
Tektronix, Inc.
P.O. Box 500
Beaverton, Oregon 97077

070-3571-00

COMMITTED TO EXCELLENCE

PLEASE CHECK FOR CHANGE INFORMATION
AT THE REAR OF THIS MANUAL.

8550
MICROCOMPUTER

DEVELOPMENT LAB

EDITOR
Version 4.X

USER'S MANUAL

INSTRUCTION MANUAL

Serial Number ______ _

First Printing JUL 1980
Revised AUG 1981

LIMITED RIGHTS LEGEND

Software License No. _____________ _

Contractor: Tektronix, Inc.
Explanation of Limited Rights Data Identification Method
Used: Entire document subject to limited rights.

Those portions of this technical data indicated as limited rights data shall not,
without the written permission of the above Tektronix, be either (a) used,
released or disclosed in whole or in part outside the Customer, (b) used in whole
or in part by the Customer for manufacture or, in the case of computer software
documentation, for preparing the same or similar computer software, or (c) used
by a party other than the Customer, except for: (i) emergency repair or overhaul
work only, by or for the Customer, where the item or process concerned is not
otherwise reasonably available to enable timely performance of the work,
provided that the release or disclosure hereof outside the Customer shall be
made subject to a prohibition against further use, release or disclosure; or (ii)
release to a foreign government, as the interest of the United States may
require, only for information or evaluation within such government or for
emergency repair or overhaul work by or for such government under the
conditions of (i) above. This legend, together with the indications of the portions
of this data which are subject to such limitations shall be included on any
reproduction hereof which includes any part of the portions subject to such
limitations.

RESTRICTED RIGHTS IN SOFTWARE

The software described in this document is licensed software and subject to
restricted rights. The software may be used with the computer for which or with
which it was acquired. The software may be used with a backup computer ifthe
computer for which or with which it was acquired is inoperative. The software
may be copied for archive or backup purposes. The software may be modified or
combined with other software, subject to the provision that those portions of the
derivative software incorporating restricted rights software are subject to the
same restricted rights.

Copyright © 1980 Tektronix, Inc. All rights reserved. Contents ofthis publication
may not be reproduced in any form without the written permission of Tektronix,
Inc.

Products of Tektronix, Inc. and its subsidiaries are covered by U.S. and foreign
patents and/or pending patents.

TEKTRONIX, TEK, SCOPE-MOBILE, and ~ are registered trademarks of
Tektronix, Inc. TELEQUIPMENT is a registered trademark of Tektronix U.K.
Limited.

Printed in U.S.A. Specification and price change privileges are reserved.

8550 Editor

@

TABLE OF CONTENTS

Page

Section 1 LEARNING GUIDE

Introduction ... 1-1

Editor Overview... 1-2

Demonstration Run ... 1-4

For Continued Learning .. 1-11

Section 2 OPERATING PROCEDURES

Introduction ... 2-1

The Essentials .. 2-2

Displaying Text ... 2-8

Line Manipulation .. 2-10

Character String Manipulation .. 2-14

Block Manipulation ... 2-18

Command Shortcuts ... 2-24

Section 3 COMMAND DICTIONARY

Introduction ... 3-1

Dictionary Page Format ... 3- i

Terminology ... 3-1

The Workspace Buffer .. 3-2

Command Lines .. 3-3

Special Keys .. 3-4

Editor Commands ... 3-6

Section 4 TECHNICAL NOTES

Section 5 ERROR MESSAGES

Section 6 GLOSSARY

Section 7 INDEX

Fig.
No.

ILLUSTRATIONS

1 -1 The role of the editor in programming 1-2

3-1 The workspace buffer ... 3-3

8550 Editor

Section 1
LEARNING GUIDE

Page

Introduction 1-1

Editor Overview .. 1-2

Uses of the Editor .. 1-2

General Features ... 1-3

The Workspace ... 1-3

Demonstration Run .. 1-4

Create a Text File .. 1-4

How to Correct Input Mistakes .. 1-4

Set Tabs .. 1-5

Enter Text .. 1-5

Display Text .. 1-6

Save Text in a file ... 1-6

Modify a File ... 1-7

Get Text from the File into the Workspace .. 1-7

Move the Workspace Pointer .. 1-8

Substitute Text .. 1-8

Display Editor Line Numbers .. 1-9

Move a Block of Text ... 1-9

Find and Change a Character String .. 1-9

Enter Multiple Commands on a Line ... 1-10

Print a Copy on the Line Printer ... 1-10

For Continued Learning ... 1 -11

Fig.
No.

Illustrations

1-1 The role of the editor in programming 1-2

1-i

8550 Editor

@

Section 1

LEARNING GUIDE

This Learning Guide provides a general overview of the DOS/50 Editor and offers you a
simple demonstration for hands-on experience. When you are finished with this Learning
Guide, you should be able to do simple editing and be ready to learn more about the editor by
reading other sections of the manual.

This Learning Guide is divided into the following topics:

• Editor Overview. An explanation of the editor and its general features.

• Demonstration Run. How to invoke the editor, enter text, save the text in a file, and
reedit an old file.

• For Continued Learning. A guide to using other parts of this manual to learn more
about the editor.

1-1

Editor Overview Learning Guide-8550 Editor

1-2

EDITOR OVERVIEW

Uses of the Editor
The text editor is an important programming tool. It is useful whenever text must be created
or modified. You can use the editor to enter and debug source programs, to prepare
command files and data files, and to create documents. Figure 1-1 is a diagram of typical
work flow, showing suitable editor tasks.

*

*

*

document
proposed
program

write
program

create
source
file

prepare
data for
program

*

compile/
assemble
program

execute
program

document
working
program

NO

NO

* correct
program
bugs

* Indicates a task
suitable for the
text editor

Fig. 1-1. The role of the editor in programming.

(3571-2)3441-2

The editor is used to create and modify source programs, data files, and documentation. DOS/50
command files and editor command files may also be created with the editor.

@

Learning Guide-8550 Editor Editor Overview

@

General Features
The DOS/50 Editor is line-oriented: most editor commands operate on a single line of text.
The editor accepts a command line, executes it, and prompts for another command line.
Because the editor is not screen-oriented, it can be used on hard-copy terminals as well as
on CRTs.

Here are some of the features of the DOSI50 Editor:

• Text lines can be entered from the keyboard or brought in from files.

• Tab stops can be used to align columns of text.

• Text may be stored in files with tab characters unexpanded.

• Text may contain control characters.

• Strings of characters can be found and modified.

• Blocks of text can be moved or repeated within the file.

• A text line can be referenced either by its number or by its position relative to the
workspace pointer. Text can be displayed with or without line numbers.

• A command sequence can be repeated a specified number of times, or until a command
within the sequence fails.

• Frequently used command sequences can be stored in command files or command
macros and executed as they are needed.

• Entire editing sessions can be performed by command files without operator
intervention.

• Files that exceed the size of the editor workspace can be edited conveniently in
sections.

• The editor 'vvorkspace may occupy up to 55K bytes of memory.

• Error messages tell not only what went wrong, but which command or parameter
caused the error.

• Several editor features can be turned on or off to suit the needs of the current editing
session.

• You may enter new command lines while a previous command line is being executed.

The Workspace
The TEKDOS Editor program uses 9K bytes of program memory. The remaining program
memory is available for the workspace buffer. If your 8301 has 64K bytes of program
memory, 55K bytes are available for the workspace. This translates to about 1400 lines of
text averaging 40 characters each. The text being edited is stored in the workspace. A pointer
in the workspace designates one of the lines of text in the workspace as the current line.
Most of the editor commands execute relative to that workspace pointer. If there is no text in
the workspace, the workspace pointer points to the end-of-text marker.

1-3

Demonstration Run Learning Guide-8550 Editor

1-4

DEMONSTRATION RUN
In this demonstration run, you use the editor to create and modify a file named TIGERS.
Before attempting to use the Editor, make sure you are familiar with the DOS/50 operating
system, as described in the 8550 Microcomputer Development Lab System Users Manual.

Create a Text File
To invoke the editor and create the new file in the current directory, enter the following
command:

) EDIT TIGERS<CR)

DOS/50 invokes the editor, creates a new file named TIGERS in the current directory, and
sends the following message to the terminal:

*

** EDIT VER 3.0
** NEW FILE

If the message ** NEW FILE does not appear, the file TIGERS already exists in the directory.
If you do not want to alter the existing TIGERS file, enter the editor command QUIT to exit the
editor without harming the file. Then reinvoke the editor, using a new file name. If the file
TIGERS already exists and you continue with this example, the previous contents of TIGERS
will be saved with the new text in the file TIGERS and the old contents of TIGERS wll be
saved in file TIGERS#.

The editor prompt character is the single asterisk (*). The asterisk prompt indicates that the
editor is ready to accept an editor command.

How to Correct Input Mistakes
Before you begin to input text, you need to know how to correct your mistakes on the input
line. You may correct only the line you are currently entering. Once you have entered a
carriage return to end the line, no other corrections may be made to that line.

To Correct Characters One-By-One:.

• The BACKSPACE key on a refresh CRT terminal cancels the current character in the
input buffer, erases it from the screen, and moves the cursor one space to the left. This
may be repeated as many times as necessary.

• The DELETE key on a hard copy terminal cancels the current character in the input
buffer and prints the deleted character. This may be repeated as many times as
necessary.

• The RUBOUT key cancels the current character in the workspace and either moves the
cursor one space to the left (default setting) or echoes the character on the screen,
depending on the setting of the editor command CRT. This may be repeated as many
times as necessary.

Learning Guide-8550 Editor Demonstration Run

@

To Replace an Entire Line: .

• Press the escape (ESC) key once to delete the line. Then reenter the line from the
beginning.

NOTE

if you accidentaiiy press the ESC key twice in succession, the editor wiii be
suspended and control will return to DOS/50. To notify you that this has
occurred, a double DOS/50 prompt(») will be displayed on the terminal. To
return to the editor enter the DOS/50 command CONT EDIT or CONT *. You
may then continue the editing session from the point where the double ESC was
entered.

To intentionally suspend the editor, please use the SUSPEND command
rather than the ESC key.

Set Tabs
For this example you use special tab settings to list items within your text. The editor has
default tab settings in columns 8, 16, 24, 32,40,48, 56, and 64. For this example, the tabs are
reset to columns 4, 8, and 20 before you enter the text. (The special tab settings are not saved
between edit sessions, so you may want to enter a remark line in your text to remind you of
their location.) The standard tab character is contol-I (sent by the tab key). Because control-I is
not a printing character, it is difficult to edit if the need arises. This example shows how to use
a substitute tab character that does print. You may define an editor tab character in addition to
the standard tab character. However, be sure it is not a character you are using in the text. In
this example the percent sign (%) is used. After the text is entered with percent signs for tab
characters, the editor tab character definition will be set to the percent sign to show how the
tab characters are expanded to spaces. Enter the following command:

*TABS 4 8 20<CR>
*

Enter Text
You are now ready to enter your text. The new file contains no lines as yet. Since the
workspace is empty, the workspace pointer is located at the end-of-text marker. The text that
you enter will be inserted before the workspace pointer. Multiple lines of text are entered in
input mode.

The editor command INPUT is used for entering text. There is no prompt character in input
mode. Enter each new line immediately after the carriage return that terminates the previous
line. A carriage return on an empty line terminates input mode.

1-5

Demonstration Run Learning Guide-8550 Editor

1-6

Enter the following text (your entries underlined):

*INPUT<CR>
INPUT:
WHY EVERY FAMILY SHOULD OWN A TIGER:<CR>
%1.%PROTECTION%A FAMILY WITH A TIGER NEED NEVER<CR>
%%%WORRY ABOUT BURGLARS, SALESMEN, OR<CR>
i%%NEIGHBORHOOD DOGS.<CR>

2,%AFFECTION%A WELL-TRAINED TIGER IS VERY AFFECTIONATE<CR>
%%%TO THE OWNER'S FAMILY.<CR>
%3.%ADMIRATION%A TIGER IS THE ULTIMATE STATUS SYMBOL,<CR>
%%%INSPIRING AWE AND ADMIRATION IN EVERYONE.<CR>
<CR> -*-

When you enter the carriage return on the empty line, the editor exits from input mode and
displays the asterisk prompt, indicating that you may enter the next editor command.

Display Text
After entering your text, you'll want to view it to see if it is correct. The editor command TYPE
is used to display text. The TYPE command, without parameters, displays the current line
only. To display all of the lines in the workspace, enter TYPE B-E. "B" stands for the
beginning of the text in the workspace, while "E" stands for the end. Before you enter the
TYPE command, change the tab character so you can view the expanded text.

*TAB%<CR>
*

The TAB % command causes all percent signs in the text to be expanded to spaces to line up
the text in the previously defined tab columns.

*TYPE B-E<CR>
wAY EVERY FAMILY SHOULD OWN A TIGER:

*

1. PROTECTION A FAMILY WITH A TIGER NEED NEVER
WORRY ABOUT BURGLARS, SALESMEN, OR
NEIGHBORHOOD DOGS.

2. AFFECTION A WELL-TRAINED TIGER IS VERY AFFECTIONATE
TO THE OWNER'S FAMILY.

3. ADMIRATION A TIGER IS THE ULTIMATE STATUS SYMBOL,
INSPIRING AWE AND ADMIRATION IN EVERYONE.

Save the Text in a File
Since the text you've displayed looks correct, go ahead and store it in the file TIGERS which
you specified when you invoked the editor. The editor command FILE saves the contents of
the workspace in the file and exits from the editor.

*FILE<CR>
II END OF TEXT

>

The ** END OF TEXT message shows that all the text was written from the workspace to the
file. The> prompt character tells you that the editor mode has been terminated and the
operating system is ready for the next DOS/50 command.

Learning Guide---':8550 Editor Demonstration Run

Modify a File
Let's alter the text you have just created. (The text could have been changed before you
stored it, but you'll begin a new editing session to illustrate certain editor commands.) Invoke
the editor with the EDIT command:

> EDIT TIGERS<CR>
** EDIT VER 3.0 **

*
Notice that the ** NEW FILE message does not appear here, since the file named TIGERS
already exists in the current directory. Although you've invoked the editor, the contents of the
file TIGERS are not yet in the workspace. You can verify this by entering the TYPE command:

*TYPE B-E<CR>
1* END OF TEXT

*
This shows that the workspace pointer is pointing to the end-of-text marker; there are no
lines of text in the workspace.

Get Text from the File into the Workspace
The editor command GET is used to transfer text from the file to the workspace. The GET
command, without parameters, gets only the next line of the file. To transfer all the lines, enter
the GET command with a parameter equal to or greater than the number of lines in the file. (In
this case, 20 is large enough.)

*GET 20<CR>
II EOF

*
The message ** EOF shows that the all of the text in the file TIGERS has been copied into the
workspace. The text has been placed before the current line in the workspace. You can use
the TYPE command to make sure the text is in the workspace.

*TYPE B-E<CR>
WHY EVERY FAMILY SHOULD OWN A TIGER:
%1.%PROTECTION%A FAMILY WITH A TIGER NEED NEVER
%%%WORRY ABOUT BURGLARS, SALESMEN, OR
%%%NEIGHBORHOOD DOGS.
%2.%AFFECTION%A WELL-TRAINED TIGER IS VERY AFFECTIONATE
%%%TO THE OWNER'S FAMILY.
%3.%ADMIRATION%A TIGER IS THE ULTIMATE STATUS SYMBOL,
%%%INSPIRING AWE AND ADMIRATION IN EVERYONE.
*

1-7

Demonstration Run Learning Guide-8550 Editor

1-8

The text looks like it did when we entered it. If we want to see it in tab expansion form, the
previous tab settings must be entered.

*TAB%<CR)
*TABS 4 8 20<CR)
*TYPE B-E<CR)
WHy EVERY FAMILY SHOULD OWN A TIGER:

*

1. PROTECTION A FAMILY WITH A TIGER NEED NEVER
WORRY ABOUT BURGLARS, SALESMEN, OR
NEIGHBORHOOD DOGS.

2. AFFECTION A WELL-TRAINED TIGER IS VERY AFFECTIONATE
TO THE OWNER'S FAMILY.

3. ADMIRATION A TIGER IS THE ULTIMATE STATUS SYMBOL,
INSPIRING AWE AND ADMIRATION IN EVERYONE.

Move the Workspace Pointer
The position of the workspace pointer affects many of the editor commands. Searches are
carried out from the workspace pointer to the end of the text. Any changes are made in the
text of the current line, pointed to by the workspace pointer. Text is printed, displayed, or
moved with reference to the workspace pointer.

The first place you'll change the text is in the first line. If every family owned a tiger, it would
not be a status symbol. Therefore, lets change "every family" to "you". Move the workspace
pointer to the first line of text with the BEGIN command:

*BEGIN<CR)
WHY EVERY FAMILY SHOULD OWN A TIGER
*

When the workspace pointer is moved, the new line that it points to is displayed.

Substitute Text
The editor command for substituting text is SUBSTITUTE. The command is followed by a
delimiter (a character not found in either text string), the text to be replaced, a delimiter, the
replacement text, and a delimiter. (All three delimiters must be the same character.)

·SUBSTITUTE IEVERY FAMILY/YOU/<CR)
WHY YOU SHOULD OWN A TIGER
•

The resulting text is displayed. The workspace pointer remains on the same line.

Learning Guide-8550 Editor Demonstration Run

Display Editor Line Numbers
Many of the editor commands refer to line numbers; thus, it can be very useful to know the
number of each line. The editor command NUMBER ON causes line numbers to be displayed
along with the text.

*NUMBER ON(CR>
*tYPE B-E<CR> .. - iff'\1 ,IX"

I; Wf11 lUU

2: 1.
3 :
4:
5: 2.
6:
7 : 3.
8:

SHOULD OWN
PROTECTION

AFFECTION

ADMIRATION

Move a Block of Text

A TIGER;
A FAMILY WITH A TIGER NEED NEVER
WORRY ABOUT BURGLARS, SALESMEN, OR
NEIGHBORHOOD DOGS.
A WELL-TRAINED TIGER IS VERY AFFECTIONATE
TO THE OWNER'S FAMILY.
A TIGER IS THE ULTIMATE STATUS SYMBOL,
INSPIRING AWE AND ADMIRATION IN EVERYONE.

What if the block of text referring to protection would be better as the last item in the list? To
move those three lines, use the editor command MOVE. This command includes two
parameters: the range of lines to be moved, and the line before which the moved lines are to
be placed. The section to be moved includes lines 2 through 4; the line before which they go
is line 9 (the end of text).

*MOVE 2-4 9<CR>
** EOF

Now use the TYPE command to display the result:

*TYPE B-E<CR>
1: WHY YOU SHOULD OWN
2: 2. AFFECTION
3 :
4: 3. ADMIRATION
5:
6: 1. PROTECTION
7:
8:

*

A TIGER:
A WELL-TRAINED TIGER IS VERY AFFECTIONATE
TO THE OWNER'S FAMILY.
A TIGER IS THE ULTIMATE STATUS SYMBOL,
INSPIRING AWE AND ADMIRATION IN EVERYONE.
A FAMILY WITH A TIGER NEED NEVER
WORRY ABOUT BURGLARS, SALESMEN, OR
NEIGHBORHOOD DOGS.

Find and Change a Character String
Now that you've moved the block of text, the paragraph numbers are in the wrong order. To
correct the paragraph numbers, use the FSUBSTITUTE command, which finds and replaces a
string of text. The command is followed by a delimiter (a character not found in either text
string), the text to be searched for and replaced, a delimiter, the replacement string, and a
delimiter. (All three delimiters must be the same character.) Before you enter the
FSUBSTITUTE command, first enter the BEGIN command. This starts the search at the first
line of the text. The period following BEGIN tells the editor not to display the line, as it
normally would. Many commands that display the resulting line may be followed by a period
if you do not want the line displayed.

*BEGIN.(CR>
*FSOBSTITOtE 11/3/<CR>

6: 3. PROTECTION A FAMILY WITH A TIGER NEED NEVER

1-9

Demonstration Run Learning Guide-8550 Editor

1-10

Enter Multiple Commands on One Line
To change each of the remaining two numbers, enter the BEGIN command and the
FSUBSTITUTE command on one line. When you enter more than one command on a line, the
commands must be separated by a colon (:). Most of the editor commands may be entered in
short forms instead of the long forms we have been using so far. This example shows the
use of the short forms of the commands. The short form of BEGIN is B ,the short form of
FSUBSTITUTE is FS, and the short form of TYPE is T.

*B. :FS 13/2/<CR>
4 : 2. A DM I RAT ION

*B. :FS 12/1/<CR>
2 : 1 • AF F E C T ION

*T B-E<CR>
1: WHY YOU SHOULD OWN
2 : 1 . AF FE C T ION
3:
4 : 2. A DM I RAT ION
5:
6: 3. PROTECTION
7:
8 :

*

A TIGER IS THE ULTIMATE STATUS SYMBOL,

A WELL-TRAINED TIGER IS VERY AFFECTIONATE

A TIGER:
A WELL-TRAINED TIGER IS VERY AFFECTIONATE
TO THE OWNER'S FAMILY.
A TIGER IS THE ULTIMATE STATUS SYMBOL,
INSPIRING AWE AND ADMIRATION IN EVERYONE.
A FAMILY WITH A TIGER NEED NEVER
WORRY ABOUT BURGLARS, SALESMEN, OR
NEIGHBORHOOD DOGS.

Print a Copy on the Line Printer
The text is now in the form you want. You may want to get a permanent copy, using a line
printer or other hard copy peripheral attached to the system. To do this, you use the LIST
command. The LIST command is much the same as the TYPE command. The line printer or
other hard copy unit must, of course, be connected to the 8501 and be ready to receive the
output.

*LIST B-E<CR>
*

No output is sent to the terminal. Only the prompt is displayed to show that the editor is
ready for another command.

Now use the FILE command to save the changed text on the file and exit the editor. The
changed text will replace the old text in the file. A backup file containing the old text will be
created with the name TIGERS#.

*FILE<CR>
II END OF TEXT
** EOF

>

Learning Guide-8550 Editor For Continued Learning

FOR CONTINUED LEARNING
In this Learning Guide we explained some elementary editor concepts. For a more detailed
explanation, refer to the following sections of this manual:

• Section 2, Procedures. Describes a series of tasks and the commands needed to
perform those tasks. All of the tasks include examples as well as instructions.

• Section 3, Command Dictionary. Provides a formal description of each editor
command, its operation, and its syntax. Most command descriptions have illustrative
examples. Commands are arranged alphabetically. The DOS/50 command EDIT is also
described in deiaii.

• Section 5, Error Messages. Gives a thorough explanation of error messages what to do
about them.

1 -1 1

8550 Editor

@

Section 2
PROCEDURES

Page

Introduction 2-1

The Essentials .. 2-2

Invoking the Editor .. 2-2

Exiting the Editor ... 2-3

Creating a File .. 2-4

Modifying an Existing File ... 2-5

Resetting the Tab Stops .. 2-6

Expanding Tab Characters to Spaces .. 2-6

Displaying Text ... 2-8

Displaying Text from the Workspace ... 2-8

Displaying Text from a File ... 2-8

Displaying Line Numbers with the Text ... 2-9

Line Manipulation ... 2-10

Moving the Workspace Pointer ... 2-10

Controlling the Current-Line Display .. 2-11

Moving Text within the Workspace""", .. 2-12

Repeating a Block of Text .. 2-13

Character String Manipulation ... 2-14

Finding a String ... 2-14

Replacing a String ... 2-15

Making a Global String Replacement ~ 2-16

Block Manipulation .. 2-18

Editing a Large File by Sections ... 2-18

Moving Text Forward in the File ... 2-19

Rearranging Text from One or More Fiies .. 2-20

Saving Text on a File .. 2-21

Adding Text from a File ... 2-22

Command Shortcuts•.. 2-24

Entering Several Commands on a Line ... 2-24

Repeating a Command Sequence ... 2-24

Creating and Using a Command Macro .. 2-25

Executing Commands from a Command File 2-26

2-i

8550 Editor

@

Section 2

OPERATING PROCEDURES

Section 1, the Learning Guide, gave you a general overview of the DOS/50 Editor and
presented a simple demonstration run. This section presents some common procedures for
using the editor with your 8550 Microcomputer Development Lab.

Each procedure in this section is presented in the following format:

Description:

Procedure:

Parameters:

Comments:

Examples:

See also:

A summary of the action(s) performed by the procedure.

The information entered or displayed at the system terminal. The
following conventions are used in the procedure description:

Underlined: A character sequence you enter.

No underline: A character sequence displayed by the editor or by
DOS/50.

UPPERCASE: An exact character sequence; if these characters are
underlined, enter them exactly as shown.

lowercase: A parameter you supply when you perform the procedure.

A description of the values you supply.

The operating limits and options for the procedure.

One or more demonstrations of correct entry format.

Cross-references to related procedures.

2-1

The Essentials Operating Procedures-8550 Editor

THE ESSENTIALS
Invoking the Editor

Description:

Procedure:

Parameters:

Comments:

Examples:

See also:

This procedure invokes the editor and specifies the file to be created or
edited.

> EDIT filespec

filespec-The file to be edited.

The full form of the EDIT command is described in the Command
Dictionary section of this manual. The short form

EDIT filespec

is sufficient for routine applications.

If the specified file does not exist, it is created. If the file already exists, it
is modified and the old version is saved under a backup name.

> EDIT SUBS

If SUBS already exists, it becomes the primary input file and a temporary
primary output file is created. When you close the editing session with a
FILE command, the edited contents of SUBS are copied to the primary
output fie. The primary output file is renamed SUBS and the primary
input file is renamed SUBS#.

If SUBS did not previously exist, there is no primary input file. The text
written to the primary output file must come from the keyboard or from
alternate input files. When a FILE command closes the editing session,
the primary output file is saved under the name SUBS.

• Exiting the Editor

• Creating a File

• Modifying an Existing File

@

Operating Procedures-8550 Editor The Essentials

Exiting the Editor

Description:

Procedure:

See also:

@

There are three ways to return control from the editor to DOS/50:

• The FILE command copies the contents of the workspace and the
remainder of the primary input file to the primary output file, saves
the primary output file, and terminates the editor.

• The QUIT command terminates the editor without further action. The
primary output file is lost unless it existed before the editor was
invoked.

• The SUSPEND command causes a temporary exit to DOS/50. To
return to the editor, enter CONT * or CONT EDIT; to terminate the
editor as with a QUIT command, enter ABORT * or ABORT EDIT.

*FILE

or

*QUIT

or

*SUSPEND

> CONT *

or

*SUSPEND

> ABORT *

• Invoking the Editor

2-3

The Essentials

Creating a File

Description:

Procedure:

Parameters:

Examples:

See also:

2-4

Operating Procedures-8550 Editor

This procedure creates a new file from text entered from the system
terminal.

) EDIT filespec
** EDIT VERSION 3.0
** NEW FILE

*INPUT
INPUT:

Enter your text here.
A carriage return on an empty line terminates input mode.

*FILE
"ilfEND OF TEXT

)

filespec-The filespec of the file to be created.

In this example, "t" denotes the TAB key.

) EDIT DEMO 1
** EDIT VERSION 3.0
** NEW FILE

*INPUT
INPUT:
tTITLEt"BOBOA DEMONSTRATION RUN PROGRAM"
tORGt100Ht; START PROGRAM AT ADDRESS 100
DEMOtLXItH.500Ht; SET TABLE POINTER
tMVItB.5ti SET PASS COUNTER
tXRAtAt; CLEAR ACCUMULATOR
LOOPtADDtMt; ADD BYTE FROM TABLE
<CR)
*FILE

** END OF TEXT

)

With the default tab stops in effect, the text looks like this when it is
displayed:

TITLE "BOBOA DEMONSTRATION RUN PROGRAM"
ORG 100H START PROGRAM AT ADDRESS 100

DEMO LXI H,500H SET TABLE POINTER
MVI B,5 SET PASS COUNTER
XRA A CLEAR ACCUMULATOR

LOOP ADD M ADD BYTE FROM TABLE

• Modifying an Existing File

• Resetting the Tab Stops

• Expanding Tab Characters to Spaces

@

Operating Procedures-8550 Editor The Essentials

@

Modifying an Existing File

Description:

Procedure:

Parameters:

Comments:

Examnles:

See aiso:

This procedure replaces a file created previously (by the editor or
otherwise) with an edited version.

> EDIT filespec
** EDIT VERSION 3.0

*NEXT
** EOF * Make the necessary changes in the file.

*FILE

>

** END OF TEXT
** EOF

filespec-The filespec of the file to be modified.

The file is modified according to the editor commands you enter. The old
version is given a backup file name.

The NEXT command brings the contents of the file into the workspace,
moves the workspace pointer to the first line, and displays that line.

> EDIT SHORTY
** EDIT VERSION 3.0

*NEXT
** EOF

THIS IS LINE ONE OF SHORTY.
*SUBSTITUTE/SHO/THE NEW SHOI
THIS IS LINE ONE OF THE NEW SHORTY.
*FILE

>

** END OF TEXT
** EOF

File SHORTY is modified. The new version of the file is named SHORTY
and the old version is named SHORTY# .

• Creating a Fiie

• Editing a Large File by Sections

2-5

The Essentials Operating Procedures-8550 Editor

2-6

Resetting the Tab Stops

Description:

Procedure:

Parameters:

Comments:

Examples:

See also:

This procedure sets the tab stops to the columns you want.

*TABS n1 n2 n3 n4 n5 n6 n7 n8

n1 .. n8-The column numbers of the tab stops.

When you invoke the editor, the eight tab stops are at columns 8, 16,
24, 32, 40, 48, 56, and 64. You may specify up to eight new tab stops;
all existing tab stops are lost. The column numbers must be in
ascending order and in the range 1 to 127. Any text you display is
aligned to the latest set of tab stops.

*TABS 10 20 35

This command deletes the existing tab stops and sets new tab stops at
columns 10, 20, and 35.

• Creating a File

• Expanding Tab Characters to Spaces

Expanding Tab Characters to Spaces

Description:

Procedure:

Parameters:

When you use tab stops in creating a file, the tab characters you enter
remain in the text. This procedure expands each tab character in the file
into the appropriate number of spaces.

> EDIT filespec
** EDIT VERSION 3.0

*TAB t
*~n1 .n2 n3 n4 n5 n6 n7 n8
*XTABS ON
*FILE

>

** END OF TEXT
** EOF

filespec-The filespec of the .file containing tab characters.

t-The tao character you used in creating the file. If you used the
standard tab character (CTRL-I), omit the TAB command.

n1 .. n8-The tab stops to which the text is to be aligned. If you want to
use the standard tab stops (columns 8, 16, 24, 32, 40, 48, 56, and 64),
omit the TABS command.

@

Operating Procedures-8550 Editor The Essentials

@

Comments: The command XTABS ON tells the editor that any tab character copied
from the workspace is to be replaced by spaces up to the next tab stop.
The FILE command copies the text from the primary input file, through
the workspace, to the primary output file. Each tab character is replaced
by spaces as it is copied to the primary output file.

NOTE

The standard tab character is an acceptable delimiter in MDL and ASM source files, but
may produce unexpected results in other types of files. A file containing non-standard tab
characters (defined with the TAB command) is usually useless.

Examples:

See also:

> COpy TIGERS
WHY YOU SHOULD OWN A TIGER:
%1.%AFFECTION%A WELL-TRAINED TIGER IS VERY AFFECTIONATE
%%%TO THE OWNER'S FAMILY.

> EDIT TIGERS
** EDIT VERSION 3.0

*TAB %
*'fiU3S 4 8 20
*XTABS ON
*FILE

** END OF TEXT
** EOF

> COpy TIGERS
WHY YOU SHOULD OWN A TIGER:

>

1, AFFECTION A WELL-TRAINED TIGER IS VERY AFFECTIONATE
TO THE OWNER'S FAMILY.

• Creating a File

• Resetting the Tab Stops

2-7

Displaying Text Operating Procedures-8550 Editor

2-8

DISPLAYING TEXT
Displaying Text from the Workspace

Description:

Procedure:

Parameters:

Examples:

See also:

This procedure displays workspace text on the system terminal or the
line printer.

*TYPE lines

or

*LIST lines

lines-The range or number of lines you want to display. If no parameter
is specified, only the current line is displayed.

*TYPE 20

This command displays 20 lines on the system terminal, starting with
the current line.

*LIST 15-25

This command displays lines 15 through 25 on the line printer.

• Displaying Text from a File

• Displaying Line Numbers with the Text

Displaying Text from a File

Description:

Procedure:

Parameters:

Comments:

This procedure displays the contents of a file without affecting the text
in the workspace.

*eoPY lines filespec eONO

or

*eoPY lines filespec LPT

lines-The range or number of lines to be displayed.

filespec-The filespec of the f~le to be displayed.

CONO specifies the system terminal; LPT specifies the line printer.

@

Operating Procedures-8550 Editor Displaying Text

@

Examples:

See also:

*COPY 101-120 MYFILE CONO

This command skips over the first 100 lines of MYFILE and displays the
next 20 lines on the system terminal.

*COPY 999 HERFILE LPT

This command displays the first 999 lines of HERFILE on the line printer.
If HERFILE contains fewer than 999 lines, the entire file is listed.

• Displaying Text from the Workspace

Displaying Line Numbers with the Text

Description:

Procedure:

Comments:

Examples:

This procedure causes each text line displayed by the editor to be
accompanied by its line number.

*NUMBER ON

To suppress the display of line numbers, enter the command NUMBER
OFF.

*TYPE 3
THURSDAY
FRIDAY
SATURDAY
*NUMBER ON:TYPE 3

5: THURSDAY
6: FRIDAY
7: SATURDAY

*BEGIN
---;: SUNDAY

*NUMBER OFF: DOWN
MONDAY

2-9

Line Manipulation Operating Procedures-8550 Editor

2-10

LINE MANIPULATION
Moving the Workspace Pointer

Description:

Procedure:

Parameters:

See also:

The editor provides several commands for moving the workspace
pointer.

BEGIN moves the pointer to the first line of text. END moves the pointer
past the last line. UP and DOWN move the pointer up and down the text,
respective Iy.

FIND and FNEXT move the pointer to the next line containing a specified
string of characters. To find the string, FIND searches only the text in
the workspace. FNEXT searches the workspace, then the rest of the
primary input file, until the string is found.

*BEGIN

or

*END

or

*UP n

or

*DOWN n

or

*FIND/string/

or

*FNEXT/string/

n-The number of lines up or down the pointer is to move. If this
parameter is omitted, the pointer moves one line.

/ -The string delimiter: any character (except a space) not occurring in
the string.

string-The string of characters to be found.

• Finding a String

@

Operating Procedures-8550 Editor Line Manipulation

@

Controlling the Current-Line Display

Description:

Procedure:

Comments:

Examp!es:

Each of the following commands displays the current line after
executing successfully:

BEGIN
DOWN

END
FIND

FNEXT
FSUBSTITUTE

NEXT
REPLACE

SUBSTITUTE
UP

This current-line display is controlled by the BRIEF flag.

*BRIEF ON

or

*BRIEF OFF

When the BRIEF flag is at its default setting (OFF), the current line is
displayed whenever any of the above commands is executed. After you
enter BRIEF ON, those commands will not automatically display the
current line.

You may enter a period immediately after any of the above commands to
reverse the BRIEF flag for that command.

*BEGIN
LINE ONE
*DOWN 3
LINE FOUR
*DOWN.3
*BRIEF ON
*BEGIN
* DoWN 3
*DOWN.3
LINE SEVEN
*BRIEF OFF
*UP
LINE SIX
*UP.

The new current line, line 1, is displayed.

The period suppresses display of line 7.

Line 1 is not displayed because the BRIEF flag is ON.

Line 4 is not displayed because the BRIEF flag is ON.

The period reverses the BRIEF flag temporarily.

The period suppresses display of line 5.

2-11

line Manipulation Operating Procedures-8550 Editor

Moving Text within the Workspace

Description:

Procedure:

Parameters:

Examples:

See also:

2-12

This procedure deletes a section of text from the workspace and inserts
it elsewhere in the workspace.

*MOVE lines n

lines-The number or range of lines to be moved.

n-The moved text is inserted in front of line n. If n is omitted, the text is
moved to the end of the workspace.

*NUMBER ON:BEGIN. :TYPE 12
1: JANUARY
2: FEBRUARY
3: MARCH
4: APRIL
5: MAY
6: JUNE
7: JULY
8: AUGUST
9: SE PTEMBER

10: OCTOBER
11: NOVEMBER
12: DECEMBER

*MOVE 6-8 2
*TYPE 12

1: JANUARY
2: JUNE
3: JULY
4: AUGUST
5: FEBRUARY
6: MARCH
7: APRIL
8: MAY
9: SEPTEMBER

10: OCTOBER
11: NOVEMBER
12: DECEMBER

The MOVE command moves lines 6 through 8 in front of line 2. Lines
are renumbered accordingly.

• Moving Text Forward in the File

• Rearranging Text from One or More Files

@

Operating Procedures-8550 Editor Line Manipulation

@

Repeating a Block of Text

Description:

Procedure:

Parameters:

Comments:

Examples:

See also:

This procedure inserts copies of a selected section of workspace text at
specified points in the workspace.

*SAVE lines
*BEGIN
*FIN:DTstring1/:UNSAVE
*FIND/string2/:UNSAVE

*FIND/stringN/:UNSAVE

lines-The number of lines or range of lines to be duplicated. The lines
are inserted in front of each destination line.

stringN-A unique string in the Nth destination line.

/ -The string delimiter: any character (except a space) not occurring in
the string.

Each FIND-UNSAVE command line moves the workspace pointer to a
new destination line and inserts a copy of the selected text in front
of it.

The following command sequence inserts a line of dashes in front of
every line in the workspace that contains the assembler directive ORG.
(The line of dashes begins with a semicolon because it is an assembler
comment line.)

*INSERT ;---
*UP.
*SAVE 1
*KILL
*BEGIN.
**<FINDI ORG I:UNSAVE:DOWN.)

The INSERT -UP-SAVE command sequence creates a line of dashes and
copies the line to the save area. KILL deletes the saved line from the
workspace. BEGIN moves the workspace pointer to line 1. The
FIND-UNSAVE-DOWN command sequence finds the next line containing
the word ORG and inserts the line of dashes in front of that line. The
repeat brackets around the FIND-UNSAVE-DOWN sequence indicate
that the sequence is to be repeated until the FIND command fails.

INote that if the text contains tab characters, the search string should be
~tORGt/, not / ORG /. (The "t" represents whatever tab character is in
the text.)

• Finding a String

2-13

Character String Manipulation Operating Procedures-8550 Editor

2-14

CHARACTER STRING MANIPULATION
Finding a String

Description:

Procedure:

Parameters:

Examples:

See also:

The commands FIND and FNEXT each move the workspace pointer to
the next line containing a specified string.

If the string does not occur in the workspace at or after the current line,
the FIND command responds NOT FOUND, but the FNEXT command
keeps searching. FNEXT appends the workspace contents to the primary
output file, loads up the workspace from the primary input file, and
searches the new contents of the workspace. FNEXT stops when the
section of text containing the string is in the workspace, or when the
primary input file has been searched to its end.

*FIND/stringl

or

* FNEXT I str ingl

/ -The string delimiter: any character (except a space) not occurring in
the string.

string-The string of characters to be found.

*NUMBER ON
*BEGIN. : tYPE 2

l:AAHbVAHK, ADAM
2:ACORN, ALICE

*FIND/BUFF/
80:BUFFALO, WALTER

*BEGIN.:FNEXT/BUFF/
80:BUFFALO, WALTER

The string "BUFF" occurs in the workspace, so it is found either by FIND
or by FNEXT.

*FIND/BRUI
II NOT FOUND

*FNEXT/BRUI
43:SPRUCE, BRUCE

The string "BRU" does not occur in the workspace after line 80, so
FNEXT searches the primary input file, section by section. The string is
finally found in line 43 of some later section.

• Replacing a String

• Moving the Workspace Pointer

Operating Procedures-8550 Editor Character String Manipulation

Replacing a String

Description:

Procedure:

Parameters:

Comments:

Examples:

See aiso:

The commands SUBSTITUTE and FSUBSTITUTE each find a string of
characters in the text and replace that string with a new string. Each
command searches for the string beginning at the current line and
replaces only the first occurrence of the string.

If the string does not occur in the current line, SUBSTITUTE responds
NOT FOUND, but FSUBSTITUTE keeps searching to the end of the
workspace. If the string is found, the line that contains it becomes (or
remains) the current line, the new string replaces the old string, and the
modified line is displayed.

*SUBSTITUTE/oldstring/newstringl

or

*FSUBSTITUTE/oldstring/newstringl

/ -The string delimiter: any character (except a space) not occurring in
either string.

oldstring-The string to be replaced.

newstring-The string that replaces oldstring.

SUBSTITUTE and FSUBSTITUTE may be abbreviated Sand FS,
respectively.

*TYPE 4
THE CORENT LINE
THE NEXTL INE
THE AFTER THAT
THE LASTEST LINE
*SI RI RRI
THE CURRENT LINE
*FS/TL IT LI
THE NEXT [1 NE
*S/AFTER/ONE AFTERI
II NOT FOUND

*FS/AFTER/ONE AFTERI
THE ONE AFTER THAT
*FS/ESTII
THE tAST LINE
*U P. 3: TYPE 4
THE CURRENT LINE
THE NEXT LINE
THE ONE AFTER THAT
THE LAST LINE

• Finding a String

• Making a Global String Replacement

2-15

Character String Manipulation Operating Procedures-8550 Editor

2-16

Making a Global String Replacement

Description:

Procedure:

Parameters:

Comments:

This procedure replaces every occurrence of a specified string of
characters with a new string.

*BEGIN
**<fS!oldstring/newstring/)

or

*BEGIN
**<fS!oldstring/newstring/)
*NEXT }

Repeat these two lines
as necessary.

/ -The string delimiter: any character (except a space) not occurring in
either string.

oldstring-The string to be replaced.

newstring-The string that replaces oldstring.

The first form of the procedure replaces all occurrences of oldstring in
the workspace. The second form replaces all occurrences in the
workspace and in the text from the remainder of the primary input file.

The FSUBSTITUTE command (short form FS) repeats until it fails to find
a match. Each time a replacement is made, the modified line is
displayed.

When there are no more occurrences of oldstring in the workspace, the
message NOT FOUND is displayed. If you want to continue the global
replacement past the current workspace contents, enter the NEXT
command to bring the next section of text from the primary input file
into the workspace. Then enter the FS command line again.

Operating Procedures-8550 Editor Character String Manipulation

E3
Either form of this procedure can be very destructive if you choose your search and
replacement strings carelessly. Note the following points:

• A search string that is too general may lead to unexpected replacements.

• A capital letter never matches a lowercase letter, and vice versa.

• The replacement string should not contain the search string. For example, the
command line

5 <F SI MAN IWOMAN I>

replaces the first occurrence of "MAN" with "WOWOWOWOWOMAN".

Examples:

See also:

*TYPE B-E
A PROGRAM
THIS RAM AND THAT RAM
A PARAMETER
4K RAM
THE LOS ANGELES RAMS
*BEGIN
A~RAM
**<FSI RAMI rom/>
A PROGrom
THIS rom AND THAT RAM
THIS rom AND THAT rom
A PAromETER
4K rom
THE LOS ANGELES romS

** NOT FOUND

Every occurrence of "RAM" in the workspace is replaced by "rom".
BEGIN moves the workspace pointer to the line 1 and displays that line.
The FS command repeats until a!! occurrences of "RAM" in the
workspace have been replaced. The modified line is displayed after each
FS command.

• Replacing a String

• Repeating a Command Sequence

2-17

Block Manipulation Operating Procedures-8550 Editor

2-18

BLOCK MANIPULATION

Editing a Large File by Sections

Description:

Procedure:

Parameters:

Comments:

Examples:

See also:

This procedure allows you to edit a file that is too large to fit into the
workspace. The editor program occupies about 9K bytes of program
memory, and the rest of program memory is available for the workspace.
For example, if your 8301 has 64K of program memory, a file that
occupies about 55K (1400 lines averaging 40 characters per line) can be
stored in the workspace in one piece.

> EDIT filespec
** EDIT VERSION 3.0

*NEXT n
Edit the first n lines of text.

*NEXT n
Edit the next n lines of text.

*NEXT n
Repeat until the entire file has been edited.

*FILE
TrEND OF TEXT
** EOF

>

filespec-The filespec of the large file you want to edit.

n-The number of lines in the next block of text to be edited. n may vary
from one block to the next. If n is omitted, the workspace is filled to
three-fourths of its capacity.

Each NEXT command appends the workspace contents (if any) to the
primary output file, brings the next n lines from the primary input file
into the workspace, and displays the new current line (line 1).

> EDIT BIG
** EDIT VERSION 3.0

*NEXT 200
THE 1ST LINE IN THE FILE
* Edit lines 1-200.
*NEXT 300
THE 201ST LINE IN THE FILE
* Edit lines 201-500.
*NEXT 150
THE 501ST LINE IN THE FILE
* Edit lines 501-650.
*FILE

>

** END OF TEXT
** EOF

• Modifying an Existing File

@

Operating Procedures-8550 Editor Block Manipulation

Moving Text Forward in the File

Description:

Procedure:

Parameters:

Comments:

This procedure deletes a section of text from the workspace and inserts
it later in the file being edited.

*SAVE lines
*KILL lines
*FNEXT/destination-stringl

The editor searches for the destination line.
The editor displays the destination line.

*UNSAVE

lines-The number of lines or range of lines to be moved.

destination-string-A unique string in the destination line. The text
being moved is inserted in front of the destination line.

/ -The string delimiter: any character (except a space) not occurring in
the string.

This procedure is used to move text forward to that portion of the file
that has not yet been brought into the workspace. Use the procedure
"Rearranging Text from One or More Files" to move text backward in a
large file. If the workspace contains both the text being moved and the
destination line, use the MOVE command instead of either of these
procedures.

The SAVE command copies the text being moved into the save area, and
the KILL command deletes that text from the workspace. The FNEXT
command searches for the destination line, first in the workspace, then
in the rest of the primary input file. When the destination line is found, it
is displayed as the new current line. The UNSAVE command inserts the
text being moved into the workspace in front of the destination line.

2-19

Block Manipulation

Examples:

See also:

Operating Procedures-8550 Editor

In this example, the lines of the file are numbered for clarity. Lines
1001-1050 are moved forward in the file to line 4000.

*TYPE 3
LINE 1001
LINE 1002
LINE 1003
*SAVE 50
*KILL 50
*FNEXT/40001

** END OF TEXT
** WORKSPACE FULL

LINE 4000
*UNSAVE

The SAVE command copies lines 1001-1050 into the save area, and
the KILL command deletes those lines from the workspace. The FNEXT
command appends the workspace contents to the primary output file,
then brings the next block of text from the primary input file into the
workspace. That block contains line 4000. The editor moves the
workspace pointer to line 4000 and displays that line. The UNSAVE
command inserts the contents of the save area (lines 1001-1050) in
front of line 4000.

• Finding a String

• Moving Text within the Workspace

• Rearranging text from One or More Files

Rearranging Text from One or More Files

Description:

Procedure:

2-20

This procedure copies sections of text from one or more existing files
onto a new file. You may use this procedure to move sections of text
forward or backward in a file, or to concatenate sections from several
different files.

> EDIT newfile
** EDIT VERSION 3.0
** NEW FILE

*COPY lines1 file1
*COPY lines2 file2

*COPY linesN fileN
*FILE
"Ilr"EN D OF TE XT

>

Operating Procedures-8550 Editor Block Manipulation

Parameters: newfile-The file on which the various sections of text are to be stored.
newfile, which is created in this editing session, is the primary output
file. There is no primary input file.

Comments:

Examples:

See aiso:

fileN-The file from which text is copied by the Nth COpy command.

linesN-The range of lines copied by the Nth COpy command.

file1. file2, ... fileN may all be the same file. Each COpy command
appends the specified text to the primary output file, which is the default
output file for the COpy command.

> EDIT SORTED
** EDIT VERSION 3.0
** NEW FILE

*COpy 1-100 UNSORTED
*COpy 601-700 UNSORTED
*COpy 101-600 UNSORTED
*FILE
**END OF TEXT

>

The first 700 lines of file UNSORTED are rearranged and stored on the
newly created file called SORTED. Lines 601-700 of UNSORTED are
inserted after line 100.

• Moving Text within the VVorkspace

• Moving Text Forward in the File

• Saving Text on a File

• Adding Text from a File

Saving Text on a File

Description:

Procedure:

This procedure copies text from the workspace to a file.

*nll'1"' ruJ.

or

lines filesPec

*PUTK lines filespec

2-21

Block Manipulation

Parameters:

Comments:

Examples:

See also:

Operating Procedures-8550 Editor

lines-The number or range of lines to be copied. If you omit this
parameter, only the current line is copied.

filespec-The filespec of the file to which the text is copied. If the file
does not exist, it will be created, If the file already exists, its previous
contents are replaced by the copied text. If you omit this parameter, the
text is appended to the primary output file.

PUT does not affect the workspace contents or pointer. PUTK deletes the
copied text from the workspace; if the current line is deleted, the first
line after the deleted text becomes the current line.

You may also use the commands FILE, FNEXT, or NEXT to copy text from
the workspace to the primary output file.

*PUTK B-E

This command appends the workspace contents to the primary output
file and clears the workspace.

*PUT 40-13 TEMP

This command saves workspace lines 40 through 73 on file TEMP. Any
previous contents of TEMP are lost .

• Adding Text from a File

• Rearranging Text from One or More Files

Adding Text from a File

Description:

Procedure:

Parameters:

Comments:

2-22

This procedure inserts text from a file into the workspace in front of the
current line.

*GET lines filespec

lines-The number or range of lines to be copied. If you omit this
parameter, only one line is copied.

filespec-The file from which the text is copied. If you omit this
parameter, text is copied from the primary input file.

You may also use the commands FNEXT or NEXT to bring text into the
workspace from the primary input file.

Operating Procedures-8550 Editor Block Manipulation

Examples:

See also:

@

·GET 100

This command brings the next 100 lines from the primary input file into
the workspace.

*GET 100 TEMP

This command brings the first 100 lines from file TEMP into the
workspace.

*GET 201-300

This command skips over the first 200 lines of the primary input file and
brings the next 100 lines into the workspace. Afterward, the primary
input file pointer is at line 301 .

• Saving Text on a Fi!e

• Rearranging Text from One or More Files

2-23

Command Shortcuts Operating Procedures-8550 Editor

2-24

COMMAND SHORTCUTS

Entering Several Commands on a Line

Description:

Procedure:

Parameters:

Comments:

Examples:

See also:

This procedure strings together several commands on a single command
line.

*command:command:command

command-Any editor command.

A command line may contain any number of editor commands as long
as the command line does not exceed 127 characters. The commands
must be separated by colons (:). If the editor finds an error, all
subsequent commands in the line are ignored.

Each of the following commands must be the last command on any
command line on which it occurs.

COMMENT FILE PERFORM QUIT SUSPEND

*BEGIN. :FIND/ERROR/:UP

This command displays the first line containing the string "ERROR",
then moves the workspace pointer to the preceding line and displays
that line.

• Repeating a Command Sequence

• Creating and Using a Command Macro

Repeating a Command Sequence

Description:

Procedure:

This procedure allows you to execute a sequence of commands a
specified number of times without reentering the command sequence.

*n<command-sequence>

(ri)

Operating Procedures-8550 Editor Command Shortcuts

Parameters: command-sequence-A sequence of editor commands separated by
colons (:).

Comments:

Examples:

See also:

n-The number of times the command sequence is to be executed. If n
is an asterisk (*), the command sequence repeats until a string search
command (FIND, FNEXT, FSUBSTITUTE, or SUBSTITUTE) in the
sequence fails to find a match, or until you press the ESC (escape) key.

A repeated command sequence may be nested within another repeated
sequence.

*10<LIST B-E>

This command line lists the workspace contents on the line printer 10
times.

**<FIND/BYTE/:DOWN.)

This command line dtsplays every line containng the string "BYTE" on the
system terminal. (The first asterisk is the editor prompt character.)

• Creating and Using a Command Macro

Creating and Using a Command Macro

DeSCilption:

Procedure:

Parameters:

This procedure stores a frequently-used command line (called a macro)
and assigns it an identification number. That command line is executed
whenever its identification number is specified in a MACRO command.

To create a macro:

*MACRO n=command-line

To execute that macro:

*MACRO n

To list all currently defined macros:

*MACRO

command-line-A sequence of editor commands separated by colons (:).

n-The macro identification number: any integer in the range 1 to 127.

2-25

Command Shortcuts

Examples:

See also:

*MACR010:BEGIN. :TYPE 6:END:UP.3:TYPE 3

*M10
THESE
ARE
THE
FIRST
SIX
LINES
** END OF TEXT

THESE ARE
THE LAST
THREE LINES

Operating Procedures-8550 Editor

Macro number 10 is defined as a command line to list the first six lines
and the last three lines in the workspace. Those lines are listed
whenever macro number 10 is invoked. MACRO may be abbreviated M .

• Entering Several Commands on a Line

• Repeating a Command Sequence

Executing Commands from a Command File

Description:

Procedure:

Parameters:

2-26

This procedure causes the editor to execute commands from a file
instead of from the system terminal.

*PERFORM comfile

or

> EDIT infile outfile comfile

comfile-The filespec of the editor command file.

infile-The filespec of the primary input file.

outfile-The filespec of the primary output file.

@

Operating Procedures-8550 Editor Command Shortcuts

Comments:

Examples:

The editor command PERFORM causes the editor to begin executing
commands from the specified file. When the end of the file is reached or
an error is detected, the editor prompts for a command from the system
terminal.

The initial command file (specified by the third parameter of the EDIT
command) is automatically executed at the beginning of the editing
session.

You may use the editor to create a command file in the same way you
create any other text file.

The following editing session creates a command file called
TOUCHDOW. TOUCHDOW moves the first line containing the string
"FOOTBALL" to the end of the workspace.

> EDIT TOUCHDOW
** EDIT VERSION 3.0
** NEW FILE

*INPUT
INPUT:
COMMENT -- HIKE!
BEGIN.:FIND/FOOTBALLI
MOVE 1 E
COMMENT YAY!
<CR>
*FILE

H"""END OF TEXT

>

TOUCHDOW may be executed in any subsequent editing session. For
example:

*TYPE B-E
END ZONE
THE FOOTBALL
LINEBACKER
SAFETY
END ZONE
*PERFORM TOUCHDOW
*COMMENT -- HIKE!
*BEGIN.:FIND/FOOTBALLI
THE FOOTBALL
*MOVE 1 E
*COMMENT -- YAY!
*TYPE B-E
END ZONE
LINEBACKER
SAFETY
END ZONE
THE FOOTBALL

@ 2-27

Command Shortcuts

2-28

Operating Procedures-8550 Editor

Assume that file STARTUP contains the following text:

COMMENT Command file STARTUP
COMMENT -- This command file begins a standard editing session
COMMENT -- for I. M. DeProgrammer.
COMMENT -- Set selected editor flags:
BRIEF ON:ECHO OFF:NUMBER ON:XSEARCH ON:XTABS ON
COMMENT -- Select the tab stops and the editor tab character:
TABS 3 5 7 9 11 13 15 60
TAB @
COMMENT -- Define standard macros:

COMMENT -- Macro 1 displays the first 5 lines and last 5
COMMENT lines in the workspace.
MACRO 1 = BEGIN.:TYPE 5:END:UP.5:TYPE 5
COMMENT -- Macro 2 displays the workspace map.
MACRO 2 = DEBUG ON:DEBUG OFF
COMMENT -- Macro 3 displays the editor status, the workspace
COMMENT map, and all currently defined macros.
MACRO 3 = STATUS:MACRO 2:MACRO

COMMENT -- End of STARTUP.

The following command begins an editing session that creates or
modifies a file called PROG:

> EDIT PROG, ,STARTUP

The commands in STARTUP are executed, then the editor prompts for a
command from the system terminal. At that point, the desired editor
features have been turned ON or OFF, the tab stops and tab character
have been selected, and three macros have been defined.

@

8550 Editor

@

Section 3
COMMAND DICTIONARY

COMMAND INDEX
Page

Pointer Movement Commands
BEGIN-Moves the pointer to the first line in the

workspace ... 3-7
DOWN-Moves the pointer toward the end of the

workspace.. 3-17
END-Moves the pointer to the end of the

workspace .. 3-24
UP-Moves the pointer toward the beginning of the

workspace 3-68

Character String Editing Commands
FIND-Searches the workspace for a string 3-27
FNEXT-Searches the primary input file for a string 3-29
FSUBSTITUTE-Finds and replaces a string 3-32
SUBSTITUTE-Replaces a string in the current line 3-58
XSEARCH-Controls the wildcard search feature 3-72

Line Editing Commands
INPUT-Inputs text from the system terminal 3-36
INSERT-Inserts a line of text from the system

terminal .. 3-38
KILL-Deletes lines of text from the workspace 3-39
MOVE-Moves iines of text within the workspace 3-44
REPLACE-Replaces the current line 3-54
SAVE-Saves lines of text in the save area 3-55
UNSAVE-Retrieves the text in the save area 3-67

File Manipulation Commands
COPY-Copies text from a file or device to a file

or device... 3-11
EDIT-Invokes the editor.... 3-19
FILE-Closes the editing session ... 3-26
GET-Copies text from a file into the workspace 3-34
NEXT-Brings the next section of text into the

workspace 3-45
PUT-Copies text from the workspace to a file or

device .. 3-51
PUTK-Moves text from the workspace to a file or

device .. 3-52
XTABS-Controls expansion of tab characters on

output ... 3-74

Display Commands
BRIEF-Controls display of the current line 3-8
COMMENT-Precedes a comment in a command

file ... 3-10
ECHO-Controls display of command file commands 3-18
ERROR-Controls display of the error pointer 3-25

Page

Display Commands (cont.)
LIST-Lists text on the line printer .. 3-40
NUMBER-Controls display of lines numbers 3-47
TYPE-Displays text on the system terminal 3-66

Utility Commands
AGAIN-Repeats the last repeatable command 3-6
CRT-Controls the function of the RUBOUT key 3-13
DEBUG-Controls display of the workspace map 3-14
LN-Displays the current line number and workspace

length. 3-41
MACRO-Defines or executes a command macro 3-42
PERFROM-Executes commands from a command

file ... 3-49
QUIT-Aborts the editing session .. 3-53
STATUS-Displays information about the status of the

editor ... 3-56
SUSPEND-Suspends the editor ... 3-60
TAB-Defines the editor tab character 3-61
TABS-Sets new tab stops ... 3-64
UPARROW-Controls the representation of control

characters ... 3-69

Fig.
No.

3-1

Illustrations

The workspace buffer 3-3

3-i

8550 Editor

@

Section 3

COMMAND DICTIONARY

INTRODUCTION

This Command Dictionary alphabetically lists and describes in detail the DOS/50 Editor
commands. EDIT, the operating system command that invokes the editor, is also described in
this dictionary. EDIT is listed in alphabetical order between editor commands ECHO and END.

Dictionary Page Format
Each command entry contains a syntax block, parameter definitions, a general explanation,
and examples.

This Command Dictionary uses the same syntax block conventions as the Command
Dictionary in the 8550 Microcomputer Development Lab System- Users Manual:

• The underlined part of a command name is the shortest form of the command
recognized by the editor.

• Parameiers enciosed in braces { } aie iequiied.

• Parameters enclosed in brackets [] may be omitted.

• Parameters stacked one above the other are alternate forms of the same parameter.

The PARAMETERS section of each entry outlines the functions and limitations of the
parameters. The uses and functions of the command are summarized in the EXPLANATION
section and demonstrated in the EXAMPLES section.

Terminology
The primary input file and primary output file are the default files for those editor
commands that copy text to or from files: COPY, GET, PUT, and PUTK. The editor commands
FILE, FNEXT, and NEXT operate on the primary input file and primary output file exclusively.
When a file is edited, the old version of the file is the primary input file and the edited version
is the primary output file.

Any other file that provides or receives text through one of the above commands is termed an
alternate input file or alternate output file.

The initial command file contains editor commands that are executed before the editor
accepts commands from the system terminal. The initial command file might contain a few
initializing commands or a whole editing session.

3-1

Introduction Command Dictionary-8550 Editor

3-2

Primary files, alternate files, and the initial command file are discussed in more detail under
the EDIT command.

The workspace is a section of program memory that holds the text currently being edited.
The workspace pointer always points to one line of text in the workspace, called the current
line. Many editor commands operate on the current line; other commands move the
workspace pointer, designating a new current line.

A text line may be referenced by its line number, which indicates the line's position in the
workspace. The top line of text is designated line 1, the next line down is line 2, etc. With
certain editor commands, the following three letters may be used as line numbers: 8
(beginning of workspace), C (current line), and E (end of workspace).

The Workspace Buffer
The workspace buffer is a section of program memory used by the editor to store text. The
workspace buffer contains the four areas listed below. Figure 3-1 shows how these four
areas are arranged in the workspace buffer.

• The workspace contains the text being edited. As you add text to the workspace, the
workspace grows toward the end of memory.

• The save area contains the text set aside by the latest SAVE command. The size of the
save area corresponds to the size of the block of text most recently saved.

• The macro area contains any macros defined with the MACRO command. As you define
new macros, the macro area expands, pushing the save area toward the beginning of
memory.

• The free area is the section of available memory between the workspace and the save
area.

The editor program occupies about 9K bytes of program memory. The rest of program
memory constitutes the workspace buffer. In a system with 64K of program memory, 55K
bytes of text (about 1400 lines averaging 40 characters each) may be stored in the workspace
buffer.

@

Command Dictionary-8550 Editor Introduction

@

workspace

1 J. J.

workspace

free area
free area

save area

save area

macro area macro area

(a) (b) (c) (3441-1)3571-1

Fig. 3-1. The workspace buffer.

When you invoke the editor, the workspace, save area, and macro area are empty, and all of the
workspace buffer is free (Fig. 3-1 a). As text is stored into the workspace and the save area, the two
areas grow toward each other, and the free area diminishes. The macro area grows with each new
macro defined, pushing the save area toward the workspace (Fig. 3-1 b). When no free area remains
(Fig. 3-1 c) the editor responds WORKSPACE FULL. You may recover some free space by moving or
deleting lines from the workspace, by deleting macros, or by replacing the contents of the save area
with a smaller block of text.

Command Lines
Several characters have special meanings in editor command lines:

• The asterisk ("*") is the editor prompt character.

• The colon (":") separates commands in the same line.

• The period (".") immediately following a command name suppresses display of the new
current line after the command executes. (See the BRIEF command.)

• The angle brackets ("<" and ">") enclose a command sequence that is to be repeated a
specified number of times (or until a command in the sequence fails to execute). The
"<" must be preceded by an integer that indicates the number of times the sequence is
to be repeated; or by an asterisk, which says to repeat until a command fails.

3-3

Introduction Command Dictionary-8550 Editor

3-4

Execution of a command line aborts if the editor detects an error.

The following example demonstrates how these special characters are used.

* the editor prompt

BEGI N. move the workspace pointer to line 1. The period suppresses
display of that line.

: another command follows on the same line.

*< repeat the following sequence until the FIND command fails.

FIND/START HERE/ find the next line that contains the string "START HERE".

: another command follows.

KILL delete the "START HERE" line.

: another command follows.

3 <S UBSTITUTE. I BAD/GOOD/> replace each
of up to three occurrences of the
string "BAD" in the current line
with the string "GOOD".

> end of sequence. I Go back to FIND.

BEGIN. :<FIND/START HERE/:KILL:3<SUBSTITUTE./BAD/GOOD/»

Special Keys

ESC (Escape)-Erases line; Halts Command Execution.
Pressing the ESC key once deletes the contents of the line being entered. If the editor is
awaiting a command line, another prompt is supplied.

If the editor is executing a command when you press ESC, the editor finishes the command
being executed but does not continue to the next command in the command line. The editor
displays the message "BREAK" and prompts for a command.

If any of the following commands is executing when ESC is pressed, the editor finishes
transferring only the line being copied.

COpy FILE FNEXT GET NEXT PUT PUTK

If you want to exit temporarily to DOS/50, use the SUSPEND command. Pressing the ESC
key twice rapidly is a less reliable way of accomplishing the same thing.

BACKSPACE or RUBOUT -Deletes Character.
The BACKSPACE key and the RUBOUT key have similar functions; either key tells the editor
to discard the last character typed. The RUBOUT key is discussed more fully under the CRT
command.

@

Command Dictionary-8550 Editor Introduction

@

CRTL-S-Halts Display Output

CTRL-S (press the S key while holding down the CTRL key) halts the output to the terminal so
you can view the display.

CTRL-Q-Resumes Display Output

CTRL-Q resumes the output to the terminal.

CTRL-R-View the Type-ahead Buffer

CTRL-R displays the contents of the type-ahead buffer on the terminal.

CTRL-U-Erase the Type-ahead Buffer

CTRL-U erases the contents of the type-ahead buffer.

TAB or CTRL-Skips to Next Tab Stop.
The TAB key sends the standard tab character (CTRL-I, ASCII code 09) to the editor. The
cursor moves to the next tab stop. If the last tab stop has been passed, the cursor advances
one space.

3-5

AGAIN
Repeats previous command Command Dictionary-8550 Editor

3-6

I AGAIN

SYNTAX

EXPLANATION

The AGAIN command repeats execution of the latest repeatable editor command, regardless
whether that command was typed in, contained in a macro, or input from a command file,
and regardless whether the command was successfully executed.

The following commands are repeatable with the AGAIN command:

BEGIN FNEXT KILL

COpy FSUBSTITUTE LIST

DOWN GET LN

END INPUT NEXT

FIND INSERT

EXAMPLES

Assume that the following text is in the workspace:
~ A LINE

ANOTHER LINE
YET ANOTHER
WILL THE LAST LINE EVER COME?
YES, HERE IT IS AT LAST:
*** THE LAST LINE ***

Enter the following command line:

*DOWN. 1: KILL 2

The editor deletes the second and third lines of text.

The workspace now looks like this:

A LINE
~ WILL THE LAST LINE EVER COME?

YES, HERE IT IS AT LAST:
*** THE LAST LINE ***

Enter the AGAIN command:

*AGAIN

PUT

PUTK

REPLACE

STATUS

SUBSTITUTE

SUSPEND

TYPE

UP

The editor repeats only the KILL 2 command, not the whole command line.

The workspace now looks like this:
A LINE

----- *** THE LAST LINE ***

@

BEGIN
Command Dictionary-8550 Editor Moves pointer to first line

@

SYNTAX

~EGIN

~YDI Al\lATlnl\1 " ~ .. ,.....,. .. "" ..

The BEGIN command moves the workspace pointer to the first line of text and displays the
line. To suppress the display, enter a period after the command.

EXAMPLES

Assume that the following text is in the workspace:

A LINE
ANOTHER LINE

~ THE NEXT LINE IS THE
END

Enter the following command. The new current line is displayed.

*BEGIN
A LINE

The workspace now looks like this:

~A LINE
ANOTHER LINE
THE NEXT LINE IS THE
END

3-7

BRIEF
Controls current-line display Command Dictionary-8550 Editor

3-8

SYNTAX

BRIEF

PARAMETERS

ON suppresses the current-line display.

OFF reinstates the current-line display.

EXPLANATION

The BRIEF command sets the value of the BRIEF flag. Normally (BRIEF flag OFF), after each of
the following editor commands has finished executing, the new current line is displayed.

BEGIN

DOWN

END

FIND

FNEXT

FSUBSTITUTE

NEXT

REPLACE

SUBSTITUTE

UP

Turning the BRIEF flag ON causes this current-line display to be suppressed. Turning the flag
OFF reinstates the display.

Entering the BRIEF command without a parameter reverses the value of the BRIEF flag.

When any of the above commands is followed immediately by a period, the action of the
BRIEF flag is reversed for the execution of that command only.

EXAMPLES

Assume that the following text is in the workspace:

~ TRUSTWORTHY
LOYAL
HELPFUL
FRIENDLY
COURTEOUS

Enter the following command line:

*DOWN:BRIEF ON:DOWN:BRIEF OFF:DOWN:DOWN.

@

BRIEF
Command Dictionary-8550 Editor Controls current-line display

@

The first DOWN moves the workspace pointer to the second line and displays it:

LOYAL

The second DOWN moves the pointer to the third line, but does not display it because the
BRIEF flag has been turned ON. The third DOWN moves the pointer to the fourth line and
displays it because BRIEF is OFF again:

FRIENDLY

The last DOWN moves the pointer to the fifth line, but the current-line display is suppressed
by the period following DOWN. This period turns the BRIEF flag back ON for that command
only.

3-9

COMMENT
Inserts comment in command input Command Dictionary-8550 Editor

3-10

SYNTAX

COMMENT [text]

PARAMETERS

text any line of text

EXPLANATION

The word COMMENT identifies a comment in command input. The rest of the line following a
COMMENT command is ignored by the editor. The editor displays the COMMENT line on the
system terminal (if the ECHO flag is ON) and proceeds to the next command.

EXAMPLES

Assume that disc file EXAMPLE contains the following text:

COM THIS COMMAND FILE MOVES THE POINTER TO TH~ END OF THE WORKSPACE.
END
COM *** END OF EXAMPLE ***

Enter the following command:

*PERFORM EXAMPLE

The editor executes the command file, moving the pointer to the end of the workspace and
displaying each command as it is executed. The editor responds as follows:

*COM THIS COMMAND FILE MOVES THE POINTER TO THE END OF THE WORKSPACE.
*END

** EOF
*COM *** END OF EXAMPLE ***

@

("nDV "" "" . .
Command Dictionary-8550 Editor Copies text without affecting workspace

@

SYNTAX

[
number of linesl

~Opy range of lines J [{input filespec} [output filespec]]

number of lines

range of lines

input filespec

output filespec

PARAMETERS

number of lines to be copied.

range of lines to be copied, for example 2-6. B, C, and E may not be
used as line numbers in a COpy command.

the file or device from which text is copied.

the file or device to which text is copied. To specify the primary output
file, omit this parameter.

EXPLANATION

The COpy command copies text from a file or device to another file or device without
affecting the workspace contents or pointer. Copying ends when the specified lines have
been copied or when the end of the input file is reached.

If neither a number of lines nor a range of lines is specified, one line is copied.

If an alternate input file is specified, copying begins at the beginning of that file or at the first
line in the specified range. If an alternate output file is specified, its contents are replaced
with the copied text. If the alternate output file specified did not exist previously, it is created.

If you do not specify an alternate input file or device, or if you specify the primary input file by
name, text is copied from the primary input file.

• If you specify a number of lines, copying begins at the primary input file pointer.

• If you specify a range of lines, those lines are copied regardless of the position of the
pointer.

• In any case, after copying the primary input file pointer is at the line following the last
line copied.

3-11

COpy
Copies text without affecting workspace Command Dictionary-8550 Editor

3-12

You may not copy to the primary input file or from the primary output file.

If you specify an output file or device, you must also specify an input file or device.

EXAMPLES

*eopy

appends one line from the primary input file to the primary output file. The primary input file
pointer advances one line.

*eopy 10-20 FILEl

skips over the first 9 lines of FILE1 and appends lines 10-20 to the primary output file.

*eopy 15 FILE2 FILE3

replaces the contents of FILE3 with the first 15 lines of FILE2.

*eopy 1000 FILE4 eONO
displays on the system terminal (CONO) the first 1000 lines of FILE4. If FILE4 contains fewer
than 1000 lines, the message ** EOF is displayed after copying ends,

@

CRT
Command Dictionary-8550 Editor Controls function of RUBOUT key

@

SYNTAX

CRT

PARAMETERS

ON

OFF

causes RUBOUT to backspace over the deleted character.

causes RUBOUT to echo the deleted character.

EXPLANATION

The CRT command sets the value of the CRT flag.

If your system terminal is a TV-type device, you will probably want to leave the CRT flag at its
initial value (ON). Users of hard-copy terminals may find it easier to keep track of deleted
characters if they turn the CRT flag OFF.

The RUBOUT key is used to delete the last character typed from the input text or command
line. Normally (CRT flag ON) RUBOUT also erases the deleted character from the screen and
backspaces the cursor. Turning the CRT flag OFF causes RUBOUT to echo the deleted
character on the terminal instead.

Entering the CRT command without a parameter reverses the value of the CRT flag.

EXAMPLES

Enter the following command line. (Each @ represents a RUBOUT.)

*INSERT 123456@@@

If you are using a hard-copy terminal, what you see depends on the type of terminal. A TV
terminal would display:

*INSERT 123

Now turn the CRT flag OFF and enter the same command line again:
*CRT OFF
*INSERT 123456@@@

What you see is different...

*INSERT 123456654

but the result is the same. Display the two lines entered:

*UP.2:TYPE 2

Both lines are the same:

123
123

3-13

DEBUG
Controls display of workspace map Command Dictionary-8550 Editor

3-14

SYNTAX

DEBUG

PARAMETERS

ON causes the workspace map to be displayed after every command.

OFF suppresses display of the workspace map.

EXPLANATION

The DEBUG command sets the value of the DEBUG flag.

Normally (DEBUG flag OFF) the workspace map is not displayed. Turning the DEBUG flag ON
causes the workspace map to be displayed every time a command is executed. Turning the
DEBUG flag OFF suppresses the display.

Entering the DEBUG command without a parameter reverses the value of the DEBUG flag.

The workspace map shows the locations of the four areas of the workspace buffer: the
workspace, the free area, the save area, and the macro area. You may want to check the map
whenever you suspect that the workspace buffer is full or nearly full of text.

The map has the following format:

WSP pppp-tttt, FREE qqqq-rrrr, SAVE ssss, REL xxxx-yyyy z)
LCNT= m, CNUM= n (uuuu)

You may interpre! the workspace map as follows:
The workspace buffer begins at address pppp and ends
at address tttt.

The free area begins at address qqqq and ends at
address rrrr.

The save area ends at byte ssss.

area of memory. These
numbers are of no use to
the user. ~
Indicates a "relocatable"

WSP pppp-tttt, FREE qqqq-rrrr, SAVE ssss, REL xxxx-yyyy z)
LCNT= m, CNUM= n (uuuu)

T -=.:c:::::: the workspace. The
address of the first byte of the current line is uuuu.

There are m lines of text in the workspace.

@

DEBUG
Command Dictionary-8550 Editor Controls display of workspace map

@

The values pppp through uuuu are hexadecimal addresses in program memory; the locations
they represent are shown on the diagram below.

workspace
uuuu -

free area

save area

macro area

pppp

qqqq-1

qqqq

rrrr

rrrr+1

ssss

ssss+1

tttt

EXAMPLES

Assume that the workspace contains the following text:

THE USUAL NONSENSE
SOME UNUSUAL NONSENSE

~ SOME NONUSUAL UNSENSE
SOME UNUSABLE INCENSE

Enter the following command to turn the DEBUG fiag ON:

*DEBUG ON

Before prompting for another command, the editor checks the DEBUG flag. Because the
DEBUG flag is ON, the editor displays the workspace map:

WSP 2324-9EB9, FREE 2379-9EB9, SAVE 9EB9, REL 2379-9EB9 0)
LCNT= 4, CNUM= 3 (234D)

From this map you can determine that the workspace occupies bytes 2324-2378 of program
memory. Also, because the free area extends all the way to the end of the workspace buffer,
you know that the save and macro areas are empty. There are four lines in the workspace,
and the current line, line 3, begins at byte 2340.

Enter the following command to copy the workspace contents into the save area:

*SAVE B-E
WSP 2324-9EB9, FREE 2379-9E64, SAVE 9EB9, REL 2379-9EB9 0)
LCNT= 4, CNUM= 3 (234D)

Now the save area occupies bytes 9E65-9EB9. No other information has changed.

3-15

DEBUG
Controls display of workspace map Command Dictionary-8550 Editor

3-16

When you define a macro, the command line of the macro is stored in the macro area.

*MACR01=TYPE B-E
WSP 2324-9EB9, FREE 2379-9E5A, SAVE 9EAF, REL 2379-9EB9 0)
LCNT= 4, CNUM= 3 (234D)

The macro is saved in bytes 9EBO-9EB9, pushing the save area into bytes 9E5B-9EAF. The
workspace is unaffected.

Note that as long as the DEBUG flag is ON, the workspace map appears every time a
command executes. Enter the following command line:

*BEGIN:DOWN
THE USUAL NONSENSE
WSP 2324-9EB9, FREE 2379-9E5A, SAVE 9EAF, REL 2379-9EB9 0)
LCNT= 4, CNUM= 1 (2324)
SOME UNUSUAL NONSENSE
WSP 2324-9EB9, FREE 2379-9E5A, SAVE 9EAF, REL 2379-9EB9 0)
LCNT= 4, CNUM= 2 (2337)

The BEGIN command moves the workspace pointer to the first line, displays the new current
line, and displays the workspace map. The DOWN command moves the pointer down to line
2, displays the line, and displays the workspace map.

Enter the following command line to turn the DEBUG flag OFF and display the current line:

*DEBUG OFF:TYPE
SOME UNUSUAL NONSENSE

@

DOWN
Command Dictionary-8550 Editor Moves pointer down

@

SYNTAX

DOWN [number of lines]

PARAMETERS

number of lines number of lines the pointer moves down.

EXPLANATION

The DOWN command moves the workspace pointer the specified number of lines toward the
end of the workspace.

If you do not specify a number of lines, the pointer moves down one line.

The new current line is displayed. To suppress the display, enter a period immediately after
the command, before any space or number.

If moving the pointer the specified number of lines would place the pointer past the end of
the workspace, the pointer stops one line below the last text line and the message ** END OF
TEXT is displayed.

EXAMPLES

Assume that the workspace contains the following text:

A LINE
~ A SECOND LINE

HOW MANY LINES
DO I HAVE?
FIVE LINES

Enter the following command. The new current line is displayed.

*DOWN 2
T"\X + T'" 1,rf"')
UV .1. nH.vr:.~

The workspace now looks like this:

A LINE
A SECOND LINE
HOW MANY LINES

----~~DO I HAVE?
FIVE LINES

3-17

ECHO
Controls display of command file commands Command Dictionary-8550 Editor

3-18

SYNTAX

PARAMETERS

ON causes command file lines to be echoed on the system terminal.

OFF suppresses the command-line display.

EXPLANATION

The ECHO command sets the value of the ECHO flag.

When an editor command file is performed, each command line is first displayed on the
system terminal and then executed. Turning the ECHO flag OFF causes the command-line
display to be suppressed. Turning the flag ON reinstates the display.

Entering the ECHO command without a parameter reverses the value of the ECHO flag.

The ECHO flag is initially ON.

EXAMPLES

Assume that file SAMPLE contains the following text:

COM THIS LINE WILL BE PRINTED.
ECHO OFF
COM THIS LINE WON'T BE.
ECHO:COM REVERSE THE ECHO FLAG FROM OFF TO ON.
COM THIS LINE WILL ALSO BE PRINTED.

Execute the command file:

*PERFORM SAMPLE

The following lines will be displayed on the system terminal:

*COM THIS LINE WILL BE PRINTED.
*ECHO OFF
*COM THIS LINE WILL ALSO BE PRINTED.

@

I=nlT ___ I •

Command Dictionary-8550 Editor Invokes editor

@

SYNTAX

EDIT [infile] [outfile] [comfile]

PARAMETERS

infile primary input filespec.

output primary output filespec.

comfile initial command filespec.

EXPLANATION

The DOS/50 command EDIT invokes the editor and specifies:

• the file that contains the text to be edited (the primary input file);

• the file on which the edited text will be saved (the primary output file);

• the file that contains a series of editor commands to be executed at the beginning of the
editing session (the initial command file).

Editing Options

A typical editing session proceeds as follows:

1. Text is copied from the primary input file to the workspace with the commands GET,
NEXT, or FNEXT.

2. Text in the workspace is modified with various editor commands.

3. Text is copied from the workspace to the primary output file with the commands FILE,
NEXT, or FNEXT.

You may add text to the workspace fro iT! sources other than the primary input file. The INPUT
command allows you to enter text from the system terminal. The GET command is used to
copy text from other files.

You may use the commands PUT or PUTK to save text from the workspace onto files other
than the primary output file.

3-19

EDIT
Invokes editor Command Dictionary-8550 Editor

3-20

Primary and Alternate Files

Any file, other than the primary input file and the primary output file, may serve as an
alternate input file (a file that provides text) or an alternate output file (a file that receives
text).

The primary input file differs from alternate input files in the following ways:

• Copying from an alternate input file always begins at the beginning of the file. Copying
from the primary input file generally begins at the primary input file pointer, which
points to the line following the last line copied.

• An alternate input file must be specified by its filespec in a GET or COpy command. The
primary input file is the default input file for GET and COpy.

• The commands FILE, NEXT, and FNEXT can copy text only from the primary input file.

The primary output file differs from alternate output files in similar ways:

• Text copied to an alternate output file always replaces the previous contents of the file.
(If the file did not exist, it is created.) Text copied to the primary output file is generally
appended to the end of the file.

• An alternate output file must be specified by its filespec in a PUT, PUTK, or COpy
command. The primary output file is the default output file for PUT, PUTK, and COpy.

• The commands FILE, NEXT, and FNEXT can copy text only to the primary output file.

The Initial Command File

An editor command file contains a series of editor commands; these commands are identical
to any that you may enter from the system terminal. You may specify an editor command file
as the third parameter in the EDIT command line. The editor executes the commands from
that file (called the initial command file) before accepting commands from the system
terminal. If the editor encounters a FILE or QUIT command in the initial command file, the
editing session ends.

Useful Invocations

The four useful forms of the EDIT command are described here. Each form may include or
omit the optional third parameter. In the following discussion:

• oldfile represents any existing filespec;

• newfile represents a non-existent filespec;

• comfile represents the initial command filespec.

@

EDIT
Command Dictionary-8550 Editor Invokes editor

@

The two most commonly used forms of the EDIT command are EDIT newfile and EDIT
oldfile. Two other invocations you may find useful are EDIT (no parameters) and EDIT oldfile
newfile.

1. EDIT newfile or EDIT newfile"comfile

This invocation begins the editing session that creates file newfile. There is no primary
input file. You may enter text from the system terminal or add text from alternate input
files. The FILE command copies the text in the workspace to the primary output file,
saves the primary output file in the file newfile, and ends the editing session.

2. EDIT oldfile or EDIT oldfile"comfile

This invocation begins an editing session that modifies file oldfile, which becomes the
primary input file. A temporary primary output file is created. You may use the
commands GET, NEXT, or FNEXT to bring text from oldfile -into the workspace. You
may modify the text in the workspace, bring in additional text from alternate input
files, or copy text to alternate output files.

When you close the editing session with a FILE command, the edited version of oldfile
is copied to the primary output file. The primary output file is saved in the file oldfile,
and the primary input file is given a backup name, oldfile#. If the file is already called
oldfile#, the backup file name will be oldfile##.

If you abort the editing session with a QUIT command, the primary output file is lost
and the primary input file retains the name [oldfile].

3. EDIT or EDIT",comfile
You may use this invocation when you have no use for a primary input file or a primary
output file (for example, when you are sorting out text among several files). All text
must be entered from the system terminal or copied from alternate input files. The text
must be saved on alternate output files. You must use the QUIT command to end the
editing session.

4. EDIT oldfile newfile or EDIT oldfile newfile comfile
This invocation allows you to create a modified version of oldfile on newfile. Oldfile is
not affected. Oldfile is the primary input file and rtewfile is the primary output file.
When you close the editing session with a FILE command, the edited version of oldfile
is copied to the primary output file, newfile. If you abort the editing session with a
QUIT command, newfile is lost.

Avoid any invocations other than these four.

3-21

EDIT
Invokes editor Command Dictionary-8550 Editor

3-22

Invocations to Avoid

If you specify an existing file as the primary output file, the editor responds ** SUPERSEDING
EXISTING FILE. The previous contents of the file are lost unless you exit with a QUIT
command before copying any text to the primary output file.

If you specify a non-existent file as the primary input file, the editor responds

** CANNOT READ NEW FILE
** PRIMARY INPUT

and designates no primary input file.

If you specify the same file as both the primary input file and the primary output file:

• If the file exists, the invocation is equivalent to EDIT oldfile .

• If the file does not exist, the editor responds

** CANNOT READ NEW FILE
** PRIMARY INPUT
** SUPERSEDING EXISTING FILE

and designates neither a primary input file nor a primary output file.

@

EDIT
Command Dictionary-8550 Editor Invokes editor

@

EXAMPLES

> EDIT PROG

begins the editing session that creates or modifies file PROG in the current directory. If
PROG already exists, it serves as the primary input file. When you close the editing session
with a FILE command, the edited version (the primary output file) takes the name PROG and
the old version (the primary input file) takes the name PROG#. If PROG did not exist
previously, there is no primary input file. When you enter the FILE command, the primary
output file is saved under the name PROG.

> EDIT DIRTY CLEAN

begins the editing session that modifies text from file DIRTY and stores the text in file
CLEAN. DIRTY is the primary input file and CLEAN is the primary output file. If CLEAN did not
previously exist, it is created. If CLEAN already exists, the editor responds **SUPERSEDING
EXISTING FILE, and the current contents of CLEAN are lost unless you exit with a QUIT
command before copying any text to the primary output file.

3-23

END
Moves pointer to end Command Dictionary-8550 Editor

3-24

SYNTAX

END

EXPLANATION

The END command moves the workspace pointer one line beyond the last line of text and
displays the message ** END OF TEXT. To suppress the display, enter a period after the
command.

EXAMPLES

Assume that the workspace contains the following text:

ONE
~TWO

I THINK
I'M THROUGH

Enter the following command to move the pointer one line past the last line of text. The
editor displays the message ** END OF TEXT.

*END
-n-END OF TEXT

The workspace now looks like this:

ONE
TWO
I THINK
I'M THROUGH

@

ERROR
Command Dictionary-8550 Editor Controls display of error pointer

@

SYNTAX

ERROR

PARAMETERS

ON reinstates display of the error pointer.

OFF suppresses display of the error pointer.

EXPLANATION

The ERROR command sets the value of the ERROR flag.

Whenever an error is found during the interpretation or execution of a command, the editor
displays an appropriate error message. Normally (ERROR flag ON) the command line is also
displayed, with a pointer (i\ or t) below the last character of the illegal command or
parameter. When the ERROR flag is turned OFF, display of the command line and pointer is
suppressed. Turning the flag ON reinstates the display.

Entering the'ERROR command without a parameter reverses the value of the ERROR fiag.

The ERROR flag is initially ON.

Enter the following command line:

*HELP ME!

EXAMPLES

The editor displays an error message, lists the command line, and points to the the last
character of the illegal command HELP.

** UNKNOWN COMMAND
** HELP ME!
**

Turn the ERROR flag OFF and enter the illegal command again:

*ERROR OFF
*HELP ME!

Only the error message is displayed.

** UNKNOWN COMMAND

3-25

FILE
Closes editing session Command Dictionary-8550 Editor

3-26

I FILE

SYNTAX

EXPLANATION

The FILE command ends a normal editing session, causing the following to happen:

1. The contents of the workspace are appended to the primary output file.

2. Any remaining text in the primary input file is appended to the primary output file.

3. If the name of the primary output file was not specified in the EDIT command line or
was the same as the name of the primary input file:

a. The primary output file (to which the editor has given the temporary name
###.EDIT.TMP) is given the name of the primary input file.

b. The primary input file is renamed to a backup file name, replacing the existing
backup file, if any. The backup file name is formed by appending "#" to the name
of the primary input file.

If neither a primary input file nor a primary output file was specified in the EDIT command
line, then you must use the QUIT command to exit from the editor. If you were to enter a FILE
command, the editor would respond ** NO OUTPUT FILE SPECIFIED and do nothing. The
editor thus guards against accidental loss of the workspace contents.

EXAMPLES

Use the editor to modify system file PROG:

> EDIT PROG
** EDIT VERSION 3.0

*
Edit the contents of PROG.

*FILE

>

lri"END OF TEXT
** EOF

Two versions of PROG now exist: unmodified (PROG#) and modified (PROG).

@

F!!\JD
Command Dictionary-8550 Editor Searches workspace for string

@

{/string/}

string

SYNTAX

PARAMETERS

string delimiter: any character except a space. The delimiter character
must not occur in the string. Both delimiters must be the same
character. If the delimiter character is a letter or period, a space must
separate the command from the first delimiter. The final delimiter may
be omitted if it is the last character in the command line.

the string of characters to be found.

EXPLANATION

The FIND command searches for the specified string, beginning at the current line and
proceeding toward the end of the workspace.

If the string is found, the workspace pointer moves to the line containing the string and the
line is displayed. To suppress the display, enter a period between the command and the first
delimiter.

If the string is not found, the workspace pointer does not move and the message ** NOT
FOUND is displayed.

If you enter the AGAIN command to repeat a FIND command, the search begins one line
down from the current line, so that the same line is not found again.

If a FIND command inside repeat brackets ("<" and ">") fails to find a match, execution
resumes with the next command outside the brackets.

If you are using tab stops, remember that while each tab character in your text is displayed
as one or more spaces, it is stored as a single character. To include a standard tab character
in your search string, press the TAB key at the appropriate place in the command line.

See the XSEARCH command for an explanation of special search characters.

3-27

FIND
Searches workspace for string Command Dictionary-8550 Editor

3-28

EXAMPLES

Assume that the workspace contains the following text:

~ I THINK
I SEE
A LINE
FOR ME

Enter the following command:

*FIND/AI

The workspace pointer moves to line 3. That line is displayed.

A LINE

The workspace now looks like this:

I THINK
I SEE

---.. A LINE
FOR ME

The FIND command searches the text beginning at the current line. The search will fail if the
search string does not occur in or after the current line.

*FIND/THINKI
II Not FOUND

@

FNEXT
Command Dictionary-8550 Editor Searches file for string

@

FNEXT {/string/}

/

string

SYNTAX

PARAMETERS

string delimiter: any character except a space. The delimiter character
must not occur in the string. Both delimiters must be the same
character. If the delimiter character is a letter or period, a space must
separate the command from the first delimiter. The final delimiter may
be omitted if it is the last character in the command line.

the string of characters to be found.

EXPLANATION

The FNEXT command searches from the current line through the workspace, then through
the rest of the primary input file, until the string is found. When no match is found in the
current contents of the workspace, they are appended to the primary output file and the
workspace is filled to three-fourths of its capacity with text from the primary input file. The
search then continues from the first line of the new workspace contents.

When a match is found, the line containing the specified string becomes the current line.
That line may occur anywhere in the workspace.

If no match is found, the command is terminated. At that time, the workspace is empty and
the primary input file is at its end.

If you enter the AGAIN command to repeat the FNEXT command, the search begins one line
after the current line, so that the same line is not found again.

If an FNEXT command inside repeat brackets ("<" and ">") fails to find a match, execution
resumes with the next command outside the brackets.

If you are using tab stops, remember that while each tab character in your text is displayed
as one or more spaces, it is stored as a single character. To include a standard tab character
in your search string, press the TAB key at the appropriate place in the command line.

See the XSEARCH command for an explanation of special search characters.

3-29

FNEXT
Searches file for string Command Dictionary-8550 Editor

3-30

EXAMPLES

If the search string occurs in the workspace at or after the current line, FNEXT acts the same
as FIND. Assume that the following text is in the workspace:

~ NOT ME
NOPE
HERE I AM

Enter the following command:

*FNEXT IHEREI

The line containing the string "HERE" becomes the current line.

NOT ME
NOPE

~ HERE I AM

Now consider a case in which the text you want to edit is not in the workspace. Assume that
the next line to be edited contains the string "DOWN HERE" and occurs toward the end of
the primary input file. The diagram below shows the contents of the workspace and the
primary files. Note the positions of the primary input file pointer and the workspace pointer.

primary
input
file

UNMODIFIED
TEXT
NOT ME

MANY
LINES

SOME TEXT
DOWN HERE
MORE TEXT

AND SO ON

Enter the following command:

*FNEXT/DOWN HEREI

workspace r___----"'"
NOT ME
NOPE

~ HERE I AM

primary r__----"'"
output
file

MODIFIED
TEXT

@

I:'I\.II:'VT
r nil;;;;'"", I

Command Dictionary-8550 Editor Searches file for string

@

When the editor fails to find the string in the current workspace, it appends the workspace
contents to the primary output file. Then it copies sections of text from the primary input file,
through the workspace, to the primary output file, until the section that contains the string is
brought into the workspace.

After execution of the command, this is what you have:

primary workspace
input UNMODIFIED SOME TEXT
file TEXT ~ DOWN HERE

NOT ME MORE TEXT

MANY
LINES

SOME TEXT
DOWN HERE
MORE TEXT

~

AND SO ON

primary r-----_
output
file

MODIFIED
TEXT
NOT ME
NOPE
HERE I AM

MANY
LINES

3-31

FSUBSTITUTE
Finds and replaces string Command Dictionary-8550 Editor

3-32

SYNTAX

FSUBSTITUTE {/search string/new string/}

search string

new string

PARAMETERS

string delimiter: any character except a space. The delimiter character
must not occur in either string. All three delimiters must be the same
character. If the delimiter character is a letter or period, a space must
separate the command from the first delimiter. The final delimiter may
be omitted if it is the last character in the command line.

the string of characters you want to replace.

the string of characters that replaces the search string.

EXPLANATION

The FSUBSTITUTE command combines the functions of the commands FIND and
SUBSTITUTE. Beginning at the current line, the editor searches the workspace for the search
string. If the search string is found, the line that contains it becomes the current line and the
new string replaces the search string. If no match is found, the message ** NOT FOUND is
displayed and the workspace pointer remains at the same line.

The strings may be of different lengths. If the new string is empty, the search string is
deleted.

After the substitution, the modified line is displayed. To suppress the display, enter a period
between the command and the first delimiter.

If the modified line exceeds 127 characters, the line is truncated to 127 characters and the
editor displays the message ** TRUNCATED along with the truncated line.

If an FSUBSTITUTE command inside repeat brackets ("<" and ">") fails to find a match,
command execution resumes with the next command outside the brackets.

If you are using tab stops, remember that while each tab character in your text is displayed
as one or more spaces, it is stored as a single character. To include a standard tab character
in your search string or new string, press the TAB key at the appropriate place in the
command line.

See the XSEARCH command for an explanation of special search characters.

@

I:~ I I D ~"TI"TI I"T~
r~uu~IIIUII:.

Command Dictionary-8550 Editor Finds and replaces string

@

EXAMPLES

The following text is in the workspace:

~ yes yes yes
yes yes
NO NO NO
yes yes
NO

Enter the following command:

*FS/NO/yes/

The first occurrence of the string "NO" is on line 3. That line becomes the current line and is
displayed as modified:

yes NO NO

You may enclose an FSUBSTITUTE command in repeat brackets to make the same text
substitution any number of times; however, be sure that the new string does not contain the
search string. For example, the command line

5 <F S/ MAN/WOMAN />

replaces the first occurrence of "MAN" with the string "WOWOWOWOWOMAN".

3-33

GET
Reads text from file into workspace Command Dictionary-8550 Editor

3-34

SYNTAX

GET
rnumber of lineS]
Lrange of lines [input filespec]

number of lines

range of lines

input filespec

PARAMETERS

number of lines to be read.

range of lines to be read, for example 2-6. B, C, and E may not be
used as line numbers in a GET command.

file or device from which text is copied. To specify the primary input file,
omit this parameter.

EXPLANATION

The GET command reads text from a file into the editor workspace. The text is inserted before
the current line. The workspace pointer does not move.

Copying ends when the specified lines have been copied or when the end of the input file is
reached.

If neither a number of lines nor a range of lines is specified, one line is copied.

If an input file is specified, copying begins at the beginning of the file or at the first line in the
specified range. You may not specify the primary input file by name, and you may not specify
the primary output file at all.

If an input file is not specified, text is copied from the primary input file.

• If you specify a number of lines, copying begins at the primary input file pointer.

• If you specify a range of lines, those lines are copied, regardless of the position of the
primary input file pointer.

• Afterward, in either case, the primary input file pointer is at the line following the last
line copied.

@

GET
Command Dictionary-8550 Editor Reads text from file into workspace

@

EXAMPLES

*GET 30 FILE 1

copies the first 30 lines of file FILE1 into the workspace, inserting them before the current
line.

*GET 10-20

copies lines 10-20 from the primary input file into the workspace, inserting them before the
current line. Afterward, the primary input file pointer is at line 21.

*GET

inserts the next line from the primary input file into the workspace. The primary input file
pointer advances one line.

3-35

INPUT
Inputs text from system terminal into workspace Command Dictionary-8550 Editor

3-36

[INPUT

SYNTAX

EXPLANATION

The INPUT command allows you to type any number of text lines into the workspace. INPUT
places the editor in input mode. All text entered in input mode, up to (but excluding) the first
empty line, is inserted into the workspace before the current line.

An empty line (carriage return only) terminates input mode, but a blank line (one or more
spaces followed by a carriage return) is treated like any other text line.

The current line remains the same.

There is no prompt character in input mode.

If a text line exceeds 127 characters, the editor displays the ,message ** TRUNCATED. The
line you entered is replaced with the text line ** TRUNCATED.

If an INPUT command is executed from a command file, the editor accepts text lines from the
command file rather than from the keyboard. The command file must contain an empty line
at the end of the input text. Although you cannot use INPUT or INSERT to create an empty
line, you may use the following command line to insert an empty line after the current line:

*XSEARCH ON:FS/>I»I

EXAMPLES

To create text in an empty workspace, enter:

*INPUT

The editor responds:

INPUT:

Enter the following lines:

DICE 3 POTATOES INTO SAUCEPAN.
ADD 1 COP CHOCOLATE SYRUP.
CHILL 15 MIN. BEFORE SERVING.

@

11\1 DIIT .. ,.. _.
Command Dictionary-8550 Editor Inputs text from system terminal into workspace

After terminating the third line with a carriage return, enter a second carriage return to
terminate input mode.

The workspace now looks like this:

DICE 3 POTATOES INTO SAUCEPAN.
ADD 1 CUP CHOCOLATE SYRUP.
CHILL 15 MIN. BEFORE SERVING.

To insert text between lines 2 and 3, move the workspace pointer to line 3:

*UP

The new current line is displayed.

CHILL 15 MIN. BEFORE SERVING.

Add the following text:

*INPUT
IN"PUT"T
STIR BRISKLY 30 SEC.
DRAIN OFF EXCESS SYRUP.

The workspace now looks like this:

DICE 3 POTATOES INTO SAUCEPAN.
ADD 1 CUP CHOCOLATE SYRUP.
STIR BRISKLY 30 SEC.
DRAIN OFF EXCESS SYRUP.

----- CHILL 15 MIN. BEFORE SERVING.

3-37

INSERT
Inserts line into workspace Command Dictionary-8550 Editor

3-38

I !NSERT [text]

SYNTAX

text

PARAMETERS

any line of text. An INSERT command without text is interpreted as an
INPUT command.

EXPLANATION

The INSERT command inserts one line of text into the workspace immediately preceding the
current line.

One or more spaces must separate the INSERT command from the text. The text may not
begin with a space.

If the command line, including the text, exceeds 127 characters, the editor displays the
message ** COMMAND INPUT ABORTED and the command line is lost.

EXAMPLES

Assume that the workspace contains the following text:

THERE WAS A LITTLE HEN
AND SHE HAD A WOODEN LEG

---.. SHE COULD LAY MORE WOODEN EGGS THAN ANY HEN ON THE FARM
ANOTHER LITTLE DRINK WON'T DO US ANY HARM

Enter the following command:

*INSERT THE BEST LITTLE HEN THAT EVER LAID A WOODEN EGG

The workspace now looks I ike this:

THERE WAS A LITTLE HEN
AND SHE HAD A WOODEN LEG
THE BEST LITTLE HEN THAT EVER LAID A WOODEN EGG

~ SHE COULD LAY MORE WOODEN EGGS THAN ANY HEN ON THE FARM
ANOTHER LITTLE DRINK WON'T DO US ANY HARM

@

VIII .,
Command Dictionary-8550 Editor Deletes lines from workspace

@

SYNTAX

KILL [
number of lineS]
range of lines

number of lines

range of lines

PARAMETERS

number of lines to be deleted, beginning with the current line.

range of lines to be written, for example 2-6. B, C, and E may be
used to represent the first line, current line, and end of workspace,
respectively.

EXPLANATION

The KILL command deletes the indicated lines of text from the workspace.

If you do not specify a number of lines or a range of lines, only the current line is deleted.

The workspace pointer does not move unless the current line is deleted, in which case the
first line after the deleted text becomes the current line.

EXAMPLES

*KILL
deletes the current line.

*KILL 10

deletes 10 lines beginning with the current line.

*KILL 20-C

deletes all text between line 20 and the current line, inclusive.

3-39

LIST
Lists text on line printer Command Dictionary-8550 Editor

3-40

SYNTAX

LIST [
number of lineS]
range of lines

number of lines

range of lines

PARAMETERS

number of lines to be listed, beginning with the current line.

range of lines to be saved, for example 2-6. B, C, and E may be used
to represent the first line, current line, and end of workspace,
respective Iy.

EXPLANATION

The LIST command lists the specified lines of workspace text on the line printer.

The workspace contents and pointer are not affected.

If neither a number of lines nor a range of lines is specified, only the current line is listed.

EXAMPLES

*LIST

lists the current line.

*LIST 10

lists 10 lines, beginning with the current line.

*LIST 5-15

lists workspace lines 5 through 15.

@

LN
Command Dictionary-8550 Editor Displays current line number and workspace length

SYNTAX

IN

EXPLANATION

The LN command displays the line number of the current line and the number of lines in the
workspace.

EXAMPLES

Assume that the workspace contains the following text:

AS I WAS STANDING IN THE STREET,
AS QUIET AS CAN BE,

~A GREAT BIG UGLY MAN CAME UP,
AND TIED HIS HORSE TO ME.

Enter the following command:

*LN

The editor reports the current line number and line count.

00003 (00004)

@ 341

MACRO
Defines or executes a command macro Command Dictionary-8550 Editor

3-42

SYNTAX

MACRO [number [=[command linel]]

PARAMETERS

number macro identification number: any integer from 1 to 127.

command line the command line represented by this macro.

EXPLANATION

The MACRO command stores command lines that will be used repeatedly. MACRO is also
used to execute those command lines, to list any presently defined macros, and to delete
macros.

To define a macro, enter MACRO, the number, the equals sign, and the command line. Any
macro definition previously associated with that number is lost. No spaces are necessary
except those that are required by the commands in the command line.

To delete a macro, enter MACRO, the identifying number, and the equals sign.

To execute a macro, enter MACRO and the identifying number.

To list the macros you have defined, enter MACRO with no parameters.

A macro may invoke other macros, but not itself. A macro may not contain a macro
definition.

A macro may not delete a macro or contain a PERFORM command.

EXAMPLES

Enter the following command to define a macro that displays 10 lines and then advances the
pointer 10 lines:

*MACR05=TYPE10:DOWN.10

If the workspace pointer is on line 14 and you enter MACR05, lines 14 to 23 will be
displayed. Since the TYPE command does not move the pointer, the DOWN command is used
to move the pointer down 10 lines to the new current line, number 24. The current line is not
displayed, since the period after the DOWN command suppresses the display.

@

Command Dictionary-8550 Editor

@

To execute the macro, enter:

*MACR05

To display all the macros you have defined, enter:

*MACRO

To delete macro 5, enter:

*MACR05=

MACRO
Defines or executes a command macro

3-43

MOVE
Moves text within workspace Command Dictionary-8550 Editor

3-44

SYNTAX

{
number of lines}

MOVE range of lines [line number]

number of lines

range of lines

line number

PARAMETERS

number of lines to be moved, beginning with the current line.

range of lines to be deleted, for example 2-6. 8, C, and E may be
used to represent the first line, current line, and end of workspace,
respective Iy.

line number of the destination line. 8, C, or E may also be used if the
text is to be inserted before the first line, current line, or end of
workspace. E is the default destination line.

EXPLANATION

The MOVE command deletes the specified lines from their current position in the workspace
and inserts them before the destination line.

If the destination line is not specified or does not exist, the lines are moved to the end of the
workspace.

The workspace pointer remains pointing to the same line, even if that line moves.

EXAMPLES

Assume that the workspace contains the following text:

DO
RE
SO
LA

~TI
MI
FA
DO

Enter the following command:

*MOVE 3-5 8

Lines 3, 4, and 5 are inserted before line 8. The rearranged workspace is shown below.
Notice that "TI" is still the current line, even though its line number has changed from 5 to 7.

DO
RE
MI
FA
SO
LA

~TI
DO

@

I\It:VT 1.." •
Command Dictionary-8550 Editor Advances to next block of text

@

SYNTAX

NEXT [number of lines]

PARAMETERS

number of lines number of new lines to be brought into the workspace.

EXPLANATION

The NEXT command appends the workspace contents (if any) to the primary output file,
clears the workspace, and copies the specified number of lines from the primary input file
into the workspace.

If a number of lines is not specified, the workspace is filled to three-fourths of its capacity
with text from the primary input file.

After the new lines have been brought into the workspace, the first line in the workspace
becomes the current line and is displayed.

Any of the following messages may be displayed during normal execution of a NEXT
command:

END OF TEXT The workspace contents have been appended to the primary output
file.

WORKSPACE FULL Text from the primary input file has filled the workspace to full
capacity, if a number of lines was specified, or to three-fourths of its
capacity otherwise.

EOF The primary input file has been read to its end.

EXAMPLES

The following two command lines are equivalent:

*NEXT 50
*PUTK B-E:GET 50:BEGIN

3-45

NEXT
Advances to next block of text Command Dictionary-8550 Editor

3-46

Consider the following situation. (Note the position of the primary input file pointer.)

primary
input
file

~

ONE
TWO
THREE
FOUR
FIVE
SIX

Enter the command:

*NEXT 3

workspace
ONE
AND A
HALF
TWO

primary (empty)
output
file

The workspace contents are moved to the primary output file; then the next three lines from
the primary input file are brought into the workspace. The editor reports when the workspace
has been cleared, then displays the new current line when copying is finished.

** END OF TEXT
THREE

After execution of the command, the files and workspace look like this:

primary
input
file

ONE
TWO
THREE
FOUR
FIVE
SIX

workspace
---.. THREE

FOUR
FIVE

primary
output
file

ONE
AND A
HALF
TWO

@

NUMBER
Command Dictionary-8550 Editor Controls display of line numbers

@

SYNTAX

NUMBER

PARAMETERS

ON causes line numbers to accompany the displayed text.

OFF suppresses the display of line numbers.

EXPLANATION

The NUMBER command sets the value of the NUMBER flag.

The editor can display workspace text with or without line numbers. Normally (NUMBER flag
OFF) line numbers are not displayed. Turning the NUMBER flag ON causes each line
displayed to be accompanied by the number indicating that line's position in the workspace.
Turning the NUMBER flag OFF suppresses the display of line numbers.

Entering the NUMBER command without a parameter reverses the value of the NUMBER
flag.

EXAMPLES

Assume that the following text is in the workspace:

WHEN
IN
DOUBT,

~CLEAR
THE
ACCUMULATOR.

Enter the following command:

*TYPE 3

3-47

NUMBER
Controls display of line numbers

3-48

The editor displays three lines, beginning with the current line.

CLEAR
THE
ACCUMULATOR.

Now turn on line numbering and display the same three lines:

*NUMBER ON
*TYPE 3

Line numbers are displayed.

4: CLEAR
5: THE
6: ACCUMULATOR.

Command Dictionary-8550 Editor

@

PERFnRM
Command Dictionary-8550 Editor Executes commands from command file

@

SYNTAX

PERFORM {command filespec}

PARAMETERS

command filespec a file containing editor commands.

EXPLANATION

The PERFORM command causes the editor to begin executing commands from the specified
file. When the end of the com"mand file is reached or an error is detected, the editor prompts
for a command from the system terminal. The editing session will terminate if a FILE or QUIT
command is executed from the command file.

All the usual editor responses (prompt character, current-line display, text display,
informative messages, error messages) are displayed on the system terminal. In addition, if
the ECHO flag is ON, each command line is displayed before it is executed.

Commands following PERFORM on the same command line will not be executed.

A command file may contain any editor command except PERFORM.

The initial command file (specified by the third parameter of the EDIT command) is treated as
if it has been started by a PERFORM command.

EXAMPLES

Assume that the BRIEF flag is OFF, the ECHO flag is ON, and the following text is in the
workspace:

I DO NOT UNDERSTAND COMMAND FILES.
I DO NOT LIKE COMMAND FILES.

_____ I DO NOT USE COMMAND FILES.

Disc file PEPTALK contains the following text

BEGIN. :*<FS/DO NOT II)
END. :INSERT I'M OK; COMMAND FILES ARE OK.

3-49

PERFORM
Executr:s commands from command file Command Dictionary-8550 Editor

3-50

Execute the command file:

*PERFORM PE PTALK

The first line of the command file moves the workspace pointer to the first line, then deletes
all occurrences of the string "00 NOT ". The second command line inserts a line at the end
of the workspace. The editor responds as follows as it executes the command file:

BEGIN. :<FS/DO NOT I I) first command line echoed
I UNDERSTAND COMMAND FILES. revised current line
I LI KE COMMAND FILES. new current line
I USE COMMAND FILES. new current line

** NOT FOUND .no more occurrences of the string
*END. :INSERT I'M OK; COMMAND FILES ARE OK.

second command line echoed

* ready for a command from the keyboard

The workspace now looks like this:

I UNDERSTAND COMMAND FILES.
I LIKE COMMAND FILES.
I USE COMMAND FILES.
I'M OK; COMMAND FILES ARE OK.

@

DIIT . _.
Command Dictionary-8550 Editor Copies workspace text to file or device

@

SYNTAX

rnumber of linesl
Lrange of lines J [output filespec] PUT

number of lines

range of lines

output filespec

PARAMETERS

number of lines to be written, beginning with the current line.

range of lines to be listed, for example 2-6. 8, C, and E may be used
to represent the first line, current line, and end of workspace,
respectively.

the file or device to which text is written. To specify the primary output
file, omit this parameter.

EXPLANATION

The PUT command writes the specified lines of workspace text onto the specified file or
device. The workspace contents and pointer are not affected.

If neither a number of lines nor a range of lines is given, only the current line is copied.

If no output file or device is specified, text is appended to the primary output file.

If an alternate output file is specified, its contents are replaced by the copied text. If the
specified file did not previously exist, it is created. You may not specify the primary output file
by name, and you may not specify the primary input file at all.

EXAMPLES

*PUT

appends a copy of the current line to the primary output file.

*PUT 1-20 FILEA

replaces the contents of FILEA with a copy of the first 20 lines in the workspace.

*PUT 30 LPT

lists 30 lines on the line printer, beginning with the current line.

3-51

PUTK
Moves workspace text to file or device Command Dictionary-8550 Editor

3-52

SYNTAX

rnumber of lineS]
PUTK Lrange of lines [output filespec]

number of lines

range of lines

output filespec

PARAMETERS

number of lines to be written, beginning with the current line.

range of lines to be moved, for example 2-6. 8, C, and E may be used
to represent the first line, current line, and end of workspace,
respectively.

the file or device to which text is written. To specify the primary output
file, omit this parameter.

EXPLANATION

PUTK combines the functions of the commands PUT and KILL.

The PUTK command writes the specified lines of workspace text onto the specified file or
device, then deletes those lines from the workspace.

The workspace pointer does not move unless the current line is deleted, in which case the
first line after the deleted text becomes the current line.

If neither a number of lines nor a range of lines is given, only the current line is copied and
deleted.

If no output file or device is specified, text is appended to the primary output file.

If an alternate output file is specified, its contents are replaced by the copied text. If the
specified file did not previously exist, it is created. You may not specify the primary output file
by name, and you may not specify the primary input file at all.

EXAMPLES

*PUTK
appends the current line to the primary output file and deletes the line from the workspace.
The next line becomes the current line.

*PUTK 1-20 FILEA
replaces the contents of FILEA with the first 20 lines in the workspace and deletes those
lines from the workspace. If the current line is among those deleted, the new first line
(formerly line 21) becomes the current line.

*PUTK 30 LPT
lists 30 lines on the line printer, beginning with the current line, and deletes those lines from
the workspace. The first line after the deleted text becomes the current line.

@

QUIT
Command Dictionary-8550 Editor Aborts editing session

@

I QUIT

SYNTAX

EXPLAi~ATiON

The QUIT command aborts the editing session.

If the primary output file is a new file or a new version of the primary input file, the primary
output file is deleted.

If the primary output file existed before the editing session began:

• If no text has been written to it in the current editing session (through commands such
as COpy, FNEXT, NEXT, PUT and PUTK), it retains its original contents .

• Otherwise it contains only the text written to it during this editing session.

All changes made to alternate output files during this session are retained.

The primary input file remains unchanged, and its backup file (if any) is not deleted.

3-53

REPLACE
Replaces current line Command Dictionary-8550 Editor

3-54

Il!EPLACE
SYNTAX

{text}

PARAMETERS

text any line of text.

EXPLANATION

The REPLACE command replaces the whole current line with the new text line specified. The
workspace pointer does not move.

If the command line, including the text, exceeds 127 characters, the editor displays the
message ** COMMAND INPUT ABORTED and the command line is lost.

One or more spaces must separate the command from the text. The text may not begin with
a space.

The new line is displayed. To suppress the display, enter a period between the command and
the space preceding the text.

Assume that the current line is:

~ A LINE

Enter the following command:

*REPLACE A NEW LINE

The new line is displayed:

A NEW LINE

EXAMPLES

@

SAVE
Command Dictionary-8550 Editor Copies workspace text to save area

@

SYNTAX

fnumber of linesl
SAVE Lrange of lines J

number of lines

range of lines

PARAMETERS

number of lines to be saved, beginning with the current line.

range of lines to be displayed, for example 2-6. 8, C, and E may be
used to represent the first line, current line, and end of workspace,
respectively.

EXPLANATION

The SAVE command replaces the current contents of the save area (if any) with the specified
lines of workspace text. The workspace contents and pointer are not affected.

If neither a number of lines nor a range of lines is specified, only the current line is saved.

The UNSAVE command retrieves saved text.

EXAMPLES

*SAVE

replaces the contents of the save area with a copy of the current line.

*SAVE 30-40

replaces the contents of the save area with a copy of workspace lines 30 through 40.

NOTE

The workspace and the save area share the same section of memory in the editor. Storing a
large section of text in the save aea may noticeably reduce the capacity of the workspace.

If you receive the message WORKSPACE FULL in response to a SAVE command, there
is not enough space in the save area for the text you are storing. You can store the text
on a file with a PUT command and retrieve it with a GET command instead of using
SA VE and UNSA VE.

3-55

STATUS
Displays editor status Command Dictionary-8550 Editor

3-56

SYNTAX

STATUS

EXPLANATION

The STATUS command displays information about the current status of the editor.

Enter the command:

*STATUS

EXAMPLES

The editor displays the following information:

STATUS
PI = FILE 1

LINE 101
PO = FILE1

LINE 50
LAST AI = FILE2
LAST AO =
COMMAND FILE =
TAB CHARACTER = &
TAB STOPS = 8 16 24 32 40 48 56 64
BRIEF false
CRT true
DEBUG fal se
ECHO true
ERROR true
NUM BER fa I se
UPARROW fal se
XSEARCH false
XTABS false
CURRENT LINE:

15 (60)

This information can be interpreted as follows:

The primary input file (P1) is the current version of file FILE1. One hundred lines have been
read from FILE 1: the primary input file pointer is at line 101.

The primary output file (PO) is the new version of FILE 1. Fifty lines have been written to the
primary output file.

The last alternate input file (AI) read from (by a GET or COpy command) is FILE2.

@

STATUS
Command Dictionary-8550 Editor Displays editor status

@

No alternate output files have been written on.

There was no initial command file specified in the EDIT command line.

The tab character is &. The default tab stops are in effect.

All editor flags are at their default values. (TRUE is synonymous with ON; FALSE is
synonymous with OFF.)

Workspace line 15 is the current line. There are 60 lines in the workspace.

3-57

SUBSTITUTE
Replaces string Command Dictionary-8550 Editor

3-58

SYNTAX

~UBSTITUTE {/old string/new string/}

old string

new string

PARAMETERS

string delimiter: any character except a space. The delimiter character
must not occur in either string. All three delimiters must be the same
character. If the delimiter character is a letter or period, a space must
separate the command from the first delimiter. The final delimiter may
be omitted if it is the last character in the command line.

the string of characters you want to replace.

the string of characters that replaces the old string.

EXPLANATION

The SUBSTITUTE command searches the current line for the old string. If the old string is
found, the new string replaces it. If the old string does not occur in the current line, the
message ** NOT FOUND is displayed.

The workspace pointer does not move.

The strings may be of different lengths. If the new string is empty, the old string is deleted.

After the substitution, the modified line is displayed. To suppress the display, enter a period
between the command and the first delimiter.

If the modified line exceeds 127 characters, the line is truncated to 127 characters and the
editor displays the message ** TRUNCATED along with the truncated line.

If a SUBSTITUTE command inside repeat brackets ("<" and ">") fails to find a match,
command execution resumes with the next command outside the brackets.

If you are using tab stops, remember that while each tab character in the text is displayed as
one or more spaces, it is stored as a single character. To include a standard tab character in
the old string or the new string, press the TAB key at the appropriate place in the command
line.

See the XSEARCH command for an explanation of special search characters.

@

~II R~TITIITI= """'-'11"""''''' ••• '-" • _
Command Dictionary-8550 Editor Replaces string

@

EXAMPLES

Assume that the workspace contains the following text:

~ THIS IS A LINE.
HERE IS ANOTHER.

Enter the following command:

*SUBSTITUTE/A/A CHANGEDI

The modified line is displayed:

THIS IS A CHANGED LINE.

Enter the following command:

*SUBSTITUTE/HERE/THISI

The editor responds:

** NOT FOUND

To replace a string on a different line, you must use the FSUBSTITUTE command, described
earlier in this dictionary.

3-59

SUSPEND
Exits temporarily to DOS/50 Command Dictionary-8550 Editor

3-60

SYNTAX

SUSPEND

EXPLANATION

The SUSPEND command suspends the editor. Control passes to 005/50 and the prompt> is
displayed. When you enter the 005/50 command CONT * or CONT EDIT, control returns to
the editor. The editor prompts for another command or resumes execution of the command
file in progress.

If you enter the 005/50 command ABORT * or ABORT EDIT while the editor is suspended,
the editing session is aborted as with a QUIT command.

@

TAB
Command Dictionary-8550 Editor Defines editor tab character

@

SYNTAX

I TAB {character}

character

PARAMETERS

the character to be used as the editor tab character. You may not specify
the colon (:), less-than «), greater-than (», space, or carriage return.

EXPLANATION

The standard tab character is CTRL-I (ASCII code 09), which may be entered in one of two
ways:

• Press the TAB key.

• Press the I key while holding down the CTRL (control) key.

The TAB command defines the editor tab character, which you may use as an alternative to
the standard tab character. When you invoke the editor, the editor tab character is undefined.
Each TAB command removes the significance of any previous editor tab character.

The editor tab character is like the standard tab character in most respects:

• When you type either tab character, that character is inserted into the line being
entered and the cursor advances to the next tab stop.

• When text containing tab characters is displayed, spaces are inserted to align the text to
the current tab stops.

• When text containing tab characters is saved on a file:

If the XTABS flag is ON, each tab character copied is expanded to the appropriate
number of spaces.

If the XTABS flag is OFF, tab characters are copied unchanged.

Unlike the standard tab character, the editor tab character has no meaning outside the
current editing session. DOS/50 routines such as ASM and MDL recognize oniy the
standard tab character, and the editor does not remember the editor tab character from a
previous editing session.

Since the standard tab character is not printable, you may find it easier to keep track of tabs
in your text if you use a printable character as the editor tab character.

3-61

TAB
Defines editor tab character Command Dictionary-8550 Editor

3-62

EXAMPLES

Create three lines of assembly language source code using the percent sign (%) as the tab
character:

*TAB %
*Ilfi31JT
INPUT:
DEMO%LXI%H,500%; SET TABLE POINTER
%MV!%B,5%; SET PASS COUNTER
%XRA%A%; CLEAR ACCUMULAtOR

Display the text you have created:

*TYPE B-E
DEMO LXI

MVI
XRA

H,500
B,5
A

SET TABLE POINTER
SET PASS COUNTER
CLEAR ACCUMULATOR

In order to save the text with spaces instead of percent signs, you must turn the XTABS flag
ON:

*XTABS ON
*FILE
**END OF TEXT

>

The following example shows how redefining the editor tab character affects your text. In
this example, "t" denotes the standard tab character.

Assume that the workspace is empty and the editor tab character is undefined. Enter the
following text:

*INPUT
I~
THIStIStAtLINEtOFtTEXT
HERE%IS%ANOTHER
A=BIG=WORD=OVERRIDES=TABS

Display the text you have entered:

*TYPE B-E
THIS IS A LINE
HERE%IS%ANOTtiER
A=BIG=WORD=OVERRIDES=TABS

OF TEXT

@

Command Dictionary-8550 Editor

@

Set the editor tab character to % and display the text again:

*TAB %
*TYPEB-E
THIS IS A LINE
HERE IS ANOTHER
A=BIG=WORD=OVERRIDES=TABS

OF TEXT

Each % in the text is treated as a tab character.

Change the editor tab character to = and display the text again:

*TAB =
*'fYPEB-E
THIS IS A
HERE%IS%ANOTHER
A BIG WORD

LINE OF

OVERRIDES

The % is no longer a tab character.

TEXT

TABS

TAB
Defines editor tab character

3-63

TABS
Redefines tab stops Command Dictionary-8550 Editor

3-64

SYNTAX

I TABS {column} [column] ...

PARAMETERS

column column number of the tab stop. Up to eight tab stops may be specified.

EXPLANATION

The TABS command eliminates all existing tab stops and defines up to eight new tab stops.

A column number may not be less than 1 or greater than 127.

Column numbers must be specified in ascending order.

When the editor is invoked, there are eight default tab stops set at 8, 16, 24, 32, 40, 48, 56,
and 64 spaces from the left margin.

Tab stops are not retained from one editing session to the next.

Text is aligned according to the current tab stops, even if the text was created with different
tab settings. If the original tab characters have been replaced by spaces, no realignment is
possible. See the XTABS command.

EXAMPLES

Set the editor tab character to % and enter the following text:

*TAB %
*TIfl51IT
IN"P1J'I':
THIS%IS%A LINE%OF TEXT
THIS%%IS%ONE%MORE
%HERE%ls%ANOTHER%ONE

Display the text using the default tab stops:

*UP.3:TYPE 3
THIS IS A LINE OF TEXT
THIS IS ONE MORE

HERE IS ANOTHER ONE

@

TABS
Command Dictionary-8550 Editor Redefines tab stops

If you specify new tab stops, all the old stops are lost. Enter the following command line:

*TABS 10:TYPE 3

With only one tab stop, the text looks like this:

THIS IS A LINE OF TEXT
THIS IS ONE MORE

HERE IS ANOTHER ONE

Note that any tab character beyond the last tab stop is displayed as a space, but remains
unchanged in the text. Display the same text with some new tab stops:

*TABS 7 14 23 32:TYPE 3
THIS IS A LINE OF TEXT
THIS IS ONE MORE

HERE IS ANOTHER ONE

@ 3-65

TYPE
Displays text on terminal Command Dictionary-8550 Editor

3-66

SYNTAX

TYPE
rnumber of lineS]
Lrange of lines

number of lines

range of lines

PARAMETERS

number of lines to be displayed, beginning with the current line.

range of lines to be saved, for example 2-6. 8, C, and E may be used to
represent the first line, current line, and end of workspace, respectively.

EXPLANATION

The TYPE command displays the specified lines of workspace text on the system terminal.

The workspace contents and pointer are not affected.

If neither a number of lines nor a range of lines is specified, only the current line is displayed.

EXAMPLES

*TYPE

displays the current line.

*TYPE 10

displays 10 lines beginning with the current line.

*TYPE 5-15

displays workspace lines 5 through 15.

@

UNSAVE
Command Dictionary-8550 Editor Copies text from save area to workspace

@

I UNSAVE

SYNTAX

The UNSAVE command copies the contents of the save area into the workspace, inserting
them before the current line.

The save area is not affected.

The current line remains the same.

EXAMPLES

Assume that the following text is in the workspace:

WELL,
~ HE RAN

AND
HE GOT
VERY TIRED.

Enter the following command:

*SAVE 2

Two lines of text, beginning with the current line, are copied into the save area. The
workspace remains the same. The save area contains the following text:

HE RAN
AND

Enter the following command line:

*UNSAVE:UNSAVE

Each UNSAVE command inserts a copy of the two saved lines in front of the current line. The
workspace now looks like this:

WELL,
HE RAN
AND
HE RAN
AND

~ HE RAN
AND
HE GOT
VERY TIRED.

3-67

UP
Moves pointer up Command Dictionary-8550 Editor

3-68

SYNTAX

UP [number of lines]

PARAMETERS

number of lines number of lines the pointer moves up.

EXPLANATION

The UP command moves the workspace pointer the specified number of lines toward the
beginning of the workspace.

The new current line is displayed. To suppress the display, enter a period immediately after
the command, before any space or number.

If you do not specify a number of lines, the pointer moves up one line.

If moving the pointer the specified number of lines would cause the pointer to go past the
beginning of the workspace, the pointer stops at line 1.

EXAMPLES

Assume that the workspace contains the following text:

A LINE
B LINE
C D LINE

----- E LINE IS THE NEXT TO
LAST LINE

Enter the following command:

*UP 2

The pointer moves up two lines and displays the new current line.

B LINE

The workspace now looks like this:

A LINE
~ B LINE

C D LINE
E LINE IS THE NEXT TO
LAST LINE

@

UPARROW
Command Dictionary-8550 Editor Controls control-character handling

@

ON

OFF

SYNTAX

PARAMETERS

assigns the uparrow character to special use in representing control
characters.

removes the special significance of the uparrow character.

EXPLANATION

The UPARROW command sets the value of the UPARROW flag. Turn the UPARROW flag ON
when you want to display text containing control characters.

Normally (UPARROW flag OFF) the uparrow character (!\ or r) has no special significance to
the editor. Turning the UPARROW flag ON allows any control character to be entered or
displayed as an uparrow followed by a printable character. For example, the control
characters NULL, BACKSPACE, and ESCAPE are represented as !\@, !\H, and !\ [. The ASCII
code of the printable character (64 to 95) is equal to 64 plus the ASCII code of the control
character (0 to 31).

All control characters except the carriage return and the current tab character can be
represented using the uparrow.

When the UPARROW flag is OFF, the editor displays any control character as itself, and does
not treat the uparrow character specially. How a control character is displayed depends on
the display device and the control character.

Entering the UPARROW command without a parameter reverses the value of the UPARROW
flag.

You may want to think of the uparrow as representing the CRTL (control) key. For example,
! A represents the control character CTRL-A, ! B represents CTRL-B, and so on. the 8550 Lab
System Users Manual contains an ASCII-Binary-Decimal Conversion Table. Control
characters occupy columns 1 and 2 of the table. Columns 5 and 6 contain the printable
characters that may be used to represent the control characters.

3-69

UPARROW
Controls control-character handling Command Dictionary-8550 Editor

3-70

EXAMPLES

The following table shows how the editor stores the text you enter.

What the editor stores

UPARROW flag OFF UPARROW flag ON
What you type characters ASCII codes characters ASCII codes

/\[/\[94,91 (ESC) 27

/\G /\G 94,71 (BELL) 7
/\g /\g 94,103 /\g 94,103

(CTRL-G) (BELL) 7 (BELL) 7

The following table shows how the editor displays the text it has stored.

What the editor stores

characters ASCII codes

(ESC) 27

(BELL) 7

/\G 94,71

Enter the following command:

*INSERT THIS BELL GOES AGAG

What the editor displays

UPARROW flag OFF UPARROW flag ON

depends on terminal /\[

depends on terminal /\G

/\G /\G

With the UPARROW flag OFF, all characters in the inserted text are stored just as they are.
The ASCII codes for the last four characters stored are 94, 71, 94, 71. Now turn the
UPARROW flag ON and insert another line of text.

*UPARROW ON
*INSERI 1AAT BELL GOES AGAGAG

This time, each /\G is stored as a single control character (BELL, ASCII code 7). Note that

ASCII(BELL) = ASCII (CTRL-G) = ASCII(G) - 64

Display both lines of text.

*UP.2:TYPE 2

@

UPARROW
Command Dictionary-8550 Editor Controls control-character handling

@

With the UPARROW flag ON, each BELL character is displayed as !\G.

THIS BELL GOES ~G~G
THAT BELL GOES ~G~G~G

Now turn the UPARROW flag OFF again and display the two lines.

*UPARROW OFF:TYPE 2

This time the exact contents of the lines are sent to the system terminal:

THIS BELL GOES ~G~G

THA T BELL GOES (ding) (ding) (ding)

Each BELL character rings the bell on the system terminal.

3-71

XSEARCH
Controls wildcard searches Command Dictionary-8550 Editor

3-72

SYNTAX

XSEARCH

PARAMETERS

ON enables the wildcard search feature.

OFF disables the wildcard search feature.

EXPLANATION

The XSEARCH command sets the value of the XSEARCH flag.

When the XSEARCH flag is ON, the characters "?" and ">" have special meanings in search
and replacement strings:

• In a search string, "?" matches any single character. In a replacement string, "?" stands
for whatever character it matched in the search string .

• The character ">" signifies a carriage return, which is the last character in any line of
text. The carriage return separates one line of text from the next.

Additionally, when the XSEARCH flag is ON, a search or replacement string may begin on
one line of text and end on another.

When the XSEARCH flag is OFF, "?" and ">" have no special meanings, and strings are not
considered to cross or include line boundaries.

Entering the XSEARCH command without a parameter reverses the value of the XSEARCH
flag.

The XSEARCH flag is initially OFF.

EXAMPLES

All of the following examples assume that the XSEARCH flag is ON.

@

XSEARCH
Command Dictionary-8550 Editor Controls wildcard searches

@

SEARCH STRING EXAMPLES

*FINDI A? CI

finds any three-character string beginning with "A" and ending with "C".

*FIND/END.>I

finds a line ending with "END.".

*FIND/>THEI

finds a line beginning with ''THE''. The line preceding that line becomes the current line,
because the carriage return (» belongs to the line preceding ''THE''.

*FIND/>ALONE>I

finds a line containing "ALONE" and nothing else. The line preceding "ALONE" becomes the
current line.

REPLACEMENT STRING EXAMPLES

*SUB/A?/XYZI

deletes the "A" and whatever character follows it and substitutes the string "XYZ".

*SUB/A?C/X?ZI

substitutes "X" for "A" and "Z" for "C" but leaves the character between them unchanged.

*SUB/ABC?I?ABCI

moves the character matched by"?" from behind the string "ABC" to in front of it,

*SUB/A?C/A????CI

inserts three additional copies of the character between "A" and "C".

*SUB/A??D/X?????YI

acting on the string "ABCD" results in "XBCBCBY".

*SUBI ACI A?CI

inserts a question mark between "A" and "C".

*SUB/NEW LINE/NEW>LINEI

inserts a carriage return between the words "NEW" and "L1NE", making one line into two.

*FSUB/NEW>LINE/NEW LINEI

combines two lines into a single line.

*SUB/NEW>LINE/NEW LINEI

produces the response ** NOT FOUND because the SUBSTITUTE command stops searching
at the first carriage return.

*FSUB/>I»I

inserts an empty line after the current line.

3-73

XTABS
Controis tab character expansion Command Dictionary-8550 Editor

3-74

SYNTAX

XTABS

PARAMETERS

ON specifies that tab characters are to be expanded to spaces on output.

OFF specifies that text is to be output with tab characters.

EXPLANATION

The XTABS command sets the value of the XTABS flag.

When you use tab stops in creating text, each tab character you enter is stored in the text.
When one of the following commands copies text from the workspace to a file or device, the
editor checks the XTABS flag.

FILE FNEXT NEXT PUT PUTK

If the XTABS flag is ON, each tab character copied is replaced with the number of spaces
appropriate to the current set of tab stops.

If the flag is OFF, tab characters are copied unchanged.

Entering the XTABS command without a parameter reverses the value of the XTABS flag.

The XTABS flag is initially OFF.

A file containing standard tab characters is correctly processed by such DOS/50 routines as
ASM and MDL, but may produce unexpected results if used as a command file or data file.

Since each tab character generally replaces several spaces, a file created with XTABS OFF
usually occupies less disc space than the same file created with XTABS ON.

A file containing non-standard tab characters (defined with the TAB command) is usually
useless. Turn the XTABS flag ON before saving text aligned with non-standard tab
characters.

@

XTABS
Command Dictionary-8550 Editor Controls tab character expansion

@

EXAMPLES

In these examples "t" denotes the standard tab character.

Assume that the tab stops and XTABS flag are at their default values. The workspace
contains four lines of assembly language:

tXRAtAt; CLEAR ACCUMULATOR
LOOPtADDtMt; ADD BYTE FROM TABLE
tINXtHt; POINT TO NEXT BYTE
tDCRtBt; DECREMENT PASS COUNTER

The following command writes an exact copy of the workspace contents into FILE 1 :

*PUT B-E FILE 1

Now enter the following command line:

*XTABS ON:PUT B-E FILE2

The PUT command copies the workspace contents to FILE2. Because the XTABS flag is ON
now, each tab character is replaced by spaces up to the next tab stop.

Counting carriage returns, the workspace and FILE 1 each contain 120 characters. FILE2
contains 180 characters and looks like this:

LOOP
XRA
ADD
INX
DCR

A
M
H
B

CLEAR ACCUMULATOR
ADD BYTE FROM TABLE
POINT TO NEXT BYTE
DECREMENT PASS COUNTER

3-75

8550 Editor

Section 4

TECHNICAL NOTES

This section is reserved for technical information about the DOS/50 Editor. At the time of
this writing, no technical notes are included. Technical notes will be incorporated into later
versions of this manual as necessary.

4-1

8550 Editor

@

Section 5

ERROR MESSAGES

ASSIGN PROBLEM (LIST command). The channel reserved for the line printer (LPT) is
assigned to some other device or file (the ASSIGN PROBLEM message may also occur as a
submessage under the DOS STAT = xx message.)

BOOLEAN? The parameter ON or OFF was entered improperly after one of the following
commands: BRIEF, CRT, DEBUG, ECHO, ERROR, NUMBER, UPARROW, XSEARCH, or
XTABS.

BREAK. The ESCAPE key was pressed to terminate an editor function.

COMMAND INPUT ABORTED. An attempt was made to enter a command line longer than
127 characters; the entire line is lost.

CANNOT NEST COMMAND FILES. The command file being executed contains a
PERFORM command.

CANNOT READ. A write-only file or device was specified for input.

CANNOT READ NEW FILE. A nonexistent or incorrect filespec was specified for input.

CANNOT WRITE. A read-only file or device was specified for output.

DISK FULL. The disc specified to receive output is full and cannot accept any more text.

DOS STAT = xx. A DOS/50 service call error occurred; the Service Calls section in your
8550 System Users Manual explains the SRB status code (xx). This message is followed by
submessages that indicate more precisely where the error occurred.

EMPTY SEARCH STRING. The search string was missing, contained no characters
between the delimiters, or was not terminated by a second delimiter identical to the first.

END OF FILE. The specified range of lines lies completely past the end of the file. This
message may also be displayed when no error has occurred to inform you that the editor has
read to the end of a file.

5-1

5-2

Error Messages-8550 Editor

END OF TEXT. The specified range of lines lies completely outside the actual range of lines
in the workspace. This message may also be displayed when no error has occurred to inform
you that an editor function has reached the end of the workspace.

ERROR (command line). Commands were not separated by colons or too many parameters
were entered.

ERROR (MACRO command). The macro being executed contains a MACRO definition.

ERROR (REPLACE command). No text follows the REPLACE command.

ERROR (TABS command). A tab stop was specified out of ascending order, beyond the
maximum line length (127), or with a number syntax error. The current tab settings are not
altered.

FILE NAME TOO LONG. The specified file name contains more than fourteen characters.

ILLEGAL MACRO NUMBER. A macro number outside the range 1 to 127 was specified or
a syntax error was made.

ILLEGAL TAB CHARACTER. An attempt was made to specify a colon (:), left repeat bracket
«), right repeat bracket (», space, or carriage return as the editor tab character.

MISSING DELIMITER. A delimiter in an FSUBSTITUTE or SUBSTITUTE command was
missing.

NEST. Repeat brackets « » were not entered in matching pairs.

NEW FILE. Informs you, upon invoking the editor, that you are beginning a new file; there is
no primary input file to read data from. Also appears when you have created a new file with
the COPY, PUT, or PUTK commands.

NO PI. No primary input file exists and no alternate input file was specified.

NO PO. No primary output file exists and no alternate output file was specified.

NO SAVED TEXT. An attempt was made to retrieve text from the save area but no text had
been saved previously.

NOT FOUND. The string being searched for was not found within or beyond the current
line. (The SUBSTITUTE command searches only the current line.)

NUMBER NOT ALLOWED. A numeric parameter was entered for a command that does not
take a numeric parameter.

Error Messages-8550 Editor

@

NUMBER NOT FOLLOWED BY <. A number was found that should have started a
repeated command sequence, but was not followed by the left repeat bracket «).

NUMBER? The line number parameter contained a syntax error.

PROCEDURE ERROR. A primary file was illegally specified as an alternate file.

RANGE? The range-of-lines parameter contained a syntax error.

SUPERSEDING EXISTING FILE. Warns that you have specified an eXlstmg file as the
primary output file. The previous contents of the file will be lost if you do not terminate the
editor with the QUIT command before copying any text to the primary output file.

TRUNCATED. An attempt was made to enter or create a text line longer than 127
characters. In an INPUT command, the line is lost and the message **TRUNCATED replaces
the lost text. In an FSUBSTITUTE or SUBSTITUTE command, the line is truncated to 127
characters.

UNKNOWN COMMAND. A nonexistent or misspelled command was entered.

WORKSPACE FULL. There is an insufficient amount of free area left in the workspace
buffer to execute the latest editor command. To gain more free area, KILL or PUTK some
workspace lines, delete some macros, or SAVE a smaller block of text. This message may
also be displayed after the NEXT or FNEXT commands to inform you that the workspace has
been filled to three-fourths of its capacity.

5-3

8550 Editor

(OJ

Section 6

GLOSSARY

Alternate Input File (AI). A file that provides text to be edited. It may be any text file other
than the primary input file or the primary output file.

Alternate Output File (AO). A file that receives edited text. It may be any text file other than
the primary input file or the primary output file.

Command File. A file containing editor command lines as text. When a command file is
invoked by the PERFORM command, the command lines it contains are executed.

Command Line. A line of one or more editor commands. Multiple commands must be
separated by colons (:). The line may not contain more than 127 characters.

Current Directory. The directory that contains the files you are currently using. A filespec
that does not begin with a slash specifies either a standard device (such as CONI) or a file or
directory in the current directory.

Current Line. A line of text in the workspace that serves as a point of reference for many
editor commands. The current line is pointed to by the workspace pointer, which may be
moved to any iine in the workspace.

Directory. A file that may contain only pointers to other files. See the 8550 System Users
Manual for complete information on files and directories.

005/50. The Disc Operating System of the 8550 Microprocessor Lab.

Editor. The DOS/50 system program that allows a user to create and modify text files
conveniently.

Editor Tab Character. See Tab Character.

Filespec. A sequence of names, separated by slashes, that defines a path to a file. A file that
is pointed to by the current directory may be specified with a single name. The term filespec
in a Command Dictionary syntax block may refer to a standard device name such as CONI.

Free Area. The area of the workspace buffer that is still available for use by the workspace,
macro area, and save area.

Initial Command File. An editor command fiie InaI IS automaticaiiy executed at the
beginning of the edit session. The initial command file is an optional parameter of the EDIT
command. See Command File.

6-1

6-2

Glossary-8550 Editor

Macro. A specially defined command line that may be executed by a short command rather
than by typing in the whole line. Up to 127 macros may be stored in the macro area. Macros
are defined and executed by the MACRO command.

Macro Area. The area of the workspace buffer that holds the macros defined by the user for
the current editor session.

Primary Input File (PI). The default file from which text is read into the workspace to be
edited. This file may be specified when the editor is invoked.

Primary Input File Pointer. A pointer maintained by the editor that points to the next line to
be copied from the primary input file. The primary input file pointer points initially to the first
line of the primary input file.

Primary Output File (PO). The default file into which edited text is stored from the
workspace. This file may be specified when the editor is invoked.

Program Memory. The 8301 memory used as a substitute for prototype memory in the early
stages of prototype development (emulation modes 0 and 1). User programs run in program
memory, as does the editor and certain other system programs.

Repeat Brackets. The characters "<" and ">" used as brackets to enclose a command
sequence that is to be repeated.

Save Area. The area in the workspace buffer that stores the text copied from the workspace
by the most recent SAVE command.

Standard Tab Character. See Tab Character.

Tab Character. A character entered to instruct the editor to include spaces in a text line so
that the next character of text is in a tab column. The standard tab character (CTRL-I, ASCII
code 09) may be entered by pressing the TAB key, or by pressing the I key while holding
down the CTRL key. An optional editor tab character, defined by the TAB command, may be
used in place of the standard tab character, CTRL-I.

Workspace. The area of the workspace buffer that holds the text currently being edited. Most
editor commands operate on the text currently in the workspace.

Workspace Buffer. The area of program memory used by the editor to store text. The editor
program occupies about 9K bytes of program memory. The rest of program memory
constitutes the workspace buffer. Each of four areas of the workspace buffer (workspace,
free area, save area, and macro area) may vary in size, but the size of the workspace buffer
remains constant.

Workspace Map. A two-line display produced by the editor that gives the size and location of
each area of the workspace buffer. The command DEBUG ON causes the workspace map to
be displayed after execution of each editor command.

Workspace Pointer. A pointer maintained by the editor that points to the current line in the
workspace. See Current Line.

8550 Editor

A

AI. See Alternate input file

AO. See Alternate output file

Aborting the editor, 3-53

AGAIN command, 3-6

Alternate input file, 3-1, 3-20

Alternate output file, 3-1, 3-20

Angle brackets, 3-3
See also Repeat brackets

Asterisk:
ediior prompi, i-4
with repeat brackets, 3-3

B

BACKSPACE key, 1-4

Backup file, 3-21, 3-22

Batch editing. See Command file

BEGIN command, 3-7

Blank line, 3-36

BRIEF command, 3-8

c
Cancelling. See Deleting

Carriage return in a search string, 3-72

Character string. See String

Characters, special:
asterisk, 1-4, 2-25, 3-3
carriage return, 3-72
colon, 3-3, 3-61
greater-than, 3-3, 3-61,3-72
less-than, 3-3, 3-61
period,3-3
question mark, 3-72
tab character, 1-5,3-61, 3-74, 6-2
See also Contra! characters

Colon, 3-3, 3-61

Command file, 3-49
creating, 2-27,
executing, 2-27, 3-49
initial, 2-28, 3-20

Command line, 3-3
correcting mistakes in, 1-4
special characters in, 3-3
stringing together commands in, 2-24

COMMENT command, 3-10

Control characters, 3-5, 3-69

Section 7

INDEX

Control-I. See Tab character

Converting tab characters to spaces. See XTABS

command

COPY command, 3-11
examples, 2-8, 2-21

Copying text:
between files, 3-11
from a file, 2-22, 3-34, 3-45
from the save area, 3-67
to a file, 2-21, 3-26, 3-51, 3-52
to the save area, 3-55
See also Saving text

Correcting typing mistakes, 1-4

Creating a file, 2-4

Creating text, 1-5, 3-36, 3-38

CRT command, 3-13

CTRL-1. See Tab character

Current line, 3-2
display of, 2-11, 3-8
See also Workspace pointer

o
DEBUG command, 3-14

DELETE key, 1-4

Deleting a string, 3-32, 3-58

Deleting lines of text, 3-39, 3-52

Deleting tab characters. See XTABS command

Deleting the last character typed, 1-4

Deleting the line being typed, 1-5

Demonstration Run, 1-4

Displaying text:
from a file, 2-8
from the workspace, 1-6, 2-8
on the line printer, 1-10, 2-8
on the system terminal, 2-8

interrupting display, 3-5

DOWN command, 3-17

Duplicating. See Repeating

E

ECHO command, 3-18

EDIT command, 3-19

Editing a large file, 2-18, 3-29, 3-45

Editing an existing file, 2-5

7-1

7-2

Editor:
aborting, 3-53
exiting, 2-3, 3-26, 3-53
interrupting, 2-3, 3-4, 3-60
invoking, 2-2, 3-19

Editor tab character. See Tab character

Empty line, 3-36

END command, 3-24

Entering text, 1-5, 3-36, 3-38

Erasing. See Deleting

ERROR command, 3-25

Error messages, 3-25, 5-1

ESC key, 3-4

Exiting the editor, 2-3, 3-26, 3-53

Expanding tab characters to spaces. See XTABS

command

F

Features of the editor, 1-3

File:
creating, 2-4
displaying, 2-8
modifying, 1-7, 2-5

FILE command, 3-26

FIND command, 3-27

Finding a string, 2-14

FNEXT command, 3-29

Free area, 3-2, 3-14

FSUBSTITUTE command, 3-32

G

GET command, 3-34

Global string replacement, 2-16

Greater-than sign, 3-3, 3-61, 3-72

H

Halting Display, 3-5

Initial command file, 2-28, 3-20

INPUT command, 3-36, 3-38

INSERT command, 3-38

Interrupting display, 3-5

Interrupting the editor, 2-3, 3-4, 3-60

Invoking the editor, 2-2, 3-19

K

Keys, special, 3-4
BACKSPACE, 1-4
DELETE, 1-4
ESC, 3-4
RUBOUT, 1 -4, 3-13
TAB, 3-5, 3-61

KILL command, 3-39

L

Less-than sign, 3-3, 3-61

Line numbers:
from beginning of file, 3-56

Index-8550 Editor

from beginning of workspace, 1-9, 3-2, 3-47

Line pointer. See Workspace pointer

Line printer, 2-8, 3-40

LIST command, 3-40

Listing. See Displaying

LN command, 3-41

M

Macro, 2-25, 3-42, 6-1

Macro area, 3-2, 3-14

MACRO command, 3-42

Modifying an existing file, 1-7, 2-5

MOVE command, 3-44

Moving text:
backward in the file, 2-21
forward in the file, 2-20
within the workspace, 1 -9, 3-44

Moving the workspace pointer, 2-10

Multiple commands in a line, 2-24

N

NEXT command, 3-45
examples, 2-5, 2-18

NUMBER command, 3-47

p

PI. See primary input file

PO. See primary output file

PERFORM command, 3-49
example, 2-27

Period, 3-3, 3-8

Pointer. See Workspace pointer

Primary input file, 3-1, 3-19, 3-20

Index-8550 Editor

@

Primary input file pointer, 3-56, 6-2

Primary output file, 3-1, 3-19, 3-20

Printing text. See Displaying text

Program memory, 6-2

PUT command, 3-51

PUTK command, 3-52

Q

Question mark, 3-72

QUIT command, 3-53

R

Repeat brackets, 3-3, 6-2

Repeating a block of text, 2-12

Repeating a command sequence:
using a macro, 3-42
using repeat brackets, 2-24, 3-3
See also AGAIN command

REPLACE command, 3-54

Replacing a line, 3-54

Replacing a string, 2-15
repeatedly, 2-16

RUBOUT key, 1-4, 3-13

s
Save area, 3-2, 3-14, 3-55

SAVE command, 3-55

Saving text:
in an alternate output file, 2-21, 3-51, 3-52
in the primary input file, 1-6, 3-26, 3-45, 3-51, 3-52
in the save area, 3-55

Special characters. See Characters, special

Special keys. See Keys, special

Special search feature, 3-72

Standard tab character. See tab character

STATUS command, 3-56

Status of editor, 3-14, 3-41, 3-56

String,
deleting, 3-32, 3-58
finding, 2-14
replacing, 2-15

repeatedly, 2-16
special features, 3-72

SUBSTITUTE command, 3-58

SUSPEND command, 3-60

Syntax conventions, 3-1

T

Tab character, 1-5, 3-61, 3-74, 6-2

TAB command, 3-61

TAB key, 3-5, 3-61

Tab stops, 3-64

TABS command, 3-64

Terminating the editor. See Exiting the editor

Text. See Copying text Displaying text Entering
text, Moving text, Saving text

TYPE command, 3-66

u
Underlined characters:

in procedures, 2-1
in syntax blocks, 3-1

UNSAVE command, 3-67

UP command, 3-68

UPARROW command, 3-69

Uses of the editor, 1-2

w
Wiidcard search feature, 3-72

Workspace, 3-2, 3-14

Workspace buffer, 3-2, 3-14
size of, 3-2

Workspace map, 3-14

Workspace pointer, 3-2
moving, 1-8, 2-10

x

XSEARCH command, 3-72

XTABS command, 3-74
example, 2-6

7-3

	001
	002
	003
	1-001
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	2-001
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	3-001
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	3-56
	3-57
	3-58
	3-59
	3-60
	3-61
	3-62
	3-63
	3-64
	3-65
	3-66
	3-67
	3-68
	3-69
	3-70
	3-71
	3-72
	3-73
	3-74
	3-75
	4-01
	5-01
	5-02
	5-03
	6-01
	6-02
	7-01
	7-02
	7-03

