
8540
INTEGRATION UNIT

SYSTEM USERS
MANUAL

OS/40 VERSION 1

Tektronix, Inc.
P.O. Box 500
Beaverton, Oregon 97077

070-3939-00
Product Group 61

Te.ktron~
COMMITTED TO EXCELLENCE

PLEASE CHECK FOR CHANGE INFORMATION
AT THE REAR OF THIS MANUAL.

8540
INTEGRATION UNIT

SYSTEM USERS
MANUAL

OS/40 VERSION 1

Serial Number ______ _

First Printing NOV 1981
Revised OCT 1983

LIMITED RIGHTS LEGEND

Software License No. _____________ _

Contractor: Tektronix, Inc.
Explanation of Limited Rights Data Identification Method
Used: Entire document subject to iimited rights.

Those portions of this technical data indicated as limited rights data shall not,
without the written permission of the above Tektronix, be either (a) used,
released or disclosed in whole or in part outside the Customer, (b) used in whole
or in part by the Customer for manufacture or, in the case of computer software
documentation, for preparing the same or similar computer software, or (c) used
by a party other than the Customer, except for: (i) emergency repair or overhaul
work only, by or for the Customer, where the item or process concerned is not
otherwise reasonably available to enable timely performance of the work,
provided that the release or disclosure hereof outside the Customer shall be
made subject to a prohibition against further use, release or disclosure; or (ii)
release to a foreign government, as the interest of the United States may
require, only for information or evaluation within such government or for
emergency repair or overhaul work by or for such government under the
conditions of (i) above. This legend; together with the indications ofthe portions
of this data which are subject to such limitations shall be included on any
reproduction hereof which includes any part of the portions subject to such
limitations.

RESTRICTED RIGHTS IN SOFTWARE

The software described in this document is licensed software and subject to
restricted rights. The software may be used with the computer for which or with
which it was acquired. The software may be used with a backup computer ifthe
computer for which or with which it was acquired is inoperative. The software
may be copied for archive or backup purposes. The software may be modified or
combined with other software, subject to the provision that those portions of the
derivative software incorporating restricted rights software are subject to the
same restricted rights.

Copyright © 1981 Tektronix, Inc. All rights reserved. Contents ofthis publication
may not be reproduced in any form without the written permission of Tektronix,
Inc.

Products of Tekirunix, inc. and its subsidiaries are covered by U.S. and foreign
patents and/or pending patents.

TEKTRON!X, TEK, SCOPE-MOBILE, and ~ are registered trademarks of
Tektronix, Inc. TELEQUIPMENT is a registered trademark of Tektronix U.K.
Limited.

Printed in U.S.A. Specification and price change privileges are reserved.

8540 System Users

ABOUT THIS MANUAL

This manual is your guide to using the 8540 Integration Unit and its operating system, 05/40.

This manual is not about programming techniques, specific microprocessors, or specific
applications. Instead, it presents the information that will enable you to use the 8540 for your
own tasks in hardware-software integration.

In this manual, you'll find detailed information on all standard 8540 features, including
emulation and intersystem communication. This manual also provides introductory information
on several hardware products you can use with your 8540. Those products are described in
detail in other user manuals.

For new users, a Learning Guide introduces you to the 8540 and its system options, and includes
sample demonstration runs. There's also an Index to help you find your way around the manual,
and a Glossary that describes new terminology and terms that are used in a new way.

For users of DOS/50 (the operating system of the TEKTRONIX 8550 Microcomputer
Development Lab), the Technical Notes section contains a list of differences between DOS/50
and 05/40.

8540 System Users

CONTENTS

SECTION 1 LEARNING GUIDE Page

Introduction ... 1-1
Specification, Installation, Configuration, and Verification 1-1
Overview of the 8540 System .. 1-2

Getting Started .. " 1-8
Starting Up the 8540 .. 1-8
Turning Off the 8540 ... 1-10
How to Enter OS/40 Commands ... 1-10
Establishing Communication with the Host , 1-11
More About OS/40 Commands .. 1-13

8540/8560 Configurations .. 1-15
Emulator Demonstration Run .. 1-17
For Continued Learning ... 1-40
Overview of 8540 User Manuals ... 1-41

SECTION 2 OPERATING PROCEDURES

Communicating with an 8560 .. 2-1
Communicating with a Host Computer .. 2-3
Communicating with an 8550 .. 2-5
Downloading from an 8002A ... 2-7
Program Execution .. 2-8
Program Debugging ... 2-10
Debugging the Program in the Prototype ... 2-13
Using the Trigger Trace Analyzer .. 2-14
Memory Manipu!ation .. 2-19
System 1/0 .. 2-20

SECTION 3 COMMAND DICTIONARY

Command Index ... 3-1
Introduction ... 3-2
Other System Commands .. 3-2
Command Syntax .. 3-2
Special Keys .. 3-6
Command Memory Areas .. 3-7
Commands .. 3-8

SECTION 4 INTERSYSTEM COMMUNICATION

Introduction ... 4-1
Terminology ... 4-1
8540/8560 TERM Interface .. 4-1
COM Interface .. 4-2
8540/8550 Interface .. 4-4
8540/8002A Interface ... 4-6
8540lGenerai Host Interface ... 4-7

iii

Contents-8540 System Users

Introduction .. , 5-1
The Emulator .. 5-1
Emu!at!on Modes, __ , ___ . __ 5- i
Selecting the Target Processor ... 5-3
Basic Emulation Tasks ... 5-3
Considerations for Modes 1 and 2 .. 5-6
Symbolic Debug ... 5-7
The Memory Allocation Controller .. 5-9
The Trigger Trace Analyzer .. 5-13

SECTION 6 SERVICE CALLS

Introduction , .. 6-1
Overview ... 6-1
Limitations of File Handling SVCs ... 6-4
liD Channels ... 6-4
SVC Applications .. 6-5
::;vc uemonstration .. 6-6
SVC Functions ... 6-10

SECTION 7 EMULATOR SPECIFICS

SECTION 8 PROM PROGRAMMER SPECIFICS

SECTiON 9 TECHNiCAL NOTES

Note 1. Practical Limits of Emulation .. 9-1
Note 2. Comparison of OS/40 Version 1 with DOS/50 Version 2 9-1
Note 3. Comparison of the ITA and the RTPA .. 9-2

SECTION 10 ERROR MESSAGES

SECTION 11 TABLES

Conversion Tables .. 11-1
Tektronix Hexadecimal Format ... 11-4
Motorola Load Module Format ... 11-8
Intel Load Module Format .. 1 1-10

SECTION 12 GLOSSARY

SECTION 13 INDEX

iv

8540 System Users

Section 1
LEARNING GUIDE

Page

Introduction 1-1

Specification, Installation, Configuration, and Verification 1-1

Overview of the 8540 System .. 1-2

Uses of the 8540 .. 1-2
8540 Parts and Functions .. 1-4
The Host Computer .. 1-7

Getting Started . .. 1-8

Starting Up the 8540 .. 1-8
Turning Off the 8540 ... 1-10
How to Enter 05/40 Commands .. 1-10
Establishing Communication with the Host ... 1-11
More about 05/40 Commands .. 1-13

8540/8560 Configurations 1-15

Emulator Demonstration Run .. 1 -1 7

Introduction .. 1 -17
Examine the Demonstration Program .. 1-19
Assemble and Load the Demonstration Program 1-22

Case 1: Assemble on the 8560; Download to the 8540 1-22
Case 2: Download from Your Host to the 8540 1-28
Case 3: Patch the Program into Memory ... 1-30

Run the Demonstration Program ... 1-32
Monitor Program Execution ... 1-35
Summary of Emulator Demonstration Run .. 1-39

For Continued Learning 1 -40

Overview of 8540 User Manuals ... 1 -41

1-i

1-ii

Table
No.

1 -1

1-2

1-3

Fig.
No.

1 -1

1-2

1-3

1-4

1-5

1-6

8540 System Users

iABlES

Page

Jack Assignments and Device Names for 8540 Peripherals 1-8

COM Interface Checklist .. 1-9

Basic 8560 Editing Commands ... 1 -25

ILLUSTRATIONS

Page

Role of 8540 in product design " , .. ,."."., .. ,.,.", 1-3

8540 logical subsections ... 1-4

Demonstration program , , , 1-16

Demonstration program: Extended Tekhex format 1-18

Demonstration program flowchart .. 1-21

Host computer commands for preparing demonstration program 1-28

(h',

8540 System Users

Section 1

LEARNING GUIDE

INTRODUCTION
This Learning Guide gives an overview ofthe features and functions of the 8540 Integration Unit
and its operating system, OS/40. It also presents a demonstration that gives you hands-on
experience with the 8540. This Learning Guide is divided into the following topics:

• Overview of the 8540 System. Explains the role of the 8540 in the development of
microprocessor-based products and describes the parts of a complete 8540 system.

• Getting Started. Provides instructions for starting up your 8540 and establishing
communication with a host computer.

• 8540/8560 Configurations. Explains three ways to connect an 8540, an 8560, and a
system terminal.

• Emulator Demonstration Run. Shows you how to assemble, load, execute, and monitor a
simple program.

• For Continued Learning. Helps you decide where to go next in this manual to accomplish
your own tasks.

• Overview of 8540 User Manuals. Describes the types of user manuals that support your
8540.

NOTE

Throughout this manual, the term "microprocessor" refers to both
microprocessors and microcomputers.

SPECIFICATION, INSTALLATION, CONFIGURATION, AND
VERIFICATION
For information on how to install and verify your 8540 hardware, and for product specifications,
refer to your 8540 Installation Guide.

1-1

Overview of 8540 Learning Guide-8540 System Users

1-2

OVERViE\'-v OF THE 8540 SYSTEiVi
Uses of the 8540
Three principal stages in the development of a microprocessor-based product are:

1. hardware development: design and construction of a hardware prototype of the product

2. software development: design and creation of the program(s) that vvill eXecute in the
microprocessor that controls the product

3. hardware/software integration: monitoring the software as it executes in the prototype
hardware, and modifying the software or hardware to correct problems.

The 8540 Integration Unit is an important tool in stages 2 and 3, software development and
hardware/software integration.

Software Development. While your prototype hardware is under development, the 8540 can
help you debug the programs that will execute in the prototype. After you have written your
program and compiled or assembled it on a separate computer (referred to as the host
computer), you can download the program to the 8540 to be executed. As your program
executes in the 8540, an emulator (also called an emulator processor) performs the functions
of the prototype microprocessor. You can use the memory and I/O facilities of the 8540 to
simulate the signals your prototype microprocessor will have to deal with.

Hardware/Software Integration. Once your prototype hardware is built, you can test its
operation by temporarily replacing the prototype microprocessor with a prototype control
probe from the emulator. Under this arrangement, the 8540 acts as the prototype's centra!
processing unit, and you can monitor your program as it interacts with the prototype hardware.
By doing so, you can discover errors that may remain in the software or hardware.

Your 8540 can support a variety of microprocessors. To emulate a particular microprocessor,
you select the appropriate emulator hardware and support software. This design concept allows
you to use a single piece of equipment for the design support of many types of microprocessor -

based products.

Figure 1-1 shows a generai procedure for using the 8540 integration Unit to develop a
microprocessor-based product.

Learning Guide-8540 System Users Overview of 8540

Design
and build
Hardware

Modify
hardware

Design and code
software

r - r-------'-~--__.

I
I
I
I
I
L

Create source
files using editor

r---

errors

Execute program
in prototype

under 8540 control

YES

YES

software
errors

Fig. 1-1. Role of 8540 in product design.

----,
Host I

Computer

Edit source code

I
I
I
I
I

--~ - --,
8540

Isolate errors
with 8540 debug

ging facilities

3939-1

You can use the 8540 to accomplish the tasks shown in the lower box. The host computer
performs the tasks shown in the upper box.

1-3

Overview of 8540 Learning Guide-8540 System Users

, -4

f..1n~~rmt~r
or Paper Tape
Reader IPurtch

J103

System
Terminal

4
J104

8540
Integration

Unit

HSI

or
RS232

PROM Program
Programmer Memory

Data Acquisition
Probe for Trigger
Trace Analyzer

Us_Prototype

Prototype
Memory

Prototype
Control
Probe

Fig. 1-2. 8540 logical subsections.

Your
Host

Compoter

This functional diagram shows the parts of a complete 8540 system. Shaded areas indicate
equipment that is not part of the minimum 8540 configuration.

8540 Parts and Functions
Figure 1-2 shows the components of a complete 8540 system.

Minimum 8540 System

A minimum 8540 system consists of an 8540 Integration Unit and a system terminal.

Learning Guide-8540 System Users Overview of 8540

8540 Integration Unit. The 8540 mainframe houses the following components of the 8540
system:

1. OS/40, the ROM-based operating system ofthe 8540. OS/40 supervises all functions of
the 8540, which include:

a. general input and output
b. program execution, monitoring, and debugging
c. PROM programming
d. communication with the host computer.

2. Program memory resides in the 8540. Your 8540 may be configured with 32K, 64K, or
128K of program memory. As you develop your software and integrate it with your
hardware, you can use program memory as a substitute for the memory that will reside in
your prototype hardware.

3. Optional hardware devices (described later under the heading "System Options") are
attached to or installed in the 8540 mainframe.

System Terminal. The system terminal is a CRT or other RS-232-C-compatible 1/0 device
through which you communicate with the 8540. Unless you specify otherwise, OS/40 accepts
commands from the system terminal keyboard and displays output on the screen or printer of the
system terminal. To specify the system terminal in an OS/40 command line, use the device
name CONI (CONsole Input) or CONO (CONsole Output).

System Options

COM Interface Package. The COM Interface package enables you to establish communication
with a host computer using the OS/40 COM command. This option consists of an RS-232-C
compatible communication cable and a ROM (containing the COM command software) that
inserts into the 8540's System ROM board. The 8540 does not need this option in order to
communicate with an 8560 Multi-User Software Development Unit.

Emulator. An emulator consists of one to three circuit boards that reside in the 8540
mainframe. The emulator generally contains a microprocessor of the same type as the one being
emulated, and also contains control circuitry that allows you to start, stop, and monitor program
execution, using OS/40 commands. Your 8540 can contain up to two single-board emulators or
one multiple-board emulator at a time.

Prototype Control Probe. The prototype control probe connects the prototype hardware to the
emulator and contains additional control circuitry.

Once your prototype and emulator are connected, you can begin transferring responsibility for
timing, 1/0, and memory functions from the 8540 to the prototype hardware. To indicate which
of these functions are handled by the 8540 and which are handled by the prototype, you use the
OS/40 EM command to specify the emulation mode. Mode 0 (system mode) uses only 8540
facilities, and is the only mode you can use until your prototype is connected. Mode 1 (partial
emulation mode) uses a mixture of 8540 and prototype facilities. Mode 2 (full emulation mode)
uses all of the prototype's facilities. In all three modes you control program execution through
the 8540. Refer to the Emulation section of this manual for a more detailed explanation of the
three emulation modes.

1-5

Overview of 8540 Learning Guide-8540 System Users

1-6

T_= ____ T ____ 1\ __ 1 •• ___ ITT 1\ \ TL...._ TTl\. : __ ,J_&.... •• __ ; __ ", __ I _+ ____ "'_+1."'", __ ,.J ,.J;('"IO_I"" .. hilt'"
11I~:n:f,=:a-l.a"c M'falYLCI ,I IM/. IIIC 11M I;:) a UCUUHH"'H luur lIrOl "'all "'OiJLU1C OIiU UI.:»iJIOY uu.:»

information, control execution of your program, signal external devices, and aid in performance
analysis. The TTA consists of two circuit boards that reside in the 8540 mainframe and data
acquisition hardware that is installed in the 8540 rear panel. If you are familiar with the
TEKTRONIX Real-Time Prototype Analyzer (RTPA) and would like to begin using the TTA, see the
Technical Notes section of this manuai for a comparison of the two devices. For more detailed
expianations of the TTA, refer to the Emuiation section of this manuai and to the TT A Users
Manual, which is provided with your n A hardware.

Memory Allocation Controller (MAC) Option. The MAC option is a circuit board that resides in
the 8540 mainframe. It is designed for use with emulators for the Z8001, Z8002, 68000, and
other microprocessors that can access memory outside the range of 8540 program memory.
Using 05/40 commands that control the MAC option, you can map address blocks used byyour
program into program memory. For more information on the MAC option, refer to the Emulation
section of this manual.

PROM Programmer. The PROM Programmer consists of a circuit board that resides in the 8540
mainframe and a separate assembly that inserts into the 8540 front panel. You may use the
PROM Programmer to read data from a PROM into program or prototype memory, to burn a
PROM with data from program or prototype memory, or to compare the PROM's contents with
the contents of memory.

Tektronix offers a separate characteristic module for each family of PROM chips supported. To
use a particular family of PROMs, insert the appropriate characteristic module into the front
panel assembly. Refer to the PROM Programmer Specifics section of this manual for general
information about the 8540's PROM Programmer and for specific information about your
characteristic module.

Because of potential shock hazards, do not attempt to operate the PROM
Programmer before reading the introductory information in the PROM
Programmer Specifics section of this manual.

Line Printer. The iine printer is a hardcopy output device that attaches to jack J i 03 on the 8540
rear panel. You can route almost any display produced by 05/40 to the line printer by specifying
LPT as the output device.

Paper Tape Reader IPunch. You can attach a paper tape reader Ipunch to jack J 103 on the
8540 rear panel. The paper tape reader Ipunch may be used as an input device (device name
PPTR) or as an output device (PPTP).

((J'

Learning Guide-8540 System Users Overview of 8540

1'(7:

The Host Computer
A program to be executed on the 8540 must be prepared on a separate computer, called the
host. Programming facilities that are usually provided by the host include file management, text
editing, compiling, assembling, and communication with the 8540.

The Operating Procedures section of this manual describes several procedures for intersystem
communication. The Intersystem Communication section of this manual treats the topic in
greater detail.

The 8560 as Host

The TEKTRONIX 8560 Multi-User Software Development Unit is a time-sharing computer that is
specially designed to serve as host to up to eight 8540s simultaneously. TNIX, the operating
system of the 8560, is derived from Bell Laboratories' UNIX™ operating system. TNIX
incorporates the many software development tools of UNIXTM, plus additional features for
handling tasks that are unique to the development of microprocessor-based software. With your
8540 and 8560 operating together under an arrangement called TERM mode, you have access
to OS/40 and TNIX at the same time. TERM mode is discussed in more detail later in this
Learning Guide and in the 8560 System Users Manual. (UNIX is a registered trademark of Bell
Laboratories, Incorporated, Murray Hill, New Jersey.)

Other Hosts

If your host computer is not an 8560, you will probably want to have the optional COM Interface
package installed in your 8540. This option enables you to use the OS/40 COM command to set
up communication between the 8540 and your host computer. The parameters of the COM
command configure your 8540 so that it can use the same RS-232-C-compatible
communication protocol as a terminal attached to your host. Once communication is
established, special directives instruct the COM command to transfer data (such as your
program) to or from the host.

Your host computer must convert your program to Tektronix Hexadecimal Format (Tekhex)
before the COM command can download your program to the 8540. An example of Tekhex is
given in the Emulator Demonstration Run later in this Learning Guide. Tekhex and the COM
command are described in detail in the Intersystem Communication section.

NOTE

In order for an OSI40 command (other than COM) or a user program on the
8540 to access files on the host, the 8540 and the host must be operating in an
8560-style TERM interface. In this manual, it is assumed that the 8560 is the
only computer that can host such a TERM interface with the 8540. However, the
host side of the 854018560 communication protocol may be implemented on
computers other than the 8560; such computers could also host a TERM
interface with the 8540.

1-7

Getting Started Learning GUlde-8540 System Users

1-8

GETTING STARTED
This subsection provides the basic information you need in order to begin using your 8540,
including how to turn the system on and off, how to enter commands, and how to establish
communication with a host computeL

It is assumed that your 8540 has been unpacked, installed, and checked out, and that YOUi

system terminal and other peripherals have been configured to communicate with the 8540. If
any part of your system is not ready for use, refer to your 8540 Installation Guide for instructions.

Throughout this section, it is assumed that the system terminal you use to control the 8540 is
connected (via a cable) to the 8540. The next subsection, "8540/8560 Configurations,"
discusses three different ways to connect an 8540, an 8560, and a system terminal.

Starting Up the 8540
Make Sure Your 8540 Is Plugged In

To make sure that your system is properly plugged in, verify that each of the following steps has
1-. ______ L _____ .-I,

U~~II IJ~I lUI ",eu.

• Plug the system terminal into a power socket and connect it to the jack labeled TERMINAL
on the 8540 rear panel.

• Plug any other peripherals into power sockets and connect them to the 8540 rear panel.
Table 1-1 gives a complete list of jack assignments.

• If you want to operate your 8540 in TERM mode with an 8560, connect them with a line
capable of supporting HSI (RS-422) protocol. Plug the female end of the line into the HSI
jack on the 8540 rear panel, and plug the male end into an HSII/O jack on the 8560 rear
paneL (Check with your 8560 system engineer to verify that the HSi i/O jack is configured
for HSI protocol.)

• If you want to operate your 8540 with a host other than the 8560, connect a terminal line
from your host to one of the REMOTE jacks (J 101 or J 102) on the 8540 rear panel. Use the
space in Table 1-2 to record the jack number and REMOTE port switch settings that are
appropriate for your host.

• Plug the 8540 into a standard wall socket.

Table 1-1
Jack Assignments and Device Names for 8540 Peripherals

rtmpneral uevice Jack Device Names

system terminal J104 CONI (input), CONO (output)

line printer J103 LPT

paper tape reader/punch J103 PPTR (reader), PPTP (punch)

external computer J101 I REMI (input), REMO (output)

external computer Jl02 REMI (input), REMO (output)

Learning Guide-8540 System Users Getting Started

Tal;>le 1-2
COM Interface Checklise

Item For your host, use:

REMOTE jack number: J 101 (DTE) or
J102 (DCE)

MODE SELECT switch setting

REMOTE BAUD switch setting

COM command parameters to establish
communication

COM command parameters for downloads

COM command parameters for uploads

Log on to host computer

Prepare program in Tekhex format.

Download program to 8540.

Upload program from 8540.

Log off.

a Fill in the information that is appropriate for your host computer. This table is not applicable if your host is an
8560.

Start Up the 8540 and Its Peripherals

If this is the first time the system is being turned on, refer to the detailed power-up and system
verification procedure in the 8540 Installation Guide.

Turn on the 8540, system terminal, and peripherals in any order. The power switch for the 8540
is on the front panel. The 8540 performs an automatic self-test on power-up or restart. This test
is described in the 8540 Installation Guide.

Within a few seconds, the message
8540 BOOT Vx.x

should appear on your system terminal and the SELF TEST light on the 8540 front panel should
go out. Next, OS/40 checks its EEPROMs for a command string called STARTUP. OS/40
automatically executes the commands in STARTUP whenever you power up or restart your
system. The STARTUP string is discussed in more detail later in this section.

1-9

Getting Started Learning GUlde-8540 System Users

1-10

After the commands in the STARTUP string have been executed. you should see the message

OS/40 Vx.x (xxxx-xx) xx/xx/xx Copyright (C) 1981 Tektronix, Inc.

followed by the 05/40 prompt character (». The numbers in parentheses (xxxx-xx) can be used
by your Tektronix service representative to determine whether your system is up to date.

If your system fails to respond as expected, check the foilowing points:

• If you get no response within five seconds of starting up the 8540, toggle the RESTART
switch on the front panel. Startup should proceed normally.

• The "Copyright" message is displayed only if your 8540 is in LOCAL mode. Your STARTUP
string may contain a command that takes the 8540 out of LOCAL mode and establishes
communication with your host computer. Press the RETURN key once or twice; your host
computer may respond with a login prompt.

If your 8540 and your host computer are not on speaking terms yet, you need to be sure that your
8540 starts up in LOCAL mode. You can prevent execution of the STARTUP string by setting
switch position 1 (DIP switch number S 1100) on the 8540's System Controller board to 1 (open).
Refer to your 8540 Installation Guide for instructions on accessing this switch.

if your system has startup probiems that cannot be remedied by either of these soiutions, refer to
the verification procedures in your 8540 Installation Guide or contact your Tektronix service
representative.

Turning Off the 8540
You may turn off the 8540 and its peripherals in any order. (But don't do it now; you're just
getting started.)

How to Enter 05/40 Commands
This Learning Guide uses the following conventions in presenting information that is entered or
displayed on the system terminal:

• Prompt-The OS/40 prompt character> is shown at the beginning of each command line
to remind you to wait for the prompt before entering the command.

• Carriage return-In this Learning Guide, the symbol <CR> is shown at the end of each
command line to remind you to end each command with a carriage return. On most
keyboards, you enter a carriage return by pressing the RETURN key.

• Underlined-Characters to be entered by you are underlined. Responses by OS/40 are not
underlined.

• Numbers-Addresses are in hexadecimal notation unless otherwise indicated. The suffix
letters H (hexadecimal) and T (decimal) may be used for clarity when both hexadecimal and
decimal numbers are used in the same discussion. For example, 10H = 16T.

• CTRL-x-Several control characters have special meaning to OS/40. Each control
character is entered by pressing the CTRL key and another key simultaneously. To suspend
a display as it appears on the system terminal, for example, you enter CTRL-S by holding
down the CTRL key and pressing the S key. To resume the display (CTRL-Q), hold down the
CTRL key and press Q. To interrupt the command or program that OS/40 is executing,
enter CTRL-C.

(f),'

Learning Guide-8540 System Users Getting Started

Correcting Mistakes in a Command Line

If you notice a mistake in your command line before you entpr a rarriage return, you have two
ways of correcting the line: delete the entIre lIne and start agaIn, or correct the characters one
by or)R .

• To delett.; the entIre 1111", Lype CTRL-U. You may then reenter the line .

• To delete characters one-by-one, press the BACKSPACE or RUBOUT key. Either key will
backspace the cursor and erase the deleted character.

Command Example

Let's assume that your 8540 is started up and waiting for you to enter a command. (You should
see the ">" prompt on your system terminal.) Enter the following command to calculate the sum
of the hexadecimal numbers 44 and 55:

> calc 44+55 <CR>
99H

OS/40 responds with the answer in hexadecimal. Now let's try something more exciting.

Establishing Communication with the Host
The ">" prompt indicates that the 8540 is in LOCAL mode, acting as a stand-alone computer.
The 8540 starts up in LOCAL mode and stays in that mode until it receives a "CONFIG TERM" or
"COM" command that sets up communication with the host. Once you have downloaded a
program from the host, you may return the 8540 to LOCAL mode to execute and debug your
program. This discussion explains how to establish communication with an 8560 (TERM
interface) or with some other host computer (COM interface), and how to return the 8540 to
LOCAL mode.

8560 TERM Interface

The sequence of commands you enter to establish communication with the 8560 depends on
how your 8540,8560, and system terminal are configured. The three most likely configurations
are discussed in the next subsection, "8540/8560 Configurations." For now, let's assume that
your system terminal is connected to your 8540 and that the line that runs to the 8560 is plugged
into the HSI jack on the 8540 (as described earlier under "Starting Up the 8540").

Enter the following command to establish communication with the 8560:
> config term <CR>

Now the 8540 is in TER M mode: every character you type is sent directly to the 8560. Press the
RETURN key once or twice; the 8560 responds with its "Iogin:" prompt. Type in your 8560 user
name and password, as described in the Learning Guide of your 8560 System Users Manual.

1-11

Getting Started Learning GUlde-8540 System Users

Now you're logged in to TNIX, the operating system of the 8560. The TNIX prompt is "$". Try
typing a TNIX command:

$ date <CR>

TNIX responds 'with the CUiient date and time.

Try typing an OS/40 command:
$ calc 44+55 <CR>
99H

TNIX recognizes that CALC is an 05/40 command, so it sends the command back tothe 8540for
processing by 05/40. 05/40 sends its response back to the 8560, and the 8560 passes the
response to you.

Notice that TNIX expects you to enter commands in lowercase. If you type "CALC 44+55", TNIX
responds "CALC: not found."

In the Emulator Demonstration Run later in this Learning Guide, you'll see some practical
applications of the 8540/8560 TERM interface. For now, log out from the 8560 and return the
8540 to LOCAL mode:

S config local; logout <CR>

The CONFIG command tells the 8540 to stop sending commands to the 8560, and the LOGOUT
command tells the 8560 to stop accepting commands. Notice that these two commands cannot
be entered in a different order or on different lines if they are to have the desired effect

~
When your 8540 is in TERM mode, do not toggle the RESTART switch on the 8540
front panel. If you need to interrupt system operation, type CTRL-C.

If you restart the 8540 while it is in TERM mode, the 8540 and 8560 may not be able to
resume communication if any OS/40 commands are still active on the 8560. If your
system seems to hang after you restart the 8540, you or your 8560 superuser must kill
the OS/40 commands from a different terminal. (Use the TNIX command "ps -ax" to
list all active processes and use "kill - 9" to kill those processes associated with your
terminal)

COM Interface
TClhie 1 -2 (e;:ulier in this section) has space for recording the parameters of the COM command
you enter to establish communication with your host computer. Here are some general rules
that may apply to your host:

• The default COM parameters are satisfactory for some computers. Try entering the COM
command without any parameters.

• For most computers, the COM parameters E, L, and M are sufficient to specify your host's
communication protocol.

• The COM parameters P, T, C, F, and H5 affect data transfer protocols, and can be ignored
until you are ready to test your host computer's upload and download software.

REV JAN 1983

Learning Guide-8540 System Users Getting Started

• For more information on the COM command and how to configure your 8540
communication hardware, refer to the Intersystem Communication section of this manual.

When you enter the COM command with the appropriate parameters, the 8540 responds "COM
Vx.x." Now any characters you type are sent directly to the host. Try logging on to your host and
entering a few commands. The host should respond just as it would if the terminal were
attached directly to the host.

Try entering an OS/40 command:
calc 44+55 <CR>

Unless your host has its own CALC command, you will probably receive an error message. When
the COM command is executing on the 8540, OS/40 cannot accept other commands.

The null character (ASCII code 00) has a special meaning to the COM command. On most
terminals, the null character is entered as CTRL-@ (hold down the CTRL key and press the keys
that produce the "@" character). When you enter the null character, COM intercepts the
characters you type next and interprets them as a directive to transfer data, display status
information, or terminate communication.

For now, log out of your host, and then terminate communication by entering the null character
and pressing the ESC key on your terminal:

(Log out.)
(null)(esc)

The 8540 should be in LOCAL mode once again.

More about OS/40 Commands
Type-Ahead

OS/40 has a feature called type-ahead that allows you to enter additional commands even
before the current command has finished executing. When OS/40 finishes a command, it
issues the> prompt and goes on to the next command entered, if any. If you are in the process of
entering a command when the prompt appears, just keep typing; the prompt has no effect on the
line being entered, other than to disrupt it visually.

Command lines that have been entered but have not yet begun execution are stored in the type
ahead buffer. This buffer also holds the command line currently being typed and has a capacity
of 128 characters, including carriage returns. To display the contents of the type-ahead buffer,
enter CTRL-R. To delete all text in the type-ahead buffer, type CTRL-U or CTRL-C.

For the sake of clarity in this manual, type-ahead will not be demonstrated; it will be assumed
that you will wait for the> prompt before entering your next command.

Multiple Commands

You may enter more than one command on a line if you separate the commands with
semicolons. Be sure that the command line does not exceed 80 characters.

1-13

Getting Started Learning Guide-8540 System Users

Strings

To save typing, you can assign names to frequently used strings of characters. For example,
suppose the command line that establishes communication with your host computer is:

> COM P=4F4B EOL=ODOA T=02 M=6 <CR>

The line
> HELLO='COM P=4F4B EOL=ODOA T=02 M=6' <CR>

defines a string named HELLO. Once this string is defined, every time you enter the command
> $HELLO <CR>

the string 'COM P=4F48 EOL=ODOA T=02 M=6' is substituted, and the 8540 establishes
communication with your host. (Notice that the dollar sign is omitted when you define the string,
but present when you use the string.)

You can use the OS/40 PERMSTR command to save strings in the 8540's EEPROMs, so that
they are available for future use. Strings that are not saved in EEPROM are lost when you restart
the 8540 or turn it off. For example, to save the HELLO string, type

> PERMSTR HELLO <CR>

You can also use the PERMSTR command to delete or display strings from EEPROM. If a string
already exists in EEPROM, you must delete the old version of the string before you can save a
new version.

If you have a sequence of commands to be executed every time you start up the 8540, store them
in the STARTUP string. For example, if you want to select the Z80A emulator and establish
communication with an 8560 every time·you start up the 8540, type:

> STARTUP='CONFIG TERM; SEL Z80' <CR>
> PERMSTR -D STARTUP <CR>
> PERMSTR STARTUP <CR>

The first PERMSTR command deletes the old EEPROM version of STARTUP, if any. The second
PERMSTR command saves the new version.

If your STARTUP stiing contains a CON FIG TERM command, that command rnust be the fIrst
command in the string.

The name of a string can be 1 to 8 letters or digits; the first character must be a letter. In a string
name, a lowercase letter does not match the corresponding uppercase letter.

TERM Mode Considerations. On the 8560, strings are defined and used according to the same
general rules as described here for the 8540. When your 8540 is operating in TERM most with
an 8560, a string definition (stringname=string) or string substitution ($stringname) always
refers to an 8560 string unless you explicitly specify that the string belongs to the 8540. To
define an 8540 string, precede the string definition with the word "8540" (8540
stringname=string). To use an 8540 string, precede the doliar sign with a backslash
(\$stringname).

For most TERM mode applications, it is easiest to use only 8560 strings. You may use 8560
strings in 8540 commands. However, the 8560 does not recognize strings on the 8540, and the
OS/40 PERMSTR command does not recognize 8560 strings.

REV JAN 1983

Learning Guide-8540 System Users 8540/8560 Configurations

Uppercase and Lowercase

OS/40 commands can be entered in uppercase, lowercase, or a mixture of the two. Uppercase
and lowercase letters are interchangeable except in the name of a string, an emulator (for
example, Z80), or a standard 8540 device (CONI, CONO, LPT, PPTR, PPTP, REMI, and REMO
must be capitalized).

Command examples in this manual may be shown in either uppercase or lowercase. Except as
noted, any parameter shown in lowercase can also be entered in uppercase.

NOTE

If your 8540 is operating in TERM mode with an 8560, all OS/40 command
names must be entered in lowercase.

8540/8560 CONFIGURATIONS
This subsection describes the three common ways to connect an 8540, an 8560, and a system
terminal, and explains how to establish communication between the 8540 and the 8560 in each
configuration.

A. Terminal-8540-HSI-8560

In this configuration, the 8540 has its own system terminal, and so can operate in either LOCAL
mode or TERM mode.

Cable Connections. The terminal connects to the TERMINAL jack (J 104) on the 8540 rear
panel. The 8540 and 8560 communicate via a line that runs from the HSI jack on the 8540 to the
HSI I/O jack on the 8560. The HSI I/O jack must be configured for HSI (RS-422) protocol.

Establishing Communication. Start up the 8540. Enter the OS/40 command config term to
enter TERM mode. Log in to the 8560.

B. Terminal-8540-RS232-8560

You may use this configuration in place of configuration A if your 8540 and 8560 are at separate
sites and so must communicate via a modem.

Cable Connections. The terminal connects to the TERMINAL jack (J1 04) on the 8540 rear
panel. The 8540 and 8560 communicate via a link that runs from the DTE jack (J1 01) on the
8540 (possibly through a modem) to an HSI I/O jack on the 8560. The HSI I/O jack must be
configured for RS-232-C protocol. The MODE SELECT switch on the 8540 rear panel should be
set to DTE1.

Establishing Communication. Start up the 8540. Enter the OS/40 command
> config term i =r t =7 <CR>

to enter TERM mode. Log in to the 8560.

REV JAN 1983 1-15

8540/8560 Configurations Learning Guide-8540 System Users

1-16

!f you cannot establish communication, your 8560 !/O port may be configured incorrectly. Log in
to the 8560 on a different terminal and enter the following command:

$ stty IV >/dev/ttyn <CR>

where n is the number of the HSi iiO jack to which the 8540 is attached. Then restart the 8540
and try the config command again.

C. Terminal-8560-HSI-8540

In this configuration, the 8540 can be operated from any terminal that is attached to the 8560.
Since the 8540 cannot operate in LOCAL mode in this configuration, its STARTUP string must
contain a config term command. To establish this STARTUP string, perform the following steps:

1. Attach a terminal to the 8540 (as in configurations A and B) and start up the 8540 in
LOCAL mode.

2. Enter the following lines to create the STARTUP string and store it in EEPROM:,

> STARTUP='config term' <CR>
> PERMSTR -D STARTUP <CR>
> PERMSTR STARTUP <CR>

01 ;8085 DEMONSTRATION RUN PROGRAM
02 SECTION DEMO
03 ORG 100H ;START PROGRAM CODE AT ADDRESS
04 0100 210005 START LXI H, TABLE ;SET TABLE POINTER
05 0103 0605 MVI B,TSIZE ;SET PASS COUNTER
06 0105 AF XRA A ;CLEAR ACCUMULATOR
07 0106 86 LOOP ADD M ;ADD BYTE FROM TABLE
08 0107 23 INX H ;POINT TO NEXT BYTE
09 0108 05 DCR B ;DECREMENT PASS COUNTER
10 0109 C20601 JNZ LOOP ;LOOP IF NOT FIVE PASSES YET
11 010C D3F7 OUT OF7H ;OTHERWISE CALL EXIT SVC
12 010E 00 NOP TO END PROGRAM EXECUTION
13 ;SRB POINTER
14 ORG 40H ;STORE SRB POINTER AT ADDRESS
15 0040 0042 BYTE OO,42H ;POINT TO SRB FOR EXIT SVC
16 ;SRB FOR EXIT SVC
17 0042 1A BYTE 1AH ; 1AH = FUNCTION CODE FOR EXIT
18 ;TABLE OF NUMBERS TO BE ADDED
19 TSIZE EQU 5 ;TABLE SIZE = 5
20 ORG 500H ; SET UP TABLE AT ADDRESS 500
21 TABLE BLOCK TSIZE
22 LIST DBG
23 END START

100

40

SVC

-r -L ""'--s-o-urc-'J"-C-Od-e ----,., -....... -----co-m l-en-ts----"",

object code

address

'-------source code line number

Fig. 1 -3. Demonstration program.

3939-5

REV JAN 1983

Learning Guide-8540 System Users Demo-Introduction

Cable Connections. The terminal connects to an HSI liD jack on the 8560. This HSI liD jack
must be configured for RS-232-C protocol. The 8540 and 8560 communicate via a line that runs
from the HSI jack on the 8540 to another HSI liD jack on the 8560. This HSI liD jack must be
configured for HSI (RS-422) protocol.

Establishing Communication. Log in to the 8560. To indicate which 8540 you want to use,
enter the line IU=n;export IU, where n is the number of the HSI liD jack to which the 8540 is
attached. Start up the 8540. The STARTUP string puts the 8540 into TERM mode automatically.

EMULATOR DEMONSTRATION RUN
Introduction
This demonstration run shows you how to load, execute, and monitor a simple 8085A assembly
language program on your 8540. If you have an emulator other than the 8085A, refer to the
appropriate Emulator Specifics supplement in this manual for a demonstration that is parallel to
this one.

In order to perform this demonstration, your 8085A emulator board and emulator control
software ROM must be installed in your 8540.

Figure 1-3 shows the source and object code for the demonstration program.

If you have an 8560, and your 8560
has an 8080A/8085A assembler
installed, you can create and assem
ble the program on the 8560 and
then download it to the 8540. This
demonstration shows how.

If you have an 8540 that is connected
to a host computer other than an
8560, we can't give you a specific list
of commands for creating and assem
bling the program on your host (since
we don't know what host you're
using). However, Fig. 1-4 gives the
object code for the program in
Extended Tekhex format. You can
create the Tekhex file using your
host's assembler or text editor, then
download the file to the 8540 via the
8540's optional COM interface.

If neither of these cases applies to
you, you can patch the program into
memory using the P command. This
demonstration shows how.

Case 1:

Case 2:

Case 3:

?
•

8540 + other host

any other configuration
3964-5

Once the program is loaded or patched into memory, you can execute the program on your
emulator.

REV JAN 1983 1-17

Demo-Introduction Learning Guide--8540 System USers

i - i is

(A)

%2769231002100050605AF862305C20601D3F700
%OE62B24000421A
%3A3494DEMOOI0350514LOOP310615START310015TABLE350025TSIZE15
%098153100

(B)

FIRST DATA BLOCK: object code for addresses 100-1 OE

header t load rdreSS objec. code
-------,,,,--------,,,,"-..... _------...
%2769231002100050605AF862305C20601D3F700

SECOND DATA BLOCK: object code for addresses 40-42

header
I load object

taddr cr
----------%OE62B24000421A

SYMBOL BLOCK

header section

I section definition

t
' field symbol definition fields __ "J~ _ t_, t _____ -...

%3A3494DEM0010350514LOOP310615START310015TABLE350025TSIZE15

TERMINATION BLOCK

header

! ,

transfer
address

t -------%098153100

Fig. 1-4. Demonstration program: Extended Tekhex format.

Figure 1-4A shows an Extended Tekhex load module that contains the object code and
program symbols for the demonstration program. Figure 1-4B gives the meanings of the
different fields in the message blocks If you have a host computer other than an 8560, you
can create this load module and download it to your 8540.

3939-6

'r/'

Learning Guide-8540 System Users Demo-Examine Program

Examine the Demonstration Program
Explanation of Demonstration Run Program Source Code

The demonstration run program adds five numbers from a table stored in locations 500-504 in
program memory and leaves the sum in the accumulator. You will place values in the table later
in this demonstration.

The source file contains two kinds of statements: Tektronix assembler directives and 8085A
assembly language instructions. (Text following a semicolon (;) in a source line is treated as a
comment by Tektronix assemblers.) The 8085A assembly language instructions represent the
operations performed by the program; these instructions are discussed under the heading "How
the Demonstration Run Program Works," later in this subsection. The assembler directives
provide additional information needed to create the correct object code. The following
paragraphs outline the functions of the assembler directives.

SECTION DEMO. Every program consists of one or more sections. This directive declares a
program section called DEMO. All object code for the demonstration program will reside in this
section. (When you get into more practical programming applications, you may divide your
program into different sections to reduce memory consumption or to make it easier to organize
your program into RAM and ROM areas. Your Assembler Users Manual discusses the concept of
sections in detail.)

ORG 1 OOH. This directive tells the assembler where in memory to locate the object code for the
next instruction. In this case, the object code for the 8085A instruction LXI H,TABLE will be
stored at memory location 100.

ORG 40H. This directive specifies that the information for the Exit service call is to be stored at
address 40. A service call (SVC) is a request for OS/40 to perform a special service for an
executing piOgram. An Exit SVC ends program execution and returns controi to the operating
system.

An SVC always has at least three parts:

• an I/O instruction that initiates the SVC

• a service request block (SRB) that contains the parameters of the SVC to be performed

• an SRB pointer that tells where in memory the SRB is located.

SVCs are explained in the Service Calls section of this manual.

In this program, the instruction OUT OF7H directs OS/40to perform the SVC whose parameters
are pointed to by the address in locations 40 and 41.

BYTE OO,42H. This directive specifies that the SRB pointer (the address of the SRB for the Exit
SVC) is 0042.

1-19

Demo-Examine Program Learning Guide-8540 System Users

1-20

BYTE 1 AH. This SRB contains only one parameter: the SVC function code (1 A = Exit). No other
parameters are needed.

TSIZE eau 5, This directive assigns the vaiue 5 to the symboi TSiZE. Other statements in the
program use the symbol TSIZE when referring to the size of the table of numbers to be added.

ORG 500H. This directive specifies that the table will start at address 500.

BLOCK TSIZE. This directive allocates 5 (TSIZE) bytes to the table. The contents ofthe table are
undefined; you will put values into the table later in this demonstration. The symbol TABLE,
which represents the address of the table (500), is used by the LXI instruction.

LIST DBG. The LIST directive controls various assembler options. LIST DBG specifies that the
symbols in your source code (START, LOOP, TSIZE, and TABLE) will be placed in the object file.
Later in this demonstration, these symbols will be used in OS/40 commands and displays.

E~JD START. The END directive signals the end of the source code and specifies that START is
the transfer address: the address of the first instruction to be executed when you start the
program with the G (Go) command. Since START is the label of the LXI instruction, that
instruction will be executed first.

How the Demonstration Program Works

The steps of the program are illustrated in the flowchart in Fig. 1-5.

Set Table Pointer. The first instruction in the program, LXI H,TABLE, loads the address of the
table (500) into the H-L register pair. As a result, the H-L register pair points to the first element
of the table. The label START represents the address of this instruction. START is used by the
END directive to specify that the LXI instruction is the first to be executed.

Set Pass Counter. Register B is used as the pass counter. The MVI B,TSIZE instruction moves
the value 5 into register B. This step sets the number of passes to 5. Each time a number is taken
from the table and added into the accumulator, register B is decremented.

Clear Accumulator. The XRA A instruction sets the accumulator to zero. We want the
accumulator to be cleared when we start adding numbers from the table.

Add Byte from Table. The ADD M instruction adds the data addressed by the H-L register pair
into the accumulator. The label LOOP represents the address of this instruction; this label is
used by the JNZ instruction.

Learning Guide-8540 System Users Demo-Examine Program

@

Initialize table pointer

Set pass counter

Clear accumulator

Add byte from table

Point to new byte

Reduce pass counter

No

Fig. 1-5. Demonstration program flowchart.

This flowchart presents the algorithm for the program used in this demonstration run. The
program adds the elements of a table in memory and leaves the sum in the accumulator. The
demonstration run shows how to download the program into memory, execute the program,
and monitor its execution.

3939-3

1-21

Demo-load Program Learning Guide-8540 System Users

1-22

Point to Next Byte. Thp. INX H instrlJction increments the address in the H-L register pair: the H
L register pair then points to the next byte in the table. For example, the H-L register pair is
initialized to contain the address 500. After the INX H instruction is first executed, the H-L
register pair will contain 50', the address of the second element in the table.

Decrement Pass Counter. The DCR 8 instruction decrements register 8, the pass counter. In
this program, because the DCR 8 instruction follows the ADD M instruction, the pass counter is
decremented each time a number is added to the accumulator.

Loop If Not Five Passes Yet. The JNZ instruction effectively checks the contents of register 8
and jumps to the LOOP label if the register does not contain zero. If register 8 contains zero, the
program proceeds to the OUT OF7H instruction.

Exit. The OUT OF7H instruction followed by the NOP is a call to the Exit SVC. This SVC invokes
the operating system to handle termination of the program. A NOP always follows an SVC
invocation to allow the system time to execute the SVC.

Assemble and Load the Demonstration Program
Now it's time to create the program so you can run it on your emulator. One of the following
discussions describes the set of steps that is appropriate for your hardware configuration:

• For 8560 users: Case 1: Assemble on the 8560; Download to the 8540

• For users with host computers other than the 8560: Case 2: Download from Your Hostto
the 8540

;; For other hardware configurations: Case 3: Patch the Program into Memory.

Go ahead and work through the discussion that's appropriate for you. Once you've put the
program into program memory, turn to the heading "Run the Demonstration Program," later in
this section.

Case 1: Assemble on the 8560; Download to the 8540
This discussion shows you how to create the demonstration program source code and assemble
it on the 8560, then download it to 8540 program memory. If your 8560 does not have an
8080A/8085A assembler, you cannot complete this part of the demonstration, so skip ahead to
the heading "Case 3: Patch the Program into Memory" for instructions.

Start Up and Log In

Start up your 8540, make sure it's in TERM mode, and log in to the 8560 operating system, as
described earlier in this Learning Guide.

Learning Guide-8540 System Users Demo-Load Program

Since you're logged in to TNIX, your system prompt is "$". (Later in the demonstration, we'll
show the system prompt as ">", in deference to people using 8540s in LOCAL mode.) Every
command you enter is processed by TNIX. If you enter an OS/40 command, TNIX passes ittothe
8540.

Enter the following line to select the 8080A/8085A assembler on the 8560:
$ uP =8085; export uP <CR>

Now select the 8085A emulator on the 8540:
$ sel 8085 <CR>

The sel command automatically sets the emulation mode to O.

Create the Demonstration Program

Enter the following TNIX command lines to create an empty directory called demo and make
demo the working directory. You'll create your source file and related files in this demo
directory.

$ mkdir demo <CR>
$ cd demo <CR>

Now use the TNIX editor, ed, to create the demonstration program source file. The following
command line invokes the editor and specifies that you want to create a file called asm:

$ ed asm <CR>
?asm

The editor responds '?asm" to remind you that asm does not already exist. Notice that the editor
does not give a prompt to let you know it's ready for input.

REV JAN 1983 1-23

Demo-load Program Learning Guide-8540 System Users

, -24

Enter the Text, Now enter the editor command a (add text) and type in the prograrr'L Use the
BACKSPACE key to erase typing mistakes,
~ <CR>

column column column
8 16 24

t , i
;8085 DEMONSTRATION RUN PROGRAM <CR>

SECTION DEMO <CR>
ORG 100H ;START PROGRAM CODE AT ADDRESS 100 <CR>

START LXI H,TABLE ;SET TABLE POINTER <CR>
MVI B,TSIZE ;SET PASS COUNTER <CR>
XRA A ;CLEAR ACCUMULATOR <CR>

LOOP ADD M ;ADD BYTE FROM TABLE <CR>
INX H ;POINT TO NEXT BYTE <CR>
DCR B ;DECREMENT PASS COL~ER <CR>
JNZ LOOP ;LOOP IF NOT FIVE PASSES YET <CR>
OUT OF7H ;OTHERWISE CALL EXIT SVC <CR>
NOP TO END PROGRAM EXECUTION <CR>

;SRB POINTER <CR>
ORG 40H
BYTE 00,42H

;STORE SRB POINTER AT ADDRESS 40 <CR>
;POINT TO SRB FOR EXIT SVC <CR>

~SRB FOR EXIT SVC <eR>
BYTE lAH jlAH = FUNCTION CODE FOR EXIT SVC <CR>

;TABLE OF NUMBERS TO BE ADDED <CR>
TSIZE EQU 5 ;TABLE SIZE = 5 <CR>

ORG 500H ;SET UP TABLE AT ADDRESS 500 <CR>
TABLE BLOCK TSIZE <CR>

LIST DBG <CR>
END START <CR>

, <CR>

At the end of your text, enter a period on a line by itself. The editor will go back to accepting
commands.

Check for Errors. Enter the following editor command to display the text you have entered.
Check for typing mistakes.

l,$p <CR>

ilL print command: displays the lines
in the designated range

.-1 __ : __ __ 1 __ ... ,- ___ -_ r·._ I ut::'lyildlt::. Idl)l lint: "' TlI~

designates first line in file

If you made any mistakes, go ahead and fix them. In case you're not familiar with ed, Table 1-3
lists the commands you need in order to add, delete, or replace any line. For more information on
ed, refer to your 8560 System Users Manual.

(ei)

Learning Guide-8540 System Users Demo-Load Program

Command

mm,nnp <CR>

nn <CR>

d <CR>

a <CR>
<Iine(s) of text>
. <CR>

c <CR>
<Iine(s) of text>
. <CR>

Table 1-3
Basic 8560 Editing Commands

Function

Displays lines mm through nn

Makes line nn the current line

Deletes the current line

Adds text after the current line

Replaces the current line with the text you type in

Once your text is correct, enter the ~ command to write the text to the source file, !!!!l.:
!!.. <CR>
896

The editor responds with the number of characters it wrote to the file.

Finally, enter the q command to quit the editor and return to TNIX:
q <CR>
$" ~ TNIX prompt

Assemble the Source Code. The TNIX asm (assemble) command translates assembly language
(source code) into binary machine language (object code). The asm command also creates an
assembler listing which can be used to correlate the object code with the source code. Enter the
following command line to assemble the source code in the file asm and create the listing and
object files asml and obj:

$ asm obj asml asm <CR>

t L source file

~.ssembler listing file

1-_____ object file

Tektronix ASM 8080/8085
Vxx.xx-xx (8560)
*****Pass 2

23 Lines Read
23 Lines Processed
o Errors

Enter the following command to print the assembler listing on the 8560's line printer:
$ Iplr asml <CR>

REV JAN 1983 1-25

Demo-Load Program Learning Guide-8540 System Users

... "",..
1-.£0

Check page 1 of your listing. Did the assembler issue any error messages? There should be none.
If your source code contains errors, take the following steps:

1. Refer to your Assembler Users Manual to find out what the error messages mean.

2. Enter the command ed asm to get back into the editor and fix the mistakes in YOUi SOUice
code. Exit the editor with the wand q commands, as before.

3. Enter the command a5m obj a5m! a5m to re-assembie your source code_

Link the Object Code

The linker creates an executable load file from one or more object files. Enter the following
command to create a load file called load from your object file, obj. Be sure to capitalize all
parameters as shown.

$ link -d -0 obj -0 load <CR>

The -d option causes the linker to pass the program symbols from the object file to the load file,
for use in programming debugging.

The files generated by the asm and link commands should now be in your working directory,
demo. Enter the following command to list the files in your working directory:

$ Is <CR>
asm
asml
load
obj

Notice that there are now four files listed in your directory. obj and asml were created by the
assembler, and load 'vvas created by the iinkei.

Download the Program to the 8540

Now it's time to download the object code produced by the 8560's linker into 8540 program
memory.

Zero Out Memory. Before you download any code, use the OS/40 F (Fill) command to fill 8540
program memory with zeros. Later, when you examine memory, the zeros make it easy to
identify the beginning and end of your code. (Zeroing out memory has no effect on how the
program is loaded.) Enter the following command line to fill memory from address 40 through
__ I _1._ _ _ _ 4 4 r- ___ : 1_ _ ____ .

dUUI e~~ I I r Willi Lei U~.

$ f 40 llf 00 <CR>

Learning Guide-8540 System Users Demo-Load Program

Check That Memory Was Filled with Zeros. Check the contents of memory with the OS/40 D
(Dump) command. The D command's display shows the data in hexadecimal format, and also
shows the corresponding ASCII characters. Display the contents of memory addresses 40-11 F
with the following command line:

$ d 40 Ilf <CR>
0 1 2 3 4 5 6 7 8 9 A B C D E F

000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOAO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOBO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOCO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOODO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOEO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ••••••••••• P ••••

OOOOFO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Download the Object Code. Enter the following command line to download the object code
from the 8560 file load to 8540 program memory:

$ 10 <load <CR>

T
load file

Download the Program Symbols. Recall that the source code for the demonstration program
contains the directive LIST DBG. Because of this directive, the object file contains a list of the
symbols that appear in the source code, and the values associated with those symbols. Because
you included the -d option in the link command line, those symbols were passed to the load file.
Use the OS/40 SYMLO command to download those symbols into the symbol table in 8540
system memory.

$ symlo -s <load <CR>

The -S option means that both addresses and scalars are downloaded. If you omit the -S, only
addresses are downloaded. (A scalar is a number that is not an address-for example, TSIZE, the
length of the table.)

Later in this demonstration, whenever you use a symbol in an OS/40 command line, OS/40
refers to the symbol table to find the value that the symbol stands for.

You've assembled and linked the demonstration program and downloaded it into memory. Now
skip ahead to the heading "Run the Demonstration Program."

1-27

Demo-I ntroduction Learning Guide-8540 System Users

.. '\0
I-LO

Case 2: Download from Your Host to the 8540
This discussion gives some general instructions for downloading the demonstration program
from an unspecified host computer to 8540 program memory. If your 8540 is not equipped with
the optional COM Inteiface Package, you cannot compiete this part ofthe demonstration, so skip
ahead to the heading "Case 3: Patch the Program into Memory" for instructions.

Since we don't know what host computer you're using, we can only provide a general outline for
creating the demonstration program and downloading it to the 8540. Once you have determined.
the command sequence that is appropriate for your host, record this information in the space
provided in 1-6.

I

Create the Extended Tekhex load Module

Prepare the 8540

(Start up the 8540.)
> SEL 8085 <CR>
> F 40 IlF 00 <CR>
> D 40 IlF <CR>

Establish Communication

Download the load Module

Terminate Communication

Fig. 1-6. Host computer commands for preparing demonstration program .

393n I

Learning Guide-8540 System Users Demo-Load Program

Create the Extended Tekhex Load Module

In order for the object code to be downloaded to the 8540, it must be in Extended Tekhex format,
as shown in Fig. 1-4, earlier in this demonstration. You can create the load module in one oftwo
ways:

1. Use your host computer's text editor, and key the load module in by hand.

2. Use your host computer's 8085A assembler:
a. Translate the demonstration program into the language of your host's 8085A

assembler.

b. Create and assemble the source file.
c. Link the object code, if necessary.

d. Translate the object code produced by the assembler or linker into ExtendedTekhex
format. The Intersystem Communication section of this manual provides a general
algorithm for conversion to Extended Tekhex format.

Prepare the 8540

Start up your 8540 and enter the following command to select the 8085A emulator:
> SEL 8085 <CR>

The SEL command automatically sets the emulation mode to O.

Zero Out Memory. Before you download any code, use the OS/40 F (Fill) command to fill 8540
program memory with zeros. Later, when you examine memory, the zeros make it easy to
identify the beginning and end of your code. (Zeroing out memory has no effect on how the
program is loaded.) Enter the following command line to fill memory from address 40 through
address 11 F with zeros:

> F 40 IlF 00 <CR>

Check That Memory Was Filled with Zeros. Check the contents of memory with the OS/40 D
(Dump) command. The D command's display shows the data in hexadecimal format, and also
shows the corresponding ASCII characters. Display the contents of memory addresses 40-11 F
with the following command line:

> D 40 IlF <CR>
o 1 2 3 4 5 6 7 8 9 ABC D E F

000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOAO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOBO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOCO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOODO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOEO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOFO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

, -29

Demo-Load Program Learning Guide-8540 System Users

1-30

Download the Load Module to the 8540

Be sure that your 8540 and your host computer are connected via an RS-232-C-compatible
communications link. Then perform the following steps to download the Tekhex load module to
8540 program memory, (Refer to the Intersystem Communication section of this manual to
determine the commands and parameters that are appropriate for your host computer.)

a. Enter the 8540 COM command to establish communication. (The parameters of the
COM command are host-specific.) Log on to your host and execute any necessary
host initialization commands.

b. Enter the command line that downloads the Tekhex load module to the 8540. This
command line consists of a host computer command that performs the download,
followed by a null character (CTRL-@ on most terminals) and a carriage return. COM
places the object code in 8540 program memory, and puts the program symbols into
the symbol table in 8540 system memory.

c. Log off from your host, and then terminate COM command execution by entering the
null character, then pressing the ESC key.

Once you've downloaded the program to the 8540, skip ahead to the heading "Run the
Demonstration Program."

Case 3: Patch the Program into Memory
This discussion shows you how to patch the demonstration program into 8540 program memory
using the P command, and then add the program symbols into the symbol table using the ADDS
command.

Ordinarily. you would download the object code and symbols from a binary or hexadecimal load
file on a host computer, as illustrated for Cases 1 and 2. The procedure presented here is not
normally used for preparing a program for execution. Use this procedure only if you have no
standard means for preparing the program, but would still like to tryout your emulator.

Start Up the 8540
Start up your 8540 and enter the following command to select the 8085A emulator:

> SEL 8085 <CR>

The SEL command automatically sets the emulation mode to O.

Zero Out Memory

Before you patch in any code, use the OS/40 F (Fill) command tofill8540 program memory with
zeros. Later, when you examine memory, the zeros make it easy to identify the beginning and
end of your code. Enter the following command line to fill memory from address 40 through
address 11 F with zeros:

> F 40 IlF 00 <CR>

Learning Guide-8540 System Users Demo-I ntroduction

Check That Memory Was Filled with Zeros. Check the contents of memory with the OS/40 D
(Dump) command. The D command's display shows the data in hexadecimal format, and also
shows the corresponding ASCII characters. Display the contents of memory addresses 40-11 F
with the following command line:

> D 40 IlF <CR>
0 1 2 3 4 5 6 7 8 9 A B C D E F

000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOAO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOBO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOCO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOODO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOEO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOFO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Patch the Object Code into Memory

The OS/40 P (Patch) command stores a sequence of bytes into memory, replacing the previous
memory contents. Enter the following command to store the object code for the first three
instructions in the program (LXI, MVI, and XRA) starting at location 100:

> P 100 210005 0605 AF <CR>

T TIAA
MVI B,TSIZE

LXI H,TABLE

patch address

Now patch in the next four instructions (ADD, INX, DCR, and JNZ) ...
> P 106 86 23 05 C20601 <CR>

... and now the last two instructions (OUT and NaP):
> P 10C D3F7 00 <CR>

Finally, patch in the Exit SVC information at address 40:
> P 40 00421A <CR>

You'll check the contents of memory later in this demonstration.

1-31

Demo-Run Program Learning Guide-8540 System Users

i -32

Put Symbols into the Symbol Table

Later in this demonstration, you will use symbols from the demonstration program (START,
LOOP, TSIZE, and TABLE) when communicating with OS/40. Whenever you use a symbol in a
command line, OS/40 consults a symbol table in 8540 system memory to find the values that
the symboi stands for. Enter the foiiowing command iine to add the program symbols to the
symbol table, along with their values:

> ADDS START=lOO LOOP=106 -S TSIZE=5 TABLE=500 <CR>

The -S parameter indicates that TSIZE is a scalar, not an address.

The ADDS command cannot provide all the symbol-related information that is provided by the
SYMLO command (as in Case 1) or the COM command (as in Case 2). Because this information is
missing, some of the symbolic displays you produce later in this demonstration will not match
the displays shown in this manual. For more information on the ADDS command, refer to the
Command Dictionary of this manual.

You've patched the demonstration program into program memory and placed the program
symbols in the symbol table. Now it's time to run the program.

R un the Demonstration Program
From now until the end of the demonstration, the commands you are to enter are shown in
lowercase. If you are not logged in to an 8560, you may enter commands in either lowercase or
uppercase. If you are using an 8560, you must enter the name of every command in lowercase
(and your system prompt is "$", not ">").

Now that you've loaded the program into memory, you need to:

1. verify that the program was loaded correctly

2. put values into the table in memory, for the program to add.

Check Memory Contents Again. Before you loaded the program, you filled memory locations
40-11 F with zeros. Look at the same memory area again with the following command line:

> d 40 11f <CR>
0 1 2 3 4 5 6 7 8 9 A B C 0 E F

000040 00 42 1A 00 00 00 00 00 00 00 00 00 00 00 00 00 .B
000050 00 00 00 00 00 uu 00 00 00 00 00 00 00 00 00 00
000060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOAO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOBO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 , ...
OOOOCO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOEO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOFO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000100 21 00 05 06 05 AF 86 23 05 C2 06 01 03 F7 00 00 ! #
000110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Learning Guide-8540 System Users Demo-Run Program

The object code is loaded in two different blocks:

• The 8085A machine instructions are loaded at address 100 (specified by the first ORG
directive in the source code) .

• The information for the Exit SVC is loaded at address 40 (specified by the second ORG
directive).

The contents of the table at address 500 are still undefined, but you'll put some values into the
table in just a few minutes.

Turn On Symbolic Display. Enter the following command to tell 08/40 to modify its displays by
replacing hexadecimal numbers with symbols from your program, where appropriate:

> symd on <CR>

Disassemble the Object Code. The 01 (Olsassemble) command displays memory contents both
in hexadecimal notation and in assembly language mnemonics. You can use the 01 command to
verify that the object code in memory corresponds to your source code. Enter the following
command to disassemble the area of memory occupied by the executable part of your program:

> di 100 10e <CR>

LOC INST MNEM OPER
SECTION (DEMO)
START 210005 LXI H,0500
+000103 0605 MYI B,05
+000105 AF XRA A
LOOP 86 ADD M
+000107 23 INX H
+000108 05 DCR B
+000109 C20601 JNZ 0106
+00010C D3F7 OUT F7
+00010E 00 NOP

Compare the 01 display with the assembler listing you generated earlier, or refer back to Fig. 1-3.

The line "SECTION (OEMO)" in the 01 display indicates that the object code being disassembled
comes from the program section called OEMO. In fact, the entire memory area used by your
program (location 0 through the end of the table-location 504) belongs to section OEMO. This
section was declared by the SECTION directive in the source code. (If you used the AOOS
command to create your symbols, as in Case 3, the section name shown in the 01 display is
NO.SECTION.)

The LOC (location) column of the 01 display contains information that enables you to correlate
the display with your assembler listing. The symbols START and LOOP in the 01 display
correspond to the labels START and LOOP in the source code. For those lines of the display
where the location does not correspond to a label in the symbol table, 01 substitutes the address
of the instruction relative to the beginning of the section, as shown in the address field of your
assembler listing. If you don't load the pertinent symbols and related information into the symbol
table (using a command such as SYMLO), the 01 command supplies absolute (actual) addresses
in the LOC column. (Since section OEMO begins at address 0, the relative address, or offset, is
the same as the absolute address in this display. This offset feature is much more useful for
sections that don't start at address 0.)

REV JAN 1983 1-33

Demo-Run Program Learning Guide-854D System Users

i -34

Now you've seen that OS/40 can use the symbol table to translate numbers into symbols to
make a display easier to read. OS/40 can also translate a symbol in a command line into an
address. For example, since OS/40 knows that the symbol START is equivalent to the address
100, you could have entered the DI command in any of the following ways:

di 100 lOE
di START IDE
di start start+Oe
di 100 START+OE

Notice that a symbol can be entered in either lowercase or uppercase.

The feature that enables OS/40 to correlate symbols from your program with the numbers they
represent is termed symbolic debug.

Put Values into the Table in Memory. The demonstration program sums five numbers from a
table in memory. Use the P (Patch) command to store the numbers 1,2,3,4, and 5 into the table.
Do you remember what the address of the table is? It doesn't matter, as long as you remember
that the symbol TABLE represents that address.

> p table 0102030405 <CR> ---
~

address of

-~-

.4 f strmg 0 bytes to be stored
table: 500 at addresses 500-504

Check the Contents of the Table. Use the 0 command to display the contents of the table.
(When you don't specify an upper boundary for the area to be dumped, the D command dumps 16
bytes.)

0-1 --- lower address: 500

I r upper address: omitted
~ (defaults to lower address + OF)

--> d table <CR>
o 1 2 3 4 5 6 7 8 9 ABC D E F

000500 01 02 03 04 05 CD 4E 04 3A C7 16 FE 00 CA 35 05 N.: 5.

Notice that bytes 500-504 (the table) contain the values you patched in. Bytes 505-50F contain
random data left over from previous system operations.

The following command dumps only the contents of the table:
> d table table+tsize-l <CR>

o 1 2 3 4 5 6 j 8 8 A H C D ~ ¥
000500 01 02 03 04 05

Learning Guide-8540 System Users Demo-Run Program

Start Program Execution

Enter the G (Go) command to start program execution at location 100, the transfer address
specified by the END directive in the source code. (If you followed "Case 3: Patch the Program
into Memory," you must enter "g start" instead.)

> ~ <CR>

LOC INST MNEM OPER SP F A B C D E H L 1M SOD
SECTION (DEMO)
+OOOIOF 00 NOP 0000 54 OF 00 00 00 00 05 05 00 0
+OOOIOF <BREAK > TT -

table
accumulator pass pointer

counter

The program executes, and when the Exit SVC occurs, the program breaks (stops), and the
contents of the emulator registers are displayed. The accumulator contains the sum of the
numbers in the memory table: 1 +2+3+4+5=OF.

Monitor Program Execution
You have assembled, loaded, and executed the demonstration program. The rest of this
demonstration shoY-ils you some commands for monitoring program execution. You can ~Natch
the changes in the emulator's registers and observe the effect of each instruction as the
program proceeds.

Trace All Instructions. The TRA (TRAce) command lets you observe the changes in the 8085A
registers as the program proceeds. When you enter a TRA command and then start execution
with the G command, display lines are sent to the system terminal. As each instruction
executes, the display line shows the instruction (as in the Disassemble display) and the contents
of the registers after that instruction has executed. Enter the following command to trace all of
the program's instructions:

> tra all <CR>

Enter the command G START (or G 100) to resume program execution back at the beginning of
the program:

> g start <CR>

REV JAN 1983 , -35

Demo-Monitor Program Learning Guide-8540 System Users

i -36

As thp. program executes, the following trace is displayed. Remember that you can type CTRL-S
to suspend the display and CTRL-Q to resume the display.

LaC INST MNEM OPER SP F A B C D E H L 1M SOD
SECTION (DEMO)
STA"qT 210005 LXI u f'\t::.f'\f'\ "Ar\A t:A AT.'! I"\.r'\ ",...... .1"\1""\ ,...,...... 05 00 00 0 l~,vvVV vvvv v"% vr vv vv vv vv
+000103 0605 MVI B,05 0000 54 OF 05 00 00 00 05 00 00 a
+000105 A...F XRA A 0000 44 00 05 00 00 00 05 00 00 0
LOOP 86 ADD M 0000 00 01 05 00 00 00 05 00 00 0
+000107 23 INX H 0000 00 01 05 00 00 00 05 01 00 0
+000108 05 DCR B 0000 10 01 04 00 00 00 05 01 00 0
+000109 C20601 JNZ 0106 0000 10 01 04 00 00 00 05 01 00 0
LOOP 86 ADD M 0000 04 03 04 00 00 00 05 01 00 0
+000107 23 INX H 0000 04 03 04 00 00 00 05 02 00 0
+000108 05 DCR B 0000 14 03 03 00 00 00 05 02 00 0
+000109 C20601 JNZ 0106 0000 14 03 03 00 00 00 05 02 00 0
LOOP 86 ADD M 0000 04 06 03 00 00 00 05 02 00 0
+000107 23 INX H 0000 04 06 03 00 00 00 05 03 00 0
+000108 05 DCR B 0000 10 06 02 00 00 00 05 03 00 0
+000109 C20601 JNZ 0106 0000 10 06 02 00 00 00 05 03 00 0
LOOP 86 ADD M 0000 04 OA 02 00 00 00 05 03 00 0
+000107 23 INX H 0000 04 OA 02 00 00 00 05 04 00 0
+000108 05 DCR B 0000 10 OA 01 00 00 00 05 04 00 0
11"'\""".,,,,,, n,...",,....,....,
TVVV.l.V~ IvGVOV.l. JNZ 0106 0000 10 OA 01 00 00 00 05 04 00 0
LOOP 86 ADD M 0000 04 OF 01 00 00 00 05 04 00 0
+000107 23 INX H 0000 04 OF 01 00 00 00 05 05 00 0
+000108 05 DCR B 0000 54 OF 00 00 00 00 05 05 00 0

LOC INST MNEM OPER SP F A B C D E H L 1M SOD
SECTION (DEMO)
+000109 C20601 JNZ 0106 0000 54 OF 00 00 00 00 05 05 00 0
+O0010C D3F7 OUT F7 0000 54 OF 00 00 00 00 05 05 00 0
+00010C <BREAK TRACE>

After the accumulator is cleared, it begins to store the sum of the numbers being added. The
ADD M instruction adds a number from the table into the accumulator. At the end of the
program, the accumulator contains the sum of the numbers you put into the table.

Register B, the pass counter, is set to contain 5 (TSIZE) at the beginning of the program. It
decreases by one (because of the DCR B instruction) each time a number is added into the
accumulator. The program ends after register B reaches zero.

The H-L register pair, set to contain 500 (TABLE) at the start of the program, increases by one
{because of the INX H instruction; each time a number is added to the accumuiator. At the end of
the program, the register pair has been incremented five times and contains 505.

Trace to the Line Printer. By adding the parameter >LPT to a command, you can direct that
command's output to the line printer instead of to the system terminal. First, verify that your line
printer is properly connected and powered up. Then enter the following command to execute the
program with trace output directed to the line printer:

Learning Guide-8540 System Users Demo-Monitor Program

NOTE

If you are operating in TERM mode with an 8560, use one of the following commands
in place of the command shown:

• g start IIp 1 r sends the display to the 8560's line printer.

• g start \>LPT sends the display to the 8540's line printer.

> g start >LPT <CR>

Trace Jump Instructions Only. Another way to monitor the program's execution is to look only
at the jump instructions. By tracing the jump instructions, you can still observe the changes in
the registers, but you save time and space by not tracing the instructions within the loop. Enter
the following command to trace only the jump instructions when the loop is being executed:

> tra jmp loop 109 <CR>
-.- -.....-

~ upper address} Withi~ this. range •.
only Jump instructIons

lower address are traced.
(106)

Check the Status of the Trace. The TRA command without any parameters displays the trace
conditions that are currently set. Because you can have up to three trace selections in effect at
the same time, it can be useful to be able to see which selections are active. Check your trace
status with the following command line:

> 1!:s <CR>
TRACE ALL,OOOOOO,OOFFFF
TRACE JMP,LOOP, 000109

As you've specified, TRA ALL is in effect for addresses 0-105, TRAJMP is in effect for addresses
i 06-1 09, and TRA ALL is again in effect for addresses 10A-FFFF.

Again, start your program with the G command. The following trace is displayed:
> g start <CR>

LOC INST MNEM OPER SP F A B C D E H L 1M SOD
SECTION (DEMO)
START 210005 LXI H,0500 0000 54 OF 00 00 00 00 05 00 00 0
+000103 0605 MVI B,05 0000 54 OF 05 00 00 00 05 00 00 0
+000105 AF XRA A 0000 44 00 05 00 00 00 05 00 00 0
+000109 C20601 JNZ 0106 0000 10 01 04 00 00 00 05 01 00 0
+000109 C20601 JNZ 0106 0000 14 03 03 00 00 00 05 02 00 0
+000109 C20601 JNZ 0106 0000 10 06 02 00 00 00 05 03 00 0
+000109 C20601 JNZ 0106 0000 10 OA 01 00 00 00 05 04 00 0
+O0010C D3F7 OUT F7 0000 54 OF 00 00 00 00 05 05 00 0
+00010C <BREAK TRACE>

As with the TRA ALL display, observe that register B (the pass counter) is decremented; the H-L
register pair (the table pointer) is incremented; and the accumulator stores the sum of the
numbers from the table. With the TRA JMP selection in effect, the instructions within the loop
are not displayed.

REV JAN 1983 1-37

Demo-Monitor Program Learning GUlde-8540 System Users

i -38

Set a 8ieakpoiiit. Now that you've seen how the program adds the numbers together, here's a
new task: to add only the third and fourth numbers from the table. To perform this task, you want
the pass counter to contain 2, and the table pointer to contain 502 (the address of the third
number in the table). You can accomplish these changes \lvithout altering the object code in
memory. First, stop program execution after the pass counter and the table pointer have been
set Next, while the program is stopped, enter new values for the pass counter and table pointer.
When execution resumes, the program will treat the new values as if they were the original
programmed values.

Enter the following command line to trace all of the instructions as the program executes:
> tra all <CR>

Check the status of the trace with the following command line:
> tra <CR>
TRACE ALL,OOOOOO,OOFFFF

The trace selections you set earlier are made obsolete by the TRA ALL command just entered.

Now you set a breakpoint so that the program stops after the table pointer and pass counter have
been set. The following command will cause the program to stop after it executes the MVI
instruction at address 103:

> bk 1 103 <CR>

I T breakpoint address

breakpoint number
(can be 1 or 2)

Use the G command to start program execution:
> g start <CR>

LOC INST MNEM OPER SP F A B C D
SECTION (DEMO)
START 210005 LXI H,0500 0000 54 OF 00 00 00
+000103 0605 MVI B,05 0000 54 OF as 00 00
+000103 <BREAK TRACE, BKPTl>

E H L 1M SOD

00 05 00 00 a
00 05 00 00 a

The TRA ALL command enabled display of all instructions up to and including the instruction at
the breakpoint.

Set New Values in Pass Counter and Table Pointer; Check Results. Now that you've reached
the breakpoint, you can change the contents of the registers while execution is stopped. The
break display shows that register 8 (the pass counter) contains 5, and the H-L register pair (the
table pointer) contains the address 500. Use the 5 (5et) commandto set the number of passes to
two and set the table pointer to 502.

> s B=2 L=2 <CR> --- ---
Lcontents of low byte

of H-L register pair

contents of register B

r(i)

Learning Guide-8540 System Users Demo-Summary

The S command does not produce a display, but you can use the DS (Display Status) command to
check the values in the registers you changed. DS displays the contents of each emulator
register and status flag. Check the result of the previous S command with the following
command line:

> ds <CR>
PC=0105 SP=OOOO F=54 A=OF B=02 C=OO D=OO E=OO H=05 L=02
SOD=O SID=O 17=0 16=0 15=0 IE=O M7=1 M6=1 M5=1

The DS display shows that the pass counter and table pointer now contain the new values.

Resume Program Execution. If you enter the G command with no parameters, program
execution starts where it left off. Resume program execution after the breakpoint with the
following command:

> g <CR>

LOC INST MNEM OPER SP F A B C D E H L 1M SOD
SECTION (DEMO)
+000105 AF XRA A 0000 44 00 02 00 00 00 05 02 00 0
LOOP 86 ADD M 0000 04 03 02 00 00 00 05 02 00 0
+000107 23 INX H 0000 04 03 02 00 00 00 05 03 00 0
+000108 05 DCR B 0000 10 03 01 00 00 00 05 03 00 0
+000109 C20601 JNZ 0106 0000 10 03 01 00 00 00 05 03 00 0
LOOP 86 ADD M 0000 00 07 01 00 00 00 05 03 00 0
+000107 23 INX H 0000 00 07 01 00 00 00 05 04 00 0
+000108 05 DCR B 0000 54 07 00 00 00 00 05 04 00 0
+000109 C20601 JNZ 0106 0000 54 07 00 00 00 00 05 04 00 0
+O0010C D3F7 OUT F7 0000 54 07 00 00 00 00 05 04 00 0
+00010C <BREAK TRACE>

Notice that the program performed two passes through the loop, and that the program added the
third and fourth numbers in the table: 3+4=7.

Summary of Emulator Demonstration Run
You have assembled, loaded, executed, and monitored the demonstration run program. Review
the commands you used:

• SEL-selects the 8085A assembler and emulator

• ASM (TNIX command)-creates object code from an assembly language program

• LINK (TNIX command)-links object code into a load module

• F-fills an area of memory with a specified value

• D-displays memory contents in ASCII and hexadecimal format

• LO or COM-downloads object code into memory

• SYMLO or COM-downloads program symbols for use in symbolic debug

• DI-translates memory contents into assembly language mnemonics

• P-patches a string of bytes into memory

• G-begins or resumes program execution

• TRA-selects instructions to be traced during program execution

1-39

For Continued learning Learning Guide-8540 System Users

"i -40

• BK-sets a breakpoint

• S-modifies emulator registers

• OS-displays emulator registers

Delete the Demonstration Run Files

Now that you've finished the demonstration run, you can delete the files you created on the host.
If your files are on the 8560, you can use the following procedure to delete them.

Enter the following command to remove all the files in the working directory:
$ rm * <CR>

Now move from the demo directory back into the parent directory and remove the demo
directory itself:

$ ~ <CR>
$ rmdir demo <CR>

To log out from your 8560 and retuin yOUi 8540 to LOCAL mode, type:
$ config local; logout <CR>

You can turn off the 8540 and its peripherals in any order.

FOR CONTINUED LEARNING
This Learning Guide introduced the basic concepts needed to use your 8540. It gave you an
overview of the 8540 and related products, and showed you how to prepare, download, execute,
and monitor a program. To obtain more detailed explanations of various 8540 operations, refer
to the following sections:

Section 2, Operating Procedures. Describes a series of tasks and lists the commands needed
to perform these tasks.

Section 3, Command Dictionary. Provides a description and examples of each OS/40
command. The Command Dictionary is arranged aiphabeticaiiy by command name. it is
preceded by a classified list of commands to help you choose a command by its function if you
don't remember its name.

Section 4, Intersystem Communication. Gives the technical information needed to set up
communication between the 8540 and another computer system.

Section 5, Emulation. Summarizes the emulation features of the 8540. The emulator
demonstration run in this Learning Guide demonstrated program execution in emulation mode
O. Section 5 discusses modes 1 and 2 as well, and gives detailed explanations of symbolic debug,
the Memory Allocation Controller (MAC) option, and the Trigger-Trace Analyzer (TTA).

Learning Guide-8540 System Users Overview of 8540 User Manuals

Section 6, Service Calls. Explains what service calls are and how you use them in your program
to access I/O devices on the 8540 and files on the 8560.

Section 7, Emulator Specifics. Provides a place to insert your Emulator Specifics supplements.
Each supplement gives reference information that is specific to a particular emulator, and also
contains a demonstration run and installation instructions for that emulator.

Section 8, PROM Programmer Specifics. Describes the general features and operation ofthe
PROM Programmer. Add your PROM Programmer Specifics supplements to this section. Each
supplement provides reference information that is specific to a particular PROM Programmer
characteristic module.

Section 9, Technical Notes. Provides miscellaneous technical information. Technical Note 1
discusses the practical limits of emulation. Technical Note 2 summarizes the differences
between OS/40 Version 1 and DOS/50 Version 2, the operating system of the 8550
Microcomputer Development Lab. Technical Note 3 summarizes the differences between the
RTPA and the TTA.

Section 10, Error Messages. Explains each OS/40 error message, giving a description of the
problem and possible solutions.

Section 11, Tables. Summarizes reference information in tabular form.

Section 12, Glossary. Defines special terms used in this manual.

Section 13, Index. Gives you a place to start when you don't know where else to look.

OVERVIEW OF 8540 USER MANUALS
This subsection describes the types of user manuals you will receive as you add options to your
8540 system, and explains how each manual relates to the product it documents.

Core Manuals and Specifics Supplements
Many software products produced by Tektronix have a microprocessor-independent part and a
microprocessor-specific part. The microprocessor-independent part is common to every
product of the same type, and minimizes your effort in using your 8540 with a new
microprocessor. The microprocessor-specific part allows you to exploit the features of the
microprocessor you have chosen.

For example, on the 8560, all B Series assemblers have the same standard directives, error
messages, and special features, but each assembler supports the instruction set, addressing
modes, and other features of a different microprocessor.

1-41

Overview of 8540 User Manuals Learning Guide-8540 System Users

To document software that has both microprocessor-independent and microprocessor-specific
features, Tektronix provides core manuals and specifics supplements.

Core Manuals

A core manual is a looseleaf book that documents the micropiOcessor- independent features of a
product. A core manual has at least one empty section into which specifics supplements are
inserted.

Examples of core manuals include:

• the 8540 System Users Manual (this manual), which describes the standard features of
OS/40 and introduces you to many system options. This manual has an Emulator Specifics
section and a PROM Programmer Specifics section.

• the 8500 Modular MOL Series Assembler Core Users Manual for B Series Assemblers,
which tells you how to use the B Series Linker and Library Generator and describes the
microprocessor-independent features of the B Series Assembler. This Assembler Users
Manual has an Assembler Specifics section. (It also contains a Host Specifics section,
sinCe 8 Series aSSemblers are available on the 8550 as well as the 8560.)

Specifics Supplements

A specifics supplement is a relatively short document that is designed to be inserted into the
Specifics section of a core manual. A specifics supplement explains the microprocessor-specific
features of a software product. It usually tells how to install the software into the operating
system and provides a microprocessor-specific demonstration run.

Examples of specifics supplements include:

• Emulator Specifics and PROM Programmer Specifics supplements to this manual

• Assembler Specifics supplements to the Assembler Users Manual

Stand-Alone Manuals
Some products are either fully microprocessor-independent or fully microprocessor-specific.
Such a product is documented in a single complete manual.

An example of a stand-alone manual is the Trigger-Trace Analyzer Users Manual, which
describes the TT A in detail and explains its various applications.

Reference Booklets and Cards
Most software products are also accompanied by a reference booklet or reference card that
summarizes the most commonly used information from the user manual.

8540 System Users

Section 2
OPERATING PROCEDURES

Page

Introduction 2-1

Communicating With an 8560 2-1
Establishing Communication With the 8560 2-1
Downloading a Program from the 8560
to 8540 Program Memory 2-2

Uploading a Program from 8540
Program Memory to the 8560 2-2

Downloading Program Symbols from the 8560 2-2
Terminating Communication with an 8560 2-2

Communicating with a Host Computer 2-3
Establishing Communication with the
Host Computer 2-3

Downloading a Program from the Host Computer
to 8540 Program Memory 2-4

Uploading a Program from 8540 Program
Memory to the Host Computer 2-5

Terminating Communication with the Host 2-5

Communicating with an 8550 2-5
Establishing Communication with an 8550 2-5
Downloading a Program from the 8550 to
8540 Program Memory 2-6

Uploading a Program from 8540 Program
Memory to the 8550 2-7

Terminating Communication With an 8550 2-7

Downloading from an 8002A 2-7

Program Execution 2-8
Selecting the Target Processor 2-8
Selecting the Emu!ation Mode 2-8
Executing the Program 2-8
Displaying the Emulator Registers 2-9
Setting the Emulator Registers 2-9
Creating and Defining a Symbol 2-9
Creating a Virtual Memory Map 2-9
Logging Commands to the Line Printer 2-10

Program Debugging 2-10
Turning Symbolic Output On and Off 2-10
Tracing All of the Program 2-10
Tracing Part of the Program 2-11
Tracing Program Branches 2-11
Stepping Through the Program 2-12
Setting a Breakpoint 2-12
Clearing a Breakpoint 2-13
Displaying Breakpoints 2-13
Executing a Segment of Code Repeatedly 2-13

Debugging the Program in the Prototype 2-13
Selecting SVCs 2-13
Selecting Prototype I/O 2-14
Displaying Memory Map Assignments 2-14

Page

Using the Trigger Trace Analyzer 2-14
Breaking on a Designated Instruction 2-14
Breaking on a Specified Pass Through a Loop 2-15
Breaking When Execution Proceeds Outside
a Designated Range 2-15

Breaking When the Program Writes in
a Designated Memory Area 2-15

Saving an Execution Trace Record Without
Interrupting the Program 2-16

Recording Instructions Before and After
a Designated Instruction 2-16

Recording Instructions Executed After
a Designated Instruction 2-17

Determining the Execution Time of a
Program Segment 2-17

Counting the Occurrences of an Event 2-17
Measuring the Interval Between Probe Events 2-18
Breaking on a Probe Event 2-18

Memory Manipulation 2-19
Displaying the Contents of Memory 2-19
Changing the Contents of a Section of Memory 2-19
Initializing a Block of Memory 2-20
Breaking When the Program Writes in
a Designated Memory Block 2-20

Disassembling the Contents of Memory 2-20

System 110 2-20
Displaying the Current Channel Assignments 2-20
Assigning a Channel 2-21
Closing a Channel 2-21

Fig.
No.

ILLUSTRATIONS

2-1 Hardware configuration for 8540/8560
interface 2-1

2-2 Establish communication with the
host computer 2-4

2-3 Virtual memory map assignments 2-10

2-i

8540 System Users

Section 2

OPERATING PROCEDURES

Section 1, the Learning Guide, presented a general
overview of the 8540's operating system and a simple
demonstration program. This section presents some
common procedures using OS/40 commands with your
8540 Integration Unit. Each procedure identifies para
meters that you supply when performing the procedure.

The procedures in this section are given in the following
format:

Description:

Procedure:

Parameters:

Comments:

Examples:

See also:

A summary of the action(s) performed by
the procedure.

The information entered or displayed at
the system terminal.

The following conventions are used in
the procedure description:

Underlined: A character sequence entered
by the user.

No underline: A character sequence
displayed by OS/40.

Bold: An exact character sequence; if
these characters are underlined, enter
them exactly as shown.

Not bold: A parameter that you supply
when performing the procedure.

A description of the values to be supplied
by you.

The operating limits and options for this
procedure.

One or more demonstrations of correct
entry format.

Cross-references to related procedures.

COMMUNICATING WITH AN
8560

Establishing Communication with the 8560
Description: This procedure establishes a TERM

interface with an 8560. With your 8540
and 8560 operating in TERM mode, you

Procedure:

Comments:

have access to all resources of both
systems simultaneously.

The 8540 is connected to the 8560 by an
HSI cable. The system terminal is
connected to the 8540 by an RS-232-C
cable. Figure 2-1 shows how the various
units are connected together.

(Connect the cables as shown in Fig. 2-1.)

(Start up the 8540.)

>config term <cr>

<cr>

Login:

(Log in to the 8560.)

Refer to your 8560 System Users Manual
for more information concerning this
procedure.

8560

HSII/O

I

RS-232-C HSI
TERMINAL -

,
TERMINAL HSI

J104

8540

3939·4

Fig. 2-1. Hardware configuration for 8540/8560 interface.

To communicate with an 8560. connect the cables as
shown in this figure.

2-1

Communicating with an 8560

Downloading a Program From the 8560
to 8540 Program Memory

Description:

Procedure:

Parameters:

Comments:

This procedure downloads a file from the
8560 to 8540 program memory.

$!o <8560fi!e

8560file-The name of the 8560 file to
ioad into 8540 program memory.

To load an 8560 file into prototype
memory, first select emulation mode 2,
then follow the above procedure.

NOTE

The file must be in Tektronix A Series or 8 Series load
module format, as produced by a Tektronix assembler
or linker.

See also: • Uploading a program from 8540
program memory to the 8560

Uploading a Program from 8540
Program M emory to the 8560

Description:

Procedure:

Parameters:

Comments:

2-2

This procedure saves a program from
8540 program memory onto a file on the
8560.

$ say >8560file loadd hiadd transadd

8560file-The 8560 file that is to receive
the program from 8540 program memory.

loadd-The lower limit of the data block
to be saved.

hiadd-The upper limit of the data block
to be saved.

transadd-The transfer address of the
pro~ram.

The file is created in Tektronix A Series or
B Series load module format. as produced

See also:

Operating Procedures-8540 System Users

• Downloading a program from the
8560 to 8540 program memory

Downloading Program Symbols from the
8560
Description:

Procedure:

Parameters:

This procedure loads the symbols from an
8560 load file into the symbol table in
8540 system memory.

$ symlo <8560file -a -s

8560file-The name of the 8560 load
file containing the symbol definitions you
want to load.

NOTE

The file must be in A Series or 8 Series load module
format, as produced by a Tektronix linker.

Comments:

See also:

The -a option causes the command to
append the symbols to those already in
the table If you omit the -8; the existing

symbols are overwritten. If you omit the
-5, scalars are not loaded.

• Creating and defining a symbol

Terminating Communication with an 8560

Description:

Procedure:

Comments:

See also:

This procedure terminates communica
tion between the 8540 and the 8560.

$ config local; logout

This command line breaks the communi
cation link between the 8540 and the
8560. Both the 8540 and the 8560 are
returned to normal operations. The
CONFIG command tells the 8540 to stop
passing commands to the 8560. The
LOGOUT command tells TNIX (the 8560
operating system) to stop accepting
commands.

• Establishing communication with the
oc::a('\
UoJvv

Operating Procedures-8540 System Users

COMMUNICATING WITH A HOST
COMPUTER

Establishing Communication with the Host
Computer
Description: This procedure prepares the 8540 to

operate as an "intelligent" terminal to a
host computer. Six types of data transfer
are available while communicating with
a host computer. The two most commonly
used data transfers are:

1. A formatted download, which
transfers an object file in Tekhex
format from the host computer to
8540 program memory.

2. A formatted upload, which trans
fers object code in Tekhex format
from 8540 program memory to a
file on the host computer.

Before establishing communication, you
must first have attached your communi
cation link (a cable or modem) to the
proper jack (usually J 101) on the 8540
rear panel.

NOTE

The following procedures are deliberately simplified
because of the differences in host computer
requirements. Refer to the Intersystem Communica
tion section of this manual, and to your system

Communicating with a Host Computer

engineer, for the host-computer-specific commands
and COM parameters that you will use in these
procedures.

Procedure:

Parameters:

Comments:

(Establish data transmission between the

host computer and the 8540. See Fig. 2-2.)

> com setup

(Initialize your terminal session, as required

by the host computer.)

setup-A sequence of parameters that
informs the 8540 of the host computer
dependent features. Refer to the Inter
system Communication section of this
manual to determine this sequence.

After you have determined the specific
procedure for establishing communica
tion with your host computer, record this
information in the space provided in Fig.
2-2.

To terminate communication, enter the
null character (ASCII 00) and press the
ESC key on your terminal. On the
TEKTRONIX 4024/4025 and CT8500
terminals, the null character is generated
by entering CTRL-@ (pressing the @ key
while holding down the CTRL key).

Other terminals may generate the null
character differently. Refer to your
terminal users manual for specific
information.

2-3

Communicating with a Host Computer

Prepare the 8540:

Enter the COM command:

Host computer commands:

Operating Procedures-8540 System Users

(Record here the staps to be

taken when preparing your 8540

for communication with the

host computer. See the Intersystem

Communication section of this manual

for more information.)

(Record here the appropriate
COM command parameters. as
designated in the Intersystem
Communication section of this
manual.)

(Record here the host computer
commands to initialize your
terminal session.) 3939-8

Fig. 2-2. Establishing communication with the host computer.

After you have determined the specific procedure for establishing communication with your host computer. record this information in
the space provided in Fig. 2-2. for ease in future reference. Refer to the Intersystem Communication section of this manual for further
information.

Downloading a Program From the Host
Computer to 8540 Program Memory
Description:

2-4

This procedure transfers a load file in
Tekhex format from the host computer to
8540 program memory (a formatted
downioad).

A program must be available on the host
computer to send T ekhex blocks to the
8540 and interpret the 8540's responses.
Refer to the Intersystem Communication
section of this manual for the require
ments of this program.

Operating Procedures-8540 System Users

Procedure:

Parameters:

See also:

(Establish communication with the host

computer.)

command(null)

(This command transfers a Tekhex format

ted file from the host computer to the 8540.

The object code is loaded into program

memory at the locations specified in the

T ekhex data blocks. When transfer is

complete. DNLOAD: is displayed and 05/40
is ready to accept another upload or

download command.)

command-A host computer command
which invokes a program that downloads
a Tekhex load module to the 8540.

(null)-A character generated on most
terminals by entering CTRL-@.

• Establishing communication with the
host computer

Uploading a Program from 8540 Program
Memory to the Host Computer

Description:

Procedure:

Parameters:

This procedure transfers the contents of
8540 program memory to the host
computer in Standard or Extended
Tekhex format (a formatted upload). You
can use the F parameter of the COM
command to distinguish between Standard
Tekhex and Extended Tekhex. For more
information about the COM command,
refer to the Intersystem Communication
section of this manual.

A program must be available on the host
computer to receive Tekhex blocks from
the 8540. Refer to the Intersystem
Communication section for the require
ments of this program.

(Establish communication with the host

computer.)

(Load into 8540 program memory the

program that you want to upload.)

command(null)loadd hiadd transadd

(When the transfer is completed. UPLOAD:

is displayed on the terminal. At this point.

05/40 is ready to accept another upload or

download command.)

command-A host computer command
which invokes a program that uploads a

See also:

Communicating with an 8550

Tekhex load module from 8540 program
memory.

(null)-A character generated on most
terminals by entering CTRL-@.

loadd-The lower boundary of the block
of memory to be transferred.

hiadd-The upper boundary of the block
of memory to be transferred.

transadd-The transfer address.

• Establishing communication with the
host computer

Terminating Communication with the Host

Description:

Procedure:

Comments:

See also:

This procedure terminates the communi
cation link between the 8540 and the
host computer. returning the system to
normal operation.

(Log out from the host computer.)

(Enter a null character and press the ESC

key:)

(null)(ESC)

Enter the null character by entering
CTRL-@ (typing @ while holding down
the CTRL key).

• Establishing communication with the
host computer

COMMUNICATING WITH AN
8550

Establishing Communication with an 8550

Description: This procedure prepares the 8540 for
communication with an 8550 used as the
host computer. Six types of data transfer
are available while communicating with
the 8550; the two most common are:

1 .

2.

A formatted download. which
transfers a file in Tekhex format
from the 8550 to 8540 program
memory.

A formatted upload, which trans
fers the contents of 8540 program
memory in Tekhex format to a file
on the 8550.

2-5

Communicating with an 8550

Procedure:

Comments:

(Connect the RS-232-C cable. as described

in the "Comments" part ofthis procedure.)

Ir-_ ... _._ L_~_II __ .~. i~. __ .. _
\~lIlt:1 lilt: IUIIUWIIIY l;UnUlli:lnU un Ine oo&tu

terminal:)

> com p=7E7E

COM VX.x

(Enter the following command on the 8550:)

> host

HOST VX.x

(The 8550 is ready to be used as the host

computer. Subsequent displays and com

mands are at the 8540 system terminal.

DOS/50 prompts you for a command which

informs the 8550 of the type of transfer.)

Enter U or D; A. B. or H; and 8550
filespec:

The 8550 must be connected to the 8540
with an RS-232-C cable. The female end
of the cable connects to the J 101 jack on
the 8540 mainframe. The male end
connects to the DCE jack (J 102) on the
8301. The MODE SELECT switches on
both systems should be in the CNTL (L)
position. To terminate communication
enter (null)(esc) on the 8540. Then enter
(CTRl-C) followed by the command a -a
on the 8550.

NOTE

When the HOST command successfully completes a
data transfer. the error code FF (end-of-file) is
returned to the 8550 system terminal. This does not
signify an error condition; it is merely an informa
tional message.

Certain limitations exist in the data transfer rate. See
the Intersystem Communication section of this
manual for information concerning the baud rate.

The HOS T command walts about 30 seconds after
each file transfer before issuing the next prompt.

See also: • Downloading a program from the
8550 to 8540 progra m memory

• Uploading a program from 8540
program memory to the 8550

Downloading a Program from the 8550
to 8540 Program Memory
Description:

2-6

This procedure transfers an executable
object file in Tekhex format from the

Procedure.

Operating Procedures-8540 System Users

8550 to 8540 program memory (a
formatted download). All commands are
entered on the 8540 system terminal. For
more information about Tekhex format,
refer to the Tables section ofthis manual.

iEstabiish communication between the

8550 and the 8540.)

Enter U or D; A, B, or H; and 8550
filespec:

DHfilespec

Enter transfer sequence, beginning with
null character:

(null)

Parameters: filespec-The 8550 file containing the
object program that you want to down
load to 8540 program memory.

Commems:

(null)-A character generated on most
terminals by entering CTRL-@.

The memory iocation and transfer ad
dress are specified by the contents of the
object file.

Example: (Establish communication between the

8550 and the 8540.)

See also:

Enter U or D; A, B, or H; and 8550 filespec:

DH/VOL/MYVOL/PROGI/LOAD

Enter transfer sequence, beginning

with null character:
(null)

*0000 IE (First block sent to

addresses OOOO-OOID.)

*OOIE IE (Second block sent to

addresses OOlE-003B.)

*0200 0000 (Termination block

transfer address-0200.)

DNLOAD:

The Tekhex formatted file. IVOLI
iviYVOL/PROG i ILOAD is downioaded
to 8540 program memory. The memory
locations and transfer address are speci
fied by the contents of the file.

• Establishing communication with an
8550

• Uploading a program from 8540
program memory to the 8550

Operating Procedures-8540 System Users

Uploading a Program from 8540
Program Memory to the 8550

Description:

Procedure:

Parameters:

This procedure transfers the contents of
program memory in the 8540 to an 8550
Tekhex formatted file (a formatted up
load). All commands are entered on the
8540 system terminal. For more informa
tion about Tekhex format, refer to the
Tables section of this manual.

(Establish communication between the

8550 and the 8540.)

Enter U or D; A, 8, or H; and 8550
filespec:

UHfilespec

Enter transfer sequence, beginning with
null character:

(null)loadd hiadd transadd

filespec-The 8550 fi Ie that is to receive
the data from the 8540.

(nu")-A character generated on most
terminals by entering CTRL-@.

loadd-The lower boundary of the block
of memory to be transferred.

hiadd-The upper boundary of the block
of memory to be transferred.

transadd-The transfer address.

Example: (Establish communication between the

8540 and the 8550.)

Enter U or D; A, B, or H; and 8550 filespec:
UH/VOL/MYVOL/PROGI/LOAD

Enter transfer sequence, beginning
with null character:

(null)OFOOO OF3FF OF200
BLOCK SENT AT: FOOO
BLOCK SENT AT: FOIE

BLOCK SENT AT: F3FC
BLOCK SENT AT: F200

(Termination block.)

UPLOAD:

In this example, bytes FOOO-F3FF of
program memory are uploaded to the
8550 file IVOL/MYVOL/PROG 1 ILOAD
in Tekhex format. F200 is the transfer
address.

See also:

Downloading from an 8002A

• Establishing communication with an
8550

• Downloading a program from the
8550 to 8540 program memory

Terminating Communication With an 8550

Description:

Procedure:

Comments:

See also:

This procedure terminates the communi
cation link between the 8540 and the
8550.

(Enter (null)(ESC) on the 8540 terminal by

typing CTRL-@ and pressing the ESC key.

Then enter the following commands on the

8550 terminal.)

(CTRL-C)
»a -a

These commands terminate the com
munication programs that are running
and return the systems to normal
operation.

• Establishing communication with an
8550

DOWNLOADING FROM AN
8002A

Downloading from an 8002A

Description:

Procedure:

This procedure transfers an executable
object file in Tekhex format from the
8002A to 8540 program memory.

(Establish communication between the

8540 and the 8002A.)

(Connect the RS-232-C cable, as described

in the "Comments" part of this procedure.)

(Enter the following command on the 8540

system terminal:)

> COM P=3F E=L L=I

(Enter the following command on the

8002A system terminal:)

> SEND

(Enter the following command on the 8540

system terminal:)

filename(null)

(When the download is complete, the 8540

terminal displays the message DNLOAD:

(To terminate communication, enter (null)

(ESC) on the 8540 terminal by typing CTRL

@ and pressing the ESC key.)

2-7

Program Execution

Parameters:

Comments:

filename-The name of the Tekhex file
on the 8002A.

(null)-A character generated on most
terminals by entering CTRL-@.

The 8540 is connected to the 8002A via
an RS-232-C cable. The cable connects
to jack J1 02 (DTE) on the 8540 rear panel
and jack J1 01 on the 8002A rear panel.
The MODE SELECT switch on the 8540
should be set to CNTL (L), and the
REMOTE BAUD switch to 2400. On the
8002A System Communication board,
verify that the J1 jumper is in the lower
position, and that the PORT1 baud rate is
set to 2400.

Each system must have its own system
terminal.

The SEND command does not issue a
prompt.

PROGRAM EXECUTION
Selecting the Target Processor

Description:

Procedure:

Parameters:

Comments:

Example:

2-8

This procedure selects the proper emula
tor control software for the micropro
cessor you are programming.

> sel microprocessor

microprocessor-The OS/40 name of
the target processor See the Emulator
Specifics section of this manual for the
OS/40 name of your microprocessor.

OS/40 automatically performs several
commands internally to initialize the
emulator when you select the target
processor. Refer to the discussion of the
SEL command in the Command Dictionary
section of this manual for further
information.

> Bel 8085

This command line selects the 8085A
emulator on the 8540. (The command
also selects 8080A/8085A assembler
and compiler software on the 8560. if you
are in TERM mode.)

Operating Procedures-8540 System Users

Selecting the Emulation Mode

Description:

Procedure:

Parameters:

Comments:

Example:

See also:

This procedure selects the emulation
mode in which the the system operates.

> em mode

mode-O, 1, or 2.

Mode 0 is system mode. Execution in this
mode uses program memory, 8540
system 110 (through SVCs), and the
emulator clock. The system is placed in
emulation mode 0 whenever the target
processor is selected.

Mode 1 is partial emulation mode.
Execution in this mode uses program
memory andlor prototype memory (de
pending on the memory map assign
ments). SVCs andlor prototype liD, and
the prototype's clock.

Mode 2 is full emulation mode. Execution
in this mode uses the prototype's
memory, 110, and clock, and may also
use SVCs.

The emulation mode is set to mode 0
when you enter the SEL command. When
executing programs in emulation modes
1 and 2, your prototype must be
connected to the system via the prototype
control probe.

> em 1

This example selects emulation mode 1
(partial emulation mode)

• Selecting the target processor

Executing the Program

Description:

Procedure:

Parameters:

This procedure begins program execution
at the specified address. The program
must already reside in memory.

> g addr

addr-The address of the next instruc
tion to be executed. If this parameter is
omitted, execution continues at the
address in the emulator's program
counter.

Operating Procedures-8540 System Users

Example:

See also:

> g 300

This example starts program execution at
address 300.

• Downloading a program from the
8560

• Downloading a program from the host
computer

• Downloading a program from the
8550

• Downloading a program from the
8002A

Displaying the Emulator Registers

Description:

Procedure:

Comments:

Example:

This procedure displays the contents of
the emulator registers.

> ds

For more information on the DS com
mand, see the Emulator Specifics supple
ment for your microprocessor.

> sel 8085
> ds

PC=OOOO SP=OOOO F=OO A=OO B=OO C=OO D=OO E=OO H=OO L=OO
SOD=O SID=O 17=0 16=0 15=0 1E=0 M7=1 M6=1 M5=1

See also: • Setting the emulator registers

Setting the Emulator Registers
Description:

Procedure:

Parameters:

This procedure changes values in indi
vidual emulator registers.

> s r1 =value1 r2=value2 ...

r1-The name of an emulator register
you want to set.

value1-The value you want to store in
the register.

r2-The name of another emulator
register you want to set.

value2-The value you want to store in
the register.

Example:

See also:

Program Execution

> s A=OEl B=OO

This example sets the emulator registers
A and B to El and 00, respectively.

• Displaying the emulator registers

Creating and Defining a Symbol

Description:

Procedure:

Parameters:

Comments:

Example:

See also:

This procedure adds a symbol to the
symbol table and assigns it a value.

> adds symbol=value

symbol-The name of the symbol that you
are creating.

value-The value of the new symbol.

You can enter more than one symbol
definition on the same line. If a symbol
represents a scalar (not an address),
precede it with a -S.

> adds start=lOO -s tablesize=50t

This example defines two symbols: start
and tablesize with the values 100
(hexadecimal) and 50 (decimal) respec
tively.

• Downloading symbols from the 8560

Creating a Virtual Memory Map

Description: This procedure allows your program to
access a block of memory locations at
virtual addresses rather than at their
actual physical addresses in program
memory. This procedure is useful if your
program accesses addresses beyond the
limits of physical program memory.

NOTE

If you are using the Memory Allocation Controller
(MAC) option or the 808618088 emulator, the AL
command has a different syntax and use, so do not
use this procedure. Refer to the Emulation section of
this manual for an explanation of the MAC option.

Procedure: > al actual blocks virtual

2-9

Program Debugging

Parameters:

Example:

actual-The physical address of the first
memory location that you want to
allocate to a different area.

blocks-The number of 4K-byte blocks to
be reallocated.

virtuai-The address that your program
uses to refer to the beginning of the
reallocated memory area. The addresses
actual and virtual should be multiples of
1000H.

> al 2000 3 OAOOO

This example makes the three 4K-byte
blocks of memory starting at location
2000 appear to be addressable starting at
location AOOO. See Fig. 2-3.

Logging Commands to the Line Printer
Description: This procedure sends a copy of your

terminal input! output to the line printer.

Procedure: > log LPT

Comments: This command line sends all terminal
input/output to both the terminal and the
line printer.

::::~
4FFF~

I
7FFF :::j I

CFFFr---i

FFFF 164KII I

Physical address
(Actually located here)

Virtual address
(Appears to be
located here)

Fig. 2-3. Virtual memory map assignments.

2-10

Example:

Operating Procedures-8540 System Users

> log LPT

(OS/40 commands)

(log CONO turns off the display

to the line printer.)

PROGRAM DEBUGGING
Turning Symbolic Output On and Off

Description:

Procedure:

Comments:

See also:

This procedure turns symbolic display on
or off.

> symd on
or
"> "'''rn~ nH

.... , II "' ••

This command only affects the way in
which commands like TRA and 01 display
their output. If SYMD is on, symbols are
substituted for address. You can still use
symbols in expressions and use com
mands like SYMB and ADDS even if
SYMD is off. For information regarding
symbolic debug, refer to the Emulation
section of this manual.

• Tracing all of the program

• Executing the program

Tracing All of the Program

Description:

Procedure:

Parameters:

This procedure displays each instruction
as it is executed. Tracing continues until
the end of the progrom is reoched or until
a break occurs.

> tra all
,> 9 siri

strt-The memory address at which
program execution is to begin. If this
parameter is omitted, execution begins at
the transfer address of the program.

Operating Procedures-8540 System Users

Example:

See also:

The example in Display 2-1 loads PROG 1
from the 8560 and displays each
instruction as it is executed.

• Tracing part of the program

• Tracing program branches

Tracing Part of the Program

Description:

Comments:

Example:

See also:

Program Debugging

The first command line (TRA OFF)
cancels any previous trace selections.
TRA OFF may be omitted if no other trace
selections have been entered.

See Display 2-2 .

• Tracing all of the program

• Tracing program branches

This procedure displays the trace of a
specified portion of the program.lnstruc
tions outside the specified range are not
included in the display. Tracing Program Branches

Procedure:

Parameters:

10 <PROGl

tra all
/ g 100

LOC INST

000100 210005

000103 0605

000105 AF

000106 86

000107 23

> tra off

> tra off
> tra all loadd hiadd
> g strt

loadd-The lowest address to be traced.

hiadd-The highest address to be traced.

strt-The memory address at which
program execution is to begin.

MNEM OPER SP F A B C 0 E H

LXI H,0500 0000 04 OF 01 00 00 00 05

MYI B,05 0000 04 OF 05 00 00 00 05

XRA A 0000 44 00 05 00 00 00 05

ADD M 0000 00 01 05 00 00 00 05

INX H 0000 00 01 05 00 00 00 05

Description:

Procedure:

Parameters:

L 1M sao
00 07 a
00 07 a
00 07 a
00 07 0

01 07 a

Display 2-1.

> tra all 103 106
> g 100

LOC INST MNEM OPER SP F A B C 0 E H L 1M sao
000103 0605 MYI B,05 0000 04 OF 05 00 00 00 05 00 07 0
000105 AF XRA A 0000 44 00 05 00 00 00 05 00 07 0
000106 86 ADD M 0000 00 01 05 00 00 00 05 00 07 a
000106 86 ADD M 0000 04 03 04 00 00 00 05 01 07 0
000106 86 ADD M 0000 04 OF 01 00 00 00 05 04 07 0

Display 2-2.

This procedure traces only those instruc
tions that change the normal execution
flow of the program (branches, subrou
tine calls, etc.).

> tra jmp
> g strt

strt-The memory address at which
program execution is to begin.

2-11

Program Debugging

Example:

See also:

The example in Display 2-3 loads PROG1
from the 8560 and executes it while
iraciny ail uranch inSifuctions.

• Tracing all of the program

• Tracing part of the program

Stepping Through the Program

Description:

Procedure:

Parameters:

Example:

I : 10 <PROGI

tra jmp
g 100

•
LOC INST
000109 C20601
000109 C20601
000109 C20601
000109 C20601

This procedure stops program execution
after each trace line is displayed. To
execute the next instruction, enter the G
command.

> tra -s all
> g strt

strt-The memory address at which
program execution is to begin.

The example in Display 2-4 loads and
executes PROG 1, stopping after each
instruction.

MNEM OPER SP F A B C D E H L
JNZ 0106 0000 10 01 04 00 00 00 05 01
JNZ 0106 0000 14 03 03 00 00 00 05 02
JNZ 0106 0000 10 06 02 00 00 00 05 03
JNZ 0106 0000 10 OA 01 00 00 00 05 04

See also:

Procedure:

Parameters:

1M SOD
07 0
07 a
07 0
07 0

Display 2-3.

I : 10 <PROGl

tra -s all
go 100
~--

LaC INST MNEM OPER SP F A B C D E H L IM SOD
000100 2]0005 LXI H,0500 0000 04 OF 01 00 00 00 05 00 07 0
000100 . BREf~1{ THP.CE'>

> g

LOC INST MNEM OPER SP F A B C D E H L IM SOD
000]03 0605 MVI B,05 0000 04 OF 05 00 00 00 05 00 07 0
000103 'BREAK TRACE'

Display 2-4.

2-12

Operating Procedures-8540 System Users

• Tracing all of the program

• Tracing part of the program

This procedure sets a program breakpoint.
The breakpoint stops execution if the
specified memory address is accessed for
an instruction fetch or for any other
memory read or write. For most emulators,
up to two breakpoints may be specified at
a time.

> bk n address

n-The number of the breakpoint. 1 or 2
for most emulators.

address-The memory address where
nroqram execution IS to be interrupted.

Operating Procedures-8540 System Users

F ,ampl.' The example In UI~>jJlllY L ::) IOcJl.JS and
executes PROG 1. Execution is inter
rupted when the program accesses
address 504.

Debugging the Program in the Prototype

See also: • Setting a breakpoint

• Clearing a breakpoint

See also: • Clearing a breakpoint Executing a Segment of Code Repeatedly
• Displaying breakpoints

Clearing a Breakpoint

Description:

Procedure:

Parameters:

Examples:

See also:

This procedure cancels a breakpoint set
by a previous BK command.

> bk n clr

n-The number of the breakpoint that
you want to cancel. For most emulators,
valid entries for this parameter are 1, 2,
or all.

> bk 1 clr

This example cancels breakpoint 1.

. bk all clr

This command clears all breakpoints.

• Setting a breakpoint

Displaying Breakpoints

Description: This procedure displays all breakpoints.

Procedure: > bk

Description:

Procedure:

Parameters:

Comments:

Example:

See also:

This procedure executes a segment of
code repeatedly until you press CTRL-C.

> bk 1 addr
> 9 -r start

addr-The address of the end of the
segment of code that you want to repeat.

start-The start address of the segment
of code that you want to repeat.

The segment of code is repeatedly
executed until you enter a CTRL-C. Refer
to the Command Dictionary of this
manual for more information about the 9
-r command.

> bk 1 8FI0

> g -r 100

This example executes the code between
addresses 100 and 8F1 0 repeatedly until
you enter CTRL-C.

• Executing the program

• Tracing part of the program

Example:

> bk 1 58 wt

> bk 2 47F

DEBUGGING THE PROGRAM IN
THE PROTOTYPE

> bk

BK 1 000058 WT (Breaks when your program

writes at address 0058.)

Selecting SVCs

Description: This procedure enables the system
service call (SVC) features.

BK 2 00047F RD WT (Breaks when your program

> bk 1 504
> g

LOC 1NST MNEM OPER
000106 86 ADD M
000106 <BREAK BKl>

reads or writes at 047F.) Procedure:

SP F ABC D E H L 1M SOD
0000 04 OF 01 00 00 00 05 04 07 0

ADD M adds the bytes
at address 504 into
the accumulator.

Display 2-5.

2-13

Using the Trigger Trace Analyzer

Comments:

Example:

See also:

When this feature is ON, OS/40
executes SVCs in all emulation modes. If
;m 110 operation is found that can be
translated into an SVC, it is treated as an
SVC. Changing to emulation mode 1 or 2
disables the SVC feature, but it can be

> em 1

> svc on

These command lines select emulation
mode 1 and then enables the use of
SVCs.

• Selecting prototype I/O

• Selecting the emulation mode

Selecting Prototype I/O
Description: This procedure turns the SVC feature

OFF. When SVCs are OFF, all SVC
invocations are treated as normal I/O
instructions. If your program uses SVCs,
do not execute it while the SVC feature is
OFF unless the extraneous I/O instruc
tions are taken into consideration.

NOTE

Prototype /10 is available only in modes 1 and 2.

Procedure: > svc off

See also: • Selecting the emulation mode

Displaying Memory Map Assignments

DescriptIon

Procedure:

Comments:

2-14

This procedure displays the current
memory map assignments.

> map

Each line of the display consists of a
memory address range and one of the
following parameters:

• PRW - Program memory, read and
write access.

• PRO - Program memory, read-only
access.

Operating Procedures-8540 System Users

• URW - Prototype memory, read and
write access.

• URO - Prototype memory, read-only
access.

The program,/prototype designation ap-
plies only in mode 1; the read-only
designation applies only to program
memory.

NOTE

Refer to the Emulator Specifics section of this
manual for specific information about the MAP
command for your microprocessor.

Example:

See also:

> map

0000-007F URW
0080-00FF PRO
OlOO-017F URW
OlBO-OIFF PRW

F980-F9FF URW

• Creating a virtual memory map

• Displaying the contents of memory

USING THE TRIGGER TRACE
ANALYZER

NOTE

To perform the procedures in this subsection you
must have the Trigger Trace Analyzer (TTA) option
installed in your 8540 Integration Unit. TTA
commands are available only after you have used the
SEL command to select the emulator software.

Breaking on a Designated Instruction

Description:

Procedure:

This procedure uses the ITA to produce a
breakpoint. The program continues to run
until the designated instruction is exe
cuted. At that time, a break occurs and
OS/40 returns control of the system to
you.

> eve ~s 1 elr a=addr b=f

Operating Procedures-8540 System Users

Parameters:

Comments:

Example:

See also:

strt-The starting point for program
execution.

addr-The address of the designated
instruction.

The EVE command line establishes the
conditions of event 1. The CLR parameter
erases any previous conditions design
ated for event 1. The parameters a=addr
and b=f set event 1 to trigger on any
instruction fetch from addr. The -s
parameter sets a breakpoint at event 1.

> eve -s 1 aIr a=30E8 b=f

In this example, a break occurs when an
instruction fetch from 30E8 is performed.

• Setting a breakpoint

• Breaking on a specified pass through a
loop

Breaking on a Specified Pass Through
a loop
Description:

Procedure:

Parameters:

Comments:

This procedure uses the TTA to stop
execution of a program when the
designated instruction is executed the
specified number of times.

> eve 2 a=addr b=f
> COU -5 2 clr s=ev2 o=delay v=pass
> g strt

addr-The address of the designated
instruction.

pass-The number of times to execute
the instruction before stopping: can be
any expression that evaluates to a
number in that range.

The s=ev2 parameter counts the number
of times that event 2 occurs. The o=delay
parameter counts down from the value of
pass and enables a breakpoint when it
reaches O. The v=pass parameter starts
the counter at pass.

If the instruction at address addr is
executed fewer than pass times, no break
occurs. In that case, the program
continues either until termination, or
until you type CTRL-C to regain control of

Example:

See also:

Using the Trigger Trace Analyzer

the system. Refer to the Trigger Trace
Analyzer Users Manual for more infor
mation.

> eve 2 a=2F04 b=f
> aau -s 2 aIr s=ev2 a=delay v=3
> g

In this example, the instruction at 2F04 is
executed 3 times before a breakpomt
occurs.

• Breaking on a designated instruction

Breaking When Execution Proceeds
Outside a Designated Range

Description:

Procedure:

Parameters:

Comments:

Example:

See also:

This procedure uses the ITA to stop
execution of a program when the
instruction to be executed lies outside the
designated address range.

> eve 1 -5 clr an=loadd hiadd b=f
> g strt

strt-The starting point for program
execution.

loadd-The lowest address that can be
executed without causing a break.

hi add-The highest address that can be
executed without causing a break.

The loadd address must be less than the
hiadd address. Also, for meaningful
results, the starting address of the
program must lie between loadd and
hiadd.

> eve 1 -s aIr an=3100 4100 b=f

In this example, program execution halts
when the program proceeds outside of
the range 3100-4100.

• Breaking when the program writes in
a designated memory area

Breaking When the Program Writes
in a Designated Memory Area

Description:

Procedure:

This procedure uses the ITA to stop
execution when an attempt is made to
alter the contents of a designated
memory area.

> eve -5 1 clr a=loadd hiadd b=m wt
> g strt

2-15

Using the Trigger Traee Analyzer

Parameters:

Comments:

Example:

See also:

strt-The starting point for program
execution.

loadd-The lowest address of the desig
nated memory area.

hiadd-The highest address of the
designated memory area.

I he eVe commana line restricts the
break to only those situations where a
memory write (M WT) is attempted into a
memory location inside the designated
range. The value of loadd must not
exceed that of hiadd.

You can also use the MAP command to
designate an area of program memory as
read-only. The first write to that area
causes a break to occur. Refer to the
Command Dictionary for information on
the MAP command.

> eve -8 I elr a=OC800 OE800 b=m wt

This example halts program execution
when the program writes to memory in
the range CBOO-EBOO.

• Breaking when execution proceeds
outside a designated range

Saving an Execution Trace Record
Without I nterrupting the Program
Description:

Procedure:

Parameters:

2-16

This procedure uses the ITA to record
and display 255 instruction cycles exe
cuted before a designated instruction.
The program does not terminate when
the designated instruction is executed,
but proceeds until reaching the break
point address.

> eve 4 elr a=addr b=f
> aeq all for 1 eye aftertrig4
> eve -s 1 elr a=quit b=f
> g strt
(Wait for program execution to terminate.)
> disp

strt-The starting point for program
execution.

addr-The address of the instruction
where you want to stop recording.

Comments:

Example:

See also:

Operating Procedures-8540 System Users

quit-The address at which a break
occurs. If you want execution to continue
un!!! the program !s completed. omit thp.
EVE -S command line, as in the following
procedure.

The EVE COmmand lines describe the
conditions that generate events 1 and 4.
The DISP command line displays the
contents of the Acquisition Memory on
the system terminal.

> eve 4 elr a=4F64 b=f

> aeq all for 1 eye aftertrig4

> eve -8 1 elr a=OFFFF b=f

> g 4000

This example saves a record of the 255
instruction cycles executed before the
instruction at 4F64 is executed.

• Recording instructions executed be
fore and after a designated instruction

• Recording instructions executed after
a designated instruction

Recording Instructions Executed Before
and After a Designated Instruction

Description:

Procedure:

Parameters:

Examp!e:

This procedure uses the ITA to record
and display 127 instruction cycles exe
cuted before and 127 instruction cycles
after the execution of a designated
instruction.

> eve 4 elr a=addr b=f
> aeq all for 127 eye aftertrig4
> g strt

strt-The starting point for program
execution.

addr-The address of the designated
instruction.

> eve 4 elr a=3A24 b=f

> aeq all for 127 eye aftertrig4

This example saves a trace record of 127
instruction cycles before and 127 in
struction cycles after the instruction at
address 3A24.

Operating Procedures-8540 System Users

See also: • Saving an execution trace record
without interrupting the program

• Recording instructions executed after
a designated instruction

Recording Instructions Executed
After a Designated Instruction

Description:

Procedure:

Parameters:

Example:

See also:

This procedure uses the ITA to record
and display up to 255 instruction cycles
that were executed after the designated
instruction.

> eve 4 elr a=addr b=f
> aeq all for 255 eye aftertrig4
> 9 strt

strt-The starting point for program
execution.

addr-The address of the designated
instruction.

> eve 4 elr a=OB024 b=f

> aeq all for 255 eye aftertrig4

This example saves a trace record of 255
instruction cycles after the instruction
executed from address 8024.

• Saving an execution trace record
without interrupting the program

• Recording instructions executed be
fore and after an instruction

Determining the Execution Time
of a Program Segment

Description:

Procedure:

Parameters:

This procedure uses the ITA to calculate
the time elapsed between the execution
of two designated instructions. Program
execution terminates when the second
instruction is executed. Time can be
calculated in any time units allowed by
the COU command.

> eve 1 clr a=addr1 b=f
> eou 2 clr s=units o=arm g=seqh v=O
> eve -s 2 clr a=addr2 b=f
> 9
(Wait for program execution to terminate.)

> ts -e 2

units-Any valid COU unit. Refer to the
Emulation section of this manual for
information about the COU command.

Comments:

Example:

See also:

Using the Trigger Trace Analyzer

addr1-The address at which you want
to start timing.

addr2-The address at which you want
to stop timing.

The CLR parameter of the EVE commands
clears any previously set EVE conditions
on triggers 1 and 2. The CLR parameter of
the COU command clears any previously
set conditions on counter 2. The s=units
parameter sets the time units to count.
The o=arm parameter causes the counter
to count in ascending order. The v=O
parameter starts the counter at O. The
g=seqh parameter tells the counter to
start counting when trigger 1 occurs. The
EVE 2 command line stops the counter
when the instruction at the specified
address is fetched. The TS command
displays the value in the counter.

> eve I elr a=3320 b=f
> eou 2 elr s=eye o=arm g=seqh v=O
> eve -s 2 elr a=5F40 b=f
> g

> ts -e 2

This example displays the number of bus
cycles that occurred during the execution
of the program segment in the address
range 3320-5F40.

• Measuring the interval between probe
events

• Counting the occurrences of an event

Counting the Occurrences of an Event

Description:

Procedure:

Parameters:

This procedure counts the number of
times that a specified event occurs.

> eve 1 clr event
> eou 2 clr s=ev1 o=arm v=O
> 9
(Wait for program execution to terminate.)

> ts -e 2

event-The sequence of parameters that
define the event.

2-17

Using the Trigger Trace Analyzer

Comments:

Example:

See also:

The parameter s=evl increments the
counter when event 1 occurs. The o=arm
n!:lr!:lmotor toile tho ('nl.ntor tn ('nl.nt in
,..,~.~ ... ~.~ .. ~ .. ~ ... ~ ~~- ... ~ .. ~ ~~-
ascending order. The v=O parameter
starts the counter at O. After the program
executes, the TS command line displays
the value in counter 2.

> eve 1 elr a=1030 b=f

oall 2 011' s=evl a=arm v=O

> ts -c 2

This procedure counts the number of
times the program fetches an instruction
from address 1030.

• Breaking on a specified pass through a
loop

• Measuring the interval between probe
events

Measuring the Interval Between Probe
Events

Description:

Procedure:

Parameters:

2-18

This procedure uses the ITA test clips to
measure the time interval between two
external events. The program terminates
when the conditions of the second probe
event are satisfied.

(Attach the ITA test clips to the desired

signal lines in your prototype.)

> eve 1 clr p=beg n
> cou 2 clr s=units o=arm g=seqh v=O
> eve -s 2 p=end
> 9 strt

strt-The starting point for program
execution.

units-Any valid COU unit. Refer to the
Emulation section of this manual for
information about the cau command.

begn-Eight characters representing the
states of the eight test clips when the
measurement is to begin. Each character
can be 0 (logic low), 1 (logic high), or X
(don't care). If the first character is "X",
put a zero in front of it.

end-Eight characters (0, 1, or X)
representing the states of the eight test
clips when measurement (and program
executionl is to end.

Comments'

Example:

See also:

Operating Procedures-8540 System Users

This procedure is similar to that used for
determining the execution time of a
nrnnr!:lm con mont I-Ioro hn\/\/o\lor tho
,.....-~.- .. ' --~ ... -..... ,._._, .. _ ,

conditions for starting and stopping the
counter are defined in terms of the test
clip values instead of the designated

lines of the TTA test probe must be
attached for the TT A to function properly.

(Attach the ITA test clips to the desired

signal lines in your prototype.)

> eve 1 cIr p=OxxxxxxxI
> cau 2 cIr s=cyc a=arm g=seqh v=a

> eve -s 2 p=llllxxxx

This example measures the number of
bus cycles between the time probe clip 0
goes high and the time clips 4-7 become
high simultaneously.

• Determining the execution time of a
program segment

Breaking on a Probe Event

Description:

Procedure:

Parameters:

Comments:

Example:

This procedure uses the ITA to stop
program execution when the conditions
of the probe event are satisfied.

(Attach the probe test clips to the desired

signal lines in your prototype.)

> eve -s 1 p=beg n
> 9 strt

begn-Eight characters representing the
states of the eight test clips when the
measurement is to begin. Each character
can be 0 (logic 10\'-';), 1 (logic high), or X
(don't care).

strt-The starting point for program
execution.

The EVE command line defines event 1 in
terms of a probe test clip value. The clock
and ground lines of the test clips must be
attached for the ITA tofunction properly.

> eve -8 1 p=lxxxxxOI

This example halts program execution
when the 0 and 7 clips go high and the 1
clip goes low.

Operating Procedures-8540 System Users

See also: • Measuring the interval between probe
events

MEMORY MANIPULATION
Displaying the Contents of Memory
Description:

Procedure:

Parameters:

Example:

See also:

I> dOZ:
000000 00
000010 00
000020 00

1
00
05
00

2
00
06
00

This procedure displays the contents of a
selected area of memory.

> d loadd hiadd

loadd-The lower limit of the memory
area to be displayed.

hiadd-The upper limit of the memory
area to be displayed.

In Display 2-6, the system terminal
displays 16-byte data blocks from pro
gram or prototype memory. The display
starts with memory address 0000 and
continues to 002F.

• Changing the contents of a section of
memory

• Initializing a block of memory

3 4 5 6 7 8 9 A B C D E F
00 00 00 00 00 00 00 00 00 00 00 00 21
05 AF 86 23 05 C2 06 01 D3 F7 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00

Memory Manipulation

Changing the Contents of a
Section of Memory
Description:

Procedure:

Parameters:

Example:

See also:

................

..... . #

................

This procedure modifies consecutive
memory locations.

> p addr hexstring

addr-The starting address of the data in
program or prototype memory that you
want to change.

hexstring-A sequence of hexadecimal
digits. The hexstring directly replaces the
values in memory starting at the desig
nated address on a byte-by-byte basis.
Each pair of digits represents one byte;
thus the string must contain an even
number of digits. For word-oriented
microprocessors, the number of digits in
the string must be divisible by 4.

In Display 2-7, the contents of memory
locations 400 through 40C are replaced
with the specified hexadecimal string.

• Displaying the contents of memory

• Initializing a block of memory

Display 2-6.

a 1 2 3 4 5 6 7 8 9 ABC D E F
000400 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

> P 400 00050605AF862305C20601D3F7

> d 400

a 1 2 3 456 7 8 9 ABC D E F
000400 00 05 06 05 AF 86 23 05 C2 06 01 D3 F7 00 00 00

Display 2-7.

2-19

System I/O

Initializing a Block of Memory
Description:

Procedure:

Parameters:

Example:

See also:

This procedure initializes memory loca
tions with a specified value.

> f loadd hiadd hexstring

loadd-The lowest memory address to be
initialized.

hiadd-The highest memory address to
be initialized. Must be greater than or
equal to that of loadd .

hexstring-The value that is to fill the
designated memory area. If the target
processor is word-oriented, this string
must contain a multiple of 4 hexadecimal
digits. Otherwise, an even number of
digits are required.

> f 0 OFF 0000

This command line fills memory locations
OOOO-OOFF with the value O.

• Displaying the contents of memory

• Changing the contents of a section of
memory

Breaking When the Program Writes
in a Designated Memory Block
Description:

Procedure:

Parameters:

Comments:

Example:

2-20

This procedure causes program execution
to halt when the program attempts to
write to a specified block of program
memory.

> map pro loadd hiadd

loadd-The starting address of the
memory range.

hiadd The ending address of the memory
range.

The value of loadd should be less than
that of hiadd. More than one range of
addresses can be specified on the MAP
command line.

> 10 <prog1
> map pro 3AOO 4FFF
> g 100

If during execution, prog1 attempts to
write into a memory location within the
range 3AOO-4FFF, a break is generated.

See also:

Operating Procedures-8540 System Users

• Breaking when the program writes in
a designated memory area

Disassembling the Contents of Memory
Description:

Procedure:

Parameters:

Example:

See also:

This piocedure translates the object code
in the specified address range to its
corresponding mnemonics and operands,
and displays this information.

> di loadd hiadd

loadd-The memory address where
disassembly is to begin.

hiadd-The memory address where
disassembly is to stop.

> di 100 10E

LaC INST MNEM OPER
000100 210005 LXI H,0500
00010;3 0605 Mvl B,05
000105 AF' XRA A
000106 86 ADD M

000107 23 INX H
000108 05 DCR B

000109 C20601 JNZ 0106
00010C D3F7 OUT F7
00010E 00 NOP

The contents of memory locations 0100-
010E are transiated into mnemoniCS and
operands and are displayed on the
system terminal.

• Displaying the contents of memory

• Changing the contents of a section of
memory

SYSTEM 1/0
Displaying the Current Channel
Assignments
Description:

Procedure:

Comments:

This procedure dispiay:s ihe CUiTent :/0
channel assignments.

> stat

This command displays the following
information:

• The OS/40 name of the currently
selected target processor.

• The present assignments of channels
0-7.

Operating Procedures-8540 System Users

Example: > stat

8085 is the selected processor

Channel 6 is assigned to LPT

See also: • Assigning a channel

• Closing a channel

Assigning a Channel

Description:

Procedure:

Parameters:

Comments:

This procedure associates a physical
device or file with an liD channel
number.

> as n fi lespec

n-A logical liD channel number. This
number must be between 0 and 7,
inclusive.

filespec-The device or 8560 file to be
assigned to the channel number.

liD channels allow your programs to
read or write to fi les or devices via service
calls (SVCs).

Example:

See also:

System I/O

> as 3 tablel 5 LPT

This example assigns the 8560 file table1
to channel 3 and the line printer to
channel 5.

• Displaying the channel assignments

• Closing a channel

Closing a Channel

Description:

Procedure:

Parameters:

Example:

See also:

This procedure disconnects a file or
device from an liD channel previously
opened with the AS command.

> cl n

n-The number of the liD channel
number that you want to close. This
number must be between 0 and 7,
inclusive.

> cl 4

This command line disconnects channel
4 from the file or device to which it was
assigned.

• Assigning a channel

• Displaying the channel assignments

2-21

8540 System Users

Section 3
COMMAND DICTIONARY

Page

Command Index 3-1

Introduction 3-2

Other System Commands . .. 3-2

Command Syntax . .. 3-2
Notation Conventions .. 3-2
Command Line .. 3-2
Strings ... 3-4
Legal Address Expressions ... 3-5

Special Keys 3-6

Command Memory Areas . .. 3-7

Commands . .. 3-8

Table
No.

TABLES

3-1 System Devices .. 3-12

3-2 Types of Data Transfer .. 3-21

3-3 EX Command Options .. 3-29

Fig.
No.

ILLUSTRATIONS

3-1 Sample syntax block ... 3-2

3-2 Syntax for string definition ... 3-4

3-3 AL command example .. 3-11

Command Dictionary-8540 System Users

Section 3

COMMAND DICTIONARY

COMMAND INDEX

Page

Memory Management Commands

AL-Allocates memory to logical address map 3-10
COM-Sets up communications with host

computer 3-19

D-Displays memory contents 3-24
DEAL-Deallocates memory from logical address

map ... 3-25

EX-Displays or alters memory contents 3-29
F-Fills program/prototype memory with data 3-30

LO-Loads program into memory 3-34

MAP-Sets or displays memory map assignments . 3-35
MEM-Specifies memory to be available to

emulator 3-38
MEMSP-Defines memory space to be used by

memory commands 3-39
MOV-Moves data between program and

PiOtotype memory 3-40
NOMEN-Specifies memory unavailable to

emulator 3-41

P-Alters memory contents 3-42
RH-Reads hexadecimal code into memory 3-48

SAV-Saves memory contents in file 3-52

SEA-Searches memory for value or string 3-52
WH-Saves memory contents in hexadecimal

format ... 3-64
X-Loads and executes program 3-65

Debugging and Emulation
Commands
ADDS-Adds symbol to symbol table 3-9
AS-Assigns channel to device or file 3-12

Page

BK-Sets or displays breakpoint condition 3-13
CL-Disconnects channel from device or file 3-16
CLOCK-Controls program clock 3-1 7
DI-Translates object code to mnemonics 3-26
DS-Displays contents of emulator registers 3-24
EM-Selects emulation mode 3-28
G-Begins program execution 3-32
RD-Reads from emulator port 3-45
REMS-Removes symbol from symbol table 3-46
RESET -Reinitializes emulator 3-47
S-Assigns value to register or symbol 3-51
SVC-Controls execution of service calls from

user program 3-57
SYMB-Returns symbolic equivalent of value 3-58
SYMD-Controls symbolic display output 3-59
SYMLO-Loads symbols into symbol table 3-61
TRA-Controls display of executed instructions 3-62
WRT -Writes to emulator I/O port 3-65

Miscellaneous System Commands
A-Aborts user program or command execution 3-8
CALC-Evaluates arithmetic expression 3-15
CO-Resumes execution of suspended command .. 3-18
CONFIG-Defines system configuration and host

interface 3-22
LOG-Logs terminal input/output to device 3-34

PERMSTR-Stores user-defined string in

EEPROM 3-43
ROMPATCH-Updates operating system 3-49
SEL-Selects target processor chip 3-54
STAT-Displays system status 3-55
STR-Displays or deletes temporary user strings ... 3-55
SUSP-Suspends command 3-56

3-1

INTRODUCTION
ThiS Comm~nrl Diction;:!ry desr.rihf!s most OS/40 com

mands. The Command Index on the preceding page lists all
commands described in this section according to their
functions. The "Commands" subsection lists the commands

This section is divided into the followmg subsections:

• Other System Commands. Teils where to look for
documentation of subsystem commands.

• Command Syntax. Describes the notation conventions
used in syntax blocks; command lines; and legal address
expressions.

• Special Keys. Describes the special function keys that
the operating system recognizes.

• Commands. Describes commands in detail. Each
command description consists of the following parts: a
syntax block, parameter definitions, an explanation of
the function and use of the command, and one or more
examples.

OTHER SYSTEM COMMANDS
Commands that invoke or use major subsystems are fully
documented in other manuals, and are not described in this
Command Dictionary. The following list shows the
manuals that fully describe each subsystem command.

• PROM Programmer commands (CPR, PSTAT, PTYPE,
RPR, WPR)-PROM Programmer Specifics supplement

• TTA commands (ACQ, AD, BRE, BUS, CONS, COU, CTR,
DATA, DISP, EVE, PRO, QUA, TCLR, TS)-Trigger Trace
Analyzer Users Manual

COMMAND SYNTAX
Each command description includes a syntax block that
illustrates the format for a command. This subsection
describes the notation conventions used in the syntax
blocks; command line format, strings, and legal address
expressions.

Notation Conventions
The syntax block for each command illustrates the
command entry: the command name, whether or not each
part of the command entry must be included, and the order
in which to enter parts of the command entry. Figure 3-1
illustrates a sample syntax block.

3-2

Command Dictionary-8540 System Users

SYNTAX

[
PA] {' address}'

sample [-m] file1 [file2] PB string ...
3939-9A

Fig. 3- i. Sampie syntax biock.

This figure iI!ustrates a syntax block for a fictional operating
system command: sam pie is the command name; -m is a
command modifier; and file1. file2. PA. PB. address, and
string are command parameters. The braces. brackets, and
trailing dots are for syntactical representation only,

Command Line
A command line consists of one of more commands and/or
string definitions separated by semicolons (;). The
maximum length of a command line is 80 characters,
including spaces and the terminating carriage return,

If you enter a command line that contains more than 80
characters, a command buffer overflow error will occur.
The excess characters will be stored in the type-ahead
buffer and used as the beginning ofthe next command line.
You must type CTRL-U or CTRL-C to delete the excess
characters before entering another command. (The long
command line will not be executed.)

Braces I I in a syntax block surround required parts of the
command line. Brackets [] in a syntax block surround
optional parts of the command line, When parts are
stacked, you choose one part from the ones in the stack.
Braces and brackets serve only to represent the syntax, and
should not be entered as part of the command line,

Boldface letters and other characters in the syntax block
are required in the command line, and should be entered
exactly as they appear in the syntax block.

Three trailing dots in a syntax block show that the
preceding element of the command line may be repeated as
many times as needed, up to the maximum iine iength of 80
characters.

Underlined letters within a required parameter represent
the acceptable short form of the parameter.

For most parts of a command line, you may use either
uppercase or lowercase letters. The exceptions are as
follows: String names must appear as they did when
created. Command names must be entered in lowercase if
you are in TERM mode with an 8560.

REV JAN 1983

Command Dictionary-8540 System Users

Command Name

A command name is a word that represents an operating
system command. Every command must begin with a
;';vmmand name.

Delimiters
A delimiter separates parts of the command from each
other. Allowed delimiters are spaces, commas, or tabs,
with one comma being equivalent to one or more spaces or
tabs.

Command Modifiers

A command modifier (a special type of parameter) consists
of a dash (-) followed by a letter. Figure 3-1 contains the
command modifier -m.

Multiple command modifiers (when used) can be strung
together: -A -B -C can be entered as -ABC. A command
modifier, if specified, can USUally occur anywhere in the
command line; its position in the line is not significant
except in the following instance.

When a dash modifier is used to modify a parameter
instead of the command, the dash modifier must
immediately precede the appropriate parameter. For
example, in the command line SEA 0 100 -A HELLO the
third parameter is -A HELLO, signifying the ASCII string
"HELLO".

Using a modifier affects only one invocation of a command.

Certain commands may produce unexpected results if you
specify command modifiers that are invalid or contradictory.

Parameters
Parameters specify how the command is executed.

Parameters in boldface must be entered exactly as they
appear in the syntax block, when used.

Parameters which are not in boldface describe the type of
parameter. Acceptable entries for parameter types are
described in the PARAMETERS explanation for each
command.

Parameters may be required or optional, as described in the
following paragraphs.

Required Parameters. Required single parameters appear
in the command line without braces or brackets. In Fig. 3-1,
file1 is a required parameter.

Optional Parameters. Optional parameters are enclosed
in brackets [] in the syntax block. In Fig. 3-1, file2 is an
optional parameter.

REV JAN 1983

Omitting Parameters. To omit an optional parameter,
enter two commas in its place. For example, to omit file2
from the command line, enter:

> SAMPLE -M MYFILE"PA 100

Use three commas when you omit two consecutive
parameters. For example, to omit file2, and PA or PB from
the command line, enter:

> SAMPLE -M MYFlLE",100

Do not enter commas to omit a command modifier or the
final parameter(s) in a command line. For example, to omit
-M from the command line, you can enter:

> SAMPLE MYFlLE YOURFlLE PA 100

Choice of Parameters. Parameters are stacked one above
another when there is a choice between two or more
parameters. If the parameters are stacked within braces { },
one of the parameters must be used. In Fig. 3-1, either
address or string must be chosen. If the parameters are
stacked within brackets [], the selection is optional. In Fig.
3-1, you may select either PA or PB or neither.

Repeated Parameters. When three dots follow a
parameter (or a group of parameters enclosed in brackets
or braces), the parameter may be repeated any number of
times up to the end of the command line. In Fig. 3-1, the
choice of address or string may be repeated as many times
as the line length permits.

Examples
Here are some exampies of how the fictitious SAMPLE
command (shown in Fig. 3-1) could be used:

> SAMPLE MYFlLE","some text"

> SAMPLE -M YFL MFL PB "txta" 10 OF "txtb"

> SAMPLE -M HISFILE"PB 80 90 OAO OBO

Redirecting Standard Input and Output
In general, the operating system commands take input
from standard input and send output to standard output.
The system terminal usually serves as both standard input
and standard output.

However, you can redirect command input and output. A
left arrow «) redirects input, so the command can read
from a file or device other than the system terminal. A right
arrow (» redirects output, so the command can send
results to a file or device other than the system terminal.

The 1/0 redirection arrow can be inserted in a command
line anywhere after the command name, and can be
applied to any command.

3-3

Using more than one input arrow «) or more than one
output arrow (» in one command entry causes an error.

Examples of I/O Redirection. Execute the LO command,
and have the LO command download from the 8560 file
MYLOFILE, with the following command line:

> 10 <MYLOFILE

Execute the LO command, and have the LO command load
from the paper tape reader with the following command
line:

> LO <PPTR

Disassemble address range 100-20A. and send the
disassembly to the line printer with the following command
line:

> DI 100 20A >LPT

E3
Using the wrong redirection symbol may cause your
file to be overwritten. For example, if you wanted to
load from file LOADFILE but mistakenly entered 10
>LOADFlLE, then the LO command would attempt to
read the load module from the terminal (standard
input) and would send its output to LOADFlLE,
overwriting the current contents.

Multiple Commands

You may enter more than one command on an 80-
character line, if you separate the commands ""Jith
semicolons. For example. the first four commands In

Display 3-1 are equivalent to the last command:

> BK 1 504 RD
> BK 2 lOA
> TRA A LOOPST LOOPEND
> G 100

> BK 1 504 RD;BK 2 10A;TRA A LOOPST LOOPEND;G 100

Disp!ay 3-1.

The commands in a mUltiple-command line are executed in
the order in which they're entered, not in parallel.
Command errors occurring aiong the way will not stop
subsequent commands from executing.

If you suspend a command in a mUltiple-command line
using CTRL-C, the subsequent commands are lost.

If you enter a multiple-command line that is more than 80
characters long, the system issues an error message and
does not execute any of the command line. Also, if any
string substitutions are done on the mUltiple-command
line so as to expand the line beyond 80 characters, the
system issues an error message and does not execute any
of the remaining commands in the long line.

3-4

Command Dictionary-8540 System Users

Escape Character

The backslash (\) is used to "escape from" or "turn off" any
special significance of the character it precedes. For
example. OS/40 recognizes the dollar sign ($) as the first
character of a string specification. To include a special
character in a command parameter. precede it with a
backslash (for example. \$) to disable the special
significance.

A character preceded by a backs lash is treated "as is". For
example, the operating system recognizes MY\"FILE as
MY"FILE, MY\FILE as MYFILE, and MY\ \FILE as MY\FILE.

To include a single or double quote (' or ") within an ASCII
string. precede it with a backslash. The operating system
recognizes the string "1 said, \"OK\"" as the string: "1 said,
"OK"".

You can't turn off the special significance of a carriage
return with the backslash.

Strings
You may assign names to strings of characters, and then
refer to the strings by name. You can use strings as part of a
command line, or a string can be a sequence of commands.

NOTE

Strings are volatile and wi!! be lost if the 8540 is
restarted or turned off If you wish to save strings in
the permanent string storage area in EEPROM, use
the PERMSTR command.

Defining Strings

A name is assigned to a string by entering the string name.
an equals sign, then the string. To define a string, use the
syntax shown in Fig. 3-2.

stringname=[']string[']

Fig. 3-2. Syntax for string definition.
3939-10

PARAMETERS

stringname The name you want to assign to the string of
characters. May include up to 8 letters or
digits, and the first character must be a
letter. Uppercase and lowercase letters are
considered distinct.

Command Dictionary-8540 System Users

string The value of the string you want to name.
The value must be enclosed in single or
double quotes if it contains a delimiter such
as a comma or space, but the quotes are not
part of the string value. The value of the
string must be enclosed in single quotes if it
contains a backslash, a double quote, or a
dollar sign.

In any of these cases, you may avoid using
quotes if you "escape" the special character.
For information on how to do this and on
how to include single quotes within your
string, refer to the "Escape Character"
discussion in this section.

Using Strings
You may reference the string anywhere in a command line
by entering a dollar sign ($) followed by the string name.

A string name may be made of stringnames. A string name
may also expand into a dash modifier. If a string name is
referenced, but no string with that name has been defined,
a null value will be substituted.

String substitution is repeated until no more substitutions
are possible. For example, if a = "ab" and c = "100" and
ab1 00 = "1234", $$a$c first changes to $ab1 00 and finally
to 1234.

String substitutions are done sequentially, not in parallel.
For example, in the following sequence of commands, the
second value of string abc ("efg") is the one that is found by
the SEA command.

> abc="xyz"
> abc="efg" SEA $abc

Using Quotes in Strings
Double quotes (") are used to enclose a string that contains
delimiters such as commas or spaces. All characters within
the double quotes are treated as a single unit.

Single quotes (') are used to enclose a string of characters
that are to be treated "as is", and the single quotes escape
(turn off) the special significance of any characters within
the single quotes, such as the backslash and dollar sign.
For example, if string xyz equals 100, then the string "abc
$xyz def" becomes abc 1 00 def. However, the string 'abc
$xyz def remains abc $xyz def.

Examples
Define strings REGSET, RANGE 1, and RANGE2 with the
following command lines:

> REGSET="S Rl=O R2=2 R3=3"

> RANGEl="1000,1300"

> RANGE2="2010,3000"

Enter the string REGSET (equivalent to entering the S
command) with the following command line:

> $REGSET

Disassemble address range 1000-1300 with the following
command line:

> Dr $RANGEI

Fill address range 2010-3000 with zeros with the
following command line:

> F $RANGE2 00

Legal Address Expressions
Any address parameter in a command line can be
represented by an expression: a formula that contains
numbers, register names, symbols, and memory space
designators, related by the operators + and -. An expression
must not contain any spaces.

The following paragraphs describe each of these
expression elements.

Numbers. Each number is suffixed with the standard
character that selects its radix:

H hexadecimal (default if no suffix is specified)

T decimal

Q or 0 octal

Y binary

A hexadecimal number cannot begin with a letter. For
example, the hexadecimal number A must be entered as
OA.

NOTE

Do not specify a negative value for an address
parameter. Negative addresses may produce unex
pected results.

3-5

NOTE

Care must be taken if the expression parameter
begins ~A/itl] a rni.r:us sigr:. It -..,;111 be cor;sidared a dasl,

modifier unless you precede it with a zero. For
example, O-BIAS.

Don't-Cares. An "X" within an expression can signify a
"don't-care" value. Don't-care values are not a!lowed in
decimal expressions (radix se!ector T); an error vIii! be
returned if you try to do so.

An expression beginning with a don't-care X will be
mistaken for a program symbol. Precede the X with a zero to
begin an expression with a don't-care.

Don't-care values are used mainly in Trigger Trace
Analyzer commands.

Register Names. Register names are used in expressions
to represent the contents of the emulator registers. For
example, the command CALC A+B displays the sum of the
numbers in registers A and B. Refer to your Emulator

supplement for the register names of yOUi

emulator.

Operators. The two operators + and - are used in
expressions to represent addition (+) and subtraction (-).

Symbols. Expressions may also include symbols. Symbols
are names that represent values in your program. For
example, two types of values that may be represented by
symbols are addresses (unsigned numeric values), and
scalars (signed numeric values). The primary source of
symbols is your assembly language program. After you
assemble and link your program, the load file contains the
symbois from your source code, and you can use the
SYMLO or COM command to download the symbols and
their values into the symbol table in system memory.

A secondary source of symbols is the ADDS command,
which adds symbols and their values to the symbol table.

You can use the S command to assign a new value to an
existing symbol.

A symbol consists of one or more characters beginning
with a letter and containing only letters, digits, periods,
underscores, or dollar signs. ADDS and REMS issue an
error message if the symbol has more than 16 characters.
Elsewhere, any characters after the 16th are ignored.

Symbols may be entered in command line expressions in
either of their two forms: as "symbol" or "symbolspec".
When "symbol" is entered in the command line it is simply
the name of the symbol. A "symbolspec" is either: the
name of the section in which the symbol is found, followed
by a colon and then the symbol; or, simply the symbol. The
term "symboispec" in a syntax block stands for either. For

3-6

Command Dictionary-8540 System Users

example, if the symbol ELECTION, representing an
address, appears in the label field of the program section
CAMPAIGN. then ELECTION is the "symbol" and either
CAMPAIGN:ELECTION or just ELECTION is the "symbolspec".
Since scalars are not considered to be assigned to a particular
section, the "symbolspec" for scalar symbols should not
inciude a section name.

Refer to your Assembier Users Manuai for more detaiis
about symbois.

Memory Space Designators. A number may be prefixed
with a memory space designator, which is a pair of letters,
followed by a colon. For example, in the l8001/l8002
emulator, the term SC: 1 000 specifies address 1000 in the
System Code memory space. Refer to the Emulator
Specifics section of this manual to find out if your emulator
uses memory space designators.

Examples. The following expressions are legal:

o
OFF

X+Y-l
SC: 1000
OAH+5T-70
JUMPSTART
FH (Unacceptable as a hexadecimal number: must

not start with a letter. Acceptable as symbol FH:
e.g., in ADDS command.)

The following expressions are illegal:

(W+5) (An expression may not contain paren
theses.)

X·Y/Z

OAH + 5T

(An expression may not contain asterisks
or slashes.)
(An expression may not contain spaces)

SPECIAL KEYS
The follo'vving special function keys and contiOl characters
are recognized by the operating system:

• CTRL-C-interrupts command or program execution

• CTRL-O-conttnues display after CTRL-S has been used

• CTRL-R-displays all text in type-ahead buffer

• CTRL-S-halts display

• CTRL-U-discards all text in type-ahead buffer

• CTRL-Z-end of file

• BACKSPACE-deletes character

• RUBOUT -deletes character

To enter a control character (CTRL-x), hold down the CTRL
key while you press the appropriate key.

Command Dictionary-8540 System Users

CTRL-C
One CTRL-C alerts the system to accept an additional
command. Two CTRL-Cs in a row suspend all suspendable
commands.

Entering CTRL-C can cause one of the following effects:

• One CTR L-C during command line entry deletes the
contents of the type-ahead buffer, and displays a single
or double prompt(> or »)onthefollowing line.Adouble
prompt will be displayed only if one or more commands
are currently running. The system then waits for you to
enter another command line.

• One CTRL-C during command execution causes a
single or double prompt (> or ») to be displayed and
allows you to enter an additional command (usually an A
command to abort the command already executing). Any
active command continues to execute until it needs to
access the terminal.

• One CTRL-C while your program is running suspends
the program and displays a trace line indicating where
the break occurred. To resume program execution, use
the G command.

• Two CTRL-Cs during command execution cause all
suspendable commands to be suspended. To abort a
process after suspending, use the A command. To
continue execution after suspending, use the CO
command.

If you enter CTRL-C while a multi-command line is
executing, all commands after the one currently executing
are lost.

CTRL-C does not send a visible character to standard
output.

If the 8540 is in TERM mode with an 8560, CTRL-C sus
pends your program, if any, and aborts any commands that
are executing.

CTRL-Q
CTRL-Q continues the display on standard output after it
has been suspended by CTRL-S. Any character other than
CTRL-Q is used as input and also resumes the display.

CTRL-Q does not send a visible character to standard
output.

CTRL-R
CTRL-R causes all characters in the'type-ahead buffer to be
displayed on the terminal. If you have typed ahead more
than one line, all lines typed in will be displayed. Refer to
the Learning Guide section of this manual for a description
of the type-ahead buffer.

REV JAN 1983

CTRL-R sends the characters AR to standard output.

CTRL-S
CTRL-S suspends the console display. Enter any character
to continue the display. CTRL-Q is the only character that
will resume the display without also being used as input.
All other characters are used as input in addition to
resuming the display. You may halt and continue the
console display as many times as you desire.

CTRL-S does not send a visible character to standard
output.

CTRL-U
CTRL-U causes all characters in the type-ahead buffer to be
discarded. If you have typed ahead more than one line, all
lines will be discarded. Refer to the Learning Guide section
of this manual for a description of the type-ahead buffer.

CTRL-U sends the characters AU to standard output.

CTRl-Z
CTRL-Z is an end-of-file indication for ASCII input data. It
does not send a visible character to the terminal.

BACKSPACE
The BACKSPACE key on a CRT terminal deletes the most
recently typed character in the type-ahead buffer, erases it
from the screen, and moves the cursor one space to the left.
Refer to the Learning Guide section of this manual for a
description of the type-ahead buffer.

RUBOUT
The RUBOUT key performs the same actions as the
BACKSPACE key.

COMMAND MEMORY AREAS
Two commands can execute concurrently ifthey do not run
in the same memory area. The OS/40 commands reside in
two areas of memory. Six of the commands (A, CO, G, LO,
SUSP, and X) are resident; the rest share the system
memory overlay area. If you press CTRL-C once while one
of the commands in the system memory overlay area is
executing, the system prompt becomes a double right
arrow (»), and you can execute one of the resident
commands.

3-7

A
Aborts user program or command execution

I
SYNTAX

I a

command

-a

-u

PARAMETERS

The name of a command: any command
listed in this Command Dictionary.

All active commands or programs.

The program executing in program memory.

EXPLANATION

The A command terminates execution of the specified
command or program. The A command also closes all
channels assigned to the aborted process. After execution
of the specified process is aborted. control returns to the
operating system, and you may enter commands as usual.

You can only enter the A command when the system
prompt is displayed. When previously entered commands
or programs are running, you must first return control to
the keyboard with CTRL-C.

Entering one CTRL-C alerts the system to accept another
command; commands currently running are not disturbed
until they need access to the terminal. Entering two
successive CTRL-Cs alerts the system to accept another
command, and suspends all currently running commands
or programs. Refer to the "Special Keys" heading in this
section for details on the CTRL-C character. The system
prompt will be displayed after you enter one or two CTRL
Cs.

When the system prompt is displayed, you can enter the A
command to terminate execution. The system then issues
an "Error FE-Process aborted" message, along with the
namp. of the affected command.

3-8

Command Dictionary-8540 System Users

To terminate a particular command, enter the A command
with the name of the command to be terminated. To
terminate all active processes, enter A -A. To close the
channels of the program executing in program memory,
enter A -U.

NOTE

If you abort a displaying command, such as the 0
command, an extra line of text is displayed after the A
command is invoked.

The following commands may NOT be aborted or
suspended:

A
COM
CO

G
LO
SEL

SUSP
X

Refer to the SUSP command for information on
suspending, rather than aborting, command execution.

EXAMPLES

Abort a Command
Start dumping a large listing on the line printer with the
following command entry:

> D 0 OFFFF >LPT

Enter CTRL-C to receive the system prompt, then enter the
following command to abort execution of the D command:

>~

Abort the User Program
Run your program by entering the G command:

> Q.

Enter CTRL-C to suspend your program. A trace line is
displayed, then a BREAK message, then the system
prompt. Enter the following command line to close the
channels opened by your program:

>~

Command Dictionary-8540 System Users

SYNTAX

adds 1
[sectionname:] addresssymb=value I
-s scalarsymb=value

-s

PARAMETERS

Signifies that the following symbol
represents a scalar value.

addresssymb A user-defined symbol to be used to
represent the address.

sectionname

scalarsymb

value

The name of the section with which
addresssymbol is to be associated. Th is
parameter is required if the symbol does
not lie within the bounds of the section to
which it is associated, or when a symbol
is added to an absolute section. If
sectionname is not indicated, the system
will automatically associate the symbol
with the section which contains it.

A user-defined symbol to be used to
represent a scalar value. The symbol may
not contain a section name.

An expression whose value is assigned to
the symbol.

EXPLANATION

The ADDS command inserts a user-defined symbol, with
its associated value, into the user symbol table. The symbol
can then be used in place of the value in any command line
during the debug session.

When you reboot or SELect, symbolic debug automatically
puts a dummy section entry called "NO.SECTION" in the
symbol table. This section encompasses all of memory, and
allows you to put address symbols in the symbol table using
ADDS without doing a SYMLO.

Refer to the Emulation section of this manual for an
overview of symbolic debug.

NOTE

If you define an address symbol with the ADDS
command, the address must lie within a currently
defined section unless "sectionname:" is included in
the command. Section definition information is
provided in the load module. You cannot use the
ADDS command to define a section.

ADDS
Adds symbol to symbol table

NOTE

Like other symbols in the symbol table, symbols
created with the ADDS command reside in system
memory, and will be lost when the 8540 is restarted
or turned off

EXAMPLES

Use a Symbol to Monitor a Memory
Address
Assuming that there is a section containing the address
500H, enter the following command line to create a symbol
called COUNTER and assign it a value of 500H:

> ADDS COUNTER=500H

Enter the following command line to define breakpoint
number 1, which suspends execution when a write is made
to the address represented by COUNTER:

> BK 1 COUNTER WT

Use Symbols to Monitor a Loop
Enter the following command line to create symbols
LOOPST and LOOPEND, and assign them the vaiues of the
addresses of the beginning and ending of the loop:

> ADDS LOOPST=Ol06H LOOPEND=Ol09H

Enter the following command line to trace all the
instructions within the loop as it executes:

> TRA A LOOPST LOOPEND

Add a Symbol Outside Existing Sections
If you have only one section called "SECTIONA" in memory
locations 1 00-200, and you attempt to add the symbol
"SYMBOL" at location 300, as follows:

> ADDS SYMBOL=300

you will get this error message:

Error 8D No section contains specified address

Instead, use the section name, too:

> ADDS SECTIONA:SYMBOL=300

3-9

AL
Allocates memory to logical address map

I SYNTAX

I al [actual] [blocks] [logical]

actual

blocks

PARAMETERS

An expression representing the beginning
address of the program memory region that
you want to allocate to logical (virtual)
addresses. Must be between 0 and the
highest address in existing program memory.
Defaults to O.

An expression representing the number of
contiguous 4K-byte blocks of program
memory you want to allocate. Must be
between 1 and 10H. Defaultstothe number
of blocks from the actual memory address to
the end of installed program memory.

An expression represerHing ihe beginning
address of the first logical (relocated) block.
Must be between 0 and FFFF. Defaults to the
actual memory address.

The Allocate command entered without parameters
dispiays the memory ailocation status.

3-10

Command Dictionary-8540 System Users

EXPLANATION

NOTE

There are two different versions of the AL command.
The version described here is supported by the 8540
itself The Memory Allocation Controller (MAC)
option also supports an AL command which has the
syntax:

al loaddr [hiaddr]

The MAC version of the AL command is described in
the Emulation section of this manual.

Some emulators (e.g. the 808618088) support the
MAC version of the AL command even though they
do not use the MAC option. Refer to your Emulator
Specifics supplement.

NOTE

You must have SELected the target processor before
executing the AL command. The SEL command
reinitializes logical address assignments to be the
same as the physical addresses.

The AL command allows your program to access a block of
program memory at logical addresses instead of their
physical addresses.

If you only have 32K of program memory (addresses
0000-7FFF), but your program accesses addresses in the

Command Dictionary-8540 System Users

range 8000-FFFF, you can use the AL command to
temporarily reassign a section of program memory from the
0000-7FFF address range to the 8000-FFFF address
range.

Initial settings may be restored by entering the following
command line:

> AL 0 10 0

0000

2FFF
3000

AL
Allocates memory to logical address map

NOTE
3FFF
4000

Used for logical memory -
The AL command affects only program memory, not
prototype memory. Memory allocation has no effect
in emulation mode 2, and does not affect prototype
memory locations in mode 1.

EXAMPLE

Assume your program has a subroutine in the address
range FOOO-FFFF, but you only have 32K of program
memory (up to address 7FFF). Also assume your program
does not use any addresses in the range 3000-3FFF. Enter
the following command to allocate the unused memory to
the needed memory:

> AL 3000 1 OFOOO

logical memory address

4K-byte block

memory address

To display the memory allocation status, enter the AL
command. See Display 3-2.

7FFF
8000

EFFF
FOOO
FFFF

No Memory

This logical block
of program memory
physically resides
at 3000-3FFF

Fig. 3-3. AL command example.

Figure 3-3 ShO\AJS how your memory map nO'lJ looks.

> AL
Virtual

OOOO-OFFF
lOOO-lFFF
2000-2FFF
3000-3FFF
4000-4FFF
5000-5FFF
6000-6FFF
7000-7FFF
SOOO-SFFF
9000-9FFF
AOOO-AFFF
BOOO-BFFF
COOO-CFFF
DOOO-DFFF
EOOO-EFFF
FOOO-FFFF

= Physical address

= OOOO-OFFF
= 1000-lFFF
= 2000-2FFF

3000-3FFF
4000-4FFF
5000-5FFF
6000-6FFF
7000-7FFF
SOOO-SFFF
9000-9FFF
AOOO-AFFF
BOOO-BFFF
COOO-CFFF
DOOO-DFFF
EOOO-EFFF
3000-3FFF ~ When the program references addresses

between FOOO and FFFF, the emulator will
access physical memory at 3000 to 3FFF.

Display 3-2.

3-11

AS
Assigns channel to device or file

SYNTAX

as lchannel filespec! .

channel

filespec

PARAMETERS

An I/O channel number between 0 and 7.

The name of the file or device to be assigned
to the channel number.

EXPLANATION

The AS command assigns the specified device or host file to
the specified 1/0 channel. Channel assignments allow
your programs to read from or write to devices or files on
the host. using service calls. Refer to the Service Calls
section of this manual for further details.

Channels are numbered 0 through 9. Channels 8 and 9 are
initially assigned to the system for standard input and
standard output, respectively.

Console input (CONI) and console output (CONO) may be
aSSigned to any number of channels at the same time. All
other devices are limited to one channel assignment at a
time.

Table 3-1 lists the allowable system device names, their
meanings, and the connector numbers to which the
devices must be attached.

Table 3-1
System Devices

Device Connector
Name Meaning Number

CONO Console output J104

CON! Console input J104

LPT Line printer Jl03

PPTP Paper-tape punch J103

PPTR Paper-tape reader I J103

REMI Remote input I J1 01 (DTE), J 1 02(DCE)

REMO Remote output I J 101 (DTE), J i 02(DCE)

3-12

Command Dictionary-8540 System Users

To display the channel-to-device assignments and the
emulator processor status, enter the STAT command. To
disconnect a channe~ from a dev:cc, usc the CL command.

The AS command creates a new file if the specified file
does not exist.

NOTE

You must have SELected the target processor before
executing the AS command.

Your 8540 must be in TERM mode in order to assign
files on the host.

The 8560 also has an AS command, which invokes
the TNIX assembler. If your 8540 is operating in
TERM mode with an 8560, the 8540 AS command
must be preceded by the word "8540, " as in the fol
lowing examples.

EXAMPLES

ASSign Channels

Connect channel 0 to the host file named OAT AFILE and
channel 1 to the local line printer (LPT) with the following
command line:

> 8540 as 0 DATAFILE 1 LFT

Enter the STAT command to display channel assignments
and emulator status. See Display 3-3.

Reassign Channel

Here's an example of reassigning a channel that's already
been assigned once, Try to assign channel 1, which is al
ready assigned to the line printer, to the file OUTFILE with
the following command line:

> 8540 as 1 OUTFILE

> AS: Error 18 (Channel already open)

An error occurs. You must disconnect the assigned channel
from the line printer before you can connect that channel to
another file or device. Enter the following command line to
reassign channel 1:

> c1 1

> 8540 as 1 OUTFILE

Now enter the STAT command again. See Display 3-4.

REV JAN 1983

Command Dictionary-8540 System Users

> stat

8085 is the selected processor

User program was last loaded into program memory

Channel 0 is assigned to DATAFILE
Channel 1 is assigned to LPT

Display 3-3.

SYNTAX

or

bk [-ell! I expresslon[~tJ

2

all

elr

-c

PARAMETERS

Specifies breakpoint number 1.

Specifies breakpoint number 2.

Specifies all currently defined breakpoints.

Clears the specified breakpoint.

Continues execution after each breakpoint
occurs. If -C is not specified (default
condition), the BK command stops execution
after a breakpoint occurs. To resume
program execution, enter the G command
without parameters.

expression An expression representing the address
where program execution is to be inter
rupted.

rd

wt

Designates that a breakpoint occurs when a
memory read operation occurs at the
specified address. Defaults to any access
(read or write).

Designates that a breakpoint occurs when a
memory write operation occurs at the
specified address. Defaults to any access
(read or write).

NOTE

The syntax for the BK command may be different for
some emulators. Refer to your Emulator Specifics
supplement for details.

REV JAN 1983

AS
Assigns channel to device or file

BK
Sets or displays breakpoint condition

8085 is the selected processor

User program was last loaded into program memory

Channel
Channel

o is assigned to DATAFILE
1 is assigned to OUTFILE

Display 3-4.

When you enter the BK command without parameters, the
currently set breakpoints are displayed. The breakpoint
display will contain symbols if breakpoints are set at
addresses of loaded symbols.

EXPLANATION

The BK (BreaKpoint) command sets a breakpoint that will
suspend program execution when the specified address is
read from or written to. Up to two breakpoints may be active
at one time.

When a breakpoint is encountered during execution, a
trace line is displayed followed by the message "BKPT1 "or
"BKPT2", depending on which breakpoint occurred. Some
emulators offer additional features with the BK command,
such as the ability to set up to 3 breakpoints concurrently.
See the Emulator Specifics supplement for your emulator
for deta i Is.

If the optional RD/WT parameter is omitted, the breakpoint
will occur whenever the address is read from or written to.

To clear existing breakpoints, use the CLR parameter.

NOTE

You must have SELected the target processor before
executing the BK command

If you set a breakpoint at an I/O instruction that
invokes an SVC, the SVC executes before the break
occurs. For some emulators, execution of the SVC
may prevent the operating system from breaking at
the desired instruction.

EXAMPLES

Set and Use a Breakpoint
Display the currently set breakpoints with the following
command line:

>~

BK 1 CLR

BK 2 CLR

3-13

BK
Sets or displays breakpoint condition

No breakpoint has been set. To set a breakpoint that
executes only if your program reads an instruction or other
data from address 504, enter the following commrtnd linp-·

> bk 1 504 rd

Now select emulation mode 0, download the 8560 file OBJ
into program memory, and start execution at iocation 100
with the command sequence shown in Display 3-5.

A breakpoint is encountered when the instruction at
location 106 reads data from address 504. A trace line is
displayed, followed by the BREAK message.

To display the currently set breakpoints, enter the following
command line:

>~

BK 1 000504 RD
BK 2 CLR

Set a Breakpoint Using a Symbol
Assume that address 504 is the end of a data list which
your program uses. The foiiowing sequence of commands

Command Dictionary-8540 System Users

assigns the symbol ENDLIST to address 504, and sets a
breakpoint to occur at the symbol (address 504) during

Clear any existing breakpoints with the following command
line:

> BK ALL CLR

Assign symbol ENDLIST to address 504 with the following
command line:

> ADDS ENDL1ST=504

Set a breakpoint to break on a read from symbol ENDLIST
(address 504) with the following command line:

> BK 1 ENDL1ST RD

With SYMD ON, enter the following command line to
display the breakpoint conditions:

> 1lli
BK 1 ENDL1ST RD
BK 2CLR

LOC 1NST MNEM OPER
000106 86 ADD M

SP F ABC D E H L 1M SOD
0000 04 OF Ol 00 00 00 05 04 07 0

000106 <BREAK BKPT1>
Dispiay 3-5.

3-14 REV JAN 1983

Command Dictionary-8540 System Users

SYNTAX

calc [-radix] expression

radix

PARAMETERS

A letter that selects the number base (radix)
for the result of the calculation. The
allowable radix selector letters are:

H hexadecimal (default value)

T or D decimal (base 10)

Q or a octal (base 8)

Y or B binary (base 2)

expression Any valid expression as defined under the
"Legal Address Expressions" heading earlier
in this section.

EXPLANATION

The CALC command evaluates an arithmetic expression
and displays the result on standard output (usually the
system terminal). The result is displayed in the selected
radix, as shown by suffix H, T, Q, or Y. A negative result is
output in two's-complement notation, except for decimal
numbers, where a minus sign is used instead.

A hexadecimal number cannot begin with a letter. For
example, the hexadecimal number A must be entered as
OA.

EXAMPLES

Add Numbers

Calculate the sum of the hexadecimal numbers A, B, and C
and display the result in hexadecimal with the following
command line:

> CALC OA +OB+OC
21H

> DS
PC=OOII SP=5500 F=65 A=04 B=OF C=OI D=66 E=OO H=OI L=11
SOD=1 SID=O 17=1 16=1 15=1 1E=1 M7=O M6=O M5=O

CALC
Evaluates arithmetic expression

Calculate the sum of the hexadecimal numbersA, B, and C,
but display the result in decimal with the following
command line:

> CALC -T OA+OB+OC
33T

Add Contents of Registers
Display the contents of the emulator registers with the DS
command (the selected emulator is the 8085A). See
Display 3-6.

When a leading zero is omitted in an expression, the CALC
command recognizes the character as a symbol. To
calculate the sum of the contents of registers A, B, and C,
enter:

> CALC A+B+C
14H

(04+0F+01 =14H)

Subtract Numbers

To subtract decimal number 6 from decimal number 5 and
display the result in hexadecimal, enter:

> CALC 5T-6T
FFFFFFFFH

Notice that the result is output in two's-complement
notation.

To subtract the decimal number 6 from decimal number 5
and display the result in decimal, enter:

> CALC -T 5T-6T
-IT

Notice that the negative result is displayed in decimal with
a minus sign.

Display 3-6.

3-15

CL
Disconnects channel from device or file

I SYNTAX

I cI channel.

PARAMETERS

channel An !/O channel number between 0 and 7.

Command Dictionary-8540 System Users

EXAMPLE

Display the current system status with the STAT command.
See Display 3-7.

I>~ I 8085 is the selected processor

I USer progr~u was last loaded into progr~Ti memory

Channel 0 is assigned to LPT
Channel 1 is assigned to MYFILE

EXPLANATION Display 3-7.

The CL command disconnects the specified 110 channel(s)
from the device or host file previously associated with the
channel.

To check the status of 110 channels and the files or devices
associated with them, enter the STAT command.

NOTE

You must have SELected the target processor before
executing the CL cornroand.

When you use the CL command, your 8540 must be
in TERM mode in order to access files on the host.

Refer to the AS command for information on assigning,
iathei than closing, channels

3-16

Disconnect channels 0 and 1 from LPT and MYFILE,
respectively, with the following command line:

Display the system status again. See Display 3-8.

I>~
8085 is the selected processor

User program was last loaded into program memory

Display 3-8.

Note that no channel assignments aie displayed.

Command Dictionary-8540 System Users

SYNTAX

[
on]
off

clock value

on

off

value

PARAMETERS

Enables the 1 ~O-millisecond program clock.

Disables the 1 DO-millisecond program clock.

A decimal number between 0 and 65535.
Sets the 1 ~O-millisecond program clock to
the given value.

When you enter the CLOCK command without parameters,
the current value of the clock and the elapsed time are
displayed.

EXPLANATION

The CLOCK command zeros, enables, or disables the
program clock. When this clock is ON, it will be
incremented every 100 milliseconds only during emulator
program execution. The program clock defaults to OFF after
system power-up or restart.

While the clock is ON, the emulator runs approximately one
percent slower than otherwise.

The Trigger Trace Analyzer provides more precise and
versatile timing features. This option is described in the
Emulation section of this manual.

NOTE

You must have SELected the target processor before
executing the CLOCK command

> Q..l.QQ.

EXAMPLES

Display Current Clock Values

CLOCK
Controls program clock

Display the current clock counter and elapsed time by
entering the CLOCK command without a parameter:

> CLOCK
Clock counter is 78
Elapsed time is 47

Time Execution of Program Segment
Enter the following command to zero the program clock:

> CLOCK 0

Now enable the program clock with the following
command:

> CLOCK ON

Start execution by entering the G command. See Display
3-9.

Display the program clock and elapsed time again:

> CLOCK
Clock counter is 64
Elapsed time is 64

The program took 6.4 seconds (6400 milliseconds) to
execute the code between address 100 and the first
breakpoint. Now resume program execution at the
instruction following the breakpoint. See Display 3-10.

Display the program clock again:

>~

Clock counter is 69
Elapsed time is 5

One-half second (500 milliseconds) elapsed before the
second break. A total of 6.9 seconds of execution time have
elapsed since program execution began at address 100.

LOC 1NST
000306 86

MNEM OPER
ADD M

SP F ABC D E H L 1M SOD
0000 04 OF 01 01 00 00 05 04 07 0

000306 <BREAK BKPT1>

> Q
LOC 1NST
0200 86

MNEM OPER
ADD M

0200 <BREAK BKPT2>

Display 3-9.

SP F ABC D E H L 1M SOD
0000 04 IF 01 00 00 00 06 OA 07 0

Display 3-10.

3-17

co
Resumes execution of suspended command

SYNTAX

{~~mmand }

command

-a

3-18

PARAMETERS

The name of a command: any command
listed in this Command Dictionary or an
allowed short form.

Designates all suspended commands.

I
I

Command Dictionary-8540 System Users

EXPLANATION

The CO (COntinue) command continues execution of a
suspended command. I::xecution resumes at the point
where the process was suspended.

A command may be suspended in either of two ways:

1. by entering CTRL-C twice (suspends all processes), or

2. by entering CTRL-C once and then entering the SUSP
command.

Command Dictionary-8540 System Users

SYNTAX

com [e={;}] [I={~}] Ip=promptJ It=delayJ 1m = parity I [c={:}]

If=tl leol=hexstringJ Ihs=offJ Isub ch1 =ch21/ch1 =ch2J. .. J
1 b = bytecount 1

e=

1=

o

p=

prompt

t=

delay

m=

parity

REV JAN 1983

PARAMETERS

Echo parameter.

Selects remote echoing of characters
entered from the system terminal. (Host
echoes character.) Default value.

Selects local echoing of characters entered
from the system terminal. (8540 echoes
character.)

Linefeed parameter.

Specifies that the 8540 does not output a
linefeed with a carriage return. (Host
provides linefeed.) Default value.

Specifies that the 8540 outputs a linefeed
with each carriage return.

Prompt parameter. Specifies the prompt
sequence of the host computer communi
cating with the 8540.

Prompt sequence. The characters that the
host computer outputs when it is ready to
receive data. The prompt sequence consists
of up to 32 hexadecimal digits, representing
up to 16 ASCII characters. Defaults to no
prompt sequence.

Turnaround delay parameter. Specifies the
preparation time required by the host
computer between sending a message or
prompt sequence to the 8540 and receiving
a message from the 8540 during data
transfers.

Delay time. A two-digit hexadecimal number
representing the delay time in 100-millisec
and units. Defaults to 00. (For COM Version
4.1 and later versions, the delay time is spec
ified in 10-millisecond units.)

Parity parameter. Selects the parity option
required by the host computer when it
receives or sends data.

Includes character transmission length and
number of stop bits. Refer to a table of the
Intersystem Communication section for the

c=

COM
Sets up communications with host computer

possible values of this parameter and what
those values represent.

Error check parameter.

Specifies that COM execution stops if a
communication error (lost carrier, parity
error, or framing error) occurs on the remote
communication port. Default value.

Ignores communication error and continues
COM execution.

f= Load Module Format parameter. This
parameter specifies the message block
format to be used in formatted uploads. If
this parameter is omitted, blocks are
transmitted in Extended Tekhex format.

Specifies Standard Tekhex format. COM
accepts message blocks in either Standard
or Extended Tekhex format, regardless of
the F parameter setting.

eol= End-of-line parameter. This parameter spec
ifies the character sequence used by the
host to mark the end of a line of text, such as
a host command or a Tekhex message block.

hexstring A maximum of 32 hexadecimal digits
representing a character string. Defaults to
an ASCII carriage return (OD hexadecimal).

hs=off Handshaking parameter. The parameter
HS=OFF eliminates the ACK/NAK response
from the protocol of a formatted transfer. In
a download, COM normally responds with
an ACK or NAK each time it receives a
message block from the host. When
handshaking is OFF, COM gives no response.
However, checksums are still computed and
checked, and if any are found to be incorrect,
COM issues an error message when the
transfer is complete. In an upload, COM
expects no ACK or NAK response from the
host. Checksum calculating is also turned
OFF.

Turning handshaking off has no effect on
the P (prompt sequence) and T (turnaround
delay) parameters. COM still looks for the
host's prompt sequence (if any) and waits
the indicated turnaround delay time (if any)
before continuing.

sub Substitution parameter. This parameter
specifies one or more character substi
tutions to be performed by COM on ASCII
data transmitted to or from the host. Each

3-19

COM
Sets up communications with host computer

substitution construct consists of a pair of
character codes (represented as two-digit
hexadecimal numhers) sera rated by an
equals sign. When the first character is
received from the host. COM substitutes the
second character. When the second char
acter is to be sent to the host, COM
substitutes the first.

Multiple substitution constructs can be
strung together, separated by slashes. For
example, the parameter entry SUB
aa=bb/cc=dd/ee=ff will cause the host
character aa to be changed to bb; the host
character cc to be changed to dd; and the
host character ee to be changed to ft, when
ever COM receives the characters aa, cc, or
ee from the host.

ch1 ASCII character encoded as two hexadeci
mal digits.

ch2 ASCII character encoded as two hexadeci
mal digits.

b = Byte count parameter. Specifies the number
of bytes of object code that COM will place
in each data block during formatted uploads.
(Each byte is encoded as two hexadecimal
digits.) This parameter is supported only for
COM Version 4.1 and later versions. This
parameter is ignored if you specify F = T.

bytecount A two-digit hexadecimal number in the range
01-76. Defaults to 20 (32 decimal). Any num
ber outside the range 01-76 yields a byte
count of 76 (118 decimal).

Any or all of the COM parameters may be entered in the
command line, in any order. If the same parameter is en
tered in the command line more than once, the most recent
entry overrides any previous entry.

When you enter the COM command without parameters,
communication is started using the default values, which is

> COM E =R L =0 T =00 M =4 C =T EOL =OD B =20

3-20

Command Dictionary-8540 System Users

The COM (COMmunication) command initiates communi
cation between the 8540 and a host computer. After you
execute the COM command. you can enter host computer
commands on the system terminal.

Transferring Data. COM is used for transferring data
between files on the host computer and program/proto
type memory or I/O ports on the 8540.

Refer to the Intersystem Communication of this manual for
a complete description of COM command parameters, and
for a detailed explanation of each type of transfer. Refer to
the Operating Procedures of this manual for examples of
each type of transfer.

A transfer is accomplished by the following procedure:

a. Enter the host computer command that transfers
the data between the terminal and the appropriate
file on the host system. (Do not enter a carriage
return.)

b. Enter the sequence of keystrokes (transfer
sequence) that tells the 8540 what to send or
where to store what it receives. The transfer
sequence begins with a null character.

Appropriate transfer sequences are listed in Table 3-2.

Obtaining COM Status. Status information about the
connection between the 8540 and the host computer is
maintained in the 8-bit Remote Port Status Register. To
display the contents of the Remote Port Status Register,
enter the null character, then press the S key and enter a
carriage return. The system terminal displays the register
contents as two hexadecimal digits. Refer to the
Intersystem Communication section for details about the
Remote Port Status Register.

Aborting a Data Transfer. To abort a data transfer, press
the BREAK key. You may then attempt another data trans
fer, enter another host command, or exit from COM.

character and then press the ESC key.

REV JAN 1983

Command Dictionary-8540 System Users

Table 3-2
Types of Data Transfer

Type of Type of
Name Data Transfer

Formatted Object Code Tekhex
Download to Binary

Formatted Object Code Binary
Upload to Tekhex

Unformatted ASCII Copy
ASCII
Download

Unformatted Binary Copy
Binary
Download

Unformatted ASCII Copy
ASCII
Upload

Unformatted Binary Copy
Binary
Upload

a (null)-null character (ASCII 00, usually CTRL-@)
{cr)-carriage return

Source

Host File

8540
Program Memory

Host File

Host File

8540 Device

8540 Device

COM
Sets up communications with host computer

Transfer
Destination Sequencea

8540 (null)(cr)
Program Memory

Host File (null)
addressesb (cr)

8540 Device (null)
>devicec (cr)

8540 Device (null)
=devicec (cr)

Host File (null)
<devicec (cr)

Host File (null)
+devicec (cr)

b addresses-the starting and ending addresses of one or more blocks of program memory to be uploaded. The last pair of addresses
may optionally be followed by the transfer address of the object code.

C device-the 8540 1/0 device that is to provide or receive the data.

3-21

CONFIG
Defines system configuration and host interface

SYNTAX

config local
or

I config term re={~n~= {~}J[m=parliYJ C={~}] [t=hexstring] I I - . --- - . .. I

local

term

e=

1=

a

m=

parity

i=

h

3-22

PARAMETERS

Places the 8540 in LOCAL mode.

Places the 8540 in terminal (TERM) mode.

Echo parameter. Applicable in TERM mode.

Remote echoing. Characters entered at the
terminal are echoed by the host computer.
Default value.

Local echoing. Characters entered at the
tp.rminal are echoed by the 8540

Linefeed parameter. Applicable in TERM
mode.

Specifies that the 8540 will not output a
linefeed with a carriage return. Default
value.

Specifies that the 8540 will output a
linefeed with a carriage return.

Parity parameter. Selects the parity option
required by the host computer when it
receives or sends data. Applicable when i=r
(RS-232-C).

Includes character transmission length and
number of stop bits. Refer to a table of the
Intersystem Communication section for the
possible values of this parameter and what
those values represent Oefau!ts to 6.

Interface parameter. Applicable in TERM
mode.

Specifies that the 8540-host interface is the
REMIIREMO port.

Specifies that the 8540-host interface is the
HSI port. This is the default.

t=

Command DlctlOnary-8540 System Users

Timeout parameter. This is a multiplier that
affects TERM interface protocol timeouts.
For example, if t=5, then all the timeouts will
be five times as long as their default
durations.

hexstring The multiplier. Can range from 1 to FF; the
default is 1. If the multiplier starts with a
ietter (A-Fj it must be preceded by a O.

EXPLANATION

The CON FIG (CONFIGuration) command puts the 8540 in
one of two possible system configurations when the 8540
is connected to a host computer. In one configuration,
TERM mode, the system acts just as if the terminal were
connected directly to the host computer. In the other
configuration, LOCAL mode, the system acts as if the
terminal were connected only to the 8540.

TERM and LOCAL Modes
In TERM mode, all characters entered at the system
terminal are sent directly to the host computer. This mode
is particularly powerful when the host computer is an 8560
Multi-User Software Development Unit. Refer to the
Intersystem Communication section of this manual for
more information on the use of TERM mode when the 8540
is connected to an 8560. Refer also to the 8560 System
Users Manual for details about using an 8540 connected to
an 8560.

In LOCAL mode, all characters entered at the system
terminal are sent directly to the 8540 to be processed as
OS/40 commands. The CONFIG LOCAL command
produces the same effect as when the 8540 isn't
connected to a host at all.

Unless your host is an 8560, you should use the COM
command (rather than CONFIG) to transfer data between
the host and the 8540.

Startup Configurations
When you power up the 8540, you are in LOCAL mode. You
may also achieve the effects of booting in TERM mode,
using the startup command string. This feature is
controlled by switch position number 1 (switch number
S 1100) on the 8540 System Controller board.

REV JAN 1983

Command Dictionary-8540 System Users

If the switch is closed (0), the 8540 executes the startup
command string named SSTARTUP, residing in EEPROM.

If the switch is open (1), SSTARTUP is not executed.

If you want the 8540 to boot up in TERM mode, close the
switch and include a CONFIG TERM command, with
appropriate parameters, as the first command in the
SSTARTUP string.

CONFIG
Defines system configuration and host configuration

Changing Configurations

The following list shows how to change the 8540/host
computer system configuration:

1. From TERM mode to LOCAL mode: Enter the "config
local" command (8560) or re-boot the 8540.

2. From LOCAL mode to TERM mode: Enter a CONFIG
command, including TERM and other appropriate
parameters.

3-23

o
Displays memory contents Command Dictionary-8540 System Users

EXPLANATION
SYNTAX

loaddr [hiaddr]

The D (Dump) command sends the contents of program or
prototype memory to standard output (usuaiiy directed to
the system terminal).

-b

-w

(default)

loaddr

hiaddr

>~

PARAMETERS

Selects byte-oriented output.

Selects word-oriented output.

The default byte/word output format
depends on the currently selected emulator.
Refer to the Byte/Word Parameter dis
cussion in the Emulator Specifics supple
ment for your emulator processor.

An expression representing the address of
the first byte in program/prototype memory
to be displayed.

An expression representing the address of
the last byte in program/prototype memory
to be displayed. Defaults to (loaddr+OFH) or
the top of memory, whichever is less.

D displays the hexadecimal representation of the data
aiongside the ASCii representation. in ihe ASCII repre
sentation, periods represent data bytes with hexadecimal
values less than 20 or greater than 7E.

The emulation mode and memory map assignments
determine whether program or prototype memory data is
displayed. Refer tothe EM and MAP command discussions.

EXAMPLES

For 8-bit processors, or if -8 is specified, the 0 command
output is in the format shown in Display 3-11.

For 16-bit processors, or if -W is specified (where each
address represents one byte), the D output is in the format
shown in Display 3-12.

For 16-bit processors with external word addressing
(where each address represents one word), the D output is
in the format shown in Display 3-13.

3 4 5 6 7 8 9 ABC D E F a 1 2
00000::) 32 31 00 00 00 00 no 00 41 42 43 00 00 00 nn nn 21 ABC.

000013 00 30 31 32 .012

address of
first byte
in block

>~

4

000004 3100

I uOO014 3031

".~
4 e

000004 3100
oooooe 3031

3-24

hexadecimal representation
of bytes in block

6 8 A e E 0 2
0000 0000 0041 4243 0000 0000 0000
3233 0000

5.D 6 E 7 F 8 i O 9il A2 B 3
0000 0000 0041 4243 0000 0000 0000
3233 0000

ASCII representation
of bytes in block

Display 3-11 .

1.. .ABC ..

V .. U::JU ••

Display 3-12.

1. .. .ABC [words 4--BJ
0123 .. [words e--EJ

Display 3-13.

(cD

Command Dictionary-8540 System Users

SYNTAX

PARAMETERS

-a Deallocate all program memory blocks.

loaddr An expression representing the beginning
address of the logical address block to be
deallocated. If no memory space designator
is used, all memory spaces in the given
range will be deallocated.

hiaddr An expression representing the ending
address of the logical address block to be
deallocated. Defaults to the ending address
of the 4K-byte block specified by the loaddr
parameter.

EXPLANATION

NOTE

This command deallocates memory assignments
made using the Memory Allocation Controller (MAC)
version of the AL command which is described in the
Emulation section of this manual. If memory
allocation was done using the version of the AL
command described in this section, refer to the AL
command for methods of restoring initial memory
allocation settings. Refer to your Emulator Specifics
supplement for further information.

DEAL
Deallocates memory from logical address map

The DEAL (DEAllocate) command deallocates logical
memory assignments. If memory had been allocated, DEAL
causes physical memory to be made available for allocation
to any logical address.

An attempt to access a non-allocated program memory
address will cause an error to occur.

EXAMPLES

> DEAL -A

Deallocates all program memory. Makes all of program
memory unavailable to your program.

> DEAL 1000 IFFF
Deallocates addresses 1000-1 FFF.

> DEAL 1000
Deallocates all program memory from address 1000 to the
end of the block. Effectively the same as the previous
example.

> DEAL PROMEMLO PROMEMHI
Deallocates memory from the beginning of the block
containing the address PROMEMLO to the end of the block
containing the address PROMEMHI.

3-25

01
Translates object code to mnemonics

I SYNTAX

I di [Ioaddr] [hladdr] [lines]

loaddr

hiaddr

lines

PARAMETERS

An expression representing the program/
prototype memory address where disas
sembly begins. Defaults to 0000.

An expression representing the program/
prototype memory address where disas
sembly ends. Defaults to the end of memory.

The number of lines to be disassembled.
If this parameter and hiaddr are omitted.
disassembly continues until the end of
memory is reached or until you enter
CTRL-C.

When you enter the DI command without parameters.
disassembly starts at address 0000. and continues until
the end of memory is reached or until you enter CTRL-C.

EXPLANATION

The DI (Disassemble) command translates the object code
in the specified memory area back into its corresponding
assembly language mnemonics and operands. and sends
this information to standard output. usually the system
termtnal.

If you enter only a single address parameter. disassembly
proceeds from that address to the end of memory. or until
you enter CTRL-C. If you have only 32K of program
memory. addresses 8000 through the end of memory are
considered to be all zeros.

The disassembly is erroneous if the specified loaddr does
not contain the first byte of an instruction. The disassembly
terminates when either the hiaddr is reached or the lines
parameter is satisfied.

The memory map assignments and emulation mode
determine whether program or user prototype memory is

3-26

Command Dictionary-8540 System Users

disassembled. Refer to the MAP and EM command
discussions.

NOTE

You must have SELected the target processor before
executing the DI command.

EXAMPLES

Disassemble Between Addresses
To disassemble addresses 100-102. enter:

> DI 100 102

LOC INST MNEM OPER

000100 210005 LXI H,0500

Disassemble a Number of Lines
Enter the following command line:

> DI 100 10E 4

LOC INST MNEM OPER
000100 210005 LXI H,0500

000103 0605 MVI 8,05

000105 AF XRA A

000106 86 ADD M

DI disassembles only to address 106: Only the first four
iines are disassembied. This exampie is the same as
entering DI 100 . .4.

Disassembie to an Ending Address
Enter the following command:

> DI 100 10E 30

LaC INST MNEM

000100 210005 LXI

000103 0605

000105 AF

000106 86

000107 23

000108 05

000109 C20601

0OO10C

r'I_I •• n
Uilly ;;;}

D3F7

1: __ -
III It::;)

MVI

XRA

ADD

INX

DCR
JNZ

OUT

ai6

OPER

H,0500

8,05

A

M

H

B
0106

F7

..J: ______ L..I_..J L... ___ _ .L..._ L..:_ _
UI;,a~;:t'VIIIUlvU, UvvcU""t:; II n:;- ... auuI

parameter is reached. This example is the same as entering
DI 100 10E.

Command Dictionary-8540 System Users

I ds HI

-I

(default)

SYNTAX

PARAMETERS

Long display. Displays all the emulator
registers.

If -L is not specified, the DS command
displays only the most frequently used
emulator registers. Default and long dis
plays are the same for some emulators.

EXPLANATION

The DS (Display Status) command displays the current
status of the emulator. The display line varies for each

> SEL 8085
> DS

os
Displays contents of emulator registers

emulator; however, each display line includes the
following information:

• the address of the next instruction to be executed by the
emulator .

• the emulator register contents.

Refer to the Emulator Specifics supplement for the DS
display format for your emulator.

NOTE

You must have SELected the target processor before
executing the DS command.

EXAMPLES

Select the 8085A emulator and display the current status
of the emulator registers with the command sequence
shown in Display 3-14.

program counter shows address of next instruction to be
rl --- executed: initialized to 0000 when emulator is selected

• -'-.

PC=OOOO SP=OOOO F=OO A=OO B=OO C=OO D=OO E=OO H=OO L=OO
SOD=O SID=O 17=0 16=0 15=0 1E=0 M7=1 M6=1 M5=1

Display 3-14.

3-27

EM
Selects emulation mode

I I em [mode)

mode

SYNTAX

PARAMETERS

One of the following modes:

o System mode. Execution in this mode
uses program memory and the emula
tor clock and uses SVCs for liD. Mode
o is set when an emulator is initially
selected.

2

Partial emulation mode. Execution in
this mode uses program memory
andlor user prototype memory,
according to the map assignments.
(Refer to the MAP command). Execu
tion also uses the prototype's clock
and may use e:ther prototype LID or Of
available) SVCs.

Full emulation mode. Execution in this
mode uses the prototype's memory,
clock, and liD. Mode 2 SVCs are
available for some emulators.

When you enter the EM command without parameters, the
current emuiatlon mode !S displayed.

3-28

Command Dictionary-8540 System Users

EXPLANATION

The EM (EMulate) cornmand selects the emulation mode.
in emuiatlon mode i or 2, your prototype must be
connected to the 8540 via the prototype control probe.

NOTE

You must have SELected the target processor before
executing the EM command

Be careful when writing to program memory in
emulation mode 1: Memory write operations
performed in program memory are also performed in
user prototype memory, for most emulators.

EXAMPLES

Choose Emulator and Emulation Mode
Select the 8085A emulator and emulation mode 2 with the
fo!!ov'ling command lines:

> SEL 8085
> EM 2

Display Current Mode
To display the current emulation mode, enter:

> EM
8085 is in emulation mode 2

Command Dictionary-8540 System Users

SYNTAX

ex [=~] [-n] address

-b

-w

(default)

-n

address

PARAMETERS

Selects a byte-oriented input and output
format.

Selects a word-oriented input and output
format.

The default byte/word input/output format
depends on the currently selected emulator.
Refer to the Byte/Word Parameter discus
sion in the Emulator Specifics supplement
for your emulator.

Suppresses the read-back check for the
command.

An expression representing the address of
the data in program/prototype memory that
you wish to display or alter. Must be an even
value if the -W option is used.

EXPLANATION

The EX (EXamine) command permits you to display and
(optionally) alter the contents of the specified address, as
well as the contents of the subsequent addresses, on the
system terminal.

The EX command displays the specified address, an equal
sign, the contents of the address, and a space. The contents
of each address appear as two hexadecimal digits for byte
processors, or four digits for word processors. Table 3-3
lists your options when this information is displayed.

The read-back check compares prototype memory contents
after the command is finished to see if the memory was

> EX 500

000500-09 spacebar

000501=21 backspace

000500=09 linefeed

000500=09 01

Displays the next address and
contents on next line.
Displays the previous address and
its contents on next line.
Displays the current address and
its contents on next line.
Replaces current data and displays

Entry

Space Bar

BACKSPACE

LIN EFEED or
RUBOUT

RETURN or
CTRL-C

A hexadecimal
data string
(2 or 4 digits)

EX
Displays or alters memory contents

Table 3-3
EX Command Options

Function

Displays the next address and Its
contents.

Displays the prevIous address and
contents.

Displays the current address and
contents.

Terminates the command. Memory loca
tions altered before entering CTRL-C or
pressing the RETURN key remain altered.

Replaces the current data. The next
data byte or word then appears on
a new line

properly altered. If there is a difference between memory
contents and what was sent to memory, an error is
returned. You may want to suppress the read-back check
when you know it's going to fail anyway, for example after
you've written to prototype I/O. No read-back check is
performed on writes to program memory.

The emulation mode and memory map assignments
determine whether program or prototype memory is
selected. Refer to the EM and MAP command discussions.

Alternative Commands
To display blocks of memOiY contents, usethe D command.
To modify a sequence of bytes without checking their
current contents, use the P command.

EXAMPLES

The example shown in Display 3-15 illustrates the various
EX command actions that you can take.

000501=21 backspace
next address and its contents on next line.
Displays the previous address and
its contents on next line.

000500=01 return Terminates the EX command.

Display 3-15.

3-29

F
Fills program/prototype memory with data

SYNTAX

l--b -J {' hexstrlng '}
f -w (-n] loaddr hiaddr -a string

-b

-w

(default)

-n

loaddr

hladdr

hexstring

-a

string

PARAMETERS

Selects byte-oriented filling of memory.

Selects word-oriented filling of memory.

The default byte/word format depends on
the currently selected emulator. Refer to the
Byte/Word Parameter discussion in the
Emulator Specifics supplement for your
emulator processor.

Suppresses the read-back check for the
command.

An expression representing the lower
bound of the address range filled with the
hexstring or string. Loaddr must represent
an even value if the -W mode is used.

An expression representing the upper
bound of the address range filled with the
hexstring or string. Hiaddr must be greater
than or equal to loaddr, and must represent
an odd value if the -W mode is used.

An even number of hexadecimal digits that
represent a value to be stored in the
specified memory area. If the current
emulator is a 16-bit processor or the -W
parameter is selected, there must be a
multiple of four hexadecimal digits; other
wise, there must be a multiple of two
hexadecimal digits.

Specifies that the next string in the
command line is to be an ASCII string.

An ASCII string to be stored in the specified
memory area. If the current emulator is a
16-bit processor or the -W parameter is
seiected, there must be an even number of
ASCII characters.

EXPLANATION

NOTE

In this discussion, the term "byte string" refers to the
sequence of bytes or words that is the "filler" for the
duration of the F command. The byte string is created
by concatenating all hexstrings and ASCII strings in
the command invocation into a single string.

3-30

Command Dictionary-8540 System Users

The F (Fill) command fills the specified memory area with
the specified byte string. The lower memory address
receives the first byte or word of the byte string, the next
address receives the next byte or word, and so on until the
memory area is filled.

if the end of the byte string is reached before the upper limit
of the address range is reached, filling continues with the
beginning of the byte string. This process continues until all
addresses within the specified range have been filled.

When the memory area to be filled is not an exact multiple
of the byte string length, filling stops at the specified upper
address and a message indicating a truncation error
appears on the system terminal. All previous addresses,
however, retain their contents (already filled with the byte
string).

The read-back check compares prototype memory contents
after the command is finished to see if memory was
properly altered. If there is a difference between memory
contents and what was sent to memory, an error is
returned. No read-back check is performed on writes to
program memory. You may want to suppress the read-back
check when you know it will fail anyway, for example after
you've written to prototype I/O.

For 8-bit processors, you must enter each hexstring as a
series of hexadecimal pairs. For 16-bit processors, the
hexstring must contain a muitipie of four hexadecimal
digits. For example, you would enter the value 8 as 08 for
an 8-bit processor, and 0008 for a 16-bit processor.

The memory area fined \'Vith the specified byte string may
lie in program memory, user prototype memory, or both,
depending on the memory map assignments and the
emulation mode. Refer to the MAP and EM command
discussions.

EXAMPLES

Fill with Zeros

Enter the follo'vving command line to fili addresses O-F with
zeros:

> F 0 F 0

F: Error 53 - Symbol not found

An error occurs because the hexadecimal number was
interpreted as a symbol, F, which does not exist. Try again:

> F 0 OF 0
F: Error 37 - Invalid hexadecimal string

Another error. A hexstring must contain an even number of
hexadecimal digits.

> F 0 OF 00

This time, no errors. Now check the contents of addresses
O-F with the DUMP command line, as shown in Display
3-16.

Command Dictionary-8540 System Users

Fill with a Hexstring
To fill memory locations 00-03 with the hexstring ABCD
and display the contents, enter the command sequence
shown in Display 3-17.

Fill with an ASCII String
Fill memory locations 00 to 03 with the string "ABCD", and
display the contents, with the command sequence shown
in Display 3-18.

Notice that the memory values of the ASCII string are not
the same as those of the hexstring.

> D a

a 1 2 345 6 7 8 9 ABC D E F
000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

F
Fills program/prototype memory with data

Fill with a Long String
Fill memory locations 00 to 03 with the hexstring
1234567890 and display the contents with the command
sequence shown in Display 3-19.

Notice that although the hexstring is truncated, all previous
addresses retain their filled contents.

Fill with Both Hex and ASCII String
Fill memory locations 00 to OA with the combination of
hexstring ABCD and ASCII string 'AB CD SEF' and display
the contents with the command sequence shown in
Display 3-20.

Display 3-16.

> F a 3 ABCD---- a hexstring may start with a letter
> D a

012 345 6 7 8 9 ABC D E F
000000 AB CD AB CD 00 00 00 00 00 00 00 00 00 00 00 00

> F a 3 -A ABCD

>~

Display 3-17.

012 345 6 7 8 9 ABC D E F
000000 41 42 43 44 00 00 00 00 00 00 00 00 00 00 00 00 ABCD

Display 3-18.

> F a 3 1234567890
F: Error 56 - Truncation error

/ Q..Q

a 1 2 3 4 5 6 7 8 9 ABC D E F
000000 12 34 56 78 00 00 00 00 00 00 00 00 00 00 00 00 .4Vx.

> F a OA ABCD -A 'AB CD SEF'
'> Q..Q

Display 3-19.

a 1 2 3 4 5 6 7 8 9 ABC D E F
000000 AB CD 41 42 20 43 44 20 24 45 46 00 00 00 00 00 .. AB CD SEF ..

t ~----..v

hexstring ABCD ASCII string
AB CD SEF

Display 3-20.

3-31

G
Begins program execution

SYNTAX

9 [=~J [address]

-r

-I

(default)

address

3-32

PARAMETERS

Causes this G command to be reinvoked
each time a breakpoint is encountered. A
break message is displayed at each break.
This continues indefinitely until you enter
CTRL-C.

Same as -R, except trace and break lines are
suppressed.

If neither -R nor -L is specified, the G
command stops execution after the first
break.

An expression representing the address
where program execution begins. Defaults
to the current value of the program counter,
which is:

1. The address following the last instruc
tion executed, jf any; or

2 The transfer address, if it exists and the
program has not already been started;
or

3, Address 0000, if there is no transfer
address and the progra~ !las nc~

already been started.

Command Dictionary-8540 System Users

Entering the G command without parameters starts the
program at the default address, as described above.
\=v"'("lltinn ~tnn~ ~t thp firc::t hrp~knnint
-~~--- - .. ---,-- -- - .. - .. --- ------r-""

EXPLANATION

The G (Go) command starts program execution, uSing the
currently selected emulator.

To interrupt program execution when your program reads
from or writes to specified addresses, set breakpoints with
the BK command. To suspend program execution, enter
CTRL-C.

If -R or -L is used, the G command repeats itself when the
breakpoint is encountered. However, each time execution
begins again, the emulator registers are not reset to the
values they held when the G command was originally
entered.

For example, with the Za001 /Za002 emulator, you may
begin execution at an address in the System Code memory
space. During the execution of the program and before the
breakpoint is reached, the memory space being used may
switch from System Code to another one, such as Normal
Code. The emulator's register contents will have changed
to reflect the change in memory space being used, so when
the G command repeats according to the -R or -L modifier,
execution begins in the wrong memory space (Norma! Code
instead of System Code.)

NOTE

If you have used the BKe command to specify that
execution is to continue after a breakpoint, then the
-R or -L moddiers of the G command have no effect
That is, BK -C has precedence over G -R and G -L.

G
Command Dictionary-8540 System Users Begins program execution

EXAMPLES

Select the 8085A emulator and emulation mode 0 with the
following command:

A break occurs when the instruction at location 106 reads
data from address 504.

> SEL 8085
If you specify the -R modifier in the G command line, the G
command will be executed repeatedly. See Display 3-22.

Set a breakpoint at a read from address 504 and start
program execution at address 100 with the command
sequence shown in Display 3-21.

> BK 1 504 RD
> G 100

LaC 1NST MNEM OPER
000106 86 ADD M
000106 <BREAK BKPTl>

> G -R 100

LOC 1NST MNEM OPER

000106 86 ADD M

000106 <BREAK BKPTl>

000106 86 ADD M
000106 <BREAK BKPTl>

000106 86 ADD M

000106 <BREAK BKPTl>

SP F ABC D E H L 1M SOD
0000 BO EO 01 00 00 00 05 04 07 0

Display 3-21.

SP F A 8 C D E H L 1M SOD

0000 BO EO 01 00 00 00 05 04 07 0

0000 80 EO 01 00 00 00 05 04 07 0

0000 BO EO 01 00 00 00 05 04 07 0

(Enter CTRL-C to stop the
repetition of G command execution,)

Display 3-22.

3-33

LO
Loads piOgram into memory

LOG
Logs terminal input/output to device

I SYNTAX

1

10 [parameters]
or
10 -0 offset [parameters]

I

PARAMETERS

parameters One or more values to pass to the program
being loaded. The program executes the Get
Execution Line Parameter SVC (function
code 1 C) to obtain these parameters one at a
time. Refer to the Service Calls section for a
description of the Get Execution Line
Parameter SVC.

-0 Specifies load with offset.

offset The amount to offset each block of object
code from its designated memory location.
Also adds an offset to the transfer address, if
one is present.

EXPLANATION

The LO (LOad) command ioads a ioad moaule from
standard input into program/prototype memory. The input
should be of the type created by an A-Series or B-Series
assembler or linker.

Each block of object code in the file is loaded into
program/prototype memory starting at the location

I
1109 Ii lespee

filespec

SYNTAX

PARAMETERS

The 8540 device that is to receive a copy of
terminal input/output.

EXPLANATION

The log command causes a copy of most terminal
input/output to be sent to the specified device or file. The
LOG command is not intended for use in TERM mode.

3-34

Command Dictionary-'-8540 System Users

specified in the object code (plus any specified offset). The
transfer address (if any) is loaded to the emulator's proQram
counter. If there is no transfer address in the input, the
emulator's program counter will be set to zero.

The standaid iediiection symbol «) is used to indicate the
load file on the host, which can be an object file created by
an assembier, or a ioad fiie created by the SAV command or
by a iinker.

The memory map assignments and emulation mode
determine whether program memory or prototype memory
contents are affected. Refer to the EM and MAP command
discussions.

NOTE

When you use the La command your 8540 must be
in TERM mode in order to access files on the host.

EXAMPLES

S 10 <CALORIES PIZZA BEER

Downloads the contents of the 8560 load file CALORIES
into memory. The parameters PIZZA and BEER can be
accessed through the Get Execution Line Parameter SVC in
the program.

$ 10 -0 <PROBLEMS 100 YES NO

Downloads the contents of the 8560 load file PROBLEMS
into memory. Each block is loaded at the address equal to
the location specified in the object code plus 100. The
parameters YES and NO can be accessed through the Get
Execution Line Parameter SVC in the program.

To turn off display to the logging device, enter the LOG
CO NO command.

EXAMPLES

> LOG LPT
(sends all terminal inputloutput to
both the terminal and the line printer)

(OS/40 commands!

> LOG CONO
(turns off display to the line printer)

REV JAN 1983

Command Dictionary-8540 System Users

map [-m]
or

SYNTAX

map option lloaddr [hiaddr]\ ...

-m

(default)

option

PARAMETERS

Displays the current memory map assign
ments in matrix form.

If -M is not specified, the MAP command
displays the current memory map assign
ments in vertical tabular form.

One of the following options:

P

U

Assigns the specified memory area
to program memory. This option
does not affect the memory protect
status of these blocks.

Assigns the specified memory area
to user prototype memory. This
option does not affect the memory
protect status of these blocks.

PRW Assigns the specified memory area
to program memory and sets the
memory protect status to read and
write.

PRO Assigns the specified memory area
to program memory and sets the
memory protect status to read only.

URW Assigns the specified memory area
to prototype memory and sets the
memory protect status to read and
write.

URO Same as URW in emulation modes
1 and 2; same as PRO in emulation
mode 0.05/40 does not support
write protection for prototype
memory.

RO Assigns the specified memory area
to be read only (ROM simulation)
when mapped to program memory.
This option does not affect the
program/prototype assignments of
this area.

RW Assigns the specified memory area
to be read/write memory when
mapped to program memory. This
option does not affect the program/
prototype assignments of this area.

loaddr

hiaddr

MAP
Sets or displays memory map assignments

An expression representing the lower
bound of the address range (starting at the
specified address rounded down to a 128-
byte multiple) assigned to program or user
prototype memory.

An expression representing the upper
bound of the address range (starting at the
specified address rounded up to a 128-byte
multiple) assigned to program or user
prototype memory. Hiaddr must be greater
than or equal to loaddr. Defaults to the end
of the 128-byte block that contains the lower
address.

When you enter the MAP command without parameters,
the current memory map assignments are displayed in
tabular form.

EXPLANATION

NOTE

The syntax and use of the MAP command may be
different for some emulators (e.g. the 16-bit
emulators). Refer to your Emulator Specifics
supplement for detai/s.

The MAP command sets memory map assignments or
displays the current memory map status. The memory map
is an internal table maintained by OS/40 that indicates
which portions of memory used by the emulator are in
program memory and which are in user prototype memory.
When you SELect an emulator, the map is initialized so that
aii memory is mapped to program memory (PRW optionj.

The addressable memory space for most emulators is made
up of 512 blocks of 128 bytes each. Refer to the Emulator
Specifics supplement for the block size for your emulator.
Each block may be assigned to either program or user
prototype memory. Each block also has a memory protect
status that either allows read and write operations or
restricts access to read only. This memory protection
feature is implemented only for program memory.

The program/prototype assignments and memory protect
status are independent. Therefore, in emulation mode 0
(program memory only). options U, URW, and URO are
interpreted as P, PRW, and PRO, respectively. In emulation
mode 2 (prototype memory only), options P, PRW, and PRO
are interpreted as U, URW, and URW, respectively. Notice
that URO is the same as URW in emulation modes 1 and 2.
Refer to the EM command for descriptions of the three
emulation modes.

If a write access occurs in a block of program memory that
you have specified as read-only, an execution break will
occur and no write operations will be performed.

3-35

MAP
Sets or displays memory map assignments

You may specify either a single address or an address
range. When you enter a single address, one block is
mapper! Whp.n yOIl spp.r.ify any portion of;:J hlor.k, thp. wholp.

block is affected. Refer to the examples.

The MAP command allows you to display the current
memory map status (program/prototype memory assign
ment and memory protect status) in either of two forms.
When you include the -M parameter in the command, the
display is in matrix form: Each element represents one
block of user prototype or program memory. The MAP
command entered without parameters displays a vertical
table that includes addresses or address ranges.

Before setting memory map assignments, type EM 1 to
enter emulation mode 1. Otherwise, the system terminal
displays the message, WARNING-NOT IN EMULATOR
MODE 1. (The settings still take effect, however.)

NOTE

You must have SELected the target processor before
executing the MAP command.

~

~ CAUTION <
~c...

In emulation mode 1, memory write operations
performed in program memory are also performed in
the corresponding bytes of user prototype memory
for most emulators.

EXAMPLES

Display Mapped Memory
When you SELect an emulator, the memory map is
initialized so that all memory is mapped PRW. Enter the
following command to display the memory map assign
ments:

> .M!!:
OOOO-FFFF PRW

3-36

Command Dictionary-8540 System Users

Set Memory Map Assignments
Select emulation mode 1 before setting memory map
assignments with the foliowing curnmand iine.

> B!Ll
Now you may set the memory map assignments. Notice
that when you specify any portion of a block, the whole
block is affected.

> ~~p U 735 17AO 80 100 ---0700 0080
to to

17FF 017F

The preceding command line assigns memory within
address ranges 0700-17FF and 0080-017F to user
prototype memory.

> W~ PRO 0 55 5000,,5200 617F

The preceding command line assigns memory within
address ranges 0000-007F, 5000-507F, and 5200-617F
to program memory, and sets the memory protect status to
read only.

> MAP URO OAOOO OBFFF

The preceding command line assigns memory within
address range AOOO-BFFF to user prototype memory, and
sets the memory protect status to read-only.

Since OS/40 does not support write protection for
prototype memory, this address range is write-protected
only in emulation mode 0, when all memory is
automatically mapped to program memory.

Display Map Assignments
Display the resulting memory map assignments in a
vertical table, as shown in Display 3-23.

Display the same memory map assignments in matrix form,
as shown in Display 3-24.

Command Dictionary-8540 System Users

> MAP

0000-007F PRO

00SO-017F URW
01S0-06FF PRW

0700-17FF URW

lS00-4FFF PRW

5000-507F PRO

50S0-51FF PRW
5200-617F PRO

61S0-9FFF PRW

AOOO-BFFF URO
COOO-FFFF PRW

> MAP -M
PRW(-), PRO(=), URW(*), URO(.)

Display 3-23.

o 123 456 7 S 9 ABC D E F

0000 =* *- ** ** ** ** ** ** ** ** **
1000 *~ ** ** ** ** ** **
2000
3000

4000

5000

6000
7000

SOOO
9000

AOOO

BOOO
COOO

DOOO
EOOO

FOOO

@

Dispiay 3-24.

MAP
Specifies memory available to emulator

3-37

MEM
Specifies memory available to emulator

I SYNTAX

I mem [Ioaddr [hiaddr]]

loaddr

hiaddr

PARAMETERS

An expression representing the beginning
of the block of memory the emulator is
allowed to access.

An expression representing the end of a
block of memory the emulator is allowed to
access.

When you enter the MEM command with no parameters,
the current MEM status is displayed. If your emulator has
separate memory spaces, there will be a separate display
for each address space.

EXPLANATION

NOTE

Most emulators do not support the MEM command.
Most emulators that do support the MEM command
require the MAC option. Refer to your Emulator
Specifics supplement for this information.

3-38

Command Dictionary-8540 System Users

The MEM (MEMory) command is used to reverse the
effects of a previous NOMEM command. The NOMEM
ra,...I""'r\ !3r\rl rI.acinn~tac nrntnt\lno n'"IIorY"llnr\l !:lC nnnovictont ,-,v •• It •• ""'. ,"-" '-'u,~ •• u~ tJ' "' .. _L7,.., "IVI I.""",. 1 _"" •• v •• _, ... _,

The MEM command designates prototype memory as
existent. The default condition is for the entire range of
prototype memory to exist.

If your program tries to access memory that you have
declared nonexistent. the system issues a break.

EXAMPLES

Designate Existent Memory
> MEM 2000 2FFF

This command designates user prototype memory
addresses 2000-2FFF to be available to the emulator.

> MEM SC:2000

This command designates Z8001/Z8002 System Code
addresses 2000 to the end of the block to be available to the
emulator.

> MEM NS:2400

This command designates Z8001/Z8002 Normal Stack
addresses 2400 to the end of the block to be available to the
emulator.

If])

Command Dictionary-8540 System Users

s

m

SYNTAX

[
5 memspace]

memsp m memspace ...

PARAMETERS

Specifies the default memory space for
single-memory-space commands (see
list below).

Specifies the default memory spaces for
multiple-memory-space commands (see
list below).

memoryspace A two-character symbol that represents a
specific memory space. Your Emulator
Specifics supplement lists the correct
memory space symbols for your emulator,
if applicable. Default address space
symbols are emulator-dependent.

Entering the MEMSP command without parameters
displays the currently set default memory spaces.

EXPLANATION

NOTE

For most emulators, the MEMSP command is not
app iicab Ie. In addition, you may needtheMAC option
if you wish to use memory space designators when
referring to program memory. Refer to your Emulator
Specifics supplement.

The MEMSP (MEMory SPace) command specifies which
memory space will be used when no memory space is
specified in a command line. After the default spaces have
been defined, you can enter commands without having to
specify an address space with each address expression.
The MEMSP command is only applicable for those
emulators with memory spaces.

MEMSP
Defines memory space to be used by memory commands

Commands that accept a single memory space in the
address expression use the default set by the MEMSP S
command. The following commands are influenced by the
MEMSP S command:

COM
CPR
D

DI
EX
F

MOV
P
RD

RH
RPR
SAV

SEA
SVC
WH

WPR
WRT

Commands that accept multiple memory spaces in the
address expression(s) use the default set by the MEMSP M
command. The following commands are influenced by the
MEMSP M command:

AL
BK
MAP

MEM
NOMEN

The MEMSP default setting may be overridden if a
command would otherwise perform a meaningless
operation on the memory space; for example, trying to
disassemble a stack (DI command).

> MEMSP S un
> D 400 4FF

EXAMPLES

The MEMSP command selects User Data as the default
68000 memory space for single-memory-space com
mands. The D command dumps the contents of User Data
addresses 400-4FF.

> MEMSP M NO NS NC
> BK 1 2000

The MEMSP command selects Normal Data, Normal Stack,
and Normal Code memory spaces for multiple-memory
space commands for the l8001 /l8002 emulator. The BK
command sets a breakpoint for any access to location 2000
in the Normal Data, Normal Stack, or Normal Code memory
spaces.

> MEMSP
Default single memory space NO
Default multiple memory spaces ... NO NS NC

Displays current memory space defaults.

3-39

MOV
Moves data between program and prototype memory Command Dictionary-8540 System Users

EXPLANATION

I (~~ 1
SYNTAX

The MOV command copies the specified data block from

I mov t ~~ 'Ioaddr hiaddr destaddr

...,.;+h_r _rr..._r"",,,,,,, _r 111:'_'" _rl""'\+_+"' __".t""\ot""r"\,...,.." +_ ..." r"_'A' '_,..,...,,+;_r"t.
'GIL. n::::;;. tJI V'tI1 0111 VI Uvvl t.n VLVLYtJG IIIGIIIVI Y LV U I fv'V'V' IV,",ULIV' I

in either memory.

If an error occurs when you try to move data to RAM which

uu

up

pu

pp

loaddr

hiaddr

destaddr

, D 100 lOE
0 1

000100 21 00

MOV PP 100
> 0 300 30E

0
r\f"\r'I '7 f""If". ')1 ('\('\ I VVVuVV "-o.l VV

MOV PP 300
o 2FO 30E

0
0002FO 00 00
000300 00 05

3-40

PARAMETERS

Both data source and data destination are
user prototype memory.

Data source is user prototype memory. Data
destination is program memory.

Data source is program memory. Data
destination is user prototype memory.

Both data source and data destination are
program memory.

An expression representing the lower
address of the data block copied.

An expression representing the upper
address of the data block copied. Hiaddr
must be greater than or equal to loaddr.

An expression representing the lower
address of the memory area to which the
data block is copied.

2 3 4 5 6 7 8 9 A B C 0 E F

05 06 05 AF 86 23 05 C2 06 01 03 F7 00 ,

ovictc in "cor nrntnt\/no rY'IOrY'lnr\1 \/n"r nrntnt\/no ("nntrnl -" '-- I •• ___ " ,..,'_ ... _'"',.,,- "'_1.1_'1' ,--- ,..,--"'-'"7""- _ _.
probe may be malfunctioning.

The MOV command is not affected by the current
emulation mode, memory map assignments, and write
protection settings.

EXAMPLES

Display the contents of program memory addresses
100-10E as shown in Display 3-25.

Copy the contents of program memory locations 100-1 OE
to program memory addresses 300-30E. Then display the
contents of memory addresses 300 through 30E. Refer to
Display 3-26.

The contents of memory addresses 100-1 OE remain
unchanged.

It is possible to copy the specified data block to memory
locations within that same block. Refer to Display 3-27.

The contents of program memory 2FF-303 are overwritten
by the old contents of program memory 300-304.

... # ...

Display 3-25.

10E 300

2 3 4 5 6 7 8 9 A B C 0 E F

"'" "CO "'" At:' DC 0'7 ('\'" ('0 ('\C '" T"'\'"2 V..., ('\('\ -Ii
Vv VU VV '"'1 UV '-'0,.) VV 'U'-' vv LJU .. (vv .. ·rr .. ·

Display 3-26.

304 2FF

2 3 4 5 6 7 8 9 A B C 0 E F

00 00 00 00 00 00 00 00 00 00 00 00 00 21
06 05 05 AF 86 23 05 C2 06 01 03 F7 00 # ...

Display 3-27.

Command Dictionary-8540 System Users

SYNTAX

nomem [/oaddr [hiaddr]]

loaddr

hiaddr

PARAMETERS

An expression representing the beginning
of a block of memory the emulator is not
allowed to access. May include memory
space designators.

An expression representing the end of a
block of memory the emulator is not allowed
to access.

Entering the NOMEM command with no parameters
displays the list of memory blocks which are currently not
available. There is a separate display for each memory
space.

EXPLANATION

NOTE

Most emulators do not support the NOMEM
command Most emulators that do support the
NOMEM command require the lv7AC option. Refer to
your Emulator Specifics supplement for this infor
mation.

NOMEM
Specifies memory unavailable to emulator

The NOMEM (NO MEMory) command designates 4K-byte
blocks of prototype memory as nonexistent. The default
condition is for all prototype memory to exist.

If the emulator tries to access nonexistent memory, the
system generates a break.

The MEM command is used to reverse the effects of the
NOMEM command.

EXAMPLES

> NOMEM 2000 2FFF

Designates user prototype memory addresses 2000-2FFF
as nonexistent.

> NOMEM SC:2000

Designates Za001/Za002 system code memory address
2000 to the end of the block as nonexistent.

> NOMEM NS:O

Designates ZaOOl /Za002 normal stack memory address 0
to the end of that block as nonexistent.

3-41

p
Alters memory contents

SYNTAX

l-bl {' hexstring 'j
p -wJ [-n] address -a string ,

-b

-w

(default)

-n

address

hexstring

-a

string

> .!LQ

PARAMETERS

Selects byte-oriented processing,

Selects word-oriented processing.

The default byte/word format depends on
the currently selected emulator. Referto the
Byte/Word Parameter discussion in the
Emulator Specifics supplement for your
emulator.

Suppresses the read-back check for the
command.

An expression representing the address
\l\/horo f"nrlo ~Itor~tinn honinc If \/l/nrrl n"'Inrio •• ,. ___ ---- _ ... _._ ... _ •. --:::1"'-' 1, •• _._ r •• __ _

is chosen (-W), the address must represent
an even value.

An even number of hexadecimal digits: the
sequence of bytes to be patched into
memory. If'v'V is selected, or the current
emulator is a 16-bit processor, the hex
string must be a multiple of 4 hexadecimal
digits; otherwise, it must be a multiple of 2
hexadecimal digits.

Specifies that the next string in the
command line is to be an ASCII string.

A string of ASCII characters that is patched
into memory. If - W is selected, or the cur
rent emulator is a 16-bit processor, there
must be an even number of ASCII
characters.

u 1 ~ ~ 4 0 6 j 8 Y A ~ C D ~ y

Command Dictionary-8540 System Users

EXPLANATION

The P (Patch) command replaces the memory contents
beginning at the specified address with the byte sequence
represented by the ASCII string(s) and/or hexstring(s).

For byte-oriented processing, a hexstring must contain an
even number of bytes. For word-oriented processing, the
number of bytes in a hexstring must be a multiple of 4, and
an ASCII string must have an even number of characters.

You may enter a combination of hexstrings and ASCII
strings in one P command entry.

The read-back check compares prototype memory contents
after the command is finished to see if memory was
properly altered, If there is a difference between memory
contents and what was sent to memory, an error is
returned. You may want to suppress the read-back check
when you know it will fail anyway, for example after you've
written to prototype I/O. No read-back check is performed
on writes to program memory.

The previously set memory map assignments and
emulation mode determine whether program memory or
prototype memory contents are affected. Refer to the MAP
and EM command discussions.

EXAMPLES

Patch with Hexstring and ASCII string
Enter the following command line to replace the data
starting at address 0 with the hexstiing OA and ASCii string
AB:

> P -8 0 OA -A AB

41,;., _____ ASCII string

t-tL----hex string
'--_________ starting address

Display the contents of addresses a-OF, as shown in
Display 3-28.

000000 OA 41 42 00 00 00 00 00 00 00 00 00 00 00 00 00 .AB ---t Alell string AB

hexstring OA

3-42

Display 3-28.

REV JAN 1983

Command Dictionary-8540 System Users

permstr -I
or

SYNTAX

permstr -d [stringname ...]
or
permstr stringname ...

PARAMETERS

-I Lists the currently defined permanent user
strings.

-d Deletes the specified permanent string(s). If
no stringname is given, all currently defined
permanent strings will be deleted.

stringname The user-assigned name for the string.

EXPLANATION

The PERMSTR command allows you to store strings (which
have been previously defined) in EEPROM, to display the
strings stored in EEPROM, and to delete one or more of
these strings. For information on how to declare and use
strings, refer to the discussion on "Strings" near the
beginning of this Command Dictionary.

An error occurs if any attempt to create more permanent
strings when sufficient space is not available on EEPROM.
Use the PERMSTR -D command to delete unwanted
strings. A permanent string must be deleted before its
value can be redefined.

PERMSTR
Stores user-defined string in EEPROM

Permanent strings may compete for space in EEPROM with
operating system patches created using the ROMPATCH
command. Both EEPROM chips must be installed in order
to use the PERMSTR command.

EXAMPLES

First, declare two temporary strings:

> reg set="S R1=0 R2=2 R3=5"
> range1="1000,2000"

You can then list these temporary strings with the STR
command:

> STR -L
reg set
range 1

S R1=O RS=2 R3=5
1000,2000

Now store the strings in EEPROM with PERMSTR, and list
them:

> PERMSTR reg set range1
> PERMSTR -L
regset S R1=O R2=2 R3=5
range 1 1000,2000

Delete one of the permanent strings, and list them again:

> PERMSTR -D reg set
> PERMSTR -L
range 1 1000,2000

Your temporary string definitions still exist. though, until
you delete them with the STR -D command, or turn off the
power to the 8540:

>~

regset
range 1

S R1=0 R2=2 R3=5
1000,2000

3-43

QUERY
Turns query mode on and off

SYNTAX

query [~~f]

PARAMETERS

on Turns query mode on.

off Turns query mode off.

When you enter the QUERY command without parameters.
the current system-wide query status is displayed.

EXPLANATION

The QUERY command turns query mode on or off. When
query mode is on. commands that have a -Q option will
query. When the mode is off. those commands will query
only if the -Q option is invoked. Query mode is initially on
when you reboot or start up the system.

3-44

Command Dictionary-8540 System Users

EXAMPLES

After starting up the system. check the query mode setting
by entering the command without parameters:

> QUERY
ON

f\JO\AJ remove the SYMBOL1 using the RE!V'!S c\lrnhnl -".,---
command:

> REMS SYMBOLI
Remove (scalar):SYMBOLl ?Y

The REMS command asks for confirmation before
removing the symbol. You type "Y" for yes. To turn query
mode off. enter:

> QUERY OFF

Now use the REMS command again to remove SYMBOL2.
It will remove the symbol without asking for confirmation.

> HEMS SYMBOLZ

To turn query mode back on. enter:

> QUERY ON

Command Dictionary-8540 System Users

-s

-m

-b

-w

portnum

SYNTAX

PARAMETERS

Specifies special read as opposed to normal
read. Not valid with -M modifier. Refer to
your Emulator Specifics supplement to see
whether your emulator can use this
modifier.

Specifies that the value of portnum is a
memory address (meaningful for memory
mapped liD). This is the default for
emulators that only have memory-mapped
liD. Refer to your Emulator Specifics
supplement to see whether you can use the
-M modifier.

If this modifier is omitted, the portnurn
parameter is assumed to be a fixed port. The
emulators that support both memory
mapped liD and fixed-port liD default to a
fixed-port read.

Specifies byte-oriented reading. Default
value.

Specifies word-oriented reading.

if -M is not used: an expression designating
a fixed liD port. Refer to your Emulator
Specifics supplement for the correct port
nurn values for your emulator.

RD
Reads from emulator port

If -M is used: an expression designating a
memory location. The expression may
include only one memory space designator.

EXPLANATION

The RD (ReaD) command reads a byte or a word from an liD
port on the emulator. This command is not available for
most emulators. Refer to your Emulator Specifics
supplement for details.

If more than one portnurn value is entered, reads will be
performed and results displayed in the order the portnurn
parameters were entered.

EXAMPLES

To read from l8001 Il8002 emulator ports 70,73, and 7A,
and display the values, enter the following command:

> RD 70 73 7A
0070=23
0073=00
007A=lF

To perform a special byte-oriented read from l8001 I
l8002 port symbolized by the symbol TERMACIA, and
display the value, enter the following command:

> RD -s TERMACIA
00FO=23

To read from the l8001/l8002 memory address
symbolized by TERMACIA in normal data memory space,
enter the following command:

> RD -MW ND:TERMACIA
ND:0000FO=0023

3-45

REMS
Removes symbol from symbol table

SYNTAX

[
-n] {Sectionname'" }

rems -q symbolspec ..

PARAMETERS

-q Turns query mode on for the duration of
this command.

-n Turns query mode off for the duration of
this command.

(default) The default query mode depends on the
current system-wide query status. Refer
to the QUERY command.

sectionname:* Represents all the symbols within the
specified section.

symbolspec The symbol to be removed from the
symbol table. The symbolspec may
include the sectionname if the symbol
represents an address.

EXPLANATION

The REMS (REMove Symbol) command removes the
specified symbol(sl from the symbol table.

3-46

Command Dictionary-8540 System Users

If only the second part of the symbol is included in the
symbolspec parameter (no section name), the REMS
command searches for the symbol first in the current
section, then in the entire symbol table, and removes only
the first occurrence of that symbol. Refer to the Emulation
section of this manual for more information on symbolic
rich, '1"'1
u""...,u~.

When query mode is on, the REMS command queries you
before removing the symbol.

EXAMPLES

> REMS ENDLIST

This command line removes symbol ENOLIST from the
symbol table. No section name is specified.

The following command removes symbols APPLAUSE and
KISSBABY, associated with sections SPEECH and ELEC
TION, respectively, from the symbol table. Both symbol
specs include both a section (the name before the colon)
and a symbol which represents the address value (the
name after the colon).

> REMS SPEECH:APPLAUSE ELECTION:KISSBABY

The following command removes all the symbols from the
section WRITERS.

> REMS WRITERS:*

Command Dictionary-8540 System Users

SYNTAX

reset

EXPLANATION

The RESET command simulates a hardware reset by
reinitializing the values of the emulator registers.

The RESET command is emulator-dependent. Refer to the
Emulator Specifics section for details on how the RESET
command affects specific registers in your processor.

DS

PC=Ol11 SP=5500 F=65 A~04 B=49 C=88 D=66 E=87 H=01 L=22
SOD=l SID=O 17=1 16=1 15=1 1E=1 M7=O M6=O M5=O

> RESET

> DS

+ PC=OOOO SP=5500 F=65 A=04 B=49 C=88 D=66 E=87 H=Ol L=22
SOD=O

SID=f
1

(The arrows show the changed registers.)

RESET
Reinitializes emulator

NOTE

You must have SELected the target processor before
executing the RESET command

EXAMPLES

Check the register contents of an 8085A, enter the RESET
command, and check the registers again, as shown in
Display 3-29.

Display 3-29.

(ii' 3-47

RH
Rt~"ds Iw)(adl!t:II1WI codE! Into IlWfl)ory

m

-t

(default;

offset

SYNTAX

PARAMETERS

Input IS Intel-formatted hexadecimal object
code.

Input IS Motorola-formatted hexadecimal
object code.

Input IS Standard Tekhex format.

if no modifier IS specified, Input IS Extended
Tekhex format.

An expression representing the amount to
offset the load address of each data block.
Defau~ts to O.

When you enter the RH command without parameters,
Extended-Tekhex-formatted object· code IS read from the
standard Input Into program/prototype memory without an
offset.

EXPLANATION

The RH (Read Hexadecimal code) command reads
hexadecimal object code from st<mdard input. converts the
code to bmary, and loads the binary code Into program or
prototype memory.

Each message block read by the RH command must be In

dlScllsSlon of the Tekhex, Intel, and Motorola formats.

3-48

Command Dictionary 8540 SyS\(~1ll Users

The RH command wiii not read or ioad any program
symbols Refer to the ADDS, SYMLO and COM commands
for mformation on loadmg symbols mto the symbol table.

Each block of code IS loaded into memory starting at the
message block load address. Any offset amount is added to
the load address for each data block trrlnsferred.

The emulatIon mode and the memory map assignments
determine whether program memory or prototype memory
contents are affected. Refer to the EM and MAP command
dlScllsslons.

To write rather than read hexadecimal object code, use the
WH command

NOTE

When you use the RH command, your 8540 must be
in TERM mode in order to access files on the host.

EXAMPLES

['11 . PROG. THF.X

Reads Extended Tekhex formatted object code from the
8560 file PROG.THEX, converts It to bmary, and wrttes the
object code mto memory.

, ['II - 1 'PROG. I HEX j 00

Reads the Intel-formatted hexadecimal object code from
the 8560 file PROGIHEX nnd converts It to bmary. Adds an
offset amount of 100 to each load address. For example,
when the ioad address spectlled uy the message block is
100, t he data block IS loaded at location 200. Specifying the
offset parameter does not affect the transfer address, If one
IS n1ven

Command Dictionary - 8540 System Users

SYNTAX

rompatch checksum patchid patchaddress filespec hexstrtng

or
rompatch -d checksum patchld
or
rompatch -I

d

-I

The ROMPATCH command is intended to be used to
update your operating system. Do not use this com
mand unless directed to do so by Tektronix. Errone
ous entries may invalidate your system. Certain
options of the ROMPA TCH command are not de
scribed in this manual.

PARAMETERS

Deletes the last defined patch.

Lists all the patches In EEPROM.

checksum Helps Insure that the patch has been
entered correctly. The ROMPATCH com
mand calculates a checksum value for the
characters of all parameters in the ROM
PATCH command line except the checksum
parameter. The resulting value is then
compared with the checksum parameter. If
they are not the same, an error occurs and
the command aborts.

patchld The sequence number of the patch being
entered or deleted. This parameter is
compared to the last patchid number saved
in EEPROM. If It is not one greater than the
stored value, then an error occurs and the
command aborts.

patchaddress The address where the patch will be made
relative to the load address of the file named.

REV JAN 1983

filpspec

hexstrlng

ROMPATCH
Updaws operatln(.J syst~~m

The name of the ROM file (or command) to
be patched. The filespec must contain the
ROM file level as well as the filename. (For
example, In "/DEFLT lEX", "/DEFL T" IS the
ROM file level and" lEX" is the filename.) If
the ROM file IS not found, an error occurs
and the command aborts.

The data to be patched Into memory: an even
number of hex digits.

EXPLANATION

The 8540 contains two EEPROM chips on which updates to
the operating system can be stored uSing the ROMPATCH
command. These updates are then Inserted In the
command modules when they are loaded. Normally, the
lIser will not Invoke this command except when directed to
do so by TektroniX. Usually this will be done via expliCit

wntten instructions.

The ROMPATCH command performs several checks on
your Input to guard against aCCidental or intentional

erroneolls entnes

ROM patches may compete for space In EEPROM with
permanent stnngs created uSing the PERMSTR command.
It may be necessary to delete some stnngs In order to enter
a new ROM patch.

EXAMPLES

Adding a Patch
The follOWing command line causes the hexstnng 3FC24A
to be entered as the 26th patch In the EEPROM. It patches
the module IDEFLT lEX at address 1124 relative to the load
address of the module.

HOMPATCH :S 1 26 1124 /DF:F'LT/F:X 0FC24A

Deleting a Patch

This command line deletes the 157th patch (which must be
the last entered) from EEPROM.

. ROMPATCH -0 0C 158

3-49

ROMPATCH
Updates operating system

listing Patches
You can use the -L modifier to list all the patches currently
in EEPROM. !n the example shown in Display 3-30,

• PATCH 10 corresponds to "patchid" in the syntax block,

• ROM FILE NAME corresponds to "filespec",

> ROMPATCH -L
PATCH ID ROM FILE NAME PART NUMBER ADDRESS PATCH

Command Dictionary-8540 System Users

• PART NUMBER is the Tektronix part number excluding
the 020 prefix,

• II nnQ~C::C:: f'f"\rrocnf"\nrlc tf"\ "n::ltf'h::lrlrlrocc" ::Inri
- # ,- - •• _-_ --_ ,....._ •• __ .. - ,...._ _-_ - I _ •• -

• PATCH corresponds to "hexstring" .

1 !KERNL!K1 238501 45A8 878DAEDF9FB50F98C1BD
2 !DEFLT!ROMPATCH 239700 C240 404040B3B405D2EF217A7B204376

234BD7C7
0024 6C725A7183 3

4
!8085 !DS
!Z8001!BK

253200
318402 28C4 9C02DEF6A8BD2A4C2CC03065

Display 3-30.

3-50

Command Dictionary-8540 System Users

SYNTAX

s symbolspec=expression

PARAMETERS

symbolspec The name of the symbol or register that
receives a new value. May be a standard
register name or a user-created symbol that
is already in the symbol table.

expression Any valid expression as defined in the
"Legal Address Expressions" discussion in
this section.

EXPLANATION

The S (Set) command assigns a new value to each register
or symbol specified. Refer to the Emulator Specifics section
of this manual for the specific registers associated with
your emulator.

> SEL 8085
> OS
PC=OOOO SP=OOOO F=OO A=OO B=OO C=OO 0=00 E=OO H=OO L=OO
SOO=O S10=0 17=0 16=0 15=0 1E=0 M7=1 M6=1 M5=1

s
Assigns value to register or symbol

EXAMPLES

Assign Value to Register

Select the 8085A emulator and display the contents of the
emulator registers, as shown in Display 3-31.

Reassign values to registers SP, F, and A with the following
command:

> S SP=OFFFF F=ll A=B+5

Display the contents of the 8085A emulator registers
again. See Display 3-32.

Assign Value to Symbol

Symbolic debug allows you to declare a symbol for a value
using the ADDS command. This name can then be used in
the S command:

> ADOS SUM=1224H

> S SUM=5

Display the value of SUM with the following command:

> CALC SUM
5H

Display 3-31.

> DS

t t t
PC=OOOO SP=FFFF F=ll A=05 B=OO C=OO 0=00 E=OO H=OO L=OO
SOO=O S10=0 17=0 16=0 15=0 1E=0 M7=1 M6=1 M5=1

(The arrows show the changed registers.)

Display 3-32.

3-51

SAV
Saves memory contents in file

SYNTAX

sav [=~J lloaddr hladdri ... [transfer]

-s

-I

(default)

loaddr

hiaddr

I ~ D 100 10E
! (1

000100 21 00

PARAMETERS

Specifies A-series (small address space)
format.

Specifies B-series (large address space)
format.

Defaults to B-series format if the selected
target processor can address more than 64K
of memory; otherwise, defaults to A-series
format.

An expres,sion representing the lower
address of a block of program/prototype
memory to be transferred to the file.

An expression representing the upper
address of a block of program/prototype
memory to be transferred to the file. Hiaddr
must be greater than or equal to loaddr.

2 :3 4 :- 6 7 8 9 A B C n F F

05 06 05 AF 86 23 05 C2 06 01 D3 F7 00 I

transfer

Command Dictionary-8540 System Users

An expression representing the address of
the first instruction to be executed in the
program. Defaults to the first loaddr.

EXPLANATION

The SAV command directs the specified contents of
program/prototype memory to standard output in A Series
or 8 Series load module format, suitab!e for !oading with
the LO or X commands.

The memory map assignments and emulation mode
determine whether program memory or prototype memory
contents are affected. Refer to the MAP and EM command
discussions.

NOTE

Your 8540 must be in TERM mode in order to create
files on the host.

EXAMPLE

Dispiay the contents of addresses j OO-j OE on the ~y~ierl1
terminal. See Display 3-33.

Enter the following command to upload the contents of
addresses 100-10E into the 8560 load file named LOAD.

> sav -1 >LOAD 100 10E

Display 3-33.

3-52

SEA
Command Dictionary-8540 System Users Searches memory for value or string

-b

-w

(default)

-r

(default)

loaddr

hiaddr

value

SYNTAX

{
value [preCiSiOn]}

[-r] loaddr [hiaddr] -a string

PARAMETERS

Selects a byte-oriented search.

Selects a word-oriented search, and requires
an even starting address, and an odd ending
address.

The default byte/word format depends on
the currently selected emulator. Referto the
Byte/Word Parameter discussion in the
Emulator Specifics supplement for your
emulator.

Specifies to search for repeated occur
rences of the specified string.

If -R is not specified, the SEA command
stops searching after one match is found.

An expression representing the address in
program/prototype memory where search
ing is to start. Must be even if the -W mode is
used.

An expression representing the address in
program/prototype memory where search
ing is to stop. Hiaddr must be greater than
loaddr, and odd if the -W mode is used.
Defaults to the highest address accessible
by the target processor.

An expression that represents a value for
which you want to search. Up to four bytes of
precision are possible.

precision

-a

string

The number of bytes required to match the
specified search value. This number must
be between 1 and 4. Defaults to 1 for byte
mode, 2 for word mode.

Specifies a search for an ASCII string. Must
be followed by the target string.

The ASCII string for which you are
searching. The maximum length of the
string is limited only by the maximum length
of the command line.

EXPLANATION

The SEA command searches the specified memory area for
the given value or string. SEA will display the starting
address of the first occurrence of the value or string; or of
every occurrence if the repetitive search modifier (-R) is
chosen.

The memory map assignments and emulation mode
determine whether program memory or prototype memory
contents are affected. Refer to the MAP and EM command
discussions.

EXAMPLES

Assume that addresses O-OF contain the data shown in
Display 3-34.

Display 3-35 shows some examples of searching for the
value 34 with different precision parameters:

Search for the ASCII string "45" with the following
command:

> SEA 0 OF -A 45

OOODH

The starting address of the first occurrence of ASCII 45
(hexadecimal 3435) is 0000.

012345678 9 ABC D E F

000000 34 00 34 00 00 34 00 00 00 34 00 00 00 34 35 00 4.4 .. 4 ... 4 ... 45.

> SEA 0 OF

OOOOH
> SEA 0 OF

OOOlH
> SEA 0 OF

0003H
> SEA o OF
0006H

34

34 2

34 3

34 4

Display 3-34.

(Default number of bytes of precision is 1)
(First occurrence of 34 is at OOOOH)
(Search for the 2-byte value 0034)

(3 bytes of precision:000034)

(4 bytes of precision: 00000034)

Display 3-35.

3-53

SEL
Selects tilrget processor chip

I
SYNTAX

Isel rchlDl I - .-

PARAMETERS

chip The name of the target processor.

When you enter the SEL command without parameters,
the currently selected processor name is displayed.

EXPLANATION

The SEL command specifies the command set for your
processor. After you select a processor, all emulator
commands will be appropriate for that specific processor.
\/Vhen the 8560 is host, SEL also causes the 8560 to select
the appropriate assembler and high level language
commands for the desired microprocessor.

Entering a SEL command with a chip parameter closes any
channels assigned to your program. Also, v·vhen you entsi
the SEL command with a chip parameter, the symbol table
is cleared.

The SEL command selects the target processor. The system
then acts as if the following commands had been executed:

AL 0 10 0

BK ALL CLR

CLOCK OFF

EM 0

MAP PRW 0000 FFFF

RESET

SVC ON 40 OFO

SYMD -LS ON; SY!'!!) OFF

TCLR -x
IRA OFF

3-54

(for most emulators)

(for most emulators)

(for most emulators)

Command Dictionary--8540 System Users

You should use the SEL command to select a target
processor before you execute any of the following
commands:

ACQ CONS MAP
AD COU PRO
AL CTR QUA
"r-
I-'\~ DATA RESET
BK 01 SVC
BRE DiSP TCLR
BUS DS TRA
CL EM TS
CLOCK EVE

At system start up, the command set is selected from the
command group called DEFL T.

EXAMPLES

Display the currently selected processor with the following
command:

> .§E1
no emulator

Now, select the processor:

> SEL 8085

Display the currently selected processor again:

> .§E1
3085

REV JAN 1983

Command Dictionary-8540 System Users

SYNTAX

EXPLANATION

The STAT command displays the status of the emulator on
standard output. The status information displayed in
cludes:

• name of the selected processor

• name of the last program loaded into program memory

• I/O channel assignments

I SYNTAX

or I
str-I

str -d string name __ .

-j

PARAMETERS

Lists the currently defined temporary user
strings.

-d Deletes the specified string(s). If no string
name is specified, all currently defined
temporary strings will be deleted.

stringname The user-assigned name for the string.

EXPLANATION

The STR command allows you to display all the currently
defined temporary user strings or to delete one or more of

((II

STAT
Displays system status

STR
Displays or deletes temporary user strings

EXAMPLES

Display 3-36 is an example of STAT command output.

>~.
8085 is the selected processor

User program was last loaded into program memory

Channel 0 is assigned to DATAFILE

Display 3-36.

these strings. For information on how to declare and use
strings, see the discussion of "Strings" near the beginning
of this Command Dictionary.

EXAMPLES

First, declare two strings:

> regset="S Rl=O R2=2 R3=5"

> range1="1000,2000"

List your currently defined strings with the following
command:

> .§1!L:-.b..
regset S R1=0 R2=2 R3=5

range 1 1000,2000

Now delete the first string, and list the strings again with
the following sequence of commands:

> STR -D reg set

> .§1.B.-=h
range 1 1000,2000

3-55

SUSP
Suspends commands

command

-a

3-56

SYNTAX

{~~mmand }

PARAMETERS

The name of a OS/40 command: any
command listed in this Command Dic
tionary.

All active commands.

Command Dictionary-8540 System Users

EXPLANATION

The SUSP command suspends execution of the specified
command. To suspend a particular command, first press
CTRL-C and then enter the SUSP command with the name
of the command. The command remains suspended until
you abort it vvith the A. command, or continue it with the CO
command. To suspend all active processes, enter SUSP-A.

Refer to the A command explanation for a jist of commands
that may not be suspended.

Command Dictionary-8540 System Users

SYNTAX

svc [~;fJ [address] [port]

on

off

(default)

address

port

PARAMETERS

Turns on user SVCs.

Turns off user SVCs.

If neither ON nor OFF is entered, the current
SVC ON/OFF status remains unchanged.

An expression specifying where in memory
the SRB vector will begin. The default value
(usually 40H) is emulator-dependent: Refer
to your Emulator Specifics supplement for
details.

If the address parameter is omitted, the
location of the SRB vector remains un
changed.

An expression representing the lowest I/O
port address to be used by your program to
initiate service calls. The I/O port range
defaults to FO-F7. The port parameter
should be a mUltiple of 1 OH, thus specifying
a range of the form nO-n7, where n is a
hexadecimal number between Oand F.lfthe
port parameter is omitted, the i/O port
range remains unchanged.

When you enter the SVC command without parameters,
the current SVC capability (ON or OFF). SRB vector address,
and SVC I/O port range are displayed.

EXPLANATION

NOTE

SVC command default values may be different for
some emulators. Refer to your Emulator Specifics
supplement for details.

svc
Controls execution of service calls from user program

The SVC (SerVice Calls) command turns the SVC capability
on and off in all three emulation modes. Refer to the
Service Calls section of this manual for an explanation of
SVCs.

Entering emulation mode 0 automatically turns SVCs on.
Entering emulation modes 1 or 2 automatically turns SVCs
off.

If SVCs are ON, any I/O instruction in your program that
can be interpreted as an SVC request will initiate the
appropriate SVC. If SVCs are OFF, such I/O instructions
will be treated as normal code by the emulator, and no SVC
request will be generated.

You may also use the SVC command to specify where the
SRB vector will begin and which I/O ports can be used to
initiate SVCs.

Initial SVC settings may be restored at any time by
executing the following command:

> SVC ON 40 OFO
NOTE

You must have SELected the target processor before
executing the SVC command

Certain SVC features, such as the parameters of the
SVC command and the capacity for SVCs in modes 1
and 2, are emulator-dependent. Refer to the
Emulator Specifics section of this manual for this
information.

EXAMPLES

Enter the following command to display the current SVC
settings:

>~
User SVCs are ON .
The SRB vector is 0040.
The I/O address is FO.

Change the location of the SRB vector to 200 and the SVC
I/O port range to 0-7 with the following command:

> SVC, ,200 0

Display the SVC setting again:

> SVC
User SVCs are ON .
The SRB vector is 0200.
The I/O address is 00.

3-57

SYMB
Returns symbolic name for address

expression

SYNTAX

PARAMETERS

An expression whose symbolic equivalent
you 'lvant to display, if one exists.

EXPLANATION

Given an expression, SYMB returns an equivalent symbolic
expression of the form" addresssymb" or "section + offset",
where "offset" is the displacement of the address relative
to the start of the section. Symbols representing scalar
values will not appear in the returned symbolic expression.

To do the opposite, that is, to find the value associated with
a symbol, use the CALC command.

3-58

Command Dictionary-8540 System Users

The format of the returned expression is influenced by the
-S and -L options previously specified with the SYMD
command. SYMB temporarily turns SYMD ON when
returning the expression.

EXAMPLES

If there is an symbol which represents an address and
matches the specified expression, and the SYMD -SL
options are enabled. the SYMB command will display the
symbol as shown in the following command line:

> SYMB 1234H
1234H:::LABEL001

If no address symbol corresponds to the specified
expression, the system responds with the section name
and byte offset of the given value:

> SYMB 132AH

132AH:::SECTION3+00AH

Command Dictionary-8540 System Users

5ymd off

or

SYNTAX

5ymd [-5] [-I] on

off

on

-I

-s

-sl

PARAMETERS

Turns off symbolic debug output.

Turns on symbolic debug output.

Enables address symbol (label) substitutions
only. Turns off offset substitution.

Enables the substitution (for each hexa
decimal address) of its offset relative to the
start of its section (shown in the location
counter field of your assembler listing).
Turns off address symbol substitution.

Enables the substitution of both symbols
representing addresses and section names
with offset.

If SYMD ON is entered without modifiers, SYMD is enabled
with the most recently selected features.

EXPLANATION

The SYMD command affects the output of commands such
as SYMB, TRA and Dl. if SYMD is on, symbois are

LOC INST MNEM R OPER x/pc EADD RA RB

SECTION: ALPHA
+000 CEOOlO LDX 0010 00 00
+003 5F CLR B 00 00
LABELOOl A600 LDA A 00 +0010=0010 00 00
+006 ABOl ADD A 01 +0010=0011 00 00
LABEL002 C900 ADC B 00 00 00
+OOA AB02 ADD A 02 +0010=0012 00 00
+OOC 7EI055 JMP 1055 1055 00 00

SECTION:BETA

LABEL003 C900 ADC B 00 00 00
+007 AB03 ADD A 03 +0010=0013 00 00

SYMD
Controls symbolic display output

substituted for the appropriate addresses in the command
output.

SYMD does not effect your ability to use symbols in
expressions, or to use the ADDS command.

SYMD is automatically turned Off whenever you SELect an
emulator.

No "sectionname + offset" will appear for absolute
sections.

For more information about symbolic debug, refer to the
Emulation section of this manual.

EXAMPLES

Display 3-37 illustrates output produced by the TRA
command when SYMD is ON and options -S and -L are
both enabled. (Exact displays are emulator-dependent.)

The address symbols, such as LABEL001, are symbols from
the label field in your assembly language source code. The
byte offset addresses (+000, +003, etc.) correspond to those
in the location counter field of your assembler listing. Thus,
symbols in your trace output can make it easier to find
trouble spots in your source code.

For comparison, Display 3-38 shows output produced by
the TRA command when SYMD is OFF. (Again, exact
dispiays are emuiator-dependent.)

XREG SP CC

0010 0001 DO

0010 0001 D4

0010 0001 D4

0010 0001 D4

0010 0001 D4

0010 0001 D4

0010 0001 D4

0010 0001 D4

0010 0001 D4

Display 3-37.

REV JAN 1983 3-59

SYMD
Controls symbolic display output Command Dictionary-8540 System Users

I > TRA ALL

> TRA JMP 0106 0110

I>~
LaC INST MNEM OPER SP F A B C D E H L 1M SOD

000100 210005 LXI H,0500 0000 04 OF 01 00 00 00 05 00 07 a
I nnnln~ 0605 MVI Q no; 0000 04 OF 05 00 00 00 05 00 t, A I ~~~~~; &J, V(V

AF XRA A 0000 44 00 05 00 00 00 05 00 07 0

000109 C20601 JNZ 0106 0000 10 01 04 00 00 00 05 01 07 a
000109 C20601 JNZ 0106 0000 14 03 03 00 00 00 05 02 07 0

000109 C20601 JNZ 0106 0000 10 06 02 00 00 00 05 03 07 0

000109 C20601 JNZ 0106 0000 10 OA 01 00 00 00 05 04 07 0

000106 86 ADD M 0000 04 OF 01 00 00 00 05 04 07 0

Display 3-38.

3-60

Command Dictionary-8540 System Users

SYNTAX

5ymlo [-a] [-g] [-5] [sectionname] .

-a

-g

-s

PARAMETERS

Appends new symbols to the table. If -a is
omitted, symbols currently in the table will
be overwritten. Do not use -a in the first
SYMLO after a SELect or reboot since you
must overwrite the dummy section "NO.
SECTION" with which the system is
initialized.

Loads global symbols only. Works with 8-
Series linker output only. (Global symbols
are explained in your Assembler Core Users
Manual.)

Loads symbols representing scalars as well
as those representing addresses.

sectionname Name of a section of object code from which
the symbols will be loaded. If no section
names are specified, symbols from all
sections are loaded.

SYMLO
Loads symbols into symbol table

EXPLANATION

SYMLO (SYMbol LOad) loads symbols from standard input
into the symbol table for use in symbolic debug. The input
should be of the type produced by an A-Series or 8-Series
linker. Refer to the Emulation section of this manual for
more information about symbolic debug.

NOTE

When you use the SYMLO command your 8540
must be in TERM mode in order to access files on the
host.

EXAMPLE

To load all the symbols in the load file 80L23 into the
symbol table, including global symbols and scalar symbols,
enter:

> symlo -5 <BOL23

3-61

TRA
Controls display of executed instructions

SYNTAX

or

I i aii \

I r-n l ~ jmp ~
I tra [-5] L -I J loff J[loaddr] [hiaddr]

-s

-I

-n

(default)

all

3-62

PARAMETERS

Stops execution after each trace line is
displayed. If -S is not specified, the program
continues execution after each trace line is
displayed.

Selects long display. Shows all registers on
subsequent trace output.

Selects normal display. The contents of only
the most important registers are reported. If
the microprocessor has few registers, all
registers are shown whether or not -L is
specified.

If -L and -N are omitted, the most recent
selection remains in effect.

Every instruction is displayed after its
execution.

Displays only ;,,~~ ;"'C"+"'~I""'+~_""'C'" I' ___ r'\
JUllltJ "'.::JUU\"'LIVfl.,::). UI Il,..UI 1-

ditional jumps, subroutine calls, and condi
tional branches where the specified condi
tio is satisfied.

off

loaddr

hiaddr

Command Dictionary-8540 System Users

Disables trace display.

An expression representing the lower
bound of the address range to which ALL,
JMP, or OFF applies. Defaults to O.

An expression representing the upper
bound of the address range to which ALL,
JMP, or OFF applies. Defaults to the top of
memory. Hiaddi must be greater than
loaddr. If both loaddr and hiaddr are
specified and loaddr does not contain the
first byte of an instruction, tracing starts at
the next instruction after loaddr.

When you enter the TRA command without parameters,
the current trace conditions are displayed.

EXPLANATION

The TRA command establishes the conditions for
displaying trace lines during program execution. Each trace
1; _____ .. _:_ L-... __J...J ... ___t _ ;_ 4-_ •• _ ... : __ ... a..._ : __ +_ : __

IIIIC \.-VI Ilall I;) lIlC auul C;);) VI lIlC III;)lI U\.-lIVII, lIlC III;)lI U\'-lIVII

itself in hexadecimal, the mnemonic for the instruction, the
operand, and certain processor register contents. The trace
line display format varies for each microprocessor type.
Refer to the Emulator Specifics section for the TRA
command description that corresponds to your emulator.

Up to three TRA selections may be active at a time. The
most recently entered selection takes precedence over any
previously entered commands. A TRA ALL or TRA JMP
command entered without address parameters replaCeS aji
existing selections. If you enter a TRA OFF command
without address parameters, all previously entered TRA
selections are deleted.

Command Dictionary-8540 System Users

You may enter TRA -L orTRA -N at any time, no matter how
many other selections are currently active. The -L and -N
forms apply to the entire memory space regardless of the
ranges specified in any previous TRA command lines.

NOTE

You must have SELected the target processor before
executing the TRA command

When any TRA selections are in effect, your program
executes at less than normal speed, even in those
parts of the program that are not traced

> TRA ALL

> TRA JMP 0106 0110
> G 100

LOC INST MNEM OPER SP F A 8 C D E
000100 210005 LXI H,0500 0000 04 OF 01 00 00 00
000103 0605 MVI 8,05 0000 04 OF 05 00 00 00
000105 AF XRA A 0000 44 00 05 00 00 00
000109 C20601 JNZ 0106 0000 10 01 04 00 00 00

H L
05 00

05 00

05 00

05 01
000109 C20601 JNZ 0106 0000 14 03 03 00 00 00 05 02
000109 C20601 JNZ 0106 0000 10 06 02 00 00 00 05 03
000109 C20601 JNZ 0106 0000 10 OA 01 00 00 00 05 04

. 000106 86 ADD M 0000 04 OF 01 00 00 00 05 04

TRA
Controls display of executed instructions

EXAMPLES

Display 3-39 is an example of 8085A TRA command
output.

When you enter the TRA command without parameters,
the current trace conditions are displayed on standard
output, as in the following example:

> TRA

TRA

TRA

ALL,OOOOOO,OOFFFF

JMP,000106,000110

In this example, TRA ALL conditions are set for addresses
0000 to 0105, TRA JMP conditions are in effect from 0106
to 0110, and TRA ALL conditions are again in effect from
0111 to FFFF.

1M SOD
07 0) TRA All
07 ~ in effect
07

07 O} 07 o TRA JMP
07 ~ in effect
07

07 0 TRA All
in effect

Display 3-39.

3-63

WH
Saves memory contents in hexadecimal format

-i

-m

-t

(default)

loaddr

hiaddr

transfer

SYNTAX

PARAMETERS

Output is Intel-formatted hexadecimal ob
ject code.

Output is Motorola-formatted hexadecimal
object code.

Output is in Standard Tekhex format.

If none of the output options (-i, -m, or -1) is
specified, output is in Extended Tekhex
format.

An expression representing the lower
address of a data block in program/proto
type memory to be converted and trans
ferred to the file or device.

An expression representing the upper
address of a data block in program/proto
type memory to be converted and trans
ferred to the file or device.

An expression representing the starting
address of the program. Defaults to O.

EXPLANATION

The WH (Write Hexadecimal code) command converts the
specified data blocks within program or prototype memory
from binary to hexadecimal format. The converted data is

> D 40 10F

a 1 2 3 4 5 6 7 8 9 A B C D E F

000040 00 42 lA 00 00 00 00 00 00 00 00 00 00 00 00 00

000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000100 21 00 05 06 05 AF 86 23 05 C2 06 01 D3 F7 00 00

Command Dictionary-8540 System Users

then transferred to standard output. You may specify a file
or device using the redirectiona! arrow (».

For examples of WH command output in Tekhex, Intel, and
Motorola formats, see the Tables section.

The WH command does not write out the symbols from the
symbol table.

The contents of memory are not affected by the WH
command.

The memory map assignments and emulation mode
determine whether program memory or prototype memory
contents are written. Refer to the EM and MAP command
discussions.

To read hexadecimal object code from a file or device,
rather than to write it, use the RH command.

NOTE

When you use the WH command, your 8540 must be
in TERlvi mode in order to access fiies on the host.

EXAMPLES

Check the contents of memory 40-10F with the D
command. See Display 3-40.

Convert the data in program memory locations 40-42 and
100-10E to Standard Tekhex format, and upload the
converted code to the 8560 file named DEMO.THEX with
the following command:

> wh -t >DEMO.THEX 40 42 100 10E 100

When the data is again read into program memory, the
emulator program counter will be set to the transfer
address (100).

.B

................

................

................

................

................
I .. #

Display 3-40.

3-64 (a'

Command Dictionary-8540 System Users

SYNTAX

[
-S][-Wl

wrt -rn -b Jportnum value

-s

-m

-b

-w

(default)

PARAMETERS

Specifies special write as opposed to normal
write. Not valid with -M modifier. Refer to
your Emulator Specifics supplement to see if
your emulator can use this modifier.

Specifies that the value of portnurn is a
memory address (valid for memory-mapped
I/O.) -M is the default for emulators with
only memory-mapped I/O. Refer to your
Emulator Specifics supplement to see if you
can use the -M modifier.

If this modifier is omitted, the portnurn
parameter is assumed to be a fixed port. The
emulators which support both memory
mapped I/O and fixed-port I/O default to a
fixed-port write.

Specifies byte-oriented writing.

Specifies word-oriented writing.

If neither -B nor -W is specified, the default
is byte-oriented writing.

SYNTAX

[parameters]

PARAMETERS

parameters One or more values to pass to the program.
The program executes a Get Execution Line
Parameter SVC (function code 1 C) for each
of these parameters. Refer to the Service
Calls section for a description of the Get
Execution Line Parameter SVC.

EXPLANATION

The X (eXecute) command performs the same function as
entering the LO and G commands sequentially.

The standard redirection symbol «) is used to indicate the
load file on the host which can be an object file created by
an assembler, or a load file created by the SAV command or
by a linker.

portnum

value

WRT
Writes to emulator 1/0 port

x
Loads and executes program

If -M is not used: an expression designating
a fixed I/O port. Refer to your Emulator
Specifics supplement for the correct port
nurn values for your emulator.

If -M is used: an expression designating a
memory location. The expression may
include only one memory space designator.

A valid expression. Its value must not exceed
the maximum possible value of the indicated
word or byte.

EXPLANATION

The WRT (WRiTe) command writes a byte or a word to an
I/O port on the emulator. This command is not available for
most emulators: Refer to your Emulator Specifics
supplement for details.

EXAMPLES

> WRT 70 00

Writes the value 00 to emulator port 70.

> WRT -S TERMACIA 88

Performs a special byte-oriented write to the Z8001/
Z8002 port represented by the symbol TERMACIA.

NOTE

When using the X command, your 8540 must be in
TERM mode in order to access files on the host.

EXAMPLES

Before initiating program execution, you must select the
desired processor and the emulation mode.

> 5el 8085
>~

Now you can execute the program in the 8560 load file
CHECKBOOK by entering:

> x <CHECKBOOK DEPOSIT 200

This command loads CHECKBOOK into program memory
and begins program execution. The parameters DEPOSIT
and 200 can be accessed through Get Execution Line
Parameter SVCs in the program.

3-65

8540 System Users

Section 4
INTERSYSTEM COMMUNICATION

Page

Introduction 4-1

Terminology , 4-1

8540/8560 TERM Interface 4-1

Setup .. 4-1
Command Execution 4-2
Precautions 4-2
Summary .. 4-2

COM Interface ,. 4-2

Types of Transfers 4-3
Performing a Data Transfer 4-4
The Null Character 4-4

8540/8550 Interface 4-4

8540/8002A Interface 4-6

8540/Generai Host Interface 4-7

Unformatted Transfers 4-7
Formatted Transfers 4-9

Tektronix Hexadecimal Format (Tekhex) 4-9
Standard Tekhex 4-10
Extended T ekhex 4-11
Protocols for Formatted Transfers 4-15
Host Software Requirements for

Formatted Transfers 4-16
The COM Command 4-22
Hardware Requirements 4-23
Establishing Communication 4-25
Exiting from COM 4-25
Data Transfers 4-25
Troubleshooting 4-27
Commands for Intersystem Communication 4-29

Table
No.

4-1

4-2
4-3

4-4

TABLES

Page

Data Transfer Types 4-3

Characteristics of Unformatted Transfers ... 4-8
Standard Tekhex Data Block Format 4-10
Standard Tekhex Termination

Block Format 4-11
4-5 Standard Tekhex Abort Block Format. 4-11

4-6 Extended Tekhex Header Field 4-12
4-7 Character Values for Checksum

Computation 4-12
4-8 Extended T ekhex Data B lock Format 4-1 2
4-9 Extended Tekhex Termination Block

Format 4-1 2
4-10 Extended Tekhex Symbol Block Format 4-14

4-11 Extended Tekhex Symbol Block:

Section Definition Field 4-14

4-12 Extended Tekhex Symbol Block:
Symbol Definition Field 4-14

4-13 Character Transmission Formats
Corresponding to Values for M 4-22

4-14 Signals at 8540 Remote Port 4-24
4-15 Remote Port Status Register Bits 4-25

Fig.
No.

ILLUSTRATIONS

4-1 Command execution in TERM mode 4-2
4-2 Protocol for unformatted ASCII uploads 4-8
4-3 Protocol for unformatted binary uploads 4-8
4-4 Protocol for unformatted downloads 4-9
4-5 Protocol for formatted uploads 4-1 5
4-6 Protocol for formatted downloads 4-16
4-7 Algorithm for Tekhex transmit program ... 4-17
4-8 Algorithm for Tekhex receive program 4-18
4-9 Algorithm for Standard Tekhex

conversion program 4-19
4-10 Algorithm for Extended Tekhex

conversion program 4-20

4-i

8540 System Users

Section 4

INTERSYSTEM COMMUNICATION

INTRODUCTION
This section is designed to help you establish communication
between the 8540 and an external computer system.

In this section, the term "intersystem communication"
refers to the general process of communication between
a~ 8540 and an external computer. A method for
intersystem communication is necessary whenever you
have information on one computer system that must be
speedily and accurately transferred to another computer
system.

This section includes basic definitions and examples,
algorithms for use in writing required software, and
troubleshooting techniques. This section is organized as
follows:

• Terminology. Defines the terms used in the section.

• 8540/8560 TERM Interface. Briefly describes the
special interface between an 8540 and an 8560 Multi
User Software Development Unit.

• COM Interface. Summarizes the types of data transfers
possible between an 8540 and a computer other than an
8560.

• 8540/8550 Interface. Describes how an 8550
Microcomputer Development Lab operates as a host
computer to an 8540.

• 8540/8002A Interface. Describes how an 8002A
J.lProcessor Lab operates as a host computer to an 8540.

• 8540/Generai Host Interface. Describes how the
8540 communicates with a computer that is not an
8560, 8550, or 8002A. Includes communication
protocols, Standard and Extended Tekhex load module
formats, COM command parameters, and hardware and
software requirements for the host computer.

TERMINOLOGY
The terms "host" and "host computer" refer to a computer
system that directs or presides over one or more 8540s.
Programs are created on the host. then downloaded to the
8540 to be executed and debugged.

"Upload" refers to the transfer of data from an 8540 to a
host computer. "Download" refers to the transfer of data
from a host computer to an 8540.

A "TERM interface" is a special arrangement between an
8540 and a host 8560 in which you have access to all the
resources of the 8540 and the 8560 simultaneously. (You
initiate a TERM interface by entering the OS/40 command
CONFIG TERM.)

A "COM interface" is a setup that is used principally for the
transfer of object code between an unspecified host
computer and an 8540. (You initiate a COM interface by
entering the COM command on the 8540.)

8540/8560 TERM INTERFACE
The 8560 System Users Manual contains a detailed
discussion of the 8560's TERM interface with an 8540 or
8550. This subsection is a brief summary of that
discussion.

Setup
When operating in TERM mode, the 8540 and 8560
communicate using a high-speed interface (HSI) over a line
that runs from an HSII/O connector on the 8560 to the HSI
connector on the 8540. (The 8540 and 8560 can also
communicate using RS-232-C protocol, as through a
modem. In this case, the communications line connects to
the DTE jack (J1 01) on the 8540.) Your system terminal
may be connected to another HSI 1/0 connector on the
8560, or to the 8540 (as in the stand-alone configuration
for the 8540). For the purposes of this discussion, we will
assume that the terminal is attached to the 8540, and that
the 8540 and 8560 are connected via an HSI line.

You establish communication by placing the 8540 in TERM
mode with the OS/40 command CONFIG TERM. In TERM
mode, the 8540 passes every character you type directly to
the 8560, and passes 8560 responses directly to the
terminal. Once you log in to TNIX (the 8560 operating
system), you can intermix OS/40 commands and TNIX
commands, execute OS/40 commands from TN IX shell
files, and download and upload programs between the
8540 and the 8560. In order for SVCs in your program to
access files on the 8560, the 8540 must be in TERM mode.

4-1

8540/8560 TERM Interface

Command Execution
Every command line you enter !s processed f!rst by the
8560. If it is an OS/40 command, the 8560 passes the
command back to the 8540. The 8540 executes the
command, perhaps accessing 8560 files in the process,
and then sends its response to you back through the 8560.
This process is illustrated in Fig. 4-1.

Precautions
Because TNIX processes every line you enter in TERM
mode, an OS/40 command line that is acceptable to an
8540 in LOCAL mode will not necessarily be processed
correctly in TERM mode. In TERM mode, for example,
OS/40 command names must be entered in lowercase; the
use of commas as delimiters is restricted; and certain
characters that have special meaning to the TNIX shell
must be "escaped" (made to appear non-special) so that the
shell does not perform unwanted transformations on the
command line.

Summary
An 8540/8560 TERM interface gives you simultaneous
access to the 8540 and the 8560, and provides a
convenient means fOi combining the resources of the two
systems. For more information on the hardware configura
tions and software considerations of this interface, refer to
the 8560 System Users Manual.

I
I command

I system eeAII"\ ou .. v
terminal

<
response

Intersystem Communication-8540 System Users

COM INTERFACE
The OS/40 COM (;UfTIITHmU ::;ei::; up (;ommunlcaiion
between the 8540 and a host computer. To keep the
interface as simple as possible, the 8540 uses the same
RS-232-C-compatible communication protocol as a term
iani attached to the host. You use the parameters of the
COM command to specify the protocol that is appropriate
for your host. A communications mterface established via
the COM command is referred to as a COM interface.

NOTE

Your 8540 must have the optional COM Interface
Package installed in order to support a COM interface
with any computer. Throughout the rest of this sec
tion, it is assumed that this COM option is installed in
your 8540.

The 8540 cannot execute the COM command while in
TERM mode.

Once you establish communication via the COM command,
you can:

• execute host commands from the 8540 system terminal
just as if the 8540 weren't there; and

• transfer data between the host and the 8540.

The 8550 Microcomputer Development Lab and B002A
tJProcessor Lab can also host COM interfaces with the
8540. These special interfaces are discussed later in this
section.

l
• !

~
V

8540 command

-
file I/O (if needed)

~
~ ~
8540 response

-

(3936· 22)3939· 11

Fig. 4-'. Command execution in TERM mode.

4-2 REV ~IAN 1983

Intersystem Communication-8540 System Users

Types of Transfers
Two categories of data transfers are possible with a COM
interface: formatted and unformatted. Table 4-1 summarizes
the types of formatted and unformatted transfers.

Formatted (Object Code) Transfers

A formatted transfer copies blocks of object code in
Tektronix Hexadecimal (Tekhex) format between a file on
the host and program/prototype memory on the 8540.
Checksums in the Tekhex format permit verification of each
block of data as it is received. When you want to execute a
program that you have created on the host. you use a
formatted download to load the program into 8540
program memory.

There are two forms of Tekhex: Standard Tekhex, which is
appropriate for microprocessors that address 64K of
memory or less; and Extended Tekhex, which provides for

COM Interface

the transfer of program symbols (for use in symbolic debug)
and addresses of up to 64 bits. Both Tekhex formats are
explained in detail in the subsection "8540/General Host
Interface" later in this section.

Unformatted (File) Transfers

An unformatted transfer copies data between a file on the
host and an I/O device (such as a line printer or paper tape
reader/punch) on the 8540. The data is transmitted and
received with no error checking other than parity.

A file may be transferred in ASCII mode or in binary mode.
You use ASCII mode to transfer text files, and binary mode
to transfer files of binary data.

At this time, unformatted transfers are of limited use on the
8540.

Table 4-1
Data Transfer Types

Host'sa 8540's
Type of Type of Transfer Transfer

Name Data Transfer Source Destination Command Sequence

FOimatted Object Tekhex Host Fiie 8540 (nuiij (cr;
Download Code to Program

Binary Memory

Formatted Object Binary 8540 Host File (null)
Upload Code to Program addresses

Tekhex Memory (cr)b

Unformatted ASCII Copy Host File 8540 (null)
ASCII Device >devlce
Download (cr)

Unformatted Binary Copy Host File 8540 (null)
Binary Device =devlce
Download (cr)

Unformatted ASCII Copy 8540 Host File (null)
ASCII Device <device
Upload (cr)

Unformatted Binary Copy 8540 Host File (null)
Binary Device +devlce
Upload (cr)

a Fill in the commands that you use with your host.

b addresses-the starting and ending addresses of one or more blocks of program/prototype memory to be uploaded. The last pair of
addresses may be followed by the transfer address of the program.

4-3

COM Interface

Performing a Data Transfer
Vr. •• initi",ta '" r1",t<> tr<>ncf",r h\l ",ntorinn::l ('nmm::lnrllinp th::tt I V'-' Ir "L ___ 111._ "._ .. _-_. -, _.Olo._, •• ·v ___ _ .. _ - -- .--

contains the following items:

1. a host-specific command that tells the hosttotransmit
or receive the desired data (no carriage return here);
and

2. a sequence of characters that tells the 8540 what to
transmit or where to put what it receives. This 8540
transfer sequence begins with a null character and
ends with a carriage return. The last column ofTable4-
1 gives the 8540 transfer sequence for each type of
data transfer.

Detailed descriptions of all six types of data transfers are
given later in this section.

The Null Character
The null character (ASCII 00) is a special command line
delimiter to an 8540 operating in a COM interface. The null
character signifies that everything preceding it is a
command to the host computer, and that everything
following it (including the null itself) is a command to the
8540.

Characters entered at the terminal are transmitted directly
to thp. host computer until the null is encountered. When a
carriage return is entered at the end of a command line that
contains the null character, the 8540 processes its portion
of the command line, prepares to receive or send data, and
then transmits the carriage return to the host. The host
computer then processes the portion of the command line
that was sent to it, and the data transfer takes place. (If you
specified a special end-of-line character sequence with the
EOl parameter of the COM command, that end-ot-line is
sent to the host in place of each carriage return.)

On most terminals, the null character can be generated as
a CTRl-@, that is, by pressing the CTRl key at the same
time you press the keys needed to generate the @ symbol.
In this section the null character is represented by (nUll).

The null character is not displayed on the terminal.

A null character can be sent from the 8540 terminal to the
L... __ + __ +_ ... : __ _______ : ... __ •• 11 ___ +L..._ OCAr"\
IIV,:)l uy vlll'tillll~ lVYV \..IoVII.;:)'t:a ... UlIVC flUII;' VII lIllV u""'-rv

terminal.

8540/8550 INTERFACE
This subsection explains how to use an 8550 to host
formatted (Tekhex) transfers with an 8540. (For informa
tion on how the 8550 hosts both formatted and
unformatted transfers, refer to your 8550 System Users
Manual.) When the 8550 is host, all communication
procedures and data formats are handled automatically, so
you do not need any special knowledge ofTekhex, the COM

4-4

Intersystem Communication-8540 System Users

command, or communication protocols. For details on this
type of information. refer to the "8540/General Host
!nterface" discussion later in this section

Setup
To set up intersystem communication between an 8550
and an 8540. you must connect an RS-232-C cabie to the
remote communication ports on the 8301 (jack J1 02) and
the 8540 (jack J1 01). Set the MODE SELECT switches on
the two systems to CNTl (l). Set the REMOTE BAUD
switches to 2400.

Establishing Communication
When the physical connection has been established, you
can initiate communication between the systems by first
entering the COM command on the 8540 and then entering
the HOST command on the host 8550. If you are
performing one or more formatted uploads, and you want
the object code to be stored in StandardTekhex ratherthan
Extended Tekhex format, enter:

> COM P=7E7E F=T <CR>

Otherwise, enter:

> COM P=7E7E <CR>

The HOST command has no parameters.

HOST Command Operation

After you have entered the COM command on the 8540
and the HOST command on the 8550, a message appears
on the 8550 terminal that says

HOST Vx.x

and a message appears on the 8540 terminal that says

Enter U or D; A, B, or H; and 8550 filespec:

At this point you are ready to initiate a data transfer. The
d:scussicn under "Data Transfers" describes ho",'J to
perform both types of formatted transfers. While the HOST
command is active, you cannot execute other DOS/50
commands, and all input to both the 8540 and the 8550 is
through the 8540's terminal.

Exiting from HOST
To exit from HOST, perform the following steps:

1. Press the 8540 terminal's BREAK key to abort any data
transfer that is taking place.

2. Enter a null character and press the ESC key on the
8540 to exit from the COM command.

3. Type CTRL-C on the 8550 terminal to obtain the
DOS/50 prompt.

REV JAN 1983

Intersystem Communication-8540 System Users

4. Enter the command "A -A" (Abort All) on the 8550
terminal.

(CTRL-C)
»A -A <CR>

Data Transfers
The commands to initiate data transfers are entered on the
8540 terminal in response to the prompts sent to the 8540
terminal from the 8550. Two prompts are displayed. The
first prompt is:

Enter U or D; A, B, or H; and 8550 filespec:

This prompt requests information for the 8550 about the
type and direction of the desired transfer: U (upload) or 0
(download); A (unformatted ASCII transfer), B (unformatted
bjnary transfer), or H (Tekhex formatted transfer). The 8550
filespec specifies the 8550 file to or from which the transfer
is to take place. No embedded spaces are allowed between
the parameters.

After you have entered the requested information, the
following prompt appears on the 8540's terminal:

Enter transfer sequence, beginning
with null character:

This prompt requests information for the 8540. The null
character indicates to the 8540 that the rest of the
command line is a command to the 8540.

The transfer command to the 8550 must match the transfer
command to the 8540.

NOTE

Check the 8550 system teiminal fOi eiiOi messages
after you initiate each transfer. The informational
message "Error FF - End of file" appears after each
successful transfer.

After a transfer has been completed, there may be a delay
of up to 30 seconds before the next prompt appears and the
8550 is ready for another transfer.

Formatted Download
The following command sequence downloads a Tekhex
load module to the 8540. The object code is placed in 8540
program/prototype memory, and the program symbols, if
any, are placed in the symbol table in 8540 system
memory.

Enter U or D; A, B, or H; and 8550 filespec:
DHfilespec <CR>

D indicates to the 8550 that the transfer is a download.
H indicates to the 8550 that the transfer is a formatted
Tekhex transfer.

REV JAN 1983

8540/8550 Interface

filespec is the 8550's Tekhex file from which the data is to
be transmitted.

After you've entered this command line, you tell the 8540
the type of transfer.

Enter transfer sequence, beginning
with null character:

(null) <CR>

(null) indicates that the rest of the command line is a
command to the 8540. Since there are no commands
following the null character, the 8540 recognizes that the
transfer is a formatted download into program memory.

Each time the 8550 sends a message block, an asterisk is
displayed on the 8540's terminal. If the block is transferred
correctly, the starting address and length of the block are
displayed on the 8540 terminal. If the 8540 detects an error
and issues a negative acknowledgement (NAK), the 8550
resends the block and another asterisk is displayed on the
8540 terminal. (If the 8540 has COM Version 4.1 or a later
version, the 8540 displays an asterisk for each successfully
transferred block and an underscore for each NAK.)

When the transfer is complete, the 8540 terminal displays
the initial prompt requesting information for the host
computer:

Enter U or D; A, B, or H; and 8550 filespec:

and the 8550 terminal displays

HOST: Error FF - End of file

Formatted Upload
The following command sequence uploads blocks of object
code from 8540 program/prototype memory to a file on the
8550. No program symbols are uploaded.

Enter U or D; A, B, or H; and 8550 filespec:
UHfilespec <CR>

U indicates to the 8550 that the transfer is an upload.
H indicates to the 8550 that the transfer is a formatted
Tekhex transfer.
filespec is the 8550 file to which the data is to be
transferred.

After you've entered this command line, you tell the 8540
the type of transfer.

Enter transfer sequence, beginning
with null character:

(null)lowaddl hiaddl lowaddZ
hiaddZ ... transadd <CR>

4-5

8540/8002A Interface

(null) indicates that the rest of the command line is a
command to the 8540.

memory to be transferred.
hiadd1 is the high address of a block of 8540 program
memory to be transferred.
lowadd2 is the lovv addieSS of anothei block of 8540
program memory to be transferred.
hiadd2 is the high address of another block of 8540
program memory to be transferred.
transadd is the beginning execution address for the code in
the transferred blocks.

Each time the 8540 sends a block, the 8540 terminal
displays

*BLOCK SENT AT: address

An asterisk is displayed each time a block is sent. If more
than one asterisk appears, the 8550 has detected an error
and issued a negative acknowledgement (NAK), and the
block has been resent.

When the transfer is complete, the 8540 terminal displays
the initial prompt requesting information for the 8550:

Enter U or D; A, B, or H; and 8550 filespec:

and the 8550 terminal displays

HOST: Error FF - End of file

Troubleshooting
Symptom

Check

Symptom

Check

4-6

Cannot establish initial communication.

1. Verify that the optional COM mterface
software has been installed in your 8540.
2. Verify that the transmit and receive
baud rates of the 8550 and the 8540
correspond.
3. Verify that the RS-232-C cable is
plugged into the correct jacks on the
8550 and on the 8540.
4. Verify that the switches controlling the
REMOTE jacks on the 8301 and 8540 are
positioned correctly.

No reaction after typing transfer request.

1. Verify that your commands to the 8550
and 8540 are appropriate, and that you
are using the correct file name.
2. Verify that when you entered the COM
command on the 8540, you specified the
appropriate prompt sequence (P=7E7E).
3. On a formatted download, verify that
the Tekhex file on the 8550 is in proper
format.

Intersystem Communication-8540 System Users

8540/8002AINTERFACE
This subseciion expiains how to use the TEKDOS SEND
command to download a program from an 8002A
tJProcessor Lab to 8540 program/prototype memory. The
program must be in Standard Tekhex format, as produced
by the TEKDOS WHEX command.

For details about Tekhex, the COM command, and
communications protocols, refer to the "8540/General
Host Interface" discussion later in this section.

Setup
The 8002A and 8540 are connected via an RS-232-C line
that runs from jack J 101 on the 8002A rear panel to jack
Ji 02 (OTE) on the 8540 rear panel. On the 8540, be sure
that the REMOTE BAUD switch is set to 2400 and that the
MODE SELECT switch is set to CNTL (L). On the 8002A
System Communication board, verify that the J1 jumper is
set to the lower position, and that the PORTl baud rate
jumper is set to 2400.

Each system must have its own system terminal.

Establishing Communication
To establish communication between the 8540 and the
8002A, enter the following COM command on the 8540
system terminal:

> COM P=3F E=L L=I <CR>

Then enter the SEND command on the 8002A system
terminal:

> SEND <CR>

The SEND command does not issue any prompt.

Performing a Download
To dovlJn!oad a program from a Tekhex file on the 8002A,
type the name of the file, a null character, and a carriage
return on the 8540 terminal:

filename(null) <CR>

Each time the 8002A sends a message block to the 8540,
an asterisk is displayed on the 8540 terminal. If the block is
transferred correctly, the starting address and length of the
block are displayed on the 8540 terminal. If the 8540 detects
an error and issues a negative acknowledgement (NAK), the
8002A resends the block and another asterisk is displayed.
(If the 8540 has COM Version 4.1 or a later version, the
8540 displays an asterisk for each successfully transferred
block and an underscore for each NAK.) When the
download is complete. the 8540 terminal displays the mes
sage "DNLOAD:",

REV JAN 1983

Intersystem Communication-8540 System Users

Terminating Communication
To terminate communication between the 8540 and the
8002A, perform the following steps:

1. If a download is in progress, press the BREAK key twice
on the 8540 terminal.

2. Enter a null character and press the ESC key on the
8540 terminal.

Troubleshooting
Symptom

Check

Symptom

Check

Cannot establish initial communication.

1. Verify that the optional COM interface
software has been installed in your 8540.
2. Verify that the RS-232-C cable is
plugged into the correct jacks on the
8540 and the 8002A.
3. Verify that the REMOTE BAUD and
MODE SELECT switches on the 8540
rear panel are positioned correctly.
4. Verify that the J1 jumper and PORT1
baud rate jumper are positioned correctly
on the 8002A System Communication
board.

Unexpected reaction to download request.

1. Verify that you entered the correct
parameters for the COM command.
2. Verify that the 8002A file you specified
is in Standard Tekhex format.

8540/GENERAL HOST
INTERFACE

This subsection provides the detailed information required
to establish communication between an 8540 and a host
computer that is not an 8560, 8550, or 8002A. Refer to the
"COM Interface" discussion earlier in this section for a
summary of the types of data transfers possible between
the 8540 and a host.

If you are sufficiently familiar with the way your host
computer communicates with a terminal, you can use the
information in this subsection to:

• establish the appropriate RS-232-C connections and
switch settings on the 8540 and the host

• determine the parameters of the COM command line
you will use to initiate communication with the host

• determine the host command line that is appropriate for
each type of data transfer

• write programs for the host that create, transmit, or
receive files in Tekhex format.

@

8540/Generai Host Interface

It is recommended that you make this host-specific
information available to other users of your 8540, using the
spaces provided at the end of this section and in the
Operating Procedures section of this manual.

This subsection is divided into the following topics:

• Unformatted Transfers. Explains the protocols for
unformatted transfers and identifies the types of host
computer commands you can use to perform these
transfers.

• Formatted Transfers. Describes Standard and Extended
Tekhex formats, explains the protocols for formatted
transfers, and gives algorithms for programs to create,
transmit, and receive Tekhex files.

• The COM Command. Explains the parameters of the
COM command.

• Hardware Requirements. Describes the intersystem
communication hardware on the 8540.

• Establishing Communication. Tells howto connect the
8540 to the host and establish communication.

• Exiting from COM. Tells howtoterminatecommunica
tion.

• Data Transfers. Describes in detail howto perform each
type of data transfer.

• Troubleshooting. Describes possible communication
problems and ways to solve them.

Unformatted Transfers
An unformatted transfer conveys data between a file on the
host and an 1/0 device on the 8540. You cannot use an
unformatted transfer for direct loading or dumping of 8540
program memory.

This discussion covers the utilities required on the host
computer to accomplish unformatted transfers, the kinds of
unformatted transfers, and protocols for unformatted
transfers.

Unformatted transfers are simpler than formatted transfers.
In most cases, no special host computer software is
required and standard host computer operating system
utilities are used.

Host Utility Requirements for Unformatted
Transfers

Two host computer utilities are required for unformatted
transfers. These utilities must accomplish the following
tasks:

1. For a download, the utility must be able to copy
information from a file on the host computer to a
terminal.

2. For an upload, the utility must be able to copy
information from a terminal to a file on the host
computer.

4-7

Unformatted Transfers

Simple copy commands, text editors, and rapid text entry
modes are examples of utilities that might be used.

Kinds of Unformatted Transfers
["'_ .. _ I,,:_...J _l .. _'_ ... ___ ++_...J + ... __ l_ _ .. _____ ;""-1_ ,al;.h +h_
ruul ""IU;) UI UIIIUIIIIOllCU lIOII;)ICI;) OIC jJU;:);:)IUIC VVILII LlIC

8540: ASCII uploads, ASCII downloads, binary uploads,
and binary downloads. Table 4-2 shows the chaiacteiistics
of each type of unformatted transfer.

Table 4-2
Characteristics of Unformatted Transfers

Transfer
Type

ASCII
Upload

ASCII
Download

Binary
Upload

Binary
Download

I

I

Maximum
Recommended Unit of

Baud Rate8 Transfer

2400 ASCII line

2400 Entire file

2400 Entire file

2400 Entire file

Significant
Bits Per

Data Byte

7b

7b

8

8

a Unformatted transfers may also proceed successfully at 4800
or 9600 baud for some hosts.

b The high-order bit of each data byte is cleared by the 8540.

Protocols for Unformatted Transfers
With unformatted transfers, the transmitting computer
does not receive confirmation that data was correctly
received by the receiving computer. Instead, a prompt
sequence (defined by the P parameter of the COM
command) signals the 8540 that the host is ready for input
(either more data or a new command).

Upload Protocol. An unformatted upload transfers data
from a device on the 8540 (such as the paper tape reader) to
a file on the host, either line by line (ASCII upload) or as an
uninterrupted stream of bytes (binary upload).

\I\/hon tho 11 ... 1,,<>rI ic r-"..,...,nloto tho Q~lI.(\ nrintc tho ..,...,OCC::lno I .'-". I .,. •• "-' -t'I __ - ____ IIIt"_"_' ... " ___ • _ ~. II _ IL •• _ .1 I ____ ~_

RIOT:

on the terminal, but does not transmit any end-of-file
indicator. You must enter the appropriate end-of-file
sequence when you see the RIOT: message, or the host
must keep track of the time elapsed after each byte is sent
and terminate the transfer when the 8540 appears to have
stopped transmitting.

ASCII Upload Protocol. In an unformatted ASCII upload, the
host sends the prompt to the 8540 when the ~ost is ready to
receive a line of data. The 8540 then waits the amount of

4-8

Intersystem Communication-8540 System Users

time indicated by the T parameter of the COM command
and then sends the next line of data. Omit the P (prompt)
parameter unless the host actually issues a prompt every
time it is ready to receive a line.

On the 8540, every carriage return (ASCII 00) in the data is
assumed to be the end of a line. If you specify an end-of-line
sequence with the EOl parameter of the COM command,
the 8540 sends that sequence in piace of each carriage
return.

The protocol for an unformatted ASCII upload is given in
Fig. 4-2.

Binary Upload Protocol. In an unformatted binary upload,
the host sends the prompt (if any) to the 8540 when the
host is ready to receive the data. The 8540 then waits the
amount of time indicated by the T parameter of the COM
command, and then sends the data to the host as an
uninterrupted stream of bytes.

The protocol for an unformatted binary upload is given in
Fig. 4-3.

Download Protocol. In an unformatted download, a file on
the host is copied to an I/O device on the 8540 (such as the
line printer). The host transmits the entire file without
interruption, then sends the prompt to indicate that the end
of the file has been transmitted and that the host can accept
input from the 8540.

8540

Line 1

Line 2

Line n

Terminate
Transfer

Host

Prompt sequence

Prompt sequence

Prompt sequence

Terminate
Transfer

T

3936-23

P"! .• " ... __ ___ 11. _____ 1. ____ _...1 A~""I _ .. _1 __ ...1_
rly. "-L. rJUlU,",UI lUI UIIIUIIIIOUCU "'~vll ut-',uau ...

8540

File Contents

Terminate
Transfer

Host

Prompt Sequence

Terminate
Transfer

Fig. 4-3. Protocol for unformatted binary uploads.

T

I

M

E

3936-24

REV JAN 1983

Intersystem Communication-8540 System Users

For unformatted downloads, it is usually appropriate for the
P (prompt) parameter of the COM command to match the
host's system prompt. However, be sure that the prompt
sequence you specify does not appear anywhere in the file
to be downloaded, since the prompt marks the end of the
data to be downloaded.

The protocol for an unformatted download is given in Fig.
4-4.

8540

Terminate
Transfer

Host

File contents

Prompt sequence

Terminate
Transfer

l~
Fig. 4-4. Protocol for unformatted downloads. 3936·25

Formatted Transfers
A formatted transfer conveys object code between a file on
the host and program/prototype memory on the 8540. The
file may also contain program symbols to be placed in the
8540's system memory for use in symbolic debug.
Formatted transfers are more complex than unformatted
transfers because the data must be put into predefined
message blocks before it is transferred. The message
blocks are structured according to the rules defining
Tektronix Hexadecimal Format (Tekhex).

This discussion covers the two types of Tekhex format,
protocols for formatted transfers, and algorithms for
software required on the host computer.

Tektronix Hexadecimal Format (Tekhex)

Standard Tekhex and Extended Tekhex are two ways of
encoding a load module as lines of printable ASCII
characters. A load module contains the following
information:

@

1. blocks of object code to be loaded into memory;

2. a load address for each block of object code that tells
where in memory to load that block;

Formatted Transfers

3. a transfer address, which is the address where
program execution should begin; and

4. for use in symbolic debug, program symbols and their
values.

Extended Tekhex format can convey all four types of
information, while Standard Tekhex conveys only the first
three types. Both Tekhex formats also contain additional
information, such as headers and checksums, which are
used by the program that loads the object code.

An 8540 or 8550 can accept a module that is encoded in
either format, or in a mixture of the two. An 8002A (or an
8550 running DOS/50 Version 1) supports only Standard
Tekhex.

You need to use Extended Tekhex instead of Standard
Tekhex if any of the following conditions are true:

• you need to specify a load address larger than FFFF; or

• you need to convey symbols and symbol values for
symbolic debug; or

• you want to transmit more than thirty bytes of object
code per block.

Message Block Delimiters. A line ofTekhex information is
referred to as a message block. Each message block begins
with a slash (/-for Standard Tekhex) or a percent sign
(%-for Extended Tekhex) and ends with an end-of-line
character sequence. Tektronix development systems use a
single carriage return as an end-of-line. If your host
computer uses a different end-of-line, it must be specified
with the EOL parameter of the COM command, which is
discussed later in this section.

Hexadecimal Digits. The letters A through F, when used
as hexadecimal digits in Tekhex message blocks, must be
uppercase.

4-9

Formatted Transfers Intersystem Communication-8540 System Users

Standard Tekhex

Standard Tekhex uses three types of message blocks:

Data Blocks. A data block contains the load address for the
object code in the block, a byte count, 30 or fewer bytes of

1. A data block contains object code.
object cede, and checksum ~nfcrmaticn. The fcrm3t for ti

2. A termination block contains the transfer address and
marks the end of the load module.

3. An abort block is used to terminate transmission ''-v'hen
an unrecoverable error occurs.

Table 4-3

data block is given in Table 4-3.

Display 4-1 is an example of a data biock.

Standard Tekhex Data Block Format
- _._--------------------

Field

/
I

Load
Address

Byte Count

r:_
r II ~l

Checksum

Number of
ASCII

Characters Description

I The slash specl~les that the block IS In Standard Tekhex format.

4 I The address where the object code is to be loaded (high-byte, low-byte format).

2

....
L

N umber of data bytes in the data field of the block.

The sum, mod 256, of the six hex digits of the ioad address and byte count .

Data 2n (2 to 60) n data bytes, each represented as two hex digits. Maximum of 30 data bytes.

Second
Checksum

2 Sum, mod 256, of the 2n hex digits of the data field.

r
Load address

fFi'S' CheCkSFsecond checksum

/Ol0006070202020202020C

+

1
L L Byte

Header

count

Display 4-1 .

4-10 (0;

Intersystem Communication-8540 System Users

Termination Blocks. A termination block contains only a
transfer address (instead of a load address), a byte count of
zero, and a checksum of the address and byte count.
Because there is no data in the block, there is no second
checksum. The format for a termination block is given in
Table 4-4.

Table 4-4
Standard Tekhex Termination Block Format

Number of
ASCII

Field Characters Description

/ 1 The slash specifies that the
block is in Standard Tekhex
format.

Transfer 4 Starting execution address
Address (high-byte, low-byte format)

of the code transmitted in the
data blocks.

Byte 2 Always 00 in a termination
block.

Checksum 2 Sum, mod 256, of the six hex
digits of the transfer address

I and byte count.

Display 4-2 is an example of a termination block.

Abort Blocks. An abort block contains two slashes
followed by a message. This block tells the 8540 that an
unrecoverable transmission error has occurred and to

r
Transfer address

rCheCksum

/10000001

l LB~e count
Header

Formatted Transfers

terminate the transmission. When this block is received,
the message in the block is displayed on the 8540's
terminal. The format for an abort block is given in Table 4-5.

Table 4-5
Standard Tekhex Abort Block Format

Number of
ASCII

Field Characters Description
..

/ 1 The slash specifies that the
block is in Standard Tekhex
format.

- -- . ._- .---~ _ .. _ - .. _ ... _._-.. ' .. _----
/ 1 Another slash to identify the

abort block.

Message 1 to 69 A message to be displayed
when the transfer is aborted.

Display 4-3 is an example of an abort block.

Extended Tekhex
Extended Tekhex uses three types of message blocks:

1. A data block contains object code.

2. A symbol block contains information about a program
section and the symbols associated with it. This
information is needed only for symbolic debug.

3. A termination block contains the transfer address and
marks the end of the load module.

Display 4-2.

Header

I Message

r ,
1/5 CONSECUTIVE FAILURES. TRANSMISSION ABORTED

Display 4-3.

@ 4-11

Formatted Transfers

/vOTE

Extended Tekhex has no specially defined abort
block. To abort a formatted transfer, use a Standard
Tekhex abort block, as defined earlier in this section.

Each block begins with a six-character header field and
ends with an end-of-line character sequence (on the 8540,
a carriage retum). A block can be up to 255 characters long,
not counting the end-of-line. A header field has the format
shown in Table 4-6.

Item

%

Block
Length

Block Type

Table 4-6
Extended Tekhex Header Field

Number ofl
ASCII

Characters Description

2

A percent sign specifies that
the block is in Extended
Tekhex format.

The number of characters In

the block a two-digit hex
number. This count does not
include the leading % or the
end-of-line.

I 6 - data block

1

3 = symbol block
8 = termination block

Checksum 2 I A two-digit hex number re
'presenting the sum, mod
256, of the values of all the
characters in the block, except
the leading %, the checksum

I digits, and the end-at-line.
Table 4-7gives the values for
all characters that may appear
in Extended Tekhex message
blocks.

-- ---_ ... _-- .-----

Table 4-7
Character Values for Checksum Computation

Characters

0 .. 9
A..Z

$

%

. (period) I
_ (underscore) I

Values (Decimal)

0 .. 9
10.35
36
37
38
39
40 __ 65 __________ ~ ___ J ___ _ --------

4-12

Intersystem Communication-8540 System Users

Variable-length Fields. !n Extended Tekhex, certain fields
may vaiy in ~ei1gth from 2 to 17 characters. Th:s pract:ce
enables you to compress your data by eliminating leading
zeros from numbers and trailing spaces from symbols. The
first character of a variable-length field is a hexadecimal
digit that indicates the length of the iest of the field. The
digit 0 indicates a length of 16 characters.

For example, the symbols START, LOOP, and KLUDGE
STARTSHERE are represented as 5START, 4LOOP, and
OKLUDGESTARTSHERE. The values 0, 1 DOH, and FFOOOOH
are represented as 10, 3100, and 6FFOOOO.

Data and Termination Blocks. If you do not intend to
transfer program symbols with your object code, you can do
without symbol blocks. Your load module can consist of one
or more data blocks, followed by a termination block. Table
4-8 gives the format of a data block, and Table 4-9 gives the
format of a termination block.

Field

Header

Table 4-8
Extended Tekhex Data Block Format

Number 01 I
ASCII

Characters I Description

I
I Standard header field. Block
type = 6

6

-.----------t-------I-------------
Load

Address
2 to 17 The address where the object

code is to be loaded: a
variable-length number.

Object 2n I n bytes, each represented as
_C_o_d_e_---L ____ . ____ I two hex digitS.

Table 4-9
Extended Tekhex Termination Block Format

Field

Header

Transfer
Address

I I
Number of

ASCII
Characters Description

---t-- - -+-
6 Standard header field. Block

type = 8.

2 to 17 The address where program
execution is to begin: a
variable-length number.

Display 4-4 is an example of a data block.

Display 4-5 is an example of a termination block.

eCiJ

Intersystem Communication-8540 System Users Formatted Transfers

rr=
Block length: 15H = 21

r--- Checksum: 1 CH = 28 = 1 +5+6+3+1 +0+0+0+2+0+2+ ...

+ r Object code: 6 bytes

.,-'-...

%1561C3100020202020202

•
Load address: 100H

Block type: 6

L....-___ Header character

Display 4-4.

I Block length: 8

+ t Checksum: 1 AH = 26 = 0+8+8+2+8+0

%0881A280

t t -

I

I C Transfer address.

Block type: 8

Header character

SOH

Display 4-5.

Symbol Blocks. A symbol used in symbolic debug has the
following attributes:

1. the symbol itself: 1 to 16 letters, digits, dollar signs,
periods, or underscores. The first character of the
symbol can be a letter or (if the symbol is a section
name) a percent sign.

2. a value: up to 64 bits (16 hexadecimal digits).

3. a type: address or scalar. (A scalar is any number that is
not an address.) An address may be further classified
as a code address (the address of an instruction) or a
data address (the address of a data item). Symbolic
debug does not currently use the code/data distinction,
so the address/scalar distinction is sufficient for
standard applications of Extended Tekhex.

4. a global/local designation. This designation is of
limited use in a load module, and is provided for future
development. The concept of global symbols is
discussed in the Assembler Core Manuals for
TEKTRONIX A Series and B Series assemblers. If the
global/local distinction is not important for your
purposes, simply call all your symbols global.

REV JAN 1983

5. section membership. A section may be thought of as a
named area of memory. Each address in your program
belongs to exactly one section. A scalar belongs to no
section. The concept of sections is discussed in detail
in the Assembler Core Manuals for both A Series and B
Series assemblers. The significance of sections with
regard to symbolic debug is illustrated in the Learning
Guide of this manual.

The symbols in your program are conveyed in symbol
blocks. Each symbol block contains the name of a section
and a list of the symbols that belong to that section. (You
may include scalars with any section you like.) More than
one block may contain symbols for the same section. For
each section, exactly one symbol block should contain a
section definition field, which defines the starting address
and length of the section.

If your object code has been generated by an assembler or
compiler that does not deal with sections, simply define
one section called (for example) MEMORY, with a starting
address of 0 and a length greater than the highest address
used by your program; and put all your symbols in that
section.

4-13

Formatted Transfers

Table 4-10 gives the format of a symbol block. Tables 4-11
and 4-12 give the formats for section definition fields and
symbol definition fields, which are parts of a symbol block.

Table 4-10
Extended Tekhex Symbol Block Format

Field

Header

Section
Name

Section I
Definition

Symbol
Definition(s)

I

-1-
Number of i

ASCII I
characters Description

6 Standard header field. Block
type = 3.

2 to 17 The name of the section that
contains the symbols defined
in this block: a variable

I length symbol.
I

5 to 35 This field must be present in
exactly one symbol block for
each section. This field may
be preceded or followed by
rlny nl.lmber of symbol defini
tion fields. Table 4-11 gives
the format for this field.

5 to 35 each Zero or more symbol defini
tion fields. as described in
Table 4-12.

Table 4-11
Extended Tekhex Symbol Block:

Item

o

Base
Address

lonn+h
~vll~LII

4-14

Section Definition Field

!
Number ofl

Characters Description ASCII 'I

2 to 17

I " lalllll~ aUUI t:; ;:, UI lilt:;

section: a variable-length
number.

Tl-_ 1 ___ ... 1.- _L .&.1- ____ : __ _

I
"'C 1t:;11~1I1 UI lilt:; ;:,t:;l;lIUII. d

variable-length number. com
puted as 1 + (high address -

I base address).

Item

Type

Symbol

Value

Intersystem Communication-8540 System Users

Table 4-12
Extended Tekhex Symbol Block:

Symbol Definition Field

Number ofl
ASCii I

Characters I Description

I A hex digit that indicates the
globaillocal deSignation of
the symbol, and the type of
value the symbol represents:
1 = global address
2 = global scalar
3 = global code address
4 = global data address
5 = local address
6 = local scalar

I 7 = local code address
8 = local data address

2 to 17 A variable-length symbol.

2 to 17 The value associated with the

I
symbol: a variable-length

. number.

Symbol Block Example. Suppose a section called
SVCSTUFF occupies memory locations 40H-105H and
contains the symbols shown in the following table, and that
you don't care about global/local and code/data
distinctions.

!

Symbol I Value

CR ODH
OPEN 50H
READ 58H
WRITE 60H
CLOSE 68H
EXIT 70H
BUFLENGTH 80H
BUF 78H

Type

. scalar
address
address
address
address

I address
scalar I address

Symbol
Definition Field

22CR1D
140PEN250

I 14READ258
15WRITE260

I 15CLOSE268
14EXIT270
29BUFLENGTH280

!13BUF278

Dispiay 4-6 shows how this information might be encoded
in Extended Tekhex symbol blocks. (All this information
could be encoded in a single 96-character block. It is
divided into two blocks for purposes of illustration.)

Intersystem Communication-8540 System Users

..------------ Block length: 37H = 55

Checksum: 60H = (3+7+3+8+28+31 +12+28+29+ ...) mod 256

I Section definition field:
, base address = 40H; length = C6H ----%373608SVCSTUFF02402C622CRlD140PEN250l4READ258l5WRITE260

%373C88SVCSTUFF15CLOSE268l4EXIT27029BUFLENGTH280l3BUF278

~ ~ection name

Block type: 3

L....-_____ Header character

Display 4-6.

Protocols for Formatted Transfers

Formatted transfers require a formal communications
protocol. ASCII characters are used to positively acknow
ledge or negatively acknowledge the receipt of Tekhex
message blocks. The character "0" (ASCII 30H) is used as a
positive acknowledgment (ACK) and the character "7"
(ASCII 37H) is used as a negative acknowledgment (NAK).
Each ACK or NAK is followed by an end-af-line.

Upload Protocol. After the 8540 transmits a message
block to the host, the host computer performs whatever
error checking is desired. If no transmission error occurs,
the host sends an ACK followed by a prompt to the
transmitting 8540. The transmitting 8540 then continues
with the formatted transfer by sending the next message
block. If the host detects a transmission error, it responds
by sending a NAK followed by a prompt to the transmitting
8540. When the transmitting 8540 receives a NAK, it re
sends the message block that was incorrectly received.
Figure 4-5 illustrates the protocol for a formatted upload.

8540

Message block 1

Message block 2

Message block n

Termination block

Terminate
Transfer

Formatted Transfers

Host Computer

Prompt sequence

ACK or NAK
End-of-line
Prompt sequence

ACK or NAK
End-of-line
Prompt sequence

ACK or NAK
End-of-line
Prompt sequence

ACK or NAK
End-of-line
Prompt sequence

Terminate
Transfer

T

M

E

3936-26

Fig. 4-5. Protocol for formatted uploads.

4-15

Formatted Transfers

Download Protocol. After the host sends a message biock
followed by a prompt sequence to the receiving 8540, the
receiving 8540 performs the appropriate error checking. If
no transmission error occurs, the receiving 8540 responds
by sending an ACK to the transmitting host. The host then
continues with the transfer by sending the next message
biock. if the receiving 8540 detects a transmission SiiQr, it
responds by sending a NAK to the host. When the
transmitting host receives a NAK, it re-sends the message
block that was Incorrectly received. Fig. 4-6 iiiustrates the
protocol for a formatted download.

Suppressing Handshaking. The COM command param
eter HS=OFF eliminates the ACK/NAK response
("handshaking") from the protocol of a formatted transfer.
Eliminating handshaking simplifies a data transfer at the risk
of undetected errors. In an upload, when the host receives a
block, its response must consist only of the prompt se
quence if handshaking is off. In a download, the 8540 does
not respond at all when it receives a block. However, the
8540 still verifies each checksum, and if any are found to be
incorrect, the 8540 issues an error message when the trans
fer is complete. In Version 4.1 and later versions, COM dis
plays an asterisk (signifying a good biock; or an underscore
(bad block) on the system terminal each time it receives a
block, regardless of the HS parameter.

Host Software Requirements for Formatted
Transfers
Because formatted transfers require a formal protocol, a
host computer used with the 8540 must be capable of

8540 Host COIrlputer

ACK or NAK
End-of-line

ACK or NAK
End-of-line

ACK or NAK
End-of-line

ACK or NAK
End-of-line

Terminate
Transfer

Message block 1
Prompt sequence

Message block 2
Prompt sequence

Message block n
PrQmpt. !,;pC)lIpnC!p.

Termination block
Prompt sequence

Terminate
Transfer

T

M

r
Fig. 4-6. Protocol for formatted downloads.

4-16

3936.27 1

Intersystem Communication-8540 System Users

satisfYing that protocoi. in particular, the following
programs are required on the host computer:

1. A transmit program that will transfer Tekhex blocks to
the 8540.

2. A receive program that will accept Tekhex blocks from
the 8540.

3. if you have object files in non-Tskhex format that you
would like to transfer and use on the 8540, you must
have a conversion program that will translate the
object files into Tekhex format.

Notice that without handshaking, the protocol for a
formatted transfer is the same as for an unformatted ASCII
transfer, as described earlier in this subsection. Therefore,
a simple copy command could serve as a transmit or
receive program. However, the 8540 generally takes longer
to process a message block than the host requires to send
the next one, so the transmit program must pause enough
between lines that no data is lost.

One way for the host to achieve the necessary delay is to
transmit "fill" characters at the beginning of each message
block. COM finishes processing one message block while it
receives (and ignores) the fill characters at the beginning of
the next block. You may use any characters you want for fill,
so long as they differ from the host's end-of-line
characters(s) and from the leading character of the message
block. For transfers at 2400 baud, four to six fill characters
should be sufficient; the actual number required depends on
your host and baud rate.

Transmit Program. This program downloads Tekhex
formatted fiies to the 8540, uSing the download protocol
described earlier in this section. The general algorithm is as
follows:

1. Read a Tekhex block from a file (error checking for valid
format is optional).

2. Transmit the block followed by the predefined prompt
sequence, and wait for an acknowledgement. The
prompt sequence is defined in the COM command line,
and the 8540 will not respond until it receives the
prompt.

3. If the reply is a negative acknowledgement (NAK):

a. Increment the negative acknowledgement counter
(this counter keeps track of how many successive
iransmission faiiures ilCive ol,;(;urreu).

b. If the negative acknowledgement counter exceeds
a maximum value that you have defined, terminate
the transfer by sending an abort block.

c. Prepare to re-transmit the block that was
incorrectly received and go to step 2.

4. If the reply is a positive acknowledgement (ACK):

a. If the block sent was a termination block, terminate
the transfer.

b. Otherwise, go to step 1 .

REV JAN 1983

Intersystem Communication-8540 System Users

This algorithm is presented in pseudo-code in Fig. 4-7.

Receive Program. This program receives Tekhex files from
the 8540, using the upload protocol described earlier in this
section. The general algorithm is as follows:

1. Read a Tekhex block from the 8540.

2. Verify proper format. A Standard Tekhex block must
begin with a slash and must not exceed 71 characters
in length (not counting the end-of-line). An Extended
Tekhex block must begin with a percent sign and must
not exceed 255 characters in length (not counting the
end-of-line).

3. If the block is a termination block,

a. Verify the checksum.

b. If an error is encountered, send a NAK followed by
the pre-defined prompt sequence, and increment
the NAK counter.

END-OF-FILE = FALSE
WHILE NOT END-OF-FILE

READ TEKHEX BLOCK FROM FILE

Formatted Transfers

c. If no error is encountered, write the block to a file,
transmit an ACK followed by the predefined prompt
sequence, and exit the receive program.

4. If the block is not a termination block,

a. Verify the byte count.

b. Verify the checksum(s).

c. If an error is encountered, increment the NAK
counter and test to see if it exceeds a maximum
value that you've selected. If it exceeds that value,
terminate the transmission with an abort block;
otherwise, send a NAK followed by the predefined
prompt sequence to the 8540. The prompt
sequence is defined in the COM command line,
and is used by the 8540 to determine when the
host computer is ready for input.

d. If no error is encountered, write the block to a file
and send an ACK followed by the predefined
prompt-sequence to the 8540.

IF TEKHEX BLOCK IS A TERMINATION BLOCK THEN END-OF-FILE = TRUE
NUMBER-OF-NAKS = a
GOODTX = FALSE
REPEAT

TRANSMIT BLOCK
TRANSMIT PROMPT SEQUENCE
GET REPLY
IF REPLY IS AN ACK
THEN GOODTX = TRUE
ELSE

~~u~mER-OF-NAKS = ~~~ER=OF=NAKS + 1

END

IF NUMBER-OF-NAKS >= 5
THEN

END

TRANSMIT ABORT BLOCK
GOODTX = TRUE
END-OF-FILE = TRUE

UNTIL GOODTX = TRUE
END
EXIT

Fig. 4-7. Algorithm for Tekhex transmit program.

3936-28

4-17

Formatted Transfers

This generai aigorithm is presented in pseudo-code in FIg.
4-8.

Conversion Programs. This discussion gives two algorith
ms for converting a file of object code into Tekhex format.
The first algorithm is for conversion to Standard Tekhex,

NAK-COUJ'.lTER = 0

END-OF-TRANSMISSION = FALSE
WHILE NOT END-OF-TRANSMISSION

CLEAR ERROR FLAG
READ A TEKHEX BLOCK FROM THE RECEIVE LINE
IF THE BLOCK STARTS WITH A "j" AND BLOCK-LENGTH <= 71

OR THE BLOCK STARTS WITH A "%" AND BLOCK-LENGTH <= 255

THEN
IF BLOCK IS A TERMINATION BLOCK
THEN

VERIFY CHECKSUM
IF ERROR
THEN SET ERROR FLAG

Intersystem Communication-8540 System Users

and the secona IS for conversion to Extended Tekhex.
Because of the wide variation in object file formats from
assembler to assembler, it is possible to give only very
general algorithms.

ELSE **NO ERROR IN TERMINATION BLOCK**

END
END

WRITE BLOCK TO FILE
~Nn-OP-TRft~SMISSION = TRl~
TRANSMIT ACK, END-OF-LINE
TRANSMIT PROMPT SEQUENCE

IF BLOCK IS A NOT A TERMINATION BLOCK
THEN

VERIFY BYTE COUNT
VERIFY CHECKSUM(S)
IF ERROR
THEN SET ERROR FLAG

~Nn

END

**NO ERROR IN DATA OR S~vBOL BLOCK~~
WRITE BLOCK TO FILE
TRANSMIT ACK, END-OF-LINE
TRANSMIT PROMPT SEQUENCE
NAK - COUNTER = 0

END
ELSE **BLOCK FOR¥AT IS BAD**

SET ERROR FLAG
END
IF ERROR FLAG S~1'

THEN

NAK-COUNTER = NAK-COUNTER +
IF NAK-COUNTER >= NAK-LIMIT
THEN **IF h~u"MEER OF NAKS EXCEEDS NAK-LINiII,

TRANSMIT ABORT BLOCK ABORT THE TRANSMISSION**
END-OF-TRANSMISSION TRUE

END
ELSE

END

TRANSMIT NAK, END-OF-LINE
TRANSMIT PROMPT SEQUENCE

END
END
EXIT

4-18

Fig. 4-8. Algorithm for Tekhex receive program.

3936,.1

Intersystem Communication-8540 System Users

Standard Tekhex Conversion Program.

1. Discard any header information and scan for the first
block of code.

2. Read the block of code.

3. If there are no more blocks:

a. Generate a termination block.

b. Stop execution.

4. Strip off any non-object code information from the
block.

5. Check the block for valid input format.

6. Start the output block with a slash.

7. Immediately after the slash, append the 4-digit load
address for the block.

8. Determine the byte count n, where n is the number of
bytes of object code in the block. Placethe byte count in
the output block immediately following the load
address.

DISCARD HEADER INFORMATION
END-OF-FILE = FALSE
WHILE NOT END-OF-FILE

READ BLOCK FROM INPUT FILE
IF NO MORE BLOCKS
THEN END-OF-FILE = TRUE
ELSE

IF BLOCK IS A TERMINATION BLOCK
THEN

Formatted Transfers

9. Calculate the first checksum as the sum of the
individual hexadecimal digits of the load address and
the byte count. Append this value immediately
following the byte count.

10. Put the n bytes of object code into the block,
immediately following the first checksum. While
performing this step, calculate the second checksum
as the sum, mod 256, of the 2n hexadecimal digits in
the object code.

11. Write the block to the output file.

12. Go to step 2.

This general algorithm is presented in pseudo-code in Fig.
4-9.

SAVE TRANSFER ADDRESS FOR TEKHEX TERMINATION BLOCK
END-OF-FILE = TRUE

END

END
ELSE

END

SAVE LOAD ADDRESS
STRIP NON OBJECT CODE INFOR¥~TION FROM BLOCK
CHECK FOR VALID FORMAT
IF ERROR
THEN

OUTPUT ERROR MESSAGE
END-OF-FILE = TRUE

END
ELSE

OUTPUT-BLOCK [01 = "I"
DETERMINE LOAD ADDRESS

END
END

OUTPUT-BLOCK [1 .. 4] = 4-DIGIT LOAD ADDRESS
DETERMINE BYTE COUNT
OUTPUT-BLOCK [5 .. 6] = 2-DIGIT BYTE COUNT
CALCULATE FIRST CHECKSUM
OUTPUT-BLOCK [7 .. 8] = 2-DIGIT CHECKSUM
OUTPUT-BLOCK [9 .. 2n+8] = OBJECT CODE
CALCULATE SECOND CHECKSUM
OUTPUT-BLOCK [2n+9 .. 2n+10] = 2-DIGIT CHECKSUM
WRITE OUTPUT-BLOCK TO FILE

GENERATE TEKHEX TERMINATION BLOCK
EXIT

Fig. 4-9. Algorithm for Standard Tekhex conversion program.

REV JAN 1983

3936·30A

4-19

Formatted Transfers

Extended Tekhex Conversion Program. This algorithm
makes the following assumptions:

• The object flie may contain program :;yrnuois and
section information as well as executable object code.

• All the usable information in each block is output to the
Tekhex file befOie the next block is read from the object
file. (You may find it more useful to save the program
symbois in a tabie as you proceed through the object file,
and generate your symboi biocks from the symbol table
at the end of the program.)

• At most one data block and/or one symbol block is
generated for each block read from the object file: there
are no checks to verify that the maximum block length
(255) has not been exceeded.

• The variable n is used to represent the number of digits
in a variable-length number. The value of n may be
constant throughout the pro.gram, or it may be different
for each number you encode (for example, if you choose
to eliminate leading zeros). Similarly, the variable s
represents the number of characters in a variable
length symbol.

Here is the algorithm:

1. Discard any header information and scan for the first
block of code or symbols.

2. Read the block.

3. If there are no more blocks:

a. For every undefined section, generate a symbol
block with a section definition field.

Intersystem Communication-8540 System Users

4. Strip off any extraneous information.

5. Check the block for valid input format.

6. if the biock contains execuiaoie ubject code:

a. Start the output block with a percent sign.

b. Set the block type to 6 (data block).

c. Place the load address in the biock.

d. Place the object code in the block.

e. Determine the block length and checksum and put
them in the block header.

f. Write the block to the output file.

7. If the block contains program symbols or section
information:

a. Start the output block with a percent sign.

b. Set the block type to 3 (symbol block).

c. Place the name of the section that contains these
symbols in the block.

d. If the base address and length of the section are
available and have not been output previously,
create a section definition field after the header
field.

e. For each symboi in the biock, create a symboi
definition field containing the symbol, its type, and
its value.

f. Determine the block length and checksum and
place them in the block header.

g. Write the block to the output file.

8. Go to step 2.

b. Generate a termination block.

c. Stop execution
This algorithm is presented in pseudo-code in Fig. 4-10.

DISCARD HEADER INFORMATION
END-OF-FILE = FALSE
WHILE NOT END-Of-fILE

READ BLOCK FROM INPUT FILE
IF NO MORE BLOCKS
THEN ENu-OF-FILE = TRu~
ELSE

4-20

IF BLOCK IS A TERMINATION BLOCK
THEN

SAVE TRANSFER ADDRESS FOR TEKHI!;X TI!;HMINAtlON BLOCK
END-OF-FILE = TRUE

END
ELSE

CHECK FOR VALID FORMAT
IF ERROR
THEN

END

OUTPUT ERROR MESSAGE
END-OF-FILE = TRUE

Fig. 4-10, Algorithm for Extended Tekhex conversion program. (part 1 of 2)

3936-31

Intersystem Communication-8540 System Users

END

END
END

ELSE

END

IF BLOCK CONTAINS EXECUTABLE CODE
THEN **GENERATE DATA BLOCK**

OUTPUT-BLOCK [OJ = "%"
OUTPUT-BLOCK [3J = "6"
OUTPUT-BLOCK [6J = n
OUTPUT-BLOCK [7 .. 6+nJ = n-DIGIT LOAD ADDRESS
OUTPUT-BLOCK [7+n .. 6+n+2mJ = m BYTES OF OBJECT CODE
OUTPUT-BLOCK [1 .. 2J = 6+n+2m **2-DIGIT BLOCK LENGTH**
OUTPUT-BLOCK [4 .. 5J = 2-DIGIT CHECKSUM
WRITE OUTPUT-BLOCK TO FILE

END
IF BLOCK CONTAINS SYMBOLS OR SECTION INFORMATION

THEN **GENERATE SYMBOL BLOCK**

END

OUTPUT-BLOCK [OJ "%"
OUTPUT-BLOCK [3J = "3"
OUTPUT-BLOCK [6J = s
OUTPUT-BLOCK [7 .. 6+sJ = s-CHARACTER SECTION NAME
P = 7+s **p POINTS TO NEXT AVAILABLE SPOT IN OUTPUT-BLOCK**
IF SECTION NOT ALREADY DEFINED

THEN IF BASE ADDRESS AND LENGTH ARE AVAILABLE
THEN **GENERATE SECTION DEFINITION FIELD**

END

OUTPUT-BLOCK [PJ = "0"
OUTPUT-BLOCK [p+lJ = n
OUTPUT-BLOCK [p+2 .. p+l+nJ = n-DIGIT BASE ADDRESS
P = p+n+2
OUTPUT-BLOCK [PJ = n
OUTPUT-BLOCK [p+l .. p+nJ = n-DIGIT SECTION LENGTH
P = p+n+l
MARK SECTION AS DEFINED

ELSE MARK SECTION AS UNDEFINED
GENERATE SYMBOL DEFINITION FIELDS
FOR EACH SYMBOL

END

OUTPUT-BLOCK [PJ = SYMBOL TYPE
OUTPUT-BLOCK [p+lJ = s
OUTPUT-BLOCK [p+2 .. p+l+sJ = s-CHARACTER SYMBOL
P = p+s+2
OUTPUT-BLOCK [PJ = n
OUTPUT-BLOCK [p+l .. p+nJ = n-DIGIT VALUE
p = p+n+l

OUTPUT-BLOCK [1 .. 2J = p-l **2-DIGIT BLOCK LENGTH**
OUTPUT-BLOCK [4 .. 5] = 2-DIGIT CHECKSUM
WRITE OUTPUT-BLOCK TO FILE

FOR EACH UNDEFINED SECTION
GENERATE SYMBOL BLOCK WITH SECTION DEFINITION FIELD

GENERATE TEKHEX TERMINATION BLOCK
EXIT

Fig. 4-10. Algorithm for Extended Tekhex conversion program. (part 2 of 2)

Formatted Transfers

3939·31

4-21

The COM Command

The COM Command
The COM command specifies the details of the
communication protocol that the 8540 is to use with your
host computer. This discussion explains the parameters of

the COM command.

All COM parameters are optional and may be entered in
any order and in any combination that will tailor the
response of the 8540 to the host computer.

Echo Parameter (E=)

This parameter selects remote or local echoing of
characters entered from the 8540 system terminal. E=R
(remote echo) indicates that the host computer echoes the
characters entered from the 8540 system terminal. E=L
(local echo) indicates that the host computer does not echo
characters entered from the 8540 system terminal, and
thus the echo must be provided locally (by the 8540). The
default value is E=R.

Linefeed Parameter (L=)

Th!s parameter allc'v·v's the 8540 system t6imiiial to include
or omit a linefeed on the system terminal after a carriage
return is sent to the terminal. L=I (include linefeed)
indicates that the host computer does not output a linefeed
to the terminal after a carriage return is entered, so the
8540 supplies the linefeed. L=O (omit linefeed) indicates
that the host computer sends a linefeed to the terminal
after a carriage return is entered. The default value is L=O.

Prompt Parameter (P=)

This parameter specifies the prompt sequence used by the
host computer communicating with the 8540. The prompt
sequence represents the characters that the host computer

Intersystem Communication-8540 System Users

sends when it is ready to receive data. This is not
necessarily the system prompt of the host computer. The
default value for this parameter !s no prompt sequence. !f
you omit the prompt parameter, the 8540 does not wait to
receive a prompt sequence from the host computer before
sending data.

The prompt sequence consists of an even number of up to
32 hexadecimal digits, iepresenting up to 16 ASCII
characters. You may not enter spaces between the digits.

The 8540 ignores the prompt sequence except during data
transfers.

Turnaround Delay Parameter (T=)

Some computers require a delay between displaying their
prompt sequence and accepting input. The turnaround
delay parameter allows you to ensure that, after receiving
the prompt sequence from the host, the 8540 will wait for
the appropriate amount of time before it sends a reply.

The T parameter has a range of 00 to FF (hexadecimal),
where each unit has a value of 100 milliseconds. For exam
ple, T = 04 sets the turnaround delay to 400 milliseconds.
The default value for this parameter is T=OO. (For COM
Version 4.1 and later versions, the delay is specified in 10-
millisecond units, so T =04 represents 40 milliseconds.)

Character Transmission Format (M=)

This parameter specifies the character transmission
format required by the host computer when it receives or
transmits data. Table 4-13 lists the transmission
characteristics corresponding to values for M. The default
value for this parameter is M=4.

Table 4-13
Character Transmission Formats Corresponding to Values for M

Total
Start Stop Data Significant Parity Transmitted

ivi 6its 6its Bits Bits Parity Bits Bits
- -- -- -.-

0 1 2 7 7 even 1 11
1 1 2 7 7 odd 1 11
2 1 1 7 7 even 1 10
3 1 1 7 7 odd 1 10
4 I 1 2 1 S 7 or Sa I none I 0 I 11 I

5 I 1 I 1 J 8 7 or 8a none 0 10
6 I __ l_~_!. 8 7 or 8a Leven

I
1

I
11

7 1= __ .. _}__ _~ ___ -=t _m _~ ____ t. 7 or 8 a 1 11 odd

a High-order bit is set to 0 by the 8540 in ASCII transfers.

4-22 REV JAN 1983

Intersystem Communication-8540 System Users

Error Check Parameter (C=)
This parameter allows you to override the COM error
checking facilities on the remote communication port. If
you specify C=I (ignore errors), the 8540 ignores any
condition that causes a communication error, and
continues execution. If you enter C=T (terminate on error),
control leaves COM and passes to OS/40 if any
communication error occurs. The default value for this
parameter is C=T.

Load Module Format (F=)
This parameter specifies the message block format to be
used in formatted uploads. If this parameter is omitted,
blocks are transmitted in Extended Tekhex format. F=T
specifies Standard Tekhex format. COM accepts message
blocks in either Tekhex format, regardless of the F
parameter.

End-of-Line Parameter (EOL=)

This parameter specifies the character sequence used by
the host to mark the end of a line of text, such as a host
command, a line of ASCII data, or a Tekhex message block.

The character sequence is specified as an even number of
up to 32 hexadecimal digits, representing 16 characters.
The default end-of-line parameter is EOL=OD (a carriage
return).

Handshaking Parameter (HS=)

The parameter HS=OFF eliminates the ACK/NAK
response from the protocol of a formatted transfer. In a
download, COM normally responds with an ACK or NAK
each time it receives a message block from the host. When
handshaking is OFF, COM gives no response. However,
checksums are still computed and checked, and if any are
found to be incorrect, COM issues an error message when
the transfer is complete. In an upload, COM expects no
ACK/NAK response from the host.

Turning off handshaking has no effect on the P (prompt
sequence) and T (turnaround delay) parameters. COM still
looks for the host's prompt sequence (if any) and waits the
indicated turnaround delay (if any) before continuing.

REV JAN 1983

The COM Command

Character Substitution Parameter (SUB
xx=yy)

This parameter specifies one or more character substitu
tions to be performed by COM on data transmitted to or
from the host. Each substitution construct consists of a pair
of character codes (represented as two-digit hexadecimal
numbers) separated by an equal sign. When the first charac
ter is received from the host, COM substitutes the second
character. When the second character is to be sent to the
host, COM substitutes the first. Multiple substitution con
structs can be strung together, separated by slashes -
SUB 74=24/75=25/78=30, for example.

Byte Count Parameter (B =)
This parameter specifies the number of bytes of object code
that COM will place in each data block during formatted
uploads. (Each byte is encoded as two hexadecimal digits.)
This parameter is supported only for COM Version 4.1 and
later versions. This parameter is ignored if you specify F = T.
The byte count is specified as a two-digit hexadecimal num
ber in the range 01-76. The default count is 20 (32 decimal).
Any number outside the range 01-76 yields a byte count of
76 (118 decimal).

Hardware Requirements

General Information
The 8540 1/0 device for intersystem communication is an
ACIA (Motorola 6850 Asynchronous Communication
Interface Adapter) connected to REMOTE jacks J1 01 and
J102 on the back of the 8540. Both jacks are RS-232-C
compatible; these are the only jacks for which COM
interface procedures are implemented.

Jack J1 01 is a 25-pin male plug designed as an interface
for data terminal equipment (DTE). Jack J1 02 is a 25-pin
female plug designed as an interface for data communica
tion equipment (DCE). The jack you select and the setting of
the MODE SELECT switch on the 8540 rear panel
determine how the 8540 uses the various RS-232-C
Signals. See Table 4-14.

4-23

Hardware Requirements Intersystem Communication-8540 System Users

Tabie 4-14
Signals at 8540 Remote Port

--------.,------------------ -------------

Signa!
Description

Pin 1-GRD

Pin2-TX

Pin 3-RX

Pin 4-RTS

Pin 5-CTS

Pin 6-DSR

Pin 7-GRD

Pin 8-DCD

Pin 20-DTR

I

Jack J 101 (DTE)
MODE SELECT
Switch Setting

I ___ .. I '"
I U I t: I I U I C£

I Protective Ground

Output: Data
from 8540

Input: Data
from external
computer

I
Output. Goes
high when 8540

I has data to send

Input: Must be
high before 8540
sends data

Input: Ignored:

Signal Ground

Input: Must be
high before 8540
accepts data

Output Always
, hinh

'''::1''

Output: Data
from 8540

Input: Data
from external
computer

I
Output. Goes
high when 8540

I has data to send

Input: Ignored:

I nput: Must be
high before 8540
sends data

Input: Must be
high before 8540
accepts data

Output: Always
, hinh
I- .~ ..

The type of equipment you have determines which jack you
will use. In general, if the external computer's RS-232-C
1/0 port has a female plug, you'll use jack Jl 01 on the 8540
and set the MODE SELECT switch to DTE1 or DTE2. If the
external computer's 1/0 jack has a male plug, you'll use
jack J1 02 on the 8540 and set the MODE SELECT switch to
CNTL (L) or DCE.

Baud Rate

The baud rate at which the REMOTE jacks operate is switch
selectable from 110 baud to 9600 baud. The baud switch is
located immediately to the right of jack J1 02 on the 8540
rear panel.

The maximum recommended transfer rate for an unformat
ted transfer is 2400 baud. Formatted transfers should pro
ceed successfully at up to 9600 baud, depending on the
limitations of the host.

4-24

I """'T' ,,\
1\,,1'\11 L \L/

Output: Data
from 8540

Input: Data
from external
computer

I
Output. Always
high

Input: Ignored

Input: Ignored

Input Ignored

I Output- Always
I hi h 9

Jack J1 02 (DCE)
MODE SELECT
Switch Setting

I ("I\.ITI 11\ I · .. · ~ \~I

Input: Data Input: Data
from external from external
computer computer

Output: Data Output: Data
from 8540 from 8540

. - I

I accepts data I
I

Input. Must be I Input. Ignored
high before 8540

Output: Goes Output: Always
low when 8540 high
sends data

Output: Always Output: Always
high high

OutDUt: Always Output: Always
high high

I Input: Must be Input Ignored
! hi h before 8540 g
I sends data

Modem Considerations

When using a modem to connect the 8540 with an external
computer, be sure that the modem is operating in full
duplex mode.

Remote Port Status Register

An 8-bit status register is associated with the ACIA device.
When you are not transferring files, you can display the
contents of the status register by entering the command
line

(null)S <CR>

The 8540 will respond with a 2-digit hexadecimal number
representing the status of the ACIA. Table 4-15 describes
what each of the bits in the status register represents.

REV JAN 1983

Intersystem Communication-8540 System Users

Table 4-15
Remote Port Status Register Bits

Bit
No. a Set by Cleared by Use

0 Byte received Reading Determine
by ACIA. received byte whether byte

in ACIA. received.
--- _.- . -~- '--- ~--

1 Byte moved Writing byte Determine
to ACIA into transmit whether
shift-out data reg i ster. transmit data
register. register

ready for
next byte.

--_."

2 Data carrier Carrier signal Test of com-
signal lost. detected at munications
No connection ACIA. connection.
at REMOTE
port.

-_ .. _- -_._-------
3 Incoming Incoming Determine

CTS signal CTS signal whether
low. high. external

device is
ready to
receive data.

---.-------
4 Byte in ACIA Reading byte Test for

has error in or receiving valid data
stop bits next byte byte.
(framing from remote
error). communica-

tion port.
-.... --~----------..

5 Byte received Reading Test for
from external received data lost data.
device af'ld byte
previous byte
not yet read.
Previous byte
is overwritten.

6 Parity error Reading Test for a valid
in received cu rrent byte data byte.
byte. or receiving

next byte.
-------.------- 1--'---

7 Transmit data For a transmit Test for
register interrupt, occurrence of
empty or writing the interrupts.
receipt of byte next byte
byte into clears the
ACIA and interrupt. For
interrupt a receive
enabled. interrupt,

reading
the received
byte clears

l the interrupt.

a Bit number 7 is the most significant bit.

Establishing Communication

Establishing Communication
To prepare the 8540 for operation with a host computer,
you must first establish a physical connection between the
two computers. To do this, plug one end of an RS-232-C
cable into a host computer RS-232-C compatible terminal
port. Connect the other end of the RS-232-C cable to the
REMOTE port on the 8540 rear panel. (Refer to the
"Hardware Requirements" discussion earlier in this
subsection to determine which jack and MODE SELECT
switch setting are appropriate.)

Now use the COM command to establish communication
with the host. After you have established initial
communication, the 8540 acts as a terminal to the host.
You can now transfer data to and from the 8540: see the
following discussion of "Data Transfers."

Exiting from COM
When the 8540 is acting as a terminal to the host. you may
exit the COM subsystem at any time by entering the
command

(null) (escape)

where (escape) is the ESC key on your terminal.

If you are performing a transfer and want to exit the COM
subsystem, you must first abort the transfer by pressing the
BREAK key. This will cause the 8540 to resume acting as a
terminal to the host. You can then exit COM by entering
(null)(escape).

Data Transfers
Once your 8540 is acting as a terminal to the host
computer, you can initiate the transfer of data between the
two computers. The general format for uploading and
downloading data is given in the following paragraphs. You
can abort a data transfer at anytime by pressing the BREAK
key on the 8540 system terminal.

. Formatted Transfers
The following procedures transfer data between Tekhex
files on the host and program/prototype memory in the
8540.

Formatted Download. The following command line
downloads a Tekhex load module to 8540 program/
prototype memory. Program symbols in the load module
are placed in the 8540's symbol table, for use in symbolic
debug.

host-command(null) <CR>

4-25

Data Transfers

host-command is the host computer command to initiate
the execution of your host computer program for formatted
downloads.
Inull\ inrlic~tes that the rest of the command line is a
~om~and to the 8540. Since there is no command
following the null character, the 8540 recognizes that the
transfer is a formatted download.

With COM Version 4.1 and later versions, COM displays an
asterisk on the system terminal and sends an ACK to the
host each time a block is received successfully. If the block
contains errors, COM displays an underscore and sends a
NAK to the host.

In earlier versions, COM displays an asterisk each time it
receives a block. If the block contains errors, COM sends a
NAK to the host; otherwise COM sends an ACK and dis
plays the load address and byte count of the block.

When COM receives a symbol block successfully, it reports
the section name to the system terminal. If the block con
tains errors, COM may store erroneous symbols or values in
the symbol table before detecting the error. If you see COM
NAK in a symbol block, beware of errors in the symbol table.
You may need to reSELect the emulator (to clear the symbol
table) and download the file again.

When the transfer is complete, the following message
appears on the 8540 system terminal:

DNLOAD:

Formatted Upload. The following command line uploads
selected blocks of 8540 program/prototype memory to the
host in Tekhex fOimat.

host-command(null)lowaddl hiaddl
lowaddZ hiadd2 ... transadd <CR>

host-command is the host computer command that
initiates the execution of your host computer program for
formatted uploads.
(nu") indicates that the rest of the command line is a
command to the 8540.
lowadd1 is the low address of a block of 8540 program
memory to be transferred.
hiadd1 is the high address of a block of 8540 program
memory to be transferred.
lowadd2 is the low address of another block of 8540
program memory to be transferred.
hiadd2 is the high address of another block of 8540
program memory to be transferred.
transadd is the beginning execution address for the code in
the transferred blocks.

No program symbols are uploaded from the 8540.

When the transfer is complete, the following message
appears on the 8540 system terminal:

UPLOAD:

4-26

Intersystem Communication-8540 System Users

Unformatted Transfers

The following procedures copy data between files on the
host and I/O devices connected to the 8540.

Unformatted ASCII Download. Here is the command
syntax for an unformatted ASCII download:

host-command(null»device <CR>

host-command is the hOSi computer command to dispiay a
text file on ihe ierminai.
(nu") indicates that the rest of the command line is a
command to the 8540.
> indicates that the transfer is an unformatted ASCII
download.
device is the 8540 device (for example, LPT) to which the
downloaded data is to be written.

When the transfer is complete, the following message
appears on the 8540 system terminal:

RIOT:

Unformatted Binary Download. Here is the command
syntax for an unformatted binary download:

host-command(null)=device <CR>

host-command is the host computer command to dump a
binary file to the terminal.
(nu") indicates that the rest of the command line is a
command to the 8540.
= indicates that the transfer is an unformatted binary
download.
device is the 8540 device (for example, PPTP) to which the
binary data is to be written.

When the transfer is complete, the following message
appears on the 8540 system terminal:

RIOT:

Unformatted ASCII Upload. Here is the format for an
unformatted ASCII upload from the 8540 to the host
computer:

host-command(null)<device <CR>

host-command is the host computer command that reads
text from the terminal and transfers the input to a file on the
host.
(null) indicates that the rest of the command line ~s i'!

command to the 8540.
< indicates that the transfer is an unformatted ASCII
upload.
device is the name of the 8540 device (for example. PPTR)
that provides the data to be transferred to the host
computer.

When the transfer is complete, the following message
appears on the 8540 system terminal:

RIOT:

REV JAN 1983

Intersystem Communication-8540 System Users

The 8540 does not send an end-of-file message to the host.
When you see the RIOT: message, enter your host's end-of
file character at the system terminal.

Unformatted Binary Upload. Here is the format for an
unformatted binary upload from the 8540 to the host
computer:

host-command(null)+device <CR>

host-command is the host computer command that reads
binary data from the terminal and transfers the input to a
file on the host.
(null) indicates that the rest of the command line is a
command to the 8540.
+ indicates that the transfer is an unformatted binary
upload.
device is the name of the 8540 device (for example, PPTR)
that provides the data to be transferred to the host
computer.

When the transfer is complete, the following message
appears on the 8540 system terminal:

RIOT:

The 8540 does not send an end-of-file message to the host.
When you see the RIOT: message, enter your host's end-of
file character at the system terminal.

Troubleshooting
Establishing Initial Communication

Symptom

Check

Symptom

Check

REV JAN 1983

Cannot establish initial communication.

1. Verify that the optional COM interface
software has been installed in your 8540.
2. Check the COM command line for
correct syntax. Be sure that the para
meters were specified correctly.

Cannot log on or communicate with host
computer.

1. Check the REMOTE port baud rate
switch on the 8540 rear panel. The rate
selected must match that of the modem
or output port of the host computer.
2. Verify that the MODE SELECT switch is
set properly for operation with your
equipment.

3. Check all RS-232-C control signalsl
lines in the interface.
4. Verify the connection to the correct
8540 rear panel REMOTE port. J101 or
J102.
5. Be sure that the M parameter in the
COM command corresponds to the host
computer's data transmission format.
6. Exit from COM and return to OS/40 by

Symptom

Check

Troubleshooting

entering (null)(escape) on the 8540's
terminal. Then restart the system.

Random characters displayed on the
terminal, or improper display when
attempting to log on to the host computer.

1. Check for proper baud rate selection on
the 8540 rear panel REMOTE port.
2. Be sure that the M parameter in the
COM command corresponds to the host
computer's data transmission format.

Attempting a Formatted Download to the
8540

Symptom

Check

Symptom

Check

Symptom

No reaction after typing download trans
fer request.

1. Check the download transfer request
for compatability with the required host
computer command.
2. If E=R was specified in the COM
command, check to see if the host
computer is echoing all carriage returns
sent to it. If the host computer does not
echo the carriage returns. at the end of
the download transfer request command,
the 8540's download routine will not
execute properly.

Host computer's download program is
inoperative.

1. Check the download program 1/0
assignments. If the program output is not
assigned to the terminal corresponding
to the line to the 8540, the 8540 will not
receive the output.
2. Verify that the download command
line ended with a null character.
3. Verify that the download program in
the host computer is actually starting
execution.
4. Verify that the file being downloaded is
in Tekhex format.
5. Verify that the host computer is
sending an end-of-line sequence (as
specified by the EOl parameter of the
COM command) at the end of each
Tekhex block.

Download program transmits one or
more blocks and then hangs up.

4-27

Troubleshooting

Check

Symptom

Check

1. Verify that the prompt sequence was
correctly specified in the COM command.
2. Test the download program by omitting
the null character from the command line
used to start the download. The output
hom the host computer should now be
displayed on the terminal. Enter positive
and negative acknowiedgments manu
aiiy and step the program through the
download sequence.
3. Verify that the turnaround delay
parameter, T, is correctly specified in the
COM command.

The 8540 repeatedly sends negative
acknowledgments for the first block and
causes the download program to abort.

1. Verify that the Tekhex block contains
the correct checksum(s).

Attempting a Formatted Upload from the
8540
Symptom

Check

Symptom

Check

Symptom

Check

4-28

No reaction after typing transfer request.

1. Verify that the transfer request
command was entered correctly.
2. If E=R was specified in the COM
command, check to see if the host
computer is echoing all carriage returns
sent to it. If the host computer does not
echo the carriage returns at the end of
the download transfer request command,
the 8540's upload routine will not
execute properly.

Host computer's upload program is
inoperative.

i. Verify that the prompt sequence was
correctly specified in the COM command.
2. Verify that the upload program on the
host computer is sending a positive or
negative acknowledgement after the first
message block is received.

The upload program on the host computer
repeatedly sends negative acknowledge
ments, and eventually aborts.

1. Verify that the protocol in the host
computer upload program is correct.

Intersystem Communication-8540 System Users

2. Verify that the byte count logic in the
host computer upload program is correct.
3. Verify that the checksum logic in the
host computer upload program is correct.
4. Verify that the input buffer in the host
upload piOgram is of sufficient length.

Attempting an Unformatted ASCII or
Binary Download to the 8540
Symptom

Check

c,, _____ + ____
vY'lltJlUIII

Check

No reaction after typing download transfer
request.

1. Verify that the host computer's portion
of the command is a valid host-computer
to-terminal copying command.
2. Verify that the 8540's portion of the
command has no embedded spaces and
is of the form

(null) >device <CR> (ASCII)

or
(null)=device <CR> (binary)

3. If using a modem, check to see if any
data is being received by the modem.
4. All of the data may have been
transmitted, but the 8540 may not have
received the the end-of-transmission
prompt. Recall that a unique prompt
sequence must be transmitted after the
file has been transmitted. That prompt
sequence must match the prompt se
quence that you defined when you
entered the the COM command. If the
8540 is waiting for the end-of-transmission
prompt, you can manually exit the transfer
process by pressing the BREAK key.

Dovvnload begins, but at some point the
file starts appearing on the 8540 system
terminal.

1. Verify that the prompt sequence that
you defined when you entered the COM
command appears only at the end of the
file to be downloaded. If the prompt
sequence appears anywhere within the
body of the file to be transferred, the
8540 will stop writing information to the
selected device and start writing infor
mation to the system terminal.

REV JAN 1983

Intersystem Communication-8540 System Users

Attempting an Unformatted ASCII or
Binary Upload from the 8540

Symptom

Check

or

Symptom

Check

No reaction after typing upload transfer
request.

1. Verify that the host computer's portion
of the command is a valid terminal-to
host-computer transfer command.
2. Verify that the 8540's portion of the
command has no embedded spaces and
is of the form

(null) <device <CR> (ASCII)

or
(null) +device <CR> (binary)

3. Verify that the prompt sequence
specified in the COM command is
correct. If you specify a prompt sequence
on an ASCII upload, the host must
respond with that prompt every time it
receives a line from the 8540.
4. Verify that a valid 8540 device was
specified as the sou rce of the upload.
5. Restart the 8540.

Partial data transfer with the loss of the
first part of the data. Also, large gaps in
the received file.

1. Verify that the turnaround delay
parameter, T, is big enough. If the T
parameter was not specified, it may have
to be specified to prevent ioss of the
beginning of the data. Insufficient turn
around delay causes the loss of an initial
portion of each transmission made.
2. Verify that the proper P (prompt
sequence) parameter was specified in
the COM command line. If no prompt
sequence is specified, the 8540 may be
transmitting information before the host
computer is ready to accept input.

Troubleshooting

Commands for Intersystem
Communication
These spaces are provided for you to write the command
sequences that you will use with your 8540 and your host
computer.

Establishing Initial Communjcation

Formatted Download

Formatted Upload

Unformatted ASCII Download

Unformatted Binary Download

Unformatted ASCII Upload

Unformatted Binary Upload

4-29

8540 System Users

Section 5
EMULATION

Page

Introduction 5-1

The Emulator 5-1

Emulation Modes 5-1

Selecting the Target Processor 5-3

Basic Emulation Tasks 5-3

Memory ... 5-3
Executing the Program 5-4
Monitoring the Program 5-4
Modifying the Program 5-5
Timing ... 5-5
SVCs .. 5-6
Interrupts .. 5-6

Considerations for Modes 1 and 2 5-6

Memory ... 5-7
Executing the Program 5-7
SVCs .. 5-7
Interrupts .. 5-7

Symbolic Debug. .. 5-7

Using Symbolic Debug 5-9
Other Symbolic Debug Commands 5-9

The Memory Allocation Controller 5-9

Memory Spaces 5-11
Memory Allocation 5-11
MAC Commands 5-11

@

Page

The Trigger Trace Analyzer 5-1 3

Overview .. 5- 1 3
Events and Triggers 5-14
Breakpoints 5-16
General Purpose Counters 5-16
Acquisition Memory 5-17
ITA Summary 5-19

Table
No.

TABLES

5-1 Emulation Modes 5-3
5-2 Counter Output Options 5-17

Fig.
No.

ILLUSTRATIONS

5-1 Emulation modes 0, 1, and 2 5-2
5-2 Trace display without symbolic debug 5-8
5-3 Trace display with symbolic debug 5-8
5-4 The top plane bus 5-10
5-5 68000 and Z8001 /Z8002 memory spaces .. 5-10
5-6 Generating a trigger signal 5-14
5-7 Acquisition Memory 5-18

5-i

8540 System Users

Section 5

EMULATION

INTRODUCTION
The 8085A emulator demonstration run in the Learning
Guide of this manual showed you howto load, execute, and
monitor a program in emulation mode O. This section,
Emulation, discusses the following topics:

• " the three emulation modes

• the basic emulation tasks, many of which were
presented in the Learning Guide

• additional considerations for emulation modes 1 and 2

• use of symbolic debug

• the Memory Allocation Controller (MAC) option

• the Trigger Trace Analyzer (ITA) option

This section describes the common uses of many OS/40
commands. For information on the syntax and limitations
of these commands, and for examples of their use, refer to
the Command Dictionary of this manual. For a more
detailed description of the ITA, refer to the Trigger Trace
Analyzer Users Manual.

THE EMULATOR
The emulator (or emulator processor) is one or more
circuit boards that reside in the 8540. The emulator

@

contains an emulating microprocessor on which your
program executes, plus control circuitry that allows you to
start, stop, and m"onitor program execution using OS/40
commands. For most emulators, the emulating micro
processor is of the same type as the microprocessor being
emulated .

The term emulator registers refers to the registers of the
emulating microprocessor. The emulator is said to be
"halted" whenever the emulating microprocessor is not

'executing your program.

As your program executes, the emulator monitors the
emulating microprocessor and intervenes when a break or
service call (SVC) occurs.

EMULATION MODES
In order to execute a microprocessor-based program, you
normally need the following pieces of hardware:

• a microprocessor on which to execute the program

• a clock to drive the microprocessor

• memory for the program to reside in

• I/O facilities: external circuitry to control or respond to
the microprocessor.

5-1

Emulation Modes

I A. Emulation Mode 0

I

I

I
I
I

System
Resources

B. Emulation Mode 1

System
Resources

I C. Emulation Mode 2

I
System

Resources

Emulator
Processor

Program
Memory

Emulator
Processor

Emulator
Processor

Prototype
Control
Probe

User
Prototype

User
Prototype

Emulation-8540 System Users

Clock

Clock

I
I !

I

I v
Memory

And
110

I

m.J
Fig. 5-1. Emulation Modes O. 1. and 2.

This figure illustrates the differences between the three emulation modes. Mode 0 uses the
81Ytuiiliul cluck, pI UYI dill memory, Clnd SVCs (which are pan of Ihe SYSIem resources;. Mode i
uses the prototype clock, either program or prototype memory, and either SVCs or prototype
I/O. Mode 2 uses the prototype clock, prototype memory, and either SVCs or prototype 1/0.

So that you may execute your program even before your
prototype hardware is available, the 8540 provides or
simulates all of the necessary hardware. Once your
prototype is built, you can begin transferring the necessary
hardware functions from the 8540 to your prototype. You

5-2

indicate which of these functions are handled by the 8540
and which are handled by the prototype by specifying the
emulation mode. Refer to Fig. 5-1 during the following
discussion.

Emulation-8540 System Users

The three emulation modes are:

• Mode a (system mode). Mode a uses the emulator clock
and program memory. Program I/O is handled through
service calls (SVCs). Until your prototype is connected to
the emulator, your program can execute only in modeO.

• Mode 1 (partial emulation mode). Mode 1 uses the
prototype's clock, and is the only mode in which the
program may access both program memory and
prototype memory. An internal memory map determines
whether a particular address refers to program memory
or prototype memory. Program I/O is handled with
prototype I/O facilities, SVCs, or both.

• Mode 2 (full emulation mode). Mode 2 uses the
prototype's clock, memory, and I/O facilities. Some
emulators support the use of SVCs in mode 2.

In all three emulation modes, the emulator takes the place
of the microprocessor that will eventually reside in the
working prototype. In modes 1 and 2, a prototype control
probe must connect the prototype to the emulator.

NOTE

Some emulators do not support SVCs in emulation
modes 1 or 2. Refer to the Emulator Specifics section
of this manual to determine whether your emulator
supports the use of SVCs in modes 1 and 2.

Table 5-1 summarizes the three emulation modes.

The "Basic Emulation Tasks" subsection describes
features that are common to all three emulation modes.
Special considerations for modes 1 and 2 are presented
later in the section.

SELECTING THE TARGET
PROCESSOR

Because your 8540 System ROM Board may contain
software for more than one microprocessor, you must
specify which microprocessor your program is written for
before you attempt to execute a program.

Basic Emulation Tasks

The SEL command selects the system software that is
appropriate for your microprocessor. For example, the
command SEL 8085 specifies that subsequent micro
processor-dependent commands refer to the 8085A
emulator. Certain emulator-related OS/40 commands
cannot be executed until an emulator has been selected.
Those commands are listed in the discussion of the SEL
command, in the Command Dictionary of this manual.

BASIC EMULATION TASKS
This subsection discusses the following aspects of
emulation:

• memory

• executing the program

• monitoring the program

• modifying the program

• timing

• SVCs

• interrupts

Except where otherwise stated, this information applies to
all thiee emulation modes. Special considerations for
modes 1 and 2 are pres'ented later in this section.

To select emulation mode a (system mode), enter the
following command:

> EM 0

In mode 0, your program executes in program memory
independently of the prototype hardware. Through SVCs in
your program, you can use the I/O facilities of the 8540 to
simulate the real-world interfaces of the prototype
microprocessor.

Memory
In emulation mode 0, the 8540's program memory takes
the place of the memory in your prototype.

Table 5-1
Emulation Modes

Emulation Mode Memory 1/0 Facilities Clock Required Hardware

0 Program SVCs Emulator Emulator

1 Program and/or Prototype and Prototype Emulator,
Prototype, (if supported) Prototype
depending on SVCs Control Probe
memory map

2 Prototype Prototype and Prototype Emulator,
(if supported) Prototype
SVCs Control Probe

@ 5-3

Basic Emulation Tasks

In order to simulate ROM modules, you can use the RO
parameter of the MAP command to designate blocks of
program memory as read-only. If your program tries to
store data into a read-only area, OS/40 generates a break
and the protected area remains unchanged.

If your 8540 has only 32K bytes of program memory, your
program can still access addresses in the range
8000-FFFF. You can use the AL command to make blocks
of existing program memory represent addresses in the
8000-FFFF range.

If you have a Z8001 IZ8002 emulator or 68000 emulator,
you shou Id have the Memory Allocation Controller
(MAC) option installed in your system in order to use
addresses outside the range of existing program memory.
The MAC option is discussed later in this section.

Executing the Program
The demonstration run in your Emulator Specifics
suppiement contains instructions for assembiing a source
program on an 8560 or other host computer. Use your host
computer to prepare binary object code from your source
program, then download the object code to your 8540. Use
the G command to begin program execution. You can use
any of several methods to stop program execution:

• Insert a HALT instruction (or the corresponding
instruction, if any, for your microprocessor) into your
program.

• i nseit an SVC such as Exit Program (function 1 A) or
Abort Program (function 1 F) into your program.

• Set a breakpoint, using the OS/40 BK command. (If you
have the TT A option installed, you may use the TT A
events and breakpoints.)

• Type CTRL-C while the program is executing.

After the program has been stopped by one of these
methods, use the G command to resume execution.

If you need to execute a program segment repeatedly to
detect an intermittent bug, use the -R or -L parameter of
the G command.

Monitoring the Program
In case you r program does not execute as expected, OS/40
provides several ways to locate the problem. The following
paragraphs describe some methods of monitoring the
program.

5-4

Emulation-8540 System Users

The TRA Command
You can use the TRA (TRAce) command to produce a
running display of the principal registers as the program
executes. Each time your program executes an instruction,
OS/40 displays a trace line that lists the instruction and
the resulting contents of the registers.

Once you have narrowed the problem down to one area of
the program, you can specify that only that area be traced.
By using the -S option of the TRA command, you can step
through critical areas one instruction at a time: you type G
when you are ready to execute the next instruction.

You can obtain an abbreviated trace that shows the logical
flow of your program. The TRA JMP option lets you trace
only jump instructions (unconditional jumps, subroutine
calls, and conditional jumps when the conditions are
satisfied).

NOTE

When any TRAce selections are in effect, your
program executes at less than normal speed even in
those parts of the program that are not traced

The BK Command
You can use the BK (BreaK) command to cause your
program to break when a particular address is accessed. By
setting a breakpoint at the end of a program segment, you
can suspend execution to verify that the segment has
executed correctly. If you suspect that your program is
straying outside a particular block of data or instructions,
you can find out by setting breakpoints at the boundaries of
the block. To clear a breakpoint. use the CLR parameter of
the BK command.

TTA Option
If you have a Trigger Trace Analyzer, you have many more
tracing and breakpoint options available to you.

The TTA automatically maintains a trace of the processor's
address bus, data bus, and control signals. The TTA can
I""I"'\l"'\ni+nr lin +"" &:A cai" ",lco ,.,,+ '""I +i " v,..., •• "',.... 1.,;_"., +h i,... + .. "'_,... +
IIIVIII"""1 ut-' LVv-r~I~ln"lwU"U LII'I~. I VU vUII V'-';;:;YV LIII';:» LIUv-';;:;UL

any time by using the DISP command.

You can also define breakpoints and other actions based on
criteria that would be too complicated to define if you used
only the BK command. For more information on the TTA,
refer to the "Trigger Trace Analyzer" discussion later in this
section.

Emulation-8540 System Users

Diagnostic Messages

You can insert high-level language statements or assembly
language SVCs (such as Write ASCII and Wait) into your
source code, so that your program issues its own diagnostic
messages as it executes.

Other Commands

We've looked at several methods of monitoring the
program. Here are some addition commands you can use:

• The OS (Display Status) command displays the full set of
registers. (For some emulators, this information is part
of the standard trace display. For others, you can obtain
this information by specifying the -L option with the TRA
command.)

• The 0 (Dump) command displays the contents of a
specified section of memory in both hexadecimal and
ASCII formats.

• The 01 (Disassemble) command translates object code in
memory back into assembly language mnemonics. 01 is
used to display blocks of instructions; 0 is used to
display blocks of data.

Modifying the Program
Once you have located a problem in your program, you have
several ways to fix it. One way is to correct the source code
and compile, assemble, link, and down load the program
over again. Often, however, you can first verify the effect of
the change by modifying the object code or registers
directly.

To change the object code or other information in memory,
you can use one of the following commands:

• The P (Patch) command stores a string of bytes or words
at a specified location in memory.

• The EX (EXam) command lets you modify an area of
memory byte by byte or word by word. Use EX instead of
P if you want to change only selected bytes, or if you
wa nt to see the previous contents of each byte before
you change it.

• The F (Fill) command fills an area of memory with a
specified value or string of values. One common use of F
is to zero out a block of memory.

To change register contents, use the S (Set) or RESET
commands. S changes only the registers you select; RESET
simulates a reset signal to your microprocessor.

You can obtain a working program by modifying your object
code, then using the SAVor COM command to upload the
modified code into a load file. Be sure to update your source

@

Basic Emulation Tasks

code to match your object code. One way to keep track of
the modifications to your object code is to use the LOG
command to create a log of your debugging session.

Timing
In emulation mode 0, the clock signal to the emulating
microprocessor is provided by the emulator. For most
em u lators, the clock freq uency in mode 0 is the sa me as the
maximum frequency allowed for the prototype clock in
modes 1 and 2. Refer to your Emulator Specifics
supplement for this clock information.

Timing a Program Segment

In order to optimize the execution time of your program, it is
useful to be able to measure the execution times of
program segments. You can obtain an accurate approxi
mation of a program segment's execution time even before
the prototype is available. Simplytimethe segment in mode
o and adjust for the difference between the emulator clock
rate and the prototype clock rate.

To time a segment, use the 8540's program clock or the
ITA's genera! purpose counters.

• The program clock increments every 100 milliseconds
during program execution. The CLOCK command turns
this clock on and off and displays the clock value. The
clock value can also be accessed through the Read
Program Clock SVC (function 11).

• The general purpose counters, which are explained later
in this section, provide more precision and versatility
than the program clock.

NOTE

When the program clock is running, your program
executes at slightly less than normal speeds.

Factors That Affect Timing

The following activities cause the emulating micro
processor to wait or halt, and so may disrupt the timing of a
program segment:

• Executing an SVC halts the emulating microprocessor
until the SVC is completed.

• Tracing with the TRA command causes the emulator to
execute your program one instruction at a time. After
each instruction, the emulating microprocessor pauses
while OS/40 determines whether a trace line is to be
displayed.

• A keystroke on the terminal momemtarily pauses the
emulator.

5-5

Considerations for Modes 1 and 2

If you must time a program segment that contains such
interruptions, use a general purpose counter of the ITA
and specify a veiY small time unit, such as dock cycies. The
general purpose counter will not count during the SVC or
trace pause.

SVCs
Service calls (SVCs) allow your program to read and write
text and binary data, and perform many other OS/40
functions. Depending on your application, you may be able
to use SVCs to help simulate the prototype circuitry your
program will have to deal with.

The Service Calls section of this manual describes each
type of SVC function in detail, and also describes the four
parts of an SVC request. These parts are:

• an liD instruction that invokes the SVC;

• a pointer in the Service Request Block (SRB) vector,
which provides a iogicai iink from each SVC invocation
to the appropriate SRB;

• a Service Request Block (SRB) that specifies the
function to be performed; and

• an liD buffer, if needed.

The Service Request Block (SRB) vector is a table of
addresses that point to the beginning of each SRB. For most
emulators, the SRB vector is assumed to begin at byte 40 of
program memory. If your program needs that memory aiea
for other uses, you can choose a different area for the SRB
vector. Use the SVC command to notify OS/40 ofthe new
location.

Similarly, the liD instruction that initiates the SVC usually
must specify a port in the range FO-F7, but you can use the
SVC command to allocate a different range of ports for this
purpose.

Phasing Out SVCS
Anothp.r use of the SVC command !s to turn SVCs ON and
OFF. Since your prototype should handle its own liD, you
will eventually want to eliminate the SVCs from your
program. The command SVC OFF suppresses execution of
SVCs: SVC invocations are simply executed as liD
instructions.

The SVC OFF feature is most useful for programs that use
SVCs for pure~y diagnostic purposes. If the SVCs perform
some vital function for the program, such as obtaining
required input, you must develop an alternate form of the
program in which the SVC functions are taken over by the
prototype

5-6

Emulation-8540 System Users

NOTE

When you set a breakpoint at an instruction that
invokes an SVC, the break occurs after the SVC is
executed.

For some emulators; execution of the SVC may
prevent OS/40 from breaking at the desired
instruction.

Interrupts
In mode 0, you have no way of triggering an interrupt line
during program execution. However, here is one way to
simulate a randomly timed interrupt:

1. Start the program.

2. Type CTRL-C to break the program at a random
location.

3. You will want your program to return to this location
when it has finished processing the interrupt. Obtain
the value of the program counter from the break
display line: use a command such as P to store this
value where your program can retrieve it (on the stack,
for example).

4. Use the G command to jump to a section of the
program that simulates the interrupt. Afterward, your
program retrieves the old program counter value and
continues from where you typed CTRL-C.

Notice that the emulator is a/ways halted when such an
"interrupt" occurs.

CONSIDERATIONS FOR
MODES 1 AND 2

In emulation modes 1 and 2, your program executes in the
prototype under 8540 control. The prototype must be
connected to the emulator via the prototype control probe.

~~~..,...,....."..... 

~~ 
Before you begin emulation in modes 1 and 2, refer to 
your Emulator Processor Installation Manual for the 
;oiiowing informatIon: 

a. electrical specifications for the probe
prototype interface: power, impedance, 
drive, etc.; and 

b. instructions on how to connect the proto
type control probe to the emulator andto the 
prototype. 

Also refer to the Emulator Specifics section of this 
manual for possible timing discrepancies between 
the prototype control probe and the microprocessor 
that it replaces. 



Emulation-8540 System Users 

Once your prototype is connected to the emulator, and the 
prototype and 8540 are turned on, verify that your program 
still executes correctly in mode a under this arrangement. If 
it does not, the prototype may be causing the problem, or 
the prototype control probe may be damaged. If you suspect 
damage, refer to your Emulator Processor Installation 
Manual for verification procedures. 

Next, use mode 1 to verify that the memory modules in your 
prototype are working correctly. When the prototype's 
memory and I/O are working correctly, you can proceed to 
mode 2 to solve the more subtle problems. 

Memory 
OS/40 maintains an internal table, called the memory 
map, that indicates which address blocks refer to program 
memory and which blocks refer to prototype memory. You 
use the MAP command to control this memory map. For 
most emulators, memory is mapped in 128-byte blocks. 

OS/40 consults the program/prototype memory assign
ment of the memory map only in emulation mode 1. In 
mode 0, only program memory is used; in mode 2, only 
prototype memory is used. However, changing the 
emulation mode does not change the memory map or 
memory contents. 

The program/prototype memory assignment (defined by 
the emulation mode and memory map) is observed by 
OS/40 when it executes your program, and also when it 
executes any command that accesses memory (for 
example, LO, P, or D). 

When you change the memory map, be sure to move the 
corresponding blocks of object code between program and 
prototype memory. You can use the LO or COM command 
to reload your entire program, or you can use MOV to copy 
selected areas of memory. 

E3 
In emulation mode 1, memory-write operations 
performed in program memory are also performed in 
the corresponding bytes of user prototype memory, 
for most emulators. 

Memory Protection 
Unlike program memory, prototype memory cannot be 
write-protected by the MAP command, for most emulators. 
The procedure "Breaking When the Program Writes in a 
Designated Memory Area," in the Operating Procedures 
section of this manual, shows you how to use the TTA to 
detect a write to a read-only area of prototype memory. 

@ 

Symbolic Debug 

Executing the Program 
In modes 1 and 2, no break occurs when your program 
executes a HALT instruction (or the corresponding 
instruction, if any, for your microprocessor), even if you set 
a breakpoint at that instruction. 

SVCs 
Refer to the Emulator Specifics section of this manual to 
determine whether your emulator supports SVCs in modes 
1 or 2. 

In mode 1, the instruction sequence that invokes the SVC 
can reside in either program memoryor prototype memory. 
The Service Request Block (SRB) vector, Service Request 
Block (SRB), and optional I/O buffer(s) must reside in 
program memory. 

In mode 2, all parts of the SVC must be located in prototype 
memory. 

In modes a and 1, the I/O instruction that invokes the SVC 
must be followed by one NOP instruction. In mode 2, the 
I/O instruction that invokes the SVC must be followed by 
two NOP instructions. 

Interrupts 
Your prototype may attempt to interrupt the emulating 
microprocessor when it is stopped during a break, SVC, or 
TRAce activity. Most emulators do not detect such 
interrupts. 

SYMBOLIC DEBUG 
NOTE 

Some emulators do not support symbolic debug. 
Refer to your Emulator Specifics supplement for this 
information. 

Symbolic debug allows you to use the symbols from your 
assembly language program in place of hexadecimal 
numbers when you are debugging. You can use your 
symbols as parameters in all OS/40 commands that accept 
expressions as parameters. For example, let's assume you 
have a segment of assembly language code having label 
START at its starting address (1 OOH) and label FINISH at its 
ending address (220H). Then the following two forms of the 
TRA command are equivalent: 

> TRA ALL 100 220 

> TRA ALL START FINISH 

5-7 



Symbolic Debug 

The command line may also include the name of the 
assembler section in which the symbol is found. This is 
useful if the same symbol is used in more than one section 
and it is not defined as a global symbol. (Refer to your 
Assembler Users Manual for information about sections 
and global symbols.) For example, if START is in section 
TEST1 and F!N!SH is in section TEST2, the TRA command 
cou Id be entered: 

> TRA ALL TEST1:START TEST2:FINISH 

In the output display, symbolic debug replaces each 
hexadecimal address with either a symbol (taken from the 
label field of your program), or its position relative to the 

LOC INST MNEM R OPER x/pc EADD RA 

I 001000 CEOOIO LDX 0010 00 
001003 5F CLR B 00 
001004 A600 LDA A 00 +0010=0010 00 
001006 ABOI ADD A 01 +0010=0011 00 
001008 C900 ADC B 00 00 
00100A AB02 ADD A 02 +0010=0012 00 
00100C 7EI055 JMP 1055 1055 00 
001055 C900 ADC B 00 00 
001057 AB03 ADD A 03 +0010=0013 00 

RB 

00 
00 
00 
00 
00 
00 
00 
00 
00 

Emulation-8540 System Users 

start of the current section (as shown in the location 
counter field of your assembler listing.) Figure 5-2 contains 
an example of a trace display without symbolic debug. 
Figure 5-3 contains an example of a trace display with 
symbolic debug. 

The "section + offset" feature is not implemented for 
absolute sections. (Refer to your Assemb!er Core Users 
Manual for information about absolute sections.) 

For most 8-bit emulators, symbols are truncated to eight 
characters when displayed. 

XREG SP CC 

0010 0001 DO 
0010 0001 D4 
0010 0001 D4 
0010 0001 D4 
0010 0001 D4 
0010 0001 04 
0010 0001 D4 
0010 0001 04 
0010 0001 D4 3936-13 

Fig. 5-2. Trace display without symbolic debug. 

This is an example of a trace display without symbolic debug. 

I LOC INST MNEM R OPER x/pc EADD RA RB XREG SP CC 

! 
SECTION: (Sectionl) 
+000 CEOOI0 LDX 0010 00 00 0010 0001 DO 
+003 5F CLR B 00 00 0010 0001 D4 
LABELOOl A600 LDA A 00 +0010=0010 00 00 0010 0001 D4 
+006 ABOI ADD A 01 +0010=0011 00 00 0010 0001 04 
LABEL002 C900 ADC B 00 00 00 0010 0001 D4 
+OOA AB02 ADD A 02 +0010=0012 00 00 0010 0001 D4 
+OOC 7EI055 JMP 1055 1055 00 00 0010 0001 04 

SECTION: (Section2) 
LABEL003 C900 ADC B 00 00 00 0010 0001 D4 

I +007 AB03 ADD A 03 +0010=0013 00 00 0010 0001 D4 3936- 14 1 

Fig. 5-3. Trace display with symbolic debug. 

With symbolic debug, each hexadecimal address is replaced with either a label or its offset 
from the beginning of a section. In this example, Section1 begins at 1000H and section2 
begins at 1050H. 

5-8 REV JAN 1983 



Emulation-8540 System Users 

Using Symbolic Debug 
To make your program symbols available for use in 
symbolic debug, you must perform the following steps: 

1. If you are using a Tektronix assembler: 

a. All assembly source files that have symbols to be 
referenced by symbolic debug must include the 
assembler directive LIST DBG. This directive 
causes the assembler to output the symbols to the 
object module, which is used by the linker. 

b. Include the DEBUG or -d command option when 
invoking the linker. For the A Series linker, enter: 

> LINK 

* LOAD loadfile 
* DEBUG 

For tl18 B Series linker, enter: 

$ link -0 loadfile -d . . . 

This directive causes the symbols and their values 
to be stored in the load module. 

c. Enter the SYMLO command, which downloads 
the symbols and their values from the load module 
to the symbol table in 8540 system memory. 
SYMLO accepts files produced by B Series as
semblers, the B Series linker, or the A Series 
linker, but does not accept unlinked files produced 
by A Series assemblers. 

2. If you are not using a Tektronix assembler, your 
program symbols and their values must be placed in 
Extended Tekhex symbol blocks and downloaded with 
the rest of your load modules, using the COM 
command. 

Enabling Symbolic Debug 
The SYMD command enables and disables symbolic debug 
in the displays of commands such as TRA and DI. Refer to 
the Command Dictionary for syntax and parameters of the 
SYMD command. 

Other Symbolic Debug Commands 
The following paragraphs describe the other commands 
used with symbolic debug: 

• The SYMLO command extracts your symbols from the 
load module and loads them into the symbol table. (The 
symbol table holds approximately 1000 symbols.) You 
can specify that the symbols be loaded from selected 
sections only. 

REV JAN 1983 

The Memory Allocation Controller 

• The ADDS command enables you to add symbols to the 
table during a debugging session. You may not add 
section names with this command. If you have not 
already loaded your symbols from the load module using 
SYMLO or COM, any symbols you add with ADDS are 
placed in a default section called NO.SECTION. If you 
later use SYMLO, the values in NO.SECTION are lost. 

• The REMS command deletes symbols from the symbol 
table. 

• The SYMB command gives the symbolic equivalent of a 
hexadecimal address. For example, using values from 
Fig. 5-3: 

> SYMB l055H <CR> 

l055H=LABEL003 

> SYMB l057H <CR> 

l057H=SECTION2+007 

• The CALC command finds the value associated with a 
symbol. For example: 

> CALC symbol 

symbol=30FFH 

Refer to the Command Dictionary for details of the 
parameters and syntax of symbolic debug commands. 

THE MEMORY ALLOCATION 
CONTROLLER 

The Memory Allocation Controller (MAC) is a hardware 
option that permits the expanded addressing capabilities of 
emulators such as the Z8001 /Z8002 and 68000 to operate 
within the confines of 8540 program memory. (The 8086 
emulator performs this function internally and does not 
need the MAC board to execute the memory allocation 
commands.) 

The MAC option consists of: 

• the MAC circuit board that inserts into the 8540 
mainframe 

• the top plane bus that connects the MAC board to the 
emulator and the Trigger Trace Analyzer (ITA) option 

Figure 5-4 illustrates the position of the top plane bus. 

5-9 



The Memory Allocation Controller Emulation-8540 System Users 

I 
I 
I 

I 

5-10 

Prototype 
Control I I Probe 

Top Piane Bus 
r4""'---~ 
" j6 

(
Emulator) 

Resources 

Program 
Memory 

Memory 
Allocation 
Controller 

Backplane Bus 

Fig. 5-4. The top plane bus. 

The top plane bus carries signals used by Large Address Space emulators. the Memory 
Allocation Controller. and the Trigger Trace Analyzer circuit boards. 

All Memory All Memory 

/ \ / ~ 
Supervisor User System Normal 

/ \ / '" / I " / I "-
Program Data Program Data Code Data Stack Code Data Stack 

I I I I I I I 

i 
I 

i I I I I I I I 
(SP) (SO) (UP) (UO) lIS~) (SO) (SS) INC) (NO) INS) 

68000 Memory Spaces Z8001/Z8002 Memory Spaces 

Fig. 5-5. 68000 and Z8001 /Z8002 Memory Spaces. 

This figure illustrates the memory spaces available with the 68000 and Z8001/Z8002 
microprocessors. You can specify up to four memory spaces for the 68000. and up to six 
memory spaces for the Z8001 /Z8002 

3936151 

3936-16 

I 



Emulation-8540 System Users 

Memory Spaces 
Both the 68000 and Z8001 IZ8002 emulators allow you to 
designate memory areas for system (supervisor) use only or 
for user (normal) use only. You can further specify that 
these system or user areas be reserved for data, program 
code, or (for the Z8001 IZ8002), the stack. These divisions 
are called memory spaces. Figure 5-5 illustrates how the 
memory spaces are divided and named for the 68000 and 
Z8001/Z8002 emulators. Figure 5-5 also includes the 
abbreviations used in the memory allocation commands. 
Refer to your 68000 or Z8001 IZ8002 Emulator Specifics 
supplement for more information on memory spaces. 

The memory spaces are differentiated by control signals 
from the microprocessor. For this reason, two or more 
blocks of memory assigned to different memory spaces can 
have the same addresses. 

Memory Allocation 
Program memory is allocated in 4K-byte blocks. Each 32K 
of program memory in your system consists of eight blocks. 
The MAC board maintains an internal allocation map to 
translate logical addresses from the emulator into 
physical addresses in program memory. 

MAC Commands 
The following paragraphs describe the commands 
associated with memory allocation. AL and DEAL affect 
program memory; MEM and NOMEM affect prototype 
memory. 

You can set a default memory space value with the MEMSP 
command. If you enter one of the memory allocation 

> AL SP:SD:4000 4FFF 

1 BLOCK(S) ALLOCATED 004000 004FFF 

> AL UD:UP:4000 4FFF 

1 BLOCK(S) ALLOCATED 004000 004FFF 

> AL 

SP SD 
UP UD 

The Memory Allocation Controller 

commands without a memory space qualifier, the 
command defaults to the MEMSP value. 

The AL (Allocate) command assigns logical addresses to 
4K-byte blocks of program memory. The command line can 
specify one or more memory space qualifiers, or none. The 
following examples use a 68000 emulator in a system 
configured with 64K of program memory. 

> AL 38000 

1 BLOCK(S) ALLOCATED 038000 038FFF 

This command allocates one 4K-byte block of program 
memory to logical addresses beginning at 38000H. OS/40 
returns the number of blocks allocated, and the block 
boundaries. 

Entering AL without parameters displays a list of the 
allocated memory, including the memory space assign
ments: SP and SO are supervisor program and supervisor 
data, respectively. UP and UD are user program and user 
data, respectively. In these examples, the default allocation 
includes all memory spaces. 

>AL 

038000 038FFF SP SD UP un 

1 BLOCK(S) ALLOCATED 15 BLOCK(S) FREE 

The display includes the number of blocks allocated and the 
number of blocks still available. 

Allocations are cumulative. The command sequence in 
Display 5-1 allocates one 4K-byte block to supervisor 
program and supervisor data, and a different 4K-byte block 
to user program and user data. The display from the AL 
command includes the allocation from the previous 
example. 

004000 
004000 
038000 

004FFF 
004FFF 
038FFF SP SD UP UD} ....... .---- previously allocated 

3 BLOCK(S) ALLOCATED 13 BLOCK(S) FREE 

Display 5-1 

5-11 



The Memory Allocation Controller 

The command sequence shown in Display 5-2 allocates 
one block of memory to each memory space, though each 
memory space has the same addresses: 1000 to 1 FFF. 

When you allocate more than one block of memory in one 
command, AL displays the allocation block by block. In the 
pY~rTlnlp in nic::nl~v ~-~ ~C::C::llrn'" th~t \lnll h~\I'" nn nthar _ .... _ ... ,.....- ... -'-t"""-, - -, ----."..., ... 1_ .. ,, __ 11_"'""" 1'_ """"VI 

memory allocated. 

> AL SP: 1000 

1 BLOCK(S) ALLOCATED 001000 001FFF 

> AL SD:I000 

1 BLOCK(S) ALLOCATED 001000 001FFF 

> AL UP:I000 

1 BLOCK(S) ALLOCATED 001000 001FFF 

> AL UD: 1000 

1 BLOCK(S) ALLOCATED 001000 001FFF 

> AL 

001000 001FFF SP 
001000 OOlFFF 5D 
001000 001FFF UP 
001000 OOlFFF UD 
004000 004FFF 
004000 004FFF 
038000 038FFF 

SP SD ) 
UP un ( .. SP SD UP UD 

7 BLOCK(S) ALLOCATED 9 BLOCK(S) FREE 

Emulation-8540 System Users 

If you attempt to allocate more memory than you have 
available, the following error message is displayed: 

No more Program memory available 

You must use the DEAL command to deallocate one or 
more blocks before you try to allocate again. 

The DEAL (Dea!!ocate) command removes a nrC\linllC tJ·....., .. ·_--
allocation, and makes one or more 4K blocks available to be 

previously allocated 

Display 5-2 

> AL SP:UP:O ZFFF 

3 BLOCK(S) ALLOCATED 000000 OOZFFF 

> AL SD:UD:O 2FFF 

3 BLOCK(S) ALLOCATED 000000 OOZFFF 

AL 

000000 OOOFFF SP UP 
000000 OOOFFF SD UD 
001000 001FFF SP UP 
001000 001FFF SD UD 
OOZOOO OOZFFF SP UP 
OOZOOO OOZFFF SD UD 

6 BLOCK(S) ALLOCATED 10 BLOCK(S) FREE 

Display 5-3 

5-12 



Emulation-8540 System Users 

reallocated. You can remove all previous allocations with 
the -A parameter, or you can specify the address range to 
be dea Ilocated. 

NOTE 
DEAL does not use the default memory space values 
from the MEMSP command: if no memory spaces are 
specified with an address, DEAL deallocates all 
memory spaces. 

The default condition for AL and DEAL is that no 
memory is allocated. 

The NOMEM (No Memory) command informs the 
emulator that no memory exists in the prototype for a given 
block of addresses. Like the AL command, the NOMEM 
command accepts memory space qualifiers, and designates 
memory in 4K-byte blocks. Entering NOMEM without 
parameters displays the current state of non-existent 
memory. Both NOMEM and MEM display the status in 
terms of memory spaces. For example: 

> NOMEM 201000 
> NOMEM 

INVALID USER MEMORY ADDRESSES 
UD: 201000 201FFF 
UP: 201000 201FFF 
SD: 
SP: 

201000 
201000 

201FFF 
201FFF 

If your program attempts to access non-existent memory, a 
break is generated and the trace line includes the message: 
"NO-PMEM" or "NO-UMEM" . 

The MEM (Memory) command informs the emulator that 
the prototype does contain memory at a given block of 
addresses. The MEM command is used to reverse a 
previous NOMEM command. You can use address 
parameters and memory space qualifiers with the MEM 
command. Entering MEM without parameters displays the 
cu rrent state of existent memory. 

NOTE 

The default condition for MEM and NOMEM is that all 
prototype memory exists. 

THE TRIGGER TRACE 
ANALYZER 

This subsection summarizes the use of the Trigger Trace 
Analyzer (ITA). For more detailed information and some 
examples of how the ITA is used, refer to the Trigger Trace 
Analyzer Users Manual. 

The TTA 

The ITA is an optional hardware product that enhances the 
emulation capabilities of your 8540. The ITA consists of 
the following modules: 

• two ITA circuit boards that insert into the 8540 
mainframe 

• two ITA interconnect cables that physically connect the 
two boards 

• a Data Acquisition Interface unit that mounts into the 
8540 rear panel 

• a Data Acquisition Probe that connects the Data 
Acquisition Interface to user-selected circuits in the 
prototype 

• the optional top plane bus that connects the TTA to the 
MAC board and certain emulators. (Refer back to Fig. 
5-4, which illustrates the top plane bus.) 

The Trigger Trace Analyzer Installation Guide explains how 
to install the ITA circuit boards and Data Acquisition 
Interface unit. The Trigger Trace Analyzer Users Manual 
explains how to connect the test clips of the Data 
Acquisition Probe to your prototype. 

Overview 
The following paragraphs are an overview of the ITA 
option. The ITA features are discussed in detail later in this 
subsection. 

The ITA is a real-time debugging tool. Your program 
executes at normal speed while the ITA monitors the 
buses and certain control Signals. The ITA allows you great 
control in specifying which combinations of signals 
constitute an event, and what actions follow when an 
event occurs. The ITA can store up to 255 bus transactions 
in its AcquiSition Memory, allowing you to capture a 
window of data during program execution. The ITA is 
capable of precise timing with a variety of source Signals. 

The ITA includes the following features: 

• the ability to define four events based on combinations 
of input data from the buses and signals monitored; 

• four triggers that can break program execution, start or 
stop counters, or Signal other instruments; 

• four general purpose counters; and 

• an Acquisition Memory that can store up to 255 bus 
transactions. 

We'll discuss each of these features in turn. 

5-13 



The TTA 

In this subsection, the term "input data" refers collectively 
to the following 64 bits of information monitored by the 
ITA: 

_ .&.L __ .-1-.1 ____ L .. _ I.._.L_ I"\A L:..a.._\. 

• Lilt: dUUI t:~~ UU~ \ UIJ LU £"t UIl~1 

• the data bus (8 or 16 bits) 

• the 8 test clips on the Data Acquisition Probe (up to 8 
hitcl 
-11.-1 

• the emulator-dependent bus signa! interface (up to 11 
bits from the emulator) 

• the external event qualifier, via a BNC input on the Data 
Acquisition Interface (1 bit) 

• counter output signals (4 bits) 

Events and Triggers 
Many actions performed by the ITA are based on events 
and triggers. An event is the simultaneous occurrence of 
one or more specified conditions in the input data. The EVE 
command and several related commands are used to 
define up to four events. 

Each trigger has an associated event comparator and 
general purpose counter, which share the trigger channel 
number. A trigger is enabled by the output of its event 

Address -------_-.t 
Data ------____ -.1 

Emulation-8540 System Users 

comparator ANDed with the output of its general purpose 
counter. Figure 5-6 illustrates the relationships between 
an event, the counter, and the trigger. Each trigger can 
cause a breakpoint. increment a counter. or signal an 
external device (such as a logic analyzer) via a BNC output 
on the Data Acquisition Interface panel. 

Defining An Event 

You can select any of several event control commands to 
specify which input data constitutes an event. These event 
control commands correspond to the parameters of the 
EVE command. Once you are experienced with the ITA, 
you can use the EVE command to specify all the input data 
on one command line. Forthefull syntax of ITA commands, 
refer to the Command Dictionary in the Trigger Trace 
Ana!yzer Users Manual. 

Event Control Commands 

four trigger channels. All of the commands can use the-S 
and -C breakpoint flags. (Breakpoints are discussed later in 
this subsection.) 

input 
data 

Bus Signals --------1~ 

Probe --------.. -1 

Event Qualifier -------1~ 

EVENT 
COMPARATOR 

5-14 

Counter Outputs ----...... 

S(l!..!~ce --------!-~I 
I 

GENERAL 
PURPOSE 
COUNTER 

Fig. 5-6. Generating a trigger signal. 

The output of the event comparator is ANDed with the output of the general purpose counter 
to produce the trigger signal. 

3936·17 

(ri' 



Emulation-8540 System Users 

The AD command is used to define a specific address or 
range of addresses as an event. 

> AD 1 105E 

> AD 2 500 530 

These commands specify that event 1 occurs whenever the 
program accesses address 105E. and that event 2 occurs 
whenever the program accesses an ,address within the 
range 500 to 530. inclusive. 

The AD command can include a -N command modifier that 
defines the event as anything other than the value(s) 
specified. 

> AD -N 4 1000 10FF 

This command defines event 4 as any address outside the 
range 1000 to 10FF. 

The BUS command allows you to select which bus signals 
are recognized as an event. The signals are emulator
specfic. All of the signals selected are ANDed together
watch out for impossible combinations such as F I (fetch 
AND 1/0 operation simultaneously). 

> BUS 3 NF 

This command defines event 3 as any non-fetch bus 
transaction. 

The eTR command defines an event as a pattern of the 
output of the four counters. The pattern can include 1 's. O's 
or X's (don't-cares). For example. the command 

> CTR 1 10XO 

causes event 1 to occur when counter 1 is high. and 
counters 2 and 4 are low. 

The DATA command defines an event as the occurrence 
on the data bus of a value or one of a range of values. Like 
the AD command. it can include a -N command modifier 
that defines the event as anything other than the value(s) 
specified. 

> DATA 3 OF3 
> DATA -N 2 10 3FF 

In the first command. event 3 occurs whenever the data 
bus contains the value F3. In the second command. event 2 
occurs whenever the data bus contains a value outside the 
range 10-3FF. 

The PRO command refers to the probe inputs via the Data 
Acquisition Probe and the Data Acquisition Interface Panel. 
The argument can be a two-digit hexadecimal number. or 
eight individual bits. You may include "don't-care" digits or 
bits (X) in hexadecimal or binary values. respectively. 
Entering PRO CLR makes all bits "don't-cares."Thedefault 
radix for the PRO command is binary. 

> PRO 3 5XH 

> PRO 1 OXIXXOXI0 

TheTIA 

NOTE 

Any number that does not begin with a digit in the 
range 0-9 must include a leading 0; otherwise 
OS/40 will attempt to evaluate the expression as a 
symbol and an error will be generated. 

The QUA command detects an input from the Event 
Qualifier BNC on the Data Acquisition Interface Panel. This 
input is user-controlled. The parameter for this command is 
a 0 or 1. or any expresson that evaluates to a 0 or 1. 

The EVE Command 

The EVE command lets you specify all event control 
conditions on one command line. Each EVE command 
parameter corresponds to one of the event control 
commands we've discussed. The EVE command may 
include the following parameters: 

• A = Address-Corresponds to the AD command 

• AN = Address Not-Corresponds totheAD -N command 

• B = Bus-Corresponds to the BUS command 

• C = Counter Output-Corresponds to the CTR command 

• D = Data-Corresponds to the DATA command 

• DN = Data Not-Corresponds to the DATA -N command 

• P = Probe-Corresponds to the PRO command 

• Q = Qualifier-Corresponds to the QUA command 

The parameters of an event are cumulative. When a 
parameter is set. either with the EVE command or one of 
the event control commands. it remains in effect until 
cieared. The command 

> EVE 1 B=M WT 

changes only the B (Bus) parameter. All other parameters 
remain unchanged. The command 

> EVE 1 CLR B=M WT 

clears all previously specified conditions for event 1 and 
defines event 1 as any memory-write bus Signal. 

Displaying Trigger Status 

The TS (Trigger Status) command displays the current 
programming of the triggers and their associated events 
and counters. The -E parameter causes only the event 
portion of the trigger(s) to be displayed. The -C parameter 
causes only the counter portion of the trigger(s) to be 
displayed. You can select the triggers to be displayed. TS 
entered with no parameters displays the status of all the 
triggers. Refer to your Trigger Trace Analyzer Users 
Manual for TS command examples. 

5-15 



TheTIA 

Clearing All Trigger Conditions 

The TCLR (Trigger CLeaR) Command returns to the 
default condition the EVE, COU, and BRE commands 
associated with a given trigger channeL For exampie, the 
command TeLR 1 is equivalent to entering 

> EVE 1 CLR; COU 1 CLR; BRE 1 CLR 

The command iine may specify more than one trigger 
channel to be cleared, or that ALL be cleared, 

The -x option resets the entire ITA. The command TCLR 
-X is equivalent to entering 

> EVE ALL CLR; COU ALL CLR; BRE ALL CLR; 

> CONS CLR; ACQ ALL 

The contents of the Acquisition Memory are not altered by 
this command. 

Consecutive Events 

In addition to triggering on individual events, it is possible 
to trigger on the consecutive occurrence of different 
events. By using the CONS command, events can be linked 
together so that the occu rrence of an event arms the 
comparator of the following event. If the following event(s) 
do not occur on the specified bus cycle, then all events are 
reset and detection resumes with the first event in the 
sequence. The trigger is generated on the occurrence of the 
last event in the sequence. 

The CONS command requires you to select one bus mode 
in which all the events are considered. The bus modes are: 

• CYC-all bus cycles are allowed; 

• FET -only fetch cycles are considered; 

• EMU-only emulator-dependent bus cycles are con
sidered, 

NOTE 

FET and EMU mode are not implemented on all 
emulators. Refer to your Emulator Specifics supple
ment to determine whether these functions are 
available on your emulator. 

As an example, the following command sequence detects a 
In\lII_tn_hinh t .. ::tnc:itinn in tho nr"ntnt\lno {nll,.".,in.... ",n 
._"' ..... - ••• " ..... _ •• _ .... _ ••• 1. "'"- t""''''-'''ft'''''' .""'''-. .. 111:1 """" 

instruction fetch: 

> EVE 1 CLR B=F P=OXXXXXOXX 
> EVE 2 CLR P=OXXXXX1XX -S 
> CONS eyC 12 

The first command defines EVE 1 as a fetch AND a logic low 
on probe input 2. EVE 2 is defined as a logic high on probe 
input 2. The CONS command says that EVE 2 will trigger a 

5-16 

Emulation-8540 System Users 

break (the -S parameter) only if EVE 2 occurs on the cycle 
following EVE 1. 

You can direct the TTA to trigger on any of the foiiowing 
event sequences: 

12 123 1234 
23 234 2341 
34 341 3412 
41 412 4123 

You may specify two sequences concurrently, such as 23 
and 41. The sequences are independent of each other; 
however both must use the same bus mode. 

Breakpoints 
You can set breakpoints with the BRE command or with the 
-S or -C options of the various event control commands. 
The -S option produces a standard break, which stops 
execution of your program. The -C option prints a trace line 
and your program continues execution. 

To remove breakpoints, you must use the CLR parameter of 
the BRE command, in conjunction with a trigger number. 
You can clear all the breakpoints by entering: 

> BRE ALL CLR 

To view the status of the breakpoints, enter the BRE 
command without parameters. 

The General Purpose Counters 
Each of the four triggers has a general purpose counter 
associated with it. The counters are controlled by the COU 
command. Each counter has a value which you display 
using the TS command, and an output which must be high 
in order for the associated trigger to be generated. 

The COU Command 
The COU command has fiVe parameters. TheY are: 

• V = Value 

• S = Source 

• 0 = Output 

• G = Gate 

• R = Restart 

Value (V) is used to initialize the counter to the designated 
value. V can be any expression that evaluates to the range 0 
to 65535 if incrementing, or i to 65535 if decrementing. 
The default radix for V is decimal. 



Emulation-8540 System Users 

Source (S) is what the counter counts. You may select any 
one of the following sources for each counter: 

• time intervals: 200 nsec, 2 jJsec, 20 jJsec, 200 jJsec, 2 
msec 

• occurrences of: EV1, EV2, EV3, or EV4 

• occurrences of: TRIG1, TRIG2, TRIG3, or TRIG4 

• ACQ: any transaction stored in Acquisition Memory 

In addition, there are 3 auxiliary counter sources to which 
special restrictions apply: Only one of these auxiliary 
sources can be selected at one time, though more than one 
counter can use the selected auxiliary source. When you 
select a second auxiliary source, it replaces the one 
previously selected. The auxiliary counter sources are: 

• CYC: all bus cycles 

• EMUCLK: clock on the emulator 

• QUA: low-to-high transitions on the Event Qualifier 
BNC input 

The ACQ command uses these counter sources with its 
FOR parameter. 

Output (0) controls when the counter output will be high. 
A trigger is generated when an event occurs and the 
counter output is high. See Table 5-2. 

OPTIONS 

O=Arm 
O=Disarm 
O=Pulse 
O=Delay 
a-Timeout 

Table 5-2 
Counter Output Options 

Counter Outputs 
Ata 

While Terminal After 
COUNTS Counting Value Counting 

Up 1 I 1 1 
Up 0 0 0 
Down 0 1 0 
Down a a 1 
Down 1 1 a 

a For ARM and DISARM, the terminal value is 65535. For 
PULSE, DELAY, and TIMEOUT, the terminal value is O. 

ARM and DISARM increment the counter from the initial 
value which is set with the V parameter. PULSE, DELAY, 
and TIMEOUT decrement the counter from the initial value. 
After the counter reaches its terminal value (of 65535 or 
0000, depending on the output option), it stops counting 
until you reprogram it, either with the COU command or by 
entering G with an address. 

ThenA 

NOTE 

The G command entered with an address reinitializes 
all the counters, including the one associated with the 
Acquisition Memory. G entered without an address 
leaves all the counters in their current states. 

Gate (G) controls when a counter can count its 
programmed source. It is only available with counters 2,3, 
or 4. The G options are: 

G=OFF 

G=CTR 

G=TRIGH 

G=TRIGL 

G=SEQH 

G=SEQL 

G=SELF 

Removes any previous gate restrictions 

Counter N counts only when counter N-1 
remains high 

Counter N counts only when trigger N-1 
remains high 

Counter N counts only when trigger N-1 
remains low 

Counter N begins counting when trigger N-1 
first goes high 

Counter N begins counting when trigger N-1 
first goes low 

Counter N counts only when trigger N 
remains high 

Restart (R) is allowed only if the gate parameter has been 
specified. The R options are ON and OFF. R=ON causes the 
counter to reinitialize to the value specified by the V 
parameter, and begin counting again each time the gate 
function becomes true. R=OFF turns this feature off. 

The COU command, like the EVE command, is cumulative. 
Use the CLR parameter to remove previous conditions. For 
example, the command sequence 

> COU 3 CLR V=lOO S=ACQ O=DELAY 

counts 100 acquisitions of Acquisition Memory and then 
outputs a high to Trigger 3. 

Acquisition Memory 
The ITA maintains a record of input data in a 255-by-62-bit 
buffer called the Acquisition Memory. The ACQ command 
selects which bus transactions are to be stored. Acquisition 
Memory contains the 255 most recent samples of input 
data. (The Acquisition Memory stores slightly different 
input data from that monitored by the event comparators.) 
The Acquisition Memory is similar to the buffer memory of 
a logic analyzer. Figure 5-7 shows how information is 
stored in the ITA Acquisition Memory. 

5-17 



TheTIA Emulation-8540 System Users 

I ~I~=======---------'I ~I----------~I ~I----------~I ~I----------~I 1 

V II IJ II II 
ADDRESS BUS DATA BUS TEST CLIPS BUS OPERATION TYPE 

samples 1 -10 
(Up to 24 BITS) ((8 or 16 bits) (8 bits) (Up To 14 BITS) 

lost SAMPLE i i I 
(oldest sample) I ~ --------+---------+---------~-------_1 

I 

SAMPLE 264 

SAMPLE 265 
(newestsample)L-___ ~---~-----~-----~--------R_------~------_,r_-----

input 
data I 

I 
3457-35 I 

• 
Fig. 5-7. Acquisition Memory. 

This figure shows the contents of the Acquisition Memory after 265 samples of input data 
have been taken. Only the most recent 255 samples are stored. The DISP command is used to 
display the contents of the Acquisition Memory 

The ACQ command selects which bus transactions are to 
be stored in Acquisition Memory. The parameters are: 

• ACQ ALL-all bus transactions are stored 

• ACQ EV4-only the transactions defined as Event 4 are 
stored 

The Acquisition Memory begins storing when program 
execution begins and stops storing when the emulator 
halts. You may want to halt storage in the buffer before the 
program has finished execution. There are two ways to do 
so: 

> ACQ ALL FOR Ivalue} Isource} 

> ACQ EV4 FOR Ivalue} Isource} AFTERTRIG4 

You select one of the sources available with the COU 
command, and a value that equals the number of 
transactions you want to capture. For example, 

> ACQ EV4 FOR 10 EVI 

stores the transactions defined as event 4 until the tenth 
occurrence of event 1. 

5-18 

> ACQ ALL FOR 120 eye AFTERTRIG4 

"AFTERTRIG4" delays the start of counting until the 
conditions of TRIG4 have been met. In this example, 
acquisition stops 120 cycles after TRIG4 occurs . 

Entering the ACQ command without parameters returns 
the parameters currently selected. If the FOR clause is 
included, the number of counts remaining to be acquired is 
also given. 

> ACQ 

Acquire EV4 for 00020T MSEC 
Counts remaining: OOOIST 

The DISP command displays the contents of the 
Acquisition Memory. Entering DISP ALL displays the entire 
buffer, beginning with the oldest buffer contents. You may 
also use DISP to display a specified number of most recent 
transactions. DISP without parameters displays the 
transactions that have occurred since the emulator was 
last halted. 



Emulation-8540 System Users 

TTA Summary 
The following OS/40 commands control your ITA: 

• ACQ-selects the type of operation to be stored in the 
Acquisition Memory 

• AD-selects the address portion of an event 

• BRE-defines a breakpoint in terms of ITA events 

• BUS-selects the emulator-specific bus transactions 
that define an event 

• CONS-causes a trigger after a sequence of events has 
occurred on consecutive bus cycles. 

• COU-selects the counting units and output modes for 
the general purpose counters 

• CTR-defines an event as a pattern of the four counter 
outputs 

The TTA 

• DATA-selects the data portion of an event 

• DISP-displays the contents of the Acquisition Memory 

• EVE-defines an event in terms of the input data 

• PRO-selects signals from the Data Acquisition Probe 

• QUA-selects and defines an input from the Event 
Qualifier 

• TClR-ciears the EVE, COU, and BRE conditions 
associated with a given channel 

• TS-displays the status of the ITA or of selected triggers 

For more detailed explanations of these commands, refer to 
the Trigger Trace Analyzer Users Manual. For descriptions 
of common procedures that use these commands, refer to 
the subsection "Using the ITA" in the Operating 
Procedures section of this manual. 

5-19 



8540 System Users 

Section 6 
SERVICE CALLS 

Page 

Introduction ..................................... 6-1 

Overview ........................................ 6-1 

When Should You Use SVCs? ..................... 6-1 
What is an SVC? ............................... " 6-1 

Program Instructions ........................... 6-3 
Service Request Block (SRB) Vector .............. 6-3 
Service Request Block (SRB) .................... 6-4 
I/O Buffer ..................................... 6-4 

limitations of File Handling SVCs ................ 6-4 

I/O Channels .................................... 6-4 

SVC Applications ................................ 6-5 

Assign a Device or File to a Channel ............... 6-5 
Read a Line from the System Terminal or a File .... 6-5 
Write a Line to the System Terminal or a File ...... 6-5 
Time a Program Segment ......................... 6-5 
Read Binary Data from a File ...................... 6-6 
Write Binary Data to a File ........................ 6-6 
Read a Single Byte from the System Terminal ...... 6-6 
Write a Single Byte to the System Terminal ........ 6-6 

SVC Demonstration .......................... '" 6-6 

Program Description .............................. 6-9 
Data Declaration ............................... 6-9 
Executable Code ................................ 6-9 

SVC Functions ................................. 6-10 

Terminology .................................... 6-10 

SVC FUNCTION INDEX 

Function 01-Read ASCII and Wait ............. " 6-14 
Function 02-Write ASCII and Wait ............... 6-17 
Function 03-Close Channel ..................... 6-11 
Function 04-Rewind File ........................ 6-15 
Function 07-Special Function ................... 6-16 
Function 09-Log Error Message ................. 6-13 
Function 10-Assign Channel .................... 6-11 
Function 11-Read Program Clock ................ 6-15 
Function 13-Get Command Line Parameter ...... 6-12 

REV JAN 1983 

Page 

Function 14-Get Device Type .................... 6-12 
Function 16-Get Last CONI Character ............ 6-12 
Function 17-Load Overlay ....................... 6-13 
Function 19-5uspend Program .................. 6-16 
Function 1 A-Exit Program ....................... 6-12 
Function 1 C-Get Execution Line Parameter ....... 6-12 
Function 1 F-Abort Program ..................... 6-11 
Function 22-0verwrite ASCII and Wait. .......... 6-14 
Function 24-Seek Relative to Byte In File ........ 6-15 
Function 30-0pen for Read ..................... 6-14 
Function 41-Read Binary and Wait .............. 6-15 
Function 42-Write Binary and Wait .............. 6-17 
Function 44-Seek to Byte in File ................ 6-16 

Function 50-Open for Write ..................... 6-14 
Function 57-Load Overlay with Bias ............. 6-13 
Function 62-0verwrite Binary and Wait .......... 6-14 
Function 64-Seek to Byte in File Relative to EOF . 6-16 
Function 70-0pen for Read or Write ............. 6-14 
Function S1-Read ASCII and Proceed ............ 6-14 
Function S2-Write ASCII and Proceed ............ 6-17 
Function 90-Create File ......................... 6-11 
Function A2-0verwrite ASCII and Proceed ....... 6-14 
Function C1-Read Binary and Proceed ........... 6-15 
Function C2-Write Binary and Proceed ........... 6-17 
Function E2-0verwrite Binary and Proceed ....... 6-14 

Table 
No. 

6-1 

6-2 

Fig. 
No. 

TABLES 

Summary of SAS and LAS formats .......... 6-2 
Device Identification and Type ............. 6-13 

ILLUSTRATIONS 

6-1 SVC memory layout, Small Address Space 
(SAS) format ............................ 6-2 

6-2 SVC memory layout, Large Address Space 

(LAS) format ............................ 6-3 
6-3 SVC demonstration program flowchart ...... 6-7 

6-4 SOSOA/SOS5A SVC demonstration program 
listing ................................... 6-S 

6-i 



8540 System Users 

Section 6 

SERVICE CALLS 

INTRODUCTION 
Service calls (SVCs) allow your program to perform various 
system operations. This section is divided into the following 
subsections: 

• SVC Overview-Describes the general features of 
SVCs. 

• Limitations of File-Handling SVCs-Describes the 
conditions under which SVCs can access files on the 
host. 

• I/O Channels-Describes the I/O channels used by 
some SVCs. 

• SVC Applications-Illustrates some useful SVC ap
plications. A brief description accompanies each 
application. 

• SVC Demonstration-Includes an 8080A/8085A 
assembly ianguage program that incorporates severai 
SVCs. A similar program is provided in the Emulator 
Specifics supplement for each emulator supported by 
the 8540. 

• SVC Functions-G ives the function code and format for 
each SVC. The functions are listed alphabetically in the 
text; the Table of Contents contains a numerical index. 

OVERVIEW 
OS/40 supports a number of service calls (SVCs). Some 
SVCs handle the transfer of data between your program 

and OS/40 peripherals (such as the system terminal or line 
printer), or files on the 8560. SVCs also instruct OS/40 to 
perform system operations, such as aborting the program 
or reading the system clock. 

When Should You Use SVCs? 
SVCs are especially useful during the initial stages of 
software development. While developing software, you 
may use SVCs to transfer data between your program and 
the 8540 system peripherals or files on the 8560. The SVCs 
permit your program to accept and display data. 

Once you are certain that your program functions correctly, 
you may replace the SVCs with I/O instructions in your 
microprocessor's assembly language. This allows you to 
check out your program using prototype memory, ciock, 
and I/O. 

What is an SVC? 
An SVC consists of four parts: (1) the program instructions 
that generate the call; (2) a pointer within the Service 
Request Block vector; (3) a Service Request Block (SRB); 
and (4) an I/O buffer (for some SVCs). 

6-1 



Overview 

The format of the SRB vector and the Service Request B!ock 
(SRB) is determined by the type of microprocessor you are 
emulating. In general, microprocessors that can address a 
maxirnum of 64K iJyie~ u~e Srnaii Addre~~ Space (SAS) 
format, while microprocessors that can address more than 
64K require Large Address Space (LAS) format. Refer to the 
Emulator Specifics section to determine which format your 
microprocessor uses. Tabie 6-1 summarizes the difference 
in SRB formats. Figure 6-1 illustrates the S.AS memory 
layout. F!gure 6-2 II!ustrates the LAS memory layout. 

All emulators support the use of SVCs in mode 0; some 
emulators support the use of SVCs in modes 1 and 2. In 
mode 1, the program instructions may be located in either 
program or prototype memory; the other parts of the SVC 
must reside in program memory. In mode 2, the SVC is 
located entirely in prototype memory. Refertothe Emulator 
Specifics section to determine whether your emulator 
supports SVCs in modes 1 and 2. 

Service Calls-8540 System Users 

Table 6-1 
Summary of SAS and LAS Formats 

SRB Field 
Name 

Function 
Channel 
Status 
Fourth Byte 
Byte Count 
Buffer Length 
Buffer POinter 

SRB 

Bytes Used 
Small Address Large Address 
Space Format Space Format 

(SAS) (LAS) 

1 
2 
3 
4 
5 
6 

7-8 

2 
3 
4 

5-6 
7-8 

9-12 

SRB 
Vector (Service Request Block) 

6-2 

40-41 SVC1 

42-43 SVC2 ~ 

44-45 SVC3 ~ 

46-47 SVC4 ~ 

48-49 SVC5 ~ 

4A-4B SVC6 ~ 

4C-4D SVC7 ~ 

4E-4F SVC8 ~ 

-- .... -
I 
I 

default 
memory 

. 
high I low 

pointers 

location 

function 

channel 

status 

fourth byte 

byte count 

buffer length 

} 
Buffer 

buffer 
/=== -

pointer 

I 

optional extra 
C:RR h"tc .. , ~ --,,- -, ... _ ..... 

J I 
Fig. 6- 1. SVC memory layout, Small Address Space (SAS) format. 

{3457 37}3Q38 1 e I 

An Instruction sequence within your program determines which of the eight SRB pointers is used. The SRB addressed by the 
selected pointer contains the parameters needed to perform the SVC Depending on the function specified in the first field of 
the SRB. an I/O buffer may be needed: in that case. the buffer length and buffer pointer fields indicate the length and location of 
the buffer 



Service Calls-8540 System Users Overview 

SRB SRB 
Vector (Service Request Block) 

40-43 SVC1 

44-47 SVC2 

48-4B SVC3 

4C-4F SVC4 

50-53 SVC5 

54-57 SVC6 

58-5B SVC7 

5C-5F SVC8 

-----..--
h;gh !IOW 

pointers 

default 
memory location 

optional extra 

SRB bytes 

function 

channel 

status 

fourth byte 

byte 

count 

buffer 

length 

buffer 

pointer 

(3457-3713936-19 

Fig. 6-2. SVC memory layout. Large Address Space (LAS) format. 

An instruction sequence within your program determines which of the eight SRB pointers is used. The SRB addressed by the 
selected pointer contains the parameters needed to perform the SVC. Depending on the function specified in the first field of 
the SRB. an I/O buffer may be needed; in that case. the buffer length and buffer pointer fie ids indicate the iength and iocation of 
the buffer 

Program Instructions 
The service call is triggered by a microprocessor
dependent instruction sequence. In modes 0 and 1. this 
sequence usually consists of an liD instruction followed by 
one no-operation instruction. (In mode 2. the sequence is 
an liD instruction followed by two no-operation instruc
tions.) When the SVC instruction sequence is executed. the 
8540 hardware interrupts the system so that OS/40 may 
take the appropriate action. 

Execution of the SVC does not affect the emulator regis
ters. However, the instruction sequence that triggers the 
SVC may contain an instruction (such as IN) that modifies 
one or more registers. 

Eight instruction sequences are defined for each emulator. 
These instruction sequences are labeled SVC1 through 
SVC8. Refer to the Emulator Specifics section for the 
specific instruction sequence used by your emulator. 

The liD addresses used in the microprocessor liD 
instruction are in the range FO to F7 for most em ulators. F7 
corresponds to SVC1, F6 to SVC2, and so on. You can use 

REV JAN 1983 

the OS/40 SVC command to change the liD address range 
to any group of eight consecutive liD addresses with least 
significant digits in the range of 0 to 7. 

Service Request Block (SRB) Vector 

The Service Request Block (SRB) vector is a table of eight 
addresses beginning at address 40. Each address points to 
a different SRB. Although there are only eight SRB 
pointers. your program may use more than eight SVCs by 
changing the addresses in the SRB vector to point to 
additional SRBs. 

When the SVC instruction sequence is executed. OS/40 
examines the SRB pointer to determine the location of the 
SRB to be used. For example. ifthe instruction sequence for 
SVC1 is executed by an emulator that uses SAS format. 
OS/40 examines memory locations 40 and 41 to 
determine the location of the SRB for that call. Memory 
address 40 contains the high byte of the SRB address. and 
memory address 41 contains the low byte. If the instruction 
sequence for SVC1 is execu,ted by an emulator that uses 
LAS format. OS/40 examines memory locations 40 
through 43 to determine the location of the SRB for that 

6-3 



Overview 

call. The high-order byte is in iocation 42; the low-order byte 
is in location 43. 

To prevent conflict with fixed memory locations requireu by 
your program, you may change the location of the SRB 
vector. The OS/40 SVC command allows you to place the 
SRB vector nearly anywhere in memory. If you do not use 
the default SRo vector ioeation, you must reenter this SVC 
command each time you reselect the emulator 

Service Request Block (SRB) 

The Service Request Block (SRB) contains the information 
that OS/40 needs to perform the service call. The SRB also 
reserves areas for OS/40 to return control information and 
data after the call is completed. The SRB may be located 
anywhere in memory. Refer to Table 6-1 as you read the 
following paragraphs. 

The function field of the SRB identifies the function of the 
call. This byte controls how OS/40 interprets the rest of the 
SRB. SVC functions are described individually later in this 
section. SVC functions not listed in this section are unsup
ported and may yield unpredictable results. 

The channel field usually contains an OS/40 channel 
number. Channels are discussed in the "1/0 Channels" 
subsection, following this overview. 

OS/40 uses the third byte to return status. This status field 
contains 00 jf the operation was successfully completed. A 
non-zero value returned in this byte indicates an abnormal 
condition, which mayor may not be an error: status values 
06,07, 29, 76, 7F, and FF are often not considered errors. 
These status conditions are listed by status code in the 
Error Messages section of this manual. 

The status field can also be used to return non-status 
information. Such uses are discussed in the description of 
the appropriate SVC function. 

The fourth byte is used by some functions in SAS format. 
The specific use of this byte is covered in the individual 
function description. The fourth byte is reserved for system 
use in LAS format. 

The byte count field indicates the number of bytes 
transferred during an 1/0 operation. This field is also used 
by SVCs that do not perform rl;:jt;:j transfer Refer to the 
specific SVC function description for details. 

The remaining bytes in the SRB describe an 1/0 buffer. This 
buffer is explained under the next heading. 

Some SVCs use additional bytes to form an extended SRB. 
The use of these bytes is described with the particular 
function that uses them. 

In an SRB, any byte that is not specifically designated to 
return data may contain unspecified values (garbage) when 
the SVC is completed. 

6-4 

Service Calls-8540 System Users 

I/O Buffer 
The 1/0 buffer is used when an 1/0 transfer is performed. 
:nformation that is iead fiOm a device Oi host We is placed 
in the buffer after the SVC is called. Information to be 
written to an external device or host file is placed in the 
buffer before the call is made. 1/0 buffers may also hold 
ASCii strings (sueh as fiiespeesj used by some SVCs. 

The buffer length may be 1 to 256 bytes. In SAS format, the 
value OOH is used to indicate a length of 256 bytes, because 
the buffer length field is only one byte long. In LAS format, 
the value 100H indicates a buffer length of 256 bytes. 

The buffer pointer field contains the address of the first 
byte of the buffer, with the high-order byte or word given 
first. 

The buffer length and buffer pointer fields are used by some 
functions that do not perform 1/0 operations. The use of 
these bytes is discussed in the function description. 

LIMITATIONS OF FILE 
HANDLiNG SVCs 

The 8540 supports file handling SVCs (such as Create 
File-function 90) when the 8540 is operating in TERM 
mode with an 8560. If you are not in TERM mode, SVCs 
such as Assign, Read, Write, Open, and Close can only 
access 8540 peripherals. 

The following filespecs denote 8540 peripherals: CONI, 
CONO, REM I, REMO, LPT, PPTR, PPTP. Other filespecs are 
assumed to denote host files. 

1/0 CHANNELS 
A channel is an independent data path for 1/0 operations. 
A channel may only be assigned to one device or file at a 
time. A channel can be disassociated ("closed") from the 
device or file and then reassigned. OS/40 provides 10 
channels: channels 0 through 7 may be assigned and 
closed by your programs. Channels 8 and 9 are assigned by 
the system to standard input and output, respectiVely, and 
may also be used in your programs. OS/40 closes and 
reopens channels 8 and 9 each time the G or X command is 
used. 

In TERM mode, channels assigned to CONI and eONO are 
mapped into standard input and standard output, 
respectively. 

NOTE 

No more than five channels at a time may be open to 
files. 

It is possible to assign so many channels that 08/40 
cannot continue to operate. In that case, error code 
5C will be issued; the only way to recover from this 
condition is to enter the command A - A. 

REV OCT 1983 



Service Calls-8540 System Users 

To avoid this condition, be sure to close a channel 
when you are finished with the file to which the chan
nel is assigned. To close one or more selected chan
nels, use the OS/40 CL command or the Close 
Channel SVc. To close all channels, use the OA/40 A 
command or the Abort Program SVc. 

OS/40 may allow you to read from a write-only chan
nel, such as standard output, but the results of such a 
read are undefined. 

SVC APPLICATIONS 
This subsection describes some common tasks that use 
service calls. Each SVC application describes the steps 
required to accomplish the task. The following applications 
are included here: 

• Assign a device or file to a channel. 

• Read a line from the system terminal or a file. 

• Write a line to the system terminal or a file. 

• Time a program segment. 

• Read binary data from a file .. 

• Write binary data to a file. 

• Read a single byte from the system terminal. 

• Write a single byte to the system terminal. 

Assign a Device or File to a 
Channel 
This SVC application is used to associate a device or file 
with a channel. The device or file may then be used for data 
entry or display. 

1. Create a buffer in memory containing the name of the 
device or file that you want to assign. The name must 
be terminated with a RETURN character. 

2. Establish an SRB containing the following information: 

a. Function: 10 (Assign). 

b. Channel: a number between 0 and 7, inclusive. 

c. Buffer Pointer: pointing to the location containing 
the first character of the device or file name. 

3. Establish a pointer in the SRB vector and execute the 
corresponding SVC. 

4. Examine the status byte to verify that the SVC operated 
properly. 

Read a Line from the System 
Terminal or a File 
This SVC application reads a line from the system terminal 
or a file, and stores the characters in memory. 

1. Assign CONI (system terminal input) or the desired 
filespec to an available channel. 

2. Create a buffer in memory. Make sure that the buffer is 

REV JAN 1983 

SVC Applications 

as long as any line you expect to read, including the 
RETURN character. 

3. Establish an SRB containing the following information: 

a. Function: 01 (Read ASCII and Wait). 

b. Channel: the channel to which CONI or the file was 
assigned. 

c. Buffer Length: the length of the buffer that you 
created. 

d. Buffer Pointer: pointing to the first byte of your 
buffer. 

4. Establish a pointer in the SRB vector and execute the 
corresponding SVC. 

5. Examine the status byte to verify that the SVC operated 
properly. 

Write a Line to the System 
Terminal or a File 
This SVC application displays a line on the system terminal, 
or writes the line to a file. The line must be stored as a 
sequence of ASCII characters terminated by a RETURN 
character. 

1. Assign CONO (system terminal output) or the desired 
file to an available channel. 

2. Create a buffer in memory that contains the line of 
characters to be written, terminated with a RETURN 
character. 

3. Establish an SRB containing the following information: 

a. Function: 02 (Write ASCII and Wait). 

b. Channel: the channel to which CONO or the file 
was assigned. 

c. Buffer Length: the number of characters to be 
transferred, including the RETURN character. 

d. Buffer Pointer: pointing to the first character of the 
line. 

4. Establish a pointer in the SRB vector, and execute the 
corresponding SVC. 

5. Examine the status byte to verify that the SVC operated 
properly. 

Time a Program Segment 
This SVC application allows you to determine the execution 
time of a program segment. You must first enable the 
program clock with the OS/40 CLOCK ON command. Once 
you have done so, perform the following steps: 

1. Establish an SRB with the following information: 

a. Function: 11 (Read Program Clock). 

2. Set up the appropriate pointer in the SRB vector and 
execute the corresponding SVC. 

3. In SAS format, save the contents of bytes 4 and 5 as a 
16-bit integer; byte 4 contains the high byte of the 
program clock. In LAS format, bytes 5 and 6 contain the 
program clock. 

6-5 



SVC Applications 

4. Execute the program segment to be timed. 

5. Execute the SVC again, as described in steps 2 and 3. 

6. Subtract the old 16-bit value from the new 16-bit value 
to obtain the execution time in 1 OO-millisecond units. 

Read Binary Data from a File 
This SVC application is used to read binary data from a file. 

1. Assign the file to an available channel. 

2. Create a buffer in memory. Make sure that the buffer is 
as long as any block of data you plan to read. 

3. Establish an SRB with the following information: 

a. Function: 41 (Read Binary and Wait). 

b. Channel: the channel assigned to the file. 

c. Buffer Length: the number of bytes to be read from 
the file. 

d. Buffer Pointer: pointing to the address where the 
first byte will be placed. 

4. Establish a pointer in the SRB vector, and execute the 
corresponding SVC. 

5. Examine the status byte to verify that the SVC operated 
properly. 

Write Binary Data to a File 
This SVC application is used to write binary data to a file. 

1. Assign the file to an available channel. 

2. Create a buffer in memory that contains the data to be 
written. 

3. Establish an SRB with the following information: 

a. Function: 42 (Write Binary and Wait). 

b. Channel: the channel assigned to the file. 

c. Buffer Length: the number of bytes to write to the 
file. 

d. Buffer Pointer: pointing to the first byte to be 
written. 

4. Establish a pointer in the SRB vector, and execute the 
corresponding SVC. 

5. Examine the status byte to venfy that the SVC operated 
properly. 

Read a Single Byte from the 
System Terminal 
On ASCII reads, OS/40 waits to receive a RETURN 
character before returning control to your program. 
However, in some instances, you may want to regain 
control after each character is typed. This SVC application 
allows you to read a single byte from the system terminal 
then regain control. 

6-6 

Service Calls-8540 System Users 

NOTE 

On a binary read, the character typed is not echoed,' 
this is the responsibility of your program. Note also 
that all of the normal editing functions, such as 
BACKSPACE, are ignored for a binary read,' again it 
is the responsibility of your program to perform these 
opeiations on a binaiY read 

1. Assign CONI (system teiminal input) to an available 
channel. 

2. Establish an SRB with the following information: 

a. Function: 41 (Read Binary and Wait). 

b. Channel: the channel to which CONI is assigned. 

c. Buffer Length: 01 (this designates a single 
character to be read). 

d. Buffer Pointer: pointing to the location that the 
character is to be placed after it is read. 

3. Establish a pointer in the SRB vector, and execute the 
corresponding SVC. 

4. Examine the status byte to verify that the SVC operated 
properly. 

Write a Single Byte to the System 
Terminal 
This SVC application is used to write a Single byte to the 
system terminal. On ASCII writes, OS/40 waits until it has 
written a RETURN character before returning control to 
your program. However, in some instances, you may want 
to regain control after each character is written. To write 
one character to the system terminal, perform the 
following steps: 

1. Assign CONO (system terminal output) to an available 
channel. 

2. Create an SRB containing the following information: 

a. Function: 42 (Write Binary and Wait). 

b. Channel: the channel assigned to CONO. 

C. Buffer Length: 01 (for a single character). 

d. Buffer Pointer: pointing to the character to be 
displayed. 

3. Establish a pointer in the SRB vector, and execute the 
corresponding SVC. 

4. Examine the status byte to venfy that the SVC operated 
properly. 

SVC DEMONSTRATION 
This subsection contains a demonstration program that 
illustrates some of the techniques for using SVCs. The 
program demonstrates the use of SRB pointers, SRBs, 
buffers, and four SVCs: Assign Channel, Read ASCII, Write 
ASCII, and Abort. Figure 6-3 is a flowchart of the 
demonstration program 

(w 



Service Calls-8540 System Users SVC Demonstration 

Start 

Execute SVC 1 to 
Assign System Terminal 
to Channel 0 

OK 

Execute SVC 2 to 
Assign Line Printer 
to Channel 1 

Execute SVC 3 to 
Read Line from 
System Terminal 

Execute SVC 4 to 
Write Line to 
Line Printer 

Error 

Error 

or End-of-File 

SVC Definitions 

SVC 1: Function 10, Assign channel 
SVC 2: Function 10, Assign channel 
SVC 3: Function 01, Read ASCII 
SVC 4: Function 02, Write ASCII 
SVC 5: Function 1F, Abort 

Execute SVC 5 to Exit 

End 

3457-38 

Fig. 6-3. SVC demonstration program flowchart. 

This flowchart represents the algorithm for the SVC demonstration program. The instructions for the 8080A/8085A version of 
this program are given in Fig. 6-4. SVC1 and SVC2 assign the system terminal and the line printer to channels 0 and 1. 
respectively. SVC3 reads a line and SVC4 copies it to the line printer. To stop the program, enter a CTRL-Z when the terminal is 
awaiting input. 

6-7 



SVC Demonstration Service Calls-8540 System Users 

The demonstration piOgram is presented here in 
8080A/8085A assembly language. A similar program is 
provided in the Emulator Specifics supplement for each 

emulator supported by the 8540. Figure 6-4 is an 
8080/8085A listing of the demonstration program. 

SSSSS v v CCCCC 
S v v c 
SSSSS v v C DEMONSTRATION. BOBOA/BOBSA EMULATOR 

S V V C 
sss::;::; v ccccc 

ORG 40H ; BEGINNING OF SRB VECTOR 
BYTE HI(SRBIFN),LO(SRBIFN) 
BYTE HI ( SRB2FN) ,LO ( SRB2FN) 
BYTE HI(SRB3FN),LO(SRB3FN) 
BYTE HI(SRB4FN),LO(SRB4FN) 
BYTE HI(SRB5FN),LO(SRB5FN) 
END OF SRB VECTOR 

ORG 100H ; SET UP SRB AREAS 
SRBI = ASSIGN 'CONI' TO CHANNEL 0 

SRBIFN BYTE 10H ASSIGN 
BYTE OOH TO CHANNEL 0 

SRBIST BLOCK OlH STATUS RETURNED HERE 
BLOCK 02H BYTES 4 AND 5 NOT USED 
BYTE 05H LENGTH OF 'CONI'+<CR> 
BYTE HI (CONI) POINTER TO 
BYTE LO(CONI) 'CONI' +<CR> 
END OF SRBI 
SRB2 = ASSIGN 'LPT' TO CHANNEL 1 

SRB2FN BYTE 10H ASSIGN 
BYTE OlH TO CHANNEL 1 

SRB2ST BLOCK OlH STATUS RETURNED HERE 
BLOCK 02H BYTES 4 AND 5 NOT USED 
BYTE 04H LENGTH OF 'LPT'+<CR> 
BYTE HIIIPT) POINTER TO 
BYTE LO(LPT) 'LPT'+<CR> 
END OF SRB2 
SRB3 = READ ASCII LINE FROM CONI (CHANNEL 0) 

SRB3FN BYTE OlH READ ASCII 
BYTE OOH FROM CHANNEL 0 

SRB3ST BLOCK OlH STATUS RETURNED HERE 
BLOCK OlH BYTE 4 NOT USED 
BLOCK OlH BYTE COUNT RETURNED HERE 
BYTE OOH 256 BYTES IN OUR BUFFER 
BYTE HI (BUFFER) POINTER TO 
BYTE LO(BUFFER) OUR BUFFER 
END OF SRB3 
SRB4 = WRITE ASCII LINE TO LPT (CHANNEL 1) 

SRB4FN BYTE 02H WRITE ASCII 
BYTE OlH TO CHANNEL 1 

SRB4ST BLOCK OlH STATUS RETURNED HERE 
BLOCK OlH BYTE 4 NOT USED 
BLOCK OlH BYTE COUNT RETURNED HERE 
BYTE OOH 256 BYTES IN OUR BUFFER 
BYTE HI (BUFFER) POINTER TO 
BYTE LO(BUFFER) OUR BUFFER 
END OF SRB4 

3939·12 

Fig. 6-4. 8080A/8085A SVC demonstration program listing (part 1 of 2), 

6-8 



Service Calls-8540 System Users 

SRB5 = ABORT (CLOSE ALL CHANNELS AND TERMINATE) 
SRB5FN BYTE lFH 

BLOCK 07H 
END OF SRB5 

BUFFER BLOCK 
CONI ASCII 

100H 
'CONI' 

BYTE ODH 
LPT ASCII 'LPT' 

BYTE ODH 
END OF DATA DEFINITIONS 

ABORT 
; BYTES 2 THROUGH 8 NOT USED 

OUR I/O AREA 
ASCII OF 'CONI' 
+ <CR> 
ASCII OF 'LPT' 
+ <CR> 

BEGINNING OF EXECUTABLE CODE 
ORG lOOOH ENTRY POINT INTO PROGRAM 

START OUT OF7H CALL SVCl 

LOOP 

NOP 
LDA 
CPI 
JNZ 
OUT 
NOP 
LDA 
CPI 
JNZ 
OUT 
NOP 
LDA 
CPI 
JNZ 

OUT 
NOP 
LDA 
CPI 
JZ 

ABORT OUT 
NOP 
HLT 
END 

SRB1ST 
OOH 
ABORT 
OF6H 

SRB2ST 
OOH 
ABORT 
OF5H 

SRB3ST 
OOH 
ABORT 
OF4H 

SRB4ST 
OOH 
LOOP 

OF3H 

START 

TO ASSIGN 'CONI' 
CHECK THE STATUS TO SEE 
IF ALL WENT WELL 
NO? STOP EVERYTHING 
YES? CALL SVC2 
TO ASSIGN 'LPT' 
CHECK THE STATUS TO SEE 
IF ALL WENT WELL 
NO? STOP EVERYTHING 
CALL SVC3 
TO READ A 'CONI' LINE 
INTO 'BUFFER' 
ALL OK? 
NO? STOP EVERYTHING 
CALL SVC4 
TO WRITE 'LPT' 
CHECK TO SEE IF 
ALL IS O.K. 
YES? BACK TO READ ANOTHER LINE 
NO? FALL THROUGH TO TERMINATION 
CALL SVC5 
TO DO 1rlE ABORT 

SHOULD NEVER REACH HERE 

Fig. 6-4. SOSOA/SOS5A SVC demonstration program listing (part 2 of 2). 

SVC Demonstration 

3939-13 

Program Description 
The demonstration program consists of two major parts: 
the data declarations and the executable code. 

After the SRBs are defined, the I/O buffer space is 
allocated. The device names (used for channel assignment) 
are also defined. 

Data Declaration 
This part of the program begins by defining the five entries 
in the SRB vector. Each entry points to a function byte of an 
SRB. These entries are examined by OS/40 when an SVC 
is invoked. In this demonstration program, only one SRB is 
used for each SVC, so the SRB contains the number of the 
SVC as part of its labels. 

Executable Code 
This part of the program begins by invoking SVC1. This SVC 
invocation instructs OS/40 to examine the address stored 
in memory locations 40 and 41 of the SRB vector. These 
addresses point to the beginning of SRB1. SVC1 assigns 
channel 0 to CONI (system terminal input). 

6-9 



SVC Functions 

After SVCl is executed, the program checks the status 
byte. OS/40 sets this byte to indicate whether the 
operation was completely and properly performed. If this 
byte :s non-zero, some un\.Av'tintcd resuft has occurred, and 
the program branches to an exit routine. 

Next, the program executes SVC2 to assign the line printer 
(LPT) to channel 1. The program then tests the status byte 
as before, branching to the exit routine upon any error. 

The program then initiates a read from channel O. Because 
the system terminal input (CONI) was assigned to this 
channel, SVC3 causes the program to be delayed until a 
line has been typed in at the terminal. When the RETURN 
character has been entered, OS/40 resumes the program. 
The line is read into the buffer designated in the SRB for 
SVC3. 

The program then tests the status byte for a possible 
termination condition. This termination condition is 
indicated by a non-zero value in the status byte of SRB3. 
The program is exited when either of the following 
conditions occurs: 

• An error occurs during the 1/0 transfer; this generates 
the appropriate 1/0 error value in the status byte, or 

• A CTRL-Z IS typed in at the terminal; this generates an 
end-of-file condition, and returns FF, the end-of-file 
status value. 

If neither termination condition has occurred, SVC4 
outputs the line to channell (which was assigned to LPT.) 
The line itself does not need to be moved, because the same 
buffer is used for input and output. The status is checked 
again after SVC4 is completed If 05/40 indicates no error, 
the program loops back to read another line. 

When any error occurs, or CTRL-Z is entered at the 
terminal. the program branches to the exit routine. This 
rOlJtine executes 5VC5, which is defined by SRB5 to 
perform an abort (stop program execution, close all open 
channels). 

NOTE 

The program in Figure 6-4 is written for a B Series 
assembler (as provided for an 8560). To modify this 
program for an A Series assembler (as provided for an 
8550), change each single quote (') to a double quote 
("). 

6-10 

Service Calls-8540 System Users 

SVC FUNCTIONS 
The remainder of this section describes each of the SVC 
f Ulu;iiuflS individuaiiy. The first byte of an 5RB indicates the 
function of the service call. Each function is described in 
the following format: 

Identification 

Description 

Parameters Passed 

Information 
Returned 

The name of the function being 
described, and its function number. 
The function number IS In byte 1 of 
the SRB at the time of the call. 

One or more paragraphs discus
sing the operation of the function 
and its limits or extensions. 

A list of values that you must put 
into the SRB or buffer before the 
call is made. Because the function 
byte must always be loaded before 
any call, it is not included in this 
parameter list. 

A list of all items that OS/40 will 
return in the various parts of the 
SRB and buffer. Because the status 
byte is always returned, it is not 
included in the list unless it has a 
special Significance. 

The functions are described in alphabetic order. Refer to 
the Section 6 Table of Contents for a numeric index of the 
functions. The following paragraphs briefly define the 
terms used in these descriptions. 

Terminology 
ASCII and binary are two types of data transfers. An ASCII 
transfer consists of a single line of text containing zero to 
255 characters, followed by a RETURN character. The most 
significant bit of each character is cleated un i:my ASCII 
transfer. 

A binary transfer consists of 1 to 256 bytes; the length of 
the data item is determined only by the buffer size. The 
most significant bit of each byte is not affected during a 
binary trrlnsfer 

Under OS/40, proceed SVCs are equivalent to wait SVCs: 
both complete the liD operation before your program is 
aiiuwed LU continue. 



Service Calls-8540 System Users 

Bytes Used 

SRB Field 
Name 

Function 
Channel 
Status 
Fourth Byte 
Byte Count 
Buffer Length 
Buffer Pointer 

Small Address 
Space Format 

(SAS) 

2 
3 
4 
5 
6 

7-8 

Large Address 
S pace Format 

(LAS) 

2 
3 
4 

5-6 
7-8 

9-12 

Under OS/40, overwrite SVCs are equivalent to write 
SVCs: both operations set an end-of-file mark that destroys 
any information past that point in the file. 

The file pointer is a logical position in the file. All reads 
from the file and writes to the file are performed beginning 
at the current file pointer. The file pointer is updated to the 
end of the data item read or written. Seek SVCs reposition 
the file pointer. An independent file pointer is maintained 
for each channel. 

NOTE 

When the Byte Count, Buffer Length, and Buffer 
Pointer fields are used for non-I/O operations, they 
are discussed by byte number. 

Differences between SAS and LAS formats are noted 
in the function descriptions. 

On all two-byte and four-byte values used by SVCs, 
the high byte is given first. 

Abort Program-Function 1 F 
This function terminates the currently running program. 
All open channels are automatically closed. 

NOTE 

If this S VC is executed when TRA ce is of" the 
program counter will contain the address where 
execution began on the most recent G command 

A ny errors that result from closing the open channels 
are displayed on the system terminal. 

Parameters Passed 
None. 

Information Returned 
None. 

SVC Function-Create File 

Assign Channel-Function 10 
This function assigns a file or device to the designated 
channel. Store the filespec (terminated by a RETURN 
character) in the buffer before invoking this SVC. If you 
designate a file that does not already exist, the file is 
created. 

Parameters Passed 
Buffer. Contains the filespec, terminated by a RETURN 
character. 
Channel. The channel number assigned to the file or 
device designated by the filespec. 
Buffer Pointer. The location of the first byte of the buffer. 

Information Returned 
None. 

Close Channel-Function 03 
This function closes a previously opened channel. 

Parameters Passed 
Channel. The channel to be closed. 

Information Returned 
None. 

Create File-Function 90 
This function creates an empty file with the specified 
filespec, and assigns a channel to the new file. If the 
specified file already exists, its previous contents are lost. 

Parameters Passed 
Buffer. The filespec of the file to be created, terminated by 
a RETURN character. 
Channel. The channel number to which the file will be 
assigned. 
Buffer Pointer. The location of the first byte of the buffer. 

Information Returned 
None. 

6-11 



SVC Function-Delete File 

Bytes Used 

Small Address I Large Address , 
SRo Fieid Space Formai 

I 
Space Formai 

Name (SAS) 
I 

(LAS) 

Function I f"' ..... ~ ___ 1 
"I "I 

vllCllllltl L I L 

Status 3 

I 
3 

Fourth Byte 4 4 
Byte Count 5 

I 5-6 
Buffer Length 6 7-8 
Buffer Pointer 7-8 9-12 

Exit Program-Function 1 A 
This function stops the execution of your program. OS/40 
will respond with a prompt for another command. Use the 
G command to resume execution. (Do not use the CO 
command in this situation.) Any channels currently open 
remain open. This function is identical to the Suspend 
Program SVC (function 19). 

Parameters Passed 
None. 

Information Returned 

None. 

Get Command Line Parameter
Function 13 
ThiS function (identical to the Get Execution Line 
Par arneler SVC, function 1 C) returns a parameter of the 
command line used to load or execute the current program. 
The parameters are numbered with consecutive non
negative integers, beginning with 01. For example, for the 
OS/40 command line"X <MYFILE VWX+3", parameter01 
is V and parameter 03 is X+3. The selected parameter is 
returned in the buffer. If the parameter number is greater 
than the number of parameters in the command line, the 
value FF is returned in the buffer in place of a parameter. 

Parameters Passed 

SAS Byte 4, LAS Bytes 5-6. The number ofthe requested 
parameter. 
Buffer Length. The maximum number of characters in the 
parameter. 
Buffer Pointer. The location of the first byte of the buffer. 

6-12 

Service Calls-8540 System Users 

Information Returned 
Buffer, The parameter, terminated by a RETURN character. 
SAS Byte 5 The !ength of the parameter, :nc!uding the 
RETURN character. This information is not returned in LAS 
format. 

Get Device Type-Function 14 
This function returns two device-dependent values that 
define the type and general capabilities of the device or file 
assigned to the designated channel. Table 6-2 lists the 
values that are associated with each device. 

In TERM mode, CONI and CONO are treated as files (device 
identification FF, type code 43). 

Parameters Passed 

Channei. The channei number to which the device or fiie is 
currently assigned. 

Information Returned 

SAS Byte 4, LAS Byte 7. The device identification number 
(as defined in Table 6-2). 
SAS Byte 5, LAS Byte 8. The device type code (as defined 
in Table 6-2). 

Get Execution Line Parameter
Function 1 C 
This function is identical to the Get Command Line 
Parameter SVC, function 13. 

Get Last CONI Character
Function 16 
This function returns the ASCII value of the last character 
entered at the system terminal. 

Parameters Passed 
None. 

REV JAN 1983 



Service Calls-8540 System Users 

Bytes Used 

S mall Address Large Address 
SRB Field 

Name 
Space Format S pace Format 

Function 
Channel 
Status 
Fourth Byte 
Byte Count 
Buffer Length 
Buffer Pointer 

(SAS) 

1 
2 
3 
4 
5 
6 

7-8 

Information Returned 

(LAS) 

1 
2 
3 
4 

5-6 
7-8 

9-12 

SAS Byte 4, LAS Byte 6. The last character entered at the 
system terminal. 

Load Overlay-Function 17 
This function loads a load file (in A Series or B Series Load 
Module format) into program or prototype memory. The 
buffer must contain the name of the file when the SVC is 
invoked. 

Parameters Passed 

Buffer. The filespec, terminated by a RETURN character. 
Buffer Pointer. The location of the first byte of the buffer. 

Information Returned 

SAS Bytes 4-5, LAS Bytes 5-8. The transfer address of 
the load file: the high-order byte is given first. 

Load Overlay with Bias
Function 57 
This function loads a load file (in A Series or B Series Load 
Module format) into program or prototype memory. The file 

SVC Function-Log Error Message 

is loaded with a specified bias (offset) from each of its 
addresses. The bias is specified in the bytes following the 
buffer pointer, and is added to the starting address of each 
block in the load file. 

Parameters Passed 

Buffer. The filespec, terminated by a RETURN character. 
Buffer Pointer. The location of the first byte of the buffer. 
SAS Bytes 9-10, LAS Bytes 13-16. The bias (high byte 
first) to be added to the starting address of each block in the 
load file. 

Information Returned 

SAS Bytes 4-5, LAS Bytes 5-8. The transfer address of 
the load file: the high-order byte is given first. 

Log Error Message-Function 09 
This function displays an error message on the system 
terminal. (All system error messages are listed in the Error 
Messages section of this manual.) The message includes 
the name of the last program loaded; this identifies that the 
message was generated by a user program. 

Use this SVC when your program is not prepared to handle 
the error. You can use the same SRB that returned the error 
code by changing the function byte. 

Parameters Passed 

Status. The error message number returned by the 
previous call for this SRB. 

Information Returned 

None. 

Table 6-2 
Device Identification and Type 

Device 
Name Description Identification Type Code Type Description 

CONI Console input 01 01 ASCII read 

CONO Console output 02 02 ASCII write 
LPT Line printer 03 02 ASCII write 
PPTR Paper tape reader 08 01 ASCII read 
PPTP Paper tape punch 09 02 ASCII write 
REMI Remote input OA 01 ASCII read 
REMO Remote output OB 02 ASCII write 
(file) File FF 43 Binary read/write 

6-13 



SVC Function-Open for Read 

Bytes Used 

Small Address 
~n:lr.p ~nr",:lt 

Large Address 
SRB Fie!d 

Name 
- .---- - -- ..... _- Space Format 

Function 
Channel 
Status 
Fourth Byte 
Byte Count 
Buffer Length 
Buffer Pointer 

(SAS) 

2 
3 
4 
5 
6 

7-8 

(LAS) 

2 
3 
4 

5-6 
7-8 

9-12 

Open for Read-Function 30 
This function assigns an existing file or device to the 
designated channel. An error is generated if the file or 
device does not exist, or if a write to the channel is 
attempted later. 

Parameters Passed 

Buffer. The filespec, terminated by a RETURN character. 
Channel. The channei number io which the fiie is 
assigned. 
Buffer Pointer. The location of the first byte of the buffer. 

Information Returned 

None. 

Open for Read or Write
Function 70 
This function assigns an existing file or device to the 
designated channel. An error is generated if the file or 
device does not exist. 

Parameters Passed 

Buffer. The filespec, terminated by a RETURN character. 
Channe!. The channel number to which the fi!e is 
assigned. 
Buffer Pointer. The location of the first byte of the buffer. 

Information Returned 

None. 

Open for Write-Function 50 
This function assigns an existing file or device to the 
designated channel. An error is generated if the file or 
device does not exist, or if a read from the channel is 
attempted later 

6-14 

Service Calls-8540 System Users 

Parameters Passed 

Buffer. The filespec, terminated by a RETURN character. 
Channel. The channel number to which the filespec is 
assigned. 
Buffer Pointer. The location of the first byte of the buffer. 

Information Returned 

None. 

Overwrite ASCII and Proceed
Function A2 
This function is identical to the Write ASCII and Wait SVC, 
function 02. 

Overwrite ASCII and Wait
Function 22 
This function is identical to the Write ASCII and Wait SVC, 
function 02. 

Overwrite Binary and Proceed
Function E2 
This function is identical to the Write Binary and Wait SVC, 
function 42. 

Overwrite Binary and Wait
Function 62 
This function is identical to the Write Binary and Wait SVC. 
function 42. 

Read ASCII and Proceed
Function 81 
This function is identical to the Read ASCII and Wait SVC, 
function 01. 

Read ASCII and Wait
Function 01 
This function reads one ASCII line from the designated 
channel into the buffer. 

Parameters Passed 

Channel. The channel assigned to the device or file from 
which the line is read. 



Service Cails-8540 System Users 

Bytes Used 

Small Address Large Address 
SRB Field Space Format Space Format 

Name (SAS) (LAS) 

Function 1 1 
Channel 2 2 
Status 3 3 
Fourth Byte 4 4 

Byte Count 5 5-6 

Buffer Length 6 7-8 

Buffer POinter 7-8 9-12 

Buffer Length. The maximum number of characters to 
read, including the RETURN character. 
Buffer Pointer. The location of the first byte of the buffer. 

Information Returned 

Byte Count. The number of characters read, including the 
RETURN character. 

Buffer. The ASCII line read, including the RETURN 
character. 

Read Binary and Proceed
Function C1 
This function is identical to the Read Binary and Wait SVC, 
function 41. 

Read Binary and Wait
~ . 41 • unction • 
This function reads binary data from the designated 
channel into the buffer. 

Parameters Passed 

Channel. The channel assigned to the file or device from 
which the buffer is read. 
Buffer Length. The number of bytes to read. 
Buffer Pointer. The location of the first byte of the buffer. 

Information Returned 

Byte Count. The number of bytes actually read; the same 
as buffer length, unless the end-of-file was reached. 
Buffer. The bytes read. 

Read Program Clock-Function 11 
This function reads the OS/40 program clock, which is a 
16-bit counter controlled by the OS/40 CLOCK command. 

SVC Function-Seek Relative to Byte in File 

Parameters Passed 

None. 

Information Returned 

SAS Bytes 4-5, LAS Bytes 5-6. The 16-bit program clock; 
the high-order byte is given first. 

Rewind File-Function 04 
This function moves the file pointer to the beginning of the 
file assigned to the designated channel. 

Parameters Passed 

Channel. The channel number of the file to rewind. 

Information Returned 

None. 

Seek Relative to Byte In File
Function 24 
This function seeks to a byte in the file assigned to the 
designated channel. The byte number is given as a signed 
4-byte value. The first byte of the file is byte number 0; 
successive bytes are numbered in ascending order. 

An offset from the current file pointer is given as a signed 4-
byte value. This offset is added to the current file pointer to 
produce the new file pointer. 

The new file pointer is returned to verify that it has indeed 
been located at the requested position; the new position 
cannot be beyond the current end-of-file, nor before the 
beginning of the file. To obtain the value of the current file 
pointer, pass an offset of 00000000 to this SVC. 

Parameters Passed 

Channel. The channel assigned to the file on which the 
seek is performed. 
SAS Bytes 5-8, LAS Bytes 9-12. A signed 4-byte value 
(most significant byte first) containing the offset to add to 
the current file pointer. 

Information Returned 

SAS Bytes 5-8, LAS Bytes 9-12. The new position ofthe 
file pointer. 

6-15 



SVC Function-Seek to Byte in File 

Bytes Used 

Small Address I Large Address 
SRB Fie!d 

c ____ c_ .. __ ... I c ____ E: ____ .. 

"'pa .... c • v'".al 

I 
.;»pa .... c • VIlIlOl 

Name (SAS) (LAS) 

Function I 

Channel 2 I 2 I 
Status 3 I 3 
Fourth Byte A 4 '-t I 
Byte Count 5 I 5-6 
Buffer Length 6 7-8 
Buffer POinter 7-8 9-12 

Seek to Byte in File-Function 44 
This function seeks to a byte in the file assigned to the 
designated channei. The byte number is given as a signed 
4-byte value. The first byte of the file is byte number 0; 
successive bytes are numbered in ascending order. 

The new file pointer is returned to verify that it has indeed 
been located at the requested position. The new position 
cannot be beyond the current end-of-file; or hp.forp. thp. 
beginning of the file. 

A seek to byte 0 is equivalent to the Rewind SVC, function 
04. 

Parameters Passed 
Channel. The channel assigned to the file on which the 
seek is performed. 
SAS Bytes 5-8, LAS Bytes 9-12. A signed 4-byte value 
(most significant byte first) containing the byte position to 
seek to. 

Information Returned 

SAS Bytes 5-8, LAS Bytes 9-12. The new position of the 
file pointer; should be the same as the position passed, 
unless a seek is attempted past the beginning or the end of 
the file. 

Seek to Byte in File Relative to 
r"'''r"' 1"" ____ ... ~ __ ~..11 

t:vr-rUIU;UUII 0" 

This function seeks to a byte in the file assigned to the 
designated channel. An offset from the current end-of-file 
is given as a signed 4-byte vaiue (usuaiiy zero or negative). 

6-16 

Service Calls-8540 System Users 

You may position the file pointer at the end-of-file without 
knowing the file's length; to do so, pass a value of 
00000000 to this SVC. After this seek operation, you may 
append additionai information to the fiie. 

The new file pointer is returned to verify that it has indeed 
been located at the requested position; the new position 
cannot be beyond the current end-of-fiie, or before ihe 
beginning of the file. 

Parameters Passed 

Channel. The channel assigned to the file on which the 
seek is performed. 
SAS Bytes 5-8, LAS Bytes 9-12. A signed 4-byte value 
(most significant byte first) containing the offset. This offset 
is added to the number of bytes in the file to obtain the new 
value of the file pointer. 

Information Returned 

SAS Bytes 5-8, LAS Bytes 9-12. The new position ofthe 
file pointer. 

Special Function-Function 07 
This function performs a special device-dependent 
operation on the device or file currently assigned to the 
designated channel. At the time of this writing, only one 
special function code (14) is defined. Its action is identical 
to the Get Device Type SVC (function 14). Other special 
functions may be defined at some future date. 

Parameters Passed 

Channel. The channel number assigned to perform the spe
cial function. 

SAS Byte 5, LAS Bytes 5-6. The special function code (cur
rently defined only for 14). 

Information Returned 

(Dependent on special function.) 

Suspend Program-Function 19 
This function is identical to the Exit Program SVC, function 
iA. 

REV JAN 1983 



Service Calls-8540 System Users 

Bytes Used 

SRB Field 
Name 

Function 
Channel 
Status 
Fourth Byte 
Byte Count 
Buffer Length 
Buffer Pointer 

Small Address 
Space Format 

(SAS) 

1 
2 
3 
4 
5 
6 

7-8 

Large Address 
Space Format 

(LAS) 

1 
2 
3 
4 

5-6 
7-8 

9-12 

Write ASCII and Proceed
Function 82 
This function is identical to the Write ASCII and Wait SVC, 
function 02. 

Write ASCII and Wait
Function 02 
This function writes one ASCII line from the buffer to the 
designated channel. 

Buffer Length. The maximum number of characters to be 
written; this count includes the RETURN character. 
Buffer Pointer. The location of the first byte of the buffer. 

REV JAN 1983 

SVC Function-Write Binary and Wait 

Information Returned 

Byte Count. The number of characters written. 

Write Binary and Proceed
Function C2 
This function is identical to the Write Binary and Wait SVC. 
function 42. 

Write Binary and Wait
Function 42 
This function writes binary data from the buffer to the 
designated channel. 

Parameters Passed 

Buffer. The binary data to be written to the channel. 
Channel. The channel assigned to the file or device to 
which the buffer is written. 
Buffer Length. The number of bytes to be written. 
Buffer Pointer. The location of the first byte of the buffer. 

Information Returned 

Byte Count. The number of bytes actually written; should 
be the same as buffer length. 

6-17 



8540 System Users 

Section 7 

EMULATOR SPECIFICS 

Processor-specific information is contained in the Emulator 
Specifics supplement that accompanies each emulator. Each 
supplement is designed to be inserted into this manual. 

These Emulator Specifics supplements are numbered as if 
they were separate sections of this manual. For example, 
the 8080A supplement is labeled "Section 7 A" and the 
first illustration is numbered "Fig. 7A-1." Similarly, other 
supplements are labeled Sections 78, 7C, etc. Figures, 
pages, and tables are numbered accordingly. 

Each supplement presents the following information: 

• A general summary of the emulator's capabilities . 

• OS/40 commands, parameters, and displays that are 
specific to that emulator. 

• Service call (SVCj information for that emulator, 
including a sample program parallel to the 8080A/ 
8085A program presented in the Service Calls section of 
this manual. 

• Any special considerations that should be noted. 

• Timing discrepancies between the prototype control 
probe and the microprocessor that it replaces. 

• A demonstration run that parallels the one in the 
Learning Guide of this manual. 

Each supplement has its own table of contents . 

7-1 



This manual supports the 
following TEKTRONIX products: 

8300E04 Option 01 
8300P04 
8002F18 
8002F33 
8001F03 

Tektronix, Inc. 
P.O. Box 500 
Beaverton, Oregon 97077 

070-3964-01 
Product Group 61 

COMMITTED TO EXCELLENCE 

This manual supports a software/firmware 
module that is compatible with: 

DOS/50 Version 2 (8550) 
OS/40 Version 1 (8540) 

PLEASE CHECK FOR CHANGE INFORMATION 
AT THE REAR OF THIS MANUAL 

8550 
MODULAR MDL SERIES 

zao 
EMULATOR SPECIFICS 

USERS MANUAL 

INSTRUCTION MANUAL 

Serial Number _____ _ 

First Printing SEP 1981 
Revised FEB 1984 



LIMITED RIGHTS LEGEND 

Soft\/\/are License l'Jo. ______________ _ 

Contractor: Tektronix, Inc. 
Explanation of Limited Rights Data Identification Method 
Used: Entire document subject to limited rights. 

Those portions of this technical data indicated as limited rights data shall not, 
without the written permission of the above Tektronix, be either (a) used, 
released or disclosed in whole or in part outside the Customer, (b) used in whole 
or in part by the Customer for manufacture or, in the case of computer software 
documentation, for preparing the same or similar computer software, or (c) used 
by a party other than the Customer, except for: (i) emergency repair or overhaul 
work only, by or for the Customer, where the item or process concerned is not 
otherwise reasonably available to enable timely performance of the work, 
provided that the release or disclosure hereof outside the Customer shall be 
made subject to a prohibition against further use, release or disclosure; or (ii) 
release to a foreign government, as the interest of the United States may 
require, only for information or evaluation within such government or for 
emergency repair or overhaul work by or for such government under the 
conditions of (i) above. This legend, together with the indications of the portions 
of this data which are subject to such limitations shall be included on any 
reproduction hereof which includes any part of the portions subject to such 
limitations. 

RESTRICTED RIGHTS IN SOFTWARE 

The software described in this document is licensed software and subject to 
restricted rights. The software may be used with the computer for which or with 
which it was acquired. The software may be used with a backup computer if the 
computer for which or with which it was acquired is inoperative. The software 
may be copied for archive or backup purposes. The software may be modified or 
combined with other software, subject to the provision that those portions of the 
derivative software incorporating restricted rights software are subject to the 
same restricted rights. 

Copyrightc 1981, 1982 Tektronix, Inc. All rights reserved. Contents of this publication 
may not be reproduced in any form without the written permission of Tektronix, Inc. 

Products of Tektronix, Inc. and its subsidiaries are covered by U.S. and foreign patents 
and/or pending patents. 

~ 
TEKTRONIX, TEK, SCOPE-MOBILE, and ~ are registered trademarks of Tektronix, 
Inc. TELEQUIPMENT is a registered trademark of Tektronix U.K. Limited. 

Printed in U.S.A. Specification and price change privileges are reserved. 

Printed in U.S.A. Specification and price change privileges are reserved. 



lao Emulator Specifics Users 

Section 7C 

CONTENTS 

zao EMULATOR SPECIFICS 

Introduction .................................................................. . 

General Information ............................................................ . 
Emulator Hardware Configuration .................................................. . 
Microprocessors Supported ...................................................... . 
Emulation Modes ............................................................... . 
Z80A Clock Rate ............................................................... . 
Z80B Clock Rate ............................................................... . 
Symbolic Debug ............................................................... . 

Emulator-Specific Commands, Parameters, and Displays ............................ . 
SEL-Selecting an Emulator ..................................................... . 
Byte/Word Parameter ........................................................... . 
MAP-Mapping Memory ........................................................ . 
Setting Breakpoints ............................................................. . 
Memory Allocation Commands .................................................... . 
Port Commands ............................................................... . 
CONS Command Modes ........................................................ . 
Register Designators ............................................................ . 
BUS and EVE-Bus Operation Designators ......................................... . 
OS-Sample Z80 Emulator Status Display .......................................... . 
RESET-Resetting Z80 Emulator Status ............................................ . 
DI-Sample Z80 Disassembled Code .............................................. . 
TRA-Sample Z80 TRAce Display ................................................. . 

Service Calls ................................................................. . 
SVCs in Modes 1 and 2 ......................................................... . 
SRB Format .................................................................. . 
SVC Demonstration ............................................................ . 

laO Special Considerations ..................................................... . 

laOA Jumpers ................................................................ . 
Z80A Emulator Board ........................................................... . 
Z80A Driver/Receiver Board ...................................................... . 
laOe Jumpers ................................................................ . 
Z80B Emulator Board ........................................................... . 
Z80B Driver/Receiver Board ...................................................... . 
laOA Emulator Timing .......................................................... . 

Reducing Delay Through The Prototype Control Probe (laOe Only) .................... . 

laOe Emulator Timing .......................................................... . 

laOA Probe/Prototype Interface Diagram . ......................................... . 

laOe Probe/Prototype Interface Diagram .......................................... . 

REV AUG 1982 

Page 
7C-1 

7C-1 
7C-1 
7C-1 
7C-1 
7C-2 
7C-2 
7C-2 

7C-2 
7C-2 
7C-2 
7C-2 
7C-3 
7C-3 
7C-3 
7C-3 
7C-3 
7C-5 
7C-6 
7C-6 
7C-7 
7C-7 

7C-9 
7C-9 
7C-9 
7C-9 

7C-13 

7C-13 
7C-13 
7C-13 
7C-14 
7C-14 
7e-15 
7C-16 

7C-16 

7C-19 

7C-22 

7C-22 

7C-i 



zao Emulator Specifics Users 

7C-ii 

CONTENTS (cont) 

Installing Your zao Emulator Software ............................................ . 
8540 Firmware Installation Procedure .............................................. . 
8550 Software Installation Procedure ............................................... . 

zao Demonstation Run ......................................................... . 
Introduction ................................................................... . 
Examine the Demonstration Program ............................................... . 
Assemble and Load the Demonstration Program ...................................... . 
Case 1: Assemble and Load on the 8550 ........................................... . 
Case 2: Assemble on the 8560; Download to the 8540 ................................ . 
Case 3: Download from Your Host to the 8540 ...................................... . 
Case 4: Patch the Program into Memory ........................................... . 
Run the Demonstration Program .................................................. . 
Monitor Program Execution ...................................................... . 
Summary of Z80 Emulator Demonstration Run ....................................... . 

Fig. 
No. 
7C-1. 
7C-2. 
7C-3. 
7C-4. 
7C-5. 
7C-6. 
7C-7. 
7C-8. 
7C-9. 
7C-10. 

Table 
No. 
7C-1. 
7C-2. 
7C-3. 
7C-4. 
7C-5. 
7C-6. 

ILLUSTRATIONS 

Flag register bit configuration in the Z80 emulator .............................. . 
Z80 SVC demonstration program listing .... , .. , ... "',. . .. ,' .. ' .... ,.", ... . 
Connecting the prototype clock input directly to the Prototype Control Probe ........ . 
Z80 microprocessor bus timing ............................................. . 
Siock diagram of Z80A emulator/prototype interface ............................ . 
Siock diagram of Z80S emulator/prototype interface ........................... . 
System configurations .................................................... . 
Demonstration program .................................................. . 
Demonstration program: Extended Tekhex format ............................. . 
Host computer commands for preparing demonstration program .................. . 

TABLES 

Z80 Registers and Flags .................................................. . 
Z80 Sus Operation Designators ............................................ . 
Z80 Service Calls ....................................................... . 
Z80A Emulator/Z80A Microprocessor Timing Differences ........................ . 
Z80S Emulator/Z80S Microprocessor Timing Differences ........................ . 
Sasic 8560 Editing Commands ............................................. . 

7C-25 
7C-25 
7C-25 

7C-29 
7C-29 
7C-32 
7C-33 
7C-33 
7C-37 
7C-42 
7C-44 
7C-46 
7C-49 
7C-54 

Page 

7C-5 
7C-11 
7C-16 
7C-21 
7C-23 
7C-24 
7C-29 
7C-30 
7C-31 
7C-43 

Page 

7C-4 
7C-5 
7C-10 
7C-17 
7C-19 
7C-39 

REV AUG 1982 



Section 7C 
zao EMULATOR SPECIFICS 

INTRODUCTION 

This section supports the Z80A Emulator Processor and Prototype Control Probe as well as the newer Z808 
Emuiator Processor and Probe. While the Z80A Emulator Processor can emulate only Z80 and Z80A 
microprocessors, the Z808 Emulator Processor can emulate the Z80, Z80A, and Z808 microprocessors. 

In this section, the term "Z80 emulator" is used in presenting information that applies to both the older Z80A 
emulator and the newer Z808 emulator. The term "Z80A emulator" is used for information that applies only 
to the Z80A Emulator Processor. The term "Z808 emulator" is used for information that applies only to the 
newer Z808 Emulator Processor. 

This Emulator Specifics section is to be inserted into Section 7 of the 8550 System Users Manual (DOS/50 
Version 2) or the 8540 System Users Manual. It explains the features of the 8550 and 8540 systems that are 
unique to the Z80A and Z808 Emulators. Throughout the section, "your System Users Manual" refers to the 
8550 System Users Manual or 8540 System Users Manual. The Z80 Demonstration Run is designed to be 
used with Section 1 (the Learning Guide) of your System Users Manual; the rest of this section contains 
reference material. 

GENERAL INFORMATION 

Emulator Hardware Configuration 

Throughout this Emulator Specifics section, the term "Z80 emulator" refers to a Z80 Emulator Processor 
boad configured with a Z80 Prototype Control Probe or mobile microprocessor. In emulation Mode 0, the 
mobile microprocessor may be inserted directly into the emulator board. In Modes 1 and 2, the mobile 
microprocessor must be installed in the prototype control probe and the prototype control probe must be 
connected to both the emulator and your prototype. For instruction on installing the emulator board, mobile 
microprocessor, and probe, refer to the Z80 Emulator Processor and Prototype Control Probe Installation 
Service Manual. 

Microprocessors Supported 

The Z80A emulator emUlates the Zilog, Z80 and Z80A microprocessors. The Z808 emulator emulates the 
Zilog Z80, Z80A, and Z808 microprocessors. 

Emulation Modes 

The Z80 emulator supports Emulation Modes 0, 1, and 2, as described in the Emulation section of your 
System Users Manual. The Z80 emulator supports service calls (SVCs) in all three modes. 

REV AUG 1982 7C-1 



General Information zao Emulator Specifics Users 

7C-2 

zaOA Clock Rate 

In Mode 0 emulation, the emulator clock rate is 2 or 4 MHz, depending on the setting of jumper J1. In Mode 
1 emulation, the maximum recommended rate for the prototype clock is 4 MHz. 

zaOB Clock Rate 

In Mode 0 emulation, the emulator clock rate is 4 or 6 MHz, depending on the setting of jumper J3002. In 
Mode 1 emulation, the clock rate of 6 MHz may be used only with 8500-series systems. At this 6 MHz rate, 
one wait state will be inserted. 

NOTE 

When used with the Trigger- Trace Analyzer (TTA) or the Real-Time Prototype Analyzer (RTPA), the 
ZaOB Emulator Processor provides an output that is one-half of the emulator operating clock rate. 
Therefore, the clock count stored in the TTA or RTPA buffers will be one-half of the actual emulator 
clock count. 

Symbolic Debug 

The l80 emulator supports the use of symbolic debug. 

EMULATOR-SPECIFIC COMMANDS, PARAMETERS, AND 
DISPLAYS 

SEL-Selecting an Emulator 

The SEL (SELect) command allows you to select the emulator you want to use with your system. The 
following command line selects the l80 emulator and assembler: 

> SEL zao 

Byte/Word Parameter 

Several commands offer you the choice of operating on memory on a byte-oriented or word-oriented basis. 
In affected commands, this choice is represented by the -B or -W parameter. For the l80 emulator, the 
default value is -B (Byte). 

MAP-Mapping Memory 

The l80 addresses a 64 K memory space, arranged in 512 blocks of 128 bytes each. The MAP command 
enables you to assign blocks of memory to either program memory or prototype memory, and to designate 
blocks of program memory as read-only. Refer to the Command Dictionary for details on the syntax. param
eters. and use of the MAP command. 

REV AUG 1982 



zao Emulator Specifics Users Commands and Displays 

Setting Breakpoints 

The zao emulator allows you to specify up to two breakpoints with the BK command. 

Memory Allocation Commands 

The Memory Allocation Controller (MAC) option cannot be used with the zao emulator. The zao does not 
use the MEMSP command, and does not support memory space qualifiers or expressions. The zao emula
tor supports the AL (Allocate) command, as described in the Command Dictionary of your System Users 
Manual. The DEAL, MEM, and NOMEM commands are not supported. 

Port Commands 

The zao emulator does not support the RD or WRT commands. 

CONS Command Modes 

The zao emulator supports the FET mode of the CONS command of the Trigger Trace Analyzer. The zao 
does not support the EMU mode of the CONS command. 

Register Designators 

Table 7C-1 alphabetically lists the symbols used by DOS/50 and OS/40 to designate the registers and flags 
used by the zao. The table provides the following information for each symbol: 

• a description of the register or flag that the symbol represents; 

• the size of the register or flag; 

• the value assigned to the register or flag by the RESET command; 

• whether the register or flag can be assigned a value by the S (Set) command. 

Figure 7C-1 shows the contents of the zao flag register. 

REV AUG 1982 7C-3 



Commands and Displays zao Emulator Specifics Users 

Table 7C-1 
zao Registers and Flags 

Size in Value After Alterable 
Bits RESETa by S 

Symbol Description Command? 

A Register A 8 NC yes 
AA Alternate register A 8 NC yes 
AB Alternate register B 8 NC yes 
ABC Alternate registers B & C 16 NC yes 
AC Alternate register C 8 NC yes 
AD Alternate register D 8 NC yes 
ADE Alternate registers D & E 16 NC yes 
AE Alternate register E 8 NC yes 
AF Alternate flag register 8 NC yes 
AH Alternate register H 8 NC yes 
AHL Alternate registers H & L 16 NC yes 
AL Alternate register L 8 NC yes 
B Register B 8 NC yes 
BC Registers B & C 16 NC yes 
C Register C 8 NC yes 
CY Carry flag b 1 NC yes 
D Register D 8 NC yes 
DE Registers D & E 16 NC yes 
E Register E 8 NC yes 
F Flag register b 8 NC yes 
H Register H 8 NC yes 
HC Auxiliary carry flag b 1 NC yes 
HL Registers H & L 16 NC yes 

Interrupt page address register 8 00 yes 
IFF1 Interrupt flip-flop 1 0 yes C 

IFF2 Interrupt flip-flop 2 0 yes C 

1M Interrupt mode 0 yes 
IX Index register X 16 NC yes 
IY Index register Y 16 NC yes 
L Register L 8 NC yes 
N Subtract flag b NC yes 
a Overflow flag b NC yes 
P Parity flag b 1 NC yes 
PC Program counter 16 0000 no 
R Memory refresh register 8 00 yes 
S Sign flag b 1 NC yes 
SP Stack pointer 16 NC yes 
Z Zero flag b NC yes 

a NC = not changed by RESET 

b The flag register is illustrated in Fig. 7C-1. 

C The S command performed on either IFF1 or IFF2 sets both. 

7C-4 REV AUG 1982 



zao Emulator Specifics Users Commands and Displays 

"--- carry bit = 1 if carry 

"-----subtract bit = 1 if subtract 

'--------- parity / overflow bit = 1 if even 
parity or overflow condition 

L-_________ not used 

'--___________ auxiliary-carry bit = 1 
if auxiliary-carry 

'--------------- not used 

L-_______________ zero bit = 1 if zero 

L...-_________________ sign bit = 1 if negative 

Fig. 7C-1. Flag register bit configuration in the zao emulator. 

BUS and EVE-Bus Operation Designators 

3964-1 

Table 7C-2 lists the zao bus operation designators recognized by the Trigger Trace Analyzer's BUS com
mand, and for the B parameter of the EVE command. 

REV AUG 1982 

Symbol 

CLR 
F 
NF 

M 

RD 
WT 

I 

Table 7C-2 
zao Bus Operation Designators 

Bus Operation Type 

All types 
Instruction Fetches 

Non-fetches 

Memory accesses 
Reads 

Writes 

I/O operations 

7C-S 



Commands and Displays zao Emulator Specifics Users 

7C-6 

OS-Sample ZSO Emulator Status Display 

The DS (Display Status) command displays the status and register contents of the zao. All numbers in the 
OS display line are hexadecimal. 

Here is an example of a OS display line for the zao emulator: 
> DS 

PC=OOOO SP=5645 
1X=llll 1Y=2222 

F=43 A=C3 B=02 C=04 D=04 E=24 H=Ol 1=32 
AF=OO AA=OO AB=20 AC=30 AD=40 AE=50 AH=60 A1=70 

1FF1=0 1FF2=0 1M=O 1=00 R=OO 

Table 7C-1 explains the symbols displayed by the OS command. 

For the zao emulator, the short and long forms of the OS display are the same: OS gives the same display 
as OS -l. 

RESET-Resetting ZSO Emulator Status 

The RESET command produces a hardware reset signal to the zao microprocessor. The zao registers are 
reset to the values indicated in Table 7C-1. 

Example. Suppose the DS command returns the following emulation status: 

> DS 

PC=OlOO SP=5645 F=43 A=C3 B=02 C=04 D=04 E=24 H=Ol 1=32 
1X=llll 1Y=2222 AF=OO AA=OO AB=20 AC=30 AD=40 AE=50 AH=60 A1=70 
1FF1=1 1FF2=1 1M=l 1=01 R=Ol 

Enter the RESET command. Then check the status again with the OS command: 
> RESET 

> DS 

t 
PC=OOOO SP=5645 F=43 A=C3 B=02 C=04 D=04 E=24 H=Ol 1=32 
1X=llll 1Y=2222 AF=OO AA=OO AB=20 AC=30 AD=40 AE=50 AH=60 A1=70 
1FF1=0 1FF2=0 1M=O 1=00 R=OO 

t t t t 
The arrows show the changed registers. 

REV AUG 1982 



zao Emulator Specifics Users Commands and Displays 

DI-Sample ZSO Disassembled Code 

The 01 (Disassemble) command translates object code in memory into assembly language instructions. 01 
displays object code, assembly language mnemonics, and operands. Use the 01 command to verify that the 
values in memory correspond to the assembly language instructions of your program. 

Here is an example of zao 01 command output: 
> DI 100 10E 

LOC 
000100 
000103 
000105 
000106 
000107 
000108 
000109 
00010C 
00010E 

• 

INST 
210005 
0605 
AF 
86 
23 
05 
C20601 
D3F7 
00 
1 

MNEM 
LD 
LD 
XOR 
ADD 
INC 
DEC 
JP 
OUT 
NOP 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

OPER 
HL,0500 
B,05 
A 
A, (HL) 
HL 
B 
NZ,0106 
(F7) ,A 

• I 
1 1------ operand (s): address, register, or data 

being operated on 

1 ______________ instruction mnemonic 

--------------------- machine language instruction 

.--------------------------- address of the instruction 

TRA-Sample ZSO TRAce Display 

The TRA (TRAce) command selects the range and type of instructions to be displayed as your program 
executes. With the zao emulator, the TRA -N format is the same as the TRA -L format. 

NOTE 

When TRAce conditions have been set, the emulator runs at slower than normal processing speeds 
and RTPA breakpoints are suppressed. 

REV AUG 1982 7C-7 



Commands and Displays 

7C-8 

Here is an example of zao TRA command output: 
> TRA ALL 
> G 100 

LOC INST 
000100 210005 
000103 0605 
000105 AF 
000106 86 
000107 23 
000108 05 
000109 C20601 
000106 86 
000107 23 
000108 05 
000109 C20601 

MNEM 
I-,D 

LD 
XOR 
ADD 
INC 
DEC 
JP 
ADD 
INC 
DEC 
JP 

I 
I 
I 

OPER 
HL,0500 
B,05 
A 
A, (HL) 
HL 
B 
NZ,0106 
A, (HL) 
HL 
B 
NZ,0106 

I 
I 

SP F A B C D E 
0000 06 OF 01 00 00 00 
0000 06 OF 05 00 00 00 
0000 46 00 05 00 00 00 
0000 02 01 05 00 00 00 
0000 02 01 05 00 00 00 
0000 12 01 04 00 00 00 
0000 12 01 04 00 00 00 
0000 06 03 04 00 00 00 
0000 06 03 04 00 00 00 
0000 16 03 03 00 00 00 
0000 16 03 03 00 00 00 

i 
I 
I 
I 
I 
I 
I 

A C 0 E I 
I 
I contents of registers 
I 
I 
I 
I 

---- flag register contents I 
I 
I 
I 
L _______ . stack pointer contents 

'-------------------operand of the instruction 

H 
05 
05 
05 
05 
05 
05 
05 
05 
05 
05 
05 

H 

I 
I 
I 
I 
I 
I 
I 

'------------------------- mnemonic of the instruction 

I 
I 
I 
I 
I 
I 

-------------------------------- machine language instruction 

---------------------------------------- address of the instruction 

zao Emuiator Specifics Users 

L IX IY 
00 0000 0000 
00 0000 0000 
00 0000 0000 
00 0000 0000 
01 0000 0000 
01 0000 0000 
01 0000 0000 
01 0000 0000 
02 0000 0000 
02 0000 0000 
02 0000 0000 

I 
I 
I 
I 
index 

register 
y 

-----index 

register 

X 

REV AUG 1982 



zao Emulator Specifics Users Service Calls 

SERVICE CALLS 

Service calls (SVCs) enable your program to use many system capabilities of your 8540, 8550, or 8560. 

An SVC is invoked with a Z80 OUT instruction. The operand of the OUT instruction directs the system to a 
specified memory address called the SRB pointer (which pOints to the SRB-the Service Request Block). 
The SRB pOinter tells the system where to find the data (stored in the SRB) that informs the system which 
function to perform. Refer to the Service Calls section of your System Users Manual for an explanation of 
service calls, service request blocks, and SRB pOinters. 

Your program can point to eight SRBs at anyone time. As your program executes, it can store new 
addresses in the SRB vector. Table 7C-3 shows the default addresses for the eight SRB pOinters. These 
addresses and their associated port numbers can be altered with the SVC command to suit your program 
requirements. See the Command Dictionary section of your System Users Manual for syntax and use of the 
SVC command. 

SVCs in Modes 1 and 2 

The Z80 emulator supports SVCs in Emulation Modes 1 and 2, as described in the Service Calls section of 
your System Users Manual. In Mode 2, all parts of the SVC must reside in prototype memory. 

NOTE 

In Mode 0 and 1, use one Nap instruction immediately following the OUT instruction. In Mode 2, use 
two Nap instructions immediately following the OUT instruction; this allows time for the SVC to occur. 

SRB Format 

The Z80 emulator uses the SAS (Small Address Space) format for SRBs and the SRB vector. This format is 
described in the Service Calls section of your System Users Manual. 

SVC Demonstration 

Figure 7C-2 lists a Z80 program that uses four SVC functions: Assign Channel, Read ASCII, Write ASCII, 
and Abort. The program's algorithm is explained in the Service Calls section of your System Users Manual, 
which demonstrates a version of the program written in 8085A assembly language. You can perform a 
parallel demonstration with the Z80 emulator and Z80 A Series Assembler using the program in Fig. 7C-2. 

REV AUG 1982 7C-9 



Service Calls zao Emulator Specifics Users 

7C-10 

SVC Number 

1 

2 

3 

4 

5 

6 

7 

8 

Table 7C-3 
ZSO Service Calls 

zao Service Calls 

mnemonic8 hexadecimal 

OUT (OF7H),A Nap D3F700 

OUT (OF6H),A Nap D3F600 

OUT (OF5H),A Nap D3F500 

OUT (OF4H),A Nap D3F400 

OUT (OF3H),A Nap D3F300 

OUT (OF2H),A Nap D3F2 QO 

OUT (OF1 H),A Nap D3F1 00 

OUT (OFOH),A Nap D3FO 00 

Default Address of 

SRB pointer 

40, 41 

42,43 

44,45 

46,47 

48,49 

4A,48 

4C,4D 

4E, 4F 

ayou can use an IN instruction (opcode DB) in place of each OUT instruction given in Table 7C-3. 

NOTE 

The program shown in Fig. 7C-2 is written for an A Series assembler (as provided for the 8550). To 
make this acceptable for a B Series assembler (as provided for the 8560), change each double quote 
t) to a single quote (J This program shows the use of four service calls. The program's algorithm is 
explained in the Service Calls section of your System Users Manual. The program accepts a line of 
ASCII characters from the system terminal; then, when it receives a RETURN character, the program 
writes the line to the line printer and accepts another line. (On the 8550, output to the line printer is 
buffered. No text is printed until the line printer buffer in the 8501 becomes full or the program ends.) 
To terminate the program, enter a CTRL-Z while the program is waiting for input. 

REV AUG 1982 



zao Emulator Specifics Users 

REV AUG 1982 

SSSSS V V CCCCC 
S V V C 
SSSSS V V C DEMONSTRATION. Z80 EMULATOR 

S V V C 
SSSSS V CCCCC 

ORG 40H ; BEGINNING OF SRB VECTOR 
BYTE HI(SRB1FN),LO(SRB1FN) 
BYTE HI(SRB2FN),LO(SRB2FN) 
BYTE HI(SRB3FN),LO(SRB3FN) 
BYTE HI(SRB4FN);10(SRB4FN) 
BYTE HI(SRB5FN),LO(SRB5FN) 
END OF SRB VECTOR 
ORG 100H ; SET UP SRB AREAS 
SRB1 ASSIGN "CONI" TO CHANNEL 0 

SRB1FN BYTE 10H ASSIGN 
BYTE OOH TO CHANNEL 0 

SRB1ST BLOCK 01H STATUS RETURNED HERE 

SRB2FN 

SRB2ST 

SRB3FN 

SRB3ST 

SRB4FN 

SRB4ST 

BLOCK 02H BYTES 4 AND 5 NOT USED 
BYTE 05H LENGTH OF "CONI"+<CR) 
BYTE HI(CONI) POINTER TO 
B YT E L 0 ( CON I ) " CON I " + < C R ) 
END OF SRB1 
SRB2 
BYTE 
BYTE 
BLOCK 
BLOCK 
BYTE 
BYTE 
BYTE 
END OF 
SRB3 
BYTE 
BYTE 
BLOCK 
BLOCK 
BLOCK 
BYTE 
BYTE 
BYTE 
END OF 
SRB4 
BYTE 
BYTE 
BLOCK 
BLOCK 
BLOCK 

ASSIGN "LPT" 
1 OH 

TO CHANNEL 1 

01H 
01H 
02H 
04H 
HI (LPT ) 
LO (LPT ) 

SRB2 
READ ASCII LINE 

01H 
OOH 
01H 
01H 
01H 
OOH 
HI(BUFFER) 
LO(BUFFER) 

SRB3 
WRITE ASCII LINE 

02H 
01H 
01H 
01H 
01H 

BYTE OOH 
BYTE HI(BUFFER) 
BYTE LO(BUFFER) 
END OF SRB4 

ASSIGN 
TO CHANNEL 
STATUS RETURNED HERE 
BYTES 4 AND 5 NOT USED 
LENGTH OF "LPT"+<CR) 
POINTER TO 
"LPT "+ <CR) 

FROM CONI (CHANNEL 0) 
READ ASCII 
FROM CHANNEL 0 
STATUS RETURNED HERE 
BYTE 4 NOT USED 
BYTE COUNT RETURNED HERE 
256 BYTES IN OUR BUFFER 
POINTER TO 
OUR BUFFER 

TO LPT (CHANNEL 1) 
WRITE ASCII 
TO CHANNEL 1 
STATUS RETURNED HERE 
BYTE 4 NOT USED 
BYTE COUNT RETURNED HERE 
256 BYTES IN OUR BUFFER 
POINTER TO 
OUR BUFFER 

Fig. 7C-2. ZSO SVC demonstration program listing (part 1 of 2). 

Service Calls 

7C-11 



Service Calls zao Emulator Specifics Users 

7C-12 

SRB5 = ABORT (CLOSE ALL CHANNELS AND TERMINATE) 
SRB5FN BYTE 1FH ABORT 

BLOCK 07H BYTES 2 THROUGH 8 NOT USED 

BUFFER 
CONI 

LPT 

START 

END OF SRB5 

BLOCK 
ASCII 
BYTE 

100H 
"CONI" 
ODH 

ASCII "LPT" 
BYTE ODH 
END OF DATA DEFINITIONS 

BEGINNING OF EXECUTABLE 
ORG 1000H 
OUT (OF7H), A 
NOP 
LD A,(SRB1ST) 
CP OOH 
JP NZ,ABORT 
OUT (OF6H),A 
NOP 
LD A,(SRB2ST) 
CP OOH 
JP 

LOOP OUT 
NZ,ABORT 
(OF 5H) , A 

NOP 
LD 
CP 
JP 
OUT 
NOP 
LD 
CP 
JP 

ABORT OUT 
Nap 
H.t..Lr:!: 
END 

A" (SRB3ST) 
OOH 
NZ,ABORT 
(OF4H) ,A 

A,(SRB4ST) 
OOH 
Z,LOOP 

(OF3H) ,A 

START 

OUR I/O AREA 
ASCII OF "CONI" 
+ <CR> 
ASCII OF "LPT" 
+ <CR> 

CODE 
ENTRY POINT INTO PROGRAM 
CALL SVC1 
TO ASSIGN "CONI" 
CHECK THE STATUS TO SEE 
IF ALL WENT WELL 
NO? STOP EVERYTHING 
YES? CALL SVC2 
TO ASSIGN "LPT" 
CHECK THE STATUS TO SEE 
IF ALL WENT WELL 
NO? STOP EVERYTHING 
CALL SVC3 
TO READ A "CONI" LINE 
INTO "BUFFER" 
ALL OK? 
NO? STOP EVERYTHING 
CALL SVC4 
TO WRITE TO "LPT" 
CHECK TO SEE IF 
ALL IS OK 
YES? BACK TO READ ANOTHER LINE 
NO? FALL THROUGH TO TERMINATION 
CALL SVC5 
TO DO THE ABORT 
SHOULD NEVER REACH HERE 

Fig. 7C-2. zao SVC demonstration program listing (part 2 of 2). 

REV FEB 1983 



ZSO Emulator Specifics Users Special Considerations 

zao SPECIAL CONSIDERATIONS 

The zao emulator behaves like the zao microprocessor, with the following exceptions 

• Interrupts are detected only when user code is being executed. 

• When TRAce is enabled, there is a maximum 153 ns delay on the IORO signal. 

• During TRAce sequences, the emulator performs the auxiliary memory refresh operations between exe
cution of user code instructions. 

Z80A JUMPERS 

Z80A Emulator Board 

The ZaOA Emulator board contains two jumpers, J1 and J3. Jumper J1 selects between 2 MHz and 4 MHz 
as the system clock speed for Emulation Mode O. Jumper J3 is used to delete wait states in Emulation Mode 
1. 

Z80A Driver/Receiver Board 

The ZaOA Driver/Receiver contains two jumpers, J1041 and J3051. In Emulation Mode 1, MREO is unavail
able to the prototype when jumper J1041 is in the right-most position. When J1041 is in the left-most 
position, MREQ is available to the prototype whenever HOLDA is not asserted. 

When jumper J3051 is in the right-most position, data fetched from program memory (in Mode 1) does not 
appear at the probe tip. When jumper J3051 is in the left-most position, data from program memory is driven 
to the prototype. If jumper J3051 is in the left-most position, jumper J1041 must also be in the left-most 
position. 

NOTE 

With jumper J3051 in the left-most position, prototype bus contentions may occur. 

Both jumpers J1041 and J3051 are shipped in the right-most position. 

REV AUG 1982 7C-13 



Special Considerations ZSO Emulator Specifics Users 

7C-14 

zaoe JUMPERS 

zaOB Emulator Board 

The Z80B emulator board contains four jumpers: J3003, J1059, J1 061, and J1 081. 

Jumper J3003 selects a clock speed of either 4 MHz or 6 MHz for Emulation Mode O. A clock speed of 
6 MHz must not be used with a 8002A system. J1059 is placed in the normal position when the Z80B 
processor is in interrupt modes 1 and 2 or mode 0 single-byte vectors. 

J1059 is placed in the 1M 0 MULTI position when the processor is in interrupt Mode 0 and there is a 
possibility of multi-byte instruction vectors. In this position, the interrupt data is gated in from the probe tip 
by the INTA line, which is asserted and disabled by the stack write associated with the interrupt or the next 
fetch. The INTA line is asserted during a mask able interrupt shortly after MI and IOREQ are asserted by the 
emulator processor. In Emulation Mode 1, and with the stack pOinter mapped to program memory, it is 
possible to get an additional short MEMREQ pulse at the probe tip during the first part of the stack write. 

J1061 controls the number of wait states. (The function selected with J1 061 may interact with the function 
selected by J1082. See the discussion, "4 MHz and Below", later in this section.) J1061 has three positions: 

• The WAITS position selects no wait state and should be used only with 8540 and 8550 systems at 
4 MHz and below. 

• The 85XX position selects one wait state and should be used only with 8540 or 8550 systems. 

• The 800X position selects two wait states and should be used only with 8001 or 8002A systems. 

J1081 controls the modes of operation under which wait states are inserted. The positions required for 
various configurations of the systems are described in the following text. 

8001/8002A Systems Jumper Considerations 

• When J1081 is in the SLOW position, J1061 shouid be in the 800X position and J3003 should be in the 
4 MHz position. 

• Two wait states are inserted each time the program memory is accessed, or when running in emulation 
Mode 1. 

• No wait states are inserted in Mode 2 except when operating in debug mode, or memswitch mode during 
the jump sequence. Two wait states are inserted in these modes. 

REV AUG 1982 



zao Emulator Specifics Users Special Considerations 

8500-Series Systems Jumper Considerations 

• 4 MHz and Below. With J1081 placed in the SLOW position and J1061 placed in the WAITS position, no 
wait states are inserted in Emulation Modes 0, 1, or 2. One wait state is inserted during a forced jump 
sequence. 

• 4 MHz to 6 MHz. When operating between 4 and 6 MHz, the following wait states may be selected 
(J1061 in 85XX position). (If operating is Emulation Mode 1 and all memory is mapped to program 
memory, J1 061 can be placed in WAITS position with no wait states in Modes 0, 1, or 2.) 

NOTE 

You can generate additional wait states in Emulation Mode 1 or 2 when memory is mapped to the 
prototype. 

1. J1081 in SLOW Position (used with 670-6542-00 and up memory boards). 

a. One wait state inserted in Emulation Modes 0 and 1. 

b. No wait states inserted in Emulation Mode 2 except during memswitch and forced jump operations 
when one wait state is inserted. 

2. J1081 in FAST Position (not used with 670-6542-00 and up memory boards). 

a. No wait states inserted in Emulation Modes 0 and 2. 

b. One wait state is added during forced jump, memswitch operations, and Mode 1. 

zaOB Driver/Receiver Board 

The Z80S Driver/Receiver contains two jumpers: J1041 and J3051. When memory is mapped to the system 
in Emulation Mode 1, MREQ is unavailable to the prototype when J1041 is in the right-most position. When 
J1041 is in the left-most position, MREQ is available to the prototype whenever HOLDA is not asserted. 

When jumper J3051 is in the right-most position, data fetched from program memory (Mode 1 only) does not 
appear at the probe tip. When J3051 is in the left-most position, data from program memory is driven to the 
prototype. If jumper J3051 is in the left-hand position, jumper J1 041 must also be in the left-most position. 

NOTE 

With jumper J3051 in the left-most position, prototype bus contentions may occur. 

Soth jumpers J1 041 and J3051 are shipped in the right-most position. 

REV AUG 1982 7C-15 



Emulator Timing zao Emulator Specifics Users 

7C-16 

Z80A EMULATOR TIMING 

In Emulation Modes 1 and 2, the emulating microprocessor resides in the Prototype Control Probe, and the 
signals between the prototype and the emulating microprocessor are buffered. Therefore, some timing 
differences exist between the Z80A emulator and a Z80A microprocessor that has been inserted directly into 
the prototype. Table 7C-4 lists these differences. Figure 7C-4 is a timing diagram corresponding to the 
signals present on the Z80A emulator. 

PROTOTYPE 
CLOCK -

PROBE INTERFACE 
ASSEMBLY 

j 

CLOCK 
LINE 

zaOB 
PROBE PLUG 

PROTOTYPE 
CLOCK -

PROBE INTERFACE 
ASSEMBLY 

j~ 

CLOCK 
LINE 

zaOB 
PROBE PLUG 

ClK 
TEST 
POINT 

USER 
~----~-~PROTOTYPE 

CIRCUITRY 

~k ________ \ 

(

(ADD THIS LINE) 

USER 
L--_---JI-...I-~ PROTOTYPE 

\ CIRCUITRY 

STANDARD 
CONFIGURATION 

(BREAK THIS LINE) 

ADAPTED 
CONFIGURATION 

Fig. 7C-3. Connecting the prototype clock input directly to the Prototype Control Probe. 

REDUCING DELAY THROUGH THE PROTOTYPE CONTROL PROBE 
(ZaOB ONLY) 

3665-14 

The clock test point (on the Driver/Receiver board) can be used to obtain more accurate emulator timing 
under worst-case conditions above 4 MHz operation. In order to use the clock test point, you must discon
nect the prototype clock input pin from the prototype logic, and reconnect it directly to the clock test point in 
the Prototype Control Probe using a plug-on connector. 

The clock test paint is located on the output of U1050 (pin 18 through a 68 n resistor in series), and the 
output is within 10 ns of the actual CPU clock. When the prototype clock is connected directly to the clock 
source in the Prototype Control Probe, the 20 ns delay through probe circuitry is circumvented. Figure 7C-3 
illustrates the standard configuration and the adapted configuration for the prototype circuitry when imple
menting this clock test point user adaptation. 

REV AUG 1982 



zao Emulator Specifics Users Emulator Timing 

Table 7C-4 
Representative ZaOA Emulator/ZaOA Microprocessor Timing Differences 

Symbol Parameter Processor Emulator Units 
Min. Max. Min. Max. 

t(c) Clock period 250 a 250 a ns 

t(w(1>H)) Clock pulse width, clock high 110 b 110 b ns 

t(w(ct>L)) Ciock pulse width, clock low 110 2000 110 2000 ns 

t(r, f) Clock rise and fall time 30 c 30 ns 

t(D(AD)) Address output delay 110 130 ns 

t(F(AD)) Delay to float 85d ns 

t(D(D)) Data output delay 150 170 ns 

t(F(F)) Delay to float during write cycle 90 110e ns 

t(S1>(D)) Data setup time to rising edge of clock 50 70t ns 
during M 1 cycle 

t(S1>(D)) Data setup time of falling edge of clock 60 80t ns 
during M2 to M5 

t(DL1>(MR)) MREQ delay from falling edge of clock, 20 85 359 1009 ns 
MREQ low 

t(DH1>(MR)) MREQ delay from rising edge of clock, 85 1009 ns 
MREQ high 

t(DH1>(MR)) MREQ delay from falling edge of clock, 85 1009 ns 
MREQ high 

t(DL1>(IR)) IORQ delay from rising edge of clock, 75 909 ns 
IORQ low 

t(DL1>(1 R)) IORQ delay from falling edge of clock, 85 1009,h ns 
IORQ low 

t(DH1>(1 R)) IORQ delay from rising edge of clock, 85 1009 ns 
IORQ high 

t(DH1>(IR)) IORQ delay from falling edge of clock, 85 1009 ns 

IORQ high 

t(DL1>(RD)) RD delay from rising edge of clock, 85 959 ns 

RD low 

t(DL1>(RD)) RD delay from falling edge of clock, 95 1059 ns 

RD low 

t(DH1>(RD)) RD delay from rising edge of clock, 85 959 ns 

I 
RD high 

I 

t(DH1>(RD)) RD delay from falling edge of clock, 85 959 ns 

RD high 

t(DL1>(WR)) WR delay from rising edge of clock, 65 759 ns 

WR low 

REV AUG 1982 7C-17 



Emulator Timing zao Emulator Specifics Users 

7C-18 

Table 7C-4 (cont) 
Representative ZaOA Emulator/ZaOA Microprocessor Timing Differences 

Symbol Parameter Processor Emulator 
I Min. Max. Min. Max. 

t(DLcf>(WR)) WR delay from falling edge of clock, 80 
WRlow 

t(DHcf>(WR)) WR delay from falling edge of clock, 80 
WR high 

t(DL(M1 )) M1 delay from rising edge of clock, 100 
M110w 

t(DH(M1 )) M1 delay from rising edge of clock, 100 
M1 high 

t(DL(RF)) RFSH delay from rising edge of clock, 130 
RFSHlow 

t(DH(RF)) RFSH delay from rising edge of clock, 120 
RFSH high 

t(S(WT)) WAIT setup time to falling edge of clock 70 

t(D(HT)) HAL T delay time from falling edge of clock 300 

t(s(IT)) I NT setup time to rising edge of clock 80 

t(s(BO)) BUSRO setup time to rising edge of clock 50 

t(DL(BA)) BUSAK delay from rising edge of clock, 100 
BUSAK low 

t(DH(BA)) BUSAK delay from falling edge of clock, 100 
BUSAK high 

t(s(RS)) RESET setup time to rising edge of clock 60 

t(F(C)) Delay to/from float (MREO, IORO, 80 
RD, and WR) 

t(mr) M1 stable prior to IORO Interrupt Ack.) I 

St(c) = t(w(cf>H» + t(w(cf>L» + t(r) + t(f) 
bAlthough static by design, testing guarantees a t(w(4>H» of 200 IlS maximum. 

cClock delay from the prototype to emulator CPU is 20 ns maximum. 

dDelay measured from BUSAK asserted at CPU. 

909 

909 

1109 

1109 

1409 

1309 

90' 

3159 

125' 

85' 

1109 

1109 

105' 

1159 

h,1 

eData will go to an indeterminate state, but will not tri-state unless BUSREQ is asserted. 

Units 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

'Timing reference is to CPU clock. To reference prototype clock, subtract propagation delay through 
driver/receiver buffers (10 ns maximum). 

gTiming reference to CPU clock. To reference prototype clock, add propagation delay through 
driver/receiver buffers (20 ns maximum.) 

hlORQ can be delayed to maximum of 153 ns during INT A cycles while the Debug TRA MODE is active. 

it(mr) = 2 * t(c) + t(w(4>H)) + t(f) -65 

CPU timing reference: Mostek Microcomputer Z8D Data Book; Mostek Corporation. (1978). 

REV AUG 1982 



zao Emulator Specifics Users Emulator Timing 

zaoe EMULATOR TIMING 

In Emulation Modes 1 and 2, the emulating microprocessor resides in the Prototype Control Probe, and the 
signals between the prototype and the emulating microprocessor are buffered. Therefore, some timing 
differences exist between the Z80S emulator and a Z80S microprocessor which has been inserted directly 
into the prototype. Table 7C-5 lists these differences. Figure 7C-4 is a timing diagram corresponding to the 
signals present on the Z80S emulator. 

Table 7C-5 
Representative zaoe Emulator/ZaOe Microprocessor Timing Differences 

Symbol Parameter Processor Emulator Units 
Min. Max. Min. Max. 

t(c) Clock period 165 a 165 a ns 

t(w(<t>H)) Clock pulse width, clock high 70 b 70 b ns 

t(w(<t>L)) Clock pulse width, clock low 70 2000 70 2000 ns 

t(r,f) Clock rise and fall time 30 c 30 ns 

t(D(AD)) Address output delay 80 100 ns 

t(F(AD)) Delay to float 33d ns 

t(D(D)) Data output delay 120 140 ns 

t(F(F)) Delay to float during write cycle 60 80e ns 

t(S<t>(D)) Data setup time to rising edge of clock 25 4.5d ns 
during M 1 cycle 

t(S<f>(D)) Data setup time to falling edge of clock 30 5.0t ns 
during M2 to M5 

t(DL<t>(MR)) MREO delay from falling edge of clock, 20 60 359 759,h ns 
MREO low 

t(DH<t>(MR)) MREO delay from rising edge of clock, 60 759 ns 
MREO high 

t(DH<t>(MR)) MREO delay from falling edge of clock, 60 759 ns 
MREO high 

t(DL<t>(IR)) IORO delay from rising edge of clock, 60 759,h ns 
IORO low 

t(DL<t>(1 R)) IORO delay from falling edge of clock, 60 759 ns 
IORO low 

t(DH<t>(IR)) IORO delay from rising edge of clock, 60 759 ns 
IORO high 

+/nu ... /IO\\ 1("\0("\ rial",,, frnrn f",lIinn orlno nf "1",,,1.- ~n 7~9 nC' , 
IORO high I I 

t(DL<t>(RD)) RD delay from rising edge of clock, RD low 60 709 ns 

t(DL<f>(RD)) RD delay from falling edge of clock, RD low 70 809 ns 

REV AUG 1982 7C-19 



Emulator Timing zao Emulator Specifics Users 

7C-20 

Table 7C-5 (cont) 
Representative zaos Emulator/ZaOS Microprocessor Timing Differences 

Symbol Parameter Processor 
Min. Max. 

t(DH1>(RD)) RD delay from rising edge of clock, RD high 60 

t(DH1>(RD)) RD delay from falling edge of clock, RD high 70 

t(DL1>(WR)) WR delay from rising edge of clock, WR low 60 

t(DL1>(WR}) WR delay from falling edge of clock, WR low 55 

t(DH1>(WR)) WR delay from falling edge of clock, WR high 55 

t(DL(M1)) M1 delay from rising edge of clock, M1 low 80 

t(DH(M1 )) M1 delay from rising edge of clock, M1 high 80 

t(DL(RF)) RFSH delay from rising edge of clock, 100 
RFSH low 

t(DH(RF)) RFSH delay from rising edge of clock, 100 
RFSH high 

t(S(WT)) WAIT setup time to falling edge of clock 40 

t(D(HT)) HAL T delay time from falling edge of clock 200 

t(s(IT)) INT setup time to rising edge of clock 45 

t(s(BO)) BUSRO setup time to rising edge of clock 40 

t(DL(BA)) BUSAK delay from rising edge of clock, 65 
BUSAK low 

t(DH(BA)) BUSAK delay from falling edge of clock, 55 
BUSAK high 

t(s(RS)) RESET setup time to rising edge of clock 45 

t(F(C)) Delay to/from float (MREO, IORO, RD, 60 
and WR) 

t(mr) M1 stable prior to IORO (Interrupt Ack.) i 

8 t(C) = t(w(¢H» + t(w(¢L» + t(r) + t(f). 
bAlthough static by design, tesing guarantees a t(w(¢H» of 200 J,LS maximum. 

cClock delay from prototype to emulator CPU is 20 ns maximum. 

dDelay measured from BUSAK asserted at CPU. 

Emulator 
Min. Max. 

709 

809 

709 

659 

659 

909 

909 

1109 

1109 

60t 

2159 

90t 

75f 

759 

659 

90t 

959 

i,j 

eData will go to an indeterminate state, but will not tri-state unless BUSREO is asserted. 

Units 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

'Timing reference is to CPU clock. To reference prototype clock, subtract propagation delay through 
Driver/Receiver Buffers (10 ns maximum). 

gTiming reference to CPU clock. To reference prototype clock, add propagation delay through Driver/Receiver 
Buffers (20 ns maximum). 

hEmulation Mode 1, on a memory change from system to prototype, MREO or IORO would be delayed up to 184 ns. 

it(mr) = 2 * t(c) + t(w(¢H» + t(f) -50. 

jlORO can be delayed a maximum of 153 ns during INTA cycles while the Debug TRA MODE is active. 

REV AUG 1982 



zao Emulator Specifics Users 

AO-A15 

AO-A15 

{

IN 

DO 7 OUT 

M1 

RFSH 

MREO 

RD 

WR 

IORO 

RD 

WR 

WAIT 

HALT 

INT 

NMI 

BUSAK 

RESET 

REV AUG 1982 

Emulator Timing 

, 

tea 

ted! 

I 

"t~ _____ ~ICI 
,·-t~ 
"-rJ 

:'1-~ 
' .. _/ 

-~ 

7- 1 

,d '" I . 1 

y------~~L 5-___ J/~ ¥', __ 
lDHIBAI 

lDlBA ~ 
[i 

II 

~~~ 
----~~,--------

Fig. 7C-4. zao microprocessor bus timing.

7C-21

Emulator Timing zao Emulator Specifics Users

7C-22

zaOA PROBE/PROTOTYPE INTERFACE DIAGRAM

Figure 7C-5 is a block diagram of the interface between the prototype and the emulating microprocessor in
the Prototype Control Probe. This figure provides a functional overview of emulator buffering. Signal buffers
labeled with a generic chip type (i.e., LS244) represent single level buffering. Non-labeled blocks represent
possible multi-level buffering. A more detailed circuit description can be found in the zao Emulator Processor
Service Manual.

zaOB PROBE/PROTOTYPE INTERFACE DIAGRAM

Figure 7C-6 is a block diagram of the interface between the prototype and the emulating microprocessor in
the Prototype Control Probe. This figure provides a functional overview of emulator buffering. Signal buffers
labeled with a generic chip type (i.e., LS241) represent single level buffering. Non-labeled blocks represent
possible multi-level buffering. A more detailed circuit description can be found in the zao Emulator Processor
Service Manual.

REV AUG 1982

ZSO Emulator Specifics Users

REV AUG 1982

AO-A15

00-07

Emulator
Processor

Control

Control

Z80A Microprocessor

Receiver I-------i
Logic

o
<}-

8T97

Fig. 7C-S. Block diagram of Z80A emulator/prototype interface.

Emulator Timing

AO-A15

00-07

Prototype

HALT

MREO

IORO

RFSH

M1

WR

RQ

INT

NMI

RESET

BUSRO

WAIT

(3564-6}3964 4. I

7C-23

Emulator Timing

7C·24

AO-A15

00-07

Emulator
Processor

Control

zaos Microprocessor

74LS241

-<}

74LS241

74LS245

74LS241

Receiver
Logic

o
-<}

Clock I Shaping 04

Logic .

zao Emulator Specifics Users

AO-A15

00-07

Prototype

HALT

MREQ

IORQ

RFSH

M1

WR

RQ

INT

NMI

RESET

BUSRQ

WAIT

Fig. 7e-S. Block diagram of ZaOB emulator/prototype interface.

REV AUG 1982

zao Emulator Specifics Users Emulator Timing

INSTALLING YOUR zao EMULATOR SOFTWARE

8540 FIRMWARE INSTALLATION PROCEDURE

The ROM devices that contain the control software for your Z80 emulator must be installed in your 8540's
System ROM board. Refer to your Emulator Installation Manual for instructions on installing these ROM.

8550 SOFTWARE INSTALLATION PROCEDURE

Your emulator installation software consists of two disks:

• a disk that contains emulator control software, which you install onto your DOS/50 system disk so that
DOSI50 can control your emulator hardware.

• a disk that contains Z80 emulator diagnostic software. For a Z80A emulator, you must install this disk
onto your 8550 system diagnostic disk so that diagnostic tests can be run on your emulator as well as
other 8550 system hardware. For a Z80S emulator, the diagnostic disk can be used directly.

This subsection describes how to install the emulator control software for a Z80 emulator.

To complete this installation procedure you need the following items:

• an 8550 system (with or without a Z80 emulator);

• a DOSI50 system disk with a write-enable tab over the write-protect slot;

• a Z80 emulator software installation disk with no write-enable tab; and

• (for installation of Z80A diagnostic software) an 8550 system diagnostic disk with a write-enable tab over
the write-protect slot.

This installation procedure takes about five minutes.

Start Up and Set the Date

Turn on your 8550 system. (For start-up instructions, refer to the Learning Guide of your 8550 System Users
Manual.) Place your system disk in drive 0 and shut the drive 0 door. When you see the> prompt on your
system terminal, place your installation disk in drive 1 and shut the drive 1 door.

Use the OAT command to set the date and time. For example, if it is 11 :05 am on October 30; 1983, type:
> DAT 30-0CT-83!11:05 <CR>

The system uses this information when it sets the CREATION time attribute of each file copied from your
installation disk.

REV AUG 1982 7C-25

Emulator Timing zao Emulator Specifics Users

7C-26

Install the Emulator Control Software

The command file INST ALL2, which installs the emulator control software, resides on the installation disk.

NOTE

If your system disk contains DOS/50 Version 1, use the command file INSTALL instead of INS TA LL2.

To execute the command file, simply type its filespec:
>VOL/EMU.Z80/INSTALL2 <CR>

DOS/50 responds with the following message:
During this installation procedure, one or more of the
following messages may appear. IGNORE THESE MESSAGES:

Error 6E--Directory alteration invalid
Error 7E--Error in command execution
Error lD--File not found

If any OTHER error message appears, see your
Users Manual for further instructions.

If no other error message appears, you'll receive a
message when the installation procedure is complete.

T, OFF

In this installation procedure, you may disregard error messages 6E, 7E, and 1 D; these messages have no
bearing on the success of the installation. However, if a message other than 6E, 7E, or 1 D appears, take the
following steps:

1. Make sure you are using the right disks.

2. Make sure your system disk has a write-enable tab.

3. Make sure there are at least three files and 20 free blocks on your system disk.

4. Begin the installation procedure again.

If the installation procedure fails again, copy down the error message and contact your Tektronix service
representative.

The T, OFF command suppresses subsequent output to your system terminal (except error messages) until
INSTALL2 finishes executing. Within about five minutes, INSTALL2 will finish and your system terminal will
display the following message:

Your installation has been successfully completed.

REV AUG 1982

zao Emulator Specifics Users Emulator Timing

Install the Emulator Diagnostic Software

If you are using a Z80A emulator, you can now install the emulator diagnostic software. If you are using a
Z80S emulator, you can use the emulator diagnostic software disk as provided.

Note the Name of Your Diagnostic Disk. In order to install the emulator diagnostic software, you must
know the name of your 8550 system diagnostic disk. Remove your emulator installation disk from drive 1
and insert the diagnostic disk. Enter the following command to list the names of the two disks mounted in
your 8550:

> ATT IVOL/* WHERE <CR>
sysvol WHERE=FLXO ~ DOS/50 system disk
8550DIAGx.x WHERE=FLXl-4-- 8550 system diagnostic disk

Note the name of your diagnostic disk. (It should be something like 8550DIAG2.0.)

Insert Your Emulator Installation Disk into Drive 1. INSTALLDIAGS, the command file that installs the
diagnostics, resides on the installation disk. Remove your diagnostic disk from drive 1 and insert your
installation disk. Invoke the INSTALLDIAGS command file and pass it the name of your diagnostic disk,
which you just noted:

> IVOL/EMU.Z80/INSTALLDIAGS 8550DIAGx.x <CR>

DOS/SO responds with the following messages:

T,OFF
COP:

DIAGNOSTIC INSTALLATION PROCEDURE

During this installation procedure, the following error
message will appear once. IGNORE THIS MESSAGE:

Error 2A Parameter required

If any OTHER error message appears or this appears more
than once, see your Users Manual for further instructions.

If no other error message appears, you'll receive a message
when the installation is complete.

Error 2A Parameter required

• ----.. Remove the DOS/50 System Disc
• ----.. Insert the 8550 System Diagnostic Disc
* ----.. Type CO -A

SUSP, -A

»

REV AUG 1982 7C-27

Emulator Timing zao Emulator Specifics Users

7C-28

Insert Your Diagnostic Disk into Drive O. Remove your 8550 system disk from drive 0 and insert your 8550
system diagnostic disk, Then enter the command CO -A to continue execution of the command file:

> co --A <CR>

After a few minutes, the following message is displayed:
COP, -BN,/VOL/EMU.Z80/DIAGS/Z80.TST,/VOL/8550DIAGx.x/Z80.TST
* --.. Remove 8550 System Diagnostic Disc
* --.. Insert DOS/50 System Disc
* ~ Press CTRL-C
* ---.. Type CO -A

SUSP, --A

Insert Your DOS/50 System Disk into Drive O. Remove your diagnostic disk from drive 0 and insert your
DOS/50 system disk. Then enter the CO -A command again:

> co --A <CR>

The command file finishes with the following message:
USER"NO.NAME
**

DIAGNOSTIC INSTALLATION COMPLETE
**
>

In this installation procedure, error message 2A should appear once. If any other error message appears,
check your disks and begin the diagnostic installation procedure again. If the installation procedure fails
again, copy down the error message and contact your Tektronix service representative.

Once your software is installed, you can:

• remove your disks and turn off your 8550 system, or

• install more software, or

• continue with the Z80 Emulator Demonstration Run that follows in this section. If you do this, you do not
have to restart the system or reset the date and time.

NOTE

At this point No.NAME is the current user. To change the current user back to yourname, enter
USER"yourname.

REV AUG 1982

ZSO Emulator Specifics Users

zao DEMONSTRATION RUN

INTRODUCTION
This demonstration run shows you how to
load, execute, and monitor a simple l80 as
sembly language program on your 8540 or
8550. In order to perform this demonstration,
your laO emulator hardware and control
software must be installed in your 8540 or
8550.

Figure 7C-8 shows the source and object
code for the demonstration program.

If you have an 8550 (as in Fig. 7C-7, Case 1),
the source code and object code for the dem
onstration program are provided on the in
stallation disk that contains your l80
emulator control software. This demonstra
tion shows you how to assemble the pro
gram on your 8550. (If your system disk does
not contain a l80 assembler, you will have to
skip that part of the demonstration.)

If you have an 8540/8560 system (See Fig.
7C-7, Case 2), and your 8560 has a l80 as
sembler installed, you can create and assem
ble the program on the 8560 and then
download it to the 8540. This demonstration
shows how.

If you have an 8540 (Fig. 7C-7, Case 3) that
is connected to a host computer other than
an 8560, we can't give you a specific list of
commands for creating and assembling the
program on your host (since we don't know
what host you're using). However, Fig. 7C-9
gives the object code for the program in Ex
tended T ekhex format. You can create the
Tekhex file using your host's assembler or
text editor, and then download the file to the
8540 via the 8540's optional COM interface.

If none of these cases applies to you, you
can patch the program into memory by using

REV AUG 1982

ZSO Demonstration Run

the P command. This demonstration shows
how.

Once the program is loaded or patched into
memory, you can execute the program on
your emulator.

Case 1:.!

Case 2:
must have Z8'O
assembler

Case 3:

?
•

8540 + other host

, Case 4: any other configuration

39645A

Fig. 7C-7. System configurations.

7C-29

zao Demonstration Run zao Emulator Specifics Users

01
02
0:5
04
05
06
07
08
09
1 0
1 1
1 2
1 :5
1 4
1 5
1 6
1 7
1 5
1 9
20
21
22
2:5

NOTE

The 8540 commands shown in this demonstration can a/so be used for an 8550 that is connected to
an 8560 or other host computer.

;Z80 DEI"IONSTRATION RUN PROGRAM
SECTION DEMO
ORG 100H ;START PROGRAN CODE AT ADDRESS

000100 210005 START LD HL,TABLE ;SET TABLE POINTER
000103 0605 LD B,TSIZE ;SET PASS COUNTER
000105 AF XOR A ;CLEAR ACCUMULATOR
000106 86 LOOP ADD A,(HL) ;ADD BYTE FROM TABLE
000107 23 INC HL ;POINT TO NEXT BYTE
000108 05 DEC B ;DECREMENT PASS COUNTER
000109 C20601 JP NZ,LOOP ;LOOP IF NOT FIVE PASSES YET
00010C D3F7 OUT (OF7H) ,A ;OTHERWISE CALL EXIT SVC
00010E 00 NOP TO END PROGRAM EXECUTION

;SRB POINTER
ORG 40H ;STORE SRB POINTER AT ADDRESS

000040 000042 BYTE 00,42H ;POINT TO SRB FOR EXIT SVC
;SRB FOR EXIT SVC

000042 1A BYTE 1AH ; 1 AH = FUNCTION CODE FOR EXIT
;TABLE OF NUI"IBERS TO BE ADDED
TSIZE EQU :5 ;TABLE SIZE = 5

ORG 500H ;SET UP TABLE AT ADDRESS SOO
TABLE BLOCK TSIZE

LIST DBG
END START

I
I

source code comments

+-- object code

+-------- address

100

40

SVC

+-------------- source code line number

Fig. 7C-S. Demonstration program.

7C-30 REV AUG 1982

ZSO Emulator Specifics Users ZSO Demonstration Run

REV AUG 1982

(A)

%2769231002100050605AF862305C20601D3F700
%OE62B24000421A
%3A3494DEM0010350514LOOP310615START310015TABLE350025TSIZE15
%098153100

(B)

FIRST DATA BLOCK: object code for addresses 100--10E

header
: load address
I I

object code
I

I I I

%2769231002100050605AF862305C20601D3F700

SECOND DATA BLOCK: object code for addresses 40--42

header
load

address
I
I

o bj ec t
code
I
I

=====:---======

~~OE62B24000421 A

SYMBOL BLOC K

header
section

name
I
I

section
definition
field

I
I

symbol definition fields
I
I

======-----=:=====---
%3A3494DEM0010350514LOOP310615START310015TABLE350025TSIZE15

TERMINATION BLOCK

header
transfer
address

I
I

======----

~b09 81 5 j 1 00

Fig. 7C-9. Demonstration program: Extended Tekhex format.

7C-31

zao Demonstration Run zao Emulator Specifics Users

7C-32

Figure 7C-9A shows an Extended Tekhex load module that contains the object code and program symbols
for the demonstration program. Figure 7C-9B labels the different fields in the message blocks. If you have a
host computer other than an 8560, you can create this load module and download it to your 8540 or 8550.

EXAMINE THE DEMONSTRATION PROGRAM

The demonstration program adds five numbers from a table stored in locations 500 to 504 in program
memory and leaves the sum in register A. (You will place values in the table later in this demonstration.) The
8085A emulator demonstration run in the Learning Guide of your System Users Manua! contains a flowchart
that illustrates the steps of the Program.

The source code contains two kinds of statements: assembler directives (such as ORG and BYTE) and Z80
assembly language instructions. The assembler directives are microprocessor-independent and are ex
plained in the 8085A emulator demonstration run. The Z80 assembly language instructions are discussed in
the following paragraphs.

Set Table Pointer. The LD HL, TABLE instruction loads the address of the table (500) into the H-L register
pair. As a result, the H-L pair pOints to the first element of the table. The lable START is used by the END di
rective to specify that the LD HL, TABLE instruction is the first to be executed.

Set Pass Counter. Register B is used as the pass counter. The LD B, TSIZE instruction loads the value 5
into register B. This step sets the number of passes to 5.

Clear Accumulator. The XOR A instruction zeros the accumulator (register A) so you can start adding
numbers from the table.

Add Byte from Table. The ADD A, (HL) instruction adds the byte addressed by the H-L register pair into the
accumulator. The label LOOP represents the address of this instruction; this label is used by the JP NZ
instruction.

Point to Next Byte. The INC HL instruction increments the address contained by the H-L register pair; the H
L register pair then pOints to the next byte in the table. For example, the H-L register pair is initialized to
contain 500. After the INC HL instruction is first executed, the H-L register pair will contain 501, the address
of the second byte in the table.

Decrement Pass Counter. The DEC B instruction decrements register B, the pass counter. In this program,
B is decremented each time a number is added to the accumulator.

loop If Not Five Passes Yet. The JP NZ, LOOP instruction checks the contents of register B and jumps to
the LOOP label if B does not contain zero. If B contains zero, the program proceeds to the next instruction,
OUT (OF7H),A.

Exit. The OUT (OF7H).A and NOP instructions constitute a service call (SVC) that causes an exit from the
program. For more information on SVCs, refer to the Service Calls section of your System Users Manual.

REV AUG 1982

Z80 Emulator Specifics Users Z80 Demonstration Run

ASSEMBLE AND LOAD THE DEMONSTRATION PROGRAM

Now it's time to create the program so you can run it on your emulator. One of the following discussions
describes the set of steps that is appropriate for your hardware configuration:

• For 8550 users-Case 1: Assemble and Load on the 8550

• For 8540/8560 users-Case 2: Assemble on the 8560; Download to the 8540

• For 8540 users with a host computer other than the 8560-Case 3: Download from Your Host to the
8540

• For other hardware configurations-Case 4: Patch the Program into Memory

Go ahead and work through the discussion that's appropriate for you. Once you've put the program into
program memory, turn to the heading Run the Demonstration Program, later in this section.

CASE 1: ASSEMBLE AND LOAD ON THE 8550

This discussion shown you how to copy the demonstration program from your l80 emulator software
instal!ation disk, assemble the program, and load it into 8550 program memory.

Start Up and Log On

Turn on your 8550 system. (For start-up instructions, refer to the paragraph Start Up the 8550 and Its
Peripherals in the Learning Guide of your System Users Manual.) Place your system disk in drive 0 and shut
the drive 0 door. When your system displays the> prompt, place your l80 emulator software installation
disk in drive 1 and shut the drive 1 door.

Use the OAT command to set the current date and time. For example, if it is 2:30 pm on October 31, 1981,
enter the following command line:

> DAT 31-0CT-81/2:30 PM <CR>

Use the SEL command to tell DOS/50 to use the assembler and emulator software designed for the l80:
> SEL Z80 <CR>

The SEL command automatically sets the emulation mode to O.

Copy the Demonstration Run Program from the Installation Disk

Enter the following command lines to create an empty directory called DEMO on your system disk and make
DEMO the current directory. The BR command creates a brief name, ROOT, to mark the oid current
directory. At the end of this demonstration, you will return to this ROOT directory and delete the DEMO
directory and its contents.

> BR ROOT/USR <CR>
> CREATE DEMO <CR>
> USER DEMO <CR>

REV AUG 1982 7C-33

zao Demonstration Run zao Emulator Specifics Users

7C-34

Now use the COP command to copy all the files in the DEM02 directory on the installation disk to the DEMO
directory you just created:

> COP IVOL/EMU.Z80/DEM02/* * <CR>

Remove your installation disk from drive 1 and put it away.

Now list the files you have just copied to the current directory:
> L <CR>
FILENAME

ASM
LOAD

Files used 124
Free files 132
Free blocks 821
Bad blocks a

The file named ASM contains the assembly language source code for this demonstration program, and the
file named LOAD contains the executable object code. This copy of LOAD will be used in the demonstration
only if you do not have a zao assembler (and thus cannot create your own object file and load file from the
source file.)

Examine the Demonstration Program

Enter the following command line to display the source file ASM on the system terminal:
> CON ASM <CR>
;Z80 DEMONSTRATION RUN PROGRAM

SECTION DEMO
ORG

START LD
LD
XOR

LOOP ADD
INC
DEC

100H
HL,TABLE
B,TSIZE
A

A, (HL)
HL
B

;START PROGRAM CODE AT ADDRESS 100
;SET TABLE POINTER
;SET PASS COUNTER
;CLEAR ACCUMULATOR
;ADD BYTE FROM TABLE
;POINT TO NEXT BYTE
;DECREMENT PASS COUNTER

JP NZ,LOOP ;LOOP IF NOT FIVE PASSES YET
OUT (OF7H),A ;OTHERWISE CALL EXIT SVC
NOP

;SRB POINTER
ORG 40H
BYTE 00,42H

;SRB FOR EXIT SVC

;TO END PROGRAM EXECUTION

;STORE SRB POINTER AT ADDRESS 40
;POINT TO SRB FOR EXIT SVC

BYTE lAH ;lAH = FUNCTION CODE FOR EXIT SVC
;TABLE OF NUMBERS TO BE ADDED
TSIZE EQU 5 ;TABLE SIZE = 5

ORG 500H
TABLE BLOCK TSIZE

LIST DBG
END START

;SET UP TABLE AT ADDRESS 500

REV AUG 1982

zao Emulator Specifics Users zao Demonstration Run

Assemble the Source Code

If you do not have a Z80 assembler on your system disk, you cannot perform this step, so skip the next four
commands (ASM, COP, LINK, and L).

The ASM (AsSeMble) command translates assembly language (source code) into binary machine language
(object code). The ASM command also creates an assembler listing that can be used to correlate the object
code with the source code. Enter the following command line to assemble the source code in the file ASM
and create the listing the object files ASML and OBJ:

> ASM OBJ ASML ASM <CR>

• • • 1
1
1
1
1
1
1
1

1
1
1
1
1

1
1
1- - - - source file

1- _______ assembler listing file

1 ____________ object file

Tektronix
**** Pass 2

Z80 ASM Vx.x

23 Source Lines 23 Assembled Lines xxxxx Bytes Available
»> No assembly errors detected «<

Make sure your line printer is turned on and properly connected, then enter the following command to copy
the assembler listing onto the printer:

> COP ASML LPT <CR>

Refer to Fig. 7C-8 for an explanation of the different fields in your assembler listing. For a more detailed
explanation, consult your Assembler Users Manual.

Link the Object Code. The linker creates an executable load file from one or more object files. Enter the
LINK command to invoke the linker:

> LINK <CR>
8550 LINKER Vx.x

Now enter the following linker commands to create a load file called LOAD from your object file, OBJ:
'LINK OBJ <CR>
'LOAD LOAD <CR>
'DEBUG <CR>
'END <CR>

The linker commands LINK and LOAD specify the object file and load file, respectively. The DEBUG com
mand causes the linker to pass the program symbols from the object file to the load file, for use in program
riQhllf"lf"linf"l AftQr \I()II t\lnQ thQ I=Nn ('()mm~nri thQ link~r ~Y~rllt~c::. th~ r()mm~nrlc::. V()ll h~v~ ~nt~r~rl ~nrl th~
~~~~~~ ••• ~ .... ,~. ,~~ "r-~ , .. ~ _. -- ~~ ...... _ .. _, •.. ~ ...... ~. ~ .. ~~-.~- •.. - -_ ...... _ .. -~ ,-- .. _. ~ ~ ..• _. --, _ .. - •.. -

following information is displayed: 
NO ERRORS NO UNDEFINED SYMBOLS 
1 MODULE 1 SECTIONS 
TRANSFER ADDRESS IS 0100 

REV AUG 1982 7C-35 



zao Demonstration Run zao Emulator Specifics Users 

7C-36 

The files generated by the ASM and LINK commands should now be on your disk. Enter the following 
command to list the files in your current directory: 

> L <CR> 

FILENAME 

ASM 
LOAD 
OBJ 
ASML 

Files used 126 
Free files 130 
Free blocks 811 
Bad blocks 0 

Notice that there are now four files listed in your directory. OBJ and ASML were created by the assembler, 
and LOAD was created by the linker. 

Load the Program into Memory 

Now it's time to load the object code from the load file LOAD into program memory. Once you've loaded the 
object code, you execute the program. 

Zero Out Memory. Before you load any code, use the F (Fill) command to fill program memory with zeros. 
Later. when you examine memory, the zeros make it easy to identify the beginning and end of your code. 
(Zeroing out memory has no affect on how the program is loaded.) Enter the following command line to fill 
memory addresses 40 to 11 F with zeros: 

> F 4('\ 11F 00 <CR> 

Check That Memory Was Filled with Zeros. Check the contents of memory with the D (Dump) command. 
The D command's display shows the data (in hexadecimal format) and also shows the corresponding ASCII 
characters. Display the contents of memory addresses 40 to 11 F with the following command line: 

> D 40 11F <CR> 
0 1 2 3 4 5 6 7 8 9 A B C D E F 

000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 •••••••• e ••••••• 

000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 
000060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 
000070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 
000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 
000090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 
OOOOAO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 
OOOOBO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 
OOOOCO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 
OOOOEO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 
OOOOFO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 
000100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 
000100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 

REV AUG 1982 



zao Emulator Specifics Users zao Demonstration Run 

Load the Object Code into Memory. Enter the following command line to load the object code for the 
demonstration program into program memory: 

> LO <LOAD <CR> 

I 

load file 

Load the Program Symbols. The source code for the demonstration program contained the directive LIST 
DBG. Because of this directive, the object file contains a jist of the symbols that appeared in the source 
code, and the values associated with those symbols. Because you included the DEBUG command when you 
invoked the linker, those symbols were passed to the load file. Use the SYMLO command to load those 
symbols into the symbol table in 8550 system memory. 

> SYMLO-S <LOAD <CR> 

The -S option means that both addresses and scalars are loaded. If you omit the -S, only addresses are 
loaded. (A scalar is a number that is not an address - for example, TSIZE, the length of the table.) 

Later in this demonstration, whenever you use a symbol in a command line, DOS/50 refers to the symbol 
table to find the value that the symbol represents. 

You've assembled and linked the demonstration program and loaded it into memory. Now skip ahead to the 
heading Run the Demonstration Program. 

CASE 2: ASSEMBLE ON THE 8560; DOWNLOAD TO THE 8540 

This discussion shows you how to create the demonstration program source code and assemble it on the 
8560, then download it to 8540 (or 8550) program memory. If your 8560 does not have a Z80 assembler, 
you cannot complete this part of the demonstration, so skip ahead to the heading CASE 4: Patch the 
Program into Memory. 

Start Up and Log In 

Start up your 8540, make sure it's in TERM mode, and log in to the 8560 operating system, TNIX. See your 
8560 System Users Manual for details. 

Since you're logged in to TNIX, your system prompt is $. (Later in the demonstration, we'll show the system 
prompt as >, in deference to people using 8540s and 8550s in LOCAL mode.) Every command you enter is 
processed by TNIX. If you enter an OS/40 command, TNIX passes it to the 8540. 

Enter the following commands to select the Z80 assembler on the 8560 and the Z80 emUlator on the 8540: 

$ uP =z80; export UP <CR> 

$ sel Z80 <CR> 

The sel command automatically sets thE:; emulation mode to O. 

REV FEB 1983 7C-37 



zao Demonstration Run zao Emulator Specifics Users 

Create the Demonstration Program 

Enter the following TNIX command lines to create an empty directory called demo and make demo the 
working directory. You' /I create your source file and related files in this demo directory. 

$ mkdir demo <CR> 
$ C'd demo <CR> 

Now use the TNIX editor ed, to create the demonstration program source file. The following command line 
invokes the editor and specifies that you want to create a file called asm: 

$ ed asm <CR> 
?asm 

The editor responds ?asm to remind you that asm does not already exist. Notice that the editor does not 
give a prompt to let you know that it's ready for input. 

Enter the Text. Now enter the editor command a (append text) and type in the program. Use the BACK
SPACE key to erase any typing mistakes. 

a <CR> 
column column column 

8 6 24 

;Z80 DEJONSTRATtON RUN tROGRAM <CR> 
SECTION DEMO <CR> 
ORG 100H ;START PROGRAM CODE AT ADDRESS 100 <CR> 

START LD HL,TABLE ;SET TABLE POINTER <CR> 
.LD B,TSIZE ;SET PASS COUNTER <CR> 
XOR A ;CLEAR ACCUMULATOR <CR> 

LOOP ADD A, (HL) ;ADD BYTE FROM TABLE <CR> 
INC HL ;POINT TO NEXT BYTE <CR> 
DEC B ;DECREMENT PASS COUNTER <CR> 
JP NZ,LOOP ;LOOP IF NOT FIVE PASSES YET <CR> 
OUT {OF7H} ,A ;OTHERWISE CALL EXIT SVC <CR> 
Nap TO END PROGRAM EXECUTION <CR> 

;SRB POINTER <CR> 
ORG 40H ;STORE SRB POINTER AT ADDRESS 40 <CR> 
BYTE 00,42H ;POINT TO SRB FOR EXIT SVC <CR> 

;SRB FOR EXIT SVC <CR> 
BYTE lAH ;lAH = FUNCTION CODE FOR EXIT SVC <CR> 

;TABLE OF NUMBERS TO BE ADDED <CR> 
TSIZE EQU 5 ;TABLE SIZE = 5 <CR> 

ORG 500H ;SET UP TABLE AT ADDRESS 500 <CR> 
TABLE BLOCK TSIZE <CR> 

LIST DBG <....CR-> 
END START <CR> 

~ <CR> 

At the end of your text, enter a period on a line by itself. The editor will now accept new commands. 

7C-38 REV AUG 1982 



Z80 Emulator Specifics Users Z80 Demonstration Run 

Check for Errors. Type the following editor command to display the text you have entered. Check for typing 
mistakes. 

l,$p <CR> 

t t+ 
1 1 I. - - - - print command: displays the lines 
1 1 
1 1 in the designated range 
1 1 

: I------designates last line in file 
1 

I·-------designates first line in file 

If you made any mistakes, fix them now. In case you're not familiar with the editor, Table 7C-6 lists the 
commands you need in order to add, delete, or replace a line. For more information on the TNIX editor, refer 
to your 8560 System Users Manual. 

Command 

mm,nnp<CR> 

nn<CR> 

d<CR> 

a<CR> 
<Iine(s) of text> 
.<CR> 

c<CR> 
<line{s) of text> 
.<CR> 

Table 7C-6 
Basic 8560 Editing Commands 

Function 

Displays lines mm through nn 

Makes line nn the current line 

Deletes the current line 

Adds text below the current line 

Replaces the current line with the text 
you type in 

Once your text is correct, enter the w command to write the text to the source file, a5m: 
w <CR> 
902 

The editor responds with the number of characters written to the file. 

Finally, enter the q command to quit the editor and return to TNIX: 
q <CR> 
$" - - - T~~IX prompt 

REV AUG 1982 7C-39 



zao Demonstration Run zao Emulator Specifics Users 

7C-40 

Assemble the Source Code. 

The TNIX asm (assemble) command translates assembly language (source code) into binary machine lan
guage (object code). The asm command also creates an assembler listing that you can use to correlate the 
object code with the source code. Enter the following command line to assemble the source code in the file 
asm and create the listing and object files asml and obj: 

$ asm obj asml asm <CR> . . , 
1 
1 

1 
1 
1 
1 
I 
1 
1 
1 

1 
1 
1 
1 

L - - - _. source file 

1- ________ assembler listing file 

------------
Tektronix ASM Z80 
Vxx.xx-xx (8560) 
*****Pass 2 

23 Lines Read 
23 Lines Processed 
o Errors 

object file 

Enter the following command to print the assembler listing on the 8560's line printer: 
$ lplr asml <CR> 

Examine page 1 of your listing. Did the assembler issue any error messages? There should be none. If your 
source code contains errors, take the following steps. 

1. Refer to your Assembler Users Manual to find out what the error messages mean. 

2. Enter the command ed asm to get back into the editor and fix the mistakes in your source code. Exit the 
editor with the wand q commands, as before. 

3. Enter the command asm obj asml asm to re-assemble your source code. 

Link the Object Code 

The linker creates an executable load file from one or more object files. Enter the following command to 
create a load file called load from your object file, obj. Be sure to enter all parameters exactly as shown. 

$ link -d -0 obj -0 load <CR> 

The -d option causes the linker to pass the program symbols from the object file to the load file, for use in 
program debugging. 

The files generated by the asm and link commands should now be in your working directory, demo. Enter the 
following command to list the files in your working directory: 

$ Is <CR> 
asm 
asml 
load 
obj 

REV AUG 1982 



ZSO Emulator Specifics Users ZSO Demonstration Run 

Notice that there are now four files listed in your directory: obj and asml were created by the assembler, and 
load was created by the linker. 

Download the Program to the 8540 

Now it's time to download the object code produced by the 8560's linker into 8540 program memory. 

Zero Out Memory. Before you download any code, use the 08/40 F (Fill) command to fiii 8540 program 
memory with zeros. Later, when you examine memory, the zeros make it easy to identify the beginning and 
end of your code. (Zeroing out memory has no effect on how the program is loaded.) Enter the following 
command line to fill memory addresses 40 to 11 F with zeros: 

$ f 40 Ilf 00 <CR> 

Check That Memory Was Filled with Zeros. Check the contents of memory with the OS/40 D (dump) 
command. The D command's display shows the data in hexadecimal format, and also shows the corre
sponding ASCII characters. Display the contents of memory addresses 40 to 11 F with the following com
mand line: 

$ d 40 llf <CR> 
o 1 2 345 6 7 8 9 ABC D E F 

000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
000060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
000070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
000090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
OOOOAO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
OOOOBO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
OOOOCO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
OOOODO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
OOOOEO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
OOOOFO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
000100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
000110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

Download the Object Code. Enter the following command line to download the object code from the 8560 
file load to 8540 program memory: 

$ 10 <load <LCR> 

• I 
load file 

Download the Program Symbols. The source code for the demonstration program contains the directive 
LIST DBG. Because of this directive, the object file contains a list of the symbols that appear in the source 
code and the values associated with those symbols. Because you included the -d option in the link com
mand line, those symbols were passed to the load file. Use the OS/40 SYMLO command to download those 
symbols into the symbol table in 8540 system memory. 

$ symlo -s <load <CR> 

The -s option means that both addresses and scalars are downloaded. If you omit the -S, only addresses 
are downloaded. (A scalar is a number that is not an address - for example, TSIZE, the length of the table.) 

REV AUG 1982 7C-41 



zao Demonstration Run zao Emulator Specifics Users 

7C-42 

Later in this demonstration, whenever you use a symbol in an OS/40 command line, OS/40 refers to the 
symbol table to find the value that the symbol represents. 

You've assembled and linked the demonstration program and downloaded it into memory. Now skip ahead 
to the heading Run the Demonstraion Program. 

CASE 3: DOWNLOAD FROM YOUR HOST TO THE 8540 

This discussion gives some general instructions for downloading the demonstration program from a host 
computer other than the 8550 or 8560 to 8540 (or 8550) program memory. If your 8540 is not equipped with 
the optional COM Interface Package, you cannot complete this part of the demonstration, so skip ahead to 
the heading Case 4: Patch the Program into Memory for instructions. COM Interface software is standard 
on the 8550. 

Since we don't know what host computer you're using, we can only provide a general outline for creating the 
demonstration program and downloading it to the 8540. Once you have determined the command sequence 
that is appropriate for your host, record this information in the space provided in Fig. 7C-10. 

Create the Extended Tekhex Load Module 

In order for object code to be downloaded to the 8540, it must be in Extended Tekhex format, as shown in 
Fig. 7C-9. You can create the load module in one of two ways: 

1. using your host computer's text editor, key the load module in by hand; or 

2. using your host computer's Z80 assembler to 

a. translate the demonstration program into the language of your host's Z80 assembler; 

b. create and assemble the source file; 

c. link the object code, if necessary; and 

d. translate the object code produced by the assembler or linker into Extended Tekhex format. The 
Intersystem Communication section of your System Users Manual provides a general algorithm for 
conversion to Extended T ekhex format. 

Prepare the 8540 

Start up your 8540 and enter the following command to select the Z80 emulator: 
> SEL Z80 <CR> 

The SEL command automatically sets the emulation mode to O. 

REV AUG 1982 



zao Emulator Specifics Users zao Demonstration Run 

Create the Extended Tekhex Load Module 

Prepare the 8540 

(Start up the 8540.) 
> SEL Z80 <CR> 
> F 40 11F 00 <CR> 
> D 40 11 F < C R > 

Establish Communication 

Download the Load Module 

Terminate Communication 

Fig. 7C-10. Host computer commands for preparing demonstration program. 

Zero Out Memory. Before you download any code, use the 05/40 F (Fill) command to fill 8540 program 
memory with zeros. Later, when you examine memory, the zeros make it easy to identify the beginning and 
end of your code. (Zeroing out memory has no affect on how the program is loaded.) Enter the following 
command line to fill memory addresses 40-11 F with zeros: 

> F 40 llF 00 <CR> 

REV AUG 1982 7C-43 



zao Demonstration Run zao Emulator Specifics Users 

7C-44 

Check That Memory Was Filled with Zeros. Check the contents of memory with the OS/40 0 (Dump) 
command. The 0 command's display shows the data (in hexadecimal format) and the corresponding ASCII 
characters. Display the contents of memory addresses 40 to 11 F with the following command line: 

> D 40 llF <CR> 
0 1 2 3 4 5 6 7 8 9 A B C D E F 

000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 
000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ••• e •••••••••••• 

000060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 
000070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 
000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 
000090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 
OOOOAO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 
OOOOBO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 
OOOOCO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 
OOOODO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 
OOOOEO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 
OOOOFO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 
000100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 
000110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 

Download the Load Module to the 8540 

Be sure that your 8540 and your host computer are connected via an RS-232-C compatible communication 
link. Refer to the Intersystem Communication section of your System Users Manual to determine the com-
mands and parameters that are appropriate for your host computer. Then perform the following steps to 
download the T ekhex load module to 8540 program memory. 

1. Enter the 8540 COM command to establish communication. (The parameters of the COM command are 
host-specific.) Log on to your host and execute any necessary host initialization commands. 

2. Enter the command line that downloads the Tekhex load module to the 8540. This command line consists 
of the host computer command that performs the download, followed by a null character (CTRL-@ on 
most terminals) and a carriage return. COM places the object code in 8540 program memory, and puts 
the program symbols into the symbol table in 8540 system memory. 

3. Log off from your host, and then terminate COM command execution by entering the null character, then 
pressing the ESC key. 

Once you·ve downloaded the program to the 8540, skip ahead to the heading Run the Demonstration 
Program. 

CASE 4: PATCH THE PROGRAM INTO MEMORY 

This discussion shows you how to patch the demonstration program into 8540 (or 8550) program memory 
using the P command, and then add the program symbols into the symbol table using the ADDS command. 

Ordinarily, you would load the object code and symbols from a binary or hexadecimal load file, as illustrated 
for Cases 1. 2, and 3. The procedure presented here is not normally used for preparing a program for 
execution. Use this procedure only if you have no standard means for preparing the program, but would still 
like to tryout your emulator. 

REV AUG 1982 



zao Emulator Specifics Users zao Demonstration Run 

Start Up the 8540 

Start up your 8540 and enter the following command to select the Z80 emulator: 
> SEL Z80 <CR> 

The SEL command automatically sets the emulation mode to O. 

Zero Out Memory 

Before you patch in any code, use the OS/40 F (Fill) command to fill 8540 program memory with zeros. 
Later, when you examine memory, the zeros make it easy to identify the beginning and end of your code. 
Enter the following command line to fill memory from addresses 40 to 11 F with zeros: 

> F 40 IlF 00 <CR> 

Check That Memory Was Filled with Zeros. Check the contents of memory with the OS/40 D (Dump) 
command. The D command's display shows the data (in hexadecimal format) and the corresponding ASCII 
characters. Display the contents of memory addresses 40 to 11 F with the following command line: 

> D 40 IlF <CR> 
a 1 2 3 4 5 6 7 8 9 A B C D E F 

000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 
000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 
000060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 
000070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 
000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 
000090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 
OOOOAO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 
OOOOBO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 
OOOOCO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 
OOOODO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 
OOOOEO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 
OOOOFO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 
000100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 
000110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 

Patch the Object Code into Memory 

The OS/40 P (Patch) command stores a sequence of bytes into memory, replacing the previous memory 
contents. Enter the following command to store the object code for the first three instructions in the program 
(LD HL, LD B, and XOR A) starting at location 100: 

> p 100 210005 0605 AF <CR> 
--- ------ ----

• • • • I I 
I I 
I 

XOR A ! I 
I I 
I LD B,TSIZE I 
I 

LD HL,TABLE 

patch address 

Now patch in the next four instructions (ADD A, INC HL, DEC B, and JP NZ,LOOP) ... 
> P 106 86 23 05 C20601 <CR> 

REV AUG 1982 7C-4S 



zao Demonstration Run zao Emulator Specifics Users 

7C-46 

... and now the last two instructions (OUT and NOP): 
> P 10C D3F7 00 <CR> 

Finally, patch in the Exit SVC information at address 40: 
> P 40 00421A <CR> 

You'll examine the contents of memory later in this demonstration. 

Put Symbols into the Symbol Table 

Later in this demonstration, you will use symbols from the demonstration program (START, LOOP, TSIZE, 
AND TABLE) when communicating with OS/40. Whenever you use a symbol in a command, OS/40 consults 
a symbol table in 8540 system memory to find the value the symbol represents. Enter the following com
mand line to add the program symbols to the symbol table, along with their values: 

> ADDS START=lOO LOOP=106-S TSIZE=5 TABLE=500 <CR> 

The ADDS command cannot provide all the symbol-related information that is provided by the SYMLO 
command (as in Cases 1 and 2) or the COM command (as in Case 3). Because this information is missing, 
some of the displays you produce later in this demonstration will not match the symbolic displays shown in 
this manual. For more information on the ADDS command, refer to the Command Dictionary of your System 
Users Manual. 

You've patched the demonstration program into program memory and placed the program symbols in the 
symbol table. Now it's time to run the program. 

RUN THE DEMONSTRATION PROGRAM 

From now until the end of the demonstration, the commands you are to enter are shown in lowercase. If you 
are not logged into an 8560, you may enter commands in either lowercase or uppercase. If you are using an 
8560, you must enter the name of every command in lowercase (and your system prompt is $, not> ). 

Now that you've loaded the program into memory, you need to: 

• verify that the program was loaded correctly; and 

• put values into the table in memory, for the program to add. 

REV AUG 1982 



ZSO Emulator Specifics Users ZSO Demonstration Run 

Check Memory Contents Again. Before you loaded the program, you filled memory locations 40 to 11 F 
with zeros. Look at the same memory area again with the following command line: 

> d 40 11f <CR> 
o 1 2 345 6 7 8 9 ABC D E F 

000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
000060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
000070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
000090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
OOOOAO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
OOOOBO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
OOOOCO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
OOOODO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
OOOOEO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
OOOOFO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
000100 00 00 00 00 00. 00 00 00 00 00 00 00 00 00 00 00 
000110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

The object code is loaded in two different blocks: 

• The Z80 machine instructions are loaded at address 100 (specified by the first ORG directive in the 
source code). 

• The information for the Exit SVC is loaded at address 40 (specified by the second ORG directive). 

The contents of the table at address 500 are still undefined, but you'll put some values into the table in just a 
few minutes. 

Turn On Symbolic Debug. Enter the following command to turn on symbolic debug: 
> symd on <CR> 

Disassemble the Object Code. The DI (Disassemble) command displays memory contents both in hexa
decimal notation and in assembly language mnemonics. You can use the DI command to verify that the 
object code in memory corresponds to your source code. Enter the following command to disassemble the 
area of memory occupied by the executable part of your program: 

> di 100 10e <CR> 
LOC INST MNEM OPER 
SECTION (DEMO) 
START 210005 LD HL,0500 
t000103 0605 LD B,05 
t000105 AF 
LOOP 86 
tOOOl07 23 
t000108 05 
+000109 C20601 
tOOOl0C D3F7 

XOR A 

ADD !J. I J.JT. \ ... , \ ..... _, 
INC HL 
DEC B 
JP NZ,0106 
OUT (F7) ,A 

+00010E 00 NOP 

Compare the DI display with the assembler listing you generated earlier, or refer back to Fig. 7C-8. 

REV AUG 1982 7C-47 



zao Demonstration Run zao Emulator Specifics Users 

7C-48 

The line SECTION (DEMO) in the 01 display indicates that the object code being disassembled comes from 
the program section called DEMO. In fact, the entire memory area used by your program (location 0 through 
the end of the table - location 504) belongs to section DEMO. This section was declared by the SECTION 
directive in the source code. 

The LOC (location) column of the 01 display contains information that enables you to correlate the display 
with your assembler listing. The symbols START and LOOP in the 01 display correspond to the labels 
START and LOOP in the source code. In the display, when a location does not correspond to a label in the 
symbol table, 01 substitutes the address of the instruction relative to the beginning of the section, as 
shown in the address field of your assembler listing. If you haven't loaded the pertinent symbols and related 
information into the symbol table (using a command such as SYMLO), the 01 command supplies absolute 
(actual) addresses in the LOC column. (Since section DEMO begins at address 0, the relative address, or 
offset, is the same as the absolute address in this display. This offset feature is much more useful for 
sections that don't start at address 0.) 

Now you've seen that your system can use the symbol table to translate numbers into symbols to make a 
display easier to read. Your system can also translate a symbol in a command line into an address. For 
example, since your system knows that the symbol START is equivalent to the address 100, you could have 
entered the 01 command in any of the following ways: 

di 100 10E 
di START 10E 
di start start+Oe 
di 100 START+OE 

Notice that a symbol can be entered in either lowercase or uppercase. 

The feature that enables DOS/50 and OS/40 to correlate symbols from your program with the numbers they 
represent is termed symbolic debug. 

Put Values into the Table in Memory. The demonstration program sums five numbers from a table in 
memory. Use the P (Patch) command to place the numbers 1, 2, 3, 4, and 5 in the table. Do you remember 
what the address of the table is? It doesn't matter, as long as you remember that the symbol TABLE 
represents that address. 

> p table 0102030405 <CR> 

===.== =====f=== 
address of string of bytes to be stored 
table: 500 at addresses 500 to 504 

Check the Contents of the Table. Use the 0 command to display the contents of the table. (When you 
don't specify an upper boundary for the area to be dumped, the 0 command dumps 16 bytes.) 

1- - - - - - - - lower address: 500 
I 
I 
I 
I , I - - - - upper address: omitted 

, (defaults to lower address + OF) 

> d t~bl: == <CR> 
o 1 2 3 4 5 6 7 8 9 ABC D E F 

000500 01 02 03 04 05 27 EB CF C3 BC EB B6 9D AB AF DB 

REV AUG 1982 



zao Emulator Specifics Users zao Demonstration Run 

Notice that bytes 500 to 504 (the table) contain the values you patched in. Bytes 505 to 50F contain random 
data left over from previous system operations. 

The following command dumps only the contents of the table: 
> d table table+tsize-l <CR> 

o 1 2 345 6 7 8 9 ABC D E F 
000500 01 02 03 04 05 

Start Program Execution 

Now enter the G (Go) command to start program execution at location 100, the transfer address specified by 
the END directive in the source code. (If you followed Case 4: Patch the Program into Memory, you must 
enter G START instead.) 

> g <CR> 
LOC INST MNEM OPER 
OOOlOF 00 NOP 
OOOlOF 00 <BREAK > 

SP F ABC D E H L IX IY 
0000 42 OF 00 00 00 00 05 05 0000 0000 

The program executes, and when the Exit SVC occurs, the program breaks (stops), and the contents of the 
emulator registers are displayed. The accumulator contains the sum of the numbers in the memory table: 
1 +2+3+4+5=OF. 

MONITOR PROGRAM EXECUTION 

You have assembled, loaded, and executed the demonstration program. The rest of this demonstration 
shows you some commands for monitoring program execution. You can watch the changes in the emula
tor's registers and observe the effect of each instruction as the program proceeds. 

Trace All Instructions. The TRA (TRAce) command lets you observe the changes in the zao registers as 
the program proceeds. When you enter a TRA command and then start execution with the G command, 
display lines are sent to the system terminal. As each instruction executes, the display line shows the 
instruction (as in the Disassemble display) and the contents of the registers after that instruction has execut
ed. Enter the following command to trace all of the program's instructions: 

> tra all <CR> 

Enter the command G START (or G 100) to resume program execution at the begining of the program: 
> g start <CR> 

REV AUG 1982 7C-49 



zao Demonstration Run zao Emulator Specifics Users 

7C-50 

As the program executes, the following trace is displayed. Remember that you can type CTRL-S to suspend 
the display and CTRL-Q to resume the display. 

LOC INST 
SECTION (DEMO) 
START 210005 
+000103 0605 
+000105 AF 
LOOP 86 
+000107 23 
+000108 05 
+000109 C20601 
LOOP 86 
+000107 23 
+000108 05 
t000109 C20601 
LOOP 86 
+000107 23 
+000108 05 
+000109 C20601 
LOOP 86 
+000107 23 
+000108 05 
+000109 C20601 
LOOP 86 
+000107 23 
+000108 05 
+000109 C20601 

LaC INST 
+00010C D3F7 

MNEM OPER 

LD HL,0500 
LD B,05 
XOR A 
ADD A, (HL) 
INC HL 
DEC B 
JP NZ,0106 
ADD A, (HL) 
INC HL 
DEC B 
JP NZ,0106 
ADD A, (HL) 
INC HL 
DEC B 
JP NZ,0106 
ADD A, (HL) 
INC HL 
DEC B 
JP NZ,0106 
ADD A, (HL) 
INC HL 
DEC B 
JP NZ,0106 

MNEM OPER 
OUT (F7) ,A 

+00010C D3F <BREAK TRACE> 

SP F ABC D E H L IX IY 

FFFF 42 OF 00 00 00 00 05 00 0000 0000 
FFFF 42 OF 05 00 00 00 05 00 0000 0000 
FFFF 44 00 05 00 00 00 05 00 0000 0000 
FFFF 00 01 05 00 00 00 05 00 0000 0000 
FFFF 00 01 05 00 00 00 05 01 0000 0000 
FFFF 02 01 04 00 00 00 05 01 0000 0000 
FFFF 02 01 04 00 00 00 05 01 0000 0000 
FFFF 00 03 04 00 00 00 05 01 0000 0000 
FFFF 00 03 04 00 00 00 05 02 0000 0000 
FFFF 02 03 03 00 00 00 05 02 0000 0000 
FFFF 02 03 03 00 00 00 05 02 0000 0000 
FFFF 00 06 03 00 00 00 05 02 0000 0000 
FFFF 00 06 03 00 00 00 05 03 0000 0000 
FFFF 02 06 02 00 00 00 05 03 0000 0000 
FFFF 02 06 02 00 00 00 05 03 0000 0000 
FFFF 08 OA 02 00 00 00 05 03 0000 0000 
FFFF 08 OA 02 00 00 00 05 04 0000 0000 
FFFF 02 OA 01 00 00 00 05 04 0000 0000 
FFFF 02 OA 01 00 00 00 05 04 0000 0000 
FFFF 08 OF 01 00 00 00 05 04 0000 0000 
FFFF 08 OF 01 00 00 00 05 05 0000 0000 
FFFF 42 OF 00 00 00 00 05 05 0000 0000 
FFFF 42 OF 00 00 00 00 05 05 0000 0000 

SP F ABC D E H L IX IY 
FFFF 42 OF 00 00 00 00 05 05 0000 0000 

After the accumulator is cleared, it begins to store the sum of the numbers being added. The ADD A 
instruction adds a number from the table into the accumulator. At the end of the program, the accumulator 
contains the sum of the numbers you put into the table. 

Register B, the pass counter, is set to contain 5 (TSIZE) at the beginning of the program. It decreases by one 
(because of the DEC B instruction) each time a number is added into the accumulator. The program ends 
after register B reaches zero. 

The H-L register pair, set to contain 500 (TABLE) at the start of the program, increases by one each time a 
number is added to the accumulator. At the end of the program, the H-L register pair has been incremented 
five times and contains 505. 

Trace to the Line Printer. By adding the parameter> LPT to a command, you can direct that command's 
output to the line printer instead of to the system terminal. First, verify that your line printer is properly 
connected and powered up. Then enter the following command to execute the program with trace output 
directed to the line printer: 

> g start >LPT <CR> 

NOTE 
If you're operating in TERM mode with an 8560, use one of the following commands in place of the 
command shown: 

REV AUG 1982 



zao Emulator Specifics Users zao Demonstration Run 

• g start 11p1r sends the display to the 8560 line printer. 

• g start \>LPT sends the display to the line printer on the 8540 or 8550. 

Trace Jump Instructions Only_ Another way to monitor the program's execution is to look only at the jump 
instructions. By tracing the jump instructions, you can still observe the changes in the registers, but you save 
time and space by not tracing the instructions within the loop. Enter the following command to trace only the 
jump instructions when the loop is being executed: 

> tra jmp loop 109 <CR> 

• 1--
1 
1 
1 
1 
1 

1 
1- _ _ upper address 

I - - - - - - lower address 

(106) 

Within this range, 

only jump instructions 

are traced. 

Again, start your program with the G command. The following trace is displayed: 
> g start <CR> 
LOC INST MNEM OPER SP F A B C D E H L IX 
SECTION (DEMO) 
START 210005 LD HL,0500 FFFF 42 OF 00 00 00 00 05 00 0000 
+000103 0605 LD B,05 FFFF 42 OF 05 00 00 00 05 00 0000 
-"-000105 AF XOR A FFFF 44 00 05 00 00 00 05 00 0000 
-+-000109 C20601 JP NZ,0106 FFFF 02 01 04 00 00 00 05 01 0000 
-'-000109 C20601 JP NZ,0106 FFFF 02 03 03 00 00 00 05 02 0000 
+000109 C20601 JP NZ,0106 FFFF 02 06 02 00 00 00 05 03 0000 
-1-000109 C20601 JP NZ,0106 FFFF 02 OA 01 00 00 00 05 04 0000 
+00010C D3F7 OUT (F7) ,A FFFF 42 OF 00 00 00 00 05 05 0000 
-I-00010C D3F <BREAK TRACE> 

IY 

0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 

As with the TRA ALL display, observe that register B (the pass counter) is decremented, the H-L register 
pair (the table pointer) is incremented, and the accumulator stores the sum of the numbers from the table. 
With the TRA JMP selection in effect, the instructions within the loop are not displayed. 

Check the Status of the Trace. The TRA command without any parameters displays the trace conditions 
that are currently set. Because you can have up to three trace selections in effect at the same time, it is 
useful to be able to see which selections are active. Check your trace status with the following command 
line: 

> tra <CR> 
TRACE ALL,OOOOOO,OOFFFF 
TRACE JMP,LOOP,000109 

As you've specified, TRA ALL is in effect fOi addiesses 0 to 105, TRA JMP is in effect for addresses 106 to 
109, and TRA ALL is again in effect for addresses 10A to FFFF. 

REV AUG 1982 7C-S1 



zao Demonstration Run zao Emulator Specifics Users 

7C-S2 

Set a Breakpoint after a Specific Instruction. Now that you've seen how the program adds the numbers 
together; here's a new task: to add only the third and fourth numbers from the table. To perform this task, 
you want the pass counter to contain 2, and the table painter to contain 502 (the address of the third number 
in the table). You can accomplish these changes without altering the object code in memory. First, stop 
program execution after the pass counter and the table pOinter have been set. Next, while the program is 
stopped, enter new values for the pass counter and table pOinter. When execution resumes, the program 
treats the new values as if they were the original programmed value. 

Enter the following command line to trace all of the instructions as the program executes: 
> tra all <CR> 

Check the status of the trace with the following command line: 
> tra <CR> 
TRACE ALL,OOOOOO,OOFFFF 

The TRA ALL command just entered makes the earlier TRA selections obsolete. 

Now you set a breakpoint so that the program stops after the table pOinter and pass counter have been set. 
The following command causes the program to stop after it executes the LD 8 instruction at address 103: 

> bk 1 103 <CR> 
- ---
• • I I 

: 1- - - - - breakpoint address 
1 
1- _______ breakpoint number 

(can be 1 or 2) 

Use the G command to start program execution: 
> g start <CR> 
LOC INST MNEM OPER SP F A B C D E H L IX IY 
SECTION (DEMO) 
START 210005 LD HL,0500 FFFF 42 OF 00 00 00 00 05 00 0000 0000 
+000103 0605 LD B,05 FFFF 42 OF 05 00 00 00 05 00 0000 0000 
+000103 060 <BREAK TRACE, BKPT1 > 

The TRA ALL command enabled display of all instructions up to and including the instruction at the 
breakpoint. 

Set New Values in Pass Counter and Table Pointer; Check Results. Now that you've reached the break
point, you can change the contents of the registers while execution is stopped. The break display shows that 
register 8 (the pass counter) contains 5, and the H-L register pair (the table pointer) contains the address 
500. Use the S (Set) command to set the number of passes to two and set the table pOinter to 502: 

> s B =2 L =2 <CR> 

REV AUG 1982 



Z80 Emulator Specifics Users Z80 Demonstration Run 

The S command does not produce a display, but you can use the OS (Display Status) command to check the 
values in the registers you changed. OS displays the contents of each emulator register and status flag. 
Check the result of the previous S command with the following command line: 

> ds <CR> 
PC=0105 SP=FFFF F=42 A=OF B=02 c=oo D=OO E=OO H=05 L=02 
IX=OOOO IY=OOOO AF=OO AA=OO AB=OO AC=OO AD=OO AE=OO AH=OO AL=OO 
IFF1=0 IFF2=0 IM=O 1=00 R=37 

The OS display shows that the pass counter and table painter now contain· the new values. 

Resume Program Execution. If you enter the G command with no parameters, program execution starts 
where it left off. Resume program execution after the breakpoint with the following command: 

> ~ <CR> 
LOC INST MNEM OPER SP F A B C D E H L IX IY 
SECTION (DEMO) 
+000105 AF XOR A FFFF 44 00 02 00 00 00 05 02 0000 0000 
LOOP 86 ADD A, (HL) FFFF 00 03 02 00 00 00 05 02 0000 0000 
+000107 23 INC HL FFFF 00 03 02 00 00 00 05 03 0000 0000 
+000108 05 DEC B FFFF 02 03 01 00 00 00 05 03 0000 0000 
+000109 C20601 JP NZ,0106 FFFF 02 03 01 00 00 00 05 03 0000 0000 
LOOP 86 ADD A, (HL) FFFF 00 07 01 00 00 00 05 03 0000 0000 
+000107 23 INC HL FFFF 00 07 01 00 00 00 05 04 0000 0000 
+000108 05 DEC B FFFF 42 07 00 00 00 00 05 04 0000 0000 
+000109 C20601 JP NZ,0106 FFFF 42 07 00 00 00 00 05 04 0000 0000 
+00010C D3F7 OUT (F7) ,A FFFF 42 07 00 00 00 00 05 04 0000 0000 
+00010C D3F <BREAK TRACE> 

Notice that the program performed two passes through the loop, and that the program added the third and 
fourth numbers in the table: 3+4= 7. 

Delete the Demonstration Run Files 

Now that you've finishd the demonstration run, you can delete the source file, object file, listing file, and load 
file. If you're using an 8550, the source and load files are still available to you on the Z80 emulator installation 
disk. If you're using an 8560, remember that once you delete the source file (asm) , there is no way of 
recovering it. 

Delete 8550 Files. If your files are on the 8550, use the following procedure to delete them. First use the 
USER command to move from the DEMO directory back in to the directory you were in at the start of the 
demonstration. Recall that you marked that directory with the brief name IROOT. 

> USER IROOT <CR> 

Now enter the following command to delete the DEMO directory and the files it contains: 
> DEL DEMO /. DEMO <CR> 
Delete ASM y <CR> 
Delete LOAD Y <CR> 
Delete OBJ ? 'i <CR> 
Delete ASML 'i <CR> 
Delete DEMO ! <CR> 

REV AUG 1982 7C-53 



Z80 Demonstration Run Z80 Emulator Specifics Users 

7C-S4 

Before deleting each file, DOS/50 asks you whether you really want to delete it. You type Y for yes. 

Delete 8560 Files. If your files are on the 8560, use the following procedure to delete them. Enter the 
following command to remove all files in the working directory, including the source file: 

$ rm * <CR> 

Now move from the demo directory back into the parent directory and remove the demo directory itself: 

$ ~ <CR> 
$ rmdir demo <CR> 

Turn Off Your System 

For instructions on turning off your 8540 or 8550, refer to the Learning Guide of your System Users Manual. 

SUMMARY OF ZSO EMULATOR DEMONSTRATION RUN 

You have assembled, loaded, executed, and monitored the demonstration run program. You have used the 
following commands: 

• SEL - selects the Z80 assembler and emulator 

• ASM - creates object code from an assembly language program 

• LINK - links object code into a load module 

• F - fills an area of memory with a specified value 

• 0 - displays memory contents in ASCII and hexadecimal format 

• LO - loads object code into memory 

• SYMLO - loads program symbols for use in symbolic debug 

• 01 - translates memory contents into assembly language mnemonics 

• P - patches a string of bytes into memory 

• SYMO - turns on symbolic debug displays 

• G - begins or resumes program execution 

• TRA - selects instructions to be traced during program execution 

• BK - sets a breakpoint 

• S - modifies emulator registers 

• OS - displays emulator registers 

REV AUG 1982 



This manual supports the 
following TEKTRONIX products: 

8550 8540 
Option Products Option 

2H 8300E10 2H 
3K 8300P10 3K 
3L 8300P11 3L 
3M 8300P12 3M 
3N 8300P13 3N 

Products 

8300E10 Option 01 
8300P10 
8300P11 
8300P12 
8300P13 

COMMITTED TO EXCELLENCE 

This manual supports a" software/firmware 
module that is compatible with: 

DOS/50 Version 2 (8550) 
OS/40 Version 1 (8540) 

PLEASE CHECK FOR CHANGE INFORMATION 
AT THE REAR OF THIS MANUAL. 

Tektronix, Inc. 
P.O. Box 500 
Beaverton, Oregon 97077 

070-3967 -01 
Product Group 61 

S500 
MODULAR MOL SERIES 

S04S/S021/S041A/S022 
EMULATOR SPECIFICS 

USERS MANUAL 

Serial Number --------

First Printing APR 1982 
Revised SEP 1983 



LIMITED RIGHTS LEGEND 

Software License No. _____________ _ 

Contractor: Tektronix, Inc. 
Expianation of Limited Rights Data Identification Method 
Used: Entire document subject to limited rights. 

Those portions of this technical data indicated as limited rights data shall not, 
without the written permission of the above Tektronix, be either (a) used, 
released or disclosed in whole or in part outside the Customer, (b) used in whole 
or in part by the Customer for manufacture or, in the case of computer software 
documentation, for preparing the same or similar computer software, or (c) used 
by a party other than the Customer, except for: (i) emergency repair or overhaul 
work only, by or for the Customer, where the item or process concerned is not 
otherwise reasonably available to enable timely performance of the work, 
provided that the release or disclosure hereof outside the Customer shali be 
made subject to a prohibition against further use, release or disclosure; or (ii) 
release to a foreign government, as the interest of the United States may 
require, only for information or evaluation within such government or for 
emergency repair or overhaul work by or for such government under the 
conditions of (i) above. This legend, together with the indications of the portions 
of this data which are subject to such limitations shall be included on any 
reproduction hereof which includes any part of the portions subject to such 
limitations. 

RESTRICTED RIGHTS IN SOFTWARE 

ihe software described in this document is licensed software and subject to 
restricted rights. The software may be used with the computer for which or with 
which it was acquired. The software may be used with a backup computer if the 
computer for which or with which it was acquired is inoperative. The software 
may be copied for archive or backup purposes. The software may be modified or 
combined with other software, subject to the provision that those portions of the 
derivative software incorporating restricted rights software are subject to the 
same restricted rights. 

Copyright © i 982 Tektronix, inc. Ali rights reserved. Contents of this publication 
may not be reproduced in any form without the written permission of Tektronix, 
Inc. 

Products of Tektronix, Inc. and its subsidiaries are covered by U.S. and foreign 
patents and/or pending patents. 

TEKTRONIX, TEK, SCOPE-MOBILE, and ~ are registered trademarks of 
Tektronix, Inc. TELEQUIPMENT is a registered trademark of Tektronix U.K. 
Limited. 

Printed in U.S.A. Specification and price change privileges are reserved. 



Section 7H 

8048/8021/8041A/8022 EMULATOR SPECIFICS 

Introduction 

General Information 
8048/8021/8041A/8022 Emulator Hardware Configurations 
Terminology 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • e: • • • • • • • • • • • • • • 

Emulator-Specific Commands, Parameters, and Displays •••••••••••••• 
SEL --- Selecting an Emulator ................................... 
Byte/Word Parameter ............................................. 
Symbolic Debug .................................................. 
MAP --- Mapping Memory 
EVT Address Parameter 
TTA Bus Operation Designators 
Setting Breakpoints 
Memory Allocation Commands 
Register Designators 
DS --- Sample Status Display 
RESET --- Resetting Emulator Status ••••••••••••••••••••••••••••• 
DI --- Sample Disassembled Code 
TRA --- Sample TRAce Display 

Service Calls •••••••••••••••••••••••••••••••••••••••••••••••••••• 
SVCs in Modes 1 and 2 
SVC Demonstration 

SVC Design Features 
.............................................. 

Special Considerations eeeeeeeeeeeeee.ee ••• ee ••••••••••••••••••••• 

Clock Rate ••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
Memory Mapping ••••••••••••••••••••••••••••••••••••••••••••••••••• 
Emulation Modes .................................................. 
NOP--MOVX Instruction Sequence 
TRA and the Timer/Counter 
8048/8049 Special Considerations 
8021 Special Considerations 
8041A Special Considerations 

................................. 

8022 Special Considerations ...................................... 
Emulator Timing .................................................. 
Probe/Prototype Interface Diagrams ............................... 
Installing Your 8048/8021/8041A/8022 Emulator Software ••••••••••• 
8540 Firmware Installation Procedure ••••••••••••••••••••••••••••• 
8550 Installation Procedure ...................................... 
8048/8021/8041A/8022 Demonstration Run 
Introduction 
Examine the Demonstration Run Program •••••••••••••••••••••••••••• 
Assemble and Load the Demonstration Program •••••••••••••••••••••• 
Case 1: Assemble and Load on the 8550 •••••••••••••••••••••••••••• 
Case 2: Assemble on the 8560; Download to the 8540 ••••••••••••••• 

REV SEP 1983 

Page 

7H-1 

7H-1 
7H-1 
7H-2 

7H-2 
7H-2 
7H-2 
7H-2 
7H-3 
7H-3 
7H-3 
7H-4 
7H-4 
7H-4 
7H-6 
7H-7 
7H-8 
7H-8 

7H-10 
7H~10 

7H-11 
7H-14 

1H-16 
7H-16 
7H-17 
7H-21 
7H-21 
7H-21 
7H-22 
7H-23 
7H-23 
7H-24 

7H-25 
7H-31 

7H-34 
7H-34 
7H-34 

7H-36 
7H-36 
7H-39 
7H-40 
7H-41 
7H-47 

7H-i 



Case 3: Download from Your Host to the 8540 •••••••••••••••••••••• 7H-53 
Case 4: Patch the Program into Memory @eeeeeeeeeeeeeeeeeeeeeeeeeee 7H-56 
Run the Demonstration Program •••••••••••••••••••••••••••••••••••• 7H-58 
Monitor Program Execution •••••••••••••••••••••••••••••••••••••••• 7H-61 
Summary of 8048/8021/8041A/8022 Emulator Demonstration Run ••••••• 7H-66 

n .... l"'+- ... +-J...n n"""" ........ .,..+- ..... '"'+-~,... .... '0 ...... t:'~1,....,.. 7U t:..'7 
JJv~'" VC "L.l.e JJC1UV.L ... ...::J..,.1. a u.L,v1.1 J\\.Al.l L" .L..L.'C';) ••••••••••••••••••••••••••••• ,l,l-V r 

TABLES 

Table 
No. 
7H-i Microcomputers Supported by the 8048/8021/8041A/8022 Emulator 7H-1 
7H-2 8048/8021/8041A/8022 Bus Operation Designators ••••••••••••••• 7H-3 
7H-3 8048/8021/8041A/8022 Registers and Flags ••••••••••••••••••••• 1H-5 
7H-4 8048/8021/8041A/8022 Service Calls •••••••••••••••••••••••••• 1H-10 
7H-5 Maximum Allowable Clock Frequencies ••••••••••••••••••••••••• 1H-16 
7H-6 Probe/Prototype Interface Delays for the 8048/8021 •••••••••• 1H-25 
7H-1 Probe/Prototype Interface Delays for the 8041A •••••••••••••• 1H-21 
7H-8 Representative 8041A Probe/Microcomputer Timing Differences • 7H-27 
7H-9 Probe/Prototype Interface Delays for the 8022 ••••••••••••••• 7H-29 
7H-10 Basic 8560 Editing Commands •••••••••••••••••••••••••••••••• 1H-49 

Fig. 
No. 

ILLUSTRATIONS 

7H-1 8048/8021/8041A/8022 program status word ••••••••••••••••••••• 1H-6 
7H-2 8048 SVC demonstration program listing •••••••••••••••••••••• 1H-12 
7H-3 8048/8021/8041A/8022 memory layout •••••••••••••••••••••••••• 7H-18 
7H-4 8048/8021 timing diagrams ••••••••••••••••••••••••••••••••••• 7H-26 
7H-5 8041A timing diagrams ••••••••••••••••••••••••••••••••••••••• 7H-28 
7H-6 8022 timing diagrams •••••••••••••••••••••••••••••••••••••••• 1H-30 
7H-7 Block diagram of 8048/8021 probe/prototype interface eeeeee.e 7H-31 
7H-8 Block diagram of 8041A probe/prototype interface •••••••••••• 7H-32 
7H-9 Block diagram of 8022 probe/prototype interface ••••.••••.••• 7H-33 
7H-10 Demonstration program •••••••••••••••••••••••••••••••••••••• 7H-37 
7H-11 Demonstration program: Extended Tekhex format •••••••••••••• 7H-38 
7H-12 Host computer commands for preparing demonstration program. 7H-54 

7H-ii REV SEP 1983 



Section 7H 

8048/8021/8041A/8022 EMULATOR SPECIFICS 

INTRODUCTION 

This section is designed to be inserted into Section 7 of the 8550 
System Users Manual (DOS/50 Version 2) or the 8540 System Users Manual. 
This Emulator Specifics section explains the features of the 8550 and 
8540 systems that are unique to the 8048/8021/8041A/8022 emulator. 
Throughout the section, "your System Users Manual" refers to the 8550 
System Users Manual or the 8540 System Users Manual, and "the operating 
system" refers to DOS/50 Version 2 or OS/40. The 8048/8021/8041A/8022 
Demonstration Run is designed to be used with Section 1, the Learning 
Guide of your System Users Manual; the rest of this section contains 
reference material. 

GENERAL INFORMATION 

8048/8021/8041A/8022 EMULATOR HARDWARE CONFIGURATIONS 

In order for the 8048/8021/8041A/8022 emulator to function correctly, it 
must be connected to the prototype control probe that is appropriate for 
the microcomputer being emulated. Table 7H-1 lists the microcomputers 
supported by the 8048/8021/8041A/8022 emulator and gives the 
corresponding hardware configurations. 

Table 7H-1 
Microcomputers Supported by the 8048/8021/8041A/8022 Emulator 

--------------------+--------------------------------------------
Microcomputer I Hardware Configuration 
================================================================= 
8041A/8741A I 8041A Prototype Control Probe 
--------------------+--------------------------------------------
8022 I 8022 Prototype Control Probe 
--------------------+--------------------------------------------
8021 I 8048/8021 Prototype Control Probe with 

I 8021 Prototype Control Probe Adapter (*a) 
--------------------+--------------------------------------------
8048/8648/8748/8035 I 8048/8021 Prototype Control Probe (*a) 
--------------------+--------------------------------------------
8049/8039/8039-6 I 8048/8021 Prototype Control Probe (*a) 
--------------------+--------------------------------------------
(*a) DIP switches on the 8048/8021 Prototype Control Probe select the 
microcomputer to be emulated, the prototype clock rate, and the presence 
or absence of external program memory. These switches are described in 
the 8048/8021/8041A/8022 Emulator Processor Installation Manual. 

REV JUNE 1982 7H-1 



Introduction 8048 Emulator Specifics Users 

TERMINOLOGY 

The term 8048 refers collectively to the 8048 and to those 
microcomputers that differ from the 8048 only in the form of on-board 
ROM (the 8648, 8748, and 8035). The term 8048/8049 refers collectively 
to those microcomputers that support the 8048 instruction set (the 8048, 
8648, 8748, 8035, 8049, 8039, and 8039-6). The terms 8048 family and 
8048/8021/8041A/8022 refer collectively to all microcomputers supported 
by the 8048/8021!8041Ai8022 emulator, as listed in Table 7B-1. The term 
8041A refers to the 8741A as well as to the 8041A. 

In this Emulator Specifics section, the term program memory refers to 
the on-board ROM and/or external memory in which 8048/8021/8041A/8022 
program instructions are stored. The term 8550/8540 program memory 
refers to the RAM in your 8550 or 8540 that may be used as a substitute 
for memory in the microcomputer and/or prototype. Throughout the other 
sections of your System Users Manual, the term program memory refers to 
8550 or 8540 program memory. 

EMULATOR-SPECIFIC COMMANDS, PARAMETERS, AND DISPLAYS 

SEL Selecting an Emulator 

The SEL (SELect) command allows you to select the emulator you want to 
use with your 8550 or 8540. The following command line selects the 
8048/8021/8041A/8022 emulator and assembler: 

> SEL 8048 <CR) 

Circuitry in the prototype control probe tells the operating system 
which microcomputer in the 8048 family is being emulated. For more 
information, refer to the "8048/8021/8041A/8022 Emulator Configurations" 
discussion at the beginning of this section. 

Enter the following command line to select the 8048 assembler on the 
8560: 

$ uP=8048; export uP <CR) 

Byte/Word Parameter 

Several commands offer you the choice of operating on memory on a 
byte-oriented or word-oriented basis. In affected commands, this choice 
is represented by the -B or -W parameter. For the 8048/S021/S041A/S022 
emulator, the default value is -B (Byte). 

Symbolic Debug 

The S04S/S021/S041A/S022 emulator supports the use of 
Some of the displays in this document include 
information. 

symbolic 
symbolic 

debug. 
debug 

REV JUNE 1982 



8048 Emulator Specifics Users 8048 Commands and Displays 

MAP --- Mapping Memory 

The MAP command assigns 128-byte blocks of memory either to 8550/8540 
program memory or to prototype memory. For the 8048/8021/8041A/8022 
emulator, only blocks in the following address ranges can be mapped: 

OOOO--OFFF (8048/8049 program memory) 

2000--20FF (8048/8049 external data memory) 

NOTE 

No memory mapping is possible for the 8021, 8041A, or 8022: 
these microcomputers do not support external memory. 

For more information on memory considerations, refer to the "Special 
Considerations" discussion later in this section. 

EVT Address Parameter 

If you are using the Real-Time Prototype Analyzer (RTPA) option with 
your 8550, the addresses used in the, EVT command line must reflect the 
memory mapping conventions defined in the "Special Considerations" 
subsection later in this section. (The RTPA option is not supported on 
the 8540.) 

TTA Bus Operation Designators 

Table 7H-2 lists the 8048/8021/8041A/8022 bus operation designators 
recognized by the Trigger Trace Analyzer's BUS command. 

Table 7H-2 
8048/8021/8041A/8022 Bus Operation Designators 

Symbol I Bus Operation Type 
----------------------------------------------------------------------
CLR All types 
F Instruction fetches 
I 1/0 operations (SVCs only) 
NF Non-fetches 
M Memory accesses 
RD Reads 
WT Writes 

REV JUNE 1982 7H-3 



8048 Commands and Displays 8048 Emulator Specifics Users 

Setting Breakpoints 

The 8048/8021/8041A/8022 emulator allows you to specify up to two 
breakpoints with the BK (BreaKpoint) command. Breakpoints should be 
restricted to the ranges O--OFFF (program memory) and 2000--20FF 
(8048/8049 external Qa~a memory). The 8048i802ii804iAi8022 emulator 
cannot monitor accesses to internal data memory. Refer to the "Special 
Considerations" discussion later in this section for information on the 
memory limitations of your- microcomputer. 

Memory Allocation Commands 

The Memory Allocation Controller (MAC) option cannot be used with the 
8048/8021/8041A/8022 emulator. The 8048/8021/8041A/8022 emulator does 
not use the MEMSP command, and does not support memory space qualifiers 
or expressions. The 8048 family emulator supports the AL (ALlocate) 
command, as described in the Command Dictionary of your System Users 
Manual. The DEAL, MEM, and NOMEM commands are not valid with the 
8048/8021/8041A/8022 emulator8 

NOTE 

You should avoid allocating memory in the range 2000--20FFH 
and in the range 4000--407FH. These memory ranges are used to 
emulate External Data Memory and Internal Data Memory, 
respectively. Allocation of memory in these ranges may yield 
unexpected results. 

Register Designators 

Table 7H-3 alphabetically lists the symbols used by DOS/50 and OS/40 to 
designate the registers and flags used by the microcomputers in the 8048 
family. The table provides the following information for each symbol: 

• the microcomputers for which that symbol is used 

• a description of the register or flag that the 
represents 

• the size of the register or flag 

symbol 

• the value assigned to the register or flag by the RESET command 

• whether the register or flag can be assigned a value by the S 
(Set) command 

Figure 7H-1 shows the contents of the 8048/8021/8041A/8022 program 
status word. 

7H-4 REV JUNE 1982 



8048 Emulator Specifics Users 8048 Commands and Displays 

Table 7H-3 
8048/8021/8041A/8022 Registers and Flags 

-------+-------+---------------------------+--------+-------+---------
DOS/50 18 8 8 81 Size Value 

or 10 0 0 01 in After Altered 
OS/40 14 2 4 21 Bits RESET by S 
Symbol 18 1 1 21 Description C*a) C*b) Command? 
====================================================-:======-========= 
A 
AO--A7 
AC 

AN 
CHIP 
CY 
DMA 

EI 

EPM 

FO 
F1 
FLG 

IBF 
lIP 

MB 
OBF 
PC 
PSW 
RO--R7 
RB 

RETURN 
STACK 

STF 
TC 

TF 
TI 

TR 

Ix x x x 
Ix x 
Ix x x x 
I 
I x 
Ix x x x 
x x x x 

x 

Accumulator 
Alternate registers 0--7 
Auxiliary carry flag: 

bit 6 of PSW 
Analog input pin 
Microcomputer name 
Carry flag: bit 7 of PSW 
EN DMA instruction exe-

cuted since last RESET? 
1=yes; O=no 

x x x External interrupt flag: 
1=enabled; O=disabled 

x Switch set to enable 

x x 
x x 

x 

x 
x x x 

x 
x 

x x x x 
x x x x 

Ix x x x 
Ix x 
I 
Ix x x x 
x x x x 

x 
x x x x 

external program memory? 
Y=yes; N=no 

Flag 0: bit 5 of PSW 
Flag 1 
EN FLAGS instruction exe

cuted since last RESET? 
1=yes; O=no 

Input buffer full flag 
Interrupt in progress 

flag: Y=yes; N=no 
Memory bank 
Output buffer full flag 
Program counter 
Program status word (*0) 
Registers 0--7 
Register bank: 

bit 4 of PSW 
Value of last word pushed 
Stack pointer: 08 to 16, 

derived from bits 0--2 
of PSW 

STS flags 
Timer/counter selector: 

O=stop; 1=timer; 
2=counter 

x x x x Timer overflow flag 
x x x Timer/counter interrupt 

flag: 1 =enabled; 
O=disabled 

x x x x Timer/counter 

8 
8 each 

1 

NA 
1 
1 

NA 

NA 

1 
12 
8 

8 each 
1 

16 
NA 

4 
2 

8 

NC 
NC 
o 

NC 
NC 
o 
o 

o 

NC 

o 
o 
NC 

NC 
N 

o 
NC 
o 

o or 8 
NC 
o 

C*d) 
08 

o 
o 

o 
o 

NC 

yes 
yes 
yes 

yes 
no 
yes 
no 

yes 

no 

yes 
yes 
no 

no 
no 

yes 
no 
no 
yes 
yes 
yes 

no C*d) 
no (*d) 

no 
yes 

yes 
yes 

yes 
-------+-------+---------------------------+--------+-------+----------
C*a) NA refers to information not maintained by the microcomputer itself. 
C*b) NC means not changed by RESET. 
C*c) Figure 7H-1 shows the contents of the program status word. 
C.d) You cannot use the S command to alter STACK or RETURN directly; 

however, these values depend on bits 0--2 of the PSW, which can be 
directly altered using S. 

REV JUNE 1982 7H-5 



8048 Commands and Displays 8048 Emulator Specifics Users 

Bit # 7 6 5 4 3 2 0 

CY AC FO RB slack pOin{er 
I i I I I , 

T T T T 
I I I I I I 

I 
I 

I 
, not used 

register bank switch 

flag 0 

auxiliary carry flag 

carry flag 

(3569-2)3967-1 

Fig. 7H-1. 8048/8021/8041A/8022 program status worde 

DS --- Sample Status Display 

The DS (Display Status) command displays the status and register 
contents of the emulator. All numbers in the DS display are 
hexadecimal. Here is an example of a DS display line produced by the 
804S/S021/S041A/8022 emulator when it is used to emUlate an 8048: 

> DS <CR> 

PC CHIP EPM A PSW TR RB 
010A S048 Y 11 00 00 0 

REGISTERS 
RO-R7= 19 36 07 A6 FD 00 00 00 
AO-A7= 86 00 2F 40 49 09 7D 00 

lIP EI TI TC MB STACK RETURN TF FO F1 AN STF DMA IBF OBF FLG 
N 0 0 0 0 08 1F06 0 0 0 

The DS display differs slightly for the 8021, 8022, and 8041A. 
7H-3 explains the symbols displayed by DS. 

Table 

For the 8048/8021/8041A/8022 emulator, the short and long forms of the 
DS display are the same: DS -L gives the same display as DS. 

REV ·JUNR 198? 



8048 Emulator Specifics Users 8048 Commands and Displays 

RESET --- Resetting Emulator Status 

The RESET command sends a hardware reset signal to the emulating 
microcomputer. The "Value After RESET" column of Table 7H-3 indicates 
which registers are affected by the RESET command. 

Example. Suppose the DS command returns the following status: 

> DS <CR> 

PC CHIP EPM A PSW TR RB 
090A 8048 Y 02 FF 40 1 

REGISTERS 
RO-R7= 86 00 2F 40 49 09 7D 00 
AO-A7= 19 36 07 A6 FD 00 FF 00 

lIP EI TI TC MB STACK RETURN TF FO F1 AN STF DMA IBF OBF FLG 
N 1 1 2 1 16 8208 1 1 1 

Enter the RESET command; then use DS to check the results. 

> RESET <CR> 

> DS <CR> 

v v v 
PC CHIP EPM A PSW TR RB 
0000 8048 Y 02 08 40 0 

register bank 0 becomes the 
current register bank 

I 
v REGISTERS 
RO-R7= 19 36 07 A6 FD 00 FF 00 
AO-A7= 86 00 2F 40 49 09 7D 00 

lIP EI TI TC MB STACK RETURN TF FO F1 AN STF DMA IBF OBF FLG 
N 0 0 0 0 08 1F06 0 0 0 

The arrows show the changed registers. 

REV JUNE 1982 7H-7 



8048 Commands and Displays 8048 Emulator Specifics Users 

DI --- Sample Disassembled Code 

The DI (DIsassemble) command translates object code in memory into 
assembly language instructions. D1 displays object code, assembly 
language mnemonics, and operands. Here is an example of 8048 DI output: 

) Dr 100 10E <CR) 

LOC INST MNEM 
000100 n':::lj'::: MOV 
000102 BF05 MOV 
000104 ')'7 CLR '-f 

000105 61 ADD 
000106 19 INC 
000107 EF05 DJNZ 
000109 AA MOV 
00010A 23F7 MOV 
00010C 00 NOP 
00010D A3 MOVP 
00010E 00 NOP 
====== 

OPER 
R 1 ,4/32 
R7 , 1105 
A 
A,@R1 
R1 
R7,4105 0105 
R2,A ----
A,#F7 

effective address 
A,@A of branch instruction 

====== 

+-- operand(s): address, registers, or data 
being operated on 

+-------- instruction mnemonic 

+------------- machine language instruction 

+------------------ address of instruction 

TRA --- Sample TRAce Display 

The TRAce command establishes the conditions for displaying trace lines 
during program execution~ For the 8021 and 8022, the TRA -L display is 
the same as the default (TRA -S) display_ For the 8048/8049 and the 
8041A, the TRA -L display includes the contents of the alternate 
registers (AO--A7) in addition to the TRA -S information. 

NOTE 

When TRAce conditions have been set, the emulator runs at 
slower than normal processing speeds and RTPA breakpoints are 
suppressed. 

Here is an example of 8048 TRAce output: 

7H-8 REV JUNE 1982 



8048 Emulator Specifics Users 8048 Commands and Displays 

> TRA ALL <CR> --> G <CR> 

LaC INST MNEM OPERAND EADD A PSW FLAGS TR RB RO R1 R2 R3 R4 R5 R6 R7 
000104 27 CLR 
000105 61 ADD 
000106 19 INC 
000107 EF05 DJNZ 

A 00 08 00 00 00 0 19 34 OF A6 FD 00 BE 02 
A,@R1 03 08 00 00 00 0 19 34 OF A6 FD 00 BE 02 
R1 03 08 00 00 00 0 19 35 OF A6 FD 00 BE 02 
R7, 05H 0105 03 08 00 00 00 0 19 35 OF A6 FD 00 BE 01 

" :-===== - -- ======================= 

registers RO-R7 

+-- register bank 

+-- timer/counter 

+--+-- miscellaneous flags 

+-- program status word 

+-- accumulator 

+-- effective address of branch instruction 

+--operand(s) 

+--instruction mnemonic 

+--machine language instruction 

+--address of instruction 

The two FLAGS bytes in the TRAce display contain the following 
information: 

Byte Bit 

left 7 IIP---interrupt in progress flag (most significant bit) 
6 EI---external interrupt flag 

right 
8041A 
only 

5 TI---timer/counter interrupt flag 
4 TF---timer overflow flag 
3 MB---memory bank 
2 F1---software flag 1 

1-0 TC---timer/counter selector 

STF---STS flags 
DMA---1 if EN DMA instruction executed since last RESET 
IBF---input buffer full flag 
OBF---output buffer full flag 

{7-4 
{ 3 
{ 2 
{ 1 
{ 0 

o 
FLG---1 if EN FLAGS instruction executed since last RESET 
AN---analog input pin (8022 only) 

For more information on these flags, refer to Table 7H-3. 

REV JUNE 1982 7H-9 



8048 Emulator Specifics Users 

SERVICE CALLS 

Service calls (SVCs) enable your program to use many system capabilities 
of your 8540, 8550, or 8560 while your program is running on the 
emulator processor. 

An SVC is invoked with the following 8048/8021/8041A/8022 instruction 
sequence: 

NOP 
MOVP A,@A 
NOP 

The value in the accumulator at the time of the SVC directs the system 
to a specified memory address called the SRB pointer (which points to 
the SRB -- the Service Request Block). The SRB pointer tells the system 
where to find the data (stored in the SRB) that informs the system which 
function to perform. Refer to the Service Calls section of your System 
Users Manual for an explanation of service calls, service request 
blocks, and SRE pointers. 

Your program can point to eight SRBs at anyone time. (Under certain 
circumstances, your program can store new addresses in the SRB pointers 
as it executes. See the following discussion, "SVC Design Features.") 
Table 1H-4 shows the default addresses for the eight SHB pointers. 
These addresses and their associated accumulator values can be altered 
with the SVC command to suit your program requirements. See the Command 
Dictionary section of your System Users Manual for syntax and use of the 
SVC command. 

SVCs in Modes 1 and 2 

The 8048/8021/8041A/8022 emulator does not support SVCs in emulation 
modes 1 or 2. 

7H-10 

Table 1H-4 
8048/8021/8041A/8022 Service Calls 

-------+-------------+------------
I I ",..~ ...... ,~ 
I I VCLQY.~ 

SVC I Value in I SRB Pointer 
Number I Accumulator I Location 
----------------------------------------------------------------~~~= 

2 
3 
4 
5 
6 
7 
8 

F1 
F6 
F5 
F4 
F3 
F2 
F1 
FO 

40,41 
42,43 
44,45 
46,41 
48,49 
4A,4B 
4c,4D 
4E,4F 

-------+-------------+------------

REV JUNE 1982 



8048 Emulator Specifics Users 8048 Service Calls 

SVC Demonstration 

Figure 7H-2 lists an 8048/8021/8041A/8022 program that uses four SVC 
functions: Assign Channel, Read ASCII, Write ASCII, and Abort. The 
program's algorithm is explained in the Service Calls section of your 
System Users Manual, which demonstrates a version of the program written 
in 8085A assembly language. You can perform a parallel demonstration 
with the 8048/8021/8041A/8022 emulator and A Series Assembler using the 
program in Fig. 7H-2. 

NOTE 

The program shown in Fig. 7H-2 is written for an A Series 
assembler. To make this acceptable for a B Series assembler 
(as required by an 8560), change each double quote (n) to a 
single quote (,). 

REV JUNE 1982 7H-11 



8048 Service Calls 8048 Emulator Specifics Users 

SSSSS V V CCCCC 
S V V C 
sssss V V C 

S V V C 
SSSSS V CCCCC 

DEMONSTRATION. 8048 EMULATOR 

ORG 40H ; BEGINNING OF SRB VECTOR 
BYTE HI(SRB1FN),LO(SRB1FN) 
BYTE HI(SRB2FN),LO(SRB2FN) 
BYTE HI(SRB3FN),LO(SRB3FN) 
BYTE HI(SRB4FN),LO(SRB4FN) 
BYTE HI(SRB5FN),LO(SRB5FN) 
END OF SRB VECTOR 
ORG 50H ; SET UP SRB AREAS 

; SRB1 = ASSIGN "CONI" TO CHANNEL 0 
ASSIGN SRB1FN BYTE 10H 

BYTE OOH 
SRB1ST BLOCK 01H 

BLOCK 02H 
BYTE 05H 
BYTE HI(CONI) 
BYTE LO(CONI) 
END OF SRB1 

TO CHANNEL 0 
STATUS RETURNED HERE 
BYTES 4 AND 5 NOT USED 
LENGTH OF "CONI"+<CR) 
POINTER TO 
"CONI"+<CR) 

; 
SRB2FN 

SRB2 = ASSIGN "LPT" TO CHANNEL 1 

SRB2ST 

BYTE 10B 
BYTE 01H 
BLOCK 01H 
BLOCK 02H 
BYTE 04H 
BYTE HI(LPT) 
BYTE LO(LPT) 
END OF SRB2 

ACOCOTf"U 
l1. ... hJ.J..Ull 

TO CHANNEL 1 
STATUS RETURNED HERE 
BYTES 4 AND 5 NOT USED 
LENGTH OF "LPT"+<CR) 
POINTER TO 
"LPT"+<CR) 

; 
SRB3FN 

SRB3 = READ ASCII LINE FROM CONI (CHANNEL 0) 
01H 

BYTE OOH 
SRB3ST BLOCK 01H 

BLOCK 01H 
BLOCK 01H 
BYTE OOH 
BYTE HI(BUFFER) 
BYTE LO(BUFFER) 
END OF SRB3 

; SRB4 = WRITE ASCII 
SRB4FN BYTE 02H 

BYTE 01H 
SRB4ST BLOCK 01H 

BLOCK 01H 
BLOCK 01H 
BYTE OOH 
BYTE HI(BUFFER) 
BYTE LO(BUFFER) 
END OF SRB4 

READ ASCII 
FROM CHANNEL 0 
STATUS RETURNED HERE 
BYTE 4 NOT USED 
BYTE COUNT RETURNED HERE 
256 BYTES IN OUR BUFFER 
POINTER TO 
OUR BUFFER 

LINE TO LPT (CHANNEL 1) 
WRITE ASCII 
TO CHANNEL 1 
STATUS RETURNED HERE 
BYTE 4 NOT USED 
BYTE COUNT RETURNED HERE 
256 BYTES IN OUR BUFFER 
POINTER TO 
OUR BUFFER 

; SRB5 = ABORT (CLOSE ALL CHANNELS AND TERMINATE) 
SRB5FN BYTE 1FH ; ABORT 

BLOCK 07H ; BYTES 2 THROUGH 8 NOT USED 
END OF SRB5 

3967-10 

Fig. 7H-2. 8048 SVC demonstration program listing (part 1 of 2). 

7H-12 REV JUNE 1982 



8048 Emulator Specifics Users 8048 Service Calls 
------------------------------------------------------------------------

BUFFER BLOCK 100H OUR 1/0 AREA 
CONI ASCII "CONI" ASCII OF "CONI" 

BYTE ODH + <CR) 
LPT ASCII "LPT" ASCII OF "LPT" 

BYTE ODH + <CR) 
END OF DATA DEFINITIONS 

; BEGINNING OF EXECUTABLE CODE 
START ORG 10H ENTRY POINT INTO PROGRAM 

MOV A,#OF7H CALL SVC1 
Nap TO ASSIGN "CONI" 
MOVP A,@A TO CHANNEL 0 
NOP 
MOV A, f/LO( SRB1 ST) CHECK THE STATUS 
MOVP A,@A TO SEE IF ALL WENT WELL 
JNZ ABORT NO? STOP EVERYTHING 
MOV A,fIOF6H CALL SVC2 
NOP TO ASSIGN "LPT" 
MOVP A,@A TO CHANNEL 1 
Nap 
MOV A, flLO ( SRB2ST) CHECK THE STATUS 
MOVP A,@A TO SEE IF ALL WENT WELL 
JNZ ABORT NO? STOP EVERYTHING 

LOOP MOV A,fIOF5H CALL SVC3 
Nap TO READ A LINE 
MOVP A,@A FROM "CONI" 
Nap INTO THE BUFFER 
MOV A, fiLa (SRB3ST) CHECK THE STATUS 
MOVP A,@A TO SEE IF ALL WENT WELL 
JNZ ABORT NO? STOP EVERYTHING 
MOV A,fIOF4H CALL SVC4 
Nap TO WRITE THE LINE 
MOVP A,@A FROM THE BUFFER 
NOP TO "LPT" 
MOV A, f/LO(SRB4ST) CHECK THE STATUS 
MOVP A,@A TO SEE IF ALL WENT WELL 
JZ LOOP YES? BACK TO READ ANOTHER LINE 

NO? FALL THROUGH TO TERMINATION 
ABORT MOV A,fIOF3H CALL SVC5 

NOP TO DO THE ABORT 
MOVP A,@A 
NOP 
END START END OF PROGRAM 

3967-11 

Fig. 7H-2. 8048 SVC demonstration program listing (part 2 of 2). 

This program shows the use of four 8550 service calls. The 
program's algorithm is explained in the Service Calls section 
of your System Users Manual. The program accepts a line of 
ASCII characters from the system terminal; then, when it 
receives a RETURN character, the program writes the line to 
the line printer and accepts another line. (On the 8550, 
output to the line printer is buffered. No text is printed 
until the line printer buffer in the 8501 becomes full or the 
program ends.) To terminate the program, enter a CTRL-Z while 
the program is waiting for input. 

REV JUNE 1982 7H-13 



8048 Service Calls 8048 Emulator Specifics Users 

SVC DESIGN FEATURES 

SVC data blocks (Service Request Blocks, SRB pOinters, and IIO buffers) 
can reside in either of the following address ranges: 

OOOO--OFFF 
2000--20FF 

program memory (internal and external) 
external data memory 

SVC data blocks cannot reside in internal data memory. If you are 
emulating an 8021, 8022, or 8041A, external data memory 
available, and program memory is limited to 400H bytes (for the 
8041A) or 800H bytes (for the 8022). For more information, 
Figure 7H-3 and the discussion of memory mapping under the 
"Special Considerations". 

18 .... "' .... l.lvv 

8021 and 
refer to 
heading 

If you are emulating an 8048/8049, programming considerations may 
require you to put some SVC data blocks in external data memory. For 
example, suppose you have a program that places information in an IIO 
buffer, and then uses an SVC to write out the contents of the buffer. 
If the information is read directly into the buffer and undergoes no 
further change (as in the preceding SVC demonstration program), the 
buffer can reside in program memory. Otherwise the buffer must reside 
in external data memory, because there are no 8048/8021/8041A/8022 
instructions that write to program memory. 

For information on allocating code to different types of memory, refer 
to the heading "Designating Memory Areas in Assembly Language Programs" 
in the Special Considerations subsection. 

Moving Data Into and Out of Program Memory 

The 8021, 8041A, and 8022 cannot access external memory. To provide a 
one-byte output buffer for these microcomputers, DOS/50 and OS/40 allow 
your program to change the contents of byte 0 of program memory. The 
following instruction sequence is used to move the contents of the 
accumulator to program memory location 0: 

NOP 
MOVX @R1 ,A 

The following instruction sequence is used to move the contents of 
program memory location 0 to the accumulator: 

NOP 
MOVX A~@R1 

7H-14 REV JUNE 1982 



8048 Emulator Specifics Users 8048 Service Calls 

NOTE 

Whenever a NOP instruction is followed by a MOVX instruction, 
DOS/50 or OS/40 process the instruction sequence as an access 
to program memory location O. The contents of register R1 and 
the selected register bank are ignored. 

The NOP--MOVX sequences may be used when emulating any of the 
microcomputers in the 8048 family. However, before you 
execute these instruction sequences, make sure your 8550 or 
8540 is in emulation mode 0 and TRAce is OFF. Avoid using 
these sequences unless you're accessing program memory 
location O. 

Example. The following assembler directives set up an output buffer in 
bytes 0 and 1 of program memory. Your program can write to byte 0 using 
the NOP--MOVX instruction sequence. Byte 1 contains a RETURN character 
to mark the end of the buffer. 

ORG 0 
CHARBUF BLOCK 1 

BYTE ODH 

REV JUNE 1982 

BYTE 0 OF PROGRAM MEMORY 
USED AS AN,OUTPUT BUFFER. 
BUFFER ENDS IN <CR). 

7H-15 



8048 Special Considerations 8048 Emulator Specifics Users 

SPECIAL CONSIDERATIONS 

The emulating microcomputer for the 8048/8021/8041A/8022 emulator is 
contained at all times on the prototype control probe, rather than on 
the emulator processor module (as with most other emulators). The 
8048/8021 prototype control probe contains an 8039 microcomputer, and 
the 8041A and 8022 prototype control probes each contain an 8035 
microcomputer. Since the emulating microcomputer is not the same as the 
microcomputer being emulated, certain special considerations must be 
noted here .. 

Other considerations of interest to users are also outlined in this 
subsection. First, considerations common to all microcomputers in the 
8048 family are described. Then, considerations that apply only to 
certain devices are described. 

CLOCK RATE 

The frequency of the emulator clock, used in emulation mode 0, 
MHz. Table 7H-5 gives the maximum allowable frequencies 
prototype's clock, used in modes 1 and 2. 

NOTE 

is 5.0 
for the 

For all microcomputers, the prototype clock frequency must be 
at least 2.0 MHz in order to fulfill the clock requirement of 
the emulating 8035 or 8039 microcomputer. 

Table 7H-5 
Maximum Allowable Clock Frequencies 

----------------+------------------------------------------------
I Maximum Allowable Clock Frequency 
+------------+-------------+---------+-----------
I I 8048, 8648, I 
I 8049, 8039 I 8748, 8035, I 8041A, 

Emulation Mode I (*a) I 8039-6 I 8741A 8022 
================================================================= 
Mode 1 (Mapped 

to 8550) 
! 11.0 MHz 
I (*b) 

I 6.0 MHz 
I 

I 6.0 MHz ! 3.58 MHz 
I I 

----------------+------------+-------------+---------+-----------
Mode 1 (Mapped 11.0 MHz 6.0 MHz External (prototype) 

to Prototype) memory is not 
and Mode 2 addressable by these 

microcomputers. 
----------------+------------+-------------+---------------------

7H-16 

(*a) To use clock frequencies above 6.0 MHz, the configuration 
switch in the prototype control probe's interface assembly 
must be set as prescribed in the 8048/8021/8041A/8022 Emulator 
Processor and Prototype COntrol Probe Installation Service 
Manual. 
(*b) In emulation mode with memory mapped to 8550 program 
memory, the clock frequency is divided by 2 to produce an 
effe0tive 0100k rate of 5~5 MHz~ 

REV JUNE 1982 



8048 Emulator Specifics Users 8048 Special Considerations 

MEMORY MAPPING 

Figure 7H-3 illustrates the memory layouts for the microcomputers in the 
8048 family. You can access all three 8048/8021/8041A/8022 memory areas 
(program memory, internal data memory, and external data memory) using 
standard DOS/50 or OS/40 memory manipulation commands such as D, EX, F, 
LO, P, and SEA. 

NOTE 

In this Emulator Specifics section, the term program memory 
refers to the on-board ROM and/or external memory in which 
8048/8021/8041A/8022 program instructions are stored. The 
term 8550/8540 program memory refers to the RAM in the 8550 or 
8540 that may be used as a substitute for memory in the 
microcomputer and/or prototype. Throughout the other sections 
of your System Users Manual, the term program memory refers to 
8550 or 8540 program memory. 

Program Memory. The 8048 contains 1K of on-board ROM, and the 8049 
contains 2K of on-board ROM. The 80~8 and 8049 can each address 4K of 
external program memory. 

The 8021 and 8041A each contain 1K of on=board ROM. The 8022 contains 
2K of on-board ROM. The 8021, 8041A, and 8022 cannot access external 
memory. 

The emulating microcomputer contains no on-board ROM. Program memory is 
emulated by bytes OOOO--OFFF of 8550/8540 program memory. For example, 
the Dump command D 0 3F displays bytes 0--3F of program memory. 

For the 8048/8049 only, program memory can be mapped to the prototype. 
To run a program that resides in external program memory on the 
prototype, three conditions must be satisfied: 

• The prototype EA line (8048 input) must be asserted. 

• In mode 1, the appropriate address ranges of program memory 
must be mapped to the prototype (MAP U). 

• The switch pack on the 8048/8021 prototype control probe 
assembly must be set to enable external program memory. For 
information on how to set the switch, refer to your 
8048/8021/8041A/8022 Emulator Processor Installation Manual. 

NOTE 

DOS/50 and OS/40 cannot write to program memory on the 
prototype. For example, you cannot use the LO or MOV command 
to load instructions into program memory on the prototype. 

REV JUNE 1982 7H-17 



8048 Special Considerations 

Memory Area 

Corresponding 
I\_~_ ~~ or::r::n 
II""\It;;o VI Ui,JfJV 

Program Memory 

8048/8049 0 

7 

18 

Internal 
Data Memory 

4000-403F 
4000-407F 

register 
bank 0 

register 
1F bank 1 

3F/7Fa 

8021 

8041A 0 
register 

7 bank 0 

18 
register 

1F bank 1 

3F 

8022 0 

a3Ffor8048;7Ffor8049 

8048 Emulator Specifics Users 

External 
Program Memory Data Memory 

OOOO-OFFF 2000-20FF 

0 0 

memory 
bank 0 

7FF 

memory 
bank 1 

FFF FF 

01 I 

3FFLJ 
0 

I 
I I 

(3569-5)3967-21 

Fig. 1H-3. 8048/8021/8041A/8022 memory layout. 

7H-18 REV JUNE 1982 



8048 Emulator Specifics Users 8048 Special Considerations 

Internal Data Memory. The 8049 contains 128 bytes of internal RAM 
("internal data memory"). Each of the other microcomputers (the 8048, 
8021, 8041A, and 8022) contains 64 bytes of internal RAM. 

Although this RAM actually resides in the emulating microcomputer, it 
can be treated as if it occupied bytes 4000--403F of 8550/8540 program 
memory (for the 8049, bytes 4000--407F.) For example, the command 
D 4000 4007 displays the contents of registers RO--R7, which occupy 
bytes 0--7 of internal data memory. You can access the registers in 
internal data memory using the S (Set) command as well as the standard 
DOS/50 or OS/40 memory manipulation commands. 

NOTE 

To access 8550/8540 program memory in the range 4000--407F, 
first transfer the contents of locations 4000-407F to another 
area of 8550/8540 program memory: 

) MOV PP 4000 407F address <CR) (MOVe Program to Program), 

then use standard operating system commands. 

To transfer the contents of internal data memory to 8550/8540 
program memory, enter: 

) MOV UP 4000 407F address <CR) (MOVe User to Program). 

NOTE 

When any 8048-family microcomputer other than the 8049 is 
being emulated, bytes 4040--407F of internal data memory 
contain OFFH, and can only be accessed by the D command. 

Internal data memory cannot be mapped to the prototype. 

External Data Memory. Using the MOVX instruction, the 8048/8049 can 
address 256 bytes of external RAM. This external data memory is 
emulated by bytes 2000--20FF of 8550 or 8540 program memory. For 
example, the command D 2000 20FF displays the contents of external data 
memory. The command MAP U 2000 20FF maps all of external data memory to 
the prototype. 

The 8021, 8041A, and 8022 cannot access external memory. 

NOTE 

To correctly emulate a microcomputer, restrict programming to 
within its memory limitations, as shown in Fig. 7H-4. Errors 
in loading or execution will result if your program attempts 
to access locations outside the appropriate memory areas. 

REV JUNE 1982 7H-19 



8048 Special Considerations 8048 Emulator Specifics Users 

Designating Memory Areas in Assembly Language Programs 

The DOS/50 or OS/40 LO command can be used to load data into all three 
8048/8021/8041A/8022 memory areas. To load a data item into internal 
data memory, locate the data item in the range 4000--403F (for the 8049, 
4000--407F). To load a data item into external data memory, locate the 
data item in the range 2000--20FF. 

Modules That Do Not Require Linking~ To locate the data in the proper 
range, use ORG directives. In the following example, after the module 
is assembled and loaded, bytes 18--1F of internal data memory are set to 
zero and bytes 0--4 of external data memory contain the word "ERROR". 

ORG 
BYTE 
ORG 
ASCII 
END 

4018H 
0,0,0,0,0,0,0,0 
2000H 
"ERROR" 

INTERNAL DATA MEMORY LOCATION 18 
8 ZEROS 
EXTERNAL DATA MEMORY LOCATION ° 
5 LETTERS 

Modules That Must Be Linked Before Loading. Some modules must be linked 
before they are loaded. For example, program modules that use symbolic 
debug ~re linked in order to access symbols from the _1...~ __ .L .D~'_ 

VUJI:::I..: ~ .L .1..1.1:::. .l.Il 

the following example, a new section is defined for each area of memory. 
The ORG directives are relative to the beginning of each section. Then, 
when you invoke either the A Series or B Series linker, include the 
LOCATE command option for each section. (The demonstration run program, 
later in this section, includes examples of linker usage.) 

SECTION INTERNAL 
ORG 18H 

FIRST BYTE 0,0,0,0,0,0,0,0 
SECTION EXTERNAL 
ORG OH 

NEXT ASCII "ERROR" 
LIST DBG 
END FIRST 

DEFINE THE INTERNAL MEMORY SECTION 
INTERNAL DATA MEMORY LOCATION 18 
8 ZEROS 
DEFINE THE EXTERNAL MEMORY SECTION 
EXTERNAL DATA MEMORY LOCATION ° 
5 LETTERS 

For more information about the linker, see your A Series or B Series 
Assembler Users Manual. 

7H-20 REV JUNE 1982 



8048 Emulator Specifics Users 8048 Special Considerations 

EMULATION MODES 

8021/8041A/8022 Emulation Modes 

Because the 8021, 8041A, and 8022 have no external memory to map to the 
prototype, only emulation modes 0 and are available for these 
microcomputers. In mode 0, the emulator clock is used and program I/O 
is handled through service calls (SVCs). In mode 1, SVCs are disabled 
and the prototype's clock and I/O facilities are used. In both modes, 
8550/8540 program memory serves as a substitute for the microcomputer's 
program memory. 

8048/8049 Emulation Modes 

All three emulation modes are available for the 8048/8049: both program 
memory and external data memory can be mapped to the prototype in modes 
1 and 2. If a break occurs while the microcomputer is in an interrupt 
service routine, the lIP (interrupt in process) flag is not reset, and 
the microcomputer does not return from the interrupt. When the 
microcomputer is restarted after the break, the only way to return from 
the interrupt is to complete the interrupt service routine (or enter the 
RESET command). Otherwise, the microcomputer will not accept additional 
interrupts, and the lIP flag will remain set. 

When an interrupt and an instruction fetch on a breakpoint occur 
simultaneously, a false break line appears. The microcomputer performs 
the interrupt service routine, then returns and breaks. 

NOP--MOVX INSTRUCTION SEQUENCE 

Avoid using the NOP--MOVX command sequence except to access byte 0 of 
program memory. This design feature is described more fully under the 
heading "SVC Design Features" earlier in this section. 

Normally, the MOVX instruction is illegal for the 8021, 8041A, and 8022 
microcomputers. However, DOS/50 and OS/40 recognizes this MOVX sequence 
as valid for the specific purpose of accessing program memory location 
O. 

NOTE 

Be sure that you have specified TRA OFF before attempting to 
use MOVX for this purpose. 

TRA AND THE TIMER/COUNTER 

Be sure that TRAce is OFF before your program attempts to 
timer/counter. The timer/counter can interfere with the 
operations of DOS/50 or OS/40 when TRA selections are active. 

REV JUNE 1982 

use the 
internal 

7H-21 



8048 Special Considerations 8048 Emulator Specifics Users 

8048/8049 SPECIAL CONSIDERATIONS 

Port 0 Latch 

On an OUTL instruction, the 8048/8049 normally outputs data during S5 of 
the first cycle of the instruction. On ANL and ORL instructions, it 
outputs data during S4 of the second cycle. However, for all three 
instructions, the emulator 
cycle of the instruction. 

Port 2 Latch and External Program Memory Switch 

S1 of the second 

A switch in the 8048/8021 prototype control probe enables the emulating 
microcomputer to access external program memory. The status of this 
switch affects activity on pins P20--P23, which output the four 
high-order bits of the program counter during instruction fetches to 
external program memory. 

When this switch is on, pins P20--P23 behave as if external program 
memory is always being accessed, regardless of the value of the program 
counter and the state of the EA input. The address information on port 
2 Wl11 always be output; the IIO information on port 2 will unlatch 
during every memory access, then relatch on the leading (rising) edge of 
the subsequent ALE. When an IN P2,A instruction is executed and the 
switch is on, the emulator will sample the P20--P23 pins regardless of 
whether they were previously programmed as "output." Any of the 
P20--P23 lines that are not driven by the prototype will appear as ones 
in the accumulator. 

On an OUTL instruction, the 8048/8049 normally latches data during S5 of 
~ne first cycle of the instruction. On ANL and ORL instructions, it 
latches data during S4 of the second cycle. However, when the external 
program memory switch is off, the emulator latches P20--P23 IIO data 
during S3 of the second cycle of the next instruction. 

8048/8021 Address Latch Enable (ALE) 

The emulating microcomputer in the 8048/8021 prototype control probe is 
an 8039= The 8039 continuously issues the ALE signal to the prototype, 
even when it is executing 8550 of 8540 debug routines. The internal 
program addresses of these debug routines may be interspersed with your 
program's addresses. 

Prototype Clock 

The 8048/8021 prototype control probe treats the X1 clock pin as an 
input and the X2 pin as an output in order to drive a crystal circuit. 
However, Intel's revised specifications for the 8048, 8035, 8049, and 
8039 microcomputers require that both pins be driven if the clock source 
is an external TTL clock. Therefore, if your prototype uses an external 
TTL clock, the prototype X2 driver should be disconnected while using 
the emulator. 

7H-22 REV JUNE 1982 



8048 Emulator Specifics Users 8048 Special Considerations 

8021 SPECIAL CONSIDERATIONS 

8048/8021 Address Latch Enable (ALE) 

The emulating microcomputer in the 8048/8021 prototype control probe is 
an 8039. The 8039 continuously issues the ALE signal to the prototype, 
even when it is executing 8550 or 8540 debug routines. The internal 
program addresses of these debug routines may be interspersed with your 
program's addresses. 

JMP and CALL Instructions 

The 8021 is emulated by an 8039 microcomputer. The 8039 can address 2K 
of program memory, while the 8021 has only 1K. Thus, whenever you use a 
JMP or CALL instruction with the 8021, the op code must be in the range 
04, 14, ••• , 64, 74. For the 8021, the following op codes are illegal: 
84, 94, A4, B4, C4, D4, E4, and F4. If the emulator attempts to execute 
one of these illegal codes, no error indication will appear in your 
TRAce display; the program will simply halt. The only way to determine 
the cause of the halt is to inspect the op codes in your listing. 

8041A SPECIAL CONSIDERATIONS 

JMP and CALL Instructions 

The 8041A is emulated by an 8035 microcomputer. The 8035 can address 2K 
of program memory, while the 8041A has only 1K. Thus, whenever you use 
a JMP or CALL instruction with the 8041A, the op code must be in the 
range 04, 14, ••• , 64, 74. For the 8041A, the following op codes are 
illegal: 84, 94, A4, B4, C4, D4, E4, and F4. If the emulator- attempts 
to execute one of these illegal codes, no error indication will appear 
in your TRAce display; the program will simply halt. The only way to 
determine the cause of the halt is to inspect the op codes in your 
listing. 

Input/Output Buffers 

The 8041A has internal input/output buffers. On the 8041A prototype 
control probe, these buffers are located external to the emulating 8035 
microcomputer. Thus, the buffer contents can be altered even when the 
emulator is not active. In such cases, the buffer flags would be 
affected, and the DS display would not show the correct emulator status. 

REV JUNE 1982 7H-23 



8048 Special Considerations 8048 Emulator Specifics Users 

RETR Instruction 

In the 8041A prototype control probe, the FO flag is placed on the FO 
flag stack by an interrupt, but not by a subroutine call. Therefore, 
use a RET instruction to return from a subroutine. Use a RETR 
instruction only to return from an interrupt service routine. 

8022 SPECIAL CONSIDERATIONS 

RETI Instruction 

The op code for the 8022 RETI instruction is 93H. However, 
emulating 8035 microcomputer recognizes that op code as a 
instruction. The 8035 RETR instruction performs three functions: 

• allows interrupts (if interrupts are enabled); 

• restores the program counter from the stack; 

• restores the program status word (PSW) from the stack. 

the 
RETR 

However, l:.ne 8022 l1r.;Tl. instruction only performs cne first two 
functions. Thus, whenever your program includes a RETI instruction, the 
8035 will automatically restore the PSW. However, your prototype 8022 
will not restore the PSW. 

Also note that the 8022 RETI instruction increments the program counter, 
while the 8035 RETR instruction does not. Thus, the possibility exists 
that your program could execute the same instruction twice upon return 
from an interrupt. 

A-to-D Converter 

The 8022 requires that the analog input be maintained at a constant 
voltage during the sample time. A SEL ANO or SEL AN1 instruction 
changes the input voltage. Thus, the first RAD instruction after any 
SEL instruction will be inaccurate. Each succeeding RAD will be 
accurate. 

Pullup Options 

Two pullup options are available with the 8022. With the emulating 8035 
microcomputer, these options are selected by a cuttable run (T1) and by 
switch settings (Port 0) on the 8022 prototype control probe. Refer to 
your 8048/8021/8041A/8022 Emulator Processor Installation Manual for 
information on how to set these pullup options. 

7H-24 REV JUNE 1982 



8048 Emulator Specifics Users 8048 Emulator Timing 

EMULATOR TIMING 

The emulating microcomputer resides in the prototype control probe, and 
the signals between the prototype and the emulating microcomputer are 
buffered. Therefore, some timing differences exist between the 
8048/8021/8041A/8022 emulator and a microcomputer inserted directly into 
the prototype. 

Table 7H-6 lists the probe/microcomputer timing differences for the 
8048/8021 prototype control probe. Figure 7H-4 contains timing diagrams 
corresponding to the signals listed in that table. 

Similarly, Tables 7H-7 and 7H-8 and Fig. 7H-5 give timing differences 
for the 8041A prototype control probe. Table 7H-9 and Fig. 7H-6 give 
timing differences for the 8022 prototype control probe. 

Table 7H-6 
Probe/Prototype Interface Delays for the 8048/8021 

----------------------------------------+-------------+------------
I t(PHL) (ns) I t(PLH) (ns) 

Signal I Maximum I Maximum 
--------------------------------------------------------------------------------------------------------------------------------------
ALE 
PSEN 
RD, WR 
PROG 

20 
32 
26 
20 

20 
32 
22 
20 

-----------------+----------------------+-------------+------------
DBO--DB7 (*a) t(1)---fetch cycle 
(POO-P07) I t(2)---execute cycle I 
Prototype to CPU I I 

90 
38 

90 
38 

-----------------+----------------------+-------------+------------
DBO--DB7 t(3)---address out 38 38 
(POO-P07) t(4)---external data 38 38 
CPU to Prototype out 

t(5)---OUTL, ANL, 
ORL data out 

(*b) (*b) 

-----------------+----------------------+-------------+------------
P10--P17, P24--P27 2 2 
P20--P23 (*c) (*c) 
TO (*d) out/in 15 15 
T1 182 
INT 32 32 
RST (t(PHL) for 8021, t(PLH) for 8048) 284 284 
SS 32 32 
CLK 79 79 
----------------------------------------+-------------+------------
(*a) t(RD) = t(1,2) + t(prototype memory access) 
(*b) OUTL, ANL, and ORL bus I/O information is latched during S1 

of the second cycle of the instruction. 
(*c) When external program memory is enabled (by a DIP switch in the 

prototype control probe), the maximum address delay is 32 ns. 
When external program memory is disabled, OUTL, ANL, and ORL 
information is latched during the S3 cycle following the next 
instruction fetch. 

(*d) If the prototype clock frequency is greater than 6 MHz and 
memory is mapped to the 8550 or 8540, TO out is divided by 2. 

REV JUNE 1982 7H-25 



8048 Emulator Timing 8048 Emulator Specifics Users 

7H-26 

N 
(fJ 

... 
C/) 

It) 
(J) 

'It ~. 

(fJ 

('I') 
(fJ 

N 
(fJ 

... 
(fJ 

ID 
en 

L I 
l 
rJ 

.... r 
~tl_ .. flr ' 

. .....t 
l 

':: r" 

..... flr' ~ : ~t[.-!{ · "t en .... r :: r-_ flr' 
('I')::t:t en..... • .. _ flr 
N 
VI 

... 
(fJ 

It) 
(fJ 

'It 
rJ) 

... . 

II II 

I 
i I 

o 
~ 
> 

tl~ 
l£l 0 

r 

IIII ~ 1~~6 I 
~ I • 

1111 ~ I I ~~6 I 

. .1 en 
C/) 

.... f 

~tl·" 
"t ,2>. · 
::t: r-

I Ii;" W 
a: 
o 
o 
<t 

J!.f' 

:3 .... Iii 

=t~ .. 
~r' 

I 
1
- ~tr . . flr' 

Fig. 7H-4. 8048/8021 timing diagrams. 

These timing diagrams illustrate the signals described in 
Table 7H-6. For signals sent from the CPU to the prototype, 
solid lines represent timing at the CPU and dashed lines 
represent timing seen by the prototype. For signals sent from 
the prototype to the CPU, solid lines represent timing at the 
prototype and dashed lines represent timing seen by the CPU~ 

REV JUNE 1982 



8048 Emulator Specifics Users 8048 Emulator Timing 

Table 7H-7 
Probe/Prototype Interface Delays for the 8041A 

----------+-------------+------------
I t(PHL) (ns) I t(PLH) (ns) 

Signal I Maximum I Maximum 
--------------------------------------------------------------------------
SYNC 
PROG 
T1 
P10--P17 
TO 

20 
20 

2 
45 

20 
20 
39 

2 
34 

----------+-------------+------------

Table 7H-8 
Representative 8041A Probe/8041A Microcomputer Timing Differences 

-------+---------------------------+---------------+-------------+-------I I Microcomputer I Probe I 
Symbol I Parameter I Min. Max. I Min. Max. I Units 
------------~=~----------------------------------------------------------------------------------------------------------------------------~--~--~ 
t(ACC) DACK fall to WR or RD 0 54 ns 
t(CAC) RD or WR to DACK rise 0 71 ns 
t(ACD) DACK fall to data valid 225 225 ns 
t(CRQ) RD or WR to DRQ cleared 200 200 ns 
t(AW) CS, AO setup to WR fall 0 0 ns 
t(WA) CS, AO hold after WR fall 0 24 ns 
t(WW) WR pulse width 250 250 ns 
t(DW) Data setup to WR rise 150 150 ns 
t(WD) Data hold after WR rise 0 70 ns 

-------+---------------------------+---------------+-------------+-------
Timing assumptions: CPU timing reference is Intel Peripheral Design 

Handbook, published by Intel Corp., 1979. 

REV JUNE 1982 7H-21 



8048 Emulator Timing 8048 Emulator Specifics Users 

INTERFACE DELAYS 

SYNC 

T1 

P10-P17 

TO 

DMA WAVEFORMS 

DACK 

DATA BUS 

DRQ 

---,-, ~-, 
~1_1~ ______________ '_j ~I~i __________ __ 

...ttPH~ ~PlHL:J ~ 
tPHl 

------------------------~Ib-~~~~~ __ ~J_J 
~~ ~~ 

tPHl tPlH 

~~ 
tPHl 

xx ---------------------.-1 ~ 
tPlH, tPHl 

-----------, I I LJ 
~~~---........ I ~ 

tPHl tPlH

--------~-, ----------------I I I I
~. ~--~, ,..., ____ ~.-.J

..J ~ ~ ~
tPHl tPlH

,-1 t
-..J~k-4,---;.L-----!----~-

tAcc ~
I I tCAC

1

-----~
~tACD

I

Jt Jt--
DATA BUS BUFFER REGISTER

tCRQ tCRQ
WRITE OPERATION

CS or AO

DATA BUS
INPUT

(WRITE CONTROL)

Data May Change r Data Valid 1 Data May Change

Fig. 7H-5. 8041A timing diagrams.

These timing diagrams illustrate
Tables 7H-7 and 7H-8. Dashed lines
between the CPU and the prototype.

the signals described in
represent signal delays

7H-28

(3569- 7)3967-41

8048 Emulator Specifics Users 8048 Emulator Timing

Table 7H-9
Probe/Prototype Interface Delays for the 8022

----------------------------+---------+---------+------
I t(PLH) I t(PHL) I

Signal I Maximum I Maximum I Units
--
ALE
POO--P07 CPU to prototype
POO--P07 prototype to CPU

34
87

1.3

46
91

1.3

I ns
I ns
I us

---------+------------------+---------+---------+------
P10--P17 t(1)---CPU to 2 2 ns

prototype
t(2)---prototype

to CPU
2 2 ns

---------+------------------+---------+---------+------
P20--P23 I t(3)---A to P2 18 24 I ns
(*a, *b) I t(4)---P2 to A '18 24 I ns
---------+------------------+---------+---------+------
PROG 18 24 ns
TO 24 24 ns
T1 182 182 ns
ANO, AN1 (*c) 444 444 ns
XTAL1 33 45 ns
RESET 229 229 ns
----------------------------+---------+---------+------
(*a) Inputs must be present until read by an input

instruction (Intel Specification).
(*b) For OUTL, ORL, and ANL instructions, data will be

valid before ALE following the next instruction fetch.
(*c) Input capacitance: 37 pf maximum.

REV JUNE 1982 7H-29

8048 Emulator Timing 8048 Emulator Specifics Users

7H-30

----_.-

~ I I en . .

'I""'
V)

iii iii i i . i • I

U) I I I I I I I I ~t9 ~Lr6
V) I I I I I I I I ~r' l

, I

'It
V)

('t)
V)

("II

en

....
V)

U)
V)

'It
V)

('t)
V)

("II
V)

V)

U)
V)

~ I I I I

t.:
0
:::i

I~
« «
0

0

It :::i
/14 «

I ir >
«

P T I I ~~~~
0..

b I I i
~

I I r

I I I~

t_
N
+" r

J
fH

ill
+"

f
:J
0
« «
0
"-a::
0

.1 0

t~;
+" r

...
I

..... tr Eft tr !rt

'It ~
V)

w "0 0 "" ('t) ('t) CI 0
...J 0.... "....("11 ("II ("II 0J « Il.'- 0 c..c.. c.. c.. «

I :J ffi c.. a:: I I I I a::
0c..", 0'w5 o 'It 0 0 c.. X
0u ... • V) c.. ("11 ("II ("II
c.._:J ~2.u c..c.. 0" c.. •

(3569-8)39~UI
~~_ ~u C Qn~~ .~_~ __ ~~A __ A_~

1'.l.IS. I u-v. vvc..c.. "'~W~U5 Y~c;;L5~ aw,",.

These timing diagrams illustrate the signals described in
Table 7H-9. Dashed lines represent signal delays between the
CPU and the prototype.

REV JUNE 1982

8048 Emulator Specifics Users 8048 Emulator Timing

PROBE/PROTOTYPE INTERFACE DIAGRAMS

Figures 7H-7, 7H-8, and 7H-9 are block diagrams of the probe/prototype
interfaces for the 8048/8021, 8041A, and 8022 prototype control probes,
respectively.

_--.J'VV'~ +5 V
10K

S04S/S021
PROBE

USER
PROTOTYPE

~--~--------~--____ --------------JV~~~~~--~P20-P23

EN S021
LS03

ST97 <]--.T---~~--<~-+->+ TO

ST97[> -

10K
__ ~vv.~- +5 V

~4H~ __ -e~ ____________ ~~~~~~~~DBO-DB7

S039

4069 <]

LS02 0
LSOO <]

~S
6S0

6Sn 3> RD
240 ------+---~+ WR

6S0

~S 6S0_---+-fALE .PSEN

244 ------~---~PROG
6S0

P24-P27

P10-P17
10K I

! ~+5V I
I

:< RST
10K

'VVv--+5 V
,

~
I

!E: USS
10K I
'\AIv--+5 V I

! I

K !NT

~
'VV'V k;: T1
6S0 I

4069 I
10K 10K I

l
'\AIv--+5V I

LS02G

I

1E EA

LS244 <] r rc Vee

~ I
5100 I

I

(3569·9)3967·6

Fig. 7H-7. Block diagram of 8048/8021 probe/prototype interface.

This figure provides a functional overview of signal buffering
between the prototype and the emulating microcomputer on the
8048/8021 prototype control probe. A more detailed circuit
description can be found in the 8048/8021/8041A/8022 Emulator
Service Manual.

REV JUNE 1982 7H-31

8048 Emulator Timing 8048 Emulator Specifics Users

8041A USER
PROTOTYPE r-1 PROBE ~+5V

~ I ~I~~~~-T~~~~~~'~~~~~~~<~~~->~ P20-P23

YaUTP2 1
P2 !N !!!!!!!!t~--__ ~==-=4
~ I ,lllsl 1

~.l lSS0033~ I ~------~
I L-/ 1244(

P2 lTCH EN ~

§
PROGOUT

lS ---------4_--------...... ---"JV\,.------+__~ P24-P27
06

.----"""~~ +5 V

1000

~---~_-JVvv-------_+--~ DO-D7

~ 40

P2 LTH EN
PROG

8035 EN DBBIN SYNC

P10-P17
1000 k lS244 <l L;;=t>

Vee

I

USER I
! PROTOTYPE

~+5V I

G;]
I 10K

~(
USS
T1
RST

I

§
I

~(
WR
AO
RD

~
I
I
,/ CS

~
,<:::
I

~
I
!,., TO

1
151

1
I'
I
I
I

I
I
I ,
I
I
I
I
i
I
I
i

I
I

(3569-10)3967- 71

Fig. 7H-8. Block diagram of 8041A probe/prototype interface.

7B-32

This figure provides a functional overview of signal buffering
between the prototype and the emulating microcomputer on the
8041A prototype control probe. A more detailed circuit
description can be found in the 8048/8021/8041A/8022 Emulator
Service Manual.

REV JUNE 1982

8048 Emulator Specifics Users 8048 Emulator Timing
--

47K
8022
PROBE

680

USER
PROTOTYPE

~--------------~._--------~----------~~----~~~--~POO-P07
8

10K
10K

--""'''-- +5 V

~----~--------~~--------~----__ ~--~A_--------_+--~P20-P23

P2 LTH EN

8035
~----_+~ __ ------~--+_--~P24-P26

t--""""'I\J\. __ --------+---~ PROG

~--~"'--_IV'V\I---------+_--~ P10-P17
8 I

81 LS97 [>----vv\------~ll---)~ ALE
680 I

81LS97 <l"""-----I~-------I-I -- Vee
510 I
~I

I

LS14 <l~-----------~'<I ~- TO
36K

tti
+5V :

LM 339'5 <l----,/,../8--~~------~,~(:...-- VTH
16K I

4069

I
!

~------------~~--_e----~F_-- T1

4069

I
I
I
I
I

[l]u~ 3K ~I
.... .f--------..J,~"...---------t~~- ::~

1M I

r:w=+5V L
LM1458 <]------~------------~"";...-- VAREF

I
LS14 <]"---------------------....... K~- RESET

I
I

(3569-11)3967-8

Fig. 7H-9. Block diagram of 8022 probe/prototype interface.

This figure provides a functional overview of signal buffering
between the prototype and the emulating microcomputer on the
8022 prototype control probe. A more detailed circuit
description can be found in the 8048/8021/8041A/8022 Emulator
Service Manual.

REV JUNE 1982 7H-33

8048 Emulator Software Installation 8048 Emulator Specifics Users

INSTALLING YOUR 8048/8021/8041A/8022 EMULATOR SOFTWARE

8540 FIRMWARE INSTALLATION PROCEDURE

The ROMs that contain the control software for your 8048/8021/8041A/
8022 emulator must be installed in your 8540's System ROM Board. Refer
to your Emulator Installation Manual for instructions on installing
these ROMs.

8550 INSTALLATION PROCEDURE

This subsection describes how to install the control software for your
8048/8021/8041A/8022 emulator. To complete this installation procedure,
you need the following items:

• an 8550 system (with or without an 8048/8021/8041A/8022 emulator)

• a DOS/50 system disk with a write-enable tab over the write-protect
slot

• an 8048/8021/8041A/8022 emulator software installation disk with no
write-enable tab.

This procedure takes about five minutes.

Start up and Set the Date

Turn on your 8550 system. (For start-up instructions, refer to the
paragraph "Start Up the 8550 and Its Peripherals" in the Learning Guide
section of your System Users Manual.) Place your system disk in disk
drive 0 and shut the drive 0 door. When you see the > prompt on your
system terminal, place your installation disk in disk drive 1 and shut
the drive 1 door.

Use the OAT command to set the date and time. For example, if it is
11:05 am on April 1, 1983, type:

> OAT 01-APR-83/11:05 <CR>

The system will use this information when it sets the Creation Time
attribute of each file copied from your installation disk.

Install the Software

The command file INSTALL2; which is used to install the software,
resides on the installation disk.

NOTE

If your system disk contains DOS/50 Version 1, use the command
file INSTALL instead of INSTALL2.

To execute this command file, type its filespec:

> /VOL/EMU.8048/INSTALL2 <CR>

7H-3~ REV SEP 1983

8048 Emulator Specifics Users 8048 Emulator Software Installation

DOS/50 responds with the following message:

* During this installation procedure, one or more of the
* following messages may appear. IGNORE THESE MESSAGES:

* * Error 6E - Directory alteration invalid
* Error 7E - Error in command execution
* Error 1D - File not found

* * If any OTHER error message appears, see your
* Users Manual for further instructions.

* * If no other error message appears, you'll receive a
* message when the installation procedure is complete.

*
T,OFF

In the installation process, you may disregard error messages
and 1D; these messages have no bearing on the success
installation. However, if a message other than 6E, 7E, or 1D
take the following steps:

1. Make sure you are using the right disks.

2. Make sure your system disk has a write-enable tab.

3. Make sure there are at least 3 free files and
blocks on your system disk.

4. Begin the installation procedure again.

6E, 7E,
of the

appears,

20 free

If the installation procedure fails again, copy down the error message
and contact your Tektronix service representative.

The "T,OFF" command suppresses subsequent output to your- system terminal
(except error messages) until INSTALL2 finishes executing. Within about
five minutes, INSTALL2 will finish and your system terminal will display
the following message:

* * Your installation has been successfully completed.
>

Once your software is installed, you can:

• remove your disks and turn off your 8550 system, or

• install more software, or

• continue with the 8048/8021/8041A/8022 Emulator Demonstration
Run that follows in this section. If you do this, you do not
have to restart the system or reset the date and time.

NOTE

At this point, "NO.NAME" is the current user. To change the
current user back to "yourname", enter USER"yourname.

REV SEP 1983 7H-35

8048 Demonstration Run 8048 Emulator Specifics Users

8048/8021/8041A/8022 DEMONSTRATION RUN

INTRODUCTION

This Demonstration Run shows you how to assemble, load, execute, and
monitor a simple 8048 assembly language program on your 8540 or 8550.
This program can be executed using any prototype control probe that is
compatible with the S04S/S021/S041A/S022 emulator. In order to perform
this demonstration, your 8048/8021/8041A/8022 emulator, prototype
control probe j and control software must be installed in your 8540 or
8550.

Figure 7H-10 shows the source and object
program. If you have an 8550, the
source code and object code for the
demonstration program are provided on
the installation disk that contains your
8048/8021/8041A/8022 emulator control
software. This demonstration shows you
how to assemble the program on your
8550. (If your system disk does not
contain a 8048/8021/8041A/8022
assemoier, you will have to skip that
part of the demonstration.)

If you have an 8540/8560 system and your
8560 has a 8048/8021/8041A/8022
assembler installed, you can create and
assemble the program on the 8560 and
then download it to the 8540. This
demonstration shows how.

code for

Case 1:

the demonstration

If you have an 8540 that is connected to
a host computer other than an 8560, we
can't give you a specific list of
commands for creating and assembling the
program on your host (since we don't
know what host you're using). However,
Fig. 7H-11 gives the object code for
the program in Extended Tekhex format.
You can create the Tekhex file using
your host's assembler or text editor,
and then download the file to the 8540
via the 8540'3 optional COM interface~

~--------.,/11

11
Case 3:

?
•

~L/
If none of these cases applies to you,
you can patch the program into memory Case 4:

using the P command. This demonstration
shows how.

8540 + other host ----.y

any other configuration
(3964- 5)3967 -9

Once the program is loaded or patched into memory, you can execute the
program on your emulator.

7H-36 REV SEP 1983

8048 Emulator Specifics Users 8048 Demonstration Run

NOTE

The 8540 commands shown in this demonstration can also be used
for an 8550 that is connected to an 8560 or other host
computer.

01
02
03 000100
04 000100 B932
05 000102 BF05
06 000104 21
01 000105 61
08 000106 19
09 000101 EF05
10
11 000109 AA
12 00010A 23F1
13 00010C 00
14 00010D A3
15 00010E 00
16

;8048 DEMONSTRATION RUN PROGRAM
SECTION DEMO
ORG 100H

START MOV R1,#TABLE
MOV R1 , fiTSIZE
CLR A

LOOP ADD A,@R1
INC R1
DJNZ R1,LOOP

MOV
MOV
NOP

R2,A
A,#OF1H

MOVP A,@A
NOP

;SRB POINTER

;START PROGRAM CODE AT ADDRESS
;SET TABLE POINTER
;SET PASS COUNTER
;CLEAR ACCUMULATOR
;ADD BYTE FROM TABLE
;POINT TO NEXT BYTE
;DECREMENT PASS COUNTER AND
; LOOP IF NOT FIVE PASSES YET
;OTHERWISE SAVE SUM IN R2

AND CALL EXIT SVC
TO END PROGRAM EXECUTION

100

17 0040
18 000040 0042
19

ORG 40B
BYTE 00,42H

;SRB FOR EXIT SVC

;STORE SRB POINTER AT ADDRESS 40
;POINT TO SRB FOR EXIT SVC

20 000042 1A
21

BYTE 1AH ;1AH = FUNCTION CODE FOR EXIT SVC

22
23
24
25
26
21

;TABLE OF NUMBERS TO BE ADDED
TSIZE EQU 5 ;TABLE SIZE = 5

SECTION INTERNAL ;SECTION FOR INTERNAL DATA MEMORY
ORG 32H

TABLE BLOCK TSIZE
LIST DBG
END START

;SET UP TABLE AT ADDRESS 32

------ --------------------- ---------------------------------- ------ ---- --------------------- --------------------------------

source code comments

+-- object code

+------- address

+------------- source code line number
3967,,1

Fig. 1H-10. Demonstration program.

REV SEP 1983 1H-37

8048 Demonstration Run 8048 Emulator Specifics Users

(A) %276C33100B932BF05276119EF05AA23F700A300
%OE62B24000421A
%393464DEM0010350514LOOP310515START310015TABLE23225TSIZE15
%233318INTERNAL04400023715TABLE44032
crno~1h'21nn
f'lV:;}V'J.J 'VV

(B) FIRST DATA BLOCK: object code for addresses 100--10E

header load address object code
I

======----==========================:===
%276C33100B932BF05276119EF05AA23F700A300

SECOND DATA BLOCK: object code for addresses 40--42

header load
I address
I

object
code
I

======---======
%OE62B24000421A

FIRST SYMBOL BLOCK

header section
I name
I I

section
definition
field

I
symbol definition fields

i
======-----=======--
%393464DEM0010350514LOOP310515START310015TABLE23225TSIZE15

SECOND SYMBOL BLOCK

header
I
I

section
section definition
name field

I I

symbol
definition
field

I
======---------=======--------------
%233318INTERNAL04400023715TABLE44032

TERMINATION BLOCK

address
I

======----
%098153100

Fig. 7H-11. Demonstration program: Extended Tekhex format.

Figure 7H-11A shows an Extended Tekhex load module that
contains the object code and program symbols for the
demonstration program. Figure 7H-11B labels the different
fields in the message blocks. If yuu have a host computer

3967,,1

7H-38 REV SEP 1983

8048 Emulator Specifics Users 8048 Demonstration Run

other than an 8560, you can create this load module and
download it to your 8540 or 8550.

EXAMINE THE DEMONSTRATION RUN PROGRAM

The demonstration run program adds five numbers from a table stored in
8048 internal data memory locations 32--36 and leaves the sum in
register R2. (You will place values in the table later in this
demonstration.) The 8085A emulator demonstration run in the Learning
Guide section of your System Users Manual contains a flowchart that
illustrates the steps of the program.

The source code contains two kinds of statements: assembler directives
(such as ORG and BYTE) and 8048 assembly language instructions. The
assembler directives are microprocessor-independent and are explained in
the 8085A emulator demonstration run. The 8048 assembly language
instructions are discussed in the following paragraphs.

Set Table Pointer. The MOV R1,#TABLE instruction loads the lower byte of
the address of the table (4032) from internal data memory into register
R1. As a result, R1 points to the first element of the table. The
label START is used by the END directive to specify that the
MOV R1,#TABLE instruction is the first to be executed.

Set Pass Counter. Register R7 is used as the pass counter. The
MOV R7,#TSIZE instruction moves the value of TSIZE into R7. This step
sets the number of passes to 5. Each time a number is taken from the
table and added into the accumulator, R7 is decremented.

Clear Accumulator. The CLR A instruction zeros the accumulator so that
you can start adding numbers from the table.

Add Byte From Table. The ADD A,@R1 instruction adds the byte addressed
by R1 into the accumulator. The label LOOP represents the address of
this instruction; this label is used by the DJNZ instruction.

Point to Next Byte. The INC R1 instruction increments R1; this register
then points to the next byte in the table. For example, R1 is
initialized to contain 32. After the INC R1 instruction is first
executed, R1 will contain 33, the address of the second element of the
table.

Decrement Pass Counter and Loop If Not Five Passes Yet. The DJNZ R7,LOOP
instruction decrements R7, the pass counter. In this program, R7 is
decremented each time a number is added to the accumulator. If R7 does
not contain zero after being decremented, the program jumps back to the
LOOP label. If R7 contains zero, the program proceeds to the next
instruction, MOV R2,A.

REV SEP 1983 7H-39

8048 Demonstration Run 8048 Emulator Specifics Users

Save Sum in R2. After all five numbers have been added together, the
MOV R2,A instruction moves the sum from the accumulator into register
R2. The sum must be saved in R2 because the accumulator is used by the
service call that follows.

Exit. The last four instructions of the program are:

MOV A,tIOF1H
,"T('\O
llvr

MOVP A,@A
NOP

These instructions constitute a service call (SVC) that causes an exit
from the program. For more information on SVCs, refer to the Service
Calls discussion in this Emulator Specifics section.

ASSEMBLE AND LOAD THE DEMONSTRATION PROGRAM

Now itis time to create the program so you can run it on your emulator.
One of the following discussions describes the set of steps that is
appropriate for your hardware configuration:

• For 8550 users -- Case 1: Assemble and Load on the 8550

• For 8540/8560 users -- Case 2: Assemble on the 8560; Download
to the 8540

• For 8540 users with a host computer other than the 8560 -- Case
3: Download from Your Host to the 8540

• For other hardware configurations -- Case 4: Patch the Program
into Memory

Go ahead and work through the discussion that's appropriate for you.
Once you've put the program into 8550/8540 program memory, turn to the
heading "Run the Demonstration Program, rr later in this section.

7H-40 REV SEP 1983

8048 Emulator Specifics Users 8048 Demonstration Run

CASE 1: ASSEMBLE AND LOAD ON THE 8550

This discussion shows you how to copy the demonstration program from
your 8048/8021/8041A/8022 emulator software installation disk, assemble
the program, and load it into 8550 program memory.

Start Up and Log On

Turn on your 8550 system. (For start-up instructions, refer to the
paragraph "Start Up the 8550 and Its Peripherals" in the Learning Guide
section of your System Users Manual.) Place your system disk in disk
drive 0 and shut the drive 0 door. When you see the > prompt on your
system terminal, place your installation disk in disk drive 1 and shut
the drive 1 door.

Use the DAT command to set the date and time. For example, if it is
2:35 pm on April 1, 1983, type:

> DAT 01-APR-83/2:35 pm <CR>

Use the SEL command to tell DOS/50 to use the assembler and emulator
software designed for the 8048 family:

> SEL 8048 <CR>

The SEL command automatically sets the emulation mode to O.

CoPy the Demonstration Run Program from the Installation Disk

Enter the following command lines to create an empty directory called
DEMO on your system disk and make DEMO the current directory. The BR
command creates a brief name, ROOT, to mark the old current directory.
At the end of this demonstration, you will return to this ROOT directory
and delete the DEMO directory and its contents.

> BR ROOT IUSR <CR>

> CREATE DEMO <CR>

> USER DEMO <CR>

Now use the COP command to copy all the files in the DEM02 directory on
the installation disk to the DEMO directory you just created:

> COP IVOL/EMU.8048/DEM02/* * <CR>

Remove your installation disk from drive and put it away.

Now list the files you have just copied to the current directory:

REV SEP 1983 7H-41

8048 Demonstration Run 8048 Emulator Specifics Users

> L <CR>

Filename

ASM
LOAD

Files used 96
Free files 160
Free blocks 738
Bad blocks 0

The file named ASM contains the assembly language source code for the
demonstration program, and the file named LOAD contains the executable
object code. This copy of LOAD will be used in the demonstration only
if you do not have an 8048/8021/8041A/8022 assembler (and thus cannot
create your own object file and load file from the source file.)

Examine the Demonstration Program

Enter the following command line to display the source file ASM on the
system terminal:

7H-42

) ~UN ASH ~~~?

;8048 DEMONSTRATION RUN PROGRAM
SECTION DEMO
ORG 100H

START MOV R1,ITABLE
MOV R7,#TSIZE
CLR A

LOOP ADD A,@R1
INC R1
DJNZ

MOV
MOV
NOP
MOVP
NOP

;SRB POINTER

R7,LOOP

R2,A
A,IOF7H

A,@A

ORG 40H
BYTE OO,42H

;SRB FOR EXIT SVC

;START PROGRAM CODE AT ADDRESS 100
;SET TABLE POINTER
;SET PASS COUNTER
;CLEAR ACCUMULATOR
;ADD BYTE FROM TABLE
;POINT TO NEXT BYTE
;DECREMENT PASS COUNTER AND
; LOOP IF NOT FIVE PASSES YET
;OTHERWISE SAVE SUM IN R2

AND CALL EXIT SVC
TO END PROGRAM EXECUTION

;STORE SRB POINTER AT ADDRESS 40
;POINT TO SRB FOR EXIT SVC

BYTE 1AH ;1AH = FUNCTION CODE FOR EXIT SVC
;TABLE OF NUMBERS TO BE ADDED
TSIZE EQU 5 ;TABLE SIZE = 5

SECTION INTERNAL
ORG 32H ;SET UP TABLE AT ADDRESS 32

TABLE BLOCK TSIZE
LIST DBG
END START ;END OF SOURCE CODE

REV SEP 1983

8048 Emulator Specifics Users 8048 Demonstration Run

Assemble the Source Code

If you do not have a 8048/8021/8041A/8022 assembler on your system disk,
you cannot perform this step, so skip the next four commands (ASM, COP,
LINK, and L.)

The ASM (assemble) command translates assembly language (source code)
into binary machine language (object code). The ASM command also
creates an assembler listing that can be used to correlate the object
code with the source code. Enter the following command line to assemble
the source code in the file ASM and create the listing and object files
ASML and OBJ:

> ASM OBJ ASML ASM <CR>

+-- source file

+------- assembler listing file

+----------- object file
Tektronix 8048 ASM Vx.x
**** Pass 2

26 Source Lines 26 Assembled Lines xxxxx Bytes Available
»> No assembly erro~s detected «<

Enter the following command to copy the assembler listing onto the line
printer. (First, make sure the printer is turned on and properly
connected.)

> COP ASML LPT <CR>

The different fields of your source listing are presented in Fig.
1H-10, earlier in this demonstration. For a detailed explanation of
assembler listings, consult your Assembler Users Manual.

Link the Object Code. The
one or more object files.

> LINK <CR>
8550 LINKER Vx.x

*

linker creates an executable load file from
Enter the LINK command to invoke the linker:

Now enter the following linker commands to create a load file called
LOAD from your object file, OBJ:

*LINK OBJ <CR>
*LOAD LOAD <CR>
*LOCATE INTERNAL,BASE(4000H) <CR>
*DEBUG <CR>
*END <CR>

REV SEP 1983 1H-43

8048 Demonstration Run 8048 Emulator Specifics Users

The linker commands LINK and LO specify the object file and load file,
respectively. The LOCATE command establishes the base address for
section INTERNAL. The DEBUG command causes the linker- to pass the
program symbols from the object file along to the load file, for use in
program debugging. After you enter the END command, the linker executes
the commands you have entered, and the following information is
displayed:

TRUNCATION ERROR AT 0101 IN MODULE *NONAME*
FILE OBJ

2 ERRORS NO UNDEFINED SYMBOLS
1 MODULE 2 SECTIONS
TRANSFER ADDRESS IS 0100

NOTE

Because the instruction MOV R1,ITABLE is a two-byte
instruction, the linker truncates 4032 to 32, and displays an
error message. Ignore this truncation error message~

The files generated by the ASM and LINK commands should now be on your
disk. Enter the following command to list the files in your current
directory:

) L <CR)

FILENAME

ASM
LOAD
OBJ
ASML

Files used 126
Free files 130
Free blocks 811
Bad blocks 0

Notice that there are now four files listed in your directory. OBJ and
ASML were created by the assembler, and LOAD was created by the linker.

7H-44 REV SEP 1983

8048 Emulator Specifics Users 8048 Demonstration Run

Load the Program into Memory

Now it's time to load the object code from the load file LOAD into
program memory.

Zero Out Memory. Before you load any code, use the F (Fill) command to
fill 8550/8540 program memory with zeros. Later, when you examine
memory, the zeros make it easy to identify the beginning and end of your
code. (Zeroing out memory has no effect on how the program is loaded.)
Enter the following command line to fill memory from address 40 through
address 11F with zeros:

) F 40 11F 00 <CR)

Check That Memory Was Filled with Zeros. Check the contents of memory
with the D (Dump) command. The D command's display shows the data in
hexadecimal format, and also shows the corresponding ASCII characters.
Display the contents of memory addresses 40--11F with the following
command line:

) D 40 11F <CR)
o 1 2 345 6 7 8 9 ABC D E F

000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOAO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOBO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ooooeo 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOODO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOEO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOFO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Load the Object Code into Memory. Enter the following command line to
load the object code for the demonstration program into program memory:

) LO <LOAD <CR)

load file

REV SEP 1983 7H-45

8048 Demonstration Run 8048 Emulator Specifics Users

Load the Program Symbols. Recall that the source code for the
demonstration program contained the directive LIST DBG. Because of this
directive, the object file contains a list of the symbols that appeared
in the source code, and the values associated with those symbols.
Because you included the DEBUG command when you invoked the linker,
those symbols were Use the SYMLO command t·o
load those symbols into the symbol table in 8550 system memory.

> SYMLO =S <LOAD <CR)

The -S option means that both addresses and scalars are loaded. If you
omit the -S, only addresses are loaded. (A scalar is a number that is
not an address --- for example, TSIZE, the length of the table.)

Later in this demonstration, whenever you use a symbol in a command
line, the operating system refers to the symbol table to find the value
that the symbol represents.

You've assembled and linked the demonstration program and loaded it into
memory. Now skip ahead to the heading "Run the Demonstration Program."

7H-46 REV SEP 1983

8048 Emulator Specifics Users 8048 Demonstration Run

CASE 2: ASSEMBLE ON THE 8560; DOWNLOAD TO THE 8540

This discussion shows you how to create the demonstration program source
code and assemble it on the 8560, then download it to 8540 (or 8550)
program memory. If your 8560 does not have an 8048/8021/8041A/8022
assembler, you cannot complete this part of the demonstration, so skip
ahead to the ·heading "Case 4: Patch the Program into Memory" for
instructions.

Start Up and Log In

Start up your 8540, make sure it's in TERM mode, and log in to the 8560
operating system, TNIX. See your 8560 System Users Manual for details.

Since you're logged in to TNIX, your system prompt is "$". (Later in
the demonstration, we'll show the system prompt as ")", in deference to
people using 8540s and 8550s in LOCAL mode.) Every command you enter is
processed by TNIX. If you enter an OS/40 command, TNIX passes it to the
8540.

Enter the following command to select the 8048 assembler on the 8560 and
the 8048 emulator on the 8540:

$ sel 8048 <CR)
$ uP=8048; export uP <CR)

The sel command automatically sets the emulation mode to O.

Create the Demonstration Program

Enter the following TNIX command lines to create an empty directory
called demo and make demo the working directory. You'll create your
source file and related files in this demo directory.

$ mkdir demo <CR)
$ cd demo <CR)

Now use the TNIX editor, ed, to create the demonstration program source
file. The following comm-and line invokes the editor and specifies that
you want to create a file called asm:

$ ed asm <CR)
?asm

The editor responds "?asm" to remind you that ~ does not already
exist. Notice that the editor does not give a prompt to let you know
it's ready for input.

REV SEP 1983 7H-47

8048 Demonstration Run 8048 Emulator Specifics Users

Enter the Text. Now enter the editor command! (!ppend text) and type in
the program. Use the BACKSPACE key to erase typing mistakes.

a <CR>
column column

8 16
i

column
26

I
v v v

;8048 DEMONSTRATION RUN PROGRAM <CR)
SECTION DEMO <CR)
ORG 100H

START MOV Hi ,fITABLE
;START PROGRAM CODE AT ADDRESS 100 <CR)
;SET TABLE POINTER <CR)

MOV R7 ,fITSIZE ;SET PASS COUNTER <CR)
CLR A ;CLEAR ACCUMULATOR <CR)

LOOP ADD A,@R1 ;ADD BYTE FROM TABLE <CR)
INC R1
DJNZ R7,LOOP

MOV R2,A
MOV A , flOF7H
NOP
MOVP A,@A <CR)
NOP <CR)

;POINT TO NEXT BYTE <CR)
;DECREMENT PASS COUNTER AND <CR)

LOOP IF NOT FIVE PASSES YET <CR)
;OTHERWISE SAVE SUM IN R2 <CR>

AND CALL EXIT SVC <CR)
TO END PROGRAM EXECUTION <CR)

-----;SRB POINTER <CR)
ORG lInu

,v ... " ;STORE SRB POINTER AT ADDRESS 40 (eR>
BYTE 00,42H ;POINT TO SRB FOR EXIT SVC <CR)

;SRB FOR EXIT SVC <CR)
BYTE 1AH ;1AH = FUNCTION CODE FOR EXIT SVC <CR)

;TABLE OF NUMBERS TO BE ADDED <CR)
TSIZE EQU 5 ;TABLE SIZE = 5 <CR)

SECTION INTERNAL <CR)
ORG 32H ;SET UP TABLE AT ADDRESS 32 <CR)

TABLE BLOCK TSIZE <CR)
LIST DBG <CR)
END START ;END OF SOURCE CODE <CR)

• <CR)

At the end of your text, enter a period on a line by itself. The editor
will go back to accepting commands.

Check for Errors. Enter the following editor command to display the text
you have entered. Check for typing mistakes •

.l..t1E. <CR)
I II
I 1+-- print command: displays the lines
I I in the designated range
I I
I +--- designates last line in file
I
+----- designates first line in file

If you made any mistakes, go ahead and fix them. In case you're not
familiar with ed, Table 7H-10 lists the commands you need in order to
add, delete, or replace any line. For more information on ed, refer to
your 8560 System Users Manual.

7H-48 REV SEP 1983

8048 Emulator Specifics Users 8048 Demonstration Run

Table 7H-10
Basic 8560 Editing Commands

------------------+--------------------------------------
Command I Function
===
mm,nnp <CR) I Displays lines mm through nn
------------------+--------------------------------------
nn <CR) I Makes line nn the current line
------------------+--------------------------------------
d <CR) I Deletes the current line
------------------+--------------------------------------
a <CR) I Adds text after the current line
<line(s) of text) I
• <CR) I
------------------+--------------------------------------
c <CR) I Replaces the current line with the
<line(s) of text) I text you type in
• <CR) I
------------------+--------------------------------------

Once your text is correct, enter the w command to write the text to the
source file, asm:

w <CR)
778

The editor responds with the number of characters it wrote to the file.

Finally, enter the S command to quit the editor and return to TNIX:

.9. <CR)
$ <--- TNIX prompt

Assemble the Source Code.

The TNIX asm (assemble) command translates assembly language (source
code) into binary machine language (object code). The asm command also
creates an assembler listing which can be used to correlate the object
code with the source code. Enter the following command line to assemble
the source code in the file asm and create the listing and object files
asml and obj:

$ asm obj asml asm <CR)

+-- source file

+------- assembler listing file

+----------- object file
ASM MCS 8048 Vxx.xx-xx Copyright 198x Tektronix, Inc.
*****Pass 2

27 Lines Read
27 Lines Processed
o Errors

REV SEP 1983 7H-49

8048 Demonstration Run 8048 Emulator Specifics Users

Enter the following command to print the assembler listing on the 8560's
line printer:

$ lp1r asml <CR)

Check page of your listing. Did the assembler issue any error
messages? There should be none. If your source code contains errors,
take the following steps:

1. Refer to your Assembler Users Manual to find out what the
error messages mean.

2. Enter the command ed asm to get back into the editor and
fix the mistakes in your source code. Exit the editor with
the ~ and ~ commands, as before.

3. Enter the command asm obj asml asm to re-assemble your
source code.

Link the Object Code

The linker creates an executable load file from one or more object
files. Enter the following command to create a load file called load
from your object file, obj. Be sure to capitalize all parameters as
shown.

$ link -d -0 obj -0 load -m prog=0-120h -m int=4000-4037h -L sec=DEMO
range prog -L sec=INTERNAL range int (CR)

NOTE

To simplify your task, you may want to create a linker command
file to hold the command options. To do so, invoke ed, and
place each command option on a separate line. Then, to
execute the command file, you would enter:
$ link -c commandfilename.

The -d option causes the linker to pass the program symbols from the
object file to the load file, for use in program debugging. The-m
option defines the memory map. In this case, the areas mapped are in

..:I"" +- "",. " r "",uvu AU"' " ... J. The the two
sections DEMO and INTERNAL.

The linker responds with the following truncation error message. The
truncation errors are caused by the MOV R1,HTABLE and DJNZ R7,LOOP
instructions. These instructions each expect an 8-bit operand. You may
ignore these messages.

link:115 (E) Truncation error at
link:115 (E) Truncation error at

7H-50

101
108

REV SEP 1983

8048 Emulator Specifics Users 8048 Demonstration Run

The files generated by the ~ and link commands should now be in your
working directory, demo. Enter the following command to list the files
in your working directory:

$ Is <CR)
asm
asml
load
obj

Notice that there are now four files listed in your directory. obj and
asml were created by the assembler, and load was created by the linker.

Download the Program to the 8540

Now it's time to download the object code produced by the 8560's linker
into 8540 program memory.

Zero Out Memory. Before you download any code, use the OS/40 F (Fill)
command to fill 8540 program memory with zeros. Later, when you examine
memory, the zeros make it easy to identify the beginning and end of your
code. (Zeroing out memory has no effect on how the program is loaded.)
Enter the following command line to fill memory from address 40 through
address 11F with zeros:

$ f 40 11f 00 <CR)

_C_h_ec_k __ T_h_a_t __ M_em_o_r~y~W_a_s __ F_i_ll_e_d __ w_i_t_h __ Z_er_o __ s. Check the contents of memory
with the OS/40 D (Dump) command. The D command's display shows the data
in hexadecimal format, and also shows the corresponding ASCII
characters. Display the contents of memory addresses 40--11F with the
following command line:

$ d 40 11f <CR)
o 1 2 345 6 7 8 9 ABC D E F

000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOAO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOBO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOCO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOODO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOEO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOFO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

REV SEP 1983

................

7H-51

8048 Demonstration Run 8048 Emulator Specifics Users

Download the Object Code8 Enter the following command line to download
the object code from the 8560 file load to 8540 program memory:

$ 10 <load <CR)

load file

Download the Program Symbols. Recall that the source code for the
demonstration program contains the directive LIST DBG. Because of this
directive, the object file contains a list of the symbols that appear in
the source code, and the values associated with those symbols. Because
you included the -d option in the link command line, those symbols were
passed to the load file. Use the OS/40 SYMLO command to download those
symbols into the symbol table in 8540 system memory.

$ symlo -s <load <CR>

The -8 option means that both addresses and scalars are downloaded. If
you omit the -S, only addresses are downloaded. (A scalar is a number
that is not an address --- for example, TSIZE, the length of the table.)

Later in this demonstration, whenever you use a symbol 10 an OSi40
command line, OS/40 refers to the symbol table to find the value that
the symbol stands for.

You've assembled and linked the demonstration program and downloaded it
into memory. Now skip ahead to the heading "Run the Demonstration
Program."

7H-52 REV SEP 1983

8048 Emulator Specifics Users 8048 Demonstration Run

CASE 3: DOWNLOAD FROM YOUR HOST TO THE 8540

This discussion gives some general instructions for downloading the
demonstration program from an unspecified host computer to 8540 (or
8550) program memory. If your 8540 is not equipped with the optional
COM Interface Package, you cannot complete this part of the
demonstration, so skip ahead to the heading "Case 4: Patch the Program
into Memory" for instructions. COM Interface software is standard on
the 8550.

Since we don't know what host computer you're using, we can only provide
a general outline for creating the demonstration program and downloading
it to the 8540. Once you have determined the command sequence that is
appropriate for your host, record this information in the space provided
in Fig. 7H-12.

Create the Extended Tekhex Load Module

In order for the object code to be downloaded to the 8540, it must be in
Extended Tekhex format, as shown in Fig. 7H-11, earlier in this
demonstration. You can create the load module in one of two ways:

1. Use your host computer's text editor, and key the load
module in by hand.

2. Use your host computer's 8048 assembler:

Prepare the 8540

a. Translate the demonstration program into the
language of your host's 8048 assembler.

b. Create and assemble the source file.

c. Link the object code, if necessary_

d. Translate the object code produced by the assembler
or linker into Extended Tekhex format. The
Intersystem Communication section of your System
Users Manual provides a general algorithm for
conversion to Extended Tekhex format.

Start up your 8540 and enter the following command to select the 8048
emulator:

) SEL 8048 <CR)

The SEL command automatically sets the emulation mode to O.

Dt'U c:!t'D 1()Q')

8048 Demonstration Run

Create the Extended Tekhex Load Module

Prepare the 8540

(Start up the 8540.)
> SEL 8048 <CR>
> F 40 11F 00 <CR>
> D 40 11F <CR>

Establish Communication

Download the Load Module ----

Terminate Communication

8048 Emulator Specifics Users

3967-14 i

Fig. 7H-12 Host computer commands for preparing demonstration program

Zero Out Memorv. Before you download any code, use the 03/40 F (Fill)
command to fill 8540 program memory with zeros. Later, when you examine
memory, the zeros make it easy to identify the beginning and end of your
code. (Zeroing out memory has no effect on how the program is loaded.)
Enter the following command line to fill memory from address 40 through
address 11F with zeros:

> F 40 11F 00 <CR>

7H-54

8048 Emulator Specifics Users 8048 Demonstration Run

Check That Memory Was Filled with Zeros. Check the contents of memory
with the OS/40 D (Dump) command. The D command's display shows the data
in hexadecimal format, and also shows the corresponding ASCII
characters. Display the contents of memory addresses 40--11F with the
following command line:

) D 40 11 F <CR)
o 1 2 345 6 1 8 9 ABC D E F

000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOAO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOBO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOCO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOODO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOEO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOFO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Download the Load Module to the 8540

................

................

Be sure that your 8540 and your host computer are connected via an
RS-232-C-compatible communications link. Then perform the following
steps to download the Tekhex load module to 8540 program memory. (Refer
to the Intersystem Communication section of your System Users Manual to
determine the commands and parameters that are appropriate for your host
computer.)

a. Enter the 8540 COM command to establish communication.
(The parameters of the COM command are host-specific.) Log
on to your host and execute any necessary host
initialization commands.

b. Enter the command line that downloads the Tekhex load
module to the 8540. This command line consists of a host
computer command that performs the download, followed by a
null character (CTRL-@ on most terminals) and a carriage
return. COM places the object code in 8540 program memory,
and puts the program symbols into the symbol table in 8540
system memory.

c. Log off from your host, and then terminate COM command
execution by entering the null character, then pressing the
ESC key.

Once you've downloaded the program to the 8540, skip ahead to the
heading "Run the Demonstration Program."

REV SEP 1983 1H-55

8048 Demonstration Run 8048 Emulator Specifics Users

CASE 4: PATCH THE PROGRAM INTO MEMORY

This discussion shows you how to patch the demonstration program into
8540 (or 8550) program memory using the P command, and then add the
program symbols into the symbol table using the ADDS command.

Ordinarily, you would load the object code and symbols from a binary or
hexadecimal load file, as illustrated for Cases 1, 2, and 3. The
procedure presented here is not normally used for preparing a program
for execution. Use this procedure only if you have no standard means
for preparing the program, but would still like to tryout your
emulator.

Start Up the 8540

Start up your 8540 and enter the following command to select the 8048
emulator:

) SEL 8048 <CR)

The SEL command automatically sets the emulation mode to Oe

Zero Out Memory

Before you patch in any code, use the OS/40 F (Fill) command to fill
8540 program memory with zeros. Later, when you examine memory, the
zeros make it easy to identify the beginning and end of your code.
Enter the following command line to fill memory from address 40 through
address 11F with zeros:

> F 40 11F 00 <CR)

Check That Memory Was Filled with Zeros. Check the contents of memory
with the OS/40 D (Dump) command. The D command's display shows the data
in hexadecimal format, and also shows the corresponding ASCII
characters. Display the contents of memory addresses 40--11F with the
following command line:

> 0 40 11F <CR)
o 1 234 5 678 9 ABC D E F

000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOAO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOBO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOCO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOEO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOFO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

'7U hh
f LJ.-JV RE'v' 3EF i 983

8048 Emulator Specifics Users 8048 Demonstration Run

Patch the Object Code into Memory

The OS/40 P (Patch) command stores a sequence of bytes into memory,
replacing the previous memory contents. Enter the following command to
store the object code for the first three instructions in the program
(MOV R1, MOV R7, and CLR A) starting at location 100:

> P 100 B932 BF05 27 (CR>
---- ------ --

I I I
I I CLR A
I I
I MOV R7,#TSIZE
I

MOV R 1 ,fITABLE

patch address

Now patch in the next four instructions (ADD, INC, DJNZ, and MOV R2) •••

> P 105 61 19 EF05 AA (CR>

and now the last four instructions (MOV A, Nap, MOVP A, and Nap).

> P 10A 23F7 00 A3 00 (CR>

Finally, patch in the Exit SVC information at address 40:

> P 40 00421A (CR>

You'll check the contents of memory later in this demonstration.

Put Symbols into the Symbol Table

Later in this demonstration, you will use symbols from the demonstration
program (START, LOOP, TSIZE, and TABLE) when communicating with OS/40.
Whenever you use a symbol in a command line, OS/40 consults a symbol
table in 8540 system memory to find the values that the symbol stands
for. Enter the following command line to add the program symbols to the
symbol table, along with their values:

> ADDS START=100 LOOP=106 -S TSIZE=5 TABLE=4032 (CR>

The ADDS command cannot provide all the symbol-related information that
is provided by the SYMLO command (as in Cases 1 and 2) or the COM
command (as in Case 3). Because this information is missing, some of
the displays you produce later in this demonstration will not match the
symbolic displays shown in this manual. For more information on the
ADDS command, refer to the Command Dictionary of your System Users
Manual.

You've patched the demonstration program into program memory and placed
the program symbols in the symbol table. Now it's time to run the
program.

RF.V ~F.P 1QR~ '7fT r::,.,

8048 Demonstration Run 8048 Emulator Specifics Users

RUN THE DEMONSTRATION PROGRAM

From now until the end of the demonstration, the commands you are to
enter are shown in lowercase. If you are not logged in to an 8560, you
may enter commands in either lowercase or uppercase. If you are using
an 8560, you must enter the name of every command in lowercase (and your
system prompt--rs-"$", not n>,,).

Now -':1'1""\11' .",.0
JVY y~ loaded the program into memory, you need to:

• verify that the program was loaded correctly; and

• put values into the table in memory, for the program to add.

Check Memory Contents Again. Before
memory locations 40--11F with zeros.
with the following command line:

you loaded the program, you filled
Look at the same memory area again

> d 40 11f <CR>
o 1 234 5 6 7 8 9 ABC D E F

0040 00 42 1A 00 00 00 00 00 00 00 00 00 00 00 00 00
0050 uu 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOAO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOBO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOCO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OODO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOEO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOFO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0100 B9 32 BF 05 27 61 19 EF 05 AA 23 F7 00 A3 00 00
0110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

The object code is loaded in two different blocks:

• B ••••••••••••••

................

.2 •• 'a •••• ' ••.••

• The 8048 machine instructions are loaded at address 100
(specified by the first ORG directive in the source code).

• The information for the Exit SVC is loaded at address 40
(specified by the second ORG directive).

The contents of the table at address 32 are still undefined, but you'll
put some values into the table in just a few minutes.

Turn On Symbolic Display. Enter the following command to tell the sys
tem to modify its displays by replacing hexadecimal numbers with symbols
from your program, where appropriate.

> symd on <CR>

~.". -('\

(M-?O REV ~EP 1983

8048 Emulator Specifics Users 8048 Demonstration Run

Disassemble the Object Code. The DI (DIsassemble) command displays
memory contents both in hexadecimal notation and in assembly language
mnemonics. You can use the DI command to verify that the object code in
memory corresponds to your source code. Enter the following command to
disassemble the area of memory occupied by the executable part of your
program:

> di 100 10e <CR>

LaC INST MNEM OPER
SECTION (DEMO)
START B932 MOV R1,#32
+000102 BF05 MOV R7,#05
+000104 27 CLR A
LOOP 61 ADD A,@R1
+000106 19 INC R1
+000107 EF05 DJNZ R7,#05 0105
+000109 AA MOV R2,A
+00010A 23F7 MOV A,#F7
+00010C 00 Nap
+00010D A3 MOVP A,@A
+00010E 00 Nap
+00010E 12 Nap

Compare the DI display with the assembler listing you generated earlier,
or refer back to Fig. 7H-10.

The line "SECTION (DEMO)" in the D1 display indicates that the object
code being disassembled comes from the program section called DEMO. In
fact, the entire memory area used by your program (location 0 through
the end of the program --- location 10E) belongs to section DEMO. This
section was declared by the SECTION directive in the source code. (If you
used the ADDS command to create your symbols, as in Case 4, the section
name shown in the DI display is NO.SECTION.)

The LOC (location) column of the DI display contains information that
enables you to correlate the display with your assembler listing. The
symbols START and LOOP in the DI display correspond to the labels START
and LOOP in the source code. For those lines of the display where the
location does not correspond to a label in the symbol table, DI
substitutes the address of the instruction relative to the beginning of
the section, as shown in the address field of your assembler listing.
If you haven't loaded the pertinent symbols and related information into
the symbol table (using a command such as SYMLO), the DI command
supplies absolute (actual) addresses in the LaC column. (Since section
DEMO begins at address 0, the relative address, or offset, is the same
as the absolute address in this display. This offset feature is much
more useful for sections that don't start at address 0.)

Now you've seen that your system can use the symbol table to translate
numbers into symbols to make a display easier to read. Your system can
also translate a symbol in a command line into an address. For example,
since your system knows that the symbol START is equivalent to the
address 100, you could have entered the DI command in any of the
following ways:

REV SEP 1983 7H-59

8048 Demonstration Run 8048 Emulator Specifics Users

di 100 10E
di START 10E
di start start+Oe
di 100 START+OE

Notice that a symbol can be entered in either lowercase or uppercase.

The feature that enables DOS/50and 03140 to correlate symbols from your
program with the numbers they represent is termed symbolic debug.

Put Values into the Table in Memory. The demonstration program sums five
numbers from a table in memory. Use the P (Patch) command to store the
numbers 1, 2, 3, 4, and 5 in the table. Do you remember what the
address of the table is? It doesn't matter, as long as you remember
that the symbol TABLE represents that address.

> p table 0102030405 <CR)

address of
table: 4032

string of bytes to be stored
at addresses 4032--4036

Check the Contents of the Table. Use the D command to display the
contents of the table. (When you don't specify an upper boundary for
the area to be dumped, the D command dumps 16 bytes.)

+------ lower address: 4032
I
I
I
I

+-- upper address: omitted
(defaults to lower address + OF)

----- =
) d table <CR)

2 3 4 5 6 7 8 9 ABC D E F 0 1
004032 01 02 03 04 05 27 EB 8F C3 3C EB B6 9D 2B 00 42 ••• ' ••• < ... + ••• B

Notice that bytes 4032--4036 (the table) contain the values you patched
in. Bytes 4037--4041 contain random data left over from previous system
operations.

The following command dumps only the contents of the table:

7H-60

> d table
2 3 4 5 6 7 8 9 ABC D E F 0

004032 01 02 03 04 05

REV SEP

8048 Emulator Specifics Users 8048 Demonstration Run

Start Program Execution

Enter the G (Go) command to start program execution at location 100, the
transfer address specified by the END directive in the source code. (If
you followed "Case 4: Patch the Program into Memory," you must enter G
START instead.)

) 8. <CR)

LOC IN ST MNEM
010D A3 MOVP
010D <BREAK

accumulator
I

table
pointer

I

sum of
table
I

pass
counter

I
v v v v

OPERAND EADD A PSW FLAGS TR RB RO R1 R2 R3 R4 R5 R6 R7
A,@A 00 08 00 00 00 0 19 37 OF A6 FD 00 BE 00

TRACE)

The program executes, and when the Exit SVC occurs, the program breaks
(stops), and the contents of the emulator registers are displayed. The
Exit SVC uses the accumulator, so the sum of the numbers in the table is
transferred into R2: 1+2+3+4+5:0F.

MONITOR PROGRAM EXECUTION

You have assembled, loaded, and executed the demonstration program. The
rest of this demonstration shows you some commands for monitoring
program execution. You can watch the changes in the emulator's
registers and observe the effect of each instruction as the program
proceeds.

Trace All Instructions. The TRA (TRAce) command lets you observe the
changes in the 8048 registers as the program proceeds. When you enter a
TRA command and then start execution with the G command, display lines
are sent to the system terminal. As each instruction executes, the
display line shows the instruction (as in the DIsassemble display) and
the contents of the registers after that instruction has executed.
Enter the following command line to trace all of the program's
instructions:

) tra all <CR)

REV SEP 1983 7H-61

8048 Demonstration Run 8048 Emulator Specifics Users

Enter the command G START (or G 100) to resume program execution at the
beginning of the program:

> g start <CR>

As the program executes, the following trace is displayed. Remember
that you can type CTRL-S to suspend the display and CTRL-Q to resume the
display.

Loe INST MNEM OPERAND EADD A PSW FLAGS TR RB RO R1 R2 R3 R4 R5 R6 R7
SECTION (DEMO)
START B932 MOV
+000102 BF05 MOV
+000104 27 CLR
LOOP 61 ADD
+000106 19 INC
+000107 EF05 DJNZ
LOOP 61 ADD
+000106 19 INC
+000107 EF05 DJNZ
LOOP 61 ADD
+000106 19 INC
+000107 EF05 DJNZ
LOOP 61 ADD
+000106 19 INC
+000107 EF05 DJNZ
LOOP 61 ADD
+000106 19 INC
+000107 EF05 DJNZ
+000109 AA MOV
+00010A 23F7 MOV
+00010C 00 Nap
+00010D A3 MOVP
+00010D <BREAK

R1,#32H 07 08 00 00 00 0
R7,#05H 07 08 00 00 00 0
A 00 08 00 00 00 0
A,@R1 01 08 00 00 00 0
R1 01 08 00 00 00 0
R7,#05H 0105 01 08 00 00 00 0
A,@R1 03 08 00 00 00 0
R1 03 08 00 00 00 0
R7,#05H 0105 03 08 00 00 00 0
A,@R1 06 08 00 00 00 0
R1 06 08 00 00 00 0
R7,#05H 0105 06 08 00 00 00 0
A,@R1 OA 08 00 00 00 0
R1 OA 08 00 00 00 0
R7,#05H 0105 OA 08 00 00 00 0
A,@R1 OF 08 00 00 00 0
R1 OF 08 00 00 00 0
R7,#05H 0105 OF 08 00 00 00 0
R2,A OF 08 00 00 00 0
A,#F7H F7 08 00 00 00 0

F7 08 00 00 00 0
A,@A 00 08 00 00 00 0

TRACE>

19 32 07 A6 FD 00 BE 00
19 32 07 A6 FD 00 BE 05
19 32 07 A6 FD 00 BE 05
19 32 07 A6 FD 00 BE 05
19 33 07 A6 FD 00 BE 05
19 33 07 A6 FD 00 BE 04
19 33 07 A6 FD 00 BE 04
19 34 07 A6 FD 00 BE 04
19 34 07 A6 FD 00 BE 03
19 34 07 A6 FD 00 BE 03
19 35 07 A6 FD 00 BE 03
19 35 07 A6 FD 00 BE 02

n~ A~ ~n nn O~ n~
I~ ~J VI ~v ru vv U~ V~

19 36 07 A6 FD 00 BE 02
19 36 07 A6 FD 00 BE 01
19 36 07 A6 FD 00 BE 01
19 37 07 A6 FD 00 BE 01
19 37 07 A6 FD 00 BE 00
19 37 OF A6 FD 00 BE 00
19 37 OF A6 FD 00 BE 00
19 37 OF A6 FD 00 BE 00
19 37 OF A6 FD 00 BE 00

After the accumulator is cleared, the program begins to store the sum of
the numbers being added. The 8048 ADD A,@R1 instruction adds a number
from the table into the accumulator. Because the accumulator is also
used for the Exit SVC, the program transfers the sum of numbers
(1+2+3+4+5:0F) from the accumulator into R2.

Register R7, the pass counter, is set to contain 5 at the beginning of
the program. It decreases by one (because of the DJNZ instruction) each
time a number is added into the accumulator. The program ,ends after
register R7 reaches zero.

The R1 register, set to contain 32 at the start of the program,
increments (because of the INC R1 instruction) each time a number is
added to the accumulator. At the end of the program, the R1 register
has been incremented five times and contains 37.

1H-62 REV SEP 1aA.~
''; -.,J

8048 Emulator Specifics Users 8048 Demonstration Run

Trace to the Line Printer. By adding the parameter)LPT to a command,
you can direct that command's output to the line printer instead of to
the system terminal. First, verify that your line printer is properly
connected and powered up. Then enter the following command to execute
the program with trace output directed to the line printer:

) g start)LPT <CR)

NOTE

If you're operating in TERM mode with an 8560, use one of the
following commands in place of the command shown:

• g start I Ip1r sends the display to the 8560 line
printer.

• g start \)LPT sends the display to the line printer
on the 8540 or 8550.

Trace Jump Instructions Only. Another way to monitor the program's
execution is to look only at the jump 'instructions. By tracing the jump
instructions, you can still observe the changes in the registers, but
you save time and space by not tracing the instructions within the loop.
Enter the following command line to trace only the jump instructions
when the loop is being executed:

) tra jmp loop 108 <CR)

+~~ upper address } Within this range,
} only jump instructions

+------ lower address } are traced.
(105)

Again, enter the G command line to start program execution. The
following trace is displayed:

) g start <CR)

LOC INST MNEM OPERAND EADD A PSW FLAGS TR RB RO R1 R2 R3 R4 R5 R6 R1
SECTION (DEMO)
START B932 MOV
+000103 61 ADD
+000105 19 INC
+000101 EF05 DJNZ
+000101 EF05 DJNZ
+000101 EF05 DJNZ
+000101 EF05 DJNZ
+000101 EF05 DJNZ
+000109 AA MOV
+000109 <BREAK

R1,132H 01 08 00 00 00
A,@R1 01 08 00 00 00
R1 01 08 00 00 00
R1,#05H 0105 01 08 00 00 00
R1,#05H 0105 03 08 00 00 00
R1,105H 0105 06 08 00 00 00
R1,105H 0105 OA 08 00 00 00
R1,#05H 0105 OF 08 00 00 00
R2,A OF 08 00 00 00

TRACE)

o 19 32 01 A6 FD 00 BE 00
o 19 32 01 A6 FD 00 BE 05
o 19 33 01 A6 FD 00 BE 05
o 19 33 01 A6 FD 00 BE 04
o 19 34 01 A6 FD 00 BE 03
o 19 35 01 A6 FD 00 BE 02
o 19 36 01 A6 FD 00 BE 01
o 19 31 01 A6 FD 00 BE 00
o 19 31 OF A6 FD 00 BE 00

As with the TRA ALL display, observe that register R1 (the pass counter)

REV SEP 1983 1H-63

8048 Demonstration Run 8048 Emulator Specifics Users

is decremented. The R1 register (the table pointer) is incremented, and
the accumulator stores the sum of the numbers from the table. With the
TRA JMP command in effect, the instructions within the loop are not
displayed ..

Check the Status of the Trace. The TRA command without any parameters
displays the trace conditions that are presently set. Because you can
have up to three trace selections in effect at the same time, it is
useful to be able to see which trace selections
trace status with the following command line:

> tra

TRACE
TRACE

<CR>

ALL,OOOOOO,OOFFFF
JMP,LOOP,0108

your

As you've specified, TRA ALL is in effect for addresses 0--104, TRA JMP
is in effect for addresses 105--108, and TRA ALL is again in effect for
addresses 109--FFFF.

Set a Breakpoint after a Specific Instruction. Now that you've seen how
the program adds the numbers together, here's a new task: to add only
the third and fourth numbers from the table. To perform this task, you
want the pass counter to contain 2, and the table pOinter to contain 34
(the address of the third number in the table). You can 'accomplish
these changes without altering the object code in program memory.
First, stop program execution after the pass counter and the table
pointer have been set.. While the program is stopped, enter new values
for the pass counter and the table pointer. When execution resumes, the
program treats the new values as if they were the original programmed
values.

Enter the following command line to trace all of the instructions as the
program executes:

> tra all <CR>

Check the trace status with the following command line:

> tra <CR>

TRACE ALL,OOOO,FFFF

The TRA selections we set earlier are made obsolete by the TRA ALL
command just entered.

Now set a breakpoint so that the program stops after the table pointer
and pass counter have been set. The following command causes the
program to stop after it executes the MOV R7 instruction at address 102:

> bk 102 <CR>
= ---

+-- breakpoint address

+----- breakpoint number

7H-64 REV SEP 1983

8048 Emulator Specifics Users 8048 Demonstration Run

(can be 1 or 2)
Use the G command to start program execution:

> g start <CR>

LaC INST MNEM OPERAND EADD A PSW FLAGS TR RB RO R1 R2 R3 R4 R5 R6 R7
SECTION (DEMO)
START B932 MOV R1,#32H 07 08 00 00 00 0 19 32 07 A6 FD 00 BE 00
+000102 BF05 MOV R7,#05H 07 08 00 00 00 0 19 32 07 A6 FD 00 BE 05
+000102 <BREAK TRACE, BKPT1>

The TRA ALL command enabled display of all instructions up to and
including the instruction at the breakpoint.

Set New Values in Pass Counter and Table Pointer; Check Results. Now
that you've reached the breakpoint, you can change the contents of the
registers while execution is stopped. The break display shows that R7
(the pass counter) contains 5, and that the R1 register (the table
pointer) points to address 32. Use the S (Set) command to set the
number of passes to two and set the table pointer to 34:

> s r1=34 r7=02 <CR>

+-- contents of register R7

+-------- contents of register R1

The S command does not produce a display, but you can use the DS
(Display Status) command to check the values in the registers you
changed. DS displays the contents of each emulator register and status
flag. Check the result of the previous S command with the following
command line:

> ds <CR>

PC CHIP EPM A PSW TR RB
0104 8048 Y OF 08 00 0

REGISTERS
RO-R7= 19 34 OF A6 FD 00 BE 02
AO-A7= 86 00 2F 40 49 09 7D 00

IIP EI TI TC MB STACK RETURN TF FO F1 AN STF DMA IBF OBF FLG
N 0 0 0 0 08 1F06 0 0 0

The DS display shows that the pass counter and the table pointer now
contain the new values.

NOTE

The DS display varies slightly for different microcomputers in
the 8048 family.

REV SEP 1983 7H-65

8048 Demonstration Run 8048 Emulator Specifics Users

Resume Program Execution. If you enter the G command with no parameters,
program execution starts where it left off. Resume program execution
after the breakpoint with the following command line:

> ~ <CR)

LOC INST MNEM OPERAND EADD A PSW FLAGS TR RB RO R1 R2 R3 R4 R5 R6 R7
SECTION (DEMO)
+000104 27 CLR
LOOP 61 ADD
+000106 19 INC
+000101 EF05 DJNZ
LOOP 61 ADD
+000106 19 INC
+000107 EF05 DJNZ
+000109 AA MOV
+00010A 23F7 MOV
+00010C 00 NOP
+00010D A3 MOVP
+00010D <BREAK

A 00 08 00 00 00
A,@Rl 01 08 00 00 00
R1 01 08 00 00 00
R7,#05H 0105 01 08 00 00 00
A,@R1 03 08 00 00 00
R1 03 08 00 00 00
R7,#05H 0105 03 08 00 00 00
R2,A OF 08 00 00 00
A,#F7H F7 08 00 00 00

F7 08 00 00 00
A,@A 00 08 00 00 00

TRACE)

o 19 34 OF A6 FD 00 BE 02
o 19 34 OF A6 FD 00 BE 02
o 19 35 OF A6 FD 00 BE 02
o 19 35 OF A6 FD 00 BE 01
o 19 35 OF A6 FD 00 BE 01
o 19 36 OF A6 FD 00 BE 01
o 19 36 OF A6 FD 00 BE 00
o 19 36 07 A6 FD 00 BE 00
o 19 36 F7 A6 FD 00 BE 00
o 19 36 07 A6 FD 00 BE 00
o 19 36 07 A6 FD 00 BE 00

Notice that the program performed two passes through the loop, and that
the program added the third and fourth numbers in the table (3 + 4 = 7).

SUMMARY OF 8048/8021/8041A/8022 EMULATOR DEMONSTRATION RUN

You have assembled, loaded, executed, and monitored the demonstration
run program. You have used the following commands:

• SEL selects the 8048 assembler and emulator

• ASM creates object code from an assembly language program

• LINK -- links object code into a load module

• F fills an area of memory with a specified value

• D displays memory contents in ASCII and hexadecimal format

• LO -- loads object code into memory

• DI translates memory contents
mnemonics

• P -- patohes a string of bytes into memory

• SYMD ON -- turns on symbolic debug feature

• G -- begins or resumes program execution

• TRA selects instructions to be traced during program
execution

• BK -- sets a breakpoint

• S -- modifies emulator processor registers

• DS -- displays the status of the emulator processor

7H-66 REV SEP 1983

8048 Emulator Specifics Users 8048 Demonstration Run

Delete the Demonstration Run Files

Now that you've finished the demonstration run, you can delete the
source file, object file, listing file, and load file. If you're using
an 8550, the source and object files are still available to you on the
8048/8021/8041A/8022 emulator installation disk. If you're using an
8560, remember that once you delete the source file (~), there is no
way of recovering it.

Delete 8550 Files. If your files are on the 8550, use the following
procedure to delete them. First use the USER command to move from the
DEMO directory back into the directory you were in at the start of the
demonstration. Recall that you marked that directory with the brief
name IROOT.

) USER IROOT <CR)

Now enter the following command to delete the DEMO directory and the
files it contains:

) DEL IDEMOI* DEMO <CR)

Delete ASM ? Y <CR)
Delete LOAD ? Y <CR)
Delete OBJ ? Y <CR)
Delete ASML ? Y <CR)
Delete DEMO ? Y <CR)

Before deleting each file, DOS/50 asks you whether you really want to
delete it. You type "Y" for yes.

Delete 8560 Files. If your files are on the 8560, use the following
procedure to delete them. Enter the following command to remove all
files in the working directory, including the source file:

$ rm * <CR)

Now move from the demo directory back into the parent directory and
remove the demo directory itself:

$ cd •• <CR)
$ rmdIr demo <CR)

Turn Off Your System

For instructions on turning off your 8550 or 8540, refer to the Learning
Guide of your System Users Manual.

REV SEP 1983 7H-67

8048 Demonstration Run 8048 Emulator Specifics Users

Resume Program Execution. If you enter the G command with no parameters,
program execution starts where it left off. Resume program execution
after the breakpoint with the following command line:

) ~ <CR)

LOC INST MNEM
SECTION (DEMO)
+000104 27 CLR
LOOP 61
+000106 19 INC
+000107 EF05 DJNZ
LOOP 61 ADD
+000106 19 INC
+000107 EF05 DJNZ
+000109 AA MOV
+00010A 23F7 MOV
+00010C 00 NOP
+00010D A3 MOVP
+00010D <BREAK

OPERAND EADD A PSW FLAGS TR RB RO R1 R2 R3 R4 R5 R6 R7

A

R1

00 08 00 00 00
Oi 08 00 00 00
01 08 00 00 00

R7,#05H 0105 01 08 00 00 00
A,@R1 03 08 00 00 00
R1 03 08 00 00 00
R7,#05H 0105 03 08 00 00 00
R2,A OF 08 00 00 00
A,HF7H F7 08 00 00 00

F7 08 00 00 00
A,@A 00 08 00 00 00

TRACE)

o 19 34 OF A6 FD 00 BE 02
o i9 34 OF A6 FD 00 BE 02
o 19 35 OF A6 FD 00 BE 02
o i9 35 U~ A6 FD 00 BE 01
o 19 35 OF A6 FD 00 BE 01
o 19 36 OF A6 FD 00 BE 01
o 19 36 OF A6 FD 00 BE 00
o 19 36 07 A6 FD 00 BE 00
o 19 36 F7 A6 FD 00 BE 00
o 19 36 07 A6 FD 00 BE 00
o 19 36 07 A6 FD 00 BE 00

Notice that the program performed two passes through the loop, and that
the program added the third and fourth numbers in the table (3 + 4 = 7).

SUMMARY OF 8048/8021/8041A/8022 EMULATOR DEMONSTRATION RUN

You have assembled, loaded, executed, and monitored the demonstration
run program. You have used the following commands:

• sa selects the 8048 assembler and emulator

• ASM creates object code from an assembly l~nguage program

• LINK -- links object code into a load module

• F fills an area of memory with a specified value

• D displays memory contents in ASCII and hexadecimal format

• LO -- loads object code into memory

• D1 translates memory contents into assembly language
mnemonics

• P -- patches a string of bytes into memory

• SYMD ON -- turns on symbolic debug feature

• G -- begins or resumes program execution

• TRA selects instructions to be traced during program
execution

• BK -- sets a breakpoint

• S -- modifies emulator processor registers

• DS -- displays the status of the emulator processor

7H-68 ADD JUNE 1982

8048 Emulator Specifics Users 8048 Demonstration Run

Delete the Demonstration Run Files

Now that you've finished the demonstration run, you can delete the
source file, object file, listing file, and load file. If you're using
an 8550, the source and object files are still available to you on the
8048/8021/8041A/8022 emulator installation disk. If you're using an
8560, remember that once you delete the source file (asm), there is no
way of recovering it.

Delete 8550 Files. If your files are on the 8550, use the following
procedure to delete them. First use the USER command to move from the
DEMO directory back into the directory you were in at the start of the
demonstration. Recall that you marked that directory with the brief
name IROOT.

) USER IROOT <CR)

Now enter the following command to delete the DEMO directory and the
files it contains:

) DEL IDEMOI* DEMO <CR)

Delete ASM ? Y <CR)
Delete LOAD ? Y <CR)
Delete OBJ ? Y <CR)
Delete ASML ? Y <CR)
Delete DEMO ? Y <CR)

Before deleting each file, DOS/50 asks you whether you really want to
delete it. You type "Y" for yes.

Delete 8560 Files. If your files are on the 8560, use the following
procedure to delete them. Enter the following command to remove all
files in the working directory, including the source file:

$ rm * <CR)

Now move from the demo directory back into the parent directory and
remove the demo directory itself:

$ cd •• <CR)
$ rmdir demo <CR)

Turn Off Your System

For instructions on turning off your 8550 or 8540, refer to the Learning
Guide of your System Users Manual.

ADD JUNE 1982

8540 System Users

Section 8

PROM PROGRAMMER SPECIFICS

This section describes the general use of the PROM
Programmer, and provides a place to insert your PROM
Programmer Specifics supplements.

USING THE PROM
PROGRAMMER

The 8500 MDL Series PROM Programmer consists of three
assemblies:

1. The controller is a circuit board that is installed in the
8540 mainframe.

2. The front panel assembly is installed in the 8540 front
panel.

3. The characteristic module is a circuit card that you
insert into the front panel assembly in order to
configure your PROM Programmer for a particular set
of PROM devices.

Following are step-by-step procedures for inserting and
using a characteristic module. It is assumed that the PROM
Programmer Controller, front panel assembly, and
operating system ROM have been installed according to
the procedures in the PROM Programmer Controller
Installation Manual. The steps within each procedure must
be performed in the specified order.

Do not start up or turn off the 8540 when you have a
PROM device inserted in the zero-insert ion-force
(ZIF) socket of the characteristic module. Voltage
transients may damage your PROM.

NOTE

If you are using a multi-board emulator, refer to your
Emulator Specifics supplement for more information
on using your PROM Programmer.

Inserting a Characteristic Module

SI ide the characteristic module upward into the front panel
assembly until the front panel of the characteristic module
fits snugly against the front panel assembly. See Fig. 8-1
for the correct angle of insertion. When the characteristic
module is properly inserted, the ZIF socket on the
characteristic module protrudes from the front panel
assembly.

3936-21

Fig. 8-1. Inserting a characteristic module.

8-1

Using the PROM Programmer

Starting Up the 8540

1. First, be certain that you do not have a PROM device in
the ZIF socket of the characteristic module. Then, start
up the 8540. (For start-up instructions, refer to the
Learning Guide section of this manual.) The SELF
TEST indicator on the front panel assembly of the
PROM PiOgrammer should light briefly (5 seconds
maximum), and then go out.

2. Turn on the PROM POWER switch, located on the
PROM Programmer front panel assembly. The READY
indicator will light if a characteristic module is present
in the front panel assembly and the PROM
Programmer has powered up correctly.

If the SELF TEST indicator stays on, or if the READY
indicator does not light, enter the PSTAT command on
your system terminal. The PSTAT display should
indicate the problem. For PSTAT display exampies and
error message explanations, see the PROM Pro
grammer Specifics supplement for the characteristic
modu Ie you are using. If the problem persists, refer to
the PROM Programmer Controller Installation Manual.

Inserting a PROM into the Characteristic
Module

~.~ ~ ~ .~~~;; ~<
\.r .r./'./' f""./' . .r1" -'"'.~

To prevent potential damage to your PROM device, do
not insert or remove a PROM when the SELF TEST
light on the front panel assembly is ON.

You can insert or remove a PROM when any of the
following conditions are true:

• the characteristic-module has not been inserted into the
front panel assembly, or

• the 8540 is not powered up, or

• the PROM POWER switch is OFF, or

• the READY light on the front panel assembly is ON.

At the time of this writing, all supported PROMs are
inc:tlrttln !:If'f'nrninn tn thtl fnlln\/\/inn nrnf'tlnllrtl· o •• _ __ _ ••• " ... _ _ ._ •• _ ... 0 •• " ,..... _ ___ ._.

1. Raise the lever on the ZIF socket of the characteristic
module.

2. Insert the PROM into the ZIF socket so that pin 1 of the
PROM is next to the lever.

3. Depress the lever so that the socket grips the pins of
the PROM.

8-2

PROM Programmer Specifics-8540 System Users

C ""',/,--/ -..../ -....r.-..F-')

~ CAUTION <
> f'-".r-"./"'-./' .r--.r -" '

Btf Ctfrialll ihal pm 1 uf lht1 PROlvi is ai iht1 t1nu uf lht1

ZIF socket next to the lever. The PROM Programmer
cannot always detect an incorrectly socketed device;
damage to the PROM can result from an attempt to
program an incorrectiy socketed PROM.

Most PROM devices have an indentation near pin 1;
other PROMs may have a small dot painted on that
end. Refer to the manufacturer's specifications if you
are in doubt.

PROM Programmer Commands

The system commands that control the PROM Programmer
are described in detail in each PROM Programmer
Specifics supplement.

Turning Off the 8540

Before you turn off the 8540, be certain to remove the
PROM from the characteristic moduie.

PROM PROGRAMMER
SPECIFICS SUPPLEMENTS

Each characteristic module is accompanied by a PROM
Programmer Specifics supplement that provides information
specific to the characteristic module. Each supplement is
designed to be inserted into this manual.

These PROM Programmer Specifics supplements are
numbered as if they were separate sections of this manual.
For example, the supplement that documents the
2716/2732 PROM Programmer Module is labeled
"Section 8A," and the first illustration in that supplement is
numbered "Fig. BA-1." Similarly. other supplements are
labeled Sections 8B, 8C, etc. Figures, pages, and tables are
numbered accordingly.

Each supplement presents the following information:

• A list of PROMs supported by the characteristic module.

specific to the characteristic module.

• One or more examples of each command supported by
the characteristic module.

• Any irregularities that should be noted.

• Features designed to support PROMs with special
programming needs.

This manual supports the
following TEKTRONIX products:

8550 8540
Option Option

31 31

Tektronix, Inc.
P.O. Box 500

Product

8550F31

Beaverton, Oregon 97077
070-3868-00
Product Group 61

COMMITTED TO EXCELLENCE

This manual supports a software/firmware
module that is compatible with

DOS/50 V0'2.xx-xx (8550)
05/40 V01.xx-xx (8540)

PLEASE CHECK FOR CHANGE INFORMATION
AT THE REAR OF THIS MANUAL.

8500
MODULAR MOL SERIES

2716/2732
PROM PROGRAMMER

SPECIFICS
USERS MANUAL

Serial Number --------
First Printing OCT 1981
Revised NOV. 1981

LIMITED RIGHTS LEGEND

Software License No. ______________ _

Contractor: T ektron ix, Inc.

Used: Entire document subject to limited rights.

Those portions of this technical data indicated as limited rights data shall not,
without the written permission of the above Tektronix, be either (a) used,
released or disclosed in whole or in part outside the Customer, (b) used in whole
or in part by the Customer for manufacture or, in the case of computer software
documentation, for preparing the same or similar computer software, or(c) used
by a party other than the Customer, except for: (i) emergency repair or overhaul
work only, by or for the Customer, where the item or process concerned is not
otherwise reasonably available to enable timely performance of the work,
provided that the release or disclosure hereof outside the Customer shall be
made subject to a prohibition against further use, release or disclosure; or (ii)
release to a foreign government, as the interest of the United States may
require, only for information or evaluation within such government or for
emergency repair or overhaui work by or for such governmeni under ihe
conditions of (i) above. This legend, together with the indications of the portions
of this data which are subject to such limitations shall be included on any
reproduction hereof which includes any part of the portions subject to such
limitations.

RESTRICTED RIGHTS IN SOFTWARE

The software described in this document is licensed software and subject to
restricted rights. The software may be used with the computer for which or with
which it was acquired. The software may be used with a backup computer if the
computer for which or with which it was acquired is inoperative. The software
may be copied for archive or backup purposes. The software may be modified or
combined with other software, subject to the provision that those portions of the
derivative software incorporating restricted rights software are subject to the
same restricted rights.

Cooyright © 1981 Tektronix, Inc. All rights reserved. Contents of this publication
may not be reproduced in any form without the written permission of Tektronix,
Inc.

Products of Tektronix, Inc. and its subsidiaries are covered by U.S. and foreign
patents and/or pending patents.

TEKTRONIX, TEK, SCOPE-MOBILE, and ~ are registered trademarks of
Tektronix, Inc. TELEQUIPMENT is a registered trademark of Tektronix U.K.
Limited.

Printed in U.S.A. Specification and price change privileges are reserved.

2716 PROM Programmer Specifics Users

Section SA

2716/2732 PROM PROGRAMMER SPECIFICS

Page

Introduction ... SA-1

Devices Supported ... SA-1

PROM Programmer Commands .. SA-2

Command Parameters .. SA-:2
Command Modifiers .. SA-3
PROM Programmer Command Dictionary ... SA-4

CPR-Compares PROM With Memory .. SA-4
PST AT -Reports PP Status .. SA-6
PTYPE-Displays PROM Types ... SA-7
RPR-Reads PROM ... SA-S
WPR-Writes to PROM .. 8A-1 0

Error Messages ... SA-12

@ 8A-i

2716 PROM Programmer Specifics Users

@

Section SA

2716/2732 PROM PROGRAMMER SPECIFICS

INTRODUCTION
This supplement is designed to b{' inserted into ant of the)"OW' nc '~('ction~

• Section 8 of the 8540 System Users Manual,

• Section 8 of the 8550 System Users Manual (~OS/50 Version 2), or

• Section 9 of the 8550 System Users Manual (~OS/50 Version 1).

Throughout this supplement, "your System Userc; Manual" refers to the 8550 System Users
Manual or 8540 System Users Manual. "Module 1" refers to the 2716/2732 PROM
Programmer Module.

The PROM Programmer module is static-sensitive. To avoid damage to the
module, handle it as little as possible in high-static situations. Pick up the
module by the body, not by the edge connectors. A void sliding the module over
any surface.

DEVICES SUPPORTED
Module 1 enables the PROM Programmer to program a set of similar devices. Each of the
PROMs supported by Module 1 is a MOS, single supply, byte-wide chip. Table 8A-1 lists the
device types supported by Module 1.

Table 8A-1
Programmable Devices Supported by Module 1

Manufacturer Device PROM typea Description

Texas Instruments TMS 2508 2508/TI 1 K x 8 bit EPROM
Intel 2758 2758/1 1 K x 8 bit EPROM
Intel 2758 S1865 2758S1865/1 1 K x 8 bit EPROM
Texas Instruments TMS 2516 2516/TI 2K x 8 bit EPROM
Intel 2716 2716/1 2K x 8 bit EPROM
Intel 2816 2816/1 2K x 8 bit EEPROM
Texas Instruments TMS2532 2532/TI 4K x 8 bit EPROM
Intel 2732 2732/1 4K x 8 bit EPROM
Intel 2732A 2732A/1 4K x 8 bit EPROM
Motorola MCM 68764 68764/M 8K x 8 bit EPROM

a The names that specify the devices supported by Module 1 .

8A-'

Devices Supported 2716 PROM Programmer Specifics Users

8A-2

PROMs with programming characteristics similar to a PROM type may be available from other
manufacturers. The PROM Programmer with Module 1 programs any PROM that has exactly the
same specifications as one of those listed above. Refer to the manufacturer's data sheets, and
use the PROM type identification of the device in the table whose specifications match those of
the one you have.

If you attempt to use a PROM which is not supported by this characteristic module, you will
receive an error message:

> CPR 0 3232/Z 0 40 (specifying a Zilog 3232 PROM)
CPR: Error 80 PROM type not supported

~
The PROM Programmer does not verify that the PROM inserted matches the
PROM type specification. The voltage levels necessary to successfully program
a PROM vary from one type to another. If the wrong PROM type is specified, your
PROM may be destroyed

PROM PROGRAMMER COMMANDS
There are five system commands for use with the PROM Programmer:

• CPR (Compare PROM) compares the contents of the specified PROM addresses with the
corresponding data in program memory, and displays any differences.

• RPR (Read PROM) reads the contents of the specified PROM addresses into program
memory.

• WPR (Write PROM) writes data from program memory into the PROM.

• PSTAT (PROM STATus) displays the current status of the PROM Programmer, including
any error conditions.

• PTYPE (PROM TYPE) displays information about the characteristic module currently
inserted in the front panel of the PROM Programmer, informing the user what PROMs it
supports and what their characteristics are.

The PSTAT and PTYPE commands are issued without ,parameters. The following subsections
describe the parameters that are used with the CPR, RPR, Cinu \NPR commands.

Command Parameters
The following are necessary parameters for any invocation of the CPR, RPR, orWPR commands.

• Memlo specifies the starting address from which data is transferred to the PROM or to
which data is placed after being read from the PROM.

2716 PROM Programmer Specifics Users Commands

@

• Promtype is the alphanumeric name specifying the PROM with which you are working.
See Table 8A-1 for the promtype associated with your chip, or use the PTYPE command
described below. The promtype must be entered exactly as shown; letters must be
uppercase.

• Promlo specifies the (hexadecimal) PROM address which you wish to be the starting point
for the specified command.

• Promhi specifies the ending PROM address.

Command Modifiers
For illustrations of the use of the command modifiers, see the following subsection, PROM
Programmer Command Dictionary.

NOTE

Syntax for this section has been updated for DOS/50 Version 2 and OS/40.1f
you are using DOS/50 Version 1, al/ "dash modifiers" (such as -L, -M) should be
"colon modifiers" (:L, :M). The Technical Notes section of the 8550 System
Users Manual describes the differences between Version 1 and Version 2.

Modifier Meaning

-a Provides inverted addressing (hi=O, 10w=1). Use -A in applications where the levels
applied to the PROM's address pins are inverted.

-d Data is stored in the PROM in inverted form (hi=O, 10w=1). For a read operation (RPR)
this means that the data from the PROM is inverted before being stored in program
memory. During a write (WPR) data is inverted before being written into PROM.

-I For the 8-bit PROMs supported by Module 1, this modifier indicates that data being
read from (or written into) the PROM represents the least significant bytes of 16-bit
words in program memory. See also -R.

-m For 8-bit PROMs, this modifier indicates that data being read from (or written into)
PROM represents the most significant bytes of 16-bit words in program memory. See
also -R.

-n Specifies that no erase check is performed before a write operation. See the WPR
command for examples.

-r The -R modifier is used when the data in program memory is arranged in 16-bit
words. -R indicates that the bytes are arranged in reverse order in program memory,
that is, least significant byte first, followed by most significant byte.

-R is used with -M or -L. For example, if modifiers -M and -R are entered as part of a
RPR command when reading an 8-bit PROM, the bytes read from the PROM will be
placed in the second byte of each 16-bit word. See the RPR command for examples.

SA-3

CPR
Compares PROM With Memory

2716 PROM Programmer Specifics Users

8A-4

PROM Programmer Command Dictionary
This subsection gives the syntax and use of each PROM Programmer command as it pertains to
Moduie i. The format is the same as that of the Command Dictionary of your System Users
Manual.

SYNTAX

cpr [-a] [-d] [=~] [-r] memlo promtype promlo promhi

EXPLANATION

Compares the contents of the specified PROM addresses with the contents of program memory,
starting at the given memory address. The locations of any differences are displayed. If the
contents match, no message is displayed.

The CPR command is useful when you wish to verify that the data in the PROM is the same as the
data in a specified region of program memory.

EXAMPLES

Enter the following command to read the contents of ioeations 0-40 of an Intel2716 PROM into
locations 0-40 of program memory.

> RPR 0 2716/1 0 40

Now dump program memory to see what's been read:
> !2....2.....1:Q

o 1 2 3 4 5 6 7 8 9 ABC D E F
0000 54 48 49 53 20 49 53 20 41 20 54 45 53 54 2E 2E THIS IS A TEST ..
0010 54 48 49 53 20 49 53 20 41 20 54 45 53 54 2E 2E THIS IS A TEST ..
0020 54 48 49 53 20 49 53 20 41 20 54 45 53 54 2E 2E THIS IS A TEST ..
0030 54 48 49 53 20 49 53 20 41 20 54 45 53 54 2E 2E THIS
0040 54 T

@

CPR 2716 PROM Programmer Specifics Users
Compares PROM With Memory

@

If the data was read correctly, a CPR command at this point will return no message.
> CPR 0 2716/1 0 40

>

To illustrate the response you receive when an error is detected, use the P command to patch
new data into two locations in program memory.

> P 05 00

> P 07 00

Now compare the contents again:
> CPR 0 2716/1 0 40
*** COMPARE ERROR AT PROM ADDRESS=00005H
*** COMPARE ERROR AT PROM ADDRESS=OOOO7H

The discrepancies introduced into locations 5 and 7 of program memory were identified as
errors by the CPR command.

If you use the -A modifier in a CPR command, the address given in a "COMPARE ERROR"
message is actually the complement of the value that was applied at the PROM's address pins.

SA-6

PSTAT
Reports PP Status

2716 PROM Programmer Specifics Users

SA-6

I pstat

SYNTAX

, -

EXPLANATION

Displays the current condition of the PROM Programmer. Normally, PSTAT will report "no
errors." Conditions which prompt an error message include power failure, the absence of a
characteristic module, or PROM Programmer power off.

Error messages are discussed elsewhere in this supplement.

When no errors are present:
> PSTAT

EXAMPLES

.. ~PROM PROGRAMMER ERRORS DETECTED

Reporting an error condition:
> PSTAT
~OR-- POWER FAIL

@

2716 PROM Programmer Specifics Users PTVPE

@

Displays Device Types

SYNTAX

EXPLANATION

Displays information about PROMs supported by Module 1. The display consists of four
columns:

• PROM TYPE: the name that specifies each PROM supported by the characteristic module.
Each name is the model number of the primary source manufacturer, followed by a slash
and one or more letters specifying the manufacturer. For example, Intel's 2716 PROM is
identified as 2716/1. (Note that there are no spaces in the PROM TYPE designation.)

• MAX ADDRESS: the maximum addressable location of each PROM listed. For example,
3FFH indicates a total of 400H addressable bytes (0 through 3FF).

• ERASED STATE: the state of the bits (high or low) when the PROM device has been erased.
For the 8-bit PROMs supported by Module 1, HI is FF and LOW is 00.

• WORD LENGTH: the number of bits per word for each PROM. Since Module 1 supports only
1-byte (8-bit) wide PROMs, word length for all PROMs listed is eight.

EXAMPLES

> PTYPE

PROM TYPE MAX ADDRESS ERASED STATE WORD LENGTH

2508/TI 3FFH HI 8
2758/1 3FFH HI 8
2758S1865/I 3FFH HI 8
2516/TI 7FFH HI 8
2716/1 7FFH HI 8
2816/1 7FFH HI 8
2532/TI FFFH HI 8
2732/1 FFFH HI 8
2732A/I FFFH HI 8
68764/M 1FFFH HI 8

8A-7

RPR
Reads PROM

2716 PROM Programmer Specifics Users

SA-S

I SYNTAX

I r -"",
I rpr [-8] [-d) L -i"" J [-r] memlo promtype promlo promhi

EXPLANATION

Reads the contents of the specified PROM addresses into the specified location in program
memory. No message is displayed unless an error condition exists.

EXAMPLES

First use the F command to fill program memory with EE. Later, when you examine memory, the
EEs make it easy to see that new data was read in.

> F 0 40 EE

> D 0 40
--0-1 2 3 4 5 6 7 8 9 ABC D E F

0000 EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE
0010 EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE
0020 EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE
0030 EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE
0040 EE

Now use the RPR command to read the contents of memory locations 0-40 of a Texas
Instruments 2532 PROM into program memory, beginning at address O. Then dump the
contents of program memory, to verify that it now contains new data from the PROM.

> RPR 0 2532/TI 0 40

> D 0 40
--0-1 2 3 4 5 6 7 8 9 ABC D E F

0000 54 48 49 53 20 49 53 20 41 20 54 45 53 54 2E 2E
0010 54 48 49 53 20 49 53 20 41 20 54 45 53 54 2E 2E
0020 54 48 49 53 20 49 53 20 41 20 54 45 53 54 2E 2E
0030 54 48 49 53 20 49 53 20 41 20 54 45 53 54 2E 2E
0040 54

THIS IS A TEST ..
THIS IS A TEST ..
THIS IS A TEST ..
THIS IS A TEST ..
T

In the example above, no optional modifiers were needed. Next, assume that our 8-bit PROM is
to be used as the most significant half of a 16-bit memory system. Again, fill program memory
with EE's, read the PROM, and dump the results- This time: however, the -M modifier is used.

> F 0 40 EE

> RPR -M 0 2532/TI 0 40

> 0 0 40
--0-1 2 3 4 5 6 7 8 9 ABC D E F

0000 54 EE 48 EE 49 EE 53 EE 20 EE 49 EE 53 EE 20 EE
0010 41 EE 20 EE 54 EE 45 EE 53 EE 54 EE 2E EE 2E EE
0020 54 EE 48 EE 49 EE 53 EE 20 EE 49 EE 53 EE 20 EE
0030 41 EE 20 EE 54 EE 45 EE 53 EE 54 EE 2E EE 2E EE
0040 54

T.H.1.S .. 1.5 ..
A .. T.E.S.T
T.H.1.S .. 1.5 ..
A .. T.E.S.T
T

@

RPR 2716 PROM Programmer Specifics Users
Reads PROM

@

The results of the 0 command show that the a-bit bytes received from the PROM are now stored
in the most significant byte positions of a 16-bit data base in program memory.

Compare those results with the example below, in which memory is filled with EE and the RPR
command line includes the -L modifier.

> F 0 40 EE

> RPR -L 0 2532/TI 0 40

> D 0 40
---0-1 2 3 4 5 6 7 8 9 ABC D E F

0000 EE 54 EE 48 EE 49 EE 53 EE 20 EE 49 EE 53 EE 20
0010 EE 41 EE 20 EE 54 EE 45 EE 53 EE 54 EE 2E EE 2E
0020 EE 54 EE 48 EE 49 EE 53 EE 20 EE 49 EE 53 EE 20
0030 EE 41 EE 20 EE 54 EE 45 EE 53 EE 54 EE 2E EE 2E
0040 EE

.T.H.1.S .. 1.S.

.A .. T.E.S.T

.T.H.1.S .. 1.S.

.A .. T.E.S.T

Notice-that this time the PROM bytes have been placed in the least significant positions of the
16-bit data base.

Now assume that the PROM contains most significant bytes, and that the data base in program
memory should consist of 16-bit data arranged in reverse order (least significant byte followed
by most significant byte). Note that -R shouid be used oniy with either a -L or a -M modifier.

> F 0 40 EE

> RPR -MR 0 2532/TI 0 40

> D 0 40
---0-1 2 3 4 5 6 7 8 9 ABC D E F

0000 EE 54 EE 48 EE 49 EE 53 EE 20 EE 49 EE 53 EE 20 .T.H.I.S .. I.S.
0010 EE 41 EE 20 EE 54 EE 45 EE 53 EE 54 EE 2E EE 2E .A .. T.E.S.T
0020 EE 54 EE 48 EE 49 EE 53 EE 20 EE 49 EE 53 EE 20 .T.H.I.S .. I.S.
0030 EE 41 EE 20 EE 54 EE 45 EE 53 EE 54 EE 2E EE 2E .A .. T.E.S.T
0040 EE

The combined -M and -R modifiers produce the same results in program memory as does the-L
modifier.

If the PROM contained the least significant bytes of a 16-bit memory system, and the program
memory data were arranged in reverse order, the -L and -R modifiers would be used. The output
would look exactly like that produced by the example above using -M.

SA-9

WPR
Writes to PROM

2716 PROM Programmer Specifics Users

8A-10

I j-ml SYNTAX

I wpr [-a] [-d) L-I J[-r] [-n] memlo promtype promlo promhi

EXPLANATION

Writes the contents of program memory beginning at the address memlo into the section of a
promtype PROM between promlo and promhi. The resulting PROM data is checked for
accuracy. If the data matches, no message is reported; otherwise, an error message is printed.
For more detailed descriptions of these parameters, see the Command Parameters subsection
earlier in this supplement.

Any byte into which you wish new data written must be erased before it is written to.

With one exception, the PROMs supported by Module 1 are EPROMs-that is, they may be
erased by exposure to ultra-violet light. The PROM Programmer does not perform this erasure; it
must be done by a unit deSigned for that purpose.

The exception is the Intel 2816 EEPROM (promtype 2816/1). This is an electrically-erasable
PROM. If you specify the entire EEPROM address space in the WPR command, the PROM
Programmer erases the entire chip. Otherwise, it will erase only those portions of the EEPROM
which it has been ordered to program. To erase individual bytes of the 2816, write FF into their
memory locations. The -N modifier must be used when programming a 2816/1 type PROM.

If asked to write to an EPROM, the PROM Programmer checks the designated memory space to
ensure that it is erased and ready to accept new information. You may disable this erase check by
using the -N command modifier. This does not allow you to reprogram an unerased portion of a
chip.

EXAMPLES

When a write command is properly executed, no message is returned.
> WPR 20 2732/1 0 80

If you do not use the -N modifier, an attempt to write to a PROM which has not been fully erased
will produce an error message.

> WPR 20 2732/1 0 80
PP ERROR-- DEV NOT ERASED

Suppose, however, that you have programmed a PROM, discovered an error in your code, and
wish to change only a few bytes of memory. If the bits you wish to change are currently in an
erased state, you may disable the erase check by using modifier -N, and write over the section of
the device that contains the code to be changed.

@

2716 PROM Programmer Specifics Users WPR

@

Writes to PROM

The following example first writes data from program memory into the PROM, and then reads
back from the device:

> WPR 00 2716/1 00 10

> RPR 00 2716/1 00 10

> DOlO
---0-1 2 3 4 5 6 7 8 9 ABC D E F

0000 54 48 4D 53 20 49 53 20 49 20 54 45 53 54 2E 2E THMS IS I TEST ..
0010 54 T

Next new data is patched into locations 02 and 08 of program memory, and the new contents of
program memory are displayed:

> P 02 49

> P 08 41

> DOlO
---0-1 2 3 4 5 6 7 8 9 ABC D E F

0000 54 48 49 53 20 49 53 20 41 20 54 45 53 54 2E 2E THIS IS A TEST ..
0010 54 T

Now you can write the corrected data to the PROM. Normally, an EPROM would need to be
erased (with ultra-violet light) before the new write operation. In this case, however, since both
changes required changing bits which were still in an erased state (1), the programming can be
done "over the top" of the old data. "M" (01001011) is changed to "1" (01001001), and "I" is
changed to "A" (01000001).

> WPR 00 2716/1 0 10
PP ERROR-- DEV NOT ERASED

An error occurs because the -N modifier was omitted. Try again:
> WPR -N 00 2716/1 00 10

>

The write operation was successful, so you are prompted for your next command.

If you use modifier -N and attempt to write into a region of the PROM that is not
reprogrammable, you will be informed that the write operation was not successful (that the
resulting data in the PROM does not match program memory).

> WPR -N 0 2716/1 24 OFF
PP ERROR-- DEV NOT REPROG (device not reprogrammable)

Since the PROM Programmer has changed bits which were in an erased state, and has been
unsuccessful at changing others, this may leave you with a garbled mess in your PROM.

SA-"

Error Messages . 2716 PROM Programmer Specifics Users

8A-12

ERROR MESSAGES
PROM Programmer error messages are identified by the keywords "PP ERROR." They are

The first group of messages may appear in response to a PROM Programmer command (CPR,
PSTAT, PTYPE, RPR, or WPR) during normal operation. They indicate that the PROM
Programmer is unable to execute the command. This condition may be easily fixed (by turning on
PROM Programmer power, for example), or it may require a call to your Tektronix service
representative.

The second group of messages announces problems discovered by the PROM Programmer self
test procedure, executed automatically during power up,

If you see an error message without the words npp ERROR," refer to the section on Error
Messages in your System Users manual.

Execution Errors
The following error messages may be received in response to a PROM Programmer command
(CPR, PSTAT, PTYPE, RPR, or WPR).

PP ERROR-CHAR MOD ABSENT. There is no characteristic module inserted in the front
panel of the PROM Programmer.

PP ERROR-CONFIG MEM CKSUM. The characteristic module memory shows an error. Call
your service representative. Since the PROM Programmer Controller is not malfunctioning, you
should still be able to use a different characteristic module.

PP ERROR-DEV NOT ERASED. A WPR (write) command was attempted, but the PROM is
not erased for correct programming. See the discussion of the WPR command elsewhere in this
supplement for more information on erasing a PROM.

PP ERROR-DEV NOT REPROG. After writing to a programmable device, the PROM
Programmer compares the data in the PROM with program memory to ensure that the data was
correctly transmitted. The message "DEV NOT REPROG" indicates that an attempt was made to
write to a device, and the results in the PROM do not match program memory. This may indicate
a bad part, or an attempt to use the -N modifier with the WPR command on an unerased section
nf npvir.p mpmnrv ~pp thp ni~r.II~~inn nf thp WPR r.nmm~nti plC::P\J\lhprp in thic:: C::llnnlpmpnt _. -_ ... _- ... _ ... _-, .. - -- -- -- --------- .. -- .- .. - -_ _ .. - _ .. _- _- - - --r-r--_ .. "_."-"

PP ERROR-POWER FAIL. The operation was aborted due to an internal power failure. Try the
operation again. If the POWER FAIL message appears frequently, call your service
representative.

PP ERROR-PROM POWER OFF. The power switch on the PROM Programmer front panel
assembly must be turned on before PROM Programmer commands can execute.

@

2716 PROM Programmer Specifics Users Error Messages

@

Error 80 PROM type not supported. The promtype parameter entered with a CPR, RPR, or
WPR command is not recognized by this characteristic module. For a list of PROMs supported
and their promtype designations, see Table 8A-1 or enter the PTYPE command. Note that the
promtype name must be entered exactly as shown. For example, 2732/i or 2732/1NTEL are not
accepted for the 2732/1 promtype.

Power Up Errors
Assuming you have powered up the PROM Programmer following the instructions in the
introduction to this section, the READY indicator on the PROM Programmer front panel should
light. If the READY indicator does not light, type in the PSTAT command. You may receive one of
the responses listed above, or one of the following messages:

PP ERROR-- CPU
PP ERROR-- POWER CONTROL
PP ERROR-- RAM
PP ERROR-- ROM
PP ERROR-- SUPPLY MONITOR
PP ERROR-- SYST INTERFACE

If you receive the message NO PROM PROGRAMMER ERRORS DETECTED, the PROM
Programmer should be functioning correctly. The problem may be with the READY indicator. Try
executing a command.

The other error messages indicate a problem in the hardware or firmware of the PROM
Programmer Controller. Call your service representative for assistance.

8A-13

This manual supports the
following TEKTRONIX products:

8550 8540
Option Option

32 32

Tektronix, Inc.
P.O. Box 500

Product

8550F32

Beaverton, Oregon 97077

070-3869-00
Product Group 61

COMMITTED TO EXCELLENCE

This manual supports a software/firmware
module that is compatible with

DOS/50 V02.xx-xx (8550)
OS/40 V01.xx-xx (8540)

PLEASE CHECK FOR CHANGE INFORMATION
AT THE REAR OF THIS MANUAL.

8500
MODULAR MOL SERIES

8748/8741 A
8749/8755A

PROM PROGRAMMER
SPECIFICS

USERS MANUAL

Serial Number _______ _

First Printing OCT 1981
Revised DEC 1981

LIMITED RIGHTS LEGEND

Software License No. _____________ _

Contractor: Tektronix, Inc.
Explanation of Limited Rights Data Identification Method
Used: Entire document subject to limited rights.

Those portions of this technical data indicated as limited rights data shall not,
without the written permission of the above Tektronix, be either (a) used,
released or disclosed in whole or in part outside the Customer, (b) used in whole
or in part by the Cust6mer for manufacture or, in the case of computer software
documentation, for preparing the same or similar computer software, or(c) used
by a party other than the Customer, except for: (i) emergency repair or overhaul
work only, by or for the Customer, where the item or process concerned is not
otherwise reasonably available to enable timely performance of the work,
provided that the release or disclosure hereof outside the Customer shall be
made subject to a prohibition against further use, release or disclosure; or (ii)
release to a foreign government, as the interest of the United States may
require, only for information or evaluation within such government or for
emeigency iepaii Oi oveihaul vv'oik by Oi fOi such goveinment under the
conditions of (i) above. This legend, together with the indications of the portions
of this data which are subject to such limitations shall be included on any
reproduction hereof which includes any part of the portions subject to such
limitations.

RESTRICTED RIGHTS IN SOFTWARE

The software described in this document IS licensed software and subject to
restricted rights. The software may be used with the computer for which or with
which it was acquired. The software may be used with a backup computer if the
computer for which or with which it was acquired is inoperative. The software
rnay be copied for archive or backup purposes. The software may be modified or
combined with other software, subject to the provision that those portions of the
derivative software incorporating restricted rights software are subject to the
same restricted rights.

Copyright © 1981 Tektronix, Inc. All rights reserved. Contents ofthis publication
may not be reproduced in any form without the written permission of Tektronix,
Inc.

Products of Tektronix, Inc. and its subsidiaries are covered by U.S. and foreign
patents and/or pending patents.

TEKTRONIX, TEK, SCOPE-MOBILE, and if are registered trademarks of
Tektronix, Inc. TELEQUIPMENT is a registered trademark of Tektronix U.K.
Limited.

Printed in U.S.A. Specification and price change privileges are reserved.

8748 PROM Programmer Specifics Users

@

Section 88

8748/8741 A/8749/8755A PROM
PROGRAMMER SPECIFICS

Page

Introduction ... 88-1

Devices Supported ... 88-1

PROM Programmer Commands .. 88-2

Command Parameters .. 88-2
Command Modifiers .. 88-3
PROM Programmer Command Dictionary ... 88-4

CPR-Compares Device Memory With Program Memory 88-4
PST AT -Reports PP Status .. 88~6
PTYPE-Oisplays Device Types , 88-7
RPR-Reads Device Memory .. 88-8
WPR-Writes to Device Memory .. 88-10

Error Messages ... 88-12

8B-i

8748 PROM Programmer Specifics Users

Section 88

8748/8741 A/8749/8755A PROM

PROGRAMMER SPECIFICS

INTRODUCTION
This supplement is designed to be inserted into one of the following sections:

• Section 8 of the 8540 System Users Manual,

• Section 8 of the 8550 System Users Manual (DOS/50 Version 2), or

• Section 9 of the 8550 System Users Manual (DOS/50 Version 1).

Throughout this supplement, "your System Users Manual" refers to the 8550 System Users
Manual or 8540 System Users Manual. "Module 2" refers to the 8748/8741 A/8749/8755A
PROM Programmer Module.

~
The PROM Programmer module is static-sensitive. To avoid damage to the
module, handle it as little as possible in high-static situations. Pick up the
module by the body, not by the edge connectors. A void sliding the module over
any surface.

DEVICES SUPPORTED
Module 2 enables the PROM Programmer to program a set of similar devices. Table 88-1 lists
the device types supported by Module 2.

Table 88-1
Programmable Devices Supported by Module 2

Manufacturer Device PROM Typea Description

Intel 8755A 8755A/I 2K x 8 bit MCS-85 Peripheral
(EPROM with liD)

Intel 8748 8748/1 1 K x 8 bit Microcomputer
Intel 8749 8749/1 2K x 8 bit Microcomputer
Intel 8741A 8741 All 1 K x 8 bit Peripheral

Interface Microcomputer

a The names that specify the devices supported by Module 2.

88-1

Commands 8748 PROM Programmer Specifics Users

88-2

Devices with programming characteristics similar to a PROM type may be available from other
manufacturers. The PROM Programmer with Module 2 programs any device that has exactly the
same specifications as one of those listed above. Refer to the manufacturer's data sheets, and
use the PRO~v1 type identification of the device in the table v·vhose specifications match those of
the one you have.

If you attempt to use a device which is not supported by this characteristic module, you will
receive an error message:

> CPR 0 3232/Z 0 40 (specifying a Zilog 3232 PROM)
CPR: Error 80 PROM type not supported

The PROM Programmer does not verify that the device inserted matches the
PROM type specification. The voltage levels necessary to successfully program
a device vary from one type to another. If the wrong PROM type is specified, your
device may be destroyed.

PROM PROGRAMMER COMMANDS
There are five system commands for use with the PROM Programmer:

• CPR (Compare PROM) compares the contents of the specified PROM addresses with the
corresponding data in program memory, and displays any differences.

• RPR (Read PROM) reads the contents of the specified PROM addresses into program
memory.

• WPR (Write PROM) writes data from program memory into the device.

• PSTAT (PROM STATus) displays the current status of the PROM Programmer, including
any error conditions.

• PTYPE (PROM TYPE) displays the characteristic module currently inserted in the front
panel of the PROM Programmer, informing the user what devices it supports and what
their characteristics are.

The PSTAT and PTYPE commands are issued without parameters. The following subsections
describe the parameters that are used with the CPR, RPR, and WPR commands.

Command Parameters
The following are necessary parameters for any invocation of the CPR, RPR, orWPR commands.

• Memlo specifies the starting address in program memory from which data will be
transferred to the device or to which data is be placed after being read from the device.

• Promtype is the alphanumeric name specifying the device with which you are working.
See Table 88-1 for the promtype associated with your device, or use the PTYPE command
described below. The promtype must be entered exactly as shown; letters must be
uppercase.

8748 PROM Programmer Specifics Users Commands

@

• Promlo specifies the (hexadecimal) PROM address which you wish to be the starting point
for the specified command .

• Promhi specifies the ending PROM address.

Command Modifiers
For illustrations of the use of the command modifiers, see the following subsection, PROM
Programmer Command Dictionary.

NOTE

Syntax for this section has been updated for DOS/50 Version 2 and OS/40. If
you are using DOS/50 Version 1, all "dash modifiers" (such as -L, -M) should be
"colon modifiers" (:L, :M). The Technical Notes section of the 8550 System
Users Manual describes the differences between Version 1 and Version 2.

Modifier Meaning

-a Provides inverted addressing (high=O, low=1). Use -A in applications where the levels
applied to the device's address pins are inverted.

-d Data is stored in the device in inverted form (high=O, low=1). For a read operation
(RPR) this means that the data from the device is inverted before being stored in
program memory. During a write (WPR) data is inverted before being written into
PROM.

-I For the 8-bit devices supported by Module 2, this modifier indicates that data being
read from (or written into) the device represents the least significant bytes of 16-bit
words in program memory. See also -R.

-m For 8-bit devices, this modifier indicates that data being read from (or written into) the
device memory represents the most significant bytes of 16-bit words in program
memory. See also -R.

-n Specifies that no erase check is performed before a write operation. See the WPR
command for examples.

-r The -R modifier is used when the data in program memory is arranged in 16-bit
words. -R indicates that the bytes are arranged in reverse order in program memory,
that is, least significant byte first, followed by most significant byte.

-R is used with -M or -L. For example, if modifiers -M and -R are entered as part of a
RPR command when reading an 8-bit device, the bytes read from the device will be
placed in the second byte of each 16-bit word. See the RPR command for examples.

88-3

CPR
Compares Device Memory With Program Memory

8748 PROM Programmer Specifics Users

88-4

PROM Programmer Command Dictionary
This subsection gives the syntax and use of each PROM Programmer command as it pertains to
Module 2. The format is the same as that of the Command Dictionary of your System Users
Manual.

SYNTAX

cpr [-a] [-d][=~J[-r] memlo promtype promlo promhi

EXPLANATION

Compares the contents of the specified device addresses with the contents of program memory,
starting at the given memory address. The locations of any differences are displayed. If the
contents match, no message is displayed.

The CPR command is useful when you wish to verify that the data in the device is the same as the
data in a specified region of program memory.

EXAMPLES

Enter the following command to read the contents of locations 0-40 of an Intel 8749 device into
locations 0-40 of program memory.

> RPR 0 8749/1 0 40

Now dump program memory to see what's been read:
> D 0 40

--0-1 2 3 4 5 6 7 8 9 ABC D E F
0000 54 48 49 53 20 49 53 20 41 20 54 45 53 54 2E 2E THIS IS A TEST ..
0010 54 48 49 53 20 49 53 20 41 20 54 45 53 54 2E 2E THIS IS A TEST ..
0020 54 48 49 53 20 49 53 20 41 20 54 45 53 54 2E 2E THIS IS A TEST ..
0030 54 48 49 53 20 49 53 20 41 20 54 45 53 54 2E 2E THIS IS A TEST ..
0040 54 T

If the data was read correctly, a CPR command at this point will return no message.
> CPR 0 8749/1 0 40

>

8748 PROM Programmer Specifics Users CPR
Compares Device Memory With Program Memory

@

To illustrate the response you receive when an error is detected, use the P command to patch
new data into two locations in program memory:

> P 05 00
> P 07 00

Now compare the contents again:
> CPR 0 8749/1 0 40
*** COMPARE ERROR AT PROM ADDRESS=00005H
*** COMPARE ERROR AT PROM ADDRESS=OOOO7H

The discrepancies introduced into locations 5 and 7 of program memory were identified as
errors by the CPR command.

If you use the -A modifier in a CPR command, the address given in a "COMPARE ERROR"
message is actually the complement of the value that was applied to the device's address pins.

88-5

PSTAT
Reports PP Status

8748 PROM Programmer Specifics Users

I Dstat

SYNTAX

I·

EXPLANATION

Displays the current condition of the PROM Programmer. Normally, PSTAT will report "no
errors." Conditions which prompt an error message include power failure, the absence of a
characteristic module, or PROM Programmer power off.

Error messages are discussed elsewhere in this supplement.

EXAMPLES
'AIL... __ ___ _ ... ___J; ... ; ____ ... __ ... ____
vv Ilell IIU ell UI \..UIIUllIUII;:) 01 e fJl e;:)elil.

> PSTAT
. .. NO PROM PROGRAMMER ERRORS DETECTED

Reporting an error condition:
> PSTAT

PP ERROR-- CHAR MOD ABSENT

88-6 @

8748 PROM Programmer Specifics Users PTYPE
Displays Device Types

SYNTAX

EXPLANATION

Displays information about devices supported by Module 2. The display consists of four
columns:

• PROM TYPE: the name that specifies each device supported by the characteristic module.
Each name is the model number of the primary source manufacturer, followed by a slash
and one or more letters specifying the manufacturer. For example, Intel's 8755A device is
identified as 8755A/I. (Note that there are no spaces in the PROM TYPE designation.)

• MAX ADDRESS: the maximum addressable location of each device listed. For example,
3FFH indicates a total of 400H addressable bytes (0 through 3FF).

• ERASED STATE: the state of the bits (high or low) when the device has been erased. For the
8-bit devices supported by Module 2, HI is FF and LOW is 00.

• WORD LENGTH: the number of bits per word for each device. Since Module 2 supports only
1-byte (8-bit) wide devices, word length for all devices listed is eight.

EXAMPLES

> PTYPE

PROM TYPE MAX ADDRESS ERASED STATE WORD LENGTH

8755A/I 7FFH HI 8
8748/1 3FFH LO 8
8749/1 7FFH LO 8
8741A/I 3FFH LO 8

88-7

RPR
Reads Device Memory

8748 PROM Programmer Specifics Users

88-8

I r-ml SYNTAX

I rpr [-a] [-d]L -I J[-r] memlo promtype promlo promhi

EXPLANATION

Reads the contents of the specified device addresses into the specified location in program
memory. No message is displayed unless an error condition exists.

EXAMPLES

First use the F command to fill program memory with EE. Later, when you examine memory, the
EEs make it easy to see that new data was read in.

> F 0 40 EE

> D 0 40
--0-1 2 3 4 5 6 7 8 9 ABC D E F

0000 EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE
0010 EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE
0020 EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE
0030 EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE
0040 EE

Now use the RPR command to read the contents of memory locations 0-40 of an intel 8755A
device into program memory, beginning at address O. Then dump the contents of program
memory, to verify that it now contains new data from the device.

> FPR 0 875.5A/ I

> D 0 40
--0-1 2 3 4 5 6 7 8 9 ABC D E F

0000 54 48 49 53 20 49 53 20 41 20 54 45 53 54 2E 2E THIS IS A TEST ..
0010 54 48 49 53 20 49 53 20 41 20 54 45 53 54 2E 2E THIS IS A TEST ..
0020 54 48 49 53 20 49 53 20 41 20 54 45 53 54 2E 2E THIS IS A TEST ..
0030 54 48 49 53 20 49 53 20 41 20 54 45 53 54 2E 2E THIS IS A TEST ..
0040 54 T

In the example above, no optional modifiers were needed. Next, assume that our 8-bit device is
io be used as ihe mosi significani haif of a i 6-bil rnernory systern. Again, fili program memory
with EE's, read the device, and dump the results. This time, however, the -M modifier is used.

> F 0 40 EE

> RPR -M 0 8755A/I 0 40

> D 0 40
--0-123456789ABCDEF

0000 54 EE 48 EE 49 EE 53 EE 20 EE 49 EE 53 EE 20 EE T.H.I.S .. I.S.
0010 41 EE 20 EE 54 EE 45 EE 53 EE 54 EE 2E EE 2E EE A .. T.E.S.T
0020 54 EE 48 EE 49 EE 53 EE 20 EE 49 EE 53 EE 20 EE T.H.I.S .. I.S.
0030 41 EE 20 EE 54 EE 45 EE 53 EE 54 EE 2E EE 2E EE A .. T.E.S.T
0040 54 T

(d'

8748 PROM Programmer Specifics Users RPR
Reads Device Memory

@

The results of the D command show that the 8-bit bytes received from the device are now stored
in the most significant byte positions of a 16-bit data base in program memory.

Compare those results with the example below, in which memory is filled with EE and the RPR
command line includes the -L modifier.

> F 0 40 EE

> RPR -L 0 8755A/I 0 40

> D 0 40
--0-1 2 3 4 5 6 7 8 9 ABC D E F

0000 EE 54 EE 48 EE 49 EE 53 EE 20 EE 49 EE 53 EE 20 .T.H.I.S .. I.S.
0010 EE 41 EE 20 EE 54 EE 45 EE 53 EE 54 EE 2E EE 2E .A .. T.E.S.T
0020 EE 54 EE 48 EE 49 EE 53 EE 20 EE 49 EE 53 EE 20 .T.H.I.S .. I.S.
0030 EE 41 EE 20 EE 54 EE 45 EE 53 EE 54 EE 2E EE 2E .A .. T.E.S.T
0040 EE

Notice that this time the bytes of data from the device have been placed in the least significant
positions of the 16-bit data base.

Now assume that the device contains most significant bytes, and that the data base in program
memory should consist of 16-bit data arranged in reverse order (least significant byte followed
by most significant byte). Note that -R should be used only with either a -L or a -M modifier.

> F 0 40 EE

> RPR -MR 0 8755A/I 0 40

> D 0 40
--0-1 2 3 4 5 6 7 8 9 ABC D E F

0000 EE 54 EE 48 EE 49 EE 53 EE 20 EE 49 EE 53 EE 20
0010 EE 41 EE 20 EE 54 EE 45 EE 53 EE 54 EE 2E EE 2E
0020 EE 54 EE 48 EE 49 EE 53 EE 20 EE 49 EE 53 EE 20
0030 EE 41 EE 20 EE 54 EE 45 EE 53 EE 54 EE 2E EE 2E
0040 EE

.T.H.1.S .. 1.S.

.A .. T.E.S.T
"., '[_1 T C" T c-

• .L .il • .L. u. ..1.. u .

. A .. T.E.S.T

The combined -M and -R modifiers produce the same results in program memory as does the-L
modifier.

If the device contained the least significant bytes of a 16-bit memory system, and the program
memory data were arranged in reverse order, the -L and -R modifiers would be used. The output
would look exactly like that produced by the example above using -M.

88-9

WPR
Writes to Device Memory

8748 PROM Programmer Specifics Users

88-10

I ~ ~ SYNTAX

I r-ml

I wpr [-a] [-d]L -I J[-r] [-n] memlo promtype promlo promhi .

EXPLANATION

Writes the contents of program memory beginning at the address memlo into the section of a
promtype device between promlo and promhi. The resulting data in the device memory is
checked for accuracy. If the data matches, no message is reported; otherwise, an error message
is printed. For more detailed descriptions of these parameters, see the Command Parameters
subsection earlier in this supplement.

Any byte into which you wish new data written must be erased before it is written to.

The devices supported by Module 2 may be erased by exposure to ultra-violet light. The PROM
Programmer is not designed to do this erasure. it must be done by a unit designed for that
purpose.

When a WPR command is issued, the PROM Programmer examines the designated memory
area to ensure that it is erased and ready to accept new information. You may disable this erase
check by using command modifier --N. This does not allow you to reprogram an unerased portion
of a device.

EXAMPLES

When a write command is properly executed, no message is returned.
> WPR 20 8748/1 0 80

If you do not use the -N modifier, an attempt to write to a device which has not been fully erased
will produce an error message.

> WPR 20 8748/1 0 80
PP ERROR-- DEV NOT ERASED

Suppose, however, that you have programmed a device, discovered an error in your code, and
wish to change only a few bytes of memory. If the bits you wish to change are currently in an
", .. """,,or! "'+""+0 ""'" n'\~" r!ic~hlo tho or~co I"hol"l... h\/ilcinn rnnrlifior -1\1 ~nrl \Alrito n\lor tho cOl"tinn nf \"orl ,",...3....,"'" ~LUL'"', 7 "''''''' III"'" r """ •,"""_._ "' •• __ • ____ , , __ _, __ II.~ 11. __ ". I_" • W, _ •• - - _. -' - --_ ... _ •• _.

the device that contains the code to be changed.

8748 PROM Programmer Specifics Users WPR
Writes to Device Memory

@

The following example writes data from program memory into the device, and then reads back
from the device:

> WPR 00 8755A/I 00 10

> RPR 00 8755A/I 00 10

> DOlO
--0-1 2 3 4 5 6 7 8 9 ABC D E F

0000 54 48 4D 53 20 49 53 20 49 20 54 45 53 54 2E 2E THMS IS I TEST ..
0010 54 T

Next new data is patched into locations 02 and 08 of program memory, and the new contents of
program memory are displayed:

> P 02 49

> P 08 41

> DOlO
--0-123456789ABCDEF

0000 54 48 49 53 20 49 53 20 41 20 54 45 53 54 2E 2E THIS IS A TEST ..
0010 54 T

Now you can write the corrected data to the device. Normally, the device would need to be erased
(with ultra-violet light) before the new write operation. In this case, however, since both changes
required changing bits which were still in an erased state (1), the programming can be done
"over the top" of the old data. "M" (01 001 011) is changed to "I" (01001001), and "I" is changed
to "A" (01000001).

> WPR 00 8755A/I 0 10
PP ERROR-- DEY NOT ERASED

An error occurs because the -N modifier was omitted. Try again:
> WPR -N 00 8755A/I 00 10

>

The write operation was successful, so you are prompted for your next command.

If you use modifier -N and attempt to write into a region of the device that is not reprogrammable,
you will be informed that the write operation was not successful (that the resulting data in the
device does not match program memory).

> WPR -N 0 8748/1 24 OFF
PP ERROR-- DEY NOT REPROG (device not reprogrammable)

Since the PROM Programmer has changed bits which were in an erased state, and has been
unsuccessful at changing others, this may leave you with a garbled mess in your device.

88-11

Error Messages 8748 PROM Programmer Specifics Users

88-12

ERROR MESSAGES
PROM Programmer error messages are identified by the keywords "PP ERROR." They are
.-1: ... :.-1_.-1 =_4._ ___ ... ____ : __
UIVIUt:U IIIlU lVVU LCllt:HUIIt::::».

The first group of messages may appear in response to a PRO!'l! Programmer command (CPR,
PSTAT, PTYPE, RPR, or WPR) during normal operation. They indicate that the PROM
Programmer is unable to execute the command. This condition may be easily fixed (by turning on
PROM Programmer power, for example), or it may require a call to your Tektronix service
representative.

The second group of messages announces problems discovered by the PROM Programmer self
test procedure, executed automatically during power up.

If you see an error message without the words "PP ERROR," refer to the section on Error
Messages in your System Users manual.

Execution Errors

The following error messages may be received in response to a PROM Programmer command
(CPR, PSTAT, PTYPE, RPR, or WPR).

PP ERROR-CHAR MOD ABSENT. There is no characteristic module inserted in the front
panel of the PROM Programmer.

PP ERROR-CONFIG MEM CKSUM. The characteristic module memory shows an error. Call
your service representative. Since the PROM Programmer Controller is not malfunctioning, you
should still be able to use a different characteristic module.

PP ERROR-pEV NOT ERASED. A WPR (write) command was attempted, but the device is
not erased for correct programming. See the discussion of the WPR command elsewhere in this
supplement for more information on the erasing of a device.

PP ERROR-DEV NOT REPROG. After writing to a programmable device, the PROM
Programmer compares the data in the device with program memory to ensure that the data was
correctly transmitted. The message "DEV NOT REPROG" indicates that an attempt was made to
write to a device, and the results in the device memory do not match program memory. This may
indicate a bad part, or an attempt to use the -N modifier with the WPR command on an unerased
section of device memory. See the discussion of the WPR command elsewhere in this
supplement.

PP ERROR-POWER FAIl. The operation was aborted due to an internal power failure. Try the
operation again. If the POWER FAIL message appears frequently, call your service
representative.

PP ERROR-PROM POWER OFF. The power switch on the PROM Programmer front panel
assembly must be turned on before PROM Programmer commands can execute.

Error 80 PROM type not supported. The promtype parameter entered with a CPR, RPR, or
WPR command is not recognized by this characteristic module. For a list of devices supported
and their promtype designations, see Table 88-1 or enter the PTYPE command. Note that the
promtype name must be entered exactly as shown, For example, 8748/i or 8748/1NTEL are not
accepted for the 8748/1 promtype.

8748 PROM Programmer Specifics Users Error Messages

@

Power Up Errors
Assuming you have powered up the PROM Programmer following the instructions in the
introduction to this section, the READY indicator on the PROM Programmer front panel should
light. If the READY indicator does not light, type in the PSTAT command. You may receive one of
the responses listed above, or one of the following messages:

PP ERROR-- CPU
PP ERROR-- POWER CONTROL
PP ERROR-- RAM
PP ERROR-- ROM
PP ERROR-- SUPPLY MONITOR
PP ERROR-- SYST INTERFACE

If you receive the message NO PROM PROGRAMMER ERRORS DETECTED, the PROM
Programmer should be functioning correctly. The problem may be with the READY indicator. Try
executing a command.

The other error messages indicate a problem in the hardware or firmware of the PROM
Programmer Controller. Call your service representative for assistance.

88-13

This manual supports the
following TEKTRONIX product:

8550F33

Tektronix, Inc.
P.O. Box 500
Beaverton, Oregon 97077

070-4375-00

COMMITTED TO EXCELLENCE

This manual supports a software/firmware
module that is compatible with:

DOS/50 Version 1 (8550)
DOS/50 Version 2 (8550)
OS/40 Version 1 (8540)

PLEASE CHECK FOR CHANGE INFORMATION
AT THE REAR OF THIS MANUAL.

8500
MODULAR MOL SERIES

2764
PROM PROGRAMMER

SPECIFICS
USERS MANUAL

Serial Number --------

First Printing JUL 1982

LIMITED RIGHTS LEGEND

Software License No. _____________ _

Contractor: Tektronix, Inc.
Explanation of Limited Rights Data Identification Method
Used: Entire document subject to limited rights.

Those portions of this technical data indicated as limited rights data shall not,
without the written permission of the above Tektronix, be either (a) used,
released or disclosed in whole or in part outside the Customer, (b) used in whole
or in part by the Customer for manufacture or, in the case of computer software
documentation, for preparing the same or similar computer software, or(c) used
by a party other than the Customer, except for: (i) emergency repair or overhaul
work only, by or for the Customer, where the item or process concerned is not
otherwise reasonably available to enable timely performance of the work,
provided that the release or disclosure hereof outside the Customer shall be
made subject to a prohibition against further use, release or disclosure; or(ii)
release to a foreign government, as the interest of the United States may
require, only for information or evaluation within such government or for
emergency repair or overhaul work by or for such government under the
conditions of (i) above. This legend, together with the indications ofthe portions
of this data which are subject to such limitations shall be included on any
reproduction hereof which includes any part of the portions subject to such
limitations.

RESTRICTED RIGHTS IN SOFTWARE

The software described in this document is licensed software and subject to
restricted rights. The software may be used with the computer for which or with
which it was acquired. The software may be used with a backup computer ifthe
computer for which or with which it was acquired is inoperative. The software
may be copied for archive or backup purposes. The software may be modified or
combined with other software, subject to the provision that those portions of the
derivative software incorporating restricted rights software are subject to the
same restricted rights.

Copyright © 1982 Tektronix, Inc. All rights reserved. Contents ofthis publication
may not be reproduced in any form without the written permission of Tektronix,
Inc.

Products of Tektronix, Inc. and its subsidiaries are covered by U.S. and foreign
patents and/or pending patents.

TEKTRONIX, TEK, SCOPE-MOBILE, and i! are registered trademarks of
Tektronix, Inc. TELEQUIPMENT is a registered trademark of Tektronix U.K.
Limited.

Printed in U.S.A. Specification and price change privileges are reserved.

SECTION BC

2764 PROM PROGRAMMER SPECIFICS

Page

Introduction ... " 8C-1

Devices Supported ... " 8C-2

Demonstration Run ... " 8C-3
Creating the Test Data ... " 8C-3
Programming the Target Device. .. 8C-4
Reading Back the Test Data ... " 8C-4
Summary .. " 8C-5

PROM Programmer Commands ... " 8C-6
CPR-Compares PROM With Memory , " 8C-7
PST AT-Reports PP Status .. 8C-9
PTYPE-Displays PROM Types .. 8C-10
RPR-Reads PROM. .. 8C-11
WPR-Writes PROM. .. 8C-14

Error Messages .. 8C-17
Execution Errors .. 8C-17

Errors Detected by the PROM Programmer. .. 8C-17
Errors Detected by the Operating System .. 8C-18

Power Up Errors. .. 8C-18

8C-i

2764 PROM Programmer Specifics Users

Section 8C

2764 PROM PROGRAMMER SPECIFICS

INTRODUCTION
This supplement is designed to be inserted into one of the following sections:

• Section 8 of the 8540 System Users Manual,

• Section 8 of the 8550 System Users Manual (DOS/50 Version 2), or

• Section 9 of the 8550 System Users Manual (DOS/50 Version 1).

Throughout this supplement, the phrase "your System Users Manual" refers to the 8550 System
Users Manual or 8540 System Users Manual. The 2764 PROM Programmer Module is referred to
as simply "the 2764 Module".

The 2764 Module is static-sensitive. To avoid damage to the module, handle it as little
as possible in high-static situations. Pick up the module by the body, not by the edge
connectors. A void sliding the module over any surface.

This supplement discusses the following topics:

• The devices supported by the 2764 Module.

• A demonstration run for the 2764 Module.

• PROM Programmer commands, as they apply to the 2764 Module.

• Error messages.

8C-1

Devices Supported 2764 PROM Programmer Specifics Users

8C-2

DEVICES SUPPORTED
The 2764 Module enables the PROM Piogiammei to piogiam a set of similai devices. Each of
the PROMs supported by the 2764 Module is a MOS, single supply, byte-wide chip. Table 8C-1
lists the device types supported by 2764 Module.

Table 8C-1
Programmable Devices Supported by the 2764 Module

Manufacturer Device PROM Typea Description

Texas Instruments TMS 2564 2564/TI 8K x 8 bit EPROM

Intel 12764 I - - 1 2764/! I 8K x 8 bit EPROM

Intel 27128 27128/1 16K x 8 bit EPROM

Intel 2817 2817/1 2K x 8 bit EEPROM (This device
includes programming control
I,...",i,.. \ I IV~I\J.'

a The name used in a PROM Programmer command to specify the device.

Other PROMs, similar to the devices listed in Table 8C-1, may be available from other manufac
turers. If you are using such a device, verify that its programming specifications are identical to
those of a listed device. If the specifications are identical, the PROM Programmer. with the 2764
Module installed, will properly program the device. Use the appropriate PROM type (from Table
8C-1) in your programming commands.

If you attempt to use a PROM that is not supported by this PROM Programmer module, you wiii
receive an error message:

> CPR a 32321 Z a 40 (specifying a Zilog 3232 PROM)
CPR: Error 80 PROM type not supported

The PROM Programmer does not verify that the inserted device matches the PROM
type that you specified. The voltage levels necessary to successfully program a PROM
varv from one tVDe to another. If vou sDecifv the wrona PROM tVDA. VOllr PROM mav

., , r "."..,., , ~". - - --J

be destroyed.

2764 PROM Programmer Specifics Users Demonstration Run

DEMONSTRATION RUN
This demonstration run provides you with an introduction to PROM programming, using the 2764
Module. This demonstration may also be used to verify the module's operation.

The demonstration run consists of three steps. First, you'll load some test data into program
memory. Then, you'll direct the PROM Programmer to program this test data into your target
device. Finally, you'll read back the data to verify that it was correctly programmed into the
PROM.

This demonstration run uses the following conventions:

1. Underlined-Underlined characters in a command line must be entered from your system
terminal. Those characters not underlined are system output.

2. <CR>-Each command line ends with a carriage return. When a carriage return is to be
entered, the symbol <CR> is used.

Creating the Test Data
The test data for this demonstration run is in the form of an ASCII string. First, clear part of the
development system memory by filling it with zeros:

> F 00 OOFF 00 <CR>

Now enter the test data, using the following command (omit the -A modifier if you're using
DOS/50 Version 1):

> F 00 OOFF -A -TIME FOR COFFEE!- <CR>

Using the 0 (Dump) command, examine the contents of memory and verify that the test data was
correctly entered:

> D 00 OOFF <CR>
0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
0010 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
0020 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
0030 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
0040 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
0050 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
0060 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
0070 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
0080 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
0090 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
OOAO 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
OOBO 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
OOCO 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
OODO 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
OOEO 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
OOFO 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!

8C-3

Demonstration Run 2764 PROM Programmer Specifics Users

8C·4

Programming the Target Device
Plug the 2764 Module into the opening on your development system's front panel. Next, raise the
2764 Moduie's ZiF socket handie, and instaii your target PROM into the ZIF socket. Align the
PROM so that pin 1 is next to the ZIF socket handle.

~
Be careful not to touch the pins of either your target device or the ZIF socket. Damage
from static discharge may result.

Now, turn the PROM POWER switch on. The READY indicator on the PROM Programmer front
panel assembly should now be lit. (If it is not lit, a problem exists in your PROM Programmer
Controller; contact a Tektronix field service representative.)

Now you can program the test data into your target PROM by entering one of the following
nrf"\,.,r~n'\rY'lin,., I"f"\rnrn~n""~ Co.lo.l"t tho. I"f"\rnrn~n"" th'!lt i~ ~nnrf"\nt"j'!lto. fl"\t" "I"\"t" I"'Io."jl"o. +",",0.
t-'1""~I""'IIIIIIIII~ '"'V"lIlluln,,. '-'''''''v''''''' 1.11,", VVIIIIIIUIIU ".IYL Iv ""t-'tJ1Vt-"U;ALv IVI 1v,",1 UIfiJYlv'O "1t .. ,.;;.

> WPR 0 2764/1 00 OOFF <CR> (for 2764 PROMs)

> WPR 0 27128/1 00 OOFF <CR> (for 27128 PROMs)

> WPR 0 2564/T1 00 OOFF <CR> (for 2564 PROMs)

> WPR -N 0 2817/1 00 OOFF <CR> (for 2817 PROMs)

Remember to include the -N modifier in the command if your target device is a 2817. Otherwise,
the PROM Programmer may think that the device is an unerased EPROM.

Your target device shouid now contain the test data.

Reading Back the Test Data
Now it's time to verify that the test data was accurately programmed in your PROM. First, fill the
development system memory again with zeros:

>F 00 OOFF 00 <CR>

Next; enter one of the following commands to read the contents of the PROM into memory.
Select the command that is appropriate for your device type.

>RPR 0 27641 I 00 OOFF <CR> (for 2764 PROMs)

>RPR 0 27128/1 00 OOFF <CR> (for27128PROMs)

> RPR 0 25641 I 00 OOFF <CR> (for 2564 PROMs)

>RPR 0 2817/100 OOFF <CR> (for2817PROMs)

2764 PROM Programmer Specifics Users Demonstration Run

Locations OO-FF of memory should now contain your test data again. To find out, enter the
following command:

> D 00 OOFF <CR>
0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
0010 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
0020 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
0030 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
0040 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
0050 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
0060 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
0070 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
0080 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
0090 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
OOAO 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
OOBO 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
OOCO 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
OODO 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
OOEO 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
OOFO 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!

If this display appears, the PROM was programmed correctly, and the 2764 Module is
operational.

If the display does not appear as shown here, either your target PROM or the 2764 Module is
defective. Try the demonstration again, using a different target PROM to isolate the problem. If
the module is defective, contact a Tektronix field service representative.

Summary
This demonstration introduced you to the basic commands necessary to program PROMs with
the 2764 Module. The following discussion explains these and other PROM Programmer com
mands in more detail.

The demonstration run also verified the 2764 Module's operation. If you suspect that the module
may not be operating properly, contact a Tektronix field service representative.

8C-5

Commands 2764 PROM Programmer Specifics Users

8C-6

PROM PROGRAMMER COMMANDS
Five operating system commands are used with the PROM Programmer:

• CPR (Compare P~OM) compares the contents of the specified PROM addresses with the
corresponding data in program memory, and displays any differences.

• RPR (Read PROM) reads the contents of the specified PROM addresses into program
memory.

• WPR (Write PROM) writes data from program memory into the PROM.

• PSTAT (PROM STATus) displays the current status of the PROM Programmer, including
any error conditions.

• PTYPE (PROM TYPE) displays information about the PROM Programmer module currently
installed in the front panel of the PROM Programmer: what PROMs are supported by the
module, and what their characteristics are.

This subsection gives the syntax and use of each PROM Programmer command as it pertains to
the 2764 Module. The format is the same as that of the Command Dictionary' of your 8550 or
8540 System Users Manual.

NOTE

Syntax for this section corresponds to DOS/50 Version 2 and OS/40. If you are using
DOS/50 Version 1, all "dash modifiers" (such as -L, -M, etc.) should be "colon modifi
ers" (:L, :M, etc.). The Technical Notes section of the 8550 System Users Manual
describes the differences between DOS/50 Version 1 and Version 2.

CPR
2764 PROM Programmer Specifics Users Compares PROM With Memory

SYNTAX

cpr [-a] [-d] [--7] [-r] memlo promtype promlo promhi

-a

-d

-I

-m

-r

memlo

promtype

promlo

promhi

PARAMETERS

Provides inverted addressing (hi=O, low=1). Use -A in applications where the
levels applied to the PROM's address pins are inverted.

Data is stored in the PROM in inverted form (hi=O, low=1). For a compare
operation (CPR), this means that the data from the PROM is inverted before
being compared with program memory.

For the 8-bit PROMs supported by the 2764 Module, this modifier indicates
that data being read from the PROM represents the least significant bytes of
16-bit words in program memory. See also -R.

For 8-bit PROMs, this modifier indicates that data being read from the PROM
represents the most significant bytes of 16-bit words in program memory. See
also -R.

When the data in program memory is arranged in 16-bit words, indicates that
the bytes are arranged in reverse order in program memory; that is, the least
significant byte is first, followed by the most significant byte.

The -R modifier is used with -M or -L. For example, if modifiers -M and -R
are entered as part of a CPR command when reading an 8-bit PROM, the
bytes read from the PROM will be compared with the second byte of each
16-bit word.

Specifies the starting address to which data is placed after being read from the
PROM.

The alphanumeric name specifying the PROM with which you are working. To
determine the PROM type associated with your chip, see Table 8C-1 (earlier in
this section), or use the PTYPE command. The promtype parameter must be
entered exactly as shown; letters must be uppercase.

Specifies the PROM address that you wish to be the starting point for the
specified command.

Specifies the ending PROM address.

8C-7

CPR
Compares PROM With Memory 2764 PROM Programmer Specifics Users

8C-8

EXPLANATION

The CPR command compares the contents of the specified PROM addresses with the contents
of program memory, starting at the given memory address. The locations of any differences are
displayed. If the contents match, no message is displayed.

The CPR command is useful when you want to verify that the data in the PROM is the same as
the data in a specified region of program memory.

EXAMPLES

Enter the following command to read the contents of locations 0-40 of an Intel 2764 PROM into
locations 0-40 of program memory.

> RPR 0 2764/1 0 40

Now dump program memory to see what's been read:
> D 0 40

0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 54 48 49 53 20 49 53 20 41 20 54 45 53 54 2E 2E THIS IS A TEST ••
0010 54 48 49 53 20 49 53 20 41 20 54 45 53 54 2E 2E THIS IS A TEST ••
0020 54 48 49 53 20 49 53 20 41 20 54 45 53 54 2E 2E THIS IS A TEST ••
0030 54 48 49 53 20 49 53 20 41 20 54 45 53 54 2E 2E THIS IS A TEST ••
0040 54 T

If the data was read correctly, a CPR command at this point will not return a message:
> CPR 0 .£'?§.~.! I () ,~9

Let's see what happens when an error is detected. Use the P command to patch new data into
two locations in program memory.

> P 05 00
> P 07 00

Now compare the contents again:
> CPR 0 2764/1 0 40

COMPARE ERROR AT PROM ADDRESS 00005H
*** COMPARE ERROR AT PROM ADDRESS 00007H

The CPR command identified the discrepancies introduced into locations 5 and 7 of program
memory.

NOTE

If you include the -A modifier in the CPR command line, the address given in a "COM
PARE ERROR" message is actually the complement of the value that was applied at
the PROM's address pins.

2764 PROM Programmer Specifics Users PSTAT
Reports PP Status

SYNTAX

pstat

EXPLANA TION

The PSTAT command displays the current condition of the PROM Programmer. Normally,
PST AT will report "no errors". Conditions that prompt an error message include power failure, the
absence of a PROM Programmer module, or PROM Programmer power off.

Error messages are discussed later in this section.

When no errors are present:
> PSTAT

EXAMPLES

•.. NO PROM PROGRAMMER ERRORS DETECTED •••

Reporting an error condition:
> PSTAT

PP ERROR-- POWER FAIL

8C-9

PTYPE
Displays PROM Types 2764 PROM Programmer Specifics Users

8C-10

I SYNTAX

I ptype
I

I

EXPLANATION

The PTYPE command displays information about PROMs supported by the 2764 Module. The
display consists of four columns:

• PROM TYPE: the name that specifies each PROM supported by the PROM Programmer
module. Each name is the model number of the primary source manufacturer, followed by a
slash and one or more letters specifying the manufacturer. For example, the Intel 2764
PROM is identified as 2764/1. (Note that there are no spaces in the PROM TYPE
designation.)

• MAX ADDRESS: the maximum addressable location of each PROM listed. For example,
1 FFFH indicates a total of 2000H addressable bytes (00-1 FFF).

• ERASED STATE: the state of the bits (high or low) when the PROM device has been erased.
For all PROMs supported by the 2764 Module, HI is FF and LOW is 00.

• WORD LENGTH: the number of bits per word for each PROM. Since the 2764 Module
supports only byte-wide (8-bit) PROMs, the word length for all PROMs listed is 8.

EXAMPLES

> PTYPE
PROM TYPE MAX ADDRESS ERASED STATE WORD LENGTH
2764/1 IFFFH HI 8
27128/1 3FFFH HI 8
28171I 7FFH HI 8
2564/T1 IFFFH HI 8

RPR
2764 PROM Programmer Specifics Users Reads PROM

SYNTAX

rpr [-aJ [-dJ [--7] [-rJ memlo promtype promlo promhi

-a

-d

-I

-m

-r

memlo

promtype

promlo

promhi

PARAMETERS

Provides inverted addressing (hi=O, low=1). Use -A in applications where the
levels applied to the PROM's address pins are inverted.

Data is stored in the PROM in inverted form (hi=O, low=1). For a read opera
tion (RPR), this means that the data from the PROM is inverted before being
stored in program memory.

For the 8-bit PROMs supported by the 2764 Module, this modifier indicates
that data being read from the PROM represents the least significant bytes of
16-bit words in program memory. See also -R.

For 8-bit PROMs, this modifier indicates that data being read from PROM
represents the most significant bytes of 16-bit words in program memory. See
also -R.

When the data in program memory is arranged in 16-bit words, indicates that
the bytes are arranged in reverse order in program memory; that is, the least
significant byte is first, followed by the most significant byte.

The -R modifier is used with -M or -L. For example, if modifiers -M and -R
are entered as part of a RPR command when reading an 8-bit PROM, the
bytes read from the PROM will be placed in the second byte of each 16-bit
word.

Specifies the starting address to which data is placed after being read from the
PROM.

The alphanumeric name specifying the PROM with which you are working. To
determine the PROM type associated with your chip, see Table 8C-1 (earlier in
this section), or use the PTYPE command. The promtype parameter must be
entered exactly as shown; letters must be uppercase.

Specifies the PROM address that you wish to be the starting point for the
specified command.

Specifies the ending PROM address.

8C-11

RPR
Reads PROM 2764 PROM Programmer Specifics Users

8C-12

EXPLANATION

! ne Ht-'H command reads the contents of the specified PROM aooresses IntO the SDeClTlea
location in program memory. No message is displayed unless an error is detected.

EXAMPLES

First, use the F command to fill program memory with the data byte EE. Later, when you examine
memory, the EEs will make it easy to see that new data was read in.

> F 0 40 EE
> D 0 40

0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE
0010 EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE
0020 EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE
0030 EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE
0040 EE

Now use the RPR command to read the contents of memory locations 0-40 of a Texas Instru
ments 2564 PROM into program memory, beginning at address O. Then dump the contents of
program memory, to verify that the memory now contains new data from the PROM.

> RPR 0 2564/TI 0 40
> D 0 40

0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 54 48 49 53 20 49 53 20 41 20 54 45 53 54 2E 2E THIS IS A TEST ..
0010 54 48 49 53 20 49 53 20 41 20 54 45 53 54 2E 2E THIS IS A TEST .•
0020 54 48 49 53 20 49 53 20 41 20 54 45 53 54 2E 2E THIS IS A TEST ••

0030 54 48 49 53 20 49 53 20 41 20 54 45 53 54 2E 2E THIS IS A TEST ••
0040 54 T

Let's assume that your a-bit PROM is to be used as the most significant half of a 16-bit memory
system. Again, fill program memory with EEs, read the PROM, and dump the results. This time,
however, include the -M modifier in the RPR command line.

> F 0 40 EE
> RPR -M 0 2564/TI 0 40
> D 0 40

0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 54 EE 48 EE 49 EE 53 EE 20 EE 49 EE 53 EE 20 EE T.H.I.S • . I. S.
0010 41 EE 20 EE 54 EE 45 EE 53 EE 54 EE 2E EE 2E EE A. .T.E.S.T •...•
0020 54 EE 48 EE 49 EE 53 EE 20 EE 49 EE 53 EE 20 EE T.H.I.S. • I. S.
f"\f"\'Zr"\ A' EE 20 EE 54 EE 45 EE 53 EE 54 EE 2E EE 2E EE A. .T.E.S.T•
0040 54

The D command display shows that the a-bit bytes received from the PROM are now stored in
program memory in the most significant byte positions of 16-bit data words.

RPR
2764 PROM Programmer Specifics Users Reads PROM

Now see what happens when the RPR command line includes the -L modifier:
> F 0 40 EE
> RPR -L 0 2564/TI o 40
> D 0 40

0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 EE 54 EE 48 EE 49 EE 53 EE 20 EE 49 EE 53 EE 20 .T.H.I.S. • I. S.
0010 EE 41 EE 20 EE 54 EE 45 EE 53 EE 54 EE 2E EE 2E .A. .T.E.S.T ••••
0020 EE 54 EE 48 EE 49 EE 53 EE 20 EE 49 EE 53 EE 20 • T.H.I.S. • 1.5 •
0030 EE 41 EE 20 EE 54 EE 45 EE 53 EE 54 EE 2E EE 2E .A. .T.E.S.T ••••
0040 EE

Notice that this time, bytes from the PROM are placed in the least significant byte positions of
16-bit words.

In the next example, assume that program memory is organized as 16-bit words, but now the
least significant byte of a word precedes the most significant byte. You want the data in the
PROM to go into program memory as the most significant byte of each word. Note that -R should
be used only with either a -L or -M modifier.

> F 0 40 EE
> RPR -MR 0 2564/TI o 40
> D 0 40

0 1 2 3 4 5 6 7

0000 EE 54 EE 48 EE 49 EE 53
0010 EE 41 EE 20 EE 54 EE 45
0020 EE 54 EE 48 EE 49 EE 53
0030 EE 41 EE 20 EE 54 EE 45
0040 EE

8 9 A B C D E F
EE 20 EE 49 EE 53 EE 20
EE 53 EE 54 EE 2E EE 2E
EE 20 EE 49 EE 53 EE 20
EE 53 EE 54 EE 2E EE 2E

.T.H.I.S •• 1.5.

.A •• T.E.S.T ••••

.T.H.I.S •• 1.5.

.A •• T.E.S.T ••••

If you wanted the PROM data in this example to go into the least significant byte of program
memory, you would have entered "-LR" in the RPR command line.

8C-13

WPR
Writes to PROM 2764 PROM Programmer Specifics Users

8C-14

I SYNTAX

I wpr [-a] [-d] [--7] [-r] [-n] memlo promtype promlo promhi

I

-a

-d

-I

-m

-n

-r

memlo

promtype

promlo

promhi

PARAMETERS

Provides inverted addressing (hi = 0, low = 1). Use -A in applications where the
levels applied to the PROM's address pins are inverted.

Data is stored in the PROM in inverted form (hi=O, low=1). During a write
(WPR), data in program memory is inverted before being written into PROM.

For the a-bit PROMs supported by the 2764 Moduie, this modifier indicates
that data being written into the PROM represents the least significant bytes of
16-bit words in program memory. See also -R.

For 8-bit PROMs, this modifier indicates that data being written into the PROM
represents the most significant bytes of 16-bit words in program memory. See
also -R.

Specifies that no erase check is performed before a write operation.

When the data in program memory is arranged in 16-bit words, indicates that
the bytes are arranged in reverse order in program memory; that is, the least
significant byte is first, followed by the most significant byte.

The -R modifier is used with -M or -L. For example, if modifiers -M and -R
are entered as part of a WPR command when programming an 8-bit PROM,
the bytes written to the PROM will be taken from the second byte of each
16-bit word in program memory.

Specifies the starting address from which data is transferred to the PROM.

The alphanumeric name specifying the PROM with which you are working. To
determine the PROM type associated with your chip, see Table 8C-1 (earlier in
this section), or use the PTYPE command. The promtype parameter must be
entered exactly as shown; letters must be uppercase.

Specifies the PROM address that you wish to be the starting pOint for the
specified command.

Specifies the ending PROM address.

WPR
2764 PROM Programmer Specifics Users Writes to PROM

EXPLANATION

The WPR command writes the contents of the specified locations in program memory into the
specified PROM addresses. The programming routine verifies that each byte is programmed
correctly. No message is displayed unless an error is detected. A location must be erased before
it can be progrmmed with new data.

The Intel 2817 EEPROM (promtype 2817/1) is electrically erasable. If you specify the entire
EEPROM address space in the WPR command, then the entire chip is automatically erased.
Otherwise, only those portions of the EEPROM between promlo and promhi are automatically
erased. To manually erase individual bytes of the 2817, write FF into the appropriate memory
locations. You must use the -N modifier when programming a 2817/1 type PROM.

All other PROMs supported by the 2764 Module are EPROMs-that is, they must be erased by
exposure to ultraviolet light. Before writing to an EPROM, the PROM Programmer checks the
designated addresses in the PROM to ensure that the device has been erased and is ready to
accept new information. You may disable this erase check by using the -N command modifier.

NOTE

The PROM Programmer has no capability for erasing EPROMS. Erasure must be
performed by a unit designed for this purpose.

EXAMPLES

Assume that you have 512 bytes of code for an 8-bit microprocessor in program memory, starting
at address 00. To program this code into the bottom addresses of an Intel 2764 device, enter the
following command:

>WPR 00 2764/I 0 1FF

Suppose now that you have the following application. The memory system for your 16-bit micro
computer uses inverting buffers for both address and data lines. You want to program 12K words
of code into your PROMs. Within your development system, the most significant byte of each
16-bit word is located at an even address.

To burn your code into PROMs, you'll need two PROM devices: one for the most significant byte
of each word, and one for the least significant byte. First, program the least-significant-byte
PROM:

> WPR -ADL 00 271281 I 0 2FFF

Now, program the most-significant-byte PROM:
>WPR -ADM 00 27128/I 0 2FFF

Notice that in both examples, memlo was specified as 00. When programming 16-bit data into
8-bit PROMs, you only need to specify the starting address of the 16-bit word. The -M and -L
modifiers automatically take care of any byte displacements.

8C-1S

WPR
Writes to PROM 2764 PROM Programmer Specifics Users

8C-16

Sometimes you may discover an error in your code after you have burned it into a PROM. If
you're using an electrically-erasable device, such an error would be easy to correct. But if you're
using an EPROM, it may take 30 minutes or longer to erase and reprogram the device; such
delays are annoying when you're working under tight schedules. In many cases, though, these
delays can be eliminated,

Suppose you read the contents of your recently-programmed PROM back into program memory,
and see the following dump:

> RPR 00 2764/1 00 10
> DOlO

a 1 2 345 6 7 8 9 ABC D E F
0000 54 48 4D 53 20 49 53 20 49 20 54 45 53 54 2E 2E THMS IS A TEST ••
0010 54 T

At first glance, it appears that you'll have to erase and reprogram the PROM. However, a little
more thought reveals a quick solution.

Let's look at the binary representation of the ASCII characters "M" and "I". They differ only by
one bit:

M = 0100 1101
I = 0100 1001

Although you can't change any bit in an EPROM from a 0 to a 1 without erasing the entire device,
you can change a 1 to a O. In this case, changing a 1 to a 0 can turn the "M" (at address 02) into
an "I":

> P 02 49
> WPR -N 00 2764/1 a 10

Notice that the -N modifier is used to inhibit the erase check of the device.

Obviously, not all errors in a PROM's data can be corrected using this procedure, but the tech
nique may be useful when a small error is detected.

2764 PROM Programmer Specifics Users Error Messages

ERROR MESSAGES
PROM Programmer error messages are identified by the keywords "PP ERROR." They are
divided into two categories: execution errors and power-up errors.

Execution errors may appear in response to a PROM Programmer command (CPR, PSTAT,
PTYPE, RPR, or WPR) during normal operation. They indicate that the PROM Programmer is
unable to execute the command. This condition may be easily fixed (by turning on PROM Pro
grammer power, for example), or it may require a call to your Tektronix service representative.

Power-up errors describe problems discovered by the PROM Programmer self-test procedure,
executed automatically during power up.

If you see an error message without the words "PP ERROR," refer to the section on Error
Messages in your System Users Manual.

Execution Errors
The following error messages may be received in response to a PROM Programmer command
(CPR, PSTAT, PTYPE, RPR, or WPR). Some errors are detected by the PROM Programmer, and
are reported by the operating system. Other errors are detected by the operating system directly.

Errors Detected by the PROM Programmer

PI' ERROR-CHAR MOD ABSENT. There is no PROM Programmer moduie inserted in the front
panel of the PROM Programmer.

PP ERROR-CONFIG MEM CKSUM. The PROM Programmer module ROM is defective. Contact
your Tektronix field service representative. Since the PROM Programmer Controller is not mal
functioning, try using a different PROM Programmer module.

PP ERROR-DEV NOT ERASED. A WPR (write) command was attempted, but the PROM is not
erased for correct programming. See the discussion of the WPR command elsewhere in this
section for more information.

PP ERROR-DEV NOT REPROG. An attempt was made to write to a device, and the results in
the PROM do not match program memory. This may indicate a bad component, or an attempt to
use the -N modifier with the WPR command on an unerased section of device memory. See the
discussion of the WPR command elsewhere in this section for more information.

PP ERROR-POWER FAIL. The operation was aborted due to an internal power failure. Try the
operation again. If the POWER FAIL message persists, contact your Tektronix field service
representative.

PP ERROR-PROM POWER OFF. The power switch on the PROM Programmer front panel
assembly must be turned on before PROM Programmer commands can execute.

8C-17

Error Messages 2764 PROM Programmer Specifics Users

8C-18

Errors Detected by the Operating System
Error 80 PROM type not supported. The promtype parameter entered with a CPR, RPR, or
vVPR command is not recognized by this PROM Programmer moduie. For a iist of PROMs
supported and their promtype designations, see Table 8C-1 (earlier in this section) or enter the
PTYPE command. Note that the promt'fpe name must be entered exactly as shov~n. For exam
ple, 2764/i or 2764/INTEL are not accepted for the 2764/1 promtype.

Error 81 Maximum PROM address exceeded. Either the memlo or memhi parameter you en
tered in a CPR, RPR, or WPR command exceeded the specified device's address range.

Error 82 PROM Programmer PTYPE data error. The data specifying the PROM Programmer
module's device support was corrupted when transferred from the PROM Programmer to the
development system's operating ,system. This error indicates some hardware fault in the PROM
Programmer. Contact your Tektronix field service representative.

Error 84 PROM Programmer hardware 1/0 error. The interface between the development sys
tem and the PROM Programmer malfunctioned. If this error persists, contact your Tektronix field
service representative. .

Power Up Errors
If, after you power up the PROM Programmer according to the instructions in Section 8 of this
manual, the READY indicator on the PROM Programmer front panel is not illuminated, or if the
SELF TEST indicator is illuminated, a power-up error occurred. When this condition exists, the
PST AT command will report one of the following errors:

PP ERROR-- CPU
PP ERROR-- POWER CONTROL
PP ERROR-- RAM
PP ERROR-- ROM
PP ERROR-- SUPPLY MONITOR
FF ERROR-- SYST INTERFACE

These errors are hardware failures in the PROM Programmer Controller. Contact your Tektronix
field service representative to have the PROM Programmer repaired.

This manual supports the
following TEKTRONIX products:

8550 8540
Option Option Product

35 35 8550F35

Tektronix, Inc.
P.O. Box 500
Beaverton, Oregon 97077

070-4414-00
Product Group 61

1ektronoo
COMMITTED TO EXCELLENCE

This manual supports a software/firmware
module that is compatible with:

DOS/50 Version 1 (8550)
DOS/50 Version 2 (8550)
OS/40 Version 1 (8540)

PLEASE CHECK FOR CHANGE INFORMATION
AT THE REAR OF THIS MANUAL

8500
MODULAR MOL SERIES

8751
PROM PROGRAMMER

SPECIFICS
USERS MANUAL

Serial Number ----___ _

First Printing AUG 1982

LIMITED RIGHTS LEGEND

Software License No. _____________ _

Contractor: T ektron ix, Inc.
Explanation of Limited Rights Data Identification Method
I kl=)rI' F=ntirl=) rin("IUYll=)nt C:llnil=)("t tn lirnitl=)ri rinntc: ----. _ - ----... -... --~J--' .- -- . ';''''-'
Those portions of this technical data indicated as limited rights data shall not,
without the written permission of the above Tektronix, be either (a) used,
released or disclosed in whole or in part outside the Customer, (b) used in whole
or in part by the Customer for manufacture or, in the case of computer software
documentation, for preparing the same or similar computer software, or (c) used
by a party other than the Customer, except for: (i) emergency repair or overhaul
work only, by or for the Customer, where the item or process concerned is not
otherwise reasonably available to enable timely performance of the work,
provided that the release or disclosure hereof outside the Customer shall be
made subject to a prohibition against further use, release or disclosure; or (ii)
release to a foreign government, as the interest of the United States may
require, only for information or evaluation within such government or for
emergency repair or overhaul work by or for such government under the
___ ...J: ... : ____ ~ 1:\ _L..._ ... _ TL..:_ I ____ ...J ... ___ ... 1- ___ •• : ... L. ... L._ :_-1: __ .. : ____ &. ... 1- ____ .. : __ _

I"UIIUILlUII~ UI \11 auuvt::. I III~ It::Ht::IIU, lUHt::lIlt::1 VVILII lilt:: IIIUIl,;CllIUII~ UI lilt:: ""UllIUII~

of this data which are subject to such limitations shall be included on any
reproduction hereof which includes any part of the portions subject to such
limitations.

RESTRICTED RIGHTS IN SOFTWARE

The software described in this document is licensed software and subject to
restricted rights. The software may be used with the computer for which or with
which it was acquired. The software may be used with a backup computer if the
computer for which or with which it was acquired is inoperative. The software
may be copied for archive or backup purposes. The software may be modified or
combined with other software, subject to the provision that those portions of the
derivative software incorporating restricted rights software are subject to the
same restricted rights.

Copyright © 1982 Tektronix, Inc. All rights reserved. Contents ofthis publication
may not be reproduced in any form without the written permission of Tektronix,
Inc.

Products of Tektronix, Inc. and its subsidiaries are covered by U.S. and foreign
patents and/or pending patents.

TEKTRONIX, TEK, SCOPE-MOBILE, and ~ are registered trademarks of
Tektronix, Inc. TELEQUIPMENT is a registered trademark of Tektronix U.K.
Limited.

Printed in U.S.A. Specification and price change privileges are reserved.

8751 PROM Programmer Specifics Users

Section 8D

8751 PROM PROGRAMMER SPECIFICS

Page

Introduction .. 80-1

Devices Supported . 80-2

Demonstration Run . 80-2
Creating the Test Data .. 80-2
Programming the Target Device ... 80-3
Reading Back the Test Oata .. 80-4
Summary. 80-5

PROM Programmer Commands .. 80-5
CPR-Compares PROM With Memory ... 80-6
PST AT -Reports PP Status ... 80-8
PTYPE-Oisplays PROM Types .. 80-9
RPR-Reads PROM ... 80-10
WPR-Writes to PROM .. 80-12

Error Messages . 80-14
Execution Errors . 80-14

Errors Oetected by the PROM Programmer 80-15
Errors Oetected by the Operating System . 8D-15

Power-Up Errors .. 80-16

8D-i

8751 PROM Programmer Specifics Users

Section 80

8751 PROM PROGRAMMER SPECIFICS

INTRODUCTION
This supplement provides information that enables you to use the 8751 PROM Programmer
Module. The following topics are discussed:

• Devices supported by the 8751 PROM Programmer Module.

• A demonstration run for the 8751 PROM Programmer Module.

• PROM Programmer commands, as they apply to the 8751 PROM Programmer Module.

• Error messages.

This supplement is designed to be inserted into one of the following sections:

• Section 8 of the 8540 System Users Manual,

• Section 8 of the 8550 System Users Manual (DOS/50 Version 2), or

• Section 9 of the 8550 System Users Manual (DOS/50 Version 1).

Throughout this suppiement, the term "your System Users Manuai" refers to either the 8550
System Users Manual or 8540 System Users Manual. The 8751 PROM Programmer Module is
referred to as simply the "8751 module".

The 8751 module is static-sensitive. To avoid damage to the module, handle it as little
as possible in high-static situations. Pick up the module by the body, not by the edge
connectors. A void sliding the module over any surface.

80-1

Demonstration Run 8751 PROM Programmer Specifics Users

80·2

DEVICES SUPPORTED
The 8751 module enables the PROM Programmer to program the Intel 8751 microcomputer. The
A7~1 " n+oin~ 0 it&l' v A t:OCl'"\lA f ,.. ""' ,
""V, vV'''c;&II',;J,."" V L-' ",-,'VI IVI ",'v~lallllll\Jlllvly.

Other microcomputers, similar to the !ntel 8751, may be available from other manufacturers. !f
you are using such a device, verify that its programming specifications are identical to those of the
Intel 8751. If the specifications are identical, the PROM Programmer, with the 8751 module
installed, will properly program the device.

DEMONSTRATION RUN
This demonstration run provides you with an introduction to PROM programming, using the 8751
module. This demonstration may also be used to verify the module's operation.

The demonstration run consists of three steps. First! you'll load some test data into program
memory. Then, you'll direct the PROM Programmer to program this test data into the target
device. Finally, you'll read back the data to verify that it was correctly programmed into the target
device.

This demonstration run uses the following conventions:

1. Underlined-Underlined characters in a command line must be entered from your system
terminal. Those characters not underlined are system output.

2. <CR>-Each command line ends with a carriage return. When a carriage return is to be
entered, the symbol <CR> is used.

Creating the Test Data
The test data for this demonstration run is in the form of an ASCII string. First, clear part of the
development system memory by filling it with zeros:

>F 00 OOFF 00 <CR>

Now enter the test data, using the following command (omit the -A modifier if you're using
DOSI50 Version 1):

>F 00 OOFF -A -TIME FOR COFFEE!- <CR>

8751 PROM Programmer Specifics Users Demonstration Run

Using the D (Dump) command, examine the contents of memory and verify that the test data was
correctly entered:

> D 00 OOFF <CR>

0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
0010 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
0020 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
0030 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
0040 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
0050 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
0060 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
0070 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
0080 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
0090 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
OOAO 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
OOBO 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
OOCO 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
OODO 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
OOEO 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
OOFO 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!

Programming the Target Device
Plug the 8751 module into the PROM Programmer opening on your development system's front
panel. Next, raise the 8751 module's ZIF socket handle, and install your target microcomputer
into the ZIF socket. Align the device so that pin 1 is next to the ZIF socket handle.

Be careful not to touch the pins of either your target device or the ZIF socket. Damage
from static discharge may result.

Now, turn the PROM POWER switch on. The READY indicator on the PROM Programmer front
panel assembly should now be lit. (If it is not lit, a problem exists in your PROM Programmer
Controller; contact a Tektronix field service representative.)

Now you can program the test data into your target device by entering the following programming
command:

> WPR 0 87511I 00 OOFF <CR>

Your target device should now contain the test data.

80-3

Demonstration Run 8751 PROM Programmer Specifics Users

80-4

Reading Back the Test Data
Now it's time to verify that the test data was accurately programmed in your target device. First,
fill the development system memory again with zeros:

> F 00 OOFF 00 <CR>

Next, enter the following command to read the contents of the microcomputer's PROM into
memory:

> RPR 0 8751/ I 00 OOFF <CR>

Locations OO-FF of memory should now contain your test data again. To find out, enter the
following command:

> D 00 OOFF <CR>

0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
0010 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
0020 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
0030 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
0040 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
0050 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
0060 54 49 4D 45 20 46 4F 52 20 43 41' 46 46 45 45 21 TIME FOR COFFEE!
0070 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
0080 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
0090 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
OOAO 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
OOBO 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
OOCO 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
OODO 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
OOEO 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!
OOFO 54 49 4D 45 20 46 4F 52 20 43 4F 46 46 45 45 21 TIME FOR COFFEE!

If this display appears, the PROM in the 8751 microcomputer was programmed correctly, and the
8751 module is operational.

If the display does not appear as shown here, either your target device or the 8751 module is
defective. Try the demonstration again, using a different target device to isolate the problem. If
the module is defective, contact a Tektronix field service representative.

8751 PROM Programmer Specifics Users Commands

Summary
This demonstration introduced you to the basic commands necessary to program 8751 micro
computers with the 8751 module. The following discussion explains these and other PROM
Programmer commands in more detail.

The demonstration run also verified the 8751 module's operation. If you suspect that the module
may not be operating properly, contact a Tektronix field service representative.

PROM PROGRAMMER COMMANDS
Five operating system commands are used with the PROM Programmer:

• CPR (Compare PROM) compares the contents of the specified PROM addresses with the
corresponding data in program memory, and displays any differences.

• RPR (Read PROM) reads the contents of the specified PROM addresses into program
memory.

• WPR (Write PROM) writes data from program memory into the PROM.

• PST AT (PROM STATus) displays the current status of the PROM Programmer, including
any error conditions.

• PTYPE (PROM TYPE) displays information about the PROM Programmer module currently
installed in the front panel of the PROM Programmer: what PROMs or devices are supported
by the module, and what their characteristics are.

The following syntax descriptions give the syntax and use of each PROM Programmer command
as it pertains to the 8751 module. The format is the same as that of the Command Dictionary of
your 8550 or 8540 System Users Manual.

NOTE

Syntax for this section corresponds to DOS/50 Version 2 and OS/40. If you are using
DOS/50 Version 1, all "dash modifiers" (such as -L, -M, etc.) should be ·colon modifi
ers" (:L, :M, etc.). The Technical Notes section of the 8550 System Users Manual
(DOS/50 Version 2) describes the differences between DOS/50 Version 1 and Version
2.

80-5

CPR
Compares PROM With Memory 8751 PROM Programmer Specifics Users

80-6

I _ _ SYNTAX
I 1_",,1

1 cpr [-a] [-d] 1-;""1 [-r] memlo promtype promlo promhi
I L.. ...i

I
I

-a

-d

-I

-m

-r

memlo

promtype

promlo

promhi

PARAMETERS

Provides inverted addressing (hi=O, low=1). Not used with the 8751 module.

Data is stored in the PROM in inverted form (hi=O, low=1). For a compare opera
tion (CPR), this means that the data from the PROM is inverted before being
compared with program memory.

The data being read from the PROM represents the least significant bytes of 16-bit
words in program memory. Not used with the 8751 module.

The data being read from the PROM represents the most significant bytes of
16-bit words in program memory. Not used with the 8751 module.

When the data in program memory is arranged in 16-bit words, indicates that the
bytes are arranged in reverse order in program memory. Not used with the 8751
module.

Specifies the starting address to which data is placed after being read from the
PROM.

The alphanumeric name specifying the PROM with which you are working. The
8751 module only supports the promtype 8751/1, specifying the Intel 8751 micro
computer. The promtype parameter must be entered exactly as shown; the letter
I must be uppercase.

Specifies the PROM address that you want to be the starting point for the CPR
command.

Specifies the ending PROM address.

EXPLANATION

The CPR command compares the contents of the specified PROM addresses with the contents
of program memory, starting at the given memory address. The locations of any differences are
displayed. If the contents match, no message is displayed.

The CPR command is useful when you want to verify that the data in the PROM is the same as
the data in a specified region of program memory.

CPR
8751 PROM Programmer Specifics Users Compares PROM With Memory

EXAMPLES

Enter the following command to read the contents of locations 0-40 of an Intel 8751 's EPROM
into locations 0-40 of program memory:

/ RPR 0 87511I 0 40 <CR>

Now dump program memory to see what's been read:
> D o 40 <CR>

0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 54 48 49 53 20 49 53 20 41 20 54 45 53 54 2E 2E THIS IS A TEST ••
0010 54 48 49 53 20 49 53 20 41 20 54 45 53 54 2E 2E THIS IS A TEST ••
0020 54 48 49 53 20 49 53 20 41 20 54 45 53 54 2E 2E THIS IS A TEST ••
0030 54 48 49 53 20 49 53 20 41 20 54 45 53 54 2E 2E THIS IS A TEST ••
0040 54 T

If the data was read correctly, a CPR command at this pOint will not return a message:
> CPR 0 87511I 0 40 <CR>

Let's see what happens when an error is detected. Use the P command to patch new data into
two locations in program memory.

> P 05 00 <CR>

> P 07 00 <CR>

Now compare the contents again:
> CPR 0 8751/1 0 40 <CR>
*** COMPARE ERROR AT PROM ADDRESS 00005H
*** COMPARE ERROR AT PROM ADDRESS 00007H

The CPR command identified the discrepancies introduced into locations 5 and 7 of program
memory.

80-7

PSTAT
Reports PP Status 8751 PROM Programmer Specifics Users

80-8

I psiai
I

SYNTAX

EXPLANATION

The PSTAT command displays the current condition of the PROM Programmer. Normally,
PSTAT will report "no errors" . Conditions that prompt an error message include power failure, the
absence of a PROM Programmer module, or PROM Programmer power off.

Error messages are discussed later in this section.

EXAMPLES

When no errors are present:
:-> PSTAT <CR:->
••• NO PROM PROGRAMMER ERRORS DETECTED

Reporting an error condition:
> PSTAT < CR >
PP ERROR-- POWER FAIL

8751 PROM Programmer Specifics Users
PTYPE

Displays PROM Types

SYNTAX

ptype

EXPLANATION

The PTYPE command displays information about devices supported by the 8751 module. The
display consists of four columns:

• PROM TYPE: the name that specifies each device supported by the PROM Programmer
module. Each name is the model number of the primary source manufacturer, followed by a
slash and one or more letters specifying the manufacturer. The 8751 module supports only
the Intel 8751 microcomputer. The PROM TYPE is 8751/1. (Note that there are no spaces in
the PROM TYPE designation.)

• MAX ADDRESS: the maximum addressable location of the 8751 's internal EPROM.

• ERASED STATE: the state of the bits (high or low) when the PROM device has been erased.

• WORD LENGTH: the number of bits per word for each PROM.

EXAMPLES

> PTYPE <CR>

PROM TYPE MAX ADDRESS ERASED STATE WORD LENGTH

8751/1 OFFFH HI 8

160-1831-00

80-9

RPR
Reads PROM 8751 PROM Programmer Specifics Users

80-10

I . _ SYNTAX

I I-ml I rpr [-a] [-d] l-i·· J [-r] memlo promtype premlo promhi

I
I

-a.

-d

-I

-m

-r

memlo

promtype

promlo

promhi

PARAMETERS

Provides inverted addressing (hi=O, low=1). Not used with the 8751 module.

Data is stored in the PROM in inverted form (hi=O, low=1). For a read operation
(RPR), this means that the data from the PROM is inverted before being stored in
program memory.

The data being read from the PROM represents the least significant bytes of 16-bit
words in program memory. Not used with the 8751 module.

The data being read from the PROM represents the most significant bytes of
16-bit words in program memory. Not used with the 8751 module.

When the data in program memory is arranged in 16-bit words, indicates that the
bytes are arranged in reverse order in program memory. Not used with the 8751
module.

Specifies the starting address to which data is placed after being read from the
PROM.

The alphanumeric name specifying the PROM with which you are working. The
8751 module only supports the promtype 8751/1, specifying the Intel 8751 micro
computer -The promtype parameter must be entered exactly as shown; the letter
I must be uppercase.

Specifies the PROM address that you want to be the starting point for the RPR
command.

Specifies the ending PROM address.

RPR
8751 PROM Programmer Specifics Users Reads PROM

EXPLANATION

The RPR command reads the contents of the specified PROM addresses into the specified
program memory locations. No message is displayed unless an error is detected.

EXAMPLES

First, use the F command to fill program memory with the data byte EE. Later, when you examine
memory, the EEs will make it easy to see that new data was read in.

> F 0 40 EE < CR >

> D 0 40 <CR>
0 1 2 3

0000 EE EE EE EE
0010 EE EE EE EE
0020 EE EE EE EE
0030 EE EE EE EE
0040 EE

4 5 6 7 8 9 ABC D E F
EE EE EE EE EE EE EE EE EE EE EE EE
EE EE EE EE EE EE EE EE EE EE EE EE
EE EE EE EE EE EE EE EE EE EE EE EE
EE EE EE EE EE EE EE EE EE EE EE EE

Now use the RPR command to read the contents of memory locations 0-40 of an 8751 's EPROM
into program memory, beginning at address O. Then dump the contents of program memory, to
verify that the memory now contains new data from the PROM.

> RPR 0 87511 I 0 40 <CR>

> D o 40 < CR>
0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 54 48 49 53 20 49 53 20 41 20 54 45 53 54 2E 2E THIS IS A TEST ••
0010 54 48 49 53 20 49 53 20 41 20 54 45 53 54 2E 2E THIS IS A TEST ••
0020 54 48 49 53 20 49 53 20 41 20 54 45 53 54 2E 2E THIS IS A TEST ••
0030 54 48 49 53 20 49 53 20 41 20 54 45 53 54 2E 2E THIS IS A TEST ••
0040 54 T

80-11

WPR
Writes to PROM 8751 PROM Programmer Specifics Users

80-12

I SYNTAX

I r_ l I wpr [-8] [-d] 1 =;111 [-r] [-n] memlo promtype promlo promhi
I L .J
I
!

-a

-d

-I

-m

-n

-r

memlo

prom type

promlo

promhi

PARAMETERS

Provides inverted addressing (hi=O, 10w=1). Not used with the 8751 module.

Data is stored in the PROM in inverted form (hi=O, 10w=1).

The data being written to the PROM represents the least significant bytes of 16-bit
words in program memory. Not used with the 8751 module.

The data being written to the PROM represents the most significant bytes of
16-bit words in program memory. Not used with the 8751 module.

Specifies that no erase check is performed before a write operation.

When the data in program memory is arranged in 16-bit words, indicates that the
bytes are arranged in reverse order in program memory. Not used with the 8751
module.

Specifies the starting address from which data is written to the PROM.

The alphanumeric name specifying the PROM with which you are working. The
8751 module only supports the promtype 8751/1, specifying the Intel 8751 micro
computer. The promtype parameter must be entered exactly as shown; the letter
I must be uppercase.

Specifies the PROM address that you want to be the starting point for the WRP
command.

Specifies the ending PROM address.

EXPLANATION

The WPR command writes the contents of the specified program memory locations into the
specified PROM addresses. The programming routine verifies that each byte is programmed
correctly. No message is displayed unless an error is detected.

A location within the 8751 's EPROM must be erased by exposure to ultraviolet light before it can
be programmed with new data. Before programming the EPROM, the PROM Programmer
checks the deSignated addresses in the EPROM to ensure that the device has been erased and is
ready to accept new information. You may disable this erase check by using the -N command
modifier.

WPR
8751 PROM Programmer Specifics Users Writes to PROM

NOTE

The PROM Programmer has no capability for erasing EPROMs. Erasure must be
performed by a unit designed for this purpose.

EXAMPLES

Assume that you have 512 bytes of 8751 code in program memory, starting at address 00. To
program this code into the bottom addresses of an Intel 8751 device, enter the following
command:

>WPR 00 87511I 0 IFF <CR>

Suppose now that you have the following design problem. A peripheral output device connected
to your 8751 microcomputer has logically-inverted inputs. Your program contains a 256-byte data
table, starting at address 100 in program memory, that may be output to this device. The data
table will also start at location 100 within the 8751.

Your original design had the microcomputer invert the data before sending it to the peripheral
device, but this inversion degraded your prototype's performance. The -D modifier in the WPR
command offers a solution to this problem: each data byte is logically inverted before the byte is
programmed into a PROM.

Using the -D modifier in your WPR command line, you can store the data table in inverted form.
Thus, the microcomputer is relieved of the inversion task, and prototype performance improves to
an acceptable level. The command looks like this:

> WPR -D 100 87511 I 100 IFF < CR >

Sometimes you may discover an error in your code after you have burned it into the 8751 's
EPROM. Normally, you would spend 30 minutes or longer to erase and reprogram the device;
such delays are annoying when you're working under tight schedules. In many cases, though,
these delays can be eliminated.

Suppose you read the contents of the recently-programmed 8751 EPROM back into program
memory, and see the following dump:

>RPR 00 87511I 00 10 <CR>

> DOlO < CR>
o 1 234 5 6 7 8 9 ABC D E F

0000 54 48 4D 53 20 49 53 20 49 20 54 45 53 54 2E 2E THMS IS A TEST ••
0010 54 T

At first glance, it appears that you'll have to erase and reprogram the EPROM. However, a little
more thought reveals a quick solution.

Let's look at the binary representation of the ASCII characters "M" and "I". They differ only by
one bit:

M = 0100 1101
I = 0100 1001

80-13

Error Messages 8751 PROM Programmer Specifics Users

80·14

Although you can't change any bit in an EPROM from a 0 to a 1 without erasing the entire device,
you can change a 1 to a O. In this case, changing a 1 to a 0 can turn the "M" (at address 02) into
an "I":

> P 02 49 <CR>

>WPR -N 00 8751/I 0 10 <CR>

Notice that the -N modifier is used to inhibit the erase check of the device. Obviously, not all
errors in the EPROM's data can be corrected using this procedure, but the technique may be
useful when a small error is detected.

ERROR MESSAGES
PROM Programmer error messages are identified by the keywords "PP ERROR." They are
divided into two categories: execution errors and power-up errors.

Execution errors may appear in response to a PROM Programmer command (CPR, PSTAT,
PTYPE, RPR, or WPR) during normal operation. They indicate that the PROM Programmer is
unable to execute the command. This condition may be easily fixed (by turning on PROM Pro
grammer power, for example), or it may require a call to your Tektronix service representative.

Power-up errors describe problems discovered by the PROM Programmer self-test procedure,
executed automatically during power-up.

If you see an error message without the words "PP ERROR," refer to the section on Error
Messages in your System Users Manual.

Execution Errors
The following error messages may be received in response to a PROM Programmer command
(CPR, PSTAT, PTYPE, RPR, or WPR). Some errors are detected by the PROM Programmer, and
are reported by the operating system. Other errors are detected by the operating system directly.

8751 PROM Programmer Specifics Users Error Messages

Errors Detected by the PROM Programmer
PP ERROR-CHAR MOD ABSENT. There is no PROM Programmer module inserted in the front
panel of the PROM Programmer.

PP ERROR-CONFIG MEM CKSUM. The PROM Programmer module ROM is defective. Contact
your Tektronix field service representative. Since the PROM Programmer Controller is not mal
functioning, try using a different PROM Programmer module.

PP ERROR-DEV NOT ERASED. A WPR (write) command was attempted, but the PROM is not
erased for correct programming. See the discussion of the WPR command elsewhere in this
section for more information.

PP ERROR-DEV NOT REPROG. An attempt was made to write to a device, and the results in
the PROM do not match program memory. This may indicate a bad component, or an attempt to
use the -N modifier with the WPR command on an unerased section of device memory. See the
discussion of the WPR command elsewhere in this section for more information.

PP ERROR-POWER FAIL. The operation was aborted due to an internal power failure. Try the
operation again. If the POWER FAIL message perSists, contact your Tektronix field service
representative.

PP ERROR-PROM POWER OFF. The power switch on the PROM Programmer front panel
assembly must be turned on before PROM Programmer commands can execute.

Errors Detected by the Operating System
Error 80 PROM type not supported. The promtype parameter entered with a CPR, RPR, or
WPR command is not recognized by this PROM Programmer module. Note that the promtype
name must be entered exactly as shown. For example, 8751/i or 8751/INTEL are not accepted for
the 8751/1 promtype.

Error 81 Maximum PROM address exceeded. Either the memlo or memhi parameter you en
tered in a CPR, RPR, or WPR command exceeded the specified device's address range.

Error 82 PROM Programmer PTYPE data error. The data specifying the PROM Programmer
module's device support was corrupted when transferred from the PROM Programmer to the
development system's operating system. This error indicates some hardware fault in the PROM
Programmer. Contact your Tektronix field service representative.

Error 84 PROM Programmer hardware I/O error. The interface between the development sys
tem and the PROM Programmer malfunctioned. If this error perSists, contact your Tektronix field
service representative.

80-15

Error Messages 8751 PROM Programmer Specifics Users

80-16

Power-Up Errors
If, after you power up the PROM Programmer according to the instructions in Section 8 of this
manual, the READY indicator on the PROM Programmer front panei is not iiluminated~ or if ihe
SELF TEST indicator is illuminated, a power-up error has occurred. When this condition exists,
the PST AT command will report one of the following errors:

PP ERROR-- CPU
PP ERROR-- POWER CONTROL
PP ERROR-- RAM
PP ERROR-- ROM
PP ERROR-- SUPPLY MONITOR
PP ERROR-- SYST INTERFACE

These error messages indicate hardware failures in the PROM Programmer Controller. Contact
your Tektronix field service representative to have the PROM Programmer repaired.

8540 System Users

Section 9

TECHNICAL NOTES

NOTE 1. PRACTICAL LIMITS OF EMULATION
No available emulator exactly emulates the target microprocessor. Connecting test circuitry to a
device always has some loading effect on the device you are testing. Engineers have accepted
this fact with regard to voltmeters, oscilloscopes, and other test instruments. Similarly, when
you connect a control probe to a prototype circuit, you are adding circuitry that allows you to
monitor and control the prototype. This added circuitry has an effect, if only a slight one, on the
performance of the prototype. Here are some considerations to bear in mind when using an
emulator:

• Load and Drive Parameters. We have chosen to use LSTTL buffers between the user's
prototype and the emulating microprocessor. The consequence is that, where most
microprocessors have MOS-type inputs and outputs, our emulator has LSTTL inputs and
outputs. The designer of the target system must keep this in mind when dealing with load
and drive considerations.

• Noise. Another parameter that is directly affected by emulation is noise. Since the user's
circuitry is being driven via a cable from the prototype control probe, the signals will
necessarily be noisier than when the microprocessor is in the circuit. Further, existing
noise in the prototype circuit may be aggravated by the cable.

• Timing. Finally, because of propagation delays through cables and buffers, the timing of
certain signals at the probe plug may differ slightly from those measured at the
microprocessor itself.

In all cases, the variations mentioned are within the worst case specifications of the
microprocessor being emulated. You should remember, though, that these variations do exist. If
you encounter problems under emulation and not with the microprocessor plugged in, or vice
versa, check your design for possible marginal timing, loading, or noise conditions.

NOTE 2. COMPARISON OF OS/40 VERSION 1
WITH DOSI50 VERSION 2
This Technical Note compares the 8540 operating system (OS/40 Version 1) and the 8550
operating system (DOS/50 Version 2). The two operating systems are similar except for a few
commands, functions related to file handling, and RTPA support.

Commands

• All 8540 commands except PERMSTR and ROMPATCH are also valid on the 8550.

• All commands that are shared by the 8540 and the 8550 are identical except for the
CON FIG command.

9-1

Comparison of 05/40 V1 with DOS/50 V2 Technical Notes-8540 System Users

File Handling Considerations

The 8540 relies upon its host computer to do file handling tasks, unlike the 8550, which handles
its own files. As a result, the 8540 performs differently in the following areas:

• Command set. The follovving 8550 commands are not supported by the 8540:

ACE COP FD L SYS
1\ C'IUI rooro c. UNK SYSPATCH J-'\vlVI ~n~ IL-

An CREATE FORMAT LlBGEN T
BR OAT HELP MOL USER
CMPF DEL HOST PRINT VERIFY
CON DUP K REN

• SVCs. All files used by 8540 SVCs must reside on the host (for example, the 8560). All files
used by 8550 SVCs must reside on the 8550.

The 8540 does not support SVCs 06, 18, 21, 48-4C, 4E, 58, and 59.

On the 8540, Overwrite SVCs are implemented as Write SVCs, and I/O-and-Proceed SVCs
are implemented as I/O-and-Wait SVCs.

• intersystem Communication. The 8540 cannot be a host computei.

• Software Installation. On the 8540, software is installed via ROM. On the 8550, software
is installed via disk.

Support of TTA, RTPA

The 8540 supports only the Trigger Trace Analyzer (ITA). The 8550 supports both the n A and
the Real-Time Trace Analyzer (RTPA)

NOTE 3-COMPARISON OF THE TTA AND THE RTPA
This technical note compares the Trigger Trace Analyzer and the Real-Time Prototype Analyzer.
Refer to your ITA Users Manual, the Operating Procedures Section of this manual, and the
Emulation Section of this manual for more information about the TT A.

Technical Notes-8540 System Users Comparison of TTA and RTPA

Differences
a. The TTA can monitor up to 24 address lines. The RTPA can monitor up to 16 address

lines.

b. The smallest time unit that the ITA can count is 200 ns. The smallest time unit the
RTPA can count is 1 us.

c. The ITA's Acquisition Memory can hold 255 operations. The RTPA's Real-Time Trace
buffer can hold 128 operations.

d. The ITA has 4 event/counter/trigger sets. The RTPA has 2 event/counter/trigger
sets.

e. The event/counter/trigger relationships of the ITA are much more flexible than those
of the RTPA's. As a result, the ITA's TS command has no counterpart in the RTPA.

f. Each ITA trigger can key on a range of addresses or data. The RTPA can key on a single
range but requires both event/counter/triggers to do it. milarities

Similarities

a. The following functions are similar on both instruments: tracing, counting, triggers,
and breakpoints.

b. Both the TTA and the RTPA can use the following input data: address bus, data bus,
control lines, and data acquisition probe clips.

c. The ITA's EVE command performs many of the same functions as the RTPA's EVT
command.

d. The ITA's AD, BUS, DATA, and PRO commands are analogous to the parameters A, B,
0, and T of the RTPA's EVT command.

e. The TTA's ACO command performs the functions of the RTPA's RT command and has
additional features.

f. The ITA's DISP command is similar to the RTPA's DRT command.

9-3

8540 System Users

Section 10

ERROR MESSAGES

NOTE This section describes error messages which are
generated by OS/40 or issued by the 8540 upon request
from the host. Other Tektronix software products that run
on the 8560 or 8550 can generate error messages which
are documented in other manuals. Table 10-1 describes
the general format of each type of error message, and
indicates the appropriate reference document.

A ny of these codes may be returned as an SRB status
code after an SVC. Refer to the Service Calls section
of this manual for information regarding SRB status
codes.

Table 10-1
Summary of Error Message Types

Source Order Case Format Reference Document

8540/8550 numeric, lower CMD: Error nn Message 8540 or 8550 System Users Manual

hexadecimal Error Messages section

8560 alphabetic lower cmd: Message 8560 System Users Manual

by command cmd: Message-Detail Message: refer to the generating command

Detail: see Error Messages section

A Series Assembler numeric lower *****ERROR nnn:Message 8550 Assembler Core Users Manual (A Series)

nnn = 000-199, Error Messages section

nnn = 200-255, Assembler Specifics

A Series Linker alphabetic upper MESSAGE 8550 Assembler Core Users Manual (A Series)

The Linker section

A Series Library alphabetic upper MESSAGE 8550 Assembler Core Users Manual (A Series)

Generator I The Library Generator section

B Series Assembler numeric lower ASM: nnn (s) Message 8550 Assembler Core Users Manual (B Series)

*** ASM: nnn (s) Message nnn = 000-199, Error Messages section

nnn = 200-255, Assembler Specifics

B Series Linker numeric lower LlNK:nnn (s) Message 8550 Assembler Core Users Manual (B Series)

***LlNK:nnn (s) Message Error Messages section

nnn = 000-099, command processing errors

nnn = 100-199, errors during link

B Series Library numeric lower LlBGEN:nnn (s) Message 8550 Assembler Core Users Manual (B Series)

Generator *** LlBGEN:nnn (s) Message nnn = 000-199, Error Messages section

nnn = 200-255, Assembler Specifics

8550 DOS/50 Editor alphabetic upper MESSAGE 8550 Editor Users Manual

Error Messages section

ACE alphabetic upper MESSAGE 8500 Advanced CRT-Oriented Editor Users Manual

MDL/tJ alphabetic lower Message 8550 MDLltJ Compiler Users Manual

Error Messages section

PROM Programmer alphabetic upper PP ERROR-MESSAGE PROM Programmer Specifics supplement

by function FATAL PP ERROR-MESSAGE for the characteristic module;

group see the heading, Error Conditions

10-1

02-liiegai channei number. The channei number used
was outside the range 0-9.

03-1/0 channel not open. An j/O operation has been
attempted on a channel that has not been assigned to a file
or device.

05-iiiegai function for device. An attempi has been made
to perform an illegal function, such as reading from the line
printer or writing to the paper tape reader.

06-Short or unterminated read. The number of bytes
read was less than the number of bytes requested, or a
carriage return was not detected. This is the normal status
when the last (short) block of a file is read.

07-Short or unterminated write. A carriage return was
not detected in the specified number of characters to be
written.

OA-Oevice not operational. Power to the device is on, but
for some reason it cannot function properly. For example,
the line printer may be out of paper.

OC-Device not ready. The 8540 cannot communicate
with the device you want to access (for example, the host
computer). Be sure that the device is powered up and con
nected to the 8540.

DO-Device in use. An attempt has been made to assign a
non-shareable device on a second channel. Only CONI and
CO NO are shareable.

1 O-Error reading disk bit map. An error in reading a disk
bit map has been detected Host-dependent SVC error.

11-1/0 error or access violation on read. An error on
REMI. CONI. or PPTR has been detected, oryou do not have
read access to the directory or file on the host.

12-1/0 error or access violation on write. An error on
REMO, CONO, or PPTP has been detected, or you do not
have write access to the directory or file on the host.

13-Command not found. OS/40 does not recognize the
command name. Be sure that the proper emulator software
has been installed and selected.

15
incorrect length or contain illegal characters. May be host
dependent.

17-lIIegal SVC function code. An SVC code has been
specified that does not exist or is not available to the user.

18-Channel already open. Self-explanatory.

19-Volume or disk not found. A file has been specified on
a volume that is not mounted on the host. Host-dependent
SVC error.

10-2

Error Messages-8540 System Users

i B-Checksum error. A checksum error in a !oad file has
been detected by the LO or RH command.

i C-Command area ir'J

executed simultaneously.

__ ,-.. _____ ..J

u:)t:. \..,UIIIIIIClIIU;:' may
__ + L-... _

IIUl u'V'

1 D-File not found. An attempt has been made to open a
file for reading Oi vViiting, but the file either does not exist,
or exists in a protected directory. Host-dependent SVC
error.

1 E-Invalid parameter. OS/40 does not recognize one of
the parameters entered in a command line. Check the
required format and parameters in the Command
Dictionary.

1 F-No header on load file. An attempt has been made to
load a file that is not in load module format.

20-invalid input parameter. An invalid input parameter
has been entered. Refer to the Command Dictionary for the
correct syntax.

21-lnvalid output parameter. An invalid output para-
rneter has been entered. Refei to the Command Dictionary
for the correct syntax.

22-No transfer address. This status code is returned
when you use SVC 17 or 57 to load a program that does not
have a transfer address.

23-Command buffer overflow. The command line
entered (or the resulting line after all string and parameter
substitutior;) rllUSt be less than or equal to 80 characters,
including the carriage return.

24-Symbol table full An attempt has been made to load
more symbols into the symbol table (with COM, SYMLO, or
ADDS) than allowed. The number of symbols possible is
about 1000, depending on symbol length. Use REMS to
remove symbols.

25-0ata format error. The input data is not in the format
expected by the command.

26-No emulator in system. The emulator hardware is not
installed. or the emulator software is not SELected.

27-Numeric parameter out of range. Either the clock
count or the number of lines to be printed has been set to a
value that is outside the range 0-64K.

28-System interface error. Serious problems have been
detected in the host interface. Check your 8560 or host
cable connections and interface baud rate. If this problem
continues, contact your Tektronix service representative.

29-Seek error on file 1/0. Host-dependent file error.

REV JAN 1983

Error Messages-8540 System Users

2A-Parameter required. A command line has been
entered that requires another parameter. Check the
required parameters in the Command Dictionary.

28-Too many parameters. A command line has been
entered that contains more parameters than required.
Check the required format in the Command Dictionary.

2C-lnvalid address parameter. An address parameter
may contain numbers, register names, symbols, memory
space designators, don't-care values, and the operators +

and -. Refer to the Command Dictionary for more
information regarding valid address expressions.

2E-System must be idle to SELect. The system must not
have any active commands or programs. SEL destroys the
current program debugging status.

2F-Buffer overflow on HSI operation. This error
indicates serious hardware or software problems. The
8540 Installation Guide contains verification procedures.

30-lnvalid address range. An invalid address range has
been entered. The high address must be greater than or
equal to the low address.

32-Too many trace ranges. An attempt has been made to
set a fourth TRA command. Only three TRA commands may
be active at one time. Check the Command Dictionary for
correct parameters.

34-Command not active. An attempt has been made to
abort or suspend an inactive command.

35-Command not suspended. An attempt has been
made to continue a command that is executing or that has
finished executing.

37-lnvalid hexadecimal string. The commands EX, F, and
P accept a hexadecimal string. Refer to the Command
Dictionary for the requirements of a hexadecimal string.

38-Missing close quotation mark. A quoted string must
have opening and closing quotation marks.

39-No emulator selected. An attempt has been made to
execute an emulator-specific command before an emulator
has been selected.

3A-Bad acknowledge. The valid acknowledgments are
"0" (ASCII 30H) for ACK and "7" (ASCII 37H) for NAK.

38-Transfer aborted. A data transfer between the 8540
and the host was incomplete, so the transfer was aborted.
Check cable connections, and power switches and
connections. If the problem persists, run the system
verification described in the 8540 Installation Guide
and/or have a qualified service representative run
diagnosics on the systems communications hardware as
described in the 8540 Service Manual.

REV JAN 1983

3C-Memory write error. Data written to memory could
not be read back. The memory may be ROM, or there may
be no RAM for the addresses specified.

3E-lnvalid memory space designator. A memory space
designator (such as SC:) has been incorrectly entered.

3F-lliegal use of don't-care expression. A don't-care
expression has been used where a unique value is
required.

40-Memory space designator illegal in expr. A memory
space designator has been used in a parameter that does
not allow memory space designators. For example, in a pair
of parameters that represent an address range, only the
first may contain a memory space designator.

41-Word not filled. The string entered with the F or P
command did not fill an even number of bytes.

42-lnvalid use of multiple memory spaces. Multiple
memory spaces can only be used with the commands listed
under MEMSP in the Command Dictionary.

43-No Trigger Trace Analyzer in system. The ITA
hardware has not been installed.

44-Emulator clock missing. Make sure the prototype
power switch is on and that the prototype clock is
functioning correctly.

45-Emulator faulted. The emulator is malfunctioning.
Error code 5F may also occur under this condition. Have a
qualified service representative check the hardware and
fuses, and clean the board contacts. Make sure that the
prototype power switch is on, that the prototype clock is
functioning properly, that the entered commands are valid,
and that the instructions being executed are legal.

46-0dd word address. An attempt has been made to
modify an area of memory that does not begin on a word
boundary.

47-Byte not filled. An uneven number of hexadecimal
digits has been entered in an attempt to modify memory
with the F or P command. You cannot modify a half byte.

48-Port has no carrier signal. No carrier signal has been
detected at the REMI/REMO port.

49-Port parity error. A parity error has been detected at
the REMI/REMO port.

4A-Port framing error. A framing error has been detected
at the REMI/REMO port. That is, the number of start, stop,
and data bits received was not what was expected. The
COM -M command can be used to set the desired framing.

48-AII job streams active. The system is busy.
Commands cannot be entered until one of the currently
executing commands is finished.

10-3

4C-lnvalid section name. The section does not exist. or
the section name contains an illegal character or is too
long.

4D-PROM power failure. The power to the PROM
Programmer has failed.

52-Command busy. An attempt was made to enter a
command again when it was already executing.

53-Symbol not found. An attempt has been made to
access a symbol that does not exist or has been entered
incorrectly. Valid symbols include register names and any
program symbols you have placed in the symbol table. Be
sure to include a leading zero on any hexadecimal number
that starts with a letter, and on any number that begins
with an X (don't-care).

54-Invalid symbol. An invalid character has been
detected in a symbol, or the symbol is too long.

55-Symbol value not alterable. The symbol to which you
are attempting to assign a value with the S command is not
alterable.

56-Truncation error. An attempt has been made to assign
too large a value to a symbol or register, or the hex string
specified in the F (Fill) command does not evenly fill the
specified memory area.

57-Invalid arithmetic operator. The only valid arithmetic
operators are + and - .

58-Invalid term in expression. An invalid character or
character string has been detected in an expression

59-Overflow in expression. The resulting value of an
expression (or some intermediate value obtained in
evaluating it) is too large. Expressions are evaluated using
32-bit arithmetic.

5A-lnvalid dash modifier. Dash modifiers must be letters
only. Refer to the Command Dictionary for the dash
modifiers accepted by each command.

5C-Too many files open. No more than eight channels to
files can be simultaneously open by commands and user
programs. Enter the command A -A to Close all channels.

5D-Bad character in number. The valid digits are 0-9,
A-F, and the standard suffixes: H (hexadecimal), T
(decimal), 0 or Q (octal), and Y (binary).

5F-Emulator halted. The emulator halted while a
program was executing. Error code 45 (Emulator faulted)
may also occur under this condition. Make sure that the
appropriate emulator board is installed and the instructions
entered are valid.

10-4

Error Messages-8540 System Users

60-Emulator SVC synchronization error. A serious
emulator software error has been detected. Reboot and
rese!ect the emulator. !f the problem persists, contact your
Tektronix s6rvice iepi6Sentativ6.

61-Disk protected against writing. A disk on the host is
write-protected. Host-dependent SVC error.

63-Disk not formatted. Host-dependent SVC error.

64-Disk CRC error. A bad block (parity error) has been
detected on a disk on the host. Host-dependent SVC error.

65-Disk full. There are no blocks available for allocation
on this host disk, or there are no free files. Host-dependent
SVC error.

66-System synchronization error. The 8540 and the
host have serious interface problems. Reboot your system
and try again. Contact your Tektronix service representative
if problems continue.

67-Exclusive access conflict. An attempt has been made
to open a host file or device that is already being used
cxc!us;vely by another piOCeSS. Host-dependent SVC eriOi.

69-Too many channels open. Serious hardware and/or
software problems have been detected. Reboot your
system and try again. Contact your Tektronix service
representative if problems continue.

6A-Disk structure corrupt. Serious problems have been
detected in the file structure of your host's disk. Host
dependent SVC error.

6B-Current user is not file owner. An attempt has been
made to access a file on the host to which you do not have
access privileges. Host-dependent SVC error.

6E-Directory alteration invalid. An attempt has been
made to create, delete, or rename a file on the host in a
directory to which you do not have write access, or to create
a duplicate name within a directory. Host-dependent SVC
error.

SF-Invalid file linkage attempt.
error.

70-File full. The file structure of a volume on the host is
fuii. HosI-dependent SVC error.

71-String already exists. Using the PERMSTR command,
an attempt has been made to store a permanent string in
EEPROM when a string by that name is already stored.

74-Program memory jumpered incorrectly. Using the
68000 or Z8001, the SELect command cannot set up the
MAC board properly since program memory has been
strapped so that addresses do not have a unique location.

111:

Error Messages-8540 System Users

76-ASCII read to CONI terminated by CTRl-C. CTRL-C
was typed while OS/40 was performing a read operation.
The data read is not valid.

77-Emulator SVC request outstanding. A prior SVC is
still in progress. Your current request will be filled when
the first SVC has finished.

78-No more program memory available. An attempt has
been made to Allocate program memory when there is
none available. Use DEAL to deallocate memory.

79-Program memory address not allocated. In order for
you to access the specified address range, memory must be
allocated to it using the AL command.

7 A-Program memory address already allocated. An
attempt has been made to Allocate an address that has
already been allocated.

7B-String not found. OS/40 does not recognize the
string name entered. Check that you have spelled the name
correctly. Use the STR -L command to list temporary
strings and/or the PERMSTR -L command to list
permanent strings.

7C-String area full. The capacity of either the temporary
or the permanent string area has been exceeded. Use the
STR or the PERMSTR command to delete unused strings.

7D-System memory parity error. Reboot the system. If
the problem persists, contact your Tektronix service
representative.

7E-Error in command execution. A command has been
executed that detected errors but continued.

80-PROM type not supported. The characteristic
module currently installed does not support the PROM type
entered.

81-Maximum PROM address exceeded. The address
given is negative, or exceeds the maximum for the PROM
type.

82-PROM Programmer PTYPE data error. System error.
The PROM type specified in a RPR, WPR, or CPR command
is not supported by the characteristic module currently
installed.

83-Modifier required. The command entered needs a
dash modifier.

84-PROM Programmer hardware I/O error. System
hardware error. Contact your Tektronix service representa
tive if the error persists.

85-Allocation hardware disabled. Program memory
allocation hardware error. Contact your Tektronix service
representative if the problem continues.

87-lnvalid trigger number. There are four ITA triggers,
numbered 1-4.

88-Signals cannot occur simultaneously. Using either
the ITA, or a Z8001 /Z8002, 8086, or 68000 emulator, an
attempt has been made to set an event or breakpoint on bus
signals that are mutually exclusive (such as a read and a
write on the same line).

8A-lnvalid event linkage (wraparound). Using CONS, an
attempt has been made to completely link together all
events. Thus, no trigger can occur.

8B-Restart requires gate option. In the COU command,
the restart option must be used in conjunction with a gate
option.

8C-Restart/ gate not available on trigger 1 . The trigger 1
hardware has no prior trigger channel from which to gate.

8D-No section contains specified address. The ADDS
command requires that any address you add be contained
within a previously defined program section. Use the COM
or SYMLO command to download the section definition
information into the symbol table from your load file.

8E-Segmentation trap pending. Either your program or a
system program has attempted to access memory which is
invalid according to the zaooo Memory Management Unit.
Refer to the Z8001 /Z8002 Emulator Specifics supplement
for further information.

8F-User memory declared non-existent. An attempt has
been made to access memory which was declared non
existent with the NOM EM command. Check memory
declarations with the MEM or NOM EM command. If the
problem persists after checking your program, check your
MAC board.

90-lnvalid arming mode. The -A arming modifier needs
two programmed breakpoints, but only one is currently
programmed. This error occurs only when using an
emulator such as the Z8001 /Z8002, 8086, or 68000.

91-lnvalid initial value for counter. Zero is an invalid
initial value for decrementing counter modes.

92-No such label or scalar. An attempt has been made to
remove a symbol which is non-existent or is a section
name.

10-5

93-invalid symbol specification. in a symboi specifica
tion of the form section: label, either the section name is too
long, the label name IS too long, or the specification
contains an illegal character.

94-No prototype control probe attached. An attempt
was made io change from emuiation mode Oto mode i or 2,
but the prototype control probe is not connected to the
emulator and the prototype. This error occurs only when
usmg the 8086 emulator.

95-Prototype not ready. When the emulating micro
processor attempted to access prototype memory, the
prototype held the READY line "not ready" for too many
wait states. Check the prototype. This error occurs only
when using the 8086 emulator. The number of wait states
allowed is jumper-selected.

96-Prototype bus hang. The prototype has held the bus
for an inordinate length of time. This is considered a
"hung" condition; detection of this condition is jumper
selectable. The timeout is on the order of one-half second.
You may hold the bus for any length of time if the jumper is
not used. Check the prototype. This error occurs only when
uSing the 8086 emulator.

D4-lnternal parse error. Serious software errors have
been detected. Contact your Tektronix service representa
tive if this problem continues.

10-6

Error Messages-8540 System Users

07-internai term error. Serious software errors have
been detected. Contact your Tektronix service representa
tive if this problem continues.

El-Emulator double fault or odd stack pointer. On the
68000, the emulator has halted during a user job. Possible
causes are a double address or bus error, or an odd system
stack pointer. Reset the registers and check the program
and prototype.

E2-Processor registers changed. Following a 68000
processor halt, the emulator had to reset the PC, SSP, and
SR registers before all the registers were saved.

E4-Emulator system error. Unknown emulator error.
Reboot and reselect. Contact your Tektronix service
representative if this problem continues.

E6-No MAC board in system. No Memory Allocation
Controller board has been installed.

E7-System error on MAC board. Unknown system error.
Reboot and reselect. If the problem persists, contact your
Tektronix service representative.

FE-Process aborted. This message is returned when the
A command is used.

FF-End of file. Returned on a Read SVC if the file was at
end of file before the read occurred. May be host
dependent.

({i'

8540 System Users

Section 11
TABLES

Page

Conversion Tables ... 11-1

Tektronix Hexadecimal Format (Tekhex) ... 11-4

Standard Tekhex Format .. 11-4
Extended Tekhex Format .. 11-6

Motorola Load Module Format ... 11-8

Intel Load Module Format ' ... 11-10

Table
No.

11 -1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11 -9
11-10
11 - 11
11 -1 2

11-14
11 -15

Tables

ASCII-Binary-Hexadecimal-Decimal Conversion ... 11-1
Hexadecimal Multiplication ... 11-2
Decimal-Hexadecimal-Binary Equivalents .. 11-3
Standard Tekhex Data Block Format ... 11-4
Standard Tekhex Termination Block Format .. 11-5
Standard Tekhex Abort Block Format .. 11-5
Extended Tekhex Header Field .. 11-6
Character Values for Checksum Computation .. 11-6
Extended Tekhex Data Block Format ... 11-6
Extended Tekhex Termination Block Format .. 11-7
Extended Tekhex Symbol Block Format .. 11-7
Extended Tekhex Symbol Block: Section Definition Field ... 11-7
Extended Tekhex Symbol Block: Symbol Definition Field .. , 11-7
Motorola Load Module Format .. 11-8
Intel Load Module Format .. 11-10

11 -i

8540 System Users

B "' 116

T II~

s
110 II) 112 II'

s

fI II II 1

9 9 1 9

Section 11

TABLES

CONVERSION TABLES

Table 11-1
ASCII-Binary-Hexadecimal-Decimal Conversion

s g
g 9 s

9

CONTROL SYMBOLS UPPE RCASE

o • 10 "70)2 30 .. 40 ~ OJ() II f,()

NUL OLE SP e (ciJ P

, 11 " 71)) 31 ., 41 IS ,,1 I' 1,1

SOH OC1 A a
2 17 " n 50 47 .. '17 12 1,7

STX OC2 2 B R

LOWE RCASE

..
p

'7 II

a q

.. n
b

1) 13 '9 7:l)~:u ~,4:l ,,',:J I) f,:J "n "S

9 S 1 1 ETX OC3 # 3 C S c s

S 1 II II

g 1 II 1

II 1 1 fl

II I 1 I 1 I 1

1 S If If

1 e 1 1

1 I 1 B e

1 I B 1

i

1 I 1 I 1 I If
I

1 1 1 1

Example:

• 14' 2, 74

EOT OC4 $

ENQ NAK %

6 I h

ACK SYN &

, 1/ 2) ;> 1

BEL I ETB
IIELl

, Ifj

BS CAN
BloC_ SPACE

9 I 'j 2~;> 'I

HT EM)

A " I A 26 I r.
LF SUB *

11 I H " III

VT ESC +
12 I(}I I(

FF FS

[J 11 I [) }q I[)

CR GS -
Rf TuRN

I .. I I ";; I

SO RS

l')1

SI US

ASCII
<

4

5

6

)9 'Jl

7

8

9

~, 4A

.j lH

u ~(

<

>

.' n
?

Binary
011 1100

o

E

F

G

H

J

K

L

M

N

o

.. 1,4 'N /4

T d

U e

Ie f Jf) "2 I. /

v
71 ,)! " 1./ 'f) / I

w 9 I

x h

Y

74 (Jr. ,'" If,

z
,,, III

k

'YJ f,(,ft /1

.. f,[1

m

.. f.1 "f II

/\ n

1" /1

o

Hexadecimal
3C

'"

u

v

w

x

y

z

DEL

Decimal
60

11 -1

Conversion Tables

I L

1 1 2
2 2 4

Table 11-2
Hexadecimal Multiplication

,.... !.. ,.. I ,... I ""'7 ~ h J "'" f A

'" q ::> o I , Q ~ I A

3 4 5 6 I 7 J~. 9 I A

Tables-8540 System Users

I P I vi UICI r

i 8lCI OIEI F
6 8 A ci E 10 12 ! 14 ! 16 ! 18 ! 1A 11C 11E

'l 'l ~ a t: 1 I) I 1 ... 1 Q I 1 t: I 1)1 I I) I I) II) II) ~ II v 1 VI'" 1 el' 1 " 1 15 1 18 1 I LJ 1 I L... 1 " 1 ,4 1 ,7 I ,A 1 ,0 I
[4- I 8 It r 10 4 14 18 1C 20 24 28 2C 30 34 38 3C
i 5 5 i A i F i 14 I 19 I 1 E I 23 I 28 I 20 I 32 ! 3 (I 3C I 41 I 46 I 48 I

6 6 C 12 18 1E 24 I 2A I 30 I 36 I 3C I 42 I 48 I 4E I 54 I 5A
7 7 E 15 1C 23 2A 31 38 3F 46 40 54 58 62 69
8 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78
9 9 12 1B 24 20 36 3F 48 51 5A 63 6C 75 7E 87
A A 14 1E 28 32 3C 46 50 5A 64 6E 78 82 8C 96
8 8 16 21 2C 37 42 40 58 63 6E 79 84 8F 9A A5
C C 18 24 30 3C 48 54 60 6C 78 84 90 9C A8 84
0 0 1A 27 34 41 4E 58 68 75 82 8F 9C A9 86 C3
E E 1C 2A 38 46 I 54 I 62 I 70 I 7E I 8C I 9A A8 I 86 I C4 I 02
F F 1E 20 3C 48 5A 69 78 87 96 A5 84 C3 02 E1

Examp!e

HEX 9x8 48 HEX

HEX 40 64 DEC
HEX 8 = 8 DEC

I HEX 48 72 DEC

11-2

Tables-8540 System Users

Hexa- Binary
Oeci- deci- 8-bit
mal mal Code

0 00 00000000
1 01 0000 0001
2 02 0000 0010
3 03 00000011
4 04 00000100
5 05 0000 0101
6 06 0000 0110
7 07 0000 0111
8 08 0000 1000
9 09 0000 1001
10 OA 0000 1010
11 OB 0000 1011
12 OC 0000 1100
13 00 0000 1101
14 OE 0000 1110
15 OF 0000 1111
16 10 0001 0000
17 11 0001 0001
18 12 0001 0010
19 13 0001 0011
20 14 0001 0100
21 15 0001 0101
22 16 0001 0110
23 17 0001 0111
24 18 0001 1000
25 19 0001 1001
26 1A 0001 1010
27 1B 0001 1011
28 1C 0001 1100
29 10 0001 1101
30 1E 0001 1110
31 1 F 0001 1111
32 20 00100000
33 21 00100001
34 22 00100010
35 23 0010 0011
36 24 0010 0100
37 25 0010 0101
38 26 0010 0110
39 I 27 10010 0111
40 28 0010 1000
41 29 0010 1001
42 2A 0010 1010
43 2B 00101011
44 2C 0010 1100
45 20 0010 1101
46 2E 0010 1110
47 2F 0010 1111
48 30 0011 0000
49 31 0011 0001
50 32 0011 0010
51 33 00110011
52 34 0011 0100
53 35 00110101
54 36 0011 0110
55 37 00110111
56 38 0011 1000
57 39 0011 1001
58 3A 0011 1010
59 3B 0011 1011
60 3C 0011 1100
61 3D 0011 1101
62 3E 0011 1110
63 3F 0011 1111

Table 11-3
Decimal-Hexadecimal-Binary Equivalents

Hexa- Binary Hexa- Binary
Oecl- decl- 8-bit Oeci- deci- 8-bit
mal mal Code mal mal Code

64 40 01000000 128 80 1000 0000
65 41 0100 0001 129 81 1000 0001
66 42 0100 0010 130 82 1000 0010
67 43 01000011 131 83 1000 0011
68 44 01000100 132 84 1000 0100
69 45 01000101 133 85 10000101
70 46 01000110 134 86 10000110
71 47 01000111 135 87 1000 0111
72 48 0100 1000 136 88 1000 1000
73 49 0100 1001 137 89 1000 1001
74 4A 0100 1010 138 8A 1000 1010
75 4B 0100 1011 139 8B 1000 1011
76 4C 0100 1100 140 8C 1000 1100
77 40 0100 1101 141 80 1000 1101
78 4E 0100 1110 142 8E 1000 1110
79 4F 0100 1111 143 8F 1000 1111
80 50 0101 0000 144 90 1001 0000
81 51 0101 0001 145 91 1001 0001
82 52 0101 0010 146 92 1001 0010
83 53 0101 0011 147 93 1001 0011
84 54 0101 0100 148 94 1001 0100
85 55 0101 0101 149 95 10010101
86 56 0101 0110 150 96 10010110
87 57 0101 0111 151 97 10010111
88 58 0101 1000 152 98 1001 1000
89 59 0101 1001 153 99 1001 1001
90 5A 0101 1010 154 9A 1001 1010
91 5B 0101 1011 155 9B 1001 1011
92 5C 0101 1100 156 9C 1001 1100
93 50 0101 1101 157 90 1001 1101
94 5E 0101 1110 158 9E 1001 1110
95 5F 0101 1111 159 9F 1001 1111
96 60 0110 0000 160 AO 10100000
97 61 01100001 161 A1 10100001
98 62 01100010 162 A2 10100010
99 63 01100011 163 A3 10100011
100 64 01100100 164 A4 10100100
101 65 01100101 165 A5 10100101
102 66 01100110 166 A6 10100110
103 67 01100111 167 A7 110100111
104 68 0110 1000 168 A8 1010 1000
105 69 0110 1001 169 A9 1010 1001
106 6A 0110 1010 170 AA 1010 1010
107 6B 0110 1011 171 AB 1010 1011
108 6C 0110 1100 172 AC 10101100
109 60 0110 1101 173 AD 1010 1101
110 6E 0110 1110 174 AE 1010 1110
111 6F 0110 1111 175 AF 1010 1111
112 70 0111 0000 176 BO 1011 0000
113 71 0111 0001 177 B1 1011 0001
114 72 0111 0010 178 B2 10110010
115 73 0111 0011 179 B3 10110011
116 74 01110100 180 B4 1011 0100
117 75 j 01110101 181 B5 1011 0101
118 76 01110110 182 B6 1011 0110
119 77 i 0111 0111 183 B7 1011 0111
120 78 : 0111 1000 184 B8 1011 1000
121 79 10111 1001 185 B9 1011 1001
122 7A 0111 1010 186 BA 1011 1010
123 7B 0111 1011 187 BB 1011 1011
124 7C 10111 1100 188 BC 1011 1100

70
I

1101 125 i 0111 189 BO 1011 1101
126 7E 10111 1110 190 BE 1011 1110
127 7F

1
0111 1111 191 BF 1011 1111

Conversion Tables

Hexa- Binary
Oeci- deci- 8-blt
mal mal Code

192 CO 11000000
193 Cl 11000001
194 C2 11000010
195 C3 11000011
196 C4 11000100
197 C5 1100 0101
198 C6 11000110
199 C7 11000111
200 C8 1100 1000
201 C9 11001001
202 CA 1100 1010
203 CB 1100 1011
204 CC 1100 1100
205 CO 1100 1101
206 CE 1100 1110
207 CF 1100 1111
208 DO 1101 0000
209 01 11010001
210 02 1101 0010
211 03 1101 0011
212 04 1101 0100
213 05 1101 0101
214 06 1101 0110
215 07 11010111
216 08 1101 1000
217 09 1101 1001
218 OA 1101 1010
219 DB 1101 1011
220 DC 1101 1100
221 DO 1101 1101
222 DE 1101 1110
223 OF 1101 1111
224 EO 1110 0000
225 E1 11100001
226 E2 11100010
227 E3 11100011
228 E4 11100100
229 E5 11100101
230 E6 11100110
231 E7 I 11100111
232 E8 1110 1000
233 E9 1110 1001
234 EA 1110 1010
235 EB 1110 1011
236 EC 1110 1100
237 ED 1110 1101
238 EE 1110 1110
239 EF 1110 1111
240 FO 1111 0000
241 F1 1111 0001
242 F2 1111 0010
243 F3 1111 0011
244 F4 1111 0100
245 F5 1111 0101
246 F6 1111 0110
247 F7 1111 0111
248 F8 1111 1000
249 F9 11111 1001
250 FA i 1111 1010
251 FB

I
1011 ; 1111

252 FC 11111 1100
253 FO ! 1111 1101
254 FE

I
11111 1110

255 FF 11111 1111

11-3

Standard Tekhex Tables-8540 System Users

TEKTRONIX HEXADECIMAL
FORMAT (TEKHEX)

Standard Tekhex Format
Table 11-4

Standard Tekhex Data Block Format

! Number Of!
I .n<;:rll I

FO Id Ie
I r'~~.. I

Ch t arac ers o Of escnp Ion

/ 1 The slash specifies that the block is in Standard Tekhex format.

Load 4 The address where the object code is to be loaded (high-byte, low-byte formatl.
Address

Byte Count 2 Number of data bytes in the data field of the block.

First
Checksum

2
-----.----.------

I The sum, mod 256, of the six hex diqits of the load address and byte count. I ~

Data 2n (2 to 60) n data bytes, each represented as two hex digits. Maximum of 30 data bytes.

Second
Checksum

2

Here is an example of a Standard Tekhex data block:

11-4

t - -load address
+--First checksum

... . Second checksum

v v v

Ol0006070202020202020C

+--Data

... - - Byte count

L-Header

[(I'

Tables-8540 System Users Standard Tekhex

Table 11-5 Table 11-6
Standard Tekhex Termination Block Format Standard Tekhex Abort Block Format

Number of Number of
ASCII ASCII

Field Characters Description Field Characters Description

/ 1 The slash specifies that the / 1 The slash specifies that the
block is in Standard Tekhex block is in Standard Tekhex
format. format.

Transfer 4 Starting execution address / 1 Another slash to identify the

Address (high-byte, low-byte format) abort block
of the code transmiued in the
data blocks. Message 1 to 69 A message to be displayed

when the transfer is aborted.

Byte 2 Always 00 in a termination
block

Checksum 2 Sum, mod 256, of the six hex
digits of the transfer address
a nd byte cou nt.

Here is an example of a Standard Tekhex termination block:

+--Transfer address
I +--Checksum

I

v v

/10000001

I' I'

I I

I
ii
I +--Byte count
+--Header

Here is an example of a Standard Tekhex abort block:

Header

Message

v v

"5 CONSECUTIVE FAILURES. TRANSMISSION ABORTED

11-5

Extended Tekhex

Extended Tekhex Format
Each Extp-nded Tekhex block begins with a six-character
header field.

Extended Tekhex has no specially defined abort block. To
abort a formatted transfer, use a Standard Tekhex abort
block

Table 11-7
Extended Tekhex Header Field

I Number of I

==1 t=e=m===*=1 =C=h=~=;=a~:~4 ~m _~,Descripti~= .. ~=._ ====

% II 1 I A percent sign specifies that

Block
Length

Block Type

i the block is in Extended

l I Tekhex fo~~~t.~m ___ _
I I ------

I
! 2 i The number of characters in
, I the block: a two-digit hex
I ! number. This count does not
II I include the leading % or the

i end-of-line.
t ~ -----------------
I : 6 = data block

I 3 = symbol block
18 = termination block

------. -r -- t - -.--.-.---.. -----
Checksum i

---_1_~

2 I A two-digit hex number repre
i senting the sum, mod 256, of
I the values of all the charac
I ters in the block, except the
Ileading %, the checksum
i digits, and the end-of-line.
I Table 11-8 gives the values

for all characters that may
appear in Extended Tekhex
message blocks.

Here is an example of an Extended Tekhex data block:

+------------ Block length: 15H = 21

Tables-8540 System Users

Table 11-8
Character Values for Checksum Computation

Characters
I
1 Values (Decimal)

Field

Header

0 .. 9
A..Z

$

%
Inorirv-l\
,,....,'-'llvUI

_ (underscore)

a .. z

Table 11-9

0 .. 9
10 .. 35
36
37
38
39
40 .. 65

Extended Tekhex Data Block Format

Number of
ASCII

Characters Description

6 Standard header field. Block
type = 6.

Load 2 to 17

Address

The address where the object
code is to be loaded: a
variable-length number. ----+-.. -------~----------

ObjectJ ____ ~n_. ___ ...l..._~w_b_oy_~_ee_sx_' _~_~9_ci_~S_r_e_p_re_s_e_n_t_e_d_a_s_

+--------- Checksum: i CH = 28 = 1 +5+6+3+1 +0+0+0+2+0+2+ ...

+-- Object code: 6 bytes

%1561C3100020202020202

+-- Load address: 100H

+------ Block type: 6

+--------- Header character

11 -6 1(1

Tables-8540 System Users

Table 11-10
Extended Tekhex Termination Block Format

Field

Number of
ASCII

Characters

-- - --- ---------------

Description
- ----- -------------==- =--t---:::-::-:=---=---=---=--========
Header

Transfer
Address

6

2 to 17

Standard header field_ Block
type = 8.

The address where program
execution is to begin: a
variable-length number.

Table 11-11
Extended Tekhex Symbol Block Formata

Field

Header

Section
Name

Section
Definition

Symboi
Defini
tion(s)

Number of
ASCII

characters

6

2 to 17

Description

Standard header field. Block
type = 3.

The name of the section that
contains the symbols defined
in this block: a variable-

I length symbol.
--\--

5 to 35 I This field must be present in
exactly one symbol block for
each section. This field may
be preceded or followed by
any number of symbol defini
tion fields. Table 11-12 gives
the format for this field.

------------ -- ._. __ ._._-_ .. _._----------------

5 to 35 eachl Zero or more symboi defini-

Jtion fields, as described in
Table 11-13.

a For an example of Extended Tekhex symbol block format,
refer to Section 4 of this manual, Intersystem
Communication.

Here is an example of an Extended Tekhex termination
block:

+------ Block length: 8

+--- Checksum: 1 AH = 26 = 0+8+8+2+8+0

%0881A280

+--- Transfer address: 80H

+------- Block type: 8

+---------- Header character

Item

0

Base
Address

Length

Item

Type

Symbol

Value

Extended Tekhex

Table 11-12
Extended Tekhex Symbol Block:

Section Definition Field

Number of
ASCII

Characters Description

1 A zero signals a section
definition field.

2 to 17 The starting address of the
section: a variable-length
number.

2 to 17 The length of the section: a
variable-length number, com-
puted as 1 + (high address -
base address).

Table 11-13
Extended Tekhex Symbol Block:

Symbol Definition Field

Number of
ASCII

Characters Description

1 A hex digit that indicates the
global/local designation of
the symbol, and the type of
value the symbol represents:
1 = global address
2 = global scalar
3 = global code address
4 = global data address
5 = local address

16 = local scalar
7 = local code address
8 = local data address

2 to 17 A variable-length symbol.

2 to 17 The value associated with the
symbol: a variable-length
number.

11-7

Motorola Load Module Format Tables-8540 System Users

MOTOROLA LOAD MODULE
FORMAT

General Format

11-8

Start of Type of

Record

Byte

Count Address

Table 11-14
Motorola Load Module Format

Data Checksum

I I I I I No. of ASCii I
I Name I Characters I Content Description

I Start of Record I I Always an'S'.

2

Address 4

Data 2*N

Checksum 2

A two-digit hexadecimal number representing the
number of data bytes in the block plus three

Four hexadecimal digits representing the address
of the memory location where this record is stored

N data bytes, each represented as two hexadecimal
digits

Two-digit hexadecimal number representing the
one's complement of the sum, modulo 100H, of the
data bytes address C1nd hyte count

Tables-8540 System Users Motorola Load Module Format

Example

S 0 F 0 0 4 0 0 9 00 0 1 00 05 00 00 0 E 00 00 0 F 1 A 6A

LArldreSS
'-----Byte Count

L----Type of Record

'----- Start of Rpcord

Data-~

Type of Record 1. Specifies the data record

Checksum

Byte Count OF Indicates that there are OF pairs of hexadecimal digits in the block following
the byte cou nt.

Address 0040. Specifies that the first data byte (09) is stored at address 0040 The next bytes
(00,01,00,) are stored at the next contiguous memory locations (0041, 0042, etc)

Data Bytes Pairs of hexadecimal digits representing data bytes stored on the record

Checksum 6A The one's complement of the number 95, the sum of the data bytes, address,
a nd byte cou nt

OF+00+40+09+00+01+00+05+00+00+0E+00+00+OF+1A 95H

(ei 11 -9

Intel Load Module Format

General Format

Header
Character

Name

I Header Character

I Record Length

Starting Address

Type of Record

Data

Checksum

11-10

Tables-8540 System Users

INTEL LOAD MODULE FORMAT

Record Starting Type of
I n+h
... "", •• ~t.11 Checksum Address Record Data

Table 11-15
Intel Load Module Format

I No. of ASCII
I Characters

I

Content Description I

I 1
2

4

2

2*N

2

Always a colon. I

Two-digit hexadecimal value representing the I

number of data bytes. A record length of 0 indicates I
the last record of a file I

Four hexadecimal digits representing the program
memory address of ihe firsi daia byie in ihe record.

00 = normal data record.
01 = last record of a file.

N data bytes, each represented as two hexadeci ma I
digits.

Two-digit hexadecimal number representing the
two's complement of the sum, modulo 100H, of the
preceding data bytes, record type, address, and
record iengttl

Tables-8540 System Users Intel Load Module Format

Example

09 a a a 4 a a 01 00 00 05 06 00 00 AE OF 2A

'"--------

J Data

L.---Type

~-- Starting Address

'----- Record Length

'----- Header

Checksum

Record Length 09. Indicates that there are nine data bytes in the record.

Starting Address 0004. Specifies that the first data byte (01) is stored at program memory
address 0004. The next bytes (00,00,05 ...) are stored at the next contiguous memory
locations (0005, 0006, etc.).

Type of Record 00. Indicates a normal data record.

Data Bytes. Pairs of hexadecimal digits representing data bytes stored on the record.

Checksum 2A. The two's complement of D6, the sum of the data bytes, record type, address,
and record length.

09+00+04+00+01 +00+00+05+06+00+00+AE+OF = D6

11-11

8540 System Users

Section 12

GLOSSARY

Acquisition Memory. The buffer in the ITA that holds the
255 bus transactions most recently captured during
program execution. This buffer stores up to 62 bits of
information from each bus transaction.

Address. A number or symbol that specifies a byte in
memory.

Assembler. A host system program that translates
assembly language programs into machine language.

Assembly language. A microprocessor-specific pro
gramming language that allows the symbolic representa
tion of any microprocessor operation. Each operation is
coded as one assembly language statement.

Assign. To associate a channel with a device or host file.

Break. A suspension of program execution by OS/40,
accompanied by a display of the status of the emulator. A
break may be set using an OS/40 BK command or one of
several ITA commands. A break may also result from a
special action, such as attempting to write to protected
memory or typing CTRL-C.

Breakpoint. A program instruction at which a break is set.
You can set breakpoints by using the ITA or the OS/40 BK
(Breakpoint) command. The TRA -S command causes a
break to occur each time a trace line is displayed.

Buffer. An area of memory where a block of data may be
stored.

Bus Operation. A transfer of information between a
microprocessor and a memory or I/O device. The four basic
types of bus operations are memory read, memory write,
I/O read, and I/O write. Some emulators recognize other
types of bus operations.

Channel. The logical link between a device or host file and
the operating system. Channels are numbered 0-9.
Channels 0-7 are user-defined; channels 8 and 9 are
assigned to standard input and standard output, respec
tively. The AS (Assign) command assigns a channel for use
by a device or host file.

Characteristic Module. A circuit card that configures the
PROM Programmer for a particular set of PROM devices.

Checksum. A value obtained by summing together data
bytes as they are received. If the checksum calculated by
the receiving device differs from the checksum transmitted
with the data, the data may have been transferred
incorrectly.

COM Interface. A communications interface between an
8540 and a host computer, established via the OS/ 40 COM
command. Object code can be transferred between the
host and the 8540, and host commands are executed from
the 8540 system terminal as if the 8540 were not present.

Close. To disassociate a channel from a device or hostfile.

Control Character. A character whose ASCII code is in the
range 00 to 1 F hexadecimal. RUBOUT (ASCII code 7F) is
also a controi character. Some control characters are
entered using special keys, such as TAB or RETURN.
Others are entered by pressing the CTRL key and some
other key at the same time.

Counter. See General Purpose Counter.

Device. An instrument attached to the 8540 that is used for
I/O. See the Learning Guide section of this manual for a
table of standard device names used by OS/40.

Disassemble. To translate machine language back into
assembly language mnemonics. The 01 command performs
disassembly.

Download. To transfer data from a host to the 8540.

Editor. A host system program that allows you to create
and modify text files conveniently.

EEPROM. Electronically erasable PROMs. EEPROMS on
the 8540 contain user-defined strings saved with the
PERMSTR command, and system patch information
created by the ROMPATCH command.

Emulating Microprocessor. The microprocessor on which
your program executes during emulation. The emulating
microprocessor resides on the emulator board or in the
prototype control probe, and is usually the same type of
microprocessor as the one being emulated.

12-1

Emulation. Performing the functions of a microprocessor,
at or near the microprocessor's execution speed, with
controllable hardware that facilitates debugging and
testing of the micrul-lfuGessur !)ofiwClre in the prototype
hardware. Emulation features of the 8540 include
breakpoints, tracing, and event timing.

Emulation Mode. An 8540 operating Inode in which the
8540 can provide some of the hardware functions needed
by the microprocessor-based program. The hardware
functions that can be provided are memory, a clock, and I/O
facilities. The three modes are:

• Mode 0: System mode. Your program uses program
memory and the emulator clock and uses SVCs for I/O.
Until the prototype is built and connected to the
emulator hardware, the program may execute only in
mode O.

• Mode 1: Partial emulation mode. Your program uses the
prototype's clock and may access both program and
prototype memory: the memory map determines
whether a particular address refers to program or
prototype memory. Some emulators may also use SVCs.

• ~/!ode 2: Fu!! emu!ation mode. Your program uses the
prototype's memory, clock, and I/O facilities. Some
emulators may also use SVCs.

Emulator (or Emulator Processor). A circuit board in the
8540 that emulates the microprocessor that will drive your
prototype hardware. You may use the emulation and
debugging features of the emulator to test the software
that will run on the prototype and to Integrate the software
and hardware components of the prototype.

Event. The simultaneous occurrence of one or more
specified conditions that can be detected by the n A. An
event is defined in terms of values on the address bus, data
bus, and certain other lines connected to the emulating
microprocessor or prototype.

Expression. A formula that contains numbers, register
names, or user-defined symbols related by operators.
Evaluation of the expression yields an integer value. Many
OS/40 command parameters may be entered as
expressions. Refer to the Command Dictionary for more
information on expressions.

Extended Tekhex. See Tekhex.

File Pointer. A logical position in a file, maintained by
OS/40 for use in processing SVCs. All reads from the file
and writes to the file are performed beginning at the
current file pointer. The file pointer is updated to the end of
the data item read or written. The file pointer may also be
moved using Seek SVCs. An independent file pointer is
maintained for each channel.

12-2

Glossary-8540 System Users

Filespec. A string of characters that specifies a file on the
host computer. The term "filespec" in a Command
Dictionary syntax block may also refer to a standard device
name such as CONi or REMO.

Full Emulation Mode. See Emulation Mode.

Genera! Purpose Countsr. One of four registers in the TT A
that increments or decrements while the emulator is
running. You may use these counters to measure the
execution time of a program segment, to measure the time
between two specified events, or to count the occurences
of an event.

High-level language. A language such as MDL/Il or
Pascal that reflects algorithms more easily than assembly
language. A program written in a high level language is
essentially processor independent, relying on a processor
specific compiler or interpreter to convert the program into
object code.

Host. A separate computer system that is used to prepare
and maintain programs that are tested and debugged on
the 8540.

Instruction. A machine instruction is a sequence of bytes
that directs a microprocessor to perform an elementary
operation such as load, store, add, or branch. An assembly
language instruction is an alphanumeric representation of
a machine instruction. The assembler translates an
assembly language instruction into the corresponding
machine instruction.

Instruction Fetch. A bus operation during which the first
byte of the next instruction to be executed appears on the
data bus.

Interrupt. A suspension of normal processing to handle a
special request. In general, when a microprocessor is
interrupted by a peripheral device, the microprocessor
finishes the instruction it is executing, then jumps to the
routine that services the indicated peripheral, and finally
returns to the stream of instructions it was executing
before the interrupt occurred.

Intersystem Communication. A process by which the
8540 exchanges information with another computer
system, via cable or phone line.

K. 1024 bytes (400 hexadecimal).

label. A symbol that represents an address, variable, or
constant in an assembly language program.

Linker. A host system program that combines object
modules into a single executable load module.

G lossary-8540 System Users

load Module. A collection of executable object code
suitable for loading into program memory. A load module
may be in binary format. as produced by a linker orthe SAV
command, or it may be in a hexadecimal format. Refer to
the Tables section of this manual for information on
hexadecimal formats recognized by OS/40.

LOCAL Mode. Stand-alone mode for an 8540, in which
each command entered is interpreted by the 8540 itself.
See also TERM Interface.

MAC. See Memory Allocation Controller.

Machine language. The binary language of a micro
processor. A high-level or assembly language program
must be translated to machine instructions before the
microprocessor can execute the program.

Memory Allocation Controller. A hardware option that
permits the expanded addressing capabilities of emulators
such as the Z8001 /Z8002 and 68000 to operate within the
confines of 8540 program memory. For such emulators,
you must have the MAC option installed in order to use the
DEAL (DEAllocate), MEM (MEMory), and NOMEM
(NOMEMory) commands.

Memory Map. An internal table maintained by OS/40that
indicates which portions of memory used by the emulator
are in program memory and which are in prototype
memory. The memory map also indicates which parts of
program memory are protected from write operations
during program execution. Memory may be mapped in
blocks as small as 128 bytes. Use the MAP command to
change or display the memory map.

Mnemonic. A symbol that represents a machine
instruction. Usually the symbol is an abbreviation that
suggests the machine operation to be performed. For
example, the 8085A mnemonic MOV represents a
machine instruction that moves a value into a register.

Module. A program unit that is complete for purposes of
compiling, assembling, linking, or loading. It may be
combined with other modules to produce a complete
program. See also load Module; Object Code; Source
Code.

Object Code. Machine language produced by an
assembler or compiler from source statements. An object
module contains one or more sections of object code, plus
special information used by the linker, library generator, or
LO command. Each time the assembler executes, it
produces one object module. An object file is a file that
contains an object module.

Operand. A number on which an operation is performed.
The expression X+3 represents an add operation on the
operands X and 3. The assembly language statement LDA
NUM 1 performs a load operation on the byte addressed by
the operand NUM 1.

Operator. A character or sequence of characters that
represents an operation to be performed on one or more
operands. The only operators allowed in OS/40 command
lines are + and -.

05/40. The ROM-based Operating System of the 8540
Integration Unit.

Partial Emulation Mode. See Emulation Mode.

Patch. To alter a program by changing the executable
object code rather than the source code.

Program Clock. A counter in the 8540 that increments
every 100 milliseconds while the emulator is running. You
may use the CLOCK command to initialize or display the
value in the program clock. This value is also accessible
through the "Read Program Clock" SVC.

Program Counter. A register that contains the address of
the next instruction to be executed.

Program Memory. Memory in the 8540 that is used as a
substitute for prototype memory in the early stages of
prototype development (emulation modes 0 and 1).

Program/Prototype Memory. This term refers either to
program memory or to prototype memory, depending on
the current emulation mode and memory map. In mode 0,
this term always refers to program memory. In mode 2, this
term always refers to prototype memory. In mode 1, the
memory map dictates which address ranges are in program
memory and which are in prototype memory.

PROM. Programmable Read-Only Memory. Nonvolatile
read-only memory that is blank when it is manufactured
and stores whatever information is written to it by a PROM
Programmer.

PROM Programmer. An optional device that writes data
from memory to a PROM chip or reads data from a PROM
chip into memory. You must have a PROM Programmer in
order to use the following commands: CPR, RPR, WPR,
PSTAT, and PTYPE.

Prototype. The microprocessor-based device that you are
developing using the 8540.

Prototype Control Probe. A probe that takes the place of
the prototype microprocessor and connects the prototype
to the appropriate emulator hardware in the 8540.

Prototype Memory. Memory that resides in the prototype
being developed.

RAM. Random Access Memory. Memory that may be read
from or written to.

Rewind. To position a file pointer to the beginning of a file,
so that information in the file can be re-processed. See also
Seek.

12-3

ROM_ Read-Oniy Memory: memory that is manufactured
with predetermined contents and cannot be written to.

Seek. To position a fiie pointer to a given iocation in a fiie.
Your program can use Seek SVCs to select any position in
the file at which to read or write data. See also Rewind.

Service Call (SVCj. A request for OS/40 to perforrn a
specified I/O or maintenance function for an executing
program. System programs use SVCs, as do most user
programs that do not rely entirely on prototype I/O. The
Service Calls section of this manual explains how to set up
and initiate a service call, and describes each type of
service call.

Source Code. Program statements written in high-level or
assembly language. A source module is a set of
statements that are compiled or assembled as a unit. A
source file is a file that contains all or part of a source
module.

Stack. A last-in, first-out (LIFO) data structure. Only the
last item pushed onto the stack is immediately available.
\,AJhen that item is pepped off the stack, the item stored
before it becomes available. Many microprocessor
applications use a stack in memory for temporary storage
or for passing parameters between subroutines.

Stack Pointer. A register that contains the address of the
top of the stack.

Standard Input. The file or device from which a command
takes its input. Defaults to the system terminal unless you
redirect input by using a <filespec parameter in the
command line.

Standard Output. The file or device to which a command
directs its output. Defaults to the system terminal unless
you redirect output by using a >filespec parameter in the
command line.

Standard Tekhex. See Tekhex.

String. A sequence of ASCII characters. OS/40 allows you
to assign a name to a string and then refer to the string by
name in a command line. If a string contains a delimiter
such as a space, comma, or semicolon, the string should be
enclosed in single or double quotes. If it contains a dollar
sign, backslash, or double quote, the string should be
enclosed in single quotes.

Permanent strings, created with the OS/40 PERMSTR
command, are stored in the 8540/s EEPROM storage area
and thus are available whenever the system is powered up
or restarted.

SVC. See Service Call.

12-4

Glossary--8540 System Users

Symbol. A string of up to 16 characters that begins with a
letter and contains only letters, digits, periods, underscores,
or dollar signs. In an assembly language program,
predefined symbols include assembler directives and
functions, mnemonics, and register names; user-defined
symbols represent addresses, data items, variables,
macros, sections, or modules.

Symbol Tab!e. A tab!e in system memory that contains
program symbols and their values. This table is used in
symbolic debug. Use the SYMLO or COM commands to
place symbols from a load file in the symbol table. Use the
ADDS command to create other symbols.

Symbolic Debug. The use of symbols in place of
expressions or hexadecimal numbers during debugging.
You can use symbols as parameters in any OS/40
command that accepts expressions as parameters. During
output, each hexadecimal address is replaced with either a
symbol or an offset relative to the start of a program
section. Some emulators do not support symbolic debug:
refer to your Emulator Specifics supplement for this
information.

System Memory. Memory in the 8540 that is not
accessible to the user. Most OS/40 commands execute in
system memory.

System Mode. See Emulation Mode.

System Terminal. The CRT terminal or other RS-232-C
compatible I/O device through which you communicate
with the 8540. Device names for input and output through
the system terminal are CONI and CONO, respectively.

Target Processor. The microprocessor that the 8540 is to
emulate.

Tekhex. Tektronix Hexadecimal Format: a format for
representing the contents of a block of memory as an ASCII
sequence of hexadecimal digits. Checksums in the Tekhex
format permit verification of Tekhex data transmitted from
one computer to another. The WH command can be used to
write memory contents to a file or device in Tekhex format;
similarly, RH can be used to read Tekhex data from a file or
device into memory. There are two forms of Tekhex:
Standard Tekhex and Extended Tekhex. Both forms of
Tekhex are described in the intersystem Communication
section of this manual.

TERM Interface. A mode of communication between an
8560 Multi-User Software Development Unit and an 8540.
A TERM interface allows you to intermix OS/40 commands
and TNIX commands, execute OS/40 commands from
TNIX command files, and transmit data between the 8540
and 8560.

Glossary-8540 System Users

TNIX. The operating system of the TEKTRONIX 8560 Multi
User Software Development Unit.

Trace. To monitor the execution of a program by displaying
the processor status each time a specified type of
instruction is executed. The TRA command specifies the
type and/or range of instructions to be displayed.

Transfer Address. The address of the first machine
instruction to be executed in a program.

Trigger Trace Analyzer (ITA). An optional hardware
device that enhances the 8540's debugging capabilities.
The TTA allows you to capture and store up to 255 bus

transactions that precede or follow a selected event in the
executing program. The TTA includes four general purpose
counters and four triggers that can break program
execution, start or stop counters, or signal other
instruments.

You must have a ITA installed in your 8540 in order to use
any of the following commands: ACQ, AD, BRE, BUS,
CONS, cau, CTR, DATA, DISP, EVE, PRO, QUA, TCLR, TS.

Upload. To transfer data from the 8540 to a host.

12-5

8540 System Users

A

A command, 3-8

abort
command, 3-8
SVC, 6-11

abortable commands, 3-8

ACIA, 4-23, 4-25

ACK character, 4-15

ACQ command, 5-18
examples, 2-16-2-17

Acquisition Memory, 5-16-5-17, 12-1

AD command, 5-18

add:
contents of registers, 3-15
numbers, 3-15
symbol to symbol table, 3-9

address expressions, 3-5

address map:
allocate memory to, 3-1 °
deallocate memory from, 3-25

ADDS command, 3-9, 5-9
examples, 2-9

AL command, 3-10, 5-11
examples, 2-9

apostrophe. See Single quote

arithmetic expression, 3-5

arrows, input and output redirection, « », 3-3

AS command, 3-12

ASCII codes (table), 11-1

ASCII transfer, 4-8, 6-1 °
See also Intersystem communication

asm (8560 command), 1-25

assembler, 1-25, 12-1

assign

B

channel to device or file, 3-12
value to register or symbol, 3-51

backs lash (\), 3-4

BACKSPACE key, 3- 7

baud rate for data transfers, 4-24

binary-decimal-hexadecimal equivalents, 11-3

binary transfer, 4-8, 6-10
See also Intersystem communication

BK command, 3-13, 5-4

boldface in syntax blocks, 3-2

braces (/ I)' 3-2

brackets ([]), 3-2

BRE command, 5-16

break, 12-1

breakpoint, 12-1
clearing, 2-13, 3-14
displaying, 2-13, 3-13
setting, 2-12, 3-13, 5-4
See also BK command

buffer (for an SVC), 6-4

BUS command, 5-15

ral

Section 13

INDEX
c
CALC command, 3-15, 5-9

capitalization, 1-15

carriage return, 1-10

channels. See I/O channels

characteristic module, Section 8, 12-1

characters, control, 3-7

characters, special:
ACK (0), 4-15
apostrophe. See Single quote
arrows « >), 3-3
backs lash (\), 3-4
braces (/ I), 3-2
brackets ([]), 3-2
carriage return «CR », 1 -10
dash (-), 3-3
dollar sign ($), 1-14, 3-5
double quote (H), 3-5, 6-10
escape character (\), 3-4
NAK (7), 4-15
null, 3-21, 4-4
periods (...), 3-2
semicolon (;), 1-13, 3-2
single quote (,), 3-5, 6-10
slash (/), 4-1 .
See also Control characters

checksum, 12-1

CL command, 3-16

clear breakpoint, 3-14

CLOCK command, 3-17, 5-5

close
channel, 3-16
SVC, 6-11

CO command, 3-18

code address (symbol type), 4-13

COM command, 3-19, 4-22
examples, 2-3-2-5

COM interface, 1-12, 4-2

COM Interface Package, 1-5

command strings, 1-13
STARTUP, 1-9, 1-14

command line:
capitalization, 3-2
format, 3-2
notational conventions, 3-2

commands, Section 3
abortable, 3-8
affected by MEMSP, 3-39
dash modifiers, 3-3
delimiters, 3-3
memory areas, 3- 7
multiple, 3-4
names, 3-3
parameters, 3-3
reference manuals for other commands, 3-2
suspendable, 3-8
syntax notation conventions, 3-2

CONFIG command, 2-1-2-2, 3-22

configuring the 8540, 1-1, 3-22, 3-23
with an 8560, 1 -15

CONI,1-5

CONO, 1-5

CONS command, 5-16

13-1

continuing execution of suspended command. 3- 18

control characters. 1-10. 3-7. 12-1
null. 4-4

cunversion tables. 11-2
correcting a typing mistake. 1-11

COU command. 5-16-5-17
examples. 2-15. 2-17-2-18

CPR command. Section 8

<CR>.1-10

CTR command. 5-15

CTRL (controi) characters. See Control characters

o
o command. 3-24

examples. 1-32. 1-34. 2-19

dash (-). 3-3

dash modifiers. 3-3

data address (symbol type). 4-13

DATA command. 5-15

Data Transfer Types table (COM Interface). 4-3

data transfers. See Intersystem Communication

DCE.4-23

DEAL command. 3-25. b-12-b- i 3

deallocate memory from logical address map. 3-25

decimal-hexadecimal-binary equivalents. 11-3

deleting:
permanent strings. 3-43
temporary strings. 3-4
text being entered. 1-11

delimiters. command. 3-3

demonstration run. 1-17-1-40

demonstrations of:
emulation. 1-17-1-40
SVCs, 6-6-6-9

designators (memory space). 3-6

devices. See 1/0 devices

01 command. 3-26
examples. 2-20

disassemble object code into mnemonics. 3-26

DISP command. 2-16. 3-27. 5-18

display:
breakpoint conditions. 3-13
contents of emulator registers. 3-27
DISP command. 3-27
executed instructions. 3-62
memory contents. 3-24. 3-29
memory map. 3-36
memory map assignments. 3-35
strings:

permanent. 3-43
temporary. 3-55

symbolic. 3-59
system status. 3-55

dollar sign ($). 1-14. 3-5

don't-care expressions, 3-6

DOS/50:
compared with OS/40. 9-1
HOST command, 4-4

double quote n, 3-5

download. 3-21,4-1
See also Intersystem communication

OS command, 3-27
examples. 2-9. 5-5

13-2

Index-854.0 System Users

DTE.4-23

dump memory contents. 3-24

E

EEPROr.l!:
patching. 3-49
storing permanent strings in. 3-43

electrical considerations. 1-1
for prototype controi probe. Section 7

EM command. 2-8. 3-28

emulating microprocessor. 5-1

emulation. Section 5
limits of. 9-1
mode 0.5-1
modes 1 and 2. 5-6-5-7

emulation modes. 3-28. 5-1. 12-1

emulator. 5-1
display registers. 3-27
read from emulator port. 3-45
reinitiaiize. 3-47
starting. 5-4
stopping. 5-4
write to emulator port. 3-65

emulator processor. See Emulator

emu!ator-specif!c information, Section 7

escape character'
CTRL-C.3-7
(\),3-4

EVE command, 5-15
examples, 2-14-2- 1 8

evaluate arithmetic expression, 3-15

event, 5-13-5-16, 12-2
consecutive. 5- 1 6

EX command, 3-29

examine or alter memory contents, 3-29. 5-5

execution:
abort command or program execution, 3-8
begin program execution, 3-32
load and execute program, 3-65
resume execution of suspended command, 3-18
SVC execution, 3-57
time execution of program segment. 3-17

exit (from program). 6-12

expressions:
address, 3- 5
arithmetic expression evaluation. 3-15
don't-care, 3-6
operators in expressions, 3-6

Extended Tekhex, 4-11
sample load module, 1- 18

F

F command, 3-30
examples, 2-20, 5-5

file pointer, 6-11

files:
assign channel to file, 3-12, 6- 11
close channel to file, 3-16, 6-11
limitations of file handling SVCs, 6-4
save memory contents in file. 3-52

fill programlprototype memory with data, 3-30

formatted transfers, 4-9-4- 21
See also Intersystem communication

Index-8540 System Users

G

G command, 2-8, 3-32

general purpose counter, 5-16-5-17, 12-2
examples, 2-15, 2-17-2-18

global symbol, 4-13

go (begin program execution), 3-32

H

halting program execution, 5-4, 5-7

handshaking (in formatted data transfers), 4-16

hardware requirements for host computer, 4-23

hardware specification, installation,

configuration, and verification, 1-1

hexadecimal:
formats. See Load module
read,3-48
write, 3-64

hexadecimal-decimal-binary equivalents, 11-3

hexadecimal multiplication, 11-2

HOST (DOS/50 command), 4-4
examples, 2-6

host computer, 1 -7
See also Intersystem communication

input/output. See I/O

installation of 8540 hardware and software, 1-1

instruction, 12-2

Intel hexadecimal load module format, 11-1 °
interface, define host, 3-22

interrupts, 12-2
in emulation mode 0, 5-6
in emulation modes 1 and 2, 5-7

intersystem communication:

I/O:

J

COM command parameters, 4-22
communication with an 8002A, 2-7, 4-6
communication with an 8550, 2-5-2-7, 4-4
communication with an 8560, 1-11, 2-1-2-2, 4-1
communication with other host computers, 1-12,
2-3-2-5, 4- 7

data transfers, 4-25
establishing communication, 4-25
exiting from COM, 4-25

formatted transfers, 4-9-4-21
hardware requirements, 4-23
host computer programs:

convert to Tekhex, 4-18-4-21
receive T ekhex, 4-1 7
transmit Tekhex, 4-16

protocols for data transfers:
formatted, 4-15
unformatted, 4-8

Types of Data Transfer table, 4-3
unformatted transfers, 4-7-4-9

buffer (for an SVC), 6-4
channels, 6-4, 6-11

assigning, 2-21
closing, 2-21
displaying assignments, 2-20

devices:
identification and type codes, 6-13
jack numbers, 1-8

log terminal I/O to device, 3-34
redirection of standard I/O, 3-3-3-4

jack numbers, 1-8

K

keys, special:

L

BACKSPACE, 3-7
CTRL, 1-10,3-7
escape (CTRL-C), 3- 7
RETURN (carriage return). 1-10
RUBOUT,3-7

LAS format for SRB, 6-3

line printer, 1-6
accessing the line printer in TERM mode, 1 -37

LIST DBG (assembler directive). 1 -20

LO command, 3-34

load:
module, 12-3

Tektronix Hexadecimal Format (Tekhex), 4-9-4-21
See also Intersystem communication

program, 3-34, 3-48, 3-65
symbols into symbol table, 3-61

LOCAL mode, 1-11, 3-22, 12-3

LOG command, 2-10, 3-34

logging in to 8560, 1-11

logging in to other hosts, 1 -12

logical address map:
allocating memory to, 3-10, 5-7
deallocating memory from, 3-25

lowercase. See Capitalization

LPT,1-6

M

M parameter (of COM and CON FIG commands), 4-22

MAC. See Memory Allocation Controller

manuals:
overview of related user manuals, 1-41, 3-2
overview of this manual. 1-40

MAP comm,and, 2-14, 2-20, 3-35

MEM command, 3-38, 5-13

memory:
allocation, 2-9, 3-10, 5-4, 5-9-5-13
alter contents, 3-29, 3-42
available to emulator, 3-38, 3-41
command memory areas, 3-7
deallocation, 3-25
display contents, 3-24, 3-29
display memory map, 3-36
fill program/prototype memory with data, 3-30
layout for SVCs, 6-2, 6-3
memory map, 3-35-3-36, 5-7
memory spaces, 3-6, 3-39, 5-11
program memory, 1-5

changing contents, 5-5
displaying contents, 5-4-5-6
reallocating address blocks in a 32K 8540 system, 5-4

program/prototype memory, 12-3
copying data between program and prototype memory
3-40 '

prototype memory, 12-3
read-only memory (ROM), 12-4

detecting a write to ROM, 5-4, 5- 7
MAP command, 2-20, 3-35
TIA,2-15

save contents, 3-52, 3-64
search for value or string, 3-53
system memory, 12-4
write protection of prototype memory, 3-35

13-3

Memory Allocation Controller, 5-9
commands, 5-11-5-13
memory spaces, 3-6, 3-39, 5-11

MEMSP comm;mrl. 3-39

mode. See Emulation modes

MODE SELECT switch, 4-24

modifiers, command (dash), 3-3

~¥"'ctcrc!a hexadecimal load module forlTl8t, 11-4-11-7

MOV command, 3-40

multiple commands, 3-4

N

NAK character, 4-15

names
command, 3-1, 3-3
register, 3-6

NOMEM command, 3-41, 5-13

notational conventions in a command line, 3-2

nul! character, 3-21, 4-4

o
object code, 12-3

op6iatoi5 in expressions, 3-6
optional products compatible with 8540, 1-5

OS/40, 12-3
compared with DOS/50, 9-1

output. See 1/0
overview of related user manuals, 1-41

overview of this manual, 1-40

overwrite, 6-11

p

P command, 3-42
examples, 2-19, 5-4

paper tape reader Ipunch. 1-6

parameters, 3-3

patch (alter) memory contents, 3-42

periods (...) in syntax blocks, 3-2

peripherals. See 1/0 devices

permanent strings, 3-43

PERMSTR command, 3-43
examples. 1 -14

plugging in the 8540, 1-8

PPTP, 1-6

PPTR, 1-6

PRO command. 5- i 5

proceed (in SVCs), 6-1 °
program (user's):

aborting, 3-8
breaking. 2-12, 2-14-2-15, 2-18, 3-13, 5-4, 5-16
executing, 5-4
executing repeatedly, 5-4
halting execution, 3-8, 3-56, 5-4, 6-12
loading, 3-34
modifying, 2-10-2-12
monitoring, 5-4
timing a segment, 2-17, 2-18, 3-17. 5-16-5-17

program clock. 3-17, 5-5, 12-3

program memory_ See Memory

13-4

Index--8540 System Users

program section. See Section

PROM Programmer, 1-6, Section 8

protocols. See Intersystem communication

prototype, 12-3
hardware considerations, 5-6. Section 7
1/0, 5-2-5-3

prototype control probe, 12-3
timing consideiations, Section 7

prototype memory. See Memory

PSTAT command, Seciion 8

PTYPE command, Section 8

Q

QUA command, 5-15

QUERY command, 3-44

quote, double (H) and single ('). 3-5

R

radix selector letters, 3-5

RD command, 3-45

reading:
from emulator port, 3-45
hexadecimal code into memory, 3-48

read-only memory (ROM). See Memory

redirecting 1/0, 3-3-3-4
registers:

add contents of, 3-15
changing contents of, 3-51
displaying contents of. 5-5
names, 3-6

reinitializing emulator, 3-47

REMI,1-8

REMO, 1-8

REMOTE port status register. 4-25

remove symbol from symbol table, 3-46

REMS command, 3-46, 5-9

RESET command, 3-47

resident commands, 3-7

resuming display, 3-6-3-7

RETURN key (carriage return), 1-1 °
rewind, 6-15

RH command, 3-48

ROM. See Memory

ROMPATCH command, 3-49

RPR command, Section 8

RUBOUT key, 3-7

s
S command, 2-9, 3-51

SAS format for SRB, 6-2

SAV command, 2-2, 3-52

save memory contents:
in file, 3-52
in hexadecimal format, 3-64

SEA command, 3-53

search memory for value or string. 3-53

1(11

Index-8540 System Users

section (of a program), 1-19
in symbolic debug, 1-33
in Tekhex symbol blocks, 4-13

seek (in SVCs), 6-11, 6-15-6-16

SEl command, 3-54

select
emulation mode, 3-28
target processor, 3-54

SELF TEST light:
on 8301 front panel, 1-9
on PROM Programmer front panel module, 8-2

semicolon (;), 1-13, 3-2

SEND (TEKDOS command), 4-6

service calls. See SVCs

service request block. See SRB

set:
breakpoint, 3-13-3-14
memory map assignments, 3-35-3-36
register or symbol to value, 3-51

single quote ('), 3-5

special characters. See Characters, special

special keys. See Keys, special

SRB,6-4
examples, 6-9
status codes, 6-4

SRB vector, 6-3
examples, 6-9

standard input and output, 12-4
redirecting, 3-4

Standard Tekhex, 4-1 °
starting up the 8540,1-8

STARTUP string, 1-9, 1-14

STAT command, 2-20, 3-55

status of SVC, 6-4

STR command, 3-55

strings, 1-13, 3-5
permanent, 3-43
STARTUP, 1-9, 1-14, 3-23
temporary, 3-55

SUSP command, 3-56

suspendable (abortable) commands, 3-8

suspending display, 3-6-3-7

SVC command, 3-57, 6-3, 6-4
examples, 2-13-2-14

SVCs, Section 6
8540 compared with 8550, 9-2
accessing host files, 6-4
applications, 6-5-6-6
breaking on an SVC, 5-6
demonstration, 6-6-6-9
1/0 instruction, 6-3, Section 7
LAS memory layout, 6-3
phasing SVCs out of a program, 5-6
SAS memory layout, 6-2

SYMB command, 3-58, 5-9

symbolic debug, 1-33-1-34, 5-7-5-9
Tekhex symbol block, 4-13

symbols, 3-6
adding, 3-9
displaying, 3-59
loading, 3-61
removing, 3-46
returning symbolic equivalent of value, 3-58

SYMD command, 3-59

SYMlO command, 2-2, 3-61, 5-9

syntax block, 3-2

syntax notation conventions, 3-2

system 1/0, 2-20
system terminal, 1-5

T

target processor, 12-4
selecting the target processor, 3-54, 5-3

TClR command, 5-16

TEKDOS SEND command, 2-7-2-8, 4-6

Tekhex (Tektronix Hexadecimal Format), 3-21,

4-9-4-21, 11-4
conversion program, 4-18-4-21
receive program, 4-17
transmit program, 4-16

Tektronix Hexadecimal Format. See Tekhex

temporary strings, 3-4-3-5, 3-55

TERM mode, 1-7, 1-11,3-22,4-1

terminal 1/0, logging to device or file, 3-34

test clips, 5-14

timing, 5-5
considerations for prototype control probe, Section 7
factors that affect timing, 5-5

timing a program segment:
using CLOCK, 3-17
using SVCs, 6-5
using the ITA 2-17, 2-18, 5-16-5-17

TNIX, 1-7

TRA command, 3-62
examples, 1-35-1-37, 2-10-2-12

tracing:
using the TRA command, 2-10-2-12, 3-62-3-63, 5-4
using the ITA, 2-16-2-18, 5-18

transfer, data, 3-21

transfer address, 12-5

trigger, 5-13

Trigger Trace Analyzer. See TTA

TS command, 3-2

ITA:
Acquisition Memory, 5-16-5-17, 12-1
breakpoints, 5-16
clearing, 5-16
commands, 5-19
compared with RTPA, 9-2
event, 5-14-5-16

consecutive, 5-16
examples of use, 2-14-2-18
general purpose counters, 5-16-5-17
information monitored by, 5-14
trigger, 5-13-5-18

turning off the 8540, 1-10

turning on the 8540, 1-8

type-ahead, 1-13

u
underlined characters:

in examples, 1-1 °
in syntax blocks, 3-2

unformatted transfers, 4-7
See also Intersystem communication

UNIX. See TNIX

upload, 12-5
See also Intersystem communication

uppercase. See Capitalization

user prototype. See Prototype

, 3-5

v
variable-length numbers and symbols, 4-12
verification of 8540 hardware. 1-1
virtual memory, 2-9

wait (in SVCs). 6-10

\lVH command, 3-64
WPR command, Section 8

write
hexadecimal, 3-64
protect ion:

of program memory, 5-4
of prototype memory, 3-35, 5-7

to emulator 1/0 port, 3-65

WRT command, 3-65

13-6

x
X command, 3-65

z
zero- insertion-force (ZIF) socket. 8-1

zeroing out memory, 1-26

Index 8540 System Users

	0001
	0002
	0003
	001
	003
	004
	01-001
	01-002
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	01-24
	01-25
	01-26
	01-27
	01-28
	01-29
	01-30
	01-31
	01-32
	01-33
	01-34
	01-35
	01-36
	01-37
	01-38
	01-39
	01-40
	01-41
	01-42
	02-001
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	03-001
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	03-40
	03-41
	03-42
	03-43
	03-44
	03-45
	03-46
	03-47
	03-48
	03-49
	03-50
	03-51
	03-52
	03-53
	03-54
	03-55
	03-56
	03-57
	03-58
	03-59
	03-60
	03-61
	03-62
	03-63
	03-64
	03-65
	04-001
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	05-001
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	06-001
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	07-01
	07C-0001_Z80
	07C-0002
	07C-001
	07C-002
	07C-01
	07C-02
	07C-03
	07C-04
	07C-05
	07C-06
	07C-07
	07C-08
	07C-09
	07C-10
	07C-11
	07C-12
	07C-13
	07C-14
	07C-15
	07C-16
	07C-17
	07C-18
	07C-19
	07C-20
	07C-21
	07C-22
	07C-23
	07C-24
	07C-25
	07C-26
	07C-27
	07C-28
	07C-29
	07C-30
	07C-31
	07C-32
	07C-33
	07C-34
	07C-35
	07C-36
	07C-37
	07C-38
	07C-39
	07C-40
	07C-41
	07C-42
	07C-43
	07C-44
	07C-45
	07C-46
	07C-47
	07C-48
	07C-49
	07C-50
	07C-51
	07C-52
	07C-53
	07C-54
	07H-0001_8048
	07H-0002
	07H-001
	07H-002
	07H-01
	07H-02
	07H-03
	07H-04
	07H-05
	07H-06
	07H-07
	07H-08
	07H-09
	07H-10
	07H-11
	07H-12
	07H-13
	07H-14
	07H-15
	07H-16
	07H-17
	07H-18
	07H-19
	07H-20
	07H-21
	07H-22
	07H-23
	07H-24
	07H-25
	07H-26
	07H-27
	07H-28
	07H-29
	07H-30
	07H-31
	07H-32
	07H-33
	07H-34
	07H-35
	07H-36
	07H-37
	07H-38
	07H-39
	07H-40
	07H-41
	07H-42
	07H-43
	07H-44
	07H-45
	07H-46
	07H-47
	07H-48
	07H-49
	07H-50
	07H-51
	07H-52
	07H-53
	07H-54
	07H-55
	07H-56
	07H-57
	07H-58
	07H-59
	07H-60
	07H-61
	07H-62
	07H-63
	07H-64
	07H-65
	07H-66
	07H-67
	07H-68
	07H-69
	08-01
	08-02
	08A-0001_2716pgmr
	08A-0002
	08A-001
	08A-01
	08A-02
	08A-03
	08A-04
	08A-05
	08A-06
	08A-07
	08A-08
	08A-09
	08A-10
	08A-11
	08A-12
	08A-13
	08B-0001_8748pgmr
	08B-0002
	08B-001
	08B-01
	08B-02
	08B-03
	08B-04
	08B-05
	08B-06
	08B-07
	08B-08
	08B-09
	08B-10
	08B-11
	08B-12
	08B-13
	08C-0001_2764pgmr
	08C-0002
	08C-001
	08C-01
	08C-02
	08C-03
	08C-04
	08C-05
	08C-06
	08C-07
	08C-08
	08C-09
	08C-10
	08C-11
	08C-12
	08C-13
	08C-14
	08C-15
	08C-16
	08C-17
	08C-18
	08D-0001_8751pgmr
	08D-0002
	08D-001
	08D-01
	08D-02
	08D-03
	08D-04
	08D-05
	08D-06
	08D-07
	08D-08
	08D-09
	08D-10
	08D-11
	08D-12
	08D-13
	08D-14
	08D-15
	08D-16
	09-01
	09-02
	09-03
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	11-001
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	12-01
	12-02
	12-03
	12-04
	12-05
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06

