precede the
filespec with IUSR/.

Similarly, an object filespec may not begin with the characters "LlB(". This would cause the
filespec to be interpreted as a library. To prevent misinterpretation, precede the filespec with
IUSR/.

EXAMPLES

LINK LOAD LNKL OBJ

This invocation line links the object file OBJ to produce the load file LOAD and the listing file
LNKL. All the files reside in the current directory.

REV FEB 1983

Linker-8500 MOL A Series Assembler Users Linker Invocation (interactive)

LINK"LPT MY1.0BJ MY2.0BJ

This invocation line links MY1.0BJ and MY2.0BJ (both in the current directory) generating a
listing on the line printer (LPT). No load file is generated.

LINK LOAD LNKL MY1.0BJ MY2.0BJ LIB(/SYS/MY.LIB)

This invocation line links object files MY1.0BJ and MY2.0BJ (both in the current directory) to
produce listing file LNKL and load file LOAD. If any unbound (undefined) globals remain after
the two object files are linked, the linker will search through library file MY.LlB (in the system
directory) for definitions of these unbound g!oba!s.

I nteractive Invocation

SYNTAX

EXPLANATION

When you enter the LINK command without any parameters, the linker is invoked in
interactive mode. The linker displays a prompt character (an asterisk), and waits for you to
enter a series of linker commands. When you enter the linker END command, the linker
processes the files you have specified in a linker LINK, LIST, or LOAD command line.

Linker commands are fully described in the Linker Commands subsection (later in this
section).

REV FEB 1983

NOTE

The operating system LINK command (described here) invokes the linker. The
linker also has a command called LINK, which specifies a series of input files
to the linker; that command is described in the Linker Commands subsection
of this section. These two commands have distinctly different functions, and
should not be confused.

7-3

Linker Invocation (command file) Linker-8500 MOL A Series Assembler Users

7-4

Command File Invocation

SYNTAX

LINK @command-filespec

PARAMETERS

command-filespec The filespec of a file or device (CONI, PPRT, etc.) from which the linker
will read a series of commands.

EXPLANATION

This type of linker invocation is similar to interactive invocation, but commands are read from
the designated file or device, rather than from the system terminal. Commands are taken
from the file (or device) until the END command is read, or the end of the file is reached
(whichever comes first).

Filespecs may not exceed 64 characters in length. If the complete filespec is longer than 64
characters, you may use a brief name for a portion of the filespec.

EXAMPLES

LINK @LNKC

This invocation line executes the linker commands contained within file LNKC in the current
directory.

REV A FEB 1981

Linker-8500 MOL A Series Assembler Users Linker Execution

LINKER EXECUTION
A program consists of one or more object modules. Each object module contains one or more
sections. Each section is an independent entity: a contiguous block of instructions and data
that will eventually be located somewhere in memory. The linker derives the final position of
each section in accordance with the attributes of the section. These section attributes,
provided in the object module by the assembler, are described in the following paragraphs.

NOTE

Throughout this discussion, "section" (in lowercase) refers to an assembler
generated SECTION, COl'v1l'1I0lV, or RESERVE program/data block.
"SECTION" (al/ uppercase) refers only to a program/data block generated
with the SECTION assembler directive.

Section Attributes
Every section has five attributes that provide the linker with the necessary memory allocation
information. These section attributes are name, section type, size, relocation type, and
memory location.

Name:

Section type:

Size:

REV A FEB 1981

Each section has a name of up to eight characters. The name is
assigned to the section with a SECTION, COMMON, or RESERVE
assembler directive. The section name can be used as a global symbol to
reference the first memory address of a section.

Each section is of type SECTION, COMMON, or RESERVE, as defined by
the corresponding assembler directive.

Each SECTION must have a unique name. Multiple SECTIONs having
the same name are flagged as errors.

All COMMON sections having the same name are allocated the same
space and beginning address in memory. The length of this memory
space is the size of the largest COMMON section of this name.

All RESERVE sections having the same name are concatenated by the
linker. The length of a given RESERVE section in the program is the sum
of all RESERVE sections having that same name.

The size of each section, determined at assembly time, is the total
number of memory bytes that the instructions or data of the section
must occupy.

7-5

linker Execution Linker-8500 MOL A Series Assembler Users

7-6

Relocation type: Each section has one of four relocation types: byte-relocatable, inpage
relocatable, page-relocatable, or absolute (non-relocatable).

Byte-relocatable sections may be placed anywhere within the
microprocessor address space.

Inpage-relocatable sections are placed entirely within a microprocessor
page. The length of the page is microprocessor-specific. Page length for
each microprocessor is given in the corresponding Assembler Specifics
section elsewhere in this manual. If an inpage-relocatable section
exceeds one page in length, the linker displays an error, redefines the
relocation type of the section to be page-relocatable, and continues the
linking process.

Page-relocatable sections begin on a page boundary (an integral
multiple of the page length).

Absolute sections are not relocated by the linker. Their positIOn in
memory is determined at assembly time through the use of the ORG
directive. If two absolute sections are both designated by the assembler
for the same memory area, the linker notes this conflict on the memory
map, and the contents of this memory area are undefined.

Memory location: The memory location of all absolute sections is defined at assembly
time. For relocatable sections, a beginning address or range of
addresses may be specified with the LOCATE command at link time. The
default address range for a relocatable section is the entire
microprocessor addressing space.

Allocation of Sections
The linker computes an address range for each section to exclusively occupy in the linked
program. Sections with more restrictive relocation types are given the first opportunity to
obtain their required addresses. For exarnpie, an absoiute section is aiiocated its (very;
restrictive address range before any relocatable section is linked. The precise order of linking
is as follows:

1. Absolute sections.

2. Based sections: any sections defined with the BASE attribute in the linker LOCATE
command.

3. Ranged page-relocatable sections: any page-relocatable sections further restricted
with a RANGE, as specified with the linker LOCATE command.

4. Ranged inpage-relocatable sections.

5. Ranged byte-relocatable sections.

6. Page-relocatable sections.

7. Inpage-relocatable sections.

8. Byte-relocatable sections-

REV A FEB 1981

Linker-8500 MOL A Series Assembler Users Linker Execution

When a memory location for a section is being chosen by the linker, the lowest memory
address range that meets the relocation requirements (as well as addition restrictions
presented in the LOCATE command) will be allocated to the section. For example, if the
program consists only of 10 byte-relocatable sections, all 10 sections will be located in a
contiguous block of memory starting at 0000.

Absolute and based sections are linked even if a conflict occurs (that is, when two or more
sections have bytes at the same address). Any conflicts are noted on the linker memory map.
Other section types are not linked if a conflict occurs. In any memory area where conflict has
occurred, the contents are undefined.

Normally, the instructions and data for a section define a contiguous block of bytes in
memory. However, some absolute sections of the program can be discontinuous as a result
of the assembler ORG directive. Such sections define instructions and data for non
consecutive bytes of memory. The linker recognizes the gaps between the instructions/data
of the section, and places other (relocatable) sections in these gaps. For example, if the
assembler statement" ORG $+128" is present in an absolute section at assembly time, a gap
of 128 (decimal) bytes is created within that section. The linker can then place any
combination of relocatable sections into this gap, as long as the total number of bytes taken
does not exceed 128.

ENDREl
ENDREL is a predefined global symbol. At link time, ENDREL is assigned the memory address
that is one higher than the highest memory address assigned to any relocatable section (not
absolute or based). Be aware that some absolute or based sections may be allocated memory
that is higher than the address given by ENDREL.

If you do not reference ENDREL, no value is assigned. If you define a value for ENDREL, your
value will take precedence over the predefined value.

Linking a library File
If any undefined global symbols remain in the linker's global symbol table, and a library file
has been specified, the linker examines the library file to determine of some or all of the
undefined globals are defined in one of the library modules within that file.

Each module in the library contains a list of all global symbols defined within that module.
Global symbols include section names, addresses within sections, and scalar values declared
global at assembly time.

VVhen a definition is found within a library module for an undefined global symbol, then that
entire module is linked along with all other object modu:Rs. Only the modules that provide

REV A FEB 1981 7-7

Linker Output Linker-8500 MOL A Series Assembler Users

7-8

The linker processes files in the order that the files are specified. If an object file requires
that a library module be linked, you must specify the object file first. If a library file were to be
specified first in a linker invocation, none of the library modules would be linked; when the
linker processes the library, the global symbol table contains no undefined entries, causing
the linker to skip the library. In general, the safest way to specify files in the command line is
to list all object files before all library files.

Further information about libraries can be found in the Library Generator section of this
manual.

LINKER OUTPUT
The linker generates two files. The load file contains the executable program instructions
and data. The load file can be loaded into program memory with the operating system LOAD
command. The listing file contains a summary of the actions performed by the linker. Either
of these files can be omitted in any linker invocation. The listing file is described in the
following paragraphs.

Listing File
The listing file summarizes the operations performed during the linking process. The listing
file can be directed to any output device or file. The following information is included in the
linker listing file:

Simple Invocation Interactive Invocation

Yes Yes Global Symbol List
Internal Symbol list
Map

If selected in assembler
Yes

If selected in assembler
If selected

Linker Statistics
Error Messages

Yes
If necessa ry

Yes
If necessa ry

Each of these listing items is described in the following paragraphs.

NOTE

Throughout this subsection, annotations are added to the listing samples to
aid your understanding. These annotations are enclosed in square brackets
({]), and are not generated by the linker.

REV A FEB 1981

Linker-8500 MOL A Series Assembler Users Linker Output

Global Symbol List

The global symbol list contains an alphabetic list of all global symbols and their values. These
global symbols include those symbols defined with the assembler GLOBAL directive, as well
as the names of SECTION, COMMON, and RESERVE sections. If a global symbol is
undefined, its value fiela contains asterisks. In the following example, the global symbol QQQ
is undefined, but was referenced by one or more object files.

TEKTRONIX 8080/8085 LINKER V x.x

Q1
X2 SECTA

1000 Q2 0500
045F X2 SECTS 0640

Internal Symbol List

GLOBAL SYMBOL LIST

QQQ ****
[GGG is undefined]

X1SECT

PAGE x

0060

The internal symbol list contains all symbols (other than strings and macros) defined in the
assembler source file, along with their actual values after relocation. The internal symbol list
parallels the assembler symbol table listing for the selected file. The list consists of three
parts:

1. Alphabetical list of scalars used in the assembly.

2. Alphabetical list of labels occurring within each section.

3. Alphabetical list of labels derived from each unbound global symbol.

If there are no labels for a section, or no labels derived from an unbound global, then that
section or unbound global is not indicated.

A sample internal symbol list follows.

TEKTRONIX 8080/8085 LINKER V x.x INTERNAL SYMBOL LIST PAGE x

FILE: QQ. OBJ [input filespec]

MODULE: IO_DRVR [name assigned with the assembler NAME directive]

SCALARS: [non-address symbols]
A
E
PSW
X1VALUE

0007 B 0000
0003 H 0004
0006 Q2 0500

C
L
R 1

0001
0005
1EOO

D
M
SP

0002
0006
0006

007F X2VALUE 0030

LABELS: (SECTION 10 AREA) [all address symbols within section 10_AREA]
L1 0100 I2 0130

LABELS: (SECTION 10 AREA2) [all address symbols within section IO_AREA2]
Q1 0150 02 0155

LABELS: (GLOBAL 10 PORT) [all symbols derived from global 10_PORT]
10 PORT1 0070 10 PORT2 0071

The internal symbol list is displayed only for those object modules that were generated with
the LIST DBG assembler option. Refer to the Assembler Directives section of this manual for
further information about the LIST directive.

REV A FEB 1981 7-9

Linker Output Linker-8500 MOL A Series Assembler Users

7-10

Map

The map consists of two parts: a modu.le map, and a memory map. The map is included in the
listing file only if the linker MAP command has been specified.

A module map lists all modules linked into the load file. The module map contains
information about sections and global symbols defined in each object module.

TEKTRONIX 8080/8085 LINKER V X.x MODULE MAP

FILE: FILE 1 • OBJ [input filespec, as specified in LINK command]

MODULE: MAINMOD [module name, from assembler NAME directive]
SECTION BYTE 3700-3E40 [a byte-relocatable SECTION]
3AOO OUTPUT 3B50 [globals defined within this section]
SECTION BYTE 3E41-5141 [another byte-relocatable SECTION]
4091 ENTRY 2 4 3A 1 [globals defined within this section]

PAGE

DO 10
INPUT
MAINPROG
ENTRY1
STACK RESERVE PAGE 3600-36FF [a page-relocatable RESERVE section]

FILE: FILE 2. OBJ [end of first file, beginning of second file]

MODULE: SUBMOD [module name, from assembler NAME directive]
ABSECT2 SECTION ABSOLUTE 0040-0357 [absolute SECTION]
ENTRY3 0090 [global address within section]
RELSECT2 SECTION PAGE 0400-2400 [page-relocatable SECTION]
ENTRY4 0450 [global address within section]

FILE: FILE 3. OBJ [end of second file, beginning of third file]

MODULE: SUBS2MOD [module name]
RELSECT3 SECTION PA.GE 2500-3500 [a page-relocatable SECTION]

x

The module map lists all linked modules. An alphabetical list of sections and entry points
(globals defined within each section) is included for each module. If no sections were linked
in a module, no room for a section exists, or a section is empty, an appropriate message is
included in the module map.

A memory map is an ordered listing of the memory allocated to sections. The list staits "Vith
the lowest allocated address and continues to the highest allocated address. For every
address range, each section name and its attributes are given. An example of a typical
memory map follows:

TEKTRONIX 8080/8085 LINKER V X.x MEMORY MAP PAGE x

[beginning-ending address]

[section type] ~
[section name]

~ ~:r:~pel
0040-0357 ABSECT2 SECTION ABSOLUTE
0400-2400 RELSECT2 SECTION PAGE
2500-3500 RELSECT3 SECTION PAGE
3600-36FF STACK RESERVE PAGE
3700-3E40 DO 10 SECTION BYTE
3E4A-5141 MAINPROG SECTION BYTE

REV A FEB 1981

Linker-8500 MOL A Series Assembler Users Error Messages

Any address conflict (two or more sections assigned to the same address) is noted by an
asterisk (*) following the address range in which the conflict occurs.

Linker Statistics

The linker statistics give the number of errors, undefined symbols, modules, sections, and
the transfer address.

NO ERRORS NO ~NDEFINED SYMBOLS
3 MODULES 6 SECTIONS
TRANSFER ADDRESS IS 3E4A

The transfer address identifies the program starting location. After loading this example program,
you could start execution by entering the operating system command "G 3E4A".

Error Messages
Error messages are issued wherever necessary, Three types of error messages can appear:

1. Warnings (W): A problem exists but the linked program can probably be executed.

2. Errors (E): A linked program probably will not execute properly.

3. Fatal Errors (F): Any error directly affecting the linker's ability to continue; the linker
terminates execution, and control returns to the operating system.

All errors cause a message to be displayed in the linker listing file and on the system
terminal.

In the following iist each error message is indicated as being a warning (Wi, error (E), or fatal
error (F).

ATTEMPT TO RE-DEFINE FILE TYPE FOR filespec. (W) filespec was specified twice: once
as an object file, and once as a library file. The linker uses the first file type specified.

idname 1/0 ERROR #nn. (E) The linker was unable to read from or write to idname. (either
LIST FILE, LOAD FILE, CONSOLE, COMMAND FILE, or OBJECT FILE). The error number is
the corresponding operating system SVC (service call) SRB status byte. Refer to the Error
Messages section of the 8550 System Users Manual for a description of the error.

IMPLICIT REORIGIN TO 0 IN SECTION sec IN MODULE mod FILE file. (W) A section has
wrapped around from the last memory location to location O.

REV FEB 1983 7-11

Error Messages Linker-8500 MOL A Series Assembler Users

7-12

INVALID OBJECT FORMAT AT LOCATION = nnnn.

IN FILE filespec. (E) The information contained within the file is not an object module. Verify
that the designated object file has been generated by the assembler, or that LlB() surrounds
the library filespec. nnnn indicates the internal linker address where the object file error was
detected.

LINKER INTERNAL ERROR AT nnnn. (E) An error occurred in the linker; try linking again.
If this error persists, carefully document the incident and submit an LDP Software
Performance Report to Tektronix.

MACHINE REDEFINED FROM processor IN MODULE mod FILE file. (W) The current
object module has been generated for a different microprocessor than the previous object
modules. Incompatibilities during linking may result from differences between
microprocessors, such as page length, byte order, etc.

MEMORY FULl. (E) The linker requires more memory to complete its task. The total number
of globals, sections, or object modules must be reduced in order to link in the available
memory.

NO ROOM IN RANGE mmmm-nnnn FOR SECTION sectname. (E) The length of the
indicated section is greater than available contiguous memory in range mmmm-nnnn of
allocated section memory.

RELOCATION TYPE OF SECTION sec MULTIPLY DEFINED IN MODULE mod FILE fin.
(W) An attempt was made to redefine the section relocation type (byte, page, inpage, or
absolute). This occurs when you use the LOCATE command to define a relocation type
different from the type specified at assembly time. The error also occurs when relocation
attributes of a COMMON or RESERVE section differ between modules. The linker uses the
first-encountered relocation attribute to define the section.

SECTION sectname CHANGED FROM INPAGE TO type RELOCATABLE. (W) Section
length is greater than the page size of the microprocessor. This can occur if several inpage
RESERVE sections are linked together and their total size exceeds the page size of the
microprocessor. A section declared to be inpage-relocatable in a LOCATE linker command
generates this error if the section exceeds microprocessor page size. type is replaced with
PAGE for sections smaller than available page size, or BYTE for sections larger than the
microprocessor page size.

REV A FEB 1981

Linker-8500 MOL A Series Assembler Users Error Messages

SECTION sectname CHANGED FROM PAGE RELOCATABLE. (W) Either the section was
declared to be page-relocatable and the linker does not support paging for the
microprocessor; or there was insufficient room for a paged section in available memory. In
either case, the relocation type is changed to byte-relocatable.

SECTION sectname EXCEEDS MAXIMUM SIZE. (E) Section length is greater than the
address space of the microprocessor. The section is not included in the load file. This error
may occur when a concatenated RESERVE section is too long.

symbolname MULTIPLY DEFINED IN MODULE modname FILE filespec. (E) An attempt
was made to redefine a global symbol or section. This error occurs when two modules define
a global or section of the same name. All section names must be unique. The linker uses only
the first definition of a section or global symbol in the load file.

TRANSFER ADDRESS MULTIPLY DEFINED IN MODULE mod FILE filespec. (W) The
module has attempted to define the transfer address when an address has already been
provided (either by another module or by the linker TRANSFER command). The linker uses
the first-encountered transfer address to generate a transfer address for the load file.

TRANSFER ADDRESS UNDEFINED. (W) The transfer address has not been provided for
this program. The transfer address can be provided either by a linker TRANSFER command,
or as the optional expression value in an assembler END directive. When no transfer address
is specified, ihe iinker subsiiiuies a iransfer address of 0000.

TRUNCATION ERROR AT nnnn IN MODULE mod FILE filespec. (W) The relocated value
computed for a byte is too large to fit in one byte.

UNABLE TO ASSIGN name. (E) The file or device name specified as an object or library file
does not exist, or the output device is unavailable.

UNRESOLVED REFERENCE AT nnnn MODULE modname FILE filespec. (E) A reference
to an unbound (undefined) global or section is specified at address nnnn in the object
module. This error occurs when a global symbol is used in a module but not defined. The
referenced symbol appears in the linker global symbol list with an undefined value (indicated
by asterisks), and the unresolved reference is filled with zeros in the load file.

REV A FEB 1981 7-13

Linker Commands Linker-8500 MOL A Series Assembler Users

7-14

LINKER COMMANDS
Linker commands are used when you invoke the linker interactively or with a command file.
Each linker command must be on a separate line.

In the following command descriptions, the same conventions are used as described in the
Assembler Introduction section of this manual.

NOTE

All commands must be entered in their given form. Commands may not be
abbreviated.

All filespecs in linker commands are limited to 64 characters in length. If the complete
filespec is longer than 64 characters, you may use a brief name for a portion of the filespec.

DOS/50 allows any printing character (except the space) to appear in filespecs. The linker, how
ever, allows only the following characters:

• The first character must be an uppercase letter or the slash character (/) .

• Each remaining character in the filespec must be a printing character between! (ASCII
21H) and _(ASCII 5FH); however, plus, comma, and minus (ASCII 2BH, 2CH,and 2DH)
are not permitted.

In particular, lowercase letters may not appear in filespecs. Before invoking the linker, you may
use the appropriate DOS/50 commands to alter any filespecs, as necessary.

REV 1\ FEB 1981

linker Command: @filespec
Linker-8500 MOL A Series Assembler Users Invokes a linker command file

LINKER COMMAND DICTIONARY

@filespec

filespec

SYNTAX

PARAMETERS

The filespec of the command file containing a sequence of linker
commands.

EXPLANATION

This command invokes filespec as a command file. The command file contains a series of
linker commands. Commands are read from the file and processed as if you had entered
them from the system terminal, until the END command is read or the end of file is reached.
Commands are echoed on the system terminal as they are processed. When the end of the
command file is reached, you will be prompted for additional linker commands. Nested
command files are not allowed: a command file may not invoke another command file.

EXAMPLES

@ADD.LNKC

This linker command invokes command file ADD.LNKC. Additional linker commands will be
read from file ADD.LNKC and processed, until the end of file is reached, or until an END
command within ADD.LNKC is processed.

I
I DEBUG

SYNTAX

EXPLANATION

The DEBUG command causes all symbols and their values tc be storec in the load module. This
makes your program symbols available for use in symbolic debug.

The DEBUG command may only be used in interactive invocation or command file invocation.

REV FEB 1983 7-15

Linker Command: DEFINE Linker-8500 MOL A Series Assembler Users
Gives value to global symbol

7-16

NOTE

All assembly source files that have symbols to be referenced by symbolic debug must
include the assembler directive LIST DBG. This directive causes the assembler to
output the symbols to the object module, which makes the symbols available to the
linker. (The size of the object module is increased appreciably.)

If you relink a load module that has been generated with the DEBUG command, the
symbols will be relisted at link time.

For further information, see the topics, DEBUG, LIST DBG, and symbolic debug in the
8550 System Users Manual (DOS/50 Version 2).

SYNTAX

DEFINE symbol=value[,symbol=value] ...

PARAMETERS

symbol A global symbol.

value A hexadecimal constant.

EXPLANATION

The DEFINE command assigns values to selected global symbols. Each symbol is entered into
the global symbol table and assigned the cOliesponding value. Even if the global symbol was
previously defined (by an object module), the value you specify in a DEFINE command
replaces the already-defined value.

EXAMPLES

DEFINE XXX=400, YYY=1FFF, IO_PORT=3E

This DEFINE command gives values to the global symbols XXX, YYY, and la_PORT.

REV FEB 1983

Linker Command: END
Linker-8500 MOL A Series Assembler Users Signals end of linker command sequence

SYNTAX

EXPLANATION

The END command signals the end of the command sequence. You enter this command to
start the linking process after you have completed entering all other linker commands.

This command must be used in interactive invocation, but can be omitted for command file
invocation. If END is omitted in command file invocation, the linker begins the linking process
when the end of the command file is reached.

REV A FEB 1981 7-17

Linker Command: LINK
Designates input file(s) Linker-8500 MOL A Series Assembler Users

7-18

LINK

object

library

l LI ~(Iibrary I
object

SYNTAX

[
, LI ~(librarY)J
,obJect '"

PARAMETERS

The filespec of an object file to be linked

The filespec of a library file to be linked

EXPLANATION

The LINK command designates the input object and library files that make up the program.

More than one LINK command can be specified in a sequence of linker commands.
Successive LINK commands specify additional object and library files. For example, the
command "L1NK A, B, CIt is identical in function to the command "L1NK A" followed by
commands "L1NK B" and "L1NK C".

An object filespec may not begin with the characters "L1B(". This would cause the filespec to
be interpreted as a library. To prevent misinterpretation, precede the filespec with IUSR/.

NOTE

The linker LINK command (described here) specifies a series of input files to
the linker. The operating system also has a command called LINK, which
invokes the linker; that operating system command is described earlier in this
section under "Linker Invocation". These two commands (both called LINK)
have distinctly different functions, and should not be confused.

EXAMPLES

LINK MY.OBJ

This command selects object file MY.OBJ in the current directory to be linked.

LINK MY1.0BJ, MY2.0BJ

This command specifies object files MY1.0BJ and MY2.0BJ in the current directory to be
linked.

LINK MY.OBJ, LIBC/SYS/MY.LIB)

This command specifies object file MY.OBJ in the current directory to be linked. If the object
module within MY.OBJ contains any unbound global symbols, the linker searches through
library file MY.L1B in the system directory for definitions of those symbols.

REV A FEB 1981

Linker Command: LIST
Linker-8500 MOL A Series Assembler Users Designates listing file

SYNTAX

LIST filespec

PARAMETERS

filespec The filespec of the file or device of the linker listing.

EXPLANATION

The LIST command designates the file or device that is used for the linker listing. The
contents of the listing file are described earlier in this section under "Linker Output."

EXAMPLES

LIST LPT

This LIST command designates the line printer (LPT) to receive the linker listing.

LIST MY.LNKL

This LIST command designates disc file MY.LNKL (in the current directory) to receive the
linker listing.

REV A FEB 1981 7-19

Linker Command: LOAD
Designates load file Linker-8500 MOL A Series Assembler Users

7-20

I LOAD

SYNTAX

filespec

PARAMETERS

filespec The filespec of the output load file.

EXPLANATION

The LOAD command designates the output file that receives the linked program. After linking, the
file designated by the linker LOAD command may be brought into program memory, using the
operating system LO command.

EXAMPLES

LOAD MY. LOAD

This LOAD command designates MY.LOAD in the current directory to receive the linked
program.

NOTE

The Hnker LOAD command {described l"ierej specifies tfle output tiie that contains the
program after linking. The operating system has a command called LO, which transfers
a file into program memory; that command is described in the 8550 System Users
Manual. These two commands (LOAD and LO) have distinctly different functions, and
should not be confused.

REV FEB 1983

Linker Command: LOCATE
Linker-8500 MOL A Series Assembler Users Changes section attributes

SYNTAX [,PAGE J
,BASE(starting-address) ,INPAGE

LOCATE section-name [RAN G E(starting-address.ending-addressJ • BYTE

PARAMETERS

section-name The name of any section contained within the input object modules.

starting-address A hexadecimal number representing a starting address.

ending-address A hexadecimal number representing an ending address.

EXPLANATION

The LOCATE command aiters the attributes of a SECTION, COMMON, or RESERVE section.
The BASE parameter designates that the section should begin at the specified address. The
RANGE parameter directs the linker to place the section anywhere within the given address
range, as long as the beginning and ending addresses of the section lie within that range,
and the location conforms to the relocation attribute (byte, inpage, page, or absolute).

The PAGE, INPAGE, or BYTE parameter redefines the relocation type of the designated
section. When you redefine the relocation type of a section, the linked code may execute
differently than you intended. Certain portions of the code may expect or require that a
section of code be located in a particular memory location type (on a page boundary, within a
page, etc.). Whenever you use the PAGE, INPAGE, or BYTE parameter, and the relocation
type differs from the type given to the section at assembly time, the linker will generate a
warning message.

EXAMPLES

LOCATE MYSEC.A, RANGE(2000,2FFF)

This command informs the linker that section MYSEC.A should be placed entirely within the
range of 2000 to 2FFF (hexadecimal). If MYSEC.A is longer than 4096 bytes, or MYSEC.A
cannot be located in the designated area, an error is generated.

LOCATE MYSEC.B, BASE(4000)

This linker command designates that MYSEC.B begins at memory location 4000.

This linker command redefines MYSEC.C to be page-boundary relocatable. The linker will
attempt to place the first address of MYSEC.C at a page boundary. A warning message wiii
be displayed if MYSEC.C was not defined to be page-relocatable at assembly time.

LOCATE MYSEC.D, RANGE(8000,FFFF), BYTE

This linker command designates that MYSEC.D will be placed somewhere in the upper 32K
of memory, and redefines MYSEC.D to be byte-relocatable.

REV A FEB 1981 7-21

Linker Command: LOG
Enables command recording Linker-8500 MOL A Series Assembler Users

7-22

SYNTAX

lOG

EXPLANATION

The LOG command causes all subsequent linker commands to be recorded (logged) in the
linker listing file.

The NOLOG command restores the default setting: commands are not recorded in the linker
listing file.

REV A FEB 1981

Linker Command: MAP
Linker-8500 MOL A Series Assembler Users Includes map in listing

SYNTAX

MAP

EXPLANATION

The MAP command causes the map to be included in the linker listing file. Refer to the
description of the map in the Linker Output subsection earlier in this section.

The NOMAP command restores the default setting: the map is not included in the linker
listing file.

REV A FEB 1981 7-23

linker Command: NOlOG
Disabies command recording Linker-8500 MOL A Series Assembler Users

SYNTAX

NOLOG

EXPLANATION

The NOLOG command disables the recording (logging) of linker commands in the linker
listing file. Refer to the LOG command description for further information.

7-24 REV A FEB 1981

Linker Command: NOMAP
Linker-8500 MOL A Series Assembler Users Does not include map in listing

SYNTAX

NOMAP

EXPLANATION

The NOMAP command restores the default map setting: the map is not included in the linker
listing file. Refer to the description of the MAP command for further information.

REV A FEB 1981 7-25

Linl<er Command: TRANSFER
Specifies progrilm start address Linker-8500 MOL A Series Assembler Users

7-26

TRANSFER

global-symbol

value

{
glObal-SymbOl}
value

SYNTAX

PARAMETERS

A symbol appearing in the global symbol table.

A one- to five- digit hexadecimal value that must begin with a digit (0 to
9).

EXPLANATION

The TRANSFER command defines the load file transfer address. The transfer address designates
the address of the first instruction to be executed when the program is run. This address is
displayed when the program is loaded into memory, and is used as the default starting address
when the operating system G command is entered without an address parameter.

The transfer address can either be a fixed value (given as a hexadecimal address) or a global
symbol. If a global symbol is designated, the transfer address will be taken from the symbol's
value after linking.

The transfer address may have been given at assembly time by placing an expression after
the END statement. If a transfer address is selected at assembly time, and the TRANSFER
command is used at link time, the address specified in the TRANSFER command takes
precedence.

EXAMPLES

TRANSFER 400

This linker command designates address 400 (hexadecimal) as the location of the first
instruction to be executed.

TRANSFER MY.START

This command designates the value of the global symbol MY.START as the transfer address.
When linking is completed, the value of MY.START is taken from the global symbol table and
designated as the transfer address.

REV FEB 1983

Linker-8500 MOL A Series Assembler Users Command Processing Errors

Command Processing Errors
If the linker detects an error during command entry, an up-arrow (!\) is displayed below the
line, to indicate the approximate location of the error within the command line. A message
defining the error is also displayed. These messages are described in the following
paragraphs.

EXTRANEOUS INFORMATION IGNORED. Extra characters are on a command line that
oniy requires an instruction (like LOG and MAP). The linker performs the appropriate action
for the command, and ignores the extra characters.

ILLEGAL COMMAND. The command was not recognized.

INDIRECT FILE DEPTH EXCEEDED. A linker @filespec command was found during the
processing of a command file. The command is ignored.

INVALID FILE NAME. The filespec specified in a LIST, LOAD, or LINK command contains
illegal file characters. Refer to the Files section of the 8550 System Users Manual for
information on valid filespecs.

INVALID RANGE SPECIFIED. The range in a LOCATE command is invalid. The ending
address must be greater than the starting address.

SYNTAX ERROR. Statement syntax is invalid. This error occurs when a command does not
precisely match the syntax for that command. For example, unmatched parentheses are
found in the LOCATE command, or an operand is missing after the equals sign in a DEFINE
command.

REV A FEB 1981 7-27

8500 MOL A Series Assembler Users

Section 8
THE LIBRARY GENERATOR

Page

Introduction .. 8-1

LIBGEN Invocation ... 8-1
Interactive Invocation .. 8-2
Command File Invocation .. 8-4

LIBGEN Execution ... 8-5

LIBGEN Output .. 8-6
The New Li.brary File ... 8-6
The Listing ... 8-6

Command Log .. 8-6
Symbol List ... 8-7
Summary of Action , ... 8-7
Error Messages ... 8-7

LIBGEN Commands .. 8-9
@filespec .. 8-10
DELETE .. 8-11
END ... 8-12
EXTRACT .. 8-13
INSERT .. 8-14
LiST ... 8-16
LOG ... 8-17
NEWLIB ... 8-18
NOLOG .. 8-19
OLDL!B .. 8-20
REPLACE .. 8-2 i

Fig.
No.

8-1

REV A FEB 1981

Illustration

LibGen information flow .. 8-5

B-i

8500 MOL A Series Assembler Users

Section 8

THE LIBRARY GENERATOR

INTRODUCTION
The library generator (LibGen) is a general-purpose utility program used to create and
maintain object module libraries for use with the linker.

LibGen collects assembler-generated object modules into library files. From these library
files, the object modules can be individually accessed by the linker, based on the information
provided in each object module.

This section describes the operations and use of LibGen, and is divided into the following
subsections:

• LibGen Invocation. Describes how you invoke LibGen, using the operating system
LlBGEN command.

• LibGen Execution. Describes operations performed by LibGen.

• LibGen Output. Describes the listing file generated by LibGen.

• LibGen Commands. Presents a detailed description of each command used to control
the operation of LibGen.

Some typical uses of LibGen are presented in the Operating Procedures and Programming
Examples sections of this manual.

llBGEN INVOCATION
You may invoke LibGen by either of the following methods:

• Interactive Invocation. Allows you to control LibGen using a series of commands.
These commands direct LibGen to examine or alter the library by inserting, deleting, or
repiacing object moduies, or copying object modules to other files.

Interactive invocation is the most common method of invoking LibGen .

• Command File Invocation. Allows you to place commands normally given in interactive
invocation into a file. You can then direct LibGen to process those commands when you
specify only the filespec.

Command file invocation is helpful whenever a particular sequence of LibGen
commands must be used more then once. The sequence of commands can be entered
once in a file, then processed many times by LibGen. If you invoke LibGen from an
operating system command file, then LibGen command file invocation can be used. In
this case, interactive invocation will not suffice, since it requires you to be present
during LibGen's execution; this is generally not true in normal use of operating system
command files.

These two methods of invocation are described on the following pages.

REV A FEB 1981 8-1

LibGen Invocation (interactive) Library Generator-8500 MOL A Series Assembler Users

8-2

I nteractive Invocation

SYNTAX

LlBGEN [new-lib] [list] [old-lib]

PARAMETERS

new-lib The filespec of the output library file.

list The filespec of the libGen listing file or device.

old-lib The filespec of the input library file.

EXPLANATION

In interactive LibGen invocation, you designate the input and output library files, and the
listing file. LibGen will display a prompt character (an asterisk), and wait for you to enter a
series of LibGen commands. (These LibGen commands are described individually later in this
section.) After you have entered the libGen END command, libGen processes the files you
have specified.

LibGen can be used to create new library files, modify existing library files, or examine
existing files. To create a new library file, omit the old-lib parameter. To modify an existing
library file, include both the old-lib and new-lib parameters; any unmodified contents of the
old library are copied to the new library. To examine an existing library file, omit the new-lib
pararneier.

Filespecs may not exceed 64 characters in length in the invocation line. Filespecs may not
exceed 32 characters in length in interactive LibGen commands. If the complete filespec is
longer, you may use a brief name for a portion of the filespec.

You may optionally specify the filespecs with the NEWLlB, OlDLlB, and LIST commands,
rather than specifying them in the L1BGEN command line. Refer to the libGen Commands
subsection of this section for information on these commands.

REV A FEB 1981

Library Generator-8500 MOL A Series Assembler Users LibGen Invocation (interactive)

EXAMPLES

LIBGEN MY.LIB LPT SYS.LIB

This invocation of libGen designates MY.LlB (in the current directory) as the output library
file, the lineprinter (lPT) as the device that will receive the listing, and SYS.LlB as the input
library file. After invocation, LibGen prompts for a sequence of commands.

LIBGEN FP.LIB FP.LBGL

This LibGen invocation creates a new library file, FP.LlB. A listing file FP.lBGl is also
created. Both files reside in the current directory. After this invocation, libGen prompts for
a series of commands.

LIBGEN"LPT MY.LIB

When the name of the output library file is omitted, as in this invocation, no output library file
is created. The output library file can be omitted when you only need a listing of the contents
of a library file, or you want to extract one or more library modules to object files.

LIBGEN

In this invocation of libGen, no input, output, or listing files are specified. libGen commands
(such as NEWLlB, OlDLlB, and LIST) must be used to specify the appropriate input and
output fi les.

REV A FEB 1981 8-3

LibGen Invocation (command file) Library Generator-8500 MOL A Series Assembler Users

8-4

Command File Invocation

I LlBGEN @command-filespec

SYNTAX

PARAMETERS

command-filespec The filespec of the file or device from which LibGen will read a series
of commands.

EXPLANATION

This invocation of LibGen is similar to interactive invocation. In this case, however,
commands are read from the designated file or device, instead of from the system terminal.
Commands are read from the specified file until the END command is read, or until the end of
the file is reached (whichever comes first).

EXAMPLES

LIBGEN @LBGC

This invocation line executes the LibGen commands contained in file LBGC in the current
directory.

REV A FEB 1981

Library Generator-8500 MOL A Series Assembler Users LibGen Execution

LIBGEN EXECUTION
LibGen performs operations on library files by copying an old library file into a new one.
Changes, as specified by LibGen commands, are made during the copying process. This
process is illustrated in Fig. 8-1.

Old library

DELETE

Object
Modules

library
Generator
(LibGen)

EXTRACT

Object
Modules

Fig. 8-1. LibGen information flow.

New Library

listing

3573-12

This figure illustrates the information flow into and out of the library generator (LibGen). LibGen takes
information from the aid iibrary and designated object modules, and produces the new library, listing,
and object files. The LibGen commands that designate the filespecs used for each file are given along
each data path line. The END, LOG and NOLOG commands are not shown, since they do not control the
direction of information flow in LibGen.

Any of the information paths in Fig. 8-1 can be omitted when they are not necessary. For
example, if you are creating a new library, then no old library is needed. If you are examining
an o!d !ibrary, then no new library need be created. If you do not need a listing, do not specify
one.

Three of the filespecs may be specified in the LibGen invocation line: the old library file, the
new library file, and the listing file. Other filespecs and operations may be specified only with
the indicated LibGen commands.

REV A FEB 1981 8-5

libGen Output Library Generator-8500 MOL A Series Assembler Users

8-6

LibGen does not process each command at the time you enter it, but saves all commands to
be processed in a specific order. LibGen processes commands in this order:

1. INSERT BEFORE

2. EXTRACT

3. DELETE

4. INSERT AFTER

The REPLACE command is processed as a combination of the DELETE and INSERT AFTER
commands.

LIBGEN OUTPUT
LibGen produces three different types of output files: the new library file, a listing file, and
zero or more object files (if specified with the EXTRACT command).

The New Library File
The new library file is the primary product of the library generator. The new library contains
all the object modules from the old library, plus any object modules that were inserted, minus
any object modules that were deleted.

The Listing
The listing summarizes the operations that LibGen has performed. The listing consists of
three parts:

1. a command log;

2. a new library symbol list; and

3. a summary of actions performed by LibGen.

Each of these listing parts is described in detail in the following paragraphs.

Error messages may also be generated by LibGen as a result of mistaken information or
requests. These error messages are described at the end of this subsection.

Command Log

The command log lists each LibGen command used in the current invocation. The command
log is optional; you can enter the LOG command to include the log in the listing, or the
NOLOG command to omit the log. When you specify neither of these commands, the
command log is included by default.

REV A FEB 1981

Library Generator-8500 MOL A Series Assembler Users LibGen Output

Symbol List

In this part of the listing, LibGen records the names of all modules contained in the output
library, and the global symbols contained within each module.

Global symbols within each module are divided into three categories:

• Section names: The name of a SECTION, COMMON, or RESERVE contained within the
module.

• Entry points: An address (within the most-recently-listed section) declared global with
the assembler GLOBAL directive.

• Global symbols: A scalar value declared global with the assembler GLOBAL directive.

These symbols are preceded in the listing with either a (S), (E), or (G), indicating section
name, entry point, or global symbol, respectively.

Note that these global symbols are the factors that determine whether or not a module will
be included at link time. For example, assume that module X in the library has a section
named IIp'', an entry point named "P1", and a global symbol named "P9". At link time, if any
one of the symbols IIp'', "P1", or "P9" has been referenced (through an unbound GLOBAL
reference), and this library had been given as linker input, then module X would be included
as if it were one of the normal linker object modules.

Summary of Action

The summary of action describes the operations LibGen has performed during this execution.
LibGen actions include:

• generating a new library,

• deleting a module from the library,

• inserting a module into the library, and

• extracting a library module to an object file.

Error Messages

Error messages are issued wherever necessary. Two types of error messages can appear:

1. Non-Fatal Errors (N): LibGen can'1ot process the command as entered, due to syntax
errors, or improper file/module specifications. Processing will continue, but the result
may not be exactly what you had expected.

2. Fata! Errors {F}: LibGen has encountered a major problem that prevents further
processing. The error message is displayed, and control returns to the operating
system.

All errors cause a message to be displayed on the system terminal. The error message will
also appear in the LibGen listing file, if one is being generated.

REV A FEB 1981 8-7

LibGen Output Library Generator-8500 MOL A Series Assembler Users

8-8

In the following list, each error message is indicated as being a non-fatal error (N), or a fatal
error (F).

CAN NOT FIND END BLOCK FOR MODULE IN FILE filespec. (F) filespec is not a valid
object file. Verify that you have specified the correct filespecs in your INSERT and REPLACE
commands.

CAN NOT FIND END BLOCK FOR MODULE modname OF LIBRARY oldlib. (F) oldlib is
not a valid library.

comtype DATA STRUCTURE OVERFLOW. (F) Too many comtype (INSERT, DELETE, or
EXTRACT) commands were specified in the current LibGen invocation. LibGen allows a
maximum of 100 commands of any given type.

COULD NOT FIND MODULE modname IN oldlib, newmod INSERTED AT END OF
newlib. (N) The BEFOREI AFTER parameter of an INSERT command specified a library
module not present in the old library. The module will be added to the end of the library.

FILE filespec IS NOT AN OBJECT FILE. (F) filespec is not a valid object file. Verify that you
have specified the correct filespecs in your INSERT and REPLACE commands.

filespec 1/0 ERROR #nn. (F) The operating system has reported an I/O error during the
access of the specified file. The error number is the service call (SVC) status pyte value in
hexadecimal. Refer to the Error Messages section of the 8550 System Users Manual for a
description of the error and for possible actions to take to correct the situation.

ILLEGAL COMMAND. (N) The command specified is not a valid LibGen command. Refer to
the list of valid LibGen Commands later in this section. The command line is ignored.

INDIRECT FILE DEPTH EXCEEDED. (N) An @filespec command was read from a
command file. Command files may not invoke other command files. The command is ignored.

INVALID FILE NAME. (N) A filespec contains an invalid character. The invalid character(s)
are deleted, and processing continues.

INVALID OBJECT FORMAT FOR FILE filespec LOCATION = nnnn. (F) filespec is not a
valid object file. Verify that you have specifed the correct filenames in your INSERT and
REPLACE commands.

MODULE(S) NOT FOUND iN oidlib. (N) The modules specified in an EXTRACT or DELETE
command were not found in the old library. The command is ignored.

REV A FEB 1981

Library Generator-8500 MOL A Series Assembler Users LibGen Commands

NO OLD LIBRARY GIVEN, filespec INSERTED AT END OF newlib. (N) The
BEFORE/AFTER parameter of an INSERT command specified a library module, but no old
library was given. The module will be added to the end of the new library.

oldlib NOT A LIBRARY. (F) oldlib is not a library file. Verify that you have specified the
proper filespec in the LibGen invocation line, or the parameter of an OLDLIB command.

SYNTAX ERROR. (N) The command does not conform to the proper syntax for that
command. The command line is ignored.

UNABLE TO ASSIGN filespec. (N) filespec cannot be located. Verify that you have entered
the proper fi lespec.

WARNING. DUPLICATE MODULE NAME: modname. (N) Two or more modules within the
library file have the name mod name. This condition does not affect the performance of the
linker when selecting modules, but will make future modification and maintenence of the
library difficult. When creating a library, be sure to give each object module a unique name
with the assembler NAME directive.

LIBGEN COMMANDS
LibGen commands allow you to control the operations that LibGen will perform. When you
invoke LibGen interactively, you must enter one (and only one) command each time LibGen
prompts with an asterisk. When you invoke LibGen with a command file, each line of the
command file should contain one LibGen command.

Whenever you enter a series of LibGen commands, the last command must be the END
command. If you invoke LibGen with a command file, you may omit the END command.

in the following command descriptions, the same conventions are used as described in the
Assembler Introduction section of this manual. Additionally, the following abbreviation
convention is used.

Most commands can be entered either of two ways:

1. using the full name of the command (INSERT), or

2. using the designated abbreviation (I).

The designated abbreviation for each command is indicated by the underlined portion of the
command in the syntax description. If all letters in the command are underlined, then no
abbreviation is permitted. Partial abbreviations are never permitted.

All filespecs in interactive LibGen commands are limited to 32 characters in length. If the
complete filespec is longer than 32 characters, you may use a brief name for a portion of the
filespec.

DOS/50 allows any printing character (except the space) to appear in a filespec. The library
generator, however, allows only the printing characters from! (ASCII 21 H) to_(ASCIl 5FH),
with the exception of plus, comma, and minus (ASCII 2BH, 2CH, and 2DH). In particular,
lowercase letters may not appear in LibGen filespecs. Before invoking the LibGen, you may
use the appropriate DOS/50 commands to alter any filespecs, as necessary.

REV A FEB 1981 8-9

LibGen Command: @filespec
Invokes a LibGen command file Library Generator-8500 MOL A Series Assembler Users

8-10

I @filespec

filespec

SYNTAX

PARAMETERS

The filespec of the command file containing a sequence of LibGen
commands.

EXPLANATION

This command invokes filespec as a command file. The command file contains a series of
LibGen commands. Commands are read from the file and processed as if you had entered
them from the system terminal, until the END command is read or the end of file is reached.
Commands are echoed on the system terminal as they are processed. When the end of the
command file is reached, you will be prompted for additional LibGen commands. Nested
command files are not allowed: a command file may not invoke another command file.

EXAMPLES

@ADD.LBGC

This LibGen command invokes command file ADD.LBGC (in the current directory). Additional
LibGen commands will be read from file ADD.LBGC and processed, until the end of file is
reached, or until an END command "vvithin ADD.L8GC is processed.

REV A FEB 1981

Library Generator-8500 MOL A Series Assembler Users
LibGen Command: DELETE

Deletes library modules

SYNTAX

QELETE module-name [,module-name] ...

module-name

PARAMETERS

The name of an input library module that you want to delete from the
output library.

EXPLANATION

The DELETE command prevents the designated modules from being copied from the old
library file into the new library file.

If two or more modules with the designated name exist, every module with that name is
deleted.

EXAMPLES

DELETE MYMOD

This DELETE command removes MYMOD from the output library.

DELETE IO.OPS, FPOINT, RANDOM$$

This DELETE command removes modules IO.OPS, FPOINT, and RANDOM$$ from the output
library.

REV A FEB 1981 8-11

LibGen Command: END
Terminates command entry Library Generator-8500 MOL A Series Assembler Users

8-12

lEND

SYNTAX

EXPLANATION

The END command signals the end of the command sequence. You enter this command to
start the library generation process after you have completed entering all other LibGen
commands.

This command must be used in interactive invocation, but it can be omitted for command file
invocation. If END is omitted, LibGen begins the library generation process when the end of
the command file is reached.

REV.A FEB 1981

libGen Command: EXTRACT
Library Generator-8500 MOL A Series Assembler Users Copies module to object file

SYNTAX

gXTRACT module-name TO filespec

module-name

filespec

PARAMETERS

The name of a library module to be copied to a file.

The filespec of the file that is to receive copy of the library object
module.

EXPLANATION

The EXTRACT command copies the designated library object module to a file. The designated
object module remains in the library (unless it has also been designated in a DELETE
command). If the specified file already exists, it is replaced by the designated library object
module; the old contents are lost without warning.

EXAMPLES

EXTRACT FP$MULT TO FPMULT.OBJ

This EXTRACT command copies the library module FP$MULT to the file FPMUL T.OBJ.

EXTRACT lO.MOD TO lO.OBJ

This EXTRACT command copies the library module IO.MOD to the file IO.OBJ in the current
directory.

REV A FEB 1981 8-13

LibGen Command: INSERT
Library Generator-8500 MOL A Series Assembler Users .Adds new modules to library

8-14

SYNTAX

fBEFORE lib-module-namel
!NSERT filespec [,filespec] .. ·LAFTER lib-module-name J

PARAMETERS

filespec The filespec of an object file containing one of the object modules to be
inserted.

lib-module-name The name of an object module already present in the library.

EXPLANATION

The INSERT command adds new object modules into the library. Each specified object file
contains one object module. These modules are placed into the new library file according to
the BEFORE/AFTER parameter (or its absence). If more than one object file is specified, all
designated object modules are placed together in the given order, with the entire group
located according to the BEFORE/AFTER parameter.

The BEFORE/AFTER parameter controls the placement of the module(s) in the following
manner:

• If the BEFORE/AFTER parameter is omitted, the object module(s) are placed at the
beginning of the library .

• if ihe BEFORE parameter is given, the object module(s) are placed immediately before
the designated library module (Iib-module-name) .

• If the AFTER parameter is given, the object module(s) are placed immediately after the
designated library module (Iib-module-name).

If the BEFORE/AFTER parameter is entered, but the designated library module cannot be
found in the library, an error is generated, and the object module(s) are placed at the end of
the library.

REV A FEB 1981

LibGen Command: INSERT
Library Generator-8500 MOL A Series Assembler Users Adds new modules to library

EXAMPLES

INSERt IO.OBJ

This INSERT command adds the contents of file IO.OBJ (located in the current directory) to
the beginning of the library.

INSERT FPADD.OBJ, FPSUB.OBJ, FPMULT.OBJ

This INSERT command adds the contents of files FPADD.OBJ, FPSUB.OBJ and FPMULT.OBJ
to the beginning of the library

INSERT FPDIV.OBJ BEFORE FP$MULT

This INSERT command adds the contents of file FPDIV.OBJ to the library file. The object
module contained in FPDIV.OBJ is placed immediately before the library object module
named FP$MUL T.

INSERT FPCLR.OBJ, FPROT.OBJ, FPSIGN.OBJ AFTER FP$ADD

This INSERT command adds the contents of object files FPROT.OBJ, FPROT.OBJ, and
FPSIGN.OBJ immediately after the library module FP$ADD.

REV A FEB 1981 8-15

LibGen Command: LIST
library Generator-8500 MOL A Series Assembler Users Specifies iisting filespec

8-16

I LIST filespec

SYNTAX

PARAMETERS

filespec The filespec of the LibGen listing file or device.

EXPLANATION

The LIST command specifies the file or device for the LibGen listing. Refer to the LibGen
Output subsection of this section for information on the contents of the listing.

The listing file may also be specified by the second parameter of the LlBGEN command
during interactive invocation.

EXAMPLES

LIST LPT

This LIST command designates the line printer (LPT) to receive the LibGen listing.

LIST MY.LBGL
Tho I IC:::T f"nrnrn!:lnr1 r1ocinn!:l-toc filo I\/IV I Qf':1 IInf"!l-tor1 in -tho r-"rroni" r1iror-i"rw\I\ i"n rOl"oi",.,. i"h,.,.
II.'" _ •, •,""111.11 __ ""'''''''I~.I L.....,'OJ .tl"-' 1.1 •• t-~ \1\JVU'-'-''\.A lit Lllv ",",\,..I"vll\. UllvvLV'YI LV l\,..fv\",#IVv LII\"

LibGen listing.

REV A FEB 1981

LibGen Command: LOG
Library Generator-8500 MOL A Series Assembler Users Enables command recording

I LOG

SYNTAX

EXPLANATION

The LOG command causes all subsequent LibGen commands to be recorded (logged) in the
LibGen listing file. Each command, as entered, appears in a section of the LibGen listing file
for future reference.

The NOLOG command disables the recording of LibGen commands in the LibGen listing file.

The default setting is logging enabled (identical to the effect of the LOG command).

REV A FEB 1981 8-17

LibGen Command: NEWLIB
Library Generator-8500 MOL A Series Assembler Users Specifies output library

8-18

SYNTAX

NEWLIB filespec

PARAMETERS

filespec The filespec of the new library file.

EXPLANATION

The NEWLIB command designates the output file that is to receive the updated library. If the
specified file currently exists, that file is replaced (without warning) with the new library file.
If more than one NEWLIB command is entered in a command sequence, or NEWLIB
commands are specified during an interactive invocation, only the file specified in the last
NEWLIB command processed is used as the output library file.

When LibGen is invoked with a command file, the NEWLIB command is essential for
specifying the output library file. However, when LibGen is invoked interactively, the output
library file may be specified either as the first parameter of the operating system LlBGEN
command, or as the parameter of a LibGen NEWLIB command.

EXAMPLES

NEWLIB FPPACK.LIB

This NEWLIB command designates FPPACK.LlB (in the current directory) as the output library
file.

REV A FEB 1981

LibGen Command: NOLOG
Library Generator-8500 MOL A Series Assembler Users Disables command recording

SYNTAX

EXPLANATION

The NOLOG command disables the recording (logging) of LibGen commands in the LibGen
listing file. Refer to the LOG command for further information.

The default setting is logging enabled (identical to the effect of the LOG command).

REV A FEB 1981 8-19

LibGen Command: OLDLIB
Specifies input library Library Generator-8500 MOL A Series Assembler Users

8-20

SYNTAX

OLDLI B filespec

PARAMETERS

filespec The filespec of the old library file.

EXPLANATION

The OLDLIB command designates the input file that contains the source library. If more than
one OLDLIB command is entered in a command sequence, or OLDLIB commands are
specified during an interactive invocation, only the file specified in the last OLDLIB command
processed is used as the input library file.

When LibGen is invoked with a command file, the OLDLIB command is essential for
specifying the input library file. However, when LibGen is invoked interactively, the input
library file may be specified either as the third parameter after the operating system LlBGEN
command, or as the parameter of a LibGen OLDLIB command.

EXAMPLES

OLDLIB FPPACK.LIB

This OLDLIB command designates FPPACK.LlB (in the current directory) as the input library
file.

REV A FEB 1981

Library Generator-8500 MOL A Series Assembler Users
LibGen Command: REPLACE

Replaces old module with new module

SYNTAX

REPLACE lib-module-name BY filespec

PARAMETERS

lib-module-name The name of an object module already present in the library.

filespec The filespec of a file containing an object module that will replace lib
module-name.

EXPLANATION

The REPLACE command replaces the designated library module with the contents of an
object file. The old library module is deleted (as if the appropriate DELETE command were
entered), and the object module contained within the object file is inserted in its place (as if
the appropriate INSERT AFTER command were entered).

If more than one library module has the specified module name, then all modules with that
name are deleted, and the new object module replaces the first library module with that
name.

If the spedfied file does not exist, the library module is deleted and an error occurs.

EXAMPLES

REPLACE FP$ADD BY NEWADD.OBJ

This REPLACE command deletes module FPSADD from the library and inserts the contents of
object file NEWADD.OBJ in its place. in its place.

REV A FEB 1981 8-21

8500 MOL A Series Assembler Users

Section 9
PROGRAMMING EXAMPLES

Page

Introduction : 9-1

Using a Simple Assembler Macro 9-2
Defining the Macro 9-3
Sample Invocations 9-6

Creating and Using a Subroutine Library 9-6
The ADD Module 9-7
The SUBTRACT Module 9-8
Entering the Modules 9-10
Assembling the Modules 9-12
Creating the Library 9-14
Using the Add Module from a Program 9-15
Using the Subtract Module from a Program 9-20

DOS/50 SVC Generation 9-27
Creating Service Request Blocks 9-27

The SRB Macro 9-28
Explanation of the SRB Macro 9-28
Sample Invocations of the SRB Macro 9-31

Generating Service Ca lis 9-31
The SVC Macro 9-32
Explanation of the SVC Macro 9-32
Sample Invocations of the SVC Macro 9-32

Creating Constant Values 9-32
The CONSTANT Macro 9-33
The VARIABLE Macro 9-34
Macro Invocation 9-35

REV A FEB 1981

Save-and-Restore Macro 9-36
The SAVE Macro 9-36
The RESTORE Macro 9-37
Sample Invocations 9-38

Conditional Assembly '.' 9-38
Processor-Independent Programming"""""""""" 9-39
Conditional Assembly in Macros 9-39
Assembly Based on Relative Memory Locations 9-40

Using the '@' Construct within Macros 9-41
Delay Loop Macro 9-41
Macro Invocation 9-42

The Assembler INCLUDE Directive ~ 9-42
Including Constant Declarations 9-42
Inc!uding COMMON Declarations 9-43
The INCLUDE Directive in Macros 9-44
Authorship and Copyright Notices for Listings 9-44

Fig.
No.

ILLUSTRATIONS

9-1 Defining a macro as part of the source file 9-3
9-2 Defining a macro with an INCLUDE directive 9-4
9-3 Defining a macro in a concatenated prefix file 9-5
9-4 Linking the add program to the library 9-20
9-5 Linking the subtract program to the library 9-26

9-i

8500 MOL A Series Assembler Users

Section 9

PROGRAMMING EXAMPLES

INTRODUCTION

NOTE

This section supports DOS/50 Version 1 and DOS/50 Version 2.

This section contains examples of some typical uses of the assembler, linker, and library
generator. These examples range from a simple macro invocation, to the creation and use of
a complex floating-point library.

These examples assume that you have some familiarity with assembly language
programming, and with the Tektronix Assembler, Linker, and Library Generator. You can use
these examples as "application notes" for the assembler, linker, and library generator's
features. These examples are not intended to be used during your initial familiarization with
these subsystems.

The following examples are included in this section:

REV FEB 1983

• Using a simple assembler macro. This example creates a small, general-purpose
assembler macro, and shows some typical ways you can create, define, and invoke a
macro.

• Creating and using a subroutine library. This example shows how you can build a
library (a skeleton floating-point package), and then use parts of that library at a later
time. Relevant parts of the assembler, linker,. and library generator are illustrated .

• DOS/50 SVC generation. This exampie shows how the macro and conditional
assembly features of the assembler can make it easier to use SVCs (service calls) under
DOS/50.

• Creating constant values. This example shows how to use an assembler macro to
declare a constant value in a separate assembler section. You could use this technique
to keep your instructions, fixed data values, and variable data values separate, so that
you could eventually place your program into ROM.

• Save-and-restore macro. This example shows a typical application of an intelligent
macro to perform a common programming operation: saving registers on the stack and
later restoring the registers from the stack.

• Conditional assembly, This example suggests ways of using the IF assembler directive
to include or omit various program segments, based on various conditions.

• Using the '@"' construct within macros. This example snows typicaj uses of the '@'
construct within macros.

• The assembler INCLUDE directive. This example shows some typical uses of the
INCLUDE directive, such as providing common constant, COMMON, or macro
declarations. It also shows how to provide a copyright or authorship notice for your listings.

9-1

Using a Simple Assembler Macro Programming Examples-8500 MOL A Series Assembler Users

9-2

USING A SIMPLE ASSEMBLER MACRO
This example illustrates the use of a small, general-purpose assembler macro. The macro
generates multiple copies of an assembler statement.

First, the macro is defined. Then, the example shows alternative ways of defining the macro,
using various assembler features. Finally, a few sample invocations of the macro are
presented.

The macro itself is simple. The macro is invoked with two parameters: an integer and an
assembler statement. The first parameter designates how many copies to generate. For
example, if the macro is given the two parameters of 16 and" WORD 0", the macro will
generate 16 lines of " WORD 0". Other invocations are given later in this example.

The COpy Macro
MACRO COpy line 1

COPY$ SET 1 line 2
REPEAT COPY$<='1' line 3

'2 ' line 4
COPY$ SET COPY$+1 line 5

ENDR line 6
ENDM line 7

The macro is named COpy (in line 1), to remind you of its function: generate multiple copies
of a designated assembler statement. Generally, you should give a macro a name that
reflects its purpose.

Line 2 sets the assembler variable COPYS to 1. This variable (COPYS) is used later in the
body of the macro to keep track of the number of copies generated.

Line 3 begins a REPEAT loop. The REPEAT assembler directive causes all statements
between this directive and the matching ENDR directive (line 6) to be repeatedly assembled.
The assembler stops assembling these statements when the condition of the REPEAT loop
(the first operand in the REPEAT directive) is faise (zero).

For this macro, the condition expression is zero when the value of the assembler variable
COPY$ is not less than or equal to «=) the first parameter ('1') specified when COpy is
invoked. In other words, the two statements within the REPEAT loop are repeatedly
assembled as long as the assembler variable COPYS is not greater than the first parameter.

Line 4 is a placeholder for the second parameter specified in the macro invocation line.
When the assembler processes this statement, it replaces the '2' with the the assembler
statement that is to be copied.

Line 5 increments the "number-of-copies" counter, COPYS. This counter is incremented
once each time the statements within the REPEAT loop are assembled; to keep track of the
number of copies generated.

REV A FEB 1981

Programming Examples-8500 MOL A Series Assembler Users Using a Simple Assembler Macro

Line 6 terminates the REPEAT loop. As long as the condition of the REPEAT loop is non-zero
(true), the assembler will return to the REPEAT statement for another pass through the
REPEAT loop. When the condition is zero (false), the assembler proceeds with assembly
following the ENDR statement.

Line 7 terminates the definition of macro COPY$.

Defining the Macro
The macro can be defined in three different \l',lays:

1. The macro can be placed at the beginning of the assembly source file that needs to
use the macro.

2. The macro can be placed in a separate file, and brought into the source file with an
INCLUDE assembler directive.

3. The macro can be placed in a separate file, and concatenated to the beginning of the
source file when you specify the operating system ASM command.

These alternatives are described in the following paragraphs.

Defining the Macro As Part of Source File

If the macro is needed for only one assembler source file, this method of definition is easiest.
Simply place the lines forming the macro definition somewhere in your source file before the
first invocation of the macro. A typical place would be somewhere near the beginning of the
file.

This method is illustrated in Fig. 9-1.

Assembiy Source Program

Macro definition

Macro invocation

Macro invocation

Macro invocation

I

I
3575-13 I

REV A FEB 1981

Fig. 9-1. Defining a macro as part of the source file.

In this method, the macro is defined once, near the beginning of the file. The macro may then be
invoked as needed.

9-3

Using a Simple Assembler Macro Programming Examples-8500 MOL A Series Assembler Users

9-4

Defining the Macro Using the INCLUDE Directive

If the same macro is needed in several assembler source files, you can place the macro in a
separate file, then refer to the filespec with an assembler INCLUDE directive.

For example, you can place the lines defining the macro into a file named CPYM.ASM. Then,
you'd place the INCLUDE statement in your assembler source file (before your first invocation
of the macro):

Label Operation Operand Comment

INCLUDE "CPYM.ASM" ; Obtain COpy macro definition

When the assembler processes this statement, it will examine the contents of file
CPYM.ASM, which defines the macro COPY. This method is illustrated in Fig. 9-2.

Source Program PROG.ASM
Macro file CPYM .ASM

J I INCLUDE "CPYM.ASM" - Definition of CO PY - L

Macro invocation

Macro invocation

Macro invocation

3575-14

Fig. 9-2. Defining a macro with an INCLUDE directive.

In this method. the contents of file CPYM.ASM are brought into the assembler source file PROG.ASM,
at the point indicated by the INCLUDE directive. This way, the macro is defined before its first
invocation.

Defining the Macro in a Concatenated Prefix File

This definition method is much like the INCLUDE method. However, in this case, the filespec
containing the macro definition is not specified by an assembler statement, but is specified
at the time you enter the ASM command.

Let's assume again that the macro resides in a file named CPYM.ASM, and that your source
program is named PROG.ASM. To assemble your source program, you enter the following
operating system command line:

> ASM PROG.OBJ PROG.LOAD CPYM.ASM PRCG.ASM

Prefix file

REV A FEB 1981

Programming Examples-8500 MOL A Series Assembler Users Using a Simple Assembler Macro

Notice what happens: the file CPYM.ASM is effectively "glued" to the front of the source
program PROG.ASM by this operating system ASM command line. The assembler will read
and process the contents of CPYM.ASM before processing the statements of PROG.ASM,
thus ensuring that the COpy macro will be defined before its first use. This process is
illustrated in Fig. 9-3.

Macro file (CPYM.ASM)

t
I Definition of COpy j

Source program (PROG.ASM)

I
t

Macro invocation

Macro invocation

Macro invocation

3575-15

Fig. 9-3. Defining a macro in a concatenated prefix file.

In this method, the macro definition file (CPYM.ASM) is attached by the assembler to the beginning of
the main program (PROG.ASM).

This method has two major advantages:

1. You specify the name of the macro definition file when you assemble the file, instead
of when you edit the file. Sometimes you may not know the complete filespec of the
definition file when you're entering the program. This method allows you to change
the name or volume without editing the file.

2. Your macros are guaranteed to have been defined before their first use; the assembler
processes the prefix file before it assembles any statements in the main part of the
program.

This method has two disadvantages that you should be aware of:

,. The name of the macro definition file must be specified each time yOL! assemble the
file. This disadvantage can be minimized if you create an operating system command
file containing the assembler in\lOcatron !ine.

2. The line numbers in the assembler listing are incremented for any assembled line;
therefore, the line number of an error in the listing will not necessarily compare
correctly with the line number of the main program source statements. In our
example, an error appearing on line 50 of the assembler listing would actually refer to
line 43 (in our example) of PROG.ASM, because the first seven lines of the listing have
been obtained from the file CPYM.ASM.

REV A FEB 1981 9-5

Creating and Using a Subroutine Library Programming Examples-8500 MOL A Series Assembler Users

9-6

Sample Invocations of the COpy Macro
Now that COpy has been defined (by one of the three methods mentioned above), you may
use the macro in your program. For example, suppose that you need 20 (decimal) consecutive
constant-value bytes-each byte containing the value 47 (decimal). Without the aid of this
macro, you would need to enter the BYTE directive with 20 operands (each being the value
47), or 20 BYTE directives, each with an operand of 47, or some combination of the above
entries. With the aid of the macro, however, you only need to write one assembler statement:

copy 20,[BYTE 47]

Notice that the second parameter is enclosed in matching square brackets. These brackets
are not part of the parameter, but indicate the part of the statement line that belongs to the
parameter. Without the brackets, the essential leading space (before the word BYTE) would
have been discarded, and the assembler statements (generated within the macro) would
have been in error.

Another example of a need for multiple copies of an assembler statement can be taken from
the microprocessor instruction set. An 8080A/8085A RLC instruction rotates the
accumulator (A register) one bit-position to the left. You may need to rotate the accumulator
four bit-positions to the left; the 8080A/8085A does not provide this as a primitive
instruction. Ordinarily, you would have to generate four consecutive RLC instructions; with
the COpy macro, you can enter these four statements with one line:

COpy 4,[RLC]

Again, the brackets surround the second parameter to retain the required leading space.

CREATING AND USING A SUBROUTINE LIBRARY
This example shows you how to create a library using the assembler and library generator,
and how to write programs that use selected modules from the library.

The exampie deveiops a poriion of a fioating-point package. The floating-point package USeS
processor instructions to manipulate floating-point numbers like 10000. or 1T (3.14159 ...). For
this example, assume that any floating-point number can be stored in eight consecutive
bytes. (The method of storage is not relevant to this example.)

To keep things simple, only two primitive floating-point operations are shown in this
example: addition and subtraction. Modules that perform these two operations are the
nucleus of the library. Later, other modules, such as multiplication, could be added to the
library.

In this exarllple, the addition and subtraction modules are written as subroutines. They pass
and return data using a predefined COMMON section: a floating-point accumulator. (See the
.Add Module and Subtract Module discussions.)

REV A FEB 1981

Programming Examples-8500 MOL A Series Assembler Users Creating and Using a Subroutine Library

This example, then, consists of seven major tasks:

1. The library ADD module is presented.

2. The library SUBTRACT module is presented.

3. The modules are entered and assembled.

4. The library generator is invoked to create the floating-point library from the two object
modules.

5. A sample mainline program using the library ADD module is presented.

6. The sample mainline program is entered, assembled, and linked.

7. A parallel mainline program using the library SUBTRACT module is presented,
entered, assembled, and linked.

The Add Module
The following assembler source statements present a "skeleton" of the library ADD module.
The actual microprocessor instructions to perform the addition are not included, but are
represented by assembler BLOCK directives of comparable length. A line-by-line description
of the source module follows the listing.

The ADD Module Statements

LIST DBG line 1
NAME FP$ADD line 2
GLOBAL FP.ADD, FP. AD2 line 3
COMMON FP$ACC line 4

SRC 1 BLOCK 8 line 5
SRC2 BLOCK 8 line 6
DEST BLOCK 8 line 7

SECTION FP ADD line 8
FP .ADD BLOCK 40- line 9
FP. AD2 BLOCK 350 line 10

END line 11

Explanation of the ADD Module

Line 1 enables the linker to generate a listing of all internal (non-global) symbols with their
relocated values. Although you wouldn't normally enable this feature in a library module, you
can use it here to observe the normally invisible linker operations.

Line 2 declares the name of the object moduie generated by the assembier from these source
statements. This name is essential in all LibGen references to this particular library element.
The name (FP$ADD) indicates the module's function (floating-point addition).

Line 3 designates FP.ADD and FP.AD2 as global symbols. Both of these symbols are defined
in this module. These symbols are entry points into the subroutine; they are used by other
modules to select this library module at link time.

REV A FEB 1981 9-7

Creating and Using a Subroutine Library Programming Examples-8500 MOL A Series Assembler Users

9-8

Lines 4 through 7 define the structure of the floating-point accumulator. This COMMON
section is named FP$ACC (floating-point accumulator). The accumulator provides space for
three floating-point numbers: two operands (SRC1 and SRC2) and the result (DEST).

Lines 8 through 10 define the executable-instruction section named FP_ ADD. This assembler
section contains the instructions that perform the addition. The BLOCK directives represent the
approximate number of bytes consumed by the instructions. Two entry points are defined in this
section: FP.ADD and FP.AD2. (See the following discussion.)

Line 11 designates the end of this assembler module.

Entry Points
This library module defines two entry points:

• Your program can call this subroutine at FP.ADDtoadd SCR1 to DEST, leaving the result in
DEST. This entry point is useful when you are maintaining a running total. To simplify the
discussion, assume that the routine beginning at FP.ADD simply copies the contents of
DEST to SCR2, then falls through to the routine at FP.AD2 .

• Your program can call this subroutine at FP.AD2 to add SRC1 to SRC2, leaving the
result in DEST. This entry point is used when you do not wish to incur the additional
overhead of the first entry point.

The Subtract Module
The SUBTRACT module, as represented here, is very similar to the ADD module. The
assembler statements present a "skeleton" of this SUBTRACT module. A iine-by-line
description of the source module follows the listing.

The SUBTRACT Module Statements

LIST DBG line 1
NAME FP$SUB line 2
GLOBAL FP.SUB, FP.SU2 line 3
GLOBAL FP.AD2 line 4
COMMON FP$ACC line 5

SORel BLOCK 8 line 6
SORC2 BLOCK 8 line 7
DST BLOCK 8 line 8

SECTION FP SUB line 9
F P. SUB BLOCK 70 - line 10
FP. SU2 BLOCK 30 line 11

CALL FP.AD2 line 12
BLOCK 35 line 13
END line 14

REV A FEB 1981

Programming Examples-8500 MOL A Series Assembler Users Creating and Using a Subroutine library

Explanation of the SUBTRACT Module

Line 1 enables the linker to generate a listing of all internal (non-global) symbols with their
relocated values.

Line 2 declares the name of the object module generated by the assembler from these source
statements: FP$SUB (floating-point subtraction).

Line 3 designates FP.SUB and FP.SU2 as global symbols. These address symbols form entry
points into this routine.

Line 4 declares FP.AD2 as a global symbol. Unlike the other global symbols, FP.AD2 is
defined in another module (the ADD module). When the SUBTRACT module is linked into a
program, the linker notes the FP.AD2 symbol, and attempts to locate a definition for it in
another module.

Lines 5 through 8 define the structure of the floating-point accumulator. The COMMON
section is named FP$ACC, as before. However, the components of FP$ACC are named
differently in this module: the operands are named SORe1 and SORC2, while the destination
is named DST. This module illustrates how two modules can refer to the same portions of
memory with independently selected names.

Lines 9 through 13 define the executable-instruction section named FPSUB. This assembler
section contains the instructions that perform the subtraction. Two entry points are defined
here: FP.SUB and FP.SU2. (See the following discussion.)

Line 14 designates the end of this assembler routine.

Entry Points

This library moduie defines two entry points:

• Your program can call this subroutine at FP.SUB to subtract SORC1 from DST, leaving
the result in DST.

• Your program can call the subroutine at FP.SU2 to subtract SORC1 from SORC2,
leaving the result in DST.

The routine starting at FP.SUB copies the contents of DST to SORC2, then falls through to
FP.SU2. The routine beginning at FP.SU2 changes the sign of SORC1, and calls FP.AD2 to
complete the subtraction. (The 8080A/8085A instruction at line 12 is a call to a subroutine,
and returns to the address following the instruction.)

REV A FEB 1981 9-9

Creating and Using a Subroutine library Programming Examples-8500 MOL A Series Assembler Users

9-10

Entering the Modules
You may use the operating system Editor to enter these two modules into their respective
assembler source files. The ADD module will be placed in a file named FPA.ASM, and the
SUBTRACT module will be placed in a file named FPS.ASM. The underlined entries indicate
what you enter.

[Create the addition source file with the editor.]
> EDIT FPA.ASM

** EDIT VERSION x.x
** NEW FILE

[Define a visible tab character, and enter the assembly statements.]
*XTABS ON:TAB \:INPUT
INPUT:
\LIST\DBG
\NAME\FP$ADD
\GLOBAL\FP.ADD, FP.AD2
\COMMON\FP$ACC
SRC 1 \ BLOC K\8
SRC2\BLOCK\8
DEST\BLOCK\8
\SECTION\FP ADD
fP.ADD\BLOCK\40
FP.AD2\BLOCK\350
\END

[Display the statements with the tab characters expanded to spaces.]
*TYPE B-E

SRC1
SRC2
DEST

LIST
NAME
GLOBAL
COMMON
BLOCK
BLOCK
BLOCK
SECTION

FP.ADD BLOCK
F P. AD2 BLOCK

END
*FILE
"IlrEND OF TEXT
** EOF

DBG
FP$ADD
FP.ADD,
FP$ACC
8
8
8
FP ADD
40-
350

FP.AD2

REV A FEB 1981

Programming Examples-8500 MOL A Series Assembler Users Creating and Using a Subroutine Library

[Now follow the same procedure for the subtraction source file.]
> EDIT FPS.ASM

** EDIT VERSION X.x
** NEW FILE

*XTABS ON:TAB \:INPUT
INPUT:
\LIST\DBG
\NAME\FP$SUB
\GLOBAL\FP.SUB, FP.SU2
\GLOBAL\FP.AD2
\ COMt~ON\FP$ACC
SORC1\BLOCK\8
SORC2\BLOCK\8
DST\BLOCK\8
\SECTION\FP SUB
FP.SUB\BLOCK\70
FP.SU2\BLOCK\30
\CALL\FP.AD2
WLOCK\35
\END

*TYPE B-E
LIST
NAME
GLOBAL
GLOBAL
COMMON

SORC1 BLOCK
SORC2 BLOCK
DST BLOCK

SECTION
FP.SUB BLOCK
FP.SU2 BLOCK

CALL
BLOCK
END

*FILE
*lfEND OF TEXT
**EOF

REV A FEB 1981

DBG
FP$SUB
FP.SUB,
FP.AD2
FP$ACC
8
8
8
FP SUB
70
30
FP.AD2
35

FP.SU2

9-11

Creating and Using a Subroutine library Programming Examples-8500 MOL A Series Assembler Users

9-12

Assembling the Modules
Now that you've entered the programs, you may assemble them to generate the necessary
object modules for the library.

[Assemble the source FPA.ASM into the object FPA.OBJ. The listing is
output to CONO (the system terminal), so that you may examine it.]
> ASM FPA.OBJ CONO FPA.ASM

Tektronix 8080/8085 ASM Vx.x
**** Pass 2

Tektronix 8080/8085 ASM Vx.x Page

00001 LIST DBG
00002 NAME FP$ADD
00003 GLOBAL FP.ADD, FP. AD2
00004 COMMON FP$ACC
00005 0000 0008 SRC 1 BLOCK 8
00006 0008 0008 SRC2 BLOCK 8
00007 0010 0008 DEST BLOCK 8
00008 SECTION FP ADD -
00009 0000 0028 FP .ADD BLOCK 40
00010 0028 015E FP.AD2 BLOCK 350
00011 END

Tektronix 8080/8085 ASM Vx.x Symbol Table Page 2

Scalars

A ------ 0007
D ------ 0002
L ------ 0005
SP ----- 0006

FP$ACC Common (0018)

DEST --- 0010

FP.AD2 - 0028 G

11 So urce Li nes
11 Source Lines

B ------
E
M

0000
0003
0006

SRCl --- 0000

FP.ADD - 0000 G

11 Assembled Lines
11 Assembled Lines

C ------ 0001
H ------ 0004
PSW ---- 0006

SRC2 --- 0008

47672 Bytes available
47672 Bytes available

»> No assembly errors detected «<
»> No assembly errors detected «<

ASM EOJ

[Now do the same for the subtract module: assemble FPS.ASM into FPS.OBJ.]
> ASM FPS.OBJ CONO FPS.ASM

REV A FEB 1981

Programming Examples-8500 MOL A Series Assembler Users Creating and Using a Subroutine Library

Tektronix 8080/8085 ASM Vx.x
**** Pass 2

Tektronix 8080/8085 ASM Vx.x

00001 LIST DBG
00002 NAME FP$S UB
00003 GLOBAL FP. SUB,
00004 GLOBAL FP.AD2
00005 COMI'10N FP$ACC
00006 0000 0008 SORCl BLOCK 8
f"\A{"\n~ 0008 0008 SORC2 DT (v"v Q
UUUUI .1JLV\.Il'\. u

00008 0010 0008 DST BLOCK 8
00009 SECTION FP SUB

-
00010 0000 0046 FP. SUB BLOCK 70
00011 0046 001E FP.SU2 BLOCK 30
00012 0064 CDOOOO > CALL FP.AD2
00013 0067 0023 BLOCK 35
00014 END

Tektronix 8080/8085 ASM Vx.x Symbol Table

Scalars

A ------ 0007
D ------ 0002
L ------ 0005
SP ----- 0006

FP$ACC Common (0018)

DST ---- 0010

FP SUB Section (008A)

FP.SU2 - 0046 G

FP.AD2 Unbound Global

14 Source Lines
14 Source Lines

B ------
E
M

0000
0003
0006

SORCl -- 0000

FP.SUB - 0000 G

14 Assembled Lines
14 Assembled Lines

F P. SU2

Page

Page 2

C ------ 0001
H ------ 0004
PSW ---- 0006

SORC2 -- 0008

47656 Bytes available
47656 Bytes available

»> No assembly errors detected «<
»> No assembly errors detected «<

ASM EOJ

REV A FEB 1981 9-13

Creating and Using a Subroutine Library Programming Examples-8500 MOL A Series Assembler Users

9-14

Creating the Library
Now, you can use the library generator (LibGen) to create the floating-point library. LibGen is
discussed in the Library Generator section of this manual. Enter the underlined characters to
create the floating-point library FP.LlB from the two object modules.

[Invoke LibGen in interactive mode.]
> LIBGEN

[Select the listing file name.]
*LIST FP.LBGL

[Designate the name of the library.]
*NEWLIB FP.LIB

[Now enter the list of object files to be included in this library.]
*INSERT FPS.OBJ
*INSERT FPA. OBJ

[All finished... terminate wi th the END command.]
*END

NEW LIBRARY GENERATED: FP.LIB

MODULE: FP$SUB
MODULE: FP$ADD
LIBGEN EOJ

FROM FPS.OBJ
FROM FPA.OBJ

INSERTED
INSERTED

[Display the listing on the system terminal.]
> COP FP;N

Tektronix Library Generator Vx.x

LIST FP.LBGL
NEWLIB FP.LlB
INSERT FPS.OBJ
INSERT FPA.OBJ
END

COMMAND LOG

Tektronix Library Generator Vx.x SYMBOLS DEFINED

MODULE: FP$SUB
(S) FP$ACC (S) FP SUB (E) F P. SUB (E) FP.SU2

MODULE: FP$ADD
(S) FP$ACC (S) FP ADD (E) FP.ADD (E) FP.AD2

Tektronix Library Generator Vx.x SUMMARY OF ACTION

NEW LIBRARY GENERATED: FP.LIB

MODULE: FP$SUB
MODULE: FP$ADD
eOpy EOJ

FROM FPS.OBJ
FROM FPA.OBJ

INSERTED
INSERTED

Page

Page

Page

2

3

REV FEB 1983

Programming Examples-8500 MOL A Series Assembler Users Creating and Using a Subroutine Library

Notice that the subtraction routine is placed before the addition routine in the library. The
sample mainline programs (presented later) show why the modules are inserted in this order.

Using the ADD Module from a Program
The information stored in the library can be used by a mainline program that references one
of the library module's global entry points. The following mainline program uses the FP$ADD
module of the library; a line-by-line annotation follows the listing.

The Mainline Add Program

LIST DBG line 1
NAME MAIN.ADD line 2
GLOBAL FP .ADD line 3
COMMON FP$ACC line 4

S1 BLOCK 8 line 5
S2 BLOCK 8 line 6
DESTN BLOCK 8 line 7

SECTION MAIN line 8
ENTRY BLOCK 40 line 9

CALL FP. ADD line 10
MORE BLOCK 50 line 11

END ENTRY line 12

Explanation of the Mainline Add Program
Line 1 enables the linker to display all internal (non-global) symbols with their relocated
values. This feature of the linker enables you to examine normally invisible operations.

Line 2 gives the name MAIN.ADD to the object module.

Line 3 declares the symbol FP.ADD as a global symbol. This symbol is not defined in this
object module; therefore, the symbol is called an "unbound" global. The linker will attempt to
locate a definition for FP.ADD; the library FP.LlB (created earlier) will provide this definition.

Lines 4 through 7 define the structure of the floating-point accumulator. In this module, the
two source fields and destination field are called 51, 52, and DE5TN.

Line 8 begins the definition of the main section (called MAIN). All object bytes generated
after this directive are gathered into the MAIN section.

Line 9 sets aside memory space for an unspecified number of processor instructions; these
instructions load values into S 1 and DESTN for processmg. In a real program, this BLOCK
directive would be replaced with microprocessor instructions, such as data transfer
instructions or ilO operations.

REV A FEB 1981 9-15

Creating and Using a Subroutine Library Programming Examples-8500 MOL A Series Assembler Users

9-16

Line 10 is an 8080A/8085A instruction. The subroutine FP.ADD (contained in the floating
point library) is invoked. The contents of 51 are added to the contents of DE5TN, and the
subroutine returns to the memory location following the CALL instruction.

Line 11 represents more microprocessor instructions following the invocation of the ADD
routine. These instructions might perform some type of output to display the results of the
addition.

Line 12 defines the end of this source module. The operand ENTRY is designated as the
starting address of the instructions. The value of this address will be passed along to the
linker; the linker then determines its relocated address, and displays this final value as a
transfer address.

Entering, Assembling, and Linking the Program

The mainline add program can be entered, assembled, and linked using the following
command entries:

[Invoke the editor to eriter the program i:ito file ~NA.AS~.J
> EDIT MNA.ASM

** EDIT VERSION X.x
** NEW FILE

[Select a visible tab character and enter the assembly statements.]
*XTABS ON:TAB \:INPUT
INPUT:
\LIST\DBG
\NAME\MAIN.ADD
\GLOBAL\FP.ADD
\COMMON\FP$ACC
S1\BLOCK\8
S2\BLOCK\8
DESTN\BLOCK\8
\SECTION\MAIN
ENTRY\BLOCK\40
\CALL\1'f>.ADD
MORE\BLOCK\50
\END\ENTRY

[Display the lines with tab characters expanded to spaces.]
*TYPE B-E

LIST
NAME
GLOBAL
COMMON

S 1 BLOCK
S2 BLOCK
DESTN BLOCK

SECTION
ENTRY BLOCK

CALL
MORE BLOCK

DBG
MAIN.ADD
FP. ADD
FP$ACC
8
8
8
MAIN
40
FP. ADD
50

END ENTRY
*FILE

**END OF TEXT
**EOF

REV A FEB 1981

Programming Examples-8500 MOL A Series Assembler Users Creating and Using a Subroutine Library

[Assemble MNA.ASM into MNA.OBJ.]
> ASM MNA.OBJ CONO MNA.ASM

Tektronix 8080/8085
**** Pass 2

Tektronix 8080/8085

00001
00002
00003
"'-"1"\1"\1.
UUUULt

00005 0000 0008
00006 0008 0008
00007 0010 0008
00008
00009 0000 0028
00010 0028 CDOOOO >
00011 002B 0032
00012 0000 >

Tektronix 8080/8085

Scalars

A ------ 0007
D ------ 0002
L ------ 0005
SP ----- 0006

FP$ACC Common (0018)

DESTN -- 0010

MAIN Section <005D)

ENTRY -- 0000

ASM Vx.x

ASM Vx.x

LIST
NAtvlE
GLOBAL
f"'f"'IMMf"'IH vvnnVI1

S1 BLOCK
S2 BLOCK
DESTN BLOCK

SECTION
ENTRY BLOCK

CALL
MORE BLOCK

END

ASM Vx.x Symbol

B ------
E
M

DBG
tvlAIN.ADD
FP.ADD
FP$ACC
8
8
8
MAIN
40
FP. ADD
50
ENTRY

Table

0000
0003
0006

S1 ----- 0000

MORE --- 002B

FP.ADD Unbound Global

12 Source Lines
12 Source Lines

12 Assembled Lines
12 Assembled Lines

Page

Page 2

C ------ 0001
H ------ 0004
PSW ---- 0006

S2 ----- 0008

47669 Bytes available
47669 Bytes available

»> No assembly errors detected «<
»> No assembly errors detected «<

ASM EOJ

[Link the mainline program together with the floating-point library.]
> LINK MNA.LOAD tvlNA.LNKL MNA.OBJ LIB(FP.LIB)

NO ERRORS NO UNDEFINED SYMBOLS
2 MODULES 3 SECTIONS
TRANSFER ADDRESS IS 019E

LINK EOJ

REV A FEB 1981 9-17

Creating and Using a Subroutine library Programming Examples-8500 MOL A Series Assembler Users

9-18

[Display the linker listing file on the system terminal.]
> COP MNA.LNKL

Tektronix 8080/8085 LINKER V x.x GLOBAL SYMBOL LIST

FP$ACC
MAIN

0000 FP.AD2
019E

0040 FP.ADD 0018 FP ADD

Page

0018

Tektronix 8080/8085 LINKER V x.x INTERNAL SYMBOL LIST Page

FILE: ~lNA. OBJ

MODULE: MAIN.ADD

SCALARS:
A 0007 B
E 0003 H
PSW 0006 SP

LABELS: (SECTION FP$ACC
DESTN 0010 S1

LABELS: (SECTION MAIN
ENTRY 019E MORE

Tektronix 8080/8085 LINKER V x.x

FILE: F P. LIB

MODULE: FP$ADD

SCALARS:
A 0007 B
E 0003 H
PSW 0006 SP

LABELS: (SECTION FP$ACC
DEST 0010 SRC1

LABELS: (SECTION FP ADD
FP. AD2 0040 FP-:-ADD

0000
0004
0006

0000

a 1C9

0000
0004
0006

0000

0018

C
L

S2

0001
0005

0008

D
M

INTERNAL SYMBOL LIST Page

C 0001 D
L 0005 M

SRC2 0008

2

0002
0006

3

0002
0006

REV FEB 1983

Programming Examples-8500 MOL A Series Assembler Users Creating and Using a Subroutine Library

Tektronix 8080/8085 LINKER V X.x

FILE: MNA.OBJ

MODULE: MAIN.ADD
FP$ACC COMMON BYTE 0000-0017
MAIN SECTION BYTE 019E-01FA

FILE: FP. LIB

MODULE: FP$ADD
FP$ACC COMMON BYTE 0000-0017
FP ADD SECTION BYTE 0018-019D
FP~AD2 0040 FP.ADD 0018

Tektronix 8080/8085 LINKER V X.x

0000-0017
0018-019D
019E-01FA

FP$ACC
FP ADD
MAIN

COMMON BYTE
SECTION BYTE
SECTION BYTE

NO ERRORS NO UNDEFINED SYMBOLS
2 MODULES 3 SECTIONS
TRANSFER ADDRESS IS 019E

COpy EOJ

Linking Explanation

MODULE MAP Page 4

MEMORY MAP Page 5

The library module containing the floating-point addition routine is automatically linked in
with the mainline program. The linker determined that a global symbol (FP.ADD) had not
been given a value by any of the non-libiaiY modules. The linkei then scanned the library,
and found that module FP$ADD provided a value for this global symbol. The linker included
module FP$ADD in the load module. This process is illustrated in Fig. 9-4.

REV A FEB 1981 9-19

Creating and Using a Subroutine Library Programming Examples-8500 MDL A Series Assembler Users

9-20

I

I

Floating-point Library (FP.LlB)

FP$SUB
FP$ADD

"I have FP.SUB"
"I have FP.SU2" r i -"I have FP.AOO"
"I need FP.AD2" I "I have FP .AD2"

I
MNA.OBJ I
(mainline add program) I

I
"I need FP.AOO"--:- - - - - - - - - __ J

The linked program (MNA.LOAD)

V V
(from MNA.OBJ) I I (from FP$ADD)

3575-16

Fig. 9-4. Linking the add program to the library.

In this example, MNA.OBJ needs a definition for its unbound global symbol, FP.ADD. The linker
examines the contents of the library FP.LlB, and locates module FPSADD, which provides a definition
for FP.ADD. Both MNA.OBJ and module FPSADD are then included in the final load file. FPSSUB does
not provide definitions for any unbound globals, so it is not included in the final load file.

Using the SUBTRACT Module From a Program
Let's modify the mainline program to invoke the subtract routine. In this way, we can watch
the linker extract one module from the library to satisfy the request made by the mainline
program, and another module from the library to satisfy the first library module.

REV A FEB 1981

Programming Examples-8500 MOL A Series Assembler Users Creating and Using a Subroutine library

The Mainline Subtract Program

LIST DBG line 1
NAME MAIN.SUB line 2
GLOBAL FP. SUB line 3
COMMON FP$ACC line 4

S1 BLOCK 8 line 5
S2 BLOCK 8 line 6
DESTN BLOCK 8 line 7

SECTION MAIN line 8
ENTRY BLOCK 45 line 9

CALL FP. SUB line 10
MORE BLOCK 35 line 11

END ENTRY line 12

Explanation of the Mainline Subtract Program

The mainline subtract program is similar to the mainline add program, with the following
exceptions:

1. The name of the module (in line 2) is MAIN.SUB, not MAIN.ADD.

2. The global symbol requested in lines 3 and 10 is FP.SUB, not FP.ADD.

3. The size of the code representations in lines 9 and 11 has been altered, to show the
relocatability of the library sections.

Entering, Assembling,and Linking the Program

Like the mainline add program, the mainline subtract program can be entered, assembled,
and linked using the following command entries:

[Invoke the editor to create MNS.ASM.]
> EDIT MNS.ASM

** EDIT VERSION x.x
** NEW FILE

[Select a visible tab character, and enter the assembly statements.]
*XTABS ON:TAB \:INPUT
INPUT:
\LIST\DBG
\NAME\MAIN. SUB
\GLOBAL\FP.SUB
\COMMON\FP$ACC
S1\BLOCK\8
S2\BLOCK\8
DESTN\BLOCK\8
\SECTION\MAIN
ENTRY\BLOCK\45
,CAi.,i.,\F?Sui3
MORE\BLOCK\35
\END\ENTRY

REV A FEB 1981 9-21

Creating and Using a Subroutine Library Programming Examples-8500 MOL A Series Assembler Users

9-22

[Display the
*TYPE B-E

LIST
NAME
GLOBAL
COMMON

expanded statements.]

S 1 BLOCK
S2 BLOCK
DESTN BLOCK

DBG
MAIN.SUB
FP.SUB
FP$ACC
8
8
8

SECTION MAIN
ENTRY BLOCK 45

CALL FP.SUB
MORE BLOCK 35

END ENTRY
*FILE
*TEND OF TEXT
** EOF

[Assemble the source file into an object file.]
> ASM MNS.OBJ CONO MNS.ASM

Tektronix 8080/8085 ASM Vx.x
*fff Pass 2

Tektronix 8080/8085 ASM Vx.x

00001 LIST DBG
00002 NAME MAIN.SUB
00003 GLOBAL FP.SUB
00004 COMMON FP$ACC
00005 0000 0008 Sl BLOCK 8
00006 0008 0008 S2 BLOCK 8
00007 0010 0008 DES TN BLOCK 8
00008 SECTION MAIN
oooog 0000 002D ENTRY BLOCK 45
00010 002D CDOOOO > CALL FP.SUB
00011 0030 0023 MORE BLOCK 35
00012 0000 > END ENTRY

Page

REV A FEB 1981

Programming Examples-8500 MOL A Series Assembler Users Creating and Using a Subroutine Library

Tektronix 8080/8085 ASM Vx.x Symbol Table

Scalars

A ------ 0007
D ------ 0002
L ------ 0005
SP ----- 0006

B ------
E
M

0000
0003
0006

FP$ACC Common (0018)

DESTN -- 0010 S1 ----- 0000

MAIN Section (0053)

ENTRY -- 0000 MORE --- 0030

FP.SUB Unbound Global

12 Source Lines 12 Assembled Lines
12 Source Lines 12 Assembled Lines

»> No assembly errors detected
»> No assembly errors detected

ASM EOJ

47669
47669

«<
«<

Page

C ------ 0001
H ------ 0004
PSW ---- 0006

S2 ----- 0008

Bytes available
Bytes available

[Link the mainline program with the library.]
> LINK MNS.LOAD MNS.LNKL MNS.OBJ LIB(FP.LIB)

NO ERRORS NO UNDEFINED SYMBOLS
3 MODULES 4 SECTIONS
TRANSFER ADDRESS IS 0228

LINK EOJ

[Display the resulting linker listing file.]
> COP MNS. LNKL

Tektronix 8080/8085 LINKER V X.X GLOBAL SYMBOL LIST

REV FEB 1983

FP$ACC
FP.SUB

0000 FP.AD2
019E FP ADD

0040 FP.ADD
00 18 FP SUB

0018 FP.SU2
019E MAIN

Page

01E4
0228

2

9-23

Creating and Using a Subroutine Library

Tektronix 8080/8085 LINKER V x.x

FILE: MNS.OBJ

MODULE: MAIN.SUB

SCALARS:
A 0007 B
E 0003 H
PSW 0006 SP

LABELS: (SECTION FP$ACC
DESTN 0010 Sl

LABELS: (SECTION MAIN
ENTRY 0228 MORE

Tektronix 8080/8085 LINKER V x.x

FILE: FP.LIB

MODULE: FP$SUB

SCALARS:
A
E
PSW

0007
0003
0006

B
H
SP

LABELS: (SECTION FP$ACC
DST 0010 SORCl

LABELS: (SECTION FP SUB

0000
0004
0006

0000

0258

0000
0004
0006

0000

FP.SU2 01E4 FP.SUB 019E

Tektronix 8080/8085 LINKER V x.x

FILE: FP.LIB

MODULE: FP$ADD

SCALARS:
A 0007 B 0000
E 0003 H 0004
PSW 0006 SP 0006

LABELS: (SECTION FP$ACC
DEST 0010 SRCl 0000

LABELS: (SECTION FP ADD
FP.AD2 0040 F P-:-ADD 0018

9-24

Programming Examples-8500 MDL A Series Assembler Users

INTERNAL SYMBOL LIST Page

C
L

S2

0001
0005

0008

D
M

INTERNAL SYMBOL LIST Page

C
L

SORC2

0001
0005

0008

INTERNAL SYMBOL LIST

C 000 1
L 0005

SRC2 0008

D
M

D
M

2

0002
0006

3

0002
0006

J~

0002
0006

REV A FEB 1981

Programming Examples-8500 MOL A Series Assembler Users Creating and Using a Subroutine Library

Tektronix 8080/8085 LINKER V x.x

FILE: MNS.OBJ

MODULE: MAIN.SUB
FP$ACC COMMON BYTE 0000-0017
MAIN SECTION BYTE 0228-027A

FILE: FP.LIB

MODULE: FP$SUB
FP$ACC COMMON BYTE 0000-0017
FP SUB SECTION BYTE 019E-0227
FP:SU2 01E4 FP.SUB 019E

MODULE: FP$ADD
FP$ACC COMMON BYTE 0000-0017
FP ADD SECTION BYTE 0018-019D
FP:AD2 0040 FP.ADD 0018

Tektronix 8080/8085 LINKER V x.x

0000-0017
0018-019D
019E-0227
0228-027A

FP$ACC
FP ADD
FP-SUB
MAIN

COMMON BYTE
SECTION BYTE
SECTION BYTE
SECTION BYTE

NO ERRORS NO UNDEFINED SYMBOLS
3 MODULES 4 SECTIONS
TRANSFER ADDRESS IS 0228

COPy EOJ

linking Explanation

MODULE MAP Page 5

MEMORY MAP Page 6

For the mainline subtract program, the library module FP$SUB is referenced using the global
symbol FP.SUB. This brings module FP$SUB into the final load module. However, FP$SUB
itself contains a reference to an unbound global symbol, FP.AD2. The definition for this
unbound global symbol is found in the FP$ADD iibrary module. The linker must include both
modules from the library to satisfy all requests for global symbols. This process is illustrated
in Fig. 9-5.

REV A FEB 1981 9-25

Creating and Using a Subroutine Library Programming Examples-8500 MOL A Series Assembler Users

9-26

Floating-point Library (FP.LlB)

FP$SUB

I "1 need FP.AD2" - - --

I . "T"""r------
I

FP$ADD

"1 have FP .ADD"
- "1 have FP.AD2"

r - - "1 have FP.SUB"

I ~'I have FP.SU2"

MNS.OBJ I 1-----------1
(mainline subtract program) I

"I need FP.SUB" - ~

(from MNS.OBJ) (from FP$SUB) (from FP$ADD)

The linked program (MNS.lOAD)

Fig. 9-5. linking the subtract program to the library.

3575-17

In this linking example, MNS.OBJ requests definition for an unbound global, FP.SUB. The linker scans
the library (starting at the left in this figure), and locates a definition for FP.SUB, in module FP$SUB.
However, FP$SUB itself contains a reference to an unbound global symbol. FP.AD2. The linker
continues to scan the library, and finds a definition for FP.AD2 in library module FP$ADD. Thus, the
final load file contains all three modules (mainline MNS.OBJ, and FP$SUB and FP$ADD from the
:ibrary) ~;nked together.

This example illustrates why the subtract module (FPSSUB) was placed before the add
module (FPSADD). The linker scans the modules of a library only once, in a front-to-back
order. If FPSSUB had been located after FPSADD, then the linker would not have found the
definition for the FP.AD2 symbol after linking in FPSSUB.

REV A FEB 1981

Programming Examples-8500 MOL A Series Assembler Users 005/50 SVC Generation

005/50 SVC GENERATION
This example explores two areas of DOS/50 service calls: creating service request blocks
(SRBs), and generating the required microprocessor service call (SVC) instructions. This
example uses the 8080A/8085A instruction set, but similar techniques can be applied to
most processors.

This example assumes you are familiar with the use of SVCs under DOS/50, as described
in the Service Calls section of the 8550 System Users Manual.

Creating Service Request Blocks
The first task in using an SVC is to create an appropriate SRB. The SRB consists of eight
bytes:

1. a function code,

2. a channel number,

3. a status byte,

4. a single-byte data item,

5. a byte count for liD operations,

6. a buffer length,

7. the high-order byte of the buffer address, and

8. the low-order byte of the buffer address.

The buffer (specified by the last three bytes) is used for liD operations.

Setting up the SRB in your source program can be made easier when you use an
"intelligent" macro. The macro can decide (based on the parameters you give it) whethei to
generate a SRB location vector, what the names of the SRB components are, what the size of
the liD buffer is, and other miscellaneous items. The following assembler source statements
define a macro that performs these functions. A line-by-line description follows the listing.

REV A FEB 1981 9-27

DOS/50 SVC Generation Programming Examples-8500 MOL A Series Assembler Users

9-28

The SRB Macro

STRING SRB$SEC (8) , SRB$B UF (16) line 1
MACRO SRB line 2

SRB$SEC SET '" %'" line 3
IF DEF(SRB.SEC) line 4
RESUME SRB.SEC line 5
ELSE line 6
SECTION SRB.SEC line 7
ENDIF line 8

'1 ' .F UN BLOCK line 9
, 1 ' . CHN BLOCK line 10
'1' .STA BLOCK line 11
'1' . DAT BLOCK line 12
'1 ' .CNT BLOCK line 13

IF " '3' "= "" line 14
'l'.LEN BLOCK line 15
, 1 ' . HIB BLOCK line 16
'1' . LOB BLOCK line 17

ELSE line 18
IF "'4'''='''' line 19

SRB$BUF SET '" 1 ' . BUF" line 20
ELSE line 21

SRB$BUF SET '" 4'" line 22
ENDIF line 23

'1'.LEN BYTE '3 ' line 24
'1'.HIB BYTE HI ('SRB$BUF') line 25
'1 ' . LOB BYTE L 0 (, S R B $ B UF ') line 26

IF DEF(BUF.SEC) line 27
RESUME BUF. SEC line 28
ELSE line 29
SECTION BUF. SEC line 30
ENDIF line 31

'SRB$BUF' BLOCK '3 ' line 32
ENDIF line 33
IF "'2'''<>'''' line 34
IF DEF(SRB.VEC) line 35
RESUME SRB.VEC line 36
ELSE 1 ine 37
SECTION SRB.VEC, ABSOLUTE line 38
ENDIF line 39
I\or II I\U . '"l * I , .. , 1 \ line 40 VJ.LU ,U1JTL·· \ Co - I J

BYTE HI('l'.FUN) line 41
BYTE LO (, 1 ' . FUN) line 42
ENDIF line 43
RESUME 'SRB$SEC' line 44
ENDM line 45

Explanation of the SRB Macro

The macro is invoked with the following parameters:

1. The first parameter is the name of the SRB. The name must be one to four characters
long, and must be a valid symbol prefix. Many labels describing parts of the SRB and
buffer are derived from this name.

2. The second parameter is optional; if present, the parameter designates the SVC
number (1 to 6) that will be used with this SRB. If you provide this number, the macro
will create the appropriate pointer to this SRB in the 40H to 4BH area of memory. If
you omit this parameter, you must use other assembler statements to supply the
pointer.

REV A FEB 1981

Programming Examples-8500 MOL A Series Assembler Users DOS/50 SVC Generation

3. The third parameter is optional; if present, the parameter designates the size of I/O
buffer to be associated with this SRB. The last three bytes of the SRB are correctly
altered to describe the buffer's size and location, and the buffer of this size is created.
The name of the buffer is controlled by the fourth parameter. If you omit the third
parameter, the last three bytes of the SRB are left empty.

4. The fourth parameter is optional; if present, the parameter selects the name of the
buffer associated with this SRB. If you omit this parameter, the macro chooses a name
derived from the SRB name. This parameter will be ignored if the third parameter is
not present.

Line 1 creates two string assembler variables: SRBSSEC and SRBSBUF. These variables are
used within the body of the assembler macro to temporarily store data, so that it may be
retrieved later in the macro. These variables are further discussed when they are used.

Line 2 defines the beginning of the macro, and gives the macro the name SRB.

Line 3 saves the current section name in the assembler variable SRBSSEC. The current
section name is saved so that it may be restored later; the remaining statements in this
macro switch sections at least once.

Lines 4 through 8 switch the current section to SRB.SEC, so that later assembler statements
can generate object bytes for an SRB. The IF statement determines whether or not the
section SRB.SEC was previously started: if so, a simple RESUME statement is processed, to
continue object code generation; if not, the section is begun with a SECTION statement, as
its first definition. This technique of using IF DEF(section-name) to conditionally resume a
section is used twice again, starting in lines 27 and 35.

Lines 9 through 13 define the common palt of the SRB. Each byte of the SRB is given a
descriptive name (label). This label consists of the SRB name (given as the first parameter at
invocation) followed by a four-character suffix, The suffix for each SRB byte indicates the
function of that byte. For example, if the first parameter at macro invocation is QQ, then the
five bytes generated by these five lines of code are: QQ.FUN (function), QQ.CHN (channel),
QQ.STA (status), QQ.DAT (byte data), and QQ.CNT (I/O count).

Lines 14 through 33 generate the last three bytes of the SRB, and create the buffer (if
necessary). Three possible combinations exist:

1. No third parameter: the last three bytes of the SRB are generated like the first five -
labels are generated and space is allocated, but no values are inserted into the SRB
bytes.

2. Third parameter only: The last three bytes of the SRB describe a buffer generated by
this macro. The name of the buffer is derived from the name of the SR8, in the same
way as the name of the SRB components.

3. Both third and fourth parameters: Again, the last three bytes of the SRB describe a
buffer generated by this macro, but the name of the buffer is explicitly given (by the
fourth parameter).

Line 14 examines the third parameter: if absent, lines 15 through 17 are assembled; if
present, lines 19 through 32 are assembled. In either case, the other block of statements is
skipped.

REV A FEB 1981 9-29

005/50 SVC Generation Programming Examples-8500 MDL A Series Assembler Users

9-30

Lines 15 through 17 generate the last three bytes of the SRB when the third parameter is
absent. Again, the names of the three bytes are derived from the SRB name given in the
macro invocation line. If the SRB name is 00, for example, three bytes are generated:
OO.LEN (length of buffer), OO.HIB (high byte of the buffer address), and OO.LOB (low byte of
the buffer address).

Lines 19 through 23 determine the name of the buffer. If the fourth parameter is absent, the
name of the buffer is created from the SRB name; for example, an SRB name of 00 produces
a buffer name of OO.BUF. If a fourth parameter is present, then it is used as the buffer name.
In either case, the buffer name is assigned to the assembler string variable SRB$BUF. This
variable is used later in the macro.

Lines 24 through 26 generate the last three bytes of the SRB, using the given size and name
of the buffer. As with the other bytes of the SRB, each of these bytes is given a label derived
from the SRB name. For example, a SRB name of 00 generates the labels OO.LEN, OO.HIB,
and OO.LOB. However, unlike the other bytes of the SRB, these bytes are given values at
assembly time. Because the location and size of the buffer are known, the correct values can
be given to these bytes.

Lines 27 through 31 change the current section to BUF.SEC, using the method described
previously (lines 4 through 8). Section BUF.SEC contains any I/O buffers generated by the
macro.

Line 32 generates the 1/0 buffer. The name is defined in the assembler string variable
SRB$BUF. The size is taken from the third invocation parameter.

Lines 34 through 43 generate a pointer to the SRB in the SRB vector (fixed locations 40H to
4BH) only if the second parameter is present.

Lines 35 through 39 define SRB.VEC as the current section. This section is absolute (non
relocatable), because the vectors must be in fixed locations in memory.

Line 40 generates an assembler ORG directive to place the pointer in the proper location.
The operand of the ORG directive computes an address from the second parameter in the
invocation; this parameter is a digit from 1 to 6.

Lines 41 and 42 generate a pointer to the SRB's first entry, the function byte.

Line 44 restores the current section to the section name that was saved upon entry into this
macro.

Line 45 terminates the definition of the macro.

REV A FEB 1981

Programming Examples-8500 MOL A Series Assembler Users DOS/50 SVC Generation

Sample Invocations of the SRB Macro

The SRB macro can be invoked in many different ways, depending on the needs of the
situation. For example, in its simplest invocation,

SRB QQQ

only an SRB is generated. The name of the SRB is specified in the first parameter, QQQ. The
SRB consists entirely of BLOCK assembler directives; your program is expected to place
values into the various bytes of the SRB.

The SRB macro can be invoked with an SVC number. like this:

SRR RRR, 4

The SRB macro automatically places the appropriate pointer to the SRB (named RRR) at
locations 46H and 47H. Again, no part of the SRB is given a value at assembly time; your
program must supply all values (including pointers to buffers) at program execution time.

If you wish to specify a buffer, include the third and fourth parameters. For example,

SRB SSS, , 128, BUFFER

specifies a BUFFER that is 128 bytes long. This buffer is created automatically by the macro.
The macro also places values (describing the location and length of the buffer) into the last
three bytes of the SRB, relieving your program of this responsibility.

If you do not require a specific buffer name, omit the fourth parameter. The name will be
derived from the SRB name. You still specify the third parameter, to tell the macro the length
of buffer to be created. For example, the macro invocation

SRB TTT, , 64

creates a 64-byte buffer named TTT.BUF.

You can create the buffei and SRB pointer simultaneously by including all four parameters in
the SRB macro. For example, the invocation

SRB UUU, 3, 80, MYBUF

creates an SRB named UUU, a pointer to the SRB at addresses 44H and 45H (the SVC 3
vector location), and an 80-byte buffer named MYBUF.

Generating Service Calls
The task of generating the service call consists of placing two microprocessor-dependent
instructions in your program. The first instruction is usually a data transfer instruction, while
the second is a no-operation instruction. For an 8080A/8085A microprocessor, the OUT and
NOP instructions are llsed for SVCs.

You can use an assembler macro to assist you in creating the OUT INOP instruction
sequence. The following listing presents a sample macro. A line-by-line description follows
the listing.

REV A FEB 1981 9-31

Creating Constant Values Programming Examples-8500 MOL A Series Assembler Users

9-32

The SVC Macro
MACRO
IF
WARNING
ELSE
OUT
NOP
ENDIF
ENDM

SVC
" , 1 ' ":""
; Missing SVC Number

OFSH-'1'

Explanation of the SVC Macro

line 1
line 2
line 3
line 4
line 5
line 6
line 7
line 8

This macro is invoked with one parameter, the SVC number: a single digit between 1 and 6.

Line 1 defines the name of the SVC-generation macro.

Lines 2 through 7 form an IF .. ELSE .. ENDIF block. If the first parameter is absent, line 3 is
processed. If the first parameter is present, lines 5 and 6 are processed.

Line 3 (processed only if no first parameter is given) generates an error message. This
message indicates that the required parameter has not been given in this invocation of the
macro. The error message appears on the listing and the system terminal.

Lines 5 and 6 generate an SOSOA/SOS5A service call instruction sequence. Line 5 generates
an OUT instruction; the address of the OUT instruction is computed from the first macro
parameter. Line 6 generates the required Nap (no-operation) instruction.

Line S terminates the macro definition.

Sample Invocation of the SVC Macro
The SVC macro is simple to invoke: simply provide the SVC number as the first parameter.
For example,

SVC 4

generates the proper instruction sequence for SVC 4. if the first parameter is omitted, an
error message is generated.

CREATING CONSTANT VALUES
This example illustrates the use of a macro to declare a constant value in a separate
assembler section. In this example, two versions of the macro are shown: one to define
values to be stored in ROM, and the other to define values to be stored in RAM. By using
these two macros, you can store constants in either ROM or RAM from anywhere within
your program.

Here's how the macro works: first, it switches from the current section to an alternate
section. Then, it generates the object code for the statements specified. It ends by switching
back to the original section. By using statements with data storage directives (such as ASCII,
BYTE, BLOCK, and WORD), you can store values in the alternate section.

REV A FEB 1981

Programming Examples-8500 MOL A Series Assembler Users Creating Constant Values

The macro may be invoked by one of two methods:

• Method 1. The statement lines to be assembled in the alternate section are passed as
parameters in the operand field of the macro invocation .

• Method 2. The statement lines to be assembled in the alternate section are a sequence
of lines following the macro invocation. The macro invocation has no parameters in the
operand field. The invocation of a second macro terminates the sequence of lines and
resumes the original section.

Sample invocations are presented later in this example.

The CONSTANT Macro
This version of the macro stores values in a section ROM.CODE, which can be assigned to
ROM memory at link time.

STRING CON$SAVE,CON$SEC line
CON$SEC SET "ROM.CODEII line 2

MACRO CONSTANT line 3
CON$SAVE SET "'%' " line 4

IF DEF('CON$SEC') line 5
RESUME 'CON$SEC' line 6
ELSE line 7
SECTION 'CON$SEC' line 8
ENDIF line 9
IF ' II ' line 10

CON$CNT SET 1 line 11
REPEAT CON$CNT <= ' II ' line 12

'CON$CNT' line 13
CON$CNT SET CON$CNT + 1 line 14

ENDR line 15
ENDCONSTANT line 16
ENDIF line 17
ENDM line 18

MACRO ENDCONSTANT line 19
RESUME 'CON$SAVE' line 20
ENDM line 21

Line 1 creates two string assembler variables, CON$SAV and CON$SEC. These variables are
used within the body of the macro to temporarily store data.

Line 2 assigns the character string "ROM.CODE" to the variable CON$SEC. The variable is
used for the name of the section in which the constants are stored.

Line 3 defines the beginning of the macro and gives it the name CONSTANT.

Line 4 saves the current section name in the variable CON$SAVE so that it may be resumed
later.

Lines 5 through 9 switch the current section to the section ROM.CODE (the value of the
variable CON$SEC). The IF statement determines whether or not the section ROM.CODE was
previously defined (started): if so, the RESUME statement (line 6) continues the section
definition; if not, the SECTION statement (line 8) begins the section definition.

REV A FEB 1981 9-33

Creating Constant Values Programming Examples-8500 MOL A Series Assembler Users

9-34

Line 10 tests for the presence of a parameter. The assembler replaces the construct '#' with
the number of parameters in the macro invocation line. If the parameter count is non-zero,
the assembler processes lines 11 through 16. Otherwise, the assembler skips to line 18.

Line 11 initializes the assembler variable CON$CNT to designate the first parameter. This
variable is incremented later (line 14) for each parameter.

Lines 12 through 15 form a conditional repeat block. In this block, the invocation parameters
are processed within the macro. The first time the repeat loop is processed, the value of
CON$CNT is 1, and the construct 'CON$CNT' (in line 13) is replaced by the first parameter.
As CON$CNT is incremented (line 14), each successive parameter is processed, until the
value of CON$CNT exceeds the number of parameters passed ('#' in line 12).

Line 16 invokes the macro ENDCONSTANT, which is defined in lines 19 to 21.

If '#' was zero in line 10, the assembler proceeds to line 18 (the first statement following the
ENDIF). This statement terminates the macro. The assembler will then process the next
statement lines following the invocation of the CONSTANT macro. These statements provide
data for section ROM.CODE. The statement lines will continue to be processed within section
ROM.CODE until macro ENDCONSTANT is invoked.

Line 19 through 21 define macro ENDCONSTANT. The macro ENDCONSTANT simply
switches the current section back to the section name that was saved at the beginning of this
macro (line 4).

The VARIABLE Macro
A similar macro can be created to store variables in RAM. The section RAM.CODE can be
assigned to RAM memory at link time.

STRING VAR$SAVE, VAR$SEC
VAR$SEC SET "RAM.CODE"

MACRO VARIABLE
VAR$SAVE SET "'%' "

IF DEF('VAR$SEC')
RESUME 'VAR$SEC'
ELSE
SECTION 'VAR$SEC'
ENDIF
IF ' 1/ '

VAR$CNT SET 1
REPEAT VAR$CNT <= Iff I

'VAR$CNT'
VAR$CNT SET VAR$CNT + 1

ENDR
ENDVARIABLE
ENDIF
ENDM

REV A FEB 1981

Programming Examples-8500 MOL A Series Assembler Users Creating Constant Values

The ENDVARIABLE macro definition is:

MACRO
RESUME
ENDM

ENDVARIABLE
'VAR$SAVE'

Macro Invocation
Assume that you would like to store a character string in a section of ROM memory and call
a routine to print that character string. (This example assumes that your program supplies a
subroutine PRINT. The subroutine prints each successive character pointed to by the HL
register until a return character is encountered.) The following invocation of the macro
CONSTANT could be used to store the message to be printed.

SECTION
LXI
CONSTANT

CALL

PRINCON
H,MES1
MES1 ASCII "HELLO THERE",[BYTE 13J
\ / \. }

~ ~
1 st parameter 2nd parameter

PRINT

The first line declares section PRINCON.

The second line is an SOSOA/SOS5A instruction that loads the HL register with a pointer to
MES1.

The third line invokes the macro CONSTANT with two parameters. The first parameter is an
assembler statement that stores the ASCII representation of the character string "HELLO
THERE" and has the location MES1. The second parameter [BYTE 13] generates one byte of
data with the value 13 (the ASCII return character). The space in the first position of the
parameter causes the BYTE to be treated as an assembler directive; and not as a label. These
two lines are processed within the section ROM.CODE. The macro then switches back to the
section PRINCON.

The last line of this example, CALL PRINT, invokes the subroutine PRINT.

Macro CONSTANT simply switches to section ROM.CODE when you do not supply any
parameters. Any assembler statements between the invocation of CONSTANT (without
parameters) and a matching invocation of ENDCONSTANT are generated into section
ROM.CODE. For example, the following assembler statements produce identical results to
the previous example:

SECTION
LXI
CONSTANT

PRINCON
H,MES1

MES1 ASCII "HELLO THERE"
BYTE 13
ENDCONSTANT
CALL PRINT

In this invocation, the invocation of macro ENDCONSTANT terminates the alternate section
and resumes the original section.

REV A FEB 1981 9-35

Save-and-Restore Macro Programming Examples-8500 MOL A Series Assembler Users

9-36

With the use of macro VARIABLE, you could establish a data block in a section destined for
RAM. In this example, the symbol DATA.TAB points to a block of 512 bytes. The macro can
be invoked with either this sequence of statement lines:

LXI H,DATA.TAB
VARIABLE DATA. TAB BLOCK 512
CALL PROCESS

or this sequence:

LXI H,DATA.TAB
VARIABLE

DATA. TAB BLOCK 512
ENDVARIABLE
CALL PROCESS

SAVE-AND-RESTORE MACRO
This example uses two assembler macros in a common assembly language operation: saving
and restoring microprocessor registers. The example uses the SOSOA/SOS5A instruction set;
however, the techniques illustrated here can be applied to nearly all stack-oriented
microprocessors.

The SAVE Macro
MACRO SAVE line 1
IF ' tI' line 2

SAVE$ SET 1 line 3
REPEAT SAVE$ <= 'II ' line 4
PUSH 'SAVE$' line 5

SAVE$ SET SAVE$ + line 6
ENDR line 7
ELSE line 8
SAVE B, D, H, PSW line 9
ENDIF line 10
ENDM line 1 1

This macro is used to save one or more registers on the stack. The parameters of the macro
invocation line designate the registers to be saved on the stack. The body of this macro
examines those parameters and generates the appropriate SOSOA/SOS5A PUSH
instructions.

Line 1 begins the macro definition, and gives the macro the name SAVE. This name will be
used later in the program to invoke the macro.

Line 2 begins an IF .. ELSE .. ENDIF block. This IF statement has one operand: the construct '#'.
The assembler will replace this construct with the number of parameters present in the
macro invocation line. If the parameter count is non-zero, the assembler processes all
statements between this IF statement and the corresponding ELSE statement (line S), If the
parameter count is zero (meaning that the invocation statement consisted solely of the word
SAVE), the assembler processes the statements between the ELSE and ENDIF statements.

REV A FEB 1981

Programming Examples-8500 MOL A Series Assembler Users Save-and-Restore Macro

Lines 3 through 7 are processed if the macro invocation includes one or more parameters.
The macro must generate one PUSH instruction for each parameter provided; each
parameter is the name of one 8080A/8085A register pair. A REPEA T..ENDR loop processes
each parameter in turn.

Line 3 initializes the assembler variable SAVES to 1. This assembler variable will be
incremented once for each parameter given in the macro invocation line.

Line 4 designates the beginning of the REPEAT .. ENDR loop. The loop is repeated as long as
the assembler variable SAVES is not greater than the number of parameters passed to the
macro ('#').

Line 5 generates an 8080A/8085A PUSH instruction. The operand of the PUSH instruction
is obtained from the current value of SAVES. For example, if SAVES is 3, and the third
parameter in the macro invocation is H, this statement generates an 8080A/S085A PUSH H
instruction.

Line 6 increments the value of the assembler variable SAVES.

Line 7 terminates the definition of the REPEAT .. ENDR loop. As long as the expression
specified in the REPEAT statement is true (non-zero), the assembler will process the group of
statements within the REPEAT .. ENDR block.

Line 8 terminates the IF .. ELSE block.

Line 9 is processed only when the IF condition (in line 2) is false (zero). If SAVE is entered
with no parameters, the SAVE macro reinvokes itself with all four possible parameters,
thereby saving all four register pairs.

Line 10 terminates the IF .. ELSE .. ENDIF block.

Line 11 statement terminates the definition of the macro.

The RESTORE Macro
MACRO
IF

RESTORE$ SET
REPEAT
POP

RESTORE$ SET
ENDR
ELSE

RESTORE
, II '
1
RESTORE$ <= 'II'
'RESTORE$'
RESTORE$ +

RESTORE PSW, H, D, B
ENDIF
ENDM

REV A FEB 1981 9-37

CondWonal Assembly Programming ExampJes-8500 MDL A Series Assembler Users

9-38

The RESTORE macro is similar to the SAVE macro, with two changes:

1. The assembler variable is named RESTORE$ in this macro.

2. The order of the registers in the default macro invocation (no parameters) is reversed. The
stack operates in a last-in-first-out (LIFO) manner: the last register saved must be the first
register restored.

Sample Invocations
The SAVE and RESTORE macros are most commonly used at the beginning and end of
subroutines to insure that the subroutine does not destroy values in the registers needed by
the calling routine. For example, if all registers are used in a subroutine, you can include the
SAVE macro invocation (with no parameters) at the subroutine's beginning, and the
RESTORE macro invocation (again, with no parameters) at the subroutine's end, like this'

SUBR SAVE

RESTORE
RET

Beginning of subroutine SUBR; save all registers

Body of the subroutine

Restore all registers
SOSOA/SOS5A return-from-subroutine instruction

If some (but not all) registers are used in the subroutine, you can invoke SAVE and RESTORE
with a list of those registers to be saved on the stack. Note that the order of the registers
must be reversed when restoring them from the stack.

SUBR SAVE H, PSW

RESTORE PSW, H
RET

CONDITIONAL ASSEMBLY

Save H-L and PSW-A

Body of subroutine

Restore PSW-A, H-L
Return from subroutine

This example illustrates some uses of the IF-ELSE-ENDIF or IF-ENDIF constructs for
conditional assembly.

Three typical examples are provided: (1) processor-independent programming, (2) use of
conditional assembly in macros, and (3) assembly based on relative memory locations.

REV A FEB 1981

Programming Examples-8500 MOL A Series Assembler Users Conditional Assembly

Processor-Independent Programming
A program may be written to run on two or more similar processors by placing the processor
dependent instructions in conditional blocks. These conditional blocks check the processor
type and assemble the correct instructions.

MACRO SUBTRACT
; This is a

IF
OR

processor-independent
PROC="Z80"

macro written for either the Z80 or the 8085
If processor is a Z80 ...

SBC
ELSE
IF
LD
SUB
LD
LD
SBC
LD
ELSE
WARNING
ENDIF
ENDIF

A
HL,DE

PROC="8085 11

A,L
E
L,A
A,H
D
H,A

Clear the accumulator
Subtract DE from HL
But, if not a Z80 ...
If processor is an 8085A
Transfer L to A
Subtract E from A
Move A to L
Move H to A
Subtract (carry+D) from A
Move A to H
But, if not 8085 ...
WRONG PROCESSOR - 'PROC'

Use of Conditional Assembly in Macros
Conditional assembly is used primarily in macros. The main body of the program is usually
structured such that, once it is written, few changes will need to be made. Macros, however,
are designed to examine their parameters, and make decisions which may vary with
programming and run-time conditions.

One use of conditional assembly in macros is to assemble statements only upon the first
invocation of the macro. For example, an error will occur if a string variable is defined more
than once; the following structure may be used to check for previous definitions.

IF
STRING
ENDIF

\DEF(STRI) ; IF STRI HAS NOT BEEN DEFINED
STRI(100) ; DEFINE STRI OF 100

These instructions will determine whether or not the string variable STRI has been defined
previously. If it has not, the statement STRING STRi(100;, which defines a string variable
named STRI of 100 characters, is assembled.

Another use of conditional assembly in macros is to verify that a symbol has previously been
declared as a global symbol.

MACRO CALLPRINT
IF \DEF(PRINT)
GLOBAL PRINT
ENDIF

LD
CALL
ENDM

A, • ~ ~

BC, '2'
PRINT

If PRINT has not been defined yet ...
Define PRINT as a global
Continue with rest of macro
Nove first parameter to ;,.
Move second parameter to BC

The conditional block in this macro checks if PRINT has been defined as a global symbol. If
PRINT has not been defined, the statement GLOBAL PRINT is assembled. If PRINT has been
defined previously, the statement in the conditional block is skipped.

REV A FEB 1981 9-39

Conditional Assembly Programming Examples-8500 MOL A Series Assembler Users

9-40

Assembly Based on Relative Memory locations
Conditional assembly can also be used to keep track of the relative distance between bytes of
memory; this information may then be used to decide which instructions to assemble. For
example, the Z80 JR (jump relative) instruction will not allow a jump of more than 128 bytes.
The relative distance between bytes must be less than +128 and greater than -127. If the
range is exceeded, a warning will be issued. The following example checks to see if the
relative distance between the location counter and the jump address is within the specified
range. If it is, the JR instruction is assembled: if not, the JP instruction, which has no range
restriction, is assembled.

IF DEF(LABEL)
IF «$-LABEL) >

; If the label is not a forward reference
-127) & ($-LABEL) < +128) ; and it's near

JR LABEL
ELSE
WARNING ; JR RANGE
JP LABEL
ENDIF
ELSE
JP
ENDIF

LABEL

; do a JR
; Not close enough, so tell user ..

EXCEEDED. JP INSTRUCTION USED INSTEAD
and generate the JP

Forward reference?
Always a JP (can't tell where it is)

This conditional block may be inserted into a macro and invoked when the jump instruction is
needed. When the macro is assembled and executed, the correct jump instruction will be
assembled into the object file.

NAME MAINPRO

MACRO
IF
IF
JR
ELSE
WARNING
JP
ENDIF
ELSE
JP
ENDIF
ENDM

JUMP

JUMP ; BEGINS MACRO JUMP DEFINITION
DEF('1')
«$-'1!) > -127) & «$-'1 ') < +128)
, 1 !

; JR RANGE EXCEEDED. JP INSTRUCTION USED
, 1 '

, 1 '

END OF MACRO DEFINITION

LABEL INVOKES THE MACRO JUMP WITH THE PARAMETER "LABEL"

REV A FEB 1981

Programming Examples-8500 MOL A Series Assembler Users Using the '@' Construct within Macros

USING THE '@' CONSTRUCT WITHIN MACROS
This example illustrates the use of the '@' (at) construct in macros. Each time a macro is
invoked, any '@' construct appearing in the macro body is replaced with a unique four
character value. When this value is appended to a one-to-four character symbol within the
macro body, a unique five-to-eight character label is created. With this construct, you can
use a label symbol within a macro. Even though the macro is invoked more than once, the
label symbol is unique for each invocation.

The example shown here is a delay loop that uses the '@' construct for two separate label
symbols. Even though this maCiO is invoked mOie than once, DEL 1 '@' and DEL2'@' 'vvill be
unique each time the macro is invoked.

The number of delay loops (0 to OFFH) is passed to the macro DELAY as the single parameter.

This example uses the SOSOA/SOS5A instruction set, but similar techniques can be applied
to most processors.

Delay Loop Macro
MACRO DELAY line 1
MVI H, ' 1 ' line 2

DEL2'@' MVI L,OFFH line 3
DEL 1'@' DCR L line 4

JNZ DEL 1 '@' line 5
DCR H line 6
JNZ DEL2'@' line 7
ENDM line 8

Line 1 defines the beginning of the macro and names it DELAY.

Line 2 is an assembly language instruction that moves the value of the parameter (number of
delay loops) to the H register.

Line 3 moves the va1ue OFFH into the L register. The label DEL2'@' is ieplaced by a unique
eight-character symbol each time the macro is invoked.

Line 4 decrements the L register. The label DELl '@' is replaced by another unique symbol.

Line 5 tests the L register. If it is not zero, the program jumps to the OCR L (line 4)
instruction. When the L register becomes zero, the program proceeds to the instruction OCR
H (line 6).

Line 6 decrements the H register (the number of delay loops requested).

Line 7 tests the H register. If it is not zero, the program jumps to the MVI L,OFFH instruction
(line 3), thus repeating the DELl '@' loop the number of delay loops requested. When the H
register becomes zero, the macro is terminated.

REV A FEB 1981 9-41

The Assembler INCLUDE Directive Programming Examples-8500 MOL A Series Assembler Users

9-42

Macro Invocation
DELAY 10H SHORT DELAY

DELAY OFFH ; LONG DELA Y

In this example, the first time macro DELAY is invoked the number of delay loops is 1 OH. The
label symbols DEL2'@' and DEL 1'@' represent one set of address values. When DELAY is
invoked again with OFFH delay loops requested, DEL2'@' and DEL 1 '@' represent another set
of addresses.

THE ASSEMBLER INCLUDE DIRECTIVE
This example illustrates some uses of the INCLUDE directive. The INCLUDE directive causes
the assembler to process statements from the specified file as though they were a part of
your source file.

Frequently used blocks of code and macro definitions may be stored in files. These
statements may be included in programs when needed, by simply entering the INCLUDE
directive and the filespec of the file. The contents of the file is then assembled into the object
module.

This example illustrates four ways in which the INCLUDE directive may typically be used: (1)
defining constants, (2) defining COMMON sections, (3) defining macros, and (4) providing
authorship notices in your listings.

Including Constant Declarations
If you're using the same set of constants for a number of programs, you may store them in a
file. You can INCLUDE them in your program, where they'll be processed with your source
statements at assembly time. This feature can save you a great deal of time. For example, a
file named CNST.ASM contains the constant definition block listed below.

ROWS
COLS

The main

TABLE

EQU
EQU

program,

NAME
INCLUDE
MVI
MVI

BLOCK

20 , Defines the number of rows
15 ; Defines the number of columns

which uses this block of constants, is shown below.

MAINPRO
"CNST.ASM" Constant definitions
B,ROWS Number of rows to B
C,COLS Number of col umns to C

ROWS*COLS Allocates space for a 300-byte table.

REV A FEB 1981

Programming Examples-8500 MOL A Series Assembler Users The Assembler INCLUDE Directive

When the program
program looks like

NAME
INCLUDE

MAINPRO is assembled, the constant definitions are included and the
this.

ROWS EQU
COLS EQU

MVI
MVI

MAINPRO
"CNST.ASM"
20
15

B, ROWS
C,COLS

Defines the number of rows
Defines the number of columns

Number of rows to B
Number of columns to C

TABLE BLOCK ROWS*COLS ; Allocates space for a 300-byte table

Including COMMON Declarations
A group of COMMON statements is usually used in more than one program. You may store
these statements in a file and include them in the various programs that require the same
COMMON declarations.

A file named r.OMM.ASM contains the COMMON declarations for the program MAINPRO.

CNAME
ADDRESS
CITY
STATE

COMMON CUSTOMER Defines a COMMON section named CUSTOMER
BLOCK 30 Reserves 30 bytes for CNAME
BLOCK 30 Reserves 30 bytes for ADDRESS
BLOCK 16 Reserves 16 bytes for CITY
BLOCK 2 Reserves 2 bytes for STATE

MAINPRO is the program which uses the COMMON declarations from the file COMM.ASM.

NAME MAINPRO
INCLUDE "COMM.ASM" ; Defines the COMMON section

When MAINPRO is assembled, the object module will contain the COMMON declarations as
follows:

NAME MAINPRO
INCLUDE "COMM.ASM"
COMMON CUSTOMER Defines a COMMON section named CUSTOMER

CNAME BLOCK 30 Reserves 30 byte s for CNAME
ADDRESS BLOCK 30 Reserves 30 bytes for ADDRESS
CITY BLOCK 16 Reserves 16 bytes for CITY
STATE BLOCK 2 Reserves 2 bytes for STATE

REV A FEB 1981 9-43

The Assembler INCLUDE Directive Programming Examples-8500 MOL A Series Assembler Users

9-44

The INCLUDE Directive in Macros
The INCLUDE directive can be very helpful in assembly language programming. A frequently
used macro may be defined in a file for later invocation.

In this example, file MABC.ASM contains the macro definition to be included in the program
MAINPRO. The BYTE directive has a parameter which will be given when the macro is
invoked.

MACRO
BYTE
WORD
ENDM

ABC
, 1 '
40

Beginning of macro definition
Generate a byte of the first parameter
Generate a word containing 40
End of macro definition

MAINPRO, the program which includes the file MABC.ASM for its macro definition, is listed
below.

NAME MAINPRO
INCLUDE "MABC.ASM" INCLUDEs the definition for macro ABC

ABC 5 ; Invokes ABC with a parameter of 5

ABC 15 Invokes ABC with a parameter of 15

Once the macro has been INCLUDEd in MAINPRO, each invocation of macro ABC will cause
the macro to be expanded at assembly time.

Authorship and Copyright Notices for Listings
The INCLUDE directive may also be used to print authorship and copyright notices on
program listings.

Let's say that a file named CPYR.ASM contains the heading information that you wish to
place on each program listing.

REV A FEB 1981

Programming Examples-8500 MOL A Series Assembler Users The Assembler INCLUDE Directive

.** ,

.* * ,
· * ,
· * ,

COPYRIGHT (C) 1980 BY *
* .** ,

.* * ,
· * ,
· * ,
· * ,
· * ,
· * ,
· * ,
· * ,
· * ,
· * ,

*
*
*
*
*

*

*

*

*
*
*
*

*

* *******1

I

*
*
*

*
*

*
*

*
*

* * *1* *

IIII IIII

*
*
* ****

IIII

* *
* *
* *

*

*
I I I

* * * *
* * *
* * * *
* * * *

COMMITTED TO EXCELLENCE

• R •

*
*
*
*
*
*
*
*
* .* * ,

.** ,

.* * ,
· * ,
· * ,
· * ,

TEKTRONIX, INCORPORATED, BEAVERTON, OREGON 97077 *
* ALL RIGHTS RESERVED *

.1 * ,

.** ,
;***************************************'********************************
;* *
; * AUTHOR: KEN DE DATE *
.* * ,
;**

By using a single statement, INCLUDE "CPYR.ASM", your assembler listing will take the
following format.

NAME MAINPRO
INCLUDE "CPYR.ASM"

.** ,

.* * ,
· * ,
· * ,

COPYRIGHT eC) 1980 BY *
* .** ,

· * ,
· * ,
· * ,
· * ,
· * ,
· * ,
· * ,
· I ,
· * ,
· I ,

*
*
*

* *

*
*
*
* *** *

*
I

* * 111111*1

*
*
*

I

*
*

* *
*
*

*
*

III I

*
*
*

IIII

*
**** * * *

* * * * * * * * * * *
I * * * * * I 1** *

COMMITTED TO EXCELLENCE

• R •

*
*
*
*
*
*
*
*
*
*

·1 * ,
.1*** ,
· * ,
· * ,
,4 , ..
· * ,
· * ,

TEKTRONIX, INCORPORATED, BEAVERTON, OREGON 97077

ALL RIGHTS RESERVED

* :,

*
* .** ,

.** ,

.* * ,
· * ,
· * ,

AUTHOR: KEN DEDATE *
*

·******************************1*** ,

REV A FEB 1981 9-45

8500 MOL A Series Assembler Users

Table
No.

10-1

10-2

10-3

10-4

10-5

10-6

REV A FEB 1981

Section 10
TABLES

Page

Source Module Character Set .. 10-1

Assembler Directives""""""""""""" 1 0-3

ASCII Codes (Hexadecimal) ... 1 0-5

Decimal-Hexadecimal-Binary Equivalents 10-6

Hexadecimal Addition .. 10-7

Hexadecimal Multiplication ... 10-8

10-i

8500 MOL A Series Assembler Users

Symbols

A .. Z

0 .. 9

$

,(comma)

(]

@

%

*

/

+

()

REV A FEB 1981

Section 10
TABLES

Table 10-1
Source Module Character Set

Definition

letters used in symbols; lowercase characters (other than in strings and
comments) are interpreted as the corresponding uppercase characters

numbers used in symbols and constants

used in symbols, and to represent assembler location counter contents

used in symbols

precedes a comment

delimiter for operand items

string delimiter

string concatenation operator

string substitution delimiter

total number of arguments passed to current macro expansion

treat everything within brackets as a single argument

provide unique labels for each macro expansion

replaced by name of current section in a macro expansion

binary arithmetic operation, multiplication

binary arithmetic operation, division

unary or binary arithmetic operator, addition

unary or binary arithmetic operator, subtraction

override precedence of operators

10-1

Source Module Character Set

10-2

Symbols

\

&

!!

SPACE

TAB

CARRIAGE
RETURN

/\

/\/\

=

<>

>

<

>=

<=

Tables-8500 MOL A Series Assembler Users

Table 10-1 (cont)

Definition

unary logical operator, NOT

binary logical operator, AND

binary logical operator, inclusive OR

binary logical operator, exclusive OR

field delimiter

field delimiter

field and line delimiter

allow following special character to have literal meaning

allow the second up-arrow character to have literal meaning

relational operator, equal

relational operator, not equal

relational operator, greater than

relational operator, less than

relational operator, greater than or equal

relational operator, less than or equal

REV A FEB 1981

Tables-8500 MOL A Series Assembler Users Assembler Directives

Directive

ASCII

BLOCK

BYTE

COMMON

ELSE

END

ENDIF

ENDM

ENDR

EQU

EXITM

GLOBAL

IF

INCLUDE

LIST

MACRO

NAME

NOLIST

PAGE

REPEAT

REV A FEB 1981

Table 10-2
Assembler Directives

Operation

generates ASCII data

reserves a data block

generates byte(s) of data

declares program section, assigns name, defines type to be common

when the expression in the IF statement is false (zero), causes assembly
of alternate source lines between ELSE and ENDIF directives

marks the end of an assembly source module

marks the end of an IF block

marks the end of a macro

marks the end of a REPEAT block

assigns a value to a symbol(s)

terminates macro expansion before the ENDM

declares global symbol

vvhen expression is true (non-zero), causes assembly of source lines
between IF and ENDIF (or ELSE, if present) directives

inserts text from another source file

turns on assembler listing options

defines the beginning of a macro source block

declares object module name

turns off assembler listing options

~~c;igns ~n ~rldrp~~ to thA B~~pmbIA Inr~ti(ln (,oltntpr

advances listing to a new page

causes source statements to be assembled repeatedly

10-3

Assembler Directives

10-4

Directive

RESERVE

RESUME

SECTION

SET

SPACE

STITLE

STRING

TITLE

WARNING

WORD

Tables-8500 MOL A Series Assembler Users

Table 10-2(cont)

Operation

reserves a work space section

resumes the definition of a section

declares a program section, assigns name

assigns or reassigns a value to a variable

inserts blank lines in listing

creates a listing page subtitle

declares a string variable

creates a listing page title

displays a warning message

generates word(s) of data

REV A FEB 1981

Tables-8500 MOL A Series Assembler Users

Table 10-3
ASCII Codes (Hexadecimal)

LOW
ORDER

BITS

REV A FEB 1981

a 1

CONTROL

a NUL OLE

1 SOH OC1

2 STX OC2

3 ETX OC3

4 EOT OC4

5 ENQ NAK

6 ACK I SYN
I

7 BEL I ETB
BELL

8 BS CAN
BACKSPACE

9 I
I

HT EM

A LF I SUB
I

B VT
I

ESC I

j

C FF I FS
!

D CR GS
RETURN

....
t: I ~u H~

F 51 US

HIGH-ORDER BITS

2 3 4 5

SYMBOLS UPPERCASE

SP g @ P

! 1 A Q

" 2 B R

3 C S

$ 4 0 T

% 5 E U

& I 6 F V I
I I 7 G W

(8 H X

I
I

) 9 I Y

* I : J Z

+ I
K [I ;

, < L \

- = M]

- . .
1\

? o

ASCII Codes (Hexadecimal)

6 7

LOWERCASE

\
P

a q

b r

C I S

d t

e u

f v

9 W

h X

I
i Y

j Z

k {

I . .
m }

-n

o , DEL I RUBOUT

10-5

Decimal-Hexadecimal-Binary Equivalents Tables-8500 MOL A Series Assembler Users

Hexa- Binary
Oeci- deci- 8-bit
mal mal Code

a 00 0000 0000
1 01 0000 0001
2 02 0000 0010
3 03 0000 0011
4 04 0000 0100
5 05 0000 0101
6 06 0000 0110
7 07 0000 0111
8 08 0000 1000
9 09 0000 1001
10 OA 0000 1010
11 OB 0000 1011
12 OC 0000 1100
13 00 00001101
14 DE 00001110
15 OF 00001111
16 10 0001 0000
17 11 0001 0001
18 12 0001 0010

I 19 13 0001 0011
20 14 0001 0100
21 15 0001 0101
22 16 0001 0110
23 17 0001 0111
24 18 0001 1000
25 19 0001 1001
26 1A 0001 1010

I
27 18 10001 1011
28 1C 0001 1100
29 10 0001 1101
30 1E 10001 1110 I 31 1F 0001 1111

I 32 20 10010 0000
33 21 , 0010 0001

I 34 22 0010 0010

I 35

I
23 0010 0011

36 24 0010 0100

I 37

i
25 0010 0101

I 38 26 00100110

I 39 27 0010 0111
An

I
28 00101000 ... v

41 29 0010 1001
42 2A 0010 1010
43 2B 0010 1011
44 I 2C 00101100

I
45

I
20 0010 1101

46 2E 00101110
47 2F 10010 1111

I
48 30 i 0011 0000
49 31 10011 0001
50 32 0011 0010

I 51

I
33 0011 0011

52 34 0011 0100

I 53 35 0011 0101

I 54 36 0011 0110

I
55 I 37 0011 0111

I
56

I
38 0011 1000

57 39 0011 1001

I 58 3A 0011 1010
59 I 3B 0011 1011

I 60 I 3C 0011 1100

I
61 I 3D 10011 1101
62

I
3E 0011 1110

63 3F 0011 1111

, 0-6

Table 10-4
Oecimal-Hexadecimal-Binary Equivalents

Hexa- Binary Hexa- Binary
Oeci- deci- 8-bit Oeci- dec i- 8-bit Oeci-
mal mal Code mal mal Code mal

64 40 0100 0000 128 80 1000 0000 192
65 41 0100 0001 129 81 1000 0001 193
66 42 0100 0010 130 82 1000 0010 194
67 43 0100 0011 131 83 1000 0011 195
68 44 0100 0100 132 84 1000 0100 196
69 45 0100 0101 133 85 1000 0101 197
70 46 0100 0110 134 86 1000 0110 198
71 47 0100 0111 135 87 1000 0111 199
72 48 0100 1000 136 88 1000 1000 200
73 49 0100 1001 137 89 1000 1001 201
74 4A 0100 1010 138 8A 1000 1010 202
75 4B 01001011 139 8B 1000 1011 203
76 4C 0100 1100 140 8C 1000 1100 204
77 40 01001101 141 80 1000 1101 205
78 4E 01001110 142 8E 10001110 206
79 4F 0100 1111 143 8F 10001111 207
80 50 0101 0000 144 90 1001 0000 208
81 51 0101 0001 145 91 1001 0001 209
82 52 I 0101 0010 146 I 92 1001 0010 210
83 53 101010011 147 ! 93 1001 0011 211
84 54 I 0101 0100 148 94 1001 0100 212
85 55 I 0101 0101 149 95 11001 0101 213
86 56 0101 0110 150 96 1001 0110 214
87 57 01010111 151 97 1001 0111 215
88 58 0101 1000 152 98 1001 1000 216
89 59 0101 1001 153 99 1001 1001 217
90 5A 0101 1010 154 9A 1001 1010 218
91 5B 0101 1011 155

I
9B .1001 1011

i
219

92 5C I 0101 1100 156 9C 11001 1100 220
93 50 0101 1101 157 I 90 11001 1101 I 221
94 5E 10101 1110 158 9E i 1001 1110 i 222 '

I
!

95 5F 10101 1111 159 9F i 1001 1111 I 223 I
96 60 I 0110 0000 160 AO 11010 0000 I

224 I
97 61 I 0110 0001 161 A1 11010 0001 I 225
98 62 0110 0010 162 I A2 11010 0010 226
99 63 101100011 163 I A3 11010 0011 I 227 I
100 64 0110 0100 164 I A4 11010 0100 I 228
101 65 I 0110 0101 165 A5 i 1010 0101 i 229
102 66 0110 0110 166 A6 10100110 230
103 67 0110 0111 167 A7 1010 0111 231
104 68 0110 1000 168 P,8 1010 1000 232
105 69 0110 1001 169 A9 1010 1001 233
106 6A 0110 1010 170 AA 1010 1010 234
107 6B 0110 1011 171 AB 1010 1011 235
108 6C 01101100 172 AC 1010 1100 236
109 60 0110 1101 173 AD 1010 1101 237
110 6E 0110 1110 174 AE 1010 1110 238
111 6F 0110 1111 175 AF 1010 1111 239
112 70 0111 0000 176 BO 1011 0000 240
113 71 0111 0001 177 B1 1011 0001 241
114 72 0111 0010 178 B2 1011 0010 242
115 73 I 0111 0011 179 B3 1'011 0011

243
116 74 I 0111 0100 180 B4 1011 0100 244
117 75 0111 0101 181 B5 1011 0101 245
118 76 i 0111 0110 182 B6 1011 0110 246
119 77 I 0111 0111 183 B7 1011 0111 247
120 78 I 0111 1000 184 B8 1011 1000 248
121 79 0111 1001 185 B9 1011 1001 249
122 7A I 0111 1010 I 186 I BA 11011 1010 250 !

123 7B i 0111 1011 i 187 BB i 1011 1011 251 I
124 7C I 0111 1100

I
188 BC 11011 1100 252 I

125 70 10111 1101 189 80 11011 1101
253 I 126 7E 0111 1110 190 BE 11011 1110 I 254

127 7F 0111 1111 I 191 BF 11011 1111 255

Hexa- Binary
deci- 8-bit
mal Code

CO 1100 0000
C1 1100 0001
C2 11000010
C3 1100 0011
C4 11000100
C5 11000101
C6 1100 0110
C7 1100 0111
C8 1100 1000
C9 1100 1001
CA 1100 1010
CB 11001011
CC 11001100
CO 11001101
CE 11001110
CF 1100 1111
DO 1101 0000
01 1101 0001
02 1101 0010
03 I 1101 0011
04 1101 0100
05 1101 0101
06 11010110
07 1101 0111
08 1101 1000
09 1101 1001
OA 1101 1010
DB 1101 1011
DC 1101 1100
DO 1101 1101
DE 111.01 1110

I OF 1101 1111
EO 11110 0000
E1 i 1110 0001 I E2 1110 0010
E3 11110 0011 I
E4 1110 0100 ! E5 I 1110 0101 I

E6 1110 0110
E7 1110 0111
E8 1110 1000
E9 1110 1001
EA 1110 1010
EB 1110 1011
EC 1110 1100
ED 1110 1101
EE 1110 1110
EF 1110 1111
FO 1111 0000
F1 1111 0001
F2 1111 0010
F3 1"" 0011 F4 1111 0100
F5 1111 0101
F6 i 1111 0110
F7 11111 0111
F8 11111 1000
F9 , 1111 1001
FA ! 1111 1010
FB i 1111 1011
FC 1111 1100
FO 1111 1101
FE 1111 1110
FF 11111111

MEV A FEB 1981

Tables-8500 MOL A Series Assembler Users

EXAMPLE

REV A FEB 1981

Table 10-5
Hexadecimal Addition

HEX F + 8

HEX 10

HEX ~
HEX 17

17

16 DEC

.2 DEC
23 DEC

Hexadecimal Addition

10-7

Hexadecimal Multiplication

EXAMPLE

10-8

Tables-8500 MOL A Series Assembler Users

Table 10-6
Hexadecimal Multiplication

HEX 9 x 8

HEX 40
HEXa.
HEX 48

48

64 DEC

.Jt DEC
72 DEC

REV A FEB 1981

8500 MOL A Series Assembler Users

Section 11

TECHNICAL NOTES

This section is reserved for technical information about the Tektronix Assembler, Linker, and
Library Generator (LibGen). At the time of this writing, no technical notes are included.
Technical notes will be incorporated into later versions of this manual, as necessary.

REV A FEB 1981 11-1

8500 MOL A Series Assembler Users

Section 12

ASSEMBLER SPECIFICS

Processor-specific information is contained in the Assembler Specifics supplement that
accompanies each assembler. Each supplement is designed as a subsection to this manual.

These Assembler Specifics supplements are numbered as if they were separate sections of
this manual. For example, the 8080A/8085A supplement is labeled "Section 12A," and the
first illustration is numbered "Fig. 12A-1." Similarly, other supplements are labeled Sections
128, 12C, etc. Figures, pages, and tables are numbered accordingly.

Each subsection presents the following information:

• A demonstration run that parallels the one given for the 8080A/8085A in the Learning
Guide of this manual.

• A brief summary of the processor's addressing modes and registers.

• A list of notational conventions used to describe the instruction set.

• The microprocessor instruction set in a notation acceptable to the given assembler.

• A list of reserved words for the given assembler.

• The page size for the assembler, as defined in the Linker section of this manual.

• Any processor-specific assembler error messages.

• Any irregularities that should be noted.

REV A FEB 1981 12-1

Error Messages-8500 MOL A Series Assembler Users

Section 13

ERROR MESSAGES

INTRODUCTION
This section lists the assembler error messages in numeric order. The assembler error
messages with numbers above 91 are described in the Assembler Specifics section for your
microprocessor. Refer to the Linker section for the linker error messages and to the Library
Generator section for the LibGen error messages. Each error message is followed by a
description of possible causes.

***** ERROR 001:. (No message) This error is generated by a user-specified WARNING
directive. For more information, see the WARNING directive in the Assembler Directives
section of this manual.

***** ERROR 002: Symbol already defined. A symbol has been redefined. This error may
occur if the same symbol is equated to two different values (with EQU directives) or if two
different instructions have the same label.

***** ERROR 003: Symbol value Phase Error. There is a difference between pass 1 and
pass 2 in the value or section number of a label or symbol. This message may be caused by a
SET directive with a forward reference.

***** ERROR 004: Illegal EQU of GLOBALs. An unbound global has been assigned the
value of another unbound global (with the EQU directive).

***** ERROR 005: Global definition may not use HI, LO, or ENDOF. The values of HI, LO
or ENDOF have been assigned to a global symbol. This error may occur when a global symbol
is equated to HI(x) or LO(x), where x is an address; or ENDOF(y), where y is section name
whose ending address is yet to be found.

***** ERROR 006: String expression required. A numeric value appears where a string is
required. Concatenation, SEG or NCHR functions, and ASCII, TITLE, or STITLE directives all
require string operands.

REV A FEB 1981 13-1

13-2

Error Messages-8500 MOL A Series Assembler Users

***** ERROR 007: Undefined BLOCK or ORG expression. The operand of an ORG or
BLOCK directive is either undefined or a forward reference. This error may occur if a
misspelled or undefined symbol appears in an ORG or BLOCK directive, or if these directives
reference a symbol that has not yet been assigned a value.

***** ERROR 008: Invalid ORG out of section. The section of an ORG expression is either
not a scalar or not an address within the current section. This error may occur if a misspelled
or invalid symbol is used within an ORG expression or if a SECTION or RESUME statement is
missing.

***** ERROR 009: Negative block length. The BLOCK operand is either negative or greater
than 32767.

***** ERROR 010: Macro already defined. The same name appears in two or more
MACRO directives.

***** ERROR 011: Macro definition phase error. There are two possible errors: the macro
has been called before being defined, or the macro has been defined in the second (but not
the first) pass of the assembler. This error may be caused by a forward reference used with a
SET directive.

***** ERROR 012: Memory full on Macro call. There is insufficient memory space to
perform macro expansion. This error may occur if no limit is set for macro recursion, if too
many symbols are used in a macro definition, or if too many actual parameters are specified.

***** ERROR 013: Missing EI\IDR or ENDIF. A conditional assembly (IF or REPEATj biuck
is not properly terminated. This error may occur if a conditional assembly block begins within
a macro definition. This error may also occur if a macro ends (with the ENDM directive)
before termination of conditional assembly (by the ENDR or ENDIF directive).

***** ERROR 014: Duplicate definition of section name. A section name is already in use
as a symbol.

***** ERROR 015: END directive invalid within an INCLUDE file. An END directive is
present within an INCLUDE file. See the Assembler Directives section n this manual for
information on iNCLUDE files.

REV A FEB 1981

Error Messages-8500 MOL A Series Assembler Users

***** ERROR 016: ENDR or ENDIF mis-matched. An incorrect termination directive is
used on a conditional assembly block. This error may occur if an ENDR is used to terminate a
IF block, if an ENDIF is used to terminate a REPEAT block, or if REPEAT and IF blocks overlap
each other.

***** ERROR 017: Iteration limit exceeded. An attempt has been made to assemble a
REPEAT block more than the number of times specified in the second parameter of the
REPEAT directive. If this parameter is not specified, the error message is displayed after 256
repeat cycles are completed.

***** ERROR 018: Misplaced ELSE. Either an ELSE directive is outside an IF-ENDIF block,
or more than one ELSE directive is within an IF-ENDIF block.

***** ERROR 019: Operation invalid for address. An operation requiring scalar operands
has been applied to an address value.

***** ERROR 020: Divisor is zero. A division or a MOD operation attempted to use zero as
a divisor.

***** ERROR 021: Text following "" ignored. The information following a bracketed macro
parameter has been ignored. For example, [BC]DE results in a parameter of BC (and
generates this error message). Refer to the Macro section of this manual for further
information on parameters.

***** ERROR 022: ENDOF operand is scalar. The specified parameter of an ENDOF
function is a scalar or non-global symbol.

***** ERROR 023: ENDOF already applied. An attempt has been made to perform an
ENDOF function upon an address resulting from a previous ENDOF function.

***** ERROR 024: ENDOF operand is not global. The specified parameter of an ENDOF
function is a scalar or non-global symbol.

***** ERROR 025: Operation on HI or LO of address. An attempt has been made to add or
subtract the result of a HI or LO function.

REV A FEB 1981 13-3

13-4

Error Messages-8500 MOL A Series Assembler Users

***** ERROR 026: Addition of addresses. An attempt has been made to add two
addresses.

***** ERROR 027: Conflicting section bases. An attempt has been made to subtract or
compare addresses based on different sections.

***** ERROR 028: Address subtracted from scalar. An attempt has been made to subtract
an address from a scalar value.

***** ERROR 029: Negative string length. A declaration in the STRING directive specifies
a maximum length that is either negative or greater than 32767.

***** ERROR 030: String length phase error. The declared length in the STRING directive
differs between the first and second assembler passes. This error may be caused by a SET
directive with a forward reference.

***** ERROR 031: Redeclaration of string variable. An attempt has been made to
redeclare a string variable. This error may occur if a STRING directive is inside a REPEAT
loop or inside a macro which is expanded more than once.

***** ERROR 032: String declaration phase error. A string value has been defined during
the second assembler pass but not during the first pass. This error may be caused by a SET
directive with a forward reference.

***** ERROR 033: Invalid string name. An invalid symbol is used as a string variable name
in a STRING directive. See the Assembler Directives section for more information on the
STRING directive.

***** ERROR 034: END inside an unclosed block. An END statement occurs within an IF
block, a REPEAT block, or a MACRO definition block. This error may occur if the ENDM,
ENDR, or ENDIF directives are either missing or misspelled.

***** ERROR 035: Value truncated to byte. The value entered exceeds one byte (allowable
range -128 to +255). The value is truncated to fall within this range.

***** ERROR 036: Invalid character follows label. A label has not been followed by a
space or tab character.

REV A FEB 1981

Error Messages-8500 MOL A Series Assembler Users

***** ERROR 037: Extra operands ignored. One or more extra operands appear in a
statement. The statement is assembled and the extra operands are ignored. This error may
occur if a statement is miscoded, if an invalid delimiter is used for an operand list, or if a
semicolon does not precede a comment. This error may also occur if an invalid character
occurs within a symbol (for example, AB%C).

***** ERROR 038: String variable used as label. A string variable is present in the label
field of a statement other than a SET directive. The label field is ignored.

***** ERROR 039: Invalid operation code. The assembler is unable to recognize or process
a symbol or character in the operation field of a statement. This error may occur if an
operation is misspelled, if a macro invocation precedes its definition, or if an invalid delimiter
follows a label.

***** ERROR 040: Invalid character. A character not in the assembler character set has
been used outside of double quotes. Refer to the "Source Module Character Set" in the
Tables section of this manual.

***** ERROR 041: Syntax error. A statement does not conform to the required syntax.
Refer to the Language Elements section of this manual for the correct syntax.

***** ERROR 042: Invalid option or separator. An invalid delimiter has been used between
listing control options in the LIST or NOLIST directive operand field. Spaces are not valid
delimiters. This erior may occur if spaces are uSed in place of commas to delimit the options,
or if an invalid listing control option is used.

***** ERROR 043: No label on EQU or SET. An EQU or SET directive has a missing or
invalid label field.

***** ERROR 044: Invalid macro name. A macro name is missing or invalid. The macro
body is ignored. This error may occur if the macro name is already defined or if an invalid
delimiter is used before the macro name.

***** ERROR 045: Invalid relocation option. An invalid relocation option has been used in
a section directive. (Valid options are: PAGE, INPAGE, and ABSOLUTE.) The assembler
ignores the invalid option and assumes the section to be byte-reiocatable. This error may
occur if the option is misspelled or is not preceded by a comma.

REV A FEB 1981 13-5

13-6

Error Messages-8500 MOL A Series Assembler Users

***** ERROR 046: MACRO within a macro. A MACRO directive occurs within a macro
definition block. The MACRO directive is ignored.

***** ERROR 047: Invalid except in Macro. An EXITM, ENDM, REPEAT, or ENDR directive
appears outside of a macro definition block.

***** ERROR 048: Invalid operand. The specified operand is either incomplete or
inaccurate for the BYTE, WORD, ASCII, BLOCK, ORG, or TITLE directives.

***** ERROR 049: Address assigned to string. An attempt has been made to assign an
address value to a string variable.

***** ERROR 050: Section definition Phase error. The specified section relocation option
differs between pass 1 and pass 2. This error may occur if a SET directive has a forward
reference.

***** ERROR 051: Section definition Phase error. The specified section is defined during
the second, but not the first, pass of the assembler. This error may occur if a SET directive
has a forward reference.

***** ERROR 052: Too many Sections or Globals. The number of declared sections and
other global symbols exceeds 254 during the processing of a SECTION directive. The current
section declaration is not accepted by the assembler.

***** ERROR 053: Invalid relocation option. An ABSOLUTE relocation option has been
specified within a RESERVE directive operand field.

***** ERROR 054: Negative RESERVE length. The RESERVE operand is either negative or
greater than 32767.

***** ERROR 055: Invalid section name. An invalid symbol has been declared as a
SECTION, COMMON, or RESERVE name. This error may occur if a section name is
misspelled, contains invalid characters, or is a previously defined label or reserved word.

REV A FEB 1981

Error Messages-8500 MOL A Series Assembler Users

***** ERROR 056: Invalid RESERVE length. The required RESERVE expression is either
specified incorrectly, specified without a comma before the expression, or missing from the
RESERVE directive.

***** ERROR 057: RESUME section undefined. The resumed section has not been
previously defined with a SECTION or COMMON directive. This error may occur if the
parameters of the SECTION or COMMON directives are misspelled or use invalid characters.

***** ERROR 058: RESUME of RESERVE section. A RESUME directive has been used
with a RESERVE section name.

***** ERROR 059: Resumed section invalid. A resumed section has been defined after the
number of declared sections and other global symbols exceeded 254. The section being
resumed is discarded.

***** ERROR 060: Global operand already defined. A global symbol has been defined
more than once. See the GLOBAL directive in the Assembler Directives section for correct usage
of global symbols.

***** ERROR 061: GLOBAL declaration Phase error. A global symbol has been used
before it is defined. This message may be caused by a SET directive with a forward reference.

***** ERROR 062: Too many Sections and Globals. The number of declared sections and
other global symbols exceeded 254 during the processing of a GLOBAL directive. The current
global declaration is not accepted by the assembler.

***** ERROR 063: Invalid radix. An invalid radix follows a constant. The assembler
recognizes hexadecimal (H), octal (0 or 0), and binary (B) constants, and defaults to decimal
when no radix is specified.

***** ERROR 064: Invalid digit. An invalid digit is a~sociated with a specified radix. For
example. the binary number 10031 B contains an inva,. ~ digit (3).

***** ERROR 065: Unmatched string or parameter delimiter. An opening quotation mark
or bracket is not matched by a closing quotation mark or bracket.

REV A FEB 1981 13-7

13-8

Error Messages-8500 MOL A Series Assembler Users

***** ERROR 066: Line too long after replacement. The expanded line (containing single
quotes used as replacement indicators) is too long. Only 127 characters are allowed.

***** ERROR 067: Extra replacement identifier. One or more characters follow the
replacement identifier (an item enclosed in single quotes) within a macro definition block. For
example, '#bug' generates this error.

***** ERROR 068: Replacement invalid outside of macro. Replacement identifiers (# and
@) are used outside of a macro definition block.

***** ERROR 069: Undefined replacement string. A symbol in single quotes (' ') is not yet
defined as a string.

***** ERROR 070: Invalid replacement identifier. An invalid symbol or symbols have been
used for the replacement specification. For example, 'n?' is invalid.

***** ERROR 071: Scalar value required. An address value has been used where a scalar
is required.

***** ERROR 072: Invalid expression. The expression is either invalid or incomplete for the
specified operation.

***** ERROR 073: Section size Phase error. The number of bytes generated for this
section dUiing the first pass is not the !:)arne as the number of bytes generated during the
second pass. This error may occur if a SET directive is used with a forward reference.

***** ERROR 074: Undefined symbol. No value has yet been assigned to a symbol used in
an expression.

***** ERROR 075: String truncated. More characters are assigned to a string than allowed
by its definition.

***** ERROR 076: Negative SEG operand. The parameter of the SEG function is either
negative or greater than 32767.

REV A FEB 1981

Error Messages-8500 MOL A Series Assembler Users

***** ERROR 077: SEG starting operand is zero. The starting position parameter of the
SEG function is zero.

***** ERROR 078: Insufficient workspace. An internal work area of the assembler is full.
This error may occur if string functions or conditional assembly leave insufficient memory to
perform the required functions.

***** ERROR 079: Value too large. The operand of the SPACE directive exceeds 255.

***** ERROR 080: Invalid NAME symbol. The NAME symbol is invalid because it does not
begin with a lettei.

***** ERROR 081: Illegally substituted ENDM. An ENDM directive within a macro
expansion precedes the normal macro ending.

***** ERROR 082: Nested INCLUDE directive. The source code inserted into the program
with an INCLUDE directive contains another INCLUDE" directive. See the Assembler
Directives section for information on the INCLUDE directive.

***** ERROR 083: Missing ENDIF. The ENDIF directive is missing from a conditional IF
block.

***** ERROR 084: Missing EN OM for included macro. The ENDM directive is missing
from a macro definition block.

***** ERROR 085: String value too large. The length of a string used as a number exceeds
two characters.

***** ERROR 086: Shift count exceeds 16. An attempt has been made (using SHL or SHR)
to shift "lore than 16 bit positions in one operation

***** ERROR 087: Too many symbols. The assembler symbol table is filled. This is a fatal
error; assembly is aborted. This error occurs when too many symbols have been used. The
source module must be divided into smaller pieces to permit assembly.

REV A FEB 1981 13-9

13-10

Error Messages S500 MOL A Series Assembler Users

***** ERROR 088: Invalid transfer label. The label used for a transfer address on an END
directive is not an address defined in the current source module.

***** ERROR 090: ENDOF function applied to a bound global. An ENDOF function has
been used with a bound global instead of a section.

***** ERROR 091: Unable to assign INCLUDE file. DOS/50 is unable to access an
INCLUDE file. This occurs when an illegal filespec is specified. (For example, INCLUDE "LPT"
specifies a reserved device.) This error message is preceded by an SRB status code indicating
the reason that the specified file cannot be accessed. Refer to the Error Codes section of the
8550 System Users Manual for individual descriptions of the SRB status codes.

***** ERROR 092: Illegal operation on a global. An attempt has been made to assign a
value to a globa! symbol with the SET directive.

~EV A FEB 1981

8500 MOL A Series Assembler Users

Section 14

GLOSSARY

Absolute. Having a specified location in memory: not relocatable. An absolute address
specifies the actual location of a byte in memory.

Actual Parameter. See Parameter.

Address. A number or symbol that specifies a byte in memory. A 16-bit address has a vaiue
in the range 0 to 65535 (FFFF hexadecimal).

Assembler. The system program that translates assembly language programs into machine
language.

Assembly Language. A microprocessor-specific programming language that allows the
symbolic representation of any processor operation. Each operation is coded as one assembly
language statement.

Base. The base of a section of object code is the location of the first byte in the section.

Binary. The base 2 numbering system. A binary digit, or bit, has the value 0 or 1. A binary
constant in an assembly language program requires the suffix B. For example, the decimal
number 29 may be written as 11101 B.

Bound Global. See Global.

Brief Name. A temporarily defined shorthand name for a file, used as an alternative to a
complete filespec. The BRIEF command defines brief names.

Byte-Relocatable. See Relocatable.

Carriage Return. See Return.

Code. To translate a sequence of operations into a series of statements in a programming
language. The statements of a program are called source code. The machine instructions
produced by assembling source code are called object code.

Command File. A file containing commands to be processed by the operating system or by a
system program such as the linker or library generator.

REV A FEB 1981 14-1

14-2

Glossary-8500 MOL A Series Assembler Users

Command File Invocation. A method of invoking the linker or library generator.

LINK @comfile or L1BGEN @comfile

invokes the linker or library generator and specifies that commands are to be read from the
designated command file rather than from the system terminal.

Comment. A source program line, or part of a line, that is ignored by the assembler.
Comments are used for program documentation. A semicolon (;) signifies that the rest of the
line is a comment.

Common. A section of memory that may be shared by any number of subprograms. The
assembler directive COMMON declares a common section. The linker assigns the same area
of memory to all common sections with the same name.

Concatenation. Connecting end-to-end. For example, the concatenation "FLlP":"FLOP"
yields the string "FLIPFLOP". The colon (:) is the concatenation operator used in assembly
language programs.

Conditional Assembly. A feature of the Tektronix Assembler that allows a block of source
code to be assembled many times or not at all, depending on conditions defined earlier in the
source module.

Constant. A value expressed in literal form rather than as a symbol. A numeric constant is
written as a string of digits, optionally followed by a letter that indicates the radix (for
example, 29, 111 01B, 350, 1 DH). A string constant is written as a character string in quotes
(for example, "TEXT", "P.O. Box 500", '"').

Converter. A system program that translates an assembly language program written for
another assembler into a format suitable for processing by the Assembler.

Current Directory. The directory that contains the file(s) you are currently using. A filespec
that does not begin with a slash specifies either a standard device (such as CONI or REMO)
or 8 file in the current directory. The operating system USER command selects a new current
directory.

Data Item. A byte or sequence of bytes of object code that contains data other than machine
instructions. A data item is defined by an ASCII, BLOCK, BYTE, or WORD directive.

Default. A predefined value for a parameter, used when no value for the parameter is
explicitly specified.

Defined Symbol. A symbol that has been assigned a value.

Directive. An assembly language statement that does not represent a machine instruction
but does provide special information to the assembler. A!so ca!led a pseudo-operation,
pseudo-instruction, or quasi-instruction.

REV A FEB 1981

Glossary-8500 MOL A Series Assembler Users

Directory. A file that may contain only pointers to other files. A file that is not a directory is
called a data file. A file that is pointed to by a directory is said to reside in the directory; every
file resides in at least one directory. Likewise, a directory is said to contain each file it points
to. The operating system CREATE command creates a new directory.

DOS/50. The Disc Operating System of the 8550 Microcomputer Development Lab.

End Address. The address of the last byte in a section.

Expression. A formula that contains symbols, constants, or functions related by operators,
and yields a numeric or string value when evaluated. Symbols, constants, and functions are
themselves trivia I expressions.

Filespec. A sequence of names, separated by slashes, that defines a path to a file. A file that
is pointed to by the current directory may be specified with a single name.

Formal Parameter. See Parameter.

Forward Reference. Use of a symbol that is not defined until later in the current source
module.

Function, Assembler. A predefined function that may be used in assembly language
expressions. An assembler function has the form func(expr), where func is the name of the
function and expr is one or more expressions separated by commas.

Global (or Global Symbol). A symbol that is assigned a value in one module and referred to
in another. A bound global is defined in the current module. An unbound global is undefined
in the current module; its value must be supplied by another module or by the linker
command DEFINE.

Hexadecimal. The base 16 numbering system. Hexadecimal digits include the digits 0
through 9, and the letters A through F to represent the decimal values 10 through 15. A
hexadecimal constant in an assembly language program requires the suffix H and begins
with a decimal digit to distinguish it from a symbol. For example, the decimal number 29 may
be written as 1 DH. The decimal number 15 may be written as OFH (but not FH).

Inpage-Relocatable. See Relocatable.

Instruction. A machine instruction is a sequence of bytes that directs a microprocessor to
perform an elementary operation such as load, store, add, or branch. An assembly language
instruction is an alphanumeric representation of a machine instruction. The assembler
translates an aSSembly language instruction into the corresponding machine instruction.

interactive invocation. A method of invoking the linker or library' generatoi. VVhen }lou enter
the LINK command without parameters, or the LlBGEN command without specifying a
command file, you must enter further linker or library generator commands from the system
terminal.

label. A symbol that represents an address, variable, or constant in an assembly language
p~ogram.

REV A FEB 1981 14-3

14-4

Glossary-8500 MOL A Series Assembler Users

Library. A collection of object modules that usually contains commonly-used subroutines.
You may include calls to library routines in your source program; the linker includes the
necessary object modules in the load file.

Library Generator (LibGen). The system program used to create and maintain libraries of
object modules.

Linker. The system prqgram that combines object modules into a single executable load file.

Listing. A file or printout that summarizes the actions of a program such as the assembler,
linker, or library generator.

Local. Not global. In an assembly language program. a local symbol is referenced only by
statements in the same source module.

Location Counter. An internal counter maintained by the assembler that marks the location,
relative to the beginning of the section, of the next machine instruction to be assembled. A
symbol in the label field of an assembly language statement is usually assigned the current
value of the location counter.

Machine Instruction. See Instruction.

Machine Language. The binary language of a microprocessor. A high-level or assembly
language program must be translated into machine instructions before the microprocessor
can execute the program. Relocatable machine language produced by the assembler may
require adjustment by the linker in order for the instructions to execute properly.

Macro. A frequently-used group of assembler statements that are inserted into the program
at assembly time wherever the macro is invoked.

Macro Definition. A group of assembler statements that define a macro. A macro definition
begins with a MACRO directive and ends with an EN OM directive. Statements in the macro
definition may contain formal parameters, which are replaced with actual parameters
vvherever the macro is invoked.

Macro Expansion. The process of replacing a macro invocation with the macro definition
block it invokes.

Macro Invocation. An assembler statement containing the name of a macro in the operation
field and, optionally, a list of actual parameters in the operand field.

Mnemonic. A symbol that represents a machine instruction. Usually the symbol is an
abbreviation that suggests the machine operation to be performed. For example, the 8080A
mnemonic MOV represents a machine instruction that moves a value into a register.

Module. A program unit that is complete for purposes of assembling, linking, or loading. It
may be combined with other modules to produce a complete program. An object module
contains all the object code produced in a single assembler run. A source module is a set of
assembly language statements (ending with an END directive or an end-ot-tile) that produces
an object module when assembled.

REV A FEB 1981

Glossary-8500 MOL A Series Assembler Users

Nest. (1) To include a block of assembly language statements inside another block of
statements of the same type. (2) To include a subexpression within an expression.

Null String. An empty character string without quotes: nothing.

Object Code. Machine language produced by the assembler from source statements. An
object module contains one or more sections of object code, plus special information used
by the linker, library generator, or LOAD command. An object file is a file that contains an
object module.

Octal. The base 8 numbering system. The eight octal digits are 0 through 7. An octal
constant in an assembly language program requires the suffix letter 0 or O. For example, the
decimal number 29 may be written as 350 or 350.

Operand. A number or other value on which an operation is performed. The expression X + 3
performs an add operation on the operands X and 3. The assembly language statement LOA
NUM 1 performs a load operation on the byte addressed by the operand NUM 1.

Operator. A character or symbol that represents an operation to be performed on one or
more operands. Operators used in assembly language programs are:

* / + - MOD
\ & ! !! SHL SHR
= < <= > >= <>

(arithmetic)
(bit manipulation)
(relational)
(string concatenation)

Page. A subdivision of memory. Page size is processor-dependent and reflects addressing
considerations. For example, in a 64K memory with 256-byte pages, the high-order byte of a
16-bit address selects one of the 256 pages and the low-order byte of the address selects a
byte within that page.

Page-Relocatable. See Relocatable.

Parameter. In an operating system command, a parameter is a name or number that follows
the command word and tells something about how the command is to be executed.

In an assembler macro, a parameter is a value that remains undefined until the macro is
invoked. A formal parameter is a place holder in a macro definition block; the first formal
parameter is written as '1 " the second as '2', and so on. An actual parameter is a character
string in a macro invocation that replaces each occurrence of the corresponding formal
parameter in the macro block. "Parameter" may refer to either a formal parameter or an

Program Memory. The microcomputer development lab memory used as a substitute for
prototype memory in the early stages of prototype development (emulation modes 0 and 1).
User programs run in program memory, as do the assembler, linker, library generator, and
certain other system programs.

REV A FEB 1981 14-5

14-6

Gtossary=8500 MOL A S-eriesAssembter Users

Relocatable. A relocatable section is a section whose location in memory is not determined
until link time. A page-relocatable section must begin on a page boundary; an inpage
relocatable section may not cross page boundaries; a byte-relocatable section may be
positioned anywhere in memory; an absolute section must start at a specified address.

Reserved Word. A predefined symbol that has a special meaning to the assembler and may
not be used as a label, section name, or module name. Reserved words include mnemonics,
register names, and assembler directives and functions.

Return. The RETURN character (ASCII code 13), also called CR or carriage return. This
character marks the end of a command or an assembly language statement.

Scalar. A 16-bit signed numeric value not used as an address. A scalar takes a value in the
range -32768 to +32767.

Section. A section of object code is a block of contiguous bytes, and is the fundamental,
indivisible unit handled by the linker. A section of source code comprises the statements
that will produce a section of object code when they are assembled. Each section of source
code begins with a SECTION, COMMON, or RESERVE directive.

Simple Invocation. A method of invoking the linker in which all actions to be taken by the
linker are specified in the LINK command line.

Source Code. Program statements written in assembly language. A source module is a set
of source statements (ending with an END directive or an end-of-file) that produces an object
module when assembled. A source file is a file containing all or part of a source module.

Start Address. The address of the base, or first byte, of a section.

String. A sequence of ASCII characters. A string enclosed in quotes (for example,
"ELEPHANT") is called a string constant.

Symboi. A strlilg of orle to eigi-Jt ci-,aracters begiilrting witt-, a ietter arid contairlirlg ordy
letters, digits, periods, underscores, or dollar signs. Predefined symbols include assembler
directives and functions, mnemonics, and register names. User-defined symbols represent
addresses, data items, variables, macros, sections, or modules.

Transfer Address. The address of the first machine instruction to be executed in a load file.
A transfer address may be specified in the END statement of a source module or in the linker
command TRANSFER.

Unbound Global. See Global.

Variable. In an assembly language program, a value that may be altered during assembly.
The SET directive creates or redefines a variable.

REV A FEB 1981

8500 MOL A Series Assembler Users

A
Absolute, defined, 14-1

Absolute (relocation type), 2-8, 5-6, 5-40

Actual parameter, defined, 14-5

Address, defined, 14-1

Address values, 4-8, 4-18

Addressing modes, section 12

AFTER (LibGen parameter), 8-14

Allocation of sections, 7-6

Arithmetic operators, 4-14

ASCII codes (hexadecimal), table of, 10-5

ASCII directive, 5-3
sample usage, 3-17

ASM command, 3-3

Assembler:
demonstration, 1-16, 1-22
execution, 3-5
features, 1-4
input, 3-4
invoking the, 2-2, 3-3
macro. See Macro
variable, 4-9

Assembler directives, section 5
defined. 4-3, 14-3
labels for, 5-2
list of. 10-3

Assembler listing:
explanation of, 3-6
example, i -19, 1-23, 3-8
headings, 5-46, 5-49
options, 5-23
statistics, 3-7, 3-18

Assembler specifics, explanation, 1-1, section 12

Assemb!y:
combining source files during, 2-2
conditional:

blocks, 3-13, 5-19, 5-34
defined, 14-2
example of. 9-38

Assembly language, defined. 14-1

Assembly language instructions:
defined, 4-3, 14-4
notational conventions for, section 12

B
BASE:

assembler function, 4-20
linker option, 7-21

Base, defined, 14-1

BEFORE (LibGen parameter), 8-14

Binary, defined. 14-1

Bit, defined, 14-1

BLOCK directive, 5-4
sample usage. 3-15

Bound global:
description, 5-17
defined, 14-3

Byte-relocatable, defined, 14-6

"Bytes available" message, 1-17. 3-7

REV A FEB 1981

Section 15
INDEX

C
Characters, special:

@ (at sign):
LibGen command, 8-10
I inker command, 7-15
macro construct, 6-4, 9-41
using the, 9-41

$ (dollar sign), 4-8
% (percent sign), 4-11, 6-5
(pound sign), 6-4
/\ (up arrow), 6-5
disabling significance of, 6-5

CND (listing option), 5-24

Code. defined, 14-1

Command file, defined, 4-1, 14-2

Command file invocation:
defined, 14-2
LibGen, 8-1, 8-4, 8-10
linker, 7-1. 7-15

Command name, 3-2

Comment, defined. 14-2

Comment field. 4-5

COMMON directive, 5-6
sample usage, 3-15

Common section, 5-6

CON (listing option). 5-25

Concatenation:
defined. 14-2
string. 4-19

Conditional assembly. See Assembly, conditional

Constant:
defined, 14-2
numeric. 4-8, 14-2
string. 4-9, 14-2

Constant values. example of creating, 9-32

Converter, defined. 14-2

<CR> (carriage return). 1-8
defined. 14-7

Current directory. defined. 14-2

D

Data item. defined, 14-2

DBG (listing option). 5-25

Decimal-hexadecimal-binary equivalents. table of.

10-6

DEF function. 4-22

Defauit, defined, i 4-3

Default section. 3-18, 5-41

DEFINE (linker command), 7-16

DELETE (LibGen command). 8-11

Demonstration run, 1-8

Directive, defined, 14-2

Directory, defined, 14-3

DOS/50, defined, 14-3

DOS/50 SVC generation, example of, 9-27

15-1

E
Editor demonstration, 1 -14

ELSE directive, 5-10

END:
directive, 5-11
LibGen command, 8-12
linker command, 7-17

End address, defined, 14-3

ENDIF directive, 5-12

ENDM directive, 5-13, 6-2, 6-6

ENDOF function, 4-23

ENDR directive, 5-14

ENDREL, 7-7

Entry point, 5-17

EQU directive, 5-15
sample usage, 3-14

Error messages:
assembler, 1-16
LibGen, 8-7
linker, 7-11, 7-27
processor-specific, section 12
user-defined, 5-50

sample usage, 3-13

Errors, assembler, 3-7
example of. 3-14,

Executable object code, 1-28

Execution, assembler. 3-5

EXITM directive, 5-16

Expression, 4-12, 14-3

EXTRACT libGen command, 8-13

F
Field:

comment, 4-5
defined, 1 -8, 4-4
label, 4-2
operand, 4-4
operation, 4-3

File naming, 1-13

Filespec, defined, 14-3

Formal parameter, defined 14-5

Forward reference:
defined, 14-3
use of, 3-5

Functions, assembler:
defined, 14-3
description, 4-19
table of, 4-12

G
Global:

bound, 5-17
defined, 14-3
example of, 5-18
unbound, 5-17

GLOBAL directive, 5-17
sample usage, 3-14

Globa! sYfTlbols list, 7-9
examDle of. 1-26

15-2

Index-8500 MOL A Series Assembler Users

H
Hexadecimal, defined, 14-3

Hexadecimal addition, table of. 10-7

Hexadecimal multiplication, table of. 10-8

HI function, 4-24
sample usage, 3-13

IF directive, 5-19

IF ... ELSE ... ENDIF block, 5-19

IF ... ENDIF block, 5-19
sample usage, 3-13

INCLUDE directive:
description, 5-22
using the, 9-42

INPAGE:
iinker option, 7-21
relocation type, 5-6, 5-37, 5-40

Input, assembler, 3-4

INSERT (LibGen command), 8-14

Installation, assembler software, 1 -6, section 12

Instruction set. processor, section 12

Interactive invocation:
defined, 14-3
LibGen, 8-1. 8-2
linker, 7-1, 7-3

Internal symbol list, 5-25, 7-9

l
Label. defined, 14-3

Label field, 4-2

Label generation, unique ('@"). 6-4

Labels for assembler directives, 5-2

LibGen:
command entry, terminating. 8-12
command file, invoking a, 8-4, 8-10
commands, use of, 8-9
error messages, 8-7
execution of, 8-5
features, 1-5
inieraciive commands:

@, 8-10
DELETE, 8-11
END,8-12
EXTRACT, 8-13
INSERT, 8-14
LIST, 8-16
LOG, 8-17
NEWLlB, 8-18
NOLOG,8-19
OlDUB, 8-20
REPLACE, 8-21

invocation:
command file, 8-4. 8-10
interactive, 8-1, 8-2

library file, 8-5
listing, 8-5
output, 8-5
using. 2-10

Libraries, combin:ng, 2-14

REV A FEB 1981

Index-8500 MOL A Series Assembler Users

Library:
building a, 2-10
creating a user-defined, 2-11
defined, 14-4

Library file:
as LibGen output, 8-6
linking a, 7-7

Library generator. See LibGen

Library module:
adding a new, 2-12
deleting a, 8-11
extracting a, 2-13, 8-13
replacing a, 2-13,

LINK (linker command), 7-18

LINK (DOS/50 command), 7-1

Linker:
command processing errors, 7-27
commands, use of, 7-14
demonstration, 1 -25
error messages, 7-11
execution, 7-5
features, 1-5
interactive commands:

@, 7-15
DEFINE, 7-16
END, 7-17
LINK, 7-18
LIST. 7-19
LOAD, 7-20
LOCATE, 7-21
LOG, 7-22, 7-24
MAP, 7-23
NOLOG, 7-24
NO MAP, 7-23, 7-25
TRANSFER, 7-26

invocation:
command file, 7-1, 7-4
interactive, 2-5, 7-1, 7-3
simple, 2-4, 7-1, 7-2

listing file, 7-8
maps, 7-10

memory, 1-27, 7-10
module, 1-27,7-10

output, 7-8
statistics, 7-11

Linker listing:
displaying internal symbols in the, 2-3
example of, 1-26

Linking a program, 2-4

Linking to a library file, 7-7

Linking to an address range, 2-7

LIST:
directive, 5-23

sample usage, 3-12
LibGen command, 8-16
linker command, 7-19

Listing:
assembler:

example of, 3-8
explanation of, 3-6

headings for assembler, 5-46, 5-49
LibGen, 8-6
1:_1. _ 1 'lC'
11I11\.t::1, I-LU

source, 3-6
See also Assembler listing

LO function, 4-25

LOAD:
linker command, 7-20
DOS/50 command, 1-28

Local. defined, 14-4

LOCATE (linker command), 7-21

REV A FEB 1981

Location counter:
defined, 14-4
described, 4-8
setting the, 5-30

LOG:
LibGen command, 8-17
linker command, 7-22, 7-24

Logical operators, 4-16

M

Machine instruction, defined, 14-4

Machine language, defined, 14-4

Macro:
assembly of, 3-5
body, 6-3
defined, 6-1, 14-4
examples of, 3-13, 6-11, 9-2, 9-27
expansion:
. defined, 6-2, 14-4

display of statements in, 5-24
invocation, defined, 4-4, 6-2, 6-6, 14-4
operators, 6-3
parameter:

access, 6-4
conventions, 6-6
sample usage, 3-16

MACRO directive, 5-27, 6-2

Manual overview, 1-1, 1-27

MAP (linker command), 7-23

ME (listing option), 5-24
sample usage, 3-17

MEG (listing option), 5-24

Memory, reserving an area of, 2-8, 5-4, 5-37

Memory map:
description, 7-10
example of, 1 -26

Memory-mapped I/O, 2-9

Mnemonic, defined, 14-4

Mnemonics, processor, section 12

MOD operator, 4-14

Module:
defined, 14-4
object, 3-6

Modu:e map:
description, 7-10
example of, 1-24

N

NAME directive, 5-28

NCHR function, 4-26

Nest. defined, 14-5

Nesting conventions for assembly language

statements, 5-20, 5-35

NEWLIB (LibGen command), 8-18

NOLIST directive, 5-29

NOLOG:
LibGen command, 8-19
linkEr command, 7-24

NOMAP (linker command), 7-23, 7-25

NONAME, 5-28

Null string, defined, 14-5

Numeric values, 4-7

Numeric variable, 4-9, 5-42

15-3

o
Object code:

defined, 14-5
example of, 3-8
executable, 1-28
relocatable, 1-28

Object file, defined, 14-5

Object module:
defined, 14-5
description of. 3-6
name of, 5-28

Octal, defined, 14-5

OLDLIB (LibGen command), 8-20

Operand:
defined, 14-5
use of, 4-4

Operand field, 4-4

Operation field, 4-3

Operators:
arithmetic, 4-14
defined, 4-13, 14-5
hierarchy of, 4-13
logical, 4-16
relational, 4-17
string, 4-19
table of, 4-1 2

ORG directive, 5-30

Overview of manual, 1-1, 1-30

Overview of programming process. 1-2

P
PAGE:

directive, 5-33
linker option, 7-21
relocation type, 5-6, 5-37, 5-40

Page (of memory), defined, 14-5

Page size. processor, section 12

Page-relocatable, defined, 14-6

Parameter, defined, 3-2, 14-5

Parameter count (macro), 6-4

Passes, assembler, 3-5

Procedures, 2-1

Program memory, defined, 14-5

Program modules, example of, 1 -10

Program section, 5-40

Programming process:

R

figure, 1-3
overview of, 1-2

RANGE (linker option), 2-7, 7-21

Register names, section 12

Relational operators, 4-17
comparison table, 4-8

Relocatable, defined, 14-6

Relocatable address, 4-8

Relocatable object code, 1 -25

Relocation indicator, 3-6
example of, 3-14

Relocation of sections, example of, 5-31

REPEAT directive, 5-34

15-4

Index-8500 MOL A Series Assembler Users

REPEAT...ENDR block, 5-34

REPLACE (LibGen command), 8-21

RESERVE directive, 5-37

Reserve section, 5-37, 7-5

Reserved words, section 12, 14-6

RESUME directive, 5-39

Return character, 14-6

S
Scalar, defined, 14-6

SCALAR function, 4-27

Scalar values, 4-7, 4-17

Section:
allocation of, 7-6
attributes, 7-5
defined, 14-6
examples of, 1-9, 5-32

SECTION directive, 5-40
sample usage, 3-14

Section name, determining current, 6-5

SEG function, 4-28

Semicolon (comment), 4-5
sample usage, 3-12

Service call (SVC) generation, example of, 9-27

Service request blocks, example of creating, 9-27

SET directive, 4-10, 4-11, 5-42
sample usage, 3-1 2

SHL (shift left) function, 4-15

SHR (shift right) function, 4-15

Simple invocation, defined, 14-6

Source code, defined, 14-6

Source file, alternate, 5-22

Source file, defined, 14-6

Source listing:
description, 3-6
display of statements in, 5-24
example of, 1 -19, 3-8

Source module, defined, 14-6

Source module character set. 10-1

Source program, example of, 3-11

SPACE directive, 5-45

Stack, aiiucating memory for, 5-38

Start address, defined, 14-6

Statement fields, 1 -11, 4- 1

Statement types, 1 -10

Statements, 4-1

STITLE directive, 5-46

String, defined, 14-6

String constant, 4-9

String conversions, 4-12

STRING directive, 4-10, 5-48
sample usage, 3-12

STRING function, 4-29

String operator, 4-21

String values, 4-9, 4-18

String variable, 3-12, 4-10, 4-11, 5-42, 5-48
sample usage, 3-12

Subroutine library, example of creating and using

a, 9-6

REV A FEB 1981

8500 MOL A Series Assembler Users

Summary of action. See LibGen listing

SVC generation, example of, 9-27

SYM (listing option), 5-25

Symbol:
assigning value to, 4-6, 5-2, 5-15, 5-42
defined, 14-6
description, 4-6
predefined, 4-7
undefined, example of, 3-18
user-defined, 4-2, 4-6

Symbol list. See LibGen listing

Symbol table:
description, 3-7
controlling display of, 5-25
example of, 1 -19, 3-10

Syntax notation, 3-1
for assembler directives, 5-1

System overview, 1-1

T
Terminating LibGen command entry, 8-14

Text substitution, 3-5, 4-5, 4-13, 5-43

Text substitution indicator, 3-5
example of, 3-16

TITLE directive, 5-49
sample usage, 3-12

TRANSFER (linker command), 7-26

REV A FEB 1981

Transfer address, defined, 5-11, 14-6

TRM (listing option), 5-25
sample usage, 3-12

Two passes of the assembler, 3-5

Type conversion, 5-42

U
Unbound global, defined, 5-17, 14-3

Underlined characters in examples, 1-8

Unique label generation, 6-4

User-defined error messages, 5-50

V
Variable:

W

defined, 5-42, 14-6
numeric, 4-9, 5-42
string, 4-10, 5-42, 5-48
sample usage, 3-12

WARNING directive, 5-50
sample usage, 3-13

WORD directive, 5-51

15-5

	0001
	0002
	001
	002
	01-001
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	01-24
	01-25
	01-26
	01-27
	01-28
	01-29
	01-30
	01-31
	02-001
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	03-001
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	04-001
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	05-001
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	05-39
	05-40
	05-41
	05-42
	05-43
	05-44
	05-45
	05-46
	05-47
	05-48
	05-49
	05-50
	05-51
	06-001
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	07-001
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	08-001
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	09-001
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	09-33
	09-34
	09-35
	09-36
	09-37
	09-38
	09-39
	09-40
	09-41
	09-42
	09-43
	09-44
	09-45
	10-001
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	11-01
	12-01
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	15-01
	15-02
	15-03
	15-04
	15-05

